
FORTRAN

Reference Manual

Order No. DEC-20-LFRMA-A-D

FORTRAN

Reference Manual

Order No. DEC-20-LFRMA-A-D

digital equipment corporation · maynard. massachusetts

First Printing, January 1976

The information in this document is subject to change without notice and should not be construed as a commit­
ment by Digital Equipment Corporation. Digital Equipment Corporation assumes no responsibility for any errors
that may appear in this document.

The software described in this document is furnished under a license and may be used or copied only in accordance
with the terms of such license.

Digital Equipment Corporation assumes no responsibility for the use or reliability of its software on equipment
that is not supplied by DIGITAL.

Copyright © 1976 by Digital Equipment Corporation

The postage prepaid READER'S COMMENTS form on the last page of this document requests the user's critical
evaluation to assist us in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

DIGITAL DECsystem-IO MASSBUS
DEC DECtape OMNIBUS
PDP DIBOL OS/8
DECUS EDUSYSTEM PHA
UNIBUS FLIP CHIP RSTS
COMPUTER LABS FOCAL RSX
COMTEX INDAC TYPESET-8
DDT LAB-8 TYPESET-IO
DECCOMM DECsystem-20 TYPESET-l I

CHAPTER I

1.1

CHAPTER 2

2.1
2.2
2.2.1
2.2.2
2.2.3
2.2.4
2.3
2.3.1
2.3.2
2.3.3
2.3.4
2.3.5
2.3.6
2.4

CHAPTER 3

3.1
3.2
3.2.1
3.2.2
3.2.3
3.2.4
3.2.5
3.2.6
3.2.7
3.2.8
3.3
3.4
3.5
3.5.1
3.5.2
3.5.3

CHAPTER 4

4.1
4.1.1
4.2
4.2.1
4.3
4.3.1
4.3.2
4.3.3
4.3.4

CONTENTS

INTRODUCTION

INTRODUCTION

CHARACTERS AND LINES

CHARACTER SET
STATEMENT, DEFINITION, AND FORMAT

Statement Label Field and Statement Numbers
Line Continuation Field
Statement Field
Remarks

LINE TYPES
Initial and Continuation Line Types
Multi-Statement Lines
Comment Lines and Remarks
Debug Lines
Blank Lines
Line-Sequenced Input

ORDERING OF DECSYSTEM-20 FORTRAN STATEMENTS.

DA T A TYPES, CONSTANTS, SYMBOLIC NAMES, VARIABLES, AND ARRAYS

DATA TYPES
CONSTANTS

Integer Constants
Real Constants .
Double Precision Constants
Complex Constants
Octal Constan ts
Logical Constants
Literal Constants
Statement Label Constants

SYMBOLIC NAMES
VARIABLES
ARRAYS

Array Element Subscripts
Dimensioning Arrays ..
Order of Stored Array Elements

EXPRESSIONS

ARITHMETIC EXPRESSIONS
Rules for Writing Arithmetic Expressions

LOGICAL EXPRESSIONS
Relational Expressions

EVALUATION OF EXPRESSIONS
Parenthesized Subexpressions
Hierarchy of Operators
Mixed Mode Expressions . . .

> ,

Use of Logical. Operands in Mixed Mode Expressions

iii

Page

1-1

2-1
2-3
2-3
2-3
2-3
2-3
2-4
2-4
2-5
2-5
2-6
2-6
2-6
2-6

3-1
3-1
3-2
3-2
3-3
3-4
3-4
3-5
3-5
3-6
3-6
3-6
3-7
3-7
3-8
3-9

4-1
4-2
4-2
4-6
4-8
4-8
4-8
4-9

. 4-10

CHAPTERS

5.1
5.2
5.3
5.4

CHAPTER 6

6.1
6.2
6.2.1
6.3
6.4
6.5
6.5.1
6.6
6.7
6.8

CHAPTER 7

7.1

CHAPTER 8

8.1
8.2
8.3
8.4

CHAPTER 9

9.1
9.2
9.2.1
9.2.2
9.2.3
9.3
9.3.1
9.3.2
9.3.3
9.4
9.4.1
9.4.2
9.4.3
9.5
9.6
9.7
9.7.1

CONTENTS (Cont)

Page

COMPILA TION CONTROL STATEMENTS

INTRODUCTION . 5-1
PROGRAM STATEMENT 5-1
INCLUDE STATEMENT 5-1
END STATEMENT 5-2

SPECIFICATION STATEMENT

INTRODUCTION 6-1
DIMENSION STATEMENT

Adjustable Dimensions .
TYPE SPECIFICATION STATEMENTS
IMPLICIT STATEMENTS
COMMON STATEMENT

Dimensioning Arrays in COMMON Statements
EQUIVALENCE STATEMENT
EXTERNAL STATEMENT
PARAMETER STATEMENT

6-1
6-2

· 6-3
· 64
· 6-5

6-6
6-6
6-7
6-8

DATA STATEMENT

INTRODUCTION .. 7-1

ASSIGNMENT STATEMENTS

INTRODUCTION
ARITHMETIC ASSIGNMENT STATEMENT
LOGICAL ASSIGNMENT STATEMENTS
ASSIGN (STATEMENT LABEL) ASSIGNMENT STATEMENT

CONTROL STATEMENTS

INTRODUCTION
GO TO CONTROL STATEMENTS

Unconditional GO TO Statements
Computed GO TO Statements
Assigned GO TO Statements

IF STATEMENTS

8-1
8-1
8-3
8-3

9-1
9-1
9-2
9-2
9-2
9-3

Arithmetic IF Statements 9-3
Logical IF Statements 94
Logical Two-Branch IF Statements 94

DO STATEMENT 9-5
Nested DO Statements 9-6
Extend Range 9-7
Permitted Transfer Operations 9-8

CONTINUE STATEMENT .. 9-9
STOP STATEMENT 9-9
PAUSE STATEMENT 9-10

T (TRACE) Option 9-10

iv

CHAPTER 10

10.1
10.2
10.2.1
10.2.2
10.2.3
10.3
10.3.1
10.3.2
10.3.3
10.3.4
10.3.4.1
10.3.5
10.3.6
10.3.7
10.4
10.5
10.5.1
10.5.2
10.5.3
10.5.4
10.5.5
10.5.6
10.6
10.7
10.8
10.8.1
10.8.2
10.8.3
10.8.4
10.8.5
10.8.6
10.9
10.10
10.1 0.1
10.10.2
10.11
10.12
10.13
10.14
10.14.1
10.14.2
10.14.3
10.15

CONTENTS (Cont)

I/O STATEMENTS

DATA TRANSFER OPERATIONS
TRANSFER MODES

Sequential Mode ...
Random Access Mode
Append Mode

I/O STATEMENTS, BASIC FORMATS AND COMPONENTS
I/O Statement Keywords
Logical Unit Numbers
FORMAT Statement References ..
I/O List

Implied DO Constructs
The Specification of Records for Random Access .
List-Directed I/O
NAME LIST I/O Lists

OPTIONAL READ/WRITE ERROR EXIT AND END-OF-FILE ARGUMENTS
READ STATEMENTS

Sequential Formatted READ Transfers
Sequential Unformatted Binary READ Transfers
Sequential list-Directed READ Transfers
Sequential NAMELIST-Controlled READ Transfers
Random Access Formatted READ Transfers . .
Random Access Unformatted READ Transfers

SUMMARY OF READ STATEMENTS
REREAD STATEMENT
WRITE STATEMENTS

Sequential Formatted WRITE Transfers .
Sequential Unformatted WRITE Transfer
Sequential list-Directed WRITE Transfers
Sequential NAME LIST-Controlled WRITE Transfers
Random Access Formatted WRITE Transfers
Random Access Unformatted WRITE Transfers

SUMMARY OF WRITE STATEMENTS
ACCEPT STATEMENT

Formatted ACCEPT Transfers
ACCEPT Transfers Into FORMAT Statement

PRINT STATEMENT
TYPE STATEMENT
FIND STATEMENT.
ENCODE AND DECODE STATEMENTS

ENCODE Statement
DECODE Statement
Example of ENCODE/DECODE Operations

SUMMARY OF I/O STATEMENTS

v

Page

10-1
10-1
10-1
10-1
10-2
10-2
10-3
10-3
10-3
10-5
10-5
10-6
10-6
10-8
10-8
10-9
10-9

10-10
10-10
10-11
10-11
10-11
10-11
10-12
10-13
10-13
10-14
10-14
10-14
10-14
10-15
10-15
10-15
10-15
10-16
10-16
10-17
10-17
10-18
10-19
10-19
10-19
10-20

CHAPTER 11

11.1
11.2
11.2.1
11.2.2

CHAPTER 12

12.1
12.2
12.2.1
12.2.2

CHAPTER 13

13.1
13.1.1
13.2
13.2.1
13.2.2
13.2.3
13.2.4
13.2.5
13.2.6
13.2.7
13.2.8
13.2.9
13.2.10
13.2.11
13.3

CHAPTER 14

14.1
14.2
14.3
14.4
14.5
14.6
14.7
14.8
14.9

CONTENTS (Cont)

NAME LIST STATEMENTS

INTRODUCTION
NAMELIST STATEMENT

NAMELIST-Controlled Input Transfers
NAMELIST-Controlled Output Transfers

FILE CONTROL STATEMENTS

INTRODUCTION
OPEN AND CLOSE STATEMENTS

Options for OPEN and CLOSE Statements
Summary of OPEN/CLOSE Statement Options

FORMAT STATEMENT

INTRODUCTION
FORMAT Statement, General Form

FORMAT DESCRIPTORS
Numeric Field Descriptors
Interaction of Field Descriptors With I/O list Variables During Transfer
G, General Numeric Conversion Code
Numeric Fields with Scale Factors
Logical Field Descriptors
Variable Numeric Field Widths ..
Alphanumeric Field Descriptors .
Transferring Alphanumeric Data Directly Into or From FORMAT Statements
Mixed Numeric and Alphanumeric Fields
Multiple Record Specifications .
Record Formatting Field Descriptors

CARRIAGE CONTROL CHARACTERS FOR PRINTING ASCII RECORDS

DEVICE CONTROL STATEMENTS

INTRODUCTION
REWIND STATEMENT
UNLOAD STATEMENT
BACKSPACE STATEMENT ..
END FILE STATEMENT
SKIP RECORD STATEMENT
SKIP FILE STATEMENT
BACKFILE STATEMENT
SUMMARY OF DEVICE CONTROL STATEMENTS

CHAPTER IS SUBPROGRAM STATEMENTS

15.1
15.1.1
15.2
15.3
15.4
15.4.1
15.4.2

INTRODUCTION
Dummy and Actual Arguments

STATEMENT FUNCTIONS
INTRINSIC FUNCTIONS (DECsystem-20 FORTRAN DEFINED FUNCTIONS)
EXTERNAL FUNCTIONS .

Basic External Functions (DECsystem-20 FORTRAN Defined Functions) .
Generic Function Names

vi

Page

11-1
11-1
11-2
11-3

12-1
12-1
12-2

. 12-8

13-1
13-1
13-2
134
13-6
13-7
13-7
13-9
13-9

13-10
13-11
13-12
13-13
13-14
13-15

14-1
14-2
14-2
14-2
14-2
14-3
14-3
14-3
14-3

15-1
15-1
15-3
15-3
15-5
15-6
15-6

15.5
15.5.1
15.5.2
15.6
15.6.1
15.7

CONTENTS (Coot)

SUBROUTINE SUBPROGRAMS
Referencing Subroutines (CALL Statement) .. .
DECsystem-20 FORTRAN Supplied Subroutines

RETURN STATEMENT AND MULTIPLE RETURNS
Referencing External FUNCTION Subprograms

MULTIPLE SUBPROGRAM ENTRY POINTS (ENTRY STATEMENT)

CHAPTER 16 BLOCK DATA SUBPROGRAMS

16.1
16.2

INTRODUCTION
BLOCK DATA STATEMENT ..

APPENDIX A ASCII-1968 CHARACTER CODE SET

APPENDIX B SPECIfYING DIRECTORY AREAS

B.I
B.I.1
B.1.2
B.2
B.2.1
8.2.2

USING LOGICAL NAMES
Giving The DEFINE Command
Using The Logical Name

USING PROJECT-PROGRAMMER NUMBERS
Running The TRANSL Program
Using The Project-Programmer Number

APPENDIX C USING THE COMPILER

C.l
C.1.I
C.1.1.1
C.1.2
C.2
C.2.1
C.3
C.3.1
C.3.2
C.4

RUNNING THE COMPILER
Switches Available with DECsystem-20 FORTRAN

The /DEBUG Switch
LOAD Class Commands

READING A DECsystem-20 FORTRAN LISTING
Compiler Generated Variables ..

ERROR REPORTING
Fatal Errors and Warning Messages
Message Summary

CREATE A REENTRANT FORTRAN PROGRAM WITH LINK

APPENDIX D WRITING USER PROGRAMS

0.1
0.1.1
0.1.2
0.1.3
0.1.4
0.1.5
0.1.6
0.1.7
0.2
0.2.1
0.2.1.1
0.2.1.2
0.2.1.3
0.2.1.4

GENERAL PROGRAMMING CONSIDERATIONS
Accuracy and Range of Double Precision Numbers
Writing FORTRAN Programs for Execution on Non-DEC Machines
Using Floating Point DO Loops
Computation of DO Loop Iterations
Subroutines - Programming Considerations
Reordering of Computations
Dimensioning of Formal Arrays

DECsystem-20 FORTRAN GLOBAL OPTIMIZATION
Optimization Techniques

Elimination of Redundant Computations .
Reduction of Operator Strength
Removal of Constant Computation From Loops
Constant Folding and Propagation

vii

Page

· 15-7
· 15-9
.15-10
.15-10
.15-12
.15-13

16-1
16-1

· B-1
· B-1
. B-2

· B-2
. B-2
. B-2

· C-l
· C-l
· C-2
.C-4
· C-5
· C-6

· C-10
· C-1O
· C-ll
· C-l1

· .0-1
.0-1
.0-1
.0-1
.0-1
.0-2
0-2

.0-3

.0-4

.0-4

.0-4

.0-5

.0-6

.0-7

D.2.l.S
D.2.1.6
D.2.1.7
D.2.1.8
D.2.1.9
D.2.2
D.2.3
D.3
D.3.1
D.3.2
D.3.3
D.3.4
D.3.S
D.3.6

D.3.7
D.3.7.1
D.3.7.2

CONTENTS (Cont)

Removal of Inaccessible Code
Global Register Allocation
I/O Optimization
Uninitialized Variable Detection
Test Replacement

Improper Function References
Programming Techniques for Effective Optimization

INTERF ACING WITH NON-DECsystem-20 FORTRAN PROGRAMS AND FILES
Calling Sequences .
Accumulator Usage
Argument Lists ...
Argument Types ..
Description of Arguments
Converting Existing MACRO Libraries for Use with DECsystem-20
FORTRAN
Interaction with COBOL

Calling FORTRAN Subprograms from COBOL Programs
Calling COBOL Subroutines from FORTRAN Programs

APPENDIX E FOROTS

E.I
E.2
E.3
E.3.!
E.3.2
E.3.2.1
E.3.2.2
EA
EA.I
EA.2
EA.2.1
EA.3
EA.4
E.S
E.S.!
E.S.2
E.S.3
E.S.3.1

E.S.3.2

E.S.3.3
E.5.3A

E.5.3.S
E.5.3.6

E.S.3.7

FEATURES OF FOROTS
ERROR PROCESSING . .
INPUT /OUTPUT F ACI LlTIES

Input/Output Channels Used Internally by FOROTS
File Access Modes

Sequential Transfer Mode
Random Access Mode

ACCEPTABLE TYPES OF DATA FILES AND THEIR FORMATS
ASCII Data Files
FORTRAN Binary Data Files

Format of Binary Files
Mixed Mode Data Files .
Image Files

USING FOROTS
FOROTS Entry Points
Calling Sequences
MACRO Calls for FOROTS Functions

Formatted/Unformatted Transfer Statements, Sequential Access
Calling Sequences .
NAMELIST Data Transfer Statements, Sequential Access
Calling Sequences
Array Offsets and Factoring
Formatted/Unformatted Data Transfer Statements,
Random Access Calling Sequences
Calling Sequences for Statements Which Use Default Devices
Calling Sequences for Statements Which Position Magnetic
Tape Units
List Directed Input/Output Statements

viii

Page

.D-7

.D-7

.D-7

.D-8

.D-8

.D-8

.D-8

.D-8

.D-9
· D-IO
· D-IO
· D-12
· D-12

· D-13
· D-18
· D-18
· D-19

· E-I
.E-2
· E-2
· E-2
· E-2
.E-2
· E-3
· E-3
· E-3
· E-3
.E-4

· E-I!
· E-II
· E-!2
· E-12
· E-12
· E-13

· E-14

· E-IS
· E-!6

· E-!7
· E-18

· E-19
· E-20

E.5.3.8
E.5.3.9
E.5.3.10
E.6

CONTENTS (Cont)

Input/Output Data Lists
OPEN and CLOSE Statements, Calling Sequences
Software Channel Allocation and De-allocation Routines

LOGICAL/PHYSICAL DEVICE ASSIGNMENTS

APPENDIX F FORDDT

F.l
F.l.1
F.1.2
F.1.3
F.2
F.2.l
F.3
FA
F.5
F.6
F.7
F.8
F.9

INPUT FORMAT
Variables and Arrays .
Numeric Conventions
Statement Labels and Source Line Numbers

NEW USER TUTORIAL
Basic Commands

FORDDT AND THE FORTRAN /DEBUG SWITCH
LOADING AND STARTING FORDDT
SCOPE OF NAME AND LABEL REFERENCES .
FORDDT COMMANDS
ENVIRONMENT CONTROL .. .
FORTRAN /OPTIMIZE SWITCH
FORDDT MESSAGES

APPENDIX G COMPILER MESSAGES

APPENDIX H DECsystem-IO COMPATIBILITY

ix

Page

· E-20
· E-23
· E-24
· E-25

· F-2
· F-2
· F-3
· F-3
· F-3
· F-3
· F-6
· F-7
· F-8
· F-8

· F-16
· F-16
· F-16

Table No.

1-1
2-1
3-1
3-2
4-1
4-2
4-3
4-4
4-5
4-6
4-7
4-8
8-1

10-1
10-2
10-3
104
12-1
13-1
13-2
13-3
134

13-5
14-1
15-1
15-2
15-3
C-I
C-2
D-l
D-2
D-3
E-2
F-I

TABLES

Title

FORTRAN Statement Categories
DECsystem-20 FORTRAN Character Set
Constants
Use of Symbolic Names
Arithmetic Operations and Operators
Type of the Resultant Obtained From Mixed Mode Operations
Permitted Base/Exponent Type Combinations
Logical Operators
Logical Operations, Truth Table
Binary Logical Operations, Truth Table
Relational Operators and Operations . .
Hierarchy of FORTRAN Operators
Rules for Conversion in Mixed Mode Assignments
DECsystem-20 FORTRAN Logical Device Assignments

Summary of Read Statements
Summary of WRITE Statements
Summary of DECsystem-20 FORTRAN I/O Statements

OPEN/CLOSE Statement Arguments
DECsystem-20 FORTRAN Conversion Codes
Action of Field Descriptors On Sample Data .
Numeric Field Codes
Descriptor Conversion of Real and Double Precision Data
According to Magnitude
FORTRAN Print Control Characters
Summary of DECsystem-20 FORTRAN Device Control Statements
Intrinsic Functions (DECsystem-20 FORTRAN Defined Functions) .
Basic External Functions (DECsystem-20 FORTRAN Defined Functions) .
FORTRAN Library Subroutines
FORTRAN Compiler Switches
Modifiers to /DEBUG Switch
Argument Types and Type Codes
Upward Compatibility (FORSE TO FOROTS)
Downward Compatibility (FOROTS TO FORSE)
FORTRAN Device Table
Table of Commands

x

Page

1-2
2-1
3-2
3-6
4-1
4-3
44
44
4-5
4-6
4-7
4-9
8-2

104
10-12
10-15
10-21

12-9
13-3
13-5
13-6

13-8
13-14

14-3
· 154
· 15-8
IS-IS

· C-2
· C-3

D-12
D-21
D-22
E-27

· F-I

PREFACE

The DECsystem-20 FORTRAN Reference Manual describes the FORTRAN language as
implemented for the DECsystem-20 FORTRAN Language Processing System (referred to as
DECsystem-20 FORTRAN).

The lanb'Uage manual is intended for reference purposes only; tutorial type text has been
minimized. The reader is expected to have some experience in writing FORTRAN programs
and to be familiar with the standard FORTRAN language set and terminology as defined in
the American National Standard FORTRAN, X3.9-l966.

The descriptions of the DECsystem-20 FORTRAN extensions and additions to the standard
FORTRAN language set are printed in bold!aceitafictype.

Operating procedures and descriptions of the DECsystem-20 programming environment are
included in the appendices.

xi

CHAYfER 1

DECsystem-20 FORTRAN extensions to the 1966

ANSI standard set are printed in boldface italic type.

1.1 INTRODUCTION

Introduction

CHAPTER 1
INTRODUCTION

The DECsystem-20 FORTRAN language set is compatible with and encompasses the standard set described in
"American National Standard FORTRAN, X3.9-l966" (referred to as the 1966 ANSI standard set). DECsystem-20
FORTRAN also provides many extensions and additions to the standard set which greatly enhance the usefulness of
DECsystem-20 FORTRAN and increases its compatibility with FORTRAN language sets implemented by other
major computer manufacturers. In this manual the DECsystem-20 FORTRAN extensions and additions to the 1966
ANSI standard set are printed in boldface italic type.

A DECsystem-20 FORTRAN source program consists of a set of statements constructed using the language elements
and the syntax described in this manual. A given FORTRAN statement will perform anyone of the following functions:

a. It will cause operations such as multiplication, division, and branching to be carried out.

b. It will specify the type and format of the data being processed.

c. It will specify the characteristics of the source program.

FORTRAN statements are comprised of key words (i.e., words which are recognized by the compiler) used with
elements of the language set: constants, variables, and expressions. There are two basic types of FORTRAN
statements: executable and nonexecutable.

Executable statements specify the action of the program; nonexecutable statements describe the characteristics and
arrangement of data, editing information, statement functions, and the kind of subprograms that may be included in
the program. The compilation of executable statements results in the creation of executable code in the object
program. Nonexecutable statements provide information only to the compiler, they do not create executable code.

In this manual the FORTRAN statements are grouped into twelve categories, each of which is described in a separate
chapter. The name, definition, and chapter reference for each statement category are given in Table 1-1.

The basic FORTRAN language elements (i.e., constants, variables, and expreSSions), the character set from which
they may be formed, and the rules which govern their construction and use are described in Chapters 2 through 4.

1-1

CHAPTER 1

Category Name

Compilation Control
Statements

Specification Statements

DATA Statement

Assignment Statements

Control Statements

Input/Output Statements

NAMELIST Statement

File Control Statements

FORMAT Statement

Device Control Statements

SUBPROGRAM
Statements

BLOCK DATA Statements

Table 1-1
FORTRAN Statement Categories

Description

Statements in this category identify programs
and indicate their end.

Statements in this category declare the
properties of variables, arrays, and functions.

This statement assigns initial values to variables
and array elements.

Statements in this category cause named
variables and/or array elements to be replaced
by specified (assigned) values.

Statements in this category determine the order
of execution of the object program and
terminate its execution.

Statements in this category transfer data
between internal storage and a specified input
or output medium.

This statement establishes lists that are used
with certain input/output statements to
transfer data which appears in a special type of
record.

Statements in this category identify, open and
close files and establish parameters for input
and output operations between files and the
processor.

This statement is used with certain
input/output statements to specify the form in
which data appears in a FORTRAN record on a
specified input/output medium.

Statements in this category enable the
programmer to control the positioning of
records or files on certain peripheral devices.

Statements in this category enable the
programmer to define functions and
subroutines and their entry points.

Statements in this category are used to declare
data specification subprograms which may
initialize common storage areas.

1-2

Statement Categories

Chapter Reference

5

6

7

8

9

10

11

12

13

14

15

16

CHAPTER 2 Character Set

DECsystem-20 FORTRAN extensions to the 1966

ANSI standard set are printed in boldface italic type.

2.1 CHARACTER SET

CHAPTER 2
CHARACTERS AND LINES

The digits, letters, and symbols recognized by DECsystem-20 FORTRAN are listed in Table 2-1. The remainder of
the ASCII-I968 character set I, although acceptable within iiteral constants or comment text, causes a fatal error in
other contexts. An exception is CTRLjZ which, when used in terminal input, means end-of-file.

NOTE
Lower case alphabetic characters are treated as upper case
outside the context of Hollerith constants, literal strings, and
comments.

Table 2-1
DECsystem-20 FORTRAN Character Set

Letters

A,a 1,j S,s
B,b K,k T,t
C,c L,l U,u
D,d M,m V,V
E,e N,n W,w
F,f 0,0 X,x
e,g P,p Y,y
H,h Q,q Z,Z

IJ R,r

(continued)

1 The complete ASCII-I968 character set is defined in the X3.4-I968 version of the "American National Standard for Information

Interchange," and is given in Appendix A.

2-1

CHAPTER 2

Exclamation Point
" Quotation Marks
Number Sign
$ Dollar Sign
& Ampersand
,

Apostrophe
(Opening Parenthesis
) Closing Parenthesis

* Asterisk
+ Plus

Table 2-1 (Cont)
DECsystem-20 FORTRAN Character Set

Digits

0 5
6

2 7
3 8
4 9

Symbols

Line Termination Characters

Line Feed
Form Feed
Vertical Tab

Line Formatting Characters

Carriage Return
Horizontal Tab
Blank

Character Set

Comma
Hyphen (Minus)
Period (Decimal Point)
Slant (slash)
Colon
Semicolon

< Less Than
Equals

> Greater Than
A Circumflex

Note that horizontal tabs normally advance the character position pointer to the next position that is an even
multiple of 8. An exception to this is the initial tab which is defined as a tab that includes or starts in character
position 6. (Refer to Section 2.3.1 for a description of initial and continuation line types.) Tabs within literal
specifications count as one character even though they may advance the character position pointer as many as eight
places.

2-2

CHAPTER 2

2.2 STATEMENT, DEFINITION, AND FORMAT

Statement LABEL,
CONTINUATION and STATEMENT

Fields and Remarks

Source program statements are divided into physical lines. A line is defined as a string of adjacent character
positions, terminated by the first occurrence of a line termination character regardless of context. Each line is
divided into four fields:

I~ Line Character Positions -------------------....,~~

2 3 4 5 6 7 8 70 71 72
~---~y----~/~\~---------~T------------J

Statement
Label Field

Continuation
Field

2.2.1 Statement Label Field and Statement Numbers

Statement Field

73 . .
'------r-----'

Remarks

A one to five digit number may be placed in the statement label field of an initial line to identify the statement. Any
source program statement that is referenced by another statement must have a statement number. Statement
numbers may be any number from 1 to 99999; leading zeroes and all blanks in the label field are ignored (e.g., the
numbers 00105 and 105 are both accepted as statement number 105). The statement numbers given in a source
program may be assigned in any order; however, each statement number must be unique with respect to all other
statements in the program. Non executable statements, with the exception of FORMAT statements, cannot be
labeled.

When source programs are entered into the system via a standard user terminal, an initial tab may be used to skip
all or part of the label field.

If an initial tab is encountered during compilation, FORTRAN examines the character immediately following the
tab to determine the type of line being entered. If the character following the tab is one of the digits 1 through 9,
FORTRAN considers the line as a continuation line and the second character after the tab as the first character
of the statement field. If the character fol/owing the taq is other than one of the digits 1 through 9, FORTRAN
considers the line to be an initial line and the character fol/owing the tab is considered to be the first character of the
statement field. The character following the initial tab is considered to be in character position 6 in a continuation
line, and in character position 7 in an initial line.

2.2.2 Line Continuation Field

Any alphanumeric character (except a blank or a zero) placed in this field (position 6) identifies the line as a
continuation line (see Paragraph 2.3.1 for description).

Whenever a tab is used to skip all or part of the label field of a continuation line, the next character entered must be
one of the digits 1 through 9 to identify the line as a continuation line.

2.2.3 Statement Field

Any FORTRAN statement may appear in this field. Blanks (spaces) and tabs do not affect compilation of the state­
ment and may be used freely in this field for appearance purposes, with the exception of textual data given within
either a literal or Hollerith specification where blanks and tabs are significant characters.

2.2.4 Remarks

In lines comprised of 73 or more character positions, only the first 72 characters are interpreted by FORTRAN.
(Note that tabs generally occupy more than one character position, advancing the counter to the next character
position that is an even multiple of eight.) All other characters in the line (character positions 73, 74 ... etc.) ar~
treated as remarks and do not affect compilation.

2-3

LINE TYPES

Initial and Continuation Lines

Note that remarks may also be added to a line in character positions 7 through 72 provided the text of the remark is
preceded by the symbol! (refer to Paragraph 2.3.3).

2.3 LINE TYPES

A line in a DECsystem-20 FORTRAN source program can be

a. an initial line

b. a continuation line

c. a multi-statement line

d. a comment line

e. a debug line

f. a blank line.

Each of the foregoing line types is described in the following paragraphs.

2.3.1 Initial and Continuation Line Types

A FORTRAN statement may occupy the statement fields of up to 20 consecutive lines. The first line in a multi­
line statement group is referred to as the "initial" line; the succeeding lines are referred to as continuation
lines.

Initial lines may be assigned a statement number and must have either a blank or a zero in their continuation line
field (i.e., character position 6).

If an initial line is entered via a keyboard input device, an initial tab may be used to skip all or part of the /abel field.
An initial tab used for this purpose must be followed immediately by a nonnumeric character (i.e., the first character
of the statement field must be nonnumeric).

Continuation lines cannot be assigned statement numbers: they are identified by any alphanumeric character (ex­
cept for a blank or zero) placed in character position 6 of the line (i.e., continuation line field). The label field of a
continuation line is treated as remark text.

If a continuation line is being entered via a keyboard, an initial tab may be used to skip all or part of the label field;
however, the tab must be followed immediately by a numeric character other than zero. The tab-numeric
combination identifies the line as a continuation line.

Note that blank lines, comments, and debug lines that are treated like comments, i.e., debug lines that are not
compiled with the rest of the program (refer to section 2.3.4), terminate a continuation sequence.

Following is an example of a four line FORTRAN FORMAT statement using initial tabs:

105 FORMAT <1Hl,17HINITIAL CHARGE = ,FI0.6,10H COULOME,6X,
213HRESISTANCE = ,F9.3,6H OHM/ISH CAPACITANCE = ,F10.6,
38H FARAD,11 X,13HI NDUCTANCE - ,F7.3,8H HENERYIII
421 H II ME CURRENT/7H MS .10X.2HMAIII)

t
Continuation Line Characters (i.e., 2, 3, and 4)

24

2.3.2 Multi-Statement Lines

Multi-Statement Comment,
and Remark Lines

More than one FOR TRAN statement may be written in the statement field of one line. The rules for structuring a
multi-statement line are:

a. successive statements must be separated by a semicolon (;)

b. only the first statement in the series can have a statement number

c. statements following the first statement cannot be a continuation of the preceding statement

d. the lost statement in a line may be continued to the next line if the line ;s made a continuation line.

An example of a multi-statement line is:

450 DIST=RATE * TIME ;TIME=TIME+0.05 ;CALL PRIMECTIME,DISn

2.3.3 Comment Lines and Remarks

Lines that contain descriptive text only are referred to as comment lines. Comment lines are commonly used to
identify and introduce a source program, to describe the purpose of a particular set of statements, and to introduce
subprograms.

The rules for structuring a comment line are:

a. One of the characters C (or c), $,1,*, or ! must be in character position 1 of the line to identify it as a
comment line.

b. The text may be written into character positions 2 through the end of the line.

c. Comment lines may appear anywhere in the source program, but may not precede a continuation line
because comments terminate a continuation sequence.

d. A large comment may be written as a sequence of any number of lines. However, each line must carry
the identifying character (C,$,I, * , or !) in its first character position.

The following is an example of a comment that occupies more than one line.

CSUBROUTINE - A12
CTHE PURPOSE OF THIS SUBROUTI NE IS
CTO FORMAT AND STORE THE RESULTS OF
CTEST PROGRAM HEAT TEST-l 101

Comment lines are printed on all listings but are otherwise ignored by the compiler.

2-5

Debug and Blank Lines
Line-8equenced Input

Ordering of Statements

A remork may be added to any statement field, in cluzracter positions 7 through 72, provided the symbol! precedes

the text. For example, in the line

IF(N.EQ.0)STOP! STOP IF CARD IS BLANK

the character group "Stop if ClIrd is blonk" is identified as a remark by the preceding ! symbol. Remarks do not
result in the generation of object program code, but they will appear on listings. The symbol !, indicating a remark,
must appear outside the context of a literal specification.

Note that characters appearing in character positions 73 and beyond are automatically treated as remarks, so that
the symbol! need not be used (refer to Paragraph 2.2.4).

2.3.4 Debug Lines

As an aid in program debugging a D (or d) in character position 1 of any line causes the line to be interpreted as a
comment line, i.e., not compiled with the rest of the program unless the / Include switch appears in the command
string. (Refer to Appendix C for a description of the compile switch options.) When the I Include switch is present
in the command string the D (or d) in character position 1 is treated as a blank so that the remainder of the line is
compiled as an ordinary (noncomment) line. Note that the initial and all continuation lines of a debug statement
must contain a D (or d) in character position 1.

2.3.5 Blank Lines

Lines consisting of only blanks, tabs, or no characters may be inserted anywhere in a FORTRAN source program
except immediately preceding a continuation line, because blank lines are by definition initial lines and as such
terminate a continuation sequence. Blank lines are used for formatting purposes only; they cause blank lines to
appear in their corresponding positions in object program listings; otherwise, they are ignored by the compiler.

2.3.6 Line-Sequenced Input

FORTRAN optionally accepts line-sequenced files as produced by EDIT, the DECsystem-20 editor. These sequence
numbers are used in place of the listing line numbers normally generated by FORTRAN.

2.4 ORDERING OF DECSYSTEM-20 FORTRAN STATEMENTS

The order in which FORTRAN Statements appear in a program unit is important. That is, certain types of
statements have to be processed before others in order to guarantee that compilation takes place as expected. The
proper sequence for FORTRAN statements is summarized by the following diagram.

2-6

Ordering of Statements

PROGRAM, FUNCTION, Subprogram, or
BLOCK DATA Statements

IMPLICIT Statements

PARAMETER Statements

DIMENSION, COMMON,
Comment Lines FORMAT Statements EQUIVALENCE, EXTERNAL,

NAMELIST, or Type
Specification Statements

Statement
Function

DATA Statements
Definitions

Executable
Statements

END Statement

Horizontal lines indicate the order in which FORTRAN statements must appear. That is, the statements in the
horizontal sections cannot be interspersed. For example, all PARAMETER statements must appear after all
IMPLICIT statements and before any DATA statements, Le., PARAMETER, IMPLICIT, and DATA statements
cannot be interspersed:, Statement function definitions must appear after IMPLICIT statements and before
executable statements.

Vertical lines indicate the way in which certain types of statements may be interspersed. For example, DATA
statements may be interspersed with statement function definitions and executable statements. FORMAT
statements may be interspersed with IMPLICIT statements, parameter statements, other specification statements,
DATA statements, statement function definitions, and executable statements. The only restrictions on the
placement of FORMAT statements are that they must appear after any PROGRAM, FUNCTION, SUBPROGRAM,
and BLOCK DATA ~tatements, and before the END statement.

Special Cases:

a. The placement of an INCLUDE statement is dictated by the types of statements to be INCLUDEd.

b. The ENTRY statement is allowed only in functions or subroutines. All executable references to any of
the dummy parameters must physically follow the ENTRY statement unless the references appear in the
function definition statement, the subroutine, or in a preceding ENTRY statement.

c. BLOCK DATA subprograms cannot contain any executable statements, statement functions, FORMAT
statements, EXTERNAL statements, or NAMELIST statements. (Refer to section 16.1.)

FORTRAN expects users to adhere to the foregoing ordering guidelines and issues warning messages when
statements are out of place.

2-7

CHAPTER 3

DECsystem-20 FORTRAN extensions to the 1966

ANSI standard set are printed in boldface italic type_

Data Types, Constants

CHAPTER 3
DATA TYPES, CONSTANTS, SYMBOLIC NAMES,

VARIABLES, AND ARRAYS

3.1 DATA TYPES

The data types permitted in DECsystem-20 FORTRAN source programs are

a. integer

b. real

c. double precision

d. complex

e. octal

f. double octal

g- literal

h. statement label, and

i. logical.

The use and format of each of the foregoing data types are discussed in the descriptions of the constant having the
same data type (paragraphs 3.2.1 through 3.2.8).

3.2 CONSTANTS

Constants are quantities that do not change value during the execution of the object program.

The constants permitted in DECsystem-20 FORTRAN are listed in Table 3-1.

3-1

CHAPTER 3

Category

Table 3-1
Constants

Constant(s) Types

INTEGER and REAL Constants

Numeric
Truth Values
Uteral Data
Statement Label

Integer, real, double precision, complex, and octal
Logical
Uteral
Address of FOR TRAN statement label

3.2.1 In teger Constants

An integer constant is a string of from one to eleven digits which represents a whole decimal number (i.e., a n~lllber
without a fractional part). Integer constants must be within the range of - 23 5-1 to +235 -I (i.e., -34359738367 to
+34359738367). Positive integer constants may optionally be signed; negative integer constants must be signed.
Decimal points, commas, or other symbols are not permitted on integer constants (except for a preceding sign, + or
-). Examples of valid integer constants are:

345
+345
-345

Examples of invalid integer constants are:

(use of decimal point)
(use of comma)

+345.
3,450
34.5 (use of decimal point; not a whole number)

3.2.2 Real Constants

A real constant may have any of the following forms:

a. A basic real constant: a string of decimal digits followed immediately by a decimal point which may
optionally be followed by a fraction (e.g., 1557.00).

b. A basic real constant followed immediately by a decimal integer exponent written in E notation (i.e.,
exponential notation) form (e.g., 1559.E2).

c. An integer constant (no decimal point) followed by a decimal integer exponent written in E notation
(e.g., 1559E2).

Real constants may be of any size; however, each will be rounded to fit the precision of 27 bits (i.e., 7 to 9 decimal
digits).

Precision for real constants is maintained (approximately) to eight digits. l

1 This is an approximation, the exact precision obtained will depend on the numbers involved.

3-2

CHAPTER 3 DOUBLE PRECISION Constants

The exponent field of a real constant written in E notation form cannot be empty (i.e., blank), it must be either a
zero or an integer constant. The magnitude of the exponent must be greater than -38 and equal to or less than +38
(i.e., - 3 8 < n ,;;;; 38). The following are examples of valid real constants.

-98.765
7.0E+0
.7E-3
5E+5
50115.
50.El

(i.e., 7.)
(i.e., .0007)
(i.e., 500000.)

(i.e., 500.)

The following are examples of invalid real constants.

n.6E75
.375E
500

(exponent is too large)
(exponent incorrectly written)
(no decimal point given)

3.2.3 Double Precision Constants

Constants of this type are similar to real constants written in E notation form; the direct differences between these
two constants are:

a. Double precision constants depending on their magnitude have precision to 16 or 18 places, rather than
the 8-digit precision obtained for real constants.

b. Each double precision constant occupies two storage locations.

c. The letter D, instead of E, is used in double precision constants to identify a decimal exponent.

Both the letter D and an exponent (even of zero) are required in writing a double precision constant. The exponent
given need only be signed if it is negative; its magnitude must be greater than - 38 and equal to or less than +38 (i.e.,
-38 < n';;;; +38). The range of magnitude permitted a double precision constant depends on the type of processor
present in the system on which the source program is to be compiled and run. The permitted range is 0.14 X 10-38

to 3.4 X 10+38 .

The following are valid examples of double precision constants.

7.9D03
7.9D+03
7.9D-3
79D03
79DO

(i.e., 7900)
(i.e., 7900)
(i.e., .0079)
(i.e., 79000)
(i.e., 79)

The following are invalid examples of double precision constants.

7.9D99
7.9E5

(exponent is too large)
(denotes a single precision constant)

3-3

CHAPTER 3 COMPLEX and OCfAL Constants

3.2.4 Complex Constants

A complex constant can be represented by an ordered pair of integer, real or octal constants written within
parentheses and separated by a comma. For example, (.70712, -.70712) and (8.763E3, 2.297) are complex
constants.

In a complex constant the first (leftmost) real constant of the pair represents the real part of the number, the second
real constant represents the imaginary part of the number. Both the real and imaginary parts of a complex constant
can be signed.

The real constants that represent the real and imaginary parts of a complex constant occupy two consecutive storage
locations in the object program.

3.2.5 Octal Constants

Octal numbers (radix 8) may be used as constants in arithmetic expressions, logical expressions, and data statements.
Octal numbers up to 12 digits in length are considered standard octal constants; they are stored right-justified in one
processor storage location. When necessary, standard octal constants are padded with leading zeroes to fill their
storage location.

If more than 12 digits are specified in an octal number, it is considered a double octal constant. Double octal
constants occupy two storage locations and may contain up to 24 right-justified octal digits; zeroes are added to fill
OIly unused digits.

If a single octal constant is to be assigned to a double precision or complex variable, it is stored, right-justified, in the
high order word of the variable. The low order portion of the variable is set to zero.

If a double octal constant is to be assigned to a double precision or complex variable, it is stored right-justified
starting in the low order (rightmost) word and precedes leftwards into the high order word.

All octal constants must be

a. preceded by a double quote (") to identify the digits as octal (e.g., "777), and

b. signed if negative but optionally signed if positive.

The following are examples of valid octal constants:

"123456700007
"123456700007
+"12345
-"7777
"-7777

The following are examples of invalid octal constants:

"12368
7777

(contains a radix digit)
(no identifying double quotes)

MIen OIl octal constant is used as an operand in an expression, its form (i.e., bit pattern) is not converted to
accommodate it to the type of any other operand. For example, the subexpression (A+"202 400000000) has as its
result the sum of A with the floating point number 2.0; while the subexpression (1+"202400000 000) has as its
result the sum of I with a large integer.

34

CHAPTER 3 LOGICAL and LITERAL Constants,

Statement Labels, Symbolic Names

When a double octal constant is combined in an expression with either an integer or real variable, only the contents
of the high order location (leftmost) are used.

3.2.6 Logical Constants

The Boolean values of truth and falsehood are represented in FORTRAN source programs as the logical constants
.TRUE. and .FALSE .. Logical constants are always written enclosed by periods as in the preceding sentence.

Logical quantities may be operated on in arithmetic and logical statements. Only the sign bit of a numeric used in a
logical IF statement is tested to determine if it is true (sign is negative) or false (sign is positive).

3.2.7 Literal Constants

A literal constant may be either of the following:

a. A string of alphanumeric and/or special characters contained within apostrophes (e.g., 'TEST#S').

b. A Hollerith literal, which is written as a string of alphanumeric and/or special characters preceded by nH
(e.g., nHstring). In the prefix nH, the letter n represents a number which specifies the exact number of
characters (including blanks) that follow the letter H; the letter H identifies the literal as a Hollerith
literal. The following are examples of Hollerith literals:

2HAB,
14HLOAD TEST #124,
6H#124-A

NOTE
A tab (+i) in a Hollerith literal is counted as one character
(e.g.,3H-.!AB).

Literal constants may be entered into DATA statements as a string of

a. up to ten 7-bit ASCII characters for complex or double precision type variables, and

b. up to five 7-bit ASCII characters for all other type variables.

The 7-bit ASCII characters which comprise a literal constant are stored left-justified (starting in the high order word
of a 2-word precision or complex literal) with blanks placed in empty character positions. Literal constants that
occupy more than one variable are stored in successive variables in the list. The following example illustrates how the
string of characters

A LITERAL OF MANY CHARACTERS

is stored in a six-element array called A.

DIMENSION A (6)
DATA A /'A LITERAL OF MANY CHARACTERS'/

A(J) is set to 'A_LIT'
A(2) is set to 'ERAL_'
A(3) is set to 'O£.MA'
A(4) is set to 'NY-CH'
A(S) is set to 'ARACT'
A (6) is set to 'ERS __ '

3-5

CHAPTER 3 Symbolic Names, Variables

3.2.8 Statement Label ConstlUlts

Statement labels are numeric identifiers that represent program statement numbers.

Statement label constlUlts are written as a string of from one to five decimol digits which are preceded by either a
dollar sign ($) or an amperslUld (&). For example, either $11992 or &11992 may be used as statement labels.

Statement label constlUlts are used only in the argument list of CALL statements to define the statement to return
to in a multiple RETURN statement. (Refer to Chapter 15.)

3.3 SYMBOLIC NAMES

Symbolic names may consist of any alphanumeric combination of from one to six characters. More than six
characters may be given but FORTRAN ignores all but the first six. The first character of a symbolic name must be
an alphabetic character.

The following are examples of legal symbolic names:

Al2345
IAMBIC
ABLE

The following are examples of illegal symbolic names:

#AMBIC
lAB

(symbol used as first character)
(number used as first character)

Symbolic names are used to identify specific items of a FORTRAN source program; these items, together with an
example of a symbolic name and text reference for each, are listed in Table 3-2.

Symbolic Names
Can Identify

1. A Variable
2. An Array
3. An Array element
4. Functions
5. Subroutines
6. External
7. COMMON Block Names

3.4 VARIABLES

Table 3-2
Use of Symbolic Names

For Example

PI, CONST, LIMIT
TAX
TAX (NAME,INCOME)
MYFUNC, V ALFUN
CALCSB, SUB2, LOOKUP
SIN, ATAN, COSH
DATAR, COMDAT

For a detailed description
See Paragraph

3.4
3.5
3.5.1

15.2
15.5
15.4
6.5

A variable is a datum (i.e., storage location) that is identified by a symbolic name and is not an array or an array
element. Variables specify values which are assigned to them by either arithmetic statements (Chapter 8), DATA
statements (Chapter 7), or at run time via I/O references (Chapter 10). Before a variable is assigned a value, it is
termed an undefined variable and should not be referenced except to assign a value to it.

If an undefined variable is referenced, an unknown value is obtained.

3-6

CHAPTER 3 ARRAYS, ARRAY Element Subscripts

The value assigned a variable may be either a constant or the result of a calculation which is performed during the
execution of the object program. For example, the statement IAB=5 assigns the constant 5 to the variable lAB; in
the statement IAB=5+B, however, the value of lAB at a given time will depend on the value of variable B at the time
the statement was last executed.

The type of a variable is the type of the contents of the datum which it identifies. Variables may be

a. integer

b. real

c. logical

d. double precision, or

e. complex.

The type of a variable may be declared using either implicit or explicit type declaration statements (Chapter 6).
However, if type declaration statements are not used, the following convention is assumed by FORTRAN:

a. Variable names which begin with the letters I, J, K, L, M, or N are integer variables.

b. Variable names which begin with any letter other than I, J, K, L, M, or N are real variables.

Examples of determining the type of a variable according to the foregoing convention are given in the folloWing
table.

Variable Beginning Letter Assumed Data Type
ITEMP I Integer
OTEMP 0 Real
KA123 K Integer
AABLE A Real

3.5 ARRAYS

An array is an ordered set of data identified by an array name. Array names are symbolic names and must conform
to the rules given in Paragraph 3.3 for writing symbolic names.

Each datum within an array is called an array element. Like variables, array elements may be assigned values; before
an array element is assigned a value it is considered to be undefined and should not be referenced until it has been
assigned a value. If a reference is made to an undefined array element the value of the element will be unknown and
unpredictable.

Each element of an array is named by using the array name together with a subscript that describes the position of
the element within the array.

3.5.1 Array Element Subscripts

The subscript of an array element identifier is given, within parentheses, as either one subscript quantity or a set of
subscript quantities delimited by commas. The parenthesized subscript is written immediately after the array name.
The general form of an array element name is AN (SI, S2, ... Sn), where AN is the array name and SI through Sn
represent n number of subscript quantities. Any number of subscript quantities may be used in an element name;
however, the number used must always equal the number of dimensions (Paragraph 3.5.2) specified for the array.

3-7

CHAPTER 3 Dimensioning Arrays

A subscript can be any compound expression (Chapter 4), for example:

a. Subscript quantities may contain arithmetic expressions that involve addition, subtraction,
multiplication, division, and exponentiation. For example, (A+B,C*5,D/2) and (A**3, (B/4+C) *E,3)
are valid subscripts.

b. Arithmetic expressions used in array subscripts may be of any type but noninteger expressions
(including complex) are converted to integer when the subscript is evaluated.

c. A subscript may contain function references (Chapter 14). For example: TABLE (SIN (A) *B,2, 3) is a
valid array element identifier.

d. Subscripts may contain array element identifiers nested to any level as subscripts. For example, in the
subscript (I(J(K(L»),A+B,C) the first subscript quantity given is a nested 3-level subscript.

The following are examples of valid array element subscripts:

a. lAB (1,5,3)

b. ABLE (A)

c. TABLEl (10/C+K**2,A,B)

d. MAT(A,AB(2*L),.3*TAB(A,M+l,D),55)

3.5.2 Dimensioning Arrays

The size (Le., number of elements) of an array must be declared in order to enable FORTRAN to reserve the
needed amount of locations in which to store the array. Arrays are stored as a series of sequential storage locations.
Arrays, however, are visualized and referenced as if they were single or multi-dimensional rectilinear matrices,
dimensioned on a row, column, and plane basis. For example, the following figure represents a 3-row, 3-column,
2-plane array.

3 ROWS

,<-""
'?-~

'?"

3 COLUMNS

10-1058

The size (Le., number of elements) of an array is specified by an array declarator written as a subscripted array
name. In an array declarator, however, each subscript quantity is a dimension of the array and must be either an
integer, a variable, or an integer constant.

For example, TABLE (I,J,K) and MATRIX (10,7,3,4) are valid array declarators.

The total number of elements which comprise an array is the product of the dimension quantities given in its array
declarator. For example, the array lAB dimensioned as lAB (2,3,4) has 24 elements (2 X 3 X 4 = 24).

3-8

CHAPTER 3 Dimensioning Arrays,

Order of Stored Array Elements

Arrays are dimensioned only in the specification statements DIMENSION, COMMON, and type declaration (Chapter
6). Subscripted array names appearing in any of the foregoing statements are array declarators; subscripted array
names appearing in any other statements are always array element identifiers. In array declarators the position of a
given subscript quantity determines the particular dimension of the array (e.g., row, column, plane) which it
represents. The first three subscript positions specify the number of rows, columns, and planes which comprise the
named array; each following subscript given then specifies a set comprised of n-number (value of the subscript) of
the previously defined sets. For example:

The Dimension Declarator Specifies the Array(s)

TAB (2)

TAB (2,2)

TAB (2,2,2)

TAB (2,2,2,2)

NOTE
DECsystem-20 FORTRAN permits any number of dimensions
in an array declarator.

3.5.3 Order of Stored Array Elements

The elements of an array are arranged in storage in ascending order, with the value of the first subscript quantity
varying between its maximum and minimum values most rapidly, and the value of the last given subscript quantity
increasing to its maximum value least rapidly. For example, the elements of the array dimensioned as 1(2,3) are
stored in the following order:

The following list describes the order in which the elements of the three-dimensional array (B(3,3,3» are stored:

B (1,1,1) B (2,1,1) B (3,1,1) - "'j

=~ ~(~2~~ ___ B ~2~::> ___ ~ ~'':12 ~ J
~- ... B(1,3,1) B(2,3,1) B(3,3,1)-,

' B (1,1,2) B (2,1,2) B (3,1,2) -,

~- ... B (1,3,2) B (2,3,2) B (3,3,2) - "'j

L_ ... B (1,1,3) B (2,1,3) B (3,1,3) - I

=~ ~ (~2~~ __ y ~2~,.:! ___ ~ ~'':32. ~ J
L B (1,3,3) B (2,3,3) B (3,3,3)

3-9

CHAPTER 4

DECsystem-20 FORTRAN extensions to the 1966 ANSI

standard set are printed in boldface italic type.

4.1 ARITHMETIC EXPRESSIONS

Arithmetic Expressions

and Operators

CHAPTER 4
EXPRESSIONS

Arithmetic expressions may be either simple or compound. Simple arithmetic expressions consist of an operand
which may be

a. a constant

b. a variable

c. an array element

d. a function reference (see Chapter 14 for description), or

e. an arithmetic or logical expression written within parentheses.

Operands may be of type integer, real, double precision, complex, octal. or literal.

The following are valid examples of simple arithmetic expressions:

105
lAB
TABLE (3, 4,5)
SIN (X)
(A+B)

(integer constant)
(integer variable)
(array element)
(function reference)
(a parenthesized expression)

A compound arithmetic expression consists of two or more operands combined by arithmetic operators. The
arithmetic operations permitted in FORTRAN and the operator recognized for each are given in Table 4-1.

Table 4-1

Arithmetic Operations and Operators

Operation Operator Example

1. Exponentiation ** or t A**B or AtB
2. Multiplication * A*B
3. Division I AlB
4. Addition + A+B
5. Subtraction A-B

4-1

CHAPfER4

4.1.1 Rules for Writing Arithmetic Expressions

The following rules must be observed in structuring compound arithmetic expressions:

Rules for Arithmetic

Expressions, Logical Expressions

a. The operands comprising a compound arithmetic expression may be of different types. Table 4-2
illustrates all permitted combinations of data types and the type assigned to the result of each.

NOTE
Only one combination of data types, double precision with
complex, is prohibited in DECsystem-20 FORTRAN.

b. An expression cannot contain two adjacent and unseparated operators. For example, the expression
A * /B is not permitted.

c. All operators must be included, no operation is implied. For example, the expression A(B) does not
specify multiplication although this is implied in standard algebraic notation. The expression A * (B) is
required to obtain a multiplication of the elements.

d. In using exponentiation the base quantity and its exponent may be of different types. For example, the
expression ABC** 13 involves a real base and an integer exponent. The permitted base/exponent type
combination and the type of the result of each combination is given in Table 4-3.

4.2 LOGICAL EXPRESSIONS

Logical expressions may be either simple or compound. Simple logical expressions consist of a logical operand which
may be a logical type

a. constant

b. variable

c. array element

d. function reference (see Chapter 15), or

e. another expression written within parentheses.

Compound logical expressions consist of two or more operands combined by logical operators.

The logical operators permitted by DECsystem-20 FORTRAN and a description of the operation each provides are
given in Table 4-4.

4-2

For operators
* , InteHer Real

Type of operation 1. Integer 1. Real
used

2. Type associated 2. Integer ~. Real
with result

3. Conversion on 3. None 3. From Integer to
InteReT Argument I Real

4. Conversion on 4. None 4. 'one
Argument 2

I. Type of operation 1. Real I. Real

used

2. Type associated 2. Real 2. Real
with result

3. Conversion on 3. None 3. None

Real Argument I

4. Conversion on 4. hom Integer to 4. ~one

Argument 2 Real

Table 4-2
Type of the Resultant Obtained
From Mixed Mode Operations

Type of Ar~lIT11CI1 (~

Double
Precision Complex

1. Double Precision I Complex

2. Double Precision 2 Complex

3. From Integer to 3 From Integer to

Double Precision Complex. Valut:

used as Real pari

4. :--.lone 4. ~one

I. Double Precision Complex

2. Doublc Precision Complex

Used directly as 3 tjsed dirl'ctly a~
the high order the Real part.
word; low order ImagInary part
word is zero. IS zcro.

4. :-.Jane 4 None

logical Octal Double Octal Litera

I Integer J. Integer I Integer I Integer

, Integer , Intcgn ~ Integer 2 Integer

3 '\one 3 ~{)nc 3. 'one 3 ~onc

I 4. ~onc I 4, 'one I 4 High order word 4. High order word
is used d lrectl y', is used directly~
low order word further words

is ignored. arc ignored.

Real ReJl I. Real Real

KCJl Real Real Real

1 '\on{' '\onc .l ~one 3 ~onc

4. ~onc 4. None lIigh order word High order,word

is used directly: is used directly;

[ow order word further words
is ignored. .1rp ;crnnr,...-I

CHAPTER 4

Table 4-5
Logical Operations, Truth Table

The result of
the expression: Pis:

.NOT.P True
False

P.AND.Q True
True
False
False

P.ORQ True
True
False
False

P.XOR.Q True
True
False
False

P.EQV.Q True
True
False
False

Examples

Assume the following variables:

Variable
REAL,RUN
I,l,K
DP,D
L,A,B
CPX,C

When
and Q is:

(Not
Applicable)

True
False
True
False

True
False
True
False

True
False
True
False

True
False
True
False

Type
Real
Integer
Double Precision
Logical
Complex

Examples of valid logical expressions comprised of the foregoing variables are:

L.AND.B
(REAL *1) .XOR (DP+K)
L.AND. A .OR .NOT. (I-K)

4-5

Logical Operation Truth Table

Is:

False
True

True
False
False
False

True
True
True
False

False
True
True
False

True
False
False
True

CHAPfER4 Binary Truth Table,

Relational Expressions

Logical functions are performed bit-wise on the full 36-bit binary processor representation of the operands involved.
The result of a logical operation is found by performing the specified function, simultaneously, for each of the
corresponding bits in each operand. For example, consider the expression A=C.OR.D, where C= "456 and D= "201.
The operation performed by the processor and the result is:

Word Bits
Operand C
Operand D
Result A

o .24
o 0 • 0
00--•• 0

o 0 • 0

25
o
o
o

26
o
o
o

27
1
o

28
o

29 30 31 32
o 1 0 1
o 0 0 0
o 0

33 34
1 1
o 0

35
o

Table 4-6 is a truth table that illustrates all possible logical combinations of two one-bit binary operands (P and Q)
and gives the result of each combination.

Table 4-6
Binary Logical Operations, Truth Table

The result of When Is:
the expression: Pis: And Q is:

.NOT.P 1 - 0
0 - 1

P.AND.Q 1 1 1
1 0 0
0 1 0
0 0 0

P.OR.Q 1 1 1
1 0 1
0 1 1
0 0 0

P.XOR.Q I 1 0
1 0 1
0 1 1
0 0 0

P.EQV.Q 1 1 1
1 0 0
0 1 0
0 0 1

4.2.1 Relational Expressions

Relational expressions are comprised of two expressions combined by a relational operator. The relational operator
permits the programmer to test, quantitatively, the relationship between two arithmetic expressions.

The result of a relational expression is always a logically true or false value.

4-6

CHAPI'ER4 Relational Operators

In FORTRAN, relational operators may be written either as a two-letter mnemonic enclosed within periods (e.g.,
.GT.) or symbolically using the symbols >, <, = and #. Table 4-7 lists both the mnemonic and symbolic forms of the
FORTRAN relational operators and specifies the type of quantitative test performed by each operator.

Table 4-7
Relational Operators and Operations

Operators Relation Tested
Mnemonic Symbolic

.GT. > Greater than

.GE. >= Greater than or equal to

.LT. < Less than

.LE. <= Less than or equal to

.EQ. -- Equal to

.NE. # Not equal to

Relational expressions are written in the general form Al .OP. A2 , where A represents an arithmetic operand and
.OP. is a relational operator.

Arithmetic operands of type integer, real, and double precision may be mixed in relational expressions.

Complex operands may be compared using only the operators .EQ (= =) and .NE. (#). Complex quantities are equal
if the corresponding parts of both words are equal.

Examples

Assume the following variables:

Variables
REAL, RON
I, J, K
DP,D
L,A,B
CPX,C

Type
Real
Integer
Double Precision
Logical
Complex

Examples of valid relational expressions comprised of the foregOing variables are:

(REAL) .GT. 10
[==5
C.EQ.CPX

Examples of invalid relational expressions comprised of the foregOing variables are:

(REAL) .GT 10 (closing period missing from operator)

C>CPX (complex operands can only be combined by .EQ. and .NE. operators)

4-7

CHAPTER 4 Evaluation of Expressions

Examples of valid expressions in which both logical and relational operators are used to combine the foregoing
variables are:

(I .GT. 10) .AND. (J< =K)
((I * RON) = = (I/J)) .OR. K
(I .AND. K) # ((REAL) .OR. (RON))
C #CPX .OR. RON

4.3 EVALUATION OF EXPRESSIONS

The order of computation of a FORTRAN expression is determined by

a. the use of parentheses

b. an established hierarchy for the execution of arithmetic, relational, and logical operations and

c. the location of operators within an expression.

4.3.1 Parenthesized Subexpressions

In an expression all subexpressions written within parentheses are evaluated first. When parenthesized subexpressions
are nested (one contained within another) the most deeply nested subexpression is evaluated first, the next most
deeply nested subexpression is evaluated second and so on, until the value of the final parenthesized expression is
computed. When more than one operator is contained by a parenthesized subexpression, the required computations
are performed according to the hierarchy assigned operators by FORTRAN (paragraph 4.3.2).

Example:

The separate computations performed in evaluating the expression

A+B/((A/B)tC)-C are:

a. A/B =Rl

b. R1+C =R2

c. B/R2=R3

d. R3-C =R4

e. A+R4=R5

NOTE
Rl through RS represent the interim and final results of the
computations performed.

4.3.2 Hierarchy of Operators

The following hierarchy (i.e., order of execution) is assigned to the classes of FORTRAN operators:

first - arithmetic operators
second - relational operators
third -logical operators

4-8

CHAYrER4 Hierarchy of Arithmetic,

Relational and Logical Operators,

Mixed Mode Expressions

The precedence assigned to the individual operators of the foregoing classes is specified (from highest to lowest) in
Table 4-8.

With the exception of integer division and exponentiation, all operations on expressions or subexpressions involving
operators of equal precedence are computed in any order that is algebraically correct.

A subexpression of a given expression may be computed in any order. For example, in the expression (F(X) + A*B)
the function reference may be computed either before or after A*B.

Table 4-8
Hierarchy of FORTRAN Operators

Class Level Symbol or Mnemonic

First **

ARITHMETIC
Second - (unary minus) and + (unary plus)
Third *,/
Fourth +-,

RELATIONAL Fifth .GT., .GE., .LT., .LE., .EQ., .NE.
or >, >=, <. <=, ==, #

Sixth .NOT.

LOGICAL
Seventh .AND.
Eighth .OR.
Ninth .EQV., .xOR.

Operations specifying integer division are evaluated from left to right. For example, the expression I/J*K is
evaluated as if it had been written as (I/J)*K.

When a series of exponentiation operations occurs in an expression, they are evaluated in order from right to left.
For example, the expression A **2**B is evaluated in the following order:

first 2**B = Rl (intermediate result)
second A **Rl = R2 (final result).

4.3.3 Mixed Mode Expressions

Mixed mode expressions are evaluated on a subexpression by subexpression basis with the type of the results
obtained converted and combined with other results or terms according to the conversion procedures described in
Table 4·2.

Example

Assume the following:

Variable

D
X
I,J

Type

Double Precision
Real
Integer

4·9

CHAPfER4 Mixed Mode Expressions,

Using Logical Operands

The mixed mode expression D+X* (1/1) is evaluated in the following manner:

a. (1/1) = Rl

b. X*Rl = R2

c. D+R2= R3

NOTE
RI, R2, and R3 represent the interim and final results of the
computations performed.

Rl is integer

Rl is converted to type real and is multiplied by X to produce R2

R2 is converted to type double precision and is added to D to produce R3

4.3.4 Use of Logical Operands in Mixed Mode Expressions

When logical operands are used in mixed mode expressions, the value of the logical operand is not converted in any
way to accommodate it to the type of the other operands in the expression. For example, in L *R, where L is type
logical and R is type real, the expression is evaluated without converting L to type real.

4-10

CHAPfER5

DECsystem-20 FORTRAN extensions to the 1966

ANSI standard se t are prin ted in bold/ace italic type.

PROGRAM Statement
INCLUDE Statement

CHAPTER 5
COMPILATION CONTROL STATEMENTS

5.1 INTRODUCTION

Compilation control statements are used to identify DECsystem-20 FORTRAN programs and to specify their termi­
nation. Statements of this type do not affect either the operations performed by the object program or the manner
in which the object program is executed. The three compilation control statements described in this chapter are:
PROGRAM statement, INCLUDE statement, and END statement.

5.2 PROGRAM STATEMENT

This statement allows the user to give the main program a name other than "MAIN." The general form of a
PROGRAM statement is

PROGRAM name

where

name is a user-formulated symbolic name that begins with an alphabetic character and contains
a maximum of six characters. (Refer to section 3.3 for a description of symbolic names.)

The following rule governs the use of the PROGRAM statement:

The PROGRAM statement must be the first statement in a program unit. (Refer to section 2.4 for a discussion
of the ordering of DECsystem-20 FORTRAN statements.)

5.3 INCL UDE STATEMENT

This statement allows the user to include code segments or predefined declarations in a program unit without having
them reside in the same physical file as the primary program unit. The general form of the INCL UDE statement is

INCLUDE dev:filename.typefproj,progf /NOLIST

where

dev:

filename. type

fproj,progj

is a device name. When no device is specified, DSK: is assumed.

is the filename and type of the FOR TRAN statements that the user wishes to include.
The name of the file is required; the type is optional. If only the filename is specified,
then .FOR (for FORTRAN) is the assumed type.

is the project-programmer number. The user s connected directory is assumed if none is
specified. (Refer to Appendix B.)

5-1

END Statement

/NOLlST is an optional switch that indicates that the included statements are not to be included
in the compilation listing.

The following rules govern the use of the INCLUDE statement:

a. The INCLUDEd file may contain any iegal FORTRAN statement except another INCLUDE statement,
or a statement that terminates the current program unit, such as the END, PROGRAM, FUNCTION,
SUBROUTINE, or BLOCK DATA statements.

b. The proper placement of the INCLUDE statement within a program unit depends upon the types of
statements to be INCLUDEd. (Refer to section 2.4 for information on the ordering of DECsystem-20
FORTRAN statements.)

Note that an asterisk (*) is appended to the line numbers of the INCLUDEd statements on the compilation listing.

5.4 END STATEMENT

This statement is used to signal FORTRAN that the physical end of a source program or subprogram has been
reached. END is a nonexecutable statement. The general form of an END statement is

END

The following rules govern the use of the END statement:

a. This statement must be the last physical statement of a source program or subprogram.

b. When used in a main program, the END statement implies a STOP statement operation; in a subprogram,
END implies a RETURN statement operation.

c. An END statement may be labeled.

5-2

CHAPrER6

DECsysrem-20 FORTRAN exrensions to the 1966

ANSI standard set are prinred in boldface italic type.

DIMENSION Statement

CHAPTER 6
SPECIFICATION STATEMENT

6.1 INTRODUCTION

Specification statements are used to specify the type characteristics, storage allocations, and data arrangement.
There are seven types of specification statements:

a. DIMENSION

b. Statements which specify, explicitly, type.

c. IMPLICIT

d. COMMON

e. EQillV ALENCE

f. EXTERNAL

g. PARAMETER

Specification statements are nonexecutable and are expected to conform to the ordering guidelines described in
section 2.4.

6.2 DIMENSION STATEMENT

DIMENSION statements provide FORTRAN with information needed to identify and allocate the space required
for source program arrays. Any number of subscripted array names may be specified as array declarators in a
DIMENSION statement. The general form of a DIMENSION statement is

DIMENSION SI, S2, ... , Sn

where Si is an array declarator. Array dec1arators are names of the following form:

name (min:max, min:max, ... _ min:max)

where name is the symbolic name of the array and each min:max value represents the lower and upper bounds of an
array dimension.

Each min:max value for an array dimension may be either an integer constant or, if the array is a dummy argument
to a subprogram, an integer variable. The value given the minimum specification for a dimension must not exceed
the value given the maximum specification. Minimum values of 1 with their following colon delimiter may be
omitted from a dimension subscript.

6-1

CHAPTER 6

Examples

DIMENSION EDGE (-1: 1,4:8),NET(S,IO,4),TABLE(S67)
DIMENSION TABLE (lAB:J,K,M,IO:20)

(where lAB, J, K, and M are of type integer).

DIMENSION Statements,

Specifying Adjustable Dimensions

Note that a slash may be used in place of a colon as the delimiter between the upper and lower bounds of an array
dimension.

6.2.1 Adjustable Dimensions

When used within a subprogram, an array declarator may use type integer parameters as dimension subscript
quantities. The following rules govern the use of adjustable dimensions in a subprogram:

a. For single entry subprograms, the array name and each subscript variable must be given by the calling
program when the subprogram is called. The subscript variables may also be in COMMON.

b. For multiple entry subprograms in which the array name is a parameter, any subscript variables may be
passed. If all subscript variables are not passed or in COMMON, the value of the subscript as passed for
a previous entry will be used.

c. The type of the array dimension variables cannot be altered within the program.

d. If the value of an array dimension variable is altered within the program, the dimensionality of the array
will not be affected.

e. The original size of the array cannot exceed the array dimensions assigned within a subprogram (i.e., the
size of an array is not dynamically expandable).

Examples

SUBROUTINE SBR (ARRAY,Ml,M2,M3,M4)
DIMENSION ARRAY (MI :M2,M3:M4)
DO 27 L=M3,M4
DO 27 K=Ml,M2
ARRAY (K,L)=V ALUE

27 CONTINUE
END

SUBROUTINE SBI (ARR1,M,N)
DIMENSION ARRI(M,N)
ARRI(M,N)=V ALUE
ENTRY SB2(ARRI,M)
ENTRY SB3(ARRI,N)
ENTRY SB4(ARRI)

In the foregoing example, the first call made to the subroutine must be made to SBI. Assuming that the call is made
at SBI with the values M=ll and N=13, any succeeding call to SB2 should give M a new value. If a succeeding call is
made to SB4, the last values passed through entries SUBI, SUB2, or SUB3 will be used for M and N.

6-2

CHAPfER6 Type Specification Statements

Note that for the calling program of the form:

CALL SBI(A,II,13)
M=I5
CALL SB3(A,13)

the value of M used in the dimensionality of the array for the execution of SB3 will be 11 (i.e., the last value
passed).

6.3 TYPE SPECIFICATION STATEMENTS

Type specification statements declare explicitly the data type of variable, array, or function symbolic names. An
array name may be given in a type statement either alone (unsubscripted) to declare the type of all its elements or in
a subscripted form to specify both its type and dimensions.

Type specification statements are written in the following form:

type list

where type may be anyone of the following declarators:

a. INTEGER

b. REAL

c. DOUBLE PRECISION

d. COMPLEX

e. LOGICAL

NOTE
In order to be compatible with the type statements used by
other manufacturers, the data type size modifier, *n, is
accepted by DECsystem-20 FORTRAN. This size modifier
may be appended to the declarators, causing some to elicit
messages warning users of the form of the variable specified by
DECsystem-20 FORTRAN:

Declarator
INTEGER*2
INTEGER*4
LOGICAL*I
LOGICAL*4
REAL*4
REAL*8
COMPLEX*8
COMPLEX*16

Form of Variable Specified
Full word integer with warning message
Full word integer
Full word logical with warning message
Full word logical
Full word real
Double precision real
Complex
Complex with warning message

6-3

CHAPfER6 Statements, IMPLICIT Statements

NOTE (Cont)
In addition, the data type size modifier may be appended to
individual variables, arrays, or function names. Its effect is to
override, for the particular element, the size modifier (explicit
or implicit) of the primary type. For example,

REAL*4 A, 8*8, C*8(10), D

A and D are single precision (full word real), and 8 and C are
double precision real.

The list consists of any number of variable, array, or function names which are to be declared the specified type. The
names listed must be separated by commas, and can appear in only one type statement within a program unit.

Examples

INTEGER A, 8, TABLE, FUNC
REAL R, M, ARRA Y (5: 10,1 0: 20,5)

NOTE
Variables, arrays, and functions of a source program, which are
not typed either implicitly or explicitly by a specification
statement, are typed by FORTRAN according to the following
conventions:

a. Variable names, array names, and function names which
begin with the letters I, J, K, L, M, or N are type integer.

b. Variable names, array names, and function names which
begin with any letter other than I, J, K, L, M, or N are type
real.

If a name that is the same as a FORTRAN defined function name appears in a conflicting type statement, it is
assumed that the name refers to a user-defined routine of the given type. Placing a generic FORTRAN defined
function name in an explicit type statement causes it to lose its generic properties.

6.4 IMPLICIT STATEMENTS

IMPLICIT statements declare the data type of variables and functions according to the first letter of each variable
name. IMPLICIT statements are written in the following form:

IMPLICIT type(Al.A2, . . . ,An),type(Bl,B2, . . . ,Bn), . . . ,type

As shown in the foregoing form statement, an IMPLICIT statement is comprised of one or more type declarators
separated by commas. Each type declarator has the form

type(A I,A2,An)

where type represents one of the declarators listed in section 6.3, and the parenthesized list represents a list of
different letters.

Each letter in a type declarator list specifies that each source program variable (not declared in an explicit type
specification statement) which starts with that letter is assigned the data type named in the declarator. For example,
the IMPLICIT type declarator REAL (R,M,N,O) declares that all names which begin with the letters R, M, N, or 0
are type REAL names, unless declared otherwise in an explicit type statement.

64

CHAPfER6

NOTE
Type declarations given in an explicit type specification
override those also given in an IMPLICIT statement. IMPLICIT
declarations do not affect the DECsystem-20 FORTRAN
supplied functions.

COMMON Statement

A range of letters within the alphabet may be specified by writing the first and last letters of the desired range
separated by a dash (e.g., A-E for A,B,C,D,E). For eXllmp1e, the statement IMPLICIT INTEGER (I,L-P) declares
that all variables which begin with the letters I,L,M,N,O, and P are INTEGER variables.

More than one IMPLICIT statement may be used, but they must appear before any other declaration statement in
the program unit. Refer to section 2.4 for a discussion on ordering DECsystem-20 FORTRAN statements.

6.S COMMON STATEMENT

The COMMON statement enables the user to establish storage which may be shared by two or more programs and lor
subprograms and to name the variables and arrays which are to occupy the common storage. The use of common
storage conserves storage and provides a means to implicitly transfer arguments between a calling program and a
subprogram. COMMON statements are written in the following form:

COMMON/AI /VI ,V2, ... ,Vn ... /An/VI ,V2, ... ,Vn

where the enclosed letters IAI/, IA2/, and IAnI represent optional name constructs (referred to as common block
names when used).

The list (i.e., VI,V2 ... ,Vn) appearing after each name construct lists the names of the variables and arrays that are
to occupy the common area identified by the construct. The items specified for a common area are ordered within
the storage area as they are listed in the COMMON statement.

COMMON storage area may be either labeled or blank (unlabeled). If the common area is to be labeled, a symbolic
name must be given within slashes immediately before the list of items that are to occupy the names area. For
example, the statement

COMMON/AREAI/A,B,C/AREA2/TAB(13,3,3)

establishes two labeled common areas (i.e., AREAl and AREA2). Common block names bear no relation to internal
variables or arrays which have the same name.

If a common area is to be declared but is to be unlabeled (i.e., blank) either nothing or two sequential slashes (/ /) is
given immediately before the list of items that are to occupy blank common. For example, the statement

COMMON/AREAI/A,B,CIITAB(3,3,3)

establishes one labeled (AREAl) and one unlabeled (i.e., blank) common area.

A given labeled common name may appear more than once in the same COMMON statement and in more than one
COMMON statement within the same program or subprogram.

Each labeled common area is treated as a separate, specific storage area. The contents of a common area (i.e.,
variables and array) may be assigned initial values by DATA statements in BLOCK DATA subprograms. Declarations
of a given common area in different subprograms must contain the same number, size, and order of variable and
array name as the referenced area.

6-5

CHAPTER 6 Dimensioning Arrays In COMMON,

EQUIVALENCE Statement

Items to be placed in a blank common area may also be given in COMMON statements throughout the source
program.

During compilation of a source program, DECsystem·20 FORTRAN strings together all items listed for each labeled
common area and for blank common in the order in which they appear in the source program statements. For
example, the series of source program statements

COMMON/STl / A,B,C/ST2/T AB(2,2)/ /C,D,E

COMMON/STl/TST(3,4)/ /M,N

COMMON/ST2/X,Y,Z/ /O,P,Q

have the same effect as the single statement

COMMON/STI/A,B,C,TST(3,4)/ST2/TAB(2,2),X,Y,Z//C,D,E,M,N,O,P,Q

All items specified for blank common are placed into one area. Items within blank common are ordered as they are
given throughout the source program. Common block names must be unique with respect to all subroutine,
function, and entry point names.

The largest definition of a given common area must be loaded first.

6.5.1 Dimensioning Arrays in COMMON Statements

Subscripted array names may be given in COMMON statements as array dimension declarators. However, variables
cannot be used as subscript quantities in a declarator appearing in a COMMON statement; variable dimensioning is
not permitted in COMMON.

Each array name given in a COMMON statement must be dimensioned either by the COMMON statement or by
another dimensioning statement within the program or subprogram which contains the COMMON statement.

Example

COMMON /A/B(lOO), C(IO,IO)
COMMON X(5,15),Y(5)

6.6 EQUN ALENCE STATEMENT

The EQUIVALENCE statement enables the user to control the allocation of shared storage within a program or
subprogram. This statement causes specific storage locations to be shared by two or more variables of either the
same or different types. The EQUIVALENCE statement is written in the following form:

EQUIVALENCE(Vl,V2, ... Vn),(WI,W2, ... Wn),(XI,X2, ...)

where each parenthesized list contains the names of variables and array elements which are to share the same storage
locations. For example, the statements

EQUIVALENCE (A,B,C)
EQUN ALENCE (LOC,SHARE(l»

specify that the variables named A, B, and C are to share the same storage location and the the variable LOC and
array element SHARE(l) are to share the same location.

6-6

CHAPTER 6 EQUIVALENCE Statement,

EXTERNAL Statement

The relationship of equivalence is transitive; for example, the two following statements have the same effect:

EQUIVALENCE (A,B), (B,C)
EQUIVALENCE (A,B,C)

Array elements, when used in EQUIVALENCE statements, must have either as many subscript quantities as
dimensions of the array or only one subscript quantity. In either of the foregoing cases, the subscripts must be
integer constants. Note that the single case treats the array as a one-dimensional array of the given type.

The items given in an EQUIVALENCE list may appear in both the EQUIVALENCE statement and in a COMMON
statement providing the following rules are observed:

a. No two quantities declared in a COMMON statement can be set equivalent to one another.

b. Quantities placed in a common area by means of an EQUIVALENCE statement are permitted to extend
the end of the common area forwards. For example, the statements

COMMON/R/X,Y,Z
DIMENSION A(4)
EQUIVALENCE (A,Y)

cause the common block R to extend from Z to A(4) arranged as follows:

x
Y A(I)
Z A(2)

A(3)
A(4)

(shared location)
(shared location)

c. EQUIVALENCE statements that cause the start of a common block to be extended backwards are not
allowed. For example, the invalid sequence

COMMON/R/X,Y,Z
DIMENSION A(4)
EQUIV ALENCE(X,A(3»

would require A(1) and A(2) to extend the starting location of block R in a backwards direction as
illustrated by the following diagram:

1 A(I)
A(2)

X A(3)
Y A(4)
Z

6.7 EXTERNAL STATEMENT

Any subprogram name to be used as an argument to another subprogram must appear in an EXTERNAL statement
in the calling subprogram. The EXTERNAL statement declares names to be subprogram names to distinguish them
from other variable or array names. The EXTERNAL statement is written in the following form:

EXTERNAL name 1 ,name2, ... ,namen

6-7

CHAPTER 6
EXTERNAL Statement

PARAMETER Statement

where each name listed is declared to be a subprogram name. If desired, these subprogram names may be
DECsystem-20 FORTRAN defined functions.

It is also possible to utilize DECsystem-20 FORTRAN defined function names for user subprograms by prefixing the
names by an asterisk (*) or an ampersand (&) within an EXTERNAL statement. For example,

EXTERNAL *SIN, &COS

declares SIN and COS to be user subprograms. (If a prefixed name is not a DECsystem-20 FORTRAN defined
function, then the prefix is ignored.)

Note that specifying a DECsystem-20 FORTRAN defined function in an EXTERNAL statement without a prefix
(i.e., EXTERNAL SIN) has no effect upon the usage of the function name outside of actual argument lists. If the
name has generic properties, they are retained outside of the actual argument list. (The name has no generic
propeties within an argument list.)

The names declared in a program EXTERNAL statement are reserved throughout the compilation of the program
and cannot be used in any other declarator statement, with the exception of a type statement.

6.8 PARAMETER STATEMENT

The PARAMETER statement allows users to define constants symbolically during compilation.

The general form of the PARAMETER Statement is as follows:

where

PARAMETER PI=CI,P2=C2,

Pi is a standard user-defined identifier (referred to in this section as a parameter name)

Ci is any type of constant (including literals) except a label or complex constant. (Refer to Chapter 3
for a description of FORTRAN constants.)

During compilation the parameter names are replaced by their associated constants proVided the following rules are
observed:

a. Parameter names appear only within the statement field of an initial or continuation line type, i.e., not
within a comment line or literal text.

b. Parameter names are placed only where FORTRAN constants are acceptable.

c. Parameter name references appear after the PARAMETER statement definition.

d. Parameter names are unique with respect to all other names in the program unit.

e. Parameter names are not redefined in subsequent PARAMETER statements.

f. Parameter names are not used as part of some larger syntactical construct (such as a Hollerith constant
count, or a data type size modifier).

6-8

CHAPTER 7

DECsyslcm-20 FORTRAN extensions to the 1966

ANSI sr.lIIdard set arc printed in boldface italic type.

7.1 INTRODUCTION

DATA Statement

CHAPTER 7
DATA STATEMENT

DATA statements are used to supply the initial values of variables, arrays, array elements, and labeled common.)
DATA statements are written in the following form:

DATA List IIData II,List 2/Data 2/, . .. ,List nlData nl

where the List portion of each ListlDatal pair identifies a set of items to be initialized and the /Datal portion
contains the list of values to be assigned the items in the List. For example, the statement

DATA IA/S/,IB/IOI,IC/ISI

initializes variable IA as the value 5, variable IB as the value 10 and the variable IC as the value IS. The number of
storage locations specified in the list of variables must be less than or equal to the number of storage locations
specified in its associated list of values. If the list of variables is larger (specifies more storage locations) than its
associated value list, a warning message is output. When the value list specifies more storage locations than the
variable list the excess values are ignored.

The List portion of each ListlDatal set may contain the names of one or more variables, arrays, array elements, or
labeled common variables. An entire array (unsubscripted array name) or a portion of an array may be specified in a
DATA statement List as an implied DO loop construct (see Paragraph /0.3.4.1 for a description of implied DO
loops). For example, the statement

DATA (NARY (1).1=1.5}/1.2.3.4.5/

initializes the first five elements of array NARY as NARY(J)=I. NARY(2)=2. NARY(3)=3. NARY(4)=4.
NARY(5)=5.

When an implied DO loop is used in a DATA statement. the loop index variable must be of type INTEGER and the
loop Initial. Terminal. and Increment parameters must also be of type INTEGER. In a DATA statement. references
to an array element must be integer expressions in which all terms are either integer constants or indices of
embracing implied DO loops. Integer expressions of the foregoing types cannot include the exponentiation operator.

1 Refer to Paragraph 6.5 for a description of labeled common.

7-1

CHAPTER 7 DATA Statement

The /Data/ portion of each List/Data/ set may contain one or more numeric, logical, literal, or octal constants
and/or alphanumeric strings.

Octal constants must be identified as octal by preceding them with a double quote (") symbol (e.g., "777).

Literal data may be specified as either a Hollerith specification (e.g., 5HABCDE), or a string enclosed in single
quotes (e.g., 'ABCDE'). Each ASCII datum is stored left-justified and is padded with blanks up to the right boundary
of the variable being initialized.

When the same value is to be assigned to more than one item in List, a repeat specification may be used. The repeat
specification is written as N*D where N is an integer that specifies how many times the value of item D is to be used.
For example, a /Data/ specification of /3 *20/ specifies that the value 20 is to be assigned to the first three items
named in the preceding list. The statement

DATA M,N,L/3*20/

assigns the value 20 to the variables M, N, L.

In instances where the type of the data specified is Ilot the same as that of the variable to which it is assigned,
DECsystem-20 FORTRAN COil verts the datum to the type of the variable. The type conversion is performed using
the roles givell for type conversioll ill arithmetic assignmellts (refer to Olapter 8, Table 8-1). Octal, logical, and
literal conslallts are Ilot converted.

Sample Statement
DATA PRINT,I,O/'TEST',30,"77/,TAB(J), J=I,30/30*5

DATA ((A(I,J),I=1 ,5),J=1 ,6)/30* 1.0/

DATA ((A(I,J),I=5,10),J=6,15)/60*2.0/

Use
The first 30 elements of array TAB are
initialized as 5.0.

No conversion required.

No conversion required.

When a literal string is specified which is longer than one variable can hold, the string will be stored left-justified
across as many variables as are needed to hold it. If necessary, the last variable used will be padded with blanks up to
its right boundary.

Example

Assuming that X, Y, and Z are single precision, the statement

DATA X,Y,Z/'ABCDEFGHIJKL'/

will cause

X to be initialized to 'ABCDE'
Y to be initialized to 'FGHIJ'
Z to be initialized to 'KL¥¥¥'

When a literal string is to be stored in double precision and/or complex variables and the specified string is only one
word long, the second word of the variable is padded with blanks.

7-2

CHAPTER 7 DATA Statement

Example

Assuming that the variable C is complex, the statement

DATA C/'ABCDE','FGHIJ'/

will cause the first word of C to be initialized to 'ABCDE' and its second word to be initialized to '~~~~~'. The
string 'FGHIJ' is ignored.

7-3

CHAPTERS

DECsystem-20 FORTRAN extensions to the 1966

ANSI standard set are printed in boldface italic type.

Arithmetic Assignment Statements

CHAPTER 8
ASSIGNMENT STATEMENTS

8.1 INTRODUCTION

Assignment statements are used to assign a specific value to one or more program variables. There are three kinds of
assignment statements:

a. Arithmetic assignment statements

b. Logical assignment statements

c. Statement Label assignment (ASSIGN) statements.

8.2 ARITHMETIC ASSIGNMENT STATEMENT

Statements of this type are used to assign specific numeric values to variables and/or array elements. Arithmetic
assignment statements are written in the form

v=e

where v is the name of the variable or array element which is to receive the specified value and e is a simple or
compound arithmetic expression.

In assignment statements the equals symbol (=) does not imply equality as it would in algebraic expressions; it
implies replacement. For example, the expression v=e is correctly interpreted as "the current contents of the
location identified as v are to be replaced by the final value of expression e; the current contents of v are lost."

When the type of the specified variable or array element name differs from that of its assigned value, FORTRAN
converts the value of the type of its assigned variable or array element. The type conversion operations performed by
FORTRAN for each possible combination of variable and value types are described in Table 8-1.

8-1

CHAPTERS Mixed Mode Conversion Table

Table 8-1
Rules for Conversion in Mixed Mode Assignments

Expression Type (e) Variable Type (v)
Real Integer Complex Double Precision Logical

REAL D C R,I

INTEGER C D R,C,I

COMPLEX R C,R D

DOUBLE H C,H,L
PRECISION

LOGICAL D D R,I

OCTAL D D R,I

LITERAL D,H*** C,H*** D**

DOUBLE H H D****
OCTAL*

Legend

D = Direct replacement
C = Conversion between integer and floating-point with truncation
R = Real part only
I = Set imaginary part to 0
H = High order only
L = Set low order part to 0

Notes

H,L D

H,C,L D

R

D H

H,L D,H

H,C,L D

D** D***

D H

* Octal numbers comprised of from 13 to 24 digits are termed double octal. Double octals require
two storage locations. They are stored right-justified and are padded with zeroes to fill the
locations.

**

Use the first two words of the literal. If the literal is only one word long, the second word is
padded with blanks.

Use the first word of the literal.

**** To convert double octal numbers to complex, the low order octal digits are assumed to be the
imaginary part and the high order digits are assumed to be the real part of the complex value.

8-2

CHAPTERS

8.3 LOGICAL ASSIGNMENT STATEMENTS

Logical Assignment Statements,

ASSIGN Statements

This type of assignment statement is used to assign values to variables and array elements of type logical. The logical
assignment statement is written in the form

v=e

where v is one or more variables and/or array element names and e is a logical expression.

Examples

Assuming that the variables L, F, M, and G are of type logical, the following statements are valid:

Sample Statement
L=.TRUE.

F=.NOT.G

M=A>T

L=«(I.GT.H).AND.(J < =K»

The contents of L are replaced by logical truth.

The contents of L are replaced by the logical complement of
the contents of G.

If A is greater than T, the contents of M are replaced by logical
truth; if A is less than or equal to T, the contents of Mare
replaced by logical false.

The contents of L is replaced by either the true or false
resultant of the expression.

8.4 ASSIGN (STATEMENT LABEL) ASSIGNMENT STATEMENT

The ASSIGN statement is used to assign a statement label constant (i.e., a 1- to 5-digit statement number) to a
variable name. The ASSIGN statement is written in the following form

ASSIGN n TO I

where n represents the statement number and I is a variable name. For example, the statement

ASSIGN 2000 TO LABEL

specifies that the variable LABEL represents the statement number 2000.

With the exception of complex and double precision, any type of variable may be used in an ASSIGN statement.

Once a variable has been assigned a statement number, FORTRAN considers it a label variable. If a label variable is
used in an arithmetic statement, the results are unpredictable.

The ASSIGN statement is used in conjunction with assigned GO TO control statements (Chapter 9); it sets up
statement label variables which are then referenced in subsequent GO TO control statements. The following
sequence illustrates the use of the ASSIGN statement:

8-3

CHAPTERS ASSIGN Statement

555 TAX=(A+B+C)* .05

ASSIGN 555 TO LABEL

GO TO LABEL

84

CHAPTER 9

DEC-system-20 FORTRAN extensions to the 1966

ANSI standard set are printed in boldface italic type.

9.1 INTRODUCTION

GO TO Statements

CHAPTER 9
CONTROL STATEMENTS

DECsystem-20 FORTRAN object programs are normally executed statement-by-statement in the order in which
they were presented to the compiler. The following source program control statements, however, enable the user to
alter the normal sequence of statement execution:

a. GO TO

b. IF

c. DO

d. CONTINUE

e. STOP

f. PAUSE

9.2 GO TO CONTROL STATEMENTS

There are three kinds of GO TO statements:

a. Unconditional

b. Computed

c. Assigned.

A GO TO control statement causes the statement which it identifies to be executed next, regardless of its position
within the program. Each type of GO TO statement is described in the folloWing paragraphs.

9-1

CHAPfER9

9.2.1 Unconditional GO TO Statements

GO TO statements of this type are written in the form

GOTOn

Unconditional, Computed and

Assigned GO TO Statements

where n is the label (i.e., statement number) of an executable statement (e.g., GO TO 555). When executed, an
unconditional GO TO statement causes control of the program to be transferred to the statement which it specifies.

An unconditional GO TO statement may be positioned anywhere in the source program except as the terminating
statement of a DO loop.

9.2.2 Computed GO TO Statements

GO TO statements of this type are written in the form

GO TO (Nl,N2, ... ,Nk)E

where the parenthesized list is a list of statement numbers and E is an arithmetic expression. Any number of
statement numbers may be included in the list of this type of GO TO statement; however, each number given must
be used as a label within the program or subprogram containing the GO TO statement.

NOTE
A comma may optionally follow the parenthesized list.

The value of the expression E must be reducible to an integer value that is greater than 0 and less than or equal to
the number of statement numbers given in the statement's list. If E does not compute within the foregoing range,
the next statement is executed.

When a computed GO TO statement is executed, the value of its expression (i.e., E) is computed first. The value of E
specifies the position within the given list of statement numbers, of the number which identifies the statement to be
executed next. For example, in the statement sequence

GO TO (20, lO, 5)K
CALL XRANGE(K)

the variable K acts as a switch causing a transfer to statement 20 ifK=l, to statement 10 ifK=2, or to statement 5 if
K=3. The subprogram XRANGE is called if K is less than 1 or greater than 3.

9.2.3 Assigned GO TO Statements

GO TO statements of this type may be written in either of the following forms:

GOTOK
GO TO K, (Ll,L2, ... ,Ln)

where K is a variable name and the parenthesized list of the second form contains a list of statement labels (i.e.,
statement numbers). The statement numbers given must be within the program or subprogram containing the GO
TO statement.

9-2

CHAPTER 9 Arithmetic IF Statements

Assigned GO TO statements of either of the foregoing forms must be logically preceded by an ASSIGN statement
that assigns a statement label to the variable name represented by K. The value of the assigned label variable must be
in the same program unit as the GO TO statement in which it is used. In statements written in the form

GO TO K, (Ll ,L2, ... ,Ln)

if K is not assigned one of the statement numbers given in the statement's list, then the next sequential statement is
executed.

Examples

GO TO STATl
GO TO STATl, (177,207,777)

9.3 IF STATEMENTS

There are three kinds of IF statements: arithmetic, logical, and logical two-branch.

9.3.1 Arithmetic IF Statements

IF statements of this type are written in the form

IF (E) Ll, L2, L3

where (E) is an expression enclosed within parcnthesis and Ll, L2, L3 are the labels (i.e., statement numbers) of
three executable statements.

This type of IF statement causes control of the program to be transferred to one of the given statements, according
to the computed value of the given expressions. If the value of the expression is:

a. less than 0, control is transferred to the statement identified by Ll;

b. equal to 0, control is transferred to the statement identified by L2;

c. greater than 0, control is transferred to the statement identified by L3.

All three statement numbers must be given in arithmetic IF statements; the expression given may not compute to a
complex valuc.

Examples

Sample Statement
IF (ET A)4, 7, 12

IF (KAPPA - L{10)) 20,14, 14

Transfer control to statement 4 if ETA is negative, to
statement 7 if ETA is 0 and to statement 12 if ETA is greater
than O.

Transfer control to statement 20 if KAPPA is less than the
10th element of array L and to statement 14 if KAPPA is
greater than or equal to the 10th element of array L.

9-3

CHAPTER 9

9.3.2 Logical IF Statements

Logical and Logical Two-Branch

IF Statements, DO Statements

IF statements of this type are written in the form

IF (E) S

where E is any expression enclosed in parentheses and S is a complete executable statement.

Logical IF statements cause control of the program to be transferred either to the next sequential executable
statement or the statement given in the IF statement (i_e., S) according to the computed logical value of the given
expression. If the value of the given logical expression is true (negative), control is given to the executable statement
within the IF statement. If the value of the expression is false (positive or zero), control is transferred to the next
sequential executable program statement.

The statement given in a logical IF statement may be any DECsystem-20 FORTRAN executable statement except
a DO statement or another logical IF statement.

Examples

Sample Statement
IF (T.OR.S) X = Y + 1

IF (Z.GT.x(K)) CALL SWITCH (S,Y)

IF (K.EQ.INDEX) GO TO 15

9.33 Logical Two-Branch IF Statements

An arithmetic replacement operation is performed if the
result of IF is true.

A subprogram transfer is performed if the result of IF is
true.

An unconditional transfer is performed if the result of
IF is true.

IF statements of this type are written in the form

IF (E) NI, N2

where E is any expression enclosed in parentheses and N1 and N2 are statement labels defined within the program
unit.

Logical two-branch IF statements cause control of the program to be transferred to either statement N1 or N2
depending on the computed value of the given expression. If the value of the given logical expression is true
(negative), control is transferred to statement N1. If the value of the expression is false (positive or zero), control is
transferred to statement N2.

Note that the statement immediately fol/owing the logical two-branch IF must be numbered so that control can later
be transferred to the portion of code that mlS skipped.

EXIlmples

Sample Statement
IF (LOGl) 10,20

IF (A.LT.B.AND.A.LT.C) 31,32

Transfer control to statement 10 if LOG1 is negative;
otherwise transfer control to statement 20.

Transfer control to statement 31 if A is less than both Band
C; transfer control to statement 32 if A is greater than or equal
to either B or C.

94

CHAPTER 9 DO Statement Parameters, Nested DO's

9.4 DO STATEMENT

DO statements simplify the coding of iterative procedures; they are written in the following form:

where

Indexing Parameters

~:.7:iZ = MI'1'~:~::~::
label Terminal

Index Parameter
Variable

-;-In~i'-:-ti-:al--

Parameter

a. Terminal Statement Label N is the statement number of the last statement of the DO statement range.
The range of a DO statement is defined as the series of statements which follows the DO statement up to
and including its specified terminal statement.

b. Index Variable I is an unsubscripted variable, the value of which is defined at the start of the DO
statement operations. The index variable is available for use throughout each execution of the range of
the DO statement but its value should not be altered within this range. It is also made available for use in
the program when

1. control is transferred outside the range of the DO loop by a GO TO, IF, or RETURN statement
located within the DO range,

2. a CALL is executed from within the DO statement range which uses the index variable as an
argument, and

3. if an Input-Output statement with either or both the options END= or ERR= (Chapter 10)
appear within the DO statement range.

c. Initial Parameter M 1 assigns the index variable, V, its initial value. This parameter may be any variable,
array element, or expression.

d. Terminal Parameter M2 provides the value which determines how many repetitions of the DO statement
range are performed.

e. Increment Parameter M3 specifies the value to be added to the initial parameter (M I) on completion of
each cycle of the DO loop.

An indexing parameter may be any arithmetic expression which should result in either a positive or negative value.
The values of the indexing parameters are calculated only once, at the start of each DO-loop operation. The number
of times that a DO loop will be executed is specified by the formula:

(M2-MI)/M3+1

9-5

CHAFfER 9 DO Statement, Nested DO's

Since the count is computed at the start of a DO loop operation, changing the value of the loop index variable
within the loop cannot affect the number of times that the loop is executed. At the start of a DO loop operation,
the index value is set to the value of the initial parameter (MI) and a count variable (generated by the compiler) is
set to the negative of the calculated count. At the end of each DO loop cycle the value of the increment parameter
(M3) is added to the index variable and the count variable is incremented. If the number of specified iterations have
not been performed, another cycle of the loop is initiated.

One execution of a DO loop range is always performed regardless of the initial values of the index variable and the
indexing parameters.

Exit from a DO loop operation on completion of the number of iterations specified by the loop count is referred to
as a normal exit. In a normal exit, control is passed to the first executable statement after the DO loop range
terminal statement and the value of the DO statement index variable is considered undefined.

Exit from a DO loop may also be accomplished by a transfer of control by a statement within the DO loop range to
a statement outside the range of the DO statement (paragraph 9.4.3). '

9.4.1 Nested DO Statements

One or more DO statements may be contained (i.e., nested) within the range of another DO statement. The
following rules govern the nesting of DO statements.

a. The range of each nested DO statement must be entirely within the range of the containing DO
statement.

Example

Valid

DO 1

~
~

Invalid

DO 1

~
b. The ranges of nested DO statements cannot overlap.

Example

Valid Invalid

DO 1 DO 1

D02 D02

I

~ D03

9·6

The range of
DO 2 is outside
that of DO 1.

The ranges of
loop DO 2 and
DO 3 overlap.

CHAPTER 9 DO Statement, Extended Range and

Transfer Operations

c. More than one DO loop within a nest of DO loops may end on the same statement. When this occurs,
the terminal statement is considered to belong to the innennost DO statement that ends on that
statement. The statement label 4 of the shared terminal statement cannot be used in any GO TO or
arithmetic IF statement that occurs anywhere but within the range of the DO statement to which it
belongs.

Example

9.4.2 Extend Range

D04

D04

D04

D04
I

All the DO statements
share the same terminal
statement, however, it
belongs to DO 4.

The extended range of a DO statement is defined as the set of statements that are executed between the transfers
out of the innermost DO statement of a set of nested DO's and the transfer back into the range of this innermost DO
statement. The extended range of a nested DO statement is illustrated as follows:

DO I

D02

D03

--.... -- (out)--~

Extended Range

9-7

CHAYfER9

The following rules govern the use of a DO statement extended range:

DO Statement Transfers,

CONTINUE Statement

a. The transfer out statement for an extended range operation must be contained by the most deeply
nested DO statement that contains the location to which the return transfer is to be made.

b. A transfer into the range of a DO statement is permitted only if the transfer is made from the extended
range of that DO statement.

c. The extended range of a DO statement must not contain another DO statement.

d. The extended range of a DO statement cannot change the index variable or indexing parameters of the
DO statement.

e. The use of and return from a subprogram from within an extended range is permitted.

9.4.3 Permitted Transfer Operations

The transfer of program control from within a DO statement range or the ranges of nested DO statements is
governed by the following rules:

a. A transfer out of the range of any DO loop is permitted at any time. When such a transfer is executed
the value of the controlling DO statement's index variable is defined as the current value.

b. A transfer into the range of a DO statement is permitted if it is made from the extended range of the DO
statement.

c. The use of and return from a subprogram from within the range of any DO loop, nested DO loop, or
extended range is permitted.

The following examples illustrate the transfer operations permitted from within the ranges of nested DO statements.

Valid Transfers

DI

D2 [. ,
extended range

;)_. -

Invalid Transfers

DI

9-8

CHAPTER 9 STOP Statement

9.5 CONTINUE STATEMENT

CONTINUE statements may be placed anywhere in the source program without affecting the program sequence of
execution. CONTINUE statements are commonly used as the last statement of a DO statement range in order to
avoid ending with a GO TO, PAUSE, STOP, RETURN, arithmetic IF, another DO statement, or a logical IF
statement containing any of the foregoing statements. This statement is written as

12 CONTINUE

Example

In the following sequence the labeled CONTINUE statement provides a legal termination for the range of the DO
loop.

DO 45 ITEM=I,lOOO
STOCK=NVNTRY (ITEM)
CALL UPDATE (STOCK, TALLY)
IF (ITEM.EQ.LAST) GO TO 77

45 CONTINUE

77 PRINT 20, HEADNG,PAGE NO

9.6 STOP STATEMENT

When executed, the STOP statement causes the execution of the object program to be terminated and the user
returned to command level. A descriptive message may, optionally, be included in the STOP statement to be out­
put to the user's I/O terminal immediately before program execution is terminated. This statement may be written
as

or

STOP
STOP 'N'

STOPn

where 'N' is a string of ASCII characters enclosed by single quotes and n is an octal string up to J 2 digits. The string
N or the value n is printed at the user's I/O terminal when the STOP statement is executed; it may be of any length,
continuation lines may be used for large messages.

Examples

STOP 'Termination of the Program'

or

STOP 7777

9-9

CHAPTER 9 PAUSE Statement, TRACE Option

9.7 PAUSE STATEMENT

When executed, a PAUSE statement causes a suspension of the execution of the object program and gives the user
the option to:

a. Continue execution of the program

b. Exit

c. Initiate a TRACE operation (Paragraph 9.7.1).

The permitted forms of the PAUSE statement are:

a. PAUSE

b. PAUSE 'literal string'

c. PAUSE n, where n is an octal string up to 12 digits.

The execution of a PAUSE statement of any of the foregoing forms causes the standard instruction:

1YPE G TO CONTINUE, X TO EXIT, T TO TRACE

to be printed at the user's terminal. If the form of the PAUSE statement contains either a literal string or an integer
constant, the string or constant is printed on a line preceding the standard message. For example, the statement

PAUSE 'TEST POINT A'

causes the following to be printed at the user's terminal:

TEST POINT A
1YPE G TO CONTINUE, X TO EXIT, T TO TRACE

The statement

PAUSE 1

causes the following to be printed at the user's terminal:

PAUSE 000001
1YPE G TO CONTINUE, X TO EXIT, T TO TRACE

9.7.1 T (TRACE) Option

The entry of the character T in response to the message output by the execution of a PAUSE statement starts a
TRACE routine. This routine causes the printing, at the user's terminal, of a complete history of all subroutine calls
made during the execution of the program, up to the execution of the PAUSE statement. The history printed by the
TRACE routine consists of:

a. The names of all subroutines called, arranged in the reverse order of their call;

b. The absolute location (written within parentheses) of the called subroutine;

c. The name of the calling subroutine plus an offset factor and the absolute location (written within
parentheses) of the statement within the routine which initiated the call;

9-10

CHAPTER 9 PAUSE Statement, TRACE Option

d. The number of arguments involved (written within angle brackets);

e. An alphabetic code (written within square brackets) that specifies the type of each argument involved.
The alphabetic codes used and the meaning of each are:

Exomple

Code Character
U
L
I
F
o
S
D
C
K

Type Specified
Undefined type; the use of the argument will determine its type.
Logical
INTEGER
Single precision REAL
Octal
Statement Number
Double precision REAL
COMPLEX
A literal or constant

The following printout illustrates the execution of the PAUSE statement "PAUSE 'TEST POINT A "', the entry of a
T character to initiate the TRACE routine, the resulting trace printout, and the entry of the character G to continue
the execution of the program.

IESI POINI A
IYPE' IO CONIINUE, X IO EXII, I IO IftACE.
*I

NAME
IRACE.
IYPE G
*G

(LOC) «--- CALLEft (LOC) <IARGS> [AR' IYPES}
(~11'53) «--- MAIN.+'12(la32) <11> [Ul

IO CONIINUE, X IO EXII, I IO IftACE.

In addition to its use with the PAUSE statement, the TRACE routine may be called directly, using the form

CALL TRACE

or as a function, using the form

X = TRACE (x)

Execution of the foregoing statements starts the TRACE routine which causes the printing of the history of all
subprogram calls made during the execution of the program, up to the execution of the CALL statement, or up to
the execution of the function, respectively. The history printed by the TRACE routine under these circumstances is
exactly the same as described in the preceding paragraph.

9-11

CHAPTER 10

DEC-system-20 FORTRAN extension to the 1966

ANSI standard set are prin ted in boldface italic type.

10.1 DA T A TRANSFER OPERATIONS

Data Transfer Operations and Modes

CHAPTER 10

1/0 STATEMENTS

FORTRAN I/O statements permit data to be transferred between processor storage (memory) and peripheral devices
and/or between storage locations. Data in the form of logical records may be transferred using an a) sequential, b)
random access, or c) append transfer mode. The areas in core from which data is to be taken during output (write)
operations and into which data is stored during input (read) operations are specified by

a. a list in the I/O statement which initiated the transfer

b. a list defined by a NAMELIST statement, or

c. between a specified FORMAT statement and the external medium.

The type and arrangement of transferred data may be specified by format specifications located in either a
FORMAT statement or an array (formatted I/O) or by the contents of an I/O list (i.e., list-directed I/O).

The transfer modes, I/O lists, type conversion and arrangement of data, and the statements required to initiate I/O
transfer operations are described in the foil owing paragraphs.

10.2 TRANSFER MODES

The characteristics and requirements of the a) sequential, b) random access, and c) append data modes are described
in the following paragraphs.

10.2.1 Sequential Mode

Records are transferred during a sequential mode of operation in the same order as they appear in the external data
file. Each I/O statement executed in a sequential mode transfers the record immediately following the last record
transferred from the accessed source file.

10.2.2 Random Access Mode

This mode permits records to be accessed and transferred from a file in any desired order. Random access transfers,
however, may be made only to (or from) a device that permits random-type data addressing operations (i.e., disk)
and to files that have previously been set up for random access transfer operation. Files for random access must
contain a specified number of identically sized records that may be accessed, individually, by a record number.

10-1

CHAPTER 10 Append Mode, I/O Statements

Form and Components

The OPEN statement or a subroutine calf to DEFINE FILE may be used to set up random access
files.

The OPEN statement is used to establish a random access mode to permit the execution of random access data
transfer operations. The OPEN statement should logically precede the first I/O statement for the specified logical
unit in the user source program.

/0.2.3 Append Mode

This mode is a special version of the sequential transfer mode: it may be used only for sequential output (write)
operations. The append mode permits the user to write a record immediately after the last logical record of the
accessed file. During an append transfer, the records already in the accessed file remain unchanged, the only function
performed is the appending of the transferred records to the end of the file.

An OPEN statement (Chapter /2) must be used to establish an append mode before append I/O operations can be
executed.

10.3 I/O STATEMENTS, BASIC FORMATS AND COMPONENTS

The majority of the I/O statements described in this chapter are written in one of the following basic forms, or in
some modification of these forms:

where

Keyword

u

f

list

#R

*

N

Basic Statement Forms
Keyword (u,f)list
Keyword (u#R,f)list
Keyword (u, *)list
Keyword (u,N)
Keyword (u)list
Keyword (u#R)list

Use
Fonnatted I/O Transfer
Random Access Formatted I/O Transfer
List-Directed I/O Transfer
NAMELIST-Controlled I/O Transfer
Binary I/O Transfer
Random Access Binary I/O Transfer

the statement name (i.e., READ or WRITE)

logical unit number

FORMAT statement number or the name of an array that contains the desired format
specifications

I/O list

= the delimiter # followed by the number of a record in an established random-access file

= symbol specifying a list-directed I/O transfer.

the name of an I/O list defined by a NAMELIST statement.

Details of the foregoing statement components are given in the following paragraphs.

10-2

CHAPTER 10

10.3.1 I/O Statement Keywords

I/O Statements Key Word, Logical

Unit Numbers and FORMAT References

The keywords (i.e., names) of the DECsystem-20 FORTRAN I/O statements described in this chapter arc:

a. READ

b. REREAD

c. WRITE

d. ACCEPT

e. PRINT

f. TYPE

g. FIND

h. ENCODE

i. DECODE

j. DECODE

10.3.2 Logical Unit Numbers

The physical devices used for most FORTRAN I/O operations are identified by decimal numbers. During
compilation, the compiler assigns default logical unit numbers for the REREAD, READ, ACCEPT, PRINT,
and TYPE statements. Default unit numbers are negatively signed decimal numbers that are inaccessible to the

user.

The logical device assignments may be made by the user at run time or the standard assignments contained by the
FORTRAN Object Time System (FOROTS) may be used. The standard logical device assignments are listed in
Table 10-1. It is recommended that the user specify the device explicitly in the OPEN statement.

10.3.3 FORMAT Statement References

A FORMAT statement contains a set of format specifications which define the structure of a record and the form of
the data fields which comprise the record. Format specifications may also be stored in an array rather than in a
FORMAT statement. (Refer to Chapter 13 for a complete description of the FORMAT statement.)

The execution of an I/O statement that includes either a FORMAT statement number or the name of an array which
contains format specifications causes the structure and data of the transferred record to assume the form specified in
the referenced statement or array. Records transferred under the control of a format specification are referred to as
"formatted" records. Conversely, records transferred by I/O statements that do not reference a format specification
are referred to as ''unformatted'' records. During unformatted transfers, data is transferred on a one-to-one
correspondence between internal (processor) and external (device) locations, with no conversion or formatting
operations.

Unformatted files are binary files divided into records by DECsystem-20 FORTRAN embedded con tral words;
the control words arc invisible to the user. Files of this type cannot be prepared by the user without utilizing
FOROTS. Unformatted files arc intended to be used only within the DECsystem-20 FORTRAN environment.

10-3

CHAPTER 10 I/O Lists, Implied DO Constructs

10.3.4 I/O List

An I/O list specifies the names of variables, arrays, and array elements to which input data is to be assigned or from
which data is to be output. Implied DO constructs (paragraph 10.3.4.1), which specify specific sets of array
elements, may also be included in I/O lists. The number of items in a statement's list determines the amount of data
to be transferred during each execution of the statement.

10.3.4.1 Implied DO Constructs - When an array name is given in an I/O list all elements of the array are
transferred in the order described in Chapter 3 (paragraph 3.5.3). If only a specific set of array elements is involved,
they may be specified in the I/O list either individually or in the form of an implied DO construct.

Implied DO's are written within parentheses in a format similar to that of DO statements. They may contain one or
more variable, array, and/or array element names, delimited by commas and followed by indexing parameters that
are defined as for DO statements.

The general form of an implied DO is

where

(name(SL),I=M 1,M2,M3)

name an array name

SL = the subscript list of an array name or an array element identifier

Ml,M2,M3

the index control variable that represents a subscript appearing in a preceding subscript
list

the indexing parameters that specify, respectively, the initial, terminal, and increment
values that control the range of I. If M3 is omitted (with its preceding comma), a value
of 1 is assumed.

Examples

(A(S),S=1,5) Specifies the first five elements of the one-dimension array A (i.e., A(I),
A(2), A(3), A(4), A(5».

(A(2,S),S=1,10,2) Specifies the elements A(2,1), A(2,3), A(2,5), A(2,7), A(2,9) of array A.

As stated previously, implied DO constructs may also contain one or more variable names.

Example

I, J, B, and C must be integer variables.

«A(B,C),B=I,1 O),C=1 ,1 O),I,J Specifies a lOX 10 set of elements of array A, the location identified
by I and the location identified by J.

Implied DO constructs may also be nested. Nested implied DO's may share one or more sets of indexing parameters.

Example

«A(J ,K),J= 1 ,5),D(K),K=1,1 0) Specifies a 5 X 10 set of elements of array A and the first 10
elements of array D.

10-5

CHAPTER 10 Records For Random Access,

List-Directed I/O

When an array or set of array elements are specified as either a storage or transmitting area for I/O purposes, the
array elements involved are accessed in ascending order with the value of the first subscript quantity varying most
rapidly and the value of the last given subscript increasing to its maximum value least rapidly_ For example, the
elements of an array dimensional as T AB(2,3) are accessed in the order:

TAB(I,l)
TAB(2,1)
TAB(I,2)
TAB(2,2)
TAB(l,3)
TAB(2,3)

1035 The Specification of Records for Random Access

Records to be transferred in a random access mode must be identified in an I/O statement by an integer expression
or variable preceded by a 'delimiter (e.g., '1OJ).

NOTE
A number sign (#) may he used in place of the 'delimiter (e.g., hoth
#101 and ']0] are accepted by DECsystem-20 FORTRAN).

10.3.6 List-Directed I/O

The use of an asterisk in an I/O statement in place of a FORMAT statement number causes the specified transfer
operation to be "list-directed." In a Iist-directed transfer, the data to be transferred and the type of each transferred
datum are specified by the contents of an I/O list included in the I/O command used. The transfer of data in this
mode is performed without regard for column, card, or line boundaries. The Iist-directed mode is specified by the
substitution of an asterisk (*) for the FORMA T statement reference (i.e., f) of an I/O statement. The general form
of a list-directed I/O statement is

keyword (u, *)list

Example

READ (5, *)IJAB,M,L

List-directed transfers may be used to input data from any acceptable input device including an input keyboard
terminal.

NOTE
Device positioning commands, such as BACKSPACE, SKIP
RECORD, etc., should not be used in conjunction with
list-directed I/O operations. If such a combination is used, the
results will be unpredictable.

Data for list-directed transfers should consist of alternate constants and delimiters. The constants used should have
the following characteristics:

a. Input constants must he of a type acceptable to DEC~ystem-20 FOR TRAN. Octal constants, although
acceptable, are not permitted in list-directed I/O operations.

b. Literal constants must be enclosed within single quotes (e.g., 'ABLE').

10-6

CHAPTER 10 List-Directed I/O

c. Blanks serve as delimiters; therefore, they are not permitted in any but literal constants.

d. Decimal points may be omitted from real constants which do not have a fractional parI. FORTRAN
assumes tllat the decimal point follows the right-most digit of a real constant.

Delimiters in data for list-directed input must comply with the following:

a. Delimiters may be either commas or blanks.

b. Delimiters may be either preceded by or followed by any number of blanks, carriage return/line feed
characters, tabs, or line terminators; any such combination is considered by FORTRAN as being only
a single delimiter.

c. A null, the complete absence of a datum, is represented by two consecutive commas which have no
intervening constant(s). Any number of blanks, tabs, carriage return/line feed characters, or end-of-input
conditions may be placed between the commas of a null. Each time a null item is specified in the input
data, its corresponding list element is skipped (i.e., unchanged). The following illustrates the effect of a
null input:

INPUT Items

Corresponding
I/O List Items

ReSUlting
Contents of
List Items

101, 'A', tab, 'NOl',

+ + + +
A ,LlT,/AB,NUA:BER

~ ~ ~ ~
101. A un- N01

changed
lAB

d. Slashes (/) cause the current input operation to be terminated even if all the items of the directing list
are not filled. n,e contents of items of the directing I/O list which either are skipped (by null inputs) or
have not received an input datum before the transfer is terminated remain unchanged. Once the I/O list
of the control/ing I/O statement is satisfied, the use of the / delimiter is optional.

e. Once the 1/0 list has been satisfied (transfers have been made to each item of the list) any items
remaining in the input record are skipped.

Constants or nulls in data for list-directed input may be assigned a repetition factor to cause an item to be repeated.

The repetition of a constant is written as

r*K

where r is an integer constant that specifies the number of times the constant represented by K is to be repeated.

The repetition of a null is written as an integer followed by an asterisk.

Examples

10*5
3*'ABLE'
3*

represents 5,5,5,5,5,5,5,5,5,5
represents 'ABLE', 'ABLE', 'ABLE'
represents null,null,null

10-7

CHAPTER 10 NAMELIST I/O

10.3.7 NAMELIST I/O Lists

One or more lists may be defined by a NAMELIST statement (Chapter 11). Each I/O list defined in a NAMELIST
statement is identified by a unique (within the routine) 1 to 6 character name that may be referenced by one or
more READ or WRITE statements. The first character of each I/O list name must be alphabetic. Referencing a
NAMELIST-defined I/O list enables any of the foregoing statements to be written without an I/O list and permits
the same list to be used by more than one statement.

I/O statements which reference a NAMELIST-defined I/O list cannot contain either a FORMAT statement reference
or an I/O list. NAMELIST-controlled 1/0 operation cannot be used to transfer octal numbers or literal strings.

Records for NAMELIST-controlled input operations must be formatted in the following manner:

$NAME D1,D2,D3 . . . Dn$

where

a. $ symbols delimit the beginning and end of the record. The first $ must be in column 2 of the input
record; column 1 must be blank.

b. NAME is the name of a NAMELIST-defined input list. The named list identifies the processor storage
locations that are to receive the data items read from the accessed record.

c. DI through Dn are values of the items of data contained by the record; these items cannot be octal
numbers or literal strings.

Only NAMELIST-controlled READ statements may be used to input records formatted in the foregoing manner.

NAMELIST-controlled WRITE statements will output records in the foregoing format.

NOTE
Device positioning commands such as BACKSPACE, SKIP
RECORD, etc., should not be used in conjunction with
NAMELIST-controlled I/O operations. If such a combination
is used, the results are unpredictable.

10.4 OPTIONAL READ/WRITE ERROR EXIT AND END-OF-FILE ARGUMENTS

Either or both an error exit or an end-of-file argument may, optionally, be added to the parenthesized portion of
most forms of the READ and WRITE I/O statements.

The error exit argument is written as ERR=c where c is a statement number. The use of this argument causes the
current I/O operation to be terminated and program control transferred to the statement identified by the argument
if a device error is detected. For example, the detection of an error during the execution of

READ(JO,77,ERR=IOI)TABLE,I,M,J

terminates the input operation and transfers program control to statement 101.

10-8

CHAPTER 10 Sequential Formatted
READ Statements

The end-of-file argument is written as END=d where d is a statement number. The use of this argument causes the
current I/O operation to be terminated and program control to be transferred to the statement identified by the
argument when an end-of-file condition is detected. For example, the detection of an end-of-file condition during
the execution of

READ(l 0, n,END=50)TABLEJ,M,J

transfers program control to statement 50.

If the END= argument is not present and an end of file (EOF) condition is detected, the file is closed, program
execution is terminated, and the user is returned to command level.

10.5 READ STATEMENTS

READ statements transfer data from peripheral devices into specified processor storage locations. The permitted
forms of this type of input statement permit READ statements to be used on both sequential and random access
transfer modes for formatted, unformatted, list-directed, and NAMELIST-controlled data transfers.

10.5.1 Sequential Fonnatted READ Transfers

Descriptions of the READ statements that may be used for the sequential transfer of formatted data follow:

a.

b.

c.

Form:

Use:

Example:

Form:

Use:

Example:

Form:

READ (u,f}list

Input data from logical unit u, formatted according to the specifications given in f, into
the processor storage locations identified in input list.

READ (I O,555)T ABLE(IO,20),ABLE,BAKER,CHARL

READ (u,f)

Input the data from logical unit u directly into either a Hollerith (H) field descriptor or a
literal field descriptor given within the format specifications of the referenced FORMAT
statement. If the referenced FORMAT statement does not contain either of the foregoing
types of format field descriptors, the input record is skipped. If a required field descriptor
is present, its contents are replaced by the inrut data.

READ(I5,101)

READf

Use: Input the data from the READ default device (card reader) directly into either a Hollerith
(H) field descriptor or a literal field descriptor given within the format specifications of
the referenced FORMAT statement. If the referenced FORMAT statement does not
contain either of the foregoing types of format field descriptors, the input record is
skipped. If a required field descriptor is present, its contents are replaced by the input
data.

Example: READ 66

10·9

CHAPTER 10 Sequential Binary and

List-Directed READ Statements

d. Form: READ f, list

Use: Input the data from the READ default device (card reader) into the processor storage
locations identified in the input list. The input data is formatted according to the
specifications given in f.

Example: READ 15, ARRAY (20,30)

10.5.2 Sequential Unformatted Binary READ Transfers

Only the following form of the READ statement may be used for the sequential transfer of unformatted input
FORTRAN binary data:

Form:

Use:

Example:

READ (u)list

Input one logical record of data from logical unit u into processor storage as the value of
the location identified in list. Only binary files that have been output by a DECsystem-20
FORTRAN unformatted WRITE statement may be read by this type of READ

statement.

NOTE
If the form READ (u) is used, it will cause one unformatted
input record to be skipped.

READ (10) BINFIL (10,20,30)

/0.5.3 Sequential List-Directed READ Transfers

The following forms of the READ statements may be used to control a sequential, list-directed input transfer:

a. Form:

Use:

Example:

b. Form:

Use:

Example:

READ (u, *)list

Input data from logical device u into processor storage or the value of the locations
identified in list. Each input datum is converted, if necessary, to the type of its assigned
list variable.

READ (10, *) IARY (20,20), A,B,M

READ *,list

Input the data from the READ default device (card reader, CDR) into the processor
storage locations identified in the input list. Each input datum is converted, if necessary,
to the type of its assigned list variable.

READ *, ABEL(10,20),/,J,K

IO-IO

CHAPTER 10 NAMELIST -Controlled and

Random Access READ Statements

/0.5.4 Sequential NAMELIST-Controlled READ Transfers

Only the following form of the READ statement may be used to initiate a sequential NAMELIST-controlled input
transfer:

Form:

Use:

READ (u,n)

Input data from logical unit u into processor storage as the value of the location
identified by the NAMELIST input list specified by the name n. The input data is
converted to the type of assigned variable if type conflicts occur. Only input files that
contain records formatted and identified for NAMELIST operations (Paragraph 10.3.7)
may be read by READ statements of this form.

/0.5.5 Random Access Formatted READ Transfers

Only the following form of the READ statement may be used to initiate a random access formatted input transfer:

Form: READ (u#R,f)list

Use: Input data from record R of logical unit u. Format each input datum according to the
format specifications of f and place into processor storage as values of the locations
identified in list. Only disk files that have been set up by either an OPEN or DEFINE
FILE statement may be accessed by a READ statement of this form. (If record R has
not been written, a fatal error results.)

/0.5.6 Random Access Unformatted READ Transfers

Only the following form of the READ statement may be used to initiate a random-access unformatted input
transfer:

Form:

Use:

Example:

READ (u#R)list

Input dlIta from record R of logical unit u. Place the input data into processor storage as
the value of the locations identified in list. Only binary files that have been output by an
unformatted random-access WRITE statement may be accessed by a READ statement of
this form. (If record R has not been written, a fatal error results.)

READ (1#20) BINFIL

Read record number 20 into array BINFIL.

NOTE
If the form READ (u#R) is used, it will cause one logical input
record to be skipped.

10.6 SUMMARY OF READ STATEMENTS

The various forms of the READ statements are summarized in Table 10-2.

10-11

CHAPfERIO

Table 10-2
Summary of Read Statements

Summuy Of READ Statements

and REREAD Statement

Type of Transfer Transfer Mode

Formatted

Unformatted

List-Directed

NAMELIST

Sequential Random Access

READ (u,f)list
READ (u,f)
READ f,list
READf

READ (u)list
READ (u)

READ (u, *)list
READ * list

READ (u,N)

READ (u#R,f)list

READ (u#R)list
READ (u#R)

Note: The ERR=c and END=d arguments may be included in any
of the above READ statements. When included, the
foregoing arguments must be last, e.g., READ
(I0,20,END=101,ERR=500) ARRAY (50,100).

10.7 REREAD STA TEMENT

The REREAD statement causes the last record read from the last active input device to again be accessed and
processed.

The REREAD feature of DECsystem-20 FORTRAN cannot be used until an input (READ) transfer from a file has
been accomplished. If REREAD is used prematurely, an error message will be output by DECsystem-20 FORTRAN
at execution time.

Once a record has been accessed by a formatted READ statement the record transferred may be reread as many
times as desired. In a formatted transfer, the same or new format specification may be used by each successive
REREAD statement.

The REREAD statement may be used for sequential formatted data transfers only. The form of the REREAD
statement is:

Form:

Use:

REREAD f,list

Reread the last record read during the last initiated READ operation and input the data
contained by the record into the processor storage locations specified in the input list.
Format the data read according to the format specifications given in statement f.

10-12

CHAPTER 10

Example:

Sequential Formatted WRITE Statements

DIMENSION ARRAY(IO,IO),FORMA(IO,lO),FORMB(lO,IO),FORMC(IO,lO)

90 READ(l6,l00)ARRAY

100 FORMAT(_______)

110 REREAD I 00, FORMA
]]5 REREAD 150,FORMB
120 REREAD 160,FORMC

ISO FORMAT(________)
160 FORMAT(________)

In the above sequence, statement 90 inputs data formatted according to statement 100 into the array ARRA Y.
Statement 110 reads the record read by statement 90 and inputs the data formatted as in the initial READ operation
into the array FORMA.

Statement lIS reads the record read by statements 90 and inputs the data formatted according to statement ISO
into the array FORMB.

Statement 120 reads the record read by statement 90 and inputs the data formatted according to statement 160 into
the array FORMC.

10.8 WRITE STATEMENTS

WRITE statements transfer data from specified processor storage locations to peripheral devices. The various forms
of the WRITE statement enable it to be used in sequential, append and random access transfer modes for formatted,
unformatted, list-directed and NAMELIST-controlled data transfers.

10.8.1 Sequential Fonnatted WRITE Transfers

The following forms of the WRITE statement may be used for the sequential transfer of formatted data:

a. Form:

Use:

Example:

b. Form:

Use:

Example:

WRITE (u,f) list

Output the values of the processor storage locations identified in list, into the me
associated with logical unit u. Convert and arrange the output data according to the
specifications given in statement or array f

WRITE(06,500)OUT(I0,20),A,B

WRITE f,list

Output the values of the processor storage locations identified in list to the default device
(i.e., line printer, LPT). Convert and arrange the output data according to the
specifications given in f.

WRITE 10, SEND(5,10),A,B,C

10-13

CHAPTER 10

c. Form:

Use:

Example:

WRITE f

Sequential, NAMELIST -Controlled

and Random Access WRITE Statements

Output the contents of any Hollerith (H) or literal (") field descriptor(s) contained by f
to the default device (i.e., line printer, LPT). If neither of the foregoing types of field
specifications are found in f, no output transfer is performed.

WRITE 10

10.8.2 Sequential Unformatted WRITE Transfer

The following form of the WRITE statements may be used for the sequential transfer of unformatted data:

Form:

Use:

Example:

WRITE (u) list

Output the values of the processor storage locations identified in list into the file
associated with logical unit u. No conversion or arrangement of output data is performed.

WRITE(12)IT AB(20,20),SUMS(! 0,5 ,2)

10.8.3 Sequential List-Directed WRITE Transfers

The following form of the WRITE statement may be used to initiate a sequentiallist-directed output transfer.

Form:

Use:

Example:

WRITE(u, *)list

Output the values of the processor storage locations identified in list into the file
associated with logical unit u. The conversion of each datum from internal to external
form is performed according to the type of the list variable from which the datum is read.

WRITE02, *)C,X, Y,IT ABO 0,1 0)

10.8.4 Sequential NAMELIST-Controlled WRITE Transfers

Only the following form of the WRITE statement may be used to initiate a sequential NAMELIST output transfer.

Form:

Use:

Example:

WRITE(u,N)

Output the values of the processor storage locations identified by the contents of the
NAMELIST-defined list specified by name N.

WRITE(I2,NMLST)

10.8.5 Random Access Formatted WRITE Transfers

Only the following form of the WRITE statement may be used to initiate a random access type formatted output
transfer:

Form:

Use:

WRITE(u#R,f)list

Output the values of the processor storage locations identified by the contents of list to
record R of logical device u. Only disk files which have been set up by either an OPEN or
a DEFINE FILE statement may be accessed by a WRITE transfer of this form. The data
transferred will be formatted according to the specifications given in statement or array f
Only those records which have been ~pecifically written are available to be read.

10-14

CHAPTER 10 Random Access WRITE Statements,

Summary of WRITE Statements,

ACCEPT Statement

10.8.6 Random Access Unformatted WRITE Transfers

Only the following form of the WRITE statement may be used to initiate a random access unformatted output
transfer:

Form:

Use:

WRITE(u#R)list

Output the values of the processor storage locations identified by the contents of list to
record R of the logical device unit u. Only disk files which have been set up by either an
OPEN or a call to the DEFINE FILE subroutine may be accessed by a WRITE transfer of
this form. Only those records which have been specifically written are available to be read.

10.9 SUMMARY OF WRITE STATEMENTS

The various forms of the WRITE statements are summarized in Table 10-3.

Table)0-3
Summary of WRITE Statements

Type of Transfer Transfer Mode

Formatted

Unformatted

List-Directed

NAMELIST-controlled

Sequential Random Access

WRITE(u,f)Jist
WRITE f,list
WRITEf

WRITE(u)list

WRITE(u, *)Iist

WRITE(u,N)

WRITE(u#R,f)1ist

WRITE(u#R)list

Note: The ERR=c and END=d arguments may be included in any
WRITE statement; however, they must be last.

10.10 A CCEPT STATEMENT

The ACCEPT statement enables the user to input data via either a terminal keyboard or a Batch control file directly
into specified processor storage locations. This statement is used only in the sequential transfer mode for the
formatted transfer of inputs from the user's terminal keyboard during program execution. The permitted forms of
the ACCEPT statement are described in the following paragraphs.

10.10.1 Formatted ACCEPT Transfers

The following forms of the ACCEPT statement are used for the sequential transfer of formatted data.

a. Form:

Use:

Example:

ACCEPT f,list

Input data character-by-character into the processor storage locations identified by the
contents of list. Format the input data according to the format specifications given in f.

ACCEPT 101,LINE(73)

10-15

CHAITER 10

b. Form:

Use:

Example:

ACCEIT and PRINT Statements

ACCEPT *,list

Input data character-by-character into the processor storage locations identified by the
contents of list. Convert the input characters, where necessary, to the type of its assigned
list variable.

ACCEPT *, lAB, ABE, KAB, MAR

10.10.2 ACCEPT Transfers Into FORMAT Statement

The following form of the ACCEPT statement may be used to input data from the user's terminal keyboard directly
into a specified FORMA T statement If the FORMAT statement has either or both a Hollerith (H) or literal ('s 'j field
descriptor. If the referenced statement has neither of the foregoing field descriptors, the input record is skipped.

Form:

Use:

Example:

ACCEPTf

Replace the contents of the appropriate fields of statement f with the data entered at the
user's terminal keyboard.

ACCEPT 101

10.11 PRINT STATEMENT

The PRINT statement causes data from specified processor storage locations to be output on the standard output
device (i.e., line printer, LPT, Table 10-1). This statement may be used only for sequential formatted data transfer
operation and may be written in either of the three following forms:

a. Form:

Use:

Example:

b. Form:

Use:

Example:

c. Form:

Use:

Example:

PRINT f,list

Output the values of the processor storage locations identified by the contents of list to
the line printer. The values output are to be formatted and arranged according to the
format specifications given in statement f

PRINT 55,T ABLE(1 0,20),I,J,K

PRINT * ,list

Output the values of the processor storage locations identified by the contents of list to
the line printer. The conversion of each datum from internal to external form is
performed according to the type of the list variable from which the datum is read.

PRINT *,C,X,Y,ITAB(lO,IO)

PRINT f

Output the contents of the FORMAT statement Hollerith (H) or literal field descriptors
to the line printer. If neither an H nor a literal field descriptor is present in the referenced
FORMAT statement, no operation is performed.

PRINT 55

10-16

CHAPTER 10 PUNCH Statement

The second form of the PRINT statement is particularly useful when employed with ACCEPT f statements to cause
desired data (i.e., comments or headings) to be inserted into reports at program execution time.

Example

The sequence

55 FORMAT ('\6END\60FlIROUTINE')

PRINT 55

results in the prin ting of the phrase END OF ROUTINE on the line printer.

10.12 TYPE STATEMENT

The TYPE statement causes data from specified processor storage locations to be output to the user's (control)
terminal printing or display device (see Table 10-1 for device assignment for TYPE). This statement may be used
only for sequential formatted data transfers and may be written in one of the following forms:

a. Form:

Use:

Example:

b. Form:

Use:

Example:

c. Form:

Use:

Example:

TYPE f,list

Output the values of the processor storage locations identified by the contents of list to
the user's terminal printing or display device. The values output are to be formatted
according to the format specifications given in statement f

TYPE 101,TABLE(lO,20)1,J,K

TYPEf

Output the contents of the referenced FORMAT statement Hollerith (H) or literal field
descriptors to the user's terminal printing or display device. If the referenced FORMAT
statement does not contain either an H or a literal field descriptor, no operation is
performed.

TYPE 101

TYPE *,/ist

Output the values of the processor storage locations identified by the contents of list to
the printing or display device of the user's terminal. The conversion of each datum from
internal to external form is performed according to the type of the list variable from
which the datum is read.

TYPE *,lAB(l,5),A,B

10.13 FIND STATEMENT

711e FIND statement does not initiate a data transfer operation; it is used during random access read operations to
locate the next record to be read while the current record is being input. The main program does not have access to
the "found" record until the next READ statement is executed.

10-17

CHAPfERIO

The form of the FIND statement is

FIND (u#R)

Example

In the sequence

READ (01#90)
FIND (01#101)

READ (01#101)

TYPE and FIND Statements

the FIND statement will locate record #/01 on device 01 after record 90 has been retrieved. Record #101 is not
actually processed until the second READ statement in the sequence is executed.

10.14 ENCODE AND DECODE STATEMENTS

The ENCODE and DECODE statements are used to perform sequential formatted data transfer between two defined
areas of processor storage (i.e., an I/O list and a user-defined buffer); no peripheral I/O device is involved in the
operations performed by these statements.

The ENCODE statement transfers data from the variables of a specified I/O list into a specified user storage area.
ENCODE operations are similar to those performed by a WRITE statement.

The DECODE statement transfers data from a specified user storage area into the processor storage locations
identified by the variables of an I/O list. DECODE operations are similar to those performed by a READ statement.

The ENCODE and DECODE statements are written in the following forms:

ENCODE(c,f,s)list
DECODE(c,f,s)list

where

c specifies the number of characters to be in each internal storage area. This argument may be an integer, an
integer expression, or either a real or double precision expression that is converted to an integer form.

NOTE
Characters are stored in the buffer five characters per storage
location without regard to the type of variable given as the
starting location.

f specifies either a FORMAT statement or an array that contains format specifications.

s specifies the address of the first storage location that is to be used in the transfer operations. When multiple
records are specified by the format being used, the succeeding records follow each other in order of increasing
storage addresses.

list specifies an I/O list of the standard form (Paragraph 10.3.4).

10-18

CHAPTER 10 ENCODE Statement

When multiple records are stored bv ENCODE, each new record is started on a new boundary rather than there
being a carriage return, line feed inserted between records.

10.14.1 ENCODE Statement

A description of the form and use of the ENCODE statement follows:

Form:

Use:

Example:

ENCODE(c,f,s)list

The values of the processor storage locations identified by the contents of list are
converted to ASCll character strings according to the format specifications contained by
f. The converted characters are then written into the destination area starting at location
s. If more characters are to be transferred than the specified area can contain, the excess
characters are ignored; they are not written into any following records.

If fewer characters are to be transferred than specified for the record size, the empty
character locations are filled with blanks.

ENCODE(500,JOI,START)TABLE

/0.14.2 DECODE Statement

A description of the form and use of the DECODE statement follows:

Form:

Use:

Example:

DECODE(c,f,s)list

The character strings stored in the internal reference and are read starting at location s,
converted (decoded) according to the format specifications contained by f, and stored as
the values of the locations identified in list.

If the format specification requires more characters from a record than are specified by c,
the extra characters are assumed to be blanks. If fewer characters are required from a
record than are specified by c, the extra characters are ignored.

DECODE(50,50,START)GET(5,10)

10.14.3 Example of ENCODE/DECODE Operations

The following program illustrates the use of both the ENCODE and DECODE statements:

Example

Assume the contents of the variables to be as follows:

A(J) contains the floating point binary number 300.45
A(2) contains the floating point binary number 3.0
J is an integer variable
B is a four-word array of indeterminate contents
C contains the ASCll string 12345

D02J=I,2
ENCODE(J6,10,B) J, A(J)

10 FORMAT(IX,2HA(,Il,4H),="F8.2)
TYPE II,B

10-19

CHAPTER 10

11 FORMAT (4A5)
2 CONTINUE

DECODE (4, 12, C) B
12 FORMA T (3FI.0,lX,FI.0)

TYPE 13,B
13 FORMAT (4F5.2)

END

DECODE Statement and

ENCODE/DECODE Operations

Array B can contain twenty ASCII characters. I1le result of the ENCODE statement after the first iteration of the
DO loop is:

B(l)
B(2)
B(3)
B(4)

A(l)
=
300.4
5

Typed as

A (1)=300.45

11,e result after the second iteration is:

B(l)
B(2)
B(3)
B(4)

A (2)

3.0

The DECODE statement

Typed as

A (2)=3. 0

a. extracts the digits I, 2, and 3 from C

b. converts them to floating point binary value

c. stores them in B(l), B(2), and B(3)

d. skips the next character

e. extracts the digit 5 from C

f. converts it to a floating point binary value, and,

g. stores it in B(4).

10.15 SUMMARY OF I/O STATEMENTS

A summary of all permitted forms of the DECsystem·20 FORTRAN I/O statement is given in Table 10-4.

10-20

CHAPTER 10 Table-Summary of I/O Statements

Table 10-4
Summary of DECsystem-20 FORTRAN I/O Statements

I/O Statements
Formatted

READ
Sequential READ(u,f)list

READ f,list
READf

Random READ(u#R,{)list

WRITE
Sequential or WRITE(u,f)list
Append! WRITE f,list

WRITE f

Random2 WRITE(u#R,f)list

REREAD
Sequential REREAD f,list

FIND
Random-only FIND(u#R)

ACCEPT
Sequential only ACCEPT {,list

or ACCEPT{

PRINT
Sequential only PRINT f,list

or PRINT f

TYPE
Sequential only TYPEf,list

or TYPE{

ENCODE
Sequential only ENCODE(c,f,s)list

DECODE
Sequential only DECODE(c,{,s)list

Legend:
u logical unit number
f

list
n

statement number of FORMAT
statement or name of array
containing format information
[/0 list
name of specific NAMELIST
[/0 list

Transfer Format Control
Unformatted Namelist List-Directed

READ(u)list READ(u,n) READ(u, *)list
READ *,1ist

READ(u#R)list

WRlTE(u)list WRITE(u,n) WRITE(u, *)Iist

WRITE(u#R)list

FIND(u#R)

*

#R

c

ACCEPT *,1ist

PRINT *,Iist

TYPE *,list

symbol used to specify list-directed [/0
operator
variable which specifies logical record
position
number of characters per internal record
address of the first storage location to
be used

! An OPEN statement must be used to set up an append mode.
2Either the OPEN statement or a call to the DEFINE FILE subroutine must be used to set up a random access mode.

10-21

CHAFfER 11 NAMELIST Statement

DECsystem-20 FORTRAN extensions to the 1966 ANSI

standard set are printed in boldface italic type.

11.1 INTRODUCTION

CHAPTER 11

NAME LIST STATEMENTS

The NAMELIST statement is used to define I/O lists similar to those described in Chapter 10 (Paragraph 10.3.4).
Defined NAMELIST I/O lists are referenced in special forms of the READ and WRITE statements to provide a
method of transferring and converting data without referencing format specifications or specifying an I/O list in the
I/O statement.

11.2 NAMELISTSTATEMENT

NAMELIST statements are written in the following form:

NAMELlST/Nl/Al,A2, . . . ,An/N2/Bl,B2, . . . ,Bn/Nn/ . ..

where

/ N/ through / Nn/

Al through An
and

Bl through Bn

represents names of individual lists; the names are always written enclosed by
slashes (IN!)

are the items of the lists identified, respectively, by names Nl and N2. A list may
contain one or more variJIble, array, or array element names. The items of a list are
delimited by commas. Each list of a NAMELIST statement is identified (and
referenced to) by the name immediately preceding the list.

Example

NAMELIST/TABLE/A,B,C/SUMS/TOT AL

In the foregoing example, the name TABLE identifies the list A,B,C(2,4) and the name SUMS identifies the list
comprised of the a"ay TOTAL.

Once a list has been defined in a NAMELIST statement, its name may be referenced by one or more I/O statements.

11-1

CHAPTER II

The rules for structuring a NAMELIST statement are:

Structuring NAMELIST Statements,

NAMELIST Input Transfers

a. A NAMELIST name may not be longer than six characters; it must start with an alphabetic character; it
must be enclosed in slashes; it must precede the list of entries to which it refers; and it must be unique
within the program.

b. A NAMELIST name may be defined only once and must be defined by a NAMELIST statement. Once
defined, a name may appear only in READ or WRITE statements. The NAMELIST name must be
defined in advance of the I/O statement in which it is used.

c. A variable used in a NAMELIST statement cannot be used as a dummy argument in a SUBROUTINE
definition.

d. Any dimensioned variable contained in a NAMELIST statement must have been defined in a preceding
array declaration statement.

11.2.1 NAMELIST-Controlled Input Transfers

During input (read) transfer operations in which a NAMELIST-defined name is referenced, the record accessed is
scanned until the symbol $ followed by the referenced name is found. Once the proper symbol-name combination is
found, the data items following it are transferred on a one-to-one basis to the processor storage locations identified
by the contents of the referenced list. The input data is always converted to the type of the list varible when there is
a conflict of types. The input operation continues until another $ symbol is detected. If variables appear in the
NAMELIST record that do not appear in the NAMELIST list, an error condition will occur. Data items of records to
be input (read) using NAMELIST-defined lists must be separated by commas and may be of the following form:

V=KI,K2, ... ,Kn

where

a. V may be a variable, array, or array element name.

b. KI through Kn are constants of type integer, real, double precision, complex (written as (A,B) where A
and B are real), or logical (written as T for true or F for false). A series of identical constants may be
represented as a single constant preceded by a repetition factor (e.g., 5*5 represents 5,5,5,5,5).

In transfers of this type, logical and complex constants must be equated to variables of their own type. Other type
constants (real, double precision, and integer) may be equated to any other type of variable (except logical or
complex), and will be converted to the variable type. For example, assume A is a 2-dimensional real array, B is a
I-dimensional integer array, C is an integer variable, and that the input data is as follows:

$FREDA(7,2)=4, B=3,6*2.8, C=3.32$

A READ statement referring to the NAMELIST defined name FRED will result in the following: the integer 4 will
be converted to floating point and p/oced in A (7,2). The integer 3 will be placed in B(J) and the integer 2
(converted) will be placed in B(2),B(3), . . . ,B(7). The floating point number 3.32 will be converted to the integer 3
and placed in C.

11-2

CHAPTER 11 NAMELIST Output Transfers

11.2.2 NAMELIST-Controlled Output Transfers

When a WRITE statement refers to a NAMELIST-defined name, all variables and arrays and their values belonging to
the named list are written out, each according to its type. Arrays are written out by columns. Output data is written
so that:

a. The fields for the data will be large enough to contain all the significant digits.

b. The output can be read by an input statement referencing a NAMELIST -defined list.

For example, if JOE is a 2 X 3 array, the statement

NAMELIST/ NAM 1 jJOE,Kl,ALPHA
WRITE (u,NAM1)

generates the following form of output:

Column
+
$NAMI
JOE= -6.75

-17.8,
Kl =73.1,

.234E-04,
0.0

ALPHA =3. $

680,
-.197E+07,

11-3

CHAPTER 12

DECsystem·20 FORTRAN extensions to the 1966 ANSI

standard set are printed in boldface italic type.

OPEN and CLOSE Statements

CHAPTER 12
FILE CONTROL STATEMENTS

12.1 INTRODUCTION

File control statements are used to set up files and establish parameters for I/O operations and to terminate I/O
operations.

The OPEN and CLOSE statements are described in this chapter.

12.2 OPEN AND CLOSE STATEMENTS

Both the OPEN and CLOSE statements use the same format and have the same options and arguments.

The OPEN statement enables the user to define, explicitly, all of the important aspects of each desired data transfer
operation; they provide an extensive list of required and optional arguments which define in detail:

a. the name and location of the data file

b. the type of access required

c. the data format within the file

d. the protection code to be assigned an output data file

e. the disposition of the data file

f. data file record, block and file sizes

g. a data file version identifier

In addition, a DIALOG argument is provided which permits the user to establish a dialogue mode of operation when
the OPEN statement containing it is executed. In a dialogue mode, interactive user terminal/program communication
is established. This enables the user, during program execution, to define, redefine, or defer the values of the
'Optional arguments contained by the current OPEN statement.

12·1

CHAPTER 12 OPEN and CLOSE Statement Options

The general form of the OPEN statement is:

OPEN(Argl,Arg2, . . . ,Argn}

The CLOSE statement is used in the tennination of an I/O operation to dissociate the I/O device being used from
the active file and file-related information, and to restore the core occupied by I/O buffers and other transfer-related
operations. All required device dependent termination functions are also performed on the execution of a CLOSE
statement, including reloading the unit. Note that the CLOSE statement can change the name, and disposition of
the file being closed.
Once a CLOSE statement has been executed, another OPEN statement is required to regain access to the closed file.

The general form of the CLOSE statement is:

CLOSE(Argl.,Arg2., . . . ,Argn}

12.2.1 Options for OPEN and CLOSE Statements

The options and their arguments, which may be used in both the OPEN and CLOSE statements, are:

a. UNIT

b. DEVICE

c. ACCESS

This option is required; it defines the FORTRAN I/O unit number to
be used. FOR TRAN devices are identified by assigned decimal numbers
within the range 1-63; however, UNIT may be assigned an integer
variable or constant. The general form of this argument is:

UNIT = An integer variable or constant

DECsystem-20 FORTRAN standard logical unit assignments
are described in Chapter /0 (Table /o-I). The range for the
possible UNIT numbers is an installation defined parameter.

This option may specify either the physical or the logical name of the
I/O device involved. (A logical name always takes precedence over a
physical name.) The DEVICE arguments may specify I/O devices
located at remote stations; as well as logical devices. The general form
of the DEVICE argument is:

DEVICE = A literal constant or variable

If this option is omitted, the first logical name u (where u is the decimal
unit number) is tried; if this is not successful, the standard (defaUlt)
device is attempted.

A required option, ACCESS describes the type of input and/or output
statements and the file access mode to be used in a specified data
transfer operation. A CCESS may be assigned anyone of six possible
names, each of which specifies a specific type of I/O operation. The
assignable names and the operations specified are:

12-2

CHAPTER 12

d. MODE

MODE Option

1. SEQIN The specified dota file is to be read in sequential
access mode.

2. SEQOUT The specified data file is to be written in a sequential
access mode.

3. SEQINOUT The specified data file may be first read then written
(READ/WRITE sequence) record-by-record in a
sequential access mode. When SEQINOUT is
specified, a WRITE/READ sequence is illegal unless
the file has been removed.

4. RANDOM The specified data file may be either read or written
into, one record at a time. In a random access mode
of operation, the relative position of each record is
independent of the previous READ or WRITE
statement; all records accessed must have a fixed
logical record length. This argument is required for
random access operations. A disk device must be
specified when the random argument is used.

5. RANDIN This argument enables the user to establish a special,
read-only random access mode with a named file.
During a RANDIN mode, the user may read the
named file simultaneously with other users who have
also established a RANDIN mode and with the owner
of the file. The use of RANDIN enables a data base to
be shared by more than one user at the same time.

6. APPEND The record specified by a corresponding WRITE
statement is to be added to the logical end of a
named file. The modified file must be closed then
reopened in order to permit it to be read.

The general form of the ACCESS argument is:

ACCESS =

'SEQIN'
SEQOUT'
'SEQINOUT'
'RANDOM'
'RANDIN'
'APPEND'
variable (set to literal)

This option defines the character set of an external file or record. The
use of this argument is optional; if it is not given, one of the following
is assumed:

ASCII for a formatted I/O file transfer
Binary for an unformatted I/O file transfer

12·3

CHAPTER 12

e. DISPOSE

DISPOSE Option

One of the following character set specifications must be used with the
MODE argument:

Literal Action Indicated

'ASCII' Specifies an ASCII character set.

'BINAR Y' Specifies data formatted as a FORTRAN binary data file.

'IMAGE' Specifies an image (I) mode data transfer for the associated
READ or WRITE statements. IMAGE is an unformatted
binary mode.

The general form of the MODE argument is:

MODE =

'ASCII'
'BINARY'
'IMAGE'
variable (set to literal)

This option specifies an action to be taken regarding a file at close time.
When used, DISPOSE must be either an ASCII variflble or one of the
following literals:

Literal

'SAVE'

'DELETE'

'PRINT'

'LIST'

'RENAME'

Action Indicated

Leave the file on the device.

If the device involved is disk, remove the file;
otherwise, take no action.

If the file is on disk, queue it for printing; otherwise,
take no action.

If the file is on disk, queue it for printing and delete
the file; otherwise take no action.

Change filename. (This is redundant if a new filename
is given.)

If the DISPOSE argument is not given, the argument DISPOSE = SA VE
is assumed. The general form of the DISPOSE argument is:

DISPOSE =

124

'SAVE'
'DELETE'
'PRINT'
'LIST'
'RENAME'
variflble (set to literal)

CHAPTER 12

f FILE

g. PROTECTION

h. DIRECTORY

i. BUFFER COUNT

FILE, PROTECTION, DIRECTORY Options

This option specifies the name of the file involved in the data transfer
operation. FILE must be either an ASCII literal, double precision,
complex, or single precision variable. Single precision variables are
assumed to contain a 1 to 5 character file specification; double
precision variables, permit 1O-character file specification. The format is
a 1 to 6 character filename optionally followed by a period and a 0 to 3
character file type. Any excess characters in either the name or file type
are ignored. If the period and file type are omitted, the file type .DA T
is assumed; ifjust the file type is omitted, a ". "is assumed.

If a file name is not specified or is zero, a default name is generated
which has the form

FORxx.DAT

where xx is the FORTRAN logical unit number (decimal) or is the
logical unit name for the default statements A CCEPT, PRINT, READ,
or TYPE. The general form of a FILE argument is:

FILE = An ASCII literal or variable (set to literal)

This option specifies a protection code to be assigned the data file being
transferred. The protection code determines the level of access to the
file that three possible classes of users (i.e., owner, member, or other)
will have. PROTECTION may be a 3-digit octal literal or a variable; if
the argument is assigned a zero value or is not given, the default
protection code established for the DECsystem-20 installation is used.
The general form of the PROTECTION argument is:

PROTECTION = 3-digit octal or integer variable

This option is used for disk files only. It specifies the location of the
user file directory which contains the file specified in the OPEN state­
ment. A directory identifier may consist of the user's project-program­
mer number for example, 11O,7J. (Refer to Appendix B.)

The general form of a DIRECTOR Y argument is:

DIRECTORY=
Literal or variable containing UFD name
or directory path specification

This option enables the user to specify the number of I/O buffers to be
assigned to a particular device. If this argument is not given or is
assigned a value of zero, the Monitor default is assumed. The general
form of this argument is:

BUFFER COUNT = An integer constant or variable

12·5

CHAPTER 12

j. FILE SIZE

k. VERSION

I. BLOCK SIZE

m. RECORD SIZE

n. ASSOCIA TE VARIABLE

FILE SIZE, VERSION, BLOCK SIZE, RECORD
SIZE, ASSOCIATE VARIABLE Options

This option is used for disk operations only; it enables the user to
estimate the number of words that an output file is going to contain.
The use of FILE SIZE enables the user to ensure at the start of a
program that enough space is available for its execution. If the size
specified is found to be too small during program executions, the
Monitor allocates additional space according to the normal Monitor
algorithms. The value assigned to the FILE SIZE arguments may be an
integer constant or variable. The general form of this argument is:

FILE SIZE = An integer constant or variable

This option is used for disk operations only; it enables the user to assign
a 12-digit octal version number to a file when it is output. The quantity
assigned to the VERSION argument may be either an octal constant or
variable. The general form of the argument is:

VERSION = An octal constant or integer variable

This option can be used for all storage media except disk. It enables
the user to specify a physical storage block size for devices other than
disk. The value assigned the BLOCK SIZE arguments may be an integer
constant or variable. The size specified must be greater than or equal
to 3 and less than or equal to 4095. The general form of this argu­
ment is:

BLOCK SIZE = An integer constant or variable

This option enables the user to force all logical records to be a specified
length. If a logical record exceeds the specified length, it is truncated; if
a logical record is less than the specified size, nulls are added to pad the
record to its full size. The RECORD SIZE argument is required
whenever a random access mode is specified. The value assigned to this
argument may be either an integer constant or variable, and may be
expressed as the numbers of words or characters depending on the
mode of the file being described. The general form of this argument is:

RECORD SIZE = An integer constant or variable

This option is for disk random access operations only. It provides
storage for the number of the record to be accessed next if the program
being executed were to continue to access records one after another
from the specified random access file. The general form of this
argument is:

ASSOCIATE VARIABLE = Integer variable

12-6

CHAPTER 12

o. PARITY

p. DENSITY

q. DIALOG

PARITY, DENSITY, DIALOG Options

This option is for magnetic tape operations only; it permits the user to
specify the type of parity to be observed (odd or even) during the
transfer of data. The general form of this option is:

PARITY = 'ODD'
'EVEN'
variable (set to literal)

This option is for magnetic tape operations only; it permits the user to
specify any of three possible bit-per-inch (bpi) tape density parameters
for magnetic tape transfer operations. The general form of this option
is:

DENSITY =

'200'
'556'
'800'
'1600'
variable (set to literal)

The use of this option in an OPEN statement enables the user to
supersede or defer, at execution time, the values previously assigned to
the arguments of the statement. There are two forms of this argument.
The first is:

DIALOG

This form establishes a dialogue with the user's terminal when the
OPEN statement is executed. FOROTS outputs the following messages
at the user's terminal.

ENTER FILE SPECIFICA TIONS FOR LOGICAL UNIT XX

(FOROTS then types the existing file specifications defined by the
current OPEN statement.)

Once the message and defined file specification are output the user may
enter any desired changes. Only the arguments that are to be changed
need to be entered.

The second form of the argument is:

DIALOG = Literal or array

The value assigned to DIALOG may be a literal or array containing a
file specification with the desired information.

12·7

CHAPTER 12 Summary of Options

12.2.2 Summary of OPEN/CLOSE Statement Options

The options permitted and required in the OPEN and CLOSE statements and the type of value required by each are
summarized in Table 12-1.

Argument

UNIT =
MODE =
DIRECTORY =
F1LE SIZE =
BUFFER COUNT =
ASSOCIA TE VARIABLE =
ACCESS =
F1LE=
DIALOG =
BLOCK SIZE =
VERSION =
DEVICE =
PROTECTION =
DISPOSE =
RECORD SIZE =
PARITY =
DENSITY =

Table 12-1
OPEN/CLOSE Statement Arguments

Integer variable or constant
Literal constant or variable
Literal or variable
Integer constant or variable
Integer constant or variable
Integer variable

Values Required

'SEQIN', 'SEQOUT', 'SEQINOUT', 'RANDIN', 'RANDOM', 'APPEND', or variable
Literal constant or variable
Literal or array
Integer constant or variable
Octal constant or variable
Literal constant or variable
An octal constant or integer variable
Literal constant or variable
Integer constant or integer variable
Literal constant or variable
Literal constant or variable

12-8

CHAPTER 13

DECsystem-20 FORTRAN extensions to the 1966

ANSI standard set are printed in boldface italic type_

13.1 INTRODUCTION

FORMAT Statement, General Form

CHAPTER 13
FORMAT STATEMENT

FORMAT statements may appear almost anywhere in a FORTRAN source program. The only placement rest ric­
operations. The FORMAT statements contain field descriptors which, together with the list items of associated I/O
statements, specify the forms of the data and data fields which comprise each record.

FORMAT statements may appear almost anywhere in a FORTRAN source program. The only placement restric­
tions are that they follow PROGRAM, FUNCTION, SUBPROGRAM, or BLOCK DATA statements, and that they
precede the END statement. (Refer to Section 2.4.)

FORMAT statements must be labeled so that they can be referenced by I/O statements.

13.1.1 FORMAT Statement, General Fonn

The general form of a FORMAT statement follows:

where

k FORMAT(SAI ,SA2, ... ,SAn/SBI,SB2, ... ,SBn/ ...)

k the required statement label (which can only be referenced by I/O statements).

SA 1 through SAn = individual field descriptor sets
and

SBl through SBn

In the foregoing statement form the individual field descriptors are delimited by commas (,) field descriptor sets and
records are delimited by slashes (/). For example, a FORMAT statement of the form:

FORMAT(SAI ,SA2/SBI ,SB2/SC 1 ,SC2)

contains format specifications for three records with each record comprised of two field descriptor sets.

13-1

CHAPTER 13 FORMAT Statement, Format Descriptors

Adjacent slashes (/ () in a FORMAT statement specify that a record is to be skipped during input or is to consist of
an empty record on output. For example, a FORMAT statement of the form:

FORMAT(SAI ,SA2/ / /SB 1 ,SB2)

specifies four records are to be processed; however, the second and third records are to be skipped.

Repeated field descriptors or groups of field descriptors may be represented using a repeat form. The repetition of a
single field descriptor is written by preceding the descriptor with an integer constant which specifies how many
times the descriptor is to be repeated. For example, a FORMA Tstatement of the form

FORMAT(SA1,SA2,SA3,SA1,SA2,SA3,SA l,SA2,SA3)

may be written as

FORMA T(3(SA l,SA2,SA3))

The repeat forms of field descriptor may be nested to any depth. For example, a FORMA T statement of the form

FORMAT(SA l,sA 2,SA 2, SA 3,SA l,SA2,SA 2, SA 3)

may also be written in the form

FORMAT(2(SA1,2SA2,SA3))

The manner in which the foregoing statement forms may be used and the effect each has on the data involved are
discussed in the following paragraphs.

13.2 FORMAT DESCRIPTORS

FORMAT statement descriptors describe the record structure of the data, the format of the fields within the record,
and the conversion, scaling, and editing of data within specific fields. The following descriptors can be used with
DECsystem-20 FORTRAN:

Descriptors

rFw.d}
rEw.d
rDw.d
rGw.d

rIw

rLw

rAW}
rRw

kHs }
'text'

rx}
Tw

Comments

Floating pOint numeric field descriptors

Integer field descriptor

Logical field descriptor

Alphanumeric data field descriptor

Alphanumeric data in a FORMAT statement field descriptor

Field formatting descriptors

13-2

CHAPTER 13 FORTRAN Conversion Codes

where

Descriptors Comments

nP Numerical scale factor descriptor

/ Record delimiter

$ Carriage return suppression for terminal

rOw Octal field descriptor

r an optional unsigned integer that represents a repeat count. This option enables a field descriptor
to be repeated r times.

w an optional integer constant which represents the width (total number of characters contained) of
the external form of the field being described. All characters including digits, decimal points, signs,
and blanks that are to comprise the external form of the field must be included in the value of w .

. d an optional unsigned integer that specifies the number of fractional digits which are to appear in
the external representation of the field being described. Note that w must be specified if .d is
included in the descriptor.

k An unsigned integer that specifies the number of characters to be processed during the transfer of
alphanumeric data.

s represents a string of ASCII (alphanumeric) characters.

n a signed integer constant (plus signs are optional).

The characters A, D, E, F, G, H, I, L, 0, P, and R indicate the manner of conversion and editing to be performed
between the internal (processor) and external representations of the data within a specific field; these characters are
referred to as conversion codes. The DECsystem-20 FORTRAN conversion codes and a brief description of the
function of each are given in Table 13-1.

Table 13-1
DECsystem-20 FORTRAN Conversion Codes

Code Function

A Transfer alphanumeric data
D Transfer real data with a D exponent 1

E Transfer real data with an E exponent l

F Transfer real data without an exponent
G Transfer integer, real, complex, or logical data
H Transfer literal data

Transfer integer data
L Transfer logical data
o Transfer octal data
P Numerical scaling Factor
R Transfer alphanumeric data

1 An exponent of 0 is assumed if none is given.

13-3

CHAYfER 13 FORMAT Statement,
Numeric Field Descriptors

The use of commas to delineate format descriptors within a format specification is optional as long as no ambiguity
exists. For example,

FORMAT (3X,A2)

can be written as

FORMAT (3XA2)

Since interpretation of a format specification is left associative, the specification

FORMAT (122,15)

can be written as

FORMAT (12215)

However, a comma is required when the user wishes to specify

FORMAT (12,215)

Detailed descriptions of the various types of format descriptors, the manner in which they are written and employed
and their use in FORMAT statements are given in the following paragraphs.

13.2.1 Numeric Field Descriptors

The forms of the field descriptors used to specify the format and conversion of numeric data follow.

Description
Dw.d
Ew.d
Ew.d,Ew.d
Fw.d
Fw.d,Fw.d
Iw
Ow
Gw.d
Gw
Gw.d,Gw.d

Type of Data Used For
Double precision real data with a D exponent
Real data with an E exponent
For the real and imaginary parts of a complex datum
Real data without an exponent
For the real and imaginary parts of a complex datum
In teger da ta
Octal data
Real or double precision data
For integer (or logical) data
For the real and imaginary parts of a complex datum

NOTE
The G conversion code may be used for all but octal numeric
data types.

Examples

Consider the following program segment:

INTEGER 11, 12
REAL RI, R2, R3
DOUBLE PRECISION D1, D2
I I = 506
12 = 8
Rl = 506.0
R2 = 18.1
R3 = 506001.0
DI = 18.0
D2 = -504.0

13·4

CHAPTER 13 Field Descriptors, Action of

The actions performed by several types of formatted WRITE statements on the data given in the foregoing program
segment are described in Table 13-2.

Table 13-2
Action of Field Descriptors On Sample Data

Item Descriptor Sample WRITE Statement External Form of External Appearance
Form Descriptor Using the Sample Sample Field of Sample Data

Descriptor Described

1 Dw.d D8.2 WRITE (-,-) Dl Z.nnD±nn 0.18D+02
2 Ew.d E8.2 WRITE (-,-) Rl Z.nnE±nn 0.51E+03
3 Fw.d FS.2 WRITE (-,-) R2 aa.nnE+nn 18.10
4 Iw 15 WRITE (-,-) 11 aaaan ~~506
5 Iw 12 WRITE (-,-) 11 an **
6 Ow 05 WRITE (-,-) 12 nnnnn 00010
7 Gw.d G8.2 WRITE (-,-) D2 Z.nnD±nn -.50D+02
8 Gw.d G8.2 WRITE (-,-) R3 Z.nnE±nn 0.51E+06
9 Gw.d G8.2 WRITE (-,-) R2 aa.nn 18.10

10 Gw G5 WRITE (-,-) 11 aaaan ~~S06

where: a. n represents a numeric character

b. Z represents either a - or 0 (Note that if nod > 6, a negative number cannot be output.)

c. a represents a digit, leading blank (~) or a minus sign depending on the numeric output.

Notes:

1. In Item I, the value Dl has only 2 significant digits and d=2, so no rounding will occur on input.

2. In Item 2, since Rl has 3 significant digits, it is rounded to fit into the specified field.

3. In Item 5, the width (w) part of a format descriptor specifies an exact field which permits no rounding of
its contents. If the w specification is too small for the datum to be transferred, asterisks are output to
indicate that the transfer was not made.

4. In Item 6, Integer 8 = Octal 10.

5. In Items 8 and 9, the relationship between G and fixed and floating real data is discussed in Paragraph
13.2.3.

6. In items 1,2,3,7, and 8 the D and E exponent prefixes are optional in the external form of the floating point
constants. For example, 1.1E+3 may be written as 1.1 +3.

The internal and external forms of the data specified by the numeric format conversion code are summarized in
Table 13-3.

13-5

CHAPTER 13

Table 13-3
Numeric Field Codes

Numeric Field Codes, Interaction of

Field Descriptors With List Variables

Internal Form Conversion Code External Form

Binary floating point
double precision

Binary floating point

Binary floating point

Binary integer

Binary word

One of the following:
single precision,
binary floating point,
binary integer, binary
logical, or binary
complex

D

E

F

o

G

Decimal floating point with D exponent

Decimal floating point with E exponent

Decimal fIxed point

Decimal integer

Octal value

Single precision decimal floating point integer,
logical (T or F), or complex (two decimal
floating point numbers), depending upon the
internal form

Complex quantities are transferred as two independent real quantities. The format specifIcation for complex
quantities consists of either two successive real fIeld descriptors or one repeated real field descriptor. For example,
the statement

FORMAT(2E15.4,2(F8.3,F8.5))

may transfer up to three complex quantities.

The equivalent of the foregoing statement is

FORMAT(E 15.4,E 15.4,F8.3,F8.5,F8.3,F8.5)

13.2.2 Interaction of Field Descriptors With I/O List Variables During Transfer

The execution of an I/O statement that specifIes a formatted data transfer operation initiates format control. The
actions performed by format control depend on information provided by the elements of the I/O statement's list of
variables and the field descriptors which comprise the referenced FORMAT statement's format specifIcations.

In processing each FORMAT controlled I/O statement which has an I/O list, FORTRAN scans the contents of
the list and the format speCifications in step. Each time another variable or array element name is obtained from the
list, the next field specification is obtained from the format specifIcation. If the end of the format specifIcation is
reached and more items remain in the list, a new line or record is established and the scan process is restarted, either
at the first item in the format specification or, if parenthesized sets of format specifIcations exist within the format
specification, with the last set within the format specifIcation.

When the I/O list is exhausted, control proceeds to the next statement in the program, but not before the FORMAT
statement is scanned either to its end or to the next variable transfer format descriptor. (That is, the FORMAT
statement is scanned past slashes, literal constants, and spacing descriptors, but not past data field descriptors.)

13-6

CHAPTER 13 G Conversion Code, Scale Factors

A record is terminated by one of the following:

a. a slash in the FORMAT specification

b. the delimiting right parentheses,), of the FORMAT statement

c. a lack of items in the 1(0 list

d. a lack of Hollerith field descriptors in the FORMAT statement

On input, an additional record is read only when a single slash, (, is encountered in the FORMAT statement. A
record is skipped when two slashes, ((, are encountered or a slash is followed by the end of the FORMAT state­
ment. If the FORMAT statement finishes a record by a slash or the end of the FORMAT statement, then any data
left in the input record is ignored. If the input record is exhausted before the data transfers are completed, the re­
mainder of the transfer is completed as if the record were extended with blanks.

On output, an additional record is written only when a slash, (, is encountered in the FORMAT statement. If two
consecutive slashes, ((, or a single slash followed by the end of the FORMAT statement, is encountered, then an
empty record is written.

13.2.3 G, General Numeric Conversion Code

The G conversion code may be used in field descriptors for the format control of real, double precision, integer,
logical, or complex data. .

With the exception of real and double precision data, the type of conversion performed by a G type field descriptor
depends on the type of its corresponding 1(0 list variable. In the case of real and double precision data, the kind of
conversion performed is a fun('tion of the external magnitude of the datum being transferred. Table 13-4 illustrates
the conversions performed for various ranges of magnitude (external form) of real and double-precision data.

13.2.4 Numeric Fields with Scale Factors

Scale factors may be added to D,E,F, and G conversion codes in field descriptors. The scale factor has the form

nP

where n is a signed integer (+ is optional) and P identifies the operation. When used, a scale factor is added as a
prefix to field descriptors.

Examples

-2PFlO.5
IPE8.2

When added to an F type field deSCriptor (or G type if the external field is a fIxed point decimal) a scale factor
specifies a power of 10 so that

External Form of Number = (Internal Form)* 10 (scale factor)

For example, assuming the data involved to be the real number 26.451, the field descriptor

F8.3

produces the external fIeld

~~26.451

13-7

CHAPTER 13

Table 13-4
Descriptor Conversion of Real and Double Precision Data

According to Magnitude

Magnitude of Data in its
External Fonn (M)

0.1 ';;;'M < 1
1 ';;;'M< 10

lOd-2 ..: M < lOd-l

lOd-l ":M < lOd

ALL OTHERS

Equivalent Method of
Conversion Performed

F(w-4).d,4X
F(w-4).(d-l),4X

F(w-4).1,4X
F(w-4).0,4X
Ew.d

Note: In all numeric field conversions the field width
(w) specified should be large enough to include
the decimal point, sign, and exponent character
in addition to the number of digits. If the
specified width is too small to accommodate the
converted number, the field will be filled with
asterisks (*). If the number converted occupies
fewer character positions than specified by w, it
will be right-justified in the field and leading
blanks will be used to fill the field.

The addition of the scale factor of -IP

-lPF8.3

produces the external field

~~~2.645 

Conversion of Real and Double 

Precision Data, Scale Factors 

When added to D, E, and G (external field not a decimal fixed point) type field descriptors, the scale factor 
multiplies the number by the specified power of ten and the exponent is changed accordingly. 

In input operations, F type (and G type, if the external field is decimal fixed point) conversions are the only ones 
affected by scale factors. 

When no scale factor is specified, it is understood to be zero. Once a scale factor is specified, however, it holds for all 
subsequent D, E, F, and G type field descriptors within the same format specification unless another scale factor is 
specified. A scale factor is reset to zero by specifying a scale factor of zero. Scale factors have no effect on I and 0 
type field descriptors. 

13-8 



CHAYfER 13 

13.2.5 Logical Field Descriptors 

Logical Descriptors, 
Variable Field Widths 

Logical data may be transferred under format control in a manner similar to numeric data transfer by use of the field 
descriptor 

Lw 

where L is the control character and w is an integer specifying the field width. The data is transmitted as the value of 
a corresponding logical variable in the associated input/output list. 

On input, the first non-blank character in the logical data field must be T or F, the value of the logical variable is 
stored in the list variable as true or false, respectively. If the entire input data field is blank or empty, a value of false 
is stored. 

On output, w minus I blanks followed by T or F will be output if the value of the logical variable is true or false, 
respec tivel y . 

13.2.6 Variable Numeric Field Widths 

Several of the conversion codes are acceptable in FORMAT statements without field width speCifications (i.e., the 
w.d portion of the specification is omitted 1 ). 

On input, the conversion codes D, E, F, G, I, L, and 0 are acceptable without field width specifications. The field 
begins with the first non-blank character encountered and ends with the first illegal character in the given field. 
(Blanks and tabs also terminate a field.) Note that for conversion code L (logical data) all consecutive a1phabetics 
following a T (true) or an F (false) are considered part of the field and are ignored. In succeeding fields the input 
stream is scanned until a non-blank character is encountered. If the character is a comma (,) the next field is 
skipped and the following input field begins with the character following the comma. Any character other than a 
comma is assumed to be the first character in the next input field. Null fields are denoted by successive commas, 
optionally separated by blanks or tahs. A. null field is equivalent to a fixed-field input of blanks. For example, the 
source code 

READ I, X, Y, Z, L, I, J 
FORMAT (3F, L, I, A3) 

with data as follows 

,1.OE+5"TRUEXXXlt6WIiABC 

results in 

X= 0.0 
Y= 1.0E+5 
Z 0.0 
L TRUE 
I 1 
J 'ABC' 

Note that if a comma is included in the input data after the XXXI and before the blanks, i.e., the data is 

,1.0E+5 " TRUEXXXI ,t6WtJABC 

then J = 't6W' 

1 If d is given, then w must also be specified. 

13-9 



Alphanumeric Field Descriptors, 
A Descriptor 

On output, the format codes A, D, E, F, G, I, L, 0, and R are acceptable without field width specifications. The 
following defaults are assumed: 

Fonnat Code 

A single precision 
A dou ble precision 
D 
E 
F 
G single precision 
G dou ble precision 
I 
L 
o 
R single precision 
R double precision 

13.2.7 Alphanumeric Field Descriptors 

Assumed Default 

AS 
AIO 
D25.18 
El5.7 
Fl5.7 
G15.7 
G25.18 
115 
LIS 
015 
R5 
RIO 

The formatted transfer of alphanumeric data may be accomplished in a manner similar to the formatted transfer of 
numeric data by use of the field descriptors Aw and Rw, where A and R are the control characters and w is the 
number of characters in the field. 

The A and R descriptors both transfer alphanumeric data into or from a variable in an input/output list depending 
on the I/O operation. A list variable may be of any type. For example, 

READ (6,5) V 
5 FORMAT (A4) 

causes four alphanumeric characters to be read from the card reader and stored in the variable V. 

The A descriptor deals with variables containing left-justified, blank-fil1ed characters, and the R descriptor deals with 
variables containing right-justified, zero-filled characters. The fol1owing paragraphs summarize the result of 
alphanumeric data transfer (both internal and external representations) using the A and R descriptors. These 
paragraphs assume that w represents the field width and m represents the total number of characters possible in the 
variable. Double precision variables contain 10 characters (i.e., m=lO); and all other variables contain 5 (i.e., m=5). 

A Descriptor 

a. INPUT, where w ~ m - The rightmost m characters of the field are read in and stored left-justified and 
blank-filled in the associated variable. 

b. INPUT, where w < m - All w characters are read in and stored left-justified and blank-filled in the 
associated variable. 

c. OUTPUT, where w ~ m - m characters are output and right-justified in the field. The remainder of the 
field is blank-fil1ed. 

d. OUTPUT, where w < m - The left-most w characters of the associated variable are output. 

13-10 



R Descriptor 

R Descriptor, 
Transferring Alphanumeric Data 

a. INPUT, where w :> m - The right-most m characters of the field are read in and stored right-justified, 
zero-filled in the associated variable. 

b. INPUT, where w < m - All w characters are read in and stored right-justified, zero-filled in the associated 
variable. 

c. OUTPUT, where w:> m - m characters are output and right-justified in the field. TIle remainder of the 
field is blank filled. 

d. OUTPUT, where w < m - The right-most w characters of the associated variable are output. 

13.2.8 Transferring Alphanumeric Data Directly Into or From FORMAT Statements 

Alphanumeric data may be transmitted directly into or from the FORMAT statement by two different 
methods: H-conversion, or the use of single quotes (i.e., a literal field descriptor). 

In H-conversion, the alphanumeric string is specified in the form nH, where H is the control character and n is the 
total number of characters (including blanks) in the string. For example, the folloWing statement sequence may be 
used to print the words PROGRAM COMPLETE on the device LPT: 

PRINT 101 
101 FORMAT (l7H~PROGRAM~COMPLETE) 

Read and write operations of this type are initiated by I/O statements which reference a format statement and a 
logical device but do not contain an I/O list (see preceding example). 

Write transfers from a FORMAT statement cause the contents of the statement field descriptor to be output to a 
specified logical device. The contents of the field descriptor, however, remain unchanged. 

Read transfers with a FORMAT statement cause the contents of the field descriptors involved to be replaced by the 
characters input from the specified logical device. 

Alphanumeric data is stored in a field descriptor left justified. If the data input into a field has fewer characters 
than the field, trailing blanks are added to fill the field. If the data input is larger than the field of the descriptor, 
the excess right most characters are lost. 

Examples 

WRITE (I,IOl) 
101 FORMAT (l7HV>PROGRAM~COMPLETE) 

cause the string PROGRAM COMPLETE to be output to the file on device 1. 

13-11 



CHAPTER 13 Mixed Fields 

Assuming the string START on device 1, the sequence 

READ (1,101) 
101 FORMAT (17H~PROGRAM~COMPLETE) 

would change the contents of statement 101 to 

101 FORMAT (17HSTART~~~~~~~~~~~~) 

The foregoing functions may also be accomplished by a literal field descriptor consisting of the desired character 
string enclosed within apostrophes (i.e., 'string'). For example, the descriptors 

101 FORMAT (17H,PROGRAM,COMPLETE) 

and 

101 FORMAT OPROGRAM'COMPLETE') 

may be used in the same manner. 

The result of literal conversion is the some as H-conversion; on input, the characters between the apostrophes are 
replaced by input characters and, on output, the characters between the apostrophes (including blanks) are written 
as part of the output data. 

An apostrophe character within a literal field should be represented by two successive apostrophe marks; otherwise, 
the statement containing the field will not compile. For example, the statement sequence 

50 FORMAT ('DON''T') 
PRlNT50 

will compile and will cause the word DON'T to be output on the line printer. The statement 

50 FORMA T (,DON'T') 

however, will cause a compile e"or. 

13.2.9 Mixed Numeric and Alphanumeric Fields 

An alphanumeric field descriptor may be placed among other fields of the format. For example, the statement: 

FORMAT (l4,7H~FORCE=FIO.5) 

may be used to output the line: 

~~22~FORCE=~~17.68901 

The separating comma may be omitted after an alphanumeric format field, as shown in the foregoing statement. 

When a comma delimiter is omitted from a format specification, format control associates as much information as 
possible with the leftmost of the two field descriptors. 

13-12 



CHAPTER 13 Multiple Record Specifications 

13.2.10 Multiple Record Specifications 

To handle a group of input/output records where different records have different field descriptors, a slash is used to 
indicate a new record. For example, the statement 

FORMAT (308/15,2F8.4) 

is equivalent to 

FORMAT (308) 

for the first record, and 

FORMAT (I5,2F8.4) 

for the second record. 

Separating commas may be omitted when a slash is used. When n slashes appear at the end or beginning of a format, 
n blank records will be written on output or skipped on input. When n slashes appear in the middle of a format, n-l 
blank records are written on output or n-l records skipped on input. 

Both the slash and the closing parenthesis at the end of the format indicate the termination of a record. If the list of 
an input/output statement dictates that the transmission of data is to continue after the closing parenthesis of the 
format is reached, the format is repeated starting with that group repeat specification terminated by the last right 
parenthesis of level one or level zero if no level one group exists. 

Thus, the statement 

FORMAT (F7.2,(2(E15.5E15.4),17)) t 
levelO/ I ~evel 0 

level 1 level 1 

causes the format 

2(E 15.5,E 15.4),17 

to be used on the first record. 

As a further example, consider the statement 

FORMAT (F7.2/(2(E 15.5,E15.4 ),17)) 

The first record has the format 

F7.2 

and successive records have the format 

2(E 15.5EI5.4 ),17 

13-13 



CHAPTER 13 Record Formatting Descriptors 

13.2.11 Record Formatting Field Descriptors 

Two field descriptors, Tw and nX, may be used to position data within a record. 

The field descriptor Tw may be used to specify the character position (external form) in which a record begins. In 
the Tw field descriptor the letter T is the control character and w is an unsigned integer constant which specifies the 
character position, in a DECsystem-20 FORTRAN record, where the transfer of data is to begin. When the output is 
printed, w corresponds to the (w-1 )th print position since the first character of the output buffer is a forms control 
character and is not printed. It is recommended that the first field specification of the output format be IX, except 
where a forms control character is used. 

NOTE 
Two successive T field specifications will result in the second 
field overwriting the first field. 

Examples 

The statement sequence 

PRINT 2 
2 FORMAT(T50,'BLACK'T30,'WHITE') 

causes the following line to be printed 

WHITE BLACK 

+ + (print position 29) (print position 49) 

The statement sequence 

1 FORMAT (T35, 'MONTH') 
READ (2,1) 

causes the first 34 characters of the input data associated with logical unit 2 to be skipped, and the next five 
characters to replace the characters M,O,N,T, and H in storage. If an input record containing 

ABCbbbXYZ 

is read with the format specification 

10 FORMAT(T7,A3,TJ,A3) 

then the characters XYZ and ABC are read, in that order. 

The field descriptor nX may be used to introduce blanks into output records or to skip characters of input records. 
The letter X specifies the operation and n is a positive integer that specifies the number of character positions to be 
either made blanks (output) or skipped (input). 

Example 

The statement 

FORMAT (5H~STEPI5,lOX2HY=F7.3) 

may be used to print the line 

13-14 



CHAPTER 13 Print Control Characters 

13.3 CARRIAGE CONTROL CHARACTERS FOR PRINTING ASCII RECORDS 

The first character of an ASCII record may be used to control the spacing operations of the line printer or terminal 
printer unit on which the record is being printed. The control character desired is specified by beginning the 
FORMAT field specification for the ASCII record to the output with IHA ... where a is the desired control 
character. The control characters permitted in DECsystem·20 FORTRAN and the effect each has on the printing 
device are described in Table 13·5. 

Table 13·5 
FORTRAN Print Control Characters 

FORTRAN Character Printer Character Octal Value Effect 

space LF 012 Skip to next line 
with form feed after 
60 lines 

0 zero LF,LF 012 Skip a line 

1 one FF 014 Form feed - go to 
top of next page 

+ plus Suppress skipping -
overprint the line 

* asterisk DC3 023 Skip to next line 
with no form feed 

- minus LF,LF,LF 012 Skip two lines 

2 two DLE 020 Space 1/2 of a page 

3 three VT 013 Space 1/3 of a page 

/ slash DC4 024 Space 1/6 of a page 

period DC2 022 Triple space with a 
form feed after every 
20 lines printed 

, comma DCl 021 Double space with a 
form feed after every 
30 lines printed 

Note: Printer control characters DLE, DCl, DC2, DC3, and DC4 affect only the line printer. 

In order to print these control characters users must specify the switch /FILE:FORTRAN when giving the PRINT 
command. 

13·15 





CHAPI'ER 14 

DECsystem-20 FORTRAN extensions to the 1966 

ANSI standard set are printed in boldface italic type. 

Device Control Statements, Introduction 

CHAPTER 14 
DEVICE CONTROL STATEMENTS 

14.1 INTRODUCTION 

The following device control statements may be used in FORTRAN source programs: 

1. REWIND 

2. UNLOAD 

3. BACKSPACE! 

4. ENDFILE 

5. SKIPRECORD! 

6. SKIPFILE, and 

7. BACKFILE 

The general form of the foregoing device control statements is 

where 

keyword u 
keyword (u) 

keyword 
u 

is the statement name 
is the FORTRAN logical device number (Chapter 10, Table 10-1) 

The operations performed by the device control statement are normally used only for magnetic tape device (MT A). 
In DECsystem-20 FORTRAN, however, the device control operations are simulated for disk devices. 

! The results of these commands are unpredictable when used on list-directed and NAMELIST -controlled data. 

14-1 



CHAPTER 14 REWlND,UNLOAD,BACKSPACE 
ENDFILE 

14.2 REWIND STATEMENT 

Descriptions of the form and use of the REWIND statement follow: 

Form: 

Use: 

Example: 

REWIND u 

Move the file contained by device u to its initial (load) point. If the medium is already at 
its load point, this statement has no effect. Subsequent READ or WRITE statements that 
reference device u will transfer data to or from the first record located on the medium 
mounted on device u. 

REWIND 16 

14.3 UNLOAD STATEMENT 

Descriptions of the form and use of the UNLOAD statement follow: 

Form: 

Use: 

Example: 

UNLOADu 

Move the medium contained on device u past its load point until it has been completely 
rewound onto the source reel. 

UNLOAD 16 

14.4 BACKSPACE STATEMENT 

Descriptions of the form and use of the BACKSPACE statement follow: 

Form: 

Use: 

Example: 

BACKSPACE u 

Move the medium contained on device u to the start of the record that precedes the 
current record. If the preceding record prior to execution of this statement was an endfile 
record, the endfile record becomes the next record after execution. If the current record 
is the first record of the file, this statement has no effect. 

NOTE 
This statement cannot be used for files set up for random 
access or NAMELIST-controlled I/O operations. 

BACKSPACE 16 

14.5 END FILE STATEMENT 

Descriptions of the form and use of the END FILE statement follow: 

Form: 

Use: 

Example: 

END FILEu 

Write an endfile record in the file located on device u. The endfile record defines the end 
of the file which contains it. If an endfile record is reached during an I/O operation 
initiated by a statement that does not contain an END= option, the operation of the 
current program is terminated. 

END FILE 16 

14-2 



CHAPTER 14 SKIP RECORD, SKIP FILE, 

BACKFILE Statements, Summary 

14.6 SKIP RECORD STATEMENT 

Descriptions of the form and use of the SKIP RECORD statement follow: 

Form: 

Use: 

Example: 

SKIP RECORD u 

In accessing the file located on device u, skip the record immediately following the 
current (last accessed) record. The repeat option may be used to cause any desired 
number of records to be skipped. 

SKIP RECORD 16 

14.7 SKIP FILE STATEMENT 

Descriptions of the form and use of the SKIP FILE statement follow: 

Form: 

Use: 

Example: 

SKIPFILEu 

In accessing the medium located on unit u, skip the file immediately following the 
current (last accessed) file. If the number of SKIP FILE operations specified exceeds the 
number of following files available, an error will occur. 

SKIP FILE 01 

14.8 BACKFILE STATEMENT 

Descriptions of the form and use of the BACKFILE statement follow: 

Form: 

Use: 

BACKFILEu 

Move the medium mounted on device u to the start of the file which precedes the current 
(last accessed) file. 

If the number of BACKFILE operations performed exceeds the number of preceding 
files, completion of the last operation will move the medium to the start of the first file 
on the medium. 

Example: BACKFILE 20 

14.9 SUMMARY OF DEVICE CONTROL STATEMENTS 

The form and use of the DECsystem-20 FOTRAN device control statements are summarized in Table 14-1. 

Table 14-1 
Summary of DECsystem-20 FORTRAN Device Control Statements 

Statement Form 

REWINDu 
UNLOADu 
END FILEu 
SKIP RECORD u 
SKIP FILE u 
BACKFILEu 
BACKSPACE u 

Use 

Rewind medium to its load point 
Rewind medium onto its source reel 
Write an endfile record in to the current me 
Skip the next record 
Skip the next file 
Move medium backwards 1 file 
Move medium back one record 

14-3 





CHAPTER 15 

DECsystem-20 FORTRAN extensions to the 1966 

ANSI standard set are printed in bold/ace italic type. 

Types of Subroutine 

Statements and Arguments 

CHAPTER 15 
SUBPROGRAM STATEMENTS 

15.1 INTRODUCTION 

Procedures that are used repeatedly by a program may be written once and then referenced each time the procedure 
is required. Procedures that may be referenced are either internal (written and contained within the program in 
which they are referenced) or external (self-contained executable procedures that may be compiled separately). The 
kinds of FORTRAN procedures that may be referenced are: 

a. statement functions 

b. intrinsic functions (DECsystem-20 FORTRAN defined functions) 

c. external functions, and 

d. subroutines 

The first three of the foregoing categories are referred to, collectively, as either functions or function procedures; 
procedures of the last category are referred to as either subroutines or subroutine procedures. 

15.1.1 Dummy and Actual Arguments 

Since subprograms may be referenced at more than one point throughout a program, many of the values used by the 
subprogram may be changed each time it is used. Dummy arguments in subprograms represent the actual values to 
be used which are passed to the subprogram when it is called. 

Functions and subroutines use dummy arguments to indicate the type of the actual arguments which they represent 
and whether the actual arguments are variables, array elements, arrays, subroutine names or the names of external 
functions. Each dummy argument must be used within a function or subroutine as if it were a variable, array, array 
element, subroutine, or external function identifier. Dummy arguments are given in an argument list associated with 
the identifier assigned to the subprogram; actual arguments are normally given in an argument list associated with a 
call made to the desired subprogram. (Examples of argument lists are given in the following paragraphs.) 

The position, number, and type of each dummy argument in a subprogram list must agree with the positio' 
number, and type of each actual argument given in the argument list of the subprogram reference. 

15-1 



CHAPTER 15 Dummy Arguments 

Dummy arguments may be 

a. variables 

b. array names 

c. subroutine identifiers 

d. function identifiers, or 

e. statement label identifiers which are denoted by the symbol *, $, or &. 

When a subprogram is referenced, its dummy arguments are replaced by the corresponding actual arguments supplied 
in the reference. All appearances of a dummy argument within a function or subroutine are related to the given 
actual arguments. Except for subroutine identifiers and literal constants, a valid association between dummy and 
actual arguments occurs only if both are of the same type; otherwise, the results of the subprogram computations 
will be unpredictable. Argument association may be carried through more than one level of subprogram reference if 
a valid association is maintained through each level. The dummy factual argument associations established when a 
subprogram is referenced are terminated when the desired subprogram operations are completed. 

The following rules govern the use and form of dummy arguments: 

a. The number and type of the dummy arguments of a procedure must be the same as the number and type 
of the actual arguments given each time the procedure is referenced. 

b. Dummy argument names may not appear in EQUIVALENCE, DAr A, or COMMON statements. 

c. A variable dummy argument should have a variable, an array element identifier, an expression, or a 
constant as its corresponding actual argument. 

d. An array dummy argument should have either an array name or an array element identifier as its 
corresponding actual argument. If the actual argument is an array, the length of the dummy array should 
be less than or equal to that of the actual array. Each element of a dummy array is associated directly 
with the corresponding elements of the actual array. 

e. A dummy argument representing a subroutine identifier should have a subroutine name as its actual 
argument. 

f. A dummy argument representing an external function must have an external function as its actual 
argument. 

g. A dummy argument may be defined or redefined in a referenced subprogram only if its corresponding 
actual argument is a variable. If dummy arguments are array names, then elements of the array may be 
redefined. 

Additional information regarding the use of dummy and actual arguments is given in the description of how 
subprograms are defined and referenced. 

15-2 



CHAPTER IS Statement and Intrinsic Functions 

15.2 STATEMENT FUNCTIONS 

Statement functions define an internal subprogram in a single statement. The general form of a statement function 
is: 

where 

name (argl ,arg2, ... ,argn)=E 

name 

(argl . . . argn) 

is a user-formulated name comprised of from 1 to 6 characters. The name used must 
conform to the rules for symbolic names given in Paragraph 3.3. 

The type of a statement function is determined either by the first character of its 
name or by being declared in an explicit or implicit type statement. 

represents a list of dummy arguments. 

E is an arbitrary expression. 

The expression E of a statement function may be any legitimate arithmetic expression which uses the given dummy 
arguments and indicates how they are combined to obtain the desired value. The dummy arguments may be used as 
variables or indirect function references; but they cannot be used as arrays. The dummy argument names bear no 
relation to their use outside the context of the statement function except for their data type. The expression may 
reference DECsystem-20 FORTRAN defined functions (Paragraph 15.3) or any other defined statement function, 
or call an external function. It may not reference any function that directly or indirectly references the given 
statement function or any subprogram in the chain of references. That is, recursive references are not allowed. 
Statement functions produce only one value, the result of the expression which it contains. A statement function 
cannot reference itself. 

All statement functions within a program unit must be defined before the first executable statement of the program 
unit. When used, the statement function name must be followed by an actual argument list enclosed within 
parentheses and may appear in any arithmetic or logical expression. 

Examples 

SSQR(K)=(K*(K +1)*2*K+ 1)/6 
ACOSH(X)=(EXP(X/ A)+ EXP( - X/A))/ 2.0 

15.3 INTRINSIC FUNCTIONS (DECsystem-20 FORTRAN DEFINED FUNCTIONS) 

Intrinsic functions are subprograms that are defined and supplied by DECsystem-20 FORTRAN. An intrinsic 
function is referenced by using its assigned name as an operand in an arithmetic or logical expression. The names of 
the DECsystem-20 FORTRAN intrinsic functions, the type of the arguments which each accepts, and the function 
it performs are described in Table IS-I. These names always refer to the intrinsic function unless they are preceded 
by an asterisk (*) or ampersand (&) in an EXTERNAL statement, declared in a conflicting explicit type statement, 
or are specified as a routine dummy parameter. 

15-3 



CHAPTER IS Table of Intrinsic Functions 

Table 15-1 
Intrinsic Functions (DECsystem-20 FORTRAN Defined Functions) 

Function Mnemonic Definition Number of Type of 
Arguments Argument Function 

Absolute value: 
Real ABS* arg I Real Real 
Integer IABS* arg I Integer Integer 
Double precision DABS* arg 1 Double Double 
Complex to real CABS c=(X2+y2)1/2 I Complex Real 

Conversion: 
Integer to real FLOAT* I Integer Real 
Real to integer IFIX* Sign of arg * I Real Integer 

largest in teger 
~ largl 

Double to real SNGL I Double Real 
Real to double DBLE* I Real Double 
Integer to double DFLOAT I Integer Double 
Complex to real REAL* I Complex Real 
(obtain real part) 
Complex to real AlMAG I Complex Real 
(obtain imaginary 
part) 
Real to complex CMPLX* c= Arg 1 +i * Arg2 2 Real Complex 

Truncation: 
Real to real AINT Sign of arg * 

I Real Real 
largest in teger 

Real to integer INT* ~ largl I Real Integer 
Double to integer IDINT I Double Integer 

Remaindering: 
Real AMOD { Th, "m,ind" } 2 Real Real 
Integer MOD* when Arg I is 2 Integer Integer 
Double precision DMOD divided by Arg 2 2 Double Double 

Maximum value: 
AMAXO 

{ M,,(Mg, ,A'g" .. ) } 

;;;'2 Integer Real 
AMAXI* ;;;'2 Real Real 
MAXO* ;;;'2 Integer Integer 
MAXI ;;;'2 Real Integer 
DMAXI ;;;'2 Double Double 

Minimum Value: 
AMINO 

{ Min(Mg, ,Mg" .. J ;;;'2 Integer Real 
AMINI * ;;;'2 Real Real 
MINO* ;;;'2 Integer Integer 
MINI ;;;'2 Real Integer 
DMINI ;;;'2 Double Double 

*In line functions. 

154 



CHAPTER 15 

Function 

Transfer of Sign: 
Real 
Integer 
Double precision 

Positive Difference: 
Real 
Integer 

*In line functions. 

Table 15-1 (Cont) 

Table of Intrinsic Functions 

External Functions 

Intrinsic Function (DECsystem-20 FORTRAN Defined Functions) 

Mnemonic Definition Number of Type of 
Arguments Argument Function 

SIGN* 

{ Sgn(kg,)'lkg, I J 2 Real Real 
ISIGN 2 Integer Integer 
DSIGN 2 Double Double 

{ kg, - Min(kg, ,kg, J DIM* 2 Real Real 
lDIM 2 Integer Integer 

15.4 EXTERNAL FUNCTIONS 

External functions are function subprograms that consist of a FUNCTION statement followed by a sequence of 
FORTRAN statements that define one or more desired operations; subprograms of this type may contain one or 
more RETURN statements and must be terminated by an END statement. Function subprograms are independent 
programs that may be referenced by other programs. 

The FUNCTION statement that identifies an external function has the form 

type FUNCTION name (argI ,arg2, ... ,argn) 

where 

type 

name 

(argi, . . . ,argn) 

is an optional type specification as described in section 6.3. These include INTEGER, 
REAL, DOUBLE PRECISION, COMPLEX or LOGICAL (plus the optional size 
modifier, *n, for compatibility with other manufacturers.) 

is the name assigned to the function. The name may consist of from I to 6 characters, 
the first of which must be alphabetic. The optional size modifier (*n) may be included 
with the name if the type is specified. (Refer to section 6.3.) 

is a list of dummy arguments. 

If type is not given in the FUNCTION statement, the type of the function may be assigned, by default, according to 
the first character of its name, or may be specified by an IMPLICIT statement or by an explicit statement given 
within the subprogram itself. 

Note that if a user wants to use the same name for a user-defined function as the name of a FORTRAN defined 
function Oibrary basic external function), the desired name must be declared in an EXTERNAL statement and 
prefixed by an asterisk (*) or ampersand (&) in the referencing routine. (Refer to section 6.7 for a description of the 
EXTERNAL statement.) 

15-5 



CHAPTER 15 

The following rules govern the structuring of a FUNCTION subprogram: 

Rules For FUNCTION Statements, 
Basic External Functions 
Generic Function Names 

a. The symbolic name assigned a FUNCTION subprogram must also be used as a variable name in the 
subprogram. During each execution of the subprogram this variable must be defined and, once defined, 
may be referenced as redefined. The value of the variable at the time of execution on any RETURN 
statement is the value of the subprogram. 

NOTE 
A RETURN statement returns control to the calling statement 
that initiated the execution of the subprogram. See Paragraph 
15.4.1 for a description of this statement. 

b. The symbolic name of a FUNCTION subprogram must not be used in any nonexecutable statement in 
the subprogram except in the initial FUNCTION statement or a type statement. 

c. Dummy argument names may not appear in any EQUIVALENCE, COMMON, or DATA statement used 
within the subprogram. 

d. The function subprogram may define or redefine one or more of its arguments so as to effectively return 
results in addition to the value of the function. 

e. The function subprogram may contain any FORTRAN statement except BLOCK DATA, 
SUBROUTINE PROGRAM, another FUNCTION statement or any statement that directly or indirectly 
references the function being defined or any subprogram in the chain of subprograms leading to this 
function. 

f. The function subprogram should contain at least one RETURN statement and must be terminated by an 
END statement. The RETURN statement signifies a logical conclusion of the computation made by the 
subprogram and returns the computed function value and control to the calling program. A subprogram 
may have more than one RETURN statement. 

The END statement specifies the physical end of the subprogram and implies a return. 

15.4.1 Basic External Functions (DECsystem-20 FORTRAN Defined Functions) 

DECsystem-20 FORTRAN contains a group of predefined external functions which are referred to as a basic func­
tions. Table 15-2 describes each basic function, its name, and its use. These names always refer to the basic external 
functions unless declared in an EXTERNAL or conflicting explicit type statement. 

15.4.2 Generic Function Names 

The compiler generates a call to the proper DECsystem-20 FORTRAN defined function, depending on the type of 
the arguments, for the following generic function names: 

15-6 



CHAPTER IS 

ABS 
AMAXI 
AMINI 
ATAN 
ATAN2 
COS 
INT 
MOD 
SIGN 
SIN 
SQRT 
EXP 
ALOG 
ALOGIO 

In the following example 

K=ABS (I) 

Generic Function Names 

SUBROUTINE Statement 

the type of I determines which function is called. If I is an integer, the compiler generates a call to the function 
lABS. If I is real, the compiler generates a call to the function ABS. If I is double precision, the compiler generates a 
call to the function DABS. 

The function name loses its generic properties if it appears in an explicit type statement, if it is specified as a dummy 
routine parameter, or if it is prefixed by "*,, or "&" in an EXTERNAL statement. When a generic function name, 
which was specified unprefixed in an EXTERNAL statement, is used as a routine parameter, it is assumed to 
reference a DECsystem-20 FORTRAN defined rLillell(lll "lllil' saille nanle. or if nOlle exist. a user-defined function. 
Note that IMPLICIT statements have no cllcct L1pclll the data typc of gencric functioll names unless the name has 
been removed from its class using an EXTERNAL statement. 

15.5 SUBROUTINE SUBPROGRAMS 

A subroutine is an external computational procedure which is identified by a SUBROUTINE statement and mayor 
may not return values to thc calling program. The SUBROUTINE statement used to identify a subprogram of this 
type has the form: 

where 

SUBROUTINE name(argI ,arg2, ... ,argn) 

name 
(argl, . . . ,argn) 

is the symbolic name of the subroutine to be defined. 
is an optional list of dummy arguments. 

15-7 



CHAPfERlS Table of Basic External Functions 

Table 15-2 
Basic External Functions (DECsystem-20 FORTRAN Defined Functions) 

Function Mnemonic Definition Number of Type of 
Arguments Argument Function 

Exponential: 

( eArg } Real EXP 1 Real Real 
Double DEXP 1 Double Double 
Complex CEXP 1 Complex Complex 

Logarithm: 
Real ALOG loge(Arg) 1 Real Real 

ALOGIO log! o (Arg) 1 Real Real 
Double DLOG log/Arg) 1 Double Double 

DLOGIO log! o (Arg) 1 Double Double 
Complex CLOG log/Arg) 1 Complex Complex 

Square Root: 
(Arg)1/2 Real SQRT* 1 Real Real 

Double DSQRT (Arg)1/2 1 Double Double 
Complex CSQRT (Arg)1/2 I Complex Complex 

Sine: 
Real (radians) SIN* 

{ SiO(kg} 

1 Real Real 
Real (degrees) SIND 1 Real Real 
Double (radians) DSIN 1 Double Double 
Complex CSIN 1 Complex Complex 

Cosine: 
Real (radians) COS* 

{ 'OO(~} 
1 Real Real 

Real (degrees) COSD I Real Real 
Double (radians) DCOS 1 Double Double 
Complex CCOS 1 Complex Complex 

Hyperbolic: 
Sine SINH sinh(Arg) 1 Real Real 
Cosine COSH cosh(Arg) 1 Real Real 
Tangent TANH tanh(Arg) I Real Real 

Arc sine AS IN asin(Arg) 1 Real Real 

Arc cosine ACOS acos(Arg) 1 Real Real 

Arc tangent 
Real ATAN* atan(Arg) 1 Real Real 
Double DATAN datan(Arg) 1 Double Double 
Two REAL arguments ATAN2* atan( Arg! / Arg2 ) 2 Real Real 
Two DOUBLE arguments DATAN2 atan(Arg! / Arg2) 2 Double Double 

*Generic Functions. 

15-8 



CHAPfER15 CALL Statement 

Table 15-2 (Cont) 
Basic External Functions (DECsystem-20 FORTRAN Defined Functions) 

Function Mnemonic Definition Number of Type of 
Arguments Argument Function 

Complex Conjugate CONJC Arg=X+iY,CONJC=X-iY 1 Complex Complex 

Random Number RAN Result is a random Integer, Real 
number in the range I Dummy Real, 
of 0 to 1.0. Argument Double, 

or 
Complex 

The following rules control the structuring of a subroutine subprogram: 

a. The symbolic name of the subprogram must not appear in any statement within the defined subprogram 
except the SUBROUTINE statement itself. 

b. The given dummy arguments may not appear in an EQUIVALENCE, COMMON, or DATA statement 
within the subprogram. 

c. The su broutine subprogram may define or redefine one or more of its arguments so as to effectively 
return results. 

d. The subroutine subprogram may contain any FORTRAN statement except BLOCK DATA, 
FUNCTION, another SUBROUTINE statement, or any statement that either directly or indirectly 
references the subroutine being defined or any of the subprograms in the chain of subprogram references 
leading to this subroutine. 

e. Dummy arguments that represent statement labels may be either an *, $, or &. 

f. The subprogram should contain at least one RETURN statement and must be terminated by an END 
statement. The RETURN statements indicate the logical end of a computational routine; the END 
statement signifies the physical end of the subroutine. 

g. Subroutine subprograms may have as many entry points as desired (see description of ENTRY statement 
given in Paragraph 15.4.1). 

15.5.1 Referencing Subroutines (CALL Statement) 

Subroutine subprograms must be referenced using a CALL statement of the following form: 

where 

CALL name(argl ,arg2, ... ,argn) 

name 

(argi, . . . ,argn) 

is the symbolic name of the desired subroutine subprogram. 

is an optional list of actual arguments. If the list is included, the given actual 
arguments must agree in order, number, and type with the corresponding dummy 
arguments given in the defining SUBROUTINE statement. 

15-9 



CHAPTER 15 CALL Statement Arguments, 

FORTRAN Subroutines, RETURN Statement 

Multiple Returns 

The use of literal constants is an exception to the rule requiring agreement of type between dummy and actual 
arguments. An actual argument in a CALL statement may be: 

a. a constant 

b. a variable name 

c. an array element identifier 

d. an array name 

e. an expression 

f. the name of an external subroutine, or 

g. a statement label. 

Example 

The subroutine 

SUBROUTINE MATRIX(I,J,K,M, *) 

END 

may be referenced by 

CALL MATRIX(IO,20,30,40,$IOI) 

15.5.2 DECsystem-20 FORTRAN Supplied Subroutines 

DECsystem-20 FORTRAN provides the user with an extensive group of predefined subroutines. The descriptions 
,and names of these predefined subroutines are given in Table 15-3. 

15.6 RETURN STATEMENT AND MULTIPLE RETURNS 

The RETURN statement causes control to be returned from a subprogram to the caIling program unit. This 
statement has the form 

RETURN (standard return) 

or 

RETURN e (multiple returns) 

where e represents an integer constant, variable, or expression. The execution of this statement in the first of the 
foregoing forms (i.e., standard return) causes control to be returned to the statement of the calling program which 
foIlows the statement that called the subprogram. 

15-10 



CHAPTER 15 Multiple Returns 

The multiple returns form of this statement (i.e., RETURN e) enables the user to select any labeled statement of the 
calling program as a return point. When the multiple returns form of this statement is executed, the assigned or 
calculated value of e specifies that the return is to be made to the eth statement label in the argument list of the 
calling statement. The value of e should be a positive integer which is equal to or less than the number of statement 
labels given in the argument list of the calling statement. If e is less than 1 or is larger than the number of available 
statement labels, a standard return operation is performed. 

NOTE 
A dummy argument for a statement label must be either a "', 
$, or & symbol. 

Any number of RETURN (standard return) statements may be used in any subprogram. The use of the multiple 
returns form of the RETURN statement, however, is restricted to SUBROUTINE subprograms. The execution of a 
RETURN statement in a main program will terminate the program. 

Example 

Assume the following statement sequence in a main program: 

10 

15 

20 

CALL EXAMP(l ,$IO,K,$15,M,$20) 
GO TO 101 

Assume the following statement sequence in the called SUBROUTINE subprogram: 

SUBROUTINE EXAMP (L,*,M,*,N,*) 

RETURN 

RETURN 

RETURN(C/D) 

END 

15-11 



CHAPTER 15 Referencing External FUNCTION Subprograms 

Each occurrence of RETURN returns control to the statement GO TO 101 in the calling program. 

If, on the execution of the RETURN(C/D) statement, the value of (C/D) is: 

Less than or equal to: 
o 
1 
2 
3 

Greater than or equal to: 
4 

The following is performed: 
a standard return to the GO TO 101 statement is made 
the return is made to statement 10 
the return is made to statement 15 
the return is made to statement 20 

The following is performed: 
a standard return to the GO TO 101 statement is made. 

15.6.1 Referencing External FUNCTION Subprograms 

An external function subprogram is referenced by using its assigned name as an operand in an arithmetic or logical 
expression in the calling program unit. The name must be followed by an actual argument list. The actual arguments 
in an external function reference may be: 

a. a variable name 

b. an array element identifier 

c. an array name 

d. an expression 

e. a statement number 

f. the name of another external procedure (FUNCTION or SUBROUTINE). 

NOTE 
Any subprogram name to be used as an argument to another 
subprogram must first appear in an EXTERNAL statement 
(Chapter 6) in the calling program unit. 

Example 

The subprogram defined as: 

INTEGER FUNCTION ICALC(X,Y,Z) 

RETURN 
END 

may be referenced in the following manner: 

TOT AL = ICALC(IAA,IAB,IAC)+500 

15-12 



CHAPTER 15 

15.7 MULTIPLE SUBPROGRAM ENTRY POINTS (ENTRY STATEMENT) 

ENTRY Statement, 

Multiple Entry Points 

DECsyst('m-20 FORTRAN prol'ides an ENTR Y statement which enables the user to speczf.v additional entry points 
into an e.\"t('l"I1al subprogram. This statement used in conjunction with a RETURN statement enables the user to 
employ on~l' olle computational routille of a subprogram which confains several such routines. The form of the 
ENTR Y statement is: 

ENTR Y name(argl,arg2, . . . ,argn) 

where 

name is the symbolic name to be assigned the desired entry point 

(argI, . . . ,argn) is an optional list of dummy arguments. This list may contain 

a. variable names 

b. array declarators 

c. the name of an external procedure (SUBROUTINE or FUNCTION), or 

d. an address constant denoted by either a *, $, or & symbol 

The rules for the use of an ENTR Y statment follow. 

a. The ENTRY statement allows entry into a subprogram at a place other than that defined by the 
subroutine or function statement. Any number of ENTR Y statements may be included in an external 
subprogram. 

b. Execution is begun at the first executable statement following the ENTR Y statement. 

c. Appearance of an ENTR Y statement in a subprogram does not preclude the rule that statement 
functions in subprograms must precede the first executable statement. 

d. Entry statements are nonexecutable and do not affect the execution flow of a subprogram. 

e. An ENTR Y statement may not appear in a main program, nor may a subprogram reference itself 
through its entry points. 

f. An ENTR Y statement may not appear in the range of a DO or an extended DO statement construction. 

g. The dummy arguments in the ENTRY statement need not agree in order, number, or type with the 
dummy arguments in SUBROUTINE or FUNCTION statements or any other ENTRY statement in the 
subprogram. However, the arguments for each call or function reference must agree with the dummy 
arguments in the SUBROUTINE, FUNCTION, or ENTR Y statement that is referenced. 

h. Entry into a subprogram initializes the dummy arguments of the referenced ENTRY statement, all 
appearances of these arguments in the entire subprogram are initialized. 

i. A dummy argument may not be referenced unless it appears in the dummy list of an ENTR Y, 
SUBROUTINE, or FUNCTION statement by which the subprogram is entered. 

15-13 



CHAPTER 15 Entry Points 

j. The source subprogram must be ordered such that references to dummy arguments in executable 
statements must follow the appearance of the dummy argument in the dummy list of a SUBROUTINE, 
FUNCTION, or ENTR Y statement. 

k. Dummy arguments that were defined for a subprogram by some previous reference to the subprogram 
are undefined for subsequent entry into the subprogram. 

I. The value of the function must be returned by using the current entry name. 

15-14 



CHAPTER IS 

Subroutine Name 

DATE 

DEFINE FILE 

DEFINE FILE 
(cont) 

Table of Library Subroutines 

Table 15-3 
DECsystem-20 FORTRAN Library Subroutines 

Effect 

Places today's date as left-justified ASCII characters into a dimensioned 
2-word array. 

CALL DATE (array) 

where array is the 2-word array. The date is in the form 

dd-mmm-yy 

where dd is a 2-digit day (if the first digit is 0, it is converted to a blank), 
mmm is a 3-digit month (e.g., Mar), and yy is a 2-digit year. The data is 
stored in ASCII code, left-justified, in the two words. 

A DEFINE FILE caIl can be used to establish and define the structure of each 
fIle to be used for random access I/O operations. 

NOTE 
The OPEN statement may be used to perform the same 
functions as DEFINE FILE. 

The format of a DEFINE FILE call may be 

CALL DEFINE FILE (u,s,v,f,proj,prog) 

where 

u = logical FORTRAN device numbers. 

s the size of the records which comprise the me being defined. The 
argument s may be an integer constant or variable. 

v = an associated variable. The associated variable is an integer 
variable that is set to a value that points to the record that 
immediately follows the last record transferred. This variable is 
used by the FIND statement (Chapter 10). At the end of each 
FIND operation the variable is set to a value that points to the 
record found. The variable v cannot appear in the I/O list of any 
I/O statement that accesses the fIle set up by the DEFINE FILE 
statement. 

f = fIlename to be given the fIle being defined. 1 

proj = user's project number. 

prog = user's programmer's number. 

lRefer to Appendix B for detailed information on how to specify a directory for the DECsystem-20. 

15-15 



CHAPTER 15 

Subroutine Name 

DUMP 

ERRSET 

EXIT 

ILL 

Table of Library Subroutines 

Table 15-3 (Cont) 
DECsystem-20 FORTRAN Library Subroutines 

Effect 

Example 

The statement 

CALL DEFINE FILE (I,IO,ASCYAR,'FORTFL.DAT',O,Q) 

establishes a file named FORTFL.DAT on device 01 (i.e., disk) which 
contains word records. The associated variable is ASCY AR, and the 
file is in the user's area. 
Causes particular portions of core to be dumped and is referred to in the 
following form: 

where Land U I are the variable names which give the limits of core memory 
I 

to be dumped. Either LI or UI may be upper or lower limits. F 1 is a number 
indicating the format in which the dump is to be performed: a = octal, 1 = 
real, 2 = integer, and 3 = ASCII. 

If F is not 0, 1, 2, 3, the dump is in octal. If F n is missing, the last section is 
dumped in octal. If U and F are missing, an octal dump is made from L to n n 
the end of the J·ob area. If L , U , and F are missing, the entire job area is n n n 
dumped in octal. 

The dump is terminated by a call to EXIT. 

Allows the user to control the typeout of execution-time arithmetic error 
messages, ERRSET is called with one argument in integer mode. 

CALL ERRSET(N) 

Typeout of each type of error message is suppressed after N occurrences of 
that error message. If ERRSET is not called, the default value of N is 2. 

Returns control to the Monitor and, therefore, terminates the execution of 
the program. 

Sets the ILLEG flag. If the flag is set and an illegal character is encountered in 
floating point/double precision input, the corresponding word is set to zero. 

15-16 



CHAPTER 15 

Subroutine Name 

LEGAL 

PDUMP 

RELEAS 

SAVRAN 

SETABL 

SETRAN 

Table 15-3 (Cont) 
DECsystem-20 FORTRAN Library Subroutines 

Effect 

CALL ILL 

Table of Library Subroutines 

Clears the ILLEG flag. If the flag is set and an illegal character is encountered 
in the floating point/double precision input, the corresponding word is set to 
zero. 

CALL LEGAL 

The arguments are the same as those for DUMP. PDUMP is the same as DUMP 
except that control returns to the calling program after the dump has been 
executed. 

CALL RELEAS(unit*) 

Closes out I/O on a device initialized by the FORTRAN Operating System 
and returns it to the uninitialized state. 

SA VRAN is called with one argument in integer mode. SA VRAN sets its 
argument to the last random number (interpreted as an integer) that has been 
generated by the function RAN. 

CALL SET ABL(I,J) 

Specifies a character set where I is an integer which gives the number of the 
desired character set. If a character set has been defined by I, the value of J is 
set to 0; if not, J is set to -1. The standard ASCII character set is defined as 
1. 

SETRAN has one argument which must be a non-negative integer < 23 I. The 
starting value of the function RAN is set to one value of this argument, unless 
the argument is zero. In this case, RAN uses its normal starting value. 

15-17 



CHAPTER 15 

Subroutine Name 

TIME 

Table 15-3 (Cont) 
DECsystem-20 FORTRAN Library Subroutines 

Effect 

Table of Library Subroutines 

Returns the current time in its argument(s) in left-justified ASCII characters. 
If TIME is called with one argument, 

CALL TIME(X) 

the time is in the form 

hh:mm 

where hh is the hours (24-hour time) and mm is the minutes. If a second 
argument is requested, 

CALL TIME(X,Y) 

the first argument is returned as before and the second has the form 

bss.t 

where ss is the seconds, t is the tenths of a second, and b is a blank. 

15-18 



CHAPTER 16 

DECsystem-20 FORTRAN extensions to the 1966 

ANSI standard set are printed in boldface italic type. 

BLOCK DATA Statement 

CHAPTER 16 
BLOCK DATA SUBPROGRAMS 

16.1 INTRODUCTION 

Block data subprograms are used to initialize data to be stored in any common areas. Only specification and DATA 
statements are permitted (i.e., DATA, COMMON, DIMENSION, EQillVALENCE, and TYPE) in block subprograms. 
A subprogram of this type must start with a BLOCK DATA statement. 

If any entry of a labeled common block is initialized by a BLOCK DATA subprogram, the entire block must be 
included even though some of the elements of the block do not appear in DATA statements. 

Initial values may be entered into more than one labeled common block in a single subprogram of this type. 

An executable program may contain more than one block data subprogram. 

16.2 BLOCK DATA STATEMENT 

The form of the BLOCK DATA statement is 

BLOCK DATA name 

where 

name is a symbolic name given to identify the subprogram. 

16-1 





APPENDIX A 

ASCII-1968 CHARACTER CODE SET 

The character code set defined in the X3.4-1968 Version of the American National Standard for Information 
Interchange (ASCII) is given in the following matrix. 

1st 2 Last octal digit 
octal 0 I 2 3 4 5 6 7 
digits 

OOX 
Olx 
02x 
03x 
04x 
05x 
06x 
07x 
lOx 
Ilx 
12x 
13x 
14x 
15x 
16x 
17x 

NUL 
BS 
DLE 
CAN 

~ 
( 
0 
8 
@ 

H 
p 

x 
grave 
h 
p 
x 

NUL 
SOH 
STX 
ETX 
EaT 
ENQ 
ACK 
BEL 
BS 
HT 
LF 
VT 
FF 
CR 
SO 
SI 

SOH STX ETX EaT ENQ ACK BEL 
HT LF VT FF CR SO SI 
DCI DC2 DC3 DC4 NAK SYN ETB 
EM SUB ESC FS GS RS US 
! " # $ % & 

, 

) * + - I , 
I 2 3 4 5 6 7 
9 , < = > ? 
A B C D E F G 
I J K L M N a 
Q R S T U V W 
Y Z [ \ 1 1\ (t) (+-) 

b d f -a c e g 
i j k I m n 0 

q r s t u v w 
y z { I } ~(ESC) DEL 

Characters inside parentheses are ASCII-I 963 Standard. 

Null DLE Data Link Escape 
Start of Heading DCI Device Control I 
Start of Text DC2 Device Control 2 
End of Text DC3 Device Control 3 
End of Transmission DC4 Device Control 4 
Enquiry NAK Negative Acknowledge 
Acknowledge SYN Synchronous Idle 
Bell ETB End of Transmission Block 
Backspace CAN Cancel 
Horizontal Tabulation EM End of Medium 
Line Feed SUB Substitute 
Vertical Tabulation ESC Escape 
Form Feed FS File Separator 
Carriage Return GS Group Separator 
Shift Out RS Record Separator 
Shift In US Unit Separator 

DEL Delete (Rubout) 

A-I 

Graphic 
subsets 
64 95 





APPENDIX B 

SPECIFYING DIRECTORY AREAS 

DECsystem-20 FORTRAN has two ways in which the user can access another user's directory. The first way is via a 
logical name in place of the device name; the second way is via a project-programmer number instead of a directory 
name. Either method can be used with FORTRAN; however, use of a logical name is recommended. 

NOTE 
When the user sees a project-programmer number (i.e., a 
number similar to [4,204 J) in this manual or in an error 
message, he can use the TRANSL program to find out its 
corresponding directory name. Refer to Section B.I.l. 

For more information about referencing other user's files, refer to the DECsystem-20 USER'S GUIDE. 

8.1 USING LOGICAL NAMES 

To use a logical name in accessing another user's directory, the user: 

1. Gives the DEFINE system command to define a logical name (of no more than six characters) as the 
other user's directory name. 

2. Uses the logical name in place of the device name when typing the file specification. 

8.1.1 Giving The DEFINE Command 

To give the DEFINE command, the user: 

1. Types DEFINE and presses the ESC key; the system prints (LOGICAL NAME). 

@DEFINE (LOGICAL NAME) 

2. Types the logical name (ending it with a colon is optional) and presses the ESC key. The system prints 
(AS). 

@DEFINE (LOGICAL NAME) BAK: (AS) 

3. Types the directory name (enclosed in angle brackets) and presses the RETURN key. The system prints 
an@. 

@DEFINE (LOGICAL NAME) BAK: (AS) <BAKER> 

To check the logical name, the user can give the INFORMATION (ABOUT) LOGICAL-NAMES system command. 

@INFORMATION (ABOUT) LOGICAL-NAMES 
BAK = > <BAKER> 
@ 

B-1 



B.1.2 Using The Logical Name 

The user can the" include the logical name in with FORTRAN by typing the logical name in place of a device 
name. 

The following example shows how the user would output a log file to the directory named <BAKER>. (Remember 
he has already defined the logical name BAK: as <BAKER>.) 

Ca!FORTRA 
*BAK:TEST 

B.2 USING PROJECT-PROGRAMMER NUMBERS 

To use a project-programmer number in accessing another user's directory, the user: 

1. Runs the TRANSL program to find the corresponding project-programmer number for the desired 
directory name. 

2. Includes the project-programmer number after the file type. 

The user does not have to define a logical name when he uses a project-programmer number; however, 
project-programmer numbers may not remain constant over time. Logical names should be used whenever possible. 

8.2.1 Running The TRANSL Program 

To run the TRANSL program, the user: 

I. Types TRANSL and presses the RETURN key. The system prints TRANSLATE (DIRECTORY). 

@TRANSL 
TRANSLATE (DIRECTORY) 

2. Types the directory name and presses the RETURN key. The system prints the corresponding 
project-programmer number. 

(a!fRANSL 
TRANSLATE (DIRECTORY) BAKER 
<BAKER> IS [4,204] 
(a) 

The user can also use the TRANSL program to verify that a project-programmer number is correct. He simply 
replaces the directory name with the project-programmer number. 

(aTfRANSL 
TRANSLATE (DIRECTORY) [4,204] 
[4,204] IS <BAKER> 
(w 

8.2.2 Using The Project-Programmer Number 

The user can use the project-programmer number with FORTRAN by typing the project-programmer number after 
the file type. 

The following example shows how the user compiles a FORTRAN program from the directory named BAKER, 
using a project-programmer number. (Remember he has already translated the directory name.) 

(a)FORTRA 
*TEST.REL,TEST.LST = TEST. FOR [4,204J 

B-2 



APPENDIX C 
USING THE COMPILER 

This appendix explains how to access DECsystem-20 FORTRAN and how to make use of the information it 
provides. The reader should be familiar with the FORTRAN language and the DECsystem-20 operating system. 

C.l RUNNING THE COMPILER 

The command to run FORTRAN is 

@FORTRA 

The compiler responds with an asterisk (*) and is then ready to accept a command string. A command is of the 
general form 

object filename, listing filename=source filename(s) 

The following options are given to the user: 

1. The user may specify more than one input file in the compilation command string. These files will be 
logically concatenated by the compiler and treated as one source file. 

2. Program units need not be terminated at file boundaries and may consist of more than one file. 

3. If no object filename is specified, no relocatable binary file is generated. 

4. If no listing filename is specified, no listing is generated. 

5. If no type is given, the defaults are .LST (listing), .REL (relocatable binary), and .FOR (source) for their 
respcLtive files. 

C.l.l Switches Available with DECsystem-20 FORTRAN 

Switches to DECsystem-20 FORTRAN are accepted anywhere in the command string. They are totally position and 
file independent. The switches are shown in Table C-1. 

C-l 



Table C-1 
FORTRAN Compiler Switches 

Switch Meaning Defaults 

CROSSREF Generate a me that can be input to the CREF program. OFF 

DEBUG See Section C.I.I.I. OFF 

EXPAND Include the octal-formatted version of the object me in OFF 
the listing. 

INCLUDE Compile a D in card column 1 as a space. OFF 

MACROCODE Add the mnemonics translation of the object code to the OFF 
listing me. 

NOERRORS Do not print error messages on the terminal. OFF 

NOWARNINGS Do not output warning messages. OFF 

OPTIMIZE Perform global optimization. OFF 

SYNTAX Perform syntax check only. OFF 

Each switch must be preceded by a slash (/). Switches need consist of only those letters that are required to make 
the switch unique. But users are encouraged to use at least three letters to prevent conflict with switches in future 
implementations. 

Example 

@FORTRA 
*OFILE,LFILE=SFlLE/MAC,S2FILE 

The /MAC switch will cause the MACRO code equivalent of SFILE and S2FILE to appear in LFILE.LST. 

c.1.1.1 The /DEBUG Switch - Using the /DEBUG switch tells FORTRAN to compile a series of debugging 
features into the user program. Several of these features are specifically designed to be used with FORDDT. Refer to 
Appendix F for more information. By adding the modifiers listed in Table C-2, the user is able to include specific 
debugging features. 

C-2 



Modifiers 

: DIMENSIONS 

: TRACE 

:LABELS 

:INDEX 

: BOUNDS 

Table C-2 
Modifiers to /DEBUG Switch 

Meaning 

Generates dimension information in .REL me for FORDDT. 

Generates references to FORDDT required for its trace features (automatically 
activates :LABELS). 

Genertltes a label for each statement of the form "line-number L." (This option 
may be used without FORDDT.) 

Forces DO LOOP indices to be stored at the beginning of each iteration rather 
than held in a register for the duration of the loop. 

Generates the bounds checking code for all array references. Bounds violations 
will produce run-time error messages. Note that the technique of specifying 
dimensions of 1 for subroutine arrays will cause bounds check errors. (This 
option may be used without FORDDT.) 

The format of the /DEBUG switch and its modifiers is as follows: 

/DEBUG:modifier 

or 

/DEBUG:(modifier list) 

Options available with the /DEBUG modifiers are: 

1. No debug features - Either do not specify the /DEBUG switch or include /DEBUG:NONE. 

2. All debug features - Either /DEBUG or /DEBUG:ALL. 

3. Selected features - Either a series of modified switches; i.e., 

/DEBUG:BOU /DEBUG:LAB 

or a list of modifiers 

/DEBUG:(BOU,LAB, ... ) 

4. Exclusion of features (if the user wishes all but one or two modifiers and does not wish to list them all, 
he may use the prefix "NO" before the switch he wishes to exclude). The exclusion of one or more 
features implicitly includes all the others, i.e., /DEBUG:NOBOU is the same as 
/DEBUG:(DIM,TRA,LAB,IND). 

C-3 



If more than one statement is included on a single line, only the first statement will receive a label 
(/DEBUG:LABELS) or FORDDT reference (/DEBUG:TRACE). (The /DEBUG option and the /OPTIMIZE option 
cannot be used at the same time.) 

NOTE 
If a source file contains line sequence numbers that occur 
more than once in the same subprogram, the /DEBUG option 
cannot be used. 

The following formulas may be used to determine the increases in program size that will occur due to the addition of 
various /DEBUG options. 

DIMENSIONS: 

TRACE: 

LABELS: 

INDEX: 

BOUNDS: 

For each array, have 3+3*N words where N is the number of dimensions, and up to 3 
constants for each dimension. 

One instruction per executable statement. 

No increase. 

One instruction per inner loop plus one instruction for some of the references to the 
index of the loop. 

For each array, the formula is the same as DIMENSIONS:. 

For each reference to an array element, use 5+N words where N is the number of 
dimensions in the array. If BOUNDS: was not specified, apprOximately 1+3*(N- 1) 
words would be used. 

C.I.2 LOAD-Class Commands 

FORTRAN can also be invoked by using one of the LOAD-class commands. These commands cause the system to 
interpret the command and construct new command strings for the system program actually processing the 
command. 

COMPILE 
LOAD 
EXECUTE 
DEBUG 

Example 

@EXECUTE(FROM)ROTOR 

The compiler switches OPT, CREF, and DEBUG may be speCified directly in LOAD-class commands and may be 
used globally or locally. 

Example 

@EXECUTE(FROM)/CREFPI.FOR,P2.FOR/DEBUG:NOBOU 

The other compiler switches must be passed in parentheses for each specific source file. 

C4 



Refer to the DECsystem-20 User's Guide for further information. 

C.2 READING A DECsystem-20 FORTRAN LISTING 

When a user requests a listing from the FORTRAN compiler, it contains the following information: 

1. A printout of the source program plus an internal sequence number assigned to each line by the 
compiler. This internal sequence number is referenced in any error or warning messages generated during 
the compilation. If the 'input ftle is line sequenced, the number from the ftle is used. If code is added via 
the INCLUDE statement, all INCLUDEd lines will have an asterisk (*) appended to their line sequence 
number. 

2. A summary of the names and relative program locations (in octal) of scalars and arrays in the source 
program plus compiler generated variables. 

3. All COMMON areas and the relative locations (in octal) of the variables in each COMMON area. 

4. A listing of all equivalenced variables or arrays and their relative locations. 

5. A listing of the subprograms referenced (both user defined and DECsystem-20 FORTRAN defined 
library functions). 

6. A summary of temporary locations generated by the compiler. 

7. A heading on each page of the listing containing the program unit name (MAIN., program, subroutine or 
function, principal entry), the input ftlename, the list of compiler switches, and the date and time of 
compilation. 

8. If the /MACRO switch was used, a mnemonic printout of the generated code is appended to the listing. 
This section has four fields: 

LINE: This column contains the internal sequence number of the line corresponding to the 
mnemonic code. It appears on the first of the code sequence associated with that internal sequence 
number. An asterisk indicates a compiler inserted line. 

LOC: The relative location in the object program of the instruction. 

LABEL: Any program or compiler generated label. Program labels have the letter "P" appendeci. 
Labels generated by the compiler are fol1owed by the letter "M". Labels generated by the compiler 
and associated with the /DEBUG:LABELS switch consist of the internal sequence number 
followed by an "L". 

GENERATED CODE: The MACRO mnemonic code. 

9. A list of all argument areas generated by the compiler. A zero argument appears first followed by 
argument blocks for subroutine calls and function references (in order of their appearance in the 
program). Argument blocks for all I/O operations fol1ow this. 

C-5 



10. Format statement listings. 

11. A summary of errors detected or warning messages issued during compilation. 

C.2.1 Compiler Generated Variables 

In certain situations the compiler will generate internal variables. Knowing what these variables represent can help in 
reading the macro expansion. The variables are of the form: 

.letter digit digit digit digit 

i.e., .SOOOl 

where: 

Letter 

S 

o 

F 

R 

Function of Variable 

Result of the DO LOOP step size expression of computed iteration count for a loop. 

Result of a common subexpression or constant computation. 

Result of a DO LOOP initial value expression or parameters of an adjustably dimensioned 
array. 

Arithmetic statement function formal parameters. 

Result of reduced operator strength expression (0.2.1.2). 

The user may find these variables on the listing under SCALARS and ARRAYS. 

The following example shows a listing where all these features are pointed out. 

C-6 



Q 
...J 

Name of Ppogpam Name of Soupce File 

/./JA i i •• / 11 r·, 1. t i.JK""-------::::I\!;j \I. -+A 131/ ) 

MACRO code equivalent 

Ouluu 
Uu)uO 
Oll3OO 
Ou4u(J 
uO~ViJ 

Out:JUU 
OU" u 0 
UUHLU 
OOYUO 
ulUuu 
Ol1vO 
012Uv 
OIJuU 
u14UO 
Ol~Uu lOu 
01000 .... 

'-

01 I UU 
01800 1 U 
01 ':h) li 

11\1/r'~~/0 

l~~LIClr l~l~G~k (A-Z) 
ulM~~~lU~ Al1uu.~OUJ.~(lUU.)u0) 

~Uj",l =u 
~LJ1'lL=U 

U u 1 (; u .j = 1 • '2 U 0 
uU IOU 1=] .lua 
1<.1 = 1 * J 
1~(1\1 .LI. ~uu .UH. 1'\1 .Gl. l~UO) Kl=U 
A( J.J J=1<.1 
I\I.=l+J 

1 ~ : ~ 1 

l~(I\L .~U. 1UO .UR. K2 .~U. 2UU .Uk. 1\2.~U.300) K2=K2+1 
tHl.J)=K2 
SLJM1=SUM1+1\1 
~UM2=SuM2+1\2 

CUNI1NU~ 

ItP~ lU.~UM1.SUM1 

~'UHMA1('H SUMl= .19.10H 
~NU 

SUi'12= .19) 

SUb~HUGHAM~ CMLL~U 

The relative address of all variables is given, 

SCALARS A~U AKRAiS "*" i~U t.)\f'LiCIT u~i"lNITIUI\i - "%" NOl' H~r'I::REi'4CI::O j 

~AGI:: 1 

2 1'J 41042 A .5U001 11b103 .50000 116104 *Kl 
*SU:" 7. 

b 
11blu:) +1 11blOb ... ,,2 1101UI 'SUMl 

4 '/04 J 
I1b11U 

~compiter generated 
vapiablea 



! 
Internal sequence number on first instruction that goes with that line 

octal displacement of instruction. , 
L ll~ t: L,JC LAlH.L G r" i. I:. k M 1 t. u C LJ U~. 

U ,J toC L 0.0 
1 .lSP lh.kt:S~,.I. • 
2 o.v 

30u .3 St.l'L.t3 ') • S U f.ll 
400 4 Iii l.J " l:. t'l ') • SUiv\? 
~uO ~ tllU Vr.. ').l1774/UUUVUU1J 

b H I.Jt<t'..I'1 ) •• SO()UU 
/ L. 1,1 : 

hkkZC>1 7.<1 
000 10 .3 1'\ : 

I'IU V l:. '). l'/1/b.3400Uuli 1 j 
7uO 1 1 4 [11\: 

r,lUVr.. .LJ 
11. IHULl .1 • 0 l /. ) 

Q 1.3 '" u V t: IVI i . 1\ 1 
00 

HUu 1 <.j. CALL .1 • I b 4 
1 :> CA lLI:. .1 • L 1 .14 
1 b JkST O.ot'l 

1 / dkS'J. ().~M 

d00 I.() 01'·\: .. compiler generated label 
Sr:tZtJ 4 • 1\ 1 

9UL ). 1 ~ t'l : 
Hl!Vl:.l i • 1 4 <+ 

1.1. j t'. lJ L i • d 

1.3 AUUl .i • 0 l ') ) 
24 I'iu ~ r.. 4.Kl 
L~ iii U 'y l:. i"! 4 .A-14~(.3) 

100 L) 20 IVI U V l:- L,] 
)/ AUUI L lJl)) 

Ju r·lUy 1:.1'1 .1 • 1\ 2 
1 1 u u 3 1 r'lltV l:. ').1\) 

32 CALl:. .., • 144 
33 CA.LN .., .31 U 
3,* JkSl (J • d M 
3~ <1H: 

CAl .. .., • '4 ~4 



Q 
\0 

1 1 u u 

liuu 

130u 
14110 
l~uu 

170u 

l,)uu 

3 tl 

37 

4ll 
41 
42 
43 
'+4 
(b 

46 

41 
SO 
5 1 
':>2 
53 
54 
j5 
,)b 

':)7 

HI-I: 

I lit : 

luUP: .. 

A{J~ i.l\) 

/l-'1{Jvt.l 1. 144 
It'l U L LJ 
AUlH .i • U l ') ) 
['1 U V t: ~ .iO 
i'HI V t: l"l S.tj-14~(j) 

AUiJf'l 4 • oS U (1-11 
AUUf'l S.SUM) 

ALJbJN ') • 41'1 
AUS 'J • J 
AuSGi:. 1l •• SOOuu 
LIHSr o • 3 !vi 

I'll! '" ~~ 1 1 h • 1 U [.j 

~'LJ ::'11 J 1/.UU1'. 
I'IU v i:.l 1 h • 1 1 l"i 
t-' LJ Sl"iJ 1'l.l[JLST. 
j'IU V i:.l 1 h • 11·1 
~)USHJ 1 "I • r, X 1 '1 • 

A k C,l.i i·d~ 1'1 I IH, u:':;\ S : ........ -------------------------

DO 
b I 
nL 
rd 
04 
0':> 
i> b 
07 
/v 
I 1 
II. 
I .l 

1 H : 

1 () i"1 : 

1 1 fil : 

u •• U 
u •• u 
-/ I 11 I 3 •• (J 

U •• 'III i'j 1 
u •• u 
() •• U 

34U •• 101-' 
li •• 7 
U •• U 
1 1 Uli •• Sliil'll 
II1lU •• Suh) 
'HJUU •• U 

~ 'u K •. \ A J S 11\ T to ,'1 t" :', 1 S (1 lO; L u ,', ~) t.l; 1"_ t_ i, 'I ) : 

IHUU 

1": A {I, • 

IJblli 
110111. 
1161J1 
I1b114 
llnl!':> 

1 1 0 lit) 
1 I b I 1/ 

IU~: ( J tl J 

L 1',1 = 
• 1 Y • 1 
uH 

~..; U ,vII 

= .1 Y 

l :.u t,l-<kUK" !Jr, n·:Cl tll J 

program label 

, 
~l1'gumen t b looks 



C.3 ERROR REPORTING 

If an error occurs during the initial pass of the compiler (while the actual source code is being read and processed), 
an error message is printed on the listing immediately following the line in which the error occurred. Each error 
references the internal sequence number of the incorrect line. The error messages along with the statement in error 
are output to the user terminal. For example: 

@EXECUTE(FROM)DAY.FOR 
FORTRAN: DAY 
01300 
?FTNNRC LlNE:01300 
01500 100 
?FTNMSP LlNE:01500 
01600 ? 
?FTNICL LlNE:01600 

?FTNFTL MAIN. 
LINK: LOADING 
[LNKNSA NO START ADDRESS] 

EXIT 

@ 

Kl 
STATEMENT NOT RECOGNIZED 
CONTINE 
STATEMENT NAME MISSPELLED 

ILLEGAL CHARACTER C IN LABEL FIELD 

3 FATAL ERRORS AND NO WARNINGS 

If errors are detected after the initial pass of the compiler, they appear in the list file after the end of the source 
listing. They are output to the user terminal without the statement in error but they do reference its internal 
sequence num ber. 

C.3.1 Fatal Errors and Warning Messages 

There are two levels of messages, warning and fatal error. Warning messages are preceded by "%" and indicate a 
possible problem. The compilation will continue, and the object program will probably be correct. Fatal errors are 
preceded by a "?". If a fatal error is encountered in any pass of the compiler, the remaining passes will not be called. 
Additional errors thai would be detected in later compiler passes may not become apparent until the first errors are 
corrected. As the word fatal denotes, it is not possible to generate a correct object program for a source program 
containing a fatal error. 

The format of messages is 

?FTNXXX LINE:n text 

or 

%FINXXX LINE:n text 

where: 

? ( 

% 
FIN 
XXX 
LINE:n 
text 

fatal 
warning 
FORTRAN mnemonic 
3-letter mnemonic for the error message 

= line number where error occurred 
explanation of error 

ColO 



The printing of fatal errors and warning messages on the user's terminal can be suppressed by the use of the 
/NOERRORS switch; however, messages will still appear on the listing. The /NOWARNINGS switch will suppress 
warning messages on both user terminal and listing. 

C.3.2 Message Summary 

At the end of the listing me and on the terminal, a message summary is printed after each program unit is compiled. 
This message has two forms: 

1. when one or more messages were issued 

I ?FTNFTL I %FTNWRN name NO/number FATAL ERRORS AND NO/number WARNINGS 

or 

2. when no messages were issued 

name [NO ERRORS DETECTED] 

where name is the program or subprogram name. ([NO ERRORS DETECTED] appears on the listing only.) For a 
complete list of fatal errors and warning messages, see Appendix G. 

C.4 CREATING A REENTRANT FORTRAN PROGRAM WITH LINK 

To produce a sharable program, load the object me into memory and give the SAVE command as follows: 

@LOAD (FROM) MAIN.REL 
LINK:loading 
@SAVE 
MAIN.EXEI SAVED 
@ 

Users can then run the program using the run command 

@RUNMAIN 

C-ll 





APPENDIX D 
WRITING USER PROGRAMS 

This appendix is a guide for writing effective user programs with FORTRAN. It contains techniques for 
optimization, interaction with non-FORTRAN programs, and other useful programming hints. 

0.1 GENERAL PROGRAMMING CONSIDERATIONS 

Programming considerations that should be observed when preparing a FORTRAN program to be compiled by 
DECsystem-20 FORTRAN are described in the following paragraphs. 

0.1. I Accuracy and Range of Double Precision Numbers 

Floating point and real numbers may consist of up to 16 digits in a double precision mode. Their range is specified in 
Chapter 3, Section 3.2 of this manual. Care must be taken when testing the value of a number within the specified 
range since, although numbers up to 1038 may be represented, DECsystem-20 FORTRAN can only test numbers of 
up to eight significant digits (REAL precision) and 16 significant digits (DOUBLE precision). 

Care must also be taken when testing the floating point computation for a result of o. In most cases the anticipated 
result (i.e., 0) will be obtained; however, in some cases the result may be a very small number that approximates O. 
Such an approximation of 0 would cause tests within statements (i.e., an arithmetic IF) to fail. 

0.1.2 Writing FORTRAN Programs for Execution on Non-DEC Machines 

If a program is to be prepared to run on both a DECsystem-20 computer and a non-DEC machine, the user should 

1. avoid using the non-ANSI Standard features of DECsystem-20 FORTRAN, and 

2. consider the accuracy and size of the numbers that the non-DEC machine is capable of handling. 

0.1.3 Using Floating Point DO Loops 

DECsystem-20 FORTRAN permits the user to employ non-integer single or double precision numbers as the 
parameter variables in a DO statement. The primary advantage of the foregoing is to enable the user to generate a 
wider range of values for the DO loop index variables which may, in turn, be used inside the loop for computations. 
Care should be taken in considering the loss of precision that may occur in this context. 

0.1.4 Computation of DO Loop Iterations 

The number of times through a DO loop is computed outside the loop and is not affected by any changes to the DO 
index parameters within the loop. The formula for the number of times a DO loop is executed is 

( 
m2 -m! +m3) MAX 1, m3 = Number of cycles 

D-I 



The values of the parameters (i.e., m 1, m2, m3) may be of any type; however, proper consideration must be given to 
the foregoing formula, particularly when using logicals. One iteration of each DO loop is always performed even if 
the result of the foregoing calculation is less than or equal to zero. 

D.l.S Subroutines - Programming Considerations 

The following items must be considered when preparing and executing subroutines: 

1. During execution, no check is made to see if the proper number of parameters were passed. 

2. If the number of actual arguments passed to a subroutine are less than the number of dummy arguments 
specified, the values of the unspecified arguments are undefined. 

3. If the number of actual arguments passed to a subroutine is greater than the number of dummy 
arguments given, the excess arguments are ignored. 

4. If an actual parameter is a constant and its corresponding dummy argument is set to another value, all 
references made to the constant in the calling program may be changed to the value of the dummy 
argument. 

5. No check is made to see if the parameters passed are of the same type as the dummy parameters. If an 
actual parameter is a constant and the corresponding dummy is of type real, be sure to include the 
decimal point with the constant. If the dummy is double precision, be sure to specify the constant with 
a "D". 

Examples 

If the function F(A) is called by inputting F(2) and A is type real, F interprets the integer 2 as an 
unnormalized floating point number. In this instance, F(A) should be called with F(2.0). 

Similarly, if the function Fl(D) is called by inputting Fl(2.5) and D is double precision, Fl assumes that 
its parameters have been specified with two words of precision and picks up whatever follows the 
constant 2.5 in core. The proper method is to use F 1(2.5DOO). 

NOTE 
No notice is given to the user if any of the situations 
described in items 1,2,3,4, and 5 occur. 

D.l.6 Reordering of Computations 

Computations that are not enclosed within parentheses may be reordered by the compiler. Sometimes it is necessary 
to use parentheses to prevent improper results from being obtained from a specific computation. 

For example, assuming that 

1. RLl represents a large number such that RLl *RL2 will cause an overflow condition, and 

1).2 



2. RSI is a very small number (i.e., less than I) the program sequence 

A = RSI *RLI *RL2 
B = RS2*RL2*RLI 

will not produce an overflow when evaluated left to right since the first computation in each expression 
(i.e., RSI *RLl and RS2*RL2) will produce an interim result that is smaller than either large number 
(RLl or RL2). 

However, the compiler will recognize RLl *RL2 as a common subexpression and generate the following sequence: 

temp = RLI *RL2 
A RSI *temp 
B RS2*temp 

The computation of temp will cause an overflow. 

The program sequence should be written in the following manner to ensure that the desired results are obtained: 

A = (RSI *RLl)*RL2 
B = (RS2*RL2)*RLl 

Computations may be reordered even when global optimization is not selected. 

D.1.7 Dimensioning of Fonnal Arrays 

When an array is specified as a formal parameter to a subprogram unit, it is necessary to indicate to the compiler that 
the parameter is an array. The user must dimension the array in a specification statement. This is the only way the 
compiler is able to distinguish a reference to such an array from a function reference. Designating the array with a 
dimension of I has become a common practice among users. 

Example 

SUBROUTINE SUB I (A,B) 
DIMENSION A(I) 

There are disadvantages to using the above technique because the dimension information provided is not adequate in 
some cases, specifically 

0-3 



I. Reading or writing the array by name. 

DIMENSION ARRAY (10) 
READ (I) ARRAY 

This is a binary read that will read 10 words into ARRAY. 

SUBROUTINE SUB 1 (A) 
DIMENSION A(I) 
READ(I)A 

This binary read will cause 1 word to be read into A. 

2. Reading the array as a format 

SUBROUTINE SUB2 (FMT) 
DIMENSION FMT(I) 
READ (I,FMT) 

This will cause 1 word of the array FMT to be written over with the characters read from the record on 
unit 1. 

When using the /DEBUG:BOUNDS compilation switch, the dimension information used is that which is specified in 
the array declaration. 

SUBROUTINE DO IT(A) 
DIMENSION A{l) 
A(2) = 0 

The reference to A(2) will cause the out-of-bounds warning message to be generated. 

0.2 DECsystem-20 FORTRAN GLOBAL OPfIMIZA nON 

The user has the option of invoking a global optimizer during compilation. This optimizer treats groups of 
statements in the source program as a single entity. The purpose of the global optimizer is to prepare a more 
efficient object program that produces the same results as the original unoptimized program but takes significantly 
less execution time. The output of the lexical and syntax analysis phase of the compiler is developed into an 
optimized source program equivalent (in results) to the original. The optimized program is then processed by the 
standard compiler code generation phase. 

0.2.1 Optimization Techniques 

0.2.1.1 Elimination of Redundant Computations - Often the same subexpression will appear in more than one 
computation throughout a program. If the values of the operands of such a common expression are not changed 
between computations, the subexpression may be written as a separate arithmetic expression, and the variable 

D4 



representing its resultant may then be substituted where the subexpression appears. This eliminates unnecessary 
recomputation of the subexpression. For example, the instruction sequence 

A= B*C+E*F 

H = A+G-B*C 

IF((B*C)-H) 10,20,30 

contains the subexpression B*C three times when it really needs to be computed only once. Rewriting the foregoing 
sequence as 

T= B*C 
A= T+E*F 

H= A+G-T 

IF((T)-H) 10,20,30 

eliminates two computations of the subexpression B*C from the overall sequence. 

Decreasing the number of arithmetic operations performed in a source program by the elimination of common 
subexpressions shortens the execution time of the resulting object program. 

D.2.1.2 Reduction of Operator Strength - The time required to execute arithmetic operations will vary according 
to the operator(s) involved. The hierarchy of arithmetic operations according to the amount of execution time 
required is 

MOST TIME OPERATOR 

J 

** 

/ 
* 

LEAST TIME +-, 

During program optimization, the global optimizer replaces, where possible, I some arithmetic operations that 
require the most time with operations that require less time. For example, consider the following DO loop that is 
used to create a table for the conversion of from 1 to 20 miles to their equivalents in feet. 

DO 10 MILES = 1,20 
10 IFEET(MILES) = 5280*MILES 

INumerical analysis considerations severely limit the number of cases where it is possible. 

0-5 



The execution time of the foregoing loop would be shorter if the time consuming multiply operation (Le., 
5280*MILES) could be replaced by a faster operation. Since the variable MILES is incremented by 1 on each 
iteration of the loop, the multiply operation may be replaced by an add and total operation. 

In its optimized form, the foregoing loop would be replaced by a sequence equivalent to 

K=5280 
DO 10 MILES = 1,20 
IFEET(MILES) = K 

10 K=K+5280 

In the optimized form of the loop, the value of K is set to 5280 for the first iteration of the loop and is increased by 
5280 for each succeeding iteration of the loop. 

The foregoing situation occurs frequently in subscript calculations which implicitly contain multiplications whenever 
the dimensionality is two or greater. 

D.2.1.3 Removal of Constant Computation From Loops - The speed with which a given algorithm may be 
executed can be increased if instructions and/or computations are moved out of frequently traversed program 
sequences into less frequently traversed program sequences. Movement of code is possible only if none of the 
arguments in the items to be moved are redefined within the code sequences from which they are to be taken. 
Computations within a loop comprised of variables or constants that are not changed in value within the loop may 
be moved outside the loop. Decreasing the number of computations made within a loop will greatly decrease the 
execution time required by the loop. 

For example, in the sequence 

DO 10 1=1,100 
10 F=2.0*Q* A(I)+F 

the value of the computation 2.0*Q, once calculated on the first iterations, will remain unchanged during the 
remaining 99 iterations of the loop. Reforming the foregoing sequence to: 

QQ= 2.0*Q 
DO 10 1=1,100 

10 F=QQ* A(I)+F 

moves the calculation 2.0*Q outside of the scope of the loop. This movement of code eliminates 99 multiply 
operations. 

In addition it is possible to remove entire assignment statements from loops. This action can be easily detected from 
the macro expanded listings. The internal sequence number remains with the statement and appears out of order in 
the leftmost column of the macro expanded listing (LINE). 

0-6 



0.2.1.4 Constant Folding and Propagation - In this method of optimization, expressions containing determinate 
constant values are detected and the constants are replaced, at compile time, by their defined or calculated value. 
For example, assume that the constant PI is defined and used in the following manner: 

PI = 3.14159 

x = 2*PI*Y 

At compile time, the optimizer will have used the defined value of PI to calculate the value of the subexpression 
2*PI. The optimized sequence would then be 

PI = 3.14159 

x = 6.28318*Y 

thereby eliminating a multiply operation from the object code program. 

The computation of determinate constant values at compile time is termed "folding"; the use of the defined value of 
a constant for replacement purposes throughout a program sequence is termed "propagation of the constants". The 
execution time saved by the foregoing type of compile time optimization is particularly important when the 
modified instruction occurs in a loop. 

0.2.1.5 Removal of Inaccessible Code - The optimizer detects and eliminates any code within the source program 
that cannot be accessed. In general, the foregoing condition will not exist since programmers will not normally 
include such code in their programs; however, inaccessible code may appear in a program during the debugging 
process. The removal of inaccessible code by the optimizer will reduce the size of the optimized object program. A 
warning message is generated for each inaccessible line removed. 

0.2.1.6 Global Register Allocation - During the compilation of a source program the optimizer controls the 
allocation of registers to minimize computation time in the optimized object program. The intent of the allocation 
process is to minimize the number of MOVE and MOVEM machine instructions that will appear in the most 
frequently executed portions of the code. 

0.2.1.7 I/O Optimization - Every effort is made to minimize the number of calls required into the FOROTS 
system. This is done primarily through extensive analysis of implied DO loop constructs on READ, WRITE, 
ENCODE, DECODE and REREAD statements. The formats of these special blocks are described in AppendiX E. 
These optimizations reduce the size of the program (argument code plus argument block size is reduced) and greatly 
improve the performance of programs that use implied DO loop I/O statements. 

1).7 



0.2.1.8 Uninitialized Variable Detection - A warning message is generated when a scalar variable is referenced 
before it could possibly have received a value. 

0.2.1.9 Test Replacement - If the only use of a DO loop index is to reduce operator strength (D.2.1.2) and the 
loop does not contain exits (GO TO's out of the loop), the DO loop index is not needed and can be replaced by the 
reduced variable. This actually occurs quite often in double precision array subscript computations. 

For example: 

DO 10 1=1,10 
K=K+7*1 

10 CONTINUE 

Reduction of operator strength and test replacement together transform this loop into 

DO 10 1=7,70,7 
K=K+I 

10 CONTINUE 

Although this particular example is trivial, the actual situation occurs frequently in subscript computation. 

0.2.2 Improper Function References 

The ANSI FORTRAN standard prohibits the use of a function's reference that has side effects that will influence the 
statement in which the function is referenced (such as defining or redefining other elements in the statement). The 
compiler depends on strict adherence to the foregoing rule. The generated object program may not yield the desired 
results if this rule is violated. 

0.2.3 Programming Techniques for Effective Optimization 

The following recommendations, when observed during the coding of a FORTRAN source program, improve the 
effectiveness of the optimizer: 

I. DO loops with an extended range should not be used. 

2. Specify label lists when using assigned GO TO's. 

3. Nest loops so that the innermost index is the one with the largest range of values. 

4. Avoid the use of associated input/output variables. 

s. Avoid unnecessary use of COMMON and EQUIVALENCE. 

0.3 INTERACTING WITH NON-OECsystem-20 FORTRAN PROGRAMS ANO FILES 

WARNING 
FOROTS assumes it has complete control of the object time 
environment. Executing monitor calls in a MACRO subroutine 
may produce unexpected results. The following guidelines 
must be observed: 

D-8 



1. Do not manipulate any file FOROTS has OPEN. 
This includes implicit manipulation by such calls 
as RESET, CLOSF, CLZFF, RLJFN etc. 

2. Do not change the state of the software interrupt 
system. Do not use the following monitor calls 
SIR, EIR, DIR, AIC, lIC, DIC, SIRCM, DEBRK, 
ATI, DTI, and CIS. 

3. Do not generate any software interrupts. 
4. Do not attempt to create processes. 

D.3.1 Calling Sequences 

The standard procedures for writing subroutine calls for the DECsystem-20 are described in the following 
paragraphs. 

1. Procedure 

a. The calling program must load the righ t half of accumulator (AC) 16 with the address of the first 
argument in the argument list. 

b. The left half of AC 16 must be set to zero. 

c. The subroutine is then called by a PUSHJ instruction to AC 17. 

d. The returns will be made to the instruction immediately after the PUSHJ 17 instruction. 

e. If the jDEBUG:BOUNDS option of the FOROTS trace facility is being used, the calling sequence 
must be 

MOVEI16,AP 
PUSHJ 17,F 

where AP is the pointer to the argument list. If the trace facility is to be used, the word preceding 
the first word of an entry point should have its name in sixbit. 

2. Restrictions 

a. Skip returns are not permitted. 

b. The contents of the pushdown stack located before the address specified by AC 17 belongs to the 
calling program; it cannot be read by the called subprogram. 

c. FOROTS assumes that it has control of the stack; therefore, the user must not create his own 
stack. The FOROTS stack is initialized by 

JSP 16,RESET. 

or the library routine 

CALL RESET. 

D-9 



0.3.2 Accumulator Usage 

The specific functions perfonned by accumulators (AC) 17,16,0 and 1 are as follows: 

1. Pushdown Pointer ~ AC 17 is always maintained as a pushdown pointer. Its right half points to the last 
location in use on the stack and its left half contains the negative of the number of (words-I) allocated 
to the unused remainder of the stack (a trap occurs when something is pushed into the next to last 

location. A positive left half is not permitted. 

2. Argument List Pointer ~ AC 16 is used as the argument pointer. The called subprogram does not need to 
preserve its contents. The calling program cannot depend on getting back the address of the argument 
list passed to the callee. AC 16 cannot point to the AC's or to the stack. 

3. Temporary and Value Return Registers ~ AC 0 and 1 are used as temporary registers and for returning 
values. The called subprogram does not need to preserve the contents of AC 0 or 1 (even if not returning 
a value). The calling program must never depend on getting back the original contents of the data passed 
to the called subprogram. 

4. Returning Values ~ At the option of the designer of a called subprogram, a subroutine may pass back 
results by modifying the arguments, returning a single precision value in AC 0 or a double precision or 
complex value in AC 0 and 1. A combination of the above may be used. However, two single precision 
values cannot be returned in AC 0 and 1 since FORTRAN would not be able to handle it. 

5. Preserved AC's ~ DECsystem-20 FORTRAN FUNCTION subprograms preserve AC's 2~15; subroutine 
subprograms do not. 

The design of the called subprogram cannot depend on the contents of any of the AC's being set up by 
the calling subprogram, except for AC's 16 and 17. Passing information must be done explicitly by the 
argument list mechanism. Otherwise, the called subprograms cannot be written in either DECsystem-20 
FORTRAN or COBOL. 

0.3.3 Argument Lists 

The format of the argument list is as follows: 

arg count word 
arg list addr. ~ ~ ~ first arg entry 

second arg entry 

last arg entry 

The format of the arg count word is': 

bits o~ 17 
bits 18~35 

These contain -n, where n is the number of arg entries. 
These are reserved and must be O. 

D-IO 



The format of an arg entry is as follows (each entry is a single word): 

bits 0-8 
bits 9-12 
bit 13 
bits 14-17 
bits 18-35 

Reserved for future DEC development (set to 0 for now). 
Arg type code. 
In direc t bit if desired. 
Index field, must be 0 for present. 
Address of the argument. 

The following restrictions should be observed: 

I. Neither the argument lists nor the arguments themselves can be on the stack. This restriction is imposed 
so that the stack can be moved. The same restriction applies to any indirect argument pointers. 

2. The called program may not modify the argument list itself. The argument list may be in a 
write-protected segment. 

Example 

Note that the arg count word is at position -I with respect to the contents of ACI6. This word is always 
required even if the subroutine does not handle a variable number of arguments. A subroutine that has 
no arguments must still provide an argument list consisting of two words (i.e., the argument count word 
with a 0 in it and a zero argument word). 

MOVEI 16, AP 
PUSH] 17,SUB 

;ARGUMENT LIST 
-3,,0 

;SET UP ARG POINTER 
;CALL SUBROUTINE 
;RETURN HERE 

AP: A 
B 
C 

;SUBROUTINE TO SET THIRD ARG TO SUM OF FIRST TWO ARGS 

SUB; MOVE 
ADD 
MOVEM 
POP] 

T,@0(16) 
T,@1(16) 
T,@2(16) 
17, 

;GET FIRST ARG 
;ADD SECOND ARG 
;SET THIRD ARG 
;RETURN TO CALLER 

D-II 



D.3.4 Argument Types 

Table D-l 
Argument Types and Type Codes 

Type Code Description 
FORTRAN Use COBOL Use 

0 Unspecified Unspecified 
FORTRAN Logical Not applicable 

2 Integer I-word COMP 
3 Reserved Reserved 
4 Real COMP-I 
5 Reserved Reserved 
6 Reserved Reserved 
7 Label Procedure address 

10 Double real Not applicable 
II Not applicable 2-word COMP 
12 Reserved Reserved 
13 Reserved Reserved 
14 Complex Not applicable 
IS Not applicable Byte string descriptor 
16 Reserved Reserved 
17 ASCIZ string Not applicable 

Literal arguments are permitted, but they must reside in a writable segment. This is because the FORTRAN compiler 
makes a local of all non-array elements and copies all formals back to the caller's arguments. All unused type codes 
are reserved for future Digital development. 

D.3.5 Description of Arguments 

The types of the arguments that may be passed are: 

1. Type 0 - Unspecified 

The calling program has not specified the type. The called subprogram should assume that the argument 
is of the correct type if it is checking types. If several types are possible, the called subprogram should 
assume a default as part of its specification. If none of the above conditions are true, the called 
subprogram should handle the argument as an integer (type 2). 

2. Type 1 - FORTRAN logical 

A 36-bit binary value containing 0 or positive to specify .FALSE. and negative to specify .TRUE .. 

3. Type 2 - Integer and l-word-COMP 

A 36-bit 2's complement signed binary integer. 

4. Type 4 - Real and COMP-I 

A 36-bit DECsystem-l0 format floating point number. 

bit 0 
bits 1-8 
bits 9-35 

sign 
excess 128 exponent 
mantissa 

D-12 



5. Type 6 - Label and procedure address 

A 36-bit unsigned binary value. 

6. Type 7 - Label and procedure address 

A 23-bit memory address. 

bits 0-12 
bit 13 
bits 14-17 
bits 18-35 

7. Type 10 - Double real 

always 0 
indirect flag 
o 
the address 

A double precision floating point number. 

8. Type II - 2-word COMP 

A 2-word (n-bit) 2's complement signed binary integer. 

word I, bit 0 
word I, bits 1-35 
word 2, bit 0 
word 2, bits 1-35 

9. Type 12 - Double octal 

A n-bit unsigned binary value. 

10. Type 14 - Complex 

sign 
high order 
same as word I, bit 0 
low order 

A complex number represented as an ordered pair of 36-bit floating point numbers. The first of which 
represents the real part and the second of which represents the imaginary part. 

II. Type 15 - Byte String Descriptor 

The format of the byte string descriptor is 

word I: 
word 2: 

ILDB-type pointer (Le., aimed at the byte preceding the first byte of the string) 
EXP byte count 

The by~e descriptor may not be modified by the called program. The byte string itself must consist of a 
string of contiguous bytes of a uniform size. The byte size may be any number of bits from I to 36. The 
byte count must be large enough to encompass 256K words of storage, i.e., 24 bits for I-bit bytes. 
(Refer to the COBOL Reference Manual.) 

12. Type 17 - ASCIZ string 

A string of contiguous 7-bit ASCII bytes left justified on the word boundary of the first word and 
terminated by a null byte in the last word. The length of the string may be from 1 to 256K words. 

D.3.6 Converting Existing MACRO Libraries for Use with DECsystem-20 FORTRAN 

The following simple example illustrates the FORTRAN calling sequence. 

0-13 



Ii' -
"'"' 

MA ll~ • t.Al rUKlkAi. v.4AlJl/) /i\l/ivl 2o-JAi,,-/o 1 1 : 0 ':1 PAGI:.. 1 

00100 " '- AM t.XAlv1PLI:.. Ut< A CALL TO A SUtH<UUl'li ... 1:.. W L lit A vAK1I:..T:i m' Ak(;UMl:..idS 
00200 
003uO 
00400 
00:>00 
OObUO 
OU/OO 
OO~OO 

UO<.JOO 
01000 
01100 
01200 
0130U 
u1400 
01~UO 

01000 

" '-
" '-

" '-,.. 
'-

'-,.. 
'-

" '-

UuUnLt. PHt.Cl~lUh u~ 

I.; HI t. I~ ~ I U N I:) l 1 U ) 
lrlt. AH~UMI:..~lb Ak~: 

1. kl:..AL ilAkiAbLJ::: 
2. A K k A i jI; A I'll:.. 
J. AkkAi ~LI:..MI:..Nl HI:..~'I:..HI:..NCI:.. 

4. INTI:..(;l:..k ~LJ:::MI:..~l 

~. U LJ U U L I:.. t' tH'. CIS 1 d I~ V A k 1 A b L I:.. 
o. lJCIAL CUN~lAf'd 

1. L,l H.HAL 

CALL 5UUl(A,b,blll.K.DP."111.'AbC·} 

I:..I\jLJ 

SUnPRUGkA~S C~LLI:..U 

SUBl 

SCALAkS ANI.; AHkA:iS II *" NUl:.. X t' LIe 11 0 U" I N 1 11 UN - " *" ilJ U T K I:.. t' I:.. k t. N C I:.. [) 

OP 1 *r\ 3 b 4 *A 16 *1 

lU'iPUkAK 11:..5 

.UOUOO ).0 

1/ 



Llr4~ LlJC LhUbL l;t.Nt.KA H,D CUIH~ 

0 J~CL 0.0 
1 J~P 1h.~I::SI::T. 

2 0.0 
14UO j till! V t. 7..1 

4 r·iU 111::.1 :i..ti-teL) 
~ l'iiuVl:;tJi ') •• 00000 
b Muvt;l Ifl.2M 
7 PU':;HJ t., .SUIH 

,... 1U f<lUVl:;l 1 b. 1 M 
11 PUShJ 1 ., • I:: X 1'1' • 

AHGUMI::NI tiLUCKS: 

12 O •• 0 
13 UVI: u •• 0 
14 77"1"771 •• 0 

Ii' 1~ i ,-I : LOO •• A - 1 b :£00 •• b VI 

1 I I./.u ••• l;()O()U 

.!O iUU •• 1\ 

21 'lUll •• UP 

2'2. 0 •• (UOOOOOOO0777) 

23 74U •• l4Uh()~03:1.UI0UJ 

MA 1 [~ • I ~U ~KHUkS Ut.lt.CllU J 



9 ..-
0\ 

SUDl t:A1 

OOIOa 
OOlaO 
00300 
Oll4UO '"' .. 
(JO~OU '"' .. 
OObuU '"' .. 
OO/uO " .. 
008uO 
OO':JOO 
alOOO 
OlIVO 
u12ull 

r' U K H< A N v. '* JI 13 i/) /1\ 1/ ~j :; 6 -.J At. - 7 b 11;0'1 PAC; t; L. 

SUbKUU1INt: SUbl(HEAL1.AK~~AM.Akk~:LM.IN11.ilULPKC.uCl.Ll1) 
UU~UL~ Pk~C1S1UN UuLPkC 
UIM~NSluN AK~NAM(10J 

1 ttl S SUb K U U '1 lJ~ t:. j L L U S T k A n: SId ~ U S t. At~ LJ i-1 U LJ HIe A T 1 U N l.J r 
s u f.', t:. U f I'ti t. A K C U i~i un T:l P t. S 

K~AL 1 =Ar< ~ tLI"l 
U = A K 't J~ A 1-1 ( 1 [\111 ) 

UC'1'="7/7 
kt:IUKN 
t. r~ 0 

SUdPkUGHAMS C~LLt.U 

seA L A K S A I'IJ D A tU{ A f S l " ... II I~ U t:. X P LIe 1 T [) ~~ F Ud 1 1 UN - "~,, I. lH H U' t. K t Net: u J 

%Ll'l' 
... 11~ 11 :, 

TtliltJLlKAh l r~S 

*uCf 1 
AFYI'.AI"i b 

*0 2 *Ak)' tL,'1 3 ~uuLPHC *R!:..ALI 4, 



L 11~ t: LUC LAot:L (, b~ I:; K Ali:. U C U u E 

0 b3bj4:t •• 7.10uOO 

SUtH: 
IUU U t-IG V I:; O.(clU(16) 

1 j\'lUVi:.r1 O.kEALl 
I- r-ilJlJ E..l () • Cd 1 ( 1 b ) 
3 f<IUV t:.iI'l O.ARYNAM 
4 rJlU V I:; O.{cli(lb) 
~ t"ILJvi:.f.'i O. AkYr~LM 
b lV1LJ II i:; t.td3(1td 
"l I'JU V i:.~1 1.1NTl 
10 iVlulii:. L.{cI~(lbj 

1 1 t-l (j Ii I:; (>1 ").UCT 
bOv 12 31v'1: 

fl:lulii:.fI:'l 0.kt:AL1 
~OLi 1.3 i-tU \/ i:. /..lNTl 

14 AUU 7. • Ak'tNAfvl 
9 Ij l"IUVi:. /..777711(2J --...l Ib l-tU iJ i:.1>1 ").0 

100U 1 "/ rilLJ v t:.l :1..771 
20 i'i U VI:. i'l 7..UCT 

!LUU Ll 2;\1 : 
fl:Wv'1:; O.Ht:.ALl 

1.."2. f<IU Ii t:.1"' O.(dO(lb) 

1..3 ;..,u 'v t. u.UCT 
:2 ,+ i"IU'v 1:.1<1 (1.ld~(lbJ 

I.';) t-'LH·'J 1 I • U 

A k t; Ll r4 t: i~ f u I , U L K S : 

).0 lJ • ,0 
L I 1 i-l : O •• U 

Subl l ;HJ i:.i<t<LJK::' ullt.CJt.U J 



0.3.7 Interaction with COBOL 

The FORTRAN programmer may call COBOL programs as subprograms and, conversely, the COBOL programmers 

may call FORTRAN programs as subprograms. 

In either of the foregoing cases, I/O operation must not be perfonned in the called subprogram. 

0.3.7.1 Calling FORTRAN Subprograms from COBOL Programs - COBOL programmers may write subprograms 
in FORTRAN to utilize the conveniences and facilities provided by this language. The COBOL verb ENTER is used 
to call FORTRAN subroutines. The form of ENTER is as follows: 

1 identifier-I ) [ 1 identifjer-2 )] 
ENTER FORTRAN program name [USING literal-I , literal-2 

procedure name-I procedure-2 

The USING clause of the foregoing fonns moves the data within the COBOL program which is to be passed to the 
called FORTRAN subprogram. The passed data must be in a form acceptable to FORTRAN. 

The calling sequence used by COBOL in calling a FORTRAN subprogram is: 

MOVEI 16, address of first entry in argument list 
PUSHJ 17, subprogram address 

If the USING clause appears in the ENTER statement, an argument list is created which contains an entry for each 
identifier or literal in the order of appearance in the USING clause. It is preceded by a word containing, in its left 
half, the negative number of the number of entries in the list. If no USING clause is present, the argument list 
contains an empty word and the preceding word is set to O. Each entry in the list is one 36-bit word at the form: 

IO ___ O __ 819~y;,12I13 ___ - ------,~d~,~-----------351 
Bits 0-8 are always O. 

Bits 9-12 contain a type code that indicates the USAGE of the argument. 

Bits 13-35 contain the address of the argument or the first word of the argument; the address can be indexed 
or indirect. 

The types, their codes, how the codes appear in the argument list, and the locations specified by the addresses are 
described as follows: 

a. For I-word COMPUTATIONAL items 

CODE: 2 
IN ARGUMENT LIST: XWD 100, address 
ADDRESS: that of the argument itself 

b. For 2-word COMPUTATIONAL items 

CODE: II 
IN ARGUMENT LIST: XWD 440, address 
ADDRESS: that of the high-order word of the argument 

c. For COMPUTATIONAL-I items 

CODE: 4 
IN ARGUMENT LIST: XWD 200, address 
ADDRESS: that of the argument itself 

D-18 



d. For DISPLAY-6 and DISPLAY-7 items 

CODE: 
IN ARGUMENT LIST: 
ADDRESS: 
WORDl: 
WORD2: 

15 
XWD 640, address 
that of a 2-word descriptor for the argument 
a byte pointer to the identifier or literal 
bit ° is 1 if the item is numeric 
bit 1 is 1 if the item is signed 
bit 2 is 1 if the item is a figurative constant (including ALL) 
bit 3 is 1 if the item is a literal 
bits 4 through 11 are reserved for expansion 
bit 12 is 1 if the item has a PICTURE with one or more Ps just before 

the decimal point (e.g., 99PPV) 
bits 13 through 17 are the num ber of decimal places. If bit 12 is 1, this 

is the number of Ps. 
bits 18 through 35 contain the size of the item in bytes. 

e. For procedure names (which cannot be used for cal1s to COBOL subprograms) 

CODE: 
IN ARGUMENT LIST: 
ADDRESS: 

7 
XWD 340, address 
that of the procedure 

The return from a subprogram is POP] 17 statement after call. 

D.3.7.2 CaIling COBOL Subroutines from FORTRAN Programs - To call COBOL subroutines use the standard 
subroutine calling Mechanism: 

CALL CaBaLS (args ... ) 
X=COBOLS (args ... ) 

subroutine call 
function call 

The COBOL subroutine must have been compiled using the COBOL compiler described in the COBOL 
Reference Manual. 

D-19 





APPENDIX E 
FOROTS 

This appendix describes the facilities FOROTS provides for the FORTRAN user. FOROTS implements all standard 
FORTRAN I/O operations as set forth in the "American National Standard FORTRAN, ANSI X3.9-l966." In 
addition it provides the user with capabilities and programming features beyond those defined in the ANSI standard. 

The primarY function of FOROTS is to act as a direct interface between user object programs and the 
DECsystem-20 monitor during input and output operations. Other capabilities include 

l. Job initialization 
2. Channel and memory management 
3. Error handling and reporting 
4. File management 
5. Formatting of data 
6. Mathematical library 
7. User library (non-mathematical) 
8. Specialized applications packages 
9. Overlay facilities 

E.I FEATURES OF FOROTS 

Many specific user features are described briefly in the following list; more detailed information concerning the 
implementation of these features is given later in this appendix. 

I. A user program may run in either batch or timesharing mode without changing the program. All 
differences between batch mode and timesharing mode operations are resolved by FOROTS. 

2. User programs may access both directory and non-directory devices in the same manner. 

3. FOROTS helps provide complete data file compatibility between all DECsystem-20 devices. 

4. FOROTS does not require line-blocking (a requirement that each output buffer must contain only an 
integral number of lines). 

5. Up to 15 data fIles may be accessed simultaneously. Any number or all of the open data fJIes may be 
accessed randomly. 

6. FOROTS treats devices located at remote stations similarly to local devices. 

7. Programs written for magnetic tape operations will run correctly on disk under FOROTS supervision. 
FOROTS simulates the commands needed for magnetic tape operations. 

E-! 



8. Object program device and file specifications may be changed or specified via a FOROTS interactive 
dialogue mode. 

9. Non-FORTRAN binary data files may be read in image mode by FOROTS. 

10. FOROTS provides interactive program/operating system error processing routines. These routines permit 
the user to route the execution of the program to specific error processing routines whenever designated 
types of errors are detected. 

II. An error traceback facility for fatal errors provides a history of all subprogram calls made back to the 
main program together with the address of the point at which the error occurred. 

12. FOROTS provides a trap handling system for arithmetic functions, including default values and error 
reports. 

13. ASCII and binary records may be mixed in the same file and both may be accessed in either sequential 
or random access mode. 

14. FOROTS permits the user program to switch from READ to WRITE on the same I/O device without 
loss of data or buffering. 

15. Although primarily designed for use with the DECsystem-20 FORTRAN compiler, FOROTS may also 
be used as an independent I/O system. FOROTS may be used as an I/O system for MACRO object 
programs as well as for FORTRAN. 

E.2 ERROR PROCESSING 

Whenever a run-time error is detected, the FOROTS error processing system takes control of program execution. 
This system determines the class of the error and either outputs an appropriate message at the controlling user 
terminal or branches the program to a predesignated processing routine. 

E.3 INPUT/OUTPUT FACILITIES 

I/O data channel and access modes are individually described in the following paragraphs. 

E.3.1 Input/Output Channels Used Internally by FOROTS 

Fifteen software channels (1-15) are available in I/O operations. Software channel 0 is reserved for the following 
system functions: 

1. The printing of error messages, and 
2. The loading and initialization of FOROTS 

Software channels 1 through 15 are available for user program data transfer operations. When a request is made for a 
data channel, a table is scanned until a free channel is found. The first free channel is assigned to the requesting 
program; on completion of the assigned transfer, control of the software channel is returned to FOROTS. 

E.3.2 File Access Modes 

Data may be transferred between processor storage and peripheral devices in two major modes - sequential, and 
random. 

E.3.2.1 Sequential Transfer Mode - In sequential data transfer operations, the records involved are transferred in 
the same order as they appear in the source file. Each I/O statement executed in this mode transfers the record 
immediately follOWing the last record transferred from the accessed source me. A special version of the sequential 

E-2 



mode (referred to as Append) is available for output (write) operations. The special Append mode permits the user 
to write a record immediately after the last logical record of the accessed file. During the Append operation, the 
records already in the accessed file remain unchanged; the only function performed is the appending of the 
transferred records to the end of the file. 

Transfer modes (other than SEQINOUT) must be specified by setting the ACCESS option of a FORTRAN OPEN 
statement to one of several possible arguments. For the sequential mode, the arguments are 

ACCESS = 'SEQIN' (sequential read-only mode) 
ACCESS = 'SEQOUT' (sequential write-only mode) 
ACCESS = 'SEQINOUT' (sequential read followed by a sequential write) 
ACCESS = 'APPEND' (sequential Append mode) 

E.3.2.2 Random Access Mode - This transfer mode permits records to be accessed and transferred from a source 
file in any desired order. Random access transfers must be made between processor memory and a device that 
permits random addressing operations (i.e., disk) to files that have been set up for random access. Files for random 
access must contain a specified number of identically-sized records which may be individually accessed by a record 
number. 

Random access transfers may be carried out in either a read/write mode or a special read-only mode. Random 
transfer modes must be specified by setting the ACCESS option of an OPEN statement to one of several possible 
arguments. 

ACCESS = 'RANDOM' (random read/write mode) 
ACCESS = 'RANDIN' (random special read-only mode) 

E.4 ACCEPTABLE TYPES OF DATA FILES AND THEIR FORMATS 

The types of data files that are acceptable to FOROTS are individually described in the following paragraphs. 

E.4.1 ASCII Data Files 

Each record within an ASCII data file consists of a set of contiguous 7-bit characters; each set is terminated by a 
vertical paper-motion character (i.e., Form Feed, Vertical Tab, or Line Feed). All ASCII records start on a word 
boundary; the last word in a record is padded with nulls, if necessary, to ensure that the record also ends on a word 
boundary. Logical records may be split across 128-word blocks. There is no implied maximum length for logical 
records. 

NOTE 
On sequential input, FOROTS does not require conformation 
to word boundaries; it reads what it sees; therefore, any file 
that is written by FOROTS will conform to the foregoing 
format requirements. 

E.4.2 FORTRAN Binary Data Files 

Each logical record in a FORTRAN binary data file contains data that may be referred to by either a READ or 
WRITE statement in the program being executed. A logical record is preceded by a control word and may have one 
or more control words embedded within it. In FORTRAN binary data files, there is no relationship between logical 
records and physical device block sizes. There is no implied maximum length for logical records. 

E-3 



E.4.2.1 Format of Binary Files - A FOROTS binary me may contain three forms of Logical Segment Control 
Words (LSCW). These LSCWs give FOROTS the ability to distinguish ASCII files from binary files. 

START 
CONTINUE 
END 

LSCW 
001+ 
002 
003+ 

the number of words in the segment (exclusive of any "END" LSCWs) 
indicates that the segment of a 128-word block boundary continues 
number of words in the preceding segment including LSCWs. 

If the access specified for a file (through the OPEN statement ACCESS = parameter) is 'SEQIN', 'SEQOUT', or 
'SEQINOUT', all three LSCWs may appear in a record. If the access specified is 'RANDIN', or 'RANDOM', all 
records are of the same length, and there are no CONTINUE LSCWs. 

The following examples illustrate the LSCW. The random access binary file contains only 001 and 003 LSCW's. 

c 
c 

~OOK AT A BINARY ~l~E AND SEE THE LO~leAL SEGMENT 
CONTROL WOROS. 

OP[N(UNIT=1,ACCESS='RANDOM',MODE~;B!NA~Y', 

1 RECORD=~0~) 

1=5 
WRIT£(1'~) (I, J=1,10~) 

J:' 
WRIT[(l'2) (J,K=1,10~) 
ENO 

E-4 



013 Nlf210 0rU0a0 o 13 III 14 5 - Number of words 021~064 00,,0\!1QJ ~0"0QJ5 
00 7001 ~QJ0QJa0 00"0"5 in record counting 0~H~065 000000 0"'0121QJ5 
000002 000000 0000QJ5 END LSCW or the 021'1066 000000 aOrUl05 
00k.;003 001fJ0~0 121002105 number of words 00,~067 ((J0I1H~~QJ ~0QJ~05 

following this 
00~~ra04 0000210 ""0005 word to the 021;4010 2)0,,0"0 0fZ!0"05 
00l0"5 002'0"0 0"'QJ~QJ5 END LSCW. 00~'071 0000210 2!"'00QJ5 
00012106 2""'000 QJ"'0"05 0rlH'012 "0"0eQJ 0"0QJQJ5 
000"'07 ~tH'JIi~aQJ 0000QJ5 180~073 000000 01lJ0005 
00e~10 00ra0aa ,,0QHH~5 180la014 0rU000 01lJ00QJ5 
000011 0~H'000 QJ0QJ005 000075 0018QJ0QJ 0"00QJ5 
00;~012 000000 0"01305 00.·1076 00rlJ000 ,,2!0"fZl5 
00~f313 01300"0 0"130135 00(11377 0"0""0 0000135 
00~;"14 2'1300013 ,,00005 0001013 0ra00~0 ~000f35 

0002115 0ra~J000 0"0005 00;~101 i2lra0 13 " 0 0°"0135 
0"H~ra16 0000f1!0 000"05 0" <~ Ul2 "0"0"'0 00QJ005 
"0l017 0QJet000 0t'!QJQJQJ5 00~Ul3 0QJ0~0QJ 21"1301215 
r2l0l020 f30taf30QJ QJEI(i"H~5 000104 000021QJ 0"00QJ5 
r2l0;~021 0QJ00QJI2I ~210005 007.105 01210"210 000QJ05 
1210~~022 00000QJ 211110"05 210?11?16 IZlQJ000QJ 0fZl00QJ5 
00~~023 0QJI2J00QJ 012!01?105 210:Hf37 0QJ01210QJ 001210QJ5 
210 :~024 00210~QJ ,,0"0QJ5 00(l11ra eJQJ2I0~QJ a"0005 
r2l0~025 210210210 0fZl"005 2100111 2lQJ0210QJ 0012101215 
0'H~026 00012100 2012121QJ5 00~112 000021QJ 12l0QJ005 
00.1027 'HH!0 riJQJ 2112!00QJ5 00(';113 0ra000QJ 021 QJQJ QJ 5 
00ll2l30 00000QJ 121""005 0eH~114 0QJ000121 21"0005 
"0J031 r?J000 12113 0"02105 210~115 0130211210 21"00QJ5 
00~032 00000121 0002105 000116 000"0121 ,,0 o 'HI 5 
00?-033 00000121 0fZl0005 00L~117 0021121013 00121121QJ5 
00/034 o "HI " "0 00QJ"05 12J0k112121 "0 1210 fl!12I "r?J"0QJ5 
r2l02035 "02100QJ 00QJ005 O00121 012112112100 o "'IU QJ5 
00('1336 00210"0 QJ0QJ0QJ5 000122 0QJ00"0 "Ill QJ 2105 
r2l~H'037 0QJ0021QJ 00"2105 000123 0QJ012J0QJ ~001(1QJ5 

00J040 0000~121 00021QJ5 000124 00001210 0"0005 
001041 000021QJ 00"0QJ5 f30C125 00"00121 0"I2IQJ05 
000042 0121el0"0 0"01305 "0~126 121",,,,, QJ0QJ005 
00"043 00 121121 21 fZl el"QJ0QJ, 1800127 0"'"'' QJ00005 
00~12I44 012112121121" 000QJQJ5 000130 121"0000 0r2l10,,5 
00?045 121212101210 0000"5 000131 1210000" 13010"5 
0"~~046 000el0QJ 001005 000132 010QJQJI al!l00QJ5 
003047 :110002'121 o 211210 fZl5 00121133 121012JQJe0 0~0210' 
00~~12150 2100000 1210"el05 00QJ13e1 2I0QJQJ00 0121"015 
0'H~05" 01 0121 r2I QJ ""0QJ05 00013, QJ000~12I 0"02105 
0,,"QJ52 QJI0"'~0 QJ2II2I2I05 QJ00136 000QJ00 000005 
00 ~~053 00001!l0 012!QJ 21 QJ5 000131 0QJ~0QJI2I QJ0QJ005 
0r/J\~054 ~000~((J ,,000QJ5 rlJr/J0140 0"I2JI2I2I~ ~"I"QJ5 
0fiJ?055 r?J02!00QJ 021fZl"'''5 000141 "0000QJ 00""135 
00012156 0QJ002!QJ 0"fZl005 000142 rlJ0000QJ 0"0"'05 
QJ00057 :aQJ0000 ((J P.l0e1 05 00~143 12J0el000 ,,1210"05 
00Ml60 eJ0"0rlJ0 ~0QJ005 000144 0130121"0 0~001215 

002061 2J000~0 00121rlJ05 002145 0QJ3000 o "" 14 6 - END LSCW 

000062 fi'J0e0~((J ~00005 00 ;,a 46 00100QJ 0"0145 Containing the 

0"~12l6J elQJ0321QJ 0""~05 00.·'147 0fl1000QJ 021""137 number of words 

rlJ0~a50 0000e10 00QJ007 in the record 
including LSCW's. 

E-5 



"0~~ 151 t'l13"~~H!J 0"0'1'07 13(llJ233 013013 lUI ra0QH~07 
021:3152 "131?!"~13 13"0"07 "00234 'HHlJ 21 " 0 0001307 
"0l153 '1'130000 00 0"07 0iH,235 ~00000 12100"0" 
"0;tl154 r31300~" eJ0"0"7 1210~236 1210"0"" 121"0"'" 
00/1155 00,,000 ~00"07 00e231 00"""121 00""07 
00.~156 01300~rlI ~00i1137 0~H~240 0130 " IUJ 1210012101 
00/157 "rH100ra "0"007 00~~241 "0""13"0 """"07 
"021613 013121000 ~"""""7 001/,242 "0210"0 0rll000" 
1321/161 ~13rl102!1Zl 000"07 00~243 "/lH'J0"0 0"01Zl0., 
01iH~162 el13""""" ~211312l"7 '1'0~~244 0130(ZJrlIlZl 00 2HZ! 0 7 
00 '~16J 21021""0 2l"01Zl1ZJ7 00~245 0000"0 rlI00"1ZJ" 
"0J164 "00000 0el"007 "0i~246 "0""'0" 000"07 
1Zl0l165 "0"""" 0"0"07 "0'/247 1210,,0"0 0~01ZJ07 
0~P166 00"""0 0210((1,,, 00?2513 "'0"""0 00 0"07 
00~H6" 131302100 ~000ra, "r.!IJ251 0210"0" "~0007 
00;1170 "00"021 2100"'" "01252 "1300021 210210217 
e0~',171 0210000 0el000? 00"253 0130210" la001l1Z7 
00(~172 0""'''013 0001l!07 00.~ 254 eJ13~1321Z Z"0"!?)7 
"0~113 21132'0013 "~Z0137 "00255 rlI"1l!0~0 01Zl0eJZ1 
0O[1174 e1"01(J~" 00""07 00;'256 00""00 00000., 
0O;,1175 ~00""" ,,"Z0137 "0?257 0000"0 0~"e07 
001176 ~13~"00 ~~00"7 "e;1260 "00000 00Q"!lZ7 
00 .. ~177 ~13"0~" 000"07 00e261 21""~0" 000007 
0L(U2013 ~13121021" 121013007 e0~-'262 013180"0 0"Z~"H 
00,'201 "Z00~13 0°"00' eo ~:1263 o IUHlJ2I a 0mZ0til7 
00,~ 202 0130"0Z ""til kll 07 "0/264 210tZ10180 zmtil"til' 
00;: 203 flI"00~0 "PJZ0Z7 00~~265 "000021 0"0"01 
00/204 2l131l!1l!0Z ~H'lrtH'lZ7 00\,i266 0130000 0etZ2I07 
0rzW2215 "Z"00Z ~0Z1l!07 0(1);'267 ~1300"rzI 000001 
007206 0132'000 00000' 00~270 210""210 000 ""rzI 7 
00::~2"7 2l13tH~00 130"""07 0r.:H'271 013"000 0013""7 
00,~210 0021000 "e0007 00J272 00"0013 "'''Zel137 
"0:3211 0131l1"~0 00"121"7 007273 01300"0 a0""07 
00~'212 ""212100 121"021137 00i1274 000210rz1 0"Z130' 
O0.)213 0130132113 0002107 002275 1Z10~"00 ,,00"07 
"o'214 """0013 0"00til7 00J276 1211321210" 00Z0"7 
"'F215 2J"00,,~ 000""7 00Z277 0013000 ~0"1307 
00~;~216 121"0000 0~"0"7 00~~300 ° til ,,13013 00"130' 
00(1217 1Z102100" 0°""137 00(;301 """til00 21 rlI ''''I " 1 001220 121 liJ(Z! 0 21 0 ~00"137 12l0~302 13QH2!0"0 00"0217 
002221 00'0013 0210"07 00Z303 "1300210 00"1lI"7 
00M3222 01111JIUJ 01111007 00w::31214 001?le00 000007 
00~i223 011101~ 000"'" 00i,3135 0013000 o " IIHH" 
000224 """018" 1211311100' "0031216 2!0kHH~" 021012107 
00~225 "'0""00 ,,000'" 00031217 rzl0"0"" 00013'" 
000226 12I""I1J"" ,,000'" 0003113 0013""0 """12107 
"0 ~1227 130rz1000 ""0"07 "00311 "1110" 0" 0""0"7 
00~230 rzl0 " til 00 0"0"0" "0~312 "013""0 0""007 
"0~231 00121""" ""1130' "00313 rtJI1J31"" ,,00146 
"0~232 rlJ "l2Itil "0 0"000' 

E-6 



In the sequential access binary file the second record crosses the 128-word boundary and contains a 002 
(CONTINUE) LSCW. 

C ~OOK AT A BINARY rf~E AND SEE THE LoSteAL SE~M[NT 
C CONTROL WOReS. 

({lra.H21({l0 
0({l,:Hl01 
0ra,~0ra2 
0({l.Jra0J 
00:~004 
00.J005 
00,;006 
0({l/02)7 
00/010 
00'~P.!11 
00.'012 
00;?01J 
00/014 
1Z10l015 
00,¢016 
001017 
00/.02QJ 
00?021 
00\:'022 
00;;02J 
00.:024 
00/025 
00:<026 
00.~027 
0'h~0JQJ 
1210i.~031 
00J032 
"'0!..~03J 
00(1034 
00CoI2IJ5 
rzl0 ;;10.J6 
00?0J7 
00v' QJ4121 
00~~12I41 
00'·'rzl42 

QPENCUNI Tz 1,MOOEc'BINARY') 

1.5 
WRITE(l) (!, J=~,1~0) 

J., 
WRJT((1) (J,K=1,1~21) 
END 

eJ~100~ a021145 
~121~"00 0'-"00215 
000~~21 ~012101215 
210~000 000"05 
0000~0 ~01Zl('l05 
eJI2I0~"'12I 0012101215 
0121000121 a0121QJ05 
00~03121 00210215 
eJ0"QJc.1~ 02!lZIeJ~5 
~12I2!0(1H' 121 Ii"I21 0 121 5 
~0eJ02!0 0r,,0~1215 
~0eJ000 ""0'-"215 
~00~"21 ~"21r2'05 
002!(l~0 i2l01Z1012!5 
2!'''~0 ~0 0'-"1ZI0QJ5 
~12I00~0 0"~eJ05 
~0e0~QJ 21"21005 
2l0~IHH~ ,,0121QJ05 
211Z1"0~0 0 P1 0005 
2l000~0 o L'!IZI 2105 
00~"2I0 0~QJ005 
0QJ002'0 ~~lZIrl1"5 
0000~0 01210005 
2l000~flJ ill I2l 210 21 5 
121001210QJ ill"I1~05 
1210001l1~ 0QJ0flJ05 
0012l0~121 121 021005 
l2liJ000QJ 0~12I0flJ5 
12112100~12I 000QJ05 
1210210021 ~H'l1Zl005 
121000021 0"00QJ5 
0QJ0121Q)0 121 021 2'QJ 5 
00121213121 12100005 
01211ZJ12I~1ZI flJrzl0005 
00121121021 001llQJ1ll5 

E-7 

ra0~104J 21021000 1Zl000~5 
00k'044 2101302121 ~0001215 
000045 2)21 ({l21 0121 00rUJ05 
00,.;046 ~02J0210 000e!05 
00~H~47 ~~0001Zl ~0121005 
001.1050 rcHHHHJ0 ar,,00({l5 
00il051 00B00121 12100005 
00J052 00210121121 000005 
00~05J 00000~ r.lI0001215 
00~~054 00000121 ~00005 
00>:~055 2)0000121 1210212)05 
00/056 00210121121 21000215 
0PH057 00001210 0"'210215 
00 ~~ 0 60 2!0000flJ 121021005 
00lfll61 (2!01?J~~~ ra 021 0flJ5 
00 ~·~062 ~00"0~ 0012101215 
00;'06J ~001210121 2lrzJ0~05 
01lH064 00001'lflJ 12100005 
0liP065 C1J00000 {J01Z1C1J05 
002066 liH?J1ZJ001Z1 00210215 
001067 001210121121 210212105 
0"~0?0 0000Q10 0021005 
00;'071 I2lQJ0000 0021005 
002'072 0QJ00k'0 0021005 
00?07J 0000~H' 00 8flJI2I5 
flJ0l12174 0021000 00108' 
0"H~075 0121~12100 1210iJ285 
001'076 C1J00"~0 0~12I01Z15 
1210v~077 0121~"00 21"'21005 
00~'10QJ 002'00flJ "O0005 
00('1131 ?J0121001Z1 002112105 
00;;102 00~0210 2J0QJ005 
1210;"10J 01210021121 0012101215 
0001134 ~030~0 21021005 
00J105 0~N~00 a0001215 



121017,106 ~13Q!~eJr2I 13"'''''135 "rlHH 73 01210121~0 2!0"~137 
00';:107 21 13 Q!21eJ13 ~01313215 00;~17~ 01300013 0012101217 
013~~11121 01300013 ,,0"005 00V'115 0ltHlJ0013 ~0"r2101 
0r21;~111 0130121013 0"'1321135 00~176 013~H.'l0r21 ~12!13r21137 
121130112 0"~W:1013 00130135 00~177 li"HH'013 0°""'137 
013(11113 "'0013013 00210"5 0r21~,1200 0132~"?J2I 0'" 13114 - Co:ttinue LSCW. 
11l1ll,111~ "'02102113 00210215 002201 0130000 0"""'07 
I1lPJZl15 "'13012113121 00121211215 r210i202 (7)13130013 ~0r21007 
000116 "'00121013 0021"1215 00('203 00"2'013 021121121"7 
0133117 rzJ00"12I0 21""0215 210D21214 o kHHH!l 121 0"""07 
00v3120 eJ"21021" 0""0135 lZ113l205 01300!tHI a00"131 
r210~1121 "'''112100 o 1ZI"r2! "5 121121\.11206 012102112113 [3"'0"'137 
0ftH~122 "021210121 00211211215 13~h~207 013k!'0~13 13 0130131 
013?123 013210013 ~0"13135 00/210 1111300021 121"012107 
"0,a24 0000"0 00"13215 000211 0121021"0 0""ClJ137 
00~125 21"121021" 00"13~5 00<1212 "00000 13"'''007 
00:--126 0812112112113 ~eJ0121135 "'0;;213 013130~" 02'121121"7 
000127 BIIIII eJ0"""5 00J214 0132100" 0rt1130"7 
00013" 0"elle e"811l'" "'02215 "0et0~13 0""~"7 
00~131 2181210"'0 0"""21' 1210t216 ""21000 ~IZ!I007 
00~132 ""121 121 tlI 0 0"""rzl5 002217 0000021 rzl""0rzl7 
00~133 02100(l10 121""0"5 00f22tl ""elk""0 12121"0137 
000134 01212102121 0"0C1J05 000221 010~210 00132107 
"'0~13' "130021" 0"210rzl5 000222 01121~21 13lZ!rzl12l2l7 
"0 ~a 36 0"121130121 21 0"21 rzl 5 000223 0fIJ2I0 1321 13""2101 
"00137 ~1300~121 eJ~8"05 00k~224 0131301210 0"01307 
00\1~140 01300013 0"012105 001225 ""0W:1013 0"""'''7 Ql0r.141 2100000 0~"r2105 00~226 01312112121" 0021r1!1rll7 
00?142 00130021 0"""05 0133227 ""013~0 ",,121""217 
Ql0~143 211312101210 0'-"210,,5 13022321 00k"H!l0 0"""137 12113/,144 00001210 0~"005 130~231 01312113~0 021 ""rzl 7 
00~~145 013300121 ~fll12l146 13132232 "121 0 21rZl" 0"00"7 
00V'146 211211"12121 0~"032 -Number of 131212233 0121000" 0""121137 
00J147 ~13121"'~121 "'~0Q1"7 words to 2I0i~234 ~1212I"I2121 2l"""rzl7 
2I2I~' 1513 0"00013 "eJ0r21137 next LSCW. 2102235 01300",,, 0°""137 000151 0"2)0013 o "IZJe!eI 7 130~236 2112121121221 000"'1217 
13l2li~ 152 0130012113 0~0007 "'0;3237 ""00~12I 021""07 
12112l1..~153 013Q10013 :;,r;,13eJ07 00"'2413 o r/l 21 121 2113 13"'02'137 
130'~ 15 .. 01Zl11'~013 000007 2107241 [21001300 ~00~07 
00,"155 013e!I2I013 """"07 r/!00242 ~"0"013 (lI00e!137 
000156 0130121210 ~0"007 00'7243 0210"00 00132107 
QlrtJ?157 t':I1300013 ~H'JIZJ007 00Z2~4 "13~000 0000137 
001160 013012112113 ,,00121137 00~245 01300021 12I~0N'J7 
QlrcH161 elr2I0~12I13 ~00007 1301246 o (lI 021 013 210130137 
130~1162 02100021 ~013Ql07 00C247 0r/l "'121 013 0""007 
00~~163 0'H'J"~0 ~~0007 00/25r/l 01300013 2121""137 00;':164 013C1J0013 W'0130137 00e251 ~130~0121 0021007 
2113(165 "'000121121 00130137 00~1252 0r/l000121 0"0""7 "00166 01301210121 0""007 1210:1253 013130021 121 0"007 
"0~167 eJ13I2!~013 ~0"001 2I13~"254 01301210121 0°"'-"137 
Ql01~ 110 0130iZ1013 0""121137 002255 e!'IHl000 00"~~1 
00;~171 211321 Ii' 00 12l"~0r.31 00J256 ~130000 0r210~"7 (/l0tJ172 2!0Q!000 ~0~0137 00J257 0tiH'Hll ~" 0~~0"'7 

E-8 



"'~H260 "'000210 0~0007 e1rllt:277 fZl0~I2Ic!lr2J ~"0001 
~0~~261 00~"~0 000''-''P 0rlle312!0 00012100 0~0fl!07 
0~"~ 2 62 00001210 "~0007 1211210301 2100000 ~00~07 
00l26~ 00"fZl~0 000007 00~312!2 k'l00fZl00 000007 
0r,,,3264 0001211210 000007 01210303 fZl00000 a~0007 
1210~265 001210~H' 000007 0003"4 fZlfZJ0fZJ00 0ill000] 
I2lfih:266 fll00000 12100007 12100305 fZJ0012100 ~"'J0007 
00,1267 fZJ012!000 0C1!0007 00J306 0000210 000007 
00;~270 'HHIJ0"'0 ",002107 00~307 00012100 21 rIl 00 IZl 7 
00~271 000000 ~"0007 ~0~310 0000210 000007 
00i272 000000 011J0007 1210'['311 fll012!000 00001Zl7 
00l2?3 fll00fZJ00 21 0 0007 000312 "'0fll000 00001Zl7 
"'0~~214 fll000210 ,,0012107 00.?313 000121210 o k'l 021 121 7 
002275 021 12Ii21 21121 ~"0007 fZJ0l314 0"30~0 000147 
0~h~276 "'0000121 000"07 

Image mode files contain no LSCW's. This file cannot be backspaced. 

C ~OOK AT AN IMAGE MODE PI~E AND SEE NO ~OGICA~ SEGMENT 
C CONTROL WORDS. 

f2J0.H"'0 
0f2J~f2J01 
00"002 
"f2J0003 
001004 
00002'5 
~0]0f2J6 
00.il007 
00~010 
12100011 
0f2J0el12 
003013 
0f2J~f2J14 
fll0v)015 
12101f2J16 
000017 
0021020 
0021021 
000022 
0021023 

OP£NCUNI Tc 1,MODE·'IMAGE' ) 

1-5 
WRIT£(l) (I, J=1,100) 

J=,,! 
WRITE(1) (J,K=1,100' 
END 

2l0~fZJ0121 ~eJ2I0215 
0210000 0~0005 
"12101210121 0"0f2J05 
~00000 000005 
12100'2!00 000005 
121000021 ~021"'05 
21012100'" 0~0005 
002'000 ",O121005 
00",00121 0"'0005 
000kHHl i)00005 
"000",0 e021ra2l5 
2'00000 ~021005 
00012100 000005 
000Wl2l0 ~00005 
0121~0~0 000005 
000000 ~0121005 
00~fZJ~12I 0021005 
~12I00~a 2l~00a5 
ra0210e1121 00a005 
"000e10 000~H~15 

E-9 

00J024 ~2I001210 ~"2I0fZJ' 
~00"25 0000~0 ~00005 
""~026 '2!00fZJ00 ~00005 
00~027 2'0001210 ~"2I005 
001t030 000000 12l"0005 
000031 000121210 0et0005 
0021032 ~"0fZJ021 ",O0005 
000033 121012100'" 12100005 
00('1034 12100000 2)"'0005 
000035 1210012100 ~00005 
00J036 "00000 00210215 
00~037 12100000 ~H~0005 
~"~040 12100000 eJ001210S 
000041 0000.,0 12l"'0005 
00('1042 eJ000~0 130121005 
00i3f2J43 00012l0k'l 0"00215 
00~044 000000 0eJ0005 
00~045 00012100 0~00215 
00~046 01210000 fil~0005 
00~047 el 12112!r2J 00 ~0"2105 



e IIh' 121 5121 012101210121 ~01211211215 1211210135 0~H!100121 121121"1211215 
0121012151 k'J"""0k'J 001211211215 01212136 12112121121~121 21"'01211215 
1210\-112152 1210"'1210121 k'l"k'J12I1215 121121('137 0001210121 ""12Ik'J12I5 
12101053 "'0000k'J 1210121"'05 12100140 (ZI'H" ° 00 01i'J0"05 
00~054 0121k'J12I0k'J ""'001215 "0~141 "'00121~121 k'J"'0"12I5 
1210i1055 ?Jk'J000k'J 21"'12101215 00~142 0121q!00121 121 21 12101215 
00J056 121121000121 00121005 001143 rzl12l000121 0121121rtJI2I5 
0121012157 012100"121 kH" 121 0 1215 1Z10~144 121121211210121 0012101211 
00~06121 00""ek'J ~etk'J12I05 01210145 1211211211210121 21 rlI 00121 1 
001061 12112101211210 ~H'12I01215 01/"'146 ~12101210121 0121121001 
1210e062 01CHlr2I~12I 00121005 0rrh'147 f2JI2I~121"'121 00121211217 
0121(~063 1211210"00 21012101215 001150 121 121 00:!J0 12101211211211 
00?064 ~12I~~V'l12J ~Q!12I1211215 ril0,l151 012101210121 "~l2Irill2l' 
00 fJ,065 ~121"121121121 ~01210Qj5 12100152 "'121 ril " 00 121 rll 121121 121 7 
00,112166 012H~000 ~"12Ij{l12l5 121I21H53 01210000 1210121211217 
00('067 01210~~121 ~""12101215 00~154 121121021:11121 ~1Z'~0"7 
1210712170 ~ra00eJra eJ0"H~05 1210?155 2'12I0ra~0 12101211211217 
121121212171 "121000121 0""12101215 1210;2156 00~~00 ~00~'" 
00/12172 ~"00~0 ~"0005 1210e.157 0~"!l00121 0fZl0~07 
00:~07J ~12I001210 "~001115 1Z10,')160 el12IQl0~0 00~211217 

1210,/074 eJ~0~~12I ~01210~5 00~161 12100000 ~000et7 

00~075 0121el0~121 \30~~1215 00C162 00el0~121 000e107 
1210·:'016 e!12I12!000 12100005 12103163 fl!12I1210~12I el0~Ql01 

1210~"'77 0':H~I~ell2I 21012101215 00:;'164 0QJQle'00 00111~12I7 

0e;~100 ~~ra0~121 021 121005 0003165 00012121121 ~011112107 
12!0(J101 eJ0000121 ~0121005 002166 el12l2'0~0 00001217 
12!0~~102 12102100121 012101211215 1210 .. '167 01211210121121 02101211217 
000103 0012100121 ~"l2IrzJI2I5 00(~11121 0021021121 00121007 
12102104 ell2l~00121 0012101215 ril0;~171 0121012100 00111"'1217 
1210 ~~105 e! 121121 0 121 121 I2lIiHl'rzl05 00.~172 12112101210121 ~tIl1ll02!7 

12!"W106 002'121121121 00 12101215 002173 121001210121 00121121"'7 
00011217 elI2I0000 02!12I1(J~5 00~174 el001211210 21012112107 
00e110 012100021 el ti'l12l 005 el0~175 0f21Q12J~k'J 121210"'1217 
000111 12l121000" ~000"5 00(H76 0121~~2!0 021 121007 
12102112 00000121 00/1HH'5 00~177 el000~0 0~0121rl!1 

00/113 00012100 ~0'H'05 00C20121 r2! 121 00 el 0 121 0121QJ 121 7 
12100114 I2lI21 2112121 0 0"'~005 1210021211 002100121 2100r2!07 
000115 ~12101210121 0"0005 1210~21212 000~0121 2!~12100? 

1210~~116 12l1210fZ1121121 021001215 00~12"'3 0000~121 021001217 
00~111 211212102'121 1210~01215 1210?]204 012100~0 01Zl1lJ007 
1210012121 01210~"H' 001210"5 1210C205 ~0P.H2I00 13 21 121001 
0rcH3121 00000121 ~00005 1210021216 0000210 i2l0111007 
12100122 011.1210210 a"'0005 000201 000000 01Zl0~07 
000123 i2l000011.1 01210005 0,'H~ 2U.l 0000~0 001211211217 
12100124 i2l1210"0121 01210005 00~211 012100~0 0011J01217 
00i'l12' 121 IIIJ " 210 0211210215 000212 01210021121 2121121211217 
000126 0rUlZl00 0011112105 12100213 2100r21021 elIZl1ll011J1 
00k'!121 01111"'0 000"1215 000214 013 1(JI2I ell2I 0131111210' 
0121013121 210"0011J 12I¥l0005 000215 0121121130121 ~00007 
121121w:l131 0121 ""'011J 12100211215 000216 ~~"'00121 000"'13' 
00~132 01210121"'121 121 0121131215 I2I1Z1~211 01110021121 ~0012111J7 
000133 21121"''''0121 Ql "'121 k'J05 "'0~22" 2102100" 2101211211217 
01210134 00ra~ra0 1fJ0001215 013~221 13"ee~12I ~0111007 

E-lO 



1lJ"~222 """""" "RlB0"., ""2255 "0"0"" 00"0(Z17 
0"(3223 

"'''''' "8 (ZI""Il'", ",,2256 el (,HJ r;, " " 0""""7 
rIl""224 """""" """"B., "rtJ2257 "02J021rl' ,,0"0rl'7 
IhH~225 """""" """"'" 00·2260 "0et000 ""0007 
""J226 ell!l"""" iae""", "rtJ?261 0rl'(llfll2lrl' (2J01!1""., 
"e~22" 21"rl'rl'"" """"B'? "21 i? 262 "0121""0 000"0' 
I1Jrn23" I1J IHI " " " ,,2I1!101!17 "rll ~1263 12! 0 " " " 0 " IIHHIJrH l1Jee!231 "0r1le"" zI1JB2I((J' "0t?,264 00"I2!Ql0 ,,!?IIZ"'01 
I1Jrll0232 121"21""" """"'" 12!0~~265 0""12!",, ,,!?I0"1!I" 
l1J"l233 "I.H'0011J ,,002107 QJ0i'266 21rl'(ll0~rl' ~H'0007 
(hH'234 "It"'" I2l rl' 

rl'Pl1!l01!1' 00~~26' 21(1"1101210 QJ0"""T 
11J0~235 21""""0 ""0"0' 00027" 0",,,0"'0 """,,~(Z17 
21"~236 21"00"0 "'''''''''' I1Jrllk~271 "00""0 0121""07 
I1JQH~ 237 "01l1"~0 ,,000217 11J0~272 12!00""" 00""0' 
00e24" 1Z10,,00" 0""12107 rl'~H1273 "21"2121" 000"0' 
2100241 "0"""0 """"1217 021;'214 "0""0121 0"121"0' 
11J(IH242 21121"""0 12J~0"01 "0~'275 "~HHH~ 0 a" """ 7 I1JrtJ0243 """0~" ~021001 000216 r;, 0 C:H!! eI 0 0 0 " 0 0 1 
00'·' 244 fll0~f2I~0 2l0""'1217 "0(~2'7 211210000 0~121001 
"01245 el000'31l1 ~12'0~1217 00;J,30" 01211l10QJI2I 121"001217 
000246 r21000q10 ~f;30~07 "0Z,301 2I12100~" 2J00001 
021 ,3247 ""0012100 Z00007 (lI01'~31212 0121(l1000 0001210' 
00~!.250 000"~0 00121007 00~~31213 0121~1210121 00 "I<J12I7 
210:" 251 00000111 0121 0007 00,~31214 0121000121 000007 
12!01,252 01210000 ~00t2l07 Ql0~"305 "0et~P.l0 12100001 
"02253 00000121 0012101217 "0;1306 0012121"'0 2100001 
00?254 et0e'0~121 012100~7 0r.H1301 00rael2l121 121012101217 

EA.3 Mixed Mode Data Files 

FOROTS permits files containing both ASCII and binary data records to be read, Mixed mes may be accessed in 
either sequential or random access mode. Logical ASCII and binary records have the same fonnat as described in the 
preceding paragraphs. In random access mode, the record size must be large enough to contain the largest record 
either ASCII or binary. 

EAA Image Files 

The image data transfer mode is a buffered mode in which data is transferred in a blocked format consisting of a 
word count located in the right half of the first data word of the buffer followed by the number of 36-bit data 
words. The devices which pennit image data transfers and the fonn in which the data is read or written are: 

Device 

Card Reader 

Disk 

Data Fonns 

All 12 punches in all 80 columns are packed into the buffer as 12-bit bytes. The first 
12-bit byte contains column I. The last word of the buffer contains columns 79 and 80 as 
the left and middle bytes, respectively, Cards are not split between two buffers. 

Data is written on the disk exactly as it appears in the buffer. Data consists of 36-bit 
words. 

E-II 



Device 

Magnetic Tape 

Data Forms 

Data appears on magnetic tape exactly as it appears in the buffer. No processing or 
checksumming of any kind is performed by the service routine. The parity 'checking of 
the magnetic tape system is sufficient assurance that the data is correct. Normally, all 
data, both binary and ASCII, is written with odd parity and at 800 bits per inch unless 
changed by the installation. 

E.S USING FOROTS 

FOROTS has been designed to lend itself for use as an I/O system for programs written in languages other than 
FORTRAN. Currently, MACRO programmers may employ FOROTS as a general I/O system by writing simple 
MACRO calls which simulate the calls made to FOROTS by a FORTRAN compiler. The calls made to FOROTS are 
to routines that implement FORTRAN I/O statements such as READ, WRITE, OPEN, CLOSE, RELEASE, etc. 

FOROTS provides automatic memory allocation, data conversion, I/O buffering, and device interface operations to 
the MACRO user. 

E.S.l FOROTS Entry Points 

FOROTS provide the following entry points for calls from either a FORTRAN compiler or a non-FORTRAN 
program: 

Entry Point 
ALCHN. 
ALCOR. 
CLOSE. 
DEC. 
DECHN. 
DECOR. 
ENC. 
EXIT. 
FIN. 
FIND. 
FORER. 
IN. 
10LST. 
MTOP. 
NLI. 
NLO. 
OPEN. 
OUT. 
REtEA. 
RESET. 
RTB. 
TRACE. 
WTB. 

E.S.2 Calling Sequences 

Function 
Allocate software channels 
Allocate dynamic memory blocks 
Close a file 
DECODE routine 
De-allocate software channels 
De-allocate dynamic memory blocks 
ENCODE routine 
Terminate program execution 
Input/Output list termination routine 
Position to the next record (RANDOM ACCESS) 
Error processor 
Formatted input routine 
Input/Output list routine 
File utility processing routine 
NAMELIST input routine 
NAMELIST output routine 
Open a file 
Formatted output routine 
Release a device (CLOSE implied) 
Job initialization entry 
Binary input routine 
Trace subroutine calls 
Binary output routine 

All calls made to FOROTS must be made using the following general form: 

MOVEI 
PUSHJ 

16,ARGBLK 
17,Entry Point 
(control is returned here) 

E-12 



where: 

a. ARGBLK is the address of a specifically formatted argument block which contains information needed 
by FOROTS to accomplish the desired operation. 

b. Entry Point is an entry point identifier (see list given in Paragraph E.6.1) which specifies the entry point 
of the desired FOROTS routine. 

With three exceptions, all returns from FOROTS will be made to the program instruction immediately following the 
call (pUSHJ 17, entry point instruction). The exceptions are: 

a. An error return to a specified statement number (i.e., READ or WRITE statement ERR= option), 

b. An end-of-file return to a statement number (i.e., READ or WRITE statement END= option), 

c. A fatal error which returns to the monitor or to a debug package. 

Paragraphs E.5.3.l through E.S.3.11 give the MACRO calls and required argument block formats needed to initialize 
FOROTS and FOROTS I/O operations. 

Argument blocks conform to the subprogram calling convention described in Appendix D. However, there is one 
exception in dealing with the first word of an I/O initialization call (i.e., WTB., ENC., RTW., etc.) for a FORTRAN 
logical unit number. If the type field of the first word of an I/O initialization call for the FORTRAN logical unit 
number is 0 (zero), the argument is an immediate mode (18 bit) constant wherever possible. If the type field is inte­
ger, the argument is indirect (see Appendix D, Table D-2, Type 2). 

This exception should not cause any upward compatibility problems since all previously working programs will still 
function. An added feature with this convention is that it permits the following construct to be correctly 
implemented: 

100 

N=-4 
READ (N,lOO) I,J 
FORMA T(2IS) 

!SET FOR TERMINALS 

E.S.3 MACRO Calls for FOROTS Functions 

The forms of the MACRO calls to FOROTS that are made by the FORTRAN compiler are described in the 
following paragraphs. The calls described are identified according to the language statement which they implement. 
The following terms and abbreviations may be used in the description of the argument block (ARGBLK) of each 
call: 

= 

n = 

f 

v 

list = 

c = 

d 

pointer to the second word in the argument block (This is the address pointed to by the 
argument ARGBLK in the calling sequence), 

count of ASCII characters, 

FORMAT statement address, 

the name of an array containing ASCII characters, 

an Input/Output list, 

the statement to which control is transferred on an "END OF FILE" condition, 

the statement to which control is transferred on an "ERROR" condition, 

E-13 



name a NAMELIST name, 

R a variable specifying the logical record number for random access mode, 

* list directed I/O; the FORMAT statement is not used, 

type type specification of a variable or constant, 

where ARGBLK is 

0 ____ 8 I 9 ___ 12 I 13 I 14 ____ 17 

-6 o 

Reserved 2 x n 

7 x c 

7 x d 

o x f 

2 x Format Size (in words) 

Reserved o x v 

E.5.3.1 Formatted/Unformatted Transfer Statements, Sequential Access Calling Sequences - The READ and 
WRITE statements for formatted sequential data transfer operations and their calling sequences are: 

and 

READ (u,f, END=c, ERR=d) list 
MOVEI 16, ARGBLK 
PUSHJ 17, IN. 

WRITE (u,f, END=c, ERR=d) list 
MOVEI 16, ARGBLK 
PUSHJ 17, OUT. 

where ARGBLK is 

0 ____ 8 I 9 _____ 12 

-5 

Reserved 2 

7 

7 

0 

Reserved 2 

I 13 I 14 _____ 17 18 _____ 35 

0 

I X u 

I X c 

I X d 

I X f 

I X Format Size (in words) 

E·14 



The READ and WRITE statements for unformatted sequential data transfer operations and their calling sequences 
are: 

and 

READ (u, END=c, ERR=d) list 
MOVEI 16, ARGBLK 
PUSHJ 17, RTB. 

WRITE (u, END=c, ERR=d) list 
MOVEI 16, ARGBLK 
PUSHJ 17, WTB. 

where ARGBLK is 

0 ____ 8 I 9 _____ 12 I 
-3 

Reserved 2 

j 7 

Reserved 7 

13 1 14 ____ 17 18 ____ 35 

0 

I X u 

I X c 

I X d 

E.5.3.2 NAMEUST Data Transfer Statements, Sequential Access Calling Sequences - The READ and WRITE 
statements for namelist-directed sequential data transfer operations and their calling sequences are: 

and 

READ (u, name) 
READ (u, name, END=c, ERR=d) 

MOVEI 16, ARGBLK 
PUSHJ 17, NLI. 

WRITE (u, name) 
WRITE (u, name, END=c, ERR=d) 

MOVEI 16, ARGBLK 
PUSHJ 17, NLO. 

E-IS 



where ARGBLK is 

0 ______ 8 I L _____ 12 I 13 I 14 _____ 17 18 _____ 35 

-4 0 

Reserved 2 I X u 

7 I X c 

7 I X d 

Reserved 0 I X Namelist table addr. 

The NAMELIST table is generated from the FORTRAN NAMELIST. The first word of the table is the NAMELIST 
name; following that are a number of 2-word entries for scalar variables, and a number of (N+3)=word entries for 
array variables, where N is the dimensionality of the array. 

The names specified in the NAMELIST statement are stored, in SIXBIT form, first in the table. Each name is 
followed by a list of arguments associated with the name; this argument list may be of any length and is tenninated 
by a zero entry. The name argument list may be in either a scalar or an array fonn (refer to the following diagrams). 

E.S.3.3 Array Offsets and Factoring - Address calculations used to reference a given array element involve factors 
and offsets. For example: 

Array A is dimensioned 

DIMENSION A (Ll/Ul,L2/U2,L3/U3, ... Ln/Un) 

The size of each.dimension is represented by 

SI = Ul-Ll+I 
S2 = U2- L2+1 
etc. 

In order to calculate the address of an element referenced by 

A (Il,I2,I3, .. .In) 

the following formula is used: 

A+(I 1- Ll )+(12- L2)*S1+(I3- L3)*S2*S 1+ ... +(In- Ln)*S [n-Ij * ... *S2*S 1 

The terms are factored out depending on the dimensions of the array and not on the element referenced to arrive at 
the formula 

A+(- Ll-L2*SI-L3*S2*Sl. .. )+11 +I2*SI +I3*S2*Sl. .. 

The parenthesized part of this formula is the offset for a single precision array and it is referred to as the Array 
Offset. 

E-16 



For each dimension of a given array, there is a corresponding factor by which a subscript in that position will be 
multiplied. From the last expression, one can determine the factor for dimension n to be 

S[n-I] *S[n-2] * ... *S2*SI 

For double precision and complex arrays, the expression becomes 

A+2*(I 1- LI)+2*(I2- L2)*S 1+2*(13-L3)*S2+SI+ ... 

Therefore, the array offset for a double precision array is 

2*(-Ll- L2*SI- L3*S2*Sl. .. ) 

and the factor for the nth dimension is 

2*S[n-l] *S[n-2] * ... *S2*SI 

The factor for the first dimension of a dou ble precision array is always 2. The factor for the first dimension of a 
single precision array is always I. 

SCALAR ENTRY in a NAMELIST Table 

o. • • 8 12. • .14 18. • .35 

SIXBIT/SCALAR NAME/ 

o o x Scalar addr 

ARRAY ENTRY in a NAMELIST Table 

o • • • 8 I 9 • • • 11 I 12. • .14 I 15 • • .17 I 18 • • .35 

SIX BIT/ARRAY NAME/ 

#DIMS type I X 

ARRAY SIZE OFFSET 

I X Factor 1 

I X Factor 2 

I X Factor 3 

I X Factor n 

E.5.3.4 Formatted/Unformatted Data Transfer Statements, Random Access Calling Sequences - The READ and 
WRITE statements for random access data transfer operations and their calling sequences are: 

READ (u#R, f, END=c, ERR=d) list 
MOVEI 16, ARGBLK 
PUSHJ 17, RTB. 

E-17 



and 

WRITE (u#R, f, END=c, ERR=d) list 
MOVEI 16, ARGBLK 
PUSHJ 17, WTB. 

where ARGBLK is 

0 _____ 8 I 9 _____ 12 I 13 I 14 _____ 17 I 18 _____ 35 

-6 0 

- Reserved 2 x u 

7 x c 

7 X d 

o o 

o o 

Reserved 2 X address 
Record Number 

E.S.3.S Calling Sequences for Statements Which Use Default Devices - The FORTRAN statements that require 
the use of a reserved system default device and their calling sequences are: 

ACCEPT f, list 
READ f, list 
REREAD f, list 

MOVEI 16, ARGBLK 
PUSHJ 17, IN. 

where ARGBLK is 

0 ______ 8 I 
-5 

Reserved 

Reserved 

Default Device 

UNIT=-4 
UNIT= -5 
UNIT= -6 

9 _____ 12 I 13 

2 I 

7 I 

7 I 

0 I 

2 I 

I 

E-18 

(TTY) 
(CDR) 
(REREAD) 

14 ____ 17 

X 

X 

X 

X 

X 

I 18 _____ 35 

0 

u 

c 

d 

f 

Format Size 
(in words) 



PRINT f, list 
TYPE f, list 

MOVEI 16, ARGBLK 
PUSH] 17, OUT. 

where ARGBLK is 

0 _____ 8 I 
-3 

- Reserved 

I 
Reserved 

Default Device 

UNIT= -3 
UNIT= -1 

9 _____ 12 I 13 

2 I 

7 I 

7 I 

I 

(LPT) 
(TTY) 

14 ____ 17 

X 

X 

X 

I 18 _____ 35 

0 

u 

c 

d 

E.S.3.6 Calling Sequences for Statements Which Position Magnetic Tape Units - The FORTRAN statements that 
may be used to control the positioning of a magnetic tape device and their calling sequences are: 

CALL: 

MOVEI 16, ARGBLK 
PUSH] 17, MTOP. 

where ARGBLK is 

0 _____ 8 I 
-3 

Reserved 

I 
Reserved 

Function 
(FORTRAN Statement) 

SKIPFILE (u) 
BACK FILE (u) 
BACKSPACE (u) 
ENDFILE (u) 
REWIND (u) 
SKIPRECORD (u) 
UNLOAD (u) 

9 _____ 12 I 13 

FOROTS I 
code 

I 

I 

I 

E-19 

FOROTS Code 

7 
3 
2 
4 
o 
5 

14 _____ 17 I 

X 

X 

X 

18 _____ 35 

0 

u 

c 

d 



E.5.3.7 List Directed Input/Output Statements - Any form of a formatted input/output statement may be written 
as a list-directed statement by replacing the referenced FORMAT statement number with an asterisk (*). The 
list-directed forms of the READ and WRITE statements and their calling sequences are: 

and 

READ (u, *, END=c, ERR=d) list 
READ (u#R, *, END=c, ERR=d) list 

MOVEI 16, ARGBLK 
PUSHJ 17, IN. 

WRITE (u, *, END=c, ERR=d) list 
WRITE (u#R, *, END=c, ERR=d) list 

MOVEI 16, ARGBLK 
PUSHJ 17, OUT. 

where ARGBLK is 

0 _____ 8 I 9 _____ 12 

-5 

- Reserved 2 

7 

7 

j 0 

Reserved 0 

I 13 I 14 _____ 17 I 18 _____ 35 

0 

I X u 

I X c 

I X d 

0 0 0 

0 0 0 

E.5.3.8 Input/Output Data Lists - The compiler generates a calling sequence to the runtime system if an I/O list is 
defined for the READ or WRITE statement. The argument block associated with the calling sequence contains the 
addresses of the variables and arrays to be transferred to or from an I/O buffer. The general form of an I/O list 
calling sequence is: 

MOVEI 16, ARGBLK 
PUSHJ 17, IOLST. 

Any number of elements may be included in the ARGBLK. The end of the argument block is specified by a zero 
entry or a call to the FIN. entry. 

Mnemonic Name 
DATA 
SLIST 
ELIST 
FIN 

E-20 

FOROTS Value 
1 
2 
3 
4 



The elements of an I/O list are: 

1. DATA 

The DATA element converts one single, double, or complex precision item from external to internal 
form for a READ statement and from internal to external form for a WRITE statement. Each DATA 
element has the following format. 

0 _____ 8 9 _____ 12 13 14 _____ 17 18 _____ 35 

DATA type I X SCALARADDR 

2. SLIST 

The SLIST. argument converts an entire array from internal to external form or vice versa depending on 
the type of statement (i.e., READ or WRITE) involved. An SLIST. table has the following form: 

0 _____ 8 9 _____ 12 

SLIST. 

0 type 

For example, the sequence: 

DIMENSION A(100, B(100) 
READ(-,-)A 

or 

13 14 _____ 17 18 _____ 35 

I X #ELEMENTS 

I X INCREMENTS 

I X BASEADDRI. 

READ (-,-) (A(I),I=I,100) ! only when the /OPT switch is used 

develops an SLIST argument of the form: 

0 _____ 8 I 9 _____ 12 I 13 I 14 _____ 17 I 
0 

2 0 0 0 

0 0 0 0 

0 type I X 

The increment may be zero. This could be produced by the sequence 

DIMENSION A(100) 
WRITE(-,-) (K,I=I,100) ! only when the jOPT switch is used 

E-21 

18 _____ 35 

100 

1 

A 



The zero may not appear as an immediate constant in the argument block. The SLIST for the previous 
example would be 

0 _____ 8 9 _____ 12 13 14 _____ 17 18 ____ .35 

SLIST 100 

I Pointer to a word 
containing a zero 

K 

3. ELIST 

The SLIST format permits only a single increment for a number of arrays to be specified while the 
ELIST permits different increments to be specified for different arrays. 

The format of the ELIST is 

0 ______ 8 9 _____ 12 

ELIST 

For example, the FORTRAN sequence 

DIMENSION IC(6,100), IB(lOO) 
WRITE( -,-) (IB{I),IC(l ,1),1=1,100) 

produces the ELIST 

0 _____ 8 9 _____ 12 

3 

2 

2 

4. FIN 

13 

13 

14 _____ 17 18 ____ .35 

No. Elements to 
transfer increment 1 

Base ADDR 1 
increment 2 

Base ADDR2 
increment N 

Base ADDRN 

14 _____ 17 18 ____ 35 

100 
1 
IB 
6 
IC 

The end of an I/O list is indicated by a call to the FIN routine in the object time system. This call must 
be made after each I/O initialization call, including calls with a null I/O list. The FIN routine may be 
entered by an explicit call or by an argument in the I/O list argument block. If both calls are used, the 
explicit call has no meaning. The FIN element has the following format: 

E-22 



EXPLICIT CALL: 

MOVEII6,ZERBLK 
PUSHJ 17,FIN. 

where ZERBLK is 

0 __________________________________ 35 

o 

o 

E.5.3.9 OPEN and CLOSE Statements, Calling Sequences - The form and calling sequences for the OPEN and 
CLOSE FORTRAN statements are: 

OPEN STATEMENT CALL 

MOVEI 16, ARGBLK 
PUSHJ 17, OPEN. 

CLOSE STATEMENT CALL 

MOVEI 16, ARGBLK 
PUSHJ 17, CLOSE. 

where ARGBLK is 

0 _____ 8 I 9 _____ .12 I 13 I 14 _____ 17 I 18 _____ 35 

Negative of the 
# of words in 
block not in­
cluding this 
one. 

_ G 

G 
G 
G 
G 
G 

G 

2 
7 
7 

type 
type 
type 

type 

o 

I X u 
I X c 
I X d 
I X H 
I X H 
I X H 

X H 

The G field (bits 0-8) contains a 2-digit numeric which defines the argument name; the H field (bits 18-35) 
contains an address which points to the value of the argument. 

E-23 



The numeric codes which may appear in the G field and the argument which each identifies are 

G Field Open Argument G Field Open Argument 
OJ DIALOG 10 DIRECTORY 
02 ACCESS 11 UNIT 
03 DEVICE 12 MODE 
04 BUFFER COUNT 13 FILE SIZE 
05 BLOCK SIZE 14 RECORD SIZE 
06 FILENAME 15 DISPOSE 
07 PROTECTION 23 PARITY 

24 DENSITY 

E.5.3.10 Software Channel Allocation and De-allocation Routines - Software channels may be allocated by 
MACRO programs via calls to the ALCHN. routine and de-allocated by calls to the DECHN. routine. Values are 
returned in AC O. 

The ALCHN. entry is used to allocate a particular channel or the next available channel. If bits 18-35 of the 
ARGBLK are zero, the next available channel will be assigned; if non-zero, they must contain the requested channel 
number (I -1 5 octal). If the channel requested is not available or all channels are in use, ALCHN. returns with -1 in 
ACO. Normal returns contain the assigned channel number in ACO. 

The calling sequence of an ALCHN. routine is: 

MOVEI 16, ARGBLK 
PUSHJ 17, ALCHN. 

where ARGBLK is 

0 ______ 8 I 
-1 

Reserved 

9 ______ 12 

type 

I 13 I 14 _____ 17 I 18 _____ 35 

0 

I X Pointer to a word 
con taining the 
channel# or zero 

The DECHN. entry is used to de-allocate a previously assigned channel. The channel to be released is passed to 
DECHN. in the argument block variable. If the channel to be de-allocated was not assigned by ALCHN. and thus 
cannot be de-assigned, AC 0 is set to -Ion return. 

The calling sequence for a DECHN. routine is: 

MOVEI 16, ARGBLK 
PUSHJ 17, DECHN. 

where ARGBLK is 

0 _____ 8 I 
-1 

- Reserved 

9 _____ 12 

type 

I 13 I 14 _____ 17 I 18 _____ 35 

0 

I X 
Pointer to a word 
con taining the 
ch~~~J# to be rele: 

8024 



E.6 LOGICAL/PHYSICAL DEVICE ASSIGNMENTS 

FORTRAN logical and physical device assignments are made by the user at run time or standard system assignments 
are made according to a FOROTS Device Table (i.e., DEVTB.). The standard assignments contained by the Device 
Table are shown in Table E-2. 

Table E-2 
FORTRAN Device Table 

Device/Function FORTRAN Logical Use 
Unit Number 

REREAD -6 REREAD statement 
CDR -5 READ statement 
TTY -4 ACCEPT statement 
LPT -3 PRINT statement 

not valid 
TTY -I TYPE statement 
0 00 ILLEGAL 
DSK 01 DISK 
CDR 02 Card Reader 
LPT 03 Line Printer 
CTY 04 Console Teletype 
TTY 05 User's Teletype 

not valid 

MTAO 16 Magnetic Tape 
MTAI 17 

1 MTA2 18 
FORTR 19 Assignable Device 
DSK 20 DISK 
DSK 21 
DSK 22 
DSK 23 
DSK 24 
DEVI 25 Assignable Devices 
DEV2 26 
DEV3 27 
DEV4 28 
DEV5 29 

E-25 





APPENDIX F 
FORDDT 

FORDDT is an interactive program used to debug FORTRAN programs and control their execution. By using the 
symbols created by the FORTRAN compiler, FORDDT allows the user to examine and modify the data and 
FORMAT statements in his program, set breakpoints at any executable statement or routine, trace his program 
statement by statement, and make use of many other debugging techniques described in this appendix. 

Table F-I provides a brief glance at all the commands available to the user of FORDDT. 

Command 

Data Access Commands 

ACCEPT 

TYPE 

Declarative Commands 

GROUP 

MODE 

OPEN 

PAUSE 

REMOVE 

DIMENSION 

DOUBLE 

Table F-l 
Table of Commands 

Modifies data locations. 

Displays data locations. 

Purpose 

Defines indirect lists for TYPE statements. 

Specifies format of typeout. 

Accesses program unit symbol table. 

Places pause requests. 

Removes pause requests. 

Defines dimensions of arrays for FORDDT references. (Unnecessary if 
/DEBUG:DIMENSIONS was used.) 

Defmes dimensions of double precision arrays for FORDDT references. 
(Unnecessary if /DEBUG:DIMENSIONS was used.) 

F-I 



Command 

Control Commands 

START 

CONTINUE 

GOTO 

NEXT 

STOP 

DDT 

Other Commands 

LOCATE 

STRACE 

WHAT 

F.l INPUT FORMAT 

Table F-l (Cont) 
Table of Commands 

Purpose 

Begins execution of FORTRAN program. 

Continues execution after a pause. 

Transfers control to some program statement within the open program 
unit. 

Traces execution of the program. 

Terminates program and returns to monitor mode. 

Enters DDT (if DDT is loaded). 

Lists program unit names in which a given symbol is defined. 

Displays routine backtrace of current program status. 

Displays current DIMENSION, GROUP, and PAUSE information. 

FORDDT commands are made up of alphabetic FORTRAN-like identifiers and need consist of only those characters 
that are required to make the command unique. If the user wishes to specify parameters, a space or tab is required 
following the command name. FORDDT expects a parameter if a delimiter is found. 

F.l.l Variables and Arrays 

FORDDT allows the user to access and modify the data locations in his program by using standard DECsystem-20 
FORTRAN symbolic names. Variables are specified simply by name. Array elements are specified in the follow­
ing format: 

where 

= a FORTRAN variable or array name 
the subscripts of the particular array. 

An entire array may be referenced simply by its unsubSCripted name; a range of array elements may be specified by 
inputting the first and last array elements of the desired range, separated by a dash (-). 

Examples 

ALPHA 
ALPHA(7) 
ALPHA(pI) 
ALPHA(2)-ALPHA(S) 

F-2 



F.1.2 Numeric Conventions 

FORDDT accepts optionally signed numeric data in the standard FORTRAN input formats: 

1. INTEGER - A string of decimal digits. 

2. FLOATING POINT - A string of decimal digits optionally including a decimal point. Standard 
engineering and double precision exponent formats are also accepted. 

3. OCTAL - A string of octal digits optionally preceded by a double quote ("). 

4. COMPLEX - An ordered pair of integer or real constants separated by a comma and enclosed in 
parentheses. 

F.l.3 Statement Labels and Source Line Numbers 
/ 

FORTRAN statement labels are input and output by straightforward numeric reference (i.e., 1234). However, 
source line numbers must be input to FORDDT with a number sign (#) preceding them. This mandatory sign 
distinguishes statement labels from source line numbers. 

F.2 NEW USER TUTORIAL 

The new FORDDT user can rely on the commands described below as a basis for debugging FORTRAN programs. 
The new user will find these commands easy to understand and apply. 

F.2.1 Basic Commands 

The easiest method of loading and starting FORDDT is 

(cl;DEBUG filename.type (DEBUG), SYS.FORDDT.REL 

FORDDT will respond with 

ENTERING FORDDT 
» 

Just as an asterisk(*) signifies FORTRAN's readiness, the two angle brackets signify that FORDDT is awaiting 
one of the following commands: 

OPEN 

START 

Makes available to FORDDT the symbol names in a particular program unit of the 
FORTRAN program. When a program unit symbol table is opened, the previously open 
program unit is automatically closed. When FORDDT is entered, the MAIN program is 
automatically opened. The command format is 

OPEN name 

This will open the particular program unit named and allow all variables within that 
subprogram to be accessible to FORDDT. 

OPEN 

with no arguments will reopen the symbol table of the main program unit. 

Starts the user program at the main program entry point. The command format is 

START 

F-3 



STOP 

MODE 

TYPE 

ACCEPT 

Terminates program execution, causes all files to be closed, and exits to the monitor. The 
command fonnat is 

STOP 

Defines the display format for succeeding FORDDT TYPE commands. Only the first 
character of the mode need be typed to identify it to FORDDT. The modes are 

Mode 
F 
D 
C 
I 
o 
A 
R 

Meaning 
FLOATING POINT 
DOUBLE PRECISION 
COMPLEX 
INTEGER 
OCTAL 
ASCII Oeft-justified) 
RASCH (righ t-justified) 

Unless the MODE command is given, the default typeout mode is the floating point 
format. 

The command format is 

MODE list 

where list contains one or more of the mode identifiers separated by commas. The current 
setting can be changed by issuing another MODE command. If more than one mode is given, 
the values are typed out in the order: F,D,C,I,O,A,R 

MODE 

with no arguments will reset FOR DDT to the original setting of floating point format. 

Allows the user to display the contents of one or more data locations. They are displayed 
on the user terminal formatted according to the last MODE specification. The command 
format is 

TYPE list 

where list may contain one or more arrays, variables, array elements, or array element 
ranges separated by commas. For example 

TYPE I, ALPHA, BETA(2), J(3)-J(5) 

Each item will be displayed in each of the currently active typeout modes as set by the 
last MODE command. 

Allows the user to change the contents of a FORTRAN variable, array, array element, or 
array element range. The command format is 

ACCEPT name /mode value 

F4 



PAUSE 

where 

name = the name of the variable, array, array clemen t, or array element range to 
be modified. If the field contains an unsubscripted array name or an 
element range, it causes all of the elements to be set to the given value (see 
special case for ASCII in section F.6). 

mode = the format of the data value to be entered. If given, it must be preceded by 
a slash (/) and immediately follow the name. (Note that /mode does not 
apply to FORMAT modification.) 

value = the new value to be assigned. It must correspond in format to the given 
mode. 

Data Modes 

Only the first character of a data'mode need be typed to identify it to FORDDT. If not 
specified, the default mode is REAL. The following input modes are available: 

Mode Meaning Example 
A ASCII (left·justified) /FOO/ 
C COMPLEX (1.25,-78.E+9) 
D DOUBLE PRECISION 123 .4567890 
F REAL 123.45678 
I INTEGER 1234567890 
0 OCTAL 76543210 
R RASCH (righ t·justified) \BAR\ 
S SYMBOLIC PSI(2,4) 

An example of the ACCEPT command format is 

ACCEPT ALPHA 100.6 

This changes the value of the variable ALPHA to 100.6 with the default input mode of 
REAL, since mode was not specified. 

Allows the user to set a breakpoint at any label, line number, or subroutine entry in the 
user program. Up to 10 pauses may be set at one time. When one of these pauses is 
encountered, execution of the FORTRAN program is suspended and control is 
transferred to FORDDT. Also, when a pause is encountered, the symbol table of that 
subprogram is automatically opened. The command format is 

PAUSE P 

where P is a statement label number, line number, or routine entry point name; for 
example 

PAUSE 100 

will cause a breakpoint at statement label 100 of the currently open program unit. 

Note that subprogram parameter values will be displayed when a pause is encountered at 
a subprogram entry point. 

F-5 



CONTINUE 

REMOVE 

WHAT 

Allows the program to resume execution after a FORDDT pause. After a CONTINUE is 
executed, the program either runs to completion, or it runs until another pause is 
encountered. If a value is included with this command, the program will run until the nth 
occurrence of the given pause or until a different pause is encountered. The command 
formats are 

CONTINUE 
or 

CONTINUEn 

Example 

CONTINUE 15 

will continue execution until the fifteenth occurrence of the pause. 

Used to remove those pauses from the program previously set up by the PAUSE 
command. The command format is 

REMOVEP 

where P is the number of the statement label where the pause was set, i.e., 

REMOVE 100 

will remove the pause at statement label 100. 

Note that REMOVE with no arguments will remove all pauses; therefore, no abbreviation 
of the comm~nd is allowed in this instance. This precaution prevents the accidental 
removal of all pauses. 

Displays on the user terminal the name of the currently open program unit and any 
currently active pause settings. The command format is 

WHAT 

F.3 FOR DDT AND THE FORTRAN/DEBUG SWITCH 

Most facilities of FORDDT are available without the FORTRAN/DEBUG features; however, if the/DEBUG switch 
is not used when compiling a FORTRAN program, the trace features (NEXT command) will not be available, 
and several of the other commands will be restricted. 

Using the /DEBUG switch tells FORTRAN to compile extra information for FORDDT. (See Appendix C Using 
the Compiler for a complete description of each feature.) The additional features include 

l. /DEBUG:DIMENSIONS which will generate dimension information to the REL fIle for all arrays 
dimensioned in the subprogram. The dimension information will automatically be available to FORDDT 
if the user wishes to reference an array in a TYPE or ACCEPT command. This feature eliminates the 
need to specify dimension information for FORDDT by using the DIMENSION command. 

F-6 



2. /DEBUG:LABELS which will generate labels for every executable source line in the form "line-number 
L". If these labels are generated, they may be used as arguments with the FORDDT commands PAUSE 
and GOTO. 

This switch will also generate labels at the last location allocated for a FORMAT statement so that 
FORDDT can detect the end of the statement. These labels have the form "format-label F". If they are 
generated, the user will be able to display and modify his FORMAT statements via the TYPE and 
ACCEPT commands. 

Note that the :LABELS switch is automatically activated with the :TRACE switch since labels are 
needed to accomplish the trace features. 

3. /DEBUG:TRACE which will generate a reference to FORDDT before each executable statement. This 
switch is required in order for the trace command NEXT to function. 

Note that if more than one FORTRAN statement has been placed on a single input line, only the first 
statement will have a FORDDT reference and line-number label associated with it. This also applies to 
the :LABELS switch. 

4. /DEBUG:INDEX which will force the compiler to store, in its respective data location as well as a 
register, the index variable of all DO loops at the beginning of each loop iteration. The user will then be 
able to examine DO loops by using FORDDT. If a user modifies a DO loop index using FORDDT, he 
will not affect the number of loop iterations because a separate loop count is used (see section D.1.5). 

Note that this switch has no direct affect on any of the commands in FORDDT. 

F.4 LOADING AND STARTING FORDDT 

1. The simplest form of loading and starting FORDDT is with the following command string: 

@DEBUG (FROM) filename.type/FORTRAN 

FORDDT responds with 

ENTERING FORDDT 
» 

The angle brackets indicate that FORDDT is ready to receive a command, just like an asterisk (*) 
Signifies FORTRAN's readiness. 

The DEBUG command to the monitor will also load DDT (standard system debugging program). DDT 
can be used or ignored but it does require an extra 4 pages of memory. 

2. The user may wish to load his compiled program and FORDDT directly with the LINK program. (Load­
ing with LINK was accomplished implicity in the previous command string.) The command sequence 
is as follows: 

@L1NK 
*filename.type/DEBUG:FORTRAN/60 
*/SYMSEG/G 

If the total FORTRAN program consists of many subroutines and insufficient memory is available to 
complete loading with symbols, it is possible to load with symbols just those sections expected to give 
trouble. The remaining routines need not be loaded. 

F-7 



F.5 SCOPE OF NAME AND LABEL REFERENCES 

Each program unit has its own symbol table. When the user initially enters FORDDT, he automatically opens the 
symbol table of the main program. All references to names or labels via FORDDT must be made with respect to the 
currently open symbol table. If the user has given the main program a name other than MAIN by using the 
PROGRAM statement (see Chapter 5, section 5.2), FORDDT will ask for the defined program name. After the user 
enters the program name, FORDDT will open the appropriate symbol table. At this point, symbol tables in programs 
other than the main program can be opened by using the OPEN command (see section F.6). 

References to statement labels, line numbers, FORMAT statements, variables, and arrays must have labels that are 
defined in the currently open symbol table. However, FORDDT will accept variable and array references outside the 
currently open symbol table providing the name is unique with respect to all program units in the given load module. 

F.6 FORDDT COMMANDS 

This section gives a detailed deSCription of all commands in FORDDT. The commands are given in alphabetical 
order. 

ACCEPT Allows the user to change the contents of a FORTRAN variable, array, array element, 
array element range, or FORMAT statement. The command format is 

where 

ACCEPT name/mode value 

name = the variable array, array element, array element range, or FORMAT 
statement to be modified. 

mode = the format of the data value to be entered. The mode keyword must be 
prel:t:ded by a slash (/) and immediately follow the name. Intervening 
blanks are not allowed. (Note that /mode does not apply to FORMAT 
modification. ) 

value = the new value to be assigned. The format of the input value must 
correspond to the specified mode. 

DATA LOCATION MODIFICATION 

Data Modes 

The following data modes are accepted: 

Mode Meaning Example 
A ASCII (left-justified) /FOO/ 
C COMPLEX (1.25,-78.E+9) 
D DOUBLE PRECISION 123.4567890 
F REAL 123.45678 
I INTEGER 1234567890 
0 OCTAL 76543210 
R RASCH (right-justified) \BAR\ 
S SYMBOLIC PSI(2,4) 

If not specified, the default mode is REAL. 

F-8 



Two Word Values 

For the data modes ASCII, RASCII, OCTAL, and SYMBOLIC, FORDDT will accept a 
"/LONG" modifier on the mode switch. This modifier indicates that the variable and the 
value are to be interpreted as two words in length. 

Example 

ACCEPT VAR/RASCII/LONG '1234567890' 

will assume that V AR is two words long and store the given 10 character literal into it. 

Initialization of Arrays 

If the name field of an ACCEPT contains an unsubscripted array name or a range of array 
elements, all elements of the array or the specified range will be set to the given value. 

Example 

ACCEPT ARRAY /F 1.0 
or 

ACCEPT ARRAY(5)-ARRAY(10)/F 1.0 

Note that this applies only to modes other than ASCII and RASCII. 

Long Literals 

When the value field of an ACCEPT contains an unsubscripted array name or range of 
array elements, and the specified data mode is ASCII or RASCII, the value field is 
expected to contain a long literal string. ACCEPT will store the string linearly into the 
array or array range. If the array is not filled, the remainder of the array or range will be 
set to zero. If the literal is too long the remaining characters will be ignored. 

Example 

ACCEPT ARRAY /RASCII 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' 

FORMA T STATEMENT MODI FICA TION 

When the name field of an ACCEPT contains a label, it expects this label to be a 
FORMAT statement label and that the value field contains a new FORMAT speCification. 

Example 

ACCEPT 10 (lHO,FIO.2,3(I2)) 

The new specification cannot be longer than the space originally allocated to the 
FORMAT by the compiler. The remainder of the area is cleared if the new speCification is 
shorter. 

Note that FOROTS performs some amount of encoding of FORMAT statements when it 
processes them for. the first time. If any I/O statement referencing the given FORMAT 
has been executed, the FORTRAN program has to be restarted (re-initializing FOROTS). 

F-9 



CONTINUE 

DIMENSION 

Allows the program to resume execution after a FORDDT pause. After a CONTINUE is 
executed, the program either runs to completion or until another pause is encountered. 
The command format is 

CONTINUE n 

where the n is optional and if omitted will be assumed to be one. If a value is provided, it 
may be a numeric constant or program variable but it will be treated as an integer. When 
the value n is specified, the program will continue execution until the nth occurrence of 
this pause. For example, 

CONTINUE 20 

will continue execution after the 20th occurrence of the pause. 

Sets the user defined dimensions of an array for FORDDT access purposes. These 
dimensions need not agree with those declared to the compiler in the source code. 
FORDDT will allow the user to redimension an array to have a larger scope than that of 
the source program. If this is done a warning is given. The command format is 

DIMENSION S 

For example: 

DIMENSION ALPHA(7,5/6.1 0) 

where S is the name of the array speCified. 

FORDDT will remember the dimensions of the array until it is redefined or removed. 

The command 

DIMENSION 

will give a full list of all the user defined dimensions for all arrays. 

DIMENSION ALPHA 

will display the current information for the array ALPHA only. 

DIMENSION ALPHA/REMOVE 

will remove any user defined array information for the array ALPHA. 

Arrays, Array Elements, and Ranges 

Array elements are specified in the following format: 

where 

name = the name of the array 

F-IO 



DOUBLE 

GOTO 

GROUP 

[ ... J = optional, and contains dimension information. This form is equivalent in 
effect to the DIMENSION statement. 

(. .. ) = the subscripts of the specific element desired. 

The entire array is referenced simply by its unsubscripted name. A range of array 
elements is specified by inputting the first and last array elements of the desired range 
separated by a dash (-) (A(5)-A(IO». 

Defines the dimensions of a double precision array. The result of this command is the 
same as for the DIMENSION command except that the array so dimensioned is 
understood by FORDDT to be an array with two word entries and, therefore, reserves 
twice the space. The command format is 

DOUBLE arrayname 

Allows the user to continue his program from a point other than the one at which he last 
paused. The GOTO allows the user to continue at a statement label or code generating 
source line number provided that the /DEBUG:LABELS switch has been used or the 
contents of a symbol previously ASSIGNed during the program execution. 

Note that the program must be STARTed before this command can be used and also 
note that a GOTO is not allowed after the CTRL/C CTRL/C REENTER sequence. 
(See F.6.) 

The command format is 

GOTOn 

Sets up a string of text for input to a TYPE command. The user can store TYPE 
statements as a list of variables identified by the numbers I through 8. This feature 
eliminates the need to retype the same list of variables each time the user wishes to 
examine the same group. Refer to the TYPE command for the proper format of the list. 

The command format is 

where 

GROUP n list 

n = the group number 1-8 

list = a string of TYPE statements to be called in future accessing of the current 
group number. 

GROUP 

with no arguments will cause FORDDT to type out the current contents of all the groups. 

GROUPn 

will type out the contents of the particular group requested. 

Note that one group may call another. 

F-II 



LOCATE 

MODE 

NEXT 

Lists the program unit names in which a given symbol is defined. This is useful when the 
variable the user wishes to locate is not in the currently open program unit and is defined 
in more than one program unit. The command format is 

LOCATEn 

where n may be any FORTRAN variable, array, label, line number, or FORMAT 
statement number. 

Defines the default formats of typeout from FORDDT. In initial default mode variables 
will be typed in floating point format. If the user wishes to change the typeout modes, 
the command format is 

MODE list 

where list contains one or more of the modes in the following table. (Only the first 
character of each mode need be typed to identify it to FORDDT.) 

Mode 
F 
D 
C 
I 
o 
A 
R 

Meaning 
FLOATING POINT 
DOUBLE PRECISION 
COMPLEX 
INTEGER 
OCTAL 
ASCII (left-justified) 
RASCII (right-justified) 

A typical command string might be 

MODE A,I,OCTAL 

Allows the user to cause FORDDT to trace source lines, statement labels, and entry point 
names during execution of the user program. This command will only provide trace 
facilities if the program was compiled with the DECsystem-20 FORTRAN /DEBUG 
switch. If this switch was not used, the NEXT command will act as a CONTINUE com­
mand. The command format is 

NEXTn/sw 

where 

n = a program variable or integer numeric value and 
sw = one of the following switches 

IS = statement label 
IL = source line 
IE = entry point 

The default starting value of n is 1, a single statement trace. The default switch is IL. 

F-12 



OPEN 

PAUSE 

The command 

NEXT 20/L 

will trace the execution of the next 20 source line numbers or until another pause is 
encountered. 

Note that if no argument is specified, the last argument given will be used. For example 

NEXT/E 

will change the tracing mode to trace only subprogram entries using the numeric 
argument previously supplied. 

Allows the user to open a particular program unit of the loaded program so that the 
variables will be accessible to FORDDT. Any previously opened program unit is closed 
automatically when a new one is opened. Only global symbols, symbols in the currently 
open unit, and unique locals are available at anyone time. Note that starting FORDDT 
automatically opens the MAIN program. The command format is 

OPEN name 

where name is the subprogram name. OPEN with no arguments will reopen the MAIN 
program. 

If the PROGRAM statement was used in the FORTRAN program, the name supplied by 
the user will be requested upon entering FORDDT. 

Allows the user to place a pause request at a statement number, source line number, or 
subroutine entry point. Up to 10 pauses may be set at anyone time. When a pause is 
encountered, execution is suspended at that point and control is returned to FORDDT. 
Also, when a pause is encountered, the symbol table of that subprogram is automatically 
opened. 

The command formats include 

where 

PAUSEP 
PAUSE P AFTER n 
PAUSE P IF condition 
PAUSE P TYPING /g 
PAUSE P AFTER n TYPING /g 
PAUSE P IF condition TYPING /g 

P = the point where the pause is requested, 
n = an integer numeric constant 
g a group number 

PAUSE 100 

will set a pause at statement label 100, cause execution to be suspended, and cause 
FORDDT to be entered on reaching 100 in the program. 

F·l3 



REMOVE 

START 

PAUSE #245 AFTER MAX(5) 

will cause a pause to occur at source line number 245, after encountering this point the 
number of times specified by MAX(5). Note that AFTER may not be abbreviated. 

PAUSE DELTA IF LIMIT(3.1).GT.2.5E-3 

If the variable LIMIT(3.l) is greater than the value 2.5E-3, the pause request will be 
granted. The IF may not be abbreviated, but all the usual FORTRAN logical connectives 
are allowed. 

PAUSE 505lYPING /5 

will request a pause to be made at the first occurrence of the label 505, and the variables 
in group 5 will be displayed. The lYPING specification may not be abbreviated. 

PAUSE LINE#24 AFTER 16lYPING 3 

will place a request at source line number 24 after 16 (octal) times through, however, the 
contents of group 3 will be displayed every time. 

When the lYPING option is used with the PAUSE command, control can be transferred 
to FORDDT at the next typeout by typing any character on the terminal. 

Note that Pause requests remain after a CTRL/C REENTER sequence, a START com­
mand, or a CTRL/C START sequence. 

Removes the previously requested pauses. The command format is 

REMOVEP 

For example 

REMOVE L#I23 

will remove a pause at program source line number 123. 

REMOVE ALPHA 

will remove a pause at the subroutine entry to ALPHA. 

REMOVE with no arguments will remove all the user's pause requests, and in this case, no 
abbreviation of REMOVE is allowed. This prevents the unintentional removal of pauses. 

Starts the user program at the normal FORTRAN main program entry point. The 
command format is 

START 

F-14 



STOP 

STRACE 

TYPE 

Terminates the program, requests FOROTS to close all open mes, and causes an exit to 
the monitor. The usual command format is 

STOP 

STOP/RETURN 

will allow a return to monitor mode without releasing devices or closing mes so that a 
CONTINUE can be issued. 

Displays a subprogram level backtrace of the current state of the program. The command 
format is 

STRACE 

Causes one or more FORTRAN defined variables, arrays, or array elements to be 
displayed on the user terminal. The command format is 

TYPE list 

where list may be one or more variable or array references andlor group numbers. These 
specifications must be separated by commas, and group numbers must be preceded by a 
slash (/). The command with no arguments will use the last argument list submitted to 
FORDDT. 

An array element range can also be specified, for example 

TYPE PI(5)-PI(13) 

will display the values from PI(5) to PI(l3) inclusive. If an unsubscripted array name is 
specified, the entire array will be typed. 

There are several methods of choosing the form of typeout in conjunction with the 
MODE command. 

1. If the user does not specify a format, the default is floating point form. 

2. The user can specify a format via the MODE command described in this 
appendix. 

3. The user can change the format previously designated by the MODE 
command by including print modifiers in the TYPE or GROUP string. The 
print modifiers are 

lA, IC, /D, IF, II, 10, /R 

The first print modifier specified in a string of variables determines the mode 
for the entire string unless another mode is placed directly to the right of a 
particular variable. For example in 

TYPE 11K, L/O, M, N/A, 12 

F-15 



the typeout mode is integer until another mode is specified. Therefore, 

K, M, and /2 = Integer 
L=OCTAL 
N= ASCII 

WHAT Displays the information saved by FORDDT. The command format is 

WHAT 

F.7 ENVIRONMENT CONTROL 

If a program enters an indefinite loop, the user can recover by typing a CTRL/C CTRL/C REENTER sequence. 
This action will cause FORDDT to simulate a pause at the point of reentry and allow the user to control his run­
away program. 

Most commands can be used once the program has been reentered; however, GOTO, STRACE, TYPE, and ACCEPT 
cause transfer of control to routines external to FORDDT. No guarantee can be made to assure that any of these 
commands following a CTRL/C CTRL/C REENTER sequence will not destroy the user profile. The program must 
be returned to a stable state before any of these four commands can be issued. In order to restore program integrity, 
the user should set a pause at the next label and then CONTINUE to it. If the /DEBUG:TRACE switch was used, 
a NEXT 1 command can be issued to restore program integrity. 

F.8 FORTRAN/OPTIMIZE SWITCH 

The user should never attempt to use FORDDT with a program that has been compiled with the /OPTIMIZE switch. 
The global optimizer causes variables to be kept in AC's. For this reason, attempts to examine or modify variables in 
optimized programs will not work. Also, since the optimizer moves statements around in the user program, attempts 
to trace program flow will lead to great confusion. 

F.9 FOR DDT MESSAGES 

FORDDT responds with two levels of messages - fatal error and warning. Fatal error messages indicate that the 
processing of a given command has been terminated. Warning messages provide helpful information. The format of 
these messages is 

?FDTXXX text 
or 

%FDTXXX text 

where 

? = fatal 
% = warning 
FDT = FORDDT mnemonic 
XXX = 3 letter mnemonic for error message 
text = explanation of error 

Square brackets ([ ]) in this section signify variables and are not output on the terminal. 

F-16 



Fatal Errors 

The fatal errors in the following list are each preceded by ?FDT on the user terminal and on listings. They are listed 
in alphabetical order. 

BDF [symbol] IS UNDEFINED OR IS MULTIPLY DEFINED 

BOI BAD OCTAL OUTPUT 

An illegal character was detected in an octal input value. 

CCN CANNOT CONTINUE 

Pause has been placed on some form of skip instruction causing FORDDT to loop; should never be 
encountered in FORTRAN compiled programs. 

CFO CORE FILE OVERFLOW 

The storage area for GROUP text has been exhausted. 

CNU THE COMMAND [name] IS NOT UNIQUE 

More letters of the command are required to distinguish it from the other commands. 

CSH CANNOT 'START' HERE 

The specified entry point is not an acceptable FORTRAN main program entry point. 

DTO DIMENSION TABLE OVERFLOW 

FORDDT does not have the space to record any more array dimensions until some are removed. 

FCX FORMAT CAPACITY EXCEEDED 

An attempt was made to specify a FORMAT statement requiring more space than was originally 
allocated by FORTRAN. 

FNI FORMAL NOT INITIALIZED 

Reference to a FORMAL parameter of some subprogram that was never executed. 

FNR [array name] IS A FORMAL AND MAY NOT BE RE-DEFINED 

FORMAL parameters may not be DIMENSIONed. 

IAF ILLEGAL ARGUMENT FORMAT 

The parameters to the given command were not specified properly. Please refer to the documentation 
for correct format. 

IAT ILLEGAL ARGUMENT TYPE = [number] 

An unrecognized subprogram argument type was detected. Please submit an SPR if this message 
occurs. 

ICC COMPARE TWO CONSTANTS IS NOT ALLOWED 

Conditional test involves two constants. 

IER E 

Internal FORDDT error - please report via an SPR. 

F-17 



IGN INVALID GROUP NUMBER 

Group numbers must be integral and in the range 1 through 8. 

INV INVALID VALUE 

A syntax error was detected in the numeric parameter. 

ITM ILLEGAL TYPE MODIFIER - S 

The mode S is only valid for ACCEPT statements. 

LGU [array name] LOWER SUBSCRIPT.GE.UPPER 

The lower bound of any given dimension must be less than or equal to the upper bound. 

LNF [label] IS NOT A FORMAT STATEMENT 

MLD [array name] MULTI-LEVEL ARRAY DEFINITION NOT ALLOWED 

The same array cannot be dimensioned more than once (via the [dimensions] construct) in a single 
command. 

MSN MORE SUBSCRIPTS NEEDED 

The array is defined to have more dimensions than were specified in the given reference. 

NAL NOT ALLOWED 

An attempt has been made to modify something other than data or a FORMAT. 

NAR NOT AFTER A RE-ENTER 

The given command is not allowed until program integrity has been restored via a CONTINUE or 
NEXT command. 

NOT DDT NOT LOADED 

NFS CANNOT FIND FORTRAN START ADDRESS FOR [program name] 

Main program symbols are not loaded. 

NFV [symbol] IS NOT A FORTRAN VARIABLE 

Names must be six character alpahnumeric strings beginning with a letter. 

NGF CANNOT GOTO A FORMAT STATEMENT 

NPH CANNOT INSERT A PAUSE HERE 

An attempt has been made to place a pause at other than an executable statement or subprogram 
entry point. 

NSP [symbol] NO SUCH PAUSE 

An attempt has been made to REMOVE a pause that was never set up. 

NUD [symbol] NOT A USER DEFINED ARRAY 

An attempt has been made to remove dimension information for an array that was never defined. 

PAR PARENTHESES REQUIRED ( .. ) 

Parentheses are required for the speCification of FORMAT statements and complex constants. 

F-18 



PRO TOO MANY PAUSE REQUESTS 

The PAUSE table has been exhausted. lOis the maximum limit. 

SER SUBSCRIPT ERROR 

The subscript specified is outside the range of its defined dimensions. 

STL [array name] SIZE TOO LARGE 

An attempt has been made to define an array larger than 256K. 

TMS TOO MANY SUBSCRIPTS 

The array is defined to have less dimensions than are specified in the given element reference. 

URC UNRECOGNIZED COMMAND 

Warning Messages 

Each warning message in this list is preceded by %FTN on the user terminal and on listings. They are given here in 
alphabetical order. 

ABX [array name] COMPILED ARRAY BOUNDS EXCEEDED 

FORDDT has detected another symbol defined in the specified range of the array. Note that this will 
occur in certain EQUIVALENCE cases and can be ignored at that time. 

CHI CHARACTERS IGNORED: "[text]" 

The portion of the command string included in " ... " was thought to be extraneous and was ignored. 

NAR [symbol] IS NOT AN ARRAY 

NSL NO SYMBOLS LOADED 

FORDDT cannot find the symbol table. 

NST NOT 'STARTED' 

The specified command requires that a START be previously issued to assure that the program is 
properly initialized. 

POV PROGRAM OVERLAYED 

The symbol table is different from the last time FORDDT had control. 

SFA SUPERSEDES ARRA Y 

The FORTRAN generated dimension is being superseded for the given array. 

SPO VARIABLE IS SINGLE PRECISION ONLY 

XPA ATTEMPT TO EXCEED PROGRAM AREA WITH [symbol name] 

An attempt has been made to access memory outside of the currently defined program space. 

F-19 





APPENDIX G 
COMPILER MESSAGES 

DECsystem-20 FORTRAN responds with two levels of messages - fatal error and warning. If a warning message is 
received the compilation will continue, but a fatal error will stop the program from being compiled. The format of 
messages is 

where 

?FTNXXX LINE:n text 
or 

%FTNXXX LINE:n text 

? 
% 
FTN 
XXX 
LINE:n 
text 

fatal 
warning 

= FORTRAN mnemonic 
= 3 letter mnemonic for the error message 
= line number where error occurred 
= explanation of error 

Square brackets ([ ]) in this appendix signify variables and are not output on the terminal. 

Fatal Errors 

Each fatal error in the following list is preceded by ?FTN on the user terminal and on listings. They are presented 
here in alphabetical order. 

ABD [symbolname] HAS ALREADY BEEN DEFINED [definition] 

The usage given conflicts with current information about the symbol. For example, a symbol defined 
in an EQUN ALENCE statement cannot be referenced as a subprogram name. 

AWN ARRAY REFERENCE [name] HAS WRONG NUMBER OF SUBSCRIPTS 

The array was defined to have more or less dimensions than the given reference. 

BOV STATEMENT TOO LARGE TO CLASSIFY 

To determine statement type, some portion of the statement must be examined by the compiler 
before actual semantic and syntax analysis begins. During this classification the entire portion of the 
statement required must fit into the internal statement buffer (large enough for a normal 20 line 
statement). This error message is issued when the portion of a given statement required for 
classification is too large to fit in the buffer. Once FORTRAN has classified a statement, there is no 
explicit restriction on its length. 

G-l 



CER COMPILER ERROR IN ROUTINE [name] 

Please submit an SPR for any occurrence of this message. 

CFF CANNOT FIND FILE 

The fIle referenced in an INCLUDE statement was not found. 

CPE CHECKSUM OR PARITY ERROR ON [source/listing/object] FILE [name] 

CQL NO CLOSING QUOTE IN LITERAL 

CSF ILLEGAL STATEMENT FUNCTION REFERENCE IN CALL STATEMENT 

DDA [symbolname] IS DUPLICATE DUMMY ARGUMENT 

DFC VARIABLE DIMENSION [name] MUST BE SCALAR DEFINED AS FORMAL OR IN COMMON 

DFD DOUBLE [type] NAME ILLEGAL 

Duplicate fields were encountered in an INCLUDE me specification. 

DIA 00 INDEX VARIABLE [name] IS ALREADY ACTIVE 

In any nest of DO loops, a given index variable may not be defined for more than one loop. 

DID CANNOT INITIALIZE A DUMMY PARAMETER IN DATA 

DLN OPTIONAL DATA VALUE LIST NOT SUPPORTED 

The extended FORTRAN statement form that allows data values to be defined in type specification 
statements is not supported by FORTRAN. 

DSF ARGUMENT [name] IS SAME AS FUNCTION NAME 

DTI THE DIMENSIONS OF [arrayname] MUST BE OF THE TYPE INTEGER 

DVE CANNOT USE DUMMY VARIABLES IN EQUIVALENCE 

DWL [source/listing/object] DEVICE [[device]] WRITE LOCKED 

ECT ATTEMPT TO ENTER [symbolname] INTO COMMON TWICE 

EDN EXPRESSION TOO DEEPLY NESTED TO COMPILE 

EID ENTRY STATEMENT ILLEGAL INSIDE A DO LOOP 

ElM ENTRY STATEMENT ILLEGAL IN MAIN PROGRAM 

ENF LABEL [number] MUST REFER TO AN EXECUTABLE STATEMENT, NOT A FORMAT 

ETF ENTER FAILURE [fIlename] 

EXB EQUIVALENCE EXTENDS COMMON BLOCK [name] BACKWARD 

FEE FOUND [symbol] WHEN EXPECTING [symbol] OR A [symbol] 

General syntax error message. 

G-2 



FNE LABEL [number] MUST REFER TO A FORMAT, NOT AN EXECUTABLE STATEMENT 

FWE FOUND [symbol] WHEN EXPECTING A [symbol] 

HDE HARDWARE DEVICE ERROR ON [source/listing/object] DEVICE [[device]] 

lAC ILLEGAL ASCII CHARACTER [character] IN LABEL FIELD 

IAL INCORRECT ARGUMENT TYPE FOR LIBRARY FUNCTION [name] 

18K ILLEGAL STATEMENT IN BLOCK DATA SUBPROGRAM 

ICL ILLEGAL CHARACTER [character] IN LABEL FIELD 

IDN DO LOOP AT LINE: [number] IS ILLEGALLY NESTED 

The user is attempting to terminate a DO loop before terminating one or more loops defined after the 
given one. 

IDS IMPLICIT DO INDICES MAY NOT BE SUBSCRIPTED 

IDT ILLEGAL OR MISSPELLED DATA TYPE 

IDV IMPLIED DO INDEX IS NOT VARIABLE 

lED INCONSISTENT EQUIVALENCE DEC LARA TION 

The given EQUIVALENCE declaration would cause some symbolic name to refer to more than one 
physical location. 

IFD INCLUDED FILES MUST RESIDE ON DISK 

lID NON-INTEGER IMPLIED DO INDEX 

lIP ILLEGAL IMPLICIT SPECIFICATION PARAMETER 

lIS INCORRECT INCLUDE SWITCH 

ILF ILLEGAL STATEMENT AFTER LOGICAL IF 

Refer to section 9.3.2 for restrictions on logical IF object statements. 

INN INCLUDE STATEMENTS MAY NOT BE NESTED 

IOD ILLEGAL STATEMENT USED AS OBJECT OF DO 

ISD ILLEGAL SUBSCRIPT EXPRESSION IN DATA STATEMENT 

Subscript expressions may be formed only with implicit DO indices and constants combined with +, 
-,*,or/. 

ISN [symbolname] IS NOT [symboltype] 

The symbol cannot be used in the attempted manner. 

IUT PROGRAM UNITS MAY NOT BE TERMINATED WITHIN INCLUDED FILES 

G-3 



IVP INVALID PPN 

IXM ILLEGAL MIXED MODE ARITHMETIC 

Complex and double precision cannot appear in the same expression. 

IZM ILLEGAL [datatype] SIZE MODIFIER [number] 

Refer to section 6.3. 

LAD LABEL [number] ALREADY DEFINED AT LINE [number] 

LED ILLEGAL LIST DIRECTED [statement type] 

LF A LABEL ARGUMENTS ILLEGAL IN FUNCTION OR ARRAY REFERENCE 

LGB LOWER BOUND GREATER UPPER BOUND FOR ARRAY [name] 

LLS LABEL TOO LARGE ORTOO SMALL 

Labels cannot be 0 or greater than 5 digits. 

LNI LIST DIRECTED I/O WITH NO I/O LIST 

LTL TOO MANY ITEMS IN LIST - REDUCE NUMBER OF ITEMS 

In certain rare instances, a combination of long lists in a single statement can exhaust the syntax 
stack. 

MCE MORE THAN 1 COMMON VARIABLE IN EQUIVALENCE GROUP 

MSP STATEMENT NAME MISSPELLED 

MWL ATTEMPT TO DEFINE MULTIPLE RETURN WITHOUT FORMAL LABEL ARGUMENTS 

NCF NOT ENOUGH CORE FOR FILE SPECS. TOTAL K NEEDED = [number] 

NEX NO EXPONENT AFTER D OR E CONSTANT 

NFS NO FILENAME SPECIFIED 

The INCLUDE statement requires a filename. 

NGS CANNOT GET SEGMENT [name] - ERROR CODE: 0 

Error code 0 indicates that the file cannot be found. 

NIR REPEAT COUNT MUST BE AN UNSIGNED INTEGER 

NIU NON-INTEGER UNIT IN I/O STATEMENT 

NLF WRONG NUMBER OF ARGUMENTS FOR LIBRARY FUNCTION [name] 

NNF NO STATEMENT NUMBER ON FORMAT 

NRC ST ATEMENT NOT RECOGNIZED 

G4 



NUO .NOT. IS A UNARY OPERATOR 

NWD INCORRECT USE OF * OR? IN [mename] 

OPW OPEN PARAMETER [name] IS OF WRONG TYPE 

PIC lHE DO PARAMETERS OF [index name] MUST BE INTEGER CONSTANTS 

PRF PROTECTION FAILURE [mename] 

QEF QUOTA EXCEEDED OR DISK FULL [mename] 

QEX BLOCK TOO LARGE OR QUOTA EXCEEDED FOR [source/listing/object] FILE [name] 

RDE RIB OR DIRECTORY ERROR [ftlename] 

RFC [function name] IS A RECURSIVE FUNCTION CALL 

RIC COMPLEX CONSTANT CANNOT BE USED TO REPRESENT lHE REAL OR IMAGINARY PART 
OF A COMPLEX CONSTANT 

SAD ARRAY [name] - SIGNED DIMENSIONS MAY APPEAR ONLY AS CONSTANT RANGE LIMITS 

SNL [statement name] STATEMENTS MAY NOT BE LABELLED 

SOR SUBSCRIPT OUT OF RANGE 

TFL TOO MANY FORMAT LABELS SPECIFIED 

TOF MORE THAN 2 OUTPUT FILES ARE NOT ALLOWED 

Only a listing and a relocatable binary me may be specified as output meso 

UMP UNMATCHED PARENTHESES 

USI [symbol type] [symbol name] USED INCORRECTLY 

The given symbol cannot be used in this way. 

VNA SUBSCRIPTED VARIABLE IN EQUIVALENCE BUT NOT AN ARRAY 

VSE EQUIVALENCE SUBSCRIPTS MUST BE INTEGER CONSTANTS 

Warning Messages 

Each warning message in the following list is preceded by %FTN on the user terminal and on listings. They are 
presented here in alphabetical order. 

AGA OPT -OBJECT VARIABLE, OF ASSIGNED GOTO WITHOUT OPTIONAL LIST, WAS NEVER 
ASSIGNED 

CAl COMPLEX EXPRESSION USED IN ARITHMETIC IF 

CTR COMPLEX TERMS USED IN A RELATIONAL OlHER THAN EQ OR NE 

The result of the other relational operators with complex operands is undefined. 

G-5 



CUO CONSTANT UNDERFLOW OR OVERFLOW 

This message is issued when overflow or underflow is detected as the result of building constants or 
evaluating constant expressions at compile time. 

DIM DO INDEX MODIFIED INSIDE LOOP 

A program which does this may be incorrectly compiled by the optimizer since it assumes that indices 
are never modified. Note that the number of iterations is calculated at the beginning of the loop and 
is never affected by modification of the index within the loop. 

DIS PROGRAM IS DISCONNECTED - OPTIMIZATION DISCONTINUED 

Please submit an SPR if this message occurs. 

FMR MULTIPLE RETURNS DEFINED IN A FUNCTION 

FNA A FUNCTION WITHOUT AN ARGUMENT LIST 

ICC ILLEGAL CHARACTER CONTINUATION FIELD OF INITIAL LINE 

Continuation lines cannot follow comment lines. 

ICD INACCESSIBLE CODE, STATEMENT DELETED 

The optimizer will delete statements which cannot be reached during execution. 

ICS ILLEGAL CHARACTER IN LINE SEQ# 

IFL INFINITE LOOP, OPTIMIZATION DISCONTINUED 

LID IDENTIFIER [name] MORE THAN 6 CHARACTERS 

The remaining characters are ignored. 

MVC NUMBER OF VARIABLES DOES NOT EQUAL THE NUMBERS OF CONSTANTS IN DATA 
STATEMENT 

NED NO END STATEMENT IN PROGRAM 

NOD GLOBAL OPTIMIZATION NOT SUPPORTED WITH /DEBUG -/OPT IGNORED 

NOF NO OUTPUT FILES GIVEN 

PPS PROGRAM STATEMENT PARAMETERS IGNORED 

For compatibility purposes. 

RDI ATTEMPT TO REDECLARE IMPLICIT lYPE 

SOD [name] STATEMENT OUT OF ORDER 

VND FUNCTION RETURN VALUE IS NEVER DEFINED 

VNI VARIABLE [name] IS NOT INITIALIZED 

The optimizer analysis determined that the given variable was never initialized prior to its use in a 
calculation. 

G-6 



WOP OPT-WARNINGS GIVEN IN PHASE 1, OPTIMIZED CODE MAY NOT BE CORRECT 

One or more of the messages issued prior to this message resulted from situations which violate 
assumptions made by the optimizer and thus may cause it to generate code that does not execute as 
desired. 

XCR EXTRANEOUS CARRIAGE RETURN 

Carriage return was not immediately preceded or followed by a line termination character. 

ZMT SIZE MODIFIER [number] TREATED AS [data type] 

Message is issued when one of the data type size modifiers is used which is accepted only for 
compatibility. 

G-7 





APPENDIX H 

DECSYSTEM-IO COMPATIBILITY 

The following items are included in the DECsystem-20 FORTRAN software for compatibility with the DECsystem-lO. 
They are not supported on the DECsystem-20. Users must not specify these items because their actions are undefined 
and the results cannot be guaranteed. 

1. Logical Device Assignments. 
(Refer to pages 10-4 and' E-27.) 

Device Logical unit number 

PTR 06 
PTP 07 
DIS 08 
DTAI 09 
DTA2 10 

DTA3 II 
DTA4 12 

DTA5 13 

DTA6 14 
DTA7 IS 

2. PUNCH Statement 

3. KAlO and KilO compiler switches 

4. The following Library Subroutines: 

AXIS 
LINE 
MKTBL 
NUMBER 
PLOT 
PLOTS 
SCALE 
SLITE(i) 
SLITET(i,j) 
SSWTCH(i,j) 
SYMBOL 
WHERE 

5. DDT command to FORDDT. 

H-l 

Use 
Paper Tape Reader 
Paper Tape Punch 
Display 
DECtape 

DECtape 





A (Alphanumeric) field descriptor, 13-10 
Access, 

OPEN/CLOSE statement option, 12-2 
Accuracy and range of double precision 

numbers, D-I 
Action of field descriptors, 13-5 
Actual and dummy arguments, agreement 

between, 15-1 
Actual arguments 

CALL statement, 15-10 
external function reference, 15-12 
generic function names, 15-6 
use of, 15-1 

Acute accent, 2-2 
Adjustable dimensions, 6-2 

type statement, 6-3, 6-4 
Alphanumeric character transfer, 13-10 
Alphanumeric field descriptors, 13-10, 

13-11,13-12 
Apostrophe representation, 13-12 
Argument lists, D-lO 
Argument types, D-l1 
Arguments 

actual, 15-1 
actual function reference, 15-12 
agreement between actual and dummy, 15-1 
description of, D-lO 
1ummy, 15-1 
ENTRY statement, 15-13 

Arithmetic assignment statement, 8-1 
Arithmetic expression, 

compound,4-1 
rules for, 4-2 
simple, 4-1 

Arithmetic IF statement, 9-3 
Arithmetic operations and operators, 4-1 
Arrays 

adjustable dimensions, 6-2 
description, 3-7 
dimensioning, 3-8 
double precision, 12-6 
dummy argument name, 15-2 
element, 3-7, 3-9 
offsets and factoring, E-16 
single precision, 12-6 

ASCII character, 2-1 
Code Set, A-I 

ASSIGN statement, 8-3 
Assigned GO TO, 9-2 

INDEX 

Index-l 

Assignment of .FALSE Value, 4-4 
Assignment of .TRUE Value, 4-4 
Assignment statements, 

arithmetic, 8-1 
ASSIGN, 8-1,8-3 
logical, 8-1, 8-3 

AXIS library subroutine, H-l 

BACKFILE statement, 14-3 
BACKSPACE statement, 14-2 
Base/exponent operand types, 4-4 
Basic external functions, 15-6 

Table of, 15~8, 15-9 
Blank, Line type, 2-4, 2-6 
Blank common, 6-5 
BLOCK data statement, 16-1 
Block data subprograms, 16-1 
Boldface italic type, I-I 

Calculation of DO loop iterations, 9-5 
CALL statement, 15-9, 15-10 
Categories of statements, 1-2 
Character transfer, 

maximum alphanumeric, 13-10 
Character, 

variable type by initial, 3-7 
Characters 

apostrophe representation, 13-12 
ASCII, 2-1, A-I 
continuation field, 2-3 
digits, 2-2 
line formatting, 2-2 
line termination, 2-2 
print control, 13-15 
symbolic, 2-2 
upper/lower case, 2-1 

CLOSE statement, 12-1, 12-2 
Closing parenthesis, FORMAT statement, 13-12 
COBOL, interaction with, D-18 
Code Set, 

ASCII character, A-I 
Codes 

Table of conversion, 13-3 
Table of numeric fields, 13-6 

Comma delimiter, format speCification, 13-12 
Comment, 

line identifier, 2-5 
line type, 2-4 
within a line, 2-5 



Common, 
blank,6-5 
labeled, 6-5 

COMMON statement, 6-5, 6-6 
Compilation control statements, 5-1 

END statement, 5-2 
INCLUDE statement, 5-1 
PROGRAM statement, 5-1 

Compiler generated variables, C-6 
Compile messages, G-l 
Complex constant, 3-4 
Complex data, 3-1 
Complex quantities, transfer of, 13-6 
Computation of DO loop iterations, 9-5, D-l 
Computed GO TO, 9-2 
Constants, 3-1 

complex, 3-4 
double octal, 3-4 
double precision, 3-3 
literal, 3-5 
logical, 3-5 
octal, 3-4 
statement label, 3-6, 8-3 

Constant size, 
double octal, 3-4 
double precision, 3-3 
integer, 3-2 
octal, 3-4 
real, 3-2 

Continuation field, 2-3 
Continuation lines, 2-4 
CONTINUE statement, 9-9 
Control characters for printer, 13-15 
Control statements, 

device, 14-1, 14-3 
program 9-1 

Conversion, 
H, 13-11 
Result of literal, 13-12 

Conversion codes, 13-3 
Conversion for 

double precision data, 13-8 
mixed mode assignments, 8-2 
real data, 13-8 

Data conversion, 13-8 
DATA statement, 7-1, 7-2 
Data statement label, 3-1 
Data subprograms, BLOCK, 16-1 
Data types, 3-1 

INDEX (Cont.) 

Index-2 

DDT Command, H-l 
Debug line, 2-4, 2-6 
Debugging FORTRAN programs, F-l 
Deciarators, 

Array, 3-8 
type, 6-3 

DECsystem-1O compatibility, H-l 
DEFINE Command, B-1 
Definition of, 

array subscripts, 3-7 
external function, 15-5 
intrinsic function, 15-3 
statement function, 15-3 

Delimitp,T 
format specification comma, 13-12 
record, 13-1, 13-13 

DeSCriptors, 
A (alphanumeric field), 13-10 
Action of Field, 13-5 
Field, 13-1, 13-2 
L (logical) field, 13-2, 13-3, 13-9 
Literal Field, 13-12 
numeric field, 13-4 
Rfield,13-11 
single quotes, 13-10 
record formatting field, 13-14 
T field, 13-14 
X field, 13-14 

Descriptors and variables, interaction of, 13-6 
Device OPEN/CLOSE statement option, 12-2 
Device control statements, 14-1 

summary, 14-3 
Dialog OPEN/CLOSE statement option, 12-7 
Digit characters, 2-2 
Dimension declaration, 3-9 
DIMENSION statement, 6-1 
Dimensioning arrays, 3-8 

in COMMON, 6-6 
Dimensions, adjustable, 6-2 
Directory, OPEN/CLOSE statement option, 12-5 
DO Loop, 9-5, 9-6 
DO statement, 9-5 

computations of iterations, 9-5, D-l 
extended range, 4-7, 9-7 
index variable, 9-5 
nested, 9-6, 9-7 
parameters, 9-5 
transfer operations, 9-8 
using floating point, D-l 

Double octal constant, 3-4 



INDEX (Cont.) 

Double octal data, 3-1 
Double precision constant, 3-3 
Double precision data conversion, 13-8 
Dummy arguments, 15-1, 15-2 

E notation, 3-3 
Elements, 

array, 3-7 
language set, 1-1 
order of array, 3-9 

END FILE statement, 14-1, 14-2 
END statement, 5-2 
Entry points, 

multiple subprogram, 15-13 
subroutine subprograms, 15-7 

ENTRY statement, 15-13, 15-14 
EQUIVALENCE statement, 6-1,6-6,6-7 
Error reporting, C-I0 
Evaluation of expressions, 4-8 

mixed mode, 4-9 
nested subexpressions, 4-8 

Executable statements, 1-1 
Execution of RETURN statement, 15-12 
Expressions. 

arithmetic, 4-1,4-2 
complex arithmetic, 4-1 
compound, 4-1 
evaluation of, 4-8 
evaluation of mixed mode, 4-4 
logical, 4-2 
mixed mode, 4-10 
relational, 4-6 
use of logical operands, 4-10 

Extended range DO statement, 9-7 
External FUNCTION statement, 15-5 
External FUNCTION subprograms, 15-6, 15-12 
External functions, 

basic, 15-6, 15-8, 15-9 
definitions of, 15-5 
Octal arguments for, 15-12 

External procedures, 15-1 
EXTERNAL statement, 6-1,15-1,15-5 

declaring function names, 6-8 

Factors, scale, 13-7, 13-8 
.F ALSE Value, assignment of, 44-
Field codes, Table of numeric, 13-6 
Field width, variable numeric, 13-9 
Fields, 

line continuation, 2-3, 24-
line statement, 2-3 

Index-3 

Fields, (Cont.) 
mixed numeric and alphanumeric, 13-12 
scale factor~ in, 13-7 
statement label, 2-3 

File control statements, 12-1 
Floating point DO loops, D-l 
FORDDT 

commands, F-l 
FORTRAN/DEBUG switch, F-6 
input format, F-2 
loading and starting, F-7 
messages, F-16 
new user tutorial, F-3 
numeric conventions, F-3 
using for debugging, F-l 

Form of 
BACKFILE statement, 14-3 
BACKSPACE statement, 14-2 
BLOCK data statement, 16-1 
CALL statement, 15-9 
END FILE statement, 14-2 
ENTRY statement, 15-13 
External FUNCTION statement, 15-5 
RETURN. Multiple Return, 15-10 
RETURN statement, 15-10 
REWIND statement, 14-2 
SKIP RECORD statement, 14-3 
statement functions, 15-3 
SUBROUTINE statement, 15-7 
UNLOAD statement, 14-2 

FORMAT descriptors, A (alphanumeric), 13-9, 
13-11 

action of, 13-5 
Alphanumeric, 13-9, 13-12 
Forms of, 13-2 
L (logical), 13-9 
literal, 13-10, 13-12 
numeric, 134-
R, 13-11 
Record formatting, 13-14 
Repeat format of, 13-2 
T, 13-14 
X, 13-14 

Format specification comma delimiter, 13-12 
FORMAT statement, 13-1 

closing parenthesis, 13-13 
READ/WRITE transfer to/from, 13-10 

Format-Controller I/O statement processing, 13-6 
Formatting field descriptors, 13-2 
FOROTS 

ASCII data fields, E-3 



FOROTS, (Cont.) 
binary data fields, E-3 
calling sequences, E-12, E-18, E-19, E-20 
device assignments, E-30 
error processing, E-2 
features of, E-l 
format of binary files, E-4 
image binary files, E-l1 
input/output facilities, E-3 
MACRO calls for FOROTS functions, E-13 
mixed mode data files, E-ll 

FORTRAN subroutines, 15-10 
FORTRAN, 

global optimizer, D4 
running the compiler, C-l 
switches, C-2, C-3 
writing programs, D-l 

FUNCTION dummy arguments, 15-2 
FUNCTION statement, 15-5 
FUNCTION subprogram, 15-6 

names, 15-12 
Functions, 15-1 

basic external, 15-6, 15-8, 15-9 
dummy arguments in, 15-2 
external, 15-1, 15-5 
generic names for, 15-6, 15-7 
intrinsic, IS-I, 15-3, 154, 15-5 
logical,4-6 
Statement, 15-1, 15-3 
to facilitate overlays, E-26 
use of library name for, 15-5 

G numeric conversion code, 13-7 
Generic names for functions, 15-6, 15-7 
Global optimizer 

constant folding and propagation, D-7 
elimination of common subexpressions, D4 
global register allocation, D-7 
improper function references, D-8 
optimization techniques, D-4 
programming techniques for effective 

optimization, D-8 
reduction of operator strength, D-5 
removal of constant computation from 

loops, D-6 
removal of inaccessible code, D-7 

GO TO statement, 9-1,9-2,9-3 
assigned, 9-1,9-3 
computed,9-2 
types of, 9-1 
unconditional,9-2 

INDEX (Cont.) 

Index4 

H conversion, 13-10 
Hierarchy, of operators, 4-8, 4-9 
Hollerith literal, 3-5 

I/O statements processing, 13-6 
Iden tifier, 

array elements, 3-9 
comment line, 2-5 

IF STATEMENT, 9-3, 94 
arithmetic, 9-3 
logical,94 
logical two-branch, 94 

Image files, FOROTS, E-l1 
IMPLICIT statement, 64, 6-5 
Increment parameter DO statement, 9-5 
Initial character, typing variables by, 3-7 
Initial line , 24 

statement number, 2-3, 24 
use of tab, 2-3 

Initial parameters DO statement, 9-5 
Initial tab, 2-2, 2-3, 24 
Input, line-sequenced, 2-6 
Input transfers, 

NAMELIST controlled, 11-2 
Integer constants 

size, 3-2 
Integer data, 3-1 
Integer variable types, 3-6 
Integer of descriptors and variables, 13-6 
Interacting with non-DECsystem-20 FORTRAN 

programs and files, D-8 
Internal procedures, 15-1 
Intrinsic functions, 15-3, 154, 15-5 
Iterations, calculation of DO loop, 9-5 

KAIO Compiler switch, H-l 
KIlO Compiler switch, H-l 

L (logical) field descriptor, 13-9 
Label statement, 3-5, IS-II 
Label in data statement, 7-1 
Label dummy arguments, 15-2 
Label field in statement, skipping, 2-3 
Label in CALL statement, 15-10 
Labeled common area, 6-5 
Language set, elements of, I-I 
Library subroutines, IS-IS through 15-18 



INDEX (Cont.) 

Line Identifier for comments, 2-S 
Line Printer control characters, l3-IS 
Line-sequenced Input, 2-6 
Line statement field, 2-3 
LINE subroutine, H-I 
Line Types, 2-4 
Literal constant, 3-S 

in CALL statements, IS-I0 
Literal conversion, 13-12 
Literal data, 3-1, 3-S 
Literal field description, 13-10, 13-12 
Literals, Hollerith, 3-S 
Logical 

assignment statement, 8-3 
bit combinations, 4-6 
constant. 3-S 
data, 3-1, 3-S 
expression form, 44 
expressions, 4-3 
field descriptor, 13-9 
functions, 4-6 
IF statement, 94 
operations binary truth label, 4-6 
operations truth label, 4-S 
operators, 44 
two-branch IF statement, 94 
variable types, 3-6 

Lower case characters, 2-1 

MACRO, interaction with 
Messages 

Compiler, G-I 
Mixed mode 

assignment, rules for conversion, 8-2 
expression, 4-9 
expression, evaluation of, 4-10 
expression, use of logical operand, 4-10 

Mixed numeric and alphanumeric fields, 13-11 
MKTBL subroutine, H-I 
Monitor commands, C4 
Multi-statement line, 2-S 
Multiple record speCification, 13-12 
Multiple returns, 

definitions, IS-1 0 
RETURN statement with, IS-IO 

Multiple subprogram entry points, IS-13 

Name, symbolic, 3-S, 3-6 
NAMELIST controlled I/O transfers, 11-2, 11-3 
NAMELISTstatement, 11-1,11-2 

Index-S 

Names, 
Function generic, IS-6, IS-7 
FUNCTION Subprogram, IS-12 

Nested DO statements, 9-6, 9-7 
Nested subexpressions, 4-8 
Nonexecutable statemen ts, 1-1 
NUMBER subroutine, H-I 
Number of RETURNS, IS-II 
Numbers of statement lines, 2-3,24 
Numeric and alphanumeric fields, mixed, 13-12 
Numeric Conversion code, G, 13-7 
Numeric field code, 13-6 
Numeric field descriptors, 134 
Numeric field width, variable, 13-9 
Numeric fields with scale factors, 13-7 

Octal constants, 3-4 
Octal data, 3-1,34 
OPEN/CLOSE statement Options 

access, 12-2 
associate variable, 12-7 
buffer count, 12-6 
density, 12-7 
dialogue, 12-7 
directory, 12-S 
dispose, J 2-4 
mode, 12-3 
parity, 12-7 
protection, 12-S 
record size, 12-6 
summary, 12-9 
unit, 12-2 
version, 12-6 

OPEN statement, 12-1, 12-2 
Operand types, 4-1 
Operation 

of DO loop, 9-6 
of DO statement transfer, 9-7 

Operator hierarchy, 4-8, 4-9 
Operators, 

arithmetic,4-1 
logical,4-4 
rela tional, 4-7 

Options, summary of OPEN/CLOSE 
statement, 12-9 

Ordering of FORTRAN statements, 2-6 
Output transfers, NAMELIST controlled, 11-3 
Overlays, functions to facilitate, E-26 



INDEX (Cont.) 

P Scale Factor, 13-8 
Parameters of DO statement, 9-5 
Parenthesis in FORMAT statement, 13-13 
Parenthesized subexpressions, 4-8 
PAUSE statement, 9-10 
PLOT subroutine, H-l 
PLOTS subroutine, H-l 
Printer control characters, 13-15 
Procedures (functions), 15-1 
Programs, source, 1-1 
Project-programmer numbers, B-1, B-2 
Protection option for OPEN/CLOSE statement, 

12-5 
PUNCH statement, H-l 

Quotes descriptor, 13-14 

Range of DO loop, 9-5 
READ transfer, formatted, 13-10 
Reading a FORTRAN listing, C-5 
Real 

variables, 3-6, 3-7 
data, 3-1. 3-2 
data, conversion of, 13-8 
constant, size of, 3-2, 3-3 

Record delimiter, 13-1, 13-13 
Record formatting field descriptors, 13-14 
Record specification, multiple, 13-13 
Referencing external FUNCTION subprograms, 

15-12 
Relational expressions, 4-6, 4-7 
Remarks, 2-3,2-5,2-6 
Reordering of computations, D-2 
Repeat format of field descriptors, 13-2 
Replacemen t of dummy arguments, 15-2 
Representing apostrophe characters, 13-11 
Result of literal conversion, 13-11 
Result of statement function, 15-3 
RETURN statement, 15-10, 15-11, 15-12 

Subprogram, 15-7 
Returns, multiple, 15-10, IS-II 
REWIND statement, 14-2 
Rules for FUNCTION subprogram, 15-6 
Rules for multi-statement line, 2-5 
Rules for ordering statements, 2-6 
Rules for Use of ENTRY statement, 15-13, 

15-14 
Rules, form and use of dummy arguments, 15-2 

Index-6 

Rules for SUBROUTINE statement, 15-9 
Running the FORTRAN compiler, C-l 

Scale factors, 13-7, 13-8 
SCALE subroutine, H-l 
Single quotes descriptor, 13-10 
Size of 

double octal constant, 3-5 
double precision constant, 3-3 
Integer constant, 3-2 
Octal constant, 3-4 
Real constant, 3-2 

SKIPFILE statement, 14-3 
SKIPRECORD statement, 14-3 
Skipping label field, 2-3 
Slash (/) used as a record delimiter, 13-1,13-12 
SLITE subroutine, H-l 
SLITET subroutine, H-l 
Source programs, 1-1 
Specification of multiple record, 13-13 
Specification comma delimiter, 13-12 
Specification statements, 6-1 
Specifying directory areas, B-1 
SSWTCH subroutine, H-l 
Statement, 

actual arguments for CALL, 15-9 
arguments for ENTRY, 15-13 
arithmetic assignment, 8-1 
ordering, 2-6 

Statements, 
ACCEPT,IO-15,1O-16 
ASSIGN,8-3 
BACKFILE, 14-1, 14-3 
BACKSPACE, 14-1,14-2 
BLOCK data, 16-1 
CALL,15-9 
CLOSE,12-1 
COMMON, 3-9, 6-1,6-5 
CONTINUE, 9-1,9-9 
DATA, 7-1, 7-2, 7-3 
DECODE, 10-18, 10-19, 10-20, 10-21 
DIMENSION, 3-9, 6-1 
DO, 9-1, 9-5 
ENCODE, 10-18, 10-19, 10-20, 10-21 
END,5-2 
ENDFILE,14-1 
ENTRY, 15-13 
EQUIV ALENCE, 6-1, 6-6 
EXTERNAL, 6-1, 6-7,15-3,15-5 
FIND,IO-17 



INDEX (Cont.) 

Statements, (Cont.) 
FORMAT, 13-1 through 13-15 
FUNCTION, 15-5 
GO TO, 9-1 
IF, 9-1,9-3 
IMPLICIT, 6-1,6-4 
INCLUDE,5-1 
NAMELIST, 11-1 through 11-3 
OPEN/CLOSE, 12-1 through 12-8 
PARAMETER, 6-8 
PAUSE, 9-10 
PRINT, 10-16 
PROGRAM,5-1 
PUNCH, H-l 
READ, 10-9 through 10-12 
REREAD, 10-12, 10-13 
RETURN, 15-10 
REWIND,14-2 
SKIPFILE,14-3 
SKIPRECORD,14-3 
STOP, 9-9 
SUBROUTINE, 15-7 
TYPE, 10-17 
UNLOAD, 14-2 
WRITE, 10-15 

Subexpressions, 4-8 
Subprogram names, FUNCTION, 15-12 
Subprogram RETURN statement, 15-7 
Subprograms, 

block data, 16-1 
multiple entry points for, 15-13 
Referencing External FUNCTION, 15-12 
Subroutine, 15-7 

SUBROUTINE statement, 15-7 
Subroutines, 

FORTRAN,15-1O 
library, 15-5 through 15-18 

Subscripts, definition of array, 3-7 
Summary of device control statements, 14-3 
Summary of OPEN/CLOSE statement options, 12-8 
Switches available with FORTRAN compiler, C-2, C-3 
SYMBOL subroutine, H-l 
Symbolic 

characters, 2-2 
name, 3-5, 3-6 
relational operators, 4-7 

Index-7 

T field descriptor, 13-14 
T (TRACE) option, 9-10, 9-11 
Tab, use of initial line, 2-4 
Tables 

basic external functions, 15-8, 15-9 
conversion codes, 13-3 
intrinsic functions, 15-4, 15-5 
library functions, 15-4, 15-5 
library subroutines, 15-15, 15-16, 15-17, 

15-18,15-19 
numeric field codes, 13-6 
print control characters, 13 -15 

Teletype printer control characters, 13-15 
Terminal Parameter DO statement, 9-5 
TRACE option, 9-10, 9-11 
TRACE routine, 9-10, 9-11 
Transfer of COMPLEX quantities, 13-6 
Transfer operation, DO statement, 9-8 
Transfer with FORMAT statement, 13-11 
TRANSL program, running, B-2 
.TRUE value, assignment of,4-4 
Type dec1arators, 6-3 
Type of External FUNCTION statement, 15-5 
Type of state men t function, 15-3 
Type specification statements, 6-1,6-3 
Types of dummy arguments, 15-2 

Unconditional GO TO, 9-2 
Unit option in OPEN/CLOSE statement, 12-2 
UNLOAD statement, 14-2 
Unspecified scale factor, 13-8 
Upper case characters, 2-1 
Use of 

Floating point DO loops, D-l 
Using library name for user function, 15-5 

Variables, 
complex, 3-6 
DO index, 9-5 
double precision, 3-6 
dummy argument, 15-2 
integer, 3-6 
logical,3-6 
numeric field width, 13-9 
real,3-6 
types of, 3-6 
types of initial characters, 3-7 



INDEX (Cont.) 

WHERE subroutine, H-l 
Width of variable numeric field, 13-9 
WRITE transfer from FORMAT statement, 13-11 
Writing FORTRAN Programs for execution 

on non-DEC machines, D-l 

Writing user programs, D-l 

X field descriptor, 13-14 

Index-8 



o.a 
I:: 
o 

""iii ... 
=:l 
u 
Q) 
en 

READER'S COMMENTS 

DECsystem-20 FORTRAN 
Reference Manual 
DEC-20-LFRMA-A-D 

NOTE: This form is for document comments only. Problems with software should be reported on a Software 
Problem Report (SPR) form. 

Did you find errors in this manual? If so, specify by page. 

Did you find this manual understandable, usable, and well-organized? Please make suggestions for improvement. 

Is there sufficient documentation on associated system programs required for use of the software described in this 
manual? If not, what material is missing and where should it be placed? 

'" Q) Please indicate the type of user/reader that you most nearly represent. c:: 
o Assembly language programmer 
o Higher-level language programmer 
o Occasional programmer (experienced) 
o User with little programming experience 
o Student programmer 
o Non-programmer interested in computer concepts and capabilities 

Name Date ____________________ _ 

Organization _____________________________________ _ 

Street ___________________________________________ __ 

City _________________ State ________ Zip Code _________ _ 

or 
Country 

If you require a written reply, please check here. 0 



.------------------------------------------------------------Fold lIere------------------------------------------------------------

----------------------------------------------- Do Not Tear - Fold lIere and Staple -----------------------------------------------

BUSINESS REPLY MAIL 
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES 

Postage will be paid by: 

Software Communications 
P.O. Box F 
Maynard, Massachusetts 01754 

FIRST CLASS 

PERMIT NO. 33 

MAYNARD. MASS. 






