FPMP-11
USER’S MANUAL

DEC- 11-NFPMA-C-D

FPMP-11
‘ USER’S MANUAL

N

For additional copies, order No. DEC- 11-NFPMA-C-D
from Software Distribution Center, Digital Equipment
(” Corporation, Maynard, Mass.

digital equipment corporation - maynard. massachusetts

First Printing
September, 1972
Revised, April,

1973

Reviged, July, 1973

Your attention is invited to the last two pages

of this document.

The "How to Obtain Software

Information" page explains how to Keep up-to-date
with DEC's software. The
when filled in and mailed, is beneficial to both

you and DEC; all comments received are acknowledged
and considered when documenting subsequent manuals.

Copyright ()

"Reader's Comments" page,

1972, 1973 by Digital Equipment Corporation

Changes from the previous version are
|) in the margin.

indicated by a bar (

The material in this document is for informa-
tion purposes and is subject to change without

notice.

Teletype is a registered trademark of the
Teletype Corporation.

The following are trademarks of Digital Equipment
Corporation, Maynard, Massachusetts:

CDP

Computer Lab
Comtex

DEC

DECtape
Dibol

Digital
DNC

Flip Chip
IDAC
Indac
KAlQ

LAB-8/e
OMNIBUS
0s/8
PDP.
PHA

. PS/8

Quickpoint

RAD-8
RSTS

RSX

RTM

SABR
Typeset 8
Unibus

2/75-15

//_\\\

o

PREFACE

This manual assumes the reader is familiar with PDP-1ll1 assembly
language programming and with floating point operations in general.

For background in the papertape system, refer to the PDP-11l Paper Tape
Software Programming Handbook (DEC-11-XPTSA-A-D).

[
e
[N

TABLE OF CONTENTS

CHAPTER 1 FPMP~11 OVERVIEW 1-1
1.1 INTRODUCTION 1-1
1.2 HARDWARE REQUIREMENTS 1-1
1.3 SOFTWARE REQUIREMENTS 1-1
l.4 FLOATING=-POINT NOTATION 1-1
1.5 FLOATING=-POINT NUMBER STORAGE 1-3
1.5. Single Precision 1-3
1.5 Double Precision 1-4
CHAPTER 2 DESCRIPTION OF PACKAGE 2=-1
2.1 SINGLE PRECISION PACKAGE 2-1
2.2 DOUBLE PRECISION PACKAGE 2=2
2.3 SOURCE TAPES 2=-2
2.4 CONVERSION ROUTINES 2-2
CHAPTER 3 USING FPMP-11 3-1
3.1 USING THE TRAP HANDLER WITH FPMP-11 3-1
3.1.1 Stack Mode 3-2
3.1.2 @RO Mode 3-2
3.1.3 Immediate Mode 3-2
3.1.4 Relative Mode 3-2
3.2 ACCESSING USER ROUTINES VIA THE TRAP HANDLER 3-6
3.3 DIRECT CALLS TO OTS ROUTINES 3-8
3.3.1 Polish Mode 3-8
3.3.2 J5RR Mode 3-10
3.3.3 JPC Mode 3-12
3.4 LERRORS 3-15
3.4.1 Using Error Handling Routines 3-15
3.5 CREATING SPECIAL PACKAGES 3-17
3.5.1 Assembly Switch Tape : 3-17
3.6 LOADING INSTRUCTIONS 3-22
CHAPTER 4 SAMPLE PROGRAM 4-1
APPENDIX A BOOTSTRAP AND ABSOLUTE LOADERS A-1
APPENDIX B USING THE PAL-11lS ASSEMBLER B-1
APPENDIX C USING LINK=-11ls c-1
APPENDIX D SUMMARY OF FPMP-11 ROUTINES D-1
APPENDIX E FPMP-1l1l SOURCE LISTING E-1

CHAPTER 1
FPMP-11 OVERVIEW

1.1 INTRODUCTION

The Floating-Point Math Package, FPMP-1ll, is designed to bring the 2/4
word floating point format of the FORTRAN environment to the paper
tape software system of the PDP-1ll. The numerical routines in FPMP-11
are the same as those of the DOS-1ll1l Fortran Object Time System
(ors) . TRAP and error handlers have been included to aid in
interfacing with the FORTRAN routines.

FPMP-11 provides an easy means of performing basic arithmetic
operations such as add, subtract, multiply, divide and compare. It
also provides transcendental functions (SIN, COS, etc.), type
conversions (integer to floating point, 2 word to 4 word, etc.) and
-ASCII conversions (ASCII to 2 word floating point, etc.).

Floating-point notation is particularly useful for computations
involving numerous multiply and divide operations where operand
magnitudes may vary widely. FPMP-1ll stores very large and very small
numbers by saving only the significant digits and computing an
exponent to account for leading and trailing zeros.

To conserve core space in a small system, FPMP-1l can be tailored to
include only those routines needed to run a particular user program.

1.2 HARDWARE REQUIREMENTS

The FPMP-11l package is designed for use on any PDP-1l1l with at least 8K
of core, and can be easily reassembled to take advantage of the 11/20
EAE, 11/45 EIS, or 11/45 FPU (refer to section 3.5 for detailed
instructicns).

1.3 SOFTWARE REQUIREMENTS

LINK-11S (or the DOS LINK-11l linker) is used to link a wuser program
with an FPMP-11 object module to create a load module. PAL-11lS (or
MACRO-11 under DOS-11l) is wused whenever the FPMP-11] package is
reassembled.

1.4 FLOATING-POINT NOTATION

A floating-point number may be written as a mantissa, which consists
of the floating-point number with its decimal point shifted a given

number of places in either direction, and an exponent which indicates
the number of places that the decimal point was shifted and the
direction of the shift. A negative exponent corresponds to a shift to
the right, while a positive exponent corresponds to a shift to the
left. Thus, the mantissa multiplied by the base (radix) of the number
system in wuse, raised to a power as supplied in the exponent, gives
the value of the number in fixed-point notation. For example, the
decimal number 12 in fixed-point notation can be represented as

12 or 12.0

In floating—-point notation with a base of 10, the number might appear
as

.12 x 102

where the mantissa is .12 and the exponent, 2.

A fraction, such as twelve ten-thousandths, is represented as
.0012

in fixed-point notation and in floating-point notation as

.12 x 1072

The minus sign before the exponent indicates that the —significant
digits of the mantissa are to be shifted right from the decimal point.

In FPMP-11 all numbers are manipulated and stored in binary notation.
With a radix of 2, the decimal number 12 is represented as

1100
and in floating-point format as
.1100 x 24

Multiplication and division are accomplished by shift operations: each
one -place shift to the left represents multiplication by two; each
equivalent shift to the right represents division by two.

A floating=-point number may be represented in an infinite variety of
ways, since the decimal point may be shifted any number of places in
either direction. If the decimal point is shifted wuntil it appears
immediately to the left of the most significant digit, the number is
said to be normalized. The mantissa of a normalized floating=point
number may be stored as an integer, since the decimal point is
understood to appear to the left of the most significant digit. In

[

TN

N

computing a mantissa from decimal input, FPMP-11l uses the convention
1/2 <|MANTISSA|<1

to normalize the input value. Note that when |MANTISSA| is stored as
a binary fraction in normalized form, the left most (high order) bit
is always a 1. The only exception to the normalization rule is the
floating=-point =zero (either single or double precision) which has a
mantissa and exponent both equal to zero.

1.5 FLOATING-POINT NUMBER STORAGE

FPMP-1l1 floating-point numbers are stored as two 16-bit PDP-1l1 words
(single precision) or four 1l6-bit PDP-1ll words (double precision).
The sign of the number is bit 15 of the first word. (0 indicates
positive, 1 indicates negative). The binary exponent is stored in
bits 14-7 of the first word. The exponent is stored in excess 128
(200,) code. The value of the exponent is obtained by subtracting

2008 from bits 14-7 of the first word.

NOTE

The single and double precision formats shown below
are limited to normalized numbers. The high-order
bit of the mantissa (which is always 1) is omitted
from its implied position (bit 7 of WORD n) in order
to allow one more bit in the exponent field.

1.5.1 Single Precision
The mantissa and exponent are stored as follows:

WORD n

] exponent high-order mantissa

15 14 7 6 0

WORD n+2

low~-order mantissa

15 0

The ?irst word (lowest core address) contains the sign of the
mantissa, the exponent excess 1284 and the high-order mantissa

(absolute value). The second word is the low-order mantissa (absolute
value continued).

1.5.2 Double Precision

Double precision format is identical to single precision format except
that it has two additional words (WORD n+4 and WORD n+6) of low-order
mantissa.

WORD n WORD n+2
S exponent | mantissa l l mantissa
15 14 76 0o 15 0
WORD n+4 WORD n+6
mantissa lowest order mantissa
15 0 15 0

The list below provides examples of numbers in decimal form, binary
floating point notation and single precision internal form.

Decimal Binary Internal Form

Value Floating Point Single Precision

(octal)

1 0.1 x 21 040200 000000

2 0.1 x 22 040400 000000

5 0.101 x 2° 040640 000000
10 0.101 x 2* 041040 000000
7z 0.10110101... x 2 040265 002363
-1 -0.1 x 2 140200 000000
0.5 0.1 x 2° 040000 000000
0.25 0.1 x 2" | 037600 000000
0.75 0.11 x 2° 040100 000000
-0.25 0.1 x 2 ¢ 137600 000000

1-4

/ N

CHAPTER 2

DESCRIPTION OF PACKAGE

As distributed the FPMP-1ll package contains three sub-packages: the
object tape of the. single precision functions, the object tape of the
double precision functions and the source tapes.

2.1 SINGLE PRECISION PACKAGE

The single precision package is an object module tape
(DEC-11-NFPMA-A~PR1) . which includes the FPMP-11 TRAP and error
handlers and the following OTS routines for two-word floating point
operation:

SADR Add routine

$SBR Subtract routine

$MLR Multiply routine

$SDVR Divide routine

$CMR Compare routine

SIN Sine routine

Cos Cosine routine

AINT Truncation routine

ATAN Arctangent routine

ATAN2 Arctangent routine with two arguments
SQRT Square root routine

TANH Hyperbolic tangent routine
EXP Exponential routine

ALOG Natural logarithm routine

ALOG10 Base=10 logarithm routine

and the ASCII input/output conversion routines. There are also
routines to load and store the FLAC (FLoating-point ACcumulator) which
may be called through the TRAP handler. (Refer to section 3.1.)

The functions are identical to their FORTRAN counterparts and are
described in more detail in Appendix D,

2.2 DOUBLE PRECISION PACKAGE

The double precision package is an object module tape
(DEC-11-NFPMA-A-PR2) which includes the TRAP and error handlers and
the following OTS routines for four-word floating point operations:

SADD Add routine
$SBD Subtract routine
$MLD Multiply routine
$DVD Divide routine
$CMD Compare routine
~DSIN Sine routine
DCOS Cosine routine
DATAN Arctangent routine
DATAN2 Arctangent routine with two arguments
DSQRT Square root routine
DEXP Exponential routine
DLOG Natural logarithm routine

DLOG10 Base-10 logarithm routine

and ASCII input/output conversions routines. There are also routines
to load and store the FLAC which may be called through the TRAP
handler (refer to section 3.1).

Appendix D contains a more detailed description of the functions.

2.3 SOURCE TAPES

The source tapes (DEC-11-NFPMA-A-PAl-PA6) contain the source code for
the TRAP handler, the error handler and all the OTS routines described
in Appendix D. Conditional assembly instructions are included in the
source code to aid in the construction of specially tailored packages.
For example, an object tape of only the TRAP and error handlers and
the arithmetic functions, add, subtract, multiply and divide can be
easily created. Such a package can result in great savings of core
when the other functions are not required. ' (Refer to section 3.5 for
information on creating special packages.)

2.4 CONVERSION ROUTINES

The subroutines included in FPMP-11 to perform conversions to and from
ASCII strings are those used by FORTRAN to perform Input/Output. The
FPMP-11 routines do not perform any actual I/O, but simply convert
strings of ASCII characters in memory to the internal form of
floating-point numbers or integers used by other FPMP=-=11 subroutines
and convert numbers in internal form to ASCII strings.

i

In order to effectively use the ASCII conversion routines of FPMP-11,
the meaning of the various parameters which must be passed to these

routines and the various data formats

Table 2-1 contains
conversion routines:

the various

TABLE 2-1

DATA FORMATS

involved must be understood.

data formats processed by FPMP-1l

CODE INTERNAL
FORM

EXTERNAL EXTERNAL OUTPUT
INPUT FORM FORM

D |Double Precision

E |Single Precision

F | Single Precision

G | Single Precision

I Intéger

O | Integer

field

field.

exponent field

Octalinumber

Decimal number with | Decimal number with a D
or without a decimal| exponent field and a

point or exponent decimal point.

field.

Decimal number Decimal number with an E
with or without a exponent field and a
decimal point or decimal point.

Decimal number with Decimal number with a
or without a decimal| decimal point
point or exponent ’ '

Decimal number with Decimal number with a
or without a decimal| decimal point and with
point or exponent or without an E exponent

field (see table 2-2)

Decimal number with-| Decimal number without
out a decimal point a decimal point or
or exponent

exponent

Octal numbe:

The following FPMP-1ll routines perform the above conversions:

$DCI D conversion for input

$DCO D conversion for output

S$RCI E,F, and G conversion for input
SECO E conversion for output

SFCO F conversion for output

$GCO G conversion for output

SICI I conversion for input

$ICO I conversion for output
$OCI O conversion for input
$0CO O conversion for output

Each of these routines requires one or more of the following
parameters: :

w

The width of the ASCII field in characters. The field width
w of all output conversions should always be large enough to
include spaces for the decimal point, sign, and exponent.
In all such conversions, if w is not 1large enough to
accomodate the converted number, asterisks are placed in the
ASCII field.

The decimal position:

a) on input, the decimal point is assumed to be d digits
from the right hand end of: the ASCII field, if no
explicit decimal point is found.

b) on output, d digits appear to the right of the decimal
point.

the scale factor:

a) for F type conversion,
(ASCII number)=(internal no.) *10(scale factor)

b) for D and E type conversions, the scale factor multiplies
the fraction by a power of ten, but the exponent is
adjusted, leaving the number unchanged except in form.

c) for G type conversions, the scale factor is not used
unless the magnitude of the number is such that E format
is used. g

d) In all input operations, the scale factor is not used if
there is an exponent in the external field.

NOTE
Input conversion routines handle all blanks as

Zeros. For example, 3.0E2.4 in a six character
field would be considered to be 3.0E20.

2-4

N

7N

TABLE 2-2

G-TYPE OUTPUT CONVERSIONS

Routine $GCO is called with parameters p=P, w=W, and d=D (where P, W,
D are integer constants):
Magnitude of data Resulting Conversion
0.1<M<1 F-type with p=0,w=W=4 and d=D
1<M<10 F-type with p=0,w=W=4 and d=D-1.
10]3-25M<10D_1 F-type with p=0,w=W-4 and d=1.
10D-12m<10P F-type with p=0,w=W-4 and d=0.
All others E-type with p=P,w=W, and d=D.
Examples:
The following internal numbers are shown converted according to
various format parameters (b=blank):
(A) ONE-WORD INTEGERS:
INTERNAL I(w=5) I(w=7) 0 (w=10)
NUMBER
(Decimal)
5 bbbb5 bbbbbb5 bbbbbbbbb5
10 bbbl0 bbbbbl0 bbbbbbbbl2
-23 bb=-23 bbbb=23 bbbbbbb~=27
0 bbbb0 bbbbbb0 bbbbbbbbb0
123,456 *kkhk bl23456 bbbb361100
(B) TWO-WORD FLOATING POINT:
————— (P:o)-——-—
INTERNAL NO. E(w=10,d=2) F(w=10,d=2) G(w=10,d=2)
0 bb0.00E 00 bbbbbb0.00 bb0.00bbbb
1 bb0.10E 01 bbbbbbl.00 bbl.00bbbb
-1 b-0.10E 01 bbbbb=1.00 b=1.00bbbb
0.1 bb0.10E 00 bbbbbb0.10 bb0.10bbbb
555 bb0.55E 03 bbbb555.00 bb0.55E 03
0.001 bb0.10E-02 bbbbbb0.,00 bb0.10E-02
----- (P=1) =====
0 bb0.,00E-01 bbbbbb0.00 bb0.00bbbb
1 bbl.00E 00 bbbbb10.00 bbl.00bbbb
0.1 bbl.00E~01 bbbbbb1.00 bb0.10bbbb

(C) FOUR-WORD FLOATING POINT:

D-type conversion is the only one available for 4-word

prints with a D instead of an E.

2-5

floating=point
numbers. It is similar to E format except that the exponent part

CHAPTER 3

USING FPMP-11

The user program can access the FPMP-1ll routines by TRAP instruction
and/or direct call of the routine. (For information on writing a user
program, refer to the Papertape Software Programming Handbook.) The
TRAP handler saves and restores the contents of the PDP-11 general
registers. The OTS routines normally do not. All FPMP-11 entry
points used by the program must be declared with a .GLOBL assembler
directive in the user program. (The entry points are listed in
Appendix D.) To include user floating point error routines,
initialize the global location S$ERVEC as described in section 3.4.

3.1 USING THE TRAP HANDLER WITH FPMP-11l

In order to simplify use of the various OTS routines, a TRAP handler
is included in the FPMP-11l package. If TRAP calls are being used, the
user program must initialize the TRAP vector at location 34g. The
TRAP vector can be initialized by putting the following code in the
user program.,

+.GLOBL TRAPH
MOV #TRAPH,@#34 ;address of TRAP handler
MOV #340,Q@#36 ;set priority of operation

The TRAP handler, TRAPH, uses software to simulate a floating-point
accumulator (FLAC). The FLAC is a pseudo-register which is the
implicit destination address of every trapped operation. Operations
can be performed on the FLAC by issuing coded TRAP instructions in the
user program. In addition to being used with the OTS functions, items
can be loaded into and stored from the FLAC.

The FLAC is maintained by the TRAP handler in double precision format;
however, it is important to note that single precision operations
(e.g. SADR or SQRT) destroy the contents of the two lowest order
words of the FLAC. In particular, these two words are not set to
zero. This means that a single precision function can operate on the
FLAC while it contains either a single or double precision number, but
the result will be single precision and should not be operated on by
the double precision routines. A number can be explicitly converted
between the single and double precision formats by the FPMP-11
routines $RD and $DR which convert single to double and double to
single respectively. These routines, $RD and $DR, can not be called
via the TRAP handler.

Because it contains the floating accumulator, the TRAP handler of
FPMP-1l is not re-entrant. For this reason, care must be exercised if
the TRAP handler is to be called both in a main program and in an
interrupt-driven subroutine. To call the TRAP handler to perform
floating point operations within an interrupt-driven subroutine, the
contents of the FLAC should be pushed onto the processor stack before
any other TRAP calls are executed. The FLAC can be pushed onto the
stack by executing the instruction "TRAP 73", After all TRAP calls
have been completed by the interrupt-driven subroutine, and before
returning from the interrupt, the FLAC must be restored from the stack
(it must be at the top of the stack) by executing the instruction
"TRAP 71". If the double precision routines are being used, the traps
are TRAP 74 and TRAP 72 respectively.

Addressing Modes Available in TRAP Calls:
3.1.1 Stack Mode
The operand is considered to be on the top of the R6 stack. (R6 1is

General Register 6) The operand is popped off for use. (exception:
STR and STD push the FLAC onto the stack.))

3.1.2 @RO Mode

General Register 0 points to the operand. Register 0 is not changed
by FPMP-11.

3.1l.3 Immediate Mode

The operand immediately follows the TRAP instruction in the next two
or four words depending on whether the operation is single or double
precision.

3.1.4 Relative Mode
The address of the operand, relative to the PC, immediately follows

the TRAP instruction. For example to address an operand at location
A, code the word following the TRAP as .WORD A-.

EXAMPLE :

1010 is internally coded as:
[o [10000100]0100000] [0000000000000000]
15 14 7 6 0 15 0

N

TN

3

which is 041040 000000 (octal). To add 1010
the four modes (single precision):

Stack Mode:

MOV #000000,-(SP)
MOV #041040,-(SP)
TRAP ADR+STACKM

;PUSH FLOATING

to the FLAC in each of

;10 ONTO THE STACK

;ADD TO FLAC

Symbols ADR (for single precision add) and STACKM (for stack mode) are
assigned values 12g and 08 respectively. (Refer to page 17.)

QRO Mode:

MOV #TEN,RO
TRAP ADR+ARM

TEN: .WORD 041040,000000

.

Symbols ADR and ARM (@RO mode)

respectively.

Immediate Mode:

.

TRAP ADR+IMMEDM
.WORD 041040,000000

Symbols ADR and IMMEDM

respectively.

;GET-ADDRESS OF OPERAND IN RO

;ADD TO FLAC

; FLOATING POINT TEN

;ADD TO FLAC

are assigned the values 128 and 1008

; FLOATING POINT TEN

(immediate mode)

equal 124 and 2008

Relative Mode:

TRAP ADR+RELM ;sADD TO FLAC

+WORD TEN=-. s RELATIVE ADDRESS OF OPERAND
TEN: .WORD 041040,000000 s FLOATING POINT TEN
Symbols ADR and RELM (relative mode) equal 128 and 3008
respectively.

To perform the above operations in double precision, use ADD=l4g

instead of ADR, and extend the floating point ten with two more words

of zeros (i.e. TEN: .WORD 041040,0,0,0; double precision
floating=-point ten).

The source form of a TRAP call is:
TRAP num + mode
where num is the number of the OTS routine to be called (refer to

Appendix D for the OTS routine numbers), and mode is one of the
following addressing modes:

Mode

0 Stack mode
100g @RO Mode

200g Immediate mode
3004 Relative mode

The binary form of the TRAP instruction is:

WORD 3
(10001001 mmrrrrrr |
15 0

Where

mm = addressing mode bits (00 = Stack mode, 01 = @RO mode, 10 =
Immediate mode, 11 = Relative mode)
rrrrrr = OTS routine number

It is suggested that commonly used addressing modes and routine
numbers be referenced symbolically. For instance, the statements

STACKM=0 ; STACK MODE
ARM=100 ; @RO MODE
IMMEDM=200 ; IMMEDIATE MODE
RELM=300 ; RELATIVE MODE

ADR=12 ;SINGLE PRECISION ADD ROUTINE

SBR=13 s SINGLE PRECISION SUBTRACT
MLR=21) ;s SINGLE PRECISION MULTIPLY
DVR=25 s SINGLE PRECISION DIVIDE

allow TRAP calls to be coded as follows:

TRAP ADR+RELM ' ;ADD IN RELATIVE MODE
TRAP MLR+ARM ;MULTIPLY IN @RO MODE
TRAP SBR+IMMEDM ;s SUBTRACT IN IMMEDIATE MODE

Note that single argument, single result functions, such as square
root (SQRT) require no addressing (refer to Appendix D); the argument
is taken from the FLAC and the result is stored back into the FLAC.
Consequently, the addressing mode of a TRAP call to such a function is
ignored by the TRAP handler, and no address is used.

The TRAP handler sets the condition codes to reflect the contents of
the FLAC after every operation except a compare. - After any operation
except floating point compare, the condition bits are set as follows:

Condition Codes

FLAC N z ¥ ¢
<0 1l 0 0 0
=0 0 1l 0 0
>0 0 0 0 0

After a floating point compare (either single or double precision),
the condition codes are set as follows:

FLAC<OPR 1 0 0 0
FLAC=OPR 0 1 0 0
FLAC>OPR 0 o0 0 0

where OPR is the operand addressed by the TRAP compare instruction.
EXAMPLE :
To calculate

=B+SQRT (B*B=4*A*C)

2*%A

the following program might be written:

.

TRAP LDR+RELM ° ;LOAD A INTO FLAC

.WORD A-, : RELATIVE ADDRESS OF A

TRAP MLR+IMM sMULTIPLY BY 2.0

FTWO: .WORD 040400,0 ; CONSTANT 2.0

TRAP STR+RELM ; STORE FLAC IN TEMP1

.WORD TEMP1l-, ; RELATIVE ADDRESS OF TEMP1

TRAP MLR+RELM ;MPY BY 2.0 TO GET 4*A

+WORD FTWO-.

TRAP MLR+RELM ;MPY BY C

OWORD C-.

TRAP STR+RELM §STORE FLAC IN TEMP2

.WORD TEMP2-.

MOV #B,R0O ;GET ADDRESS OF B INTO RO

TRAP LDR+ARM ;LOAD B INTO FLAC (@RO MODE)

TRAP MLR+ARM ;CALCULATE B*B

TRAP SBR+RELM : SUBTRACT 4*A*C (IN TEMP2)

.WORD TEMP2-. ' _

TRAP SQRT : CALC SQUARE ROOT OF FLAC,
:NO ADDRESSING REQUIRED

TRAP SBR+ARM ;ADD MINUS B

TRAP DVR+RELM :DIVIDE BY 2.0*A IN TEMP1

.WORD TEMP1l-. ' '

TRAP STR+RELM ;STORE FLAC INTO X

.WORD X-,

A: .WORD 040400,0 :VALUE OF A (2.0)

B: .WORD 040640,0 ;VALUE OF B (5.0)

C: .WORD 037600,0 ;VALUE OF C (0.25)

X: o=.+4 ; LOCATION FOR RESULT

TEMPl: .=.+4 ; TEMPORARY

TEMP2: .=.+4 ; TEMPORARY

The above example assumes that the TRAP vector (location 344) has
been initialized as previously described.

3.2 ACCESSING USER ROUTINES VIA THE TRAP HANDLER

Special floating=-point functions may be coded as assembly language
subroutines and accessed via TRAP calls if one of the following
calling conventions is used:

1. POLISH - receive two arguments, either single or double
precision, on the stack, and return one result, of the same
precision as the arguments, on the stack. Return must be via a

JMP @(R4)+

2, J5RR - The user routine should be expecting a call of the
following form:

L~
-

/ /“\\

JSR R5,subr ;jump to subroutine

BR A , -

.WORD arg ;single argument's address
Az ' ‘ ;

arg is the symbolic address of the subroutine's single or double
precision argument. Note that the instruction following the JSR
is not necessarily a BR. The returned result in registers RO=R3
is stored in the FLAC by the TRAP handler.

Furthermore, user routines to be called by the TRAP handler must
reside within the 8K words physically following the beginning of the
TRAP handler in memory, and an entry must be made in the TRAP
handler's dispatch table. The dispatch table called TBLS$42 in TRAPH,
is organized as follows:

1. There is a one word entry corresponding to each routine=-number
which can be coded in a TRAP call (total of 64 words). :

2. The position of the word in the table corresponds to the
routine-number which calls it (e.g. the word at location TBLS$42
is referenced by "TRAP O0O+mode", while the word at location
TBLS$42+10. is referenced by "TRAP 5+mode"). In general, the
word at location TBL$42+2n is referenced by the call TRAP n+mode.

3. The word at each table location is coded as follows:

a. 0-indicates no routine corresponds to this table entry.

b.

flags relative address

15 13) 0

bit 15 set to 0 single precision routine

1 = double precision
bit 14 set to 0 = J5RR mode call
1 = POLISH mode call

bits 13-0 = The address of the entry point of the
routine to be called minus the address
of the label PT$42 in TRAPH.

In J5RR mode, TRAPH supplies the FLAC as the single argument and
stores the result back into the FLAC. No explicit address is accepted
in the TRAP instruction. In POLISH mode, TRAPH uses the FLAC as one
argument and the ' location addressed in the TRAP call as the second.
The result is stored in the FLAC. Refer to section 3,1 for addressing
modes in TRAP calls to FPMP-11. ’

3.3 DIRECT CALLS TO OTS ROUTINES

Occasionally it is desirable to call OTS routines directly. For
instance, some routines cannot be accessed using the TRAP handler
(refer to Appendix D). Furthermore, eliminating the TRAP handler
overhead decreases the execution time of the user program. Note that
when called directly, the OTS routines do not preserve the contents of
the general registers, nor do they in general set the condition codes
to reflect the result of the operation, these functions are performed
by the TRAP handler when it is used.

Any of the OTS routines can be directly called by wusing its FPMP-11
global entry point and observing the proper calling conventions,
Calling conventions fall into a few basic types as follows (the
calling conventions for each routine are given in Appendix D):

3.3.1 Polish Mode

Polish mode <calls are designed to be most effective in a
compiler—-generated environment. They are easily produced by a
compiler and are particularly efficient in storage space used and
interpretation overhead.

The routines that are called with Polish mode are:

No. of Location of
Name Arguments Result
$SADD 2 4 word sum on top of stack
SADR 2 2 word sum on top of stack
$CMD 2 sets condition codes
$CMR 2 sets condition codes
$DINT 1 integer result on top stack
$DR 1 2 word result on top of stack
$DVD 2 4 word quotient on top of stack
$DVI 2 integer quotient on top of stack
$DVR 2 2 word quotient on top of stack
$ID 1 4 word result on top of stack
$IR 1 2 word result on top of stack
$INTR 1 result on top of stack
SMLD 2 result on top of stack
SMLI 2 result on top of stack
$MLR 2 result on top of stack
$NGD 1 result on top of stack
SNGI 1 result on top of stack
$NGR 1 result on top of stack
$POPR5 4 result in registers RO-R3
$POPR4 4 result in registers R0=-R3
$POPR3 2 result in registers RO,R1
$PSHR1 1 result on top of stack
$PSHR2 1 result on top of stack
$PSHR3 2 result on top of stack
$PSHR4 4 result on top of stack

No. of Location of

Name Arguments Result

$PSHR5 4 result on top of stack
$SRD 1 result on top of stack
$SDI 1 result on top of stack
$RI 1 result on top of stack
$SBD 2 result on top of stack
$SBR 2 result on top of stack

Each routine called in Polish mode pops the necessary arguments off
the R6 (General Register 6) stack and pushes the final result onto the
stack. Multi-word arguments are always pushed onto the stack
low-order word first, so that the highest-order word (the one
containing the. sign and exponent) remains on top of the stack (@SP).

Arguments must be pushed onto the stack before entering Polish mode so
that the source operand is on the top of the stack and the destination
operand is next down from the top.
Polish mode is entered with a JSR in the form

JSR R4, $SPOLSH
where $POLSH is a global subroutine in FPMP-11.

Routines to be used are then called by supplying a word with the
address of the routine.

.WORD $ADR

Exit from Polish mode is by coding a word containing the address of
the next instruction to be executed. For example to execute the next
instruction in sequence,

«WORD .+2

Using Polish mode, coding to calculate (A+B)*C with the single
precision routines might be written as:

.GLOBL $POLSH, $ADR, $MLR

MOV C+2,-(SP) ;PUSH C ONTO STACK.
MOV C,- (SP)
MOV B+2,-(SP) ;PUSH B ONTO STACK.
MOV B,-(SP)
MOV A+2,-(SP) ;PUSH A ONTO STACK.
MOV A,-(SP)
JSR R4, $POLSH ;ENTER POLISH MODE
.WORD $ADR ;ADD A TO B AND LEAVE
; THE RESULT ON THE STACK
«WORD SMLR ; MULTIPLY PREVIOUS SUM BY
. ;C AND LEAVE RESULT ON STACK.
«WORD .+2 ; LEAVE POLISH MODE.

After execution of the above code, the result of the calculation
(A+B) *C is on the top of the R6 stack.

The routine "S$POLSH" that causes entry into Polish mode is located at
global entry $POLSH in FPMP-11l., It is coded as follows:

+«GLOBL $SPOLSH
$POLSH: TST (SP)+ ;DELETE OLD VALUE OF R4 FROM
;THE TOP OF THE STACK. '
JMP @(R4)+ ;ENTER POLISH MODE.

Each routine called in Polish mode takes its operands from the top of
the stack and pushes its result, if any, back onto the stack. Each
routine returns with a "JMP @(R4)+" which passes control to the next
routine in sequence. User routines can be written and called in
Polish mode provided they preserve the contents of R4 and return by
executing a "JMP G@(R4)+". The following is an example of a user
subroutine written for Polish calls.

DUP: MOV 2(SP) ,-(SP) ;DUPLICATE STACK ITEM
MOV 2(SP) ,-(SP) ; TWO WORD ITEM
JMP @ (R4)+ 3 RETURN

When executed, this subroutine duplicates the two-word item on the top
of the stack.

3.3.2 J5RR Mode

J5RR is the calling convention used by most of the FORTRAN library
functions. J5RR mode calls are of the form

JSR R5,subroutine

All argument addresses are placed in a list following the subprogram
call. The generalized standard sequence is:

.GLOBL SUBR
JSR R5,SUBR
BR XX

w >

N ¢ o o

XX

where A, B...Z are argument addresses.

3-10

//.\\‘.

Subprograms are responsible for not altering the contents of register
R5 since it is the parameter list pointer.

The results of subroutines called in J5RR mode are generally stored as
follows: integer results are returned in RO, two-word floating point
results in RO and Rl and four=-word results in RO0-R3,

An example of a call in J5RR mode is this call to calculate the square
root of X: :

«GLOBL SQRT

JSR R5,SQRT ;CALL TO SQRT ROUTINE
BR A s RETURN POINT
«WORD X ;ADDRESS OF ARGUMENT
Az . ; CONTINUE PROGRAM
Xz .WORD 040400,000000 ;2 WORD FLOATING POINT NUMBER,

; VALUE OF X=2,

In this example, the result is returned as a two-word floating. point
number in RO-R1.

The functions which use J5RR mode calls are:

of Register (s) for

Function Arguments Result
ALOG 1 RO, R1
ALOG10 1 RO,R1
AINT 1 RO, R1
ATAN 1 RO, Rl
ATAN2 2 RO, R1
DBLE 1 RO-R3
DLOG 1 RO,R3
DLOG10 1 RO,R3
DCOS 1 RO, R3
DSIN 1 RO-R3
DSQRT 1 RO-R3
DATAN 1 RO-R3
DATAN2 2 RO-R3
DEXP 1 RO-R3
EXP 1 RO,R1
FLOAT 1 RO,R1
IFIX 1l RO
IDINT 1 RO
INT 1 RO
SIN 1 RO=-R1
cos 1 RO-R1
SHGL 1 RO,R1
TANH 1 RO,R1

3.3.3 JPC Mode

The JPC mode of subroutine call is used for communicating with the
ASCII conversion routines in FPMP-1ll., With JPC mode, the arguments
must be pushed onto the stack before the subroutine is called. The
call to each individual subroutine is 1listed in Table 3-1. 1In
general, a JPC mode call is coded as follows:

MOV R3,-(SP) ;push first argument onto stack
MOV #ARG,-(SP) ;spush last argument onto stack
JSR PC,subr ;call subroutine

For example, to convert a ten character ASCII field at location BUFFER
to internal single precision format, the following might be coded:

MOV #BUFFER, - (SP) ;PUSH ADDRESS OF FIELD

MOV #10.,-(SP) ;PUSH LENGTH OF FIELD
CLR - (SP) ;D-SCALE IS ZERO

CLR - (SP) ;P-SCALE IS ZERO

JSR PC, $RCI s CALL CONVERSION ROUTINE

After the above code is executed, the internal representation of the
number at location BUFFER is in the top two words of the stack. The
ten characters at location BUFFER can be read from an I/0 device, or
coded as constants: For example,

BUFFER: .ASCII /113.25bbbb/
or
BUFFER: .ASCII /-3.627E+09/

TN

TABLE 3-1

ROUTINES WHICH USE THE JPC MODE OF CALL

#
of Call Location
Name |Description Arg Format Of Result
$DCI|ASCII to dbl. 4 |Push addr. of start of ASCII field 4 word
prec. Push length of ASCII field in bytes | result on
Push format scale D (from W.D) top of
position of assumed decimal stack
point
Push P format scale
JSR PC,$DCI
$DCO|Dbl., prec. to
ASCII 4 |Push addr. of start of ASCII field ASCII
Push length of ASCII field in bytes | field
Push D part of W.D (position of specified
decimal point)
Push P scale
Push 4 word value to be converted
lowest order word first
JSR PC,$DCO
SECO|Single prec. to 4 |Same calling sequence as $DCO ASCII
ASCII except that a 2 word value is to field
E format be converted. Specified
JSR PC,$ECO
$FCO|Single prec. 5 |Same calling ASCII
to ASCII sequence as field
F format $ECO. specified
JSR PC,S$FCO
$GCO|Single prec. 5 |Same calling ASCII
to ASCII as $ECO. field
G format JSR PC, $GCO specified.
SICI|{ASCII to integer | 2 |Push addr. of start of ASCII field Integer
Push length in bytes of ASCII field | result on
JSR PC,$ICI top of stack
$ICO|Integer to ASCII| 3 |Push addr. of ASCII field ASCIT
Push length of ASCII field in bytes | field
Push integer value to be converted specified
JSR PC,$ICO

TABLE 3-1 (Cont.)

ROUTINES WHICH USE THE JPC MODE OF CALL

$ of Call Location
Name | Description Arg. Format Of Result
SOCI|ASCII to octal 3 |Same calling sequence as $ICI Top of stack
JSR PC,$0CI
$0CO|Octal to ASCII 3 |Same calling sequence as $ICO ASCII field
JSR PC,$0CO specified
SRCI|ASCII to Single 4 |Same calling sequence as $DCI Two word

prec. JSR PC, $RCI result on
: top of stack

The ASCII input conversion subroutines $RCI, $DCI, $ICI, and $0OCI
preserve the contents of the general registers and restore them to
their original values before returning. The ASCII output conversion
subroutines DCO, SECO, S$FCO, §GCO, $ICO, and $0OCO destroy the
contents of general registers RO, Rl, R2, and R3, but preserve the
contents of R4 and R5.

Erxrors detected by the ASCII input conversion subroutines $RCI, $DCI,
$ICI, and $OCI cause the subroutine to return with a zero result and
with the C bit set in the condition codes.

—~
\

&

>

t=]

3.4 ERRORS

All errors in floating=-point operations, such as overflow of the FLAC
or an illegal TRAP instruction, are handled by the routines $ERR and
SERRA. These routines save the contents of RO, and 1load the error
code into RO. The routines then perform a JSR PC,@$ERVEC, S$ERVEC is
a global location which is initially set to contain the address of a
HALT instruction but can contain the address of a user error handling
routine. If the user error handling routine is to be used, code is
inserted in the initialization of the program as explained in section
3.4.1.

The error code generated by the FPMP-1ll subroutine is put in RO in the
following format:

RO:

error number error class

15 8 7 0

Exror codes and their meanings are shown in Table 3-2.

3.4.1 User Error Handling Routines

To include a user error handling routine in a program, the following
code must be included in the initialization of the program,

.

+GLOBL S$SERVEC
MOV #ERROR, $SERVEC ;move address of error routine
ERROR: user's error handling routine

The error handling routine can be written to terminate with a HALT
instruction or, if registers. 1l through 5 are saved, to continue the
program by executing an RTS PC instruction. The only exception is the
halt after an illegal TRAP instruction (error 0,0) from which it is
impossible to continue. If such a TRAP occurs, its address is in R1
when the error routine is called.

3-15

TABLE 3-2

FPMP-11 ERROR CODES

ERROR
CODE ‘

(CLASS, #)| ISSUED BY EXPLANATION

0,0 TRAPH Illegal TRAP instruction. Rl points to the
TRAP instr. '

3,1 $ADD Expon. overflow in double prec. addition

3,2 $ADR Exponent overflow in real addition

3,3 $DVD Double prec. div. by zero

3,4 $DVD Expon. overflow in double precision division

3,5 $DVI Integer division by 0

3,6 SDVR Expon. overflow in real division

3,8 $DVR Real division by zero

3,10 SMLD Expon. overflow in double prec. mult.

3,11 $SNEG Exponent overflow during negation

3,12 SMLR Expon. overflow in real multiplication

3,14 SMLI Product outside of range on integer mult.

3,22 SRI Real outside range on real to integer
conversion

3,23 $DR Exponent overflow on double to real
conversion »

4,2 DEXP DEXP argument greater than 87

4,3 DLOG DLOG argument less than or equal to zero

4,4 DSQRT DSQRT argument less than zero

4,5 EXP EXP argument greater than 87

4,10 ALOG ALOG argument less than or equal to zero

4,11 SQRT SQRT argument less than zero

4,12 SNGL SNGL exponent overflow in round

5,1 $ADD Expon. underflow in double prec. addition
(warning)

5,2 SADR Exponent underflow in real addition (warning)

5,3 $DVR Expon. underflow in real div. (warning)

5,4 DEXP DEXP argument less than =-88.7 (warning)

5,5 EXP EXP argument less than =-88.7 (warning)

5,6 $SMLD Expon. underflow in double prec. mult.
(warning)

5,7 $MLR Expon. underflow in real multiplication

5,8 $DVD Expon. underflow in double prec. division

(warning)

‘an

/ /_

3.5 CREATING SPECIAL PACKAGES

FPMP-11l source code includes PAL-11lS conditional assembly instructions
which allow tailoring of the FPMP-1ll package to include only the
functions required by the user program., (Refer to the PAL-11lS manual
(DEC-11-YRWB=D) for information on conditional assembly instructions.)
The desired routines are then assembled to take advantage of whatever
hardware features are available.

3.5.1 Assembly Switch Tape

To take advantage of the conditional assembly instructions in the
FPMP-11 source code, a separate tape which sets the switches of the
desired routines and hardware must be prepared and included in the
assembly of the FPMP-1l package.

The switches are set by statements which assign a value to the switch
name., For example, to indicate the availability of the 11/45 FPU
hardware, the FPU switch is set with the following statement

FPU=1

When the FPU switch is set,; many FPMP-1ll routines assemble differently
to take advantage of the FPU,

When using the PDP-11/45 FPU option, it is the user's responsibility
to set up the FPU TRAP vector (location 244g) and the FPU status reg-

ister (refer to the PDP-11/45 Processor Handbook). Refer to Table 3-3
for hardware switch option names.

Significant size and speed advantages can be expected if one of the
hardware options is present and its corresponding switch is set. If
no hardware option switch is set the assembler assumes the program
uses the basic PDP-ll instruction set. In no case should more than
one hardware option switch be set during an assembly.

3-17

TABLE 3-3

HARDWARE OPTION SWITCHES

Switch Name ‘ Hardware Option
FPU PDP-11/45 floating point unit
EAE PDP-11/20 EAE
MULDIV PDP-11-40 extended instruction set (EIS) or
PDP-11/45 processor

NOTE

If the FPU switch is set during an assembly, the
assembler being used must be capable of processing
the extended op codes which will appear. The
present version (V002A) of PAL-11lS does not
support these op codes. MACRO-1ll can be used for
assembly when the FPU switch is set.

Each section of code in the FPMP-11 package is assigned a number and
the switch to cause a particular section of code to be included is
called CND$n.

Table 3-4 lists the sections of the FPMP-11 package, the routines
contained in each section and the switch name to be used.

For example, to include the DSQRT routine in the package set the
switch with the following code:

CND$14=1
«EOT

e

<

TN
/ \

TABLE 3-4

CONDITIONAL FPMP~-11l ASSEMBLY CODES

Section No.

Switch Name

Subroutine Contained

CNDS1
CNDS2
CND$3
CNDS$ 4
CND$5
CND$6
CNDS$7
CNDS$8
CND$9
CND$10
- CNDS$11
CND$12
CNDS$13
CND$14
CNDS$15
CNDS$16
CND$17
CNDS$18
CND$19
CND$20
CNDS$21
CNDS$22
CND$23
CND$24
CND$25
CNDS$26
CND$27
CND$28
CND$29
CNDS$30
CND$31
CNDS$32
CND$33
CND$34
CND$35
CND$36
CND$37
CND$38
CND$39
CND$40
CNDS$41
CNDS$42
CNDS$43

$ADD, $SBD

SADR, $SBR
ALOG,ALOG10
AINT,SINTR

SCMD

SCMR

DBLE

$DCI,$RCI

$DCO, $ECO, $FCO, $GCO
DLOG, DLOG10 '
$DINT

$SDR

DSIN,DCOS

DSQRT

DATAN,DATAN2

SDVD

$DVI

$SDVR

DEXP

EXP

$FCALL

IFIX

FLOAT

ICI,SSOCI

$ICO,$0COo

INT,IDINT

$1ID,S$IR

$MLD

$MLI

S$SMLR

$NGI, $NGR, SNGD
$PSHR5, $PSHR4, $PSHR3, $PSHR2, $PSHR1
$POPR5 , $POPR4, $SPOPR3
SRD

SRI,S$SDI

SNGL

SIN,COS

TANH

ATAN ,ATAN2
SPOLSH(switch is always set)
SQORT

TRAPH

SERR,SERRA (switch is always set)

The CLASS5 switch can be set (CLASS5=1) to have class 5 (warning)
messages interpreted by the error handler of FPMP-1ll. Normally class
5 errors are ignored. Many of the FPMP-11. transcendental and
trigonometric functions do not operate properly if the class 5 switch
is set.

There are two additional switéhes which work together with the others.
When these switches are set the standard single or double precision
TRAP handler packages are assembled. The two switches are:

SINGLE Assemble the standard single precision (2 word)
package when set
DOUBLE Assemble the standard double precision (4 word)

package when set.

The contents of the standard packages are listed in Chapter 2. The
SINGLE and DOUBLE switches may be set together to produce a combined
package containing both standard packages. It 1is also possible to
include a few double precision subroutines with the standard single
precision package or to include some of the non-standard routines
(e.qg. integer multiply), with the single and/or double precision
package. More information on creating these special combinations is
given in section 3.5.1.1.

3.5.1.1 Preparing the Assembly Switch Tape
To assemble the FPMP-1ll source tape:

1. Decide which FPMP-1ll routines are to be included in the resulting
package. Refer to Appendix D for a list of available routines.

2. Obtain the switch names for the desired routines from Table 3-4.

3. Decide which, if any, of the hardware option switches is to be
set.

4, Create a paper tape or source file (either off-line or using the
editor) in the following format; (Refer to the Paper Tape
Software Programming Handbook for information on wusing the

editor).

switch-name-=1 =1 ;FIRST SWITCH TO BE SET
switch-name-=2 = 1

switch=-name-n = 1 s LAST SWITCH TO BE SET
«EOT

(Where "switch-name=-1" thru "switch-name-n" are the names of the
switches to be set.) If preparing the tape off line, be sure to

/"‘\.‘

put a carriage return/line feed after each line. For example, to
assemble the standard single precision package to take advantage
of the EAE, create the following tape:

SINGLE=1 ;USE STANDARD 2-WORD PKG.,
EAE=1 ; SPECIFY EAE

«EOT

To assemble a standard double precision package plus integer
multiply and divide, create the following tape:

DOUBLE = 1 ;GET STD 4-WORD PKG.

- CND$17 = 1 ; INTEGER DIVIDE
CND$29 = 1 - ; INTEGER MULTIPLY
+EOT

It is not necessary to worry about interdependency among FPMP-11
routines. For example, to create a package containing only the
single precision function TANH, the tape :

CND$38 = 1 ; TANH
«EOT

is sufficient. The fact that the TANH function calls the
arithmetic routines and other internal functions is resolved by
the FPMP-1ll source code. In particular, the above switch being
set causes the following routines to be included; TANH, EXP,
$ADR, SBR, SMLR, DVR, SFCALL, S$POLSH, $PSHR3, S$ERR, S$IR, and
$RI.

Assemble the FPMP-11l package with PAL-11S loading the FPMP-11
source tapes (1 thru 6) last. Refer to Appendix B.

The object module produced by PAL-11S can now be used as
described in section 3.6.

NOTE

Because of limitations in the symbol table size in
the 8K version (V002A) of PAL-11lS, it is not
possible to include all FPMP-1ll routines in a
single assembly. The error message produced by
the assembler is "S" and the assembly is aborted.
It is possible however, to assemble as much as the
standard single and double precision packages
together. If the integer and conversion routines
not included in the standard packages are needed
along with both standard packages, they can be
assembled separately by PAL-11lS, and the resulting
tape then linked with the standard packages using
the LINK-11lS linker. If this procedure 1is wused,
the linker produces error messages because of the
rmultiple occurrence of the labels $POLSH, $V20A,
SERR, and S$ERRA. These are non-fatal errors and
can be ignored.

3.6 LOADING INSTRUCTIONS

The FPMP-11l package can be used as distributed by linking the object
tapes (single or double precision) with the user object program or by
using the source tapes to assemble a user-tailored package and then
linking the package to the user program,

The Bootstrap and Absolute Loaders must be resident in core before any
of the other programs can be loaded. Refer to Appendix A for loading
instructions.

The object tape of the user program produced by PAL-11lS (or DOS
MACRO-11), and the FPMP-1ll object tape are linked with LINK-11lS (or
DOS LINK-11) (refer to Appendix C for LINK-11lS instructions).
LINK=11lS requires two passes and produces a tape called a load module
which contains the user program and the FPMP=-1l routines.

Use the Absolute Loader to load this module and execute the program.
(Refer to Appendix A for details on using the ABS Loader.)

.
. ~

£ /‘\\

N

e

CHAPTER 4

SAMPLE PROGRAM

The following sample program illustrates most of the FPMP-11 modes of

calls.

Note that execution of this sample program requires the use of

the Input/Output Executive (IOX) program which must be loaded before
This program inputs three F10.0 numbers, stores
them as A,B and_C and prints the numbers stored for verificatio

The roots of AX“+BX+C=@ are calculated using the formula X=—BtJB§—4AC.
If A=f the program halts.

the sample program.

Qupeoa

buewes
vaneasd
Goegie
voap1l
ohenle
vooul1e
vopule
vaoet7
2oneee

dupees

nane3y
veouag

wann4s

vapoen
voveil
oouoee
goeeas
voueed
“apees
Qoonae
uoeont
wenleo
vapeen
Bou3en
“ooeT1
woeats
épyele
Bo0e13
wageel
vannes
weun4e
baanll
©woeaye
wouell
neonod
nagni2

w12706
WELLY
0OUODY
vaeeee
nee
Pan
000004
00504
012
01
@12737¢
vorvNan
Vo0V 34
012737
o340
voLRse
BO4THT
0oR3T4
v127e1°
0Oe64R
w12700°
woR4s4

BEGIN:

RESTAR?

+TITLE XAMPLE
RU=40
R1=%1
Re=khe
R3=43
Ra=%44
R334S
SP=z4b
PC=47
ARM=100
IMM=200
RELM=300
LOR=71
STRS73
ADR=12
SBR=13
MiL.R221
DVR=225
SURT=46
MSGLEN=9,
RESET=R
REALOP=11
WAITR=4
WRITE=12

#GLUBL TRAPH,$RCI,$FCO

MOV #2000,5P}

107
« WORD a;

«BYTE RESET, 2

10T
«WORD TITLE

#BYTE WRITE,1:

MOV #TRAPH,0#34;
MOV ¥340,8436
JOR PC,READ;

Mav #BUFFR+6,R1;

MOV #A,R0A;

27

INITIALIZE STACK

INIT THE 10X PACKAGE

WRITE THE TITLE

INITIALIZE TRAP VECTOR

READ ONE INPUT LINE INTO BUFFR
GET ADDR OF BEGINNING OF BUFFER

GET ADDR OF VAR fAf

Quowse
wonese
BoRws4
voubse

bapoee
bopne4d
nwennee

puente
napuTe
oRuveTe
waul19e
nep1ae
vunl1a4

benliae
ven114
nuniee

von1e4
vpnles
paplie
wopl3e
voe134
pae13e
Bupl4w
poni4e
vuuld4
npal14e
Qoun1se
woulse
von1s54
gav1s5e
penled
Bauiee

AR0166
220170
200172
POVLT4
20176
ROPR0Y
vepanz
pepeu
Don2ne
0URE1E
CEIERY:
Boge1 s
Qo016

@ouneee
wopeee

Guneln
peoase

weoesy.

voR236
Y LY.
Bone4e
Bovess
DvBeds

12146 ILOQP:
p1on4e
nwie146
12746
yopnie
wasS0N4e
wabn4de
pnaarTeT”
Doapen
104471
104573
v1e6ng
#12601
gaenan
pe2701
wenalLe
wi12705"
BOUSeT
wa4TeT7
pe@ELTY
vaune7*
vaE4sd
121751
124771
npnied
GRA1S47
184712
won3ie
194773
wan3eea
104621
NAuB4Qa
ARy
134721
“on31n
104773
B3l 4
ui270e®
2Ru4e6n
124571
184521
104713
uaviun
naL4s0
nacddl
104446
124773
wonese
104513
10472%
paBesae
u127u%°e
vouwss4
vo4Te7
NABEkLE6
124671
voanue ZERD:
aQavea
124513
124713
wuoe 34
104725
wpve2d
vL27Tas"
pansas

MOV
MoV
mMOov
MOV

CLR
CLR
JOR

“TRAP

TRAP
MoV
MOy
CmP
ALD

MoV
JSR
CMP

BLOS
TRAP
L WOKRD
BEQ

TRAK
WOKD
TRAF
» WOKD
TRAP
«WORD

TRAF
. WOKD
TRAP
JWORD

MOV

TRAP
TRAP
TRAP
< WORD
BEQ
BLT
TRAF
TRAP
S WORD
TRAP
TRAF

L WOKD

MOV
JSR

TRAPF
L WORD

TRAFP
TKAP
SWORD
TRAP
S WORD
MUV

Ri,=~(5P);
RB,=(8P) 7}
R1,=(SP)}
#10,,=(SP)7

»(8P))
~{SP)}
PC,SRCT;

LOR;
STR+ARM;
(SP)+,R0G}
(§P)+,R1;
(RD)+, (RO) *;
#104,R1;

#MSGBLK,RS
PC,PRINT?
Ra, #C}

ILOGOP;
LOR+RELM?}

Aw,

END}

ADR+RELM}

Amy

STR+RELM}
TEMpinu
MLR+IMM}
Q40400 , 0000007

MLR+RELM]}
Cr~,
STR+RELM}?
#B,RQ;

LOR+ARM;
MLR+ARM;
SBR+RELMJ
TEMPE*.
rROOTY;
IMAG;
SQERT?
STR+RELMS
TEMP 2w,
SER+ARM;
DVR+RELM?
TEMP 1=,
#M8G1,R5}

PC,PRINT

LDR+IMM;
@,0

SBR+ARM}
SBER+RELM}
TEMP2=,
DVR+RELM;
TEMP1=,
#MSG2,R57

SAVE R1

SAVE R@

PUSH ADDR OF ASCII STRING READ
PUSH LENGTH

D FORMAT SCALE

P SCALE

CONVERT ONE NUMBER (F10,0)

LOAD FLAC FROM TOP OF STACK
STORE INTO VARIABLE A, By OR C
RESTORE R#

AND R}

INCR RD BY 4

INCR BUFFER PQOINTER TO NEXT VAR

CALL PRINT SUBROUTINE
LAST VAR?

LoOP

LOAD A INTO FLAC
JRELATIVE ADDRESS OF A
EXIT IF A = @

A+ A TO GIVE 2%A
STORE 2«A INTD TEMP1

MPY BY 2 TO GET 4%A (IMMED MODE
CONST 2,0 v

MPY BY C

STORE 4xA%C IN TEMP2

GET ADDRESS OF VARIABLE *B°
LOAD B INTO FLAC

MPY BY B TO GET Baw2

SUBTRACT dxAxC

BRANCH IF ONLY ONE ROQT

Bax2 = 4%xA*xC < @ 27?7

TAKE SQRT OF FLAC

SAVE SQRT (Ba*2=4%AxC) IN TEMP2

ADD MINUS B
DIVIDE BY 2xA (IN TEMPY)

ADDR OF "ROOT 1 s " MESSAGE
fCALL PRINT SUBRQUTINE

ZERQ THE FLAC (IMMEDIATE MODE)
JFLOATING POINT ZEROD

- B
mSART (BrxgwdxAxC)

DIVIDE BY 2xA

ADDR OF "ROOT 2 = "

B

vouese

braese
dpeed
Doaeee
Pope64a

Qbpeee

voeere
Qnaele

puvetTe

avnioe
Dun3nd
norsoe
wonsi1o
woestl
pansie

Qoes14
vueste
weniee
bopsee
aon3as
voriee
bun33p
Boo33e
Bon334

poniaee

Pruida
Bevsase
vewssw
pansse
wen3se

BUR3e60

poaied
Bun366

gugste
Qealitre

bup4ne
pua4n4
BoQ40e
vop4av
vep4te
voodle
aon414
Qep4ls
apR41e

vo4767
voanise
voaeen

194771 ROOT1:

177746
104513
104725
000200
v12705%
00556
PauT6T
0ROR12
Vo654

VRROO4 IMAGS

0o060e "
a12
P01
0PV650

H

W10546 PRINT:

vlodde
v1G346
wieede
vle146
uluande
124773
waal4e
v12704
vooell
G12703"
waeTt4

112523 MLOQP:

005304
buL1375
wl1a346
012746
upunesd
b1er4e
vapale
wasede
Bi16T46
vownilia
“lev4e
woulee
wa4767"
vouwen
vaeoos
woetee”
nle
wol

Uoena4d WAITO:

voo410*
no4
173}

B126wn

BR
TRAP

L KOKD

TRAF
TRAF
e WORD
MOV

JOR

BR
107Ti

SWORD

«BYTE
BR

PRINT
MOV
MOV
MGy
MOV
MOV
MOV
TKAP
«WOKD
MoV
MGy
MOVB
DEC
BNE
MOV
MQV
MOV

CLR
MOV

Mav
JSR
QT
«WORD
WBYTE
I0TH
JWOKRD
«BYTE

MOV

PC,PRINT

RESTAR?

LOR+RELME

ZERU'.
SBR+ARM;

DVR+RELM}

TEMP1=,
#MBG3,R57

PC,PRINT
RESTAR

MSG4;
WRITE, 4}

RESTAR

SUBROUTINE

RS'”(SP);
Ra;"’(SP)
RSI-CSPJ
R1,=(SP)
R, =(SP)
STR+RELM}
TEMP3=,

#MSGLEN,R4;
#UBUF+6,R3}

(RS)+,(R3)+;
R4)

MLOOP
R31'(SP)3

#2D,,=(5P);

#10,,-(SP)}

-(SP);

TEMP3+2,=(8P)}

TEMP3, = (8P)

PC,$FCO;

OBUF ;
WRITE, 1}

WATTO}
WATTR, 1}

(SR)+,R&;

BRANCH TO GO AGAIN
ZERO THE FLAC

GET = B
DIV BY 2x%A

"ROOT = "

WRITE IMAGINARY ROOTS MESSAGE
ADDRESS OF MESSAGE BUFFER
WRITE TO SLOT 1

SAVE REGS

STORE THE FLAC ‘

CHAR COUNT FOR MESSAGE

ADDR OF QUTPUT FIELD

MOV THE CHAR MESSAGE

ADDR OF QUTPUT FIELD FOR CONV
LEN OFFIELD

DECIMAL PLACES

P SCALE _
PUSH VALUE TO BE CONVERTED

CALL CONVERSION RQOUTINE IN FPMP

CALL THE IOX PACKAGE
WRITE THE OUTPUT BUFFER
TO SLOT 1 (KB)

CALL 10X
CREATE WAIT LOOP
WATIT FOR SLOT 1 (KB)

RESTORE REGS

buadu
Dun4ze
vwonded
Hoovdaee
Quwasn
Vunase

PUn4sy
d0N436
Bon44p
Qunaal
nap44de
pov4sy
Quusde
vugadr
eopese
dunase
asu4s54
P0u4Se
@ag4en
LYY
pov4ey
Borp4e6e
PAR4TR
vupaTe
Bav4eTY
QupaTe
papsSap
PupsSne
wapsad
nuvse6
BuoS1P
napste
VORS13
PuuS14
200515
BUes1e
waps17
LYY
PUES21
Yy
VupHe3
wrese4d
Prus25
Bupnsea
Beesat
POV93Y
AupS31
Uous3e
von533
PEnS 54
DUNS53S
QPS5 3e6
Bups37
AEVS40

uieevt
vlevue
h12e03
Bleaend
w1ieews
vageat

:
LOVPL4 READE
0R6e4n "

ni1

i)
BORPD4 WATTI:
COu4s2"

ao4

POY
weu2a7
VRNAER END:
0AeNEE A%
LYrer
PA0VOD B:
POLOND
POGOLD C3
0ORYDN
2ALREe TEMP1:
VOLBOD
YRBEED TEMPR:
2AVNEO
COBRER TEMP3I:
POLOOY
©owV22 TITLE:
“ouRLY
200u2R

215

P12

124

105

123

124

Y

117

106

040

106

120

115

120

061

061

215

z12

122 MSG13

117

117

124

240

MUV
MUV
MOV
Moy
MOV
RT3

(SP)+,R1

(SP)+,Re

(8P)+,R3

(SP)+,R4

(SP)+,R5 ,

FCs ‘ RETURN

REAL SUBROUTINE

I0Tq

2+ WOKD
+BYTE
I0T:

«WORD
«BYTE
RTS

HALT;
s WORD
» WOKD
+ WOKD
+ WOKD
« WORD
« WOKD
«WOKD
QWDRD
«WOKD
«0YTE

~ASLII

.BYIE

#ASLII

CALL I0X FOR READ

BUFFR; ADDR OF INPUT BUFFER

READOP,@} READ SLOT @ (KB)
CALL IO0X

WAITI; CREATE WAIT LOOP ‘

WAITR,Q; WAIT FOR SLOT @2 (KB)

FC; RETURN
FINISHED

2,0

2,0

1

2,0

2,0

@,n

0,0

18,

7]

18,

15,12

/TEST OF FPMP11/

15,12

/ROOT 1 = /

4-4

7

N

N

Puos541
Qpps42
0a0543
00R544
0ap545

Qons4e

0S4t
BrBYs550
2551
vues5e
ae@s53
BORS54
noBsss
2upss5e
BuRs557
Daps60
vepsel
BYps6e2
0onsSes
hvas564

BO0s565 -

npasesé
noeset
puesTL
BuesTy
QoasTe
noesTs
P00574
Quws75
povsTe
QeosT7

penern
ponene
aepeas
200end
Ragene
beooot
vone1o
2opel1)
eopele
gupe1s
Goneld
LoeetLs
pugele
vugelr7
(LY
vone2l
naeeae
GoneRs
Pove24
Guneas
vaneee
ponsa7
bopelw
Govesi

261
4o
v75
240
122
117
117
i24
B4e
vee
o4
ars
n4e
1e2e
117
117
124
pan
R7%
Y]
P40
P4
4@
049
240
240
nae
nag
n4e
o4@
n4n
uwanenn
waneie
Qan
naa

000032

@eLs
n1e
ize
117
117
124
123
gan

ey

122
125
o4
111
115
1e1
107
111
116
121
122

M3G2$

MSG3:

MSGBLK S

MSG4:

nASLIL

CASLII

«ASCIL

»EVEN
o WORD
«BYTE
<WOKD
WJBYTE

JASUII

/ROQT 2 5 /

/ROQT = /

26,
2,0

26,
15,12

/ROUTS ARE IMAGINARY**x/

one3e
Qanes3
VoL 34
nope3s
nou636
Quaes7

vauede
vope4e
voueds
Dapedd

vaoies
vanTTe
varTT)
voutte
weaTT4
QourTTs
vouTT6
vapTT7
waltueaw
aaienl
waiene
Buiens
bB1en4

voiesl
voile3e
0p1e3s

ILOQOP
LOR
MSGBLK
MSGe
OBUF
READ
RESET
R

R3
SBR
STR
TEMP3
WAITI
WRITE
3RCI

131
as5e
ase
pse
w15
uie
Vwane4n

Gonice BUFFR
non
aau
naueen
gparee

“RRR4n OBUF:
nee
voo

voun4an
a4
L4
@49
240
¢4m
a4
G4
7a0
@40

waiasy
715
21e
vle
wagreo

PRPA4S4R
POO46RR
PBON464R
POVRSUR
s puueTl
PUOSHLTR
PRNS45R
PEBT66R
AUB434R
= Quupne
24000090
=L40v00a3
= PUPULS
s Qa7
PUBSVER
2UR442R
& fuugle
S kukkkk 0

«BYTE 15,12

2EVEN

< WORD B0,
#JBYTE 2,0
« WOKD @
«Eat80,

«WOKD 3.
2BYTE @,

« WORD 32
fASLIL /
WF,%20,

JBYTE 15,12,1¢2

2 ENU BEGIN

ADw = Buoule
BEGIN WoRooaR
DVK = B@ouwes

IMAG VeB304R
MLOOF PEA3A4R
M8GLEN = GURD1L
MSG3 fansSs5eR
PC =heeoear

READUP = 2ORA11
RESTAR PODYI4R

R1 %0001
R4 =%000004
SP S%000EA6
TEMP1 2UB4TER
TITLE VRBSB4R
WAITU QU@41@R
ZERO YUB23¢R
. = 201034R

ARM

BUFFR
END
IMM
MLR
MSG1
MSG4
PRINT
RELM
ROGT1
Re

R5
SQRT
TEMPe
TRAPH

. WAITR

$FCO

a00100
AR0640R
PAQ452R
Q20208
agnpal
ABBS53I4R
Anoed@R
PRB314R
naniae
napeeEr

zx0v0eae

S34nQ0RRS

nagr4de
BAD4TLR
kkxkuk [
Aon0ad
Kkknekk (3

N

TEST OF FPMP11
20 e 30} e
2. AADBOGADBA
Le AAADANBARA
2. NAQBARBAGD
ROOT = = 1.3200330200

125 3. 25 5043
12. 5800300000

3+ 2500080397

564299998283

ROOTS ARE IMAGINARY***

3e E=-01 «BEEAAZ 4RE-001
Ne 3003230119

e AAABABBADD

Lo RABARAAADD

ROOT 1 = ~Je 6305062795
ROOT 2 = -19. 3094921112

5 15 3
5. 39000068007

15. 3033008030

3. 00080800000

ROOT 1 = -@«2154767066
ROOT 2 = -2 7845234871
4] bde 3. 75
B.B2B3030900

L. DZDBBBDABAD

3« 1500080020

PROGRAM OUTPUT

;Teletype input in three
;10-character fields

;program verification
;of input

jresult

'//—\',

TN

APPENDIX A

BOOTSTRAP AND ABSOLUTE LOADERS

A.l1 THE BOOTSTRAP LOADER

A.l.1 Loading the Bootstrap Loader

The Bootstrap Loader should be toggled into the highest core memory
bank.

xx7744 016701
xx7746 000026
xx7750 012702
xx7752 : 000352
xx7754 005211
xx7756 ' 105711
xx7760 100376
xx7762 116162
xx7764 000002
xx7766 xx7400
xx7770 005267
xx7772 177756
xx7774 000765
xx7776 YYYYYY

xx represents the highest available memory bank. For example, the
first location of the loader would be one of the following, depending
on memory size, and xx in all subsequent locations would be the same
as the first,

Location Memory Bank Memory Size
017744 0 4K
037744 1 8K
057744 2 12K
077744 3 16K
117744 4 20K
137744 5 24K
157744 6 28K

The contents of location xx7776 (yyyyyy) in the instruction column
above should contain the device status register address of the
papertape reader to be used when loading the bootstrap formatted tapes
specified as follows:

Teletype Paper Tape Reader - 177560
High-speed Paper Tape Reader =-- 177550

(INITIALIZE)

@——4 SET SR TO XX7744

Load

s

PRESS LOAD ADDR

AAD
OR VERIFY

\i

SET SR TO 016701

Verify

STRUCTIO
?

\
PRESS EXAM |

LIFT DEP

]
SET SR TO NEXT]

INSTRUCTION

Y

LIFT DEP

LIFT DEP
‘

SET SR
TO CORRECT
INSTRUCTION

[

ALL
INSTRUCTIONS
VERIFIED

No

FINISHED

Figure A-1 Loading and Verifying the Bootstrap Loader

k=

A.l.2 Loading with the Bootstrap Loader

Figure A-2,

With Bootstrap

Loader in Core

Set ENABLE/HALT
To HALT

Place Bootstrap
Tape in
specified reader

Set SR to xx7744

Press LOAD ADDR

l

Set ENABLE/HALT
to ENABLE

Press START

Tape Reads in
and stops
At end of Data

Data is in Core

A.2 THE ABSOLUTE LOADER

-]

|t e - —

A.2.,1 Loading the Absolute Loader

The Bootstrap Loader is used to load the Absolute

(See

Figure

A-2.) The

Absolute Loader ' occupies
through xx7743, and its starting address is xx7500.

see figure E.1l

Cdde 351 ﬁust be

over reader sensors

Loading Bootstrap Tapes into Core

Loader

into

core.

locations xx7474

A.2.2 Loading with the Absolute Loader

When using the Absolute Loader, there are three

available: normal, relocated to specific address,
relocation. ‘

Optional switch register settings for the three types
listed below.

types
and

of loads
continued

of loads are

Switch Register

Type of Load Bits 1-14 Bit 0
Normal (ignored) 0
Relocated = continue loading 0 1
where left off

Relocated = load in specified nnnnn . 1
area of core (specified address)

/ﬂ\,

O—

TN

INITIALIZE

LOAD ABS
LOADER F---- SEE FIG.A-2
SET ENABLE/HALT TO HALT l&
HSR=177550]| (This is
) LSR=177560 | necessary
— XX is HIGH|only if
SET SR TO XX7776 TO SPECIFY READER | |EST CORE using a
. MEMORY reader
BANK different
Yy J from that
PLACE TAPE IN READER used by
- the boot-

|

SET SR TO XX7500. PRESS LOAD ADDR

®

strap loader.)

0 OF SR

P
SET BIT 0 OF SR|_crocate to OF QZEB\\> Normal - CLEAR BIT
- SPECIFY ADDR IN A ?
Specific
- BITS 1-14 ADDR
N Continuing Relocation
SET BIT 0 OF SR, CLEAR BITS 1-14
|
(; PRESS START
RELOAD LOADER
-
Ty
PLACE NEXT TAPE
IN READER
- | REMOVE TaPE |
Figure A-3 Loading with the Absolute Loader

SET ENABLE/HALT TO ENABLE

Mo

e

A-5

P

APPENDIX B

USING THE PAL-11lS ASSEMBLER

Run the assembler according to the directions in Section B.l. If
another program is being assembled along with FPMP~-11l, it should be
read before the FPMP-1l package. This other program must be followed
by a .EOT instruction and must not define any FPMP-1ll labels or
conditional switches. After any user program being assembled with
FPMP-11 has been read, the assembler prints EOF? and pauses. Place
the switch setting tape previously created (refer to section 3.5.1l.1)
in the reader and type the RETURN key. At the end of this tape the
assembler again prints EOF? Place the first source tape of the FPMP-11l
package in the reader and type the RETURN key. After this source tape
has been read and the assembler prints EOF?, place the next source
tape in sequence in the reader and type RETURN, Repeat this sequence
until all source tapes have been read. When the last tape has been
read, the assembler proceeds to Pass 2. All of the tapes must be read
again using the same procedure as above. The assembler produces the
FPMP-11 object module on the binary output device specified in the
initial assembler dialogue.

B.1l ASSEMBLER OPERATING PROCEDURES

Loading: Use Absolute Loader. The start address of
the Loader must be in the console switches.

Storage Requirements: PAL-11S uses 8K memory.

Starting: Immediately upon loading, PAL-11lS is in

control and initiates dialogue.

Initial Dialogue:

Printout Inquiry
*S What is the input device of the source symbolic tape?
*B - What is the output device of the binary object tape?
*L What is the output device of the assembly listing?
*T What is the output device of the symbol table?

Each of these questions may be answered by any one of the following
characters:

Character Answer Indicated

T Teleprinter keyboard

L Low-speed reader or punch
H High-speed’reader or punch
P Line Printer

Each of these answers may be followed by the other characters
indicating options:

Option Typed Function to be performed
/1 on pass 1
/2 on pass 2
/3 on pass 3
/E errors to be listed on the Teleprinter on thesamepass

(meaningful only for *B or *L).

Each answer is terminated by typing the RETURN key. Answering with a
RETURN alone deletes the function.

Dialogue During -Assembly:

Printout Response

EOF ? Place next tape in reader and type RETURN. A .END
statement may be forced by +typing E followed by
RETURN,

END ? Start next pass by placing first tape in reader and

typing RETURN.

EOM ? If the end-of-medium is on the 1listing device, the
device may be readied and the assembly may be
~continued by typing RETURN.

If the end-of-medium is on the binary device, the
assembler will discontinue the assembly and restart
itself.

Restarting:

Type CTRL/P. The initial dialogue will be started again.
For more detailed information on the PAL-11lS Assembler, refer to the

PDP-11 PAL-11lS Assembler and LINK=1lS Linker Programmer's Manual
(DEC=11-YRWB=D) .

B-2

B.2 ASSEMBLER ERROR CODES

Error Code

A

M

Meaning
Addressing error. An address within the
instruction is incorrect. Also includes

relocation errors.

Bounding error. Instructions or word data are
being assembled at an odd address in memory.

Doubly-defined symbol referenced. Reference was
made to a symbol which is defined more than once.

Illegal character detected. Illegal characters
which are also non-printing are replaced by a ? on
the listing.

Line buffer overflow. All extra characters beyond
72 are ignored.

Multiple definition of a label. A label was
encountered which was equivalent (in the first six
characters) to a previously encountered label.

Number containing an 8 or 9 was not terminated by
a decimal point.

Phase error. A label's definition or value varies
from one pass to another.

Questionable syntax. There are missing arguments
or the instruction scan was not completed, or a
carriage return was not followed by a linefeed or
form feed.

Register-type error. An invalid use of or
reference to a register has been made.

Symbol table overflow, When the quantity of
user-defined symbols exceeds the allocated space
available in the user's symbol table, the
assembler outputs the current source line with the
S error code, then returns to the command string
interpreter to await the next command string to be
typed.

Truncation error. More than the allotted number
of bits were input so the leftmost bits were
truncated. T error does not occur for the result
of an expression.,

Undefined symbol. An undefined symbol was entered
during the evaluation of an expression. Relative
to the expression, the undefined symbol is
assigned a value of zero.

APPENDIX C

USING LINK-11S

C.l1 LOADING AND COMMAND STRING

The Linker is loaded by the Absolute Loader and is self-starting. It
uses a simple command dialogue which allows the object module, load
module and load map devices to be specified. During pass 1 and pass
2, the Linker asks for each object module individually.

For illustration purposes, the non-printing characters carriage
return, line feed and space are represented as <CR>, <LF> and <SPACE>,

Operation begins by the linker typing its name and version. This 1is
followed by the input option printed as *I<SPACE>. The responses are:

<CR> Read object module from HSR.
H<CR> Read object module from HSR.
L<CR> Read object module from LSR.

The input option is followed by the output option *0O<SPACE>, The
responses. are: ~

<CR> Punch load module on HSP.
H<CR> Punch load module on HSP.
L<CR> Punch load module on LSP,

LINK-11l asks if a load map is desired by typing *M<SPACE>, The legal
responses are <CR> for no map, T<CR> or H<CR> or P<CR> for a map on
the teleprinter, high-speed punch, or line printer, respectively.

The next two options concern the placement of the relocated object
program in memory. The standard version of the Linker assumes it is
linking for an 8K machine. It relocates the program such that it is
as high as possible in 8K but leaves room for the Absolute and Boot
Loaders. (These assumed values may be changed by altering parameters
HGHMEM (highest legal memory address +1) and ALODSZ (number of bytes
allocated for Absolute Loader and Boot Loader) and reassembling the
linker,) The *T and *B options control the relocation of a program.
After the option *T<SPACE> is printed, respond as follows:

<CR> Relocate so that program is up against the current
top of memory. If the top has not been changed,
then the top is the assembled=-in top
(HGHMEM-ALODSZ) . The standard assumption is
16384.-112,=16272 (374608).

n<CR> n is an octal number (unsigned) which defines a
new top address.

If a new top is specified, the *B option is suppressed.
After the option *B<SPACE> is printed respond as follows:
<CR > Use current top of memory.

n<CR > n is an unsigned octal number which defines the
bottom address of the program. That is, a new top
of memory is calculated so that the bottom of the
program corresponds with n.

Once a top of memory has been calculated (by *T or *B), that value is
used until it is changed.

LINK-11l indicates the start of pass one by printing PASS 1. The input
is requested by the Linker, one tape at a time by printing #*<SPACE>.
The legal responses are:

<CR> " Read a tape and request more input.

U<CR> List all undefined globals on the teleprinter and
request more input.

E<CR> End of input. If there are undefined globals,
- list them on the teleprinter and request more
input., Otherwise print the load map if requested,

and enter pass 2. :

C<CR> End of input. Assign 0 to any undefined globals,
print the load map (if requested), and enter pass
2. ’

The Linker indicates the start of pass 2 by 'printing PASS 2 and
requests each input tape as in pass 1.

A <CR> is the only useful response to an asterisk (*) on pass 2, The
modules mnmust be read on pass 2 in the same order as pass l. When the
last module has been read, the Linker automatically finishes the 1load
module and restarts itself.

" Leader and trailer are punched on the load module.

If the low-speed punch (LSP) is being used for the load module output,
it should be turned on before pass 2 begins, i.e., turn it on before
typing E<CR> or C<CR>. The echo of these characters (and the load
map) if printed on the Teletype are punched on the load module but may
be easily removed since leader is punched on the load module. The LSP
can also be turned on while leader is being punched (after the linker
has typed PASS 2) to keep the load map, etc., from being punched onto
the tape.

,/-\ \ .

™

NOTE
On all command string options, except for *T and
*B, the linker examines only the last character
typed preceding the carriage return. Thus,
ABCDEFGH<CR?>

is equivalent to H<CR>.

C.2 - ERROR PROCEDURE AND MESSAGES

C.2.1 'Restarting

CTRL/P is used for two purposes by LINKll-S, If a CTRL/P is typed
while a load map is being printed, the load map is aborted and the
Linker continues. CTRL/P typed at any other time causes the Linker to
restart itself.

C.2.2 Non-~Fatal Errors

Message . Explanation

?MODULE NAME xxxxxx NOT UNIQUE
‘Non-unique object module name -
this error is detected during pass
1 and results in an error message
and the module is rejected. The
- Linker will then ask for more
input.

?MAP DEVICE EOM.
TYPE <CR> TO CONTINUE Load map device EOM =~ this error
' allows the wuser an option to fix
the device and continue or abort
the map 1listing. Any response,
terminated by <CR> or <LF> causes
the Linker to continue. A CTRL/P
causes the map be to aborted.

Message

————

'Explanation

?BYTE RELOC ERROR AT ABS ADDRESS XXXXXX.

?LOAD xxxxxx NEXT

?2xxxxxxX MULTIPLY DEFINED BY MODULE

C.2.3 PFatal Errors

A byte relocation error - the

.Linker tries to relocate and link

byte quantities. However,
relocation usually fails and
linking may fail. Failure is
defined as the high byte of the
relocated value (or the linked
value) not being all zero. In such
a case, the value is truncated to 8
bits. The Linker automatically
continues.

If the object modules are not read
in the same order on pass 2 as pass
1, the Linker indicates which
module should be - loaded next by
typlng this message and asklng for
more input.

XXXXXXe

Multiply-defined globals were

discovered, during pass 1. The -
second definition is ignored and

the Linker continues.

The Linker restarts after any of the following:

Message

Explanations

2SYMBOL TABLE OVERFLOW - MODULE xxxxxX, SYMBOL XXXXXX

~ ?SYSTEM ERROR xx

Symbol Table overflow.

System Error. Where xx is an
identifying number as follows:
Number Meaning
01 Unrecognized symbol
table entry found.
02 A relocation

directory references
a global name which
cannot be found in
the symbol table.

TN

Number ' Meaning

03 A relocation
directory contains a
location counter
modification command
which is not last.

04 Object module does
not start with a
GSD.

05 The first entry in

the GSD is not the
module name.

06 An RLD references a
section name which
cannot be found. -

07 The TRA
specification
references a
nonexistent module
name.

08 The TRA
specification
references a
non-existent section
name.

09 An internal jump
table index is out
of range.

10 A checksum error
: occurred on the
object module,

11 An object module
binary block is too
big (more than 64
words of data).

12 A device error
occurred on the load
module output
device.

All system errors except for
numbers 10 and 12 indicate a
program failure either in the
Linker or the program which
generated the object module. Error
05 can occur if a tape is read
which is not an object module.

C.2.4 Error Halts
LINK-11l loads all of its unused TRAP vectors with’the code:
.WORD 42 ,HALT
so that if the TRAP occurs, the processor halts in the second word of

the vector. The address of the halt, displayed in the console lights,
therefore indicates the cause. of the halt.

Address of HALT (octal) Meaning
12 Reserved instruction executed.
16 Trace TRAP occurred,
26 Power fail TRAP,
32 EMT executed.

A halt at address 40 indicates an IOXLPT detected error. RO
(displayed in the console lights) contains an identfying code:

Code in RO Meaning

0 _ Illegal memory reference, SP
overflow or illegal
instruction,

Illegal IOX command.

Slot number out of range.
Device number illegal.
Referenced slot not INITed.
Illegal data mode,

bW

IOXLPT also sets Rl as follows:

If the error code is 0, Rl contains the PC at the time of the
error. .

If the error code is 1-5, Rl points to some element in the IOT
argument 1list or to the instruction following the argument list,
depending on whether IOXLPT has finished decoding all the arguments

when it detects the error.

TN

APPENDIX D

SUMMARY OF
FPMP-11 ROUTINES

This appendix lists all the global entry points of FPMP~1l and
provides a brief description of the purpose of each. Sections D.1l and
D.2 are for reference when it is desired to call FPMP=-1ll routines
directly (i.e., without the wuse of the TRAP handler). Entry names
preceded by an octal number can be referenced via the TRAP handler.
The number is the "routine number" referred to throughout this manual.
If the number is enclosed in parentheses, the routine cannot be
accessed by the present TRAP handler, but has been assigned a number
for future use.

Examples of the calling conventions are:

POLISH MODE: .

JSR R4, $POLSH ;enter Polish mode
$subrl ;call desired subroutines
$subr?2
$subrn jcall last subroutine desired
«WORD o+2 ;leavé‘quish mode.
J5RR: .
JSR R5,subr ;call desired subroutine
BR XX :
«WORD argl ;subroutine argument address

«WORD arg2

«WORD argn ;last argument
XX S ‘ ;return point

JPC: .

push args onto stack
JSR PC,subr

D.1 OTS ROUTINES

These are the routines taken from the FORTRAN operating time system.
The codes used in the following table are:

S = Routine is included in the standard single precision (2=-word)
package.

D = Routine is included in the standard double precision (4-word)
package.

SD = Routine is included in both standard packages.

Octal codes shown in parentheses are not yet implemented.

OCTAL # OF :
NAME CODE PKG ARGU MODE DESCRIPTION

$ADD 14 D 2 Polish The double precision add routine.
Adds the top stack item (4 words)
to the second item (4 words) and
leaves the. four word sum in their
place.

$ADR 12 S 2 Polish The single precision add routine.

. Same as $ADD except it uses 2 word
numbers.

AINT 26 S 1 J5RR Returns sign of argument * greatest
real integer = absolute value of
the argument in RO,Rl.

ALOG 53 S 1 J5RR Calculates natural logarithm of its

' : single argument and returns a two
word result in RO,Rl.

ALOG10 54] 1 J5RR Same as ALOG, except calculates
base=10 logarithm,

ATAN 42 S 1 J5RR Returns the arctangent of its

argument in RO,Rl.

Ve

TN

]

OCTAL
NAME CODE
ATAN2 (43)
$CMD 16
SCMR 17
cos 37
DATAN 44
DATAN2 (45)
DBLE (34)
$DCI (57)
$DCO (61)

OF

PKG ARGU MODE

]

D

SD

SD

2
2

H N e

J5RR

Polish

Polish

J5RR
J5RR
J5RR

J5RR

JPC

JPC

DESCRIPTION
Returns ARCTAN (ARG1l/ARG2) in RO,R1.

Compares top 4 word items on the
stack, flushes the two items, and
returns the following condition
codes:

4(sP) @sP N=1,2=0
4(SP) = @SP N=0,%=1
4(SP) @SP N=0,%=0

Same as $CMD except it is for 2
word arguments.

Single precision version of DCOS.
Double precision version of ATAN,
Double precision version of ATAN2,

Returns in RO-R3 the double
precision equivalent of the single
precision (two word) argument.

ASCII to double
Calling sequence:
Push address of start of ASCII
field.
Push length of ASCII field in
bytes.
Push format scale D (from W,D)
position of assumed decimal
point (see FORTRAN manual).
Push P format scale (see
FORTRAN manual).
JSR PC,$DCI.

conversion.

Returns 4 word result on top of
stack.

Double precision to ASCII
conversion. Calling sequence:
Push address of start of ASCII
field.
Push length in bytes of ASCII
field (W part of W.D)
Push D part of W.D (position of
decimal point).
Push P scale.
Push 4 word value to be convert-
ed, lowest order word first.
JSR PC,$DCO.

OCTAL # OF
NAME CODE PKG ARGU MODE DESCRIPTION

DCOS 41 D 1 J5RR Calculates the cosine of its double
precision argument and returns the
double precision result in RO-R3.

DEXP 52 D 1 J5RR Calculates the exponential of its
double precision argument, and
returns the double precision result
in RO-R3,

SDI (11) SD Polish Converts double precision number on
the top of the stack to integer.
Leaves result on stack.

SDINT (76) D 1 Polish OTS internal function to find the
integer part of a double precision
number.

DLOG 55 D 1 J5RR Double precision (4 word) version
of ALOG.

DLOG10 56 D 1 J5RR Double precision (4 word) version
of ALOG1lO0.

SDR (6) 1 Polish Replaces the double precision item

at the top of the stack with its
two word, rounded form.

DSIN 40 D 1 J5RR Calculates the sine of its double
precision arg. and returns the
double precision result in RO-R3,

DSQRT 47 D 1 J5RR Calculates the square root of its
double precision arg. and returns
the double precision result in
RO-R3.

$DVD 23 D 2 Polish The double precision division
routine. Divides the second 4-word
item on the stack by the top item
and leaves the quotient in their
place. ‘

SDVI (24) 2 Polish The integer division routine,
Calculates 2(SP)/@SP and returns
the integer quotient on the top of
the stack.

$DVR 25 S 2 Polish The single precision division
routine. Same as $DVD, but for 2
word floating point numbers.

s

NAME

SECO

EXP

$FCALL

$FCO
FLOAT
$GCO

$ICI

$ICO

IDINT

$ID

IFIX

OCTAL # OF

CODE PKG ARGU MODE
(62) SD 5 JPC
51 S 1 J5RR
- [

(64) SD 5 JPC
(32) 1 J5RR
(63) SD 5 JPC
(65) 2 JPC
(67) 3 JPC
(31) 1 J5RR
(5) SD 1 Polish
(35) 1 J5RR

DESCRIPTION

Single precision to ASCII
conversion according to E format.
Same calling sequence as $DCO
except that a 2-word value is to be
converted.

Single precision version of DEXP,
Returns result in RO,Rl.

Internal OTS routine.

Same as S$ECO except uses F format
conversion.

Returns in RO-R1, the real
equivalent of its integer argument.

Same as $ECO except uses G format
conversion.

ASCII to integer conversion,
Calling sequence:

Push address of start of “ASCII
field.

Push 1length in bytes of ASCII
field.

JSR PC,S$ICI

Returns with integer result on top
of stack.

Integer to ASCII conversion,
Calling sequence:

Push address of ASCII field.

Push 1length in bytes of ASCII
field.

Push integer value to be converted.
JSR PC,S$ICO

Error will return with C bit set
on. RO-R3 destroyed.

Returns sign of arg * greatest
integer <= }arg| in RO. Arg is
double precision.

Convert full word argument on the
top of the stack to double
precision and return result as top
4-words of stack.

Returns the truncated and fixed
real argument in RO.

OCTAL # OF
NAME CODE PKG ARGU MODE
INT (30) 1 J5RR
SINTR (27) S 1l Polish
$IR (4) SD 1 Polish
$SMLD 22 D 2 Polish
$MLI (20) 2 Polish
$MLR 21 S 2 Polish
$NGD (3) SD 2 Polish
$NGI (1) SO 1 ©Polish
SNGR (2) SD 1 Polish
SOCI (66) 2 JPC
$0C0 (70) 3 Jec
$POLSH - SD - -
$POPR3 - D - Polish
SPOPR4 - D - Polish

DESCRIPTION

Same as IDINT for single precision
args.

Same function as AINT, but called
in Polish mode with argument and
returns result on the stack.

Convert full word argument on the
top of the stack to single
precision and return result as top
2-words of stack.

Double precision multiply.
Replaces the top two doubles on the
stack with their product.

Integer multiply. Replaces the top
2 integers on the stack with their
full word product.

Single precision multiply.
Replaces the top two singles on the
stack with their product.

Negate the double precision number
on the top of the stack.

Negate the integer on the top of
the stack.

Negate the single precision number
on the top of the stack.

ASCII to octal conversion. Same
call as S$ICI.

Octal to ASCII conversion. Same
call as S$ICO.

Called whenever it 1is desired to
enter Polish mode from normal
in-line code. It must be called
via a JSR R4,$POLSH.

Internal routine to pop 2-words
from the stack and place them into
RO,RI1.

Internal routine to pop 4-words
from the stack and place them in
RO-R3.

-

T~
*

//\\

OCTAL # OF

NAME CODE PKG ARGU MODE
SPOPRS - D - Polish
$PSHR1 - SD Polish
SPSHR2 - Sh - Polish
SPSHR3 - SD - Polish
$PSHR4 - SD - Polish
$SPSHR5 - SD - Polish
SRCI (60) SD 4 JPC
$RD (7) Polish
SRI (10) SD Polish
$SBD 15 D Polish
$SBR 13 S Polish
SIN 36 S 1 J5RR
SNGL (33) 1 J5RR
SQRT 46 S 1 J5RR
TANH 50 S 1 J5RR

DESCRIPTION

Internal routine +to pop 4-words
from the stack and place them in
registers RO-R3,

Internal routine to push the
contents of RO onto the stack.

Same as S$PSHRI.
Push RO,Rl onto stack.
Push RO-R3 onto stack.
Same as SPSHR4.

ASCII to single precision
conversion. Same calling sequence
as $DCI. Returns 2-word result on
top of stack.

Converts the single precision
number on the top of the stack to
double precision format. Leaves
result on stack.

Converts single precision number on
the top of +the stack to integer.
Leaves result on stack.

The double precision subtract
routine. Subtracts the double
precision number on the top of the
stack from the second double
precision number on the stack and
leaves the result on the top of the
stack in their place.

Same as $SBD but for single
precision.

Single precision version of DSIN.
Rounds double precision argument to
single precision. Returns result
in RO, RI1.

Single precision version of DSQRT.
Single precision hyperbolic tangent

function. Returns (EXP(2*ARG)-1) /
(EXP (2*ARG)+1) in RO,Rl.

D.2 NON-OTS ROUTINES

These routines are written especially for FPMP-ll and should not be
called directly by the user.

OCTAL
NAME CODE PKG) DESCRIPTION
SERR - SD Internal error handler,
SERRA - SD Similar to $ERR.
SLDR 71 S Load FLAC, single precision.
$LDD 72 D Load FLAC, double precision.
$STR 73 S Store FLAC, single precision.
$STD 74 D Store FLAC, double precision.
TRAPH - SD The TRAP handler routines and
tables.

D.3 ROUTINES ACCESSED VIA TRAP HANDLER

The following is a table of the FPMP-1l routines which can be accessed
via TRAPH, the trap handler. Each routine name (entry point) is
preceded by its TRAP code number to be used to access it, and followed
by a brief description of its operation when called via the TRAP
handler. Those en