MONITOR CALLS

ommm

Gt . 2 - o Eea . £ - : ,
T e T T BT T LD S T iy R T T T T T ST B o T T L oo L T

Y g e

DEC-10-OMCMA-B-D
DEC-10-OMCMA-B-DN1

MONITOR CALLS

This manual reflects the software of the
6.02 monitor.

digital equipment corporation - maynard. massachusetts

First Printing, June 1971

Revised: January 1972
June 1972
March 1973
May 1974
November 1975
March 1976

The information in this document is subject to change without notice and should not be construed as a commit-
ment by Digital Equipment Corporation. Digital Equipment Corporation assumes no responsibility for any errors
that may appear in this document.

The software described in this document is furnished under a license and may be used or copied only in accordance
with the terms of such license.

Digital Equipment Corporation assumes no responsibility for the use or reliability of its software on equipment
that is not supplied by DIGITAL.

Copyright @ 1971, 1972, 1973, 1974, 1975, 1976 by Digital Equipment Corporation

The postage prepaid READER’S COMMENTS form on the last page of this document requests the user’s critical
evaluation to assist us in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

DIGITAL DECsystem-10 MASSBUS
DEC DECtape OMNIBUS
PDP DIBOL 0S/8
DECUS EDUSYSTEM PHA
UNIBUS FLIP CHIP RSTS
COMPUTER LABS FOCAL RSX
COMTEX INDAC TYPESET-8
DDT LAB-8 TYPESET-10

DECCOMM DECsystem-20 TYPESET-11

CHAPTER

CHAPTER

CHAPTER

CHAPTER

1

1.1
1.1.1
1.1.2
1.1.3
1.2
1.2.1
1.2.2
1.2.2.1
1.2.2.2
1.2.3
124
1.2.5
1.2.5.1
1.2.5.2
1.2.5.3
12,54
1.2.5.5

2

2.1
2.2
2.2.1
2.2.2
2.2.3
2.2.3.1

3
3.1
3.2

4
4.1
4.1.1
4.1.2
4.1.2.1
4122
4.1.2.3
4.1.3
4.1.3.1
4.1.3.2
4.1.3.3
4.2
4.2.1
422
4.2.3
424
425

CONTENTS

Page
USERPROGRAMMING .. ittt e 1-1
PROCESSORMODES ... ittt it e e 1-1
User Mode Processingovvvitiint ittt it e 1-1
User I/O Mode Processing . ..o ovvvuveeeeniie e it e 1-2
Executive Mode Processingoououuieiiiiniieeeniiinnnnnnann. 1-2
MONITOR CALLS (PROGRAMMED OPERATORS)uviiininannnnn. 1-2
Op Codes 001-037 .. oottt e 1-2
Op Codes 040-100and 000oviriniiin it eiae e 1-2
Physical Onlyo 1-19
Restriction on Monitor Calls in Programs 1-19
Operation Codes 100-127ottt ettt e 1-19
Illegal Operation Codesuuuuuireune ittt 1-19
Naming Convention for Monitor Symbolsoivive.... 1-19
Symbols for Numbers 1-19
Symbols for Maskscooovv i 1-20
Symbols for Monitor Callscouiriiiiiiniiie e, 1-20
Symbols for GETTAB Tablesouieeer it iiiiae e 1-20
Symbols for Error Codes ...t L 120
MEMORY FORMAT i e 2-1
USERPROGRAMS e 2-1
MEMORY PROTECTION AND RELOCATIONccvivnnnnnnnn 2-1
The KATOProcessor.ot 2-2
The KI10 and KL10 Processors (Without Virtual Memory) 2-3
KI10 and KL10 Processors With the Virtual Memory Option................ 2-4
Virtual Memory Organizationovuuuinniiiirnnanennnn. 2-4
JOBDATA AREA 3-1
JOBDAT (JOBDATA AREA) e 3-1
VESTIGIALJOB DATA AREA i 35
JOB CONTROL AND INFORMATION, 4-1
JOB CONTROL o e 4-1
Start Program Execution. 4-1
Stop Program Execution............ 4-1
The HALT Instructiono.ouii e 4-1
The EXIT Monitor Call (CALLL12) 42
The LOGOUT Monitor Call (CALLI 17) oo .. 42
Suspend the Execution Of AJob 4-2
The SLEEP Monitor Call (CALLI31) 0., 42
The HIBERnate Monitor Call (CALLI 72)oouuuininin... 4-3
The WAKE Monitor Call (CALLI73) ..., 4-3
SET OR OBTAIN JOB INFORMATIONouiitinnan 4-4
Set the Program Name 4-4
Set System/Job Parameters 4-5
Setthe Logical Node 4-8
Obtain RunTime 49
Obtain the Job Number of the Calling Job 4.9

iii June 1976

42.6
4.2.7
4.3

4.3.1
432
433
4.4

44.1
442
443
4.5

45.1
4.5.2
4.53
4.6

4.6.1

CHAPTER 5

5.1

52

5.3

53.1
53.2
533
534
53.5
53.6
5.3.7
53.8

CHAPTER 6

June 1976

6.1
6.1.1
6.1.2
6.1.2.1
6.1.2.2
6.13
6.14
6.1.5
6.1.6
6.1.6.1
6.1.6.2
6.2
6.2.1
6.2.1.1
6.2.2
6.2.3
624
6.2.5
6.2.6

CONTENTS (Cont.)

Page
Obtain the Project-Programmer Number of the CallingJob 49
The OTHUSR Monitor Call (CALLI77) it .. 4-10
TIMING INFORMATION et et e e 4-10
The DATE Monitor Call (CALLI14) 4-11
The MSTIME Monitor Call (CALLI23) it 4-11
The TIMER Monitor Call (CALLI22)ttt 4-11
CONFIGURATION INFORMATION ittt iieaen 4-11
The SWITCH Monitor Call (CALLI20).ttt i e 4-11
The LIGHTS Monitor Call (CALLI-1) ciiuiuinnnn.. 4-11
The DAEMON Monitor Call (CALLI 102)t ineennnn.. 4-12
MONITOR EXAMINATION it e e s e e 4-13
The PEEK Monitor Call (CALLI33) 0iiieneunnn.. 4-13
The SPY Monitor Call (CALLI42) 4-14
The POKE Monitor Call (CALLI114)ttt 4-14
INTER-PROGRAM COMMUNICATION ittt 4-14
The TMPCOR Monitor Call (CALLI44)0uiiiieunnenn. 4-14
TRAPPING, INTERCEPTION, AND INTERRUPTION 5-1
USERTRAP SERVICING.ttt et et et 5-1
ERRORINTERCEPTINGottt et et e i e 52
SOFTWARE INTERRUPT SYSTEM i, 5-5
Interrupt Conditionst e 5-6
Interrupt Control Block. e 5-8
Initialize the Software Interrupt System 5-8.1
Control the Software Interrupt System. 59
Save the Interrupt Blocks e 5-11
Reload the Saved State of the Interrupt System. 5-12
Dismissan Interrupt o e 5-12
An Example of the Software Interrupt System 5-12
CORE ANDSEGMENT CONTROL. i i e 6-1
CORE CONTROL ... e e et e e 6-1
Definitionsot e e 6-1
The LOCK Monitor Call (CALLI60) i iieennenn. 6-1
The LOCK Monitor Call Extension 0., 64.1
Minimizing Fragmentation. L 6-7
The UNLOK.Monitor Call (CALLI120)0iuritieiannnnn. 6-8
The CORE Monitor Call (CALLI 11) 6-8
The SETUWP Monitor Call (CALLI36)ccoiuiiinnnn. 6-10
The PAGE. Monitor Call (CALLI 145) P 6-11
Page Fault Handling it 6-14
Format of the Page Fault Handler 6-15
SEGMENT CONTROL e e et e eeee 6-16
The RUN Monitor Call (CALLI36)c¢coiuiiiinnnn.. 6-16
Programming with the RUN Monitor Call 6-18
The GETSEG Monitor Call (CALLI40)c.iiuiunienanannnn. 6-18
The REMAP Monitor Call (CALLI37).o vttt et e e e e 6-19
Testing for a Sharable High Segment 6-20
Determining the High Segment Origin 6-21
Modifying Shared Segments and Meddling 6-21

iv

CONTENTS (Cont.)

Page
CHAPTER 7 I/OPROGRAMMINGttt ettt et et e e e e e 7-1
7.1 JOBINITIALIZATIONo e e e e et 7-1
7.2 DEVICE SELECTIONttt et et 7-2
7.2.1 Device Initialization i 7-3
7.2.2 Device Names i i e e e e 7-4
7.2.2.1 File Structure Namesottt ittt ieeaan, 7-5
7.22.2 Logical Unit Namesiiuiiniin ittt i, 7-5
7.2.2.3 Physical Controller Class Namesoveiiin et iie i 7-5
7224 Physical Controller Namesiuuiiiiiin i iiniinenannn. 7-5
7.2.2.5 Physical Unit Names.oiiii i i it e i 7-5
7.2.2.6 Name Abbreviationsout it i 7-5
7.3 DAT A MODES . e 7-6
7.3.1 Unbuffered DataModest it et e e 7-6
7.3.2 Buffered DataModes i e 7-9
7.3.2.1 Buffered Input e 7-9
7.3.2.2 Buffered Outputout it i 7-9
7.3.2.3 Synchronization of Buffered I/O it 7-10
7.3.3 Buffer Structureo 7-10
7.3.3.1 Buffer Ring Header Block.t 7-10
7.3.3.2 Buffer Ring.......... e e 7-11
7.3.3.3 Monitor Generated Buffers.............. i i i, 7-12
7.3.3.4 User Generated Buffersot i it 7-12
7.3.4 Non-Blocking I/O ..o vttt e e e e 7-13
7.4 DEVICE TERMINATION AND REASSIGNMENT, 7-13
7.4.1 RELEASE aDeViCe ..\ vttt ettt it ettt ettt ieeieans 7-13
7.4.2 The RESDV. Monitor Call (CALLI 117)ciiiiiiiiinnnn.. 7-13
7.4.3 The REASSIGN Monitor Call (CALLI 21)t 7-14.1
7.4.4 The DEVLNM Monitor Call (CALLI 107)cooviiiiiinennnnnnn, 7-14.1
7.5 DEVICE INFORMATION e i it 7-15
7.5.1 The DEVSTS Monitor Call (CALLIS4)coiiiiieiin i, 7-15
7.5.2 The DEVCHR Monitor Call (CALLI4)ttt 7-15
7.5.3 The DEVTYP Monitor Call (CALLIS3)cvun... P 7-16
7.5.4 The DEVSIZ Monitor Call (CALLI 101)t 7-16
7.5.5 The WHERE Monitor Call (CALLI63), 7-19
7.5.6 The NODE Monitor Call (CALLI 157). .. v v vt iee it e i e 7-19
757 The DEVNAM Monitor Call (CALLI64).oviit it 7.21
CHAPTER 8 FIL S 8-1
8.1 FILEDEFINITION e 8-1
8.2 STRUCTURE OF DISK FILES e 8-1
8.2.1 File Directories e 8-1
8.2.2 Job Search List. 8-4
8.2.3 Storage Allocation Table (SAT) Blockscoov ... 8-5
8.3 DISK FILE FORMAT e 8-5
8.4 ACCESSPROTECTION, 8-6
8.4.1 File Access Privileges 8-6
8.4.2 Directory Privilegest 8-7
8.5 FILENAMES 8-8
8.5.1 The RENAME Operatorouiuiiiin i 8-8
8.6 FILE SELECTION 8-10
8.6.1 LOOKUP/ENTER A Fileo, 8-10
8.6.1.1 The LOOKUP Operatort et 8-10

v June 1976

CHAPTER

CHAPTER

June 1976

8.6.1.2
8.6.1.3
8.6.1.4
8.6.1.5
8.6.2
8.6.2.1
8.7
8.7.1
8.8

8.9
8.10
8.11
8.12
8.13
8.14
8.15
8.16
8.17
8.18
8.19
8.19.1
8.19.2
8.19.3
8.20

9.1
9.2
9.2.1
9.2.2
9.3
9.3.1
9.3.2
9.3.3
9.4
9.4.1
942
943
9.4.4
9.5
9.5.1
9.52
9.5.3
9.5.4
9.5.5
9.5.6
9.6
9.7

10
10.1

CONTENTS (Cont.)

The ENTER Operatoro.uiiiieiiineennnneaninno...
Extended Arguments to LOOKUP, ENTER and RENAME
Error Recovery for ENTER and RENAME Monitor Calls
Non-Superseding ENTER i,
Data Transmissionvt i e i e
The FILOP. Monitor Call (CALLI 155) i
THE PATH. MONITOR CALL (CALLI 110)voiieeie e
PATH. Examples
USETI AND USETO Operatorsouueeeeenmne ..
THE SEEK MONITOR CALL (CALLISO)
THE CHKACC MONITOR CALL (CALLI100)oiun..
THE STRUUO MONITOR CALL (CALLIS0),
THE JOBSTR MONITOR CALL (CALLI47)
THE GOBSTR MONITOR CALL (CALLI 66)l
THE SYSSTR MONITOR CALL (CALLI46)
THE SYSPHY MONITOR CALL (CALLIS1)
THE DEVPPN MONITOR CALL (CALLISS)
THE DSKCHR MONITOR CALL (CALLI4S)
THE DISK. MONITOR CALL(CALLI 121) oo,
FILE STATUS | e
The GETSTS Operator vvvvn ittt eis et e,
The STATO/STATZ Operators « .« «vvvveunn oot e e
The SETSTS Operatoro.iiit v ittt vt cieened e
TERMINATE AFILE . ..ottt e et et et i e e e e ns

I/O PROGRAMMING FORDECTAPEo,
DECTAPE . .

DECtape Directory Formatciiieei...
DECtape File Format
Block Allocation
I/OPROGRAMMING e
The LOOKUP Operatorue e it e
The ENTER Operator. i
The RENAME Operator e
The INPUT, OUTPUT, CLOSE, RELEASE Operators
SPECIAL MONITOR CALLS
The USETI Operator
The USETO Operator
The UGETF Operator @ iiiiiniin it i,
The UTPCLR Monitor Call
The MTAPE Operator it i et i i
The DEVSTS Monitor Call After Each Interrupt
FILE STATUS

I[/O PROGRAMMING FORMAGNETIC TAPE
DATA MODES

SN

CHAPTER

CHAPTER

CONTENTS (Cont.)

Page
10.2 SPECIAL MONITOR CALLS FOR MAGNETIC TAPE *10-3
10.2.1 The MTAPE Operator iiiiine iee ieiineann, 10-3
10.2.1.1 Function 11, Rewindand Unload 10-4
10.2.2 The MTCHR. Monitor Call (CALLI 112) 10-5
10.2.2.1 Nine-Channel Tapesttt 10-6.1
10.2.3 The TAPOP. Monitor Call (CALLI 154), 10-6.1
10.2.3.1 Function .TFMOD (Data Modes) ovvvete et e e e 10-11
10.2.3.2 Read Backwards (TXO01 Only)oviine e 10-12
10.2.4 The MTAID. Monitor Call (CALLI126)vuuieeneannnnnn, 10-12
10.3 FILE STATUS o e e e 10-12
11 I/O PROGRAMMING WITH TERMINALS 11-1
11.1 INTRODUCTION ... e e 11-1
11.2 TERMINALMONITOR CALLS i 11-1
11.2.1 The TTCALL Operator uouiviine v cieeiiaenn, 11-1
11.2.1.1 TTCALL EXamples.t ee et e e et 11-3
11.2.2 The GETLIN Monitor Call (CALLI34)ciuiinenn... 11-4
11.2.3 The TRMNO. Monitor Call (CALLI 115)oeeeees e 11-5
11.2.4 The TRMOP. Monitor Call (CALLI 116)vvueenennn.. 11-5
11.3 DATAMODES o 119
114 FILE STATUS e i 11-12

11.5 PAPER-TAPE INPUT FROM THE TERMINAL (FULL-DUPLEX SOFTWARE) .. 11-13
11.6 PAPER—-TAPE OUTPUT AT THE TERMINAL (FULL-DUPLEX SOFTWARE) .. 11-13

11.7 PSEUDO-TTYS (PTYS) . o oottt e e e e e e, 11-14
11.7.1. COnCePtS 11-14
11.7.2 The HIBER Monitor Call (CALLI72) ...t 11-15
11.7.3 File Status 11-15
11.7.4 Special Monitor Calls 11-16
11.7.4.1 The OUT, OUTPUT Operators (Op Codes 57 and 67). 11-16
11.7.4.2 The IN, INPUT Operators (Op Codes 56 and 66) 11-16
11.7.4.3 The RELEASE Monitor Call (Op Code 71).. ii. .. 11-16
11.7.4.4 The JOBSTS Monitor Call (Op Code 61), 11-16
11.7.4.5 The CTLJOB Monitor Call (CALLI65) i ... 11-17
12 1/0 PROGRAMMING WITH UNIT RECORD DEVICES 12-1
12.1 THECARDPUNCH(CDP) e e e 12-2
12.1.1 Data Modes and Buffer Zones00, 12-2
12.1.2 Monitor Callso 12-2
12.1.3 File Status ... 12-3
12.2 THE CARD READER (CDR) ...\ttt e 12-4
12.2.1 DataModes 124
12.2.1.1 ASCIL, Octal Code O i i 12-4
12.2.1.2 ASCII Line, Octal Code 1.t 12-4
12.2.1.3 Image, Octal Code 10 i i 12-4
12.2.14 Image Binary, Octal Code 13c.0vieieiiann. 12-4
12.2.1.5 Binary, Octal Code 14. i e 12-4
12.2.1.6 Super-Image, Code 1102 .. 124
12.2.2 Monitor Calls’ 12-4
12.2.3 File Status ... 12-5
12.3 DISPLAY WITH LIGHT PEN 12-6
12.3.1 DataModes 12-6
12.3.2 Background 12-6

vii June 1976

CHAPTER

June 1976

12.3.3
12.3.3.1
12.3.3.2
12.3.4
124
12.4.1
12.4.1.1
12.4.1.2
12.4.1.3
12.4.2
12.4.3
12.5
12.5.1
12.5.1.1
12.5.1.2
12.5.1.3
12.5.14
12.5.1.5
12.5.2
12.5.3
12.6
12.6.1
12.6.1.1
12.6.1.2
12.6.1.3
12.6.1.4
12.6.1.5
12.6.2
12.6.3
12.7
12.7.1
12.7.1.1
12.7.1.2
12.7.1.3
12.7.1.4
12.7.1.5
12.7.2
12.7.3

13
13.1
13.1.1
13.2
13.3
13.4
134.1
13.4.2
13.4.3
1344

13.4.5
13.4.6

CONTENTS (Cont.)

Display Monitor Calls
The INPUT Operator
The OUTPUT Operator
File Status
LINE PRINTER oottt ittt it it ettt et e ettt e ee e enens
DataModes i i e e e e e
ASCIL, Octal Code O v vv ittt e e et e e
ASCII Line, Octal Code 1.« vvvunvr vt i ieiein e eneinannenns
Image, OctalCode 10 . ..ottt i it i i i eas
1Y e} o ¥ 0} o OF: 1 1 -
File Status e e e e e
THE PAPER-TAPEPUNCH . ..ottt it
Data Modes ottt e e
ASCIL, Octal Code 0. v v vttt ettt et et ettt i
ASCII Line, Octal Code 1. . v vt ittt it et i eneeenenes
Image, Octal Code 10 ... vvinn i i i it
Image Binary, OctalCode 13 it
Binary, Octal Code 14t i it
MORItOr Calls .+t v vttt ettt e e s
File Status e e e e
THE PAPER-TAPE READER . . ittt it ittt it ieeee i
DataModes « oottt e e e e e e
ASCIIL, Octal Code 0 v vvvtet ettt ittt et ettt ea e eae e
ASCII Line, Octal Code 1. v v vvvvrntntn ittt e et
Image, Octal Code 10 ... v vttt i it e it it e ian e
Image Binary, Octal Code 13o v it it
Binary,Octal Code 14 iiu ittt
MONItOr Calls .« vt v e ettt et e e e e e
File Status ot vttt i e e e e
PLOT T ER o e e e
Data Modes ..ottt e e e e
ASCII, Octal Code 0. . v v i vt ittt et ettt e et ettt enaenas
ASCII Line, Octal Code 1 .o vvvtnn it ittt it e it iaeeaenen
Image, Octal Code 10 ..o vvv it eas
Image Binary, OctalCode 13ot ii it i
Binary, Octal Code 14. ... oottt i i i
MOMItOr Calls .+ v v v et et et et e e et et e e e
File Status oottt e e e e

THE MULTIPLEX CHANNEL FEATURE

BUFFER RING EXTENSION
Device Chains

DATA MODES

..

..............................
..
...

...

The CNECT. Monitor Call (CALLI 130).cvvniiiiiiii e
The ERLST. Monitor Call (CALLI 132) vt
The SENSE. Monitor Call (CALLI133)ot
The CLRST. Monitor Call (CALLI 134).ot

The IONDX. Monitor Call (CALLI127) ...t ean.
The MVHDR. Monitor Call (CALLI 131)oiviuiiiiii i

viii

TN

CHAPTER 14
14.1
14.1.1
14.1.2
14.1.3
14.1.4
14.2
14.2.1
14.2.2

CHAPTER 15
15.1
15.1.1
15.1.2
15.1.3
15.1.4
15.1.5
15.1.6
15.1.7
15.2
15.3
15.4
15.5
15.6
15.7
15.8
15.9

CHAPTER 16

16.1
16.1.1
16.1.2
16.1.3
16.2
16.2.1
16.2.2
16.2.3
16.2.3.1
16.2.3.2

CHAPTER 17
17.1
17.2
17.3
17.4
17.5

CHAPTER 18
APPENDIX A

‘APPENDIX B

CONTENTS (Cont.)
Page
REAL-TIMEPROGRAMMINGttt 14-1
THE RTTRPMONITOR CALL (CALLIS57) . ovovie i 14-1
Interrupt Level Use Of RTTRPo 144
RESTICHIONS - « v v v et ettt e et et 14-4
Removing Devices from a Priority Interrupt Channel 14-5
Dismissing the Interrupt . . .o oo ot i 14-5
THE TRPSET MONITOR CALL (CALLI25) ..o oviei e 14-5
The UJEN Operator (Op Code 100) ..., 14-7
The HPQ Monitor Call (CALLI 71) ...vvvvviiiiniinann., PR © 147
INTER-PROCESS COMMUNICATION FACILITYovniiiiiniennennn. 15-1
PACKETS ittt et e e e e e e 15-1
Flags ottt e e i e 15-1
PIDS i e e e 15-1
Length of the Packet Data Blockovvueiniiiiin i, 15-4
Address of the Packet DataBlock .« -« v vevvveenennninens 154
Sender’s Project-Programmer Number.o.oiiiiinii it 15-5
Capabilities of Sender. . ..o vvvii i 15-5
Packet Data Block « vt v v vii i i i e e 15-5
SENDING A PACKET « -+t ettt et et eee et i i it eanns 15-5
RECEIVING A PACKET PP 15-6
[SYSTEM]INFO ...ttt it i iie i 15-6
[SYSTEM]ICPP ..ttt it 15-7
STATUS OF AN INPUT QUEUE ... ittt et ean 15-10
RETRIEVE AN IPCF PACKE T -+« ot it ie it it it e e e e 15-1
SEND ANIPCFPACKET e 15-11
IPCEFEXAMPLE i e it 15-13
ENQUEUE/DEQUEUE FACILITY .+t viitttiiiineenianaeenaneeens 16-1
OVERVIEW OF ENQUEUE/DEQUEUEo vt i i i e e e 16-1
Shared Ownership and Exclusive Ownership ..., 16-1
POOLEd RESOUTCES « « v v v e et e e e be e et et e e eeie s 16-2
Sharer’s GIOUD « « v v vt e ettt et iaan et iiiee e 16-4
ENQUEUE/DEQUEUE MONITOR CALLS c.oviieiiiiiia 16-5
The ENQ. Monitor Call (CALLI 151) .« v v vnvviviiieieii e 16-5
The DEQ. Monitor Call (CALLI 152) ..o v v it 16-7
The ENQC. Monitot Call (CALLI 153) ... ivvriiiiin i 16-9
Status INfOrmation .« .« v v evmen ettt i e 16-9
Modifying the Queue STTUCIUIE « v vt v v vvtviine i e e 16-11
METERING ottt et ittt e ettt 17-1
OVERVIEW OF METERING .o vitieie ittt ii i iaiieiiaaeenees 17-1
METER POINT ROUTINESottt it et 17-2
USING THE TRACE CHANNEL ... i i 17-2
ADDING AMETER POINT .ottt te e e i ie e 17-3
THE METER. MONITOR CALL (CALLI111)nviiiiii e 17-4
GETTABS | e 18-1
COMPARISON OF DISK DEVICESt A-1
COMPARISON OF MAGNETIC TAPE SYSTEMS B-1

ix June 1976

APPENDIX C

APPENDIX D
APPENDIX E

APPENDIX F
APPENDIX G

APPENDIX H
H.1
H.1.1
H.2
H3
H4
H.S

APPENDIX I
APPENDIX J
APPENDIX K

FIGURE 2.1
2-2
2-3
5-1
52
5-3
6-1
7-1
72
8-1
8-2

8-4
8-5
8-6
8-7

89
9-1

9-3

9-4

10-1

11-1

13-1
June 1976

CONTENTS (Cont.)
Page
CARDAND TAPECODESo C-1
COMPARISON OF TERMINALS ..o D-1
ERROR CODES E-1
DECSYSTEM-10 AT-A-GLANCE F-1
MEMORIES ... G-1
FILE RETRIEVALPOINTERS H-1
AGROUPPOINTER H-1
Folded Checksum Algorithm H-1
END-OF-FILEPOINTER H-1
CHANGE OF UNIT POINTER 0o i, H-2
DEVICE DATA BLOCK 0 i H-2
ACCESSBLOCK H-2
DATA COMMUNICATIONS I-1
UUOSYMMAC .. e J-1
2741 TERMINALS ..o K-1
... Index-1
FIGURES
Page
KA10 User Address Relocation ...t innanan.. 2-2
KI10/KL10 Paging Configuration (Without Virtual Memory) 2-3
Physical and Virtual Page Limits 2-5
Software Interrupt Processt 5-6
Interrupt Control Block 5-8
Saved Status Block Structure. it 5-11
Locking Jobsin Coreo ottt e 64.1
Buffer Ring Header Block i 7-11
Buffer Structure e 7-11
Basic Disk File Organization for Each File Structure 8-2
Disk File Organizationottt et 8-3
Access Protection Code e 8-7
ENTER Argument Block i 8-12
FILOP. Argument Block 822
PATH. Argument Block L. 8222
Directory Paths on a Single File Structure 8-26
Directory Paths on Multiple File Structures. 8-26
DISK. Priority. Level e 8-40
DECtape Directory Format 9-3
Format of aFileon a DECtape it ieeannn. 9-5
Format of a DECtape Block i i i 9-5
LOOKUP/ENTER/RENAME Argument Block 9-6
DataWordon Tapeo i e 10-6.1
Pseudo-TTY ..ottt e 11-14
MPX Buffer Ring Header Block 13-1

X

A

T

FIGURE

TABLE

13-2
15-1
15-2
15-3
15-4
15-5
15-6
16-1
16-2
16-3
16-4
16-5
16-6
16-7
17-1
K-1

1-1
1-2

3.1
32
4.1
4.2
4.3
4.4
5.1
52
5-3
5-4
5-5
5-6
5.7
5-8
59
6-1
62
6-3
6-4
65

6-7
6-8
7-1
72
7-3

FIGURES (Cont.)

Page
Status Block Entry ... e e 13-5
Representation of an IPCF Packet 15-2
Request to [SYSTEM]INFO e, 15-6
[SYSTEM]INFO Response Format 15-8
Request to [SYSTEM]IPCC it 15-8
Response from [SYSTEM]IPCC oo ittt it 15-10
An Associated Variable 15-11
Shared Ownership e 16-2
Shared and Exclusive Ownership Requests., 16-3
Exclusive OWNnershipt e e e 16-3
Pooled ReSOUICESttt e e e e 16-4
ENQ. Argument Block e 16-5
Lock-BIock DUMD « .ottt e e e e e e e 16-12
Queue-Block Dump i e 16-12
MeteTing\t et e 1741
Model 2741 Keyboardttt i e e e K-1

TABLES

Page
Op Codes040-100 oot e i e 1-3
CALLIS/Monitor Callso ottt et e e e e e e e e e 1-6
VM Abbreviationsttt s 2-5
Job Data Area Locationsvuvt ittt 3-1
Vestigial Job Data Area Locationso inean.n. 3-6
HIBERnate Conditionsttt et et e e 4-4
SETUUO FUNCHONS .« ot ettt e et e e e et e e ettt i e et 4-5
DAEMON Functionsuuunenit ittt 4-12
DAEMON E1r0or COUeS .« vt v tiet it it eee et ee et niaieanennnns 4-13
APRENB Flags e e e e 52
Error Intercepting Class Bits i, 5-3
I/O Interrupt Conditionsoouurniein et ianan.n 5-7
Non-I/O Interrupt Conditionsiumetiiineon .. 5-8.1
Control Flags i 59
Argument Block Flags 5-10
PISYS. Error Codes e e e 5-10
PISAV. Error Codesttt it e e e i e 5-11
PIRST. Error Codest et e e et e e e e e e 5-12
LOCK Bits . ..o e 6-2
LOCK Error Codes . ..o v vvt ittt it it it ittt et ettt e e e 6-3
LOCK Extension Functionsovuuuin ittt iie i, 6-7
Values Returned from CORE i i i i i i 69
PAGE. Functionsovuut i i i i et et e e 6-11
Bits Returned from Function PAGCA, 6-13
PAGE. Error Codes . . .o vv ittt it et e et e e 6-14
Page Fault Word e 6-15
Non-Directory Devices. e 7-2
OPEN Status Bitso i i e e s 7-4
Format of Device NAINES -o v uv et et e et e e e 7-4

Xi June 1976

TABLE

June 1976

7.4
75

77
7-8
79
7-10
7-11
8-1
8-2
8-3
84
8-5

8-7

8-8

89

8-10
8-11
8-12
8-13
8-14
8-15
8-16
8-17
8-18
9-1

9-2

9-3

9-4

9-5

10-1
10-2
10-3
104
10-5
10-6
11-1
11-2
11-3
114
11-5
11-6
11-7
12-1
13-1
13-2
13-3
13-4
13-5
14-1

TABLES (Cont.)

Page
Physical Disk Unit Namesoiiriniieiniiiiia., 7-6
Data MOES oot ottt e et e e e e 7-7
DEVINM Error COQes . - v v it e e e e e e et et e it et e i e 7-15
Device CharacteriStiCs - . .o vttt et vttt e e e ee e e 7-17
Device Type Bits ... ov ot it 7-18
DEVSIZ Error Codeso vttt i e 7-19
NODE Function COGes . .« v v veeeiininsae e saasaaaaeescasaaeans 7.19
NODE EIr0r COGES « v v v v vv e veeeeeein it n s na s 721
Access Protection Codesttt e e e e 8-6
Access Privileges to UFDsand SFDs ittt ittt 8-8
LOOKUP Argument Blockttt iieeiaann 8-11
Extended Arguments to ENTER, LOOKUP, and RENAME 8-14
.RBSTS Bit Definitions e e 8-20
FILOP. Function Codes. it e ei e 8-22.1
PATH. Function Codesiutitinii ittt ei e iei e 8-23
PATH. Switchesand Flagsttt iiiiaaaean 8-23
USETI/USETO Function Codesuuninu it e, 8-28
CHKACC Access COAeS . oot it ei et et e ee et ee et e eiie e e eianens 8-31
JOB/GOBSTR Status Bitso vttt ettt 8-32
GOBSTR Error Codes oviii i e e e e e 8-34
Ersatz DeviCes .. ov ittt 8-35
DSKCHR Argument Block i, 8-37
DSKCHR Status Bitst e e e 8-38
DISK. Function Codesuiuiiiririe i i, 840
DISK. Error Codesottt e et e 841
Disk File Status Bitsttt it 842
DECHape DEVICES .+« v vt o et ettt ettt e 9-1
Format of Words 105 - 126 in the DECtape Directory Block 93
LOOKUP Parameterscuuuniniieeeteet it een 9-6
ENTER Parameterso ot e et et 9-7
RENAME Parametersottt et et et 9-8
Magnetic Tape DataModest 10-2
MTAPE Functions e 10-3
MTCHR. Returned Valuesc.. it 10-5
Values Returned to the AC After MTCHR. 10-6
TAPOP. Function Codesottt e 10-7
TAPOP. Error Codesot e e e et e 10-10
Terminalso e 11-1
TTCALL Functionsiuinii i et 11-2
Terminal Line Characteristicsottt 114
TRMOP. Function Codes ...ttt L. 116
Transmit/Receiving Speeds e 119
TRMOP. Error Codesttt e 119
JOB Status Bits\oiti i 11-17
Summary of Some Non-Directory Devicescccoiuien... 12-1
CNECT. Operation Codest 13-3
CNECT.Error Codesiuini i e 13-3
- ERLST. Error Codes it 134
SENSE. Error Codesttt e 13-5
CLRST.Error Codesouuini e e 13-6
RTTRP Error Codes . .. v v vuvi ettt i vt it it e it e 14-3

Xii

.

o

TABLE

15-1

152

15-3
154
15-5
16-1
16-2
16-3
16-4
16-5
16-6
171
17-2
18-1
182
18-3
184
18-5
18-6
187
18-8
189
18-10
18-11
1812
18-13
18-14

18-15

18-16
18-17
18-18
18-19
18-20
18-21
18-22
18-23
18-24
18-25
18-26
18-27

A-l
B-1

C-2
D-1
E-1
F-1
G-1
Il

K-1
K-2

TABLES (Cont.)

Packet Flags 15-3
IPCF Capabilities of a Sender 15-5
[SYSTEM]INFO Functionsuuutntunni et eieeieeennn 15-7
[SYSTEM]IPCC Functions e 15-8
IPCEF Error Codeso e e e e 15-12
ENQ. Function Codes, e 16-7
DEQ. Function Codesttt 16-8
Current State of Resource it 16-10
ENQC. Function Codeso i i, 16-11
ENQC. Flags 16-12
Enqueue/Dequeue Error Codes iveiueoi... 16-13
METER. Function Codes it 17-4
METER. Error Codesttt e e 17-5
GETTAB Tables e 18-2
Privilege Table (GTPRV, GETTAB Table Number 6) 18-6
Configuration Table (GTCNF, GETTAB Table Number 11) 18-6
System State Bit Settings (Item Number 17 in GETTAB Table Number 11). 18-11
Non-swapping Data Table (GTNSW, GETTAB Table Number 12) 18-12
Swapping Data Table ((GTSDT, GETTAB Table Number 13)................ 18-13
ONCE-ONLY Disk Parameters ((GTODP, GETTAB Table Number 15)......... 18-14
LEVEL-D Parameters (GTLVD, GETTAB Table Number 16) 18-14
GETTAB Immediate Word Entries (GTSLF, GETTAB Table Number 23)...... 18-16
Spooling Control Table (.GTSPL, GETTAB Table Number 36) 18-17
Time and Batch Status Table (GTLIM, GETTAB Table Number 40) 18-17
Hardware Status After a Crash (GTCRS, GETTAB Table Number44)......... 18-18
System Wide Data Table (GTSYS, GETTAB Table Number 51) 18-18
CPUO Control Data Block Constants Table (.GTCOC, GETTAB Table

NUMDET 55) oottt 18-19
CPUO Control Data Block Variable Table (.GTCOV, GETTAB Table

NUMDET 56) « o v ettt et et e 18-20
Response Subtable 18-21
Parity Subtable 18-22
Feature Table (GTFET, GETTAB Table Number 71)...................... 18-23
Scanner Table (. GTSCN, GETTAB Table Number 73) 18-26
SEND-ALL Text (.GTSND, GETTAB Table Number 74) 18-26
IPCF Miscellaneous Data (.GTIPC, GETTAB Table Number 77).............. 18-26
IPCF Statistics Per Job (.GTIPA, GETTAB Table Number 104) 18-26
IPCF Flags and Quotas ((GTIPQ, GETTAB Table Number 107) 18-27
General Virtual Memory Data ((GTVM, GETTAB Table Number 113)......... 18-27
Scheduler Statistics (.GTSST, GETTAB Table Number 115) 18-28
Special PID Table (.GTSID, GETTAB Table Number 126) 18-28
ENQ./DEQ. Statistics (GTENQ, GETTAB Table Number 127) 18-29
DisK DEVICES . .ot i et ittt e A-1
Magnetic Tape SyStems v ittt e B-1
ASCII Card Codes . ..ottt e e e e C-1
ASCII Codes and BCD Equivalents C3
Terminals D-1
Error Codes .. .ottt E-1
DECSYstem-10ttt e e F-1
Core MEmMOIiesottt G-1
Communication SYStEIMSttt et I-1
Conversion 0f Characterscoeuirvniininrnvnnennrnenenanns K-2
Model 2741 Typing EIEMents.uuueunnneneiinennaeanaaaaaenens K-3

xiii ‘ ’ June 1976

APRENB, 5-1
ATTACH, UUOPRV

CALI11., UUOPRV
CHKACC, 8-30
CHGPPN, UUOPRV
CLOSE, 8-44
for DECtape, 9-8
for CDP, 12-2
for LPT, 129
for Display, 12-6
for PTP, 12-10
for Plotter, 12-13
CLRST., 13-5
CNECT., 13-2
CORE, 6-8
CTLJOB, 11-17

DAEFIN, UUOPRV
DAEMON, 4-12, UUOPRV
DATE, 4-11 :
DEBRK., 5-12

DEQ., 167

DEVCHR, 7-15

DEVLNM, 7-14.1
DEVNAM, 7-21

DEVPPN, 8-34

DEVSIZ, 7-16

DEVSTS, 7-15

DEVTYP, 7-16

DISK., 8-39

DSKCHR, 8-36

DVRST., UUOPRV
DVURS., UUOPRV

ENQ., 16-5
ENQC., 169
ENTER, 8-11

for DECtape, 9-7
ERLST., 13-3
ERRPT., UUOPRV
EXIT, 4-2

FILOP., 8-22
FRUCCO, UUOPRV

GETLIN, 11-4
GETPPN, 4.9
GETSEG, 4-1
GETSTS, 8-41
GETTAB, 18-1
GOBSTR, 8-33

HALT, 4-1
HIBER, 4-2

for pseudo-TTYs, 11-15
HPQ, 14-7

IN, 8-21
for Display, 12-6
for TTY, 11-16
INBUF, 7-11
INIT, 7-3
INPUT, 8-21
for DECtape, 9-8
for TTY, 11-16
IONDX., 13-6
IPCFQ., 15-10
IPCFR., 15-11
IPCFS., 15-11

JBSET, UUOPRV
JOBPEK, UUOPRV
JOBSTR, 8-32
JOBSTS, 11-16

LIGHTS, 4-11
LOCATE, 4-8
LOCK, 6-1
LOGIN, UUOPRV
LOGOUT, 4-2, UUOPRV
LOOKUP, 8-10

for DECtape, 9-5

METER, 17-1
MSTIME, 4-11
MTAID., 10-12, UUOPRV
MTAPE, 10-3

for DECtape, 9-9
MTCHR., 10-5
MVHDR., 13-6

NODE, 7-19

OPEN, 7-3
OTHUSR, 4-10
OUT, 8-21
for TTY, 11-16
OUTBUF, 7-11
OUTPUT, 8-21
for TTY, 11-16
for display, 12-6
for DECtape, 9-8

PAGE., 6-11
PATH., 8-22.2
XV

ALPHABETICAL LIST OF MONITOR CALLS

PEEK, 4-13
PIINIL., 5-8
PIRST., 5-12
PISAV., 5-11
PISYS., 5-9
PJOB, 49
POKE, 4-14

REASSIGN, 7-14.1
RELEASE, 7-13

for TTY, 11-16

for Display, 12-6

for DECtape, 9-8
RENAME, 8-8

for DECtape, 9-7
REMAP, 6-19
RESDV., 7-13
RESET, 7-1
RTTRP., 14-1
RUN, 6-16
RUNTIME, 4-9

SCHED., UUOPRV
SEEK, 8-29

SENSE., 13-4
SETNAM, 4-4
SETSTS, 8-43
SETUUO, 4-5, UUOPRV
SETUWP, 6-10
SLEEP, 4-2

SPY, 4-14

STATO, 842

STATZ, 8-43
STRUUUO, UUOPRV
SUSET., UUOPRV
SWITCH, 4-11
SYSPHY, 8-34
SYSSTR, 8-33

TAPOP., 10-6.1
TIMER, 4-11
TMPCOR, 4-14
TRMNO, 11-5
TRMOP., 11-5
TRPSET, 14-5
TTCALL, 11-1

UGETF, 99

UJEN, 14-7
UNLOK., 6-8

June 1976

ALPHABETICAL LIST OF MONITOR CALLS (Cont.)

USETI, 8-27

for DECtape, 9-9
USETO, 8-27

for DECtape, 9-9
UTPCLR, 9-9

WAIT, 7-10

WAKE, 4-3
WHERE, 7-19

June 1976 Xvi

CHAPTER 1
USER PROGRAMMING

1.1 PROCESSOR MODES
In a single-user, non-timesharing environment, a user’s program is limited only by those conditions inherent in the
hardware. The program must

1. stay within the memory capacity,
2. observe the hardware restrictions placed on the use of certain memory locations, and
3. observe the restrictions on interrupt conditions. ’

In a timesharing environment, the hardware limits the central processor to one of three modes:

1. user mode, which on a KI10/KL10 is divided into concealed and public modes,
2. user I/O mode, and
3. executive mode, which on the KI10/KL10 is divided into kernal mode and supervisor mode.

1.1.1 User Mode Processing
The processor is usually in user mode when user programs are executed. In this mode, user programs must operate
within an assigned area of core and certain instructions are illegal. The illegal instructions are:

the op codes 700 through 777 1
a JRST 10, instruction,
a JRST 4, instruction,

unimplemented op codes,
and, on the KL10, any JRST except JRST 0, JRST 1, or JRST 2.

All illegal instructions trap to the monitor, stop the program, and print one of the following messages on the user’s
terminal.

?HALT AT USER PC addr

?ILLEGAL INSTRUCTION AT USER PC addr
?KI10 or KL10 INSTRUCTION AT USER PC addr
?KL10 ONLY INSTRUCTION AT USER PC addr

The CONT and CCONT commands can be used to continue the execution of the user program only after a HALT.

User mode processing is used to guarantee the integrity of the monitor and each user program. The user mode of the
processor is characterized by the following conditions.

1. Automatic memory protection and mapping, refer to Chapter 3.
Trap to the monitor on any of the following:

op codes 040 through 077 and op code 00,
1/0 instructions (DATAI, DATAO, BLKI, BLKO, CONI, CONO, CONSZ, and CONSO),!
HALT (i.e., JRST 4,)

3. Trap to location 40 in the user area on the execution of op codes 001 through 037.

1except I/0 instructions using a device code greater then 734 on a KI110/KL10.

1-1

User Programming

1.1.2 User I/O Mode Processing

The user I/O mode (i.e., bits 5 and 6 of the PC word equal to 11,) of the central processor allows privileged user
programs to be executed with automatic protection and mapping in effect, as well as the normal execution of all
defined operation codes (except the HALT instruction on the KI10/KL10 processors.) User I/O mode provides
some protection against partially debugged monitor routines and it provides infrequently used device service routines
to be executed as user jobs. Direct control of special devices, which is particularly important in real-time applica-
tions, may be obtained by a user program.

To utilize user I/O mode, the system administrator must have set bit 15 (JP.TRP) in the privilege word (refer to
.GTPRV, GETTAB Table Number 6). All user I/O mode activities are terminated by the execution of the RESET
monitor call. User I/O mode is not used by the monitor, and it is not, normally, available to the unprivileged time-
sharing user. '

1.1.3 Executive Mode Processing
The monitor operates with the processor in executive mode, which is characterized by special memory protection
and mapping (refer to Chapter 3) and by the normal execution of all defined op codes.

When user programs execute in user mode, the monitor schedules user programs, services the interrupts, performs all
input/output operations, takes action when control returns from a user program, and performs any other legal user-

requested operations not available in user mode. Monitor services and how a user program obtains these services are
described in Chapters 4 and 5.

1.2 MONITOR CALLS (PROGRAMMED OPERATORS)

Operation codes 000 through 100 on the DECsystem-10 are monitor calls. These are sometimes referred to as pro-
grammed operators (UUOs). Monitor calls are software-implemented instructions. Their functions, from a hardware
point of view, are not prespecified. Some monitor calls trap to the monitor; others trap to the user program.

When a monitor call is executed:

the effective address is calculated,
the contents of the instruction register (along with the effective address) is stored,
and an instruction is executed out of the normal sequence of operations.

Refer to the DECsystem-10 System Reference Manual for further details on Monitor Call handling by the central
processor.

1.2.1 Op Codes 000-037
Op codes 000 through 037 do not affect the mode of the central processor. When these op codes are executed in
user mode, they trap to location 40. This allows the user program complete freedom when using these operators.

If an undebugged program executes one of these op codes accidentally, the following message is printed:
HALT AT USER PC addr
where: addr is the location of the user’s monitor call.

The message is typed because the users relative location 41 contains a HALT instruction, unless the user program
overtly changed it. This HALT instruction is provided by LINK-10.

1.2.2 Op Codes 040-100 and 000

Op codes 040 through 100 trap to absolute location 40 on KA10-based systems. On KI10/KL10-based systems, the
call is stored at location 424, and the new pc is loaded from location 436 of the user’s process table (the central proc-
essor operates in executive mode). These monitor calls are interpreted by the monitor to perform I/O operations
and other control functions for the user program.

1-2

—~

User Programming

Op code 000 always returns to monitor mode, and the following error message is printed:

?9ILLEGAL UUO AT USER PC addr

Table 1-1 lists the op codes 040 through 100, their mnemonics, and their meanings.

Table 1-1
Op Codes 040-100
Op Code Call Meaning
040 {CALL ac, [SIXBIT/name/]} Programmed operator extension. (Refer to
name ac, Table 1-2).
041 INIT channel, status Initialize a device and associate it with an I/O
SIXBIT/device/ channel.
XWD obuf, ibuf
error return
normal return
042-046 Reserved for installation dependent definition.
047 CALLI ac, n Programmed operator extension. ‘
050 OPEN channel, spec Initialize a device, and associate it with an I/O
error return channel.
normal return
spec: EXP status
SIXBIT/device/
XWD obuf, ibuf
051 TTCALL ac,addr Extended operations on job-controlling
terminals.
052-054 Reserved to Digital for future expansion.
055 RENAME channel, addr Rename or delete a file on a
error return
normal return
addr: SIXBIT/filename/ non-directory device.
SIXBIT/extension/
addr: SIXBIT/filename/ DECtape.
SIXBIT/extension/, hi-date2
0,,low-date
addr: SIXBIT/filename/ disk unit.
SIXBIT/ext/, hi-date,datel
prot, mode, time, low-date2
ppn
056 IN channel, addr Transmit data from a file to a user’s core area,
normal return skip on an error or an EOF.
error return

1-3

June 1976

User Programming

Table 1-1 (Cont.)

Op Codes 040-100
Op Code Call Meaning
057 ouT channel, addr Transmit data from a user’s core area to a file,
normal return skip in an error or an EOF.
error return
060 SETSTS channel, addr Change the file status.
return
061 STATO channel, status Skip if any file status bits are equal to one.
normal return
alternate return
062 GETSTS channel, addr Copy file status to addr.
return
063 STATZ channel, status Skips if all status bits are zero.
normal return
alternate return
064 INBUF channel,n Set up input buffer ring with » buffers.
return
065 OUTBUF channel,n Set up output buffer ring with n buffers.
return
066 INPUT channel, addr Transmit data from a file to the user’s core area.
return
067 OUTPUT channel, addr Transmit data from a file to the user’s core area.
return
070 CLOSE channel, option Terminate file operations.
return
071 RELEASE channel, Release a device.
return
072 MTAPE channel, function Perform tape positioning operations.
return
073 UGETF channel, addr Get next free block number on DECtape.
return
074 USETI channel, block Set next input block number on disk or
return DECtape.
075 USETO channel, block Set next output block number on disk or
return DECtape.
076 LOOKUP channel, addr Select a file for input on a
error return
normal return
addr: SIXBIT/filename/ non-directory device
SIXBIT/ext/
addr: SIXBIT/filename/ directory device.
SIXBIT/ext/, high date2
prot, mode, time, date
XWD proj, prog
June 1976 1-4

P

—

User Programming

Table 1-1 (Cont.)

Op Codes 040-100
Op Code Call Meaning
077 ENTER channel, addr Select a file for output on a
error return
normal return
addr: SIXBIT/filename/ non-directory device.
SIXBIT/extension/
addr: SIXBIT/filename/ DECtape.
SIXBIT/ext/, date
0,,date
addr: SIXBIT/filename/ disk unit.
SIXBIT/ext/,date, date
prot, mode, time, date
XWD proj,prog
100 UJEN Dismiss a real-time interrupt.
return

1-5

User Programming

Tablel -2
CALLIs/Monitor Calls
CALLI # Call Function
2, Customer defined. Reserved for customer definition.
-1 LIGHTS ac, Display the contents of the AC in the lights.
only return
1 RESET ac, Reset an I/O device.
return
2 MOVEIL ac, start-addr Set the protected DDT starting address.
SETDDT ac,
return
4 MOVE ac, [SIXBIT/device/] Get device characteristics.
MOVE ac, channel
MOVEI ac, udx
DEVCHR ac,
return
10 MOVEI ac, channel } Wait until device is inactive.
MOVEI ac,udx
WAIT channel
return
11 MOVE ac, [XWD hi, lo] Allocate core.
CORE ac,
error return
normal return
12 EXIT ac, Reset is performed when AC = 0, job is stopped when
return here on continue AC not equal to 0.
13 {MOVEI ac, channel Clear a DECtape directory.
MOVEI ac, udx
UTPCLR ac,
only return
14 DATE ac, Return the date.
only return
15! MOVE ac, [XWD -n,loc] Privileged call available only to system privileged pro-
LOGIN ac, grams. Itis a no-op if executed by a job already
only return logged in.
16 MOVEI ac, bits Enable central processor traps.
APRENB qc,
return
17 LOGOUT aqc, Privilege monitor call available only to system privi-
no return leged programs. It is treated as an EXIT monitor call
if executed by a non-system privileged program.
20 SWITCH ac, Read the console data switches.
return

1-6

s

TN

User Programming

Table 1-2 (Cont.)
CALLIs/Monitor Calls

CALLI # Call Function
21 MOVEI ac,job-number Reassign a device.
MOVE act1, [SIXBIT/device/]
MOVEI ac+1,channel
MOVEI act1,udx
REASSIGN ac,
only return
22 TIMER ac, Return the time of day in jiffies.
only return
23 MSTIME ac, Return the time of day in milliseconds.
only return
24 GETPPN ac, Return the project-programmer number of the current
normal return - job.
alternate return
25 MOVE ac, [XWD n,loc] Set a trap for user I/O mode.
TRPSET ac,
error return
normal return
loc: JSR TRAP
26 Illegal monitor call.
27 MOVEIL ac,job number) Return the job’s running time in milliseconds. (0 indi-
MOVEI ac, 0 f cates the current job).
RUNTIM ac,
only return
30 PJOB ac, Return the job number.
only return
31 MOVEI ac, secs. to sleep Stop a job for a specified number of seconds (68
SLEEP ac, seconds is the maximum).
only return
32 Historical monitor call.
33 MOVEI ac,addr Return the contents of a specified exec address.
PEEK ac,
only return
34 GETLIN qc, Return the SIXBIT physical name of the terminal that
only return the current job is attached to.
35 MOVSI ac, start-addr-inc Allow programs to transfer control to one another.
HRRI ac,loc Both the low and the high segments of the user’s
RUN ac, addressing space are replaced with the program being
error return called.
normal return ;@ JBSA

1-7 June 1976

User Programming

Table 1-2 (Cont.)

CALLIs/Monitor Calls
CALLI # Call Function
loc: SIXBIT/device/
SIXBIT/extension/
SIXBIT/filename/
0
XWD proj, prog
XWD hi-addr, core
36 MOVEI ac, bit Set or clear user mode write protect for high segment.
SETUWP qc,
error return
normal return
37 { MOVEIL ac, ki in low seg Remap top of low segment into the high segment.
MOVE ac, [XWD hiorigin,lo]
REMAP ac,
error return
normal return
40 MOVEI ac,addr Replace the high segment in user’s addressing space.
GETSEG ac,
error return
normal return
addr: SIXBIT/device/
SIXBIT/filename/
SIXBIT/ext/
0
XWD proj, prog
0
41 {MOVSI ac, job-number } Return contents of monitor table or location.
MOVSI ac, index-number
HRRI ac, table-number
GETTAB «c,
error return
normal return
42 MOVEIL ac, hi-phys-addr Make physical core assignment for examination of
SPY ac, monitor.
error return
normal return
43 MOVE ac, [SIXBIT/namel] Set program name in monitor table.
SETNAM «c,
only return
44 MOVE ac, [XWD code, block] Allow temporary in-core file storage for the job.
TMPCOR «c,
error return
normal return
June 1976 1-8

T~

User Programming

Table 1-2 (Cont.)

CALLIs/Monitor Calls
CALLI # Call Function
block: XWD name, 0
IOWD bulen, buffer
45 MOVEI ac, [XWD +n, loc] Return disk characteristics.
DSKCHR ac,
error return
normal return
loc: SIXBIT/diskname/
46 MOVEI ac, 0 Return all of the file structures names in the system.
MOVE ac, [SIXBIT/fsname/]
SYSSTR ac,
error return
normal return
47 MOVE ac, [XWD n, loc] Return next file structure name in job search list.
JOBSTR ac,
error return
normal return
50 MOVE ac, [XWD n,loc] Manipulate the structures.
STRUUO aqc,
error return
normal return
loc: function
argn-1
51 MOVEI ac,0 Return all physical disk units.
MOVE ac, [SIXBIT/name/]
SYSPHY ac,
error return
normal return
52 Reserved for future use.
53 MOVE ac, [SIXBIT/device/] Return properties of a device.
MOVEI ac, channel
MOVEI ac,udx
DEVTYP ac,
error return
normal return
54 Remove hardware device status word.

MOVE ac, [SIXBIT/device/]
MOVEI ac,udx
DEVSTS ac,
error return
normal return

{ MOVEI ac, channel

}

User Programming

Table 1-2 (Cont.)

CALLIs/Monitor Calls
CALLI # Call Function
55 {MOVE ac, [SIXBIT/device/]} Return the project-programmer word.
MOVEI ac, channel
DEVPPN ac,
error return
normal return
56 SEEK channel, Perform a SEEK to current selected block for soft-
return ware channel AC.
57 MOVEI ac,loc Connect real-time device to the PI system.
RTTRP ac,
error return
normal return
60 {MOVE ac, [XWD hi, lo] Lock job in core.
MOVE ac, [XWD -n, addr]}
LOCK ac,
error return
normal return
61 MOVEI ac, channel Return status information about device TTY and/or
MOVEI ac,job-number controlled job.
MOVEI ac,udx
JOBSTS ac,
error return
normal return
62 MOVEI ac, station-number Change the job’s logical station/node number.
LOCATE «c,
error return
normal return
63 MOVEIL ac,channel Return physical name of device obtained through
MOVE ac, [SIXBIT/device/] generic INIT/OPEN/FILOP. or logical device
MOVEI ac,udx assignment.
DEVNAM ac,
error return
normal return
65 MOVEI ac,job-number Return job number of controlling job.
CTLJOB ac,
error return
normal return
66 MOVE ac, [XWD n,loc] Return next file structure name in an arbitrary job’s
GOBSTR ac, search list.
error return
normal return
loc: job-number
XWD proj, prog
SIXBIT/name/
-1
0
status-bits

1-10

S~

User Programming

Table 1-2 (Cont.)

error return
normal return

loc: access, dir-prot, file-prot
directory ppn
user ppn

CALLIs/Monitor Calls
CALLI # Call Function
67 Reserved to Digital.

70 Reserved to Digital.

71 MOVEI ac,hpq Place job in high priority scheduler’s run queue.
HPQ ac,

error return
normal return

72 MOVSI ac, enable bits Allow job to become dormant until the specified event
HRRI ac, sleep time occurs.

HIBER ac,
error return
normal return

73 MOVEI ac,job-number Activate the specified dormant job.

WAKE ac,
error return
normal return

74 MOVE ac, [XWD proj, prog] Change project-programmer number.

CHGPPN ac,
error return
normal return

75 MOVE ac, [XWD function, arg) Set system and job parameters.

SETUUO ac,
error return
normal return

76 Reserved for Digital.

77 OTHUSR «c, Determine if another job is logged into the same project-
non-skip return programmer number. If one is not, take the non-skip
skip return return.

100 MOVEI ac,loc Check user’s access to the file specified.
CHKACC aqc,

1-11 June 1976

User Programming

Table 1-2 (Cont.)

CALLIs/Monitor Calls
CALLI# Call Function
101 MOVEI ac, loc Determine buffer size.
DEVSIZ ac,
error return
normal return
loc: EXP data mode
SIXBIT/device/
channel
udx
102 MOVE ac, [XWD length, addr) Request DAEMON to perform a specified function.
DAEMON ac,
error return
normal return
addr: function
argl
argn
103 MOVEI ac,addr Read or write another job’s core.
JOBPEK ac,
error return
normal return
104 MOVE ac, [XWD line# ,job #] Attach the job to the specified TTY line number.
ATTACH aqc,
error return
normal return
105 MOVE ac, [XWD length,addr] Indicate that the request to the DAEMON program has
DAEFIN ac, been completed.
error return
normal return
106 MOVE ac, [XWD length, addr) Force a command for a job.

FRCUUO ac,
error return
normal return

1-12

TN

N

User Programming

Table 1-2 (Cont.)

CALLIs/Monitor Calls
CALLI # Call Function
107 MOVE ac, [SIXBIT/device/ Set a logical name for this device.
MOVEI ac, channel
MOVEI ac,udx
MOVE ac+1,[SIXBIT/logical/]
DEVLNM qc,
error return
normal return
110 MOVE ac, [XWD length, addr] Read or modify the default directory path or read the
PATH ac, current path of a file OPEN on a channel, or set and/
error return or test the additional path.
normal return
addr: SIXBIT/name/

scan switch
XWD proj, prog
sfd name

sfd name

1-12.1

LN

User Programming

Table 1-2 (Cont.)

CALLIs/Monitor Calls
CALLI # Call Functiom
111 MOVE ac, [XWD n+1,loc] Provide performance analysis and metering of dynamic
METER. ac, system variables.
error return
normal return
loc: function
argl
argn .
112 MOVE ac, [XWD n,loc] Return characteristics of a magnetic tape.
MOVEI ac, channel
MOVEI ac,udx
MOVE ac, [SIXBIT/device/]
MTCHR. ac,
error return
normal return
113 MOVE ac, [XWD 2, block] Execute the specified function of SETUUO for a job.
JBSET. ac,
error return
normal return
block: XWD 0,job #
XWD function, value
114 MOVE ac, [XWD 3, loc] Alter the specified location in the monitor.
POKE. ac,
error return
normal return
loc: location
old value
new value
115 MOVEI ac,job# Return the number of the terminal currently con-
TRMNO. ac, trolling the specified job.
error return
normal return
116 MOVE ac, [XWD n, addr] Perform miscellaneous terminal functions.

TRMOP. ac,
error return
normal return

1-13

June 1976

User Programming

Table 1-2 (Cont.)

CALLIs/Monitor Calls
CALLI# Call Function
117 {MOVEI ac, channel Reset the specified channel.
MOVEI ac,udx }
RESDV. ac,
error return
normal return
120 {MOVSI ac,1 } Unlock a locked job in core.
MOVSI ac,0
{HRRI ac, 1 }
HRRI ac,0
UNLOK. ac,
error return
normal return
121 MOVE ac, [XWD function,addr] Set or read a disk or file system parameter.
DISK. ac,
error return
normal return
122 MOVE ac, [SIXBIT/device/] Restrict the specified device to a privileged job.
{MOVEI ac,channel
MOVEI ac,udx
DVRST. ac,
error return
normal return
123 MOVE ac, [SIXBIT/device/]I Remove the restricted status of a specified device.
{MOVEI ac, channel
MOVEI ac,udx ;
DVURS. ac,
error return
normal return
124 Reserved to Digital.
125 MOVE ac, [XWD n,addr] Front-end debug monitor call.
CALL11. ac,
error return
normal return
126 MOVE ac, [SIXBIT/device/] Associate a visual identification with a magnetic tape
MOVEL ac, udx drive during a mount.
MOVEI ac,channel
MOVE ac+1, [SIXBIT/reelid/]
MTAID. ac,
error return
normal return
127 {MOVEI ac, channel Return the universal I/O index for a device.
MOVE ac, [SIXBIT/device/] }
IONDX. ac,
error return
normal return

June 1976

User Programming

Table 1-2 (Cont.)

~

CALLIs/Monitor Calls
CALLI# Call Function
130 MOVEI ac,list Connect/disconnect devices to/from an MPX
CNECT. oac, channel.
error return
normal return
131 {MOVEI ac,channel Move a buffer ring header between core locations.
MOVE ac, [outaddr,inaddr)
MVHDR. ac,
error return
normal return
132 MOVEI ac,addr Provide a list of non-operational devices connected to
ERLST ac, an MPX channel.
error return
normal return
addr: #words, channel
#devices
UDX,,GETSTS
133 MOVE ac, [XWD length,addr | Allow a device to continue after a device error
CLRST. ac, condition has occurred.
error return
normal return
addr: udx
channel
SIXBIT/device/
0,SETSTS value
135 MOVE ac, base-addr Initialize the software interrupt system.
PIINI. ac,
error return
normal return
136 MOVE ac, [XWD flags, addr] Control the software interrupt system.
PISYS. ac,
error return
normal return
137 DEBRK. Dismiss a software interrupt.
return
140 MOVE ac, [XWD size,addr) Save the state of the software interrupt system.
PISAV. ac,
error return
normal return

1-15

User Programming

Table 1-2 (Cont.)

CALLIs/Monitor Calls
CALLI# Call Function
141 MOVEI ac,addr Restore the state of the software interrupt system.
PIRST. ac,
error return
normal return
142 MOVE ac, [XWD n,loc] Receive an IPCF packet.
IPCFR. ac,
error return
normal return
loc: flags
sender’s PID
receiver’s PID
message length, ,addr
143 MOVE ac, [XWD n,loc] Send an IPCF packet.
IPCFS. ac,
error return
normal return
loc: flags
sender’s PID
receiver’s PID
message length, ,addr
144 MOVE ac, [XWD n,loc] Obtain information about an IPCF input queue.
IPCFQ. ac,
error return
normal return
loc: flags
sender’s PID
receiver’s PID
message length, ,addr
145 MOVE ac, [XWD function,loc] Manipulate pages and the data associated with these
PAGE. ac, pages.
error return
normal return
146 MOVE ac, [XWD n, loc] Set the next I/O block number.
SUSET. ac,
error return
normal return

1-16

TN

P

e

User Programming

1.2.2.1 Symbols for Numbers — Some system programs, e.g., LOGOUT, require I/O to specific physical devices
regardless of the logical name assignments. Therefore, for any monitor call, if bit 19 (UU.PHS) in the effective
address of the call is not equal to bit 18, only physical device for any names will be used; logical device assignments
will be ignored. This suppression of logical device names is helpful, for example, when using the results of the
DEVNAM monitor call where the physical name corresponding to a logical name is returned.

1.2.2.2 Restriction on Monitor Calls in Programs — A number of restrictions on monitor calls that involve a high
segment prevent naive or malicious users from interfering with other users while sharing segments and minimize
monitor overhead in handling two-segment programs. The basic rules are as follows:

1. All monitor calls can be executed from either the low or high segment although some of their arguments
cannot be in or refer to the high segment.

2. No buffers or buffer headers may exist in the high segment for reading from or writing to any I/O
device.

3. No I/O is processed into or out of the high segment except via the SAVE, OSAVE, NSAVE and SSAVE,
OSSAVE, NSSAVE commands.

4. Asa convenience in writing user programs, the monitor makes a special check so that the INIT monitor
call can be executed from the high segment, although the calling sequence is in the low segment. The
monitor also allows the effective address of the OPEN monitor call (which contains the status bits,
device name, and bufféer header addresses) in the high segment. The address of TTCALL 1, and
TTCALL 3, may be in the high segment for convenience in typing messages.

1.2.3 Operation Codes 100-127

OP Code 100 (UJEN) Dismiss real-time interrupt from user mode.
OP Codes 101-106 Monitor prints 2ILLEGAL INSTRUCTION AT USER # and stops the job.
107,114-117 These op codes are valid only on the KL.10. The message 2KL10 ONLY

INSTRUCTION will be printed if an attempt is made to execute them on any
other system.

OP Codes 110-113 These op codes are valid on the KI10 or the KL10. If used on the KA10, the
monitor prints ?KI10 or KL10 INSTRUCTION AT USER 7 and stops the job.

1.2.4 Tllegal Operation Codes

The eight I/O instructions (e.g., DATAI) and JRST instructions with bit 9 or 10 equal to 1 (e.g., HALT, JEN) are
interpreted by the monitor as illegal instructions (refer to the DECsystem-20 SYSTEM Reference Manual). The job
is stopped and a question mark is printed immediately. A carriage-return/line-feed sequence is performed, followed
by an error message. For example, a DATAI instruction would produce the following:

?
ILLEGAL INSTRUCTION AT USER addr

1.2.5 Naming Convention for Monitor Symbols
The names of the monitor’s data base symbols contain dots or percent signs so that they can be made user-mode
symbols without conflicting with previously-coded user programs. Data symbols can be divided into five classes:

numbers

masks

monitor call names
GETTAB arguments
error codes

wv AW =

1.2.5.1 Symbols for Numbers — Symbols defining numbers begin with a dot, followed by a 2-letter prefix
indicating the type of number, and end with a 3-character abbreviation representing the specific number. Numbers
are 18-bit quantities and include core addresses and function codes. The following are examples of various numbers:

1-17

User Programming

JBxxx Job Data Area
.GTxxx GETTAB Table Numbers
RBxxx Extended arguments for LOOKUP, ENTER, RENAME monitor calls

1.2.5.2 Symbols for Masks — Names for masks start with a 2-letter prefix indicating the individual word, followed
by a dot, and end with 3 characters representing the specific mask. Masks are 36-bit quantities that include bits and
fields. The following are examples of names of masks:

JP.xxx Privilege word bits
JW.xxx WATCH word bits
PC.xxx PC word bits

1.2.5.3 Symbols for Monitor Calls — Names for monitor calls implemented after the 5.03 release of the monitor
are 5 or fewer characters followed by a dot. For example:

PATH. The monitor call to modify a directory path
TRMOP. The monitor call to perform terminal operations

1.2.5.4 Symbols for GETTAB Tables — Individual words within a GETTAB table start with a percent sign,
followed by 2 characters representing the generic name of the table, and end with 3 characters identifying the
specific word. For example:

%NSCMX CORMAX word in the nonswapping data table
%CNSTS The states word in the configuration table

Names of bytes and bits within a GETTAB table begin with 2 characters representing the word, followed by a
percent sign, and end with 3 characters designating the specific byte.

ST%DSK Byte representing the disk system; this is contained in the states word
ST%SWP Byte indicating a swapping system,; this is contained in the states word

1.2.5.5 Symbols for Error Codes — Error codes returned because of an monitor call error have names following the
pattern: 2 characters indicating the call name, three characters designating the failure type, and a terminating
percent sign. The following are examples of error code symbols:

DMILF% DAEMON error code
RTDIU% RTTRP error code
LKNLPL% LOCK error code

Many of the values useful in user programming are encoded in the parameter file UUOSYM.MAC (refer to
Appendix J) for the convenience of writing and modifying programs.

1-18

CHAPTER 2
MEMORY FORMAT

2.1 USER PROGRAMS

User programs must be loaded into core memory before they can be executed. There are two methods of loading a
user program into core. The simpler method is to load a core image stored on a retrievable device (refer to the RUN
and GET commands in the DECsystem-10 Operating System Commands Manual). The other method is to load a
collection of relocatable binary (.REL) files using LINK-10.

The address space of a user program can be divided into two segments, high and low; all user programs must have
at least a low segment. A user program can have one of several file name extensions, depending on its file type and
how it was stored.

EXE The fileis an exact copy of the user’s core image.
SAV The file is a low segment file.

LOW | The file has two segments: a low segment (.LOW) and a high segment (.HGH).
HGH |

LOW } The file has two segments: a low segment and a sharable high segment (.SHR).
.SHR . : '

The low segment is aiways used by one individual program, and each user program has its own low segment.

By default, the monitor will write-i)rotect the high segment, preventing a user from altering it. Any suitably privileged
program can clear the write-protect bit of a high segment. This clearing to modify the write-protect bit is necessary
for debugging the high segment.

A high segment can be shared by any number of jobs that have unique low segments. For instance, if five users have
low segments containing their own FORTRAN user programs, they may share a high segment containing the
FORTRAN compiler. The monitor performs this sharing function automatically; each user believes that he has his own
high segment containing the FORTRAN compiler, and is unaware of sharing the high segment with the others.

Any user job attempting to modify a write-protected high segment will be aborted and will receive an error message.
If the user’s job has two segments and he has asked the monitor to clear the high segment’s write-protection, his job
will be a two-segment writable job.

All user programs are assembled and loaded as if to execute in an address space starting at location zero in core memory.
However, user programs are never started at location zero, but at the most convenient location in core. All references
to locations made by the user program during its execution are relocated to actual physical core memory addresses.
Relocation is accomplished in different ways, depending on the type of processor in the system.

2.2 MEMORY PROTECTION AND RELOCATION
When a user program is executing, the processor operates in user mode. In this mode, certain operations are 111ega1

(e.g., I/O instructions), and all address references are relocated. The relocation hardware prevents a user from
accessing any location not assigned to him by the monitor; conversely, the relocation hardware prevents access to
his assigned area by another user.

2-1

Memory Format

The user specifies the size of his program; from that information the DECsystem-10 monitor determines the position
in core memory where his program will reside.

There are three types of processors available with the DECSystem-10 — the KA10, the K110, and the KL10.
Monitors for the KI10 and KL10 processors are available with the virtual memory option. The methods for relo-
cating user programs into core memory are:

° the KA10 method,
° the K110 /KL10 method, or
° the KI10/KL10 with virtual memory method.

Each method determines the core resident size and position of each user’s area in a different way. A program running
on a KI10-based system (or KL.10) with the virtual memory option is upwards compatible with those running on the
KI10 without virtual memory and with those running on the KA10.

2.2.1 The KA10 Processor .

With a KA10 processor, the monitor relocates each user program on a per segment basis. The segments of a user pro-
gram (i.e., just a low segment, or both high and low segments) are relocated into core memory, occupying contiguous
blocks of 1024 words each. The relocation is accomplished by protection and relocation registers. Besides relocation,
segment protection is performed by these registers, which prevents one user job from accessing memory assigned to
the monitor or to another user job.

Fach segment of a user program has a relocation and a protection address. The relocation address is the absolute core
address of the first location in the segment, as seen by the hardware. The protection address of each segment is the
maximum relative address that the user may reference. The hardware defines both these addresses in units of 1024-
word blocks. Relocation is accomplished dynamically by adding the contents of the appropriate relocation register
to every user address reference.

All physical address locations are invisible to the user, as is the process of relocation. The relative user address and
relocated address configuration on the KA10 are shown in Figure 2-1, where PL, RL, PH, and RH are the protection
and relocation addresses of the low and high segments, respectively. If the low segment is more than half the maximum
capacity (i.e., PL is greater than or equal to 400000), the high segment will start at the first location after the low
segment ends (i.e., at PL+200000). The high segment is limited to 128K.

0 0
REGISTERS
17 17
\
LOW SEGMENT | ™\ ILLEGAL
PL+1777 \
N \\ - RH +400000
ILLEGAL \/)/\ - HIGH SEGMENT
400000 SN N - - RH+PH+1777
HIGH SEGMENT - 0N ILLEGAL
PL+1777 -7 AN RL
N | LOW SEGMENT
ILLEGAL RL+PL+1777
ILLEGAL
777777
USER ADDRESS TYPICAL ADDRESS
SPACE BEFORE CONFIGURATION AFTER
RELOCATION RELOCATION

Figure 2-1 KA10 User Address Relocation

22

.

SN

.

TN

Memory Format

In summary, the KA10 relocates each segment of a user program into contiguous blocks of core memory. Relocation
and protection are accomplished via the relocation and protection registers. At any one time during a program’s
execution, the entire program is core resident.

2.2.2 The KI10 and KL10 Processors (Without Virtual Memory)

KI10 and KL10 based programs are relocated and protected just as KA10 based programs are; relocation is accomplished

by paging hardware. A KI10 or KL10 processor relocates user programs into core memory in the form of pages. A
page consists of 512, words, and the maximum possible user address space is 512 pages (or 256K) of core. A
user program of more than 512 words, when relocated, will consist of several pages.

The pages composing a user program are relocated into core individually. One page’s physical placement has no con-
nection with that of any other page. The monitor maintains a map for translating user addresses into their actual
physical addresses. The map, which is invisible to the user, is kept in a page known as the user process table or the
user map page. The paging hardware in the KI10 and the KL10 employs the user process table to relocate all user
address references. Since all address references must be mapped through the process table, a user program can access
only those physical pages contained in that program’s process table. Therefore, the paging hardware provides pro-
tection and relocation capabilities compatible with the KA10’s protection and relocation registers.

The important difference between the KA10 and the KI10/KL10 (without virtual memory) is that the pages of a
segment do not have to be contiguous on the KI10/KL10 as they do on the KA10. All pages forming a program,

however, must be in core whenever that program is executed.

Figure 2-2 illustrates the KI10/KL10 paging method (without virtual memory).

0
0
Low 1 7
SEGMENT »
3
ILLEGAL ¥
400000
256
257
HIGH
SEGMENT 258
259 %
ILLEGAL
5 47777777
USER ADDRESS SPACE TYPICAL PHYSICAL
BEFORE RELOCATION ADDRESS CONFIGURATION
AFTER RELOCATION

Figure 2-2 KI10/KL10 Paging Configuration (Without Virtual Memory)

2-3

Memory Format

2.2.3 KI10 and KL10 Processors With the Virtual Memory Option

The virtual memory option of the 6.01 and 6.02 monitors makes further use of the KI10/KL10’s paging hardware.
The pages of a user program are relocated individually, but not all pages need reside in core memory during execu-
tion. Some pages may be in core and the rest in secondary storage (i.e., disk or drum). Therefore, the virtual memory
option makes it possible to run programs that are significantly larger than the physical core memory available for
their execution.

Assume that user A has a 50-page program but core memory has only 20 pages blank. With the virtual memory
option, the monitor can swap into core several of user A’s pages, while keeping the rest on a secondary storage
device. When one of the stored pages is referenced, it is brought into core while another page is swapped out to
make room for it.

Deciding which pages are initially swapped to core and which pages are swapped into secondary storage is a function
of the page fault handler. The page fault handler also decides which page will be swapped into secondary storage

to make room in core for a new page. A user may create his own page fault handler; if he does not, the system
default page fault handler will be used.

For more information concerning the page fault handler and virtual memory, refer to Chapter 4 and to GUIDES
TO VIRTUAL MEMORY.

Using virtual memory is a privilege granted (or denied) by the system administrator at each installation. There-
fore, not all users at an installation may utilize the virtual memory features, if the system administrator so chooses.

2.23.1 Virtual Memory Organization — Virtual memory permits a program to reference an address space that
is larger than the actual physical core occupied during that program’s execution. Programs running on a virtual
memory system need no modifications from the same programs running on non-virtual memory systems. It is pos-
sible with the virtual memory option to execute very large programs (e.g., BLISS-10 programs) on small systems.

For efficiency and rapid response, the monitor is always core resident. High segments can be paged or shared,
but not both. A sharable high segment must be completely core resident during its execution.

Not all programs utilize virtual memory during their execution. If a user is authorized to employ the virtual memory
feature, his program will go virtual only when one of the following events occurs:

1. The program exceeds the user’s physical core limit when he issues a GET or RUN command.
The program uses the CORE monitor call (or command) to expand the program’s memory
beyond the user’s physical core limit; subsequently, the program references one of the newly
created pages.

3. The program assumes direct control of its memory management with the PAGE. monitor call.

Figure 2-3 illustrates the limits imposed on a virtual memory system.

Figure 2-3 uses several abbreviations, which are described in Table 2-1.

At the moment a job’s current physical page count becomes greater than its physical page limit, i.e.,

CPPC > CPPL
that job will go virtual. A user with virtual memory privileges can control how much of his job will be. core
resident at any time. If a user lowers a program’s physical page limit to fewer than the number of pages within

the program, he will force the program to use virtual memory. A user controls the current physical page limit via
the SET PHYSICAL LIMIT command and the current virtual page limit via the SET VIRTUAL LIMIT command.

2-4

J—

Memory Format

SET BY PAGE
FAULT HANDLER

SET BY

cppC USER PROGRAM cvpe
SETBY

cPPL USER cvPL
SET BY

MPPL SYSTEM MVPL

ADMINISTRATOR

\ SETBY

SYSTEM
ADMINISTRATOR

GPPL | e — — —]

256K 256K

PHYSICAL VIRTUAL
LIMITS LIMITS

Figure 2-3 Physical and Virtual Page Limits

Table 2-1
VM Abbreviations
Abbreviation Meaning

GPPL The global physical page limit set by the system
administrator using a privileged SETUUO.

GVPL The global virtual page limit set by the system ad-
ministrator using a privileged SETUUO.

MPPL The maximum physical page limit set by the system
administrator using a privileged SETUUO.

CPPL The current physical page limit which can be set by
each user via the SET PHYSICAL LIMIT command
or an unprivileged SETUUO.

CPPC The current physical page count established by the
user program or by the page fault handler.

CVPL The current virtual page limit set by the user via
the SET VIRTUAL LIMIT command or an unprivileged
SETUUO.

CVeC The current virtual page count established by the user
program.

2-5 March 1976

Memory Format

The system administrator establishes a maximum virtual page limit (MVPL) for each user, a maximum physical
limit for all users (GPPL), and a combined virtual limit that applies to the total amount of virtual memory (i.e.,
secondary storage) in use by all virtual memory users (GVPL). These limits are set by LOGIN using the privileged
functions of the SETUUO.

T

CHAPTER 3
JOB DATA AREA

3.1 JOBDAT (JOB DATA AREA)
The first 1408 locations in the user’s core area are allocated to the Job Data Area. The locations within this area
are given mnemonic assignments, where the first three characters are always .JB.

The function of the Job Data Area is to store information of interest to the monitor and to the user. Some loca-
tions within the Job Data Area, such as .JBPFH and .JBINT, are set by the user’s program for use by the monitor.
Other locations, such as .JBREL, are set by the monitor for use by the user’s program.

The JOBDAT locations that are of significant importance to the user are listed in Table 3-1. The JOBDAT loca-
tions that are not listed within this table are those used by the monitor and those unused at the present time.
User programs should not be written to reference any location in the Job Data Area that is not described in Table
3-1.

JOBDAT is loaded automatically (when needed) during LINK-10’s library search for undefined global references;
the values are assigned to the mnemonics at this time also. JOBDAT exists as a .REL file on device SYS: so that

it may be loaded with the user programs that symbolically refer to locations within it. When a user program refers
to a JOBDAT location, the location’s assigned mnemonic should be used. The mnemonic must first be declared as
an EXTERNal reference to the assembler (refer to the MACRO-10 Programmer’s Reference Manual). All mnemonics
beginning with the characters .JB within this manual refer to locations within the Job Data Area (JOBDAT).

Table 3-1
Job Data Area Locations
(for user program reference)

Mnemonic Location8 Description

JBUUO 40 User’s location 40 which is used by the hardware, when processing
: user monitor calls (001 through 037), for storing the op code and
the effective address.

JB41 41 This instruction is executed to start the user’s programmed operator
service routine (usually this is a JSR or a PUSHJ).

JBERR 42 Left Half: Reserved.

Right Half: The accumulated error count from one system
program to the next. System programs should be
written to look at the right half of this location
only.

JBREL 44 Left Half: Reserved.
Right Half: The highest relative core location available to the

user (i.e., the contents of the memory protection
register when this user program is executing).

3-1 June 1976

Job Data Area

Table 3-1 (Cont.)
Job Data Area Locations
(for user program reference)

Mnemonic

Locati0118

Description

JBDDT

JBPFI

JBHRL

JBSYM

JBUSY

74

114

115

116

117

Left Half:

Right Half:

The last address of DDT.

The starting address of DDT, which can be set with the
SET DDT monitor call. If the contents of .JBDDT
are zero, it indicates that DDT has not been loaded.
If the monitor includes the virtual memory option
and this location contains zero, the monitor will
attempt to read into core SYS:DDT.VMX when
the user executes a DDT command (refer to the
DECsystem-10 Operating System Commands
Manual). If successful, SYS:DDT.VMX is brought
into the program’s virtual address space, starting

at the user virtual address 700000. The left and
right halves of .JBDDT will then be set to the
appropriate values.

All user I/O references must be to locations greater than 114.

Left Half:

Right Half:

The first relative free location in the high segment
(relative to the high segment origin, so it is the same
as the high segment length). This location is set by
LINK-10 and on subsequent GETs, even if there is
no file to initialize the low segment. The left half

is a relative quantity because the high segment can
appear at different user origins at the same time.

The SAVE command uses this value to determine
how much to write from the high segment.

The highest legal address in the high segment. This
value is set by the monitor each time a user program
begins execution or executes a CORE or REMAP
monitor call. JBHGA allows this value to be any non-
zero value. The proper way to test if a high segment
exists is to test this half-word for a non-zero value.

A pointer to the symbol table created by LINK-10.

Left Half:

Right Half:

The negative length of the symbol table.

The lowest address used by the symbol table.

A pointer to the table of undefined symbols created by LINK-10
or defined by DDT. If .JBUSY contains a value greater than or equal
to zero, there are no undefined symbols.

Left Half:

The negative length of the undefined symbol table.

June 1976

3-2

TN

o~

-

Job Data Area

Table 3-1 (Cont.)
Job Data Area Locations
(for user program reference)

Mnemonic

Locationg Description

JBSA

JBFF

JBPFH

JBREN

JBAPR

JBCNI

JBTPC

Right Half: The lowest address used by the undefined symbol
table.

120 Left Half: The first free location in the low segment, which is
set by LINK-10.

Right Half: The starting address of the user’s program.
121 Left Half: Zero.

Right Half: The address of the first free location following the
low segment. This value is set to the contents of
JBSA (left half) each time a RESET monitor call
is executed.

123 Left Half: The last address of the page fault handler.

Right Half: The starting address of the page fault handler. If the
contents of .JBPFH are zero, the user program does not
currently have its own page fault handler. When a
page fault occurs, the monitor will read in
SYS:PFH.VMX to the top of the user program’s
virtual address space; the left and right halves of
JBPFH will be set accordingly.

124 Left Half: Unused.

Right Half: The REENTER start address. This value is set by the
user program or by LINK-10, and it is used when the
REENTER command is executed as an alternate entry
point.

125 Left Half: Zero.

Right Half: This value is set by the user program as a trap address
when the user is enabled to handle APR traps (such
as illegal memory references, push-down list overflows).
Refer to the APRENB monitor call description,
Chapter 5.

126 The state of the APR as stored by a CONI APR when a user-
enabled APR trap occurs.

127 The PC of the next instruction to be executed after a user-enabled
APR trap occurs. This value is set by the monitor.

Job Data Area

Table 3-1 (Cont.)
Job Data Area Locations

(for user program reference)

Mnemonic

Locations

Description

JBOPC

JBOVL

JBCOR

JBINT

JBOPS

JBCST

JBVER

130

131

133

134

135

136

137

The previous contents of the job’s last user mode program counter
(PC). This value is set by the monitor each time a DDT, REENTER,
START, or CSTART command is executed. Location .JBOPC con-
tains the address of the HALT instruction, when the user program
contains a HALT instruction followed by the execution of a
START,DDT, CSTART, or REENTER command. In order to pro-
cess at the address specified by the effective address, the user
program must recompute the effective address of the HALT instruc-
tion and use that address to start. Similarly, after an error has occur-
red during execution of a monitor call followed by a START, DDT,
CSTART, or REENTER command, .JBOPC will point to the address
of the monitor call. '

Left Half: Zero.

Right Half: A pointer to the header block for the root link.

Left Half: The highest location in the low segment loaded with
a non-zero. If JBCOR is less than 140, a low seg-
ment file will not be written when a SAVE or
SSAVE command is executed. This value is set by
LINK-10.

Right Half: The user specified argument on the last execution
of a SAVE or GET command. This value is set by
the monitor.

Left Half: Reserved for the future.

Right Half: Zero or the address of the error-intercepting block.

Reserved for all object-time systems.

Reserved for customers.

The program version number; its bit definitions are:

Bits 0-2 =0 indicates that the Digital development group last
modified the program.

=1 indicates that other Digital employees last modi-
fied the program.

=2
=3} indicates that a customer last modified the program.
=4

34

AN

TN

=

.

Job Data Area

Table 3-1

(Cont.)

Job Data Area Locations

(for user program reference)

Mnemonic ' Loca‘tion8 Description
=5
=6 ¢ indicates that a customer’s user last modified
=7) the program.

Bits 3-11 Digital’s latest major revision number, which is
usually incremented by 1 after a release.

Bits 12-17 Digital’s minor version number, which is usually 0,
but may be >0 if an update is needed to a program
after work has started on the next major release.

Bits 18-35 The edit number, which is increased by 1 after each
edit. This value not reset.

The VERSION and the SET WATCH VERSION commands output

the version number in the standard format, refer to the DECsystem-10

Operating System Commands Manual.

JBDA 140 The first location available to the user.

3.2 VESTIGIAL JOB DATA AREA

Some constants in the job data area may be loaded by a two-segment, one-file program without executing a GET
command, and some locations are loaded by the monitor when a GET command is executed. The vestigial Job
Data Area (the first ten (octal) locations of the high segment) is reserved for these low-segment constants. There-
fore, a high segment program is loaded at the high segment origin + 10 (refer to .JBHGA in Table 3-2) instead of
at the high segment origin (refer to Table 3-1). By placing the vestigial job data area within the high segment,
LINK-10 automatically loads the constant data into the Job Data Area without requiring a low segment file when
executing a GET or RUN command, or a RUN monitor call. The SAVE command writes a .LOW file for a two-
segment program only if the left half of .JBCOR is 140(8) or greater (refer to Table 3-1).

3-5

Job Data Area

Table 3-2
Vestigial Job Data Area Locations
Mnemonic LocationS Description
1 8

JBHSA 0 A copy of .JBSA (location 120) in Table 3-1).

JBH41 1 A copy of .JB41 (location 41 8) in Table 3-1).

JBHCR 2 A copy of .JBCOR (location 133% in Table 3-1).

JBHRN 3 Left Half: Restores the left half of .JBHRL (location 1 158

in Table 3-1).
Right Half: Restores the right half of .JBREN (location 124 8in
Table 3-1). :

JBHVR 4 A copy of JBVER (refer to Table 3-1, location 137 for the bit
definitions).

JBHNM 5 The high segment name which was set on the execution of a SAVE
command.

JBHSM 6 A pointer to the high segment symbols, if there are any.

JBHGA 7 Bits 0-9 indicate the high segment origin. The monitor places the
high segment at location 400000 8 or if the segment is larger than
128K, at the first available page boundary (1K on KA10 systems)
above the low segment. This nine-bit byte should always be zero on
KA10 systems. However, if the field is non-zero on KI10 or KL10
systems, it is taken as the page where the high segment is to start.
This value is set by LINK-10. Bits 10-35 are unused fields that are
reserved for future expansion and must contain zero.

JBHDA 10 The first location not used by the vestigial Job Data Area.

1
Relative to the origin of the high segment, usually .JBHGH = 4000008.

3-6

—

CHAPTER 4
JOB CONTROL AND INFORMATION

4.1 JOB CONTROL

4.1.1 Start Program Execution

One user program may start the execution of another by either the RUN or the GETSEG monitor call (refer to
sections 6.2.1 and 6.2.2. You may start or continue the execution of a user program with any of the following
operating system commands.

R

RUN
START
CSTART
CONT
CCONT
REENTER

No vk W

Refer to the DECsystem-10 Operating System Commands Manual for specific information concerning these com-
mands. The user program’s start address can be the argument of a command, or it can be stored in the program’s
Job Data Area.

4.1.2 Stop Program Execution
A running program may be stopped in several ways:

1. You can type one CTRL/C from your terminal if your program is in TTY input wait state (TI)!;
otherwise, you need two CTRL/Cs to stop your program from the terminal.

2. The program contains a monitor detected error.

3. The program can execute one of the following monitor calls:

HALT see paragraph 4.1.2.1
EXIT function, see paragraph 4.1.2.2
LOGOUT ac, see paragraph 4.1.2.3

4.1.2.1 The HALT Instruction — The HALT instruction is an exception to the illegal instructions rule (refer to
section 1.1.1). HALT traps to the monitor, stops the current job, and prints the following message at your terminal.

MALT AT USER PC addr
where: addpr is the location of the HALT instruction.

If the HALT instruction is in location 41 and the program executes a user call (op-codes 001 through 037), the
address in the error message will be that of the user call instead of address 41.

To continue the program at the effective address of the HALT instruction (provided that the effective address does
not equal zero or the address of the HALT), you can issue either the CONT or CCONT command from your terminal.
After a user program executes a HALT instruction followed by your typing either a START, DDT, CSTART, or

! The state of a program can be determined by using the USESTAT command or CTRL/T (refer to the Operating System
Commands Manual). .

4-1 June 1976

Job Control and Information

REENTER command, location .JBOPC in the Job Data Area will contain the address of the HALT instruction.
To continue from the effective address specified, you or your program must recompute the effective address of
the HALT instruction. HALT should not be used to terminate the execution of a program; its main use is to indi-
cate possible error conditions.

4.1.2.2 The EXIT Monitor Call (CALLI 12) — The EXIT monitor call will stop a job (with optional RESET). Its
calling sequence is

EXIT function,
return on a continue ;if function =1

where: function is either 1 or 0. A 1 stops the job; a O performs a RESET and stops the job.
The EXIT monitor call performs the following functions:

All T/0O devices (including real-time devices) are RELEASED.

The job is unlocked from core.

The user mode write-protect bit for the high segment is set. function 0 functions O and 1
The APR traps are reset to zero.

The PC flags are cleared.

The job is stopped.

AN AW

If timesharing was stopped by a TRPSET monitor call, it is resumed by the monitor. After releasing all devices that
close files, a RESET is performed. A carriage return/line feed sequence is performed, and the word EXIT is printed
at the user’s terminal, which is left in monitor mode. You cannot type the CONT and CCONT commands to con-
tinue the recently stopped program.

When the function specified is 1, the job is stopped, and a return is made to monitor mode (EXIT is not printed on
the user terminal). You can type the CONT or CCONT commands to continue the program’s execution. In other
words, this form of the EXIT monitor call does not affect the state of your job except to stop it and return your
terminal to monitor mode. Note that programs using EXIT with a function code of 1 (MONRT.) should RELEASE
all devices first.

4.1.2.3 The LOGOUT Monitor Call (CALLI 17) — The LOGOUT monitor call is used by the LOGOUT program to
release all I/O devices associated with the job and to return them to the monitor pool along with the job’s allocated
core and job number. If a program other than LOGOUT uses this monitor call, the LOGOUT call functions identi-
cally to EXIT (function 0).

4.1.3 " Suspend the Execution Of A Job
There are two monitor calls that can suspend the execution of a job. The SLEEP monitor call suspends execution
for a specified amount of time; the HIBERnate monitor call suspends execution until a specified event occurs.

4.1.3.1 The SLEEP Monitor Call (CALLI 31) — The SLEEP monitor call allows a user program to stop or “sleep”
for a specified number of seconds. Its calling sequence is

MOVEI ac, seconds
SLEEP ac,
only return
where: seconds is the number of seconds the job is to sleep.
SLEEP will temporarily stop a job and continue it automatically after the specified number of real-time seconds has

elapsed. If the SLEEP monitor call is issued with a zero argument, the job will sleep for one clock tick. The explicit
maximum is approximately 68 seconds (82 seconds in 50-Hz. countries and on the KL10 using 50-Hz.). A program

June 1976 42

L~

Job Control and Information

that requires a SLEEP time longer than 68 seconds should call DAEMON (via the .CLOCK function) to put it to
sleep (refer to DAEMON in section 4.4.3). After invoking DAEMON, the program can use the HIBERnate monitor
call with no clock request and DAEMON will awaken the job.

4.1.3.2 The HIBERnate Monitor Call (CALLI 72) — The HIBERnate monitor call stops the current job until a
specified event occurs. Its calling sequence is

MOVSI ac, bits
HRRI ac, sleep time ;0r 10RI ac, sleep time
HIBER ac,
error return
normal return

where: bits specifies one or more HIBERnate conditions, as listed in Table 4-1.

sleep time is the number of milliseconds for which the current job is to sleep. This value is rounded up
to an even multiple of jiffies (with a maximum value of 68 seconds). A 0 specifies an infinite sleep
time (i.e., no clock request).

If the HIBERnate monitor call has not been implemented in the current system, the error return is taken; under this
circumstance, the SLEEP monitor call can be used.

The normal return is taken after an enabled HIBERnate condition occurs.

To prevent a job from oversleeping and missing an event, the monitor sets the wakeup bit (even if the event occurs
while the job is awake). Another HIBERnate monitor call will clear the wakeup bit. A job issuing a monitor call
should test all events that may have caused it to wakeup; however, the job cannot assume that any one of the events
actually happened.

Privileged jobs (those running with the JACCT bit set or those logged in under [1,2]) can be written to wake any
HIBERnating job.

A RESET monitor call always clears the job’s protection code and wake-enable bit. Until the first HIBERnate mon-
itor call, therefore, there is no protection against wakeup commands from other jobs. To guarantee such protection,
the calling job should execute a WAKE monitor call on itself followed by a HIBERnate monitor call with the desired
protection codes. The WAKE call ensures that the first HIBERnate call takes the normal return immediately, which
leaves the job with the correct protection code. Note that a correctly written program will not fail if it was
aWAKEned for no apparent reason.

4.1.3.3 The WAKE Monitor Call (CALLI 73) — The WAKE monitor call allows one job to activate a dormant job
when some event occurs. Its calling sequence is

MOVEI ac, job number
WAKE ac,

error return
normal return

where: job number is the number of the job to be awakened. (The number -1 indicates the calling job.)
Real-time process control jobs can cause other process control jobs to run in response to a specific alarm condition.
WAKE can be called from an RTTRP job running at interrupt level, thereby allowing a real-time job to wake its back-

ground portion quickly to respond to some real-time condition. (Refer to the RTTRP monitor call for restrictions
on accumulators when using the call at interrupt level.) ‘

4.3 - June 1976

Job Control and Information

Table 4-1
HIBERnate Conditions
Bit Mnemonic Meaning
0 HB.SWP Job will be swapped out immediately.

10 HB.IPC The job will be awakened on the delivery of an IPCF packet to an input
queue.

11 HB.RIO The job will be awakened when asynchronous I/O is finished.

12 HB.RPT The job will be awakened when PTY activity occurs since the last
HIBERnate.

13 HB.RTL The job will be awakened when a line of input is ready.

14 HB.RTC The job will be awakened when a character is ready.

15 HB.RWJ The HIBERnating job can be awakened only by itself.

16 HB.RWP The calling job and the HIBERnating job must have the same pro-
grammer number (a WAKE protection code).

17 HB.RWT The calling job and the HIBERnating job must have the same project
number (a WAKE protection code).

If the calling job does not have the appropriate privileges, the error return will be taken. If any of the enabled con-
ditions specified in the last HIBERnate monitor call occur, the wake bit is set for that job. A wake bit is associated
with each job. At the next HIBERnate call, the wake bit is cleared and the call returns immediately. The wake bit
eliminates the problem of a job’s oversleeping a WAKE condition.

On a normal return, the referenced job will be awake and start at the return location of the HIBERnate that caused
the job to become dormant.

4.2 SET OR OBTAIN JOB INFORMATION

There are several monitor calls that can obtain and set system/job information. The user can set the current pro-
gram’s name and set various system/job parameters (like the time between virtual time traps). He can change a job’s
current logical node/station number, or obtain its accumulated run time, job number, or project-programmer
number.

4.2.1 Set The Program Name

The SETNAM monitor call (CALLI 43) allows the user program to set the program name. The calling sequence
for SETNAM is

MOVE ac, [SIXBIT/name []
SETNAM ac,
only return

where: name is a left-justified SIXBIT program name.

SETNAM stores the specified program name in the monitor job table, which is used by the SYSTAT system pro-
gram. SETNAM performs several addition functions: it clears the SYS: program bit (JB.LSY, which is used by
Batch); it clears the execute-only and JACCT bits; and it causes a version typeout to occur on the user’s terminal if
version watching has been enabled by the SET WATCH VERSION command (refer to the DECsystem-10 Operating
System Commands Manual).

June 1976 44

Job Control and Information

4.2.2 Set System/Job Parameters

The SETUUO monitor call (CALLI 75) allows the user program to set various system and/or job parameters. To
set system parameters, the calling program must be running with the JACCT bit set in the privilege word, or the
job must be running under [1,2]. The calling sequence for SETUUO is

MOVE ac, [XWD function, arg
SETUUO ac,

error return
normal return

where: function is one of the SETUUO function codes listed in Table 4-2.

arg is the argument needed for the specified function. The arguments are also listed in Table 4-2.
The error return is taken if one of the following conditions occurs:

1. The monitor call has not been implemented.
2. The user is not suitably privileged for the function specified .
3. The argument is invalid.

Table 4-2
SETUUO Functions

Code Mnemonic : Argument

0 STCMX! The largest size that any job may assume (i.e., the sum of the high

' segment and low segment). The minimum value is 10K unless changed
via MONGEN at monitor generation time. The maximum value is the
size of user (non-monitor) core. (This value is known as CORMAX.)

1 STCMN! "The guaranteed amount of contiguous core that a single unlocked job
may assume. The minimum value is 0; the maximum value is the value
of CORMAX. (This value is known as CORMIN.)

2 STDAY! A decimal number (in the range 0-2359) representing the DAYTIME
(i.e., time is computed using a 24-hour clock, hours * 100 + minutes).

3 STSCH! An octal argument stored in the right half of the STATES word in
COMMON.

0 regular timesharing
1 no further LOGINS are allowed (except from CTY)

2 no further LOGINs from remote terminals, data sets are not
answered

4 no further LOGINSs are allowed (except for Batch jobs)
10 the system is running stand-alone

100 device mounts without operator intervention are allowed
200 unspooling is allowed

400 no operator coverage

4 STCDR The input name for this job. This value (3-SIXBIT characters) will be
stored in the left half of .STSPL.

1This is a privileged function.

4-5

Job Control and Information

Table 4-2 (Cont.)
SETUUO Functions
Code Mnemonic Argument
5 .STSPL2 The bits are 31-35 of .STSPL:
Bit Mnemonic Meaning
35 JS.PLP LPT spooling
34 JS.PPL PLT spooling
33 JS.PPT PTP spooling
32 JS.PCP CDP spooling
31 JSPCR CDR spooling
6 STWTC Bits are 18-23 of .STWCH:
Bit Mnemonic Meaning
19 ST.WDY Watch daytime at start.
20 ST.WRN Watch run time.
21 ST.WWT Watch wait time.
22 ST.WDR Watch disk reads.
23 ST.WDW Watch disk writes
24 ST.WVR Watch versions.
25 ST.WMT Watch MTA Statistics
7 STDAT! The decimal number of days since January 1, 1964. (DATE = ((year —
1964) * 12 + (month — 1) * 31 +day = 1))
10 STOPR! The address of the word which contains the SIXBIT physical name of the
TTY to be used as the Operator terminal.
11 STKSY! The decimal number of minutes until timesharing ceases. If 0, time-
sharing is not to be stopped (This value is known as KSYS).
12 STCLM! The maximum amount of core (in words) for the job. This value is
stored in bits 1-9 (JB.LCR) of .GTLIM (units of 512-word pages).
13 STTLM! The job’s time limit in seconds.
14 .STCPU The CPU specification for this job.
Bit Mnemonic CPU
35 SP.CRO CPUO
34 SP.CR1 CPU1
33 SP.CR2- CPU2
32 SP.CR3 CPU3
31 SP.CR4 CPU4
30 SP.CR5 CPU5
15 STCRN! Bits which indicate a CPU’s runnability. If bit 35 = 1, CPUOQ is runnable.
If bit 34 = 1, CPU1 is runnable, and so on.
1

This is a privileged function,

This is not a privileged function unless the user is unspooling devices.

4-6

e~

—

Job Control and Information

Table 4-2 (Cont.)
SETUUO Functions

Code

Mnemonic

Argument

16

17

20

21

22

23

STLMX!

STBMX!

STBMN!

STDFL2

STMVM!

STMVR!

The maximum number of jobs allowed to be logged in at any one time.
The maximum value for this symbol is JOBN, which is the system limit
specified at monitor generation time via MONGEN. The minimum value
is 1. If LOGMAX is a value smaller than the number of jobs currently
logged in, no new jobs are allowed to LOGIN until enough current jobs
LOGOUT to get the system below LOGMAX. The number of jobs cur-
rently logged in (referred to as LOGNUM) can be obtained from the
GETTAB table .GTCNF, item number 54 (%CNLOG). (This value is
referred to as LOGMAX.)

The maximum number of Batch jobs that are allowed to be logged-in con-
currently (BATMAX). The maximum value is the smaller of either the
BATCON limit of 14 or the system limit of JOBN. The initial value is 14.
The number of jobs currently logged-in (BATNUM) can be obtained from
the GETTAB table .GTCNF, Item Number 55 (%CNBAT).

The number of jobs guaranteed for batch jobs (BATMIN). The maximum
value is either the BATCON limit of 14 or the value of JOBN-1 (one job
must be reserved for BATCON), whichever is smaller. The initial value

is 0. Therefore, the maximum number of non-Batch jobs is JOBN minus
BATMIN.

DSKFUL for this job. An argument of 0 (.DFPSE) causes a pause and an
argument of 1 (DFERR) causes an error when the disk is full or the user’s
quota is exceeded. The current setting can be obtained by using an argu-
ment other than 0 or 1. The value returned in the AC is either 0 or 1
depending on whether PAUSE or ERROR is set. The initial setting is
ERROR.

The system-wide virtual memory limit. The value returned on a normal
return is dependent on the value of the call’s argument. The returned
value will be either:

1. The total amount of virtual memory in use by VM users, if the
current argument is less than the current virtual memory page
count.

2. The total amount of available swapping space, if the argument
is greater than the current available swapping space.

3. The call’s argument, if the argument is greater than the total
amount of virtual memory currently in use.

The address of the word that contains either the SYSTEM or the JOB
designation and the virtual memory page fault rate.

Left half = 0:

Set the system-wide page fault rate to RATE.
Left Half = 1:

Set the per-job page fault rate for this job to RATE.
Right Half = RATE:

The number of page faults per CPU second.

1This is a privileged function.

This is not a privileged function unless the user is unspooling devices.

47

Job Control and Information

Table 4-2 (Cont.)

SETUUO Functions
Code Mnemonic Argument
24 STUVML The address of the word that contains the maximum virtual memory page

limit and the maximum physical page limit.
Left half = maximum virtual page limit.
Right half = maximum physical page limit.

If the left half of the word contains zero, the user cannot utilize the
virtual memory option. If the right half of the word contains zero, all
of core is indicated.

25 STCVM? The user’s current virtual memory maximum, which is stored in a word
with the format:

Right half = current virtual page guideline
Left half = current virtual page limit

If bit 18 =1, bits 19-25 contain the guideline.

26 STTVM The time interval between virtual time traps in milliseconds. This type of
trap causes a code 5 page fault to the page fault handler each time the time
interval has elapsed.

27 STABK The address break condition. On a normal return, the new address break
condition and the break address will have been set. Address conditions are:

0 Break on EXECUTE

1 Break on READ

2 Break on WRITE

3 Break on the execution of a monitor call

Bits 9-17 contain a quantity that specifies the number of times the break
address is to be referenced before the interrupt occurs.

Bits 18-35 contain the break address.

Note that if bits 0, 1, 2, and 3 are equal to 0, the address break is cleared.
If the user is enabled for address break interrupts, the software interrupt
system will interrupt when an address break occurs.

30 STPGM Set the program to run.
31 .STDER Set deferred spooling.

If either the left half or the right half is zero, the current value is unchanged.

1This is a privileged function.
This is not a privileged function unless the user is unspooling devices.

4.2.3 Set The Logical Node
A user program (via LOCATE, CALLI 62) can change a current job’s logical node number. The calling sequence
- for the LOCATE monitor call is

MOVE ac, [SIXBIT/node-name|]
MOVEI ac, station-number
LOCATE ac,

error return
normal return

4.8

e,

TN

Job Control and Information

where: node-number can be one of the following:
N Changes the job’s location to the physical node of the job’s terminal.
0 changes the job’s location to that of the central station.
n changes the job’s location to node number n.

The normal return is taken when the node number or name has been defined and the node is in contact with the
central site. Subsequent generic device specifications are associated with the new node number/name.

The error return is taken if

1. the monitor call has not been implemented,
2. anillegal node number was specified,
3. or, the node specified was not in contact.

The following is an example to logically locate a job at node number 3.

MOVEI AC1,3

LOCATE AC1,
JRST ERROR

JRST WINNER

For more information about remote operation, refer to future editions of the REMOTE STATION USER’S GUIDE.

4.2.4 Obtain Run Time
The RUNTIM monitor call (CALLI 27) can be used to obtain a specified job’s accumulated run time. The calling
sequence for RUNTIM is

MOVEI ac, job-number
RUNTIM ac,
only return

where: job-number is the number of the job whose accumulated run time is requested. A job-number of
0 returns the current job’s run time.

On a return, the accumulated run time (in milliseconds) is returned as a rightjustified quantity in the AC. If the
specified job number does not exist, O is returned in the AC.

4.2.5 Obtain The Job Number Of The Calling Job
The PTOB monitor call (CALLI 30) obtains the number of the calling job. PJOB’s calling sequence is

PJOB ac,
only return

On a return, the job number of the calling job is returned right-justified in the AC.

4.2.6 Obtain The Project-programmer Number Of The Calling Job
The GETPPN monitor call (CALLI 24) obtains the project-programmer number associated with the calling job. Its
calling sequence is

GETPPN ac,
normal return
‘alrernate return

On both a normai return and an alternate return, the project number is returned in the left half of the AC; the
progre .nmet number is returned in the right half.

49 June 1976

Job Control and Information

The alternate (skip) return is taken if the calling program is running with the JACCT bit set, and the project-
programmer number is associated with another logged-in job.

427 The OTHUSR Monitor Call (CALLI 77)
The OTHUSR monitor call helps the user program determine if its project-programmer number is logged-in for one
or more other jobs, OTHUSR’s calling sequence is

OTHUSR ac,
normal return
alternate return

On a return, the specified AC will contain the project-programmer number of the job executing the OTHUSR moni-
tor call. The call has two return points: normal return (non-skip) and alternate (skip) return. The normal return
is taken.if one of the following occurs.

1. The monitor call has not been implemented, in which case the AC remains unchanged.
2. The monitor call is implemented and no other job is logged-in with the same project-programmer
number, in which case the AC contains the calling job’s project-programmer number.

The skip return is taken only if the monitor call is implemented, and one or more other jobs are logged-in with the
same project-programmer number as that of the calling job. OTHUSR is utilized by KJOB.

4.3 TIMING INFORMATION
There are three methods of generating timing information: the APR clock (KA10/KI110), the DKI0 (internal
accounting clocks) (KA10/KI10), and internal clocks (EBOX,MBOX on the KL10).

The APR clock, driven by the power source frequency (60 Hz. in North America, 50 Hz. in most other countries),
is accurate over long periods of time. For this reason, it is used to keep the time of day (e.g., for the TIMER call).
This clock can also account for the processor time used by each job. In this application, however, the APR clock
loses some accuracy, because its tick is often longer than a job’s run time period.

The DK 10 clock (100K Hz.) is accurate over short periods of time. If it is present in the system, it can be used to
account for processor run time instead of the APR clock. The DK10 clock, however, is more accurate than the
APR clock.

KL10 processor systems have two types of system runtime, called high precision runtime and EBOX/MBOX
runtime. All runtimes that are reported by the system (e.g., RUNTIME monitor call, TIME command, USESTAT
command, CTRL/T, and GETTAB table .GTTIM) can be selected to be of either type. The type of runtime re-
ported is determined by the value of bit STZEMR (bit 20) in item %CNST2 of GETTAB table .GTCNF.
ST%EMR equal to 1 selects EBOX/MBOX runtime.

EBOX/MBOX runtime is computed from the KL10 accounting meters, and is designed to be a highly repro-
ducible measure of the amount of work a user job has accomplished. High precision runtime, which is the same
as that used on KI10 and KA10 systems with DK10s, uses 10 microseconds resolution elapsed time on the
CPU.

Note that EBOX/MBOX runtime cannot be compared with any other type of runtime. The relationship between
EBOX/MBOX runtime and elapsed time on the CPU is not direct; it depends on the cache hit rate, memory
speed, and other factors.

With all of these clocks, monitor overhead can optionally be included in the run time statistics for the current job.
This parameter is set during Monitor Generation Time via MONGEN. Monitor overhead is the CPU time spent in
tasks like clock queue processing, command decoding, core shuffling, swapping, and scheduling.

June 1976 4-10

Job Control and Information

The traditional DECsystem-10 date (which can be obtained via the DATE monitor call) is a 15-bit integer. This
integer is incremented by 1 each day, by 31 each month (regardless of the actual number of days in the month), and
by 12 * 31 each year (regardless of the actual number of days in the year). The date format is easily resolved into
the year-month-day format; however, the difference between two dates in this format is not necessarily the actual
number of days between the two.

For convenience, the local (host computer) time can be converted to a universal date-time standard, where the
word’s left half is the day, and its right half is the time. This day is uniformly incremented at midnight, with 1 equal
to November 18, 1858. The November date is used for consistency with the Smithsonian Astronomical Date
Standard and other computer installations and systems. (Refer to GETTAB Table Number 11, Item Number 64.)

The time is specified as a fraction of the day, allowing the 36-bit value to be in units of days, with a binary point

between the right and left halves of the word. The resolution is approximately one-third of a second (i.e., the least
significant bit (bit 35) represents approximately one-third of a second).

4-10.1

Job Control and Information

The monitor maintains a set of GETTAB values which give the local date and time in terms of year, month, day,
hours, minutes, and seconds. (Refer to GETTAB Table Number 11, Items 56 through 63.)

4.3.1 The DATE Monitor Call (CALLI 14)
The DATE monitor call returns the current date. Its calling sequence is

DATE ac,
only return

The current date will be returned in the AC as a right-justified 15-bit integer. This date is computed using the
formula

((((pear — 1964) * 12) + (month — 1) * 31 + (day — 1))) = date
where: January 1, 1964 is the base date.

4.3.2 The MSTIME Monitor Call (CALLI 23)
The MSTIME monitor call returns the current time of day. Its calling sequence is

MSTIME ac,
only return

The time is returned in the AC (in milliseconds) as a right-justified binary integer.

4.3.3 The TIMER Monitor Call (CALLI 22)
The TIMER monitor call returns the day time in jiffies, right-justified in the AC. Its calling sequence is

TIMER ac,
only return

A jiffy is 1/60 of a second (16.2 milliseconds) for 60-cycle power and 1/50 of a second (20 milliseconds) for 50-
cycle power. MSTIME should normally be used so that the time is not a function of the power.

4.4 CONFIGURATION INFORMATION
4.4.1 The SWITCH Monitor Call (CALLI 20)
The SWITCH monitor call returns the contents of the central processor data switches in the specified AC; its calling

sequence is

SWITCH ac,
only return

Users should issue this call with caution because the data switches are an allocated resource and are always available
to all users. This call is meaningful only for KA10 and KI10 systems, since the KL.10 has no data switches.

4.4.2 The LIGHTS Monitor Call (CALLI -1)
The LIGHTS monitor call displays the contents of the AC in the console lights. The calling sequence is

LIGHTS ac,
only return

This monitor call is meaningful only for KA10 and K110 systems, because the KL.10 has no console lights.

4-11 March 1976

Job Control and Information

4.4.3 The DAEMON Monitor Call (CALLI 102)
The DAEMON monitor call invokes the DAEMON system program to perform a specified function. The calling
sequence for DAEMON is

addr:

MOVE ac, [XWD length,addr]
DAEMON ac,

error return
normal return

function
argument list

where: length is the number of arguments in the list plus one. If this number is fixed, length is zero.
addr points to the first word of the argument list.
function is the code of the DAEMON function desired. All DAEMON functions are described in
Table 4-3. Some function codes are privileged; to use these, the user program must be running with
the JACCT bit set or the user must be logged-in under [1,2].
argument list varies with the function code specified; the possible arguments are described along with
the DAEMON functions codes in Table 4-3.
Table 4-3
DAEMON Functions
Code Mnemonic Arg Block Meaning
1 .DCORE 1 Writes a dump file of the current job’s core
SIXBIT/dev | area. If argument list is omitted, the default
SIXBIT/ file | is the same as default for DCORE. Refer to
SIXBIT/ext/ the Operating System Commands Manual.
0,,0
2 .CLOCK 2 Enters a request in the clock queue awaken
seconds the current job after a specified number of
seconds have passed. As soon as the request
has been entered into the queue, the HIBER
call should be used with no clock request.
An argument of 0 clears the job’s entry in
the clock queue and wakes the job.
3l FACT 3 Makes entry in the system accounting file
argl (FACT). The FACT file entry must be less
than 20 octal words in length. The entry will
not be instantly written in FACT.SYS, but
. may be stored in core for as long as ten
arg208 minutes.
51 .DMERR 5 Makes an entry in the error file; the block-2
code is put into the error file.
word 1
word?2
1This is a privileged function.

4-12

S

o

CHAPTER 5
TRAPPING, INTERCEPTION, AND INTERRUPTION

The execution of a program is normally performed in a sequential manner, whereby one instruction is executed fol-
lowed immediately by the next and so on. By using skip and branch instructions, it is possible for a program to
deviate from the normal sequential method of execution. Deviation from normal program flow may also be accom-
plished by trapping to user trap-servicing routines (APRENB monitor call), enabhng for error interception (utilizing
JBINT), or using the software interrupt system.

Using trap-servicing routines and error interception are simple methods for controlling error conditions; the software
interrupt system is much more general and complex.

APR trapping allows a user program to handle traps that occur while the job is running, including illegal memory
references and push-down list overflows. Error interception may be used when certain conditions occur in a user
program. The monitor will intercept, when the condition occurs, and will examiine location .JBINT in the Job Data
Area. The monitor does this to find out whether or not an error interception routine has been provided. In addi-
tion, the monitor provides a generalized software interrupt mechanism for interrupting the sequential flow of opera-
tion under a wide variety of special conditions.

Two important reasons for wishing a program to deviate from simple sequential operation are as follows:

1. The program may wish to respond to special conditions without testing for them wherever they may
occur. For example, it is possible for a program to test for an arithmetic overflow condition after every
instruction that might cause the condition to occur. However, it is easier to have normal sequential
operation interrupted each time an overflow occurs and then have control transferred to-an error
routine.

2. A program could respond to asynchronous events without testing for those events repeatedly. For

" example, some programs react to CTRL/C by taking a special action rather than permitting control to
be returned immediately to monitor level.

If a program were to test regularly and frequently for the possibility of a user typing a CTRL/C, an
unreasonable constraint would be placed on the program’s design. The program instead could be inter-
rupted each time a CTRL/C was typed; control would be transferred to a special processing routine
before control would be returned to the monitor. The interrupt would eliminate the need for repeated
testing.

5.1 USER TRAP SERVICING
The APRENB monitor call (CALLI 16) enables a user program for trap servicing. The calling sequence for
APRENB is

MOVEI ac, flags
APRENB ac,

only return

where: flags specifies the central processbr flags to be tested on a trap condition. The sequence for APRENB
flags that may be set are listed in Table 5-1.

When one of the specified conditions occurs while the central processor is in user mode, the state of the central
processor is conditioned (CONI) into the Job Data Area location .JBCNI, and the PC is stored in location .JBTPC

5-1

Trapping, Interception, and Interruption

Table 5-1

APRENB Flags
Mnemonic Value Bit Trap Condition
AP.REN 400000 18 Repetitive enable.
AP POV 200000 19 Pushdown list overflow.
AP.IIM 20000 22 Memory protection violation.
AP.NXM 10000 23 Non-existent memory flag.
AP PAR 4000 24 Parity error.
AP.CLK 1000 26 Clock tick flag.
AP.FOV 100 29 Floating point overflow.
AP.AOV 10 32 Arithmetic overflow.

in the Job Data Area. After the arithmetic and floating point flags have been cleared, control is transferred to the
user trap-servicing routine specified by the contents of the right half of .JBAPR in the Job Data Area. The job is
stopped, however, if the PC is equal to the first or second instruction in the user’s trap-servicing routine.

The user program must set up location .JBAPR before executing the APRENB monitor call. To return control to
the interrupted program, the user’s trap-servicing routine must execute a JRSTF .JBTPC, which clears the bits that
have been processed and restores the state of the processor.

The APRENB monitor call normally clears traps for only one occurrence of any selected condition, and it must be
reissued after each trap. To disable this feature, the user program can set bit 18 to a 1 when executing the monitor
call. However, even when bit 18 equals 1, clock interrupts must be reenabled after each trap.

If the user program does not enable for traps, the monitor sets the processor to ignore arithmetic and floating-point
overflows, but the monitor enables interrupts for other error conditions in the list above. If the user program pro-
duces such an error condition, the monitor will stop the user job and print one of the following messages:

?ILL MEM REF AT USER PC addr

?MEM PAR ERROR AT USER PC addr
INON-EX MEM AT USER PC addr

?7PC OUT OF BOUNDS AT USER PC addr
?PDL OV AT USER PC addr

After one of the above messages, the CONT and CCONT commands will not succeed.

5.2- ERROR INTERCEPTING

When certain conditions occur in a user program, the monitor intercepts them and examines location .JBINT in the
Job Data Area. Depending on the contents of this location, control is either retained by the user program or it is
transferred to the monitor. If this location contains zero, the job will be stopped, and the user (and possibly the
operator) will be notified with an appropriate message, if any. If location .JBINT contains a non-zero value, the
contents of the location will be interpreted as the address of a block that has the following format:

loc: XWD n,intloc
loc+1: XWD bits, class
loc+2: 0
loc+3: 0
where: n is the number of words in the block which must be at least 3.

intloc is the location at which the program is to be restarted.
bits may be 0 or 1 as described below:

52

- N

TN

Trapping, Interception, and Interruption

bit 0 =1 causes an error message, if any, to be printed on the user’s terminal and/or the
operator’s terminal.

class contains bits which may be set to determine the action taken on a given error condition; the class
bits are listed in Table 5-2.

For each type of error condition, there is an associated class bit. The job is interrupted for an error only if the
appropriate bit in the class word is 1 and loc+2 contains zero. The job will be stopped if the appropriate bit is 0 or
if the contents of loc+2 is not zero. The requirement that loct2 contains zero precludes a loop.

Therefore, the monitor examines the class bits and loc+2 to determine whether to stop or interrupt the job after an
error occurs. If the monitor interrupts, it stores the following information in loc+2 and loc+3:
loc+2: the last user PC word

loc+3: Right Half: the channel number (if applicable)
Left Half: the error bit as defined in class

The job is then restarted from the location specified in intloc.

Table 5-2
Error Intercepting Class Bits

Bit Mnemonic Error Condition

35 ER.IDV A device error occurred that can be corrected by human intervention. The following
message is printed

DEVICE xxx OPR zz ACTION REQUESTED

where xxx is the device name, and zz is the operator’s station number. The following
message is printed on the operator’s terminal:

%PROBLEM ON DEVICE xxx FOR JOB n

where xxx is the device name, and # is the job number of the job stopped. When the
operator has corrected the error and continued the job with the JCONT command,
the message

CONT BY OPR

appears on the user’s terminal to indicate that the error has been corrected.

34 ER.ICC A user has typed a CTRL/C, interrupting the program. This interrupt allows the user
program to process a CTRL/C instead of returning the job automatically to monitor
level when a CTRL/C is typed, but it will instead trap to the user’s interrupt routine.
No messages will be printed on either the user’s terminal or the operator’s terminal.
When this bit is set, the job should normally exit immediately by releasing any special
resources and issuing an EXIT monitor call. The CONT command can be issued by
the user to continue the job.

33 ER.OFL A disk unit has dropped off-line. The following message is printed on the user’s
terminal: - : ,
DSK IS OFF-LINE. WAITING FOR OPERATOR ACTION. TYPE ~C
TO GET A HUNG MESSAGE (IN 15 SECONDS). DON’T TYPE ANY-
THING WAIT FOR THE OPERATOR TO FIX THE DEVICE.
If the user has a system resource, this additional message will be printed on the user’s
terminal:
THE SYSTEM WILL DO NO USEFUL WORK UNTIL THE DRIVE IS
FIXED OR YOU TYPEA ~C

5-3

Trapping, Interception, and Interruption

Table 5-2 (Cont.)
Error Intercepting Class Bits

Bit

Mnemonic

Error Condition

32

31

30

29

ER.FUL

ER.QEX

ER.TLX

ER.ElJ

The following message is printed on the operator’s terminal:

UNIT xxx WENT OFF-LINE (FILE UNSAFE)1
PLEASE POWER DOWN AND THEN TURN IT ON AGAIN

A file structure has been filled with data (i.e., there are no free blocks). There will be
no messages printed.

The user’s disk quota has been exhausted. The following message is printed on his
terminal:

[EXCEEDING QUOTA file-structure name]

The user’s run time limit, as set by the SET TIME command, has been exhausted.
This error condition applies only to non-BATCH jobs. The following message is
printed on the user’s terminal:

?TIME LIMIT EXCEEDED

The job has a fatal error. The following are a few of the possible error messages which
may be printed on the user’s terminal:

?ILLEGAL UUO AT USER PC addr
?ADDRESS CHECK AT USER PC addr
7PC OUT OF BOUNDS AT USER PC addr

1

only if the disk went unsafe

The following example shows how to enable and handle a CTRL/C intercept. Note that the user is returned to
monitor level as quickly as possible.

INTBLK:

LocC 134 $SET POINTER IN ,JBINT

EXP INTBLK ;TO THE INTERRUPT BLOCK

RELOC

XWD 4,INTLOC 34 WORDS LONG,,PLACE TO START
XwD 0,2 sNO MESSAGE CONTROL,,TYPE 2 (~C)
Z ;GETS LAST USER PC

Z ;LH GETS INTERRUPT TYPE

sTHE INTERRUPT ROUTINE STARTS HERE

INTLOC:

TEMP1:

MOVEM 1,TEMP1 :SAVE AC 1

HLRZ 1,INTBLK+3 sGET REASON FOR INTERRUPT

CAIE 1,2 :SEE IF CONTROL=C

HALT . sERROR IF NOT
sRELEASE ANY SPECIAL RESOURCES HERE
;BUT BE CAREFUL THAT THIS DOES NOT
s TAKE VERY LONG OR CAUSE A LOOCP,

EXIT 1, sRETURN TO MONITOR

MOVE 1,INTBLK+2 sGET RETURN PC

EXCH 1,TEMP1 sRESTORE AC

PUSH P, INTBLK+2 s SAVE RETURN ADDRESS

SETZM INTBLK+2 sCLEAR INTERRUPT TO ALLOW ANOTHER ONE

POPJ Py sRETURN TO WHERE PROGRAM STOPPED

Z s TEMPORARY

5-4

o~

Trapping, Interception, and Interruption

The following example shows processing of a user CTRL/C by a program that prevents return to the monitor by
means of a CTRL/C.

Loc 134 $SET UP LJBINT TO POINT TO
EXP INTBLK ;s THE INTERRUPT BLOCK
RELOC
INTBLK: 3,INTLOC 33 WORDS LONG,,PLACE TO START
XWD 0,2 sNO MESSAGE CONTROL,,TYPE 2 (~C)
Z ;GETS LAST USER PC
Z sLH GETS INTERRUPT TYPE
; THE INTERRUPT ROUTINE
INTLOC: SKIPL RENFLA ;0K TO FAKE A REENTER?
JRST «t3 :NO, CURRENT ROUTINE CANNOT BE
s INTERRUPTED,
SETZM INTBLK+2 :YES, RE=ENABLE INTERRUPT AND GO
JRST REENRT ; TO INTERRUPT ROUTINE
SETOM RENSWH ;SET FLAG TO SAY "REENTER AS SOUN AS
;YOU CAN"
PUSH P,INTBLK+2 sGET LAST PC, PUSH/POP
SETZM INTBLK+2 :RE=ENABLE INTERRUPT
POPJ P, ;GO BACK TO INTERRUPTED ROUTINE

s NOTE THAT IF A CONTROL~C IS
;TYPED AFTER THE SETZM, THE
s INTERRUPTS NEST,

5.3 SOFTWARE INTERRUPT SYSTEM

The Software Interrupt System is a generalized mechanism for interrupting sequential program execution under a
wide variety of conditions. An interrupt allows the system to respond dynamically to external conditions, and to
requests for servicing error conditions. The monitor transfers control to a specified routine that services the inter-
rupt. After interrupt servicing is complete, a transfer of control is made to the point of interruption (from which
point normal execution will proceed).

The Software Interrupt System is initialized by the PIINI. monitor call. PIINI. allows the user program to specify
the base address of an interrupt vector containing one or more four-word interrupt control blocks that control the
operation of the Software Interrupt System. Note that the interrupt vector block must be in page 0. After initializ-
ing the Software Interrupt System, the user program must turn the system on with the PISYS. monitor call. This
call also specifies .

the conditions on which the user wishes control to be passed to an interrupt servicing routine, and

the location of the appropriate interrupt control block (specified as an offset from the base of the
interrupt vector).

Interrupts occur after the execution of one instruction and before the execution of the next. When an interrupt
condition occurs, the monitor first determines if this type of condition is to cause a transfer of control to an inter-
rupt servicing routine. If a transfer is to take place, control will be transferred to the location specified in the
appropriate interrupt control block. If not, the condition’s default action will occur. Figure 5-1 charts the soft-
ware interrupt process.

Trapping, Interception, and Interruption

PROGRAM (USER) INTERRUPT
LEVEL LEVEL
|

USER PROGRAM

i

INTERRUPT
CONDITION
OCCURS

THE INTERRUPT
SERVICING ROUTINE
YES DESIGNATED BY THE

APPROPRIATE IN-
TERRUPT CONTROL
BLOCK

DID USER
ENABLE FOR

THIS INTERRUPT,
CONDITION

NO

!

TAKE DEFAULT
ACTION (E.G., DO
NOTHING, STOP
JOB, PRINT ERROR
MESSAGE)

!

|
!
I

DEBRK.
USER PROGRAM [MONITOR CALL

I
1
|
|
!
Figure 5-1. Software Interrupt Process

After an interrupt request has been granted, the program operates at interrupt level until the user issues a DEBRK.
monitor call. DEBRK. dismisses the interrupt, re-enables the interrupt control block (if it was disabled), and causes
any pending interrupt requests to be granted. If there are no pending interrupt requests, the user program will be
restarted as though no interrupt had occurred.

The granting of an interrupt request does not change any of the conditions causing the interrupt. If a user program
issues a DEBRK. monitor call without doing anything else, the result will be the same as if the interrupt condition
was never enabled. However, any special action (e.g., stopping the job on a CTRL/C) is not taken. The monitor does
not clear-any reason bits on the DEBRK. monitor call; the user program must clear these bits. EXCEPTION: If the
interrupt occurs while the monitor is executing a call for the user program, that call will be aborted. The only con-
ditions which can cause interrupts during the processing of monitor calls are error conditions in the calls themselves.
All other interrupt conditions are deferred until the monitor call exits.

5.3.1 Interrupt Conditions

The interrupt conditions that can be requested by a user program are divided into two categories: I/O interrupts
and non-I/O interrupts. For any device, the user program can specify interrupt processing for one or more of the
I/0O conditions listed in Table 5-3.

5-6

Trapping, Interception, and Interruption

Table 5-3

I/O Interrupt Conditions
Bit Mnemonic Meaning Bit Mnemonic Meaning
19 PS.RID Input done. 24 PS.RDO Device off-line.
20 PS.ROD Output done. 25 PS.RDF Device full.
21 PS.REF End-of-file. 26 PS.RQE Quota exceeded.
22 PS.RIE Input error. 27 PSRWT 1/0 wait.
23 PS.ROE Output error.

The non-I/0 interrupt conditions are listed in Table 5-4.

5.3.2 Interrupt Control Block
The Interrupt Control Block is the controller of the Software Interrupt System. It keeps track of

the instruction that was last-executed when an interrupt occurred,

The location of the interrupt servicing routine for processing the current interrupt, and

the reason for the current interrupt.

There may be more than one interrupt condition associated with the same interrupt control block, but the pre-
ferred usage is to associate one interrupt condition with one interrupt control block. An interrupt control block is
represented in Figure 5-2.

0 17 18 35
new PC .PSVNP
old PC .PSVOP
control flags reasons PSVFL
status word PSVIS
Figure 5-2. Interrupt Control Block
where: new pc is the location of the routine that will service the interrupt.

old pc is the current contents of the program counter (PC) at the time of the interrupt. If a monitor
call is executed, old PC will contain the address of the call’s return location (either error return or
normal return). If an attempted monitor call is aborted, old pc will contain the address of the monitor

call.

control flags are used to indicate the circumstances under which an interrupt is to occur (refer to

Table 5-5).

reason is the type of interrupt condition that has occurred (refer to Table 5-3).

status word contains status information pertinent to the type of interrupt detected. This information
is listed in Table 5-4 for those conditions that cause information to be returned in the status word.

5-7

Trapping, Interception, and Interruption

Table 5-4
Non-I/O Interrupt Conditions
Code | Mnemonic Interrupt Condition

-1 PCTLE The time limit for a job has been exhausted. (Applicable only for non-Batch jobs).
The run time (in milliseconds) for the job is returned in the status word.

2 Reserved for Digital.

-3 PCSTP A CTRL/C has been issued from a user terminal. If the terminal is in input-wait state
when this interrupt occurred, bit 0 in the status word will contain a 1.

4 PCUUO A monitor call is about to be processed. The status word contains the monitor call
that was executed.

-5 PCIUU An illegal monitor call has been executed. The status word contains the illegal
monitor call.

-6 .PCIMR An illegal memory location has been referenced.

-7 .PCACK An address check has occurred. The status word will contain the device name.

-10 .PCARI An arithmetic exception has occurred.

-11 .PCPDL A push-down list overflow has occurred.

-12 Reserved for Digital.

-13 PCNXM A non-existent memory location has been referenced.

-14 .PCAPC The line frequency clock has ticked. The status word will contain the universal date/

' time word.

-15 .PCUEJ A fatal error has occurred in the user’s job.

-16 PCXEJ An external condition has caused a fatal error in the job.

-17 PSKSY A KSYS warning has occurred. The status word will contain the minutes left until
KSYS.

20 PCDSC The dataset status has changed. The status word will contain the new dataset status.

21 PCDAT Either an ATTACH or a DETACH monitor call has been executed. If DETACH, the
status word will contain a -1; if ATTACH, the status word will contain the TTY’s UDX
(universal device index).

22 PCWAK A WAKE monitor call has been executed. The status word will contain the job number
of the waker.

23 PCABK An address break condition has occurred.

24 PCIPC The job has received an IPCF packet in its input queue. The status word will contain
the length of the packet in its right half, and the right half of the flags word in its left
half.

-25 .PCRMC Reserved.

26 .PCQUE An ENQ/DEQ resource is available for ownership. The request ID is returned in the
status word.

5.3.3 Initialize the Software Interrupt System
The PIINI. monitor call (CALLI 136) initializes the software interrupt system. Its calling sequence is

MOVEI
PIINI.
error return

ac,

normal return

ac,addr

5-8

e .

Trapping, Interception, and Interruption

where: addr is the base address of the interrupt vector block. Note that the interrupt vector block must be in
page 0 on a VM system.

The PIINI. monitor call performs the following functions:
1. It turns off the software interrupt system.
2. It unlinks any devices with which enabled interrupt conditions are associated.

3. It stores the base address of the interrupt vector block.

Table 5-5
Control Flags

Bit | Mnemonic Meaning
0 Reserved to Digital.
1 PS.VPO Disable all interrupts until a PISYS. monitor call re-enables them.
2 PS.VTO Disable all interrupts until a DEBRK. monitor call is executed.
3 PS.VAI Allow additional interrupts to be received by this interrupt block. Normally, no other

interrupts for the current block are permitted until a DEBRK. monitor call is executed.
The use of this bit is not recommended since it could interrupt the service routine and
therefore lose information.

4 PS.VDS Dismiss any additional interrupt requests for this control block that are received while an
interrupt is in progress. This bit is useful if the interrupt service routine wants to perform
functions that would cause another interrupt.

PS.VPM Print the standard message (if any relevant to this interrupt condition).

6 PS.VIP This bit indicates that an interrupt is in progress for this block. The user should clear this
bit at the start of the program. It is set and cleared by the monitor as interrupts are proc-
essed, and it should not be altered by the user.

5.3.4 Control the Software Interrupt System
The PISYS. monitor call (CALLI 137) allows a user program to control the Software Interrupt System. Its calling
sequence is

MOVE ac, [flags,,addr]
PISYS. ac,

error return
normal return

addr: type
vector-offset,,enabled reasons
0,,0

where: flags may be set which control the software interrupt system (see Table 5-6).
addr points to the first word of the three-word interrupt argument block.
type (PSECN) specifies a device or a condition to be associated with the interrupt. The type can be one
of the following:

SIXBIT/device-name/

channel-number

UDX (universal device index)

a negative number specifying a non-I/O condition (see Table 5-3)
vector offset (left half of .PSEOR) is the offset from the base address of the four-word interrupt control
block to be associated with this interrupt condition.

59

Trapping, Interception, and Interruption

enabled reasons (right half of PSEOR) specifies the type of interrupt desired. This half-word should be
zero, if a device is not specified by type (refer to Table 5-3 and Table 5-4).

The PISYS. monitor call is the primary means by which the user program can control the software interrupt system.

The call accepts a three-word argument block that specifies the type of condition the user wishes to service with an
interrupt servicing routine. It also specifies the offset from the interrupt vector base address that points to the
appropriate interrupt control block. Since each interrupt control block is four words long, the offset is always
specified in multiples of four words.

Table 5-6
Argument Block Flags
Bit Mnemonic ' Meaning
1 PS.FOF Turn off the interrupt system.
2 PS.FON Turn on the interrupt system.
3 PS.FCP Clear all pending interrupts.
4 PS.FCS Clear all pending interrupts for a specified device.
5 PS.FRC Remove the specified device or condition.
6 PS.FAC Add the specified device or condition.

The possible error codes resulting from a PISYS. monitor call are listed in Table 5-7.

Table 5-7
PISYS. Error Codes
Code Mnemonic Meaning
0 PSTMA% The right half of the AC is non-zero; no bits in the left half require an
argument block.
PSNFS% The left half of the AC does not have any function bits set.
2 PSUKF% The left half of the AC contains function bits which have been set but have
no defined meaning.
3 PSOOF% The bits in the left half of the AC that turn the system on and off have
been set.
PSUKC% The contents of addr do not specify a valid address.
PSDNO% The device specified by the contents of addr has not been INITed for this
job.
PSPRV% A restricted (illegal) condition has been specified.
PSIVO% The vector table offset is too large or not a multiple of four words. A
GETTAB table (Table number 11, item number 76) provides the maximum
value that the vector offset may assume.
10 PSUKR% An invalid bit was set in word 3 of the argument block; word 3 should be
all zeroes.
11 Reserved.
12 PSNRW% The reserved half-word (the right half of word three) is non-zero.
13 PSPND% A PIINI. monitor call was not executed.
14 PSARF% Both the ‘add the device’ bit and the ‘remove the device’ bit have been set.
March 1976 5-10

TN

Trapping, Interception, and Interruption

5.3.5 Save the Interrupt Blocks

The PISAV. monitor call (CALLI 140) returns the entire monitor base related to the software interrupt system. The
call can be used by modules such as QMANGR to save and reload (via PIRST.) the complete interrupt system. It
can also be used to provide detailed error message reporting. The calling sequence for PISAV. is

MOVE ac, [size,,addr]
PISAV. ac,

error return
normal return

where: size is the length (in words) of the block pointed to be addr. The size of this block can be determined
by the algorithm
(3 *number-of-argument-blocks) + 2 = size-in-words

addr points to a block of three words. This block is represented in Figure 5-3. -

01 17 18 35
x 00000000000000000 count PSSFC
base address PSSIV
start-of-the-three-word-argument-blocks PSSBL

Figure 5-3. Saved Status Block Structure

where: x (PS.SON, bit 0) can be 1 or 0; 1 indicates that the software interrupt system is turned on; 0 indicates
that it is off.

bits 1 through 17 must contain zero.
count is the number of words that the monitor actually returned with the saved status block.

base address is the address of the interrupt vector block which contains one or more four-word
interrupt control blocks.

start points to the first location of the three-word argument blocks.

The location pointed to by the third word of the block represented in Figure 5-3 is the beginning of one or more
argument blocks. The interrupt argument blocks are those that the user has set up by means of the PISYS. monitor
call. ‘

The possible errors resulting from the PISAV. monitor call are listed in Table 5-8.

Table 5-8
PISAYV. Error Codes
Code Mnemonic Meaning
0 PSBTS% The block is too small to hold the data. The right half of the first word contains
the count of the number of words which would have been returned, if the block
had been long enough.

5-11

Trapping, Interception, and Interruption

5.3.6 Reload the Saved State of the Interrupt System

The PIRST. monitor call reloads the saved state of the software interrupt system. This call does not, however,
remember any pending interruptions. If the interrupt control block has not been cleared of its condition, the
interrupt will be granted. The PIRST. monitor call should not be used to load the interrupt system of program
initialization time; this function is performed by the PIINI. monitor call. The calling sequence for PIRST. is

MOVEI ac,addr

PIRST. ac,
error return

normal return

where: addr is the address of the saved status block specified in the PISAV. monitor call.
The possible error codes resulting from a PIRST. monitor call are listed in Table 5-9.

Table 5-9
PIRST. Error Codes

Code Mnemonic Meaning

0 PSNRS% The user program has been modified to prevent the PIRST. monitor call
from performing its specified task.

5.3.7 Dismiss an Interrupt
The DEBRK. monitor call dismisses a software interrupt, re-enabling anything which may have been disabled by the
occurrence of the interrupt. The calling sequence for the DEBRK. call is

DEBRK.
return 1
return 2

The DEBRK. call normally returns to old PC. Return I is taken if DEBRK. is not implemented; return 2 is taken if
there was no interrupt in progress. The DEBRK. call scans the pending interrupt queue, looking for any conditions
which may require servicing by an interrupt servicing routine. If such a condition exists, its interrupt request will be
granted, and a transfer will be made to the interrupt servicing routine. If there are no pending interrupts, DEBRK.
will restart the interrupt process beginning at the point within the user job where interruption occurred (e.g., the -
instruction after the last instruction executed).

5.3.8 An Example of the Software Interrupt System
TITLE FISAMF —— SAMFLE FROGREAM TO SHOW FSISER USE WITH NOM-~BLOCKIMG I.-0

i THIS PROGREAM WRITES A FILE COMTRINING THE MUMEBERS 1 TO 168, @86

i WHILE DOIMG A COMPUTE-BOUND BACKGREOUND COMPUTATIOM. EBECRUSE THE FROGRAM

i MEVER BLOCKS FOR IS0, IT CAM USE 188X OF THE FVAILABLE CRU TIME. EBY USIMG
; THE FI SYSTEM IT CAN DRIME THE [ISK AT FULL SPEED.

i RC USERGE

Ti=1 i TEMFORARY

M=z FNUMEER TO WRITE OM THE DISE
i 10 CHAMS,

[EK=1 i THE DISK FILE

SERRCH i 2YMEOL DEFSE,

i IMITIALIZATION

5-12

T

START: RESET
MOYET

FIIMI.

HALT
OFEN

HALT
EMTER
HALT

MOVE

FISYE,

HALT
MOVEL

Trapping, Interception, and Interruption

i RESET THE WORLL
T1. VECTOR iBRSE OF INTERRUFT SECTOR
Ti. JINIT PI SYSTEM
FNOT IMFLEMENTEL:
Dk UL AIO+, TORIMN: OFEN DISE FOR ASYMCHROMOUS EIMNARY
QUTFUT
SIHEIT #DEKS
DE. . &1
JDISK NOT AVAILAELE
LSk, [SIWBIT “"SAMPLE" ENTER THE OUTFUT FILE
SIMBIT "BIN" i ON THE DISE
ExF @, 81 .
JDANST MWRITE

Ti., LPE FRCO+HD EMP DEK

4. . PE, ROD JLOFFSET. « QUTPLUT [ONE
: 511 FFRIQRITY. . RESERMWED
T, JCALL MOMITOR TO TURM OM SYSTEM AMD

i ENRELE FOR QUTPLUT DOME OM CHAM DI
JPISYS, LD FRILELD
M. 0 i PREZET M

; HERE OM AN OUTPUT DONE INTERRLUFPT OR AT THE START OF THE PROGRAM

QUTDOM: SOSGE
JRST
1LPE
CAME
AOJH
CLOSE
EXIT

DUMPEF: OUT
JRET
STATZ
HALT

EYTECT JROOM O IM THIS BLUFFEET
DUMPEF P MO==E0 OUTPUT BLIFFER
M. EYTEPT JSTORE IN BUFFER
M. [7DABaaan] i DONE™
M. QLITDOMN P NO==WRITE HNEST MWNUMBER
1.

JALL DOMNE
1. JWRITE QUT THE BLUFFER
QLITOOMN i NO ERRORS RAMD MORE BUFFERS
1. I0, ERR i FNY ERRORS?

iFATAL I-0 ERROR

;AT THIS POINT WE FILLED ALL AVYAILAEBLE BUFFERS AND MWAMT TO GO BACK TO THE
i BACEGROUND TRSE.

LEERK.
HALT

iDISMISE THE INTERRUFT
i AN NEVER GET HERE

i IF WE GET HERE THERE MWAS MO INTERELFT IN FPROGRESS. THAT MEANS WE WERE
i CALLED BY IMITIALIZATION AND NOW MUST STRRET THE BACKGROUNLD TRSE.

MOYST
FISYE,
HALT
MOVET
AOJA

i BUFFER RING HERDER

0B : ELOCK
BYTEFT: ELOCK
EYTECT: BLOCK

i INTERRUFT WECTOR

VECTOR: BLOCK
EXP
ExF
EXF
EXF

EMD

Ti. CFS. FON JTURN ON THE PI SYSTEM SO WE CAM GET

T1. i TRAFS OUT OF THE BACKGROUND TASE.
JCANST TURMW ON SYSTEM

Ti. 8

Tl.. i SUPER SIMPLE EBACKGROUND TASE

1

i i BYTE POIMTER

1 JENYTE COUMT

4 JFIRST SLOT IS UMUSELD

CILTLOMN i MEMW PL

& i OLD PCOSTORED HERE

8 i FLAGS

o PSTATUS

START

5-13

TN

6.1 CORE CONTROL

CHAPTER 6
CORE AND SEGMENT CONTROL

For various reasons, users may wish to lock privileged jobs into core, so that they are never considered for swapping
and shuffling. Some examples of these jobs follow.

Real time jobs

Display jobs

Performance
Analysis
Jobs

6.1.1 Definitions

which require immediate access to the processor in response to an interrupt from an I/O
device.

which must be refreshed from a display buffer in the user’s core area in order to keep the
display picture flicker-free.

so that they can be invoked quickly with low overhead in order to record the activities of
the monitor.

Unlocked jobs occupy only those physical core locations not occupied by locked jobs. Therefore, locked jobs and
timesharing jobs contend with one another for physical core memory. In order to control this contention, the sys-
tem administrator is provided with a number of system parameters which are described below.

Total User Core is the physical core that can be used for both locked and unlocked jobs. This value equals

CORMIN

CORMAX

the total physical core minus the monitor size.

is the amount of contiguous (on a KA10) core guaranteed a single unlocked job. This value
is a constant system parameter defined by the system administrator at monitor generation
time (via MONGEN). This value can range from 0 to TOTAL USER CORE. CORMIN may
be changed by the system administrator through the use of the SET CORMIN command
(refer to DECsystem-10 Operating System Commands) or the SETUUO monitor call.

is the largest (on a KA10) contiguous block allowed an unlocked job. It is a time-varying
system parameter that is reduced from its initial setting as jobs are locked in core. In order
to satisfy the guaranteed size of CORMIN, the monitor never allows a job to be locked in
core if it would cause CORMAX to be less than CORMIN. The initial setting of CORMAX

is defined at monitor generation time (via MONGEN), and can be changed with the SET
CORMAX command (refer to DECsystem-10 Operating System Commands) or the SETUUO
monitor call.

6.1.2 The LOCK Monitor Call (CALLI 60)

The LOCK monitor call provides a mechanism for locking jobs into user memory. The user may specify that the
high, the low, or both segments are to be locked, and if the core is to be physically contiguous or not. Note that on
KA10-based systems, core is always allocated contiguously, and that the job will be moved to an extremity of user
core before it is locked. The calling sequence for the LOCK monitor call is:

MOVE ac, [XWD hi-code, lo-code]

LOCK ac,
error return
normal return

Core and Segment Control

where: hi-code and lo-code are the high and low segment codes — a series of bits that specify the way in which
the high segment (left half code) and the low segment (right half code) are to be locked. The order and
the position of the bits in the left half correspond to the order and the position of the bits in the right
half (i.e., to obtain the bit number for the high segment, subtract 18 from the corresponding bit for the
low segment). The possible bits that may be set with the LOCK monitor call are listed in Table 6-1.

Table 6-1

LOCK Bits
Bit Mnemonic Meaning
17 LK.HLS If the bit contains 1, lock the high (or low) segment as indicated by bits
35 LK.LLS 15 or 16 (33 and 34).
16 LK.HNE If the bit contains 0, map the high (or low) segment contiguously in the
34 LK.LNE exec virtual memory (always implied on a KA10-based system). This

action causes the segment to be added to the exec virtual address space
so that it can be executed in exec mode. For example, this would be
required when exec mode real-time trapping is used. On KI10/KL10-
based systems, the amount of exec virtual address space used by locked
jobs is a li