
UNIVERSITY OF QUEENSLAND

COMPUTER CENTRE

--

COMPUTER

CENTRE

BULLETIN

{ .

Vol. 4, No 8 & 9 Editor:

6 September 1971 Mrs Sarah Barry

JULY BULLETIN

The July Bulletin was incorrectly numbered as Vol. 4 No 6. It should have been
numbered as No 7 and the Editor wishes to apologize to anybody who might have
been confused by this. This edition combines the August and September issues
into a single copy numbered 8 and 9.

PUNCHED CARD OUTPUT FROM PDP-IO

The Computer Centre now provides a service to provide punched card output of
PDP-IO ASCII files. The punched card output is, in fact, obtained by using
the GE-225.

(a) Service Request

To obtain PDP-IO ASCII files in punched card form, the user must complete
the form:

'Request for PDP-IO Card Output'

This is obtainable from the Centre and must be submitted to the Operations
Supervisor when completed satisfactorily.

(b) Output Collection

The punched card output will be available for collection from the PDP-IO
output shelves.

(c) Charges

Charges will be levied on the basis of size of the PDP-IO file to be
punched, and will be entered as a miscellaneous charge against the user's
PDP-IO project number.

Charge rates are: University Departments
Government Departments
Non-Governmental Organizations

NEW FORTRAN SYSTEM

$0.60 per K words
$1.20 per K words
$1.50 per K words

A new FORTRAN system has been implemented on the PDP-IO. This system comprises
a new FORTRAN IV compiler, a new FORTRAN execution package, and a revised set of
FORTRAN library routines.

The new FORTRAN has undergone extensive testing and checking in the Computer
Centre over the past few months. Many errors have been found and corrected, and
the Centre now considers the new system to be in a reasonably reliable state.
The possibility of unknown errors always exists and so users are requested to
check results carefully and report any errors via a programming consultation.

As detailed below, this FORTRAN system provides many new facilities to the user,
including direct access processing of files and improved diagnostics, and corrects
most of the errors reported in the present version of FORTRAN. However, because
of the extended facilities available, the size of the FORTRAN execution package has
increased with the result that some large programs (i.e. those presently requiring

107

more than 22K of core) may exceed the available user core size of 24K when run
under the new system. In order to minimize this increase in size, the NAMELIST
facility has been removed from the new FORTRAN execution package. Users who
have problems because of the size increase, or because of the removal of
NAMELIST, are asked to contact the Computer Centre.

The new FORTRAN will be available to both remote terminal and batch users.
The version numbers for the new system are as follows; the compiler will be
V23-F3, and the execution package and library routines, LIB40, will be V30.

I. NEW FACILITIES

1.1 Direct Access

The sequential reading and writing of data in FORTRAN programs is familiar to
most users. For direct access, i.e., in order to access a particular record,
it was necessary to process each record in the file until the appropriate
record was encountered. With the use of FORTRAN direct access statements,
this is no longer necessary and a program is able to access the desired record
directly.

Direct access programming allows a programmer to access any record within a
file independent of the location of the previously accessed record within that
file, Direct input/output is desirable when only a few records in a large file
are to be accessed, or when a file is to read or written in a non-sequential

manner, as in sorting.

Direct access applies only to data files with fixed-length records on the disk.
Any fixed-length record file (whether formatted or unformatted) which has been
written with FORTRAN may be read or updated non-sequentially.

To use a file in this manner, the file must first be defined by a DEFINE FILE
statement and then records accessed by means of direct READ or WRITE statements.

(a) DEFINE FILE

The structure of the file must be specified by means of the DEFINE FILE statement.
This statement must appear in the program prior to any READ or WRITE on the file.
The format is as follows~

DEFINE FILE CU, s,v, name, pj)

where the parameters u, s, v. name and pj 'are as described below.

u This is the logical unit number. It must refer to one of the Fortran
logical unit numbers 10, 11, 12 or 13.

s This is the size of the fixed length records within the file. For
ASCII files (i.e. formatted files), the size is specified by the
number of characters per record and can vary from 1 to a maximum of
132 characters. For binary files (i.e. unformatted files), the size
is specified by the number of words per record and can vary from 1 to
any number depending on the limitations of available space.

108

v

name

pj

This is the associated integer variable. It always contains a value
one greater than the number of the last record read or written.

This is the name of the file. If it is zero, then the standard default
name of FORu (where u is the unit number) is assumed.

This is the project number of the person whose disk area is to be
accessed. It is not possible to create a file on another project area,
but only to access an existing file for reading or updating, depending
on the permission set by the owner. If the project number is zero, or
omitted, the user's own project number is accessed.

IFILE and OFILE are not required to describe further a file defined in the above
manner, DEFINE FILE is sufficient.

examples:

(i)

(ii)

DEFINE FILE (10, 15, IVAR, 'DATIN')

This statement defines a file assigned to logical unit 10. The name of
the file is DATIN. If it were an ASCII file, then the records would
be 15 characters long; if a binary file, then the records would be 15
words long. IVAR is the name of the associated integer variable.

NAMFIL 'FILD'
DEFINE FILE (12, 200, INa, NAMFIL, 37)

Similarly, this defines a file called FILD as~igned to logical unit 12.
The file is a bihary file (ASCII files cannot contain records exceeding
132 characters in length) with records of 200 words. It exists on the
disk area belonging to project 37.

(b) Direct READ and WRITE Statements

Direct access READ and WRITE statements are differentiated from sequential
I/O statements by the presence of the single quote (') following the logical
unit number. Each must specify also the record number at which reading or
writing is to start. The following formats are possible:

formatted I/O

READ(u'r,f) list
WRITE(u'r,f) list

unformatted (binary) I/O

READ(u'r) list
WRITE(u'r) list

where u is the logical unit number given in the DEFINE FILE statement;
r is the record number where I/O is to commence.· This may be an

integer constant, variable or expression;
f is the FORMAT statement number, and

list is the I/O list.

Notice that the logical unit number and the record number are separated by the
quote sign and not by a comma.

109

The associated integer variable provides sequential access to records. To
process a file sequentially, the program simply uses the value of the
associated variable as the record number in the READ and WRITE statements.

DEFINE FILE (14, 2¢, INT, 'MSTER')

READ (14'INT)

examples:

(i) To access the kth record of an ASCII file called DATER, coding might be

DEFINE FILE (11, 25, IV, 'DATER')

READ 1(11 'K, 5) A,B,C,I,J
5 FORMAT (3A5, 215)

Note that the size of the record in DEFINE FILE corresponds to the size
of the FORMAT specifications.

(ii) Random WRITES are used to change every 7th record, beginning with
record number 3 in the file named DATA on the user's disk area. The
file is unformatted, contains 100 records, each 35 words long.

DIMENSION LIST (35)
DEFINE. FILE (13,35,IVAR, 'DATA')

DO 2¢ K=3, l¢¢, 7
WRITE (13'K) LIST

2¢ CONTINUE

If a direct READ or WRITE 'statement is followed by a sequential READ or
WRITE statement on the same logical unit,then reading or writing begins
with the next sequential record.

110

(Note that it is inadvisable to create a file in the first instance or enlarge
a file further ahead than the next sequential record using direct access writes.
A file to be directly accessed should initially be created by sequentially
writing the full number of blank records required.

1.2 END and ERROR

It is now possible to specify in a READ statement the desired transfer of
control should an end-of-file or an error condition be encountered during a
formatted, direct or sequential read operation. The errors trapped in this way
do not include transmission or parity errors.

The format of the statement is

READ (u,f, END=n, ERR=m) list
or READ (u'r,f, END=n, ERR=m) list

where u,f, and list are defined as usual (i.e., the unit number, the number of
the FORMAT statement and the I/O list of variables), and nand m are the statement
numbers to which program control is to be transferred should an end-of-file or
error condition, respectively, occur.

example:

READ (5,29,END=999, ERR=525) A,B,C

525 (control will transfer here should an error condition arise
during the read operation)

999 (control will transfer here should the end-of-file be
encountered by the read operation)

The arguments END=n and ERR=m are both optional. Both or either may be included
and, if both are present, the order of precedence is unimportant.

If either an end-of-file or an error condition is encountered, then control will
pass to the statement number declared by END=n or ERR=m. Should the appropriate
parameter not be specified in the READ statement, then the execution of the
user's program will be terminated and an appropriate error message will be printed.

1.3 ENCODE and DECODE

The ENCODE and DECODE statements transfer information from one data area to
another, converting the data according to a given Format statement in the process.
DECODE is used to change data in ASCII character format to data in some other
form, and ENCODE changes data from the various internal representations into
data in ASCII character form.

The format for these two statements is as follows:

111

where c
f
r

is
is
is

ENCODE (c,f,r) list

DECODE (c,f ,r,) list.

the
the
the

number of ASCII characters in the character string,
FORMAT statement number,
starting address of the ASCII character string referenced,

and
list is the I/O list of variables.

examEles:

(i) Suppose A(I) contains the binary number 300.45, A(2) the binary number
3.0, J a binary integer 1, and B is a four word array. Then the
statements:

DO 30 J=1,2
ENCODE (16,2~,B) J,A(J)

2% FORMAT (lX, 'A(',Il,')t,=t,', F8.2)

3.0' CONTINUE

would cause the array B~ after the first iteration of the DO loop, to
contain the character string 't,A(I)t,=t,t,t,30~.45' That is, the contents
of each element of B would be:

B(l) t,A(l)
B(2) t,=t,t,t,
B(3) 300.4
B(4) 5

After the second iteration of the loop, the array would contain:

B(l) t,A(2)
B(2) t,=Mt,
B(3) t,t,3.0
B (4)

(ii) Suppose also that C contained the ASCII string 35279, then the following
statements:

DECODE (4,15,C) B
15 FORMAT (2Fl.0, IX, 2Fl.~)

would cause the first two characters of C (3 and 5) to be converted
to floating point binary values and stored inB(l) and B(2); the
next value of C to be skipped; and the last two values of C (7 and
9) to be converted and stored in B(3) and B(4).

The following program demonstrates some uses for ENCODE and DECODE.

112

(
DIMENSION UNPK(5),FMT(6)

C SOME EXAMPLES OF ENCODE AND DECODE
C
C *****TO UNPACK ASCII CHARACTERS*****

PACKED='ABCDE'
DECODE (S,20,PACKED) UNPK

20 FORMAT (SAl)
PRINT 3~,PACKED,UNPK

30 FORMAT('PACKED ',AS, 'UNPACKED TO ',5A2)
C
C *****TO SELECT A CHARACTER FROM A WORD*****

FLAGS='MBCRF'
DECODE(5,10,FLAGS) BUSY

10 FORMAT (lX,Al,3X)
PRINT 40,BUSY

40 FORMAT(/' THE BUSY FLAG IS ',Al//)
C
C *****TO CHANGE THE SECOND CHARACTER OF "FLAGS" TO BLANK*****

OFF=' ,
ENCODE(5,10,FLAGS)OFF
DECODE(5,10,FLAGS)BUSY
PRINT 4~,BUSY

C
C *****TO SET UP A RUN TIME FORMAT ARRAY*****

NUMBER=9
ENCODE(27,50,FMT) NUMBER

50 FORMAT (, (' 'MOVING ARROW I', I ,13, lX' , t' ') ,)
PRINT 60,FMT

6~ FORMAT(' THE FORMAT IS ',6A5)
PRINT FMT
END

During execution, the program produces the following results.

PACKED = ABCDE UNPACKED TO ABC D E

THE BUSY FLAG IS B

THE BUSY FLAG IS

THE FORMAT IS (' MOVING ARROW' 9X,'t')
MOVING ARROW t

1.4 Multiple Returns from Subroutines

In both Function and Subroutine subprograms, it is possible for the
subprogram to return to the main program at an address other than
that immediately following the call to the subroutine.

This can be done in the following way:

113

Statement labels can be specified as arguments to a subroutine by preceding
them in the argument list by an asterisk (*) or a dollar sign ($). The
corresponding dummy argument in the subroutine statement must be either a $
or a * sign.

Within the called subprogram, the return to the main program is effected by
a new form of the RETURN statement.

RETURN i

where i is an integer constant or variable. The value of i must be
positive, and specifies that the return is to the ith argument of the
argument list of the subprogram (where the ith argument is a statement
nu~er preceded by a dollar or asterisk sign). If i=O, the return made is
the same as with the normal RETURN statement.

examples:

(i) CALL TYPE (A, $10, B, $20)

IDID

SUBROUTINE TYPE (VI, $, V2, S)

RETURN NUM

RETURN
rnn

If NUM = 2, return is to statement
number 10 in the main program,

If NUM = 4, return is to statement
number 20 in the main program

This is the normal return and will
return to the statement following
the subprogram call

114

(
(ii)

K = LIST (I, $93, J)

mD
FUNCTION LIST (N, $, M)

RETURN 2

RETURN
END

for an error condition, say, ret~rns to
statement 93 in the calling program

for normal completion

When a RETURN i is used (where 1 1S not equal to zero) in a Function
subprogram, the value returned in the name of the function is lost.

The use of a dollar sign is preferred since expressions involving the
multiplication sign (*) can be used as arguments in subprogram calls.

The modification to the PLOTI subroutine (section 5.3) provides an
illustration for multiple returns.

1.5 Output Field Exceeds Format

With I, F, 0 and D type formats, the operating system will print all
asterisks in the field when the number to be output exceeds the size of
the field defined in the FORMAT specification.

example:
I = 34
J = 9376
A = 126.527
B 52.35

WRITE (6,10) I,A
10 FORMAT ('~~INTEGER~IS~' ,I3,',~REAL~IS~' ,F5.2)

WRITE (6,10) J,B

would produce the following results:

115

~INTEGER~IS~~34,~REAL~IS~*****

~INTEGE~IS~***,~REAL~IS~52.35

Note that G type formats should be used if there is any uncertainty about
maximum field width required.

The execution summary will include a count of output field width overflows
if any occur,

1,6 JOBBAL Function

JOBBAL is a FORTRAN IV function tha~ has been added to the library, It
returns to the user program the remaining balance of the job cost limit.

At present, with the use of the JOB and/or the LIMIT commands, a user
imposes a cost limit on a program. When the limit is exceeded, the program
execution is terminated. With the use of the JOBBAL function, a program can
control itself by examining the balance left and terminating itself cleanly
should there be insufficient funds available.

The JOBBAL function returns to the calling program an integer number of units.
The value of a unit is 1 cent for university users, 2 cents for government
departments and 2,5 cents for other users. This means that a given number
of units represents a constant amount of computing for each class of user.

example:

IBAL = JOBBAL (0)
IBAL = IBAL * 2
IF (IBAL.LE.20) GO TO 999

1.7 New Type Declaration Statement

A new type declaration statement, SUBSCRIPT INTEGER, is now available.
This allows for the declaration of fixed point variables that fall in the
range _227 to 227.

1,8 Dollar Sign in Format

A dollar sign ($) as a format field specification code suppresses the
carriage return at the end of the Teletype or line printer line,

109 ERRSET Function

ERRSET allows the user to control
error messages (see section 2.1),
integer mode.

CALL ERRSET (N)

the printout of execution-time arithmetic
ERRSET is called with one argument in

Printqut of each type of error message is suppressed after N occurrences of
that error message. If ERRSET is not called, the default value of N is 2.

116

)

2, EXECUTION DIAGNOSTICS AND SUMMARY

2,1 Execution Diagnostics

These error messages are diagnostics produced by the FORTRAN operating
system during execution of a program.

(a) These messages are all followed by a second message 'LAST FORTRAN I/O
AT USER LOC adr I ,

DEVICE dev: NOT AVAILABLE

The operating system tried to initialize a device which either
does not or has been assigned to another job,

DEVICE NUMBER n IS ILLEGAL

A non-existent device number was selected,

END OF FILE ON dev:

A premature end-of-file has occurred on an input device,

FILE NAME filename NOT ON DEVICE dev:

The file cannot be found in the directory of the specified
device,

ILLEGAL CHARACTER, x,IN FORMAT

The illegal character x is not valid for a FORMAT statement,

INPUT DEVICE ERROR ON dev:

A data transmission error has been detected in the input from
a device.

ILLEGAL CHARACTER~ x,IN INPUT STRING

The illegal character x is not valid for this type of input.

NO ROOM FOR FILE filename ON DEVICE dev:

There is no room for the file in the directory of the named
device or no room on the device.

program name NOT LOADED

A dummy routine was loaded instead of the real one. Generally,
this error occurs when a loaded program is patched to include a
call to a library program which was not called by the original
program at load time,

OUTPUT DEVICE ERROR ON dev:

A data transmission error has been detected during output to a
device.

117

PARITY ERROR ON dev:

A parity error has been detected.

REREAD EXECUTED BEFORE FIRST READ

A reread was attempted before initializing the first input
device.

dev: WRITE PROTECTED

The device is WRITE locked.

(b) These messages are all followed by a second message 'LOADING OVERLAY
name FROM LOCATION adr'.

OVERLAY NUMBER INCORRECT

A call to overlay with a number 0 or greater than 20.

OVERLAY NOT IN TABLE

The name in the overlay call does not exist.

ERROR READING OVERLAY FILE

OVERLAY WILL OVERWRITE CALLER

FILE NOT FOUND

(c) These messages are not followed by another message.

ACOS OF ARG > 100 IN MAGNITUDE

ASIN OF ARG > 1.~ IN MAGNITUDE

ATTEMPT TO TAKE SQRT OF NEGATIVE ARG

CLOSE FAILURE FOR PLOTTER FILE

* FLOATING DIVIDE CHECK PC=nnnnnn

* FLOATING OVERFLOW PC=nnnnnn

* FLOATING UNDERFLOW PC=nnnnnn

* INTEGER DIVIDE CHECK PC=nnnnnn

* INTEGER OVERFLOW PC=nnnnnn

OPEN FAILURE FOR PLOTTER FILE

X COORDINATE OUT OF BOUNDS
This is a plotting error. The y coordinate may also be out of
bounds.

Y COORDINATE OUT OF BOUNDS
The x coordinate will have been tested first, and is therefore
within bounds.

* These error messages are typed for each occurrence of the appropriate
error for a maximum number of times. This maximum number is set by
default to 2, but can be changed by means of the ERRSET function
(see section 1.8).

118

2.2 Execution Summary

At the end of execution of a program, a summary will be printed that lists
the actual number of times each error message occurred. The execution
time and tot~l elapsed time for the run are also given.

The possible errors accounted for in the summary are:

ACOS OF ARG > l.~ IN MAGNITUDE
ASIN OF ARG > 1.g IN MAGNITUDE
ATTEMPT TO TAKE SQRT OF NEGATIVE ARG
FATAL I/O ERROR
FLOATING DIVIDE CHECK
FLOATING OVERFLOW
FLOATING UNDERFLOW
INTEGER DIVIDE CHECK
INTEGER OVERFLOW
OUTPUT FIELD WIDTH OVERFLOW
OVERLAY ERROR
PLOTTER ERROR

examples:

(i)

(ii)

EXECUTION TIME:
TOTAL ELAPSED TIME:
NO EXECUTION ERRORS DETECTED.

EXECUTION TIME:
TOTAL ELAPSED TIME:

NO. OF ERRORS

1
4

0.16 SEC.
17.80 SEC.

0.24 SEC.
3 MIN. 26.64 SEC.

ERROR TYPE

INTEGER OVERFLOW
OUTPUT FIELD WIDTH OVERFLOW

3. REPORTED ERRORS CORRECTED IN THE NEW VERSION OF FORTRAN

(a) Expressions involving a mixture of variable types are better handled
by the compiler.

In the error reported in the Bulletin Vol. 3, p. 49, i.e.,

A = X**(II-I2+13)

the sUb-expression is now evaluated as an integer and the real­
integer exponentiation routine used.

In the Bulletin Vol. 4, p. 94, the expression

D = S*D/ (2*1-1)

is reported to be translated incorrectly. The correct code is now
produced.

(b) Implicit conversion from double prec~s~on to real when the number is
almost a power of 2 is now accurate (see Bulletin Vol. 2, p. 106).

119

(c) Octal constants greater than 235 may be defined in assignment
statements 9

B = " 77 77 771J fiW)(;HiKf

(see Bulletin Vol. 2, po 128).

Cd) Correct code is produced when a function is used in the index
expression for double precision or complex arrays (see Bulletin
Vol. 2, p. 128).

(e) The complex expression

Z '"' Zl/2

is also handled correctly (see Bulletin VoL 3, p. 38).

(f) The use of a variable name as both a simple integer and as a function
name now produces a compilation error message.

1JK 92
L = J + IJK(2,3)

(See Bulletin Vol. 3, p. 94.)

(g) A logical IF may not compare a complex and a real variable. For
example.

IF (C(J).GT.1.5) GO TO 1~0

will now produce an error message. (See Bulletin Vol. 3~ p. 93.)

(h) A literal constant may not consist solely of two adjacent single
quotes ('), for example, B = II

This will produce a compilation error (see Bulletin VoL 2. p. 129).

(i) The differences between the truncation of negative real values in
PDP-IO FORTRAN and GE-225 FORTRAN~ reported in Vol. 3, pp. 49-50 of
the Bulletin, no longer apply. The routine IFIX, and all implicit
fixing of real variables now use the INT method of truncation
towards zero instead of towards minus infinity. See section 5.1

(j) The compiler generates code to restore the DO loop index when
statements could extend the range of the DO loop. This corrects
errors reported in the Bulletin Vol. 3, p. 73 and Vol. 4, p. 93.

(k) Double precision output has been corrected~ and the comment on values
outside the range 0, U<lO-16 to 0, 1;~108 given in the Bulletin Vol. 3 9

p, 54 no longer applies,

(1) A mixture of H type and single quote (') type Hollerith strings in
FORMAT statements is now allowable (see Vol, 4~ ppm 38-40).

120

(m) The 026 character ')' which was not accepted is now converted to the
029 ')' on input. as are the other 026 characters correspondingly
converted (see Bulletin Vol. 4, p. 63).

(n) Further efforts have been made to solve the problems caused by Batch
suppressing trailing blanks. Some improvement has been made, but A
type format still appears to have problems (Vol. 3, pp. 39-40).

(0) Some additional errors corrected are:

(i) RELEASE now clears all the flags it should.

(ii) Backspacing records in binary and ASCII disk files now works
properlye

(iii) Tabs in format statements are treated as spaces. Previously,
tabs were illegal unless they were within a Hollerith string.

(iv) Backpointing of T format type on input is now correctly
handled.

(p) Other changes in the FORTRAN operating system are:

(i) A negative argument to SQRT now returns the square root of the
absolute value instead of zero as well as giving the error
message.

(ii) Floating point underflow and overflow. integer underflow.
overflow and dividing by zero produce error messages. For
floating point operations, the result produced is zero for
underflow and .17x10 39 for overflow and divide checks.

(iii) The FORTRAN operating system now uses FRECHN UUO to allocate
channels. Any user-written MACRO I/O routines should also
use this UUO to avoid clashes in channel allocations.

Users are reminded that a list of all current errors is kept in one of the
blue binders in the Clients I Room. This list is kept up to date and is
intended to provide quicker reference on errors than searching through all
the latest Bulletins and Newsletters.

4. KNOWN ERRORS IN THE NEW FORTRAN

(a) Double precision primary to integer primary conversion may cause
problems. Precision of the result is limited to 8 decimal digits.

(b) IFIX may cause truncation errors for very large numbers.

(c) Oversize formats containing slash, and all oversized integer formats,
cause records to be skipped.

Cd) Oversize format for ENCODE statement causes '?ILL MEM REF' error
message.

121

(e) Specifying a character count too long or too short in ENCODE or DECODE
is not diagnosed as an error.

(f) The last digit of E and F-type output with a negative scaling factor
is often incorrect.

5. FURTHER ITEMS OF INTEREST

5.1 IF IX , INTIER and ENTlER Functions

The result of an IFIX function is now the same as INT. That is, it
converts a real number to an integer and the result given is

sign of arg * largest integer ~ iargl

Users who might still wish to use IFIX as it was previously defined. can
use INTIER instead. This converts a real number to an integer and the
result given is

largest integer ~ arg

There is a new function ENTlER which performs in much the same way as
INTIER, except that the result is real and not integer. That is, it
converts a real number to real and the result given is

example:

largest real ~ arg

The results of IFIX, INTIER, ENTlER for a group of arguments are
as follows:

argument

2.~

1.5

1.0

0.5
0.0

-0.5
-1.0
-1.5

-2.0

IFIX

2
1

1

0
0
0

-1

-1

-2

INTIER ENTlER

2 2.0
1 1.0
1 1.0
(b 0.\i1
0 0.0

-1 -1.0
-1 -1.0
-2 -2.0
-2 -2.0

5.2 REWIND Statement

If a REWIND is used on a disk file, then any prior assignment of a named
disk file to a logical unit number will be broken. If the file is a
scratch file, an automatic reassignment will be made to the file by using
the same unit number. If a named data file that has been assigned with
IFILE or OFILE is rewound, then the file must be assigned by a further
call to IFILE or OFILE after the REWIND.

122

Users are.recommended to use ENDFILE rather than REWIND.

503 Modification to PLOTI Subroutine

An additional optional argument has been added to the calling sequence of
PLOTI. This argument, if present, is in the form of $n where n is a
statement number to which control will pass if any of the subsequent .
plotting routines fail. Thus, 'X COORDINATE OUT OF BOUNDS' need not be a
fatal error for the program, although that plot file is closed and a.new
call to PLOTI should be the next plotting operation. (For this purpose,
a call to WHERE is not regarded as'a plotting operation).

example:

CALL PLOTI ('GRAPH', 1~.~, $2~0)

20~ - , returns here on any plotting error

NEW BATCH SYSTEM

A new batch processing system will be implemented shortly on the PDP-10.
The new batch provides users with a wider range of facilities, but does
introduce some,differences to the earlier batch operation.

1. NEW FACILITIES

With a few exceptions, all the facilities available to remote terminal
users are now available to batch users. For full details of available
facilities and services, users are referred to the System User's Guide
and Computer Centre Bulletins Vol. 4 Nos 1-7.

The exceptions (detailed below) arise because of the non~interactive
nature of batch processing.

1.1 Commands

All commands detailed in Chapter 6 of the System User's Guide are now
available via Batch, and operate as described.

In respect of commands the following points should be noted.

(a) The default job input and job output devices are the card reader
and line printer.

(b) LOGIN and FINISH do not operate via batch. Their equivalents are
JOB and EOJ.

(c) EOJ automatically deletes any files from the user's area that have
not been specifically KEPT. If there are too many KEPT files, EOJ
deletes enough files to get below the LIMIT starting with the
youngest files first.

123

(d) The TYPE command is not available via Batch. The equivalent
function can be obtained by the COpy command using the default job
output device.

example:
.COPY FROM=RANFIL TO the line printer

is assumed.

(e) Because of its detailed interactive nature, DDT is not.suitable
for Batch. It is recommended that.users exercise extreme caution
in any attempt to use DDT via Batch.

(f) The LIMIT command can only be used to alter the cost limit for a
task~ phase of tasks or a job while the batch job is running. It
cannot be used to reset the job cost limit when that limit is
exceeded. In Batch~ exceeding the job cost limit will result in
automatic termination of the job.

1,2 Differences to Previous Batch

There are three important command changes which the new batch system
will introduce.

(a) The default option in a FORTRAN command is now NOLIST (see System
User's Guide section 6.4,12). Thus .FORTRAN will not produce a
listing. If an output listing is required it must be specifically
requested with the LIST option

i.e, . FORTRAN(LIST)

(b) The default option in a RUN command is now NOMAP. If either a
MAP or SYMBOL map is required they must be specifically requested
(see System User's Guide section 6.4.21).

(c) The OVERLAY command now uses AREA and NAME as options, Hence these
must be enclosed in round brackets.

,OVERLAY AREA ~ 1. NAME = FR21
under the earlier batch, now becomes

• OVERLAY (AREA=l , NAME=F~ST)
(see System User's Guide section 6.4.17).

This allows specification of Files to be included on the OVERLAY
command.

The permanent file storage allocated to each batch project is 12,5
Kwords. This will enable the batch user to keep relocatable binary
program files in the system. Hence programs need not be recompiled on
each run,

In addition, a job. while running, will have available 128 Kwords of
scratch file space.

124

2. DECK SETUP

The deck setup required for a batch job is the same as at present~ and
is documented in Chapter 7 of the System User's Guide.

3. CHARGES

The charges for batch processing are now levied on, the same basis ,as
for remote terminal processing. Thus batch work is charged in
accordance with the schedule of charges given in Appendix B.2 of the
System User's Guide.

While this increases the number of categories for which charges are
made, users will find that,because of the new facilities available
(e.g. keeping binary program files on disk) overall computing costs
should be substantially reduced.

4. NEW BATCH AND REMOTE TERMINAL USERS

With the implementation of the new Batch, remote terminal users will be
able to access their files from both their terminal or through Batch.
Program files can be c~eated via Batch, debugged via the terminal and
then run from Batch. The permanent file storage space available to
terminal and batch projects is 37.5 Kwords.

As all line printer output (from both Batch and remote terminals) is
now controlled by the line printer symbiont, remote terminal users
should experience improved availability of their printer listings.

Although this new version of Batch has been extensively tested, there is
always the possibility that undetected errors still exist in the system.
Users are requested to check their results carefully and report any
significant discrepancies to the Centre.

NEW COBOL OPTIONS

Two new options are now available for COBOL and they work through
terminals and the new Batch. These options are STD and NONSTD and they
refer to the presence or absence of sequence,numbers in a source
program.

STD is the COBOL standard, i.e. source programs are assumed to have
sequence numbers. This is a default option.

NONSTD implies that there are no sequence numbers in the source
program. This is generally the case with programs prepared via
Teletypes. NONSTD can be abbreviated to NS.

The command format for COBOL is as follows:

125

BIN LIST STD
COBOL(NOBIN'NOLIST,MACRO,MAP'NONSTD)

{IN= }filename-I, {BIN= }filename-2, {LST= }filename...,. 3

filename-1 is the name of the source file
filename-2 is the name of the resulting relocatable file
filename-3 is the name of the list file

TERMINATION OF FILE CREATION SERVICE

Since the release of remote terminals in January this year, the Centre
has provided a service to create disk files from terminal users' card
decks. As the run can now create files via the new batch system, the
File Creation Service has been discontinued.

LIBRARY ACCESSIONS

NATIONAL MEDICAL AUDIOVISUAL CENTER

JAHODA, Gerald

JOHNSON, Albert Frederick

LANDAU, H.B.

DORFMAN, Robert

Computer printout; selected list of audio­
visuals 1970 (Qto 016.6138 NAT Cent Med.)

"

Information storage and retrieval systems
for individual researchers 1970
(Z695.9.J35 Main)

A programmed course in cataloguing and
classification 1968 (Z695.J673 Main)

Research study into the effective utilization
of machine-readable bibliographic data bases
1969 (Qto Z699.L37 Main)

Linear programming and economic analysis
1958 (330.182 DOR Arch.)

INTERNATIONAL SYMPOSIUM ON OPTIMIZING AND ADAPTIVE CONTROL. 1st Rome, 1962
Proceeding~ 1962 (Qto 519.92 INT Engin.)

U. S. National Bureau of Standards. Computation Laboratory.
Tablitsy ver.oiatnostnykh funktsii 1970
(Qto519.0835 UNI Maths.)

THE COMPUTER SOCIETY OF CANADA. National conference

APTER, Michael J.

NATIONAL COMPUTING CENTRE

Proceedings. 5th 1966 and onwards
(QA76.5.C613 Engin.)

The computer simulation of behaviour
1970 (BF39~5.A65 Main)

Computer application packages in local
government 1969 (621.38195 NAT Engin.)

Computer design. v.8 1969 and onwards
(TK7888.3.C65 Engin.)

126

EVANS, A.J.

PARSLOW, R.D. ed.

Periodicals data automation project 1969
(Qto Z695.7.E85 Main)

Advanced computer graphics 1971 (Qto
001.53 PAR Engin.)

ACM SYMPOSIUM ON PROBLEMS IN THE OPTIMIZATION OF DATA PROCESSING SYSTEMS
Pine Mountain, Ga. 1969

Proceedings 1969 (Qto 651.8 ACM Engin.)

ACM SYMPOSIUM ON THEORY. OF COMPUTING, Marina del Ray 1969

COCKE, John

MINORSKY, Nicholas

Conference record 1969 (Qto 510.7834 ACM
Engin.)

Progr~ing languages and their compilers
1970 (Qto 651.8 COC Maths.)

Theory of nonlinear control systems 1969
(629.836 MIN Elect.)

PRINCETON SYMPOSIUM ON MATHEMATICAL PROGRAMMING Princeton University 1967
Proceedings 1970 (519.92 PRI BioI.)

BAT STONE , Druce Barry

Computers in construction communications
1970 (Qto 690 COM Arch.)

Solution to recycle problems in computer­
aided design 1970 (THE 4208 Main)

COMMAND CARDS

Users are reminded that the PDP-I0 command cards for Batch must be
punched on the 029 card punches and not the 026 card punches.

The FORTRAN compiler and operating system have been patched to accept
special characters in either code. However, command cards contain
commands issued to the PDP-I0 monitor which is not apart of the
FORTRAN system and thus will not accept 026 code.

MANUALS

A number of users appear to be unaware of the manuals that the Centre
has produced, or where they can be obtained.

At present, all manuals can be bought from the University Bookshop and
the manuals that they should have in stock are·as follows:

127

FORTRAN MNT-5 $1.50

{lst Revision is incorporated in,the manual;
2nd Revision is obtainable separately at
no cost)

EDITOR MNT-6 $1.00

SYSTEM USER'S GUIDE MNT-8 $3.90

BASIC MNT-9 $2.70

AID MNT-IO $4.20

UTILITY PROGRAMS MNT-12
(Absolute Overlays)

$1. 20 (Digital Plotter)

RANDOM NUMBER GENERATING SUBPROGRAMS

The details of RAN, SAVRAN and SETRAN are described incorrectly in the
PDP-I0 FORTRAN manual MNT-5. Their correct description is as follows.

RAN is a function subprogram which generates single precision random.
numbers in the range 0 < x < 1.0

e.g. VAR = RAN(0)

Note that the value of the argument is ignored.

SAVRAN and SETRAN are subroutine subprograms required to service RAN.

SETRAN is used to provide a.non-standard starting point for RAN.

e.g. CALL SETRAN (K)

where K has a value in the range 0 < K < 231_1. The standard starting
point is 524287. Note that if SETRAN is not used RAN will return the
same set of 'random' numbers each time the program is run.

SAVRAN is used to save the integer which would be used by the next call
to RAN. Thus a sequence of 'random'numbers produced by RAN can be
regenerated if the starting point has been saved.

128

, /

example:

1~

CALL SETRAN(K)
DO Ifll I = 1,N
X = RAN(fll)

CONTINUE
CALL SAVRAN
DO 2(lj I =
Y RAN(fll)

CONTINUE

(NUMBER)
1,N

CALL SETRAN (NUMBER)

DO 3fll I 1,N
Y = RAN(fll)

30 CONTINUE

sets a non-standard start for RAN

generates some random numbers

save the next starting value

insert the start to reproduce the
previous set of 'random' numbers.

gives the same set as previously.

To produce a random integer in a given range the following could be used

K = 1(lj0(lj*RAN«(lj)

The following sample program uses SETRAN with a non-reproducible argument.
RAN may then be called to produce a series of random numbers.

C

C
C

1fll

INTEGER HRS
CALL TIME (NOW)
DECODE (5,10,NOW) HRS, MINS
FORMAT (I2,1X,I2)
K = MINS*10(lj + HRS
THIS SCRAMBLES THE TIME
CALL SETRAN (K)
THE STARTING VALUE DEPENDS ON THE
TIME OF DAY AND IS NOT PREDICTABLE

X = RAN«(lj)

CHANGES TO LOGOUT

There have been some improvements made to the logging out procedure.

(a) Error Messages

If logout encounters problems with a user's files an error message
is given to the user and logout continues, instead of giving a
fatal stop as at present. .

129

The error messages could be any of the following:

(i) FILE DIRECTORY NOT FOUND

Logout has not been able to find the user's file directory,
and cannot reference any of the files. Therefore, no file
processing is done,

(ii) ERROR READING FILE DIRECTORY

Logout has encountered an error trying to read the user's
file directory, No further file processing is done,

(iii) FILE NOT FOUND
OPEN DIRECTORY NOT FOUND
KEEP FAILURE (PROTECTION FAILURE) FOR FILE filename
DELETE FILE BEING MODIFIED

FILE NOT OPEN FOR RENAME

These are a variety of messages which can appear for
individual files within the directory. This particular file
will not be processed but logout will continue processing
any further files on the directory,

(b) New User Question

If many users are logging in or logging out at the same time, the
accounting files can become busy, In this case. the user receives
the message

THE ACCOUNTING FILES ARE BUSY

DO YOU WISH TO CONTINUE WITH LOGOUT? (ANSWER Y OR N):

Answer Y <cr> if you wish to continue with logout

N <cr> or tC if you wish to abort logout

PLOTTER OUT OF BOUNDS

It has been found that points apparently within the valid area for
plotting sometimes give the 'Plotter Coordinates out of bounds'
message, This occurs only in the inunediate vicinity of the
boundaries and appears to be caused by rounding errors in the
calculation of the pen position, The Centre is currently working on
this problem,

In the meantime it is suggested that users limit their plotting so that
they do not attempt to use the area within 1/10" of any of the boundariesa

130

A simple way of doing this would be to move the or1g1n immediately
after opening the plot file using the plot command

CALL PLOT (0.1, 0.1, -3)

carefully controlling the pen movement at .the boundaries in the
positive X and Y directions.

MATINV ERROR

There is an error in the MATINV subroutine (classification number
D4.205 for the GE-225 and D4.505 for the PDP-I0).

The tolerance test in MATINV attempts to divide by zero in some cases,
particularly with sparse matrices. The error occurs in the second
statement before label 140 which currently reads

IF(ABS(T3)/(ABS(Tl)+ABS(T2».LT.TOL)T3=0.0

This statement should be replaced by

IF(ABS(T3).LT.(ABS(Tl)+ABS(T2»*TOL)T3=0.0

The version obtainable from the Computer Centre has now been updated
to correct this error.

EIGEN AND ZEIGEN SUBROUTINES

Ian Oliver

The subroutine EIGEN and ZEIGEN for finding the eigenvalues and
eigenvectors of arbitrary real matrices are now available for the
PDP-IO.

The calling sequences have been changed from the GE-225 version to
eliminate problems caused by a compiler bug (soon to be fixed). In
addition a tolerance value has been changed to reflect the PDP-I0
word size.

New writeups and decks are available from the Computer Centre for
EIGEN (D4.569), ZEIGEN (D4.570) and a test input/output program
TEST (D4.570).

The first card of ZEIGEN has been changed to read:

SUBROUTINE ZEIGEN (EIGVAL, EIGVEC, A, K, L, T, NVECT, ITER)

131

Also, the statement declaring EIGVAL and EIGVEC to be complex has been
placed in front of the statement dimensioning these arrays.

The following changes have also been made to the TEST program:

(i) Calling sequence changed as described above

(ii) The statement

110 FORMAT (2A3, llA6)

has been replaced by

110 FORMAT (2A3, lIAS)

Note that the new EIGEN deck incorporates the tolerance value

EP = 7.4S1E-9

S MIS

R.D. NiZsson

The Department of Civil Engineering's Symbolic Matrix Interpretative
Scheme (SMIS) which is available to PDP-IO users provides the
equivalent of a desk calculator for matrix operations.

The program was originally obtained for the University of California
(Berkeley) and has been extensively modified to provide free field
input and interactive action. It is written in FORTRAN IV with some
MACRO subroutines and can be operated via Batch or a remote terminal.
A full write-up of the program is available from the Civil Engineering
Department.

CIVIL DEPARTMENT USAGE

SMIS is mainly used in the department for the teaching of matrix
structural analysis. Here we are interested in the formulation of the
problem, but the arithmetical operations are too formidable unless the
problems are trivial. This program allows, and in fact requires, the
student to formulate the problem completely, but removes the
arithmetical labour.

GENERAL FEATURES

SMIS is an example of a problem oriented language where each input line
of data specifies an operation to be carried out and the data to be
used in the operation. This data includes symbolic names of matrices
previously stored.

132

For example, the matrix equation AX B is to be solved where

[
17.28 3. -I'J

A = 7.16 21.4 2.
2, 1. 7.8

The sequence of SMIS commands could be:

START
LOAD
17.28
2

*
A 3

3,
1

SOLVE AX = B
3

-1. 7.16 21.4
7.8

2

PRINT A *
DUPL A SA
INVERT A
PRINT A
LOAD B

FOR CHECKING PURPOSES

-1. 6 ~
PRINT B
MULT A B

*

*
3
12.4

X

SAVE A

TO LOOK
1

* NOTE
PRINT X * THE SOLUTION

IN SA FOR

AT INVERSE

A IS NOW

LATER

INVERSE A

MULT A SA ONES * CHECK HOW GOOD INVERSE WAS
PRINT ONES * SHOULD BE A UNIT MATRIX

The basic matrix operations of addition,subtraction, multiplication,
scalar multiplication, inversion and transposition are available and
eigenvalues and eigenvectors can be obtained for real symmetric
matrices. A number of submatrix operations are available plus a
number of service operations such as generation of zero and unit
matrices.

MATRICES

Storage in the PDP-lO allows approximately 20000 matrix elements
distributed amongst up to 40 different matrices. Matrices are given
names containing up to five characters. Initially only the minimum
core space is allocated and this core space is expanded as space is
required for extra matrices. Thus users with small problems do not
have to pay for any more core space than is required to accommodate
their problem.

INPUT

All input is free field with one command per line except that matrix
elements can be input using as many lines as reqUired, although it is
convenient to input one row per line. The free field input allows for
mixed alphanumeric and numeric fields and extensive error checking and
reporting is carried out so that the program is not stopped by a data
error.

The program can continue on with succeeding problems when an error is
detected making it extremely suitable for stacking student programs in
batch.

133

If desired, input can be obtained from one. or more files and transfers
can be made back and forth between commands on a file and on a.Teletype
or in a card deck. This allows the equivalent of subroutines to be
stored in a file and operated on with different sets of data.

OUTPUT

Output of results is obtained with the PRINT command which determines
an output format such that the maximum element in.a matrix is output
with seven. significant figures. If required, an E type output can be
obtained to give details of the smaller elements in the matrix.

All commands are normally echoed if run from Batch, but this feature
can be turned on and off with an ECHO command.

If desired some or all output can be directed to a file.

SAVE AND RESTORE

Any or all matrices may be saved on a file and selective restoration
made within the current program run, or at a later date if the file is
kept 0 This is useful with large matrices that are to be reused and
since individual elements may be altered, errors can be easily
corrected and the problem rerun.

DYNAMIC DATA STORAGE

One data pool is managed dynamically for all the matrices and any extra
arrays used in such routines as the invert and eigen routines. Matrix
names, sizes and positions in the data pool are stored in a table which
is searched by the command decoder to find the matrices mentioned in a
command.

When a matrix is deleted (or superseded by a new matrix with the same
name) it is squeezed out of the data pool and the table adjusted
accordingly. New matrices are always added at the end of the pool.

Only one location (ACl)) is allowed for the data pool in the program.
When space is required to expand the data pool, a MACRO subroutine is
called to obtain it. This space is allocated past the normal end of
the program (JOBFF), leaving enough space for FORTRAN to obtain its 1/0
buffers and if necessary the current core allocation for the program is
expanded. The MACRO subroutine returns an index I such that A(I) is
the location immediately before the start of the allocated data pool.
Thus the Jth location of the data pool is A(I+J).

FREE FIELD ROUTINE

This routine is written in FORTRAN and reads the input lines in 16A5
format. A MACRO subroutine is used to extract characters from the
input array and a table of words built up by scanning the array.

134

These may be alphanumeric, integer or real and an accompanying table
identifies the type of each word detected. The command decoder then
interrogates these tables to obtain and check the data required for
each command,

The input rules are:

(a) One or more blanks or a comma between words.

(b) The line is terminated by an * and anything following is a
comment,

(c) Numerics start with 0 to 9, +, -~ or. Anything else is an
alphanumeric that is either a command or a matrix name,

(d) Numerics are integers unless a , or E is included, the E being
used to enter exponents (e,g, lE-6). Data items such as matrix
sizes must be input as integers but matrix elements may be real
or integer although they are stored and operated on only as
reals,

(e) Repeated matrix elements may be input e.g, 10(0).

135

I

