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Preface

Purpose and Audience

Design

The purpose of the RT-11 Software Support Manual is to provide detailed
descriptions of the software components of the RT-11 operating system.

It is intended for programmers with experience in MACRO-11 assembly
language who are interested in system-level programming, and for all appli-
cation programmers who want to improve their technical understanding of
the RT-11 operating system. (While the RT—11 Software Support Manual is
not strictly a tutorial manual, it does provide valuable background informa-
tion for application programmers.)

This manual will be particularly useful to you if you are a system program-
mer and your job is to support RT-11 for other users, you need to use devices
that RT-11 does not already support, or you plan to alter the RT-11 soft-
ware components. This manual can help you design more efficient programs
if you are an applications programmer, especially if you plan to use the
foreground/background, extended memory, or multi-terminal capabilities of
RT-11.

NOTE

DIGITAL does not maintain software that you have changed
in any way! Altering the RT-11 software components voids
your warranty and terminates your maintenance service, so
refrain from making changes unless you have the technical
expertise to be responsible for the system afterwards.

Before you read this manual you should be familiar with the topics covered
in the RT-11 System User’s Guide and with the programmed requests docu-
mented in the RT—11 Programmer’s Reference Manual. The RT-11 Software
Support Manual contains information that can help you use system
resources and the programmed requests more effectively.

The resource that can best help you while you are using this manual — espe-
cially if you are interested in monitor internals — is the microfiche listing of
the RT-11 commented source files.

This manual consists of ten chapters and three appendixes. The first two
chapters provide an overview of the RT-11 system in general as well as
information on the components, their arrangement in memory, and their

xxiii
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gross structure. The chapters that follow describe the previously introduced
system components in greater depth.

Chapter 1 provides an overview of the history of RT-11’s development.

Chapter 2 describes how the software components are arranged in memory
and shows how the arrangement changes dynamically. It also provides an
overview of the components themselves.

Chapter 3 describes the internals of the Resident Monitor that are generally
common to the three RT-11 monitors. Topics that it covers include terminal
service, timer service, /O queuing, foreground/background considerations,
system jobs, and data structures.

Chapter 4 describes the internals of the Resident Monitor that are the basis
of extended memory systems. It provides information on how the memory
management hardware works, how RT-11 implements support for 124K
words of memory, and how to design and code application programs.

Chapter 5 covers a special feature of RT~11: the ability to use more than one

terminal, or multi-terminal support. The chapter includes an example
application program.

Chapter 6 is an introduction to interrupt service in RT-11. It is useful to pro-
grammers who need to add a device to their system configuration that is not
already supported by RT-11. The chapter defines the structure and contents
of an in-line interrupt service routine, and includes information for servic-
ing interrupts in different RT—11 monitor environments.

Chapter 7 is a logical continuation of Chapter 6. It explains the differences
between in-line interrupt service routines and device handlers. It describes
how to design, code, install, and debug a device handler. The chapter also
covers some special features of handlers and gives considerations for han-
dlers that will operate in various RT-11 monitor environments. Lastly, it
lists requirements for system device handlers, and describes the bootstrap.

Chapter 8 describes the structure and format of RT—11 files. It covers stream
ASCII, LDA, REL, OBJ, STB, and SAV files, library files, error logging files,
CREF files, and files with overlays.

Chapter 9 provides information on device directories, file storage, and for-
mats. It documents the structure of directories for random-access devices,
and shows how to repair a directory that has been corrupted. It also
describes the structure of magtapes and cassettes.

Chapter 10 describes unique attributes of various physical devices and pro-
vides information necessary for programming specifically for those devices.

Appendix A provides commented listings of three RT-11 device handlers:
RK, DX, and PC.

Appendix B explains how to convert device handlers that were written for
Version 4 of RT-11 to the current device handler format.

Appendix C contains a listing of a sample application program that uses in-
line interrupt service to control an analog-to-digital converter in a typical
laboratory situation.



Documentation Conventions

The following symbolic and vocabulary conventions are used throughout
this manual. Familiarize yourself with them before you continue reading.

Memory refers to all kinds of physical storage in the computer itself; it
includes core and semiconductor memory. It is distinguished from storage on
peripheral devices, such as disk or tape.

In all diagrams of memory, the high addresses are at the top of the picture
and the bottom of the figure represents address 0. In descriptions of data
structures and tables, low addresses and offsets are at the top of each table.

In discussions of extended memory systems, low memory refers to memory
below the 28K-word boundary. However, for LSI computers with the
MSV11-DD memory board and a special jumper installed, low memory con-
sists of the memory locations below the 30K-word boundary.

The following acronyms are used throughout this manual:

Name Meaning

USR User Service Routine
RMON Resident Monitor
KMON Keyboard Monitor

FB Foreground/Background
XM Extended Memory

SJ Single-Job

BL Baseline

EOT End-of-tape

EOF End-of-file

LEOT Logical end-of-tape
BOT Beginning-of-tape
CSwW Channel Status Word
PS Processor Status Word

For your convenience, the following table shows the octal mask used to set,
clear, or test each bit in a 16-bit word.

Bit Octal Mask
0 1
1 2
2 4
3 10
4 20
5 40
6 100
7 200
8 400
9 1000

10 2000

11 4000

12 10000

13 20000

14 40000

15 100000
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Chapter 1
Historical Overview

At its conception in 1972, RT-11 was designed to be a small, fast, easy-to-
use operating system for the PDP-11 family of minicomputers. It was devel-
oped as a single-user system for real-time and computational use; its target
applications were data acquisition, process control, and, of course, program
development.

The following sections provide an overview of the history of RT-11’s devel-
opment, showing how the operating system has evolved over the course of
eight years and four major releases. For a comprehensive overview of the
hardware, software, and documentation components of today’s RT-11 oper-
ating system, see Chapter 1 of the RT-11 System User’s Guide.

The year 1971 was an exciting time for the computer industry. The PDP-11
computer was only a year old and DIGITAL was making computing power
feasible for thousands of applications with the introduction of this relatively
inexpensive 16-bit minicomputer.!

The software then available for the PDP-11 consisted of PTS (Paper Tape
Software, which included the PAL-11S Assembler) and DOS-11 (a batch-
oriented system). Clearly, the situation called for a low-cost, interactive sys-
tem that could be used for real-time and computational applications, and for
program development.

A popular operating system for the PDP-8, called 0S/8, was the design
model for the new PDP-11 operating system, tentatively called OS-11. The
new operating system was designed to be a small, single-user, interactive
system with event-driven real-time I/O, that would run on PDP-11 comput-
ers with 28K words of memory or less. It was designed to have a simple,
modular structure; device handlers would be used for I/O transfers so appli-
cation programming could be device-independent, and files would be stored
in contiguous blocks on disk so record management would not be a program-
ming concern.

1.1 Version 1

Actual development work on OS-11 began in the fall of 1972. A group of five
system programmers and one technical writer set about refining the design
for 0S-11 and producing the software and the manual. The groundwork was
laid to make OS-11 compatible with OS/8 and TOPS-10.

1 Computer Engineering: A DEC View of Hardware Systems Design, by C. Gordon Bell, J.
Craig Mudge, and John E. McNamara, Digital Press, 1978.



The first version of OS-11 included the single-job monitor and a set of pro-
gram development tools: EDIT, MACRO-11, LINK, ODT, PIP, PATCH,
EXPAND and ASEMBL (tools for developing macros in 8K-word systems),
and PIPC (for cassettes). BASIC-11, the first product to require RT-11 as its
base system, was also part of Version 1. The single-job monitor provided nec-
essary services to running programs and supervised the queued /O system.
The operating system supported seven devices: RK, LP, TT, CT, PR, PP, and
DT.

OS-11 was renamed first to RTPS-11 (Real-Time Programming System),
then to RT-11 (Real Time). Version 1 of RT-11 was completed in the fall of
1973, and support for the GT40 video display was added in early 1974.

1.2 Version2

It soon became apparent that RT-11 was successful. More system program-
mers and technical writers were added to the group, and development for
another release was begun. Versions 2, 2B, and 2C brought some significant
new features to the operating system. A new monitor was developed that
permitted two jobs to run in a foreground/background environment. Support
was added for new peripheral devices, including MM, MT, CR, DP, RF, DX,
and DS. A number of utility programs were added to improve the set of pro-
gram development tools. These included CREF, LIBR, PATCHO, DUMP,
FILEX, SRCCOM, and BATCH. FORTRAN IV was released with Version 2,
and the operating system software included a library of FORTRAN-callable
subroutines, called SYSLIB. Version 2 was completed in the fall of 1974; the
2C update was released in early 1976.

1.3 Version3

Version 3 of RT-11 was another major release. Most significant was the
development of the extended memory monitor from a conditional assembly
of the foreground/background monitor source files. This permitted RT-11 to
support systems with up to 124K words of physical memory. Products such
as FORTRAN IV, CTS-300, and Multi-User BASIC-11 took advantage of
this feature in ways that were transparent to application programs. Support
was included for multi-terminal systems as well, and device error logging
was implemented. DCL (DIGITAL Command Language) was developed so
that almost all system programs could be accessed by English-like monitor
commands. Indirect files provided an easy-to-use alternative to BATCH.

Again, support was added for new DIGITAL peripheral devices: DL, DM,
DY, NL, and PC (which replaced PR and PP). And, more system utility
programs were introduced: PIP was divided into PIP, DUP, and DIR. Other
new utilities included PAT, FORMAT, and RESORC. System generation
was designed to permit customization and provide system flexibility. The
TECO editor was included in the distribution kits for the first time. Version
3 was completed in the fall of 1977, and the 3B update was made available in
early 1978.

1-2 Historical Overview



14 Version4

With Version 4, RT-11 could be called a mature product. The specific goals
of this development effort were to make RT-11 easier to install and main-
tain. Tools were provided, in the form of BINCOM, SIPP, SRCCOM, and
SLP, to make the generation and installation of patches almost automatic.
System jobs (special foreground jobs provided by DIGITAL) handled error
logging and file queuing. Monitor files were separated from system device
handler files, providing greater flexibility while saving storage space. Not
least among the accomplishments was a change to the linker that permitted
overlays to reside in extended memory rather than on a mass storage device.
The KED and K52 Keypad Editors were included in the distribution kits.

Version 4 was completed in early 1980. By then there were well over seven-
teen thousand RT-11 systems installed around the world, making this oper-
ating system a successful venture indeed.

1.5 Version5

Nothing stands still in the computer industry. New hardware and expand-
ing user needs create demands for up-to-date software. Version 5 of RT-11,
released in the spring of 1983, included support for new hardware such as
MSCP and the MICRO/PDP-11. The extended memory monitor was
changed to support 22-bit memory addressing on Q-bus central processors
and to allow use of the .FETCH programmed request under the extended
memory monitor. A new virtual memory handler allowed extended memory
to be used as though it were a disk. The LD handler was added to support
logical disks. The backup utility BUP and the indirect file processor IND
were added to the distribution kit, and SYSGEN was rewritten to make
installation and customization still easier. New DCL commands and op-
tions were added, as well as CCL (Concise Command Language) and UCL
(User Command Linkage). At the same time, however, a minimum system
could still run in 16K words of memory, maintaining the RT-11 tradition of
being small, fast, interactive, and easy to use.

Version 5.1, July 1984
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Chapter 2
System Components and Memory Layouts

This chapter introduces the components of the RT-11 system that can be
memory resident. It provides maps of physical memory that show where the
components are located, and it indicates how their positions can change
dynamically. The components this chapter covers are divided into two
groups: static components, which have a relatively fixed position in memory,
and dynamic components, whose locations are changeable.

The components are arranged to leave the most space available for user pro-
grams and to be flexible. Flexibility is obtained by positioning the compo-
nents after determining the total amount of memory at bootstrap time.
Normally, you do not have to take any special steps to move RT—11 from one
PDP-11 computer to another.

2.1 Static Components

The static components have fixed locations in memory. Their actual
addresses vary from one PDP-11 computer to the next, depending on how
much memory each computer has available. The static components or areas
are as follows:

Trap vectors

System communication area
Interrupt vectors

I/O page

System device handler

Resident Monitor

N e N

Background job

2.1.1 Trap Vectors

Table 2-1 shows the memory locations from 0 to 36, an area that contains
the trap vectors. A plus sign (+) marks the locations that are reserved for
use by RT-11. You should not attempt to modify these locations; a bitmap
protects them each time you load a program. An asterisk (*) marks the loca-

tions that your programs can use. Figure 2-1 is a summary of the trap vector
area information.
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Table 2-1: Trap Vectors

Location

Contents

0,2+

4,6 +

10,12+

14,16*
20,22*
24,26*

30,32+
34,36*

Monitor restart, executes the .EXIT request and returns control to the
monitor (has additional uses in XM systems).

Odd address and bus time-out trap; RT-11 sets this to point to its inter-
nal trap handler.

Reserved instruction trap; RT-11 sets this to point to its internal trap
handler.

BPT (breakpoint trap), T-bit trap (used by debugging utility programs).
IOT, input/output trap.

Powerfail and restart trap. Your programs can use this location unless
you included support for powerfail restart through system generation. If
your system includes the powerfail restart feature, locations 24 and 26
are reserved for use by RT-11.

EMT, emulator trap; RT-11 uses this for programmed requests.

TRAP instruction. Note that you cannot use the TRAP instruction in
assembly language subroutines linked with FORTRAN IV, DIBOL,
BASIC-11, or MU BASIC-11 programs; these languages use the TRAP
instruction for internal error reporting.

Figure 2-1: Trap Vector Area

MEMORY
28K
/ LOCATION CONTENTS
/ 14,36 TRAP INSTRUCTION
/
/ 10,32 EMT INSTRUCTION
/
/ 24,26 POWERFAIL AND RESTART
/
/ 20, 22 10T TRAP
// 4,16 BPT TRAP
// 10,12 RESERVED INSTRUCTION TRAP
/ 4.6 0ODD ADDRESS/BUS TIME-OUT
36
TRAP VECTORS 0,2 MONITOR RESTART
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2.1.2 System Communication Area

The memory locations from 40 through 57 are called the system communi-

cation area.

This area holds information about the program currently

executing, as well as certain information normally used only by the monitor.

The diagram in Figure 2-2 is a summary of the system communication area
information. Table 22 describes the contents of each location.

Figure 2-2: System Communication Area

MEMORY
28K
// LOCATION CONTENTS
/ 57,56 FILL COUNT l FILL CHARACTER
/
/ 54 RMON STARTING ADDRESS
/
/ 53,52 USER ERROR BYTE MONITOR ERROR BYTE
/
// 50 HIGHEST ADDRESS AVAILABLE TO PROGRAM
// 46 USR LOAD ADDRESS: NORMALLY 0
/ 44 JOB STATUS WORD (JSW)
56 | SYSTEM
40 | coMMUNICATION AREA 42 INITIAL VALUE OF STACK POINTER
36 S~
. TRAP VECTORS ~<_ 40 PROGRAM START ADDRESS

Table 2-2: System Communication Area

Location

Contents

40,41

42,43

Start address of job. When you link a file to create an RT-11 executable
image, the linker sets the word at address 40 in the program’s file to the
starting address of the program. This word is lopded into memory location
40 at run time. When a foreground job executes, the FRUN processor relo-
cates this word to contain the actual starting address of the program.

Initial value of stack pointer. If the user program does not set this value
with an .ASECT directive, the value defaults to 1000 or to the top of the
program’s abso'ute section, whichever is larger. You can use the linker /
B:n option to set the initial value of the background job’s stack pointer. If a
foreground program does not specify a stack pointer in this word (by using
an .ASECT directive), the FRUN processor allocates a default stack of 128
decimal bytes immediately below the program, and the initial stack
pointer value is 1000, relative to the base of the foreground job.

(Continued on next page)
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Table 2-2: System Communication Area (Cont.)

Location Contents

44,45  Job Status Word (JSW). This is a flag word for the monitor. The monitor
maintains some of the bits itself, and your program can set or clear others.
See Section 2.1.2.2 for more information on the JSW.

46,47 USR load address. This word is normally 0, but you can set it in the file or
at run time to any valid word address in your program. If this word is 0,
the USR loads in its default location through an address contained in off-
set 266 of RMON. If this word is not 0, the USR loads at the address it spe-
cifies, unless the USR is set NOSWAP. This location is cleared by an exit
to KMON (via .EXIT, CTRL/C, or fatal error).

50,51 High memory address. In this word the monitor maintains the highest
address your program can use. The linker sets this word initially to the
high-limit value. You can modify it by using the .SETTOP programmed
request. Your program must never modify this word directly. In XM sys-
tems, locations 50 and 51 in the file contain the address that is the top of
the root section plus the low memory (/O) overlays. In memory, locations
50 and 51 contain the same value unless the program issues a .SETTOP.
In this case, these locations contain the highest available virtual address
(see Section 4.4.4.6).

52 EMT error code. If a monitor request results in an error, the code number
of the error is always returned in byte 52 in memory and the carry bit is
set. Each monitor call has its own set of possible errors. Byte 52 in the job’s
file has a different meaning (see Chapter 8).

NOTE

Always address location 52 as a byte, never as a word, since
byte 53 has a separate function.

53 User program error code (USERRB). If a user program encounters errors
during execution, it indicates the error by using this byte in memory. See
Section 2.1.2.1 for more information about this byte. See Chapter 8 for its
meaning in the job’s file.

54,55 Address of the beginning of the Resident Monitor. RT-11 always loads the
monitor into the highest available memory locations of low (rather than
extended) memory; this word in memory points to its first location. Never
alter this word — doing so causes RT-11 to malfunction. See Chapter 8 for
the meaning of this word in the job’s file.

56 Fill character (seven-bit ASCII). Some high-speed terminals require fill
(null) characters after printing certain characters. Byte 56 in memory
should contain the ASCII seven-bit representation of the character after
which fills are required. See Chapter 8 for the meaning of this bit in the
job’s file.

57 Fill count. This byte in memory specifies the number of fill characters that
are required. The number of characters is determined by hardware. If
bytes 57 and 56 are 0, no fill is required. See Chapter 8 for the meaning of
this byte in the job’s file. For more information on the terminals that
require fill characters, see the RT-11 Installation Guide.

24 System Components and Memory Layouts



2.1.2.1 User Error Byts — The Keyboard Monitor examines the user error
byte when a program terminates. If your program has reported a significant
error in this byte, KMON can abort any indirect command files in use. This
prevents spurious results from occurring if subsequent commands in the
indirect file depend on the successful completion of all prior commands.

A program can exit in one of the following states:
® Success

® Warning

® Error

® Severe error

® Unconditionally fatal error

The program status is success when the execution of the program is free of
errors.

The warning status indicates that warning messages occurred, but the
program ran to completion.

The error status indicates that a user error occurred and the program did
not run to completion. This level is also used by RT-11 system programs
when they produce an output file even though it may contain errors. For
example, a compiler can use the error level to indicate that an object file
was produced, but the source program contains errors. Under these condi-
tions, execution of the object file will not be successful if the module con-
taining the error is encountered.

The severe status indicates that the program did not produce any usable
output, and any command or operation depending upon this program out-
put will not execute properly. This type of error can result when a resource
needed by the program to complete execution is not available — for exam-
ple, insufficient memory space to assemble or compile an application
program.

The unconditionally fatal status indicates that not only has an operation
completely failed, but that the integrity of the monitor itself is
questionable.

Utility programs and the Keyboard Monitor always set the user error byte
to reflect the result of each monitor command you issue. Normally, indirect
command files abort when there has been a monitor command error. By
setting the error level to unconditionally fatal with the SET ERROR
NONE command, you guarantee that indirect command files will continue
to execute despite individual monitor command errors. Only uncondition-
ally fatal errors that indicate problems within the Keyboard Monitor itself
abort indirect files at the SET ERROR NONE level. Table 2—3 shows the
bits of byte 53, their status, and the status code printed by the RT-11 sys-
tem utility program messages.
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Table 2-3: User Error Byte

Bit Mask Status RT-11 Message
0 1 Success ?prog-I-text, or none
1 2 Warning ?prog-W-text
2 4 Error ?prog-E-text
3 10 Severe ?prog-F-text
4 20 Fatal ?prog-U-text

Bits 5 through 7 of the user error byte are reserved for DIGITAL'’s future
use; do not use them in your programs. Programs should never clear byte 53,
and should set it only through a BISB instruction, as the following example
shows. If more than one bit is set at any given time, the highest bit is the one
that RT-11 recognizes.

USERRB
Succss
WARNS

ERRORS
SEVERS$
UFATLS

*

LU T T TR TR 1]
BN—-Un
w

N -
o O

.

ERROR: BISB #ERRORS ;@#USERRB iSET ERROR STATUS
CLR RO iHARD EXIT
JEXIT

Note that this byte is meaningful only for the Keyboard Monitor and for
background jobs. This is because it was designed to be used by system utility
programs and language processors, which run as background jobs. A fore-
ground job can set it, but that action has no effect on the system.

21.2.2 Job Status Word (JSW) — Bytes 44 and 45 make up the Job Status
Word, or JSW. Table 2—4 shows the meanings of the bits in this word. The
bits marked with an asterisk (*) can be set by a user program during execu-
tion. Bits marked with a plus sign (+) are set at load time. Note that some
bits can be set at both load and run time. Unused bits are reserved for future
use by DIGITAL. Figure 2-3 shows a summary of the JSW.

Table 2—4: Job Status Word (JSW)

Bit
Number Meaning When Set
15 USR swap bit (SJ only). The monitor sets this bit when a program does
not require the USR to swap. (See Section 2.2.3 for details on the USR.)
Your program must not alter this bit.
14+* Lower-case bit. Disables automatic conversion of typed lower-case to

upper-case characters. EDIT sets it when you type the EL command.

(Continued on next page)
Version 5.1, July 1984
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Table 2-4: Job Status Word (JSW) (Cont.)

Bit
Number Meaning When Set

13 +* Reenter bit. Indicates that a program can be restarted from the terminal
when you type the REENTER command.

12+* Special mode terminal bit. Indicates that the job isin a special keyboard
mode of input. Refer to the explanation of the .TTYIN and .TTINR pro-
grammed requests in the RT-11 Programmer’s Reference Manual for
details.

11+* Pass line to KMON bit. Indicates, when a program exits, that the pro-
gram is passing a command line to KMON. This action causes any open
indirect file to abort. The command line should be stored in the CHAIN
information area, locations 500 through 776. RO must be cleared before
exiting. Refer to the example program for .EXIT in the RT-11
Programmer’s Reference Manual. This bit is not available to foreground
or system jobs under the FB and XM monitors.

10 + Virtual image bit (XM only). Indicates that the job to be loaded is a vir-
tual job. You must set this bit yourself in the executable file before you
attempt to run the program. Do this at assembly time by using an
.ASECT directive and modifying the JSW, or before run time by patching
this location in the file. See Chapter 4 for more information on virtual

jobs.

9 Overlay bit. This bit is set by the linker if the user program uses the
linker overlay feature.

8+ CHALIN bit. This bit can be used in two ways. If it is set in a job’s save

image, the monitor loads words 500 through 776 from the save file when
the job is started, even if the job is entered with CHAIN. (These words
are normally used to pass parameters from one job to another across a
.CHAIN))

The monitor sets this bit when the job is running if and only if the job
was actually entered with a .CHAIN.

T+* Error halt bit (SJ only). Indicates that the system should halt when an I/
O error occurs. If you want the system to halt when a device /O error
occurs, you should set this bit.

6+* Inhibit terminal wait bit (FB and XM only). Inhibits the job from enter-
ing a console terminal wait state. For more information, refer to the sec-
tions concerning .TTYIN, .TTINR, .TTYOUT and .TTOUTR in the
RT-11 Programmer’s Reference Manual.

5+* Special chain exit bit. If set when a program exits, text in the chain area,
locations 510 to 777, is passed to KMON and appended to the command
buffer. RO must be cleared before exiting. This does not abort an open
indirect file. Refer to bit 11, above. If you pass multiple command lines,
any line containing the @ indirect file command must be the last line of
the series.

4+* Disable single-line editor bit. Setting this bit disables all single-line edi-
tor functions.

(Continued on next page)
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Table 24: Job Status Word (JSW) (Cont.)

Bit
Number Meaning When Set

3+* Nonterminating .GTLIN bit. When bit 3 of the JSW is set and your pro-
gram encounters a CTRL/C in an indirect command file, the .GTLIN
request collects subsequent lines from the terminal. If you then clear bit
3 of the JSW, the next line collected by the .GTLIN request is the CTRL/
C in the indirect command file; this causes the program to terminate.
Further input will come from the indirect command file, if there are any
more lines in it. The LINK, DUP, SIPP, SLP, QUEMAN, SRCCOM, and
LIBR utilities make use of this feature. To activate it in an indirect file,
put an uparrow (4) followed by a C on a line by itself in the file. This
causes the utilities to accept the response from the terminal instead of
taking it directly from the file.

The following indirect file shows how to obtain a response from the
terminal:

RUN LINK
TEST,TEST =MOD1,LIB/
A

Cc

All further input to the linker will come from the terminal, as a result of
the AC in the indirect command file.

0-2 Reserved.

Figure 2-3: Job Status Word (JSW) Summary

15 14°%+ 13%+ 12°+ 117+ 10+ 9 8+
1= 1= 1= 1= 1= 1= )=
NO USR LOWER REENTER T PASS VIRTUAL OVERLAID CHAIN
SWAPPING CASE CAN SPECIAL LINE "0 Jos Jos BIT
(SJONLY) ENABLED START JOB MODE KMON (XM ONLY)
1= 1= 1= 1= NON-
HALT ON NOTT SPECIAL DISABLE TERMINATING RESERVED
/0 ERROR | WAIT STATE .CHAIN SINGLE-LINE |.GTLIN
(SJONLY) EXIT EDITOR

7%+ 6%+ 5%+ 4%+ 3% 2 1 0

BITS MARKED WITH AN ASTERISK (*) ARE BITS THAT YOU CAN SET DURING EXECUTION.
BITS MARKED WITH A PLUS SIGN (+) CAN BE SET AT LOAD TIME

2.1.3 Interrupt Vectors

Table 2—5 shows the locations in the low memory area that are reserved for
interrupt vectors. Figure 2—4 shows how the interrupt vector area relates to
the rest of memory.

Version 5.1, July 1984
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Table 2-5: Interrupt Vectors

Location Contents
60,62 DL11: Console terminal input

64,66 DL11: Console terminal output

70,72 PC11: Paper tape reader

74,76 PC11: Paper tape punch

100,102 KW11-L: Line clock

104,106 KW11-P: Programmable clock

110,112 Reserved!

114,116 Memory system errors: parity, cache, and uncorrectable ECC errors
120,122 XY11: X/Y Plotter?

124,126 DR11-B: DMA interface?

130,132 ADO1: Analog to digital subsystem?

134,136 AFC11: Analog input subsystem?

140,142 AALl1: Digital to analog subsystem?

144,146 AAL11: (requires two vectors)?

150,152 MSCP device number 1

154,156 MSCP device number 0

160,162 RL11/RLV11: RLO1/RLO2 Disk cartridge

164,166 Reserved

170,172 LP/LS/LV11 Line printer number 12

174,176 LP/LS/LV11 Line printer number 22

200,202 LP/LS/LV11 Line printer number 0 (includes LA180 parallel interface)

204,206 RH11,RH70: RS03/RS04 Fixed-head disk;
RF11: Fixed-head disk

210,212 RK611/RK711: RK06/RK07 Disk cartridge
214,216 TC11: DECtape
220,222 RK11/RKV11: RKO05 Disk cartridge

224,226 RH11/RH70: TU16, TE16, TU45 Magtape;
TM11: TU10/TE10 Magtape;
TS03: Magtape
TS11: Magtape first controller (others float)
TS05/TSV05: Magtape

(Continued on next page)
! This vector is used by RSTS/E. Take this into consideration if you run both RT-11 and
RSTS/E on the same PDP-11.

% This vector is assigned to a hardware device that is optional in RT-11. If your configuration
includes this device, use this vector for it.
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Table 2-5: Interrupt Vectors (Cont.)

Location Contents

230,232 CD11/CM11/CR11: Card reader
234,236 UDC11: Digital control subsystem?
240,242 PIRQ, (programmed interrupt request)?
244,246 FPP or FIS floating-point exception
250,252 KT11: Memory management fault

254,256 RP11: RP02/03 Disk;
RH11/RH70: RP04/05/06/RM02/03 Disk

260,262 TA11: Cassette tape

264,266 RX11/RXV11/RX211/RX2V1: RX01, RX02 Diskette
270,272 LP/LS/LV11 Line printer number 32

274,276 LP/LS/LV11 Line printer number 42

300,302 Start of thefloating vector area

320,322 VT11/VS60 Graphics terminal (requires three vectors)
324,326 VT11/VS60

330,332 VT11/VS60

2 This vector is assigned to a hardware device that is optional in RT-11. If your configuration
includes this device, use this vector for it.

3 This vector is assigned to hardware that is not supported by RT-11.
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Figure 2-4: Interrupt Vector Area
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2.1.4 1O Page

The highest 4K words! of addressing space in PDP-11 computers are
reserved for device control, status, and data buffer registers. This area is
called the I/O page. In addition to the device registers, it also contains the
Processor Status word (except on the LSI-11/02, PDP-11/03, and PDT), and,
for some processors, the system’s general registers (RO through R5), the
stack pointer (R6), and the program counter (R7). Locations in the I/O page
are directly addressable by application programs and system software, but
since they are bus addresses and not memory locations, they cannot be used
to store code and data. Figure 2-5 shows where the /O page is addressed in
relation to the rest of the system components. You can find more information
on the I/O page and the device registers for your own processor and peripher-
als in the PDP—-11 Processor Handbook, the PDP-11 Peripherals Handbook,
the Microcomputer Processor Handbook, the Memories and Peripherals
Handbook, and in most hardware manuals.

! An LSI-11 with MSV-11DD and memory jumper has a 2K-word /'O page and 30K words of
regular memory. Throughout this manual, however, a 4K-word I/O page is assumed.
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Figure 2-5: 1/0 Page

1/0 PAGE \
\
\ \
28K MEMORY \\
\ \
\ \
\ \
\ \
\ \
\ \
\
\ BUS ADDRESS CONTENTS
\\ S 776 PROCESSOR STATUS WORD
\ ” {(FOR SOME PROCESSORS)
\ .
\ .
\ .
\
\ 777566 CONSOLE TERMINAL
\ . INTERFACE
\ 777 560
\ R
\\ .
\ . DEVICE REGISTERS
\ .
\ .
\
476 \
60 | INTERRUPT VECTORS \ 763 776- TOP OF FLOATING ADDRESSES
56 [sysTeEm \
40 | COMMUNICATION AREA 760010 START OF FLOATING ADDRESSES
36
o TRAP VECTORS 760 000 START OF 1/0 PAGE

2.1.5 System Device Handler

The system device handler is the handler for the device from which the

system was bootstrapped. Chapter 7 describes the structure of a system
device handler in detail.

At bootstrap time, the monitor is linked together with the system device
handler file found on the system volume. The system device handler is
loaded into memory first, immediately below the /O page. The Resident
Monitor is loaded below the system device handler. Once it is read into mem-
ory, the system device handler remains resident and does not change its

location. Figure 2-6 shows where the system device handler resides in
memory.
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Figure 2-6: System Device Handler
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2.1.6 Resident Monitor (RMON)

The Resident Monitor (RMON) is the RT-11 monitor component that is
always resident in memory. When you bootstrap an RT-11 system, the
bootstrap routine determines how much main memory is available. RMON
loads at the highest possible low memory address, just below the system
device handler. It does not move during system operation.

RMON contains routines to handle the programmed requests in RT-11. It
also contains the background job’s impure area in FB and XM systems, the
error processor, timer routines, console terminal service routines, USR swap
routines, and other monitor functions. Figure 2-7 shows a summary of the
contents of the Resident Monitor. In the figure, components marked with an

asterisk (*) are not part of the SJ Resident Monitor. See Chapter 3 for more
information on the Resident Monitor.
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Link maps of the distributed RT-11 monitors (base-line, single-job, and
foreground/background) are part of the distribution kit. They exist as files
named RTBL.MAP, RTSJ.MAP, RTFB.MAP, and RTXM.MAP. Table 2-6
lists the p-sects that make up the Resident and Keyboard Monitors.

Figure 2-7: Resident Monitor (RMON)

(AN ASTERISK () MARKS ITEMS THAT ARE
NOT NORMALLY PART OF THE SJRESIDENT

MONITOR.)
1/0 PAGE /// SYSTEM STACK
28K MEMORY /// MULTI-TERMINAL ROUTINES (ONLY IN MULTI-TERMINAL SYSTEMS)
gﬁ/ﬁggummen il XM PROGRAMMED REQUESTS * (XM ONLY)
RESIDENT MONITOR CONTEXT SWITCH ROUTINE *
\ FORK PROCESSOR
\\ COMMON INTERRUPT ENTRY AND EXIT
\\ CLOCK INTERRUPT HANDLER
\\ 1/0 QUEUE MANAGER
\\ MESSAGE HANDLER *
\\ TT HANDLER *
\\ TTY 1/0 INTERRUPT HANDLERS
\\\ PROGRAMMED REQUESTS (SCATTERED ABOVE)
\\ EMT DISPATCHER
\ ERROR PROCESSOR
476 \
60 | INTERRUPT vECTORS \ BACKGROUND IMPURE AREA
38 TRAP VECTORS \ FIXED OF FSETS
Table 2-6: Monitor P-sects
P-sect Name Contents
RT11 Keyboard Monitor
RMNUSR USR buffer and code
RTDATA Resident Monitor fixed offsets and database
OWNER$ $SOWNER table
UNAM1$ SUNAM]1 table
UNAM2$ $SUNAM?2 table
PNAMES$ $PNAME table

(Continued on next page)
Version 5.1, July 1984
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Table 2-6: Monitor P-sects (Cont.)

P-sect Name Contents
ENTRY$ $ENTRY table
STAT$ $STAT table
DVREC$ $DVREC table
DVINT$ $DVINT table
MTTY$ Multi-terminal terminal control blocks
RMON Resident Monitor
XMSUBS Extended Memory routines
MTEMT$ Multi-terminal programmed requests
MTINTS$ Multi-terminal interrupt service
STACKS$ Resident Monitor stacks (not in SJ)
PATCH$ Patch space
OVLYnn Keyboard Monitor overlays containing command processors

2.1.7 Background Job

The user job in an SJ system and the background job in an FB system are
essentially identical for the purpose of this discussion. The RT-11 utility
programs, such as PIP, DUP, and DIR, run as user jobs. In FB systems, they
run as background jobs. Figure 2—-8 shows the general structure of a back-
ground job, as well as its relative location in memory.

As you can see from Figure 2-8, the background job usually begins loading
into memory at location 1000, and loads up to its high limit. There are three
ways in which RT-11 can load a background job: RUN, R, and .CHAIN.
They are described in the following three sections.

2.1.7.1 RUN Command — One way to load a job is to use the keyboard moni-
tor RUN command. The RUN command is the same as the GET and START
commands combined. First, if the SAV file is not on the system device, RUN
(or GET) loads the handler for the proper device. When this occurs the
Keyboard Monitor and the USR, which normally occupy the space above the
background job and below RMON, relocate themselves, if necessary. For
more information on the USR and the Keyboard Monitor, see later sections
of this chapter.

The space available for background job loading consists of the background
job area, the space occupied by KMON, and the space occupied by the USR
(unless the USR is set to NOSWAP). If the job needs more space than these
three areas, an error message prints and then control returns to the
Keyboard Monitor.
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Figure 2-8: Background Job
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Once the job passes the size tests, RUN loads memory locations 0 through
476 from the file, if they are not protected. To check for protection, RUN
looks at the bitmap in RMON, and does not load any locations that are pro-
tected either by RMON or by another job.

Next, RUN loads all the memory locations from 500 through 776 from the
file. This area is the default stack for the background job.

To load locations 1000 and up, RUN examines the core control block, called
the CCB, which starts at location 360 in the job file. The CCB is a bitmap
created by the linker in which each bit represents one block in the file. When
the linker takes data out of the OBJ file to go into the SAV file, it sets the
CCB bit for each block of the SAV file that actually contains code or data.
For example, if you link a file with a base address of 2000, the locations in
your file from 1000 through 1776 do not contain data, and therefore the
linker does not set the corresponding bit in the CCB. RUN loads blocks from
the file into memory only if the corresponding CCB bits for them are set.
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If a block fits in memory in the area below KMON that is reserved for the
background job, RUN loads it directly. If a block would overlay either
KMON or the USR, RUN copies the block out to the disk file SWAP.SYS.
This process continues until the entire file is loaded into memory, or into
memory plus SWAP.SYS. SWAP.SYS is just large enough to hold the
amount of program code that would overlay the KMON and the USR.

Finally, RUN (or START) jumps to RMON. If SWAP.SYS is in use, RMON
reads its contents into memory, overlaying KMON and possibly the USR as
well. Then RMON starts the program’s execution. Figure 2-9 summarizes
how the RUN command loads a job image into memory.

If SET EXIT SWAP is in effect when the program terminates, RMON reads
KMON and the USR back into memory from the monitor .SYS file. The
memory area up to the bottom of KMON contains the background job image.
If the job overlaid KMON, the remainder of the job image is written out to
SWAP.SYS. This procedure allows the Examine and Deposit commands to
operate on the job image on disk, even though KMON has written over the
job’s locations in memory, and the RESTART command can restart the
program.

2.1.7.2 R Command — The R command is similar to the RUN command.
One initial difference, however, is that the file to be loaded must reside on
the system device (SY:). The reason for this restriction is that the R com-

mand is not capable of loading another device handler in order to read the
file.

The R command loads memory locations 0 through 776 the same way the
RUN command does. It has a different procedure for loading locations 1000
and up. The R command ignores the core control block in the file and it sets
up parameters for RMON. RMON loads the rest of the file (up to its high
limit; it does not load overlays) even if it overlays KMON and the USR. It
ignores the file SWAP.SYS. Figure 2-10 summarizes how the R command
loads a job image into memory.

If the job is a virtual job, the monitor creates for the job a virtual memory
partition, a static window and static region definition block, and then sets up
the user mapping registers. At this point it starts the job’s execution. (See
Chapter 4 for more information on virtual jobs.)

As with the RUN command, jobs (excluding virtual jobs) loaded with R use
the SWAP.SYS file, if necessary, at program termination so that the
Examine and Deposit commands function correctly. Note that if a job issues
a .SETTOP request to lower its high limit before it exits, it may prevent the
monitor from writing SWAP.SYS.

2.1.7.3 .CHAIN Request — The third way to load a job is to chain to it from
another job. The first job issues the .CHAIN programmed request to do this.
The second job can use information in memory locations 500 through 776
that was placed there by the first job. Consequently, the only difference
between loading a job with the RUN command and starting a job by chain-
ing to it is that chaining does not load memory locations 500 through 776

from the second file unless you set the chain bit in the JSW of the second file
at assembly time.
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Figure 2-9: RUN Command
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Note that in XM systems, a virtual job cannot pass information when chain-
ing to another job. In addition, you cannot chain to a virtual job. (See
Chapter 4 for more information on virtual Jjobs.) Note also that chaining to a
FORTRAN job does not preserve channel information from the previous job.
This is because FORTRAN itself closes the channels and discards the
impure area.
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Figure 2-10: R Command
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2.2 Dynamic Components

Dynamic components do not always load into fixed places in memory. Once
loaded, some of them can continue to shift location based on the state of the
rest of the system. The dynamic components and areas are as follows:

® Device handlers (device drivers) and free space
® Foreground and system jobs
® User Service Routine

® Keyboard Monitor

As you read about the rest of the dynamic components, you will also learn
how the system manages free space in memory. You have already seen how
the system device handler and the Resident Monitor load at the highest pos-
sible addresses, and how the background job begins loading at location 1000
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and up. The strategy behind the way the system manages free memory is
that it attempts to make the most space available for foreground and back-
ground application jobs.

Figure 2-11: SJ System with Two Loaded Handlers
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2.2.1 Device Handlers and Free Space

Device handlers (drivers) are routines that provide the interface to the
computer’s hardware devices. The handlers drive, or service, peripheral
devices and take care of moving data between memory and devices. Chapter
7 describes device handlers in greater detail.

RT-11 uses a dynamic scheme to provide memory space for loaded handlers,
foreground jobs, system jobs, indirect file and command line expansion, and
the display text scroller. Memory is allocated in the region above the
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KMON/USR section and below RMON. If there is not enough memory in
this region (initially, after the system is bootstrapped, there is none), mem-
ory is taken from the background region by “sliding down” the KMON and
USR the required number of words.

When memory allocated in this manner is released, the memory area is
returned to a singly-linked free memory list, the head of which is located in
RMON. Any contiguous blocks are concatenated into a single larger block. A
block found to be contiguous with the KMON/USR is reclaimed by “sliding
up” the KMON/USR, thus removing the block from the list.

Figure 2-12: SJ System with One Handler Unloaded
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Figure 2-11 shows an SJ system with a small application job and two loaded
device handlers. When you issue the LOAD monitor command the handler
loads into the memory area just above the USR and KMON. The USR and
KMON slide down in memory to provide the handlers with enough space,
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leaving less space for the user program. The GT ON command is similar to
the LOAD command, except that it specifically loads the VT11/VS60 video
display handler. The GT handler is located in a Keyboard Monitor overlay
instead of a .SYS file on a storage volume. Except for the fact that it is not
stored as a separate handler file on a mass storage device, it functions the
same as other handlers.

Once handlers are brought into memory, they do not move up or down, as
the USR and KMON do. Figure 2-12 shows the system after the monitor
UNLOAD command has removed one handler from memory. In the figure,
the free space above handler #2 has not been reclaimed and is available for
later use. A handler that is the same size as the empty space, or smaller, can
be loaded there without causing any other components to move.

Figure 2-13: SJ System with Both Handlers Unloaded
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Figure 2-13 shows the system after the second handler was unloaded. This
time there is free space directly above the USR (the space formerly occupied
by the two handlers), so the USR and KMON slide up into it, making more
space available for the user program. The GT OFF command is similar to
the UNLOAD command, except that it specifically unloads the VT11/VS60
video display handler.

2.2.2 Foreground and System Jobs

In an FB or XM system, foreground jobs and system jobs are essentially
identical. A system job is simply a special kind of foreground job that
DIGITAL provides for you. The four RT-11 system jobs in the FB and XM
environments are the error logger (ERRLOG), the file queuing program
(QUEUE), the transparent spooler program (SPOOL), and the virtual ter-
minal communication program (VICOM). Figure 2-14 shows the general
structure of a foreground job, as well as its relative location in memory.
Handlers loaded after the foreground job are placed below it in memory,
and above the USR. (See Chapter 3 for more information on foreground and
system jobs.)

Figure 2-14: Foreground Job
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2.2.2.1 Differences Between Foreground and Background Jobs — There are
some significant differences between foreground and background jobs.

1. The impure area (described in Chapter 3) for the foreground job is located
immediately below the job area itself. For a background job, the impure
area is always in the Resident Monitor.

Version 5.1, July 1984
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2. Another major difference is that a foreground job cannot dynamically
change its memory allocation: the job is a fixed size. You can only change
the size at FRUN time by using the /BUFFER:n option to increase the
memory allocation. (Note that this option is ignored in XM systems for
virtual .SAYV files started with the FRUN or SRUN command.)

3. You must load all the handlers a foreground job needs before the job
attempts to use them. A background job, on the other hand, can use the
.FETCH programmed request to load a handler when it is needed.

4. For FB systems only, if the USR is swapped out and the foreground job
needs it, the foreground job must allocate 2K words of program space for

the USR to swap over. (See Section 2.2.3 for more information on the
USR.)

2222 FRUN Command — The FRUN command loads a foreground pro-
gram into memory and starts execution. The SRUN command, which per-
forms the same functions for system jobs, is essentially identical. You can
also use FRUN or SRUN to start a virtual .SAV Jjob, since these jobs do not
require relocation. (See Chapter 4 for more information on virtual jobs.)
Before you start a job with FRUN, you must load all the handlers the job
requires. You can use the FRUN/PAUSE option, load the handlers, then
resume the foreground job. In any case, the handlers need to be loaded only
before the job actually uses them.

FRUN first opens the .REL file or virtual .SAV file, reads its first block (loca-
tions 0 through 776), and determines how much memory the job requires.
The job’s total memory requirement is equal to the sum of the program itself
(as indicated by location 50 in block 0 of the file), the size of the impure area,
the extra space allocated with the FRUN/BUFFER:n command, and the
extra space (if any) allocated with the LINK/FOREGROUND:stacksize com-
mand. If you do not allocate extra stack space, the default stack size is used.
If there is not enough memory available to run the Job, an error message
prints and the monitor dot prints on the terminal.

Once FRUN gets the memory space the job needs, it sets up the job’s impure
area. FRUN also sets up the job context on the foreground job’s stack, for FB
systems, or in the job’s impure area, for XM systems. So, when you first load
a foreground job, it appears to be context-switched out. (See Chapter 3 for
more information on context switching and other FB monitor functions.)

Next, FRUN loads the foreground main program into memory and relocates
addresses in the root to reflect the current load address. Virtual .SAV files do
not require relocation. If the job is overlaid, there is one more step before
execution can begin. FRUN reads and relocates just the root of an overlaid
program. Then it reads the overlay relocation information into a buffer. One
by one, each overlay segment is then read into memory, relocated, and writ-
ten back to disk. Finally, FRUN starts job execution. Figure 2-15 shows a
summary of how the FRUN command loads a foreground job image into
memory.
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Figure 2-15: FRUN Command
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22.2.3 Starting Foreground and System Jobs — Figure 2-16 illustrates the
procedure DIGITAL recommends for starting up a system that has both sys-
tem jobs and a foreground job. In general, group high in memory the device
handlers and programs that you expect to be running for the longest time.
Lower in memory, put the handlers and programs that you plan to run only
for a short time. This organization enables the Resident Monitor to reclaim

free memory when you unload programs and handlers that you no longer
need.

In the example in Figure 2-16, the two handlers that the QUEUE program
needs are loaded first, since the error logger and the QUEUE program are
both intended to run as long as the system runs. (The QUEUE program
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needs handlers for the device to which it will copy files, as well as handlers
for the devices on which those files are currently stored. The error logger
needs no specific handler; it logs errors from any handler that calls it.) The
SRUN command is used next to start the more important of the two system
Jjobs (the error logger). Then the second system job (QUEUE) is started, also
with SRUN. This ordering of system jobs gives the error logger higher prior-
ity by default than the QUEUE program. (Note that if it is not convenient
for you to load the higher priority system job first, you can assign priorities
to the system jobs with the SRUN/LEVEL:n command.) Lastly, the fore-
ground job, which requires no other handler, is started with the FRUN com-
mand. In Figure 2-16 the foreground job, which always has the highest pri-
ority, is loaded last because it will only run for a short time before it is
stopped, unloaded, and replaced by a different foreground job. After you stop
a job by typing two CTRL/Cs or the ABORT command, you must use the
monitor commands to unload it and replace it with another. RT—11 does not
provide a way for one foreground job to automatically start another.

NOTE

Since the system job feature permits up to six system jobs to
execute simultaneously, it is possible to have more than one
copy of a specific job in memory at any one time. That is, you
can use SRUN to start a job called STAT.REL, for example,
and then use SRUN again to start up a second copy in memory
of the same job from the same disk image, STAT.REL.
However, this procedure is valid only for programs that are
not overlaid.

The disk image of an overlaid program is in constant use,
since the relocated overlay segments are occasionally read
into memory from the file. Thus, to execute multiple copies of
overlaid programs, you must maintain separate copies of the
programs on disk. For example, to run two copies of an over-
laid program called STAT.REL, store an additional copy of
the program on disk as STAT1.REL, and use SRUN to start
both jobs.

2.2.2.4 Foreground Stack — The foreground job’s stack is located im-
mediately above the impure area. Its default size is 128 decimal bytes. You
can change the size of the stack at link time by wusing the
/FOREGROUND:stacksize option.

You can also change the location of the foreground stack. To do this, use the
/STACK:n option at link time, and specify either an octal value for the stack
pointer or a global symbol name. If you change the stack location, you are
responsible for allocating space for the stack in your program.

Be careful not to let the stack overflow during execution. Since RT-11 nei-
ther checks for this error nor makes any attempt to correct it, the most likely
result is that your program or the impure area will be corrupted.
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Figure 2-16: FB System
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2225 Foreground impure Area — The memory locations just below the fore-
ground job area contain job-dependent information. This area is called the
impure area, and its contents are maintained by the Resident Monitor.
Chapter 3 lists the information contained in this area.

223 Ueer Service Routine (USR)

The User Service Routine (USR) is the part of the RT-11 operating system
that provides support for the RT-11 file structure. It contains instructions
to:

® Fetch device handlers
® Get the status of device handlers
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® Open existing files

® Create new files

® Delete and rename files
® Close files

In addition, the USR contains the Command String Interpreter (CSI) which
interprets device, file, and option specifications. The default memory loca-
tion for the USR is directly above the background area, or directly below the
system jobs, foreground job, and loaded device handlers, if there are any.
You can change this default location by setting an address in location 46 in
low memory.

The USR does not always have to be resident in memory. In fact, it is
designed to be swappable in order to make as much space as possible avail-
able for user jobs when they need it. In general, for SJ and FB systems, the
USR is needed only when file-oriented operations are required. The USR is

always resident in the XM monitor, so swapping is not a consideration for
XM jobs.

2.2.3.1 Structure — The USR consists of two basic parts: the buffer area and
the permanent code area. The first section, which is two blocks long, con-
tains code when the USR is brought into memory. This area also serves as
the buffer in which the USR stores a device directory segment. The second
section contains permanent code. Figure 2-17 shows an overview of the
USR’s structure and its memory location in an SJ system.

The first routine in the USR buffer section consists of initialization code to
relocate pointers in the USR and KMON. This relocation code becomes
active the first time the USR is entered after it is brought into memory. It
relocates internal pointers in the USR that point to the Resident Monitor
and to other important locations within the USR. If the USR was called from
KMON, it also relocates pointers to RMON within KMON.

For SJ systems, the next segments of code are:

1. The EMT 376 processor, which contains the text and the routines to print
fatal monitor error messages.

2. Code that processes the .CDFN programmed request.
3. Routines to handle the .SRESET and .HRESET programmed requests.

For FB and XM systems, the next section of code handles the .EXIT pro-
grammed request. The last segment of code in the buffer area processes the
.QSET programmed request for SJ and FB monitors. A small amount of
scratch space takes up the remainder of the two-block buffer area.

Following the buffer area is the USR’s permanent code which starts at offset
2000 from the beginning of the USR. The permanent code consists of rou-
tines that process the following programmed requests:

.DELETE .LOOKUP
.FETCH .RENAME
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.CLOSE .DSTATUS
.ENTER .QSET (for XM only)

The Command String Interpreter occupies the end of the USR, where the
.GTLIN, .CSIGEN and .CSISPC programmed requests are processed.

Figure 2-17: USR
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223.2 Execution — The general flow of execution in the USR is straightfor-
ward. When a fresh copy of the USR is brought into memory, its buffer area
contains the code described in the previous section. When a program issues a
USR programmed request, the first code to execute is the relocation code.
This code then calls the routine to process the particular request that was
issued. If the USR stays in memory, subsequent USR trequests go directly to
the routines that process them. The initialization code is not called again.

Usually, a USR request requires a device directory segment. If the correct
segment is already in the USR buffer, the USR does not read in a fresh copy
of that segment. If the correct segment is not in memory, or if the USR has
no segment at all, the USR reads the directory segment into its buffer. When
it does this, the USR stores two words of information in the Resident
Monitor fixed offset area. BLKEY, at offset 256, contains the number of the
directory segment currently in the USR buffer. CHKEY, at offset 260, con-
tains the device’s unit number in the high byte, and an index into the moni-
tor device tables in the low byte.
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It can be useful to you to know under what circumstances the USR reads in a
new directory segment. The following conditions cause the USR to read in a
new directory segment:

1. Anything that causes the USR to swap out. When a fresh copy of the USR
is brought into memory, it will have no directory segment in its buffer
and will be forced to read one from a device.

2. Executing code in the buffer area. Since the code to process some pro-
grammed requests is located in the USR buffer area, attempting to pro-
cess one of those requests always causes a fresh copy of the USR to be
brought into memory. The requests that cause this to happen are:

.CDFN (for SJ)

SRESET (for SJ)

.HRESET (for SJ)

.QSET (for SJ and FB)

-EXIT (if your program was loaded over any part of KMON)

3. An SJ monitor error occurs. This situation requires the EMT 376 proces-
sor code, which is located in the USR buffer area and causes a fresh copy
of the USR to be read into memory.

4. Issuing an .ENTER programmed request. This always causes the USR to
read a fresh directory segment.

5. Issuing a .LOOKUP programmed request with a different device or file
specification from the previous .LOOKUP. Note that doing a .LOOKUP
with the same device specification as the previous .LOOKUP does not
necessarily cause the USR to read in a fresh copy of the same directory
segment. This is why you cannot remove a volume from a given device
unit, replace it with another volume, and expect the USR to have the new
volume’s directory segment in memory. However, in this situation, you
can force the USR to read a directory segment from the new volume by
locking the USR to gain exclusive use of it, storing a value of 0 in BLKEY
(RMON fixed offset 256), and then issuing a .LOOKUP programmed
request with the same arguments as the previous .LOOKUP. Clearing
BLKEY causes the USR to “forget” the current directory segment and
read a fresh one from the new volume.

2.2.3.3 Swapping Considerations — Because the USR does not always have to
be resident in memory for SJ and FB systems, you have a variety of options
to consider when you design an application program. You can keep the USR
in memory at all times (the simplest case), or you can arrange to have the
USR swap into memory only when your program needs it. The latter proce-
dure permits your program to use an extra 2K words of memory when the
USR is swapped out. The guidelines that follow can help you design pro-
grams that handle the USR efficiently.

In XM systems, the USR is always resident (that is, SET USR NOSWAP is
always in effect). Of the sections that follow, only those that describe a resi-
dent USR are meaningful for programs in XM.
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NOTE

In general, the burden of USR swapping should be under-
taken by the program, not by the operator who runs it. SET
USR NOSWAP is useful to override the default action of pro-
grams outside an operator’s control (such as FORTRAN), but
its use requires operators to understand internal program-
ming details — a requirement that should be avoided if at all
possible.

Keeping the USR Resident in an SJ System

In an SJ system, the normal location for the USR is just below the Resident
Monitor and loaded device handlers (see Figure 2-17). If your program does
not need the space the USR occupies, you can force the USR to remain resi-
dent while your program is executing by issuing the monitor SET USR
NOSWAP command before you run the program. In any case, if the space is
not needed, the USR does not swap. Note that the USR can still slide up or
down in memory, as Section 2.2.1 describes.

For a FORTRAN main program, you can keep the USR resident by using the
FORTRAN/NOSWAP command (or the /U compiler option) at compile time.
This forces the USR to remain resident while the program is executing. You

cannot use this option if your FORTRAN programs require the extra 2K
words of memory.

Keeping the USR resident means that 2K words less memory is available to
your program. However, the directory operations involved in file opening
and closing and in program loading will be faster because this arrangement
eliminates swapping and disk I/O. In addition, the program will have a
much simpler design. To keep the USR resident, a MACRO program should
avoid issuing a .SETTOP request for memory above the base of the USR.

Remember that even though the USR is set to NOSWAP, there are some
programmed requests that can cause a fresh copy of the USR to be brought
into memory. For an SJ system, these requests are .CDFN, .SRESET,
.HRESET, EXIT, and .QSET. If the USR is swappable and if the back-
ground program issues a .SETTOP request for memory above the base of the
USR, th USR loads into the area specified by the contents of location 46 in
low memory. If location 46 contains 0, as it should when you intend to keep
the USR resident, the USR loads in its usual place, below RMON. However,
if for any reason you move a different value to location 46 and then execute
one of the requests that loads a fresh copy of the USR, the USR will then
load into the area you specified. If you execute a program that keeps the
USR resident, the monitor ignores the contents of location 46.

Allowing the USR to Swap with an SJ MACRO Program

The only reason to allow the USR to swap in an SJ system is to gain access to
the extra 2K words of memory that swapping makes available. To enable
USR swapping, make sure that the SET USR SWAP command is in effect.
(This is the default condition.)
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A MACRO program gains access to the 2K words of memory because its high
limit requires it, or because it does a .SETTOP to an address within the USR
area. (Refer to Figures 2-9 and 2-10 for a summary of how the RUN and R
commands load programs that overlay the USR area.) When the program
issues a programmed request that requires the USR, the part of the program
that occupies the USR area is written out to SWAP.SYS, and a fresh copy of
the USR is brought into memory from the monitor file on the system volume.
Location 46 should contain a value of 0 if you want the USR to swap into
memory at its default location. If you want it elsewhere, put the starting
address into location 46 during your program’s initialization routine. When
the programmed request completes, the part of the program in SWAP.SYS is
copied back into memory, overlaying the USR. This sequence of events
occurs for each programmed request that requires the USR, even if your pro-
gram issues two or more requests in a row.

To make more efficient use of the USR, your program can issue the .LOCK
programmed request before any other USR requests. This swaps part of your
program out, reads the USR in, and returns to your program. After this, the
USR remains in memory at the location you specified in location 46 (if any).
You can now issue a number of USR programmed requests and avoid the
overhead of USR swapping. When your program next needs the 2K words of
space, use an .UNLOCK request to release the USR.

When the USR is swappable, it is important that you put it in a safe place in
your program. This means that the area the USR will swap over must not
contain code or data that will be needed at the same time the USR is in

memory. The following is a list of code and data that must not be overlaid by
the USR:

® Device block and/or CSI or .GTLIN file description string for the current
request

® Active device handlers

® Active completion routines

® Active interrupt service routines

® Active /O buffers

® Queue elements from .QSET

® /O channels from .CDFN

® The program stack

® The memory list from .DEVICE

® Trap service routines from .SPFA and .TRPSET

® Code executed between the .LOCK and .UNLOCK requests

You can control USR swapping by careful use of the .SETTOP request. A
typical practice that many system utility programs use is to issue a
SETTOP request to obtain space up to the base of the USR. The programs
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then perform all their USR operations. Finally, the programs issue an addi-
tional .SETTOP request to obtain as much memory as possible, if necessary.

Another situation to be aware of occurs when a program issues a .SETTOP
request for more memory than is available. In this case, the program is
given only the amount of memory that is available. After issuing a .SETTOP
request, a program must always use the value returned in RO (or location 50
in low memory) as the true high limit of the program. For example, a pro-
gram can issue a .SETTOP request for memory above the base of the USR
when the USR is set to NOSWAP. However, the value returned to the pro-
gram as its true high limit is just below the base of the USR.

Allowing the USR to Swap with an SJ FORTRAN Program

As with a MACRO program in an SJ system, the only reason to permit the
USR to swap with a FORTRAN program is to gain access to an additional
2K words of memory. The USR normally swaps over the FORTRAN OTS
(Object Time System). However, problems occur when the FORTRAN OTS
and the program together are less than 2K words long. In this case, the USR
swaps over the program’s impure data area, with unpredictable results.
(Since this error is frequently made by inexperienced programmers, setting
the USR to NOSWAP and retrying a program is the first thing you should do
when debugging a FORTRAN program that doesn’t execute properly.) And,
unlike MACRO, USR swapping does not depend on your program’s high
limit — that is, if the USR is allowed to swap, it most definitely will swap. So,
do not permit USR swapping unless your program really needs the extra
memory. To enable swapping for a FORTRAN program, make sure the SET
USR SWAP command is in effect, and eliminate the /NOSWAP or the /U
option at compile time.

You have already read about the role that location 46 plays in determining
where the USR will swap. For a FORTRAN program, the FORTRAN OTS
places a value in location 46 to set up the USR swapping location. It is
important to understand where and how the USR swaps so you can design
your FORTRAN program correctly.

The FORTRAN compiler examines the sections of your program and sorts
them based on two major attributes: read-only versus read-write, and pure
code versus data. Generally, program instructions are read-only, and pro-
gram data is read-write. If you use assembly language routines, use the
same p-sects as the FORTRAN compiler. That is, place pure code and read-
only data in section USER$I, and impure data in USER$D. The compiler
forces p-sects into the order shown in Table 2-7.

This ordering collects all pure sections before impure data in memory. The
USR can safely swap over sections OTS$I, OTS$P, SYS$I, USERS$I, and
$CODE. Figure 2-18 shows the arrangement of components when a
FORTRAN program is loaded into memory. The global symbol $$OTSI
marks the start of the pure code area. The global symbol $$OTSC marks its
end, and the beginning of the impure data area. FORTRAN puts the value of
$SOTSI into location 46, and the USR swaps into memory starting at that
address, thus overlaying the first 2K words of your program.
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Table 2-7: P-sect Ordering for FORTRAN Programs (Low to

High Memory)
Section
Name Attributes Contents

OTS3I RW,ILCL,REL,CON Pure code and data for the
OTS initialization module

OTS$P RW,D,GBL,REL,OVR Pure tables of addresses of
other OTS modules

SYS$I RW,LLCL,REL,CON RT-11 SYSLIB routines

USERS$I RW,I.LCL,REL,CON Program’s pure code and
read-only data

$CODE RW,LLCL,REL,CON Start of program; read-write
data

OTS$0 RW,LLCL,REL,CON OTS routines sensitive to
USR swapping

SYS$0O RW,ILLCL,REL,CON

$DATAP RW,D,LCL,REL,CON Constants

OTS$D RW,D,LCL,REL,CON Pure data referenced by the
OTS modules

OTS$S RW,D,LCL,REL,CON Scratch storage referenced
by the OTS modules

SYS$S RW,D LCL,REL,CON

$DATA RW,D,LCL,REL,CON Local variables

USER$D RW,D,LCL,REL,CON Program’s impure data

3883, RW,D,GBL,REL,OVR Blank COMMON

Named COMMON RW,D,GBL,REL,OVR

blocks

As with a MACRO program, your FORTRAN program should not have cer-
tain instructions or data in the area where the USR will swap. As a general
rule, the following items should not be in the USR swap area:

® Routines that request USR functions (such as IENTER and LOOKUP)
® Data structures for USR requests

® Interrupt service routines

® Completion routines

® Data areas for interrupt service routines and completion routines
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Figure 2-18: A FORTRAN Program in Memory
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The FORTRAN system itself must also be concerned with USR swapping
and its inherent restrictions. For example, the p-sect OTS$O contains the
FORTRAN OTS routines to open files. This p-sect follows $CODE in the p-
sect ordering. If the start of OTS$O0 is within 2K words of $$OTSI, the essen-
tial information for the file operation is stored on the job stack before the
USR swaps over the code in OTS$0.
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The best way to make sure that the USR swaps into a safe place in your
FORTRAN program is to examine the link map to determine if the USR will
swap over restricted sections. That is, see if the first 2K words above $$OTSI
can be overlaid safely. If not, relink the program and change the order of
object modules and libraries you specify to the linker. One problem is caused
by using SYSLIB routines that place important USR data in the lower 2K
words of the job image. An example is the IFETCH routine, which uses a
device block in the program. The USR swaps over the device block just
before it is used, causing an error. To avoid a situation like this, do not set up
device names as constants for a SYSLIB call. Instead, use DATA-initialized
variables. This ensures that the information will be stored high enough in
the job image to avoid being overlaid by the USR.

For more information on this topic, see the RT—11/RSTS/E FORTRAN IV
User’s Guide and the PDP-11 FORTRAN Language Reference Manual.

Keeping the USR Resident in an FB System

As with an SJ system, the easier way to deal with the USR in an FB system
is to keep it resident. Use the SET USR NOSWAP command, or the
/NOSWAP (/U) FORTRAN compiler option. This arrangement is suitable if
the background, foreground, and system jobs have enough memory. The
USR is brought into memory at its usual place, just below any loaded han-
dlers and below the foreground job and it remains in memory during pro-
gram execution. Neither job has to allocate program space for the USR, and
programs execute faster without the overhead of USR swapping and disk
I/0.

The important issue in an FB system with the USR resident is determining
which job should have control of the USR. Because only one Job can use the
USR at a time, both jobs must be aware of sharing this resource. Since a pro-
gram in an SJ system can lock the USR in order to process a number of USR
programmed requests, in an FB system, either the background job or the
foreground job can lock the USR to gain exclusive use of it.

The .LOCK request gives ownership of the USR to one job. The .UNLOCK
request releases the USR, making it available for the other job. The request
.TLOCK can determine whether or not the other job has exclusive owner-
ship of the USR. It permits a program to try for a .LOCK, but to continue
with execution if the attempt fails.

The LOCK/UNLOCK system permits one job to lock out another for a con-
siderable length of time. During a lockout, interrupt service and completion
routines can run, but not mainline code. This could cause serious difficulties
in a real-time foreground program. There are some ways to minimize or
eliminate this lockout problem:

1. Be sure to separate USR operations from real-time operations.

2. Avoid using devices with slow directory operations, such as cassette,
magtape, and DECtape II.
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3. Organize your real-time foreground program so that real-time operations
are in interrupt service routines and completion routines and will not be
affected if the mainline code is locked out with a pending USR request.

Typically, a real-time foreground job can be organized in three parts: an
initialization phase, which opens all required channels and begins real-time
operations; a real-time phase, which does interrupt service and I/O oper-
ations; and a completion phase, which stops real-time activity and closes the
channels. With this arrangement, the background program can perform
USR operations during the real-time phase without locking out the fore-
ground. The foreground program can use .LOCK and .UNLOCK to prevent
interference from the background job during initialization and completion
phases.

Swapping Considerations for Background Jobs

When either the background job or the foreground job needs the extra 2K
words of memory that swapping the USR provides, both jobs must be con-
cerned with USR swapping. The general concerns for background jobs are
those listed in the previous sections.

The easiest approach for the background job is to swap the USR into its
default location, the highest 2K words of program space. If this is not con-
venient for any reason, the background job can select any other contiguous
2K words of program space. In this case, it must also put the starting
address of the USR swap area into location 46 in the system communication
area. This location is context-switched in the FB system, so it always con-
tains the correct value for the job that is currently executing.

The background job must not place any USR-sensitive code or data in the
area where the USR will swap. In addition to the list in the section Allowing
the USR to Swap with an SJ MACRO Program, the following items must not
be in the USR swap area:

® Memory list from the .CNTXSW request
® Active message buffers

® Code containing the .LOCK or .TLOCK requests

You must also be careful that the background job does not lock the USR for
an unreasonable length of time so it can block the foreground job from run-
ning. If you lock the USR in a background job, remember to unlock it as well.

Swapping Considerations for Foreground Jobs

If the background job issues a .SETTOP that causes the USR to swap, or if
the background job is large enough to force the USR to swap, the foreground
job must be concerned with USR swapping. However, while the background
job can simply allow the USR to swap into its default position (the highest
2K words of the background job area), the foreground job has no default loca-
tion for the USR. It must allocate 2K words within its program bounds in
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which to swap the USR — space that must not contain any USR-sensitive
code or data. The foreground job must also place the starting address of that
space in location 46 in the system communication area. This location is
context-switched during normal foreground/background execution, so it
always contains the correct swapping address for whichever program is cur-
rently executing.

The foreground program could also be concerned with sharing the USR with
the background job. The .LOCK/.UNLOCK requests can give the foreground
Job exclusive ownership of the USR to prevent interference by the back-
ground job. The foreground job should avoid keeping the USR permanently
locked, which sometimes happens strictly because of a programmer’s over-
sight.

2.2.4 Keyboard Monitor (KMON)

The Keyboard Monitor (KMON) is the part of the RT-11 system that pro-
vides the communication link between you at the console terminal and the
rest of the RT-11 system. Keyboard monitor commands permit you to assign
logical names to devices, load device handlers, run programs, control
foreground/background operations, control system jobs, invoke indirect com-
mand files, and examine or medify memory locations. KMON is brought into
memory when the background job completes. When KMON is in memory,
the USR is also present directly above it.

Figure 2-19: Keyboard Monitor
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The Keyboard Monitor consists of a root segment and a number of overlays
that contain the command processors. KMON runs as an ordinary back-
ground job, in user mode. The root segment is contained in the p-sect RT11.
See Table 2—6 for a summary of all monitor p-sects.

When KMON interprets a keyboard monitor command that you type at the
terminal, it expands the command text into an internal indirect file. For
example, the command COPY MYFILE DL:MYFILEG®D expands internally
into:

R PIP
DL:MYFILE=DK:MYFILE
“C

KMON stores this internal indirect file in the command expansion buffer
area. KMON creates space in memory for this buffer area immediately
above the USR. When KMON and the USR slide up or down in memory, the
command buffer spaces moves with them. Figure 2-19 shows the Keyboard
Monitor in memory.

Chapter 1 of the RT-11 System User’s Guide gives an overview of KMON
command processing. The RT—11 System Generation Guide describes how to
remove individual commands or groups of commands from a system you cre-
ate through the system generation process. If you are interested in modify-
ing KMON itself to change the monitor command set, obtain the microfiche
listings of the commented sources. Extensive comments in KMON sources
outline the procedure for adding new commands and changing existing com-
mands. Note that because the procedure is very complex, DIGITAL does not
recommend modifying the keyboard monitor commands. Instead of modify-
ing KMON, use the CCL (Concise Command Language) or UCL (User
Command Linkage) interfaces to create new commands. The procedures for
doing this are outlined below.

2.2.4.1 Adding New Commands Through CCL — If KMON does not recognize
the first word of an input line as a valid KMON command, it tries to treat
the input line as a CCL command by searching for a program of that name
on SY: and running the program. If a program is found, KMON passes the
remainder of the command line to the program in the CSI input buffer as a
CSI command string, followed by a AC. The general format of a CCL com-
mand is:

command <sp> field1<sp>field2
or
command <sp> csistring

If the first form is used, KMON converts it to the second form by reversing
the fields and inserting an equal sign:

command <sp> field2 = field1
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For example, you might type:
PIP A=B

or

PIP B A

Both forms are equivalent to typing:

+R SY:PIP
*A=B
*°C

If the first word on the line is more than six characters, characters after the
first six are ignored. fieldl and field2 can contain multiple file names, sepa-
rated by commas. If you have an application program on SY: named
EVALUA.SAV to evaluate certain collected data and print a report, you
could type:

EVALUATE RK3:DATA16.DATs RK1:DATA03.DAT LP:

This is equivalent to:

+R SY:EVALUA
LP:=RK3:DATA16.DAT, RK1:DATAO03,DAT
*°C

2.2.4.2 Adding New Commands Through UCL — RT-11 V5 also supports User
Command Linkage (UCL). KMON first checks to see if the first word of the
line is one of the defined KMON commands, such as COPY. If not, KMON
tries, using the CCL conventions outlined above, to find and run a program
of that name. If that also fails, KMON looks for the user program
SY:UCL.SAV and runs it if present. KMON passes as ASCII text, in the
chain area starting at location 512, the entire command line including the
first word, to UCL.SAV. Location 510 contains the number of bytes in the
command line. Locations 500 through 507 of the chain area are not used.

The user-written program UCL.SAV can interpret and expand the com-
mand line passed to it in any way that it wants. UCL.SAV can perform the
operations required by the command. UCL.SAV can reformat and pass the
command to another program by doing a .CHAIN , or UCL.SAV can create
a new command line and pass the new command to KMON by doing a
normal or special chain exit. For example, you could type:

BUILD MYPROG

Version 5.1, July 1984
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UCL.SAV might expand the command into the following series of
commands:

R MACRO
MYPROG,LP:/C=MYPROG
“C

R LINK
MYPROG=MYPROG

“C

RUN MYPROG

These commands could then be passed back to KMON by doing a normal
chain exit or a special chain exit. Refer to Section 2.1.2.2 for information
about normal and special chain exits.

The RT-11 distribution kit contains a usable UCL.SAV. See Section 4.4 of
the RT-11 System User’s Guide for instructions on using the distributed
UCL.SAV.

The default device for UCL.SAV is stored as a Radix-50 word at monitor
location ..UCLD; this can be changed to another device name if desired. The
default name for the UCL command processor (initially UCL.SAV) is stored
as Radix-50 words at monitor location ..UCLF; this may also be changed to
another name if desired.

2.3 Sizes of Components

Table 2-8 shows the sizes of some of the components in the distributed
RT-11 systems.

Table 2-8: Sizes of Distributed Components in Memory

Monitor KMON USR RMON
BL 20000 2K 1857
(base-line) octal bytes words decimal words
SJ 20000 2K 1996
octal bytes words decimal words
FB 20000 2K 4220
octal bytes words decimal words
XM 21000 2K 4500
octal bytes words decimal words

If you are not using a distributed system, and you need to know the sizes of
the components, you should follow the guidelines in the next few sections.

23.1 Size of the USR

For SJ and FB systems, the size of the USR is always 2K words. For XM sys-
tems the USR, which is always resident, is somewhat larger. Your running
program can determine the exact size of the USR by examining RMON fixed
offset 374, USRAREA, which contains the size of the USR in bytes. You can
also determine the size of the USR by issuing the monitor commands SET
USR NOSWAP and SHOW MEMORY.

Version 5.1, July 1984
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23.2 Size of KMON

The size of KMON is the same as the size of the p-sect RT11. Examine the
link map that resulted from the system generation for your system to obtain
this value.

23.3 Size of RMON

To determine the size of RMON, issue the SHOW MEMORY monitor com-
mand. This command prints the base address of RMON and its size in deci-
mal words.

2.3.4 Size of Device Handlers

The size of each device handler, in bytes, is contained in location 52 of the
handler’s .SYS file. You can also obtain this value by issuing a .DSTATUS
programmed request on the device from a running program or by issuing the
SHOW MEMORY monitor command, which reports the sizes of all loaded
device handlers.
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Chapter 3
Resident Monitor

The main purpose of the Resident Monitor RMON) is to provide services to
running programs and to the Keyboard Monitor. The services include field-
ing traps and interrupts, providing the programmed requests, and acting as
the central manager of the device-independent I/O system. In a multi-job
system, the monitor also arbitrates the demands of up to eight jobs for pro-
cessor time.

This chapter describes the functions of the Resident Monitor that are gener-
ally common to all RT-11 systems. It provides information on the monitor’s
terminal service for a single console teminal. (See Chapter 5 for information
on multi-terminal systems.) It also describes how clock interrupts are han-
dled and explains how timer support is implemented. The queued I/O system
is discussed, scheduling for multi-job systems is described, and the system
job feature is introduced. Lastly, information on the Resident Monitor’s data
structures is provided.

3.1 Terminal Service

RT-11 provides terminal service through the Resident Monitor. Terminal
service is always resident, and it is part of RMON itself. Because of the way
RT-11 implements terminal service, no handler is involved in the interac-
tion between you at the terminal and the running system. Thus, terminal
service is distinct from the services provided through the TT handler. (The
TT handler implements .READ and .WRITE programmed requests for the
console terminal.) It is designed to be a good interface between a person and
the system, rather than an interface between a peripheral device and the
system.

As part of the resident terminal service, RMON provides special pro-
grammed requests for terminal I/O. Because it uses ring buffers to imple-
ment the terminal service, RMON provides support for line-by-line editing.
The terminal input interrupts are always enabled, which means that you
can get the system’s attention at any time by typing CTRL/C, CTRL/B,
CTRL/F, and so on. You can also type ahead to the system without losing
characters.

The ring buffers are the heart of the terminal service implementation. In SJ,
one input ring buffer and one output ring buffer are located in RMON. For
FB and XM systems, each job has its own set of ring buffers located in its
impure area. The ring buffers store text in a buffer zone between you at the
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terminal and a running program in memory. The default size of the input
ring buffer is 134 decimal bytes; the default size of the output ring buffer is
40 decimal bytes.

3.1.1 Output Ring Buffer

An output ring buffer consists of the buffer area, three pointers, and a byte
count. The buffer, or ring, itself is a block of bytes reserved for storing char-
acters. Two of the three pointers store and retrieve characters. The PUT
pointer marks the location where the next character will be stored and is
used by the programmed requests that fill the buffer, such as .TTYOUT,
.TTOUTR, and .PRINT. The GET pointer marks the next character to be
retrieved and is used by the output interrupt service routine that sends
characters to the terminal. The third pointer, HIGH, points to the first mem-
ory location past the buffer. Lastly, the monitor maintains a byte count for
the number of characters currently in the buffer. Figure 3-1 shows an out-
put ring buffer in memory just after the system was bootstrapped.

Figure 3-1: Output Ring Buffer
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3.1.1.1 Storing a Character in the Output Ring Buffer — The output ring buffer
is filled by characters that are passed by .TTYOUT, .TTOUTR, and .PRINT.
Characters that echo what you type on the terminal are also stored here,
including sets of backslashes to enclose text you rub out with the DELETE
key on a hard copy terminal. To store a character in the output ring buffer,
the monitor first compares the buffer size to the byte count to check for room.
If there is no room, the character cannot be stored. In FB systems, this condi-
tion is sufficient to block a job if the job is doing output. (If the output is the
result of echoing, it is simply discarded.) If there is enough room, the moni-
tor checks to see if the PUT pointer is equal to the HIGH pointer. This check
ensures that the PUT pointer is pointing to a location that is within the
buffer. If the PUT and HIGH pointers are the same, the monitor subtracts
the size of the buffer from the current PUT pointer to obtain the new PUT
pointer. By doing this, the monitor “wraps” around the ring to move from
the highest address in the buffer to the lowest one.
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Next, the monitor moves a byte into the buffer and it increments both the
PUT pointer and the byte count. Figure 3-2 shows how characters are stored
in the output ring buffer.

Figure 3-2: Storing Characters in the Output Ring Buffer
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3.1.1.2 Removing a Character from the Output Ring Buffer — The terminal out-
put interrupt service routine removes characters from the output ring
buffer. If the character count is 0, the routine terminates. The routine
checks to see if the GET pointer is equal to the HIGH pointer. If it is, this
means it is time to “wrap” around the ring to move from the highest address
in the buffer to the lowest one. The wrap routine subtracts the size of the
buffer from the current GET pointer to obtain the new value of the GET
pointer. This check ensures that the GET pointer is pointing to a location
that is within the buffer.

Next, the output interrupt service routine removes one character through
the GET pointer and prepares to send it to the terminal. It increments the
GET pointer and decrements the byte count.

3.1.2 Input Ring Buffer

The input ring buffer is similar to the output ring buffer except that in addi-
tion to the GET, PUT, and HIGH pointers, it has a LOW pointer that points
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to the first byte of the buffer. This pointer is useful when the pointers are
moving backward through the buffer as a result of CTRL/U or DELETE. It
indicates when to “wrap” the buffer in the reverse direction, from the lowest
address to the highest.

The monitor also keeps a count of the number of lines that are stored in the
input ring buffer. A line is any sequence of characters terminated by line
feed, CTRL/Z, or CTRL/C. (Each time you type a carriage return at the ter-
minal, RT-11 stores two characters in the input ring buffer: a carriage
return and a line feed.) In normal mode, the monitor does not pass input
characters to a program until an entire line is present. This is why you can
use DELETE to rub out a character and CTRL/U to remove an entire line
when you are typing at the terminal. Since the monitor provides for line-by-
line editing, application programs need not have this overhead themselves.

In special mode, however, the monitor passes bytes to a program exactly as
they are typed on the terminal. In the latter case, the program itself must be
able to interpret editing characters such as DELETE and CTRL/U.

NOTE

Special mode does not provide the complete transparency
required to handle devices other than terminals — such as
communication lines — through the Resident Monitor termi-
nal service. You can achieve transparency through the multi-
terminal feature of RT-11 by using the “read pass-all” and
“write pass-all” modes. These are described in Chapter 5.

Figure 3-3 shows the input ring buffer just after the system was boot-
strapped.

Figure 3-3: Input Ring Buffer
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3.1.2.1 Storing a Character in the Input Ring Buffer — When you type charac-
ters at the terminal, the keyboard interrupt service routine stores them in
the input ring buffer. First, the routine checks to see if there is room in the
buffer. If there is no room, it rings the terminal bell (by putting a bell char-
acter in the output ring buffer). If there is room, the routine increments the
byte count, increments the PUT pointer, wrapping it if necessary, and stores
the byte in the ring buffer. It also increments the line counter, if the charac-
ter typed is a valid line terminator. Figure 3—4 shows how characters are
stored in the input ring buffer.

Figure 3—4: Storing Characters in the Input Ring Buffer
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3.1.2.2 Removing a Character from the Input Ring Buffer — The monitor
removes characters from the input ring buffer when it processes the .TTYIN,
.TTINR, .GTLIN, .CSIGEN, and .CSISPC programmed requests. First it
increments the GET pointer, wrapping around the ring if necessary. Then it
gets a byte from the buffer and decrements the byte count. It decreases the
line count as well if the character is a valid line terminator.
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3.1.3 High Speed Ring Buffer

RT-11 provides an optional, additional high speed ring buffer that you can
enable by setting the conditional HSR$B in SYCND.MAC to 1 and reas-
sembling the monitor. This adds an extra input ring buffer to RMON; it adds
an extra output ring buffer only if your system has multiple DL interfaces.

When the high speed ring buffer is present, all character processing and
interpretation is performed at fork level. The high speed buffer is used to
pass characters from interrupt level to fork level. The advantage of having
the high speed buffer is that it allows the monitor to handle short bursts of
characters coming in at a very high rate. This is useful for systems with
VT100 or other intelligent terminals that report their status by sending a
burst of information to the host computer. It is also useful for connecting one
computer to another over a serial line.

The disadvantage to using the high speed ring buffer is that a .FORK call is
required for each burst of characters, and, thus, overall terminal service
may be slower.

3.1.4 Terminal I/O Limitations

Terminal input and output limitations are completely separate; you use dif-
ferent methods to change each of them.

RT-11 accepts terminal input in either of two forms: a line at a time, or a
character at a time. In line mode, characters you type at the terminal are
stored in the input ring buffer until you type a valid line terminator such as
carriage return, line feed, CTRL/Z, or CTRL/C. Only then does a running
program receive the line of data. The factor limiting the length of the input
line is the size of the input ring buffer. (The setting of the terminal right
margin bears no relation to the length of the input line.) In RT-11 V05, the
default length is 134 decimal bytes, but you can change this through the sys-
tem generation process. Any attempt to insert characters beyond this limit
causes the terminal bell to ring, and the extra characters are lost. The
Command String Interpreter can accept only 81 characters per line. Most
utility programs, including PIP and BASIC-11, use the CSI to obtain lines
of data from the terminal.

In character mode, a running program receives each character immediately
after you type it at the terminal. In this mode, you can enter any number of
characters without using a line terminator. KED uses character mode, and
can thus accept lines of any length.

The length of terminal output lines is not related to the size of the output
ring buffer; instead, it is related to the setting of the terminal right margin.
Use the SET TT: WIDTH =n command to adjust the right margin. (See the
RT-11 System User’s Guide for details on SET TT: WIDTH and
SET TT: CRLF.)
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3.1.5 Control Functions

A special aspect of RT-11’s terminal service is its response to control charac-
ters that you type at the terminal. The monitor handles each character dif-
ferently, depending on the special function of each one. The following sec-
tions describe the different processes involved for the various control
characters.

3.1.5.1 CTRL/C — When you type one CTRL/C at the terminal, the terminal
interrupt service routine puts it into the input ring buffer, just as it would
any other character. The monitor treats it as a line delineator and passes it
to the running program.

However, if you type two CTRL/Cs in a row, the monitor processes them
entirely differently. Instead of passing them directly to the program, the
monitor aborts the running job. A program can use the .SCCA programmed
request to intercept CTRL/C and prevent the abort (see the RT-11
Programmer’s Reference Manual for a description of .SCCA).

3.1.52 CTRL/O — When the terminal interrupt service routine detects a
CTRL/O, it never places the character in the input ring buffer, even if it is in
special mode. The monitor simply toggles a flag in the impure area. (In FB
and XM systems, this flag is the sign bit of the output ring buffer byte
count.)

The first time you type CTRL/O, the monitor echoes it, then clears the out-
put ring buffer byte count. It empties the ring by setting the GET and PUT
pointers equal to each other, and output from a running program is thrown
away. In FB and XM systems, this can unblock a job waiting for room in the
output buffer. The next time you type CTRL/O or your job issues the
.RCTRLO programmed request, normal output resumes.

3.1.5.3 CTRL/S and CTRL/Q — RT-11 implements terminal synchronization
through the characters CTRL/S and CTRL/Q. CTRL/S, or XOFF, is a signal
that stops a host computer from transmitting data to a terminal. The
CTRL/Q, or XON, signal causes the computer to resume the transmission.
Although XOFF has many uses, RT-11 supports only the two most common.

In a typical situation, you may be doing program development using a video
terminal. When you use the TYPE monitor command to review a file, the
text scrolls past faster than you can read. You can type CTRL/S to stop the
display so that you can read it, and then type CTRL/Q to resume the scroll-
ing. You initiate the XOFF yourself, in this case.

In another situation, the computer may send characters to a terminal faster
than the terminal can display them. So, the terminal itself sends the XOFF
signal to the computer, empties its internal silo, and sends XON when it is
ready to accept more data. This procedure is transparent to you.
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A flag in RMON, called XEDOFF, indicates the XOFF/XON status. Typing
CTRL/S sets the flag; typing CTRL/Q clears it. When XEDOFF 18 set, the
monitor disables terminal output interrupts and stops emptying the output
ring buffer. See the RT-11 System User’s Guide for a description of the
SET TT: NOPAGE command, which disables CTRL/S and CTRL/Q pro-

cessing for FB and XM systems, and for those SJ systems with the multi-
terminal special feature.

3.1.5.4 CTRL/B, CTRL/F, and CTRL/X — In FB and XM systems CTRL/B and
CTRL/F direct terminal I/O to the correct job. (In SJ systems these charac-
ters have no special meaning.) CTRL/X performs the same function for sys-
tems with system jobs. (See Section 3.5.9 for more information on communi-
cating with system jobs.) The CTRL/B, CTRL/F, and CTRL/X characters are
not put into the input ring buffer. Instead, they are recognized by the input
interrupt service routine (unless SET TT: NOFB is in effect, in which case
the characters have no special meaning) and the monitor switches the set of
ring buffers it is using.

The interrupt service routine uses two control words, TTOUSR and
TTIUSR, to point to the impure area of the correct Job. The job’s identifica-
tion is stored in a special buffer in the impure area. The foreground job ID is
F>; the background job ID is B>; the ID for a system job is its job name.
When terminal I/O is directed to a different job, the new job’s identification
prints on the terminal.

3.1.6 SET Options Status Word

The word TTCNFG in the Resident Monitor is a status word that indicates
which terminal SET options are in effect. For multi-terminal systems, each
terminal control block has a status word similar to TTCNFG. TTCNFG
reflects the status of the SCOPE, PAGE, FB, FORM, CRLF, and TAB
options. Table 3—1 shows the meanings of the bits. Unused bits are reserved
for future use by DIGITAL.

Table 3—-1: SET Options Status Word

Bit Meaning When Set

0 SET TT: TAB option is in effect.

1 SET TT: CRLF option is in effect.
SET TT: FORM option is in effect.
SET TT: FB option is in effect.
4-6 Reserved.

w

]

SET TT: PAGE option is in effect.
8-14 Reserved.
15 SET TT: SCOPE option is in effect.
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To get the status word and current width of the terminal (in systems without
the multi-terminal special feature), use the following lines of code:

MOV @%30Rn
MOV -(Rn) ySTATUS
MovB -6(Rn) »WIDTH

Use the following additional line to obtain the value of the current carriage
or cursor position (a value of 0 means the cursor or carriage is at the left
margin):

MovB -1(Rn) »POSIT

3.2 Clock Support and Timer Service

You do not need a system clock in order to run RT-11 on a PDP-11 com-
puter. However, if your computer does have a clock, RT-11 can provide basic
support for keeping time of day, or it can provide timer service — standard
with FB systems, and a system generation special feature for SJ systems.

3.2.1 SJ Systems Without Timer Service

An SJ system without the timer feature (the default condition) provides
basic support for a system clock. Essentially, RT-11 keeps track of the time
of day, but does not provide a means to implement mark time or timed wait
requests.

The bootstrap routine looks for a clock on the system. If it finds one, it sets
the clock bit in RMON’s configuration word at fixed offset 300. If the clock
has a CSR (Control and Status Register), the bootstrap turns the clock on. If
the clock does not have a CSR (as is the case with some LSI-11 and
PDP-11/23 computers), no executing routine can turn the clock on or off;
there may be a switch for the clock on the front panel.

RMON maintains the time of day in a two-word counter. The counter is
called $TIME (high-order word) and $TIME 2 (low-order word). RT-11
stores time of day as the number of ticks since midnight if you set the time
with the monitor TIME command. If you do not set the time, RT-11 stores
the number of ticks since the system was last bootstrapped.

RT-11 supports KW11-L and similar line frequency clocks, and KW11-P
programmable clocks. (Support for the programmable clock is a feature that
you select through system generation.) The default interrupt frequency for
the clocks is the same as the line frequency. That is, the clock interrupts 60
times per second with 60 Hz power, and 50 times per second with 50 Hz
power. Each time the clock interrupts, it adds one tick to the two-word time
of day counter.

In a simple system with a clock and no timer service you can use the monitor
TIME cemmand to set the time of day or get the current time. A running

program can use the .GTIM programmed request to obtain the current time,
and .SDTTM to set it.
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3.2.2 Systems with Timer Service

Timer service is always included in FB and XM systems. It is a system gen-
eration special feature for SJ systems. Timer service provides three extra
programmed requests: the mark time request (.MRKT), the cancel mark
time request (.(CMKT), and the timed wait request (TWAIT, in FB and XM
only). In addition, another system generation special feature provides device
time-out support through the time-out macro ( .TIMIO) and the cancel time-
out macro (.CTIMIO), which are described fully in Chapter 7.

Because timer support itself requires the fork queue, selecting this feature
in SJ results in real, rather than simulated, fork processing. (Usually in SJ a
-FORK request returns immediately to the following instructions.) With a
real fork queue in SJ, .FORK requests are serialized and do not interrupt
one another. For more information on the .FORK request, see Chapter 6.

To implement timer services, RT—11 uses a timer queue, which is a linked
list of queue elements, sorted in order of expiration time. The element that
expires soonest is at the head of the queue. The .MRKT, .TWAIT, and
.TIMIO requests use the timer queue. They schedule completion routines to
be executed after a certain time interval elapses.

The monitor uses the timer queue internally to implement the TWAIT pro-
grammed request, which causes the job that issues it to be suspended. The
monitor places a timer request in the timer queue, with the .RSUM pro-
grammed request code as its completion routine. The job waits until the
specified time interval has elapsed. Execution resumes when the monitor
itself issues the .RSUM request as a completion routine.

Figure 3-5 shows the format of a timer queue element. It includes the sym-
bolic names and offsets as well as the contents of each word in the data struc-
ture. Note that time is stored as a two-word number — a modified expression
of the number of ticks until the timed wait expires.

Figure 3-5: Timer Queue Element Format

NAME OFFSET CONTENTS

C.HOT 0 HIGH-ORDER TIME

C.LoT 2 LOW-ORDER TIME

C.LINK 4 LINK TO NEXT QUEUE ELEMENT: 0 IF NONE

C.JNUM 6 OWNER’S JOB NUMBER

C.SEQ 10 OWNER'S SEQUENCE NUMBER ID

Cc.SYS 12 —1 IF SYSTEM TIMER ELEMENT :
—3 IF .TWAIT ELEMENT IN XM

C.COMP 14 ADDRESS OF COMPLETION ROUTINE
THREE ADDITIONAL WORDS ARE PRESENT IN
XM SYSTEMS. THEY ARE UNUSED, AND ARE
RESERVED FOR FUTURE USE BY DIGITAL.
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To store the time of day in all systems with timer support, RT-11 uses a two-
word pseudo clock called PSCLOK (low-order word) and PSCLKH (high-
order word). In this pseudo clock RMON stores the time, in ticks, that has
elapsed since the system was bootstrapped. Each clock interrupt adds one
tick to the counter. Two other words — $TIME and $TIME 2 — contain a con-
stant that, when added to the value of the pseudo clock, yields the current
time of day.

The monitor uses the pseudo clock to implement timer requests. When a new
queue element is put on the queue, the monitor adds the low-order word of
the pseudo clock to the two-word time value in the queue element and it
stores the resulting value, a modified time, in the queue element time words.
Whenever the pseudo clock carries into the high-order word (approximately
every 18 minutes), the monitor subtracts 1 from the high-order word of time
in each pending timer queue element. The element expires when the high-
order time word is 0 and the low-order time word is less than or equal to the
pseudo clock low-order word. This method of storing time information means
that handling timer requests requires only test and compare instructions,
which execute rapidly, and a pass over the queue roughly every 18 minutes
to correct the time words.

Every time the system clock interrupts, the monitor increments the pseudo
clock. It then checks the first element in the timer queue. If the high-order
word of the timer element is 0 and the low-order word is greater than the
low-order word of the pseudo clock, the element has expired. The monitor
removes it from the timer queue and processes it as a completion routine for
the correct job. The monitor continues to check the timer queue until it finds
an element that has not yet expired or the queue is empty.

There are several uses for system timer elements. If C.SYS is -1, the ele-
ment is being used by .TIMIO for device time-out support, or by RMON for
multi-terminal device time-out. If C.SYS is -3, the element is being used to
implement a .TWAIT request in an XM system. For .MRKT and other
.TWAIT requests, C.SYS is 0.

In XM, completion routines that have —1 in C.SYS are run in kernel mode
and the queue element is discarded. That is, the queue element is not linked
into the list of available elements. If C.SYS is -3, the completion routine is
still run in kernel mode. However, the queue element is linked into the
available queue when the completion routine is run. (The timer queue ele-
ment is used as the completion queue element.) In all other cases, the queue
element is linked into the available queue and completion routines run in
user mode. (Chapter 4 provides more information on extended memory
systems.)

3.3 Queued VO System

RT-11 performs I/O transfers through a queued I/O system. A job can thus
have multiple I/O requests outstanding at a given time — that is, it can issue
an /O request and still continue processing.
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RT-11 implements queued I/O through the queue elements, the device han-
dlers, and the routines in the Resident Monitor. Once a device handler is in
memory and the job has opened a channel, any .READ or .WRITE requests
for the corresponding peripheral device are interpreted by the monitor and
translated into a call to the handler. Figure 3-6 illustrates the relationship
between these components.

Figure 3-6: Components of the Queued 1/0 System
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DEVICE HANDLER

I

DEVICE

3.3.1 VO Queuve

The RT-11 I/O queue system consists of a linked list of queue elements for
each resident device handler and a queue of available elements for each job.
IO queue elements are seven words long for SJ and FB systems, and 10 deci-
mal words long for XM systems. RT-11 provides one queue element in the
Resident Monitor for the SJ environment. For the FB and XM environ-
ments, each job has one queue element in its impure area. One gueue ele-
ment is sufficient for a job that uses wait-mode I/O.

Figure 3-7 shows the format of an I/O queue element. It includes the sym-
bolic names and offsets, as well as the contents of each word in the data
structure.
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Figure 3-7: /O Queue Element Format

NAME OFFSET CONTENTS
Q.LINK 0 LINK TO NEXT QUEUE ELEMENT; 0 IF NONE
Q.Csw 2 POINTER TO CHANNEL STATUS WORD IN 1/0
CHANNEL (SEE FIGURE 3-29)
Q.BLKN a PHYSICAL BLOCK NUMBER
Q.FUNC 6 RESERVED | JoB DEVICE | SPECIAL
Q.UNIT 7 NUMBER | UNIT | FUNCTION
Q.NUM 7 (18IT) (4BITS) | (3BITS) | CODE
0=BG (8 BITS)
Q.BUFF 10 USER BUFFER ADDRESS (MAPPED THROUGH PAR1
WITH Q.PAR VALUE, IF XM)
QWCNT 12 IF <0, OPERATION IS WRITE
WORD COUNT (IF =0, OPERATION IS SEEK
IF >0, OPERATION IS READ
THE TRUE WORD COUNT IS THE ABSOLUTE
VALUE OF THIS WORD.
Q.COMP 14 COMPLETION (IF 0, THIS IS WAIT-MODE 1/0
ROUTINE IF 1, JUST QUEUE THE REQUEST
CODE AND RETURN
IF EVEN, COMPLETION ROUTINE
ADDRESS
Q.PAR 16 PAR1 VALUE (XM ONLY)
RESERVED (XM ONLY)
RESERVED (XM ONLY)

If your program uses asynchronous I/O, you must allocate more queue ele-
ments for it by using the .QSET programmed request. Otherwise, if the pro-
gram initiates an I/O transfer and no queue element is available, RT-11
must wait for a free element before it can queue up the new request.
Obviously, this slows processing. The number of queue elements is always
sufficient when you allocate n new elements, where n is the total number of
pending requests that can be outstanding at one time for a particular pro-
gram. This produces a total of n+1 available elements, since the original
single queue element is added to the list of available elements.

The list header, called AVAIL, is a linked list of free queue elements. It con-
tains a pointer to an available queue element. If AVAIL is 0, no elements
are currently available. Figure 3-8 shows an I/O queue with three queue
elements, all of which are available. In this diagram, AVAIL points to ele-
ment 1. The first word in each queue element is a pointer to the next element
in the queue. Thus, element 1 is linked to element 2, element 2 is linked to

element 3, and element 3 is the last element in the linked list; its link word
is 0.
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Figure 3-8: I/0 Queue with Three Available Elements
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When a program initiates a request for an I/O operation, the monitor allo-
cates a queue element for the request by removing it from the list of avail-
able elements. The monitor then links the element into the I/O queue for the
appropriate device handler. This is accomplished by using two words in the
handler header — ddLQE and ddCQE.

The fourth word of the handler is a pointer to the last element in its queue.
This pointer is called ddLQE, where dd is the two-character physical device
name. The fifth word of the handler, called ddCQE, is a pointer to the cur-
rent queue element.

Figure 3—-9 shows the status of the queue elements when one I/O request is
pending. The monitor removes the first queue element from the available
list and puts it on the device handler’s queue.

When a program requests a second I/O transfer for the same handler before
the first transfer completes, the monitor removes another queue element

from the available list and adds it to the queue for that handler. Figure 3-10
illustrates this.
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Figure 3-9: 1/0 Queue with Two Available Elements

QUEUE OF AVAILABLE ELEMENTS QUEUE FOR A DEVICE HANDLER
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Figure 3-10: IO Queue with One Available Element
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Figure 3-11: 1/0 Queue When One Element Is Returned

QUEUE OF AVAILABLE ELEMENTS QUEUE FOR A DEVICE HANDLER
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Q2: 0
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Figure 3-12: 1/0 Queue When Two Elements Are Returned
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Q3: 0 | ——
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When the transfer currently in progress completes, the monitor returns
queue element 1 to the available list and initiates the transfer indicated by

queue element 2. Figure 3-11 illustrates the queue status when one element
is returned.

When the I/O operation indicated by queue element 2 finishes, the monitor
returns that element to the available list, as Figure 3-12 indicates. Note
that the elements are now linked in a different order from that shown pre-
viously in Figure 3-8.

Figure 3-13: Device Handler Queue When a New Element Is Added

QUEUE FOR A DEVICE HANDLER

LQE: Q6
CQE: Q1
Q1: Q2
~a——THIS I/O TRANSFER IS CURRENTLY
JOB NUMBER =0 IN PROGRESS; THE MONITOR DOES
(BACKGROUND JOB) NOT PREEMPT ITWITH A QUEUE
ELEMENT FOR A HIGHER PRIORITY
JOB.
Q2: Q3
JOB NUMBER = 16
(FOREGROUND JOB)
Q3: Q4
JOB NUMBER = 16
(FOREGROUND JOB) NEW QUEUE ELEMENT
———- ?
Q4: Qs JOB NUMBER = 16
(FOREGROUND JOB)
JOB NUMBER = 14
(SYSTEM JOS8 6)
Qs: Q6
JOB NUMBER = 12
(SYSTEM JOB 5)
Q6: 0
~—— THIS ELEMENT IS THE LAST ONE
JOB NUMBER =0 IN THE QUEUE; ITS LINK WORD
(BACKGROUND JOB) 1S 0.
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In SJ systems, the monitor always puts the new queue element at the end of
the device queue. By using ddLQE it can do this quickly. In FB and XM sys-
tems, the device queue is sorted in order by job number, with the queue ele-
ments belonging to the highest job number appearing at the beginning of
the queue and those belonging to the lowest job number at the end. The mon-
itor puts the new element in the queue at the end of the list within a specific
job group. Thus, if two requests are queued waiting for a particular handler,
the request with the higher job number is honored first. At no time though,
does the monitor abort an I/O transfer already in progress to start a higher

priority request. The operation in progress always completes before the
monitor initiates another transfer.

Figure 3-13 illustrates a large queue for a device handler. The monitor adds
the new element, an I/O request from the foreground job, to the queue at the
end of the list of other foreground job elements. Note that the monitor does
not preempt the current queue element, even though it is a request from the
background job.

3.3.2 Completion Queue

In FB and XM systems, the monitor maintains a completion queue for each
job, using it to serialize completion routines for each Job. The head of the
completion queue is called L.CMPL and it is located at offset 6 from the start
of the impure area. .CMPE, at offset 4, points to the end of the completion
queue. By using I.CMPE, the monitor can quickly add a new completion
queue element to the end of the queue.

A completion routine is a section of code in a program that begins to execute
as soon as an asynchronous event occurs. For example, the .READC pro-
grammed request starts an I/O transfer and provides the address in the pro-
gram at which execution is to begin when the I/O transfer completes. See the
RT-11 Programmer’s Reference Manual for a more thorough description of
completion routines.

When an I/O transfer completes, the monitor checks Q.COMP at offset 14
octal from the start of the I/O queue element. If the value is greater than 1 it
specifies a completion routine address. The monitor then transforms the /O
queue element into a completion queue element and places it on the comple-
tion queue for the job whose job number appeared in Q. JNUM at offset 7
from the start of the /O queue element.

Figure 3-14 shows the format of a completion queue element. It includes the
symbolic names and offsets, as well as the contents of each word in the data
structure.
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Figure 3-14: Completion Queue Element Format

NAME OFFSET CONTENTS
Q.LINK 0 LINK TO NEXT QUEUE ELEMENT; 0 IF NONE
2 RESERVED
4 RESERVED
6 RESERVED
Q.BUFF 10 CHANNEL STATUS WORD
QWCNT 12 OFFSET FROM START OF CHANNEL AREA TO THIS CHANNEL
Q.ComP 14 COMPLETION ROUTINE ADDRESS
THREE ADDITIONAL WORDS ARE PRESENT IN XM SYSTEMS. THEY
ARE UNUSED, AND ARE RESERVED FOR FUTURE USE BY DIGITAL.

3.3.21 SJ Considerations — The SJ monitor does not maintain a completion
queue. As a result, completion routines in SJ are never serialized. (Whether
or not you select timer support at system generation time does not affect the
serialization of completion routines.) When you issue a completion-mode
programmed request (such as .READC or .WRITC) and the I/O transfer com-
pletes, the monitor does not transform the I/O queue element into a comple-
tion queue element. Instead, it returns the element to the list of available
queue elements. It then moves the Channel Status Word to RO and the chan-
nel number to R1, and begins executing the program’s completion routine.
Thus, the completion of another /O transfer could interrupt the current
completion routine and begin execution of another one.

3.3.2.2 .SYNCH Considerations — The .SYNCH request also makes use of the
completion queue in FB and XM systems but it does not use an /O queue
element. When you issue a .SYNCH call, you supply as an argument the
address of a ten-word area in your program, called the synch block. The
synch block contains, among other things, the address of the routine to be
executed. Figure 3—15 shows the format of a synch block, or synch queue ele-
ment. When the monitor interprets your .SYNCH request there is no cur-
rent O queue element for it to modify. So, it uses your ten-word area as a
completion queue element. The monitor puts the synch block at the head of
the appropriate job’s completion queue.

Figure 3-15: Synch Queue Element Format

NAME OFFSET CONTENTS

Q.LINK 0 LINK TO NEXT QUEUE ELEMENT; 0 IF NONE

Q.csw 2 JOB NUMBER

Q.BLKN 4 RESERVED

Q.FUNC 6 RESERVED

Q.BUFF 10 SYNCH ID

QWCNT 12 —1 (CUE THAT THIS IS A SYNCH ELEMENT)

Q.come 14 SYNCH ROUTINE ADDRESS
THREE ADDITIONAL WORDS ARE PRESENT IN XM SYSTEMS. THEY
ARE UNUSED, AND ARE RESERVED FOR FUTURE USE BY DIGITAL.
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3.3.3 Flow of Events in /O Processing

As the central manager of the device-independent I/O system, the Resident
Monitor supervises the I/O procedure, using a queue element as the commu-
nication link between a device handler and a program that requests an 'O
transfer. The following sections describe the sequence of events that occur in
a simple read or write operation.

3.3.3.1 Issuing the Request — Before a program can request an I/O transfer,
it has to open a new file or find an existing file on a device. This procedure
sets up a channel containing five words of information about the location
and length of the file. A channel number is associated with the five-word
block so that you can refer to the block later by specifying this number in a
single byte. The monitor uses the channel information when it needs to pro-
cess an I/O request.

A running program initiates an I/O procedure by issuing a request to read
from or write to a particular channel. MACRO-11 programs, for example,
can use the .READ, READW, READC, .WRITE, .WRITW, .WRITC, and
.SPFUN programmed requests. Programs written in other languages use
similar statements to read and write data.

When the I/O request executes, the monitor uses the channel number the
request specifies to find the corresponding device handler. Then the monitor
calls its queue manager routine, which allocates a queue element from the
list of available elements and fills in the necessary information.

When a queue element is not available in SJ systems, the monitor executes
in a tight loop, waiting for a queue element to appear in the list of available
elements. This condition is satisfied when a device interrupts and the han-
dler issues the .DRFIN macro, which indicates that an I/O transfer is com-
plete, and the monitor returns the queue element for that transfer to the
available list.

When a queue element is not available in FB and XM systems, the job
requests a scheduling pass starting with the job whose priority is immedi-
ately below that of the current job. When the original job gets a chance to
run again, it first checks the available list for a free queue element. If no ele-
ment is available, it requests another scheduling pass. In FB systems, there
is no blocking bit associated with queue element availability. Therefore, the
Job that needs a queue element is not officially blocked, even though it can-
not run effectively until it gets a queue element.

3.3.3.2 Queuing the Request in S —Once a new queue element has been allo-
cated by the queue manager, the element is put on the device handler’s
queue. In an SJ system the new element always goes at the end of the queue.
To prevent interference from a device interrupt (which might remove a dif-
ferent element from the same queue), the SJ monitor goes to priority 7 to
manipulate the queue.
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If the queue is empty, the monitor makes the new element both the current
and the last element in the queue. It increments the count of queue elements
on this channel (the byte at offset 10 octal in the channel area), and returns
the priority to its previous level. It then jumps to the handler’s I/O initiation
section to start up the transfer. The handler starts the transfer and returns
control to the monitor with an RTS PC instruction.

If the queue is not empty, the handler is busy so the monitor puts the new
element at the end of the queue. It increments the count of queue elements
on this channel (the byte at offset 10 octal in the channel area), and returns
the priority to its previous level.

Whether or not the queue was empty, the queue manager checks to see if
this request is for wait-mode L/O. If it is, the system executes in a tight loop
until the transfer specified by this queue element finishes. If this request is
not for wait-mode I/O, control returns to the program, which executes while
I/O occurs simultaneously.

3.3.3.3 Queuing the Request in FB and XM — In FB and XM systems, all jobs
(system utility programs, application programs, and language processors)
and the Keyboard Monitor run in user state. Each Jjob uses its own stack. In
user state a low-priority job that is running can be replaced by a higher-
priority job that is runnable. Similarly, a higher-priority job that is unable
to run for any reason can be replaced by a runnable lower-priority job.

The FB and XM monitors switch to system state to modify important data
structures and to perform operations that do not run entirely within a job.
Stack operations and interrupts in system state use the monitor’s stack
rather than a job’s stack. Jobs cannot run when the monitor is in system
state, and switching between lower- and higher-priority jobs is postponed
until the monitor returns to user state. In system state, then, the monitor
can safely modify critical data structures without the risk that another job
could gain control and corrupt the same data structures. (Section 3.4.1
describes system and user state in greater detail.)

Because in SJ systems there is only one execution state, the terms “user
state” and “system state” are not meaningful in those systems.

In an FB or XM system, the monitor switches to system state before it puts
the new element on the device handler’s queue in order to prevent interfer-
ence from other jobs. It does not raise the priority to 7, as does the SJ moni-
tor, because this would lock out device interrupts for too long a time.
However, a device interrupt could remove an element from the queue while
the monitor is adding the new element and adjusting the LQE and CQE
pointers. To ensure the integrity of the queue, the monitor holds the handler
while it performs the modification.

Holding a handler prevents any other process or routine from changing the
/O queue. For example, when a device interrupts and an I/O operation com-
pletes, the handler issues a .DRFIN call to return to the monitor and remove
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the current queue element from the /O queue. Depending on the type of I/O
request the program issued, the current element should either go back to the
linked list of available queue elements, or it should go onto the completion
queue for the appropriate job. However, if the handler is held when it issues
the .DRFIN, the monitor does not remove the current queue element from
the /O queue. Instead, it delays this action by setting a flag that it checks
later. Similarly, when a job aborts, the abort routine holds a handler while it
removes queue elements belonging to the aborted job. This prevents the
monitor from starting up the next transfer queued for this device until all
elements for the aborted job are gone. After the monitor holds the device
handler, it checks to see if the queue is empty.

If the queue is empty, the monitor clears the hold flag for the handler right
away, and then makes the new element both the current and the last ele-
ment in the queue. It increments both the count of queue elements on this
channel (the byte at offset 10 octal in the channel area), and the total num-
ber of /O requests for this job. Remaining in system state, the monitor
jumps to the device handler’s I/O initiation section to start up the transfer.
When the handler starts the transfer and returns control with an RTS PC
instruction, execution of the program continues in user state within the
queue manager. That is, the monitor is executing “for the program”.

If the queue is not empty, the monitor continues to hold the handler until it
finishes modifying the queue. Elements in the queue are sorted by job num-
ber, as Section 3.3.1 explains. The monitor searches the queue from front to
back, and places the new element at the end of the group of elements belong-
ing to this job. It increments both the count of queue elements on this chan-
nel (the byte at offset 10 octal in the channel area), and the total number of
I/O requests for this job. Since the device handler is busy, the monitor cannot
start up an I/O transfer for this request, so its queue element sits in the
queue. The queue manager returns to user state.

Whether or not the queue was empty, the queue manager checks to see if
this request is for wait-mode I/O. If so, the program waits for the transfer to
complete. If this request is not for wait-mode I/0, execution of the program
continues concurrently with the I/O transfer.

3.3.3.4 Performing the I/O Transfer — After the monitor and a device handler
have started up an I/O transfer, a peripheral device performs the actual
operation and interrupts when it is finished. The interrupt causes control to
pass to the device handler’s interrupt service section, where the code
assesses the results of the /O operation and restarts it if necessary. When
the transfer is done, the handler uses the .DRFIN macro to return to the
monitor and remove the current queue element from its /O queue.

Figure 3-16 summarizes the relationship between the parts of a device han-
dler and the Resident Monitor. Chapter 7 provides a detailed description of
the internal operation of a device handler.
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Figure 3-16: Device Handler/Resident Monitor Relationship

DEVICE HANDLER RESIDENT MONITOR
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LIST OF AVAILABLE ELEMENTS, OR
HANDLER TERMINATION SECTION PUTS IT ON THE COMPLETION QUEUE.

3.3.3.5 Completing the /0 Request — When a device interrupts, an I/O trans-
fer completes, and the handler issues the .DRFIN call, it is the monitor that
must take the appropriate action to complete the I/O procedure. In general,
this means that the monitor must remove the current queue element from
the handler’s /O queue and put it in the list of available elements or on the
completion queue. In an FB or XM system, another I/O request could cause
the monitor to hold the handler while it adds an element to the queue. In
this case, the monitor simply sets a flag, dismisses the interrupt, and returns
to the interrupted process, removing the element later.

In all SJ systems, and in those FB or XM systems in which the handler is not
held, the monitor first decrements the count of queue elements on this chan-
nel. In an FB system, when the count reaches 0, it makes runnable a job that
is waiting for activity on this channel to complete. In FB and XM systems
only, the monitor next decrements the total number of /O requests pending
for this job. Again, if this number becomes 0, it makes runnable a job that is
waiting for all its I/O to complete. When either count reaches 0, it can cause
the scheduler to run.

Next, for all systems, the monitor removes the queue element from the han-
dler’s queue. If there is another element in the handler’s queue waiting to be
processed, the monitor calls the handler again to start the next operation as
soon as the final disposition of the current element is resolved. The monitor
raises the priority to 7 for a short time as it links the element into either the
list of available elements or (except for SJ systems) the job’s completion
queue. In FB, if the element specifies a completion routine address at offset
14 octal, the monitor transforms the /O queue element into a completion
queue element and puts it at the end of the job’s completion queue. Then the
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monitor returns control to the process or program that was interrupted. In
SJ, if the element specifies a completion routine, the monitor merely returns
the I/O queue element to the list of available elements. Then it puts the
Channel Status Word in RO, puts the channel number in R1, and begins
immediate execution of the completion routine.

In all SJ systems, and in those FB and XM systems in which the element
does not specify a completion routine address, the monitor simply returns
the element to the available list. Control returns to the process or program
that was interrupted, or (except in SJ systems) the scheduler can run.

3.4 Scheduling in Foreground/Background Systems

In an FB or XM system the monitor must arbitrate the demands of up to
eight jobs for processor time, in addition to performing all its other func-
tions. Clearly then, because of the implications of having more than one job,
the FB and XM systems are considerably different from the SJ system. The
FB and XM monitors use a number of special tools to implement support for
more than one job.

The scheduler is the part of the monitor that determines which job is eligible
to run and gives control of the processor to it. The scheduler uses a simple
algorithm to determine which job should run. It looks at the jobs in order
from highest priority to lowest. If a job exists and is runnable, the monitor
restores its context and returns to it. Status bits in a flag word (I.BLOK, at
offset 36 octal from the start of the impure area) reflect the blocking condi-
tions that can prevent a job from running and thereby give a lower-priority
job a chance to execute. Context switching is the procedure through which
the monitor saves a job’s context — its machine environment and important
job-specific information — and begins execution of another job.

All the processes that are job-dependent are kept separate from those that
are monitor functions. The monitor functions are, therefore, re-entrant.
Data structures that contain job-specific information are located in the
impure area for each job, and each job has its own stack. Routines that run in
a job-dependent environment, including some parts of the monitor, use the
job’s stack and run as part of the user job in user state. Any routines that run
outside a job’s context, including interrupts, use the monitor’s stack and
execute in system state. This arrangement allows the monitor to “unwind”
the stack after a series of interrupts without changing jobs or stacks.

Two or more jobs can share a peripheral device, so the queued I/O system (as
Section 3.3 explains) must keep track of the priority of the job requesting an
I/O transfer and act accordingly. The USR is serially reentrant — that is, it
cannot be shared by two jobs; all jobs must take turns using the USR.

Lastly, monitor routines check for blocking conditions, change execution
state, interlock parts of the monitor to prevent corruption of important data
structures, request a scheduling pass, and so on. The following sections
describe the components of FB and XM systems and provide an understand-
ing of the scheduling process in a multi-job environment.
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3.4.1 User and System State

In order to isolate job-dependent functions from monitor processes, the FB
and XM systems provide two execution states: user state and system state.
All jobs and the Keyboard Monitor run in user state. Each job maintains rel-
evant data in its impure area, and each job uses its own stack. Context
switching is enabled in user state. That is, a lower-priority job that is run-
ning can be replaced by a higher-priority job that is runnable. A higher-
priority job that is unable to run for any reason can be replaced by a run-
nable lower-priority job.

The monitor switches to system state and the system stack for several rea-
sons. Jobs cannot run when the monitor is in system state, and context
switching is delayed until the monitor returns to user state. Consequently,
the monitor can modify important data structures in system state without
interference from other jobs. The monitor uses system state for operations
that do not run entirely within a job context. These operations, which must
not be interrupted by context switching, include the following:

® Blocking a job

® Starting up an I/O transfer

® Aborting an I/O transfer

® Servicing a timer request

® Executing the PROTECT programmed request
® Executing the CHCOPY programmed request
® Interlocking the USR

® Executing any XM mapping programmed request
® Servicing an interrupt

® Executing device handler code (except for .TIMIO completion routines
and .SYNCH routines, which run in user state in a specific job’s context)

Because it is chiefly system or monitor routines that execute in system state,
monitor errors are fatal. Traps to 4 (odd address errors, and illegal or non-
existent memory addressing errors) and traps to 10 (illegal or reserved
instruction errors) occurring in system state halt the system.

3.4.1.1 Switching to System State Asynchronously — The monitor switches
from user state to system state asynchronously whenever an interrupt
occurs. As a result of the interrupt the monitor may modify important data
structures. The switch to system state prevents interference from a context
switch while the modifications are in progress. In FB the monitor switches
from the job’s stack to the system stack. In XM the monitor does not perform
the stack switch because the hardware does it automatically. Subsequent
interrupts that occur in system state put information on the system stack.
Note that these subsequent interrupts do not cause another switch to system
state.
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Interrupt Level Counter

The monitor recognizes three levels of execution state. It uses a counter
called INTLVL to distinguish among the three levels. Every interrupt incre-
ments this counter. When INTLVL is -1, execution is in user state. When
INTLVL is 0, execution is in system state at level zero. When INTLVL is
positive, execution is still in system state, but at a deeper interrupt level.
Table 3-2 summarizes the relationship between the number of interrupts
pending and the execution state.

Table 3-2: Values of the interrupt Level Counter (INTLVL)

Number of Interrupts Value of INTLVL Execution State
0 -1 User State
1 0 System State Level Zero
2 or more 1 or greater Deeper System State

Figure 3-17 shows how interrupts influence the flow of events in a running
system.

Figure 3-17: Interrupts and Execution States

USER STATE SYSTEM STATE ZERO DEEPER SYSTEM STATE
JOB 1
INTERRUPT 1
ROUTINE A
INTERRUPT 2
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INTERRUPT 3
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$INTEN Monitor Routine

When an interrupt occurs, control passes to the routine specified in the
interrupt vector, and the current PS and PC are put on the job’s stack. In
RT-11, both device handlers and in-line interrupt service routines call the
monitor at the common interrupt entry point, $SINTEN. Device handlers use

the .DRAST macro to call the monitor; in-line interrupt service routines use
the .INTEN macro.

$INTEN is the monitor routine that performs the switch to system state.
The routine assumes that it was called because an interrupt occurred.
Therefore, it expects the old PS and PC to be on the job’s stack. The priority
should be 7, and the interrupt service routine must not have destroyed any
registers between the time the interrupt occurred and the time $INTEN was
called. Device handlers generally call the monitor immediately, before they
do any processing at all. In-line interrupt service routines sometimes per-
form crucial operations immediately, at priority 7, then call $INTEN to
lower processor priority to device priority.

$INTEN assumes it was called with the following instruction sequence, or
its equivalent:

JSFk RS /@$INTEN
+WORD "C<prioritv40>&340

$INTEN's first action is to save R4 on the job’s stack. Since the JSR instruc-
tion already saved R5, the job’s stack now appears as shown in Table 3—3.

Table 3-3: Job’s Stack After SINTEN

Byte Offset Contents Agent
0 R4 $INTEN
2 R5 .DRAST macro (JSR R5)
4 PC interrupt
6 PS interrupt

Next, $INTEN increments the INTLVL counter from —1 to 0. It saves the
Job’s stack pointer in a memory location and switches to the system stack.
$INTEN then lowers processor priority to device priority, and calls the
device handler or interrupt service routine back as a co-routine. The inter-
rupt service routine continues to execute in system state.

3.4.1.2 Switching to System State Synchronously — The monitor switches to
system state synchronously — that is, without depending on an interrupt —
whenever other monitor routines need to go to system state temporarily to
ensure the integrity of a certain operation. In these circumstances, the mon-
itor routines can call the SENSYS routine to switch to system state.
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In special circumstances, a routine in a running job (rather than in the mon-
itor) needs to switch to system state. The routine can do this by artificially
mimicking an interrupt and using the .INTEN macro to call the $INTEN
monitor routine.

SENSYS Monitor Routine

The $ENSYS routine is voluntarily and synchronously called by any other
monitor routine that needs to switch to system state. $ENSYS mimics an
interrupt by altering the job’s stack so it duplicates the stack condition
immediately after an interrupt. Routines call $ENSYS by using the follow-

ing instructions:
JSR RS »$ENSYS
+WORD {return address>-.
+WORD 340

The instructions following the call to $ENSYS execute in system state.
When the routine that must execute in system state completes, it issues an
RTS PC instruction. Control then passes in user state to the routine spe-
cified in the calling sequence as <return address>.

Table 3—4 shows how $ENSYS manipulates the stack to imitate an
interrupt.

Table 3—4: Job’s Stack After SENSYS

Byte Offset Contents
0 R5
2 return address
4 0
INTEN Macro

When a routine in a user job needs to switch to system state, it can use a pro-
cedure similar to $ENSYS, which is used solely by monitor routines.
Essentially, the routine must push the PS and PC onto the stack, and then
call the monitor $INTEN routine with a JSR R5 instruction, which puts R5
on the stack as well.

A device handler or a user program subroutine can use the following
instructions to switch to system state:

MOV @SP,-(SP) iMAKE ROOM ON THE STACK
CLR 2(SP) iFAKE INTERRUPT PS = 0
+MTPS %340 iGO TO PRIORITY 7
+INTEN 0,PIC iENTER SYSTEM STATE

This routine must be executed with a return address on the top of the stack.
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3.4.1.3 Returning to User State — Any routine that is executing in system
state issues an RTS PC instruction when it completes. The monitor
“unwinds” its stack from one or more interrupts as each RTS PC instruction
is issued. As each routine completes, the monitor decrements the INTLVL
counter.

When INTLVL is greater than 0, it indicates that the routine that was just
interrupted was executing in system state. The monitor defers some special
chores until it is just about to return to user state. If it is time to decrement
INTLVL after an RTS PC instruction, and the value of INTLVL is currently
0, the monitor knows that it is about to drop back to user state. At this time,
there are four special considerations for the monitor:

® Is there an outstanding fork routine? (Fork routines run before jobs or
their completion routines.)

® Is a scheduling pass required? (As a result of an interrupt, a job that was
previously blocked may now be runnable.)

® Are there outstanding clock ticks? (The monitor may need to normalize its
time of day counter and check the timer queue.)

® [sthere an outstanding floating-point interrupt?

After taking these considerations into account, the monitor is ready to
return to user state. It decrements INTLVL to —1 and switches to the appro-
priate job’s stack. It restores R4 and R5, and then executes the RTI instruc-
tion to begin execution in user state.

342 Context Switching

Context switching occurs as a result of the scheduler’s command to run a dif-
ferent job. Its purpose is to restore the context for a Jjob so that it can run.
Context switching can occur for one of two reasons:

® The current job becomes blocked and a lower-priority job is runnable.

® A higher-priority job than the current job becomes runnable.

Note that the RT-11 monitor never saves a job’s context simply because it
switches to system state. For example, if there is only one job running, the
monitor does not bother to save or restore its context. A job’s context is only
significant when there are two or more Jjobs running. Many other multi-user
operating systems switch out the user job every time they leave user state
and enter system state. RT-11 avoids the overhead of unnecessary context
switching by saving and restoring the context only when it runs a different
Job. This is a significant saving because there are many situations in which a
job is running, an interrupt triggers a switch to system state, and control
passes back to the same job once the interrupt is serviced.
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When the monitor saves a job’s context, it saves the job-dependent informa-
tion on the job’s stack and in the job’s impure area. The following informa-
tion is saved in a context switch:

e PS

e PC

® Stack Pointer (saved in the impure area)

® Registers RO through R5

® Kernel PAR1 (XM only)

® Memory management fault trap vector (XM only)
e BPT vector (XM only)

® IOT vector (XM only)

® TRAP vector

® System communication area (locations 40-52)
® Location 56 (multi-terminal systems only)

e FPP status word and floating-point registers (if floating-point hardware
present)

® All data specified by the program in a .CNTXSW programmed request

e Stack and impure area (which are, of course, part of the job)

When the monitor switches in the new job’s context, it tests for a pending
completion routine by checking a status bit in .STATE. If the job’s comple-
tion queue has a completion queue element on it, the monitor puts a pseudo-
interrupt on the job’s stack to call the completion queue manager when the
scheduler actually starts up the job.

3.4.3 Bilocking Conditions

A running job is blocked if it cannot proceed until some asynchronous event
happens. Table 3-5 lists the blocking conditions, the bits in I.BLOK (at
impure area fixed offset 36 octal) that reflect the conditions, and the events
that unblock a job. Unused bits are reserved for future use by DIGITAL.

Note that there is no bit that indicates that a job is waiting for a queue ele-
ment. This is a special case and the monitor handles it by checking the list of
available queue elements. If there are none, it requests a scheduling pass to
give a lower-priority job a chance to run. The monitor continues to check the
available list until a queue element becomes available.
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Table 3-5: Blocking Conditions

L.BLOK Bit,
Name, and
Blocking Agent Mask Unblocking Agent
Any request that uses the 4 The USR release routine, DEQUSR,
USR; any monitor command; USRWT$ when the USR is free and no higher-
an exit from a background job. 20 priority job needs it.
The keyboard monitor 6 The Keyboard Monitor, when an
SUSPEND command. KSPND$ operator types the RESUME
100 command.
The .EXIT request; a job that 8 I/O completion from device handlers,
aborts. EXIT$ when the job’s total I’O count is 0.
400
Termination of the foreground 9 None. Only the Keyboard Monitor
or system job. NORUNS$ can clear this bit by removing the job
1000 image from memory.
The .SPND or the TWAIT 10 The monitor’s . RSUM processor,
programmed request. SPND$ when the .RSUM request executes or
2000 a . TWAIT completion routine runs.
The .READW, WRITW, 11 I/O completion from device handlers,
.WAIT, .SDATW, RCVDW, CHNWT$ when the I/O count for the specified
.MWAIT programmed 4000 channel is 0.
requests.
The .EXIT programmed 12 The monitor’s terminal service output
request issued from a fore- TTOEM$ routine, when the output ring buffer
ground or system job; the 10000 is empty or CTRL/O is typed.
.MTSET request issued for a
DZ line; MTDTCH issued for
any terminal but a shared
console.
The .TTYOUT, .PRINT. 13 The monitor’s terminal output inter-
.MTOUT, and .MTPRNT pro- TTOWT$ rupt service routine, when there is
grammed requests. 20000 room in the output ring buffer.
The .TTYIN request (with 14 The monitor’s terminal input inter-
JSW bit 6 clear); the TTIWT$ rupt service routine, when a line or
.CSIGEN, .MTIN, .CSISPC, 40000 character is available.
and .GTLIN programmed
requests.
Any request that needs a none The monitor’s queue element return
queue element when none is routine, when a queue element
available. becomes free.

3.4.3.1 How the Monitor Blocks a Job — A job becomes blocked when it
encounters any of the circumstances listed in Table 3-5. These circum-
stances are brought about when one of the three following events occurs:

® The job issues one of the programmed requests listed in Table 3-5.
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® The monitor SUSPEND command is typed.
® The job aborts.

Typically the job, which is running in user state, issues a programmed
request, such as .EXIT. The monitor remains in user state while it processes
the programmed request. It then checks to see if the job is waiting because of
a blocking condition. The .EXIT request, for example, must wait for all the
Jjob’s /O requests to complete before it actually terminates the job. Since
waiting for all I/O to complete is a blocking condition, the monitor initiates
the appropriate test to see if there are outstanding I/0 requests and this job
is now blocked.

The monitor calls its $SYSWT routine whenever it needs to determine
whether or not a job is blocked. The monitor passes to $SYSWT a bit mask
for the bit in LBLOK corresponding to this particular condition. (Table 3-5
lists the bit masks for . BLOK; bit 8 corresponds to the .EXIT request condi-
tion.) It also passes a decision subroutine. which is a routine that determines
whether or not a job is blocked for a particular reason. There is a unique
decision subroutine for each call to $SYSWT, except the waiting for a queue
element condition, which has none. The decision subroutine returns with
the carry bit set if the job is indeed blocked. Note that a job can be blocked
for only one reason at a time.

When control eventually returns to the job, it executes within the monitor in
user state at $SSYSWT again. (That is, the monitor runs under the auspices
of the job, executing code on its behalf.) The blocking condition must be
checked once more in order to reblock a job that may have been unblocked to
allow a completion routine to run. (Completion routines are part of a job, but
they can run even if the main part of the job is blocked. The monitor
unblocks the job to run the completion routine, then runs $SYSWT to re-
block the job when the completion routine finishes. Section 3.4.5 discusses
the implications of completion routines for scheduling.)

3.43.2 $SYSWT Monitor Routine — $SYSWT is the monitor routine that
decides whether or not a job is blocked. If a job is blocked, $SYSWT sets the
appropriate blocking bit. The flowchart in Figure 3—-18 shows how $SYSWT
works.

First, $3SYSWT runs the decision subroutine passed by the monitor to deter-
mine whether or not the job is blocked for a specific reason (point A in Figure
3-18). If the job is not blocked, control returns to the job and it continues to
run (point B). In the .EXIT case, for example, a job is not blocked if there is
no pending I/O to delay the exit procedure.

If the job is blocked, $SYSWT calls $ENSYS to enter system state (point C).
Then it sets the appropriate blocking bit. In the .EXIT example, a job is
blocked if there are pending /O requests; $SYSWT sets the EXIT$ bit, bit 8,
in LBLOK.

Next, $SYSWT runs the decision subroutine again. If the job is still blocked,
$SYSWT requests a scheduler pass (point E). It does this to give a runnable
lower-priority job a chance to execute.
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Figure 3-18: $SYSWT Monitor Routine
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If the job is no longer blocked, $SYSWT clears the blocking bit and returns
(point F). When the monitor switches back to user state, the scheduler runs
if a scheduling pass is pending. When control finally returns to this job (the
one for which $SYSWT originally ran), the monitor continues execution on
the job’s behalf at the beginning of the $SYSWT routine (point A).
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$SYSWT runs the decision subroutine twice because interrupts can occur
while $SYSWT is running. Since an interrupt can signal the removal of a
blocking condition, the job’s status can change even as $SYSWT is trying to
determine it.

An interrupt can occur after the decision subroutine (point A) declares a job
to be blocked, but before $SYSWT sets the blocking bit. This time interval is
shown as “Window 1” in Figure 3-18. In this situation $SYSWT sets the
blocking bit erroneously. But, when it runs the decision subroutine the sec-
ond time, it discovers that the job is not blocked anymore. $SYSWT clears
the bit and returns to the job (point F).

“Window 2” in Figure 3-18 indicates the second time interval in which an
interrupt can occur. The interrupt can remove the blocking condition imme-
diately after $SYSWT correctly sets the blocking bit. In this case, the moni-
tor's UNBLOK routine clears the blocking bit and requests a scheduling
pass because this job became runnable. Control returns to $SYSWT (point
D), which runs the decision subroutine again. Since the job is no longer
blocked, execution leaves $SYSWT (point F) and the scheduler runs immedi-
ately before the monitor returns to user state.

3.4.3.3 How the Monitor Unblocks a Job — An asynchronous event initiates
the monitor’s procedure to unblock a job. Table 3-5 lists the significant
events that can unblock a job. The completion of all /O for a specific channel
18 a significant event, for example, and unblocks a job whose CHNWTS bit is
set.

When an interrupt occurs, control passes to an interrupt service routine.
The interrupt routine enters system state by executing the $INTEN monitor
routine. Then the interrupt service routine assesses the meaning of the
interrupt and takes appropriate action. In a device handler, for example, an
interrupt can indicate that an I/O transfer is complete. The handler returns
to the monitor to remove the current element from the I/O queue.

In all cases, the monitor clears the blocking bit and requests a scheduling
pass if the significant event removes a blocking condition.

3.4.4 Scheduler Operations

The scheduler runs only if there is an outstanding request for a scheduling
pass. The monitor checks a flag byte called INTACT each time it is ready to
switch from system to user state. If INTACT is not equal to zero, the sched-
uler runs.

3.4.4.1 How the Monitor Requests a Scheduling Pass — The monitor requests a
scheduling pass by calling the $RQTSW monitor routine. It does this when-
ever a job’s ability to run changes. (That is, whenever a running job becomes
blocked, or whenever a blocked job becomes runnable.)
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3.4.4.2 Characteristics of a Runnable Job — A job that does not have any
blocking bit set is runnable. However, there is one circumstance in which a
job with a blocking bit set can still be runnable. A job’s completion routine
can run even though the mainline program is blocked. Section 3.4.5 dis-
cusses scheduling implications for completion routines.

3.44.3 SRQTSW Monitor Routine — The $SRQTSW routine posts a request for
a scheduling pass for a specific job by placing a value in the flag byte,
INTACT. INTACT holds the job number of the highest-priority job that
requested a scheduling pass. $RQTSW ignores a scheduling request for a job
if its priority is lower than that of the running job. When a job whose priority
is higher than that of the running job requests a scheduling pass, RQTSW
saves the job’s number in INTACT, which holds the number in the following
format:

INTACT = -Jebmumber , o5

3.4.4.4 How the Scheduler Works — The scheduler runs just before the moni-
tor returns to a job. Remember that INTLVL, the interrupt level counter, is
0 when it is time to return to user state.

A scheduling pass needed to make a job runnable happens asynchronously,
as a result of an interrupt that removed a blocking condition. A scheduling
pass needed to make the current job non-runnable happens synchronously,
after a job issues a programmed request, after the monitor SUSPEND com-
mand is typed, or after a job aborts.

The scheduler runs only if INTACT is not equal to 0. When INTACT is 0, it
indicates that no job changed its status, and, therefore, the same job that
was interrupted should run again. When INTACT is not 0, it contains the
number of the highest-priority job that changed its status. The scheduler
runs only if the job number in INTACT is greater than the current number
of the current job, which is kept in JOBNUM in the monitor.

The scheduler examines jobs in order of descending priority. It starts with
the job whose number is in INTACT, which is not necessarily the highest-
priority job in the system. As soon as the scheduler finds a runnable job, the
monitor switches context and runs the job. If no jobs at all are runnable, the
system idles — that is, it runs the null job briefly, then scans all jobs again
for runnability.

3.4.5 Implications for Completion Routines

A job’s completion routine can run even though the mainline program is
blocked. When an asynchronous event occurs, such as the completion of an
VO request, the interrupt service routine enters system state through the
$INTEN monitor routine. The device handler’s interrupt service routine
returns to the monitor when I/O completes, so the monitor can remove the
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IO queue element from the device handler’s queue. If the /O request spe-
cified a completion routine address, the monitor changes the I/O queue ele-
ment into a completion queue element and puts it on the Jjob’s completion
queue. The monitor sets bit 7 in the job state word (Iindicate that a comple-
tion routine is pending.

As the monitor switches from system to user state, it checks the completion
pending bit in LSTATE. If a routine that just ran in system state queued one
or more completion routines for this job and the job is not currently running
a completion routine, the monitor clears the blocking bit so the scheduler
can run the job. This action permits completion routines to execute even
though the mainline program is blocked.

When all the completion routines finish, the mainline program begins to
execute. However, since it was recently blocked, the monitor executes for the
job at the start of the $SYSWT routine. $SYSWT runs the relevant decision
subroutine (the routine for the condition that originally blocked this job) and
reblocks the job, if necessary.

3.5 System Jobs

Through the system generation process you can create an FB or XM moni-
tor that is capable of running up to six simultaneous jobs in addition to a
foreground job and a background job. RT-11 offers the system job feature in
order to make the following valuable system jobs available: the error
logger, the file queuing program (QUEUE), the transparent spooler
(SPOOL), and the communication package (VTCOM). You can run system
jobs as the foreground job in an RT-11 FB or XM system that does not have
the system jobs feature.

Keep in mind that even though RT-11 permits up to eight jobs to run
simultaneously, this feature does not mean that RT-11 is a “multi-user”
system in any sense of the term. The system jobs are in keeping with the
philosophy that RT-11 is essentially a single-user system, and RT-11 still
provides no protection for one job from another, or for the operating system
software from any job. In the few cases where RT-11 appears to support
multiple users, a single application program or language processor that
supports multiple terminals is actually running. In Multi-User BASIC-11,
for example, the BASIC-11 interpreter is the single user, and it alone is
responsible for preserving the integrity of each programmer’s work space.

The Resident Monitor in a system job environment is approximately 300
decimal words larger than an equivalent monitor that does not support
system jobs. DIGITAL does not encourage customers to write their own
system jobs; it reserves the remaining potential system jobs for future use.

3.5.1 Characteristics

System jobs are similar to ordinary foreground jobs in that, for both kinds of
jobs, object code must be stored in relocatable object file format. In addition,
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system jobs are subject to the same restrictions as foreground jobs — that is,
they use restricted arithmetic with global variables.

3.5.2 Logical Names

You reference a system job by its logical name, which, by default, is its file
name. However, you can assign a new name when you start the job by using
the SRUN monitor command with the /NAME:logical-job-name option.
Logical job names must be unique.

The foreground and background jobs have default logical names as well as
their actual file names. For the foreground, the default logical name is F; for
the background, it is B. F and B are permanently assigned; you cannot use
them for system jobs. In addition, EL is the logical job name permanently
assigned to the error logger system job. You can assign another logical name
to the foreground job, in addition to F by using the FRUN monitor command
with the NAME:logical-job-name option.

The job name is stored in ASCII at offset LLNAM in the Jjob’s impure area.

3.5.3 Job Number

In an FB or XM system without the system job feature the background job
number is 0 and the foreground job number is 2. In an environment that sup-
ports system jobs, the background job number is still 0, but the foreground
job number is always 16 octal. By default, each system Job takes the next
highest available job number. Job numbers are multiples of 2, and range
from 0 to 16 octal. For example, the first system job you start with the SRUN

command has a job number of 14, the second system job has a job number of
12, and so on.

3.5.4 Priority

A monitor that supports the system job feature provides the same event-
driven, static priority scheduler that ordinary FB and XM systems use. The
monitor services jobs according to their priority. The background job always
has priority 0, the lowest priority. The foreground Jjob always has the highest
priority, which is 7. You cannot change these assignments.

To assign a priority to a system job you can:

1. Use the SRUN command to start the jobs in order of their importance so
that the first job you start gets priority 6, the second Jjob gets priority 5,
and so on.

2. Explicitly specify the priority when you start the system job. Use the
SRUN/LEVEL:priority command to do this. You can specify a priority
level for each job in the range 1 through 6, as long as another job is not
currently assigned to the level you choose.

The job number is equal to the priority times 2.
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NOTE

You can assign a priority only when you start a system job
with the SRUN command. The priority levels do not change
dynamically, and you cannot change the priority of a job while
it is running.

3.5.5 Design Considerations

If you are planning to write or run system jobs, you should keep in mind two
major design considerations:

1. RT-11 provides an event-driven, static priority scheduler.

2. Addressing space is at a premium in an RT-11 environment, and certain
parts of each job must reside in low (rather than extended) memory.

3.5.5.1 Scheduling Considerations — The RT-11 scheduler arbitrates the
demands jobs make for CPU time, awarding the use of system resources to
the highest-priority job that is not blocked. Thus, a compute-bound job can
lock out all the jobs with a lower priority. On the other hand, an I/O-bound
job, such as the RT-11 QUEUE program, is often blocked waiting for I/O
transfers to complete. As a result, it does not interfere significantly with
lower priority jobs. If you are running a text editor in the background, for
example, the fact that the QUEUE program is active is practically transpar-
ent to you.

When you design a program to run as a system job, then, consider carefully
how often it will require system resources. Keep in mind, too, the fact that
RT-11 does not permit parallel use of the USR by two or more jobs. Write

the program in such a way that it does not monopolize the system and lock
out other jobs.

3.5.5.2 Space Considerations — In an FB system, the main concern is that
the number and size of jobs is limited by the amount of space available. As
Chapter 2 explains, KMON and the USR slide down in memory each time
you load a foreground job, a device handler, or a system job above them.
However, KMON cannot slide below location 1000 octal. Since the FB moni-
tor and KMON are about 4K words in size each, this leaves about 20K words
of memory for foreground jobs, device handlers, and system jobs. Each job
carries a fixed overhead of roughly 220 decimal words for the impure area
and channel space.

XM systems have more restrictions that apply to foreground and system
jobs. First, the USR is always resident in XM. In addition, the USR cannot
slide down in memory into the area mapped by kernel PAR1 (addresses
20000 through 40000). That is, the USR must not slide below location 40000
in low memory. As a result of these two restrictions, about 11K words of
memory are available for foreground jobs, device handlers, and system jobs
in an XM environment. Each job carries a fixed overhead of approximately
340 decimal words for the impure area and channel space.
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However, the XM environment provides other means to load and execute
jobs. The only parts of foreground and system jobs that must reside in low
memory are the impure area, queue elements, channels, and interrupt ser-
vice routines. (Like the USR, these four parts of a job cannot reside in the
PAR1 area.) The XM system provides three ways to make use of extended
memory (memory above the 28K-word boundary) for foreground and system
jobs:

1. Use the XM .SETTOP feature in your program.

2. Segment your program and use the /V linker option to make the overlays
resident in extended memory.

3. Use the memory management programmed requests in a MACRO pro-
gram to increase the program’s physical address space.

These methods provide the means to circumvent the XM restrictions and
execute code in extended memory. They are described in detail in Chapter 4.

3.5.6 Programmed Requests

Two programmed requests — .GTJB and .CHCOPY — have optional argu-
ments that are meaningful only in an FB or XM environment with the sys-
tem job feature. The .GTJB request obtains job status information for any
job in the system. You can reference another job by either logical job name or
job number. The .CHCOPY request opens a channel for input, logically con-
necting it to a file that is currently open for another job for input or output.
See the RT-11 Programmer’s Reference Manual for a detailed explanation of
these requests.

3.5.7 Message Handling

In addition to the .SDAT/.RCVD/.MWAIT system through which foreground
and background jobs communicate with each other, RT-11 provides an easy
way for all jobs, including system jobs, to send and receive messages. The
message handling system is implemented through the message queue, or
MQ, handler. This handler is a part of the Resident Monitor for all FB and
XM systems, whether or not they include the system job feature. The MQ
handler is written as an RT-11 device handler for a “special” device. This
means that the pseudo-device has a non-RT-11 format. The MQ handler
does not accept .SPFUN calls. One advantage of using a device handler in
the message system is that you can still debug the send/receive mechanism
if one of the jobs involved in the system is not in memory.

For most other purposes, the MQ handler performs like the other RT-11
device handlers except that it communicates with a job, not a device.
Essentially, it makes another job appear to be a peripheral device. As a
result, you can open a channel to any other job by using a special LOOKUP
programmed request format, described in the Programmer’s Reference
Manual. You can send a message by issuing a .WRITx request. Then you can
receive a message to the job by using a .READx request. The first word of the
received data buffer contains a count of the words transferred.
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A further difference between other RT-11 device handlers and the MQ han-
dler becomes apparent when a job exits (with the .EXIT programmed
request) or when it aborts (because of CTRL/C or a fatal monitor error). The
monitor allows outstanding I/O requests that are queued for the job to com-
plete, but discards any messages that are queued for the job by examining
the queue for the MQ handler and removing queue elements that send mes-
sages to the job.

The XM monitor normally uses a special internal macro to transfer message
data via the MTPI instruction. This procedure is slow, but safe, since it does
not use a PAR to map any buffers. You can use a faster, but more restrictive,
transfer procedure by setting the conditional assembly symbol MQH$P2
equal to 1. When the MQ handler is assembled, the assembler will generate
code which uses kernel PAR2 to map the user buffers. In this case, all the
kernel PARI restrictions also apply to PAR2. So, the USR, queue elements,
channels, and interrupt service routines cannot reside within locations
20000 through 60000 in a system that actually uses the MQ handler. Note
that the QUEUE program uses the MQ handler.

3.5.8 Monitor Commands

The collection of monitor commands has some special features that reflect
the system job environment. This section describes them briefly. See
Chapter 4 of the RT-11 System User’s Guide for a complete description.

3.5.8.1 SRUN and FRUN Commands — Use the SRUN command to start
execution of a system job. You can also use the FRUN command to begin
execution of a system job in the foreground partition.

NOTE

If you use SRUN or FRUN to start a system job and a job with
the same name is already in memory but has finished execut-
ing, the monitor unloads the job in memory and brings in a
new copy from a peripheral device.

3.5.8.2 LOAD and UNLOAD Commands — Use the LOAD command to bring a
device handler into memory and to assign ownership of a peripheral device
to a specific job. Different jobs can own different units of a file-structured
device. Since a system job must already be in memory before you can assign
a device to it, remember to start the job with SRUN before you use the
LOAD command. If the job will not run without the handler, use the
/PAUSE option with the FRUN or SRUN command. Note that you cannot
assign ownership of SY or MQ.

The UNLOAD command removes a device handler or a system job from
memory. You should type a colon (:) after the name of the device handler to
distinguish it from the name of a system job. If a colon is not included, the
UNLOAD command attempts to unload a system job of the specified name. If
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none is found, the command attempts to unload a device handler with that
name. For example, RK could be both the name of a system job and the name
of a device handler. To remove the device handler, type:

UNLOAD RK:

To unload the system job, type:

UNLOAD FK

3.5.8.3 SUSPEND and RESUME Commands — Use the SUSPEND command to
stop execution of a system job.

Use the RESUME command to continue execution of a system job that was
stopped by the SUSPEND command or the /PAUSE option for SRUN or
FRUN.

3.5.8.4 SHOW JOBS Command — Use the SHOW JOBS command to display
status information about all system jobs currently in the system.

3.5.8.5 SET TT: NOFB Command — Use the SET TT: NOFB command to dis-
able the special control keys CTRL/F, CTRL/B, and CTRL/X you use to com-
municate with foreground, background, and system jobs.

3.59 Communicating with a System Job

In a system job environment you use CTRL/X to communicate with a system
job in much the same way that you use CTRL/F for a foreground job and
CTRL/B for a background job. By directing input to the correct job and by
labeling output, this mechanism permits two or more jobs to share one ter-
minal. When you type CTRL/X, the monitor sends a carriage return/line
feed combination to the terminal, followed by the Job? prompt. While wait-
ing for your response, the monitor simulates a full output ring buffer. This
prohibits output from any other job from garbling the CTRL/X dialogue.
(This also blocks a job that is waiting for output.)

Respond to the prompt by typing the job’s logical name, followed by a line
terminator (carriage return, line feed, or CTRL/Z). DELETE (or RUBOUT)
and CTRL/U are valid editing commands in a CTRL/X sequence. Remember
that the names F and B are reserved for the foreground and background
jobs. If the job you specify is not running, or does not exist, the monitor
prints a question mark (?). As a result of the CTRL/X sequence, the monitor
directs terminal input characters to the appropriate job’s input ring buffer.

To cancel the CTRL/X sequence before you finish typing the job name, type
CTRL/C. This does not abort any job. It simply returns to the state of the ter-
minal before you typed CTRL/X. To actually abort a system job, type CTRL/
X followed by the job name and a line terminator. Then type two CTRL/Cs.
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While terminal input is directed to one job’s input ring buffer, other jobs can
still send output characters to the terminal. To avoid confusion, the monitor
prints an identifying label every time the output user changes. The terminal
identity string is stored at LJID in each Job’s impure area and it consists of a
carriage return/line feed combination, followed by the job name, a right
angle bracket (>), and another carriage return/line feed combination.

The following sequence shows how two system jobs can share one terminal.
Type a CTRL/X sequence and send a message to the first job:

CTRL/X
Job? SY1@®
HELLO TO JOB 1@

Job 2 sends a message to the terminal:

sSY2>
HI FROM JOB 2

Send another message to job 1. Note that you do not type the SY1> label
yourself. The monitor prints it when it echoes your input characters.

SY1>
HELLO AGAIN TO J0B 1@

Job 2 sends two more messages:

sY2>
HI AGAIN FROM JOB 2
HI A THIRD TIME FROM JOB 2

Finally, job 1 sends a message:

SY1>
HI FROM J0OB 1

3.5.10 Howto Queue Flles from an Application Program

Usually you queue files that you want to copy to another device by using the
monitor PRINT command. If the QUEUE program is running when you
issue the PRINT command, the files you specify are queued automatically
and the monitor dot prints on your terminal almost immediately.

Your application programs can also copy files to output devices through the
QUEUE program. The method your pProgram must use to do this depends on
which monitor is currently running. If an FB or XM monitor that includes
the system job feature is running, your program must communicate with
QUEUE through the message queue (MQ) handler by using .LOOKUP,
-WRITW, and .READW programmed requests. Using the MQ handler is
beneficial because it frees the monitor for other tasks, and takes advantage
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of the existing queued I/O system. Note that the MQ handler in an XM sys-
tem may borrow kernel PAR2 for its own use if the conditional assembly
parameter MQH$P2 = 1; see Section 3.5.7 for more information on this
topic.

If an FB or XM monitor without the system job feature is running, your pro-
gram must communicate with QUEUE through the .SDAT and .RCVD pro-
grammed requests.

To queue one or more files, follow these steps:

1. Set up a job block in your program for a logical group of files to be queued.

2. Set up a file block for each file to be queued.

3. Issue the .LOOKUP programmed request for the QUEUE program.
(Omit this step if your system does not have the system job feature.)

4. Issue the .WRITW request (or the .SDATW request if your system does
not have the system job feature) to send the QUEUE request and estab-
lish a pointer to the job and file blocks.

5. Issue the . READW request (or the . RCVDW request if your system does

not have the system job feature) to receive acknowledgment from
QUEUE.

Once QUEUE acknowledges your request, your program is free to continue
processing or to exit. Figure 3-23 shows a program that uses .LOOKUP,
.READW, and .WRITW to queue one file, then exits.

3.5.10.1 Setting Up the Job Block — Set up a job block in memory for a logical
group of files. The job block defines the logical name by which you can later
reference the entire group of files.

If you copy files to a file-structured device (rather than to the line printer, for
example) all the files belonging to the job are copied and stored in separate
files with the input file names and file types. The handler for the device to
which you send the job must be made resident in memory through the mon-
itor LOAD command. Figure 3-19 shows the format of the job block.

Figure 3-19: Job Block

FLAG BITS+FLG.JR

# OF BANNERS # OF COPIES

OUTPUT DEVICE (RADIX-50)

SIX-CHARACTER JOB NAME
(TWO RADIX-50 WORDS)

# OF FILE BLOCKS FOLLOWING
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The flag word in each job block defines the action QUEUE should take on
each file. Table 3-6 lists the definitions of the bits. Bits 4 through 15 are
reserved for DIGITAL.

The job block must have bit FLG.JR set. If FLG.CP is set, QUEUE sets the
default number of copies to queue for this Jjob from the low byte of the second
word in the job block. If FLG.HD is set, QUEUE sets the number of banners
to queue for this job from the high byte of the second word in the job block.

Table 3-6: Request Flag Bits

Bit Name Mask Meaning
0 FLG.DE 1 Delete file after copying it.
1 FLG.CP 2 Make multiple copies (get number of copies
from second word in block.
2 FLG.HD 4 Create banner pages (get number of pages from
second word in block).
3 FLGJR 10 For initial request and job block.

3.5.10.2 Setting Up the File Block — Immediately after the Jjob block, your pro-
gram must set up a file block for each file that is part of the job. Arrange the
blocks contiguously in memory, with the job block first. Figure 3-20 shows
the format of the file block.

Figure 3-20: File Block

FLAG WORD

#OF BANNERS # OF COPIES

FOUR RADIX-50 WORDS
CONTAINING DEVICE, FILE
NAME, AND FILE TYPE OF THE
FILE TO BE QUEUED

In each file block you can specify the number of banner pages and the num-
ber of copies for the file by setting flag bits FLG.CP and FLG.HD, and put-
ting values into the second word of the block. If you omit the flag bits,
QUEUE ignores the second word of the file block and checks the flag bits of
the job block instead. If they are set, QUEUE takes the values from the sec-
ond word of the file block. Finally, if the flag bits are clear in both the file
and the job blocks, QUEUE uses the system default of no banners and one
copy of the file, or the current default parameters as set by the QUEMAN /P
option.
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3.5.10.3 Setting Up the QUEUE Request Block — The last data structure you
must establish is called the QUEUE request block. It need not be contiguous
in memory with the job and file blocks. Figure 3-21 shows the format of the
QUEUE request block. This block contains the information that QUEUE
needs to begin processing the files. QUEUE requests can only be issued from
a privileged job with kernel mapping. QUEUE request blocks must reside in
low memory.

Figure 3-21: QUEUE Request Block

FLG.JR

SIX-CHARACTER FILE NAME
OF YOUR PROGRAM
(THREE ASCIlI WORDS)

ADDRESS OF JOB BLOCK

0

3.5.10.4 Issuing the .LOOKUP Request — In the executable section of your
program, you must issue a .LOOKUP programmed request to make the first
contact with the QUEUE program and establish a communication channel.
Issue the .LOOKUP for MQ:QUEUE, following the example provided in
Section 3.5.10.7. (Omit this step if your system does not have the system job
feature.)

3.5.10.5 Issuing the Request to QUEUE — If the .LOOKUP is successful (or if
you omitted it), you next issue the .WRITW programmed request (or the
SDATW request if your system does not have the system job feature) to send
your request to QUEUE. The text you send to QUEUE is the QUEUE
request block. See the example provided in Section 3.5.10.7.

If your request is valid, QUEUE inserts the request blocks into the queue,
which is a workfile on device DK:. The workfile is a first-in/first-out list; it
can contain requests for different output devices. QUEUE does not maintain
a separate workfile for each device.

3.5.10.6 Receiving Acknowledgment from QUEUE — When QUEUE acknowl-
edges your request, your program can continue execution, or exit, as you
desire. You obtain this acknowledgment by issuing the .READW pro-
grammed request (or the . RCVDW request if your system does not have the
system job feature). QUEUE’s response takes the form shown in Figure
3-22.

Your program must wait for this acknowledgment. QUEUE maintains only
a limited number of extra queue elements. If QUEUE sends a message to
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your program that your program is not prepared to accept, a queue element
is needlessly kept out of the list of available elements; this could block

another job in your system.

Figure 3-22: Request Acknowledgment Block

FLAG BITS

SIX-CHARACTER NAME
"QUEUE "
(THREE ASCII WORDS)

0

0

If the acknowledgment is positive, the flag word contains 0. If the acknowl-
edgment is negative, the sign bit of the flag word is set in addition to one of
the low three bits. Table 3-7 shows the meanings of the acknowledgment

flag bits.

Table 3-7: Acknowledgment Flag Bits

Bit Name Mask Meaning
0 FLGRA 0 Request accepted.
15,0 FLGIR 100001 Illegal job request.

15,1 FLG.QF 100002
15,2 FLG.NQ 100004

Insufficient room in workfile.

QUEUE being aborted from console.

3.5.10.7 QUEUE Example Program — Figure 3-23 contains a listing of an
example program, MYPROG, that uses QUEUE in a system with the system
job feature to copy a data file to the line printer.

Figure 3-23: QUEUE Example Program

+TITLE MYPROG.MAC

+ENABL LC

i This example shows how an application Prosram can
i send files throush the aueue system.

+MCALL JREADW:s .WRITW, .LOOKUP, ,EXIT, ,PRINT

iFlag bits for reauest

FLG.DE= 1
FLG.CP= 2
FLG.HD= 4
FLG.JR= 10

+PSECT QUETST

iExecution Section
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iMultirle cories

iBanner pPages

iJob request indicator
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Figure 3-23: QUEUE Example Program (Cont.)

START:

1%:

11¢:

MERR:

iBlock for

+LOOKUP
BCC
+PRINT
JEXIT

+MWRITHW
BCC
+PRINT
JEXIT

+READKW

BCS
TST

BNE

+PRINT
JEXIT

+PRINT
JEXIT

+PSECT

LKUP: +RADSO
+ASCIZ
AREA: +BLKMW
JACK from QUEUE
REPLY: +WORD
REQST: +WORD
+ASCII
+WORD
+WORD

sBlock for Job

sAREA 816 ,#LKUP 3.,LO0OKUP QUEUE

1s sError?

#_LUPERR iYessy report it
sand Qquit

sAREA 816 y#REQST y#6 3iSend initial
srequest to QUEUE

2¢ SError?

sREQERR iYess report it
sand Qquit

sAREA %16 ,8REPLY »#6 3Wait for ACK
sfrom QUEUE. Word count
sof ACK in REPLY» text
iin REOQST.

11% iBranch on error

REQST SACK oKavy? (First word
sof ACK should be 0)

MERR iBranch if error

sACKMSG iPrint success messade

SEnd of test:» request
sisent to line Printer.

#NAKMSG sPrint error messade
sand quit

QUEDTA

+LOOKUP on QUEUE

/MQ /

/QUEUE/

S SEMT area

does here:

0 sWord count from .READW
FLG.JR iInitial request
/MYPROG/ iCalling pProsram

JOBBLK sAddr of Job block

0 SEnd of initial reQuest

JOBBLK: .WORD {FLG+JR+FLG.,HD+FLG.CP> iFlags for .ob:
ibannerss and copries

+BYTE 2+3 32 corpiess 3 banners
+RADS0O /LP / iSend to printer
+RADSO /DATA / iLodical Job name
+WORD 1 iOne file follows:

FILBLK: WORD (o} iNo flagsy use defaults
+BYTE 040 sDefault bannerss cories
+RADS0 /DK / iFilespec to be sueued
+RADS0 /TSTFIL/
+RAD50 /DAT/

iMessages

LUPERR: .ASCI1Z /MYPROG-F-QUEUE not running/

REQERR: .ASCIZ /MYPROG-F-Initial request error/

NAKMSG: .ASCIZ /MYPROG-W-QUEUE acknowleddment nesative/

ACKMSG: .ASCI1Z /MYPROG-I-QUEUE acknowledgment OK/
Kmon.EVEN
+END START
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3.6 Data Structures

The following sections describe some of the data structures in the Resident
Monitor.

3.6.1 Fixed Offsets

Some words always have fixed positions relative to the start of the Resident
Monitor. These words are called fixed offsets. In general, they contain either
status words or pointers to other significant information. The fixed offset
area in RMON is located at the start of the RTDATA p-sect.

To access the fixed offsets from a running program, use the .GVAL pro-
grammed request, as follows:

+«GVAL #areassoffset

Here, area represents a two-word argument block, and offset is a byte offset
from Table 3-8. Your programs should never modify the contents of the fixed
offsets.

Table 3-8: Resident Monitor Fixed Offsets

Byte
Length
Offset Symbol (Octal) Description

0 $RMON 4 Common interrupt entry point; contains the instruc-
tion JMP $INTEN. The .INTEN macro uses it.

4 $CSW 240 Background job channel area (16 decimal channels;
each is five words long).

244 $SYSCH 12 Internal channel used for system functions; the
Keyboard Monitor uses this channel.

246 2 SJ only: Reserved.

250 2 SJ only: Reserved.

252 I.SERR/ 2 SJ only: An indicator for hard or soft errors.

IL.SPLS

254 I.SPLS 2 SJ only.

256 BLKEY 2 Segment number of the directory now in memory. A
value of 0 implies that no directory is there. See
Section 2.2.3.2 for a method of inhibiting directory
caching.

260 CHKEY 2 Device index and unit number of the device whose
directory is in memory. The low byte contains the
device index into the monitor tables; the high byte is
the unit number.

262 $DATE 2 Current date value.

(Continued on next page)
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Table 3-8: Resident Monitor Fixed Offsets (Cont.)

Offset

Symbol

Byte
Length
(Octal)

Description

264

266

270

272

274

276

277

300

302

306

DFLG

$USRLC

QCOMP

SPUSR

SYUNIT

SYSVER

SYSUPD

CONFIG

SCROLL
TTKS

TTKB

2

N

“Directory operation in progress” flag. This is non-
zero to inhibit CTRL/C from aborting a job while a
directory operation is in progress.

Address of the normal USR area. This is where the
USR resides when it is called into memory by the
background job and location 46 is 0. In other words,
the foreground job must provide space for the USR to
swap. (Note: if the foreground job calls in the USR
and location 46 is 0, the foreground job aborts.) See
Chapter 2 for information on USR swapping.

Address of the I/O exit routine for all devices. The
exit routine is an internal queue management rou-
tine through which all device handlers exit once the
/O transfer is complete. Any new device handlers
you add to RT-11 must also use this exit location;
use the .DRFIN macro in your handler to generate
the exit code automatically.

Special device error word. Non RT-11 file-
structured devices, such as magtape, use this word
to report errors to the monitor.

The high byte contains the unit number of the sys-
tem device. This is the unit number of the device
from which the system was bootstrapped.

Monitor version number. You can always access the
version number in this fixed offset to determine if
you are using the most recent version of the soft-
ware. For RT-11 Version V5, this value is 5.

Monitor release level. This number identifies the
release level of the monitor version specified in byte
276. For RT-11 Version V5, this value is 0.

Configuration word. These 16 bits indicate informa-
tion about either the hardware configuration of the
system or a software condition. Another configura-
tion word located at fixed offset 370 contains addi-
tional data. See Section 3.6.1.1 for the meaning of
each bit.

Address of the VT11 scroller.

Address of the console keyboard status register. The
default value is 177560. See Chapter 5 for details on
changing the hardware console interface to another
terminal.

Address of the console keyboard buffer register. The
default value is 177562,

(Continued on next page)

Resident Monitor 349



Table 3-8: Resident Monitor Fixed Offsets (Cont.)

Offset

Symbol

Byte
Length
(Octal)

Description

310

312

314

316

320

322
320
322
324

326

352

354

356

360

362

TTPS

TTPB

MAXBLK

E16LST

CNTXT

JOBNUM
$TIME
$TIME 2
SYNCH

LOWMAP

USRLOC

GTVECT

ERRCNT

$MTPS

$MFPS

2

N N s N

24

Address of the console printer status register. The
default value is 177564.

Address of the console printer buffer register. The
default value is 177566.

The maximum file size allowed in a 0 length
.ENTER programmed request. The default value is
177777 octal blocks, allowing an essentially unlim-
ited file size. You can change this value from within
a running program (although this is not recom-
mended), or by using SIPP to patch this location.

Offset from the start of RMON to the dispatch table
for EMTs 340 through 357. The BATCH processor
uses this.

FB and XM only: A pointer to the impure area for
the current executing job.

FB and XM only: The executing job’s number.
SJ only: Two words of time of day.

Address of monitor routine to handle .SYNCH
requests. Your interrupt routines can issue the
.SYNCH programmed request, which enters the
monitor through this address to synchronize with
the job they are servicing.

Start of the low-memory protection map. This map
protects vectors at locations O through 476. See
Section 3.6.1.2 for more information on the low-
memory bitmap.

A pointer to the current entry point of the USR. This
may be 0, if the USR is not in memory; it may be the
relocation code in USRBUF, if the USR was just
brought into memory; it is the processing code, in all
other cases.

Address of VT11 or VS60 display processor display
stop interrupt vector (default is 320).

Low byte is the error count byte for use by system
utility programs. The high byte is reserved.

Entry point of the move to PS routine. The .MTPS
macro calls this routine to perform processor inde-
pendent moves to the Processor Status word.

Entry point of the move from PS routine. The .MFPS
macro calls this routine to do processor independent
moves from the Processor Status word.
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Table 3-8: Resident Monitor Fixed Offsets (Cont.)

Offset

Symbol

Byte
Length
(Octal)

Description

364

366
370

372

374

376

377

400
402

404

406

SYINDX

STATWD
CONFG2

SYSGEN

USRARE

ERRLEV

IFMXNS

EMTRTN
FORK

PNPTR

MONAME

2

[

Index into the monitor device tables for the system
device. See Section 3.6.5 for information on the
device tables.

Indirect file and monitor command state word.

Extension configuration word. This is a string of 16
bits indicating the presence of an additional set of
hardware options on the system. See Section 3.6.1.3
for the meaning of each bit.

System generation features word. The bits in this
word indicate the presence or absence of some sys-
tem generation special features. See Section 3.6.1.4
for the meaning of each bit.

Size of the USR in bytes. Your program can use this
information to dynamically determine the size of the
region you need in order to swap the USR. (The USR
is always resident in XM systems.)

Error severity at which to abort indirect files. You
can change this level with the SET ERROR com-
mand. The default setting is ERROR. See Chapter 2
for more information.

Depth of nesting of indirect files. The default nesting
level is 3. You can change this value by using SIPP
to patch this location. Be sure to refer to offset 377 as
a byte, not as a word.

Internal offset for use by BATCH only.

Offset to fork processor from the start of the
Resident Monitor. (Location 54 contains the starting
address of RMON.) Use the .DREND macro in your
device handler to automatically set up a pointer to
the fork processor.

Offset to the SPNAME table from the start of the
Resident Monitor.

Two words of Radix—50 containing the name of the
current monitor file.

(Continued on next page)
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Table 3-8: Resident Monitor Fixed Offsets (Cont.)

Byte
Length
Offset Symbol (Octal) Description

412 SUFFIX 2 One word of Radix-50 containing the suffix used by
the current monitor to name device handlers. For SJ
and FB systems, this word is normally blank. For
XM, it is normally X, right-justified. This word is set
up by the bootstrap; you can modify it there (see the
RT-11 System Generation Guide for details).

414 SPSTAT 2 Status of the transparent spooler. See Section
3.6.1.5 for the meaning of each bit.

416 EXTIND 1 IND stored error byte.

417 INDSTA 1 IND control status byte. The following bits are de-
fined:

001 Reserved

002 Reserved

004 CCS$IND  Set if double CTRL/C abort is en-
abled*

010 CC$GBL  Set if global SCCA support is en-
abled*

040 LNSIND  Set if current line passed by IND

100 INSRUN  Set if KMON issued RUN of IND

200 INSIND Set if IND active

420 $MEMSZ 2 Total physical memory available, in 32-word blocks.

422 ELTIME 2 Reserved.

424 $TCFIG 2 Address of terminal SET option status word.

426 $INDDV 2 Pointer to ASCII device name and unit number of
IND.SAV.

430 MEMPTR 2 Offset to memory control block pointers.

432 P1EXT 2 Pointer to $P1EXT routine (refer to Section 7.9.7 for

details).

* Bits have meaning only if global SCCA enabled.

3.6.1.1 Configuration Word — The configuration word, CONFIG, indicates
information about either the hardware configuration of the system or a soft-
ware condition. Table 3-9 lists the bits and their meanings. Unused bits are
reserved for future use by DIGITAL.

Version 5.1, July 1984
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Table 3-9: The Configuration Word, Offset 300

Bit Meaning
0 0 = SJ Monitor.
1 = (Ifbit 12 = 0): FB Monitor.
(If bit 12 =1): XM Monitor.
1 1 = KMON fetches SL handler and uses single-line editor.
2 1 = VT11 or VS60 graphics display hardware exists.
3 1 = BATCH is in control of the background.
4 1 = Single-line editor is available to user programs.
5 0 = 60-cycle clock.
1 = 50-cycle clock.
The value of bit 5 is patchable to indicate the current line frequency.
6 1 = FP11 floating-point hardware exists.
7 0 = No foreground or system job is in memory.
1 = A foreground or system job is in memory.

(Continued on next page)
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Table 3-9: The Configuration Word, Offset 300 (Cont.)

Bit Meaning

8 1 = Userislinked to the graphics scroller.

9 1= USR is permanently resident, via SET USR NOSWAP. (USR is
always resident in XM and this bit is always set.)

10 1 = The QUEUE program is running.

11 1 = Processor is a PDP-11/03. The Processor Status word on this system
cannot be accessed by means of an address in the I/O page.

12 1 = A mapped system is running under the XM monitor.

13 1 = The system clock has a status register.

14 1 = A KW11-P clock exists and programs can use it.

15 1 = There is a system clock (L clock, P clock, or 11/03-11/23 line-
frequency clock).

3.6.1.2 Low-Memory Protection Bitmap — RT-11 maintains a bitmap that
reflects the protection status of low memory, locations 0 through 477. This
map is required in order to avoid conflicts in the use of the vectors. In FB
and XM, the .PROTECT programmed request allows a program to gain
exclusive control of a vector or a set of vectors. When a vector is protected,
RMON updates the bitmap to indicate which words are protected. If a word
in low memory is not protected, it is loaded from block 0 of the executable
file. If a word in low memory is protected, it is not loaded from block 0 of the
file. In addition, if the word is protected by a foreground job, it is not
destroyed when you run a new background program.

The bitmap is a 20-byte decimal table that starts 326 octal bytes from the
beginning of the Resident Monitor. Table 3—10 lists the offset from RMON
and the corresponding locations represented by that byte.

Table 3-10: Low-Memory Bitmap

Locations Locations
Offset (Octal) Offset (Octal)
326 0-17 340 240-257
327 20-37 341 260-277
330 40-57 342 300-317
331 60-77 343 320-337
332 100-117 344 340-357
333 120-137 345 360-377
334 140-157 346 400-417
335 160-177 347 420437
336 200-217 350 440-457
337 220-237 351 460477
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Each byte in the table reflects the status of eight words of memory. The first
byte in the table controls locations 0 through 17, the second byte controls
locations 20 through 37, and so on. The bytes are read from left to right.
Thus, if locations 0 through 3 are protected, the first byte of the table con-
tains 11000000.

NOTE

Only words are protected, not individual bytes. Thus, protect-
ing word 0 means that bytes 0 and 1 are both protected.

If locations 24 through 27 are protected, the second byte of the table contains
00110000.

The leftmost bit of each byte represents lower memory locations; the right-
most bit represents higher memory locations. For example, to protect loca-
tions 300 through 307, the leftmost four bits of the byte at offset 342 must be
set to result in a value of 360 for that byte: 11110000.

The SJ monitor does not support the . PROTECT programmed request. If you
need to protect vectors in SJ, either use SIPP to manually modify the bitmap
or dynamically modify the bitmap from within a running program.

For example, the following instructions protect locations 300 through 306
dynamically:

MOV @%54,RO
BISB #°B11110000,342(R0)

Protecting locations with SIPP means that the vector is permanently pro-
tected, even if you rebootstrap the system. The dynamic method provides a
temporary measure and does not remain effective across bootstraps. Be
aware that the dynamic method involves storing data directly into the mon-
itor. For this reason, DIGITAL recommends that you use SIPP to protect
vectors in SJ.

The RT-11 monitor uses the low-memory bitmap to automatically protect
some locations in low memory. The locations it protects are as follows:

0-16

24-32

50-66

100-102 (line-frequency clock)

104-106 (if KW11-P selected as system clock)
114-116

244-246

250-252 (for XM systems only)

The system device handler interrupt vector
Interrupt vectors for loaded device handlers
Vectors for all interfaces supported in a multi-terminal system
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NOTE

Vectors of device handlers that you load with the LOAD com-
mand are protected; vectors of device handlers that you bring
into memory with the .FETCH programmed request are not
protected.

3.6.1.3 Extension Configuration Word — The extension configuration word,
CONFG2, indicates the presence of an additional set of hardware options on
the system. Table 3-11 lists the bits and their meanings. Unused bits are
reserved for future use by DIGITAL.

Table 3-11: Extension Configuration Word, Offset 370

Bit Meaning

0 1 = Cache memory is present.

1 1 = Parity memory is present.

2 1 = A readable switch register is present.

3 1 = A writeable console display register is present.
4 1 = A handler used by LD may have been unloaded.
5 1 = Do not swap user code or exit.

6 Reserved.

-1

1 = The Commercial Instruction Set (CIS) option is present.
1

0 = VT11 display hardware exists if bit 2 at offset 300 is set.
1 = VS60 display hardware exists if bit 2 at offset 300 is set.

10.11 Reserved.

The Extended Instruction Set (EIS) option is present.

© o

12 1 = Global SCCA support in monitor.

13 1 = RT-11 running on Professional series computer.
14 1 = The processor is a PDP-11/70.

15 1 = The processor is a PDP-11/60.

3.6.1.4 System Generation Features Word — The system generation features
word, SYSGEN, indicates which major system generation features are
present. Table 3-12 lists the meaning of each bit. Unused bits are reserved
for future use by DIGITAL. In addition, do not set or clear any bits in this
word yourself.

Note that the values of the first three bits must correspond to the condi-
tional variables you use when you assemble your device handler files.
Attempts to use handlers that are not compatible with the monitor cause
the ’KMON-F-Conflicting SYSGEN options error message to appear.

Version 5.1, July 1984
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Table 3-12: System Generation Features Word, Offset 372

Bit Meaning
0 1 = The error logging feature is present.
1 1 = The memory management feature is present.
2 1 = Thedevice I/O time-out feature is present.
3 1 = Thisisan RTEM-11 system.
4-7 Reserved.
I 1 = FPU support selected during system generation.
1 = The memory parity feature is present.
10 1 = The SJ mark time feature is present.
11-12 Reserved.
13 1 = The multi-terminal feature is present.
14 1 = The system job feature is present.
15 Reserved.

3.6.1.5 Transparent Spooler (SPOOL) Status Word — The transparent spooler
status word, SPSTAT, indicates the status of the transparent spooler
(SPOOL). Table 3-13 indicates the meaning of each bit. Unused bits are
reserved for future use by DIGITAL.

Table 3-13: Transparent Spooler Status Word, Offset 414

Bit Meaning

0-2 Reserved.

1 = Move to start of next file.

1 = Set spooler unit off.

1 = Set spooler unit on.

1 = Remove spooled output from work file.
1 = Spooler active.

8-10 Reserved.

b I = > B L B~ N V]

11 1 = Display spooler status.

12 1 = Print screen (Professional 300 series only).
13 1 = Date and time request for flag pages.

14 1 = Fake interrupt enable.

15 1 = Error bit (set by SPOOL).

Version 5.1, July 1984
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3.6.2 Impure Area

The impure area is an area of memory where the monitor stores all job-
dependent data. For each job, the impure area contains job-specific informa-
tion, such as terminal ring buffers and I/O channels. The monitor sets up the
impure area and maintains its contents.

3.6.2.1 Single-Job Monitor Impure Area — In the SJ system, there is no dis-
tinct impure area for the single job. Instead, information relating to the job
is stored in various places throughout the Resident Monitor.

3.6.2.2 Foreground/Background Monitor Impure Area — In an FB system, the
impure areas contain all the information the monitor requires to run two or
more independent jobs. The information stored in the impure area is job-
specific. The impure area for the background job is located at the start of the
p-sect RMON in the Resident Monitor and it is permanently resident. The
impure area for a foreground or system job is located in memory below the
start of the job itself. The size of the impure area is the value in the global
symbol FMPUR, which you can find by looking at your monitor’s link map.

The monitor maintains a table of one-word pointers to the impure areas of
all jobs in the system. This table is located at $IMPUR, and is either eight or

two words long, depending on whether the system job feature is present or
not.

In RT-11, a background job is always present. It is the Keyboard Monitor if
no other background job exists. The foreground or system job impure area
pointer may be O if no such job is in memory. When you issue an FRUN com-
mand, the monitor creates an impure area for the foreground job. Similarly,
the SRUN command creates an impure area for a system job. In both cases,

the monitor also updates the job’s $IMPUR entry to point to the impure
area.

The contents of the impure area are the same for both the background and
the foreground jobs, as shown in Table 3-14. The offset in the table is the
offset from the start of the impure area itself. In some cases, the contents of
the impure area depend on which system generation features you select.
These cases are indicated by a “Feature only:” phrase in the “Description”
column.

Version 5.1, July 1984
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Table 3-14: Impure Area

Byte
Length
Offset Symbol (Octal) Description
0 L.STATE 2 Job state word bits. See Table 3-14 for the
meaning of each bit.
2 I.QHDR 2 Head of available queue element linked list.
4 I.CMPE 2 Last entry in the completion queue.
6 I.CMPL 2 Head of the completion queue.

10 IL.CHWT 2 Pointer to channel during IO wait. When a job
is waiting for I/O on a channel to complete, the
address of that channel area is stored here.

12 IL.LPCHW 2 Saved .CHWT during execution of a comple-
tion routine.

14 L.PERR 2 Error bytes 52 and 53 saved during completion
routines.

16 LTTLC 2 Terminal input ring buffer line count (for non-
multi-terminal systems).

20 LPTTI 2 Previous terminal input character (for non-
multi-terminal systems).

16 I.CNSL 2 Multi-terminals only: Pointer to terminal con-
trol block (TCB) for this job’s console terminal.

20 unused 2 Multi-terminals only: Unused.

22 LTID 2 Pointer to job ID area, later in impure area.

24 LJNUM 2 Job number of the job that owns this impure
area.

26 L.CNUM 2 Number of I’O channels defined. The default is
16 decimal; you can use .CDFN to define more.

30 I.CSW 2 Pointer to the job’s channel area.

32 LIOCT 2 Total number of I'O operations outstanding.

34 IL.SCTR 2 Suspension counter. A value less than 0 means
the job is suspended.

36 I.LBLOK 2 Job blocking bits. See Table 3-15 for the

meaning of each bit.

Version 5.1, July 1984
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Table 3-14: Impure Area (Cont.)

Byte
Length
Offset Symbol (Octal) Description

The following offsets are not guaranteed to remain constant from release to release. In fact,
since the pointers and status words can vary depending on the special features you select
through system generation, you should consult the link map from the monitor assembly to
find the correct offsets for your system. Note that some items, such as the input and output
ring buffers, have a variable length.

- LJID 10 Job’s terminal prompt string. If the system job
feature is present, the length of 1.JID is 14
octal.

1L.LNAM 6 System jobs only: Logical job name in ASCII.

L.NAME 10 File name and file type, in Radix-50, of the
running job.

1.SPLS 2 Pointer to nonlinked .DEVICE list.

- LTRAP 2 Address of trap to 4 and 10 routine defined via
.TRPSET.

LFPP 2 FPU only: Address of FPP exception routine
defined via .SFPA.

[.SPSV 2 XM only: Bottom of saved SP data.

L.SWAP 4 Pointer to extra swap information specified in
the .CNTXSW programmed request.

L.SP 2 Saved stack pointer.

LBITM 24 Bitmap for protection.

I.CLUN 2 Multi-terminals only: LUN of job’s console.

LTTLC 2 Multi-terminals only: Terminal input ring

buffer line count.

LIRNG 2 Input ring buffer low limit.

LIPUT 2 Input PUT pointer for interrupts.
LICTR 2 Input character count.

LIGET 2 Input GET pointer for . TTYIN.
LITOP 2 Input ring buffer high limit.

—_—— TTYIN Input ring buffer.

L.OPUT 2 Output PUT pointer for TTYOUT.
I.OCTR 2 Output character count.

L.OGET 2 Output GET pointer for interrupts.
1.OTOP 2 Output ring buffer high limit.

(Continued on next page)
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Table 3-14: Impure Area (Cont.)

Byte
Length
Offset Symbol (Octal) Description

- -_ TTYOUT Output ring buffer.

- IL.QUE QWDSIZ The initial queue element; 16 octal bytes (24
bytes if XM).

- LMSG 4 The internal message channel.

- L.SERR 6 The third word of the message channel is used
as the hard/soft error flag.

- L TERM 2 Terminal status word.

- L. TRM2 2 Terminal status word 2.

- I.SCCA 2 CTRL/C terminal status word set via .SCCA.

- 1.SCCI 2 XM only: PARI1 value of . SCCA for XM.

- LDEVL 2 Pointer to linked .DEVICE list.

- LFPSA 2 XM and FPU only: Pointer to FPU save area,
later in impure area.

- I.SCOM 36 XM only: System communication save area
(for non-multi-terminal systems).

- L.SCOM 40 XM and multi-terminals only: System commu-
nication save area.

- LRSAV 20 XM only: Register save area.

- LWPTR 2 XM only: Pointer to window control blocks, at
LWNUM later in impure area.

- LRGN RGWDSZz XM only: Region control blocks.

- LWNUM 2 XM only: Number of window blocks.

- —_—— WNWDSZ XM only: Window control blocks.

- LFSAV 62 XM and FPU only: FPU save area.

- I.VHI 2 XM only: Virtual high limit of job; nonzero if
linker /V option used.

- I.SCHP 2 Pointer to the job's system channel. The moni-
tor uses this channel for its own calls, such as
.DSTATUS.

- I.SYCH 14 The job’s system channel, for all foreground

and system jobs. The background job’s channel
is in the fixed offset area of the Resident
Monitor.
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Job State Word Bits

The job state word, . STATE, indicates status information about a job. Ta-
ble 3—15 shows the meaning of each bit. Unused bits are reserved for future
use by DIGITAL.

Table 3-15: Job State Word Bits, Offset 0

Mnemonic  Bit Meaning When Set
ABPND$ 0 An abort has been requested for this job.
BATRNS$ 1 BATCH is running for this job.
CSIRNS 2 The CSI is running for this job.
USRRN$ 3 The USR is running for this job.
4 Reserved.
ABORT$ 5 The job is being aborted.
6 Reserved.
CPEND$ 7 This job has a completion routine pending.
8-11 Reserved.
WINDW$ 12 This is a virtual job.
13-14 Reserved.
CMPLT$ 15 A completion routine is running for this job.
Job Blocking Bits

The job blocking word, . BLOK, indicates which condition is blocking a job.
Unused bits are reserved for future use by DIGITAL. Table 3-16 shows the
meaning of each bit.

Table 3-16: Job Blocking Bits, Offset 36

Mnemonic Bit Meaning When Set
0-3 Reserved.
USRWT$ 4 The job is waiting for the USR.
5 Reserved.
KSPND$ 6 The job is suspended as a result of the monitor SUSPEND
command.
7 Reserved.
EXIT$ 8 The job is waiting for all /O to complete.
NORUNS$ 9 The job is not running (that is, it is a foreground or system job
that has completed).
SPND$ 10 The job is suspended.

(Continued on next page)
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Table 3-16: Job Blocking Bits, Offset 36 (Cont.)

Mnemonic Bit Meaning When Set o
CHNWTS$ 11 The job is waiting for I/O on a channel to complete.
TTOEM$ 12 The job is waiting for the output ring buffer to be empty.
TTOWTS$ 13 The job is waiting for room in the output ring buffer.
TTIWT$ 14 The job is waiting for terminal input.

15 Reserved.

3.6.3 Queue Element Format Summary

This section summarizes the formats of the various types of queue ele-
ments. For detailed information on clock support and timer service, see
Section 3.2, which also describes the timer queue element. Section 3.3 con-
tains more information on the queued I/O system and includes descriptions

of the I/O queue element, the completion queue element, and the synch
queue element.

3.6.3.1 /O Queue Element — Figure 3-24 shows the format of an I/O queue
element.

Figure 3-24: 1/0 Queue Element Format

NAME OFFSET CONTENTS
Q.LINK 0 LINK TO NEXT QUEUE ELEMENT: 0 IF NONE
Q.csw 2 POINTER TO CHANNEL STATUS WORD IN 1/0
CHANNEL (SEE FIGURE 3-29)
Q.BLKN 4 PHYSICAL BLOCK NUMBER
Q.FUNC 6 RESERVED | JoB DEVICE | SPECIAL
QUNIT 7 NUMBER | UNIT FUNCTION
Q.JNUM 7 (1 BIT) (4 BITS) (3BITS) | CODE
0=BG (8 BITS)
Q.BUFF 10 USER BUFFER ADDRESS (MAPPED THROUGH PAR1
WITH Q.PAR VALUE, IF XM)
QWCNT 12 IF <0, OPERATION IS WRITE
WORD COUNT <IF =0, OPERATION IS SEEK
[IF >0, OPERATION IS READ
THE TRUE WORD COUNT IS THE ABSOLUTE
VALUE OF THIS WORD.
Q.COMP 14 COMPLETION (IF 0, THIS IS WAIT-MODE 1/0
ROUTINE IF 1, JUST QUEUE THE REQUEST
CODE AND RETURN
IF EVEN, COMPLETION ROUTINE
ADDRESS
Q.PAR 16 PAR1 VALUE (XM ONLY)
RESERVED (XM ONLY)
RESERVED (XM ONLY)
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3.6.3.2 Completion Queue Element — Figure 3-25 shows the format of a |
completion queue element.

Figure 3-25: Completion Queue Element Format

NAME OFFSET CONTENTS
Q.LINK 0 LINK TO NEXT QUEUE ELEMENT; 0 IF NONE
2 RESERVED
4 RESERVED
6 RESERVED
Q.BUFF 10 CHANNEL STATUS WORD
QWCNT 12 OFFSET FROM START OF CHANNEL AREA TO THIS CHANNEL
Q.Comp 14 COMPLETION ROUTINE ADDRESS
THREE ADDITIONAL WORDS ARE PRESENT IN XM SYSTEMS. THEY
ARE UNUSED, AND ARE RESERVED FOR FUTURE USE BY DIGITAL.

3.6.3.3 Synch Queue Element — Figure 3-26 shows the format of a synch ||
queue element.

Figure 3-26: Synch Queue Element Format

NAME OFFSET CONTENTS
Q.LINK 0 LINK TO NEXT QUEUE ELEMENT; 0 IF NONE
Q.CSW 2 JOB NUMBER
Q.BLKN 4 RESERVED
Q.FUNC 6 RESERVED
Q.BUFF 10 SYNCH ID
Q.WCNT 12 —1 (CUE THAT THIS IS A SYNCH ELEMENT)
Q.COMP 14 SYNCH ROUTINE ADDRESS

3.6.3.4 Fork Queue Element — Figure 3-27 shows the format of a fork queue |
element.

Figure 3-27: Fork Queue Element Format

NAME OFFSET CONTENTS

F.BLNK 0 LINK TO NEXT QUEUE ELEMENT; 0 IF NONE
F.BADR 2 FORK ROUTINE ADDRESS

F.BRS 4 RS SAVE AREA

F.BR4 6 R4 SAVE AREA
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3.6.3.5 Timer Queue Element — Figure 3-28 shows the format of a timer
queue element.

Figure 3-28: Timer Queue Element Format

NAME OFFSET CONTENTS

C.HOT 0 HIGH-ORDER TIME

C.LoT 2 LOW-ORDER TIME

C.LINK 4 LINK TO NEXT QUEUE ELEMENT: 0 IF NONE

CJUNUM 6 OWNER’S JOB NUMBER

C.SEQ 10 OWNER'S SEQUENCE NUMBER ID

C.SYS 12 —1 IF SYSTEM TiMER ELEMENT;
=3 IF .TWAIT ELEMENT IN XM

C.cOmpP 14 ADDRESS OF COMPLETION ROUTINE
THREE ADDITIONAL WORDS ARE PRESENT IN
XM SYSTEMS. THEY ARE UNUSED, AND ARE
RESERVED FOR FUTURE USE BY DIGITAL.

3.6.4 /0 Channel Format

Figure 3-29 shows the format of an /O channel. Since each channel uses
five words, the size of the monitor’s channel area is five times the number
of channels. RT-11 allocates 16 channels for each job. The channel area is
80 decimal words long. For SJ, a single channel area is located in RMON.
For FB and XM, one channel area for each Job is located in the job’s impure
area. The .CDFN programmed request can provide more channels. Table
3-17 shows the significant bits in the Channel Status Word.

Figure 3-29: 1/0 Channel Description

NAME OFFSET CONTENTS
0 CHANNEL STATUS WORD
C.SBLK 2 STARTING BLOCK NUMBER OF THIS FILE
(0 IF NON-FILE-STRUCTURED)
C.LENG 4 LENGTH OF FILE (IF OPENED BY .LOOKUP)
SIZE OF EMPTY AREA (IF OPENED BY .ENTER)
C.USED 6 HIGHEST BLOCK WRITTEN
C.DEvVQ 10 DEVICE NUMBER OF REQUESTS
UNIT NUMBER PENDING ON THIS CHANNEL
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Table 3-17: Channel Status Word (CSW)

Bit Meaning

0 Hard error bit.

0 = Noerror.
1 = Harderror.

1-5 Index into the $PNAME table and other device tables.
6 RENAME flag.

0 = NoRENAME isin progress.
1 = A RENAME operation is in progress.

7 0 = The file was opened with a .LOOKUP. The monitor does not modify
the directory when the file is closed.
1 = The file was opened with an . ENTER. The monitor modifies the direc-
tory when the file is closed.

8-12 The number of the directory segment containing this entry.
13 End-of-file (EOF) bit.

0 = No end-of-file.
1 = End-of-file was found on this channel.

14 Reserved.

15 0 = The channel is free.
1 = Thechannel is active.

3.6.5 Device Tables

Tables in the Resident Monitor keep track of the devices on the RT-11
system. These tables are contained in the module SYSTBL.MAC, which is
created by system generation and assembled separately from the module
RMON. SYSTBL is linked with RMON and other modules to form the
Resident Monitor. The symbol $SLOT in SYSTBL, which is defined at sys-
tem generation time, defines the maximum number of devices the system

can have. The value of $SLOT is greater than or equal to 3, and less than or
equal to 31 decimal.

3.86.5.1 $SPNAME Table — The permanent name table is called $PNAME. It is
the central table around which all the others are constructed. The total
number of entries is fixed at assembly time; you can allocate extra slots
then. Entries are made in $PNAME at monitor assembly time for each
device that is built into the system.

Each table entry consists of a single word that contains the Radix—50 code
for the two-character physical device name. (For example, the entry for
DECtape is .RAD50 /DT/.) The TT device must be first in the table; the sys-
tem device is always second. After that, the position of a device in this table
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is not critical. Once the entries are made into this table, their relative posi-
tion (that is, their order in the table) determines the general device index
used in various places in the monitor. Thus, the other tables are organized in
the same order as $PNAME. The offset of a device name entry in $PNAME
serves as the index into the other tables for a given device.

The bootstrap checks the system generation parameters of a handler with
those of the current monitor (by inspecting the low three bits of SYSGEN at
RMON fixed offset 372), and zeroes the $PNAME entry for that device if the
parameters do not match. The INSTALL monitor command cannot install a
handler whose conditional parameters do not match those of the monitor.

3.6.5.2 $STAT Table — The device status table is called $STAT. Entries to
this table are made at assembly time for those devices that are perma-
nently resident in the RT-11 system, such as TT and MQ in FB and XM
systems. When the system is bootstrapped, the entries for all other devices
are filled in when the handler is installed by the bootstrap or the INSTALL
monitor command. Each device in the system has a status entry in its
corresponding slot in $STAT. The device status word identifies each physi-
cal device and provides information about it, such as whether it is random
or sequential access. The device status word is part of the information
returned to a running program by the -DSTATUS programmed request. See
Chapter 7 for details on the status word.

3.6.5.3 SDVREC Table — The device handler block number table is called
$DVREC. Entries to this table are made at bootstrap time for devices that
are built into the system, and at INSTALL time for additional devices. The
entries are the absolute block numbers where each of the device handlers
resides on the system device. Since handlers are treated as files, their posi-
tions on the system device are not necessarily fixed. Thus, each time the
system is bootstrapped, the handlers are located and $DVREC is updated
with their locations on the system device. The pointer in $DVREC points to
block 1 of the file. (Because handlers are linked at 1000, the actual handler
code starts in the second block of the file.) A zero entry in the $DVREC
table indicates that no handler for the device in that slot was necessary
(such as TT or MQ in FB and XM systems). (Note that if block 0 of the
handler file resides on a bad block on the system device, RT-11 cannot
install or fetch the handler.) Note also that 0 is a valid $DVREC entry for
permanently resident devices.

3.6.5.4 SENTRY Table — The handler entry point table is called $ENTRY.
Entries in this table are made whenever a handler is loaded into memory
by either the .FETCH programmed request or by the LOAD keyboard mon-
itor command. The entry for each device is a pointer to the fourth word of
the device handler in memory. The entry is zeroed when the handler is
removed by the . RELEASE programmed request or by the UNLOAD key-
board monitor command.

Some device handlers are permanently resident. These include the system
device handler and, for FB and XM systems, the TT handler. The $ENTRY
values for such devices are fixed at boot time.
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3.6.5.5 $DVSIZ Table — Each entry in the $DVSIZ table contains the size of |
a device, in blocks. The value is 0 for a non-file-structured device. For
devices that accept multi-size volumes, the entry contains the size of the
smallest possible volume.

3.6.5.6 SHSIZE Table — Each entry in the $HSIZE table contains the size of |
a device handler, in bytes. This value indicates the amount of memory
needed to load each handler.

3.6.5.7 SUNAM1 And SUNAM2 Tables — The tables that keep track of logical |
device names and the physical names that are assigned to them are called
$UNAM1 and $UNAM2. Entries are made in these tables when the AS-
SIGN monitor command is issued. The physical device name is stored in
$UNAM1 and the logical name associated with it is stored in the corre-
sponding slot in §UNAM2. When the system is first bootstrapped, there are
two assignments already in effect that associate the logical names DK and
SY with the device from which the system was booted. The value of $SLOT,
which is determined at system generation time, limits the total number of
logical name assignments. Thus, you can issue one ASSIGN command for
each device in your system. (The initial SY and DK assignments at boot-
strap time do not come out of your total.)

The $UNAM1 and $UNAM2 tables are not indexed by the $PNAME table
offset. The fact that the tables are the same size is interesting, but not
significant.

3.6.5.8 $SOWNER Table — The device ownership table is called SOWNER and ||
it is used in the FB and XM environments to arbitrate device ownership.
The table is ($SLOT*2) words in length and is divided into two-word entries
for each device. Entries are made into this table when the LOAD keyboard
monitor command is issued. Each two-word entry is in turn divided into
eight four-bit fields capable of holding a job number. The low four bits of
the first byte correspond to unit 0, and the high four bits correspond to unit
1. The low four bits of the next byte correspond to unit 2, and so on (see
Figure 3-30). Thus, each device is presumed to have up to eight units, each
assigned independently of the others. However, if the device is non-file-
structured, units are not assigned independently; the monitor ASSIGN code
ensures that ownership of all units is assigned to one job.

Figure 3-30: $OWNER Entry

DEVICE UNIT # 3 2 1 0

OWNER # OWNER # OWNER # OWNER #

OWNER # OWNER # OWNER # OWNER #

DEVICE UNIT # 7 6 : 5 4

Version 5.1, July 1984

Resident Monitor 3-67



When a background job, a foreground Job, or a system job attempts to access
a particular unit of a device, the monitor checks to be sure the unit being
accessed is either public or belongs to the requesting job. If another job owns
the unit, a fatal error is generated.

The device is public if the four-bit field is 0. If the device is not public, the
field contains a code equal to the job number plus 1. Since job numbers are
always even, the ownership code is odd. For example, in a distributed
foreground/background system, the owner field value for the background job
is 1; for the foreground job it is 3. In a foreground/background system with
the system job feature the owner field value for the background job is still 1;
for the foreground job it is 17. The owner field value for a system job is 1 plus
the job number.

3.6.5.9 Adding a Device to the Tables — You can create free slots in the
tables by deleting or renaming one or more of the device handler files from
the system device and rebooting the system, or by issuing the REMOVE
monitor command. The INSTALL monitor command can install a different
device handler into the table after the system has been booted. However,
INSTALL does not make a device entry permanent. For more information
on installation, the DEV macro, and the bootstrap, see Chapter 7.
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Chapter 4
Extended Memory Feature

After introducing RT-11’s extended memory feature, this chapter provides
an overview of the hardware components that are the basis of the extended
memory system. (The term extended memory refers to physical memory
above the 28K word boundary that can be accessed only by using special
hardware. Low memory is the physical memory between 0 and 28K words.
In some systems with an additional 2K words of low memory, low memory
extends to 30K words and there is no extended memory.) It then shows how
RT-11 implements support for extended memory, and explains how to
design, code, and execute a program in an extended memory environment.
Following these demonstrations is a discussion of the implications of
extended memory support for other system software components and a
description of all the restrictions you must observe when working with
extended memory. Lastly, this chapter describes how to debug an extended
memory application program and provides a sample program that uses dou-
ble buffering in extended memory.

4.1 Introduction

The following sections present a brief overview of the circumstances that led
to the RT-11 extended memory implementation. Read it to gain an under-
standing of the limitations of 28K-word systems and the means by which
RT-11 circumvents these limitations.

4.1.1 16-Bit Addressing

Each computer in the PDP-11 family can directly address 32K words. A
PDP-11 computer can never address more than this amount of memory
directly because its architecture provides only 16-bit addresses. Figure 4-1
illustrates this addressing limitation. Since the PDP-11 computer can
address bytes individually, you can see from the illustration why its address
space is limited to 32K words.

Remember that one K equals 1024 decimal, or 2 raised to the 10th power.
The RT-11 Mini-Reference Manual provides a convenient reference chart of
K-words and their equivalent octal numbers.
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Figure 4-1: 16-Bit Word Addressing Space Limitation

A 16-BIT WORD WITH THE HIGHEST POSSIBLE VALUE, EXPRESSED IN BINARY:

Ll T [ [ [ 7]

THE SAME VALUE EXPRESSED IN OCTAL IS 177777

THE SAME VALUE EXPRESSED IN DECIMAL IS 65535,

SINCE 0 IS A VALID LOCATION, THE PDP-11 CAN ADDRESS 65536 UNIQUE BYTE LOCATIONS.
THUS, THE PDP-11 (WHICH IS A BYTE-ADDRESSABLE COMPUTER) ADDRESSES 64K BYTES OF
MEMORY, OR 32K WORDS OF MEMORY.

In unmapped PDP-11 systems (those not using extended memory), the high-
est 4K words of address space, called the I/O page, are reserved for device
registers, general registers, and so on. Thus, only 28K words of address
space are left for use by the operating system software and programs. On a
system with 28K words of memory, all 28K words are available.

4.1.2 Virtual and Physical Addresses in a 28K-Word System

A virtual address is a value in the range 0 through 177777. It is a 16-bit
address within a program’s 32K-word address space.

A physical address is the actual hardware address of a specific memory
location. Physical addresses are not limited to 16 bits.

Figure 4-2 shows the relationship between virtual address space and phys-
ical address space in an RT-11 system with 28K words of memory. Note that
in this system, which could be running either the SJ or FB monitor, there is
a one-to-one correspondence between virtual and physical addresses. For
example, virtual address 20000 corresponds directly to physical address
020000.

4.1.3 Circumventing the 28K-Word Memory Limitation

Before RT-11 provided support for extended memory, systems were limited
to using 28K words of memory. Programmers have traditionally used two
mechanisms to circumvent the 28K-word available memory limitation. One
of the mechanisms is called chaining: one program calls a second program
at exit time; the second program provides additional processing for the data
the original program passes to it. The MACRO-11 assembler, for example,
assembles a MACRO-11 source file and chains to CREF, which produces the
cross-reference listing. One way, then, to run a program that is larger than
the amount of memory available is to divide the program into two or more
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Figure 4-2: Virtual and Physical Addresses in a 28K-Word System

VIRTUAL PHYSICAL ADDRESS
ADDRESS SPACE SPACE
32K 32K
1/0 PAGE
28K
AVAILABLE
MEMORY
4K} 20 000 — 4K | 20 000
0 0
16-BIT ADDRESSES 16-BIT ADDRESSES

functionally distinct parts. Then, when the first program finishes, it can
start up the second program by chaining to it.

Another way to run a program that is larger than the amount of memory
available is to divide the program into overlay segments. Separate segments
can then take turns residing in the same place in physical memory. By using
overlays you can run a very large program in a much smaller amount of
physical memory.

In both chaining and overlaying, instructions and data in the separate pro-
grams or segments use both the same virtual addresses and the same
locations in physical memory. Programs or segments not currently in mem-
ory reside on an auxiliary storage volume. Figure 4-3 illustrates chaining;
Figure 44 shows overlaying.
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Figure 4-3: Chaining

32K

28K

PHYSICAL ADDRESS
SPACE

1/0 PAGE

MEMORY

PROGRAM 1

AS PROGRAM 1 EXITS, IT CALLS
PROGRAM 2. PROGRAM 2 USES
THE SAME VIRTUAL ADDRESSES

AND PHYSICAL MEMORY

LOCATIONS AS PROGRAM 1.

Figure 4-4: Overlaying

PHYSICAL ADDRESS

SPACE
32K
1/0 PAGE
28K
MEMORY
OVERLAY
REGION 1
ROOT

AS THE PROGRAM RUNS, SEGMENTS 1, 2, AND 3
TAKE TURNS RESIDING IN OVERLAY REGION 1.
THE SEGMENTS ALL USE THE SAME VIRTUAL
ADDRESSES AND PHYSICAL MEMORY LOCATIONS.
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4.1.4 18- and 22-Bit Addressing

Although PDP-11 software uses 16-bit words, it is possible to access more
than 32K words of memory by using special memory management hard-
ware. With memory management, RT-11 can use up to 18-bit addresses on a
Unibus machine, or up to 22-bit addresses on a Q-bus machine. This means
that you can address up to 124K words plus a 4K-word I/O page on a Unibus
machine, or up to 2044K words plus a 4K-word I/O page on a Q-bus machine.
Figure 4-5 shows the addressing range for 18- and 22-bit addresses.

Figure 4-5: 18- and 22-Bit Word Addressing Range

AN 18-BIT WORD WITH THE HIGHEST POSSIBLE VALUE, EXPRESSED IN BINARY:

Clefefofefofofefofefefefefefefefofr]

THE SAME VALUE EXPRESSED IN OCTAL IS 777777.

THE SAME VALUE EXPRESSED IN DECIMAL IS 262143.

A 22-BIT WORD WITH HIGHEST POSSIBLE VALUE, EXPRESSED IN BINARY:

118 8 5 0 0 0 3 3 K K K K K KN K KKK

THE SAME VALUE EXPRESSED IN OCTAL IS 17777777

THE SAME VALUE EXPRESSED IN DECIMAL IS 2087151

SINCE 0 IS A VALID LOCATION, 18 BITS CAN ADDRESS 262,144
UNIQUE BYTE LOCATIONS, OR 128K WORDS OF PHYSICAL ADDRESS
SPACE. 22 BITS CAN ADDRESS 2,097,161 UNIQUE BYTE LOCATIONS,
OR 1024K WORDS OF PHYSICAL ADDRESS SPACE.

4.1.5 Virtual and Physical Addresses with Extended Memory
Hardware

The virtual addresses your program uses are always limited to 16 bits so
that your program’s virtual address space is always limited to 32K words.

However, an 18-bit address can reference any location between 0 and 128K
words; a 22-bit address can reference any location between 0 and 2048K
words. RT-11 systems with more than 28K words of memory, physical loca-
tions are referenced by the hardware as 18- or 22-bit addresses.

As Figure 4-6 shows, there can no longer be a direct one-to-one correspon-
dence between virtual and physical addresses.
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Figure 4-6: Virtual and Physical Addresses with Extended Memory

CC

Hardware
PHYSICAL ADDRESS
SPACE
128K
1/O PAGE
UP TO 124K
'fiu fj
VIRTUAL ~ ~
ADDRESS SPACE
32K 32K
MEMORY
0 0
16-BIT ADDRESSES 18-BIT ADDRESSES

4.1.6 Circumventing the 32K-Word Address Limitation

As memory technology improves, it becomes more and more feasible to pro-
vide PDP-11 systems with more than 28K words of memory. Since the
UNIBUS and Q-bus already have the ability to use addresses longer than 16
bits, it remains the task of the hardware — the Memory Management Unit —
and the operating system software to set up a correspondence between a pro-
gram’s virtual addresses and physical memory locations so that programs
can access all of memory.

If you select extended memory as a special feature at system generation
time, you can take advantage of the 18- or 22-bit addresses. The extended
memory feature permits programs, which are still restricted to using 16-bit
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words, to access 2044K words of physical memory. RT-11 implements sup-
port for extended memory through a combination of hardware and software
components.

Through its extended memory (XM) monitor, RT—11 provides a mechanism
to associate a virtual address with a physical address. This process is called
mapping. RT-11 permits programs to access extended memory by mapping
their virtual addresses to physical locations in memory. In summary:

® Every location in memory has an 18- or 22-bit physical address; there are
more physical addresses than virtual addresses.

® A program cannot access specific physical addresses unless its virtual
addresses are mapped to those physical locations.

® Programs can access all the available physical memory by using their vir-
tual addresses over and over again, but with different mapping each time.

Section 4.3 presents more material on mapping. Be sure you understand the
hardware concepts discussed in the next section before you proceed to 4.3.

In an extended memory system, programs are no longer limited to using
28K words of memory. However, they must still deal with the 32K-word
addressing limitation. Typically, large programs are still divided into
smaller segments, as in the 28K-word systems. While the instructions and
data in separate segments of a program share the same virtual addresses,
they can have unique physical addresses. Figure 4-7 shows a program that
is divided into three overlay segments. The three segments are resident
simultaneously in extended memory, but they share the virtual addresses in
overlay region 1.

4.2 Hardware Concepts

There are three hardware requirements for an RT-11 extended memory
system:

® At least 32K words of memory
® The Extended Instruction Set (EIS) option
® A Memory Management Unit

This manual provides an overview of the memory management hardware
and its functions. The best sources of detailed information on the memory
management hardware are the hardware manuals for the KT1 1-C, -CD, and
-D Memory Management Units. Their full titles and order numbers are:

KT11-C, CD Memory Management Unit User's Manual: EK-KT11C-OP—-001
KT11-D Memory Management Option Manual: EK-KT11D-TM—002
KT11-D Memory Management Option User’'s Manual: EK-KT11D-OP—001
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Figure 4-7: Program Segments Sharing Virtual Address Space

PHYSICAL ADDRESS

(3 SPACE .
[ ) [ ]
[ ]
SEGMENT 1
VIRTUAL
ADDRESS SPACE
32K
SEGMENT 2
SEGMENT 3
OVERLAY
REGION 1
ROOT ROOT
0

SEGMENTS 1, 2, AND 3 HAVE UNIQUE PHYSICAL ADDRESSES, BUT
THEY TAKE TURNS USING THE SAME SET OF VIRTUAL ADDRESSES.

Two sources of information on the memory management hardware are
Chapter 10 of the Microcomputers and Memories Handbook (order number
EB-20912-20) and the PDP-11 Processor Handbook.

Note that it is not necessary to learn the details of how the Memory
Management Units function in order to understand and use the RT-11
extended memory system. These manual references are provided for your
convenience should you choose to do some further background reading.

4.21 Memory Management Unit

The central component of an XM system is a hardware option referred to
generally as the Memory Management Unit, or MMU. DIGITAL manufac-
tures several types of Memory Management Units, including the KT-11A,
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the KT11-C, the KT11-D, and the KT11-CD. RT-11 supports the minimal
set of functions common to all the memory management units.

The function of the Memory Management Unit is to intercept a 16-bit vir-
tual address generated by the processor and convert it to an 18- or 22-bit
physical address. Figure 4-8 illustrates this process for 18 bits.

Figure 4-8: MMU Address Conversion

15 0
16 BITS
C jr J
CURRENT
MMU e E——— MAPPING
INFORMATION
17 0
( )
18 BITS

4.2.2 Concept of Pages

In an extended memory system the 32K-word virtual address space is
divided into eight sections called pages. Each page begins on a 4K word
boundary, and the pages are numbered from 0 through 7. A page is made up
of units of 32 decimal words each. Since there can be as many as 128 of these
units, a page can vary in size from 0 words to 4096 words, in 32-word incre-
ments. Figure 4-9 shows the virtual address space divided into eight 4K-
word pages.

Figure 4-10 shows the virtual address space divided into five pages of vary-
ing lengths. The shaded areas in the virtual address space are not part of the
pages, and are therefore inaccessible. Thus, short pages cause gaps in the
virtual address space.

4.2.3 Relocation
When the Memory Management Unit converts a 16-bit virtual address to an

18- or 22-bit physical address, it relocates the virtual address. This means
that two or more programs can have the same virtual addresses but different
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4-10

Figure 4-9: 4K-Word Pages
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physical addresses. The Memory Management Unit relocates virtual
addresses in units of pages. It assigns a page to a section of physical memory
that starts on a 32-word decimal boundary. Figure 4-11 shows how the
Memory Management Unit can relocate the virtual addresses of two differ-
ent programs in a 124K-word memory.

Figure 4-11: Relocation by Program

PHYSICAL
ADDRESS
SPACE
124K
VIRTUAL
VIRTUAL
ADDRESS ”:5 [N ADDRESS
SPACE SPACE
32K 32K
b — — — — 28K b — — — — b— — — — —{ 160000
S 24K | PROGRAM __ — — — — —{ 140000
2
b — — 20K pre———, \ 2} — — — — 120000
S —— Kp—=— ==\ \ - —— - 100000
R — 12Kp—— 4 \ \ F———— 60000
PROGRAM
10K 1
N _—— —
PROGRAM 8K 40000
1 PROGRAM
2
R — 4K b— — — — — 20000
10K 7K
] 0 0 0

Program 1 in Figure 4-11 is relocated by 20000 octal. So, when program 1

references virtual address 0, for example, it actually accesses memory loca-
tion 20000.

Since the Memory Management Unit relocates each page of virtual address

space separately, a program can reside in disjoint sections of memory, as
Figure 4-12 shows.

4.24 Active Page Register (APR)

The RT-11 monitor communicates with the Memory Management Unit
through the Active Page Registers, which are located in the I/O page. Each
Active Page Register consists of two 16-bit words, as Figure 4-13 shows: a
Page Address Register (PAR), and a Page Descriptor Register (PDR).
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Figure 4-12: Relocation by Page

PHYSICAL ADDRESS

SPACE
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Figure 4-13: Active Page Register (APR)
15 0 15 0
PAR PDR
PAGE ADDRESS REGISTER PAGE DESCRIPTOR REGISTER

The Page Address Register and the Page Descriptor Register always act as a
pair. A set of eight Active Page Registers contains all the information neces-
sary to describe and relocate the eight virtual address pages. The Page
Descriptor Register describes how much of a virtual page to map to memory.
The Page Address Register describes where in memory to put the virtual
page.

The eight Active Page Registers are numbered from 0 through 7. There is
one Active Page Register for each page in the 32K-word virtual address
space, as Figure 4-14 shows.
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Figure 4-14: Correspondence Between Pages and Active

Page Registers
VIRTUAL
ADDRESS SPACE
32K
PAGE 7 } APR 7 ———— | PAR 7 | POR 7 J
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4.2.4.1 Page Address Register (PAR) —The eight Page Address Registers cor-
respond directly to the eight virtual address pages. The Page Address
Register contains the physical memory address in 32-word decimal units, or
Page Address Field, for a particular virtual address page. Figure 4-15 shows
the contents of the Page Address Register. Bits 0 through 11 are used for 18-
bit addressing; bits 0 through 15 are used for 22-bit addressing.

Figure 4-15: Page Address Register (PAR)
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4.2.4.2 Page Descriptor Register (PDR) — The Page Descriptor Register con-
tains information about page expansion, page length, and access control for
a particular page. Like the Page Address Registers, the Page Descriptor
Registers correspond directly to the virtual address pages, as Figure 4-14
shows. Figure 4-16 shows the contents of the Page Descriptor Register.
Unused bits are reserved for future use by DIGITAL.
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Figure 4-16: Page Descriptor Register (PDR)
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In Figure 4-16, the field marked ACF represents the Access Control field.
This field describes how a particular page can be accessed, and whether or
not a particular access should cause an abort of the current operation. The
values in this field are as follows:

Value Meaning
00 Nonresident page. Abort any attempt to access it.
01 Resident read-only page. Abort any attempt to write into it. (RT-11 does

not use this value.)

10 Unused code. Abort all attempts to access this page. (RT-11 does not use
this value.)

11 Resident read/write page. All accesses are valid.

The field marked ED is the Expansion Direction field. This bit indicates
the direction in which a page can expand. The codes and their meanings are

as follows:
Value Meaning
0 The page expands to higher addresses. (In RT-11, this field is always 0.)
1 The page expands to lower addresses. (RT-11 does not use this value.)

The field marked W is the Written Into field. It indicates whether the page

has been modified since it was loaded into memory. (RT-11 does not use this
field.)

Some PDP-11 processors, instead of using bit 6 to indicate the page’s modifi-
cation status, use one or more of the reserved bits in the Page Descriptor
Register. RT-11 ignores these other bits.

The field marked PLF is the Page Length field. It indicates the length of a
page, in 32-word decimal units.

4.2.5 Converting a 16-Bit Address to an 18- or 22-Bit Address

The information necessary for the Memory Management Unit to convert a
16-bit virtual address to an 18- or 22-bit physical address is contained in the
virtual address and in its corresponding Active Page Register set. Figure
4-17 shows the meanings of the fields in the virtual address. These fields
represent a breakdown of the virtual address that is convenient for RT—11
and the MMU to use.

Bits 13 through 15 of the virtual address constitute the Active Page Field.
This field determines which Active Page Register the Memory Management
Unit will use to create the physical address.
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Figure 4-17: Virtual Address
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Bits 0 through 12 of the virtual address are the Displacement Field, which
contains an address relative to the beginning of a page.

The rest of the information necessary to create a physical address is con-
tained in the Page Address field of the appropriate Page Address Register.
Figure 4-18 shows how the Memory Management Unit converts a 16-bit vir-
tual address to an 18- or 22-bit physical address. In this example, Page
Address Register 6 contains 5460 octal, so virtual address 157746 converts
to physical address 565746. Bits 12-15 of the Page Address Register are
included for 22-bit addressing.

Figure 4-18: MMU Address Conversion (Detail)
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PHYSICAL ADDRESS (565746)

As you can see from Figure 4-18, bits 13, 14, and 15 of the virtual address
specify which Active Page Register to use. The Memory Management Unit
adds the value in bits 6 through 12 of the virtual address to the correspond-
ing Page Address Register. The Memory Management Unit places the result
of this addition in bits 6 through 17 or 6 through 21 of the physical address.
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The Memory Management Unit copies the value in bits 0 through 5 of the
virtual address into bits 0 through 5 of the physical address to form the final
18- or 22-bit physical address.

4.2.6 Status Registers

The Memory Management Unit also communicates with the RT—11 monitor
through two status registers. Status Register 0, located at 777572 in the /O
Page contains abort error flags, the memory management enable bit, and
other essential information required by RT-11 to recover from an abort or to
service a memory management trap. Status Register 2, located at 777576, is
a read-only register containing the 16-bit virtual address that the Memory
Management Unit is currently converting to an 18- or 22-bit physical
address. (RT—11 does not use Status Register 2. However, if a memory man-
agement unit fault occurs in your system, you can examine this register
yourself.) RT-11 also uses Memory Management Register 3 (MMSR3),
located at 772516, to enable 22-bit addressing.

4.2.7 Kernel and User Processor Modes

In addition to its primary function of managing the address space, the mem-
ory management system must provide some kind of protection for the moni-
tor. To implement protection, the processor provides two modes of operation:
kernel mode and user mode. The two modes provide a mechanism for sep-
arating system-level functions (kernel mode) from application-level func-
tions (user mode).

Each mode has its own set of eight Active Page Registers and its own stack
pointer. Therefore, each processor mode also makes its own assignments of
virtual addresses to physical locations: each mode has its own mapping.
Figure 4-19 shows how the value in bits 14 and 15 of the Processor Status
word determine in which processor mode execution takes place.

Routines that run in kernel mode are generally part of the run-time oper-
ating system software and must not be corrupted by other programs. RT-11
uses the processor’s kernel mode for the Resident Monitor and the USR, for
interrupt service routines, and for device handlers, including .SYNCH and
.FORK routines. Interrupts and traps vector through kernel mapping and
cause execution to continue in kernel mode.

Routines that run in user mode are generally part of application programs.
They are prevented from executing instructions that could corrupt the mon-
itor or halt the computer. For example, a RESET instruction acts as a NOP
instruction in user mode, and a HALT instruction generates a trap to 10.
RT-11 uses the processor’s user mode for the Keyboard Monitor, for system
utility programs, and for application programs and their completion
routines.

Since each processor mode uses its own set of Active Page Registers, kernel
mapping is not necessarily identical to user mapping. For example, if user
virtual address 20010 is associated with physical address 40210, it does not
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Figure 4-19: Processor Status Word and Active Page Registers
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necessarily mean that kernel virtual address 20010 is also mapped to phys-
ical address 40210. In fact, kernel virtual addresses are often mapped to dif-
ferent sections of physical memory from user virtual addresses. The map-
ping depends entirely on the contents of the Active Page Registers. Thus,
changing from user to kernel processor mode has some interesting implica-
tions: referencing the same virtual addresses in different modes can cause a
program to access different physical locations. Figure 4-20 shows an exam-
ple in which virtual address 0 in kernel mode maps to physical location 0; in
user mode, virtual address 0 maps to physical location 500. This is the map-
ping scheme RT-11 uses for a virtual job at load time.

4.2.8 Default Mapping

Mapping is the process of associating virtual addresses with physical loca-
tions (see Section 4.1.6). The RT-11 XM monitor manages the virtual
address space by controlling the way the virtual addresses map to physical
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Figure 4-20: Mapping the Same Virtual Addresses to Different
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When you first bootstrap an RT-11 extended memory system, kernel and
user mapping are identical. That is, the monitor puts the same values into
both the kernel and user sets of Active Page Registers. Table 4—1 shows the
initial values of the Active Page Registers. Figure 4-21 shows the default
mapping that results from these values. Table 4-2 shows the default map-
ping for a typical 4K virtual background job that has no extended memory
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Table 4-1: Initial Contents of Kernel and User APRs

Page and Kernel User

APR No. PAR PDR PAR PDR
7 177600 77406 177600 77406
6 1400 77406 1400 77406
5 1200 77406 1200 77406
4 1000 77406 1000 77406
3 600 77406 600 77406
2 400 77406 400 77406
1 200 77406 200 77406
0 0 77406 0 77406

Figure 4-21: Default Mapping at Bootstrap Time
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Table 4-2: Initial Register Contents for Virtual Job

Page and User
APR No. PAR PDR
7 ? 0
6 ? 0
5 ? 0
4 ? 0
3 ? 0
2 ? 0
1 ? 0
0 5 77406

4.3 Software Concepts

RT-11 implements support for extended memory through the extended
memory, or XM, monitor. One of the major design considerations for
RT-11’s extended memory support was that the XM monitor should closely
resemble the FB monitor.

In addition, you must use a special set of device handlers that can communi-
cate between a peripheral device and extended memory. It is part of the
extended memory system design that the USR must be permanently
resident.

The following sections describe the software concepts RT-11 uses in its
extended memory system.

4.3.1 XM System Memory Layout

Figure 4-22 illustrates the locations of the XM system components in phys-
ical memory in a 128K-word system. (Notice that this layout closely resem-
bles the FB system arrangement described in Chapter 2.) When you first
bootstrap an XM system, the system device handler and the Resident
Monitor use the available memory just below the 28K-word boundary so
that extended memory — the locations between 28K and 124K — is not used.
Other loaded device handlers occupy the space below the Resident Monitor,
followed by foreground and system jobs, if any, and the USR.

The Resident Monitor executes in processor kernel mode and can access the
low 28K words of memory and the I/O page. The USR also executes in kernel
mode and is always memory resident in an XM system. The Keyboard
Monitor executes in processor user mode, but since it is a privileged back-
ground job, it uses the same mapping as the Resident Monitor. (Privileged
Jobs are described in Section 4.3.3.2.) Physical locations 0 through 500 con-
tain the vectors.

Version 5.1, July 1984

4-20 Extended Memory Feature



Figure 4-22: XM System Memory Layout
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43.2 How Programs Control Mapping

Mapping — associating virtual addresses with physical locations — is the
heart of the extended memory system. The XM monitor controls mapping by
putting values into the Active Page Registers, thus controlling the Memory
Management Unit. Obviously, this level of control is elementary and
requires the monitor to keep close watch over the mapping situation.

Fortunately, the monitor provides the means by which system and applica-
tion programs can direct mapping operations and experience the benefits of
accessing extended memory without concern for the specifics of the Memory
Management Unit operations. In fact, your programs should never access
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the Active Page Registers or the Memory Management Unit Status
Registers directly. Programs communicate their extended memory require-
ments to the monitor through a collection of programmed requests. These
requests store or modify information in data structures within the pro-
grams. Based on the contents of these data structures, the monitor modifies
its own internal control blocks and puts the correct values into the Active
Page Registers to perform the appropriate mapping action.

In order to access extended memory, a program must:
® Tell the monitor how much physical address space it needs.
® Describe the virtual addresses it needs to the monitor.

® Direct the monitor to associate the virtual addresses with the physical
locations. That is, it must map the virtual addresses to the physical
locations.

Background, foreground, and system jobs can all access extended memory by
following the three steps described above. Note, however, that none of the
Jobs can share physical address space with another job.

The monitor and the programs use certain software concepts to describe the
virtual addresses and the physical memory locations. The following sections
describe the concepts of physical address regions, virtual address win-
dows, and the program’s logical address space.

4.3.2.1 Physical Address Regions — A program that needs to access extended
memory must communicate to the monitor a description of the physical
memory locations it plans to use. The program does this by defining one or
more regions in extended memory.

A physical address region is a segment of physical memory consisting of
contiguous 32-word decimal units. A region must begin on a 32-word bound-
ary; it can be as large as 96K words. A job can have as many as four regions
at any time, but their total combined size cannot exceed 128K words. The
monitor assigns identification numbers to the regions when it creates them.
A region identification is actually a pointer within your job’s impure area to
the start of the region’s control block. (You will read more about region con-
trol blocks later.)

The purpose of a region is to describe a portion of the physical address space,
thus making it available for mapping and permitting a program to use those
physical addresses. Sections of physical address space, if any, that are not
part of a region are unavailable to a program. Figure 4-23 shows how mem-
ory can be divided into regions. Note that two jobs cannot share a region in
extended memory.

Information about a physical address region is contained in a three-word
data structure in your program, called a region definition block. The mon-
itor collects information from the region definition block and stores it in a
different internal data structure, called the region control block. The
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Figure 4-23: Physical Address Space and Two Regions
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