
RSX-11 M/M-PLUS
Utilities Manual
Order No. AA-FD13A-TC
Includes Update Pages

t-

(

c

RSX-11 M/M-PLUS
Utilities Manual
Order No. AA-FD13A-TC
Includes Update Pages

RSX-11 M Version 4,2
RSX-11 M-PLUS Version 3.0

digital equipment corporation · maynard, massachusetts'

First Printing, December 1979
Revised, November 1981

Updated, April 1983
Revised, July 1985

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a license
and may be used or copied only in accordance with the terms of such
license.

No responsibility is assumed for the use or reliability of software on
equipment that is not supplied by Digital Equipment Corporation or its
affiliated companies.

Copyright @ 1979, 1981, 1983, 1985 by Digital Equipment Corporation
All Rights Reserved.

Printed in U.S.A.

The postpaid READER'S COMMENTS form on the last page of this document
requests the user's critical evaluation to assist in preparing future
documentation.

The following are trademarks of Digital Equipment Corporation:

DEC
DEC/CMS
DEC/MMS
DECnet
DECsystem-10
DECSYSTEM-20
DECUS
DECwriter

DIBOL
EduSystem
lAS

PDT
RSTS
RSX
UNIBUS
VAX
VMS

MASSBUS
MicroPDP-11
Micro/RSTS
Micro/RSX
PDP

VT

momoomo

HOW TO ORDER ADDITIONAL DOCUMENTATION

In Continental USA and Puerto Rico call 800-258-1710

In New Hampshire, Alaska, and Hawaii call 603-884-6660

In Canada call 613-234-7726 (Ottawa-Hull)
800-267-6215 (all other Canadian)

DIRECT MAIL ORDERS (USA & PUERTO RICO)'

Digital Equipment Corporation
P.O. Box CS2008
Nashua, New Hampshire 03061

'Any prepaid order from Puerto Rico must be placed
with the local Digital subsidiary (809-754-7575)

DIRECT MAIL ORDERS (CANADA)

Digital Equipment of Canada Ltd.
100 Herzberg Road
Kanata, Ontario K2K 2A6
Attn: Direct Order Desk

DIRECT MAIL ORDERS (INTERNATIONAL)

Digital Equipment Corporation
PSG Business Manager
clo Digital's local subsidiary or
approved distributor

Internal orders should be placed through the Software Distribution Center (SDC), Digital Equipment
Corporation, Northboro, Massachusetts 01532

ZK2945

t-

(

c

CONTENTS

Page

PREFACE xv

SUMMARY OF TECHNICAL CHANGES xix I

CHAPTER 1

1.1
1.1.1
1.1.2
1.1.3
1.1.4
1.1.5
1.1.6
1.1. 7
1.1.8
1.1.9
1.1.10
1.1.11
1.1.12
1.1.13
1.1.14
1.2
1.3
1.4
1. 4.1
1.4.1.1

1.4.1.2

1.4.1.3
1. 4. 2
1.5

CHAPTER 2

2.1
2.1.1
2.1.1.1
2.1.1.2
2.1. 2
2.1.3
2.1.3.1
2.1.3.2
2.1.3.3
2.1.4
2.1.4.1
2.1.4.2
2.1.5
2.1.5.1
2.1.5.2
2.1.5.3

INTRODUCTION

RSX-llM/M-PLUS UTILITY PROGRAMS •••• 1-1
Line Text Editor (EDI) • • • • • • 1-2
peripheral Interchange Program (PIP) • 1-2
File Transfer Utility Program (FLX) •• 1-2
Disk Volume Formatter Utility (FMT) • 1-2
Bad Block Locator Utili ty (BAD) • 1-2
Backup and Restore Utility (BRU) •••••••• 1-3
Disk Save and Compress Utility Program (DSC) •• 1-3
File Structure Verification Utility (VFY) • 1-3
Librarian Utility Program (LBR) •••••• 1-3
File Dump Utility (DMP) •••••• • • 1-3
File Compare Utility (CMP) • • • • • • • 1-3
Source Language Input Program (SLP) •• 1-3
Object Module Patch Utility (PAT) •• 1-3
Task/File Patch Program (ZAP) ••••••• 1-4

COMMAND LINES • • • • • • • • • • • 1-4
FILE SPECIFICATIONS • • • • • • • 1~4
INVOKING THE UTILITIES • • • • • • • 1-6

Invoking Installed Utilities •••••••••• 1-7
Invoking a Utility and Returning Control to
MeR • • • • • • • • • • • • • • • • 1-7
Invoking a Utility and Returning Control to
DCL • • • • • • • • • • • • •• • • • • • 1-8
Invoking and passing Control to a Utility •• 1-8

Invoking Uninstalled Utilities ••••• 1-9
USING INDIRECT COMMAND FILES • • • • • • • • • • • 1-9

LINE TEXT EDITOR (EDI)

USING ED! • • • • • • • •
Invoking EDI • • • • • • • • •

Entering File Specifications ••
Defaults in File Specifications

• • 2-1
• • 2-1
• • 2-2

• 2-2
Control Modes: Edit and Input •••••••• • 2-3
Text Access Modes •• • • • • • •

Line-by-Line Mode ••• • • • • • • • • •
Block Mode • • • • • • • • • • • • • • •
processing Text in Pages •

• 2-3
2-4

• 2-4
• 2-5

• • • • 2-5 Text Files • • • • • • • • • •
Input and Secondary Files
Output Files • • • • • • •

• • • • • • • 2-6

~erminal Conventions • • • • • • • • •
Character Erase (DELETE or RUBOUT
Line Erase (CTRL/U) ••••
The RETURN Key • • • • • • • • • • •

iii

• • • • 2-6
• • • • • 2-6

• • • • 2-6
• 2-7

• • • • • 2-7

April 1983

2.1.5.4

2.1.5.5
2.1.6
2.1.6.1
2.1.6.2
2.1.6.3
2.2
2.2.1
2.2.2
2.2.3
2.2.4
2.2.5
2.2.6
2.2.7
2.2.8
2.2.9
2.2.10
2.2.11
2.2.12
2.2.13
2.2.14
2.2.15
2.2.16
2.2.17
2.2.18
2.2.19
2.3
2.3.1
2.3.2
2.3.3
2.3.4
2.3.5
2.3.6
2.3.7
2.4
2.4.1
2.4.2
2.4.3
2.4.4
2.4.5
2.4.6
2.4.7
2.4.8
2.4.9
2.4.10
2.4.11
2.4.12
2.4.13
2.4.14
2.4.15
2.4.16
2.4.17
2.4.18
2.4.19
2.4.20
2.4.21
2.4.22
2.4.23
2.4.24
2.4.25
2.4.26
2.4.27
2.4.28
2.4.29

CONTENTS
Page

Terminating the Previous Text Line (ESCape or
ALTmode) • 2-7
Terminating EDI (CTRL/Z) • 2-8

EDI Command Conventions • 2-8
Use of Asterisk (*) • 2-8
Use of Ellipsis (•••) in Search Strings • 2-8
Command Abbreviations • 2-9

BASIC EDI COMMANDS • • 2-9
ADD 2-11
ADD & PRINT 2-12
BOTTOM • 2-12
CHANGE • 2-12
CTRL/Z • 2-13
DELETE 2-13
DELETE & PRINT •• 2-14
The ESCape Key • 2-14
EXIT • 2-14
INSERT • 2-15
LOCATE • 2-15
NEXT • 2-16
NEXT & PRINT • 2-16
PRINT 2-17
RENEW 2-19
The RETURN Key • 2-19
RETYPE • 2-19
TOF 2-19
TOP 2-20

EDI COMMANDS: FUNCTION SUMMARY • 2-20
Setup Commands • 2-21
Locator Commands (Line-pointer Control) 2-22
Text Modification and Manipulation Commands 2-23
Macro Commands • 2-25
File Input/Output Commands • 2-25
Device Output Commands • 2-26
CLOSE and EXIT Commands 2-27

EDI COMMANDS: DETAILED REFERENCE SUMMARY • 2-27
ADD 2-27
ADD & PRINT (AP) 2-28
BEGIN 2-28
BLOCK ON/OFF • 2-28
BOTTOM • 2-29
CHANGE • 2-29
CLOSE 2-29
CLOSE SECONDARY (CLOSES) 2-30
CLOSE & DELETE (CD) 2-30
CONCATENATION CHARACTER (CC). 2-30
CTRL/Z • 2-31
DELETE • 2-31
DELETE & PRINT (DP) 2-31
END 2-31
ERASE 2-32
The ESCape Key • 2-32
EXIT • 2-32
EXIT & DELETE (ED) 2-32
FILE • 2-33
FIND • 2-33
FORM FEED (FF) 2-34
INSERT • 2-34
KILL • 2-34
LINE CHANGE (LC) 2-35
LIST ON TERMINAL (LI) 2-35
LIST ON PSEUDO DEVICE (LP) 2-36
LOCATE • 2-36
MACRO 2-36
MACRO CALL (MC) 2-37

iv

c

(

(

c.

(

(C

l

2.4.30
2.4.31
2.4.32
2.4.33
2.4.34
2.4.35
2.4.36
2.4.37
2.4.38
2.4.39
2.4.40
2.4.41
2.4.42
2.4.43
2.4.44
2.4.45
2.4.46
2.4.47
2.4.48
2.4.49
2.4.50
2.4.51
2.4.52
2.4.53
2.4.54
2.4.55
2.4.56
2.4.57
2.4.58
2.5
2.6
2.6.1
2.6.2
2.6.3
2.6.4
2.7
2.7.1
2.7.2
2.7.3
2.7.4

CHAPTER 3

3.1
3.1.1
3.1.2
3.1.2.1
3.1.2.2
3.1.3
3.1.3.1
3.1.3.2
3.2
3.2.1
3.2.2
3.2.2.1
3.2.2.2
3.2.2.3
3.2.2.4
3.2.2.5
3.2.2.6
3.2.2.7
3.2.2.8
3.2.2.9
3.2.2.10

CONTENTS

MACRO EXECUTE
MACRO IMMEDIATE
NEXT • • • • •
NEXT & PRINT •
OPEN SECONDARY
OUTPUT ON/OFF
OVERLAY
PAGE • • • •
PAGE FIND
PAGE LOCATE
PASTE
PRINT
READ • • • •

. . .- . . .
RENEW • • • •
The RETURN Key •
RETYPE

.SAVE •
SEARCH & CHANGE
SELECT PRIMARY •
SELECT SECONDARY
SIZE • • • • • • •
TAB ON/OFF • • • • • • • •
TOP • • • • • • • • • • •
TOP OF FILE (TOF) •••••
TYPE • • • • .• • •
UNSAVE • • • • • • •
UPPER CASE ON/OFF • • • • •
VERIFY ON/OFF • • • •
WRITE •• • • • •

. .' .

EDI USAGE NOTES • • • • • • • • •
SAMPLE EDITING OPERATIONS

File Editing Sample •
.

SAVE and UNSAVE Sample • • • •
Use of MACRO IMMEDIATE Command •
Use of Macro Commands ••••

EDI ERROR MESSAGES • • • • • • • • • •
Command Level Information Messages • • • • • •
File Access Error Messages •
Error Messages Requiring EDI Restart • • • • •
Fatal Error Messages • • • • • • • • • • • • •

PERIPHERAL INTERCHANGE PROGRAM (PIP)

Page

2-38
2-38
2-39
2-39
2-39
2-40
2-40
2-41
2-41
2-41
2-42
2-42
2-42
2-43
2-43
2-43
2-44
2-44
2-45
2-46
2-46
2.;...46
2-47
2-47
2-47
2-48
2-48
2-49
2-49
2-50
2-51
2-51
2-53
2-55
2-55
2-56
2-57
2-60
2-61
2-64

PIP COMMAND LINE • • • • • • • • • • • • • • 3-1
PIP Defaults for File Specification Elements •• 3-1
PIP Swi~ches and/Subswitches • • • • •• 3-3

Switches • • • • • • • • • • • • • • • • • • • 3-5
Subswitches ~ • • • • • • • • • • • • • • 3-6

Wildcards • • • • • • • • • • • • •• • 3-7
Wildcards in Output File Specifications • 3-7
Wildcards in Input Specifications •••• 3-8

~IP COMMAND FUNCTIONS •••••••••••••• 3-8
Copying Files-II Files • • • • • • • • • • • • • 3-8
performing File Control Functions 3-14

/AP -- Append Swi tch • • • • • 3-14
/BS: n -- Block Si ze Swi tch • • • • • • 3-15
/CD Creation Date Switch • • • • 3-16
/DD Default Date Switch •••• 3-16
/DE -- Delete Switch. •• ••• • 3-17
/DF -- Default Switch • • • • 3-18
/EN -- Enter Switch •••• 3-19
/EOF -- End-Df~File Switch • • 3-21
EX -- File Exclusion Switch • • • • •• 3-21
/FI -- File Identification Switch 3-22

v

CHAPTER

CHAPTER

-- .- "-

CONTENTS
Page

3.2.2.11 /FR Free Switch · · · · · · · 3-23
3.2.2.12 /ID Identify Switch · · · · 3-23
3.2.2.13 /LI List Switch · · · · · · · 3-24
3.2.2.14 /ME Merge Switch · · · · · · · · · · · · 3-28

(
3.2.2.15 /NM No Message Switch 3-28
3.2.2.16 /PR Protect Switch · · · · · · · 3-29
3.2.2.17 /PU Purge Switch · · · · · · 3-31
3.2.2.18 /RE Rename Switch · · · · · · · · · 3-33
3.2.2.19 /RM Remove Switch · · · · · 3-35
3.2.2.20 /RW Rewind Switch · · · · · · · · · 3-36
3.2.2.21 /SB Span Blocks Switch · · · · · · · 3-37
3.2.2.22 /SD Selective Delete Switch 3-37
3.2.2.23 /SP Spool Switch · · · · · · 3-38
3.2.2.24 /SR Shared Reading Switch · · · · · · · · 3-39
3.2.2.25 /TD Today Default Switch · · · · · · 3-40
3.2.2.26 /TR Truncate Switch · · · · · · · · · 3-40
3.2.2.27 /UF User File Directory Switch 3-41
3.2.2.28 fUN Unlock Switch · · · · · · 3-42
3.2.2.29 /UP Update Switch · · · · · · · · · · 3-42
3.3 PIP ERROR MESSAGES . . · · · · · 3-43
3.4 PIP ERROR CODES . . . · · · · · · 3-53

4 FILE TRANSFER PROGRAM (FLX)

4.1 FLX COMMAND FORMAT • • • • • • • • • • • • 4-2
4.2 FLX SWITCHES • • • • •• ••••• • • 4-3
4.2.1 Volume Format Switches. • ••••••• 4-4
4.2.2 Transfer Mode Switches •••••• 4-4
4.2.3 Control Switches • • •• ••• • • 4-6
4.3 DOS-II VOLUME DIRECTORY MANIPULATION • • • • • • • 4-8
4.3.1
4.3.2
4.3.3

Displaying DOS-11 Directory Listings • • • 4-8 (
Deleting DOS-II Files • • • • • • • • • • • • 4-10
Initializing DOS-II Volumes • • • • 4-10

4.4
4.4.1
4.4.2
4.4.3
4.5
4.5.1
4.5.2
4.5.3
4.6
4.7
4.8

5

5.1
5.2
5.2.1
5.2.2
5.3
5.3.1
5.3.2

5.3.3
5.3.4
5.3.5
5.3.6

5.3.7
5.4
5.5

RT-ll VOLUME DIRECTORY MANIPULATION • • • • • • 4-10
Displaying RT-ll Directory Listings 4-10
Deleting RT-11 Files • • • • • 4-12
Initializing RT-11 Volumes. • 4-12

FLX TAll/TU60 CASSETTE SUPPORT • • • • • 4-13
Multivolume Cassette Support • • • • • • • 4-14
FLX Cassette Output Files • • • • • • • 4-14
FLX Cassette Input Files • • • • • • • • • • • 4-15 C-_

FLX PAPER TAPE SUPPORT • • • • • • • • •• 4-15
FORTRAN DIRECT ACCESS FILES • • • •• 4-16
FLX ERROR MESSAGES • • • • • • • • • • • 4-17

DISK VOLUME FORMATTER (FMT)

INITIATING AND TERMINATING FMT • • • 5-1
MODES OF FMT OPERATION • • • • • • • • • • • 5-2

Normal Operating Mode •• 5-3
Manual Operating Mode • • • • • • • 5-3

FMT SUPPORTED DISK VOLUMES •••••••••• 5-5
DB~-type Devices (RP04/RP05/RP06 Disk .Packs) •• 5-5
DK:-type Devices (RK05 Disk Cartridge or RK05F
Fixed Media Disks) • • • • • • • • • • • • • • • 5-6
DL:-type Devices (RLOI/RL02 Disk Cartridges) •• 5-6
DM:-type Devices (RK06/RK07 Disk Cartridges) •• 5-6
DP:-type Devices (RPR02/RP02/RP03 Disk Packs) • 5-6
DR:-type Devices (RM02/RM03/RM05/RM80 Disk (_
Packs) . • • • • • • • • 5-7
DY:-type Devices (RX02 Floppy Disks) 5-7

FMT SWITCH DESCRIPTIONS • • • • • • • • • • • 5-7
FMT MESSAGES • • • • • • • • • • 5-10

vi

CONTENTS
Page

CHAPTER 6 BAD BLOCK LOCATOR UTILITY (BAD)

6.1 BAD COMMAND FORMAT · · · · · · · · · · · · 6-1
6.2 BAD SWITCHES · · · · · · · · · · · · · · · 6-1
6.3 BAD AND INDIRECT COMMAND FILES · 6-2
6.4 PROCESSING BAD BLOCK DATA · · · · · 6-3
6.4.1 Verifying Devices · · · · · · 6-3
6.4.1.1 BAD and Non-Last-Track Devices · · 6-3
6.4.1.2 BAD and Last-Track Devices · · · · · · 6-3
6.4.2 Format of Bad Block Descriptor Entries · · 6-4
6.4.3 The INI Command and BAD · · · · · 6-4
6.5 USING BAD · · · · · · · · · · 6-4
6.5.1 programming Considerations · 6-5
6.5.1.1 Use of Block Zero • · · · 6-5
6.5.1.2 Device Controller Errors · · · · 6-5
6.6 BAD SWITCH DESCRIPTIONS · · · · 6-5
6.6.1 Switches for Both Task and Stand-Alone Versions

of BAD · · · · · · · · · · · · · · · · · · · 6-5
6.6.2 The /MANUAL, /ALLOCATE and /UPDATE Switches:

Examples · 6-7
6.6.3 Switches for Stand-Alone System Version Only · · 6-S
6.7 DEVICES SUPPORTED BY BAD · · · 6-9
6.S BAD MESSAGES · · · · · · · · · · · · · · · 6-10

CHAPTER 7 BACKUP AND RESTORE UTILITY (BRU)

7.1 ON-LINE BRU DISK AND TAPE DEVICE INFORMATION · 7-1
7.1.1 Backup Sets · · · · · · · · · 7-3
7.1.2 Tape Sets and Disk Sets · · · · 7-3
7.1.2.1 Tape and Disk Backup Operations · .. · · · 7-3
7.1.2.2 Full and Selective Backup Operation 7-3
7.1.2.3 Conventional Backup Operation · 7-4
7.1.2.4 Image Backup to Disk Operation · · 7-4
7.1.3 Multivolume Tape and Disk Operations · · · · 7-4
7.1.4 Supported Devices · 7-5
7.2 COMMAND LINES · · · · · · · · · · · · · · · · · · 7-5

I 7.2.1 Command Line Syntax · · · · · · · · · · · · 7-6
7.2.2 Command Line Parameters · · · · · · · 7-6
7.2.2.1 Wildcards in Input Specifications · · · · 7-7

t-
7.2.2.2 Continuation Lines · · · · · · · · · 7-S

I 7.3 SUMMARY OF COMMAND QUALIFIERS, OPTIONS, AND
DEFAULTS · · · · · · · · · · · · · · · · · · · 7-S

7.3.1 Command Qualifier Functions · · · · 7-11 I 7.4 DESCRIPTIONS OF COMMAND QUALIFIERS · · · · 7-12
7.5 STAND-ALONE BRU · · · · · · · · · 7-22
7.5.1 Locating and Booting Stand-Alone BRU 7-23
7.6 ON-LINE BRU BAD BLOCK PROCESSING · · 7-24
7.6.1 Using the AUTOMATIC Option · · · · · · · 7-25
7.6.2 Using the OVERRIDE Option · · · · 7-25
7.6.3 Using the MANUAL Option · · · · · · · · · 7-25
7.7 USING BRU TO COPY DISKS CONTAINING SYSTEM IMAGES 7-26
7.7.1 Copying an Unsaved (Vi rg in) System · · · 7-26
7.7.2 Copying a Saved System · · · 0: · · · · · 7-26
7.7.2.1 Copying to a Smaller Disk · · · · · · 7-26
7.7.2.2 Copying to a Different Controller Type · 7-26 I
7.S BRU FILE TREATMENT · · · · · · · · · · · 7-26
7.S.1 Creation and Revision Dates of Files · 7-27 I
7.S.2 File Headers · · · · · 7-27

I 7.S.3 File Synonyms · · · · 7-27
7.S.4 Lost Files · · · · · · · 7-27

I 7.9 EXAMPLES · · · · · · · 7-27
7.10 MESSAGES · · · · · · · · · · 7-34

vii April 1983

viii

---. -----"-,------__ -c-------'-________ ~

c

(

CHAPTER 10

10.1
10.1.1
10.1.2
10.1.3
10.1.4
10.2
10.3
10.4
10.5
10.5.1
10.5.2
10.5.3
10.5.4
10.5.5
10.5.6
10.5.7
10.5.S

10.5.9
10.5.10
10.5.11
10.5.12

10.5.13
10.5.14
10.5.15
10.5.16
10.6
10.7
10.7.1
10.7.2

CHAPTER 11

11.1
11.2
11.3
11.4
11.5
11.5.1
11.5.2
11.5.3
11.6

CHAPTER 12

12.1
12.2
12.2.1
12.2.2
12.2.3
12.3

CHAPTER 13

13.1
l3.1.1
l3.1.2
l3.1.3
13.1.4

CONTENTS
Page

LIBRARIAN UTILITY PROGRAM (LBR)

FORMAT OF LIBRARY FILES • • • • 10-2
10-2
10-2

Library Header • • • • • • • • • • • • •
Entry Point Table ••• •
Module Name Table
Module Header

LBR RESTRICTIONS
LBR COM'MAND LINE • • •
DEFAULTS FOR LBR FILE SPECIFIERS
LBR SWITCHES • • • • • • •

Compress Switch (/CO)
Create Switch (/CR)
Delete Switch (IDE)
Default Swi tch (/DF) ••
Delete Global Switch (/DG)
Entry Point Swi tch (/EP) • • •

• • • • •• 10-2
10-2
10-S
10-S
10-S
10-9

• 10-10
• • • 10-12

• 10-l3
• • • • • 10-14

• • • • • • • • 10-15
• 10-16

Extract Switch (lEX) • • • • • • •••• • 10-lS
Insert Switch (lIN) for Object and Macro
Libraries •••• • • • • • • • 10-19
Insert Switch (lIN) for Universal Libraries 10-20
List Switches (ILl, ILE, IFU) •••••• 10-21
Modify Header Switch (/MH) •••••••••• 10-22
Replace Switch (/RP) For Macro and Object
Libraries •• • • • • • • • • • • • • • • • • 10-23
Replace Switch (/RP) for Universal Libraries. 10-27
Spool Switch (/SP) • • • • • • • 10-29
Selective Search Switch (ISS) •••• 10-29
Squeeze Switch (/SZ) • • • • • • • • • • 10-30

COMBINING LIBRARY FUNCTIONS • • • •• ••• 10-32
LBR ERROR MESSAGES • • • • • • • • • • • • 10-33

Effect of Fatal Errors on Library Files • 10-33
LBR Error Messages • • • • • • • • • •• • 10-34

FILE DUMP UTILITY (DMP)

FILE MODE ••• •
DEVICE MODE • • • • • • • • •
DMP COMMAND FORMAT
DMP SWITCHES • • • • • • • •
DMP EXAMPLES • • • • • • •

A Multiple Format Dump •
A Record Dump • • • • •
A Header Dump

DMP ERROR MESSAGES

THE FILE COMPARE UTILITY (CMP)

CMP SWITCHES • • • • • •
FORMATS OF CMP OUTPUT FILES

Differences Format ••••
Change Bar Format • • • •
SLP Command Input Format •

CMP MESSAGES • • • • • • • •

SOURCE LANGUAGE INPUT PROGRAM (SLP)

SLP INPUT AND OUTPUT FILES
The Input File •••
Command Input

11-1
11-2
11-2

• • • • 11-3
• • • •• 11-S

• • •• 11-S
• 11-10

••••••• 11-10
• 11-12

12-2
12-4
12-5
12-5
12-6
12-6

The SLP Listing File • • • • •

13-2
13-2
l3-2
13-3
13-3 The SLP Output File •••••••

ix

-"--_-_.-'----"="'"e".'""
--- ---~--

13.2
13.3
13.3.1
13.3.2
13.3.2.1
13.3.2.2

13.3.2.3
13.3.3
13.3.3.1
13.3.3.2
13.3.3.3
13.3.3.4
13.3.4
13.4
13.4.1
13.4.2
13.4.3

13.4.4
13.4.S
13.4.6
13.S
i3.S.1
13.S.2

CONTENTS

HOW SLP PROCESSES FILES • • • •
USING SLP • • • • • • •

Specifying SLP Edit Commands ••
Entering SLP Edit Commands.

. .
Entering SLP Commands Interactively
Entering SLP Commands Using Indirect

Page

13-4
13-S
13-S
13-7
13-7

Command Files. • • • • • • • • •••• 13-8
Using SLP Operators •••••••••• 13-9

Updating Source Files With SLP • • • • • • • • 13-9
Generating a Numbered Listing • • •• 13-9
Adding Lines to a File ••••••••••• 13-10
Deleting Lines from a File • • • • • • • • • 13-12
Replacing Lines in a File • 13-13

Creating Source Files Using SLP • • • • • • • 13-14
CONTROLLING SLP • • • • • • • • • • • • • • • • 13-14

SLP Switches • • • • • • • • • • • • 13-14
Controlling the Audit Trail • 13-16
Setting the Position and Length of the Audit
Trail •••••••••••••• • •• 13-17
Changing the Value of the Audit Trail • 13-17
Temporarily Suppressing the Audit Trail ••• 13-18
Deleting the Audi t Trail •• • • • • 13-19

SLP MESSAGES • • • • • • • • • • • • 13-20
SLP Information Message • • •• • 13-20
SLP Error Messages • • • • 13-20

CHAPTER 14 OBJECT MODULE PATCH UTILITY (PAT)

14.1
14.2
14.2.1
14.2.2
14.2.3

14.2.3.1
14.2.3.2
14.2.4

14.3
14.3.1
14.3.2
14.3.3
14.3.4
14.3.S
14.3.6
14.3.7

SPECIFYING THE PAT COMMAND LINE
HOW PAT APPLIES UPDATES

The Input File • • •
The Correction File
How PAT and the Task Builder
Modules ••••••••••

Update Object

Overlaying Lines in a Module. • • •
Adding a Subroutine to a Module. •

Determining and Validating the Contents of a
File • • • • • • • •

PAT MESSAGES • • • • • • • • • • •• •• • •
Information Messages • • • • • • • • • • • • •
Command Line Errors • • • • • • • • • •

14-1
14-3
14-3
14-3

14-4
14-4
14-S

14-6
14-7
14-8
14-8
14-9 File Specification Errors

Input/Output Errors
Errors in File Contents or Format
Internal Software Error

• • • 14-10
• 14-11

• • • • • 14-13
Storage Allocation Error • • • • • • • • • • • 14-13

CHAPTER IS TASK/FILE PATCH PROGRAM (ZAP)

lS.l ZAP OPERATING MODES AND SWITCHES lS-2
I lS.1.1 The List Switch (/Ll) · · · · lS-2

lS.1.1.1 The /LI Switch and Regular Task Image
Files · · · · · · · · lS-3

I lS.1.1.2 The /LI Switch and Multiuser Task
Image Files . · · · · · · · · · · · . lS-3

lS.1.1.3 The /LI Switch and Resident Libraries lS-3
I lS.1.1.4 The /LI Switch and l- and D-Space Tasks . . lS-3

lS.2 ADDRESSING LOCATIONS IN FILES · · · · · lS-4
15.2.1 Relocation Biases · · · · · · · · · · · lS-4
lS.2.2 ZAP Addressing Modes · · · · · ., · · · · lS-4
lS.2.2.1 Using the Task Image Addressing Mode · lS-S
lS.2.2.2 Using the Absolute Addressing Mode lS-S
lS.3 INVOKING AND TERMINATING ZAP · · · · · · · lS-S

x April 1983

c

(

c

(

l

CONTENTS
Page

15.3.1 Using Indirect Command Files with ZAP •••• 15-6
15.4 THE ZAP COMMAND LINE AND COMMAND LINE ELEMENTS. 15-6
15.4.1 ZAP Commands. • • • • • • • • • • 15-7
15.4.1.1 Open/Close Location Commands. • 15-7
15.4.1.2 General purpose Commands 15-7
15.4.1.3 RETURN Key. • • • • • • • • • • • • • 15-7
15.4.2 ZAP Internal Registers. • • • • • 15-8
15.4.3 ZAP Arithmetic Operators. • • • • 15-8
15.4.4 ZAP Command Line Element Separators ••••• 15-9
15.4.5 ZAP Command Line Location-Specifier Formats • 15-10
15.4.5.1 The Current Location Symbol •••••••• 15-10
15.4.5.2 Byte Offset Format ••••••••••••• 15-10
15.4.5.3 Block Number:Byte Offset Format • 15-10
15.4.5.4 Relocation Register,Byte Offset Format ••• 15-10
15.5 USING ZAP OPEN AND CLOSE COMMANDS ••••••• 15-11
15.5.1 Opening Locations in a File • • • • • • 15-12
15.5.2 Changing the Contents of a Location • 15-13
15.5.3 Closing Locations in a File •• • • • 15-13
15.5.3.1 Closing a Location and Opening the

15.5.3.2

15.5.3.3

15.5.3.4

15.5.3.5

15.6
15.6.1
15.6.2
15.6.3
15.6.4
15.6.5
15.6.6
15.7
15.8

APPENDIX A

A.l
A.2
A.3
A.4
A.S
A.6
A.7
A.8
A.9
A.I0
A.ll
'A.12
A.13
A.14
A.1S
A.1S.l
A.1S.2
A.1S.3

APPENDIX B

B.l
B.1.1

preceding Location •• • • 15-13
Closing a Location and Opening an Offset
Location ••••••••••••••••• 15-14
Closing a Location and Opening an Absolute
Location ••••••••••••••••• 15-14
Closing a Location and Opening a Branch
Target Location • • • • • • • • • • • • • • 15-14
Closing a Location and Opening a Previous
Location • • • • • • • • • • • • • 15-15

USING ZAP GENERAL PURPOSE COMMANDS • • 15-15
The X Command • • •• ••••• 15-16

• • • 15-16
• 15-17

The K Command • • • • • • • • • • •
The 0 Command • • • • •
The Equal Sign (=) Command ••
The V Command
The R Command

EXAMPLES • • • •
ZAP ERROR MESSAGES •

COMMANDS AND SWITCHES

INTRODUCTION • • • ~ •
EDI COMMAND SUMMARY
PIP COMMAND SUMMARY • • • • •
FLX COMMAND SUMMARY
FMT COMMAND SUMMARY
BAD COMMAND SUMMARY • • • •
BRU COMMAND SUMMARY
DSC COMMAND SUMMARY
VFY COMMAND SUMMARY
LBR COMMAND SUMMARY
DMP COMMAND SUMMARY
CMP COMMAND SUMMARY

• • • • • • 15-17
• •• 15-17

•• 15-18
15-18

• 15-23

• • A-l
• • A-l
• • A-S

. . • • . A-9
A-ll
A-12

• • • • A-13
A-16
A-17
A-18
A-20
A-22
A-23 SLP COMMAND SUMMARY • • • • •

PAT COMMAND SUMMARY • • • • • •
ZAP COMMAND AND SWITCH SUMMARY •

• • • • • • .". A-24

ZAP Open/Close Commands
ZAP General-Purpose Commands • •
ZAP Switches •••••••••• • •

THE CROSS-REFERENCE PROCESSOR (CRF)

HOW CRF PROCESSES DATA • • • • • • •
MACRO-II or Task Builder Processing

xi

A-2S
A-2S
A-26
A-27

• • 8-1
• • • • B-1

April 1983

I

B.1.2
B.2
B.3
B.4

EXAMPLE 2-1

11-1

11-2

11-3

FIGURE 3-1

3-2
3-3
3-4
3-5
3-6

4-1
4-2
8-1
8-2
10-1
10-2
10-3
10-4
10-5
10-6

10-7
10-8
10-9
10-10
10-11
10-12

10-l3

10-14

13-1

14-1

B-1

B-2
B-3

CONTENTS
Page

CRF Processing • • • B-3
THE CRF SYMBOL TABLE FILE
THE CRF SEND PACKET
CRF ERROR MESSAGES •

• • • • . • B-3
• • • • B-4

• • B-5

EXAMPLES

Line Printer Position for the TYPE Command and
the PRINT Command ••••••••••••••• 2-18
Dumping Virtual Blocks in Hexadecimal, Radix-50,
and Decimal Format • • • • • • • • • • • • • 11-9
Dumping Virtual Records in ASCII and Decimal
Word Format • • • • • • • • • • • • • • • • 11-10
Dumping the File Header of a File • • • • • •• 11-11

FIGURES

Results of Copy Command With and Without /NV
Specified · · · · · · · · · · · · · · · · · 3-l3
Sample Directories Before and After Execution 3-20
Directory. Listing Examples · · · · · · · · · · · 3-27
Format o.f Protection Word · · · · · · · · · · · 3-31
Use of the Purge Switch · · · · · · · · · · · · 3-32
Results of Rename Switch With and Without /NV
Specified · · · · · · · · · · · · · · · · · 3-35
DOS-11 Directory Li stings · · · · · · · · · · · · 4-9
RT-ll RK05 Cartridge Disk Directory Listing 4-11
Data Transfer for DSC Copy Operation · · · · · 8-2
Data Transfer for DSC Compare Operation · · · 8-3
General Format for Object and Macro Library Files 10-3
Universal Library File Format · · · · 10-4
Contents of Library Header · · · · · · · · 10-5
Format of Entry Point Table Element 10-6
Format of Module Name Table Element 10-6
Module Header Format for Object and Macro
Libraries · · · · · · · · · · · · · · · · · 10-6
Module Header Format for Universal Libraries 10-7
Sample Files Used in LBR Examples 1-4 · · · · · 10-25
Output Library File After Execution of Example 1 10-26
Output Library File After Execution of Example 2 10""'26
Output Library File After Execution of Example 3 10-27
Sample Files for Universal Library Replace
Example . · · · · · · · · · · · · · · · · · · · 10-28
Output Library File After Execution of Universal
Library Replace Example · · · · · · · · · · · · 10-28
MACRO Listing Before and After Running LBR with
/SZ Switch · · · .. · · · · · · · · · · · · · · · 10-32
Input Files and Output Files Used During SLP
Process . · · · · · · · · · · · · · · · · · 13-4
processing Steps Required to Update a Module
Using PAT · · · · · · · · · · · · · · · · · 14-2
How MACRO-II, the Task Builder, and CRF Generate
Cross-Reference Listings · · · · · B-2
Format of the CRF Symbol Table File · · · · · B-4
Format of the CRF SEND Packet · · · · · · · B-5

xii

c

C

C

(

l

xiii

E--

c

c

(

(

PREFACE

MANUAL OBJECTIVES

The RSX-llM/M-PLUS Utilities Manual is a reference manual describing
the use of 15 utilities supported on the RSX-llM and RSX-llM-PLUS
operating systems.

INTENDED AUDIENCE

This manual is for all users of the RSX-llM and RSX-llM-PLUS operating
systems.

STRUCTURE OF THIS DOCUMENT

Chapter 1 describes briefly each of the utilities, and explains how to
enter command lines and how to invoke and use the utilities.

Chapter 2 describes the Line Text Ed i tor (ED!) •

Chapter 3 describes the Peripheral Interchange Program (PIP) •

Chapter 4 describes the File Transfer Util ity Program (FLX).

Chapter 5 describes the Disk Volume Formatter Utility (FMT) •

Chapter 6 describes the Bad Block Locator Util ity (BAD).

Chapter 7 describes the Backup and Restore Util ity (BRU).

Chapter 8 describes the Disk Save and Compress Utility Program (DSC) •

Chapter 9 describes the File Structure Verification Utility (VFY) •

Chapter 10 describes the Librarian Util i ty Program (LBR) •

Chapter 11 describes the File Dump Util ity (DMP) •

Chapter 12 describes the File Compare Util ity (CMP) •

Chapter 13 describes the Source Language Input Program (S LP) •

Chapter 14 describes the Object Module Patch Util ity (PAT) •

Chapter 15 describes the Task/File Patch Program (ZAP) •

xv

PREFACE

Appendix A is a summary of the commands and switches for the
utili ties.

Appendix B describes the Cross-Reference Processor (CRF).

ASSOCIATED DOCUMENTS

The RSX-IIM/M-PLUS MCR Operations Manual describes the Monitor Console
Routine (MCR) an d--rt s commands. The utilities can be invoked from
MCR. This manual provides background infdrmation about MCR.

The RSX-IIM-PLUS Command Language Manual describes the DIGITAL Command
Language (DCL) and its commands. Most of the utilities can be invoked
from DCL. This manual provides background information about DCL.

CONVENTIONS USED IN THIS DOCUMENT

Use of Red Ink

User input appears in red. Lines and prompting characters output by
the system appear in black.

Use of UPPERCASE Characters

~ ..

Uppercase characters in a command line indicate characters that must ~
be entered as they are shown. For example, utility switches must
always be entered as they are shown in format specifications. An
exception is the lBDl symbol, which denotes the RETURN key.

Use of Lowercase Characters

Lowercase characters in a command line indicate variables for which
the user must substitute a word or value. For example:

filename.filetype;version

This command indicates the values that comprise a file specification;
values are substituted for each of these variables as appropriate.

Command Abbreviations

Where short forms of commands are allowed, the shortest form
acceptable is represented by uppercase characters. The following
example shows the minimum abbreviation allowed for the EDI W.RITE
commarid:

Write

This notation means that W, WR, WRI, WRIT, and WRITE are all valid
specifications for the WRITE command.

xvi

(

(

(

c

l

PREFACE

Use of Square Brackets ([])

Square brackets indicate optional entries in a command line or a file
specification. Note that when an option is entered, the brackets are
not included in the command line.

Square brackets also are a part of the User File Directory (UFO) and
User Identification Code (UIC) syntax ([group,member]). When you use
a UIC or UFO (in a file specification, for example), brackets are
required syntax elementsi that is, they do not indicate optional
entries.

Use of Braces ({})

Braces indicate a choice of required entries for i command line. You
can use any of the entries enclosed in the braces, but you must
specify one of them.

Use of Commas (,)

Commas are used as separators for command line parameters and to
indicate positional entries on a command line. Positional entries are
those elements that must be in a certain place in the command line.
Although you might omit elements that come before the desired element,
the commas that separate them must still be included.

Use of At Sign (@)

The at sign (@) invokes an indirect command file. The at sign
immediately precedes the file specification for the indirect command
file:

@filename[.filetypeiversion]

Use of Periods (.)

Periods in the file specification separate the file name and file
type. When the file type is not specified, the period may be omitted
from the file specification.

Use of Semicolons (i)

Semicolons in the file specification separate the file type from the
file version. If the version is not specified, the s~micolon may be
omitted from the file specification.

Use of Slashes (I)

Slashes precede switches and subswitches in the command line. When
shown in the command line format, they should be specified as shown.

A horizontal ellipsis indicates that the preceding item(s) can be
repeated one or more times.

xvii

PREFACE

The symbol
while you
~,~.

~ indicates that you must press the key labeled CTRL
simul taneously press another key, for example, CTRLlC}

Command lines are terminated by
otherwise indicated in the text.
key is m .
Use of Shading

pressing the RETURN key unless
The form used to denote the RETURN

Shaded portions of text describe only one operating system. Pink
shading indicates that th~ text describes only RSX-IlM operating
systems. Gray shading indicates that the text describes only
RSX-llM-PLUS operating systems. The smallest shaded portion of text
is a paragraph. The text that is not shaded describes both operating
systems.

xviii

(

E-

c

(

c

c

SUMMARY OF TECHNICAL CHANGES

The following is a list of the technical changes (such as new
functionality, and new and revised switches) by utility, in the order
in which the utility appears in this manual.

I

peripheral Interchange Program (PIP)

ANSI magnetic tapes are now supported.

& - Ampersand (new) - Separates each command
commands are specified in the same command line.

when several

% - Wildcard (new) - Denotes exactly one character in the file
name andlor file type of an input file specification.

ICD - Creation Date switch (revised) - Can be set as the default
(instead of I-CD).

100 - Default Date switch (new) - Restricts file searches to
files created during a specified period of time.

IDF - Default switch (revised) - Specified with no arguments, it
returns the default device to SYO: and the UFO to the UIC from
which PIP was invoked.

lEX - File Exclusion switch (new) - Excludes one file
specification's worth of files during a file search.

IFR - Free Blocks switch (revised) - Displays the amount of
available space on a specified volume, the largest contiguous
space on that volume, and the number of available file headers.

lID ~ Identit1 switch (revised) - Identifies the version of PIP
being used and if PIP is linked to ANSI FCS.

ITO - Today switch (new) - Restricts file searches to files
created on the current day.

File Transfer Utility Program (FLX)

The TU78 magnetic tape is now supported.

IDNS:6250 - Density switch (revised) - Specifies a density of
6250 bpi to support the TU78 magnetic tape.

xix

I

SUMMARY OF TECHNICAL CHANGES

Disk Volume Formatter Utility (FMT)

The RM05 disk is fully supported.
larger RM03.

FMT treats the RM05 as a

DL:-type devices are supported, and some corrupted DL:-type disk
cartridges can be made usable again.

IVE - Verify switch (revised) - is now the default operation.

I-VE, INOVE, I-VERIFY, INOVERIFY - No Verify switch (new)
Inhibits the default verification operation.

IDENSITY, IMANUAL, IVERIFY (new) - Switch synonyms for IDENS,
IMAN, and IVE respectively.

Bad Block Locator Utility (BAD)

A multiheader BADBLK.SYS file is now supported. The maximum

(

allowable retrieval pointers in the bad block descriptor file ~ __ - _
have been expanded from 102 to 126 for non-last-track devices. ~

The updated stand-alone version of BAD supports the following
devices: the RM05, RM80, and RP07 disk packs, and the RA80 fixed
media disk.

IALO:volume label - Allocate switch (new) - Prompts for blocks to
be allocated to BADBLK.SYS and to be entered in the bad block
descriptor file.

IPAT=m:n - Pattern switch (new) - Specifies the double-word data
pattern used to locate bad blocks.

Backup and Restore Utility (BRU)

BRU now supports multivolume backup and restore operations using
the IIMAGE switch.

c

BRU now supports the following devices: RA60/RA8l/RC25/RD51/RX50 (-
disks, RLl1/RL02 cartridge disks, RH70/RM05/RM80/RP07 disk packs,
UDA50/RP07 disk packs, TM78/TU78 magnetic tapes, MLll electronic
memory, and TS11/TSV05/TU80 magnetic tapes.

Disk volumes with multiheader index files (structure level 402)
are supported.

There are now two stand-alone BRU systems. BRU64K is the
st~nd-alone version for the RSX-llM and BRUSYS is the stand-alone
version for RSX-11M-PLUS.

IDENSITY - Density switch (revised) - For TU78 magnetic tapes,
you can specify a density of 1600 or 6250 bpi (6250 is the
default bpi) •

IIMAGE:option - Image switch (new) - Specifies that you want to
do a multiple disk-to-disk backup or restore operation.

IUFD - User File Directory switch (new) - Directs BRU to create a
UFD (if it does not already exist) on a mounted output volume, (-
and then to copy into it the files from the same UFD on the input .
volume.

xx April 1983

SUMMARY OF TECHNICAL CHANGES

Disk Save and Compress Utility Program (DSC)

There are two new stand-alone versions of DSC: DSCSYS and
DSC64K.

DSCSYS is a combination of DSCS8 and DSCS16. This version
requires 28K words to run and a maximum blocking factor of 4.
DSCSYS supports the following new devices: the RP07 disk, the
RA08 fixed media disk, and the TU78 magnetic tape.

DSC64K is essentially an RSX-llM system with BAD, FMT, DSC, and
CNF fixed in memory. The maximum blocking factor is 4 and DT,
DX, DY, DD, DF, and DS devices are not supported.

DSC now supports up to 64K files on a volume.

/BAD=OVR - Override option (new) - Ignores the bad block
descriptor area and accesses the last good block on the next to
last track of the disk to obtain the data to create BADBLK.SYS.

/BAD=MAN:OVR - Manual Override option (new) - Allows manual entry
of bad block data to the bad block file BADBLK.SYS.

/DENS=6250 - Density switch (revised) - Creates magnetic tapes at
6250 bpi. The /DENS:6250 option is valid with TU78 magnetic
tapes only.

File Structure Verification Utility Program (VFY)

/DV - Directory Validation switch (new) - Validates directories
against the files they list.

/BD - Header Delete switch (new) - Recognizes and deletes bad
file headers on a volume. The /AL subswitch allows bad headers
to be automatically deleted with no user intervention.

File Dump utility Program (DMP)

Multiple-format dumps are supported. Any or all of the format
switches can be specified in a .command line.

ANSI magnetic tapes are supported.

/LC - Lower Case switch (new) - Specifies that the data should be
dumped in lowercase characters.

/OCT - Octal switch (new) - Specifies that the data Should be
dumped in octal format in addition to other formats.

/SB:n or /SB:-n - Specifies the number of blocks DMP space Blocks
switch (new) - Spaces forward or backward on a tape.

/SF:n or /SF:-n - Space Files switch (new) - Specifies the number
of end-of-file (EOF) marks DMP spaces forward or backward on a
tape.

xxi

I

I

I

SUMMARY OF TECHNICAL CHANGES

Fil~ Compare Utility (CMP)

CMP's default output device/file is now TI:.

Any unspecified portions of the second input file specification
default to the specifications for the first input file.

Source Language Input Program (SLP)

/SQ - Sequence switch (new) - Sequences the lines in the output
file so that they reflect the line numbers of the original input
file.

/RS - Resequence switch (new) - Resequences the lines in the
output file. .

/NS - No Sequence switch (new) - Does not sequence lines in the
output file. New lines are indicated by the audit trail.

Task/File Patch Program (ZAP)

Four types of task image files are supported:

• Regular task image files (including those mapped to resident
and supervisor mode libraries)

• Multiuser task image files (RSX-IIM-PLUS only)

• I- and D-space (instruction
(RSX-IIM-PLUS only)

• Resident libraries

and data space) tasks

Resident libraries can be changed in task image mode. ZAP finds
the segments and allows you to make changes in both absolute mode
and task image mode.

/LI - List switch (revised) - Includes read-only segments of a
task in its segment table. ZAP finds the starting address and
allows you to make changes in both absolute mode and task image
mode. For I- and D-space tasks, the /LI switch lists the
starting block number and the address boundaries of each segment.

xxii April 1983

E-

c

c

(

r

c

c_

CHAPTER I

INTRODUCTION

The RSX-IIM and RSX-IIM-PLUS operating systems provide several kinds
of utilities for your use. Utilities are programs that allow you to
work with different kinds of files and the contents of those files,
and also with different kinds of media (such as disks, magnetic tapes,
and cassettes). The RSX-llM/M-PLUS util i typrograms are I isted and
described briefly in Section 1.1; reference information for each
utility is presented in a separate chapter of this manual. Two
appendixes are also included to provide you with a summary of commands
and switches for the utilities and to describe the Cross-Reference
Processor (CRF), which is used with the MACRO-II assembler and the
Task Builder.

In addition to summarizing the Rsx-l1M/M-PLUS
introduction:

utilities, this

• Describes how to enter RSX-IIM/M-PLUS command lines and file
specifications (Sections 1.2 and 1.3)

• Describes how to invoke utilities and enter command lines' to
them (Section 1.4)

• Describes how to use indirect command files (Section 1.5)

1.1 RSX-IIM/M-PLUS UTILITY PROGRAMS

This manual provides reference information
RSX-IIM/M-PLUS utilities:

Line Text Editor (EDI)

Peripheral Interchange Program (PIP)

File Transfer Utility Program (FLX)

Disk Volume Formatter Utility (FMT)

Bad Block Locator Utility (BAD)

Backup and Restore Utility (BRU)

Disk Save and Compress Utility Program (DSC)

File Structure Verification Utility (VFY)

Librarian Utility Program (LBR)

File Dump Utility (DMP)

1-1

for the following

INTRODUCTION

File Compare Utility (CMP)

Source Language Input Program (SLP)

Object Module Patch Utility (PAT)

Task/File Patch Program (ZAP)

The following sections briefly describe each utility.

Note that the utilities described in this manual are not the only
programs on RSX-IIM and RSX-IIM-PLUS that are used as or considered to
be utilities. TKB, CDA, and MAC are examples of other utility-like
programs. Some programs, such as the editor EDT, are common across
different operating systems. These other programs are documented
elsewhere in the RSX-IIM/M-PLUS documentation set. Refer to the
RSX-IIM/RSX-llS or RSX-IIM-PLUS Information Directory and Index for
information on what programs are available and where they are
described.

1.1.1 Line Text Editor (EDI)

EDI is a line-oriented, interactive editor used to create and maintain
text and source files. (The RSX-llM/M-PLUS Guide to Program
Development gives specific information about using EDI to create and
maintain program source files.)

1.1.2 Peripheral Interchange Program (PIP)

PIP copies files and performs several file control functions, such as
concatenating, renaming, spooling, listing, deleting, and unlocking.

1.1.3 File Transfer Utility Program (FLX)

FLX is a file transfer and format conversion program that
files between DOS-II, RT-ll, and Files-II volumes,
restrictions.

1.1.4 Disk Volume Formatter Utility (FMT)

transfers
with some

FMT formats and verifies several types of Files-II disks. FMT writes
and verifies sector headers, sets the density for flexible disks, and
allows spawning of the Bad Block Locator Utility (if your system
allows spawned tasks).

1.1.5 Bad Block Locator Utility (BAD)

BAD determines the number and location of bad blocks on a volume. The
information gathered from running BAD on a volume can be used in
different ways when that volume is initialized.

1-2

c

c

(

(

(

E: ...

(

(

INTRODUCTION

1.1.6 Backup and Restore Utility (BRU)

BRU transfers files from a Files-II volume to one or more backup
volumes (including non-Files-ll volumes) and retrieves files from the
backup volume (or volumes). BRU is faster than DSC (see Section
1.1.7) in most areas. Also, BRU compresses data, the volumes do not
have to be initialized, and incremental backups are possible.

1.1.7 Disk Save and Compress Utility Program (DSC)

DSC copies Files-II disk files to disk or tape and from DSC-created
tape back to disk. While copying the files, DSC also consolidates the
data storage area and writes files in contiguous blocks unless it
encounters a bad block. DSC can be run either on-line or stand-alone.

1.1.8 File Structure Verification Utility (VFY)

VFY is a disk verification program that verifies the consistency and
validity of the file structure on a Files-II volume.

1.1.9 Librarian Utility Program (LBR)

LBR is a library maintenance program that creates, displays, anc
modifies library files. LBR can process macro, object, and universal
libraries.

1.1.10 File Dump Utility (DMP)

DMP is a file listing program that allows you to examine the contents
of a file or volume of files. DMP also provides options that control
the format of the contents.

1.1.11 File Compare Utility (CMP)

CMP compares two text files, record by record, and lists the
differences between the two files.

1.1.12 Source Language Input Program (SLP)

SLP is a noninteractive editing program that is used to maintain and
audit source files.

1.1.13 Object Module Patch Utility (PAT)

PAT updates, or patches, relocatable binary object modules.

1-3

- -_"---"-'--'-"-.-... -"0-"._,.---. -'-_'-,0-"'_..,., - ------ -- ---- '--

INTRODUCTION

1.1.14 Task/File Patch Program (ZAP)

ZAP is a patch utility that examines and directly modifies locations (.
in a task image file or data file.

1.2 COMMAND LINES

The general format for command lines in most of the RSX-IIM/M-PLUS
utilities is:

outfile[••• ,outfile] =infile[••• , infile] OOJ

The variables outfile and infile are file specifications for the
output and input files to be operated on by the utility. (File
specifications are described in Section 1.3.)

This general format varies from utility to utility. Some use the
entire command line and others use abbreviated forms of the command
line. For some other utilities (such as BRU), the format is
different. The syntax for each utility is described in the chapter

.that describes that utility. Most of the utilities also accept
indirect command files containing command lines to the utility, as
described in Section 1.5.

1.3 FILE SPECIFICATIONS

In the command line format described in Section 1.2, outfile and
infile represent file specifications. The number of file
specifications you can enter depends on the utility. The maximum C· I

terminal line length depends on the size of the output buffer for your
terminal (the default length is 80 characters).

The format for entering file specifications is:

ddnn:

[g ,m]

ddnn: [g,m]filename.typeiversion/switch ••• /subswitch •••

The physical or logical device unit containing the desired
volume. The name consists of two or three ASCII characters
followed by an optional 1-, 2-, or 3-digit octal number and a
colon, for example, DMO:, or TTl16:.

The default is the user's system device, SY:.

The User File Directory (UFD) listing the desired file or files.
The variables g and m are octal numbers from 0 to 377 that
represent the group and member numbers, respectively, of the
file's owner. The brackets are a mandatory part of the UFD
syntax.

The default is the current UIC (User Identification Code) to
which your terminal is set.

See the RSX-IIM/M-PLUS MCR
RSX-llM/M-PLUS Command Language
UICs and UFDs.

1-4

Operations Manual or the
Manual for more information on

(

c

C

INTRODUCTION

filename

type

The name of the file.
characters in length.

File names can be from one to nine

If you want to include special characters in the file name (for
example, semicolons or exclamation marks), place double quotation
marks around the name. If you use only one double quotation
mark, MCR or DCL assumes an American National Standard X.327-1978
file name. (See the RSX-IIM/M-PLUS I/O Operations Manual for
more information on double quote support.) Note that not all
utilities or other tasks allow special characters.

There is no default.

The file type of the file. The file type provides a convenient
~eans for distinguishing different forms of the same file. For
example, a FORTRAN source program file might be named COMP.FTN
and the object file for the same program might be named COMP.OBJ.
In this way, the file type identifies the nature of the contents
of the file.

File type and file name are separated by a period. The file type
may not be specified or can be up to three alphanumeric
characters in length. The defaul t for a file type depends on the
utility or task you are working with and if the file is an input
or output file.

See the RSX-IIM/M-PLUS MCR
RSX-IIM/M-PLUS Command Language
file types.

Operations Manual or the
Manual for a list of standard

version

An octal number that specifies different versions of the same
file. For example, when a file is created, it is assigned a
version number of 1 by default. Thereafter, each time the file
is opened and unless you specify otherwise, the file system
creates a new file with the same file name and file type, but
with a version number incremented by 1. Version numbers range
from 1 through 77777(8). However, you can also use 0 tq specify
the highest numbered version and -1 to specify the lowest
numbered version (0 is the default). If a file has a version
number of 77777, no more versions of it can be created.

Version number and file type are separated by a semicolon. The
default is the latest version.

/swi tch (also /qualifier)

An ASCII name specifying a switch (or qualifier in
associated with a function to be executed by the utility.
utility functions are implemented by means of switches
subswitches. Switches can take one of three forms:

/sw invokes the switch function

/-sw negates the switch function

/NOsw negates the swi tch function

Switches can also take values in the form of ASCII strings

BRU)
Most

and

and
numeric strings. The values modify the fUnction of the switch.

1-5

INTRODUCTION

Most numeric values are octal by default. To specify a decimal
number, terminate the number with a decimal point. Values
preceded by a pound sign (I) are octal; this optional notation
provides explicit specification of octal values. Any number can
be preceded by either a plus (+) or minus (-) sign; plus is the
default. Where explicit octal notation (I) is used, the sign, if
specified, must precede the pound sign.

The following are examples of valid switch specifications:

/subswi t1:ll

/SW:27. :MAP:29.

/-SW

/NOSW:-150:SWITCH

An ASCII name specifying a subswitch associated with a, switch.
Subswitches provide a subset of functions related to the main
switch function. The following is an example of a subswitch
specification:

PI P> [200,200] *. *; */PR/FO OOJ

In this example, /FO is a subswitch applied to the /PR switch.

Syntactically, subswitches are identical to switches. The rules
for entering switches also apply for entering subswitches.

1.4 INVOKING THE UTILITIES

You invoke a utility from the command line interpreter (CLI)
environment. The CLI can be the Monitor Console Routine (MCR), the
DIGITAL Command Language (DCL), or an alternate user-written CLI. For
more information on MCR, see the RSX-llM/M-PLUS MCR Operations Manual.
For more information on DeL, see the RSX-llM/M-PLllS Command Language
Manual.

To determine whether you are using MCR or DeL or another CLI, type
CTRL/C, which returns the explicit monitor prompt: MCR> or DeL> or
CLI>.

You can work with a utility directly (interactively) or by means of
indirect command files. For systems in which all utilities are
installed, you can use any of three methods to invoke a utility.
Sections 1.4.1 describes these methods. For systems in which not all
utilities are installed, you can use the method described in Section
1. 4. 2.

Section 1.5 describes how to invoke a utility that can then accept
commands from an indirect command file.

You can invoke a utility when MCR or DeL prompts you. The MCR prompts
are:

> or (if you type CTRL/C first) MCR>

The DeL prompts are:

> or (if you type CTRL/C first) DCL>

1-6

(

E-

(

c

(
"-

e

c

(,

INTRODUCTION

In MCR, the utilities are always invoked by their 3-character names.
DCL, however, has commands that access utilities transparently .to the
user. You do not have to explicitly specify the utility to use it.
For example, the DeL command DIFFERENCES invokes the File Compare
Utility (CMP); and the DeL commands COPY, DELETE, and PURGE invoke
the Peripheral Interchange Program (PIP). This transparent access to
utilities covers most common utility needs for OCL users. If you use
these OCL commands, the general format for specifying files is:

>command[/qua1ifiers] infi1e outfi1e

DCL users can also use any MCR command forms by using the OCL command
MCR (or MC).

1.4.1 Invoking Installed Utilities

RSX-11M/M-PLUS systems provided in distribution kits do not have any
util i ties installed. Once the system has been generated, the system
manager usually installs any commonly used utilities. Use the MCR TAS
or OCL SHOW TASKS /INSTALL commands to see which util i ties are
currently installed in the system. If the utility you want to use is
not installed, any privileged user can install it with the MCR or OCL
INSTALL command. Once the utility is installed, you can invoke it.

The following sections describe the three primary methods you can use
to invoke installed utilities.

1. 4.1.1 Invoking a Utility and Returning Control to MCR - Use one of
the following forms of command lines to invoke a utility to execute a
function and then return control directly to MCR:

>uti1ityname command-line

or

MCR>uti1ityname command-line

Using this method to invoke the utility allows you to enter a single
command for execution. The utility is installed, the command is
executed, and control returns to MCR. (The method described in the
following section allows you to enter more than one command line
because control returns to the utility rather than to MCR.)

Two exceptions to this command format are the SLP and ZAP utilities.
You must first invoke these utilities and then enter the command lines
as described in Section 1.4.1.3. (However, you can specify

>SLP @indirectcommandfi1e

or

>ZAP @indirectcommandfi1e

See Section 1.5 for more information.)

1-7

INTRODUCTION

1.4.1.2 Invoking a Utility and Returning Control to DeL - Use one of
the following forms of command lines to invoke a utility to execute a
function and return control directly to DeL:

>commandname command-line

or

>MCR utilityname command-line

Using these methods to invoke the utility allow you to enter a single
command for execution. The utility is installed, the command is
executed, and control returns to DeL. With the first method, the DeL
command transparently accesses the utility (see Section 1.4).

Two exceptions to this command format are the SLP and ZAP utilities.
You must first invoke these utilities and then enter the command lines
as described in Section 1.4.1.3. (However, you can specify

>SLP @indirectcommandfi1e

or

>ZAP @indirectcommandfi1e

See Section 1.S for more information.)

1. 4.1. 3 Invoking and Passing Control to a Utility - Use one of the
following forms of command lines to invoke an installed utility and
pass control to it:

For MCR:

>util i tyname

For DeL:

>MCR uti1ityname

These commands do not execute a function; rather, they make a utility
available for execution of more than one function without returning
control to MCR or DeL. When invoked using one of these forms, the
utility responds with the prompt:

utilityname>

You can then enter the command line that specifies the function you
want executed. For example, if you are executing a PIP function, PIP
displays the prompt:

PIP>

To terminate the utility and return to MCR or DeL, type CTRL/Z.

1-8

c

(-
"---

e

c

INTRODUCTION

1. 4. 2 Invoking Uninstalled Utilities

You can use the following method to invoke an uninstalled utility.
This method is useful for smaller systems in which not all utilities
are installed. This method uses either the MCR RUN command or the DeL
RUN command to invoke the utility.

The method invokes the utility by means of the following command:

>RUN $utilityname

The dollar sign ($) directs MCR or DeL to search the system directory
for the utility and to bring it into storage. On RSX-IIM-PLUS, if the
utility is not in the system directory, MCR or DeL then searches in
the library directory and invokes the utility from there.

When the utility gains control, it displays the prompt:

util i tYname>

Then it waits for you to enter a command line. The utility continues
to prompt you after each command line is executed. To terminate the
utility, enter CTRL/Z. Control is then returned to MCR or DeL.

A variation of this method allows the utility to run under a UIC other
than the current UIC:

For MCR:

>RUN $utilityname/UIC=[g,m]

For DeL:

>RUN/UIC: [g,m] $utilityname

When the utility gains control, it prompts for functions to execute
until you enter CTRL/Z.

1.5 USING INDIRECT COMMAND FILES

An indirect command file normally contains a sequence of command lines
that are interpreted by a task (usually a system-supplied task such as
a utility, the MACRO-II assembler, or the Task Builder). These
command lines appear in the indirect command file exactly as you would
enter them from your terminal.

The command lines contained in the indirect command file are
when the indirect command file is invoked. If you invoke
from MCR or DeL, each command line must beg in wi th the name
utility or command you want to use. If you invoke the file
utility itself, the command lines do not begin with the name
utility, but they must all be legal for that utility.

executed
the file
of the

from the
of the

For example, an indirect command file might contain the following
series of PIP command lines:

=OB2: [303,24]TESTPREP.CMO
TESTPREP. *; */LI
TESTPREP.*/PU: 2
*.CMO/SP

1-9

INTRODUCTION

To invoke the indirect command file (PIPCMDS.CMD), enter one of the
following sets of commands:

For MCR:

>PI P @PIPCMDS. CMD ffi)

or

>PI P ffi)
PI P>@PI PCMDS ffi)

or

>RUN $PI P ffi)
PI P>@PI PCMDS ffi)

For DeL:

>R UN $PI P ffi)
PI P>@PI PCMDS ffi)

or

>MCR PI P @PIPCMDS ffi)

or

>MCR PI P ffi)
PI P>@PI PCMDS ffi)

In this example, PIP is invoked and accesses the file PIPCMDS.CMD,
which contains the sequence of PIP command lines. Because PIP is
invoked first, the command lines in the file do not have to begin with
PIP. PIP executes the command lines and returns control to MCR, DCL,
or PIP, depending on which command set you use.

RSX-IIM and RSX-IIM-PLUS also allow you to use indirect command files
that contain MCR or DeL commands. The command lines do not begin with
MCR or DeL; they must only be legal for the CLI. You invoke the
indirect command file by entering only the file specification preceded
by the at sign (@) in response to the prompt (in this case, the MCR
prompt) :

>@indirectcommandfile

The default values for indirect command file specifications are:

• device - SY:

• [g,m] - the current UIC

• file name - no default; must be specified

• file type - .CMD

• version - the latest version of the file

For complete information on how to use indirect command files, see the
RSX-IIM/M-PLUS MCR Operations Manual.

1-10

o

(

c

(

c'

CHAPTER 2

LINE TEXT EDITOR (EDI)

EDI is a line~oriented editor that allows you to create and modify
text files. EDI operates on most ASCII text files. It is frequently
used to create and maintain FORTRAN or MACRO-II source files.

EDI accepts over 50 commands that determine its mode of ope~ation and
control its actions on input files, output files, and working text
buffers. The commands fall into the following seven categories:

• Setup commands select operating conditions, close and open
files, and select data modes.

• Locator commands control the position of the current line
po inter and thus determine which text 1 ine is acted upon.

• Text modification commands change text lines.

• Macro commands define, store, recall, and use sequences of EDI
commands.

• File input and output commands transfer text to and from
input, output, and saved files.

• Device output commands send output to a terminal or a printer.

• Close and exit commands terminate editing operations.

Commands are categorized in this chapter as Basic EDI Commands
(Section 2.2), EDI Commands: Function Summary (Section 2.3), and EDI
Commands: Detailed Reference Summary (Section 2.4). Restrictions,
system device considerations, and error messages for these commands
are discussed in Sections 2.5 and 2.6.

2.1 USING EDI

This section gives background information about EDI that is important
for you to know before you read the command descriptions.

2.1.1 Invoking EDI

You can invoke EDI using any of the methods for invoking a utility
described in Chapter 1. If any format except ">EDI filespec" is used,
EDI issues the following prompt:

ED!>

2-1

LINE TEXT ~DITOR (EDI)

At this point, you must enter the file specification for the file to
be edited.

2.1.1.1 Entering File Specifications - Enter a file specification in
the following format:

ddnn:[ufd]filename.filetype;version

The abbreviation "filespec" is used throughout this chapter to denote
a file specification that you supply .•

If the file specification is a new file (that
cannot be found on the specified device), EDI
create a new ~ile with the given file name.
following comment lines:

[CREATING NEW FILE]
INPUT

is, the file specified
assumes that you wish to

EDI theri prints the

and enters input mode. (EDI control modes are described in Section
2.1.2.)

If the message FILE DOES NOT EXIST is printed, it means that the User
File Directory corresponding to the specified UIC is nonexistent.

EDI does not accept indirect command file specifications.

If you specify an existing file name, EDI prints:

[OOOnn LINES READ IN]
PAGE 0]
*

and waits in edit mode for you to issue the first command.

If the ")EDI filespec" format is used, the prompt (EDI» is not issued
and EDI starts up in either input or edit mode, depending on the file
name specified -- input mode if the file name is new, edit mode if the
file name already exists.

After EDI has identified the input file and created the output file,
it is ready for commands. In edit mode, the first line available for
editing is one line above the first line of the input file or the
block buffer •. Therefore, you can insert text at the beginning of the
input file or the block buffer by issuing an INSERT command. To
manipulate the first line of text, on the other hand, you must issue a
NEXT command to make that line available.

2.1.1.2 Defaults in File Specifications - EDI uses a default if any
of the elements of the file specification, except the input file name,
is omitted. In general, EDI processing creates an output file. When
you are modifying an existing file, EDI uses that file and your
modifications to create an output file. When the editing session is
complete, the output file usually has the same file specification as
the input file, except the file system renumbers the version to one
greater than the previous version. The default values for input and
output files are listed in Table 2-1.

2-2

r

E-

c

c

(

c

c

LINE TEXT EDITOR (EDI)

Table 2-1
EDI Default File Specifications

Defau1 t Value Defaul t Value
Element for Input File for Output File

ddnn: SYO: Same as input device

[ufd] UFO under which EDI Same as input [ufd]
is currently running

filename No default -- must Same as input file name
be specified

filetype Unspecified Same as input file type

;version Latest version Latest version + 1

2.1.2 Control Modes: Edit and Input

EDI runs in two control modes:

• Edit mode (command mode)

• Input mode (text mode)

Edit mode is invoked automatically when you specify an existing file.

In edit mode, EDI issues an asterisk (*) a~ a prompt. EDI acts upon
commands and data to open and close f.iles; to bring lines of text
from an open file; to change, delete, or replace information in an
open file; or to insert single or multiple lines anywhere in a file.

Input mode is invoked automatically at program startup if you specify
a nonexistent file.

When in input mode, EDI does not issue an explicit prompt. Lines
you enter at the terminal are treated as text and are inserted
the output file. When you complete each input line by pressing
RETURN key, EDI sends a line feed to the terminal.

that
into
the

To switch from edit mode to input mode, enter the INSERT
press the RETURN key. To return to edit mode, press the
the only character on an input line. EDI will issue
prompt, signifying edit mode.

command and
RETURN key as
the asterisk

2.1.3 Text Access Modes

EDI provides two modes you can use to access and mC!nipulate lines of
text in the input file. (A line is defined as a string of characters
terminated by pressing the RETURN key.) The two modes are:

• Line-by-Line Mode allows access to one line of text at a time.
Backing up is not allowed.

• Block Mode allows free access within a block of lines, on a
1ine-by-line basis. Backing up within a block is allowed.
Backing up to the previous block is not allowed.

Block mode is the default text access mode.

2-3

LINE TEXT EDITOR (EDI)

In addition to these two text access modes, EDI provides a way to
process text "pages." This feature is described in Section 2.1. 3. 3.

2.1.3.1 Line-by-Line Mode - In this mode, a single line is the unit
of the input file available for modification. Line-by-line mode is
entered by issuing a BLOCK OFF command and is terminated by issuing a
BLOCK ON command.

The single available line--the current line--is specified by a
pointer, which you can move sequentially through the file, starting
just before the first line in the file. You can manipulate the line
pointer using the locator commands and the text modification and
manipulation commands discussed later in this chapter. However, you
cannot easily direct the"J~ointer backward within the file.

When you open a file at the beginning of an editing session, you can
specify that the first line be brought into memory and made available
for modification. This line remains in memory until you request that
a new line be brought in. The pointer then moves down the file until
the 1 ine you requested is encountered. That 1 ine is brought into
me'IIlory and, as the current line, can be modified. When a new line is
brought in, the previous line is written into the output file, as are
all lines that may be passed over in reaching the new current line.

Once the pointer moves past a line, that line is no longer accessible
unless you enter a TOF or TOP command (described in Section 2.4). TOF
causes the input and output files to be closed, and the output file to
become the new input file. TOF also ends line-by-line mode.

2.1.3.2 Block Mode - In this mode, a portion of the input file is C~
held in a buffer for editing until you request that the contents of
the buffer be added to the output file.

In block mode, you can access
'forward wi thin . the buffer.
edited line without having to
without having to issue a TOF

lines of text backward as well as
Thus, you can back up to a previously

reprocess the entire block or file and
command.

When you finish editing a block, you can write it out and read in the (_
next block with the RENEW command. However, you cannot access a
previously edited block except by using TOF.

EDI buffer space is computed dynamically at run time. The number of
lines initially read into the buffer is computed by using the formula:

buffersi ze/132

A block is the number of lines read into the buffer by a RENEW or READ
command. This number is either:

1. Specified with the SIZE command (default is 38 lines if the
SIZE command is not issued),

or

2. Determined by the presence of a form feed at a point in the
text where the number of lines is less than that specified in
the SIZE command (or its default value, if SIZE was riot
issued).

2-4

c-

(

LINE TEXT EDITOR (EDI)

When the current line pointer reaches End-Of-Block, the message
[*EOB*) is displayed and the current line pointer points to the last
line in the block. To move the current line pointer to the top of the
block, use TOP.

Table 2-2 briefly summarizes the differences between line-by-line and
block mode. Regardless of the editing mode, the line pointer always
points to the first character in the line.

Table 2-2
Line-by-Line and Block Mode Differences

Line-by-Line Mode Block Mode

One line is available for A block of lines is available
modification at a time. f~r modification at a time, on

a line-by-line basis.

Lines can only be Lines can be accessed forward
accessed forward through and backward within a block.
the file.

Search commands can Search commands can search only
search the entire file. the block in memory. To search

more data, you must read in
another block.

2.1.3.3 Processing Text in Pages -EDI provides features
you to access portions of a text file by page. A page is
text delimited by form feed characters (the last page in
terminated by the end-of-file marker).

that allow
a segment of

a file is

Two commands are provided to handle paged text: FF, which defines a
page boundary by inserting a form feed, and PAGE, which accesses a
page of text. (The commands PAGE FIND and PAGE LOCATE do not refer to
form feed-delimited pages--they are actually global searches.)

EbI handles paged text in block mode. If block mode is not already in
effect, it is entered when you issue a PAGE command.

If a form feed is encountered in text during a READ or RENEW
operation, the page thus delimited, for purposes of the READ or RENEW
command, is interpreted as a block.

The message [PAGE n), issued after a READ or RENEW operation, gives
the value of EDI' s page counter. If your text contains no form-feed
characters, the count is zero until the last block in the file is read
into the buffer. Upon encountering the end-of-file (EOF) , EDI
increments the page count to 1.

2.1.4 Text Files

The following sections describe how data may be added to files and the
operations performed on output files.

2-5

LINE TEXT EDITOR (EDI)

2.1.4.1 Input and Secondary FlIes - EDI accepts
following:

input from

• The input terminal (that is, commands and text entr ies)

• Files-II volumes that contain any of the following:

- The file to be edited

- A secondary file

- A save file

- A macro file

the

The input file is alwayspreserved. l Any system failure, EDI failure,
or lack of space on the output volume does not cause the loss of the
input file. Only the output file is affected. In cases of failure,
the output file is not completely destroyed. Instead, it becomes a
truncated version of the input file containing all of the edits to the
point of failure.

In general, the current block buffer is not written to disk when an
error of this type occurs.

2.1.4.2 Output Files - The output file defaults
device, directory file name, and file type
version number is incremented by one.

to the input
specifications.

file
The

If you wish to change any of these parameters (except device and
directory), specify a new file specification when closing a file or
exiting at the end of an EDI session.

2.1.5 Terminal Conventions

RSX-llM/M-PLUS and EDI provide terminal keyboard functions that allow
you to:

• Delete characters on an input line

• Delete an entire input line

• Move the current line pointer forward in a file

• Move the current line pointer backward in a file

• Terminate an editing session and return control to your CLI
(for example, MCR or DeL)

2.1.5.1 Character Erase (DELETE or RUBOUT; CTRL/R) - Pressing the
DELETE key (marked RUBOUT on some terminals) deletes individual
characters if used before the RETURN key is pressed.· During editing
operations, DELETE does not affect previously prepared text.

1. To delete the input file, use the CLOSE-AND-DELETE command or the
EXIT-AND-DELETE command, or use PI P (see Chapter 3).

2-6

~­
~----- --

c

c

(

(

LINE TEXT EDITOR (EDI)

When the DELETE key is pressed, it is echoed first as a backs1ash (\)
and is followed by the previously typed character. Each successive
DELETE results in the echo of an earlier typed character. When the
first non-DELETE character is typed, it is echoed as a backs1ash
(closing the DELETE sequence) followed by the typed character. For
example:

Fir s t DE LE TE typed
Second DE LETE
Thi rd DELETE
First non-DELETE

MISTKAE\E
MISTKAE\EA
MISTKAE\EAK
MISTKAE\EAK\AKE

For some CRT terminals, DELETE (or RUBOUT) works in a more obvious
way. Each DELETE causes the cursor to backspace, erasing the previous
character. Your CRT terminal may work this way if a certain option
was selected when your system was generated.

Another useful system generation option is CTRL/R. _ If this option was
selected, your system responds to CTRL/R by printing the incomplete
input line. It is typed by holding down the CTRL key and pressing R.
CTRL/R echoes AR and is followed by a return and line feed. For
example, at a hardcopy terminal you enter:

MISTKAE mJ

The echoed result is:

MISTKAE\EAK AR
MIST

2.1. 5. 2 Line Erase (CTRL/U) - CTRL/U deletes
typed before the line is terminated with the
by holding down the CTRL key and pressing U.
is followed by a return and line feed.

the line being input, if
RETURN key. It is typed
CTRL/U echoes as AU and

2.1.5.3 The RETURN Key - The RETURN key has the following effects,
depending on how it is used:

• When issued in place of an input file specification, the
RETURN key causes EDI to terminate.

• When issued in edit mode, the RETURN key causes the next line
to be printed. That line becomes the current line.

• When issued in input mode as the only character in an input
line, the RETURN key causes a return to edit mode.

• When issued alone after an INSERT command, the RETURN key
invokes input mode.

2.1. 5. 4 Terminating the Previous Text Line (ESCape or ALTmode) - When
EDI is in edit mode, pressing the ESCape (or ALTmode) key causes the
previous text line to be printed. That line becomes the current line.
ESC can be used this way only in block mode, not in 1ine-by-1ine mode.

When EDI is in input mode, ESC acts as a return and terminates the
line. If ESC is the first character of an input line, EDI exits from
input mode.

2-7

LINE TEXT EDITOR (EDI)

2.1.5.5 Terminating EDI (CTRL/Z) - CTRL/Z causes EDI to terminate.
EDI writes the remainder of the input file into the output file and ~
then closes both files before terminating. Use CTRL/Z to terminate .
EDI in edit mode and input mode. CTRL/Z erases your last input line
if you enter the command as a line terminator.

2. 1. 6 EDI Command Conventions

EDI uses asterisks (*) and ellipses (•••) in special ways. The
following sections describe these and also the notation convention
used to define EDI command abbreviations.

2.1.6.1 Use of Asterisk (*) - The asterisk (*) can be used in place
of any numeric argument. It evaluates to 32767(10).

Example

The following command results in the printing of the remainder of
the block buffer or file.

PRINT *

2.1.6.2 Use of Ellipsis (•••) in Search Strings - In a number of the
EDI commands, you must identify a string of characters to be located
and/or changed. To reduce the necessary terminal entries, you can use
the following special string constructs. In these special cases, the
ellipsis (•••) represents any number of intervening characters.

Case 1. stringl ••• string2 Any string that starts with stringl
continues with any number of intervening
characters and ends with the first
occurrence of string2.

Case 2. • •• string

Case 3. string •••

Case 4.

Examples

Any string that starts at the beginning
of the current line and ends with the
first occurrence of string.

The first string that starts with string
and ends at the end of the current line.

The entire current line.

In the following examples, the CHANGE command
four cases of special string constructs.
current line reads:

is
In

used wi th the
each case the

THIS IS A SAMPLE OF SPECIAL STRING CONSTRUCTS.

Case 1. C /S A ••• E O/S AN EXAMPLE 0

results in

THIS IS AN EXAMPLE OF SPECIAL STRING CONSTRUCTS.

2-8

(

(

c-

c

LINE TEXT EDITOR (EDI)

Case 2. C / ••• SPEC/HERE IS AN EXAMPLE OF SPEC

results in

HERE IS AN EXAMPLE OF SPECIAL STRING CONSTRUCTS.

Case 3. C /STRING ••• /EDI STRING CONSTRUCTS.

results in

HERE IS A SAMPLE OF SPECIAL EDI STRING CONSTRUCTS.

Case 4. C / ••• /EXAMPLES OF SPECIAL EDI CONSTRUCTS.

results in

EXAMPLES OF SPECIAL EDI CONSTRUCTS.

2.1. 6.3 Command Abbreviations - EDI permits the use of truncated
commands. Where these shorter forms are allowed, the command format
specifications represent the shortest acceptable form in uppercase
letters. The lowercase letters may be entered optionally. The
following example shows the abbreviations allowed for the VERIFY
command. The command format specification is:

Verify

The following truncations are valid for the VERIFY command:

V
Ve
Ver
Veri
Verif
Veri fy

2.2 BASICEDI COMMANDS

The basic EDI commands listed in Table 2-3 allow you to create a file,
to modify a file by adding, deleting, or changing its contents, and to
exit after the desired operations have been completed. A more
detailed description of each command follows the table. These
commands are the most important EDI commands. As you become familiar
with EDI operations, the additional commands listed in Section 2.3 and
described in Section 2.4 will allow you to use all of EDI's
capabili ties.

2-9

-._-::-==._---_._-=--...., .. ",..,.-= --"'-,,----_ .. ~

Command

ADD

ADD & PRINT

BOTTOM

CHANGE

DELE.TE

DELETE &
PRINT

EXIT

INSERT

LOCATE

NEXT

NEXT & PRINT

PRINT

LINE TEXT EDITOR (EDI)

Table 2-3
Basic EDI Commands

Command Format

Add string

AP string

BOttom

en] Change /stringl/
string2 [/]

Type a Control Z

Delete en]
or

Delete [-n]

DP en] or DP [-n]

Type the ESC (or ALT)
key

. EXi t [filespec]

INsert [string]

[n]Locate string

Next en] or
Next [-n]

Np en] or NP [-n]

Print[n]

2-10

Description

Append string to current line.

Append string to current line
and print resulting line.

Move the current line pointer
to the bottom of the current
block (in block mode) or to the
bottom of the file (in
line-by-line mode).

Replace
n times

Close
editing

stringl with string2
in the current line.

files and
session.

terminate

Delete current line and n-l
lines if n is positive; delete
nlines preceding current line
if n is negative. [-n]
operates in block mode only.

Same as DELETE, except
current line is printed.

new

Print previous line, make it
new current line and exit from
input mode (block mode only).
Same as NP-l.

Close
file,

files, rename output
and terminate editing

session.

Enter the string immediately
following the current line. If
no string is specified, EDI
enters input mode.

Locate nth occurrence of
string. In block mode, search
stops at end of current block.

Establish new current line n
lines away from current line.

Establish and print new current
line.

Print current line and the next
n-l lines. The last printed
line is the new current line.

(continued on next page)

(

C~

c

c

/

(

(

(

c

Command

RENEW

RETYPE

TOP

TOP OF FILE

2.2.1 ADD

LINE TEXT EDITOR (EDI)

Table 2-3 (Cont.)
Basic EDI Commands

Command Format

RENew[n]

Press the RETURN key

Retype str ing

Top

TOF

Description

Write current block to output
file and read new block n from
input file (block mode only).

Print the next line, make it
new current line, exit from
input mode. Same as NP+1.

Replace current line with
string or delete current line
if string is not given.

Move the current line pointer
to the top of the current block
(in block mode) or top of file
(in 1ine-by-1ine mode). TOP
creates a new version of the
file each time it is invoked in
1ine-by-1ine mode.

Return to top of input file and
save all pages previously
edited. TOF creates a new
version of the file each time
it is invoked. TOF reads in a
new block after writing the
previous block to the output
file.

This command causes the specified string to be appended to the current
line.

Format

Add string

Example

The following command completes the line HAPPY DAYS ARE HERE

*A AGAIN.

Note that the space after the A is the command
will not insert the space into the line.
precede AGAIN., the command should be:

A(§£) (§£) AGAIN.

2-11

terminator. EDI
If a space is to

LINE TEXT EDITOR (EDI)

2.2.2 ADD, PRINT

This command performs the same function as the ADD command except that
the new line is printed.

Format

AP string

Example

Using the same line used for the ADD command, the following
command causes the new line to be printed as follows:

*AP AGAIN.
HAPPY DAYS ARE HERE AGAIN.

2.2.3 BOTTOM

This command moves the current line pointer to the beginning of the
last line of the current block (in block mode) or to the beginning of
the last line of the file (in line-by-line mode). In block mode, the
only processing ED! performs is 1 ine pointer positioning. In
line-by-line mode, all the lines are copied from the input file to the
output file until EOF is reached. If VERIFY ON is specified, the last
line of the file block is displayed. Note, however, that if you
deleted the last line before you issued BOTTOM, the pointer will be
located past the text, and thus the last line will not be printed.
BOTTOM performs the same function as END (see Section 2.4.14).

Format

BOttom

Example

*V ON
*BO
THIS IS THE LAST LINE

In this example, the current line pointer is moved to the bottom
of the block buffer and the last line is printed.

2.2.4 CHANGE

This command searches for stringl in the current line and, if found,
replaces it with string2. If stringl is given, but cannot be located
in the current 1 ine, EDI pr ints [NO MATCH] and returns an J asterisk
prompt. If stringl is not given, string2 is inserted at the beginning
of the line. If string2 is not given, stringl is deleted from the
current line.

The search for stringl begins at the beginning of the current lin'e and
proceeds across the 1 ine until a, match is found.

2-12

(

c

(

(

LINE TEXT EDITOR (EDI)

The characters that delimit stringl and string2 are normally slashes
(I). However, any matching characters not contained in the specified
string may be used. The first character following the command is the
beginning delimiter, the next matching character ends the string.
Thus, characters used as delimiters must not appear in the string
itself. The closing del imiter is optional.

If you precede the command with a number n, the first n occurrences of
stringl . are changed to string2. After each replacement of stringl
with string2, scanning restarts at the first character in the line.
This allows you to generate a string of characters as shown in the
following example.

If no match occurs, a [NO 'MATCH] message is displayed.

Format

[n]Change Istringl/string2[/]

Example

TO SEPERATE THE THOUGHTS, USE SEPERATE SENTENCES.

2C/SEPE/SEPAI

TO SEPARATE THE THOUGHTS, USE SEPARATE SENTENCES.

2.2.5 CTRL/Z

Typing CTRL/Z (holding the CTRL key down while typing the letter Z)
terminates the editing session. If an output file is open when CTRL/Z
is typed, all remaining lines in the·block buffer and the input file
are transferred (in that order) into the output file, all files are
closed, and EDI exits. These actions occur whe.ther EDI is ,in edit or
input mode. If EDI is prompting for another file specification when
CTRL/Z is entered, all files are closed (including any open secondary
input file), and EDI exits. If you enter CTRL/Z as an input line
terminator, that line is erased.

2.2.6 DELETE

This command causes lines of text to be deleted in the following
manner:

• If n is given and is a positive number, the current line and
n-l following lines are deleted. The new current line is the
1 ine following the 1 ast deleted line.

• If n is given and is a negative number, the current line is
not deleted, but the specified number of lines that precede it
are deleted. The line pointer remains unchanged. A negative
value for n can be used only in block mode.

• If n is not given, the current line is deleted, and the next
line becomes the new current line.

2-13

Format

Delete [n]
or

Delete [-n]

Example

LINE TEXT EDITOR (EDI)

To delete the previous five lines in the block buffer, type the
following command:

*D -5

2.2.7 DELETE & PRINT

Th~s command performs the same function as the DELETE command except
that the new current line is printed when all lines have been deleted.

Format

DP [n]
or

DP [-n]

If n is not specified, +1 is assumed. A negative value for n can
be used only in block mode.

Example

If the following lines are contained in a file:

THIS IS LINE 1
THIS IS LINE 2
THIS IS LINE 3
THIS IS LINE 4

and the line pointer is at the first line, the following
obtains the results shown below it:

*DP 2
THIS IS LINE 3

2.2. 8 The ESCape Key

command

This command prints the previous line in the block (block mode only).
That line becomes the current line. Thus, you can back up through a
block, one line at a time, by pressing a series of ESCapes. Pressing
ESCape is equivalent to typing NP-l (NEXT & PRINT command).

2.2.9 EXIT

This command transfers all remalnlng lines in the block buffer and
input file (in that order) into the output file, closes the files, and
terminates the editing session. If a file specification is used, the
output file is renamed to the specified file name.

2-14

(

E-

(

(

(

c

C

c

LINE TEXT EDITOR (EDI)

Format

EXi t [fil espec]

Example

The command

*EX

terminates the editing session without renaming the output file.
It causes EDI to display:

[EXIT]

The output filename.filetype is the same as the input
filename.filetype. The version number is one greater than that
of the input file.

2.2.10 INSERT

This command inserts a string immediately following the current line.
The string becomes the new current line. If a string is not
specified, EDI enters input mode.

Format

Insert [string]

Example

*1 TEXT INSERT IN EDIT MODE Insert a
immediately
line.

line of text
after the current

*1
TEXT INSERT 1 IN INPU'J;'
TEXT lNSERT 2 IN IN·PUT
ETC.

*

2.2.11 LOCATE

This command causes a search
following the current line.
sought. The line pointer is
match. When the line is
effect.

MODE
MODE

An I followed by a RETURN
causes EDI to switch to input
mode. A series of new lines
may be input following the
current line.

A RETURN or ESC as the only
character in an input line
causes EDI to return to ~dit
mode and to prompt for a new
command.

for a string, beginning at the line
The string may occur anywhere in the line
positioned to the line containing the
located, it is printed if VERIFY ON is in

If a string is not specified, the line following the current
considered a match, and the line pointer is positioned there.
specified, the nth occurrence of string is located.

line is
If n is

2-15

LINE TEXT EDITOR CEDI)

LOCATE applies to the block buffer if EDI is in block mode and to the
input file if in line-by-line mode.

Format

(n]Locate [string]

Example

The following command can be used to locate the line HAPPY DAYS
ARE HERE AGAIN •

.. ~ *L PPY

EDI searches the file or block buffer and
specified prints the line when it is located.
pointer is set to the located line.

2 .. 2.12 NEXT

if VERIFY ON is
The current line

This command moves the current line pointer backward and forward in
the file. A positive number moves the current line pointer n lines
beyond the current line. A negative number moves the current line
pointer backward n lines.

Format

Next [n]
or

Next [-n]

If n is not specified, a value of +1 is assumed. A negative for
n can be used only in the block mode.

Example

In block mode, the followin~ command moves the current line
pointer back five lines:

*N -5

2.2.13 NEXT & PRINT

This command has the same effect as the NEXT command except that the
new current line is printed.

Format

NP [n]
or

NP [-n]

The following conventions can be used in place of issuing an NP
command:

• Pressing the RETURN key is the same as an NP+l command.

• Pressing the ESCape (or ALTmode) key while in the block mode
is the same as an NP-l command.

• If n is not specified, then a value of +1 is assumed.

2-16

E-

c

c

E? -- --------

(

LINE TEXT EDITOR (EDI)

Example

Assume the following four lines are contained in the file and the
line pointer is at the first 1 ine.

LINE 1 OF THE FILE
LINE 2 OF THE FILE
LINE 3 OF THE FILE
LINE 4 OF THE FILE

If the following command is issued, EDI returns the following
printout:

*NP 2
LINE 3 OF THE FILE
* ffiJ
LINE 4 OF THE FILE
* @
LINE 3 OF THE FILE
*~
LINE 2 OF THE FILE

2. 2. 14 PRINT

This command prints the current line and the next n-1 lines on the
terminal. The last line printed becomes the new current line. If it
is not specified, a value of 1 is assumed.

Format

Print [n]

2-17

LINE TEXT EDITOR (EDI)

Example

Example 2-1 illustrates both the PRINT and the TYPE commands:

Example 2-1 Line Pointer Position for the
TYPE Command and the PRINT Command

Before

File A File B

Line 1 Line 1

Line 2 Line 2

Line 3 Line 3

Line 4 Line 4

Line 5 Line 5

*TYPE 5 *PRINT 5

Line 1 Line 1

Line 2 Line 2

Line 3 Line 3

Line 4 Line 4

Line 5 Line 5

* *

After

File A File 8

Line 1 Line 1

Line 2 Line 2

Line 3 Line 3

Line 4 . Line 4

Line 5 Line 5

c:) is the Line Pointer
ZK-173-81

2-18

(

c

(

(

LINE TEXT EDITOR (EDI)

2.2.15 RENEW

This command writes the current block buffer into the output file and
reads a new block from the input file. The optional value n is a
repetition count: if you specify n, the process is repeated n times.
The intermediate blocks are written into the output file and the last
block is left in the block buffer. If n is not specified, a single
RENEW process is performed. This command may be used only in block
mode. Refer to Section 2.1.3 for information on how EDI block buffers
are processed.

Format

RENew [n]

Example

*RENEW 10

Ten blocks are transferred consecutively from the input file to
the block buffer. The initial contents of the block buffer and
the next nine blocks are transferred consecutively to the output
file. The current line pointer points to the first line in the
tenth block, which is currently in the block buffer.

2.2.16 The RETURN Key

In ed it
buffer.
through a
RETURNs.

mode, this command prints the next line in the file or block
That line becomes the current line. Thus, you can scan
file or block, one line at a time, by pressing a series of
This command is equivalent to NP+l (NEXT & PRINT command).

In input mode, a RETURN causes EDI to return from input mode to edit
mode.

2.2.17 RETYPE

This command replaces the current line with a string. If a string is
not specified, the line is deleted.

Format

Retype [string]

Example

*R THIS IS A NEW LINE

The string THIS IS A NEW LINE replaces the current line.

2.2.18 TOF

This command creates a new version of the file and returns the current
1 ine pointer to the first 1 ine of the file. TOF processing copies the
input file into the output file, closes both, then opens the latest
version of the file as the input file. If you issue this command when
in line-by-line mode, EDI switches to block mode after saving the
edited data. The first block is read into the block buffer.

2-19

'"'-='.-'-.-~=--~,-,,~. ------------------------ ~

LINE TEXT EDITOR (EDI)

Format

TOF

Example

*TOF

This command writes the previo':!sl, y ed i ted pages into i Ithe o':!tput
file, resets the current llne pointer to the top 'of the lnput
file, and reads the first block into the block buffer.

2.2.19 TOP

This command sets the current line pointer to the top of the current
block (in block mode) or to the top of the file (in line-by-line
mode). When the current line pointer is positioned with TOP, you can
enter lines preceding the first line in the block or ~ile.

TOP differs from TOF in the following ways:

• In line-by-line mode, TOP creates a new file
current line pointer to the top of the file.
does not cause EDI to' return to block mode.

and moves the
Un 1 ike TOF, it

• In block mode, TOP moves the current line pointer to the top
of the current block and does not create a new output file.
TOF moves the current line pointer to the top of the file and
creates a new output file.

Format

Top

Example

*TOP

(

(

current block in block mode.
This command directs the current line pointer to the top of the (~

2.3 EDI COMMANDS: FUNCTION SUMMARY

EDI commands can be arranged by functional similarity. For example,
all the commands you use to locate a string can be grouped under the
function he~ding "Locator Commands." This section contains summaries
of the following command categories:

• Setup commands select operating conditions, close and open
files, and select data modes.

• Locator commands control the position of the cur-rent 1 ina'
pointer and thus determine which text line is acted upon.

• Text modification commands change text lines.

• Macro commands define, store, recall, and use sequences of EDI
commands.

2-20

c

(

(

-- ------- --- ---- ----==-====='----==---. -

LINE TEXT EDITOR (EDI)

• File input/output commands transfer text
input/output, and save files.

to and from

• Device output commands send output to a terminal or line
printer.

• Close and exit commands terminate editing operations.

2.3.1 Setup Commands

The setup commands
f~atures of EDI.
text access modes,
Setup commands a~e

Command

BLOCK ON/OFF

CONCATENATION
CHARACTER

OPEN SECONDARY

OUTPUT ON/OFF

SELECT PRIMARY

SELECT SECONDARY

SIZE

TAB

UPPER CASE
ON/OFF

VERIFY ON/OFF

allow you to enable or disable certain special
Among these features are the block and line-by-line
and the automatic verification of LOCATE commands.
listed in Table 2-4.

Table 2-4
EDI Setup Commands

Format

BLock [ON] or
BLock OFF

CC [letter]

OPens filespec

OUtput ON or
OUtput OFF

SP

SS

SIZE n

TAb [ON] or
TAb OFF

UC [ON] or
UC OFF

Verify [ON] or
Verify OFF

2-21

Description

Switch text access modes.

Change concatenation character
to specified character (default
is &).

Open specified secondary file.

Continue or discontinue
transfer to output file
(line-by-line mode) •

Reestablish primary file
input file.

as

Select opened secondary file as
input file.

Specify maximum number of lines
to be read into block buffer.

Turn automatic
off.

tabbing on or

I
Enable or disable conversion of
lowercase characters entered
from terminal to uppercase
characters.

Select whether locator and
change commands are verified.

LINE TEXT EDITOR (EDI)

2.3.2 Locator Commands (Line-Pointer Control)

During editing operations, EDI maintains a pointer that identifies the
current line (that is, the line to which any subsequent editing
operations refer). Commands that modify the line pointer's location
are called locator commands. These commands are listed in Table 2-5.

The locator commands allow you to:

• Set the line pointer to either the top or bottom of the input
file or block buffer.

• Move the line pointer a specified number of lines away from
its current position.

• Move the line pointer to a line containing a given text
str ing •

In edit mode, the RETURN and ESCape (or ALTmode) keys act to relocate
the line pointer. A RETURN moves the pointer to the next line. An
ESCape moves the line pointer back one line (in block mode only). In
each case, the line is printed.

If VERIFY ON is in effect, the located line is printed after a BOTTOM,
END, FIND, PAGE FIND, PAGE LOCATE, or SEARCH & CHANGE command.

Command

BEGIN or
TOP

BOTTOM or
END

(@
(or ALTmode)

FIND

LOCATE

Table 2-5
EDI Locator Commands

Format

Begin
Top

BOttom
End

Press ESC (or ALT)
key

[n]Find tstring]

[n]Locate string

2-22

Descri'ption

Set current line to the line
preceding top line in file
(line-by-line mode) or block
buffer (block mode) • Both
commands create copies of the
file each time they are invoked
in line-by-line mode. The
commands are equivalent.

Set current line to last line
in file or block buffer. The
commands are equivalent.

Print previous line, make it
new current line, or exit from
input mode (Block mode only.)

Search current block or input
file, beginning at line
following current line for the
nth' occurrence of string.
String must begin in column 1.
Set line pointer to located
line.

Locate nth occurrence of
string. In block mode, search
stops at end of block.

(continued on next page)

c

(

(

(

(

Command

NEXT

NEXT & PRINT

PAGE
(Block
Mode only)

PAGE FIND
(Block
Mode only)

PAGE LOCATE
(Block
Mode only)

SEARCH &
CHANGE

LINE TEXT EDITOR (EDI)

Table 2-5 (Cont.)
EDI Locator Commands

Format

Next [n]
Next [-n]

NP [n] or NP [-n]

PAGe n

en] PFind string

en] PLocate string

Press RETURN Key

SC /stringl/string2[/]

Description

Establish new current line n
lines away from current line.

Establish and print new current
line.

Enter block mode. Read page n
into block buffer. Ifn is less
than current page number, do
TOF first. Pages are delimited
by form feed characters.

Search successive blocks for
the nth occurrence of string.
String must start in column 1.

Search successive blocks for
the nth occurrence of string.
String may occur anywhere in
line.

Print the next line, make it
the current line, exit from
input mode.

Locate stringl and replace it
with string2.

2.3.3 Text Modification and Manipulation Commands

The text modification and manipulation commands enable you to modify
text. Table 2-6 lists these commands.

Table 2-6
ED! Text Modification and Manipulation Commands

Command Format Description

ADD Add string Append string to current
line.

ADD & PRINT AP string Append string to the
current line and print
resulting line.

CHANGE [n]Change/stringl/ Replace stringl with
string2 [/] string2 in the current

line n times.

(continued on next page)

2-23

LINE TEXT EDITOR (EDI)

Table 2-6 (Cant.)
EDI Text Modification and Manipulation Commands

Command

DELETE

Format

Delete [n] or
Delete [-n]

DELETE & PRINT DP [n] or DP [-n]

ERASE

FORM FEED

INSERT

LINE CHANGE

OVERLAY

PASTE

RETYPE

TOP OF FILE

UNSAVE

ERASE [n]

FF

Insert str ing

[n]LC/stringl/
string2 [/]

Overlay [n]

PAste/string 1/
string2 [/]

Retype [string]

TOF

UNSave [filespec]

2-24

Description

Delete current line and
n-l lines if n is
positive; delete n lines
preceding current line if
n is negative. [-n]
operates in block mode
only.

Same as DELETE except new
current line is printed.

Erase the current line if
in line-by-line mode.

Erase the current block
buffer and the next n-l
blocks if in block mode.

Insert form feed into
block buffer (used to
delimi t a page).

Enter string
current line
input mode if
not specified.

following
or enter

str ing is

Change all occurrences of
stringl in current 1 ine
(and n-l 1 ines) to
string2.

Delete n lines, enter
input mode, and insert
new line(s) as typed in
place of original
line (s) •

Search all remaining
lines in file or block
buffer for stringl and
replace with string2.

Replace the
wi th string
current line
not given.

current line
or delete the
if string is

Return to the top of the
input file and save all
pages previously edited.

Insert all lines from
specified file following
current line. If filespec
is not given, SAVE.TMP is
used.

(

(

(

(

c

(

LINE TEXT EDITOR (EDI)

2.3.4 Macro Commands

These commands allow you to define, store, recall, and use macros. A
macro is a series of EDI commands that, once defined, can be executed
repeatedly. Table 2-7 lists the macro commands.

Table 2-7
EDI Macro Commands

Command Format Description

MACRO MACRO x definition Define macro number x. The
value x may be 1, 2, or 3.

MACRO CALL MCall Retrieve macro definitions
stored in file MCALLin.

MACRO EXECUTE [n] Mx [a] Execute macro x [n] times,
while passing numeric
argument [a] •

MACRO [n] <definition> Define and execute a macro n
IMMEDIATE times. Store it as macro

number 1.

2.3.5 File Input/Output Commands

Input/output commands control the
input/output files, and save files.

movement of text to and from
Table 2-8 lists these commands.

Table 2-8
EDI Input/Output Commands

Command Format Description

FILE FILe filespec Transfer lines from input file
to both the output file and the
specified file until a form
feed or end-of-file is
encountered. (Line-by-line
mode only.)

READ REAd [n] Read next n blocks of text into
block buffer. If buffer
contains text, new text is
appended to it.

RENEW RENew [n] Write the current block to the
output file and read new block
from the input file.

(continued on next page)

2-25

LINE TEXT EDITOR (EDI)

Table 2-8 (Cont.)
EDI Input/Output Commands

Command Format Description

SAVE SAve Tn] [filespec] Save current line and the next
n-l lines in the specified
file. If filespec IS not
given, lines are saved in file
SAVE. TMP • SAVE puts the
temporary file in the UFD on
the device for the file you are
editing. You cari override the
default by specifying a
different device and UFO.

WRITE Write

2.3.6 Device Output Commands

Write contents of block buffer
to output file and erase block
buffer.

These commands direct output to your terminal or to a pseudo device
(CL:). They are listed in Table 2-9.

Command

LIST ON TERMINAL

LIST ON PSEUDO­
DEVICE

PRINT

TYPE

Table 2-9
EDI Device Output Commands

Format

LIst

LP

Print [n]

TYpe [n]

2-26

Description

I
Print on the terminal all lines
remaining in block buffer (block
mode) or input file
(line-by-line mode), beginning
at current line.

Same as LI, except that printing
is performed on the pseudo
device CL:.

Print the current line
next n-l lines.
printed line is the n~w
line.

and the
The last

current

Print next n lines. In
line-by-line mode, identical to
PRINT command. In block mode,
line pointer remains at current
line unless end~of-block was
reached.

(

(

c

c

C

~.-----------O~----_---_ .. ---. _._. ----o--=-..,--_________ ~ __ ~_----=~._-__ -.-________ _

LINE TEXT EDITOR (EDI)

2.3.7 CLOSE and EXIT Commands

The CLOSE and EXIT commands terminate EDI operations and write the
remainder of the input file into output file. Table 2-10 lists these
commands.

Command

CLOSE

CLOSE SECONDARY

CLOSE & DELETE

EXIT

EXIT & DELETE

KILL

2.4 EDI COMMANDS:

Table 2-10
EDI Close Operation Commands

Format

CLose [filespec]

CLOSES

CDl [filespec]

Type a control Z

EXi t [filespec]

EDx [filespec]

KILL

DETAILED REFERENCE

Description

Transfer remainlng lines in
block buffer and input file to
output flle ana Close Illes.
If file specification is used,
output file is renamed. EDI>
prompt is issued.

Close secondary file.

Same as CLOSE except that input
file is deleted. EDI> prompt
is issued.

Close files and terminate EDI.

Close files, rename output
file, and terminate EDI.

Transfer remaining lines in
block buffer and input file to
output file and close file.
Rename file if file
specification is given. Delete
input file and terminate EDI.

Close input and output files,
delete output file. EDl>
prompt is issued.

SUMMARY

'il'his section 1 ists each EDI command in alphabetical order. Each
command description comprises the function of the command and the
command format. Most descriptions include examples and usage
information. The exceptions are the basic commands, which are
described in detail in the preceding section. In this section, only
the function and format of basic commands are described.

2.4.1 ADD

ADD causes the specified string to be appended to the current line.

Format

Add string

For examples and information describing how to use ADD, refer to
Section 2.2.1.

2-27

LINE TEXT EDITOR CEDI)

2.4.2 ADD & PRINT CAP)

ADD & PRINT performs the same function as ADD except that the new line
is printed.

Format

AP string

For examples and information describing how to use ADD & PRINT, refer
to Section 2.2.2.

2.4.3 BEGIN

BEGIN sets the current line pointer to the beginning of the file in
line-by-line mode, or to the beginning of the block buffer in block
mode. The current line is one line preceding the top line in the file

(

or block buffer. Thus, you can insert text at the beginning of a file ~
or block. ~ .

If EDI is in line-by-line mode, BEGIN copies the input file into the
output file, closes both, then opens the latest version of the file.
BEGIN performs the same function as TOP.

Format

Begin

Example

*B

In this example, the current line pointer is moved to the top of
the block buffer (block mode is assumed).

2.4.4 BLOCK ON/OFF

This command allows you to switch between block mode and line-by-line
mode. When you enter BLOCK ON, block mode becomes active and the next
block of text is brought into the block buffer. When you enter BLOCK
OFF, . the current block being processed is written to the output file
and line-by-line mode becomes active. The first line from the next
sequential block in the input file becomes the current line.

If you enter an unnecessary BLOCK command (for example, BLOCK ON when
EDI is already in block mode), the command is ignored.

BLOCK ON is the default text access mode. It is assumed when neither
ON nor OFF is specified.

Format

BLock [ON]
or

Block OFF

2-28

(

(

LINE TEXT EDITOR (EDI)

Example

*BLOCK ON

This command causes EDI to switch to block mode. The next block
of text is read into the block buffer.

2.4.5 BOTTOM

BOTTOM sets the current line pointer to the beginning of the last line
of the block (in block mode) or of the input file (in line~by-line
mode) •

Format

BOttom

For examples and information on how to use BOTTOM, refer to Section
2.2.3.

2.4.6 CHANGE

CHANGE searches for stringl in the current line and, if found,
replaces it with string2.

Format

[n] Change /stringl/string2[/]

For examples and information on how to use CHANGE, refer to Section
2.2.4.

2.4.7 CLOSE

This command transfers all remalnlng lines in the block buffer and
input file (in that order) into the output file and closes both files.
If a file specification is included, the output file is renamed to the
file spec. EDI then returns to its initial command sequence, prompts
with EDI>, and waits for you to type another file specification.

If a secondary file was opened during the editing session and was not
closed, it remains open.

Format

CLose [filespec]

Example

*CL
EDI>

This command closes both input and output files, and EDI returns
to the initial command sequence.

2-29

LINE TEXT EDITOR (EDI)

2.4.8 CLOSE SECONDARY (CLOSES)

Use this command when you have finished
secondary input file. You must enter
another secondary file as input.

extracting text from a
CLOSES before you can use

Format

CLOSES

2.4.9 CLOSE & DELETE (CD)

This command transfers
input file (in that
files. The input file
included, the output
acts like CLOSE except

all remaining lines in the block buffer and the
order) into the output file, and closes both

is then deleted. If a file specification is
file is renamed to the file spec. This command
that the input file is deleted.

(

If a secondary file was opened during the editing session and was not (~--
closed, it remains open.

Format

COl [fil espec]

2.4.10 CONCATENATION CHARACTER (CC)

The concatenation character allows you to give commands on one input
line. By default, the concatenation character is the ampersand (&).
To reference text containing an ampersand (for example, in LOCATE or
CHANGE commands), you must change the concatenation character to some
other character.

If the CC command. is used wi thout an argument, the concatenation
character is changed to the ampersand.

Format

CC [letter]

Example

*CC :
*L A&B:C /A&B/ABC/
CONCATENATION TEST CONTAINING A&B.
CONCATENATION TEST CONTAINING ABC.
*CC

In this example, the string to be located contains an ampersand.
Therefore, the concatenation character must be changed to a
different character before EDI can locate the line.

The first command line changes the default
character from the ampersand to the colon.

2-30

concatenation

(

(

(

c-

(

LINE TEXT EDITOR (EDI)

The second command line instructsEDI
and change that string A&B to ABC.
two commands that are concatenated
character, the colon.)

to locate the string A&B
(Note: this line contains

by the new concatenation

The third command line changes the concatenation character back
to the normal default value, &.

2.4.11 CTRL/Z

CTRL/Z is a Command Line Interpreter (CLI) function that terminates
ED!. For usage information on CTRL/Z, refer to Section 2.2.5.

2.4.12 DELETE

DELETE deletes a specified number of lines from a file.

Format

Delete n

For examples and information on how to use DELETE, refer to Section
2.2.6.

2.4.13 DELETE & PRINT (DP)

DELETE & PRINT performs the same function as DELETE, except that it
displays the new current line after the specified lines are deleted.

Format

DP n

For examples and information on how to use DELETE & PRINT, refer to
Section 2.2.7.

2.4.14 END

END sets the current line pointer to the beginning of the last line of
the block or input file. If EDI is in block mode, only line pointer
positioning occurs. In line-by-line mode, all lines are copied from
the input file to the output file until EOF is reached. The last line
in the block or file is displayed if VERIFY ON is in effect. Note,
however, that if the last line was deleted before you issued END, the
pointer will be located past the text, and thus the last line will not
be printed. END performs the same function as BOTTOM.

Format

End

2-31

LINE TEXT EDITOR (EDI)

Example

*v ON C--
*END ,
THIS IS THE LAST LINE

This command moves the current line pointer to the bottom of the
block buffer (block mode is assumed).

2.4.15 ERASE

In line-by-line mode, this command erases the currerit line. In this
mode, n can only be 1. In block mode, this command erases the current
block buffer and the next n-l blocks. If n is not specified, +1 is
assumed.

Format

ERASE [n]

Example

*ERASE 5

This command causes the contents of the current block buffer and
the next 4 blocks to be erased. These blocks are not written
into the output file.

2.4.16 The ESCape Key

This command prints the previous line in the block (block mode only).
That line becomes the current line. Thus, you can back up through a
block, one line at a time, by pressing a series of ESCapes. Pressing
ESCape is equivalent to typing NP-l (NEXT & PRINT command).

If EDI is in input mode, ESC acts like RETURN and terminates a line of
input. ESC also exits from input mode if it is the first character of
the line.

2.4.17 EXIT

EXIT writes all remaining records to the output file, closes the
files, and terminates EDI.

Format

EXIT [filespec]

For examples and information on how to use EXIT, refer to Section
2.2.9.

2. 4 .• 18 EXIT & DELETE (ED)

This command functions in the same way as the CLOSE & DELETE command
except that EDI also terminates.

2-32

(

(

c

(

c

Format

EDx [fil espec]

Example

*EDX NEWFILE. DOC
[EXIT]
>

2.4.19 FILE

LINE TEXT EDITOR (EDI)

This command--1ega1 in line-bY-line mode only--transfers lines from
the input file to both the output file and a specified file, beginning
with the current line, until a form feed character is encountered as
the first character in a line or until end-of-file is reached. At
that time, the specified file is closed. The form feed character is
not included in the specified file. During the transfer, the original
file remains intact (that is, all lines written to the specified file
are also written to the normal output file, including the form feed).
When the command is complete, the current line in the input file is
one line beyond the form feed.

BLOCK OFF must be in effect for FILE to work properly.

If the specified file does not already exist, a new file is created.
If the specified file does exist, the latest version of the file
contains the new data.

Format

FILe fil espec

Example

* FILS EC • DA T

EDI writes the contents of the input file, from the current line
to the end, into both the output file and the file SEC.DAT.

2.4.20 FIND

This command searches the block buffer or input file for a string,
beginning at the line following the current line. The string must
begin in column 1 of the line matched. The line pointer is positioned
at the line containing the match. When the line containing the string
is found, it is printed if VERIFY ON is in effect.

FIND applies to the block buffer if EDI is in block mode and to the
input file if EDI is in line-by-line mode.

If a string is not specified, the line following the current line is
considered a match. If n is specified, the nth occurrence of the
string is found.

Format

[n]Find [string]

2-33

Example

*v ON
*F LOOK

LINE TEXT EDITOR (EDI)

LOOK AT THE FIRST CHARACTER IN THE LINE.

In this example, EDI searches the block buffer (or file) for a
line that begins with LOOK and prints the line when it is found.

2.4.21 FORM FEED (FF)

This command allows you to insert form feeds into the text to
pages. The form feed is inserted after the current line.
containing the form feed then becomes the new current line.

Format

FF

Example

*p
THIS IS THE LAST LINE ON THE PAGE
*FF

delimit
The line

In this example, a form feed is inserted into the text following
the current line.

2.4.22 INSERT

INSERT inserts a string immediately following the current line. The
string becomes the current line.

Format

Insert [string]

For examples and information on how to use INSERT, refer to Section
2.2.10.

2.4.23 KILL

This command returns EDI to the initial command sequence without
retaining the output file. When this command is executed, the input
file is closed and the output file is deleted.

Format

KILL

Example

*KILL
EDI>

2-34

(

(

(

(

(

LINE TEXT EDITOR (EDI)

In this example, the output file is deleted and EDI displays the
prompt:

ED!>

At this point, you can return control to your CLI by means of
CTRL/Z or enter a file specification for a file to be edited.

2.4.24 LINE CHANGE (LC)

This command is similar to CHANGE except that all occurrences of
stringl in the current line are changed to string2. A numeric value n
preceding the command changes the current line and the next n-l lines.
If string2 is not given, all occurrences of stringl are deleted. New
lines are printed if the VERIFY ON command is in effect.

If stringl is given, but EDI cannot locate the string in the current
line, EDI prints [NO MATCH] and returns the asterisk prompt.

Format

[n]LC /stringl/string2[/]

Example

If the current line is:

THES ES THE LINE TO BE ESS UE D.

The following commands would correct the errors:

*V ON
*LC /ES/IS
THIS IS THE LINE TO BE ISSUED

2.4.25 LIST ON TERMINAL (LI)

This command prints on your terminal all remalnlng lines in the block
buffer (block mode) or all remaining lines in the input file
(line-by-line mode), beginning at the current line. At the end of the
listing, the current line pointer is repositioned to the top of the
input file or block buffer.

If terminal host synchroni7ation is installed at
you can control printing functions using CTRL/O,
To suppress printing at any point, type CTRL/O.
suspended temporarily with CTRL/S and resumed with

Format

LIst

Example

*LI

system generation,
CTRL/S, and CTRL/Q.

Printing can be
CTRL/Q.

This command causes all remalnlng lines in the block buffer or
all remaining lines in the input file to be printed on the
terminal.

2-35

LINE TEXT EDITOR (EDI)

2. 4. 26 LIST ON PSEUDO DEVICE (LP)

This command functions in the same manner as the LIST ON TERMINAL
command except that the remaining lines in the block buffer (block
mode) or the remaining lines of the input file (line-by-line mode) are
listed on the pseudo device CL:. In most systems, CL: is set to the
system line printer.

Format

LP

Example

*LP

This command causes all rem.ining lines in the block buffer or
all remaining lines in the input file to be printed on the pseudo
device CL:.

2.4.27 LOCATE

LOCATE searches for a string beginning at the line following the
current line. The string can occur anywhere in the lines searched.

Format

[n] Locate string

(

For examples and information on how to use LOCATE, refer to Section c-.
2.2.11.

2.4.28 MACRO
\

This command is usied to define macros.
macro definitions. The definition
string of legal EDI commands connected

Space is available for three
can be any legal EDI command or
by the concatenation character.

If a numeric argument is to be passed to the macro at execution time,
a percent sign (%)must be inserted in the macro definition at the
point where the numeric argument is to be substituted. Then the value
passed with the MACRO EXECUTE command replaces the percent sign when
the macro is executed.

A MACRO definition may contain more than one percent sign. If it
does, the single numeric value given in a MACRO EXECUTE command
replaces each percent sign. However, a macro may not have two or more
independent arguments. .

Format

MACRO x definition

x

Specifies the macro number (1, 2, or 3).

2-36

c

(

(

(

LINE TEXT EDITOR .(EDI)

Examples

To find the nth occurrence of the string ABC in the current block
and replace that occurrence and all remaining occurrences within
the block with the string DEF, the following macro could be used:

*MACRO 1 %L ABC&PA /ABC/DEF

The following command executes the macro and searches for the
tenth and succeeding occurrences of ABC.

*M 1 10

The following macro definition and subsequent invocation could be
used to change all occurrences of the strings ABC and GHI to DEF
and JKL, respectively. The substitution is made in the current
block and the next four blocks (five blocks in all).

*MACRO 1 PA /ABC/DEF/&PA /GHI/JKL/&RENEW
*5M 1

2.4.29 MACRO CALL (MC)

(MACRO command)
(MACRO EXECUTE command)

This command allows you to retrieve up to three macro definitions
previously stored in a file. The macro definitions must contain only
the "definition" portion of the MACRO command. The macro definitions
are stored in successively numbered macros: the first definition
becomes macro 1, and so on.

The file used to store the macro definitions must be the latest
version of file MCALL -- that is, MCALLin. The file type must be null
or blank. If the macro definitions to be loaded are in a file of
another name, you can use PIP with the /NV switch, to rename the file.
(Refer to Chapter 3 for descriptions of PIP commands.)

Format

MCall

Strings of concatenated EDI commands can be written as EDI macro
definitions, and up to three EDI macro definitions can be stored
in file MCALLin. The MC command is used to call the latest
version of file MCALL and move the ~hree definitions into the
macro storage area. Then you can execute the desired macro
without having to type the complete command.

Macro calls may not be nested.

The concatenation character may precede, but not follow, a macro
call.

Example

*MC

This command retrieves the macro definitions stored in file
MCALLin, where n represents the latest version of the file MCALL.

2-37

LINE TEXT EDITOR (EDI)

2.4.30 MACRO EXECUTE

This command executes a macro n times while passing it an optional
numeric argument a. If a macro numeric argument is defined with the
percent sign (%) in the macro definition, the numeric argument
contained in this command is passed for each execution of the macro.
Before a macro can be executed, it must either have been defined by
means of a MACRO command or called with a MACRO CALL command.

Use the MACRO EXECUTE command to execute anyone of the three macro
definitions stored in the EDI macro storage area any number of times.

Format

en] Mx [a]

n

x

a

Examples

*2Ml

Specifies the number of times the macro is to be
executed.

Specifies the macro number (1, 2, or 3).

Specifies the numeric argument to be passed when the
macro is executed (ignored if the argument % is not
present in macro definition).

Execute macro number 1 twice.

*3M2 5

Execute macro number 2 three times, passing the numeric argument
5 each time the macro is executed.

The example in Section 2.6.4 illustrates how to use the EDI macro
commands in editing a file.

2.4.31 MACRO IMMEDIATE

This command defines and executes a macro in one step. The definition
is enclosed within angle brackets and is identical to that of the
MACRO command. The definition is copied into the macro 1 storage area
and immediately executed n times. The macro may also be subsequently
executed by entering an Ml command. The command is equivalent to the
two macro commands:

MACRO 1 definition
nMl

Format

n(definition>

2-38

(

(

(

c

(

(

-~-~~~------------. -. ----~---~--------~-- ----~ ---~---~---~-~-----------

LINE TEXT EDITOR (EDI)

Example

*<L ABC&C /ABC/DEF>

This command causes EDI to search the current block buffer for
the str ing ABC and, when it locates ABC, to change thestr ing to
DEF. This macro is stored as macro number 1.

The example in Section 2.6.3 illustrates the use of the MACRO
IMMEDIATE command.

2.4.32 NEXT

NEXT moves the current line pointer backward and forward in the file.
A positive number moves the current line pointer forward, a negative
current line number moves it backward.

Format

Next [n]
or

Next [-n]

For examples and information on how to use NEXT, refer to Section
2.2.12.

2.4.33 NEXT & PRINT

NEXT & PRINT performs the same function NEXT performs except that the
new current line is displayed.

Format

NP [n]
or

NP [-n]

For examples and information on how to use NEXT & PRINT, refer to
Section 2.2.13.

2.4.34 OPEN. SECONDARY

This command opens the specified secondary input file. The primary
input file, if any, remains open. Subsequent text is read from the
primary input file until the secondary input file is selected by means
of the SELECT SECONDARY command (SS) for input.

Format

OPens filespec

Example

*OPENS RICKS.MAC
*SS
*READ 1

The file RICKS.MAC is opened as a secondary input file, then the
first block is read in.

2-39

LINE TEXT EDITOR (EDI)

2.4.35 OUTPUT ONIOFF

This command, used only in the line-by-line mode, allows you to
continue or discontinue the transfer of text to the output file.
OUTPUT ON is the default condition. It is automatically reestablished
each time a CLOSE command is issued.

Format

OUtput ON
or

OUtput OFF

If neither ON or OFF is specified, ON is assumed.

Example

*BLOCK OFF
*OUTPUTOFF
*N 5
*OUTPUT ON

This example shows how to bypass five lines of text in the input
file so that these lines are not written into the output file.

The first command sets line-by-line mode.

The second command disables the transfer of text to the output
file.

The third command bypasses five consecutive lines of text from
the input file.

The fourth command reenables the transfer of text to the output
file.

2.4.36 OVERLAY

(

(~

This command deletes n lines and replaces them with any number of
lines that you type. If n is not specified, the current line is C·
deleted and replaced with the lines typed. When you enter the OVERLAY
command, EDI enters input mode. All text that you type goes into the
file until you enter a carriage return as the only character in an
input line.

Format

Overlay en]

Example

*0 2

This command deletes two lines and causes EDI to enter input ~
mode.

2-40

(

(

LINE TEXT EDITOR (EDI)

2.4.37 PAGE

This command causes EDI to enter block mode, if not already in it, and
read page n into the block buffer. A page is delimited by form feeds.
If n is less than the current page number, a TOF command is performed
first. TOF processing writes the input fi1e to the output file,
closes both files, then opens the latest version of the file.

If n is greater than the current page number, the necessary number of
RENEW commands is executed to read page n into the block buffer.

Format

PAGe n

Example

*PAG 1
[00050 LINES READ IN]
[00050 LINES READ IN]
[00050 LINES READ IN]
[00050 LINES READ IN]
[00017 LINES READ IN]
[PAGE 1]

*
This example shows a quick way to get to the last block in a file
that contains no form feed page delimiters. EDIls page count is
not incremented unless it encounters form feed characters or an
end-of-file mark. Thus,in a file without form feeds (that is,
most files), EDI renews the block buffer until it encounters an
end-of-file mark. Note that the final block contains 17 lines of
text.

2.4.38 PAGEFIND

This command performs the same function as the FIND command except
that successive blocks are searched until the nth occurrence of the
string has been found. The contents of the block buffer and the
blocks between the current block and the block in which the nth
occurrence of the string is located are copied into the output file.

The string must begin in column 1 of the matched line. The line is
printed if VERIFY ON is in effect. This command can be used only in
block mode.

Format

[n] PFind string

2.4.39 PAGE LOCATE

This command causes a search of the current block, starting at the
line following the current line, and of successive blocks until t~e
nth occurrence of the string has been located. Text from the curreht
block .. buffer is written into the output file. The string can occ:ur
any place in the lines checked. The line is printed if the VERIFY ON
command is in effect. This command can be used only in block mode. i

2-41

----- ·--·-~-c---_~ __ ~=----~-·--_-__ ~_~c---- -~---__ -... c-~-~~-------__ ~c=--------~~=

LINE TEXT EDITOR (EDI)

Format

[n]PLocate string

This command is used in the same manner as the LOCATE command
except that the specified string can be in a block other than the
current block.

PL leaves the current line pointer at end-of-file if it cannot
locate the str ing.

2.4.40 PASTE

This command is identical to the LINE CHANGE command except that all
lines remaining in the input file or block buffer are searched and all
occurrences of stringl are replaced with string2. Modified lines are
printed if the VERIFY ON command is in effect. If stringl is given,
but no match is found, EDI returns the asterisk (*) prompt. When the
command completes, the line pointer is at the top of the buffer or
input file.

Format

PAste /stringl/string2[/]

Example

If the lines remaining in the block buffer contain the following
text:

YIGER, YIGER, BURNING BRIGHY
IN YHE FORESYS OF YHE NIGHY

they can be corrected with the following command:

*PA/Y/T

If the VERIFY ON command is in effect, all corrected lines are
printed. To discontinue printing, type CTRL/O.

2.4.41 PRINT

PRINT displays the current line and the next n-l lines at the
terminal. The last line printed becomes the current line.

Format

Print en]

For examples and information on how to use PRINT, refer to Section
2.2.14.

2.4.42 READ

This command reads the next n blocks of text into the block buffer.
If a block is already in the buffer, the new block(s) is (are)
appended to it.

EDI must be in block mode before this command can be executed.

2-42

(

(

(

(

c

c

(

LINE TEXT EDITOR (EDI)

A READ command cannot exceed the buffer capacity. If you issue a READ
that is too large, EDI fills its buffer and then issues the following
message:

[BUFFER CAPACITY EXCEEDED BY]
<offending line>
[LINE DELETED]

You may get this message after issuing a READ n command, where n is 2
or larger, unless you have used the SIZ E command to reduce the number
of lines per block below its initial number.

Format

REAd [n]

If n is not specified, a value of 1 is assumed. The value of n
must be positive.

Example

*SI~E 15
*'READ 4

This ~xample reads four IS-line blocks of the input file into the
block buffer.

2.4.43 RENEW

RENEW writes the current block buffer into the output file and reads a
new block from the input file. Renew is used only in block mode.

Format

RENew [n]

For examples and information on how to use RENEW, refer to Section
2.2.15.

2. 4. 44 The RETURII Key

In edit mode, the RETURN key represents the return that displays the
next line in the file or block buffer. In input mode, entering the
RETURN returns EDI to edit mode. For information on EDI command
modes, refer to Section 2.1.2. For information on the RETURN key,
refer to Section 2.2.16.

2.4.45 RETYPE

RETYPE replaces the current line with string.

Format

Retype [string]

For information on how to use RETYPE, refer to Section 2.2.17.

2-43

LINE TEXT EDITOR (EDI)

2.4.46 SAVE

This command causes the current line, and the next n-l lines, to be C"·
saved in the specified file. If the file already exists, a new
version is created.

If no file is specified, the save file generated has the name
SAVE.TMP. SAVE puts the temporary file in the UFO on the device for
the file you are editing.

The input file or buffer inform(3tion that is transferred to the SAVE
file remains intact. The new current line is the last line saved.
The SAVE command does not delete lines in the block buffer or input
file.

Format

SAve[n] [filespec]

Example

You can save and later inser.t small
places in an output file by using
For example, a file called EDIT. MAC
want to insert at several points in
The procedure is:

groups of lines in several
the SAVE and UNSAVE commands.
contains six lines that you
another file called HELP. MAC.

1. Start an editing session using EDIT.MAC as the input
file.

2. Locate the I ines to be inserted into HELP. MAC.

3. Issue a SAVE 6 command. (This copies the six lines to
be saved into the file SAVE.TMP.)

4. Issue a KILL command to terminate the editing session.

5. Start a new ed i ting session using HELP. MAC as the input
file.

6. Locate each place the six lines are to be inserted and
issue the UNSAVE command.

(

7. Make further edits to the input file, as desired, or C
EXIT.

EDI does not delete the save file. It remains on the specified
volume until deleted.

2.4.47 SEARCH & CHANGE

This command causes a search for stringl in the block buffer (block
mode) or input file (line-by-line mode), beginning at the current
line. The string may occur anywhere in the line. When stringl is
located, it is replaced by string2. The located line becomes the
current line.

If stringl is not specified, EDI prints the error message for illegal
string construction. The new current line is printed if the VERIFY ON
command is in effect. If stringl is given, but EDI cannot locate the
string, EDI returns the asterisk (*) prompt and the line pointer is (
posi tioned at the end-of-file or the bottom of the block buffer. '-'

2-44

(

LINE TEXT EDITOR (EDI)

Pormat

SC /string1/string2[/]

Example

If the following incorrect line is contained in the current
block:

THES IS THE LINE TO BE ISSUED.

the following commands can correct the error:

*V ON
*SC /THES/THIS/
THIS IS THE LINE TO BE ISSUED.

The corrected line is printed since the VERIFY ON command is in
effect.

(~~~~ 2.4.48 SELECT PRIMARY

c

c

This command selects the primary file for input. It allows you to
reestablish the primary input file as the file from which text is
read.

Pormat

SP

Example

*OPENS SECOND. MAC
*SS
*RENEW 10
*CLOSES
*SP

This example directs EDI to:

1. Open the secondary file SECOND.MAC.

2. Select SECOND. MAC as the secondary input file.

3. Read ten consecutive block buffers from the secondary
input file into the block buffer. The first nine blocks
are automatically transferred to the output file.

4. Close the secondary input file SECOND.MAC. The
secondary file need not be closed before the primary
file is reselected for input.

5. Reselect the primary input file for input.

2-45

LINE TEXT EDITOR (EDI)

2.4.49 SELECT SECONDARY

With this command, you select the secondary file as the input file.

Format

5S

Example

To add text to the output file from a secondary input file, you
must first open the secondary input file and select it for input.
The use of the SS command is illustrated in the example presented
in Section 2.4.28.

2.4.50 SIZE

This command allows you to specify the maximum number of lines to be
read into the block buffer on a single READ or RENEW command. The

(

default value for SIZE d·epends on your exact system configuration. E-.-
Initially, EDI determines how much buffer space it has and divides
that by 132(10), the maximum line size, to set the number of lines
read in. In no case can it be less than 38 lines. (See the
discussion of block mode in Section 2.1.3.)

Format

SIZE n

Example

·SIZ E 50

This command conditions EDI to read 50 lines into the block
buffer during a single READ or RENEW command.

2.4.51 TAB ON/OFF

(

This command turns automatic tabbing on or off. The automatic tab
feature is useful for MACRO-II language input. TAB OFF is the defaul t (
at the start of an editing session. When TAB ON is in effect, a tab __
(equivalent to eight spaces) is automatically inserted at the
beginning of each input line unless the line either begins with a
label followed by a colon or contains a semicolon in the first column.

Format

TAb [ON]
or

TAb OFF

If neither ON nor OFF is specified when a TAB command is issued,
ON is assumed.

2-46

(

(

Example

*TAB ON
*I

LINE TEXT EDITOR (EDI)

; THIS IS A SAMPLE OF TABBING.
THIS LINE GETS A TAB
1: THIS ONE DOESN'T
END

*TAB OFF
*N -3
*p 4
; THIS IS A SAMPLE OF TABBING.

THIS LINE GETS A TAB
1: THIS ONE DOESN'T

END

2.4.52 TOP

TOP sets the current line pointer to the top of the block buffer (in
block mode) or to the top of the file (in line-by-line mode). In
line-by-line mode, TOP creates a new version of the file. When the
current line pointer is positioned by means of TOP, you can insert
lines preceding the first line in the file.

Format

Top

For examples and information on how to use TOP, refer to Section
2.2.19.

2.4.53 TOP OF FILE (TOF)

TOF returns the current line pointer to the first line of the file and
leaves you in block mode. TOF copies the input file to the output
file, closes both, and opens the latest version of the file as the
input file.

Format

TOF

For examples and information on how to use TOF, refer to Section
2.2.18.

2.4.54 TYPE

This command is similar to the PRINT command (Section 2.2.14). In
line-by-line mode, the two are identical. In block mode, TYPE does
not move the 1 ine pointer after displaying the requested text unless
end-of-block 1S encountered. In this case, the line pointer remains
at the last line before the end-of-block.

If n is not specified, a value of 1 is assumed.

2-47

LINE TEXT EDITOR (EDI)

Format

TYpe [n]

Example

See the example of the PRINT command (Section 2.2.14).

2.4.55 UNSAVE

command retrieves all the lines in a specified file and copies
after the current line. If no file is specified, the default

is SAVE.TMP. The new current line pointer is positioned at the
line retrieved from the file. The file used in this command can
text file. It is often the file created with a SAVE command.

This
them
file
last
be any

Format

UNSave [filespec]

Example

File SEC.DAT;l contains a group of lines to be inserted after the
current line. The following command performs the desired
operation.

*UNS SEC.DAT;l

Section 2.6.2 contains an example using the SAVE and UNSAVE
commands.

2.4.56 UPPER CASE ON/OFF

This command allows you to enter lowercase characters from a terminal
and have them converted to uppercase characters. If UPPER CASE OFF is
issued, all input characters are accepted as they are entered,
including the EDI commands.

Format

UC [ON]
or

UC OFF

If neither ON nor OFF is specified, then ON is assumed.

Example

*UC OFF
*I this line is entered in lowercase
*'UC ON
*~ this line is converted to uppercase

Assuming that the input terminal is capable of generating
lowercase input, the commands in the example would create the
following lines in the output file.

this line is entered in lower case
THIS LINE IS CONVERTED TO UPPER CASE

2-48

(

(

(

(

(

(

LINE TEXT EDITOR (EDI)

However, in both instances, the characters are converted to
uppercase before the file is closed.

To create a file containing lowercase characters, use the MCR SET
/LOWER=TI: or the DeL SET TERM LOWER command and the EDI UC OFF
command.

2.4.57 VERIFY ON/OFF

This command controls the display of lines specified by the LOCATE and
CHANGE commands. Use VERIFY ON to display a line located by the
LOCATE command or to display a line changed by the CHANGE command.
Use VERIFY OFF to inhibit the display of these lines. VERIFY ON is
the default when EDI is started.

Format

Verify [ON]
or

Verify OFF

If neither ON nor OFF is specified, ON is assumed.

Example

*V OFF
*L VERIFY
*p
LINE IS PRINTED AUTOMATICALLY IF VERIFY IS ON
*N -2
*'V ON
*L VERIFY
LINE IS PRINTED AUTOMATICALLY IF VERIFY IS ON

In this example, the PRINT command is issued to demonstrate that
the desired line has been located when VERIFY is OFF, but when
the LOCATE command is reissued with VERIFY ON, EDI automatically
prints the line.

2.4.58 WRITE

This command causes the entire contents of the block buffer to be
written into the output file. The block buffer is then erased.

EDI must be in block mode before this command can be executed.

Format

Write

Example

*W
*REA 2

In this example, the block buffer is written into the output file
and the block buffer is erased. Then, the next two blocks are
read into the block buffer.

2-49

LINE TEXT EDITOR (EDI)

2.5 EDI USAGE NOTES

The following points contain general information involving
restrictions on use of EDI, system device considerations, and general
usage rules.

• EDI can operate only on Files-II format files and rejects all
other file formats.

• The output file generated by EDI always resides on the same
device as the input file. The output file cannot be directed
to another device. For example, to edit a file on DECtape and
store the resulting file on disk, do one of the following:

- Transfer the file to disk and perform the editing there.

- Edit the file on DECtape and then use PIP or FLX to transfer
the file to disk.

• To use a device other than SY:, mount it with the MOUNT
command.

• To edit a version of a file other than the latest one,
explicitly state the desired version number in the file
specification. This file is opened as the input file. The
version number of the output file is one greater than the
1 atest ver sion of the file.

• Some EDI commands (such as TOF and TOP, when it is used in
line-by-line mode) implicitly generate multiple versions of a
file. In the execution of such commands, EDI copies the
remainder of the input file into the output file and closes
both of them. It then opens the latest. version of the file
and uses it as input. This ensures the editing of the latest
version of the file and provides periodic backup. To delete
any unwanted versions, use PIP with the /PURGE switch or the
OCL DELETE command.

• EDI accepts variable-length input lines up
characters long.

to 132(10)

• The record type of output files edited by EDI is always
variable-length.

• EDI preserves the record attributes of the input file. For
example, the FORTRAN carriage control attribute is preserved
in the output file.

• Line feed
interpreted
avoid using
the file is

characters may be entered in files, but are
by EDI as termination characters. You should

them since they cause unpredictable results when
edited a second time.

• EDI cannot process a file that contains embedded carriage
control characters, such as PIP directory listings and TKB map
files. To reformat such a file for EDI processing, copy the
file to a DOS-II volume and then back to your original volume
using FLX. EDI can then process the file.

2-50

(

E-

(

(

(

(

LINE TEXT EDITOR CEDI)

2.6 SAMPLE EDITING OPERATIONS

Sample editing operations are included in this section to illustrate
how the various EDI commands can be used:

• A file is edited using a few basic EDI commands.

• Two save files are generated, modified, and appended to the
original file. Any closed file may be appended to or inserted
within an open file in the manner shown in the second example.

• An immediate macro command is defined and executed in a single
step.

• A file containing errors is edited using the macro commands.

2.6.1 File Editing Sample

>EDI.PRTBLD.CMD
[PAGE 1]
*p *

COMMAND FILE TO BUILD
PRNT SYMBIONT
FOR RSX-11M MAXXED SYSTEM

1 .
[1, 54] PRT/MM/-CP, LP:=PRTBLD/MP
1
1 OPTIONS
1
STACK=40
PAR=PARK:0:10000
UNITS=4
TASK=PRT •••
ASG=CO: 2, LP: 3
PRI=60
UC=[10,1]

SPECIFY
SPECIFY FLAG WHICH CONTROLS
FILE DELETION AFTER PRINTING

TO ENABLE DELETION USE

GBLPAT=PRT,$DELET:1

TO INHIBIT DELETION USE

DEFAULT FROM ASSEMBLY IS
FILE DELETION ENARBLED

1
GBLPAT=PRT:$DELET
/
[*EOB*]

File PRTBLD.CMD is opened for editing. A PRINT * command
is issued to print the contents of the file. The following
errors are detected:

1 - PRNT should be PRINT.
2 - MAXXED should be MAPPED.

3 - /-CP should be /CP.

4 - INPUT should be appended to the line containing the
word OPTIONS.

5 - PARK should be PAR4K.

6 - UC should be UIC.

7 - The line containing SPECIFY should be deleted.

8 - The comment line containing the format used to inhibit
deletion is missing.

9 - ENARBLED should be ENABLED.

10 - A :1 should be appended to the line following the
word $DELET.

The end of buffer is reached and EDI causes the EOB message
to be printed.

2-51

*TOP
[PAGE 1]
*PL PRNT
; PRNT SYMBIONT
*C/RN/RIN/
; PRINT SYMBIONT
*
; FOR RSX-llM MAXXED SYSTEM
*C/XX/PP/
; FOR RSX-llM MAPPED SYSTEM
*NP 3
[1, 54]PRT/MM/-CP, LP:=PRTBLD/MP
*C,/-CP,/CP,
[1, 54] PRT/MM/CP,LP: =PRTBLD/MP
*PL PAR=
PAR=PARKiO:lOOOO
*C/RK/R4K/
PAR=PAR4K:0:lOOOO
*NP -3
; OPTIONS
*AP INPUT
; OPTIONS INPUT
*PL UC
UC=[lO,l]
*C/UC/UIC/
UIC=[lO,l]
*
;

* ; SPECIFY
*DP
; SPECIFY FLAG WHICH CONTROLS
*PL INH
; TO INHIBIT DELETION USE
*1

GBLPAT=PRT:$DELET:O

*PL RB
; FILE DELETION ENARBLED
*C/R//
; FILE DELETION ENABLED
*
;

* GBLPAT=PRT:$DELET
*AP :1
GBLPAT=PRT:$DELET:l
*TOF
[PAGE 1]
*p *

COMMAND FILE TO BUILD
PRINT SYMBIONT
FOR RSX-llM MAPPED SYSTEM

LINE TEXT EDITOR (EDI)

A TOP command is issued to move the line pointer to top of
file and editing is started.
1 - A PAGE LOCATE command is issued to locate the first

line in error and the line is printed automatically.
A CHANGE command is issued to correct the line
and the corrected line is displayed automatically.

2 - A RETURN is entered following the prompt to
move the line pointer and print the next line in error.
A CHANGE command is issued to correct the line and the
corrected line is displayed automatically.

3 - A NEXT PRINT 3 command is issued to locate the
next line in error and the line is printed. A CHANGE
command is issued to correct the line and the corrected
line is displayed automatically.

4 - A PAGE LOCATE command is issued to locate the next
line in error and the line is printed automatically. A
CHANGE command is issued to correct the line and the
corrected line is displayed automatically.

5 - A line in error was bypassed by mistake; therefore, a
NEXT PRINT -3 command is issued to back the line
pointer up. An ADD AND PRINT command is used to correct
the line

6 - A PAGE LOCATE command is used to locate the next line
in error and the line is printed automatically.
A CHANGE command is issued to correct the line and
the corrected line is displayed automatically.

7 - The line pointer is moved down two lines by means
ofa RETURN option to locate the next
line in error. A DELETE AND PRINT command is issued to
delete the line cont~ining ; SPECIFY and print
the next line.

8 - A PAGE LOCATE command is issued to locate the
point in the file where the new comment lines
are to be inserted. EDI is switched to the Input
mode, two lines are entered, and EDI is switched
back to Edit mode by entering a RETURN as
the first character in the line.

9 - A PAGE LOCATE command is issued to locate the next
line in error. A CHANGE command is issued to
correct the spelling error. The line is displayed
automatically.

10 - The line pointer is moved down two lines using two
RETURNS to locate the last line in error.
An ADD AND PRINT command is issued to append
:1 following the word $DELET.

The necessary corrections are complete, so the line pointer
is moved to the top of the file by means of a TOF command.
A PRINT * command is issued to print the complete file
with all corrections

2-52

c

E-

C~

(

c

(

(

[1, 54]PRT/MM/CP, LP:=PRTBLD/MP
7
7 OPTIONS INPUT
7
STACK=40
PAR=PAR4K:O:10000
UNITS=4
TASK=PRT •••
ASG=CO:2,LP:3
PRI=60
UIC=[10,1]

SPECIFY FLAG WHICH CONTROLS
FILE DELETION AFTER PRINTING

TO ENABLE DELETION USE

GBLPAT=PRT:$DELET:1

TO INHIBIT bELETION USE

GBLPAT=PRT:$DELET:O

DEFAULT FROM ASSEMBLY IS
FILE DELETION ENABLED

;
GBLPAT=PRT:$DELET:1
/
[*EOB*]
*EX
[EXIT]

2.6.2 SAVE and UNSAVE Sample

*LI
THIS IS LINE 1 PAGE 1
THIS IS LINE 2 PAGE 1
THIS IS LINE 3 PAGE 1
THIS IS LINE 4 PAGE 1
THIS IS LINE 5 PAGE 1
[*EOB*]
*T
*SA 5 SAV1.DAT

*T
*SA 5 SAV2.DAT
*CL
EDI>SAV1. DAT
[PAGE 1]
*LI
THIS IS LINE 1 PAGE 1
THIS IS LINE 2 PAGE 1
THIS IS LINE 3 PAGE 1
THIS IS LINE 4 PAGE 1
THIS IS LINE 5 PAGE 1
[*EOB*]

LINE TEXT EDITOR (EDI)

An EXIT command is issued to close the file and
terminate the editing session.

The file to be used in this example is
printed using the LIST command.

The line pointer is returned to the top.
A SAVE command is used to save the
five lines in a separate file.

The line pointer is returned to the top.
A second SAVE command is used to generate
a second saved file. The primary input file is closed.
The first save file is opened and a
LIST command is used to display the file.

2-53

*PA/PAGE l/PAGE 2/
THIS IS LINE 1 PAGE 2
THIS IS LINE 2 PAGE 2
THIS IS LINE 3 PAGE 2
THIS IS LINE 4 PAGE 2
THIS IS LINE 5 PAGE 2
*CL
EDI>SAVE2. DAT
[PAGE 1]
*LI

,THIS IS LINE 1 PAGE 1
THIS IS LINt 2 PAGE 1
THIS IS LINE 3 PAGE 1
THIS IS LINE 4 PAGE 1
THIS IS LINE 5 PAGE 1
[*EOB*l

*PA/PAGE l/PAGE 3/
THIS IS LINE 1 PAGE 3
THIS IS LINE 2 PAGE 3
THIS IS LINE 3 PAGE 3
THIS IS LINE 4 PAGE 3
THIS IS LINE 5 PAGE 3
*CL
EDI>START.DAT
[PAGE 1]
*BO
THIS IS LINE 5 PAGE 1
*UNS SAVl.DAT
*UNS SAV2.DAT
*T
*LI
THIS IS
THIS IS
THIS IS
THIS IS
THIS IS
THIS IS
THIS IS
THIS IS
THIS IS
THIS IS
THIS IS
THIS IS
THIS IS
THIS IS
THIS IS
[*EOB*]
*EX
[EXIT]

LINE
LINE
LINE
LINE
LINE
LINE
LINE
LINE
LINE
LINE
LINE
LINE
LINE
LINE
LINE

1
2
3
4
5
1
2
3
4
5
1
2
3
4
5

PAGE 1
PAGE 1
PAGE 1
PAGE 1
PAGE 1
PAGE 2
PAGE 2
PAGE 2
PAGE 2
PAGE 2
PAGE 3
PAGE 3
PAGE 3
PAGE 3
PAGE 3

LINE TEXT EDITOR (EDI)

A PASTE command is used to change
PAGE 1 to PAGE 2 in all lines.

The first save file is closed.
The second s·ave file is opened.

The LIST command is used to display
the contents of the file.

A PASTE command is used to change
PAGE 1 to PAGE 3 in all lines.

The second save file is closed.
The original input file is opened again.

The last line in the file is located.
Two UNSAVE commands are used to
append the two save files to the
original input file.
A LIST command is used to
display the contents of the
combined file.

2-54

E-

c.

(

c

LINE TEXT EDITOR (EDI)

2.6.3 Use of MACRO

*LI
ABC IN LINE 1 - ABC
ABC IN LINE 2 - ABC
ABC IN LINE 3 - ABC
ABC IN LINE 4 - ABC
ABC IN LINE 5 - ABC

ABC IN LINE N - ABC
[*EOB*]
*4<F ABC&C/ABC/DEF/>
ABC IN LINE 1 - ABC
DEF IN LINE 1 - ABC
ABC IN LINE 2 - ABC
DEF IN LINE 2 - ABC
ABC IN LINE 3 - ABC
DEF IN LINE 3 - ABC
ABC IN LINE 4 - ABC
DEF IN LINE 4 - ABC

*

IMMEDIA'lE

2.6.4 Use of Macro Commands

*LI
THIS LITTLE FILE HAS
MANY CONNON ETTORS SO
WE CAN SHOW YOU HCM
YHE MACRO CONNANDS CAN
BE USED.
FIRST, YHE DESIRED MACRO
MUST BE DEFINED; YHE LINE
POINTER IS MOVED TO A LINE
WITH AN ETTOR; AND YHEN, YHE
MACRO EXECUTE CONNAND
IS ISSUED TO COTTECT YHE
ETTOR
[*EOB*]
*MACRO 1 C/NN/MM/
*MACRO 2 SC/TT/RR/
*MACRO 3 PA/YHE/THE/
*M3
THE MACRO CONNANDS CAN
FIRST, THE DESIRED MACRO
MUST BE DEFINED; THE LINE
WITH AN ETTOR, AND THEN, THE
IS ISSUED TO COTTECT THE
*NP2
MANY CONNON ETTORS SO
*Ml
MANY COMMON ETTORS SO
*M2

Command

A LIST command is issued to print
the file used in this example.

The immediate macro is defined
and executed to find the first
four lines that start with ABC
and change the first occurrence
of the string ABC to DEF.
The FIND command causes the line
to be printed before the change.
The CHANGE command causes
the line to be printed after
the change.

The LIST command is used to print the
file and the file is checked for errors.
The following errors are located.

1. The string NN is used in place
of MM (see macro 1) •

,

2. The string TT is used in place
of RR (see macro 2) •

3. The string YHE is used in place
of THE (see macro 3) •

The three macro definitions that will
correct the errors are typed.

Macro 3 is used to change all YHE
str ings to THE.

NP2 is used to locate a line with errors.

Ml is used to change NN to MM.

M2 is used to change TT to RR.

2-55

MANY COMMON ERRORS SO
*NP2

LINE TEXT EDITOR (EDI)

THE MACRO CONNANDS CAN
*Ml

NP2 is used to locate the next line in error.

THE MACRO COMMANDS CAN

*M2

WITH AN ERROR; AND THEN, THE
*
MACRO EXECUTE CONNAND
*Ml
MACRO EXECUTE COMMAND
*M2

Ml is used to change NN to MM.

M2 is used to locate the next TT string
and change it to RR.

A RETURN is used here to locate the next line
in error.

Ml is used to change NN to MM.

IS ISSUED TO CORRECT THE
*M2

M2 is used to locate the next TT string and
change it to RR.

ERROR
*T
*LI
THIS LITTLE FILE HAS
MANY COMMON ERRORS SO
WE CAN SHOW YOU HOW
THE MACRO COMMANDS CAN
BE USED.
FIRST, THE DESIRED MACRO
MUST BE DEFINED; THE LINE
POINTER IS MOVED TO A LINE
WITH AN ERROR; AND THEN, THE
MACRO EXECUTE Ca.1MAND
IS ISSUED TO CORRECT THE
ERROR.
[*EOB*]

2.7 EDI ERROR MESSAGES

M2 is used to locate the last error in the
file. and correct it. .
After all lines have been corrected, the
file is printed using the LIST command.

The four classes of EDI error messages are:

• Command level information messages

• File access error messages

• Error messages requiring EDI to restart

• Fatal error messages

The following sections describe all the messages that can be displayed
in each class. If the recovery procedure is not evident, a suggested
user action is given.

2-56

(

c

(

(

(

(

(

LINE TEXT EDITOR (EDI)

2.7.1 Command Level Information Messages

Messages in this class indicate information that is designed to be
helpful to you or to identify errors that were encountered in the
previous command. All messages in this class are enclosed within
square brackets and are followed by a prompt for a new command. For
example, the following output occurs if a DELETE command encounters an
end-of-buffer in block mode:

[*EOB*]

*
The messages in this class follow.

[BUFFER CAPACITY EXCEEDED BY]
offending line
[LINE DELETED]

Explanation: A READ, UNSAVE, INSERT, or
exceeded the capacity of the block buffer.
the overflow is displayed and deleted.

OVERLAY command has
The line that caused

User Action: If a new file is being created, empty the buffer
with a WRITE command and continue the editing session.

If an existing file is being edited, it may be possible to
continue by using a RENEW or WRITE command. Otherwise, use the
CLOSE command to close the output file and save all edits.
Reopen the output file as the input file and, using the SIZE
command, reduce the number of lines read into each buffer. Then,
using the PAGE LOCATE command, search to the position in the file
where editing is to continue.

Occasionally, this message results when you try to open a file
that was not created by EDI. You can overcome this difficulty by
using the SIZE command procedure that follows:

1. Type KI LL.

2. When EDI prompts for a
nonexistent file name.
input mode.

new file specification, enter a
EDI creates a new file and enters

3. Use the RETURN key to enter ed it mode.

4. Using the SIZE command, reduce the number of lines read into
each buffer.

5. Use the KILL command to abandon the file.

6. When EDI prompts for a new file specification, enter the name
of the desired file.

[CREATING NEW FILE]
INPUT

Explanation: The input file specified with the command does not
exist and EDI has created a new file. EDI automatically enters
input mode and waits for the input of text lines.

2-57

LINE TEXT EDITOR (EDI)

User Action: If you intend to create a new file, continue
entering new lines as required. 'Otherwise, enter edit mode by
pressing RETURN and use the KILL command to delete the undesired ("-
new file. When EDI prompts for a new file specification, enter .
the correct file specification.

[ILL CMD]

Explanation: EitherEDI does not recognize the command or you
have entered a command that is not compatible with the current
mode (for example, a READ command in line-by-line mode).

[ILL NUM]

Explanation: Either you have supplied a nonnumeric character
when a numer ic is requi red or you have given a negative number
when a positive number is required.

[ILL STRING CONST]

Explanation: A search string specified in a CHANGE, LC, PASTE,
or SC command does not contain a matching string termination
character (for example, PASTE /ALPHABETA, instead of PASTE
/ALPHA/BETA) •

[ILLEGAL IN BLOCK ON MODE]

Explanation: You have tried to execute a command that is illegal
in block mode, such as FILE or OUTPUT ON/OFF.

[ILLEGAL FILE NAME GIVEN IN CLOSE OR EXIT]

or

[FILE WAS NOT RENAMED]

c­
~=---

c

Explanation: A syntactically incorrect file specification was
given in a CLOSE or EXIT command, the attempt to rename the
output file failed, or the attempt to EXit or Close to rename the (-
file to another device failed.

User Action: Use the PIP /RE switch or the DeL RENAME command to
rename the file, if desired.

[MACRO NOT DEFINED]

Explanation: You hiwe tried to execute a macro with the M
command, but the specified macro has not been defined.

User Action: Use the MACRO command to define the desired macro
and then execute it with the M command.

2-58

c

(

(

(

(-

=== "~----~--'------------------- ---.--=--==---------- ----

LINE TEXT EDITOR (EDI)

[MACRO NUMERIC ARG UNDEFINED]

Explanation: You have tried to execute a macro without supplying
a numeric argument. The macro definition contains a percent (%)
character and thus demands a numeric argument.

User Action: Reenter the command
appropriate numeric argument.

line, specifying the

[MCALL FILE DOES NOT EXIST]

Explanation: You have issued an MCALL command to retrieve a set
of macros, but the file MCALL cannot be found.

User Action: The desired set of macro definitions may exist
under another User File Directory. If this is the case, use PIP
or the appropriate DCL commands to copy or rename the MCALL file
into the current directory.

[NO INPUT FILE OPEN]

Explanation:
while a new
input file).
ex isting file

[NO MATCH]

You have issued a PAGE, READ, or RENEW command
file is being created (that is, \l7hile there is no
These commands can be executed only when an

is be i ng ed i ted.

Explanation: You have issued a CHANGE command with a string to
be changed that is not in the current line.

[OVERLAYING PREVIOUSLY DEFINED MACRO]

Explanation: You have issued a MACRO command that redefines a
previously defined macro. This message lets you know that the
previous definition is no longer in effect.

[SAVE FILE DOES NOT EXIST]

Explanation: The file specified in an UNSAVE command cannot be
located.

User Action:
is correct.
message means
spec ification)

If you provided a file specification, make sure it
If you did not provide a file specification, this
that no previous SAVE command (without file

was issued.

[SECONDARY FILE ALREADY OPEN]

Explanation: You may have tried to open a secondary input file
while another secondary file is still open. Or you may have a
secondary file open when you issue a CLOSE or KILL command, or
when EDI encounters an error and is forced to restart. The
former case represants an error. The latter informs you that you
still have a secondary file open.

User Action:
command and
command.

Close the secondary input file using the CLOSES
then open the desired secondary file with the OPENS

2-59

LINE TEXT EDITOR (EDI)

[SECONDARY FILE CURRENTLY SELECTED FOR INPUT]

Explanation: You have issued a CLOSE or KILL 'command or an error
has caused EDI to restart when a secondary input file is open and
selected for input.

User Action: Issue an SP command, then a CLOSES command.

[SYNTAX ERROR]

Explanation: You entered a command that
incorrect.

[TOO MANY CHARS]

is syntactically

Explanation: A CHANGE, LC, PASTE, SC, or ADD
resulted in a line that contains too many characters.
the length of a line to 132(10) characters.

command has
EDI 1 imi ts

User Action: Reenter the command line to ensure that the line is
val id.

[*BOB*]

Explanation: You have reached the beg inning-of-buffer. The
current line pointer is positioned just before the first line in
the buffer. Thus, new text lines can be entered before the first
line.

[*EOB*]

Explanation: You have reached the end-of-buffer.
line pointer now points to the end of the buffer.
lines are inserted, they appear after the last
buffer.

[*EOF*]

The current
Thus, if new

text in the

Explanation: You have reached the end-of-fi1e on the input file.

User Action: If the editing session is complete, use the CLOSE
or EXIT command to close the output file. Otherwise, use the TOF
command to return to the' first block in the file.

2.7.2 File Access Error Messages

Messages in this class mean that you have tried to access directories,
files, or devices that are not present in the host system., Each
message is prefixed with:

EDI --

After the message is displayed, EDI returns to command level and
prints an asterisk to request input.

The messages in this class follow.

2-60

c

c

(

c'

(

(-

LINE TEXT EDITOR (EDI)

EDI -- BAD FILE NAME

Explanation: EDI did not accept the file name. The most common
error is a file name containing embedded blanks.

User Action: Make sure that the file name is correct, then
reenter it.

EDI -- DEVICE NOT IN SYSTEM

Explanation:
command and
system.

You have given a FILE, OPENS, SAVE, or UNSAVE
specified a device that does not exist in the host

User Action: Reenter the command line, specifying only devices
available in the system.

EDI -- FILE DOES NOT EXIST

Explanation:
a User File
volume.

You have given a FILE or SAVE command and specified
Directory that does not exist on the specified

NOTE

The remaining error messages in this
class should not occur and represent
failures in EDI. If such errors
persist, submit a Software Performance
Report (SPR).

EDI -- BAD DEVICE NAME

EDI -- DEVICE NOT READY

EDI -- FILE ALREADY OPEN

EDI -- RENAME NAME ALREADY IN USE

EDI -- RENAME ON TWO DIFFERENT DEVICES

EDI -- WRITE ATTEMPT TO LOCKED UNIT

2.7.3 Error Messages Requiring EDI Restart

The error messages described in this section are caused by conditions
that make it impossible for EDI to continue the current editing
session. EDI closes all open files (with the exception of any open
secondary input file), reinitializes, and then prompts for the next
file to be edited.

2-61

LINE TEXT EDITOR (EDI)

As with file access messages, each message in this class is prefixed
with:

EDI

After the appropriate message has been displayed, EDI prompts with:

EDD

You may terminate the editing session at this point by pressing RETURN
or CTRL/Z, or you may continue by entering another file specification.
If a secondary file was open when the error condition was encountered,
it remains open.

The messages in this class follow.

EDI -- BAD RECORD TYPE - FILE NO LONGER USABLE

Explanation: The record type defined in the header block of the
input file (primary input, secondary input, UNSAVE, or MCALL) is

(

not supported by the File Control Services (FCS). Thus, the file E
cannot be used for input to EDI. .. ~~

User Action: The referenced file has been created without using
FCS or the file structure on the volume is damaged. In the
latter case, verify the file structure with the verification
utility (VFY) to determine the extent of the damage. VFY is
described in Chapter 9.

EDI -- FILE IS ACCESSED FOR WRITE

Explanation: The input file (primary input, secondary input,
UNSAVE, or MCALL) is currently being written by another task.

User Action: Wait for the write to complete, then reenter the
command line.

EDI -- FILE IS LOCKED TO WRITE ACCESS

Explanation: The output file (text output, FILE, or SAVE) is
currently accessed for read by one or more tasks and is locked
against all writers.

User Action: Wait for all reads of the file to finish, then
reenter the command line.

EDI -- ILLEGAL RECORD ATTRIBUTES - FILE NOT USABLE

Explanation: The record attributes defined in the header block
of the input file (primary input, secondary input, UNSAVE, or
MCALL) are not supported by FCS. Thus, the file cannot be used
for input to EDI.

User Action: The referenced file has been created without using
FCS or the file structure on the volume is damaged. In the
latter case, run the file structure verification utility (VFY) to
determine the extent of the damage. VFY is described in Chapter
9.

2-62

c

(

(

(

LINE TEXT EDITOR (EDI)

EDI -- PRIMARY FILE NOT PROPERLY CLOSED

Explanation: When the primary input file was last
close check was specified and the writing task did
close the file (for example, the task was aborted).
file attributes were not written and the file
inconsistent data.

written, a
not properly

Thus, the
may contain

User Action: Exit from EDI by pressing RETURN or CTRLfZ. Use
the PIP fUN switch to unlock the file. Reinitiate EDI and try to
recover the data in the file.

EDI -- PRIVILEGE VIOLATION

Explanation: A privilege violation occurred during a file access
for one of the following reasons:

1. The specified volume is not mounted.

2. The UIC under which EDI is running does not possess the
necessary privileges to access the specified directory.

3. The UIC is not privileged to access the specified file.

User Action: If the volume is not mounted, then mount it using
the MOUNT command. Otherwise, reinitiate EDI under a UIC that
has appropriate access privileges to both the specified directory
and file.

EDI -- RECORD IS TOO LARGE FOR USER BUFFER

Explanation: The input file (primary input, secondary input,
UNSAVE, or MCALL) being accessed was not .created by EDI (or SLP)
and contains records that are too large. The maximum record
length supported by EDI is 132(10) bytes.

EDI -- SECONDARY FILE NOT PROPERLY CLOSED - NOT USABLE

Explanation: When the secondary input file was last
close check was specified and the writing task did
close the file (for example, the task was aborted).
file attributes were not written and the file
inconsistent data.

written, a
not properly

Thus, the
may contain

User Action: Use the PIP fUN switch to unlock the file.
Reinitiate EDI and try to recover the data in the file.

EDI-- BAD DIRECTORY SYNTAX

Explanation: Directory field ([g,m]) is in improper format.

NOTE

The remaining error messages in this
class should not occur and represent
failures in EDI. If such errors
persist, submit a Software Performance
Report (SPR).

2-63

LINE TEXT EDITOR (EDI)

EDI -- ,DUPLICATE ENTRY IN DIRECTORY

EDI -- END OF FILE

EDI -- ILLEGAL RECORD ACCESS BITS - FILE NOT USABLE

EDI -- ILLEGAL RECORD NUMBER - FILE NOT USABLE

2.7.4 Fatal Error Messages

The fatal error messages represent system and/or hardware conditions
that make it impossible for EDI to continue execution. All files are
closed and EDI terminates its execution. The output file may be
truncated. Each error message is prefixed with:

EDI --

and followed by the exit message:

[EXIT]

on the next line.

You may work with the following procedures on the truncated version of
an output file to save the editing performed before the fatal error
occurred.

1. Use the PIP /RE switch or the DeL RENAME command to rename
the truncated version of the output file to avoid confusion.

2. Restart the editing session to the original input file.

3. Issue an OPENS command, spec ifying the renamed file as the
secondary file.

4. Issue an SS command to select the secondary file for input.

5. Issue an ERASE command to erase the first block of the input
file (unless the truncated output file did not contain the
entire first block).

6. Issue as many READ 1 and WRITE commands as necessary to reach
the EOF on the secondary file.

7. Issue an SP command to select the primary file for input.

8. Issue a CLOSES command to close the secondary file.

9. Issue a WRITE command to ensure that the last block was
written into the output file.

10. Issue as many READ 1 and ERASE commands as necessary to
bypass all input file blocks that are complete in the renamed
file.

11. Continue the normal editing session.

2-64

(

E-

(

c

c

~- ,

c

c

LINE TEXT EDITOR CEDI)

The messages in this class follow.

EDI -- CALLER'S NODES EXHAUSTED

Explanation: System dynamic storage has been depleted and
insufficient space is available to allocate the control blocks
necessary to open, close, read, or write a file.

User 'Action: This probably is a system failure, but it could
also represent a transient overload condition. Wait until system
load has diminished and reinitiate EDI.

EDI -- DEVICE FULL

Explanation: Insufficient space exists on the output volume to
extend an output file (text output, FILE, or SAVE).

User Action: Determine
is required that the
then space must be made
delete (/DE) unwanted
commands.

which volume is being written to. If it
specified file be written on this volume,
available. Use PIP to purge (/PU) or
files, or use the DeL PURGE and DELETE

ED! -- FILE HEADER CHECKSUM ERROR

Explanation: An input file
UNSAVE, or MCALL) has a
proper checksum.

(primary input, secondary input,
header block that does not contain a

User Action: The file structure on the specified volume is
damaged. Run the File Structure Verification Utility (VFY) to
determine the extent of the damage. VFY is described in Chapter
9.

EDI -- FILE HEADER FULL

Explanation:
header block
SAVE).

Insufficient retrieval pointer space exists in the
to extend an output file (text output, FILE, or

User Action: Split the file into two or more files and process
them separately.

EDI -- FILE PROCESSOR DEVICE WRITE ERROR

Explanation: This error message may indicate that the device
specified for an output file is write-locked.

User Action: Unlock the device if it
Otherwise, a hardware problem may exist.
Field Service representative.

2-65

is write-locked.
Consult your DIGITAL

LINE TEXT EDITOR (EDI)

EDI -- INDEX FILE FULL

Explanation: The file header block is not available to create an (--
output file (text output, FILE, or SAVE). When a volume is
initialized, the maximum number of files that may be created on
the volume is establ ished. Your wr i te request would have
exceeded this maximum.

User Action: Determine
is required that the
then space must be made
delete (/DE) unwanted
commands.

which volume is being referenced. If it
specified file be created on this volume,
available. Use PIP to purge (/PU) or
files, or use the DCL PURGE or DELETE

NOTE

The following error messages signify
hardware problems. If possible, remove
all important files from the volume,
then contact your local DIGITAL Field
Service representative.

EDI -- BAD BLOCK ON DEVICE

EDI -- FILE PROCESSOR DEVICE READ ERROR

EDI -- HARDWARE ERROR ON DEVICE

EDI -- PARITY ERROR ON DEVICE

NOTE

The remaInIng error messages in this
class should not occur and represent
failures in EDI. If such a failure
occurs, contact your local DIGITAL Field
Service representative.

EDI -- BAD DIRECTORY FILE

EDI -- BAD PARAMETERS ON A QIO

EDI -- INVALID FUNCTION CODE ON A QIO

EDI -- NO BLOCKS LEFT

EDI -- REQUEST TERMINATED

2-66

-- -------------

(

(

LINE TEXT EDITOR (EDI)

EDI -- UNEXPECTED ERROR - EDITOR WILL ABORT

C/ EDI -- WRITE ATTRIBUTE DATA FORMAT ERROR

TASK " ••• EDI" TERMINATED

c)

2-67

C-" i
-)

(. j '--/

o

(

(

(

(

CHAPTER 3

PERIPHERAL INTERCHANGE PROGRAM (PIP)

The Peripheral Interchange Program
that transfers data files from
another. PIP also performs file
functions PIP performs are:

(PIP) is a file utility program
one standard Files-II device to

control functions. Some of the

• Copying files from one device to another

• Deleting files

• Renaming files

• Listing file directories

• Setting the default device and UIC for PIP operations

• Unlocking files

• Spooling files

You invoke the PI P util i ty using any of the methods for invoking a
utility described in Chapter 1. You invoke PIP file control functions
by means of switches and subswitches.

3.1 PIP COMMAND LINE

You request PIP functions by entering PIP command lines through the
initiating termjnal or by means of an indirect command file. The
maximum nesting level for indirect command files is four. (Using
indirect command files is described in Chapter 1.) The format of PIP
command lines differs for each function. Therefore, the command line
formats are described in separate sections.

3.1.1 PIP Defaults for File Specification Elements

With the exception of the version number, PIP generally uses the last
value encountered in the command line as the default. That is, PIP
uses values you enter to set defaults and changes the default when you
change the value. Exceptions to this are noted in the descriptions of
each switch.

In the following example, Tl.MAC;5 sets the defaults for
subsequent file specifications in the command line. Then,
specified and overrides Tl as the default filename; however,
remains the default file type. Finally, .TSK is specified,
overrides .MAC as the default, whileT2 remains the deEault file

3-1

the
T2 is

.MAC
which
name.

PERIPHERAL INTERCHANGE PROGRAM (PIP)

Note, in this example, that the version number does not default.

PIP)Tl.MAC;5,T2,.TSK/BR

Tl.MAC;5
T2.MAC; 1
T2. TSK; 3

Table 3-1 summarizes the rules pip uses to set defaults.

Element

dev:

[ufd]

filename

• fl.l etype

;version

Table 3-1
PIP Default File Specifications

Defaul t Value

For the first file specification, the unit on which
the user's system disk is mounted (SYO:) or the
default that you specify with the /DF switch (see
Section 3.2.2.6). For subsequent file
specifications, either you explicitly specify a new
d~vice or PIP assumes the device from the previous
specification.

For the first file specification, your current User
Identification .Code or UIC (that is, the UIC under
which you log on), the UIC you specify with the SET
command, or the default you specify with the /DF
switch (see Section 3.2.2.6). For subsequent file
specifications, either you explicitly specify a new
User File Directory or PIP assumes the UFD from the
previous specification. Only the asterisk
specification is valid as a wildcard (see Section
3.1.3).

No default for the first file specification. For
subsequent file specifications, the last file name
that you explicitly specified. Asterisk and/or
percent sign specifications are valid as wildcards
(see Section 3.1.3) •

No default for the first file specification. For
subsequent file specifications, the last file type
that you explicitly specified. Asterisk and/or
percent sign specifications are valid as wildcards
(see Section 3.1.3).

The default for input files is the most recent
version number. The default for output files is the
next higher version number, or version 1 if the file
does not exist in the output directory. An
exception is the PIP file delete function, which
requires that a version number be specified.

An explicit version number is defined to be of the
form ;n where n is greater than O. A version number
of ;-1 may be used to specify the oldest version of
a file. A version number of ;0 or ; may be
specified to signify the most recent version. In
certain cases, just the asterisk (wildcard) may be
specified, as described in Section 3.1.3.

3-2

E--

c

(

c

(

(

(

PERIPHERAL INTERCHANGE PROGRAM (PIP)

3.1.2 PIP Switches and Subswitches

PIP provides several file control switches and subswitches. A switch
specification consists of a slash (I) followed by a 2- or 3-character
switch name. The switch specification is optionally followed by a
subswitch name separated from the switch name by a slash. The switch
or subswitch can have arguments that are separated from the switch or
subswitch name by a colon (:).

To allow several commands to be performed consecutively, more than one
command ~an be specified in a line. To separate each command, the
ampersand character (&) is used.

Most of the PIP switches operate on lists of file specifications. The
exceptions are 100, IDF, lID, and ITO, which are used by themselves.

Table 3-2 lists PIP switches and subswitches and summarizes the
functions performed by them. The subswitches are listed with their
respective switches. The switches and subswitches are described in
detail in Section 3.2.2.

Table 3-2
PIP Switches and Subswitches

Switch Subswitch Function

lAP Appends file (s) to the end of an existing
file.

IFO Specifies the file owner for a file.

IBS:n[.] Defines the blocksize for magnetic tape.

ICD Allows the output file to take the creation
date of the input file rather than the date
of transfer.

IDE Deletes one or more files.

ILD Lists the deleted files.

100 Restricts file searches to files created
during a specified period of time.

IDF Changes PIP's defaul t device andlor UFO.

lEN Enters a synonym for a file in a directory
file.

INV Forces the version number of a file to one
greater than the 1 atest version.

IEOF[:block:byte] Specifies the end-of-file pointer for a
file.

lEX Excludes one file specification's worth of
files during file searches.

(continued on next page)

3-3

PERIPHERAL INTERCHANGE PROGRAM (PIP)

Table 3-2 (Cont.)
PIP Switches and Subswitches

Swi tch Subswi tch Function

/FI:filenum:seqnum Accesses a file by its file identification
number (file-ID).

/FR

/ID

/LI

/ME

/NM

/PR

/BR

/FU [: n [.]]

/TB

/BL:n[.]

/CO

/FO

/NV

/SU

/FO

Displays the amount of available space on
the specified volume, the largest contiguous
free space on that volume, and the number of
available file headers.

Identifies the version of PIP being used.

Lists directory files.

Lists a directory file in brief format (an
alternate mode for the /LI swi tch) •

lists a directory file in full format (an
alternate mode for the /LI switch) •

Lists the total number of blocks used for a
directory, along with the total number
blocks allocated and the number of files in
that directory (an alternate mode for the
/LI switch).

Concatenates two or more files into one
file.

Allocates a number (n) of contiguous blocks.

Specifies that the
contiguous.

output file(s)

Specifies the file ownership for a file.

be

Forces the version number of a file to one
greater than the latest version.

Supersedes (replaces) an existing file.

Suppresses certain PIP error messages.

Changes the protection status of a file.

Specifies the ownership for a file.

/GR [: RWED] Sets the read/wr ite/extend/delete protection
at the group level.

/OW[:RWED] Sets the read/write/extend/delete protection
at the owner level.

/SY[:RWED] Sets the read/write/extend/delete protection
at the system level.

/WO[:RWED] Sets the read/write/extend/delete protection
at the world level.

(continued on next page)

3-4

(

E

(

c

c

(

c

Switch

/PU[:n[.]]

/RE

/RM

/RW

/SS

/SD

/SP[:n[.]]

/SR

/TD

/TR

/UF

fUN

/UP

PERIPHERAL INTERCHANGE PROGRAM (PIP)

Table 3-2 (Cont.)
PIP Switches and SUbswitches

Subswitch Function

/LD

/FO

Deletes obsolete version(s) of a file.

Lists the deleted files.

Renames a file.

Removes a file entry from a directory.

Rewinds a magnetic tape.

Specifies that records may span disk block
boundaries when copied from magnetic tape.

Selectively deletes files by prompting
your response before deleting.

Spools files to the line
printing.

printer

for

fOr

Allows shared reading of a file that has
already been opened for writing by another
user or task.

Restricts file searches to files created on
the current day.

Truncates files to logical end-of-file.

Creates a User File Directory entry on the
volume to which a file is being transferred.

Unlocks a fil e.

Updates (rewrites) an existing file.

Specifies the owner for a file.

Switches and subswitches are described in the following sections.

3.1.2.1 Switches - PIP accepts some switches with no file
specification. However, when you use a switch in a command line, it
must follow the file or UFD specification. It cannot come before the
device name, the UFD, the file name, file type, or version of the file
on which it is to operate.

You may specify a switch once for a list of file specifications. For
example:

filespecl,filespec2,filespec3/DE

The /DE switch applies to all of the file specifications. PIP deletes
every specified file from its UFD.

3-5

PERIPHERAL INTERCHANGE PROGRAM (PIP)

You specify switch arguments as octal (default), decimal, or
alphabetic characters, depending on the switch. The sections that
explain the individual PIP switches discuss these values.

3.1. 2. 2 Subswi tches - You can apply subswi tches to 'one or more file
specifications, depending on the placement of the subswitch.
Subswitches can appear in either the output file specification or the
input file specification.

If you place the subswitch in the output file specification, the
subswitch applies to the entire list of input file specifications.
For example, the Contiguous Output switch (/CO) is applied to both
TEST.TSK and SAMP.DAT. (The ICO switch is used with the Copy
function. See Section 3.2.1.)

PIP)/CO=TEST.TSK;l,SAMP.DAT;l

PIP copies TEST.TSK;l and SAMP.DAT;l such that the copies, TEST.TSK;2
and SAMP.DAT;2, are contiguous.

(

If you place the subswitch in the input file specification, it usually (------
applies only to the file specification that immediately precedes it.
In the following example, the New Ve'rsion subswitch (/NV) is applied
to the file ASDG.MAC. (The INV subswitch is being used with the
Rename switch, IRE.)

PIP)*.SMP=PRT2.QRT,ASDG.MAC/NV,KG.MAC/RE

PIP renames the files PRT2.QRT and KG.MAC, but they maintain their
associated version numbers. File ASDG.MAC is also renamed, but the
version number is forced to a number one greater than th~ latest -
version of file ASDG.SMP (assuming a version of ASDG.SMP already ~
exists) •

When you explicitly apply a subswitch to a file specification, you
implicitly apply the switch with which the subswitch is associated.
On a command line with more than one file specification, the explicit
subswi tch affects only the file to which it is appl i.ed. The impl ic it
switch affects all the files on the command line.

Example

PIP)FILE1.CMD/GR:R/WO,FILE2.MAC/GR:RW

This command is equivalent to:

PI P)FILE 1. CMD/GR: R/WO, FILE2.MAC/GR: RW/PR

The command results in the following file protection:

a. FILE 1 SYSTEM Unchanged
MEMBER Unchanged
GROUP Read access
WORLD No access

b. FILE2 SYSTEM Unchanged
MEMBER Unchanged
GROUP Read/wri te access
WORLD Unchanged

(

(For more information on altering the protection level of a file, S9'e (
Section 3.2.2.16.) ~

3-6

(

c

l

PERIPHERAL INTERCHANGE PROGRAM (PIP)

3.1.3 Wildcards

PIP allows you to specify wildcards in file specifications. The
wildcard characters are the asterisk (*) and the percent sign (%)
characters. You can use both wildcards in place of explicit
specifications for file names, and types and just the asterisk
wildcard in place of file directories and version numbers.

The asterisk can denote zero or more characters in the field you
specify it in, while the percent sign character can denote exactly one
character in the fields. (Correct syntax must be followed, however.
See Section 3.1.3.2.)

Wildcards are restricted in some cases.
describe and give examples of wildcards
specifications.

The following sections
in input and output file

3.1.3.1 Wildcards in Output File Specifications - Wildcards in the
outpu~ file specifications are restricted. For the following PIP
fUnctions, the output file specification cannot have any wildcards:

• Concatenating files to a specified file

• Appending files to an existing file

• Updating (rewriting) an existing file

• Listing a directory

If you Use wildcards in the output file specification for any of these
functions, the meaning of the command line would be ambiguous. For
example:

PIP)LIST.*=[200,200]/LI

You have incompletely specified the output file specification. PIP
returns an error message.

When you make copies of several files, the output specification must
be *.*;* or defaulted from the input file specification(s).

For the Rename (IRE) and Enter (lEN) switches, the output
specification may have wildcards (asterisk only) mixed with specified
fields. For either switch, the equivalent field of the input file
specification is used.

For all cases in which wildcards are allowed in the output file
specification, the wildcard UFO form [*,*] (but not [n,*] or [*,n]) is
used to indicate that the output UFO is to be the same as the input
UFO.

NOTE

The percent sign (%) cannot be used in
output file specifications.

3-7

---- ~ - --- ----

PERIPHERAL INTERCHANGE PROGRAM (PIP)

3.1.3.2 Wildcards in Input Specifications - PIP provides the
following wildcard features for input file specifications:

• *.*;* means all versions of all files.

• *.DAT;* means all versions of all files of file type .DAT.

• *.D*;* means all versions of all files with file types
beginning with D.

• TEST.*;* means all versions of all types of files named TEST.

• T*.*;* means all versions of all types of files with names
beginning with T.

• TEST.DAT;* means all versions of file TEST.DAT.

• TEST.D%T;* means all versions of files named TEST with
three-character file types beginning with D and ending with T.

• T%N. *; * means all versions of all file types of all
three-character file names beginning with T and ending with N.

• *.* means the most recent version of all files.

• *.DAT means the most recent version of all files of file type
.DAT.

• *%.DAT means the most recent version of all files that have at
least one character in their names and have the file type of
.DAT.

• TEST.* means the most recent version of all file types for
files named TEST.

PIP also provides the following wildcard UFD features:

• [*,*] means all group,member number combinations (1 to 377
octal) •

• [nl,*] means all member numbers under group nl.

• [*,ri2] means all group numbers for member n2.

NOTE

The percent sign (%) character cannot be
used in the UFD.

3.2 PIP COMMAND FUNCTIONS

PIP copies Files-II files and performs file control functions. The
copying function and file control functions are described in the
following sections.

3.2.1 Copying Files-II Files

To copy Files-II files, you can enter the PIP command line without
specifying any switches.

3-8

(

(

(

(

(

(

PERIPHERAL INTERCHANGE PROGRAM (PIP)

The simplest format for the PIP command line is:

outfile=infile

outfile

The out.put file specification. If the output file name, file
type, and version are either defaulted or *.*;*, the input file
name, file type, and version are used for the output file (see
INV and ISU subswitches). If you explicitly specify any portion
of the output file specification (file name, file type, or
version) , wildcards cannot be used in this specification.
Similarly, for a copy command, if you enter any portion of the
output specification, you can enter only one file as the input
file.

infile

The input file specification. If the file name, file type, and
version fields are not specified, then *.*;* is the default.

One switch that you can specify when copying Files-II files is the
Merge switch. The Merge switch (/ME) creates a new file from two or
more existing files. PIP assumes IME when you explicitly specify an
output file, two or more input files, and no switches. Because the
basic copy function and the Merge switch are logically related, the
Merge switch is described here rather than below with the other
switches.

The general form~t of the PIP command line is:

outfile=infilel [, infile2 ••• , infilen] [[lME] [lsubswi tch]]

outfile

The output file specification.

infile

The input file specification.

IME

The Merge switch.

Isubswitch

Specifies any of the subswitches that you can enter as part of
the basic command line or with the Merge switch. (Table 3-3
describes these subswitches.) Subswitches can appear in either
the output or input file specification. If you place the
subswitch in an input file specification, it applies only to that
file. If you place the subswitch in the output file
specification, it applies to the entire list of input
specifications.

3-9

_~~c~~~~-----------~,c-~~~~- ------------------------------ -. ______ . _________________ =~_----~---.~~_ ~----_~,

PERIPHERAL INTERCHANGE PROGRAM (PIP)

Examples

1. PIP>OKl:SAMP.OAT=OK2:TEST.OAT

Copies the latest version of file TEST. OAT (in the current
UFO) from OK2: to OKl:, naming it SAMP.OAT.

2. PIP>OKl: [*,*]=OKO: [11,*]

Copies all files from all members in group number 11 of
to OKl: • The files are copi ed to the same UFO on OKl:
they were in on OKO:. Note that the user must have
access to all group number 11 UFOs on OKl:.

3. PIP>LP:=*.LST

OKO:
that

write

Copies the latest version of all files with a type of .LST in
the current UFO to the line printer. If the Print Spooler is
installed on your system, use the /SP switch instead of this
command. The command line using /SP is in the format:

PI P>*. LST/SP

4. PIP>OKl:SAMP.OAT=OK2:TEST.OAT;1,NEW.OAT;2/ME

Concatenates version 1 of file TEST. OAT and version 2 of file
NEW. OAT from OK2:, generating file SAMP.OAT on OKl:, using
the current UFO. Note the result would be the same if the
/ME switch was not specified.

5. PIP>OKl:=OB2:TESTPROG.MAC,.OBJ

Copies the latest versions of TESTPROG.MAC and TESTPROG.OBJ
from OB2: to OKl:, using the current UFO for both OB2: and
OKl: •

6. PIP>OKl:=OKO:*.OAT;*

Copies all versions of all of the files of file type .OAT in
the current UFO from OKO: to OKl:.

7. PIP>OTO:=[200,10]*.*;*

Copies all files under [200,10] from the default device (SY:)
to OTO:, using the current UFO.

8. PIP>OPO: [200, 10]=OTO:*.*

Copies the latest versions of all files from OTO: in the
current UFO to OPO: [200,10]. Note that the user must have
write access to [200,10].

3-10

(

(

(

(

(

(
Subswi tch

IBL:n[.]

ICO

I-CO

c IFO

PERIPHERAL INTERCHANGE PROGRAM (PIP)

Table 3-3
PIP Copy Command and Merge Subswitches

Description

Blocks Allocated -- This subswitch specifies the
number of blocks (n) to allocate initially to the
output file. You can specify n as either an octal
or decimal value (decimal values must be followed by
a decimal point). You can use the IBL:n subswitch
when you are copying a contiguous file and chang ing
its size.

Contiguous Output -- This subswitch specifies that
the output file be contiguous. When you are copying
contiguous files from magnetic tape (for example,
task images), specify both ICO and IBL:n. You must
specify IBL:n because PIP cannot determine the
length of the input file when copying from tape.
(PIP allocates file space before the copy operation
is executed. The length of magnetic tape input
files is on the trailing label for the file.)

Noncontiguous Output -- This subswitch specifies
that the output file does not have to be contiguous.

If you do not specify the IBL:n subswitch, the ICO
subswitch, or the I-CO subswitch, PIP defaults to
the size and attributes of the input file.

Set File Ownership -- This subswitch specifies that
the owner of the output file will be the same as the
output UFD. If you do not specify IFO, the UIC of
all new files is the UIC under whic~ PIP is running,
regardless of which directory the files belong to.
You can use this subswi tgh wi th both copy and merge
commands.

Examples

1. If PIP is running under the UIC [1,1],

DKO: [200,200] =DKl: [200, 220]TEST.DAT

creates a new file in the [200,200] directory on
DKO:, but the file is owned by UIC [1,1].

However,

DKO: [200,200]=DKl: [200, 220]TEST.DAT/FO

creates a file owned by UIC [200,200]. When you
specify IFO, PIP must be running under a UIC
that has write access to all output directories.

(continued on next page)

3-11

Subswitch

/FO (Cont.)

/SU

/NV

PERIPHERAL INTERCHANGE PROGRAM (PIP)

Table 3-3 (Cont.)
PIP Copy Command and Merge Subswitches

Description

2. DKl: [*,*] /FO=DPO: [13,10], [32,10], [34,10]

Copies all the files from the specified input
directories to the corresponding directories on
DKl:. The file owners are the output
directories.

3. DKl: [*,*] =DKO: [*,10] *.MAC/FO

Copies all the .MAC files from all group numbers
with member 10 to DKl:, preserving the UFD and
setting the file owner for each file to that
UFD.

Supersede -- This subswitch allows you to
or more input files to a file whose file
type, and version may already exist in a
existing file is deleted and a new one
with the data from the input file(s). If
does not already exist, it is created.

copy one
name, file
UFD. The
is created
the file

The output file's name, type, and version number
remain the same, but its file identification number
(file-ID) may be different. Also, the attributes
for the output file are taken from the first input
file and the number of blocks allocated to the
output file can be different (less than or more
than) the number of blocks allocated to the existing
file.

New Version -- This subswitch forces the output
version number of the file being copied to become
one greater than the latest version of the file
already in the output directory. If the file does
not already exist in the output directory, a version
number of 1 is assigned. Figure 3-1 shows the
results when you specify /NV. (Specifying /NV is
not necessary when both the input and output files
are under the same file directory.)

3-12

c

F-
~-

c

c

(

c

(

(

PERIPHERAL INTERCHANGE PROGRAM (PIP)

Directories Before COpy

INPUT DIRECTORY OUTPUT DIRECTORY
[2g1,2gl] [lgg,lgg]

RICK.DATil RICK.DATi2

RICK.DATi4

Directories After COPY Without /NV Switch Set
(version number preserved)

INPUT DIRECTORY OUTPUT DIRECTORY
[2,01,2,0U [1,0,0,1,0,0]

RICK.DATil RICK.DATi2

RICK.DATi4

RICK.DATil

The command used was:

DK1: [Ul,0, l,0,0J = DK2: [2g1, 2g1] RICK. DAT i 1

Directories After COPY With /NV Switch Set

INPUT DIRECTORY OUTPUT DIRECTORY
[2g1,2gl] [lgg,Ug]

RICK.DATil RICK.DATi2

RICK.DATi4

RICK.DATiS

The command used was:

OK1: [Ug I 19~ I· = OKl: [2~l/2~ll RICK.DATi l/NV

NOTE

The version specified with the /NV sub­
switch must be explicit or defaulti no
wild cards allowed.

ZK-174-81

Figure 3-1 Results of Copy Command With and Without /NV Specified

3-13

PERIPHERAL INTERCHANGE PROGRAM (PIP)

3.2.2 Performing File Control Functions

PIP provides several switches and subswitches for file control
processing. These switches and sUbswitches perform such functions as (
deleting files, displaying the contents of a User File Directory, and
specifying file protection values.

You can specify several PIP switches in a command line with no file
specifications (that is, they may be entered by themselves). These
switches include IDD, IDF, lID, and lTD.

You can specify one or more commands in a line. When using multiple
commands, the ampersand character (&) separates each command. For
example:

PIP)TEST.DATi2=SAMP.DATi2/SU,SAMP.DATil&TEST.DATi*/FU&SAMP.DAT/PU/LD

1. PIP merges SAMP.DATi2 and SAMP.DATil into TEST.DATi2. The
ISU subswitch causes TEST.DAT's file name, file type, and
version number to remain the same, but TEST.DATi2's contents
are replaced with the input file's contents.

2. The IFU switch causes PIP to do a full format listing of all
versions of the file TEST.DAT.

3. The IPU switch causes PIP to purge SAMP.DAT and the ILD
subswitch causes PIP to list the deleted files.

The values that you specify with the switches and subswitches default
to octal. You can specify decimal values by adding a decimal point
after the value.

3.2.2.1 lAP -- Append Switch - The Append switch (lAP) opens an
existing file and appends the input file(s) to the end of it. Specify
the lAP switch in the following format:

outfile=infilel[,infile2 ••• ,infilen]/AP[/FO]

outfile

The output file specification. Wildcard specifications are not

(

allowed in the output file specification. The file type and the (-
record attributes for the output file remain the same after the
input file(s) have been appended to it. The file name and file
type for the output file must be specified explicitly.

infile

lAP

The input file specification. If the file name, file
version are not specified, then *.*i* is the default.

The Append switch.

3-14

type, and

(

IFO

PERIPHERAL INTERCHANGE PROGRAM (PIP)

The Set File OWnership subswitch, which specifies that the owning
UIC of the output file is the same directory to which the input
file belongs. If you do not specify IFO, the owning UIC of the
output file is unchanged, regardless of which directory the input
files belong to. See Section 3.2.1 for examples of using IFO.

Example

PI P>DKl: FILE 1. DAT i 1=FILE2. DAT iI, FILE 3. DAT iI, FILE 4. DAT i l/AP

Opens FILE 1. DATil on DKl: and appends the
FILE2.DATil, FILE3.DATil and FILE4.DATil to it.

contents of

Note that if the output file is contiguous before the appending,
it may not be contiguous afterwards.

3.2.2.2 IBS:n -- Block Size Switch - The Block Size switch (/BS:n)
defines the block size for magnetic tapes. This switch allows you to
read or write bigger blocks onto magnetic tape, thereby saving some of
the space taken by interrecord gaps. The default block size is
512(10) bytes per block. Specify the IBS switch using the following
format:

outfile/BS:n=infile

outfile

The output file specification.

IBS:n [.]

The Block Size switch, where n is an octal or decimal number
specifying the number of bytes in a block.

infile

The input file specification.

The IBS switch specifies the block size of the output file. If the
block size specified is smaller than the actual block size, an I/O
error occurs.

Example

PIP>MT:BA.DOC/BS:2048.=AMBER.DOC

This command increases the block size of the output file, BA.DOC,
to 2048(10) bytes per block.

3-15 .

PERIPHERAL INTERCHANGE PROGRAM (PIP)

3.2.2.3 ICD -- Creation DateSwi tch - The Creation Date switch (lCD),
used in· a file transfer command, allows the output file to take the
date on which the input file was created rather than the date of (
transfer. You cannot use this switch with the explicit or implicit
Merge switch (/ME) and/or with an output magnetic tape device.
Specify the JCD switch in the following format:

outfile/CD=infilel[,infile2 ••• ,infilen]

or

outfile=infilel/CD[,infile2 ••• ,infilen]

outfile

The output file specification.

infile

The input file specification.

/eD

The Creation Date switch.

Example

PIP>/LI

DIRECTORY DBl: [200,200]
21-NOV-80 14: 02

FILE.DAT;7 12.

PIP>TEST.DAT/CD=FILE.DAT/LI

DIRECTORY DBl: [200,200]
21-NOV-80 14: 05

FILE.DAT;7
TEST.DAT;l

12.
12.

6-0CT-80 16: 13

6-0CT-80 16: 13
6-0CT-80 16: 13

The command creates a new file, TEST.DAT, from FILE.DAT and gives
it the creation date of FILE.DAT rather than the transfer date.

3.2.2.4 /DD -- Default Date Switch - The Default Date switch (/DD)
restricts file searches to files created during a specific period of
time. Specify the /DD switch in the following format:

/DD:startdate:enddate

/DD

The Default Dateswi tch

startdate

(-

(

(

The beginning date of the specified time period in the form
dd-mm-yy. May be unlimited by using the wildcard character (*). ~

3-16

(

c-

PERIPHERAL INTERCHANGE PROGRAM (PIP)

enddate

The ending
dd-mm-yy.

date of the specified time period in the form
May be unlimited by using the wildcard character (*).

Specifying the wildcard for both startdate and enddate negates the IDD
switch:

IDD:*:*

The date restrictions for the file searches are now disabled.

Examples

1. PIP>/DD:OI-JUN-80:01-JUL-80/LI

Lists all files created from 1 June 1980 through 1 July 1980.

2. PIP>/DD:*:I-JUN-80/LI

Lists all files created on or before 1 June 1980.

3. PIP>/DD:I-JUN-80:*/LI

Lists all files created on or after 1 June 1980.

3.2.2.5 IDE -- Delete Switch - The Delete switch (IDE) deletes files
from a UFD. Optionally, you can specify that the deleted files be
listed on your terminal. Specify the IDE switch in the following
format:

infilel[,infile2 ••• ,infilen]/DE[/LD]

infile

The input file specification.

IDE

The Delete switch.

ILD

The List Deleted files sUbswitch.
\

You must specify a version number or a wildcard in its place when
using the Delete switch.

Use a version number of ;-1 to specify the oldest version of a file.
Use a version number of ;0 or; to specify the most recent version.

Examples

1. PIP>TEST.DAT;-l/DE

Deletes the oldest version of file TEST.DAT.

2. PIP>TESTl.DAT;0,TEST2.DAT;/DE

Deletes the latest version of files TESTl.DAT and TEST2.DAT.

3-17

PERIPHERAL INTERCHANGE PROGRAM (PIP)

Wildcards in the file name or file type fields are illegal when a
version of ;-1, ; 0, or; is specified.

You must issue the file specification because
name, file type, and version does not default to

an unspecified
* *.* .- , . file

The input file specification can take all the usual forms, including
wildcards (even in [ufd]). The only special requirement is that the
version field must always be specified.

Examples

1. PI P>TEST. DAT; SlOE

Deletes version 5 of file TEST.DAT from the current default
directory on the Qefau1t device.

2. PIP>TEST.DAT;1,;2/DE

Deletes versions 1 and 2 of file TEST.DAT from the current
default directory on the default device.

3. PIP>*.OBJ;*,*.TMP;*/DE/LD

Deletes all versions of all files of th~ file type .OBJ and
.TMP from the current default directory on the default
device. Lists all deleted files of both file types.

4. PIP>*.OBJ;*/LD,*.TMP;*/DE

Deletes all versions of all files of the file type .OBJ and

f

.TMP from the current default directory on the default (
device. Lists all deleted files of both file types. .

3.2.2.6 IDF -- Default Switch - The Default switch (/OF) changes the
default device and/or UFD for the current PIP task.

The usual default device of PIP is the user's system device (SYO:).

The usual default UFD is the UIC under which PIP is currently running.
The IDF switch alters only the default UFD. It does not affect the C·
UIC under which PIP is running, nor does it circumvent file
protection.

Specify the IDF switch in one of the following formats:

dev: [ufd] /DF

or

dev:/DF

or

[ufd] /OF

or

IDF

3-18

(

c

(

dev:

(ufd]

jDF

PERIPHERAL INTERCHANGE PROGRAM (PIP)

If specified, the new default device to be applied to subsequent
PIP command lines.

If specified, the new default UFD to be applied to subsequent PIP
command lines.

The Default switch.

The IDF switch specified with no arguments returns the default device
to the user's system device (SYO:) and the default UFD to the UIC from
which PIP was invoked.

Examples

1. PIP>[27,27]/DF

Sets the default UFD to (27,27].

2. PIP>DKl:/DF

Sets the default device to DKl:.

3. PIP>DKl: [27,27]/DF

Sets the default device to DKl:
(27, 27] •

4. PI P>/DF

and the default UFD to

Returns the user's default device to SYO: and the default
UFD to the Ule from which PIP was invoked.

3.2.2.7 lEN -- Enter Switch - The Enter switch (lEN) lets you enter a
synonym for a file in a directory or directories on the same device.
This allows the file to be accessed by more than one name. Also
provided is a subswitch, New Version (/NV), which forces the version
number of the file being entered into the directory to a number one
greater than the latest version of the file. Specify the Enter switch
in the following format:

outfile=infilel[,infile2 ••• ,infilen]jEN(jNVJ

outfile

The file specification of the new directory entry. The output
file specification has a special property in that the file name,
file type, or version may be explicit, wildcard (*), or
defaulted. A file name, file type, or version field that is
either wildcard (*) or default (null) means that the
corresponding field of the input file is to be used.

infile

The file specification for the input file in the format:

dev: [ufd]filename.filetype;version/EN(/NV]

3-19

/EN

/NV

PERIPHERAL INTERCHANGE PROGRAM (PIP)

If you specify a device in either the input or output file
specification, that device sets the default for the other side.
If you do not specify a device on either the input or output (-
side, the current default device is assumed to be the default
device. If both the input side and the output side explicitly
reference different devices, PIP returns an error message that
requests that the line be reentered.

The default input file specification is *.*;*.

The Enter switch.

The New Version subswitch. The /NV subswitch may appear on
either side of the equal sign. If it appears on the output side,
all of the files being entered are forced to a version number one
greater than the latest version of the file. If it appears on
the input side, only files that have the /NV subswitch appended
to them are forced to a number one greater than the latest e-
version. (Specifying the /NV subswi tch is not necessary when -.-.•..
both the input and output files· are under the same file
directory.)

Example (see Figure 3-2)

PIP>[lOl,10l]TWIG/EN=[200,200]RICK.DAT;1

Before c
DIRECTORY [200,200] DIRECTORY [101,101]

RICK.DATil JEN.OBJi2

LAU.OBJi3

After

DIRECTORY [200,200] DIRECTORY [101,101]

RICK.DATil JEN.OBJi2

LAU.OBJ;3

TWIG.DATil

NOTE

The directory items for RICK.DATil and
TWIG.DATil both reference the same file.

ZK-175-81

Figure 3-2 Sample Di rectories Before and After Execution (~

3-20

---- --~

(

(

(

PERIPHERAL INTERCHANGE PROGRAM (PIP)

3.2.2.8 IEOF -- End-of-File Switch - The End-of-File switch (/EOF)
allows you to specify where the file's end-of-file will be. This
helps in certain situations (for example, system crashes) when a file
contains useful information but its EOF pointers are wrong, preventing
you from obtaining the information.

EOF is an unprotected file attribute. If you are the file owner or
have a system-levelUIC, you do not need read or write access to read
or change this attribute. If you are classified group or world to the
file owner's UIC, you need read access to read the attribute and write
access to change it.

Specify the IEOF switch in the following format:

infilel/EOF [:block :byte] [, ••• infilen/EOF [:block :byte]]

infile

block

byte

The input file specification.

The file specification must be issued because an unspecified file
name, file type, and version do not default to *.*;*.

The block number where the EOF pointer is to be placed. Usually,
the EOF pointer cannot be placed beyond the highest number of
blocks allocated to the file. However, if all the bytes of the
allocated blocks are used, the EOF pointer can be placed in the
first byte of the next block (/EOF: blocks allocated plus
one:O). The block number can be octal or decimal.

The byte location of EOF is the first unused byte of the
specified block. The byte number can be octal or decimal. The
maximum value for byte is 777(8).

If you do not enter either of the values for block and byte, PIP
places EOF past the last byte of the last block allocated to the file.
If you specify a value for either block or byte that is greater than
the maximum value allowed, PIP returns an error message.

Note that the IEOF switch is local to each file specification and
therefore does not default from left to right.

Example

PIP>A.TMP/EOF:17:253,AA.TMP/EOF

is equivalent to

PI P>A. TMP/EOF: 17: 253, AA. TMP/EOF: 23: 0

where the file AA.TMP has 22 blocks allocated.

3.2.2.9 lEX -- File Exclusion Switch - The File Exclusion switch
(lEX) excludes one file specification's worth of files during file
searches. You can exclude any field in the file specification. The
fields can have in them characters and/orwildcards. Specify the lEX
switch in the following format:

f il especlEX

3-21

PERIPHERAL INTERCHANGE PROGRAM (PIP)

filespec

The file specification. The file name and/or the file type (.. --
and/or the version number can be a wildcard, but not all three
fields. Also, you cannot specify devices or UFDs.

lEX

The File Exclusion switch.

Specifying the lEX switch by itself negates it.

PI P>/EX

Example

PIP>*.CMD;*/EX/~I

DIRECTORY DBl: [301,7]
8-JUL-81 14: 50
* .CMD; *EXCLUDED

EXECM .MAC; 23
RUN. TSK; 46
FRANK. OBJ; 16
DEBBIE.COR;2

45.
5.
33.
5. O.

23-FEB-80 14: 23
29-0CT-80 11: 59
02-MAY-80 13: 58
14-JAN-81 12: 01

Excludes all files of the type .CMD from the search done in
*. *; */LI.

3.2.2.10 IFI -- File
switch (/FI) allows
identification number
following format:

Identification Switch - The File Identification
you to access an existing file by its file
(File-ID). Specify the IFI switch in the

outfile=/FI:filenum:seqnum

IFI

The File Identification switch.

filenum

The fil e number.

seqnum

The sequence number of the file.

The file identification number (file-ID) is assigned by RSX-ll when
the file is created. To find the file identification number of a
file, use the Full List switch (/FU). The IFU switch displays the
file identification and sequence numbers and other information
describing the file.

Examples

1. You can use the IFI switch to create a directory entry for a
file.

PIP>XYZ.TSK=/FI:301:27/EN

3-22

c

(

(--

(

(-

(-

PERIPHERAL INTERCHANGE PROGRAM (PIP)

2. You can copy a file using the IFI: switch.

PIP>A.B=/FI:301:27

3. To list entries in the directory file whose file
identification is 1275,47, use the IFI switch in the format:

PIP>/~I:1275:47/LI

DIRECTORY DR2: FILE 10 001275,000047,0
8-AUG-81 15: 58

MCR.CMD
DCL. CMD

1.
1.

29-NOV-80 13: 22
29-NOV-80 13: 24

3.2.2.11 IFR -- Free Switch - The Free switch (/FR)
amount of available space on a specified volume,
contiguous space on that volume, the number of available
and the number of file headers used. Specify the IFR
following format:

[dev:] IFR

If you do not specify dev:, PIP defaults to SYO:.

displays the
the largest

file headers,
swi tch in the

The format of the information from the IFR switch is shown below.

dev: HAS xxxx. BLOCKS FREE, yyyy. BLOCKS USED OUT OF zzzz.
LARGEST CONTIGUOUS SPACE = nnnn. BLOCKS
aaaa. FILE HEADERS ARE FREE, bbbb. HEADERS USED OUT OF cccc.

Usually, the number of free file headers corresponds to the number of
files that can be created. However, fragmented files and files that
are tob larg~ for one file header must be allocated mor~ than one file
header.

The number of file headers will not exceed the number of files that
can be created.

Example

PI P>db7: IFR

DB7: HAS 10662. BLOCKS FREE, 330008. BLOCKS USED OUT OF 340670.
LARGEST CONTIGUOUS SPACE = 4189. BLOCKS
9025. FILE HEADERS ARE FREE, 11931. HEADERS USED OUT OF 20956.

3.2.2.12 /10 -- Identify Switch - The Identify switch (lID)
identifies the version of PIP being used. Specify the lID switch in
the following format:

lID

When you specify this switch, the version number is listed on the
input terminal as follows:

PIP VERSION Mvvee (ANSI)

3-23

PERIPHERAL INTERCHANGE PROGRAM (PIP)

vv

The version number.

ee

The ed it number.

(ANSI)

It PIP is linked to an ANSI FCS, this field will appear.
Otherwise, it is blank.

Example

PIP>/ID

PIP -- PIP VERSION M1340 (ANSI)

3.2.2.13 ILl -- List Switch - The List switch (ILl) lists one or more
files contained in a UFD, along with their status information. Three

(

alternate mode subswitches (fBR, IFU, and ITS) allow you a choice of (..
directory listing formats. Table 3-4 describes these switches.
Specify the ILl switch in the following format:

[listfile=]infilel[,infile2 ••• ,infilen]/LI[/subswitch]

1 istfile

The file specification to be listed in the format:

dev: [ufd]filename.filetypeiversion

If listfile is not specified, it defaults to TI:.

'infile

The input file specification in the format:

dev: [ufd]filename.filetypeiversion

The default for infile is * *.* . , .
ILl

The List switch. This switch lists the following information:

1. filename.filetypeiversion

2. number of blocks used (decimal)

3-24

c

(

(

E--

(

c

PERIPHERAL INTERCHANGE PROGRAM (PIP)

3. file code:

(null) = noncontiguous
C = contiguous
L = locked

4. creation date and time

5. summary line, which includes the _number of blocks
used/allocated and fil es pr inted.

/subswitch

The alternate mode subswitch of the List switch (described in
Table 3-4).

Subswi tch

/BR

/FU[:n[.]]

Table 3-4
List Subswitches

Description

Specifies the brief form of directory listing. This
switch lists only the file name, file type, and
version.

Specifies the full directory format.

Because the /FU format uses protected file
attributes, you may need read access to get a full
directory listing of a file. If you are the file
owner or have a system-level UIC, you do not need
read access. If you are classified group or world
to the file owner's UIC, you need read access to
read the protected attributes of the file. (To
change the protection level attribute, see Section
3.2.2.16.)

If specified, n is the number of characters per
line. If not specified, the number defaults to the
buffer size of the output device.

The /FU swi tch 1 ists the following information:

1. filename,filetypeiversion

2. file identification number in the format:

(file number, file sequence number)

3. number of blocks used/allocated (decimal)

(continued on next page)

3-25

Subswitch

/FU[:n[.]]
(Cont.)

/TB

PERIPHERAL INTERCHANGE PROGRAM (PIP)

Table 3-4 (Cont.)
List Subswitches

Description

4. file code:

(null)
C
L

= noncontiguous
= contiguous
= locked

5. creation date and time.

6. owner UIC and file protection in the format:

[group,member] [system,owner ,group,world]

These protection fields can contain the values
R, W, E, or D.

where:

R = Read access permitted
W = Write access permitted
E = Extend privilege permitted
D = Delete privilege permitted

7. date and time of the last update plus the number
of revisions.

8. summary line, which contains the number of
blocks used, the number of blocks allocated, and
the number of files used.

This switch only outputs the summary line in the
following format:

TOTAL OF nnnn./mmmm. BLOCKS IN xxxx. FILES

where:

nnnn = blocks used
mmmm = blocks allocated
xxxx = number of files

Figure 3-3 contains sample directory listings in the various formats.

3-26

(
"

(-

(

(

(

(~

(~

(-

PERIPHERAL INTERCHANGE PROGRAM (PIP)

Total Blocks (/TB) Format

STORAGE USED/ALLOCATED FOR DIRECTORY DK2:[200,270]
15-JUL-75 15:46

TOTAL OF 145./150. BLOCKS IN 5. FILES

Brief (/BR) Format

DIRECTORY DK2:[200,270]

CKTST.HAC'6
IOTST.HACf4
IOTST.TBK'1
CKTST.TBKf1
CKTST.HAC'7

Standard (ILl) Format

DIRECTORY DK2:[200,270]
15-JUL-75 15:46

CKT8T.HAC'6 3.
IOT8T.HACf4 4.
IOT8T. TBKfl 69.
CKTST.TSK;1 69.
CKTST.HAC.7 O.

15-JUL-75 15:39
15-JUL-75 15:39

C 15-JUL-75 15:39
C 15-JUL-75 15:40

L 15-JUL-75 15:40

TOTAL OF 145. BLOCKS IN 5. FILES

Full (/FU) Format

DIRECTORY DK2:[200,270]
15-JUL-75 15:46

CKTST.HAC'6 (10,10) 3./3.
[200,270][RWED,RWED,RWED,R]

IOTST.HAC'4 (11,.11) 4./4.
[200,270][RWED,RWED,RWED,R]

IOTST.TSK'1 (7.12) 6.9.169.
[200,270][RWED,RWED,RWED,R]

CKTST.TSK'1 <12,13) 69.169.
[200,270'] [RWED , RWED , RWED , R]

CKTST.HAC'7 (13,14) 0./5.
[200,270][RWED,RWED,RWED,R]

TOTAL OF 145./150. BLOCKS IN 5. FILES

C

C

L

Figure 3-3 Directory Listing Examples

3-27

15-JUL-75 15139

15-JUL-75 15:39

15-JUL-75 15'~9

15-JUL-75 15140

15-JUL-75 15:40

IZK-176-81

Examples

1.

PERIPHERAL INTERCHANGE PROGRAM (PIP)

PIP>/LI

Lists the
directory.

directory of the current default device
(This is equivalent to TI:=*.*;*/LI.)

and

2. PIP>LP:=[*,*]/FU:132.

Lists on
listing) ,
dev ice.

the
all

line printer in full
of the directories on

3. PIP>TI:=TEST.DAT/FU

format (132-column
the current default

Lists on TI: the full directory listing for the latest
version of TEST.DAT in the current default device and
directory.

4. PIP>JUL13.DIR=[200,200]*.*/LI

Lists the latest version of all files in directory [200,200]
on the current default device to file JUL13.DIR in the
default directory on the default device.

5. PIP>LP:=[ll,*]*.CMD;*/LI

Lists on the line printer all versions of all files with the
file type .CMD in all directories in group 11.

6. PI P> L P: I BR = [11, 11] * • CMD ; * , * • DAT ; * , * • MAC; 1

Lists on the line printer in brief format all versions of all
files with a file type of .CMD, all versions of all files
with a file type of .DAT, and all files of file type • MAC
wi th a version number of 1. These files all reside in the
directory [11,11] on the current default device.

3.2.2.14 /ME -- Merge Switch - The Merge switch (/ME) creates a
single file from two or more existing Eiles. The IME switch is used
in copying Files-11 files and is described in Section 3.2.1.

3.2.2.15 /NM -- No Message Switch - The No Message switch (/NM)
suppresses the PIP error messages, NO SUCH FILES (S) and FILE NOT
LOCKED, when you are manipulating files. Specify the INM switch in
the following format:

infil el [, infil e2, ••• infil en] [lsw] /NM

3-28

r--.

(

c

c

(

c

c

(-

PERIPHERAL INTERCHANGE PROGRAM (PIP)

infile

/sw

/NM

The input file specification.

Any combination of appropriate
example, the /LI, /DE, /PU,
respective subswitches.

The No Message switch.

switches and subswitches, for
or fUN switches and any of their

The /NM switch applies not only to the file specification
preceding it, but also to all file specifications to the right of
it.

Example

PIP>*.MAC;*/NM,TEST.DAT;l,FILES.OBJ;*/DE

If none of these files exists in the default directory, you will
not get the error message, NO SUCH FILE (S), when PIP tries to
delete them.

3.2.2.16 /PR -- Protect Switch - The Protect switch (jPR) allows you
to set the protection status of a file. File protection is provided
for four categories:

System

Owner

Group

World

Specifies which categories of access the system UICs are allowed
to the file (that is, UICs with group numbers less than or equal
to 10 octal).

Specifies which categories of access the owner has allowed.

Specifies which categories of access other members in the same
group have.

Specifies categories of access given all other UICs.

For each category, you can specify whether that category can read,
write, extend, or delete the file. To alter the protection level of a
file, you can use either the /PR subswitches (/SY, lOW, /GR, /WO) or
octal representation (jPR:n). For either method, if you are the file
owner or have a system-level UIC, you can alter the protection level
without having read or write access. However, because the protection
level of a file is a protected attribute, you cannot alter the
protection level if you are group or world to the file owner's UIC.
(You can read protected attributes if you have read access.)

3-29

PERIPHERAL INTERCHANGE PROGRAM (PIP)

Specify the /PR switch in the following format:

infil e/PR [lSY [: RWED] n/OW [: RWEDll [/GR [: RWEDll [lWO [: RWEDll [lFO]

infile

/PR

The file specification for the file whose protection is being
changed in the format:

dev:[ufd]filename.filetypeiversion

File specification must be issued because an
name, file type, and version do not default to

The Protect switch.

unspec i fi ed
* *.* . , . file

/SY,/OW,/GR, and /WO

/FO

The subswitches that specify protection level for a file. These
subswitches specify which protection level is to be altered
(others are left intact). The values that follow the switch are
any of the four letters, R, W, E, and D (for read, write, extend,
and delete), in any order. They specify which privileges the
respective categories can have. If you enter the .subswitch and
do not specify a value, no privileges are granted for that
category.

The subswitches are identified as follows:

/SY is the System subswitch.
lOW is the OWner subswitch.
/GR is the Group subswitch.
/WO is the World subswitch.

Protection can also be specified by an optional octal value on
the /PR switch, in the format:

/PR:n

The variable n is the octal representation of the protection to
be assigned to the file. This octal number is taken as the new
protection word. (See the RSX-llM or RSX-llM-PLUS Mini-Reference
Manual for the list of octal codes.) The format of the protection
word is shown in Figure 3-4.

The Set File Ownership subswitch, which allows you to set the
ownership of a file to that of the UIC of the directory in which
it is entered. (You can change the file ownership at the same
time you set the protection value.) If there are files in the
[200,200] directory that are owned by another UIC, the command

PIP>[200,200]*.*i*/PR/FO

causes all files to be owned by [200,200] without changing their
protection.

3-30

(
'.

c

c

(

c

f-

(

(

Protection
word

Example

PERIPHERAL INTERCHANGE PROGRAM (PIP)

IS 12 11
WORLO I

8 7 4 3
GROUP I OWNER I

.­.­.-
}/2" 1 0

rOIElwIRI"

(bit set means NO access permitted.)

TEST.OAT;S/PR:3

(bits 0 & 1 set)
deny write and read access to the system
for file TEST.OAT;S.

Figure 3-4 Format of Protection Word

Exa~ples

I
1. PI P)TEST. O~T; S/PR/OW: RWE/GR: RWE/WO

i

o
SYSTEM I

ZK-177-81

Sets the pr:otection level so that the owner and group have
RWE privileges (not delete), world has no access privileges,
and system iprivileges are unchanged.

I

2. PIP)[*,*]*~*;*/PR:O
i

Sets the p~otection level of all files so that all categories
are grante~ all access privileges.

3. PIP)OKO: [*,~]*.*;*/PR/FO
,

Causes all ifile owners to be the same UIC as the UFO in which
the files a~e entered.

3.2.2.17 /PU -- Purge Switch - The Purge switch (/PU) deletes a
specified range of obsolete versions of a file. Optionally, you can
specify that t~e names of deleted files be listed on your terminal.

Specify the /PU switch in the following format:

infil el [, infile2 ••• ,infilen] /PU [: n] [fLO]

infile

The file specification for the file(s) to be deleted.
specification takes the form:

dev:[ufd]filename.filetype

The file

Note that a version number is not needed. If specified, it is
ignored.

3-31

PERIPHERAL INTERCHANGE PROGRAM (PIP)

/PU[:n [.]]

The Purge switch. If you specify the optional value n and the (-_
latest version of the file is m, then all existing versions less
than or equal to m-n are deleted (see Figure 3-5). Although it

/LD

is useful to think of this command as deleting all but the n most
recent versions, it is important to understand that if any
versions are already deleted between m-n and m, fewer than n
versions will be retained. The most recent version of the file
is always retained.

If you omit the value n, PIP defaults to 1, and all but the
latest version of the file are deleted. If n is greater than the
number of versions of the specified files, no files are deleted.

The value n is local and defaults from left to right. This means
that if you specify n at the end of the command line, it only
applies to the infile immediately preceding it. All other
infiles default to one. However, n applies to all following
infiles until you make a new specification for n.

The List Deleted files subswitch.

Examples

1. PIP>*.OBJ,*.MAC/PU:2/LD

Deletes all but the highest version of all files with a file
type of .OBJ, and all but the two highest versions of all
files with a file type of .MAC. Lists all deleted files.

2. PIP>*.OBJ/PU:2/LD,*.MAC

Deletes all but the two highest versions of all files with
file types of .OBJ and .MAC. Lists all deleted files.

Directory Before Purge

GARYi1

GARYi2
GARYi3

GARYi4
GARYi5 c::) GARY /PU : 3 , RICK/PU : 2

RICKi4
RICKi5

RICKi7

Directory After Purge

GARYi 3

GARYi 4

GARYi5

RICKi7

In the case of the files named GARY, the three latest versions (3, 4, and 5)
are retainediversions 1 and 2 are deleted. In the case of the files named
RICK, since version 6 did not exist, only version 7 is retainediand all
existing versions less than or equal to 5, for exarrple, versions 4 and 5,
are deleted.

ZK-178-81

Figure 3-5 Use of the Purge Switch

3-32

---------- --- -------------

(

(

(--

f--~.

(

c

c

-.. ----===---.::-~-~-----~~-----------~---- ------
--~----------"------ - - - -- ".--------===----~----=-=--====-----==--==--=====----===::=--===-~-~----

PERIPHERAL INTERCHANGE PROGRAM (PIP)

3.2.2.18 IRE -- Rename Switch - The Rename switch (IRE) changes the
name of a file. There is also a New Version subswitch (/NV) that
forces the renamed file to have a version number one greater than the
latest version of the previously existing file with the same name (see
Figure 3-6). Note that you cannot rename a file that is copied from
one device to another device. Specify the Rename switch in the
following format:

outfile=infilel [, infile2 ••. , infilen] IRE [/NV]

outfile

The file specification to be given to the new file. The output
file specification has a special property in that the file name,
file type, and version are each allowed to be explicit, wildcard
(*), or defaulted (null). A UFD, filename, filetype, or version
field that is either wildcard (*) or defaulted (null) means that
the corresponding field of the input file is to be used. Thus,
the Rename switch can change one or more fields while preserving
the others. The output file specification takes the following
form:

dev: [ufd]filename.filetypeiversion

infile

IRE

The file specification of the file to be renamed.
specifications are standard and allow wildcards
including UFD. The input file specification takes
form:

dev: [ufd]filename.filetypeiversion

The input file
in all fields,
the following

An unspecified file name, file type, and version defaults to
* *.* . , .
The IRE switch does not transfer data. The file is entered in
the new directory and deleted from· the old directory. The
directories must be on the same device because data is not
transferred. You can move files out of one directory into
another, preserving the file name, file type, and version, or
changing them if desired. (This is permitted only if PIP is
running under a UIC with write privileges for each of the
directories involved.)

If you specify a device on either the input or output side, that
devi~e sets the default for the other side. If both the input
side and the output side explicitly reference different devices,
PIP returns an error message and requests that you reenter the
line.

The Rename switch.

3-33

/NV

PERIPHERAL INTERCHANGE PROGRAM (PIP)

The New Version subswi tch. The /NV subswi tch forces the version {_
number of the renamed file to a number one greater than the \
latest version for the fil&.

The /NV subswitch may appear on either side of the equal sign.
If it appears on the output side, all of the version numbers of
files being renamed are forced to a number one greater than the
latest version for the file. If it appears on the input side,
only the file that has the subswitch appended to it has its
version number forced to one greater than the latest version of
the file. (Specifying /NV is not necessary when both the input
and output files are under the same directory file.)

Examples

1. PIP>TESTFILE.DATil=TEST.DATiS/RE

Renames TEST. DATi 5 to TESTFILE~DATil.

2. PI P>BACKUP. * i *=TEST. * i * /RE

Renames all versions of all files with file names TEST to
BACKUP, preserving the file type and version of each file.

3. PIP>*.*il=*.*i*/RE

Renames all copies of all files to version 1.

4. PIP>[200,220]=[200,200]/RE

c

Renames all files from [200,200] to [200,220], preserving the (
file name, file type, and version of each file. ..

5. PIP>EXAMPLE.*i*=TEST.*i*/RE

Renames all versions of all files with the file name TEST to
the file name EXAMPLE, preserving the file type and version
of each file.

6. PI P>SAVE. DAT/RE/NV=OUTPUT.DATil

Renames OUTPUT.DATil and forces the version number to one
greater than the latest version of SAVE.DAT. Figure 3-6
illustrates the results with and without the /NV switch.

3-34

(

(

(

(

(

PERIPHERAL INTERCHANGE PROGRAM (PIP)

Directory Before Rename

SAVE.DAT;2
SAVE.DAT;3
SAVE.DAT;4
OUTPUT.DATil
OUTPUT.DATi2

Directory After Rename Without /NV Switch Set

SAVE.DAT i2
SAVE.DATi3
SAVE.DATi4
SAVE.DATil
OUTPUT.DATi2

Directory After Rename With /NV Switch Set

SAVE.DATi2
SAVE.DATi3
SAVE.DATi4
SAVE.DAT;5
OUTPUT.DATi2

ZK-179-81

Figure 3-6 Results of Rename Switch With and Without /NV Specified

3.2.2.19 /RM -- Remove Switch - The Remove switch (/RM) removes an
entry from a UFD, but does not delete the file associated with that
entry. The Remove switch is particularly useful for deleting
directory entries which, for whatever reason, point to nonexistent
files. It is also used to delete synonyms generated by the Enter
switch. If the last entry for an existing file is removed, that file
can be located only by using the VFY utility with its /LO switch (see
Chapter 9). Specify the /RM switch in the following format:

infilel[,infile2 ••• ,infilen]/RM

infile

/RM

The file specification for the directory file entry to be
removed. The file specification takes the form:

dev: [ufd]filename.filetypeiversion

The file specification must be issued because a null file name,
file type, and version do not default to *.*;*.

The Remove switch.

Example

PIP)DKl: [lO,lO]RICKSFILE.DAT;l/RM

Removes the file entry RICKSFILE.DAT;l from the directory [10,10]
on DK1:.

3-35

PERIPHERAL INTERCHANGE PROGRAM (PIP)

3.2.2.20 /RW -- Rewind Switch - The Rewind switch (/RW) directs PIP
to rewind magnetic tape. (The /RW swi tch cannot be used for
DECtapes.) You can apply this switch to both input and output (.
specifications. When you specify the /RW switch with the output
specification, PIP begins writing the file at the beginning of the
tape. You can use this technique to erase a tape before writing files
on it. Specify the /RW switch in the following format:

outfile/RW=infile

or

outfile=infile/RW

outfile

The output file specification.

infile

The input file specification.

/RW

The Rewind switch.

When you apply the
the tape before
processor performs
to open:

/RW switch to the input specification, it rewinds
searching for the input file. The magnetic tape
the following process when it searches for a file

1. Searches from the current position to end of tape

2. Rewinds the tape

3. Searches from the beginning of tape to the point where search
processing began

You can use /RW with the input specification to save search time. If
you know a file is behind the tape's current position, /RW rewinds the
tape before searching for the file to open. This saves the time that
otherwise would have been taken to search for the file between the
current position and the end of the tape.

Example

PIP>MT:/RW=[200,200]

Starts the beginning of the tape and outputs all files in the
directory [200,200].

PIP>AMBER.DOC=MT:AB.DOC/RW

Rewinds the tape, then searches the tape for the file AB.DOC and
outputs the file renaming it AMBER. DOC.

3-36

(

(

c

E--

(

(

PERIPHERAL INTERCHANGE PROGRAM (PIP)

3.2.2.21 ISB -- Span Blocks Switch - The Span Blocks switch (lSB)
allows you to control whether records copied from magnetic tape to
disk will cross block boundaries. If you omit this switch, the file
is copied with records possibly crossing block boundaries. If you
specify I-SB, the records will not cross block boundaries.

Specify the Span Blocks switch in the following format:

outdsk:outfile/SB=inmag:infile

outfile

The disk output file.

infile

The magnetic tape input file.

ISB

The Span Blocks switch.

Example

PIP>DK1:FILES.DAr/-SB=MMO:FILES.DAT

Copies FILES.DAT records to the disk from magnetic tape. Records
on the disk will not cross block boundaries.

3.2.2.22 ISD -- Selective Delete Switch - The Selective Delete switch
(lSD) prompts for your response before deleting a file that you have
specified in the command line for deletion. The response choices are
carriage return «RET» or control-Z (AZ), or Y, N, G, or Q, each
followed by either a carriage return «RET» or control-Z (AZ). Table
3-5 describes the effect of each combination of letter and terminator.

Specify the ISD switch in the following format:

infilel[,infile2 ••• ,infilen]/SD

infile

ISD

The input file specification in the form:

dev: [ufd]filename.filetype;version

The file specification must be issued because a null file name,
file type, and version do not default to *.*;*.

The Selective Delete switch~

3-37

PERIPHERAL INTERCHANGE PROGRAM (PIP)

Table 3-5
Response Choices for the Selective Delete Switch

Letter Terminator Operation

Y ffiJ Delete this file and continue.

Y ~ Delete this file and exit from PIP.

[N] ffiJ Save this file and continue.
-

[N] ~ Save this file and exit from PIP.

Q ffiJ Save this file and return to command mode.

Q ~ Save this file and exit from PI P.

G ffiJ Delete this and all remaining candidates,
list deleted files, and return to PIP
command mode.

G ~ Delete this and all remaining candidates,
list deleted files, and exit from PI P.

Examples

1. PIP>MYfILE.DAT;*/SD

DELETE FILE DB1: [200, 200]MYFILE. DAT; 1 [Y/N/G/Q]?
DELETE FILE DB1: [200,200]MYFILE.DAT;2 [Y/N/G/Q]?

THE FOLLOWING FILES HAVE BEEN DELETED:
DBl: [200,200]MYFILE.DAT;2
DB 1: [200, 200]MYFILE. DAT; 3
PIP>

Deletes MYFILE.DAT;l and PIP goes to the next candidate,
MYFILE.DAT;2. Deletes this file and all remaining versions
of MYFILE.DAT. Lists the deleted files and then PIP prompts
for the next command.

2. PIP>TEST.*;*/SD

DELETE FILE DB1: [200, 200]TEST.DAT; 1 [Y/N/G/Q]?
DELETE FILE DB1: [200,200]TEST.TXT;3 [Y/N/G/Q]?

NffiJ
Q~

Saves TEST.DAT;l. PIP goes on to the next candidate,
TEST.TXT;3. Saves this file and all remaining files with
file name TEST and then exits from PIP.

3.2.2.23 /SP -- Spool Switch - The Spool switch (/SP) directs a file
to a line printer for printing. This switchapplies only if you have

",_.M'WIIFZ77m'Uil_ 'g·ori l ! 6 if
installed. (For more information on the Queue Manager and the Print
Spooler~ see the RSX-I1M/I1M-PLUS Batch and Queue Operations Manual.)
Specify the /SP switch in the following format:

infilel[,infile2 ••• ,infilen]/SP[:n]

3-38

(

C

(

c

(

(---

-E-

(

(

PERIPHERAL INTERCHANGE PROGRAM (PIP)

infile

/SP

n

The file specification of the file to be spooled for printing.
The file specification takes the form:

dev: [ufd]filename.filetype;version

The file specification must be issued because a null file name,
file type, and version do not default to *.*;*.

If the file is specified by its file identification number
(file-IO), it will be printed. File identification numbers are
discussed in Section 3.2.2.10.

The Spool switch.

The number of copies you want spooled. (If a deleting spooler
was specified during system generation, only one copy of a file
is printed, regardless of the value of n. The file is deleted
after the first copy has been printed.) If n is omitted, a value
of 1 is assumed.

Example

PI P>RICKl. LST; 1, KATHY. LST; l,/FI: 12: 22/SP

Spools the files RICKl.LST;l, KATHY.LST;l, and the file whose
file identification number (file-IO) is 12:22 for asynchronous
printing.

3.2.2.24 /SR -- Shared Reading Switch - The Shared Reading switch
(/SR) allows you to read a file that has already been opened for
writing by another task. You have no guarantee that you will get the
information you want since the EOF pointer may be incorrect at the
time you open the file. Specify the /SR switch in the following
format:

outfile=infile/SR

outfile

The output file specification.

infile

The input file specification.

/SR

The Shared Reading switch.

Example

PIP>TI:=[210,20]FILES.OAT/SR

Enables you to read FILES. OAT even though another task may have
already opened it for writing.

3-39

---~----~-~-~.-~~~----~-~-------.~-~--~-- --~------~------:-~~-:-::-----=-::'"-=-~-=---=---=-:""~--

PERIPHERAL INTERCHANGE PROGRAM (PIP)

3.2.2.25 ITO -- Today Default Switch - The Today Default switch (/TD)
restricts file searches to files created on the current day. Specify
the ITO switch in the following format:

ITO

lTD

The Today Default switch

Note that specifying the wildcard for both startdate and enddate of
the 100 switch (/00:*:*) also negates Ithe TO switch (/00, see Section
3.2.2.4).

Examples

PIP>/TD/LI

DIRECTORY DB2: [301,357]
20-JAN-8l 11: 02
DAY OF 20-JAN-8l

TEST. DATil
FILES. TXT i 1
INFO. DATil

1.
1.
1.

20-JAN-8l 10:40
20-JAN-8l 10:41
20-JAN-8l 10:50

TOTAL OF 3./15. BLOCKS IN 3. FILES

3.2.2.26 ITR -- Truncate Switch - The Truncate switch (/TR) allows
you to truncate files back to their logical end-of-file point. Note

c

that RMS-ll files other than those that are fixed-length, (-
variable-length, or sequenced cannot be truncated. Specify ITR in the
following format:

infilel[,infile2 ••• ,infilen]/TR

infile

The input file specification.

The file specification must be issued because an unspecified file C
name, file type, and version do not default to *.*i*.

ITR

The Truncate switch.

Example

PIP>*.MAC/LI

DIRECTORY DR2: [301,7]
2-AUG-8l 15: 32

A.MACil
B.MACil
C.MACi2

3.
2.
5.

20-SEP-80 14: 02
20-SEP-80 15:38
28-SEP-80 09:54

TOTAL OF 10./15. BLOCKS IN 3. FILES

3-40

(--

PERIPHERAL INTERCHANGE PROGRAM (PIP)

PIP>*.MAC/TR
PI P>* .MAC/LI

DIRECTORY DR2: [301,7]
2-AUG-8l 15: 33

A.MAC;l
B.MAC;l
C.MAC;2

3.
2.
5.

20-SEP-80 14: 02
20-SEP-80 15: 38
28-SEP-80 09:54

TOTAL OF 10./10. BLOCKS IN 3. FILES

FCS allocates a certain number of blocks to a file. The file may
or may not use the number of blocks allocated to it. The /TR
switch moves the EOF pointer to the end of the file and frees the
unused blocks for use by other files.

3.2.2.27 /UF -- User File Directory Switch - The User File Directory
switch (/UF) creates a UFD entry in the Master File Directory (MFD) on
the volume to which you are transferring a file. You must also
transfer ownership of the file to access the file. Use the /FO
subswitch to transfer file ownership, and use [*,*] as the UFD in the
output file specification if you want to create the UFD(s) from which
you are obtaining the files being transferred. Specify the /UF switch
in the following format:

outfile/UF[/FO]=infilel ••• ,infilen

outfile

The file specification for the output file.

infile

/UF

/FO

The file specification for the input file.

The User File Directory switch.

The File Ownership subswitch. The /FO subswitch is described in
Section 3.2.1.

Example

PIP>DK6: [*,*]/UF/FO=SY: [104,20]*.MAC,*.OBJ

To use the /UF switch, you must have write access to the Master File
DirectorY of the volume on which the files are being .written. If that
volume is a system volume, you must have a system-level UIC to use the
/UF switch. If the volume to which you are writing files is your
private volume, use the following procedure to change your UIC so that
you can write to it.

1. Log onto the system under your UIC.

2. Reset your UIC to a privileged class using the SET command:

SET /UIC=[group,member]

where group and member specify a privileged class.

3-41

PERIPHERAL INTERCHANGE PROGRAM (PIP)

A typical use of the /UF switch is creation of a backup volume. In
the following command, you are writing all files with file types .OBJ
and .MAC in UFO [104,20] to a backup volume called OK6:.

3.2.2.28 fUN -- Unlock Switch - The Unlock switch (/UN) unlocks
(gives permission to open) a file that was locked because it was
improperly closed. If a program using File Control Services (FCS) has
a file open with write access and exits without first closing the
file, the file is locked against further access as a warning that it
may not contain proper information. Typically, the following
information is not written to the file:

1. The current block buffer being altered -

2. The record
information

attributes that contain the end-of-file

After you have used the fUN switch, you can access the file, determine
the extent of the damage, and, if possible, take corrective action.
specify the Unlock switch in the following format:

infilel[,infile2 ••• ,infilen]/UN

infile

fUN

The file specification for the file to be unlocked.
specification takes the form:

dev: [ufd]filename.filetypeiversion

The file

The file specification must be given because a null file name,
file type, and version do not default to *.*i*.

You must run PIP under the UIC of the file owner or under a
system-level UIC.

The Unlock switch.

Example

PIP)DKl: [100,100]RICKl.OBJi3/UN

Unlocks the file RICKl.OBJi3 in directory [100,100] on device
OKl: •

3.2.2.29 /UP -- Update Switch - The Update switch (/UP) is similar to
the basic PIP copy function or the Merge switch except that an
existing file is opened and new data is written into it from the
beginning. Existing data in the output file is destroyed and replaced
by the data that constitutes the input file(s). Unlike the Supersede
switch /SU, (Section 3.2.1) /UP does not delete the existing file
before rewriting the data. Therefore, its file identification number
(File-IO) remains the same. Also, the number of blocks allocated to
the output file can be the same or greater, but never less than the
number of blocks allocated to the existing file. However, as with the
/SU switch, the file'S name, type, and version number remain the same.

3-42

c

(

(

c

(~

PERIPHERAL INTERCHANGE PROGRAM (PIP)

Specify the Update switch in the format:

outfile=infilel[,infile2 ••• ,infilen]/UP[/FO]

outfile

The file specification for the file to be rewritten.
specification takes the form:

The file

dev: [ufd]filename.filetypeiversion

As for the Merge and
specification must be
allowed.

the Append
explicit,

switches,
that is,

the output
no wildcards

file
are

The characteristics and record attributes of the output file are
taken from the first input file.

infile

/UP

/FO

The file specification for the file to be copied into the file
that is being rewritten. The input file specification(s) take
the form:

dev: [ufd]filename.filetypeiversion

An unspecified file name, file type, and version default to * *.* . ,

The Update switch.

The Set File Ownership subswitch, which specifies that the owning
UIC of the output file corresponds to the directory into which
the file was entered. If you do not specify the /FO switch, the
owning UIC of all new files is the UIC under which PIP is
running, regardless of the directory into which the file was
entered. Refer to Section 3.2.1 for examples for using the /FO
subswitch.

Example

PI P>.DKl: SAMPLE. DAT i l=TEST1. DAT iI, TEST2. DAT iI, TEST3. DAT; l/UP

Opens SAMPLE.DATil on DKl: and replaces the data currently in
the file with the contents of files TEST1.DATil, TEST2.DATil and
TEST3. DAT i 1.

3.3 PIP ERROR MESSAGES

Errors encountered by PIP during processing are displayed in the
following format:

PIP -- <main error message>

<filename or filespec> - <secondary error message>

3-43

PERIPHERAL INTERCHANGE PROGRAM (PIP)

The file name or file specification, if present, identifies the file
or set of files being processed when the error occurred. If the error
was detected by the operating system, file system, or device driver,
the secondary error message is included to explain the cause of the
error.

PIP error messages are contained in a message file on the system
device. If PIP cannot access the message file, errors are reported in
the following format:

nn

-mm

-qq

PIP -- ERROR CODE nne

<filename or filespec> - <driver Code -mm.>

or

<QIO Error Code -qq.>

One of the PIP error codes contained in Table 3-6.

One of the standard system, file primitive, or FCS codes listed
in the IAS/RSX-II I/O Operations Reference Manual.

One of the directive error codes listed in IAS/RSX-II I/O
Operations Reference Manual.

The PIP error messages, their descriptions and suggested user actions
are as follows:

PIP ALLOCATION FAILURE - NO CONTIGUOUS SPACE

Explanation: Not enough contiguous space was available on the
output volume for the file being copied.

(

c-­
\=~--

c

User Action: Delete all files that are no longer required on the
output volume, then reenter the command line. Also, use the BRU
or DSC utilities to compress the files on your disk. BRU is
described in Chapter 7 and DSC is described in Chapter 8. ~

PIP -- ALLOCATION FAILURE ON OUTPUT FILE

or

PIP ALLOCATION FAILURE - NO SPACE AVAILABLE

Explanation: Not enough space was avail able on the output volume
for the file being copied.

User Action: Delete all files that are no longer required on the
output volume, then reenter the command line. Also, use the BRU
or DSC util ities to compress the files on your disk. BRU is
described in Chapter 7 and DSC is described in Chapter 8.

3-44

(

(

(--
"

(

(

PERIPHERAL INTERCHANGE PROGRAM (PIP)

PIP -- BAD USE OF WILD CARDS/CHARACTERS IN DESTINATION FILE NAME

Explanation: A wildcard/character was specified
file name when use of a wildcard/character
disallowed.

for an output
was expl ic i t1 Y

User Action: Reenter the command line with the output file
explicitly specified.

PIP -- CANNOT EXCLUDE *.*;*

Explanation: The /EX switch does not accept all wildcards as the
input file specification.

User Action: Determine the files to be excluded and reenter the
command line.

PIP -- CANNOT FIND DIRECTORY FILE

Explanation: The specified UFO does not exist on the volume.

User Action: Reenter the command line, specifying the correct
UFO or the correct volume.

PIP -- CANNOT FIND FILE(S)

Explanation: The file(s) specified in the command line was (were)
not found in the designated directory.

User Action: Check the file specification and reenter
command line.

PIP -- CANNOT RENAME FROM ONE DEVICE TO ANOTHER

Explanation: You attempted to rename a file across devices.

the

User Action: Reenter the command line, renaming the file on the
input volume, then enter another command to transfer the file to
the intended volume.

PIP -- CANNOT TRUNCATE THIS FILETYPE

Explanation: PIP can only truncate files containing
fixed-length, variable-length, and sequenced records.

User Action: Check the file specification and reenter the
command line.

3-45

.-------~.----.-----

PERIPHERAL INTERCHANGE PROGRAM (PIP)

PIP -- CLOSE FAILURE ON INPUT FILE

or

PIP -- CLOSE FAILURE ON OUTPUT FILE

Explanation: The input or output file could not be properly
closed. If the failure is on the output file, the output file is
then locked to indicate possible corruption.

User Action: Reenter the command line. If the error recurs, run
a validity check of the file structure using the Verify utility
(VFY) on the volume in question to determine if it is corrupted.
VFY is described in Chapter 9.

PIP -- COMMAND SYNTAX ERROR

Explanation: Command did not conform to syntax rules.

User Action: Reenter the command line with the correct syntax.

PIP -- DEVICE NOT MOUNTED/ALLOCATED

Explanation: The drive had not been allocated, the device was
not mounted, or another user had mounted the device.

User Action: Allocate the drive and/or mount the device, then
reenter the command line.

PIP -- DIRECTORY WRITE PROTECTED

Explanation: PIP could not remove an entry from a directory
because the device was write-protected or because of a privilege
violation.

User Action: Enable the device for write operations or have the
owner of the directory change its protection.

PIP -- ERROR FROM PARSE

Explanation: The specified directory file does not exist.

User Action: Reenter the command line with the correct UIC
specified.

PIP -- EXPLICIT OUTPUT FILENAME REQUIRED

Explanation: Self-explanatory.

User Action: Reenter the command line with the output filename
explicitly specified.

3-46

f-

£­C--

c

c

(

(

PERIPHERAL INTERCHANGE PROGRAM (PIP)

PIP -- FAILED TO ATTACH OUTPUT DEVICE

PIP

or

FAILED TO DETACH OUTPUT DEVICE

Explanation: An attempt to attach/detach a record-oriented
output device failed. This is usually caused by the device being
off-line or nonresident.

User Action: Ensure that the device is on-line and reenter the
command line.

PIP -- FAILED TO ATTACH TERMINAL

Explanation: PIP could not attach a terminal, probably because
of a privilege violation.

User Action: Determine the cause of the failure and correct it.
Reenter the command line.

PIP -- FAILED TO CREATE OUTPUT UFD

Explanation: PIP could not create an entry in a directory
because the device was write-protected or because of a privilege
violation.

User Action: Enable the unit for write operations or have the
owner of the directory change its protection.

PIP -- FAILED TO DELETE· FILE

or

PIP FAILED TO MARK FILE FOR DELETE

Explanation: You attempted to delete a protected file.

User Action: Request PIP under the correct UIC and reenter the
command line.

PIP -- FAILED TO ENTER NEW FILE NAME

Explanation: You specified a file that already exists in the
directory file, or you did not have the necessary privileges to
make .entries in the specified directory file.

User Action: Reenter the command line, ensuring that the file
name and UFD are specified correctly, or request PIP under the
correct UIC and reenter the command line.

PIP -- FAILED TO FIND FILE(S)

Explanation: The file(s) specified in the command line was (were)
not found in the designated directory.

User Action: Check the file specification and reenter
command line.

3-47

the

PERIPHERAL INTERCHANGE PROGRAM (PIP)

PIP -- FAILED TO GET TIME PARAMETERS

Explanation: An internal system failure occurred while PIP was ~ .. _._
trying to obtain the current date and time. \

User Action: Reenter the command line. If the problem persists,
submit a Software Performance Report (SPR).

PIP -- FAILED TO OPEN INDEX FILE

Explanation: PIP was unable to read the index file, probably
because of a privilege violation.

User Action: Retry the operation by running PIP under a system
UIC, or have the system manager change the protection on the
index file.

PIP -- FAILED TO OPEN STORAGE BITMAP FILE

Explanation: PIP could not read the specified volume'S storage
bit map, probably because of a privilege violation.

User Action: Retry the operation by running PIP under a system
UIC, or have the system manager change the protection on the
storage bit map.

PIP -- FAILED TO READ ATTRIBUTES

Explanation: The volume you specified was corrupted or you did
not have the necessary privileges to access the file.

User Action: Ensure that PIP is running under the correct UIC.
If the UIC is correct, then run the validity check of the File
Structure Verification Utility (VFY) against the volume in
question to determine where and to what extent the volume is
corrupted. VFY is described in Chapter 9.

PIP -- FAILED TO REMOVE DIRECTORY ENTRY

Explanation:
because the
violation.

PIP could not remove an entry from a directory
unit was write-protected or because of a privilege

User Action: Enable the unit for write operations or have the
owner of the directory change its protection.

PIP-- FAILED TO RESTORE ORIGINAL DIRECTORY ENTRY -FILE IS LOST

Explanation: PIP has removed a file from a directory, failed to
enter it (using IRE) into another directory, and failed to
replace the original directory entry.

User Action: Run the lost
Verification Utility (VFY)
described in Chapter 9.

check of
to recover

3-48

the File Structure
the file name. VFY is

(.. -- ----

c

(

(

PERIPHERAL INTERCBANGEPROGRAM (PIP)

PIP -- FAILED TO SPOOL FILE FOR PRINTING

Explanation: The Queue Manager is not installed.

User Action: Install the Queue Manager and reenter the command
line.

PIP -- FAILED TO TRUNCATE FILE

Explanation: The volume you specified is corrupted or you did
not have the necessary privileges (write, extend) to truncate
this file.

User Action: Ensure that PIP is running under the correct UIC.
If the UIC is correct, then run the validity check of the File
Structure Verification Utility (VFY) against the volume in
question to determine where and to what extent the volume is
corrupted. VFY. is described in Chapter 9.

PIP -- FAILED TO WRITE ATTRIBUTES

Explanation: The volume you specified is corrupted or you did
not have the necessary privileges to write the file attributes.

User Action: Ensure that PIP is running under the correct UIC.
If the UIC is correct, then run the validity check of the File
Structure Verification Utility (VFY) against the volume in
question to determine where and to what extent the volume is
corrupted. VFY is described in Chapter 9.

(\ PIP -- FILE IS LOST

(

Explanation: PIP has removed a file from its directory, failed
to delete it, and failed to restore the directory entry.

User Action: Run the lost
Verification Utility (VFY)
described in Chapter 9.

PIP -- FILE NOT LOCKED

check of
to recover

the File Structure
the file name. VFY is

Explanation: The JUN switch was entered for a file that was not
locked.

User Action: Reenter the command line, specifying the correct
file.

PIP -- GET COMMAND LINE - BAD @ FILE NAME

Explanation: An illegal indirect
specified.

command file name was

User Action: Reenter the command line, specifying the correct
name for the indirect command file.

3-49

PERIPHERAL INTERCHANGE PROGRAM (PIP)

PIP - GET COMMAND LINE - FAILED TO OPEN @ FILE

~~i;~nation: PIP could not find the specified indirect command (_

User Action: Check the specification for the indirect command
file and reenter the command line.

PIP -- GET COMMAND LINE - I/O ERROR

Explanation: An I/O error occurred during an attempt to read a
command line.

User Action: Check the command to ensure that you entered it
correctly, then reenter the command line. If the error persists,
submit a Software Performance Report (SPR).

PIP -- GET COMMAND LINE - MAX @ FILE DEPTH EXCEEDED

Explanation: The maximum level of nesting for indirect command
files (4) was exceeded.

User Action: Reduce the level of nesting.

PIP -- ILLEGAL COMMAND

Explanation: The command was not recognized by PIP.

User Action: Reenter the command line with the PIP command
correctly specified.

PIP -- ILLEGAL EOF VALUE

Explanation: You specified an illegal block and/or byte value in
the command line.

User Action: Reenter the command line with the correct values.

PIP -- ILLEGAL RESPONSE - TRY AGAIN

Explanation: Self-explanatory.

User Action: Check which response you want and enter it when PIP
prompts you.

PIP -- ILLEGAL SWITCH

Explanation: The specified switch was not a legal PIP switch.

User Action: Reenter the command line with the correct switch
specification.

3-50

?-~~~
~--

(

(

(

PERIPHERAL INTERCHANGE PROGRAM (PIP)

PIP -- ILLEGAL n*n COPY TO SAME DEVICE AND DIRECTORY

Explanation: You attempted to copy all versions ofa file
the same directory that is being scanned for input files.
would result in an infinite number of versions of the same
so is not allowed.

into
This

file,

User Action: Reenter the command line, renaming the files or
copying them into a different directory.

PIP -- ILLEGAL USE OF WILDCARD VERSION OR LATEST VERSION

Explanation: The use of either a wildcard version number or a
latest version number in the attempted operation would result in
inconsistent or unpredictable output.

User Action: Reenter the command line with different options or
with an explicit or default version number.

PIP -- INPUT FILES HAVE CONFLICTING ATTRIBUTES

Explanation: The input files specified in a Merge, Update, or
Supersede command had conflicting attributes or the attributes of
the input file (s) specified in an Append command confl icted wi th
those of the output file.

User Action: The message is a warning only. The specified
action was completed despite the conflict. With a Merge, Update,
or Supersede command, the attributes of the output file will be
those of the first input file. With an Append command, the
attributes of the output file are unchanged. The resulting file
should, however, be suspect because its attributes may not
correctly represent all the records in the file.

PIP -- I/O ERROR ON INPUT FILE

or

PIP -- I/O ERROR ON OUTPUT FILE

Explanation: One of the following conditions may exist:

• The device is not on-line

• The device is not mounted

• The hardware has failed

• The volume is full (output only)

• The input file is corrupted

Note that these are the most common conditions. Conditions other
than those listed may have caus~d the message.

User Action: Determine which condition caused the message and
correct that condition. Reenter the command line.

3-51

._-------'---------'--~---------------- - --- -- -- -- -- --- - - ------- - - --- -- -- - ----- -- ------- -- -- --.:=---- ------~--. ------~

PERIPHERAL INTERCHANGE PROGRAM (PIP)

PIP -- NOT A DIRECTORY DEVICE

Explanation: A directory-oriented command was issued to a device ~
that does not have directories (such as a printer). (

User Action: Reenter the command line without specifying a UFD.

PIP -- NOT ENOUGH BUFFER SPACE AVAILABLE

Explanation: PIP did not have enough I/O buffer space to perform
the requested command. -

User Action: Have the system manager install PIP in a larger
partition or increase the size specified by the /INC switch with
the MCR INSTALL command. See the RSX-llM/M-PLUS MCR Operations
Manual.

PIP -- NO SUCH FILE (S)

Explanation: The file (s) specified in the command was (were) not (-__
found in the designated directory. ~ .

User Action: Check the file specification and reenter the
command line.

PIP -- ONLY [*,*] IS LEGAL AS DESTINATION UIC

Explanation: A UFD other than [*,*] was specified as the output
file UFD for a copy operation.

User Action: Reenter the command line with [*,*] specified as
the output UFD.

PIP -- OPEN FAILURE ON INPUT FILE

or

PIP -- OPEN FAILURE ON OUTPUT FILE

c_

Explanation: The specified file could not be opened. One of the C
following conditions may exist: .

• The file is protected against access.

• A problem on the physical device (for example, device down) •

• The volume is not mounted.

• The specified file directory does not exist.

• The named file does not exist in the specified directory.

Note that these are the most common conditions. Conditions other
than those listed may have caused the message.

User Action: Determine which condition caused the message and
correct that condition. Reenter the command line.

3-52

(

()

PERIPHERAL INTERCHANGE PROGRAM (PIP)

PIP -- OUTPUT FILE ALREADY EXISTS NOT SUPERSEDED

Explanation: An output file of the same name, type, and version
as the file specified already exists.

User Action: Retry the copy with /NV to assign a new version
number or use /SU to supersede the output file.

PIP -- TOO MANY COMMAND SWITCHES - AMBIGUOUS

Explanation: Too many switches were specified or the switches
conflict.

User Action: Reenter the command line, specifying the correct
set 0 f swi tches.

PIP -- VERSION MUST BE EXPLICIT OR "*"

Explanation: The version number of the specified file must be
expressed explicitly or as a wildcard (*).

User Action: Reenter the command line with the version number
correctly expressed.

3.4 PIP ERROR CODES

Table 3-6 identifies the error codes PIP issues when it does not have
access to the message file. The descriptions and suggested user
actions for these error codes are identical to those described in
Section 3.3.

3-53

PERIPHERAL INTERCHANGE PROGRAM (PIP)

Table 3-6
PIP Error Codes

Error Code Error Message

1 COMMAND SYNTAX ERROR
2 I LLEGAL SWITCH
3 TOO MANY COMMAND SWITCHES - AMBIGUOUS
4 ONLY [*,*] IS LEGAL AS DESTINATION UIC
5 ILLEGAL COMMAND
6 ILLEGAL "*,, COPY TO SAME DEVICE AND DIRECTORY
7 BAD USE OF WILDCARDS/CHARACTERS IN DESTINATION FILE NAME
8 EXPLIC IT OUTPUT FILE NAME REQUIRED
9 ALLOCATION FAILURE - No-' CONTIGUOUS SPACE

10 ALLOCATION FAILURE - NO SPACE AVAILABLE
11 ALLOCATION FAILURE ON OUTPUT FILE
12 I/O ERROR ON INPUT FILE
13 I/O ERROR ON OUTPUT FILE
14 ILLEGAL USE OF WILDCARD VERSION OR LATEST VERSION
15 FAILED TO CREATE OUTPUT UFD
16 INPUT FILES HAVE CONFLICTING ATTRIBUTES
17 OPEN FAILURE ON INPUT FILE
18 OPEN FAILURE ON OUTPUT FILE
19 CLOSE FAILURE ON INPUT FILE
20 CLOSE FAILURE ON OUTPUT FILE
21 FAILED TO DETACH OUTPUT DEVICE
22 DEVICE NOT MOUNTED/ALLOCATED
23 OUTPUT FILE ALREADY EXISTS - NOT SUPERSEDED
24 FAILED TO MARK FILE FOR DELETE
25 FILE IS LOST
26 VERSION MUST BE EXPLICIT OR "*,,
2 7 ERROR FROM PARSE
28 FAILED TO DELETE FILE
29 FAILED TO ATTACH TERMINAL
30 ILLEGAL RESPONSE - TRY AGAIN
31 CANNOT EXCLUDE *.*;*
32 CANNOT F.IND DIRECTORY FILE
33 FAILED TO ATTACH OUTPUT DEVICE
34 FAILED TO GET TIME PARAMETERS
35 NOT A DIRECTORY DEVICE
36 FAILED TO WRITE ATTRIBUTES
37 FAILED TO READ ATTRIBUTES
38 FILE NOT LOCKED
39 FAILED TO ENTER NEW FILE NAME
40 FAILED TO RESTORE ORIGINAL DIRECTORY ENTRY - FILE IS LOST
41 CANNOT RENAME FROM ONE DEVICE TO ANOTHER
42 FAILED TO SPOOL FILE FOR PRINTING
43 CANNOT SPOOL BY FILE ID (RSX-11D only)
44 FAILED TO OPEN STORAGE BITMAP FILE
45 FAILED TO OPEN INDEX FILE
46 FAILED TO FIND FILE (S)
47 CANNOT FIND FILE(S)
48 NO SUCH FILE (S)
49 FAILED TO REMOVE DIRECTORY ENTRY
50 DIRECTORY WRITE PROTECTED
51 NOT ENOUGH BUFFER SPACE AVAILABLE
52 FAILED TO TRUNCATE FILE
53 CANNOT TRUNCATE THIS FILETYPE
54 ILLEGAL EOF VALUE

3-54

--------------~--------------

c'

o

e

o

o

o

CHAPTER 4

FILE TRANSFER PROGRAM (FLX)

The File Transfer Utility Program (FLX) allows you to use foreign
volumes (not in Files-II format) in DIGITALis 005-11 or RT-ll format.
FLX converts the format of a file to the format of the volume the file
is being transferred to.

FLX can be used to initialize and list directories of cassettes and
RT-ll or DOS-II file-structured volumes. FLX can also be used to
delete files from RT-ll or DOS-II formatted volumes.

FLX performs file transfers (and ~ormat conversions, as appropriate)
from:

• DOS-11 to Files-11 volumes

• Files-11 to DOS-11 volumes

• DOS-11 to DOS-11 volumes

• Files-11 to Files-II volumes

• Files-11 to RT-ll volumes

• RT-11 to RT-ll volumes

• RT-11 to Files-11 volumes

Valid DOS-II devices are:

Device

PCll paper tape punch
PCll or PRll paper tape reader
RK05 cartridge disk
TU78 magnetic tape
TE16, TU16, TU45, or TU77 magnetic tape
TS04 magnetic tape
TUlO, or TS03 magnetic tape
TU56 DECtape
TU60 tape cassette

4-1

Device Abbreviation

PP
PR
OK
MF
MM
MS
MT
DT
CT

FILE TRANSFER PROGRAM (FLX)

Valid RT-ll devices are:

Device

RLOI/RL02 cartridge
RK05 cartridge disk
RK06 or RK07 cartridge disk
RXOI floppy disk
RX02 floppy disk
TU56 DECtape
TU58 DECtape II data cartridge

Device Abbreviation

DL
DK
DM
DX
DY
DT
DD

FLX supports all Files-II devices, including RSX-format cassettes.
They are volumes that you have initialized using the MCR INITVOL or
DCL INITIALIZE command. DOS-II and RT-ll volumes are initialized
using FLX. On RSX-IIM-PLUS, DOS-II and RT-ll volumes must be mounted
with foreign characteristics before you can use FLX. On RSX-IIM, such
vol umeS must be unmounted.

You can use FLX interactively or by means of
file. FLX allows only one level of
specification.

an indirect commmand
indirect command file

You can invoke FLX in two ways: by specifying FLX or by specifying
FLX and a command line. If you only specify FLX, the utility responds
with the prompt:

FLX>

FLX can also access an indirect command file in the following manner:

>FLX @FOO.CMD

or

FLX> @FOO. CMD

4.1 FLX COMMAND FORMAT

Although formats for specifying FLX functions vary, the general format
for entering FLX command lines is:

devicespec/sw=infile/sw, ••• ,infilen/sw

devicespec

The device specification for the FLX output device, which takes
the form:

dev: [ufd]

The [ufd] field is optional; if it is not specified, FLX uses
the current UIC. Do not specify a UFD if the output device is in
RT"":ll format.

4-2

f-!

c

(

c

(

FILE TRANSFER PROGRAM (~LX)

If you explicitly enter the output device specification, you must
enter the equal sign.

FLX does not permit output file specifications. The output files
take the names of the input files.

infilen

/sw

The input file specifications, which take the form:

dev: [ufd]filename.filetype;version

The UFO is not specified for RT-ll volumes.

One of three types of FLX switches described below in Section
4. 2.

FLX supports 9-character file n~mes for DOS-II-format magnetic tapes.
When you transfer the file back to Files-II format, (which uses a
12-character filename) FLX will recover the last three characters.

Wildcards are valid only for input file specifications.

Version numbers are valid only for Files-II files and cannot be
specified as wildcards. The standard rules for updating version
numbers apply (see the RSX-IIM/M-PLUS MCR Operations Manual).

4.2 FLX SWITCHES

FLX provides three types of switches for file transfers:

• Volume format switches

• Transfer mode switches

• Control switches

Volume· format switches specify the format of the volume on which files
are stored; that is, Files-II, DOS-II, or RT-ll volumes.

Transfer mode switches ~rovide the means for specifying the format of
a file on a non-Files-ll volume. Files can be in formatted ASCII,
formatted binary, or file image format.

Control switches provide control functions useful during file
transfers. Using file control switches, you can specify, for example,
the number of blocks to be allocated to an output file or the UFO for
an output file.

4-3

FILE TRANSFER PROGRAM (FLX)

4.2.1 Volume Format Switches

FLX has three volume format switches that define the format of the
specified volumes.

100 Identifies the volume as a DOS-II formatted volume.

IRS Identifies the volume as a Files-II formatted volume.

IRT Identifies the volume as an RT-ll formatted volume.

Initially, input volumes default to DOS-II format and output volumes
default to Files-II format. FLX assumes these default volume formats
if you do not specify switches in the command line.

You can change the initial default by entering IRS or 100 on a command
line by itself. IRS sets the default for input volumes to Files-II
format and output volumes to DOS-II format. 100 sets the default for
input volumes to DOS-II format and output volumes to Files-II format.

For example, to specify the default transfer direction from Files-II
to DOS-II, type:

FLX>/RS

To specify the default transfer direction from DOS-II to Files-II,
type:

FLX>/DO

If IRT is specified on one side of a command line, the default entry
for the other side is IRS.

Examples (~ !

1. FLX>DKO:=DTO:SYSl.MAC/RT

The output is defaulted to IRS.

2. FLX>DKO:/RT=DKO:SYSl.MAC

The input is defaulted to IRS.

4.2.2 Transfer Mode Switches

FLX has three transfer mode switches, one for each type of file
format. Files can be in formatted ASCII, formatted binary, or file
image format. Format conversions can be in either direction, and are
between DOS-II files and Files-II files or between RT-ll files and
Files-II files. Specifying a transfer mode switch determines which
format the output file will be in after the conversion of the file.
Table 4-1 describes the transfer mode switches.

4-4

c

==-___ ---=-==-_ ~ ______ =-==-o:-_=== _______ =_~----=-=:::--::::::==-----=-=-=-=---=----:-~::-:::-::-::-=-=-----==--:::.---c --- - - -- ----- - -- - -- - __ _

(
Swi tch

/FA:n

t

(
/FB:n

(

/IM:n

(

FILE TRANSFER PROGRAM (FLX)

Table 4-1
FLX Transfer Mode Switches

Description

Formatted ASCII

The DOS-II or RT-ll output file is to be formatted ASCII.
Formatted ASCII is defined as ASCII data records
terminated by a carriage return/line feed (RET-LF), form
feed (FF), or vertical tab (VT) • In transfers from
DOS-II or RT-ll files to Files-II files, RET-LF pairs are
removed from the end of records. In transfers from
Files-II files to DOS-II or RT-ll files, RET-LF pairs are
added to the end of each record that does not already end
with LF or FF. In both directions, all nulls, rubouts,
and vertical tabs are removed from input records.

If you specify /FA:n with Files-II output, fixed-length
records of size n are generated. Output records are
padded with nulls, if necessary.

If you do not specify /FA:n with Files-II
generates variable-length records. The
size equals the input record size.

output, FLX
output record

ASCII data is transferred as 7-bit values. Bit 8 of each
byte is masked off before transfer. CTRL/Z (ASCII 032
octal) is treated as the logical end-of-input file for
formatted ASCII transfers from DOS-II cassette or paper
tape to Files-II.

Formatted Binary

The DOS-II or RT-ll output file is to be formatted
binary. In this mode, formatted binary headers and
checksums are added to records that are output to DOS-II
or RT-ll files, and removed when transferred to Files-II
files.

If you specify /FB:n with Files-II
records of size /FB:n are output
maximum). FLX pads records with
specified length.

output, fixed-length
(512 (10) bytes is the
nulls to create the

If you do not specify /FB:n with Files-II
generates variable-length records. The
size equals the input record size.

output, FLX
output record

Image Mode

The transfer is to be in image mode. Image mode forces
fixed-length records. You can use the value n to
indicate the desired record length (in decimal bytes) for
Files-II output (512 (10) bytes maximum). If you do not
specify n, FLX assumes a record length of 512(10) bytes.

4-5

================================-------.=--=-=--=-==-==============~-=-======~~~

FILE TRANSFER PROGRAM (FLX)

FLX assumes the following default transfer modes for these file types
(with the exception of paper tape transfers described in Section 4.6).

Mode Switch File Type

Image /IM:n • TSK, • OLB, .MLB, .SYS,
• SML, • ULB, .EXE

Formatted Binary /FB:n • OBJ, .STB, .BIN, • LOA

Formatted ASCII /FA:n All others

If you specify n with /FA, /FB, or /IM when the output file is not a
Files-II file, FLX ignores n.

The RSX-IIM/M-PLUS MCR Operations Manual defines the above file types.

4.2.3 Control Switches

FLX provides a number of control switches to control file processi~g.
Table 4-2 describes these switches.

Switch

/BL:n[.]

\ Table 4-2
FLX Control Switches

Description

Indicates the number of contiguous blocks (n) in octal or
decimal to be allocated to the output file.

~:
C-

This switch is normally used wi th the /CO switch (.
(described later in the table). Because all RT-ll files .

/BS:n

/CO

are contiguous, the /CO switch is not required with the
/BL:n switch for RT-ll output.

If you do not specify /BL, the input file size is used as
the output file size.

The file allocation scheme used for RT-ll volumes
normally allocates the largest available space on the
volume for a new file. Using /BL:n with the /RT switch
for .the output file causes the output file to be
allocated the first unused space of size n. However,
when the RT-ll file is closed, the input file size is
used as the output file size. If the input file is not
n, an error results.

Specifies the block size n. in bytes for cassette tape
output.

If you do not specify /BS, a block size of 128(10) is
assumed. /BS is only valid in a. cassette tape (CT)
output file specification with /RS specified.

Indicates that the output file is to be contiguous.
/CO switch is used only with disks and DECtapes.

The

If the input file is on paper tape, cassette, or DOS-II
magnetic tape, /BL is also required. FLX transfers the

(continued on next page)

4-6

(

c

c

c

Switch

/CO
(Cont.)

/DE

/DI

/DNS:n

/FC

/ID

/LI

/NU:n[.]

FILE TRANSFER PROGRAM (FLX)

Table 4-2 (Cont.)
FLX Control Switches

Description

file types .TSK, .SYS, and .OLB to Files-II volumes with
/CO implied when the input is a Files-II volume, or a
DOS-II or RT-ll DECtape or disk.

Deletes files from a DOS-II DECtape or disk. It is used
also with /RT to delete files from an RT-ll DECtape or
disk. When you specify /DE, the FLX command line has no
output specification.

Causes a directory listing of cassettes or DOS volumes to
be listed on a specified output file. It is used also
with /RT to generate a directory listing of RT-ll volumes
in a specified output file.

You cannot list Files-II volume directories using FLX.

If you do not specify an output device, the directory is
sent to TI:. If you do not specify file name and file
type on the input file specification, a wildcard is
assumed.

See Section 4.3 for information on DOS-II-volume
directory manipulation. See Section 4.4 for information
on RT-ll-volume directory manipulation.

Specifies the density of the magnetic tape; where n is
800, 1600 or 6250 bpi. If n is any other value or not
specified, FLX prints an error message. If you do not
specify /DNS:n, the magnetic tape density defaults to
6250 bpi for the TU78, 1600 bpi for the TS04, and 800 bpi
for all other Magtape devices. If you specify /DNS with
a nonmagnetic device, FLX ignores the switch.

When using FORTRAN files, indicates that FORTRAN carriage
control conventions are to be used. The /FC switch
applies only to Files-II output files. (If you have the
PDP-II FORTRAN Language Reference Manual, refer to it for
more information on FORTRAN carriage control conventions.
Otherwise, refer to the IAS/RSX-ll I/O Operations
Reference Manual for a discussion of the file data block
and record attributes, of which setting carriage control
is a part.)

Requests the current version number of FLX to be printed.
You can specify /ID as part of an output or input
specification or type it in response to the FLX prompt
(FLX».

Same as /DI.

Used with the /ZE and /RT switches to specify the number
of directory blocks (n) in octal or decimal to allocate
when initializing an RT-ll,disk or DECtape. If you do
not specify /NU:n, four directory blocks are allocated.
The maximum number of blocks that can be allocated is
37 (8) 31 (10).

(continued on next page)

4-7

Switch

/RW

/SP

lUI

/VE

/ZE[:n.]

FILE TRANSFER PROGRAM (FLX)

Table 4-2 (Cont.)
FLX Control Switches

Description

Rewinds the magnetic tape before beginning the file
transfer. Specifying /-RW causes FLX to begin the
transfer without first rewinding the magnetic tape. If
you do not specify either rewind option, the switch
defaults to /RW. If you specify the /RW switch with a
non-magnetic-tape device, or with /LI, /DI, or /ZE, FLX
ignores /RW.

Indicates that the converted file is to be spooled by the
print spooler task or the queue management system. The
/SP switch applies only to Files-II output files.

Indicates that the output file is to have the same UFD as
the input file. FLX ignores the lUI switch if the output
specification contains an explicit UFD. lUI is valid
only for output files in DOS-II or Files-II format.

Causes each record written to a cassette to be read and
verified. The /VE switch is only valid with a CT output
file specification.

Initializes cassettes or DOS-II volumes. It is also used
with /RT (and /NU) to initialize RT-ll volumes.
Initializing erases any files already on the device. The
/ZE switch does not require a file specification.

For DOS-II DECtape, /ZE creates an entry for the current
UIC.

4.3 DOS-II VOLUME DIRECTORY MANIPULATION

This section contains examples that show how to display DOS-II
directory listings, delete DOS-II files, and initialize DOS-II volumes
using the FLX switches.

On RSX-IIM-PLUS, DOS-II volumes must
characteristics before you can use FLX.
be unmounted.

be mounted with foreign
On RSX-IIM, the volumes must

4.3.1 Displaying DOS-II Directory Listings

The /LI or the /DI switch instructs FLX to send the directory of the
cassette or DOS-II volume specified in the input specification to the
Files-II file specified in the output specification. If you do not
enter an output specification, FLX sends the directory to TI:. For
example:

FLX>DTO: [lOO,lOO]*.MAC/LI

This command line lists on your terminal the directory of all .MAC
files under UFD [100,100] on the DOS-II DECtape on DTO:.

Figure 4-1 shows sample directory listings for a DOS-II DECtape and a
TU60 cassette.

4-8

(

(

(

(

(

(~

c

FILE TRANSFER PROGRAM (FLX)

DEC tape Directory Listing

• DIRECTORY • DT: [200,200] •
• 19-5EP-78

• FLX.TSK
UFD.TSK
TKN.TSK
MOU.TSK

.104.
8.
6.
14.

819-SEP-78
19-5EP-78
19-5EP-78
19-5EP-78

ttTOTAL OF 132. BLOCKS IN 4. FILES

Cassette Directory Listing

• DIRECTORY • CT: [200,200] •
• 19-5EP-78

<233>.
<233>
<233>
<233>

• UFD.TSK-O
TKN.TSK-O
MOU.TSK-O

.28.
20.
52.

819-SEP-78 128 ••
19-5EP-78 128.
19-5EP-78 128.

tt TOTAL OF 100. BLOCKS IN 3. FILES

Figure 4-1 DOS-II Directory Listings

Notes on Figure 4-1:

This line identifies the listing as a directory listing.

The device name and unit number.

The User File Directory.

The date the directory was listed.

ZK-180-81

• • • • • The file name, file type, version number, and sequence number
(cassettes only).

• • •
•

The file size in decimal blocks.

The file creation date.

The record size in decimal bytes for the file (cassettes
onl y.)

A total of the actual file sizes and the total number of
files in the directory.

o The default protection code provided by the system.

4-9

FILE TRANSFER PROGRAM (FLX)

4.3.2 Deleting DOS-II Files

You can delete files from DOS-II disks or DECtapes using the Delete
switch (IDE). The IDE switch requires only the file specification for (___ ----
the file you are deleting. For example:

FLX>DKl: [lOO,100]SYSl.MAC/DE

This command line deletes SYSl.MAC under UFD [100,100] from the DOS-II
disk on DKl:.

4.3.3 Initializing DOS-II Volumes

You can initialize cassettes and DOS-II volumes using the IZE switch.
This switch requires only the device specification for the volume you
are initializing. For example:

FLX>DT 1: IZ E

This command line initializes the DECtape on DTl: in DOS-II format.

4.4 RT-ll VOLUME DIRECTORY MANIPULATION

You can display RT-ll directory listings, delete RT-ll files, and
initialize RT-ll volumes using the FLX switches described in this
section.

On RSX-llM-PLUS, RT-ll volumes must
.characteristics before you can use FLX.
be unmounted.

be mounted with foreign
On RSX-llM, the volumes must

4.4.1 Displaying RT-ll Directory Listings

~---­
~~---

c
The ILl or the IDI switch, when combined with the IRT switch,
instructs FLX to send the directory of the RT-ll volume in the input
specification to the Files-II file in the output specification. If
you do not enter an output specification, FLX sends the directory to
TI:. For example: (

FLX>DTO:*.MAC/LI/RT

This command lists on your terminal all .MAC files on the RT-ll volume
on DTO:.

Figure 4-2 shows a sample directory listing for an RT-ll disk.

4-10

c

(

(
"--

(

• DIRECTORY • DK:
• 4-JUN-78

FILE TRANSFER PROGRAM (FLX)

• SIPBOO. MAC. 49 ... 4-JUN-78
< UNUSED> 6.
SIP .MAC 10. 4-JUN-78
SIPCD .MAC 7. 4-JUN-78
< UNUSED > 2l.
SIPQIO.MAC 7. 4-JUN-78
< UNUSED> 4686.

• 4713. FREE BLOCKS

• TOTAL OF 73. BLOCKS IN 4. FILES

ZK-181-81

Figure 4-2 RT-ll RK05 Cartridge Disk Directory Listing

Notes on Figure 4-2 :

• This line identifies the listing as a directory listing.

• The device name and unit number.

• The date the directory was listed.

0 The file name and file type; <UNUSED> indicates free space.

• The number of blocks in the file or free space.

• The file creation date, or blank for free space.

• The total number of free blocks on the volume.

0 The total number of blocks allocated to files on the volume.

4-11

FILE TRANSFER PROGRAM (FLX)

4.4.2 Deleting RT-ll Files

You can delete files from RT-ll disks or DECtapes using the Delete
switch (/DE) with the RT-ll switch (/RT). The command line on which
you specify /DE/RT requires only the file specification for the file
you are deleting. For example:

FLX>DKl:SYS/.MAC/DE/RT

This command line deletes SYS/ • MAC from the RT-ll volume .on DKl:.

4.4.3 Initializing RT-ll Volumes

You can initialize RT-ll volumes using the /ZE switch with the /RT
switch •. The /ZE switch requires only the device specification for the
volume you are initializing. For example:

FLX>DT 1: /ZE/RT

This command line initializes the DECtape on DTl: in RT-ll format.
When you initialize RT-ll volumes, the /ZE switch takes an optional
argument in the form:

/ZE:n

The value n specifies the number of extra words per directory entry.
A directory segment consists of two disk blocks with a total of
512 (10) words. The directory header uses five words, leaving 507 (10)
words for directory entries.

(-

r .. ········· ~---

Normally, each directory entry uses seven words; two directory (
entries within each directory segment are allocated to the file
system. Therefore, the number of entries in each segment (when no
extra words are specified) is determined as follows:

Directory entries = (507/7)-2

= 72-2
= 70

Some RT-ll applications require extra words in the directory entries. C.
When you specify extra words for directory entries (/ZE:n), the number
of directory entries is determined as follows:

Directory entries = [507/(n+7)]-2

For example, 61(10) entries can be made per directory segment if you
specify /ZE: 1.

Use of the /NU switch with the /ZE and /RT switches specifies the
number of directory segments to allocate to the RT-ll volume. The /NU
swi tch has the following form:

/NU:n

4-12

(

c

C~

(~

FILE TRANSFER PROGRAM (FLX)

The value n specifies the number of directory segments to allocate.
Four directory segments are allocated by default. The maximum number
of segments that can be allocated is 37(8) or 31(10). For example:

FLX>DTO:/ZE:2/NU:6/RT

This command line initializes the DECtape on DTO: in RT-ll format,
allocates two extra words per directory entry, and allocates six
directory segments. This results in a total of 54(10) directory
entries, each of which uses 9 words.

4.5 FLX TAII/TU60 CASSETTE SUPPORT

FLX supports the DIGITAL standard cassette file structure. Files can
be transferred to and from cassettes in either Files-II format (IRS)
or DOS-II format (/00). The transfer mode selected depends on the
file format requirements.

The file formats for Files-II or DOS-II cassette files are almost the
same; that is, they both conform to the DIGITAL standard cassette
file format. The differences between the Files-II and DOS-II cassette
file formats are shown in Table 4-3.

Table 4-3
Differences Between Files-II and DOS-II Cassette Files Format

Files-II Format DOS-II Format

Standard level 2 Standard level 0

12-character file name (9- 9-character file name (6-
character file name and 3- character file name and 3-
character file type) character file type)

Blocks of any size up to 128(10)-byte blocks
512 (10) bytes (128 decimal
bytes defaul t)

Version numbers No version numbers

Files-II cassette file format (level 2) is a superset of the DOS-II
cassette file format (level 0). Therefore, any cassette written in
DOS-II format can be read in Files-II format. The reverse of this,
however, is true only when:

• The Files-II file is written with 128(10)-byte blocks.

• The extra file header data (such as version number), which
does not appear in DOS-II files, can be ignored.

Files-II files and DOS-II files can be mixed
long as you use a proper retrieval mode
Files of various block sizes can also share
uses the block size contained in the file
file.

4-13

on a given cassette as
when you access the file.
a given cassette. FLX
label data when reading a

---_._-------

FILE TRANSFER PROGRAM (FLX)

4.5.1 Multivolume Cassette Support

FLX supports multivolume cassette files in both
formats. No special switches are required
mul tivolume file is being accessed.

4.5.2 FLXCassette Output Files

Files-II and DOS-II
to notify FLX that a

When FLX detects the physical end-of-tape for an output cassette, the
following sequence of events occurs.

1. FLX issues the following message:

FLX -- END OF VOLUME ON CASSETTE
CTn: [g,m]

The variables n, g, and m specify the unit number, group
number, and member number.

2. The cassette is rewound.

3. FLX issues an additional message:

MOUNT NEW CASSETTE? (Y, Z (OUTPUT ONLY) OR CR)
FLX>

4. At this point, you have three alternatives:

a. Mount the next output cassette volume and type Y,
followed by a carriage return. If you select this
alternative, the new output cassette is rewound, FLX
searches for the logical end-of-tape (end of the last
file), and then continues transferring data onto the
tape. If FLX, while searching for log ical end-of-tape,
encounters a file with the same fil. name as the current
input file~ it displays the following message:

FLX FILE ALREADY EXISTS

FLX then returns to step 3.

b. Mount the next output cassette volume and type Z,
followed by a carriage return. The new output cassette
is rewound, and F.LX continues by transferring data onto
it. Thus, the tape is effectively zeroed (initialized)
before data is transferred to it.

c. Enter a carriage return to terminate the transfer.

If you select this
end-of-file (EOF) is
m'essage:

alternative, FLX assumes that
desired and issues the following

FLX -- REQUEST TERMINATED -- LAST BLOCK NOT WRITTEN

This message indicates that the last input file block
processed was not written onto the tape.

4-14

f-

(-

(

(

c

c--

(

FILE TRANSFER PROGRAM (FLX)

4.5.3 FLX Cassette Input Files

When FLX detects the physical end-of-tape for an input cassette, the
following sequence of events occurs:

1. FLX issues the following message, including the input file
specification on which the end-of-tape was detected:

FLX -- END OF VOLUME ON CASSETTE
CTn:[g,m]filename.type

The variables n, g, and m specify the unit number, group
number, and member number.

2. The cassette is rewound.

3. FLX issues an additional message:

MOUNT NEW CASSETTE: (Y, Z (OUTPUT ONLY) OR CR)
FLX>

4. At this point you have two alternatives:

a. Mount the next input cassette volume and type Y, followed
by a carriage return to continue. If you select this
alternative, the new input cassette is rewound, and a
validity check is performed on the file label and
sequence number. If the file label and sequence number
are correct, FLX begins processing data from the volume.
If, however, the file label and sequence number are not
dorrect, FLX issues the following message:

b.

FLX FILE NOT FOUND

The process then returns to step 3.

Type a carriage return to terminate the transfer. If you
select this alternative, FLX assumes that end-of-file
(EOF) is desired, and the transfer is terminated. If the
input file is being processed as a formatted binary or an
ASCII file, a format error may occur.

If you enter Z, FLX prints the message:

FLX -- BAD RESPONSE

The process then returns to step 3.

4.6 FLX PAPER TAPE SUPPORT

FLX supports the DIGITAL standard paper tape devices, such as the
PC-II Paper Tape Reader/Punch and the PR-ll Paper Tape Reader, as
DOS-II devices.

FLX lets you del imi t records on paper tape for files in formatted
binary mode or in formatted ASCII mode. Formatted binary records are
delimited by standard DOS-II 4-byte headers and a trailing checksum.
Formatted ASCII records that do not already end with line feeds or
form feeds are delimited by carriage return-line feed pairs.

4-15

FILE TRANSFER PROGRAM (FLX)

FLX gives special treatment to files that normally default to image
mode transfers, that is; .TSK, .OLB, .MLB, .SYS, .SML, .EXE, and .ULB
files. On output to paper tape, these files are written, by default,
in formatted binary. When read back from paper tape to a Files-II
volume, the file is written by default, with fixed-length,
512(10)-byte records.

These defaults ensure that when the files are read back from paper
tape they are in the same format as they were before being punched.
However, the new files are not contiguous unless you specify /CO/BL:n
with the output file specification. You must know an appropriate
value for n (the number of contiguous blocks to allocate) before
issuing the command. You can also use PIP to create a contiguous file
from the file that is read back from tape (see Chapter 3).

The use of explicit transfer mode switches to transfer .TSK, .OLB,
.MLB, .SYS, .SML, .EXE, and .ULB files between paper tape and Files-II
volumes can cause files read back from paper tape to be different from
the files that were orig inally written out.

For FLX paper tape transfer commands, you cannot specify file names in
the output specification. The file name entered for the input file
specification is used as the file name for the output file. For
example:

FLX>DKl:/RS=PR:CRTMAC.OAT/OO

This command line writes an output file whose file
OKl: CRTMAC. OAT.

name is

If you do not specify a file name on the input file specification, the
defaul t file- name is .;n where n represents the latest version number.

RSX-IIM and RSX-IIM-PLUS systems support paper tapes only as OOS-ll
devices. Therefore, you must specify the /00 switch with paper tape
file specifications. The following examples show paper tape
specifications for input and output file specifications:

FLX>PP:/DO-CRTMAC.DAT/RS
FLX>DK:/RS=PR:CRTMAC.DAT/DO

To copy from one paper tape to another, use the
(/IM) regardless of the format of the paper tapes.

FLX>PP:/DO/IM=PR:/DO

4.7 FORTRAN DIRECT ACCESS FILES

Image-Mode switch
For example:

FORTRAN direct access files must be transferred in Image mode. For
example:

FLX>DKO:/DO/IM=FOO.TJP/RS

To recover the file, you must specify the record length in bytes (not
to exceed 512(10) bytes). For example:

FLX>/RS/IM:n=DKO:FOO.TJP/DO

The variable n specifies the record length in bytes.

4-16

(-

(

(

(

e---

(

c

FILE TRANSFER PROGRAM (FLX)

4.8 FLX ERROR MESSAGES

Errors encountered by FLX during processing are reported on the
initiating terminal. The FLX error messages~ their explanations, and
suggested user actions are described in this section.

FLX -- BAD LIST FILE SPEC

FLX

Explanation: One of the following was specified:

1. More than one output file for an JLI or JDI operation.

2. Wildcards in the output file specification for an JLI or JDI
operation.

User Action: Reenter the command line correctly.

BAD RESPONSE

Explanation: Z was entered in response to the message:

MOUNT NEW CASSETTE (Y, Z (OUTPUT ONLY) OR CR)
FLX>

The cassette in question is an input volume.

User Action: Respond with Y or CR after the message is
redisplayed.

FLX -- CAN'T OPEN @ FILE

Explanation: The specified indirect command file could not be
opened for one of the following reasons:

• The file is protected against access.

• A problem exists on the physical device (for example, the disk
is not spinning).

• The volume is not mounted or is allocated to another user.

• The volume is not on-line.

• The specified file directory does not exist.

• The named file does not exist in the specified directory.

User Action: Correct the condition and reenter the command line.

FLX -- CO FILES TO OUTPUT DEVICE NOT ALLOWED

Explanation: An illegal output device (for example, magnetic
tape) was entered with the JCO switch.

User Action: Reenter the command line without specifying the JCO
switch.

4-17

FILE TRANSFER PROGRAM (FLX)

FLX -- CASSETTE ERROR I/O TERMINATED

Explanation: A hardware error occurred during the end-of-volume
sequence on a cassette volume. The transfer was aborted.

User Action: Reenter the command line using a new cassette.

FLX -- COMMAND SYNTAX ERROR

Explanation: The command was entered in a format that does not
conform to syntax rules.

User Action: Reenter the command line with the correct syntax.

FLX -- CONFLICTING TRANSFER MODES SPECIFIED

Explanation: Conflicting transfer mode qualifiers were entered.
For example:

SYO:=DTO:FOO.OBJ/IM/FB

User Action: Reenter the command line with only one transfer
mode switch specified.

FLX -- DOS-II OR RT-ll DEVICE NOT VALID FORMAT

Explanation: The device specified with the /00 switch has an
incorrect DOS-II file structure, or the device specified with the
/RT switch has an incorrect RT-ll file structure.

User Action: Correctly identify the file structure on each (
volume, and then reenter the command line.

FLX -- DT: UFO FULL

Explanation: The DECtape directory is full.

User Action: Delete all unnecessary files, and reenter the
command line.

FLX -- END OF VOLUME ON CASSETTE
MOUNT NEW CASSETTE? (Y, Z (OUTPUT ONLY) OR CR)

Explanation: Physical end-of-tape
cassette transfer. The tape is
mount the next cassette.

was encountered during a
rewound and you are asked to

User Action:
performed or
performed.

See Section 4.5.2 if an output
Section 4.5.3 if an input

4-18

transfer
transfer

is
is

being
being

(

(

FILE TRANSFER PROGRAM (FLX)

FLX -- ERROR DURING DIRECTORY I/O

Explanation: One of the following conditions may exist:

1. The volume is not write-enabled.

2. The /00, /RT or /RS switches were incorrectly specified.

3. The volume is not in the proper format.

4. A hardware error occurred during a directory I/O operation
(for example, bad tape).

User Action: The following responses correspond (by number) to
the conditions listed above.

1. Write-enable the volume.

2. Respecify /00, /RT, or /RS correctly.

3. No recovery is possible with the volume currently mounted.
Mount a volume that is in the proper format and retry the
operation.

4. Reenter the command line.

FLX -- FILE ALREADY EXISTS

Explanation: The specified output file already exists on the
output device.

User Action: Reenter the file specification using a new or
corrected file name.

FLX -- FILE NOT FOUND

Explanation: The named file does not appear, as specified, in
the requested directory.

User Action: Retry the operation with the file name
directory correctly specified.

FLX -- WARNING -- INPUT FILE OUT OF SEQUENCE

and

Explanation: A multivolume cassette file is being accessed out
of sequence.

User Action: This is a warning message. The transfer will
continue unless you terminate it by means of the ABORT command.

FLX -- @ FILE NESTING EXCEEDED

Explanation: More than one level of indirect command file was
specified.

User Action: Reenter the command line with only one level of
indirect command file specified.

4-19

FILE TRANSFER P·ROGRAM (FLX)

FLX -- @ FILE SYNTAX ERROR

Explanation: A syntax error occurred in the indirect command
file.

User Action: Edit the indirect command file.
the corrected indirect command file.

FLX -- FMTD ASCII RECORD FORMAT BAD

or

FLX -- FMTD BrNARY RECORD FORMAT BAD

Rerun FLX using

Explanation: Either the file is corrupted or is not of the
specified type.

User Action: If the file is corrupted, no recovery is possible.
If the file type is incorrect, reenter the command line
specifying the correct transfer mode switch.

FLX -- ILLEGAL /BS SIZE -- USE 0<N<=512. AND EVEN

Explanation: An illegal block size was specified with /BS on
cassette output.

User Action: Reenter the command line with a legal block size.

FLX -- INCORRECT # IN/OUT SPECS

Explanation: More than one input or output specification in a
command was entered where only one is allowed.

User Action: Reenter the command line with the proper syntax.

FLX -- INVALID DEVICE

Explanation: A device was specified that cannot be used for the
purpose specified. For example, a line printer was specified as
an input device.

User Action: Reenter the command line with a valid device
spec ified.

FLX -- INVALID DOS OR RT-II FILE SPEC

or

FLX -- INVALID RSX FILE SPEC

Explanation: The file specification does not conform to proper
syntax or the specified operation could not be performed on the
specified device.

User Action: Reenter the command line with the proper syntax.

4-20

(-

~. --­c--

c

(

c

(

(

FILE TRANSFER PROGRAM (FLX)

FLX -- INVALID SWITCH

Explanation: A switch was entered that is not a val~d FLX switch
or does not conform to proper syntax •

. User Action: Reenter the command line with a correct switch
specification.

FLX -- I/O ERROR

Explanation: One of the following conditions may exist:

• The specified device is off-line.

• A hardware error occurred (for example, bad tape).

User Action: Ensure that the device is on-line. Reenter the
command line. If a hardware error recurs, recovery may not be
possible.

FLX -- I/O ERROR DELETING LINKED FILE

Explanation: An uncorrectable error occurred while a DOS linked
file was being deleted.

User Action: No action required. The file is effectively
deleted, but the volume may be corrupted.

FLX -- I/O ERROR INITIALIZING DIRECTORY

Explanation: One of the following conditions may exist:

• The specified device is not· on-line.

• The specified volume is not mounted.

• A hardware error occurred (for example, bad tape).

User Action: Ensure that the device is on-line and is operable.
Reenter the command line with the required switch specified.

FLX -- I/O ERROR ON ,COMMAND INPUT

Explanation: An unexpected error in command input was
encountered from either an indirect command file or from the
initiating terminal; FLX exits.

User Action: Restart FLX.

4-21

FILE TRANSFER PROGRAM (FLX)

FLX -- I/O ERROR ON FLX TEMPORARY FILE

Explanation: FLX encountered an error condition
temporary file. FLX creates a temporary file
operations involving DOS-II CT, OT, or MT volumes.
occurs when one of the following conditions exists:

• SYO: is not on-line and mounted.

• SYO: is write-locked.

• A protection violation occurred.

• A hardware error was encountered.

wi th its
on SYO: for

This error

User Action: Correct the error condition and ~eenter the command
line.

FLX -- I/O ERROR ON LIST FILE

Explanation: An error occurred on the output device during a /01
or /LI operation. There is a hardware problem with the output
device (for example, a device powered down).

User Action: Correct the condition. Reenter the command line.

FLX -- OUTPUT DEVICE FULL

Explanation: The DOS-II or RT-ll output volume does not contain
enough space for the output file.

User Action: Delete all unnecessary files and reenter the
command 1 ine'.

FLX -- OUTPUT FILE SPEC NOT ALLOWED

Explanation: An output file specification was entered for an
operation that does not allow one.

User Action: Reenter the command line without an output file
specification.

FLX -- RECORD TOO LARGE

Explanation: FLX detected an input record in a Files-II transfer
that is larger than the specified or implied record size for the
file; that is, the file is corrupted.

User Action: The file in question is unusable.

4-22

(

(

(

l

------------- -

==========""""'''''''''''''""'''=-=---- ----.-- --=--=.-==-=---=---=---=--~--.=--=--=~~--=-=-=.-=-~~===~~==.=---=-~--=-.-=.~--~-~.-=--=--~.-~-~ .. ~=--=-=--=--=---=-====~=-=---~-- ------,

c'

e

FILE TRANSFER PROGRAM (FLX)

FLX -- REQUEST TERMINATED -- LAST BLOCK NOT WRITTEN

Explanation: A carriage return was given to indicate that no new
volume would be mounted when an end-of-volume was encountered on
cassette output. The block that FLX was attempting to write when
it encountered the end of the cassette has not been written.
Therefore, the output file is incomplete.

User Action: This message is informational.
required.

FLX -- WARNING -- SPECIFIED RECORD SIZE BAD, 512. USED

No action is

Explanation: The record size n specified with the IFA, IFB, or
11M switch is not acceptable. A record size of 512(10) bytes is
assumed.

User Action: This is a warning message. No action is required.

FLX --UNABLE TO ALLOCATE FILE

Explanation: No space is available on the DOS-II or Files-II
volume for the specified file.

User Action: Delete all unnecessary files and reenter the
command line.

FLX -- UNABLE TO OPEN FILE

Explanation: A specified input or output Files-II file could not
be opened. Possible reasons are:

• The input file does not exist.

• The volume is not mounted.

• A protection violation occurred.

User Action: Correct the condition and reenter the command line.

FLX -- UNABLE TO OPEN LIST FILE

Explanation: The list file cannot be opened under the specified
file name and directory, or the specified volume may not be a
valid Files-II volume.

User Action: Reenter the command line specifying the correct
file name and directory.

4-23

FILE TRANSFER PROGRAM (FLX)

FLX -- UNDIAGNOSABLE REQUEST

Explanation: FLX does not recognize the command line syntax.

User Action: Reenter the command line with the proper syntax.

FLX -- JCO FILES FROM INPUT DEVICE NOT ALLOWED UNLESS BL: SPEC

Explanation: When transferring files from MT, PR, or CT volumes,
the JCO switch can only be specified when the jBL switch is also
specified.

User Action: Reenter the command line, specifying the jBL
switch.

FLX -- * IN VERSION, NUMBER NOT ALLOWED

Explanation: A wildcard was detected in the version number field
of a file specification.

User Action: Reenter the command line with all version l1umbers
explicitly specified.

FLX -- ILLEGAL DENSITY VALUE

Explanation: Either the specified density value is not supported
by the target tape drive or some value other than 800, 1600 or
6250 was input.

User Action: Reenter the command with the proper density value.

4-24

o

(j

o

o

(

c

c

CHAPTER 5

DISK VOLUME FORMATTER (FMT)

The Disk Volume Formatter (FMT) utility formats and verifies disk
cartridge, disk pack, fixed media disk, and flexible disk volumes
under any RSX-IIM or RSX-IIM-PLUS operating system that includes on
1 ine formatting support in the Executive. (Check with your system
manager to determine whether your system includes this feature.)

In general, FMT performs the following functions:

• Writes a complete header for each sector of the volume it is
formatting.

• Verifies the address contents of each sector header.

• Sets the density for RX02 floppy disks (DY).

• Lets you
formatted.
reached.

specify an error limit for the volume being
FMT terminates processing when the error limit is

• Lets the Bad Block Locator task (BAD) run (spawn) if your
system permits spawned tasks.

5.1 INITIATING AND TERMINATING FMT

To initiate FMT, enter the appropriate command following the system
monitor prompt, as explained in Chapter 1 of this manual.

The general form of the FMT comma~d line is:

>FMT ddn:[/switch l ••• /switch m]

The variable dd is the abbreviation for the volume you are formatting
and n is the unit number of the volume. The possible switches are:

/BAD

Runs the Bad Block Locator task (BAD) if it is installed on the
system.

5-1

DISK VOLUME FORMATTER (FMT)

/DENSITY or /DENS

~~!~~~s high (double) or low (single) density for RX02 floppy ~~

/ERL

Determines the number of errors FMT will allow on the volume.

/MANUAL or /MAN

Enters manual operating mode and formats the sector or track you
specify.

/NOVERIFY or /NOVE or /-VERIFY or /-VE

Inhibits the default verification of a successful FMT operation.

/OVR

Overrides or ignores the Manufacturer's Defined Bad Sector File
(MDBSF) • (_

/WLT

Rewrites the MDBSF (on the last track of the device) to add bad
sectors found during FMT operation.

/VERIFY or /VE

!@Y

Verifies that an FMT operation was successfully completed.
switch is the default.

This

Informs FMT that it is recelvlng input from an indirect command
file that you have created. A FMT command in this form does not
allow operator intervention in the process.

These swi tches are descr ibed in detail in Section 5.4.

To terminate FMT, type CTRL/Z ("Z) following the FMT prompt, as
explained in Chapter I of this manual.

5.2 MODES OF FMT OPERATION

FMT lets you format volumes in two operating modes: normal and
manual. In normal operating mode, FMT formats the entire volume. In
manual operating mode, FMT permits you to format individual sectors
(or tracks for DM:-type disks) that you specify in response to FMT
prompts. FMT uses normal operating mode unless you specify manual
mode with the /MAN switch in the command line.

FMT normally retries an operation when it encounters an error. If the
operation still fails, FMT flags the sector as bad and displays the
following message:

Error writing header

5-2

(-

(

DISK VOLUME FORMATTER (FMT)

If FMT encounters an error during the verification operation, it
prints one of the following messages on your terminal:

Error reading header

or

Header compare error

FMT then continues the verification operation.

5.2.1 Normal Operating Mode

When you invoke FMT in normal operating mode (without the /MANUAL
switch), FMT prints the following message:

** WARNING - Data will be lost on ddn: **
Continue? [Y or N]

CAUTION

If you answer yes, FMT erases all data
previously stored on the disk.

After a Y (yes) response, FMT returns the message:

Start formatting

It then performs the formatting functions you specify with switches in
the FMT command. After an N (no) response or a carriage return, FMT
returns control to the system monitor.

Normal FMT operation varies sl ightly accord ing to the volume you are
formatting (see Section 5.3).

5.2.2 Manual Operating Mode

If you specify manual operating mode (/MAN), FMT prints:

** WARNING - Data will be lost on ddn: **
Continue? [Y or N]

CAUTION

If you answer yes, FMT erases all data
previously stored on the disk.

After a Y (yes) response, FMT returns the message:

Entering manual mode

It then displays the following prompts:

Cylinder=
Track =
Sector =

5-3

DISK VOLUME FORMATTER (FMT)

After you enter your response to the prompts, FMT formats the sector
or track you specify. FMT assumes the responses are in decimal unless
they are preceded by a pound sign (i) to indicate an explicit octal
response. If you enter a parameter that is out of the range for the
volume, FMT returns an error message and exits. Table 5-1 lists the
valid ranges for FMT manual mode operations.

Note that FMT manual operating mode cannot be used wi th RX02 floppy
disks.

FMT manual operating mode works the same on all disk volumes, with one
exception: On DM:-type volumes (RK06 and RK07) , FMT formats a
specific track.

For example:

FMT)DM 0: /MAN

This command causes FMT to prompt:

** WARNING - Data will be lost on DMO: **
Continue? [Y or N] Y

Entering manual mode
Cylinder= 237
Track = 1

FMT then formats the entire track you specified.

Table 5-1
Ranges for Manual FMT Operations

Dev ice 1 Sectors Tracks

RP02/RPR02 0-9 0-19

RP03 0-9 0-19

RP04 0-21 0-18

RP05 0-21 0-18

RP06 0-21 0-18

RK05/RK05F 0-11 0-1

RK06 0-21 0-2

RK07 0-21 0-2

RM02 0-31 0-4

RM03 0-31 0-4

RM05 0-31 0-18

RM80 0-31 0-13

5-4

Cylinders

0-199

0-399

0-410

0-410

0-814

0-199

0-410

0-814

0-822

0-822

0-822

0-558

(

(

(

(

(

DISK VOLUME FORMATTER (FMT)

5.3 FMT SUPPORTED DISK VOLUMES

The following sections describe using normal FMT operating mode with
the different types of FMT supported devices. Table 5-2' lists the
disk volumes that allow formatting and their device mnemonics.

Table 5-2
FMT-Supported Disk Volumes

Disk Volumes Device Mnemonic

RP04 disk pack DB:
RP05 disk pack DB:
RP06 disk pack DB:

RK05 disk cartridge DK:
RK05F fixed media disk DK:

RLOI disk cartridge DL:
RL02 disk cartridge DL:

RK06 disk cartridge OM:
RK07 disk cartridge OM:

RPR02 disk pack DP:
RP02 disk pack DP:
RP03 disk pack DP:

RM02 disk pack DR:
RM03 disk pack DR:
RM05 disk pack DR:
RM80 fixed media disk DR:

RX02 floppy disks DY:

for the disk volumes varies

5.3.1 DB:-type Devices (RP04/RP05/RP06 Disk Packs)

When FMT formats a DB:-type volume, it tries to write 22 sector
headers at a time until it has formatted the entire volume. If FMT
encounters an error, it attempts to write each header individually and
designates which headers are bad.

Unless you specify the /-VE switch, FMT verifies 11 headers at a time
until it has verified the volume. If FMT encounters an error, it
attempts to verify the headers individually to determine where the
error occurred. It then reports any bad headers and continues the
operation.

5-5

---=-=---=--=---=--=-=-=-=======~=~=~ .. -=,.-.---.,,-.--.~~=~-=--=---=-=--=--=-=

DISK VOLUME FORMATTER (FMT)

5.3.2 DK:-type Devices (RK05 Disk Cartridge or RK05F Fixed Media Disks)

When FMT formats a DK:-type volume, it tries to write each sector (
header individually until it has formatted the entire volume. If FMT~­
encounters an error, it retries each header before reporting the
header as bad.

Unless you specify the I-VE switch, F~T verifies 12 headers at a time
until it has verified the volume. If FMT encounters an error, it
attempts to verify the headers individually to determine where the
error occurred. It then reports any bad headers and continues the
operation. -

5.3.3 DL:-type Devices (RLOI/RL02 Disk Cartridges)

FMT does not format a DL:-type volume, but reads each block, one track
at a time, and determines which blocks were marked as bad by the
manufacturer's formatting process. If the MDBSF is corrupt or has
been written over, FMT then rewrites the Manufacturer Detected Bad
Sector File (MDBSF) on the last track with this information. When L_-~-_--
using FMT on a DL:-type device, the Write Last Track switch (/WLT) ~
must be specified.

5.3.4 DM:-type Devices (RK06/RK07 Disk Cartridges)

FMT writes DM:-type headers one track (22 sectors) at a time and ~ets
the header flags of those sectors marked bad in the MDBSF. If FMT
encounters errors, it retries the operation before it designates which
headers are bad.

Unless you specify the I-VE switch, FMT verifies that each sector from
o to 21 is addressable. It does this by issuing a full 256-word
write, made up of the 2-word address pattern (the sector number and
its complement) into each sector. Once the track has been written,
each sector is read and the full 256 words of data are compared with
the expected data pattern. If an error occurs during this operation,
FMT reports that sector as bad and continues the operation.

When FMT writes headers on DM:-type devices, it sets bad sector flags
in the headers al ready marked as bad in the MDBSF. Unless you spec ify
the I-VE switch, FMT indicates whether the bad sector waS flagged in
the MDBSF.

5.3.5 DP:-type Devices (RPR02/RP02/RP03 Disk Packs)

When FMT formats a DP:-type volume, it tries to write 10 headers at a
time until it has formatted the volume. If FMT encounters an error,
it attempts to write each header individually and designates which
headers are bad.

Unless you specify the I-VE switch, FMT verifies 10 headers at a time
until it has verified the volume. If FMT encounters an error, it
attempts to verify the headers individually to determine where the
error occurred. FMT reports that sector as bad and continues the
operation.

5-6

(

(

=====~~~~~=---- ---"-- "----- --"-

E--

c

DISK VOLUME FORMATTER (FMT)

5.3.6 DR:-type Devices (RM02/RM03/RM05/RM80 Disk Packs)

When FMT formats a DR:-type volume, it tries to write 32 headers at a
time until it has formatted the volume. If FMT encounters an error,
it attempts to write each header individually and designates which
headers are bad.

Unless you specify the I-VE switch, FMT verifies 16 headers at a time
until it has verified the volume. If FMT encounters an error, it
attempts to verify the headers individually to determine where the
error occurred. It then reports any bad sectors and continues the
verification operation.

When FMT writes headers on DR:-type volumes, it sets bad sector flags
in headers already designated as bad by the MDSSF. Unless you specify
the I-VE switch, FMT indicates whether the sector was marked bad in
the MDBSF.

On the RM80 disk, in addition to performing the functions indicated
for other DR: devices, FMT reads a Skipped Sector File to identify
the sectors the manufacturer's formatter designated as "skipped
sectors," and then sets the skipped sector flag bit in the appropriate
sector headers. All data originally intended for a sector designated
as a skipped sector is moved to the following sector (for more
information, see the RSX-IIM/M-PLUS 1/0 Drivers Reference Manual).

5.3.7 DY:-type Devices (RX02 Floppy Disks)

You
low
the
the

can use'FMT to set an RX02 floppy disk to either high (double) or
(single) density by using the IDENS switch. Unless you specify

I-VE switch, FMT writes and reads block 0 and the last block on
disk to determine that the density is consistent.

Note that manual operating mode cannot be used with DY:-type devices.

5.4 FMT SWITCH DESCRIPTIONS

The following sections describe the switches you
commands. The descriptions include information
formatting specific devices and default values for
appropriate.

can use with FMT
on restrictions for
the switches, where

IBAD

The Bad switch spawns the Bad Block Locator task (BAD) after FMT
completes its processing. The BAD operation tests for the number
and location of any unusable blocks. BAD records this bad-block
information which is used by the initializing function. If BAD
is not installed on the system, FMT prints a warning message on
your terminal and exits.

Note that the IBAD switch can only be used with operating systems
that allow spawning of tasks. RSX~llM and RSX-IIM-PLUS provide
spawned tasks as a system generation option.

The format for an FMT command using the IBAD switch is:

FMT>ddn:/BAD

5-7

DISK VOLUME FORMATTER (FMT)

/DENSITY

/ERL

The Density switch sets DY:-type floppy disks to either high
(double) or low (single) density. The default is low density.
(This switch can also use SINGLE and DOUBLE as options.)

The formats for an FMT command using the /DENS switch are:

FMT>DYn:/DENS=HIGH (or DOUBLE)
FMT>DYn:/DENS=LOW (or SINGLE)

The Error Limit Switch sets an error limit for the volume you are
formatting. If the error count reaches this limit, FMT generates
an appropriate message and terminates the operation. The default
error limit is 256(10) errors. Any value greater than 0 or less
than or equal to 256(10) is valid.

The format for an FMT command using the /ERL swi tch is:

FMT>ddn:/ERL=n.

/MANUAL

The Manual swi tch puts FMT in manual operating mode and permits
you to format an individual sector (or track for DM:-type disk
cartridges) of a device. FMT assumes cylinder, track, and sector
numbers are decimal values unless they are preceded by a pound
sign (#), which indicates octal values.

Note that manual operating mode cannot be used with DY:-type
devices.

In manual operating mode, FMT displays the following prompts:

** WARNING - Data will be lost on ddn: **
Continue [Y OR N]?
Entering manual mode
Cylinder=
Track
Sector =

Operation complete

The format for an FMT command using the /MAN switch is:

FMT>ddn:/MAN

/NOVERIFY

The Noverify switch inhibits the operation performed by the
default /VERIFY switch.

The format for an FMT command using the /NOVERIFY switch is:

FMT> ddn:/NOVERIFY

5-8

c

(

c

(

(

(

(

(

/OVR

DISK VOLUME FORMATTER (FMT)

The Override switch causes FMT to ignore the Manufacturer's
Detected Bad Sector File (MDBSF) on DM:- and DR:-type disk
volumes. When FMT writes headers on these disks, it normally
sets bad sector flags in those headers marked bad in the MDBSF.
When the verification process discovers a bad sector, it reports
that the sector was marked in the MDBSF. The Override switch
inhibits the reporting operation.

The format for an FMT command using the /OVR switch is:

FMT>ddn:/OVR

/VERIFY

/WLT

/@Y

The Verify switch confirms that an FMT operation was successful.
It does this by reading back the headers and determining that
they were written correctly. This switch is the default.

The format for an FMT command using the /VE switch is:

FMT>ddn:/VE

The Write Last Track switch, when used with the Verify switch on
DM:- and DR:-type volumes, rewrites the MDBSF to add the bad
sectors that FMT found to the bad sectors already in the MDBSF.
FMT also rewrites each bad sector's header to flag it as a bad
sector.

The /WLT switch must be specified when using FMT on a DL:-type
device.

The /WLT switch requires a decimal number (n below) which is used
as the volume's pack serial number.

The format for an FMT command using the /WLT switch is:

FMT>ddn:/WLT=n

If you specify the @Y switch, FMT receives input from an indirect
command file that you have created. In this method of operation,
FMT will not generate any operational messages or warnings to
your terminal. No user intervention is possible until the FMT
operation is complete.

The format for an FMT command using the /@Y switch in an indirect
command file is:

FMT ddn:/@Y

Note that to run FMT from an indirect command file, FMT must be
installed before hand. Otherwise, you will receive an error
message and the FMT operation will discontinue.

5-9

==================~~.=-~"-.. - .. = ... ~.~~==

DISK VOLUME FORMATTER (FMT)

Example

To format a DK:-type volume using an indirect command file,
create the indirect command file FMTIND.CMD (you can specify any
file name) which contains the following:

FMT DK3:/@Y

Then issue the following indirect command from the prompt:

>@FMTIND

FMT will start to format the disk, DK3: and the /@Y switch will
inhibit any FMT message from printing on your terminal until
after FMT has finished.

5.5 FMT MESSAGES

This section describes the messages FMT generates, and possible user
responses.

Command I/O error

Explanation: A hardware transmission error occurred from the
keyboard.

User Action: Reenter the command.

Command too long

Explanation: The command was longer than 80(10) characters.

User Action: Enter a shorter command.

Device does not support formatting

Explanation: A device was specified that does not allow the use
of FMT.

User Action: Determine the correct device and, if FMT operation
is legal, reenter the command.

Device driver missing

Explanation: The disk device driver is not loaded.

User Action: Load the driver (if it is loadable) and reenter the
command, or use a different device in the command line.

Device not in system

Explanation: The specified device was not identified as part of
the system during system generation or the device does not exist
on the system hardware configuration.

User Action: Determine the correct command line with the correct
device mnemonic and reenter the command.

5-10

?-~-­
~------

(

c

DISK VOLUME FORMATTER (FMT)

Device not ready

Explanation: The disk volume was not at operating speed when FMT
attempted to access it.

User Action: Allow the volume to reach operating speed, then
reenter the FMT command.

Device offline

Explanation: The device is not
configuration.

in the system hardware

User Action: Determine the correct command line with the correct
device abbreviation and reenter the command.

Device write locked

Explanation: The volume is write-locked; any write access is
prohibited.

User Action: Write-enable the unit and reenter the FMT command.

Disk is an alignment cartridge

Explanation: The device is a factory-created disk used to align
the heads in a disk drive and should not be used for other
purposes.

User Action: Use a disk that is not an alignment cartridge and
reenter the FMT command.

Error limit exceeded

Explanation: The number of errors FMT found on the disk exceeded
either the number of errors specified with the /ERL switch or the
default 256 (10) error limit that FMT sets.

User Action: Set a higher error limit if the /ERL switch was
used.

Error reading data

Explanation: FMT encountered an error when it tried to read data
from a disk.

User Action: None required.
continues the verification.

Error reading header

FMT retries the operation and

Explanat,ion: FMT encountered an error when it tried to read a
header during a verification operation.

User Action: None required.
continues the verification.

5-11

FMT retries the operation and

DISK VOLUME FORMATTER (FMT)

Error setting diskette density

Explanation: FMT tried to format a RX02 floppy disk but the
operation failed.

User Action: Check the syntax and reenter the command, resetting
the density.

Error writing data

Explanation: FMT encountered an error when it tried to write
sector headers.

User Action: None required.
continues the verification.

Error writing header

FMT retries the operation and

Explanation: FMT encountered an error when it tried to write a
header.

User Action: None required. FMT retries the operation.

Failed to attach device

Explanation: FMT could not attach the device to be formatted.

User Action: Determine whether another task has attached the
device. If so, wait until the task exits or abort the task and
run FMT again •

. Failed to read Manufacturer's Bad Sector File

Explanation: A disk hardware error occurred while FMT tried to
read the MDBSF on the last track of a device.

User Action: Reenter the command, including the Override .swi tch
(/OVR) •

Fatal hardware error

Explanation: A fatal error occurred in the system hardware
configuration.

User Action: Contact your DIGITAL Field Service representative.

Header compare error

Explanation: FMT found an error when it tried to compare headers
with the expected value during a verification error.

User Action: None required. FMT retrie~ the operation.

Invalid switch

Explanation: An illegal switch or a switch not valid for the
specified device was used in an FMT command.

User Action: Check the syntax and reenter the command.

5-12

c

(

-----------------'------------------------------------~-~-.-~ .. _--

E--

(,,'

DISK VOLUME FORMATTER (FMT)

Manufacturer's Bad Sector File corrupt

Explanation: The factory-written bad block data file (MDBSF) on
the last track of the disk is in an unusable format.

User Action: Reenter the command with the Override switch (/OVR)
to prevent FMT from trying to use the corrupt bad block data.

Marked bad in Manufacturer's Bad Sector File

Explanation: Indicates that bad block information is recorded in
the MDBSF on the disk.

User Action: None requi red.
information only.

Privilege violation

This message is for your

Explanation: FMT attempted an operation on a device that was
mounted or allocated to another user.

User Action: Reenter the FMT command, using a device that is not
mounted or allocated to another user.

Response out of range

Explanation: Parameters entered for manual formatting of an
individual sector or track were out of the range for the volume.

User Action: Check Table 5-1 (Section
parameters and reenter the command.

Syntax error

5.2.2) for valid

Explanation: FMT detected a syntax error in the command line.

User Action: Determine the correct command syntax and reenter
the command.

Unable to run badblock utility

Explanation: An FMT command specified the Bad switch (/BAD), but
BAD could not be spawned. Either the operating system does not
spawn tasks or BAD is not installed.

User Action: Run the BAD utility separately (see Chapter 6 for
more information).

Unrecoverable error - n

Explanation: An I/O error (number n) caused FMT to terminate.

User Action: Reenter the FMT command and, if the error occurs
again, try the command specifying a different device, or refer to
the error codes in the IAS/RSX-ll I/O Operations Reference
Manual. ---.

5-13

(

(J

(J

C)

CHAPTER 6

BAD BLOCK LOCATOR UTILITY (BAD)

The Bad Block Locator Utility (BAD) tests disks and DECtapes for the
location and number of bad blocks. BAD then records this bad block
information on the volume. Then you use the MCR Initialize Volume
command (INI), which allocates the bad blocks to the file
[O,O]BADBLK.SYS. The bad blocks are marked as in-use and therefore
cannot be allocated to other files.

BAD supports any last-track device as well as vendor-supplied
cartridges that do not have a prerecorded manufacturer's bad-sector
file on the last track (see Sections 6.4.1.1 and 6.4.1.2). You can
use BAD in its task version, which runs at the same time as other
tasks, or in its stand-alone version ([1,5l]BADSYS.SYS), which runs by
itself on the computer. The stand-alone version is required if you
have a system with a single disk drive.

6.1 BAD COMMAND FORMAT

The command line for BAD is in the following format:

dev

/sw

BAD>dev: [jsw] •••

Specifies a physical device. The specification consists of two
alphanumeric characters followed by a 1- to 3-digit octal unit
number and colon.

Specifies an optional switch that qualifies the BAD command line.
Multiple BAD switches for a device must be specified on one line.
If you do not specify any switch, BAD begins its pattern checking
of individual blocks.

6.2 BAD SWITCHES

Table 6-1 contains a reference list of BAD switches along with a brief
description of each. For a detailed description of BAD switches see
Section 6.6.

6-1

--- -.-._---.-- --------------

BAD BLOCK LOCATOR UTILITY (BAD)

Switch

Table 6-1
BAD Switches

Function

For Task and Stand-Alone Versions

/ALLOCATE:volume label
or /ALO:volume label

/LIST
or /LI

/MANUAL
or /MAN

/OVERRIDE
or /OVR

/PATTERN=m:n
or /PAT=m:n

/RETRY

/UPDATE
or /UPD

Prompts you for blocks to be allocated
to BADBLK.SYS and to be entered in the
bad block descriptor file.

Lists bad blocks as they are located.

Prompts you for additional bad
which are entered in the bad
descriptor file.

blocks
block

Creates the bad block descriptor file on
a last-track device.

Specifies the double word data pattern
used to locate bad blocks.

Recovers soft errors.

Reads the bad block descriptor file
and prompts for input.

For Stand-Alone Version Only

/CSR=nnnnnn

/VEC=nnn

/WCHK

/NOWCHK

Specifies the CSR address of a device
that is not in a standard location.

Specifies the interrupt vector address
of a device that is not in a standard
location.

Causes a write check.

Negates /WCHK.

6.3 BAD AND INDIRECT COMMAND FILES

BAD can access an indirect command file that contains a series of BAD
command lines in the following manner:

BAD>@BADCMDS.CMD

In this example, BAD is invoked and accesses the file BADCMDS.CMD,
which contains a sequence of BAD command lines. BAD executes the
comands and returns with the BAD prompt. BAD allows nested command
files -- one command file can invoke another to a maximum depth of
three.

6-2

--~-~--------

(

(

(

(

(

(

BAD BLOCK LOCATOR UTILITY (BAD)

BAD can also be invoked within an indirect command file. Such a
command file can contain command lines for more than one utility and
is accessed by entering only the file specification preceded by the at
sign. For example:

>@INDIRECT.CMD

The default values for indirect command file specifications are:

dev SYO:
ufd The current UIC
file name No default
file type .CMD
version The latest version of the file

For complete information on how to use indirect command files, see the
RSX-llM/M-PLUS MCR Operations Manual.

6.4 PROCESSING BAD BLOCK DATA

This section contains information on how BAD tests the reliability of
disks and DECtapes and formats bad block descriptor entries and how
the MeR INI command uses bad block information.

6.4.1 Verifying Devices

BAD verifies disks and DECtapes by writing a test pattern onto each of
the blocks on the device, reading the pattern into a buffer in memory,
and comparing the pattern written with the pattern read. When BAD
processes a disk or DECtape, all existing data is destroyed.

BAD writes the test pattern to several blocks in a single write
operation. If an error occurs in writing, reading, or comparing any
of these blocks, BAD tests each of the blocks individually. The
/PATTERN switch may be used to specify the double-word test pattern.
Its defaul t values are 165555 (8) and 133333 (8), which are replicated
128(10) times per block. If BAD finds no bad blocks during individual
testing, the error logging subsystem may still log errors due to long
data transfers.

6.4.1.1 BAD and Non-Last-Track Devices - As BAD locates bad blocks,
it stores their addresses in a memory buffer. After locating all bad
blocks on a device, BAD records the addresses of the bad blocks on the
last good block of the device. Consecutive bad blocks are recorded as
single entries. On non-last-track devices, BAD storage allows 126(10)
entries of bad block addresses. If more than the maximum number of
entries is recorded, BAD terminates with an error message. There must
be at least one good block in the last 256(10) blocks of the volume
for BAD to create this file, which is called the bad block descriptor
file.

6.4.1.2 BAD and Last-Track Devices - BAD records bad block
information differently on last-track devices than on non-last-track
devices. Last-track devices include the RK06/07, RL01/02, RP07 and
the RM02/03/05/80. The last track is divided into two areas, the
Manufacturer's Detected Bad Sector File (MDBSF) and the Software
Detected Bad Sector File (SDBSF). The MDBSF is created when the
manufacturer formats the pack. This operation also sets bits in any

6-3

BAD BLOCK LOCATOR DTILITY(BAD)

header that is marked bad in the MDBSF and sets the SDBSF to be empty.
When you run BAD, entries are made in the SDBSF. BAD storage allows
126(10) entries of bad block addresses. The information contained in
the two last-track files is combined to form [O,O]BADBLK.SYS when you
issue the MCR INI command.

6.4.2 Format of Bad Block Descriptor Entries

For non-last-track devices, BAD uses the last good block as a
descriptor file for bad blocks. The address of a bad block, or the
first address in a sequence of consecutive bad blocks, is-stored as a
double-word entry in the bad block descriptor file. The first word of
this double-word contains two entries: the high-order byte contains
the number of bad blocks minus 1 and the low-order byte contains bits
16 through 23 of the logical block number of a bad block or a range of
bad blocks. The second word of the double-word contains bits 0
through 15 of that block number.

For last-track devices, bad block descriptor entries are recorded as a
double-word in the SDBSF. The first word of the double word contains
the address of the cylinder on which the bad block exists. The
high-order and low-order bytes of the second word contain,
respectively, the track and sector addresses of the bad block.

6.4.3 The INI Command and BAD

Use BAD followed by the MCR INI command to produce a Files-II volume.
The INI command uses the bad block information to create the file
[O,O]BADBLK.SYS. The [0,0] BADBLK.SYS file has allocated to it those
blocks found to be bad, thus ensuring that the file system does not
allocate a known bad block to a file.

For information on how to use the INI command, see the RSX-llM/M-PLUS
MCR Operations Manual.

6.5 USING BAD

Before BAD can validate a device, that device must be formatted by the
manufacturer or by FMT (see Chapter 5).

The following example illustrates a typical sequence of steps for
introducing a disk (DKl:) to an RSX-llM or RSX-llM-PLUS system.

ALL DKl: (B@
FMT DKl: [/sw] (B@
BAD DKl: [/sw] !BTIl
INI DKl: [label] [/swJ !BTIl
MOU DKl: [label] [/sw] !BTIl

ALL DKl: !BTIl
MOU DKl:/FOR (8g)
FMT DKl: [/sw] (8g)
BAD DKl: [/sw] (8g)
INI DKl: [label] [/sw] (8g)
DMOU DKl: 00l
MOU DKl: (label] [/sw] (8g)

6-4

----- -----,-

(

(

(

BAD BLOCK LOCATOR UTILITY (BAD)

You may execute BAD while other RSX-llM/M-PLUS tasks are executing.

Note that if the /ALO switch (Section 6.6.1) is used with BAD, the
volume must be mounted as a Files-II device and the user must have a
privileged account.

6.5.1 Programming Considerations

This section contains information you should know before you use BAD.

6.5.1.1 Use of Block Zero - On bootable disks, block zero contains
the bootstrap block. If block zero is bad, BAD prints a message
warning the operator not to use the disk for a bootable system image.

6.5.1.2 Device Controller Errors - The error logging subsystem may
log errors even though BAD is not reporting bad blocks. These errors
may be encountered during long data transfers and may originate with
the device controller.

6.6 BAD SWITCH DESCRIPTIONS

The following sections describe the switches you can use with BAD
commands. The command format is described in Section 6.1.

6.6.1 Switches for Both Task and Stand-Alone Versions of BAD

/ALLOCATE:volume label

/LIST

Causes BAD to prompt you for additional bad blocks which are
added to the bad block descriptor file and allocated to [0,0]
BADBLK.SYS. The /ALLOCATE switch eliminates the need to
reinitialize the disk after updating the bad block descriptor
file. This switch does not cause BAD to write pattern checks.

NOTE

To use this switch, the volume must be
mounted as a Files-II device and the
user must be privileged.

Causes all bad blocks to be printed by number (in decimal) on
your terminal. The bad blocks are listed as BAD performs a data
pattern check on each block. BAD does not list manually entered
blocks that are tested as reliable. This switch is valid for all
devices.

6-5

BAD BLOCK LOCATOR UTILITY (BAD)

/MANUAL

Causes BAD to fi rst prompt you for bad block information and to
then perform data pattern checking. Any block that you enter is
included in the bad block descriptor file or the SDBSF.

/OVERRIDE

Causes BAD to ignore last track information and write a bad block
descriptor file on the last good block before the last track. In
other words, the /OVERRIDE switch causes BAD to treat a
last-track device as a non-Iast-track device. If your device has
no bad block file on the last track, or if you suspect the
reliability of the last track, use the /OVERRIDE switch before
using the MCR INI command. The /OVERRIDE switch is valid only
for last-track devices.

/PATTERN=m:n

NOTE

If you use this switch, the /BAD=[OVR]
option for initializing a volume must
also be used with the INI command to
construct the bad block file
[O,O]BADBLK.SYS. See the RSX-IIM/M-PLUS
MCR Operations Manual for a description
Of the MCR INI command.

Causes BAD to locate bad blocks by means of a user-specified
double word data pattern.

The variable m:n represents the two 16-bit octal numbers used as
the double word data pattern. A decimal number may be specified
by placing a period after the number.

/RETRY

Causes BAD to attempt a recovery of hardware errors by
the device driver. This also means that soft errors,
ECC (Error Correction Code) correctable error, will be
and the block will be marked as good.

/UPDATE

means of
such as an

recovered

Causes BAD to immediately read the bad block decriptor file and
prompt you for additional bad blocks. This switch does not cause
BAD to write pattern checks.

NOTE

Updating the bad block descriptor file
on file-structured volumes does not
cause the file [O,O]BADBLK.SYS to be
updated.

Examples of the /MANUAL, /ALLOCATE and /UPDATE Switches, which require
user input, are described in the following sections.

6-6

c

(

(

c

(

BAD BLOCK LOCATOR UTILITY (BAD)

6.6.2 The /MARUAL, /ALLOCATE and /UPDATE Switches: Exa.ples

If you enter bad blocks by using the /MANUAL, /ALLOCATE or /UPDATE
switches, BAD will prompt you as follows:

BAD>LBN (S) =

You may then enter bad blocks in the format:

blocknum:number

The variable number specifies the number of sequential bad blocks
beginning at the specified block number blocknum. The colon is
required when you specify a sequence of bad blocks in this format.
Both blocknum and number default to decimal values unless preceded by
a pound sign (i), which indicates an octal value. For example:

BAD>LBN(S)=70:3®ill

This command enters the block numbers 70, 71, and 72 in the bad block
descriptor file. If you are using the /ALLOCATE switch, the blocks
are also allocated to [O,O]BADBLK.SYS.

You can also specify a single bad block. For example:

BAD>LBN (S) = 3 ®ill

This command enters block 3 in the bad block descriptor file. The
/ALO switch also allocates block 3 to BADBLK.SYS.

You can use both of these forms on the same command line. For
example:

BAD>LBN(S)= 100:.2,3, 200:100 45:1

This command enters blocks 100, 101, 3, 200 through 299, and 45 in the
bad block descriptor file. The /ALO switch also allocates these
blocks to [0,0] BADBLK.SYS. You can separate bad block sequences with
a space, tab, or comma.

If you are using the Manual or Update switches, and enter a carriage
return in response to the prompt, BAD will list all the sequences in
the bad block descriptor file. For example:

BAD>LBN (S) = ®ill
000100: 002
000003:001
000200:100
000045:001

BAD>LBN (S) =

The first number in the display represents the beginning block of the
sequence. The second number represents the number of bad blocks. Bad
block numbers are listed in decimal.

6-7

BAD BLOCK LOCATOR UTILITY (BAD)

If you are using the /ALLOCATE switch and enter a carriage return in
response to the prompt, BAD will list all the LBNs allocated to
BADBLK. SYS before it will list the LBNs in the bad block descriptor
file. For example:

BAD)LBN(s) = ~

LBNs allocated to BADBLK.SYS =

004799:001
000100:002
000003:001
000200:001

LBNs in BAD BLOCK File =

000100:002
000003:001
000200:001
000045:001

BAD) LBN (s) =

In this example, LBNs 100, 101, 003, and 200 are allocated to [0,0]
BADBLK. SYS, as is LBN 4799 which is the LBN for the bad blo1ck
descriptor file on this particular disk. Note that the LBN for the
bad block descriptor file does not appear in the Bad Block file.
However, this disk has one LB-N (LBN 45) which is contained in the Bad
Block file but is not yet allocated to [0,0] BADBLK.SYS. You can now
allocate LBN 45 by entering it in response to the LBN(s)= prompt.
(The "Dupl icate block number" message will appear because the LBN
already exists in the Bad Block file.)

When a bad block sequence is entered, BAD determines if these bad
blocks are adjacent to an already existing sequence. If you are using
a non-last-track device, BAD appends your bad block entry to the
existing sequence. If you are using a last-track device, BAD records
individual bad blocks in core memory, but lists entries at your
terminal as part of existing bad block sequences.

When you have finished supplying information for the /MANUAL,
/ALLOCATE, or /UPDATE switch, enter ESCAPE, ALTMODE, or CTRL/Z in
response to the prompt. The bad block descriptor file will then
either be rewritten with the new bad block information (if you are
using the /UPDATE or /ALLOCATE switch) or pattern checking will start
(if you are using the /MANUAL swi tch). Blocks that you enter manually
and that BAD decides are reliable are included in the bad block
descriptor file.

6.6.3 Switches for Stand-Alone System Version Only

/CSR=nnnnnn

The variable nnnnnn is a new CSR address.

This switch allows you to specify the CSR address of the device
so that it conforms to that of the device in the user's system.
The /CSR switch remains in effect and need not be repeated if
more command lines are issued.

6-8

c-

c

(

(,

(

c

(

BAD BLOCK LOCATOR UTILITY (BAD)

/VEC=nnn

The variable nnn is a new interrupt vector address.

This switch allows you to specify the interrupt vector address so
that it conforms to the vector address of the device in the
user's system. The /VEC switch remains in effect if more command
lines are issued.

/WCHK

This switch causes a write-check operation to occur after each
write operation. The switch is not available for DT:-, DX:-, or
DY:-type devices.

/NOWCHK

This switch negates the /WCHK switch.

BAD expects to see all switches on a single command line.
example:

BAD>DM3:/0VR/LI/VEC=300/CSR=174406

For

This command line locates all bad blocks on DM3:, ignores the
last-track data, lists all bad blocks, specifies 300 as the interrupt
vector, and specifies 174406 as the CSR address. All switches are
validated for proper syntax before the actual bad block detection
takes place.

6.7 DEVICES SUPPORTED BY BAD

The devices in Table 6-2 are supported by the stand-alone version of
BAD. If you have a task version of BAD, the Executive will support
any device suitable to your system's configuration.

Table 6-2
Devices Supported by Stand-alone BAD

Mnemonic Type CSR vector

DB RP04/05/06 176700 254

DD TU58 DECtape II 175600 300

DF RFll Fixed-Head Disk 177460 204

DK RK03/05/05F Cartridge Disk 177404 220

DL RLOI/RL02 Cartridge Disk Pack 174400 160

DM RK06/07 Cartridge Disk Pack 177440 210

DP RPR02/RP02/03 Disk Pack 176714 320 1

1. Nonstandard Vector Address
(continued on next page)

6-9

BAD BLOCK LOCATOR UTILITY (BAD)

Table 6-2 (Cont.)
Devices Supported by Stand-alone BAD

Mnemonic Type CSR Vector

DR RM02, and RM03, 176700 340 1
RM05, RMSO, RP07 Disk Pack

DS RS03/04 172040 310 1
-

DT TU56 DECtape 177342 214
,

DU RASO Fixed Media Disk 177510 154

DX RXOI Floppy Disk 1771 70 264

DY RX02 Floppy Disk 177170 350 1

EM MLH Electronic Memory 172000

1. Nonstandard Vector Address

6.S BAD MESSAGES

This section lists the BAD messages, gives a brief description of the
condition that causes each message, and suggests a response to the
condition. BAD messages are arranged alphabetically beginning with
the text following the device symbol (ddu:).

BAD --ddu: Allocation Failure

Explanation: BAD failed to allocate the block number sequence
you entered. The I/O failed for a reason other than because the
block number was already allocated to another file. This message
applies to the /ALLOCATE switch only.

(i

c--

c-

User Action: Either the volume is bad or the drive requires
maintenance. Use another volume or contact your DIGITAL Field
Service Representative to fix the drive. (

BAD -- ddu: Bad block file not found

Explanation: The bad block descriptor file could not be read in
/UPDATE mode.

User Action: You must use the device without updating the bad
block file, or reformat the device and destroy all data.

BAD -- ddu: Bad block file overfl~w

Explanation: BAD detected more than 126(10) entries of bad
blocks. This message usually indicates a device unit failure.

User Action: Either the volume is bad or the drive requires
maintenance. Use another volume or contact your DIGITAL Field
Service Representqtive to fix the drive.

6-10

(

(

(-

BAD BLOCK LOCATOR UTILITY (BAD)

BAD -- ddu: Bad block found - LBN= nnnnnn.

Explanation: Bad blocks are reported in this format, where LBN
is the Logical Block Number (decimal).

User Action: None. This message is informational a~d applies to
the /LI switch only.

BAD -- ddu: Block already allocated - LBN= numb

Explanation: The block number sequence you entered is already
allocated to a file (the file mayor may not be BADBLK. SYS) • The
value numb is the sequence you entered. The block sequence
indicated by numb and list of block numbers which follow numb
were neither allocated to [O,O]BADBLK.SYS nor entered into the
bad block descriptor file. This message only applies to the
/ALLOCATE switch.

User Action: Reenter the command line with another value.

BAD -- ddu: Block 0 bad - Do not use as system disk

Explanation: This is a warning message.
a bootstrap block cannot be written
useless as a system disk.

When block zero is bad,
on the disk, making it

User Action: Label the disk to ensure that no one attempts to
use it as a system disk.

BAD -- Command I/O error

Explanation: BAD did not recognize the command line entered from
the keyboard.

User Action: Reenter the command line.

BAD -- Command too long

Explanation: The command was longer than 80. characters.

User Action: Reenter the command line.

BAD -- ddu: CSR address not in system

Explanation: Self-explanatory. This message occurs only in the
stand-alone system version of BAD.

User Action: Reenter the command line, specifying the proper
value for the /CSR switch.

BAD -- ddu: Device offline

Explanation: In the stand-alone version of BAD, the specified
device is not in the hardware configuration, or the /CSR switch
is improperly set.

User Action: Reenter the command line, setting the CSR and
Vector addresses for the device to the proper addresses.

6-11

BAD BLOCK LOCATOR UTILITY (BAD)

BAD -- Duplicate block number - numb

Explanation: The
present in the
you entered. BAD
entered after the

block number sequence you entered
bad block file. The value numb is
ignores any block number sequences
duplicate block numbers.

is already
the sequence
you may have

This message applies only to the /ALLOCATE, /MANUAL and /UPDATE
switches. If this message appears when using the /ALLOCATE
switch, it means that the block number which was allocated to
[O,O]BADBLK.SYS already existed in the bad block descriptor file.

User Action: Reenter the command line with another value. This
message applies to the /MANUAL, /ALLOCATEand /UPDATE switches
only.

BAD -- ddu: Failed to attach

Explanation: BAD could not gain control of the device to be
tested.

User Action: Determine if another task has attached the device.
If so, wait until the task exits or abort the task to gain
control of the device for BAD.

BAD -- ddu: Failed to read BADBLK.SYS header

Explanation: Self-explanatory. This message only applies to the
/ALLOCATE switch.

User Action: The disk must be initialized using the MCR INI
command.

BAD -- ddu: Failed to read Manufacturer's Bad Sector File

Explanation: A disk-read hardware error occurred while BAD was
attempting to read the factory-written bad block data on the
last-track device cartridge.

User Action: Reenter the command line with the /OVERRRIDE switch
incl uded.

BAD -- ddu: Failed to read Software Bad Sector File

Explanation: The software-detected bad sector file could not be
read in update mode.

User Action: Reenter the command line with the /OVERRIDE switch
included.

BAD -- ddu: Failed to write Bad Block File

Explanation: BAD could not write the bad block file.
condition usually results from a disk write error.

This

User Action: Reenter the command line. If the problem persists,
the disk pack should be discarded.

6-12

(

e--

(i

(

(

(

(

BAD BLOCK LOCATOR UTILITY (BAD)

BAD -- ddu: Fatal hardware error

Explanation: Self-explanatory.

User Action: Contact your DIGITAL Field Service representative.

BAD -- ddu: Handler/Driver missing

Explanation: The disk driver is not loaded.

User Action: Load the disk driver and reenter the command line.

BAD -- ddu: Home block not found

Explanation: BAD was unable to read the
attempting to validate the volume label.
applies to the /ALLOCATE switch.

home block while
This message only

User Action: The disk must be initialized using the MCR INI
command.

BAD -- ddu: Illegal device

Explanation: The device to which bad block processing is
directed does not support a Files-II structure.

User Action: You must reformat your device before running BAD.

BAD -- Invalid block number - numb

Explanation: You entered an invalid block number sequence.
value numb is the invalid sequence.

The

User Action:
This message
switches only.

Type another value and reenter the command line.
applies to the /MANUAL, /ALLOCATE or /UPDATE

BAD -- Invalid switch

Explanation: Self-explanatory

User Action: Reenter the command line with a proper switch.

BAD -- ddu: Is an alignment cartridge

Explanation: The factory-written label on the last track of a
last-track device cartridge indicates an alignment cartridge (for
use only by Field Service).

User Action: Mount and process another cartridge.

BAD -- ddu: Manufacturer's Bad Sector File corrupt

Explanation: The factory-written bad block data in the last
track of a last-track device is in an inconsistent format.

User Action: Reenter the command line with the /OVERRIDE switch
incl uded.

6-13

BAD BLOCK LOCATOR UTILITY (BAD)

BAD -- ddu: Not in system

Explanation: The requested device was not made part of the
system during system generation, or the device does not exist on
the host configuration.

User Action: Ensure that you entered the command line correctly
and specified the right device.

BAD -- ddu: Not ready

Explanation: The unit had not reached operating speed when BAD
attempted to access it.

User Action: Allow the unit to reach operating speed, then
reenter the command line.

BAD -- ddu: Privilege violation

Explanation: An operation was attempted for a device that was
mounted or allocated to another user.

User Action: Allocate another device, mount the device (if
necessary) , and reenter the command line.

BAD -- Syntax error

Explanation: BAD detected a syntax error on the command line.

User Action: Determine the correct syntax and reenter the
command line.

BAD -- ddu: Total bad blocks = n.

Explanation: This is an information message indicating the total
number (in decimal) of bad blocks on the volume.

User Action: Write the bad blocks count on the volume label.

BAD -- ddu: Unrecoverable error n

Explanation:
[n] is the
driver.

An I/O error caused BAD to terminate. The value
error code number of the I/O error returned by the

User Action: See the IAS/RSX-ll I/O Operations Reference Manual
for an explanation of the error code number. If the same error
persists, contact your DIGITAL Field Service representive.

BAD -- ddu: Vector not multiple of four

Explanation: Self-explanatory.

User Action: Reenter the command line including the /VEC switch
with the proper value.

6-14

(

t~

(

e-

c

BAD BLOCK LOCATOR UTILITY (BAD)

BAD -- ddu: Volume label incorrect

Explanation: The volume label entered with the /ALLOCATE switch
did not match the label on the disk.

User Action: Reenter the command line using the correct volume
label.

BAD -- ddu: Write locked

Explanation: The unit is write-locked.

User Action: Write-enable the unit and reenter the command line.

6-15

c

(

e

o

o

o

CHAPTER 7

BACKUP AND RESTORE UTILITY (BRU)

The Backup and Restore Utility (BRU) allows you to back up and restore
Files-II volumes. You can use BRU to transfer files from a volume to
a backup volume (or volumes) to ensure that a copy of the files is
available in case the original files are destroyed. If the original
files are destroyed, or if for any other reason the copy needs to be
retrieved, you can restore the backup files with BRU. In the process
of copying, BRU also reorganizes and compresses files for efficient
storage and access.

You can use BRU stand-alone as well as on-line. BRU64K is the
stand-alone version on RSX-llM and BRUSYS is the stand-alone version
on RSX-llM-PLUS.

Backup and restore operations tak~ place on disk and magnetic tape
volumes:

• Disk to tape for backup operations

• Tape to disk for restore operations

• Disk to disk for either backup or restore operations

In addition to these basic data transfer functions, BRU provides
command qualifiers that:

• Initialize disks

• Perform selective backup .and restore operations

• Control tape processing such as density, length, rewinding,
appending, and labeling according to the American National
Standard (ANS) X.327-l978

• Perform volume and data checking

• Display information such as backup set names and file names

Section 7.9 contains examples of various BRU operations.

I

BRU can also be invoked through the DCL .BACKUP command. For more I
information, see the RSX-llM/M-PLUS Command Language Manual.

7.1 ON-LINE BRU DISK AND TAPE DEVICE INFORMATION

BRU uses disk and tape volumes for its backup and restore operations.
Input disks must be in Files-II format. For tapes and multivolume I
backup disks, BRU has its own format.

7-1 Apri 1 1983

============~=~~~'----"=""'--.=------=-... =.--=--= ... ~. ~-. -~~--=-.~-. = .. =.-=.-=.--=-.=-~.-=-.-=-=-.=--=-.. ~=--=.=.-.= .. -= .. =-_._=-=---='-='-=.-"::=:':==::'::::""="-=--=-=-::::-=,'=-.=--.~=.~~-=--.""'~""""--

I

I

I

I

I

•

BACKUP AND RESTORE UTILITY (BRU)

BRU backs up from unmounted, mounted, and mounted foreign disk
volumes.

BRUdoes not use the file system on input disks. However, r"hen you
are using a mounted volume for a backup operation, BRU checks the read
access privileges of UFDs and files against the UIC under which BRU is
running. To back up from a mounted disk volume that is. in Files-11
format, you must specify the /MOUNTED qualifier. For unmounted disks
or disks mounted foreign, no qualifier is necessary.

BRU also restores to unmounted and mounted disk volumes. Specify the
/INITIALIZE qualifier to restore to an unmounted volume on an RSX-11M
system or a volume mounted foreign on an RSX-11M or M-PLUS system.
Th.is qualifier initializes the volume to Files-II format. To restore
to a mounted Files-11 volume on either system, specify the
/NOINITIALIZE qualifier to indicate toBRU that the disk is mounted
and already in Files-11 format.

BRU backs up to and restores from tape volumes. The tapes must be
unmounted or mounted foreign on RSX-11M or mounted foreign on
RSX-IIM-PLUS. No qualifier is necessary in either case.

Table 7-1 summad.zes how to initialize and mount a volume on each
·system. BRU returns an error message for any wrong combination of
conditions.

Table 7-1
Mounting and Initializing Volumes

System Volume Mount Status Mandatory Qualifier
.

RSX-llM Input disk Not mounted None
Mounted Files-ll /MOUNTED
Mounted foreign None

Output disk Not mounted /INITIALIZE
Mounted Files-ll /NOINITIALIZE
Mounted foreign /INITIALIZE

Input tape/ Not mounted None
output tape Mounted foreign None

RSX-llM-PLUS Input disk Mounted foreign None
Mounted Files-ll /MOUNTED

Output disk Mounted foreign /INITIALIZE
Mounted Files-II /NOINITIALIZE

Input tape/ Mounted foreign None
output tape

For more detailed information on FileS-II, refer to the IAS/RSX-ll I/O
Operations Reference Manual.

With BRU, you can also specify that a disk volume contain up to 65,500
(64K-36) files. The default is the value assigned to the input disk.
See the descriptions of the /HEADERS and /MAXIMUM qualifiers in
Section 7.4 for· more information.

7-2 April 1983

()

c

c

Ci

c

(~ ..

(

(

(

BACKUP AND RESTORE UTILITY (BRU)

7.1.1 Backup Sets

A backup set consists of all the data directed to or from a tape or
disk volume (or volumes) during a single backup or restore operation.
Physically, more than one backup set may be contained on a tape or
disk, or a backup set can extend over several tapes or disks.

7.1.2 Tape Sets and Disk Sets

More than one backup set can be contained on a tape
backup set can extend over several tapes or disks.
the resulting output is called a tape or disk set.

or disk, or a
In either case,

A tape or disk set consists of the tape or disk volume (or volumes) to
which data is transferred during a single backup operation.

7.1.2.1 Tape and
classifications of
You can classify a
or disk you are
medium.

Disk Backup Operations - There are several
disk and tape backup operations to choose from.

backup operation by how much of the original tape
backing up and also by the format of the output

The following backup operations are available to you:

• Full backup

• Selective backup

• Conventional backup

• Image backup (for disks only)

A full backup or a selective backup refers to the files you are
backing up. A conventional backup or an image backup refers to the
format of the output tape or disk. When you choose to do either a
full backup or a selective backup, you mayor may not also choose to
do a conventional backup or an image backup.

The following sections explain the different kinds
operations.

of backup

7.1. 2.2 Full and Selective Backup Operation - A full backup transfers
all the original files to a backup volume (or volumes). Thus, a full
backup ensures that you have a complete copy of the original disk.

A selective backup is a partial backup.
a subset of the original tape or disk
identify the files to be b*cked up
specification.

If you do a selective backup,
is backed up. You select and
by UFO, date, or file

One type of selective backup is the incremental backup. An
incremental backup is a backup of files by date only. Incremental
backups and selective backups are helpful over a short time span when
a full backup would take up too much time or system resources.

7-3 April 1983

I

I

BACKUP AND RESTORE UTILITY (BRU)

7.1.2.3 Conventional Backup Operation - A conventional backup to tape
copies the files from the original disk to a backup set on a BRU
format tape. The backup set can span multiple tapes and you can
append additional backup sets to a volume (or volumes). You cannot
access the files in the backup set directly. Therefore, you must
restore the backup set to disk before you can access the individual
fileS contained in it.

A conventional backup to disk copies the files from the
to another Files-II disk. You can access the files on
or the output disk directly, eliminating the need to
operation.

original disk
the input disk
do a restore

If the output disk already has a Files-II structure, you can add the
files from the original disk. If the output disk does not have a
Files-II structure, you must use BRU with the /INITIALIZE qualifier to
create a Files-II structure on the output disk.'

7.1.2.4 Image Backup to Disk Operation - An image backup to disk
copies the original disk to a container file on another Files-II disk
(or disks). Image backups are used for multivolume backup operations.

A disk container file has features similiar to features of tapes
created by a conventional backup to tape. A disk container file can
span multiple disks, and you can add several backup sets to a
container file.

f--

c

If you want to do a backup operation, you must specify the SAVE option
with the /IMAGE qualifier. If you want to do a restore operation, you
must specify the RESTORE option with the /IMAGE qualifier. In order
to access the files in a backup set, you must restore the backup set (-
to another disk. (See Section 7.4 for a description of command .
qualifiers.)

If the output disk already has a Files-II structure, you can add the
container file to it. If the output disk does not have a Files-II
structure, BRU creates its own structure on the disk with the
container file.

7.1.3 Multivolume Tape and Disk Operations

When you specify a magnetic tape drive as the output device or when
you specify a disk for an image backup in a BRU operation, BRU
transfers the data contents of the input disk to the tape or disk on
the drive. This data transfer often involves more than one reel of
tape or more than one disk and may use more than one tape or disk
drive.

You can specify more than one type of drive in a single BRU command.
However, although you can specify up to eight drives per command, you
can specify an individual tape or disk drive only once.

If the number of volumes required exceeds the number available, BRU
lets you replace tapes or disks on the specified drive in round-robin
fashion.

You can only use all 7-track or all 9-track tapes in a multivolume

(

tape set. You cannot switch from one track type to the other wi thin ("
the set. "-

7-4 April 1983

(

c

---------------------~~ ... -- ~~= -------~- - -- ._ .••. _.-
-=-o-,'_~-..,.__,_~ .. -----.. -.----:__:--_:"= _ _:----_:_:::__=__=_:_~ _ __ _ ___ _ _____ ~ __________________________________ _

BACKUP AND RESTORE UTILITY (BRU)

You can only use the same disk types when backing up to multiple disk I
in image mode. You cannot mix disks.

7.1.4 Supported Devices

Table 7-2 lists all the devices that on-line BRU supports. The disks I
from DB through EM are all block-structured devices.

Mnemonic

DB

DD

DF

DK

DL

DM

DP

DR

DS

DT

DU

DX

DY

EM

MF

MM

MS

MT

7.2 COMMAND LINES

Table 7-2
Devices Supported by On-Line BRU

Type

RHl1/RP04/RP05/RP06 or RH70/RP04/RP05/RP06 disk
pack

TU58 cassette (DECtape II)

RFll/RS1l fixed head disk

RKll/RK05/RK05F cartridge pack

RLll/RLOl/RL02 cartridge disk

RK6ll/RK06/RK07 cartridge disk

RPll/RP02/RP03 disk pack

RH70/RM03/RM05/RM80/RP07 or RHll/RM02 disk pack

RHll/RS03/RS04 or RH70/RS03/RS04 fixed head disk

TCll/TU56 DECtape

RA80/RA60/RA8l/RC25/RD5l/RX50 disk

RXl1/RXOl floppy disk

RX2ll/RX02 floppy disk

MLl1 electronic memory

TM78/TU78 magnetic tape

RHll/TM02-03/TE16/TU16/TU45/TU77 and
RH70/TM02-03/TE16/TU16/TU45/TU77
9-track magnetic tape

TSll/TSV05/TU80 magnetic tape

TM1l/TElO/TUlO 7- or 9-track magnetic tape or
TS03 9-track magnetic tape

This section describes the rules for entering command lines for BRU.
The section defines the command line syntax and describes prompts,
command line parameters, and command qualifiers.

7-5 April 1983

•

•

•

------- --- - ----~~~~------- -- -- ~------~---

,------,,------~ -----.

I

I

BACKUP ANO RESTORE UTILITY (BRU)

7.2.1 Command Line Syntax

BRU command lines have a maximum length of 256(10) characters except
in one case of using continuation lines (see Section 7.2.2.2). The
general syntax of the BRU command line is:

BRU>/qualifier(s) indevicel:, ••• [filespec, •••] outdevicel:, •••

However, if you type only

>BRU@ill

the following three prompts appear on the terminal:

FROM

TO

FROM:

TO:

INITIALIZE [Y/N]:

Requests that you enter the name (or names) of the devices on
which the input volume (or volumes) reside. The names should
be in the form specified in the description of the command line
parameters (see Section 7.2.2). If you want, you may specify a
UIC, but this is not required.

Requests that you enter the name (or names) of the output
devices. The names should be in the form specified in the
description of the command line parameters (see Section 7.2.2).
The UIC should not be specified in the command line because BRU
tries to copy the entire UIC.

INITIALIZE [YIN]

Enter Y (for YES) if you want to initialize the output volume.

Enter N (for NO) if you do not want to initialize the output
volume.

There is no default answer. You must respond with either Y or
N.

7.2.2 Command Line Parameters

The parameters for BRU command lines are qualifiers,
specifications, and file specifications.

/qualifier(s)

device

Specifies any of the command qualifiers listed in Section 7.3.
If two or more qualifiers are specified, they must be
contiguous, that is, separated with a slash only. The
qualifiers can appear in any order.

You can use a shorter form of a qualifier as long as it is
unique. All BRU qualifiers are unique to three characters.
For example:

BRU>/REW/INI/OUT:BACKUP MMO: OBO:

7-6 April 1983

(

c

c

c

(

(

(

(

(

BACKUP AND RESTORE UTILITY (BRU)

When a qualifier has options, you must separate the qualifier
from the option by a colon in the form:

/qualifier:option

indevice

Specifies the physical device (or devices) from which data is
transferred. For tapes and for disks (if you are using the I
/IMAGE qualifier) you can specify more than one input device
and more than one type of drive. Devices are specified in the
form:

dd [nn] :

The variable dd represents the device mnemonic and nn
represents the octal unit number associated with that device.
The unit number is specified as one or two digits; the default
unit number is O. For example, a TU77 tape drive can be
referenced as MMOO:, MMO:, MM:, MM01:, MM1:, and so forth,
depending on your configuration. The colon is a required
delimiter.

Separate the device specifications with commas when you specify
more than one device.

filespec

Indicates the file specification used to select particular
files or categories of files to be backed up or restored. The
file specification is in the following format:

[ufd]filename.filetype;version

You can specify up to 16(10) file specifications in each
command line. When you enter a command line with no file
specifications, all the files on the input volume are copied to
the output volume.

Files can be backed up or restored selectively by UFO, file
name, file type, or version number. When backing up or
restoring selectively by version number, you must specify
either an explicit version number or no version number at all
or a wildcard (*). The wildcard has the same effect as no
version number. BRU does not support 0 or -1 as version
numbers.

outdevice

Specifies the output device to which data is being transferred.
For tapes and for disks (if you are using the /IMAGE qualifier) I
you can specify more than one output device. The form is the
same as for indevice (described previously).

7.2.2.1 Wildcards in Input Specifications - The following wildcard
(*) features are provided for input file UFD specifications:

[*,*] means all group,member combinations.
[nl,*] means all member numbers for group nl.
[*,n2] means all group numbers for member n2.

BRU also supports the wildcard in the remaining elements of a
specification: file name, file type, and version number.

file
BRU

7-7 April 1983

I

BACKUP AND RESTORE UTILITY (BRU)

generally follows
RSX-llM/M-PLUS MCR
instances:

the rules for use of wildcards (see the
Operations Manual), except in the following two

• When you omit a file specification element, BRU treats the
omitted element as if it were a wildcard. For example, when
you specify only file name and file type in a file
specification, all version numbers are transferred in the
backup or restore operation. However, when you omit the
UFD, it defaults to your current UIC.

• When you specify particular UFDs on a command line but do
not specify file names and/or file types, all the files in
those UFDs are transferred in the backup or restore
operation. That is, you do not have to specify [ufd]*.*.

7.2.2.2 Continuation Lines - BRU command lines have a maximum
length of 256 (10) char.acters. BRU allows you to continue a command
line onto more than one line by using a hyphen (-) as the
continuation character.

Section 7.9 gives examples of continuation lines on RSX-llM and
RSX-llM-PLUS.

7 • 3 SUMMARY OF COMMAND QUAL IF I.ERS, OPT IONS, AND DEFAULTS

Table 7-3 lists the command qualifiers available for backup and
restore operations. For a detailed explanation of each qualifier,
see Section 7.4. Examples of using various qualifiers are given in
Section 7.9.

Table 7-3
Summary of BRU Command Qualifiers

Command Qualifiers Options Default

/APPEND None

/BACKUP SET:name Volume name - of the disk
being backed
up

(continued on next page)

7-8 April 1983

(

(-

c

(

c

BACKUP AND RESTORE UTILITY (BRU)

Table 7-3 (Cant.)
Summary of BRU Command Qualifiers

Command Qualifiers Options

/BAD:

/BUFFERS:number

/COMPARE

/CREATED:

/DENSITY:number

/DIRECTORY

/DISPLAY

/ERRORS:number

/EXCLUDE

/EXTEND:number

/HEADERS:number

/IMAGE:

/INITIALIZE

/INVOLUME:name

/LENGTH:number

MANUAL
AUTOMATIC
OVERRIDE

BEFORE: (dd-mmm-yy hh:mm:ss)·
BEFORE:dd-mmm-yy
BEFORE:hh:mm:ss
AFTER: (dd-mmm-yy hh:mm:ss)
AFTER:dd-mmm-yy
AFTER:hh:mm:ss

SAVE
RESTORE

Default

BAD:AUTOMATIC

Number of
FCBs from the
input disk

None

Current date

Default
density of
drive

None

None

/ERRORS:25.

None

Number of
blocks from
the input
disk

Number of
headers
allocated
to the input
volume

None

None

None

The length of
the output
tape

(continued on next page)

7-9 April 1983

I

BACKUP AND RESTORE UTILITY (BRU)

Table 7-3 (Cont.)
Summary of BRU Command Qualifiers

Command Qualifiers Options

/MAXIMUM:number

/MOUNTED

/NEW_VERSION

/NOINITIALIZE

/NOPRESERVE

/NOSUPERSEDE

/OUTVOLUME:name

/POSITION:

/PROTECTION:

/REVISED:

/REWIND

/SUPERSEDE

/TAPE_LABEL:label

/UFD

/VERIFY

/WINDOWS:value

BEGINNING
MIDDLE
END
BLOCK:number

SYSTEM:value
OWNER:value
GROUP:value
WORLD:value

BEFORE: (dd-mmm-yy hh:mm:ss)
BEFORE:dd-mmm-yy
BEFORE:hh:mm:ss
AFTER: (dd-mmm-yy hh:mm:ss)
AFTER:dd-mmm-yy
AFTER:hh:mm:ss

7-10

Default

Maximum
number of
files allowed
on input the
volume

None

/NOSUPERSEDE

None

None

/NOSUPERSEDE

Input disk
volume name

Index file
position on
the input
disk

Protection of
the input
disk

Current date

None

/NOSUPERSEDE

None

None

None

Number of
mapping
pointers on
the input
disk

(

(

(

(

(

(

(

c

BACKUP AND RESTORE UTILITY (BRU)

7.3.1 Command Qualifier Functions

When you initialize a disk using the BRU /INITIALIZE qualifier, use
the following qualifiers to specify various characteristics for the
output disk.

/BAD

/BUFFERS

/EXTEND

/HEADERS

/MAXIMUM

/NOPRESERVE

/OUTVOLUME

/POSITION

/PROTECTION

/WINDOWS

The /MOUNTED command qualifier allows you to copy files from a mounted
disk.

The following command qualifiers allow you to copy files to a mounted
disk with various results. Note that these qualifiers are not
available in stand-alone BRU (see Section 7.5).

/NEW_VERSION

/NOINITIALIZE

/NOSUPERSEDE

/SUPERSEDE

/UFD

The following command qualifiers allow you to backup or restore data
according to:

• File specification

• Date and time of creation

• Date and time of revision

The qualifiers are:

/CREATED

/EXCLUDE

/REVISED

The following qualifiers allow you to control backup and restore tape
processing:

/APPEND
,

/BACKUP_SET

/DENSITY

/ERRORS

/LENGTH

/REWIND

/TAPE_LABEL

7-11

I

I

BACKUP AND RESTORE UTILITY (BRU)

The following command qualifiers allow you to detect differences
between data on the input volume and data on the output volume:

/COMPARE

/INVOLUME

/VERIFY

The /DIRECTORY and /DISPLAY command qualifiers display information
about the files being transferred.

The /IMAGE command qualifier is for both disk image backups and all
restore operations.

7.4 DESCRIPTIONS OF COMMAND QUALIFIERS

The following paragraphs describe the BRU command qualifiers in
detail.

/APPEND

Directs BRU to append a backup set from the input disk volume to
the last backup set on the output tape, or on the output disk if
you are using the /IMAGE qualifier.

If the output tape was positioned at the beginning the /APPEND
qualifier causes BRU to skip to the logical end-of-tape before it
writes the new backup set. BRU searches the output volume for
the last logical end-of-file.

If the output tape is already positioned at the logical
end-of-tape, /APPEND causes BRU to start writing where the device
is currently positioned.

If the output tape is not positioned at the beginning, or
is not at the logical end-of-tape, you can use the
qualifier with /APPEND to rewind the tape and then space
until the logical end-of-tape.

if it
/REWIND
forward

If the tape is a continuation tape (that is, not the first tape
in a set) or if the last backup set does not end on the tape, BRU
displays an error message.

If the output device is a disk and you are using the /IMAGE
qualifier, /APPEND causes BRU to check the container file header
for the logical end-of-file on the output disk. BRU then starts
writing at the logical end-of-file.

If the output disk is a continuation disk (that is, not the first
disk in a set) or if the last backup set does not end on the
disk, BRU displays an error message.

You cannot use the /APPEND qualifier during a backup operation to
a mounted disk.

7-12 April 1983

----------------------------------~~~---~---~~~-

(

c

(

c

(---

(

(

BACKUP AND RESTORE UTILITY (BRU)

/BACKUP_SET:name

Specifies the name of the backup set (refer to Section 7.1.1) to
be placed on tape or disk. For tape and for an unmounted disk,
the default name is the volume name of the disk being backed up.
This name may be up to 12(10) characters long. For a mounted
input or output disk during an image backup or restore operation,
you can specify the full backup set file name with the
/BACKUP SET qualifier. If you do not specify the file name, the
default-is [O,O]BACKUP.SYS. .

When applied to an output volume, the backup set name assigns the I
name of the backup set being placed on the volume. BRU supports
multiple backup sets on a single volume.

When this qualifier is applied to an input tape volume, BRU
searches the first tape for the specified backup set name. If
you do not specify a backup set name with the input volume, BRU
restores the first backup set it finds on the tape. You can
restore several sequential backup sets from the same tape without
rewinding the tape between BRU operations. BRU does not rewind
the first device in a backup set unless you specify the /REWIND
qualifier.

When this qualifier is applied
searches the entire disk for
backup set is then restored in
you provided.

/BAD:AUTOA.ATIC
OVERRIDE
A.ANUAL

to an input disk volume, BRU
each backup set you specify. Each
the order of the backup set names

The /BAD qualifier creates the file BADBLK.SYS on the output
disk. The qualifier is used with the /INITIALIZE qualifier
during tape-to-disk or disk-to-disk operations.

For complete information on how to use the options for /BAD, see
Section 7.6. The following are summary descriptions only.

For last-track devices, the AUTOMATIC option causes BRU to use
the manufacturer-written bad block information and the
software-detected bad sector file to create BADBLK.SYS. For
nonlast-track devices, it uses the software bad block descriptor
block to create BADBLK.SYS. AUTOMATIC is the default option.

The OVERRIDE option applies only to last-track devices, causing
the last-track device to appear to be a nonlast-track device.
When OVERRIDE is specified, BRU uses the software bad block
descriptor block to create BADBLK.SYS and ignores the
manufacturer-written information.

The MANUAL option accepts the addresses of bad blocks you enter
interactively at your terminal. It also specifies that BRU use
either the manufacturer-written bad block information and the
software-detected bad sector file (for last-track devices) or the
bad block descriptor block (for nonlast-track devices) to create
BADBLK.SYS.

7-13 April 1983

I

BACKUP AND RESTORE UTILITY (BRU)

/BUFFERS:number

Specifies the default number of directory File Control Blocks (~
(FCBs) on each volume. ' The FCBs are stored in memory by the _
Ancillary Control Processor (ACP) when the volume is mounted.
The more FCBs there are stored in memory, the faster that files
contained in heavily used directories are found. The default
number of buffers is the same as for the input disk.

The /BUFFERS qualifier is used with the /INITIALIZE qualifier
during tape-to-disk or disk-to-disk operations.

/COMPARE

Compares the data on the output device with the data on the input
device and reports any differences. No data transfer takes place
during a compare operation. The command line specifying the
compare operation must be identical to that entered when the data
on the output disk or tape was created, with the exception of the
/INITIALIZE, /NOINITIALIZE, and /APPEND qualifiers.

/COMPARE Output

When the compare operation detects differences, it displays
a message at your terminal. The compare operation always
displays the mnemonic of the device on which the difference
was detected and the type of record in which the difference
was encountered (a control record, a header record, or a
da ta record).

If the record type is a header record, the compare operation
also displays the file-ID for the file. If the record type
is a data record, the compare operation also displays the
file-ID, the Logical Block Number (LBN) of the block in
error, and the name of the file if it is available.

/CREATED:BEFORE:(dd-mmm-yy hh:mm:ss)
BEFORE:dd-mmm-yy
BEFORE:hh:mm:ss
AFTER: (dd-mmm-yy hh:mm:ss)
AFTER:dd-mmm-yy
AFTER:hh:mm:ss

Backs up or restores files created before or after the specified
date and/or time.

If you use the BEFORE option, BRU copies any files created before
the specified date and/or time.

If you use the AFTER option, BRU copies any files created on or
after the specified date and/or at or after the specified time.

If you specify both a date and a time, the date and time must be
enclosed in parentheses. If you specify only a date or only a
time, the parentheses are not necessary. If you specify only a
time, BRU uses the current date as the default. If you specify
only a date, the time defaults to 00:00.

/DENSITY:pumber

Specifies the density (bpi) at which BRU writes to tape. The
following chart shows the values you can specify.

7-14

c

(

(

BACKUP AND RESTORE UTILITY (BRU)

Drive Default Density Optional Density

TU10/TElO 800 None
TU16/TE16 800 1600
TU45 800 1600
TU77 800 1600
TSll 1600 None
TSV05 1600 None
TU78 6250 1600
TU80 1600 None

If you specify /DENSITY with /APPEND, you must specify the
density at which the existing tape data was written. For
example, if the tape was first written at a density of 80a bpij
you must specify a density of 800. If you specify a density
other than the original density, BRU displays a message and
continues processing at the correct density.

If you enter an incorrect density for a restore operation, BRU
displays an error message and terminates the operation.

/DIRECTORY

Lists at your terminal the backup set names or files on the
specified tape or disk volume. In a multivolume tape set, the
directory is on the first tape of the set. In a multivolume disk
set, the directory is on the first disk of the set.

Using /DIRECTORY to Display Backup Set Names:

When specified with no backup set name, /DIRECTORY lists all
the backup sets on the volume:

BRU>/DIRECTORY MMO:

VOLI
VOLI

BACKUPI LABELl 2-JAN-83
BACKUP2 LABELl 3-JAN-83

BRU>/DIRECTORY DUO:

VOLI
VOL2

BACKUPI LABELl
BACKUPI LABEL2

13-JUN-83
14-JUN-83

Using /DIRECTORY to Display File Names:

To display the names of files in a backup set, enter the
backup set name with /DIRECTORY in the form shown below.

If the backup set is not on the tape or disk, BRU halts
execution and displays a message at your terminal.

An example with tape follows:

>
>RUN BRU
BRU>/BACKUP SET:23MAY82A/DIRECTORY MMl:
VOLI. 23MAY82A HWHDOC l3-JUN-82 23:37:11
[000,000]
[303,013]
27DECE.LSTil
2JANA.LSTil
l8JANC.LSTil
4JANA.LSTi2

7-15 April 1983

•
•

I

I

I

I

I

/DISPLAY

BACKUP AND RESTORE UTILITY (BRU)

25DECA.MAC;1
9DECA.LST;2
X.MAC;l
X.OBJ;l
X.TSK;l
APNDXC.TXT;l
X.MAP;l
[001,054]
RSXllM. STB; 4 5
[002,054]
RSXllM.STB;36
[003,054]

RSXllM.STB;3
[005,054]
[306,006]
APNDXB.MAC;l
BRU - COMPLETED

BRU> [CTRL/Z)

>

ON MMl:

Prints at your terminal the fi Ie name and UFD of each file as the
header for that file is being transferred by BRU.

/ERRORS:number

Terminates a restore operation after the specified number of
nonfatal tape read errors. The range for number is 0 to 65535.
The default number of errors before termination is 25(10).

/EXCLUDE

Backs up or restores all of the files on the tape or disk except
the files specified on the command line.

/EXTEND:number

Specifies the default number of blocks by which a file is
extended when that file has exhausted its allocated space. This
value is used by an ACP when the volume is mounted. The default
is the number of blocks from the input disk.

The /EXTEND qualifier is used with the /INITIALIZE qualifier
during tape-to-disk or disk-to-disk operations.

/HEADERS:number

Specifies the number of file headers to allocate initially to the
index file. The primary reason for preallocating file headers is
to locate them near the storage bitmap file. (The storage bitmap
file is generally located in the middle of the disk.) Proper
placement of file headers can help reduce head motion during I/O
operations. The default is the number of headers allocated to
the input volume.

The /HEADERS qualifier is used with the /INITIALIZE qualifier
during tape-to-disk or disk-to-disk operations.

(

c

c

(

If you want to copy files from a disk with a single-header index (
file (structure level 401) to a disk with a multiheader index ~
file (structure level 402), specify a number of file headers with
/HEADERS and a number of files with the /MAXIMUM qualifier that

7-16 April 1983

(-

c

BACKUP AND RESTORE UTILITY (BRU)

to make the output disk contain a
See the description of the INI command
Operations Manual for a table of

are both large enough
multiheader index file.
in the RSX-llM/M-PLUS MCR
maximum and default values.

/IMAGE:SAVE
: RESTORE

Specifies that you want to do a multiple disk-to-disk backup or
restore operation. If you are doing a backup operation, you
must specify the SAVE option on the command line •. If you want
to do a restore operation, you must specify the RESTORE option
on the command line.

If you want to do a backup operation, you must use this
qualifier when you create the backup file that represents the
image copy of the input disk or disks. For example, this
qualifier must be used when you copy a large disk to several
small disks, or if you copy several small disks to a mounted
large disk.

If you want to do a restore operation, you must use this
qualifier when restoring from a backup file that represents the
image copy of the original disk.

/INITIALIZE

Specifies that you want to initialize the output disk during a
tape-to-disk or disk-to-disk operation. Initialization places a
Files-ll structure on the disk, including the boot block, the
home block, and such files as INDEXF.SYS, BADBLK.SYS,and
OOOOOO.DIR.

The conditions for initializing an output volume differ between
RSX-llM and RSX-llM-PLUS. BRU returns a privilege violation if
the conditions are not met satisfactorily (see Table 7-1).

Along with the /INITIALIZE qualifier, you can specify
following quali fiers when you are ini tiali zi ng a di sk:

/BAD
/BUFFERS
/EXTEND
/HEADERS
/MAXIMUM

/NOPRESERVE
/OUTVOLUME
/POSITION
/PROTECTION
/WINDOWS

the

I

If you do not specify any of these qualifiers, BRU defaults to
the characteristics of the input volume except for the /BAD I
qualifier and the /NOPRESERVE qualifier. For the /BAD qualifier,
the default is AUTOMATIC. For the /NOPRESERVE qualifier, there
is no default.

/INVOLUME:name

Specifies the volume label of the input disk. This name can be
up to 12(101 characters long.

For disk-to-tape or disk-to-disk operations, the /INVOLUME
qualifier directs BRU to look for the volume label of the input
volume to verify that the disk has the correct label. This check
ensures that you do not back up the wrong volume.

7-17 April 1983

------~-----.---.. -- --------- --- _. ------

I

I

__ ~~~ __ ,~ __ ~ ________ ~~_~~ ___ ~_~ _________________ ---- _~~ __ ~ __ ~ __ ~ ----- ----~~-~~~~-~---~ -_--::-------:- :: __ :-o-:o--,:~::,:~

BACKUP AND RESTORE UTILITY (BRU)

For restore operations, /INVOLUME directs BRU to check the volume
label of the disk that is stored in the backup set on tape or in
the image backup set file on the disk.

/LENGTH:number

Specifies the length of the output tape in decimal feet. If the
length specified exceeds the length of the tape, the entire
length of the output tape is used. In cases where you know the
end of a tape must not be used, you can specify a shorter length
to ensure that you do not write on that part of the tape.

/MAXIMUM:number

Specifies the maximum number of files that can be placed on a
volume as determined by the number of file headers in the
volume's index file. (BRU supports up to 65,500 files on a
volume.) The default maximum is the maximum number of files on
the input disk. The /MAXIMUM qualifier and the /HEADERS
qualifier are particularly useful when you are initializing an
output disk that is different in size from the input disk.

If you want to copy files from a disk with a single-header index
file (structure level 401) to a disk with a multiheader index
file (structure level 402), specify a number of files with
/MAXIMUM and a number of file headers with the /HEADERS qualifier
that are both large enough to make the output disk contain a
multiheader index file. See the description of the INI command
in the RSX-IIM/M-PLUS MCR Operations Manual for a table of
maximum and default values.

/MOUNTED

Allows you to back up files from a disk that is mounted as a
Files-II volume (by means of the MCR or DeL MOUNT commands). If
you use the /MOUNTED qualifier when the input device is a tape,
BRU issues a syntax error.

BRU does not use the file system to read files from the input
disk. Instead, it issues logical queue I/Os (such as IO.RLB).
To issue these QIOs to a mounted Files-II disk, BRU must be built
as a privileged task (PR:O). (BRU does not have to be privileged
for operations on unmounted volumes or volumes mounted foreign.)
However, when you are restoring to a mounted disk (and you have
specified the /NOINITIALIZE qualifier), BRU uses the file system
to access the output disk. Therefore, a restore operation to a
mounted disk is slower than a restore to an unmounted disk.

BRU must also be privileged to back
accessed by other users. The
specified in the command line.

up a disk that
/MOUNTED qualifier

is being
must be

When backing up files from a mounted
(changes to or addition or deletion
running causes the following results:

volume, disk activity
of files) while BRU is

• If the file is being changed while BRU is backing up the
disk, BRU copies only the data that comprises the file at
the time of the transfer. Any changes made to the file
after the transfer will not appear in the file on the
output volume.

• If the file is deleted whi Ie BRU is backing up the di sk,
the data that comprises the file may be corrupted.

7-18 April 1983

(

(

(

(

c

(

c_

BACKUP ANO RESTORE UTILITY (BRU)

If the file-IO from the deleted file is reused in a UFO
that BRU has not yet backed up, BRU will back up the new
file (with the previously allocated file-IO) when that
file is encountered. When restored, th.is new file (with
the reused file-IO) will appear as a synonym for the old
file with the same file-IO.

• If the disk is changed (files are deleted or changed)
after BRU generates the directory, the directory on the I
first tape of the tape set or the directory in the backup
set file on the disk will not be accurate. Because BRU
generates the directory for the backup set as its first
processing step, changes to the disk after the directory
is generated will not be reflected in the directory.

• If the file or data are being changed during a transfer
operation, BRU will not be able to verify the accuracy of
the operation. Do not attempt a verify operation in this
case.

Note that this restriction also includes the file being
used by the error logger. The error logger file changes
when any hardware errors occur, which can cause the
verify operation to fail. To ensure that the verify
operation succeeds, switch the error logger file to a
different disk or exclude it with the /EXCLUDE qualifier.

Resolves file specification conflicts that occur during restore I
operations and during backups to a mounted disk using the
/IMAGE:SAVE qualifier. When a file already exists on the output
disk volume, /NEW_VERSION creates a new version of the file.

/NOINITIALIZE

Specifies that you do not want to initialize the output disk
because it is already in Files-II format. The output disk must
be mounted as a Files-II volume. You cannot enter any of the
initialization qualifiers when you specify /NOINITIALIZE. If you
enter any of these qualifiers, BRU issues an error message.

/NOPRESERVE

Specifies that you do not want to preserve file-IDs (file-IDs are
generally preserved). If you specify the /NOPRESERVE qualifier,
BRU suppresses the message that file-IDs are not being preserved.
Note that in restoring to a mounted disk, not preserving file-IDs
is BRU's default action. /NOPRESERVE is used only with the
/INITIALIZE qualifier.

When file-IDs are not preserved, BRU assigns new file-IDs,
incrementing them sequentially.

/NOSUPERSEDE

Specifies that when file specifications on the mounted output
disk are identical to those on the input volume, the file on the
input volume is not transferred. That is, the file on the output
disk is not superseded by the file on the input volume.
/NOSUPERSEDE is the default.

7-19 Apr il 1983

BACKUP AND RESTORE UTILITY (BRU)

/OUTVOLUME:name

Specifies the volume label of the output disk. This label can be (~
up to 12(10) characters long.

For disk-to-tape backup operations, the name of the input disk
volume stored on the output tape volume is changed to the name
specified with the /OUTVOLUME qualifier.

For tape-to-disk restore operations or for disk-to-disk
transfers, the name of the output disk volume is changed to the
name specified with the /OUTVOLUME qualifier.

When you omit /OUTVOLUME, BRU provides the following defaults:

• In backup operations, the input disk volume name is used
as the volume name stored on the output tape volume.

• In restore operations, the volume name stored on the
input tape volume is used as the name of the output disk
volume.

• In disk-to-disk transfers, the volume name of the input
volume is used as the volume name of the output volume.

/POSITION: BEGINNING
'MIDDLE
END
BLOCK:number

Specifies the location of the index file on the output disk
volume being initialized, usually to minimize access time. The
BEGINNING, MIDDLE, and END options specify the beginning, middle,
and end of a volume. The BLOCK:number option specifies a block
number where the index file is to be placed. The BEGINNING or
END option is generally used only when a disk mostly contains
large contiguous files. MIDDLE is recommended to minimize access
time.

When you use the BLOCK:number option, the number is decimal by
default (the period is optional). To specify an octal number,
place a pound sign (#) in front of the number. If there are any
conflicts, BRU issues a warning message.

When you do not use the /POSITION qualifier, BRU places the index
file in the same location. as that on the input volume.

/PROTECTION: SYSTEM:value
OWNER:value
GROUP:value
WORLD:value

Specifies the default protection status for all files created on
the output volume being initialized. This protection value does
not apply to files being transferred by BRU, but rather to
subsequent files created on the output volume by an ACP when the
volume is mounted. If you do not specify any values, they
default to the protection values of the input disk.

The protection value can be R(ead), W(rite), E(xtend), or
D(elete), or any combination of the four. See the RSX-IIM/M-PLUS
MCR Operations Manual for an explanation of file protection.

7-20

c

(

(

(

(

(

(

(

BACKUP AND RESTORE UTILITY (BRU)

/REVISED: B.EFORE: (dd-mmm-yy hh:mm:ss)
BEFORE:dd-mmm-yy
BEFORE:hh:mm:ss
AFTER: (dd-mmm-yy hh:mm:ss)
AFTER:dd-mmm-yy
AFTER:hh:mm:ss

Backs up or restores files revised or created on, before, or
after the specified date and time.

If you use the BEFORE option, BRU copies any files revised or
created at or before the specified date and/or time.

If you use the AFTER option, BRU copies any files revised or
created on or after the specified date and/or at or after the
specified time.

As with the /CREATED qualifier, if you specify both a date and
time, the date and time must be enclosed in parentheses. If you
specify only a date or time, the parentheses are not necessary.
If you specify only a time, BRU uses the current date as a
default. If you specify only a date, the time defaults to 00:00.

/REWIND

Rewinds the first magnetic tape of a tape set before executing a
backup or restore operation.

When specified with an input tape, BRU rewinds the first tape of
the tape set before searching for a backup set.

When specified with the /APPENO qualifier, BRU rewinds the output
tape and then searches for the logical end-of-tape before
executing the backup operation.

/SUPERSEDE

Specifies that when file specifications on the mounted output
volume are identical to file specifications on the input volume,
the file on the output volume is deleted and replaced with the
file from the input volume.

For an /IMAGE operation, if you create a backup set file on a
mounted volume and a file with the same name exists, /SUPERSEDE
replaces this file.

/NOSUPERSEDE is the default.

/TAPE_LABEL:label

/UFD

Specifies the 6-character volume identifier on the ~erican
National Standard (ANS) X.327-1978 label to be placed on a tape
during a backup operation or to be compared with the label on the
tape for append and restore operations. This allows you to check
that you are using the correct tape.

Directs BRU to create UFOs (if they do not already exist) on a
mounted output volume, then copy into it the files from the same
UFD on the input volume. If you do not specify /UFO, BRU does
not copy the files. /UFO is used only with the /NOINITIALIZE
qualifier.

7-21 April 1983

I

BACKUP AND RESTORE UTILITY (BRU)

/VERIFY

Copies data from the input volume, performs a
between the input volume and the output
transfer, and reports any differences.

/WINDOWS:number

compare operation
volume after the

Specifies the default number of mapping pointers to be allocated
for file windows when initializing an output disk. This value is
used by an ACP when the volume is mounted. A file window
consists of a number of pointers and is stored in memory when the
file is opened. The default number of mapping pointers is the
same as for the input disk.

Choosing a large number of mapping pointers may speed up file
access. However, a large file window also uses up system dynamic
memory (pool space). If pool space is more critical than file
access time, choose a smaller number of pointers.

Refer to the IAS/RSX-ll I/O Operations Reference Manual for more
information.

7 • 5 STAND-ALONE B.RU

You can also run BRU stand-alone. On RSX-llM, the stand-alone system
is called BRU64K. On RSX-llM-PLUS, it is BRUSYS. The difference
between the BRU task contained in these stand-alone systems and the
on-line BRU described in the preceding sections is that stand-alone
BRU does not support a restore operation to a mounted volume.
Therefore, BRU will always initialize the output disk volume. There
is no /INITIALIZE qualifier and the BRU task does not ask if you want
to initialize the output volume.

Other qualifiers that cannot be used in the stand-alone BRU systems
are /NEW_VERSION, /NOINITIALIZE, /NOSUPERSEDE, /SUPERSEDE, and /UFD.

Unlike other stand-alone systems, the BRU systems contain other tasks
besides the BRU task. You invoke these other tasks before invoking
the BRU task. (One task, CNF, is first invoked automatically when you
boot the stand-alone BRU system.)

7-22

(

(

(

(

====-=-- ----- --- --- ----------------- - -----

(

(

(

(

BACKUP AND RESTORE UTILITY (BRU)

After you boot the stand-alone BRU system, the CNF task runs
automatically. It lists the switches available for your use and then
prompts you for the devices you will be using. It is recommended that
you first specify /DEV to find out the status of the devices on your
system. For example:

Enter first device: /OEV

Device CSR vector CSR Status

DB 176700 254 Present
OK 177404 220 Present
DL 174400 160 Not Present
OM 177440 210 Present
DP 176714 300 Present
DR 176300 150 Present
DU 172150 154 Not Present
MF FOR=O 175400 260 Not Present
MM FOR=O 172440 224 Present
MS 172522 330 Not Present
MT 172522 320 Not Present

Enter first device:

You can also use CNF and its switches to set the CSR and vector
addresses of devices present on your system or to change the default
formatter number (FOR=n) for some of the magnetic tape devices. For
example:

Enter first device: DM2:/CSR=177450/VEC=274

Enter second device: DL:

The CNF switches are:

/CSR=nnnnnn

Changes the default CSR for the device.

/DEV

Lists the default CSR and vector addresses for all of the
devices. It is recommended that you use this switch first
to find out what devices are present on your system.

/FOR=n

Changes the default formatter number for some of the
magnetic tape devices. The switch is valid for only the
MF:- and MM:-type devices. The initial default for n is o.

/VEC=nnn

Changes the default vector for the device.

7.5.1 Locating and Booting Stand-Alone BRU

7-23 April 1983

I

I

I

I

I

I

I

I

BACKUP AND RESTORE UTILITY (BRU)

On both RSX-11M and RSX-11M-PLUS, you can bootstrap the stand-alone
BRU system in one of two ways:

1. Software boot stand-alone BRU by using the privileged MCR
BOOT command as follows:

For RSX-11M mapped systems

>INS $BOO
>BOO [l,51]BRU64K

For RSX-11M-PLUS

>INS $BOO
>BOO [6,54]BRUSYS

2. Hardware boot stand-alone BRU following
bootstrap procedure for your processor.

the hardware

To create a hardware-bootable stand-alone BRU tape from the
distribution disk, use the Virtual Monitor Console Routine
(VMR) to save the system image to tape as follows:

For RSX-11M

>SET /UIC=[l,54]
RUN [l,54]VMR
ENTER FILENAME: BRU64K
VMR>SAVE MT:BRU64K
VMR> !trRL/Z)

For RSX-11M-PLUS

>SET /UIC=[6,54]
RUN VMRM41
ENTER FILENAME: BRUSYS
VMR>SAVE MT:BRUSYS
VMR> mRL/Z)

This tape contains a hardware-bootable image of the
stand-alone BRU system. (See the RSX-I1M/M-PLUS System
Management Guide for information on VMR.)

7.6 ON-LINE.BRU BAD BLOCK PROCESSING

After you have formatted a disk with the Disk Volume Formatter Utility
(FMT; see Chapter 5) and marked any bad blocks on it with the Bad
Block Locator Utility (BAD; see Chapter 6), you can initialize it

with BRU.

If you specify the /BAD qualifier with the /INITIALIZE qualifier, BRU
uses the bad block information from running BAD on the disk to create
the file BADBLK.SYS. This file has allocated to it all of the bad
blocks on the disk so that other files will not try to use them.

7-24 April 1983

(~

\

(

c

(

(

c

(

BACKUP AND RESTORE UTILITY (BRU)

The IBAD qualifier has three options: AUTOMATIC, which is the default
option, OVERRIDE, and MANUAL. The following sections describe how to
use these options.

7.6.1 Using the AUTOMATIC Option

The AUTOMATIC option specifies that BRU use the existing bad block
information on the disk to create the file BADBLK.SYS. For last-track
devices, BRU uses the manufacturer-written bad block information and
the software bad sector file. For nonlast-track devices, BRU uses the
bad block descriptor block.

7.6.2 Using the OVERRIDE Option

The OVERRIDE option applies only to last-track devices. It makes the
disk appear to be a nonlast-track device.

When you use OVERRIDE with BRU, ensure that the disk you are
processing has previously been processed by the BAD utility with the
BAD IOVR switch specified. Using the BAD IOVR switch makes last-track
devices look like nonlast-track devices by using the last good block
before the last track as the bad block descriptor block. IOVR
processing includes that last track as bad data when it creates the
bad block descriptor block.

OVERRIDE processing for BRU assumes that the bad block descriptor
block written by BAD exists on the disk being processed.

7.6.3 Using the MANUAL Option

The MANUAL option accepts the addresses of bad blocks you enter
interactively at your terminal. It also specifies that BRU use either
the manufacturer-written bad block information and the
software-detected bad sector file (for last-track devices) or the bad
block (for nonlast-track devices) descriptor block to create
BADBLK.SYS. If there is no software-written bad block information, a
message will be displayed informing you that BAD has not processed the
disk.

When you specify IBAD:MANUAL, BRU issues a prompt at your terminal.
To enter bad blocks, respond to the prompt with the starting logical
block number, followed by a count of how many consecutive blocks are
bad, in the following format:

LBN[:count[.]]

BRU interprets both the LBN and the count as decimal numbers. You can
specify the LBN in octal, but you must specify the count in decimal.
To specify an octal value for the LBN, precede it with a number sign
(t). If you do not specify count, it defaults to 1.

If you enter a bad block that is already in the bad block file, BRU
generates an error message.

To get a list of the LBNs you have entered so far, type one slash (I).
To copy the LBNs into BADBLK.SYS, type two slashes (II).

When you have finished entering bad blocks, press the RETURN key to
return to BRU command level.

7-25

BACKUP AND RESTORE UTILITY (BRU)

7.7 USING BRU TO COPY DISKS CONTAINING SYSTEM IMAGES

When you copy a bootable system disk to a disk of the same controller (-
type, BRU automatically produces a bootable output disk for you.

If, however, you are copying an unsaved (virgin) system or copying a
saved system to a smaller disk or to a disk of a different controller
type, you can use the procedures described in the following sections
to ensure that BRU produces a bootable output disk.

7.7.1 Copying an Unsaved (Virgin) System

In an unsaved system, installed tasks are pointed to by the physical
LBN of the task image on the disk. When you copy an unsaved system
with BRU, BRU assigns new LBNs for the task images on the output disk.
Therefore, if you want to be able to software boot the copied system,
you must first use VMR to remove and reinstall any tasks. (VMR, the
Virtual Monitor Console Routine, is described in the RSX-IIM/M-PLUS
System Management Guide.)

7.7.2 Copying a Saved System

In a saved system, installed tasks are pointed to by the file-ID of
the task image on the disk. To copy a saved system to a smaller disk
or to a disk of a different controller type, use the following
procedures.

7.7.2.1 Copying to a Smaller Disk - If you want to copy a disk with a
saved system to a smaller disk, the most common method is to first use
the /MAXIMUM and /HEADERS qualifiers (described in Section 7.4) to
decrease the size of the index file. BRU is then unable to preserve
the file-IDs of the files, so you must use VMR to remove and reinstall
any tasks in the copied system image (the image on the output disk) •

7.7.2.2 Copying to a Different Controller Type - If you have used BRU
to copy a hardware-bootable disk to a disk of a different controller
type and you want the output disk to also be hardware-bootable, you
must use the MCR BOOT command to boot the saved system on the output
disk. Then you use the MCR SAVE /WB command to write the correct boot
block on the oQtput disk.

MCR SAV /WB

7.8 BRU FILE TREATMENT

(

c

(~

The following sections describe how BRU treats file dates, file (
headers, file synonyms, and lost files. ~

7-26 April 1983

c

(
"

(

(

BACKUP AND RESTORE UTILITY (BRU)

7.8.1 Creation and Revision Dates of Files

BRU always preserves the creation and reV1Slon dates of files that it
transfers. However, since BRU creates UFOs during a restore operation
to a disk being initialized, and also when the /UFO qualifier is
specified, the creation date of the UFO is the date on which BRU
created it.

7.8.2 File Headers

BRU preserves all characteristics of a file, if possible.
three exceptions:

There are

• If there is insufficient room on the output volume to restore
the file contiguou$ly, it is restored noncontiguously.

• The file name is updated on the file's header to match the UFO
entry.

• The physical end-of-file in the user attribute area is updated
to correctly reflect the file's size.

7.8.3 File Synonyms

File synonyms are files that have different names but share the same
file-IO and data. They can be created with the PIP utility but also
occur when a file-IO from a deleted file is reused in a UFO that BRU
has not yet copied. If you restore files with synonyms to an
unmounted volume and you preserve file-IDs, the file synonyms are
restored as synonyms. However, if you do not preserve file-lOs or you
restore to a mounted volume, file synonyms are restored as separate
files.

7.8.4 Lost Files

A file that is not contained in any UFO is known as a lost file. BRU
does not find lost files. To find lost files, use the File Structure
Verification Utility (VFY) with its /LOst switch before using BRU to
back up the disk (VFY is described in Chapter 9).

7.9 EXAMPLES

This section gives examples of various BRU operations and command
lines. Note that the qualifiers used in the command lines have been
truncated to three characters. All of the BRU qualifiers are unique
to three characters.

Examples 1 through 6 and examples 11 and 12
messages that BRU returns during some
examples do not include these messages.

also show
operations.

informational
The remaining

The following list is a summary of the operations and command lines
shown in the examples:

1. Oisk-to-tape backup (with verification) and tape-to-disk
restore operations.

7-27 April 1983

I

I

I

I
I

BACKUP AND RESTORE UTILITY (BRU)

2. Disk-to-disk backup operation.

3. Disk-to-disk backup operation including changing the maximum (~
number of files and initial header allocation for the output
disk.

4. Disk-to-disk multivolume backup operation.

5. Disk-to-disk multivolume restore operation.

6. Disk-to-disk multivolume backup (with appending) and disk to
disk restore operation.

7. Disk-to-tape incremental backup operation (by date) with tape
verification.

8. Disk-to-tape selective
specification) •

backup operation (by file

9. Mounted disk-to-tape backup and tape-to-mounted disk restore
operations.

10. Disk-to-tape backup (with appending) and tape-to-mounted ~isk
restore operations.

11. Exclusion of certain files during a backup operation.

12. Manually entering bad blocks and displaying them.

13. Continuation command lines on RSX-IIM and RSX-IIM-PLUS.

14. Continuation command lines on RSX-IIM-PLUS only.

Example 1 shows how to use BRU to back up an entire disk volume onto
two 1600 bpi magnetic tapes and then how to restore the disk. For the
bac~up operation, BRU verifies the output volumes as part of the
operation. (Verifying volumes is specified with the /VERIFY
qualifier.) If files do not verify, BRU returns an error message.

To back up DM2: onto the magnetic tapes on MMO: and MM1:, use
the following command line:

BRU>/DEN:1600/VER DM2: MMO:,MM1:~
BRU - STARTING TAPE 1 ON MMO:

BRU - END OF TAPE 1 ON MMO:

BRU - STARTING VERIFY PASS TAPE 1 ON MMO:

BRU - END OF TAPE 1 ON MMO:

BRU - STARTING TAPE 2 ON MM1:

BRU - END OF TAPE 2 ON MMl:

BRU - STARTING VERIFY PASS TAPE 2 ON MMl:

BRU - END OF TAPE 2 ON MM1:

BRU - COMPLETED

BRU>~
>

7-28 April 1983

c

(

c

(

(

c

BACKUP AND RESTORE UTILITY (BRU)

To restore the entire disk and rewind the first input tape, use
the following command line (the /INI qualifier specifies that
DM2: will be initialized before the restore operation begins) :

BRO>/REW/DEN:1600/INI MM:,MM1: DM2:®m

BRO - STARTING TAPE 1 ON MMO:

BRO --*WARNING* -- THIS DISK WILL NOT CONTAIN A HARDWARE BOOTABLE SYSTEM

BRO - END OF TAPE 1 ON MMO:

BRO - STARTING TAPE 2 ON MMl:

BRO - END OF TAPE 2 ON MM1:

BRO - COMPLETED

BRO> ftRL/Z)

>

EXample 2 shows how to do a disk-to-disk backup operation for an
entire disk. The characteristics of the output disk default to those
of the input disk. This operation (and every other BRU operation) can
b~ done in two ways.

>BRU/INI DM: DM1:®m
BRO - COMPLETED

or

>BRU®m
BRU> ®m
FROM: DM: ®m
TO: DMI: ®m
INITIALIZE OUTPUT DISK [YIN] :Y®m
BRO - COMPLETED

BRO>ftB®

These two command lines tell BRO to initialize the output disk
(DM1:) and then back up all of the files on the input disk (DMO:)
onto it.

Example 3 shows
maximum number
output disk are
file, which can

another disk-to-disk backup operation. This time, the
of files and initial file header allocation for the

changed. This information is contained in the index
be placed at different locations on the disk.

BRU>/INI/MAX:10000/HEA:5000/POS:BEG DM: DM1:®m
BRU - COMPLETED

This command initializes the output disk (DM1:) and tells BRU
that the maximum number of files allowed on the disk will be
10000(10) and the initial file header allocation will be 5000(10)
headers. The index file, which contains this information, will
be placed at the beginning of the disk. When the output disk has
been initialized, all of the files on the input disk (DM:) will
be copied onto it.

7-29

~--------~----

B.ACKUP AND RESTORE UTILITY (BRU)

Example 4 shows a multiple disk-to-disk backup operation. You must
use the SAVE option with the /IMAGE qualifier when doing a multiple
disk-to-disk backup operation.

BRU>/INI/IMA:SAV/VER/MOU DL: DY: ®ill

BRU - MOUNT DISK 1 ON DYO:. PRESS "RETURN" WHEN DONE

BRU - STARTING DISK 1 ON DYO:

BRU - END OF DISK 1 ON DYO:

BRU - STARTING VERIFY PASS DISK 1 ON DYO:

BRU - END OF DISK 1 ON DYO:

f3RU - MOUNT DISK 2 ON DYO: • PRESS "RETURN" WHEN DONE

BRU - STARTING DISK 2 ON DYO:

BRU - END OF DISK 2 ON DYO:

BRU - STARTING VERIFY PASS DISK 2 ON DYO:

BRU - END OF DISK 2 ON DYO:

BRU - MOUNT DISK 3 ON DYO: • PRESS "RETURN" WHEN DONE

BRU - STARTING DISK 3 ON DYO:

BRU - END OF DISK 3 ON DYO:

BRU - STARTING VERIFY PASS DISK 3 ON DYO:

BRU - END OF DISK 3 ON DYO:

BRU - COMPLETED

BRU> (Qffi@

Example 5 shows a multiple disk-to-disk restore operation. You must
specify the RESTORE option on the command line with the /IMAGE
qualifier.

BRU>/INI/IMA:RES/VER DY: DL: ®ill

BRU- MOUNT DISK 1 ON DYO: • PRESS "RETURN" WHEN DONE

BRU - STARTING DISK 1 ON DYO:

BRU - THIS DISK WILL NOT CONTAIN A HARDWARE BOOTABLE SYSTEM

BRU END OF DISK 1 ON DYO:

BRU - MOUNT DISK 2 ON DYO: • PRESS "RETURN" WHEN DONE

BRU - STARTING DISK 2 ON DYO:

BRU - END OF DISK 2 ON DYO:

BRU MOUNT DISK 3 ON DYO: • PRESS "RETURN" WHEN DONE

7-30 April 1983

(-

(I

(

c

c_

(

(~

BACKUP AND RESTORE UTILITY (BRU)

BRU - STARTING DISK 3 ON DYO:

BRU - END OF DISK 3 ON DYO:

BRU - MOUNT DISK 1 ON DYO: • PRESS "RETURN" WHEN DONE

BRU - STARTING VERIFY PASS DISK 1 ON DYO:

BRU - END OF DISK 1 ON DYO:

BRU - MOUNT DISK 2 ON DYO: • PRESS "RETURN" WHEN DONE

BRU - STARTING VERIFY PASS DISK 2 ON DYO:

BRU - END OF DISK 2 ON DYO:

BRU - MOUNT DISK 3 ON DYO: • PRESS "RETURN" WHEN DONE

BRU - STARTING VERIFY PASS DISK 3 ON DYO:

BRU - END OF DISK 3 ON DYO:

BRU - COMPLETED

BRU>~

Example 6 show how to append backup sets on a multivolume disk, plus
restore the multivolume disk set. If your multivolume backup disk
contains a backup set that does not occupy the entire disk, you can
append backup sets on the same disk using the !APPEND qualifier.

BRU>!APP!IMA:SAVE!BACKUP:SECOND!INI

FROM: DB: ~

TO: DK:,DKI:~

BRU - MOUNT DISK 1 on DKO: • PRESS "RETURN" WH:e:N DONE.

BRU - STARTING DISK I on DKO:

BRU - END OF DISK 1 on DKO:

BRU - MOUNT DISK 2 ON DKI: • PRESS "RETURN" WHEN DONE.

BRU - STARTING DISK 2 ON DKI:

BRU - END OF DISK 2 ON DKl:

BRU - COMPLETED

BRU> tTRl/Z)

To restore the appended backup set from the multivolume disk set,
you have to specify the following:

BRU>!IMA:RES!BACKUPSET:SECOND!INI DK:,DKI: DBO:

BRU - MOUNT DI.SK I ON DKO: • PRESS "RETURN" WHEN DONE.

BRU - STARTING DISK I ON DKO:

BRU - END OF DISK 1 ON DKO:

BRU - MOUNT DISK 2 ON DKO: • PRESS "RETURN" WHEN DONE.

7-31 April 1983

------------------------------_._--------------------------.------"----------------.:-:-=---~-------:-::--:----. ---:::::-::~-==,.--,.

BACKUP ~ND RESTORE UTILITY (BRU)

BRU - STARTING DISK 2 ON DK1:

BRU - END OF DISK 2 ON DK1:

BRU - COMPLETED

BRU>~

Examples 7 and 8 show how to do incremental backups with BRU. Example
7 (following) shows a backup-by-date operation (and tape verification)
and Example 8 shows a backup-by-file-specification operation.

BRU>/REV:AFT: (14-FEB-83 17:00)/VER@]

FROM: DM: OOJ

TO: MT:@]

c

This command line backs up all files on the disk that were
revised after 5:00 P.M. on February 24, 1981. After all the
files have been copied o.nto the tape, BRU verifies the tape. If
files on the tape do not verify, BRU returns an error message. ,(

Example 8 shows a backup-by-file-specification operation:

BRU>DB: [7,10] , [301,304] * .MAC,* .CMD@]
TO: MM: @]

In this case, BRU backs up all the files in UFD [7,10] and all
the .MAC and .CMD files in UFD [301,304] on the input disk to a (
magnetic tape.

Example 9 shows how to back up files from a mounted disk and then two
ways to restore files to a mounted disk.

BRU>/MOU OB:[304,303],[7,326] MM:@]

This command line informs BRU that the input disk is mounted as a
Fi1es-11 device.

BRU>/NOI MM:[304,303] DB:@]

This command line restores the files in UFD [304,303] on the
magnetic tape to the mounted disk volume without first
initializing it. In this case, any file on the tape that is
identical to a file already on the disk is not superseded (the
input file is not copied). Not superseding files is the default
operation for BRU.

BRU>/NOI/NEW MM:[7,326] DB:@]

This command line restores the files in UFO [7,326] on the
magnetic tape to the mounted disk volume without first
initializing it. The ~NEW (/NEW VERSION) qualifier tells BRU to
create a new version of any dup1Tcate files.

Example 10 shows how to append files from a disk to a tape with a

c

backup set already on it and then how to restore the set back to a (
mounted disk. \-.

7-32 April 1983

(

c

BACKUP ARD RESTORE UTILITY (BRU)

BRU>/APP/VER/BAC:TODAY®]

FROM: DB: [7,326] ®]

TO: MM: ®]

This command line appends the files in UFD [7,326] on the input
disk to a magnetic tape. The name of the backup set being
written on the tape is "TODAY". After the backup operation is
completed, BRU verifies the tape.

BRU>/REW/BAC:TODAY/NOI MM: DB:®]

This command line rewinds the magnetic tape containing the backup
set "TODAY". All of the files in TODAY are then copied back onto
a mounted output disk. If a file already exists on the disk, BRU
defaults to INOSUPERSEDE to resolve the conflict.

Example 11 shows how to exclude certain files from being copied during
a backup operation.

BRU>/MOU/EXC DM:[1,6] MM1:®]
BRU - STARTING TAPE 1 ON MM1:

BRU - END OF TAPE 1 ON MM1:

BRU - COMPLETED

BRU> [CTRL/Z)

This command line backs up all of the files on the input disk,
except for those in UFD [1,6], onto the magnetic tape.

Example 12 shows how to enter bad blocks manually and how to display
them.

BRU>/REW/INI/BAD:MAN MMl: DM:®]
BRU - STARTING TAPE 1 ON MMl:

BRU>LBN(S) =/®]
053768:022

BRU>LBN(S)=10500:2
BRU)LBN(S)=12000
BRU>LBN (S) =1 ®]

053768:022
010500:002
012000:001

.BRU>LBN (S) =/ I®]
BRU -- *WARNING* THIS DISK WILL NOT CONTAIN A HARDWARE BOOTABLE SYSTEM

BRU - END OF TAPE 1 ON MM1:

BRU - COMPLETED

BRU> .[CTRL/Z)

This command line first initializes the output disk and then
requests you to enter the locations of any bad blocks before
copying the files from the magnetic tape. The first slash (/)

7-33

B.ACKUP .AND RESTORE UTILITY (BRU)

displays the bad blocks in the bad sector file on the last track
of the disk. The second slash displays those blocks and the ones
that have been entered manually. Two slashes (II) returns you to
the BRU command level.

In this example, two locations of bad blocks for the disk were
entered: there are 2 bad "blocks starting at LBN 10500 and 1
block at LBN 12000. You can enter the LBN in either decimal (the
default) or octal (precede the number with t), but the number of
bad blocks must be in decimal. When you do not specify the
number of bad blocks, it defaults to 1.

Examples 13 and 14 show BRU continuation command lines on RSX-IIM and
RSX-IIM-PLUS (see Section 7.2.2.2 for more information).

RSX-IIM and RSX-IIM-PLUS

>RUN BRU

(

BRU> IREWIND- C-
BRU>/INVOLUME:BACKUP-
BRU>/BACKUP SET:25MAY81-
BRU>/TAPE LABEL:BRU123
FROM: OMO:
TO: MMO:

RSX-IIM and RSX-IIM-PLUS support continuation lines when you
invoke BRU and then respond to the BRU> prompt. The command line
can be 256(10) characters long.

>BRU/REWIND­
->/INVOLUME:BACKUP-
->/BACKUP SET:25MAY81-
->/TAPE_LABEL:BRU123 OMO: MMO:

7.10 MESSAGES

This section lists BRU information and error messages, describes the
meaning of the message, and suggests actions to correct the errors. A
WARNING message indicates an error that mayor may not terminate the
BRU operation. A FATAL message indicates an error that always
terminates the operation. .

BRU -- *WARNING* -- ALLOCATION FAILURE [ufd]filename.type;version

Explanation: During a copy to a mounted volume, there was not
enough free space to copy the specified file.

User Action: Create enough free space on the volume by using the
Peripheral Interchange Program (PIP; see Chapter 3) to delete or
truncate some files and then reenter the command line.

7-34

(

(

c

(

BACKUP AND RESTORE UTILITY {BRU)

BRU -- *FATAL* -- ALLOCATION FOR SYSTEM FILE EXCEEDS VOLUME LIMIT

Explanation: A system file (one of the following files:
INDEXF.SYS, BITMAP.SYS, BADBLK.SYS, OOOOOO.DIR) requires more
space than is available on the output disk. This will usually
occur if the output disk is smaller than the input disk.

User Action: Use the /POSITION qualifier to force allocation to
start at the beginning of the disk and/or use the !MAXIMUM and
/HEADERS qualifiers to reduce the size of INDEXF.SYS.

BRU -- *FATAL* -- AMBIGUOUS OPTION

Explanation:
For example,
or BLOCK.

An option specified with a qualifier is not unique.
the "B" in /POSITION:B could mean either BEGINNING

User Action: Use a form of the option that is unique.
options are unique to two characters.

All BRU

BRU -- *FATAL*-- AMBIGUOUS QUALIFIER

BRU

BRU

Explanation: A qualifier is not unique. For example, /RE could
mean either /REVISED or /REWIND.

User Action: Use a form of the qualifier that is unique. All
BRU qualifiers are unique to three characters.

WARNING APPENDING AT DEFAULT BPI ON ddnn:
or

WARNING APPENDING AT 1600 BPI ON ddnn:

Explanation: The wrong tape density was specified with the
/APPEND qualifier. BRU performs an append operation only at the
density at which the tape was previously written. The default
bpi in the first message is either 800 or 6250, depending on the
type of tape drive.

User Action: None. BRU continues at the correct density.

BRU -- *FATAL* -- ATTACH FAILED ON ddnn:

Explanation: BRU could not attach the specified device.

User Action: Check to see if another task has the device
attached or if the device has a volume mounted on it.

BRU -- *FATAL* -- BACKUP DISK READ ERROR

Explanation: An unrecoverable read error occurred on the output
backup disk, possibly caused by an undetected bad block, or an
error occurred while BRU was sizing the input or output disk for
a multivolume backup operation.

User Action: Use the BAD utility to locate all bad blocks. Then
use BRU with the /BAD:AUTOMATIC qualifier to use the existing bad
block information on the disk to create the file BADBLK.SYS.

7-35 April 1983

BACKUP AND RESTORE UTILITY (BRU)

BRU -- *FATAL* -- BACKUP DISK WRITE ERROR

Explanation: An unrecoverable write error occurred on the output
backup disk during a multivolume backup operation. The error
could have been caused by an undetected bad block.

User Action: Use the BAD utility to locate all bad blocks (see
Chapter 6). Then use BRU with the /BAD:AUTOMATIC qualifier to
use the existing bad block information on the disk to create the
file BADBLK.SYS.

BRU -- *WARNING* -- BAD BLOCK DATA ERROR

Explanation: A manually entered bad block location, count, or
syntax was incorrect.

User Action: Enter the correct information.

BRU -- *WARNING* -- BAD BLOCK FILE FULL

Explanation: The manual addition of bad blocks has resulted in
more than 204(10) sets of contiguous bad blocks.

User Action: None. You cannot enter more bad blocks than the
file will hold. You may not want to use the disk anymore.

BRU -- *WARNING* -- BLOCK EXCEEDS VOLUME SIZE

Explanation: You have manually entered a bad block that is
larger than the size of the output disk.

User Action: Enter the correct block.

BRU -- *WARNING* -- BOOT BLOCK IS BAD

Explanation: BRU cannot write to the output boot block.
Therefore, the output disk will not be hardware-bootable.

User Action: None. BRU continues the operation.

BRU -- *WARNING* -- BOOT BLOCK IS CORRUPT

Explanation: The input disk does not contain a valid boot block.
The output disk will not be hardware-bootable.

User Action: None. BRU continues the operation.

BRU -- *WARNING* -- BOOT BLOCK READ ERROR

Explanation: An error occurred while BRU was reading the boot
block.

User Action: None. BRU continues the operation.

7-36 April 1983

(

(

(

(

(

(

(

(

BACKUP AND RESTORE UTILITY (BRU)

BRU -- *WARNING* -- BOOT BLOCK VERIFY ERROR ON ddnn:

Explanation: During a backup operation, the boot block on the
output device did not match the boot block on the input device.

User Action: None. BRU continues the operation.

BRU-- *FATAL* -- CANNOT APPEND ON A MOUNTED DISK

Explanation: A multivolume backup operation to disk is not
possible because you cannot append to a mounted disk. You can
only use the /APPEND qualifier when doing a multivolume disk
backup operation to an unmounted disk.

User Action: You must use another disk to proceed with your
backup operations.

BRU-- *FATAL* -- CANNOT MIX DIFFERENT TYPES OF DISKS

Explanation: The input disk and the output disk are of different
types for a multivolume disk operation.

User Action: You must specify the same type of disk for the
input and/or output disk when you do a multivolume restore or
backup operation.

BRU-- *WARNING* -- CANNOT RESTORE CONTIGUOUSLY {ufd]fi1ename.type;version

Explanation: The output device does not contain enough
contiguous blocks to restore the indicated contiguous file. The
file will be restored noncontiguous1y.

User Action: You can use the Peripheral Interchange Program
(PIP; see Chapter 3) to make the file contiguous again. Use the
PIP switches /DE and /TR to reclaim dis~ space by deletion or
truncation.

BRU -- *WARNING* -- CLOSE OR WRITE ATTRIBUTES ERROR [ufd]filename.type;version
I/O ER'ROR CODE number

Explanation: During a copy to a mounted volume, BRU encountered
an error while attempting to close the specified file.

User Action: If possible, determine the cause of the error from
the I/O code. (Refer to the IAS/RSX-11 I/O Operations Reference
Manual.) If it is correctable, delete theportion of the' file
that BRU has copied, and reenter the command line.

BRU -- COMPLETED

Explanation: The BRU operation is complete.

User Action: Enter another BRU command line or exit with a
CTRL/Z.

7-37 April 1983

BACKUP AND RESTORE UTILITY (BRU)

BRU -- *FATAL* -- CONFLICTING QUALIFIERS

Explanation: Two or more of the specified qualifiers are
mutually exclusive: for example, !SUPERSEDE and !N,OSUPERSEDE.

User Action: Reenter the command line.

BRU -- *WARNING* -- DATA ID RECORD VERIFY ERROR

Explanation: An error occurred while BRU was verifying an
80~byte data-ID record.

User Action: None. BRU continues the operation.

BRU -- *WARNING* -- DATA RECORD VERIFY ERROR [ufd]filename.type;version
FILE ID number LBN number

Explanation: There was a difference in a data block on input and
output devices. The file-ID of the file with the error and the
LBN of the block follow the message.

If a UFD is printed with a file name, the UFD is the owner UFD
from the file's header, not the UFD in which the file is
contained.

User Action: None. BRU continues the operation.

BRU -- *WARNING* -- DATA WAS LOST DUE TO 10 ERRORS [ufd]filename.type;version

Explanation: A tape read error resulted in missed data.
files are restored, but may contain erroneous data.

The

If a UFD is printed with a file name, the UFD is the . owner UFD
from the file's header, not the UFD in which the file is
contained.

User Action: None. BRU continues the operation.

BRU -- *FATAL* -- DEVICE CONFLICT

Explanation: Both a tape and a disk drive were specified as part
of the input or output device specification.

User Action: The device must be either a disk or a tape, but not
both. This applies to both input and output specifications.

BRU -- *FATAL* -- DEVICE NOT IN SYSTEM

Explanation: A device was specified that does not exist in the
system.

User Action: Reenter the command line, specifying the correct
device specification.

7-38

(

(

(

(

c

BACKUP AND RESTORE UTILITY (BRU)

BRU -- *FATAL* -- DEVICE NOT SUPPORTED

Explanation: The specified device was not a tape or a disk, or
it was a disk that is not supported by BRU.

User Action: BRU supports only certain disk and magnetic tape
devices. See Table 7-2 for a list of supported devices. Reenter
the command line, specifying supported devices.

BRU -- *FATAL* -- DIRECTIVE ERROR

Explanation: An internal error occurred in BRU.

User Action: Reenter the command line. If the error persists,
submit a Software Performance Report (SPR) that includes a hard
copy of the BRU operations and error messages.

BRU -- *WARNING* -- DIRECTORY VERIFY ERROR

Explanation: A directory record on the input device did not
match a directory record on the output device.

User A~tion: None. BRU continues the operation.

BRU -- *FATAL* -- DISK IS AN ALIGNMENT CARTRIDGE

Explanation: The last track identified the disk as an alignment
cartridge, which cannot be initialized as a Files-II volume.

User Action: Reenter the command line, using a different output
volume.

BRU --* -- DISK LABEL ERROR

Explanation: An I/O error occurred while BRU was reading or
writing a disk label. A write error is fatal; a read error is
not fatal as long as BRU can continue reading the disk. See the
IAS/RSX~ll I/O Operations Reference Manual for the definition of
the I/O error code number.

User Action: If a write error occurred, reenter the command
line, specifying a different disk.

BRU -- *WARNING* -- DISK OUT OF SEQUENCE. PLEASE MOUNT CORRECT DISK.

Explanation: The wrong disk volume was mounted on the disk drive
during a restore-from-disk operation from a multivolume backup
set.

User Action: Mount the correct disk on the drive.

7-39 April 1983

I

I

BACKUP AND RESTORE UTILITY (BRU)

BRU -- *FATAL* -- DISK READ ERROR

BRU

Explanation: An unrecoverable read error occurred on the output
disk, possibly caused by an undetected bad block, or an error
occurred while BRU was sizing the input or output disk.

User Action: Use the BAD utility to locate all bad blocks. Then
use BRU with the /BAD:AUTOMATIC qualifier to use the existing bad
block information on the disk to create the file BADBLK.SYS.

FATAL

Explanation:
disk. The
block.

DISK WRITE ERROR

An unrecoverable write error occurred on the output
error could have been caused by an undetected bad

User Action: Use the BAD utility to locate all bad blocks (see
Chapter 6). Then use BRU with the /BAD:AUTOMATIC qualifier to
use the existing bad block information on the disk to create the
file BADBLK. SYS.

BRU -- *FATAL* -- DOUBLY DEFINED QUALIFIER

Explanation: The same qualifier was specified more than once on
the command line.

User Action: Reenter the command line, specifying the qualifier
once.

BRU -- *WARNING* -- DUPLICATE BLOCKS FOUND

BRU

BRU

Explanation: A manually entered bad block was already in the bad
block file.

User Action: None. BRU continues the operation.

-- END OF DISK Number ON ddnn:

Explanation: BRU has finished trarisferring data or verifying a
disk.

User Action: None. This is an informational message.

-- END OF TAPE number ON ddnn:

Explanation: BRU has finished transferring data or verifying a
tape.

User Action: None. This is an informational message.

BRU -- *FATAL* -- END OF VOLUME ENCOUNTERED. BACKUP SET NOT FOUND

Explanation: The backup set specified for a restore operation is
not on the tape or disk volume.

User Action: Mount the correct tape or disk volume or reenter
the command line, specifying the correct backup set name.

7-40 April 1983

(-

c

(

(

(

(

BACKUP AND RESTORE UTILITY (BRU)

BRU -- *WARNING* -- EOT MARKER ERROR

Explanation: During a backup operation, an error occurred while
BRU was writing or verifying the end-of-tape label on the output
tape.

After a restore operation, an error occurred while BRU was
positioning the tape at the end of a backup set for a subsequent
operation.

User Action: On a write error, BRU rewinds the current tape and
places it off-line. BRU then requests that a new tape be mounted
and rewrites the data on the new tape.

On a verify error, BRU continues the operation.

On a positioning error, BRU finishes the operation. If you want
to perform another BRU operation on the tape, use the /REWIND
qualifier to position the tape to beginning-of-tape.

BRU -- *WARNING* -- ERROR ACCESSING FILE
I/O ERROR CODE number
FILE 10 number

Explanation: An error occurred while BRU was writing data into a
file, or BRU tried to do a compare read on a file that was
already opened. BRU will continue with the neKt file.

See the IAS/RSX-ll I/O Operations Reference Manual for the
definition of the I/O error code number.

User Action: After BRU has finished, delete the file and then
enter a command line, specifying the file.

BRU -- *WARNING* -- ERROR ACCESSING UFO. SKIPPING [ufd]
I/O ERROR CODE number

Explanation: During a copy to
occurred when BRU attempted to
IAS/RSX-ll I/O Operations Reference
the I/O error code number.

a mounted volume, an error
access a directory. See the
Manual for the definition of

User Action: If possible, determine the cause of ,the error from
the I/O error code. If correctable, try the copy operation
again.

BRU -- *FATAL* -- ERROR LIMIT EXCEEDED

Explanation: BRU has reached the specified number of tape read
errors and terminated execution.

User Action: Reenter the command line, using a different tape
drive, or reenter the command line after cleaning the tape drive
heads on the original drive.

BRU -- *FATAL* -- ERROR READING COMMAND FIL"E

Explanation: An I/O error occurred while BRU was reading the
indirect command file.

User Action: Reenter the command line.

7-41

BACKUP AND RESTORE UTILITY (BRU)

BRU -- *WARNING* -- ERROR READING DATA BLOCKS
I/O ERROR CODE number
FILE 10 number LBN number

or
RECOVERED

Explanation: An I/O error occurred while BRU was reading a data
block from the disk. The file-ID of the file that contains the
block and the LBN of the block are displayed as well as the I/O
error code. If RECOVERED is printed after the message, the block
was recovered by re-reading the disk.

See the IAS/RSX-Il I/O Operations Reference Manual for the
definition of the I/O error code.

User Action: None. BRU continues the operation.

BRU -- *WARNING* -- ERROR READING UFO [ufd]

Explanation: An I/O error occurred while BRU was reading a block C~
from the specified UFO. Any files contained in this block of the
UFO are not backed up.

User Action: Reenter the command line. If the error still
occurs, you can find the lost files by using the VFY utility
(refer to Chapter 9).

BRU -- *WARNING* -- ERROR READING UFO HEADER [ufd]

Explanation: An error occurred while BRU was reading the header
of the specified UFO. Files in this UFO are not backed up.

User Action: Reenter the command line. If the error still
occurs, use the VFY utility to find the lost files (see Chapter
9) •

BRU -- *WARNING* -- EXTENDING INDEX FILE

Explanation: The initial number of file headers was
Either 256(10) or 16(10) more headers will be
depending on the number of blocks on the output disk.

User Action: None. BRU continues the operation.

BRU -- *FATAL* -- FAILED TO READ BAD BLOCK FILE

too small.
allocated,

Explanation: BRU was unable to read the bad block information
from a last-track output disk.

User Action: Reenter the command line, using ,the /BAD:OVERRIDE
qualifier.

BRU -- *WARNING* FILE HEADER READ ERROR [ufd]filename.typeiversion
I/O ERROR CODE number

Explanation: An I/O
header. That file
Operations Reference
code number.

error occurred while BRU was reading a file
is not backed up. See the IAS/RSX-II I/O

Manual for the definition of the I/O error

User Action: None. BRU continues the operation.

7-42

(~

(

c

(

(

BACKUP AND RESTORE UTILITY (BRU)

BRU -- *WARNING* -- FILE HEADER VERIFY ERROR [ufd]filename.typeiversion

Explanation: The file header of the specified file on the output
device is not the same as that on the input device.

User Action: None. BRU continues the operation.

BRU -- *WARNING* -- FILE ID AREA VERIFY ERROR

Explanation: The BRU-generated file-ID area of a data record was
different on the input and output devices.

User Action: None. BRU continues the operation.

BRU -- *FATAL* -- FILE ID EXCEEDS MAXIMUM NUMBER OF FILES

Explanation: You specified a maximum number of files with the
!MAXIMUM qualifier that was smaller than a file-ID encountered on
the input volume.

User Action: Reenter the command line, specifying a larger value
with the !MAXIMUM qualifier.

BRU -- *WARNING* -- FILE 10 SEQUENCE NUMBER ERROR [ufd]filename.typeiversion

Explanation: The two possible sources of this error are:

1. The sequence number in the fiie-ID of a file does not
match the sequence number of the file's entry in the
UFD.

2. The sequence number of a UFD does not match the sequence
number of the UFD's entry in the Master File Directory
(MFD) •

Therefore, the file or UFD is not valid and is not copied.

User Action: None. BRU continues the operation.

BRU -- *WARNING* -- FILE IDS W!LL NOT BE PRESERVED

Explanation: File-IDs cannot be preserved because the index file
bitmap on the output disk is too small. This is because the
value specified with the !MAXIMUM qualifier was too small.

User Action: None. BRU continues the operation without
preserving file-IDs. If your input disk had a hardware-bootable
system on it, your output disk will not be hardware-bootable.

If you want the disk to be hardware-bootable, perform the BRU
operation again, specifying a larger value with the !MAXIMUM
qualifier.

BRU *WARNING* -- FILE MARKED FOR DELETE [ufd]filename.typeiversion

Explanation: The marked-for-delete bit (SC.MDL) of the system
controlled characteristics in the file header was set, indicating
that the file was partially d~leted. The file is not copied. /

User Action: None. BRU continues the operation.

7-43

----------- ---

BACKUP AND RESTORE UTILI.TY (BRU)

BRU -- *WARNING* -- FILE NOT FOUND [.ufd] filename.typeiversion

Explanation: During a backup operation, BRU cannot find the
header for the specified file or directory in the index file.
The file is not copied.

During the verify or compare pass of a restore operation, BRU
cannot find the specified file on the output device.

User Action: None. BRU continues the operation.

BRU -- *FATAL* -- FILE NOT FOUND

Explanation: BRU could not find the specified indirect command
file.

User Action: Reenter the command line, correctly specifying
indirect command file.

BRU -- *WARNING* -- FILE NOT SUPERSEDED [ufd]filename.typeiversion

the

Explanation: During a copy to a mounted volume with /NOSUPERSEDE
specified (or defaulted), the specified file was not restored
because it already existed on the output disk.

User Action: If you want
command line, specifying
/NEW.:.YERSION.

the file to be restored, enter a
the file and either /SUPERSEDE or

BRU -- *FATAL* -- HANDLER' NOT RESIDENT

Explanation: The device driver for the specified device is not
·loaded.

User Action: Load the driver for the specified device or reenter
the command line, specifying the correct device name.

BRU -- *WARNING* -- HEADER ID RECORD VERIFY ERROR

Explanation: The BRU-generated header-ID record on the output
device is different from the one on the input device.

User Action: None. BRU continues the operation.

BRU-- *WARNING* -- HEADER READ ERROR [ufd]filename.typeiversion
I/O ERROR CODE number

Explanation: An I/O error occurred while BRU was reading a file
header in the index file during a backup operation.

If this error occurs during a restore operation, it is fatal.

See the IAS/RSX-II I/O Operations Reference Manual for the
definition of the I/O error code number.

User Action: None.

7-44

(-

c

(

c

(

(

l

BACKUP AND .RESTORE UTILITY (BRU)

BRU -- *FATAL* HOME BLOCK READ ERROR
I/O ERROR CODE number

Explanation: An I/O error occurred while BRU was reading
horne block on the input device. See the IAS/RSX-ll
Operations Reference Manual for the definition of the I/O
code number.

User Action: Reenter the command line.

BRU --*WARNING* -- HOME BLOCK VERIFY ERROR

the
I/O

error

Explanation: The horne block on the output device is different
from the horne block on the input device.

User Action: BRU continues, but it is suggested that you retry
the operation.

BRU -- *FATAL* -- HOME BLOCK WRITE ERROR

Explanation: An unrecoverable I/O error occurred while BRU" was
writing the horne block on the output device.

User Action: Use the BAD utility to find all the bad blocks on
the disk before initializing it.

BRU -- *FATAL* -- ILLEGAL USE OF DIRECTORY QUALIFIER

Explanation: possible sources for this error are:

1. The /DIRECTORY qualifier was specified with an output
device.

2. The /DIRECTORY qualifier was specified with a device
other than a tape or backup disk with the BRU container
file.

3. The !INITIALIZE qualifier or any of its related
qualifiers were specified with the /DIRECTORY qualifier.

User Action: Refer to Section 7.4 for a description of valid
uses of the /DIRECTORY qualifier.

BRU -- *FATAL* -- INCONSISTENT INITIALIZE QUALIFIERS

Explanation: The /INITIALIZE qualifier or any
qualifiers were specified for the output
/NOINITIALIZE qualifier was also used.

User Action: Reenter the command line.

BRU -- *FATAL* -- INDEX FILE HEADER READ ERROR
I/O ERROR CODE number

of its
disk,

related
but the

Explanation: An I/O error occurred while BRU was reading the
header of the index file on the input disk. See the IAS/RSX-ll
I/O Operations Reference Manual for the definition of the I/O
error code number.

User Action: Reenter the command line.

7-45

BACKUP AND RESTORE UTILITY (BRU)

BRU -- *FATAL* -- INDEX FILE WRITE ERROR

Explanation: An I/O error occurred while BRU was writing the (.. _,
index file on the output disk.

User Action: Use the BAD utility (see Chapter 6) to identify the
bad blocks on the output disk, then reenter the command line.

BRU -- *FATAL* -- INDEXF.SYS IS FULL

Explanation: The index file cannot map any more file headers.

User Action: Reenter the command line, specifying a larger value
with the /MAXIMUM qualifier.

BRU -- *FATAL* -- INITIALIZE QUALIFIERS INVALID WHEN OUTPUT IS TAPE

Explanation: The /INITIALIZE qualifier and the other qualifiers
that you can specify with it may be used only when the output
device is a disk.

User Action: Reenter the command line.

BRU -- *FATAL* -- INPUT DEVICE EQUALS OUTPUT DEVICE

Explanation: The input and output devices must be different.

User Action: Reenter the command line, specifying different
devices for input and output.

BRU -- *FATAL* -- INPUT LINE TOO LONG

Explanation:
characters.

The maximum le~gth of a
I ,

command

User Action: Truncate qualifiers
line. Make sure the truncated
qualifiers are unique to three
unique to two characters.

and options
forms are

characters;

line is 256(10)

to shorten the
unique. All BRU
a~l options are

BRU -- *WARNING* -- INPUT VOLUME STRUCTURE LEVEL DIFFERS FROM OUTPUT VOLUME

Explanation: You have initialized the output volume, specifying
with the /MAXIMUM qualifier that the number of files allowed on
the volume be greater than 25593. This causes the index file on
the output volume to have more than one file header.

User Action: None.

BRU -- *FATAL* -- INTERNAL ERROR

Explanation: BRU has detected an error within itself.
should not normally occur.

This

User Action: Please submJt a Software Performance Report (SPR)
with a hard copy of the BRU operations and error messages.

7-46

c

c

(

(

BACKUP AND RESTORE UTILITY (BRU)

BRU -- *FATAL* -- INVALID DATE OR TIME

Explanation: In the command line, a date or time was specified
incorrectly or is out of range.

User Action: Specify the correct date or time.

BRU -- *WARNING* -- INVALID DATE OR TIME [ufd]filename.type;version

Explanation: An invalid date or time was encountered in a file
header during an incremental backup.

User Action: None. BRU continues the operation.
copied.

BRU -- *FATAL* -- INVALID DENSITY OR TAPE FORMAT

The file is

Explanation: You specified a density that was neither the
default bpi (800 or 6250) nor 1600 bpi or you attempted to use
both 7-track and 9-track tapes in a multivolume tape set.

User Action: In the former case, reenter the command line,
specifying the correct density. In the latter case, only use all
7-track or all 9-track tapes for a multivolume tape set.

BRU -- *FATAL* -- INVALID DISK FORMAT

Explanation: The disk that was mounted for an /IMAGE restore
operation is not a BRU multivolume backup disk.

User Action: Mount the correct disk.

BRU -- *FATAL* -- INVALID FILENAME

Explanation: The name of the indirect command file is not
syntactically correct.

User Action: Reenter the command line.

BRU -- *WARNING* -- INVALID TAPE FORMAT
(

Explanation: An invalid tape record was read during a restore
operation.

User Action: None. The invalid record is not restored.

BRU -- *FATAL* -- INVALID VALUE OR NAME

Explanation: A value or name specified for a qualifier has
illegal syntax or is out of range.

User Action: Refer to Section 7.4 to determine the legal values
for the particular qualifier.

7-47 April 1983

I

BACKUP AND RESTORE UTILITY (BRU)

BRU -- *FATAL* -- MANUFACTURER BAD SECTOR FILE IS CORRUPT

Explanation: BRU was unable to read the bad block information (.
from a last-track output disk.

User Action: Reenter the
/BAD:OVERRIDE qualifier.

command line, specifying the

BRU -- *FATAL* -- MFD HEADER READ ERROR

Explanation: An I/O error occurred while BRU was reading the
header of the Master File Directory.

User Action: Reenter the command line. If the header still
cannot be read, the files on the disk are lost and may be
recovered using the VFY utility (see Chapter 9).

BRU -- *WARNING* -- MFD READ ERROR

Explanation:
of the MFD.

An I/O error occurred while BRU was reading a block
BRU cannot copy the UFDs in that block of the MFD.

User Action: Reenter the command line. If the block
read, use the VFY utility to recover the lost files.
Chapter 9 for information on VFY.)

BRU -- *FATAL* -- MISSING COLON

cannot be
(Refer to

Explanation: A qualifier option that accepts a value was not
followed by a colon.

User Action: Reenter the command line.

BRU -- *FATAL* -- MORE THAN 1 LEVEL OF INDIRECTION

Explanation: BRU does not support more than one level of
indirect command files.

User Action: Reenter the command line.

BRU -- MOUNT DISK ri ON ddnn:. PRESS "RETURN" WHEN DONE

Explanation: This message is issued each time BRU requests a
disk for an image backup or restore operation.

User Action: Mount the disk specified on the drive specified and
then press "RETURN".

BRU -- MOUNT TAPE n ON ddnn:

Explanation~ There is no tape on the specified drive or the tape
is not at load point. This message prints every two minutes
until the tape is mounted.

User Ac.tion: Mount the tape specified on the drive specified.

7-48 Apr il 1983

(

(

(

(

(

c

(

BACKUP AND RESTORE UTILITY (BRU)

BRU -- MOUNT ANOTHER DISK

Explanation: BRU is requesting that a new disk be mounted after
encountering a fatal disk write error.

User Action: Mount a new disk on the drive.

BRU -- MOUNT ANOTHER TAPE

Explanation: BRU is requesting that a new tape be mounted after
encountering a fatal tape write error.

User Action: Mount a new tape on the drive.

BRU -- *FATAL* -- NAME EXCEEDS MAXIMUM ALLOWED LENGTH

Explanation: A name, such as a backup set name, is longer than
12(10) characters. An exception to this rule is during an /IMAGE
backup operation to a mounted disk. You may specify more than
12(10) characters if you are adding the name of the backup set
filename to the command line. For additional information, -see
Section 7.4 for a description of the /BACKUP_SET qualifier.

User Action: Specify a name not greater than 12 characters.

BRU -- *WARNING* -- NO BAD BLOCK DATA FILE FOUND

Explanation: The BAD utility has not been run on the output disk
to produce a file of the disk's bad blocks.

User Action: None. BRU continues the operation. Refer to
Section 7.6 for information on bad block processing by BRU.

BRU -- *WARNING* -- NO FILES FOUND

I

I

Explanation: During a backup or re~tore operation, BRU did not I
find any files to transfer.

User Action: None.

BRU -- *WARNING* ~- NONFATAL QUALIFIER CONFLICTS BEING IGNORED

Explanation:
rest of the
example, you
operation.

You entered a qualifier that conflicts with the
command line, but is not fatal if ignored. For
used the /REWIND qualifier on a disk-to-disk

User Action: None. BRU continues the operation.

BRU -- *WARNING* -- NO SUCH UFO EXISTS. SKIPPING [ufd]

Explanation: During a copy to a mounted volume, BRU encountered
one or more files in the specified UFO on the input volume, but
there is no corresponding UFO on the output volume.

User Action: Reenter the command line, specifying the /UFD
qualifier to create the UFO.

April 1983

BACKUP AND RESTORE UTILITY (BRU)

BRU -- *FATAL* -- NUMBER OF HEADERS INCONSISTENT WITH MAXIMUM FILES

Explanation: During an attempt to initialize an output
BRU found that the maximum number of files specified
/MAXIMUM qualifier was inconsistent with the number of
initially allocated to the index file with the
qualifier.

volume,
with the
headers

/HEADERS

User Action: See the RSX-llM/M-PLUS MCR Operations Manual (the
INI command) for the legal ranges of values for the !MAXIMUM and
/HEADERS qualifiers.

BRU -- *WARNING* -- OPEN ERROR
I/O ERROR CODE number
FILE I/O number or [ufd]filename.typeiversion

Explanation: During a copy operation to a mounted volume, an
error occurred while BRU was attempting to open the specified
file. See the IAS/RSX-ll I/O Operations Reference Manual for the
definition of the I/O error-codenumber.

User Action: Determine the cause of the error from the I/O error
code. If correctable, delete any portion of the file already
copied by BRU, then reenter the command line.

BRU -- *FATAL* OUTPUT DISK TOO FRAGMENTED TO RESTORE

Explanation: The internal tables in BRU have overflowed due to
the extreme fragmentation of the output disk. If the output disk
was initialized, then it has an unacceptable number of bad blocks
and should not be used as a backup medium.

User Action: Use a new disk as the output device.

BRU -- *FATAL* -- OUTPUT DEVICE IS FULL

Explanation: There are no free blocks on the output disk. This
can occur when the output disk is smaller than the input disk or
during an append to a tape that is already full.

User Action: If the output disk is too small,
command line, specifying only the files you want.
doing an append to a tape that is already full,
command line, specifying a new tape.

reenter the
If you were

reenter the

BRU -- *FATAL* -- OVERRIDE INVALID WITH NON LAST TRACK DEVICE

Explanation: The OVERRIDE option may be used only when the
output disk is a last-track device.

User Action: Refer to Section 7.4.

BRU -- PLEASE ANSWER YES OR NO

Explanation: BRU requires a YES or NO response.

User Action: Enter YES or NO at your terminal.

7-50

c

c

(

(

c

(

BACKUP AND RESTORE UTILITY (BRU)

BRU -- *WARNING* -- PRIVILEGE VIOLATION [ufd]filename.type;version

Explanation: During a backup operation, you attempted to copy a
file that you do not have read access to.

User Action: None. BRU does not copy the file.

BRU -- *FATAL* -- PRIVILEGE VlbLATION

Explanation: The mount status of one of the devices is
inconsistent with the qualifiers specified in the command line.

User Action: See Table 7-1 for the correct combinations of
mounted devices and qualifiers, then reenter the command line.

BRU -- *FATAL* -- RAN OUT OF SPARE FILE IDS

Explanation: The output disk required more file headers than the
input disk, but no free headers were available. The lack of
headers is probably due to one of the following reasons:

1. The output disk is too fragmented because of bad blocks.

2. There are no free file headers on the input disk.

User Action: If you do not need to preserve file-IDs, reenter
the command line, specifying the /NOPRESERVE qualifier.

If you want to preserve file-IDs, do one of the following:

1. If the output disk is too fragmented, run BAD (see
Chapter 6) on it to display the number of bad blocks.
If it contains a large number of bad blocks, you may
want to use a different disk.

2. Use the PIP /FR switch (see Chapter 3) to display the
number of free file headers on the input disk. If there
are fewer than 4 free headers, delete some of the files
and then reenter the command line. If you still do not
have enough file headers, specify the /NOPRESERVE
qualifier in the command line.

BRU -- *WARNING* -- RECORD NOT EXPECTED SIZE

Explanation: The record read on the· output device during a
verify or compare operation was not the expected size.

User Action: None. BRU continues the operation.

BRU -- *FATAL* -- REQUIRED INPUT DEVICE MISSING

Explanation: The input device was not specified on the command
line or in response to the prompt.

User Action: Reenter the command line.

7-51

•

I

BACKUP AND RESTORE UTILITY (BRU)

BRU -- *FATAL* -- REQUIRED OUTPUT DEVICE MISSING

Explanation: The output device was not specified on the command
line or in response to the prompt.

User Action: Reenter the command line.

BRU -- REWIND ERROR ON ddnn:

Explanation: An I/O error occurred during a tape rewind. This
error is fatal if it occurs on the first tape of a tape set or
during a rewind for a verify operation. The error is not fatal
if BRU is rewinding a tape it is finished with.

User Action: If the error is fatal, reenter the command line.
If the error is not "fatal, no action is required.

BRU -- *FATAL* -- SEARCH FOR HOME BLOCK FAILED

Explanation: The home block could not be
disk. Either the home block is bad
Files-II format.

found on the input
or the disk is not in

User Action: Check to see that you have the correct disk •

BRU -- STARTING TAPE n ON ddnn:

Explanation: This message tells yo.u which tape is being copied
to or from which drive.

User Action: None. This is an informational message.

BRU -- STARTING VERIFY PASS

Explanation: This message tells you that the verify pass of a
disk-to-disk operation is beginning.

User Action: None. This is an informational message.

BRU -- STARTING VERIFY PASS TAPE n ON ddnn:

Explanation: This message tells you which tape is being verified
during a backup or restore operation.

User Action: None. This is an informational message.

BRU -- *FATAL* -- SYNTAX ERROR

Explanation: The command line is invalid.

User Action: Reenter the command line.

7-52 April 1983

(--

c

(

(!

c

=--=-=--=-=~~~=---~~~~ ----------~~~~~~~------ ~~~-~~-~

(-

(

(

(

BACKUP AND RESTORE UTILITY (BRU)

BRU -- TAPE LABEL ERROR ON ddnn:
I/O ERROR CODE number

Explanation: An I/O error occurred while BRU was reading or
writing a tape label. A write error is fatal; a read error is
not fatal as long as BRU can continue reading the tape. See the
IAS/RSX-ll I/O Operations Reference Manual for the definition of
the I/O error-code number.

User Action: If a write error occurred, reenter the command
line, specifying a different tape.

BRU -- *WARNING* -- TAPE LABEL VERIFY ERROR

Explanation: BRU detected an error in the tape label of the
input or output tape volume during a verify operation.

User Action: None. BRU continues the operation.

BRU -- *WARNING* -- TAPE NOT AT BOT. NO REWIND OR APPEND SPECIFIED

Explanation: For a backup operation to tape, BRU will not
process a tape that is not at BOT unless the /APPEND qualifier
was specified.

User Action: If you want to start writing at the beginning of
the tape, use the /REWIND qualifier.

You can append to a tape only at the end of the last backup set
on it. If the tape is already positioned there, specify /APPEND
in the command line. If it is not, specify both /REWIND and
/APPEND in the command line.

BRU -- *WARNING* -- TAPE OUT OF SEQUENCE. PLEASE MOUNT CORRECT TAPE

Explanation: The wrong tape volume was mounted on the tape drive
during a restore-from-tape operation.

User Action: Mount the correct tape on the drive.

BRU -- *WARNING* -- TAPE POSITIONING ERROR. BACKSPACE FAILED

Explanation: During a backup operation, the tape was not
positioned properly for a future append operation.

User Action: Rewind the tape before attempting the append
operation.

BRU -- *FATAL* -- TAPE POSITIONING ERROR. NO EOV ENCOUNTERED
I/O ERROR CODE number

Explanation: The tape spacing operation to find the
end-of-volume for an append operation failed. See the IAS/RSX-ll
I/O Operations Reference Manual for the definition of the I/O
error code number.

User Action: Reenter the command line.

7-53

BACKUP AND RESTORE UTILITY (BRU)

BRU -- *WARNING* -- TAPE READ ERROR

Explanation: An I/O error occurred while BRU was reading a tape.

User Action: None. BRU continues the operation.

BRU -- *FATAL* -- TAPE TO TAPE NOT SUPPORTED

Explanation: BRU does not back up a tape to another tape.

User Action: None.

BRU -- *WARNING* -- TAPE WRITE ERROR
I/O ERROR CODE number

Explanation: An I/O error occurred while BRU was writing to
tape. BRU rewinds the tape and then requests that another tape
be mounted. See the IAS/RSX-11 I/O Operations Reference Manual
for the definition of the 110 error code number.

User Action: If the error is related to the tape drive,
terminate BRU and start over on another drive.

BRU -- THIS DISK WILL NOT CONTAIN A HARDWARE BOOTABLE SYSTEM

Explanation: The output disk will not be hardware-bootable.
This can be caused by:

1. The input disk not being bootable

2. The system image not being copied

3. Copying to a disk of different size or type

NOTE

This message is not issued when BRU is
restoring to a mounted volume.

User Action: None.

BRU -- *FATAL* -- TOO MANY DEVICES

Explanation: For a conventional backup a disk may be specified
only once as an input or output device. However, up to eight
tape drives or eight disks in an image backup may constitute the
input or output.

User Action: Reenter the command line, specifying only one disk
or no more than eight tape drives.

BRU -- *FATAL* -- TOO MANY FILE SPECIFICATIONS

Explanation: More than 16(10) file specifications were specified
on the command line.

User Action: Reenter the command line. You can use wildcards to
reduce the number of file specifications on the command line.

7-54

c

(

(

(

BACKUP AND RESTORE UTILITY (BRU)

BRU -- *FATAL* -- UFD OR MFD REQUIRES UNSUPPORTED EXTENSION HEADERS

Explanation: BRU does not support extension headers for MFDs or
UFOs.

User Action: This error should not
Software Performance Report (SPR)
operations and error messages.

occur. Please submit a
with a hard copy of the BRU

BRU -- *WARNING* -- UFD RECORD VERIFY ERROR

Explanation: There is a difference between input and output
devices on a UFD record.

User Action: None. BRU continues the operation.

BRU -- *FATAL* -- UNKNOWN OPTION

Explanation: An option was specified that was not recognized by
BRU.

User Action: Reenter the command line. See Table 7-3 for a list
of legal options.

BRU -- *FATAL* -- UNKNOWN QUALIFIER

Explanation: A qualifier was specified that was not recognized
by BRU.

User Action: Reenter the command line. See Table 7-3 for a list
of legal command qualifiers and their options.

BRU -- *FATAL* -- UNSUPPORTED STRUCTURE LEVEL

Explanation: The file structure level on the input disk is not
supported by BRU.

User Action: Ensure that you have the correct disk. (See the
descriptions of the /HEADERS and /MAXIMUM qualifiers in Section
7.4 for information on structure levels.)

BRU -- *WARNING* -- VBN NOT IN FILE

Explanation: A file-ID was encountered that is larger than
maximum file-ID in the index file. The file is ignored.
error message occurs if a UFD entry was corrupted on the
disk.

User Action: None. BRU continues the operation.

BRU -- *FATAL* -- VERIFY LOST

the
This

input

Explanation: During the verify pass of a disk-to-tape backup
operation, BRU has lost synchronization between the input and the
output. This is usually caused by the tape position being lost
or by backing up from a disk that is mounted and then changed
during the backup operation.

User Action: Reenter the command line.

7-55

I

BACKUP AND RESTORE UTILITY (BRU)

BRU -- -FATAL* -- VOLUME NOT A BACKUP DISK

Explanation: The disk mounted for an append or restore operation
does not contain a backup set file generated by BRU.

User Action: Check to see that you have the correct disk and
reenter the command line.

BRU -- *FATAL* -- VOLUME NOT A BACKUP TAPE

Explanation: The ta~e mounted for an append or restore operation
was not generated by BRU, or the tape is not positioned correctly
for an append operation.

User Action: Check to see that you have the correct tape, or
reenter the command line, specifying the /REWIND qualifier to
position the tape.

BRU -- *FATAL* -- VOLUME NOT READY

Explanation: The device is not on-line.

User Action: Put the device on-line and reenter the command
line.

BRU -- *FATAL* -- VOLUME WRITE LOCKED

Explanation: The output device is not write-enabled.

User Action: If the output device is a tape, insert a write ring
to make it write-enabled. If it is a disk, press the Write
Enable switch on the disk drive.

BRU -- *FATAL* -- WRONG BACKUP SET

Explanation: During a restore operation from a mu1tiree1 tape
set or a multivolume disk backup set, BRU found that one of the
tapes or disks does not contain the correct backup set.

User Action: Reenter the command line, specifying the correct
tape.

BRU -- *FATAL* -- WRONG INPUT VOLUME LABEL

Explanation: The input volume label specified with the /INVOLUME
qualifier does not match the volume label of the input device.

User Action: Reenter the command line, specifying the correct
input volume label.

7-56 April 1983

(.-- .')
\.J

(

o

(----

c

c

CHAPTER 8

DISK SAVE AND COMPRESS (DSC)

The Disk Save and Compress (DSC) utility copies a Files-II structured
disk either to disk or to tape and from DSC-created tape back onto
disk. At the same time, DSC reallocates and consolidates the disk
data storage area: it concatenates files and their extensions into
contiguous blocks whenever possible and, therefore, reduces the number
of retrieval pointers and file headers required for the same files on
the new volume.

DSC copies files that are randomly scattered over a disk volume to a
new volume, without the intervening spaces. This eliminates unused
space between files and reduces the time required to access them.

A complete DSC operation is a cycle that begins with data on one
and ends with the same data in compressed form on another disk.
operation can use one command (for a disk-to-disk cycle) or
commands (for a disk-to-tape and tape-to-disk cycle). You can use
on-line or in either of its stand-alone versions (DSCSYS.SYS
DSC64K. SYS) •

disk
The
two
DSC
or

After a DSC copy operation, individual files are written in available
contiguous blocks and the blocks available for new files are located
in a contiguous area at the end of the new volume. If the contents of
one disk are transferred to a disk with a larger capacity, the new
disk takes on the attributes of the original disk except that
additional storage space is available.

DSC reads and writes data to its two buffers when it performs copy or
compare operations. (See Figures 8-1 and 8-2.) Each buffer normally
is large enough to contain four disk blocks and a 16-byte buffer
prefix. However, the /Block Factor switch (/BL) in a DSC command line
allows you to increase the number of blocks in each buffer, up to the
maximum - space available for DSC on your system. The maximum blocking
factor is 4 for both stand-alone versions.

In a disk-to-disk copy operation, DSC:

1. Copies data from disk to a DSC buffer

2. Copies data from the DSC buffer to another disk

8-1

------- --------- ----- - - --- - -

DISK SAVE AND COMPRESS (DSC)

In a disk-to-tape and tape-to-disk operation, DSC:

l.

2.

3.

4.

You can
time.

Copies data from disk to a DSC buffer

Writes data from the DSC buffer to tape

Copies data from tape to a DSC buffer

Writes data from the DSC buffer to another disk

execute operations 3 and 4 to restore data to disk

BLOCKS OF DATA

DSC
BUFFER 1

o
DSC

BUFFER 2

DISK INPUT DEVICE

I
___ ...1

DISK OUTPUT DEVICE

o DSC reads eight (default) or more blocks of data from the disk input device to two
buffers.

.. In disk-to-tape copy operations, DSC writes data from the buffers- to magnetic tape.

e In disk-to-disk copy operations, DSC writes data from the buffers to the disk output
device.

DSC repeats steps 0 and 8 or 49 until it copies the entire input device.
ZK-182-81

Figure 8-1 Data Transfer for DSC Copy Operation

8-2

(-

at any

(

c

(

. --_._---- ---- _. __ ._-------------- - -_. __ ._------ ---- ---------------------------------

C~

(

(

DISK SAVE AND COMPRESS (DSC)

BLOCKS OF DATA

o DSC
BUFFER 1

I
;, D~

BUFFER 2

/
~

@
DISK INPUT DEVICE G DISK OUTPUT DEVICE

o DSC reads four blocks (default) of data from the disk input device to a buffer.

S DSC reads four blocks (default) of data from the disk output device to the second buffer.

.. DSC compares the contents of the two buffers.

G DSC prints the differences on your terminal.

DSC repeats steps 0 through e until it has compared the entire device.
ZK-183-81

Figure 8-2 Data Transfer for DSC Compare Operation

After a disk-to-disk copy operation, you can access the data on the
new disk directly. However, after a disk-to-tape operation you cannot
access the data on tape directly because it is stored in a format
recognizable only to DSC. To access this data, you must perform a
second DSC copy operation and transfer the data to another disk
volume.

When DSC copies and compresses a disk containing a saved system (a
task image file created from an RSX-IIM or RSX-IIM-PLUS system image
by an MCR .SAVE command), it moves all task files to different physical
addresses. However, because the Task Control Block (TCB) entries for
each task contain file identifications rather than Logic.al Block
Numbers (LBNs), such a saved system can function normally when it is
rebooted.

You can also use DSC to. recover from hardware malfunctions that have
made a portion of a disk volume unreadable. If the contents of a
block allocated to a data file cause a read error, you can use DSC to
copy the garbled contents to the output device and to generate a
warning message labeling the garbled data block. You can then access
the block and correct its contents.

8-3

DISK SAVE AND COMPRESS eDSe)

8.1 DSC-SUPPORTED VOLUMES

You can use DSC with a
devices. The status
operating system.

variety of mass storage or magnetic tape
DSC requires for the devices varies with the

Table 8-1 lists the devices that can be used with DSC operations.

Abbreviation

OK

DL

OM

DP

DR

OS 1

DT 1

DU2
DXl

Dyl

MM

MS

MT

Table 8-1
DSC-Supported Devices

Type

RP04/RP05/RP06 disk pack

TU58 cassette (DECtape II)

RFll/RSll fixed head disk

RK05/RK05F cartridge disk

RLOl/RL02 cartridge disk

RK06/RK07 cartridge
disk

RP02/RP03 disk pack

RM02/RM03/RM05/RM80/RP07
disk pack

RH70/RS03/RS04 and RH70/RS03/
fixed-head disk

TU56 DECtape

RA80 Fixed media disk
RXOI floppy disk

RX02 floppy disk

TE16/TU16/TU45/TU77
9-track magnetic tape

TSII magnetic tape

TUIO/TEIO 7- or 9-track
magnetic tape and TS03
9-track magnetic tape

TU78 magnetic tape

Class

Block structured

Block structured

Block structured

Block structured

Block structured

Block structured

Block structured

Block structured

Block structured

Block structured

Block structured
Block structured

Block Structured

Tape

Tape

Tape

Tape

1. Indicates that the device cannot be used with either stand-alone
DSC.

2. Indicates that the device cannot be used with DSCSYS.SYS.

8-4

c

c

(

(

(

DISK SAVE AND COMPRESS (DSC)

8.2 INITIATING AND TERMINATING ON-LINE DSC

You can initiate the on-line DSC in any of the ways explained in
Chapter 1 of this manual. To terminate on-line DSC, type CTRL/Z.

8.3 INITIATING AND TERMINATING STAND-ALONE DSC

You can bootstrap stand-alone DSC (DSCSYS.SYS or DSC64K.SYS) from disk
or from tapes supplied with the operating system.

You can bootstrap stand-alone DSC in one of two ways:

1. Software boot stand-alone DSC by entering the privileged MCR
BOOT command as follows:

For Unmapped

>INS $BOO
>BOO[T] [1,50]DSCSYS.SYS

For Mapped

>INS $BOO
>BOO[T] [1,51]DSC64K.SYS

2. Hardware boot stand-alone DSC by loading the appropriate
beginning bootstrap address.

To create a hardware-bootable stand-alone DSC tape from the
distribution disk, use the Virtual Monitor Console Routine
(VMR) to save the system image to tape.

When stand-alone DSC is booted, it displays the message:

RSX-llS V3.0 BL32 DISK SAVE AND COMPRESS UTILITY V4.0
DSC>

The prompt indicates that DSC is ready to accept commands.
stand-alone DSC by halting the processor.

Terminate

When DSC64K.SYS is booted,
Si zing Program (CNF) is
prompt:

the Stand-alone Configuration and Disk
active. Type the following for the DSC

>RUN DSC

Section 8.8 describes stand-alone DSC64K.SYS.

8.4 DSC COMMAND FORMAT

Commands for DSC use the format:

DSC>outdev [s] : [filelabel] [/swi tch] =indev [s] : [filelabel] [/swi tch]

The parameters of this command format are:

Output Parameters

outdev:

The physical volume(s) to which data is copied. The format for
outdev: is dd[nn]: where dd are the ASCII characters for the

8-5

DISK SAVE AND COMPRESS (DSC)

volume abbreviation, [nn] is an optional 1- or 2-digit octal unit
number for the volume, and the colon (:) is required syntax for a
device specification. If you omit the unit number, 0 is the
defaul t.

DSC uses tape drives in the order specified in the command line.
If more tapes are required than specified, DSC accesses the tape
drives available in round-robin fashion. Up to eight tape
drives, separated by commas, can be specified as output devices
in an on-line DSC operation. Stand-alone DSC permits only two
tapes to be used as output devices.

DSC ignores multiple disk specifications.

file label

Identifies the output disk's volume-ID, the tape file, or tape
set that DSC creates in a data transfer. You can specify a file
label with either disk or tape output volumes. If you do not
specify a file label, and you copy a disk to tape, DSC records
the volume ID of the input disk on the tape. When the copy is
from tape to disk, the output volume ID defaults to the ID
recorded on the tape. In a disk to disk copy operation, the
output volume ID will default to the ID of the input disk.

switch

One or more of the optional switches described in Section 8.5.

Input Parameters

indev:

The physical volume(s), in the format dd[nn]:, from which data is
copied (see outdev:).

file label

Identifies the DSC-created tape file that is being transferred to
disk or compared. If you do not specify a file label, DSC
transfers the first file it encounters after its current position
on the tape. DSC ignores the specification of an input file
label when the input volume is a disk.

switch

NOTE

Each file on a DSC-created tape set
contains the contents of the disk copied
by DSC.

One or more of the optional switches described in Section 8.5.

8.5 DSC FILE LABELS, SWITCHES, AND OPTIONS

DSC commands can contain file labels and switches. Some switches also
use options to specify values. Table 8-2 summarizes the DSC switches
and options. Note that all of these switches can be used with both
on-line and stand-alone DSC. See Table 8-5 for switches available
only for stand-alone DSCSYS.

8-6

(

c

(

Switch

Append

Bad Block

(Block Factor

Compare

Density

C

(

Rewind

Verify

DISK SAVE AND COMPRESS (DSC)

Table 8-2
DSC Switches and Options

Format

lAP

rN

}

NOAUTO
IBAD= ~~:NOAUTO

MAN:OVR

IBL=n
or

IBL:n

ICMP

IDENS=1600
IDENS=800: 1600

or
IDENS:1600
IDENS:800:1600
IDENS = 6250

IRW

IVE

8-7

Description

Appends a DSC file to the
first volume of a
tape set that already
contains a DSC file. The
latter file is currently
the last file of the set.

Allows manual entry of
bad block locations; can
supplement, override, or
ignore the disk's bad
block file.

Sets the number of 256-word
blocks DSC can include in
each of its two buffers.

Compares input and output
volumes for differences.

Overrides the DSC default
storage density for magnetic
tapes of .800 bits per inch.
DENS=1600 creates magnetic
tapes at 1600 bits per inch
density and 800:1600 (the
split density switch)
creates tapes with volume
headers at 800 bits per inch
and the rest of the tape at
1600 bits per inch.

Note that the DENS=1600
switch is valid with TU16,
TU77, TE16, or TU45 drives.
The DENS=800:1600 switch
is valid with TU16 or TU45
drives when they are not
controlled by the TM03
formatter. The IDENS = 6250
switch is only valid with
TU78 dr i ves •

Rewinds all magnetic tapes
before DSC executes the
current command.

Copies data from the input
volume and compares it with
data in the output volume.

DISK SAVE AND COMPRESS (DSC)

8.5.1 File Label

The file label identifies the data copied from a disk and stored on
one or more tapes or on another disk. If you do not specify a file
label, DSC uses the volume-ID of the input disk volume label as the
output volume label.

The file label can consist of from 1 to 12 alphanumeric characters.
However, when copying to tape, DSC uses 9 characters to identi fy the
file it creates which contains the disk's contents. Place the file
label after the device specification and before any switches.
Termin~te the file label with one of the following:

• An option switch

• An equal sign (indicating the end of the output side of the
command line)

• A carriage return (indicating the end of the command line)

For exampl e:

.' DSC>MMOl: ,MM02:SYSFILE=DBl:

DSC uses the file label SYSFILE in the command line to identify the
file on tape that will contain the data to be copied from the input
disk, DBl:.

You can also use the file label when restoring data from tape to disk.
If you enter a file label as part of the input specification, DSC
searches the first volume for a file with that name. When it finds
that file, DSC transfe\rs it to the output volume. If, however, you do
not specify an input file label, DSC transfers the first DSC-created
file it locates on the first input volume. In both cases, using the
/Rewind switch on the input side of the command causes the tape to be
rewound before ,the search for the file starts.

If you use a file label as part of the output specification, it will
be used as the volume label of the output disk. If you do not specify
an output file label, the default file label is that of the original
input disk, (as recorded in its Home Block).

For example:

DSC>DB 1: =MMOl: ,MM02: SYSFILE

In this command line, the /Rewind switch is not specified on the input
side. Therefore, DSC searches the first volume specified, MMOl:,
beginning at the current position, for a DSC-created file named
SYSFILE. If DSC finds SYSFILE on MMOl:, it completes the data
transfer. If, however, SYSFILE is not found on the first volume, DSC
issues an error message and terminates the operation.

If you enter the command line without a file label, DSC transfers the
first DSC-created file it finds to DBl: regardless of the file name.
(This file mayor may not be SYSFILE.) If you do not specify the
/Rewind switch, the tape mayor may not be positioned at the beginning
before DSC begins its operation.

\

8-8

c

(

(

(

(

(

DISK SAVE AND COMPRESS (DSC)

8.5.2 IAppend Switch

The IAppend switch (lAP) directs DSC to begin writing a file to the
first specified volume of a tape set that contains only DSC-created
files.

Enter the IAppend switch as part of the output specification. The
volume to which files will be appended must be specified as the first
volume of the output side of the command line, as follows:

outdev: [filelabel] IAP=indev: [filelabel] [/swi tch]

When you use the /Append switch with the output specification, DSC
searches from the current position on the first specified tape output
volume for the last logical end-of-file (EOF) created by a previous
DSC command. If the last DSC-created file does not end on that
volume, DSC terminates the operation and issues the following message:

OUTPUT TAPE ddnn: IS FULL

If the first specified tape output volume contains a portion of a DSC
file that began on a previous volume, DSC terminates the operation and
issues the following error message:

OUTPUT TAPE ddnn: IS A CONTINUATION TAPE

If DSC locates the end of a file on the tape that began on another
volume, DSC terminates the operation and issues the following error
message:

OUTPUT TAPE ddnn: IS NOT THE ONLY REEL IN ITS SET

For example:

DSC>MMOl:,MM:SYSFILE/RW/AP=DXl:

This command line appends the contents of DXl: to the last
DSC-created file already present on the first output volume specified,
MMOl:. Since the IRewind switch is specified (see Section 8.5.7), DSC
first rewinds the tape on MMOl: and searches for the last EOF block
on the tape. When it determines that only complete DSC-created files
exist on the volume on MMOl:, DSC appends the new file, SYSFILE, to
the file or files already on the tape. If necessary, DSC extends
SYSFILE to additional volumes.

You can only use the IAppend switch with output tape volumes. Any
other use of the switch causes DSC to generate an error message and
terminate the operation.

8.5.3 IBad Block Switch

Use the IBad Block switch (/BAD) with output disk volumes to control
the way DSC uses bad block information.

The options for the IBAD switch allow you to:

1. Supplement the output disk bad block file with manually
entered bad block data.

2. Ignore or override the bad
(manufacturer's list of bad
devices.

block file
blocks)

3. Use only manually entered bad blocks.

8-9

or
on last track

non-last-track

DISK SAVE AND COMPRESS (DSC)

The bad block descriptor,of the disk is never altered by DSC.

If the IBAD swi tch is not specified, DSC will access the bad block ('
descriptor area (the last good block on non-last-track disks or the ,,-
entire last track on last-track disks) to obtain the information to '
create the bad block file, BADBLK.SYS. If DSC determines that the
descriptor area is invalid, DSC displays a warning message (see
Message 59). '

The format for the IBAD switch and its options are:

MAN

IBAD=MAN
IBAD=NOAUTO
IBAD=MAN:NOAUTO
IBAD=OVR
IBAD=MAN: OVR

Supplements BADBLK.SYS with manually entered bad block data.
This option may be combined with either NOAUTO or OVR to produce
two more options.

NOAUTO

Ignores the bad block descriptor area on the disk. Note that in
this case, DSC will attempt to write in any block it selects.
This option may be combined with MANUAL to produce the option
MAN: NOAUTO •

. MAN: NOAUTO

c

Enters only manually entered bad block data in the bad block file C.',
BADBLK.SYS. Thus, DSC bypasses only manually entered bad blocks
when selecting blocks to write in.

OVR

Ignores the bad block descriptor area and accesses the substitute
descriptor area (the last good block on the next to the last
track on the disk) to obtain the data for the creation of
BADBLK.SYS. This option is valid only on last-track devices.

MAN:OVR.
This option may also be combined with MAN to produce the option (

MAN:OVR

Allows manual entry of bad block data to the bad block file
BADBLK. SYS.

When you specify MAN, MAN: NOAUTO, or MAN:OVR with the IBad switch, DSC
responds with the following prompt:

DSC)LBN(S)=

DSC issues this prompt after it accepts the original command line but
before it transfers any data.

Enter the locations of bad blocks after the LBN(S)= prompt as follows:
•

DSC)LBN (S) =n :m.

8-10

(

(

(

(

(

- ---~~~----~~---~-----

DISK SAVF AND COMPRESS (DSC)

n

The logical block number (LBN), in octal, of the initial bad
block in the group.

m

The number, in octal, of consecutive blocks contained in the
group. If you do not specify m, it defaults to 1.

To specify a decimal number for either m or n, place a period (.)
after the number.

You can specify multiple bad block entries on one command
either a space, tab, or comma to separate each entry.
use separate lines for each entry.

line using
You can also

After you enter the first group of bad blocks, DSC reissues the
LBN(S)= prompt. At this point, you can enter additional bad blocks.

To terminate manual bad block entry, enter a carriage return after the
LBN (S) = prompt.

When you have entered all the bad blocks and terminated the entry
process, DSC begins the data transfer.

For example:

DSC)DBl:/BAD=MAN:NOAUTO=MMOl:,MM02:SYSFILE/RW
DSC)LBN(S)=702:7<TAB)644:2
DSC)LBN(S)=4057,5001:3
DSC)LBN(S)=<RET)
DSC)

DSC restores the output disk, DBl:, from the tape file SYSFILE
contained on MM01: and MM02:, skipping only the blocks you entered
manually. In the previous example, the following blocks will not be
used:

702
703
704
705
706
707
710

644
645

4057 5001
5002
5003

Compare the previous example with the following example:

DSC)DB 1: /BAD=N OA UTO=DB 0:

This example transfers data to the lowest LBNs on DB1: regardless of
the content of the resident bad block descriptor.

If you specify /BAD=OVR on a last track device, DSC reads the last
good block written by BAD on the next to the last track of the device.
The information in this substitute descriptor block is used to create
the bad block file. If MAN:OVR is specified, manually entered blocks
will be added to the bad block file.

8-11

DISK SAVE AND COMPRESS (DSC)

8.5.3.1 Obtaining Bad Block Information - You can obtain bad block
information in two ways:

1. Running the Bad Block Locator program (BAD), described in (.....
this manual

2. Running the DIGITAL Field Service stand-alone diagnostic

The BAD utility automatically provides bad block information and
creates a bad block file that DSC can use.

The Field Service stand-alone diagnostic reads every word in a block
and displays bad block messages on the console terminal. (This
diagnostic is recommended for the user who wants more comprehensive
testing of a volume). However, since the output is the physical
address of each bad block, you must convert this address to logical
block numbers before DSC can use it.

8.5.3.2 Conversion to Logical Block Numbers. - All
information must identify bad blocks by LBN.

DSC bad block

The manufacturer-furnished or diagnostic bad block information usually
identifies bad ,blockS by physical address (sector-track-cylinder).
Before you enter this information manually for DSC, convert the
physical addresses to LBNS. Use the following formula:

«(cylinder number*tracks/cylinder)+track number)*sectors/track)+sector number

For example, suppose a bad sector of an RP06 (19 tracks per cylinder
and 22 sectors per track) has the following physical address:

Cylinder Number =
Track Number =
Sector Number =

Octal

536(8)
16(8)
13(8)

Decimal

350.
(14.)
(11.)

The LBN for the example is calculated as follows:

«(350.*19.)+14.)*22.)+11.=146619.

8.5.4 /Block Factor Switch

The /Block Factor swi tch (/BL) allows you to set the number of blocks
DSC uses in each of its buffers during I/O operations. The default
DSC block factor is four blocks or the last value specified with the
/BL swi tch.

8.5.4.1 Using the /BL Switch - The format for the /Block
switch is:

outdev: [filelabel] /BL=n=indev: [filelabel]

Note: /BL:n will also be accepted.

Factor

The value of n. can be any positive integer, decimal or octal, less
than or equal to the maximum block factor available to DSC. This
maximum depends on the amount of memory DSC can access under the
system configuration. (See your system manager for this information.)

8-12

(

(

(

c

(

(

c_

DISK SAVE AND COMPRESS (DSC)

The /BL switch can be specified either on the input or output side of
a DSC command line.

Note, if the input volume is tape, DSC determines the block factor
from the header label of tha input file and ignores the /BL switch.

If you specify the /BL switch on both sides of a DSC command line with
a disk volume, DSC uses the last value it receives, that is, the one
from the input side of the command line. However, if you specify the
/BL switch only on the output side of a command line, DSC uses that
val ue.

DSC requires 2020(8) bytes of memory for each additional block of
buffer space you specify. If the /BL switch in a DSC command line
requires more memory than DSC has available, DSC displays the message
BAD BLOCKING FACTOR and exits.

For example:

DSC>DBl:jBL=ll=DBO: or DSC>DBl:/BL: 11=DBO:

In this example, DSC attempts to increase the number of blocks in each
of its buffers to 11. DSC requires an additional 16160(8) bytes of
memory for the expansion (7 additional blocks times 2020(8) bytes).

If DSC does not have access to 16160(8) additional bytes of memory on
your system, it will display the error message BAD BLOCKING FACTOR.

If the expansion succeeds, DSC reads and writes 11 blocks of data at
one time during an I/O operation instead of 4. This decreases the
time required for DSC operations.

Once DSC has expanded its buffers to the value of the /BL switch, that
value becomes the default value. DSC does not reduce its task image
size if a command line is executed at a lower block factor. However,
if you specify a lower block factor in a subsequent command line, DSC
will create that volume at the lower factor.

8. 5.'4~ 2 System-Dependent Requirements for /BL Switch
a mappeQ system expands automatically if memory is
the RSX-I1M Systefu Generation and Installation Guide
buildingDSC with additional memory.)

Table 8-3

- On-line DSC on
available. (See
for details of

Operating System Limits for DSC Block Factor

Default Maximum Maximum
Blocking DSC Blocking

Operating System Factor Size Factor

RSX-llM/M-PLUS
Mapped Systems 4 32K words 36 (10)

RSX-llM
Unmapped Systems 1 4 20K words 10 (10)

1. On unmapped RSX-IIM systems, the DSC task must be rebuilt with
additional memory for the block factor to be increased beyond 4.

8-13

DISK SAVE AND COMPRESS (DSC)

8.5.5 /Compare Switch

The /Compare switch (/CMP) directs DSC to compare the contents of two
disks or a disk and a tape set. Multiple tape specifications are
valid, but multiple disks are not. The /Compare switch is always
specified on the output side of the DSC command line. If the
comparison involves tape and disk, specify the tape as the input
device. The /Compare switch performs only comparison operations; no
c.opy operation is involved.

To perform both a copy and compare operation, use the DSC /Verify
switch (see Section 8.5.8).

Specify the /Compare switch as follows:

outdev: [filelabel]/CMP=indev:[filelabel]

When DSC finds a difference between the volumes it is comparing, it
displays a warning message on your terminal. This warning message
lists the output volume number, file identification, and the Virtual
Block Number (VBN) where the difference was found. DSC then continues
the comparison.

c

When DSC detects an end-of-volume (EOV) on any reel or end-of-file ~
(EOF) on other than the first reel of a tape set, the /CMP switch -
causes DSC to rewind and unload the current volume and resume
comparison with the next volume until it detects an EOF.

When DSC begins a comparison involving tape, it first positions the
specified or implied file as described in Section 8.5.7. DSC
positions a single volume tape at the end of the current file when the
comparison ends. Each reel of a tape set is rewound and unloaded as
the compare operation for it is completed. DSC then resumes the c.
comparison using the next volume of the set. .

8.5.6 /Density Switch

The Density switch, with its two options, allows you to override the
DSC default storage density of 800 bpi for TU16, TE16, TU77, and TU45
tape drives and 6250 bpi for the TU78. The following two sections
discuss these options. Although you can use other tape drives with·
DSC, only these drives can support the /Density switch.

You do not have to specify the /Density switch when a tape is the
input device. DSC determines the density of all input tapes by first
reading the tape at 800 bpi and then, if that fails, ~eading it at
1600 bpi. In the case of the TU78, DSC first reads the tape at 6250
bpi, then, if that fails, it reads the tape at 1600 bpi.

If you specify the /Density switch with a disk, DSC issues an error
message and halts the operation.

8-14

(

c

c

(

DISK SAVE AND COMPRESS (DSC)

If you specify the /Density switch with tape drives other than those
above, DSC ignores the switch and does not alter the default density.
Note that TSll (TS04) drives write all tapes at 1600 bpi and cannot
support 800:1600. The TSll (TS04) ignores the /Density switch,
therefore do not use it with these devices.

8.5.6.1 1600 bpi Option - The 1600 bpi Option directs the TU16, TE16,
TU77, TU78, or TU45 drive to operate as an output volume at a density
of 1600 bpi. The drive then writes all volumes in the tape set at
that density. For example:

DSC>MMOl:,MM02:SYSFILE/RW/APjDENS=1600=DBl:

In this example, MMOl: and MM02:, are written at 1600 bpi density.

8.5.6.2 Split Density Option - The Split Density Option
(jDENS=800:l600) directs the TU16 or TU45 drives (using the TM02 tape
formatter) to write the entire tape set, except for the first two
blocks on the first volume, at 1600 bpi. The first block on the file
contains the volume label and the second block is a dummy boot block
that displays the following error message if an attempt is made to
boot the volume:

THIS VOLUME DOES NOT CONTAIN A BOOTABLE SYSTEM

In the following example, DSC records the first two blocks of the
first volume at 800 bpi and the remainder of the file at 1600 bpi.

DSC>MMOl:,MM02:SYSFILE/RW/DENS=800:l600=DBl:

NOTE

Magnetic tapes created using the Split
Density Option do not comply with
American National Standard X3.27-l978.

You cannot use the Split Density Option with the TE16 magnetic tape
drive. Tape drives controlled by a TM03 also cannot use the split
density option. The TM02 controller, however, does support the split
density option.

8.5.7 /Rewind Switch

The Rewind switch (/RW) directs DSC to rewind all volumes in a tape
set before performing any other DSC operation, such as a copy or a
compare operation. You can use it to rewind either input or output
volumes (see Table 8-4).

The /RW switch can be used only with magnetic tapes. If you use it
with any other volume, DSC prints an error message.

8-15

DISK SAVE AND COMPRESS (DSC)

INPUT

If you enter the /RW switch as part of the input specification, DSC
rewinds only the first tape before the DSC operation begins. The
other tapes are rewound before they are about to be accessed. If you
specify a file label with the /RW switch, DSC rewinds the tapes and
searches for the file you specified from the Beginning of Tape (BOT)
on the first volume. If you do not specify a file label, DSC
transfers the first DSC-created file it encounters on the first
volume.

After a volume of a tape set has been copied, DSC rewinds it and
places it offline. If, however, the current file ends on the first or
only tape of a set, the tape is positioned to read the next file on
the input tape. The /RW switch only rewinds tapes at the beginning of
a DSC operation.

OUTPUT

If you enter the /RW switch as part of the output specification, DSC
rewinds the output tape before beginning a copy or compare function.
The defaul t is no rewind and the tape is not moved.

If you do not enter the /RW switch wi th the output specification and
the first volume is not positioned at BOT, DSC begins its operation
after the last DSC-created EOF it finds on that volume.

After the output tape has been rewound, DSC determines if the tape is
positioned at the beginning (BOT). For a compare function, a search
for the next file or a specific file begins at the current tape
position. For a copy function, if the /Append switch was specified or
if the tape is not positioned at BOT, the search for the current end
of DSC created files begins (see Section 8.5.2); otherwise, the copy
operation will overwrite any data previously stored on the tape.

Table 8-4 summarizes the use of the /Rewind switch with various DSC
operations, with and without a file label.

An example of the use of the /Rewind switch follows:

DSC>MMOl:SYSFILE/RW=DBl:

DSC rewinds the volume on drive MMOl: and overwrites any data on the
tape. The contents of DBl: are written to a single file identified
as SYSFILE. DSC does not rewind the tape when the operation is
finished unless the file extends to another volume. If the file does
extend, DSC rewinds and unloads the filled tape. DSC ensures that
subsequent tapes are at BOT before using them for read or write
operations. Each subsequent volume, including the last one in the
tape set, is rewound and unloaded when it is filled.

The following example shows the restoration of a DSC-created file:

DSC>DBl:=MM02:,MMOl:SYSFILE/RW

8-16

(

(

(

Swi tch

/RW

/RW

/RW

C
/RW

(
No
Rewind
Swi tch

DISK SAVE AND COMPRESS (DSC)

Table 8-4
The /Rewind Switch and DSC Operations

Specification File Label

Input/Output With/without

Input With

Input Wi thout

Output/With File labels
specified when
tape is output
volume are
ignored when
the tape is
restored to
disk.

Output

8-17

Action

Rewinds first tape
before copy
operation begins.

DSC searches for
specified file
from the beginning
of the first tape
volume before a
copy/compare
operation begins.

DSC copies/
compares the first
file it encounters
on the first
volume.

DSC writes data,
starting at the
beginning of the
first tape volume,
unless /AD is
specified.

If the tape is not
at BOT, DSC writes
data, beginning
after the last
end-of-file block
it encounters.

(If tape is
already at BOT,
and the /AP switch
is not specified,
DSC starts there.)

During copy
operations to
multiple tapes,
DSC rewinds the
tape as it is
filled and takes
it offline.

DISK SAVE AND COMPRESS (DSC)

In this example, DSC restores a volume (DBl:) by using a tape set
created by a previous DSC operation. DSC rewinds the first volume on
MMf 02: h andf.slear~hesffor a previously cr7ated.DSC fil: labeled SYSFILE. (~
I tel e 1S ound, DSC transcr1bes 1t. If 1t is not found on
MM02:, DSC issues a message and terminates the operation. DSC will
not search MMOl: if the file does not begin on MM02:. Each volume of
the tape set is rewound and unloaded when the data it contains has
been copied or compared. If SYSFILE ended on MM02: the first time it
was accessed, the tape is not rewound and unloaded but is positioned
to access the next file.

NOTE

When you refer to tapes after your
system is booted, you must use the
/Rewind switch. If you do not use the
switch, the tape driver will return an
error message.

8.5.8 /Verify Switch

The /Verify switch (/VE), entered as part of the output
directs DSC to perform a copy operation followed
operation to verify that the two volumes are the same.
allow you to specify either the /Verify or /Compare
input and output volumes are tape.)

specification,
by a compare

(DSC does not
switch if both

If either the input or output volume is tape, the Verify operation
takes place at the end of the Copy operation for each volume. In
other words, DSC writes MMOl: and compares MMOl:, then writes MM02:
and compares MM02:, after which the entire DSC operation is complete.
In a disk-to-disk DSC operation, the verify operation begins when the
copy operation is finished.

You specify the /Verify switch as follows:

outdev: [filelabel] /VE=indev: [filelabel] [/swi tch]

If you do not specify a file label for an input tape set, DSC will
copy the first file it finds on the first volume of the set.

When DSC detects EOV or EOF on any volume of a tape set during a copy
operation, it repositions the volume to the beginning of the current
file segment and begins the verify operation.

During a verify operation, if DSC detects EOV on any volume, or EOF on
other than the first volume of a tape set, it rewinds and unloads the
tape when the operation is complete. After an EOV, the copy operation
resumes using the next volume from the beginning of the tape.

NOTE

If you specify a tape as one of the
volumes, DSC requires extra time after
the copy operation to rewind the tape
and search for the current file before
it begins to verify.

8-18

c

c

(

(-

c

(

c

DISK SAVE AND COMPRESS (DSC)

8.6 DSC OPERATION OVERVIEW

DSC initially accesses the first primary file header and writes the
blocks mapped by its retrieval pointers to the output volume. DSC
then checks the primary file header to determine whether it points to
any extension headers. If extension headers exist, DSC transcribes
them and the blocks they map until the entire file, with all of its
extensions, has been written to the output volume. DSC then accesses
the remaining primary file headers in numerical order. For example:

DSC)DB 1: =DB 2:

In this example, DSC copies all the files on DB2: to DBl:.

When DSC copies file extensions it
pointers and file 1 inkages involved in
not only involves collapsing retrieval
number of file extensi.ons required
eliminated.

updates the output retrieval
the transfer as required. This
pointers, but also reduces the

as the retrieval pointers are

As a result of a copy operation, each primary file header is followed
by all of its extensions. Volumes created in a copy operation have
complete files written to contiguous blocks (except where blocks have
been flagged as bad in earlier operations on the volume). DSC writes
data, beginning at the lowest LBN possible on the disk.

If an input file is contiguous, DSC will search for an area on the
output volume with enough contiguous blocks to contain the file. If
no such area existsj DSC will issue an appropriate message and
terminate the copy operation.

If an input file is not contiguous,
contiguous sections as possible,
available on the output volume.

data is allocated in as few
in the first unoccupied blocks

Before the actual copying of data to a disk begins, DSC must, in
effect, initialize the disk. This process might take several minutes
if there is a maximum number of files allocated in the Index file.
Although it might appear that DSC is in a loop during this period, it
is actually zeroing out all headers in the Index file.

8.7 STAND-ALONE DSC - DSCSYS.SYS

Stand-alone DSC DSCSYS.SYS does not support all the features of the
on-line version. DECtapes, floppy diskettes, DF/DS fixed-head disks,
and TU58 cassettes cannot be used with the standalone version. In
data transfer operations, stand-alone DSC uses all of the switches
described in Section 8.5.

The system data base in the stand-alone version has a Device Control
Block (DCB) for each supported device type. The DeB points to a Unit
Control Block (UCB) for logical unit 0 and for logical unit 1. Except
for MS tapes, the UCBs for a specific device type point to a common
Status Control Block (SCB) which contains the CSR and Vector Addresses
associated with the related controller as listed in Table 8-6.

8-19

DISK SAVE AND COMPRESS (DSC)

Since MSO: and MSl: require unique CSR and Vector addresses, their
respective UCBs point to separate SCBs. The format of the system data
base imposes the following restrictions:

• Logical unit numbers are limited to 0 and 1.

• Only one controller per device type (except MS tapes) is
supported per command.

• DP and DR type devices have been assigned nonstandard vector
addresses to avoid possible conflict with DB devices.
Similarly, MT and MS tapes have been assigned nonstandard
vector addresses to avoid possible conflict with MM tapes.

You can overcome some of these limitations by using the four switches
listed in Table 8-5 to alter the system data base default values to
match your system. A mismatch of either the CSR or Vector address
will cause the stand-alone system to fail. The switches can be used
only with stand-alone DSC.

Format

/CSR=xxxx

/TM02=x

/UNIT=x

/VEC=xxx

Table 8-5
Stand-Alone DSCSYS.SYS Switches

Swi tch

/Control Status
Register switch

/TM02/TM03 Formatter
switch

/Unit switch

/Vector Address
switch

Description

Specifies control status
addresses for a specific
SCB.

Specifies the physical
unit number of the
formatter on the
RHll/RH70 controller.

Specifies the physical
unit that will be
referenced by the
indicated UCB.

Specifies the vector
address for a specific SCB.

The four switches supplied with stand-alone DSC can appear together in
a single command line to specify the appropriate values of a single
device or device type. However, you can only specify values for one
device type or generate one data transfer operation in a single
stand~alone DSC command line.

Therefore, when you use these switches, you must enter at least two
command lines: one to specify the switches with a device or device
type and one to initiate the DSC data transfer operation.

NOTE

Once you use the switches, DSC uses them
in all subsequent command lines until
you either specify new switches in a new
command line or terminate DSC.

8-20

(

(

(

(

(

c

(

(

(

DISK SAVE AND COMPRESS (DSC)

The general format for a stand-alone DSC command with switches is:

DSC>ddnn:/switchl=x ••• /switchn=y

ddnn:

The device identifier and unit number specifying the DeB and UCB

/switchl ••• /switchn

One or more of the stand-alone switches described in the
following sections

x,y

The values you assign to the switch(es)

8.7.1 /Control Status Register Switch

Use the Control Status Register switch (/CSR) to alter
Control Status Register address generated by stand-alone
it conforms to the address required by your system for a
device.

the device
DSC so that
particular

Table 8-6 lists the CSR and vector addresses of the device types
supported by stand-alone DSCSYS.SYS.

Table 8-6
System-Generated CSR and Vector Addresses

Device Type CSR Vector

DB: 176700 254

DK: 177404 220

DL: 174400 160

DM: 177440 210

DP: 176714 300 1

DR: 176700 320 1

MM: 172440 224

MT: 172522 320 1

MSO: 172 522 320 1

MSl: 172 52 6 330 1

MF: 175400 260

1. Indicates nonstandard vector address.

8-21

----------~------ ---------

DISK SAVE AND COMPRESS (DSC)

The following example illustrates the correct use of the /CSR switch:

DSC:MM1=/CSR=160546
DSC)DBO:/CSR=160646

In this example, DSC has set the CSR addresses of the MMl: tape drive
and the DBO: disk drive to 160546 and 160646, respectively. After
you enter these values, you can enter another DSC command line to
initiate a copy and/or compare operation. Neither of the commands
that use the /CSR switch in the example cause a copy operation to
begin.

If a DSC operation involves multiple devices of the
specify the /CSR switch once for each device type.
the MS: tape drive; each drive must be set to its
host system.)

8.7.2 /TM02 Switch

same type, only
(The exception is

correct CSR on the

(

Use the /TM02 switch (/TM02) to specify the physical unit number of C
the TM02/TM03 formatter, associated with a particular UCB on the RH
controller for your system. This switch need only be used if that .
physical number differs from the current value. Do not confuse this
number with the physical number assigned to a particular tape drive.

Stand-alone DSC is created with a physical unit number of 0 assigned
to the TM02/TM03 formatter on the RH controller. This assignment
affects each of the two UCB's for MM tapes. You can change this to
any octal digit from 1 to 7 for each MM: device. For example:

DSC)MM1:/TM02=1

This command line alters the physical unit number of the formatter
associated with MMl: from its current assignment on the RH controller
to 1. The /TM02 switch affects only the specified device. If MMO:
also requires a change, the command must be repeated specifying MMO:.
If MMO: and MM.l: are associated wi th different RH controllers, they
cannot appear in the same command line. The /TM02 switch only works
with MM: devices. It cannot be specified with an MT:, MS:, or a disk
device.

8.7.3 /Unit Switch

You can use the /Uni t swi tch (/UNIT) to change the uni t numbers DSC
accepts for device specifications. Stand-alone DSC is generated with,
and accepts only, two logical unit numbers, 0 and 1. This constraint
can be amended somewhat with the /UNIT switch. The numbers 0 and 1
must still be specified in the command line, and the number of devices
cannot be increased. However, DSC can access devices with physical
numbers other than 0 and 1. For example:

DSC)DP1:/UNIT=5

This command will initiate a copy from the DP currently designated as
physical unit 5 to DP1:.

DSC)DP1: =DPO:

(

(

In this command, the output device is the DP currently designated as C·
unit 1 unless the /UNIT switch had pre;viously been applied to DPl:. _

8-22

,---------

(

(

DISK SAVE AND COMPRESS (nSC)

The general format for a stand-alone DSC command with switches is:

DSC)ddnn:/switchl=x ••• /switchn=y

ddnn:

The device identifier and unit number specifying the DCB and UCB

/switchl ••• /switchn

One or more of the stand-alone switches described in the
following sections

x,y

The values you assign to the switch(es)

8.7.1 /Control Status Register Switch

Use the Control Status Register switch (/CSR) to alter
Control Status Register address generated by stand-alone
it conforms to the address required by your system for a
device.

the device
DSC so that
particular

Table 8-6 lists the CSR and vector addresses of the device types
supported by stand-alone DSCSYS.SYS.

Table 8-6
System-Generated CSR and Vector Addresses

Device Type CSR Vector

DB: 176700 254

DK: 177404 220

DL: 174400 160

DM: 177440 210

DP: 176714 300 1

DR: 176700 320 1

MM: 172440 224

MT: 172522 320 1

MSO: 172522 320 1

MSl: 172 52 6 330 1

MF: 175400 260

1. Indicates nonstandard vector address.

8-21

DISK SAVE AND COMPRESS (DSC)

The following example illustrates the correct use of the /CSR switch:

DSC:MMl:/CSR=160546
DSC>DBO:/CSR=160646

In this example, DSC has set the CSR addresses of the MMl: tape drive
and the DBO: disk drive to 160546 and 160646, respectively. After
you enter these values, you can enter another DSC command line to
initiate a copy and/or compare operation. Neither of the commands
that use the /CSR switch in the example cause a copy operation to
begin.

If a DSC operation involves multiple devices of the
specify the /CSR switch once for each device type.
the MS: tape drive; each drive must be set to its
host system.)

8.7.2 jTM02 Switch

same type, only
(The exception is

correct CSR on the

(

Use the /TM02 switch (jTM02) to specify the physical unit number of (_-
the TM02/TM03 formatter, associated with a particular UCB on the RH
controller for your system. This switch need only be used if that
physical number differs from the current value. Do not confuse this
number with the physical number assigned to a particular tape drive.

Stand-alone DSC is created with a physical unit number of 0 assigned
to the TM02/TM03 formatter on the RH controller. This assignment
affects each of the two UCB's for MM tapes. You can change this to
any octal digit from 1 to 7 for each MM: device. For example:

DSC >MM 1: /TM 02=1

This command line alters the physical unit number of the formatter
associated with MMl: from its current assignment on the RH controller
to 1. The /TM02 switch affects only the specified device. If MMO:
also requires a change, the command must be repeated specifying MMO:.
If MMO: and MMl: are associated with different RH controllers, they
cannot appear in the same command line. The /TM02 switch only works
with MM: devices. It cannot be specified with an MT:, MS:, or a disk
device.

8.7.3 jUnit Switch

You can use the /Unit switch (/UNIT) to change the unit numbers DSC
accepts for device specifications. Stand-alone DSC is generated with,
and accepts only, two logical unit numbers, 0 and 1. This constraint
can be amended somewhat wi th the /UNIT swi tch. The numbers 0 and 1
must still be specified in the command line, and the number of devices
cannot be increased. However, DSC can access devices wi th physical
numbers other than 0 and 1. For example:

DSC >DP 1: /UNIT=5

This command will initiate a copy from the DP currently designated as
physical unit 5 to DPl:.

DSC>DPl: =DPO:

(

(

In this command, the output device is the DP currently designated as (
unit 1 unless the /UNIT switch had pr~viously been applied to DPl:.

8-22

(

F ,

(

(

(

DISK SAVE AND COMPRESS (DSC)

8.7.4 /Vector Address Switch

Use the /Vector Address switch (/VEC) to change the stand-alone DSC
vector addresses to the addresses required by your system. Each unit
of the device type is accessed by the specified vector address. For
example:

DSC)DB1:/VEC=320

After you enter this command line, all DB:-type devices will be
accessed with a vector address of 320.

Stand-alone
conflicting
contains:

DSC uses nonstandard vector addresses to resolve
unit configurations. These conflicts occur when a system

• MM, MT, or MS device types such as a TU16, TE10/TU10 or a TS03
drive, for example.

• Any combination of RP02/03, RP04,05/06/07, and RM02/03/05/80
(such as an RP02 disk and an RP04 disk).

For example, before you can reference MM, MT, or MS tapes, you must
use the /VEC switch to change the DSC vector setting of 320 to the
correct value for your system.

DSC)MT1:jVEC=224

After you enter this command line, all MT devices will be accessed
with a vector address of 224 (instead of the DSC-generated vector
address of 320).

The /VEC switch applies to all drives of the same type except in the
case of MS:, where only the specified device is affected.

If the /VEC switch is not used to alter the DSC setting, DSC waits for
a response from the incorrect vector address. This response never
comes.

8.8 STAND-ALONE DSC - DSC64K.SYS

DSC64K is similar to the on-line version of DSC with the following
exceptions:

• DSC64K is not overlaid

• DT, DX, DY, DD, DF, DS devices are not supported

• Only one tape may be referenced either as input or output

• The maximum blocking factor is 4

This version is essentially an RSX-llM system with BAD, FMT, DSC,
CNF fixed in memory, and requires 64KW of memory.
[1,5l]DSC64K.SYS is software booted, the system comes up with
active.

8-23

and
When

CNF

~--------------

DISK SAVE AND COMPRESS (DSC)

CNF is the Stand-alone Configuration and Disk Sizing Program. It
lists the switches you can use and then prompts you for the first
device type for which you would like the CSR and vector information.
It is recommended that you first specify /DEV to find out the status
of devices on your system. You can also use CNF and its switches to
set the CSR and vector addresses of devices in your system or to
change the default formatter number (FOR=n) for some of the magnetic
tape devices. (The functions of these switches correspond to the
swi tches 1 isted in Table 8-5 for DECSYS. SYS.)

The CNF switches are:

/CSR=nnnnnn

Changes the default CSR for the device.

/DEV

Lists the default CSR and vector addresses for all of the
dev ices.

/FOR=n

Changes the default formatter number for some of the
magnetic tape devices. The switch is only valid for MF:-and
MM:- type devices. The initial default for n is O.

/VEC=nnn

Changes the default for the device.

CNF will prompt you for the first device you want to reference. If
adjustments are required for the device, use the appropriate CNF
switch(es). For example, to alter the vector and CSR values for MT:,
type the following:

MT:/VEC=nnn/CRS=nnnnnn

After the system data base has been adjusted with the new values, CNF
prompts you for the second device. The response will be similar to
the response for the first device. CNF will then ~equest that you
press the RETURN key to return control to MCR. Use the RUN command to
activate anyone of the four installed utilities.

The DSC64K system image (DSC64K. SYS) and symbol table (DSC64K. STB) are
located in UFD [1,51] on the following disk volumes:

BIG DISK KIT

RK06/RK07 KIT

RLOI/RL02 KIT

RK05 KIT

8.9 DSC DATA TRANSFERS

RSXMBL3l

CLISRC

RLUTIL

DC LSRC

As outlined in the beginning of this chapter, DSC's complete data
transfer process consists of either a direct disk-to-disk operation or
a two-step, disk-to-tape/tape-to-disk operation. DSC reads and writes
data to and from its own internal buffers during these operations.

The following sections describe DSC's operation in each of these data
transfers.

8-24

c

(

(

(

c--

(

DISK SAVE AND COMPRESS (DSC)

8.9.1 Data Transfer from Disk

After you enter a DSC command line specifying a copy operation from a
disk, DSC scans the input disk to ensure that it is in Files-II
format. DSC begins by copying an approximation of the disk index
file. Because this file is updated to reflect the status and location
of blocks as they are allocated on the new disk, the index file bit
map, the storage bit map file, and the bad block file are not
transcribed exactly: DSC transcribes only the data necessary for the
construction of these files on the new disk. However, the index file
bit map still reflects the maximum number of files on the input disk.

DSC accesses the input volume index file's active file headers in
numerical order to locate the next active primary file header. DSC
transfers that header, the blocks it maps, and all extension headers
and related blocks that are part of the file, to the output medium.
It then accesses the next active primary file header from the index
file. DSC continues this operation, each time writing a complete
file, until it has transferred all the active files.

DSC accesses and transcribes only the blocks allocated to active
files. It ignores unallocated blocks interspersed throughout the
input disk. This results in contiguous data blocks on the output disk
following the copied files.

If DSC accesses a file that contains bad data, DSC transcribes
whatever it .reads from the block. When DSC restores the file to disk,
it writes the block's contents as it originally read them. The
logical block still contains garbled data, but the new physical block
can be accessed and its contents corrected. A message identifying
these bad areas is displayed on the console terminal.

In summary, to transfer data from a disk, DSC:

1. Verifies that the disk is on line and in Files-II format.

2. Transcribes disk index files, updated for their new status.

3. Reads the data to a DSC buffer.

8.9.2 Data Transfer to Tape

When the output volume in a DSC operation is tape, DSC writes the
contents of the input disk to a tape on t.he drive you specify. This
data transfer usually involves multiple reels of tape (a tape set) and
multiple tape drives.

The tapes that DSC creates serve as a backup of the disk's contents.
You can only use DSC-created tapes by copying them back to a disk and
restoring the disk's contents to their original form. Although the
tapes contain many individual files from the input disk, DSC treats
the tapes as if they contained a single file -- a file of the disk's
entire contents.

When DSC begins writing the disk's contents to tape, it allows writing
to more than one volume. The first block DSC writes to tape is a
header that contains the volume name (obtained from the file label)
and the relative volume number. This header identifies the tape set
and the volume's place within that set. It ensures that when DSC
begins to restore the disk, it will load each volume in the tape set
in order.

8-25

DISK SAVE AND COMPRESS (OSC)

After the header, the tape set includes the data required to
reconstruct directory files, maps and pointers, and the actual files
copied from the disk.

NOTE

When the disk is restored, the directory
files are at the beginning of the disk,
regardless of their position on the
original disk.

To initiate the copy operation, first ensure that the tape devices are
online. You can specify multiple tape drives in the following way:

DSC)ddnn(O):,ddnn(1):, ••• ddnn(7): [filelabel]=indev:

An example of a command in this format is:

DSC)MMO:,MM1:,MM4:,MM2:SYSFILE=DBl:

You have the option of entering a file label in this command line
after specifying the last device. You can specify only one type of
tape drive, either MM or MT or MS, in a single DSC command line.
Although you can specify up to eight drives on the output side of the
command line (two drives in stand-alone DSC), you can specify each
drive only once.

If the number of volumes in the tape set exceeds the number of tape
drives available, DSC uses volumes on the specified drives in
round-robin fashion. Using the previous example, the order of
replacement until an end-of-file is reached would be as follows:

MMO: MM1: MM4: MM2: MMO: MM1: MM4: MM2:

In summary, to transfer data to tape, DSC:

1. Verifies that the first or only volume of a tape set is
on-line and write-enabled.

2. Verifies that
Beginning of
write-enabled.

subsequent volumes of
Tape (BOT), on-line

a tape set are at
when required, and

3. Transcribes data from a DSC buffer to the tape.

8.9.3 Data Transfer from Tape

DSC can only use the tapes it creates to (1) reconstruct a disk or (2)
perform compare and verify operations.

When you mount the tapes and specify tape drives as input devices, DSC
sequentially accesses and writes the tape contents to the output
volume. Up to eight drives may be specified on the input side; they
wlll be referenced in round-robin fashion as described in Section
8.9.2. As it transfers the data, DSC creates and updates directory
files.

Tape drives specified as input devices must be on line. The volumes
in the tape set must be referenced in the correct order in the command
line.

8-26

(

c

(

(

c

c

(

DISK SAVE AND COMPRESS (DSC)

If you specify a file label, DSC transfers only the contents of the
file identified by that label. If you do not specify a file label,
DSC transfers only the first DSC-created file it encounters on the
first volume of a set.

In summary, to transfer data from tape, DSC:

1. Verifies that the tape drives are on line.

2. Accesses the volumes in a tape set in round-robin order.

3. Creates directory files.

4. Reads the data to a DSC buffer.

8.9.4 Data Transfer to Disk

A DSC operation is not complete until the data involved in the
transfer is restored to disk.

To receive input, a disk must be on line. Any disk large enough to
contain all the input data can be specified as the output disk when
the data is restored to the original disk.

The disk should have an up-to-date bad block descriptor or have bad
block data entered in a DSC command Une with the JBAD switch. This
ensures that the data written on the disk will be accessible. You can
update the bad block descriptor before a DSC operation by running the
BAD program (see Chapter 6).

After identifying the bad blocks on the output disk, DSC examines that
disk to ensure that it has enough free blocks to contain all the data
to be transferred. DSC compares the number of blocks to be
transferred from the input disk(s) with the number of blocks available
on the output disk. DSCissues an error message and exits if too few
blocks are available.

DSC constructs the index and storage bit map files when it begins
transcribing files. DSC updates the file headers to reflect the
location of the data on the new disk. This updating is required
because blocks that were previously scattered are now copied to a
contiguous set of blocks, beginning at the lowest LBN available on the
disk. DSC will write the primary file header, its contents, and
associated file extension headers and the extensions they map as a
unit to a contiguous series of blocks. Note that the output disk
contains an index file of the same size as the original disk. This is
especially important when the contents of a large disk (such as an
RP04) are restored to a smaller disk (such as an RK05) or vice versa.

Compressing files in this manner is beneficial when retrieval pointers
for a noncontiguous file header are
creates each retrieval pointer to map as
possible (maximum is 256.), the
significantly reduced. DSC can also
extensions and extension headers.

8-27

almost used up. Because DSC
many contiguous blocks as

number of pointers may be
reduce the number of file

DISK SAVE AND COMPRESS (OSC)

Note that when DSC writes to a disk, it begins writing data into the
lowest LBN possible. Free blocks generally have higher LBNs and are
in a contiguous section of the disk.

The data presently on the disk is overwritten by the new data.
Therefore, you cannot use DSC to transfer the contents of several
small disks to a single large disk. Each copy operation eliminates
whatever previously occupied the disk.

In summary, to transfer data to a disk, DSC:

1. Verifies that the disk is on line.

2. Verifies that the disk has an up-to-date bad block descriptor
or that bad blocks are specified manually (through the
/BAD=NOAUTO switch). Displays a warning message if no bad
block information is available and the /BAD switch was not
specified.

3. Verifies that the disk has enough free blocks to contain all
the data to be transferred.

4. Creates index and directory files (in the first part of the
disk) •

5. Writes the data from a buffer.

8.10 DSC MESSAGES

DSC notifies you of fatal error conditions as well as less serious
conditions that could cause difficulties in DSC operations. Each
message generated by DSC has the prefix DSC--, and each is identified
by a numeric code.

DSC messages are displayed on your terminal in either a long or a
short form: on-line DSC displays the long form and stand-aloneDSC
displays the short form. You can determine the meaning of the short
form message from the number provided with the message. Use the
number to find the long form message in Section 8.10.1. The text
accompanying the long form message of that number explains the error.

For example, specifying a tape in the wrong format generates the
following message in long form from DSC:

FATAL *** 17 OUTPUT TAPE MMl: NOT ANS I FORMAT

The same error generates the following message in short form on
stand-alone DSC:

FATAL *** 17 - MM1

Error messages which only appear with the stand-alone versions of DSC
are described in Section 8.10.3.

Table 8-7 is a quick reference to the single letter codes used in
general messages and in I/O messages (Section 8.10.2).

8-28

(

~-

(~

(

(

(

DISK SAVE AND COMPRESS (DSC)

Table 8-7
General Error and I/O Error Message Codes

Type of
Code Symbol Meaning

General Code A Failed to read storage bit map header
Error Code B Input data out of phase
Message Code C , Nondata block encountered

Code D Input file out of phase
Code E File attributes out of phase
Code F File header out of phase

I/O A Reading index file bit map
Error B Reading index file header
Message C Reading storage bit map

D Reading boot or horne block
E Read~""q file header
F Input (or output device)
G Writing index file bit map
H Writing storage bit map header
I Reading data
J Reading input tape 1 abel s
K Reading file attributes
L Reading file header
M Reading index file data
N Reading summary data
0 Wri ting file header

When DSC identifies a file in which a problem has been detected, it
provides only the file-ID (file number, file sequence number) of that
file. Use the Dump utility (DMP) (described in Chapter 11) with the
/FI switch and /HD switch to obtain the name of the file and other
information contained in the file header. For example:

DMP>TI:=devid:/FI:x:y/HD/BL:O

This command line will cause DMP to output to a terminal the header(s)
of file x, y. The variables x and y, displayed in certain DSC error
messages, represent the file number and file sequence number
respectively.

8.10.1 DSC General Messages

The following are the general messages DSC can return.

2 CONFLICTING DEV. TYPES

Explanation: An illegal combination of device types was
specified.

User Action: Check for typographical errors in device
abbreviations and make sure that the disks and tape drives are
not specified on the same side of the command line.

8-29

DISK SAVE AND COMPRESS (DSC)

3 MIXED TAPE TYPES

4

5

6

7

8

9

Explanation: Two different types of
specified in the command line.

tape drives were

User Action: Reenter the command line, specifying only one
type of tape drive.

ILLEGAL SWITCH

Explanation: The command line was entered with a switch that
cannot be used with that command line.

User Action: Reenter the command line,
correct switches.

FILE LABEL TOO LONG

specifying only

Explanation: A file label consisting of more than 12(10)
alphanumeric characters was specified.

User Action: Reenter the command line, specifying a shorter
file label.

SYNTAX ERROR

Explanation: An error occurred in the command line format.

User Action: Reenter the command, specifying the right order.

DUP. DEY. NAME;

Explanation: The same device was entered more than once in
the command line.

User Action: Reenter the command line, specifying each device
only once.

TOO MANY DEY'S

Explanation: More than the legal number of devices were
specified on one side of the command line.

User Action: Reenter the command line, specifying no more
than eight devices per side.

DEY. ddnn: NOT IN SYSTEM

Explanation: The specified device is not present in the
configuration of the operating system being used.

User Action: Check the device identifier that was entered in
the command line. Reenter the command line.

8-30

E-

(

(

(

(

(

(

DISK SAVE AND COMPRESS (DSC)

10 DEV. ddnn: NOT FILES-II

Explanation: The specified input device is not formatted as a
Files-II device.

User Action:
command line.

Check the input device that was entered
Reenter the command line.

in the

11 BAD BLOCK SYNTAX ERROR

12

13

Explanation: A syntax error occurred when bad block data was
manually entered.

User Action: Check the command line that
Reenter it.

BAD BLOCK COUNT TOO LARGE

was entered.

Explanation: There are too many groups of bad blocks (Maximum
is 125.) on the output disk for DSC to handle.

User Action: Use a different output disk.

BAD BLOCK CLUSTER OUT OF RANGE

Explanation: A manually entered bad block or group of bad
blocks does not exist on the output disk.

User Action: Check the numbers of the
Reenter the command line.

blocks entered.

15 OUTPUT TAPE ddnn: FULL

16

Explanation: The specified tape is full and files cannot be
appended to it.

User Action: Change the output tape. Reenter a command line
to begin a new tape set.

OUTPUT TAPE ddnn: NOT ONLY REEL IN SET

Explanation: The IAppend switch was used with a tape that was
not the first tape of a set created by DSC.

User Action: Change tapes. Reenter the command line (see
message 15).

17 TAPE ddnn: NOT ANSI FORMAT

OUTPUT TAPE

Explanation: If the medium is an output tape, the IAppend
switch was specified and the tape is not in ANSI format.

User Action: Reenter the command line and either omit the lAP
switch to write the specified tape or change to an ANSI tape.

8-31

DISK SAVE AND COMPRESS (DSC)

INPUT TAPE

Explanation: If the medium is an input tape, the tape is not
in the correct format for a DSC operation (that is, the tape
was not created by DSC).

User Action: Check the tape and change it, if necessary.
Reenter the command line.

18 OUTPUT TAPE ddnn: NOT DSC TAPE

Explanation: An /Append switch was specified with a tape that
was not created by DSC.

User Action: Reenter the command line and either omit the
/Append switch or change to a DSC-created tape.

19 TAPE ddnn: A CONTINUATION TAPE

Explanation: If the medium is an input tape, the tape was
mounted out of sequence and is not the first of a set.

User Action: Reenter the command line and specify input tapes
in the proper order.

21 FAILED TO FIND HOME BLOCK

Explanation: DSC failed to find the home block on the input
disk. Either the disk is bad, the home block is bad, or th~
disk is not in Files-II format.

User Action: Check the disk in question, change drives if
possible, and reenter the command line.

22 FILE STRUCTURE LEVEL ON ddnn: NOT SUPPORTED

Explanation: The device is not a Files-II Structure Level
disk, so 1t cannot be used.

User Action: Replace the device, and reenter the command
line.

23 I/O ERROR A ON ddnn:
(Additional error information)

Explanation: The I/O error indicated explains why the index
file bit map on the device could not be read.

User Action: If possible, correct the cause of the error.
Reenter the command line.

24 I/O ERROR B ON ddnn:
(Additional error information)

Explanation:
file header
file is lost.

The I/O error indicated explains why the index
on the device could not be read. The specified

User Action: If possible, correct the cause of the error on
the device. Reenter the command line.

8-32

c

(

(

(

(~

(

DISK SAVE AND COMPRESS (DSC)

25 CODE A

Explanation: The .file header for the storage bit map file
cannot be read.

User Action: The disk is unusable and, therefore, cannot be
copied. Replace the disk and reenter the command line.

26 I/O ERROR C ON ddnn:

27

(Additional error information)

Explanation: The I/O error indicated explains the error that
occurred when DSC read the specified file.

User Action: Reenter the command line.

ryo ERROR D ON ddnn:
(Additional error information)

Explanation: The I/O error indicated explains the read error
that occurred when DSC read the home or boot block of the
disk.

User Action: Reenter the command line, specifying a new
drive.

31 I/O ERROR E ON ddnn: file ID
(Additional error information)

Explanation: The I/O error indicated explains
specified file header could not be read.

why the

User Action: If possible, correct the cause of the error.
Reenter the command line.

32 INPUT DEVICE ddnn: file ID, y, Y NOT PRESENT

Explanation: The specified file does not have a file header
in the index file. The file is not copied.

User Action: This is a warning only. If desired, the
operation can be retried on a different drive.

33 INPUT DEVICE ddnn: File ID y, Y IS DELETED

Explanation: The specified file was partially deleted on the
input disk and was not copied.

User Action: This is a warning only. No action is required.

34 INPUT DEVICE ddnn: File ID y, Y UNSUPPORTED STRUCTURE LEVEL

Explanation: The header of the file indicated by the message
does not contain 000401 in its File Structure Level Field
(indicates ODS-l structure). DSC only copies ODS-l files,
therefore this file will not be copied.

User Action: This message is only a warning.
attempt to copy the remainder of the input.

8-33

DSC will

DISK SAVE AND COMPRESS (nSC)

35 INPUT DEVICE ddnn: File ID y, Y FILE NUMBER CHECK

Explanation: An incorrect file header was read from the disk,
causing the specified file to be lost.

User Action: Reenter the command line.

36 INPUT DEVICE ddnn: File ID, y, Y FILE HEADER CHECKSUM ERROR

Explanation: Incorrect file header contents
specified file to be lost.

User Action: Reenter the command line.

caused the

37 INPUT DEVICE ddnn: File ID y, Y SEQUENCE NUMBER CHECK

38

Explanation: The sequence number is incorrect.

User Action: Replace the disk and reenter the command line.

INPUT DEVICE ddnn: File ID y, Y SEGMENT NUMBER CHECK

Explanation: The linkage connecting file segments was broken;
the specified file is lost.

User Action: Reenter the command line.

39 DIRECTIVE ERROR error number

Explanation: An internal error occurred, usually the result
of a system overload.

User Action: Reenter the command line.

40 I/O ERROR F
(Additional error information)

Explanation: The I/O error indicated explains that an
uncorrectab1e read/write error occurred on the specified input
or output device.

User Action: This message is a warning only. No action is
required unless another error message is displayed. If
another error message is displayed, correct the cause of the
error and reenter the command line.

41 I/O ERROR I on ddnn:
Fil e ID y, Y VBN z, z

(Additional error information)

Explanation: An I/O error occurred that resulted in bad data
being read from the specified virtual block number of the
indicated file on the indicated device.

User Action:
examine the
error.

This is a warning message only. You should
block specified to determine the extent of the

8-34

(

(

(

(

c

c

c

--------- -~

----------- - -------------------------

DISK SAVE AND COMPRESS (DSC)

42 VERIFICATION ERROR ON ddnn:
File ID y, y, Y VBN z, z

Explanation: The input and output devices specified for a
verification operation did not match.

User Action: This is a warning message only. No User Action
is necessary.

43 BAD DATA BLOCK ON ddnn:

44

FILE ID, y, y, Y VBN z, z

Explanation: A parity error occurred when DSC copied the
contents of a block from a disk. The block specified on the
output disk contains erroneous data.

User Action:
contained in
corrected.

When the copy operation is completed, the data
the specified block should be examined and

MOUNT REEL x ON ddnn: AND HIT RETURN

Explanation: This is an instruction only.

User Action: Mount the volume number requested \on the
specified tape drive and press the RETURN key when rea'qy.

45 STARTING VERIFY PASS

46

Explanation: The copy
beginning the verify
swi tch) •

operation
operation

is complete and DSC is
(specified with ~he /Verify

User Action: This is an informational message only. No
User Action is required.

RESUME COPYING

Explanation: The verify operation (specified with the /Verify
switch) is complete and DSC is continuing the copy operation
(if there is more material to copy).

User Action: This is an informational message only. No
User Action is required.

47 ddnn: IS WRITE LOCKED. INSERT WRITE RING AND HIT RETURN.

Explanation: The indicated device is write-locked.

User Action:
write-enable
command line.

Make sure the
it, and press

8-35

device ia the one
the RETURN key.

you want,
Reenter the

DISK SAVE AND COMPRESS (DSC)

48 INPUT FILE ON ddnn: WILL BE RESYNCHRONIZED

Explanation: The tape position was lost while DSC was reading
the input tape. The file specified in the message, as well as
some subsequent files, may be lost. DSC may display
additional error messages.

User Action: Reenter the command line.

49 OUTPUT DEVICE ddnn: FULL
FILE ID y, y, y

50

Explanation: The specified device cannot accommodate the
indicated contiguous file in a contiguous set of blocks. This
may mean that there is an inconsistency in the input tapes.

User Action: Reenter the command line, specifying a less
fragmented output disk.

OUTPUT FILE HEADER FULL ON ddnn: x, FILE ID y, y, Y

Explanation: Too many bad blocks on the output disk have
caused the generation of more retrieval pointers than can be
stored in the current header(s) of the file. The allocation
of blocks to the current output header is aborted. DSC will
copy as many blocks as it has mapped to that header before it
continues to allocate blocks to the header of the next output
file. Note that some blocks will not be copied during this
operation.

User Action: After DSC completes the copy operation, use PIP
to delete the unusable file on the output volume and to copy
the file from the input volume to the output volume.

PIP will assign a different file number to the output, other
than the original input file number, therefore the files will
not compare when you use the DSC /Compare switch.

51 OUTPUT FILE HEADER ON ddnn: NOT MAPPED - FILE ID y, y, Y

Explanation: Space for the specified file header was not
allocated. The fil e is lo.st.

User Action: Reenter the command line; a new disk may be
required.

52 I/O ERROR G ON ddnn:
(Additional error information)

Explanation: The I/O error indicated explains why the Index
File Bitmap could not be written.

User Action: Reenter the command line.

8-36

c

(

(

(

(

(

c

(

DISK SAVE AND COMPRESS (DSC)

53 FAILED TO READ FILE EXTENSION HEADER ON ddnn: FILE ID y, y, Y

Explanation: When copying from the input disk, DSC
for an extension header, but did not find one. The
of the specified file was lost. A problem may exist
input disk or a preceding I/O error may have
inconsistency.

User Action: Reenter the command line.

searched
remainder
with the
caused an

54 FAILED TO ALLOCATE HOME BLOCK

Explanation: The home block cannot be created on the
specified disk device because it has too many bad blocks.

User Action: Replace the disk then reenter the command line.

55 INDEX FILE ALLOCATION FAILURE

Explanation: Too many bad qlocks exist
allocation for the specified file.

to allow the

User Action: Replace the disk, then reenter the command line.

56 OUTPUT DISK ddnn: IS NOT BOOTABLE

57

58

Explanation: Logical block number 0, which is
block, of the specified disk or tape is bad.
will always be proceeded by message 84 and/or
the reason for the error.)

the bootstrap
(This message

86 indicating

User Action: This is a warning only. No action is required.

INVALID BAD BLOCK DATA

Explanation: The bad block data on the output disk is
invalid.

User Action: Run the BAD program on the disk and manually
enter bad block data or reenter the command line specifying
another disk.

BAD BLOCK FILE FULL

Explanation: Too many bad blocks exist on the output disk.

User Action: Replace the disk then reenter the command line.

59 NO BAD BLOCK DATA FOUND

Explanation: No bad block data exists for the specified
output disk.

User Action: If bad block data is not desired, ignore the
message. Otherwise, run the BAD program on the disk;
manually enter bad block data; or reenter the command line,
specifying a new disk.

8-37

DISK SAVE AND COMPRESS (DSC)

60 OUTPUT DEVICE ddnn: IS A DIAGNOSTIC PACK. DO NOT USE IT!

Explanation: The specified output disk is a diagnostic pack
and cannot be used.

User Action: Mount a new output disk and reenter the command
line.

61 CODE B ON ddnn:

62

File ID y, y, Y VBN z, z

Explanation: The tape position was lost when DSC read the
virtual block number specified. Some data may be lost.

User Action: Determine the
necessary, try the tape
tape.

CODE C ON ddnn:
File ID y, y, Y VBN z, z

extent of the error. If
on another drive or create another

Explanation: The tape position was lost when DSC read the
data file specified. Data beyond the VBN mentioned is lost.

User Action: Re-create the tape or reenter the command line
specifying a different tape drive.

63 CODE D ON ddnn:
File ID y, y, Y EXPECTED p, p, P FOUND Y

Explanation: The tape position was lost while DSC read the
tape specified in the message. All of ny, y, y" and some of
up, p, p" are lost.

User Action: Reenter the command line.

64 FAILED TO MAP OUTPUT FILE ON ddnn:
File ID p, p, P VBN z, z

Explanation: An inconsistency occurred when DSC was writing
the specified file to output disk. The file header did not
specify the correct number of virtual blocks required to write
the file and the file is lost.

User Action: Reenter the command line.

65 OUTPUT DISK ddnn: IS TOO SMALL -- nn BLOCKS NEEDED

Explanation: The output- disk is not
accommodate the data to be transferred.

large enough to

User Action: Reenter the command line, specifying a larger
output disk.

8-38

c

(

(

(

(

(

(

66

DISK SAVE AND COMPRESS eDSC)

I/O ERROR C ON ddnn:
(Additional error information)

Explanation: The I/O error indicated explains why the storage
bit map could not be read.

User Action: Reenter the command line.

67 I/O ERROR H ON ddnn:

68

Explanation: The message that follows explains why the header
of the storage bit map file could not be written.

User Action: Reenter the command line.

I/O ERROR J ON ddnn:
(Additional error information)

Explanation: The I/O error indicated explains why the tape
labels on the specified device could not be read.

User Action: Reenter the command line, specifying a different
tape drive.

69 INPUT TAPE ON ddnn: MUST BE AT BOT

70

Explanation: The spec ified tape must be at Beg inning of Tape
(BOT). This message is also displayed during a verify
operation to indicate that the current volume is rewinding to
enable the verify operation.

User Action: If the /Verify switch was not specified, check
the tape and remount at BOT.

WRONG INPUT TAPE ON ddnn:
EXPECTING File ID, FOUND File ID

Explanation: The input tapes were specified out of sequence.

User Action: Check the tapes, then reenter them in proper
order after receiving the mount instructions.

71 CODE E ON ddnn: AFTER File ID y, y, Y

Explanation: This message is the result of a read error from
tape. When trying to read an attribute block, DSC accessed
some other block. . The file following the file specified in
the error message is lost.

User Action: Reenter the command line.

8-39

72

DISK SAVE AND COMPRESS (DSC)

I/O ERROR K ON ddnn:
AFTER File ID y, y, y

(Additional error information)

Explanation: The I/O error indicated explains why
attributes of the specified file could not be read.

User Action: Reenter the .command line.

the

73 I/O ERROR L ON ddnn:
AFTER File ID y, y, y

(Additional error information)

Explanation: The message that follows explains the I/O error
that occurred while DSC was reading the file header from tape.

User Action: Reenter the command line.

74 INPUT TAPE ddnn: RESYNCHRONIZED AT File ID y, y, Y

75

76

Explanation: The tape position has been recovered. Some data
preceding the file specified was lost.

This message is usually received with one or more error
messages, all indicating that the input tape was either read
incorrectly or recorded badly.

User Action: The tape should be re-created and the operation
reinitiated.

TAPE FILE filelabel NOT FOUND

Explanation: The input tape specified does not contain the
file identified as "filelabel."

User Action: Check the file label and the tape, then reenter
the command specifying the correct tape and file label.

EXPECTED EXTENSION HEADER NOT PRESENT ON ddnn: File ID y, y, Y

Explanation: A required file extension header could not be
found on the tape being read.

User Action: If the error message was preceded by one or more
I/O warning messages. Reenter the command line. If not, the
input tape is bad and should be regenerated.

77.cODE F ON ddnn: AFTER File ID y, y, Y

Explanation: This is the result of a read
When trying to read a file header, DSC
block type. The file following the file
error message is lost.

User Action: Reenter the command line.

8-40

error from tape.
accessed some other
specified in the

(

E--

(

r

(

(

DISK SAVE AND COMPRESS (DSC)

78 I/O ERROR M ON ddnn:
(Additional error information)

Explanation: The message following the device name explains
why the Index File data could not be read.

User Action: Reenter the command line.

79 INDEX FILE DATA NOT PRESENT

80

Explanation: When reading the input tape, DSC accessed a file
other than the index file. This message is the result of a
tape error or an I/O error.

User Action: Re-create the tape or retry the same tape on a
different tape drive.

I/O ERROR N ON ddnn:
(Additional error information)

Explanation: The I/O error indicated explains why the index
and storage bitmap files from the specified input tape could
not be restored.

User Action: Reenter the command line, specifying a different
input tape drive.

81 VOLUME SUMMARY DATA NOT PRESENT

Explanation: Either DSC did not create the input tape or the
tape contains incomplete data.

User Action: Check the tape and reenter the command line.

82 I/O ERROR 0 ON ddnn: - File ID y, y, y
(Additional error information)

Explanation: The I/O error indicated explains
specified file header could not be written.

User Action: Reenter the command line.

83 BAD BLOCKING FACTOR

why the

Explanation: The specified blocking factor is too large for
the current operating system.

User Action: Specify a smaller blocking factor and reenter
the command line.

84 INPUT DISK NOT BOOTABLE

Explanation: The input disk does not have a valid boot block,
therefore the output disk will not be bootable. This message
will always be accompanied with message 56 stating that the
output disk will not be bootable.

User Action: This is a warning only. No action is required.

8-41

DISK SAVE AND COMPRESS (nSC)

85 INPUT/OUTPUT DISKS DIFFER

Explanation: The boot block is usually different for each
disk type, therefore the output disk may not have a valid boot
block and may not be bootable. (This message will always be
accompanied by other messages pertaining to the bootability of
the output disk.)

User Action: This is a warning only. If message 84 is also
displayed, a copy from the output disk to another disk that is
the same type as the original input disk will yield a disk
that is bootable.

86 BADLBN#O

Explanation:
boot block;

The output disk has a bad LBN 0 which is the
therefore, the output disk will not be bootable.

User Action: This is a warning only. A copy from the output
disk to another disk with a good LBN 0 will yield a disk that
is bootable.

87 OUTPUT DISK ddnn: MAY NOT BE BOaTABLE

Explanation: This message is always preceeded by message 85
which indicates the reason for the error. Other messages
concerning the bootability of the output disk may proceed this
message. (If message 56 is displayed, the output disk will
not be bootable.

User Action: Refer to message 56 and messages 84, 85, and 86
for more detail.

8.10.2 DSC I/O Messages

In on-line and both stand-alone versions
identified by one or more of the following
type of I/O error that occurred.

BAD BLOCK NUMBER

Explanation: The block does not
internal DSC error has occurred.

BAD BLOCK ON DEVICE

of DSC,
messages

exist on

I/O errors are
which explain the

the disk; an

Explanation: A
resulting in a
error •.

bad area was encountered on the device,
block that cannot be read or written without

BLOCK CHECK OR CRC CHECK

Explanation: A parity error occurred indicating that bad data
may have been transferred.

User Action: Reenter the command line.

8-42

c

(

C

c

(

(

DISK SAVE AND COMPRESS (DSC)

DATA OVERRUN

Explanation: A physical block on tape contains more bytes
than were requested.

DEVICE NOT READY

Explanation: The device is not ready or not up to speed.

DEVICE OFFLINE

Explanation: The device is not in the system.

User Action: Check the device and the device specification in
the command line, then reenter the command line.

DEVICE WRITE LOCKED

Explanation: The disk drive is write-locked.

User Action: Write-enable the disk drive and reenter the
command line.

END OF FILE DETECTED

Explanation: The tape position was lost.

User Action: Reenter the command line.

END OF TAPE DETECTED

Explanation: The tape position was lost.

User Action: Reenter the command line.

END OF VOLUME DETECTED

Explanation: The tape position was lost.

User Action: Reenter the command line.

FATAL HARDWARE ERROR

Explanation: A hardware malfunction occurred.

User Action: Reenter the command line. If the error repeats,
call your DIGITAL Field Service representative.

HANDLER NOT RESIDENT

Explanation: The device driver (handler) was not loaded.

User Action: Load the appropriate device driver and reenter
the command line.

INSUFFICIENT POOL SPACE

Explanation: The operating system is overloaded.

User Action: Reenter the command line.

8-43

DISK SAVE AND COMPRESS (DSC)

PARITY ERROR ON DEVICE

Explanation: An uncorrectable read error occurred.

User Action: Reenter the command line.

PRIVILEGE VIOLATION

Explanation: A device was mounted as Files-II or is allocated
to a different user.

User Action:

RSX-IIM Users: Dismount the disk, allocate the device to
yourself, and reenter the command line.

RSX-IIM-PLUS Users: Dismount the disk, mount it as a foreign
device and reenter the command line.

ERROR CODE IS <Driver code>

Explanation: An I/O error that DSC cannot translate occurred.

User Action: If possible, translate the error code and
reenter the command line.

ILLEGAL FUNCTION

Explanation: Tapes on drives have not been rewound since the
system was booted.

User Action: Rewind the tapes, using the /Rewind switch in a
DSC command line.

8.10.3 Stand-Alone DSC Messages

The following messages appear only
DSCSYS. SYS. (Similar messages are
specify invalid values.)

ILLEGAL VECTOR ADDRESS

with the
generated

stand-alone version
by DSC64K.SYS if you

Explanation: An illegal vector address was specified.

User Action: Correct the vector specification and reenter the
command line. Vector addresses must be a multiple of 4 and
less than or equal to 374(8).

INVALID CSR ADDRESS

Explanation: A system trap occurred when the specified CSR
address was referenced.

User Action: Correct the address and reenter the command
line.

8-44

c

(

c

(

DISK SAVE AND COMPRESS (DSC)

INVALID TM02 ASSIGNMENT

Explanation: The /TM02 switch applies only to TU16/TE16/TU45
tapes and cannot specify an assignment greater than seven.

User Action: Correct the error and reenter the command line.

SPECIFIED UNIT NUMBER EXCEEDS MAX. OF 1

Explanation: Stand-alone DSC does not accept unit numbers
greater than 1.

User Action: Correct the error and reenter the command line.
Specify the /Unit switch if required.

8-45

C)

o

(1

C"

(~

C

(

CHAPTER 9

FILE STRUCTURE VERIFICATION UTILITY (VFY)

The File Structure Verification Utility (VFY) for Files-II volumes
provides the ability to:

• Check the readability and validity of a file-structured volume
(default function).

• Print the number of available blocks on a file-structured
vol ume (lFR).

• Search for files in the index file that are not in any
directory; that is, files that are "lost" in the sense that
they cannot be accessed by file name (lLO) • (See the
IAS/RSX-ll IIO Operations Reference Manual for a description
of the index file.)

• Val idate directories against the files they 1 ist (/DV) •

• List all files in the index file, showing the file ID, file
name, and owner (ILl).

• Mark as "used" all the blocks that appear to be available but
are actually allocated to a file (/UP).

• Rebuild the storage allocation bitmap so that it properly
reflects the information in the index file (IRE).

• Restore files that are marked for deletion (/DE).

• Delete bad file headers (/HD).

• Perform a read check on every allocated
file-structured volume (/RC).

block

The volume to be verified must be mounted as a Files-II device.

on a

There should be no other activity on the volume while VFY is
executing. In particular, activities that create new files, extend
existing files, or delete files should not be attempted while VFY is
executing a function.

VFY must not be aborted while a IUP, IRE, IDE, or IHD switch is being
processed. Aborting VFY while it is modifying the storage allocation
or index files can seriously endanger the integrity of that volume.

9-1

FILE STRUCTURE VERIFICATION UTILITY (VFY)

9.1 VFY COMMAND FORMAT

The command line for VFY uses the format:

VFY>listfile,scratchdev=indev/switch

The parameters of this command format are:

Output Parameters

listfile

Specifies the output listing file in the following format:

dev: [ufd]filename.filetypeiver

If you do not specify a device, the default for the output
listing device is the issuing terminal (TI:). The [ufd] is the
UIC under which VFY is currently running. You must, however,
specify the file name and file type of the output file. The
default version number will be the latest version plus one.

scratchdev

Specifies the device on which the scratch file produced by VFY is
to be written. This parameter is in the following format:

dev:

The scratch file is used by VFY during the verification scan and
during the lost file scan. It is created but not entered in a
directory. Therefore, it is transparent to you. The scratch
file is automatically deleted when VFY is terminated. If you do
not specify a scratch device the default device is SYO:.

If the user's default system disk is faulty or full, use
parameter to direct the scratch file to another device.
scratch file should always be assigned to a volume other than
indev volume. The scratch file is not used with the /FR and
switches.

this
The
the
/LI

Input Parameters

indev

Specifies the volume to be verified in the format dev:.
do not specify the volume, the default is SYO:.

/switch

Specifies the function to be performed by VFY.

The VFY switches are described in detail in Section 9.4.

9-2

If you

(

(

l

(

c~-

c

c

c

FILE STRUCTURE VERIFICATION UTILITY (VFY)

9.2 VFY MODE OF OPERATION

VFY normally operates in read-only mode, where the scratch file, if
required, is on another device. VFY requires write access under the
following conditions:

1. If the /UP or /RE switch is used, VFY requires write access
to the storage allocation map ([O,O]BITMAP.SYS).

2. If the /DE or /HD switch is specified, VFY requires write
access to the index file ([O,O]INDEXF.SYS).

3. If the /LO switch is specified and lost files are found, VFY
requires write access to the [1,3] User File Directory which
is the directory containing "lost" files.

If write access to the volume index or bitmap files is required for
the desired operation, the user must mount the volume using the
/UNLOCK switch with the MCR or DeL MOUNT command.

VFY may be run under any UIC if only read access is required.
write access is required, VFY must run under a system UIC.

9.3 VFY VALIDITY CHECK

If

VFY checks the readability and validity of the volume mounted on the
specified device. This function is the default function and entails
reading all the file headers in the index file and ensuring that all
the disk blocks referenced in the map area of each file header are
allocated to that file in the volume bitmap.

The volume may be write-protected if it is not the system volume, or
if the required scratch file is directed to another file-structured
volume.

A validity check is specified in the following format:

listfile,scratchdev=indev<RET>

or

indev<RET>

Example

>VFY DRO:

CONSISTENCY CHECK OF INDEX AND BITMAP ON DRO:

INDEX INDICATES 114524. BLOCKS FREE, 17156. BLOCKS USED OUT OF 131680.
BITMAP INDICATES 114524. BLOCKS FREE, 17156. BLOCKS USED OUT OF 131680.

9.4 VFY SWITCHES

VFY functions are specified wi th swi tches appended to the VFY command
line. The switches and their functions are summarized in Table 9-1.

9-3

FILE STRUCTURE VERIFICATION UTILITY (VFY)

Table 9-1
VFY Switches and Functions

Swi tch Format

Delete IDE

Directory Validation IDV

Free IFR

Header Delete IHD

Identify lID

List ILI

Lost ILO

Read Check IRC

Rebuild IRE

Update IUP

9.4.1 Delete Switch (IDE)

Description

Resets the marked-for-delete
indicators.

Validates directories against
the files they list.

Prints out the available space
on a volume.

Deletes bad file headers on a
volume. The subswitch IAL
allows the IHD switch to
delete bad file headers
wi thout prompting the user.

Identifies the VFY
This switch may be
on a command line by
any time.

version.
specified
itself at

Lists the index file by file
ID.

Scans the file structure
looking for files which are
not in any directory.

Checks the volume to see if
every block of every file can
be read.

Recovers blocks that appear to
be allocated but are not
contained in a file.

Allocates blocks that appear
to be available but have been
allocated to a file.

The Delete switch (IDE) resets the marked-for-delete indicators in the
file header area of files that were marked for deletion but never
deleted.

VFY must be running under a system UIC and the volume must be mounted
with the IUNLOCK switch.

9-4

(

(

(

--------- ------

FILE STRUCTURE VERIFICATION UTILITY (VFY)

9.4.2 Directory Validation Switch (IDV)

The Directory Validation Switch (/DV) examines each directory on the
volume. (VFY considers any file on the volume with the file·type .DIR
and a fixed record length of 16 bytes to be a directory.) It then
reports any errors found that could be attributed to a corrupt
directory or a nonexistent file listed in the directory. For example:

>VFY DX:/DV
THE FOLLOWING DIRECTORY ENTRIES WERE INVALID
[301,333] FILE ID 13,2,0 DELETED.FIL;l - FILE NOT FOUND
[301,333] FILE ID 12345,3,0 CORRUPTED.FID;l - FILE NOT FOUND
[301,333] FILE ID 14,2,0 GARBAGE.VER;123456 - INVALID VERSIO~ NUMBER
[301,333] FILE ID 15,1,444 RELVOLNEZ.ERO;l - RESERVED FIELD WAS NON-ZERO

4. INVALID DIRECTORY ENTRIES WERE FOUND

Directory entries may be invalid due to the following conditions:

FILE NOT FOUND

The file was either deleted without the corresponding directory
entry being removed or the file ID field in the directory entry
was corrupted. If the file does exist, it cannot be accessed
with this directory entry.

Remove the directory entry using the PIP /RM command.

INVALID VERSION NUMBER

The directory entry was corrupted. If the file does exist, it
cannot be accessed with this directory entry.

Remove version zero of the file with the PIP /RM command.

RESERVED FIELD WAS NON-ZERO

The third word of the file IDfield in a directory entry is a
reserved field and should always be zero. Remove the directory
entry with PIP /RM and then reenter it with the PIP /EN command.

9.4.3 Free Switch (/FR)

The Free switch (/FR) displays the available space on a specifiea
volume with the following message:

dev: HAS nnnn. BLOCKS FREE, nnnn. BLOCKS USED OUT OF nnnn.

9.4.4 Header Delete Switch (/HD)

The Header Delete switch (/HD) recognizes all bad file headers on a
volume. If you specify the /AL subswitch, all bad file headers will
automatically be deleted.

9-5

FILE STRUCTURE VERIFICATION UTILITY (VFY)

If you do not specify the /AL subswitch, VFY prompts you as follows:

>VFY DXl:/HD

CONSISTENCY CHECK OF INDEX AND BITMAP ON DXl:

FILE 10 000015,000003 007334.DIR;1 OWNER [7,334]
BAD FILE HEADER

DE LETE THIS HEADER [Y /N/Q/G]?

You may respond as follows:

Y (BIT) deletes the header and proceeds
N (BIT) does not delete the header and proceeds
Q (BIT) does not delete the header and does not proceed
G (BIT) deletes the header and all subsequent bad headers

(BIT) does not delete the header and proceeds

If you give any other response, the following message will appear:

VFY -- ILLEGAL RESPONSE - TRY AGAIN

9.4.5 List Switch (ILl)

The List switch (/LI) lists the index file. The output for each file
specifies the file number, file sequence number, file name, and owner
UIC, as shown in the following example:

VFY>DK:/LI
LISTING OF INDEX ON DKO:

FILE ID 000001,000001 INDEXF. SYS; 1 OWNER [1, 1]
FILE ID 000002,000002 BITMAP.SYS;l OWNER [1, 1]
FILE ID 000003,000003 BADB LK. SYS i 1 OWNER [1, 1]
FILE ID 000004,000004 OOOOOO.DIRil OWNER [1, 1]
FILE ID 000005,000005 CORIMG. SYS i 1 OWNER [1,1]
FILE ID 000006,000006 001001.DIR i 1 OWNER [1, 1]
FILE ID 000007,000007 001002.DIR;1 OWNER [1, 2]
FILE ID 000010,000010 EXEMC .MLB; 1 OWNER [1, 1]
FILE ID 000011,000011 RSXMAC. SML i 1 OWNER [1, 1]
FILE ID 000012,000012 NODES. TBL i 1 OWNER [1, 1]
FILE ID 000013,000036 QIOSYM.MSG i 311 OWNER [1,2]
FILE ID 000014,000037 F 4PC OM • MSG ; 1 OWNER [1, 2]

9.4.6 Lost Switch (/LO)

The Lost switch (/LO) scans the file structure looking for files that
are not in any directory and cannot be referenced by file name. (VFY
considers any file on the volume with the filetype .DIR and a fixed
record length of 16 bytes to be a directory.) A list of the files is
produced, and if the "lost file directory" [1,3] exists on that
volume, the files will be entered in that directory. If an I/O error
occurs, however, on a directory file operation, the files will not be
entered into [1,3]. The following error message will appear:

FAILED TO OPEN DIRECTORY FILE
ERROR CODE -16. - DIRECTORY [301,333]
AS A RESULT, NO FILES WILL BE ENTERED IN [1,3]

9-6

c

(

(

(

c

(

(

(

FILE STRUCTURE VERIFICATION UTILITY (VFY)

9.4.7 Read Check Switch (IRC)

The Read Check switch (/RC) checks to ensure that every block of every
file on a specified volume can be read.

The optional parameter [:n] is the blocking factor that indicates the
number of file blocks to be read at a time. The default value is the
maximum number of blocks available in VFY's buffer area.' The buffer
area available may be increased by installing VFY in a larger
partition. Four blocks are available when VFY is installed in an 8K
partition,. and four blocks are added for each lK increment.

For the fastest read check, the maximum block factor should be used .•
Whenever an error is encountered, each block of the portion in error
is reread to determine which data block(s) cannot be read.

When an error is detected, a file identification line is displayed in
the following format:

FILE ID nn,nn filename.tYPiver. n blocks used/n blocks allocated

Following this line, an error message is displayed. If a blocking
factor other than 1 is in use, an error message in the following form
will be issued:

ERROR STARTING AT VBN nl,n2 LBN nl,n2 - ERROR CODE -n

Following the first error message, there should be one or more error
messages indicating the exact block(s) in error. The second error
message line(s) will be in the following form:

ERROR AT VBN nl,n2 LBN nl,n2 - ERROR CODE -n

If an ERROR STARTING AT line is displayed without one or more ERROR AT
lines; a multiblock read operation on the selected device has failed,
but the data blocks appear to be individually readable.

If the VBN of the unreadable block listed in the ERROR AT line is
beyond the block-used-count, the data portion of the file is readable.

The negative number pr inted after the ERROR CODE message is usually -4
to indicate a device parity error. Other error codes are pontained in
the IAS/RSX-ll I/O Operations Reference Manual.

9.4.8 Rebuild Switch (IRE)

The Rebuild switch (IRE) recovers lost blocks i that is, blocks that
appear to be allocated but are .not contained in any file.

Multiply-allocated blocks must be deleted from the file structure
before the Rebuild switch can take effect.

You must run VFY under a system UIC and write-enable the volume. The
scratch file should be on another volume.

9-7

------------------ ------------------ ------- - --~-------- ------- -----

FILE STRUCTURE VERIFICATION UTILITY (VFY)

9.4.9 Update Switch (/UP)

The Update swi tch (lUP) allocates blocks that appear to be avail able
but are actually allocated to a file.

Files with multiply-allocated blocks must be deleted from the file
structure before the Update switch can take effect.

You must run VFY under a system UIC and write-enable the volume •. The
scratch file should be on another volume.

9.5 FILE ERROR REPORTING

As VFY verifies a volume, error conditions are reported. Errors for a
given file are preceded by a line that identifies the file in error.
This line is formatted as follows:

nn,mm

FILE ID nn,mm filename.filetype;version OWNER [uic]

Represents the unique file identification number assigned to the
file by the system at file-creation time.

filename

Represents the file name •

• filetype

Represents the file type (for example, .OBJ for object file).

;version

Represents the version number of the file.

[uic]

Represents the UIC for the file.

This file identification line is followed by one or more of the
following messages:

I/O ERROR READING FILE HEADER-ERROR CODE -32

Explanation: VFY failed to read the file header for the
specified file ID. The device is not mounted or is off-line, or
the hardware has failed.

BAD FILE HEADER

Explanation: VFY checks on the validity of the file header
indicate that the header has been corrupted.

MULTIPLE ALLOCATION n,m

Explanation: The specified (double-precision) logical block
number is allocated to more than one file. If this error occurs,
a second pass is automatically taken which will indicate all
files that share each multiply-allocated block. The second pass
is taken after all file headers have been checked (see Section
9.5.2).

9-8

c

(--

(

(

c

c

FILE STRUCTURE VERIFICATION UTILITY (VFY)

BLOCK IS MARKED FREE n,m

Explanation: The specified logical block number is allocated to
the indicated file but is not marked as allocated in the storage
allocation map (see Section 9.5.4).

BAD BLOCK NUMBER n,m

Explanation: The specified block number was found in the header
for this file but is illegal for the device (out of range). This
indicates a corrupted file header.

FILE IS MARKED FOR DELETE

Explanation: A system failure oecurred while the specified file
was being deleted. The deletion was not completed and the file
header still exists (see Section 9.5.1).

HEADER MAP ERROR

Explanation: VFY detected an error in the header map area that
also indicates a corrupted file header.

The last error message for the file is followed by a summary line for
that file, as follows:

MULT

FREE

BAD

SUMMARY: MULT=nn, FREE=nn, BAD=nn.

Specifies the number of mUltiple block allocations.

Specifies the number of blocks marked free that should have been
allocated.

Specifies the number of errors encountered in the the map area of
the file header.

If the output for VFY is directed to a terminal and you
see the error messages for a given file, enter
terminates the listing of error messages for that file
mes~ages but the summary line.

do not wish to
CTRL/O. This
that is, all

9.5.1 Files Marked-for-Delete

If a file has been marked for delete but the deletion process was not
completed, you can either restore the file, if you still need it, or
you can delete the file to recover the space it was occupying. This
situation only occurs when the system crashes during file processing.
Once files have been restored or deleted, run VFY with the IRE switch
to assure the consistency of the volume's storage al16cation bitmap.

9-9

FILE STRUCTURE VERIFICATION UTILITY (VFY)

9.5.1.1 Restoring a File Marked-for-Delete - To restore a file
marked-far-delete, mount the disk volume using the MCR or DeL MOUNT
command and the /UNLOCK switch. For example:

)MOU DKO:/UNL

Then, run VFY specifying the /DE switch to reset the marked-far-delete
indicators in file headers. Once the delete indicator has been reset,
run VFY specifying the /LO switch to scan the entire file structure.

The deletion process may have proceeded partially and a portion at the
end of the file may be missing. This condition can be detected by a
directory listing obtained using the PIP /FU command.

9.5.1.2 Deleting a File Marked-for-Delete - Files that are
marked-far-delete can be deleted directly with PIP, once their unique
file ID has been obtain'ed by doing a validity check. The file ID
appears as the first entry in the file identification line that
precedes each list of file errors (see Section 9.5). The following
example shows how the file ID is used with PIP to delete a file:

)'PIP /FI: 12: 20/DE

In this example, the file with file ID 12,20 is deleted from the
system device. PIP issues the error message:

PI P -- FAILED TO MARK FILE FOR DELETE-NO SUCH FILE

since the file system denies the existence
marked-far-delete; however, the file is deleted.

9.5.2 Deletion of Bad File Headers

of files already

If the volume contains bad file headers, it is advisable to delete
them first by using the /HD switch before you address the problem of
mul tiply-allocated or free blocks. Deleting bad file headers may free
the blocks that were contained in the files with the bad headers. See
Section 9.4.4 for a description of the /HD switch.

9.5.3 Deletion of Multiply-Allocated Blocks

If the file structure contains multiply-allocated blocks, it is
necessary to delete files until there are no such blocks. An
automatic rescan of the volume identifies which files share which
blocks. This rescan lists the files which contain the
multiply-allocated blocks. Use this information to determine which,
if any, of the files can be saved and then delete the rest with the
PIP delete function.

After the files have been deleted, VFY should be run once again to
ensure that all of the files containing multiply-allocated blocks have
been deleted.

9-10

(

(

(

(

c

(

(

FILE STRUCTURE VERIFICATION UTILITY (VFY)

9.5.4 Elimination of Free Blocks

Once there are no multiply-allocated blocks, the next concern is the
elimination of blocks that are marked as free in the storage
allocation bitmap but are actually allocated to a file. To reallocate
these blocks in the storage allocation bitmap, run the validity check
with the /UP switch. This allocates all blocks that should have been
marked as allocated. See Section 9.4.9 for a description of the /UP
switch.

When you have no multiply-allocated blocks and no blocks marked as
free that are actually in use, the file structure is safe for writing
new files and extending existing files. Files may have data blocks
that have been overwritten as the result of multiple allocation.

9.5.5 Recovering Lost Blocks

To determine whether any blocks have been lost on a file-structured
volume, examine the last two lines of output from the Validity Check
(Section 9.3). The last two lines of output give the free space on
the volume. The first line reports the amount of available space
according to the index file (that is, the number of blocks that are
not in use by any file in the index file). The second line reports
the amount of available space according to the storage allocation
bitmap.

If there are no errors, these two figures should agree. If the index
file indicates that more blocks are free than the storage allocation
bitmap indicate, then those blocks are "lost" in the sense that they
appear to be allocated, but no file contains them. Lost blocks can be
recovered by rerunning the Validity Check and specifying the /RE
switch. See Section 9.4.8 for a description of the /RE switch.

9.6 VFY ERROR MESSAGES

The VFY error messages, their explanations, and suggested user actions
are described below.

VFY -- COMMAND SYNTAX ERROR

Explanation: The command as entered does not conform to command
syn tax rul es.

User Action: Reenter the command line with the correct syntax
spec ified.

VFY -- CLOSE FAILURE ON BIT MAP

or

VFY -- CLOSE FAILURE ON INDEX FILE

or

VFY -- CLOSE FAILURE ON TEMPORARY FILE

or

9-11

FILE STRUCTURE VERIFICATION UTILITY (VFY)

VFY -- CLOSE FAILURE ON LISTING FILE

VFY

VFY

VFY

VFY

VFY

or-

-- I/O ERROR ON INPUT FILE

or

-- I/O ERROR ON OUTPUT FILE

or

-- I/O ERROR READING DIRECTORY FILE

or

-- I/O ERROR WRITING FILE HEADER

or

-- FAILED TO CLOSE DIRECTORY FILE

Explanation: One of the following conditions may exist:

• The device is not on-line.

• The device is not mounted.

• The hardware has failed.

User Action: Determine which of the above conditions caused
message and correct that condition. Reenter the command line.

the

VFY -- FAILED TO ALLOCATE SPACE FOR TEMP FILE

Explanation: The volume specified for the temporary scratch file
is full.

User Action: Use PIP to delete unnecessary files and rerun VFY,
or specify another volume as the scratch device when you reenter
the command line.

VFY -- FAILED TO ATTACH DEVICE

or

VFY -- FAILED TO DETACH DEVICE

Explanation: The list file specified a terminal device. VFY was
not able to attach or detach the device.

User Action: Reenter the c.ommand line wi th a 1 ist file device
that can be attached or detached.

9-12

(

c---

(~

(
~---

c:

(

FILE STRUCTURE VERIFICATION UTILITY (VFY)

VFY -- FAILED TO ENTER FILE

Explanation: One of the following conditions may exist:

• VFY is not running under a system UIC.

• The device is not on-line.

• The device is not mounted.

• The hardware has failed.

User Action: Determine which of
message and correct that condition.

the conditions caused the
Reenter the command line.

VFY -- FAILED TO FIND INDEXF. SYS; I IN MFD - WILL OPEN INDEX BY FILE ID 1, I

or

VFY -- FAILED TO FIND BITMAP.SYS;1 IN MFD - WILL OPEN BITMAP BY FILE ID 2.2

Explanation: The Master File Directory has been corrupted.

User Action: Copy the disk using the BRU utility (see Chapter
7) •

VFY -~ FAILED TO OPEN DIRECTORY FILE (See OPEN FAILURE error messages)

VFY -- ILLEGAL DEVICE

Explanation: The input device specified is something other than
a disk or DECtape.

User Action: Reenter the command line with a mounted Files-II
device specified.

VFY -- ILLEGAL SWITCH

Explanation: The switch specified is not a valid VFY switch or a
valid switch is used illegally.

User Action: Reenter the command line with the correct switch
specified.

VFY -- NO DYNAMIC MEMORY AVAILABLE - PARTITION TOO SMALL

Explanation: VFY does not have enough buffer space to run.

User Action: Run VFY in a larger partition (8K minimum) •

VFY -- OPEN FAILURE ON BIT MAP

or

VFY -- OPEN FAILURE ON INDEX FILE

or

9-13

-----.-----------

FILE STRUCTURE VERIFICATION UTILITY (VFY)

VFY -- OPEN FAILURE ON LISTING FILE

or

VFY -- OPEN FAILURE ON TEMPORARY FILE·

or

VFY -- FAILED TO OPEN DIRECTORY FILE

or

VFY -- FAILED TO OPEN FILE FOR READ CHECK

Explanation: One of the following conditions may exist:

• VFY is not running under a system UIC but should be.

• The named file does not exist in the specified directory.

• The volume is not mounted.

• The specified file is read protected.

• The specified file does not exist.

User Action: Determine which of the above conditions caused the
message and correct that condition. Reenter the command line.

VFY -- STORAGE CONTROL BLOCK (VBNl of BITMAP.SYS) IS CORRUPTED

o

Q

Explanation: The Storage Control Block is corrupt. This is e"/\
harmless, because only VFY and PIP IFR can examine the block. ,)

User Action: Copy the disk using BRU or DSC (see Chapter 7 or 8,
respectively) •

VFY -- THEY ARE STILL LOST, COULD NOT FIND DIRECTORY

Explanation: UFD [1,3] did not exist on the volume. UFD [1,3]
is the "lost files" directory. VFY enters all files found by the
ILO switch into this directory. 0
User Action: Use the MCR UFD command to enter UFD [1,3] on the
volume.

C)
--.::-

9-14

(

c

(

(

CHAPTER 10

LIBRARIAN UTILITY PROGRAM (LBR)

The Librarian Utility Program (LBR) allows
modify, list, and maintain library files.
access file that contains a collection
organizes files, usually having the same
modules so that you have rapid and convenient

you to create, update,
A library file is a direct
of related files. LBR

file type~ into library
access to your files.

Library files contain two directory tables: the entry point table
(EPT) and the module name table (MNT). The EPT contains entry point
names that consist of global symbols defined as entry points in MACRO
source programs. The MNT contains names of the modules in the
library. Both tables are alphabetically ordered.

The following paragraphs describe the three types of libraries:
object, macro, and universal.

Object library files (.OLB) contain object files (.OBJ). The module
names are derived from .TITLE directives, while the entry point names
are derived from global symbols defined in the module. LBR references
the module code in the library by the module name. The source program
references object library modules by the entry point name. Entry
points apply only to object libraries.

You use object module libraries as input to the Task Builder. The
Task Builder (TKB) searches for definitions of all global symbols
referenced in a program in the following manner. First, TKB searches
the other modules specified, then it searches the specified
user-written object module library, and finally, it searches the
system library.

Macro library files (.MLB) contain source macro files (.MAC). The
module names are derived from .MACRO directives. From each macro
definition, LBR extracts the name and creates an entry in the module
name table. The entry in the module name table is the means by which
the assembler finds the associated macro definition in the library.

You use macro library modules as input to the MACRO-II Assembler. The
assembler searches the specified library for macros listed in .MCALL
statements and called in the source program before searching the
system macro library.

Universal library files {.ULB} contain modules inserted from any kind
of file whether it be a program or text. The module names are either
user-specified in the Insert (jIN) switch or derived from the file
name at the time of insertion.

Primarily, you use universal libraries to package related files
together. You can reference a universal library module in a program
by using the Universal Library Access ($ULA) system library routine.
$ULA, specified in the macro source program, establishes the necessary

10-1

LIBRARIAN UTILITY PROGRAM (LBR)

conditions for access (read only) to a universal library module. (For
more information on $ULA, see the IASjRSX-ll Syst em Lib rar y Rou ti ne s
Refer~nce Manual.)

You can invoke LBR using any of the methods for invoking a utility
described in Chapter 1.

10.1 FORMAT OF LIBRARY FILES

A library file consists of a library header, an entry point table, a
module name table, the library modules and their headers, and any
available space. The entry point table has zero length for macro and
universal libraries. Figure 10-1 illustrates object and macro library
file format and Figure 10-2 illustrates universal library file format.

10.1.1 Library Header

(

The header section is a full block in which the first 24(10) words are C···
used to describe the current status of the library. The header's
contents are updated as the 1 ibrary is modified. This allows LBR to
access the necessary information to perform its functions (for
example, Insert, Compress, and Delete). The twenty-fourth word in the
library header is the default insert file type for universal libraries
and is undefined for macro and object libraries. See Figure 10-3.

10.1.2 Entry Point Table

The entry point table consists of 4-word elements containing an entry C---
point name (words 0-1) and a pointer to the module header of the
module where the entry point is defined (words 2-3). (See Figure
10-4.) This table is searched when a library module is referenced by
one of its entry points. The table is sequenced in order of ascending
entry point names. The entry point table applies only to object
library files.

10.1.3 Module Name Table

The module name table is searched when the library module is
referenced by its module name rather than by one of its entry points.
It is made up of 4-word elements: a module name (words 0-1) and a
pointer to the module header (words 2-3). See Figure 10-5. The
module name table is sequenced in order of ascending module names.

10.1.4 Module Header

Each module starts with a header of eight words for object and macro
modules and 32(10) words for universal modules. The module header
contains information about the module such as the type and status of
the module, its length (number of words), and its attributes. See
Figure 10-6 and Figure 10-7.

In object and universal modules, the low-order bit of the attributes
byte is set if the module has the selective search attribute. In
universal modules, bit 1 of the attributes byte is set if the input

10-2

c

(

(-

LIBRARIAN UTILITY PROGRAM (LBR)

file was contiguous. Also, in object modules, the two words of
type-dependent information contain the module identification defined
by the .IDENT directive at assembly time. In macro modules, these two
words are undefined.

For universal modules, type-dependent identification is derived from
the file type and version number of the input file.

Universal libraries allow you to change the
contains optional descriptive information,
Header sw~tch (/MH).

FIXED- LIBRARY
LENGTH HEADER
RECORDS

ENTRY POINT
TABLE

MODULE NAME
TABLE

VARIABLE- MODULE 1 HEADER
LENGTH
RECORDS MODULE 1

· · ·
MODULE N HEADER

MODULE N

AVAILABLE SPACE

module header, which
by means of the Modify

BLOCK
BOUNDARIES

ZK-1B4-B1

Figure 10-1 General Format for Object and Macro Library Files

10-3

FIXED­
LENGTH
RECORDS

LIBRARIAN UTILITY PROGRAM (LBR)

LIBRARY
HEADER

ENTRY POINT
TABLE

BLOCK
~----------------+-~ BOUNDARIES

VARIABLE­
LENGTH
RECORDS

MODULE NAME
TABLE

MODULE 1 HEADER
UNUSED SPACE

MODULE 1
f---- -

I-- -
UNUSED SPACE

MODULE 2 HEADER
UNUSED SPACE

MODULE 2
-

-

f---- -

UNUSED SPACE

MODULE N HEADER
UNUSED SPACE

MODULE N
f---- -

AVAILABLE SPACE

NOTE

All universal module headers and the
first record of each universal module
will start on a block boundary.

ZK-185-81

Figure 10-2 Universal Library File Format

1.0-4

(

c

(

LIBRARIAN UTILITY PROGRAM (LBR)

OFFSET

NON ZERO ID I LIBRARY TYPE

LBR (LIBRARIAN) VERSION

(.IDENT FORMAT)

YEAR

DATE AND MONTH

TIME LAST DAY

INSERT HOUR

MINUTE

SECOND

RESERVED I SIZE EPT ENTR's

EPT STARTING RELATIVE BLOCK

NO. EPT ENTRIES ALLOCATED

NO. EPT ENTRIES AVAILABLE

RESERVED I SIZE MNT ENTR'S

MNT STARTING REL BLOCK

NO. MNT ENTRIES ALLOCATED

NO. MNT ENTRIES AVAILABLE

LOGICALLY DELETED

AVAILABLE (BYTES)

CONTIGUOUS SPACE

AVAILABLE (BYTES)

NEXT INSERT RELATIVE BLOCK

START BYTE WITHIN BLOCK

UNIVERSAL DEFAULT INSERT TYPE1

1UNDEFINED FOR MACRO AND OBJECT LIBRARIES
ZK-186-81

Figure 1~-3 Contents of Library Header

10-5

OFFSET
START

MODULE

LIBRARIAN UTILITY PROGRAM (LBR)

WORD 0

1

2

3

ADDRESS
MODULE
HEADER

GLOBAL SYMBOL

NAME (RAD50)

OF RELATIVE BLK.

BYTE IN BLOCK
Zi(-187-81

Figure 10-4 Format of Entry Point Table Element

WORD o

1

2

3

ADDRESS
MODULE
HEADER

MODULE NAME

(RAD50)

OF RELATIVE BLK.

BYTE IN BLOCK

ZK-188-81

Figure 10-5 Format of Module Name Table Element

FROM
OF
HEADER

0 ATTRIBUTES STATUS O=NORMAL MODULE
l=DELETED MODULE

2 SIZE OF

4 MODULE (BYTES)

6 DATE YEAR
MODULE

10 INSERTED MONTH

12 DAY

14 TYPE DEPENDENT

16 INFORMATION

ZK-189-81

Figure 10-6 Module Header Format for Object and Macro Libraries

10-6

(

c

c

LIBRARIANU1'ILI1'Y PROGRAM (UR)

ATTRIBUTES STATUS

SIZE OF

MODULE (BYTES)

DATE YEAR

MODULE . MONTH

INSERTED DAY

IDENT

OPTIONAL

INFO 1

OPTIONAL

INFO 2

,
OPTIONAL

INFO 3

OPTIONAL

INFO 4

USER
FILE
ATTRIBUTES

· · · 76
ZK-190-81

Figure 10-7 Module Header Format for Universal Libraries

10-7

LIBRARIAN UTILITY PROGRAM (LBR)

10.2 LBR RESTRICTIONS

The following restrictions apply when using LBR:

• Limit of 65,536(64.K) words per module.

• Limit of 65,536(64.K) blocks per library.

• Tables should be allocated their anticipated maximum size.
Expanding table allocations requires using the Compress switch
(/CO) to copy the entire file.

• A fatal error results if an attempt is made to insert a module
into _a library that contains a module with a different name
from, but with the same entry point as, the inserted module.
For further information, refer to the discussion of the lIN
switch in Section 10.5.8.

• The use of wildcards in file specifiers is not allowed (that
is, forms such as *.OBJ, where the * indicates all modules
with type • OBJ) •

The library's tables
being replaced and
entered and the old
deleted.

must contain enough space for both the modules
their replacements because the new modules are
modules are only logically (not physically)

10.3 LBR COMMAND LINE

LBR accepts command lines in the following general format:

outfile[,listfile]=infilel[,infile2, ••• infilen]

LBR allows only one level of indirect command file nesting.
complete description of file specifiers, see Chapter 1.

10.4 DEFAULTS FOR LBR FILE SPECIFIERS

Table 10-1 describes the defaults for LBR file specifiers.

Specifier

dev:

Table 10-1
LBR File Specifiers Defaults

Output File
SYO:

Li st ing Fil e

Default

The device that was specified for the
file; otherwise, the default for the
file.

Input File

For a

output
output

For the first input file specifier, SYO:.

For subsequent input file specifiers, the
device specified in the previous input file
specifier; otherwise, the default for the
previous input file specifier.

(continued on next page)
10-8

(
"

(

~--

(

c

(

LIBRARIAN UTILITY PROGRAM (LBR)

Table 10-1 (Cont.)
LBR File Specifiers Defaults

Specifier Defaul t

dev: Output File [ufd] Output File

filename

• type

;ver

Iswitch

The UIC -under which LBR is currently running.

Listing File
The UFD that was specified for the output
file; otherwise, the default for the output
file specifier.

Input File
For. the first input file specifier, the UIC
under .which LBR is currently running.

For subsequent input file specifiers, the UFD
specified in the previous input file
specifier; otherwise, the default for the
previous input file specifier.

No default. Must be specified.

Output File
Depends on the default in effect (see Section
10.5.4), except when the Compress (/CO) or
Create (/CR) switch is specified (see
Sections 10.5.1 and 10.5.2, respectively).

Listing File
.LST

Input File
Refer to the descriptions of Compress
(Section 10.5.1), Insert (Section 10.5.8),
and Replace (Section 10.5.11) switches.

Latest version of the file, or latest version plus 1
for the output file when the Compress (/CO), Create
(/CR), or Extract (lEX) switches are specified.

Output File
lIN (Insert)

List File
ISP/LI (Spool and List module names)

Input File
None.

10.5 LBR SWITCHES

LBR uses switches appended to file specifications to invoke functions.
These switches are summarized in Table 10-2.

10-9

LIBRARIAN UTILITY PROGRAM (LBR)

Option

Compress

Create

Delete

Defaul t

Delete Global

Entry Point

Extract

Insert

List

Modify Header

Replace

Spool

Selective Search

Squeeze

Switch

/CO

/CR

/DE

/DF

/DG

/EP

/-EP

/EX

/IN

ILl

/LE

/FU

/MH

/RP

/-RP

/SP

/-SP

ISS

/SZ

/-SZ

10.5.1 Compress Switch (/CO)

Table 10-2
LBR Switches

Function

Compress a library file.

Create a library file.

Del.ete a 1 ibtary module and all of its
entry points.

Specify the default library file type.

Delete a library module entry point.

Include entry point elements in the
library entry point table.

Exclude entry point elements in the
~ibrary entry point table.

Extract (read) one or more modules from
a library file and write them into a
specified output file.

Insert a module.

List mod~le names.

List module names and module entry
points.

List module names and full
description.

Modify a universal module header.

Replace a module~

Do not replace a module.

Spool the listing for printing.

Do not spool the 1 isting.

module

Set the selective search attribute in
the module header.

Reduce the si ze of the macro source.

Do not reduce the size of a specific
macro source.

Use the Compress switch (/CO) to physically delete all logically
deleted records, to put all free space at the end of the file, and tg
make the free space available for new library module inserts.
Additionally, the library table specification may be altered for the

10-10

c

(

========-""-""-""'-=------~------.--~---------------------=====,--------------------------

(

c

LIBRARIAN UTILITY PROGRAM (LBR)

resulting library. LBR accomplishes this by creating a new file that
is a compressed copy of the old library file. The old library file is
not deleted after the new file is created.

The ICO switch can be appended only to the output file specification.
The format for specifying the ICO switch is:

outfile/CO:size:ept:mnt=infile

outfile

leo

:size

:ept

:mnt

Specifies the file that is to become the compressed version of
the input file. The default file type is .OLB if the input file
is an object library, .MLB if the input file is a macro library,
or .ULB if the input file is a universal library.

Specifies the Compress switch.

Specifies the size of the new library file in 256(10)-word
blocks. The size of the old library file is the default size.

Specifies the number of entry point table (EPT) entries to
allocate. If the value specified is not a multiple of 64(10),
the next highest multiple of 64(10) is used. The number of EPTs
in the old library file is the default value. This parameter is
always forced to zero for macro libraries and universal
libraries. The maximum number of entries is 4096(10).

Specifies the number of module name table
allocate. If the value specified is not a
the next highest multiple of 64(10) is used.
in the old library file is the default value.
of entries is 4096(10).

(MNT) entries to
multiple of 64(10),
The number of MNTs

The max imum number

infile

Specifies the library file to be compressed. The default file
type is .OLB for object libraries, .MLB for macro libraries, and
.ULB for universal libraries. The actual default file type is
determined by the current default library file type (see Section
10.5.4).

Example

LBR>RICKLIB/CO:lOO.:128.:64.=SHEILA.OLB

In this example, file SHEILA.OLB is compressed, and a new file,
RICKLIB.OLB, is created with the following attributes:

size
ept
mnt

= 100(10) blocks
= 128(10) entry points
= 64(10) module names

The new file, RICKLIB.OLB, receives a version number that is one
version greater than the latest version for the file.

10-11

~=====-.""";-.. --.-=---' ---:---. --~-.--- ~:;::::."

LIBRARIAN UTILITY. PROGRAM (LBR)

Both files, RICKLIB.OLB and SHEILA.OLB, reside in the default
directory file on SYO:.

10.5.2 Create Switch (fCR)

Use the Create switch (/CR) to allocate a contiguous library file on a
direct access device (for example, a disk). The switch initializes
the library file header, the entry point table, and the module name
table.

The /CR switch can be appended only to the output file specification.
The format for specifying the /CR switch is:

outfil e/CR:si ze :e.pt :mnt: 1 ibtype=infil etype

outfile

fCR

:size

:ept

:mnt

Specifies the library file being created. The default file type
is .OLB if an object lib.rary is being created, .MLB if a macro
library is being created, or .ULB if a universal library is being
created.

Specifies the Create switch.

Specifies the size of the new library file in disk
blocks. The default size is 100(10) blocks.

(256 (lO)word)

Specifies the number of entry point table (EPT) entries to
allocate. The default value is 512(10) for object libraries.
This parameter is always forced to zero for macro libraries and
universal libraries. The maximum number of entries is 4096(10).

c

Specifies the number of module name table (MNT) entries to
allocate. The default value is 256 (10). The maximum number of C·)
entries is 4096(10).

:libtype

Specifies the type of library to be created. Acceptable values
are OBJ for object libraries, MAC for macro libraries, and UNI
for universal libraries. The default is the last value specified
or implied with the /DF switch (see Section 10.5.4), or OBJ if
/DF has not been specified.

: infiletype

Specifies the default input file type for the created universal
library~ If this value is not specified, the default input £ile
type for universal libraries is .UNI. This value' is not defined
for object or macro libraries.

If the values specified for ept and mnt are not multiples of 64(10),
EPT and MNT are automatically filled out to the next disk block C·
boundary.

10-12

(

c

(

LIBRARIAN UTILITY PROGRAM (LBR)

Example

LBR>RICKLIB/CR::128.:64.:0BJ=SHEILA,LAURA,JENNY

In this example, a combination of functions is performed. First,
the library file RICKLIB.OLB is created in the default directory
on SYO:. RICKLIB has the following attributes:

size =
ept =
mnt =
type =

100(10) blocks (default size)
128(10) entry points
64(10) module names
.OBJ

Secondly, object modules from the input files SHEILA.OBJ,
LAURA.OBJ, and JENNY.OBJ, which reside in the default directory
on SYO:, are inserted into the newly created library file.
Insert (lIN) is the default switch for input files (see Section
10.5.8).

10.5.3 Delete Switch (/DE)

Use the Delete switch (/DE) to logically delete library modules and
their associated entry points (global symbols) from a library file.
Up to 15(10) library modules and their associated entry points can be
deleted with one delete command.

When LBR begins processing the IDE switch, it prints the following
message on the initiating terminal:

MODULES DELETED:

As modules are logically deleted from the library file, the module
name is printed on the initiating terminal. (See the example at the
end of this section.)

If a specified library module is not contained in the library file, a
message is printed on the initiating terminal and the processing of
the current command is terminated. This message is as follows:

LBR -- *FATAL*-NO MODULE NAMED "name"

The IDE switch can be appended only to the library file specification.

When LBR deletes a module from a library file, the module is not
physically removed from the file, but is marked for deletion. This
means that, al though the module is no longer accessible, the file
space that the module once occupied is not available for use (unless
the deleted module is the last module that was inserted). To
physically remove the module from the file and make the freed space
available for use, you must compress the library (see Section 10.5.1).

The format for specifying the IDE switch is:

outfile/DE:modulel[:module2 ••• :modulen]

outfile

Specifies the library file.

IDE

Specifies the Delete switch.

10-13

LIBRARIAN UTILITY PROGRAM (LBR)

:module

Specifies the name of the module to be deleted.

Example

LBR>RICKLIB/DE: SHEILA: LAURA:JENNY

MODULES DELETED:

SHEILA

LAURA

JENNY

In this example, the modules SHEILA, LAURA, and JENNY and their
associated entry points are deleted from the latest version of
library file SYO:RICKLIB.OLB.

10.5.4 Default Switch (/DF)

Use the Default switch (/OF) to specify the default library file type.
Acceptable default values are OBJ for object libraries, MAC for macro
libraries, and UNI for universal libraries. When a default library
file type is not specified by the /DF switch, OBJ is the default
library file type.

Specifying a default value:

1. Sets the default file type for the Create switch (/CR).

2. Provides a file type default value of .MLB for macro
libraries, .ULB for universal libraries, and .OLB for object
libraries when opening an output (library) file. Exceptions
to this occur when you use /CO or /CR. When you specify /CO,
the default applies to the library input file. When you
specify /CR, the default file type is .OLB if an object
library is being created, .ULB if a universal library is
being created, or .MLB if a macro library is being created.

The /DF switch only affects the fi1etype of the file to be
opened. After that, the library header record information is
used to- determine the type of library file being processed.

The /DF switch can be issued alone or appended to a library file
specification. The format for specifying the /DF switch is:

outfi1e/DF:fi1etype •••

or

/DF: f il etype

outfile

Specifies the library file.

/DF

Specifies the Defau1 t swi tch.

10-14

(

c

c

c

c

(

c

LIBRARIAN UTILITY PROGRAM (LBR)

filetype

Specifies the default library file type: OBJ for object library
files, MAC for macro library files, and UNI for universal library
files.

If a value other than OBJ, ULB, or MAC is specified, the current
default library type will be set to object libraries and the
following message will be displayed:

LBR -- *FATAL*-INVALID LIBRARY TYPE SPECIFIED

Examples

LBR>/DF :MAC
LBR>RICKLIB=infile

The file RICKLIB.MLB is opened for insertion.

LBR>/DF:MAC
LBR>RICKLIB/DF:OBJ=infile

OBJ replaces MAC as the default filetype. The file RICKLIB.OLB
is opened for insertion.

LBR>/DF:MAC
LBR>RICKLIB/CR

The macro library RICKLIB.MLB is created.

LBR>/DF:MAC
LBR>RICKLIB/CR::::OBJ

Because OBJ is specified, it overrides the default (MAC).
object library RICKLIB.OLB is created.

LBR>/DF:OBJ
LBR>TEMP/CO=RICKLIB.MLB

The

Because RICKLIB.MLB is a mac-ro library, MAC overrides the default
(OBJ). The macro library file TEMP.MLB is created to receive the
compressed output.

LBR>/DF: UNI
LBR>RICHLIB=TEST

The file RICHLIB.ULB is opened for insertion.

10.5.5 Delete Global Switch CfOG)

Use the Delete Global switch (/DG) to delete a specified entry point
(global symbol) from the EPT. Up to 15(10) entry points may be
deleted with one command. This command does not affect the object
module that contains the actual symbol definition. You may wish to
delete an entry point if a module to be inserted has the same entry
point.

When LBR begins processing the IDG switch, it prints the following
message on the initiating terminal:

ENTRY POINTS DE LETED:

10-15

LIBRARIAN UTILITY PROGRAM (LBR)

As entry points are deleted from the library file, the entry point is
printed on the initiating terminal. (See the example at the end of
this section.)

If a specified entry point is not contained in the EPT, a message is
printed on the initiating terminal and the processing of the current
command is terminated. This message is as follows:

LBR -- *FATAL* - NO ENTRY POINT NAMED "name"

The /DG switch can only be appended to the library file specification.

The format for specifying the /DG switch is:

outfi1e/DG:g1oba11[:globa12 ••• :g1oba1n]

outfile

Specifies the library file.

/DG

Specifies the Delete Global switch.

global

Specifies the name of the entry point to be deleted.

Example

LBR>RICKLIB/DG:SHEILA:LAURA:JENNY

ENTRY POINTS DELETED:

SHEILA

LAURA

JENNY

In this example, the entry points SHEILA, LAURA, and JENNY are
deleted from the latest version of the library file named
SYO:RICKLIB.OLB.

10.5.6 Entry Point Switch C/EP)

Use the Entry Point switch (/EP) to control (include or exclude) the
placement of global symbols in a library entry point table. The
switch can be specified in either a positive or negative format:

/EP
/-EP
/NOEP

Include entry points in the entry point table.
Do not include entry points in the entry point table.
Do not include entry points in the entry point table.

The positive format (/EP) causes all entry points in a module or
modules to be entered in the library entry point table.

Either negative format (/-EP or /NOEP) provides for a module to be
included in a library, but excludes the entry points in that module
from being entered in the library entry point table.

10-16

c

(

(

(

(

LIBRARIAN UTILITY PROGRAM (LBR)

/EP is the LBR default. If the switch is not specified, all entry
points are entered into the library entry point table.

The IEP switch has no effect on macro or universal libraries.

The format for specifying the /EP switch is:

outfile[/EP]=infile,.~.infilen
[/-EP]
[/NOEP]

or

outfile=infile[/EP][, ••• infilen[/EP]
[-/EP] [-/EP]
[/NOEP] [/NOEP]

outfile

Specifies the output file. When the entry point switch is
applied to this file specification, LBR assumes each of the input
files contains modules for which entry points are to be either
included or excluded.

infile

Specifies an input file. When the /EP swiJ:ch is applied to an
input file specification, LBR assumes only the input files to
which the switch is applied contain modules for which entry
points are to be either included or excluded.

NOTE

Although not reflected in the command
formats, the positive and negative forms
of the switch may be applied to both the
output and input file specifications.
For example, the effect of /EP applied
to the output file can be overridden by
applying /-EP to a specific input file •.

The /-EP switch is useful for including modules that contain duplicate
entry point names in the same library. The /-EP switch provides the
means for entering a module in the library without having its entry
points included in the library entry point table.

The /-EP switch is also useful in the case where the Task Builder uses
only module names to search for modules in an object module library.
In this case, entries in the library entry point table are not
required. The /-EP switch can be used to exclude entry points from
being entered in the library entry point table.

Depending on
specification
local effect.

whether the /EP switch is applied to the output
or to an input specification, it has either a global or

When applied to the output file specification, the /EP switch has a
global effect. That is, LBR either includes all entry points in the
entry point table or excludes all entry points from being entered in
the entry point table.

10-17

'-~~-:---'::-~~~~-=~.o._..::-:-::co~o:::-.o::-~~~~~,:,~,,",:,.,--.~~~--::~_",:,:~~",: ~o~~-",,:~::-~-::..~:~~~-~-=?"-. ,"::~_~:"~~~~~~~-""~~~-~~""-o~~---:-----. m ______ ~. ___ ~ __ ~~~~~--~---=__:_.::':"~----~==~=

----- - -

LIBRARIAN UTILITY PROGRAM (LBR)

When applied to an input file specification, the Entry Point switch
has a local effect. That is, LBR either includes entry points in the
entry point table or excludes entries from being entered in the entry (
point table for only those modules to which the switch is applied. ~

Entry points in an object module are not affected by the IEP switch.
The switch only affects entries in the library entry point table.

10.5.7 Extract Switch (lEX)

Use the Extract switch lEX to extract (read) one or more modules from
an object or macro library file and write them into a specified output
file. If more than one module is extracted, the modules are
concatenated in the output file. The extract operation has no effect
on the library file from which the modules are extracted; that file
remains intact. Up to eight modules may be specified in one extract
operation for object and macro libraries. However, only one module
may be specified in one extract operation for a universal library.

For object and macro libraries, if no modules are specified in the I
command line, all modules in the library are extracted and ~
concatenated in the output file in alphabetical order.

For universal libraries, RMS fields cannot be extracted to a
record-oriented device, such as a terminal.

The lEX switch may be applied only to input file specifications.
format for specifying the lEX switch is:

outfile=infile/EX[:modulenamel ••• :modulenamen]

outfile

The

Specifies the file into which extracted modules are to be stored.
The default file type for this file is .OBJ if the input modules
are object modules. The default file type is .MAC if the input
modules are macro modules. If the library is a universal
library, the outfile retains the infile type of the module
extracted. (However, you are allowed to extract· only one
universal library module at a time.)

infile

lEX

Specifies the library file from which the modules are to be
extracted. The default file type for this file is .ULB, .OLB, or
.MLB, depending on the current default library type.

Specifies the Extract switch.

modulename

Specifies the name of the module to be extracted from the
library.

Examples

LBR>DRIVERS=RSXIIM/EX:DXDRV:DKPRV:TTDRV

(

The object modules DXDRV, DKDRV, and TTDRV are concatenated in (
alphabetical order and written into the file DRIVERS.OBJ. ~

10-18

c

c

(

(

LIBRARIAN UTILITY PROGRAM (LBR)

/EP is the LBR default. If the switch is not specified, all entry
points are entered into the library entry point table.

The IEP switch has no effect on macro or universal libraries.

The format for specifying the /EP switch is:

outfile[/EP]=infile, ••• infilen
[./-E P]
[/NOEP]

or

outfile=infile[/EP] [, ••• infilen[/EP]
[-/EP] [-/EP]
[/NOEP] [/NOEP]

outfile

Specifies the output file. When the entry point switch is
applied to this file specification, LBR assumes each of the input
files contains modules for which entry points are to be either
included or excluded.

infile

Specifies an input file. When the /EP swi~ch is applied to an
input file specification, LBR assumes only the input files to
which the switch is applied contain modules for which entry
points are to be either included or excluded.

NOTE

Although not reflected in the command
formats, the positive and negative forms
of the switch may be applied to both the
output and input file specifications.
For example, the effect of /EP applied
to the output file can be overridden by
applying /-EP to a specific input file.

The /-EP switch is useful for including modules that contain duplicate
entry point names in the same library. The /-EP switch provides the
means for entering a module in the library without having its entry
points included in the library entry point table.

The /-EP switch is also useful in the case where the Task Builder uses
only module names to search for modules in an object module library.
In this case, entries in the library entry point table are not
required. The /-EP switch can be used to exclude entry points from
being entered in the library entry point table.

Depending on
spec ification
local effect.

whether the /EP switch is applied to the output
or to an input specification, it has either a global or

When applied to the output file specification, the /EP switch has a
global effect. That is, LBR either includes all entry points in the
entry point table or .excludes all entry points from being entered in
the entry point table.

10-17

LIBRARIAN UTILITY PROGRAM (LBR)

When applied to an input file specification, the Entry Point switch
has a local effect. That is, LBR either includes entry points in the
entry point table or excludes entries from being entered in the entry
point table for only those modules to which the switch is applied.

Entry points in an object module are not affected by the IEP switch.
The switch only affects entries in the library entry point table.

10.5.7 Extract Switch (lEX)

Use the Extract switch lEX to extract (read) one or more modules from
an object or macro library file and ~rite them into a specified output
file. If more than one module is extracted, the modules are
concatenated in the output file. The extract operation has no effect
on the library file from which the modules are extracted; that file
remains intact. Up to eight modules may be specified in one extract
operation for object and macro libraries. However, only one module
may be specified in one extract operation for a universal library.

(

For object and macro libraries, if no modules are specified in the (--
command line, all modules in the library are extracted and ~
concatenated in the output file in alphabetical order.

For universal libraries, RMS fields cannot be extracted to a
record-oriented device, such as a terminal.

The lEX switch may be applied only to input file specifications.
format for specifying the lEX switch is:

The

outfile=infile/EX[:modulenamel ••• :modulenamen]

outfile

Specifies the file into which extracted modules are to be stored.
The default file type for this file is .OBJ if the input modules
are object modules. The default file type is .MAC if the input
modules are macro modules. If the library is a universal
library, the outfile retains the infile type of the module
extracted. (However, you are allowed to extract only one
universal library module at a time.)

infile

lEX

Specifies the library file from which the modules are to be
extracted. The default file type for this file is .ULB, .OLB, or
.MLB, depending on the current default library type.

Specifies the Extract switch.

modulename

Specifies the name of the module to be extracted from the
library.

Examples

LBR>DRlVERS=RSXllM/EX:DXDRV:DKDRV:TTDRV

(

(

The object modules DXDRV, DKDRV, and TTDRV are concatenated in (-.
alphabetical order and written into the file DRIVERS.OBJ. -

10-18

(

(

c

(

LIBRARIAN UTILITY PROGRAM (LBR)

LBR>TI:=[l,l]RSXMAC.SML/EX:QIO$S

The macro QIO$S is written to the issuing terminal.

LBR>TEST.OBS=TEST/EX

All of the modules in the library TEST. aLB are written into the
file TEST.OBS in alphabetical order.

10.5.8 Insert Switch (lIN) for Object and Macro Libraries

Use the Insert switch lIN to insert modules into a library file. Any
number of input files can be specified. For object libraries and
macro libraries, each input file can contain any number of
concatenated input modules. For macro libraries, only first-level
macro definitions are extracted from the input files. All text
outside of the first-level macro definitions is ignored. LBR
recognizes only upper-case characters in macro directives. (The
Insert switch for Universal Libraries, is explained in Section
10.5.9.) The lIN switch is the default library file option and can be
appended only to the library file specification.

If you attempt to insert an input module that already exists in the
library file, the following message is printed on the initiating
terminal:

LBR -- *FATAL* DUPLICATE MODULE NAME "name" IN filename

Likewise, if you attempt to insert a module and a module contains an
entry point that duplicates one that is already in the EPT, the
following message is printed on the initiating terminal:

LBR -- *FATAL* DUPLICATE ENTRY POINT "name" IN filename

The format for specifying the lIN switch is:

outfile[/IN]=infilel[,infile2, ••• infilen]

outfile

lIN

Specifies the library file into which the input modules are to be
inserted. The default file type depends on the current default
(see Section 10.5.4). It is .OLB if the current default is
object libraries, .MLB if the current default is macro libraries.

Specifies the Insert switch.

infile

Specifies
into the
outfile is
library.

the input file containing the modules to be inserted
library file. The default file type is .OBJ if the
an object library and .MAC if the outfile is a macro

10-19

LIBRARIAN UTILITY PROGRAM (LBR)

Example

LBR)RICKLIB/IN=SHEILA, LAURA, JENNY

In this example, the modules contained in the latest versions of
files SHEILA, LAURA, and JENNY, which reside in the default
directory on SYO:, are inserted into the latest version of the
library file RICKLIB, which also resides in the default directory
on SYO:. The default file type for files SHEILA, LAURA, and
JENNY is .OBJ if RICKLIB is an object module library, or .MAC if
RICKLIB is a macro library.

10.5.9 Insert Switch (lIN) for Universal Libraries

The Insert switch (lIN) works basically the same for universal
libraries as it does for object libraries and macro libraries.
However, when inserting a file into a universal library, the lIN
switch is applied to the input file rather than the output file. You
can also specify module name and descriptive information as switch
values in the command line. In addition, ~LBR copies input file
attributes to the module header.

The high block indicator (F.HIBK of the file'S descriptor block) and
the end of file indicator (F.EFBK of the file's FOB) are included in
the input file's user file attributes. LBR makes the high block
indicator equal to the end of file indicator in the module header.
This means that when a module is extracted to a file, that file will
have as many blocks allocated to it as are used.

The format for specifying the lIN switch for universal libraries is:

outfile=infile/IN:name:op:op:op:op

outfile

Specifies the universal library into which the infile is to be
inserted.

infile

lIN

Specifies the input file to be inserted into the outfile. The
default for the file type is the value indicated at the universal
library's creation time. (See Section 10.5.2.)

Specifies the Insert switch.

:name

:op

Optionally specifies the
characters) • The default
input file name.

module name (up to six Radix-50
is the first six characters of the

Specifies optional descriptive information (up to
characters) to be stored in the module header.
null. If only part of the information set is
preceding colons must be supplied.

10-20

six Radix-50
The default is

specified, all

(

(

(

(

(--

c

(

-- -----=~~~=--=--~-.-----~

LIBRARIAN UTILITY PROGRAM (LBR)

Example

LBR>RICKLIB.ULB=JOE.TXT/IN:MOD1:THIS:IS:JAN2:TEXT

In this example, LBR inserts JOE. TXT into the universal library
RICKLIB.ULB as MODl. "THIS", "IS", "JAN2", and "TEXT" are stored
in the module header. .

You can insert JOE. TXT without the lIN switch and its values. As
a result, all the information normally specified by the switch
values defaults as described in this example.

10.5.10 List Switches (ILl, ILE, IFU)

Use the list switches to produce a printed listing of the contents of
a library file. Three switches allow you to select the type of
listing desired. These switches are as follows:

ILl Produces a listing of the names of all modules in the
library file.

ILE Produces a listing of the names of all modules in the
library file and their corresponding entry points.

IFU Produces a listing of the names of all modules in the
library file and gives a full module description for
each: that is, size, date of insertion, and
module-dependent information.

These switches can be appended only to the output file specification
or the list file specification.

The ILl switch is the default value.
listing file has been specified
included in the command line.

It need not be specified when a
or when any other list switch is

The format for specifying list switches is:

outfile[,listfile]/switch(es)

outfile

Specifies the library file whose contents are to be listed.

I istfile

Optionally specifies the listing file. If not specified, the
listing is directed to the initiating terminal.

Iswitch(es)

Specifies the list option(s) selected.

Examples

LBR>RICKLIB/LI

In this example, a listing of the names of all the modules
contained in file SYO:RICKLIB.OLB is printed on the initiating
terminal.

10-21

LIBRARIAN UTILITY PROGRAM (LBR)

LBR>RICKLIB/LE

In this example, a listing of the names of all the modules and (/
their entry points (contained in file SYO:RICKLIB.OLB) is printed
on the initiating terminal.

LBR>RICKLIB/FU

In this example, a listing of the names of all the modules
file SYO:RICKLIB.OLB, and a full description of each
contained is printed on the initiating terminal.

LBR>DKl: [200,200]RICKLIB,LP.LST/LE/FU

in
one

In this example, LBR creates file LP.LST in directory [200,200]
on DKl, which lists the module names, their entry points, and a
full description of each module for file RICKLIB.

10.5.11 Modify Header Switch (/MH)

The Modify Header switch pertains only to universal libraries and (~
allows you to modify the optional user-specified information in the
module header.

The format for specifying the IMH switch is:

outfile/MH:module:op:op:op:op

outfile

IMH

Specifies an output file for the universal library.
type defaults to .ULB.

Specifies the Modify Header switch.

The file

:module

:op

Specifies the name of the module whose descriptive information is
to be modified.

Specifies the optional user information (up to six Radix-50
characters) to be stored in the module header. The default is
null and indicates that the corresponding information field is
not to be changed. Also, entering a pound sign (#) clears the
corresponding .information field.

Example

The optional descriptive information for module A of RICKLIB.ULB
is:

"MODA" "FCHCD" "OF" "FCH"

The LBR command is:

LBR>RICKLIB/MH:A:FCHTS:#::

10-22

(

(

(~

(

LIBRARIAN UTILITY PROGRAM (LBR)

The optional descriptive information for module A in file RICKLIB
is changed to:

"FCHTS" " " "OF" "FCH"

10.5.12 Replace Switch (/RP) For Macro and Object Libraries

Use the Replace switch /RP to replace modules in a library file with
input modules of the same name. Any number of input files are allowed
and each file can contain any number of concatenated input modules.

For macro libraries, only first-level macro definitions are extracted
from the replacement files. LBR recognizes only uppercase characters
in macro directives.

When a match occurs on a module name, the existing module is logically
deleted and all of its entries are removed from the EPT.

As each module in the library file is replaced, a message is printed
on the initiating terminal. This message, which contains the name of
the module beitig replaced, is as _follows:

MODULE "name" REPLACED

If the module to be replaced does not exist in the library file, LBR
assumes that the input module is to be inserted and automatically
inserts it without printing a message.

The /RP switch can be specified in either of the following formats:

• Global format - The /RP switch is appended to the library file
specification and all of the input files are assumed to
contain replacement modules.

• Local format - The /RP switch is appended to an input file
specification and only the file to which the /RP switch is
appended is considered to contain replacement modules.

Global Format

outfile/RP=infilel[,infile2, ••• infilen]

outfile

/RP

Specifies the library file. The default file type depends on the
current default (see Section 10.5.4). It is .OLB if the current
default is object libraries or .MLB if the current default is
macro libraries.

Specifies the Replace switch.

infile

Specifies the input file that contains replacement modules for
the library file. The default type is .OBJ if outfile is an
object library or .MAC if it is a macro library.

The Global format allows you to specify a list of input files without
having to append the /RP switch to each of them.

10-23

- --- ---- -- ------------------------------ ---~~ -------------- - -- --------:-::--------=----=----- - ---=--

LIBRARIAN UTILITY PROGRAM (LBR)

To override the global function for a particular input file (that is,
to instruct LBR to process a particular file in a list as a file
containing modules to be inserted but not replaced), append /-RP or (~
/NORP to the desired input file specification. ~~

Local Format

outfi1e=infi1e1[/RP] [,infi1e2[/RP], ••• infi1en[/RP]]

outfile

Specifies the library file. The local format default is the same
as the global format default.

infile

/RP

Specifies the input file that contains replacement modules for
the output library file. The local format default is the same as
the global format default.

Specifies the Replace switch. Appending the /RP
input file specifier constitutes the local format
This overrides the LBR default (/IN) and instructs
the modu1e(s) contained in the specified file
modules.

switch to an
of the switch.
LBR to treat
as replacement

Examples

The files used in the following four examples, and the modules
contained within each file, are depicted in Figure 10-8. These
files are assumed to reside in the default directory on the (~
default device and the initial state of the library file is
assumed to be as shown in Figure 10-8.

1. LBR>RICKLIB/RP=SHEILA, LAURA, JENNY

MODULE "SHEILA" REPLACED
MODULE "LAURA1" REPLACED
MODULE "LAURA2" REPLACED
MODULE "JENNY1" REPLACED
MODULE "JENNY2" REPLACED

In this example, the global format for the /RP switch is
used. Object modules from the input files SHEILA, LAURA, and
JENNY replace modules by the same names in the library file
named RICKLIB and modules JENNY3 and LAURA 3 are inserted.
The resu1tin9 library file is shown in Figure 10-9.

2. LBR>RICKLIB=CHRIS,SHEILA/RP

MODULE "SHEILA" REPLACED

In this example, the local format of the /RP switch is used.
The object module SHEILA from file SHEILA is replaced in the
library file RICKLIB. The object modules in the file CHRIS
are inserted in the library file. (See the description of
the /IN swi~tch in Section 10.5.8.) The resulting 1 ibrary file
is shown in Figure 10-10.

10-24

(

c

.- ._--_ .. --------_ ... ----
-=-=--=-.,.-::o-===--:;-::;;::..-==-"-_-:-===-~ ___ _=__=~.;:.:~~_~-=____=_ ___ -::::-~..:;;;.-=-:.:::::--:-=--=:.-~-:::_~:::....,,::::____=::::=:---:-=:__-~-;:::.._::::- .:::...=. -__ ~ --=_~ ___ ..=_':.=-=-----_---.:::: __ ~

LIBRARIAN UTILITY PROGRAM (LBR)

3. LBR>RICKLIB/RP=SHEILA, LAURA, JENNY,CHRIS/-RP

MODULE "SHEILA" REPLACED
MODULE "LAURA1" REPLACED
MODULE "LAURA2" REPLACED
MODULE "JENNY1" REPLACED
MODULE "JENNY2" REPLACED

In this example, the /-RP switch is used to override the
global format of the c.ommand. Object modules in files
SHEILA, LAURA, and JENNY are processed as modules to be
replaced, and file CHRIS is processed as a file that contains
modules to be inserted. The resulting library file is shown
in Figure 10-11.

4. LBR>RICKLIB/RP=SHEILA,LAURA/-RP,JENNY

FILE NAME

OBJECT

MODULES

MODULE "SHEILA" REPLACED
LBR -- *FATAL* -- DUPLICATE MODULE "LAURA1" IN LAURA. OBJ; 1

In this example, only module SHEILA from file SHEILA was
replaced. The user specified that the modules in file LAURA
not be replaced (/-RP), but inserted. One of the modules
contained in file LAURA duplicated an already existing module
in file RICKLIB (see Figure 10-8). Therefore, LBR issued the
fatal error message and terminated the processing of the
current command line.

OUTPUT
LIBRARY FILES

INPUT FILES

RICKLIB.OLBil SHEILA •. OBJ i 1 LAURA.OBJil JENNY.OBJil CHRIS.OBJil

JENNYl SHEILA LAURAl JENNYl CHRISl

JENNY2 LAURA2 JENNY2 CHRIS2

LAURAl LAURA3 JENNY3

LAURA2

SHEILA

ZK-191-81

Figure 10-8 Sample Files Used in LBR Examples 1-4

10-25

LIBRARIAN UTILITY PROGRAM (LBR)

RICKLIB.OLB;l

JENNYl

JENNY2

JENNY3 l

LAURAl

LAURA2

LAURA3 l

SHEILA

1. These modules did not exist in the
library file prior to the execution of
this example, but they did exist in the
input files. LBR, therefore, assumed
that they were to be inserted. Since
LBR handled these modules as a normal
insert, no message was printed on the
input terminal.

ZK-192-B1

Figure 10-9 Output Library File After Execution of Example 1

RICKLIB.OLB;l

CHRISl l

CHRIS2 l

JENNYl

JENNY2

LAURAI

LAURA2

SHEILA2

1. These modules are inserted.

2. This module is replaced.
zt<-193-B1

Figure 10-10 Output Library File After Execution of Example 2

10-26

(

(,

(

c~

(

c

c

(

c

LIBRARIAN UTILITY PROGRAM (LBR)

RICKLIB.OLBil

CHRISl l

CHRIS2 1

JENNY 1

JENNY2

JENNY3 2

LAURAI

LAURA2

LAURA3 2

SHEILA

1. These modules were specified to be
inserted. Had a module of the same name
been present, a fatal error message
would have been issued. See Example 4.

2. These modules were inserted by default.
ZK-194-B1

Figure 10-11 Output Library File After Execution of Example 3

10.5.13 Replace Switch (lRP) for Universal Li.braries

Use the IRP switch for universal libraries in the same way as for
macro and object libraries. However, you can also specify the same
values for the IRP switch as for the lIN switch for universal
libraries (see Section 10.5.9).

As with macro and object libraries, you can specify the IRP switch
with either the output file specification or with the input file
specifications.

The global format of the IRP switch for universal libraries is:

outfile/RP:name:op:op:op:op=infile[,infile2, •••• infilen]

The local format of the IRP switch for universal libraries is:

outfile=infile/RP:name:op:op:op:op[,infile2 •••• infilen]

outfile

Specifies the universal library file.

infile

Specifies the input file that contains replacement
the library file. The default for the file type
indicated at the universal library's creation time.
10.5.2).

10-27

modules for
is the value
(See Section

--= ---=---=-=-==----===~---------=---=-=-------- --==--- --=--------::--=----==--=-~--=::------::-- -- - -- --- -=-=-----===-==------=----=--=-------=----=-==----=-----==-=---==-==-----==----==--==---===--=---=--=-=- -=---=---- ---=====---==---=--=- ----=:------:--=

LIBRARIAN UTILITY PROGRAM (LBR)

IRP

Specifies the Replace switch.

:name

:op

Optionally specifies the module name to be replaced (up to six
Radix-50 characters). The default is the first six characters of
the infile name.

Specifies optional descriptive information (up to
characters) to be stored in the module header.
null. If only part of the information set is
preceding colons must be supplied.

six Rad ix-50
The defaul t is

specified, all

Example

LBR>TEXT.ULB=DEBBIE.TXT/RP::THIS:IS:JAN3:UPDATE

MODULE "DEBBIE" REPLACED

In this example, LBR replaces the module DEBBIE in the universal
library TEXT.ULB with an upda.ted module from file DEBBIE.TXT.
The date of replacement is specified by the optional user
information and inserted in the module header. Note that the
optional name is omitted.

The initial state of the library file is shown in Figure 10-12.
The resulting library file is shown in Figure 10-13.

OUTPUT
LIBRARY FILE INPUT FILES

FILE NAME TEXT.ULB;l DEBBIE.TXT

MODULES DEBBIE
BERNIE

ZK-195-81

Figure 10-12 Sample Files for Universal Library Replace Example

TEXT.ULB;l

DEBBIEI
BERNIE

I.The module DEBBIE was replaced. If a
different infile were specified, that
file would become module DEBBIE and
occupy the same location in TEXT.ULB.

ZK-196-81

Figure 10-13 Output Library File After Execution of
Universal Library Replace Example

10-28

(

c

(

c

c

c

LIBRARIAN UTILITY PROGRAM (LBR)

10.5.14 Spool Switch (/SP)

The Spool switch (/SP) is the list file default switch.
switch is specified or not, the results are the same;
listing file is spooled to the line printer.

Whether the
that is, the

After the listing file is created, a request is made to the print
spooler task to print the spooled file (see the RSX-IIM/M-PLUS Batch
and Queue Operations Manual for a description of the spooler task).

The automatic printing of the listing file can be inhibited by
specifying /-SP or /NOSP. This causes the listing file to be created,
but the request to the print spooler task is not issued. Therefore,
the file is not automatically printed.

The /SP switch can only be appended to the list file specifier.

The format for specifying the. /SP swi tch is:

outfile,listfile[/SP] or [/-SP]

outfile

Specifies the library file.

listfile

Specifies the listing file.

/SP or /-SP

Specifies the Spool switch.

Example

LBR)RICKLIB/DE: SHEILA, RICKLST/-SP

In this example, the following occurs:

1. The module SHEILA and its associated entry points are
deleted from the library file SY:RICKLIB.

2. The listing of the contents of the resulting library file
RICKLIB is written to the list file SY:RICKLST.LST.
Because the /-SP switch is specified, the file is not
automatically printed.

10.5.15 Selective Search Switch (/SS)

Use the Selective Search switch (/SS) to set the selective search
attribute bit in the module header of object modules as they are
inserted into an object library. The switch has no effect when
appl ied to modules being inserted into a macro library. The swi tch
may be specified with input files for insertion or replacement
operations only, and it affects all modules in the input file to which
it is applied.

Object modules with the selective search attribute are given special
treatment by the Task Builder. Global symbols, defined in modules
with the selective search attribute, are only included in the Task
Builder's symbol table if they are previously referenced by other
modules. Thus, only referenced symbols will be listed with the module

10-29

-- -- ---------------- - ------------ -- ----------- ------------- --~ .. ~. - - ---------------=-=~-:::=-=----=--------------- ------- - ----------.=---------------------=:::"--=-=-=---= ,--==--

LIBRARIAN UTILITY PROGRAM (LBR)

in the Task Builder memory allocation
build time. The ISS switch should only be
whose modules contain only absolute
definitions. See the RSX-IIM/M-PLUS Task
information.

file, thereby reducing task
applied to object files
(not relocatable) symbol
Builder Manual for more

The format for specifying the ISS swi tch is:

outfile=infilel/SS[,infile2[/SS], ••• infilen[/SS]]

outfile

Specifies the library file.

infile

ISS

Specifies the input file that contains modules to be selectively
searched.

Specifies the Selective Search switch.

Example

LBR>ANGEL=JOHN,JILL/SS,MARK/SS,MARY

The object files JOHN.OBJ, JILL.OBJ, MARK.OBJ, and MARY.OBJ are
inserted into object library ANGEL.OLB. The selective search
attribute bit is set in both the JILL and MARK object module
header.

10.5.16 Squeeze Switch (/SZ)

Use the Squeeze switch (/SZ) to reduce the size of macro definitions
by eliminating all trailing blanks and tabs, blank lines, and comments
from macro text. The /SZ switch is used to conserve memory in the
MACRO-II Assembler and to reduce the size of macro library files. The
/SZ switch has no effect on object libraries or universal libraries.

The /SZ switch can be specified in either of two formats:

• Global format - The /SZ switch is appended to the library file
specification. All of the input files are assumed to contain
modules to be squeezed.

• Local format - The /SZ switch is appended to an input file
specification. The /SZ switch works only on the file to which
you append it.

Global Format

outfile/SZ=infilel[,inflle2, ••• infilen]

outfile

Specifies the library file.

10-30

c

c

C~

-----~---===-~-~-=-~-=---=-~--=-~-~--------------------------------------:-----------::-- -----. --~- ----~-;-:--=

(-

c

c

c

LIBRARIAN UTILITY PROGRAM (LBR)

/SZ

Specifies the Squeeze switch.

infile

Specifies the input file that contains modules to be squeezed
during insertion into the library file.

Use the global format of the /SZ switch to specify a list of input
files without having to append the /SZ switch to each of them. To
override the global function for a particular input file (that is, to
instruct LBR to process a particular file in a list as a file
containing modules to be inserted but not squeezed), append /-SZ or
/NOSZ to the desired input file specification.

Local Format

outfile=infilel/SZ[,infile2[/SZ] ••• ,infilen[/SZ]]

outfile

Specifies the library file:

infile

/SZ

Specifies the file that contains modules to be squeezed during
insertion into the library file.

Specifies the Squeeze switch.

LBR uses the following algorithm on each line to be squeezed and then
inserts the resulting line into the library file:

1. The line is examined for the rightmost semicolon (;).

2. If a semicolon is located, it is deleted, along with all
trailing characters in the line.

3. All trailing blanks and tabs in the line are deleted.

4. If the resulting line is null, nothing is transferred to the
library file.

If the line contains a semicolon embedded in noncomment text and you
want comments squeezed, code a dummy comment for that line. The /SZ
switch will use only the rightmost comment during squeeze processing.

Example

Figure 10-14 illustrates the use of the LBR /SZ switch. A
containing input text to be squeezed is illustrated, along
the text actually inserted into the library file after
squeeze operation has been completed.

iO-3l

file
with

the

LIBRARIAN UTILITY PROGRAM (LBR)

BEFORE

.MACRO MOVSTR RX,RY,?LBL

:*** ~ - NOTE:
BOTH ARGUMENTS MUST BE REGISTERS

LBL: MOVB
BNE
DEC

(RX)+, (RY)+
LBL
RY

:MOVE A CHARACTER
:CONTINUE UNTIL NULL SEEN
:BACKUP OUTPUT PTR TO NULL

:END OF MOVSTR
.ENDM

.*** ,

LBL:

AFTER

.MACRO MOVSTR RX,RY,?LBL
- - NOTE :
BOTH ARGUMENTS MUST BE REGISTERS
MOVB (RX)+,(RY)+
BNE LBL
DEC RY
.ENDM

Figure 10-14 MACRO Listing Before
and After Running LBR with ISZ Switch

10.6 COMBINING LIBRARY FUNCTIONS

ZK-197-81

Two or more library functions
line. The only exceptions
anything else except ILl, and
same command line.

may be requested in the same command
are that ICO cannot be requested with

ICR and IDE cannot be specified in the

Functions are performed in the following order:

1. De fa ul t s wi tc h (/DF)
2. Create switch (/CR)
3. Delete switch (/DE)
4. Delete Global switch (/DG)
5. Modify Header switch (/MH)
6. Insert (lIN), Replace (/RP), Selective Search (ISS), Squeeze

(/SZ) , Entry Point (/EP) switches
7. Compress switch (/CO)
8. Extract switch (lEX)
9. List switches (ILl), ILE, IFU), Spool switch (/SP)

Example

LBR>FILE/DE:XYZ:$A,LP.LST:/LE/FU=MODX,MODY/RP

Functions, performed in ord~r, are:

1. Delete modules XYZ and $A.

2. Insert all modules from MODX and replace duplicate
modules of MODY.

10-32

(

c

c

(

l

LIBRARIAN UTILITY PROGRAM (LBR)

3. Produce a listing of the resultant library file on the
line printer with full module descriptions and all entry
points.

10.7 LBR ERROR MESSAGES

LBR returns two types of error messages: diagnostic and fatal.

Diagnostic error messages describe a condition
consideration, but the nature of the condition
termination of the command. Diagnostic messages are
terminal in the format:

LBR *DIAG* - message

that requires
does not warrant
issued to your

Fatal error ~essages describe a condition that caused LBR to terminate
the processlng of a command. When this occurs, LBR returns to the
highest level of command input. For example, if the command is
entered in response to the MeR prompt, that is,

>LBR command

then LBR issues the fatal error message and exits. If, however, the
command is entered in response to the LBR prompt, that is,

LBR>command

LBR issues the fatal error message and reprompts.

Fatal error messages are issued to your terminal in the format:

LBR -- *FATAL* - message

If a fatal error occurs during the processing of an indirect command
file, the command file is closed, the fatal error message - followed
by the command line in error is issued to your terminal and LBR
returns to the highest level of command input.

10.7.1 Effect of Fatal Errors on Library Files

The status of a library file after fatal errors is:

1. In general, output errors leave
indeterminate state.

the library in an

2. During the deletion process, the library is rewritten prior
to the printing of the individual module-/entry-point-deleted
messages.

3. During the replacement process,
prior to the printing of the
messages.

the library is rewritten
individual module-replaced

4. During the insertion process, the library is rewritten after
the insertion of all modules in each individual input file,
that is, between input files.

10-33

=====-=-=--=----------- -- _~=_===_~=c==-_- -,c~=~c~~~===~==_=c= -------------------- ----- --- --------=~_ ----------------------- ------~"

LIBRARIAN UTILITY PROGRAM (LBR)

10.7.2 LBR Error Messages

LBR -- BAD LIBRARY HEADER

Explanation: The file is not a library file or it is corrupted.

User Action:

• If the file is not a library file, reenter the command line
with a proper library file specified.

• If the file is a proper library file, you should run the file
structure verification utility (VFY) against the volume to
determine if it is corrupted (see Chapter 9).

• If the volume is corrupted, it must be reconstructed before
it can be used.

LBR -- CANNOT MODIFY HEADER

Explanation: An attempt was made to modify the module header of
a module in an object library or macro library. No change is
made to the module header.

User Action: Reenter the command line, specifying a module in a
universal library.

LBR -- COMMAND I/O ERROR

Explanation: One of the following conditions may exist:

• A problem exists on the physical device (for example,
cycled up).

not

• The file is corrupted or the format is incorrect (for
example, record length exceeds 132 bytes).

User Action: Determine which of
message and correct that condition.

LBR -- COMMAND SYNTAX ERROR
command line

the conditions caused the
Reenter the command line.

Explanation: A command was entered in a format that does not
conform to syntax rules.

User Action: Reenter the command line, using the correct syntax.

LBR -- DUPLICATE ENTRY POINT NAME "name" IN filename

Explanation: An attempt was made to insert a module into a
library file when both contain an identically named entry point.

User Action: Determine if the specified input file is the
correct file. If not, reenter the command line, specifying the
correct input file. If the input file is the correct file, you
can delete the duplicate entry point from the library and reenter
the command line.

10-34

(

(

C~

LIBRARIAN UTILITY PROGRAM (LBR)

LBR -- DUPLICATE MODULE NAME "name" IN filename

Explanation: An attempt was made to insert (without replacing) a
module into a library that already contains a module with the
specified name.

User Action: Determine if the specified input file is the
correct file. If the input file is correct, decide whether to
delete the duplicate module from the library file and insert the
new one, or replace the duplicate module with the jRP switch
appended to the input file specification.

LBR -- EPT OR MNT EXCEEDED IN filename

Explanation: The EPT or MNT table 1 imi t was reached during the
execution of an insert or replace operation.

User Action: Copy the library, increasing the table space by
means of the Compress switch. Reenter the command line.

LBR -- EPT OR MNT SPACE EXCEEDED IN COMPRESS

Explanation: An EPT or MNT table size was specified for the
output library file that is not large enough to contain the EPT
or MNT entries used in the input library file.

User Action: Reenter the command line with a larger EPT or MNT
table size specified.

LBR -- ERROR IN LIBRARY TABLES, FILE filename

Explanation: The library file is corrupted or is not a library
file.

User Action: If the file is corrupted, no recovery is possible;
the file must be reconstructed. If the file is not a library
file, reenter the command line with the correct library file
specified.

LBR -- EXACTLY ONE INPUT FILE MUST APPEAR WITH JCO

Explanation: No input library file, or more than one file, was
specified when using the JCO switch.

User Action: Reenter the command line with only one input file
specified.

LBR -- FATAL COMPRESS ERROR

Explanation: The input library file is corrupted or is not a
library file.

User Action: No recovery is possible. The file in question must
be reconstructed.

10-35

LIBRARIAN UTILITY PROGRAM (LBR)

LBR -- GET TIME FAILED

Explanation: This error occurs when LBR attempts to execute a
Get Time Parameters directive and fails. The error is caused by
a system malfunction.

User Action: Reenter the command line. If the problem persists,
submit a Software Performance Report (SPR) along with the related
console dialog and any other pertinent information.

LBR -- ILLEGAL DEVICE/VOLUME
command line

Explanation: The Device specifier entered does not conform to
syntax rules. A device specifier consists of two ASCII
characters, followed by one or two optional octal digits.

User Action: Reenter the command line with the correct device
syntax specified and followed by a colon.

LBR -- ILLEGAL DIRECTORY
command line

Explanation: The UFD entered does not conform to syntax rules.
UFD syntax consists of a left square bracket, followed by one to
three octal digits, a comma, one to three octal digits, and
terminated by a right square bracket ([ggg,mmm]).

User Action: Reenter the command line with the correct UFD
syntax.

LBR -- ILLEGAL FILENAME
command line

Explanation: One of the following was entered:

• A file specifier that contains a wildcard.

• A file specifier that contains neither a file name
file type.

User Action: Reenter the command line correctly.

LBR -- ILLEGAL GET COMMAND LINE ERROR CODE

Explanation:
command line.

The system, for some reason, is unable
This is an internal system failure.

to

nor a

read a

User Action: Reenter the command line. If the problem persists,
submit a Software Performance Report (SPR) along with the related
console dialog and any other pertinent information.

LBR -- ILLEGAL SWITCH
command line

Explanation: A non-LBR switch was specified or a legal switch
was specified in an invalid context.

User Action: Reenter the command line with the correct switch
specification.

10-36

(

c

(

(

(

c

c

c

==== -----=-=== - - --==-;:=-=~-=:c=--=--==-=--=== =======-

LIBRARIAN UTILITY PROGRAM (LB~)

LBR -- ILLEGAL SWITCH COMBINATION

Explanation: Switches were entered that cannot be executed in
combination. See Section 10.6.

User Action: Reenter the command line, specifying the switches
in the proper combination.

LBR -- INDIRECT COMMAND SYNTAX ERROR
command line

Explanation: An indirect command file was specified in a format
that does not cOfiTorm to syntax rules.

User Action: Reenter the command line with the correct syntax.

LBR -- INDIRECT FILE DEPTH EXCEEDED
command line

Explanation: An attempt was made to exceed one level of indirect
command files.

User Action: Rerun the job· with only one level of indirect
command file specified.

LBR -- INDIRECT FILE OPEN FAILURE
command line

Explanation:
as specified.

The requested indirect command file does not
One of the following conditions may exist:

• The user directory area is protected against access.

exist

• A problem exists on the physical device (for example, device
cycled down).

• The volume is not mounted.

• The specified file directory does not exist.

• The file does not exist as specified.

• Insufficient dynamic memory exists in the Executive.

User Action: Determine which of
message and correct that condition.

LBR -- INPUT ERROR ON filename

the conditions caused the
Reenter the command line.

Explanation: The file system, while attempting to process an
input file, has detected an error. A problem exists with the
physical device (for example, the device cycled down).

User Action: Reenter the command lirie.

10-37

LIBRARIAN UTILITY PROGRAM (LBR)

LBR INSUFFICIENT DYNAMIC MEMORY TO CONTINUE

Explanation: The partition in which LBR is running is too small
for the task size.

User Action: Remove the task (LBR), install it in a larger
partition, and reenter the command line. (See the MCR INSTALL
command description in the RSX-IIM/M-PLUS MCR Operations Manual.)

LBR -- INVALID EPT AND/OR MNT SPECIFICATION

Explanation: An EPT or MNT value greater than 4096(10) was
entered in a /CR or /CO switch.

User Action: Reenter the command line with the correct value
specified.

LBR -- INVALID FORMAT, INPUT FILE filename

Explanation: The format of the specified input file is not the
standard format for a macro source or object file, or the input
file is corrupted.

User Action: Reenter the command line with the correct input
file specified.

LBR -- INVALID LIBRARY TYPE SPECIFIED

Explanation: An invalid library type was specified when using
the Create or Default switch. The values OBJ, MAC, and UNI are
the only valid specifications. See Sections 10.5.2 and 10.5.4.

User Action: Reenter the command line with OBJ, MAC, or UNI
spec ified.

LBR -- INVALID MODULE FORMAT in insertion module

Explanation: An attempt was made to insert a macro
an object library.

User Action: Determine if an object file was to be
an object library. If so, reenter the command
correct object file. If a macro library was to
insertion, reenter the command line with the
library.

LBR -- INVALID NAME -- "name"

module into

inserted into
line with the
receive the

correct macro

Explantion: A module name that contains a non-Radix-50 character
was specified for deletion, insertion, or replacement of a module
in a universal library or in a macro module; or a module name
was specified for modification of a universal module header.
Radix-50 characters consist of the letters A through Z, the
numbers 0 through 9, and the special characters period (.) and
dollar sign ($).

User Action: Reenter the command line with a valid name.

10-38

c

c

(

(~

c

LIBRARIAN UTILITY PROGRAM (LBR)

LBR -- INVALID OPERATION FOR OBJECT AND MACRO LIBRARIES

Explanation: Module
object library or
operation.

header
macro

information
library in

was supplied
an insert or

for an
replace

User Action: No action required. The command will be executed
as if the information had not been supplied.

LBR -- INVALID RAD50 CHARACTER IN "character string"

Explanation: A character supplied as part of information when
using the Insert, Replace, or Modify Header switches for a
universal library is not a Radix-50 character.

User Action: Determine which character of
switch value is not a Radix-50 character.
character in place of the invalid character.

LBR -- I/O ERROR ON INPUT FILE filename

the corresponding
Reenter a Radix-50

Explanation: A read error has occurred on an input file. One of
the following conditions may exist:

• A problem exists on the physical device (for example, not
cycled up).

• The file is corrupted or the format is wrong (record length
exceeds 132 bytes).

User Action: Determine which of
message and correct that condition.

LBR -- LIBRARY FILE SPECIFICATION MISSING

the conditions caused the
Reenter the command line.

Explanation: A command line was entered without specifying the
library file.

User Action: Reenter the command line with the library file
specified.

LBR -- MARK FOR DELETE FAILURE ON LBRWORK FILE

Explanation: When LBR begins processing commands, it
automatically creates a work file and marks it for delete. For
some reason, this marking for delete failed.

The work file constitutes a lost file because it does not appear
in any file directory.

User Action: The file may be deleted by running the file
structure verification utility (VFY) (see Chapter 9).

LBR -- MULTIPLE MODULE EXTRACTIONS NOT PERMITTED FOR UNI MODULES

Explanation: An attempt was made to extract more than one module
from a universal library. The first module specified is
extracted, but others are ignored.

User Action: Reenter the command line for each additional
extraction.

10-39

LIBRARIAN UTILITY PROGRAM (LBR)

LBR -- NO ENTRY POINT NAMED "name"

Explanation: The entry point to be deleted is not in the
specified library file.

User Action: Determine if the entry point is misspelled or if
the wrong library file is specified. Reenter the command line
with the entry point or the library file correctly specified.

LBR -- NO MODULE NAMED "module"

Explanation: The module to be deleted is not in the specified
library file.

User Action: Determine if the module name is misspelled or if
the wrong library file is specified. Reenter the command line
'with the module name correctly specified.

-LBR OPEN FAILURE ON FILE filename

Explanation:
has detected
exist:

The file system, while attempting to open a file,
an error. One of the following conditions may

• The user directory area is protected against an open.

• A problem exists on the physical device (for example, device
cycled down).

• The volume is not mounted.

• The specified file directory does not exist.

• The file does not exist as specified.

• Insufficient contiguous space to allocate the library file
(Compress and Create only).

• Insufficient dynamic memory exists in the Executive.

User Action: Determine which of the above conditions caused the
message and correct that condition., Reenter that command line.

LBR -- OPEN FAILURE ON LBR WORK FILE

Explanation: The file system, while attempting to open the LBR
work file, has detected an error. The LBR work file is created
on the volume from which LBR was installed.· One of the following
conditions may exist:

• The volume is full.

• The device is write-protected.

• A problem exists with the physical device.

• Insufficient dynamic memory exists in the Executive.

User Action: Determine which of
message and correct that condition.

10-40

the conditions caused the
Reenter the command line.

c

(

(

e

o

o

LIBRARIAN UTILITY PROGRAM (LBR)

LBR -- OUTPUT ERROR ON filename

Explanation: A write error has occurred on the output file. One
of the following conditions may exist:

• The volume is full.

• The device is write-protected.

• The hardware has failed.

User Action: If the volume is full, delete all unnecessary files
and rerun LBR. If the device is write-protected, write-enable
the device and reenter the command line. If the hardware has
failed, swap devices and reenter the command line or wait until
the device is repaired and rerun LBR.

LBR -- POSITIONING ERROR ON filename

Explanation: A positioning error has occurred on the input file.
One of the following conditions exist:

• A problem exists on the physical device (for example it is not
cycled up).

• The file is corrupted or the format is wrong.

User Action: Determine which of
message and correct that condition.

the conditionS caused the
Reenter the command line.

LBR -- RMS MODULES CANNOT BE EXTRACTED TO RECORD ORIENTED DEVICES

Explanation: An attempt was made to extract a module inserted
from a nonsequential RMS file to a record-oriented device. This
is a fatal error message.

User Action: Extract the file to a disk and then use an RMS
conversion to make an RMS sequential file.

LBR -- TOO MANY OUTPUT FILES SPECIFIED

Explanation: More than two output files were specified.
makes the following assumptions:

LBR

• The first output file specified is the output library file.

• The second output file specified is the listing file.

• The third through n files specified to the left of the equal
sign are ignored.

User Action: No action is required. LBR continues as though the
extra file(s) had not been specified.

10-41

LIBRARIAN UTILITY PROGRAM (LBR)

LBR~ -- VIRTUAL STORAGE REQUIREMENT EXCEEDS 65536 WORDS

Explanation: This error may occur if you are working with
maximum size libraries and you specify a single command line that
first logically deletes a large number of modules and entry
points, then replaces them with an equally large number of
modules and entry points that have names much different from
those being replaced. Normally, this message indicates some sort
of internal system error.

User Action: Rerun the job, but divide the
line into several smaller command lines
operations.

LBR -- WORK FILE I/O ERROR

complicated command
that do the same

Explanation: A write error has occurred on the LBR work file.
One of the following conditions may exist:

• The volume is full.

• The device is write-protected.

• The hardware has failed.

User Action: If the volume is full, delete all unnecessary files
and rerun LBR. If the device is write-protected, write-enable
the device and reenter the command line. If the hardware has
failed, swap devices and retry the command, or wait until the
device is repaired and rerun LBR.

10-42

o

Cj

c

(

c

(

CHAPTER 11

FILE DUMP UTILITY (DMP)

The File Dump Utility (DMP) enables the user to examine the contents
of a specific file or volume of files. The output may be formatted in
ASCII, octal, decimal, hexadecimal, or Radix.-50 form and dumped to any
suitable output device such as a ~ine printer, terminal, magnetic
tape, DECtape, or disk.

You can dump the header and/or virtual blocks of a file or only the
virtual records of a file. If you are dumping a volume, a range of
logical blocks may be specified (see Sections 11.1 and 11.2). DMP
normally handles blocks of up to 256(10) words in length. If the
maximum block size exceeds 256(10) words, DMP's buffer size must be
increased as follows:

>RUN $DMP /INC=n

The value of the variable n must be equal to a multiple of 8 that is
equal to or greater than the maximum length block or record minus
256(10) words.

The same restriction applies when dumping records greater than 512(10)
bytes. In this case, you must increase DMP's buffer size by altering
the DMPBLD.CMD or DMPANSBLD.CMD file as required, then rebuilding the
task. See the appropriate system generation manual and your system
manager for more specific information on altering various features of
DMP.

You can invoke DMP by using any of the methods described in Chapter 1.
After DMP is invoked, it prompts:

DMP>

DMP is now ready for user input in the form of a command line.

DMP operates in two basic modes: file mode and device mode. File
mode is used to dump virtual records or virtual blocks, and device
mode is used to dump logical blocks.

11.1 FILE MODE

In file mode, one input file is specified, and all or a specified
range of virtual blocks are dumped. You can also dump all the virtual
records of a specified file in this mode. The input device must be
either a Files-ll formatted disk or a magnetic tape. The volume must
be mounted using the MCR MOUNT Command.

11-1

FILE DUMP UTILITY (DMP)

NOTE

If the input medium is magnetic tape,
DMP must be built with ANSLIB instead of
SYSLIB.

In file mode, you can specify that data be dumped one record or one
block at a time. A virtual block or record refers to one block or
record of data in a file. Virtual blocks and records are numbered
sequentially from 1 through n, where n is the total number of blocks
or records in the file. Virtual block 0 contains the header of the
file. Use the IBL:n:m switch to dump virtual blocks and the IRC
switch to dump virtual records. The IBL and IRC switches are mutually
exclusive. (DMP switches are listed in Table 11-1.)

11.2 DEVICE MODE

In device mode, only the input device is specified, and a specified
range of logical blocks is dumped. The IBL:n:m switch is a required
parameter in this mode.

A logical block refers to a physical 512-byte block on disk or DECtape
and to physical records on magnetic tape or cassette. Logical blocks
are numbered from 0 to n-l, where n is the total number of logical
blocks on the device.

11.3 DMP COMMAND FORMAT

The command line for DMP is in the following format:

[outfile] [/sw] [/sw •••] =inspec [jsw] [/sw •••]

outfile

Isw

Specifies the output file. If the output file name and file type
are unspecified, DMP creates the file DMPFIL.DMP. If the file
type is .DMP, the file will be deleted after it is printed. TI:
and LP: (for terminal and line printer) are also acceptable
outfile specifications.

Specifies one of the switches listed in Table 11-1. Unless
otherwise indicated in a switch description, all switches can be
applied either to the input file or to the output file with equal
effect. DMP will allow multiple dumps in a single command line.
Therefore, any or all of the current format switches may be

11-2

c

(1

c

c

(

(

--- --- -------- ---- - - --- - - - ------------

FILE DUMP UTILITY (DMP)

specified. Certain switches are mutually exclusive. For
example, the IHX, ILW, and IWD switches, are mutually exclusive
hexadecimal dump switches. The first one in the following order
will be the only one executed: ILW, IWD, IHX.

inspec

Specifies the input device and file or input device only. In
file mode, the equal sign and the input file name and file type
are required because DMP does not provide a default for either of
them. However, the input file version number defaults to the
latest version and the device defaults to SY: and the current
UIC.

In device mode, the equal sign and input device are required as
is the IBL:n:m switch which specifies the range of logical blocks
to be dumped.

For a complete description of file specifications, see Chapter 1.

11.4 DMP SWITCHES

DMP switch specifications consist of a slash (I) followed by a switch
name, optionally followed by a value. The value is separated from the
switch by a colon (:). DMP functions are implemented by the switches
described in Table 11-1.

Switch

Default

lAS

IBA:n:m

Table 11-1
DMP Swi tches

Description

The default is a word mode octal dump, which
is spooled to the line printer.

Specifies that the data should be dumped one
byte at a time in ASCII mode. The control
characters (0-37) are printed as a circumflex
(~), followed by the alphabetic character
corresponding to the character code plus 100.
For example, bell (code 7) is printed as ~G
(code 107). Lowercase characters (140-177)
are printed as a percent sign (%), followed
by the corresponding uppercase character
(character code minus 40), unless the ILC
switch is specified. Note that the lAS and
IOCT switches are mutually exclusive when
dumping bytes.

Specifies a 2-word base block address (the
initial base address is 0,0), where n is the
high-order base block address (octal), and m
is the low-order base block address (octal).
The address may also be specified in decimal
by using a period after the number. All
future block numbers specified by the IBL
switch will be added to this value to obtain

(continued on next page)

11-3

Switch

/BA:n:m (Cont.)

/BL:n:m

FILE DUMP UTILITY (DMP)

Table 11-1 (Cont.)
DMP Switches

Description

an effective block number. This switch is
useful for specifying block numbers that
exceed 16 bits. For example:

DMP>/BA:l:O

specifies that all future block numbers will
be relative to 65536(10) (200000(8».

DMP>/BA:O:O

clears the base address. Once the /BA switch
is specified, it remains in effect until it
is used again to set a new base address.

When the /BA switch appears
line, no blocks are dumped.
of the command line is to
address.

in a command
The only result
set the base

Specifies the range of blocks to be dumped,
where n is the first block and m is the last
block. The values of nand m must not exceed
16 bits. In file mode only, the /BL switch
is not required. If the /BL switch is not
specified, DMP will dump all blocks of the
specified file, relative to the current base
address.

If /BL:n:m is specified in file mode, it
specifies the range of virtual blocks to be
dumped. If /BL:n:m is specified as /BL:O in
file mode, no virtual blocks are dumped.
This is useful for dumping only the header
portion of the file (see /HD). The /BL
switch and the /RC switch are mutually
exclusive.

The /BL:n:m switch is a required parameter in
device mode. When used in device mode, it
specifies the range of logical blocks to be
dumped.

Magnetic tapes and cassettes, when dumped in
device mode, are always dumped starting with
the current tape position, that is, the
values given with the /BL switch are ignored.
The switch values are used, however, to label
the pages of the dump listing and to
determine the number of blocks to dump.

When a switch value of /BL:n:m is specified,
(m-n)+1 blocks are dumped, starting at the
current tape position. The value n
represents the block number of the first

(continued on next page)

11-4

(

(

(

f

c

Switch

/BL:n:m (Cont.)

/BY

/DC

/DENS:n

/FI: file-number:
sequence-number

/HD[:F or :U]

FILE DUMP UTILITY (DMP)

Table 11-1 (Cont.)
DMP Swi tches

Description

block dumped. Successive blocks are labeled
with a block number one higher than the
preceding block number. The dump will
continue until the block labeled m is dumped.

Specifies that the data be dumped in octal
byte format.

Specifies that the data be dumped in decimal
word format.

Specifies the density of an input magnetic
tape with 800, 1600, and 6250 bpi capability,
when DMP is in device mode only. The value
for n can be 800, 1600, or 6250.

DMP does not automatically determine the
density of an input tape. If the /DENS
switch is not specified in a DMP command
line, DMP attempts to read an input tape at
the density currently set in the tape
controller. (See the RSX-IIM/M-PLUS MCR
Operations Manual and the RSX-IIM/M-pLUS
Command Language Manual for descriptions of
the MOUNT command and its /DENS switch.)

In File Mode, the file number can be used
instead of a file name as a file
specification for input.

This switch
File Mode.
causes the
specified
be dumped.

Example:

is an optional parameter used in
If specified, the /HD switch

file header as well as the
or implied portion of the file to

DMP)TI:=JMF.DAT/HD/BL:5:6

This example dumps the header of JMF.DAT in
header format and virtual blocks 5 and 6 in
octal format.

In addition, this switch has two options.
"F", the default, causes a Files-II formatted
dump of the header. "un specifies an
unformatted octal dump. An octal dump also
occurs when DMP is used on non-Files-II
headers.

If you want only the header portion of the
file to be dumped, specify:

/HD/BL: 0

(continued on next page)

11-5

Switch

/HD[:F or :U]
(Cont.)

/HF

/HX

/ID

/LB

/LC

FILE DUMP UTILITY (DMP)

Table 11-1 (Cont.)
DMP Swi tches

Description

File headers are described in the
I/O Operations Reference Manual.

IAS/RSX-11

Specifies the format
have the Files-II
blocks are output as
dump.

Example)

for data blocks
header structure.

an unformatted

DMP>HEAD.LST=[O,O]INDEXF.SYS/HF

that
Other
octal

This example generates a dump of the index
file INDEXF.SYS and formats all the headers
in the file.

Specifies that the data be dumped in
hexadecimal byte format. Note that a
hexadecimal dump reads from right to left.
(See also the /LW and fWD switches.)

Causes DMP's version to be identified. This
switch may be specified on a command line by
itself at any time.

Example:

DMP>/ID
DMP--DMP VERSION M07.1B

For DMP built with ANSLIB, the response is

DMP--DMP VERSION M07.1B (ANSI)

Requests logical block information for a
file. The starting block number and a
contiguous or noncontiguous indication for
the file are displayed.

Example:

DMP>TI:=DKO:RICKSFILE. DAT i3/LB
STARTING BLOCK NUMBER = 0,135163 C

The file RICKSFILE.DAT,
contiguous file starting
0,135163. (See /BA:n:m
description.)

version 3,
at block

for block

is a
number
number

Specifies that the data should be dumped in
lowercase characters. This switch can only
be used if the output device has lowercase
capability.

(continued on next page)

11-6

(

c

(

(

(
Switch

/LW

/MD [: n]

C~ /OCT

/RS

(/RC

/RW

FILE DUMP UTILITY (DMP)

Table 11-1 (Cont.)
DMP Swi tches

Description

Specifies that the data be
hexadecimal double-word format.

dumped in

Specifies a memory dump and allows control of
line numbers. Line numbers are normally
reset to zero whenever a block boundary is
crossed. The /MD switch allows lines to be
numbered sequentially for the full extent of
the file, that is, the line numbers are not
reset when block boundaries are crossed. The
optional value (:n) specifies the value of
the first line number. The default is O.
The /MD switch is used with the output file
specification.

Specifies that the data should be dumped in
octal format in addition to other formats
specified. If no DMP format switches are
specified, the default is octal. The /AS
switch and the /OCT switch are mutually
exclusive when dumping bytes.

Specifies that data
Radix-SO-format words.

be dumped in

Specifies that
tim-e (rather
data format is
these format
/RS, or fWD.

data be dumped a record at a
than a block at a time). The
determined by setting any of
switches: /AS, /DC, /HX, /LW,

The largest record that DMP can process is
limited by the amount of space available to
the DMP task. DMP's task image has S12(10)
bytes allocated to it initially. To increase
the amount of space available, use the MCR
INSTALL command/INC switch. For example, to
dump a file with 1024-byte records, you must
specify /INC=2S6. (at least). If the input
is a tape and the block size is greater than
S12 bytes, $FSRI must be expanded as
described in the DMPBLD.CMD or DMPANSBLD.CMD
file.

The /RC switch and the /BL switch are
mutually exclusive.

Causes DMP to issue a rewind command before
referencing a specified tape. This switch
may be specified at any time to reposition a
tape at the beginning-of-tape (BOT).

(continued on next page)

11-7

Swi tch

ISB:n
or

ISB: -n

ISF:n
or

ISF:-n

ISP

IWD

11.5 DMP EXAMPLES

FILE DUMP UTILITY (DMP)

Table 11-1 (Cont •)
DMP Swi tches

Description

Specifies the number of blocks DMP spaces
forward (n) or backward (-n) on tape. DMP
stops when it senses end-of-tape (EOT). DMP
will space only single blocks beyond EOT.

Specifies the number of end-of-file (EOF)
marks DMP spaces forward (n) or backward (-n)
on tape. DMP stops when it senses EOT or
BOT. DMP will space only single EOF marks
beyond EOT.

Causes the dump output file to be spooled to
the line printer. The ISP switch may only be
specified on the output file specification;
it is illegal on the input file
specification. Spooled files may be deleted
after printing.

Specifies that the data
hexadecimal word format.

be dumped in

Three examples of dump listings are included in this section to
illustrate how the various DMP switches can be used. DMP edits blocks
or records 16(10) bytes at a time. The dump includes the indicated
number of valid bytes in the block or record. The remaining number of
bytes are listed as null bytes (0).

11.5.1 A Multiple Format Dump

The command line shown in Example 11-1 dumps virtual blocks 5 and 6 of
DSC.MAC in hexadecimal, Radix-50, and decimal format. Each line of
the output file will appear in three different formats.

11-8

(

(

(

========-=-=-=.--=;-=-.=-=-==-=--==-=-:~---------------------------------------.-----------------------------

r

(

(.

FILE DUMP UTILITY (DMP)

Example 11-1 Dumping Virtual Blocks in Hexadecimal,
Radix-50, and Decimal Format

DMP>DOC.DMP=C301,357JDSC.MAC/HX/R5/DC/BL:5:6

The contents of DOC.DMP are:

DUMP OF DBO:C301,357JDSC.MAC;1 - FILE ID 17725,11,0
VIRTUAL BLOCK 0,000005 - SIZE 512. BYTES

4E 41 4D 4D 4F 43 20 41 20 3B 00 lE 53 45 52 49 0000 ;Hexadecimal
000000 MFY ML7 0 EFK EFQ LSK LNI LT3 ;Radix-50
O. 21065. 21317. 00030. 08251. 08257. 20291. 19789. 20033.;Decimal

53 45 53 53 45 43 4F 52 50 20 44 4E 41 20 2C 44 0010
000020 GCl JP2 J7F L22 LSZ KCK MMK ML7
16. 11332. 16672. 17486. 20512. 20306. 17731. 21331. 21317.

53 52 49 46 20 3B 00 39 00 3B 00 01 2E 54 49 20 0020

DUMP OF DBO:C301,357JDSC.MAC;1 - FILE ID 17725,11,0
VIRTUAL BLOCK 0,000006 - SIZE 512. BYTES

20 44 4E 46 55 42 24 20 51 45 20 30 52 20 46 49 0000
000000 KI3 MEX EF M E E1H MYZ LT8 EFT
O. 17993. 21024. 08240. 20805. 09248. 21826. 20038. 08260.

44 4E 45 09 00 09 50 4F 4F 4C 20 45 56 41 45 4C 0010
000020 KCT M2A EFU LST L39 I KA3 J7F
16. 17740. 22081. 08261. 20300. 20559. 00009. 17673. 17486.

54 53 24 20 54 45 4C 09 00 2B 00 50 4F 4F 4C 20 0020

11-9

FILE DUMP UTILITY (DMP)

11.5.2 A Record Dump

The command line shown in Example 11-2 dumps all of the virtual
records of YACHT. SEQ in ASCII and decimal word format.

11.5.3 A Beader Dump

The command line shown in Example 11-3 dumps only the header of
DSC.MAC.

11-10

(

c

(

(
'-

c

(

c

FILE DUMP UTILITY (DMP)

Example 11-3 Dumping the File Header of a File

DMP>DHR.DMP=[301,357JDSC.MAC/HD/BL:0

The contents of DHR.DMP are:

DUMP OF DBO:[301,357JDSC.MAC;1 - FILE ID 17725,11,0
FILE HEADER

HEADER AREA
H.IDOF
H.MPOF
H.FNUM,
H.FSEQ
H.FLEV
H. FOWN
H.FPRO
H.UCHA
H.SCHA
H.UFAT

F. RTYP
F. RATT
F.RSIZ
F. HIBK
F.EFBK
F.FFBY
(REST>

027
056

(17725,11)
401
[301,357J
[RWED,RWED,RWED,RJ
000=
000 =

002 = R.VAR
002 = FD.CR
116 = 78.
H:O L:000040 = 32.
H:O L:000040 = 32.
532 = 346.

000000 000000 000000 000000 000000 000000 000000 000000
000000

IDENTIFICATION AREA
1. FNAM,
1. FTYP,
I.FVER lISC .MACH
I.RVNO 1
I.RVDT 13-0CT-80
I. RVTI 09:52:46
i.CRDT 13-0CT-80
I. CRTI 09:52:45
I.EXDT

MAP AREA
M.ESQN 000
M.ERVN 000
M.EFNU,
M.EFSQ (0,0)
M.CTSZ 001
M.LBSZ 003
M.USE 014 = 12.
M.MAX 314 = 204.
M. RTRV
SIZE LBN
12. H:OOO U036215 = 15501.
3. H:OOO L:036235 = 15517.
1 • H:OOO L:036250 = 15528.
2. H:OOO L:036272 = 15546.
3. HlOOO U 036313 = 15563.
11. H:OOO U036411 = 15625.

CHECKSUM
H.CKSM 122620

11-11

FILE DUMP UTILITY (DMP)

11.6 DMP ERROR MESSAGES

DMP -- BAD DEVICE NAME

Explanation: An incorrect device name was entered in a file
specification.

User Action: Reenter the command line specifying the correct
device.

DMP -- BLOCK SWITCH REQUIRED IN LOGICAL BLOCK MODE

Explanation: Self-explanatory (/BL must be specified.)

User Action: Reenter the command line specifying the /BL switch.

DMP -- CANNOT FIND INPUT FILE

Explanation: The requested file cannot be located in the
specified directory.

User Action: Reenter the command line specifying the correct
file name and UFD.

DMP -- COMMAND SYNTAX ERROR

DMP

DMP

Explanation: A command line was entered in a format that does
not conform to syntax rules.

User Action: Reenter the command line specifying the correct
syntax.

-- FAILED TO ASSIGN LUN

Explanation: An illegal device was entered in a file
specification.

User Action: Reenter the command line specifying the correct
device.

-- FAILED TO READ ATTRIBUTES

Explanation: A file was spec ified for which you did not have
read access privileges.

User Action: Rerun DMP under a UIC that has read access
privileges to the file.

DMP -- ILLEGAL DENSITY VALUE

Explanation: A value other than 800, 1600, or 6250 bpi was
specified with the DMP /DENS switch.

User Action: Reenter the /DENS switch with the proper value.

DMP -- ILLEGAL SWITCH

Explanation: A switch was specified that is not a valid DMP
switch, or a legal switch was used in an invalid manner.

User Action: Reenter the command line specifying the correct
switch.

11-12

(

c

(

(

c

FILE DUMP UTILITY (DMP)

DMP -- ILLEGAL USE OF IRC SWITCH

Explanation: The IRC switch can be used only in file mode (see
Section 11. 1) •

User Action: Reenter the command line specifying a file name.

DMP -- ILLEGAL VALUE ON HD SWITCH

Explanation: An option was entered other than F or U for the IHD
switch.

User Action: Reenter the command line specifying the correct
option.

DMP -- IIO ERROR ON INPUT FILE

or

DMP -- IIO ERROR ON OUTPUT FILE

Explanation: One of the following conditions exists:

• A problem exists on the physical device (for example,
device cycled down).

• The file is corrupted or the format is incorrect.

• The output volume is full.

the

User Action: Determine which condition caused the message and
correct that condition. Reenter the command line.

DMP -- NO INPUT FILE SPECIFIED

Explanation: A command line was entered with no input file
specification.

User Action: Reenter the'command line specifying an input file.

DMP -- NO LISTS OR WILD CARDS ALLOWED

Explanation: Either a command line with more than one input or
output file name was entered, or a wildcard was entered as a file
specification.

User Action: Reenter the command line, specifying only one input
file specification and one output file specification. No
wildcard specifications are allowed.

DMP -- OPEN FAILURE ON INDIRECT FILE

Explanation:
as specified.

The requested indirect command file does not
One of the following conditions exists:

• The file is protected against access.

exist

• A problem exists on the physical device (for example, the
device cycled down).

• The volume is not mounted.

11-13

FILE DUMP UTILITY (DMP)

• The specified file directory does not exist.

• The named file does not exist in the specified directory.

User Action: Determine which condition caused the message and
correct that condition. Reenter the command line.

DMP -- OPEN FAILURE ON INPUT FILE

or

DMP -- OPEN FAILURE ON OUTPUT FILE

Explanation: One of the following condit·ions exists:

• The file is protected against access.

• A problem exists on the physical device (for example, the
device cycled down).

• The named file does not exist in the specified directory.

• The volume is not mounted.

• The specified file directory does not exist.

User Action: Determine which condition caused the message and
correct that condition. Reenter the command line.

11-14

(

c

C'

c

o

o

o

C)

THE FILE COMPARE UTILITY (CMP)

The File Compare Utility (CMP) compares two ASCII text files. The
files are compared line by line to determine whether parallel records
are identical. Using CMP, you can perform the following file-compare
functions:

• Generate a listing showing the differences between the two
files. Each difference is listed as a pair: first, the lines
from the first file, then the lines from the second file.

• Generate a listing in the form of one list, with differences
marked by change bars.

• Generate output suitable for input to the Source Language
Input Program utility (SLP). This output contains the SLP
commands and input required to make the first input file
identical to the second input file. (For more information on
SLP, see Chapter 13.)

CMP provides switches that allow you to control compare processing.
Using these switches, you can control comparison of blanks, tabs, form
feeds, and comments. You can also control line numbering and specify
the number of lines required for CMP to consider that a match has been
made between lines in the two files.

The format for specifying the CMP command line is:

[outfile[/sw •••]=] infilel,infile2

outfile

The file specification for the output file. This file can be in
one of three formats, depending on the switch you specify in the
command line. The defaults are:

SYO:
[current UIC]
FILCOM
• LST

The user's default system device
The UIC that CMP is running under
The default file name
The default file type

However, if you do not specify an output file, the output
defaults to your terminal. For example:

CMP>FILE1.MAC,FILE2.MAC

12-1

------======~----.----==--. ----:::-::-_--::---=---:-:::----::-----=::-==-=-=-------... -----=---=-=---.-----~==-=-----------.-------=~~-=-=-~--=---=--=-=---=-=-----=--=-=------- -----=~==----.-.-.~ ..

THE FILE COMPARE UTILITY (CMP)

CMP lists the differences between FILE1.MAC and FILE2.MAC on your
terminal. If you type the equal sign but give no output file
specification, only the total number of differences is output to
your terminal. For example:

CMP>=FILE1.MAC;1,FILE2.MAC;1
10 differences found

/sw •••

Switches that you apply to the output file specification. Some
of the switches can be negated and some are mutually exclusive.
Section 12.1 contains this information.

infilel

The file specification for the
infile2. The file name of
default file type is .MAC.

infile2

input file to be compared to
this file must be specified. The

The file specification for the input file to be compared to
infilel. You do not have to have a complete file specification.
The specifications for infilel are used as defaults for any
unspecified portions of infile2. For example:

CMP> DB2: [42,10]EXEC,;2

CMP interprets the second input file as DB2: [42,10]EXEC.MAC;2.

If you do not specify a file version number, the default is the most
recent version of the file.

You can invoke CMP using any of the methods for invoking a utility
described in Chapter 1.

12.1 CMP SWITCHES

This section lists the CMP switches, describes the function of each

c

c

c

one, and gives the default setting for each one. You specify switches C .. ,;
after the output file in the command line.

/BL
/-BL

ICB
I:"'CB

ICO
I-CO

Specifies that blank lines in both files be included in
compare processing. If this switch is specified in the form
I-BL, blank lines are not included in compare processing.
I-BL is the default switch.

Specifies that CMP list infile2 with change bars, in the
form of exclamation marks (I), to denote which lines do not
have a corresponding line in infilel. When a section of
lines in infilel has been deleted in infile2 (the output
listing file), the first line not deleted is marked. I-CB
is the default switch.

You can change the change' bar character from the exclamation
mark to any character you wish by means of the IVB switch,
described later.

Specifies that CMP i;tlclude comments (that is, text preceded
by a semicolon) in compare processing. ICO is the default
switch.

12-2

(

(

/DI
/-DI

/FF
/-FF

/LI :n

/LN
/-LN

/MB
/-MB

THE FILE COMPARE UTILITY (CMP)

Specifies that CMP list the differences between the two
files (rather than marking the lines in infile2). /DI is
the default switch.

/CB and /DI are mutually exclusive switches. If you specify
both, /CB overrides /DI.

Specifies that CMP include records consisting of a single
form-feed character in compare processing. /-FF is the
default switch.

Specifies that a number (n)
before CMP recognizes a match.

of lines must be identical
/LI:3 is the default switch.

When it encounters a match, CMP lists all the preceding
nonmatching lines, along with the first line of the matched
sequence of lines to help you find the location in the code
where the match occurred.

Specifies that lines in the output file be preceded by
their line number. Line numbers are incremented by one for
each record read, including blank lines. /LN is the default
switch. If you specify /SL, /LN is unnecessary.

Specifies that CMP include all blank and tab characters in a
line in compare processing. If you specify /-MB, CMP
interprets any sequence of blank and/or tab characters as a
single blank character. However, all spaces and tabs are
printed in the output listing. /MB ~s the default switch.

/SL[:au] Directs CMP to generate an output file suitable for use as
SLP command input. When you specify /SL, CMP generates the
SLP command input necessary to make infilel identical to
infile2. If aI-to 8-character alphanumeric symbol is
included after the /SL switch (:au), an audit trail is
specified for SLP input. Section 12.2.3, gives an example
of how CMP generates SLP command input. (For information on
how SLP processes source files, refer to Chapter 13.) /-SL
is the default switch.

/SP[:n]
/-SP

/TB
/-TB

/VB:nnn

Specifies that the output
printer. You can optionally
decimal) of files to be
switch. This switch applies
Spooler task (RSX-llM)
(RSX-llM/M-PLUS) installed.

file be spooled on the line
specify the number (in octal or
spooled. /-SP is the default
only if you have the Print
or the Queue Manager system

Specifies that CMP include all trailing blanks on a line
in compare processing. If you specify /-TB, CMP ignores all
blanks following the last nonblank character on a line.
When you specify I-CO and /-TB together, blanks that precede
a semicolon (;) are considered trailing blanks and are
ignored. /TB is the default switch.

Specifies an octal character code for the character you want
to use as a change bar. You use this switch with the /CB
switch. The value nnn specifies the octal character code.
For example, you can specify /VB:174 for a vertical bar (if
your printer is capable of printing the vertical bar
character). /VB:04l for an exclamation mark is the default
switch.

CMP default switch settings are listed in Table 12-1.

12-3

I-BL
I-CB
ICO
IDI
I-FF
ILI:3
ILN
1MB
I-SL

THE FILE COMPARE UTILITY (CMP)

Table 12-1
Summary of CMP Default Switch Settings

Do not compare blanks.
Do not generate change bars.
Compare comments.
List only the differences between the two files.
Do not compare form-feed characters.
Find three identical lines before a match can occur.
Generate numbered lines.
Compare all blank and tab characters.
Do not generate an output file suitable for use as

SLP command input.
I-SP
ITB
IVB:041

Do not spool the output file.
Compare all trailing blanks.
Set the exclamation mark (ASCII 041) as the change
bar character. Used with ICB.

12.2 FORMATS OF CMP OUTPUT FILES

CMP uses the two input files you specify on the command line to
create an output file. CMP compares each line in infilel to its
sequential counterpart in infile2. When there are differences
between the two files, CMP displays those differences in one of
three output formats:

• Di fferences format (defaul t) (/DI)

• Change bar format (/CB)

• SLP command input format (/SL)

This section gives an example of each of these formats. In the
examples in the subsequent sections, the following files are used as
infilel (TEST1.DAT;1) and infile2 (TEST2.DAT;1):

DBO: [7,7]TESTl.DAT;1

LINE1
LINE2
LINE3
LINE4
LINES
12345
23456
34567
LINE9
LINEIO
LINEll
EXTRA

DBO: [7,7]TEST2.DAT;1

LINEI
LINE2
LINE3
LINE4
LINES
45678
56789
67891
LINE9
LINEIO
LINEll
EXTRA
EXTRA
EXTRA
EXTRA

12-4

(

(

(

(

(-

(

THE FILE COMPARE UTILITY (CMP)

12.2.1 Differences Format

If you enter a command line and do not specify any switches, CMP lists
the differences between the two files on your terminal or in an output
file. The differences are listed in pairsi first, the lines from
infilel that do not have counterparts in infile2 are listed, then the
lines from infile2 that do not have counterparts in infilel are
listed. Each set of lines is terminated by the first line (or set of
lines) for which a match is successful.

The following example shows the format of output generated without any
switches. The output file is generated with the CMP command:

CMP>TESTDIF.DAT=TEST1.DAT,TEST2.DAT

1) DBO: [7,7]TESTl.DATil

6 12345
7 23456
8 34567
9 LINE9

2) DBO: [7,7]TEST2.DATil

6 45678
7 56789
8 67891
9 LINE9

1) DBO: [7,7]TEST1.DATil

2)

13
14
15

DBO: [7,7]TEST2.DATil
EXTRA
EXTRA
EXTRA

2 differences found

The input files are TEST1.DAT and TEST2.DAT, which are shown in
Section 12.2. There are two sets of differences separated by a long
line of asterisks. (When there are several sets of differences, CMP
separates each set from the next set by a long line of asterisks.) The
short line of asterisks separates the pair of differences that
comprise the set.

Note that because /LI:n was not
required for a match defaults to 3.

specified, the number of lines
Thus, CMP found two differences.

12.2.2 Change Bar Format

You use the /CB switch to generate a listing
that show the differences between two files.
infile2 is the listing you want generated.

containing change bars
In the CMP command line,

The following example shows the format of output with change
applied to lines from two files that do not match line for line.
output file is generated with the CMP command:

CMP>TESTDIF.DAT/CB=TEST1.DAT,TEST2.DAT

bars
The

Notice that the change bar is applied to the first line of match (line
9) •

12-5

------ - --------------- ----- --------------- ---- -- ---- --------- -------------
- - --- - - - -

THE FILE COMPARE UTILITY (CMP)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

LINEI
LINE2
LINE3
LINE4
LINES
45678
56789
67891
LINE9
LINEIO
LINE11
EXTRA
EXTRA
EXTRA
EXTRA

2 differences found

12.2.3 SLP Command Input Format

You use the /SL[:au] switch to generate a file containing records to
be used as SLP command input. /SL directs CMP to generate the SLP
edit command lines qnd input lines required to make infilel identical
to infile2.

However, you must enter the command line with SLP command input. CMP
does not generate this command line. For a complete description of
the SLP utility, refer to Chapter 13 in this manual.

The following example shows the format of output generated using the
/SL switch. The output file is generated with the CMP command:

CMP)TESTDIF.DAT/SL:BLSOOl=TESTl.DAT,TEST2.DAT

-6,8,/;BLSOOI/
45678
56789
67891
-12, ,/;BLSOOI/
EXTRA
EXTRA
EXTRA
/

12.3 CMP MESSAGES

This section lists the CMP messages, gives a brief description of the
condition that causes each message, and suggests a response to the
condition.

CMP -- n differences found

Explanation: CMP found n differences between the two files.

User Action: This is an informational message.

12-6

(

c

(I

c-

c

CMP

THE FILE COMPARE UTILITY (CMP)

Command syntax error

Explanation: CMP found an error in the command line syntax.

User Action: Check the syntax of the command line specification
and reenter the command line using the correct syntax.

CMP -- Error reading input file

Explanation: An I/O error occurred while CMP was reading an
input file.

User Action: Reenter the command line.

CMP -- Error writing output file

Explanation: An I/O error occurred while CMP was writing the
output file.

User Action: The output device may be full or bad. Check this,
then reenter the command line.

CMP -- Illegal /LI value

Explanation: You specified a negative value for the number of
lines required for a match.

User Action: Reenter the command line with a legal value
specified.

CMP -- Illegal switch or switch value

Explanation: An illegql switch or switch value was entered in
the command line.

User Action: Reenter the command line using a legal switch or
s'witch value.

CMP -- Open failure on input file #1

Explanation: CMP could not open the first input file.

User Action:
and reenter
specification.

Check the file specification for first input
the command line using the correct

CMP -- Open failure on input file #2

Explanation: CMP could not open the second input file.

User Action:
and reenter
specification.

Check the file specification for second input
the command line using the correct

12-7

file
file

file
file

THE FILE COMPARE UTILITY (CMP)

CMP Open failure on output file

Explanation: CMP could not open the specified output file.

User Action:
and reenter
specification.

Check the file specification for
the command line using

CMP -- Too many differences for available core

the output
the correct

file
file

Explanation: The files were too dissimilar for CMP to fit all
the differences in memory.

User Action: Rerun CMP using the /INC=n switch, or remove and
reinstall CMP with a larger increment. (For information on using
/INC=n, see the description of the INSTALL command in the
RSX-IIM/M-PLUS MCR Operations Manual.)

12-8

c

(

o

o

o

CHAPTER 13

SOURCE LANGUAGE INPUT PROGRAM (SLP)

The Source Language Input Program (SLP) is a utility used to maintain
and audit source files. The optional audit trail in the output files
allows you to keep a record of maintenance changes.

SLP is invoked by edit command statements and switches.
command statements allow you to:

SLP edit

• Update (delete, replace, add) lines in an existing file

• Create source files

• Run indirect files containing SLP edit commands

Input to SLP is a file that you want updated and command input
consisting of text lines and edit command lines that specify the
update operations to be performed. To locate lines to be changed, SLP
uses line numbers or character strings that you specify. Command
input can come directly from your terminal or from an indirect command
file containing commands and text lines to be inserted into the file.
SLP accepts data from any Files-II volume.

Output from SLP is a listing file and the updated input file. SLP
provides an optional audit trail that helps you keep track of the
update status of each line in the file. If an audit trail is not
suppressed, it is shown in the listing file and permanently applied to
the output file.

You can control SLP processing with SLP control switches.
switches allow you to:

• Suppress audit trails

These

• Specify the length and beginning position of the audit trails

• Calculate the checksum value for the edit commands

• Generate a double-spaced listing

• Spool files to a Files-II volume

You can invoke SLP by all but one of the methods for invoking a
utility described in Chapter 1. You cannot include a command line on
the same line on which you invoke SLP. That is, you cannot type:

>SLP filespec

Also, you should not specify TI: as your output file, because when
you finish editing, you will not have a copy of the output file and
the input file will be the same as before you began editing.

13-1

SOURCE LANGUAGE INPUT PROGRAM (SLP)

13.1 SLP INPUT AND OUTPUT FILES

SLP requires two types of input, an input file and command input. The
input file is the source file you want to update using SLP. Command
input consists of SLP edit commands and, optionally, new lines of text
to be placed in the file.

SLP output consists of,an output file and a listing file. \ The output
file is the updated input file. The listing file is a copy of the
output file with line numbers added. Both show the changes SLP made
to the file.

13.1.1 The Input File

The input file is the file to be updated by SLP. It can contain as
many lines of text as are required. When SLP processes the input
file, it makes the changes specified by SLP edit commands. If an
audit trail is generated, these changes are noted in the output files.

13.1.2 Command Input

SLP uses command input to update files. Command input can be entered
interactively after you invoke the SLP utility or indirectly by means
of indirect,command files.

You enter command input to SLP in two modes: command mode and edit
mode. After it is invoked, SLP is in command mode, where the first
line entered must be the command line defining the files to be
processed. When SLP accepts this line, it initializes the files you
want processed. Once these files are initialized, SLP enters edit
mode, where it interprets the lines you enter as SLP edit commands or
new input lines.

You terminate command input with a single slash as the first character
of an edit command line.

The following example shows the general form of command input:

MYFILE. MAC; 2/CS/AU: 55: 10 ,MYFILE. LST; l/-SP=MYFILE.MAC; 1
-3,,/;BJ007/
CMP (Rl)+,B
-4,4
DEC R2
/

NOTE

Numeric values given for switches
default to octal. Decimal values must
be followed by a period (.). The
default position for the audit trail is
80(10) and its default length is 8(10);
no more than 14(10) characters may be
specified. (See Section 13.4.2 for more
information about the audit trail.)

13-2

c

c

c

(.

(

(

SOURCE LANGUAGE INPUT PROGRAM (SLP)

The first line is the command line, where you define the output file,
the listing file, and the input file. The next four lines comprise
the SLP edit commands and input lines.

Note that the input and output files in the example have the same file
name and file type; only the versions are different. To ensure that
the correct files are processed, specify the version numbers
explicitly when you enter the SLP command line. Wildcards cannot be
used in any of the file specifications.

You can also calculate the checksum
Specify the checksum switch with
specification in the format:

/CS[:n]

value
either

for the edit commands.
the input or output file

The checksum value can be calculated for all SLP edit command lines.
The checksum value cannot be cialculated for the following:

• The command line specifying the input and output files

• Comments in the edit command lines

• Any spaces and/or tabs
checksum calculation
calculation

between characters included in the
and those characters excluded from the

• The second comma and anything following it in an edit command
line (that is, audit trail and/or comment)

• Comment delimiter (specified by the first character of the
last audit trail string before the current delimiter) and any
characters following it in an input line, whether or not it is
being used in the line as a delimiter

The value is then reported in a message on your terminal. If you
specify a value for the checksum and it is not the same as the
calculated checksum, you will get a diagnostic error message. (The
messages are described in Section 13.5.2)

13.1.3 The SLP Listing File

The SLP listing file shows the updates made to the source file. Each
line in the listing file is numbered. Updates are marked by means of
the audit trail if one has been generated. The examples given
throughout this chapter contain samples of listing files.

13.1.4 The SLP Output File

The SLP output file is the updated input file. All of the updates
specified by command input are inserted in this file. The audit
trail, if specified, is applied to lines changed by the update. The
audit trail is included in the output file. The numbers generated by
SLP for the listing file do not appear in the output file.

13-3

SOURCE LANGUAGE INPUT PROGRAM (SLP)

13.2 HOW SLP PROCESSES FILES

Figure 13-1 shows how SLP processes files when it receives the
following command line and edit commands:

MYFILE.MACi2/AU: 55: 10,MYFILE.LST/-SP=MYFILE.MACil
-3
CMP (Rl)+,B
-4,4
DEC (R2)
/

Input File

MYFILE.MAC;l

Command Input

From Primary From Indirect File

Input Device or INFILE.SLP;l

U
SLP

Processor

Listing File

MYFI LE.LST;l

Output File

MYFILE.MAC;2

ZK·198·81

Figure 13-1 Input Files and Output Files Used During SLP Processing

This is the input file (MYFILE.MACil) before SLP processes the files:

MOV :fj:BUF 1, RO
MOV :fj:S IZ, Rl
CALL READ
TST R2
BEQ END
CLR Rl
MOV R2, NUMC
CMPB (RO) +,A
BNE 20$
INC Rl

13-4

c

(

(

(

(

(

SOURCE LANGUAGE INPUT PROGRAM (SLP)

The following is the listing file (MYFILE.LST;l) resulting from SLP
processing of these files:

1. MOV #BUFl,RO
2. MOV #S I2, Rl
3. CALL READ
4. CMP (Rl) +, B ;**NEW**
5. DEC (R2) ; **NEW**
6. BEQ END ;**-1
7. CLR Rl
8. MOV R2, NUMC
9. CMPB (RO)+,A

10. BNE 20$
II. INC Rl

The audit trail shows the new lines (;**NEW**) and indicates where
lines have been removed (;**-1). (The audit trails ;**NEW** and ;**-n
are automatically generated by SLP if you have not suppressed audit
trail generation or if you have not specified another audit trail
string.) In this case, a line has been added after line 3, and line 4
has been deleted and a new line added in its place.

As shown in Figure 13-1, SLP processes an input file using command
input. When processing begins, SLP writes each line from the input
file into the output file until it reaches a line to be modified, 3S

requested in the command input. When SLP reaches a line to be
modified, it modifies the line, notes the change by means of the audit
trail, and then continues writing lines to the output file until
another command is encountered or until end-of-file is reached.

13.3 USING SLP

This section describes how to:

• Specify the SLP edit commands

• Update files using the SLP edit commands

• Enter SLP commands interactively and by means of indirect
command files

• Create a source file using SLP

13.3.1 Specifying SLP Edit Commands

The SLP edit commands allow you to update source files by adding,
deleting, and replacing lines in a file. SLP allows you to enter
lines sequentially. Once past a given line in the file, you cannot
return the line pointer to that line. To return the line pointer to
that line, you must begin another SLP editing session. You enter SLP
edit commands after invoking SLP and specifying an edit command line.

The general format of the SLP edit command line is as follows:

- [locatorl] [,locator2] [,laud i ttrail/] [; comment]
inputline

-----------==== ---~====------=----==-=--------------- ---

SOURCE LANGUAGE INPUT PROGRAM (SLP)

- (dash)

Identifies a SLP edit command line.

locatorl

A line locator that causes SLP to move the current line pointer
to a specified line. If you specify only locatorl, the current
line pointer is moved to that line and SLP reads the next line in
the command input file. This field can be specified using any of
the locator forms described later in this section.

locator2

A line locator that defines a range of lines (that is, the range
beginning with locatorl and ending with locator2, inclusive) to
be deleted or replaced. This field can be specified using any of
the locator forms described later in this section.

/audi ttrail/

A character string used to keep track of the update status of
each line in the file. The string must be enclosed within
slashes (/). It consists of a comment delimiter as the first
character and then a text string. The semicolon (;) is the
default delimiter for audit trails automatically generated by SLP
(;**NEW** and ;**-n). The comment delimiter specified in
audittrail (usually a semicolon) is the new delimiter for all
subsequent audit trails until redefined by a later audittrail.

inputline

A line of new text to be inserted into the file immediately
following the current line. You can enter as many input lines as
required.

comment

A line of text (delimited by a semicolon) at the end of the SLP
edit command line that appears only in the command input file.

All fields in the SLP edit command line are positional and commas must
be specified.

The locator fields can take one of the following forms:

-/string/ [+n]
-/string ••• string/[+n]
-number [+n]
-. [+n]

string

A string of ASCII characters. SLP locates the line where the
string exists and moves the current line pointer to that line.
If the locator is specified in the form /string ••• string/, SLP
locates the line where the two character strings delimit a larger
character string abbreviated by an ellipsis (•••).

number

A decimal line number where the current line pointer is - to be
moved. The largest line number that can be specified is 9999.

13-6

c

~-

c

c

l

===========-=-=-=-====~--=-~-=-====~-""-=--~-~-~--=~--~- ----------------~--~-----------------------

L-

c

c

SOURCE LANGUAGE INPUT PROGRAM (SLP)

• (period)

n

The current line.

A decimal value used as an offset from the line specified by the
locator. You cannot use +n by itself. It must be specified with
a number or string locator or a period. SLP moves the current
line pointer n lines beyond the line specified in the locator
field.

Al though the values for number and n are taken as decimal, remember
that all other SLP values are octal by default.

All forms of the line locator can be specified interchangeably in the
SLP edit command lines.

13.3.2 Entering SLP Edit Commands

Once you have invoked SLP, you can enter SLP edit commands
interactively or by specifying indirect command files. In both cases,
the first command you must enter is the command line defining the
files to be processed during this SLP session. This section gives
examples of how to use both methods of entering SLP commands.

The following file (BASE.MAC;l) is used as the input file for the
examples in this section:

MOV
CLR
CLR
CLR
MOV
MOV
MOV
CLR
DEC
BNE

:fI:$SWTCH, R3
$ERFLG
$CRCVL
$CSSV
SPSAV, SP
:fI:$CFNMB,RO
:fI:<$HDSIZ-$CFNMB>/2+1,Rl
(RO)+
Rl
5$

13.3.2.1 Entering SLP Commands Interactively - To alter the example
file interactively, first invoke SLP by using any method described in
Chapter 1 (except >SLP filespec).

SLP responds to this command with the prompt:

SLP> .

Once you have entered the SLP command mode, SLP does not display
prompts. The first line you enter must always be the command line
defining the files you want processed during this session:

BASE.MAC;2/AU:48./TR,BASE.LST=BASE.MAC;1

13-7

SOURCE LANGUAGE INPUT PROGRAM (SLP)

Then you enter the edit commands and input lines:

-3
TST Rl
-4,4
BEQ 10$
-6, ,I;JMOIOI
CLR R2
I

In this example, the edit commands instruct SLP to do the following:
-3 inserts a new line after line 3; -4,4 deletes line 4 and replaces
it with a new line; -6, ,/;JMOIOI inserts a line after line 6 with a
new audit trail value.

When you have entered all the corrections, enter the slash (I) to
terminate the edit session. SLP processes the files and returns
control to you with the prompt:

SLP>

This returns SLP to command mode. You can then enter another input
file and begin another editing session.

The listing file (BASE.LST;l) resulting from SLP processing appears as
follows:

I. MOV #$SWTCH, R3
2. CLR $ERFLG
3. CLR $CRCVL
4. TST Rl ; **NEW**
5. BEQ 10$; **NEW**
6. MOV SPSAV,SP ;**-1
7. MOV #$CFNMB,RO
8? CLR R2 ;JMOIO
9. MOV #<$HDSIZ-$CFNMB>/2+l,Rl

10. CLR (RO)+
II. DEC Rl
12. BNE 5$

The ITR switch (/TR in the command line) records the truncation of
lines by the audit trail. In the listing file, a question mark (?)
replaces the period (.) after the line number for the lines that were
truncated. It is possible that audit-trail strings in the input file
will be truncated by the new audit-trail string, although the commands
or text strings will not be truncated.

13.3.2.2 Entering SLP Commands Using Indirect Command Files - To
alter the example file by using the SLP edit commands in the indirect
command file, BASE.SLP, you invoke SLP and SLP responds with the
prompt:

SLP>

You then enter the file specification for the indirect command file
containing the command line, the SLP edit commands, and the input
lines:

@BASE.SLP

13-8

(

c

(

(

e

(

(

(

SOURCE LANGUAGE INPUT PROGRAM (SLP)

SLP processes the files just as if you entered the commands and input
lines interactively, returning control to you with the prompt:

SLP>

You can also specify SLP @BASE.SLP.

The output listing resulting from indirect command file processing is
exactly like the output listing resulting from the same changes made
interactively.

Indirect command files can be nested to a maximum level of three.
This permits indirect command files to reference a text file.

13.3.2.3 Using SLP Operators - In addition, you can enter special
characters called operators, which perform specific functions. Table
13-1 lists the operators and the function each performs. Enter
operators, in edit mode, as the first character of an input line.

Operator

-

\

%

@

I

<

Table 13-1
SLP Operators

Function

Identifies the first character of a SLP edit command
line.

Suppresses audit-trail processing.

Reenables audit-trail processing.

Invokes an indirect command file for SLP processing.

Terminates the SLP edit session, and then returns to
SLP command mode.

Enables you to enter characters in the input file
that SLP otherwise would interpret as operators. For
example, <I hides the slash character from SLP,
thereby enabling you to enter the slash into the
output file without terminating the SLP editing
session. This character can be used with all SLP
operators.

13.3.3 Updating Source Files With SLP

This section describes the procedure for generating a numbered listing
for use in editing source files by line numbe~. The section also
describes how to use SLP to add, delete, and replace lines in a file.

13.3.3.1 Generating a Numbered Listing - SLP processes input by
number. However, line numbers appear only in the listing file;
are not written to the output file.

13-9

line
they

SOURCE LANGUAGE INPUT PROGRAM (SLP)

To use SLP effectively, you should use a numbered listing when you
prepare command input. To generate a numbered listing, first invoke
SLP, then enter the command line in the format:

,1 istfile=infile
/

In this format, 1istfi1e is the name you assign to the listing file
SLP will produce and infi1e is the name of the input file whose lines
are to be numbered. The slash (/) terminates edit mode. For example,
suppose the input file is:

MOV
BIC
ADD
MOVB
ASR
ASR
ASR
DEC
BNE
MOV

R1, - (SP)
U 77770,@SP
#60, @SP
(SP)+,-(RO)
R1
R1
R1
R2
30$
#MSG, RO

SLP processes each line
file;l):

to

1. MOV R1, - (SP)
2. BIC U 77770,@SP
3. ADD #60,@SP
4. MOVB (SP)+,-(RO)
5. ASR R1
6. ASR R1
7. ASR R1
8. DEC R2
9. BNE 30$

10. MOV :fI:MSG,RO

generate a numbered list file (list

13.3.3.2 Adding Lines to a File - The three SLP edit command formats
for adding lines to a file are:

c

-locator1 (
input1ine

or

-locator1"
input1ine

or

locator1,,/audittrai1/
input1ine

(

13-10

(

e-

(

(

SOURCE LANGUAGE INPUT PROGRAM (SLP)

The following example shows how to add lines to a file.
input consists of the following lines:

The command

MYFILE.MACi2/AU:48.:10./TR,MYFILE.LST/-SP=MYFILE.MACil
-3
CMP (Rl)+,B
-4,4
DEC R2
-6" ,/iJMOIO/
INC R3
-9, ,/iBJ008/
BEQ· 10$
/

The next example uses text rather than line numbers to indicate where
new lines should be added or deleted:

MYFILE.MACi2/AU:50,MYFILE.LST=MYFILE. MAC i l
-/BEQ/
CALL WRITE
/

In this example, the edit command /BEQ/ instructs SLP to insert a line
after the line with the first occurrence of BEQ.

SLP processing generates the following listing file (MYFILE.LSTi l):

1. MOV
2. MOV
3. CALL
4. TST
5. BEQ
6. CALL
7. CLR
8. MOV
9. CMPB

10. BNE
11. INC

#BUFl,RO
#SIZ,Rl
READ
R2
END
WRITE
Rl
R2,NUMC
(RO)+,A
20$
Rl

i**NEW**

SLP has numbered the lines and applied an audit trail to the line
5, where SLP found the first occurrence of the string following line

BEQ.

The next example uses the same input file and the following new
command lines:

MYFILE.MACi2/AU:50,MYFILE.LST=MYFILE.MACil
-/#SIZ/+2
CMP (Rl)+,B
/

SLP processing generates the following listing file (MYFILEil):

1. MOV #BUF 1, RO
2. MOV #SIZ,Rl
3. CALL READ
4. TST R2
5. CMP (Rl)+,B i **NEW**
6. BEQ END
7. CLR Rl
8. MOV R2, NUMC
9. CMPB (RO)+,A

10. BNE 20$
11. INC Rl

13-11

SOURCE LANGUAGE INPUT PROGRAM (SLP)

Again, SLP has numbered the lines and this time the new input line is
inserted so that it is two lines beyond the line containing the first
occurrence of the string /#SIZ/.

13.3.3.3 Deleting Lines fro~ a File - The SLP edit command format for
deleting lines from a file is:

-[locatorl], [locator2], [/audittrail/] [; comment]

In this format, locatorl and 10cator2 can be any of the forms of the
locator fields described in Section 13.3.1; locatorl specifies the
line where SLP is to begin deleting lines; 10cator2 specifies the
last line to be deleted. SLP deletes all lines from locatorl through
10cator2, inclusive.

The following example shows how to delete lines from a file. The
input file consists of the following lines:

MOV
MOV
CALL
TST
BEQ
CLR
MOV
CMPB
BNE
INC

#BUFl,RO
#S IZ, Rl
READ
R2
END
Rl
R2, NUMC
(RO)+,A
20$
Rl

The command input consists of the following commands and text lines:

MYFILE.MAC;2/AU:50,MYFILE.LST=MYFILE.MAC;1
-/MOV ••• Rl/,/NUMC/
/ .

SLP processing generates the following listing file (MYFILE;I):

1. MOV
2. CMPB
3. BNE
4. INC

#BUF 1, RO
(RO)+,A
20$
Rl ;**-6

In this example, the ellipsis (•••) abbreviates the larger string MOV
#SIZ,Rl. Assuming the two strings bracket a larger string, SLP
searches for the first occurrence of the string MOV and then the first
occurrence on the same line of the string Rl, in this case the string
MOV #SIZ,Rl. SLP begins deleting lines at this line and continues
deleting lines until it deletes the last line of the given range,
specified here by the string NUMC. SLP applies the aUdit-trail count
of the lines it deleted to the next line from the input file.

Using the same input file as used in the previous example, the
following example shows how to delete a single line using the period
locator. The command input for this example is:

MYFILE.MAC;2/AU:50,MYFILE.LST=MYFILE.MAC;1
-/MOV #S IZ, Rl/,.
/

13-12

(

c--

(

(

(

(

(

SOURCE LANGUAGE INPUT PROGRAM (SLP)

SLP processing generates the following listing fil~ (MYFILE;l):

1. MOV iBUF1,RO
2. CALL READ ;**-1
3. TST R2
4. BEQ END
5. CLR Rl
6. MOV R2, NUMC
7. CMPB (RO)+,A
8. BNE 20$
9. INC Rl

SLP moves the current line pointer to the line containing the string
MOV iSIZ,Rl and then finds the period as the second locator field.
Since the second locator field is specified as the current line, SLP
deletes the current line.

13.3.3.4 Replacing Lines in a File - A replacement is the deletion of
old text followed by the insertion of new text. The number of lines
deleted need not match the number of lines added. To replace lines in
a file, use the same SLP edit command format as used in the delete
command. The first line locator field specifies the first line to be
deleted. The second line locator field defines the last line in the
range to be deleted and where the new text is to be inserted. For
example:

-4, • +4

This command instructsSLP to move the line pointer to line 4, and
replace line 4 and the next four lines with new input lines.

The following example shows how to delete lines from a file and
replace them with new lines. The input file consists of the following
lines:

The

MOV iBUF1,RO
MOV is IZ, Rl
CALL READ
TST R2
BEQ END
CLR Rl
MOV R2, NUMC

command input is:

MYFILE.MAC;2/AU:50,MYFILE.LST=MYFILE.MAC;1
-2, .+1
CMP (R1)+,B
INC R2
/

In this example, the edit command, -2,.+1, instructs SLP to delete
lines 2 and 3 and insert two new lines.

SLP processing generates the following listing file (LISTING;l):

1. MOV
2. CMP
3. INC
4. TST
5. BEQ
6. CLR
7. MOV

iBUF1,RO
(R1)+,B

R2
R2
END
R1
R2, NUMC

13-13

;**NEW**
; **NEW**
;**-2

SOURCE LANGUAGE INPUT PROGRAM (SLP)

13.3.4 Creating Source Files Using SLP

Using SLP to create source files is possible, but not recommended.
SLP does not have an intraline editing mode and you cannot return to a
line once you have passed it. An interactive editor, such as EDI or
EDT, is better for creating source files.

To create source files using SLP, invoke SLP and enter the command
line in the format:

outfile/-AU [jsw] [,1 istfile] [/sw] = [primary input device: [jsw]]

outfile

I-AU

The file specification for the output file. The default device
is SYO:.

Specifies that an audit trail is not to be generated. Otherwise,
you will get the ;**NEW** audit trail on every line of the output
files.

listfile

The file specification for the listing file (optional). The
default device is implied by the output file specification.

primary input device:

Isw

Specifies that input for the file being created is coming from
this device, for example, a terminal. The default device is your
primary input device.

Specifies any optional SLPswitches.

The following file specification creates a new file called MYFILE.MAC
from the terminal and puts it on SYO:.

MYFILE.MAC/-AU=TI:

Once you have entered the file specification, SLP accepts each line as
a variable-length record of up to 132(10) characters. Trailing blanks
and tabs on input lines are deleted. SLP expects input to the file to
come from the primary input device. End the SLP session with a slash
(I) and then a CTRL/Z.

13.4 CONTROLLING SLP

The SLP switches allow you to calculate the checksum value for the
edit commands and to control the generation and format of the listing
file and the output file.

13.4.1 SLP Switches

SLP output consists of two files -- a listing file and the output
file, which is the modified version of the input file. You can use
the SLP switches to control the audit trail and print options
associated wi th the two files.

13-14

(

c

(

(

(

(---

(

(

SOURCE LANGUAGE INPUT PROGRAM (SLP)

The effects of SLP
input or output
specify only with
switches and gives

switches are the same whether you apply them to
files (except for the /SP switch, which you can
the listing file). Table 13-2 lists the SLP
a brief description of the functions each performs.

Switch

/AU
/-.AU

/BF
/-BF

/CM [: n]

/CS[:n]

/DB
/-DB

/SP
/-SP

/TR

Table 13-2
SLP Swi tches

Function

Allows you to generate an audit trail or suppress
audit-trail generation and specify the beginning
field and length of the audit trail. /AU is the
default value. See the following sections for more
information about the /AU switch.

Positions the audit trail by inserting spaces instead
of tabs at the end of text information. /BF is the
default value.

Deletes audit trails and any trailing spaces or tabs,
and truncates the text at a specified horizontal
position. The value given for the beginning position
of the audit trail is the default value for this
switch. See Section 13.4.6 for more information
about the /CM switch.

Calculates the checksum value for the edit commands.
If you do not specify n, SLP reports the value in a
message on your terminal. If you do specify nand
the checksum value that SLP calculates is not the
same as the one you specified, SLP displays a
diagnostic error message. The procedure SLP uses to
calculate the checksum value for the edit commands is
described in Section 13.1.2.

Generates the listing file in double-space format.
/-DB is the default value.

Spools the listing file to the printer. /SP is the
default value. This switch applies only if you have
the print spooler task (RSX-llM) or the queue
management system (RSX-llM/M-PLUS) on your system.

Reports truncation of lines by the audit trail. If
line truncation occurs, you will get a diagnostic
error message. There is no default value for this
switch.

In the listing file, a question mark (?) replaces the
period (.) in the line number of the lines that were
truncated.

(continued on next page)

13-15

Swi tch

ISQ

IRS

INS

SOURCE LANGUAGE INPUT PROGRAM (SLP)

Table 13-2 (Cont.)
SLP Switches

Function

Sequences the lines in the output file so that the
numbers reflect the line numbers of the original
input file. New lines added to the file have the
same number as the preceding line. This allows the
MACRO Relocatable Assembler to output listing files
that contain the original line numbers, thus easing
the process of updating correction files.

If you specify a listing file, SLP preserves the line
numbers of the input file but does not display
numbers for the new lines that have been inserted.

Resequences the lines in the output file so that the
line numbers are incremented for each line written to
the output file. The IRS switch overrides the ISQ
switch.

Does not sequence the lines in the output file. New
lines are indicated by the audit trail (if
specified). The INS switch is the default condition
and overrides the ISQ and JRS switches.

13.4.2 Controlling the Audit Trail

The IAU switch allows you to generate, suppress, and set the length
and contents of the audit trail. To suppress generation of the audit
trail, specify the I-AU switch in either the input or output file
specification.

For example, either of the following command lines generates an output
file with no audit trail:

DKl:MYFILE.MAC;3/-AU,LP.LST:=MYFILE.MAC;2

DK1:MYFILE.MAC;3,LP.LST:=MYFILE.MAC;2/-AU

LP. LST will be spooled automatically.

By default, SLP automatically generates an audit trail; that is,
need not explicitly specify the IAU switch in your command
(unless you want to specify the beg inning posi tion and length of
audit trail).

13-16

you
line
the

(

c

(

c

SOURCE LANGUAGE INPUT PROGRAM (SLP)

13.4.3 Setting the Position and Length of the Audit Trail

You can set the beginning position of the audit trail and the length
of the audit trail using the /AU switch in the format:

/AU:position:length

position

A number, less than or equal to 132(10), designating the
beginning character position of the audit trail on the line. SLP
rounds this value to the next highest tab stop (a multiple of 8).
The default value for position is 80(10).

NO'fE

Numeric values given for switches default to octal.
De'cimal values must be followed by a period (.). The
default position for the audit trail is 80(10) and its
default length is 8(10); no more than 14(10) characters
may be specified. (See Section 13.4.2 for more
information about the audit trail.)

length

The length of the audit trail.
8 (10) characters; no more
specified.

The default value for length is
than 14(10) characters may be

The following example shows how to specify the beginning position and
length of the audit trail. The input file for this example is:

MOV
MOV
CALL
TST
BEQ

:f/:BUF1, RO
:f/:S IZ, Rl
READ
R2
END

The command input is:

MYFILE.MAC;2/AU:30.:10./TR,MYFILE.LST/-SP=MYFILE.MAC;1
-2,.+I,/;CHANGEOOI/
CMP (Rl)+,B
DEC R2
/

The listing file MYFILE. LST; 1 resulting from SLP processing

1. MOV :f/:BUFl,RO
2. CMP (Rl)+,B iCHANGEOOl
3. DEC R2 ;CHANGEOOl
4. TST R2 ;**-2
5. BEQ END

13.4.4 Changing the Value of the Audit Trail

To change the value of the audit trail, specify:

-[10catorl],[locator2],/;new value/

13-17

is:

SOURCE LANGUAGE INPUT PROGRAM (SLP)

The following example shows how to change the audit trail values. The
input file consists of the following lines:

Mav
MaV
CALL
TST
BEQ
CLR
MaV
CMPB
BNE
INC

#BUF 1, RO
#SIZ, Rl
READ
R2
END
Rl
R2, NUMC
(RO)+,A
20$
Rl

The command input consists of the following commands and text lines:

MYFILE.MACi2/AU:4S. :lO./TR,MYFILE.LST/-SP=MYFILE.MACil
-3
CMP (Rl)+,B
-4,4
DEC R2
-6, ,/iJM010/
INC R3
-9, ,/iBJOOS/
BEQ 10$
/

In this example, the edit commands instruct SLP to insert a line after
line 3, to delete and replace line 4, and to insert new lines after
lines 6 and 9 with new audit trail values.

The listing file (MYFILE. LST) resulting from SLP processing appears as
follows:

1. MaV #BUF 1, RO
2. Mav #SIZ,Rl
3. CALL READ
4. CMP (Rl)+,B i **NEW**
5. DEC R2 i **NEW**
6. BEQ END i **-1
7. CLR Rl
S. INC R3 iJMOlO
9. Mav R2,NUMC

10. CMPB (RO)+,A
11. BNE 20$
12. BEQ 10$ iBJOOS
13. INC Rl

13.4.5 Temporarily Suppressing the Audit Trail

You can temporarily suppress the generation of the audit trail by
using the backslash (\) operator. You can then reenable audit-trail
processing with the percent sign (%) operator. (You cannot enable
audit trail processing with this operator if you have specified the
/-AU switch in the SLP command line.)

13-1S

(

c

C~

(

(

(

(

c

SOURCE LANGUAGE INPUT PROGRAM (SLP)

Both operators are entered in the command input. The backslash (\) is
specified in column 1 of the line that precedes those commands and/or
input files for which you do not want audit-trail processing. The
percent sign (%) is specified in column 1 of the line that precedes
the lines for which you do want processing. For example:

BAK.MAC;26/AU/-BF=BAK.MAC;25
\
-2,2

.IDENT /05.03/
-23,23
; VERSION 05.03
-37, ,

J. MATTHEWS 11-NOV-80

JMOll CORRECT OUT-OF-BOUNDS CONDITION FOR INPUT-BUFFER
SIZE

%
-106,106,/;JMOll/

CMP #132. , R3
BLT 30$

/

IS INPUT-BUFFER SIZE IN RANGE?
IF LT, NO

The lines between the backslash (\) and the percent sign (%) are not
affected by audit-trail processing. The lines following the percent
sign (%) are affected.

13.4.6 Deleting the Audit Trail

The /CM switch allows you to delete audit trails and trailing spaces
and tabs from a file. The /CM switch applied to the output or input
file specification accepts a numeric argument that specifies the
beginning position of an audit trail or other text string to be
deleted. The default for this argument is the position argument given
for the /AU switch (or its default, decimal 80). This value is
rounded to the next highest tab stop before use.

When processing an input line, SLP first truncates the text to the
next highest tab stop after the position specified, and then deletes
any trailing spaces or tabs. The remaining text is copied to the
output file.

The /CM switch is specified in the form:

n

/CM: [n]

A number designating the beginning character position of the
audit trail (or other text) to be deleted.

For example:

S LP>S LPR 11. MAC; 12/CM :.119. =S LPR 11. MAC; 11
/

In this case, the input lines are truncated to a length of 120(10)
characters. The specified length is rounded up to the next highest

13-19

SOURCE LANGUAGE INPUT PROGRAM (SLP)

tab stop and the aud~t trail begins at column 121(10). Trailing
spaces and tabs are deleted before each line is copied to the output
file.

In the following example, SLP truncates input lines to the default
position of the audit trail, column 80(10).

SLP)SLPRll.MACi 12=SLPRll.MAC;11/CM
/

13.5 SLP MESSAGES

SLP messages are divided into two groups: information and error. The
messages and suggested responses are given in the following sections.
Section 13.5.1 describes the information message and Section 13.5.2
describes the error messages.

13.5.1 SLP Information Message

SLP COMMAND FILE CHECKSUM IS ######

Explanation: By specifying the /CS[:n] switch in the Gommand
line, you requested SLP to calculate the checksum value tor the
edit commands.

User Action: This message is for your information only. No
action is required.

13.5.2 SLP Error Messages

This section lists the SLP error messages. Following each message is
an explanation of the error and recommended user action to correct the
error.

SLP error messages are issued in two formats:

• SLP followed by a dash, the type of error message, and the
error message. If applicable, the command line or command
line segment that caused the message is printed on the next
line. For example:

SLP -- *FATAL*-ILLEGAL SWITCH
SHIRLEY. MAC i2/CF

• SLP followed by a dash, the type of error message, the error
message, and the name of the file with which the error is
associated. For example:

SCP -- *FATAL*-OPEN FAILURE LINE LISTING FILE filename

Note that all but two of the SLP error messages are fatal. The two
exceptions are diagnostic messages, which are described at the end of
this section.

13-20

c

(

c

c

c

SOURCE LANGUAGE INPUT PROGRAM (SLP)

SLP -- *FATAL*-COMMAND SYNTAX ERROR
command line

Explanation: The command line format did not conform to syntax
rules. Open files were closed and SLP was reinitia1ized.

User Action: Reenter the command line, specifying the proper
syntax.

SLP -- *FATAL*-ILLEGAL DEVICE NAME
command line

Explanation: The device specified was not a legal device.
files were closed and SLP was reinitia1ized.

Open

User Action: Reenter the command line, specifying a legal
device.

SLP -- *FATAL*-ILLEGAL DIRECTORY
command line segment

Explanation: The directory was not legally specified.
files were closed and SLP was reinitia1ized.

Open

User Action: Reenter the command line, specifying a legal
directory.

SLP -- *FATAL*-ILLEGAL ERROR/SEVERITY CODE pI p2 p3

Explanation: This error message indicates an error in the SLP
prog ram.

User Action: Reenter the command line.
submit a Software Performance Report
dialog and any other related information,
listings.

SLP -- *FATAL*-ILLEGAL FILE NAME
command line segment

Explanation: A file specification was
characters in length or contained a
asterisk in place of a file specification
were closed and SLP was reinitialized.

If the
(SPR)
such

error persists,
with the console
as programs or

greater
wildcard
element) •

than
(that

Open

30 (8)
is, an
files

User Action: Reenter the command line, specifying a legal file
name.

SLP -- *FATAL*-ILLEGAL GET COMMAND LINE ERROR

Explanation: The system was unable to read a command line. This
error message indicates an internal system failure or an error in
the SLP program.

User Action: Reenter the command line.
submit a Software Performance Report
dialog and any other related information.

13-21

If the
(SPR)

error persists,
with the console

============--~-----~~-----~==----------=-~=---=-----------~~--=======~====----------~~~~~~

SOURCE LANGUAGE INPUT PROGRAM (SLP)

SLP -- *FATAL*-ILLEGAL SWITCH
command line segment

Explanation: The switch was not a legal SLP switch or a legal (
switch was used in an illegal manner. Open files were closed and
SLP was reinitialized.

User Action: Reenter the command line, specifying the legal
switch.

SLP -- *FATAL*-INDIRECT COMMAND SYNTAX ERROR
command line

Explanation: The command line format specified for the indirect
command file did not conform to syntax rules. Open files are
closed and SLP was reinitialized.

User Action: Reenter the command line, specifying the proper
syntax.

SLP -- *FATAL*-INDIRECT FILE DEPTH EXCEEDED
command line

Explanation: More than three levels of indirect
were specified in an indirect command file.
closed and SLP was reinitialized.

command files
Open files were

User Action: Correct the indirect command file and reenter the
command line.

SLP -- *FATAL*-I/O ERROR COMMAND IN-PUT FILE

or

SLP -- *FATAL*-I/O ERROR COMMAND OUTPUT FILE

or

SLP -- *FATAL*-I/O ERROR CORRECTION INPUT FILE filename

or

SLP -- *FATAL*-I/O ERROR LINE LISTING FILE filename

or

SLP *FATAL*-I/O ERROR SOURCE OUTPUT FILE filename

Explanation: One of the following conditions may exist:

• A problem exists on the physical device (for example, the disk
is not spinning).

• The length of the command line was greater than the allowed
number of characters.

• The file is corrupted or the format is incorrect.

User Action: Determine which condition caused the message and
correct that condition. Reenter the command line.

13-22

c

(

c

(-

c)

SOURCE LANGUAGE INPUT PROGRAM (SLP)

SLP -- *FATAL*-INDIRECT FILE OPEN FAILURE
command line

or

SLP -- *FATAL*-OPEN FAILURE CORRECTION INPUT FILE filename

or

SLP -- *FATAL*-OPEN FAILURE LINE LISTING FILE filename

or

SLP *FATAL*-OPEN FAILURE SOURCE OUTPUT FILE filename

Explanation: One of the following conditions may exist:

• The file is protected against an access.

• A problem exists with the physical device (for example, the
device was not on-line) •

• The volume is not mounted.

• The specified file directory does not exist.

• The named file does not exist in the specified directory.

• The available Executive dynamic memory is insufficient for the
operation.

These errors cause open files .to be closed and SLP to be
reinitialized.

User Action: Determine which condition caused the message and
correct that condition. Reenter the command line.

SLP -- *FATAL*-LINE NUMBER ERROR
command line

Explanation: The command line printed contained an illegally
specified numeric line locator.

User Action: Terminate the SLP edit session and refer to the
rules for specifying numeric line locators in Section 13.3.1.
Correct the error and reenter the command iine.

SLP -- *FATAL*-PREMATURE EOF CORRECTION INPUT FILE filename

Explanation: An out-of-range line locator was
indirect command file or from the terminal;
was specified for an 800-1ine file.

specified in an
for example, -990

User Action: Terminate the current editing session. Restart
the editing session, and enter the edit command ~ine, specifying
the correct line number.

13-23

~=======================------======

SOURCE LANGUAGE INPUT PROGRAM (SLP)

SLP -- *FATAL*-PREMATURE EOF COMMAND INPUT FILE

Explanation: This is caused by not terminating SLP command input
with a slash (/) or by inadvertently typing CTRL/Z at the
terminal, which sends an end-of-file to SLP before the slash (/)
character is read. SLP prompts (SLP», indicating that a new
file specification is expected.

User Action:' Restart the ed i ting session at the po int where the
CTRL/Z was typed.

SLP -- *DIAG*-ERROR IN COMMAND FILE filespec CHECKSUM

Explanation: An incorrect value was specified for
file checksum. If you enter the edit command lines
the terminal, the command file in the error message
Thus, the error message reads:

SLP -- *DIAG*-ERROR IN COMMAND FILE CMI.CMD CHECKSUM

the command
directly from

is CMI. CMD.

o

User Action: This is a warning message only. The specified C.,I
output file is still created, although possibly not as intended.

SLP -- *DIAG*-n LINES TRUNCATED BY AUDIT TRAIL
command line

Explanation: Line truncation by the audit trail was detected.

User Action: This is an informational message only. The
specified output file is still created. (In the listing file, a
question mark (?) replaces the period (.) in the line number of
the lines that were truncated. It is possible that audit-trail
strings from the input file will be truncated by the new
audit-trail string although text strings will not be truncated.)
Determine where the truncation(s) occurred. If necessary, modify
the command file so that it contains commands that do not cause
truncation.

13-24

(-.

o

(

c

(

c

CHAPTER 1.4

OBJECT MODULE PATCH UTILITY (PAT)

The Object Module Patch Utility (PAT) allows you to update, or patch,
code in a relocatable binary object module.

Input to PAT is two files, an input file and a correction file. The
input file consists of one or more concatenated object modules. You
can correct only one of these object modules with a single execution
of PAT. The correction file consists of object code that, when linked
by the Task Builder, either overlays or is appended to the input
object module. Unlike the Task Builder and ZAP patching options, PAT
allows you to increase the size of the object module because the
changes are applied before the module is linked by the Task Builder.

PAT uses the correction file, which contains corrections and/or
additional instructions, to update the object module. Correction
input is prepared in source form and then assembled by the MACRO-II
assembler.

Output from PAT is the updated input file.

You invoke PAT using any of the methods for invoking a utility
described in Chapter 1. PAT can be used interactively or by means of
indirect command files. If you use indirect command files, PAT allows
a maximum nesting level of 2.

Using PAT to update a file involves several steps. First, you create
the correction file using a text editor. Once created, the correction
file must be assembled to produce an object module. The correction
file and the input file (both in object module format) are then
submi tted to PAT for processing. Finally, the updated input obj ect
module is submitted to the Task Builder to resolve global symbols and
to create an executable task. Figure 14-1 shows the processing steps
involved in generating an updated task file using PAT.

14.1 SPECIFYING THE PAT COMMAND LINE

Specify the PAT command line in the following format:

[outfile]=infile[/CS[:number]],correctfile[/CS: [number]]

outfile

The file specification for the output file. If you do not
specify an output file, PAT does not generate one.

14-1

OBJECT MODULE PATCH UTILITY (PAT)

infile

The file specification for the input file. This file can contain
one or more concatenated object modules.

correctfile

The file
contains
file.

ICS[:number]

spec ification
the updates

for the correction file. This file
to be applied to one module in the input

Specifies the Checksum switch. This switch directs PAT to
calculate the checksum for all the binary data that constitutes
the module. PAT displays this checksum in octal. (Refer to
Section 14.2.4 for information on how to use ICS.) You can
optionally specify an octal number with ICS. Then, after PAT
calculates the checksum value, it compares that value with the
number you specified. If the values are not the same, PAT
informs you with an error message. You must then rerun PAT,
specifying the correct checksum.

TEXT
EDITOR

CORRECT.SRC

U
CORRECT.OBJ

U
MYFILE.OBJ

U

• • 1 . Generate a correction file using
the Text Editor.

CORRECT.SRC

CORRECT.OBJ

Execute the assembler (or compiler) ----'" U
to generate an object module V
version of the file.

MYFILE.OBJ

L--__ ...J""' 3. Execute PAT using as input the ->U correction file and the module to
v be updated.

.---------t-'" MYFI LE.OBJ MYFILE.TSK

TASK
BUILDER

,,-:::: -
v

4. Execute the Task Builder to
resolve new addresses and
generate an executable task. ->U

Figure 14-1 Processing Steps Required to Update a
Module Using PAT

14-2

ZK-199-81

c

(

(,

c-

c

c

c

OBJECT MODULE PATCH UTILITY (PAT)

14.2 HOW PAT APPLIES UPDATES

This section describes the PAT input and correction files, gives
information on how to create the correction file, and gives examples
of how PAT appl ies the corrections to a module.

14.2.1 The Input File

The input file is the file to be updated; it is the base for the
output file. The input file must be in object module format. When
you execute PAT, the correction file is applied to one of the object
modules in the file. PAT assumes a file type of .OBJ for the input
file. If you use a file type other than .OBJ, you must specify it
explicitly .in the command line.

14.2.2 The Correction File

The correction file contains the patches to be applied to the input
file. PAT assumes a file type of .OBJ for the correction file. If
you use a file type other than .OBJ, you must specify it explicitly in
the command line.

As shown in Figure 14-1, the first step in using PAT to update an
object file is to generate the correction file. Use any text edito~
to create this source file, which is usually in the following format:

• TIT LE i nputname
.IDENT updatenum
inputline
inputline

inputname

The name of the module to be corrected by the PAT update. You
must specify the module that you are updating for inputname.

updatenum

Any value acceptable to the MACRO-II .IDENT assembler
Generally, this value reflects the updated version of
be processed by PAT (as shown in the examples given
14.2.3).

inputline

NOTE

The .IDENT assembler directive is a
required part of the correction file.
Failure to include an .IDENT directive
in the file produces unusable output.

directive.
the file to
in Section

Lines of input to be used to correct and update the input file.

Once you have created the source version of the correction file, you
assemble it to produce an object module that can be processed by PAT.

14-3

OBJECT MODULE PATCH UTILITY (PAT)

During PAT execution, new global symbols defined in the correction
file are added to the module's symbol table. A symbol definition that
is already being used in the input file can be superseded by the
definition in the correction file. For a symbol definition to be
superseded, both definitions must be either relocatable or absolute.

A duplicate program section supersedes the previous program section,
provided:

• Both have the same relocatability attribute (ABS or REL)

• Both are defined with the same directive (.PSECT or .CSECT)

If PAT encounters duplicate program section names, the length
attribute for the program section is set to the length of the longer
program section and a new program section is appended to the module.

If you specify a transfer address, it supersedes the transfer address
of the module being patched.

14.2.3 How PAT and the Task Builder Update Object Modules

The examples in the following sections show an input file and a
correction file (both in object module format) to be processed by PAT
and the Task Builder, along with a source-like representation of how
the output file looks once PAT and the Task Builder complete
processing. Two techniques are described: one for overlaying lines
in a module and the other for adding a subroutine to a module.

14.2.3.1 Overlaying Lines in a Module - The following example
illustrates a technique using a patch file to overlay lines in a
module. First, PAT appends the correction file to the input file.
Then, the Task Builder generates a task image from the patched object
modules.

The input file for this example is:

• TITLE ABC
• !DENT /01/

ABC: :
MOV A,C
CALL XYZ
RETURN
• END

To add the instruction ADD A,B after the CALL instruction, you can use
the following patch in the correction file:

• TITLE ABC
• IDENT /01. 01/

• =. +12
ADD A,B
RETURN
• END

14-4

c'

(

(

(

c

c

(

OBJECT MODULE PATCH UTILITY (PAT)

You use the MACRO-II assembler to assemble the correction file. After
assembly, PAT processes the resulting object module and the input
object module. The result of PAT processing appears as follows:

• TITLE ABC
• !DENT /01. 01/

ABC: :
MOV A,C
CALL XYZ
RETURN

.=ABC

.=.+12
ADD A,B
RETURN
• END

You then use the Task Builder to produce the patched object module as
a task image. This task image looks the same as the source code would
have looked if it had originally been written as follows:

ABC: :

• TITLE
.IDENT

MOV
CALL
ADD
RETURN
• END

ABC
/01. 01/

A,C
XYZ
A,B

PAT uses the .=.+12 in the program counter field to determine where to
begin overlaying instructions in the program. It overlays the RETURN
instruction with the patch code:

ADD A,B
RETURN

14.2.3.2 Adding a Subroutine to a Module - The second example
illustrates a technique for adding a subroutine to an object module.
A patch often requires that more than a few lines be added to correct
the file. A convenient technique for adding new code is to append it
to the end of the module as a subroutine. That way, you insert a CALL
instruction at an appropriate location in the subroutine. The CALL
instruction directs the program to branch to the new code, execute
that code, and then return to in-line processing.

The input file for this example is:

• TITLE ABC
.IDENT /01/

ABC: :
MOV A,B·
CALL XYZ
MOV C,RO
RETURN

• END

14-5

========================c======================~===·~=====

OBJECT MODULE PATCH UTILITY (PAT)

The correction file for this example is:

PATCH:

• TITLE
• IDENT
CALL
NOP
• PSECT

MOV
MOV
ASL
RETURN
• END

ABC
/01. 01/
PATCH

PATCH

A,B
D,RO
RO

PAT merges the correction file
example. The Task Builder
task image that looks the same
it had originally been written

• TITLE ABC
.IDENT /01. 01/

ABC: :
CALL PATCH
NOP
CALL XYZ
MOV C,RO
RETURN

• PSECT PATCH
PATCH:

MOV A,B
MOV D,RO
ASL RO
RETURN
• END

with the input file, as
then processes the files
as the source file would
as follows:

in the first
and produces a
have looked if

In this example, the CALL PATCH and NOP instructions overlay the
3-word MOV A,B instruction. (The NOP is included because this is a
case where a 2-word instruction replaces a 3-word instruction and NOP
is required to maintain al ignment.) The Task Builder allocates
additional storage for .PSECT PATCH, writes the specified code into
this program section, and binds the CALL instruction to the first
address in this section. The MOV A,B instruction, replaced by the
CALL PATCH instruction, is the first instruction executed by the PATCH
subroutine.

14.2.4 Determining and Validating the Contents of a File

You use the Checksum switch (/CS) to determine or validate the
contents of a module. The switch directs PAT to calculate the
checksum (in octal) for all the binary data that constitutes the
module and to then inform you of the checksum by means of a diagnostic
message.

To determine the checksum of a file, enter the PAT command line
the /CS switch applied to that file's specification. For example:

=MYFILE/CS,CORRECT.POB

14-6

with

C-

(

(

c

(-

(

(

(

OBJECT MODULE PATCH UTILITY (PAT)

The command directs PAT to calculate the checksum for the input file,
MYFILE.PAT then responds with the message:

INPUT MODULE CHECKSUM IS checksum

PAT generates a similar message when you request the checksum for the
correction file. For example:

=MYFILE,CORRECT.POB/CS

After calculating the checksum for the correction file, PAT responds
with the message:

CORRECTION INPUT FILE CHECKSUM IS checksum

If you specify /CS:number to validate the size of a file, PAT
calculates the checksum for the file and then compares that checksum
with the value you specified as number. If the two values do not
match, PAT displays the following message to report the checksum
error:

ERROR IN FILE filename CHECKSUM

For example, you might specify:

=MYFILE,CORRECT.POB/CS:432163

When PAT calculates the checksum for the correction file, the number
is different. PAT then displays the message:

ERROR IN FILE CORRECT.POB CHECKSUM

Checksum processing always results in an octal, nonzero value.

14.3 PAT MESSAGES

PAT generates messages that state checksum values and messages that
describe error conditions. For checksum values and nonfatal error
messages, PAT prefixes the mess.ages wi th:

PAT -- *DIAG*-error message

For messages that describe fatal errors (errors that caused PAT to
terminate), PAT uses the prefix:

PAT -- *FATAL*-error message

The following messages are grouped according to message type, as
follows:

• Information messages

• Command line errors

• File specification errors

• Input/Output errors

• File content or format errors

• Internal software error

• Storage allocation error

14-7

OBJECT MODULE PATCH UTILITY (PAT)

14.3.1 Information Messages

The following messages describe results of checksum processing.

CORRECTION INPUT FILE CHECKSUM IS checksum

Explanation: When you specify /CSin the correction
specification, PAT informs you of the file's checksum value.
value is given in octal.

User Action: No response necessary.

INPUT MODULE CHECKSUM IS checksum

Explanation: When you specify /CS in the input
specification, PAT informs you of the file's checksum value.
value is given in octal.

User Action: No response necessary.

14.3.2 Command Line Errors

file
The

file
The

The following error messages result from failure to adhere to the
command line syntax rules.

COMMAND LINE ERROR command line

Explanation: The system standard command line processor (.GCML)
detected an error in the command line.

User Action: Reenter the command line using
information.

COMMAND SYNTAX ERROR command line

the

Explanation: The command line contained a syntax error.

correct

User Action: Reenter the command line using the correct syntax.

ILLEGAL INDIRECT FILE SPECIFICATION command line

Explanation: You specified an indirect command
contains one of the following errors:

• A syntax error

file

• A specification for a nonexistent indirect command file

that

User Action: Check for file specification syntax errors or
ensure that the specified file is contained in the specified User
File Directory. Reenter the command line.

14-8

(

(

(

(

(

c

OBJECT MODULE PATCH UTILITY (PAT)

MAXIMUM INDIRECT FILE DEPTH EXCEEDED command line

Explanation: In the command line, you specified a~ indirect
command file that exceeds the maximum nesting level of 2 that is
permitted by PAT.

User Action: Reorder your files so that they do not exceed PAT's
nesting limit.

14.3.3 File Specification Errors

The following error messages are caused by errors in the specification
of input or output files or related file switches.

CORRECTION INPUT FILE MISSING command line

Explanation: The mandatory correction file was not specified.

User Action: Reenter the command line specifying the correction
file.

ILLEGAL DEVICE/VOLUME SPECIFIED device name

Explanation: The device or volume name specification contained a
syntax error.

User Action: Check the rules for specifying devices and volumes,
then reenter the command line using the correct syntax for the
device or volume specification.

ILLEGAL DIRECTORY SPECIFICATION directory name

Explanation: The directory specification contained a syntax
error.

User Action: Check the rules for
reenter the command (line using
directory specificatiori.

ILLEGAL FILE SPECIFICATION filename

spec ifyi ng a
the correct

directory and
syntax for the

Explanation: The file specification contained a syntax error.

User Action: Reenter the command line using the correct syntax
for the file specification.

ILLEGAL SWITCH SPECIFIED filename

Explanation: An unrecognized switch or
specified with the file.

switch value was

User Action:
reenter the
val ue.

Check the rules for
command line using

14-9

specifying the switch and
the correct switch or switch

OBJECT MODULE PATCH UTILITY (PAT)

INVALID FILE SPECIFIED filename

Explanation: You specified a file that contains one of the (
following errors: _

• Nonexistent device

• Nonexistent directory The directory in the filename
specification does not exist on the specified device (or on
the default device if no device was specified).

User Action: Reenter the command line specifying the correct
device or directory.

MULTIPLE OUTPUT FILES SPECIFIED command line

Explanation: PAT accepts only one output file specification.

User Action: Reenter the command line specifying only one output
file.

REQUIRED INPUT FILE MISSING command line

Explanation: The mandatory input file was not specified in the
command line.

User Action: Reenter the command line specifying an input file.

TOO MANY INPUT FILES SPECIFIED command line

Explanation: Too many input files were specified in the command
line. PAT accepts only the input and correction file
specifications.

User Action: Reenter the command line specifying the correct
files.

UNABLE TO FIND FILE filename

Explanation: PAT could not locate the specified input
correction file.

or

User Action: Check the directory to ensure that the file exists.
Reenter the command line specifying the correct filename.

14.3.4 Input/Output Errors

The following error messages are caused by faults detected while PAT
was performing I/O to the specified file.

14-10

c

(

==============~~~~~~====~====~==~~====~=~~--==--.. ~.======~----.-. ---==-==-~.= .. ======~~~~=================== .. ==.,

(

c

(~

OBJECT MODULE PATCH UTILITY (PAT)

ERROR DURING CLOSE: FILE: filename

Explanation: This error is
attempting to write the
before deaccessing it. The
the following conditions:

most likely to occur while PAT is
remalnlng data into the output file
most likely causes of this error are

• The device is full

• The device is write-locked

• A hardware error occurred

User Action: Perform the appropriate corrective action and
reenter the command line: if the device is full, delete all
unnecessary files; if the device is write-locked, write-enable
it; if the problem is a hardware error, contact your DIGITAL
Field Service representative.

ERROR POSITIONING FILE filename

Explanation: PAT attempted to
end-of-file.

posi tion the file beyond

User Action: Submit a Software Performance Report along with the
related console dialog and any other pertinent information.

I/O ERROR ON INPUT FILE filename

Explanation: An error was detected while PAT was attempting to
read the specified input file. The principal cause of this error
is a device hardware error.

User Action: Reenter the command.

I/O ERROR ON OUTPUT FILE filename

Explanation: An error occur1red while PAT attempted to write into
the named output file. The most likely causes of this error are
the following conditions:

• The device is full

• The device is write-locked

• A device hardware error occurred

User Action: Perform the appropriate corrective action and
reenter the command line: if the device is full, delete all
unnecessary files; if the device is write-locked, write-enable
it; if the problem is a hardware error, contact your DIGITAL
Field Service representative.

14.3.5 Errors in File Contents or Format

The following errors represent inconsistencies detected by PAT in the
format or contents of the input or correction files.

14-11

OBJECT MODULE PATCH UTILITY (PAT)

ERROR IN FILE filename CHECKSUM

Explanation: The checksum that PAT calculated for the named file
does not match the one that you specified with /CS:number.

User Action: Ensure that you specified the correct checksum. If
the checksum is correct, then you specified an invalid version of
the file. Rerun PAT specifying the correct version of the file.

FILE filename HAS ILLEGAL FORMAT

Explanation: The format of the named file is not compatible with
the object files produced by the standard DIGITAL language
processors or accepted by the Task Builder. The principal causes
are:

• Truncated input file

• Input file that consists of text

User Action: Ensure that the file is in the correct format and
resubmit it for PAT processing.

INCOMPATIBLE REFERENCE TO GLOBAL SYMBOL symbol name

Explanation: The correction file contains a global symbol whose
attributes do not match one or more of the following input file
symbol attributes:

• Definition or reference

• Relocatable or absolute

User Action: Update the correction file by modifying the symbol
attributes. Reassemble the file and resubmit it for PAT
processing.

INCOMPATIBLE REFERENCE TO PROGRAM SECTION section name

Explanation: The correctIon file contai-ns a section name whose
attributes do not match one or both of the following input file
section attributes:

• Relocatable or absolute

• Defined with the same directive (.PSECT or .CSECT)

User Action: Update the correction file by modifying the section
attribute or changing the section type. Reassemble the file and
resubmit it to PAT for processing.

14-12

(

(

(

C)

C)

OBJECT MODULE PATCH UTILITY (PAT)

UNABLE TO LOCATE MODULE module name

Explanation: PAT could not
specified in the correction
input modules.

find
file

the module name that was
in the file of concatenated

User Action: Update the input file specification to include the
missing module. Reenter the command line.

14.3.6 Internal Software Error

This error reflects internal software error conditions.

ILLEGAL ERROR-SEVERITY CODE error data

Explanation: An error message call, containing an
parameter, has been generated.

illegal

User Action: If these messages persist, submit a Software
Performance Report along with related console dialog and any
other pertinent information.

14.3.7 Storage Allocation Error

The following error message indicates that not enough task memory was
available for storing global symbol and program section data.

~) NO DYNAMIC STORAGE AVAILABLE storage-listhead

Explanation: Not enough contiguous task memory was available to
satisfy a request for the allocation of s~o~aq~.

PAT displays the contents of the 2-word dynamic storage 1 isthead
in octal.

User Action: If possible, PAT should be reinstalled with a
larger increment or in a bigger partition. (See the description
of the INSTALL command in the RSX-llM/M-PLUS MeR Operations
Manual.)

14-13

c)

o

o

c)

c

(

c

CHAPTER 15

TASK/FILE PATCH PROGRAM (ZAP)

The Task/File Patch Program (ZAP) allows you to directly examine and
modify task image and data files on a Files-ll volume. Using ZAP, you
can patch these files interactively without reassembling and
rebuilding the task.

ZAP supports four types of task image files: I

• Regular task image files, which include those mapped to
resident and supervisor mode libraries

• Multiuser task image files

• 1- and D-space (instruction and data space) tasks

• Resident libraries

These types of task image files are discussed fully with the /List
switch (Section 15.1.1).

ZAP performs many of the functions performed by the RSX-ll on-line
debugging utility, ODT. Thus, working knowledge of ODT is helpful in
using ZAP. See the IAS/RSX-ll ODT Reference Manual for more
information on ODT.

ZAP provides the following features:

• Operating modes that allow you to access specific words and
bytes in a file, modify locations in a file, list the disk
block and address boundaries for each overlay segment in a
task image file on disk, and open a file for reading only

• A set of internal registers that include eight Relocation
Registers

• Single-character commands that, with other command line
elements, allow you to open and close locations in a file and
to display and manipulate the values in those locations

Except in read-only mode, the results of ZAP commands are permanent.
Thus, the best way to use ZAP is with a hard-copy terminal so that you
have a record of the changes you make.

Although the ZAP program is relatively straightforward to use,
patching locations in a task image file requires knowing how to use
the map (or memory allocation file) generated by the Task Builder and
the listings generated by the MACRO-ll .assembler. These maps and

15-1 April 1983

I

I

I

listings
contents
see the
MACRO-ll

TASK/FILE PATCH PROGRAM (ZAP)

provide information you need to access the locations whose
you want to change. For information on Task Builder maps,

RSX-IIM/M-PLUS Task Builder Manual. For information on
listings, see the-poP-ll MACRO-II Language Reference Manual.

15.1 ZAP OPERATING MODES AND SWITCHES

ZAP provides two addressing modes and two access modes. The
addressing modes are task image mode and absolute mode. Task image
mode is the default mode. The access modes are read/write mode and
read-only mode. Read/write is the default mode. Either addressing
mode can be used with either access mode. The modes and their
associated switches are as follows:

• Task image mode is the default addressing mode for ZAP. In
this mode, addresses in ZAP command lines refer to addresses
in the task image file as they are shown in the Task Builder
map for the file. See Section 15.2 for more information on
using task image mode.

• In absolute mode, specified with the /AB switch, ZAP processes
the addresses you enter in ZAP command lines as absolute byte
addresses within the file. You must use absolute mode for any
files that are not task images. See Section 15.2 for more
information on using absolute mode.

• Read/write mode is the default access mode for ZAP. In this
mode, ZAP opens a file for reading and/or modification.

• In read-only mode, specified with the /RO switch, ZAP opens a
file for reading but not modification. That is, you can
execute ZAP functions that change the contents of locations,
but these changes are not actually made to the file. When ZAP
exits, the original values in the file are still there.

l5~1.1 _"he List Switch (/LI)

When using ZAP in task image mode (but not absolute), you can also
specify the /List switch (/LI). The /List switch directs ZAP to
display the overlay segment table for the task image file on disk that
you are working with. The table lists the starting disk block and
address boundaries for each overlay segment in the file. The segment
table lists are in a different format for each type of task image
file. (The formats are discussed later in this section.) You use this
table and the Task Builder map to locate the task segments being
changed.

The /LI switch displays the overlay segment boundaries in the
following format:

ssssss: aaaaaa-bbbbbb [nnnnnn] [dddddd]

ssssss:

The starting block in octal.

aaaaaa

The lower address boundary in octal.

15-2 April 1983

c

c

(I

l)

TASK/FILE PATCH PROGRAM (ZAP)

bbbbbb

The upper address boundary in octal.

nnnnnn

The segment name that appears for 1- and O-space tasks; manually
loaded overlays ($LOAO); memory-resident overlays; tasks that
link to the library with memory-resident overlays; or for any
combination of the previous conditions.

dddddd

The description of the segment type string which appears next to
the segment name in the segment table.

The following sections describe the /List switch formats for the
different kinds of task image files. Section 15.7 gives examples of
the segment table lists.

15-2.1 April 1983

~--~ ====~=~~~~~=~ = ___ -~--,~~~=~==-=-____ ·_o_---,: ____ ::-=_-_______ -~--_ -- - -- -- - - - - - - - - --- -----

(;

(

(-

TASK/FILE PATCH PROGRAM (ZAP)

15.1.1.1 The /LI Switch and Regular Task Image Files For
regular task image files (including those mapped to resident and
supervisor mode libraries), the ILl switch displays the task's overlay
segments in the order of their location in the file. Each segment in
these files begins on an even block boundary.

15.1.1.2 The /LI Switch and Multiuser Task Image Files
For multiuser tasks, the /LI switch lists the starting disk block
number and address boundaries of each segment. In addition, the
address boundaries of the shared read-only segment are listed. The
block number that is used to reference the multiuser segment is the
same as the root segment. The multiuser segment is an extension of
the root segment. The segment list disk block numbers have a
corresponding entry in the Task Builder map.

See the RSX-llM/M-PLUS Task Builder Manual for more information on
multiuser tasks.

15.1.1.3 The /LI Switch and Resident Libraries - For resident
libraries, the /LI switch displays each of the task's segments as
beginning on a new block boundary. However, the segments may not
actually begin on even boundaries because of compression by the Task
Builder: Resident libraries can be overlaid, but each overlay segment
must also be resident in memory.

To avoid the possibility that two or more segments in a single block
could have the same virtual address, ZAP treats the resident library
in the same way that the Task Builder does. The Task Builder builds
the library with each segment beginning on an even block boundary, but
then compresses the segments in the task file itself. The Task
Builder map is generated before the segments are compressed, so the
boundaries given in the map do not necessarily correspond to the
actual location of the segments.

The disk block boundaries given in the Task Builder map file are the
ones that ZAP uses to address locations in the resident library and
that the ILl switch displays in its segment table. They do not use
the actual starting blocks of the segments. (You should be aware of
this when you are working with resident libraries in absolute mode.
However, also remember that you cannot use the /LI switch in absolute
mode.)

You should also note that ZAP cannot know the physical starting
addresses for the segments of an overlaid resident library because its
overlay structure is stored in the symbol definition (.STB) file, not
with the task image file itself. For ZAP, each segment's starting
address is 000000.

See the RSX-IIM/M-PLUS Task Builder Manual for more information on
resident libraries.

·15.1.1.4 The /LI Switch and 1- and D-Space Tasks - For 1- and D-space
taskS, the ILl switch lists the starting block number and the address
boundaries of each segment. The I-space or D-space segment may be
suppressed in the listing when, for example, a segment with only
I-space code does not include a listing for a D-space segment. If the
segments are not suppressed, the segment list disk block numbers have
a corresponding entry in the Task Builder map.

15-3 April 1983

TASK/FILE PATCH PROGRAM (ZAP)

15.2 ADDRESSING LOCATIONS IN FILES

To address locations in a file, ZAP provides two addressing modes ('
(task image and absolute, described above) and a set of internal ,
registers, which includes eight Relocation Registers. This section
first introduces the concept of relocation biases and the use of the
Relocation Registers, then explains how to use the addressing modes.

15.2.1 Relocation Biases

When MACRO-II generates a relocatable object module, the base address
of each program section of the module is 000000. In the assembler
listing, all locations in the program section are shown relative to
this base address.

The Task Builder links program sections to other program sections by
mapping the relative addresses applied by the assembler to the
physical addresses in memory (for unmapped systems) or to virtual
addresses (for mapped systems).

Many values within the resulting task image are biased by a constant
whose value is the absolute base address of the program section after
the section has been relocated. This bias is called the relocation
bias for the program section.

ZAP's eight Relocation Registers, OR through 7R, are generally set to
the relocation biases of the program sections to be examined. This
allows you to refer to a location in a module by the same relative
address that appears in the MACRO-ll listing. The addressing modes
help you calculate the relocation biases.

15.2.2 ZAP Addressing Modes

As explained in Section 15.1, ZAP's two modes for addressing locations
in a file are task image mode and absolute mode. Task image mode is
the default mode for ZAP. The next two sections explain how to use
these modes.

c

c

The following examples show excerpts from a MACRO-ll listing of the ('
module M~FILEt atnd h a hTaSkt Builder map~ Tthekse ,excerptsd and thhe _
accompany1ng ex s ow ow 0 use ZAP 1n as 1mage mo e. T e
following lines represent assembled instructions from a MACRO-Il
source listing:

71 000574 032767 OOOOOOG OOOOOOG BIT #FE.MUP,$FMASK
72 000602 001002 BNE 2$
73 000604 000167 000406 JMP 30$
74 000610 016700 OOOOOOG 2$: MOV $TKTCB,RO
75 000614 016000 OOOOOOG MOV T.UCB(RO) ,RO
76 000620 010067 177534 MOV RO,UCB
77 000624 032760 OOOOOOG OOOOOOG BIT #U2.HLD,U.CW2(RO)

The following lines from a Task Builder map give the information you
need to address locations in the task image file as they appear in the
above MACRO-ll listing:

c
15-4

(

(

c

TASK/FILE PATCH PROGRAM (ZAP)

R/W MEM LIMITS: 120000 123023 003024 01556.
DISK BLK LIMITS: 000002 000005 000004 00004.

MEMORY ALLOCATION SYNOPS IS:

SECTION

• BLK.:(RW,I,LCL,REL,CON) 120232 002546 01382.
120232 002244 01188.
122476 000064 00052.

$$RESL: (RW,I,LCL,REL,CON) 123000 000024 00020.

TITLE IDENT

MYFILE 01
FMTDV 01

FILE

MCR.OLBi1
MCR.OLBi1

Using information in the Task Builder map, you can determine the block
number and byte offset for the beginning of the file you want to
change. The disk-b1ock-1imits line lists block 2 as the block where
the program code begins. The synopsis lists byte offset 120232 as the
beginning of the file MYFILE. To address location 574 in the MACRO-II
listing in task image mode, specify the following command line:

2: 120232+574/ffil

ZAP responds by opening the location and displaying its contents:

002:121026/ 032767

Section 15.4 describes the ZAP command line formats.

15.2.2.1 Using the Task Image Addressing Mode - In task image mode,
ZAP allows you to address locations in a task image file by using the
addresses the MACRO-II assembler displays in its listing and the
starting block number and byte offset listed in the Task Builder map.
Unlike absolute mode, task image mode is useful for working with
locations in an overlaid file because the Task Builder and ZAP perform
the calculations necessary to relate the file's disk structure to its
run-time memory structure.

15.2.2.2 Using the Absolute Addressing Mode - In absolute mode, ZAP
processes the addresses you enter in the command lines as absolute
byte addresses within the file. To use ZAP in absolute mode, invoke
ZAP and enter the /AB swi tch with the file specification.

ZAP interprets the first address in the file you are changing as
virtual block 1, location 000000. All other addresses you enter are
interpreted using this address as the base location. Absolute mode
allows you to access all the 'bytes in a data or task image file as
well as the label and header blocks of a task image file on disk.
However, to modify a disk task image, you must know the disk layout of
the task image. Generally, absolute mode is practical only for data
files or for task image files that are not overlaid.

15.3 INVOKING AND TERMINATING ZAP

You invoke ZAP using any of the methods described in Chapter 1.
However, you cannot enter a file specification on the same line that
you use to invoke ZAP unless the file is an indirect command file (see
Section 15.3.1).

15-5

TASK/FILE PATCH PROGRAM (ZAP)

When ZAP prompts you, enter the file specification for the file you
want to change. You enter the file specification in the format:

dev: [ufd]filename.filetype;version[/sw •••]

The default file type is .TSK. After you enter
specification, ZAP prompts with an underscore ().

the file

You terminate ZAP by entering the X command (explained in Section
15.6.1). This command exits you from ZAP and returns control to your
command line interpreter.

15.3.1 Using Indirect Command Files with ZAP

An indirect command file contains the specification for the file you
want to work with and the appropriate ZAP commands. You can specify
the indirect command file in the same command line in which you invoke
ZAP.

The following sample
contains ZAP commands.
of the ~espooler from 70
in Section 15.6.5) is
actually in the location
following ZAP commands:

LPP. TSK/AB
0:346/
106V
120
X

ind irect command file (called CHANGE. CMD)
The commands will change the default priority
to 80 (120 octal). The V command (explained
used to verify that 70 (106 octal) is what is
to be changed. The command file has the

To use the indirect command file (in this case, from MCR), type the
following:

>ZAP @CHANGE

This command invokes ZAP, which then executes the commands in the
file.

c

The commands being used first open the task image file (LPP.TSK) in (
absolute mode (/AB). The next two commands open the desired location _
(byte 346 in block 0) and verify its contents (106). The next command
changes the contents to 120, wh,ich will be the new default priority
for the despooler. The X command exits you from ZAP and returns
control to MCR.

15.4 THE ZAP COMMAND LINE AND COMMAND LINE ELEMENTS

ZAP commands perform functions that allow you to examine and modify
the contents of locations in a file. Command lines ~omprise
combinations of the following elements:

• Commands

• Internal registers

15-6

(

TASK/FILE PATCH PROGRAM (ZAP)

• Arithmetic operators

• Command line element separators

• The current location symbol

• Location-specifier formats

The command elements can be combined to perform multiple functions.
The function of a given command line depends not only on which
elements you use, but also on the position of one element in relation
to the next.

The following sections describe the ZAP
Sections 15.5 and 15.6 describe how to
elements to execute ZAP functions.

15.4.1 ZAP Commands

command line elements.
combine the command line

(. There are three types of ZAP commands:

c

(

• Open/close location commands

• General purpose commands

• RETURN Key

The following sections describe each type of command.

15.4.1.1 Open/Close Location Commands - Open/close location commands
are nonalphanumeric ASCII characters that direct ZAP to perform a
sequence of functions. Open/close commands specify two general
sequences of operations:

• Open a location, display its contents, and store the contents
in the Quantity Register (see Section 15.4.2)

• Close the location after (optionally) modifying it and open
another location as specified by the command

Section 15.5 describes the format for specifying open/close location
commands.

15.4.1.2 General Purpose Commands - ZAP provides six
single-character, general purpose commands. You use these commands
for calculating displacements, verifying location contents, and
exiting from ZAP. You can enter some of the commands on the command
line with no other parameters. Section 15.6 describes the format for
specifying these commands.

15.4.1. 3 RETURN Key - Unless there is another value or command on the
line, the RETURN key closes the current location as modified and opens
the next sequential location. ZAP commands take effect only after you
press the RETURN key.

15-7

-
--------- -----

TASK/FILE PATCH PROGRAM (ZAP)

15:4.2 ZAP Internal Registers

ZAP internal registers are fixed storage locations that ZAP uses as
registers. These registers contain values set by both you and ZAP.
ZAP provides the following internal registers:

• Relocation Registers 0 through 7 (OR through 7R). These
registers provide a means for indexing into a program section
to change the contents of locations in the program section.
You load the registers with the base address of the program
section that has been relocated by the Task Builder.

• The Constant Register (C). You set this register to contain a
l6-bit value, which you can specify as an expression in the
ZAP command line.

• The Format Register (F). This register controls the format of
the displayed address. If the value of the F Register is 0
(the initial value), ZAP displays addresses relative to the
largest value of any Relocation Register whose value is less
than or equal to the address to be displayed. If the value of

(

the Format Register is not 0, ZAP displays addresses in C
absolute byte format.

• The Quantity Register (Q). ZAP sets the value in the register
to be the last value displayed at your terminal.

To access the contents of
preceding the register
For example:

$C/ ffi)
'$C/ 000000

a register, specify a dollar sign ($)
name (in this case, C) in the command line.

This command line directs ZAP to display the contents of the Constant
Register. The slash (/) is an open command described in Table 15-3.

15.4.3 ZAP Arithmetic Operators

Operators are single-character command line elements that define an
arithmetic operation. Generally, 2AP evaluates these expressions as
addresses. Table 15-1 describes the operators.

You use the -operators in expressions in command lines. For example,
rather than manually adding all the displacements listed in the Task
Builder map, you can specify a location using the following notation:

_2: 120000+1 70/ ffi)

This m~thod for calculating such a displacement is faster and more
accurate than doing it manually.

15-8

c

c

(

(

c

c

c

Operator

+

*

TASK/FILE PATCH PROGRAM (ZAP)

Table 15-1
ZAP Arithmetic Operators

Function

The plus sign adds a value to another value. Used in
an expression that ZAP then evaluates to be a command
line element.

The minus sign subtracts a value from another value.
Used in an expression that ZAP then evaluates to be a
command line element.

The asterisk multiplies a value by 50(8) and adds it
to another value. Used to form a Radix-50 string.

~----------~-----------

The following example shows how to use the asterisk (*) to form
Radix-50 strings. Section 15.4.4 explains the use of the colon and
comma; the percent sign is an open command described in Table 15-3.

0,40/00)
002:0,0000401 000001

1*3300)
-/00)
002:0,0000401 000103

%00)
002:0,000040% A$

In this example, the first command opens the locations that is 40
bytes offset from the location address contained in Relocation
Register 0 and displays in octal format the contents of the new
location. The location contains the value 000001. The second command
converts 000001 to Radix-50 and adds 33 to the Radix-50 value. The
slash (I) command again displays in octal the value contained in the
offset location. The value is now 103. The percent sign (%) command
displays 103 in Radix-50 format.

15.4.4 ZAP Command Line Element Separators

ZAP provides separators to delimit one command line element from
another. Different separators are required depending on the type of
ZAP command being executed. See Table 15-2.

Separator

Table 15-2
ZAP Command Line Element Separators

Function

The comma separates a Relocation Register
specification from another command line element.

The semicolon separates an address from an internal
register specification. Used in expressions that set
values for Relocation Registers.

The colon separates a block number base value from a
byte offset into the block. Used in most of the
references to locations in a file.

15-9

TASK/FILE PATCH PROGRAM (ZAP)

15.4.5 ZAP Command Line Location-Specifier Foraats

ZAP has three formats for specifying locations
Each provides a means of indexing into a file.

• Current location symbol

• Byte offset

• Block number:byte offset

• Relocation register,byte offset

in a command
The formats are:

line.

15.4.5.1 The Current Location Symbol - In command line expressions
that ZAP evaluates as addresses, a period (.) represents the last open
location.

15.4.5.2 Byte Offset Format - You specify the byte offset format as
follows:

location

If you are using ZAP in absolute mode, ZAP interprets
specification as a byte offset from block 1, location 000000.
format is generally useful only when you are using absolute mode.

this
This

The following ZAP command line opens absolute location 664 and
displays its contents in octal format:

15.4.5.3 Block Number:Byte Offset Format - This format allows you to
specify a byte offset from a specific block in the file. Specify the
format as follows:

blocknum:byteoffset

c

c

You can use this format for addressing locations whether or not you (
enter the /AB switch with the file specification.

In task image mode, ZAP allows you to enter the block number and byte
offset displayed in the Task Builder map. The map gives information
on the overlay segments in a task image file. See Section 15.2 for
more information.

15.4.5.4 Relocation Register,Byte Offset Forllat - This format allows
you to load a Relocation Register with the address of a location. The
address is then used as a relocation bias. You specify this format
for addressing locations in a task image file as follows:

relocreg,byteoffset

Specify relocreg in the form nR, where n is the numbe.r of the
Relocation Register. You can then address byte offsets from the
address loaded in the Relocation Register. For example: (_

15-10

c

(

TASK/FILE PATCH PROGRAM (ZAP)

2: 001254; 3RmJ
-3, 64/mJ
002:3,000064/ 037334

The first command loads the address 001254 into Relocation Register 3,
then the second command opens the location that is 64 bytes offset
from block 2, location 001254. The contents of that location are
037334.

15.5 USING ZAP OPEN AND CLOSE COMMANDS

This section gives examples of how to use the ZAP open and close
commands. These commands allow you to open locations in a file,
modify those locations, and close the locations.

Table 15-3 summarizes the open and close commands.

Table 15-3
ZAP Open and Close Commands

Character Designation

/ Slash

" QUotation mark

% Percent sign

\ Backslash

Apostrophe

Opens a
contents
contents
Quantity
location
byte.

Function

location, displays its
in octal, and stores the
of the location in the

Register (Q). If the
is odd, it is opened as a

Opens a location, displays the
contents of the location as two ASCII
characters, and stores the contents of
the location in the Quantity Register
(Q) •

Opens a location, displays the
contents of the location in Radix-50
format, and stores the contents of the
location in the Quantity Register (Q).

Opens a location as a byte, displays
the contents of the location in octal,
and stores the conten~s of the
location in the Quantity Register (Q).

Opens a location, displays the
contents as one ASCII character, and
stores the contents of the location in
the Quantity Register (Q).

(continued on next page)

15-11

TASK/FILE PATCH PROGRAM (ZAP)

Table 15-3 (Cont.)
ZAP Open and Close Commands

Character Designation Function

@

>

<

RETURN Key

Circumflex or
Up-arrow

Underscore or
Back-arrow

At sign

Right angle
bracket

Left angle
bracket

Closes the current location as
modified and opens the next sequential
location if no other values or
commands are on the command line. ZAP
commands take effect only after you
press the RETURN key.

Closes the currently open location as
modified and opens the preceding
location.

Closes the currently open location as
modified, uses the contents of the
location as an offset from the current
location and opens the new location.

Closes the currently open location
modified, uses the contents of
location as an absolute address,
opens that location.

as
the
and

currently open location as
interprets the low-order

the contents of the location
relative branch offset and

the target location of the

Closes the
modified,
byte of
as the
opens
branch.

Closes the currently open location as
modified, returns to the location from
which the last series of underscore
(), at sign (@), and/or right angle
bracket (» commands began, and opens
the next sequential location.

15.5.1 Opening Locations in a File

Use any
percent
location
the open

of the ZAP open commands -- slash (/), quotation mark ("),
sign (%), backslash (\), or apostrophe (') -- to open a
in a file. The format ZAP uses to display the contents of
location depends on which operator you use.

Once you open a location in a given format, ZAP displays in that
format any other locations you open. For example, if you enter the
percent sign (%) command, the contents of the open location are
displayed In Radix-50 format. If you continually press the RETURN
key, consecutive locations are displayed in Radix-50 format until you
change the format by entering a different special-character open
command.

15-12

(

c

c

(,

(

TASKIFILE PATCH PROGRAM (ZAP)

15.5.2 Changing the Contents of a Location

When you open a location with a special-character open command, you
can change the contents of that location by entering the new value and
pressing the RETURN key. The following example is a sequence of
commands and ZAP responses that shows how to open a location, change
the value of the location, and close the location.

I@@
002:1200001 000000

44444@@
-I@@
002:1200001 44444

The first command (I) displays in octal format the contents (000000)
of the current location. The contents are changed by entering the
value 44444 and then the location is closed as modified by pressing
the RETURN key. The slash (I) and RETURN key display the new contents
of the location (last line of example) •

15.5.3 Closing Locations in a File

ZAP uses the RETURN key
closing a location in
functions:

and other special-character commands for
a file. The close commands perform three

• Close the current location

• Direct ZAP to another location (such as the preceding location
or a location referred to by the current location)

• Open the new location

The following sections give examples of how each command works.

15.5.3.1 Closing a Location and Opening the Preceding Location
Use the circumflex (A) or up-arrow (t) command (depending on the type
of terminal you are using) to close the current location, to direct
ZAP to the preceding location, and to open that location. The
following sequence of ZAP commands and responses shows how this
command works:

2: 1201001@@
002:1201001 000000

@@
002:1201021 000111

@@
002:1201041 000222

@@
002:1201061 000333

A@@
002:1201041 000222

The RETURN key closes the first three open locations and then opens
the next location. The circumflex command closes location 120106 and
directs ZAP to open the preceding location, 120104.

15-13

TASK/FILE PATCH PROGRAM (ZAP)

15.5.3.2 Closing a Location and Opening an Offset Location Use
the underscore () or back-arrow () command to close the current
location, to direct ZAP to use the contents of the current location as
an offset from· the current location, and to open the new location.
The following sequence of ZAP commands and responses shows how this
command works:

2: 120l00/(ill)
002:120100/ 000000

(ill)
002:120102/ 111111

(ill)
002:120104/ 222222

(ill)
002:120106/ 000022

(ill)
002:120132/ 123456

The RETURN key closes the first three open locations. The underscore
command closes location 120106, directs ZAP to use the contents (22)
of the current location as the offset from the current location

=====

(

(120110), and then opens that offset location (120132). ~

15.5.3.3 Closing a Location and Opening an Absolute Location Use
the at sign (@) command to close the current location, to direct ZAP
to use the contents of the just-closed location as the absolute
address of a location, and to open that location. The following
sequence of ZAP commands and responses shows how this command works:

2: l20l00/(ill)
002:120100/ 000000

(ill)
002:120102/ 111111

(ill)
002:120104/ 120114

@(ill)
002:120114/ 114114

The RETURN key closes the first three open locations. The at sign
command closes 120104, directs ZAP to use the contents (120114) of
that location as the absolute address of the next location to open,
and then opens that location.

15.5.3.4 Closing a Location and Opening a Branch Target Location
Use the right angle bracket (» command to close the current location,
to direct ZAP to use the low-order byte of the contents of the
just-closed location as a branch offset for the address of the next
location, and then to open that location. The following sequence of
ZAP commands and responses shows how this command works:

2:l20100/(ill)
002~120100/ 005000

(ill)
002:120102/ 005301

(ill)
002:120104/ 001020

> (ill)
002:120146/ 052712

15-14

c

(=.
'---

(

TASK/FILE PATCH PROGRAM (ZAP)

The RETURN key closes the first three open locations.
bracket command closes location 120104, directs
low-order byte (020) of its contents as the brancb
address of the next location (120146), and then opens

The right angle
ZAP to use the
offset for the
that location.

15.5.3.5 Closing a Location and Opening a Previous Location - Use the
left angle bracket «) command to close the current location; to
direct ZAP to the location where the current series of underscore (),
at sign (@), and/or right angle bracket (» commands began; and then
to open that location. The following sequence of ZAP commands and
responses shows how this command works:

1202; ORffil - o,lo/ffil
'002:0,000010/ 005212

ffil
00'2:0,005224/ 001020

>ffil
'002:0,005266/ 000000

@ffil
'002:0,000000/ 000000

<ffil
'002:0,000012/ 000430

The underscore command directs ZAP to location 005224. The right
angle bracket command directs ZAP to location 005266, and the at sign
command directs ZAP to location 000000. The left angle bracket
command then directs ZAP to location 000012, which is the next
sequential address after the location where the sequence of commands
began.

15.6 USING ZAP GENERAL PURPOSE COMMANDS

This section explains the functions of ZAP general purpose commands
and shows the formats for specifying them. Table 15-4 describes the
commands.

Command

x

K

o

=

v

R

Table 15-4
ZAP General Purpose Commands

Function

Exits from ZAP; returns control to your command line
interpreter

Calculates the offset in bytes between an address and
the value contained in a Relocation Register,
displays the offset value, and stores it in the
Quantity Register (Q)

Displays the jump and branch displacements from the
current location to a target location

Displays in octal the value of the expression to the
left of the equal sign

Verifies the contents of the current location

Sets the value of a Relocation Register

15-15

====.=.= .. =.=.=--_.=.= .. =====

TASK/FILE PATCH PROGRAM (ZAP)

15.6.1 The X Command

Use the X command to exit from ZAP and then return control to your
command line interpreter.

Specify the X command in the format:

X

15.6.2 The K Command

Use the K command to calculate the offset in bytes between an address
and the value contained in a Relocation Register, to display the
offset value, and to store it in the Quantity Register (Q).

You can enter the K command in the following formats:

K

nK

a inK

Calculates the offset in bytes between the address of the
currently open location and the value of the Relocation
Register whose contents are equal to or closest to (but less
than) the value of that address

Calculates the offset in bytes between the currently open
location and Relocation Register n

Calculates the offset in bytes between address a and
Relocation Register n

ZAP responds to the K command by displaying the Relocation Register it
used and the offset value it calculated in the format:

=reg,offset

The following example shows how to use the K command:

2 : 11 72 i OR ffil
-2: 1232 i lR ffil
-2: 1202/ ffil
002:000020/ 000111

Kffil
~O, 000010

O,lOOilKffil
~1,000040

The first command sets the value of Relocation Register 0 to 001172.
The second command sets the value of Relocation Register 1 to 001232.
The slash command displays in octal format the contents of location
001202 (000111). The K command calculates the physical distance
(offset) between the address of the currently open location (001202)
and the value of the Relocation Register whose contents are equal to
or closest to (but less than) the value of the address. ZAP then
displays the number of the Relocation Register it used (0) and the
offset (00010=001202-001172). The last command adds 100 to the
address in Relocation Register 0 (001172) and then calculates the
offset between the new address 0 (001272) and the contents of
Relocation Register 1 (001232). ZAP then displays the number of the
specified Relocation Register (1) and the offset
(000040=001272-001232).

15-16

(

(

(

c

(

TASK/FILE PATCH PROGRAM (ZAP)

15.6.3 The 0 Command

Use the 0 command to display the jump and branch displacements from
the current location to a target location. A jump displacement is the
offset between the open location and the target location. The jump
displacement is used in the second word of a jump instruction if the
instruction uses relative addressing. A branch displacement is the
low-order byte of a branch instruction which, when executed, branches
to the target location.

You can enter the 0 command in the following formats:

aO

a;rO

Displays the jump and branch displacements from the current
location to the target of the branch (a)

Displays the jump and branch displacements from location a
to target location r

The following example shows how to use the 0 command:

0,4534/~
'0,4534/ 1234
45660~

-000030> 000014
-4534; 45660 ~
-000030> 000014

The first number (000030) is the jump displacement; the second number
(000014) is the branch displacement.

15.6.4 The Equal Sign (=) Command

Use the equal sign command (=) to display (in octal) the value of the
expression to the left of the equal sign.

Specify the equal sign command in the format:

expression=

The following example shows how to use the equal sign command (note
that 177777 equals -1):

2: 30/~
'002:000030/ 000000
.+177756=~

'000006

The first command displays in octal format the contents of location
000030, which are 000000. The next command adds 177756 to the address
of the currently open location (000030). ZAP then displays the value
of the specified expression (6=30+177756 or 6=30-22).

15.6.5 The V Command

Use the V command to verify that a location contains a specified
value.

Specify the V command in the format:

contents V

15-17

TASK/FILE PATCH PROGRAM (ZAP)

You use the V command to ensure that, before you have ZAP change them,
the contents being changed are what they should be. The V command is
mainly useful in indirect command files because ZAP issues an error
message and exits if the contents do not match. That way, the
contents are not changed incorrectly.

The following example shows how to use the V command; if you were
using an indirect command file, you would include this sequence of ZAP
commands in it.

0,1200/
6V
10

ZAP opens the location that is 1200 offset from the value of
Relocation Register 0 and ensures that the value contained at the
location is 6. If so, ZAP changes the 6 to 10. If the value is not
6, ZAP exits.

15.6.6 The R Command

Use the R command to specify the value for a Relocation Register. As
explained in Sections 15.2 and 15.4.2, ZAP uses these registers to
index into a program section so that you can change the contents of
locations in the program section.

Specify the R command in the format:

_contents;nR

The variable n is the number of the Relocation Register (0 through 7).

For example:

$ 3R/ (Bill
$3R/ 177777

125670; 3R (Bill
-$3R/ (Bill

$3R/ 125670

The first command accesses the contents of Relocation Register 3,
which ZAP displays in octal format as specified by the slash. The
contents of the register are 177777. The next command changes the
contents of the register to 125670. The last command again displays
the contents of the register, which have been changed correctly.

15.7 EXAMPLES

This section gives examples of ZAP usage. The examples show the /LI
switch segment table format and how you would use some of the ZAP
commands.

All of the
contained
allocation
the task.
with it.

ZAP examples in this section are based on information
in the following excerpts from a sample Task Builder memory
map and from the program code for some of the modules in
Each example follows the section of program code associated

15-18

(

c

c

c

c

c

TASK/FILE PATCH PROGRAM (ZAP)

Excerpts from Task Builder map:

MAINMEO.TSKi1 Memory allocation map TKB M40.10
14-MAR-83 16:01

I

I

Task name ••• MEO
Partition name GEN
Identification MOO
Task UIC [31,102]
Stack limits: 000300 001277 001000 00512.
PRG xfr address: 020520
Task attributes: ID
Total address windows: 2.
task image size 9184. words, I-Space
: 3520. words, D-Space
Task Address limits: 000000 043647 I-Space

000000 015507 D-Space
R-W disk b1k limits: 000002 000102 000101 00065.

MAINMEO.TSKi1 Overlay description:
I

Base Top Length

000000 023135 023136 09822. I
000000 014123 014124 06228. D

022140 043645 021506 09030. I
014124 015507 001364 00756. D

022140 022307 000150 00104. I
014124 014167 000044 00036. D

022310 022437 000130 00088. I
014170 014173 000004 00004. D

022310 022437 000130 00088. I
014170 014173 000004 00004. D

022310 022437 000130 00088. I
014170 014173 000004 00004. D

022310 022441 000132 00090. I
014170 014173 000004 00004. D

022140 023725
014124 014251

001566 00886. I
000126 00086. D

MAINO

INPUT

CALC

AADD

SUBB

MULL

DIVV

OUTPUT

MAINMEO.TSKi1
MAINO

Memory allocation map TKB M40.10
14-MAR-83 16:01

*** Root segment: MAINO

R/W mem limits: 000000 023135 023136 09822. I-Space
000000 014123 014124 06228. D-Space

Disk b1k limits: 000002 000024 000023 00019. I-Space
000025 000041 000015 00013. D-Sp*e

15-19

Page 1

Page 2

April 1983

TASK/FILE PATCH PROGRAM (ZAP)

Memory allocation synopsis:

Section Title Ident File

• BLK.:(RW,I,LCL,REL,CON) 000300 000216 00142 •
000300 000216 00142. CBTA

15-20

04.3 SYSLIB. OLB i7

April 1983

('

C

c

TASK/FILE PATCR PROGRAM (ZAP)

Page 9
*** Segment: MULL

R/W mem limits: 022310 022437 000130 00088. I-Space
014170 014173 000004 00004. D-Space

Disk blk limits: 000074 000074 000001 OOOOL I-Space
000075 000075 000001 OOOOL D-Space

MAINMEO.TSK;l
DIVV

Memory allocation map TKB M40.10
14-MAR-83 16:01

Page 10

*** Segment: DIVV

R/W mem limits: 022310 022441 000132 00090. I-Space
014170 014173 000004 00004. D-Space

Disk blk limits: 000076 000076 000001 OOOOL I-Space
000077 000077 000001 OOOOL D-Space

Page 11
*** Segment: OUTPUT

R/W mem limits: 022140 023725 001566 00886. I-Space
014124 014251 000126 00086. D-Space

Disk blk limits: 000100 000101 000002 00002. I-Space
000102 000102 000001 OOOOL D-Space

Memory allocation synopsis:

Section Title Ident

-------. BLK.:(RW,I,LCL,REL,CON) 022140 000374 00252.
022140 000042 00034. SAVAL 00
022202 000074 00060. CATB 03
022276 000126 00086. CDDMG 00
022424 000110 00072. C5TA 02

Example 1:

File

SYSLIB.OLB;7
SYSLIB.OLB;7
SYSLIB.OLB;7
SYSLIB.OLB;7

In this example, the segment table for taskMAINMEO is requested.
Note that the segment table corresponds exactly to the overlay
description list given in the Task Builder map. The sequence of ZAP
commands is as follows:

15-20.1 April 1983

====-=-= ===. _ __ -_~_~--c-c,.-~ .. ~_ ~_ -_~-~~ ___ . ~~~._~.c - ---.------------- _ .. --------
- - ----- -- -- .-

TASK/FILE PATCH PROGRAM (ZAP)

>ZAP tBfl)
ZAP>MAINMEO/LltBfl)
ZAP Version V02.01 COPYRIGHT (c) DIGITAL EQUIPMENT CORPORATION 1983
Segment Table
000002: 000000-022137
000025: 000000-014123
000042: 022140-043647
000064: 014124-015507
000066: 022140-022307
000067: 014124-014167
000070: 022310-022347
000071: 014170-014173
Ocr0072: 022310-022437
000073: 014170-014173
000074: 022310-022437
000075: 014170-014173
000076: 022310-022443
000077: 014170-014173
000100: 022140-023727
000102: 014124-014253

MAINO
MAINO
INPUT
INPUT
CALC
CALC
AADD
AADD
SUBB
SUBB
MULL
MULL
DIVV
DIVV
OUTPUT
OUTPUT

I-space root
D-space root

l- and
D-space
1- and
D-space

1- and
D-space
1- and
D-space
1- and
D-space
l- and
D-space

1- and
D-space

In Example 1, the first command line invokes ZAP and the second
command line requests the segment table for the task MAINMEO. The
/List switch directs ZAP to give the starting disk block for the root
segment of the task (in this example, MAINO) and for each segment
overlaid on the root of the task. The /List switch also lists the
base and top addresses, plus the segment text string for each segment.

Because this is an 1- and D-space overlaid task, there is an I-space
root segment and a D-space root segment and each is a part of the root
segment of the task MAINO. In this example, the I-space root segment
begins at disk block 2. The addresses for the I-space root segment
range from 000000 to 022137. The next line of numbers is for the
D-space root segment which begins at disk block 25. The addresses for
the D-space root segment range from 000000 to 014123. The next line
of numbers is for the segment INPUT. That I-space segment begins at
disk block 42 and the D-space segment begins at disk block 64. The
I-space addresses range from 022140 to 043647 and the D-space
addresses range from 014124 to 015507. The table continues for the
remaining overlaid segments in the task MAINMEO.

Example 2:

In this example, the contents of a location in another task module
(TEST.MAC) are being changed. The following excerpt from the module
shows the associated code.

TEST - TEST MACRO FILE

1269
1270
1271
1272
1273
1274 010132
1275 010134
1276 010140
1277 010142
1278 010146
1279 010150

010146
012704
005003

010146
012704

041114

050123

MACRO Mll13 18-MAR-81 07:48 PAGE 8-1

15-20.2

THIS IS A PART OF THE MODULE
TEST.MAC

WHICH IS IN THE ROOT SEGMENT:

MOV
MOV
CLR
CALL
MOV
MOV

TEST

R1,- (SP)
#"LB,R4
R3
$FNDUB
R1,-(SP)
#"SP,R4

April 1983

c

(

C

(\

(~

TASK/FILE PATCH PROGRAM (ZAP)

The first command line invokes ZAP and the second command line
requests the segment table for TST. The /List switch gives the
starting disk block for the root task and for each task overlaid to
the root task. The switch also lists the base and top addresses for
each of the tasks.

In this example, TEST (the root task) begins at disk block 42 and its
addresses range from 120000 to 151513. The next line of numbers is
for the task module TSTC1.MAC. That task begins at disk block 74 and
its addresses range from 151514 to 153133. The table continues for
the remaining tasks.

Example 2:

In this example, the contents of a location in another task module
(TEST.MAC) are being changed. The following excerpt from the module
shows the associated code.

TEST - TEST MACRO FILE MACRO Mll13 18-MAR-81 07:48 PAGE 8-1

1269
1270
1271
1272
1273
1274 010132 010146
1275 010134 012704 041114
1276 010140 005003
1277 010142
1278 010146 010146
1279 010150 012704 050123

The sequence of ZAP commands is:

42: 121244; ORml
-0,10136"ml
042:131402" LB

'ml
042:131402' L

, ml
042:131403' B

120 ml
-0,10136" ml
042:131402" LP

THIS IS A PART OF THE MODULE
TEST.MAC

WHICH IS IN THE ROOT SEGMENT:

MOV
MOV
CLR
CALL
MOV
MOV

TEST

R1,-(SP)
#"LB,R4
R3
$FNDUB
R1, - (SP)
#"SP,R4

The first command line loads the starting address of TEST.MAC (121244
in disk block 42) into Relocation Register O. The second command line
displays as an ASCII word the contents of location 10136 of the
module. The contents are LB. The first apostrophe command (')
displays the first byte of the word (L) and the second command
displays the second byte (B). The following command line changes the
contents of the second byte to 120, which is the ASCII code for the
letter P. The last command displays the new contents of location
10136, which are now LP.

Example 3:

In this example, the contents of a location are also being changed.
This time, the location is in the module TSTVB1.MAC. The following
excerpt is the associated code.

15-21

TASK/FILE PATCH PROGRAM (ZAP)

TSTVBl - TSTVBl MACRO FILE MACRO Mll13 lS-MAR-Sl 07:52 PAGE 4-2

PART OF MODULE TSTVB 1. MAC
WHICH IS ALSO IN THE ROOT SEGMENT:

TEST

TST R2
SEQ 70$

153
154
155
156
157
15S
159
160

000334
000336
000340
000346

005702
001404
052767
000403

000060 172516 SIS #60, SR3

The sequence of ZAP commands is;

42:133470;lR<RET>
-1, 342/<RET>
042:134032/ 000060

100<RET>
-1, 342/<RET>
042:134032/ 000100

SR 75$

The first command line loads the starting address of TSTVBl.MAC
(133470 in disk block 42) into Relocation Register 1. The second
command line displays in octal the contents of location 342 in the
module. The third command line changes the contents of this location
from 60 to 100. The last command line displays the new contents
(again in octal).

Example 4:

In this example, the operation code (op code) for one of the
instructions in another module is being changed. The module is
TSTCM.MAC, and the following excerpt is the associated code.

The

TSTCM - TSTCM MACRO FILE

402
403
404
405 001272 073127 177766
406 001276 010037 OOOOOG
407 001302 062701 140002

sequence of ZAP commands is:

113: 154530;R2 ([®
-2, l302/ ([®
113:156032/ 062701

162701 ([®
-2,1302/00)
113:156032/ 162701

X

MACRO Ml113 lS-MAR-Sl 07:47 PAGE 3-7

PART OF THE MODULE TSTCM.MAC
WHICH IS IN THE SEGMENT: TSTCM

ASHC
MOV
ADD

:f/:-l0.,Rl
RO,@:f/:KISAR6
:f/:l40000+2, Rl

The first command line loads the starting address of TSTCM.MAC (154530
in disk block 113) into Relocation Register 2. The second command
line displays in octal the current instruction contained in location
1302. The instruction includes the op code 06 for the ADD operation.
T~e third command line changes the op code to 16, which signifies the
SUBTRACT operation. The fourth command line displays the new contents
of the location and the X command ends the ZAP session.

15-22

(

c

(

c

(

(

(

TASK/FILE PATCH PROGRAM (ZAP)

15.8 ZAP ERROR MESSAGES

This section lists the
condition that causes
message.

messages generated by ZAP, explains the
each message, and suggests a response to the

ZAP -- ADDRESS NOT WITHIN SEGMENT

Explanation: The address specified was not within the overlay
segment specified.

User Action: Reenter the command line, specifying the correct
address or overlay segment number.

ZAP -- CANNOT BE USED IN BYTE MODE

Explanation: The at sign (@), underscore (), and right angle
bracket (» commands cannot be used when a-location is opened as
a byte.

User Action: If the location is an even address, open the
location as a word.

ZAP -- ERROR IN FILE SPECIFICATION

Explanation: The file specification was entered incorrectly.

User Action: Reenter the command line, using the correct file
specification.

ZAP -- ERROR ON COMMAND INPUT

Explanation:
being read.

An I/O error occurred while a
This could be a hardware error.

command line was

User Action: Ensure that the hardware is functioning properly.
If it is, reenter the command line. If not, call your D1GITAL
Field Service representative.

ZAP -- I/O ERROR ON TASK IMAGE FILE

Explanation: An I/O error occurred while the file being modified
was being read or written. This could be a hardware error.

User Action: Ensure that the hardware is functioning properly.
If it is, reenter the command line. If not, call your DIGITAL
Field Service representative.

ZAP -- NO OPEN LOCATION

Explanation: You attempted to modify the contents of a closed
location.

User Action: Open the location to perform the modification.

15-23

TASK/FILE PATCH PROGRAM (ZAP)

ZAP -- NO SUCH INTERNAL REGISTER

Explanation: The character following a dollar sign was not a
valid specification for the internal register.

User Action: Reenter the command line, specifying the correct
val ue.

ZAP -- NO SUCH RELOCATION REGISTER

Explanation: An invalid number was specified for a Relocation
Reg ister.

User Action: Relocation Registers are numbered 0 through 7. Any
other numbers are illegal. Reenter the command line, specifying
a valid Relocation Register number.

ZAP -- NO SUCH SEGMENT

(

Explanat.ion: The starting disk block was not the start of any C.'
segment in the task image file on disk. _

User Action: Reenter the command line, specifying the correct
disk block address.

ZAP-- NOT A TASK IMAGE OR NO TASK HEADER

Explanation: An error occurred while the segment tables were
being constructed. Possibly, the file is not a task image, the
/AB switch was not specified, or the task image is defective.

User Action: Terminate the ZAP session, then. try invoking ZAP
with the lAB switch specified.

ZAP NOT IMPLEMENTED

Explanation: You entered a command that is recognized by ZAP,
but not implemented.

User Action: Ensure that you entered the command correctly.

ZAP -- OPEN FAILURE FOR TASK IMAGE FILE

Explanation: The file to be modified could not be opened.
Possibly, the file does not exist, the file is locked, the device
is not mounted, or you do not have write-access to the file.

User Action: Check the file specification for errors; ensure
that the volume is properly mounted; or use PIP to check your
file access privileges (see Chapter 3).

15-24

(

c

-~---.. -====

(

r-.
L

c

c

TASK/FILE PATCH PROGRAM (ZAP)

ZAP -- SEGMENT TABLE OVERFLOW

Explanation: ZAP does not have enough room in its partition to
construct a segment table.

User Action: Install ZAP in a larger partition or wi th a larger
address space. (See the description of the INSTALL command in
the RSX-llM/M-PLUS MCR Operations Manual or the RSX-11M/M-PLUS
Command Language Manual.)

ZAP -- TOO MANY ARGUMENTS

Explanation: You entered more arguments on the command line than
are allowed.

User Action: Reenter the command line, specifying the correct
syntax.

ZAP -- UNRECOGNIZED COMMAND

Explanation: ZAP did not recognize the command as entered.

User Action: Check the syntax of the command you are trying to
execute, then reenter the command line, specifying the correct
syntax.

ZAP -- VERIFY FAILURE

Explanation: The V command determined that the contents of a
location did not match the expected value. ZAP terminates.

User Action: If applicable, check for errors in the indirect
command file. Ensure that the contents of the file are what they
should be. Locate the cause of the error and reenter the command
line. Ensure that you are correcting the right file or file
version.

15-25

(

c

c

(

(

(

c

c

(

APPENDIX A

COMMANDS AND SWITCHES

A.I INTRODUCTION

This appendix presents a summary of the commands and switches used by
the RSX-IIM/M-PLUS utilities described in this manual. Each section
number of the appendix corresponds to the chapter discussing that
utility. For example, Chapter 3 and Section A.3 both deal with PIP.

Commands and switches are presented alphabetically within the sections
of this appendix, regardless of their presentation in the various
chapters.

A.2 EDI COMMAND SUMMARY

Add string

Adds the text specified by string to the end of the current line.

AP string

Begin

Same as ADD, except that the new current line is printed.

Sets the current line to the line preceding the top line of the
block buffer or input file.

BLock[ON] or [OFF]

Switches text access modes.

BO [TTOM]

Sets the current line pointer to the bottom of the block buffer
or input file.

[n]Change /stringl/string2[/]

Replaces stringl with string2 n times in the current llne

CLose [filespec]

Transfers the remalnlng lines in the block buffer and the input
file into the output file, then closes both the input file and
the output file. If filespec is given, the output file is
renamed.

A-I

COMMANDS AND SWITCHES

CLOSES

Closes the secondary input file.

CDL [filespec]

Same as the CLOSE command, except that the input file is deleted.

CC [character]

Changes the command concatenation character to the specified
character (the default is &).

Closes files and terminates the editing session.

Delete [nJ or [-n]

Deletes the current and next n-l lines, if n is positive;
deletes n lines preceding the current line, but not the current C
line, if n is negative. [-n] is valid in block mode only.

DP [n] or [-n]

Same as DELETE, except that the new current line is printed.

End

Same as the BOTTOM command.

ERASE [n]

Erases the current line or the block buffer and the next n~l
blocks.

Prints the previous line, makes it the
exits from input mode (block mode only).
NP-I.

new current line, and
<ESCAPE> is the same as

EXi t [filespec]

Closes files, renames the output file, and terminates the editing
session.

EDx [filespec]

FF

Transfers remaining lines in block buffer and input file to
output file, and closes the file. If filespec is given, the
output file is renamed. The command then deletes the input file
and terminates the editing session.

Inserts a form feed into the block buffer (used to delimit a
page) •

FIle filespec

Transfers lines from the input file to both the output file and
the file specified by filespec.

A-2

c

(

=====- . - --.-- --

C"

c

c

c

l

----~--""~-"-

COMMANDS AND SWITCHES

[n] Find [string]

Finds the line starting with string or, if n is specified, the
nth line starting with string.

INsert [string]

KILL

Inserts string immediately following the current line. If string
is not specified, EDI enters input mode.

Closes the input and output files, and deletes the output file.

[n]LC /stringl/string2[/]

LIst

LP

Changes all occurrences of stringl in current line and n-l lines
to string2.

Prints on the user terminal all lines remaInIng in the block
buffer or input file, starting with the current line.

Lists the text in the block buffer or input file on the pseudo
device CL:, starting with the current line.

[n] Locate string

Searches for string or, if n is specified, the nth occurrence of
string. In block mode, the search stops at end of the current
block.

MACRO x definition

MCall

Defines macro number x to be definition. The value x may be 1,
2, or 3.

Retrieves macro definitions stored in the file MCALLin.

[n] Mx [a]

Executes macro x for n times, passing it the numeric argument a.

[n]<definition> (MACRO IMMEDIATE)

Allows you to define and execute a macro n times in one step.
The macro is stored as macro number 1.

Next [n] or [-n]

Establishes a new current line plus or minus n lines from the
current line.

NP [n] or [-n]

Same as NEXT command, except that the new current line is
pr inted.

A-3

COMMANDS AND SWITCHES

OPens filespec

Opens the specified secondary input file.

OUtput [ON] or [OFF]

Continues or discontinues writing to output file (line-by-line
mode) •

Overlay [n]

Deletes the current line ~nd the next n-l lines, enters input
mode, and inserts new lines as typed in place of original lines.

PAGe [n]

Enters block mode, if not already in block mode, and reads page n
into the block buffer.

[n] PFind (string)

(

Searches successive block buffers until the nth occurrence of r- .
string is found. The string must begin in column 1. ~

[n]PLocate (string)

Searches successive block buffers for the nth occurrence of
string. The string can occur anywhere in the line.

PAste /stringl/string2[/]

the remainder of the block buffer or .input file are searched for .
Same as the LINE CHANGE (LC) command, except that a11 lines in (" .

stringl. Wherever found, stringl is replaced with string2.

Pr int [n]

Prints the current line and the next n-l lines.
printed becomes the current line.

REAd [n]

The last line

Reads the next n blocks of text into the block buffer.

RENew [n]

Writes the current block to the output file and reads new block n
from the input file (block mode only).

Prints the next line, makes it the current line, and exits from
input mode. Pressing the RETURN key is the same as NP+l.

Retype string

Replaces the current line with the text of string. If string is
not specified, the line is deleted.

SAve [n] [filespec]

Saves the current line and the next n-l lines in the file
specified by filespec. If filespec is not given, the lines are
saved in SAVE.TMP.

A-4

(1

(

(

c

(

c

COMMANDS AND SWITCHES

SC /stringl/string2[/]

Locates stringl and replaces it with string2.

SP

Reestablishes the primary file as the input file.

SS

Selects the secondary file that will be the input file.

SIZE n

Specifies the maximum number of lines to be read into the block
buffer.

TAb [ON] or OFF

Top

TOF

Turns automatic tabbing on or off.

Same as BEGIN command.

In block mode, returns to the top of the input file and saves all
pages edited. TOF reads in a new block after writing the
previous block to the output file.

TYpe [n]

Prints next n lines. Same as PRINT command in line-by-line mode.
In block mode, the current line pointer does not change unless
EOB is reached.

UNSave [filespec]

Inserts all lines from the specified file following the current
line. If filespec is not given, SAVE.TMP is used.

UC [ON] or OFF

Turns uppercase conversion of lowercase characters on or off.

Verify [ON] or OFF

Write

Specifies whether locator and change commands are verified.

Writes the contents of the current block buffer ~o the output
file and then erases the block buffer.

A.3 PIP COMMAND SUMMARY

outfile=infilel[,infile2 ••• ,infilen]/AP[/FO]

Opens an existing file (outfile) and appends the input file(s) to
the end of it. UFO is the File Owner subswitch.)

A-5

COMMANDS AND SWITCHES

outfile/BS:n=infilel[••• ,infilen]

Defines the block size for magnetic tapes.

outfile=infilel [,infile2 ••• ,infilen] [[/ME] [/subswitch(es)]]

Creates a copy of a file on the same or another device. The /ME
(Merge) switch creates a new file from two or more existing
files. Subswitches are one or more of the following:

/BL:n[.]
/CO
I-CO
/FO
/NV
/SU

Block allocated
Contiguous output
Output can be noncontiguous
File Owner
New Version
Supersede

outfile/CD=infilel[,infile2 ••• ,infilen]

outf ile=infileljCD [, infile2 ••• , infil en]

Gives the output file the creation date of the input file rather
than the date of transfer. This switch cannot be used with the
Merge switch (/ME) and/or with an output magnetic tape device.

/DD:startdate:enddate

Restricts file searches to files created during a specified
period of time.

infilel[,infile2 ••• ,infilen]/DE[/LD]

Deletes files from a UFD. (/LD is the List Deleted files
subswi tch.) See the sections on Delete (3.2.2.5) and Purge
(3.2.2.17) for a complete description of the List Deleted files
subswitch.

ddnn: [ufd]/DF or ddnn:/DF or [ufd]/DF or /DF

Changes the default device and/or UFD for the current PIP task.

outf ile= infil el [, i nf ile 2 ••• , infil en] /EN [/NV]

Enters a synonym for a file in a directory or directories on the
same device with an option to force the version number of outfile
to one greater than the latest version for the file. (/NV is the
New Version subswitch.)

infilel/EOF [:block :byte] [••• , infilen/EOF [:block :byte]]

Specifies the end-of-file pointers for a file.

filespec/EX

c

c

(

(~

Excludes all the files specified with the file specification ()
during a file search. ~ .

A-6

~~- .--------~--~--

======~~-~ -c

c

COMMANDS AND SWITCHES

outfile=/FI:filenum:seqnum

Accesses an existing file by its file identification number.

[ddnn:] IFR

lID

Displays the amount of available space on a specified volume, the
largest contiguous space on that volume, the number of available
headers, and the number of headers used. If ddnn: is not
specified, it defaults to SYO:.

Identifies the version of PIP being used and if PIP is linked to
ANSFCS.

[listfile=]infilel[••• ,infilen]/LI[subswitch]

Lists one or more files contained in a UFD with an option to
specify directory listing formats ([listfile] defaults t6 TI: if
not specified). In place of ILI, you can specify one of the
alternate mode subswitches:

IBR Brief format
IFU[:n[.]] Full format
ITB Total blocks format

infilel[,infile2 ••• ,infilen]/sw/NM

Deletes certain PIP error messages, for example, NO SUCH FILE (S).
Isw can be ILl (List directory), IDE (Delete files), or IPU
(Purge files), or any of their respective subswitches, or IUN
(Unlock files).

infile/PR[fSY[:RWED]] [fOW[:RWEDlJ [fGR[:RWED]] [fWO [: RWED]] [fFO]

Sets the protection status for a file. The switches are:

ISY
lOW
IGR
IWO
IFO

The

R
W
E
D

system access rights
owner access rights
group access rights
world accesS rights
File OWner subswitch

privileges are:

Read
Write
Extend
Delete

You can specify any of the letters in any order.

infilel [, infile2 ••• , infilen] IPU [:n] [fLD]

Deletes a specified range of obsolete versions of a file. (The
switch never deletes the latest version of a file.) (/LD is the
List Deleted files subswitch.)

A-7

COMMANDS AND SWITCHES

outfile=infilel[,infile2 ••• ,infilen]/RE[/NV]

Changes the name of a file with an option to force the version (
number of outfile to be one greater than the latest version for ,
the file. (/NV is the New Version subswitch.)

infilel[,infile2 ••• ,infilen]/RM

Removes an entry from a UFO, but does not delete the file
associated with that entry.

outfile/RW=infile or outfile=infile/RW

Rewinds a magnetic tape. When you specify /RW with the output
file specification, PIP begins writing the file at the beginning
of the tape. When you specify /RW with the input file
specification, PIP rewinds the tape before searching for the
input file.

outdsk:outfile/SB=inmag:infile

The file copied to disk from magnp.tic tape may have records
crossing block boundaries. (lSB is the defaul t.) If you specify
/-SB, the records will not cross block ~oundaries.

infilel[,infile2 ••• ,infilen]/SD

Prompts for user response before deleting files.

infilel[,infile2 ••• ,infilen]/SP[:n]

Specifies a list of files to be printed on a line printer (n is
the number of copies) •

outfile=infile/SR

(

Allows shared reading of a file that has already been opened for C·
writing.

/TD

Restricts file searches to files created on the current day.

infilel[,infile2 ••• ,infilen]/TR

Truncates files to their logical end-of-file point.

outfile/UF[/FO]=infilel[,infile2 ••• ,infilen]

Creates a User File Directory entry in the Master File Directory
of the volume specified with outfile.

A-8

(

(

(

COMMANDS AND SWITCHES

infilel[,infile2 ••• ,infilen]/UN

Unlocks a file that was locked as a result of being improperly
closed.

outfile=infilel[,infile2 ••• ,infilen]/UP[/FO]

Opens an existing file (outfile) and writes new data (infile)
into it from the beginning. UFO is the File Owner subswitch.)

A.4 FLX COMMAND SUMMARY

The FLX commands generally have the form:

outspec/sw=infilel[,infile2 ••• ,infilen]/switch

/switch can be one or more of the following:

/BL:n[.]

/BS:n

/CO

/DE

/DI

Specifies the number of contiguous blocks (n) in octal or decimal
to be allocated to the output file.

Specifies the block size (n) for cassette tape output.

Specifies that the output file is to be contiguous.

Deletes files from a DOS-II or RT-ll (used with the /RT switch)
volume.

Causes a directory listing of a cassette or DOS-II volume or,
when used with the /RT switch, of an RT-ll volume. The directory
is placed in the specified output file.

/DNS:n

/DO

/FA:n

/FB:n

Specifies a density of 800, 1600, or 6250 bpi for a magnetic tape
volume.

Identifies the volume as a DOS-II formatted volume.

Specifies formatted ASCII transfer mode fils format.

Specifies formatted binary transfer mode file format.'

A-9

COMMANDS AND SWITCHES

IFC

Specifies that FORTRAN carriage control conventions are to be (
used.

lID

Displays the current version number of FLX.

IIM:n

Specifies image mode (n is in decimal bytes).

ILl

Same as IDI.

/NU:n[.]

IRS

IRT

Used with IZE arid IRT switches;
directory blocks (n) in octal or
initializing an RT-ll disk or DECtape.

specifies the number of
decimal to allocate when

Identifies the volume as a Files-II formatted volume.

Identifies the volume as an RT-ll formatted volume.

IRW and I-RW

ISP

lUI

Specifies whether the magnetic tape will rewind before FLX begins
the file transfer.

Specifies that the converted file is to be spooled by the print
spooler or the Queue Manager.

c

(,

Specifies that the output file is to have the same UFO as the ~
input file. .

/VE

Verifies each record written to a cassette.

IZE r: n.]

Initializes cassettes or DOS-II volumes or, when used with the
/RT switctt, RT-ll volumes. Initializing erases any files already
on the volume.

A-ID

c

c

(~

COMMANDS AND SWITCHES

A.5 FMT COMMAND SUMMARY

The general format of an FMT command line is:

FMT ddnn: [/switchl ••• /switchn]

/switch can be one or more of the following:

/BAD

Runs the Bad BLock Locator Utility if it is installed. Notethat
this switch can only be used with operating systems that allow
spawning of tasks. RSX-llM provides spawned tasks as a system
generation option. RSX-llM-PLUS always incluc;1es support for
spawned tasks.

/DENSITY or /DENS

/ERL

Selects high (double) or low (single) density for RX02 floppy
diskettes.

Determines the maximum number of errors FMT will allow on the
volume.

/MANUAL or /MAN

Enters manual operating mode and formats the sector or track you
specify.

/NOVERIFY or /NOVE or /-VERIFY or /-VE

/OVR

Inhibits the default verification of a successful FMT operation.

Overrides or ignores the manufacturer's bad block sector file
(MDBSF) •

/VERIFY or IVE

/WLT

/@Y

Verifies that an FMT operation was successfully completed.
switch is the default.

This

Rewrites the MDBSF (on the last track of the device) to add bad
sectors found during an FMT operation.

Informs FMT that it is receiving input from an indirect command
file. User intervention is not allowed during the operation.

A-ll

COMMANDS AND SWITCHES

A.6 BAD COMMAND SUMMARY

The format for executing BAD is:

ddnn: [/swl. •• /swn]

/sw can be one or more of the following:

/ALO:volume label

Prompts you for blocks to be allocated to BADBLK. SYS . and to be
entered in the bad block descriptor file.

/CSR=nnnnnn

/LI

/MAN

Specifies the CSR address of a device that is not in a standard
location (stand-alone version of BAD only) •

Lists bad blocks as they are located.

Allows you to enter bad blocks, which are then included in the
bad block descriptor file.

/NOWCHK

Negates the effect of /WCHK (see below).

/OVR

Creates the bad block descriptor file on a last-track device.

/PAT=m:n

Specifies the double-word data pattern used to locate bad blocks.

/RETRY

Recovers soft errors.

/UPD

Reads the bad block descriptor file and prompts for user entries.

/VEC=nnn

Specifies the interrupt vector address of a device that is not in
a standard location (stand-alone version of BAD only) •

/WCHK

Causes a write-check operation to take place
operation (stand-alone version of BAD only) •
valid for DT:-, DX:-, or DY:-type devices.

A-12

after each write
The switch is not

c

c

(

(

.~=========~~

(

c

COMMANDS AND SWITCHES

A.7 BRU COMMAND SUMMARY

The format for executing BRU is:

[/qual ifiers] indevl:, ••• [fil espec, •••] outdevl:, ••• [filespec, •••]

/qualifiers can be one or more of the following:

/APPEND

Appends new backup data to a tape with one or more backup sets.

BACKUP SET:name

Specifies the name of the backup set to be placed on tape.

/BAD [: MANUA L]
:AUTOMATIC
: OVERRIDE

Enters the locations of bad blocks on volumes.
/BAD: AUTOMATIC.

/BUFFERS :number

The default is

Specifies the default number of directory File Control Blocks
(FCBs) per volume kept by the ACP.

/COMPARE

Compares the data on the output volume to the data on the input
volume and reports any differences.

/CREATED:IBEFORE :dd-mmm-yy I
BEFORE: hh :mm: ss
BEFORE (dd-mmm-yy hh:mm:ss)
AFTER:dd-mmm-yy
AFTER:hh:mm:ss
AFTER: (dd-mmm-yy hh:mm:ss)

Directs BRU to process files created before or after a specified
date and/or time.

/DENSITY: number

Specifies the data density at which BRU writes to tape. The
default is /DENSITY:6250.

/DIRECTORY

Displays information (such as backup set names, file names" or
volume number of a tape) for a specified tape volume.

/DISPLAY

Displays at your terminal the UFD and file name of each file
being backed up.

/ERRORS:number

Sp~cifies the number of nonfatal I/O errors BRU tolerates on tape
reads during a r.estore operation before automatically terminating
execution. The default is 25(10) errors.

A-13

COMMANDS AND SWITCHES

/EXCLUDE

Excludes selectively from a back-up or restore operation all
files specified on the command line.

/EXTEND:number

Specifies the number of blocks by which a file is extended when
that file has exhausted its allocated space.

/HEADERS : n umbe r

Specifies the number of file headers to allocate initially to the
index file.

/INITIALIZ E

Directs BRU to initialize the output disk before proceeding
the operation.

/INVOLUME:name

Specifies the volume label of the input disk.

/LENGTH:number

Specifies the length of the output tape in decimal feet.

/MAXIMUM :number

with

Specifies the maximum number of files that can be placed on a

c

volume as determined by the number of file headers in the C "
volume's index file. ,

/MOUNTED

Allows you to back up files from a disk that is mounted (with the
MeR or DCL MOUNT commands) as a Files-II volume.

Directs BRU to
identical file
file.

/NOINITIALIZ E

resolve conflicts resulting from files with
specifications by creating a new version of the

Specifies that you do not want to initialize the output disk
because it is already in Files-II format.

/NOPRESERVE

Specifies that you do not want to preserve file identifiers.

/NOSUPERSEDE

Resolves the conflict of files on the output volume having file
specifications identical to files on the input volume by not
transferting the file on the input volume. Therefore, the file
on the output volume is not superseded. (The defaul t is
/NOS UPERSEDE.)

A-14

(

c

c

COMMANDS AND SWITCHES

/OUTVOLUME:name

Specifies the volume label of the output disk. The label can be
up to 12(10) characters long.

/POSITION:{BEGINNING }
MIDDLE
END
BLOC K: n urn be r

Specifies the location of the index file on the output disk
volume.

/PROTECTION:{SYSTEM:value}
OWNER:value
GROUP:value
WORLD: val ue

Specifies the default protection status for all files created on
the output volume being initialized.

/REVISED:IBEFORE:dd-mmm_yy I
BEFORE: hh :mm: ss
BEFORE: (dd-mmm-yy hh:mm:ss)
AFTER:dd-mmm-yy
AFTER:hh:mm:ss
AFTER: (dd-mmm-yy hh:mm:ss)

Directs BRU to process files revised before or after a specified
date and/or time.

/REWIND

Rewinds the first tape of a tape set before performing the
operation.

/SUPERSEDE

Resolves file ppecification conflicts by deleting the old file on
the output volume and replacing it with the file from the input
volume. (The defaul t is /NOSUPERSEDE.)

/TAPE_LABEL:label

/UFD

Specifies a 6-character ANSI volume identifier for identifying
the tape volume.

Directs BRU to create UFDs (if they do not already exist) on a
mounted output volume, then copy into them the files from the
same UFDs on the input volume.

/VERIFY

Copies data from the input volume to the output volume, compares
the volumes, and reports any differences.

/WINDOWS :number

Specifies for the output disk the default number of mapping
pointers allocated for file windows. The default number is the
same as for the input disk.

A-15

COMMANDS AND SWITCHES

A.S DSC COMMAND SUMMARY

The format fDr executing DSC is:

outdev [s] : [label] [/swi tch] =indev [s] : [label] [/swi tch]

/switch can be one or more of the following:

/AP

Appends a DSC file to the first volume of a magnetic tape set
that already contains a DSC file.

NOAUTO
{

MAN J
/BAD= ~~:NOAUTO

MAN: OVR

Allows manual entry of bad block locations; can supplement,
override, or ignore the disk's own bad block file.

(

/BL=n or /BL:n c:-
Sets the number of 256-word blocks DSC can include in each of its
two buffers.

/CMP

Compares input and output volumes for differences.

/CSR=xxxx

Specifies control status addresses for a specific Status Control
Block (SCB). /CSR is valid only with the stand-alone version of
DSC.

/DENS=1600 or /DENS:1600
/DENS=SOO:1600 or /DENS:SOO:1600
/DENS=6250

Overrides the DSC default storage density for magnetic tapes of

c

SOO bpi. The first form of the switch creates magnetic tapes at C
1600 bpi density. The second form (the split density switch)
creates magnetic tapes with volume header information at SOO bpi

/RW

and the rest of the tape at 1600,bpi. The third form creates
magnetic tapes at 6250 bpi. The /DENS=6250 option is valid with
TU7S tapes only.

Rewinds all volumes in a magnetic tape set before execution of
the current command line.

/TM02=x

Specifies the physical unit number of the formatter on the
RHll/RH70 controller (stand-alone version of DSC only) •

/UNIT=x

Specifies the physical unit that will be referenced by the
indicated Unit Control Block (UCB). The /UNIT switch is valid (
only with the stand-alone version of DSC. ~

A-16

--~--="=======

r

c

c

(-

COMMANDS AND SWITCHES

/VE

Copies data from the input volume and compares it with the output
volume following the data transfer.

/VEC=xxx

Specifies the vector address for a specific Status Control Block
(SCB) • The /VEC switch is valid only with the stand-alone
version of DSC.

A.9 VFY COMMAND SUMMARY

listfile,scratchdev=indev/DE
or

indev/DE

Resets the marked-for-delete indicators in the file header area
of those files marked for deletion. but never actually deleted.

listfile,scratchdev=indev/DV
or

indev/DV

Validates directories against the files they list.

listfile=indev/FR
or

indev/FR

Displays the amount of available space on a volume.

listfile,scratchdev=indev/HD
or

indev/HD

Recognizes all bad file headers on a volume. The /AL subswitch
allows all bad headers to be automatically deleted with no user
intervention.

listfile,scratchdev=indev/LI
or

indev/LI

Lists the index file by file identification.

listfile,scratchdev=indev/LO
or

indev/LO

Scans the file structure looking for files that are not in any
directory and cannot be referenced by file name.

A-17

listf~le=indev/RC[:n]
. or

indev/RC [:n]

COMMANDS AND SWITCHES

Ensures that every block of every file on the specified volume
can be read. The optional parameter [:n] indicates how many
blocks are to be read at a time.

listfile,scratchdev=indev/RE
or

indev/RE

Recovers blocks that appear to be allocated but ~re not contained
in any file.

listfile,scratchdev=indev/UP
or

indev/UP

Allocates blocks that appear to be available but are actually
allocated to a file.

A.IO LBR COMMAND SUMMARY

outfile/CO:size:ept:mnt:=infile

Compresses a library file by physically deleting logically
deleted records I putting the free space at the end of the file, (._
and making the free space available for new library module
inserts.

outfile/CR:size:ept:mnt:libtype=infiletype

Allocates a contiguous library file pn a direct access device
(for example, a disk).

outfile/DE:modulel[:module2 ••• :modulen]

Logically deletes library modules and their associated entry
points from a file.

outfile/DF:type •••
or

/DF:type

Specifies the default library file type.

outfile/DG:globall[:globaI2: ••• :globaln]

Deletes the specified library module entry points from the entry
point table.

A-18

(

(

c

c

c

COMMANDS AND SWITCHES

outfile[/EP]=infile[••• ,infilen]
or

outfile=infile [/EP] [••• , infilen [/EP]]

Includes or excludes entries in the entry point table.

outfile=infile/EX[:modulenamel: ••• :modulenamen]

Reads (extracts) one or more modules from a library and writes
them into the specified output file.

outfile/IN=infilel[,infile2 ••• ,infilen]
or

outfile=infile/IN:name:op:op:op:op (universal)

Inserts library modules into a library file.

outfile[,listfile]/switch(es)

Lists all modules in the library file plus additional
information, depending on which form of the switch you use:

/LI Lists all modules in the library file.

/LE Lists all modules in the library file and their
corresponding entry points.

/FU Lists all modules in the library file and provides a
full module description that includes the size, date of
insertion, and module-dependent information.

outfile/MH:module:op:op:op:op

Modifies the optional user-specified information in the module
header of a universal library.

outfile/RP=infilel [, infile2 ••• , infilen] (global format)
or

outfile=infilel/RP [, infile2 [fRP] ••• , infilen [lRP]] (local format)/
or //

outfile/RP:name :op:op:op:op=infilel [, infile2 ••• , infilen] (universal/global format)
or

out fil e= in fil el/RP: name :op: op: op: op [, in file 2 ••• , infilen] (un i ver sal/local fo rmat)

Replaces or, in certain cases, inserts library modules in a
library file.

outfile,listfile/SP

Spools the listing file for printing. This is the default
setting; use /-SP to prevent the file from being printed.

outfile=infilel/SS[,infile2[/SS] ••• ,infilen[/SS]]

Sets the selective search attribute bit in the object module
header.

A-19

COMMANDS AND SWITCHES

outfile/SZ=infilel[,infile2 ••• ,infilen] (global format)
or

outfile=infilel/SZ[,infile2[/SZ] ••• ,infilen[/SZ]] (local format)

Reduces the size of macro definitions by removing comments, blank
lines, and trailing blanks and tabs from the macro text.

A.ll DMP COMMAND SUMMARY

The format for executing DMP is:

[outfile] [/switch(es)] [=inspec] [/switch(es)]

/switch can be one of the following:

/AS

Specifies that data be dumped one byte at a time in ASCII mode.

/BA:n:m

Specifies a two-word base block address.

/BL:n:m

Specifies the first and last logical blocks to be dumped.

/BY

Specifies that data be dumped in octal byte format.

/DC

Specifies that data be dumped in decimal word format.

/DENS:n

Specifies density of an input magnetic tape when DMP is in device
mode only. Values for n can be 800, 1600, or 6250.

/FI:file-number:sequence-number

Specifies the input file with its file-ID instead of its name
(File Mode only).

/HD [:F or :U]

/HF

/HX

Includes the file header in the data dumped. "F",
specifies a formatted Files-II dump for the
specifies an unformatted octal dump.

the default,
header. "un

Specifies the format for data blocks that have the Files-II
header structure. Other blocks are dumped as unformatted octal.

Specifies that data be dumped in hexadecimal byte format.

A-20

(

c

c

c

c

/ID

/LB

/LC

/LW

COMMANDS AND SWITCHES

Causes the current version of DMP to be displayed or printed.

Requests the starting (logical) block number and a contiguous or
noncontiguous indication for the file to be displayed.

Specifies that the data should be dumped in lowercase characters.
This switch is valid only if the output device supports lowercase
characters.

Specifies that data be dumped in hexadecimal double-word format.

/MD (:n]

/OCT

/RC

/RW

/RS

Controls line number sequencing during a memory image dump.

Specifies that the data should be dumped in octal format. If no
DMP format swi tches are included, the defaul t is octal format.

Dumps one record at a'time in the specified format.

Issues a rewind command to the tape driver before referencing a
specified, tape. The /RW swi tch can be used at any time to
reposition a tape at beginning-of-tape (BOT).

Dumps in Radix-50 word format.

/SB:n or /SB:-n

Specifies the number of blocks DMP spaces forward (n) or
backwards (-n) on a tape.

/SF:n or /SF:-n

/SP

fWD

Specifies the number of end-of-file (EOF) marks DMP spaces
forward ~n) or backward (-n) on a tape.

Spools the dump file (the output file) to the line printer.

Specifies that data be dumped in hexadecimal word format.

A-21

- ~~ ~--=
---~-----.----

COMMANDS AND SWITCHES

A.12 CMP COMMAND SUMMARY

The CMP command line takes the following form:

[outfile [/sw •••]=]infilel,infile2

Isw can be anyone of the following:

IBL or I-BL

Specifies that blank lines in both files be included in compare
processing. If specified in the form I-BL, blank lines are not
included in compare processing. I-BL is the default switch.

ICB or I-CB

Specifies that CMP list infile2 with change bars, in the form of
exclamation marks (!), to denote each line that does not have a
corresponding line in infilel. I-CB is the default switch.

You can change the change bar character from the exclamation mark
to any character you wish by means of the IVB switch, described
below.

When a section of lines in infilel has been deleted in infile2
(the output listing file), the first line after the deleted lines
is marked.

ICO or I-CO

Specifies that CMP include comments (that is, text preceded by a
semicolon) in compare processing. ICO is the default switch.

101 or 1-01

Specifies that CMP list the differences between the two files
(rather than marking the lines in infile2). 101 is the default
switch.

ICB and 101 are mutually exclusive switches.
specified, ICB overrides 101.

If both are

IFF or I-FF

ILI:n

Specifies that CMP
form-feed character
switch.

include records consisting of a single
in compare processing. I-FF is the default

Specifies that a number (n) of lines must be identical before eMP
recognizes a match. If you do not specify this switch, eMP
searches for three identical lines to match (/LI:3).

When it encounters
nonmatching lines,
sequence of lines to
the match occurred.

a match, eMP prints all the preceding
along with the first line of the matched
help you find the location in the code where

A-22

(

c

(

(

(---
\

c

COMMANDS AND SWITCHES

ILN or I-LN

Specifies that lines in the output file be preceded by their line
number. Line numbers are increment~d by one for each r~cord
read, including blank lines. ILN is the default switch. If you
specify ISL (below), ILN is unnecessary.

1MB or I-MB

Specifies that CMP include all blank and tab characters in a line
in compare processing. If you specify I-MB, CMP interprets any
sequence of blank and/or tab characters as a single blank
character in compare processing. However, all spaces and tabs
are printed in the output listing. 1MB is the default switch.

ISL[:au]

Directs CMP to generate an output file suitable for use as SLP
command input. When you specify ISL, CMP generates the SLP
command input necessary to make infilel identical to infile2. If
a 1- to 8-character alphanumeric symbol is included (:au), an
audit trail is specified for SLP input.

ISP[:n] or I-SP

Specifies that the output file be spooled on the line printer.
You can optionally specify the number (in octal or decimal) of
files to be spooled. I-SP is the default switch.

This switch applies only if you have the print spooler task
(RSX-l,lM) or the Queue Manager (RSX-IIM/M-PLUS) installed.

C) ITB or I-TB

(

(

Specifies that CMP include all trailing blanks on a line in
compare processing. If you specify I-TB, CMP ignores all blanks
following the last nonblank character on a line. When you
specify I-CO and I-TB together, blanks that precede a semicolon
(;) are considered trailing blanks and are ignored. ITB is the
defaul t swi tch.

IVB:nnn

A.13

Specifies an octal character code for use as a change bar. You
use this switch with the ICB switch. The value nnn specifies the
octal character code. For example, you can specify IVB:174 for a
vertical bar (if your printer is capable of printing the vertical
bar character). IVB: 041 (for the exclamation mark) is the
defaul t swi tch.

SLP COMMAND SUMMARY

The format of a SLP command line is:

outfile[/switch,listfile/[-]SP]=infile[/switch]

Iswitch can be anyone of the following:

IAU or I-AU

Enables or disables the audit trail, which indicates the changes
made during the most recent editing session.

A-23

COMMANDS AND SWITCHES

/BF or /-BF

Enables or disables blank fill (right-justification) for an audit (-
trail. ~

/CM [:n]

Deletes the audit trail and any trailing spaces or tabs, and
truncates the text at the specified horizontal position.

/CS [: n]

Calculates the checksum value for the edit commands.

/DB or /-DB

INS

/RS

Enables or disables double-spaced listings. /-DB is the default
swi tch.

Does not sequence lines in the output file.
indicated by the audit trail (if specified).
overrides the /RS and /SQ switches.

New lines are
This swi tch

Resequences the lines in the output file so that the line numbers
are incremented for each line written to the output file.

/SP or /-SP

c

Enables or disables the spooling of listing files to a line (-
printer. This switch applies only if the print spooler task

/SQ

/TR

(RSX-llM) or the Queue Manager (RSX-llM/M-PLUS) is installed.

Sequences the lines in the output file so that the numbers
reflect the line numbers of the original input file.

Specifies that a diagnostic error message occur when lines are (i

truncated by the audit trail.

A. 14 PAT COMMAND SUMMARY

The format for specifying execution of PAT is:

[outfile]=infile[/CS[:number]],correctfile[/CS[:number]]

The /CS switch provides the facility to calculate the checksum for all
the binary data of a specified module.

A-24

(

c

(

(

COMMANDS AND SWITCHES

A. 15 ZAP COMMAND AND SWITCH SUMMARY

The ZAP command line is in the form:

ddnn: [ufd]filename.filetypeiversion[/sw •••]

A.lS.l ZAP Open/Close Commands

/ (slash)

Opens a location, displays its contents in octal, and stores the
contents of the location in the Quantity Register (Q). If the
location is odd, it is opened as a byte.

II (quotation mark)

Opens a location, displays the contents of the location as two
ASCII characters, and stores the contents of the location in the
Quantity Register (Q).

% (percent sign)

Opens a location,
Radix-50 format,
Quanti ty Reg istel.

displays the contents of the location in
and stores the contents of the location in the

(Q) •

\ (backslash)

Opens a location as a byte, displays the contents of the location
in octal, and stores the contents of the location in the Quantity
Reg ister (Q).

(apostrophe)

Opens a location, displays the contents as one ASCII character,
and stores the contents of the location in'the Quantity Register
(Q) •

(RETURN key)

Closes the current location as modified and opens
sequential location if no other values or commands
command line. ZAP commands take effect only after you
RETURN key.

or t (circumflex or up arrow)

the next
are on the
press the

Closes the currently open location as modified and opens the
preceding location.

A-2S

~---~ ~---=-=--------.-~.-~.----------~~--.. -- - - --- -------- -- - -- -- -::---==-=---==-===--=--------=--=- - ===-- ----=--==-=-----::==--=::=~~-:::=------=-=--=-=-- ---=-=-:-:.:=-=--:=--==------=---=-.::.--=---------=-=----=--==---==::=:~~

COMMANDS AND SWITCHES

(underscore)

Closes the currently open location as modified, uses the contents (
of the location, as an offset from the current location, and _
opens the new location.

@ (at sign)

Closes the currently open location as modified, uses the contents
of the location as an absolute address, and opens that location.

> (right angle bracket)

Closes the currently open location as modified, interprets the
low-order byte of the contents of the location as the relative
branch offset, and opens the target location of the branch.

< (left angle bracket)

Closes the currently open location as modified, returns to the
location from which the last series of underscore (), at sign
(@), and/or right angle bracket (» commands began, and opens the
next sequential location.

A.IS.2 ZAP General-Purpose Commands

x

K

a

v

R

Exits from ZAP, returns control to the ~LI.

Calculates the offset in bytes between an address and the value
'contained in a Relocation Reg ister, displays the offset value,
and stores it in the Quantity Register (Q).

Displays the jump and branch
location to a target location.

displacements
. \

from the current

Displays in octal the value of the expression to the left of the
equal sign.

Verifies the contents of the current location.

Sets the value of a Relocation Register.

A-26

(

(

c

c

c

COMMANDS AND SWITCHES

A.IS.3 ZAP Switches

lAB

jL!

JRO

Specifies absolute mode.

Displays the overlay segment table for an overlaid task image
file.

Specifies read-only mode.

A-27

=-_=-.=::::::-_-__ -'_----'--=-'-:-:..:...=._--.- ~---.. - - =~ =~=-,---~----- --~ ~-~ ~ -===-~~ -- - - -~~-_ _=_ ___ =----=----_:_~--"_=____=__'______'_= __ ::..=...::.___=___=___=_=_.=__________=____::._::::.=_=_-_____=_______'C __ -___ :::_=..:.-___==:_=::... _ -.-.

-- - - - -- - --- ------ --- -- ----

c

c

c

(

APPENDIX B

THE CROSS-REFERENCE PROCESSOR (CRF)

The Cross-Reference Processor (CRF) is an independent task that
produces cross-reference listings for the MACRO-II and Task Builder
tasks. CRF is invoked by the /CR switch in the MACRO-ll or Task
Builder command line. Once execution is complete, CRF builds
cross-reference listings using the execution-time symbol tables built
by those tasks.

Two cross-reference listings are built for the Task
listing the modules that reference global symbols
execution and another that shows the modules contained
overlay segment.

Builder,
during
in a

one
task

given

Four cross-reference listings are produced for the MACRO-II task, each
showing a page and line number reference to a type of symbol
referenced during execution of the MACRO-II Assembler.

This appendix describes how CRF processes data and shows the formats
of files CRF uses during that processing. Also, CRF error messages
are listed.

For information on how to invoke CRF in the MACRO-II
refer to the PDP-II MACRO-II Language Reference
information on how to invoke CRF with the Task Builder
refer to the RSX-IIM/M-PLUS Task Builder Manual.

B.l HOW CRF PROCESSES DATA

command
Manual.

command

line,
For

line,

When the /CR switch is specified in the MACRO-II or Task Builder
command line, those tasks perform additional processing before passing
control to the CRF processor. This section describes how
cross-reference listings are generated in two phases. The first phase
consists of the processing steps performed by MACRO-II or Task
Builder; the second phase consists of processing steps performed by
CRF. Figure B-1 is an overview showing the processing steps performed
in each phase, along with input and output files used.

B.l.l MACRO-II or Task Builder Processing

The first steps to produce cross-reference listings are
the MACRO-II Assembler or the Task Builder and the /CR
tasks generate threefil es during execution: an
(filename.OBJ) or task image file (filename.TSK),
(filename.LST or filename.MAP), and a CRF symbol
(filename.CRF) •

B-1

performed by
switch. These
object file

a I isting file
table file

THE CROSS-REFERENCE PROCESSOR (CRF)

The object file or task image file is directed to an appropriate
device and does not affect CRF processing.

INPUT PROCESS OUTPUT

1. Execute MACRO·11 or Task Builder. §
§ Direct OBJ and LST files to appropriate

@ devices; copy CRF file to SYO:.

§l
Command Line @

filename.filetype I - ------- .. Construct SEND packet .
-~

SEND Packet

L...r ~ SEND Packet ~ '----l.
~ t;ie.LST

2. Execute CREF.

===:::s... Generate cross-reference entries and --
append them to the LST file. -r-

==== "-@ ~ -
file.LST

'----' entry 1

"----, ~2 -
© ------- ------ - Delete CRF file. ~ entry n

Figure B-1 How MACRO-II, the Task Builder, and CRF Generate
CrOSS-Reference Listings

ZK·200·81

The listing file consists of text information generated during the
execution of the tasks, for example, the listing of the source code in
a MACRO-II program. If the output device for the listing file is
sequential or record-oriented, as in the case of LP:, a temporary
listing file is created on SYO:.

The CRF symbol table file consists of symbol tables built during
MACRO-II or Task Builder execution. These tables are used by CRF to
generate cross-reference listings.

The task originating the request for cross-reference processing then
sends CRF a SEND packet, using information in the listing file and the
file name and file type specified on the command line. The SEND
packet contains enough data to identify the symbol table file and the
listing file. CRF receives the packet and uses it to locate the
symbol table file and listing file produced by MACRO-II or the Task
Builder.

The formats of the symbol table file and the SEND packet are shown in
Figures B-2 and B-3.

If spooling is requested with the /SP switch and the output device is
a random-access device, the spooling flag in the SEND packet is·set.
CRF then passes the listing file to the print spooler for printing.

B-2

(

(

(

(

(

c

THE CROSS-REFERENCE PROCESSOR (CRF)

B.l.2 CRF Processing

The SEND packet contains pointers to the CRF symbol table file and the
listing file. CRF uses the information in the listing file and the
SEND packet to specify the symbol table file for processing
(filename .CRF) :

Symbol table
Symbol table
Symbol table
Symbol table

filename - Text file name
filetype - CRF
version - Contents of SEND packet word 11

device and unit - Listing file device and unit

CRF then generates the requested cross-references and appends them to
the listing file. When all cross-references have been generated, CRF
deletes filename.CRF.

B.2 THE CRF SYMBOL TABLE FILE

The CRF symbol table file is a series of contiguous 5-word data
records preceded by a 9-word header record, as shown in Figure B-2.
The symbol table file is assumed to reside on the same device and have
the same name as the input listing file, except that the file has a
filetype of CRF, that is:

filename.CRF

The header record contains the name of
Radix-50 format, followed by a number
identify the task. This value allows
tables CRF uses to format output.
creation date of the symbol table file.
flags that define the output format.

the originating task in 2-word
value assigned by the system to

CRF to locate the internal
The next five words define the

The last word contains the

Bit zero of the flags word controls the width of the listing. When
this bit is set to zero, the listing is generated in 132-column
format. When this bit is set to one, the listing is generated in
80-column format.

The remaining records in the symbol table file are data records. The
first two words of a data record comprise the symbol name in Radix-50
format. The symbol value is an octal quantity associated with the
symbol name. The second two words comprise the reference identifier,
which is used as the cross-reference value. In the case of global
symbols, this value is the module name in Radix-50 format. In the
case .of MACRO-II cross-references, the value is the page and line
number of the reference. The last word of the data record comprises
the attribute flag byte and the format number byte.

The attribute flag byte contains the bits describing the attributes of
the reference. These flags cause the special characters and
abbreviations to be displayed with the reference. A pound sign (#)
means that the reference is the place where the symbol is deffned. An
asterisk (*) means that there is a destructive reference to the symbol
(that is, its contents are changed). If there is nothing in front of
the reference, it means that there is a nondestructive reference to
the symbol (that is, its contents are read).

The format number byte defin.es the format of the output. The format
number is used by CRF to locate a set of internal tables that define
the listing format associated with the entry. The type of
cross-reference and the set of symbols associated with the flags byte

B-3

THE CROSS-REFERENCE PROCESSOR (CRF)

is determined by the format number. Use of the format byte permits
several types of cross-reference output to be generated by a single
originating task.

CRF
Symbol
Table
File

Header
Record

Data Record 1

Data Record 2

Data Record n

Header Record

Name of Originating Task

Name of Originating Task (Cant.)

Originating Task Identifier

Year

Month

Day

Hour

Minute

Flag Byte

Data Record

Symbol Name

Symbol Name (Cant.)

Reference Identifier

Reference Identifier (Cant.)

Format Number Attributes

Data
Records

to
EOF

Figure B-2 Format of the CRF Symbol Table File

B.3 THE CRF SEND PACKET

rwo RADIX·5O
Words

~ Two RADIX·50
Words'

ZK·201·81

The CRF SEND packet is a block of data that contains control
information created by the Task Builder or MACRO-II for use by CRF.
This control information enables CRF to locate the symbol table file
and the listing or memory allocation output file.

The SEND packet consists 'of 17 words, as described in Figure B-3.

Words a and 1 of the SEND packet contain the name of the sending task.
Words 2 through 4 contain the file name of the output listing file in
Radix-50 format. Word 5 contains the file type of the output listing
file. Word 6 contains the version number of the output listing file.
Words 7 through 11 contain the .directory identifi~r. Word 12 contains
the device name of the device on which the output listing file
resides. The first byte of word 13 is a flag byte used by CRF for
output processing. When this bit is set to 1, the output listing file
is spooled off line when CRF completes processing. The second byte of

B-4

e

(

c

c

.~=~~~~~~.~~~~~~. ----~---~-------------------------~-----------~~.

c

c

l

THE CROSS-REFERENCE PROCESSOR (CRF)

word 13 specifies the unit on which the listing output file resides.
Word 14 contains the symbol table file version number. Word 15
contains the device name of the output device. The first byte of word
16 is reserved. The second byte of word 16 is the unit number of the
output device.

a Originating Task Name

Originating Task Name (Cont.)

Text Filename

Text Filename (Cont.)

Text Filename (Cont.)

Filetype

File Version

Directory Identifier

Directory Identifier (Cont.)

Directory Identifier (Cont.)

Device Name

Flags I Unit

Symbol Table File Version

Target Device Name

Reserved I Unit

! Two
RADIX-50
Words

J
Three
RADIX-50
Words

ZK-202-81

Figure 8-3 Format of the CRF SEND Packet

8.4 - CRF ERROR MESSAGES

The following error messages are output by CRF.
preceded by one of the following prefixes:

Each message is

CRF *DIAG* - name of originating task - message
CRF *FATAL* - name of originating task - message

CRF INPUT FILE filename HAS ILLEGAL FORMAT

Explanation: This error is caused by a
originating task. The symbol table
processing contains no data.

software error
file submitted

in the
for CRF

User Action: Submit a Software Performance Report with the
related console dialogue and any other pertinent information.

8-5

---~~------~-~~~~~~~--~-------=-=-=---=-=-------==---=------------~=~=~~- -- -- .--._'-

THE CROSS-REFERENCE PROCESSOR (CRF)

FAILED TO DELETE FILE filename

Explanation: CRF was unable to delete the specified file for one
of the following reasons:

• CRF did not have deletion privileges for the UFD under which
the file resides

• The device was not write-enabled or ready to perform I/O

User Action: Initial ize the device appropriately and ensure that
the UFD has owner-delete privileges.

FILE filename NOT FOUND

Explanation: The file could not be located.
probably deleted before CRF could process it.

The file was

User Action: Rerun
cross-reference output.
completes processing.

the
Do

ILLEGAL ERROR/SEVERITY CODE data

appropriate
not delete

task to
any files

produce
until CRF

Explanation: This error indicates a CRF malfunction; CRF has
called its error message processor with an illegal parameter.

User Action: Submit a Software Performance Report containing a
copy of the mesSage as printed.

INPUT FROM UNKNOWN TASK

Explanation: Cross-reference processing
originating task is not supported by CRF.

requested by the

User Action: Delete the request for CRF processing and rerun the
originating task.

I/O ERROR ON FILE filename

Explanation:
or writing
indicated,
accommodate

An error has been encountered while CRF was reading
the specified file. A possible hardware problem is

or the device may have insufficient space to
the CRF output file.

User Action: Isolate the problem and take corrective action.
Rerun MACRO-II or the Task Builder to produce the cross-reference
output.

INVALIP OUTPUT FORMAT SPECIFIED

Explanation: This error indicates an inconsistency in the data
file submitted for CRF processing.

User Action: Submit a Software Performance Report with the
related console dialogue and any other pertinent information.

B-6

('i

c

c-

c

c

c

~=~~~-~ .. ----. --------------

THE CROSS-REFERENCE PROCESSOR (CRF)

NO DYNAMIC STORAGE AVAILABLE

Explanation: The CRF task requires more working storage than is
available within the area of memory owned by the task.

User Action: If possible, install CRF in a larger partition or
with a larger increment.

NO VIRTUAL MEMORY STORAGE AVAILABLE

Explanation: The CRF work file storage requirements exceed
65,536 words.

User Action: No recovery is possible from this error. If
possible, install the task in a larger partition.

OPEN FAILURE ON FILE filename

Explanation: CRF was unable to open the named file for one of
the following reasons:

• The device was not ready to perform I/O.

• The device was not write-enabled.

• A Files-II device was not mounted.

• CRF did not have extend or delete privileges for the UFD
under which the file resides.

• The file was deleted before it could be processed by CRF.

User Action: Isolate the problem, take appropriate corrective
action, and rerun the task to obtain cross~reference output.

SYMBOL TABLE SEARCH STACK OVERFLOW

Explanation: This error indicates a CRF malfunction.

User Action: Submit a Software Performance Report with the
related console dialogue and any other pertinent information.

UNABLE TO OPEN WORKFILE

Explanation: Possible causes are:

• The workfile device is not mounted.

• The workfile device is write protected.

The workfile device is assigned to LUN 7 and is normally the
device from which CRF was installed.

User Action: Retry the command after ensuring that the device is
mounted and write enabled.

B-7


~~~ .• ---.-.. ---,_-:---. -----------.. -----=---:::---.------_. ------=--.-----=-=--=-=-:-:----------=-= 
-~ .. __ .. _-_. __ ._._-----_._----_._----

THE CROSS-REFERENCE PROCESSOR (CRF) 

WORK FILE I/O ERROR 

Explanation: CRF encountered 
writing data to its workfile. 

an I/O error while reading 
Possible causes are: 

or 

• Device is full 

• Hardware error 

User Action: If the device capacity has been 
unnecessary files to make space available. 
LUN7 to another Files-II device. 

8-8 

exceeded, delete 
Also, REASSIGN CRF 

( 

c 

c 



c 

( 

l 

/AB switch 
ZAP utility, 15-2 

ADD & PRINT command 
EDI utility, 2-12, 2-28 

ADD command 
EDI utility, 2-11, 2-27 

Address boundary 
See ZAP utility 

/ALLOCATE switch 
BAD utility, 6-5 

AP co.mmand 
EDI utility, 2-12, 2-28 

/AP switch 
PIP utility, 3-14 

/APPEND qualifier 
BRU utility, 7-12 

/APPEND switch 
DSC utility, 8-9 

/AS switch 
DMP utility, 11-3 

Asterisk 
See Wildcard 

/AU switch 
SLP utility, 13-15 

Audi t trail 
See SLP utility 

/BA switch 
DMP utility, 11-3 

Backing up volume 
See BRU utility 
See DSC utility 

Backup and Restore utility 
See BRU utility, 7-1 

/BACKUP SET qualifier 
BRU utility, 7-13 

Bad block 
information 

DSC utility, 8-9 
locating 

BAD utility, 6-1 
FMT utility, 5-1 
VFY utility, 9-7 

processing 
BAD utility, 6-3 
BRU utility, 7-24 

Bad Block Locator utility 
See BAD ut il i ty 

/BAD qualifier 
BRU utility, 7-13, 7-24 
options, 7-25 

/BAD switch 
DSC utility, 8-9 
FMT utility, 5-7 

INDEX 

BAD utility 
bad block descriptor entry, 

6-4 
bad block processing, 6-3 
command line, 6-1 
device support, 6-9 
device verifying, 6-3 
error message, 6-10 
indirect command file, 6-2 
INI command, 6-4 
programming consideration, 

6-5 
swi tch, 6-5 

stand-alone, 6-8 
summary, 6-1 
task, 6-5 

BEGIN command 
EDI utility, 2-28 

/BF switch . 
SLP utility, 13-15 

/BL switch 
CMP utility, 12-2 
DMP utility, 11-4 
DSC utility, 8-12 
FLX utility, 4-6 
PIP utility, 3-11 

Block 
allocating 

VFY utility, 9-8 
recovering lost 

VFY utility, 9-7 
verifying 

VFY utility, 9-7 
BLOCK ON/OFF command 

EDI utility, 2-28 
BOttom command 

EDI utility, 2-12, 2-29 
/BR switch 

PIP utility, 3-25 
BRU utility 

bad block processing, 7-24 
command line, 7-5 

parameter, 7-6 
command qualifier 

description, 7-12 
function, 7..,.11 
summary, 7-8 

data transfer, 7-26 
device information, 7~1 
device support, 7-5 
disk initialization, 7-17 
error message, 7-34 
example, 7-28 
file creation date, 7-27 
file revision date, 7-27 

Index-1 April 1983 



BRU utility (Cont.) 
file treatment, 7-26 

file header, 7-27 
file synonyn, 7-27 
lost file, 7-27 

stand-alone, 7-22 
booting, 7-23 
CNF and, 7-22 
locating, 7-23 

system image copying, 7-26 
/BS switch 

FLX utility, 4-6 
PIP utility, 3-15 

/BUFFERS qualifier 
BRU utility, 7-14 

/BY switch 
DMP utility, 11-5 

/CB switch 
CMP utility, 12-2 

CC command 
EDI utility, 2-30 

CD command 
EDI utility, 2-30 

/CD switch 
PIP utility, 3-16 

CHANGE command 
EDI utility, 2-12, 2-29 

Checksum 
calculating 

SLP utility, 13-3 
file content validating 

PAT utility, 14-6 
CL command 

EDI utility, 2-29 
CLOSE & DELETE command 

EDI utility, 2-30 
CLOSE command 

EDI utility, 2-27, 2-29 
CLOSE SECONDARY command 

EDI utility, 2-30 
CLOSES command 

EDI utility, 2-30 
/CM switch 

SLP utility, 13-15 
/CMP switch 

DSC utility, 8-14 
CMP utility 

command line, 12-1 
~rror ~essage, 12-6 
output file format, 12-4 
switch, 12-2 

default, 12-4 
CNF 

DSC64K.SYS and 
See DSC utility 

stand-alone BRU and 
See BRlJ utility 

/CO switch 
CMP utility, 12-2 
FLX utility, 4-6 
LBR utility, 10-10 
PIP utility, 3-11 

INDEX 

Command line 
format, 1-4 

/COMPARE qualifier 
BRU utility, 7-14 

CONCATENATION CHARACTER command 
EDI utility, 2-30 

/CR switch 
CRF utility, B-1 . 
LBR utility, 10-12 

/CREATED qualifier 
BRU utility, 7-14 

CRF utility 
data processing, B-1 
error message, B-5 
MACRO-II/Task Builder, B-1 
SEND packet, B-4 
switch, B-1 
symbol table file, B-3 

Cross-Reference Processor 
See CRF utility 

/CS switch 
PAT utility, 14-6 
SLP utility, 13-15 

/CSR switch 
BAD utility, 6-8 
DSC utility, 8-21 

Da ta transfer 
BRU utility, 7-26 
DSC utility, 8-24 
FLX utility, 4-1 

/DB switch 
SLP utility, 13-15 

/DC switch 
DMP utility, 11-5 

/DD switch 
PIP utility, 3-16 

/DE, switch 
FLX utility, 4-7 
LBR utility, 10-13 
PIP utility, 3-17 
VFY utility, 9-4 

DELETE & PRINT command 
EDI utility, 2-14, 2-31 

DELETE command 
EDI utility, 2-13, 2-31 

/DENS switch 
DMP utility, 11-5 
DSC utility, 8-14 

/DENSITY qualifier 
BRU utility, 7-14 

/DENSITY switch 
FMT utility, 5-8 

Device 

Index-2 

supported 
BAD utility, 6-9 
BRU utility, 7-5 
DSC utility, 8-4 
FLX utility, 4-2 
FMT utility, 5-5 

verifying 
BAD utility, 6-3 

April 1983 

( 



( 

c 

c 

( 

/DF switch 
LBR utility, 10-14 
PIP utility, 3-18 

/DG switch 
LBR utility, 10-15 

/DI switch 
CMP utility, 12-3 
FLX utility, 4-7 

Directory 
See UFD 

/DIRECTORY qualifier 
BRU utility, 7-15 

Disk 
backing up 

BRU utility, 7-1 
DSC utility, 8-1 

comparing 
DSC utility, 8-14 

compressing 
DSC utility, 8-3 

conventional backup 
BRU utility, 7-4 

copying 
BRU utility, 7-1 
DSC utility, 8-1 

data transfer 
DSC utility, 8-25 

displaying free space 
PIP utility, 3-23 
VFY utility, 9-5 

examining data 
DMP utility, 11-1 

formatting 
FLX util i ty, 4-4 
FMT utility, 5-1 

full backup 
BRU utility, 7-3 

image backup 
BRU utility, 7-4 

initializing 
BRU utility, 7-2, 7-17 

locating bad block 
BAD utility, 6-1 

mounting 
BRU utility, 7-2 

recovering 
lost block 

VFY utility, 9-7 
space 

DSC utility, 8-3 
restoring 

BRU utility, 7-1 
selective backup 

BRU utility, 7-3 
verifying, 9-1 

block 
VFY utility, 9-7 

Disk Save and Compress Utility 
Program 

See DSC utility 
Disk Volume Formatter Utility 

See FMT utility 

INDEX 

/DISPLAY qualifier 
BRU utility, 7-16 

DMP utility 
command line, 11-2 
error message, 11-12 
example, 11-8 
mode 

device, 11-2 
file, 11-1 

swi tch, 11-3 
/DNS switch 

FLX utility, 4-7 
/DO switch 

FLX util i ty, 4-4 
DOS-11 

device support 
FLX utility, 4-1 

file copying 
FLX utility, 4-3 

volume 
deleting 

FLX utility, 4-10 
directory listing 

FLX utility, 4-8 
in i t i ali zing 

FLX utility, 4-10 
DP command 

EDI utility, 2-14, 2-31 
DSC utility 

bad block information, 8-9 
command line, 8-5 

parameter, 8-5 
stand-alone, 8-21 

data transfer, 8-24 
device support, 8-4 
error message, 8-28 
file label, 8-8 
initiating, 8-5 
operation overview, 8-19 
stand-alone 

command line, 8-21 
DSC64K.SYS, 8-23 

CNF and, 8-24 
DSCSYS.SYS, 8-19 

swi tch, 8-6 
on-line, 8-9 
stand-alone 

DSC64K.SYS, 8-24 
DSCSYS.SYS, 8-20 

summary, 8-7, 8-20 
terminating, 8-5 

Dumping file 
DMP utility, 11-1 

/DV switch 
VFY utility, 9-5 

ED command 
EDI utility, 2-32 

EDI utility 
character erase, 2-6 
command 

basic, 2-9 

Index-3 April 1983 



EDI utility 
command (Cont.) 

detailed reference summary, 
2-27 

device output, 2-26 
file I/O, 2-25 
function summary, 2-20 
locator, 2-22 
macro, 2-25 
set up, 2-21 
summary, 2-10 
text manipulation, 2-23 to 

2-24 
text modification, 2-23 to 

2-24 
control mode, 2-3 
convention 

command, 2-8 
terminal, 2-6 

error message, 2-56 
command level information, 

2-57 
fatal, 2-64 
file access, 2-60 
requiring EDIrestart, 2-61 

example, 2-51 
file specification 

defau1 t, 2-2 
format, 2-2 

initiating (invoking), 2-1 
line erase, 2-7 
paging, 2-5 
RETURN key, 2-7 
text access mode, 2-3 

block mode, 2-4 
line-by-line mode, 2-4 

text file -
creating, 2-2 
input, 2-6 
output, 2-6 
secondary, 2-6 

usage notes, 2-50 
Editor 

EDI utility, 2-1 
/EN switch 

PIP utility, 3-19 
END command 

EDI utility, 2-31 
/EOF switch 

PIP utility, 3~21 
/EP switch 

LBR utility, 10-16 
Equal sign command 

ZAP utility, 15-17 
ERASE command 

EDI utility, 2-32 
/ERL switch 

FMT utility, 5-8 
Error message 

BAD utility, 6-10 
BRU utility, 7-34 
CMP utility, 12-6 
CRF utility, B-5 

INDEX 

Error message (Cont.) 
DMP utility, 11-12 
DSC utility, 8-28 
EDI utility, 2-56 
FLX utility, 4-17 
FMT utility, 5-10 
LBR utility, 10-33 
PAT utility, 14-7 
PIP utility, 3-43 
SLP utility, 13-20 
VFY utility, 9-11 
ZAP utility, 15-23 

/ERRORS qualifier 
BRU utility, 7-16 

ESCape command 
EDI utility, 2-14, 2-32 

/EX switch 
LBR utility, 10-18 
PIP utility, 3-21 

/EXCLUDE qualifier 
BRU utility, 7-16 

EXIT & DELETE command 
EDI utility, 2-32 

EXIT command 
EDI utility, 2-14, 2-27, 2-32 

/EXTEND qualifier 
BRU utility, 7-16 

/FA switch 
FLX utility, 4-5 

/FB switch 
FLX utility, 4-5 

/FC switch 
FLX utility, 4-7 

FF command 
EDI utility, 2-34 

/FF switch 
CMP utility, 12-3 

/FI switch 
DMP utility, 11-5 
PIP utility, 3-22 

File 
appending 

PIP utility, 3-14 
comparing 

CMP utility, 12-1 
copying 

BRU utility, 7-1 
DOS-11, 4-3 
DSC utility, 8-1 
Fi les-11, 3-8 
FLX utility, 4-3 
PIP utility, 3-8 
RT-11, 4-3 

creating 
EDI utility, 2-2 

deleting 
PIP utility, 3-17 

displaying 
block number 

PIP utility, 3-25 
dumping 

DMP utility, 11-1 

Index-4 April 1983 

(' 

c 

l) 



(-

c 

( 

File (Cont.) 
editing 

EDI utility, 2-1 
FORTRAN direct access 

See FLX utili ty 
index 

listing contents 
VFY utility, 9-6 

library 
LBR utility, 10-2 

listing 
FLX util i ty, 4-7 
LBR utility, 10-21 
PIP utility, 3-24 

lost 
recovering 

VFY utility, 9-6 
merging 

PIP utility, 3-9 
owning 

PIP utility, 3-11 
protecting 

Files-ll 
PIP utility, 3-29 

purging 
PIP utility, 3-31 

renaming 
PIP utility, 3-33 

saving 
BRU utility, 7-1 
DSC utility, 8-1 

specifying, 1-4 
spooling 

PIP utility, 3-38 
transferring 

FLX util i ty, 4-1 
truncating 

PIP utility, 3-40 
universal library 

See Universal library file 
updating 

PAT utility, 14-1 
PIP utility, 3-42 
SLP utility, 13-1 
ZAP utility, 15-1 

validating contents 
PAT utility, 14-6 

FILe command 
EDI utility, 2-33 

File Compare utility 
See CMP utility 

File Dump Utility 
See DMP utility 

File Structure Verification 
Utili ty 

See VFY utility 
File Transfer Utility Program 

See FLX utility 
Files-ll 

file 
copying 

FLX utility, 4-2 
PIP utility, 3-8 

INDEX 

Files-ll 
file (Cont.) 

protecting 
PIP utility, 3-29 

verifying structure, 9-1 
FIND command 

EDI utility, 2-33 
FLX utility 

cassette, 4-13 
input file, 4-15 
multivolume support, 4-14 
output file, 4-14 
TAll/TU60 support, 4-13 

command line, 4-2 
device support, 4-2 
DOS-II volume, 4-8 

deleting, 4-10 
directory listing, 4-8 
initializing, 4-10 
valid, 4-1 

error message, 4-17 
file 

deleting, 4-7 
Files-ll, 4-2 
specifying, 4-2 

FORTRAN direct access file, 
4-16 

p~per tape support, 4-15 
RT-ll volume, 4-10 

deleting, 4-12 
directory listing, 4-10 
initializing, 4-12 
valid, 4-2 

switch, 4-3 
control, 4-6 
transfer mode, 4-4 
volume format, 4-4 

volume 
directory listing, 4-7 
file deletion, 4-7 
file transfer, 4-4 
formatting, 4-4 
initializing, 4-2 

wildcard, 4-3 
FMT utility 

command line, 5-1 
device support, 5-5 
error message, 5-10 
indirect command file, 5-S 
initiating, 5-1 
operation mode, 5-2 
switch, 5-7 

summary, 5-1 
terminating, 5-2 

/FO switch 
PIP utility, 3-11 

FORM FEED command 
EDI utility, 2-34 

Formatting volume 
FLX utility, 4-4 
FMT utility, 5-1 

/FR switch 
PIP utility, 3-23 

Index-5 April 1983 



/FR switch (Cont.) 
VFY utility, 9-5 

/FU switch 
LBR utility, 10-21 
PIP utility, 3-25 

/HD switch 
DMP utility, 11-5 
VFY utility, 9-5 

/HEADERS qualifier 
BRU utility, 7-16 

/HF switch 
DMP utility, 11-6 

/HX switch 
DMP utility, 11-6 

/10 switch 
DMP utility, 11-6 
FLX utility, 4-7 
PIP utility, 3-23 

/IM switch 
FLX utility, 4-5 

/IMAGE qualifier 
BRU utiltiy, 7-17 

/IN switch 
LBR utility, 10-19 

Index file 
listing contents 

VFY utility, 9-6 
Indirect command file, 1-9 

BAD utility, 6-2 
FMT utility, 5-9 
SLP utility, 13-8 
ZAP utility, 15-6 

/INITIALIZE qualifier 
BRU utility, 7-17 

INSERT command 
EDI utility, 2-15 

/INVOLUME qualifier 
BRU utility, 7-17 

K command 
ZAP utility, 15-16 

KILL command 
EDI utility~ 2-34 

/LB switch 
DMP utility, 11-6 

LBR utili ty 
combining library function, 

10-32 
command line, 10-8 
default, 10-8 
error message, 10-33 
library file 

creating, 10-12 
deleting, 10-13 
format, 10-2 
inserting module, 10-20 
listing, 10-21 
replacing module, 10-23 
spooling, 10-29 

restriction, 10-8 

INDEX 

LBR utility (Cont.) 
switch, 10-9 
universal library file 

inserting module, 10-20 
replacing module, 10-27 

LC command 
EDI utility, 2-35 

/LC switch 
DMP utility, 11-6 

/LD switch 
PIP utility, 3-17 

/LE switch 
LBR utility, 10-21 

/LENGTH qualifier 
BRU utility, 7-18 

LI command 
EDI utility, 2-35 

/LI switch 
See also /LIST switch 
CMP utility, 12-3 
FLX utility, 4-7 
LBR utility, 10-21 
PIP utility, 3-24 

/BR, 3-25 
/FU, 3-25 
/TB, 3-26 

VFY utility, 9-6 
ZAP utility, 15-2 

Librarian Utility Program 
See LBR utility 

Library file 
See LBR utility 

LINE CHANGE command 
EDI utility, 2-35 

Line Text Editor 
See EDI utility 

LIST ON PSEUDO DEVICE command 
EDI utility, 2-36 

LIST ON TERMINAL command 
EDI utility, 2-35 

/LIST switch 
See also /LIST switch 
BAD utility, 6-5 

Listing file 
FLX utility, 4-7 
PIP utility, 3-24 

/LN switch 
CMP utility, 12-3 

/LO switch 
VFY utility, 9-6 

LOCATE command 
EDI ~tility, 2-15, 2-36 

Lost file 
recovering 

VFY utility, 9-6 
LP command 

EDI utility, 2-36 
/LW switch 

DMP utility, 11-7 

M command 
EDI utility, 2-38 

Index-6 April 1983 

C-' 

c 



c 

c 

l 

MACRO CALL command 
EDI utility, 2-37 

MACRO command 
EDI utility, 2-36 

MACRO EXECUTE command 
EDI utility, 2-38 

MACRO IMMEDIATE command 
EDI utility, 2-38 

MACRO-II 
source file 

cross-referencing symbols 
CRF utility, B-1 

Magnetic tape 
See Tape 

/MANUAL switch 
BAD utility, 6-6 
FMT utility, 5-8 

/MAXIMUM qualifier 
BRU utility, 7-18 

/MB switch 
CMP utility, 12-3 

MC command 
EDI utility, 2-37 

/MD switch 
DMP utility, 11-7 

/ME switch 
PIP utility, 3-9, 3-28 

Merging file 
PIP utility, 3-9 

/MH switch 
LBR utility, 10-22 

/MOUNTED qualifier 
BRU utility, 7-18 

/NEW VERSION qualifier 
BRU utility, 7-19 

NEXT & PRINT command 
EDI utility, 2-16, 2-39 

NEXT command 
EDI utility, 2-16, 2-39 

/NM switch 
PIP utility, 3-28 

/NOINITIALIZE qualifier 
BRU utility, 7-19 

/NOPRESERVE qualifier 
BRU utility, 7-19 

/NOSUPERSEDE qualifier 
BRU utility, 7-19 

/NOVERIFY switch 
FMT utility, 5-8 

/NOWCHK switch 
BAD utility, 6-9 

NP command 
EDI utility, 2-16, 2-39 

/NS switch 
SLP utility, 13-16 

/NU switch 
FLX utility, 4-7 

/NV subswi tch 
PIP utility, 3-20 

/NV switch 
PIP utility, 3-12 

INDEX 

o command 
ZAP utility, 15-17 

Object module 
patching 

PAT utility, 14-1 
storing in library 

LBR utility, 10-19 
Object Module Patch Utility 

See PAT utili ty 
/OCT switch 

DMP utility, 11-7 
ODT on-line debugger 

ZAP utility, 15-1 
OP command 

EDI utility, 2-39 
OPEN SECONDARY command 

EDI utility, 2-39 
Operator 

See SLP utility 
OU ON/OFF command 

EDI utility, 2-40 
OUTPUT ON/OFF command 

EDI utility, 2-40 
/OUTVOLUME qualifier 

BRU utility, 7-20 
OVERLAY command 

EDI utility, 2-40 
/OVERRIDE switch 

BAD utility, 6-6 
/OVR switch 

FMT utility, 5-9 

PAGe command 
EDI utility, 2-41 

PAGE FIND command 
EDI utility, 2-41 

PAGE LOCATE command 
EDI utility, 2-41 

PAste command 
EDI utility, 2-42 

PAT utility 
checksum, 14-6 
command line, 14-1 
error message, 14-7 
file 

correction, 14-3 
input, 14-3 

Task Builder, 14-4 
validating file content, 14-6 

patching 
object module 

See PAT utility 
source file 

See SLP utility 
task image file 

See ZAP utility 
/PATTERN switch 

BAD utility, 6-6 
Percent sign 

See Wildcard 
peripheral Interchange Program 

See PIP utility 

Index-7 April 1983 



PF command 
EDI utility, 2-41 

PIP utility 
command functions, 3-8 

copying Files-ll file, 3-8 
file control, 3-14 

command line, 3-1 
error code, 3-53 
error message, 3-43 
file 

deleting, 3-17 
listing, 3-24 
merging, 3-9 
protecting, 3-29 
purg ing, 3-31 
renaming, 3-33 
spooling, 3-38 

file specification, 3-1 
default, 3-1 to 3-2 
wildcard, 3-7 

subswitch, 3-14 
description, 3-6 
merge, 3-11 
summary, 3-3 

switch, 3-14 
description, 3-5 
summary, 3-3 

UFD creating, 3-41 
wildcard, 3-7 

PL command 
EDI utility, 2-41 

IpOSITION qualifier 
BRU utility, 7-20 

IPR switch 
PIP utility, 3-29 

PRINT command 
EDI utility, 2-17, 2-42 

Protection code 
file 

PIP utility, 3-26 
IPROTECTION qualifier 

BRU utility, 7-20 
IPU switch 

PIP utility, 3-31 

Qualifier 
BRU utility, 7-12 

R command 
ZAP utility, 15-18 

IRS switch 
DMP utility, 11-7 

IRC switch 
DMP utility, 11-7 
VFY utility, 9-7 

IRE switch 
PIP utility, 3-33 
VFY utility, 9-7 

REAd command 
EDI utility, 2-42 

RENew command 
EDI utility, 2-19, 2-43 

INDEX 

IRETRY switch 
BAD util i ty, 6-6 

RETURN command 
EDI utility, 2-19, 2-4~ 

RETYPE command 
EDI utility, 2-19, 2-43 

IREVISED qualifier 
BRU utility, 7-~1 

IREWIND qualifier 
BRU utility, 7-21 

IRM switch 
PIP utility, 3-35 

IRO switch 
ZAP utility, 15-2 

IRP switch 
LBR utility, 10-23 

IRS switch 
FLX util i ty, 4-4 
SLP utility, 13-16 

IRT switch 
FLX utility, 4-4 

RT-ll 
device support 

FLX utility, 4-2 
file copying 

FLX utility, 4-3 
volume 

deleting 
FLX utility, 4-12 

directory listing 
FLX utility, 4-10 

initializing 
FLX utility, 4-12 

IRW switch 
DMP utility, 11-7 
DSC utility, 8-15 
FLX utility, 4-8 
PIP utility, 3-36 

SAve command 
EDI utility, 2-44 

ISB switch 
DMP utility, 11-8 
PIP utility, 3-37 

SC command 
EDI utility, 2-44 

ISD switch 
PIP utility, 3-37 

SEARCH & CHANGE command 
EDI utility, 2-44 

SELECT PRIMARY command 
EDI utility, 2-45 

SELECT SECONDARY command 
EDI utility, 2-46 

ISF switch 
DMP utility, 11-8 

SIZE command 
EDI utility, 2-46 

ISL switch 
CMP utility, 12-3 

SLP utility 
audit trail, 13-16 

changing value, 13-17 

Index-8 April 1983 

c 

c 

( 

c/ 



C" 

c 

( 

SLP utility 
audit trail (Cont.) 

deleting, 13-19 
setting 

length, 13-17 
position, 13-17 

suppressing, 13-18 
checksum, 13-3 
edit command line, 13-5 
edit commands, 13-5 
error message, 13-20 
file 

input, 13-2 
listing, 13-3 
output, 13-3 
processing, 13-4 
source 

creating, 13-14 
updating, 13-9 

indirect command file, 13-8 
initiating (invoking), 13-1 
operator, 13-9 
swi tch, 13-14 

Source file 
See SLP utility 

Source Language Input Program 
See SLP utility 

SP command 
EDI utility, 2-45 

/SP switch 
CMP utility, 12-3 
DMP utility, 11-8 
FLX utility, 4-8 
LBR utility, 10-29 
PIP utility, 3-38 
SLP utility, 13-15 

Spooling 
file 

PIP utility, 3-38 
library file 

LBR utility, 10-29 
/SQ switch 

SLP utility, 13-16 
/SR switch 

PIP utility, 3-39 
SS command 

EDI utility, 2-46 
ISS switch 

LBR utility, 10-29 
/SU switch 

PIP utility, 3-12 
/SUPERSEDE qualifier 

BRU utility, 7-21 
Switch 

BAD utility, 6-5 
BRU utility, 7-12 
CMP utility, 12-2 
CRF utility, B-1 
DMP utility, 11-3 
DSC utility, 8-9 
FLX utility, 4-3 
FMT utility, 5-7 
LBR utility, 10-9 

INDEX 

Swi tch (Cont.) 
PAT utility, 14-6 
PIP utility, 3-14 
SLP utility, 13-14 
summary 

BAD, A-12 
BRU, A-13 
CMP, A-22 
DMP, A-20 
DSC, A-16 
EDI, A-I 
FLX, A-9 
FMT, A-II 
LBR, A-18 
PAT, A-24 
PIP, A-5 
SLP, A-23 
VFY, A-17 
ZAP, A-25 

VFY utility, 9-4 
ZAP utility, 15-2 

/SZ switch 
LBR utility, 10~30 

TAB ON/OFF command 
EDI utility, 2-46 

Tape 
backing up 

BRU utility, 7-1 
comparing 

DSC utility, 8-14 
conventional backup 

BRU utility, 7-4 
copying 

BRU utility, 7-1 
data transfer 

DSC utility, 8-26 
formatting 

FLX utility, 4-4 
full backup 

BRU utility, 7-3 
mounting 

BRU utility, 7-2 
restoring 

BRU utility, 7-1 
selective backup 

BRU utilitYj 7-3 
setting block size 

PIP utility, 3-15 
·verifying 

VFY utility, 9-1 
/TAPE LABEL quali fier 

BRU-utility, 7-21 
Task Builder 

PAT utility, 14-4 
Task image file 

patching 
ZAP utility, 15-1 

Task/File Patch Program 
See ZAP utility 

/TB switch 
CMP utility, i2-3 
PIP utility, 3-26 

Index-9 April 1983 



/TD switch 
PIP utility, 3-40 

/TM02 switch 
DSC utility, 8-22 

TOF command 
EDI utility, 2-19, 2-41 

TOP command 
EDI utility, 2-20, 2-47 

TOP OF FILE command 
EDI utility, 2-19, 2-47 

/TR switch 
PIP utility, 3-40 
SLP utility, 13-15 

TYpe command 
EDI utility, 2-47 

UC ON/OFF command 
EDI utility, 2-48 

/OF switch 
PIP utility, 3-41 

UFO 
creating 

PIP utility, 3-41 
listing file 

PIP utility, 3-24 
validating, 9-5 

/UFD quali fier 
BRU utility, 7-21 

lUI switch 
FLX util i ty, 4-8 

fUN switch 
PIP utility, 3-42 

/UNIT switch 
DSC utility, 8-22 

Universal library file 
inserting module 

LBR utility, 10-20 
replacing module 

LBR utility, 10-27 
UNSave command 

EDI utility, 2-48 
/UP switch 

PIP utility, 3-42 
VFY utility, 9-8 

/UPDATE switch 
BAD utility, 6-6 

UPPERCASE ON/OFF command 
EDI utility, 2-48 

User File Directory 
See UFO 

Utility 
command line format, 1-4 
editing 

EDI utility, 1-2 
file manipulation 

FLX utility, 1-2 
PIP utility, 1-2 

file specification 
default, 1-4 
format, 1-4 

indirect command file, 1-9 
invoking, 1-6 

DCL, 1-6 

INDEX 

Utili ty 
invoking (Cont.) 

installed, 1-7 
MCR, 1-6 
uninstalled, 1-9 

listed, 1-1 
program maintenance, 15-1 

CMP utility, 1-3 
PAT utility, 1-3 
SLP utility, 1-3 
ZAP utility, 1-4 

programming 
DMP utility, 1-3 
LBR utility, 1-3 

volume maintenance 
BAD utility, 1-2 
BRU utility, 1-3 
DSC utility, 1-3 
FMT utility, 1-2 
VFY utility, 1-3 

V command 
ZAP utility, 15-17 

/VB switch 
CMP utility, 12-3 

/VE switch 
FLX utility, 4-8 

/VEC switch 
BAD utility, 6-9 
DSC utility, 8-23 

Verification 
device 

BAD utility, 6-3 
file structure 

VFY utility, 9-1 
task image file content 

See ZAP utili ty 
VERIFY ON/OFF command 

EDI utility, 2-49 
/VERIFY qualifier 

BRU utility, 7-22 
/VERIFY switch 

DSC utility, 8-18 
FMT utility, 5-9 

VFY utili ty 
command line, 9-2 
error message, 9-11 
file error reporting, 9-8-
operation mode, 9-3 
switch, 9-4 

summary, 9-4 
validity check, 9-3 

Volume 

Index-IO 

backing up 
BRU utility, 7-1 

compressing 
DSC utility, 8-3 

directory listing 
FLX utility, 4-7 

displaying free space 
PIP utility, 3-23 
VFY utility, 9-5 

examining data 

April 1983 

( 

( 

c 



c 

c 

( 

Volume 
examining data (Cont.) 

DMP utility, 11-1 
file 

deleting , 
FLX utility, 4-7 

recovering lost 
VFY utility, 9-6 

transferring 
FLX utili ty, 4-4 

formatting 
FLX utility, 4-4 
FMT utility, 5-1 

ini tializing 
BRU utility, 7-17 
FLX util i ty, 4-2 

listing file-ID 
VFY utility, 9-6 

locating bad block 
BAD utility, 6-1 
FMT util i ty, 5-1 
VFY utility, 9-7 

recovering 
lost block 

VFY utility, 9-7 
lost file 

VFY utility, 9-6 
space 

- DSC utility, 8-3 
restoring 

BRU utility, 7-1 
verifying, 9-1 

block 
VFY utility, 9-7 

/WCHK switch 
BAD utility, 6-9 

fWD switch 
DMP utility, 11-8 

Wildcard 
file specification 

BRU utility, 7-7 
FLX utility, 4-3 
PIP utility, 3-7 

/WINDOWS qualifier 
BRU utility, 7-22 

/WLT switch 
FMT util i ty, 5-9 

INDEX 

WRITE command 
EDI utility, 2-49 

X command 
ZAP utility, 15-16 

/@Y switch 
FMT utility, 5-9 

ZAP utility 
address boundary 

displaying, 15-3 
addressing mode, 15-4 
command 

carriage return, 15-7 
. general purpose, 15-7 

summary, 15-15 
open/close location, 15-7 

summary, 15-11 
command line, 15-6 

element, 15-8 
error message, 15-23 
example, 15-18 
indirect command file, 15-6 
initiating (invoking), 15-5 
location 

addressing, 15-4 
closing, 15-13 
contents 

changing, 15-13 
displaying, 15-12 
verifying, 15-18 

opening, 15-12 
specifying, 15-10 

ODT on-line debugger, 15-1 
operating mode, 15-2 
register 

setting value, 15-18 
relocation biases, 15-4 
switch, 15-2 
task image file, 15-3 

I- and D-space, 15-3 
multiuser, 15-3 
resident library, 15-3 

terminating, 15-5 
/ZE switch' 

FLX utility, 4-8 

Index-ll April 1983 



c 

c 



( 
RSX-llM/M-PLUS Utilities Manual 

AA-FD13A-TC 

READER'S COMMENTS 

NOTE: This form is for document comments only. DIGITAL will use comments submitted on this form at the 
company's discretion. If you require a written reply and are eligible to receive one under Software 
Performance Report (SPR) service, submit your comments on an SPR form. 

Did you find this manual understandable, usable, and well organized? Please make suggestions for improvement. 

Did you find errors in this manual? If so, specify the error and the page number. 

Please indicate the type of user/reader that you most nearly represent. 

o Assembly language programmer 
o Higher-level language programmer 
o Occasional programmer (experienced) 
o User with little programming experience 
o Student programmer 
o Other (please specify) 

Name ________________________________________________ Date ______________________________ ___ 

Organization 

Street 

City ______________________ __ State ______ Zip Code ______ _ 

or Country 



- - Do Not Tear - Fold Here and Tape 

IIIIII 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO.33 MAYNARD MASS. 

POSTAGE WILL BE PAID BY ADDRESSEE 

SSG PUBLICATIONS ZK1-3/J35 
DIGITAL EQUIPMENT CORPORATION 
110 SPIT BROOK ROAD 
NASHUA, NEW HAMPSHIRE 03062-2698 

I 

I 

I 

-I (~' '\ ,..--------, I ) 
" No Postage 

Necessary 
if Mailed in the 
United States 

I 

I 

I 

I 

If 
I~ 

( 

- '- - Do Not Tear - Fold Here - - - - - - - - - - - - - - - - - - - - - -

c 

~ 

:3 
'C 

~ 
Q 

Q 

§ 
:( 
.... a 

( / 





Printed in U.S.A. 


