
RSX-11 M/M-PLUS
Indirect Command Processor Manual

Order No. AA- FD05A-TC

RSX-11 M/M-PLUS
Indirect Command Processor Manual

Order No. AA-FD05A-TC

RSX-11 M Vers ion 4.2

RSX- 11 M- PLUS Vers ion 3 .0

digital equipment corporation· maynard, massachusetts

First Printing, July 1985

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a license
and may be used or copied only in accordance with the terms of such
license .

No responsibility is assumed for the use or reliability of software on
equipment that is not supplied by Digital Equipment Corporation or its
affiliated companies.

Copyright @ 1985 by Digital Equipment Corporation
All Rights Reserved.

Printed in U.S.A.

The postpaid READER'S COMMENTS form on the last page of this document
requests the user ' s critical evaluation to assist in preparing future
documentation.

The following ar e trademarks of Digital Equipment Corporation:

DEC DIBOL RSTS
DEC/CMS EduSystem RSX
DEC/MMS lAS UNIBUS
DECnet MASSBUS VAX
DECsystem-1O MICRO/PDP-ll VMS
DECSYSTEM-20 Micro/RSX VT
DECUS PDP

~D~DD~D DECwriter PDT

HOW TO ORDER ADDITIONAL DOCUMENTATION

In Continental USA and Puerto Rico call 800-258-1710

In New Hampshire, Alaska, and Hawaii call 603-884-6660

In Canada call 613-234-7726 (Ottawa-Hull)
800-267-6215 (all other Canadian)

DIRECT MAIL ORDERS (USA & PUERTO RICO)'

Digital Equipment Corporation
P.O. Box C32008
Nashua, New Hampshire 03061

• Any prepaid order from Puerto Rico must be placed
with the local Digital subsidiary (809-754-7575)

DIRECT MAIL ORDERS (CANADA)

Digital Equipment of Canada Ltd .
100 Herzberg Road
Kanata, Ontario K2K 2A6
Attn: Direct Order Desk

DIRECT MAIL ORDERS (INTERNATIONAL)

Digital Equipment Corporation
PSG Business Manager
clo Digital's local subsid iary or
approved distributor

Internal orders shou ld be placed through the Software Distribution Center (SDC), Digital Equipment
Corporation , Northboro, Massachusetts 01532

ZK2870

CONTENTS

Page

PREFACE v

SUMMARY OF TECHNICAL CHANGES ix

CHAPTER 1

CHAPTER 2

2.1
2.1.1
2.1. 2
2.2
2.3
2.4
2.4.1
2.4.1.1
2.4.1.2
2.4.1.3
2.4.2
2.4.3
2.4.4
2.4.5
2.4.5.1
2.5
2.6
2.6.1
2.6.2
2.6.3
2.6.4
2.6.5
2.6.6
2.6.7
2.6.8
2.6.9
2.6.10

2.6.11
2.6.12
2.6.13
2.6.14
2.6.15
2.6.16
2.6.17
2.6.18
2.6.19
2.6.19.1

2.6.19.2

2.6.19.3

2.6.19.4

2.6.19.5

INTRODUCTION TO INDIRECT

THE INDIRECT COMMAND PROCESSOR (REFERENCE SECTI ON)

INDIRECT COMMAND FILES • • . . • 2-1
Indirect Task Command Files • • 2-1
Indirect CLI Command Files ••••••• • 2-2

THE INDIRECT COMMAND PROCESSOR
SUMMARY OF INDIRECT DIRECTIVES

• • 2-3
• • 2-5

SYMBOLS .•. • . . • • . .
Special Symbols . • • . .

Special Logical Symbols
Special Numeric Symbols
Special String Symbols •

Numeric Symbols and Expressions
String Symbols, Substri ngs, and Expressions
Reserved Symbo l s • . . • • • • • • • •
Symbol Value Substitution

Substitution Format Control
SWITCHES . . • • •
DESCRIPTION OF INDIRECT DIRECTIVES •

Define a Label (.label:) • . . . • •••
Ask a Question and Wait for a Reply (.ASK)
Ask for Definition of a Numeric Symbol (.ASKN) .
Ask for Definition of a String Symbol (.ASKS) .
Begin Block (.BEGIN)•.......
Continue processing using Another File (.CHAIN)

• 2-9
• 2-9
2-10
2-11
2-17
2-22
2-24
2-25
2-25
2-26
2-27
2-30
2-31
2-33
2-35
2-38
2-4 0
2-41
2-42 Close Secondary File (.CLOSE) . • • . .

Output Data to Secondary File (. DATA) .
Decrement Numeric Symbol (.DEC) ••••

• . . . 2-43
. . .. 2-44

Delay Execution for a Specified Period of Ti me
(.DELAY) .••...•..
Disable Option (. DISABLE) .•
Enable Option (.ENABLE) •.
End Block (.END) .•••.
Delete Symbols (.ERASE) ..
Exit Current Command File . (.EXIT) .•
Interface to FMS-ll (.FORM) .
Call a Subroutine (.GOSUB)
Branch to a Label (.GOTO) ..
Logical Test (.IF)

Test if Symbol Meets Specified Condition
(. IF) •.•...... . . • .
Test if Task Is Active or Dormant
(. IFACT/. IFNACT) . • • • •
Test if Symbol Is Defined or Not Defined
(.IFDF/IFNDF) ..•••..
Test if Task Is Installed or Not Installed
(. IFINS/. IFNINS) ••...
Test if Mode Is Enabled or Disabled
(.IFENABLED/.IFDISABLED)••

iii

2-45
2-46
2-47
2-51
2-52
2-54
2-55
2-58
2-59
2-6 0

2-6 0

2-61

2-61

2-62

2-62

CONTENTS

2.6.19.6 Test if Driver Is Loaded or Not Loaded

2.6.19.7
2.6.19.8
2.6.20
2.6.21
2.6.22
2.6.23
2.6.24
2.6.25
2.6.26
2.6.27
2.6.28
2.6.29
2.6.30

2.6.31
2.6.32
2.6.33
2.6.34
2.6.35
2.6.36
2.6.37
2.6.38
2.6.39

2.6.40
2.6.41
2.7
2.7.1

2.7.2
2.7.3
2.7.4

2.7.5

2.7.6

APPENDIX A

A.l
A.2

(. IFLOA/. IFNLOA) . • . . • • • •
Test if Symbol Is True or False (.IFT/.IFF)
Compound Tests • . • • . . • . •

Increment Numer ic Symbol (. INC). . . . • • . .
Define Logical End-of-File (/) •..•••••
Branch to Label on Detecting an Error (.ONERR)
Open Secondary File (.OPEN) .•••••.
Open Secondary File for Append (.OPENA) .
Open File for Reading (.OPENR) •.••••
Parse Strings into Substrings (.PARSE)
Pause for Operator Action (.PAUSE)
Read Nex t Record (. READ) . . • • . •
Return from a Subroutine (.RETURN)
Set Symbol to True or False
(.SETT/.SETF/.SETL) ..•...•.•
Set Symbol to Numeric Value (.SETN) .•
Set Symbol to Octal or Decimal (.SETO/.SETD) •
Set Symbol to String Value (.SETS) .•..
Terminate Command File Processing (.STOP) .
Test Symbol (.TEST) .•..
Test Device (. TESTDEVICE) ..••••
Test a File (.TESTFILE) ••••••
Test a Partition (.TESTPARTITION).
Translate a Logical Name Assignment
(. TRANSLATE) . . • • . . • . • . • • . • . . • •
Wait for a Task to Finish Execution (.WAIT) ••
Ini tiate Parallel Task Execution (.XQT) •••.

EXAMPLES •
Invoking Indirect Interactively and Displaying
Symbols ...•••.•...•.
Using an Indirect Command File ...•
Asking for a Device Specification
Asking for the Type and Unit Number of the
Terminal
Initializing and Mounting a Volume, and
Copying Files to That Volume ••.•.••
Editing, Purging, printing, and Formatting

2- 63
2- 63
2-64
2-65
2-66
2-67
2-69
2-71
2-73
2-75
2-77
2-79
2-79

2-8 0
2-81
2-82
2-83
2-84
2-85
2-87
2-89
2-91

2-92
2-94
2-95
2-96

2-96
2-96
2-96

2-98

2-99

Files•...•......•• 2-100

INDIRECT MESSAGES

INFORMATION - ONLY MESSAGES
ERROR MESSAGES • . . . • .

iv

• A-l
A-2

PREFACE

MANUAL OBJECTIVES

The RSX-llM/M-PLUS Indirect Command Processor Manual describes
Indirect, the task used to run indirect command files and to perform
other programming and system-control functions. The manual discusses
the different kinds of indirect command files and their uses, and
describes Indirect's directives and special symbols and how to use
them.

INTENDED AUDIENCE

This manual is intended for anyone who is interested in learning about
the Indirect Command Processor and how to use it.

STRUCTURE OF THIS MANUAL

A Summary of Technical Changes provides information about changes to,
and new features of, the RSX-llM/M-PLUS operating systems that affect
Indirect.

Chapter 1 is an introduction to Indirect. It explains what Indirect
is and gives an overview of the various features of Indirect.
Examples at the end of the chapter illustrate different ways in which
to use Indirect.

Chapter 2 is a reference section on Indirect. It explains in more
detail the functions of Indirect and its directives and symbols. More
examples appear at the end of this chapter.

Appendix A lists and explains all of the Indirect messages.

ASSOCIATED MANUALS

Other RSX-lIM/M-PLUS system manuals that supplement this manual are
the RSX-llM/M-PLUS MCR Operations Manual and the RSX-IIM and
RSX-llM-PLUS Command Language Manual. These manuals give more detail
about the way the system operates and describe the commands mentioned
in this manual.

v

PREFACE

CONVENTIONS USED IN THIS DOCUMENT

A number of conventions are used in the directive descriptions in this
manual:

Convention

[label]

[g ,m]

UPPERCASE

lowercase

/switch

parameter

filespec

red ink

Meaning

The vertical ellipsis shows where elements of command
input have been omitted because they are not relevant to
the point being discussed.

Any command parameter enclosed in square brackets is
optional. If the brackets include syntactical elements,
such as periods (.) or slashes (/), those elements are
required for the parameter. If the parameter appears in
lowercase, you are to substitute a legal command element
if you include the parameter.

This signifies a User Identification Code (UIC). The g is
a group number and m is a member number. The UIC
identifies a user and is used mainly for controlling
access to files and privileged system functions.

This sometimes also signifies a User File Directory (UFO),
commonly called a directory. Where a directory name is
required, only one set of brackets is shown, as in [g,m].
Where the directory is optional, two sets of brackets are
shown, as in [[g,m]). Other notations for directories are
[ggg ,mmm) , [gggmmm), [ufd), [name), and [directory).

Any command parameter in uppercase indicates the legal
form of the command. If you type it in that form, it will
work as described.

Any command parameter in lowercase is to be substituted
for. Usually, the lowercase word identifies the kind of
substitution expected, such as filespec, which indicates
that you should fill in a file specification.

Switches alter the action of the directive to which they
are attached.

Required command fields are generally called parameters.
The most common parameters are file specifications.

A full file specification includes device, directory, file
name, file type, and version number, as in this example:

DL2: [46,63)INDIRECT.TXTi3

Full file specifications are rarely needed. If you do not
provide a version number, the highest numbered version is
used. If you do not provide a directory, the default
directory is used. Some system functions default to
particular file types.

All user-input text in examples is printed in red ink to
distinguish it from system output. That is, what you type
is shown in red.

vi

PREFACE

An oval symbol with a two- to six-character abbreviation
indicates that you are to press the corresponding key on
your terminal. For example, ®m indicates that you are
to press the RETURN key and @ill means tha t you are to
press the DELETE key.

The oval symbol p ALM) means that you are to press the key
marked CTRL while pressing another key. Thus, tTAL~)
indicates that you are to press the CTRL key and the Z key
simutaneously. t TRLiz) is echoed on your terminal as AZ, but
not all control characters echo.

vii

SUMMARY OF TECHNICAL CHANGES

This edition of the RSX - llM/M- PLUS Indirect Command Processor Manual
contains changes and additions made to the RSX-llM Version 4.2 and
RSX - llM-PLUS Version 3.0 operating systems .

• The <TITYPE> symbol supports two new terminal types. The
types and their corresponding octal codes are:

PC3xx series 35
VT2xx series 36

Also, the <TITYPE> symbol is
terminal type is changed,
initialized.

now
not

evaluated
just when

whenever
Indirect

the
is

• Pound signs (#) as well as quotation marks (") can now be
used as delimiters for string symbols a nd expressions.

• One new directive is described in this manual. The directive
is for RSX- llM- PLUS systems only:

•

. TRANSLATE to translate logical names

Another directive is
documented before.
systems only:

not new, but has never been fully
This directive is also for RSX- llM- PLUS

.FORM to interface to FMS - ll

The following RSX- llM- PLUS
logical name assignments
specifications:

system directives now
in place of file or

.CHAIN .OPEN
.OPENA
.OPENR

.TESTDEVICE

.TESTFILE

accept
device

• There is a new error message for RSX- llM-PLUS systems. The
message is:

Logical name translation error

ix

SUMMARY OF TECHNICAL CHANGES

• There are new special string symbols for RSX-llM/M-PLUS
systems:

<DIRECT>

The symbol contains the user's current default directory
string.

<SYTYP>

The symbol contains a string describing the system type (for
example, "RS X-l lM").

<VERSN>

The symbol contains the current system's version number
example, "4 .2 ") .

x

(for

CHAPTER 1

INTRODUCTION TO INDIRECT

What is Indirect? Indirect is a command processor that saves you time
and energy by doing a lot of work on the system for you. It also
reduces the frustration that results from inevitable typing mistakes.

Why is it called "Indirect"? Because it changes the way you interact
with the system from one of immediate user action/system
reaction -- you type out and enter a command, the system executes it
and waits for another one - - to an indirect interaction between you
and the system. The Indirect Command Processor allows you to put the
commands in a file and tell the system to execute them while you do
something else. Instead of entering commands directly to the system,
you provide an indirect reference to the file that has all the
commands in it.

Indirect also has its own directives and symbols with which you can
create programs to do a variety of tasks. Indirect runs from a
logged-in terminal and always runs at the same priority.

The following sections describe more about Indirect.

Indirect Command processing

Indirect lets you execute one or more command line interpreter
commands by typing one Indirect command line.

(CLI)

You create a file, and put the CLI commands you want to execute into
the file in the order you want them processed. To execute this
command file, type an at sign (@) and the name of the file. Indirect
and the CLI then do all the work.

For example, the command file EXAMPLE.CMD contains the following DCL
command lines:

SHOW TIME
DIRECTORY WORKLIST.TSKi*
RUN WORKLIST
PRINT WORKLIST.MAP,WORKLIST.LST
SHOW TIME

To execute this command file, type the following command line:

$ @EXAMPLE @)

Indirect (invoked by the at sign)
one line at a time, waiting
before going onto the next one.

reads the command lines in the file
until each command has been executed

Use an editor (such as EDT) to create your command file. Because
Indirect looks for .CMD file types by default, you should create your
file with this file type. If you name it something else, you must
specify the different file type when you execute the file.

1-1

INTRODUCTION TO INDIRECT

Indirect accepts input in both uppercase and lowercase characters.
When it prompts you for information, it displays the question exactly
as it was put into the file.

Indirect Command Files

Indirect command files are used for many different things. One
example is a login command file. When you log in, the system
automatically runs the LOGIN.CMD file in your login directory, which
can, for instance, set various characteristics for your terminal or
automatically run other programs or files.

To illustrate, you can use LOGIN.CMD to change the characteristics of
your terminal if the ones you want are different from the terminal's
default characteristics. Put the necessary CLI command lines in
LOGIN.CMD. The characteristics will be changed automatically when you
log in. Here is an example of a DCL login command file:

SET TERMINAL/SPEED: (9600,9 600) /WIDTH:80
@COOKIE
SHOW DEVICES
SHOW USERS
SHOW TIME

This command file sets two different characteristics for the
terminal: speed and width. (See the RSX-IIM or RSX-IIM-PLUS Command
Language Manual for more information about these commands.) The
command file also runs another command file, COOKIE.CMD. When
COOKIE.CMD finishes executing, Indirect returns to the first file (the
login command file) to continue executing it. The SHOW commands
display on the terminal lists of the peripheral devices on the system
(terminals, disk drives, line printers, and so on) and the users
currently logged in on the system, and then the current time and date.

When you include commands in a login command file, you do not have to
type those commands every time you log in; Indirect does all the work
for you. Including repetitive sequences of commands that you are
going to ~se often into a single file is something for which Indirect
is especially good. using indirect command files saves you time and
prevents mistakes. " Repeti ti ve sequences of commands " can be just
about anything. A few examples are listing files in your directory,
mounting volumes, backing up files, and doing quick tests at your
terminal. The following sample DCL command files will give you a
better idea of what Indirect can do for you:

• To prepare a disk volume for use and then mount it, run a file
containing the following command lines:

MOUNT/FOREIGN DUl:
ANALYZE/MEDIA DUl:
DISMOUNT DUl:
INITIALIZE DUl:MYDISK
MOUNT/NOSHAREABLE DUl:MYDISK

This file checks the volume (DUl :) for bad blocks (so that
data will not be written to them), initializes the volume
(wh ich deletes any data currently on the volume and makes it a
Files-II formatted volume) , and then mounts the volume. (Not e
that the device on which you mount a volume might not be DUl:,
nor is the name of the volume likely to be "MYDISK.")

1-2

INTRODUCTION TO INDIRECT

• To check for files in your directory, use a file containing
command lines similar to the following:

DIR *.RNOi*
DIR * .MEMi *
DIR * .TXTi*
DIR * .LSTi*
DIR * .CMDi*
DIR *.HLPi*

These command lines display on your terminal lists of various
files based on their file type. After looking at these lists,
you can decide what you want to do with the files.

Substitution Mode

You may need to change indirect command files often to make them do
exactly what you want to do each time. For example, you might use a
command file to do a backup procedure, but find that you have to edit
the file to change the name of the device drive or its unit number.
For such cases, Indirect has substitution mode.

Substitution mode allows you to place a special word -- called a
symbol -- in the command line. When you run the command file, it will
ask you (through a special Indirect command line you include in the
file) for the information that is to be substituted for the symbol.
An Indirect directive (or command), .ENABLE SUBSTITUTION, allows you
to use substitution mode.

The following command file shows substitution mode being used:

.ENABLE SUBSTITUTION

.ASKS DEVICE Device to mount?
MOUNT 'DEVICE'

These command lines (which can be part of a larger command file)
perform the following actions: they enable substitution mode, ask you
which device is going to be mounted (DEVICE), and then mount that
device. The apostrophes around DEVICE tell Indirect to take your
answer to the system's question and substitute that value for DEVICE
before it processes the command line. When you run the file, this is
what you see on your terminal:

>* Device to mount? [S): DU1: ®ill
>MOUNT DU1:

When you see "* Device to mount? [S) :" prompting you on your terminal,
type in the name of the device to be mounted and then press the RETURN
key . After you have answered the question, Indirect displays the
MOUNT command line on your terminal, with the specific device name
substituted for 'DEVICE,' and the system mounts the device.

For CLI commands and for questions displayed by the .ASKx
the first character displayed is the current CLI prompt.
default prompt is the right angle bracket (». For DCL,
prompt is the dollar sign followed by a space ($) .

directives,
For MCR, the
the default

The asterisk (*) at the beginning of the line indicates that the
question is being asked by Indirect. .ASKS means "ask for a string, "
so the "[S):" at the end of the question- indicates that Indirect
expects a string answer, that is, an answer containing a string o f
alphabetic and/or numeric characters. Indirect also accepts other
types of answers, depending on the question being asked.

1 - 3

INTRODUCTION TO INDIRECT

When the command file is
the question (DU1:) for
following the question.
your terminal instead
lets you name any device

executed, Indirect substitutes your answer to
the symbol 'DEVICE' in the MOUNT command line
That is why you see "MOUNT DU1:" displayed on
of "MOUNT 'DEVI CE'." Using substi tution mode
with your command file.

The next (MCR) command file, which displays information from a user's
local (that is, private) help file, shows a similar use for
substitution mode. (These commands could also be part of a larger
file.)

.ENABLE SUBSTITUTION

.ASKS CMND Enter command name
HELP / FIL:DU2: [303,23]COMMANDS.HLP ' CMND'

The termina l session would be this:

>@HELP (REI)
>* Enter command name Telegram ®ill
>HE LP/FIL:DU2: [30 3,23]COMMANDS.HLP Telegram

The TELEGRAM command sends a specified message

As a way to displ ay help files, this command file asks for the topic
for which help is wanted. When the terminal displays " * Enter command
name [S]: ," you type in the topic you want help on. Indirect takes
your answer, substitutes it for the symbol 'CMND' in the HELP command
line, and then displays the requested help information immediately
afterwards. (See the RSX-llM/M-PLUS MCR Operations Manual for
information on the HELP command.)

writing Programs with Indirect

As you can see , Indirect can be used to write programs -- in fact, the
command file shown above is really a simple program. Many commo n
programming techniques are available in Indirect. These techniques
include looping, counters, variables , arithmetic and logical
operations, and testing system conditions. The techniques are
performed through the use of Indirect directives , symbols, and labels.

Directives

.ENABLE SUBSTITUTION and .ASKS are only two of the many Indirect
directives. This chapter will not describe all of the directives, but
will acquaint you with a few that you are most likely to use a nd to
use frequently. The .ASKS directive has two companion directives,
.ASK (for true/fa lse -- or logical -- questions) and .ASKN (for
numeric questions). You can use .ENABLE and its companion directives,
.DISABLE, to set and change several other modes in Indirect.

All Indirect directives begin with a period. An exception is the
logical end-of-file directive, which is only a slash (/) .

For a complete list of the directives, see Chapter 2.

Special Symbols

Indirect has special symbols that it defines automatically. The
symbols are dependent upon specific system characteristics and the
replies to queries given during command file execution. Special
symbols can be compared , tested, or substituted and are of three
types: logical, numeric, or string. All special symbols have a common
format: angle brackets «» enclose the special symbol name.

For a complete list of the special symbols, see Chapter 2.

1-4

INTRODUCTION TO INDIRECT

Labels

You can also use labels in command files. Labels allow you to
organize your file more coherently and to jump to other lines in the
file, depending on the results of conditional statements. For
example, the following command file asks for the values of two
variables and then compares them •

• ENABLE SUBSTITUTION
.ASKN A Enter value for A
.ASKN B Enter value for B
• IF A > B .GOTO TEST2
.EXIT

.TEST2: .SETN A B

Depending on the result of the comparison (performed by the .IF
directive) , the command file either exits (.EXIT) or goes onto the
section of the file labeled .TEST2:.

Notice that the label begins in the first column of the command file
while the directives begin in the ninth column (one tab stop over) .
Formatting your command files in this way makes them consistent and
easy to read.

Labels are one through six characters in length, begin with a period
(.) , and end with a colon (:). (The period and colon are not included
in the six characters.) When you use labels in command lines within
the command file, however, you only need to use the namei you do not
need to include the period and colon. The .GOTO directive allows you
to go to the different sections of the file marked by different
labels.

The .IF and .SET directives, like .ASKS, have companion directives.
The o ther .IF directives allow you to make tests for certain specific
conditions. The other .SET directives allow you to set values as
true, false, logical, numeric, string, octal, or decimal.

The following command file uses one of the other .SET directives,
.SETS, and also the .ENABLE and .GOTO directives. The file also uses
the special string symbol <TIME>. A more detailed explanation follows
the text of the file •

• 000:

.100:

. , The following file prints a message on the terminal,

.i depending on the time of day .

. ENABLE SUBSTITUTION

.SETS TIME '''<TIME>'"

.i <TIME> has the format hh:mm:ss •
• SETS SAYING TIME[8.:8.)
.i Sets SAYING equal to last digit of <TIME> (l's column
• i for seconds) •
• GOTO 'SAYING'OO
.i Makes a label based on the second <TIME> is checked .

What else can go wrong?
.GOTO END

Have you seen your shrink today?
.GOTO END

1-5

.200:

.300:

.400 :

.500:

.600:

.700:

.800:

.900:

.END:

INTRODUCTION TO INDIRECT

Ours is not to reason why •
• GOTO END

Where were YOU when the lights went out?
.GOTO END

i Why are you here?
.GOTO END

Everything is relative •
. GOTO END

It will be a good experience for you!
.GOTO END

Don't panic .
• GOTO END

One lousy driver can ruin your whole day .
. GOTO END

Curiosity killed the cat .
. GOTO END

.EXIT

Explanation of the Command File

In addition to the directives and special symbol, this command file
illustrates other features of Indirect. The first feature is the use
of comments. Comments can be used to describe what the file is
supposed to do, and to explain what the command lines do or to give
additional information about them. Comments that begin with a period
and semicolon (.i) will not be displayed on the terminal when the file
is executed. Comments that begin with only a semicolon (i) or an
exclamation point (!) will be displayed.

This file, as the introductory comment explains, displays a message on
the terminal when the file is run. The message displayed depends on
the time at which the file is executed.

When the file begins to execute, substitution mode is enabled and the
symbol TIME is set with the .SETS directive to be equal to the
contents of the special symbol <TIME>. <TIME> contains the current
time in the format hh:mm:ss. The second .SETS command line sets the
symbol SAYING to be equal to the last digit contained in <TIME>. The
range [8.:8.) tells Indirect to look for the last character in the
string of eight charactersi in other words, the second digit of
seconds (ss). For example, if <TIME> contains 11:37:56, the symbol
SAYING is set to 6. That means that Indirect will display the
message:

It will be a good experience for you!

The .GOTO command line creates a label, using the second from <TIME>,
so that Indirect will know which label to go to and which message to
display. (In the above example, Indirect branched to label .600:.)
The remainder of the file lists the labels and the messages to be
displayed, and then branches to the .END: label after the message has
been displayed. In that way, Indirect goes directly to the end of the
file and exits (.EXIT) without first displaying any messages following
the one that was displayed.

1- 6

INTRODUCTION TO INDIRECT

The following examples will give you more of an idea of the usefulness
and versatility of Indirect. A brief commentary follows each example.
For more information on Indirect (directives, symbols, error messages,
and so on), see Chapter 2.

Examples

An explanation of the example follows each one.

• The following DCL command file prepares a new diskette for use
on your system:

i Place the new diskette in one of the drives before
i answering the question .
. ENABLE SUBSTITUTION
i Diskette drives are named DU1: and DU2: .
• ASKS DISK Which diskette drive
i Labels can have up to 12 letters and numbers •
. ASKS LABEL What label do you want
MOUNT/FOREIGN/NOSHAREABLE 'DISK'
ANALYZE/MEDIA 'DISK'
INITIALIZE 'DISK' 'LABEL'
DISMOUNT 'DISK'
MOUNT/NOSHAREABLE 'DISK' 'LABEL'
CREATE/DIRECTORY 'DISK'
i Diskette in 'DISK' is ready for use.

In this file, you instruct the system to tell you to place the
new diskette in the drive that you will be using. To have the
system display this kind of information, include comments
beginning with a semicolon (i) at the appropriate places in
the command file. Comments that begin with a semicolon are
always displayed. Comments that begin with a period and a
semicolon (.i) are not displayed.

The first command line in the file enables substitution mode.
When you enable substitution mode, Indirect can substitute the
value of a symbol in a command line or directive statement.
The next line displays information about the diskette drives
on the system. The .ASKS command line asks you which drive
you will be using. In this example, you name the drive with
the new diskette in it. Once you have answered the question,
Indirect substitutes the name of the drive you specified
wherever 'DISK' appears in a command line. (Remember that the
apostrophes are required for the substitution operation to
take place.) Although Indirect allows you to check for
correct syntax, this sample command file does not take
advantage of that option.

The next line displays information about labels and the
succeeding .ASKS command line asks you for the label of the
diskette. The label is an identifier for the diskette volume
and a password for using the diskette. No one can mount the
diskette without knowing the label.

The MOUNT command mounts the diskette so that the
work with it. The /FOREIGN qualifier is used
volume is not yet formatted properly for use on an
The /NOSHAREABLE qualifier means that no one else
diskette while you are using it.

1-7

system can
because the
RSX system.
can use the

INTRODUCTION TO INDIRECT

The ANALYZE command line tells the system to look for bad
blocks on the diskette. Bad blocks are areas on the diskette
volume that cannot be used for reading or writing data. If
the system determines befo r ehand where the bad blocks are, it
can avoid them during read and write operations to the
diskette.

The INITIALIZE command reformats the diskette so t hat it is in
Files-ll format. Files - ll is the standard RSX format for disk
volumes. The DISMOUNT and second MOUNT commands are necessary
after the diskette has been initialized because they inform
the system that it can now treat the diskette as a standard
Files- ll volume.

The CREATE/DIRECTORY command line creates a new directory on
the diskette . The directory on the diskette is the same as
your login directory on your user disk. The last line of the
command file displays the statement that the specified
diskette is now ready for you to use.

• The following command file concatenates several DCL help files
into one file named HELPFILES.TXT and then prints the file
after a certain specified time:

.ENABLE SUBSTITUTION

.ASKS DEVICE Enter device and directory spec

.ASKS TIME Time to print (hh:mm) ?

.IF TIME EQ "" .SETS TIME "0"
COPY 'DEVICE'DCL.HLP HELPFILES.TXT
APPEND 'DEVICE'ALLOCATE.HLP,BROADCAST,COPY HELPFILES.TXT
APPEND ' DEVICE'DIRECTORY.HLP,DISMOUNT,HELP HELPFILES.TXT
APPEND ' DEVICE ' INITIALIZE.HLP,LINK,MOUNT HELPFILES.TXT
APPEND 'DEVICE'PURGE.HLP,RENAME,RUN,SET HELPFILES.TXT
PRINT/AFTER: ('TIME') HELPFILES.TXT

In this file, substitution mode is enabled, and Indirect asks
which device and directory the files are to be copied from
(' DEVICE') and the time after which the files are to be
printed (' TIME'). If no specific time is given, the files are
queued to be printed immediately .

The COPY command creates the new file HELPFILES.TXT and copies
i n to it the help file DCL.HLP. The APPEND commands add more
help files to the end of HELPFILES.TXT. The PRINT command
prints HELPFILES.TXT after the time given in response to the
"Time to print?" question.

• The following command file can help you delete unnecessary
files from your directory:

.BEGIN:
.ENABLE SUBSTITUTION

.ASKS FILE Which file?
TYPE 'FILE'
. ASK DEL Delete this file
. IFT DEL DELETE ' FILE'i*
. GOTO BEGIN

With this file, substitution mode is enabled and Indirect asks
for the name of a file to be deleted. However, b e fore the
file is deleted, DCL (the CLI for this example) displays the
file on the terminal and Indirect asks whether the file should
be deleted. This verification ensures that you do not delete
a file that you really want to keep.

1- 8

INTRODUCTION TO INDIRECT

If you answer "Yes" (Y) to the question, DCL deletes the file.
After the file is deleted, Indirect loops back up to the
beginning and asks for the name of the next file to be
deleted . If you have no more files to be deleted, press
(CTRL/Z > in response to the "* Which file?" question.

• The following command file gets information about the system,
your account, and your terminal, and writes the information
into another file :

.ENABLE SUBSTITUTION

.OPEN INFO. OAT

. ENABLE DATA
' (DATE>'
' (TIME > '
' (VIC > '
' (LOGOEV > '
' (NETNOO > '

' (TISPEO>'

' (TITYPE > '

. OISABLE DATA

.CLOSE INFO.OAT
TYPE INFO. OAT

t

This is today' 's date.
This is the current time.
This is your current VIC.
This is your login device.
This is the DEC net node name of
your system.
This is the baud-rate code for
your terminal.
This is the type code for the
terminal you are using •

With this file, substitution mode is enabled, a new file
called INFO. OAT is opened so that the information can be
written into it (if the file already exists, Indirect will
create a new version), and then data mode is enabled. Data
mode allows several lines of text to be written into a file.

Next, Indirect gets the contents of the various special
symbols and writes the information into INFO.OAT. After the
last symbol is read, data mode is disabled, and INFO.OAT is
closed and then displayed on the terminal. For example:

$ @INFORM ffi)
$ TYPE INFO. OAT
14 - JUL - 85
10:14:37
[303,23]

DUO
AMITY

22

15

$ @ (EOF>
$

This is today's date.
This is the current time.
This is your current UIC.
This is your login device.
This is the OECnet node name of
your system.
This is the baud- rate code for
your terminal.
This is the type code for the
terminal you are using.

As you can see , the appropriate information has been written
into the new file.

Notice th a t in the command file, there are two apostrophes in
"toda y' 's," but only one apostrophe appears in the display.
When substitution mode is enabled, you must use two
apo s trophes in a ny comments so that the text that contains one
apostrophe shows up correctly. When you use only one
apostrophe, Indirect assumes the text following the apostrophe
to be a string symbol. See Chapter 2 for more information.

1 - 9

INTRODUCTION TO INDIRECT

Notice also in INFO.DAT that a code of 22 (8) for <TISPED>
means that the baud rate of the terminal is 96 0 0. A code of
15(8) for <TITYPE> means that the terminal is a VT100. See
Chapter 2 for complete lists of the codes for the baud rates
and terminal types.

• You can also use Indirect directly fr om the terminal without
running a command file. The following command line lets you
work with Indirect interactively:

>@TI: fBIT)
AT.>

When Indirect responds with AT.> (the task - name prompt) , you
can enter Indirect command lines, invoke command files, or
display the values of special symbols. To display a symbol,
use the .ENABLE SUBSTITUTION directive, then request the
symbol in the following format:

AT.>;'<symbol>'

For example, if you type

AT.> .enable substitution ~
AT.> ; '<time>' fBIT)

Indirect displays

>;15:57:56
AT.>

The semicolon in front of the symbol indicates that Indirect
should display the time on the terminal, but the CLI should
not try to execute it as one of its commands.

To exit from Indirect, type t TRL/Z) :

AT. > t TRLZ;
>@ <EOF>

1-10

(

CHAPTER 2

THE INDIRECT COMMAND PROCESSOR (REFERENCE SECTION)

This chapter describes indirect command files and the Indirect Command
Processor (Indirect). Also included are descriptions of the processor
directives and symbols that control the execution of Indirect .

Note that parameter defaults and ranges for the Indirect directives
are specified in the build file for the Indirect task. These values
are installation-specific and can be changed. The values for initial
command line and default directory processing, which are discussed in
Section 2.2, are also installation-specific and can be changed. If
you need more information, ask your system manager.

2.1 INDIRECT COMMAND FILES

Indirect command files can be used to execute many different things -­
from simple tasks to complex system- control and programming functions.

There are two kinds of indirect command files: indirect task command
files and indirect command line interpreter (CLI) command files. The
following sections describe these files.

2.1.1 Indirect Task Command Files

An indirect task command file is a text file containing a list of
task-specific command lines. Rather than typing and retyping a
commonly used sequence of commands and responding to the task's
prompts, you can type the sequence once, store it in a file, and
direct the task to read the file for its commands. Tasks respond to
command lines contained in an indirect command file as if they were
entered directly from the terminal. Most system- supplied tasks on
RSX-llM/M-PLUS operating systems, such as MACRO- II or the Task
Builde~, accept indirect task command files.

To initiate indirect task command files, replace the command line for
a task with a file specification for the command file, preceded by an
at sign (@). The task requesting input then accesses the specified
file and starts to read and respond to the command lines contained
within it. For example, to initiate a file of MACRO- II command lines
from MCR, type the following:

>MAC @INPUT.CMD @]

The MACRO-II Relocatable Assembler accesses the file INPUT.CMD and
executes the command lines contained in it.

2-1

THE INDIRECT COMMAND PROCESSOR (REFERENCE SECTION)

The default file type for indirect task command files is .CMD. Thus,
the command line in the previous example could also be input as
follows:

>MAC @INPUT @ill

Some tasks allow nested command files (on e file invokes another) . See
the appropriate task documentation for the maximum nesting depth
allowed.

Note that indirect task command files can contain valid task - specific
command lines only. The Indirect directives (which are described
later in this chapter) cannot be used for such command files.

2.1.2 Indirect CLI Command Files

An indirect CLI command file is a text file containing CLI command
lines and special directives that allow you to control command file
processing. The Indirect Command Processor (which usually runs under
the task name AT.) reads the indirect command file, interprets the
directives, and passes the CLI commands to the CLI. The CLI can be
MCR, DCL, or a user-written CLI.

For example, an indirect command file could contain the following
command lines:

.ENABLE SUBSTITUTION

.ASKS COMMAN Enter command name
HELP 'COMMAN'

With this file, Indirect processes the first two command lines and the
CLI executes the HELP command line.

To initiate an indirect command file, type in the file specification
preceded by an at sign (@) . For example:

>@COMMANDS.CMD @ill

The default file type for indirect CLI command files is also .CMD.
Thus, the command line in the previous example could also be input as
follows:

>@COMMANDS @ill

On RSX-llM-PLUS systems, the name of the indirect command file can
also be a logical name assignment that translates into a valid File
Control Services (FCS) file specification. For example, if you have
assigned the logical name TEST to ·the string DUO: [USER)COMMANDS.CMD,
the command @TEST invokes the file COMMANDS.CMD in the directory
[USER) on the disk DUO.

If the catchall task (TDX) is installed on your system as .•• CA., you
can give the command file a three-character name and execute the file
without using the at sign. For example:

>ABC @ill

Indirect searches your directory for a command file called ABC.CMD.

Indirect CLI command files can also be nested . The maximum level of
nesting depends on the version of the Indirect task you are using.
Ask your system manager about the version or look at the build file

2-2

THE INDIRECT COMMAND PROCESSOR (REFERENCE SECTION)

for the t a sk . To illustra t e , a maximum nesting level of four means
that you can run one command file, which can run another file, which
can run a third file, which can run a fourth file, which can run a
fifth file.

For example, the following command file executes a DCL command line
and then invokes another command file (COOKIE.CMD) . When Indirect is
finished with COOKIE.CMD, it returns to the first file, which executes
more DCL commands.

SET TERMINAL/LOWER/SCOPE/WIDTH:80
@COOKIE
SHOW DEVICES
SHOW USERS
SHOW TIME

For CLI commands and for questions displayed by the .ASKx
the first character displayed is the current CLI prompt.
default prompt is the right angle bracket (». For DCL,
prompt is the dollar sign followed by a space ($) .

directives,
For MCR, the
the default

The Indirect directives described in Section 2.6 can be used in
indirect CLI command files. All further references in this chapter to
indirect command files apply to indirect CLI command files.

2.2 THE INDIRECT COMMAND PROCESSOR

When processing an indirect command file, Indirect reads the command
file and interprets each command line either as a command to be passed
directly to the current CLI or as a request for action by Indirect.
The directives for Indirect are distinguished by a period (.) as their
beginning character.

The Indirect directives allow you to perform the following functi o ns:

• Define and assign values to logical, numeric, and string
symbols (see Section 2.4 for more information on symbols)

• substitute a symbol's value into any line of the command file

• Perform arithmetic

• Manipulate strings

• Display text on the user's terminal

• Ask questions of a user

• Control the sequence of execution of a command file

• Call subroutines

• Detect error conditions

• Test symbols and conditions

• Create and access data files

• Parse commands and data

• Enable or disable any of several operating modes

2 - 3

THE INDIRECT COMMAND PROCESSOR (REFERENCE SECTION)

• Control time-based and parallel task execution

• Expand logical name assignments (RSX-IIM-PLUS systems only)

These functions are described throughout Section 2.6.

Two directives, .BEGIN and .END, allow you to block-structure the
command file and create Begin-End blocks. Modular, block-structured
command files are easier to debug and maintain. More importantly,
Begin-End blocks isolate local symbol definitions as well as labels
and thus conserve symbol table space.

When you define a symbol, Indirect creates an entry for the definition
in an internal symbol table. Normally, symbol table entries retain
their definitions under the following conditions:

1. If defined locally, throughout the execution of the command
file.

2. If defined globally, throughout the execution of all levels
of nested command files (a dollar sign ($) at the beginning
of the symbol indicates a global symbol) .

When defined within a Begin-End block, however, local symbols retain
their definitions only throughout the execution of the commands within
that block. The symbols are erased from the symbol table when
Indirect encounters the .END directive at the end of the block.

One Indirect directive, .ENABLE GLOBAL (see Section 2.6.12), and a
switch, /LO (see Section 2.5), allow the definition of some symbols as
global to all file levels. If symbols are not global, each time
Indirect enters a deeper level, it masks out-oI the symbol table all
symbols defined by the previous level so that only the symbols defined
in the current level are available for use by that level. When
control returns to a previous level, the symbols defined in that level
become available once again and the ones from the lower level(s) are
lost.

When Indirect reaches the end of the highest-level indirect command
file, it displays the message

@ <EOF>

and then exits. (Th e message is not displayed if the .DISABLE DISPLAY
directive is in effect. See Sections 2.6.11 and 2.6.12 for more
information.)

Indirect displays on the requesting terminal every CLI command line as
it is executed. However, if Indirect is activated by @filename/NOCLI,
the CLI command lines are displayed but not executed. (See Section
2.5 for information on the /[NOjCLI switch.)

A command file can also include comments. Comments can be placed at
different locations in the file and require different preceding
characters depending on how you want Indirect and the CLI to treat
them. Following are the three formats for comments:

icomment

!comment

. icomment

Comments at beginning of line to be displayed by
the CLI

Comments after the start of a CLI command line

Comments that will not be displayed

2-4

THE INDIRECT COMMAND PROCESSOR (REFERENCE SECTION)

Indirect attaches the terminal while processing contiguous comment
lines that begin with a semicolon. This allows you to press CTRL/O
and suppress a lengthy comment. Output is resumed by pressing another
CTRL/O or is resumed at the next CLI command line or Indirect
directive statement in the command file.

Note that command and comment lines are not displayed if .ENABLE QUIET
is in effect (see Section 2.6.12). When Indirect processes a .ENABLE
QUIET statement, it forces a detachment (i f detach mode is enabled,
which it is by default) because it no longer needs the terminal for
processing. Once quiet mode has been established, no attempts are
made to reattach the terminal.

Any CLI command issued by Indirect also causes an unconditional
detachment. This action prevents a task, which may need the terminal,
from suspending activity because the terminal is attached by Indirect.

A .DISABLE QUIET statement
attempt to detach the
information.

establishes terminal
terminal. See Section

I/O but
2.6.12

does
for

not
more

References to task names in an indirect command file follow the rules
used for MCR and DCL. If the task was started as an external CLI task
(for example, MAC, PIP, DMO) , it may be referenced by its
three-character name (xxx) . Thus, such directives as .IFINS, .IFACT,
and .WAIT need only specify the three-character task name; Indirect
can then find the correct task. However, you can always refer to a
specific task by using its full six-character name (... xxx or xxxnnn) .

If you do not specify a file name in the initial command line,
Indirect can construct the name of a default file to be opened. The
default file is named INDINlxxx.CMD, where xxx is null or the
three-character task name under which Indirect is installed. Note,
however, that this facility is usually disabled. To enable it, the
value in the build file for the Indirect task must be changed.

If a specified command file cannot be found in the current directory,
Indirect can also search for the file in another directory. However,
to enable this facility, the value D$CUIC in the build file for the
Indirect task must be changed to be a value other than zero. If the
new value is 1, Indirect searches for the file in LB: [libuic). If the
new value is greater than 377(8), Indirect considers it to be the
octal equivalent of the directory (on LB:) to be searched. For
example, if you issue the command @ABC.CMD but Indirect cannot find
the file in the current directory, if the value of D$CUIC is set to be
[303,54), Indirect searches that directory for the file.

2.3 SUMMARY OF INDIRECT DIRECTIVES

The Indirect directives described later in this chapter are listed
here by category. A detailed description of each directive is given
in alphabetical order in Section 2.6.

Label Definition

.label: Assigns a name to
so that the line
within the file
directive.

2-5

a line in the command file
may be referenced elsewhere

by a .GOTO or .GOSUB

THE INDIRECT COMMAND PROCESSOR (REFERENCE SECTION)

Symbol Definition

.ASK

.ASKN

.ASKS

.ERASE

.SETT

. SETF

. SETN

. SETD

.SETO

.SETL

. SETS

.TRANSLATE

File Access

.CHAIN

• CLOSE

.DATA

.OPEN

.OPENA

.OPENR

. PARSE

.READ

Prompts for user input to define or redefine
a logical symbol and assign the symbol a true
or false value.

Prompts for user input to define or redefine
a numeric symbol and assign the symbol a
numeric value.

Prompts for user input to define or
a string symbol and assign the
character string value.

Deletes all local
definitions or a
definition.

or global
single global

redefine
symbol a

symbol
symbol

Defines or redefines a logical symbol and
assigns the symbol a true or false value •

Defines or redefines a numeric symbol and
assigns the symbol a numeric value.

Redefines the radix of a numeric symbol •

Defines or redefines a logical symbol and
assigns the . symbol a true or false value.

Defines or redefines a string symbol and
assigns the symbol a character string value.

(RSX-llM-PLUS systems only.)
logical name translation into
symbol <EXSTRI>.

Expands a
the special

Closes the current indirect command file and
begins executing commands from another file.

Closes a user data file •

Specifies a single line of data to be output
to a file.

Creates and opens an output data file. (If
the file exists, creates a new version and
opens it.)

Opens an existing data file and appends
subsequent text to it (but does not create a
new version) . Defaults to .OPEN if the file
does not exist.

Opens a data file for reading with the .READ
directive.

Parses (divides) strings into substrings .

Reads a line from a file into a specified
string variable.

2- 6

THE INDIRECT COMMAND PROCESSOR (REFERENCE SECTION)

Logical Control

BEGIN

. END

.EXIT

• GOSUB

. GOTO

/

.ONERR

.RETURN

.STOP

Logical Tests

.IF

• IFACT
.IFNACT

.IFDF
• IFNDF

. IFENABLED

.IFDISABLED

.IFINS

. IFNINS

.IFLOA

. IFNLOA

.IFT
• IFF

.TEST

.TESTDEVICE

Marks the beginning of a Begin-End block.

Marks the end of a Begin- End block .

Terminates processing of either Indirect or
the current command file, returns control to
the invoking terminal or to the previous
Indirect file level, and optionally sets the
value for the special symbol <EXSTAT>.

Calls a subroutine within the command file •

Branches to a label within the command file .

Defines logical end-of- file. Terminates file
processing and exits. This directive is
equivalent to the .STOP directive. It is the
only directive that does not begin with a
period and does not consist of alphabetic
characters.

Branches to a label upon detecting a specific
Indirect error condition.

Effects an exit from a subroutine and returns
to the line immediately following the
subroutine call.

Terminates indirect command file
and optionally sets Indirect
This directive is equivalent to
end-of-file (/) directive.

processing
exit status.
the logical

Determines whether or not a symbol satisfies
a condition.

Determines whether or not a task is active .

Determines
defined .

whether or not a symbol is

Tests the .ENABLE or .DISABLE options .

Determines whether or not a task is instalied
in the system .

Determines whether or not a device driver is
loaded .

Determines whether a logical symbol is true
or false •

Tests the length of a string symbol or
locates a substring.

Returns information about a device in the
system.

2-7

THE INDIRECT COMMAND PROCESSOR (R EFERENCE SECTION)

.TESTFILE

.TESTPARTITION

Determines whether a specified file exists
and determines the physical device associated
with a logical device name (performs device
transla tion) .

Returns information about a memory partition
in the system.

Enable or Disable an Operating Mode

.ENABLE

.DISABLE
Enables or disables control of the following
modes:

Substitution (SUBSTITUTION)
Timeout parameter (TIMEOUT)
Lowercase-character processing (LOWERCASE)
Terminal attachment (ATTACH, DETACH)
Output of data to data files (DATA)
File deletion (DELETE)
Global symbols (GLOBAL)
Symbol radix (DECIMAL)
Command line echo (QUIET)
Command display (TRACE)
Field display (DISPLA Y)
passing commands to CLI (CLI)
Input truncation error suppression (TRUNCATE)
Escape recognition (ESCAPE)
Escape-sequenc e processing (ESCAPE -SEQ)
Control-Z recognition (CONTROL-Z)
Numeric overflow (OVERFLOW)

Increment or Dec rement Numeric Symbols

.DEC

.INC

Execution Control

.DELAY

.PAUSE

.WAIT

.XQT

Special Purpose

.FORM

Decrements the value of a numeric symbol by
one.

Increments the value of a numeric symbol by
one.

Delays the execution of an indirect command
file for a specified period of time.

Temporarily suspends the execution of an
indirect command file to allow user action.

Waits for
execution
<EXSTAT>
status .

a specified task to complete
and sets the special symbol

with the completed task's exit

Initiates a task, passes a command line to
it, and continues Indirect processing without
waiting for the task to complete.

(RSX- llM-PLUS systems only.) Provides access
to the FMS-ll/RSX Version form driver. The
directive allows FMS commands to be passed to
FMS.

2-8

THE INDIRECT COMMAND PROCESSOR (REFERENCE SECTION)

2.4 SYMBOLS

Indirect allows you to define symbols. These symbols can then be
tested or compared to control flow through the indirect command file.
Their values may also be inserted into CLI commands, data records for
data files, or comments to be displayed on the terminal.

Symbol names are ASCII strings from one through six characters in
length. They must start with a letter (A through Z) or a dollar sign
($). The remaining characters must be alphanumeric or a dollar sign.

There are three symbol types:

• Logical

• Numeric

• String

A logical symbol has a value of either true or false.

A numeric symbol can have a numeric value in the range of 0 through
177777(8) (6 5535 decimal). The symbol can be defined to have either a
decimal or octal radix. The radix is relevant only when the symbol is
substituted (see Section 2.4.2).

A string symbol has as its value a string of ASCII characters. The
string can be 0 through 132(10) characters in length.

A symbol's type (l ogical, numeric, or string) is defined by the first
directive that assigns a value to the symbol. Assignment directives
can assign

• A true or false value to define a logical symbol
(d efined by .ASK, .SETL, .SETT, or .SETF)

• An octal or decimal number to define a numeric symbol
(defined by .ASKN or .SETN)

• A character string to define a string symbol
(defined by .ASKS, .READ, or .SETS)

2.4.1 Special Symbols

Indirect defines certain special symbols automatically. These symbols
are dependent upon specific system characteristics and the replies to
queries given during command file execution. Special symbols can be
compared, tested, or substituted, and may be one of three types:
logical, numeric, or string. All special symbols have a common
format: angle brackets « » enclose the special symbol name.

Sections 2.4.1.1 through 2.4.3 give brief descriptions of the special
logical, numeric, and string symbols, and discuss the use of numeric
and string symbols and expressions. Section 2.4.4 explains reserved
symbols, and Sections 2.4.5 and 2.4.5.1 discuss symbol-value
substitution.

2-9

THE INDIRECT COMMAND PROCESSOR (REFERENCE SECTION)

2.4.1.1 Special Logical Symbols - The special logical symbols are
assigned a true or false value based on the following conditions:

Symbol

<ALPHAN>

<ALTMOD>

<BASLIN>

<DEFAUL>

<EOF>

<ERSEEN>

<ESCAPE>

Value

Set to true if last string entered in response to a
.ASKS directive or tested with a .TEST directive
contains only alphanumeric characters. An empty
string also sets <ALPHAN> to true.

Set to true if last question was
ALTMODE or ESCAPE. Otherwise,
false.

answered with an
<ALTMOD> is set to

Set to true if the current operating system is a
baseline configuration. (This option is used during
system generation to determine what resources are
available for the system gener~tion
process.) Otherwise, <BASLIN> is set to false.

Set to true if the answer to
defaulted (the RETURN key
timeout occurred.

the last query
was pressed once)

was
or a

Set to true if the last .READ or .ASKx
resulted in reading past the end of
Otherwise, <EOF > is set to false.

directive
the file.

On RSX - llM- PLUS systems, <EOF> is set to true if the
last .TRANSLATE directive resulted in a final logical
translation assignment.

Set to true if any of the following conditions are
true «ERRNUM>, <EXSTAT>, and <FILERR> are described
in Section 2.4.1.2):

• <FILERR> is less than 0 (that is, if a
negative error code was returned) .

• An exit status «EXSTAT» value more serious
than <WARNIN> was returned.

• <EOF> is set to true.

• <ERRNUM> is not o.

• You used the command line .SETT <ERSEEN>.

The command line .SETF <ERSEEN> sets the following
conditions:

• <FILERR> is set to o.

• <EXSTAT> is set to o.

• <EOF> is set to false.

• <ERRNUM> is set to o.

Set to true if last question was answered with an
ALTMODE or ESCAPE. Otherwise, <ESCAPE> is set to
false. <ESCAPE> is a read - only symbol.

2-10

<FALSE>

<lAS>

<LOCAL>

<MAPPED>

<NUMBER>

<OCTAL>

<PRIVIL>

<RAD50>

<RSX11 D>

<TIMOUT>

<TRUE>

THE INDIRECT COMMAND PROCESSOR (REFERENCE SECTION)

Logical constant used for comparisons with the .IF
directive or as a default for the .ASK directive.

Set to true if the current operating system is lAS.
Always false on RSX-IIM/M-PLUS systems.

Set to true if the terminal from which Indirect is
executing (TI :) is a local terminal. If the terminal
is remote, <LOCAL> is set to false.

Set to true if the system on which Indirect is
running is mapped; set to false if the system is
unmapped. Always true on RSX - IIM- PLUS systems.

Set to true if the last string entered in response to
a .ASKS directive or tested with a .TEST directive,
contains only numeric characters. An empty string
also sets <NUMBER> to true.

Set to true if the answer to the last . ASKN directive
or the radix of the numeric symbol tested in the last
.TEST directive is octal, or if the l a st string
tested with a .TEST directive contained all numeric
characters in the range a through 7.

Set to true if the current user is privileged. Its
value is determined from the flag contained in the
terminal data base. The symbol is set when Indirect
is started and remains unchanged during execution.
The next time Indirect is started, <PR IVIL> is reset
if a command to change the user's privilege (for
example, DCL SET TERM/NOPRIV) was issued during the
previous execution.

Set to true if the last string entered in response to
a .ASKS directive or tested with a .TEST directive
contains only Radix-50 characters. Radix-50
characters are the uppercase alphanumeric characters
plus the period (.) and dollar sign ($). A blank is
not a Radix- 50 character in this context. An empty
string also sets <RAD50> to true.

Set to true if the current operating system
RSX- IID. Always false on RSX-IIM/M- PLUS systems.

is

Set to true if timeout mode is enabled and the last
.ASKx directive timed out waiting for a user
response.

Logical constant used for comparisons with the .IF
directive or as a default for the . ASK directive.

2.4.1.2 Special Numeric Symbols - The special numeric symbols are
assigned the following values:

Symbol

<ERRCTL>

Value

Controls the way in which Indirect processes
The symbol is treated as a n eight-bit mask.
class of error that a user's .ONERR target

2-11

errors.
For each

routine

<ERRNUM>

<ERRSEV>

<EXSTAT>

THE INDIRECT COMMAND PROCESSOR (REFERENCE SECTION)

processes (see Section 2.6.22), the appropriate bit
is set in the mask. If the bit is cleared, Indirect
exits after printing the error information.

If the eighth bit, which is the sign bit or 200 (8) ,
is set, Indirect does not print any information about
the error.

The initial default value for <ERRCTL> is 1, which
implies that only class 1 errors can be handled with
a .ONERR address and that error messages will be
printed. To cover class 1 and 2 errors, the value
for <ERRCTL> must be 3.

NOTE

If you attempt to trap errors other than
default class 1, processing cannot continue
in most cases. The error service routine is
limited to returning a fatal error message
and executing the .EXIT directive. The
internal state of Indirect is indeterminate
in all but class 1 error cases. If you
receive an error that is not class 1, clean
up what you are doing as much as possible and
exit from Indirect.

See Appendix A for a list of the error messages and
their assigned class values.

Assigned the class number of an error that Indirect
has finished processing. This value can be used for
processing specific error types with a .ONERR
routine.

See Appendix A for a list of the error messages and
their assigned class values.

Assigned the error severity mask associated with the
error that Indirect has finished processing. This
bit mask corresponds to the bit mask <ERRCTL> used to
control the processing.

Assigned the value of 0, 1, 2, 4, or 17, depending on
the exit status from the last CLI command line
executed or from the last " .WAIT taskname" directive,
where taskname was activated by the .XQT directive.

This special numeric symbol is modified at the
completion of a synchronous CLI command line or at
the completion of a .WAIT directive. The .EXIT
directive can also modify <EXSTAT>. The value is
returned from a task that has completed if the task
exits with status. Otherwise, the value is returned
from the CLI. The values 0, 1, 2, 4, and 17 and
their corresponding special symbols indicate:

° <WARNIN> Warning
1 <SUCCES> Success
2 <ERROR> Error
4 <SEVERE> Severe error

17 <NOSTAT> The task could not return
exit status.

2-12

<FILERR>

THE INDIRECT COMMAND PROCESSOR (REFERENCE SECTION)

Ass igned the FCS-ll (I/O error or dr i ver) or
directive (DSW) status code resulting from a
.TESTFILE, .0PENx, or .READ directive operation.
<FILERR> contains the contents of offsets F.ERR and
F.ERR+l from the File Descriptor Block (FDB)
associated with the file. If F.ERR+l (the high byte
of the word) contains zero, F.ERR (the l ow byte of
the word) contains an I/O error code. If F.ERR+l
contains -1, F.ERR contains a directive status code.

The following lists give the codes (in octal words)
and their meanings.

I/O Error Codes (F.ERR+l, the high byte, contains 0)

Error Number Meaning

Decimal

-1
-2
-3
-4
-5
-6
-7
-8

-9
-10
-11
-12
-13
-14
-15
-16

-17
-18
-19
-20
-21
-22
-23
-24

-25
-26
-27
-28
-29
-30
-31
-32

-33
-34
-35
-36
-37
-38
-39
-40

Octal

000377
000376
000375
000374
000373
000372
000371
000370

000367
000366
000365
000364
000363
000362
000361
000360

000357
000356
000355
000354
000353
000352
000351
000350

000347
000346
000345
000344
000343
000342
000341
000340

000337
000336
000335
000334
000333
000332
000331
000330

Bad parameters
Invalid function code
Device not ready
Parity error on device
Hardware option not present
Illegal user buffer
Device not attached
Device already attached

Device not attachable
End-of-file detected
End-of-volume detected
write attempted to locked unit
Data overrun
Send/receive failure
Request terminated
Privilege violation

Shareable resource in use
Illegal overlay request
Odd byte count (or virtual address)
Logical block number too large
Invalid UDC module number
UDC connect error
Caller ' s nodes exhausted
Device full

Index file full
No such file
Locked from read/write access
File header full
Accessed for write
File header checksum failure
Attribute control list format error
File processor device read error

File processor device write error
File already accessed on LUN
File 10 , file number check
File 10 , sequence number check
No file accessed on LUN
File was not properly closed
No buffer space available for file
Illegal record size

2-13

THE INDIRECT COMMAND PROCESSOR (REFERENCE SECTION)

- 41
- 42
- 43
-44
-45
-46
-47
-48

-49
-50
-51
-52
-53
- 54
- 55
-56

-57
-58
-59
-60
-61
-62
-63
- 64

- 65
-66
-67
-68
-69
-70
-71
-72

-73
-74
-75
-76
-77
-78
-79
-80
-80

-81
-82
-83
-84
-85
-86
-87
-88

-89
-90
-91
-92
-93
-94
-95
-96

000327
000326
000325
000324
000323
000322
000321
000320

000317
000316
000315
000314
000313
000312
000311
000310

000307
000306
000305
000304
000303
000302
000301
000300

000277
000276
000275
000274
000273
000272
000271
000270

000267
000266
000265
000264
000263
000262
000261
000260
000260

000257
000256
000255
000254
000253
000252
000251
000250

000247
000246
000245
000244
000243
000242
000241
000240

File exceeds space allocated, no blocks
Illegal operation on FDB
Bad record type
Illegal record-access bits set
Illegal record-attribute bits set
Illegal record number - too large
Internal consistency error
Rename - two different devices

Rename - a new file name already in use
Bad directory file
Cannot rename old file system
Bad directory syntax
File already open
Bad file name
Bad device name
Bad block on device

Enter - duplicate entry in directory
Not enough stack space (FCS or FCP)
Fatal hardware error on device
File ID was not specified
Illegal sequential operation
End - of- tape detected
Bad version number
Bad file header

Device off line
Block check, CRC, or framing error
Device on line
No such node
Path lost to partner
Bad logical buffer
Too many outstanding messages
No dynamic space available

Connection rejected by user
Connection rejected by network
File expiration date not reached
Bad tape format
Not ANSI "D" format byte count
No data available
Task not linked to specified ICS/ICR interrupts
Speci f ied task not installed (.NST)
No AST specified in connect (.AST)

Device off line when off-line request was issued
Invalid escape sequence
Partial escape sequence
Allocation failure
Unlock error
write check failure
Task not triggered
Transfer rejected by receiving CPU

Event flag already specified
Disk quota exceeded
Inconsistent qualifier usage
Circuit reset during operation
Too many links to task
Not a network task
Timeout on request
Connection rejected

2- 14

<FILER2>

THE INDIRECT COMMAND PROCESSOR (REFERENCE SECTION)

-97
-98
-99

-100

000237
000236
000235
000234

Unknown name
Unable to size device
Media inserted incorrectly
Spindown ignored

Directive Status Codes (F.ERR+l, the high byte, contains -1):

Error Number

Decimal Octal

-1 177777
-2 177776
-3 177775
-4 177774
-5 177773
-6 177772
-7 177771
-8 177770

-9 177767
-10 177766
-11 177765
-15 177761
-16 177760

-17 177757
-18 177756
-19 177755
-20 177754
-21 177753

-80 177660

- 81 177657
-83 177655
-84 177654
-85 177653
-86 177652
-87 177651
-88 177650

-89 177647
-90 177646
-91 177645
-92 177644
-93 177643
-94 177642
-95 177641
-96 177640

-97 177637
-98 177636
-99 177635

Meaning

Insufficient dynamic storage
Specified task not inst a lled
Partition too small for task
Insufficient dynamic storage for send
Unassigned LUN
Device handler no t resident
Task not active
Directive inconsistent with task state

Task already fixed/unfixed
Issuing task not checkpointable
Task is checkpointable
Receive buffer is too small
Privilege vio l ation

Resource in use
No swap space avai l ab l e
Illegal vector specified
Invalid table number
Logical name not found

Directive issued/not issued from AST

Illegal mapping specified
Window has I/O in progress
Alignment error
Address window allocation overflow
Invalid region ID
Invalid address window ID
Invalid TI parameter

Invalid send buffer size (greater than 255.)
LUN locked in use
Invalid UIC
Invalid device or unit
Invalid time parameters
Partition/region not in system
Invalid priority (greater than 250.)
Invalid LUN

Invalid event flag (gr eater than 64.)
Part of DPB out of user's space
DIC or DPB size invalid

See the RSX-llM/M-PLUS and Micro/RSX I/O Operations
Manual and the RSX-llM7M-PLUS I/O DrIVers Reference
Manual for more information. ---

(RSX-llM-PLUS systems only.) Assigned the second
error-code word returned by the FMS-related commands.
See the description of the .FORM directive (Section
2.6.16) for more information.

2-15

<FORATT>

<MEMSIZ>

<SPACE>

<STRLEN>

<SYMTYP>

<SYSTEM>

<SYUNIT>

<TICLPP>

<TICWID>

<TISPEO>

THE INDIRECT COMMAND PROCESSOR (REFERENCE SECTION)

Assigned the octal value of the file attributes that
were used to open the data files.

Assigned the value of the current system memory size
in K words (K is 1024 decimal) .

Assigned the number, in octal, of free bytes in the
internal symbol table for Indirect. The number does
not reflect the amount of space that could be gained
by the automatic extension of the Indirect task.

Assigned the length, in octal, of the string entered
in response to the last .ASKS directive or the string
tested by the last .TEST directive. The symbol is
also set when a command file is invoked « STRLEN>
contains the octal number of variables used in the
command line) and as the result of a .PARSE statement
«STRLEN> contains the octal number of substrings
produced by the directive).

Assigned the numeric code for
tested with a .TEST directive.
the following code numbers:

Logical - 0
Numeric - 2
String - 4

the type of symbol
The symbol types have

Assigned an octal number to represent the operating
system on which Indirect is running. For an RSX - llM
system, the value is 1. For an RSX-llM- PLUS system,
the value is 6.

Assigned the unit number of the user's default device
(SY:) .

Assigned the current page length setting for the
terminal. When you first invoke Indirect, it
attempts to determine the length of the page. If the
information is not available, <TICLPP> defaults to
24 (10) .

Ass igned the
terminal.
attempts to
information
80 (10) .

current page width setting for the
When you first invoke Indirect, it

determine the width of the page. If the
is not available, <TICWID> defaults to

Assigned the baud rate for transmitting characters
from the host system to the terminal. When you first
invoke Indirect, it attempts to determine the baud
rate. The baud-rate information is useful for
determining the quality and quantity of information
to be transmitted. The following list gives the
octal value that corresponds to the baud rates:

1 0 13 1200
2 50 14 1800
3 75 15 2000
4 100 16 2400
5 110 17 3600
6 134 20 4800
7 150 21 7200

10 200 22 9600
11 300 23 EXTA
12 600 24 EXTB

2- 16

<TITYPE>

THE INDIRECT COMMAND PROCESSOR (REFERENCE SECTION)

Assigned the terminal t y pe of the terminal from which
Indirect is running. If the terminal type is changed
from within an indirect command file, <TITYPE> is set
to the latest terminal type. If Indirect cannot
determine the terminal type, <TITYPE> is set to zero
(0) •

The following list gives the octal values that
correspond to the terminal types:

0 Unknown 11 VT52 23 LA38
1 ASR33 12 VT55 24 VTlOl
2 KSR33 13 VT6l 25 VTl02
3 ASR35 14 LA180S 26 VTl05
4 LA30S 15 VT100 27 VT125
5 LA30P 16 LA120 30 VT131
6 LA36 20 LA12 31 VT132
7 VT05 21 LAlOO 35 PC3xx series

10 VT50 22 LA34 36 VT2xx series

See the RSX-llM/M- PLUS I/O Drivers Reference Manual
(the chapter on the full-duplex terminal driver) for
more information.

2.4.1.3 Special String Symbols - The special string symbols are
assigned the following string values:

Symbol

<ACCOUN>

Value

(RSX-llM-PLUS systems only .) Assigned certain
accounting information from a user's accounting block
(UAB). If Resource Accounting is not running on the
system, the fields of <ACCOUN> are null. The
information is in the following format (note the
trailing comma):

username,sessionid,accountnumber,CPU,DIR,QIO,TAS,activetasks,

username

sessionid

accountnumber

CPU

DIR

QIO

TAS

activetasks

The first 14 (10) characters of
user name (as it appears in
system account file) followed by
first initial .

the
the
the

The 3- letter session-ID code followed
by the unique login number.

The user's account number as it
appears in the system account file.

The number of CPU ticks used since
login.

The number of system
issued since login.

directives

The number of QIO directives issued
since login.

The number of tasks run since login.

The current number of the user's
active tasks.

2-17

THE INDIRECT COMMAND PROCESSOR (REFERENCE SECTION)

<CLI>

<CONFIG>

<DATE>

<DIRECT>

<EXSTRI>

The individual fields can be isolated with the .PARSE
directive:

.PARSE <ACCOUN> "," NAME SID ACNT CPU DIR QIO TAS ACT JUNK

Note that since double-precision arithmetic
available in Indirect, the numeric
parameters cannot be converted to numeric
manipulated in arithmetic expressions.

is not
<ACCOUN>

form and

Assigned the acr onym (3 through
cur rent command line interpreter

6 l etters) of the
(for example, DCL).

Contains the parameter defaults specif i ed
current Indirect task was built. See
INDCFG in the system procedure
LB : [l,2)INDSYS .CLB on the system disk
details.

when the
the module

library
for more

Assigned the current date; format is dd- mmm-yy.

Contains a user's current defau l t directory str ing;
format is [name) .

On RSX-llM systems, <DIRECT> always contains a null
di rect o ry string ([) .

On RSX-llM-PLUS systems, the contents of <DIRECT> are
different depending on the directory mode you are in
and the kind of directory you are using.

If you are not in
mode), <DIRECT>

named directory
contains a null

mode ("nonamed"
directory string

([)) .
If you are in named directory mode and using a named
directory, <DIRECT> contains your default directory
string in the f o rm [ddddddddd).

If you are in named directory mode
numeric directory, <DIRECT> contains
directory string in the form [gggmmm).

and using a
your default

If <DIRECT > contains the null string ([), us e the
special symbol <UIC > for the location of your curren t
default directory. If <DIRECT > conta in s a directory
string, use it for the current default directory
location .

When Indirect is first initiated, contains build-time
information about th e Indirect task. The info rmation
includes the version number of the task and the t ime
the t ask was built . Afterwards, it can contain such
information as the string resu l ts from a more deeply
nested indirect comm a nd fi l e or the results of a
.TESTDEVICE stateme nt. Th e results are sent to the
calling comma nd file.

This symbol can be redefined with a .SETS <EXSTRI>
xxxx command.

2- 18

THE INDIRECT COMMAND PROCESSOR (REFERENCE SECTION)

(FILATR> Contains eight fields of file-attribute information
obtained from offsets for the File Descriptor Block
(FDB) . The information is from the FDB used in the
last .OPENx operation and is in the following format
(note the trailing comma):

rtyp,ratt,rsiz,hibk,efbk,ffby,racc,rctl,

The attributes are:

F.RTYP Record type (byte, octal). Set as follows to
indicate the type of records for the file:

F.RATT

1 - fixed - length records (R .FIX)
2 - variable- length records (R.VAR)
3 - sequenced records (R .SEQ)

Record attribute (byte,
through 3 are set as
record attributes:

octal) . Bi ts 0
follows to indicate

Bit 0

Bit 1

Bit 2

Bit 3

If 1, first byte of record
contains a FORTRAN carriage
control character (FD .FTN) ;
otherwise, o.

If 1, for a carriage control
device, a line feed is to occur
before the line is printed and a
carriage return is to occur
after the line is printed
(FD.CR) ; otherwise, o.

If 1, indicates print file
format (FD . PRN); FCS allows this
attribute but does not interpret
the format word; otherwise, O.

If 1, records cannot cross block
boundaries (FD.BLK); otherwise,
O.

F.RSIZ Record size (word, decimal). Contains the
size of fixed-length records or indicates the
size of the largest record that currently
exists in a file of variable-length records.

F.HIBK Highest virtual block number allocated
(double word with F.EFBK, decimal) .

F.EFBK End-of- file block number
F.HIBK, decimal) .

(double word with

F.FFBY First free byte in the last block or the
maximum block size for magnetic tape (word,
octal) •

F.RACC Record access (byte, octal) . Bits 0 through
3 define as follows the record access modes:

Bit 0 If 1, READ$/WRITE$ mode
(FD .RWM); if 0, GET$/PUT$ mode.

2-19

THE INDIRECT COMMAND PROCESSOR (REFERENCE SECTION)

<FILS PC>

<FMASK>

<LIBUIC>

F.RCTL

Bit 1

Bit 2

Bit 3

If 1,
(FO. RAN)
I/O; if
mode.

random access mode
for GET$/PUT$ record
0, sequential access

If 1, locate mode (FO.PLC) for
GET$/PUT$ record I/O; if 0, move
mode.

If 1, PUT$ operation in
sequential mode does not
truncate the file (FO.INS); if
0, PUT$ operation in sequential
mode truncates the file.

Device characteristics
through 5 define
characteristics of the
the file:

(byte, octal) . Bits °
as follows the

device associated with

Bit °

Bit 1

Bit 2

Bit 3

Bit 4

Bit 5

If 1, record-oriented device
(FO.REC) ; if 0, block-structured
device.

If 1, carriage control device
(FO.CCL) ; otherwise, 0.

If 1, teleprinter device
(FO.TTY) ; otherwise, 0.

If 1, directory device (FO.OIR) ;
otherwise, 0.

If 1, single-directory device
(FO.SOI; an MFO is used, but no
directories are present) .

If 1, block-structured device
inherently sequential in nature
(FO.SQO), such as a magnetic
tape. Record-oriented devices
are assumed to be sequential in
nature, so this bit is not set
for them.

If no file is currently open, a fatal error occurs.

Assigned the specification for the file referred to
with the last .OPEN, .OPENA, .OPENR, or .TESTFILE
directive operation, or in the last specification for
a nested command file.

to some of
the module

library
for an

Contains octal values representing answers
the system ge neration questions. Refer to
INOSFN in the system procedure
LB: [l,2jINOSYS.CLB on the system disk
explanation of the values.

(RSX-IIM-PLUS systems only.) Assigned the UIC of the
current nonprivileged task library; format is
[ggg,mmmj, where ggg is the group number of the UIC
and mmm is the member number of the UIC (leading
zeros are not included) . This symbol is legal on
RSX - IIM systems but has no logical meaning. If used,
it is set by default to be the system UIC.

2-20

THE INDIRECT COMMAND PROCESSOR (REFERENCE SECTION)

<LOGDEV>

<LOGUIC>

<NETUIC>

<NETNOD>

<NXTSYM>

<SYDISK>

<SYSDEV>

<SYS ID>

<SYSUIC>

<SYTYP>

<TIME>

<UIC>

Assigned the device
user's login account
On other systems, it
dev ice) .

name and unit number of the
on multiuser protection systems.
is assigned Syo: (the system

Assigned
multiuser
On other
UIC.

the login UIC of the current user on
protection systems; format is [ggg,mmm) .

systems, it is assigned the current default

If the system has DECnet, assigned the UIC in which
DECnet-re lated tasks are stored on the system volume;
format is [ggg,mmm). <NETUIC > is used with <SYSUIC>
and <LIBUIC> to separate the components of the
system.

Assigned the DECnet node name of the system. If the
system is not on the DECnet network, <NE TNOD> is
assigned RSXll.

Used as part of a dump routine in the command library
file LB: [l,2)INDSYS.CLB . This is a DIGITAL-supplied
routine and it is highly recommended that you not use
it.

Assigned the device mnemonic (two letters)
user's default device (SY:); format is
example, DU).

of
dd

the
(for

Assigned the physical name of the system disk. The
device name is in the form ddn (for example, DUO).

Assigned the operating system's baselevel number.

Assigned the system UIC; format is [ggg,mmm).

Contains a string consisting of up to
characters that identifies the system;
identifications are valid: "RSX- llM,"

12 ASCII
only four
"RSX- llM-

PLUS," "Micro/RSX," and "VAX- ll RSX."

Assigned the current time; format is hh:mm:ss.

Assigned the current UIC.

On RSX-llM systems, <UIC > always contains
default UIC in the form [ggg,mmm).

your

On RSX-llM-PLUS systems, the contents of <UIC> are
different depending on the directory mode you are in
and the kind of directory you are using.

If you are not in named
mode), <UIC> contains
[ggg,mmm) .

directory mode ("nonamed"
your default UIC in the form

If you are in named directory mode and using a named
directory, <UIC> contains your protection UIC in the
form [ggg,mmm). In this case, there is no default
UIC.

If you are in named directory mode and using a
numeric directory, <UIC> contains the default UIC
corresponding to the default directory string in
<DIRECT>. The default UIC is in the form [ggg,mmm).

2-21

THE INDIRECT COMMAND PROCESSOR (REFERENCE SECTI ON)

<VERSN>

«UIC> follows the numbered default directory string
in named directory mode so that all command files and
t a sks created previous to RSX-llM-PLUS Version 3.0
will still work from named mode in a numeric
directory.)

If you need to obtain the protection UIC from within
an indirect command file, use one of the following
procedures:

• If you are a privileged user, use the <UIC>
symbol.

• If you are a nonprivileged user and your system
has Resource Accounting, use the <LOGUIC> symbol.

If you are a nonprivileged user but your system does
not have Resource Accounting, you do not have any way
of obtaining the protection UIC.

Contains a string consisting of up to four ASCII
characters that identifies the version number of the
system; format is n.n (for example, 3.0).

2.4.2 Numeric Symbols and Expressions

A numeric symbol is a string of digits representing a value in the
range of 0 through 177777(8) (0 through 65535 decimal, if immediately
followed by a period or if decimal mode h as been enabled). If an
arithmetic operation yields a result outside of this range, or one
that crosses the boundaries, a fatal error occurs and the following
message is displayed (unless turned off by .ENABLE OVERFLOW):

AT. - - Numeric under - or overflow

A numeric symbol or constant may be combined with another numeric
symbol or constant by a logical or arithmetic operator to form a
numerIC expression . Arithmetic operators are used to add (+),
subtract (-), multiply (*) , and divide (/) . Logical ope rators are the
inclusive OR (!) , logical AND (&) , and NOT (#). Embedded spaces and
tabs are not permitted in front of operators. If a space precedes an
operator, particularly the plus sign (+), the operator will not
function correctly.

Numeric expressions are evaluated from left
parentheses are used to form subexpressions,
first. For example, the directive statements

.SETN Nl 2

.SETN N2 3

.SETN N3 Nl+N2*4

to right unless
which are evaluated

assign numeric symbol N3
statements

the value 24 (8), whereas the directive

.SETN Nl 2

.SETN N2 3

.SETN N3 Nl+(N2*4)

assign numeric symbol N3 the value 16(8) .

2 - 22

/

THE INDIRECT COMMAND PROCESSOR (REFERENCE SECTION)

Numeric expressions are permitted a s s e cond oper a nds in numeric .IF
and .SETN directives. They are also permitted a s range and default
arguments in .ASKN and .ASKS directives. The directives .EXIT and
.STOP allow numeric expressions to represent exit status.

Indirect associates a radix, either octal or decimal, with each
numeric symbol. The radix of a numeric symbol changes each time the
symbol is assigned a new value. If you us e a numeric expressio n to
assign a new value to a symbol and all operands in the expression are
octal, then the symbol is set to octal. If any operand in the
expression is decimal, the symbol is set to decimal. For examp le:

.SETN Nl 2 N1 is tiC I:, a 1

• SETN N2 3 . N2 is dE'e :i. lil {J ::.

.SETN N3 Nl+3 I N3 i s '.:let.a1

.SETN N3 Nl+3. I N3 i <:; d~ c i rll d "L

.SETN N3 Nl+N2 1'1 3 :i. s d f~ci lTI a l

You can also assign a new value to a symbol with the .ASKN
See Section 2.6.3 for more information.

The .SETO and .SETD directives allow you to change the
numeric symbol without changing the value of the symbol.

.SETN Nl 10.

.SETO Nl
I Nl

Nl
I. 0 de c i. IT, d 1
:1. 2 Dct ", l

directive.

radix of a
For example:

See Section 2.6.32 for more information on .SETO and .SETD.

The radix of a numeric symbol does not a ffect arithmetic operations or
comparisons. The radix is important only when substituting a numeric
symbol into a string. If the radix of the symbol is octal, the value
of the symbol is substituted into the string as an octal number. If
the radix is decimal, the value is substituted as a decimal number.
For example:

.SETN Nl 10.
; Nl = I Nl'
.SETO Nl

Nl = 'Nl'

I I'! 1 ,,- .I Ii dc'cL ITI a]
I Disp l arlcd a s ; Nl

11a k e Nl 'J ct a l
I Di s p] a~e d a s ; Nl

J 0

1
,-,
"

If you substitute a numeric symbol into a string and the substit uted
number is decimal, a period (.) following the symbol name causes a
trailing period to be included in the string (following the
substituted number). For example:

.SETN Nl 10.
; Nl = I Nl '
; Nl = 'N 1. I
.SETO Nl
; Nl = 'Nl.'

N1 '" 1 0 d e c i mal
Di sp 1 a~ed as ~ Nl

I D i ~p l ase d J S ; N1
M Ci 1'_ e N 1. (J e t a 1.

I Di sp l ~ ~ed as ; N1

1 0
10 .

:L 2

You can also force a numeric symbol to b e substituted as an octal or
decimal number by using a substitution format control string. For
example:

.SETN Nl 10.
, Nl INl%D'
; Nl = INl%O'

tH "" 1 0 de c i IT, a :I.
Di s pl a ~ e d as f N1
Di s Pl a s e d as ; Nl

10
12

See Section 2.4.5.1 for more information on substitution format
control strings.

2- 23

THE INDIRECT COMMAND PROCESSOR (REFERENCE SECTION)

2.4.3 String Symbols, Substrings, and Expressions

A string constant is a string of any printable characters enclosed by
quotation marks (") or pound signs (#). When you begin a string with
one of these delimiters, you must end it with the same delimiter.
Using pound signs is helpful when you want to include quotation marks
in the string. Empty strings are also permitted. The number of
characters cannot exceed 132 (10) . For example:

" ABCDEF"
#HITHERE#
#HI"THERE"#

1111

String symbols may have the value of any string constant. The value
is assigned by a .SETS or .ASKS directive. For example, the directive
statements

.SETS

.SETS
Sl
S2

"ABCDEF"
Sl

assign string symbol S2 the value of string symbol Sl (that is,
ABCDEF) •

A substring facilitates the extraction of a segment from the value of
a string symbol. You can use substrings only in second operands of
.SETS and .IF directives. For example, the directive statements

.SETS

.SETS
Sl
S2

"ABCDEF"
Sl [1: 3J

assign string symbol S2 the value of string symbol Sl beginning at
character one and ending at character three (that is, ABC).

You can also use the syntax [n: * J to extract the characters from
position n to the end of the string. For example, the directive
statements

.SETS Sl

.SETS S2
"ABCDEF"
Sl [3: * J

assign string symbol S2 the value CDEF.

You can combine a string constant, symbol, or substring with another
string constant, symbol, or substring by the string concatenation
operator (+) to form a string expression.

String expressions are permitted as second operands in .SETS and .IF
directives where the first operand is a string symbol. For example,
the directive statements

.SETS

.SETS

.SETS

Sl
S2
S3

"A"
"CDEF"
Sl+"B"+S2 [1 : 3 J

assign string symbol S3 the value
symbol Sl, string constant "B,"
string symbol S2 (that is, ABCDE).

2-24

of the concatenation of string
and the first three characters of

THE INDIRECT COMMAND PROCESSOR (REFERENCE SECTION)

2.4.4 Reserved Symbols

Parameters
processing.
symbols:

for a command file can be passed to Indirect for
The parameters are stored in the following reserved local

PO, PI, P2, P3, P4, P5, P6, P7, P8, P9, COMMAN

The symbol COMMAN contains everything in the issuing command line,
including the specification for the command file.

The symbols PO through P9 contain individual elements of the command
line. The elements are delimited by a single space or tab character
in between each one. (Thi s is not true for a .CHAIN command line,
however.) Two delimiting characters between elements represent a null
parameter. (See the description of the .PARSE directive in Section
2.6.26 for an example of this behavior.)

with the .GOSUB directive (see Section 2.6.17), any parameters to the
right of the label and to the left of a comment are transferred to the
symbol COMMAN. The value of COMMAN can then be parsed to obtain
formal call parameters.

2.4.5 Symbol Value Substitution

Substitution can occur in any line. Indirect uses the values assigned
to logical, numeric, string, or special symbols by replacing a normal
parameter (for example, a device unit) with the symbol name enclosed
in apostrophes ('DEVICE') . When a previous directive has enabled
substitution mode (.ENABLE SUBSTITUTION) , Indirect replaces the symbol
name enclosed in the delimiters with the value assigned to the symbol.

When Indirect encounters an apostrophe, it treats the subsequent text,
up to a second apostrophe, as a symbol name. Indirect then searches
the table of symbols for the corresponding symbol and substitutes the
value of the symbol for the symbol name and surrounding delimiters in
the command line.

The first three lines in the following example appear in an indirect
command file. When Indirect executes these lines, it displays the
last two lines at the entering terminal .

. ENABLE SUBSTITUTION

.ASKS DEVICE Device to mount?
MOUNT 'DEVICE'

>* Device to mount?
>MOUNT DUl:

[S]: DUl:

DUl: was entered in response to the displayed question.
assigned the string value DUI: to string symbol DEVICE.
Indirect read

MOUNT 'DEVICE'

This reply
Then, when

it substituted for 'DEVICE' the value assigned to DEVICE (that is,
DUl:). If substitution mode was not enabled, Indirect would simply
have passed the line to the CLI as it appeared in the command file
(that is, MOUNT 'DEVICE').

2-25

THE INDIRECT COMMAND PROCESSOR (REFERENCE SECTION)

To include an apostrophe as text within a command line rather than as
the start of a symbol, you must replace the single apostrophe with two
contiguous apostrophes (' ') . If substitution mode is enabled,
Indirect displays the command file line

; DON"T PANIC

as

;DON'T PANIC

2.4.5.1 Substitution Format Control - The conversion of numeric
values to strings and the placement of string and logical values in a
substitution operation can be controlled with a format control string.
The control string is in the following form:

'symbol %controlstring'

The control string begins with the percent sign (%) and ends with the
second of the two delimi ters (apostrophes) that denote the
substitution operation. The control string consists of one or more of
the following characters:

C Compress leading, embedded, and trailing blanks, and remove
embedded nulls (leave one space between characters, but
strip all leading and trailing spaces).

D Force the conversion of a numeric symbol to decimal.

o Force the conversion of a numeric symbol to octal .

S Perform signed conversion for a numeric symbol.

M Perform magnitude conversion for a numeric symbol.

Z Return leading zeros for a positive numeric value.

Rn Right-justify the resulting string,
decimal characters if necessary.

truncating to , n'

Ln Left-j ustify the resulting string, truncating to 'n' decimal
characters if necessary.

X Convert the variable to Radix-50 characters.

V If the symbol being substituted is numeric, convert the low
byte to its equivalent ASCII character and substitute it.

If the symbol being substituted is a string, convert the
first character to its octal representation and substitute
it.

As an example, the following command file shows various control
strings being used and the results of using the control strings:

.ENABLE SUBSTITUTION

.SETS STRING" A B CD
; STRING = 'STRING%C'
.SETS STRING "ABCD"

STRING = 'STRING%R5'

"
Compress spaces

Right-justify string, truncating to 5
characters

2-26

THE INDIRECT COMMAND PROCESSOR (REFERENCE SECTION)

; STRING = 'STRING%R3' Right- justify string, tr uncating to 3
characters ;

.SETN NUMBER 10.
NUMBER 'NUMBER%D' Convert numeric symbol to decimal

Convert numeric symbol to octal
Return leading zeros for positive
numeric value, convert to octal
Return leading zeros; convert to
octal; right- justi fy, truncating to 4
characters

NUMBER 'NUMBER%O'
NUMBER 'NUMBER%ZO'

NUMBER 'NUMBER%ZOR4'

When the command file is executed, Indirect displays the following
text:

> @CONTROL @)

>; STRING A B CD Compress spaces
> ; STRING ABCD Right-justify string, truncating to 5
>; characters
> ; STRING ABC Righ t - just ify string, truncating to 3
>; characters
> ; NUMBER 10 Convert numeric symbol to decimal
> ; NUMBER 12 Convert numeric symbol to octal
>; NUMBER 000012 Return leading zeros for positive
> ; numeric value, convert to octal
>; NUMBER 0012 Return leading zeros; convert to
>; octal; right - justify, truncating to 4
> ; characters

Indirect does not perform a consistency check on the control string.
If you specify conflicting format characters, Indirect uses the last
one specified.

2.5 SWITCHES

Indirect accepts the following switches: /TR, /CLI, /MC, /LB, /LO,
and /DE. Descriptions of the switches are given here.

switch

/[NO) TR

/[NO)CLI

/ [NO)MC

Function

Displays a trace of the indirect command file on the
terminal from which the file is being executed. This
function is useful for debugging a n indirect command
file. Each command line, including Indirect directive
statements, is displayed. As each command line is
processed, a number representing the nesting depth of
the command file is displayed, followed by an
exclamation point and the command line . If the command
line causes some action to occur, the next displayed
line indicates the action; usually, this line consists
of the CLI commands issued as a result of the previous
directive. The default is / NOTR .

Passes commands
command line
with /[NO) MC.

not processed by Indirect to your
interpreter. This switch is synonymous
The default is /C LI .

Passes commands not processed by Indirect to your
command line interpreter . This switch is synonymous
with /[NO) CLI . The default is /MC.

2 - 27

/LB

THE INDIRECT COMMAND PROCESSOR (REFERENCE SECTION)

Indicates that the specified file is a universal
library of command procedures and that the specified
module is the procedure to be executed.

When command procedures, which are indirect command
files, are inserted into a universal library with the
LBR /IN command (from MCR) or the DCL LIBRARY/INSERT
command, you can then reference them with /LB:module.

Command libraries are built by creating a universal
library and inserting command files into it. You can
then reference the procedures in the library with the
following command line:

@commandlibrary/LB:module

The default file type for a command library is .CLB.

If you do not specify a module (@commandlibrary/LB) ,
Indirect attempts to locate a module called .MAIN ..

If you do not specify a library name (@/LB:module), the
following actions occur:

• If the command is issued from the terminal or
from a file that is not in the library,
Indirect ignores the /LB switch and treats the
command line as though you had used
@module.CMD. Note that if the command is
issued from a command file, the default device
and directory of the specified module are the
same as those for the current file, not
necessarily the same as those for the terminal.

• If the command was issued from within a
library, the specified module is searched for
in the current library.

These default actions for an unspecified library allow
a collection of procedures to be developed in a given
directory with the @/LB:module or .CHAIN /LB:module
commands. When the procedures are then placed in a
library, no source changes are required.

Example:

The command file PARAM.CMD contains parameter
definitions for the .SETN directive and the
command file SYSPRC.CMD contains system-specific
procedures. The following DCL command lines
create the command library and enter the command
files into it:

$ LIBRARY/CREATE/UNIVERSAL:CMD SYSTART.CLB
$ LIBRARY/INSERT SYSTART.CLB PARAM,SYSPRC

You can then use the following command lines to
reference the command library modules:

$ @SYSTART/LB:PARAM
$ @SYSTART/LB:SYSPRC

2- 28

:Define ~ lob a l ~ ~mbol s

I F(lJl ol ini t, P l' Dc(?dul' e

THE INDIRECT COMMAND PROCESSOR (REFERENCE SECTION)

/[NO]LO

/[NO]DE

DIGITAL supplies a library of command procedures on the
system disk. The library is LB: [l,2]INDSYS.CLB and it
contains the following procedures:

INDCFG

INDDMP

INDPRF

INDSFN

INDVFY

QIOERR

FMSDEM

. INDEX

Displays the current build parameters
for the running Indirect task.

Dumps the contents of the
symbol table to the terminal.

A sample procedure to
filename strings.

fully

Returns system-configuration
tion.

Indirect

parse

informa-

Displays the values of all of
special symbols.

the

Returns a string expansion
<FILERR) error codes.

of the

(RSX-llM-PLUS systems only.) Demon­
strates the FMS-ll/RSX interface incor­
porated into Indirect. Associated with
this procedure is FMSERR, which defines
the FMS error codes and parameters.

Displays an index of the procedures in
the library.

The following command line shows the format for
invoking a command procedure in the library:

@LB: [l,2]INDSYS/LB:procedurename

Before you attempt to access a command procedure, make
sure that INDSYS.CLB is in LB: [1,2]. If it is not in
this directory, your system manager must copy the
library from the source kit for the system. (On
RSX-llM, the library is included with the source files
for MCR in directory [12,10].) See the Release Notes
for your system for more information.

Indicates that when a new command file is executing, it
can have access to the local symbols created by its
calling command file and that any local symbols created
by the new command file will be defined as local
symbols for the calling command file. The default is
/NOLO.

Indicates that the indirect command file is to be
deleted when its processing is complete unless a
logical end-of-file (/) or .STOP directive is
encountered before the end of the file. The default is
/NODE.

You may use any combination of the switches in the command line
@filespec/switch(es) or in the directive statement .CHAIN
filespec/switch (es). Except for /LB and /LO, the switches you specify
in the command line that initiates Indirect processing are used as
defaults when executing those commands.

2-29

THE INDIRECT COMMAND PROCESSOR (REFERENCE SECTION)

2.6 DESCRIPTION OF INDIRECT DIRECTIVES

Directives must be separated from their arguments and from
CLI-specific commands by at least one space. Unless you are using the
.IF directives, only one directive per command line is allowed.

You can insert any number of blanks and horizontal tabs in three
places in a command line:

• At the start of the command line

• Immediately following the colon (:) of a label

• At the end of the command line

This allows you to format the command files for readability. The
recommended procedure is to begin labels in the first column and
everything else in the ninth column (after one horizontal tab).

An important exception is the lines processed between .ENABLE and
.DISABLE DATA directives; no blanks or tabs are removed from these
lines. For example:

.IFT Z .GOTO 10

.10: .OPEN DATFIL
.DATA XXX XX

.ENABLE DATA
This is data
that goes into
the data file •
. DISABLE DATA

.GOTO 20

Note that the .DISABLE DATA statement must begin in the first column
or Indirect will place it in the data file. You can also use the
.CLOSE directive in place of .DISABLE DATA. It, too, must begin in
the first column.

2-30

THE INDIRECT COMMAND PROCESSOR (REFERENCE SECTION)

2.6.1 Define a Label I. label : j'
Labels always appear at the beginning of the line. They may be on a
line with additional directives and/or a CLI command, on a line with a
comment, or on a line by themselves. When control passes to a line
with a label, the line is processed from the first character after the
colon.

Commands do not have to be separated from the label by a space. Only
one label is permitted per line. Labels are one through six
characters in length and must be preceded by a period and terminated
with a colon. A label may contain only alphanumeric characters and/or
dollar signs ($).

It is also possible to define a label as a direct-access label; once
the label is found, its position in the command file is saved. This
allows subsequent jumps to frequently called labels or subroutines to
be effected quickly. The first statement processed after a jump to a
direct-access label is the one on the next line.

The maximum number of direct- access labels you can define within an
indirect command file depends on the version of the Indirect task you
are using. (The maximum number is specified in the task-build
file.) If you define more than the maximum number of labels allowed,
the subsequent direct-access labels replace the earliest, and so on.
The smaller the number of direct-access labels, the larger the amount
of free space in the symbol table.

If you have a large command file that branches from a line to a label
before that line, using direct-access labels can result in a
substantial saving of processing time. Normally, Indirect searches
for the label in every line below the one where the branch occurred.
If the label is not found, Indirect wraps around to the top of the
file to continue the search. With direct-access labels, however,
Indirect can go immediately to the label.

To declare a label for direct access, leave the line following the
colon blank.

Example:

.100: .ASK A Do you want to continue

.IFT A .GOSUB 200

.200:

.;THIS IS THE START OF A SUBROUTINE

.RETURN

In this example, .200: is a direct-access label while .100: is not.

2-31

THE INDIRECT COMMAND PROCESSOR (REFERENCE SECTION)

The target label of a .GOTO branch from within a Begin-End block must
be contained in that block because the .GOTO directive cannot branch
into another block. The target label of a .ONERR directive must also
be contained on the same Begin-End level. The target label of a
.GOSUB call from within a Begin-End block, however, can be outside the
current block because program control returns to the block from which
the .GOSUB call was made. For more information, see the descriptions
of the .BEGIN, .GOSUB, and .GOTO directives (Sections 2.6.5, 2.6.17,
and 2.6.18, respectively).

2-32

THE INDIRECT COMMAND PROCESSOR (REFERENCE SECTION)

2.6.2 Ask a Question and Wait for a Reply

The .ASK directive displays a question on the terminal, waits for a
reply, and sets a specified logical symbol to the value of true or
false, depending on the reply. If the symbol has not already been
defined, Indirect makes an entry in the symbol table. If the symbol
has been defined, Indirect resets its value (true or false) in
accordance with the reply. Indirect exits with a fatal error if the
symbol was previously defined as a string or numeric symbol.

Formats (brackets are required syntax) :

.ASK ssssss txt-strng

.ASK [default:timeout) ssssss txt-strng

.ASK [:timeout) ssssss txt-strng

Parameters:

ssssss

txt-strng

default

timeout

The 1- through 6-character symbol to be assigned a
true or false value.

The question or prompt that Indirect displays.

The default response; used if the
answered with an empty line (null)
occurs. The default can be <TRUE> or
another logical variable.

question is
or if timeout

<FALSE> or

The timeout count. Indirect waits this long for a
response, then applies the default answer. The
format for timeout is nnu, where nn is the decimal
number of time units to wait and u is T (ticks) , S
(seconds), M (minutes), or H (hours). The timeout
count is valid only if timeout mode is enabled
(.ENABLE TIMEOUT; see Section 2.6.12).

The entire .ASK statement must fit on one command line.

Note that if you omit the default value but specify a timeout count,
the colon is required for positional identification.

When executing a
DISPLAY is in
suffixed with "?

1. YID

2. NID

3. ID

4. (@

5. ~TRLIZ)

.ASK directive, Indirect displays (unless .DISABLE
effect) txt-strng prefixed by an asterisk (*) and
[yiN) :". Indirect recognizes five answers:

Set symbol ssssss to true.

Set symbol ssssss to false.

Set symbol
value. The

to false or to user-specified default
ID symbol indicates the RETURN key.

Set symbol ssssss to true and set the
logical symbol <ESCAPE> to true only if
recognition has been enabled. The (@
indicates the ESCAPE or ALTMODE key.

special
escape
symbol

If Control - Z mode is enabled, set <EOF> to true
and proceed, else exit immediately .

2- 33

THE INDIRECT COMMAND PROCESSOR (REFERENCE SECTION)

Example:

The directive statement

.ASK PRINT Do you want to print the file

displays

* Do you want to print the file? [yiN):

on t h e terminal. Symbol PRINT will be set to true or false after you
type y, N, the RETURN key, or the ESCAPE key (i f escape recognition is
enabled) •

2- 34

THE INDIRECT COMMAND PROCESSOR (REFERENCE SECTION)

2.6.3 Ask for Definition of a Numeric Symbol

The .ASKN directive displays on the terminal a request for a numeric
value, waits for it to be entered, optionally tests the range for the
numeric response and/or applies a default value, and sets the
specified symbol accordingly. If the symbol has not previously been
defined, Indirect makes an entry in the symbol table. If the symbol
has already been defined, Indirect resets its value in accordance with
the reply . Indirect exits with a fatal error if the symbol was
previously defined as a logical or string symbol .

Formats (brackets are required syntax):

.ASKN ssssss txt- strng

.ASKN [low:high:default:timeout] ssssss txt - strng

Parameters:

ssssss

txt- strng

low:high

default

timeout

The 1 - through 6 - character symbol to be assigned a
numeric value.

The question or prompt that Indirect displays.

A nume ric expression or symbol giving the range for
the response .

A numeric expression or symbol giving the default
value .

The timeout count. Indirect waits this long for a
response, then applies the default answer . The
format for timeout is nnu, where nn is the decimal
number of time uni ts to wai t and u is T (ticks), S
(seconds), M (minutes), or H (hours). The timeout
count is valid only if timeout mode is enabled
(.ENABLE TIMEOUT; see Section 2.6 . 12).

The entire .ASKN statement must fit on one command line.

Note that if you
brackets, any
identification.

omit any
preceding

of the
colons

parameters within
are required for

the square
positional

The command line cannot exceed 132(10) characters in length. When
executing a .ASKN directive, Indirect displays (unless . DISABLE
DISPLAY is in effect) txt- strng prefixed by an asterisk (*) and
suffixed with [0]: to indicate that the response will be taken as
octal or with [D]: to indicate that the response will be taken as
decimal. The reply must be a number either within the specified range
or in the range 0 through 177777 (8) (by default) or 0 through
65535 (10).

If the response is outside the specified range, the following message
is displayed:

AT. -- Value not in range

Indirect then repeats the query .

2- 35

THE INDIRECT COMMAND PROCESSOR (REFERENCE SECTION)

If an arithmetic operation yields a result greater than 177777 (8) when
computing the actual value of any of the arguments low, high, or
default, a fatal error occurs and the following message is displayed:

AT. -- Numeric under- or overflow

If the response is an empty line (null) and a default value (default)
was not specified, Indirect applies a default of O. Note that in this
case, the range, if specified, must include O.

The response may be either octal or decimal; a leading pound sign (#)
forces octal, a trailing period (.) forces decimal. In the absence of
either, Indirect applies a default radix. The default radix is
decimal if either the range or default values are decimal expressions
(followed by a period). Otherwise, the default radix is octal (unl ess
decimal mode has been enabled). Indirect displays the default type as
ei ther (0) or [D).

To force a default decimal radix without specifying a range argument,
use the following construction:

or

.ASKN [::0.) A Enter value

.ENABLE DECIMAL

.ASKN A Enter value

Examples:

• The directive statement

.ASKN SYM Define numeric symbol A

displays

* Define numeric symbol A (0):

on the terminal.
(octal).

In this example, (0) is the default radix

Indirect then defines symbol SYM according to the reply
entered.

• The directive statement

.ASKN [2:35:16:20S) NUMSYM Define numeric symbol A

displays

* Define numeric symbol A [0 R:2-35 D:16 T:20S):

on the terminal,
T:timeout) , where:

in the format [x R:low-high D:default

x o if the default radix is octal or D if it is
decimal.

R:low-high The specified range.

2-36

THE INDIRECT COMMAND PROCESSOR (REFERENCE SECTION)

D:default

T:timeout

The specified default.

The specified timeout count
default answer is used.

before the

Indirect then checks whether the response string is in the
specified range.

• The directive statement

.ASKN [NUMSYM+10:45:NUM8YM+10] 8YM Define numeric symbol B

displays (assuming the value of 16 octal for NUM8YM)

* Define numeric symbol B [0 R:26-45 D:26]:

2-37

THE INDIRECT COMMAND PROCESSOR (REFERENCE SECTION)

2.6.4 Ask for Definition of a String Symbo l

The .ASKS directive displays o n t h e terminal a req uest for a string
value to define a specified symbol a nd optional l y tests whether t h e
number of characters in the response stri ng fal l s within the specified
range. If the symbol has not previously been defined, Indirect makes
an entry in the symbol table. If the symbol has already been defi ned,
Indirect resets its value in accordance with the reply. Indirect
exits with a fatal error if the symbol was defined previou sly as a
logical or numeric symbol . If the number of c haracters is out of the
specified range, the following message is displayed:

AT. -- String length not in range

Indirect then repeats the query .

Formats (brackets are required syntax) :

.ASKS ssssss txt- strng

.ASKS [low:high : default:timeo u t j ssssss txt-strng

Parameters:

ssssss

txt- strng

low:high

default

timeout

The 1- through 6- character symbol to be assigned a
string value.

The question or prompt that Indirect displays.

A numeric expression giving t h e range for the number
of characters permitted in the response string.

A string expression or symbol giving the defa ult
value.

The timeout count. Indirect waits this long for a
response, then applies the default answer . The
format for timeout is nnu, where nn is the decimal
number of time units to wait and u is T (ticks) , S
(seconds) , M (minutes) , or H (ho u rs) . Th e timeo u t
count is valid only if timeout mode is enabled
(.ENABLE TIMEOUT; see Section 2.6.12) .

The entire .ASKS statement must fit on one command line.

Note that if you
brackets, any
identification.

omit any
preceding

of the
colons

parameters within
are req u ired for

t he square
positional

When executing a .ASKS directive, Indirect displays (unless .DISABLE
DISPLAY is in effect) txt- strng prefixed by an asterisk (*) and
suffixed with [S j :. The reply must be an ASCII character string.

2- 38

THE INDIRECT COMMAND PROCESSOR (REFERENCE SECTION)

Examples:

• The directive statement

.ASKS NAME Please enter your name

displays

* Please enter your name [S]:

on the terminal. Indirect then defines symbol NAME according
to the string reply entered.

• The directive statement

.ASKS [1:15::l0S] MIDNAM Please enter your middle name

displays

* Please enter your middle name [S R:1 - 15 T:1 0S] :

on the terminal, in the format [S R:low- high T:timeout],
where:

S The symb o l type (string) .

R:low- high The specified range for the
characters.

T:timeout The specified timeout count.

2- 39

number of

THE INDIRECT COMMAND PROCESSOR (REFERENCE SECTION)

2.6.5 Begin Block

The .BEGIN directive marks the beginning of a Begin-End block. The
block must be terminated with a .END directive.

Labels and local symbols defined following the .BEGIN directive are
local to the block instead of being used throughout the entire command
file. Therefore, labels and local symbols defined inside a block lose
their definition outside the block .

Symbols defined outside a block retain their definition throughout the
file. Symbols defined outside a block and then modified within the
block, however, assume and retain the value assigned in the block.

Labels defined outside a block are not accessible by a .GOTO directive
from within the block. They are, however, accessible by a .GOSUB
directive because program control returns to the next line within the
block.

Labels and local symbols defined within a block lose definition with a
.ERASE LOCAL directive statement (see Section 2.6.14) or with the .END
directive.

The .BEGIN directive must be the only directive on a command line.
For example, it cannot appear on the same line as a .IF directive.

Format:

.BEGIN

2-40

THE INDIRECT COMMAND PROCESSOR (REFERENCE SECTION)

2.6.6 Continue Processing Using Another File .CHAIN I
The .CHAIN directive, which must be the last command in the file,
closes the current file, erases all local symbols, clears any .ONERR
arguments, empties the direct-access label cache, and continues
processing using command lines from another file. The .CHAIN
directive does not close data files, pass parameters, or change the
nested-file level.

Format (brackets not part of syntax):

.CHAIN filespec[/switch(es»)

Parameters:

filespec

/switch(es)

Examples:

.CHAIN OUTPUT

The specification (including a directory, if
desired) of the file that contains the new command
lines.

On RSX- IIM- PLUS systems, filespec can be a logical
name assignment that translates into a valid FCS
file specification.

Any of the optional switches described in section
2.5.

This directive statement transfers control to the file OUTPUT.CMD •

• CHAIN TEMP

This directive statement transfers control to the command file
specified by the logical translation of TEMP.

The command file TEST.CMD contains the following directive statement:

.CHAIN OUTPUT

When the following DCL command lines are entered at the terminal

$ ASSIGN OUTPUT DB1 : [TEST) OUTPUT .CMD @
$ @TEST @

Indirect transfers control to the command file specified by the
translation of the logical name OUTPUT (DB1: [TEST)OUTPUT.CMD).

2-41

THE INDIRECT COMMAND PROCESSOR (REFERENCE SECTION)

2.6.7 Close Secondary File I·CLOSE I
The .CLOSE directive closes the secondary file opened by a .OPEN
directive (see Section 2.6.23).

Format (brackets not part of syntax):

.CLOSE [in]

Parameter:

#n An optional file number in the range 0 to x-l, where x is
the number of file-open FDBs specified in the build file
for the Indirect task. (The value x is the m~ximum number
of files that can be open simultaneously.) The default is
#0. You can substitute a numeric symbol for the value n
by enclosing the symbol in apostrophes.

2-42

THE INDIRECT COMMAND PROCESSOR (REFERENCE SECTION)

2.6.8 Output Data to Secondary File

The .DATA directive specifies text that is to be output to a secondary
file previously opened by a .OPEN directive.

When Indirect processes the text string that follows the .DATA
directive, it ignores the leading space (if present), assuming it to
be a separator between the directive and the text string. Any other
spaces are transferred to the data file. If a tab follows the
directive, it is transferred to the file. If no other characters
follow the directive, a blank line is transferred to the file. This
processing has the following results:

Command File

.DATA foo~

.DATA foo ~

.DATA (ffiID foo ~

.DATA (ffiID foo ~

.DATA ~

Open File

foo~
foo~

(ffiID foo ~
(ffiID foo ~
null line

Note that if a comment follows a .DATA statement (that i-s, .DATA
data !comment) , Indirect also outputs the comment to the secondary
file because it cannot tell if the comment pertains to the .DATA
statement itself or to the data being output to the file.

Format (brackets not part of syntax) :

.DATA [#n] txt-strng

Parameters:

#n

txt-strng

An optional file number in the range 0 to x-l,
x is the number of file-open FDBs specified
build file for the Indirect task. (The value
the maximum number of files that can be
simultaneously.) The default is #0. You
substitute a numeric symbol for the value
enclosing the symbol in apostrophes.

The text to be output to the secondary file.

where
in the

x is
open

can
n by

The command line cannot exceed 132 (10) characters and the specified
text string cannot continue onto the next line. If a secondary file
is not open, an error condition exists; Indirect issues an error
message and begins error processing.

Example:

.SETS SEND " This is data "

.OPEN TEMP

.DATA ' SEND'

.CLOSE

These directives output THIS IS DATA to the secondary file TEMP.DAT
(.DAT is the default file type for a data file).

2-43

THE INDIRECT COMMAND PROCESSOR (REFERENCE SECTION)

2.6.9 Decrement Numeric Symbol

The .DEC directive decrements a numeric symbol by 1. Indirect exits
with a fatal error if the symbol was defined previously as a logical
or string symbol.

Format:

.DEC ssssss

Parameter:

ssssss The 1- through 6-character numeric symbol.

Example:

.DEC X

This directive decrements by 1 the value assigned to the numeric
symbol X. If X crosses the zero boundary (goes from positive to
negative), decrementing it will cause an underflow error.

2-44

THE INDIRECT COMMAND PROCESSOR (REFERENCE SECTION)

2 . 6.10 Delay Execution for a Specified Period of Time .DELAY

The .DELAY directive delays further processing of the file for a
specified period of time .

Format:

. DELAY nnu

Parameters:

nn The decimal number of time units to delay .

u T - ticks
S - seconds
M - minutes
H - hours

The parameter nn is decimal by default, or octal if preceded by a
pound sign (#). For example:

lOS 10 (10) seconds

#lOS 10 (8) seconds

If quiet mode is disabled when the .DELAY directive is executed,
Indirect issues the following message:

AT. - - Delaying

When the time period expires and the task resumes, Indirect issues
this message:

AT . - - Continuing

Example:

.DELAY 20M

This directive statement delays processing for 20(10) minutes.

2-45

TH E INDIRECT COMMAND PROCESSOR (REFERENCE SECT I ON)

2 . 6 . 11 Disable Option . DISABLE

The .DISABLE directive disables a specified operating mode previously
activated by a .ENABLE directive. See Section 2.6.12 for information
on the operating modes.

Forma t :

. DISABLE option[,option • • •)

Parameter:

option One or more of the operating modes described in Section
2 . 6.12 .

The following is a list of the operating modes that can be disabled:

ATTACH
CLI
CONTROL - Z
DATA
DECIMAL

DELETE
DETACH
DISPLAY
ESCAPE
ESCAPE - SEQ

GLOBAL
LOWERCASE
MCR
OVERFLOW
QUIET

SUBSTITUTION
TIMEOUT
TRACE
TRUNCATE

Note that when you disable DETACH mode from a command file and then
request a task or CLI command to display informa t ion, the command file
may not be able to continue e xecuting. The task or CLI command may
need to attach to the terminal to display the information, but will
not be able to do so because Indirect cannot detach from the terminal.

2- 46

THE INDIRECT COMMAND PROCESSOR (REFERENCE SECTION)

2.6.12 Enable Option I. ENABLE I
The .ENABLE directive is used to invoke several operating modes. Each
mode is independent of the others; all of them can be act i ve
simultaneously. When Indirect starts to process the highest-level
command file, the initial settings are:

ATTACH enabled (R) GLOBAL enabled (I)
CLI enabled (R) LOWERCASE enabled (I)
CONTROL-Z disabled (I) MCR enabled (R)
DATA disabled (I) OVERFLOW disabled (R)
DECIMAL disabled (R) QUIET disabled (R)
DELETE disabled (I) SUBSTITUTION disabled (I)
DETACH enabled (R) TIMEOUT enabled (R)
DISPLAY enabled (R) TRACE disabled (I)
ESCAPE disabled (I) TRUNCATE disabled (R)
ESCAPE-SEQ disabled (R)

However, when Indirect passes control to a lower-level command file by
means of a .CHAIN filename or @filename statement, only the following
modes are reset to their initial (denoted by "I" in the list above)
settings: CONTROL-Z, DATA, DELETE, ESCAPE, GLOBAL, LOWERCASE,
SUBSTITUTION, and TRACE. The remaining operating modes retain
(denoted by "R" above) their new settings in the lower-level file.

In ATTACH mode, Indirect attaches to a terminal when displayi ng
comment lines. In DETACH mode, it detaches from the termina l wh e n
processing command lines. Enabling both of these modes allows yo u to
press CTRL/O to suppress a lengthy comment.

Attach and detach modes perform conditional IO.ATT and I O. DET
terminal-QIO functions, depending on the setting of the ATTACH or
DETACH attribute bits in an internal flag word that controls the
operating modes. However, disabling detach mode always attaches the
terminal until a CLI command is issued or a .ENABLE QUIET statement is
encountered (see description below). Thus, if you want the terminal
to remain detached while quiet mode is in effect, enable both attach
and detach modes at the beginning of your indirect comma nd f il e or
interactive terminal session. Also, if yo u are going to togg l e in t h e
attach and detach operating modes during the execution of the comma nd
file, follow the .ENABLE/.DISABLE statement with a .ENABLE QUI ET
statement.

Enabling CONTROL-Z mode allows a command file to detect a CTRL/Z
response to a question and continue processing. If Control-Z mode is
disabled and you press CTRL/Z in response to a .ASKx question,
Indirect exits. If Control-Z mode is enabled, the special symbol
<EOF> is set to true and Indirect continues processing the command
file.

In DATA mode, Indirect outputs lines that follow a .ENAB LE DATA
directive statement to a secondary file. (The .DATA directive sends a
single line of text to a secondary file.) To disable data mode, t h e
.DISABLE DATA (or .CLOSE) statement must begin in the first column.
Otherwise, Indirect copies the statement itself into the data file.
The .ENABLE DATA directive also has an optional argument (#n) that
specifies which file the data is to go into. See the description of
the .DATA directive (Section 2.6.8) for more information.

2-47

THE INDIRECT COMMAND PROCESSOR (REFERENCE SECTION)

In GLOBAL symbol mod e, symbol names that begin with a dollar sign ($)
are defined as global to all levels of indirect command files; once
such a symbol has been defined, all levels recognize it. Symbols that
do not begin with a dollar sign are recognized only within the level
that defines them.

In DECIMAL mode, all numeric symbols are created or redefined by
default as decimal instead of octal.

In DELETE mode, the current command file is deleted when Indirect
processes the last command line in the file.

In DISPLAY mode, Indirect displays the current fields for the .ASKx
directive and @ <EOF>. If display mode is disabled, Indirect displays
only the text string for the .ASKx directive and suppresses @ <EOF>.

In CLI mode, commands not processed by Indirect are passed to your
CLI. The CLI might be MCR, DCL, or a user-written CLI. CLI mode is
equivalent to the function of the /CLI switch (see section 2.5) .

In MCR mode, commands not processed by Indirect are passed to your
CLI. The CLI might be MCR, DCL, or a user-written CLI. MCR mode is
equivalent to the function of the /MC switch (see Section 2.5).

In LOWERCASE mode, characters read from the terminal in response to
.ASKS directives are stored in the string symbol without lowercase­
to-uppercase conversion. The representation of characters is
significant when comparing strings (see Section 2.6.19) because the
.IF directive distinguishes between lowercase and uppercase
characters.

In SUBSTITUTION mode, Indirect substitutes a string for a symbol. The
symbol must begin and end in apostrophes (' symbol'). For example, if
the symbol A has been assigned the string value THIS IS A TEST, then
every 'A' will be replaced by THIS IS A TEST. When substitution mode
is enabled, Indirect performs subst itutions in each line before
scanning the line for directives and CLI commands. (Whi le obeying a
.GOTO label directive, however, Indirect ignores any undefined symbols
encountered before the target line, that is, the line containing the
specified label.)

ESCAPE recognition permits the response to a .ASK, .ASKN, or .ASKS
directive to be an escape character. A question answered with a
single escape character sets the special logical symbol <ESCAPE> to
true. The escape character must be used only as an immediate
terminator to the question; if one or more characters precede the
escape character, an error condition exists. In this case, the
following message is displayed:

AT. -- Invalid answer or terminator

Indirect then repeats the question. Note that if you press the ESCAPE
key in response to a .ASK directive, the specified logical symbol
(ssssss of .ASK ssssss txt-strng) is also set to true.

ESCAPE-SEQuence processing forces Indirect to attach to the terminal
for escape-sequence recognition, using the IO.ATT!TF.SEQ I/O function.
In this mode, the result of a .ASKx or .READ st'atement from the
terminal will contain the termi nating escape character and escape
sequence as documented in the full-duplex terminal driver chapter of
the RSX -llM/M-PLUS I/O Drivers Reference Manual.

2-48

THE INDIRECT COMMAND PROCESSOR (REFERENCE SECTION)

OVERFLOW mode allows signed arithmetic in numeric express ions. When
you enable overflow mode, Indirect evaluates numeric expressions as
signed integers rather than as unsigned integers. Enabling this mode
provides for numeric expressions and operations that otherwise would
result in the "Numeric under- or overflow" error message.

In QUIET mode, Indirect does not echo CLI command lines or comments.
The command lines are executed normally and, if they return a message
or display, the message or display is shown on the terminal. Quiet
mode is valid only on systems that support parent-offspring tasking.
It performs no function otherwise .

In TIMEOUT mode, Indirect uses the timeout parameters specified with
the .ASKx directives. Indirect waits for the timeout count to elapse
and then applies the default answer to the directives. Timeout mode
must be enabled (the default) to use the timeout counts for the .ASKx
directives.

In TRACE mode, command lines that Indirect has processed are displayed
on the terminal. As each line is processed, it is displayed with its
nesting level and an exclamation point (!) . Trace mode is equivalent
to the function of the /TR switch (s ee Section 2.5).

In TRUNCATE mode, Indirect ignores any truncation errors on a .READ
directive. A truncation error occurs when a line in a file is too
long. If the full record cannot fit within the 132(10) - character
limit of the symbol, the record is truncated.

Formats (brackets not part of syntax):

.ENABLE option[,option •..]

.ENABLE DATA [#n]

Parameters:

option One or more of the operating modes described above.

#n An optional file number in the range 0 to x-I, where x is
the number of file-open FDBs specified in the build file
for the Indirect task. (The value x is the maximum
number of files that can be open simultaneously.) The
default is #0. You can substitute a numeric symbol for
the value n by enclosing the symbol in apostrophes.

Examples:

• SUBSTITUTION mode:

.ENABLE SUBSTITUTION

.ASKS FILE Specify next file
PRINT I FILE I

While the command file is executing, the corresponding lines
displayed at the terminal are:

$ * Specify next file [S]: SOURCES ®ill
$ PRINT SOURCES

2-49

THE INDIRECT COMMAND PROCESSOR (REFERENCE SECTION)

• GLOBAL symbol mode:

The following two lines appear in an indirect command file
called TESTl:

.ENABLE GLOBAL

.SETS $X "TEST"

A file called TEST2.CMD contains the following lines:

.ENABLE GLOBAL

.ENABLE SUBSTITUTION
@TESTI
RUN '$X'

The CLI (i n this case, MCR) displays the following lines when
the file TEST2.CMD is run:

>RUN TEST
>@ <EOF>

• ESCAPE-recognition mode:

ilf you want a list of options, type <ESC> .
. ENABLE ESCAPE
.ASKS A Enter option
.IFT <ESCAPE> .GOTO LIST

.LIST: iOptions are: A (ADD), S (SUBTRACT), M (MULTIPLY)
.ASKS A Enter option

If you press the ESCAPE key in response to ENTER OPTION, the
lines displayed at the terminal are:

>iIf you want a
>* Enter option
>iOptions are:
>* Enter option

list of options, type <ESC>.
[S): @
A (ADD), S (SUBTRACT), M (MULTIPLY)
[S) :

• QUIET mode (DCL is the CLI for the terminal):

.ASK QUIET Do you want command lines suppressed

.IFT QUIET .ENABLE QUIET

.IFF QUIET .DISABLE QUIET
SHOW TASKS/ACTIVE

If the response is affirmative, Indirect displays the active
tasks but not the SHOW TASKS/ACTIVE command. For example:

$ * Do you want command lines suppressed? [Y/N): Y
DCL
SHOTl4
AT.T14

• CONTROL-Z mode:

.ENABLE CONTROL-Z

.ASK RESP Do you want to continue

.IFT <EOF> .GOTO CLENUP

.IFF RESP .GOTO CLENUP

If you press CTRL/Z in response to the question, <EOF> is set
to true and Indirect transfers to label CLENUP.

2-50

THE INDIRECT COMMAND PROCESSOR (REFERENCE SECTION)

2.6.13 End Block

The .END directive marks the end of a Begin-End block. If Indirect
encounters more .END directives than .BEGIN directives, command
processing terminates and the following message is displayed:

AT. -- Illegal nesting

Format:

.END

As with .BEGIN, the .END directive must be the only directive on the
command line.

2-51

THE INDIRECT COMMAND PROCESSOR (REFERENCE SECTION)

2.6.14 Delete Symbols . ERASE

The .ERASE directive deletes all local or global symbol definitions,
or a specific global symbol definition.

When you define a symbol either locally (by defining a symbol
or globally (by enabling global symbol mode and preceding the
name with a dollar sign ($ » , Indirect creates an entry in the
table . The . ERASE directive erases either all local or all
entries, or a specific global entry, in the table.

value)
symbol
symbol
global

Following a .ERASE directive, you can redefine a symbol's value as
well as its type.

Formats:

.ERASE LOCAL

. ERASE GLOBAL

.ERASE SYMBOL global - symbol

A .ERASE LOCAL directive outside of a Begin- End block erases all local
symbols defined within the current file .

A .ERASE LOCAL directive within a Begin- End block erases only those
local symbols defined within the block .

However, note that the following actions also occur :

1. Local symbols defined within a nested file are erased when
that file exits .

2. Local symbols defined within a Begin-End block are erased by
. END.

3. Local symbols defined outside
visible, modifiable, and not
block.

of Begin- End blocks are
erasable within a Begin- End

A .ERASE LOCAL statement will not work if it is included in a command
file invoked with the at sign (@file) or by a . CHAIN directive with
the /LO (local) switch. This restriction occurs because Indirect uses
its internal stack for storing local symbols, nested command file
context, and Begin- End block context . When a command file is invoked
with the at sign or called by .CHAIN with /LO, the context of the
calling command file is placed on the internal stack for later use.
When Indirect processes the .ERASE LOCAL statement in the invoked
file, it removes this context along with any local symbols defined by
the command files. This behavior causes Indirect to abort with an
error when it later attempts to remove the context of the calling file
or the Begin- End context from the internal stack.

A .ERASE GLOBAL directive, either outside of or within a Begin- End
block, erases all global symbols.

A .ERASE SYMBOL global - symbol directive erases the specified global
symbol . (Individual local symbols are not erasable .)

2- 52

THE INDIRECT COMMAND PROCESSOR (REFERENCE SECTION)

Examples:

. ERASE LOCAL

This directive erases all local symbol definitions used in the
indirect command file .

. ERASE SYMBOL $SWITC

This directive erases the single global symbol "$SWITC."

2-53

THE INDIRECT COMMAND PROCESSOR (REFERENCE SECTION)

2.6.15 Exit Current Command File B
The .EXIT directive terminates processing of the current command file
or Begin- End block and returns control to the previous- level command
file or, if the directive is executed within a block, to the line
following the .END directive. If the directive is encountered at the
uppermost indirect nesting level, Indirect exits and passes control to
the CLI (s ee the description of the .STOP directive, Section 2.6.34).

The . EXIT directive also allows you to optionally specify a value to
copy into the special symbol <EXSTAT>.

Format (brackets not part of syntax):

. EXIT [value)

Parameter:

value An optional numeric expression to be copied to the
special symbol <EXSTAT>.

Example:

The following line appears in an indirect command file called TEST1:

@TEST2

The file TEST2.CMD contains the following line:

.EXIT

When Indirect encounters the .EXIT directive in TEST2, control returns
to TESTl.CMD.

If the .EXIT directive in TEST2.CMD includes a numeric expression (for
example, .EXIT N+2), Indirect evaluates the expression and copies the
value into <EXSTAT>.

2- 54

THE INDIRECT COMMAND PROCESSOR (REFERENCE SECTION)

2.6.16 Interface to FMS-ll I·FORM I
(RSX-llM-PLUS systems only.) The .FORM directive provides access to
the FMS - ll form driver. It allows FMS commands (see the following
list) to be passed to FMS-ll.

You must have a license and have installed the FMS-ll kit. You should
be familiar with the documentation before attempting to use .FORM.

The FMS - ll support in Indirect includes support for the VT100 and
VT200 terminals. However, you cannot use VT200 terminals unless they
are in VT100 mode .

The syntax of the .FORM directive parallels the format of the MACRO-ll
call interface to FMS-ll. You are encouraged to read the FMS-ll/RSX
Programmer's Guide, particularly the chapters on form-driver operation
and the MACRO- ll inte rface.

Format:

.FORM command,pl,p2 .•• ,pn

Parameters:

command

pl through
pn

One o f the .FORM commands.
subset of the commands
MACRO-ll/FMS interface.

Parameters for the command.

The commands are a
(codes) used in the

The following list gives the commands for the .FORM directive and
their formats. Square brackets indicate optional parameters.

ALL -- Return all fields

.FORM ALL[,retval[,rettrm]]

ANY -- Return any f i eld value

.FORM ANY[,retnam[,retinx[,retvaL[,rettrm]]]]

CLS -- Close forms library

.FORM CLS

CSH -- Clear screen and show form

.FORM CSH, fld name[,linenum]

OAT -- Get data from form

.FORM OAT, [fldname], [index], [retval]

GET -- Get value for specified field

.FORM GET,fldname[,index[,retnam[,retinx[,retval[,rettrm]]]]]

GSC -- Get current line of scrolled area

.FORM GSC, fldname,retval[,rettrm]

2-55

THE INDIRECT COMMAND PROCESSOR (REFERENCE SECTION)

LST -- Output to last line of screen

.FORM LST [,value]

OPN -- Open forms library

.FORM OPN,filename

PAL -- Put all fields

.FORM PAL [,value]

PSC -- Put to current line of scrolled area

.FORM PSC,fldname,value

PUT -- Put to specified field

.FORM PUT,fldname,[index,]value

RAL -- Return all fields

.FORM RAL,value

RTN -- Return value for specified field

.FORM RTN,fldname,[index,]retval

SHO - Show form

.FORM SHO,fldname[,linenum]

SPF/SPN -- Supervisor mode control

.FORM SPF

.FORM SPN

TRM -- Process field terminator

.FORM TRM, [fldname,] [value,] terminator [,retnam[,retinx]]

The parameters for the .FORM commands are:

filename

fldname

index

linenum

retinx

retnam

rettrm

retval

The name of a string variable or constant naming
th~ file in which the form definitions are stored.

The name of a field defined in the currently
displayed form.

In an indexed field, the index referencing the
specific field being addressed.

The screen line number where the form display is to
begin.

The index of the field you complete.

The name of the field you complete.

The name of a numeric variable to contain the code
for the terminator that you specify.

The name of a string variable into which the
returned value will be placed.

2- 56

THE INDIRECT COMMAND PROCESSOR (REFERENCE SECTION)

terminator

value

The code for the terminator to be processed.

A string variable or constant to be placed in the
indicated field.

String values supplied to the .FORM directive can be expressed as a
constant enclosed in -quotation marks or as the name of a previ ously
defined string variable. For example:

and

.FORM OPN,"FMSDEM.FLB"

.SETS LIBR "FMSDEM.FLB"

.FORM OPN,LIBR

are equivalent.

String and numeric values returned from the .FORM directive are passed
as though a .SETS or .SETN directive were being executed. This means
that the name of the variable to receive the value must be supplied
and that it must either have not been defined previously or is now
defined as the appropriate string or numeric type. For example:

.FORM GET,"CHOICE"""fldval

In this directive statement, the parameter fldval is defined or
redefined as required and contains the string you type to fill the
field named CHOICE on the currently displayed form.

A demonstration procedure is included in LB: [l,2]INDSYS.CLB. To
execute the procedure, type the following command line:

@LB: [1,2] INDSYS.CLB/LB:FMSDEM (ill)

After the terminal type is verified, a copy of the forms library is
placed in your directory. The procedure is identical to that provided
in MACRO-ll form on the FMS-ll kit. Refer to the FMS documentation
for more information on the demonstration.

2-57

THE INDIRECT COMMAND PROCESSOR (REFERENCE SECTION)

2.6.17 Call a Subroutine I ·GOSUB I
The . GOSUB directive saves the current position in an indirect command
file and then branches to a label. The label identifies a n entry
point to a subroutine that is terminated by a .RET URN directive.

When you issue a .GOSUB directive from within a Beg in -End block,
Indirect saves the current block context and then scans the file for
the first occurrence of the subroutine label. Note that during the
scan, Indirect ignores a ny intervening .BEGIN or .END directives. The
.RETURN directiv e restores previous block context, so the s ubroutine
can be contained within a Begin-End block .

The maximum nesting d epth for subroutine ca lls depe nd s on t h e number
specified in the build file for the Indirect task.

Format:

.GOSUB labe l parameters

Parameter:

label

Example:

The label that designates the first line of a
subroutine, but without the leading period a nd trailing
colon. Any parameters to the right of the l abe l and to
the left of a comment are transferred to th e reserved
local symbol COMMAN. The val ue of COMMAN can then be
parsed with the .PARSE directive (see Section 2.6.26)
to obtain formal call parameters.

.GOSUB EVAL

This directive statement transfers control to the s ubroutine labeled
.EVAL : .

2-58

THE INDIRECT COMMAND PROCESSOR (REFERENCE SECTION)

2.6.18 Branch to a Label

The .GOTO directive causes a branch
command file to another line.
directive and the specified label
forward or backward in the file.

from
All
are

I ·GOTO I

one line in an indirect
commands between the .GOTO

ignored. Branches can go

The target of a .GOTO branch from within a Begin- End block must be
contained in that block. The .GOTO directive cannot branch into
another block. When Indirect encounters a .GOTO directive within a
Begin-End block, it searches for the specified label in that block.
Since Indir e ct only searches the one Begin- End block, you can use the
same label more than once in a command file.

See Section 2.6.1 for more information on labels and direct - access
labels.

Format:

.GOTO label

Parameter:

label

Example:

.GOTO 100

The name of the label, but without the leading period
and trailing colon.

This directive statement transfers control to the line containing the
label .100:.

2- 59

THE INDIRECT COMMAND PROCESSOR (REFERENCE SECTION)

2.6.19 Logical Test

A number of directives make tests. If the result of the test is tr ue,
Indirect processes the remainder of the command line. Logical tests
can be combined into a compound logical test by using the .AND and .OR
directives.

2.6.19.1 Test if Symbol Meets Specified Condition (.IF) - The .IF
directive compares a numeric or string symb o l with another expression
of the same type to determine if one of several possible conditions is
true. If the condition is satisfied, Indirect executes the remainder
of the command line.

When comparing a string symbol with a string expression, Indirect
compares the ASCII values of each operand's characters (from left to
right) one by one. An operand is considered greater if the first
nonequal character has a greater value than the correspo nding
character in the other operand.

Numeric symbols are compared strictly on the basis of magnitude. If
overflow mode is enabled (see Section 2.6.12), Indirect evaluates
numeric expressions as signed integers rather than as unsigned
integers.

Format:

.IF symbol relop expr directive-statement

Parameters:

symbol

relop

expr

directive­
statement

Examples:

.SETS X "A "

.SETS Y "a"

The 1- through 6-character logical, numeric, or
string symbol.

One of the following relational operators:

EQ or Equal to
NE or <> - Not equal to
GE or >= - Greater than or equal to
LE or <= - Less than or equal to
GT or > - Greater than
LT or < - Less than

An expression of the same type as symbol.

The Indirect command line to be processed if the
condition is satisfied.

.IF X LT Y .GOTO 200

The ASCII value of string symbol X is less than the ASCII value of
string symbol Y, which satisfies the less-than condition. Thus,
control passes to the line containing th~ label .2 00: .

• SETN Nl 2
.SETN N2 7
.IF Nl <= N2 OIR

2-60

THE INDIRECT COMMAND PROCESSOR (REFERENCE SECTION)

With the condition satisfied (numeric symbol Nl less than or equal to
~umeric symbol N2), the (DCL) DIRECTORY command is executed •

. SETS Sl "AAb"

.SETS S2 "AA"

.SETS S3 "BBBB"

.IF Sl >= S2+S3[1:1] .INC A

Since the condition of string symbol Sl being greater than or equal to
string symbol S2 concatenated with the first character of string
symbol S3 (AAb >= AAB) is satisfied, Indirect increments numeric
symbol A.

2.6.19.2 Test if Task Is Active or Dormant (.IFACT/.IFNACT) - The
• IFACT and .IFNACT directives test whether a task is active (.IFACT)
or dormant (.IFNACT). If the result of the test is true, the
remainder of the command line is processed. If the specified task is
not installed, Indirect assumes the dormant condition.

Formats :

. IFACT taskname directive-statement

.IFNACT task name directive- statement

Parameters:

taskname

directive­
statement

Examples:

A 1- through 6-character legal task name.

The Indirect command line to be processed if the
condition is satisfied.

. IFACT REPORT .GOTO 350

.IFNACT REPORT RUN REPORT

2.6.19.3 Test if Symbol Is Defined or Not Defined (.IFDF/IFNDF) - The
.IFDF and .IFNDF directives test whether a logical, numeric, or string
symbol has been defined (.IFDF) or not defined (.IFNDF). If the
result of the test is true, the remainder of the command line is
processed. These directives do not test the value of the symbol.

Formats:

.IFDF ssssss directive-statement

.IFNDF ssssss directive- statement

Parameters:

ssssss

directive­
statement

The 1- through 6- character symbol being tested.
The symbol can be local, global, or an Indirect
special symbol.

The Indirect command line to be processed if the
condition is satisfied.

2- 61

THE INDIRECT COMMAND PROCESSOR (REFERENCE SECTION)

Examples:

.IFDF A .GOTO 100

.IFNDF A .ASK A Do you want to set the time

2.6.19.4 Test if Task Is Installed or Not Installed (.IFINS/.IFNINS)
- The .IFINS and .IFNINS directives test whether a task is installed

(.IFINS) or not installed (.IFNINS) in the system. If the result of
the test is true, the remainder of the command line is processed.

Formats:

.IFINS taskname directive-statement

.IFNINS taskname directive-statement

Parameters :

taskname

directive­
statement

Examples:

A 1- through 6-character task name.

The Indirect command line to be processed if the
condition is satisfied.

.IFINS LPl .GOTO 250

.IFNINS LPl INS $LPl

2.6.19.5 Test if Mode Is Enabled or Disabled (.IFENABLED/.IFDISABLED)
- The .IFENABLED and .IFDISABLED directives test whether an operating

mode has been enabled with the .ENABLE directive or disabled with the
.DISABLE directive. See the description of the .ENABLE directive in
Section 2.6.12 for the list of operating modes.

Formats:

.IFENABLED option directive-statement

.IFDISABLED option directive-statement

Parameters:

option The same operating mode option (with the exception
of DATA) used with the .ENABLE or .DISABLE
directive, or one of the following options:

FMS

FULL-DUPLEX

LOCAL

(RSX-llM-PLUS systems only.) The
FMS-ll/RSX form driver is present
in the system; default is enabled.

The full-duplex terminal driver is
present in the system; default is
enabled.

The /LO switch was specified in the
initial command line; default is
enabled.

2-62

THE INDIRECT COMMAND PROCESSOR (REFERENCE SECTION)

directive­
statement

Examples:

POTASK Parent/offspring tasking support is
included in the current system;
default is enabled.

The Indirect command line to be processed if the
condition is satisfied.

.IFENABLED CLI .GOTO SHOW

.IFDISABLED DECIMAL .ENABLE DECIMAL

2.6.19.6 Test if Driver Is Loaded or Not Loaded (.IFLOA/.IFNLOA) ­
The .IFLOA and .IFNLOA directives test whether a driver is loaded
(.IFLOA) or not loaded (. IFNLOA) in the system. I f the result of the
test is true, the remainder of the command line is processed. Note
that for the purposes of these directives, resident drivers are
assumed to be loaded.

Formats:

.IFLOA dd: directive-statement

.IFNLOA dd: directive-statement

Parameters:

dd:

directive­
statement

Examples:

A device driver

The Indirect command line to be processed if the
condition is satisfied.

.IFLOA DU: .GOTO 250

.IFNLOA DU: LOA DU:

2.6.19.7 Test if Symbol Is True or False (.IFT/.IFF) - The .IFT and
.IFF directives test whether a logical symbol is true (.IFT) or false
(.IFF) . If the result of the test is true, Indirect processes the
remainder of the command line.

Indirect exits with a fatal error if the symbol being tested was
previously defined as a numeric or string symbol.

Formats:

.IFT ssssss directive-statement

.IFF ssssss directive-statement

Parameters:

ssssss

directive­
statement

The 1- through 6-character logical symbol being
tested.

The Indirect command line to be processed if the
condition is satisfied.

2-63

THE INDIRECT COMMAND PROCESSOR (REFERENCE SECTION)

Examples:

.IFT A .GOTO 100

.IFF B .GOTO 200

2.6.19.8 Compound Tests - You can combine .IF tests by using the .AND
and .OR directives. In addition, an implied .AND is effected when
more than one .IF appears on the same line without being separated by
a .AND directive.

The .AND directive takes precedence over the .OR directive as shown in
the following example:

.IFT A .OR .IFT B .AND .IFT C .GOTO D

That is, Indirect reads the line as:

.IFT A .OR (.IFT B .AND .IFT C) .GOTO D

Examples:

.IFT A .AND .IFF B .GOTO HELP

If the logical symbol A is true and the logical symbol B is false,
control passes to the line containing the label .HELP: •

. IFT A .IFF B .GOTO HELP

Same effect as the previous directive (.AND implied) •

. IFT A .OR .IFF B RUN WAY

If the logical symbol A is true or if the logical symbol B is false,
the RUN command is issued.

2-64

THE INDIRECT COMMAND PROCESSOR (REFERENCE SECTION)

2.6.20 Increment Numeric Symbol

The .INC directive increments a numeric symbol by 1 . Indirect exits
with a fatal error if the symbol was previously defined as a logical
or string symbol.

Format:

.INC ssssss

Parameter:

ssssss The 1- through 6-character nume ric
incremented.

symbol being

Example:

. INC B

Increment by 1 the value assigned to the numeric symbol
crosses the zero boundary (goes from negative to
incrementing it will cause an overflow error.

2-65

B. If B
positive) ,

THE INDIRECT COMMAND PROCESSOR (REFERENCE SECTION)

2.6.21 Define Logical End- of-File

The logical end-of- file directive (/) terminates file
all levels, closes all open data files, and exits.
displays (if display mode has not been disabled)
message:

@ <EOF>

Format:

/

processing at
Indirect then

the following

The directive is the first nonblank character of the line .

You can use this directive at any location in the command file to
quickly terminate file processing, but care should be taken to avoid
an inadvertent exit.

Example:

.100:

.ASK CONT Do you wish to continue

.I FT CONT .GOTO 100
/

2- 66

THE INDIRECT COMMAND PROCESSOR (REFERENCE SECTION)

2.6.22 Branch to Label on Detecting an Error

If Indirect detects one of the following errors, control passes to the
line containing the label specified with the .ONERR directive:

• Task not installed in system (.XQT, .WAIT)

• Undefined symbol

• Bad syntax (.XQT, .WAIT, .DELAY)

• Unrecognized command

• string substitution error

• Symbol type error (.IF, .IFT, .IFF, .INC, .DEC)

• Redefinition of a symbol to a different type (.ASK, .ASKN,
.ASKS, .SETT, .SETF, .SETL, .SETN, .SETD, .SETO, .SETS)

• Data file error (.OPEN, .OPENA, .OPENR, .DATA,
.READ between .ENABLE DATA and .DISABLE DATA)

.CLOSE, or

This feature provides you with a means of gaining control to terminate
command file processing in an orderly manner.

Note that the .ONERR directive applies only to the error conditions
listed; errors returned from a task external to Indirect (for example,
a DCL syntax error) are not processed by the .ONERR directive.

Format (brackets not part of syntax) :

.ONERR [label)

Parameter:

label The name of the label, but without the leading period
and trailing colon.

Upon detecting an error, Indirect passes control to the line starting
with .label:. The .ONERR directive must be issued before Indirect
encounters the error condition. If the directive is executed (one of
the listed errors is encountered), error processing passes to the
specified label. If the label specified by the .ONERR directive does
not exist and an error condition has occurred, command processing
terminates.

If you do not specify the optional label, Indirect disables processing
for the previous .ONERR directive.

If you want to have .ONERR processing and Begin-End blocks in a
program, the label you specify must be located on the same block level
as the .ONERR directive. When Indirect detects an error, it passes
control to the most recently defined .ONERR label in the current block
level or in a previous, lower block level.

Once a .ONERR condition has occurred, another .ONERR directive must be
issued to trap a future error.

2- 67

THE INDIRECT COMMAND PROCESSOR (REFERENCE SECTION)

The .ONERR directive works with the special symbol <ERRCTL> (see
Section 2.4.1.2) . For each class of error that a .ONERR target
routine processes, the appropriate bit is set in the symbol. The
initial default value for <ERRCTL> is 1, which implies that only class
1 errors can be handled with a .ONERR routine. (Note that if you
attempt to process errors other than default class 1, Indirect cannot
continue in most cases. The error service routine is limited to
returning a fatal error message and executing the .EXIT directive.
The internal state of Indirect is indeterminate in all but class 1
error cases.) After Indirect has processed the .ONERR directive,
<ERRCTL> is reset to 1. See Appendix A for a list of the error
messages and their assigned class values.

Example:

.ONERR 100

Upon detecting one of the error conditions, Indirect passes control to
the line labeled .100:.

2-68

(

THE INDIRECT COMMAND PROCESSOR (REFERENCE SECTION)

2.6.23 Open Secondary File

The .OPEN directive opens a specified secondary file as an output
file. The .DATA directive is used to place data in this secondary
file.

Format (brackets not part of syntax):

.OPEN [#n] filespec

Parameters:

#n An optional file number in the range 0 to x- I, where x
is the number of file-open FDBs specified in the build
file for the rndirect task. (The value x is the
maximum number of files that can be open
simultaneously.) The default is #0. You can substitute
a numeric symbol for the value n by enclosing the
symbol in apostrophes.

filespec A file to be opened as an output file.
file type is .DAT.

The default

rndirect sets the owner urc of the file being opened to
be the current protection UlC of the user. All FCS
protection and privilege checks are still in effect.

For nonprivileged users, the protection urc is always
the same as their login urc. On RSX-IIM-PLUS systems,
if you are not in named directory mode, you can change
only your default urc with the MCR SET /urc or SET /DEF
or DCL SET urc or SET DEF commands. rf you are in
named directory mode, the SET /urc and SET urc commands
are illegal, and SET /DEF and SET DEF change only your
default urc. On RSX-IIM systems, the behavior of the
commands is equivalent to not being in named directory
mode.

For privileged users, the protection urc can change.
On R~X-IIM-PLUS systems, if you are not in named
directory mode, you can use SET /urc and SET /DEF (or
their equivalent DCL commands) to change both your
protection urc and your default urc. If you are in
named directory mode, the SET /urc (or SET UrC) command
changes only your protection urc. Your default urc
remains the same. The SET /DEF (or SET DEF) command
changes only your default urc. Your protection urc
remains the same. On RSX-IIM systems, the behavior of
the commands is equivalent to not being in named
directory mode.

For more information on named directories and urcs, see
the RSX-IIM/M-PLUS MCR Operations Manual or the
RSX-IIM-PLUS Command Language Manual.

On RSX-IIM-PLUS systems, filespec can also be a logical
name assignment that translates into a valid FCS file
specification.

2-69

THE INDIRECT COMMAND PROCESSOR (REFERENCE SECTION)

You cannot specify a fixed-length record file with the
.OPEN directive. If you do, Indirect changes the
attribute of the record file from fixed-length to
variable-length when it closes the file.

Note that you cannot include a comment that begins with 3 semicolon
(;comment) in a .OPEN statement. Doing so results in a syntax error.
Comments that begin with an exclamation point (!comment) are accepted.

Examples:

.OPEN SECOUT

This directive opens the file SECOUT.DAT as an output file .

. OPEN TEMP

This directive opens the file specified by the logical translation of
TEMP as an output file.

The command file HIHO.CMD contains the following directive statement:

.OPEN GRUMPY

When the following DCL command lines are entered

$ ASSIGN GRUMPY DU2: [DWARVES]GRUMPY.DAT ®ill
$ @HIHO ®ill

Indirect opens the file DU2: [DWARVES)GRUMPY.DAT as an output file.

2-70

THE INDIRECT COMMAND PROCESSOR (REFERENCE SECTION)

2.6.24 Open Secondary File for Append .OPENA I
The .OPENA directive opens a secondary file and appends all subsequent
data to the file.

Format (brackets not part of syntax):

.OPENA [#n) filespec

Parameters:

#n An optional file numb e r in the range 0 to x-I, where x
is the number of file - open FDBs specified in the build
file for the Indirect task. (Th e value x is the
maximum number of files that can be open for append
simultaneously.) The default is #0. You can substitute
a numeric symbol for the value n by enclosing the
symbol in apostrophes.

filespec A secondary file to be opened with subsequent data
appended to it. The default file type is .DAT.

Indirect sets the owner UIC of the file being opened to
be the current protection UIC of the user. See the
description of the .OPEN directive for more
information.

On RSX-IIM-PLUS systems, filespec can also be a logical
name assignment that translates into a valid FCS file
specification.

You cannot specify a fixed-length record file with the
.OPENA directive. If you do, Indirect changes the
attribute of the record file from fixed-length to
variable- length when it closes the file.

Note that you cannot include a comment that begins with a semicolon
(icomment) in a .OPENA statement. Doing so results in a syntax error.
Comments that begin with an exclamation point (!comment) are accepted.

If the specified file does not already exist , .OPENA becomes the .OPEN
directive by default.

Examples:

. OPENA SECOUT

This directive opens the file SECOUT.DAT as an output file and appends
subsequent data to it .

• OPENA TEMP

This directive opens the file specified by the logical translation of
TEMP as an output file and appends subsequent data to it.

The command file BEAUTY.CMD contains
statement:

the following directive

.OPENA BEAST

2-71

THE INDIRECT COMMAND PROCESSOR (REFERENCE SECTION)

When the following DCL command lines are entered

$ ASSIGN BEAST DU2: [TALES]BEAST.DAT ~
$ @BEAUTY ~

Indirect opens the file DU2: [TALES]BEAST .DAT as an output file and
appends subsequent data to it.

2-72

THE INDIRECT COMMAND PROCESSOR (REFERENCE SECTION)

2.6.25 Open File for Reading / .OPENR I
The .OPENR directive opens a file for reading with the .READ
directive.

Format (brackets not part of syntax):

.OPENR [#n] filespec

Parameters:

#n An optional file number in the range 0 to x-I, where x
is the number of file-open FDBs specified in the build
file for the Indirec t task. (The value x is the
maximum number of files that can be open for reading
simultaneously.) The default is #0. You can substitute
a numeric symbol for the value n by enclosing the
symbol in apostrophes.

filespec A file to be opened for reading. The default file type
is .DAT.

Indirect sets the owner UIC of the file being opened to
be the current protection UIC of the user. See the
description of the .OPEN directive for more
information.

On RSX-lIM- PLUS systems, filespec can also be a logical
name assignment that translates into a valid FCS file
specification.

You cannot specify a fixed-length record file with the
.OPENR directive. If you do, Indirect changes the
attribute of the record file from fixed-length to
variable-length when it closes the file.

Note that you cannot include a comment that begins with a semicolon
(;comment) in a .OPENR statement. Doing so results in a syntax error.

Comments that begin with an exclamation point (!comment) are accepted.

Examples:

.OPENR INDADD

This directive opens the file INDADD.DAT for reading with the .READ
directive .

. OPENR DATLIB.ULB/LB:DATINP

This directive opens for reading the libr a ry module DATINP that is
contained in the universal library DATLIB .

• OPENR TEMP

This directive opens for reading the file specified by the logical
translation of TEMP.

The command file HANSEL.CMD contains
statement:

the following directive

.OPENR GRETEL

2-73

THE INDIRECT COMMAND PROCESSOR (REFERENCE SECTION)

When the following DCL command lines are entered

$ ASSIGN GRETEL DU2: [WITCH]GRETEL.DAT @ill
$ @HANSEL @ill

Indirect opens the file DU2: [WITCHjGRETEL.DAT for reading.

2-74

THE INDIRECT COMMAND PROCESSOR (REFERENCE SECTION)

2.6.26 Parse Strings into Substrings • PARSE I
The .PARSE directive parses strings in a command line into substrings.

Format:

.PARSE <stri ng > <controlstring> <varl> <var2> •.• <varn>

The string is broken up into substrings as specified by the control
string. The substrings are stored in the specified variables. The
first character of the control string delimits the first substring,
the second character of the control string delimits the second
substring, and so on. The last character of the control string is
repeated if the number of variables exceeds the length of the control
string. If you specify mor e variables than substrings, the additiona l
variables are set to null strings. If you specify fewer variables
than the number of substrings that can be parsed, the last variable
contains the unparsed fragment of <string>.

If you specify only one variable, Indirect discards all characters
following, and including, the delimiter (for example, a comma or a
right angle bracket). All null substrings are also discarded. If you
specify more than one variable and the last character of <string> is a
delimiter, Indirect assumes that there is a null substring after it.
If you do not specify a variable for this substring to be parsed into,
the delimiter and the null substring are parsed into the last symbol
specified.

The symbol <STRLEN> contains the actual number of substrings that
Indirect processed (including explicit null substrings) .

Examples:

A command file, PARSE.CMD, contains the following command lines:

.ENABLE SUBSTITUTION

.PARSE COMMAN" " FILE Al A2 A3 A4 AS
;FILE = 'FILE'
;Al 'Al'
; A2 'A2 '
;A3 'A3'
;A4 'A4'
;AS 'AS'
;<STRLEN> = ' <STRLEN> '

The command file is invoked with the following (MCR) command line:

>@PARSE ARGl ,ARG2, ,ARG3 (BIT)

When the file is executed, COMMAN contains "PARSE ARG1,ARG2"ARG3" and
Indirect displays the following information:

>;FILE
>;Al
>;A2
>;A3
>;A4

= PARSE
ARGl
ARG2

ARG3
>;AS
>;<STRLEN> = 5

2-75

THE INDIRECT COMMAND PROCESSOR (REFERENCE SECTION)

The following example is from an interactive terminal session:

>@ti: (!jEl')
AT. > . enable substi tution fRIT;
AT.> .sets a "1,2, " (8IT)
AT.> .parse a " , " bed (8IT)
AT.> ; 'b ' (8IT)
>;1
AT.> ; 'c' (8IT)
>;2
AT.> ; 'd' (8IT)
> ;
AT.> .parse a " , " b c (8IT)
AT.> ; 'b' (8IT)
>;1
AT.> ; 'c' (8IT)
>; 2,
AT. > QR[Z
>@ <EOF>
>

(nlJll substring)

In this example, the first time string A is parsed, there are enough
variables to contain the substrings 1 and 2 and the implied null
substring following the 2. The second time A is parsed, however,
there are not enough variables to contain the substrings, so the first
substring (1) is parsed into the first variable, and the second
substring and the delimiter (2,) is parsed into the second variable.

2-76

THE INDIRECT COMMAND PROCESSOR (REFERENCE SECTION)

2.6.27 Pause for Operator Action .PAUSE

The .PAUSE directive interrupts processing of an indirect command file
to wait for user action. A .PAUSE directive causes Indirect to stop
itself, after which you can perform some operations and subsequently
cause the task to resume.

Format:

.PAUSE

When Indirect stops itself, it displays the following message on the
entering terminal:

AT. - - Pausing. To continue type "command taskname"

where:

command The command line to be issued to resume the task.

taskname The name of the Indirect task.

You then type the appropriate command line to resume the task.
Indirect displays the following message and continues processing where
it left off:

AT. -- Continuing

Note that the .PAUSE directive is legal only if your command line
interpreter is MCR or DCL.

2 - 77

THE INDIRECT COMMAND PROCESSOR (REFERENCE SECTION)

2.6.28 Read Next Record I . READ I
The .READ directive reads the ne xt record into a specified string
variable. The entire record is read into the variable. If the record
is longer than 132(10) characters, an error occurs.

After every .READ operation, the special symbol <FILERR> contains the
FCS - ll file code for the read and the special symbol <EOF> reflects
whether an end- of-file was fo und . (Note that .OPENR does not clear
<EOF >.) If an error or end-of-file occurs, the string variable remains
unchanged from its previous state.

Format (b rackets not part of syntax):

.READ [#n J ssssss

Parameters :

#n

ssssss

Example:

.LOOP:

.ERROR:

.DONE:

An optional
which the
be one of
statement .

file number that specifies the file from
record is to be read. The file number must
the numbers used in a previous . OPENR

The string variable into which the record will be read.

.ENABLE SUBSTITUTION

.OPENR FILE

.IF <FILERR> NE 1 .GOTO ERROR

.READ RECORD

.IFT <EOF> .GOTO DONE

.IF <FILERR> NE 1 . GOTO ERROR
' RECORD'

.GOTO LOOP

.CLOSE

These directives open the file FILE.DAT for reading, read each record
into the string variable RECORD, display each record on the terminal,
and close the file.

2- 78

THE INDIRECT COMMAND PROCESSOR (REFERENCE SECTION)

2.6.29 Return from a Subroutine . RETURN

The .RETURN directive signifies the end of a subroutine and returns
control to the line immediately following the .GOSUB directive that
initiated the subroutine.

Format:

.RETURN

2- 79

THE INDIRECT COMMAND PROCESSOR (REFERENCE SECTION)

2.6.30 Set Symbol to True or False .SETT/.SETF/.SETL

The .SETT, .SETF, and .SETL directives define or change the value of a
specified logical symbol. If the symbol has not been defined,
Indirect makes an entry in the symbol table and sets the logical
symbol to the value specified. If the symbol has already been
defined, Indirect resets the symbol accordingly. Indirect exits with
a fatal error if the logical symbol was defined previously as a
numeric or string symbol.

Formats:

.SETT ssssss

.SETF ssssss

.SETL ssssss 111111

Parameters:

ssssss The 1- through 6-character logical symbol to
assigned a true or false value.

be

111111 A logical or numeric expression. The symbol ssssss is
assigned the value of 111111 when the logical
expression is evaluated.

Examples:

.SETT X

This directive sets the logical symbol X to true .

• SETF ABCDE

This directive sets the logical symbol ABCDE to false .

• SETL TEST SWITCHA!SWITCHB

This directive sets the logical symbol TEST to true if SWITCHA or
SWITCHB is true.

2-80

THE INDIRECT COMMAND PROCESSOR (REFERENCE SECTION)

2.6.31 Set Symbol to Numeric Value

The .SETN directive defines or changes the value of a specified
numeric symbol. If the symbol has not been defined, Indirect makes an
entry in the symbol table and sets the symbol to the numeric value
specified. If the symbol has al r eady been defined, Indirect resets
the symbol accordingly . Indirect exits with a fatal error if the
numeric symbol was previously defined as a logical or string symbol.

Format :

.SETN ssssss nume xp

Parameters:

ssssss The 1- through 6-character numeric symbol.

numexp A numeric expression. (See Section 2 . 4.2.)

When specifying a numeric value to assign to a symbol, you may combine
a numeric symbol or constant with another numeric symbol or constant
to form a numeric expression . If numeric expressions are used, no
embedded blanks or tabs are permitted. Evaluation is done from left
to right unless parentheses are used to form subexpressions, which are
evaluated first. The radix of an expression is octal if all the
operands are octal and decimal mode has not been enabled; otherwise,
the radi x is decimal.

Examples:

.SETN NUMBER 27

This directive assigns to the numeric symbol NUMBER the value 27 (8) •

• SETN Al 3*(A2-5)

This directive assigns the numeric symbol Al the value of symbol A2
minus 5, multiplied by 3 .

2- 81

THE INDIRECT COMMAND PROCESSOR (REFERENCE SECTION)

2.6.32 Set Symbol to Octal or Decimal .SETO/.SETD

The .SETO and .SETD directives redefine the radix of a specified
numeric symbol. If the symbol has not been defined, Indirect makes an
entry in the symbol table and sets the symbol to the specified radix
with a value of O. If the symbol has already been defined, Indirect
resets the symbol accordingly. Indirect exits with a fatal error if
the symbol was previously defined as a logical or string symbol.

Formats:

. SETO ssssss

.SETD ssssss

Parameter:

ssssss The 1- through 6- character numeric symbol
assigned an octal or decimal radix.

to be

Example:

.SETN A 10

.SETD A

.SETO A

Set s ssrubol A to 1 0 (8)
De fine s A as a decimal - r a di x s ~rubol with a value
of 8(10) .
De fin es A b a ck to ori g in a l r a d ix with a va lu e of
10 (8) •

2-82

THE INDIRECT COMMAND PROCESSOR (REFERENCE SECTION)

2.6.33 Set Symbol to String Value . SETS

Th e .SETS directive defines or changes the string value of a specified
string symbol. If the symbol has not been defined, Indirect makes an
entry in the symbol table and sets the symbol to the specified string
value. If t h e symbol has been defined, Indirect resets the symbol
accordingly. Indirect exits with a fa tal error if the symbol was
defined previously as a logical or numeric symbol.

Format :

.SETS ssssss strexp

Parameters:

ssssss The 1- through 6- character string symbo l .

strexp Any string expression. (See Section 2.4 . 3.)

Indirect assigns to the specified symbol the string value represented
by the string expression strexp . If a string constant is used i n
strexp, the c onstant must be enclosed by quotation marks (" constant ")
or pound signs (#constant#).

Yo u can combine a string symbol, constant, or substring with another
string symbol or substring by the string concatenation operator (+) to
form a string expression.

Examples:

.SETS A "ABCDEF"

This directive assigns to str i ng symbol A the string value ABCDEF •

• SETS STR2 "ZZZ"

This directive assigns to string symbol STR2 the value ZZZ .

• SETS Sl #123"456#

This directive assigns to string symbol Sl the value 123 " 456 .

• SETS X STR2+"ABC"

This d i rective assigns to string symbol X the value of symbol STR2
plus ABC (that is, ZZZABC) •

. SETS X STR2+A[l:3]

This directive is equivalent to the previous directive . It assigns to
string symbol X the string value of STR2 plus the first three
characters of string A (that is, ZZZABC) .

• SETS MYFILE <UIC)+"MYFILE.TXT"

This directive assigns the string symbol MYFILE the string value of
the curren t directory and the string contained within the quotation
marks (for example, if t h e c urrent directory is [303,23 J , MYFILE is
assigned the string value [303,23]MYFILE.TXT) .

2- 83

THE INDIRECT COMMAND PROCESSOR (REFERENCE SECTION)

2.6.34 Terminate Command File processing .STOP

The .STOP directive immediately terminates command file processing at
all levels, closes all open data files, and exits. The following
message is then displayed (unless .DISABLE DISPLAY is in effect):

@ <EOF>

The .STOP directive allows you to optionally set the exit status for
Indirect execution.

Format (brackets not part of syntax) :

.STOP [value]

Parameter:

value

Example:

.STOP 0

An optional numeric expression to serve as the exit
status for Indirect. If you do not specify an exit
status value, the .STOP directive is identical to the
logical end-of-file directive (I).

This directive terminates command file processing and sets the exit
status for Indirect to 0 (Warning).

2-84

THE INDIRECT COMMAND PROCESSOR (REFERENCE SECTION)

2.6.35 Test Symbol .TEST

The .TEST directive has two different functions. It tests a variable
and sets various special symbols accordingly, and it does substring
searches and sets the special symbol <STRLEN> accordingly.

Format 1:

.TEST ssssss

Parameter:

sssss The 1- through 6-character symbol to be tested.

The results of the test are as follows:

• If variable is a string, <SYMTYP> is set to 4 and <STRLEN>
contains the length of the string. Also, the special symbols
<ALPHAN>, <NUMBER>, <RAD50>, and <OCTAL> are set based on a
scan of the characters of variable.

• If variable is numeric, <SYMTYP> is set to 2.

• If variable is octal, <SYMTYP> is set to 2 and <OCTAL> is set
to TRUE.

• If variable is logical, <SYMTYP> is set to O.

Format 2:

.TEST string substring

Parameters:

string A string symbol or constant.

substring A string expression.

In this case, the substring is searched for in the specified string.
If the substring is present, <STRLEN> is set to the position of the
starting character of the substring within the string. If substring
is not present, <STRLEN> is set to O.

If a string constant is used in string or substring, the constant must
be enclosed by quotation marks ("constant") or pound signs
(#constant#) .

Examples:

• If SUM is a string symbol, the following directive statement

.TEST SUM

sets <SYMTYP> to 4 and places the number of characters
represented by the symbol SUM into <STRLEN>.

2-85

THE INDIRECT COMMAND PROCESSOR (REFERENCE SECTION)

• The following directive statements

.SETS MAIN "ABCDEF"

.TEST MAIN "e"

set <STRLEN) to 3, the position of C in the string ABCDEF .

• The following directive statements

.SETS Sl #AB"CDE#

.TEST Sl #D#

set <STRLEN) to 5, the position of D in the string AB"CDE.

2- 86

THE INDIRECT COMMAND PROCESSOR (REFERENCE SECTION)

2 . 6.36 Test Device .TESTDEVICE

The . TESTDEVICE directive allows a command file to acquire information
about any device in the system. The information, including error
indications, is contained in the string symbol <EXSTRI>. Each device
attribute in the string is separated by a comma (which allows
processing by the . PA RSE and .TEST directives) . The first field of
the st ri ng is the full physical name of the device. The next four
fields are octal representations of the device- characteristics words
(U.CWl through U.CW4 of the Unit Control Block) . Additional fields
contain mo re information about the device.

Format:

.TESTDEVICE dd[nnJ:

Parameter:

dd[nnJ: The device about which the command file is requesting
in formation.

On RSX-IlM-PLUS systems,
logical name assignment
device specification.

the device name can be a
that translates into a valid

The information stored in <EXSTRI> is in the following form:

ddnn:,x x ,xx, xx,xx ,atr, atr •.. ,atr,

where :

ddnn:

xx ,xx,
xx,xx

atr

The physical device name for the device specified in
the command line.

The four device-characteristics words in
notation. (See the RSX - lIM or the RSX-IIM-PLUS
to Writing an I/O Driver for more information.)

One o r more of the following device attributes:

octal
Guide

NSD "No such device" is configured into this system.
LOD The device driver is loaded.
UNL Th e device driver is not loaded.
ONL The device is on line.
OFL The device is off line.
MTD The device is a mountable volume and is mounted.
NMT The device is not a mountable volume or is not

mount ed.
FOR Th e device is a mountable volume and is mounted

foreign.
NFO The device is not a mountable volume or is not

mount ed foreign .
PUB The device is a public device.
NPU Th e device is not a public device.
ATT Th e device is attached to another task.
ATU The device is attached to this copy of Indirect.
NAT The device is not attached.
ALO The device is allocated to another termi nal .
ALU The device is allocated to this terminal.
NAL The device is not allocated.

2-87

THE INDIRECT COMMAND PROCESSOR (REFERENCE SECTION)

<EXSTRI> " contains the value "NSD," (no such device) if the device is
not present in the current system configuration.

<EXSTRI> contains the comma delimiters along with the device
information so that the device information can be extracted from
<EXSTRI> with the .PARSE directive.

Examples:

.TESTDEVICE SY:

This directive statement acquires information about user logical
device SY: and stores it in <EXSTRI> .

• TESTDEVICE TEMP

This directive statement
specified by the logical
<EXSTRI> •

acquires information
translation of TEMP

about
and

the
stores

device
it in

The command file PROCESS.CMD contains the
statement:

following directive

.TESTDEVICE DATA$DISK

When the following DCL command lines are entered

$ DEFINE DATA$DISK DB3: ~
$ @PROCESS ~

Indirect acquires information about the disk DB3: and stores it in
<EXSTRI>.

2- 88

THE INDIRECT COMMAND PROCESSOR (REFERENCE SECTION)

2.6.37 Test a File .TESTFILE

The .TESTFILE directive determines if a specified file exists or it
determines the physical device associated with a logical name (that
is, it performs device translation).

If you specify a file in the command line, the results of a .TESTFILE
operation are contained in the symbols <FILS PC > and <FILERR>.
<FILSPC> contains the file specification (including device, directory,
file name, file type, and version number) and <FILERR> contains the
FCS status code resulting from the search for the file.

If you do not specify a file in the command line, Indirect performs
device translation only.

Formats:

.TESTFILE filespec

.TESTFILE 11:

Parameters:

filespec The file to be tested.

11 :

Examples:

On RSX-IIM-PLUS systems, filespec can be a logical name
assignment that translates into a valid FCS file
specification.

The logical name assigned to be translated to a
physical device.

.TESTFILE MP:IND.MAP

If the file exists, this directive assigns the following values:

1 <FILERR>
<FILSPC> DU1: [101,300) IND.MAP;4 (MP: is the logical name

assigned to the physical device DU1:.)

If the file does not exist, the directive assigns the following
values:

<F ILERR>
<FILSPC>

346 (230 decimal)
DU1: [101,300) IND.MAP;O

The following directive translates the logical name TI:
physical device name:

.TESTFILE TI:

The directive assigns the symbol values as follows:

<FILERR>
<FILSPC>

1
TT23:.DAT;0

2-89

into its

THE INDIRECT COMMAND PROCESSOR (REFERENCE SECTION)

.TESTFILE TEMP

This directive assigns the symbol values as follows:

1 (FILERR>
(FILSPC> file specified by the logical translation of TEMP

The command file SWAN.CMD contains the following directive statements:

.TESTFILE SYS$TALES

.TESTFILE EGG

When the following DCL command lines are entered

$ ASSIGN SYS$TALES DU2: [UGLY]DUCKLING.DAT @]
$ ASSIGN EGG TALES .CMD @]
$ @SWAN @]

Indirect tests for the file DU2: [UGLY]DUCKLING.DAT, and then for the
file TALES.CMD in the current directory on the default device.

2-90

THE INDIRECT COMMAND PROCESSOR (REFERENCE SECTION)

2.6.38 Test a Partition .TESTPARTITION

The .TESTPARTITION directive allows a command file to acquire
information about a partition in the system. The partition can be the
one in which Indirect is executing or any other partition. You can
use the directive to verify that a partition is large enough before
installing a task in it or that the partition is present before
loading a special system. Indirect returns the information (in the
special symbol <EXSTRI» in the following format:

partitionname,base,size,type,

where base and size
system-controlled
NSP for an unknown
Indirect returns a

are in 64-byte blocks and type is SYS for
partitions, USR for user-controlled partitions, or
partition name. If the partition is not found,
"No such partition" error in the form:

partitionname",NSP,

Format:

.TESTPARTITION partitionname

Parameter:

partition- A 1- through 6-character legal partition name. If
name you use the wildcard (*) instead of a partition name,

Indirect assumes you are testing the same partition
in which the current version of Indirect is
executing.

Example:

.TESTPARTITION GEN
;GEN,1500,2303,SYS,

This directive acquires information about the partition named GEN.
The partition has a starting address of 150000 (8) , it is 2303 00(8)
bytes long, and it is a system-controlled partition.

2-91

THE INDIRECT COMMAND PROCESSOR (REFERENCE SECTION)

2.6.39 Translate a Logical Name Assignment • TRANSLATE

(RSX-IIM-PLUS systems only.) The .TRANSLATE directive allows a
command file to expand a local or global logical name assignment. The
expanded assignment is contained in the string symbol <EXSTRI>.

Format (brackets are required syntax) :

.TRANSLATE ([num]) logical

Parameters:

[num] A numeric expression, evaluating to a number fr om 1
through 10(10), to specify the number of times to
iteratively translate the original logical name
assignment, or a wildcard (*) to specify that the
assignment should be translated iteratively as many
times as possible.

logical The logical name assignment to be expanded.

<EXSTRI> contains a null
specified logical name
logical names.

string if no assignment exists for the
or if your system does not have support for

The special symbol <EOF> is set to true if the expanded logical name
assignment is the result of the final iterative translation of the
assignment, or if no assignment exists for the specified logical name,
or if your system does not have support for logical names. <E OF> is
always set to true if you use the wildcard parameter ([*]) .

For more information on logical names, especially logical names
containing colons, see the descriptions of the ASN and DFL commands in
the RSX- IIM/M- PLUS MCR Operations Manual or the descriptions of the
ASSIGN and DEFINE--Commands in the RSX-llM-PLUS Command Language
Manual.

Examples:

.TRANSLATE TEMP
where TEMP is assigned the string "DUO: [USER]LOGIN .CMD"

<EXSTRI> the value
if this value is the

the logical name

This directive assigns to the symbol
"DUO: [USER]LOGIN.CMD." <EOF> is set to true
result of the final iterative translation of
assignment •

• TRANSLATE SYS$LOGIN
where SYS$LOGIN is assigned the string "DBO: [MYDIR]"

This directive assigns to the symbol <EXSTRI> the value
"DBO: [MYDIR]." <EOF> is set to true because SYS$LOGIN is the final
iterative translation of the logical name assignment.

DFL A=B
DFL B=C
DFL C=D
.TRANSLATE [*] D
.TRANSLATE D

2-92

THE INDIRECT COMMAND PROCESSOR (REFERENCE SECTION)

The first .TRANSLATE directive assigns to <EXSTRI) the value "A" and
<EOF) is set to true. The second .TRANSLATE directive assigns to
<EXSTRI) the value "C" and <EOF) is set to false.

2-93

THE INDIRECT COMMAND PROCESSOR (REFERENCE SECTION)

2.6.40 Wait for a Task to Finish Execution .WAIT

The .WAIT directive suspends processing of an indirect command file
until a particular task has terminated.

Format:

.WAIT taskname

Parameter:

taskname A 1- through 6-character legal task name.

If the task name is omitted, Indirect assumes the task name applied by
the last "RUN task" command. This name is specified as

TTnn

where:

TT The invoking terminal.

nn The terminal number.

The .WAIT directive also sets the symbol <EXSTAT> with the exit status
of the completed task.

If the specified (or default) task is not installed, Indirect ignores
the .WAIT directive. The .WAIT directive performs no function if the
/NOCLI or /NOMC switch is in effect.

Example:

.WAIT RUN

This directive discontinues processing of the command file until the
terminal-initiated task RUN exits.

2-94

THE INDIRECT COMMAND PROCESSOR (REFERENCE SECTION)

2.6.41 Initiate Parallel Task Execution B
Indirect usually passes a command to the CLI and waits until the
command's execution has completed . However, it is possible for
Indirect to initiate a task and not wait for it to complete before
executing the next directive. The .XQT directive allows you to start
a task, to pass a command line to it, and to continue processing in
parallel with the initiated task. (You can also use the MCR RUN
/CMD="command- line" command or the DCL RUN / COMMAND:"command-line"
command to pass command lines to another task.) The maximum number of
successive .XQT directives allowed depends on the parameter specified
in the build file for the Indirect task .

Format:

.XQT taskname commandline

Parameters:

taskname The name of the task (for example, INS or RUN) .

commandline The command line to be executed.

The .XQT directive allows you to initiate parallel processing of
tasks. The .WAIT directive is used to synchronize their execution.

The .WAIT directive must also be used to clear out the status block of
a .XQT. If the block is not cleared out, it is never reused, which
could possibly (after enough .XQTs) produce the error message, "Too
many concurrent .XQTs . "

2- 95

THE INDIRECT COMMAND PROCESSOR (REFERENCE SECTION)

2.7 EXAMPLES

The following sections contain examples showing different uses for
Indirect. The longer examples are followed by detailed explanations.

2.7.1 Invoking Indirect Interactively and Displaying Symbols

> @TI: (lli)
AT.>

Specifying @TI: allows you to work with Indirect interactively. When
Indirect issues the AT.> prompt, you can enter directive statements,
invoke command files, or display the values of special symbols. To
display a symbol, use the .ENABLE SUBSTITUTION directive, and then
request the symbol in the following format:

AT.>; '<symbol>'

2.7.2 Using an Indirect Command File

A file named PRINTER.CMD contains the following command lines:

.ENABLE SUBSTITUTION
; '<TIME>'
PRINT LISTINGS.MEM
.EXIT

To execute the command file, enter the following (DCL) command line:

$ @PRINTER (lli)

2.7.3 Asking for a Device Specification

. ,

., This command file asks for a device specification.
'f You may enter the device name with or without a colon
'f and the unit number does not have to be entered for
'f unit O. The output produced is the proper device name
'f with a unit number and a colon •
• ENABLE SUBSTITUTION
.DISABLE LOWERCASE
.ASKS DEVICE What is the device name?
.SETN TEMPN 2
.SETS TEMPS ":" Line 5
.TEST DEVICE
.IF TEMPN EQ <STRLEN> .SETS DEVICE DEVICE+"O"
.IF TEMPS NE DEVICE[<STRLEN>:<STRLEN» .SETS DEVICE DEVICE+":"
.DISABLE DISPLAY
; The full device specification is 'DEVICE' ! Line 10
.ENABLE DISPLAY
.EXIT

2- 96

THE INDIRECT COMMAND PROCESSOR (REFERENCE SECTION)

When you execute this command file, Indirect asks for the name of a
device and then displays the complete device specification on the
terminal. For example:

> @DEVICE (BITJ
>* What is the device name? [S :] : dul (BITJ

The full device specification is DU1:
>@ <EOF>
>

The following commentary gives a line- by- line explanation of the
command file:

1. Substitution mode enabled.

2. Lowercase
characters
were typed

mode disabled, which means tha t all input
are converted to uppercase rega rdless of how they

in.

3. Asks for the device name (that is, the mnemonic and unit
number) and assigns it to the string symbol DEVICE.

4. Sets numeric symbol TEMPN to the value 2, which is the number
of characters for the device mnemonic.

5. Sets string symbol TEMPS to contain a colon. The colon is a
string constant, so it must be enclosed in quotation marks.

6. Tests the symbol DEVICE (whi ch contains the specified device
name). As a result, the following special symbols are set:

<SYMTYP>

<STRLEN>

4 (because DEVICE is a string symbol)

the length of the string
characters typed in in
question)

(the number
response to

of
the

7. Performs a conditional test. If the value of TEMPN (2)
equals the value of <STRLEN > , set DEVICE to be the current
contents of DEVICE plus O. That is, if <STRLEN > equals 2,
that means the user typed in the device mnemonic without a
unit number. Therefore, the unit number of the device should
be O. DEVICE becomes ddO.

8. Performs another conditional test. If the value of TEMPS (:)
does not equal the last character of DEVICE, add a colon to
DEVICE (set the string symbol DEVICE to be equal to DEVICE
plus colon; DEVICE becomes ddn:).

9. Display mode disabled, which means that Indirect displays
only the text string for the .ASKS directive and suppresses
@ <EOF> upon exiting.

10. Displays this text, with the full device name substituted for
'DEVICE,' on the terminal.

11. Display mode reenabled, which . means that @ <EOF > will be
displayed after all when Indirect exits .

12. Exit from the file and Indirect.

2- 97

THE INDIRECT COMMAND PROCESSOR (REFERENCE SECTION)

2.7.4 Asking for the Type and unit Number of the Terminal

.ENABLE SUBSTITUTION

.ENABLE GLOBAL

.TESTFILE TI:

.SETN TYPE <TITYPE>

.SETN $TRM TYPE
'$TRM'

.SETS UNIT <FILSPC>[1:4)

.SETS $TT UNIT
'$TT'

Line 5

When you execute this command file, Indirect retrieves the type and
unit number of the terminal from which the file is executing, and
displays this information on the terminal. For example:

> @TERMINAL (flIT)
>; 15
>; TT14
>@ <EOF>
>

The first number in this display, 15, means that the terminal from
which the file is running is a VT100. The second number in the
display, 14, is the unit number for the terminal.

The following commentary gives a line- by-line explanation of the
command file:

1. Substitution mode enabled.

2. Global symbol mode enabled, which means that symbol names
that begin with a dollar sign ($) are defined as global for
all levels of command files. Once such a symbol has been
defined, all levels recognize it.

3. Translates logical name TI: into its physical device name
(for example, TT14:) and puts the name in the special symbol
<FILSPC>. The device name is turned into a file
specification, so the contents of <FILSPC> are TT14:.DAT;0.

4. Sets numeric symbol TYPE to the contents of special symbol
<TITYPE>, which contains the octal code number for the type
of terminal (for example, 15 for a VT100).

5. Sets numeric global symbol $TRM to the contents of TYPE.

6. Displays the value of $TRM (the octal code number for the
terminal type) on the terminal.

7. Sets string symbol UNIT to the first four characters of
<FILSPC> (for example, TT14; if the unit number is less than
10, Indirect also displays the colon).

8. Sets string global symbol $TT to the contents of UNIT (TT14).

9. Displays the value of $TT (the unit number of the terminal).

2- 98

THE INDIRECT COMMAND PROCESSOR (REFERENCE SECTION)

2.7.5 Initializing and Mounting a Volume, and Copying Files to That
Volume

In this example, DCL is the CLI for the terminal •

.GETDEV:

.INIT:

.COPY:

.END:

. ENABLE SUBSTITUTION

.ASKS DEVICE Enter device (DUl o r DU2)

.IF DEVICE EQ "DUO" .GOTO GETDEV

.ASKS DIR What directory (include square brackets)?
! Line 6

.ASK IN IT Initialize device

.IFF INIT .GOTO COPY
ALLOCATE 'DEVICE':
MOUNT/FOREIGN 'DEVICE':
.ASKS LABEL What volume label?
INITIALIZE 'DEVICE': 'LABEL '
DISMOUNT/NOUNLOAD 'DEVICE':

Line 12

MOUNT/NOSHAREABLE 'DEVI CE ' : 'LABEL'
CREATE/DIRECTORY 'DEVICE': 'DIR'

.ASKS FILES Enter names of files
COPY 'FILES' 'DEVICE': 'DIR'
.ASK MORE More files
.IFT MORE .GOTO COPY
.ASK LIST List directory
.IFF LIST .GOTO END
DIRECTORY 'DEVICE': 'DIR'

DISMOUNT 'DEVICE':
DEALLOCATE 'DEVI CE':
.EXIT

(filel,file2, ..•)
! Line 18

Line 24

The following commentary gives a line-by-line explanation of the
command file:

1. Substitution mode enabled.

2. Line for .GETDEV: label. It is a direct-access label, so it
is the only element on the command line.

3. Asks for the name of the device to which the files will be
copied.

4. Performs a conditional test. If DEVICE DUO (an illegal
device), return to .GETDEV: and ask the question again.

5. Ask for the directory to which the files will be copied.

6. Line for the. INIT: label (also a direct-access label).

7. Asks if the device should be initialized.

8. If the device should not be initialized, proceed with the
copy operation.

9. Allocates the specified device.

10. Mounts the device foreign,
initializing a device.

which

11. Asks for the label for the volume.

2-99

is necessary for

THE INDIRECT COMMAND PROCESSOR (REFERENCE SECTION)

12. Initializes the volume and gives it the specified label.

13. Dismounts the device without spinning it down.

14. Remounts the device as a private, Files-ll vol ume.

15. Creates the specified directory on the volume.

16. Line for the .COPY: label (also a direct-access label) .

17. Asks for the specifications of the files to be copied.

18. Copies the files to the device.

19. Asks if there are more files to be copied.

20. If there are more files, returns to the .COPY: label.

21. If there are no more files, asks if you would like a
directory of the copied files.

22. If you do not want a directory, goes to the end of the file
(. END:) .

23. If you do want a directory, displays the names of the copied
files on the terminal.

24. Line for the .END: label (also a direct-access label) .

25. Dismounts the device.

26. Deallocates the device.

27. Exits from the file and Indirect .

2.7.6 Editing, Purging, Printing, and Formatting Files

In this example, DCL is the CLI for the terminal .

. ENABLE QUIET

.ENABLE SUBSTITUTION

.ASKS FILNAM What is the file name?

.ASKS FILTYP What is the file type?
EDIT 'FILNAM ' . ' FILTYP '

.ASK A Do you want to purge this file

.IFT A PURGE/KEEP:2 'FILNAM' .'FILTYP'
SET FILE /TRUNCATE 'FILNAM ' .'FILTYP ' ;*

.ASK DSR Do you want to invoke DSR

.IFT DSR .GOSUB PROC

.ASK B Do you want a listing

.IFF B .GOTO 100

.GOSUB LIST
PRINT/FORMS: 'C'/COPIES: ' 0 ' 'FILNAM'. 'FILTYP '

2-100

Li ne 5

Line 1 0

THE INDIRECT COMMAND PROCESSOR (REFERENCE SECTION)

·100:

. PROC:

.LIST:

. EXIT

RNO 'FILNAM' = 'FILNAM'
. SETS FILTYP "MEM"
.ASK F Do you want to purge the .MEM files
.IFT F PURGE/KEEP:2 'FILNAM' .MEM
SET FILE /TRUNCATE 'FILNAM' .MEM;*
.RETURN

.ASKN C What form number?

.ASKN [::1.] D How many copies?

.RETURN

Line 15

Line 20

Line 25

The following commentary gives a line-by- line explanation of the
command file:

1. Quiet mode enabled, which means that Indirect does not echo
(di splay on the terminal) DCL command lines or comments. The
command lines are executed normally and, if they return a
message or display, those are shown on the terminal.

2. Substitution mode enabled.

3. Asks for the name of the file (for example, MYFILE) .

4. Asks for the type of the file (for example, CMD).

5. Invokes EDT so that you can edit the specified file.

6. When you are done with EDT (using the EXIT or QUIT command),
asks if you want to purge the versions of the file.

7. If you want to purge the files, DCL does so, keeping the two
latest versions of the file.

8. Truncates the files to free up blocks that are allocated to
the files but not used .

9. Asks if you want to use DSR (DIGITAL Standard Runoff) to
format the file.

10. If you do want to use DSR, Indirect goes to the subroutine
for file processing (.PROC:).

11. After returning from the processing subroutine, asks if you
want a listing of the file.

12. If you do not want a listing, exits from the file and
Indi recto

13. If you do want a listing, goes to the subroutine for listing
files (.LIST :).

14. After returning
specified number
printer .

from
of

15. Line for label .100:

the listing subroutine, · prints the
copies of the file on the desiqnated

(a direct-access label).

16. Exits from the file and Indirect.

17. Line for .PROC: label (label for the processing subroutine) .

2-101

THE INDIRECT COMMAND PROCESSOR (REFERENCE SECTION)

18. DSR form a ts the file (which must be a .RNO file) and creates
(by default) a . MEM file.

19. Sets string symbol FILTYP equal to type MEM.

20. Asks if you want to purge the .MEM files.

21. If you do want to purge the files, DCL does so, keeping the
two latest versions of the file.

22. Truncates the files to free up blocks that are allocated to
the files but not used.

23. Returns to the line after .GOSUB PROC (.ASK B Do you want a
listing) .

24. Line for .LIST: label (label for the listing subroutine) .

25 . Asks for the form number for the line printer. Sets the
numeric symbol C to this value, which is used in the PRINT
command line.

26. Asks for the number of copies to be printed (the default is
1) • Sets numeric symbol D to this value, which is also used
in the PRINT command line.

27. Returns to the line after .GOSUB LIST (the PRINT command
line) .

2-102

APPENDIX A

INDIRECT MESSAGES

When Indirect encounters an error, it displays the appropriate error
message and the command line in which the error occurred . If the line
contained a substitution, the line as it appeared before the
substitution took place is also displayed. Indirect also closes all
open data files before exiting.

Section A.1 explains the information- only messages and Section A.2
explains the error messages. The error messages are divided into four
classes, depending on the level of severity. Class 2 errors can be
handled with the <ERRCTL) symbol (see Section 2.4.1.2) and class I
errors can be handled with the .ONERR directive (s ee Section 2.6.22).
Class 0 errors must be corrected outside of Indirect. The remaining
messages are only for your information.

A.I INFORMATI ON- ONLY MESSAGES

@ <EOF)

AT .

AT.

AT.

AT.

(Class 0) Indirect has reached the end-of-file for the
outermost command file and is terminating execution.

Continuing

Indirect is resuming execution after a .PAUSE or .DELAY
directive.

Delaying

A . DELAY directive was just executed, halting the processing
of a n indirect command file for a specified period of time.

Invalid answer or terminator

In response to a question from .ASK, you entered something
other than Y, N, or null, followed by a RETURN; or you did
not enter a numeric value in response to a .ASKN question;
or you pressed the ESCAPE key either without escape
recognition enabled or as a character other than the first
one following the question. The question will be repeated.

Pausing . To continue type "command taskname"

Indirect just
processing of
action.

executed a
an indirect

A-1

.PAUSE directive, interrupting
command file to wait for user

AT.

INDIRECT MESSAGES

Value not in range

The response to a .ASKN or .ASKS question was not within the
specified range. Indirect repeats the question.

A.2 ERROR MESSAGES

AT. Bad range or default specification

AT.

AT.

AT.

AT.

AT.

AT.

AT.

(Cl ass 1) An illegal character was specified as a range or
default argument. Only numeric expressions are permitted.

Command file open error

(Class 2) The file being invoked in an @file or
@file/LB:module command line cannot be found or opened.

Data file error, code x.

(Class 1) Indirect encountered an error while processing a
.OPEN, .OPENA, .CLOSE, or .DATA directive, or a data-mode
access to the secondary file. See the description of
<FILERR) (Section 2.4.1.2) for a definition of the numeric
code x.

File already open

(Class 1) A .OPEN or .OPENA directive specified a file that
was already open.

File not found

(Class 2) An @filename or .CHAIN directive specified an
incorrect file name or nonexistent file.

File not open

(Class 1) Indirect encountered a .DATA or .CLOSE directive
that did not reference an open file.

File read error

(Cl ass 2) An error was detected in reading the indirect
command file. This error is usually caused by records that
are more than 132 (10) bytes long.

Illegal file number

(Class 1) The file number in a .OPEN, .OPENA, .OPENR, .DATA,
.ENABLE DATA, .READ, or .CLOSE directive is not in the range
of 0 through 3.

A-2

AT.

AT.

AT.

INDIRECT MESSAGES

Illegal nesting

(Class 1) Too many Begin-End blocks have been nested in the
indirect command file. The maximum nesting depth is limited
to the size of the symbol table.

Initialization error, code x.

(Class 0) Indirect failed to complete initialization when
you invoked it. The following list gives the meaning of the
displayed code number:

1. Unable to acquire system information such as the
directory or device name.

2. Impure area setup failed.

3. Unable to acquire task-specific information.

4. Unable to acquire terminal-type information.

5. Unable to acquire the disk name and
information about the system device (SY :) .

other

6. Unable to allocate enough space for command and
data I/O buffers. For privileged Indirect tasks,
Indirect was not installed with a large enough
increment value. The system manager should remove
and reinstall Indirect with a larger increment or
in a larger partition. For the nonprivileged
Indirect task, the EXTEND TASK directive failed to
return sufficient space for Indirect to allocate
the buffers.

7. Initialization of allocated buffers failed.

8. Initialization of the DATA file structures failed.

9. Allocation of FCS-ll buffers for data and command
lines failed.

10. Symbol table initialization failed.

11. Initialization cleanup failed.

12. Unable to obtain initial command line.

>12. Error codes greater than 12 are returned by FMS-ll
and other special purpose initialization modules.

Error number 6 is the only initialization error that yo u
should encounter. If any other error from 1 through 12
persists, submit a Software Performance Report (SPR) with
any other pertinent information.

Invalid keyword

(Class 1) An unrecognized keyword (p receded by a period) was
specified.

A-3

AT.

AT.

AT.

AT.

AT.

AT.

AT.

AT.

AT.

INDIRECT MESSAGES

Label not at beginning of line

(Class 1) The specified label does not start in the first
column of the line. All labels must do so.

Logical name translation error

(RSX-11M-PLUS systems only.) (Class 1) A log ical name
translation directive error has occurred. Use the MCR DFL
or DCL SHOW LOGICALS command to determine the status of your
logical name assignments.

Maximum indirect file depth exceeded

(Class 2) An attempt was made to reference an indirect
command file at a nested depth greater than the maximum
specified in the build file for the Indirect task.

No pool space

(Class 2) The dynamic memory allocation has been exhausted.
Either wait for more pool space to become available or use
the MCR SET /POOL command or the DCL SET SYSTEM/POOL
command.

Null control string

(Class 1) The control string specified with the .PARSE
directive was null (there were no characters between the
quotation marks or pound signs).

Numeric under- or overflow

(Class 2) The evaluation of a numeric expression yielded a
value outside the range 0 through 177777(8). This means
that the value crossed the zero boundary from positive to
negative or negative to positive.

Redefining a read-only symbol

(Class 2) An attempt was made to assign a new value to a
read-only symbol. Read-only symbols cannot be overwritten.

Redefining symbol to different type <ssssss>

(Class 1) A .ASK, .ASKN, .ASKS, .READ, .SETT, .SETF, .SETL,
.SETN, or .SETS directive was used in an attempt to set the
specified, already defined symbol to a different type. The
first definition of a symbol determines its type (logical,
numeric, or string); subsequent value assignments must
conform to the original type .

• RETURN without .GOSUB

(Class 1) A .RETURN directive was specified without a
previous call to a subroutine (.GOSUB).

A-4

AT.

AT.

AT.

AT.

AT.

AT.

AT.

AT.

AT.

AT.

INDIRECT MESSAGES

Spawn failure

(Class 1) Indirect could not initiate the execution of a
user command task.

String expression larger than 132. b~tes

(Class 2) An attempt was made to generate a
expression longer than 132(10) characters.

String substitution error

string

(Class 1) Indirect encountered an error during a
substitution operation. A probable cause for the error is
either the omission of a second apostrophe or the
specification of a symbol that is not defined.

Subroutine nesting too deep

(Class 1) The maximum subroutine nesting level was exceeded.
The maximum level is specified in the build file for the
Indirect task.

Symbol table overflow <ssssss>

(Class 2) The symbol table was full and there was no space
for symbol ssssss.

Symbol type error <ssssss>

(Class 1) The symbol ssssss was used out of context for its
type; for example, a numeric expression referenced a logical
symbol. Only symbols of the same type can be compared.

Syntax error

(Class 2) The format of the specified command line is
incorrect.

Too many concurrent .XQTs

(Class 1) More than the maximum number of successive .XQT
directives allowed by the build file for the Indirect task
were issued.

Undefined label <.label:>

(Class 1) The label .label: specified in a .GOTO, .GOSUB, or
.ONERR directive could not be found.

Undefined symbol <ssssss>

(Class 1) The symbol ssssss was referenced, but it had not
been defined.

A-5

INDEX

ACCOUN symbol (RSX - llM- PLUS only),
2- 17

ALPHAN symbol, 2- 10
ALTMOD symbol, 2- 10
Arithmetic operator, 2- 22
.ASK directive, 2- 33
.ASKN directive, 2- 35
. ASKS directive, 2- 38
At sign (@), 1 - 1, 2- 1 to 2- 2
AT., 2 - 2
Attach mode, 2- 47

BASLIN symbol, 2- 10
.BEGIN directive, 2- 4, 2- 40
Begin- End block, 2-4

beginning, 2- 40
ending, 2- 51

Begin- End block processing
terminating, 2- 54

Catchall task, 2- 2
.CHAIN directive, 2- 41
CLI mode, 2- 48
/CLI switch (Indirect), 2- 4, 2- 27
CLI symbol, 2- 18
.CLOSE directive, 2- 42
COMMAN symbol, 2- 25
Command library, 2- 28

default file type, 2- 28
DIGITAL- supplied, 2- 29

Command line
parsing, 2- 75

Command procedure
invoking, 2- 29
universal library, 2- 28

Comment, 1- 7, 2- 4
Compound test, 2- 64
CONFIG symbol, 2- 18
Control - Z mode, 2- 47

D$CUIC, 2- 5
. DATA directive, 2- 43
Data mode, 2- 47
DATE symbol, 2- 18
/DE switch (Indirect), 2- 29
.DEC directive, 2- 44
Decimal mode, 2- 48
DEFAUL symbol, 2- 10
Default direc t ory string, 2- 18,

2- 21
. DELAY directive, 2- 45
Delete mode, 2- 48
Detach mode, 2- 47
Device

information, 2- 87
logical name, 2- 89

Device driver
testi ng, 2- 63

DIRECT symbol, 2- 18
Direct- access label, 2- 31

Directive, 1- 4, 2-3, 2- 30
function, 2- 3
summary, 2- 5

Directive status code, 2- 15
.DISABLE directive, 2-46
Display mode, 2- 48

.ENABLE directive, 2-47

.ENABLE GLOBAL directive, 2- 4

.END directive, 2- 4, 2- 51
EOF symbol, 2- 10
.ERASE directive, 2- 52
ERRCTL symbol, 2- 11
ERRNUM symbol, 2 - 12
Error message, A- l
Error processing, 2- 11, 2-67
ERRSEV symbol, 2- 12
ERSEEN symbol, 2- 10
Esca pe mode, 2- 48
ESCAPE symbol, 2- 10
Escape- sequence mode, 2- 48
Examples, 1 - 7, 2- 96
. EXIT directive, 2- 54
Ex it status, 2- 12

value, 2- 12
EXSTAT symbol, 2- 12
EXSTRI symbol, 2- 18

FALSE symbol, 2- 11
FILATR symbol, 2- 19
File

opening for reading, 2- 73
testing for, 2- 89

File attribute, 2- 19
File name

default, 2- 5
FILER2 symbol (RSX- llM- PLUS only) ,

2 - 15
FILERR symbol, 2- 13
FILSPC symbol, 2- 20
FMASK symbol, 2- 20
FMS - ll interface, 2- 55
FORATT symbol, 2-16
. FORM directive (RSX - llM- PLUS only),

2- 55
commands, 2- 55

parameters, 2-56
demonstrating, 2- 57

Globa l mode, 2- 48
Global symbol

deleting definition, 2- 52
.GOSUB directive, 2- 58
. GOTO directive, 2- 59

I / O er r or code, 2- 13
lAS symbol, 2- 11
.IF directive, 2- 60
.IFACT directive, 2- 61
. IFDF directive, 2- 61
.IFDISABLED directive, 2-62

Index - l

INDEX

.IFENABLED directive, 2-62

.IFF directive, 2-63

.IFINS directive, 2-62

. IFLOA directive, 2-63

.IFNACT directive, 2-61

.IFNDF d i rective, 2-61

.IFNINS directive, 2-62

.IFNLOA directive, 2- 63

.IFT directive, 2-63

.INC directive, 2- 65
Indirect, 1 - 1, 2-1
Indirect command file, 1- 2, 2-1

block-s tructuring, 2-4
chaining, 2-41
CLI, 2-2

default file type, 2-2
nesting, 2-2

deleting, 2-29, 2-48
formatting, 2-3 0
searching for, 2-5
task, 2- 1

default file type, 2-2
nesting, 2-2

tracing, 2-27, 2-49
using task name, 2-5

Indirect command file processing
delayi ng, 2-45
interrupting, 2-77
suspending, 2-94
terminating, 2-54, 2-66 , 2-84

Indirect Command Process or
See Indirect

Invoking
interactively, 1- 10, 2-96

Label, 1-5
branching to, 2-59
defining, 2-31
direct -access, 2-31

/LB switch (Indirect) , 2-28
LIB UIC symbol (RSX-llM-PLUS only) ,

2- 20
/LO switch (Indirect) , 2-4, 2-2 9
LOCAL symbol, 2- 11
Local symbol

deleting definition, 2-52
LOGDEV symbol, 2-2 1
Logical device assignment, 2-89
Logical end-of-file directive (/) ,

2 - 66
Logical name assignment

expanding, 2-92
using, 2-2

Log i cal operator, 2-22
Logical symbol, 2-9

defining, 2-33
setting, 2-80
testing, 2-61, 2-63

Logical test, 2-60
LOGUIC symbol, 2-21
Lowercase mode, 2-48

MAPPED symbol, 2-11
/MC switch (Indirect) , 2-27

MCR mode, 2- 48
MEMSIZ symbol, 2-16

NET NOD symbol, 2-21
NETUIC symbol, 2-2 1
NUMBER symbol, 2-11
Numeric expression, 2-22
Numeric symbol, 2-9, 2-22

comparing, 2-60
decr ementing, 2-44
defining, 2-35
incrementing, 2-65
radix, 2-23

setting, 2-82
setting, 2-8 1
substituting, 2-23
testing, 2-61

NXTSYM symbol, 2-21

OCTAL symbol, 2-11
. ONERR directive, 2-67
.OPEN direct ive, 2-69
.OPENA directive, 2-71
. OPENR directive, 2-73
Operating mode

disabling, 2-46
enabling, 2-47
initial setting, 2-47
list, 2-47
testing, 2-62

Operator
ar i thmetic, 2-22
logical, 2-22

Overflow mode, 2-49

. PARSE directive, 2-75
Partition

information, 2-91
.PAUSE directive, 2-77
PRIVIL symbol, 2-11

Quiet mode, 2-49

RAD50 symbol, 2-11
.READ directive, 2-78
Record

reading, 2- 78
Reserved symbol, 2-25
.RETURN directive, 2-79
RSXllD symbol, 2-11

Secondary file
closing, 2-42
opening, 2-69

for appending, 2-71
outputting data to, 2-43

.SETD directive, 2-82

.SETF directive, 2-80

. SETL directive, 2-80

. SETN directive, 2-81

. SETO directive, 2-82

.SETS directive, 2- 83

. SETT directive, 2-80
SPACE symbol, 2-16

Index -2

Special symbol, 1-4, 2-9
format, 2-9
logical, 2-10
numeric, 2-11
string, 2-17
type, 2-9

.STOP directive, 2-84
String constant, 2-24
String expression, 2-24
String symbol, 2-9, 2-24

comparing, 2-60
defining, 2-38
setting, 2-83
testing, 2-6 1

STRLEN symbol, 2- 16
Subroutine

calling, 2-58
returning from, 2-79

Substitution format control
string, 2-26

Substitution mode, 1-3, 2-48
Subs tri ng

searching, 2-85
Swi tch, 2-27
SYDISK symbol, 2-21
Symbol, 1-3

defining, 2-4
deleting definition, 2-52
displaying, 2-96
s ubstituting, 2-25
using, 2-9

Symbol name, 2-9
Symbol table, 2-4, 2-25
Symbol type, 2-9

defining, 2-9
logical, 2-9
numeric, 2-9
string, 2-9

SYMTYP symbol, 2-16
SYSDEV symbol, 2-2 1
SYSID symbol, 2-21
SYSTEM symbol, 2-16

INDEX

SYSUIC symbol , 2-21
SYTYP symbol, 2-21
SYUNIT symbol, 2-16

Task
executing in parallel, 2-95
testing, 2-61 to 2-62

TDX, 2-2
Terminal

baud rate, 2-16
type, 2-17

.TEST directive, 2-85

.TESTDEVICE directive, 2-87

.TESTFILE directive, 2-89

.TESTPARTITION directive, 2-91
Text

displaying on terminal, 2-33,
2-35, 2-38

TICLPP symbol, 2-16
TICWID symbol, 2-16
Timeout mode, 2-49
TIMOUT symbol, 2-11
TISPED symbol , 2-16
TITYPE symbol, 2- 17
/TR switch (Indirect), 2-27
Trace mode, 2-49
.TRANSLATE directive

(RSX -1 1M-P LUS only), 2-92
TRUE symbol, 2-11
Truncate mode, 2-49

UIC symbol, 2-21
Universal library

command procedure, 2-28

Variable
testing, 2-85

VERSN symbo l, 2-22

.WAIT directive, 2-94

.XQT directive, 2-95

Index-3

RSX-llM/M-PLUS
Indirect Command Processor Manual

AA-FD05A-TC

READER'S COMMENTS

NOTE: This form is for document comments only. DIGITAL will use comments submitted on this form at the
company's discretion. If you require a written reply and are eligible to receive one under Software
Performance Report (SPR) service, submit your comments on an SPR form .

Did you find this manual understandable, usable, and well organized? Please make suggestions for improvement.

Did you find errors in this manual? If so, specify the error and the page number.

Please indicate the type of user/reader that you most nearly represent.

o Assembly language programmer
o Higher-level language programmer
o Occasional programmer (experienced)
o User with little programming experience
o Student programmer
o Other (please specify)

Name __ Date ______________________________ __

Organization

Street

City __ __ State _______ Zip Code ______ _

or Country

- - Do Not Tear - Fold Here and Tape - - - - - -

IIIII

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO.33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

SSG PUBLICATIONS ZK1-3/J35
DIGITAL EQUIPMENT CORPORATION
110 SPIT BROOK ROAD
NASHUA, NEW HAMPSHIRE 03062-2698

No Postage
Necessary

if Mai led in the
Uni ted States

- - - Do Not Tear - Fold Here -

<II
.5
....l
"0

~
o

Q
1>0
C o
< -::s
U

Printed in U.S.A.

