
RSX-11 M/M-PLUS
and Micro/RSX
Debugging Reference Manual
Order No. AA-EZ50A-TC

(

(

(

(

(

RSX-11 M/M-PLUS
and Micro/RSX
Debugging Reference Manual
Order No. AA-EZ50A-TC

RSX- 11 M Version 4.2
RSX- 11 M- PLUS Version 3.0
Micro/RSX Version 3.0

digital equipment corporation · maynard, massachusetts

First Printing, July 1985

The info rmation in this document is s ubject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation ass umes no responsibility
for any errors that may appear in this document.

The s o ftware described in this document is furnished under a license
and may be used or copied only in accordance with the terms of such
license.

No responsibility is assumed for the use or reliability of software on
equipment that is not supplied by Digital Equipment Corporation or its
affiliated companies.

Copyright ~ 1985 by Digital Equipment Co rpo ration
All Rights Reserved .

Printed in U.S.A.

The postpaid READER'S COMMENTS form on the last page of this document
requests the user's critical evaluation to assist in preparing future
documentation.

The following are trademarks of Digital Equipment Corporation:

DEC DIBOL PDT
DEC / CMS EduSystem RSTS
DEC / MMS lAS RSX
DECnet MASSBUS UNIBUS
DECsystem-1O MicroPDP-ll VAX
DECSYSTEM-20 Micro/ RSTS VMS
DECUS Micro / RSX VT
DECwriter PDP ~DmDD~D

HOW TO ORDER ADDITIONAL DOCUMENTATION

In Continental USA and Puerto Rico call 800-258-1710

In New Hampshire , Alaska, and Hawaii ca ll 603-884-6660

In Canada call 613-234-7726 (Ottawa-Hull)
800-267 -6215 (all other Canadian)

DIRECT MAIL ORDERS (USA & PUERTO RICO)'

Digital Equipment Corporation
P.O. Box CS2008
Nashua, New Hampshire 03061

• Any prepaid order from Puerto Rico must be placed
with the local Digital subsidiary (809-754-7575)

DIRECT MAIL ORDERS (CANADA)

Digital Equipment of Canada Ltd.
100 Herzberg Road
Kanata, Ontario K2K 2A6
Attn: Direct Order Desk

DIRECT MAIL ORDERS (I NTERNATIONAL)

Digital Equipment Corporation
PSG Business Manager
c/o Digital's local subsidiary or
approved distributor

Internal orders should be placed through the Software Distribution Center (SOC), Digital Equipment
Corporation, Northboro, Massachusetts 01532

ZK2564

(

(

(

(

(

(

(

(

PREFACE

CHAPTER 1

1.1
1.2
1.2.1
1. 2.2
1.2.3

1.2.3.1
1.2.3.2
1.2.3.3
1.3
1.4
1.5
1. 5.1

CHAPTER 2

2.1
2.2
2.2.1
2.2.2
2 . 3

CHAPTER 3

3.1
3.1.1
3.1. 2
3.2
3.3
3 . 4
3.5

CHAPTER 4

4 . 1
4.2
4 . 3
4.3 . 1

4.3.2
4.3.3
4.4
4.5
4.6
4 . 7
4.8
4.9
4.10

CONTENTS

INTRODUCTION TO ODT

OVERVIEW OF ODT
LINKING ODT WITH A USER PROGRAM

Linking ODT from MCR
Linking ODT from DCL
Linking to Enable Instruction and Data Space
Features (RSX - 11M- PLUS and Micro/RSX)

Enabling Instruction and Data Space
Linking ODTID . OBJ Explicitly ..
Enabling Supervisor-Mode Library Debugging

INVOKING ODT
RETURNING CONTROL TO THE HOST SYSTEM
INTERRUPTING A DEBUGGING SESSION

Resuming a Debugging Session (RSX-11M- PLUS and
Micro/RSX)

ODT CHARACTERS AND SYMBOLS

VARIABLES USED IN COMMAND DESCRIPTIONS
ADDRESS EXPRESSION FORMATS

Absolute and Relative Addressing
Forming Expressions

OPERATOR AND COMMAND SUMMARY . . .

CONTROLLING PROGRAM EXECUTION WITH ODT

SETTING AND REMOVING BREAKPOINTS
Setting Breakpoints
Removing Breakpoints . . .

BEGINNING PROGRAM EXECUTION
CONTINUING TASK EXECUTION
USING THE BREAKPOINT PROCEED COUNT
STEPPING THROUGH THE PROGRAM

Page

vii

1- 1
1 - 2
1- 2
1 - 3

1 - 3
1- 3
1 - 4
1- 4
1 - 4
1- 4
1 - 5

1 - 5

2- 1
2- 2
2 - 2
2- 3
2- 4

3- 1
3- 1
3- 2
3- 2
3 - 3
3- 4
3- 4

DISPLAYING AND ALTERING THE CONTENTS OF LOCATIONS WITH
ODT

ALTERING THE CONTENTS OF A LOCATION
CLOSING A LOCATION
OPENING WORD AND BYTE LOCATIONS

Opening Word and Byte Locations Specifying an
Address
Reopening the Location Last Opened
Moving Betwee n Wor d and Byte Modes

OPENING THE NEXT SEQUENTIAL LOCATION
OPENING THE PRECEDING LOCATION
OPENING ABSOLUTE LOCATIONS . .
OPENING PC - RELATIVE LOCATIONS
OPENING RELATIVE BRANCH OFFSET LOCATIONS
RETURNING FROM A CALCULATED LOCATION
USING DIFFERENT OUTPUT MODES

iii

4- 1
4 - 2
4- 2

4- 2
4 - 2
4- 3
4 - 3
4- 4
4 - 4
4- 4
4 - 5
4- 5
4-6

4.10.1
4.10.2

CHAPTER 5

5.1
5.1.1
5.1. 2
5.2
5.2.1
5.2.1.1
5.2.1.2
5.2.2

CHAPTER 6

6.1
6.1.1
6.1.2
6.1. 3
6.1.4
6.2
6.2.1
6.2.2
6.2.3
6 . 3
6.4
6.4.1
6.4 . 2

CHAPTER 7

7.1
7.2
7.3
7.3.1
7.3.2
7.3.3
7.3.4
7.3.5

CHAPTER 8

8.1
8.2

8.3

8.4
8.4.1

8.5
8.5 . 1
8.5.1.1
8.5.2
8.5.3
8.5.4
8.5.4.1

8.5.4.2

CONTENTS

ASCII Mode .
Radix- 50 Mode

USING REGISTERS IN ODT

GENERAL REGISTERS
Examining and Setting General Registers
Contents of General Registers

ODT INTERNAL REGISTERS
Relocation Registers

Setting Relocation Registers
Clearing Relocation Registers

The Reentry Vector Register

MEMORY OPERATIONS IN ODT

REGISTERS USED IN MEMORY OPERATIONS
Search Limit Registers
Search Mask Register .
Search Argument Register . .
Device Control LUN Registers

SEARCHING MEMORY
Searching for a Word or Byte
Searching for Inequality of a Word or Byte
Searching for a Reference

FILLING MEMORY
LISTING MEMORY

Command Format
Listing Format

PERFORMING CALCULATIONS IN ODT

CALCULATING RELOCATABLE ADDRESSES
CALCULATING OFFSETS
EVALUATING EXPRESSIONS

Equal Sign Operator
Current Location Indicator
Constant Register Indicator
Quantity Register Indicator
Radix-50 Evaluation

THE EXECUTIVE DEBUGGING TOOL (XDT)

THE ADVANTAGE OF XDT
HOW TO INCLUDE XDT IN YOUR RSX- llM OR RSX- llM- PLUS
SYSTEM. . .
LOADABLE XDT ON MICRO/RSX AND PRE- GENERATED
RSX-llM- PLUS SYSTEMS
PROCESSOR STATES

The Stack Depth Indicator and Inte r rupt
Processing

ENTERING XDT .
XDT and Synchronous System Traps (SSTs)

Processor Traps and System Crashes
Entering XDT from a Virgin System Boot
Entering XDT Using the BRK Command .
Entering XDT Using the BPT Instruction

Inserting a BPT Instruction Using the OPEN
Command .
Inserting a BPT Instruction Using the ZAP
Utility . . .

iv

4- 6
4 - 7

5-1
5 - 1
5- 2
5 - 2
5-5
5-6
5- 6
5 - 6

6 - 1
6- 1
6-2
6 - 2
6 - 2
6-2
6-3
6- 3
6 - 3
6- 4
6 - 4
6- 4
6-5

7-1
7- 1
7 - 2
7- 2
7 - 3
7- 3
7 - 3
7-4

8 - 1

8-1

8 - 2
8 - 2

8 - 3
8 - 4
8 - 4
8 - 5
8-6
8 - 7
8 - 7

8 - 7

8 - 8

(

(

(

(

(

(

CHAPTER

CHAPTER

8.5.5

9

9 . 1
9.1.1
9.1.2
9.1.3
9.1.4
9.1.5
9.1.6
9.2
9 . 3

10

10.1
10.1.1
10.1 . 2
10.2
10.2.1
10 . 2.2
10.2.2.1
10.2.2.2

APPENDI X A

A.l
A.2

APPENDIX B

EXAMPLES

F IGURES

6 - 1
10- 1

CONTENTS

Ente r ing XDT When the System Is Hung (RSX- IIM
a nd RSX - IIM- PLUS) 8 - 9

DEBUGGING WITH XDT

DEBUGGING WITH XDT
Using XDT to Debug the Executive . .
Using XDT to Debug Privileged Tasks
Using XDT to Debug a Driver
Using XDT to Examine a Memory Location
Turning Off the Processor Clock
T-bit Error

INTERPRETING BUG CHECKS
XDT COMMANDS AND OPERATORS

ADDITIONAL DEBUGGING AIDS

ACCESSING OTHER DEBUGGING AIDS
MCR Command Line
DCL Command Line

THE TRACE DEBUGGING PROGRAM
The Trace Listing
Bias Values and Ranges . .

Specifying a Bias Value
Specifying Ranges to be Traced

ERROR DETECTION

INPUT ERRORS . .
TASK IMAGE ERROR CODES

PROCESSOR STATUS WORD

ODT Listing Format .
Sample Tr ace Output

9- 1
9 - 1
9- 1
9- 2
9- 3
9-4
9- 4
9-4
9- 7

10- 1
10- 1
10- 1
10- 2
10- 2
10-3
10- 3
10-3

A-I
A- 2

. 6- 5
10- 2

B- 1 Format of the Processor Status Word B-1

TABLES

2- 1
2- 2
2- 3
5- 1
5 - 2
7- 1
8 - 1
9- 1
9- 2
9 - 3

Variables Used in ODT Command Descriptions
Forms of Add r ess Expressions
ODT Operators and Commands . . .
ODT Single Registers
ODT Register Sets
Numeri c Equiva lents of Radix- 50 Characters
XDT Trap Entr y Code s
Common Facility- Independent Error Code Definitions
Standard Bugcheck Format Facility Code Definitions
XDT Operators and Commands

v

2- 1
2-4
2- 4
5-3
5- 4
7- 4
8 - 5
9- 6
9- 7
9- 8

(

(

(

PREFACE

MANUAL OBJECTIVES

This manual describes the On- Line Debugging Tool (ODT), used to debug
user task images, and the Executive Debugging Tool (XDT), used to
debug privileged tasks on RSXll - M, RSX- llM- PLUS, and Micro/RSX
systems. It provides reference information on all ODT and XDT
commands, as well as information on how to use the commands to debug
task images.

INTENDED AUDIENCE

This manual is intended for all systems and applications programmers
who develop task images under the RSX- llM, RSX-llM-PLUS, or Micro/RSX
operating systems . Readers should understand the user interface of
the operating system that they are using. RSX-llM and RSX- llM- PLUS
users should be familiar with the contents of the RSX- llM/M- PLUS Guide
to Program Development before reading this manual. MicrojRSX users
should be familiar with the contents of the Micro/RSX Guide to
Advanced Programming before reading this manual.

STRUCTURE OF THIS MANUAL

This manual is divided into ten chapters and two appendixes, as
follows:

Chapter 1, Introduction to ODT, gives an overview of ODT. It explains
how to link the debugger into a user task image and how to begin and
end a debugging session.

Chapter 2, ODT Characters and Symbols, explains the special symbols
used in ODT and includes a reference table of all ODT commands, in
alphabetical order. New ODT users should read Chapters 3 through 7
for explanations of the commands before studying the table of commands
in detail. Experienced ODT users can use Chapter 2 for quick
reference.

Chapter 3, Controlling Program Execution, describes the command used
to begin program execution, to stop execution at breakpoints, and to
continue execution after breakpoints. It also explains how to execute
a program one or more instructions at a time.

Chapter 4, Displaying and Altering the Contents of Locations, explains
how to open and close task locations, how to change the contents of
locations, and how to display the contents of locations in different
modes.

vii

PREFACE

Chapter 5, Using Registers, describes all of the registers used by
ODT. It includes reference tables as well as explanations of how
registers are set and cleared. Experienced ODT users may wish to
consult the tables in this chapter, as well as those in Chapter 2, for
quick reference regarding specific registers .

Chapter 6, Memory Operations, describes ODT's memory search, fill, and
list capabilities.

Chapter 7, Performing Calculations, describes how to use ODT to
perform arithmetic calculations.

Chapter 8, The Executive Debugging Tool, gives information about XDT
and describes how to enter XDT.

Chapter 9, Debugginc.; with XDT, describes XDT commands and operators
and explains the differences between ODT and XDT.

Chapter 10, Additional Debugging Aids, explains how to link debuggers
other than ODT into a user task image. It describes the Trace
program , a debugging aid that can be used in conjunction with ODT.

Appendix A, Error Detection, describes how ODT and XDT respond to
errors in user input or program logic. It lists all ODT and XDT error
message codes in alphabetical order.

Appendix B, Processor Status Word, shows the format of the PS and
summarizes the functions of its bits.

ASSOCIATED MANUALS

The RSX- IIM/M- PLUS Guide to Writing an I/O Driver and the Micro/RSX
Guide to Writing an-IlO-oriver contain information about debugging a
user- writtten drive~ The information directory of the host operating
system describes other manuals that will be of interest to ODT and XDT
users.

CONVENTIONS USED IN THIS MANUAL

Throughout this book symbols and other notation conventions are used
to represent keyboard characters, to convey textual information, and
to aid the reader's understanding of material. These symbols and
conventions are explained below.

Convention

CTRL/a

Meaning

A symbol with a 1 - to 3-character abbreviation,
such as @ or (BD) , indicates that you press a
key on the terminal.

This phrase indicates that you press the key
labeled CTRL while simultaneously pressing another
key, such as C or Y. In examples, this control
key sequence is shown as AA, because that is how
the system displays it on your terminal.

viii

(

(

(

(

red ink

shading

(

(

(

PREFACE

User input appears in
throughout this book.
black ink.

red ink in the examples
System responses appear in

Gray shading denotes information specific
RSX-llM-PLUS and Micro/RSX.

to

Pink shading denotes information specific to
RSX-llM.

ix

SUMMARY OF TECHNICAL CHANGES

This manual combines
information about XDT.

the IAS/RSX- II ODT Reference Manual and
Information specific to lAS has been deleted.

The RSX- IIM, RSX- IIM- PLUS, and Micro/RSX Executives a ll contain code
that detects certain types of internal system corruption. If XDT is
included in the system, the Executive attempts to enter XDT as soon as
the system corruption is detected. XDT on RSX- IIM- PLUS systems and
loadable XDT use bug checks to report this type of error. This manual
includes information on interpreting bug checks.

This manual also corrects small technical
examples of the previous version. It
reorganization of material, intended to
accessible to readers.

x

errors in the text and
represents a significant

make information more

(

(

(

(

(

(

CHAPTER 1

INTRODUCTION TO ODT

This chapter gives an overview of the On-Line
ODT is a utility for debugging task images.

Debugging Tool
You can use ODT to:

(ODT) .

• Control program execution

• Display the contents of locations or registers

• Alter the contents of locations or registers

• Search and fill memory

• Perform calculations

ODT commands consist of one character; some commands
alphabetic character as an argument. All ODT
symbols that are used in them, are listed in Chapter
through 7 describe how to use the commands.

take a numeric or
commands, and the

2. Chapters 3

This chapter describes how to link the debugger into a user task
image, initiate a debugging session, and end a debugging session.

1.1 OVERVIEW OF ODT

ODT is special code that you link into your task image to help you
debug your program. When you run a task into which ODT has been
linked, the debugger receives control of the task automatically upon
task initiation. Through ODT, you can then execute your task
gradually, setting breakpoints at selected locations or stepping
through the program one instruction at a time. Chapter 3 describes
ODT commands for controlling program execution.

You can examine any location in your program -- instruction or data,
word or byte - - by "opening" the location with ODT. While the
location is open, you can immediately change the contents. You can
move forward or backward to examine and modify other locations. Thus,
you can test any number of modifications without rebuilding your task.
Chapter 4 describes ODT commands for examining and altering locations
and for moving from one location to another.

ODT operates through the use of a number of registers, all of which
you can set and reset. Some of these registers are used to store
information about your program while ODT has control. Eight registers
can be set to the locations of breakpoints. Eight can be set to
relocation biases -- the absolute base addresses of relocated object
modules. You can use other registers to store values that you may
want to use repeatedly during your debugging session. Chapter 5

1 - 1

INTRODUCTION TO ODT

describes the ODT registers. You can use ODT to search for bit
patterns in memory, to fill blocks of memory with a value, or to list
blocks of memory on an output device. Chapter 6 describes these
operations.

During a debugging session, you can perform a variety of calculations:
determining offsets, evaluating arithmetic expressions, and
constructing Radix-50 words. These calculations are described in
Chapter 7.

1.2 LINKING ODT WITH A USER PROGRAM

ODT is provided on your system as an object module, LB:[l,l]ODT.OBJ.
The version of ODT supporting the instruction and data space features
of RSX-IIM-PLUS and Micro/RSX is provided in the object module
LB:[l,l]ODTID.OBJ. To use ODT, you must link the appropriate object
module with the object module(s) of your program. When the resulting
task image is run , ODT is invoked and initiated automatically.

If the task image is overlaid, ODT is linked into the root segment so
that the debugger will always be available.

The following sections describe how to link ODT into a task image in
different environments. Section 1.2.1 describes how to link ODT if
your command line interpreter (CLI) is MCR. Section 1.2.2 describes
how to link ODT if your command line interpreter is DCL. Section
1.2.3 describes how to enable the instruction and data space and
supervisor-mode features of ODT used under some RSX-IIM-PLUS and
Micro/RSX systems.

The information in subsequent sections on initiating and using ODT
applies equally to RSX-IIM, RSX-IIM-PLUS, and Micro/RSX environments,
except as noted.

1.2.1 Linking ODT from MCR

To link ODT with your program when your CLI is the Monitor Console
Routine (MCR), first invoke the Task Builder by typing TKB in response
to the MCR prompt. The Task Builder replies with its own prompt,
TKB>. In response to this prompt, enter a Task Builder command
specifying the name of the file(s) to be linked. Include the /DA
switch, which indicates that a debugger (in this case ODT, the
default) should be linked into the image. The following example shows
the resulting command line:

TKB> MYTASK/DA=MYFILE1,MYFILE2

The Task Builder accesses the file ODT.OBJ in UFD [1,1] on the library
device and links it with the files MYFILE1.OBJ and MYFILE2.0BJ into
the task MYTASK.

Using ODT requires that you consult an up-to-date map of your task.
Therefore, you should in most cases request a new map when you build
the task, as in the following command line:

TKB> MYTASK/DA,MYTASK/CR/-SP=MYFILE1,MYFILE2

For more information on using the Task Builder
RSX-IIM/M-PLUS and Micro/RSX Task Builder Manual.

1-2

consult ilie

(

(

(

(

INTRODUCTION TO ODT

1.2.2 Linking ODT from DCL

To link ODT with your program(s) when your command line interpreter is
the DIGITAL Command Language (DCL), use the /DEBUG qualifier with the
LINK command. ODT requires that you consult an up-to-date map of your
task. To obtain a current map of the image file produced, include the
/MAP qualifier. The following example shows the resulting command
line:

> LINK/MAP/DEBUG/TASK:MYTASK MYFILE1,MYFILE2

Object modules MYFILE1.OBJ and MYFILE2.0BJ are linked with object
module ODT . OBJ in UFD [1,1] on the library device. The resulting task
image is named MYTASK.TSK.

For further information on using DCL, consult the RSX-llM Command
Langua e Manual, the RSX-llM-PLUS Command Language Manual or the
Micro RSX User's Guide, as appropriate to your system.

1.2.3 Linking to Enable Instruction and
(RSX- llM-PLUS and Micro/RSX)

Data Space Features

To use the separate instruction and data space capabilities found on
some RSX-llM-PLUS and Micro/RSX systems, you must link your program
with the object module LB:[l,l]ODTID.OBJ instead of ODT.OBJ. Section
1.2.3.1 describes the MCR and DCL command lines that link this object
module for tasks that have been built using separate instruction and
data space. Section 1.2.3.2 describes the command line that links
this object module explicitly. You use this command line if, for
example, you want to use data space windows, but did not build the
task using separate instruction and data space. Section 1.2.3.3
describes how to enable debugging for supervisor-mode libraries.

1.2.3.1 Enabling Instruction and Data Space - Separate instruction
and data space is a feature of RSX-llM-PLUS and Micro/RSX systems
only. ODT has the following instruction and data space commands: D,
I, U, and Z. To enable these commands, you must link
LB:[l,l]ODTID.OBJ with your program instead of ODT . OBJ. (See Table
2-3 for a description of these commands.)

If your command line interpreter is MCR and your task was built using
separate instruction and data space, you enable these commands by
adding the /ID switch, as well as the /DA switch, to the TKB command
line. The following example shows the resulting command line:

TKB>MYTASK/DA/ID=MYTASK

You can add other switches to the command line as desired. Consult
the RSX-llM/M-PLUS and Micro/RSX Task Builder Manual for information
on TKB command lines.

If your command line interpreter is DeL and your task was built using
separate instruction and data space, you enable these commands by
using the qualifier /CODE:DATA SPACE, as well as the /DEBUG qualifier,
with the LINK command. The following example shows the resulting
command line:

> LINK/DEBUG/CODE:DATA __ SPACE MYTASK

You can add other qualifiers to the LINK command. See the RSX-llM
Command Language Manual, RSX-llM-PLUS Command Language Manual or the
MicrojRSX User's Guide f or more information.

1-3

INTRODUCTION TO ODT

1.2.3.2 Linking ODTID.OBJ Explicitly - If your task was not built
using separate instruction and data space, but you want to use data
space windows, you must link ODTID.OBJ explicitly, specifying the
debugger object module in the MCR or DeL command line. The following
example shows the resulting MCR ~ommand line:

TKB> MYTASK=MYTASK,LB:[l,l]ODTID/DA

This example shows the resulting DCL command line:

> LINK /DEBUG:LB:[l,l]ODTID MYTASK

1.2.3.3 Enabling Supervisor-Mode Library Debugging - On RSX- IIM-PLUS
and Micro/RSX systems with separate instruction and data space, you
can use ODT to debug supervisor-mode libraries. There are two ways to
enable the Z command, which sets the current mode of ODT to supervisor
mode. If your task was built using separate instruction and data
space, link it as described in Section 1.2.3.1. If your task was not
built using separate instruction and data space, link it specifying
ODTID.OBJ explicitly, as described in Section 1.2.3.2.

To set breakpoints or write into the supervisor-mode libraries, you
must install the library with READ/WRITE access or build the task as
privilege: O.

1.3 INVOKING ODT

Regardless of what operating system or command line interpreter you
use, enter the RUN command, specifying the name of the task image
file. ODT is invoked automatically when you run a task image into
which ODT has been linked, as described in the previous sections.

ODT responds with a message indicating that it has been invoked and
identifying the task image that it controls. On the next line, ODT
displays its prompt, an underscore (), indicating that it is ready to
accept commands.

The following example shows how ODT is invoked when HIYA.TSK is run:

(

(

>RUN HIYA (
ODT:TT1S

In response to the ODT prompt, you can enter any ODT command. ODT
commands are immediate-action commands; that is, ODT responds to the
commands as soon as they are typed, without waiting for a line
terminator. Therefore, commands cannot be corrected once they have
been typed. You can, however, erase an incorrectly typed command
argument by typing an illegal character or command (such as a
non- octal number like 8 or 9) or by pressing CTRL/U or the DELETE key.
In response, ODT discards your input line, displays a question mark
(1), and prompts for another command.

Error detection is described in greater detail in Appendix A.

1.4 RETURNING CONTROL TO THE HOST SYSTEM

To return control from ODT to the host operating system, type X in
response to the ODT prompt. This command causes execution of the
system Task Exit directive, which terminates task execution.

1- 4

(

(

(

INTRODUCTION TO ODT

1.5 INTERRUPTING A DEBUGGING SESSION

When you run a task linked with ODT, you can return to the
line interpreter prompt at any time by typing CTRL/C. Your
still active. To stop execution of the task, enter the ABORT
in response to the MCR or DCL prompt. You cannot resume the
debugging session; you can only run your program again.

command
task is
command
aborted

and Micro/RSX systems, you can interrupt task
execution without aborting your task and then continue debugging.
After typing CTRL/C use the commands described in the following
section.

On RSX-llM-PLUS

1.5.1 Resuming a Debugging Session (RSX-llM-PLUS and Micro/RSX)

RSX-llM-PLUS and Micro/RSX allow you to interrupt and then resume
execution from the point at which the program was interrupted. To use
this feature, do not enter the ABORT command. Instead, type the DEBUG
command in response to the command line interpreter prompt. This
command overrides the task's current status. Among other things, ODT
unsets any WAIT-FOR-EVENT, STOP, or SUSPEND state that had been set.
The DEBUG command also causes a T-bit (trace bit) exception, as
described in Appendix A. ODT generates a TE error message, showing
the current value of the program counter as the location where the
error occurred. This message is followed by the ODT prompt ().

The DEBUG command has the following format:

. DEBUG [taskname]

The task name argument is the specification of the task to be
interrupted, as used when the task was originally invoked. If you do
not specify a task name, the default is a task initiated through the
RUN command.

The following example shows how the DEBUG command is used:

>RUN HIYA
ODT:TT1S

G
~C

> DEBUG
TE:004020

The DEBUG command is especially useful if your program is caught in a
loop, or if you need to stop execution be f ore the next breakpoint.

1-5

(

(

(

CHAPTER 2

ODT CHARACTERS AND SYMBOLS

This chapter describes
explains the meanings
(Symbols and conventions
the Preface.)

all the ODT operators and commands, and
of ODT-specific symbols used in this manual.
common to the documentation set are listed in

2.1 VARIABLES USED IN COMMAND DESCRIPTIONS

Table 2-3 and the command descriptions in Chapters 3 through 7 use
lowercase alphabetic variables to represent numeric and alphabetic
arguments specified in commands. These symbols are explained in Table
2-1.

Variable

a

k

m

n

x

Table 2-1
Variables Used in ODT Command Descriptions

Meaning

An address expression representing the address of a
task image location. The various forms in which an
address expression can be specified are explained in
Section 2.2.

An octal value up to 6 digits long with a maximum
value of 177777(octal), or an expression representing
such a value. An expression may include arithmetic
operators or indicators, as described in Section
2.2.2. If more than 6 digits are specified, ODT
truncates to the low- order 16 bits. If the octal
value is preceded by a minus sign, ODT takes the
two's complement of the value.

An octal value six digits long, used to represent a
search mask.

An octal integer between 0 and 7.

An alphabetic character. A list of legal alphabetic
characters is given in Table 2-3 where the variable x
is used.

2- 1

ODT CHARACTERS AND SYMBOLS

2.2 ADDRESS EXPRESSION FORMATS

An address expression,
lowercase letter a,
(6 - digit octal) value .
location in your task.

represented throughout this manual by the
is an expression interpreted by ODT as a l6-bit

You use an address expression to refer to a

You can specify an address expression in either absolute or relative
(relocatable) form, as described in Section 2.2.1. You can include in
the address expression various operators and symbols, as described in
Section 2.2.2.

2 . 2.1 Absolute and Relative Addressing

Each location has an absolute address assigned to it when the task is
built. You can refer to the location using this 6-digit octal value.
However, when the task is built again, with modules added or changed,
this value may not refer to the same location. Therefore, it is often
more convenient to refer to locations using relative (relocatable)
addressing, which is less likely to be affected by subsequent task
builds.

When you use relative addressing, you refer to a location not by its
absolute value but by its position relative to a movable point.
Usually, this movable point is the base (starting) address of the
module to which the location belongs, because the distance between the
base address and the addresses of locations within the module is
easily determined from a task map or listing and is not likely to
change without your knowledge. The movable point can, however, be any
point that is convenient for debugging.

To use this form of addressing, you must first establish a simple
means of referring to movable points through the use of ODT's
relocation registers $OR through $7R. Each time you run a task built
with ODT, consult a task map to determine the absolute addresses of
convenient movable points. The map's memory allocation synopsis
contains the base addresses of all the modules in the task. Follow
the procedure described in Section 5.2.1.1 to set ODT's eight
relocation registers to absolute addresses.

Once a relocation register is set, you can use the number of that
register, 0 through 7, in forming relative addresses.

A relative address has the following form:

n

k

n,k

The number of a relocation register, 0 through 7, representing
$OR through $7R.

(comma)

A required separator between the two parts of the relative
address.

The relative location, that is, the distance of the desired
location from the value contained in register $nR. Usually,
this is the location's position within the module whose base
address is the value of the register.

2-2

(

(

(

(

(

(

(

ODT CHARACTERS AND SYMBOLS

Thus, relative address 0,100 refers to location 100 within the module
whose base address is stored in ODT's relocation register $OR.
Relative address 5,300 refers to location 300 within the module whose
base address is stored in relocation register $5R.

Bias value refers to the value stored in a relocation register. It is
a quantity equal to the distance (bias) between a relative location
and its absolute address. Offset refers to the second part of a
relative address. It is the distance of a relative location from the
closest value (less than that location) stored in a relocation
register. These terms are used throughout this manual.

2.2.2 Forming Expressions

An expression is a string of numbers, symbols, and operators that ODT
interprets as a number. For example, 3+6 is an expression; ODT would
interpret it as the octal value 11 .

You can use an expression to represent an absolute address, a register
containing a bias value, or an offset , as described in Section 2.2.1.

An expression used in an ODT session can contain any of the following
elements:

• Octal numbers. ODT will not accept input containing an 8 or
9. It treats these as illegal characters and displays a
question mark and a new prompt.

• The arithmetic operators a plus sign (+) or a space ,
indicating that values sho uld be added , or a minus sign (-),
indicating that the value that follows it should be subtracted
from the value that precedes it.

• The unary operator minus sign (-) , indicating that the value
that follows it is negative and should be interpreted in two's
complement form.

• ODT register indicators Q or C, representing $Q and $C
registers , as described in Sections 7.3.4 and 7.3.3,
respectively. When Q or C is used
containing a bias value, it must
through 7. When Q or C is used to
contain any 16-bit value.

• The name of one of ODT's registers ,
described in Chapters 5 and 6.

to represent a register
have a value in the range 0
represent an offset, it may

used in the operations

• The current location indicator (.) , described in Section
7.3.2.

In evaluating expressions, ODT proceeds from left to right. It does
not assign precedence to any operator or recognize parentheses to
establish precedence. Therefore, you must be careful to form
expressions so that they will be interpreted correctly. You can use
the equal sign operator (=) , described in Section 7.3.1 , to determine
the value of expressions before using them in ODT operations.

Table 2-2 shows how ODT interprets the various forms of address
expressions. Th is table assumes a value of 003400 for relocation
register 3 ($3R) and a value of 3 for the constant register ($C) .

2-3

ODT CHARACTERS AND SYMBOLS

Table 2- 2
Forms of Address Expressions

Address Expression
Input

5

- 17

3 , 150

C

C, lO

C,C+C

3,C

$3

ODT Octal
Interpretation

000005

177761

003550

000003

003410

003406

003403

Task general
register 3

2.3 OPERATOR AND COMMAND SUMMARY

ODT commands are a combination of symbols and letters. Some commands
have multiple forms.

Table 2- 3 summarizes the ODT commands and operators, which are
explained in detail in Chapters 3 through 7. The lowercase letters
used in the command descrlptions are explained in Table 2- 1 .

Format

+ or space

(comma)

*

Table 2- 3
ODT Operators and Commands

Meaning

Arithmetic operator used in expressions.
Add the preceding argument to the following
argument to form the cur rent argument.

Arithmetic operator used in expressions.
Subtract the following argument from the
preceding argument to form the current
argument . Also used as a unary operator to
indicate a negative value.

Argument separator . Separates the number
of a relocation register from a relative
location to specify a relocatable address.

Radix- 50 separator used in constructing
Radix - 50 words (see Section 7.3.5) .

(Continued on next page)

2- 4

(

(

(

(

Format

00) or
kOO)

(
@ or

k@

or k

@ or k@

(

ODT CHARACTERS AND SYMBOLS

Table 2-3 (Cont.)
ODT Operators and Commands

Meaning

Current location indicator. Causes the
address of the last explicitly opened
location to be used as the current address
for ODT operations.

Argument separator. Separates multiple
arguments , allowing an address expression
or ODT register value to be identified.

Command that closes the currently open
location and prompts for the next command .
If (BIT) is preceded by k , the value k
replaces the contents of the currently open
location before it is closed.

Command that closes the currently open
location , opens the next sequential
location (a word or a byte , depending on
the mode in effect) and displays its
contents. If @ is preceded by k, the
value k replaces the contents of the
currently open location before it is
closed.

Command that closes the currently open
location , opens the immediately preceding
location and displays its contents. If A

is preceded by k, the value k replaces the
contents of the currently open location
before it is closed.

Command that interprets the contents of the
currently open location as a PC-relative
offset and calculates the address of the
next location to be opened; then closes the
currently open location , and opens and
displays the contents of the new location
thus evaluated. If is preceded by k , the
value k replaces -the contents of the
currently open location before it is
closed.

Command that interprets the contents of the
currently open word location as an absolute
address , closes the currently open
location, and opens and displays the
contents of the absolute location thus
evaluated. If @ is preceded by k, the
value k replaces the contents of the
currently open location before it is
closed.

(Continued on next page)

2-5

Format

> or k>

< or k<

$n

$x or $xn

ODT CHARACTERS AND SYMBOLS

Table 2- 3 (Cont.)
ODT Operators and Commands

Meaning

Command that interprets the low- order byte
of the currently open word location as a
relative branch offset, and calculates the
address of the next location to be opened ,
then closes the currently open location,
and opens and displays the contents of the
relative branch location thus evaluated.
If > is preceded by k, the value k replaces
the contents of the currently open location
before it is closed.

Command that closes the currently open
location (opened by a , @, or > command) ,
and reopens the word location most recently
opened by I, @ or A If the a
currently open location was not opened by a

@, or > , then - < simply closes and
reopens the current location. If < is
preceded by k, the value k replaces the
contents of the currently open location
before it is closed.

Expression that represents the address of
one of eight general registers, where n is
an octal digit identifying RO through R7.

Expression that represents the address of
one of ODT's internal registers, where x is
one of the following alphabetic characters,
and n is one octal digit. Registers exist
within ODT in the following order:

S Processor Status register (hardware
PS)

W Directive Status Word (DSW) register
for the user's task

A Search argument register

M Search mask register

L Low memory limit r egister

H High memory limit register

C Constant register

Q Quantity register

F Format register

X Reentry vector register

(Continued on next page)

2- 6

(

(

(

(

(

(

DDT CHARACTERS AND SYMBOLS

Table 2- 3 (Cont.)
DDT Operators and Commands

Format Meaning

.. or all

, or a'

% or a%

/ or a /

nB Breakpoint address registers

nG Breakpoint proceed count registers

nI Breakpoint instruction registers

nR Relocation registers

nV SST vector registers

nE SST (synchronous system trap) stack
contents registers

nO Device control LUN (logical unit
number) registers

Word mode ASCII operator. Interprets and
displays the contents of the currently open
(or the last previously opened) location as
two ASCII characters, and stores this word
in the quantity register ($Q) . If is
preceded by a , the value a is taken as the
address of the location to be interpreted
and displayed.

Byte mode ASCII operator. Interprets and
displays the contents of the currently open
(or the last previously opened) location as
one ASCII character, and stores this byte
in the quantity register ($Q) . If is
preceded by a , the value a is taken as the
address of the location to be interpreted
and displayed.

Word mode Radix- 50 operator. Interprets
a nd displays the contents of the currently
open (or the last opened) location as three
Radix-50 characters , and stores this word
in the quantity register ($Q) . If % is
preceded by a, the value a is taken as the
address of the location to be interpreted
and displayed.

Word mode octal operator. Displays the
contents of the last word location opened ,
and stores this octal word in the quantity
register ($Q) . If / is preceded by a, the
value a is taken as the address of a word
location to be opened and displayed.

(Continued on next page)

2- 7

Format

\ or a\

k=

8, 9,
DELETE,
or CTRL/U

B

nB

ainB

C

o

E or kE
or miE
or mikE

ODT CHARACTERS AND SYMBOLS

Table 2-3 (Cont.)
ODT Operators and Commands

Meaning

Byte mode octal operator. Displays the
contents of the last byte location opened,
and stores this octal byte in the quantity
register ($Q). If \ is preceded by a, ODT
takes the value a as the address of a byte
location to be opened and displayed.

Command that interprets and displays
expression value k as six octal digits and
stores this word in the quantity register
($Q) .

Illegal expressions that cancel the current
command. ODT then awaits a new command.
The decimal values 8 and 9 are not legal
characters and, thus, when entered, cause
ODT to ignore the current command. The
DELETE and CTRL/U functions are not
operational in RSX-IIM unless the terminal
driver supports transparent read/write (a
system generation option).

Command that removes all breakpoints from
the user task.

Command that removes the nth breakpoint
from the user task.

Command that sets breakpoint n
task at address a. If n is
assumes the lowest-numbered
breakpoint available.

in the user
omitted, ODT

sequential

Constant register
the contents of
register) .

indicator.
register $C

Represents
(constant

Command that accesses data space. After
this command is issued, ODT interprets all
references to locations as referring to the
D- space of the task (RSX-IIM-PLUS and
Micro/RSX only).

Command that searches memory between the
address limits specified by the low memory
limit register ($L) and the high memory
limit register ($H). ODT examines these
locations for references to the effective
address specified in the search argument
register ($A), as masked by the value
specified in the search mask register ($M) .
(The mask should normally be set to 177777
for the E command.) Such references may be
equal to, PC- relative to, or a branch

(Continued on next page)

2-8

(

(

(

(

(
Format

F or kF

G or aG

(

I

K

nK

ODT CHARACTERS AND SYMBOLS

Table 2- 3 (Cont.)
ODT Operators and Commands

Mean i ng

displacement to the location specified in
$A. If E is preceded by k, the value k
replaces the current contents of $A before
ODT initiates the search. If E is preceded
by m, the current contents of $M are
replaced with the value m before ODT
initiates the search .

Command that fills memory locations within
the address limits specified by the low
memory limit register ($L) and the high
memory limit register ($H) with the
contents of t h e search argument register
($A) . If F is preceded by k, the value k
replaces the current contents of $A before
ODT initiates the fill operation.

Command that begins task execution,
following these steps: sets BPT
instructions in or restores BPT
instructions to all breakpoint locations in
the task imagei restores the Processor
Status Word and user program registersi and
starts execution at the address specified
by the program counter (user register $7) .
If G is preceded by a, the value a r eplaces
the current contents of $7 before
proceeding as described above.

Command that accesses instruction space.
After this command is issued, ODT
interprets all references to locations as
referring to the I-space of the task.
(RSX- IIM- PLUS and Micro/ RSX only)

Command that , using the relocation register
whose contents are equal to or closest to
(but less than) the address of the
currently open location, computes the
physical distance (in bytes) between the
address of the currently open location and
the value contained in that relocation
register. ODT displays this offset and
stores the value in the quantity register
($0) .

Command that computes the physical distance
(in bytes) between the address of the
currently open or the last- opened location
and the value contained in relocation
register n. ODT displays this offset and
stores the v alue in the quantity r egister
($0) .

(Continued on next page)

2 - 9

Format

a;nK

L or kL
or a;L
or a;kL
or n;a;kL

N or kN
or m;N
or m;kN

aO or a;kO

P or kP

ODT CHARACTERS AND SYMBOLS

Table 2- 3 (Cont .)
ODT Operators and Commands

Meaning

Command that computes the physical distance
(in bytes) between address a and the value
contained in relocation register n. ODT
displays this offset and stores the value
in the quantity register ($Q).

Command that lists all word or byte
locations in the task between the address
limits specified by the low memory limit
register ($L) and the high memory limit
register. If L is preceded by k, the value
k replaces the current contents of $H
before initiating the list operation. If L
is preceded by a, the value a replaces the
current contents of $L before initiating
the list operation. If the value n is
either zero or not specified, the display
goes to your terminal (TI:). If a nonzero
value is specified for n, the display goes
to the console (CO:) .

Command that searches memory between the
address limits specified by the low memory
limit register ($L) and the high memory
limit register ($H) for words with bit
patterns that do not match those of the
search argument specified in the search
argument register ($A). Only bit positions
set to 1 in the mask are compared. This
search is identical in form and function to
the word (W) search described below, except
that ODT performs a test for inequality.

Command that calculates and displays the
PC-relative offset and the 8-bit branch
displacement from the currently open
location to address a. If the value k
precedes 0, this command calculates and
displays the PC-relative offset and the
8-bit branch displacement from the
specified address a to the specified
address k.

Command that causes the user program to
execute from the current breakpoint
location and stops when the next breakpoint
location is encountered or the end of the
program is reached. If the value k is
specified, ODT proceeds with program
execution from the current location and
stops at the breakpoint only after
encountering it the number of times
specified by integer k.

(Continued on next page)

2- 10

(

(

(

(

(

(

(

(

Format

Q

R

nR

ainR

S or nS

U

v

W or kW
or miW
or mikW

ODT CHARACTERS AND SYMBOLS

Table 2- 3 (Cont .)
ODT Operators and Commands

Quantity register
the contents of
register) .

Meaning

indicator.
register $Q

Represents
(quantity

Command that sets all relocation registers
to the highest address value,
177777(octal), so that they cannot b e used
in forming addresses.

Command that sets relocation register n to
the highest address value, 177777(octal),
so that it cannot be used in forming
addresses.

Command that sets relocation register n to
address value a. If n is omitted, ODT
assumes relocation register O.

Command that executes one instruction and
displays the address of the next
instruction to be executed. If n is
specified, ODT executes n instructions and
displays the address of the next
instruction to be executed.

Command that sets the current mode of ODT
to user mode (RSX- IIM- PLUS and Micro/RSX
only).

Command that enables ODT's handling of all
SST vectors, and writes the addresses of
ODT's trap entry points into the table used
by the SVDB$ Executive directive. (See
Table 5- 2 for a discussion of the SST
vector registers and the $nV/ command.)

Command that searches memory between the
address limits specified by the low memory
limit register ($L) and the high memory
limit register ($H) for words with bit
patterns that match those of the search
argument specified in the search argument
register ($A). ODT compares each memory
word and the search argument for equality
under the mask specified in the search mask
register ($M). Only bit positions set to 1
are compared. When a match occurs, ODT
displays the address of the matching
location and its contents. If W is
preceded by k, the value k replaces the
current contents of $A before initiating
the search. If W is preceded by m
(identified by the semicolon that follows
it), the value m replaces the current
contents of $M before ODT initiates the
search.

(Continued on next page)

2-11

Format

x

z

ODT CHARACTERS AND SYMBOLS

Table 2-3 (Cont.)
ODT Operators and Commands

Meaning

Command that causes ODT to exit and returns
control to the Executive of the host
operating system.

Command that sets the current mode of ODT
to supervisor mode. (RSX-llM-PLUS and
Micro/RSX only)

2-12

(

(

(

(

(

(

(

CHAPTER 3

CONTROLLING PROGRAM EXECUTION WITH ODT

When you run a task image into which ODT has been linked, ODT takes
control before the first instruction of the task is executed.
Information about the task is stored in ODT's internal registers, as
described in Section 5.1.2.

At this point, you can execute your task immediately or issue ODT
commands that affect locations or registers.

3.1 SETTING AND REMOVING BREAKPOINTS

A common method of using ODT is to set breakpoints at important points
in the task and then execute the task. When a breakpoint is reached,
execution is suspended. You can examine locations or registers to see
how your task is executing. You can then change elements of your task
and see how the changes affect execution.

3.1.1 Setting Breakpoints

To set a breakpoint at a location, issue a B (Breakpoint) command in
the following format:

a

n

a~nB

An address expression (in any of the forms described in Section
2.2) representing the location at which the breakpoint is to be
set. This location must always be the first word of an
instruction.

The number of the breakpoint address register (from 0 to 7) to be
used to store the address of the specified location. If you omit
n, breakpoint address registers are assigned sequentially,
beginning with register O.

You can also set a breakpoint by opening a breakpoint address register
as a word location and changing its contents. The address of a
breakpoint address register is its register name, $nB . Opening and
changing the contents of word locations is described in Chapter 4.
Registers are described in Chapter 5.

3- 1

CONTROLLING PROGRAM EXECUTION WITH ODT

In RSX-IIM-PLUS and Micro/RSX systems where separate instruction and
data space are used, breakpoints always refer to instruction space,
regardless of which space you are referring to when you set the
breakpoints. When a debugging session begins, you are automatically
accessing instruction space. You access data space by entering the D
command; you return to instruction space by enterjng the I command.

In RSX-11M-PLUS and Micro/RSX systems, each breakpoint address
register is associated with a mode indicator that shows whether the
breakpoint occurs in user or supervisor mode; this mode indicator
depends on the mode in effect at the time the breakpoint is set. You
set supervisor mode by entering the Z command; you return to user mode
by entering the U command.

3.1.2 Removing Breakpoints

You can clear breakpoint address registers (and thus remove
breakpoints) using the nB command, where n represents the number of
the register. If you omit n, all breakpoint address registers are
cleared. You can also clear a breakpoint and reset it by specifying a
new address expression for a breakpoint address register, using the
a;nB command.

The following example shows how breakpoints are set, cleared, and
reset:

B
1020;B

- 2030;B
3040;B
4050;B
2032;lB
3B

At the end of this example,
location 1020, breakpoint
breakpoint address register
register 3 is clear.

breakpoint address register 0 is set to
address register 1 is set to 2032, and

2 is set to 3040. Breakpoint address

Note that ODT immediately generates a carriage return and line feed,
and a new prompt when you type the letter B.

You can also clear a breakpoint register by opening it as a word
location whose address is $nB and changing its contents, as described
in Chapter 4.

3.2 BEGINNING PROGRAM EXECUTION

To begin executing your task, type the G (Go) command.
command, the following takes place:

At the G

• The task's starting address is returned to the program counter
from the ODT general register in which it was stored .

• The task's stack and other general registers are restored.

3-2

(

(

(

(

(

(

CONTROLLING PROGRAM EXECUTION WITH ODT

• The contents of each location at which a breakpoint was set
are swapped with the contents of the corresponding breakpoint
instruction register. (These registers, described in Section
5.2, are initialized by ODT to BPT instructions.)

• The task begins executing.

The task continues to execute until it reaches one of the following:

• A breakpoint

• An error of type BE, EM , FP, IO, or TR (described in Appendix
A)

• The end of the program

Once the task is executing , you cannot stop
then restarting it. (RSX- llM- PLUS and
commands to reenter an interrupted program,
1.5.1.)

it except by aborting and
Micro/ RSX systems include
as described in Sections

When the task reaches a breakpoint , ODT executes the BPT instruction
that was swapped into the breakpoint location. At the BPT instruction
the following takes place:

• Task execution is suspended.

• The contents of the user task general registers are stored in
ODT internal registers.

• The original contents are restored to all breakpoint locations
from the breakpoint instruction registers where they have been
stored.

• ODT issues a message indicating that a breakpoint has been
reached. This message has the format nB:a, where n is the
breakpoint address register number and a is the location of
the breakpoint that was stored in that register.

• ODT issues its prompt.

While task execution is suspended , you may issue any ODT command.

3.3 CONTINUING TASK EXECUTION

You can continue task execution by typing either
command, the G command, or the aG command .
executing until it reaches a breakpoint, one of the
in Section 3 . 2, or the end of the program.

the P (Proceed)
The task continues
errors specified

Use the P command to continue execution after a breakpoint. When you
type P, the contents of the user general registers are restored, the
BPT instructions are swapped into all breakpoint locations , and task
execution resumes at the instruction following the last logical
instruction executed. If execution stopped because of a breakpoint,
it will resume at the breakpoint location. If execution stopped
because of an error, it will resume at the location following the
error location, not at the error location itself.

3- 3

CONTROLLING PROGRAM EXECUTION WITH ODT

You can resume execution using the G command. However , because the G
command does not transparently restore the breakpoint instruction, you
should not use it to resume execution after a breakpoint.

To resume execution at a specific location, use the aG command. The
argument a is an address expression representing the task location.
The address specified must correspond to a word location boundary,
that is, an even location. Registers are affected as described in
Section 3.2. Execution begins at the specified location.

Note that you can use only G or aG to begin execution of a task. If
you type P when no G command has been executed, ODT responds with a
question mark and a new prompt.

3 . 4 USING THE BREAKPOINT PROCEED COUNT

If you set a breakpoint inside an execution loop , you may want to
suspend execution only when the loop has been executed a certain
number of times. You can specify how many times a loop should be
executed by including a breakpoint proceed count with the P command,
in the form kP. The loop is executed k-l times; execution is
suspended when the breakpoint is reached for the kth time.

The kP command is associated only with the breakpoint that has most
recently occurred. The count k is stored as an octal value in a
breakpoint proceed count register ($nG), where n is a number
corresponding to the number of the appropriate breakpoint address
register.

You can examine the breakpoint proceed count registers , or set them
directly, at any time following the procedures for examining and
setting word locations described in Chapter 4. These registers are
all initialized by ODT with the value 1. If you change the value of a
register, the new breakpoint proceed count will be used when the
breakpoint is next encountered as a result of the P command.

3.5 STEPPING THROUGH THE PROGRAM

Another method of executing a task in stages is to use the S (Step)
command. With this command, you can execute user task instructions
one at a time or several at a time.

The command has the format nS, where n is the number of
that ODT should execute before suspending execution.
value of n is 1.

instructions
The default

When n instructions have been executed, ODT suspends task execution
and prints a message of the form 8B:a, where a is the location of the
next instruction to be executed. (The format of a is relative by
default, as explained in Chapter 4.) ODT then prompts for another
command.

The S command is implemented through the T- bit in the Processor Status
Word (PSW) (see Appendix B) . The T-bit is set when you issue the
command. When the nth instruction is executed, control is returned to
the task.

3- 4

(

(

(

(

(

(

CONTROLLING PROGRAM EXECUTION WITH ODT

The following example shows ODT's response to the program execution
commands described in this chapter:

l,1052;B
~) ,2052;lB

G
OB:l,001052

P
1B:l ,00 2052

S
8B:l,002056

S
8B:l,002062

3-5

(

(

(

CHAPTER 4

DISPLAYING AND ALTERING THE CONTENTS OF LOCATIONS WITH ODT

During an ODT session , you can alter the contents -- either
instructions or data - - of locations in your task. To alter the
contents of a location , you must first open the location.

You open a location by displaying its contents, using any
commands described in Sections 4.3 through 4.9. The
displayed are automatically placed into the quantity register

of the
contents
($Q) .

ODT displays a location by showing the address , a mode operator
(either word mode or byte mode , depending on the size of t h e location
opened), and the contents of the location. The format in which the
location is displayed is controlled by the contents of the format
register ($F) , as described in Table 5-1. By default, ODT displays
addresses in relative form whenever it has both the number of the
relocation register containing the bias value closest to (but less
than) the address and the relative location of the address from that
value. When this information is not available , ODT prints the address
in absolute form. (Relative and absolute forms are described in
Section 2.2.1.)

ODT does not generate a carriage return or line feed after displaying
the contents of a location. Until the location is closed , the cursor
remains on the same line , wrapping as necessary.

4.1 ALTERING THE CONTENTS OF A LOCATION

You alter the contents of a location by typing the new contents
immediately after the displayed contents . The new contents can be an
absolute octal value (of up to six digits) or an expression equivalent
to a 6-digit octal value , as described in Section 2.2.2. If you enter
an octal value , you may omit leading zeros.

In the following examples, the value 1234 is substituted for the value
123456 in the location represented by the address expression 2,0. The
value 177426 (the two's complement of the expression 16-370) replaces
the value 000000 in the location represented by the address expression
4,10.

_ 2,0/123456 1234

_ 4,10/000000 16-370

After you have altered the contents of a location , you can verify the
new contents by displaying them in a variety of modes, using the
commands described in Section 4.10. These commands do not close the
location. You can also display, and thus verify , the new contents by
closing the location and then reopening it.

Note that you must close the currently open location before you can
alter the contents of a new location.

4-1

DISPLAYING AND ALTERING THE CONTENTS OF LOCATIONS WITH ODT

4.2 CLOSING A LOCATION

To close one location without automatically opening another location,
enter the RETURN command. This command has no effect on ODT when no
location is open.

Entering RETURN generates a carriage returnlline feed combination.
ODT then prompts for another command, as follows:

_ 1,200/4 50123 @ill

To close one location and automatically open another location, you can
use any of the following commands, which are described in Sections 4.4
through 4.9:

@ < >

4.3 OPENING WORD AND BYTE LOCATIONS

ODT interprets the slash character (I) as a word mode octal operator
and the backslash character (\) as a byte mode octal operator. Using
these operators in ODT commands provides the most direct way to open
word and byte locations.

You can also open word and byte locations and display their contents
in ASCII, or open and display words in Radix-50. These modes are
described in Section 4.10.

4.3.1 Opening Word and Byte Locations Specifying an Address

To open a word location beginning at an address, in response to the
ODT prompt, type an address expression corresponding to that address,
followed by a slash (a/). The address must be even numbered. ODT
opens the word location beginning at the specified address and
displays the contents of that location as a 6-digit octal number.

To open a byte location, type an address expression corresponding to
an odd- or even-numbered address, fo llowed by a backslash (a\) . ODT
opens the byte location beginning at the specified address and
displays the contents of that location as a 3-digit octal number.

The following examples show the effects of the al and a\ commands:

10001012675 @ill

=1001\025 @ill

4.3.2 Reopening the Location Last Opened

You can use the word mode and byte mode octal operators without
address arguments to reopen the location last opened. The slash (I)
command opens the word location last opened and displays the word at
that location. The backslash (\) command opens the byte last opened
and displays the contents of that byte. (If the last location opened
was a word, the byte opened and displayed is the low-ordered byte of
that word.)

When no location is open, you can also use the circumflex (~) command
to open the last- opened location, as described in Section 4.5.

4 - 2

(

(

(

(

(

(

(

(

DISPLAYING AND ALTERING THE CONTENTS OF LOCATIONS WITH ODT

4.3.3 Moving Between Word and Byte Modes

The word mode and byte mode octal operators establish word mode and
byte mode, respectively.

Once you have opened a location using the word mode octal operator
(/) , all locations subsequently opened will be octal words until the
mode is changed. Once you have opened a byte location using the byte
mode octal operator (\) , all locations subsequently opened will be
octal bytes until the mode is changed.

You can change from word to byte mode by opening a location with the
a\ command or by specifying an odd- numbered address as the value a in
the a / command. Subsequent locations will be displayed as bytes until
a word location is explicitly opened using an even-numbered address as
the value a in the a / command (or the a" or a% commands, described in
Section 4.10).

The following example shows a change from word mode to byte
back again using an odd-numbered address in the a / command.
FEED command, which opens the next sequential location in
mode is currently in use , is described in Section 4.4.)

1001/123 321 ~
= / 321 @

001002 \021 @

001003 \010 @

001004 \201 ~
1006/102054

mode and
(The LINE
whatever

If a word location is open, you can examine its low-order byte by
typing the byte mode octal operator (\) immediately after the
displayed contents of the location. The location remains open and you
remain in word mode. The following example shows this use of the byte
mode octal operator:

1006/102054 \ 054 @

001010/012345

You can also e xamine words or bytes of an open location in ASCII or
Radix-50 modes , as described in Section 4.10.

4.4 OPENING THE NEXT SEQUENTIAL LOCATION

To open and examine successive locations, use the LINE FEED command.
(On VT200-series terminals, a line feed is generated by pressing
CTRL/J.) The LINE FEED command closes the currently open location and
opens the next sequential location. If the cur r ently open location is
a word , the next sequential location will be opened as a word . If the
currently open location is a byte, the next sequential location will
be opened as a byte.

If you specify a value before entering the LINE FEED command, that
value replaces the contents of the open location, as described in
Section 4.1.

4-3

DISPLAYING AND ALTERING THE CONTENTS OF LOCATIONS WITH ODT

4 . 5 OPENING THE PRECEDING LOCATION

To back up in your task and open the location preceding the currently
open location, use the circ umflex (A) command. This command closes
the current l y open location. If the currently open location is a word
location, the A command opens the word location immediately preceding
it. If the currently open location is a byte, the A command opens the
preceding byte.

If no location is currently open , the A command opens and displays the
contents of the last-opened location. The contents may be a word or a
byte , depending on the mode currently in effect.

If you specify a value before entering the command , that value
replaces the contents of the open location, as described in Section
4.1.

The following example shows the use of the LINE FEED and commands.
Location 232 , relative to the bias contained in relocation register 0,
is opened as a word and its contents are altered. In response to the
LINE FEED and A commands , ODT proceeds to the next word location and
then backs up to location 232 to display the new contents .

0,232/005036 005046 [B

0,000234 / 012746 A

0,000232 / 005046

4.6 OPENING ABSOLUTE LOCATIONS

To proceed from an open location to the location whose address is
contained in that open location, use the at sign (@) command. This
command closes the currently open location and uses the contents of
that location as the absolute address of the next location to be
opened. You can specify new contents for the original location by
entering a value before the @ command, as described in Section 4.1.

You can use the @ command only if the currently open location is a
word.

Opening an absolute location does not necessarily mean that the
location is displayed as an absolute address. As shown in the
following example , where relocation register 2 is set to contain the
bias value 370 (as described in Section 5.2.1), ODT by default still
displays the location as a relative address:

370;2R
- 2,600/012345 12746@
2 , 012356 / 02 7117

Location 12356, relative to bias value 370, is equivalent to the
absolute address specified, 12746.

4 . 7 OPENING PC- RELATIVE LOCATIONS

To open a location relative to the program counter, use the underscore
() command. This command adds the contents of the currently open
loc ation to the value of the program counter, which is the address of
the currently opened location plus 2. ODT then closes the currently

4 - 4

(

(

(

(

(

(

(

(

DISPLAYING AND ALTERING THE CONTENTS OF LOCATIONS WITH ODT

open location and opens the
its calculation. If you
value replaces the contents
used in the calculation.

location whose address is the result of
enter a value before the command, this

of the open location and becomes the value

You can use the
word.

command only if the currently open location is a

If the currently open location contains
contains an even number but is already a
calcu lated address does not fallon a word
opens a byte at the location calculated.

an odd number (or if it
byte location), so that the

boundary , the command

The following examples show how the

1000/000040
001042 / 052407

0,232/012345
0,012601 / 041

0,232/012345 123456
0,123712 / 020301

command is used:

4. 8 OPENING RELATIVE BRANCH OFFSET LOCATIONS

Use the right-angle bracket (» command to open a location at a branch
offset relative to the currently open location. The offset is
ca l cu l ated as follows:

1. The low-order byte of the contents of the
location is interpreted as a signed value.
results in a negative branch offset.

2. This value is mUltiplied by 2.

currently open
A negative value

3. The resulting offset is added to the PC value, which is the
address of the currently open location plus 2.

The > command closes the currently open location and opens the
location whose address is the va l ue calculated. Its effects are shown
in the following examples:

1,66/005046 >
1,000204 / 000601

1032/000407 301>
000636 / 000010

If you specify a value before entering the> command, the low-order
byte of that word is used in the offset calculation. The value
replaces the contents of the open location , as described in Section
4.1.

4.9 RETURNING FROM A CALCULATED LOCATION

If you have used any of the three address calculation commands
described in the last three sections (@, , or » and wish to return
to the location from which you began to calculate addresses , use the
left-angle bracket «) co~nand. This command closes the currently
open location and reopens the previous word.

4-5

DISPLAYING AND ALTERING THE CONTENTS OF LOCATIONS WITH ODT

The following example shows the use of the < command:

1036/021346 A

001034/172543 101036
102074 /000002 <
001034 /101036

If the currently open location was not opened by a @, , or > command,
the < command simply closes and reopens the current location.

4.10 USING DIFFERENT OUTPUT MODES

The examples in the previous sections have shown ODT output in word
mode octal and byte mode octal. However, you can also use ODT to
display the contents of locations in word or byte mode ASCII and word
mode Radix-50.

These modes follow the same rules as word mode octal and byte mode
octal:

• You can use the LINE FEED command to open succeeding locations
in the same mode in which the currently open location was
opened.

• You can enter any mode operator to display the contents of the
currently open location in another mode without changing the
mode in effect or closing the location.

The interaction of mode operators was shown in Section 4.3.3, where a
location opened in word mode octal was examined in byte mode. The
LINE FEED command that followed opened the next sequential location in
word mode octal.

4.10.1 ASCII Mode

ODT interprets the quotation mark character (") as a word mode
operator and the apostrophe (') as a byte mode ASCII operator.
open a location in word mode ASCII with the a" command and in
mode ASCII with the a' command.

ASCII
You

byte

If you open a location in any mode and then type a word mode ASCII
operator, the contents of the open location are displayed as two ASCII
characters, but the location is not closed.

If you open a location in any mode and then type a byte mode ASCII
operator, the contents of the low-order byte of the open location are
displayed as one ASCII character. The location is not closed.

The following examples show these uses of the ASCII operators:

0,440"AB

2,100' H

0,232/034567 ' w "w9

0,000234/000123 @]
' s

4-6

(

(

(

(

(

(

(

(

DISPLAYING AND ALTERING THE CONTENTS OF LOCATIONS WITH ODT

If you enter the word mode ASCII operator to examine the contents of a
location , and the location is aligned on a byte boundary (an
odd-numbered address) , ODT does not return an ASCII character.
Instead, it displays the contents of the location in the mode
currently in effect, as follows:

0,000235 \ 025 "025

4.10.2 Radix-50 Mode

ODT interprets the percent sign (%) as a word mode Radix-50 operator.
(There is no byte mode Radix- 50 operator, because Radix-50 is a method
of fitting three characters into a word and cannot be used in smaller
units.)

You can use the Radix-50 operator to open locations. The a% command
opens the location specified in the address expression a and displays
its contents as three Radix-50 characters. The % command reopens the
last-opened word and displays its contents as three Radix-50
characters.

If a word location is open, you can enter the % operator to examine
the Radix-50 contents of that location without closing the location.

The following examples show these uses of the word mode Radix-50
operator:

4,232%IGl

4,232/034567
%IGl

4,000232/034567 %IGl

Like the word mode ASCII operator, the Radix-50 operator cannot be
used to interpret values that begin on byte boundaries. If you enter
the Radix-50 operator when the currently open location has an odd
address, ODT simply displays the byte value in the current mode.

Remember that you must enter new contents for a location as an octal
value or an expression , not as Radix-50 characters. To determine the
octal equivalent of Radix-50 characters, use the Radix-50 evaluator
(*), described in Section 7.3.5.

4-7

(

(

CHAPTER 5

USING REGISTERS IN ODT

ODT has a number of 16-bit registers. Some of these registers are
used for temporary storage of values. Some contain values used
repeatedly throughout the execution of your task under ODT. All the
registers are word locations that you can examine and alter.

Each ODT register has a unique name beginning with a dollar sign ($) .
The $ and the character or characters ~hat follow it make up an
address expression that identifies the register.

This chapter explains how ODT uses its registers. Tables 5-1 and 5-2
summarize the registers and are useful for quick reference.

5.1 GENERAL REGISTERS

ODT has eight general registers, numbered $0 though $7, which store
the contents of the user program ' s general registers when ODT has
control. These registers are automatically set when ODT is first
invoked and when a breakpoint occurs. They can also be set by the
user.

5.1.1 Examining and Setting General Registers

To examine a general register, enter the register name as the address
expression in the a / , a", or a% command . For example , you can enter
any of the following:

$7/
$3%
$1"

ODT opens a register like any other word location. You can then alter
the conte nts of the register or use any of the following commands , as
desc r ibed in Chapter 4:

(ill / A @ II % > ' \

ODT treats the general registers as sequential word locations.

5-1

USING REGISTERS IN ODT

5.1.2 Contents of General Registers

When you issue the RUN command and ODT initially gains control,
information about the user task is stored in the general registers as
follows:

Register

$0

$1

$2

$3 - $4

Contents

Task's entry-point address

First three characters of task's run-time name
(Radix- 50)

Last three characters of task's run-time name
(Radix-50)

Version number of user task if the program
included the .IDENT directive; otherwise, the
version number of ODT

When a breakpoint occurs, ODT's general registers store the contents
of the task's general registers.

5.2 ODT INTERNAL REGISTERS

The ODT internal registers store values for use during a debugging
session. For example, they store the locations of breakpoints and the
memory limits to be used in search operations. Each register is a
16- bit location that you can open by specifying the register name as
the address expression with any ODT command that opens a word
location. You can enter any of the following:

$3R/
$A"
$C%

It is rarely useful to examine an internal register in ASCII or
Radi x-50 mode.

You can alter the contents of these registers as you would the
contents of any word. However, this is not recommended in some cases,
as noted in Tables 5-1 and 5-2.

Ten of the ODT internal registers are single registers; that is, there
is only one register for each function. You refer to one of these
registers as $x, where x is an alphabetic character. Table 5-1 lists
these registers in alphabetical order. In the task, they appear in
the order listed in Table 2- 3, that is:

$S $W $A $M $L $H $C $Q $F $X

You can access these registers as sequential word locations in this
order, as in the following example:

$S/OOOOOO @

$W /000001 @

$A /000000 @

(

(

(

$M /177777 (

5-2

Register

$A

$C

$F

(

$H

$L
(

$M

($Q

$S

$W

($X

USING REGISTERS IN COT

Table 5 - 1
COT Single Registers

Function

Search argument register. You set this register to
a word search argument by opening with the /
operator, or to a byte search argument by opening
with the \ operator. It can also be set using the
memory commands described in Chapter 6.

Constant register. The
register can be used as an
value through the constant
described in Sections 2.2.2

l6 - bit value in this
address expression or a
register indicator C,
and 7.3.3.

F'ormat register. When this register is set to 0,
COT displays all user task addresses in relative
form , if an appropriate bias value is available in
one of the relocation registers. When this
register is set to any other value, COT displays
user task addresses in absolute form. See Section
2.2.1 for a description of absolute and relative
forms of addresses.

High memory limit register. The location contained
in this register is the upper location limit for
COT search, list, and fill memory operations.
Initialized to O.

Low memory limit register. The location contained
in this register is the lower location limit for
COT search , list, and fill memory operations.
Initialized to O.

Search mask register. You set this register to a
word search mask by opening with the / operator, or
to a byte search mask by opening with the \
operator. It can also be set by arguments
specified with the memory commands described in
Chapter 6. Initialized to -1 , l77777 (octal).

Quantity register. COT sets this register to the
last value displayed, as described in Section
7 . 3.4. $Q is also used for the results of
expression calculations using the = operator.

Processor status register. This
Processor Status Word (see Appendix
from the last instruction executed
breakpoint. Users do not normally
contents of this register directly .

stores the
B) resulting
prior to a

change the

Directive Status Word register. This contains the
Directive Status Word (DSW) of the task, indicating
the success or specific cause of rejection of the
most recently executed directive. The contents of
this register are maintained across breakpoints.
See the RSX-llM/M-PLUS and Micro/RSX Executive
Reference Manual for detai~on the DSW.

Reentry vector register . A positive value in this
register causes COT to retain the register values
for successive entries of COT, as described in
Section 5.2.2.

5-3

USING REGISTERS IN ODT

The other ODT internal registers are grouped into sets of eight or
three sequential word locations. The integer n is part of the
register name, in the form $nx; you must always include n, evp.n if its
value is O.

Table 5-2 lists the register sets alphabetically. In a task, they
appear as sequential word locations in the order listed in Table 2 - 3,
that is:

$nB $nG $nI $nR $nV $nE $nD

Register

$nB

$nD

$nE

$nG

$nI

Range of
n

0-7

0 - 2

0 - 2

0 - 7

0 - 7

Table 5- 2
ODT Register Sets

Function

Breakpoint address register n. This contains
user-specified address of location
(breakpoint) in the user task whose contents
are to be swapped with the contents of $nI
when a G or P command is executed. A ninth
register, $8B, is used by ODT for single- step
execution.

Device control LUN (logical unit number)
register n. As described in Section 6.1.4,
register $OD contains the LUN of the user
terminal, and register $lD contains the LUN of
the console device. Register $2D contains the
QIO event flag number, normally a default
value of 000034 (octal) .

SST stack contents register n. The top three
items on the user program stack are placed
into these registers when a synchronous system
trap occurs. Stack contents depend on the
type of trap taken, as explained in the
RSX- llM/ M-PLUS and Micro/ RSX Executive
Reference Manual.

Breakpoint proceed count register n, where n
corresponds to breakpoint address register n.
This contains the number of times the
breakpoint location should be encountered
before the breakpoint is recognized. Each
register is initially set to 1 and can be set
through the kP command (see Section 3.4) , or
by opening $nG and altering its contents. A
ninth register , $8G, is used by ODT for
single-step execution.

Breakpoint instruction register n. This
register is initialized to contain a BPT
instruction , op code 000003 , which is swapped
with the contents of register $nB when the G
or P command is executed. The functions of
the BPT instruction are described in Section
3.2. A ninth register, $81, is used by ODT
for single-step execution.

(Continued on next page)

5-4

(

(

(

(

(

(

(

Register

$nR

$nV

Range of
n

0 - 7

0 - 7

USING REGI STERS IN ODT

Table 5- 2 (Cont .)
ODT Register Sets

Function

Relocation register n. This contains the
relocation bias of a relocatable object
module, enabling ODT to display user task
addresses in relative form, if $F is set to 0
(see Table 5- 1). ODT initializes each
register to 177777(octal).

SST vector register n. This contains the
entry- point address of the ODT routine for
handling a synchronous system trap. If both
ODT and the user program have SST vectors
enabled for the trap, ODT automatically
receives the trap, except for vector 6 ($6V),
which must be explicitly enabled through the V
command (see Table 2-3). ODT handling of a
trap can be disabled by clearing the register;
the user program vector then receives the
trap . Registers correspond to traps as
follows:

Register

$OV Odd address
instruction
processors,
e xecuted)

SST Vector

reference
(also,

illegal

in word
on some

instruction

$lV Memory protection violation

$2V T-bit trap or
e xecuted

BPT

$3V rOT instruction executed

$4V Reserved or illegal
executed

instruction

instruction

$5V Non- RSX- ll EMT instruction executed

$6V TRAP instruction executed

$7V PDP - ll/40 floatillg - point exception
error

The following sections describe the functions of ODT internal
registers $nR, and $X in greater detail. The ODT internal registers
$C, and $Q are described in Chapter 7. Registers used in memory
operations ($L, $H, $M, $A, and $nD) are described in Chapter 6 .

5.2.1 Relocation Registers

ODT's eight relocation registers allow you to refer to locations by
relative addresses instead of absolute addresses. Since relative
addresses are easy to determine from source file listings, using them
makes debugging faster and simpler.

5- 5

USING REGISTERS IN ODT

When ODT is initialized, each relocation register is set to
177777(octal). This is the highest possible memory address and
therefore cannot be used in constructing address expressions. To make
a relocation register useful, you place in it the base address of a
relocatable module or another convenient point, as explained in
Section 2.2.1. This address functions as a relocation bias that is
added to the relative address in an address expression to form the
absolute address of a location.

You obtain the base (starting) address of a module by consulting the
memory allocation synopsis in your task map. This part of the map
gives the octal starting address of each program section and each
module that makes up a program section. It also shows the extent of
the module, in octal and decimal.

The following figure shows a memory allocation synopsis for a brief
task:

SECTION TITLE IDENT FILE

BLK. :(RW , I , LCL,REL,CON) 001264 001012 00522.
001264 000574 00380. HIYA HIYA.OBJ;l

$$RESL:(RO,I,LCL,REL,CON) 010152 000112 00074.
$$$ODT:(RW,I,GBL,REL,OVR) 002276 005654 02988.

002276 005654 02988. ODTRSX M06 ODT.OBJ;l

5.2.1.1 Setting Relocation Registers - You can set relocation
registers either by opening them as word locations and altering them,
or by using special ODT commands that affect relocation registers.

To open a relocation register as an octal word, use the register name
$nR as the address expression a in the a / command (or any of the other
commands described in Chapter 4 that open words). You can enter a new
value for the register after examining the existing contents.

The ODT command ainR sets register $nR to the location specified as
address expression a. If you omit n, register $OR is assumed.

5.2.1.2 Clearing Relocation Registers - To remove a relocation
register from consideration in calculating addresses , enter the nR
command , where n is the number of the relocation register. This
command sets the register to 177777 (octal) , so that it is no longer
useful in constructing address expressions. If you omit n, all
relocation registers are set to 177777(octal).

5.2.2 The Reentry Vector Register

If you have fixed a task in memory (see the FIX command in the
RSX-llM/ M-PLUS MCR Operations Manual) , you can use the reentry vector
register, $X, to maintain register values set during your debugging
session and to keep track of your access to the task .

The reentry vector register contains the value -1 when your task is
built. When you execute the task for the first time, the register
value is incremented to O. The 0 value causes ODT to omit the task
name from the invocation message line (described in Section 1.3) the
next time you enter the task. This omission indicates that the task
is fixed in memory.

5-6

(

(

(

(

(

(

USING REGISTERS IN ODT

If you intend to reenter the task for further debugging, you should
set $X to 1 or another positive nonzero value. As long as the value
of $X is positive and nonzero, the fixed task is reentered at the
value stored in $7 (the program counter), and the values stored in
ODT's registers are maintained. You can continue to debug the task
using the breakpoints, constants , and other values established in an
earlier debugging session. If $X is not positive, all registers are
initialized when you reenter the task.

You can use the reentry
many times you have
register to 1 the first
time you enter the task

vector register as a counter to record how
entered a fixed task . To do this, set the
time you enter your task and increment it each
again.

5-7

(

(

(

(

CHAPTER 6

MEMORY OPERATIONS IN ODT

ODT allows you to perform three kinds of operations on blocks of
memory in your task:

• Search memory for bit patterns or references to locations

• Fill memory with a value

• List blocks of memory on an output device

Section 6.1 describes how to establish the registers used in memory
operations. The subsequent sections of this chapter describe how to
use ODT commands to perform these operations.

6.1 REGISTERS USED IN MEMORY OPERATIONS

ODT memory operation commands function between limits in memory that
you must specify. Search and fill commands require an argument to be
searched for or deposited. Search operations also require a search
mask.

ODT maintains registers to contain all these values. You can set
these registers as word or byte locations (as described in Chapters 4
and 5) before issuing memory operation commands. You can also specify
a search argument and a search mask as the k and m arguments in the
commands themselves. If you do not specify an argument in one of
these commands, ODT uses the current contents of the appropriate
register. If you do specify an argument, that argument replaces the
contents of the register.

6.1.1 Search Limit Registers

There are two search limit registers: $H, containing the high memory
limit for a search, fill, or list operation; and $L, containing the
low memory limit. You deposit a memory location in one of these
registers by opening it as a word location and changing its value to
the address of the location. You can specify the location in either
absolute or relative form, as follows:

$L/OOOOOO 1000 ~
- / 001000 2,4060 ~

_$H /OOOOOO 3,100 ~

If the value in $L is greater than the value
perform the memory operation requested
Instead, ODT displays its prompt.

6-1

in $H, ODT
using these

does not
registers.

MEMORY OPERATIONS IN ODT

6.1.2 Search Mask Register

ODT initializes the search mask register $M to 177777 (octal) , so that
all bits are set to 1. You set the value of the register by opening
it as a word location and changing its value. Only bit positions set
to 1 in the search mask are compared in the search operation. The
value compared is that set for the corresponding bit position in the
search argument register $A.

You can also set register $M by specifying a value m, followed by a
semicolon, in any of the search commands described in Section 6 . 2.

6 . 1.3 Search Argument Register

The search argument register $A contains the value searched for in a
memory search operation or filled with in a memory fill operation.
You can set this value by opening register $A as a word or byte
location and changing its contents, or by specifying the argument k in
one of the search commands described in Sections 6.2 and 6.3.

As noted in Section 6.1.2, only bit positions set to 1 in the search
mask are compared in any memory search operation.

6.1.4 Device Control LUN Registers

The device control LUN registers $OD and $lD contain the logical unit
numbers of the user terminal (TI:) and the console device (CL:) ,
respectively. You specify one of these registers as the value n in
the n;a;kL command (see Section 6.4.1) to indicate what device should
be used for a listing.

The Task Builder assigns default values for these registers: 000007
(octal) for $OD and 000010 (octal) for $lD. To reset these registers ,
you can link your task using the TKB option UNITS=keyword as described
in the RSX-llM/ M-PLUS and Micro/RSX Task Builder Manual.

You may find it more convenient to assign a new value for CL: before
beginning your debugging session. Use the MCR command ASN or the DCL
command ASSIGN in one of the following formats:

ASN devicename=CL: (MCR command)

or

ASSIGN CL: devicename (DCL command)

For more information on these commands, see the appropriate command
line interpreter manual for your system.

6.2 SEARCHING MEMORY

There are three memory search commands: W, N, and E. Each of these
commands has several forms, depending on the number of registers that
already contain values that you want to use in the search operation.
The following sections describe these command forms.

6-2

(

(

(

(

(

(

(

(

(

MEMORY OPERATIONS IN ODT

6.2.1 Searching for a Word or Byte

The W command searches for occurrences of the search argument
(comparing bit positions specified in the search mask) within the
range set by the contents of the search limit registers.

The full form of the command is m;kW, where m specifies the search
mask and k specifies the search argument. However, you can omit
either or both of these arguments if the corresponding registers
contain the values that you want to use. If you omit m, you should
also omit the semicolon argument separator.

ODT performs an exclusive OR (XOR) operation on the contents of each
location and the search argument; it then ANDs the result of this
comparison with the search mask. A result of zero indicates a match .
When a match occurs, ODT prints the address and contents of the
location and repeats the search operation until the high memory limit
is reached.

6.2.2 Searching for Inequality of a Word or Byte

The N command is the opposite of the W command. It examines the
search range for words or bytes that do not exactly match the search
argument in the positions determined by the search mask.

The full form of the command is m;kN, where m specifies a search mask
and k specifies a search argument. As with the W command , you can
omit either or both of these arguments.

The search algorithm proceeds like that for the W command, except that
ODT only displays a location ' s address and contents when the AND
operation has resulted in a nonzero value.

6.2.3 Searching for a Reference

The E command searches for memory locations containing instructions
whose execution results in a reference to the task address specified
as the search argument. Because the search argument represents an
address, it can only be a word, not a byte.

The full form of the command is m;kE, where m represents the search
mask and k the search argument. You can omit either or both of these
arguments if you want to use the values already contained in registers
$M and $A. For effective use of the E command, the search mask should
be set to 177777 (octal) , so that all bit positions are compared.

ODT compares each location within the search limits and displays the
address and contents of locations that contain any of the following:

• The search argument as an absolute address

• A relative address offset reference to the absolute address
specified as the sear ch argument

• A relative address branch reference to the absolute address
specified as the search argument

6-3

MEMORY OPERATIONS IN ODT

6.3 FILLING MEMORY

The F command fills the block of memory defined by the high and low
memory limit registers with the value in the search argument register.
You can set this register using the command $A/ (see Section 6.1.3),
or specify the argument k with the F command, in the form kF.

If the last location opened was a word, the memory range is filled
with words . If the last location was a byte, the memory range is
filled with bytes. The low- order byte in register $A is used.

In the following example, word locations 1000 through 1776 are set to
0, and byte locations 2000 through 2777 are filled with ASCII spaces
(40 octal):

1000ilR
2000i2R
3000i 3R -
$L/OOOOOO 1,0 OOJ - $H/OOOOOO 2,-2 OOJ -
OF

-
$L/001000 2,0 OOJ -
$H/001776 3,-1 OOJ -

- $A\ OOO 40 OOJ
F

6.4 LISTING MEMORY

The L command lists on an output device the block of memory defined by
the high and low memory limit registers. The following sections
describe how you request a listing and what the listing looks like.

6.4.1 Command Format

The L command has the following format:

n

a

k

niaikL

The device control LUN register number for the listing operation .
A value of 0 indicates the user terminal (TI:). Any other value
is interpreted as 1 and indicates the console listing device
(CL:). The default is o.

The low memory limit for the listing operation . If you omit a,
the value of register $L is used. If you specify a, that value
is placed in $L.

The high memory limit for the listing operation. If you omit k,
the value of register $H is used. If you spe cify k, that value
is placed in $H .

You must include the semicolon argument separator (i) between a and k
if you specify the argument a. You must include two semicolons if you
specify the argument n.

6- 4

(

(

(

(

(

(

(

MEMORY OPERATIONS IN ODT

6.4.2 Listing Format

A memory listing is formatted in groups of eight units. Each line
begins with a location, in relative form if possible (see Section
2.2.1), followed by eight words or eight bytes in the current output
mode. A memory listing is displayed in whatever mode was used to open
the last opened location. Thus, you can list blocks of memory in word
mode octal, byte mode octal, word mode ASCII, byte mode ASCII, or word
mode Radix-50, as described in Section 4.10.

The following example shows the output displayed on the output device
in response to various listing commands. Note that the question mark
displayed in response to the' command is not in this case ODT's error
indicator. It is merely the ASCII character stored in the next byte .

Example 6-1 ODT Listing Format

1344j1400L
'001344 /047503 046125 020104 020111 040510 042526 054440 052517
001364 /020122 040516 042515 050040 042514 051501 037505

1344" CO L
'001344 "CO UL D I HA VE Y OU
001364 "R NA ME P LE AS E?
1344\ 103 L

1344 \103 117 125 114 104 040 111 040
1354 \110 101 126 105 040 131 117 125
1364 \122 040 116 101 115 105 040 120
1374 \114 105 101 123 105

1344' C L
'001344 'c 0 U L D I
001354 'H A V E Y 0 U
001364 'R N A M E P
001374 ' L E A S E ,

?
- 1300jR

$H/ 001400 0,101 - 1344' C L
'0,000044 'c 0 U L D I
0,000054 'H A V E Y 0 U
0,000064 'R N A M E P
0,000074 'L E A S E ?

6-5

(

(

(

CHAPTER 7

PERFORMING CALCULATIONS IN ODT

ODT performs a variety of arithmetic calculations useful in
determining offsets, Radix-50 equivalents, and other values. This
chapter describes commands that perform these calculations. Section
7.1 explains how to calculate relocatable addresses. Section 7.2
explains how to calculate offsets. Section 7.3 describes how to
evaluate expressions.

7.1 CALCULATING RELOCATABLE ADDRESSES

If you know the absolute (relocated) address of a location and want to
determine its relative address, or what relocation register contains
the closest base address, use one of the forms of the a;nK command.

If you specify both a, the absolute address, and
register, in the a;nK command, ODT calculates
relative address, as follows:

4000;2K =2,001460

n, a relocation
and displays the

Note that the equal sign is part of ODT's response, not part of the
command that you enter.

If you omit n, ODT uses the relocation register whose contents are
closest to (but less than) the absolute address specified.

If you omit a, ODT assumes the address of the last location opened.
You should omit the semicolon argument separator if you omit a.

To determine
last-opened
followed by
described in

the absolute address of an open location or of the
location, enter a dot (current location indicator)
an equal sign (expression evaluation operator), as

Section 7.3.2.

7.2 CALCULATING OFFSETS

The 0 (Offset) command calculates and displays the PC - relative offset
and the branch displacement from one location to another.

There are two forms of this command. The aO command calculates the
offset from the currently open location to the location represented by
address expression a. This form of the command can be used only when
a location is open; you type it on the same line as the displayed
contents of the open location.

7-1

PERFORMING CALCULATIONS IN ODT

The a;kO command calculates the offset from the location represented
by address expression a to the location represented by address
expression k. (In this case, k can have any of the address expression
forms described in Section 2.2.) This command can be entered either on
the same line as an open location or on a separate line , in response
to the ODT prompt.

The 0 command (in either form) calculates either positive or negative
offsets. Negative offsets are displayed in two's complement form.

ODT displays the PC-relative offset and the
6 - digit octal numbers. The PC-relative
underscore and followed by a space. The
preceded by a right-angle bracket (»,
example:

_ 1034/103421 10460 000010 >000004

branch displacement as
offset is preceded by an
branch displacement is

as shown in the following

A location that is open when you use the aO or a;kO commands remains
open after the offset and branch displacement are displayed. You can
perform another calculation , change the contents of the location , or
enter any ODT command that affects an open location.

Offsets can be calculated in either I - or D-space
Micro/RSX systems only).

(RSX-llM- PLUS and

7.3 EVALUATING EXPRESSIONS

You can evaluate expressions during your debugging session using the
techniques described in the following sections. To evaluate an
expression while a location is open, enter the evaluation command on
the same line as the displayed contents of the location. ODT places
the results of its evaluation into the $Q register . To replace the
contents of the open location, you enter Q or the value of the
expression. You can also evaluate expressions when no location is
open by typing the evaluation command in response to the ODT prompt.

7.3.1 Equal Sign Operator

To evaluate an expression, enter the expression
sign (=) . The expression is converted to
placed in the $Q register, and displayed. ODT
value of 16 bits when necessary.

followed by the equal
a 6 - digit octal value,
truncates the octal

Negative values are calculated, stored, and displayed in two's
complement form. You can specify a negative value either in two's
complement form or with the minus sign.

You can perform
evaluated. To
the values. To
not recognize
Expressions are

addition and subtraction within an expression to be
add values, include a plus sign (+) or a space between
subtract values , include a minus sign (-) . ODT does
parentheses or assign precedence to any operator.
evaluated left to right.

An address expression, in relative or absolute form, can be all or
part of an expression to be evaluated.

You can include one of these three indicators in the expression: the
current register indicator, the constant register indicator, or the
quantity location indicator . These indicators are described in the
following sections.

7- 2

(

(

(

(

(

(

PERFORMING CALCULATIONS IN ODT

I f yo u ente r the equa l sign without an expression to be evaluated, ODT
e valuates the null e xpression as zero and enters zeros in the $Q
register.

The f ollowing examples show the evaluation of expressions using the
equal sign. Relocation register $OR contains the value 370. The
constant registe r contains the value 40.

0,0=000370
- 0,16=406
- O,C=000430

0,16+16+2=0000426
16-370=177426
177777+16+16=000033
-1+16+16=000033

- C 177777=000037
232323=032323

7 . 3.2 Cur rent Location Indicator

The dot indicator (.) represents the address of the currently open
location. You use this symbol to include the address of the currently
open location as part or all of an expression to be evaluated.

The following example shows how the current location indicator is
used:

320ilR
= 1,10/000000 .+10=000340

7.3.3 Constant Register Indicator

The C indica tor specifies the 16-bit value contained in the constant
r egister, $C. You can set this register to any value and use the
indicator in place of any a or k argument in an ODT command (as shown
in Section 2 . 2) . You change the value of C by opening the $C register
as a word location and changing its contents.

7.3.4 Quantity Register Indicator

ODT stores the last value that it displayed in the q uantity register ,
$Q . When you open a location , ODT stores that location ' s contents in
the $Q register. If the location is a byte, the $Q register contains
that byte in its low- order byte and zeros in its high-order byte.

You can refer to this 16 - bit value by using the quantity register
indicator Q. The quantity register indicator is especially useful for
changing the contents of open locations and for setting registers , as
shown in the following examples:

1342/173214 Q+10 ~
= / 173224 ~

$3/013624 Qi5R ~
5,20/013644

7- 3

PERFORMING CALCULATIONS IN ODT

7.3.5 Radix- 50 Evaluation

To enter Radix-50 characters , you must know the numeric val ue of each (
Radix-50 word. A Radix-5 0 word , as explained in Section 4 . 10.2,
contains three Radix-5 0 characters. To determine the val ue of the
Radix-50 word , enter the numeric equivalents of the Radix-50
characters in that word, separated by asterisks, as an expression to
be evaluated. Follow the expression with an equal sign , as shown in
Section 7.3.1. ODT calcu lates a 6- digit octal value , places that
value in t h e $Q register , and displays it immediately after the equal
sign , as follows:

33*24*12=125752

Note that you cannot evaluate Radix - 50 characters in conjunction with
any other evaluation operation (addition , subtraction , location
calculation) . You cannot use any other symbol (C, Q, .) in the
expression to be evaluated.

If you specify the equiva l ents of only two Radix - 50 characters, ODT
fills the high byte of the word with zeros , as necessary .

The Radix-50 character set includes all alphabetic and numeric
characters (A through Z, 0 through 9) plus three special characters:
dollar sign ($), dot (.), and space () . Table 7-1 contains the
numeric equiva l ents of all Radix- 50 characters.

Table 7-1
Numeric Equivalents of Radix-50 Characters

Radix- 50 Numeric Radix-50 Numeric
Character Equivalent Character Equivalent

Space 0 T 24
A 1 U 25
B 2 V 26
C 3 W 27
D 4 X 30
E 5 Y 31
F 6 Z 32
G 7 $ 33
H 10 34
I 11 Unused 35
J 12 0 36
K 13 1 37
L 14 2 40
M 15 3 41
N 16 4 42
0 17 5 43
p 20 6 44
Q 21 7 45
R 22 8 46
S 23 9 47

The following example shows how the asterisk (*) is used in
conjunction with the Radix- 50 operator (see Section 4.10.2) :

1054/003151 %AAA 1*3*5=003275 3275 @)
%ACE

7-4

(

(

(

(

(

(

(

(

CHAPTER 8

THE EXECUTIVE DEBUGGING TOOL (XDT)

The Executive Debugging Tool (XDT) is an interactive tool for
debugging privileged code such as Executive modules, I/O drivers,
interrupt service routines, and privileged tasks. The command
interface is nearly identical to that of ODT. You should be an
experienced ODT user before using XDT.

NOTE

If you are not an experienced system programmer, you
may find that experimenting with XDT produces
undesirable results. As with ODT, where incorrect use
could corrupt your program, incorrect use of XDT could
corrupt your system. Use it carefully.

The major difference between XDT and ODT is that XDT is a tool for
debugging privileged code code that executes in system state or
interrupt state -- and ODT is a tool for debugging nonprivileged code

code that executes in user (or task) state. See Chapter 9,
Debugging with XDT, for a list of ODT commands not used in XDT and a
table of XDT operators and commands.

8.1 THE ADVANTAGE OF XDT

On RSX- ll systems without XDT support, any software fault occurring in
system state or interrupt state results in a system crash. However,
on RSX- ll systems that include XDT support, a software fault in system
state or interrupt state causes the system to trap to the Executive
Debugging Tool rather than crash.

When a software fault causes the system to trap to XDT, XDT has
exclusive control of the system, and all other system activity is
suspended. You can then use XDT commands and operators to examine
registers, memory locations, and system data structures to locate the
software fault that caused the trap -- provided, of course, that the
software fault is not one that corrupts either the XDT code itself or
the trap vectors .

8.2 HOW TO INCLUDE XDT IN YOUR RSX-IIM OR RSX- IIM-PLUS SYSTEM

System support for XDT is optional. You must explicitly specify
during the system generation procedure that XDT support be included in
your system image. See the system generation manual appropriate to
your system for more information on including XDT support in your
system.

8-1

THE EXECUTIVE DEBUGGING TOOL (XDT)

On RSX-llM systems, including XDT in the system diminishes the size of
system pool by approximately 2.5K bytes.

On RSX-llM-PLUS systems with 1- and D-space support, XDT supports both
instruction space and data space referencing. Because XDT occupies
physical address space without taking up Executive virtual data
address space, including XDT in a system with 1- and D-space support
does not reduce the size of available system pool.

On RSX-llM-PLUS systems without 1- and D-space support, including XDT
in the system diminishes the size of system pool by approximately 2.5K
bytes.

8.3 LOADABLE XDT ON MICRO/ RSX AND PRE-GENERATED RSX-llM-PLUS SYSTEMS

On Micro/ RSX systems, XDT is a loadable system-level debugger. On
RSX-llM-PLUS systems, XDT may be loadable or resident. When you load
XDT, the LOAD task sets up XDT in a special partition in memory
outside of the area generally allocated to Executive code. The (
greatest advantage of this feature is that having XDT in the system
does not diminish the amount of available system pool. It also allows
you to load XDT only when you need to use it for debugging.

To load XDT on a Micro/RSX or an RSX-llM-PLUS system, use the
following command format:

LOA / EXP=XDT /VEC [/PAR=parname] [/HIGH]

parnarne

/ HIGH

Parname is the name of the partition in which XDT is to be
loaded. If you omit the /PAR qualifier, GEN is the default
partition name.

If you specify the / HIGH qualifier, XDT is loaded at the top of
the partition.

To unload XDT on a Micro/ RSX or an RSX-llM-PLUS system, use the
following command format:

UNLOAD /EXP=XDT

For more details on using the LOAD command, see the Micro/RSX System
Manager's Guide or the RSX-llM/M-PLUS System Management Guide.

8.4 PROCESSOR STATES

XDT responds to software faults occurring in system state or interrupt
state. RSX-ll systems operate in various software states depending on
the type of processing taking place at a given time. (Software states
are different from hardware processor modes. See the appropriate
PDP-ll Processor Handbook or the PDP-ll Architecture Handbook for a
description of processor modes.) A summary of the system's software
states follows:

• User state: The processing state in which the system executes
nonprivileged user task code. In user state, the processor
operates in user mode or supervisor mode and is fully
interruptible (PRO). The system stack is empty whenever user
state code is executing.

8- 2

(

(

(

(

•

THE EXECUTIVE DEBUGGING TOOL (XDT)

System state: The state in which the system
privileged code. It is the only state in which
system data base may be safely modified. In system
processor operates in kernel mode and is
interruptible (PRO) .

exec utes
the shared
state, the
completely

• Interrupt state: The Exec utive uses interrupt state to
perform device-critical processing after a peripheral device
interrupt. In interrupt state, the processor operates in
kernel mode and can be either partially interruptible (PR4
through PR6) or completely non-interruptible (PR7) . The
shared system data base cannot be safely modified in interrupt
state, since operation at interrupt state may have preempted a
system state process that may already have been modifying a
system data structure. Driver processes may switch from
interrupt state to system state by calling $FORK to safely
access shared system data.

When XDT executes , it has complete control of t h e system, s o you c an
examine or modify any system data structure. It runs at PR7 and,
therefore, is totally non-interruptible. Pending interrrupts must
wait until you exit from XDT and resume normal execution.

Refer to the descriptions of interrupt processing and the $FORK
process in the RSX- llM/ M-PLUS Gu ide to Writing an I / O Driver for more
information.

For a detailed description of processor interrupt priorities, refer to
your PDP-II Processor Handbook.

The following priority scheme governs the order by which the system
services the processing states (interrupt level 7 is the high est
priority interrupt) :

1. Interrupt State Processing:

• PR7 Various device interrupts

• PR6 Various device interrupts

• PRS Various device interrupts

• PR4 Various device interrupts

2. System State Processing:

• Processing of traps from user state

• Processing of driver processes suspended by $FORK

3. User State Processing:

• processing of all user tasks

8.4.1 The Stack Depth Indicator and Interrupt Processing

The Executive maintains a word, called the Stack Depth Indicator
($STKDP) , to indicate the number of interrupted system state processes
that must be completed before servicing any suspended system state
processes and returning to user state. A second word, $FORK, heads a
list of suspended driver processes awaiting execution in system state.

8-3

THE EXECUTIVE DEBUGGING TOOL (XDT)

While executing nonprivileged task code in user state, $STKDP contains
a value of +1, and the processor uses the user stack. When $STKDP
contains a value other than +1, the Executive operates in system state
or interrupt state , and the processor uses the kernel stack.

As part of the process of switching from user state to system or
interrupt state (caused, for example, by a device interrupt or an
Executive directive issued by a user state task) , the Executive
decrements $STKDP to O. Each subsequent interrupt causes the
Executive to further decrement $STKDP (-1, - 2, and so on) . The value
(other than +1) contained in $STKDP indicates the number of
interrupted system state processes waiting to be serviced by the
Executive.

As each interrupt level process completes its interrupt state
execution, the Executive increments $STKDP until all the suspended
interrupt state processes have been serviced and $STKDP again contains
a zero (0). The Executive then services any system state processes
still waiting (in the $FORK queue) before switching to user state and
the user stack.

8.5 ENTERING XDT

Entry to XDT mayor may not be intentional . For example , a coding
change to a driver or a part of the Executive might introduce an
error, such as an illegal instruction. The execution of the illegal
instruction would cause the system to fault and immediately enter XDT.
In this case, entry to XDT is obviously not intentional.

You may, however, deliberately cause the system to enter XDT.
are two reasons you might want to do so:

There

• To locate a suspected software bug in a particular piece of
system code

• To test and debug a new or recently modified section of code

The following sections discuss system traps (the mechanism by which
the system enters XDT) and several ways to cause the system to trap to
XDT.

8.5.1 XDT and Synchronous System Traps (SSTs)

A system trap is an event that transfers program control from the
program through a trap vector to a trap handling routine. System
traps usually occur due to the execution of either an illegal
instruction or a specific trap- causing instruction. Traps provide
software with a means of monitoring and reacting to those events. The
Executive initiates corresponding system trap processing when
particular events occur.

Synchronous System Traps (SSTs) are events that occur at the same time
and in direct relation to the incorrect execution of program
instructions. SSTs that occur in system state are the means by which
XDT gains control of the operating system instead of letting it
immediately crash.

8-4

(

(

(

(

(

(

(

(

THE EXECUTIVE DEBUGGING TOOL (XDT)

In a system
(except as
result in a
the console

with XDT support, all SSTs occurring at system state
described for the TRAP instruction; see Section 8.5.1.1)

trap to XDT. A trap to XDT is indicated by a message at
terminal in the following form:

xx:

xx: address
XDT>

One of the entry codes listed in Table 8 - 1.

address

The PC at the time of the trap.

Each entry code is associated with a particular trap vector, also
listed in Table 8 - 1. See Appendix A for more information about error
detection .

Entry
Code

BC :

BE:

EM:

FP:

IL:

10:

MP:

OD:

so:

TE:

nB:

Vector

30

14

30

244

10

20

250

4

4

14

14

Table 8 - 1
XDT Trap Entry Codes

Reason

Bug Check - - internally detected software fault
(Loadable XDT only)

Breakpoint Entry a BPT instruction

EMT Instruction

Floating Point Instruction (on 11 / 40 only;
RSX- llM only)

Illegal Instruction

lOT Instruction

Memory Protection Violation

Odd Address or Nonexistent Memory

Stack Overflow

T-bit Trap

XDT Set Breakpoint (n is a register number 0
th r ough 8)

8.5.1.1 Processor Traps and System Crashes - An SST generally
indicates that there is a software fault which may cause corruption of
an Executive database. For example, inserting an odd address into the
link pointer of a Task Control Block results in an odd address trap
the next time the Executive reads through the TCB list.

8-5

THE EXECUTIVE DEBUGGING TOOL (XDT)

The PDP - ll , including the MicroPDP- ll , has four
EMT , lOT , BPT , and TRAP. These instructions
results when executed in system state :

trap instructions:
have the following

• Both the EMT and lOT instructions are fatal when executed in
system state ($STKDP <= 0) .

• The BPT instruction is fatal when executed in system state ,
unless XDT is present in the system. The BPT instruction is a
means for entering XDT. When you deliberately set a
breakpoint in XDT (see the XDT nB command in Table 8 - 4) , XDT
actua l ly inserts a BPT instruction where you want the
breakpoint and saves the instruction it replaced with the
breakpoint .

• The TRAP instruction is l egal only in system state ($STKDP
0) . The directive processors use the TRAP instruction to post
error codes back to the directive dispatcher.

8.5.2 Entering XDT from a Virgin System Boot

A virgin system is an RSX- llM or RSX- llM-PLUS system that has
completed execution of SYSVMR.CMD but has not yet been saved (see the
MCR command SAVE in the RSX-llM/ M-PLUS MCR Operations Manual) . If the
virgin system includes XDT support-, --the normal system startup
immediately transfers control to XDT which displays a message on the
system console termina l similar to the following:

BOO DL:[l,54]
XDT: 35

XDT>

The number following the colon (:) is the system base level number.

When the system traps to XDT in this situation, the system
initialization code (INITL) has not yet executed. Therefore, some
system data structures have not yet been defined or initialized. (On
systems supporting memory management , memory management has not yet
been enabled.)

After you have set any desired breakpoints, enter the XDT command G
(Go) to return control to the Executive module INITL. INITL then
continues with the system initialization. If a software fault occurs
during system initialization (or if you have previously set a
breakpoint in the INITL module) , the system traps to XDT on
encountering the fault (or the breakpoint) instead of causing a fatal
system crash. You can then use XDT to try to locate the error that
caused the fault or take the appropriate action for the specified
breakpoint.

Note that a saved system does not trap to XDT when it is bootstrapped .
Part of the action of INITL is to deallocate the memory it uses to
system pool after it completes execution. In other words, INITL is
not part of the system image after SAVE executes. Furthermore,
because SAVE has control of t h e system when it copies the system image
to disk , it retains initial control when the system is rebooted -- not
XDT, unless a suitable breakpoint has been placed in the SAVE module.

Also note that if you save the virgin system with breakpoints set , the
saved system traps to XDT each time it reaches one of those
breakpoints. This may occur both while the system is being saved and
during the system reboot.

8 - 6

(

(

(

(

(

(

THE EXECUTIVE DEBUGGING TOOL (XDT)

8.5 . 3 Enter ing XDT Using the BRK Command

The BRK (Breakpoint to Executive Debugging Tool) command passes
control of the system to XDT. Note that on RSX- llM and RSX- llM- PLUS
systems this is an MCR command. The message XDT prints on the console
includes a PC inside the MCR task. This is a convenient way to invoke
XDT. From this point you can map to any desired location (for
example, within a d r iver) and set breakpoints . If XDT is not included
in the system, the BRK command has no effect.

Typing the XDT command P (Proceed) normally restores the system to the
state that existed just before the execution of the BRK command.

8.5.4 Enter ing XDT Using the BPT Instruction

There are several ways to replace a system instruction with a BPT
instruction to cause the system to trap to XDT. The simplest method
is to use the BRK command. You can also use the OPEN command, fo r
putting breakpoints into drivers or memory- resident privileged tasks,
o r the ZAP utility, for putting breakpoints in a privileged program
be f ore you run it. Or, you can include a BPT instruction in the macro
source program before assembling it. (This last method is useful when
debugging a driver .)

The general procedure for setting and cancelling the BPT instruction
is as follows:

• Replace a system state instruction with the BPT instruction

• The system t r aps to XDT when it executes the BPT instruction

• Use XDT to restore the original instruction replaced by BPT

• Decrement the PC by subtracting 2 f r om the contents of
register R7

• Set any desired breakpoints using XDT commands and proceed
with the XDT P (proceed) or S (single step) command

If you include a BPT instruction in the source code , you are not
replacing an instruction. Therefore, there is no need to decrement
the PC or restore any intruction. When you have debugged the driver,
take out the BPT instruction and reassemble the source code.

8.5.4.1 Inserting a BPT Instruction Using the OPEN Command - You can
use the command OPEN to replace an instruction in the Executive, a
device driver, or a memory- resident p r ivileged task with the BPT
instruction. Note that on RSX - llM and RSX - llM- PLUS systems this is an
MCR command. With this method, the BPT instruction affects only the
image in memory, not the image on disk. Therefore, rerunning or
re- installing the image wipes out any BPT instruction set with the
OPEN command.

To examine and replace an instruction in the Executive , use the
following command syntax :

OPEN addr

addr

The address in the Executive that is to be opened.

8-7

THE EXECUTIVE DEBUGGING TOOL (XDT)

To examine and replace an instruction in a memory-resident privileged
task, use the following command syntax:

OPEN addr / TASK=taskname

addr

The address in the task that is to be opened.

/ TASK=tasknarne

The name of the memory-resident task.

To examine and replace an instruction in a driver, use the following
command syntax:

OPEN addr / DRV=ddnn:

addr

The address in the driver that is to be opened.

/ DRV=ddnn:

The device mnemonic (ddnn:) for the driver to be opened.

To examine
privileged
memory.

NOTE

and replace an instruction within a
task, the privileged task must be fixed in

Once you have completed testing or debugging, use XDT to restore the
original instruction replaced by BPT:

• Decrement the PC by subtracting 2 from the contents of
register R7

• Set any desired breakpoints using XDT commands and proceed
with the XDT P (proceed) or S (single step) command

8.5.4.2 Inserting a BPT Instruction Using the ZAP Utility - Since the
OPEN command operates only on the running system, any changes made to
the system with the OPEN command are lost when the system is rebooted.
One way to permanently retain those changes is to save the system.

Another way to permanently retain changes to the system is by using
the Task/File Patch Program (ZAP). ZAP lets you modify the system
image on disk. If you manually set a BPT instruction in the Executive
code using ZAP, the system permanently retains that breakpoint on
disk. The trap to XDT occurs when the image is running in memory. To
remove the breakpoint, you must use ZAP to restore the original
instruction on the disk image.

You can also use the ZAP utility to debug an overlaid privileged task.
Suppose, for example, that you want to set a breakpoint in an overlay
segment of a privileged task. Since this segment is not in memory,
you cannot use the OPEN command to insert a BPT instruction; you would
have to use ZAP to insert the BPT instruction in the privileged task ' s
disk image file.

8-8

(

(

(

(

(

(

(

(

THE EXECUTIVE DEBUGGING TOOL (XDT)

8.5.5 Entering XDT When the System Is Hung (RSX-llM and RSX- llM-PLUS)

If the system is hung and commands are not being processed, you cannot
force the system to enter XDT as previously described. However, any
processor traps in system state force the system to enter XDT. One
way to force the system to enter XDT is to use the switch registers or
the console to change the clock interrupt service routine to an odd
address. For example, if the system has a KWll-L clock with vector
100, simply deposit an odd address into location 100 with the switch
register. At the next clock interrupt, the system traps to XDT.

If the system is stuck in a tight loop, halt the CPU, examine the PC,
deposit an odd address in the PC, then continue. Since the system
will attempt to execute an odd address, it will trap to XDT.

8-9

CHAPTER 9

DEBUGGING WITH XDT

This chapter describes how to use XDT. It includes information about
interpreting bug checks, which detect certain types of internal system
corruption. A table of XDT operators and commands is included in this
chapter , as well as a table of the ODT commands not used in XDT.

9.1 DEBUGGING WITH XDT

Once the system traps to XDT , you are on your own to do whatever
testing or debugging is necessary. Virtually all other system
activity has ceased. The system clock continues to run, however.

If the trap to XDT was unintentional, you can try to isolate the fault
that caused the trap. The R8X-llM/ M-PLU8 Guide to Writing an I / O
Driver contains some helpful information on isolating faults and
tracing system faults using specific system data structures.

If you intentionally caused the system to trap to XDT for testing or
debugging purposes , remember to restore the instruction you replaced
with the BPT instruction and decrement the PC by 2.

You can cause the system to enter the system crash dump routine by
entering the XDT X command. (In ODT , this same command merely causes
ODT to exit.)

9.1.1 Using XDT to Debug the Executive

Because the Executive executes only in system state, you can cause a
trap to XDT by setting a breakpoint anywhere within the Executive
code. Because the Executive is always mapped, you can set breakpoints
within Executive code at any time.

With the XDT command 8 , you can single step through the execution of
individual instructions in the Executive code. When you have finished
testing or debugging, you can resume the execution of the system using
the XDT command P, or you can cause the system to enter the crash dump
routine by entering the XDT command X.

9.1.2 Using XDT to Debug Privileged Tasks

A privileged task must be executing in system state ($8TKDP =0) in
order to trap to XDT. If a privileged task encounters a fault while
executing in user state , the task either aborts or traps to ODT (if
that task was task-built to include ODT) .

9-1

DEBUGGING WITH XDT

XDT and ODT processing are completely independent of each other. You
can use XDT to debug the portions of a privileged program that execute
in system state, regardless of the presence of ODT. You can use ODT
to debug those portions of the same task that execute in user mode.

Whenever you attempt to set breakpoints in a task with XDT, you must
make sure that the task is mapped. One way to do this is to assemble
a BPT instruction into the task source code at the beginning of the
system state code. When the system encounters the BPT instruction, it
traps to XDT with the task mapped. At this point, you can use any of
the XDT commands and operators.

You can also fix the task in memory and use the OPEN command to set a
breakpoint. The advantage of this method is that you do not need to
reassemble and rebuild the privileged task to insert the breakpoint.
The disadvantage is that you must decrement the PC and replace the
original instruction.

NOTE

Fixing the task and using the OPEN command does not
work when the system state code is contained in an
overlay.

9.1.3 Using XDT to Debug a Driver

I/O drivers in RSX-ll systems, including Micro/RSX systems, can
operate in system or interrupt state. You can use XDT in either of
these states to set breakpoints and examine or modify driver data
structures to perform debugging operations.

You must make sure that the driver is mapped whenever you attempt to
set breakpoints in it with XDT. One way to do this is to assemble a
BPT instruction into the driver source code at one of the normal entry
points to the driver. When the system encounters the BPT instruction,
it traps to XDT with the driver mapped. At this point, you can use
any of the XDT commands and operators.

You can also use the OPEN command to replace an instruction in
driver with a BPT instruction. The advantage of this method is
you do not need to reassemble and rebuild the driver to remove
breakpoint. The disadvantage is that you must decrement the PC
replace the original instruction upon encountering the breakpoint.

the
that

the
and

A third method of inserting a breakpoint is to force the driver to be
temporarily mapped through an APR. You cannot set XDT breakpoints in
this manner (s ee the XDT ;Bn command), but you can replace an
instruction in the driver with a BPT instruction after the driver is
mapped (just as you would if you used the OPEN command to replace the
instruction) .

In the following example, assume that
using the BRK command. By looking at
driver is at physical address 210400.
as follows:

• Replace the current
address of the driver

mapping
(2104)

you have already entered XDT
a PAR listing, you know that the

From this point you can proceed

context (3163) with starting

• Replace the MOV instruction (010 405) with a BPT instruction
(3)

9-2

(

(

(

(

(

(

(

• Replace
context

DEBUGGING WITH XDT

the driver
(3163)

address (2104)

• Enter the XDT P (Proceed) command

with previous mapping

When the system encounters the BPT instruction set in the driver it
traps to XDT from that breakpoint (BE : 120l04). You can then begin
debugging procedures with XDT commands and operators. The sequence
appears in the example below:

XDT>172352 / 003163 2104
XDT>120l02 / 010405 3
XDT>172352/ 002104 3163
XDT>P

BE:120l04
XDT>

This method is useful if you discover at an inopportune time that you
would like to set a breakpoint in the driver.

9.1.4 Using XDT to Examine a Memory Location

This is actually more difficult than it seems. Consider the
following: The system has trapped to XDT and you want to examine a
memory location in a partition that contains a device driver. Suppose
you have a 20K Executive running on a mapped system. Kernel APRs 0
through 4 map the Executive while the system is in XDT. Kernel APR 7
maps the I/O Page. Kernel APRs 5 and 6 contain the APR bias of
whatever is mapped at the time the system enters XDT (that is, APRs 5
and 6 map the MCR task if the BRK command caused the trap to XDT) .

To examine a memory location, you must divide the physical address
into two components: the relocation bias and the displacement. Next,
you must manually map this section of physical memory by putting the
relocation bias into Kernel APR 5. Then, you can examine the location
by referencing the virtual address as 120000 + displacement.

NOTE

If you were to map with Kernel APR 6, then the virtual
address would be 140000 + displacement.

Kernel APRs 0 through 7 map the following range of addresses (see the
PDP- ll Processor Handbook for more information on the kernel APRs):

I -Space D-Space

Kernel APRO 172340 Kernel APRO 172360
APRl 172342 APRl 172362
APR2 172344 APR2 172364
APR3 172346 APR3 172366
APR4 172350 APR4 172370
APR5 172352 APR5 172372
APR6 172354 APR6 172374
APR7 172356 APR7 172376

9-3

DEBUGGING WITH XDT

9.1.5 Turning Off the Processor Clock

It is sometimes necessary in a debugging session to single step
through code in the Executive . To do this type of debugging with some
parts of the Executive (for instance, with interrupt handling
routines) , it is necessary to have the system completely inactive. It
may, therefore , be necessary to turn off the clock which us ually
interrupts at a rate of 60 times a second.

For example , if the system has a KWII-L line clock with the CSR
address 177546, you can turn off the clock by placing a zero (0) in
the CSR -- this action clears the interrupt enable bit in the clock
CSR.

9.1.6 T- bit Error

Using XDT to debug a user-written driver has special pitfalls. One
problem that can arise is a T-bit error:

TE: address
XDT>

Generally , a T- bit trap occurs when the T-bit is set in the PSW by
some other mechanism than a breakpoint or an XDT P or S command. The
T-bit error results when control reaches a breakpoint that you have
set , using XDT , in a loaded driver. The T- bit error , rather than the
expected BE: trap, occurs unless Kernel APR 5 maps to the driver at
the time XDT sets the breakpoint.

If you want to set a breakpoint in a loaded driver, you cannot set the
breakpoint with XDT until the driver is mapped (that is , you cannot
set a breakpoint in a driver if you entered XDT using the MCR command
BRK) .

You can avoid this T-bit error by assembling the driver with an
embedded BPT instruction , or by using either the ZAP utility or the
OPEN command to replace a driver instruction with the BPT instruction.

Another method is to use the BRK command to enter XDT. Then , use
kernel APR 5 to map to the driver, deposit a BPT instruction in the
driver using XDT, and restore the original contents of kernel APR 5.
Return to user mode using the XDT command P.

9.2 INTERPRETING BUG CHECKS

The RSX-11M , RSX-11M-PLUS , and Micro/RSX Executives all contain code
that detects certain types of internal system corruption. If XDT is
included in the system , the Exec utive attempts to enter XDT as soon as
the system corruption is detected. By doing this , the system will
more likely be in a state where the fault that caused the corruption
can be isolated.

On RSX- IIM systems, XDT is entered from the Executive via the lOT
instruction. XDT prompts with:

IO:nnnnnn
XDT>

9-4

(

(

(

(

(

(

(

(

DEBUGGING WITH XDT

Follow these two steps to isolate the failure:

1. Find the location of the lOT instruction in the source code
for the Executive.

2 . Ascertain the type of corruption from the context of the lOT.
lOT instructions included in the source code for this purpose
are typically generated by the CRASH macro.

RSX-IIM- PLUS uses a different mechanism for reporting this type of
fault: the bug check. The bug check uses the EMT instruction to
enter XDT. On RSX-IIM-PLUS systems with resident XDT, XDT prompts
with:

EM:nnnnnn
XDT>

The steps for isolating the failure are similar to those described for
RSX- 1IM.

In systems with loadable XDT, two additional pieces of information are
provided. These are the facility code and the error code. The
facility code indicates which component of the system detected the
fault. The error code indicates what fault was detected. Loadable
XDT prompts with:

BC:nnnnnn ffffff eeeeee s

nnnnnn

The address within the Executive where the bug check was
executed.

ffffff

The octal facility code.

eeeeee

s

The octal error code.

Either the letter F or the letter N, which represent fatal and
non-fatal faults, respectively. If the letter N appears, XDT
allows you to use the proceed command.

Table 9 - 1 shows error codes that are independent of which facility
detected the fault. The high bit for these error codes will always be
zero. The definiton, symbolic name, and octal value of each code are
shown.

Table 9-2 shows facility codes and error codes for errors that can
only be issued by a particular facility. The high bit for these error
codes will always be zero. The definition, symbolic name, and octal
value o f each code are shown.

9-5

DEBUGGING WITH XDT

Table 9-1
Cornmon Facility-Independent Error Code Definitions

SST type errors - Major error code 1

BE.ODD 000100 Odd address or other trap four
BE.SGF 000102 Segment fault
BE.BPT 000104 Breakpoint or T-bit trap
BE.IOT 000106 lOT instruction
BE. ILl 000110 Illegal instruction
BE.EMT 000112 EMT instruction
BE.TRP 000114 Trap instruction
BE.STK 000116 Stack overflow

Internal inconsistency errors - Major error code 2

BE.NPA 000200
BE.SGN 000201
BE.2FR 000202
BE.ISR 000203
RO-R3
BE.FHW 000204
BE.CSR 000205
BE.IDC 000206
BE.ACP 000207
BE.HSP 000210
logging
BE.NCT 000211

Task with no parent aborted (p/os)
Feature not included in system
Double fork detected
Interrupt service routine modified

Fatal hardware error
Device CSR disappeared during powerfail
Internal database consistency error
ACP task aborted
Header subpacket problem in error

No current task

System pool-related errors - error code 3

BE.NPL 000300
BE.DDA 000301
BE.SIZ 000302
BE.BAK 000303
BE.POV 000304
BE.FSI 000305

No pool for operation
Double deallocation
Size of block invalid
Deallocated block below pool
Deallocation overlaps end of pool
Fragment with invalid size detected

Group global event flag errors - error code 4

BE.GGF 000400 Task locked to non-existent flags

9 - 6

(

(

(

(

(

(

(

(

9.3

DEBUGGING WITH XDT

Table 9 - 2
Standard Bugcheck Format Facility Code Definitions

I/O driver subsystem - facility code 2

BF.TTD 000200 Terminal driver

Executive components - facility code 3

BF.EXE 000300
BF.XDT 000301
BF ; MP 000302

Exec - General and miscellaneous
Exec - Executive debugging tool
Exec - Multiprocessing

Multiprocessor- specific type errors

BE.NDS 100100
BE.NCK 100200
BE.URM 100300
BE.WTL 100400
BE. UNO 100500
BE.ILC 100600
BE.LNS 100700
BE.OCP 101000
BE.MLK 101100
BE.NIN 101200
BE.UNP 101300

BF.POL 000303
BF.ERR 000304

BF.INT 000305

BF.INI 000306
BF.DVI 000307
BF.PAR 000310
BF.XIT 000311
BF.QIO 000312
BF.OPT 000313
BF.ACC 000314
BF.KAS 000315
BF.DIR 000316
BF.SAN 000317

Init failure - D-space not loaded
Clock not available
Fork to offline UNIBUS run
Attempt to lock already owned lock
Attempt to unlock not by owner
Illegal lock count value
Lock not locked
At entry another CPU showed ownership
Attempt to exit multiple lock
No reason for interprocessor interr upt
Some UNIBUS run not connected

Exec - Pool handling routines (CORAL)
Exec - hardware error processing

subsystem
Exec - Internal consistency checking
routine

Exec -
Exec -
Exec -
Exec -
Exec -
Exec -
Exec -
Exec -
Exec -
Exec -

INITL - initialization module
DVINT common interrupt handler
Parity memory support
Task exit/abort procesing
QIO directive
Seek optimization
System resource accounting
Kernal AST support
Miscellaneous directives
Crash with sanity timer message

XDT COMMANDS AND OPERATORS

XDT commands are generally compatible with ODT commands . However, XDT
does not contain the following commands available in ODT:

No $M - Mask register

No $X - Entry flag registers

No $V - SST vector registers

No $D - I/O LUN registers

No $E - SST data registers

No $W - $DSW (Directive Status Word) word

9-7

DEBUGGING WITH XDT

No E - Effective Address Search command

No F - Fill memory command

No N - Word search command

No V - Restore SST vectors command

No W - Memory word search command

All XDT command I/O goes to or from the console terminal.
contains all of the XDT commands and operators.

Table 9-3

Format

+ or space

(comma)

*

or

ern or
kern

Table 9-3
XDT Operators and Commands

Meaning

Arithmetic operator used in expressions.
Add the preceding argument to the following
argument to form the current argument.

Arithmetic operator used in expressions.
Subtract the following argument from the
preceding argument to form the current
argument. Also used as a unary operator to
indicate a negative value.

Argument separator. Separates the number
of a relocation register from a relative
location to specify a relocatable address.

Radix-50 separator used in constructing
Radix-50 words.

Current location indicator. Causes the
address of the last explicitly opened
location to be used as the current address
for XDT operations.

Argument separator. Separates multiple
arguments, allowing an address expression
or XDT register value to be identified.

Command
location
If ~
replaces
location

that closes the currently open
and prompts for the next command.

is preceded by k, the value k
the contents of the currently open
before it is closed.

Command that closes the currently open
location, opens the next sequential
location (a word or a byte, depending on
the mode in effect) and displays its
contents. If ern is preceded by k, the
value k replaces the contents of the
currently open location before it is
closed.

(Continued on next page)

9-8

(

(

(

(

(
Format

or k

@ or k@

(

> or k>

(

< or k<

DEBUGGING WITH XDT

Table 9 - 3 (Cont.)
XDT Operators and Commands

Meaning

Command that closes the currently open
location, opens the immediately preceding
location (a word or a byte, depending on
the mode in effect) and displays its
contents. If A is preceded by k, the value
k replaces the contents of the currently
open location before it is closed.

Command that interprets the contents of the
currently open location as a PC-relative
offset and calculates the address of the
next location to be opened; closes the
currently open location, and opens and
displays the contents of the new location
(a word or a byte, depending on the mode in
effect) thus evaluated. If is preceded
by k, the value k replaces the contents of
the currently open location before it is
closed.

Command that interprets the contents of the
currently open word location as an absolute
address, closes the currently open
location, and opens and displays the
contents of the absolute location (a word
or a byte, depending on the mode in effect)
thus evaluated. If @ is preceded by k,
the value k replaces the contents of the
currently open location before it is
closed.

Command that interprets the low- order byte
of the currently open word location as a
relative branch offset, and calculates the
address of the next location to be opened;
closes the currently open location, and
opens and displays the contents of the
relative branch location (a word or a byte,
depending on the mode in effect) thus
evaluated. If > is preceded by k, the
value k replaces the contents of the
currently open location before it is
closed.

Command that closes the currently open
location (opened by a , @, or > command),
and reopens the previous location (a word
or a byte, depending on the mode in
effect). If the currently open location
was not opened by a , @, or >, then <
simply closes and reopens the current
location. If < is preceded by k, the value
k replaces the contents of the currently
open location before it is closed.

(Continued on next page)

9- 9

Format

$n

$x or $nx

II or all

, or a'

DEBUGGING WITH XDT

Table 9 -3 (Cont.)
XDT Operators and Commands

Meaning

Expression that represents the address of
one of eight general registers, where n is
an octal digit identifying RO through R7.
The initial contents of these locations
represent the general register content at
the time XDT received control. By changing
these locations, you can change the
register contents for when control is
restored to the Executive (using the S, P,
or G command).

Expression that represents the address of
one of XDT's internal registers, where x is
one of the following alphabetic characters,
and n is one octal digit. Registers exist
within XDT in the following order:

S Processor status register (hardware
PS)

A Search argument register

L Low memory limit register

H High memory limit register

C Constant register

Q Quantity register

F Format register

nB Breakpoint address registers

nG Breakpoint proceed count registers

nI Breakpoint instruction registers

nR Relocation registers

Word mode ASCII operator. Interprets and
displays the contents of the currently open
(or the last previously opened) location as
two ASCII characters, and stores this word
in the quantity register ($Q). If is
preceded by a, the value a is taken as the
address of the location to be interpreted
and displayed.

Byte mode ASCII operator. Interprets and
displays the contents of the currently open
(or the last previously opened) location as
one ASCII character, and stores this byte
in the quantity register ($Q). If is
preceded by a, the value a is taken as the
address of the location to be interpreted
and displayed.

(Continued on next page)

9-10

(

(

(

(

(

(

Format

% or a%

/ or a /

\ or a \

k =

8 or 9 ,
DELETE,
or CTRL/ U

B

nB

ainB

DEBUGGING WITH XDT

Table 9-3 (Cont .)
XDT Operators and Commands

Meaning

Word mode Radix - 50 operator. Interprets
and displays the contents of the currentl y
open (or the last previously opened)
location as three Radix- 50 characters, and
stores this word in the quantity register
($0) . If % is preceded by a , the value a
is taken as the address of the location to
be interpreted and displayed .

Word mode octal operator. Displays the
contents of the last word l ocation opened ,
and stores this octal word in the quantity
register ($0) . If / is preceded by a, the
value is taken as the address of a word
location to be opened and displayed .

By~e mode octal operator. Displays the
contents of the last byte location opened,
and stores this octal byte in the quantity
register ($0) . If \ is preceded by a , XDT
takes the value a as the address of a byte
location to be opened and displayed.

Command that interprets and displays
expression value k as six octal digits and
stores this word in the quantity register
($0) .

Illegal expressions that cancel the c urrent
command . ODT then awaits a new command.
The decimal values 8 and 9 are not legal
characters and thus , when entered, cause
XDT to ignore the current command. The
DELETE and CTRL / U functi o ns are not
operational in RSX- IIM unless the terminal
driver supports transparent read/ write (a
system generation option) .

Command that removes a ll breakpoints .
Breakpoint can be in drivers, privileged
tasks , and other system-level code as well
as in the Executive itself.

Command that removes the nth breakpoint.
Breakpoint can be in drivers, privileged
t a sks , and other system- level code, as well
as in the Executive itself.

Command that sets breakpoint n at address
a. Breakpoint can b e in drivers,
privileged tasks, and other system- level
code as well a s in the Executive itself .
If n is omitted , XDT assumes the
lowest- numbered av a ilable sequential
bre akpoint.

(Continued on next page)

9 - 11

Format

C

D

G or aG

I

K

nK

a;nK

DEBUGGING WITH XDT

Table 9-3 (Cont .)
XDT Operators and Commands

Constant register
the contents of
register).

Meaning

indicator .
register $C

Represents
(constant

Command that accesses data space. After
this command is issued, XDT interprets all
references to locations as referring to
D-space (RSX-IIM- PLUS and Micro/RSX only).

Command that begins system execution at the
current location in the program counter,
following these steps: sets BPT
instructions in or restores BPT
instructions to all breakpoint locations;
restores the Processor Status Word; and
starts execution at the address specified
by the program counter (register $7). If G
is preceded by a, the value a replaces the
current program counter ($7) contents
before proceeding as described above.

Command that accesses instruction space.
After this command is issued, XDT
interprets all references to locations as
referring to the I-space of the task
(RSX-IIM-PLUS and Micro/RSX only).

Command that , using the relocation register
whose contents are equal to or closest to
(but less than) the address of the
currently open location, computes the
physical distance (in bytes) between the
address of the currently open location and
the value contained in that relocation
register. XDT displays this offset and
stores the value in the quantity register
($0) .

Command that computes the physical distance
(in bytes) between the address of the
currently open or the last-opened location
and the value contained in relocation
register n. XDT displays this offset and
stores the value in the quantity register
($0).

Command that computes the physical distance
(in bytes) between address a and the value
contained in relocation register n. XDT
displays this offset and stores the value
in the quantity register ($0).

(Continued on next page)

9 -12

(

(

(

(

(

(

(

Format

L or kL
or a;L
or a;kL

a O or a;kO

P or kP

Q

R

nR

a; n R

DEBUGGING WITH XDT

Table 9-3 (Cont.)
XDT Operators and Commands

Meaning

Command that lists all the word or byte
locations between the address limits that
are specified by the low memory limit
register ($L) and t h e high memory limit
register. If L is preceded by k , the value
k replaces the current contents of $H
before initiating the list operation. If L
is preceded by a , the value a replaces the
current contents of $L before initiating
the list operation. Note that XDT ' s
primitive terminal interface code
recognizes CTRL/ S a nd CTRL / Q so that the
output produced by this command may be
easily controlled. In loadable XDT , typing
CTRL/ O cancels the list command and retu rns
the XDT> prompt.

Command that calculates and displays the
PC-relative offset and the 8-bit branch
displacement from the currently open
location to address a; or calculates and
displays the PC-relative offset and the
8-bit branch displacement from the
specified address a to the specified
address k.

Command that causes the system to proceed
with execution from the current breakpoint
location and stops when the next breakpoint
location is encountered or the next trap
occurs, if any. If k is specified , XDT
proceeds with program execution from the
current location and stops at the
breakpoint only after encountering it the
number of times specified by integer k.

Quantity register
the contents of
register) .

indicator.
register $Q

Represents
(quantity

Command that sets all relocation registers
to the highest address value ,
177777 (oc tal) , so that they cannot be used
in forming addresses.

Command that sets relocation register n to
the highest address value, 177777 (octal),
so that it cannot be used in forming
addresses.

Command that sets relocation register n to
address value a. If n is omitted, XDT
assumes relocation register o.

(Continued on next page)

9-13

Format

S or nS

x

DEBUGGING WITH XDT

Table 9 - 3 (Cont.)
XDT Operators and Commands

Meaning

Command that executes one instruction and
displays the address of the next
instruction to be executed. If n is
specified, XDT executes n instructions and
displays the address of the next
instruction to be executed.

Command that exits from the Executive to
the system crash dump routine.

9-14

(

(

(

(

(

(

CHAPTER 10

ADDITIONAL DEBUGGING AIDS

The Task Builder on your system allows you to specify the debugger of
your choice to help you in program development. You should build only
one debugger into your task at a time. If you want to switch from one
debugger to another , you should rebuild your task.

Section 10.1 shows how you specify other debuggers to the Task Builder
for the three environments described in Chapter 1. Section 10.2
describes the Trace program , a debugging aid available on your system.

10.1 ACCESSING OTHER DEBUGGING AIDS

The following sections show how to specify a debugger other than ODT
to be linked with your object module (s) . The example in each section
shows a command line for linking the Trace debugging aid, described in
Section 8.2. You can specify the file name of any debugger in place
of [l,l]TRACE.OBJ.

10.1.1 MCR Command Line

To link a debugger with your task using MCR, specify the name of the
debugger object module as input to the Task Builder. Follow the
debugger object module name with the I DA switch , as in the following
example:

TKB> MYTASK=MYFILE,[l,l]TRACE/DA

The I DA switch identifies the file specified as a debugger. Since the
Task Builder assumes that the file type of input files is .OBJ, you
need not specify the file type of the debugger object modul e .

10.1.2 DCL Command Line

To link a debugger into your task using DCL, specify the name of the
debugger object module as an argument to the I DEBUG qualifier with the
LINK command, as in the following example:

> LINK/DEBUG:[l,l]TRACE/TASK:MYTASK MYFILE

Since DCL assumes that the file type of input files for the task
builder is .OBJ, you need not specify the file type of the debugger
object module.

10-1

ADDITIONAL DEBUGGING AIDS

10.2 THE TRACE DEBUGGING PROGRAM

The Trace program is a debugging aid that can be used instead of or
along with ODT to provide information about the execution of a user
task. Trace is most appropriate for use with relatively simple tasks
or with sections of tasks. Trace cannot be used with XDT.

Trace is an object module that you specify to the Task Builder when
you build your task, as described in Section 8.1. It is located in
UFD [l,lJ on the system disk, with the name TRACE.OBJ.

Trace is not an interactive program like ODT. When you run your task,
Trace is executed once and prints its listing on pseudo device CL:.
To run Trace again, you must run your task again .

10.2.1 The Trace Listing

A Trace listing contains two lines of information for each instruction
executed in the user's task. The first line is made up of five octal
words , representing the contents of the following registers:

1. Current relative program counter (PC)

2. Current PC

3. Next PC

4. Processor Status Word

5. Directive Status Word

The relative PC is determined by subtracting a user-specified bias
value from the actual PC. Section 8.2.2 describes how you specify
this bias value.

The second line of the Trace listing contains eight octal words
representing the contents of the following:

1-6. RO through R5

7. Stack pointer

8. The top word of the stack

Example 8-1 is a sample Trace listing for part of a user task.

Example 8-1 Sample Trace Output

001714 003174 003176 170020 000001
002637 000120 000000 140200 000000 000000 001256 003074

001716 003176 003202 170024 000001
002637 000120 000000 140200 000000 000000 001256 003074

001722 003202 003074 170024 000001
002637 000120 000000 140200 000000 000000 001260 001260

001614 003074 003100 170020 000001
002612 000120 000000 140200 000000 000000 001260 001260

10-2

(

(

(

(

(

(

ADDITIONAL DEBUGGING AIDS

10.2.2 Bias Values and Ranges

You can use the GBLPAT Task Builder option to specify:

• The bias value to be used in determining the relative PC

• The range (s) of task locations to be traced

10.2.2.1 Specifying a Bias Value - To specify a bias value for
relative PC calculation , enter an option line in the following format
in r esponse to the Task Builder prompt:

GBLPAT=segname:.BIAS : value

segname

The name of the task ' s root segment.

value

The octal value to be subtracted from the actual PC to establish
relative PC. (If a value is not specified , the initial stack
pointer is used.)

10.2.2.2 Specifying Ranges to be Traced - To specify up
ranges of locations for which execution should be traced ,
option line in the following format in response to the Task
prompt:

GBLPAT=segname:.RANGE:lowl:highl [... :lown:highn]

segname

The name of the task's root segment.

lowl •• • lown

to four
enter an
Builder

The low addresses, relative to the bias value, of r anges to be
traced .

highl •.• highn

The high addresses, relative to the bias value, of ranges to be
traced.

There can be up to four ranges. You must specify both the low and the
high address of each range.

10- 3

(

(

APPENDIX A

ERROR DETECTION

ODT and XDT respond to errors in user input and to certain
hardware - detected errors that occur during task execution. This
appendix describes these errors , ODT and XDT ' s response to them , and
what action the user can take to correct them.

A.l INPUT ERRORS

ODT and XDT use the question mark (?) to indicate that they have
detected an error in user input. After displaying the question mark,
the debugger generates a carriage return and line feed, and prompts
for another command.

ODT and XDT respond with the question mark to any of the following
input errors:

• Reference to an address without an operator

• Reference to an address outside the task's partition (ODT
only)

• Reference to an address that is not mapped (XDT only)

• Reference to a nonexistent register - - for example, $20

• Reference to supervisor space by a nonprivileged user (ODT
only)

• Input of an illegal character -- for example, 8 or 9

If you have typed an incorrect input string -- for example,
contradictory arguments for the W command -- you may find that the
simplest course of action is to cancel the input string by typing an
illegal character. You cannot, however, erase a string once you have
entered the command -- the character W, in this case.

Neither ODT nor XDT tells you what error has caused it to display the
question mark. However, an error sometimes causes them to return one
of the error codes listed in Section A.2, plus information on the
location at which the error occurred.

In some cases (for example, if you attempt a memory operation when $L
is greater than $H), ODT and XDT repeat their prompt but do not
display a question mark.

A- l

ERROR DETECTION

A.2 TASK IMAGE ERROR CODES

As described in Table 5-2, eight SST vector registers are us ed to
contain pointers to error-handling routines. Upon detecting an error
condition, ODT and XDT activate the appropriate routine and display an
error message. This message has the form cc:k, where cc is a
2 - character error code and k is the location at which the error
occurred. ODT and XDT display the location as a relative address if
there is a relocation register containing a base address less than the
absolute address of the location.

The following examples are error messages from a debugging session:

MP:007414

00 :1,003507

The remainder of this chapter is an alphabetic list of error codes .
Each error code is followed by an explanation and a description of
what action the user should take in response to the error.

BE

EM

FP

IL

10

Explanation: Breakpoint instruction executed at unexpected
location. The address of the breakpoint instruction does not
match the contents of any register, $08 through $78.

User Action: Examine your code to determine why the unexpected
breakpoint occurred; then continue with the P command.

Explanation: Invalid EMT instruction executed . Only EMT 377 and
EMT 376 (for a privileged task) are allowed by the Executive for
execution of Executive directives. Normally, vector address 30
is used for this trap sequence.

User Action: If you want to use an EMT
have written, set SST vector register 5
vector address.

trap
($ 5V)

handler that you
to the appropriate

Explanation: Floating-point instruction error. One of the
following has occurred: division by zero; illegal Floating Op
Code; flotation overflow or underflow; conversion fail ure.

User Action: Check your code for sequences that may have caused
one of these conditions.

Explanation: Reserved or illegal instruction executed. The task
tried to execute a nonexistent instruction, or an EIS or FPP
instruction in a system with no EIS or FPP hardware.

User Action: Check your code for typographical errors or the use
of a nonexistent instruction.

Explanation: lOT instruction executed. Normally, vector address
20 is used for this trap sequence.

User Action: To change the handling of I/O traps, set SST vector
register 3 ($3V) to the appropriate vector address.

A-2

(

(

(

(

(

MP

OD

(
TE

TR

(

(

ERROR DETECTION

Explanation: Memory protection violation or illegal memory
reference. The task tried to access a location outside of the
ranges mapped , or a location which it did not have the privilege
to access.

User Action: Check your code for typographical or programming
errors that could lead to this condition.

Explanation: Odd address reference on word instruction. The PC
contained an odd address when trying to access a word in memory.
Also, on some processors , execution of an illegal instruction.

Users Action: Check your code for the use of a word instruction
when a byte instruction was intended (MOV instead of MOVB, for
example) or a typographical error in the addres s specification.

Explanation: T- bit exception. The T-bit was set by some other
mechanism than a breakpoint or an S or P command. This can occur
if bit 4 is set in a word that is interpreted as the PSW due to
its position on the stack.

User Action: Check that the stack contains appropriate values.

Explanation: TRAP instruction executed.
address 34 is used for this trap sequence.

Normally , vector

User Action: To change the handling of TRAP instructions, set
SST vector register 6 ($6V) to the appropriate vector address.

A-3

(

(

(

APPENDIX B

PROCESSOR STATUS WORD

The Processor Status Word (PS) , stored at hardware location 777776,
contains information on the current status of the processor. The
information contained in this location includes:

• The current and previous operational modes of the processor
(mapped system only)

• The current processor priority

• An indicator that , when set , causes a trap upon completion of
the current instruction

• Condition codes describing the results of the last instruction
executed

The format of the Processor Status Word is shown in Figure B-1.

15 14 13 12 11 10 8 7 5 4 3 2 o

CARRY
L--__ OVERFLOW

'--- - -- ZERO
L--_ _ _ ___ NEGATIVE

L-____ _ _ __ TRACE TRAP
L--_ _ _ ___ ___ _ _ _______ ____ GEN REG SET

L-_ _ ________ _ _ _____ _ _ _ ___ _ _ PREVIOUS MODE

CURRENT MODE

ZK -49 1-8 1

Figure B- 1 Format of the Processor Status Word

Bits 15 and 14 indicate the current processor mode: user mode (11),
supervisor mode (01) , or kernel mode (00). Bits 13 and 12 indicate
the previous mode, that is, the mode the machine was in (user,
supervisor, or kernel) prior to the last interrupt or trap.

Bits 7 through 5 show the current priority of the central processor.
The central processor operates at anyone of eight levels of priority
(0 through 7) . When the central processor is operating at level 7
(the highest priority), an external device cannot interrupt it with a
request for service. The central processor must be operating at a
lower priority than the external device's request in order for the
interrupt to take effect.

B-1

PROCESSOR STATUS WORD

The trap bit (bit 4) can be set or cleared under program control.
When set, a processor trap will occur through location 14 upon
completion of the current user instruction, and a new Processor Status
Word will be loaded. The trap (T) bit is especially useful in
debugging programs, because it provides an efficient means for
stepping through the task one instruction at a time. ODT uses the
T-bit to execute instructions when you are stepping through your
program with the S command, described in Section 3.5.

The condition codes N, Z, V, and C (bits 3 through 0, respectively)
indicate the result of the last central processor operation. These
bits are set as follows:

N=l, if the result was negative
Z=l, if the result was zero
V=l, if the operation resulted in an arithmetic overflow
C=l , if the operation resulted in a carry from the most

significant bit

8-2

(

(

(

(

(

(

(

(

INDEX

A register, 2-6, 5-3, 6-2, 9-10
a symbol, 2-1
ABORT command, 1-5
Absolute

address , 2-2
location, 2-5, 4-4, 9-9

Address
absolute, 2-2, 5-6
relative, 2-2

format , 2-2
relocatable, 2-2, 5-6, 9-12

calculating, 2-9, 7-1
Address expression

See Expression
Apostrophe operator (')

See Operator
Argument

register, 2-6, 5-3
separator, 2-5, 9-8

Arithmetic
calculations, 7-1

Arithmetic operator
See Operator

ASCII
displaying, 4-6
operator, 2-7

byte mode, 4-6, 9-10
word mode, 4-6, 9-10

Asterisk separator (*)
See Separator

At sign command (@), 2-5, 4-4 ,
9-9

B command, 2-8, 3-1 to 3-2, 9-11
B register , 2-7, 5-4, 9-10
Backslash operator ()

See Operator
Bias value, 2-3

Trace program, 10-3
BPT trap instruction, 8-5
Branch

location, 2-6, 9-9
offset, 4-5, 7-1

calculating, 4-5
Breakpoint, 3-1, 3-3, 8-7, 9-13

address register , 2-7, 3-1, 5-4,
9-10

clearing, 3-2
inserting with OPEN, 8-7
inserting with ZAP utility, 8-8
instruction register, 2-7, 5-4,

9-10
proceed count, 3-4

register, 2-7, 5-4, 9-10
removing , 2-8, 3-2, 9-11
setting, 2-8, 3-1

XDT, 9-2
BRK command, 8-7
Bug check, 9-4

Byte location
displaying, 4-2 to 4-3
opening, 4-2 to 4-3

Byte mode
changing to word mode, 4-3
operator

ASCII, 2-7, 9-10
octal, 2- 8, 4-2, 9-11

C register, 2-6, 5-3, 9-10
indicator, 2-8, 7-3, 9-12

Character, 2-4
Circumflex command (), 2-5, 4-2,

4-4, 9-9
Comma separator (,)

See Separator
Command

at sign (@), 2-5, 4-4, 9-9
B, 2-8, 9-11
circumflex (), 2-5, 4-2 , 4-4,

9-9
D, 2-8, 9-12
E, 2-9, 6-2
equal sign (=), 2-8, 7-2, 9-11
F , 2-9, 6-4
G, 2-9, 8-6, 9-12
I, 2-9, 9-12
K , 2-9, 9-12
L, 2-10, 6-4, 9-13
left-angle bracket «), 2-6,

9-9
Line feed, 2-5, 4-3, 9-8
N, 2-10, 6-2
0, 2-10 , 7-1, 9-13
P, 2-10, 8-7, 9-13
R, 2-11, 9-13

Return, 2-5, 4-2, 9-8
right-angle bracket (», 2-6,

9-9
S, 2- 11, 9-1, 9-14
U, 2-11
underscore (), 2-5, 4-4, 9-9
V, 2-11
W, 2-11, 6-2
X (ODT), 1-4, 2- 12
X (XDT), 9-1, 9-14
Z, 2-12

Constant register
See C register

CTRL/C
ODT, 1-5

CTRL/J, 4-3
CTRL/O

XDT, 9-13
CTRL/U

ODT, 2-8
Current location indicator (.),

7-3, 9-8

D command, 2-8, 9-12

Index-l

INDEX

D register, 2- 7, 5-4, 6 -2
D- space

See data space
Data space, 7- 2 , 9- 3

command, 2- 8, 9 - 12
enabling, 1- 3

DCL command
linking

ODT, 1 - 3
ODTID, 1-3
supervisor libraries, 1- 4

DEBUG command
RSX- llM-PLUS and Micro/RSX, 1-5

Device control
LUN register, 2- 7, 5-4 , 6 - 2

Directive Status Word
See DSW

Dollar sign ($), 2- 6, 5-1, 9 - 10
Dot (.) indicator

See Register indicator
Driver

debugging, 9 -2
DSW

register, 5 - 3
DSW register

See W register

E command, 2- 9, 6 - 2 to 6- 3
E register, 2- 7, 5- 4
EMT trap instruction, 8- 5 , 9 - 5
Equal sign command (=), 2-8 , 9- 11
Equal sign operator (=)

See Operator
Error

detection , A- l
error codes, 9-6, A-2
facility codes, 9 - 6
T-bit, 9-4
task image, A- 2

Executive Debugging Tool
See XDT

Exit command
ODT, 2-12
XDT, 9- 14

Expression, 2- 3
address, 2- 2
evaluating, 2- 3, 7- 2
format, 2- 3
illegal, 2- 8, 9- 11
Radix-50

evaluating, 7-4
register address, 2-6, 9- 10

F command, 2-9, 6 -4
F register, 2- 6, 5- 3, 9- 10
Fill command

See F command
Format

memory listing , 6- 5
PSW, B- 1
Trace program listing , 10- 2

Format register
See F register

G command, 2-9, 3-2, 3-4 , 8 - 6,
9-12

G register, 2-7, 5-4 , 9-10
GBLPAT

See TKB
General register, 5-1

contents, 5- 2
examining , 5- 1
setting, 5- 1

Go command
See G command

H register , 2- 6, 5- 3, 6- 1, 9- 10
High limit register

See H register

I command, 2-9 , 9 - 12
I register, 2- 7 , 5-4 , 9-10
I - space

See instruction space
Indicator

See Register indicator
Instruction space , 3- 2 , 7 - 2, 9- 3

command , 2- 9, 9- 12
enabling, 1-3

Internal register , 5- 2
accessing, 5-2

Interrrupt processing, 8 - 3
lOT trap instruction , 8 - 5 , 9-4

K command, 2- 9, 7- 1 , 9-12
k symbol , 2-1

L command, 2- 10, 6- 4, 9- 13
L register , 2- 6, 5 - 3, 6- 1, 9 - 10
Left- angle bracket command «),

2- 6, 4-5, 9-9
Limit register, 5- 3
Line feed command, 2- 5 , 4-3 , 9-8
LINK command , 1-3

/ DEBUG qualifier, 10- 1
specifying a debugger, 10- 1

Linking
ODT

from DCL , 1-3
from MCR, 1- 2
to enable instruction and

data space features , 1- 3
List command

See L command
Location

absolute, 2- 5, 4-4, 9- 9
altering, 4-1
branch, 4- 5
closing, 4-2
displaying, 4-1

format , 4-1
indicator , 7- 3
opening, 4-1

ASCII , 4-6
branch offset, 4-5
byte , 4- 2
next sequential, 4 - 3
preceding, 4-4

Index- 2

(

(

(

(

(

(

(

(

Location
opening (Cont.)

Radix-50, 4-7
word, 4-2

PC-relative, 4-4
reopening last opened, 4-2
returning from, 4-5

Location indicator
See Register indicator

Loop, 3-4
Low limit register

See L register

M register, 2-6, 5-3, 6-2
m symbol, 2-1
Mask register

See M register
MCR command

linking
ODT, 1-2
ODTID, 1-3
supervisor libraries, 1-4

Memory
E command, 6-2
examining memory location

XDT, 9-3
F command, 6-4
fill command, 2-9
H register, 2-6
L command, 6-4
L register, 2-6
limit register, 5-3, 6 - 1
list command, 2-10
listing

format, 6-5
N command, 6-2
search command, 2-9 to 2-11,

6-2
W command, 6-2

Message
invocation, 1-4

Minus sign operator (-)
See Operator

Mode
user, 9-2

N command, 2-10 , 6-2 to 6-3
n symbol, 2-1

o command, 2-10, 7-1, 9-13
Octal operator, 2-3, 2-7 to 2-8

byte mode, 9-11
word mode, 9-11

ODT
exiting, 1-4
invoking, 1-4
linking, 1-2
overview, 1-1

ODTID module, 1-3
Offset, 2-3

branch, 7-1
calculating, 2-10, 7-1, 9-13

instruction and data space,
7-2

INDEX

Offset (Cont.)
negative, 7-2
PC-relative, 7-1, 9-13
positive, 7-2

OPEN command, 8-7
Operating system

return to, 2-12
Operator, 2-3 to 2-4

apostrophe ('), 2-7, 4-6, 9-10
ASCII

byte mode, 4-6
word mode, 4-6

backslash (), 2-8, 4-2 to 4-3,
9-11

byte mode
ASCII, 2-7 , 9-10
octal, 2-8, 4-2, 9-11

equal sign (=), 7-2
minus sign (-), 2-3 to 2-4, 9-8
per cent sign (%), 2-7, 4-7,

9-11
plus sign (+), 2-3 to 2-4, 9-8
quotation mark ("), 2-7, 4-6,

9-10
Radix-50

word mode, 4-7
slash (/), 2-7, 4-2 to 4-3,

9-11
space, 9-8
word mode

ASCII, 2-7, 9-10
octal, 2-7, 4-2, 9-11
Radix-50, 2-7, 9-11

P command, 2-10, 3-3 to 3-4, 8-7,
9-13

PC-relative
location, 2-5, 4-4
offset, 2-10, 7-1, 9-13

Per cent sign operator (%)
See Operator

Plus sign operator (+)
See Operator

Proceed command
See P command

Proceed count, 3-4
register, 5-4

Processor clock, 8-9
turning off, 9-4

Processor states, 8-2
priority, 8-3

Processor Status Word
See PSW

Processor traps
XDT, 8-5

Prompt
ODT, 1-4
XDT, 9-4

PSW, B-1
format, B-1
register, 2-6, 5-3

Q register, 2-6, 5-3, 7-2, 9-10
indicator , 2-11, 7-3, 9-13

Index-3

Quantity register
See Q register

Question mark (7)
user input error, A-l

Quotation mark operator (")
See Operator

R command, 2-11, 9-13
R register , 2-7, 5-5, 9-10

clearing, 2-11, 5-6, 9-13
setting, 2-11, 5-6, 9-13

Radix-50
character set, 7-4
displaying, 4-7
evaluating, 7-4
numeric equivalents, 7-4
opening, 4-7
operator, 2-7

word mode, 4-7, 9-11
separator (*), 2-4, 7-4 , 9-8

Range
Trace program, 10-3

Reentry vector register
See X register

Reference
search, 6-3

Register, 2-6, 5-1
A, 2-6, 5-3, 6-2, 9-10
address expression, 5-1
B, 2-7, 5-4, 9-10

clearing, 3-2
breakpoint

address, 5-4, 9-10
instruction, 5-4, 9-10
proceed count, 5-4, 9-10

C, 2-6, 5-3, 9-10
indicator, 9-12

D, 2-7, 5-4, 6-2
E, 2-7, 5-4
F , 2-6, 4-1 , 5-3, 9-10
G, 2-7, 5-4, 9-10
general, 5-1, 9-10

contents, 5-2
examining, 5-1
setting, 5-1

H, 2-6, 5-3, 6-1, 9-10
I, 2- 7, 5-4, 9 - 10
indicator, 2-8, 2-11
internal, 5-2

accessing, 5-2
L, 2-6, 5-3, 6-1, 9-10
M, 2-6, 5-3, 6-2
memory operations, 6-1
Q, 2-6, 5-3, 7-2, 9-10

indicator, 9-13
R, 2-7, 5-5, 9-10

clearing, 2-11, 5-6, 9-13
setting, 2-11, 5-6, 9-13

S, 2-6, 5-3, 9-10
search limit, 6-1
V, 2-7, 5-5
W, 2-6, 5-3
X, 2-6, 5-3, 5-6
XDT internal, 9-10

INDEX

Register indicator, 2-3
C register, 2-3, 7-3, 9-12
current location (.), 2-3, 7-3,

9-8
Q register, 2-3, 7-3, 9-13

Register set, 5-4
Relative

address, 2-2
format, 2-2

branch location, 2-6, 4-5, 9-9
Relocatable

address, 2-2, 5-6, 9-12
calculating, 2-9, 7-1

Relocation register
See R register

Return command , 2-5, 4-2, 9-8
Right-angle bracket command (»,

2-6, 4-5, 9-9

S command, 2-11, 3-4, 9-1, 9-14
S register, 2-6, 5-3, 9-10
Search

argument register , 2-6, 5-3,
6-2

byte, 6-3
command, 6-2

E, 6-3
N, 6-3
W, 6-3

limit register, 6-1
mask register, 2-6, 5-3, 6-2
memory

command, 2-9 to 2-10
reference, 6-3
word, 6-3

Semicolon separator (;)
See Separator

Separator
argument (,), 2-4, 9-8
argument (;), 2-5
Radix-50 (*), 2-4, 7-4, 9-8

Slash operator (/)
See Operator

Space operator
See Operator

SST
stack content register, 2-7,

5-4
vector

handling, 2-11
register, 2-7, 5-5

XDT, 8-4
Stack Depth Indicator

See $STKDP
Step command

See S command
$STKDP, 8-3, 8-6, 9-1
Supervisor library, 1-4

install
READ/WRITE, 1-4

Supervisor mode, 1-4, 3-2
command, 2-12
debugging, 1-4

Index-4

(

(

(

(

(

(

(

(

INDEX

Supervisor mode (Cont .)
setting, 2-12

Task
fixed, 5- 6, 9- 2
p r ivileged, 9- 1

debugging with ZAP, 8 - 8
Task Builder

See TKB
Task execution

aborting, 1- 5
beginning, 2- 9, 3- 2, 9 - 12
continuing, 2- 10, 3-3
resuming, 1 - 5, 3- 4

Task map, 1- 2 to 1 - 3, 5- 6
TE trap, 1- 5
TKB

IDA switch, 10- 1
GBLPAT option, 10- 3
linking

ODT, 1- 2
ODTID, 1 - 3
supervisor libraries, 1- 4

specifying a debugge r, 10- 1
UNITS option, 6- 2

Trace program, 10- 2
listing, 10-2

format, 10- 2
Trap, 1- 5, 2- 11, 5- 5, 8 - 4, A- 2

entry codes, 8 - 5
handling, 2- 11, 5- 5
instr uction

BPT, 8 - 5
EMT, 8 - 5, 9 - 5
lOT, 8- 5, 9- 4
TRAP, 8 - 5

SST vector register, 5- 5
TRAP t rap instruct ion, 8 - 5

U command, 2- 11
Underscor e command (), 2- 5, 4- 4,

9 - 9
User mode, 3- 2

command, 2- 11
s e tting, 2- 11

V command, 2- 11
V register, 2- 7, 5- 5
Var iable, 2- 1

Vector
r eentry registe r, 5- 3, 5- 6

W command, 2- 11, 6 - 2 to 6-3
W register, 2- 6, 5- 3
Word location

displaying, 4- 2 to 4- 3
opening, 4- 2 to 4 - 3
underscore command (), 4- 5

Word mode
changing to byte mode, 4 - 3
ope r ator

ASCII, 2- 7, 9- 10
octal, 2-7, 4 - 2, 9- 11
Radix - 50, 2- 7, 9-11

X command (ODT) , 1 - 4, 2- 12
X command (XDT) , 9 - 1, 9- 14
X register, 2- 6, 5 - 3, 5- 6
x symbol, 2- 1
XDT, 8 - 1

BPT
inserting with OPEN, 8 - 7
restoring instruction, 8- 8
s etting, 8 - 7

bug check, 9- 4
commands, 9-8
debugging

driver, 9- 2
privileged task, 9- 1

entering, 8 - 4
BPT instruction, 8- 7
BRK command, 8 - 7
from hung system, 8 - 9
vi r gin sys t em boot, 8 - 6

examining memory location, 9- 3
including in system, 8 - 1
loadable, 8 - 2

error code, 9- 5
facility code, 9- 5

operators, 9 - 8
SST, 8 - 4
trap entry codes, 8 - 5

Z command, 2- 12
ZAP utility

debugging privileged t a sk, 8-8
inserting breakpoint, 8 - 8
modifying sys t em image , 8 - 8

Index- 5

(

(

READER'S COMMENTS

RSX- llM/M-PLUS and
MicrolRSX Debugging

Reference Manual
AA-EZ50A-TC

NOTE: This form is for document comments only. DIGITAL will use comments submitted on this form at the
company's discretion. If you require a written reply and are eligible to receive one under Software
Performance Report (SPR) service, submit your comments on an SPR form.

Did you find this manual understandable, usable, and well organized? Please make suggestions for improvement.

Did you find errors in this manual? If so, specify the error and the page number.

Please indicate the type of user/reader that you most nearly represent.

o Assembly language programmer
o Higher-level language programmer
o Occasional programmer (experienced)
o User with little programming experience
o Student programmer
o Other (please specify)

Name __ Date ______________________________ __

Organ iza tion

Street

City _________ ____ _ _ _ _____ _ State _______ Zip Code ____ _ _ _

or Country

- - DoNotTear-FoldHereandTape - - - - - - - - - -

111111

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO.33 MAYNARD MASS.

POSTAG E WILL BE PAID BY ADDRESSEE

SSG PUBLICATIONS ZK1-3/J35
DIGITAL EQUIPMENT CORPORATION
110 SPIT BROOK ROAD
NASHUA, NEW HAMPSHIRE 03062-2698

No Postage
Necessary

if Mailed in the
United States

- I

- - - Do Not Tear - Fold Here -

... = U

Printed in U.S.A.

