BASIC-PLUS-2
RSX-11M/IAS

User’s Guide
Order No. AA-0157B-TC

dlilgliltlall

September 1978

This manual describes the use of the BASIC-PLUS-2 Compiler on the
RSX-11M and IAS operating systems. The description includes compiler com-

mands, linkage of object modules to produce an executable task, RMS Record
170, and error messages.

BASIC-PLUS-2
RSX-11M/IAS

User’s Guide
Order No. AA-0157B-TC

SUPERSESSION/UPDATE INFORMATION: This manual supersedes the manual of the same
name with the order number AA-0157A-TC.

OPERATING SYSTEM AND VERSION: RSX-11M V3.1 and IAS V2.0

SOFTWARE VERSION: PDP-11 BASIC-PLUS-2 V1.5

To order additional copies of this document, contact the Software Distribution
Center, Digital Equipment Corporation, Maynard, Massachusetts 01754

digital equipment corporation - maynard. massachusetts

The information in this document is subject to change without notice and
should not be construed as a commitment by Digital Equipment Corporation.
Digital Equipment Corporation assumes no responsibility for any errors that
may appear in this document.

The software described in this document is furnished under a license and may
only be used or copied in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equip-
ment that is not supplied by DIGITAL or its affiliated companies.

Copyright © 1978 Digital Equipment Corporation

The postage prepaid READER’S COMMENT'S form on the last page of this
document requests the user’s critical evaluation to assist us in preparing
future documentation.

The following are trademarks of Digital Equipment Corporation:

DIGITAL DECsystem-10 MASSBUS
DEC DECtape OMNIBUS
PDP DIBOL 0S/8
DECUS EDUSYSTEM PHA
UNIBUS FLIP CHIP RSTS
COMPUTER LABS FOCAL RSX
COMTEX INDAC TYPESET-8
DDT LAB-8 TYPESET-11
DECCOMM DECSYSTEM-20 TMS-11
ASSIST-11 RTS-8 ITPS-10
VAX VMS SBI

DECnet IAS

2/79-

Contents

Page
Preface Vil
Chapter 1 BASIC-PLUS-2
1.1 BASIC-PLUS-2 Compiler. |
1.2 Commands 1.4
1.2.1 IDENTIFY Command 1-3
122 NEWCommand. 1-4
1.23 LIST Command 1-4
1.24 APPEND Command 1-5
1.2,5 DELETE Command 1-6
126 SAVE Command. 1-7
1.2.7 COMPILE Command 1-8
1.2.8 BUILD Command 1-10
1.2.9 LIBRARY Command. 1-13
1.2.10 OLD Command o v v v v i 1-13
1.2.11 RENAME Command. 1-14
1.2.12 REPLACE Command « v v v v v v v o o v & o 1-14
1.2.13 SCALE Command 1-15
1.2.14 SHOW Command 1-15
1.2.15 UNSAVE Command 1-16
1216 EXIT Command. v v v v 5 o & o 5 & o & 5 & » & & 3 1-17
1.3 Editing BASIC-PLUS-2 Programs 1-17
1.3.1 Debugging: « «"s o« i = « ¢ o v v 6 v e e s s e e e e e s 1-18
1.3.1.1 BREAK and UNBREAK Commands 1-19
1.38.5.2 STEP Command. 1-21
1.3.1.3 PRINT and LET Commands 1-22
1.3.1.4 TRACE and UNTRACE Commands. 1-22
1.3.1.5 ERR Command 1-22
1.3.1.6 ERL Command 1-23
1.3.1.7 ERN$ Command. 1-23
1.3.1.8 RECOUNT Command 1-23
1.3.1.9 STATUS Command 1-24
1.4 BASIC-PLUS-2 Programs.« v v« . .. 1-24
1.4.1 Source Lines. e 1-25
1.4.2 Subprograms 1-26
1.4.2.1 Subprogram Linkage 1-26
1.4.2.2 Subprogram Register Usage. 1-27
1.4.2.3 Subprogram Calls 1-97
1.4.3 BASIC-PLUS-2 Sample Program. 1-30
Chapter 2 Files
2.1 OPEN Statements 2-1
2.2 Special Case Files. 2-3
2.2.1 Virtual Files. 2-3
2.2.2 Organization Undefined 2-5
2224 FSP$ Function. 2-6

1

Chapter 3

Chapter 4

24

2.5

2.6

2.0

Introduction to RMS

2.3.1 Sequential Files %ow oW & oA
2.3.2 Relative Files
2.3.3 Indexed Files

2.3.3.1 Primary and Alternate Key Record Access.
234 FileSharing.
2.3.5 RMS Memory Allocation.
Record Access Methods
2.4.1 Sequential Access
2.4.2 Random Accesso
Record Format
2.5.1 Fixed-LengthRecords
2.5.2 Variable-Length Records
Data Strueture « « .+ s s 5 5 5 & & s e s 6 & B G 6§ 8
26 Bloeks. « « v v s v v s e @ m e 8 5 w9 E B G B B E 8 8 o8
262 Buelets. . i - « i 5 v v o v i s @M E EE W e s e e

2621 BucketSze i v « v 5% 5 5 50 s @ E 5 s 6 8 o8
Record Mapping

BASIC-PLUS-2 on RSX-11M

3.1
3.2

3.3
3.4

Compiler Invocation on RSX-11M
Task Builder Usage on RSX-11M

3.2.1 Task Builder Options

3.4.1 CHAIN Statement. v v v v v v v v .
3.4.2 NAME AS Statement
3.4.3 SLEEP Statement.

BASIC-PLUS-2 on IAS

4.1
4.2

4.3
4.4

Compiler Invocationon IAS
Task Builder Invocationon IAS

4.2.1 Link Command LineInput.
4.2.2 Qualifierso
423 Link Optionso

Task Executionon IAS,
IAS Restrictions. e

Appendix A BASIC-PLUS-2 Language Elements

v

Al
A2
A3
A4
A5

Line and Data Format
Commands v i e e e e e
Statements e e S w

2-27
2-28

Appendix B Run-Time Error Codes and Messages

Appendix C Compile Time Error Messages

Gl Tracebdck « « « s o s « 5 5 5 « v 5 55 ¥ 5 %5 % ¥ E & 5 F F F B A C-2
C.2 Compile-Time Error Messages v v v v v v v v .. C-3

Appendix D ASCII Codes and Data Representation

D.1 ASCII Character Codes v v v v v v v v v v D-1
D.2 Radix-50 Character Set D-6
D.3 Integer Format D-9
D.4 Floating-Point Formats D-10
D.4.1 Real Format (2-Word Floating Point) D-10
D.4.2 Double Precision Format (4-Word Floating Point) D-11
D.5 String and Array Format D-11
D.5.1 Dynamic String Format D-11
D.5.2 Array Format D-12
D.5.3 Array Descriptor Word D-13
Index
Tables
1-1 BASIC-PLUS-2 Commands 1-2
1-2 BASIC-PLUS-2 BUILD and COMPILE Command Switches 1-3
2-1 Comparison of File Organizations 2-7
2-2 Allocation Algorithms 2-21
2-3 Access Methods.o 2-22
2-4 Relative File Default Bucket Size 2-30
2-5 Indexed File Default Bucket Size 2-31
3-1 Task Builder Options 3-3
4-1 IAS Default File Types 4-2
4-2 Link Options 4-5
A-1 Arithmetic Operators A-20
A-2 Logical Operators A-20
A-3 Relational Operators L. .. A-21
A-4 Reserved Keyword List A-21
B-1 ERR Values, Error Messages and Their Meanings. B-1
D-1 ASCIICodes v v v v i D-1
D-2 ASCII/Radix-50 Equivalents. D-8
D-3 Array Descriptor Word D-13
Figures
1-1 Argument List Format 1-27
1-2 CALL Statement e 1-28
1-3 CALL BY REF Statement. 1-29
960RSXALL

Preface

The BASIC-PLUS-2 RSX-11M/IAS User’s Guide describes the features and
use of the BASIC-PLUS-2 Compiler on PDP-11 operating systems.

Chapter 1 describes the BASIC-PLUS-2 command format, debugging aids,
and the creation of source programs. -

Chapter 2 contains information on RMS (Record Management Services) file
handling and Record 1/0.

Chapter 3 explains the interface between the BASIC-PLUS-2 Compiler and
operating systems that use the MCR command language. It also describes the
procedures used to create an executable task from a BASIC-PLUS-2 source
program on these systems.

Chapter 4 explains the interface between the BASIC-PLUS-2 Compiler and
operating systems that use the DCL command language. It also describes the
procedures used to create an executable task from a BASIC-PLUS-2 source
program on these systems.

The manual also contains appendixes that describe compatibility issues and
the Translator, the BASIC-PLUS-2 vocabulary, error messages and recovery
procedures, and data and character representations.

Vit

Intended Audience

This manual is not a tutorial. You should be familiar with your operating
system and the BASIC-PLUS-2 language before reading this user’s guide.
Information on the BASIC-PLUS-2 language can be found in the PDP-11
BASIC-PLUS-2 Language Reference Manual. Information on system docu-
mentation can be found in the Documentation Directory appropriate to your
system. In addition, specific sections of this manual refer to other documents
that provide information on the subject under discussion.

Documentation Conventions

viii

Throughout this manual, symbols and other notation conventions are used to
represent keyboard characters, textual information, and otherwise ease the
exposition of material. The symbols and conventions used are explained
below:

RED The symbol represents a carriage return/line feed
combination.

The circumflex represents a control character. For exam-
ple, "C indicates a CTRUQ. In some cases, a circumflex is
also used to indicate exponentiation.

RED Color-highlighted information in examples is typed by the
user.

"print" As these words are used in the text, the system prints and
and "type" the user types.

BASIC The term BASIC is used as a generic term for
BASIC-PLUS-2. Where this may cause confusion, the
practice is discontinued and the proper term is used.

UPPER CASE In examples of format, information that you type as
lower case shown appears in upper-case letters. Lower-case indicates
that the information is user dependent.

{braces} Braces indicate that, of several elements shown, one is
chosen.

[brackets] Brackets indicate user options.

MCR Monitor Console Routine; the command language used on
the RSX-11M operating system.

DCL Digital Command Language; the command language used
on the IAS operating system.

Chapter 1
BASIC-PLUS-2

The BASIC-PLUS-2 Language Processor is composed of a Compiler and an
Object-Time System/Library. The OTS/Library is discussed in Section 1.2.9.
This chapter contains information on the BASIC-PLUS-2 Compiler. It de-
scribes the syntax and use of BASIC commands, editing of programs, debug-
ging aids, and the creation of source files.

1.1 BASIC-PLUS-2 Compiler

The BASIC-PLUS-2 Compiler produces an object module from your source
program. As you enter the source program, the compiler checks each program
line for syntax errors and returns an appropriate message when an error is
found. You can then correct the program (if necessary) and compile it. Pro-
gram compilation results in an object module that is linked and executed at
the operating system command level. The creation and compilation of a
source program is detailed in the rest of this chapter. Chapters 3 and 4 discuss
the procedures used to link and run a BASIC-PLUS-2 task.

To invoke the BASIC-PLUS-2 Compiler, type a system-dependent command
as described in Chapters 3 and 4. If access to BASIC-PLUS-2 is successful,
BASIC prints an identification line (see Section 1.2.1) followed by a prompt.
This prompt indicates that the compiler is prepared to accept input. Note
that the system manager can optionally change the text of this prompt during
the installation of BASIC-PLUS-2; Basic2 is the default prompt and is used
throughout this manual.

1.2 Commands

Input to the compiler can be a BASIC command or a source program line.
BASIC source programs are described in Section 1.4. This section and the
subsections that follow describe the BASIC commands.

1-1

1-2

You use commands to perform various functions outside the context of pro-
grams. That is, commands require no line numbers and you type them di-
rectly to BASIC, along with any required arguments. Table 1-1 lists the
BASIC commands with brief explanations of their use. Succeeding sections
describe each command in detail. The commands listed in Table 1-1 can be
used individually or combined in a user-created indirect command file. The
command file allows you to execute a series of BASIC commands by means of
a single command file specification.

Table 1-1: BASIC-PLUS-2 Commands
Command Function

APPEND Merges the current source program with a previously saved program.

BUILD Creates a command file and an overlay description file from your source
program. These files are used to specify input to the task builder program.

COMPILE Translates a BASIC source program into an object module with a default file
type of .OBJ.

LOCK/sw Causes the switches you specify (sw) to be used as the default for succeeding
COMPILE commands. A LOCK command with no arguments disables the
specified switches and returns to the BASIC default switch settings.

DELETE Erases a specified line or lines from a BASIC source program.

EXIT Clears memory, closes all files, and returns you to operating system command
level.

IDENTIFY Causes BASIC-PLUS-2 to print an identification header.

LIBRARY Allows you to specify a BASIC-PLUS-2 resident library.

LIST Prints a copy of the current program or its specified lines.

NEW Clears memory for the creation of a new program.

OLD Clears memory and loads a specified existing program into memory.

RENAME Changes the name of the current program in memory.

REPLACE Stores the current program on the system default device and directory or a
specified device.

SAVE Copies and preserves a source program on the system default device and
directory or a specified device.

SCALE Controls the scale factor for double-precision (4-word floating-point) format.

UNSAVE Deletes a specified file.

BASIC-PLUS-2

Table 1-2: BASIC-PLUS-2 BUILD and COMPILE
Command Switches

Command/Switch Default Function

BUILD/DUMP /NODUMP Instructs the Run-Time System to produce a binary
dump of memory contents in the event of an abnormal
exit from a user program.

BUILD/EXTEND:n | /NOEXTEND| Increases program storage by a minimum of n words.

BUILD/MAP Installation Causes the Task Builder to create a memory allocation
Option map file with a default extension of .MAP.
BUILD/IND /NOIND Links in the code necessary to use RMS-11 Indexed file
organization.
BUILD/REL /NOREL Links in the code necessary to use RMS-11 Relative

file organization.

BUILD/SEQ /NOSEQ Links in the code necessary to use RMS-11 Sequential
file organization.

COMPILE/DEBUG | /NODEB Translates a BASIC source program and enables the
debugging aid.

COMPILE/DOUBLE | Installation Translates a BASIC program and enables the double-
Option precision (4-word floating-point) math package.

COMPILE/MACRO | /NOMAC Translates a BASIC source program into a MACRO
source file with a default file extension of .MAC.

COMPILE/LINE Installation Translates a BASIC source program that uses internal
Option line headers for error processing.

BASIC command specifications can be abbreviated to a minimum of three
letters. For example, the COMPILE/DEBUG command can be abbreviated to
COM/DEB. Note that if the abbreviation NH is used with the LIST com-
mand, NH must be appended to the command abbreviation, i.e., LISTNH.
The specific abbreviations for each command are given in the appropriate
subsection that follows.

1.2.1 IDENTIFY Command

The IDENTIFY command (IDE) prints a BASIC-PLUS-2 header. The
header consists of the BASIC-PLUS-2 name and version number. IDENTIFY
eliminates confusion as to which BASIC is currently in effect. That is, an
identifying header is printed in response to this command only when the

BASIC-PLUS-2 Compiler is present.

Consider the following example:

IDENTIFY @&
BASIC-PLUS-2 Vo1-50

BASIC-PLUS-2 1-3

1-4

Basic?2
EXIT (RET

In this example, the current availability of BASIC-PLUS-2 is confirmed as a
result of typing the IDENTIFY command. After you type EXIT (see Section
1.2.15), BASIC-PLUS-2 is replaced by the operating system command level.
An IDENTIFY command to the operating system produces an error because
the command is not part of that system’s command set. Note that the same
identification header is also printed when you first access BASIC-PLUS-2.

1.2.2 NEW Command

The NEW command reserves space for building programs by creating a tem-
porary file. When you type NEW, any name and source code currently in the
compiler’s buffer or in a temporary file are deleted. After you type the com-
mand, BASIC prompts for the new program’s name, as follows:

NEW @D
NEW FILE NAME--

In response to this prompt, type any 1- to 6-character alphanumeric name.

You can also answer the NEW FILE NAME prompt with a carriage return, in
which case BASIC supplies the name NONAME by default.

You may avoid the prompt altogether by typing the desired name after typing
NEW. For example, if you type:

NEW PROG1 @D

BASIC assigns the name PROG1 to the program you create.

In all cases, NEW establishes space for the creation of source files, so the
default file type is .B2S. If you specify any other file type in the NEW com-
mand, it is ignored.

1.2.3 LIST Command

The LIST command (LIS) prints a copy of the program that is currently in
memory. This copy is printed on the terminal output device. It shows the
program as it appears in memory with line numbers properly sequenced.

If you type:

LIST @

the entire program is printed, along with a header that contains the program
name, the current time and date, and system information. To suppress this
header material and print a copy of the program alone, type:

LISTNH @D

BASIC-PLUS-2

where NH specifies no header.

You can also specify the printing of specific program lines, instead of the
whole program, by means of the line number specification shown in the DE-
LETE command (see Section 1.2.5). For example:

LIST 30 70 @D

r_
prints a copy of lines 30 and 70, with a header.

LISTNH 30-70 @)
prints a copy of lines 30 through 70, without the header.

1.2.4 APPEND Command

The APPEND command (APP) merges the contents of an existing BASIC
source program with a program currently in memory (i.e., at compiler com-
mand level). To use APPEND, type:

APPEND (e

to which the BASIC Compiler prompts:

APPEND FILE NAME --

In response, type the name of a previously created BASIC source program
that you wish to merge with the current program. The compiler opens the
specified program as secondary input and reads it into memory. The contents
of the source program are then merged with, or appended to, the current
program, depending on the order of line numbers. If both programs contain
identical line numbers, the current program line is replaced by the appended
program line.

To suppress the APPEND FILE NAME prompt, type:

APPEND filesprec RET

where filespec is the file specification of the program to be appended.

If both programs you wish to merge are saved on a system device, one of them
must be brought into memory before the APPEND command is given. You
bring a saved program into memory with an OLD command (see Section
1.2.10).

If you do not specify a file name in the APPEND command prompt but type
only a carriage return, the compiler searches for a source program called
NONAME.B2S. If no file of that name is found (either specified or
NONAME), the following error message is printed:

PCan’t find file or account

BASIC-PLUS-2 1-5

1-6

The APPEND command does not change the name of the program currently
in memory.

The following example illustrates the use of the APPEND command. You
have built and saved two programs named AP1 and AP2. These programs
appear as follows:

10 LET B=5 35 LET D=A"C
20 LET C=2 40 PRINT A3D
30 LET A=B"C

40 PRINT A

50 END

AP1 AP2

If you use an OLD command to bring the program AP1 into memory and then
issue an APPEND command for AP2, the result appears as follows:

OLD APl @
Basic?2

APPEND APZ @D

Basic?2
LISTNH @)
10 LET B=5
20 LET C=2
30 LET A=B"C
35 LET D=A"C
40 PRINT A3D
50 END

Note that the APPEND command does not change the name of the current
program. Also, line 40 of the program in memory is replaced by line 40 of the
appended program while the unique line 35 is merged sequentially.

1.2.5 DELETE Command

The DELETE command (DEL) removes a specified line or lines from the
program currently in memory (i.e., at compiler command level).

To delete a program line, type the command followed by the desired line
number. To delete a series of lines, specify the line numbers, separated by
commas. To delete a consecutive group of lines, type the first and last line
number of the group, separated by a hyphen.

For example:

DELETE S50

removes line 50 from the program.

DELETE 50, 80

BASIC-PLUS-2

removes lines 50 and 80 from the program.

DELETE 50-80 @D

removes lines 50 through 80 from the program.

DELETE S0, GO, 90-110

removes lines 50, 60, and 90 through 110 from the program.

If you do not specify a line in the DELETE command, no lines are removed
and an error message (4#I1legdal DELETE command) is returned. If you
specify a range of lines and one of the specified lines does not exist, all of the
lines within that range are removed. For example, if you type DELETE 50-80,
all of the lines equal to, or greater than, 50 and equal to, or less than, 80 are
erased. Line numbers must be specified in ascending order; if you type an
illegal line specification such as DELETE 80-50, the command is ignored and
an error message (?*Bad linme number pair) is returned.

1.2.6 SAVE Command

The SAVE command (SAV) preserves a completed source program by
transferring it from memory into a file. For example, if you have a program in
memory and type:

SAVE

the line numbers of the program are sequenced, and the program is stored on
the system default device in the default directory as source code under the
current program name with a .B2S file type. If you wish to specify a particular
storage device, directory, file type, version number, or program name, type:

SAVE dev:Insnlfilesrec

where filespec is a file specification that contains the desired name and
device. If you have built an unnamed program, a SAVE command with no
specification stores the program as NONAME.B2S. Note that
BASIC-PLUS-2 permits a maximum 6-character name for programs in mem-
ory. However, you can specify up to a 9-character file name in the SAVE
command. When you access a saved file that has a 6- to 9-character name
with an OLD command (see Section 1.2.10), BASIC truncates the name in
memory to six characters.

If you attempt to save a program that has the same file specification as one
already saved, the system ignores the command and prints an error message:

TPFile exists - RENAME/REPLACE

This error prevents an inadvertent deletion of an existing program. For an
explanation of RENAME and REPLACE see Sections 1.2.11 and 1.2.12.

BASIC-PLUS-2 1-7

1-8

1.2.7 COMPILE Command

The COMPILE command (COM) can only translate a program that is cur-
rently in memory into object code. This command can be used in conjunction
with one or more of the following optional switches: /DEBUG, /DOUBLE,
/MACRO, and /LINE. Note that any switch may be turned off by using a NO
prefix, as in /NOLINE or /NOMACRO. A LOCK command is also available
that allows you to specify default switch settings. Table 1-2 lists the COM-
PILE command switches and their default values.

When used alone, the COMPILE command translates the program into a
linkable object module and stores it in the system default device and directory.
The default file type, .OBJ, is appended to the program name. The program is
not executed; it is only compiled and saved. Programs compiled as object
modules must be linked by the BUILD command into a task image before
they can be executed. You construct a task image by using the BUILD com-
mand together with appropriate switches and then using the task builder to
generate the executable task image.

If the program is currently in memory (i.e., at compiler command level) and
you type:

COMPILE @)

the current program is compiled and saved. An alternative use of this com-
mand is to type:

COMPILE filespec

where filespec is a file specification. This command compiles the current
program (which has been previously brought into memory by an OLD com-
mand) under the specified name, which can include a directory, device, or
version number, and appends .OBJ to the name (if no other file type is
specified). To compile a source program that is not in memory, you must first
bring it into memory by means of an OLD command (see Section 1.2.10) and
then type COMPILE.

The COMPILE/DEBUG command (COM/DEB) translates the program into
object code and enables the use of the BASIC-PLUS-2 debugging aid. The
debugging aid is described in Section 1.3.1. Note that the program must be
compiled with the /DEBUG switch and linked by means of the task builder
before the BASIC debugging aid can be used. Note that, because the debug-
ging aid is module-oriented, it does not allow the use of the debugger in a
module compiled without the /DEBUG switch.

The COMPILE/DOUBLE command (COM/DOU) translates the program
into object code and indicates that double-precision format (4-word) is used
for all floating-point operations. Note that an executable task cannot contain
both single- and double-precision format. That is, all modules in the task
must be the same format; mixed format causes a run-time error. Your system
manager selected either single- or double-precision at the system default when
BASIC-PLUS-2 was installed.

BASIC-PLUS-2

The COMPILE/MACRO command (COM/MAC) translates the program and
saves it only as a MACRO source file with a .MAC default file type. This file
can be listed to examine the compiler-generated code. It is generally used for
diagnostic purposes.

The COMPILE/NOLINE command (COM/NOLIN) translates the program
and reduces the memory requirements of the output program. The /NOLINE
switch is an installation option that disables program line headers in memory
and reduces program requirements by the following amounts:

* Two words per line

e Four words per function definition

e Two words per DIM statement

¢ Four words per FOR NEXT, WHILE, or UNTIL NEXT loop or clause

The /NOLINE switch cannot be used when the compiled program references
an ERL function, makes use of the debugging aid, or contains a RESUME
statement without a line number specification. When the /NOLINE switch is
enabled, the ERL value is set to 0. Note that a RESUME statement without a
line number specification overrides the /NOLINE switch and causes a diag-
nostic error message:

“RESUME owverrides /NOLINE

Also, a reference to the ERL function overrides the /NOLINE switch and
causes a diagnostic error message:

#ERL overrides /NOLINE

In most cases, the switches described above can be combined in the COM-
PILE command. For example:

COMPILE/DEBUG/DOUBLE/NOLINE

You can use the LOCK command to facilitate multiple program compilations.
That is, you can specify any legal combination of compiler switches to the
LOCK command, and these become the defaults for successive COMPILE
commands. This procedure avoids your having to respecify switches for each
compilation. The specified switches are disabled by a LOCK command with
no arguments. Note that a COMPILE command with no arguments creates
an object file by default.

Consider the following example:
LOCK /NOLINE

Basic?Z

OLD PROG1 @&

Basic?Z2

BASIC-PLUS-2 1-9

1-10

COMPILE @&
Basic2

OLD PROGZ @D
Basic2
COMPILE
BasicZ

LOCK
BasicZ

OLD PROG3 @D
BasicZ
COMPILE/MACROD

Basic?Z2

In this example, three programs are brought into memory by OLD commands
(see Section 1.2.10). The initial LOCK command sets the /NOLINE compiler
switch as the default. When you compile PROG1 and PROG2, they become
object modules with /NOLINE enabled. Finally, the LOCK command with no
arguments disables all defaults (except those specified at installation) and
PROGS3 is compiled as a MACRO file with no switches other than installation
option defaults in force. The result of these three compilations is as follows:

PROG1.0BJ (NOLINE enabled)
PROG2.0BJ (NOLINE enabled)
PROG3.MAC (no switches enabled)

1.2.8 BUILD Command

The BUILD command (BUI) accepts the names of one or more object modules
as input and creates an indirect command file with the default file type
.CMD. This file contains all of the task builder command input required to
create an executable task image file with a default file type of .TSK and an
optional memory allocation map with a default file type of .MAP. In addition
to the command file, the BUILD command generates an overlay description
language file (file type .ODL). You can edit the contents of this file to use
overlaid program segments. The procedure used to input the command file to
the task builder and to edit the BUILD command ODL file is described in
Chapters 3 and 4.

An object module is created from a BASIC source program by the COMPILE
command (see Section 1.2.7). You create object modules and link them by the
task builder for the following reasons:

1. To create an executable task — In order to create a task from your object
modules that is executable at the operating system level, you must use the
task builder to process the modules and link the required BASIC-PLUS-2

library.

BASIC-PLUS-2

2. To produce an optional memory allocation map — The map is a file that
contains descriptions of program code, storage allocation, and global sym-
bol definitions.

3. To link subprograms — User subprograms must be separately compiled as
object modules and selectively linked with your program to create a single
executable file.

4. To access RMS required code — I/O operations on virtual, sequential,
relative, or indexed files (see Chapter 2) require access to RMS library
modules. To link this code with modules that use these operations, you
must use the task builder.

The BUILD command generates all of the command input required by the
task builder system program. This input includes a task and map file output
specification, the object module names, and the required BASIC-PLUS-2
library (see Section 1.2.9). Because the BUILD command automatically cre-
ates an indirect command file that contains all of this information, task
builder input can consist entirely of the indirect command file name. That is,
the task builder can link the object modules and output an executable task
image file and an optional map file from a single command file specification.
If you wish to link your program with special task builder options, you must
modify the BUILD command output as described in the RSX-11M Task
Builder Reference Manual and in Chapters 3 and 4 of this manual.

To use the BUILD command, type:

BUILD mainssublssub2sss:/su

where main represents the name of a program that was previously compiled as
an object module. This file name becomes the name of the indirect command
file with the .CMD default file type appended to it. Subl, sub2, etc., represent
the names of one or more optional subprograms, separated by commas, that
have been separately compiled as object modules. Note that BUILD com-
mand arguments are file specifications that can contain device, directory, and
version number specifications. You may specify up to eight modules in the
command line but they must all fit on a single line (i.e., the command line
cannot be continued). If any of the modules contain an OPEN statement, you
must append the appropriate switch(es) to the end of the command line. The
switches and their use are as follows:

/VIR includes in the command file the RMS code required for
virtual array or block I/O operations. Note that this switch is
used when the program contains only virtual file operations.

/SEQ includes in the command file the RMS code required for
sequential file operations.

/REL includes in the command file the RMS code required for
relative file operations.

BASIC-PLUS-2 1-11

1-12

/IND includes in the command file the RMS code required for
indexed file operations.

/DUMP instructs the Run-Time System to produce a binary dump of
memory contents at the time of an abnormal exit if your
system has the Post Mortem Dump (PMD) program
installed.

/MAP produces a memory allocation map of the resulting program.

/EXTEND:n increases the program storage space by a minumim of n
words (where n is rounded up to the next multiple of 32) and
aligns the resulting extended program on a 1K boundary.

You can use any combination of the above switches on the command line,
depending on the content of the modules. That is, if any module in the
command line creates or opens a virtual, sequential, relative, or indexed file,
the appropriate switch(es) must be appended. Because the code required for
virtual file operations is a subset of /SEQ, /REL, and /IND, the virtual file
switch may be omitted when using any other RMS switch. For information
on RMS file operations, refer to Chapter 2. You may use the /DUMP, /MAP,
and /EXTEND switches on the same line as any combination of the other
switches.

Consider the following:

BUILD MAIN,SUB1,SUBZ/REL

This command line results in an indirect command file (MAIN.CMD) and an
overlay description file (MAIN.ODL). These files contain the object modules
MAIN.OBJ, SUB1.0BJ, and SUB2.0BJ, as well as the BASIC-PLUS-2 li-
brary specifications. In addition, the /REL switch generates instructions that
cause the code required for RMS relative file operations to be associated with
the task. To produce a linked task and map file, you must invoke the system
task builder and specify the command file as input. To specify MAIN.CMD
for example, type:

*@MAIN @

in response to your system’s task builder prompt. Note that a BUILD com-
mand file cannot be combined with any other task builder input.

Following successful task creation, your user directory contains an executable
task image file (MAIN.TSK) composed of the linked modules you specified as
input. Your directory may also contain a memory allocation map
(MAIN.MAP). The file name for both the task image and map is the name of
the first module appearing as input in the BUILD command line. The actual
linking operation is handled by the task builder. For more information on the
task builder, refer to Chapters 3 and 4 of this manual and to the RSX-11M
Task Builder Reference Manual. If you use the BUILD/DUMP command, you
instruct the system to produce a dump of memory contents at the time of an
abnormal exit during execution.

BASIC-PLUS-2

1.2.9 LIBRARY Command

You can optionally link to a user-created library, depending on the needs of
your program. You use the LIBRARY command (LIB) to indicate BASIC2 or
a user library. The command includes that library in the command file that is
generated by the BUILD command (see Section 1.2.8).

When linking to user libraries, you should be aware that BASIC-PLUS-2 is
supplied with a shareable resident library called BASIC2, which contains
many of the run-time support routines required for an executable task image
file. The reference to this shared library was specified by your system manager
during installation and is included in your task builder command file.

The BASIC2 shareable library is 8K words long and contains the following
run-time routines:

1. Math routines, which include library functions and arithmetic routines.
2. Routines to handle dynamic allocation of string storage and I/O buffers.
3. Routines to handle input/output operations.
4

. Error handling routines to process errors in arithmetic, I/O, and system
operations.

To use the LIBRARY command, type:

LIBRARY @D

In response to the command, BASIC prompts for the name of the desired
shareable resident library. For example:

LIBRARY @B
Name[BASICZ1-- @D
AccountlLB:[1,111-- @D

This example causes BASIC2 to be used in all succeeding BUILD commands.
If the LIBRARY command is successful, the BASIC2 prompt is printed. If you
follow this procedure with a BUILD command, the generated command file
contains the BASIC2 library as well as any specified object modules (see
Section 1.2.8). BASIC2 remains the BUILD command default library until
you replace it by means of another LIBRARY command or exit from
BASIC-PLUS-2.

1.2.10 OLD Command

The OLD command allows you to bring into memory a previously created and
saved source program. When you type:

LD @

BASIC replies:

OLD FILE NAME--

BASIC-PLUS-2 1-13

1-14

In answer to the prompt for a name, type the name of the program you wish to
access. This command causes the highest version of the specified file, with a
.B2S file type, to be read into memory and become the current program. The
program is now ready for processing (i.e., editing, compiling, etc.).

If you type only a carriage return in response to the prompt, BASIC searches
for a source program called NONAME.B2S. You can avoid the OLD FILE
NAME prompt by specifying the desired program with the OLD command, as
follows:

OLD filesprec

where filespec is a file specification. If you specify a file specification that does
not exist, or if you do not specify a program and NONAME.B2S cannot be
found, BASIC returns an error message:

PCan’t find file or account

When you type the OLD command, any source code currently in memory is
lost. Also, when BASIC reads in the specified file, it uses the first six charac-
ters as the program name and performs a minimal check on the contents.

1.2.11 RENAME Command

The RENAME command (REN) changes the name of the program currently
in memory. For example, if you have a program in memory named PROG1
and you type:

RENAME PROGZ2

the name PROG1 is erased from memory and replaced with the name PROG2.
If you type SAVE (see Section 1.2.6), the program is stored with the name
PROG2.

If you bring a saved program named PROGI1 into memory with an OLD
command and type:

RENAME PROG2

the program is named PROG2 in memory but retains the name PROG1 on the
disk.

1.2.12 REPLACE Command

The REPLACE command (REP) updates a program on the system default
device or a specified device with one in memory. For example, if a program
named FILE needs modification, bring it into memory with an OLD com-
mand, make the desired changes, then type:

REPLACE

BASIC-PLUS-2

This procedure updates the contents of the original program named FILE
with the contents of the newly edited program.

You can also specify a new name, directory, device, or version number for the
edited program in the REPLACE command. For example:

REPLACE [50,201FILE1.B2S532

where FILE is the name of the program currently in memory, retains the old
version of FILE but also saves the edited version under the name FILE1.

The REPLACE command stores the program even if there is no program of
the same name on disk. That is, if the program named FILE is currently in
memory and there are no other programs with that name, REPLACE still
writes the program onto the default device and directory.

1.2.13 SCALE Command

The SCALE command (SCA) implements and controls the scaled arithmetic
features of BASIC-PLUS-2. You use SCALE to overcome accumulated
round-off and truncation in fractional computations performed when double
precision (4-word floating-point) format is enabled. SCALE allows you to
maintain the decimal accuracy of fractional computations to a given number
of places determined by the scale factor.

To specify a scale factor, type:

SCALE int

where int is a decimal integer in the range of 0 to 6 that represents the scale
factor. The command causes the specified scale factor to be used for succeed-
ing compilations. The scale factor remains in effect until you exit from
BASIC-PLUS-2 or specify a new SCALE factor. Note that a SCALE com-
mand with no factor specification causes BASIC to print the current scale
factor.

1.2.14 SHOW Command

The SHOW command allows you to display the current switch values on your
terminal. To use the SHOW command, type:

SHOMW

BASIC-PLUS-2 1-15

1-16

following a BASIC prompt. BASIC then prints the following lines on your
terminal with the appropriate values reported:

Library is LB:[1,11BASIC
TasK extend size = 0
Scale factor = 0
Switch settinds:
ND:MAP
NO:DUMP
:CHAIN
:LINE
Output:0BJ
Precision:Singdle
NO:DEBUG
File ORGS:Termiwnal I/0 onlvy

The above example shows the default settings for BASIC-PLUS-2. This in-
cludes the default values of options that can be determined at installation
time. Possible alternate values may consist of the following:

Library may be BASIC2 or user-supplied.

Task extend can be any integer.

Scale factor can be any integer from 0 to 6.

Switch settings can be on (:LINE) or off (NO:MAP).
Output can be OBJ or MAC.

Precision can be single or double.

N e B

File ORGs can be any combination of Virtual, Relative, Indexed, Sequen-
tial, or Terminal-Format.

1.2.15 UNSAVE Command

The UNSAVE command (UNS) deletes a file from the disk. For example, if
you type:

UNS @D

the file associated with the source program currently in memory is deleted
from your directory on the default device. If you type:

UNSAVE filesrec

the specified file, filespec, is deleted from the default device or specified
device whether or not it is currently in memory. This command is useful for
erasing unwanted files from -the default device or other specified devices or
directories. Note that you may use UNSAVE to produce a hard copy listing of
the currently OLDed file by specifying the device as LP:.

The UNSAVE command causes BASIC to search for and delete a specified
source program. If the program is not found, BASIC prints an error message:

PCan’t find file or account

BASIC-PLUS-2

To delete a compiled or non-source program, you must type the program’s
name and file type. For example:

UNSAVE DK1:[26,12]1FILE.TSK

1.2.16 EXIT Command

The EXIT command (EXI) terminates access to BASIC-PLUS-2 and returns
you to the operating system command level. This command is the only means
of leaving BASIC-PLUS-2 that ensures proper closing of files and the imme-
diate return of control to the operating system.

1.3 Editing BASIC-PLUS-2 Programs

There are a number of ways you can correct BASIC-PLUS-2 source programs.
These editing methods include deleting incorrect characters and retyping en-
tire program lines. However, programs must be in memory before edits can be
made. That is, you edit a new program as it is entered, or a saved program
after it is brought into memory by an OLD command. You cannot edit a task
or an object module.

As you create new programs, you can erase misspelled words or incorrect
characters with the (Delete) key and type corrections at the terminal.
(Note that is labeled the RUBOUT key on some terminals.) This must be
done before you enter the line into memory with a carriage return. For exam-
ple, to correct a misspelled PRINT statement:

10 PRAND

erase the incorrect characters with the key and retype as follows:

10 PRAND\NDNANINT

Press the key once for each character you wish to delete (these characters
usually print inside slashes on the terminal); then type the correct charac-
ter(s) on the same line. Note that the key erases characters one at a time
from right to left beginning with the last character typed. You can then type a
carriage return to enter the corrected line into memory.

To delete an entire line that has not been entered into memory (i.e., you have
not yet typed a carriage return), use CRL/U. That is, you press the CONTROL
key and the U key simultaneously.

As you enter source lines into memory, the BASIC Compiler performs a syn-
tax check. If BASIC detects an incorrect line, it prints the appropriate error
message following input (see Appendix C). However, BASIC saves source
program lines even with errors. To edit an incorrect line that has been entered
into the program currently in memory, retype a corrected version of the line.

BASIC-PLUS-2 1-17

1-18

By typing the same line number followed by corrected text, you delete the old,
incorrect line from memory and automatically replace it with the new one.
Consider the following example:

10 LAD A=7\B=9\C=SRQ(144) @
?Syntax error

This incorrect line was entered into memory by the carriage return and an
error message was printed. If you type:

10 LET A=7\B=9\C=S0QR(144) @

the previous line 10 is erased from memory and replaced with the corrected
version.

You can also delete a line currently in memory by typing the line number with
no text. For example:

10 LET D=A+B**C

can be deleted from the source program by typing:
10 @

Also, you can use the DELETE command to perform the same function (see
Section 1.2.5).

1.3.1 Debugging

To help you locate any errors that may exist in your program, BASIC provides
a set of interactive debugging commands. These commands allow you to
check program operation and make corrections. The commands are BREAK,
UNBREAK, STEP, TRACE, UNTRACE, PRINT, LET, CONTINUE, ERR,
ERNS$, ERL, STATUS, and RECOUNT. Their use is permitted only on pro-
grams or subprograms that are compiled with the /DEBUG switch (see Sec-
tion 1.2.7) and linked by means of the task builder. After you have debugged
the program and edited the source file to execute correctly, you can recompile
the program without the /DEBUG switch to disable these commands. Note
that the /DEBUG switch causes an increase in program memory require-
ments, therefore, recompiling the program without /DEBUG acts to conserve
memory.

Note that when a program is composed of several subprograms, you do not
have to compile each subprogram with the /DEBUG switch. To debug a single
subprogram, the switch need only be enabled with that module.

When you run a program, execution stops the first time a module is entered
that has the /DEBUG switch enabled. After execution halts, the debugging
aid prints an identifying message:

DEBUG: Prod name

BASIC-PLUS-2

where prog name is the name of the program or subprogram that was com-
piled with the /DEBUG switch. The debugging aid also prints a prompt (#)
after the message as follows:

DEBUG: Prod name
#

The prompt allows you to enter debugging aid commands. The debugging
commands allow you varying degrees of control over program execution as
explained in the following sections. If you enter a carriage return in response
to a debugger prompt, a STEP 1 is performed (see section 1.3.1.2). This
enables you to "single step through" a program by typing only carriage
returns. To reinitiate program execution and cause the specified command
action, type the CONTINUE (CON) command as follows:

DEBUG: prod name
BREAK 10
CON

In this instance, the CON command reinitiates program execution as speci-
fied by the BREAK command, i.e., the program runs until line number 10 is
executed. Note that the STEP command causes immediate execution of the
first encountered statement and does not require the CONTINUE command.

Following the successful execution of a debugging command, a message is
printed that identifies your current position in the program or subprogram.
This message has the form:

command AT LINE n [inamel
command is the last executed debugging command, i.e., BREAK, STEP,
TRACE, etc.

n is your current line number position in the program or subpro-
gram.

name is the name of the currently executing subprogram. Note that
this name does not appear if you are currently executing the
main program.

After this message is printed, the # prompt is reissued.

To terminate the debugging process, type EXIT (see Section 1.2.16). This
command terminates the debugger and returns you to operating system com-
mand level.

1.3.1.1 BREAK and UNBREAK Commands — You type the BREAK command
in response to a debugging aid prompt as follows:

BREAK arg

where arg is a command argument that causes a halt at a specified point in a
program or subprogram compiled with the /DEBUG switch. The halts that

BASIC-PLUS-2 1-19

1-20

are set by a BREAK command argument are called breakpoints and their
specification takes one of the following forms:

BREAK a command with no argument sets a breakpoint at each
program line number. Execution halts at each line number
and the # prompt is reissued.

BREAK n where n is a line number. Execution halts and the debug-
ging prompt is issued whenever that line number is
encountered.

BREAK n; where n is a line number. The semicolon specifies that line

number n is a breakpoint only in the currently executing
program or subprogram.

BREAK n;name where n is a line number. The semicolon followed by a
module name (name) specifies that line number n is a
breakpoint only in the named program or subprogram.

You can specify a maximum of 10 breakpoints as arguments in the BREAK
command. When more than one argument is specified, they must be sepa-
rated by a comma. For example:

BREAK 10, 30035 3103PROC, GO

This example causes execution to halt at the following points:

1. Line 10 whenever it is encountered in a /DEBUG enabled routine, regard-
less of whether it is the main program or a subprogram.

2. Line 300 in the currently executing module.

3. Line 310 in the module named PROC.

4. Line 60 whenever it is encountered.

If you specify more than 10 breakpoints, the excess are ignored and an error
message is printed:

?No room

To disable the breakpoints, use the UNBREAK command. This command
has the same general format as BREAK, that is:

UNBREAK a command with no arguments disables all break-
points.

UNBREAK n disables the breakpoint set at line number n.

UNBREAK n; disables the breakpoint set at line number n in the

current program or subprogram.

UNBREAK n;name disables the breakpoint set at line number n in the
named module.

BASIC-PLUS-2

Note that, as in the BREAK command, you can specify a maximum of 10
breakpoints separated by commas in the UNBREAK command.

In addition to line number breakpoints, the BREAK command also allows you
to specify a halt on CALL statements, user-defined functions, and loops. The
BREAK arguments for these halts are CALL, DEF, and LOOP respectively,
and they set breakpoints as follows:

DEF

BREAK ON (CALL
LOOP

CALL causes a halt in execution each time a CALL statement is exe-
cuted to a subprogram that is compiled with the /DEBUG switch.
The break occurs immediately before the execution of the subpro-
gram'’s first statement.

DEF causes a halt in execution each time the program executes a user-
defined function. The break occurs immediately before the execu-
tion of the function, not at the declaration of the DEF statement.

LOOP causes a halt in execution each time a FOR, WHILE, or UNTIL
statement or modifier is encountered. Breaks occur after the loop
is initialized, immediately before execution of the loop body, and
after exit from the loop. For example, if you have a FOR loop that
is executed 10 times, you get 13 breaks.

Note that the BREAK ON command allows you to specify only one argument
and this command can be combined with other breaks. For example:

BREAK 45, ON CALL» 3303

This example causes execution to halt at the following points:

1. Line 45 whenever it is encountered in a /DEBUG enabled module, regard-
less of whether it is the main program or a subprogram.

2. After a CALL to any subprogram compiled with the /DEBUG switch and
immediately before the execution of the subprogram’s first statement.

3. Line 330 in the currently executing module.

1.3.1.2 STEP Command — The STEP command causes program execution to
proceed on a statement-by-statement basis. You type the command in re-
sponse to the debugger prompt as follows:

STEP n

STEP a command with no arguments causes execution of the next state-
ment in the current program or subprogram.

n specifies the number of statements to be executed.

As with other debugging commands, the STEP command has effect only on
programs or subprograms that are compiled with the /DEBUG switch. There-

BASIC-PLUS-2 1-21

1-22

fore, the statement executed by the STEP command is the first statement
encountered in a /DEBUG enabled module. Note that typing a carriage return
is equivalent to typing STEP 1.

The optional argument, n, must be a positive integer in the range of 1 to
327617.

1.3.1.3 PRINT and LET Commands — The PRINT and LET commands allow
you to examine and change the contents of variables in programs and subpro-
grams that are compiled with the /DEBUG switch.

The PRINT command has the form:

PRINT wvar

where var is the name of the variable whose content you wish to examine.
When this command is executed, the current content of the variable is print-
ed. Note that you can specify only one variable as an argument in the PRINT
commands.

The LET command has the form:

LET var=value

where var is the name of the variable whose content you wish to change. The
maximum length of a LET is 72 characters. The PRINT and LET debugging
commands allow constants or variables as arguments, however, they do not
allow expressions. The following are examples of legal LET commands:

LET A$(I,J%)= B$(Q%:2) G
LET IZ = A(IZ.I%)

1.3.1.4 TRACE and UNTRACE Commands — The TRACE command allows
you to track the execution of a program or subprogram that is compiled with
the /DEBUG switch. You can examine the path of execution by means of line
numbers. You type the command in response to the debugger prompt as
follows:

TRACE

TRACE prints the line-number and module-name of each line as it is
executed. This command does not accept an argument.

You must enter a CONTINUE command to initialize the TRACE. It is advis-
able that you enter a break at some point in your program; otherwise, it will
TRACE to the end of the program and EXIT. To disable the TRACE com-
mand, type UNTRACE in response to the # prompt.

1.3.1.5 ERR Command — The ERR command allows you to display the error
number of the last trapped error. Type the command in response to the
debugger prompt as shown:

BASIC-PLUS-2

ERR

ERR is the command, without arguments, that returns the number of
the last error in the format:
ERR = nn
where nn is the decimal error number.

Refer to Appendix C for a list of errors and their numbers.

1.3.1.6 ERL Command — The ERL command allows you to display the line

number of the last trapped error. Type the command in response to the
debugger prompt as shown:

ERL

ERL is the command, without arguments, that displays the line
number of the last error in the format:
ERL = nn

where nn is the line number containing the error.

1.3.1.7 ERN$ Command — The ERN$ command allows you to display the
name of the module that contains the last trapped error. Note that ERN$ does
not return a value unless an error has occurred. Type the command in re-
sponse to the debugger prompt as shown:

ERN$

ERNS$ is the command name, without arguments, that returns the
name of module containing the last trapped error, in the for-
mat:

ERNS$ = mod nam

where mod nam is the six character module name.

1.3.1.8 RECOUNT Command — The RECOUNT (REC) command allows you
to display the number of characters that are provided for the preceding input
operation. Type the command in response to the debugger prompt as shown:

RECOUNT

RECOUNT is the command, without arguments, that returns the number of
characters returned by the last input statement in the format:
RECOUNT = nn

where nn is the number of characters, including terminators,
from the last input statement.

BASIC-PLUS-2 1-23

1.3.1.9 STATUS Command — The STATUS (STA) command allows you to
display the status word containing characteristics of the last OPENed file.
Type the command in response to the debugger prompt as shown:

STATUS

STATUS is the command, without arguments, that returns a word con-
taining the last opened file’s characteristics in the format:
STATUS = nn

where nn is an additive form of the following:
1 - record-oriented device

2 — carriage-control device

4 - terminal

8 - multiple-directory device (disk)

16 - single-directory device

32 - sequential- and block-oriented device (magnetic tape)

1.4 BASIC-PLUS-2 Programs

1-24

A BASIC-PLUS-2 source program is composed of numbered lines that con-
tain BASIC language elements as follows:

line-number <tab> text RET)

where the symbol represents the RETURN key that generates a carriage
return/line feed terminator. In addition to a carriage return/line feed combi-
nation, BASIC-PLUS-2 accepts an escape (€SO key) as a line terminator.

A BASIC-PLUS-2 line number must be a positive number in the range of 1 to
32767. If you type a line number that is outside the legal range, the number is
ignored and BASIC prints an error message:

?Illedal line number

A line number with no text is considered to be a line deletion (see Section 1.3).
Text with no line number (except for legal commands and continuation lines)
is ignored and BASIC prints an error message:

TWhat?

The BASIC Compiler checks each source program line for correct syntax,
returns a message for errors, and saves the line even if errors are found. The
lines are saved in ascending numeric order and are executed in the same
order.

BASIC-PLUS-2 programs do not require an END statement.

BASIC-PLUS-2

1.4.1 Source Lines

BASIC source lines can contain multiple statements on a single line. Howev-
er, you must separate multiple statements with a backslash (\). For example:

10 LET A=5\B=7\C=9

BASIC source lines can also be continued over more than one line. You signify
continuation by typing the character "&" (ampersand) and a line terminator.
The following is a valid continued line:

10 LET A=5\B=7 &
\ C=A+B

Because the ampersand signifies a continued line to the compiler, you cannot
use this character as the last non-blank character of a non-continued line.

You can place comments in BASIC source lines by using an exclamation point
separator (!). Comments in a line are printed when the program is listed, but
are ignored when the program executes. You can place a comment at any
point on the line as long as it is separated from any other element of the line
by the exclamation point separator (!).

Consider the following:

) ITHIS IS A LEGAL COMMENT
10 LET A=10 !80 IS THIS! \N!LET B=5
20 LET A=10 \B=5 !AND THIS

Note that a comment separator cannot take the place of a statement separa-
tor. That is, backslashes are always required on multi-statement lines. Also,
comments cannot be continued with an ampersand; each program line must
begin comments with an exclamation point. You can, however, include the
comment in a REM statement which, as with any statement, can be contin-
ued.

BASIC accepts any character in text as long as it is part of the ASCII
character set. A table of the ASCII characters appears in Appendix D. Null
characters are ignored as meaningless; however, non-printing characters
(space, tab, etc.) are accepted in literal string constants. A warning message
is issued for non-printing characters that appear outside of string literals.
Also, the compiler treats lower-case alphabetics in line text as upper case,
but lower-case alphabetics in literal strings remain lower case.

BASIC accepts integers in the range of -32767 to +32767. The value of sub-
script variables is in the range of 0 to +32767. Single precision (2-word)
floating-point values are rounded down to seven digits of accuracy and lie in
the range of .29 x 10"-38 to .17 x 10" 39. Double precision (4-word) floating-
point values are rounded down to 17 digits of accuracy and lie in the range of
.29 x 10" -38 to .17 x 10" 39. For more information on data representation, see
Appendix D.

BASIC-PLUS-2 1-25

1-26

1.4.2 Subprograms

BASIC-PLUS-2 allows you to write subprograms and insert them into OTS or
user libraries. These subprograms can be written in BASIC-PLUS-2 or in
MACRO assembly language. This section describes the subprogram calling
conventions and linkage. It also describes the creation of an assembly lan-
guage subprogram; for information on writing BASIC-PLUS-2 subprograms,
refer to the PDP-11 BASIC-PLUS-2 Language Reference Manual.

MACRO subprograms used with BASIC-PLUS-2 are subject to the following
restrictions:

1. MACRO subprograms cannot call BASIC-PLUS-2 subprograms.
2. Virtual arrays cannot be passed to MACRO subprograms.

3. MACRO subprograms that use RMS or FCS I/O cannot employ any LUN
or event flag used by the BASIC-PLUS-2 program, nor execute any opera-
tion that alters the RMS dynamic space pool (i.e., $§OPEN, $CONNECT,
$CLOSE, or $DISCONNECT).

4. MACRO subprograms cannot create or dynamically alter strings.
Note that if the MACRO subprogram requires a string, you must use

BASIC-PLUS-2 to create the string and define its size before the MACRO
subprogram uses it.

BASIC-PLUS-2 subprogram calls are subject to the following restrictions:

1. BASIC-PLUS-2 can call a BASIC-PLUS-2 subprogram with a CALL
statement. BASIC-PLUS-2 can call a MACRO subprogram with either a
CALL or CALL BY REF statement.

2. BASIC-PLUS-2 can call a MACRO subprogram that is also callable from
FORTRAN with a CALL BY REF statement.

3. BASIC-PLUS-2 cannot call a FORTRAN subprogram.

4, BASIC-PLUS-2 cannot be called by a MACRO or FORTRAN subpro-
gram.

5. The maximum allowable number of arguments in a BASIC-PLUS-2 sub-
program is eight.

6. BASIC-PLUS-2 can call system directives that are also callable from
FORTRAN.

" 1.4.2.1 Subprogram Linkage — BASIC-PLUS-2 programs call MACRO sub-

programs with the following instruction:
JSR PCsroutine

where JSR is a Jump to Sub instruction and PC is the Program Counter.

The instruction used to return control from the subprogram to the calling
program is:

BASIC-PLUS-2

RTS PC

where RTS is the Return from Sub instruction.

Arguments are passed from BASIC-PLUS-2 programs to MACRO subpro-
grams in the form of an argument list. When the MACRO subprogram st.arts,
register 5 (R5) contains the address of an argument list as shown in Figure

1L,

Figure 1-1: Argument List Format

R5
Y
UNDEFINED | NUMBER OF ARGUMENTS

ADDRESS OF ARGUMENT 1
ADDRESS OF ARGUMENT 2

ADDRESS OF ARGUMENT n

1.4.2.2 Subprogram Register Usage — A MACRO subprogram that is called
by a BASIC-PLUS-2 program does not need to preserve any registers. However,
register 6 (SP) must point to the same location on entry to, and exit from,
the subprogram. That is, each "push" onto the stack must be matched by a
"pop" from the stack before the subprogram returns control to the
BASIC-PLUS-2 program.

1.4.2.3 Subprogram Calls — Arguments can be passed to a MACRO subpro-
gram by means of either a CALL or CALL BY REF statement. These state-
ments are used to pass integer, real (single precision), and double (double
precision) values, strings and arrays. The methods used to pass integer, real,
and double value arguments are the same for CALL and CALL BY REF.
However, these two statements differ in their method for passing string and
array arguments. Refer to Appendix D for a description of data formats.

In terms of the content of the argument list in R5, the passing mechanism is
as follows:

Integer The R5 argument list contains the address of the integer value.

Real The R5 argument list contains the address of the high-order word
for the single precision value.

Double The R5 argument list contains the address of the high-order word
for the double precision value.

String When CALL is used, the R5 argument list contains the address of a
2-word string header. The first word is the address of the first byte
in the string. The second word is the length of the string in bytes.

When CALL BY REF is used, the R5 argument list contains the
address of the first byte in the string; the string length is not avail-
able.

BASIC-PLUS-2 1-27

1-28

Array When CALL is used, the R5 argument list contains the address of
the second word in the array header. The array header contains
subscript information and the address of the first byte of the array.

When CALL BY REF is used, the R5 argument list contains the
address of the first element in the array; the array header is not
available. Note that if an element of an array is specififed, the value
of that element is stored in a temporary variable. The address of the
temporary variable is passed when the statement is executed.

Consider Figures 1-2 and 1-3. These figures are examples of two MACRO
subprograms and illustrate the methods used to pass arguments to sub-
programs. Figure 1-2 is an example of the use of the CALL statement.
Figure 1-3 is an example of the use of the CALL BY REF statement.

Figure 1-2: CALL Statement

+TITLE INSRT

CALL INSRT(A%$B%$:C%)

INPUTS: ARG1 = ADDRESS OF A% STRING HEADER
ARGZ = ADDRESS OF B% STRING HEADER
ARG3 = ADDRESS OF C%

OUTPUTS: C% O IF OPERATION WAS SUCCESSFUL

;1 IF OPERATION FAILED
UNCHANGED FROM CALL IF WRONG NUMBER OF ARGUMENTS
PASSED

B T LI LR LI T I

EFFECTS: THIS SUBPROGRAM OVERWRITES THE SUBSTRING B% INTO THE
STRING A% BEGINNING AT CHARACTER POSITION C%.
RETURNS O IN C% IF THE OPERATION WAS SUCCESSFUL.
RETURNS -1 IN C% IF THE OPERATION FAILED.

b= e e aw aaw aE aw

NSRT::
CMPB #3, 1BRS i NUMBER OF ARGUMENTS
BNE ERREX
MOy 2(R3) 1RO i RO = ADDRESS OF A% STRING HEADER
MOVY 4(RS) sR1 i R1 = ADDRESS OF B$ STRING HEADER
MOVY BB (RS) sR2 i R2 = C7%
BLE ERREX i BR TO ERROR IF C% <= 0
ADD 2(R1)sR2 i R2 = C7% PLUS LENGTH OF B%
CMP R242(R0O) i WILL B$ FIT INTO A% 7
BGT ERREX i BR TO ERROR IF B% WON'T FIT INTO A%
Moy BRO RO i RO = ADDRESS OF A%
Moy BGB(RS) +R2 i R2 = CZ%
DEC R2 i R2 = C% MINUS ONE
ADD R2 RO i RO = ADDRESS IF A% PLUS C%
MOy 2(R1)sR2 i R2 = LENGTH OF B%
BEQ ERREX i BR TO ERROR IF LENGTH OF B% = 0
Moy BR1R1 i R1 = ADDRESS OF B¢$

1%$: MOWVB (R1)+(RO)+ i INSERT A CHARACTER INTO A% FROM B%
S0B R2:1%
CLR BB (RS) i SET C% TO O (OPERATION SUCCESSFUL)
RETURN

ERREX: MOV #-1,4,B6(RS) i SET C%Z TO -1 (OPERATION FAILED)
RETURN
+END

BASIC-PLUS-2

B G A R R R AR e e R A EE

1$:

ERREX:

NSRT: :

Figure 1-3: CALL BY REF Statement

+TITLE INSRT

INPUTS:

OUTPUTS:

EFFECTS:

CMPB
BNE
MOy
BLE
ADD
CMP
BGT
Moy
Moy
DEC
ADD
MOY
BEQ
Mow
MOVB
50B
CLR
RETURN

MOy
RETURN
+END

CALL INSRT BY REF(A$,LEN(A%) Bs,LEN(B%) ,C%)

ARG1
ARGZ
ARG3
ARG4
ARGS

C7 0

ADDRESS OF A%
ADDRESS OF LENGTH OF A%
ADDRESS OF B%
ADDRESS OF LENGTH OF B%
ADDRESS OF C%

IF OPERATION WAS SUCCESSFUL

:1 IF OPERATION FAILED
UNCHANGED FROM CALL IF WRONG NUMBER OF ARGUMENTS

PASSED

THIS SUBPROGRAM OVERWRITES THE SUBSTRING B% INTD THE

STRING

A$ BEGINNING AT CHARACTER POSITION C7%.

RETURNS O IN C% IF THE OPERATION WAS SUCCESSFUL.

RETURNS

#3., 1RO
ERREX

B12(R3) 1R2

ERREX

B10(RD) »R2
RZ2,84(RS)

ERREX

2(R3) sRO
B1Z2(R3) IR2

R2
RZ2RO

B10(R3) sR2

ERREX

G(R3) sR1
(R1)+(RO)+

R211%

B12(RD)

-1 IN C%4 IF THE OPERATION FAILED.

i NUMBER OF ARGUMENTS

R2 = C%

BR TO ERROR IF CZ% <= 0

R2 = C7% PLUS LENGTH OF B%

WILL B$ FIT INTO A% 7

BR TO ERROR IF B%$ WON'T FIT INTO A%
RO ADDRESS OF A%

R2 C%

R2 C% MINUS ONE

RO ADDRESS IF A%$ PLUS C7%

R2 LENGTH OF B$%

BR TO ERROR IF LENGTH OF B% = 0

R1 = ADDRESS OF B%

INSERT A CHARACTER INTD A% FROM B%

IR B EE R R AR EE AN WS AR R EE am

SET C% TO O (OPERATION SUCCESSFUL)

#-1,@12(R3) i SET C% TO -1 (OPERATION FAILED)

BASIC-PLUS-2 1-29

IDEN
BASI
Basi

NEW
NEW

Basi
10
20

\

\

30

40
50
(=16)
3276
SAVE
Basi
COMP
Basi
BUIL

Basi

EXIT
> TK

1-30

1.4.3 BASIC-PLUS-2 Sample Program

The following example summarizes the building of BASIC source programs.

TIFY @D
C-PLUS-2 V01,50
c?d
@ED
FILE NAME--S0RTO02Z @D
c2
DIM SORT(100) IMAX NUMBER OF ELEMENTS @B
INPUT "NUMBER OF ENTRIES"§ CNT% IGET NUMBER OF ELEMENTS
IF CNTZ <2% DR CNTZ> 100% ICHECK CORRECT NUMBER
THEN PRINT "“LIMITS - 2 TOD 100" |WRONG - INFORM USER
GO TO 20 ITRY AGAIN
ELSE INPUT SORT(IZ) FDR 1%Z=1% TO CNTZ @
REM

BUBBLE SORT
CHECK EACH PAIR OF ELEMENTS
IF IN WRONG ORDER: SWITCH THEM

SORT.FLG IS SET TO FALSE (0) WHEN A SWITCH IS MADE
PASS OVER THE ENTIRE LIST UNTIL NO SWITCH IS MADE

SORT.FLG%=1% ISET TO TRUE INITIALLY
WHILE SORT.FLGZ<>0% ILOOP UNTIL SORT.FLG IS FALSE
SORT.FLG%=0% ISET TO FALSE BEFORE PASS
FOR 1%=Q% TO CNT%Z-1% 'LOOP THROUGH ENTIRE LIST
IF SORT (I%Z)<=SORT(IZ+1%) ICHECK A PAIR
THEN SORT.FLG%Z=-1% !'TF WRONG-FORCE ANOTHER PASS
T=SORT(I%) ISWAP ELEMENTS

SORT(IZ)=SORT(IZ+1%)
SORT(IZ+1%)=T
NEXT 1%
NEXT

PRINT SORT(I%)» FOR I%=1% TO CNTZ%Z IPRINT ELEMENTS IN ORDER @D

7 END @D
BED

c2

ILE @&

c2

D

c2

FED
B @SO0RTOZ

BASIC-PLUS-2

&6
)
& 6D
&@ED

&@ED
& @ED
& @ED
&GED
L@
L@
&.@ED
&@ED
& @ED
& @ED
&@ED
& @D
& @ED
&@ED
& @ED
&@ED
L@
@D

* RUN SORTO2

N

"

P,

wnd sadl ond: wmd iond con

UMBER OF ENTRIES?T 6

0 @
-954+95
10 @
20 @
-5,6
-100

20 10

0 -5.5 -5.6 -100

The program shown above accepts up to 100 numbers as input, sorts them by
size, and prints them in descending order. The procedure used to enter, com-
pile, build, and run the program is detailed below. The explanations are keyed

to the commands.
Command

IDENTIFY

NEW
NEW FILE NAME--SORTOZ

Basic?2

SAVE

COMPILE

BUILD

Explanation

The IDENTIFY command (see Section 1.2.1)
prints a BASIC-PLUS-2 header.

The NEW command (see Section 1.2.2) clears
a space in the temporary buffer for creation of
the source program. When you type NEW,
any source code in the buffer is lost. When you
type SORTO02 in reply to the prompt (NEW
FILE NAME--), you assign the name
SORTO02 to your program.

Basic2 is printed by BASIC to indicate that
the compiler is prepared to accept input. It
also indicates that the previous command
(NEW) has been successfully executed.

SAVE (see Section 1.2.6) copies and preserves
the program on the system default device. The
program now resides on the system as a source
program (file type .B2S) named SORT02.

The COMPILE command (see Section 1.2.7)
translates the program into an object module.
The default file type, .OBJ, is appended to the
program name,

The BUILD command (see Section 1.2.8) cre-
ates a command file composed of the specified
object module as well as the command input
required by the task builder.

BASIC-PLUS-2 1-31

1-32

KIT

TKB

RUN

BASIC-PLUS-2

The EXIT command (see Section 1.2.16) ter-
minates access to BASIC-PLUS-2 and re-
turns you to operating system command level.
To create an executable task, invoke the sys-
tem task builder and specify @ SORTO02 on the
command line.

The TKB command invokes the Task Builder
system program. Specifying @SORTO02 pro-
vides the T'ask Builder with the indirect com-
mand file it uses to create an executable task.

The RUN command causes the program to be
executed. As part of the execution, you are
prompted for "Number of entries" and by a "?"
for each number you enter.

Chapter 2
Files

You can perform efficient input/output operations on large amounts of related
data by collecting that data into files. Record Management Services (RMS)
can increase this efficiency by allowing you to organize a file into manageable
units of data called records. For example, a company may wish to document
an inventory of its capital equipment. A file that contains data on all equip-
ment is created for this purpose. This data is organized into individually
accessible records, each of which describes a particular item.

BASIC-PLUS-2 allows you to create block I/O or record I/O files. RMS is the
vehicle for creating and accessing record files. This chapter describes block
I/0, the use of RMS, the file organizations available under RMS, and the
operations allowed on each type of organization.

For additional information on the BASIC-PLUS-2 syntax used to create and
manipulate files, refer to the PDP-11 BASIC-PLUS-2 Language Reference
Manual.

NOTE:

This chapter is a minimal discussion of file handling using
BASIC-PLUS-2, designed to enable you to get an application
running. If you want more information, refer to appropriate
documentation.

2.1 OPEN Statements

The manner in which data are stored in a file is determined by the organiza-
tion that you specify in the OPEN statement. The organization, in turn,
determines the operations and access methods that you can use on the file.

2-2

Files

BASIC allows you to choose one of four types of organizations when creating
files; virtual, sequential, relative, or indexed. When you create a file, the
organization must be the first file attribute specified in the OPEN statement
as follows:

OPEN filename { FOR OUTPUT || AS FILE [#lnum-exp
FOR INPUT

,JORGANIZATION] [VIRTUAL

UNDEFINED
SEQUENTIAL
RELATIVE
INDEXED
[,attributes]
filename
is a file specification.
FOR OUTPUT
indicates the creation of a new file.
FOR INPUT

indicates accessing an existing file.

AS FILE #num-exp
associates the file with a channel number in the range of 1 to 12.

,ORGANIZATION
is an optional keyword preceded by a comma and followed by a required
keyword that represents one of the five types of organization.

,attributes
are file characteristics that you define in the OPEN statement. Attributes
differ for each file organization and their specification is described in the
appropriate section.

The organization you specify when the file is created is permanently assigned
to the file. When any existing file is opened for processing, you must respecify
the organization. An organization specification that does not match the initial
file assignment results in an error (i.e., TFile attributes not
matched).

If you fail to include the appropriate BUILD command switches (/SEQ, /IND,
/REL, and/or /VIR), you will receive an error message at file open time:

?Il1ledal operation at line n

The organization you choose depends on the access methods and operations
that you wish to perform on the file. A comparison of these organizations may
be helpful in making this choice.

Virtual files can contain either user-defined blocks or one or more virtual
arrays. This file organization permits block I/O operations, but it does not
allow record operations. Virtual files are allowed only on random-access
devices.

Sequential files contain records that are stored in series. You cannot access
one record without successfully accessing all preceding records. Sequential
files are allowed on disk, ANSI-formatted magnetic tape, or unit record de-
vices such as line printers and terminals. If you do not specify a file organiza-
tion in an OPEN statement, the default organization is terminal-format
which is a subset of sequential files.

Relative files contain records that are stored in numbered locations of a fixed
size. You can access a record sequentially or by number. Relative files are
allowed only on disk media.

Indexed files contain records that are associated with individual key values
within each record. You can access a record sequentially or by reference to a
key. Indexed files are allowed only on disk media on a system with RMS-11K
installed.

Files opened as undefined must first exist with a defined organization. The
undefined organization allows you to open a file with READ access only to
ascertain a file’s organization so that you can subsequently re-open the file
using the correct attributes.

2.2 Special Case Files

2.2.1 Virtual Files

The virtual file organization specifies a block-structured file. Input and out-
put operations are performed by means of RMS block I/O (see Section 2.5.1).
Virtual files can contain data organized as elements in an array which is fully
compatible with BASIC-PLUS virtual arrays. When the file contains virtual
arrays, it must be dimensioned with a DIM # statement. This statement is
described in the PDP-11 BASIC-PLUS-2 Language Reference Manual.

If your program accesses virtual files, you must use the BUILD/VIR command
to include the required supporting code.

The OPEN statement used to specify a virtual file allows you to assign the
following attributes:

,JORGANIZATION] VIRTUAL

[ACCESS [READ]
MODIFY
- WRITE

,ALLOW | NONE
READ
MODIFY
| WRITE

Files 2-3

2-4

Files

LMAP <map-name>]
LFILESIZE <num-exp>]
LCONTIGUOUS]
LRECORDSIZE <num-exp>]

L, TEMPORARY]

,ORGANIZATION VIRTUAL
specifies the creation or access of a virtual file and allows the use of block
I/0. The ORGANIZATION keyword is optional.

,ACCESS
specifies the operations that you will perform on the file. MODIFY is the

default. Refer to Section 2.3.4.
,ALLOW

specifies the operations that you will permit other programs to perform on
the file. READ is the default. Refer to Section 2.3.4.

,MAP
references a MAP statement and can be used to define record size (see
Section 2.7). Note that MAP must not be used with a file that contains
arrays.

,JFILESIZE
preallocates space for a file whose length is defined in terms of a number of

disk blocks. The default is pack dependent.

,CONTIGUOUS
specifies that the contents of the file are contiguous on disk devices. The
default is non-contiguous.

,RECORDSIZE)
defines the maximum size of data blocks in the file. The default size is 512
bytes; the maximum is 65535 bytes. Refer to Section 2.7.

,TEMPORARY
creates a temporary file that is deleted when you close the file. The default
is non-temporary.

When you specify a RECORDSIZE that exceeds the default minimum of 512
bytes for a file that contains virtual arrays, the specification should be a
multiple of 518. During I/O operations on virtual arrays, blocks are read in by
the program as required. If sufficient record size is not available to contain the
accessed blocks, space is obtained by writing the first block that was read.

Note that the virtual organization allows block I/O file operations, but it
disallows RMS record operations.

You can specify file attributes in the OPEN statement in any order. Consider
the following example:

130 OPEN "VATST4,TMP" FOR OUTPUT AS FILE #2 &
+ORGANIZATION VIRTUAL yACCESS MODIFY 8
+ALLOW NONE

This OPEN statement creates a new file named VATST4.TMP. The file is
assigned to channel 2 and is defined as a virtual file. The OPEN statement
also sets the ACCESS status to MODIFY and the ALLOW status to NONE.
Note that ALLOW NONE is the equivalent of ALLOW READ (see Section
2.2.4).

2.2.2 Organization Undefined

The undefined organization lets you open a file for input only. You do not
have to know all of the file’s attributes beforehand. The use of the ORGANI-
ZATION UNDEFINED statement is recommended for advanced pro-
grammers only. It allows you to write general purpose programs that access
files whose attributes are not known in advance. You can also use this OPEN
statement to discern the attributes of a file so that you can subsequently re-
OPEN it by specifying the correct file descriptors. Note that you cannot
create a file with ORGANIZATION UNDEFINED.

The OPEN statement used to specify an undefined file access allows you to
specify the following attributes:

OPEN filename FOR INPUT AS FILE [#lnum-exp
,IORGANIZATION] UNDEFINED
LACCESS READ]

,ALLOW | READ
NONE
MODIFY
WRITE

LLMAP <map-name>]
LRECORDSIZE <num-exp>]

,ORGANIZATION UNDEFINED
specifies the access of the file specified in the OPEN statement for input
only. The ORGANIZATION keyword is optional.

,ACCESS
specifies the operations that the current user will perform on the file.
READ is the only permissable access method.

,LALLOW
specifies the operations that the current user will permit other programs to
perform on the file. READ is the default.

,MAP
references a MAP statement and can be used to define record size. Note
that MAP cannot be used with a file that contains arrays.

,RECORDSIZE
defines the maximum size of data blocks in the file. The default size is 512

bytes. Refer to Section 2.7.

Files 2-5

You can specify file attributes in the OPEN statement in any order. Consider
the following example:

130 OPEN "UATSTS.TMP" FOR INPUT AS FILE #3 &
+ORGANIZATION UNDEFINED: ACCESS READ: ALLOW HONE
:MAP FMAP3

Please note that when you use ORGANIZATION UNDEFINED, you must
include all possible organizational types accessed by the program, i.e.,

BUILD/IND/REL/SEQ.

2.2.2.1 FSP$ Function — The function FSP$ returns the file organization data
for an opened file. This function is intended for use with files OPENed as
ORGANIZATION UNDEFINED. The syntax of the FSP$ function is as follows:

H“¥=FSP$(channel-number)

Consider the following example:

10 MAFP (A) A%$=32

20 MAP (A) AY%=(13)

30 OPEN "FIL.DAT" FOR INPUT AS FILE #1 &
+ORGANIZATION UNDEFINED.: ACCESS READ

40 A$=FSP&(17)

20 REM AZ(0%) = FILE CHARACTERISTICS

FSP$ returns the following values:

e A%(0) returns file characteristics in the form:

High byte is the RMS Organization (ORG) field
Low byte is the RMS record format (RFM) field

e A%(1) returns the RMS maximum record (MRS) field.
* A%(2) and A%(3) return the RMS allocation quantity (ALQ) field.

e A%(4) and A%(5) return the RMS bucketsize (BKS) field for disk files or
the RMS blocksize (BLS) field for magnetic tape files.

e A%(6) returns the number of keys.

e A%(7) returns the RMS maximum record number (MRN) if the file is a
relative file.

° A%(8) and A%(9) return the current block/record number.

Refer to the IAS/RSX-11M RMS-11 MACRO Programmer’s Reference Manual
for detailed descriptions of the RMS fields returned by FSP$.

2.3 Introduction to RMS

Record Management Services (RMS) is a set of library routines. These
routines effect the transmission of data between files and BASIC programs.
Files are composed of records that act as the storage media for a related
collection of data.

2-6 Files

RMS ensures that every record written into a file can be subsequently re-
trieved and passed to a program. You determine the size and content of data
in the record, the organization of records in the file, and the method used to
access the records. You make these determinations by means of statements
written in the BASIC language, either through the attributes you specify for
new files in the OPEN statement or through the operations you perform on
existing files.

To maintain an efficient relationship between RMS and the programs you
write, you must have a general understanding of RMS files. This chapter
describes the components of RMS files. The chapter is divided into five parts,
as follows:

1. File organization — RMS files contain records that are organized in one of
three fashions: sequential, relative, or indexed. You select one of these
organizations and assign it to a file by means of the ORGANIZATION
clause in the OPEN statement.

2. Record access — Record access represents the methods you can use to store
and retrieve records. RMS provides two access methods: sequential and
random. The organization of the file and the syntax of the individual
record operation determine which of these is used.

3. Record format — RMS files can contain fixed-length, variable-length or
ASCII stream-format records.

4. Data structure - Data items are maintained in records, which are con-
tained in storage structures called blocks and buckets. RMS provides you
with a means of controlling the size of these structures.

5. Record mapping - Mapping provides you with a means of directing the
assignment of data in the record. It also allows you to identify certain data
elements as access keys for records in indexed files.

Table 2-1 illustrates the record access methods and operation types allowed
on each file organization.

Table 2-1: Comparison of File Organizations

File Organizations

Access and Operations Sequential Relative Indexed
Sequential access Y Y Y
Random access N Y Y

(by rec no.) (by key)
Record replacement Y Y Y
Record insertion Y Y Y

(at end of file only)

Record deletion N Y Y

The following subsections describe each file organization in detail.

Files 2-7

2-8

Files

2.3.1 Sequential Files

The sequential file organization is the default and specifies a file that can
contain records of varying lengths and can be stored on disk, ANSI-formatted
magnetic tape, or a unit record device.

If your program accesses sequential files, you must use the BUILD/SEQ com-
mand to include the required supporting code.

The OPEN statement format used to create and access a sequential file allows
you to specify the following attributes:

IORGANIZATION] SEQUENTIAL| [FIXED
VARIABLE
STREAM

ACCESS [READ]
MODIFY
ﬁWRITE >
SCRATCH
- _APPEND J |
ALLOW [NONE)
READ
MODIFY J
B WRITE

LMAP <map-name>]
LRECORDSIZE <num-exp>]
LNOSPAN]

LSPAN]

L,FILESIZE <num-exp>]
LBLOCKSIZE <num-exp>]
[LCONTIGUOUS]
LNOREWIND]

L TEMPORARY]

,ORGANIZATION SEQUENTIAL
specifies the creation or access of a sequential file. The ORGANIZATION
keyword is optional.

FIXED

VARIABLE

STREAM
one of these three attributes is used to specify the format of records within
the file. FIXED indicates fixed-length records. VARIABLE is the default
and indicates variable-length records. STREAM indicates ASCII-stream

records and is only permitted on disk files. Files that perform terminal
input and output operations must be opened with ORGANIZATION
SEQUENTIAL STREAM. Records for these terminal-format files cannot
exceed 132 characters and include a carriage-return/line-feed combination
as a line terminator.

,ACCESS
specifies the operations that you will perform on the file. MODIFY is the
default. Refer to Section 2.3.4.

,ALLOW
specifies the operations that you will permit other programs to perform on
the file. READ is the default. Note that you cannot specify an ALLOW
attribute if the ACCESS designation is SCRATCH. Refer to Section 2.3.4.

,MAP
references a MAP statement that can be used to define record size. Refer to
Section 2.7.

,RECORDSIZE
defines the maximum size of records within the file. Note that you must
specify record size with either a MAP or RECORDSIZE specification in
the OPEN statement. The largest record size permitted is 65535 bytes.
Refer to Section 2.7.

,JNOSPAN

,SSPAN
SPAN is the default and allows records to cross block boundaries. Refer to
Section 2.6.1.

,JFILESIZE
preallocates space for a file whose length is defined in terms of a number of
disk blocks. The default is determined by the extend option of the
MOUNT command.

,BLOCKSIZE
specifies the number of records contained in a block on magnetic tape. The
default is 512 bytes long. Refer to Section 2.6.1.

,CONTIGUOUS
specifies that the contents of the file are contiguous on disk devices. The
default is logically continguous.

,NOREWIND
overrides the default rewind action on magnetic tape. The default is to
rewind to the beginning of the tape on OPEN or CLOSE operations;
NOREWIND causes the pointer to remain at the end of the last accessed
tape position.

,TEMPORARY
creates a temporary file that is deleted when you close the file. Default is
non-temporary.

Files 2-9

2-10

Files

Note that you can specify file attributes in any order. Consider the following
example:

10 OPEN "RMSEQ1.FIX" FOR OUTPUT AS FILE #3 B
+ORGANIZATION SEQUENTIAL VARIABLE: ACCESS &
MODIFY : MAP MAP1 . NOSPAN

This OPEN statement creates a new file named RMSEQ1.FIX and assigns it
to channel 3. The organization is sequential, the record format is defined as
variable, and the ACCESS attribute is set to MODIFY (the ALLOW attribute
defaults to READ).

The OPEN statement also contains a map attribute that references a MAP
statement named MAP1. The MAP statement, which must appear in the
same program, defines the content of records in the file (see Section 2.7). The
NOSPAN attribute overrides the SPAN default and prohibits records from
crossing block boundaries (see Section 2.6).

A sequentially organized file maintains a strict relationship among the records
on the file. The file is structured such that the location of any particular
record is fixed in relationship to the preceding and succeeding records. The
serial arrangement of the records is determined by the order in which they are
written and is permanent.

Because of this serial order, access to any record in the file begins with the
next record and continues with each succeeding one until the desired record is
reached. For example, to read the 12th record in the file, the BASIC program
first must open the file, then successfully read records 1 through 11, and
finally read 12. After reading record 12, the program can read all succeeding
records (in serial order) but it cannot read a preceding record without return-
ing to the beginning of the file.

Sequential files allow the following operations:

GET (read)
PUT (write)
UPDATE
FIND
SCRATCH
RESTORE

Sequential organization imposes the following restrictions on these file
operations:

1. GET and FIND operations can be performed only in sequential order.

2. PUT operations can be performed only at the end of the file. Note that to
open an existing sequential file on disk and add records at the end of the
file, you must specify ACCESS APPEND in the OPEN statement.

3. UPDATE operations are only allowed on sequential files that reside on
disk media. Also, UPDATE requires that the target and updated records
be the same length and that the target record be successfully located by a
GET or FIND before the UPDATE is made.

4. SCRATCH operations erase the contents of the file beginning at the
program’s current record position up to the end of the file. The current
record position becomes the end of the file. Exclusive file access is required
for SCRATCH operations. If you want to erase an entire line, you must
precede the SCRATCH operation with a RESTORE operation followed by
a GET or FIND operation.

5. RESTORE operations set the program at the beginning of the file but do
not erase the file’s content.

2.3.2 Relative Files

When you specify relative file organization, RMS builds a file in which re-
cords are assigned to numbered positions. Access to these records is based on
the numbered position that they occupy in the file.

If your program accesses relative files, you must use the BUILD/REL com-
mand to include the required supporting code.

The OPEN statement used to create or access a relative file allows you to
specify the following attributes:

,JIORGANIZATION] RELATIVE | [FIXED }
VARIABLE

MODIF
. WRITE

,ALLOW | NONE
READ
MODIFY
WRITE

[ACCESS (READ }_
Y

LMAP <map-name>]
LRECORDSIZE <num-exp>]
LCONTIGUOUS]
LBUCKETSIZE <num-exp>]
LLFILESIZE <num-exp>]

L, TEMPORARY]

LBUFFER <num-exp>]
LCONNECT <num-exp>]

,ORGANIZATION RELATIVE
specifies the creation or access of a relative file. The ORGANIZATION
keyword is optional.

Files 2-11

2-12

FIXED

VARIABLE
specifies the format of records within the file. FIXED indicates fixed-
length records. VARIABLE is the default and indicates variable-length
records. Refer to Section 2.5.

,ACCESS
specifies the operations that you will perform on the file. MODIFY is the

default. Refer to Section 2.3.4.
,ALLOW

specifies the operations that you will permit other programs to perform on
the file. READ is the default. Refer to Section 2.2.4.

,MAP
references a MAP statement and can be used to define record size. Refer to

Section 2.6.
,RECORDSIZE

defines the maximum size of records in the file. Note that you must specify
a record size with either the MAP or RECORDSIZE attribute in the OPEN
statement. Refer to Section 2.6.

,CONTIGUOUS
specifies that the contents of the file are contiguous on disk devices. The
default is non-contiguous.

,BUCKETSIZE
specifies the size of a bucket in terms of the number of records. The default

is 32. Refer to Section 2.6.2.

,JFILESIZE
allocates space for a file whose length is defined in terms of a number of

disk blocks. The default is pack dependent.

,TEMPORARY
creates a temporary file that is deleted when you close the file. The default
is non-temporary.

,BUFFER
specifies the number of buckets maintained in memory. The default is 1.

,CONNECT
performs multi-stream connect to the base file that is open on the channel
specified. Refer to the RMS-11 User’s Guide.

Consider the following example:

10 OPEN "RMSIUX.FIX" FOR OUTPUT AS FILE #3 &
+ORGANIZATION RELATIVE FIXED: ACCESS i
MODIFY,» ALLOW NONE:s MAP MAP1

This OPEN statement creates a new file named RMSIVX.FIX and assigns it
to channel 3. The organization is relative, the record format is fixed, the

Files

ACCESS attribute is set to MODIFY, and ALLOW is NONE. Note that a
NONE specification in the ALLOW attribute is equivalent to READ (see
Section 2.3.4). The OPEN statement also contains a map attribute that refer-
ences a MAP statement named MAP1. The MAP statement, which must
appear in the same program, defines the content of records in the file (see
Section 2.7). Because the file contains fixed-length records, the MAP attrib-
ute defines the size of each record in the file.

RMS structures a relative file into a series of record positions. All positions are
the same size and each can contain a single record. RMS considers the first
record position in the file to be number one and sequentially numbers each
succeeding position. When you write or read records on the file, you can
designate a number for the desired record. This number represents the
record’s position relative to the beginning of the file. The record/position
number is unique in the file and can therefore be used to specify location (in a
PUT operation) or a record (in a GET operation). For example, record #1
occupies file position #1, record #2 occupies position #2, etc. A record number
is not required for sequential GET, FIND, and PUT operations.

Unlike sequential files, relative files are allowed only on disk devices. However,
relative files do have advantages over sequential files.

First, though both organizations arrange records in serial order, BASIC pro-
grams can access relative file records by means of a known position number.
This allows you to access records randomly (i.e., GET #2, RECORD 5¢; GET
#2, RECORD 20%; GET #2, RECORD 13%, etc.) in addition to proceeding in
strict serial order.

Second, each relative file record position does not have to contain a record.
Each position contains the same amount of space but this space can be empty.
Also, empty record positions can appear anywhere in the file. Note that
sequential GET and FIND operations that do not specify a record number
locate the next occupied position and bypass empty positions.

BASIC allows the following operations on relative files:

GET (read)
PUT (write)
UPDATE
DELETE
FIND
RESTORE

The relative file organization imposes the following restrictions on record
operations:

1. GET or PUT operations can use a specified number to select a record or
position in the file. This selection method is similar to BASIC’s use of a
subscript to select an item from an array. Record/position numbers allow
you to perform GET and PUT operations in random order and, therefore,
access a record at any point in the file. In addition, new records can be
inserted into the empty positions of existing files. Note that a PUT opera-
tion can be performed only on an empty position or at the end of the file.

Files 2-13

2-14

Files

2. FIND operations can also use a specified number to locate a record or
position in the file. UPDATE and DELETE operations require a previ-

ously successful GET or FIND.

3. DELETE and UPDATE operations do not allow a record number specifi-
cation. Because a successful GET or FIND must be done before a record is
erased (DELETE) or replaced (UPDATE), the record number is already
known. Note that this also restricts DELETE and UPDATE operations to

existing records.

4. RESTORE operations set the program at the beginning of the file without
disturbing the data. Note that a SCRATCH operation is not allowed on

relative files.

2.3.3 Indexed Files

Indexed files require the presence of RMS-11K on the system.

If your program accesses indexed files, you must use the BUILD/IND com-

mand to include the required supporting code.

The OPEN statement used to create or access an indexed file allows you to

specify the following attributes:

,JORGANIZATION] INDEXED | J FIXED
VARIABLE

WRITE
MODIFY

,LALLOW | NONE
READ
WRITE
MODIFY

[,_MAP <map-name>] N
LRECORDSIZE <num-exp>]
LCONTIGUOUS]

LBUCKETSIZE <num-exp>]
LLFILESIZE <num-exp>]

LCONNECT <num-exp>]

LBUFFER <num-exp>]

L, TEMPORARY]
,PRIMARY[KEY]<name>[DUPLICATES]
LALTERNATE[KEY]<name>
INODUPLICATES NOCHANGES]
(DUPLICATES CHANGES]

[ACCESS [READ }—

]

,ORGANIZATION INDEXED
specifies the creation or access of an indexed file. The ORGANIZATION
keyword is optional.

FIXED

VARIABLE
one of these two attributes is used to specify the format of records within
the file. FIXED indicates fixed-length records. VARIABLE is the default
and indicates variable-length records. Refer to Section 2.5.

,ACCESS
specifies the operations you will perform on the file. MODIFY is the
default. Refer to Section 2.3.4.

,ALLOW
specifies the operations that you will permit other programs to perform on
the file. READ is the default. Refer to Section 2.3.4.

,MAP
references a MAP statement and must be used to define record key posi-
tions. Refer to Section 2.7.

,RECORDSIZE
defines the maximum size of records in the file. Note that you must specify

a record size with either a MAP or RECORDSIZE specification in the
OPEN statement. Refer to Section 2.7. The largest record size allowed is
65565 bytes.

,CONTIGUOUS
specifies that the contents of the file are contiguous on disk devices. The
default is logically contiguous.

,BUCKETSIZE
specifies the size of a bucket in terms of the number of records. Refer to
Section 2.6.2. The default is 1 record.

,JFILESIZE
preallocates space for a file whose length is defined in terms of a number of
disk blocks. The default is determined by the extend option of the
MOUNT command.

,CONNECT
performs multi-stream connect to the base file that is open on the channel

specified. Refer to the RMS documentation.

,BUFFER
specifies the number of buckets maintained in memory. The default is 1.

,TEMPORARY
creates a temporary file that is deleted when you close the file. The default
is non-temporary.

Files 2-15

2-16

Files

,PRIMARY
defines the primary key for a particular record. This attribute is required.
Refer to Section 2.2.3.1.

,LALTERNATE
allows you to define up to 254 alternate keys. This attribute is optional.
Refer to Section 2.2.3.1.

NODUPLICATES

DUPLICATES
specifies the use of a duplicate key in the file. NODUPLICATES is the
default. Refer to Section 2.2.3.1.

NOCHANGES

CHANGES
specifies the use of a key field change in the file. NOCHANGES is the
default. Refer to Section 2.2.3.1.

Consider the following example:

) MAP (MAP1) NAME$=30%,ID% HRWAGE sFILL FILL% FILL%

10 OPEN "RMSIXV.VAR" FOR OUTPUT AS FILE #3 8
+ORGANIZATION INDEXED VYARIABLE, ACCESS 8
MODIFY, ALLOW NONE: MAP MAP1 &

+PRIMARY NAMES$

This OPEN statement (line 10) creates a new file named RMSIXV.VAR and
assigns it to channel 3. The organization is indexed, the record format is
variable, the ACCESS attribute is set to MODIFY, and ALLOW is NONE.
Note that a NONE specification in the ALLOW attribute is equivalent to
READ (see Section 2.2.4).

The OPEN statement also contains a map attribute that references a MAP
statement named MAP1. The MAP statement (line 5) defines the content of
records in the file (see Section 2.6). Because this is an indexed file, the MAP
statement is also used to define the size and location of key fields in the
record. The PRIMARY attribute associates the primary index key with
NAMES$, which is defined in the MAP statement on line 5.

The location of records in an indexed file, unlike the record location in sequen-
tial or relative files, is completely under the control of RMS. You control
sequential and relative record location at input by performing an end-of-file
PUT operation (for sequential) or by specifying a position number (for rela-
tive). The placement of indexed file records, however, is governed by the
presence of keys in the record. RMS uses these keys to determine record
location, a process that is transparent to you.

A key is a data field that exists in every record. A data field is one of the many
discrete pieces of information that compose records. For example, an individ-
ual employee record in a company personnel file is usually composed of data
fields such as the employee’s name, address, social security number, and
department. You can designate one or more of these data fields as a key for
accessing the whole record.

The position and length of each key data field in a record is identical for each
record in the file; only the content can differ. For example, all employee
records in a personnel file reserve the same amount of space at the same
position for the employee name data field; only the name itself will differ for
each record. When you create an indexed file, you designate the length and
position of the data fields RMS will use as keys. Once a specific data field has
been selected as an RMS key, your BASIC program can use the key to access
the record.

Indexed files require that at least one key, called the primary key, be associ-
ated with every record. When you create the file, you use a MAP statement to
define the primary key in terms of its position and length in the record. To
access the record, you provide the BASIC program with a key number of 1
(meaning the primary key) and a key value. RMS locates the record with that
value in its primary key field.

In addition to a primary key specification for each record in an indexed file,
you can optionally define up to 254 alternate keys for a record. Alternate keys
represent secondary data fields and are defined in the same manner as a
primary key. Your program can also use these alternate keys to identify and
retrieve records. Alternate keys are numbered (first alternate, second alter-
nate, etc.) according to their order of appearance in the OPEN statement.

As with relative files, indexed files are allowed only on disk devices. The
operations allowed on indexed files are:

GET (read)
PUT (write)
UPDATE
DELETE
FIND
RESTORE

GET, FIND, and RESTORE operations can require a key of reference specifi-
cation. That is, when records contain alternate or primary keys, you must
indicate to RMS which key field to search. UPDATE, PUT, and DELETE
operations do not require a key of reference specification.

GET operations can be performed randomly or sequentially. When you per-
form a series of sequential GET, FIND, or RESTORE operations, a key num-
ber specification is required for the initial operation and it remains in effect
until changed by another explicit specification.

2.3.3.1 Primary and Alternate Key Record Access — Access to records in an
indexed file is based on key specifications that appear in your program. That
is, each record in the file contains one or more data fields that RMS recognizes
as keys.

RMS allows you to have duplicate primary and alternate keys if you specify
DUPLICATES in the OPEN statement. That is, more than one record is
allowed to contain the same value in the data field that composes the key.
Such records are said to have the same record identifier. For example, a

Files 2-17

2-18

Files

personnel file may contain many records that have the same value in the field
defined as "Department." If you do not specify DUPLICATES in the OPEN
statement, RMS rejects any attempt to write a record that contains key data
field values already present in another record of the same file.

RMS also allows you to change alternate key values during update if you
specify CHANGES in the OPEN statement. That is, you are allowed to read a
record from the file, modify a particular alternate key data field within the
record, then write the record back to the file. If you do not specify CHANGES
in the OPEN statement, RMS rejects any attempt to write a record contain-
ing a modified key value. Note that primary keys are not allowed to change.

Note that you cannot specify CHANGES without also specifying DUPLI-
CATES.

To randomly access records in an indexed file, you must specify the key of
reference. That is, you must specify the desired key name that refers to de-
fined values in a MAP statement. A record operation key specification has the
following format:

6T
GET #channel no.r KEY #num-exP{GE}str-exp

EQ
where #num-exp is a number that specifies the key of reference (0 is the
primary key, 1 is the first alternate, etc.). The str-exp is a quoted character
string or string variable that represents the content of the data field. GET and
FIND operations allow you to specify an exact key, approximate key, or gen-
eric key. To specify an exact or approximate key, you use EQ for exact key,
GT for an approximate key that is greater than the string expression, or GE
for an approximate key that is the same or greater than the string expression.

An exact key specification requires that you specify the complete key field
identifier in the program statement as follows:

GET #chanwnel no. +KEY #num-exp EQ str-exp

An approximate key specification allows you to access a record based on a
specified relationship. That is, you can specify a search for a record that is
equal to (EQ), or greater than or equal to (GE), or greater than (GT) the
record key. For example, the format:

FIND #channel no. +KEY #num-exp GE str-exp

causes RMS to search for a record whose key value is equal to that specified
by the string expression. If RMS determines that the specified record key does
not exist in the table, it searches for the next highest value in that key index
table.

A generic search accesses a record based on an initial portion of the record’s
key field. This search is automatically initiated when you specify a key data
field (str-exp) that contains fewer characters than are defined for that key in
the file. A generic search causes RMS to return the first record whose key
value begins with the specified characters.

When you specify search keys you must pay strict attention to the length and
justification of the string fields. BASIC-PLUS-2, by default, left justifies and
optionally either blank pads or truncates these fields. Common or Map fields
have a specified, fixed length. Input fields are left-justified but not padded.

When you institute a key search, RMS searches for a match based on the
number of characters you specify. However, if you use the map field,
BASIC-PLUS-2 pads the key you specify with blanks so that it matches the
length of the field specified in the map.

To illustrate generic key access, assume that you have a personnel file. Each
record in this file contains a data field composed of a 9-character social
security number. These numbers have been defined in terms of record posi-
tion and length in a MAP statement and have been assigned to the variable
SSNS$. This definition takes place before any record operation. Also, in the
OPEN statement, you have defined SSN$ as the primary key.

Consider the following GET statement:
GET #1%, KEY #0% EQ "013"

#1% is a channel number that identifies the file.

#0% is the key of reference. Because 0% is the primary key, the key index
SSN$ is searched.

"013" is a string expression that represents the first three characters of the
data field associated with SSN$.

This GET statement causes RMS to search the key index represented by
SSN$. RMS returns the first record in that index with a data field of 013 at
the defined position and length.

2.3.4 File Sharing

With the exception of sequential files on non-disk devices, all files are capable
of being shared by any number of programs. Sequential files on non-disk
devices can be read or written only by a single program. Sequential files on
disk devices can be shared by multiple readers, but allow only a single pro-
gram. Relative and indexed files can be shared by multiple programs.

While the organization of the file determines the sharing capability, the type
of sharing that actually occurs at run time is determined by the specifications
you make in the OPEN statement.

The ALLOW attribute in the OPEN statement is used to specify the types of
operations that you will permit other programs to perform on the file while
you have it open. With the ALLOW attribute, you can control the sharing of
the file. The specifications you can make in the ALLOW attribute, and the
operations they permit other users to perform, are as follows:

Files 2-19

2-20

Files

READ allows GET and FIND operations on the records in the file.
WRITE allows PUT operations on the records in the file.

MODIFY allows GET, FIND, PUT, and UPDATE operations on records in
sequential, relative, and indexed files; additionally, it allows DE-
LETE operations on records in relative and indexed files.

NONE is the equivalent of READ.

The ACCESS attribute in the OPEN statement is used to specify the record
operations that you will perform on the file. The specifications you can make
in the ACCESS attribute, and the operations they refer to, are as follows:

READ specifies GET and FIND operations on the records in the file.
WRITE specifies PUT operations on the records in the file.

MODIFY specifies GET, FIND, PUT, and UPDATE operations on records
in sequential, relative, and indexed files; it also specifies DE-
LETE operations on records in relative and indexed files.

SCRATCH specifies GET, FIND, PUT, UPDATE, and SCRATCH opera-
tions on records in sequential files that reside on disk.

APPEND specifies PUT operations at the end of a sequential file that re-
‘ sides on disk.

Operations on the virtual file organization should not be shared. If another
program attempts to modify a block that is already open, the block is changed
in the second program’s buffer but not on the disk. When the second program
closes the file or attempts another block operation, the data from the first
program is overwritten and lost.

Note that FIND and GET operations on relative and indexed files cause the
bucket that contains the accessed record to be inaccessible to other programs.
This process is called locking and it ensures that the modifications that you
make to a record are not interfered with by another program. The lock re-
mains in effect until you specify a PUT, DELETE, UPDATE, or another GET
or FIND operation. Note that if the second GET or FIND operation accesses
the same bucket, the lock is reenabled. (For information on buckets, refer to
Section 2.5.)

You can explicitly unlock the bucket that was locked by your program by
specifying an UNLOCK statement. For example:

70 UNLOCK #17%

causes the records contained in the file on channel 1% to remain accessible to
other programs.

If another program attempfs an operation on a locked bucket, the operation
fails and an error message is printed:

?Record/bucket locKed

Note that a lock is made on a bucket and not on the individual record.
Therefore, more than one record can be locked at the same time.

2.3.5 RMS Memory Allocation

The use of RMS-structured files in a BASIC-PLUS-2 program causes the
compiler to allocate space in memory to the needs of that program. Static
space for code is initially allocated when a file organization is specified in the
BUILD command (see Section 1.2.8). Additional space is allocated at run
time for each channel that the program opens.

The space that is initially allocated when a file organization is specified is
system dependent. However, the static space that is dynamically allocated to
each open file in the program is determined by the algorithms contained in
Table 2-2. Note that this space is deallocated when the file is closed.

Table 2-2: Allocation Algorithms

File Type Allocated Space

Sequential files 735 bytes
+ the record length

Relative files 224 bytes
+ the bucket size (in bytes)
+ the record length

Indexed files 264 bytes

+ 2 = the bucket size (in bytes)
+ the number of keys * 104

+ 2 * the maximum key size

+ the record length

You can reduce your program overhead for task extension by pre-determining
the number of bytes the program needs for simultaneously opened files and
using that number in the BUILD/EXTEND:n command.

2.4 Record Access Methods

The methods that you use to store or retrieve records in a file are determined
by the file’s organization. The organization of a file is fixed at the time you
create it, but, depending on the access allowed, a specified access method can
change each time the file is opened for program execution. In some cases, you
can vary the access to records during program execution.

RMS allows you two types of record access: sequential and random. If you use
sequential access, records are accessed in serial order as established by the file

Files 2-21

2-22

Files

organization. If you use random access, record operations can take place at
any point in the file.

Table 2-3 shows the relationship between file organization and record access.

Table 2-3: Access Methods

Access Methods
File Organization Sequential Random
Sequential yes no
Relative yes yes
Indexed yes yes

The following subsections discuss each type of record access.

2.4.1 Sequential Access

All RMS file organizations allow you to access records sequentially. Sequen-
tial record access is employed when you issue a series of requests for the next
record. RMS interprets these sequential operations within the context of the
file organization. That is, record operations are performed in terms of a
predecessor-successor record relationship. RMS assumes that for each suc-
cessfully accessed record (except the last) there is a succeeding record some-
where in the file.

The sequential file organization allows only sequential access. In these files,
the predecessor-successor relationship is physical (i.e., each record, except the
last, is physically adjacent to the next record). A record in a sequential file
can be processed only after each preceding record has been successfully
accessed. Similarly, once a record is processed, the program must be reposi-
tioned to the beginning of the file before preceding records can be accessed. A
RESTORE operation, or reopening the file, positions the program at the be-
ginning of the file.

In terms of operations, a PUT requires that the program be positioned at the
end of the file (i.e., immediately following the last record). An existing
sequential file on disk can be opened at the end-of-file position if you specify
ACCESS/APPEND in the OPEN statement. A FIND operation moves the
program to the next sequential record position. Therefore, a series of FIND
operations can be used to locate the end of the file (i.e., an unsuccessful FIND
indicates end-of-file).

UPDATE operations on sequential files require a successful GET or FIND
operation to move the program to the desired record before the UPDATE is
specified. A GET causes the program to locate the next record and perform
the GET operation. A succeeding GET or FIND operation moves the program
to the next record.

The relative file organization allows sequential access as established by the
contents of record positions. Relative files allow empty record positions that
can be caused by a record deletion or by a program that purposely leaves the
positions empty. RMS maintains the predecessor-successor relationship
through its ability to recognize empty or occupied record positions.

Sequential PUT operations on relative files are used when you create a new
file or append records to an existing file because RMS requires that new
records be written in empty positions. That is, a sequential PUT operation
causes RMS to place a record in a location whose position number is one
higher than the previous operation. If the position is occupied, the operation
fails. A GET or FIND operation causes the program to locate the next existing
record in position number order. In addition, the GET operation reads the
located record. The program remains at this location until another operation
is specified. DELETE and UPDATE operations require that a FIND opera-
tion position the program at the desired location.

The indexed file organization also supports sequential access. In indexed files,
the predecessor-successor relationship exists among the entries in the index.
RMS sequentially accesses records on behalf of the program by moving
through a specified index table in serial fashion. The records are retrieved in
the same order that key values appear in the table.

PUT operations on indexed files write the record and place its key value in the
appropriate index. On GET operations, the pointer for the specified key of
reference locates the first record associated with that index and makes it
available to the program. The next GET updates the pointer to the record
whose key appears next in that index and accesses the record. FIND opera-
tions perform in the same manner but without reading the record. UPDATE
and DELETE operations require a prior, successful GET or FIND.

2.4.2 Random Access

Random access allows the BASIC program, rather than file organization, to
control the order of record access. The program identifies each record of inter-
est in each operation requested of RMS. This procedure allows you to access
records in any order at any point in the file.

Random access is not permitted on sequential files because of the strict
predecessor-successor relationship maintained among records. Relative and
indexed files do allow random access.

Programs employ random access on relative files through the specification of a
particular record number. RMS interprets the number as representing a
record position in the file. If the operation is a GET or FIND and no record
exists in the specified location, RMS returns an error (% Record not
found). If the operation is a PUT and a record already exists in the specified
location, RMS also returns an error (% Record already exists).

Note that DELETE and UPDATE operations do not allow record identity
specifications. A prior GET or FIND is required. Also, random access imposes
no restriction on the order of operations. For example, you can specify a series
of GET operations on a relative file in any order (record number 3, record
number 9, record number 5, etc.).

Programs initiate random access on indexed files by means of a key specifica-
tion. You specify a number and key value in a manner determined by the
desired operation. For all operations, the specified key value indicates the

Files 2-23

2-24

Files

contents of a record data field and the number identifies the index that RMS
uses to locate that record.

On GET or FIND operations, a specification indicating the content of the
desired key field is required. RMS searches the key index table indicated by
the specification, finds the desired key value (if present), reads the record
pointed to by the index, and passes the record to the program.

PUT operations do not allow an explicit key specification because RMS uses
the record’s data to interpret the new record in terms of content, position, and
length of key data fields.

Indexed files allow you to specify key values in three ways: exact key, approxi-
mate key, and generic key. You specify an exact key by including the entire
content of the desired field in the operation. You specify an approximate key
in your program by indicating that the desired record’s key field can be equal
to, or greater than, the specified key. You specify a generic key in the program
by indicating an initial portion of a key field. These three methods are de-
scribed in Section 2.2.3.1.

Consider the following example:

3 ON ERROR GO TO 19000

10 MAP (PDATA). NAME$=307%,ID%=67%,JOBDES$=20

20 OPEN "PFILE.DAT" FOR OUTPUT AS FILE #1% &
+ORGANIZATION INDEXED FIXEDsACCESS MODIFY B
+ALLOW NONE :MAP PDATA 8
+PRIMARY NAME$ALTERNATE ID$%

30 INPUT "NAME" iNAME$

40 IF NAME®=" " THEN 50 ELSE &

A\ INPUT "ID "3ID% &

A\ INPUT "JOBDES "3iJOBDES% &

A\ PUT #17% i

\ GO TO 30

50 CLOSE #17%

GO DPEN "PFILE.DAT" FOR INPUT AS FILE #1% &
+ORGANIZATION INDEXED FIXED:ACCESS READ ;B
+ALLOW NONE :MAP PDATA &
+PRIMARY NAME$ sALTERNATE ID%

70 GET #17% &

\ PRINT NAME$3ID%3iJOBDES$%

BO INPUT "ID "SIDENTS

g0 IF IDENT$=" " THEN 210 ELSE B

GET #1%7,KEY #17% EQ IDENT% 8

A\ PRINT ID$3iNAME% 3 JOBDES% &

\ GO TO 8O

19000 PRINT "ERROR"SERR:"AT LINE"SERL

32767 CLOSE #17 \END

This program creates an indexed file, accepts record data from the terminal,
and closes the file. The file is then reopened and its records are accessed with
sequential and random GET operations. The program is composed of the
following lines:

Lines 5 and 19000 are an error handling routine.

Line 10 is a MAP staterhent that defines a primary and two
alternate keys in terms of their size and location in the

record.

Line 20 is an OPEN statement that creates an indexed file, iden-
tifies the primary and alternate keys, and references the
MAP statement that defines those keys.

Lines 30 and 40 accept record data from you by means of an INPUT
statement. The PUT statement writes the data to the
file and the MAP statement variables format the data in
the record.

Line 50 closes the file.

Line 60 reopens the file. Note that the file attributes are respeci-
fied in the OPEN statement.

Line 70 is a GET statement that accesses the first record
(sequential access) and prints it.

Line 80 is an INPUT statement that requests an alternate key.

Line 90 is a GET statement that accesses a record based on the
alternate key you specify in response to line 80. This is a
random operation. Line 90 also prints the record.

Line 32767 closes the file.

The capability to shift from random to sequential access (or vice versa) is only
allowed on relative and indexed file organizations. Sequential file organiza-
tion does not support random access. There is no restriction on the number of
shifts that can be made while processing a file.

As an example, consider a program that randomly accesses a file and then
dynamically shifts to sequential access. RMS considers the currently accessed
record (by the random operation) as the predecessor record when the shift is
made to sequential access.

Relative and indexed file organizations impose their own restrictions on the
sequence of operations. For example, a GET operation always shifts the pro-
gram to the specified record. If you follow a series of sequential GE'T opera-
tions with a random PUT, the program remains at the location of the last
GET. A sequential GET after the random PUT will resume at the point of the
previous GET operation.

2.5 Record Format

RMS is indifferent to the logical content of records, but it does require that
you specify the record format. Record format determines the manner in which
RMS stores records in the file. The format is specified when the file is created
and is permanently assigned to each record read into that file.

BASIC allows you to specify one of two formats. These are:
FIXED the file contains records of equal and fixed length.
VARIABLE the file may contain records of different lengths.

Files 2-25

2-26

Files

The file organization determines which of the formats you can select.

The record format must be specified when the file is created. You specify
record format in the BASIC program as part of the organization clause, as
follows:

OPEN filename [FOR OUTPUT] AS FILE [#inum-exp

,JORGANIZATION] [SEQUENTIAL| ([FIXED }
RELATIVE VARIABLE
INDEXED

Variable format is the default for sequential, indexed, and relative organiza-
tions and record length is indicated by a count field appended to each record.

The following subsections discuss each record format in detail.
2.5.1 Fixed-Length Records

Fixed length describes a file condition in which records are of equal and
nonvarying length. Under fixed-length format, each record in a file occupies
an identical amount of space.

You specify the length of records in the BASIC program when the file is
created. The length, in bytes, can be explicitly stated in the RECORDSIZE
clause or implicitly defined by a map reference in the MAP clause. RMS
stores and maintains the record length specification in the file description
header. When a program requests a record from the file, the desired record is
passed to the program within the length restrictions defined for that file.

Fixed-length format is optional for sequential, relative, and indexed files.
Relative files, however, store records in fixed-length positions, regardless of
the format specification. That is, RMS stores relative file records in locations
that are each equal to the maximum record size specified when the file was
created. This condition is true whether the format is fixed or variable. For
example, when you create a relative file, a record position space is allocated
that is equal to the largest record described for that file. RMS stores the size
in the file header. A program request for a relative file record is performed
within the specified amount of space.

2.5.2 Variable-Length Records

Variable-length describes a file condition in which the length of each record is
allowed to differ. Variable format is the default for sequential, relative, and
indexed file organizations.

When variable-length format is used, you must specify the length of the file’s
longest record in the RECORDSIZE clause or with a map reference in the
MAP clause.

Because record retrieval operations require a record size, RMS prefixes a
count field to each record as it is written to the file. The count field identifies
individual record size in bytes to RMS but is transparent to the BASIC
program. When a program requests a record, RMS releases a record whose
length is that specified by the count field.

There are two types of count fields, depending on the device you use to
contain the file. Records in files residing on disk devices contain a 1-word
(2-byte) binary count field that precedes the data portion of the record. This
count field is aligned on a word boundary. The length indicated by the count
field does not include the count field itself.

Records in files residing on ANSI magnetic tape (sequential files only) contain
a 4-character decimal count field that precedes the data portion of the record.
The size indicated by the field includes the field itself. In the context of ANSI
tapes, this record format is known as D format.

Relative files are an exception in that variable format is allowed but record
position length is fixed. The length of each record position is defined by the
size of the largest record. A count field prefixes each record, but these records
need not fill an entire record position.

When you create relative or indexed files with variable format, you must
define the record size as a non-zero specification that represents the size of the
largest record. Note that a record is never allowed to exceed the RMS maxi-
mum of 16,383 bytes.

2.6 Data Structure

Data structure is a term that describes the storage of a file on a particular
medium. When you create a file, RMS uses certain data storage structures to
allocate and maintain the records that compose that file. These structures are
blocks and buckets.

A block is a physical storage structure that can contain a partial record, one
full record, or more than one record. The size of a block on disk devices is fixed
at 512 bytes. The size of a block on magnetic tape can be defined in your
program. Because sequential is the only file organization allowed on magnetic
tape, the size of a block is a consideration only when creating sequential files
on magnetic tape. This consideration is discussed in Section 2.5.1.

A bucket is a logical data structure that is composed of blocks. Buckets are
used for relative and indexed files on disk devices and RMS allows you to
establish the size of a bucket in terms of an integral number of blocks. Buck-
ets are described in Section 2.5.2.

2.6.1 Blocks

The records that your program writes to a file are contained on blocks. The
size of these records determines whether a block contains a partial record, one
full record, or more than one record. RMS considers each block within a file as
a contiguous array of data. When you write a record that is larger than one
block, RMS allocates successive blocks sufficient to contain the entire record.
The procedure whereby records cross block boundaries is called spanning.

The length of a block on disk devices is fixed at 512 bytes. This size is set by
the hardware and cannot be altered. The length of a block on magnetic tape is
defined as the length of data that the program writes between two inter-record

Files 2-27

2-28

Files

gaps. With ANSI-formatted tapes, you can specify this size in the BLOCK-
SIZE clause as a positive integer that represents the number of records. The
range of this integer is from a minimum of 18 bytes to a maximum determined
by program buffer requirements.

The BLOCKSIZE clause appears in the OPEN statement that is used to
create sequential files on magnetic tape. The BLOCKSIZE specification de-
fines block length in terms of the number of records and permanently assigns
it to the file. Consider the following:

OPEN filename [FOR OUTPUT] AS FILE [#num- exp
,IORGANIZATION] SEQUENTIAL

,RECORDSIZE num-exp

,BLOCKSIZE num-exp

RECORDSIZE
defines the size of the largest record in the file.

BLOCKSIZE
defines the size of a block in number of records. The default for disk
devices is 512 bytes.

2.6.2 Buckets

A bucket is a logical storage structure that RMS uses to build and maintain
files on disk devices. A bucket is composed of an integral number of blocks in
the range of 1 to 31. Bucket size is defined in terms of the number of records it
contains and this number can be defaulted to one record or specified in your
program.

Because relative and indexed files are allowed only on disk media, the length
of a block for these files is set at 512 bytes. This size cannot be altered in your
program. A bucket, however, is a logical structure and its size can be tailored
to program requirements.

Unlike blocks, a bucket cannot contain a partial record. That is, RMS does
not allow records to span bucket boundaries. Therefore, when you specify a
bucket size in your program, you must consider the size of the largest record in
the file. If a default bucket size is used, BASIC makes this consideration
automatically.

In addition to your file’s records, buckets contain internal information that is
maintained and understood only by RMS.

There are two methods you can use to establish the number of blocks in a
bucket. The first is to use the BASIC default. The second method involves a
specification of the number of records you desire in each bucket. BASIC
calculates a default based on the number of records you specify. These two
variations on default sizes are discussed in Section 2.5.2.1.

2.6.2.1 Bucket Size — The default bucket size assigned to relative and in-
dexed files is designed to make the bucket size as small as possible. The

default size minimizes memory buffer space requirements but also decreases
the speed of I/0 operations.

A default bucket size is selected by BASIC on the basis of information that
you provide when the file is created. If you do not define the BUCKETSIZE
clause in the OPEN statement, BASIC assumes that there is only one record
in the bucket, calculates a size, and assigns the required number of blocks. If
you define BUCKETSIZE and specify the number of records (when more than
one is desired in each bucket), BASIC uses a different formula to arrive at the
necessary number of blocks. BASIC also considers file organization and record
format when determining default bucket size. These considerations are shown
in the following formulas and tables. Note that record size can alternately be
defined by a map reference.

The BASIC syntax used to create a file in which BASIC completely controls
bucket size is as follows:

OPEN filename [FOR OUTPUT) AS FILE [#lnum-exp
,(ORGANIZATION] {RELATIVE [{FIXED }:l

INDEXED VARIABLE
,RECORDSIZE num-exp

The BASIC syntax used to create a file in which you state the number of
records desired in the bucket is as follows:

OPEN filename [FOR OUTPUT) AS FILE [#inum-exp

,IORGANIZATION] {RELATIVE}[{FIXED }:I
INDEXED VARIABLE

,RECORDSIZE num-exp

,BUCKETSIZE num-exp

where the BUCKETSIZE specification is the number of records expressed as
a positive integer.

The default bucket size for relative files is derived from the following formu-
las:

¢ Fixed-length records with no BUCKETSIZE specification,

Bnum=(1+Rlen)/512
¢ Fixed-length records with BUCKETSIZE specified,

Bnum=((1+Rlen) * Rnum)/512
e Variable-length records with no BUCKETSIZE specification,

Bnum=(3+Rmax)/512
e Variable-length records with BUCKETSIZE specified,

Brnum=((3+Rmax) * Rnum)/512

Files 2-29

2-30

Files

Bnum

Rlen

Rmax

Rnum

is the number of blocks per bucket in a range of 1 to 31 blocks. The
bucket size is rounded up to the next highest integer, where required.

is the length in bytes of the file’s fixed-length records as defined in
the RECORDSIZE clause.

is the length in bytes of the largest variable-length record in the file
as defined in the RECORDSIZE clause.

is the number of records that you desire in each bucket as defined in
the BUCKETSIZE clause.

represents the existence byte that RMS uses to determine the pres-
ence or absence of records in the file.

represents the existence byte plus two bytes that indicate the count
field.

Table 2-4 shows a partial list of the default bucket sizes selected by BASIC
when the number of records is undefined (i.e., the bucket contains only one

record).

Table 2-4: Relative File Default Bucket Size

Bnum Rlen Rmax
1 1-511 1-509
2 512-1023 510-1021
3 1024-1535 1022-1533
4 1536-2047 1534-2045
5 2048-2559 2046-2557
6 2560-3071 2558-3069
7 3072-3583 3070-3581
8 3584-4095 3582-4093
9 4096-4607 4094-4605
10 4608-5119 4606-5117
11 5120-5631 5118-5629
12 5632-6143 5630-6141
13 6144-6655 6142-6653
14 6656-7167 6654-7165
15 7168-7679 7166-7677

The default bucket size for indexed files is derived from the following formu-

las:

¢ Fixed-length records with no BUCKETSIZE specification,

Bnum=(22+Rlen)/512
¢ Fixed-length records with BUCKETSIZE specified,

Bnum=((7+Rlen) * Rnum)+15/512
e Variable-length records with no BUCKETSIZE specification,

Bnum=(24+Rmax)/512
e Variable-length records with BUCKETSIZE specified,

Bnum=((9+Rmax) * Rnum)+15/512

Bnum is the number of blocks per bucket in a range of 1 to 31 blocks. The
bucket size is rounded up to the next highest integer, where required.

Rlen is the length in bytes of the file’s fixed-length records as defined in
the RECORDSIZE clause.

Rmax is the length in bytes of the largest variable-length record in the file
as defined in the RECORDSIZE clause.

Rnum is the number of records you desire in each bucket as defined in the
BUCKETSIZE clause.

22 is a 15-byte RMS bucket overhead plus 7 bytes for the fixed-format
record header length. (Note that when BUCKETSIZE is defined, 7
bytes are allotted to each record in the bucket and 15 bytes to the
bucket as a whole.)

24 is a 15-byte RMS bucket overhead plus 9 bytes for the variable-
format record header length. (Note that when BUCKETSIZE is
defined, 9 bytes are allotted to each record in the bucket and 15
bytes to the bucket as a whole.)

Table 2-5 shows a partial list of the default bucket sizes selected by BASIC
when the number of records is undefined (i.e., the bucket contains only one
record). i

Table 2-5: Indexed File Default Bucket Size

Bnum Rlen Rmax
1 1-490 1-488
2 491-1002 489-1000
3 1003-1514 1001-1512
4 1515-2026 1513-2024
5 2027-2538 2025-2536
6 2539-3050 2537-3048
7 3051-3562 3049-3560
8 3563-4074 3561-4072
9 4075-4586 4073-4584
10 4587-5098 4585-5096
11 5099-5610 5097-5608
12 5611-6122 5609-6120
13 6123-6634 6121-6632
14 6635-7146 6633-7144
15 7147-7658 7145-7656

When you specify a bucket size for files in your program, you should keep in
mind the space versus speed considerations involved. That is, a large bucket
size increases the speed of file processing but also increases the memory space
required for buffer allocation. Likewise, a small bucket size minimizes buffer
requirements and also decreases the speed of operations. For example, a large
bucket size contains a greater amount of the file in each bucket. When an I/O
operation accesses a bucket, this greater amount of file is made available for
processing. However, a like amount of buffer space is required to contain the
file.

Files 2-31

2.7 Record Mapping

2-32

Files

NOTE:

Because a RECORDSIZE specification overrides a MAP, it is
possible to define a record size that is larger than the MAP and
cause a record operation to overwrite mapped areas. A fatal
error results if you specify a RECORDSIZE that is larger than
a previously defined MAP statement for the same file.

When you initiate a record operation, such as a PUT or UPDATE, the record
appears to move directly to your program from the file or to the file from your
program. RMS transports these records from or to blocks or buckets, depend-
ing on the organization of the file (see Section 2.5).

RMS, however, does not directly transfer records between programs and files.
Transparent to you, RMS reads or writes records into internal memory areas
called buffers. Buffers, therefore, are an intermediate step between files and
programs. The unit of transfer between the file and the buffer is the storage
structure (i.e., a block or bucket). The unit of transfer between the program
and the buffer is a record.

During record operations, RMS controls the content of buffers. However, the
program determines the allocation of buffer space and the content of the
records in those buffers through record mapping.

The buffer is a data storage location whose size and content can be described
in an optional MAP statement. The MAP statement acts as a template for the
placement of data in a record. That is, it generates a PSECT of the same
name with a length equal to the sum of the MAP elements. The MAP clause
in the OPEN statement references the MAP statement and associates it with
a particular file.

The MAP statement appears in your program as follows:

MAP (maPp-name) element-list

The MAP name is enclosed by parentheses and represents the buffer name. It
cannot be a BASIC-PLUS-2 reserved word. It provides RMS and the program
with a vehicle for associating record operations with a buffer in the OPEN
statement. The element list is composed of variables that represent the data.
The list also defines how that data is to be placed in the record.

More than one MAP statement can exist with the same name. If this is the
case, the variables in the element-list must be contained in the same position
in each map. In addition, MAP statements can appear before or after the
OPEN statement.

Because the MAP statement defines the data content of the record, it also
acts to define the position and length of indexed file keys. Both the primary
and alternate KEY clauses in an indexed file OPEN statement refer to ele-

ments in a MAP statement when key values are specified. Note that once a
key field has been defined, by means of a KEY specification and a map
reference, it is not allowed to change.

The MAP clause that associates a defining MAP statement with a particular
file appears in the OPEN statement as follows:

OPEN filename [FOR OUTPUT] AS FILE [#lnum-exp

,JORGANIZATION] |SEQUENTIALJ||f FIXED
RELATIVE VARIABLE
INDEXED

,MAP map-name

The map-name in the MAP clause is associated with the file while the file is
open.

If you use the MAP clause, the allocated buffer space is the MAP. However, if
you use RECORDSIZE to define the length of records, buffer space is allo-
cated from the program’s dynamic free space. Consider the following example:

10 PRINT "SEQUENTIAL MAP TEST WITH FIXED LENGTH RECORDS"

20 OPEN "RMSSEQ.FIX" FOR OUTPUT AS FILE #17% 8
+ORGANIZATION SEQUENTIAL FIXED.ACCESS 8
MODIFY sMAP MAPI1

30 MAP (MAP1) NAME$=30% »IDNUMZ ;JOBCLASS$=97

40 INPUT "NAME "iNAME$ i

\ IF NAME$= "END" THEN 100

S50 INPUT "ID NUMBER"3IDNUMZ 8

\ INPUT "JOB CLASS" 3 JOBCLASSS

GO PUT #1% \GO TO 40

100 CLOSE #17% \END

This program creates a sequential file with fixed-length records. The maxi-
mum record size is 41 bytes and the length of the record’s content is defined in
a map reference. The map reference is contained in line 20. Line 30 contains
the defining MAP statement referred to in line 20.

Because the MAP statement defines the length of data in the record, it should
be used in the OPEN statement to define the size of records. In addition, a
map reference and a RECORDSIZE specification should not appear in the
same OPEN statement. Note that when both a map reference and a RE-
CORDSIZE specification are used, the RECORDSIZE specification takes
precedence.

Files 2-33

Chapter 3
BASIC-PLUS-2 on RSX-11M

This chapter describes the interface between the BASIC-PLUS-2 compiler
and operating systems that use the MCR command language. The description
includes compiler invocation, linkage of object modules to produce an execut-
able task, and task execution. The operating system specific information in
this chapter is a summary only. You are expected to be familiar with the
operating system and with the information found in the documentation that is
specific to your application.

3.1 Compiler Invocation on RSX-11M

To invoke the BASIC-PLUS-2 Compiler on systems with an RSX command
interface, type the following command in response to your system prompt:

* RUN $BASICZ GO

If compiler invocation is successful, BASIC-PLUS-2 prints an identifying line
(see Section 1.2.1). With the compiler invoked, you can create a BASIC source
program and object modules as described in Chapter 1. Note that an option in
the installation procedures allows the system manager to change the
BASIC-PLUS-2 invocation command, as follows:

» BP2 (&

3-1

3.2 Task Builder Usage on RSX-11M

3-2

The Task Builder is a system program that is used to process one or more
object modules into a single, executable file in task image format. Refer to the
RSX-11M Task Builder Reference Manual for information about using the
Task Builder program.

An object module is a user program that has been compiled with the BASIC
command COMPILE (see Section 1.2.7). Programs created as object modules
have the .OBJ file type appended to the file name by default. They can be
executed only after being processed by the task builder.

The task builder accepts object code as input, resolves any switches or options
you have specified in the command line, and outputs code in executable task
image format.

The BASIC-PLUS-2 compiler generates both Overlay Description Language
(ODL) files and indirect Task Builder command files that are based upon the
BUILD command. These files are sufficient for single segment tasks. You
must reconstruct the ODL file if you overlay the user segment, as described in

the RSX-11M Task Builder Reference Manual.

The BASIC Compiler BUILD command (see Section 1.2.8) offers you a sim-
plified procedure for specifying task builder input. The BUILD command
accepts object module names in its command line and produces a command
file. This file contains all of the required task builder command input. For
example:

BUILD mOD1 . MODZ, MOD3/MAP @D

generates a command file named MOD1.CMD. When this file is typed in
response to the task builder prompt:

TKB> BMOD1 @D

the task builder generates a task image file (MOD1.TSK) and a map
(MOD1.MAP). Note that if you desire task builder options you must edit the
command file generated by the BUILD command.

3.2.1 Task Builder Options

The options are specified as input to the task builder and define the charac-
teristics of the task image. The options take the form of a keyword followed by
an equal sign and an argument. The argument assigned to the option is
dependent on the desired characteristic. This section summarizes the options
that are most useful to BASIC programmers. For a complete description of
task builder options, refer to the Task Builder Reference Manual appropriate
to your system.

BASIC-PLUS-2 on RSX-11M

Table 3-1 lists the option keywords and their meanings.

Table 3-1: Task Builder Options

Keyword Meaning

ASG Declares device assignments to logical units
EXTTSK [Extends the amount of memory allocated to a task
LIBR Associates task with shareable library

UNITS Declares the maximum number of logical units

The ASG option assigns a specified physical device to one or more logical
units.

The ASG option has the form:

ASG = device mame:zunit l:,ssunmit n
device name is a 2-character alphabetic device name followed by an
optional 1- or 2-digit device unit number.

unit is a decimal integer that indicates the logical unit number.

The default is ASG = SY0:1:2:3:4,T1:5,CL:6

Note that there is a direct correspondence between BASIC-PLUS-2 channel
numbers and operating system logical unit numbers (LUNs). BASIC-PLUS-2
requires LUN 13 for the user terminal and LUN 14 for a work unit, therefore,
you must specify 14 units and assign unit 13 to your terminal. When the
UNITS option and ASG are part of the same input specification, UNITS
must precede ASG.

The UNIT'S option specifies the number of logical units used by the task and
reserves sufficient space for the number of specified units in the task’s header.
The number of logical units assigned by default is 6 and the maximum num-
ber that can be used in a BASIC-PLUS-2 task is 14.

The UNIT'S option has the form:

UNITS = max-units

where max-units is a decimal integer in the range of 0 to 14.

The EXTTSK option extends the amount of memory that is initially allo-
cated to a task. The option causes additional memory allocation when the
task is loaded.

The EXTTSK option has the form:

EXTTSK = lendth

BASIC-PLUS-2 on RSX-11M 3-3

where length is a decimal number that specifies in words the increase in task
memory allocation. Note that the task itself attempts to expand as required.
If you attempt to extend memory allocation beyond the system partition size
or the resident library maximum allocation (i.e., 16K words), a fatal error is
returned at run time (?Not enoudh available memory).

The EXTTSK option can be used to preallocate space for string manipulation
and I/O buffers. BASIC-PLUS-2 normally uses the minimum required space.
Therefore, the use of EXTTSK can provide additional space and cause some
increase in the speed of program execution by decreasing the number of task
extends. Refer to Table 2-2 for the formulas that determine initial space
allocation estimates.

The LIBR option associates the task with a specific resident shareable library
in memory. BASIC-PLUS-2 programs can use the optional BASIC2 library or
a user-created library. If you use LIBR to access an optional library, the task
builder includes the symbol definition file of the specified library in the input
file. For example, if you specify BASIC2, the task image is associated with the
BASIC2 resident library and BASIC2.STB (located in account [1,1]) is in-
cluded in the input file.

The LIBR option has the form:

LIBR = library:RO

where library is a specified resident shareable library and RO is read-only
access.

Note that if you wish to specify BASIC2 or a user-created library in the
BUILD command output, you must use the LIBRARY command (see Section
1.2.9). You must edit the Task Builder indirect command file if you include
multiple shared libraries.

3.3 Task Execution on RSX-11M Systems

3-4

The task builder outputs executable code that can be invoked and executed at
operating system level. The sequence of events leading up to task execution is
as follows:

1. Creating one or more object modules by means of the BASIC command
COMPILE.

2. Specifying the object modules, along with any desired switches and
options, as input to the task builder, or using BUILD to create a comrmand
file that contains task builder command input.

3. Obtaining task builder output of executable code (task image) and a map
file if desired.

4. Issuing the appropriate system command to execute the created task.

As examples of the procedures you might use to build an executable task,
consider the following series of commands.

BASIC-PLUS-2 on RSX-11M

Input consists of two object modules (MYPRG1 and MYPRG2), and a
BASIC2 library.

OLD MYPRG1 @D
BasicZ2
COM @
BasicZ
OLD MYPRGZ @B
BasicZ
COM @D
Basic2
BUILD MYPRG1:» MYPRGZ2/IND @&
Basic2
XIT @
*TKB EGMYPRG1 G

In this command series, BUILD is used to create a command file
(MYPRG1.CMD) composed of a previously compiled object module. The
command file contains all of the libraries and options required as input to the
task builder as well as the BASIC switch (/IND) required to enable the use of
RMS indexed I/0. The command file is used as input to the task builder
prompt and the result is an optional map file and an executable task. The use
of an RMS switch (/VIR, /SEQ, /REL, or /IND) causes the BUILD command
to change the generated .ODL file as required for RMS I/O. These changes are
made automatically when the appropriate switch is appended to the BUILD
command. Consider the following example of MYPRG1.0DL:

+ROOT BIROT4-USERRMS
USER: +FCTR MYPRG1-MYPRGZ-LIBR
LIBR: .FCTR [1:,11BASICZ/LB
rRMS: +FCTR BIOO47
BSYELL»1] BASIC4

+END

3.4 BASIC-PLUS-2/RSX-11M Notes

The adaptation of BASIC-PLUS-2 to different operating system environ-
ments causes differences in the implementation of certain BASIC features.
The following sections describe those areas of difference that apply to opera-
ting systems with the MCR command interface.

3.4.1 CHAIN Statement

The BASIC-PLUS-2 CHAIN statement allows a line number specification
that permits you to initiate chaining at a specified point in the program.
However, the RSX-11M operating system requires that a chain begin at the
first line of the program. Thus, the BASIC-PLUS-2 syntax:

BASIC-PLUS-2 on RSX-11M 3-5

3-6

CHAIN file-exPLLINE num-exprl

is not permitted on RSX-11M. For RSX systems, the syntax is as follows:

CHAIN "tasK name"

where task name is the name of a previously installed task. Also,
BASIC-PLUS-2 on RSX-11M accepts only the first six characters of the task
name in the statement line.

3.4.2 NAME AS Statement

The BASIC-PLUS-2 NAME AS statement permits you to rename an existing
file. The statement has the following format:

NAME string 1 AS strindg 2

where string 1 is the file specification of the target file and string 2 is the new
file specification.

On RSX-11M systems, the NAME AS statement is subject to the following
restrictions:

1. You must have write access to the directory of the target file.

2. The files specified in the statement line must reside on the same physical
device and have the same User Identification Code (UIC).

3. The PSECT $3FSR2 must be in the root segment of the task. This can be
done by reworking the ODL file to force $$FSR2 into the root, or by
including the "NAME AS" in the root. If it is necessary for other sub-
routines to rename files, they should call the one in the root segment.

The NAME AS statement does not alter the contents of a file. It renames the
first specified file to that of the second file without changing the version
number. Since the NAME AS statement alters the file name, you must in-
clude a file organization switch in the BUILD command. Also, if the target of
the statement is an open file, the new name does not take effect until the file
is closed.

3.4.3 SLEEP Statement

The BASIC-PLUS-2 SLEEP statement suspends program execution for a
specified amount of time. The statement has the format:

SLEEP num-exp

where num-exp is the number of seconds that execution is suspended.

On RSX-11M systems, you may enable CONTROL C trapping for the job
prior to issuing the SLEEP statement. Then, if you wish to prematurely
reactivate a job, the CTRL/C system function can be utilized.

BASIC-PLUS-2 on RSX-11M

Chapter 4
BASIC-PLUS-2 on IAS

This chapter describes the interface between the BASIC-PLUS-2 compiler
and IAS operating systems that use the DCL command language. The
description includes compiler invocation, linkage of object modules to pro-
duce an executable task, and task execution. The operating system specific
information in this chapter is a summary only. You are expected to be famil-
iar with the operating system and with the information found in the documen-
tation that is specific to your application.

4.1 Compiler Invocation on IAS

To invoke the BASIC-PLUS-2 Compiler on systems with a DCL. command
interface, type the following command in response to your system prompt:

If compiler invocation is successful, BASIC-PLUS-2 prints an identifying line
(see Section 1.2.1). With the compiler invoked, you can create a BASIC source
program and object modules as described in Chapter 1.

4.2 Task Builder Invocation on IAS

The task builder is a system program that is used to process one or more
object modules into a single, executable file in task image format.

An object module is a user program that has been compiled with the BASIC
command COMPILE (see Section 1.2.7). Programs created as object modules
have the .OBJ file type appended to the file name by default. They can be
executed only after you process them by means of the task builder. The task
builder accepts the object code, resolves any references to BASIC library
modules, and outputs code in executable task image format.

To invoke the task builder on systems with a DCL command interface, type
the following command:

PDS:*BinpPut

where input can be a command file that was generated with the BUILD
command (see Section 1.2.8) or a LINK command line. These two specifica-
tions are discussed in Section 4.2.1.

4-1

4-2

4.2.1 Link Command Line Input

In the LINK command line you can specify qualifiers and files in the following
format:

LINK [/aualifiers] filespec 1 [:filesprec Z+4:+1

qualifiers are one or more specifications that modify task builder output
as described in Section 4.2.2.

filespec are one or more object modules with a file specification and an
.OBJ file type. Each specified object module is separated by
commas.

After you type the command line, the task builder builds the task image,
outputs a task image file and a map (if these files are requested), and resolves
any specified qualifiers.

The BASIC Compiler command BUILD (see Section 1.2.8) offers you a sim-
plified procedure for specifying task builder input. The BUILD command
accepts object module names in the command line and produces a command
file. This file contains all of the required task builder input. For example:

BUILD MOD1, MODZ. MOD3

generates a command file named MOD1.CMD. To invoke the task builder
and input this file, type the following command:

PDS:>EBMOD1 @D

This command line results in a task image file (MOD1.TSK) and a storage
map file (MOD1.MAP). Note that you cannot use the unmodified output of
the BUILD command when you desire to qualify task builder output or spec-
ify options (see Section 4.2.2). In these cases, you must specify the complete
LINK command line or use an editor to modify the BUILD command file.

The files that are processed by the task builder are assigned file types by
default. Table 4-1 lists these file types and the applicable file.

Table 4-1: IAS Default File Types

File Type File

TSK Task image file

.MAP Memory Allocation map
.OBJ Input object module
.OLB Library file

.ODL Overlay description file
.CMD Command file

BASIC-PLUS-2 on IAS

Input to the task builder consists of one or more object modules, any required
libraries, optional qualifiers, and options.

The object modules can be input as file specifications or the file names alone.
When you type the complete file specification, the task builder assigns any
specified UIC number, device, and file type to the task image. If you specify
the file names alone, the system defaults are used.

The qualifiers and options also have default settings. In most cases, you can
override these by specifying the desired setting in the command line. The
qualifiers and options, their defaults, and functions, are summarized in Sec-
tion 4.2.2. For additional information on these specifications, refer to the Task
Builder Reference Manual appropriate to your system.

4.2.2 Qualifiers

The specification of a qualifier follows the LINK command and is preceded by
a slash, as follows:

LIMK/qualifier

No specification is required when the qualifier is the default, however, you can
precede the qualifier with NO to negate its effect. For example:

/faunalifier specifies action

/NOaualifier negates the action

This section summarizes the qualifiers that you can specify to the task builder.
The section describes the action caused by the qualifier, the file it applies to,
and its default. The qualifiers described here are those that would be most
useful to the BASIC programmer; for information on the full set of qualifiers
refer to the Task Builder Reference Manual appropriate to your system.

The /TASK qualifier causes the task builder to generate a task image file and
has the following format:

/INO1ITASKL:filespec]

/TASK is the default. If you specify /NOTASK, the task builder does not
construct an executable task image file. The task builder does, however, check
the input for errors and print appropriate diagnostic error messages. Filespec
represents a file specification and allows you to assign a name to the generated
task image file. If you omit filespec, the task builder assigns the name of the
leftmost input file as the task name. The task image file type is . TSK by
default.

BASIC-PLUS-2 on IAS 4-3

4-4

The /MAP qualifier causes the task builder to generate a memory allocation
map and has the following format:

/INOIMAPC:filesrec]

/NOMAP is the default. Filespec represents a file specification and allows you
to assign a name to the map file with a .MAP default file type. If you do not
specify a file name and a map is requested, the task builder assigns the name
of the leftmost input file.

The /SYMBOLS qualifier causes the task builder to generate a symbol table
file and has the following format: /INOISYMBOLSI:filespec] /NOSYMBOLS
is the default. Filespec represents a file specification and allows you to assign
a file name to the symbol table file with an .STB default file type. If you do
not specify a file name and an .STB file is requested, the task builder assigns
the name of the leftmost input file.

The /OPTIONS qualifier causes the task builder to solicit task options. The
format of this qualifier is as follows:

/LNOIDPTIONS

/NOOPTIONS is the default. The options and their effect on the linked task
are described in Section 4.2.3.

The /OVERLAY qualifier causes the task builder to create a task image based
on a defined overlay structure. The format of this qualifier is as follows:

/INO]DVERLAY:filesprec

/NOOVERLAY is the default. If you specify /OVERLAY, the overlay struc-
ture must be defined in a specified .ODL file (filespec). Because input files are
described in the overlay structure and are included in the .ODL file, input file
specifications (.OBJ files) cannot be included in the LINK command line.
Refer to Section 3.3 for a description of overlays and the creation of .ODL
files.

The /LIBRARY qualifier is appended to input files that contain object module
libraries and has the following format:

LINKL/qualifiers]l filesrecl/LIBRARY

where filespec! is an input object module with an .OLB default file type that
references a BASIC library. /NOLIBRARY is the default. Refer to Section
1.2.9 for a description of BASIC libraries.

Consider the following example:

LINK/MAP MOD1., MODZ: MOD3: BASICZ/LIBRARY

This command line links the object modules MOD1, MOD2, and MOD3 into
an executable task named MOD1.TSK. BASIC2 is identified as a library by

BASIC-PLUS-2 on IAS

the /[LIBRARY qualifier. The /MAP qualifier causes the task builder to gen-
erate a memory allocation map file named MOD1.MAP.

4.2.3 Link Options

When you specify the /OPTIONS qualifier in the LINK command line, the
task builder expects one or more option specifications to appear on the follow-
ing line. You specify options in the form of a keyword followed by an equal
sign and an argument. The argument assigned to the option is dependent on
the desired task characteristic. This section summarizes the options that are
most useful to BASIC programmers. For a complete description of options,
refer to the Task Builder Reference Manual appropriate to your system.

Table 4-2 lists the option keywords and their meanings.
Table 4-2: LINK Options

Keyword Meaning

NASG Declares device assignments to logical units.

EXTTSK | Extends the amount of memory allocated to a task.

UNITS Declares the maximum number of units.

The ASG option assigns a specified physical device to one or more logical
units.

The ASG option has the form:

ASG = device wmame:unit l:sssunit n

device name is a 2-character alphabetic device name followed by an
optional 1- or 2-digit device unit number.

unit is a decimal integer that indicates the logical unit number.
The default is ASG=SY0:1:2:3:4:,T1:5,CL:6

Note that there is a direct correspondence between BASIC-PLUS-2 channel
numbers and operating system logical unit numbers (LUNs). BASIC-PLUS-2
requires LUN 13 for the user terminal and LUN 14 for a work unit, therefore,
you must specify 14 units and assign unit 13 to your terminal. If your program
requires the use of units (channels) five and six, you must override the ASG
default with an explicit ASG specification.

Also, when the UNITS option and ASG are both given as options, UNITS
must precede ASG.

The UNITS option specifies the number of logical units used by the task and
reserves sufficient space for the number of specified units. The number of

BASIC-PLUS-2 on IAS 4-5

logical units assigned by default is 4 and the maximum number that you can
specify in the option is 14.

The UNITS option has the form:

UNITESE = max-units

where max-units is a decimal integer in the range of 0 to 14.

The EXTTSK option extends the amount of memory that is initially allo-
cated to a task. The option causes additional memory allocation when the
task is loaded. The EXTTSK option has the form:

EXTTSK = lendth

where length is a decimal number that specifies in wor