Magnetic Thin Films for Heads and Media

Jack Judy

The Center for Magnetics and Information Technologies

University of Minnesota

OUTLINE

- I. MAGNETIC PHENOMENA RELEVANT TO MAGNETIC RECORDING
- II. MAGNETIC MEASUREMENT TECHNIQUES
- III. THIN FILM DEPOSITION AND CHARACTERIZATION TECHNIQUES
 - IV. MATERIALS FOR THIN FILM HEADS
 - V. MATERIALS FOR THIN FILM MEDIA
- VI. PERFORMANCE AND FUTURE OF RECORDING SYSTEMS
- VII. REFERENCES

MAGNETIC PROPERTIES

Extrinsic remanent magnetization M_r coercivity H_c permeability $\mu = \frac{B}{H}$

Intrinsic saturation magnetization, Ms Curie temperature, Θ_c magneto-crystalline anisotropy, K₁, K₂ magnetostriction λ B = H + 4 π M₂

HARD AND SOFT MAGNETIC MATERIALS

Soft: pure Fe 80 Ni: 20 Fe Mn Zn ferrite

Hard: Particles $\gamma - Fe_2O_3$ BeO.6Fe_2O_3 SmCo_s Co Ni P-Co Cr/Cr Co Cr/Cr Co Cr/Cr THIN FILM:

(Bate)

Fe N Co Zr Nb Al Fe Si (SENDUST) **MAGNETO-CRYSTALLINE ANISOTROPY**

DEMAGNETIZING FIELDS

UNIFORMLY MAGNETIZED BAR MAGNET OR RECORDED BIT

SHAPE ANISOTROPY

DEMAGNETIZATION FACTORS OF DIFFERENT SHAPES

MAGNETOSTRICTION

. . . .

DIMENSIONS OF MATERIAL CHANGE WHEN MAGNETIZED

	(parts por 106)						
	بالم	2,11	2 July				
Fe	+ 21	- 21	- 7				
Ni	- 46	- 24	- 34				
FeO·Fe,O,	- 20	+ 78	a + 40				
Co _{0.9} Fe _{0.2} O · Fe ₂ O ₃ CoO · Fe ₂ O ₃	- 590	+ 120	- 110				

PHYSICAL ORIGIN IS SPIN-ORBIT COUPLING

(Os)

MAGNETIC DOMAIN WALLS

THE BOUNDARY BETWEEN OPPOSITELY MAGNETIZED DOMAINS IN BULK MATERIALS IS CALLED A 180° BLOCH WALL

THICKNESS DEPENDENCE OF WALL ENERGY DENSITIES

MINIMUM DOMAIN WALL THICKNESS

Assume a simple cubic array of spin dipole moments with a lattice parameter \mathcal{A} and assume the wall to be N atoms thick so the wall thickness is given by $\mathcal{S} = N\mathcal{A}$. The nearest neighbor exchange energy of a pair of Dipole moments is given by $W_{EX} = -2 J_{eX} S^2 \omega_3 \phi$ and the angle between adjacent moments is $\phi = \pi/N$ then since the $\cos(\emptyset) \cong 1 - \frac{1}{2}\theta^2$ the excess exchange energy of N pairs is $W_{EX} \cong Je_X \frac{S^2 \pi^2 a}{\delta}$ Finally, the exhange energy per unit wall area is given by $W_{EX} = -\frac{Je_X S^2 \pi^2 a}{\delta}$

THE MAGNETO-CRYSTALLINE ANISOTROPY ENERGY PER UNIT WALL

AREA IS GIVEN BY

$$X_{\kappa} = K\delta$$

THE TOTAL WALL ENERGY PER UNIT WALL AREA IS GIVEN BY

SINGLE AND MULTIDOMAIN PARTICLES

MINIMUM MAGNETIC DOMAIN SIZE

Assume a uniaxial single crystal with a parallel-plate domain structure which is expected to evolve in minimizing the magnetostatic demagnetization stray field energy.

THE TOTAL ENERGY PER UNIT AREA OF THE TOP OF THE CRYSTAL IS GIVEN BY

$$E_{TOTAL} = E_{DEMAG} + E_{WALL}$$

$$E_{TOTAL} = K M_{S}^{2} D + \mathcal{Y}_{W} \frac{T}{D}$$
where $K = 1.7$ for $W = AND K = 1$ for $W = D$ AND $\mathcal{Y}_{W} = 2\sqrt{A_{eX}}$.
The MINIMUM DOMAIN SIZE IS GIVEN BY
$$D_{min} = \sqrt{\frac{\mathcal{Y}_{W} T}{\mathcal{E} M_{S}^{2}}}$$
The MINIMUM ENERGY PER UNIT SURFACE AREA IS GIVEN BY
$$E_{min} = 2\sqrt{kM_{S}^{2} \mathcal{Y}_{W} T}$$

 $\frac{CobaH}{M_{s} = 1422 emn/cm^{3}} = \frac{1.7}{K} = 1.7$ $\frac{W_{w}}{W} = 7.6 engr/cm^{2} = 1 \mu m$ $Dmin \approx 1500 \text{ Å}$

- **1**

MAGNETIZATION BY WALL MOTION

THE "BARKHAUSEN EFFECT" DEMONSTRATED IN 1919 THE EXISTENCE OF DOMAINS <u>INDIRECTLY</u> BY SHOWING DISCONTINUOUS WALL MOTION.

A <u>direct</u> observation of magnetic domains using Bitter Colloid was disclosed by Williams & Shockley & Bozorth in 1949. A Bell Labs movie is available for showing this.

EFFECTS OF INCLUSIONS AND MICROSTRESSES ON WALL MOTION

180° WALL

 $\int_{W}^{W} = \frac{1}{100} \frac{$

1+ 2 M3 37100 102 l lr = nitial

MAGNETIZING BY DOMAIN ROTATION

ANISOTROPY ENERGY DENSITY =
$$K_U SIN^2 \theta$$

ANISOTROPY FIELD = $2 \frac{K}{M} = H_K$

FINE MAGNETIC PARTICLES A. COERCIVITY

B. PARTICLE INTERACTION

Pacing fraction p

ROTATION REVERSAL

- 1. COHERENT
- 2. INCOHERENT (FANNING, CURLING)

MAGNETIZING PROCESSES

FACTORS AFFECTING MAGNETIC PROPERTIES

- 1. COMPOSITION
- 2. TEMPERATURE
- 3. STRESS
- 4. SIZE, SHAPE, ORIENTATION OF GRAINS
- 5. CONCENTRATION AND DISTRIBUTION OF CRYSTAL IMPERFECTIONS
- 6. IMPURITIES

MAGNETIC PROPERTIES

A.

B.

INIR	INSIC (STRUCTURE INSENSITIVE)
1.	SATURATION MAGNETIZATION
2.	CURIE TEMPERATURE
EXTR	INSIC (STRUCTURE SENSITIVE)
1.	FLUX DENSITY (INDUCTION)
2.	APPROACH TO SATURATION INDUCTION
3.	PERMEABILITY
4.	COERCIVE FORCE AND COERCIVITY
5.	REMANENCE AND RETENTIVITY

MAGNETIZATION MEASUREMENT TECHNIQUES

TORQUE MAGNETOMETER

atic of scanning Kerr m

HYSTERESIS LOOPS OF HARD AND SOFT MATERIALS

MAGNETIC DOMAIN AND WALL OBSERVATION TECHNIQUES

Bitter Colloid

SEM

SEMPA

THIN FILM DEPOSITION TECHNIQUES

	EVAPORAT		TON PLATING	<u>l</u>	SPUTT	TERING
Mechanism of Produc- tion of Depositing Species	Thermal	Energy	Thermal Ene	argy	Mamer	tum transfer
Deposition Rate	ion Rate Can be very high (up to 750,000 A/min.)		Can be very high (up to 250,000 Å/min.)		Low except for sure metals (e.g. Cu = 10,300 Å/mmm.)	
Depositing Specie	Atoms an	d Ions	Atoms and I	ons	Atoms	and lons
Throwing Power for:	in the second second					
a. Complex Shaped Object	Poor lin except b	e-of-sight coverage y gas scattering.	Good, but n ness distri	anuniform thick- butions.	Good, ness	, but nonuniform thicm- distribution.
b. Into Small Blind Holes	Poor		Poor		Paor	
Metal Deposition	Yes		Yes		Yes	
Allay Deposition	Yes	· · · · · · · · · · · · · · · · · · ·	Yes		Yes	
Refractory Compound Deposition	Yes	••• •••••••••••••••••••••••••••••••••••	Yes		Yes	
Energy of Depositing Species =	rgy of Depositing Low cies = 0.1 to 0.5,eV		Can be high (1-100 eV)		Can t (1-10	be high 30 eV)
Bombardment of Substrate/ Deposit by Inert Gas Ions	ardment of Substrate/ Not normally sit by Inert Gas Ions		Yes		Yes or no depending on geometry.	
Growth Interface Perturbation	Not norm	ally	Yes	ann an	Yes	
Substrate Heating (by external s)	Yes norm	ally	Yesor No		Not g	generally
		CHEMICAL VAPOR DEPOSITION	1	ELECTRODEPOSITION		THERMAL SPRAYING
Mechanism of Produc- tion of Depositing Species		Chemical Reaction	-	Deposition from Sol	ution	From Flames or Plasm
Deposition Rate		Moderate (200 - 2500 Å/min.)	**************************************	Low to High		Very high
Depositing Specie		Atoms		Ions		Droplets
Throwing Power for: a. Complex Shaped				Pand		
Object b. Into Small Blind H	lo] es	Limited.		Limited		No Very Limited
Metal Deposition		Yes		Yes - Limited		Yes
Alloy Deposition		Yes	<u>)</u>	Quite Limited		Yes
Refractory Compound Deposition		Yes		Limited		Yes
Energy of Depositing Species		Can be high with Plasma-aided CVD	An	Can be high		Can be high
Bombardment of Substra Deposit by Inert Gas I	te/ ans	Possible		No		Yes
Growth Interface Perturbation	n de la composition de la comp	Yes (by rubbing)		No		Ng
Substrate Heating (by external means)	••••••••••••••••••••••••••••••••••••••	Yes		No	<u></u>	Not normally

(e) Growth

.

Islands Growing (I) Island Shape Cross Section Islands Islands (I) Coalescence

(h) Continuity

SPUTTERING PROCESSES

L

J. THORNTON

THIN FILM SPUTTERING TECHNIQUES

DC OR RE MAGNETPON SPUTTERING

FACING TARGET SPUTTERING

THIN FILM MATERIALS CHARACTERIZATION TECHNIQUES

N	C.STECTED		1	7		
PRIMU	EL:ILEION	OFTICAL	X-RAYS	ELECTRONS		101:5 (* A2D -)
DTONS	OFTICAL	"AA": ATOMIC ACSORPTION "IR": INFRARED SPEC- VISIBLE TROS- "UV": ULTRAVIOLET COPY		"ESCA": ELECTRON SPECTR F.	"UPS": VAC. UV PHOTOELECTRON STECTROSCOMY - OUTER SHELL	
ž	X-RAYS		X-RAY FLUORESCENCE SPECTROMETRY X-RAY DIFFRACTION	ANALYSIS	"XPS": X-RAY PHOTOELECTRON SPECTROSCOPY - INNER SHELL	
ELECT	RONS		"EPH": ELECTRON PRODE MICRO- ANALYSIS	"AES": AUGER ELECTRON SPECTROSCOPY "SAM": SCALINING AUGER LIICROANALYSIS "SEM": SCANNING ELECTRON MICROSCOPY "TEM": TRANDAISSION ELEC- TRON MICROSCOPY		
10755 (4	AND -)	("ECANHR": Euri, Comp. by Anal. of Neutral and Ion Impact Rediction)	(len-induced X-Rays)			"SIMS": SECONDARY ION MASS SPECTRO- USTRY "IPM": ION-PROBE LIICIO- AMALYSIS "ISS": ION SCATLENIIG SPECTROMETRY ["RAS": RUNDEION USCASS: Wring Spectrometry]
RADIA	TION	"ES": EMISSION SPECTROCCOPY				"SCHS": SARK SOURCE MASS SPECTRO GRAPHY

Characterístic	AES	XPS	155	SIMS	RBS	MRA	txx
Elemental Analysis							
Sens.Varia.	Good	Good	Good	Poor	Fair	Fair	Good
Resolution	Good	Good	Fair	Good	Fair	Good	6000
Detection Limits	0.12	0.5%	0.13	10 ⁻⁴ 5 or	10 ⁻³ or	10 ⁻² or	10 ⁻² or
				higher	higher	higher	higher
Quantification	4 W	ith difficu	lty	very difficu	1t +	- absolute	
		eq.standard	5	req.standard	5	no standards	
Chemical State	Yes	Yes	No	Yes		No	
Depth Analysis			Destru	ctive>	-Non-destr	uctive	very
			sputte	r			difficult
Depth Resolution		Atomic	layer to-		10 nm	10 nm	None
		S of sp	utter dept	h			
Lateral Resolution	200nm	2nm	100µm	100-lµm	4	1000	
Sample Alteration	High for Alkali Halogen Organic	4	Low		4	Very Low	?

•

Insulators

2

MATERIALS FOR THIM FILM HEADS

METALS FOR HEADS

	SOFT N					
	Compo-	Permeabilities	Coer- civity	Satural. Induct.	Resist.	
		max مر inst مر	Hc Derstee	h Causa	م ח. מוז	
Permailoy	79 Nê 17 Fe 4 Mo	20.000 100.000	U. 05	8.700	55	
Mu-Metal	7 8 8 3 0 7 8 8 3 0	30.000 100.000	0.02	7.500	55	
Hy-Mar 8008	80 M8 16 Fe 4 Mo	70.000 230.000	0.002	8,000		م المجموع المراجع الم
Sendual	85 Fe 9 Si 6 Ai	10.000	0.06	10,000	90	

(F. Jorgensen)

		Ap con (weig	proximate nposition pht percent)	laitial permeability	Maximum permo- ability	Coercivity H _e (Oe)	8, (gauss)	<i>T,</i> (C)	Resistivity (microhm-cm)
	Nı	Fe	Other						
			an a	Low-C	Cost Alloys		and a second		
	-	100	-	150	5.000	1.0	21.500	770	10
icon iron	-	96	4 54	500	7.000	0.5	19,700	690 ·	
ain-oriented silicon	-	97	35	1 500 1	40.000	0.1	20.000	740	47
iron				أخصار		•••			
				Hi gh-Perm	esbility Alloys				
Permailoy	78	22	-	8.000	100.000	0.05	10,300	· 580	16
ourbik	50	- 50	-	4.000	70.000	0.05	16.000	500	45
9 Permallov	70	17	4 Ma	20,000	100.000	0.05	8,700	460	55
umetal	77	14	50120	20,000	100.000	0.05	6 500		62
permailoy	79	16	5 Mo	100,000	1,000,000	0.002	7,900	-400	60
	•			High-Sen	aration Alloys				
rmendur	-	50	50 Co		5.000	2.0	24.500	980	7
-Permendur	-		49 Co. 2 V	800	4.000	2.0	24.500	980	27
	-	64	35 Ca 0.5 Cr	650	10.000	1.0	24.200	970	28
numendur	_				> 60.000		74.000	0.00	77

Mwall ~

MROT & Mstd

(Cullity.) d=gram dicometer

Contraction of

, 7

(Cullity)

PROPERTIES OF AMORPHOUS MAGNETIC THIN FILMS FOR

MAGNETIC RECORDING HEADS

Alloy âlm (al. %)	4 ~M , (kG)	H. (Oe)	H. (Oe)	ک ر (10 1)	ှာ (µဂ cm)
(1) Fe ₇₃ B ₂₇	14	\$0.1	7	50	
(2) Fendan	-15	~0.04*	7		
(3) Fensing	12	≤0.1	5	30	
(4) FenzSin	12	0.2	4	30	140
(S) FensCas	13	<1.0°	<100*	10-13	
(6) Fe30 Naz	9-12	< 100			
(7) Con Ti,,	9-10	≤0.45	14*	1.5	-130
(8) Con Ta17	9-10	5-30	•		
(9) Co, Zr,	14-15	0.2*	2-5*	1-3	
(10) Con Zr ,.	13	1.0			120-170
(11) Co,,Hf, .	14-15	0.3*	2 -5°		•
(12) Fen B21 Si	12	~0.2	6	26	
(13) FenB13C3	14-16	51*	~10*		
(14) FensingC.	16-17	~0.2*	~7*		
(15) Co, Fe, B,	10-11	<1	~0	* <1	
(16) ComFe, B13	11-13	0.05	~3°	- 0.2	90
(17) Com Fe, B1. Mo	14-15	0.05	18	~0	
(18) Con Ti, B,	8-9	0.03	10	~0	
(19) (CoFeB) Cr.	10	-2	≲ 1000		115
(20) (Cos, Fe, 1, No, (21) Co Zr Nb	14 14	50.5 .CS	. 2	0.1	

*Annealed (field).

J.K. Howard J. Vac. Sci. Tech <u>A4</u>, 1-13 (1986)

				-	STANDAR				· · ·			UNEM	TERMINE.		
	Symbol	tulo .		-	F -1	64	•	61	82	63	4	12.7	TG-4	TES	
laubal gamesbrity	-		4100 4700	@100mm	2000	1509 mm	0 1 556	0 1 125	• 1	• 1 16	C 1	4 100 1400	€100 1500	9100 1080	•1 %
Massmall permeability		-	8008	4900	3600	4006	4308	400	115	4	4000	1850	2400	2008	420
Saturation flux density	L	G	4700	4708	4405	4508	3408	3308	2400	2600	3700	3500	4009	3600	3300
Bosidual magnetism	Ł	term	1460	1000	1000	1608	1470	1908	750	1470	2500 C 0.C. N_ = 1 cersted	550	1609	708	2348
Courcive force		Ourstad	8.1 F	· 4.17	8.18	B.15	6.18	21	4.7	. 21	.38 🗢 8.C.	0.25	0.4	1.25	12
Tennersture coefficient between + 25°C to + 60°C	T.E.	%/**	-	-	-	LI	4.66	.1 🖚	.1	.1	-	48 10	•••	88 m 35 *	35 to 65 *
Curve sent	T,	+*	210	215	100 1	198	150	350	454	508	210	140	100	166	45
Volume resistanty	• •	9-C#	LOW	LOW	LOW	LOW	MCD.		******		LOW	LOW	LOW	LOW	NGI
Less factor x 10-4 100 ke/s 1MC/s 10MC, s SONC/s		ق د/1	•	7	3	n	309	20 60	55 170		-	s	4	11	47
150HC/s Frequency range	-		408		400	400	1	10	50-m	23-	4 _	588	50E	15-	20
Caningurations (special gastigurations on request)			Terede Recording Heats	Teres E.L.U. Care. Cue Ante	SAME	SME	SAME	SAME	SAME	SAME	ELU Caros	Teresta. Cuep Carron	SAME	SAME .	SAME

. Temperature Factor (T F) = 10* is Equal To Ju/uIC

. The Tolerance Of 0-6 Initial Permeability - = 1600

--- Not to exceed = 7.5% from 0* C to - 60* C

Mn-Zn 2-5,000 5-10.000 N-Zn 2.000 2.000 Mn-Zn 3-10.000 7-20.000

PERMEABILITY SPECTRA FOR MANGANESE ZINC AND NICKEL-ZINC PERMITE

55

MAGNETIC PROPERTIES OF FERRITES

Composition (mole %)		Sat. ind. (gauss)	Curie temp. (°C)	initiai perm. (gm Oe ⁻¹)	Density (gm cm ⁻³)	Loercive force (Oe)	Resistivity (ohm cm)
MnFe ₂ O ₄	ZnFe ₂ O ₄						
48	52	3300	100	1400	4-9	0-2	20
58	42	4500	150	900	4.9	.03	50
62	. 38	4700	150	1100	4-9	04	80
s 79	21	5100	.210	700	4.8	05	80
NiFe2O4	ZnFe ₂ O ₄			1			
36	64	3600	125	650	4-9	04	10 ⁵
50	50	4200	250	230	4-5	07	10 ⁵
64	36	4100	350	90	4-2	2.1	10 ⁵
80	20	3600	400	45	4-1	4 ·2	103
100		2300	500	17	4-0	11-0	10 ⁵

34

= 0.Si

0.44

0.3(

0.0

300

· 100

•

200

(Cullity)

MAGNETORESISTIVE EFFECT FOR THIN FILM READ HEADS

"Barber-pole" magnetoresistive element.

THIN FILM HEAD FOR DISK RECORDING

Medium

37

DOMAIN STRUCTURE OF MAIN POLE

OF A THIN FILM HEAD

Schematic models of domain structure for films of (a) wide track or high H_k , (b) narrow track and low H_k .

COMPARISON OF RING AND SINGLE POLE HEADS

METAL-IN-GAP RINGS HEADS

GLASS Co-Nb-Zr FILM

coil coil **FERRITE** CERAMIC METAL POLES

Dugas etal (1987)

SINGLE POLE HEADS

THIN FILM HEAD MAIN-POLE DRIVEN

SENDUST METAL-IN-GAP MINI-COMPOSITE FERRITE RING HEAD

d-d ₁	Metal-In-	Gap Min		site Hea	d
/oltage	# #	S Grand		G _l =0. G _d =5 Hc=6	3µm µm 20 Ое
t nd	÷۲	lini Ionolithi	c Head	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<u> </u>
0 S	20	40	60	80	100
	Record	ing Cu	rrent (r		

Noguchi etal (Hitachi Metals) (1987)

	B _S (KG)	u at 5MHz
Fe-Al-Si	11-12	1000-2000
Mn-Zn Ferrite	5	900~1000

40

A YOKE MAGNETORESISTIVE HEAD FOR HIGH TRACK DENSITIES

Maruyama etal (NEC) (1987)

Head Comparison

Inductive	MR
Thin film processing	Thin film processing
Velocity dependent	Velocity independent
Same read/write devices	Separate read/write devices
Lower signal levels	High output level
Higher input impedence	Low input impedence
Compromised writer/reader	Optimized writer/reader
Currently at near maximum	Higher track densities
Need to fly low to disk	Can fly higher
Equal read/write widths	Write wide/ read narrow

FILM VERSUS PARTICLES FOR RECORDING MEDIA

FILMS

ROUGHNESS MORE CRITICAL

OVERCOAT REQUIRED

HARMUNIC DISTORTION AT LOW FREQUENCY

OPTICAL READOUT POSSIBLE

HIGHER RESOLUTION

THIN LAYERS EASILY MADE

BETTER SATURATION RECORDING

PARTICLES

CANNOT BE MADE VERY THIN

MECHANICAL RESILIENCE IS GOOD

BETTER WIDE BAND RECORDING

EFFECT OF SQUARENESS OF HYSTERESIS LOOP

Re. 3-7. Otherent hysterress loops for tape materials. (A), single comein parette (B), assembly of single comein particle, as found in magnetic tape costings.

EFFECT OF COERCIVITY AND SQUARENESS

Fig. 8-1. Maximum remanence in magnetic tables (A). Gw coercivity (B). high coercivity, good orientation.

THIN FILM LONGITUDINAL MEDIA

CHEMICALLY PLATED MAGNETIC DISKS

Y. Suganuma etal, IEEE MAG-18, 1215 (1982)

MAGNETIC RECORDING MEDIA EVAPORATED AT OBLIQUE INCIDENCE

Fig. 1. Illustration of used vacuum system for the oblique incidence. Ferromagnetic alloys were evaporated on a polyimide film which was fixed on a cylindrical shaped substrate supporter.

Fig. 2. The coercive force of Co, Fe-Co and Ni-Co thin films were plotted against the angle of incidence.

Fig. 3. The squareness in easy direction of Co. Fe-Co and Hi-Co thin films were plotted against the angle of incidence.

Items	Ca, , Nicie Ptaze	Plated Co-Ni-P
Coercivity (0e)	893	640
Remanence(Gauss)	10,470	7,200
Squareness Br/Bs	0.90	0.76
Coercive S ^e	0.97	0.82
Medium thickness(Å)	300 ' -	300
Overcoat mickness(Å)	200	200

Table 2 Medium properties.

Fig.4 Coercivity and squareness dependences on argor pressure in the Co0.20 Pt0.20 film.

Fig.7 Output voltage versus recording density.

M. Yanagisawa et al, IEEE Trans. MAG-19,1638(1983)

CONTINUOUS THIN FILM MEDIA

3.2 GByte Disk System

(PATTY)

·	≻Fe ₂ O ₂ Thin Film	Co-Ni-P Thin Film						
1. Read-write Characteristics								
 Output Signal Voltage 	≥0.60 mV,,	≥0.55 mV,-,						
Resolution	≥75%	≥ 55%						
Recording Density	≥ 550 FRPM	≥ 620 FRPM						
Over-write Characteristics	≦ -26 dB	≦ -26 dB						
• SNR	> 32 dB	> 28 dB						
2. Signal Quality								
 Number of Defects per Surface 	≤100	≤100						
3. Diak Size								
Inner Diameter	100+0.1 mm 	100 + 0.1 mm 0.0 mm						
Outer Diameter	210±0.1 mm	210±0.1 mm						
Thickness	$1.905 \pm 0.025 \text{ mm}$	1.905 ± 0.025 mm						
4. Thin Film Media Properties								
• Film Thickness	0.17±0.01 μm	0.08 ⁺ 0.005 µm -0.003 µm						
Coercivity	700±40 Oe	600 ± 30 Oe						
Residual Flux Density	2500 ± 200 Gauss	7200 ± 300 Gauss						
 Coercive Squareness 	≥0.77	≥0.77						
5. Mechanical Properties								
5.1 Surface Roughness								
Arithmetic Average	≤ 0.01 μm	≤ 0.01 μm						
Axial Runout	≤ 40 μm	≦ 40 μm						
 Acceleration of Axial Runout (a) 	$ \alpha \leq 40 \text{ m/sec}^2$	$ a \leq 40 \text{ m/sec}^2$						
 Minimum Head Flying He Height 	≦0.18 µm	≤0.15 μm						
 5.2 Lubricating Properties Maximum Coefficient of Friction 	≤0.3	≦0.3						
CSS Characteristics	≥ 20,000 cycles	≥ 20,000 cycles						
6. Protective Film Thickness	0.000 µm	0.08 ±0.01 μm						
7. Reliability	 No deterioration is caused at 40°C for 7 months under 80% relative phumidity Output signal quality does not deteriorate 							

S. Hattori et al , NEC ((483)

49

ADVANCED CONTINUOUS THIN FILM MEDIA

8.8 GBYTE DISK SYSTEM

(GEMMY)

Gap (µm) 0,5 Pole (µm) 3 Slider AlzO3-TiC teight/11-1

F. C. S SNR = 28db N/W = 32 db

Areal density (bit/mm²)

Linear density (bit/mm)

Track density (track/mm)

62k

50

1240

1987

24k

550

1982

43

1985

(1987

NOISE IN MAGNETIC RECORDING MEDIA

S/N AND PERFORMANCE SURVEY (950 IPS/0.2µm F.H. READ)

Media	Υ <u>-Fe</u> 2O3	Co-P	Co-Ni-P	CoSm CoRe		Co	CoCr	
D ₇₈ (KFCI)	12.5	19	18	20	21	22	25	
S ₇₀ (µV₀₋₀)	185	170	154	133	125	.59	108	
N_{DC} (nV/ \sqrt{Hz})	0.67	0.21	0.40	0.20	0.48	.34	.31	
$N_{AC} (nV/\sqrt{Hz})$	0 (120ma)	1.17 (80ma)	1.16 (80ma)	0.52 (150ma)_	>1.61 (80ma)	~ 0 (150ma)	.22 (150ms)	
(S/N) _{TOTAL} (dB)	36	30	29	35	25	32	36 _	
(S/N) _{OW} (dB) On track	28	39	35	27.5	34	20	23	
0.1um F.H.					0.	.1µm F.H.		

Write

Write Belk etal (1985)

51

REVERSED DC ERASED MAGNETIC RECORDING MEDIA NOISE

Fig.4 Media Noise vs. Reverse DC Erase MMF

Fig.2 Signal Recorded Magnetic Domain Structure

Fig.3 Reversaly DC Ernsed Magnetic Domain Structure

Aoi etal (1987)

MICROSTRUCTURE OF SPUTTERED THIN FILMS

Thornton

FACTORS AFFECTING THE MAGNETIC AND REVERSAL PROPERTIES OF THIN FILMS.

6. IMPURITIES

Ouch: (1987)

MICROMAGNETICS OF SPUTTERED COCR FILMS

55

LORENTZ MICROGRAPH OF CROSS SECTION OF COCR/PERMALLOY FILMS

botter ------

MICROSTRUCTURES AND MECHANICAL PROPERTIES OF RF SPUTTERED CoCr FILMS

Strain (%)

Sagoi etai (1984)

ARGON PRESSURE DEPENDENCE OF MAGNETIC PROPERTIES OF RF SPUTTERED COCR

5

Sagoi etai (1984)

MICROSTRUCTURE AND COERCIVITY OF COCR FILMS DEPOSITED ON VARIOUS SUBSTRATES BY DC MAGNETRON SPUTTERING

Sem micrographs of 10.000A thick Co-Cr thin films sputtered on six different substrates: (A) AI. (B) NiP. (C) SI(111), (D) SI(100), (E) Cover glass, (F) Si water with Si 0_2 .

Ranpati (1900)

Fig. 3: Relationship between Hc (vert) and thickness for the six substrates sputtered at 55A/sec.

PET substrate

Table Head dimensions.

ad	A	B	C 0.2	
p Length (µm)	0.16	0.28		
ack Width(µm)	50	50 22		
sber of Coil Turns(turn)	20	22	20	
> Depth(μm)	8	25	14	

Fig. 2 Recording density characteristics.

 Dependence of reproduced voltage on Hkeff.

Sugita

Fig. 4 Dependence of reproduced voltage on Hcl.

etal (Matsushita) (1987)

FACING TARGET SPUTTERING OF COCR FILMS

Niimura e (198SEMIPARTICULATE THIN FILM RIGID DISK MEDIA

MICROSTRUCTURE AND COERCIVITY OF CONICR SPUTTERED FILMS

CoNiCr/Glass

Cr/Glass

"Semiparticulati

CoNiCr/Cr/Glass

SEM cross section micrographs of CoNiCr and Cr single layer and CoNiCr/Cr double layer films.

5000Å

Relationship between Cr underlayer thickness and Hc of Co, Co-30Ni and Co-30Ni-7.5Cr film.

Ishikawa etal (1986)

Figure 3: Coercivity Vs. Cr Underlayer Thickness for a Magnetic Thickness of 1200A.

Figure 1: Coercivity of CoCrTs and CoCrW en a Cr Underlayer of 2500A.

DISC	A _t	▲ <u>a</u>	Hr T	Hc	E70	D70	D ₅₀	Res	0W
	(u")	(u*)	(uin T)	(0e)	(UV)	(Kfc1)	(Kfc1)	(I)	(018)
. CoCr	9.3	5.0	1.93	774	787	23.3	26.0	84	37.6
CoCr	9.2	5.0	1.78	730	662	23.9	31.0	85	35.0
CoCr	10.5	6.2	2.23	725	773	21.3	27.0	78	33.6
CoCrTe	6.15	2.3	1.41	1253	586	28.1	33.0	85	34.0
CoCrTe	7.3	3.1	1.91	1253	830	25.7	30.0	89	30.8
CoCrTe	8.6	4.2	2.30	1120	929	24.1	28.0	84	32.0

COMPARISON OF PERPENDICULAR & LONGITUDINAL MODES

L: column diameter (Co-Cr) = $\frac{\delta}{10} \sim \frac{\delta}{20}$ (independent of Hc, Ms)

PERPENDICULAR RECORDING CHARACTERISTICS 217

Nakamura elas (198

COMPARISONS OF FUTURE OF LONGITUDINAL AND PERPENDICULAR RECORDING

Nakamura (1988)

George (1988)

CONCLUSIONS

- 1. METAL-IN-GAP HEADS WILL REPLACE FERRITE HEADS FOR HIGH AREAL DENSITY RECORDING APPLICATIONS OF RIGID DISKS
- 2. MIG HEADS WILL COMPETE WITH THIN FILM HEADS AS LONG AS THEIR COST IS LOWER THAN THAT OF THIN FILM HEADS
- 3. THIN FILM MEDIA WILL REPLACE COATED OXIDE MEDIA FOR HIGH AREAL DENSITY RECORDING APPLICATIONS OF RIGID DISKS
- 4. METAL EVAPORATED THIN FILM MEDIA WILL COMPETE WITH METAL PARTICLE MEDIA WHEN THE WEAR AND CORROSION PROBLEMS ARE SOLVE
- 5. HIGH DEFINITION VIDEO WILL BE THE DRIVING FORCE FOR USING PERPENDICULAR MAGNETIC RECORDING
- 6. SEMIPARTICULATE LONGITUDINAL THIN FILM MEDIA EXTEND THE LIFE OF LONGITUDINAL RECORDING FOR ANOTHER DECADE
- 7. PERPENDICULAR THIN FILM MEDIA WILL REQUIRE MAJOR DEVELOPMENTS IN SMOOTHER SUBSTRATES AND IMPROVED HEAD DESIGNS

VII. REFERENCES

1. R.M. BOZORTH, FERROMAGNETISM", VAN NOSTRAND (1951)

2. S. CHIKAZUMI, "PHYSICS OF MAGNETISM", WILEY (1964)

3. B.D. Cullity, "Intro. to Magnetic Materials", Addison-Wesley (1972)
4. F. Jorgensen, "Handbook of Magnetic Recording", TAB Books (1988)
5. A.H. Morrish, "The Physical Principles of Magnetism", Wiley (1964)
6. M. Prutton, "Thin Ferromagnetic Films", Butterworth (1964)
7. J. Smit, "Magnetic Properties of Materials", McGraw-Hill (1971)
8. R.F. Soohoo, "Magnetic Thin Films", Harper & Row (1965)
9. R.S. Tebble and D.J. Craik, "Magnetic Materials", Wiley (1969)