The Physics of Magnetic Recording

Neal Bertram

The Center for Magnetic Recording Research

University of California, San Diego

OUTLINE

- **1. INTRODUCTION**
- **2. DEMAGNETIZATION FIELDS**
- **3. HEAD FIELDS AND FOURIER TRANSFORMS**
- 4. REPRODUCE PROCESS (RECIPROCITY)
- **5. RECORD PROCESS LIMITS**
- **6. RECORD MODELS**
- [•] **7. UNITS**
 - 8. REFERENCES

FUNDAMENTAL PROCESSES

SIGNAL WAVEFORMS

RECORDING DENSITIES

HIGH DENSITY

•

RECORDER	SPEED	MAX f	MIN λ	SIGNAL
INSTRUMENTATION	1-120 ips	2 MHz	60 μ" (33 KFRI)	DIGITAL
QUAD VIDEO	1500 ips	15 MHz	100 µ"	F.M.
CONSUMER VIDEO	220 ips	7 MIIz	30 μ"	F.M.
AUDIO CASSETTE	1-7/8 ips	20 kHz	80 μ"	LINEAR
DAT	123 ips	5 MHz	25 μ" (61 KBPI)	DIGITAL
COMPUTER DISC	1000 ips	10 MHz	100 μ" (20 KFRI)	DIGITAL

RECORDING GEOMETRY

g = GAP LENGTH d = FLYING HEIGHT δ = MEDIUM THICKNESS OR RECORD DEPTH W = TRACK WIDTH

DEMAGNETIZATION FIELDS (Continued)

AVERAGE DEMAGNETIZATION FIELD

MAGNETIC HEADS

FUNDAMENTAL STRUCTURE

HEAD FIELD EXPRESSION

- I SOLVE POTENTIAL PROBLEM FOR FINITE PERMEABILITY μ
- II FOR $\mu \rightarrow \infty$ AWAY FROM WIRES CAN SOLVE: $\nabla^2 \phi = 0, \overrightarrow{H} = -\overrightarrow{\nabla} \phi, \phi_s = \pm \frac{NI}{2}$ ON OPPOSITE SURFACES

- III KARLQUIST APPROXIMATION: 2 DIMENSIONAL, NO END AFFECTS, GIVES FIELD ABOVE HEAD TWO WAYS:
 - 1) SOURCE SHEET OF CURRENT WIDTH g 2) UNIFORM POLES ON GAP FACE

$$H_{x} = \frac{H_{0}}{\pi} \left\{ \tan^{-1} \frac{g/2 + x}{y} + \tan^{-1} \frac{g/2 - x}{y} \right\}$$

$$H_{y} = \frac{H_{0}}{2\pi} \ln \frac{(g/2 - x)^{2} + y^{2}}{(g/2 + x)^{2} + y^{2}}$$

$$H_0 = \frac{NI\epsilon}{g} \epsilon \equiv EFFICIENCY$$

SPACING LOSS

- Applies to 2D fields with no permeable media (keeper or recording medium) above source
- Applies to harmonic analysis only
- •Linear on a log-linear plot

HEAD SURFACE EFFECTS

THIN FILM HEAD RESPONSE

2,0

THIN FILM HEAD TRANSFORM at surface

SYMMETRIC HEAD

also: Lindholm

T F H RESPONSE EXAMPLES

MR RESPONSE

33

REPRODUCE FLUX DEFINED

 $\phi_{\rm S}$ = flux entering head at surface

 H_f = field from medium at head surface

 $\phi_{s} \cong \iint da B_{normal} = \mu \circ W \int H_{f} dx$ area at top surface

Total flux ϕ is that through windings or that entering all surfaces (net flow!)

REPRODUCE PROCESS (GENERAL)

 $V = -N \frac{d\phi}{dt}$

RELATIVE HEAD TAPE MOTION SPEED

 $\mathbf{v} = \frac{\mathbf{d} \mathbf{x}}{\mathbf{d} \mathbf{t}}$

$$\Rightarrow$$
 V = -Nv $\frac{d\phi}{dx}$

or

Ho=NIE/g Ørep=Eds

$$V = -N \varepsilon v W \frac{d\phi}{dx}$$
 surface
per track width

RECIPROCITY

EQUIVALENCE OF MUTUAL INDUCTANCE FOR TWO SOURCES

FOR CURRENT IN II (I₂)
$$\psi_1 := \int_{\Lambda_1} da \cdot H_{12}$$

CONVERSE FOR H₁₂

$$\frac{\phi_2}{l_1} = \frac{\phi_1}{l_2} \Rightarrow \phi_2 = \frac{\phi_1 l_1}{l_2} = \int_{A_1} \frac{dal_1 \cdot H_{12}}{l_2}$$

I CAN BE MAGNETIZED TAPE SINCE CURRENT LOOPS CAN BE EQUIVALENT (EXTERNALLY)' TO MAGNETIC DIPOLES

II CAN BE REPRODUCE HEAD

REPRODUCE FLUX EXPRESSED AS:

$$\psi (\mathbf{x}) = \mu_0 \iiint \mathbf{M}(\mathbf{r}') \cdot \mathbf{H}(\mathbf{r}' + \mathbf{x}) d^3 \mathbf{r}'$$
TAPE

H IS EVALUATED WITH UNIT NI APPLIED TO HEAD
 RECIPROCITY IS A CORRELATION OF M & H
 PROCESS MUST BE LINEAR

RECIPROCITY WITH PERMEABLE MEDIA

How is the head field \overrightarrow{H} (r) defined?

What constitutes the medium M(r)? (Wessel-Berg-Bertram, Smith)

SEVERAL POSSIBILITIES!

- 1. Head is due to wires only and "medium" is all magnetization:" medium, head, keeper, etc.
- 2. Head is due to wires and all reversible magnetizations: head core, keeper, reversible M in medium "medium" is remanent magnetization only (preferred-easier)

Be careful!

SPECTRAL RESPONSE

RMS FUNDAMENTAL VOLTAGE

 $V^{rms} = .707 \frac{2}{-1} K V^{pulse}(K)$ $\frac{V^{\text{pulse}}(k)}{\int} = \mu_0 \int_{d}^{d+\delta} dy' \ kM_k(y') \cdot H_g(k) e^{-ky'}$ NWev <u>(1-e^{-kδ})</u> kδ $\theta^{-kd} \frac{sln1.11kg/2}{1.11kg/2}$ $= .707 \times \frac{4}{\pi} \times \mu_0 M_0 K\delta$ NWev THICKNESS MAGNET GAP LEVEL LOSS LOSS SPACING HEAD LOSS DIFFERENTIATION

FINITE TRANSITION LENGTH

ARCTANGENT

 $M(x) = \frac{2M_{\rm P}}{\pi} \tan^{-1} \frac{x}{a}$

 $\dot{M}(k) = \frac{2i M_r e^{-ka}}{k}$

 e^{kd} $e^{ka} = e^{k(a+d)}$

 $\Rightarrow d \rightarrow d + a = d_{eff}$ $W^{Long.} = 2\sqrt{a^2 + 4(d+a)(d+a+b)}$

$$PW_{50}^{Long.} = \sqrt{g^2 + 4(d+a)(d+a+\delta)}$$

Note: If arctangent is not a good fit (e.g., e r f (x) \Rightarrow no simple effective spacing !

"ROLL-OFF" CURVE

D₅₀ IS DEFINED BY DENSITY WHERE PEAK OUTPUT DROPS 50% SIMPLE FORM: FROM PULSE EQUATIONS FOR THIN MEDIA ($\alpha = 0$)

$$V_{\text{PEAK}} \cong \frac{4\delta}{\pi g} M_0 \tan^{-1} \frac{g}{2(d+a)}$$

$$V_{\text{rms}} \sim \frac{1}{\sqrt{2}} \frac{4}{\pi} M_0 k\delta e^{-k(d+a)} \frac{\sin kg/2}{kg/2}$$

$$D_{50} \text{ OCCURS FOR THAT k WHERE}$$

$$\frac{V_{\text{peak}}}{\sqrt{2}} = 2V_{\text{rms}}$$

APPLIES TO LONGITUDINAL RECORDING

D₅₀xg IS FLUX REVERSALS PER INCH TIMES INCH OR FLUX REVERSALS PER METER TIMES METER

SIDE READING

 $H(k,3) \approx \frac{1}{2}e^{-\kappa_3}$ For G Not Too Small! $P_{SR} \propto \frac{1}{2} \int_{G}^{G+W} - k_{Z} d_{Z}$ Por & W

=) WORST CASE SIDE RENDING SPECTRAL RESPONSE

 $SRR = e^{-kG}(1-e^{-kW})$

KW

=> A LONG WAVELENGTH-PHENOMENON

AZIMUTH LOSS

RECORD PROCESS

ULTIMATE DEMAGNETIZATION LIMIT

ISOLATED TRANSITION

LONGITUDINAL

OVERLAPPING TRANSITIONS (SINEWAVE):

 H_d (SURFACE) = M/2 \leq H_c (BOTH L & V)

RECORD PROCESS DOES NOT PERMIT THIS LIMIT TO OCCURII

DEMAGNETIZATION LIMIT - LONGITUDINAL

. contact
$$d/q \sim 0$$
 . isolated pulse.
linear superposition
. arctangent demagnetization
 $amin \sim^{4} \frac{1}{10} r \delta / 2\pi$ Hc.
 $d = 2\mu'', 4\pi n = 10,000 \text{ G}, He = 1000$
. $V Peak \simeq 4 \text{ NWEV Ho} M d/g \tan' \frac{q}{2amin}$
 $V Peak (mV/mil-ips-turm.eff)$ Dso
 $lop'' \frac{44 dB}{37 dB} \frac{125 k BPE}{57 k BPE}$

9

DEMAGNETIZATION LIMIT - PERPENDICULAR

· CONTACT d/q~0.0 · Isolated pulse. Inverse superposition · 5/g~1

S=9, Hc = 1000 de Y peak (mvolts/ mil-ips-Tura-1ff) = 30 dB D50 (g=10µ") ~ 140 KFCI · should do probe - Keieper !!

BASIC RECORDING CONCEPTS

BUT REVERSAL LENGTH IS NOT ZERO!

 $a_{l} \equiv \text{TRANSITION WIDTH}$ SHORT WAVELENGTH VOLTAGE: $V \alpha \delta \Theta = \frac{-2\pi(a_{l}-l-d)}{\lambda}$

a₁ DECREASED IF - 1) SFD DECREASES

- 2) HEAD GRADIENT SHARPENS (d-o)
- 3) DEMAGNETIZATION IS REDUCED

ROLE OF DEMAGNETIZATION FIELDS

- 1) Hd REDUCES NET FIELD GRADIENT (dH/dx) AT TRANSITION POINT x, AND THEREBY BROADENS THE TRANSITION(dM/dx).
- 2) Hd IS ZERO AT TRANSITION CENTER AND (TO FIRST ORDER) DOES NOT MOVE THE TRANSITION.

TECHNIQUES TO SOLVE NON LINEAR M(x) PROBLEM:

- 1) FULL ITERATIVE CALCULATION AT EACH TIME INSTANT H_h→M→Hd→H_{TOTAL}→M_{NEW}-Hd^{NEW}→··· UNTIL CONVERGENCE
- 2) ASSUME SHAPE OF TRANSITION WITH A FEW UNKNOWN PARAMETERS AND SOLVE USING A SIMPLE CRITERION

ARCTANGENT MODEL:

SLOPE CRITERION $\frac{dM}{dx} = \frac{dM}{dH} \left[\frac{dH_{h}}{dx} + \frac{dH_{d}}{dx} \right]$

SLOPE MODEL (Continued)

$$\frac{dM}{dx} = \frac{2}{\pi} \frac{M_r}{a}, \quad \frac{dM}{du} = \frac{M_r}{H_c(1-S^*)}$$

$$\frac{dH_h}{dx} = \frac{QH_c^r}{d}, \quad \frac{dH}{dx} = \frac{M_r\delta}{\pi a^2}$$

SOLVING SLOPE CRITERION YIELDS

 $\mathbf{a} = \frac{\mathbf{d}(1-\mathbf{S}^*)}{\pi \mathbf{Q}} + \left[\left(\frac{\mathbf{d}(1-\mathbf{S}^*)}{\pi \mathbf{Q}} \right)^2 + \frac{\mathbf{M}_r \delta \mathbf{d}}{\pi \mathbf{Q} \mathbf{H}_c} \right]^{1/2}$

SHARP GRADIENT $\Omega \rightarrow \infty$ \Rightarrow $a \rightarrow 0$ ZERO SPACING $d \rightarrow 0$ \Rightarrow $a \rightarrow 0$ SHARP LOOP $S^* \rightarrow 1$ \Rightarrow a DECREASESREDUCE DEMAG $M_r/H_c \rightarrow 0$ \Rightarrow a DECREASESREDUCE THICKNESS $\delta \rightarrow 0$ \Rightarrow a DECREASES

CURRENT OPTIMIZATION - SHORT WAVELENGTHS

VαM_r kδ e-ka

PERPENDICULAR RECORDING

ISOLATED PULSE

PERPENDICULAR RECORDING

- THICK MEDIA RING HEAD
- DEMAGNETIZATION FIELDS ARE REDUCED IN REGION OF
 TRANSITION

REDUCTION OF DEMAGNETIZATION FIELD CAUSE:

- 1. TRANSITION SHAPE TO RESEMBLE <u>SURFACE</u> HEAD FIELD (Lopez,Middleton)
- 2. OVERSHOOT TO OCCUR DURING RECORD PROCESS RELAXATION

FULL 2D CONTINUM VECTOR RECORDING MODEL

(Potter and Beardsley)

DEMAGNETIZATION COMPLETELY INCLUDED

LONGITUDINAL

PERPENDICULAR

SIDE VIEW

Perpendicular appears sharpest

Longitudinal has significant perpendicular component in transition

Who wins ?

RECORDING ON THICK PARTICULATE MEDIA

- FIELD HISTORY IS A ROTATION IN RECORDING PLANE
- ANGULAR DEPENDENCE OF COERCIVITY MONOTONICALLY INCREASES

FIELD HISTORY

ANGULAR DEPENDENCE

CONSIDER TWO PARTICLE REPRESENTATION

$$x^{\text{down}} \cdot x^{\text{up}} = \Delta x > 0 !$$

 $\mathbf{20} \quad = \quad \Delta \mathbf{0}$

x and θ both affect replay voltage

$$\Rightarrow V(k) = V_{(k)}^{\text{Orig.}} \cos\left(\frac{\Delta 0 - k\Delta x}{2}\right)$$

 $\mathbf{PEAK} \mathbf{AT} \qquad \mathbf{k} \Delta \mathbf{x} = \Delta \mathbf{0}$

NULL AT

 $\pi/2 = (\mathbf{k} \ \Delta \ \mathbf{x} - \Delta \ \mathbf{0})/2$

D.C. LEVEL IS COS 0 OR SQUARENESS

ESSENCE OF MODEL

PHASE SHIFT BY FREQUENCY (K) OR RECORD CURRENT (Δ X) INCREASES OUTPUT TO COMPENSATE FOR REDUCED ORIENTATION IN THE RECORDING PLANE !!

(Zhu, Bertram)

MICROMAGNETICS -- THIN MEDIA (top view)

REVIEW OF UNITS

SI (MKS)C.G.S. $B = \mu_0$ (H+M) $B = H+4 \pi M$ B: TESLAGAUSS 1 TESLA = 10^4 GH: AMPS/METEROeM: AMPS/METERGAUSS 1kA/M = 1 OeM: AMPS/METERGAUSS 1kA/M = 1 G (emu/cc) $\mu_0 = 4\pi \times 10^{-7}$ HENRYS/METER

E.G. FIELD H FOR N = 10, I = 30 mA, g = 30 μ " H = $\frac{NI}{g}$ = 400 kA/M OR 5000 Oe MAGNETIZATION $\gamma Fe_2O_3 \mu \approx 70 \text{ emu/g}, \rho \sim 4.5 \text{g/cc}$ M_p = 70×4.5-350 emu/cc M_{TAPE} = pM_p = $\frac{1}{3}$ × 350 ~ 110 emu/cc ~ 110G OR 110 kA/M B_r = 4 π M \cong 1500G or .15TESLA

SELECTED REFERENCES

TEXT

- "The Complete Handbook of Magnetic Recording," by F. Jorgensen. TAB Books Inc., PA, 1980.
- "The Foundations of Magnetic Recording," by J.C. Mallinson. Academic Press, San Diego, CA, 1987.

"Introduction to magnetic recording," by R.L. White. IEEE Press, New York, 1984.

"Magnetic Recording, Vol. I: Technology," by C.D. Mee, and E.D. Daniel (ed.). McGraw-Hill, New York, 1987.

ARTICLES

- Anderson, R. L., C. H. Bajorek, and D. A. Thompson. "Numerical analysis of a magnetoresistive transducer for magnetic recording applications." AIT Conference Proceedings, No. 10, Part 2, 1972.
- Belk, N. R., P. K. George, and C. S. Mowry. "Noise in high performance thin-film longitudinal magnetic recording media." (Invited paper.) IEEE Trans. Magn. MAG-21, no. 5, pp. 1350-1355, 1985.
- Bertram, H. N. "Anisotrophic reversible permeability effects in the magnetic reproduce process." IEEE Trans. Magn., pp. 111-118, May 1978.
- Bertram, H. N. "The effect of the angular dependence of the particle nucleation field on the magnetic recording process." IEEE Trans. Magn., pp. 2094-2104, November 1984.
- Bertram, H. N. "Fundamentals of the magnetic recording process," Proceedings of the IEEE, vol. 74, pp. 1492-1512, 1986.
- Bertram, H. N. "Particle interaction phenomena." Presented at 1986 INTERMAG, Phoenix, AZ (1986, in press).
- Bertram, H. N. and L. D. Fielder. "Amplitude and bit shift spectra comparisons in thin metallic media." IEEE Trans. Magn., vol. MAG-29, no. 5, pp. 1606-1607, 1983.
- J.-M. Coutellier and H.N. Bertram. "Depth profiling of modulation noise." IEEE Trans. Magn., vol. MAG-23, no. 1, pp. 195-197, 1987.
- Hudson, V. N., M. K. Loze, and B. K. Middleton. "Measurement of error rates in a digital recording system." IERE Conf. Proc., No. 67, pp. 177-183, March 1986.
- Hughes, G. F. "Magnetization reversals in cobalt-phosphorus films." J. Appl. Phys., Vol. 54, no. 9, pp. 5306-5313, September 1983.

IEEE Proceedings, vol. 74, no. 11, 1986.

- Ichiyama, Y. "Theoretical analysis of bit error rate considering intertrack crosstalk in digital magnetic recording equipment." IEEE Trans. Magn., pp. 899-906, January 1979.
- Katz, E. R. and T. G. Campbell. "Effect of bitshift distribution on error rate in magnetic recording." IEEE Trans. Magn., Vol. MAG-15, pp. 1050-1053, May 1979.
- Kelly, G. V. and E. P. Valstyn. "Numerical analysis of writing and reading with multiturn film heads." IEEE Trans. Magn., pp. 788-790, September 1980.
- Knowles, J. E. "Measurements on single magnetic particles." IEEE Trans. Magn., pp. 858-860, September 1980.
- Lindholm, D. A. "Dependence of reproducing gap null on head geometry." IEEE Trans. Magn., pp. 1692-1696, November 1975.
- Lindholm, D. A. "Spacing losses in finite track width reproducing systems." IEEE Trans. Magn., pp. 55-59, March 1978.
- Lopez, O. "Reproducing vertically recorded information double layer media." IEEE Trans. Magn., pp. 1614-1616, September 1983.
- Lopez, O. "Analytic calculation of write induced separation losses." IEEE Trans. Magn., pp. 715-717, September 1984.
- Middleton, B. K. and C. D. Wright. "The perpendicular recording process." (Ltr.) IEEE Trans. Magn., pp. 458-459, March 1984.
- Minuhin, V. B. "Comparison of sensitivity functions for ideal probe and ring-type heads." IEEE Trans. Magn., pp. 488-494, May 1984.
- Minuhin, V. B. "Theoretical comparison of readback, harmonic responses for longitudinal recording and perpendicular recording with probe head over a medium with permeable underlayer." Presented at 1986 INTERMAG, Phoenix, AZ, 1987 (in press).
- Nakanishi, T., Y. Koshimoto, and S. Ohara. "Recording characteristics of 3.2 GByte multi-device disk storage." Rev. Electr. Commun. Lab. (Japan), Vol. 30, no. 1, p. 14-23, January 1982.

Ohtake, N., M. Isshiki, K. Endoh and T. Kotoh. "Magnetic recording characteristics of R-DAT." IEEE Trans. Consum. Electron., vol. CE-32, no. 4, pp. 707-712, 1986.

- Poncet, C. "Principles of three-dimensional recording model for short wavelength magnetic recording." IEEE Trans. Magn., pp. 1262-1267, May 1981.
- Potter, R. I. and I. A. Beardsley. "Self-consistent computer calculations for perpendicular magnetic recording." IEEE Trans. Magn., pp. 967-972, September 1980.
- Ramo, S., J. R. Whinnery and T. VanDuzer. "Fields and waves in communication electronics," 2nd edition, John Wiley & Sons, Publ., New York, 1984.
- Smaller, P. "Reproduce system noise in wide-band magnetic recording systems." IEEE Trans. Magn., MAG-1, p. 357, 1969.

- Smith, N. "Reciprocity principles of magnetic recording theory." IEEE Trans. Magn., Vol. MAG-23, no. 4, pp. 1995-2002, July 1987.
- Stubbs, D. P., J. W. Whisler, C. D. Moe, and J. Skorjanec. "Ring head recording on perpendicular media: Output spectra for CoCr and CoCr/NiFe media." J. Appl. Phys., Vol. 57, no. 8, pp. 3970-3972, April 1985.
- Szczech, T. J. "Analytic expressions for field components of nonsymmetrical finite pole tip length magnetic head based on measurements on large-scale model." IEEE Trans. Magn., pp. 1319-1322, September 1979.
- Tagami, K., M. Aoyama, K. Nishimoto, and F. Goto. "Ferrite thin film disks using electroless-plated Ni-P substrates." IEEE Trans. Magn., Vol. 21, no. 2, pp. 1164-1168, March 1985.
- Thompson, D. A., L. T. Romankiw, and A. F. Mayadas. "Thin film magnetoresistors in memory, storage, and related applications." IEEE Trans. Magn., pp. 1039-1050, July 1975.
- Wessel-Berg, T. and H. N. Bertram. "A generalized formula for induced magnetic flux in a playback head." (Ltr.) IEEE Trans. Magn., pp. 129-131, May 1978.
- Westmijze, W. K. "Studies on magnetic recording." In <u>Introduction to magnetic</u> recording, by R. L. White, IEEE Press, New York, 1984.
- Williams, M.L. and R.L. Comstock. "An analytical model of the write process in digital magnetic recording," in AIP Conf. Proc., vol. 5, p. 738, 1971.
- J.-G. Zhu and N.N. Bertram. "Computer modeling for the write process in perpendicular recording." IEEE Trans. Magn., vol. MAG-22, no. 5, pp. 379-381, 1986.
- J.-G. Zhu and N.N. Bertram. "Micromagnetic studies of thin metallic films." MMM Conference (invited). Chicago, 1987, (J.A.P. March Sup. 1988 to be published).