
HP Standard Instrument
Control Library

User's Guide
forHP-UX

HP Standard Instrument Control Library

User's Guide for
HP-UX

Notice

The information contained in this document is subject to change without
notice.

Hewlett-Packard Company (HP) shall not be liable for any errors contained
in this document. HP makes no warranties of any kind with regard to this
document, whether express or implied. HP specifically disclaims the implied
warranties of merchantability and fitness for a particular purpose. HP shall
not be liable for any direct, indirect, special, incidental, or consequential
damages, whether based on contract, tort, or any other legal theory, in
connection with the furnishing of this document or the use of the information
in this document.

Warranty Information.

A copy of the specific warranty terms applicable to your Hewlett-Packard
product and replacement parts can be obtained from your local Sales and
Service Office.

Restricted Rights Legend.

U.S. Government Restricted Rights. The Software and Documentation have
been developed entirely at private expense. They are delivered and licensed
as "commercial computer software" as defined in DFARS 252.227-7013
(Oct 1988), DFARS 252.211-7015 (May 1991) or DFARS 252.227-7014 (Jun
1995), as a "commercial item" as defined in FAR 2. lOl(a), or as "Restricted
computer software" as defined in FAR 52.227-19 (Jun 1987) (or any
equivalent agency regulation or contract clause), whichever is applicable. You
have only those rights provided for such Software and Documentation by the
applicable FAR or DFARS clause or the HP standard software agreement for
the product involved.

Copyright© 1984, 1985, 1986, 1987, 1988 Sun Microsystems, Inc.

Microsoft, Windows 95, and Windows NT are U.S. registered trademarks of
Microsoft Corporation.

UNIX is a registered trademark of the United States and other countries,
licensed exclusively through X/Open Company Limited.

Copyright© 1994, 1995, 1996 Hewlett-Packard Company. All Rights
Reserved.

This document contains proprietary information which is protected by
copyright. All rights are reserved. No part of this document may be
photocopied, reproduc~d, or translated to another language without the prior
written consent of Hewlett-Packard Company.

Printing History

This is the fifth edition of the HP Standard Instrument Control Library User's
Guide for HP-UX.

May 1994 - First Edition

September 1994 - Second Edition

January 1995 - Third Edition

November 1995 - Fourth Edition

September 1996 - Fifth Edition

v

Contents

1. Introduction
HP SICL Overview

Support
Users

Other Documentation
HP SICL Documentation
Related Product Documentation

2. Getting Started with HP SICL
Reviewing an HP SICL Program
Compiling and Linking an HP SICL Program
Running an HP SICL Program
Getting Online Help

Using the Hyper Rel p Viewer
Using Manual Pages

Where to Go Next

3. Using HP SICL
Including the sicl.h Header File
Opening a Communications Session

Device Sessions
Addressing Device Sessions .

Interface Sessions
Addressing Interface Sessions

Commander Sessions
Addressing Commander Sessions

Sending I/ 0 Commands . . .
Formatted I/O

Formatted I/O Conversion
Format Flags
Field Width
.Precision
,Array Size .
Argument Modifier
Conversion Characters

Formatted I/ 0 Example

1-4
1-4
1-4
1-5
1-5
1-6

2-3
2-6
2-7
2-8
2-8
2-9

2-10

3-3
3-4
3-5
3-5
3-6
3-6
3-7
3-7
3-8
3-8
3-9
3-9

3-11
3-11
3-12
3-12
3-13
3-15

Contents-I

Format String 3-16
Formatted I/O Buffers 3-16
Overview of Formatted I/ 0 Routines 3-17

Non-Formatted I/O 3-18
Non-formatted I/O Example 3-19

Using Asynchronous Events . 3-20
SRQ Handlers 3-20
Interrupt Handlers 3-21
Temporarily Disabling/Enabling Asynchronous Events 3-21
Asynchronous Events and HP-UX Signals 3-23

Protecting I/O Calls Against Interrupts 3-24
Interrupt Handler Example 3-25

Using Error Handlers 3-27
Error Handler Example 3-28

Using Locks 3-30
Lock Actions 3-31
Locking in a Multi-user Environment 3-32
Locking Example 3-33

4. Using HP SICL with HP-IB
Creating a Communications Session with HP-IB 4-3
Communicating with HP-IB Devices 4-4

Addressing HP-IB Devices 4-4
HP SICL Function Support with HP-IB Device Sessions 4-6

HP-IB Device Session Interrupts 4-6
HP-IB Device Sessions and Service Requests 4-6

HP-IB Device Session Example . . 4-7
Communicating with HP-IB Interfaces 4-9

Addressing HP-IB Interfaces 4-9
HP SICL Function Support with HP-IB Interface

Sessions 4-10
HP-IB Interface Session Interrupts 4-10
HP-IB Interface Sessions and Service Requests 4-11

HP-IB Interface Session Examples 4-11
Checking the Bus Status 4-11
Communicating with Devices via Interface Sessions 4-13

Communicating with HP-IB Commanders 4-17
Addressing HP-IB Commanders 4-17
HP SICL Function Support with HP-IB Commander

Sessions 4-19
HP-IB Commander Session Interrupts 4-19

Contents-2

Summary of HP-IB Specific Functions 4-20

5. Using HP SICL with GPIO
Creating a Communications Session with GPIO 5-3
Communicating with GPIO Interfaces 5-4

Addressing GPIO Interfaces 5-4
HP SICL Function Support with GPIO Interface Sessions 5-5

GPIO Interface Session Interrupts 5-6
GPIO Interface Session Example 5-7
GPIO Interrupts Example 5-8

Summary of GPIO Specific Functions 5-10

6. Using HP SICL with VXI/MXI
Creating a Communications Session with VXI/MXI 6-3
Communicating with VXI/MXI Devices 6-4

Message-Based Devices 6-5
Addressing VXI/MXI Message-Based Devices 6-6
Message-Based Device Session Example 6-8

Register-Based Devices 6-9
Addressing VXI/MXI Register-Based Devices 6-10
Interpreted SCPI (iscpi) Addressing Rules 6-11

Defining an Instrument 6-12
Defining an Instrument Driver 6-12

Programming with Interpreted SCPI (the iscpi
Interface) 6-13

Register-Based Instrument Drivers . 6-13
iscpi Device Session Example 6-14
Programming Directly to the Registers 6-15

Mapping Memory Space for Register-Based Devices 6-15
Reading and Writing to the Device Registers 6-18
U nmapping Memory Space 6-18

Register-Based Programming Example 6-18
Catching Bus Errors Example 6-21

Enabling V7 43 Shared Memory 6-22
Communicating with VXI/MXI Interfaces 6-23

Addressing VXI/MXI Interface Sessions 6-23
VXI/MXI Interface Session Example . 6-25

Communicating with VME Devices 6-26
Declaring Resources 6-27

HP E1482 VXI-MXI Resources 6-27
Mapping VME Memory 6-28

Contents-3

Supported Access Modes 6-29
Reading and Writing to the Device Registers . 6-30
U nmapping Memory Space 6-30
VME Interrupts 6-30
VME Example 6-31

Looking at HP SICL Function Support with VXI/MXI 6-35
Device Sessions 6-35

Message-Based Device Sessions 6-35
Interpreted SCPI (iscpi) Device Sessions 6-35

Interpreted SCPI (iscpi) Device Session Interrupts 6-36
Interpreted SCPI (iscpi) Device Session Service

Request 6-36
Register-Based Device Sessions 6-37

Interface Sessions 6-38
Using HP SICL Trigger Lines 6-39

Routing VXI TTL Trigger Lines in a VXI/MXI System 6-42
Routing External Trigger Lines on the El482 VXI-MXI

Extender Bus Card 6-44
Inverting the Polarity of the V743 External Trigger Lines 6-45

Using i ?blockcopy for DMA Transfers with the V7 43 . . . 6-46
Using VXI Specific Interrupts 6-49

Processing VME Interrupts Example . . 6-51
Summary of VXI/MXI Specific Functions 6-53

7. Using HP SICL with RS-232
Creating a Communications Session with RS-232 7-3
Communicating with RS-232 Devices 7-4

Addressing RS-232 Devices 7-4
HP SICL Function Support with RS-232 Device Sessions 7-6

RS-232 Device Session Interrupts 7-6
RS-232 Device Session Example . . . 7-7

Communicating with RS-232 Interfaces . 7-8
Addressing RS-232 Interfaces 7-8
HP SICL Function Support with RS-232 Interface

Sessions 7-9
RS-232 Interface Session Interrupts 7-11

RS-232 Interface Session Example . 7-12
Summary of RS-232 Specific Functions . 7-14

Contents-4

8. Using HP SICL with LAN
Overview of HP SICL LAN 8-3

LAN Software Architecture 8-5
LAN Networking Protocols 8-6

HP SICL LAN Server 8-7
Considering LAN Configuration and Performance 8-8
Communicating with Devices Over LAN 8-9

LAN-gatewayed Sessions 8-9
Addressing Devices or Interfaces with LAN-gatewayed

Sessions 8-9
HP SICL Function Support with LAN-gatewayed

Sessions 8-12
LAN-gatewayed Session Example . 8-14

LAN Interface Sessions 8-16
Addressing LAN Interface Sessions 8-16
HP SICL Function Support with LAN Interface

Sessions 8-16
Using Timeouts with LAN . . 8-18

LAN Timeout Functions . . 8-18
Default LAN Timeout Values 8-19
Timeout Configurations to Be Avoided 8-22
Application Terminations and Timeouts 8-23

Using Signal Handling with LAN 8-24
SIGIO Signals 8-24
SIGPIPE Signals 8-25

Summary of LAN Specific Functions 8-26

9. Troubleshooting Your HP SICL Program
Installing an Error Handler 9-3
Looking at Error Codes and Messages 9-4
Troubleshooting HP SICL 9-6

Compile and Link Errors 9-6
Compile Errors - Unexpected symbol 9-6

Possible Solution 9-6
· Link Errors - Unsatisfied symbols . 9-7

Possible Solution 9-7
Compile/Link Error - Undefined id 9-7

Possible Solution 9-7
Run-time Errors . . . 9-8

Program Hangs . . 9-8
Possible Solution 9-8

Contents-5

iopen fails - Timeout occurred
Possible Solution

iopen fails - Invalid Address
Possible Solution

Invalid INST
Possible Solution

Troubleshooting HP SICL Over LAN (Client and Server) .
SICL LAN Client Problems and Possible Solutions . . .

iopen fails - syntax error
Possible Solution

iopen fails - Bad address
Possible Solution

iopen fails - unrecognized symbolic name
Possible Solution

iopen fails - timeout
Possible Solution

iopen fails - other failures
Possible Solution

I/O operation times out
Possible Solution

Operation following a timed out operation fails
Possible Solution

iopen fails or other operations fail due to locks .
Possible Solution

SICL LAN Server Problems and Possible Solutions
rpcinfo does not list siclland . . .

Possible Solution
iopen fails

Possible Solution
LAN server appears "hung" . . .

Possible Solution
rpcinf o fails - can't contact portmapper

Possible Solution
rpcinfo fails - programs 395180 or 395183 are not

available
Possible Solution

Troubleshooting HP SICL Over RS-232
No Response from Instrument
RS-232 Port Allocation and HP-UX termio Functions .
Data Received from Instrument is Garbled
Data Lost During Large Transfers

Contents-6

9-8
9-8
9-8
9-8

9-8
9-8
9-9

9-11
9-11
9-11
9-11
9-11
9-11
9-11
9-11
9-11
9-12
9-12
9-12
9-12
9-12
9-12
9-12
9-12
9-13
9-13
9-13
9-13
9-13
9-14
9-14
9-14
9-14

9-15
9-15
9-16
9-16

9-16
9-17
9-17

Troubleshooting HP SICL Over GPIO .
Bad Address (for iopen)
Operation Not Supported
No Device
Generic I/ 0 Error
Bad Parameter

Where to Find Additional Information

A. The HP SICL Files

B. Updating HP-UX 9 SICL Applications

9-18
9-18
9-19
9-19
9-20
9-20
9-21

Building SICL Applications on HP-UX 10 B-3
Linking with the Archive Library on HP-UX 9 B-4

C. Porting DIL to SICL
The DIL to SICL Translation Process C-3
Summary of DIL to SICL Conversion C-4
Recommendations for Your DIL to SICL Translation . C-9

D. The HP SICL Utilities
iclear
ipeek
ipoke .
iread .
iwrite

E. Customizing Your VXI/MXI System
Overview of VXI/MXI Configuration
The VXI/MXI Resource Manager (i vxirm)
The VXI/MXI Configuration Files . .

The vximanuf . cf Configuration File
The vximodel. cf Configuration File
The dynamic . cf Configuration File .
The vmedev . cf Configuration File . .
The irq. cf Configuration File
The cmdrsrvt . cf Configuration File
The names . cf Configuration File .
The oride. cf Configuration File . .
The ttl trig. cf Configuration File .

The iproc Utility (Initialization and SYSRESET) .
Viewing the VXIbus System Configuration . .

D-3
D-5
D-6
D-7
D-8

E-3
E-4
E-5
E-6
E-6
E-6
E-7
E-7
E-8
E-8
E-8
E-9

E-10
E-12

Contents-7

VXI/MXI Configuration Utilities
e1489mir
e1489trg
e1489tsh
e1497cnf
iproc ..
itrginvrt
ivxirm ..
ivxisc ..

Multiple V743 Configuration

Glossary

Index

Contents-8

E-13
E-14
E-15
E-16
E-17
E-18
E-20
E-21
E-24
E-28

1

Introduction

Introduction

Welcome to the HP Standard Instrument Control Library (SICL) User's Guide
for HP-UX. This guide describes how to use SICL to develop VO applications
on the HP-UX version 10.20 (or later) operating system. A getting started
chapter steps you through the process of building and running a simple SICL
program. The basics of SICL programming are covered in the following
chapter, and later chapters describe how to use SICL with specific interfaces:
HP-IB, GPIO, VXI/MXI, RS-232, and LAN.

See the HP I/O Libraries Installation and Configuration Guide for HP-UX for
detailed information on SICL installation and configuration.

This first chapter provides an overview of SICL. In addition, this guide
contains the following chapters:

• Chapter 2 - Getting Started with HP SICL steps you through building and
running a simple example program. This is a good place to start if you are
a first-time SICL user.

• Chapter 3 - Using HP SICL describes the basics of SICL along with some
detailed example programs. You can find information on communication
sessions, addressing, error handling, and more.

• Chapter 4 - Using HP SICL with HP-IB describes how to communicate
over the HP-IB interface. Example programs are also provided.

• Chapter 5 - Using HP SICL with GPIO describes how to communicate over
the GPIO interface. Example programs are also provided.

• Chapter 6 - Using HP SICL with VXI/MXI describes how to communicate
over the VXIbus. Example programs are also provided.

• Chapter 7 - Using HP SICL with RS-232 describes how to communicate
over the RS-232 interface. Example programs are also provided.

• Chapter 8 - Using HP SICL with LAN describes how to communicate over
a LAN. Example programs are also provided.

• Chapter 9 - Troubleshooting Your HP SICL Program describes some of the
most common SICL programming problems and provides suggestions to
help you solve the problems.

1-2

Introduction

This guide also contains the following appendices:

• Appendix A - The HP SICL Files sununarizes where the SICL files are
located on your system.

• Appendix B - Updating HP-UX 9 SICL Applications describes how to
update SICL applications that were written on HP-UX version 9.x to work
on HP-UX version 10.x.

• Appendix C - Porting DIL to SICL provides tips for moving from the
Device I/O Library (DIL) to SICL.

• Appendix D - The HP SICL Utilities describes the SICL utilities which can
be used to read and write to devices or interfaces from the command line.

• Appendix E - Customizing Your VXI/MXI System explains how you
can customize your VXI/MXI system. VXI/MXI configuration utilities are
documented as well.

This guide also contains a Glossary of terms and their definitions, as well as
an Index.

1-3

HP SICL Overview

SlCL is a modular instrument communications library that works with a
variety of computer architectures, 1/0 interfaces, and operating systems. I/O
applications written in C or C + + using this library can be ported at the
source code level from one system to another without, or with very few,
changes.

SlCL uses standard, commonly used functions to communicate over a wide
variety of interfaces. For example, a program written to communicate with
a particular instrument on a given interface can also communicate with
an equivalent instrument on a different type of interface. This is possible
because the commands are independent of the specific communications
interface. SlCL also provides commands to take advantage of the unique
features of each type of interface, thus giving you, the programmer, complete
control over 1/0 communications.

Support

SlCL is supported on HP-UX version 10.20 with the following interfaces:
HP-IB, GPlO, VXl/MXl, RS-232, and LAN.

Users

SlCL is intended for instrument 1/0 and CIC+ + programmers who are
familiar with the HP-UX operating system.

1-4

Other Documentation

HP SICL Documentation

• HP I/O Libraries Installation and Configuration Guide for HP-UX explains
how to install and configure the HP I/O Libraries, including the HP SICL
and the HP VISA (Virtual Instrument Software Architecture) libraries, on
HP-UX.

• HP SICL Reference Manual provides the function syntax and description of
each SICL function.

• HP SICL Quick Reference Guide for C Programmers helps you find SICL
function syntax information quickly.

• HP SICL Online Help is provided in the form of HP-UX manual pages (man
pages) and Hyper Help. ·

• HP SICL Example Programs are provided in the
/opt/sicl/share/examples directory. These examples are
designed to help you develop your SICL applications more easily.

1-5

Related Product Documentation

• HP-UX 10.x Documentation:

o Programming on HP-UX
o HP C Programmer's Guide
o HP C+ +Programmer's Guide
o HP C/HP-UX Reference Manual
o Installing HP-UX 10
o Managing HP-UX Software with SD-UX
o Systems Administration Tasks Manual
o Moving HP-UX 9 Code and Scripts to 10

• HP V7 43 Controller Documentation:

o HP V743 VXI Controller Installation Guide
o HP V743 Owner's Guide

• HP 9000 Series 700 Computer Interface Documentation:

o HP E1482 VXI-MXI Bus Ext;ender User's Guide
o HP E1489I MXI Controller Interface for HP 9000 Serie,s 700 Workstation

Installation Guide and Overview

• GPIO Interface Documentation:

o HP E2074 GPIO Interface Installation Guide

• HP-IB Interface Documentation:

o HP E2071 and E2070 HP-IB Interface Installation Guide
o Tutorial De,scription of the Hewlett-Packard Interface Bus (HP-IB)

• Series 700 RS-232 Interface Documentation:

o The RS-232 Solution by Joe Campbell, SYBEX Publishing

• LAN Documentation:

o Networking Overview
o Installing and Administering LAN/9000 Software
o Administering ARPA Service,s

• LAN/HP-IB Gateway Documentation:

o HP E2050 LAN/HP-IE Gateway Installation and Configuration Guide

1-6

• VXIbus Consortium Specifications:

o The VMEbus Specification
o The VMEbus Extensions for Instrumentation
o TCP/IP Instrument Protocol Specification - VXl-11, Rev. 1.0
o TCP/IP- VX!bus Interface Specification - VXI-11.1, Rev. 1. 0
o TCP/IP-IEEE 488.1 Interface Specification - VXI-11.2, Rev. 1.0
o TCP/IP-IEEE 488.2 Instrument Interface Specification - VXl-11.3,

Rev. 1.0 ·

1-7

2

Getting Started with
HP SICL

Getting Started with HP SICL

This chapter steps you through building and running your first SICL program.
If you plan to develop SICL applications, go through this chapter to ensure
you perform all the steps required to build and run a SICL program.

This chapter contains the following sections:

• Reviewing an HP SICL Program

• Compiling and Linking an HP SICL Program

• Running an HP SICL Program

• Getting Online Help

• Where to Go Next

If you need additional information on any of the SICL functions, see the
HP SICL Reference Manualfor details.

2-2

Reviewing an HP SICL Program

Example programs are included in your SICL product to help you get
started using SICL. Copies of the example programs are located in the
/opt/sicl/share/examples directory.

The following is a simple C program that uses SCPI commands to query an
HP-IB instrument for its identification string and print the results.

I* idn.c
The following program uses SICL to query an HP-IB
instrument for an identification string and prints the results. */

#include <stdio.h>
#include <sicl.h> I* SICL header file */

I* Modify this line to reflect the address of your device */
#define DEVICE_ADDRESS "hpib,0"
void main()
{

}

I* declare a device session id */
INST id;
char buf [256];

I* error handler to exit if an error is detected */
ionerror(I_ERROR_EXIT);

I* open a device session with device at DEVICE_ADDRESS */
id= iopen (DEVICE_ADDRESS);

I* set timeout value to 1 sec *I
itimeout (id, 1000);

I* send a SCPI *RST command and prompt for identification string */
iprintf (id, "*RST\n");
ipromptf (id, "*IDN?\n", "%t", buf);

I* print contents of buf */
printf ("%s\n", buf);

I* close device session */
iclose (id);

2-3

Getting Started with HP SICL

Reviewing an HP SICL Program

NOTE

The newline character (\n) in the iprintf and ipromptf functions in the previous example
flushes the output buffer to the device and appends an END indicator to the newline. Sometimes
flushing is needed for the device, and it is good practice to include this after each instrument
command. You can specify when the buffer is flushed with the SICL isetbuf function. See the
HP S/CL Reference Manual for information on this SICL function.

The SICL example program includes the following:

sicl.h

DEVICE_ADDRESS

INST

ion error

iopen

itimeout

2-4

This header file must be included at the beginning of
your program to provide the function prototypes and
constants defined by SICL.

This constant is defined specifically for this example. It
is used to specify the device address. This address is
then used in the iopen function call.

This is a type definition defined by SICL. It is used to
represent a unique identifier that describes a specific
device or interface.

This is a SICL function that installs an error handler
that is automatically called if any SICL calls result in an
error. I _ERROR_EXIT specifies that the error message
is printed out and the program exited.

This SICL function creates a device session with
the device attached to the address specified in
DEVICE_ADDRESS constant.

This function is called to set the length of time that
SICL will wait for an instrument to respond. Different
timeout values can be set for different sessions as
needed.

iprintf,
ipromptf

iclose

Getting Started with HP SICL

Reviewing an HP SICL Program

These formatted I/O functions are patterned after those
used in the C programming language. They support
the standard ANSI C format string, plus added formats
defined specifically for instrument I/O.

This function closes the session with the specified
device.

For more details on SICL features, see Chapter 3, "Using HP SICL." You can
also see the HP SICL Reference Manual for specifics about these SICL function
calls.

2-5

Compiling and Linking an HP SICL Program

You can create your SICL applications in C, ANSI C, or C+ + . When
compiling and linking a C program that uses SICL, use the -lsicl command
line option to link in the SICL library routines. '[he following example creates
the idn executable file:

cc -o idn idn.c -lsicl

• The -o option creates an executable file called idn.
• The -1 option links in the shared SICL library.

If you are building an application that was originally built on HP-UX 9, or if
you need to link with the SICL archive libraries on HP-UX 9, see Appendix B,
"Updating HP-UX 9 SICL Applications."

NOTE
SICL on HP-UX version 10.20 does not support 64-bit operations.

Do not compile with the + PA2. 0 compiler flag.

2-6

Running an HP SICL Program

Execute your SICL program by typing the program name at the command
prompt. For example:

idn

When using an HP 5460 lA Four Channel Oscilloscope, you should get
something similar to the following:

Hewlett-Packard,54601A,0,1.7

If you have problems running the idn example program, first check to make
sure the device address specified in your program is correct. If the program
still doesn't run, check the I/O configuration by running the iosetup utility.
See the HP I/O Libraries Installation and Configuration Guide for HP-UX for
information on running iosetup.

2-7

Getting Online Help

Online help is offered using Bristol Technology's HyperHelp Viewer, or in the
form of HP-UX manual pages (man pages). You can get help on the following
SICL functions:

• SICL function calls
• SICL utilities

Using the HyperHelp Viewer

The Bristol Technology HyperHelp Viewer allows you to view the HP SICL
Reference Manual online in HP-UX. To start the HyperHelp Viewer with the
SICL help file, type the following:

hyperhelp /opt/hyperhelp/siclhelp.hlp

When you start the Viewer, you can also specify any of the following options:

-k keyword

-p partiaLkeyword

-s viewmode

-display display

2-8

Opens the Viewer and searches for the specified
keyword.
Opens the Viewer and searches for a specific partial
keyword.
Opens the Viewer in the specified viewmode. If 1
is specified as the viewmode, then the Viewer is
shared by all applications. If O is specified, then
a separate Viewer is opened for each application
(default).
Opens the Viewer on the specified display.

Using Manual Pages

Getting Started with HP SICL

Getting Online Help

To use manual pages, type the HP-UX man command followed by the SICL
function call or utility:

man name

The following are examples of getting online help on SICL function calls and
utilities.

Examples of SICL function calls:

man iprintf
man ipromptf
man iread

Examples of SICL utilities:

man ipeek
man iread
man ivxisc

2-9

Where to Go Next

Once you have your SICL example program running, you can continue with
Chapter 3, "Using HP SICL." Additionally, you should look at the chapters
that describe how to use SICL with your particular I/O interface(s):

• Chapter 4 - "Using HP SICL with HP-IB"

• Chapter 5 - "Using HP SICL with GPIO"

• Chapter 6 - "Using HP SICL with VXI/MXI"

• Chapter 7 - "Using HP SICL with RS-232"

• Chapter 8 - "Using HP SICL with LAN"

If you have any problems, see Chapter 9, "Troubleshooting Your HP SICL
Program."

2-10

3

Using HP SICL

Using HP SICL

This chapter first describes how to use SICL and some of the basic features,
such as error handling and locking. Detailed example programs are also
provided to help you understand how these features work. Copies of the
example programs are located in the /opt/sicl/share/examples directory.

This chapter contains the following sections:

• Including the sicl.h Header File

• Opening a Communications Session

• Sending 1/0 Commands

• Using Asynchronous Events

• Using Error Handlers

• Using Locks

For specific details on SICL function calls, see the HP SICL Reference Manual.

3-2

Including the sicl.h Header File

You must include the s icl . h header file at the beginning of every file that
contains SICL calls. This header file contains the SICL function prototypes
and the definitions for all SICL constants and error codes:

#include <sicl.h>

3-3

Opening a Communications Session

A communications session is a channel of communication with a particular
device, interface, or commander:

• A device session is used to communicate with a specific device connected
to an interface. A device is a unit that receives commands from a
controller. Typically a device is an instrument but could be a computer, a
plotter, or a printer.

• An interface session is used to communicate with a specified interface.
Interface sessions allow you to use interface specific functions (for example,
igpibsendcmd).

• A commander session is used to communicate with the interface
commander. Typically a commander session is used when a computer
connected to the interface is acting like a device.

There are two parts to opening a communication session with a specific
device, interface, or commander. First, you must create an instance of a SICL
session by declaring a variable of type INST. Once the variable is declared,
then you can open the communication channel by using the SICL iopen
function:

INST id;
id= iopen (addr);

Where id is declared with the type INST and communicates to a device,
interface, or commander. The addr parameter is a string expression which
specifies a device session address, interface session address, or a commander
session address. See the sections that follow for details on creating the
different types of communications sessions.

Your program may have several sessions open at the same time by creating
multiple INST identifiers with the iopen function. Use the SICL iclose
function to close a channel of communication.

3-4

Using HP SICL

Opening a Communications Session

Device Sessions

A device session allows you direct access to a device without worrying about
the type of interface to which it is connected. On HP-IB, for example, you
do not have to address a device to listen before sending data to it. This
insulation makes applications more robust and portable across interfaces, and
is recommended for most applications.

Device sessions are the recommended way of communicating using SICL.
They provide the highest level of programming, best overall performance, and
best portability.

Addressing Device Sessions To create a device session, specify either the interface symbolic name or
logical unit and a particular device's address in the addr parameter
of the iopen function. The interface symbolic name and logical unit
are defined during the system configuration. See the HP 110 Libraries
Installation and Configuration Guide for HP-UX for information on these
values.

The logical unit is an integer corresponding to the interface. The device
address generally consists of the symbolic name or logical unit and
an integer that corresponds to the device's address. It may also include a
secondary address which is also an integer.

NOTE

Secondary addressing is not supported on the VXI and RS-232 interfaces.

3-5

Addressing Interface
Sessions

Using HP SICL

Opening a Communications Session

The following are valid device addresses:

7,23

7,23,1

hpib,23

hpib2,23,1

vxi,128

Device at bus address 23 connected to an interface card at
logical unit 7.

Device at bus address 23, secondary address 1, connected to
an interface card at logical unit 7.

Device at bus address 23 and symbolic name hpib.

Device at bus address 23, secondary address 1, connected to
a second HP-IB interface with symbolic name "hpib2".

Device at logical address 128 and symbolic name ''vxi''.

The following is an example of opening a device session with the HP-IB
device at bus address 23:

INST dmm;
dmm = iopen ("hpib,23");

More on addressing specific devices can be found in the interface-specific
chapter (for example, "Using HP SICL with HP-IB") later in this manual.

Interface Sessions

An interface session allows low-level control of the specified interface. There
is a full set of interface-specific SICL functions for programming features that
are specific to a particular interface type (HP-IB, VXI, etc). This gives you full
control of the activities on a given interface, but does make for less portable
code.

To create an interface session, specify either the interface symbolic name
or logical unit in the addr parameter of the iopen function. The
interface symbolic name and logical unit are defined during the system
configuration. See the HP 110 Libraries Installation and Configuration Guide
for HP-UX for information on these values.

The logical unit is an integer that corresponds to a specific interface. The
symbolic name is a string which uniquely describes the interface.

3-6

Addressing Commander
Sessions

The following are valid interface addresses:

Using HP SICL

Opening a Communications Session

7

hpib

hpib2

Interface card at logical unit 7.

HP-IB interface with the symbolic name hpib.

Second HP-IB interface with the symbolic name hpib2.

The following example opens an interface session with the HP-IB interface:

INST dmm;
dmm = iopen (11 hpib 11

);

More on addressing specific interfaces can be found in the interface-specific
chapter (for example, "Using HP SICL with HP-IB") later in this manual.

Commander Sessions

The commander session allows you to talk to the interface controller.
Typically, the controller is the computer used to communicate with devices
on the interface. However, when the controller is no longer the active
controller, or passes control, commander sessions can be used to talk to the
controller. In this mode, the interface is acting like a device on the interface
(non-controller).

To create a commander session, specify either the interface symbolic
name or logical unit followed by a comma and then the string cmdr in
the iopen function. The interface symbolic name and logical unit
are defined during the system configuration. See the HP 110 Libraries
Installation and Configuration Guide for HP-UX for information on these
values. The following are valid commander addresses:

hpib,cmdr

7,cmdr

HP-IB commander session.

Commander session on interface at logical unit 7.

The following is an example of creating a commander session with the HP-IB
interface:

INST cmdr;
cmdr = iopen("hpib,cmdr 11

);

3-7

Sending I/O Commands

Once you have established a communications session with a device, interface,
or commander, you can start communicating with that session using either
formatted I/O or non-formatted 1/0.

• Formatted I/O converts mixed types of data under the control of a
format string. The data is buffered, thus optimizing interface traffic. The
formatted I/O routines are geared towards instruments and are very
efficient in I/O.

• Non-formatted I/O sends or receives raw data to or from a device, interface,
or commander. With non-formatted 1/0, no formatting or conversion of the
data is performed. Thus, if formatted data is required, it must be done by
the user.

See the following sections for a complete description and examples of using
formatted I/O and non-formatted 1/0.

Formatted I/O

The SICL formatted I/O mechanism is similar to the C stdio mechanism.
SICL formatted 1/0, however, is designed specifically for instrument
communication and is optimized for IEEE 488.2 compatible instruments. The
three main functions for formatted I/Oare as follows:

• The iprintf function formats according to the format string and sends
data to the session specified by id:

iprintf (id, format [,argl}[,arg2][, ... j);

• The iscanf function receives data from the session specified by id and
converts the data according to the format string:

iscanf (id, format [,argl}[,arg2}[, ... j);

3-8

Using HP SICL

Sending 1/0 Commands

• The ipromptf function formats data according to the writefmt string and
sends data to the session specified by id and then immediately receives the
data and converts it according to the read,fmt string:

ipromptf (id, writefmt, readfmt [,arglj[,arg2}[, .. .}) ;

See the HP SICL Reference Manual for more information on these functions.

The formatted 1/0 functions are buffered. There are two non-buffered
and non-formatted 1/0 functions called iread and iwri te. See the
"Non-Formatted 1/0" section later in this chapter. These are raw 1/0 functions
and do not intermix with the formatted 1/0 functions.

If raw 1/0 must be mixed, use the ifread/ifwri te functions. They have the
same parameters as iread and iwrite, but read or write raw data to or from
the formatted 1/0 buffers. Refer to the "Formatted 1/0 Buffers" section later in
this chapter for more details.

Formatted 1/0 Conversion The formatted 1/0 functions convert data under the control of the format
string. The format string specifies how each argument is converted before it
is input or output. The typical format string syntax is as follows:

'!. [format flags] [field width] [. precision] [, array size]
[argument modifier] conversion character

See iprintf, ipromptf, and iscanf in the HP SICL Reference Manual for
more information on how data is converted under the control of the format
string.

Format Flags. Zero or more flags may be used to modify the meaning of the
conversion character. The format flags are only used when sending formatted
1/0 (iprintf and ipromptf). The following are supported format flags:

3-9

Using HP SICL
Sending 1/0 Commands

Format Flags for iprintf and ipromptf

Format
Flag

Description

@1

@2

@3

@H

@Q

@B

+

Converts to a IEEE 488.2 NR1 number.

Converts to a IEEE 488.2 NR2 number.

Converts to a IEEE 488.2 NR3 number.

Converts to a IEEE 488.2 hexadecimal number.

Converts to a IEEE 488.2 octal number.

Converts to a IEEE 488.2 binary number.

Prefixes number with sign I+ or -1.

Left justifies result.

space Prefixes number with blank space if positive or with - if negative.

Use alternate form. For o conversion, print a leading zero. For x or X, a nonzero will have Ox
or OX as a prefix. For e, E, f, g, or G, the result will always have one digit on the right of
the decimal point.

Causes the left pad character to be a zero for all numeric conversion types.

The following example converts numb into a IEEE 488.2 floating point number
(NR2) and sends it to the session specified by id:

int numb = 61;
iprintf (id, "Y.©2d", numb);

Sends: 61 . 000000

3-10

Using HP SICL

Sending 1/0 Commands

Field Width. Field width is an optional integer that specifies the minimum
number of characters in the field. If the formatted data has fewer characters
than specified in the field width, it will be padded. The padded character is
dependent on various flags. You can use an asterisk(*) in place of the integer
to indicate that the integer is taken from the next argument.

The following example pads numb to six characters and sends it to the session
specified by id:

int numb = 61;
iprintf (id, "%6d", numb);

Inserts four characters, for a total of six characters: 61

.Precision. Precision is an optional integer that is preceded by a period.
When used with conversion characters e, E, and f, the number of digits
to the right of the decimal point is specified. For the d, i, o, u, x, and X
conversion characters, the minimum number of digits to appear is specified.
For the s, and S conversion characters, the precision specifies the maximum
number of characters to be read from the argument. This field is only used
when sending formatted I/O (iprintf and ipromptf). You can use an
asterisk(*) in place of the integer to indicate that the integer is taken from
the next argument.

The following example converts numb so that there are only two digits to the
right of the decimal point and sends it to the session specified by id:

float numb = 26.9345;
iprintf (id, "%.2f", numb);

Sends: 26.93

3-11

Using HP SICL

Sending 1/0 Commands

,Array Size. The comma operator is a format modifier which allows you
to read or write a comma-separated list of numbers (only valid with %d
and %f conversion characters). It is a comma followed by an integer. The
integer indicates the number of elements in the array argument. The comma
operator has the format of , dd where dd is the number of elements to read or
write.

The following example specifies a comma separated list to be sent to the
session specified by id:

int list[5]={101,102,103,104,105};
iprintf (id, 11 %,5d 11

, list);

Sends: 101, 102, 103, 104, 105

Argument Modifier. The meaning of the optional argument modifier h, 1,
w, z, and Z is dependent on the conversion character:

Argument
Modifier

w

z

3-12

Conversion
Character

Argument Modifiers

Description

d, i Corresponding argument is a short integer.

Corresponding argument is a float for iprintf or a pointer to a float for
iscanf.

d,i Corresponding argument is a long integer.

b,B Corresponding argument is a pointer to an array of long integers.

b,B

b,B

b,B

Corresponding argument is a double for iprintf or a pointer to a double for
iscanf.

Corresponding argument is a pointer to an array of short integers.

Corresponding argument is pointer to an array of floats.

Corresponding argument is a pointer to an array of doubles.

Using HP SICL

Sending 1/0 Commands

Conversion Characters. The conversion characters for sending and
receiving formatted I/Oare different. The following tables surmnarize the
conversion characters for each:

iprintf and ipromptf Conversion Characters

Conversion Description
Character

d, i Corresponding argument is an integer.

Corresponding argument is a double.

b, 8 Corresponding argument is a pointer to an arbitrary block of data.

c,C Corresponding argument is a character.

Controls whether the END indicator is sent with each LF character in the format string.

s,S Corresponding argument is a pointer to a null terminated string.

% Sends an ASCII percent 1%1 character.

o,u,x,X Corresponding argument is an unsigned integer.

e,E,g,G Corresponding argument is a double.

Corresponding argument is a pointer to an integer.

Corresponding argument is a pointer to a FILE descriptor opened for reading.

The following example sends an arbitrary block of data to the session
specified by the id parameter. The asterisk(*) is used to indicate that the
number is taken from the next argument:

long int size = 1024;
char data [1024] ;

iprintf (id, "Y.*b", size, data);

Sends 1024 characters of block data.

3-13

Using HP SICL

Sending 1/0 Commands

iscanf and ipromptf Conversion Characters

Conversion Description
Character

d,i,n Corresponding argument must be a pointer to an integer.

e,f,g Corresponding argument must be a pointer to a float.

Corresponding argument is a pointer to a character sequence.

s,S,t Corresponding argument is a pointer to a string.

o,u,x Corresponding argument must be a pointer to an unsigned integer.

Corresponding argument must be a character pointer.

Corresponding argument is a pointer to a FILE descriptor opened for writing.

The following example reads characters up to the first white space character
from the session specified by the id parameter and puts the characters into
data:

char data[180];

iscanf (id, "%s", data);

3-14

Formatted 1/0 Example

Using HP SICL
Sending 1/0 Commands

The following ANSI C example shows how to use the formatted I/O functions
to send and receive data. This example opens an HP-IB communications
session with a Multimeter and sends a comma operator to send a comma
separated list to the Multimeter. The lf conversion characters are then used
to receive a double back from the Multimeter.

I* formatio. c
This example program makes a multimeter measurement with a comma
separated list passed with formatted I/O and prints the results */

#include <sicl.h>
#include <stdio.h>

main()
{

}

INST dvm;

double res;
double list [2]
char buf [80] ;

{1,0.001};

I* Print message and terminate on error */
ionerror (I_ERROR_EXIT);

I* Open the multimeter session */
dvm = iopen ("hpib,16");
itimeout (dvm, 10000);

I* Initialize dvm */
iprintf (dvm, "*RST\n");

I* Set up multimeter and send comma separated list */
iprintf (dvm, "CALC:DBM:REF 50\n");
iprintf (dvm, "MEAS: VOLT:AC? %,2lf\n", list);

I* Read the results */
iscanf (dvm,"%lf", ires);

I* Print the results */
printf ("Result is %f\n" ,res);

I* Close the multimeter session */
iclose (dvm);

3-15

Format String

Formatted 1/0 Buffers

Using HP SICL

Sending 1/0 Commands

The format string for iprintf puts a special meaning on the newline
character (\n). The newline character in the format string flushes the output
buffer. All characters in the output buffer will be written with an END
indicator included with the last byte (the newline character). This means
that you can control at what point you want the data written. If no newline
character is included in the format string for an iprintf call, then the
converted characters are stored in the output buffer. It will require another
call to iprintf or a call to iflush to have those characters written. iflush
only sends the data queued in the buffer, and not the END indicator as in
iprintf. Note that newline characters output from an output parameter do
not cause a flush; only newlines in the format string do.

This can be very useful in queuing up data to send to a device. It can also
raise 1/0 performance by doing a few large writ~s instead of several smaller
writes. This behavior can be changed by the isetbuf and isetubuf
functions. See the next section, "Formatted 1/0 Buffers."

The format string for iscanf ignores most white-space characters. Newlines
(\n) and carriage returns (\r), however, are treated just like normal
characters in the format string, which must match the next non-white-space
character read.

The SICL software maintains both a read and write buffer for formatted
1/0 operations. Occasionally, you may want to control the actions of these
buffers.

The write buffer is maintained by the iprintf and the write portion of the
ipromptf functions. It queues characters to send so that they are sent in
large blocks, th us increasing performance. The write buffer automatically
flushes when it sends a newline character from the format string (see the Y.t
conversion character to change this feature). It also flushes immediately after
the write portion of the ipromptf function. It may occasionally be flushed at
other non-deterministic times, such as when the buffer fills. When the write
buffer flushes, it sends its contents.

The read buffer is maintained by the iscanf and the read portion of the
ipromptf functions. It queues the data received until it is needed by the
format string. The read buffer is automatically flushed before the write
portion of an ipromptf. Flushing the read buffer destroys the data in the
buffer and guarantees that the next call to iscanf or ipromptf reads data
directly rather than data that was previously queued.

3-16

NOTE

Using HP SICL
Sending 1/0 Commands

Flushing the read buffer also includes reading all pending response data from a device. If the device
is still sending data, the flush process will continue to read data from the device until it receives an
END indicator from the device.

See the isetbuf function for other options for buffering data.

Overview of Formatted 1/0 The following set of functions are related to formatted I/O:
Routines

if read Obtains raw data directly from the read formatted 1/0 buffer.
This is the same buffer that iscanf uses.

ifwri te Writes raw data directly to the write formatted 1/0 buffer. This
is the same buffer that iprintf uses.

iprintf Converts data via a format string and writes the arguments
appropriately.

iscanf Reads data, converts this data via a format string, and assigns
the values to your arguments.

ipromptf Sends, then receives, data from a device/instrument. It also
converts data via format strings that are identical to iprintf
and iscanf. The advantage of this function is that the iprintf
and iscanf parts are done together.

iflush Flushes the formatted 1/0 read and write buffers. A flush of the
read buffer means that any data in the buffer is lost. A flush of
the write buffer means that any data in the buffer is written to
the session's target address.

isetbuf Sets the size of the formatted 1/0 read and the write buffers. A
size of zero (0) means no buffering. Note that if no buffering is
used, performance can be severely affected.

isetubuf Sets the read or the write buffer to your allocated buffer. The
same buffer cannot be used for both reading and writing. Also
you should be careful in using buffers that are automatically
allocated.

3-17

Using HP SICL

Sending 1/0 Commands

Non-Formatted 1/0

There are two non-buffered, non-formatted 1/0 functions called iread and
iwrite. These are raw 1/0 functions and do not intermix with the formatted
I/O functions. If raw I/O must be mixed, use the if read and ifwri te
functions. They have the same parameters as iread and iwrite, but read or
write raw data to or from the formatted 1/0 buffers.

The non-formatted I/O functions are described as follows:

• The iread function reads raw data from the device or interface specified
by the id parameter and stores the results in the location where buf is
pointing:

iread(id, buf, bufsize, reason, actualcnt);

• The iwri te function sends the data pointed to by buf to the interface or
device specified by the id parameter:

iwri te (id, buf, datalen, end, actualcnt);

See the HP SICL Reference Manual for more information on these functions.

3-18

Using HP SICL

Sending 1/0 Commands

Non-formatted 1/0 Example The following example illustrates using non-formatted I/Oto communicate
with a Multimeter over the HP-IB interface The SICL non-formatted I/O
functions iwri te and ire ad are used for the communication. A similar
example is used to illustrate formatted I/O later in this chapter.

I* nonformatio.c
This example program measures AC voltage on a multimeter and
prints out the results */

#include <sicl.h>
#include <stdio.h>

main()
{

}

INST dvm;
char strres[20];

I* Print message and terminate on error *I
ionerror (I_ERROR_EXIT);

I* Open the multimeter session *I
dvm = iopen ("hpib, 16");
itimeout (dvm, 10000);

I* Initialize dvm */
iwrite (dvm, "*RST\n", 5, 1, NULL);

I* Set up multimeter and take measurement *I
iwrite (dvm,"CALC:DBM:REF 50\n", 16, 1, NULL);
iwrite (dvm,"MEAS:VOLT:AC? 1, 0.001\n", 23, 1, NULL);

I* Read measurements *I
iread (dvm, strres, 20, NULL, NULL);

I* Print the results */
printf("Result is %s\n", strres);

I* Close the multimeter session */
iclose(dvm);

3-19

Using Asynchronous Events

Asynchronous events are events that happen outside the control of your
application. These events include Service Requests (SRQ) and interrupts. An
SRQ is a notification that a device requires service. Any device can generate
an SRQ. Both devices and interfaces can generate interrupts.

By default, creating a session enables asynchronous events. However, the
library will not report any events to the application until the appropriate
handlers are installed in your program.

SRQ Handlers

The ionsrq function installs an SRQ handler. The currently installed SRQ
handler is called any time its corresponding device or interface generates an
SRQ. If an interface is unable to determine which device on the interface
generated the SRQ, all SRQ handlers assigned to that interface will be called.

Therefore, an SRQ handler cannot assume that its corresponding device
generated an SRQ. The SRQ handler should use the ireadstb function to
determine whether its device generated an SRQ. If two or more sessions refer
to the same device and have handlers installed, the handlers for each of the
sessions are called.

3-20

Interrupt Handlers

Using HP SICL

Using Asynchronous Events

Two distinct steps are required for an interrupt handler to be called. First,
the interrupt handler must be installed. Second, the interrupt event or
events need to be enabled. The ionintr function installs an interrupt
handler. The isetintr function enables notification of the interrupt event or
events.

An interrupt handler can be installed with no events enabled. Conversely,
interrupt events can be enabled with no interrupt handler installed. Only
when both an interrupt handler is installed and interrupt events are enabled
will the interrupt handler be called.

Temporarily Disabling/Enabling Asynchronous
Events

To temporarily prevent all SRQ and interrupt handlers from executing, use
the iintroff function. This disables all asynchronous handlers for all
sessions in the process.

To re-enable asynchronous SRQ and interrupt handlers previously disabled
by iintroff, use the iintron function. This enables all asynchronous
handlers for all sessions in the process, that had been previously enabled.

NOTE

These functions do not affect the isetintr values or the handlers (ionsrq or ionintrl in
any way. See ionintr and ionsrq in the HP S/CL Reference Manual.

Default is on.

3-21

Using HP SICL

Using Asynchronous Events

NOTE

It is possible to overflow SICL's interrupt queue if too many interrupts are generated while notification
is disabled.

Calls to iintroff/iintron may be nested, meaning that there must be an
equal number of on's and off's. This means that calling the iintron function
may not actually re-enable notification of interrupts.

Occasionally, you may want to suspend a process and wait until an event
occurs that causes a handler to execute. The iwai thdlr function causes
the process to suspend until either an enabled SRQ or interrupt condition
occurs and the related handler executes. Once the handler completes its
operation, this function returns and processing continues. For this function
to work properly, your application must turn interrupts off before enabling
asynchronous events (that is, use iintroff). The iwai thdlr function
behaves as if interrupts are enabled. Interrupts are still disabled after the
iwai thdlr function has completed. Only calls to iintron will re-enable
interrupts.

NOTE

Interrupts must be disabled if you are using iwai thdlr. Use iintroff to disable notification
of interrupts.

The reason for disabling notification of interrupts is that the interrupt may occur between the
isetintr and iwaithdlr and, if you only expect one interrupt, it might come before the
iwai thdlr. Notification may not occur, that is, the handler may not get called. This may or may
not be the effect you desire.

3-22

For example:

iintroff ();
ionintr (vxi, trigger_handler);

Using HP SICL

Using Asynchronous Events

isetintr (vxi, I_INTR_TRIG, I_TRIG_TTLO I I_TRIG_TTL7);

ivxitrigon (vxi, I_TRIG_TTLO);
while (!done)

iwaithdlr (O);
iintron ();

Asynchronous Events and HP-UX Signals

NOTE

If you are using SICL LAN, see the "Using Signal Handling with LAN" section in Chapter 8, "Using HP
SICL with LAN."

SICL hpib and vxi interfaces use an HP-UX signal to implement interrupts
and SRQs. The default SICL signal is SIGUSR2. This signal is managed
completely by the SICL library. Your application must avoid SICL's signal
completely. Do not attempt to mask it, send it, or install a handler for it.

If your application needs SIGUSR2 for some purpose other than SICL, you
can instruct SICL to use a different signal. This is done with the isetsig
function. The following example selects signal 29 for SICL use:

isetsig(29);

If you use isetsig, you must call it before any other function in your
program. Also, you must pick an alternate signal carefully to avoid conflicting
with other HP-UX resources.

3-23

Protecting 1/0 Calls Against
Interrupts

Using HP SICL

Using Asynchronous Events

It is standard HP-UX behavior for I/O calls like iread and iprintf to
be interrupted when the process receives a signal. If your process is not
expecting to receive signals, such I/O side effects will probably be masked by
the other standard behavior of unexpected signals: death of your process.
If you are expecting signals, you may not want them to abort SICL I/O
operations.

This can be solved by blocking or ignoring any expected signals while doing
I/O activity. After I/O is complete, the original signal action can be restored.
The choice to block or ignore depends on the need of your application.
Ignored signals are not queued; blocked signals have a one-deep queue and
are acted on as soon as the block is removed.

The following programming segment shows signal blocking. SIGALARM and
SIGINT are blocked during an iscanf call.

I* temporarily block 2 signals */
old_mask = sigblock(sigmask (SIGINT) I sigmask (SIGALRM));

I* call protected I/0 function */
iscanf (id, 11 %f 11

, tmydata);

I* restore original signal mask *I
sigsetmask (old_mask);

3-24

Using HP SICL

Using Asynchronous Events

Interrupt Handler Example

The following is an ANSI C example that installs an interrupt handler and
enables the interrupts on the VXI TTL trigger lines. When the TTL trigger
line is asserted, the installed interrupt handler is called.

I* interrupts.c
* This is an example of the interrupt handling in SICL. This
* program installs an interrupt handler and enables the
* interrupts on trigger and waits for the interrupt.
*/

#include <sicl.h>
#include <stdio.h>
#include <unistd.h>

int intr = O;

void trigger_handler (INST id, long reason, long secval) {
I* indicate that the interrupt happened *I
intr = 1;

} /* end of trigger_handler */

main ()
{

INST id;

I* start child process to fire trigger line */
if (forkO==O)

child();

ionerror (I_ERROR_EXIT);
iintroff();

id= iopen ("vxi");

I* set the interrupt handler */
ionintr (id, trigger_handler);

/* what interrupts to handle (interrupt on ttl 0 or 7 firing) */
isetintr (id, I_INTR_TRIG, I_TRIG_TTLO I I_TRIG_TTL7);

3-25

Using HP SICL

Using Asynchronous Events

}

I* Wait for interrupt to happen (30 second timeout) */
iwaithdlr (30000);

if (intr == 1)
printf ("Interrupt handler called.\n");

else
printf ("ERROR: Interrupt handler not called.\n");

iclose (id);

child ()
{

}

INST id;

I* Let the parent get into iwaithdlr */
sleep (2);

ionerror (I_ERRDR_EXIT);

id= iopen (11 vxi 11
);

I* pulse TTLO *I
ivxitrigon (id, I_TRIG_TTLO);
ivxitrigoff (id, I_TRIG_TTLO);

iclose (id);
exit (O);

3-26

Using Error Handlers

When a SICL function call results in an error, it typically returns a special
value such as a NULL pointer, or a non-zero error code. SICL provides a
convenient mechanism for handling errors. SICL allows you to install an error
handler for all SICL functions within an application.

It is important to note that error handlers are per-process, not per-session.
That is, one handler will work for all sessions in a process. This allows your
application to ignore the return value and simply permits the error procedure
to detect errors and recover. The error handler is called before the function
that generated the error completes.

The function ionerror is used to install an error handler. It is defined as
follows:

int ionerror (proc);
void (*proc) ();

Where:

void proc (id, error) ;
INST id;
int error;

The routine proc is the error handler and is called whenever a SICL error
occurs. Two special reserved values of proc may be passed to the ionerror
function:

I_ERROR_EXIT

I_ERROR_NO_EXIT

This value installs a special error handler which will
print a diagnostic message and then terminate the
process.

This value installs a special error handler which
will print a diagnostic message and then allow the
process to continue execution.

This mechanism has substantial advantages over other I/O libraries, because
error handling code is located away from the center of your application. This
makes the application easier to read and understand.

3-27

Using HP SICL
Using Error Handlers

Error Handler Example

Typically, in an application, error handling code is intermixed with the I/O
code. However, with SICL error handling routines, no special error handling
code is inserted between the I/O calls. Instead, a single line at the top (calling
ion error) installs an error handler that gets called any time a SICL call
results in an error.

In this example a standard, system-defined error handler is installed that
prints a diagnostic message and exits.

/* errhand.c
This example demonstrates how a SICL error handler
can be installed */

#include <sicl.h>
#include <stdio.h>

main ()
{

}

3-28

INST dvm;
double res;

ionerror (I_ERROR_EXIT);
dvm = iopen ("hpib, 16") ;
itimeout (dvm, 10000);
iprintf (dvm, 11 %s\n11

, "MEAS :VOLT:DC?");
iscanf (dvm, 11 %lf 11

, ires);
printf ("Result is %f\n", res);
iclose (dvm);

exit (O);

Using HP SICL

Using Error Handlers

The following is an ANSI C example of writing and implementing your own
error handler:

/* errhand2.c
This program shows how you can install your own
error handler */

#include <sicl.h>
#include <stdio.h>

void err_handler (INST id, int error) {

}

fprintf (stderr, "Error: i.s\n", igeterrstr (error));
exit (1);

main () {
INST dvm;
double res;

}

ionerror (err_handler);
dvm = iopen ("hpib, 16 11

);

itimeout (dvm, 10000);
iprintf (dvm, "i.s\n", 11MEAS:VOLT:DC?");
iscanf (dvm, "i.lf", Beres) ;
printf ("Result is i.f\n", res);
iclose (dvm);

exit (O);

Now, if any of the SICL functions result in an error, your error routine will be
called.

NOTE

If an error occurs in iopen, the id that is passed to the error handler may not be valid.

3-29

CAUTION

Using Locks

Because SICL allows multiple sessions on the same device or interface, the
action of opening does not mean you have exclusive use. In some cases this is
not an issue, but should be a consideration if you are concerned with program
portability.

The SICL ilock function is used to lock an interface or device. The SICL
iunlock function is used to unlock an interface or device.

Locks are performed on a per-session (device, interface, or conunander) basis.
If a session within a given process locks a device or interface, then that device
or interface can only be accessed from that session.

Locks can be nested. The device or interface only becomes unlocked when
the same number of unlocks are done as the number of locks. Doing an
unlock without a lock returns the error I_ERR_NOLDCK.

What does it mean to lock? Locking an interface (from an interface session)
restricts other device and interface sessions from accessing this interface.
Locking a device restricts other device sessions from accessing this device;
however, other interface sessions may continue to access the interface for this
device. Locking a conunander (from a conunander session) restricts other
commander sessions from accessing this commander.

It is possible for an interface session to access an interface which is serving a
device locked from a device session. This interface access usually allows the
interface session to address or reset any device on the interface. In such a
case, data may be lost from the device session that was underway.

In particular, be aware that both the HP Visual Engineering Environment
(HP VEE) and the HP BASIC/UX 700 applications use SICL interface sessions.
Hence, 1/0 operations from either of these applications can supersede
any device session that has a lock on a particular device. Use interface
session locks in your own program if these applications may be running
simultaneously with your program.

3-30

Using HP SICL
Using Locks

Not all SICL routines are affected by locks. Some routines that simply set or
return session parameters never touch the interface hardware and therefore
work without locks. Each function defined in the HP SICL Reference Manual
has a section, "Affected by Functions," that lists the keyword LOCK if the
function is affected by locks. Functions without this keyword are not affected.

Lock Actions

If a session tries to perform any SICL function that obeys locks on an
interface or device that is currently locked by another session, the default
action is to suspend the call until the lock is released or, if a timeout is set,
until it times out.

This action can be changed with the isetlockwait function (see the
HP SICL Reference Manualfor a full description). If the isetlockwai t
function is called with the flag parameter set to 0 (zero), the default action
is changed. Rather than causing SICL functions to suspend, an error will be
returned immediately.

To return to the default action, or to suspend and wait for an unlock, call the
isetlockwait function with the flag set to any non-zero value.

3-31

Locking in a Multi-user Environment

In a multi-user/multi-process environment where devices are being shared,
it is a good idea to use locking to help ensure exclusive use of a particular
device or set of devices. (However, as explained in the previous section,
"Using Locks," remember that an interface session can access a device locked
from a device session.) In general, it is not friendly behavior to lock a device
at the beginning of an application and unlock it at the end. This can result in
deadlock or long waits by others who want to use the resource.

The recommended way to use locking is per transaction. Per transaction
means that you lock before you setup the device, then unlock after all the
desired data has been acquired. When sharing a device, you cannot assume
the state of the device, so the beginning of each tran~action should have any
setup needed to configure the device or devices to be used.

3-32

Locking Example

The following example show how device locking can be used to grant
exclusive access to a device by an application. This example uses an HP
34401 Multimeter.

I* locking.c
This example shows how device locking can be
used to grant exclusive access to a device */

#include <sicl.h>
#include <stdio.h>

main()
{

}

INST dvm;

char strres[20];

I* Print message and terminate on error */
ionerror (I_ERROR_EXIT);

I* Open the multimeter session */
dvm = iopen ("hpib,16");
itimeout (dvm, 10000);

I* Lock the multimeter device to prevent access from
other applications */

ilock(dvm);

I* Take a measurement */
iwrite (dvm, "MEAS:VOLT:DC?\n", 14, 1, NULL);

/* Read the results */
iread (dvm, strres, 20, NULL, NULL);

/* Release the multimeter device for use by others */
iunlock(dvm);

I* Print the results */
printf("Result is %s\n", strres);

I* Close the multimeter session */
iclose(dvm);

3-33

4

Using HP SICL with HP-IB

Using HP SICL with HP-IB

The HP-IB interface (Hewlett-Packard Interface Bus) is Hewlett-Packard's
implementation of the IEEE 488.1 Bus. Other IEEE 488 versions include GPIB
(General Purpose Interface Bus) and IEEE Bus. GPIB and HP-IB are both used
in the discussions and examples in this chapter. The HP-IB related SICL
functions have the string GPIB embedded in the function name.

This chapter explains how to use SICL to communicate over HP-IB. In order
to communicate over HP-IB, you must have loaded the HPIB fileset during the
system installation. See the HP 110 Libraries Installation and Configuration
Guide for HP-UX for information.

This chapter describes in detail how to open a communications session
and communicate with HP-IB devices, interfaces, or controllers. The
example programs shown in this chapter are also provided in the
I opt/ s icl/ share/ examples directory.

This chapter contains the following sections:

• Creating a Communications Session with HP-IB

• Communicating with HP-IB Devices

• Communicating with HP-IB Interfaces

• Communicating with HP-IB Commanders

• Summary of HP-IB Specific Functions

4-2

Creating a Communications Session
with HP-IB

Once you have determined that your HP-IB system is setup and operating
correctly, you may want to start programming with the SICL functions. First
you must determine what type of communication session you need. The
three types of communications sessions are device, interface, and commander.

4-3

Communicating with HP~IB Devices

The device session allows you direct access to a device without worrying
about the type of interface to which it is connected. The specifics of the
interface are hidden from the user.

Addressing HP-IB Devices

To create a device session, specify either the interface symbolic name or
logical unit and a particular device's address in the addr parameter
of the iopen function. The interface symbolic name and logical unit
are defined during the system configuration. See the HP 110 Libraries
Installation and Configuration Guide for HP-UX for information on these
values.

The following are example HP-IB addresses for device sessions:

hpib,7

hpib,3,2

hpib,9,0

NOTE

A device address corresponding to the device at primary
address 7 and symbolic name hpib.
A device address corresponding to the device at primary
address 3, secondary address 2, and symbolic name "hpib".
A device address corresponding to the device at primary
address 9, secondary address 0, and symbolic name "hpib".

The above examples use the default symbolic name specified during the system configuration.
If you want to change the name listed above, you must also change the symbolic name or
logical unit specified during the configuration. The name used in your SICL program must
match the logical unit or symbolic name specified in the system configuration. Other
possible interface names are GPIB, gpib, HPIB, and so forth.

4-4

Using HP SICL with HP-18

Communicating with HP-18 Devices

SICL supports both primary and secondary addressing on HP-IB interfaces.

Remember that the primary address must be between 0 and 30 and that the
secondary address must be between 0 and 30. The primary and secondary
addresses correspond to the HP-IB primary and secondary addresses.

NOTE
If you are using an HP-18 Command Module to communicate with VXI devices, the secondary address
must be specified to select a specific instrument in the card cage. Secondary addresses of 0, 1, 2, ...
31 correspond to VXI instruments at logical addresses of 0, 8, 16, . . . 248, respectively.

The following is an example of opening a device session with an HP-IB device
at bus address 16:

INST dmm;
dmm = iopen ("hpib,16 11

);

4-5

HP-18 Device Session
Interrupts

Using HP SICL with HP-18

Communicating with HP-18 Devices

HP SICL Function Support with
HP-IB Device Sessions

The following describes how some SICL functions are implemented for HP-IB
device sessions.

iwrite

ire ad

ireadstb

itrigger

iclear

Causes all devices to untalk and unlisten. It then sends this
controller's talk address followed by unlisten and then the
listen address of the corresponding device session. Then it
sends the data over the bus.

Causes all devices to untalk and unlisten. It sends an
unlisten, then sends this controller's listen address followed
by the talk address of the corresponding device session.
Then it reads the data from the bus.

Performs a GPIB serial poll (SPOLL).

Performs an addressed GPIB group execute trigger (GET).

Performs a GPIB device clear (DCL) on the device
corresponding to this session.

There are no device-specific interrupts for the HP-IB interface.

HP-18 Device Sessions and HP-IB device sessions support Service Requests (SRQ). On the HP-IB interface,
Service Requests when one device issues an SRQ, the library will inform all HP-IB device

sessions that have SRQ handlers installed. (See ionsrq in the HP SICL
Reference Manual .) This is an artifact of how HP-IB handles the SRQ line.
The interface cannot distinguish which device requested service. Therefore,
the library acts as if all devices require service. Your SRQ handler can
retrieve the device's status byte by using the ireadstb function. It is good
practice to ensure that a device isn't requesting service before leaving the
SRQ handler. The easiest technique for this is to service all devices from one
handler.

The data transfer functions work only when the HP-IB interface is the Active
Controller. Passing control to another HP-IB device causes the interface to
lose active control.

4-6

HP-IB Device Session Example

Using HP SICL with HP-IB
Communicating with HP-18 Devices

The following example illustrates communicating with an HP-IB device
session. This example opens two HP-IB communications sessions with VXI
devices (through a VXI Command Module). Then a scan list is sent to a
switch, and measurements are taken by the multimeter every time a switch is
closed.

4-7

Using HP SICL with HP-18

Communicating with HP-18 Devices

I* hpibdev.c
This example program sends a scan list to a switch and while
looping closes channels and takes measurements. *I

#include <sicl.h>
#include <stdio.h>

main()
{

}

4-8

INST dvm;
INST sw;

double res;
int i;

I* Print message and terminate on error */
ionerror (I_ERROR_EXIT);

I* Open the multimeter and switch sessions */
dvm = iopen ("hpib,9,3");
sw = iopen ("hpib,9,14");
itimeout (dvm, 10000);
itimeout (sw, 10000);

/*Set up trigger*/
iprintf (sw, "TRIG: SOUR BUS\n");

/*Set up scan list*/
iprintf (sw, "SCAN (CHOO: 103) \n");
iprintf (sw,"INIT\n");

for (i=1;i<=4;i++)
{

}

I* Take a measurement */
iprintf (dvm,"MEAS:VOLT:DC?\n");

I* Read the results */
iscanf (dvm,"7.lf",ttes);

I* Print the results */
printf ("Result is %f\n" ,res);

/*Trigger to close channel*/
iprintf (sw, "TRIG\n");

I* Close the multimeter and switch sessions */
iclose (dvm);
iclose (sw);

Communicating with HP-IB Interfaces

Interface sessions allow you direct low-level control of the interface. You
must do all the bus maintenance for the interface. This also implies that
you have considerable knowledge of the interface. Additionally, when using
interface sessions, you need to use interface specific functions. The use of
these functions means that the program can not be used on other interfaces
and, therefore, becomes less portable.

Addressing HP-IB Interfaces

To create an interface session on your HP-IB system, specify either the
interface symbolic name or logical unit in the addr parameter of
the iopen function. The interface symbolic name and logical unit
are defined during the system configuration. See the HP 110 Libraries
Installation and Configuration Guide for HP-UX for information on these
values.

The following are example HP-IB interface addresses:

hpib
hpib2
7

NOTE

An interface symbolic name.
An interface symbolic name.
An interface logical unit.

The above examples use the default symbolic name specified during the system configuration.
If you want to change the name listed above, you must also change the symbolic name or
logical unit specified during the configuration. The name used in your SICL program must
match the logical unit or symbolic name specified in the system configuration. Other
possible interface names are GPIB, gpib, HPIB, IEEE488, and so forth.

4-9

HP-I B Interface Session
Interrupts

Using HP SICL with HP-18

Communicating with HP-18 Interfaces

The following example opens a interface session with the HP-IB interface:

INST hpib;
hpib = iopen ("hpib");

HP SICL Function Support with
HP-IB Interface Sessions

The following describes how some SICL functions are implemented for HP-IB
interface sessions.

iwrite

ire ad

itrigger

iclear

Sends the specified bytes directly to the interface without
performing any bus addressing. The iwri te function
always clears the ATN line before sending any bytes, thus
ensuring that the GPIB interface sends the bytes as data, not
command bytes.

Reads the data directly from the interface without
performing any bus addressing.

Performs a GPIB group execute trigger (GET) without
additional· addressing. This function should be used with
the igpibsendcmd to send an UNL followed by the device
addresses. This will allow the i trigger function to be used
to trigger multiple GPIB devices simultaneously.

Passing the I_ TRIG_STD value to the ixtrig routine also
causes a broadcast GPIB group execute trigger (GET). There
are no other valid values for the ixtrig function.

Performs a GPIB interface clear (pulses IFC and REN), which
resets the interface.

There are specific interface session interrupts that can be used. See
isetintr in the HP SICL Reference Manual for information on the interface
session interrupts.

There are no device specific interrupts for the HP-IB interface.

4-10

Using HP SICL with HP-18

Communicating with HP-IB Interfaces

HP-18 Interface Sessions HP-IB interface sessions support Service Requests (SRQ). On the HP-IB
and Service Requests interface, when one device issues an SRQ, the library will inform all HP-IB

interface sessions that have SRQ handlers installed. (See ionsrq in the
HP SICL Reference Manual .) It is good practice to ensure that a device is not
requesting service before leaving the SRQ handler. The easiest technique for
this is to service all devices from one handler.

HP-IB Interface Session Examples

Checking the Bus Status The following example program is an ANSI C program that retrieves the
HP-IB interface bus status information and displays it for the user.

4-11

Using HP SICL with HP-18

Communicating with HP-18 Interfaces

I* hpibstatus.c
The following example retrieves and displays HPIB bus
status information. */

#include <stdio.h>
#include <sicl.h>

main()
{

}

4-12

INST id; I* session id *I
int rem; I* remote enable *I
int srq; I* service request *I
int ndac; I* not data accepted *I
int sysctlr; I* system controller *I
int actctlr; I* active controller *I
int talker; I* talker *I
int listener; I* listener *I
int addr; I* bus address */

I* exit process if SICL error detected */
ionerror(I_ERROR_EXIT);

I* open HPIB interface session */
id = iopen("hpib");
itimeout (id, 10000);

I* retrieve HPIB bus status */
igpibbusstatus(id, I_GPIB_BUS_REM,
igpibbusstatus(id, I_GPIB_BUS_SRQ,
igpibbusstatus(id, I_GPIB_BUS_NDAC,
igpibbusstatus(id, I_GPIB_BUS_SYSCTLR,
igpibbusstatus(id, I_GPIB_BUS_ACTCTLR,
igpibbusstatus(id, I_GPIB_BUS_TALKER,
igpibbusstatus(id, I_GPIB_BUS_LISTENER,
igpibbusstatus(id, I_GPIB_BUS_ADDR,

&rem);
tsrq);
&ndac);
&sysctlr);
&actctlr);
6t;t alk er) ;
&listener);
&addr);

I* display bus status */
printf("i.-5si.-5si.-5si.-5si.-5si.-5si.-5si.-5s\n", "REM", "SRQ",

"NDC", "SYS", "ACT", "TLK", "LTN", "ADDR");
printf ("i.2di.5di.5di.5di.5di.5di.5di.6d\n", rem, srq, ndac,

sysctlr, actctlr, talker, listener, addr);
return O;

Communicating with
Devices via Interface
Sessions

Using HP SICL with HP-IB

Communicating with HP-18 Interfaces

The following example program sets up two HP-IB instruments over an
interface session and has the instruments communicate with each other.

The 3 main parts of this program are as follows:

• Read the data from the scope (get_data).
• Print some statistics about the data (massage_ data).
• Have the scope send the data to a printer (print_data).

I* hpibintr.c
This program requires a 54601A digitizing oscilloscope
(or compatible) and a printer capable of printing in HP
RASTER GRAPHICS STANDARD (e.g. thinkjet).
This program will tell the scope to take a reading on
channel 1, then send the data back to this program.
Then some simple statistics about the data is printed.
The program then tells the scope to send the data
directly to the printer, illustrating how the controller
does not have to be directly involved in an HPIB
transaction. *I

#include <stdio.h>
#include <stdlib.h>
#include <sicl.h>

I* defines */
#define INTF_ADDR
#define SCOPE_ADDR

I* used for printf() */
I* used for exit() */
I* SICL header file */

"hpib"
INTF_ADDR ",7"

I* function prototypes */
void initialize (void);
void get_data (void);
void massage_data (void);
void print_data (void);
void cleanup (void);
void srq_hdlr (INST id);

I* global data */
float pre [10];
INST scope;
INST intf;

4-13

Using HP SICL with HP-18

Communicating with HP-18 Interfaces

void main() {
ionerror(I_ERROR_EXIT);
scope= iopen(SCOPE_ADDR);
intf = iopen(INTF_ADDR);

}

initialize();
get_data();
massage_data();
print_data() ;
cleanup();

iclose(scope);
iclose(intf);

void initialize() {

}

I* initialize the hpib interface and scope *I
iclear(intf);
itimeout(scope, 5000);
itimeout(intf, 5000);
iclear(scope);
igpibllo (intf);

void get_data() {

4-14

short readings[5000];
int count;

/* setup scope to accept waveform data */
iprintf (scope, "*RST\n");
iprintf(scope, ":autoscale\n");

I* setup up the waveform source */
iprintf(scope, ":waveform:format word\n");

I* input waveform preamble to controller */
iprintf (scope, ":digitize channel! \n") ;
iprintf(scope, ":waveform:preamble?\n");
iscanf (scope, "'l., 10f", pre);

I* command scope to send data */
iprintf(scope, ":waveform:data?\n");

Using HP SICL with HP-18
Communicating with HP-18 Interfaces

}

I* enter the data */
count = 5000;
iscanf(scope, 11 %#wb\n 11

, &count, readings);
printf ("received %d words\n", count);

void massage_data() {
float vdiv;

}

float off;
float sdiv;
float delay;
char · id_str[50];

vdiv
off
sdiv
delay

32 * pre[7];
(128 - pre[9]) * pre[7] + pre[8];
pre[2] * pre[4] I 10;
(pre[2] I 2 - pre[6]) * pre[4] + pre[5];

I* retrieve the scope's ID string */
ipromptf(scope, "*IDN?\n", "%s", id_str);

I* print the statistics about the data */
printf("\nOscilloscope ID: %s\n", id_str);
printf(" ---------- Current settings -----------\n");
printf (" Volts/Div %f V\n", vdiv);
printf(" Offset %f V\n", off);
printf(" S/Div %f S\n", sdiv);
printf(" Delay %f S\n", delay);

void print_data() {
unsigned char status;
char cmd[5];

I* tell the scope to SRQ on 'operation complete'*/
iprintf(scope, "*SRE 32; *ESE 1\n");

I* tell the scope to print */
iprintf(scope, ":print?; *DPC\n");

4-15

Using HP SICL with HP-18

Communicating with HP-18 Interfaces

}

I* tell scope to talk and printer to listen. The listen
command is formed by adding 32 to the device address
of the device to be a listener. The talk command is
formed by adding 64 to the device address of the
device to be a talker */

cmd[O] 63; /* 63 is unlisten */
cmd[1] 32+1; I* printer is at address 1, make it a listener */
cmd[2] 64+7; I* scope is at address 7, make it a talker */
cmd[3] '\0'; I* terminate the string */

igpibsendcmd(intf, cmd, 3);

I* set up our SRQ handler to be called when the scope finishes
printing */

ionsrq(scope, srq_hdlr);

I* now, the ATN line must be set to FALSE */
igpibatnctl(intf, O);

/* wait for SRQ before continuing program */
status = O;
while(status == 0) {

}

iwaithdlr(120000L);

I* make sure it was the scope requesting service */
ireadstb(scope, &status);
status &;= 64;

I* clear the status byte so the scope can assert SRQ again
if needed. *I

iprintf (scope, "*CLS\n");

void cleanup() {

}

I* give local control back to the scope */
ilocal(scope);

void srq_hdlr(INST id) {

}

4-16

I* this handler does nothing. we will use iwaithdlr() in the code
above t'O' determine when the handler gets called. */

Communicating with HP-IB Commanders

Commander sessions are intended for use on HP-IB interfaces that are not
active controller. In this mode, a computer that is not the controller is acting
like a device on the HP-IB bus. In a commander session, the data transfer
routines work only when the HP-IB interface is not active controller.

Addressing HP-IB Commanders

To create a commander session on your HP-IB interface, specify either
the interface symbolic name or logical unit in the addr parameter
followed by a comma and the string cmdr in the iopen function. The
interface symbolic name and logical unit are· defined during the system
configuration. See the HP 110 Libraries Installation and Configuration Guide
for HP-UX for information on these values.

The following are example HP-IB addresses for commander sessions:

hpib,cmdr
hpib2,cmdr
7,cmdr

NOTE

A commander session with the hpib symbolic name.
A commander session with the hpib2 symbolic name.
A commander session with the interface at logical unit 7.

The above examples use the default symbolic name specified during the system configuration.
If you want to change the name listed above, you must also change the symbolic name or
logical unit specified during the configuration. The name used in your SICL program must
match the logical unit or symbolic name specified in the system configuration. Other
possible interface names are GPIB, gpib, HPIB, and so forth.

4-17

Using HP SICL with HP-IB
Communicating with HP-18 Commanders

The following example opens a commander session the HP-IB interface:

INST hpib;
hpib = iopen (11 hpib,cmdr 11

);

4-18

Using HP SICL with HP-18

Communicating with HP-IB Commanders

HP SICL Function Support with
HP-IB Commander Sessions

The following describes how some SICL functions are implemented for HP-IB
commander sessions.

iwri te

ire ad

isetstb

If the interface has been addressed to talk, the data is
written directly to the interface. If the interface has not
been addressed to talk, it will wait to be addressed to talk
before writing the data.

If the interface has been addressed to listen, the data is read
directly from the interface. If the interface has not been
addressed to listen, it will wait to be addressed to listen
before reading the data.

Sets the status value that will be returned on a ireadstb
call (i.e. when this device is SPOLLed). Bit 6 of the status
byte has a special meaning. If bit 6 is set, the SRQ line will
be set. If bit 6 is clear, the SRQ line will be cleared.

HP-18 Commander Session There are specific commander session interrupts that can be used. See
Interrupts isetintr in the HP SICL Reference Manual for information on the

commander session interrupts.

4-19

Summary of HP-IB Specific Functions

NOTE

Using these HP-IB interface specific functions means that the program can not be used on other
interfaces and, therefore, becomes less portable.

4-20

Function Name

igpibatnctl
igpibbusaddr
igpibbusstatus
igpibgett1delay
igpibllo
igpibpassctl
igpibppoll
igpibppollconfig
igpibppollresp
igpibrenctl
igpibsendcmd
igpibsett1delay

SICL GPIB Functions

Action

Sets or clears the ATN line
Change bus address
Return requested bus data
Retrieves the T1 delay setting on the GPIB interface
Sets bus in Local Lockout Mode
Passes active control to specified address
Performs a parallel poll on the bus
Configures device for PPOLL response
Sets PPOLL state
Sets or clears the REN line
Sends data with ATN line set
Sets the T1 delay on the GPIB interface

5

Using HP SICL with GPIO

Using HP SICL with GPIO

GPIO is a parallel interface that is flexible and allows a variety of custom
connections. Although GPIO typically requires more time to configure than
HP-IB, its speed and versatility make it the perfect choice for many tasks.

This chapter explains ho,w to use SICL to communicate over GPIO. In order
to communicate over GPIO, you must have loaded the GPIO fileset during
the HP 1/0 Libraries installation. See the HP 110 Libraries Installation and
Configuration Guide for HP-UX for information. Also note that the GPIO
related SICL functions have the string GPIO embedded in their names.

This chapter describes in detail how to open a communications session
and communicate with an instrument over a GPIO connection. The
example programs shown in this chapter are also provided in the
/opt/sicl/share/examples directory.

NOTE
GPIO is not supported with SICL over LAN.

This chapter contains the following sections:

• Creating a Communications Session with GPIO

• Communicating with GPIO Interfaces

• Summary of GPIO Specific Functions

5-2

Creating a Communications Session
with GPIO

Once you have configured your system for GPIO communications, you can
start programming with the SICL functions. If you have programmed GPIO
before, you will probably want to open the interface and start sending
commands.

With HP-IB and VXI, there can be multiple devices on a single interface.
These interfaces support a connection called a device session. With GPIO,
only one device is connected to the interface. Therefore, you communicate
with GPIO devices using an interface session.

5-3

Communicating with GPIO Interfaces

Interface sessions are used for GPIO data transfer, interrupt, status, and
control operations. When conununicating with a GPIO interface session, you
specify the interface name.

Addressing GPIO Interfaces

To create an interface session on GPIO, specify either the interface symbolic
name or logical unit in the addr parameter of the iopen function. The
interface symbolic name and logical unit are defined during the system
configuration. See the HP 110 Libraries Installation and Configuration Guide
for HP-UX for information on these values.

The following are example addresses for GPIO interface sessions:

gpio
12

NOTE

An interface symbolic name
An interface logical unit

The above examples use the default symbolic name specified during the system configuration.
If you want to change the name listed above, you must also change the symbolic name or
logical unit specified during the configuration. The name used in your SICL program must
match the logical unit or symbolic name specified in the system configuration. Other
possible interface names are parallel, GPID, and so forth.

The following example opens an interface session with the GPIO interface:

INST intf;
intf = iopen ("gpio");

5-4

Using HP SICL with GPIO
Communicating with GPIO Interfaces

HP SICL Function Support with
GPIO Interface Sessions

The following describes how some SICL functions are implemented for GPIO
interface sessions.

iwrite, iread

iprintf, iscanf

itermchr

ixtrig

itrigger

r iclear

The size parameters for non-formatted I/O functions are
always byte counts, regardless of the current data width
of the interface.

All formatted I/O functions work with GPIO. When
formatted I/O is used with 16-bit data widths, the
formatting buffers re-assemble the data as a stream
of bytes. On the Series 700, these bytes are ordered:
high-low-high-low ... Because of this "unpacking"
operation, 16-bit data widths may not be appropriate
for formatted I/O operations. For iscanf termination,
an END value must be specified using igpioctrl. See
the HP SICL Reference Manual for details.

With 16-bit data widths, only the low (least-significant)
byte is used.

Provides a method of triggering using either the CTLO
or CTLl control lines. This function pulses the specified
control line for approximately 1 microsecond. The
following constants are defined:

I_TRIG_STD
I_TRIG_GPIO_CTLO
I_TRIG_GPIO_CTL1

Pulse CTLO line
Pulse CTLO line
Pulse CTLl line

Same as ixtrig (I_ TRIG_STD). Pulses the CTLO
control line.

Pulses the P _RESET line for approximately 12
microseconds, aborts any pending writes, discards
any data in the receive buffer, and resets any error
conditions. Optionally clears the Data Out port,
depending upon the mode configuration specified during
the SICL configuration.

5-5

GPIO Interface Session
Interrupts

Using HP SICL with GPIO

Communicating with GPIO Interfaces

ionsrq

ireadstb

Installs a service request handler for this session. The
concept of service request (SRQ) originates from HP-IB.
On an HP-IB interface, a device can request service
from the controller by asserting a line on the interface
bus. On GPIO, the EIR line is assumed to be the service
request line.

The HP SICL Reference Manual says that ireadstb
is for device sessions only. Since GPIO has no device
sessions, ireadstb is allowed with GPIO interface
sessions. The interface status byte has bit 6 set if EIR
is asserted; otherwise, the status byte is 0 (zero). This
allows normal SRQ progranuning techniques in GPIO
SRQ handlers.

There are specific interface session interrupts that can be used. See
isetintr in the HP SICL Reference Manual for information on the interface
session interrupts for GPIO.

5-6

Using HP SICL with GPIO

Communicating with GPIO Interfaces

GPIO Interface Session Example

/* gpiomeas.c
This program does the following:
- Creates a GPIO session with timeout and error checking
- Signals the device with a CTLO pulse
- Reads the device's response using formatted I/O

#include <sicl.h>

main()
{

}

INST id;
float result;

I* interface session id */
I* data from device */

I* log message and exit program on error *f
ionerror (I_ERROR_EXIT);

/* open GPIO interface session, with 10-second timeout */
id= iopen ("gpio");
itimeout (id, 10000);

I* setup formatted I/0 configuration */
igpiosetwidth (id, 8);
igpioctrl (id, I_GPIO_READ_EOI, '\n');

I* monitor the device's PSTS line */
igpioctrl(id, I_GPIO_CHK_PSTS, 1);

/* signal the device to take a measurement */
i trigger (id);

I* get the data *I
iscanf (id, "i.fi.*t", tresul t);
printf("Result = i.f\n", result);

I* close session */
iclose (id);

5-7

Using HP SICL with GPIO

Communicating with GPIO Interfaces

GPIO Interrupts Example

I* gpiointr.c
This program does the following:
- Creates a GPIO session with error checking
- Installs an interrupt handler and enables EIR interrupts
- Waits for EIR; invokes the handler for each interrupt
- Handler checks interrupt cause and exits when EIR is clear

#include <sicl.h>

void handler(id, reason, sec)
INST id;
long reason, sec;
{

}

if (reason == I_INTR_GPIO_EIR) {
printf("EIR interrupt detected\n");

}

I* Proper protocol is for the peripheral device to hold
* EIR asserted until the controller "acknowledges" the
* interrupt. The method for acknowledging and/or responding
*to EIR is very device-dependent. Perhaps a CTLx line is
*pulsed, or data is read, etc. The response should be
* executed at this point in the program.
*I

else
printf ("Unexpected Interrupt; reason=/.d\n' 1

, reason);

main()
{

5-8

INST intf; /* interface session id */

I* log message and exit program on error *I
ionerror (I_ERROR_EXIT);

/* open GPIO interface session */
intf = iopen (' 1gpio 11

);

}

Using HP SICL with GPIO
Communicating with GPIO Interfaces

/* suspend interrupts until configured */
iintroff ();

I* configure interrupts *I
ionintr(intf, handler);
isetintr(intf, I_INTR_GPIO_EIR, 1);

I* wait for interrupts */
printf ("Ready for interrupts\n");
while (1) {

iwaithdlr(O);
}

I* iwaithdlr performs an automatic iintron(). If your program
* does concurrent processing, instead of waiting, then you need
* to execute iintron() when you are ready for interrupts.
*I

I* This simplified example loops forever. Most real applications
* would have termination conditions that cause the loop to exit.
*I
iclose (intf);

5-9

Summary of GPIO Specific Functions

NOTE

Using these GPIO interface specific functions means that the program can not be used on other
interfaces and, therefore, becomes less portable.

Function N rune

igpioctrl

Request

Action

Sets the following characteristics of the GPIO interface:

Characteristic Settings

I_GPIO_AUTO_HDSK Auto-Handshake mode 1 or 0

I_GPIO_AUX Auxiliary Control lines 16-bit mask

I_GPIO_CHK_PSTS Check PSTS before read/write 1 or 0

I_GPIO_CTRL Control lines I_GPIO CTRL_CTLO
I_GPIO_CTRL_CTL1

I_GPIO_DATA Data Output lines 8-bit or 16-bit mask

I_GPIO_PCTL_DELAY PCTL delay time 0-7

I_GPIO_POLARITY

I_GPIO_READ_CLK

I_GPIO_READ_EOI

I_GPIO_SET_PCTL

igpiogetwidth

igpiosetwidth

5-10

Logical polarity 0-31

Data input latching See HP Sf CL Reference Manual

END termination pattern I_GPIO_EOI_NONEor
8-bit or 16-bit mask

Start PCTL handshake

Returns the current width (in bits) of the GPIO data
ports.

Sets the width (in bits) of the GPIO data ports. Either 8
or 16.

Function Name

igpiostat

Request

I GPIO_CTRL

I_GPIO_DATA

I_GPIO_INFO

I_GPIO_READ_EOI

I_GPIO_STAT

Action

Gets the following information about the GPIO
interface:

Characteristic

Control Lines

Data In lines

GPIO information

END termination pattern

Status lines

Value

I_GPIO_CTRL_CTLO
I_GPIO_CTRL_CTL1

16-bit mask

I_GPIO_AUTO_HDSK
I_GPIO_CHK_PSTS
I_GPIO_EIR
I_GPIO_ENH_MODE
I_GPIO_PSTS
I_GPIO_READY

I_GPIO_EOI_NONEor
8-bit or 16-bit mask

I_GPIO_STAT_STIO
I_GPIO_STAT_STI1

5-11

6

Using HP SICL with
VXI/MXI

Using HP SICL with VXI/MXI

This chapter explains how to use SICL to communicate over the VXIbus.
In order to communicate directly over the VXIbus, you must have loaded
the VXI fileset during the HP 1/0 Libraries installation. See the HP 110
Libraries Installation and Configuration Guide for HP-UX for information.
The example programs shown in this chapter are also provided in the
/opt/sicl/share/examples directory.

This chapter contains the following sections:

• Creating a Communications Session with VXI/MXI

• Communicating with VXI/MXI Devices

• Communicating with VME Devices

• Communicating with VXI/MXI Interfaces

• Looking at HP SICL Function Support with VXI/MXI

• Using HP SICL Trigger Lines

• Using i ?blockcopy for DMA Transfers with the V7 43

• Using VXI Specific Interrupts

• Summary of VXI/MXI Specific Functions

For information on the specific SICL function calls, see the HP SICL Reference
Manual.

6-2

Creating a Communications Session
with VXI/MXI

Before you start prograrruning your VXI/MXI system, ensure that the system
is set up and operating correctly. See Appendix E, "Customizing Your
VXI/MXI System," later in this manual for configuration information.

To begin programming your VXI/MXI system, you must determine what type
of communication session you need. The two supported VXI communication
sessions are as follows:

Device Session The device session allows you direct access to a device
without worrying about the type of interface to which it is
connected.

Interface An interface session allows direct low-level control of
Session the specified interface. This gives you full control of the

activities on a given interface, such as VXI.

Device sessions are the recommended method for communicating while
using SICL. They provide the highest level of prograrruning, best overall
performance, and best portability.

NOTE

Commander Sessions are not supported with VXI interfaces.

6-3

Communicating with VXI/MXI Devices

If you are going to use SICL functions to communicate directly with VXI
devices, you must first be aware of the two different types of VXI devices:

Message-Based Message-based devices have their own processors
which allow them to interpret the high-level SCPI
(Standard Commands for Programmable Instruments)
commands. While using SICL, you simply place the SCPI
command within your SICL output function call, and the
message-based device interprets the SCPI command.

Register-Based The register-based device typically does not have a
processor to interpret high-level commands; and therefore,
only accepts binary data. Use the following methods to
program register-based instruments:

NOTE

• Interpreted SCPI - Use the SICL iscpi interface and
program using high-level SCPI commands. I-SCPI
interprets the high-level SCPI commands and sends the
data to the instrument.

• Register programming - Do register peeks and pokes and
program directly to the device's registers with the vxi
interface.

Interpreted SCPI (1-SCPIJ is supported over LAN. However, register programming (imap, ipeek,
ipoke, and so forth) is not supported over LAN.

1-SCPI runs on the LAN server if used in a LAN-based system.

6-4

Other HP Products:

. Using HP SICL with VXl/MXI

Communicating with VXl/MXI Devices

• HP Compiled SCPI - Use the C-SCPI product and
program with high-level SCPI commands (achieve higher
throughput as well).

• HP Command Module - Use a Command Module to
interpret the high-level SCPI commands. The hpib
interface is used with a Command Module. A Command
Module may also be accessed over a LAN using a
LAN-to-HPIB gateway, such as the HP E2050 LAN/HP-IB
Gateway.

Programming with register-based and message-based devices is discussed in
further detail later in this section.

NOTE
You can program a VXlbus system that is mixed with both message-based and register-based devices.
To do this, open a communications session for each device in your system and program as shown in
the following sections.

Message-Based Devices

Message-based devices have their own processors which allow them to
interpret the high-level SCPI commands. While using SICL, you simply
place the SCPI command within your SICL output function call and the
message-based device interprets the SCPI command. SICL functions used
for programming message-based devices include iread, iwrite, iprintf,
iscanf, and so forth.

6-5

Addressing VXl/MXI
Message-Based Devices

Using HP SICL with VXl/MXI

Communicating with VXl/MXI Devices

NOTE

If your message-based device has shared memory, you can access the device's shared memory by doing
register peeks and pokes. See "Register-Based Devices" later in this chapter for information on register
programming.

To create a device session, specify either the interface symbolic name or
logical unit and a particular device's address in the addr parameter
of the iopen function. The interface symbolic name and logical unit
are defined during the system configuration. See the HP 110 Libraries
Installation and Configuration Guide for HP-UX for information on these
values.

The following are example addresses for VXI/MXI device sessions:

vxi,24

vxi, 128

A device address corresponding to the device at primary
address 24 on the vxi interface.
A device address corresponding to the device at primary
address 128 on the vxi interface.

Remember that the primary address must be between 0 and 255. The
primary address corresponds to the VXI logical address and specifies the
address in A 16 space of the VXI device.

NOTE

The previous examples use the default symbolic name specified during the system configuration.
If you want to change the name listed above, you must also change the symbolic name or
logical unit specified during the configuration. The name used in your SICL program must
match the logical unit or symbolic name specified in the system configuration. Other
possible interface names are VXI, MXI, mxi, and so forth.

SICL supports only primary addressing on the VXI device sessions. Specifying a secondary address
causes an error.

6-6

Using HP SICL with VXl/MXI
Communicating with VXl/MXI Devices

The following is an example of opening a device session with the VXI device
at logical address 64:

INST dmm;
dmm = iopen ("vxi,64 11

);

6-7

Message-Based Device
Session Example

Using HP SICL with VXl/MXI

Communicating with VXl/MXI Devices

The following example program opens a communication session with a VXI
message-based device and measures the AC voltage. The measurement results
are then printed.

I* vximesdev.c
This example program measures AC voltage on a multimeter and
prints out the results */

#include <sicl.h>
#include <stdio.h>

main()
{

}

6-8

INST dvm;
char strres [20] ;

I* Print message and terminate on er~or */
ionerror (I_ERROR_EXIT);

I* Open the multimeter session */
dvm = iopen ("vxi,24");
itimeout (dvm, 10000);

I* Initialize dvm */
iwrite (dvm, "*RST\n", 5, 1, NULL);

I* Take measurement */
iwrite (dvm,"MEAS:VOLT:AC? 1, 0.001\n", 23, 1, NULL);

I* Read measurements */
iread (dvm, strres, 20, NULL, NULL);

I* Print the results */
printf (''Result is %s\n", strres);

I* Close the multimeter session */
iclose(dvm);

Using HP SICL with VXl/MXI
Communicating with VXl/MXI Devices

Register-Based Devices

There are several methods that can be used for communicating with
register-based devices:

iscpi interface Use the SICL iscpi interface and program using SCPI
commands. The iscpi interface interprets the SCPI
commands and allows you to communicate directly with
register-based devices. This method is supported over LAN.

Register
Programming

Use the vxi interface to program directly to the device's
registers with a series of register peeks and pokes. This
method can be very time consuming and difficult. This
method is not· supported over LAN.

Other HP Products

HP Compiled
SCPI

HP Command
Module

The HP Compiled SCPI product is another programming
language that can be used with SICL to program
register-based instruments with SCPI commands. Because
this product interprets the SCPI commands at compile time,
it can be used to achieve high throughput of register-based
devices.

When you use an HP Command Module to communicate
with VXI/MXI devices, you are actually communicating over
HP-IB. The command module interprets the high-level SCPI
commands for register-based instruments and then sends
out low-level commands over the VXIbus backplane to the
instruments. See the "Using HP SICL with HP-IB" chapter
for more details on communicating through a command
module.

If you currently have a SICL application that accesses VXI devices by using
HP-IB and the HP E1405/06 Command Module, you can port your application
to use the iscpi interface and directly access the VXI backplane without
the use of the Command Module. This can be done by changing the iopen
function to use the iscpi interface followed by the device logical address.

6-9

Addressing VXl/MXI
Register-Based Devices

Using HP SICL with VXl/MXI

Communicating with VXl/MXI Devices

See "Addressing VXI/MXI Register-Based Devices" later in this chapter for
more details on addressing rules. Since I-SCPI was designed to simulate
control of register-based instruments using HP-IB and the Command Module,
you usually will not need to change anything else in your application.

NOTE

There are also other applications that use SICL as their 1/0 library but have their own methods of
communicating with the instruments. These applications hide most of the 1/0 complexity behind the
user interface.

Contact your local sales representative for information on other HP products
that might interpret the high-level SCPI commands for register-based devices.

To create a device session, specify either the interface symbolic name or
logical unit and a particular device's address in the addr parameter
of the iopen function. The interface symbolic name and logical unit
are defined during the system configuration. See the HP 110 Libraries
Installation and Configuration Guide for HP-UX for information on these
values.

The following are example addresses for VXI/MXI device sessions:

iscpi,32

vxi,24

vxi,128

A register-based device address corresponding to the device
at primary address 32 on the iscpi interface.
A device address corresponding to the device at primary
address 24 on the vxi interface.
A device address corresponding to the device at primary
address 128 on the vxi interface.

Remember that the primary address must be between 0 and 255. The
primary address corresponds to the VXI logical address.

6-10

NOTE

Using HP SICL with VXl/MXI

Communicating with VXl/MXI Devices

The previous examples use the default symbolic name specified during the system configuration.
If you want to change the name listed above, you must also change the symbolic name or
logical unit specified during the configuration. The name used in your SICL program must
match the logical unit or symbolic name specified in the system configuration. Other
possible interface names are VXI, MXI, mxi, and so forth.

SICL supports only primary addressing on the VXI device sessions. Specifying a secondary address
causes an error.

The following is an example of opening a device session with the VXI device
at logical address 64:

INST dmm;
dmm = iopen ("vxi,64");

Interpreted SCPI (iscpil The simplest way to address a register-based device using the iscpi interface
Addressing Rules is to use the same rules described in the last section: Specify the interface

logical unit or symbolic name and a particular device logical address in the
addr parameter of the iopen function. For example:

dmm=iopen ("iscpi,24");

In most cases this is sufficient and additional addressing is not needed.
I-SCPI automatically configures your system according to specific combining
rules that determine how the instruments are set up relative to other VXI
instruments.

Generally, when an iopen is performed, an instrument is formed consisting
of all devices at logical addresses contiguous to the base logical address passed
in the address string. Let's say, for example, that you open an instrument at
logical address 24 and the next logical address is 25. The iscpi interface
will search for an instrument driver that supports the combined instruments
found.

6-11

Using HP SICL with VXl/MXI

Communicating with VXl/MXI Devices

If you wish to specify how instruments are combined or what instrument
driver to use, see the following sections for details on specifying this
information.

Defining an Instrument. There may be times you would like to have
control over which logical addresses are used to form a particular instrument.
In this case you can use an explicit list in the logical address portion of the
iopen call. Define the instrument by adding a colon after the interface
symbolic name followed by the backplane name specified in the iscpi
hwconfig.cf entry (backplane is the symname of the VXI backplane SICL
driver, usually vxi). Then add the instrument logical addresses enclosed
within parentheses separated by commas. For example:

dmm=iopen ("iscpi:vxi,(24,25)");

The above example combines instruments at logical address 24 and 25 to
form one instrument. Note that the logical addresses of these instruments do
not have to be contiguous.

Defining an Instrument Driver. There may be times when you would like
to specify an instrument driver to use for a particular set of logical addresses.
This allows you to create your own instrument drivers or you can form
unique virtual instrument combinations. This can be done by adding the
instrument driver name within brackets. For example:

dmm=iopen ("iscpi,24[E1326]");

If you would like to specify the instrument driver plus which instruments are
grouped together to form the instrument, use the following form:

dmm=iopen ("iscpi[E1326] :vxi,(24,25)");

The directory location specified during the SICL interface configuration is
searched (default is /opt/sicl/lib/iscpi) for a matching instrument
driver. Note that the driver name is case sensitive.

NOTE

The iopen call will run faster if you specify an instrument driver name since it does not have to
search through all the instrument drivers for a match.

6-12

Programming with
Interpreted SCPI (the
iscpi Interface)

Using HP SICL with VXl/MXI

Communicating with VXl/MXI Devices

The iscpi interface allows you to program register-based instruments with
high-level SCPI commands. To program using the iscpi interface, open a
device session with a specific register-based instrument and then program
using the SICL functions such as iprintf, iscanf, and ireadstb.

When opening the device session, you need to specify iscpi as the interface
type in the SICL iopen call. See "Interpreted SCPI (iscpi) Addressing
Rules" earlier in this chapter for information addressing with the is cp i
interface.

The iscpi interface was designed to closely simulate control of register-based
instruments using the HP Command Module over HP-IB. When an iopen
is performed, an instrument driver consisting of all the devices at logical
addresses contiguous to the base logical address is searched for. If no
instrument driver will support the list of contiguous logical addresses, the
device with the highest logical address will be removed and the search
process repeated. This will continue until the driver is found or this list is
exhausted. If no instrument driver is found the iopen call will fail.

Once an iopen is successful, 1-SCPI runs in an infinite loop waiting to parse
SCPI commands for the instrument. A separate HP-UX process is created for
each instrument that is opened.

In order to use the iscpi interface you must have installed the
SICL-VXI-ISCPI fileset during the HP 1/0 Libraries installation. Additionally,
you must have configured the system to include iscpi as an interface. See
the HP 110 Libraries Installation and Configuration Guide for HP-UX for
details on the installation and configuration.

Register-Based Instrument Drivers. iscpi includes drivers for
most Hewlett-Packard register-based devices. These drivers are located
in the directory specified during the iscpi interface configuration
(default is /opt/sicl/lib/iscpi). Additionally, you can see the
I opt/ sicl/lib/ iscpi/README. iscpi file for a list of currently supported
register-based devices.

6-13

iscpi Device Session
Example

Using HP SICL with VXl/MXI

Communicating with VXl/MXI Devices

The following example program opens a communication session with a VXI
register-based device with the iscpi interface. This example then uses SCPI
commands to measure the AC voltage and print out the results.

I* vxiiscpi. c
This example program measures AC voltage on a multimeter and
prints out the results */

#include <sicl.h>
#include <stdio.h>

main()
{

}

6-14

INST dvm;
char strres[20];

I* Print message and terminate on error */
ionerror (I_ERROR_EXIT);

I* Open the multimeter session */
dvm = iopen ("iscpi,2411

);

itimeout (dvm, 10000);

I* Initialize dvm •/
iwrite (dvm, "*RST\n", 5, 1, NULL);

I* Take measurement */
iwrite (dvm,"MEAS:VOLT:AC? 1, 0.001\n", 23, 1, NULL);

I* Read measurements */
iread (dvm, strres, 20, NULL, NULL);

I* Print the results */
printf ("Result is %s\n11

, strres);

I* Close the multimeter session.*/
iclose(dvm);

Programming Directly to
the Registers

Using HP SICL with VXl/MXI

Communicating with VXl/MXI Devices

When communicating with register-based devices, you either have to send
a series of peeks and pokes directly to the device's registers, or you have
to have a command interpreter to interpret the high-level SCP! commands.
Command interpreters include the iscpi interface, HP C-Size Command
Module, HP B-Size Cardcage (built-in command module), or HP Compiled
SCPI.

When sending a series of peeks and pokes to the device's registers, use the
following process:

• Map memory space into your process space.
• Read the register's contents using i ?peek.
• Write to the device registers using i ?poke.
• Unmap the memory space.

NOTE

Note that the above procedure is only used on register-based devices that are not using the iscpi
interface.

Nate that programming directly to the registers is not supported over LAN.

Mapping Memory Space for Register-Based Devices. When using SICL
to communicate directly to the device's registers, you must map a memory
space into your process space. This can be done by using the SICL imap
function:

imap (id, map_space, pagestart, pagecnt, suggestffi);

This function maps space for the interface or device specified by the id
parameter. pagestart, pagecnt, and suggestffi are used to indicate the page
number, how many pages, and a suggested starting location respectively.
map_space determines which memory location to map the space. The
following are valid map_space choices:

• !_MAP _A16 Maps in VXI A16 address space (device or interface sessions,
64K byte pages).

• !_MAP _A24 Maps in VXI A24 address space (device or interface sessions,
64K byte pages).

6-15

Using HP SICL with VXl/MXI

Communicating with VXl/MXI Devices

• I_M.A.P _.A.32 Maps in VXI A32 address space (device or interface sessions,
64K byte pages).

• I_M.A.P _ VXIDEV Maps in VXI A16 device registers (device session only, 64
bytes).

• I _MAP _EXTEND Maps in VXI device extended memory address space in A24
or A32 address space (device sessions only).

• I_M.A.P _SH.A.RED Maps in VXI/MXI A24/A32 memory that is physically
located on the computer (sometimes called local shared memory, interface
sessions only).

• I_M.A.P _.A.M I address modifer Maps in the specified region (address
modif er) of VME address space. See the "Communicating with VME
Devices," later in this chapter for more information on this map space
argument.

The following are example imap function calls:

I* Map to the VXI device vm starting at pagenumber 0 for 1 page */
base_address = imap (vm, I_MAP_VXIDEV, 0, 1, NULL);

I* Map to A32 address space (16 Mbytes) */
ptr = imap (id, I_MAP_A32, OxOOO, Ox100, NULL);

I* Map to A24 space while using E1489 (8 Mbytes) */
ptr = imap (id, I_MAP_A24, OxOO, Ox80, NULL);

I* Map to a device's A24 or A32 extended memory*/.
ptr=imap (id, I_MAP_EXTEND, 0, 1, O);

I* Map to a computer's A24 or A32 shared memory */
ptr=imap (id, I_MAP_SHARED, 0, 1, O);

6-16

Using HP SICL with VXl/MXI
Communicating with VXl/MXI Devices

NOTE

Due to hardware constraints on given devices or interfaces, not all address spaces may be
implemented. In addition, there may be a maximum number of pages that can be simultaneously
mapped. The E1489 MXlbus EISA Interface (used to connect Series 700 to E1482l has 11 Mbyte
maximum limit.

If a request is made that cannot be granted due to hardware constraints, the process will hang until
the desired resources become available. To avoid this, use the isetlockwai t with the flag
parameter set to 0, and thus generate an error instead of waiting for the resources to become
available. You may also use the imap info function to determine hardware constraints before
making an imap call.

If you are using an E1489 MXIbus Controller Interface, you can get 32-bit
data reads and writes to VXIbus devices with D32 capabilities. Use the
following table to determine which map-space argument to use with your
SICL imap/iunmap function.

imap/iurunap Widths VME Data
(map-space argument) Access Mode

l_MAP _A16 08,016 Supervisory

l_MAP _A24 08,016 Supervisory

l_MAP _A32 08,016 Supervisory

l_MAP _A16_032 032 Supervisory

l_MAP _A24_032 032 Supervisory

l_MAP _A32_032 032 Supervisory

6-17

Register-Based
Programming Example

Using HP SICL with VXl/MXI

Communicating with VXl/MXI Devices

However, all accesses through these map windows can only be 32-bit
transfers. The application software must do a 32-bit assignment to generate
the access, and only accesses on 32-bit boundaries are allowed. If 8- or 16-bit
accesses to the device are also necessary, a normal !_MAP _A16/24/32 map
must also be requested. These restrictions are specific to the El489 interface.

!_MAP _EXTEND is not supported for 32-bit access with the El489. If you need
32-bit access with the El489, use one of the parameters listed above with
_D32 attached.

Reading and Writing to the Device Registers. Once you have
· mapped the memory space, use the SICL i ?peek and i ?poke functions to
communicate with the register-based instruments. With these functions,
you need to know which register you want to communicate with and the
register's offset. See the instrument's user's manual for a description of the
registers and register locations.

The following is an example of using iwpeek:

id= iopen ("vxi,24");
addr = imap (id, I_MAP_VXIDEV, 0, 1, O);
reg_data = iwpeek (addr + 4);

See the HP SICL Refere-nce Manual for a complete description of the i ?peek
and i ?poke functions.

Unmapping Memory Space. Make sure you use the iunmap function
to unmap the memory space when it is no longer needed. This frees the
mapping hardware so it can be used by other processes.

The following example program opens a communication session with the
register-based device connected to the address entered by the user. The
program then reads the Id and Device Type registers. The register contents
are then printed.

6-18

NOTE

Using HP SICL with VXl/MXI
Communicating with VXl/MXI Devices

The HP-UX Series 700 C + + compiler dereferences pointers that are cast to another data type by
making multiple accesses of the base data type. Therefore, if you cast a character pointer to a short
pointer, it will dereference it as two 008 accesses. To correct this problem, always use the size
pointer that you would like the access to be. If you want D 16 accesses, use a short pointer. If you
want 032 accesses, use a long pointer. For example:

unsigned short *a24_ptr;

a24_ptr =(unsigned short*) imap (id, I_MAP_A24, ps, cnt, O);
val= iwpeek (a24_ptr +offset);

6-19

Using HP SICL with VXl/MXI

Communicating with VXl/MXI Devices

I* vxiregdev.c
The following example prompts the user for an instrument
address and then reads the id register and device type
register. The contents of the register are then displayed. */

#include <stdio.h>
#include <stdlib.h>
#include <sicl.h>

void main ()
{

char inst_addr[80];
char *base_addr;
unsigned short id_reg, devtype_reg;
INST id;

I* get instrument address */
puts ("Please enter the logical address of the register-based

instrument, for example, vxi,24 : \n");

}

gets (inst_addr);

I* install error handler */
ionerror (I_ERROR_EXIT);

I* open communications session with instrument */
id iopen (inst_addr);
itimeout (id, 10000);

I* map into user memory space */
base_addr = imap (id, I_MAP_VXIDEV, 0, 1, NULL);

I* read registers */
id_reg = iwpeek ((unsigned short *)(base_addr + OxOO));
devtype_reg = iwpeek ((unsigned short *)(base_addr + Ox02));

I* print results */
printf ("Instrument at address i.s\n", inst_addr);
printf ("ID Register = Oxi.4X\n Device Type Register

id_reg, devtype_reg);

I* unmap memory space */
iunmap (id, base_addr, I_MAP_VXIDEV, 0, 1);

I* close session */
iclose (id);

Oxi.4X\n",

6-20

Catching Bus Errors
Example

Using HP SICL with VXl/MXI
Communicating with VXl/MXI Devices

It is good practice to add bus error handling to your applications that use
i?peek and i?poke. Add a catch_buserror function call before using
i ?peek or i ?poke and the uncatch_buserror function call at the end of
your application. The following is an example of these functions:

I* The following functions handle catching and processing
buserrors. *I

#include <signal.h>

I* Structure defined in signal.h. */
struct sigaction oldact;

f* Handler called when there's a bus error. It prints
an error message and exits. */

static void be_handler (int)
{

}

fprintf (stderr, "ERROR: Bus Error \n");
exit (1);

I* Function to catch the buss error. */
void catch_buserror ()
{

}

struct sigaction newact;

/* Assign be_handler to be called when action is to be taken. *I
newact.sa_handler =(void(*)(...)) be_handler;

/* Assign SIGBUS as signal to be caught. */
sigemptyset (tnewact.sa_mask);
sigaddset (tnewact.sa_mask, SIGBUS);

/* Set sa_flags to 0. *I
newact.sa_flags=O;

sigaction (SIGBUS, tnewact, toldact);

I* Function to release bus error. */
void uncatch_buserror()
{

sigaction (SIGBUS, toldact, O);
}

6-21

Using HP SICL with VXl/MXI

Communicating with VXl/MXI Devices

Enabling V7 43 Shared Memory

You can reserve 1 Mbyte of the V7 43' s system memory to be used as VXI
shared memory in A24 address space. The V7 43 is shipped with this feature
disabled. When enabled, · l Mbyte of the system memory becomes unavailable
for use by the operating system and your applications. Instead, this memory
is mapped onto the VXI backplane for use as VXI shared memory. You can
use the SICL e1497cnf utility to enable or disable this feature. The following
is an example of running the utility on the vxi interface:

\

e1497cnf -i vxi

When run, the above utility prompts asking if it is OK to reboot the system.
If shared memory is currently disabled, then the utility will enable it. If
shared memory is currently enabled, then the utility will disable it. See
Appendix E, "Customizing Your VXI/MXI System," for more information on
using the e 1497 cnf utility.

NOTE

You must be superuser to run this utility. This utility also requires you to reboot the system.

6-22

Communicating with VXI/MXI Interfaces

Interface sessions allow you direct low-level control of the interface. You
must do all the bus maintenance for the interface. This also implies that
you have considerable knowledge of the interface. Additionally, when using
interface sessions, you need to use interface specific functions. The use of
these functions means that the program can not be used on other interfaces,
and therefore, becomes less portable.

Addressing VXI/MXI Interface Sessions

To create an interface session on your VXI/MXI system, specify either the
interface symbolic name or logical unit in the addr parameter of
the iopen function. The interface symbolic name and logical unit
are defined during the system configuration. See the HP 110 Libraries
Installation and Configuration Guide for HP-UX for information on these
values.

The following are example addresses for VXI/MXI interface sessions:

vxi
iscpi

NOTE

An interface symbolic name.
An interface symbolic name.

The above examples use the default symbolic name specified during the system configuration.
If you want to change the name listed above, you must also change the symbolic name or
logical unit specified during the configuration. The name used in your SICL program must
match the logical unit or symbolic name specified in the system configuration. Other
possible interface names are VXI, MXI, mxi, and so forth.

6-23

Using HP SICL with VXl/MXI

Communicating with VXl/MXI Interfaces

The following example opens a interface session with the VXI interface:

INST vxi;
vxi = iopen ("vxi");

NOTE

The only interface session operations supported by 1-SCPI are service requests and locking.

6-24

Using HP SICL with VXl/MXI
Communicating with VXl/MXI Interfaces

VXI/MXI Interface Session Example

The following example program opens a communication session with the VXI
interface and uses the SICL interface specific ivxirminfo function to get
information about a specific VXI device. This information comes from the
VXI resource manager and is only valid as of the last time the VXI resource
manager was run.

I* vxiintr.c
The following example gets information about a specific
vxi device and prints it out. *I

#include <stdio.h>
#include <sicl.h>

void main () {
int laddr;

}

struct vxiinfo info;
INST id;

I* get instrument logical address */
printf ("Please enter the logical address of the register-based

instrument, for example, 24: \n");
scanf ("/.d", lladdr);

I* install error handler */
ionerror (I_ERROR_EXIT);

I* open a vxi interface session */
id = iopen ("vxi11

);

itimeout (id, 10000);

I* read VXI resource manager information for specified device */
ivxirminfo (id, laddr, linfo);

I* print results */
printf ("Instrument at address /.d\n11

, laddr);
printf ("Manufacturer's Id= i.s\n Model= %s\n",

info.manuf_name, info.model_name);

I* close session *I
iclose (id);

6-25

Communicating with VME Devices

NOTE

Not supported over LAN.

Many people assume that since VXI is an extension of VME that VME should
be easy to use in a VXI system. Unfortunately, this is not true. Since the VXI
standard defines specific functionality that would be a custom design in VME,
some of the resources required for VME custom design are actually used by
VXI. Therefore, there are certain limitation and requirements when using
VME in a VXI system. Note that VME is not an officially supported interface
for SICL.

Use the following process when using VME devices in a VXI/MXI mainframe:

• Declaring Resources
• Mapping VME Memory
• Reading and Writing to Device Registers
• Unmapping Memory

Each of the above items are described in further detail in the following
subsections. An example program is also provided.

6-26

HP E1482 VXl-MXI
Resources

Using HP SICL with VXl/MXI
Communicating with VME Devices

Declaring Resources

The VXI Resource Manager does not reserve resources for VME devices.
Instead, a configuration file is used to reserve resources for VME devices in
a VXI system. Use the /etc/opt/sicl/vxiLU/vmedev. cf file (where LU
is the logical unit of the VXI/MXI interface) to reserve resources for VME
devices. The VXI Resource Manager reads this file to reserve the VME address
space and VME IRQ lines. The VXI Resource Manager then assigns the VXI
devices around the already reserved VME resources.

When you edit the vmedev . cf file, you need to specify the device name, bus,
slot #, address space, starting offset, size, and VME IRQ line. The following is
an example entry:

vmedev1 0 12 A24 Ox400000 Ox10000

For VME devices requiring Al6 address space, the device's address space
should be defined in the lower 75% of Al6 address space (addresses below
OxCOOO). This is necessary because the upper 25% of A16 address space is
reserved for VXI devices.

For VME devices using A24 or A32 address space, use A24 or A32 address
ranges just higher than those used by your VXI devices. To determine

3

what A24 or A32 address ranges are used by your VXI devices, run the
Resource Manager (ivxirm) without the VME devices installed. Then edit the
vmedev. cf file to specify the appropriate address range. This will prevent
the Resource Manager (ivxirm) from assigning the address range used by the
VME device to any VXI device. (The A24 and A32 address range is software
programmable for VXI devices.)

When a VME device is accessed via an E1482 VXI-MXI Extender Bus, you
must declare the bus for a given VME device. The bus is declared as
described in the previous section in the vmedev . cf file. For devices in a
VXI/MXI system, use the logical address of the El482 in the mainframe as the
bus.

Additionally, since VME devices mapped in A 16 address space are required to
the use the lower 75% of Al6 address space, the Al6 Window Map Register
of the El482 must be programmed. To program this register, you must edit
the /etc/opt/sicl/vxi16/oride. cf file to open an Al6 address window

6-27

Using HP SICL with VXl/MXI

Communicating with VME Devices

for the device. An entry to this file changes the value SICL writes to the Al6
window map register of the El482.

The oride. cf file contains the logical address of the VXI-MXI Bus Extender
card, the offset value, and the value written to the register. See the "Register
Description" appendix of the E1482 user's manual for information on the
value that should be placed in the oride. cf file. When using this appendix,
it is important to note that SICL normally has the CMODE bit clear. The
following example opens all of the lower 48k of A16 address space:

1 OxC Ox7800

Mapping VME Memory

SICL defaults to byte, word, and longword supervisory access to simplify
programming VXI systems. However, some VME cards use other modes of
access which are not supported in SICL. Therefore, SICL provides a map
parameter that allows you to use the access modes defined in the VME
Specification. See the VME Specification for information on these access
modes.

NOTE

Use care when mixing VXI and VM E devices. You MUSTknow what VM E address space and offset
within that address space that VME devices use. VM E devices cannot use the upper 16K of the A 16
address space since this area is reserved for VXI instruments.

Use the I _MAP _AM I address modif er map space argument in the imap
function to specify the map space region (address modif er) of VME address
space. See the VMEbus Specifications for information on what value to use
as the address modifier. Note that if the controller doesn't support specified
address mode, then the imap call will fail (see table in the next section).

6-28

Using HP SICL with VXl/MXI

Communicating with VME Devices

The following maps A24 non-privileged data access mode:

prt = imap (id, (I_MAP_AM I Ox39), Ox20, Ox4, O);

The following maps A32 non-privileged data access mode:

prt = imap (id, (I_MAP_AM I Ox09), Ox20, Ox40, O);

NOTE

When accessing VME or VXI devices via an embedded controller such as an HP E1497/98 V743
Controller, current versions of SICL use the "supervisory data" address modifiers Ox20, Ox30, and OxOD
for A 16, A24, and A32 accesses, respectively. (Some older versions of SICL use the "non-privileged
data" address modifiers.)

Supported Access Modes The following tables list VME access modes supported on HP controllers:

V743 VME Mapping Support

A16 A24 A32
DOB D16 D32 DOB D16 D32 DOB D16 D32

Supervisory data xxx xxx xxx
Non-Privilege data

E1489 VME Mapping Support

A16 A24 A32
DOB D16 D32 DOB 016 032 DOB 016 D32

Supervisory data xxx xx x xxx
Non-Privilege data xxx xx x xxx

6-29

Using HP SICL with VXl/MXI

Communicating with VME Devices

Reading and Writing to the Device Registers

Once you have mapped the memory space, use the SICL i ?peek and i ?poke
functions to communicate with the VME devices. With these functions, you
needed to know which register you want to communicate with and the
register's offset. See the instrument's user's manual for a description on the
registers and register locations.

The following is an example of using iwpeek:

id= iopen ("vxi");
addr = imap (id, (I_MAP_AM I Ox39), Ox20, Ox4, O);
reg_data = iwpeek ((unsigned short *)(addr + OxOO));

See the HP SICL Reference Manual for a complete description of the i ?peek
and i ?poke functions.

Unmapping Memory Space

Make sure you use the iunmap function to unmap the memory space when it
is no longer needed. This frees the mapping hardware so it can be used by
other processes.

VME Interrupts

There are seven VME interrupt lines that can be used. By default, VXI
processing of the IACK value will be used. However, if you configure VME
IRQ lines and VME Only, no VXI processing of the IACK value will be done.
That is the IACK value will be passed to a SICL interrupt handler directly.
See the HP 110 Librarie,s Installation and Configuration Guide for HP-UX for
information on configuring for VME Only. Also see isetintr in the HP SICL
Reference Manual for information on the VME interrupts.

6-30

VME Example

Using HP SICL with VXl/MXI

Communicating with VME Devices

When you have a VME device that requires A 16 address space that is
accessed via an El482 VXI-MXI Extender Bus card, you need to make an
entry in the /etc/opt/sicl/vxi16/oride. cf file to open an Al6 address
window. The following is an example entry that opens a 512 byte window
in Al6 address space starting at address Ox7000, with the El482 at logical
address 1:

1 OxC Ox6770

When you have a VME device that requires A24 or A32 address space, you
need to make an entry in the /etc/opt/sicl/vxi16/vmedev. cf file to
reserve the appropriate address range. The following is an example entry for
a VME device in slot 6 of a VXI card cage. The card cage is accessed by an
embedded controller or top-level MXI bus. The device requires 4096 bytes of
A24 address space starting at address Ox400000 and uses IRQ line 3:

vmedev1 0 6 A24 Ox400000 Ox1000 3

Where vmedev 1 is the name of the device, O is the logical address of the
device through which the VXI resource manager will access the bus, 6 is
the VXI slot number, A24 is the address space to map the VME registers,
Ox400000 is the starting address, Ox1000 is the size, and 3 is the irq line.

NOTE
If your VME device requires both A24 and A32 address space, you will need to have an entry for each
address space. Each line should use a different device name (for example, vmedev1 and vmedev2l.

Once you have made the appropriate entry into the vmedev . cf file you must
re-run the Resource Manager.

6-31

Using HP SICL with VXl/MXI

Communicating with VME Devices

The following ANSI C example program opens a VXI/MXI interface session
and sets up an interrupt handler. When the I_ INTR_ VME_ IRQ 1 interrupt
occurs, the function defined in the interrupt handler will be called. The
program then writes to the registers, causing the I_INTR_ VME_IRQ1 interrupt
to occur. Note that you must edit this program to specify the starting address
and register offset of your specific VME device. This example program also
requires the VME device to be using I_INTR_ VME_IRQ1 and the V743 to be
the handler for the VME IRQ 1.

6-32

Using HP SICL with VXl/MXI
Communicating with VME Devices

I* vmedev.c
This example program opens a VXI/MXI interface session and sets
up an interrupt handler. When the specified interrupt occurs,
the procedure defined in the interrupt handler is called. You
must edit this program to specify starting address and register
offset for your specific VME device. */

#include <stdio.h>
#include <stdlib.h>
#include <sicl.h>

#define ADDR 11 vxi 11

void handler (INST id, long reason, long secval){
printf ("Got the interrupt\n");

}

void main ()
{

unsigned short reg;
char *base_addr;
INST id;

/* install error handler */
ionerror (I_ERRDR_EXIT);

I* open an interface communications session */
id= iopen (ADDR);
itimeout (id, 10000);

I* install interrupt handler */
ionintr (id, handler);
isetintr (id, I_INTR_VME_IRQ1, 1);

I* turn interrupt notification off so that interrupts are not
recognized before the iwaithdlr function is called */

iintroff ();

I* map into user memory space */
base_addr = imap (id, I_MAP_A24, Ox40, 1, NULL);

/* read a register */
reg= iwpeek((unsigned short *)(base_addr + OxOO));

I* print results */
printf (11 The registers contents were as follows: Ox%4X\n", reg);

I* write to a register causing interrupt *I
iwpoke ((unsigned short *)(base_addr + OxOO), reg);

6-33

Using HP SICL with VXl/MXI
Communicating with VME Devices

}

I* wait for interrupt *I
iwaithdlr (10000);

I* turn interrupt notification on *I
iintron ();

I* urunap memory space *I
iurunap (id, base_addr, I_MAP_A24, Ox40, 1);

I* close session *I
iclose (id);

6-34

Message-Based Device
Sessions

Looking at HP SICL Function Support
with VXI/MXI

This section describes how SICL functions are implemented for VXI/MXI
sessions.

Device Sessions

The following describes how some SICL functions are implemented for
VXI/MXI device sessions (for message-based devices):

iwri te Sends the data to the (message-based) servant using the
byte-serial write protocol and the byte available word-serial
command.

ire ad

ireadstb

itrigger

iclear

ionsrq

Reads the data from the (message-based) servant using the
byte-serial read protocol and the byte request word-serial
command.

(read status byte) Performs a VXI readSTB word-serial
command.

Sends a word-serial trigger to the specified message-based
device.

Sends a word-serial device clear to the specified
message-based device.

Can be used to catch SRQs from message-based devices.

Interpreted SCPI The iscpi interface is used to program VXI register-based instruments.
(iscpil Device Sessions However, the VXI specific and register-based specific SICL functions, such

as i vxiws, imap, and ipeek are not necessary, and therefore, are not
implemented for the iscpi interface.

6-35

Using HP SICL with VXl/MXI
Looking at HP SICL Function Support

with VXl/MXI

The following describes how some SICL functions are implemented for iscpi
device sessions.

iwrite

ire ad

ireadstb

itrigger

iclear

Sends the SCPI commands to the register-based instrument
driver's input buffer. The driver will interpret the command
and do register peeks and pokes. If the command is a query,
the driver will put the data into its output buffer.

Reads the data from the register-based instrument driver's
output buffer.

Performs the equivalent of a serial poll (SPOLL).

Performs the equivalent of an addressed group execute
trigger (GET).

Performs the equivalent of a device clear (DCL) on the
device corresponding to this session.

Interpreted SCPI (iscpi) Device Session Interrupts. The iscpi
interface does not support interrupts. Therefore, the SICL ionintr function
is not implemented for iscpi device sessions. There are no device-specific
interrupts for the iscpi interface.

Interpreted SCPI (iscpi) Device Session Service Request. iscpi
device sessions support Service Requests (SRQ) in the same manner as HP-IB.
When one device issues an SRQ, all iscpi device sessions that have SRQ
handlers installed (see ionsrq in the HP SICL Reference Manual) will be
informed. This is an emulation of how HP-IB handles the SRQ line. The
interface cannot distinguish which device requested service, therefore, iscpi
acts as if all devices require service. Your SRQ handler can retrieve the
device's status byte by using the ireadstb function. The status byte can
be used to determine if the instrument needs service. It is good practice to
ensure that a device isn't requesting service before leaving the SRQ handler.
The easiest technique for this is to service all devices from one handler.

6-36

Register-Based Device
Sessions

Using HP SICL with VXl/MXI
Looking at HP SICL Function Support

with VXl/MXI

Because register-based devices do not support the word serial protocol and
other features of message-based devices, the following SICL functions are not
supported with register-based device sessions (unless you're using the iscpi
interface, see "Progranuning with Interpreted SCPI").

• Non-formatted 110:
o iread
o iwrite
o itermchr

• Fbrmatted 110:
o iprintf
o iscanf
o ipromptf
o if read
o ifwrite
o iflush
o isetbuf
o isetubuf

• Device/Interface Control:
o iclear
o ireadstb
o isetstb
o itrigger

• Service Requests:
o igetonsrq
o ionsrq

• Timeouts:
o igettimeout
o itimeout

• VXI Specific:
o ivxiws

All other functions will work with all VXI/MXI devices (message-based,
register-based, and so forth.)

Use the i ?peek and i ?poke functions to communicate with register-based
devices.

6-37

Using HP SICL with VXl/MXI

Looking at HP SICL Function Support

with VXl/MXI

Interface Sessions

The following describes how some SICL functions are implemented for
VXI/MXI interface sessions:

iwri te and iread Not supported for VXI/MXI interface sessions and return
the I _ERR_NOTSUPP error.

iclear

NOTE

Causes the VXI/MXI interface to perform a SYSREST
on interface sessions. Note that this will cause all
VXI/MXI devices to reset. If the iscpi interface is being
used, the iscpi instrument will be terminated. If this
happens, you will get a No Connect error message
and you need to re-open the iscpi communications
session. All servant devices will cease to function until
the VXI resource manager runs and normal operation is
re-established.

1-SCPI interface sessions only support service requests and locking (ionsrq, ilock, and
iunlockl.

6-38

Using HP SICL Trigger Lines

The following table shows the relationship between SICL and Hewlett-Packard
controllers for the trigger lines and BNC connectors. These values may be
passed to the ivxitrig or isetintr function:

NOTE

-The E1489 is Hewlett Packard's MXlbus EISA Interface Card.

Trigger Lines

SICL V743

I_ TRIG_ mo mo

l_TRIG_m1 m1

LTRIG_m2 m2

l_TRIG_m3 m3

LTRIG_m4 m4

l_TRIG_m5 m5

LTRIG_ms ms

LTRIG_m7 m7

Tuble continued on the next page.

E1489

mo

TTL1

m2

m3

m4

m5

ms

m7

6-39

Using HP SICL with VXl/MXI
Using HP SICL Trigger Lines

SICL

I_ TRIG_ECLO

I_ TRIG_ECL 1

I_ TRIG_ECL2

I_ TRIG_ECL3

I_ TRIG_EXTO

I_ TRIG_EXT1

I_ TRIG_EXT2

I_ TRIG_EXT3

I_ TRIG_CLKO

I_ TRIG_CLK1

I_ TRIG_CLK2

I_ TRIG_CLK10

I_ TRIG_CLK100

Trigger Lines (cont.)

V743 E1489

ECLO INVALID

ECL1 INVALID

INVALID INVALID

INVALID INVALID

Trig IN INVALID

Trig OUT INVALID

INVALID INVALID

INVALID INVALID

16 MHz Clock* INVALID

INVALID INVALID

INVALID INVALID

INVALID INVALID

INVALID INVALID

* The LTRIG_CLKO is the internal 16 MHz clock. This trigger line can ONIX
be routed out.

The i trigger function, when used on a VXI/MXI interface session, generates
the same results as the ixtrig functions with the I_ TRIG_STD value passed
to it.

The I_ TRIG_STD value, when passed to the ixtrig function causes one or
more VXI trigger lines to fire. The trigger lines represented by I_ TRIG_STD
are determined by the i vxi trigroute function. The I_ TRIG_STD value has
no default value. Therefore, if it is not defined before it is used, no action will
be taken.

The following is an example that illustrates how to use some of the SICL VXI
trigger functions.

6-40

Using HP SICL with VXl/MXI
Using HP SICL Trigger Lines

I* trigger.c
An example program illustrating various trigger operations
with SICL*/

#include <sicl.h>
#include <unistd.h>

main()
{

}

INST id;

/*Install error handler*/
ionerror(I_ERROR_EXIT);

/*Open a vxi interface session*/
id= iopen("vxi");

/*Assert (drive low) TTLTRG2, TTLTRG4, and TTLTRG6 for 1 sec*/
ivxitrigon(id, I_TRIG_TTL2 I_TRIG_TTL4 I I_TRIG_TTL6);
sleep(i);

/*De-Assert (drive high) all previously asserted trigger lines*/
ivxitrigoff(id, I_TRIG_ALL);

/*Route External Trigger In SMB Connector (EXTO) to TTLTRGO*/
ivxitrigroute(id, I_TRIG_EXTO, I_TRIG_TTLO);

/*Route internal clock to External Trigger Out SMB
Connector (EXT1)*/

ivxitrigroute(id, I_TRIG_CLKO, I_TRIG_EXT1);

/*Turn off previous routing*/
ivxitrigroute(id, I_TRIG_EXTO, 0);
ivxitrigroute(id, I_TRIG_CLKO, O);

/*Set up I_TRIG_STD routing to TTLTRG1 and TTLTRG3*/
ivxitrigroute(id, I_TRIG_STD, I_TRIG_TTL1 I I_TRIG_TTL3);

/*Fire the STD triggers*/
ixtrig(id, I_TRIG_STD);

/*Close the vxi interface session*/
iclose(id);

6-41

Using HP SICL with VXl/MXI

Using HP SICL Trigger Lines

Routing VXI TTL Trigger Lines in a VXI/MXI System

When you have multiple card cages connected via the MXIbus, the TTL
trigger lines are not routed from one card cage to another. The INTXbus does
not allow multiple INTXbus devices to drive the same TTL trigger line. If
you need TTL trigger lines in the extended VXI card cages, you need to edit
the ttl trig. cf configuration file to map the TTL trigger line to the source
logical address. See Appendix E, "Customizing Your VXI/MXI System," for
information on editing this file.

The following example illustrates an entry in the ttl trig. cf file:

0 0
1 0
2 0
3 0
4 0
5 0
6 0
7 0

(Multiple trigger sources are still allowed on the same line within the same
card cage.)

Where the first column is the TTL trigger line and the second column is the
logical address of the TTL trigger source. Therefore, in the example above, all
TTL trigger lines are sourced by the device at logical address 0. The following
is an example of what you would see when the VXI resource manager runs:

VXI-MXI TTL Trigger Routing:

Name 0 1 2 3 4 5 6 7

hpvximxi I I I I I I I I
I - MXI->VXI
0 - VXI->MXI
* - Not Routed

6-42

Using HP SICL with VXl/MXI

Using HP SICL Trigger Lines

Now the following illustrates TTL trigger line 1 being sourced by the device at
logical address 24:

ttl trig. cf file:

0 0
1 24
2 0
3 0
4 0
5 0
6 0
7 0

Resource Manager output:

VXI-MXI TTL Trigger Routing:

Name 0 1 2 3 4 5 6 7

hpvximxi I 0 I I I I I I
I - MXI->VXI
0 - VXI->MXI
* - Not Routed

NOTE

You can use the e 1489trg diagnostic test to test the MXl/INTX trigger and interrupt circuitry. See
Appendix E, "Customizing Your VXl/MXI System," for information on this and other diagnostic tests for
the E1489 MXlbus Controller Interface.

6-43

Using HP SICL with VXl/MXI
Using HP SICL Trigger Lines

Routing External Trigger Lines on the E1482
VXl-MXI Extender Bus Card

In order to use external triggers while using the HP E1482 VXI-MXI Bus
Extender card, you must route the external trigger lines to the TTL trigger
lines. This can be done by using the oride. cf configuration file. This
file contains values to be written to logical address space for register-based
instruments. This data is written to the address space after the VXI resource
manager runs, but before the system's resources are released. See
Appendix E, "Customizing Your VXI/MXI System," for information on editing
this file.

The following illustrates an entry in the oride. cf configuration file to route
Trig In to TTL trig 1 and Trig Out to TTL trig 0:

1 2E Ox0302

Where 1 is the logical address of the VXI-MXI Bus Extender card, 2E is the
offset value that corresponds to the MXIbus Trigger Configuration Register,
Ox0302 is the value written to the register that will route Trig In to TTL trig
1 and Trig Out to TTL trig 0:

MXlbus Trigger Configuration Register

Bits 1!i · 8 Bits 7 · 0

00000011 00000010

Bits 15 - 8 enable the corresponding VXIbus TTL trigger lines (TTL trig 7 - 0
respectively). And in the above table, TTL trigger lines 0 and 1 are enabled.
Bits 7 - 0 determine the direction in which the corresponding TTL trigger
lines are mapped to the front panel SMB connectors. If both bits are set, then
the corresponding trigger line is driven by trig in. If the TTL trigger line
is enabled (TTL trig 15 - 8), and the corresponding bit (bits 7 - 0) is not set,
then the corresponding trigger line is driven by ''trig out''.

See the HP E1482 VXI-MXI Bus Extender User's Manual for more
information about writing to the MXIbus Trigger Configuration Register.

6-44

Using HP SICL with VXl/MXI

Using HP SICL Trigger Lines

NOTE

Once you route the external trigger lines to use the TIL trigger lines, you must also edit your program
to trigger from the TIL trigger lines instead of the external trigger lines.

Inverting the Polarity of the
V7 43 External Trigger Lines

At times you may wish to change the polarity of the Trig In and Trig Out
lines on the V7 43 VXI Controller. This would allow you to connect to an
external device independent of the device's polarity. There is a SICL utility,
i trginvrt, that can be used to do just this. The following is an example
that inverts the polarity of the Trig In line:

itrginvrt -a vxi -i ON -o OFF

Where:

• -a vxi specifies the interface name, vxi
• - i ON specifies that the Trig In line is to be inverted
• -o OFF specifies that the Trig Out line is not to be inverted

See Appendix E, "Customizing Your VXI/MXI System," for a complete
description of the i trginvrt utility.

NOTE

The external trigger lines remain inverted until power is cycled or the VXI resource manager runs (with
iclear or i vxirm, for example). The external trigger lines then return to the same state as the
trigger line routed to them.

6-45

Using i?blockcopy for DMA Transfers
with the V7 43

The V7 43 VXI Controller has the capability for block copy DMA transfers.
This can be done using the SICL i ?blockcopy functions. Use the following
process to access DMA transfers:

1. Use the SICL imap function to map the desired VXlbus address. Note that
!_MAP _SHARED is not supported for DMA transfers.

2. Use the SICL i timeout function to set up a timeout value.

3. Use the SICL i ?blockcopy function to initiate the DMA transfer. Note
that the swap parameter is ignored.

The following example illustrates using ibblockcopy for a DMA transfer:

NOTE
SICL does not support overlapped OMA transfers, which means the i ?blockcopy functions will
not return until the end of the D MA transfer.

I* blockcopy.c

6-46

This example demonstrates how to use i?blockcopy to move
data. The SICL blockcopy routines will attempt to use DMA,
if one of the locations is A24 or A32 address space. If neither
location is in A24 or A32 space the data will be move in the
normal fashion.

Usage:
blockcopy -a <symbolic_name>

Return Value:
none *I

Using HP SICL with VXl/MXI
Using i ?blockcopy for OMA Transfers

with the V7 43

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <sicl.h>

extern char *optarg;
static void error_usage(const char*);

main(int argc, char *argv[]) {
long o;
INST id;
static char *a24_buf;
static char *shr_buf;
unsigned long bufsize 1024 * 2;
char *addr = NULL;

while ((o = getopt(argc, argv, "a:b:i:n:")) !=EDF)
switch (o) {
case 'a':

addr = optarg;
break;

default:
error_usage(argv[O]);
break;

}

if (addr == NULL)
error_usage(argv[O]);

ionerror (I_ERROR_NO_EXIT);
id= iopen (addr);

shr_buf
a24_buf

imap (id, I_MAP_SHARED, O, 0, O);
imap (id, I_MAP_A24, Ox20, Ox8, O);

printf("Shared memory to A24 (016).\n\n");
iwblockcopy (id,

(unsigned short *)shr_buf,
(unsigned short *)a24_buf,
bufsize,
0

) ;

6-47

Using HP SICL with VXl/MXI
Using i ?blockcopy for OMA Transfers
with the V743

}

printf("A24 to Shared memory (016).\n\n");
iwblockcopy (id,

(unsigned short *)a24_buf,
(unsigned short *)shr_buf,
1,
0

) ;

printf("Shared memory to A24 (032).\n\n");
ilblockcopy (id,

(unsigned long *)shr_buf,
(unsigned long *)a24_buf,
bufsize,
0

) ;

printf("A24 to Shared memory (032).\n\n");
ilblockcopy (id,

(unsigned long *)a24_buf,
(unsigned long *)shr_buf,
bufsize,
0

) ;

static void error_usage(const char *progname)
{

}

6-48

printf("Usage Error: Y.s <options>\n", progname);
printf("\t-a <addr>:\tSICL address\n");
exit(1);

Using VXI Specific Interrupts

See the isetintr function in the HP SICL Reference Manual for a list of
VXI/MXI specific interrupts.

The following pseudo-code describes the actions performed by SICL when a
VME interrupt arrives and/or a VXI signal register write occurs.

6-49

Using HP SICL with VXl/MXI

Using VXI Specific Interrupts

VME Interrupt arrives:
get iack value
send I_INTR_VME_IRQ?
is VME IRQ line configured VME only
if yes then

exit
do lower 8 bits match logical address of one of our servants?
if yes then

I* iack is from one of our servants */
call servant_signal_processing(iack)

else
I* iack is from a non-servant VXI device or VME device */
send I_INTR_VXI_VME interrupt to interface sessions

Signal Register Write occurs:
get value written to signal register
send I_INTR_ANY_SIG
do lower 8 bits match logical address of one of our servants?
if yes then

I* Signal is from one of our servants */
call Servant_signal_processing(value)

else
I* Stray signal */
send I_INTR_VXI_UKNSIG to interface sessions

servant_signal_processing (signal_value)
I* Value is form one of our servants */
is signal value a response signal?

6-50

If yes then
process response signal
exit

I* Signal is an event signal */
is signal an RT or RF event?
if yes then

I* A request TRUE or request FALSE arrived */
process request TRUE or request FALSE event
generate SRQ if appropriate
exit

is signal an undefined command event?
if yes then

I* Undefined colllllland event */
process an undefined command event
exit

I* Signal is a user-defined or undefined event */
send I_INTR_VXI_SIGNAL to device sessions for this device
exit

Using HP SICL with VXl/MXI
Using VXI Specific Interrupts

Processing VME Interrupts Example

I* vmeintr.c
This example uses SICL to cause a VME interrupt from an
HP E1361 register-based relay card at logical address 136. */

#include <sicl.h>

static void vmeint (INST, unsigned short);
static void int_setup (INST, unsigned long);
static void int_hndlr (INST, long, long);
int intr = O;
main() {

}

int Oj

INST id_intf1;
unsigned long mask= 1;

ionerror (I_ERROR_EXIT);
iintroff ();
id_intf1 = iopen ("vxi,136");
int_setup (id_intf1, mask);
vmeint (id_intf1, 136);
I* wait for SRQ or interrupt condition */
iwaithdlr (O);

iintron ();
iclose (id_intf1);

static void int_setup(INST id, unsigned long mask) {
ionintr(id, int_hndlr);
isetintr(id, I_INTR_VXI_SIGNAL, mask);

}

static void vmeint (INST id, unsigned short laddr) {
int reg;
char *a16_ptr = O;

reg = 8;
a16_ptr = imap (id, I_MAP_A16, 0, 1, O);

6-51

}

Using HP SICL with VXl/MXI
Using VXI Specific Interrupts

I* Cause uhf mux to interrupt: *I
iwpoke ((unsigned short *)(a16_ptr + OxcOOO + laddr * 64 +reg), OxO);

static void int_hndlr (INST id, long reason, long sec) {

}

printf ("VME interrupt: reason: Ox%x, sec: Ox%x\n", reason,sec);
intr = 1;

6-52

Summary of VXI/MXI Specific Functions

NOTE

Using these VXI interface specific functions means that the program can not be used on other
interfaces and, therefore, becomes less portable.

These functions will work over a LAN-gatewayed session if the server supports the operation.

Function Name

ivxibusstatus
ivxigettrigroute
ivxirminfo
ivxiservants
ivxitrigoff
ivxitrigon
ivxitrigroute
ivxiwaitnormop
ivxiws

SICL VXl/MXI Functions

Action

Returns requested bus status information
Returns the routing of the requested trigger line
Returns information about VXI devices
Identifies active servants
De-asserts VXI trigger linelsl
Asserts VXI trigger linelsl
Routes VXI trigger lines
Suspends until normal operation is established
Sends a word-serial command to a device

6-53

7

Using HP SICL with
RS-232

Using HP SICL with RS-232

RS-232 is a serial interface that is widely used for instrumentation. Although
it is slow in comparison to HP-IB or VXI, its low cost makes it an attractive
solution in many situations. Because SICL for HP-UX uses the built-in RS-232
facilities, controlling RS-232 instruments is easy to do.

This chapter explains how to use SICL to communicate over RS-232. In order
to communicate over RS-232, you must have loaded the RS232 fileset during
the HP I/O Libraries installation. See the HP 110 Libraries Installation and
Configuration Guide for HP-UX for information. Also note that the RS-232
related SICL functions have the string SERIAL embedded in the functions'
names.

This chapter describes in detail how to open a communications session
and communicate with an instrument over an RS-232 connection.
The example programs shown in this chapter are also provided in the
I opt/ s icl/ share/ examples directory.

This chapter contains the following sections:

• Creating a Communications Session with RS-232

• Communicating with RS-232 Devices

• Communicating with RS-232 Interfaces

• Summary of RS-232 Specific Functions

7-2

Creating a Communications Session
with RS-232

Once you have configured your system for RS-232 communications, you
can start progranuning with the SICL functions. If you have programmed
RS-232 before, you will probably want to open the interface and start
sending commands. With SICL, you must first determine what type of
communications session you will need.

SICL is designed to provide a standard way of accessing instrumentation
that is independent from the type of connection. With HP-IB and VXI, there
can be multiple devices on a single interface. SICL allows you direct access
to a device on an interface without worrying about the type of interface to
which it is connected. To do this, you communicate with a device session.
SICL also allows you to do interface-specific actions, such as setting up device
addresses or setting other interface-specific characteristics. To do this, you
communicate with an interface session.

With RS-232, only one device is connected to the interface. Therefore, it may
seem like extra work to have device sessions and interface sessions. However,
structuring your code so that interface-specific actions are isolated from
actions on the device itself makes your programs easier to maintain. This is
especially important if, at some point, you will want to use a program with a
similar instrument on a different interface, such as HP-IB.

Using SICL to communicate with an instrument on RS-232 is similar to using
SICL over HP-IB. You must first determine what type of communications
session you will need. An RS-232 communications session can be either a
device session or an interface session. Commander sessions are not supported
on RS-232.

An RS-232 device session should be used when sending commands and
receiving data from an instrument. Setting interface characteristics (such as
the baud rate) must be done with an interface session.

7-3

Communicating with RS-232 Devices

The device session allows you direct access to a device without worrying
about the type of interface to which it is connected. The specifics of the
interface are hidden from the user.

Addressing RS-232 Devices

To create a device session, specify either the interface symbolic name
or logical unit followed by a device logical address of 488 in the addr
parameter of the iopen function. The interface symbolic name and
logical unit are defined during the system configuration. See the
HP 110 Libraries Installation and Configuration Guide for HP-UX for
information on .these values. The device address of 488 tells SICL that you
are communicating with an instrument that uses the IEEE 488.2 standard
command structure.

NOTE

If your instrument does not "speak" IEEE 488.2, you can still use SICL to communicate with it.
However, some of the SICL functions that work only with device sessions may not operate correctly.
See the next section titled "HP SICL Function Support with RS-232 Device Sessions."

The following are example addresses for RS-232 device sessions:

COM1,488
COM2,488

7-4

A RS-232 device connected to COMl.
A RS-232 device connected to COM2.

NOTE

Using HP SICL with RS-232

Communicating with RS-232 Devices

The previous examples use the default symbolic name specified during the system configuration.
If you want to change the name listed above, you must also change the symbolic name or
logical unit specified during the configuration. The name used in your SICL program must
match the logical unit or symbolic name specified in the system configuration. Other
possible interface names are serial, SERIAL, and so forth.

For other interfaces, SICL supports the concept of primary and secondary
addresses. For RS-232, the only primary address supported is 488. SICL does
not support secondary addressing on RS-232 interfaces.

The following are examples of opening a device session with an RS-232
device.

INST dmm;
dmm = iopen ("comi,488");

7-5

RS-232 Device Session
Interrupts

Using HP SICL with RS-232

Communicating with RS-232 Devices

HP SICL Function Support with
RS-232 Device Sessions

The following describes how some SICL functions are implemented for RS-232
device sessions.

iprintf,
iscanf,
ipromptf

ireadstb

itrigger

iclear

ionsrq

SICL's formatted I/O routines depend on the concept of an
EOI indicator. Since RS-232 does not define an EOI indicator,
SICL uses the newline character (\n) by default. You cannot
change this with a device session; however, you can use
the iserialctrl function with an interface session. See
the section titled "HP SICL Function Support with RS-232
Interface Sessions" later in this chapter.

Sends the IEEE 488.2 command "*STB?" to the instrument,
followed by the newline character (\n). It then reads the
ASCII response string and converts it to an 8-bit integer.
Note that this will work only if the instrument supports this
command.

Sends the IEEE 488.2 command "*TRG" to the instrument,
followed by the newline character (\n). Note that this will
work only if the instrument supports this command.

Sends a break, aborts any pending writes, discards any data
in the receive buffer, resets any flow control states (such
as XON /XOFF), and resets any error conditions. To reset
the interface without sending a break, use the following
function:

iserialctrl (id, I_SERIAL_RESET, 0)

Installs a service request handler for this session. Service
requests are supported for both device sessions and interface
sessions. See the section titled "HP SICL Function Support
for RS-232 Interface Sessions" later in this chapter.

There are specific device session interrupts that can be used. See is et in tr
in the HP SICL Reference Manual for information on the device session
interrupts for RS-232.

7-6

RS-232 Device Session Example

I* serialdev.c

Using HP SICL with RS-232
Communicating with RS-232 Devices

This example program takes a measurement from a DVM
using a SICL device session. */

#include <sicl.h>
#include <stdio.h>
#include <stdlib.h>

main()
{

}

INST dvm;
double res;

I* Log message and terminate on error */
ionerror (I_ERROR_EXIT);

I* Open the multimeter session */
dvm = iopen ("COM1,488");
itimeout (dvm, 10000);

I* Reset the multimeter */
iprintf (dvm,"*RST\n");
iprintf (dvm, "SYST:REM\n");

I* Take a measurement */
iprintf (dvm,"MEAS:VOLT:DC?\n");

I* Read the results */
iscanf (dvm, "%lf" ,Beres);

I* Print the results */
printf ("Result is %f\n",res);

I* Close the voltmeter session */
iclose (dvm);

7-7

Communicating with RS-232 Interfaces

Interface sessions can be used to get or set the characteristics of the RS-232
connection. Examples of some of these characteristics are baud rate, parity,
and flow control. When communicating with an RS-232 interface session, you
specify the interface name.

Addressing RS-232 Interfaces

To create an interface session on RS-232, specify either the interface
symbolic name or logical unit and a particular device's address in the
addr parameter of the iopen function. The interface symbolic name and
logical unit are defined during the system configuration. See the HP 110
Libraries Installation and Configuration Guide for HP-UX for information on
these values.

The following are example addresses for RS-232 interface sessions:

COM1
COM2
9

NOTE

An interface symbolic name.
An interface symbolic name.
An interface logical unit.

The previous examples use the default symbolic name specified during the system configuration.
If you want to change the name listed above, you must also change the symbolic name or
logical unit specified during the configuration. The name used in your SICL program must
match the logical unit or symbolic name specified in the system configuration. Other
possible interface names are serial, SERIAL, and so forth.

7-8

Using HP SICL with RS-232
Communicating with RS-232 Interfaces

The following example opens an interface session with the RS-232 interface.

INST intf;
intf = iopen (11 COM1 11

);

HP SICL Function Support with
RS-232 Interface Sessions

The following describes how some SICL functions are implemented for RS-232
interface sessions.

iwrite, iread

ixtrig

itrigger

iclear

All 1/0 functions (non-formatted and formatted)
work the same as for device sessions. However, it is
recommended that all 1/0 be performed with device
sessions to make your programs easier to maintain.

Provides a method of triggering using either the DTR
or RTS modem control line. This function clears the
specified modem status line, waits 10 milliseconds,
then sets it again. Specifying I_ TRIG_STD is the
same as specifying I_ TRIG_SERIAL_DTR.

Same as ixtrig (I_ TRIG_STD). Pulses the DTR
modem control line for 10 milliseconds.

Sends a break, aborts any pending writes, discards
any data in the receive buffer, resets any flow
control states (such as XON/XOFF), and resets any
error conditions. To reset the interface without
sending a break, use the following function:

iserialctrl (id, I_SERIAL_RESET, 1)

7-9

Using HP SICL with RS-232
Communicating with RS-232 Interfaces

ionsrq

iserialctrl

7-10

Installs a service request handler for this session.
The concept of service request (SRQ) originates from
HP-IB. On an HP-IB interface, a device can request
service from the controller by asserting a line on the
interface bus. RS-232 does not have a specific line
assigned as a service request line. Any transition on
the designated service request line will cause an
SRQ handler in your program to be called. (Be sure
not to set the SRQ line to CTS or DSR if you are also
using that line for hardware flow control.)

Service requests are supported for both device
sessions and interface sessions.

Sets the characteristics of the serial interface. The
following requests are clarified:

• I_SERIAL_DUPLEX: The duplex setting
determines whether data can be sent and received
simultaneously. Setting full duplex allows
simultaneous send and receive data traffic. Setting
half duplex (the default) will cause reads and
writes to be interleaved, so that data is flowing
in only one direction at any given time. (The
exception to this is if XON/XOFF flow control is
used.)

• I_SERIAL_READ_BUFSZ: The default read buffer
size is 2048 bytes.

• I_SERIAL_RESET: Performs the same function
as the iclear function on an interface session,
except that a break is not sent.

iserialstat

iserialmclctrl

iserialmclstat

Using HP SICL with RS-232

Communicating with RS-232 Interfaces

Gets the characteristics of the serial interface. The
following requests are clarified:

• I_SERIAL_MSL: Gets the state of the modem
status line.

• LSERIAL_STAT: Gets the status of the transmit
and receive buffers and the errors that have
occurred since the last time this request was
made. Only the error bits (I_SERIAL_PARITY,
I_SERIAL_OVERFLOW, I_SERIAL_FRAMING,
and I_SERIAL_BREAK) are cleared; the
I_SERIAL_DAV and I_SERIAL_TEMT bits reflect
the status of the buffers at all times.

• I_SERIAL_READ_DAV: Gets the current amount of
data available for reading. This shows how much
data is in the hardware receive buffer, not how
much data is in the buffer used by the formatted
input routines such as iscanf.

Controls the modem control lines RTS and DTH. If
one of these lines is being used for flow control, you
cannot set that line with this function.

Determines the current state of the modem control
lines. If one of these lines is being used for flow
control, this function may not give the correct state
of that line.

RS-232 Interface Session There are specific interface session interrupts that can be used. See
Interrupts isetintr in the HP SICL Reference Manual for information on the interface

session interrupts for RS-232.

7-11

Using HP SICL with RS-232

Communicating with RS-232 Interfaces

RS-232 Interface Session Example

I* serialintf .c
This program does the following:
1) gets the current configuration of the serial port,
2) sets it to 9600 baud, no parity, 8 data bits, and

1 stop bit, and
3) Prints the old configuration. *I

#include <stdio.h>
#include <sicl.h>

main()
{

7-12

INST intf; /* interface session id *I
unsigned long baudrate, parity, databits, stopbits;
char *parity_str;

I* Log message and exit program on error */
ionerror (I_ERROR_EXIT);

I* open RS-232 interface session */
intf = iopen ("COM1");
itimeout (intf, 10000);

I* get baud rate, parity, data bits, and stop bits */
iserialstat (intf, I_SERIAL_BAUD, tbaudrate);
iserialstat (intf, I_SERIAL_PARITY, &parity);
iserialstat (intf, I_SERIAL_WIDTH, tdatabits);
iserialstat (intf, I_SERIAL_STOP, tstopbits);

I* determine string to display for parity */
if (parity== I_SERIAL_PAR_NONE) parity_str = "NONE";
else if (parity== I_SERIAL_PAR_ODD) parity_str ="ODD";
else if (parity == I_SERIAL_PAR_EVEN) parity_str = "EVEN";
else if (parity == I_SERIAL_PAR_MARK) parity_str = "MARK";
else /*parity== I_SERIAL_PAR_SPACE*/ parity_str ="SPACE";

}

I* set to 9600,NONE,8,1 *I
iserialctrl (intf, I_SERIAL_BAUD,
iserialctrl (intf, I_SERIAL_PARITY,
iserialctrl (intf, I_SERIAL_WIDTH,
iserialctrl (intf, I_SERIAL_STOP,

I* Display previous settings */

Using HP SICL with RS-232
Communicating with RS-232 Interfaces

9600);
I_SERIAL_PAR_NONE);
I_SERIAL_CHAR_8);
I_SERIAL_STOP_1);

printf("Old settings: %5ld, %s, %ld, %ld\n11
,

baudrate, parity_str, databits, stopbits);

I* close port */
iclose (intf);

return O;

7-13

Summary of RS-232 Specific Functions

NOTE

Using these RS-232 interface specific functions means that the program can not be used on other
interfaces and, therefore, becomes less portable.

Function Name

iserialctrl

7-14

Action

Sets the following characteristics of the RS-232
interface:

Request Characteristic

I SERIAL_BAUD Data rate

I_SERIAL_PARITY Parity

I_SERIAL_STOP Stop bits I frame

I_SERIAL_WIDTH Data bits I frame

I_SERIAL_READ_BUFSZ Receive buffer size

I_SERIAL_DUPLEX Data traffic

I_SERIAL_FLOW_CTRL Flow control

I_SERIAL_READ_EOI EDI indicator for reads

I_SERIAL_WRITE_EOI EDI indicator for writes

I_SERIAL_RESET Interface state

Using HP SICL with RS-232
Summary of RS-232 Specific Functions

Settings

2400, 9600, etc.

I_SERIAL_PAR_NONE
I_SERIAL_PAR_EVEN
I_SERIAL_PAR_ODD

I_SERIAL_STOP_1
I_SERIAL_STOP_2

I_SERIAL_CHAR_5
I_SERIAL_CHAR_6
I_SERIAL_CHAR_7
I_SERIAL_CHAR_8

Number of bytes

I_SERIAL_DUPLEX_HALF
I_S~RIAL_DUPLEX_FULL

I_SERIAL_FLOW_NONE
I_SERIAL_FLOW_XON
I_SERIAL_FLOW_RTS_CTS
I_SERIAL_FLOW_DTR_DSR

I_SERIAL_EOI_NONE
I_SERIAL_EOI_BIT8
I_SERIAL_EOI_CHAR I (n)

I_SERIAL_EOI_NONE
I_SERIAL_EOI_BIT8

lnonel

7-15

Using HP SICL with RS-232
Summary of RS-232 Specific Functions

Function Name Action

iserialstat Gets the following information about the RS-232
interface:

Request Characteristic Value

I_SERIAL_BAUD Data rate 2400, 9600, etc.

I_SERIAL_PARITY Parity I_SERIAL_PAR_*

I_SERIAL_STOP Stop bits I frame I_SERIAL_STOP_*

I_SERIAL_WIDTH Data bits I frame I_SERIAL_CHAR_*

I_SERIAL_DUPLEX Data traffic I_SERIAL_DUPLEX_*

I_SERIAL_MSL Modem status lines I_SERIAL_DCD
I_SERIAL_DSR
I_SERIAL_CTS
I_SERIAL_RI
I_SERIAL_TERI
I_SERIAL_D_DCD
I_SERIAL_D_DSR
I_SERIAL_D_CTS

I_SERIAL_STAT Misc. status I_SERIAL_DAV
I_SERIAL_TEMT
I_SERIAL_PARITY
I_SERIAL_OVERFLOW
I_SERIAL_FRAMING
I_SERIAL_BREAK

I_SERIAL_READ_BUFSZ Receive buffer size Number of bytes

I_SERIAL_READ_DAV Data available Number of bytes

I_SERIAL_FLOW_CTRL Flow control I_SERIAL_FLOW_*

I_SERIAL_READ_EOI EDI indicator for reads I_SERIAL_EOI*

I_SERIAL_WRITE_EOI EDI indicator for writes I_SERIAL_EOI*

7-16

Function Name

iserialmclctrl

iserialmclstat

iserialbreak

Action

Sets or Clears the modem control lines. Modem
control lines are either I_SERIAL_RTS or
I_SERIAL_DTR.

Gets the current state of the modem control lines.

Sends a break to the instrument. Break time
is 10 character times, with a minimum time of
50 milliseconds and a maximum time of 250
milliseconds.

7-17

8

Using HP SICL with LAN

Using HP SICL with LAN

This chapter explains how to use SICL over LAN (Local Area Network).
LAN is a natural way to extend the control of instrumentation beyond the
limits of typical instrument interfaces. In order to communicate over the
LAN, you must have loaded the LAN fileset during installation for a host
system acting as a LAN client, and you must have loaded the LANSVR fileset
during installation for a host system acting as a LAN server. See the HP 110
Libraries Installation and Configuration Guide for HP-UX for information.
The example programs shown in this chapter are also provided in the
/opt/sicl/share/examples directory.

This chapter contains the following sections:

• Overview of HP SICL LAN

• Considering LAN Configuration and Performance

• Communicating with Devices over LAN

• Using Timeouts with LAN

• Using Signal Handling with LAN

• Summary of LAN Specific Functions

8-2

Overview of HP SICL LAN

The LAN software provided with SICL uses the client/server model of
computing. Client/server computing refers to a model where an application,
the client, does not perform all the necessary tasks of the application itself.
Instead, the client makes requests of another computing device, the server,
for certain services. Examples that you may have in your workplace include
shared file servers, print servers, or database servers.

The use of LAN for instrument control also provides other advantages
associated with client/server computing:

• Resource sharing by multiple applications/people within an organization.

• Distributed control, where the computer running the application controlling
the devices need not be in the same room or even the same building as the
devices themselves.

As shown in the following figure, a LAN client computer system (such as
a Series 700 HP-UX Workstation) makes SICL requests over the network
to a LAN server (such as a Series 700 HP-UX workstation, a Microsoft®
Windows 95® or Windows NT® PC, or an HP E2050 LAN/HP-IB Gateway).
The LAN server is connected to the instrumentation or devices that must be
controlled. Once the LAN server has completed the requested operation on
the instrument or device, the LAN server sends a reply to the LAN client.
This reply contains any requested data and status information which indicates
whether the operation was successful.

8-3

Using HP SICL with LAN

Overview of HP SICL LAN

Client

LAN

Server

Series 700s, Windows 95 PCs,
Windows NT PCs

Gateway

to-;.18ot~~~)

HP E2050
LAN/HP-18
Gateway

HP-IB
Instruments

Using the LAN Client and LAN Server (Gateway)

HP-IB bus

The LAN server acts as a gateway between the LAN that your client system
supports, and the instrument-specific interface that your device supports. Due
to the LAN server's gateway functionality, we refer to devices or interfaces
which are accessed via one of these LAN-to-instrurnenLinterface gateways as
being a LAN-gatewayed device or a LAN-gatewayed interface.

8-4

Using HP SICL with LAN

Overview of HP SICL LAN

LAN Software Architecture

As the following figure shows, the client system contains the LAN client
software (SICL-LAN fileset) and the LAN software (TCP/IP) needed to
access the server (gateway). The gateway contains the LAN server
software (SICL-LANSVR fileset), LAN (TCP/IP) software, and the instrument
driver software needed to communicate with the client and to control the
instruments or devices connected to it.

Client System Server (Gateway) Instrument

Application LAN Server r ln~trument l
SICL TCP

Firmware

LAN Client IP
Instrument

LAN Interface
Driver

TCP l
IP HP-18 bus (or other)

LAN Interface

L
LAN

LAN Software Architecture

8-5

Using HP SICL with LAN

Overview of HP SICL LAN

LAN Networking Protocols The LAN software provided with SICL is built on top of standard LAN
networking protocols. There are two LAN networking protocols provided
with the SICL software. You can choose one or both of these protocols when
configuring your systems (via the iosetup utility) to use SICL over LAN. The
two protocols are as follows:

• SICL LAN Protocol is a networking protocol developed by HP which is
compatible with all existing SICL LAN products. This LAN networking
protocol is the default choice in the iosetup utility when you are
configuring LAN for SICL.

• TCP/IP Instrument Protocol is a networking protocol developed by
the VXIbus Consortium based on the SICL LAN Protocol which permits
interoperability of LAN software from different vendors that meet the
VXIbus Consortium standards. Note that this LAN networking protocol
may not be implemented with all the SICL LAN products at this time. The
TCP/IP Instrument Protocol on HP-UX currently supports SICL operations
over the LAN to HP-IB/GPIB and VXI interfaces. Also, some SICL
operations are not supported when using the TCP/IP Instrument Protocol.
See the section titled "HP SICL Function Support with LAN-gatewayed
Sessions" later in this chapter.

When using either of these networking protocols, the LAN software provided
with SICL uses the TCP /IP protocol suite to pass messages between the LAN
client and the LAN server. The server accepts device I/O requests over the
network from the client and then proceeds to execute those I/O requests on a
local interface, such as HP-IB.

You can use both LAN networking protocols with a LAN client. To do so,
simply configure both the SICL LAN Protocol and the TCP /IP Instrument
Protocol on the LAN client system via the iosetup utility. (See the HP 110
Libraries Installation and Configuration Guide for HP-UX for information
on running iosetup.) Then use the name of the interface supporting the
protocol you wish to use in each SICL iopen call of your program. (See the
section "Communicating with Devices Over LAN" later in this chapter for
details on how to create communications sessions with SICL over LAN using
each of these protocols.) Note, however, that the LAN server does not support
simultaneous connections from LAN clients using the SICL LAN Protocol and
from other LAN clients using the TCP /IP Instrument Protocol.

8-6

HP SICL LAN Server

Using HP SICL with LAN

Overview of HP SICL LAN

SICL includes the necessary software to allow a Series 700 workstation to act
as a LAN-to-instrumenLinterface gateway. The fileset SICL-LANSVR provides
a daemon, siclland, which will accept I/O requests from a SICL LAN client
and perform the I/O operations on a local interface.

To use this capability, the Series 700 must have a local interface configured
for I/O. The supported interfaces for this release are HP-IB, VXI/MXI, and
RS-232 for the SICL LAN protocol and GPIB/HP-IB and VXI interfaces for
the TCP/IP Instrument Protocol. See the "HP SICL Function Support with
LAN-gatewayed Sessions" section later in this chapter for information on
which functions are not supported over LAN.

Note that the timing of operations performed remotely over a network will be
different from the timing of operations performed locally. The extent of the
timing difference will, in part, depend on the bandwidth of and the traffic on
the network being used.

Contact your local HP representative for a current list of other HP supported
SICL LAN servers.

8-7

Considering LAN Configuration and Performance

As with other client/server applications on a LAN, when deploying an
application which uses SICL LAN, consideration must be given to the
performance and configuration of the network the client and server. will be
attached to. If the network to be used is not a dedicated LAN or otherwise
isolated via a bridge or other network device, current utilization of the
LAN must be considered. Depending on the amount of data which will be
transferred over the LAN via the SICL application, performance problems
could be experienced by the SICL application or other network users if
sufficient bandwidth is not available. This is not unique to SICL over
LAN, but it is simply a general design consideration when developing any
client/server application.

If you have questions concerning the ability of your network to handle SICL
traffic, consult with your network administrator or network equipment
providers.

8-8

Addressing Devices or
Interfaces with
LAN-gatewayed Sessions

Communicating with Devices Over LAN

There are several different types of sessions which are supported over LAN.
This section describes those session types and what behavior should be
expected for the various SICL calls.

LAN-gatewayed Sessions

Communicating with a device over LAN through a LAN-to­
instrumenLinterface gateway preserves the functionality of the
gatewayed-interface with only a few exceptions (see the "HP SICL Function
Support with LAN-gatewayed Sessions" section later in this chapter). This
means most operations you might request of an interface, such as HP-IB,
connected directly to your controller, you can request of a remote interface
via the LAN gateway. The only portions of your application which must
change are the addresses passed to the iopen calls (unless those addresses
are stored in a configuration file, in which case no changes to the application
itself are required). The address used for a local interface must have a LAN
prefix added to it so that the SICL software knows to direct the request to a
SICL LAN server on the network.

To create a LAN-gatewayed session, specify the LAN interface symbolic
name or logical unit, the IP address or hostname of the server system,
and the address of the remote interface or device in the addr parameter
of the iopen function. The interface symbolic name and logical unit
are defined during the system configuration. See the HP 110 Libraries
Installation and Configuration Guide for HP-UX for information on these
values.

The following are examples of LAN-gatewayed addresses:

lan[instserv] :GPIB,7 A device address corresponding to the
device at primary address 7 on the GPIB
interface attached to the system named
instserv.

8-9

Using HP SICL with LAN

Communicating with Devices Over LAN

lan [instserv .hp. corn] : GPIB, 7 A device address corresponding to the
device at primary address 7 on the GPIB
interface attached to the system named
instserv in the hp. corn domain (Fully
qualified domain names may be used).

lan[128.10.0.3]:hpib,3,2

lan[intserv] :GPIB

30,intserv:hpib,3,2

lan[intserv] :GPIB,crndr

NOTE

A device address corresponding to the
device at primary address 3, secondary
address 2, on the hpib interface
attached to the system with IP address
128.10.0.3.

An interface address corresponding to the
GPIB interface attached to the system
named int s erv.

A device address corresponding to the
device at primary address 3, secondary
address 2, on the hpib interface attached
to the system named intserv (30 is the
default logical unit for LAN).

A commander session with the GPIB
interface attached to the system named
intserv (assumes that the server supports
GPIB commander sessions).

If you are using the IP address of the server system rather than the hostname, then you cannot use
the comma notation, but must use the bracket notation:

incorrect

ia.n,12a.10.o.3:hpib

correct

lan[128.10.0.3] :hpib

8-10

Using HP SICL with LAN
Communicating with Devices Over LAN

The following table shows the relationship between the address passed to
iopen, the session type returned by igetsesstype, the interface type
returned by igetintftype, and the value returned by igetgatewaytype:

Address Session Type Interface Type Gateway Type

Ian LSESS_INTF UNTF_LAN UNTF_NONE

lan[instserv]:hpib LSESS_INTF LINTF _GPIB UNTF_LAN

lan[instserv]:hpib, 7 LSESS_DEV LINTF _GPIB UNTF_LAN

hpib LSESS_INTF LINTF_GPIB UNTF _NONE

hpib,7 LSESS_DEV LINTF _GPIB UNTF _NONE

8-11

Using HP SICL with LAN

Communicating with Devices Over LAN

HP SICL Function Support A gatewayed-session to a remote interface provides the same SICL function
with LAN-gatewayed support as if the interface was local, with the following exceptions or
Sessions qualifications.

The following functions are not supported over LAN:

• i?blockcopy
• imap
• imapinfo
• i?peek
• i?poke
• i?popfifo
• i?pushfifo
• iunmap

The following SICL functions, in addition to those listed above, are not
supported with the TCP/IP Instrument Protocol:

• All VXI specific functions
• All RS-232/serial specific functions
• igetlu
• ionintr
• isetintr
• igetintf sess
• igetonintr
• igpibgett1delay
• igpibllo
• igpibppoll
• igpibppollconf ig
• igpibppollresp
• igpibsett1delay

For the igetdevaddr, igetintftype, and igetsesstype functions to be
supported with the TCP/IP Instrument Protocol, the remote address strings
must follow the TCP/IP Instrument Protocol naming conventions - gpibO,
gpib1, and so forth. For example:

gpib0,7
gpib1'7 ,2
gpib2

However, since the interface names at the remote server may be configurable,
this is not guaranteed. Also note that the correct behavior of iremot e and
iclear depend on the correct address strings being used.

8-12

Using HP SICL with LAN
Communicating with Devices Over LAN

Any of the following functions may timeout over LAN, even those functions
which cannot timeout over local interfaces. See the "Using Timeouts with
LAN" section later in this chapter for more details. These functions all cause
a request to be sent to the server for execution.

• All HP-IB specific functions
• All VXI specific functions
• All Serial specific functions
• iclear
• iclose
• if lush
• if read
• ifwrite
• igetintfsess
• ilocal
• ilock
• ionintr
• ionsrq
• iopen
• iprintf
• ipromptf
• iread
• ireadstb
• iremote
• iscanf
• isetbuf
• isetintr
• isetstb
• isetubuf
• itrigger
• iunlock
• iversion
• iwrite
• ixtrig

8-13

LAN-gatewayed Session
Example

Using HP SICL with LAN

Communicating with Devices Over LAN

The following SICL functions perform as follows with LAN-gatewayed
sessions:

idrvrversion

iwrite, iread

Returns the version numbers from the server.

actualcnt may be reported as 0 when some bytes
were transferred to or from the device by the server.
This can happen if the client times out while the
server is in the middle of an I/O operation.

The following example program opens an HP-IB device session via a
LAN-to-HPIB gateway. Note that this example is the same as the first
example in the "Using HP SICL with HP-IB" chapter, only the addresses
passed to the iopen calls are modified. The example addresses assume the
system with hostname instserv is acting as a LAN-to-HPIB gateway.

8-14

Using HP SICL with LAN
Communicating with Devices Over LAN

I• landev.c
This example program sends a scan list to a switch and while
looping closes channels and takes measurements. */

#include <sicl.h>
#include <stdio.h>

main()
{

}

INST dvm;
INST sw;

double res;
int i;

I* Print message and terminate on error */
ionerror (I_ERROR_EXIT);

I* Open the multimeter and switch sessions */
dvm = iopen ("lan[instserv] :hpib,9,3");
sw = iopen ("lan[instserv] :hpib,9,14");
itimeout (dvm, 10000);
itimeout (sw, 10000);

/*Set up trigger*/
iprintf (sw, "TRIG: SOUR BUS\n");

/*Set up scan list•/
iprintf (sw, "SCAN (<HOO: 103) \n");
iprintf (sw,"INIT\n");

for (i=1;i<=4;i++)
{

}

I* Take a measurement */
iprintf (dvm,"MEAS:VOLT:DC?\n");

/• Read the results */
iscanf (dvm, 11%lf 11

, &res);

I* Print the results *I
printf ("Result is %f\n",res);

/*Trigger to close channel*/
iprintf (sw, "TRIG\n");

I* Close the multimeter and switch sessions */
iclose (dvm);
iclose (sw);

8-15

Using HP SICL with LAN

Communicating with Devices Over LAN

LAN Interface Sessions

The LAN interface, unlike most other supported SICL interfaces, does not
allow for direct communication with devices via interface commands. LAN
interface sessions, if used at all, will typically be used only for setting the
client side LAN timeout (see the "Using Timeouts with LAN" section later in
this chapter).

Addressing LAN Interface To create a LAN interface session, specify either the interface symbolic name
Sessions or logical unit and a particular device's address in the addr parameter

of the iopen function. The interface symbolic name and logical unit
are defined during the system configuration. See the HP 110 Libraries
Installation and Configuration Guide for HP-UX for information on these
values.

The following are examples of LAN interface addresses:

lan A LAN interface address

30 A LAN interface address (30 is the default lu for LAN)

HP SICL Function Support The following SICL functions are not supported over LAN interface sessions
with LAN Interface and will return I_ERR_NOTSUPP:
Sessions

• All HP-IB specific functions
• All VXI specific functions
• All serial specific functions
• All formatted 1/0 routines
• iwrite
• iread
• ilock
• iunlock
• isetintr
• itrigger
• ixtrig
• ireadstb
• isetstb
• imapinf o
• ilocal
• iremote

8-16

Using HP SICL with LAN
Communicating with Devices Over LAN

The following SICL functions perform as follows with LAN interface sessions:

iclear

ionsrq

ionintr

igetluinfo

Performs no operation, returns I_ERR_NOERROR.

Performs no operation against SICL LAN gateways, returns
I_ERR_NOERROR.

Performs no operation, returns I_ERR_NOERROR.

This function returns information about local interfaces
only. It does not return information about remote interfaces
that are being accessed via a LAN-to-instrumenLinterface
gateway.

8-17

Using Timeouts with LAN

The client/server architecture of the LAN software requires the use of two
timeout values, one for the client and one for the server. The server's
timeout value is the SICL timeout value specified with the it imeout
function. The client's timeout value is the LAN timeout value, which may be
specified with the ilantimeout function.

When the client sends an I/O request to the server, the timeout value
specified with i timeout, or the SICL default, is passed with the request.
The server will use that timeout in performing the I/O operation, just as if
that timeout value had been used op. a local I/O operation. If the server's
operation is not completed in the specified time, then the server will send a
reply to the client which indicates that a timeout occurred, and the SICL call
made by the application will return I_ERR_ TIMEOUT.

When the client sends an I/O request to the server, it starts a timer and
waits for the reply from the server. If the server does not reply in the time
specified, then the client stops waiting for the reply from the server and
returns I_ERR_ TIMEOUT to the application.

LAN Timeout Functions

The ilantimeout and ilangettimeout functions can be used to set or
query the current LAN timeout value. They work much like the i timeout
and igettimeout functions. The use of these functions is optional, however,
since the software will calculate the LAN timeout based on the SICL timeout
in use and configuration values specified during the system configuration
(see the HP 110 Libraries Installation and Configuration Guide for HP-UX
for information on setting this value). Once ilantimeout is called by the
application, the automatic LAN timeout adjustment described in the next
sub-section is turned off. See the HP SICL Reference Manual for details of the
ilantimeout and ilangettimeout functions.

8-18

Using HP SICL with LAN

Using Timeouts with LAN

Note that a timeout value of 1 used with the ilantimeout function has
special significance, causing the LAN client to not wait for a response from
the LAN server. However, the timeout value of 1 should be used in special
circumstances only and should be used with extreme caution. For more
information about this timeout value, see the section, "Using the No-Wait
Value," under the ilantimeout function in the HP SJCL Reference Manual.

Def a ult LAN Timeout Values

The LAN Client interface configuration specifies two timeout-related
configuration values for the LAN software. These values are used by the
software to calculate timeout values if the application has not previously
called ilantimeout.

Server Timeout

Client Timeout
Delta

Timeout value passed to the server when an application
either uses the SICL default timeout value of infinity or
sets the SICL timeout to infinity (0). Value specifies the
number of seconds the server will wait for the operation
to complete before returning I _ERR_ TIMEOUT.

A value of 0 in this field will cause the server to be sent
a value of infinity if the client application also uses the
SICL default timeout value of infinity or sets the SICL
timeout to infinity (0).

Value added to the SICL timeout value (server's timeout
value) to determine the LAN timeout value (client's
timeout value). Value specifies the number of seconds.

See the HP 110 Libraries Installation and Configuration Guide for HP-UX for
information on setting these values.

8-19

Using HP SICL with LAN

Using Timeouts with LAN

NOTE

Once ilantimeout is called, the software no longer sends the server timeout to the server and
no longer attempts to determine a reasonable client-side timeout. It is assumed that the application
itself wants full control of timeouts, both client and server.

Also note that ilantimeout is per process. That is, all sessions which are going out over the
network are affected when ilant imeout is called.

If the application has not called the ilant imeout function, then the timeouts
are adjusted via the following algorithm:

• The SICL timeout, which is sent to the server, for the current call is
adjusted if it is currently infinity (0). In that case it will be set to the
Server Timeout value.

• The LAN timeout is adjusted if the SICL timeout plus the Client Timeout
Delta is greater than the current LAN timeout. In that case the LAN
timeout will be set to the SICL timeout plus the Client Timeout Delta.

• The calculated LAN timeout only increases as necessary to meet the
needs of the application, but never decreases. This avoids the overhead of
readjusting the LAN timeout every time the application changes the SICL
timeout.

• The first iopen call used to set up the server connection uses the Client
Timeout Delta specified during the SICL LAN interface configuration for
portions of the iopen operation. The timeout value for TCP connection
establishment is not affected by the Client Timeout Delta.

8-20

Using HP SICL with LAN

Using Timeouts with LAN

To change the defaults, do the following:

1. Exit any SICL LAN applications which you want to reconfigure.

2. As root, run the iosetup utility and edit the LAN interface. Change
the Server Timeout or Client Timeout Delta parameter. (See the HP 110
Libraries Installation and Configuration Guide for HP-UXfor information
on changing these values.

3. Restart the SICL LAN applications.

When only reconfiguring the LAN interface, note that you do not need to
rebuild the kernel for changes to take effect.

8-21

Using HP SICL with LAN
Using Timeouts with LAN

Timeout Configurations to Be Avoided

The LAN timeout used by the client should always be set greater than the
SICL timeout used by the server. This avoids the situation where the client
times out while the server continues to attempt the request, potentially
holding off subsequent operations from the same client. This also avoids
having the server send unwanted replies to the client.

The SICL timeout used by the server should generally be less than infinity.
Having the LAN server wait less than forever allows the LAN server to
detect clients that have died abruptly or network problems and subsequently
release resources associated with those clients, such as locks. Using the
smallest possible value for your application will maximize the server's
responsiveness to dropped connections, including the client application being
terminated abnormally. Using a value less than infinity is made easy for
application developers due to the Server Timeout S9Rftguration value in the
LAN interface configuration. Even if your applicapon uses the SICL default
of infinity, or if it imeout is used to set the timeiout to infinity, by setting
the Server Timeout value to some reasonable number of seconds, the server
will be allowed to timeout and detect network trouble if it has occurred and
release resources.

Note that another way to ensure that the server does not wait forever is via
the -t timeout parameter to the siclland daemon. By default, siclland
will use a 2 minute timeout if a timeout value of infinity is received from the
client.

8-22

Using HP SICL with LAN

Using Timeouts with LAN

Application Terminations and Timeouts

If an application is killed either via (Ctrl 1-© or the kill command while in
the middle of a SICL operation which is performed at the LAN server, the
server will continue to try the operation until the server's timeout is reached.
By default, the LAN server associated with an application using a timeout of
infinity which is killed may not discover that the client is no longer running
for 2 minutes. (If you are using a server other than the LAN server on
HP-UX, check that server's documentation for its default behavior.)

If i timeout is used by the application to set a long timeout value, or if both
the LAN client and LAN server are configured to use infinity or a long timeout
value, then the server may appear "hung." If this situation is encountered,
the LAN client (via the Client Timeout Delta value) or the LAN server (via the
Server Timeout value) may be configured to use a shorter timeout value.

If long timeouts must be used, the server may be reset. An HP-UX server
may be reset by logging into the server host and killing the running
siclland daemon(s). Note that the latter procedure will affect all clients
connected to the server. See the LAN section in Chapter 9, "Troubleshooting
Your HP SICL Program," for more details. Also see the documentation of the
server you are using for the method to be used to reset the server.

8-23

Using Signal Handling with LAN

SIGIO Signals

SICL uses SIGIO for SRQs and interrupts on LAN interfaces. The SICL LAN
client installs a signal handler to catch SIGIO signals. To enable sharing of
SIGIO signals with other portions of an application, the SICL LAN SIGIO
signal handler remembers the address of any previously installed SIGIO
handler, and calls this handler after processing a SIGIO signal itself. If your
application installs a SIGIO handler, it should also remember the address of a
previously installed handler and call it before completing.

The signal number used with LAN (SIGIO) can not be changed. Note that
is et s ig () has no effect on LAN.

However, if you must share SIGIO or any signal set with isetsig () between
SICL and another portion of your application, your application must adhere to
the following guidelines. These guidelines allow for multiple signal handlers
to be called when a signal is received.

• Store the address of the previously installed signal handler when installing
your signal handler. Call this stored handler address when a signal is
received.

Note that both SIG_DFL and SIG_IGN may be returned as "previous"
handlers, and an application may need to deal with these as necessary.

• Handle spurious signals (that is, signals intended for the previous handler
or other portions of your application).

• Install a signal handler once per process, and never remove the handler.

• Don't block signals by default. (However, blocking/unblocking around
short, ·critical operations is okay.)

• Use sigaction() to install signal handlers. Other signal handling
mechanisms supported by HP-UX are not compatible with SICL, which uses
sigaction().

8-24

SIGPIPE Signals

Using HP SICL with LAN
Using Signal Handling with LAN

The SICL LAN client also installs a signal handler for SIGPIPE. This ensures
that a broken network connection will not cause the SICL application to
terminate or exit unexpectedly.

The SICL LAN client does no special processing when it receives a SIGPIPE
signal, but will pass the signal along to a previously installed SIGPIPE handler
unless configured not to during the SICL configuration. If an application
installs a SIGPIPE handler, it should chain handlers in the same manner as
described for SIGIO.

8-25

Summary of LAN Specific Functions

NOTE

Using these LAN interface specific functions means that the program can not be used on other
interfaces and, therefore, becomes less portable.

8-26

Function Name

ilantimeout

ilangettimeout

Action

Sets LAN timeout value

Returns LAN timeout value

igetgatewaytype Indicates whether the session is via a LAN gateway

9

Troubleshooting Your
HP SICL Program

Troubleshooting Your HP SICL Program

This chapter provides a guide to troubleshooting errors that may occur when
using SICL.

This chapter contains the following sections:

• Installing an Error Handler

• Looking at Error Codes and Messages

• Troubleshooting HP SICL

• Troubleshooting HP SICL over LAN

• Troubleshooting HP SICL over RS-232

• Troubleshooting HP SICL over GPIO

• Where to Find Additional Information

9-2

Installing an Error Handler

One of the simplest ways to detect SICL run-time errors is to install an error
handler. SICL allows you to install an error handler for all SICL functions
within an application. When a SICL function call results in an error, the error
routine specified in the error handler is called. You can use one of the error
routines provided by SICL, or you can write your own error routine.

Use the SICL ionerror function to install an error handler:

ionerror (proc);

Where proc is the error routine to be called when a SICL function call results
in an error. The following are error routines provided by SICL:

I_ERROR_EXIT

I_ERROR_NO_EXIT

This value installs a special error handler which will
print a diagnostic message and then terminate the
process.

This value installs a special error handler which
will print a diagnostic message and then allow the
process to continue execution.

See "Using Error Handlers" in Chapter 3 of this manual for more information
on installing a SICL error handler and writing your own error routine. You
can also see the HP SICL Reference Manual for details about the ionerror
function call.

9-3

Looking at Error Codes and Messages

When you install a default SICL error routine such as I_ERROR_EXIT or
I_ERROR_NOEXIT with an ionerror call, the SICL error message is printed.

You may also use ionerror to install your own custom error handler. Your
error handler can call igeterrstr with the given error code and the
corresponding error message string will be returned.

The following table contains an alphabetical summary of SICL error messages:

Error Codes and Messages

Error Code

I_ERR_ABORTED

I_ERR_BADADDR

Error String

Externally aborted

Bad address

I_ERR_BADCONFIG Invalid configuration

I_ERR_BADFMT Invalid format

I_ERR_BADID Invalid INST

I_ERR_BADMAP Invalid map request

I_ERR_BUSY Interface is in use by
non-SICL process

I_ERR_DATA Data integrity violation

I_ERR_INTERNAL Internal error occurred

Description

A SICL call was aborted by external means.

The device/interface address passed to iopen doesn't exist.
Verify that the interface name is the one assigned via the 1/0
Setup utility (hwconf ig. cf file!.

An invalid configuration was identified when calling iopen.

Invalid format string specified for iprintf or iscanf.

The specified INST id does not have a corresponding
iopen.

The imap call has an invalid map request.

The specified interface is busy.

The use of CRC, Checksum, and so forth imply invalid data.

SICL internal error.

I_ERR_INTERRUPT Process interrupt occurred A process interrupt has occurred in your application.

I_ERR_INVLADDR Invalid address

I_ERR_IO Generic I/O error

I_ERR_LOCKED Locked by another user

9-4

The address specified in iopen is not a valid address (for
example, "hpi b, 5 7" I.

An 1/0 error has occurred for this communication session.

Resource is locked by another session (see
isetlockwai t).

Troubleshooting Your HP SICL Program

Looking at Error Codes and Messages

Error Codes and Messages (continued)

Error Code

I ERR_NOCMDR

I_ERR_NOCONN

Error String

Commander session is not
active or available

No connection

I_ERR_NODEV Device is not active or
available

I_ERR_NOERROR No Error

I_ERR_NOINTF Interface is not active

I_ERR_NOLOCK Interface not locked

I_ERR_NOPERM Permission denied

I_ERR_NORSRC Out of resources

I_ERR_NOTIMPL Operation not implemented

I_ERR_NOTSUPP Operation not supported

I_ERR_OS Generic D.S. error

I_ERR_OVERFLOW Arithmetic overflow

I_ERR_PARAM Invalid parameter

I_ERR_SYMNAME Invalid symbolic name

I_ERR_SYNTAX Syntax error

I_ERR_TIMEOUT Timeout occurred

I_ERR_VERSION Version incompatibility

Description

Tried to specify a commander session when it is not active,
available, or does not exist.

Communication session has never been established, or
connection to remote has been dropped.

Tried to specify a device session when it is not active,
available, or does not exist.

No SICL error returned, function return value is zero IOI.

Tried to specify an interface session when it is not active or
available, or does not exist.

An iunlock was specified when device was not locked.

Access rights violated.

No more system resources available.

Call not supported on this implementation. The request is
valid, but not supported on this implementation.

Operation not supported on this implementation.

SICL encountered an operating system error.

Arithmetic overflow. The space allocated for data may be
smaller than the data read.

The constant or parameter passed is not valid for this call.

Symbolic name passed to iopen not recognized.

Syntax error occurred parsing address passed to iopen.
Make sure that you have formatted the string properly. White
space is not allowed.

A timeout occurred on the read/write operation. The device
may be busy, in a bad state, or you may need a longer
timeout value for that device. Check also that you passed the
correct address to iopen.

The iopen call has encountered a SICL library that is
newer than the drivers. Need to update drivers.

9-5

Compile Errors -
Unexpected symbol

cc:
cc:
cc:
cc:

Troubleshooting HP SICL

When using SICL you typically have to go through a compile/link process
and then run the program. You can get errors in either of these steps. This
section is divided into two subsections:

• Compile and Link Errors
• Run-time Errors

Compile and Link Errors

You get a list of errors where the compiler doesn't recognize SICL symbols.
For example:

"example.c", line 12 : error 1000: Unexpected symbol: "id".
"example.c", line 12: error 1573: Type of "id" is undefined.
"example.c", line 16: error 1588: "LERROR_EXIT" undefined.
"example.c":, line 19: error 1549: Modifiable lvalue required

for assignment operator.

Possible Solution. This error indicates that some of the SICL declarations
are undefined during the compile process. Check to make sure you added
the sicl.h header file. Use the #include command at the beginning of
your program followed by the sicl .h header file. Also, if you need to link
with the archive library (HP-UX 9 only), make sure to include the -Wl, -E
and - ldld compile/link options. See "Compiling and Linking an HP SICL
Program" in Chapter 2 for more information.

9-6

Link Errors - Unsatisfied
symbols

Compile/Link Error -
Undefined id

Troubleshooting Your HP SICL Program

Troubleshooting HP SICL

The linker doesn't recognize the SICL function calls. For example:

/bin/ld : Unsatisfied symbols:
I_ERROR_EXIT (code)
iclose (code)
ipromptf (code)
ionerror (code)
iopen (code)

Possible Solution. This error indicates that the SICL functions are not being
found during the link process. Most likely, you have left out the SICL library
during the link process. Link in the SICL library with the -lsicl option
during the compile/link process.

SICL assignments are undefined. For example:

"example.c", line 10 : error 1588 "id" undefined
"example.c", line 10 : error 1549 Modifiable lvalue

required for assignment operator

Possible Solution. This error indicates that one of your assignments is
undefined. Check to make sure you declared your session as a SICL type
INST at the beginning of your program. Include an INST id at the beginning
of your program.

9-7

Program Hangs

iopen fails - Timeout
occurred

iopen fails - Invalid
Address

Invalid INST

Troubleshooting Your HP SICL Program

Troubleshooting HP SICL

Run-time Errors

Your program hangs while either sending or receiving data.

Possible Solution. If your SICL program hangs the first thing you should
try is to add the SICL itimeout function. You must specify with what device
or interface to time out. However, once the timeout time is reached, the call
will return with the I _ERR_ TIMEOUT error.

iopen fails with a timeout error. For example:

ERROR hpib,22 Timeout occurred

Possible Solution. This error indicates that the device or interface you
are trying to communicate with is not responding. Or, insufficient time was
allowed for the operation, in which case a longer timeout is needed. You may
be trying to communicate with a device that is not available on the bus.
Check the device address.

iopen fails with an invalid address. For example:

ERROR hpib2,16 Invalid address

Possible Solution. This error indicates that the address specified is not
valid. Several things can cause this. First of all you may be attempting to
communicate with a non-existent interface. First, check that the interface
name in the SICL configuration is correct. Second, you may have an invalid
address. Check the address limitations. See the addressing section in the
interface specific chapter.

Invalid INST when trying to communicate with a session. For example:

ERROR: : Invalid INST

Possible Solution. This error indicates that a session for the listed INST is
not valid. Make sure you opened a communications session using the iopen
function.

9-8

Troubleshooting HP SICL Over LAN
(Client and Server)

Before SICL LAN can be expected to function, the client must be able to
talk to the server over the LAN. Use the following techniq_ues to determine
whether the problem you are experiencing is a general network problem, or
is specific to the SICL LAN software:

• If your application is unable to open a session to the SICL LAN server, the
first diagnostic to try is the ping utility. This command allows you to test
general network connectivity between your client and server systems.
Using ping might look something like the following:

>ping instserv.hp.com
PING instserv.hp.com: 64 byte packets
64 bytes from 128.10.0.3: icmp_seq=O. time=3. ms
64 bytes from 128.10.0.3: icmp_seq=1. time=3. ms
64 bytes from 128.10.0.3: icmp_seq=2. time=2. ms

Where each line after the PING line is an example of a packet successfully
reaching the server. If after several seconds ping does not print any lines,
use CTRL-C to kill ping. ping will report on what it found:'

----instserv.hp.com PING Statistics----
4 packets transmitted, 0 packets received, 100% packet loss

This indicates that the client was unable to contact the server. In this
situation you should contact your network administrator to determine what
is wrong with the LAN. Once the LAN problem has been corrected, you
can then retry your SICL LAN application. See the ping (1M) man page for
more information.

9-9

Troubleshooting Your HP SICL Program

Troubleshooting HP SICL Over LAN
(Client and Server)

• Another tool which can be used to determine where a problem might
reside is rpcinfo. (Note that rpcinfo resides under the /usr/bin
directory). This tool tests whether a client can make an RPC call to a
server. The first rpcinfo option to try is -p, which will print a list of
registered programs on the server:

> rpcinf o -p instserv
program verses proto port
100001 1 udp 1788 rstatd
100001 2 udp 1788 rstatd
100001 3 udp 1788 rstatd
100002 1 udp 1789 rusersd
100002 2 udp 1789 rusersd
395180 1 tcp 1138
395183 1 tcp 1038

Several lines of text will likely be returned, but the ones of interest are the
lines for programs 395180 which is the SICL LAN Protocol and 395183
which is the TCP/IP Instrument Protocol. The port number will vary. This
is the siclland daemon line (you may or may not see the word siclland
at the end of this line). If the line for program 395180 or 395183 is
not present, then your LAN server is likely misconfigured. Consult your
server's documentation, correct the configuration problem, and then retry
your application.

• The second rpcinfo option which can be tried is -t, which will attempt to
execute procedure 0 of the specified program.

For the SICL LAN Protocol:

> rpcinfo -t instserv 395180
program 395180 version 1 ready and waiting

For the TCP/IP Instrument Protocol:

> rpcinfo -t instserv 395183
program 395183 version 1 ready and waiting

If you do not see one of the above, your server is likely misconfigured or
not running. Consult your server's documentation, correct the problem,
and then retry your application. See the rpcinfo (1M) man page for more
inf onnation.

9-10

iopen fails - syntax
error

iopen fails - Bad
address

iopen fails -
unrecognized symbolic
name

iopen fails - timeout

Troubleshooting Your HP SICL Program

Troubleshooting HP SICL Over LAN

(Client and Server)

SICL LAN Client Problems and Possible Solutions

iopen fails with error LERR_SYNTAX.

Possible Solution. If using the "lan,neLaddress" format, ensure that the
neLaddress is a hostname, not an IP address. If you must use an IP address,
specify the address using the bracket notation, lan [128. 10. o. 3], rather
than the comma notation lan, 128 .10. O. 3.

iopen fails with the error I_ERR_BADADDR, and the error text is core
connect failed: RPC_PROG_NOT _REGISTERED.

Possible Solution. This indicates that the SICL LAN server has not
registered itself on the server system. This may also be caused by specifying
an incorrect hostname. Ensure that the hostname or IP address is correct,
and if so, check the LAN server's installation and configuration.

iopen fails with the error I_ERR_SYMNAME, and the error text is bad
hostname, gethostbyname() failed.

Possible Solution. This indicates that the hostname used in the iopen
address is unknown to the networking software. Ensure that the hostname
is correct, and if so, contact your network administrator to configure your
system to recognize the hostname. The utility nslookup can be used to
determine if the hostname is known to your system. See the nslookup (1)
man page for more information on this utility.

iopen fails with a timeout error.

Possible Solution. Increase the value of the Client Timeout Delta parameter
during the SICL LAN interface configuration. See the "Using Timeouts with
LAN" section in Chapter 8 for more information.

9-11

iopen fails - other
failures

1/0 operation times out

Operation following a
timed out operation fails

Troubleshooting Your HP SICL Program

Troubleshooting HP SICL Over LAN
(Client and Server)

iopen fails with some error other than those already mentioned above.

Possible Solution. Try the steps mentioned at the beginning of this
section to determine if the client and server can talk to one another over the
LAN. If the ping and rpcinfo procedures described earlier in this chapter
work, then check any server error logs which may be available for further
clues. Check for possible problems such as a lack of resources at the server
(memory, number of SICL sessions, and so forth).

An 110 operation times out even though the timeout being used is infinity.

Possible Solution. Increase the value of the Server Timeout value during
the LAN interface configuration. Also ensure that the LAN client timeout is
large enough if you used ilantimeout. See the "Using Timeouts with LAN"
section in Chapter 8 for more information.

An 1/0 operation following a previous timeout fails to return or takes longer
than expected.

Possible Solution. Ensure that the LAN timeout being used by the system
is sufficiently greater than the SICL timeout being used for the session in
question. The LAN timeout should be large enough to allow for the network
overhead in addition to the time that the 1/0 operation may take.

If using ilantimeout, you must determine and set the LAN timeout
manually. Otherwise ensure that the Client Timeout Delta value specified
during the LAN configuration is large enough. See the "Using Timeouts with
LAN" section in Chapter 8 for more information.

iopen fails or other An iopen fails due to insufficient resources at the server or 1/0 operations fail
operations fail due to locks because some other session has tl~e device or interface locked.

Possible Solution. Old SICL LAN server processes from previous clients
may not have terminated properly. Consult your server's troubleshooting
documentation and follow its instructions for killing any old server processes.

9-12

rpcinf o does not list
siclland

iopen fails

Troubleshooting Your HP SICL Program

Troubleshooting HP SICL Over LAN

(Client and Server)

SICL LAN Server Problems and Possible Solutions

rpcinfo fails to indicate that program 395180 (SICL LAN Protocol) or 395183
(TCP/IP Instrument Protocol) is available on the server.

Possible Solution. Did you run lanconf (in /opt/sicl/bin directory) as
root? If not, do so. If so, ensure that /etc/rpc and /etc/inetd.conf
contain the following lines.

I etc/rpc should contain:

siclland 395180
tcpinst 395183

/etc/inetd.conf should contain:

rpc stream tcp nowait root /opt/sicl/bin/siclland 395180 1
rpc stream tcp nowait root /opt/sicl/bin/siclland 395183 1
siclland -1 /var/opt/sicl/siclland_log

(Note that parameters to siclland, such as -1 logfile, may vary depending
on how you would like the server configured.)

If these entries are present, ensure that inetd is reconfigured to recognize
the new entries by running the following as root:

/usr/sbin/inetd -c

iopen fails when you run your application, but rpcinfo indicates that the
LAN server is ready and waiting.

Possible Solution. Ensure that the requested interface has been configured
on the server. This is done while running the HP I/O Libraries configuration
utility. See the HP 110 Libraries Installation and Configuration Guide for
HP-UX for more information on this configuration.

9-13

Troubleshooting Your HP SICL Program

Troubleshooting HP SICL Over LAN
(Client and Server)

LAN server appears "hung" The SICL LAN Server appears hung (possibly due to a long timeout being set
by a client on an operation which will never succeed).

rpcinfo fails -
can't contact
portmapper

Possible Solution. Login to the LAN server (via telnet or rlogin) and
kill the hung siclland server process. You can determine what siclland
server processes are running by typing the following:

ps -ef I grep siclland

You will see something like the following:

root 2492 2480 11 15:33:27 ? 0:00 siclland -1 /var/opt/sicl/siclland_log

Where 2492 is the PID of the running server. You will see one server process
for each client connected to this host. If more than one server is running,
you have two options for killing the hung server:

• If informational logging has been enabled using the -s option to
siclland, then the server process matching a client process can
be determined by log entries, which by default is placed in the file
/var I opt/ sicl/ s iclland_log. See siclland (1m) for details.

• If no logging has been enabled, then the server as a whole will need to
be reset by killing all siclland processes. Note that this will break the
connections to all clients, even those which are still operational.

Use the following to kill a LAN server process. This must be done as root:

kill PID_number

rpcinf o returns the message rpcinfo: can't contact portmapper:
RPC_SYSTEM_ERROR - Connection refused.

Possible Solution. Ensure that the portmapper is running on the server.
See portmap (1m) for details on starting the portmapper.

Note that if you must restart the portmapper, you must then reconfigure
inetd by running the following as root:

/usr/sbin/inetd -c

9-14

Troubleshooting Your HP SICL Program

Troubleshooting HP SICL Over LAN
(Client and Server)

rpcinfo fails - rpcinfo -t server_hostname 395180 1 OR rpcinfo -t server_hostname
programs 395180 395183 1 returns the following message:
or 395183 are
not available rpcinfo: RPC_SYSTEM_ERROR - Connection refused

program 395180 version 1 is not available

Possible Solution. Ensure that inetd is running on the server. See
inetd(1m) for details on starting inetd.

9-15

Troubleshooting HP SICL Over RS-232

Unlike HP-IB, special care must be taken to ensure that RS-232 devices are
correctly connected to your computer. Verifying your configuration first
can save many wasted hours of debugging time. Use of a RS-232 protocol
analyzer may be of assistance.

No Response from Instrument

Check to make sure that the RS-232 interface is configured to match the
instrument. Check the Baud Rate, Parity, Data Bits, and Stop Bits.

Also make sure that you are using the correct cabling. Refer to the HP 110
Libraries Installation and Configuration Guide for HP-UX, as well as to the
RS-232 Cables Addendum included in your HP 1/0 Libraries product package
for more information on correct cabling.

If you are sending many commands at once, try sending them one at a time
either by inserting delays, or by single-stepping your program.

RS-232 Port Allocation and HP-UX termio Functions

Note that an RS-232 port which is configured for use by SICL is not available
for use by HP-UX termio functions, and vice-versa.

9-16

Troubleshooting Your HP SICL Program

Troubleshooting HP SICL Over RS-232

Data Received from Instrument is Garbled

Check the interface configuration. Install an interrupt handler in your
program that checks for communication errors.

Data Lost During Large Transfers

Check the following:

• Flow control settings match

• Full/half duplex for 3-wire connections

• Cabling is correct for hardware handshaking

9-17

Troubleshooting H.P SICL Over GPIO

Because the GPIO interface has such flexibility, most initial problems come
from cabling and configuration. There are many fields that be specified during
the HP 1/0 Libraries configuration. For example, no data transfers will work
correctly until the handshake mode and polarity have been correctly set. A
GPIO cable can have up to 50 wires in it, and you often must solder your own
plug to at least one end. It is important to have the hardware configuration
under control before you begin troubleshooting your software.

If you are porting an existing HP 98622 application, the hardware task is
simplified. The cable connections are the same, and many configuration
values closely approximate HP 98622 DIP switches. If yours is a new
application, someone on the project with good hardware skills should become
familiar with the HP E207 4 cabling and handshake behavior. In either case, it
is important to read the HP E2074 GPIO Interface Installation Guide.

Following are some GPIO-specific reasons for certain SICL errors. Keep in
mind that many of these can also be caused by non-GPIO problems. (For
example, "Operation not supported" will happen on any interface if you
execute igetintfsess with an interface ID.) Such general causes are
discussed earlier in this book. The following discussion highlights the causes
of errors that relate directly to the HP E207 4 GPIO interface.

Bad Address (for iopen)

This means the same thing for GPIO as for any interface. It indicates that the
iopen did not succeed because the specified address (symbolic name) does
not correspond to the Symbolic Name specified during the configuration.
This is mentioned here because the GPIO has more configuration fields (and
thus more chances for mistakes) than any other interface.

" If your iopen fails, first check the values in your GPIO interface configuration
values and ensure that the configuration was processed successfully. As
root, execute the command:

/sbin/dmesg

9-18

Troubleshooting Your HP SICL Program

Troubleshooting HP SICL Over GPIO

If there were no errors, the 1/0 configuration section of dmesg will contain a
line such as:

SICL: HP E2074 GPIO: Initialized ...

If there was a problem, you will see a short diagnostic message containing the
words GPIO config. This diagnostic message will help you identify the field
in the SICL configuration which contained the error.

Operation Not Supported

The HP E207 4 has several modes. Certain operations are valid in one mode,
and not supported in another. Two examples are:

igpioctrl(id, I_GPIO~AUX, value);

This operation applies only to the Enhanced mode of the data port. Auxiliary
control lines do not exist when the interface is in HP 98622 Compatibility
mode.

igpioctrl(id, I_GPIO_SET_PCTL, 1);

This operation is allowed only in Standard-Handshake mode. When the
interface is in Auto-Handshake mode (the default), explicit control of the
PCTL line is not possible.

No Device

This error indicates that you wanted PSTS checks for read/write operations,
and a false state of the PSTS line was detected. Enabling and disabling PSTS
checks is done with the command:

igpioctrl(id, I_GPIO_CHK_PSTS, value);

9-19

Troubleshooting Your HP SICL Program

Troublesho11ting HP SICL Over GPIO

If the check seems to be reporting the wrong state of the PSTS line, then
correct the PSTS polarity bit by running the configuration utility. See the
HP 110 Libraries Installation and Configuration Guide for HP-UX for
information on running this utility. If the PSTS check is functioning properly
and you get this error, then some problem with the cable or the peripheral
device is indicated.

Generic 1/0 Error

This error results if you have specified I_HINT _USEDMA and also specified
other conditions that are inconsistent with DMA. For example, the DMA
controller cannot perform pattern matching. So setting i termchr or
I_GPIO_READ_EOI prevents the use of DMA.

The easiest way to avoid this error is to avoid the use of ihint. The system
always picks an appropriate mode for any transaction, if left to its own
devices. If you believe that LHINT_ USED MA is needed in your program, be
careful to avoid any other requirements or conditions that prevent the use of
DMA.

Bad Parameter

This error has the same meaning for GPIO as for any interface. However,
one case may be less obvious than typical parameter passing errors. If the
interface is in 16-bit mode, the number of bytes requested in an iread or
iwrite function must be an even number. Although you probably view
16-bit data as words, the syntax of ire ad and iwri te requires a length
specified as bytes.

9-20

Where to Find Additional Information

For compile/link errors, see the following:

• Chapter 2, "Getting Started with HP SICL," for SICL compile/link
instructions.

• Chapter 3, "Using HP SICL," for a description of how to use SICL.

• HP C Programmers Guide to review usage of pointers and pointer types.

For run-time errors, see the following:

• Chapter 3, "Using HP SICL," for a description of SICL features.

• The interface specific chapter for a description of valid addressing.

• HP I/O Libraries Installation and Configuration Guirj,e for HP-UX for a
description of the HP I/O Libraries configuration process.

• HP C Programmers Guide to review usage of pointers and pointer types.

For LAN problems, see the following:

• Chapter 8, "Using HP SICL with LAN," for a description of LAN addressing
and timeouts.

• Your network administrator.

• The Installing and Administering LAN/9000 Software manual.

9-21

A

The HP SICL Files

The HP SICL Files

This appendix list the files and directories created on your system for SICL on
HP-UX version 10.20.

A-2

SICL-RUN Fileset

Directories

/var/adm/sw/products/
SICL/SICL-RUN

Description of Files

Files for customization.

/opt/sicl

/opt/sicl/bin

The main SICL software directory.

/opt/sicl/defaults

/opt/sicl/lib

/opt/sicl/lib

The SICL configuration tools, programs, and so
forth.

Default versions of the hwconf ig. cf and
iproc. cf files.

Driver binary modules, which are linked and
inserted in the kernel by the SICL configuration
programs. Also adds the shared libraries.

Files for the shared library.

SICL-PRG Fileset

Directories

/var/adm/sw/products/
SICL/SICL-PRG

/opt/sicl/lib

/opt/sicl/include

/opt/sicl

/opt/sicl/bin

/opt/sicl/share/examples

Description of Files

Files for customization.

The SICL library llibsicl.a).

The SICL header file lsicl.h).

The OIL to SICL migration document.

The dil2sicl migration tool.

The SICL example programs.

Directories

/var/adm/sw/products/
SICL/SICL-VXI

/sbin/lib/eisa

/opt/sicl/bin

/opt/sicl/defaults

/opt/sicl/lib

The HP SICL Files

SICL-VXI Fileset

Description of Files

Files for customization.

The EISA configuration files !700's only).

The VXI specific configuration files, including the
resource manager program, i vxirm.

The default versions of the VXI configuration files.

The VXI driver binary modules, which are linked
and inserted in the kernel by the SICLconf
configuration program. Also adds the driver shared
libraries.

SICL-VXl-ISCPI Fileset

Directories

/var/adm/sw/products/
SICL/SICL-VXI-ISCPI

/opt/sicl/lib

/opt/sicl/defaults

/opt/sicl/lib/iscpi

/opt/sicl/bin

Description of Files

Files for customization.

The 1-SCPI driver shared libraries. 1-SCPI interrupts
SCP! commands for VXI register-based instruments.

The default version of the hwconf ig. cf file.

The VXI register-based instrument driver shared
libraries. The README. iscpi file lists what
register-based instruments are supported with
1-SCPI.

The 1-SCPI server program !to be used by 1-SCPll.

A-3

The HP SICL Files

A-4

SICL-HPIB Fileset

Directories

/var/adm/sw/products/
SICL/SICL-HPIB

/sbin/lib/eisa

/opt/sicl/defaults

/opt/sicl/lib

Description of Files

Files for customization.

The EISA configuration files 17DO's only).

The default versions of the HPIB configuration files.

The HPIB driver binary modules, which are linked
and insarted in the kernel by the SICL configuration
programs. Also adds the driver shared libraries.

SICL-GPIO Fil~set

Directories

/var/adm/sw/products/
SICL/SICL-GPIO

/sbin/lib/eisa

/opt/sicl/defaults

/opt/sicl/lib

Description of Files

Files for customization.

The EISA configuration files 17DO's only).

The default versions of the GPIO configuration files.

The GPIO driver binary modules, which are linked
and inserted in the kernel by the configuration
program. Also adds the driver shared libraries.

SICL-RS232 Fileset

Directories

/var/adm/sw/products/
~ICL/SICL-RS232

/opt/sicl/defaults

/opt/sicl/lib

Description of Files

Files for customization.

The default versions of the RS-232 configuration
files.

The RS-232 driver binary modules, which are linked
and inserted in the kernel by the SICL configuration
programs. Also adds the driver shared libraries.

The HP SICL Files

SICL-LAN Fileset

Directories

/var/adrn/sw/products/
SICL/SICL-LAN

/opt/sicl/defaults

/opt/sicl/lib

Description of Files

Files for customization.

The default versions of the LAN configuration files.

The LAN driver shared libraries.

SICL-LANSVR Fileset

Directories

/var/adrn/sw/products/
SICL/SICL-LANSVR

/opt/sicl/bin

Description of Files

Files for customization.

The SICL LAN server daemon and a LAN
configuration utility.

SICL-MAN Fileset

Directories

/var/adrn/sw/products/
SICL/SICL-MAN

/opt/sicl/share/man1

/opt/sicl/share/man1m

/opt/sicl/share/man3

/opt/sicl/share/man4

Description of Files

Files containing copyright information.

Files containing man pages for SICL user utilities.

Files containing man pages for SICL system
administrator utilities.

Files containing man pages for SICL function calls.

Files containing man pages for SICL configuration
files.

A-5

The HP SICL Files

A-6

SICL-MAN-HPIB Fileset

Directories

/var/adm/sw/products/
SICL/SICL-MAN-HPIB

/opt/sicl/share/man3

Description of Files

Files for customization.

Files containing man pages for SICL GPIB specific
function calls.

SICL-MAN-GPIO Fileset

Directories

/var/adm/sw/products/
SICL/SICL-MAN-GPIO

/opt/sicl/share/man3

Description of Files

Files for customization.

Files containing man pages for SICL GPIO specific
function calls.

SICL-MAN-VXI Fileset

Directories Description of Files

/var/adm/sw/products/ Files containing copyright information.
SICL/SICL-MAN-VXI

I opt/ s icl/ share/man1m Files containing man pages for SICL VXl/MXI
specific system administrator utilities.

I opt/ sicl/ share/man3 Files containing man pages for SICL VXl/MXI
specific function calls.

I opt/ sicl/ share/man4 Files containing man pages for SICL VXl/MXI
specific configuration files.

SICL-MAN-RS232 Fileset

Directories

/var/adm/sw/products/
SICL/SICL-MAN-RS232

/opt/sicl/share/man3

Description of Files

Files containing copyright information.

Files containing man pages for SICL RS-232
specific function calls.

SICL-MAN-LAN Fileset

Directories

/var/adm/sw/products/
SICL/SICL-MAN-LAN

/opt/sicl/share/man3

Description of Files

Files containing copyright information.

Files containing man pages for SICL LAN specific
function calls.

SICL-MAN-LANSVR Fileset

Directories

/var/adm/sw/products/
SICL/SICL-MAN-LANSVR

/opt/sicl/share/man1m

Description of Files

Files containing copyright information.

LAN specific man pages.

SICL-DIAG Fileset

Directories

/var/adm/sw/products/
SICL/SICL-DIAG

/opt/sicl/bin

Description of Files

Files containing copyright information.

A directory containing diagnostic programs and
utilities.

A-'i

B

Updating HP-UX 9 SICL
Applications

Updating HP-UX 9 SICL Applications

This appendix describes what you need to do in order to run your SICL for
HP-UX 9 applications on HP-UX 10.

B-2

Building SICL Applications on HP-UX 10

If you built your SICL application on HP-UX 9.x with the SICL shared library,
then no changes are necessary. However, if you used the SICL archive
library, then you must either re-build your application or run the provided
script. See the following:

• If your SICL application on HP-UX 9.x was linked with the SICL shared
library, then no modification or re-compiles are necessary.

• If your SICL application on HP-UX 9.x was linked with the SICL archive
library, then you can do one of the following:

o Re-compile your SICL 9.x application on HP-UX 10 with the SICL shared
library. This is the recommended method. See "Compiling and Linking
an HP SICL Program" in Chapter 2 of this manual.

OR:

o Execute the /opt/sicl/bin/sicl_tl script as super user to install
transition links to allow you SICL 9.x executables to run without
modification or re-compiling, as follows.

To create symbolic links:

/opt/sicl/bin/sicl_tl install

To remove symbolic links:

/opt/sicl/bin/sicl_tl remove

B-3

Linking with the Archive Library on HP-UX 9

NOTE
For future compatibility, we recommend that you link with the SICL shared library as shown in
Chapter 2, "Getting Started with HP SICL."

SICL for HP-UX 9 is shipped with both a shared library and an archive
library. By default, SICL programs are built with the shared library unless
you specify the archive library. The following command creates the idn
executable file while linking in the archive library:

cc -o idn idn.c -Wl,-E,-a,archive -lsicl -Wl,-a,shared -ldld

OR:

cc -o idn idn.c /usr/lib/libsicl.a -Wl,-E -ldld

• The -Wl option specifies the compile options to pass to the linker.
• The - E option is a linker option that exports symbols to shared libraries.
• The - a option is a linker option that tells the linker which type of library to

use (in this case archive).
• The - ldld option links in the dld library for use by SICL.

B-4

c

Porting DIL to SICL

Porting DIL to SICL

This appendix provides information for translating your DIL (Device I/O
Library) code to SICL. It will no longer be ported to new· controller platforms,
and today is not supported on HP 9000 Series_ 700 Computers or VXI in
HP-UX 8.0 or above. One of the benefits of using SICL is that it is designed
for instrument 1/0. It has some high level features such as formatted I/O and
error handling. SICL provides easier device addressing and better platform
and device independence than DIL.

C-2

The DIL to SICL Translation Process

The following procedure describes the steps involved in translating your
DIL code to SICL. Use the migration. doc and the "Summary of DIL to
SICL Conversion" table in the next section to translate your DIL code.
Additionally, there's a section on "Recommendations for Your DIL to SICL
Translation" later in this appendix. The migration. doc file can be found in
the I opt/ sicl directory.

1. Run the DIL to SICL translation utility located in the /opt/sicl/bin
directory:

dil2sicl [-r file_ nm] [-v] [-?] prog_nml [[prog_nm2] . . .]

Where:

-rjile_nm

-v

Writes a report instead of marking the DIL source code.

Runs in verbose mode.

-? Prints a usage message.

prog_nm[n} Specifies file name or names of source code to process.

This utility reads the prog_nml DIL source code and generates two
outputs: a prog_nm. x file that contains the DIL original program with
in-line translation hints and a report to stdout that summarizes the DIL
commands to be translated.

2. Edit the prog_nm. x file to contain strictly SICL commands.

Areas that need attention are marked by the SICL_DIL string. You can
search for this string and either follow the suggestions given by the
dil2sicl utility, or you can redesign your I/O code to use SICL more
efficiently. See "Recommendations for Your DIL to SICL Translation" later
in this appendix.

3. Compile your new program and fix errors.

4. Test your new program.

C-3

Summary of DIL to SICL Conversion

Summary of OIL to SICL Conversion

System Function SICL Equivalent

close iclose

er eat iopen

dup No SICL equivalent needed

fen ti No SICL equivalent needed

open iopen

read iread

write iwrite

C-4

Porting OIL to SICL

Summary of OIL to SICL Conversion

Summary of OIL to SICL Conversion

DIL SICL Equivalent

#include <dvio.h> #include <sicl.h>

gpio_eir _ctl *

gpio_geLstatus igpiostat

gpio_seLctl igpioctrl

hpib_abort iclear

hpib_address_ctl igpibbusaddr

hpib_atn_ctl igpibatnctl

hpib_bus_status igpibbusstatus

hpib_card_ppoll_resp igpibpollconfig

hpib_eoi_ctl iwrite

hpib_io iopen, igpibsendcmd, iwrite, iread

hpib_parity_ctl *

hpib_pass_ctl igpibpassctl

hpib_ppoll igpibppoll

hpib_ppoll_resp_ctl igpibppollconfig

hpib_ren_ctl igpibrenctl

hpib_rqsurvce igpibsetstb

hpib_senLcmnd igpibsendcmd

hpib_spoll ireadstb

hpib_status_wait iwaithdlr, isetintr, ionintr

hpib_waiLon_ppoll *

C-5

Porting OIL to SICL

Summary of OIL to SICL Conversion

Summary of OIL to SICL Conversion Continued

DIL SICL Equivalent

io_burst *

io_dma_ctl ihint

io_eol_ctl itermchr

io_geL term_reason iread

io_interrupLctl isetintr

io_lock ilock

io_on_interrupt ionintr, isetintr

io_reset iclear

io_speed_ctl ihint

io_ timeouLctl itimeout

io_unlock iunlock

io_ width_ctl igpiosetwidth

C-6

Porting OIL to SICL

Summary of OIL to SICL Conversion

Summary of OIL to SICL Conversion Continued

OIL SICL Equivalent

vxi_abeLctl *

vxi_bnc_ trigger _ctl ivxitrig route

vxi_bus_complete_status *

vxi_bus_status ivxibusstatus

vxi_end_ctl iwrite

vxi_geLa 1 B_addr imap

vxi_geLdevice_info ivxirminfo

vxi_geLladdr *

vxi_ geLman ufactu rer ivxirminfo

vxi_geLmodel ivxirminfo

vxi_geLservants ivxiservants

vxi_geLversion l_SICL_REVISION

vxi_geLvme_device_info *

vxi_map_a16 imap

vxi_map_a24 imap

vxi_map_a32 imap

vxi_map_device imap

vxi_map_shared imap

vxi_ rcv_ ws_resp onse ivxiws

vxi_resp_method *

vxi_ rqsLsrvce *

vxi_selecLa 32_pa g e imap

vxi_selecLcommander *

vxi_selecLservant iopen

C-7

Porting OIL to SICL

Summary of OIL to SICL Conversion

Summary of OIL to SICL Conversion Continued

OIL SICL Equivalent

vxi_send_ws_cmnd ivxiws

vxi_seLsignal *

vxi_spoll ireadstb

vxi_status_ wait ivxiwaitnormop

vxi_trigger ixtrig

vxUrigger _off ivxitrig off

vxUrigger _on ivxitrigon

vxi_unmap_a 16 iunmap

vxi_unmap_a24 iunmap

vxi_unmap_a32 iunmap

vxi_unmap_device iunmap

vxi_unmap_shared iunmap

vxi_ws_trigger itrigger

* No support in SICL.

C-8

Recommendations for Your DIL to SICL
Translation

Since DIL and SICL are very different I/O libraries just translating the DIL
code to SICL does not guarantee an optional DIL to SICL translation. In
most situations the best SICL design is not the same as the original DIL
design. There are a few features in SICL that could make your applications
more readable and maintainable. These features are device sessions, error
handling, and formatted I/O. See Chapter 3, "Using HP SICL," for a complete
description of these SICL features and keep the following in mind:

• Device sessions allow communication with a device without knowing the
specifics of the interface's communication method. SICL allows different
types of communication sessions: device sessions, interface sessions, and
commander sessions. With interface ses~ions the user must do all the bus
maintenance for the interface.

• Formatted I/O can reduce the amount of code in an application significantly
because it does all the conversion for you. SICL provides the iprintf,
iscanf, and ipromptf formatted I/O routines for instrument I/O. These
routines are geared towards instruments, with printing flags for 488.2,
NRl, NR2, and NR3 numeric types.

• By installing an error handler, the need to continually check return values
is now longer necessary. This can reduce the amount of code significantly.
SICL provides the ionerror error handler. You can install this error
handler for all SICL functions within an application. When a SICL function
call results in an error, the error routine specified in the error handler is
called. You can use one of the error routines provided by SICL, or you can
write your own error routine.

C-9

D

The HP SICL Utilities

The HP SICL Utilities

This appendix describes the utilities that are shipped with SICL. The
following utilities are described in alphabetical order:

• iclear
• ipeek
• ipoke
• iread
• iwrite

D-2

iclear

The HP SICL Utilities
iclear

Syntax iclear [-t timeout J [-v] [-?] sym_name

Description iclear performs a device or interface defined clear operation on the device
or interface specified by the sym_name parameter. Sym_name is the SICL
address of the device or interface being addressed. If sym_name refers to a
device, then a device clear command will be sent to the device. If sym_name
refers to an interface, then the interface clear command will be sent to that
interface. The actual functions of the device clear or interface clear are
specific to the device or interface.

For example, executing iclear on an HP-IB device will result in the DCL
command being sent to that device. Executing iclear on an HP-IB interface
will result in the IFC and REN line being pulsed (if the interface is system
controller), and the interface hardware being reset.

When used on a GPIO interface session, iclear pulses the P _RESET line for
approximately 12 microseconds, aborts any pending writes, discards any data
in the receive buffer, and resets any error conditions. Optionally, it also clears
the Data Out port, depending on the mode configuration specified during the
GPIO interface configuration.

The iclear command, when used on a VXI/MXI interface session causes
a pulse on the SYSRESET line which cancels the normal operation state
until the resource manager has reconfigured the VXI system. The iclear
command, when used on a VXI message-based device session sends a
word-serial device clear command to the specified device.

NOTE

If a SYSRESET (iclearl occurs and the iscpi instrument is running, then the iscpi
instrument will be terminated. If this happens, you will get a No Connect error message and you
need to re-open the iscpi communications session.

D-3

Example

The HP SICL Utilities
iclear

Using the iclear command on the RS-232 interface session clears the input
and output buffers and sends a break character.

The parameter definitions follow.

t timeout Times out after timeout milliseconds.

Turns on verbose mode. v

? Prints the usage of the iclear program.

iclear -t 1000 vxi

D-4

ipeek

Syntax
ipeek [-v][-?] [=~] sym_name map_space offset

The HP SICL Utilities
ipeek

Description ipeek is the SICL utility for examining memory locations on interfaces that
support mapping. The ipeek utility will print the contents of the specified
memory location in hexadecimal.

The sym_name is the SICL symbolic name of the interface. The interface
must support mapping, such as VXI.

The map_space is the map area that you would like to examine. Currently
the only interfaces supported are VXI and MXI. The valid map spaces are
Al6, A24, A32, VXIDEV, and EXTEND. See the imap function in the HP SICL
Reference Manual for a description of these mappings.

The offset is the offset, in bytes, from the beginning of the mapped space to
the location that is to be examined.

The parameter definitions follow.

v Turns on verbose mode.

? Prints the usage of the ipeek program.

b Specifies that the register size is a byte (8 bits).

w Specifies that the register size is a word (16 bits, default).

1 Specifies that the register size is a long (32 bits).

Example ipeek vxi A16 OxCOOO 1

D-5

The HP SICL Utilities

ipoke

Syntax
ipoke [-v] [-?] [=~] syrri_name map_space offset value

Description ipoke is the SICL utility for writing to memory locations on interfaces that
support mapping. The ipoke utility will write the contents of the value
parameter to the specified memory location.

The sym_name is the SICL symbolic name of the interface. The interface
must support mapping, such as VXI.

The map_space is the map area that you would like to write to. Currently
the only interfaces supported are VXI and MXI. The valid map spaces are
Al6, A24, A32, VXIDEV, and EXTEND. See the imap function in the HP SICL
Reference Manual for a description of these mappings.

The offset is the offset, in bytes, from the beginning of the mapped space to
the location that is to be written.

The parameter definitions follow.

v Turns on verbose mode.

? Prints the usage of the ipoke program.

b Specifies that the register size is a byte (8 bits).

w Specifies that the register size is a word (16 bits, default).

1 Specifies that the register size is a long (32 bits).

Example ipoke vxi A24 Ox200000 1 OxOOOO

D-6

ire ad

The HP SICL Utilities
ire ad

Syntax ire ad [-t timeout] [-c count] [-e end_char] [-v] [-?] sym,_name

Description iread is the SICL utility for reading data from devices. The output of iread
goes to stdout. The read is terminated only when count number of bytes

Example

is read, a timeout occurs, a byte is read with the END indicator, or the
termination character end_char is read. These conditions may occur in
combination.

The sym,_name is the SICL symbolic name, or address, of the device that
was determined during the interface configuration. Note that iread is only
supported for device addresses.

The parameter definitions follow.

t timeout

c count

e end_char

v

?

iread hpib, 16

Specifies the timeout value in milliseconds.

Specifies the number of bytes to read.

Defines a termination character for the read.

Turns on verbose mode.

Prints the usage of the iread program.

D-7

iwrite

Syntax iwri te [-s size] [-t timeout] [-e O 11] [-v] [-?] sym_name

Description iwri te is the SICL utility for writing data to a device. The input of iwri te
comes from stdin. The write is terminated only when size number of bytes is
written or a timeout occurs.

Example

The sym_name is the SICL symbolic name of the device. Note that iwri te
is only supported for device addresses.

The parameter definitions follow:

s size

t timeout

e 0 I 1

v

?

Specifies the number of bytes to read.

Specifies the timeout value in milliseconds

Set to non-zero if the END indicator should be given
on the last byte of the block, or zero if it should not.
Note that if this parameter is not specified, iwri te will
default to giving the END indicator on the last byte of
the block.

Turns on verbose mode.

Prints the usage of the iwri te program.

iwri te hpib, 16

D-8

E

Customizing Your VXl/MXI
System

Customizing Your VXI/MXI System

This appendix describes what files you would edit to customize your VXI/MXI
system. Additionally, the VXl/MXI specific utilities are described. This
appendix contains the following sections:

• Overview of VXI/MXI Configuration

• The VXI/MXI Resource Manager

• The VXI/MXI Configuration Files

• The VXl/MXI Configuration Utilities

• Multiple V7 43 Configuration

E-2

Overview of VXI/MXI Configuration

When HP SICL is installed and configured according to the procedures in
the HP 110 Libraries Installation and Configuration Guide jar HP-UX,
certain SICL utilities and configuration files are copied onto your system.
The VXI/MXI system is configured using two SICL utilities and the VXI/MXI
configuration files. These utilities automatically run when the system boots.
The following is a summary of the VXIbus boot process utilities:

iproc

ivxirm

configuration
files

NOTE

This utility runs at system boot and performs various system
initialization functions. It uses the iproc. cf configuration
file to determine when the other configuration utility,
ivxirm, runs.

This utility runs the resource manager which initializes and
configures the VXI/MXI card cage resources. The resource
manager reads the VXI/MXI configuration files and polls the
VXI devices to determine their resources and capabilities.
This utility runs at card cage initialization unless otherwise
specified in the iproc. cf configuration file (default is to run
at card cage initialization).

These files specify some site-dependent configuration rules
and any changes from the default.

These utilities and configuration files are only provided with the SICL-VXI fileset. In order to use
VXl/MXI, you must have loaded this fileset during the installation. See the HP /ID libraries Installation
and Configuration Guide for HP-UX for more details. The utilities and configuration files are described
in more detail in the sections that follow

E-3

The VXI/MXI Resource Manager (ivxirm)

The i vxirm utility is the resource manager which initializes and configures
the VXI/MXI card cage resources. The resource manager reads the VXI/MXI
configuration files and polls the VXI devices to determine their resources and
capabilities. The commander servant hierarchy is set up and the appropriate
commands are sent to the VXI devices. The information is then stored in the
following file:

/etc/opt/sicl/vxiLU/rsrcmgr.out

Where LU is the logical unit of the VXI/MXI interface. The resource manager
also optionally prints this information to the standard output.

You can run this utility from the command line, or it generally runs at card
cage initialization if specified in the iproc. cf configuration file (default is to
run when the system boots).

Additionally, there is another utility that can be used to review the system
resources. The i vxisc utility reads the rsrcmgr. out file and prints a
human readable display of the current configuration. See the i vxirm and
i vxisc utilities later in this appendix for a description on using these
utilities.

E-4

The VXI/MXI Configuration Files

In general, the resource manager follows a set of rules defined by the VXI
Standard when configuring the system. However, the VXI standard does
not define some aspects of configuration and sometimes you need to make
changes to the default.

The VXI/MXI configuration files specify some site-dependent configuration
rules and any changes from the default. These files reside in the following
directories.

File Name

vximanuf .cf

vximodel.cf

dynamic.cf

vmedev.cf

irq. cf

cmdrsrvt.cf

names.cf

oride. cf

ttltrig.cf

VXl/MXI Configuration Files

Directory Location

/opt/sicl

/opt/sicl

/etc/opt/sicl/vxiW

/etc/opt/sicl/vxiW

/etc/opt/sicl/vxiW

/etc/opt/sicl/vxiW

/etc/opt/sicl/vxiLU

/etc/opt/sicl/vxiLU

/etc/opt/sicl/vxiLU

Where LU is the logical unit of the VXI/MXI interface. Each file is explained
in the following sections.

E-5

Customizing Your VXl/MXI System
The VXl/MXI Configuration Files

The vximanuf . cf Configuration File

The vximanuf. cf file contains a database that cross references the VXI
manufacturer id numbers and the name of the manufacturer. The i vxirm
utility reads the manufacturer id number from the VXI device. The ivxisc
utility then uses that number and this file to print out the name of the
manufacturer. If you add a new VXI vendor that is not currently in the file,
you may want to add an entry to the file.

The vximodel. cf Configuration File

The vximodel . cf file contains a database that lists a cross reference of
manufacturer id, model id, and VXI device names. The i vxirm utility reads
the model id number from the VXI device and the ivxisc utility uses that
information and this file to print out the VXI device model. If you add a new
VXI device to your system that is not currently in this database, you may
want to add an entry to this file.

The dynamic. cf Configuration File

The dynamic. cf file contains a list of VXI devices to be dynamically
configured. You only need to add entries to this file if you want to override
the default dynamic configuration assignment by the resource manager.
Normally, if you have a dynamically configurable device and the logical
address is set at 255, the resource manager will assign the first available
address. However, if a dynamically configurable device has an entry in this
file, the resource manager will assign the address listed in the file.

E-6

Customizing Your VXl/MXI System

The VXl/MXI Configuration Files

The vmedev. cf Configuration File

The vmedev . cf file contains a list of VME devices that use resources in
the VXI card cage. Since the resource manager is unable to detect VME
devices, the resource manager uses this information to determine such things
as the slot number, where the VME device is located (A16, A32, or A24),
how much memory it uses, and what interrupt lines it uses. Additionally,
the resource manager verifies that multiple resources aren't allocated. See
"Communicating with VME Devices" in Chapter 6, "Using HP SICL with
VXI/MXI," for more information on setting up VME devices in your VXI card
cage. This file is also used by the i vxisc utility to print out information
about the devices.

The irq. cf Configuration File

The irq. cf file is a database that maps specific interrupt lines to VXI
interrupt handlers. If you have non-programmable interrupters and you want
the interrupters to be recognized by a VXI interrupt handler, you must make
an entry in this file. Additionally, if you have programmable interrupters and
you want them to be recognized by a device other than what's assigned by
the resource manager (the commander of that device), you can make an entry
in this file to override the default. Keep in mind that not all VXI devices need
to use interrupt lines and not all interrupt lines need to be assigned. Note
that any interrupt lines assigned in this file cannot also be assigned in the
vmedev . cf configuration file.

E-7

Customizing Your VXl/MXI System

The VXl/MXI Configuration Files

The cmdrsrvt . cf Configuration File

The cmdrsrvt. cf file contains a commander/servant hierarchy other
than the default for the VXI system. The resource manager will set up the
commander/servant hierarchy according to the commander's logical addresses
and the servant area switch. However, you can use this file to override the
default according to the commander's switch settings. This file should only
contain changes from the normal.

The names. cf Configuration File

The names. cf file is a database that contains a list of symbolic names to
assign VXI devices that have been configured. The i vxirm utility reads
the model id number from the VXI device and the i vxisc utility uses that
information and this file to print out the VXI device symbolic name. If you
add a new VXI device to your system that is not currently in the database,
you may want to add an entry to this file.

The oride. cf Configuration File

The oride. cf file contains values to be written to logical address space for
register-based instruments. This data is written to A16 address space after
the resource manager runs, but before the system's resources are released.
This can be used for custom configuration of register-based instruments every
time the resource manager runs. It can also be used to program extender
devices like the VXI/MXI Bus Extender card. See "Routing External Trigger
Lines on the E1482 VXI-MXI Extender Bus Card" in Chapter 6, "Using HP
SICL with VXI/MXI, " for an example of using this file.

E-8

Customizing Your VXl/MXI System

The VXl/MXI Configuration Files

The ttl trig. cf Configuration File

The ttl trig. cf file contains the mapping of VXI devices to TTL trigger lines
for extended VXI/MXI systems. If you have an extended VXI/MXI system and
you want your TTL trigger lines to be recognized, you must map the TTL
trigger line to the source logical address in this file. This file can only be used
for extended VXI systems. See "Routing VXI TTL Trigger Lines in a VXI/MXI
System" in Chapter 6, "Using HP SICL with VXI/MXI," for an example of
using this file.

E-9

The iproc Utility (Initialization and SYSRESET)

On HP-UX systems, SICL installs a program called iproc. This program uses
the iproc. cf file to determine how your system is initialized. The iproc. cf
file determines when the ivxirm program runs and with what options.
Additionally, the iproc. cf file specifies what action is taken when your VXI
system encounters a SYSRESET.

If you have a VXI backplane, the iproc program is run at system boot
time. This program becomes a daemon and monitors the VXI backplane for
SYSRESET. The iproc. cf file tells iproc what to do if a SYSRESET occurs.
Usually you want the resource manager to run and configure your system
(since the SYSRESET has invalidated the configuration).

The iproc. cf file is stored in the following directories:

/etc/opt/sicl

NOTE

If a SYSRESET (power down or iclearl occurs and the iscpi instrument is running, then the
iscpi instrument server task will be killed. If this happens, you will get a No Connect error
message and you need to re-open the is cp i communications session.

NOTE
The SYSRESET line is commented out by default. You must un-comment the following line in the
/etc/ opt/ s icl/ iproc. cf file in order for the resource manager to run on SYS RESET.

sysreset vxi ivxirm -t 5&

E-10

Customizing Your VXl/MXI System
The iproc Utility (Initialization and SVSRESET)

The following is an example of the /etc/opt/sicl/iproc.cf file:

iproc configuration file

Boot up functions

Lines are of the form:
boot <command_to execute>

boot echo "SICL: Instrument I/O Initialization"

The next line must always exist.
boot siclsetup

V743 or VXI/MXI Support

#boot ivxirm -p -I vxi

#When a SYSRESET occurs, rerun the resource manager (delay 5 sec).
The resource manager MUST be run in the background (i.e. last
#character should be a'&').

#sysreset vxi ivxirm -t 5&

Sample lines for a second VXI/MXI interface:
#boot ivxirm -p -I vxi2
#sysreset vxi2 ivxirm -I vxi2 -t 5&

The following line must be present for ALL VXI/MXI systems
#monitor

E-11

Viewing the VXIbus System Configuration

You can use the SICL ivxisc utility to read the current system configuration
and print a human readable display:

ivxisc /etc/opt/sicl/vxiLU

LU represents the logical unit of the VXI/MXI interface. For example, vxil6 is
used for the El489 MXI Extender Card and the V743 VXI Controller. Run the
1/0 setup configuration utility for information on the Logical Unit of your
VXI/MXI interface. Also see "VXI/MXI Configuration Utilities" later in this
appendix for information on using this utility.

E-12

VXI/MXI Configuration Utilities

The following SICL utilities are available to help you configure your VXI/MXI
system:

• e1489mir
• e1489trg
• e1489tsh
• e1497cnf
• iproc
• itrginvrt
• ivxirm
• ivxisc

The utilities are located in the /opt/sicl/bin directory. Each of these
utilities is described in detail in the following sections.

E-13

Customizing Your VXl/MXI System

e1489mir

Syntax e1489mir -i interface_name [-v J [-x J [-? J

Description This is a diagnostic test for the El489 MXIbus Controller Interface. This tests
the MXI control logic on the El489. You must be superuser to run this test,
and you must reboot the computer after the test has run.

The parameter definitions follow.

i interface_name Specifies the interface, such as vxi.

v Turns on verbose mode.

x Tells the program not to print warnings.

? Prints the usage of the e1489mir program.

Example e1489mir -i vxi

E-14

e1489trg

Syntax

Customizing Your VXl/MXI System
e1489trg

e1489trg -a log_addr -i interface_name [-v] [-x] [-?]

Description This is a diagnostic test for the El489 MXlbus Controller Interface. This test
the MXI/INTX trigger and interrupt circuitry. This test requires connection to
the El482 VXI/MXI Bus Extender .. You must be superuser to run this test,
and you must reboot the computer after the test has run.

The parameter definitions follow.

a log_addr Logical address of the VXI/MXI device.

i interface_name Specifies the interface, such as vxi.

v Turns on verbose mode.

x Tells the program not to print warnings.

? Prints the usage of the e1489trg program.

Example e1489trg -a 1 -i vxi

E-15

e1489tsh

Syntax

Customizing Your VXl/MXI System

e1489tsh -i interface_name [-1] [-v] [-x] [-? J [-s start 64k page J
[-c number 64k pages J

Description This is a diagnostic test for the E1489 MXIbus Controller Interface. This is a
memory test, primarily for testing shared memory on the E1489. You must be
superuser to run this test, and you must reboot the computer after the test
has run.

Example

The parameter definitions follow.

i interf ace_name

1

v

x

?

s start 64k page

Specifies the interface, such as vxi.

Use !_MAP _SHARED (otherwise use I_MAP _A24).

Turns on verbose mode.

Tells the program not to print warnings.

Prints the usage of the e1489tsh program.

Location to start 64k test.

c number 64k pages Number of 64k pages.

e1489tsh -i vxi

E-16

e1497cnf

Customizing Your VXl/MXI System
e1497cnf

Syntax e1497cnf -i interface_name [-v J [-x J [-?]

Description This is a configuration utility for the V743 VXI Controller. When you first
run this utility you must make a selection to configure one of the following:
shared memory, VME bus request level, or VME bus request mode. Selecting
shared memory allows you to reserve 1 Mbyte of the V743's system memory
to be used as VXI shared memory in A24 address space. By default, this
mode is disabled, no shared memory. VME bus request level allows you to
select the level (0, 1, 2, or 3) to be used. VME bus request mode allows you
to select ROR, RWD, or Fair RWD as your bus request mode.

Example

You must be superuser to run this utility, and you must reboot the VXI
controller after the utility has run.

The parameter definitions follow.

i interf ace_name Specifies the interface, such as vxi.

v Turns on verbose mode.

x Tells the program not to print warnings.

? Prints the usage of the e1497cnf program.

e1497cnf -i vxi

E-17

Customizing Your VXl/MXI System

iproc

Description iproc is designed to run at system boot time. It performs various SICL
system initialization functions including the creation of SICL device files.
/dev/sicl contains device files. In addition, it is configurable by the system
administrator to execute programs at boot time or on certain asynchronous
events, such as VXI SYSRESET. This configuration is done by editing the file
iproc. cf, which is read only when the iproc daemon begins execution. It
consists of lines beginning with keywords which determine the actions of
the iproc program. The iproc.cf file is located in the /etc/opt/sicl
directory.

NOTE
Only one iproc daemon is allowed to be running on a specific system.

The format of the configuration lines is as follows:

keJJWord action

OR:

keyword interface name action

The functions of the keywords are described below:

boot

sysreset interface_name

E-18

This keyword will execute the action when
the iproc daemon begins execution. The
normal time for iproc to run is when the
system boots.

This keyword will execute the action on
the interj ace_ name when a VXI SYSRESET
interrupt is detected by the iproc daemon.
This function is primarily used to ensure
that the VXI resource manager, i vxirm, will
be run in response to a VXI SYSRESET. This
requires iproc to continue execution.

monitor

NOTE

Customizing Your VXl/MXI System
iproc

This keyword allows the iproc daemon to
continue execution when there are no other
keywords, like sysreset, which would require
it to continue execution.

Without a keyword in iproc. cf that allows or requires iproc to continue execution, such as
sysreset or monitor, iproc will halt execution and exit.

E-19

itrginvrt

Syntax

Description

Example

Customizing Your VXl/MXI System.

i trginvrt -a interface_ name -i [ON I OFF J-o [ON I OFF J [-v J [-x J

[-?]

This is a configuration utility to be used with the V7 43 VXI Controller. This
utility allows you to change the polarity of the V7 43 Trig In and Trig Out
lines. The external trigger lines will remain inverted until power is cycled or
the resource manager runs. The external trigger lines will then return to the
same state as the trigger line routed to them. The default state is inverted.

The parameter definitions follow.

a interface_name Specifies the interface, such as vxi.

i Sets the state of Trig In, ON inverts the polarity.

o Sets the state of Trig Out, ON inverts the polarity.

v Turns on verbose mode.

x Tells the program not to print warnings.

? Prints the usage of the i trginvrt program.

itrginvrt -a vxi -i ON -o OFF

E-20

ivx1rm

Customizing Your VXl/MXI System
ivxirm

Syntax ivxirm [-diptvDILMS] [arguments ...]

Description The i vxirm (the resource manager) initializes the VXI and MXI buses by
reading several configuration files and by polling the VXI devices to determine
their resources and capabilities. Then, using a set of rules governing VXI
configuration, it defines the relationships between commanders and servants
and writes this information to the rsrcmgr. out configuration file. The
resource manager also optionally prints this information to the standard
output. The resource manager is usually run automatically at system
power-on.

The command line argument definitions follow:

d The next argument contains the name of the directory for
the static and operating configuration files. This defaults to
I etc/ opt/ sicl/vxiLU, where LU is the logical unit number of the
VXI interface.

i Ignore static configuration files. The static configuration files
contain a set of rules for the resource manager to use during
configuration. With this option, the resource manager ignores
the static configuration files and follows only the standard VXI
configuration rules.

p Print the results of the configuration using the i vxisc program.

t. time Delay the seconds specified in time before starting. The
recommended time is five seconds. The VXI Standard requires these
five seconds to allow instruments to complete their self test. The
default is no delay at all.

v Print a verbose output of the resource manager's actions. This is
useful for debugging the card cage configuration.

D The next argument specifies the directory that contains the i vxisc
program. This defaults to /opt/sicl/bin.

E-21

Customizing Your VXl/MXI System
ivxirm

I The next argument contains the name of the VXI interface that the
resource manager will use to access the VXI bus. This argument
is provided mainly for controllers which can connect to multiple,
separate VXI systems through multiple VXI or MXI interfaces. This
defaults to vxi.

L Send all messages to a file named rsrcmgr. err in the directory for
static and operating configuration files.

M Set the limits for allocation of A24 and A32 memory space to the
maximum addresses for that space. The default limits will be set so
that the upper and lower one-eighth of A24 and A32 space will not
be allocated.

S The next argument contains the name of the program to use to print
the VXI configuration. This defaults to the i vxisc program.

The resource manager first accesses the configuration files as directed by the
argument above. It then determines resource and capability information from
the VXI devices in the card cage or multi-card cage hierarchy. The resource
manager then determines the proper configuration according to the rules
defined by the configuration files and the standard VXI configuration methods.
It then sends appropriate commands to the VXI devices. The configuration
is optionally printed. Fin_ally, the configuration information is stored in the
rsrcmgr. out file for use by other programs. The rsrcmgr. out file contains
binary data, not ASCII text.

In the case of multiframe (extended) VXI systems using VXI-MXI bus
extenders, the resource manager will set up logical address windows,
A 16/ A24/ A32 windows, and interrupt routing registers prior to establishing
the commander-servant hierarchy and initiating normal operation.

E-22

Example

Customizing Your VXl/MXI System
ivxirm

The VXI/MXI configuration files specify the site-dependent configuration rule
changes. See "The VXI/MXI Configuration Files" earlier in this appendix for a
description of the file contents.

NOTE

i vxirm is normally run automatically from the iproc daemon. It cannot be run a second time
(manually) without asserting the VXI SYSRESET (i.clear command) or cycling the mainframe power.

ivxirm -p

E-23

Customizing Your VXl/MXI System

lVXlSC

Syntax i vxisc [-sdvfphmi J [directory J

Description The i vxisc command reads the operating configuration file,
I etc/ opt/ sicl/vxiLU/rsrcmgr. out (where LU is the logical unit of
the VXI/MXI interface) and prints a human readable display of the current
configuration. This display includes slot number tables for each VXI bus in
the configuration and logical address tables for each MXI bus, a device table,
VME device information, a list of failed devices, a protocol support table, the
commander servant hierarchy, an A24/ A32 memory map and an interrupt
line allocation table.

The default command (no arguments) prints all tables.

Parameters:

s

d

v

f

p

h

m

i

directory

Prints bus/slot tables.

Prints device table.

Prints VME device table.

Prints failed device table.

Prints protocol table.

Prints hierarchy.

Prints memory map.

Prints IRQ table.

Operating file directory (default is /etc/opt/sicl/vxiLU).

Examples For the VXI interface at logical unit (LU) 16:

ivxisc /etc/opt/sicl/vxi16

A sample output follows.

E-24

VXI Current Configuration:

VXI Bus: 0
Device Logical Addresses: 0 127

Slots: 0 1 2 3 4 5 6

Empty 0 0 0 0 0
Single Device x x
Multiple Devices
VME
Failed

MXI Bus: 127
Device Logical Addresses: 127 130

VXI Bus: 130
Device Logical Addresses: 130 136

Slots: 0 1 2 3 4 5 6

Empty 0 0 0
Single Device x x x x
Multiple Devices
VME
Failed

VXI Device Table:

Name LADD Slot Bus Manufacturer

v700ctlr 0 0 0 Hewlett Packard
vximxi 127 6 0 National Instrum
hpvximxi 130 * 127 Hewlett Packard
pwrmeter 136 3 130 Hewlett Packard
dev1 145 2 130 Racal Dana
dvm 147 4 130 Hewlett Packard

* - MXI device

7 8

Customizing Your VXl/MXI System
ivxisc

9 10 11 12

0 0 0 0 0 0

145 147
7

0

8 9 10 11 12

0 0 0 0 0

Model

E1497 Series 700 Controller
VXI-MXI Extender
E1482 VXI-MXI Extender
E1416 Power Meter
Oxf ff O
E1326 5 1/2 digit DVM

E-25

Customizing Your VXl/MXI System
ivxisc

ivxisc Output example (cont.)

VME Device Table:

Name Bus Slot Space Size

No VME cards configured.

Failed Devices:

Name Bus Slot Manufacturer

No FAILED devices detected.

Protocol Support (Msg Based Devices):

Model

Name CMDR SIG MSTR INT FHS SMP RG EG ERR PI PH TRG I4 I LW ELW 1.3

v700ctlr X X X
pwrmeter
dev1

x
x

Commander/Servant Hierarchy;

v700ctlr
pwrmeter
dev1
dvm

vximxi
hpvximxi

Memory Map:

A24 Device Name

Ox200000 - Ox23ffff v700ctlr

x x
x x x

A32 Device Name

No devices mapped into A32 space.

E-26

x
x x x
x x

x
x

Customizing Your VXl/MXI System
ivxisc

ivxisc Output example (cont.)

Interrupt Request Lines:

Name

v700ctlr
vximxi
hpvximxi
pwrmeter
dev1
dvm

Handler
1 2 3 4 5 6 7

x x x x x x x

VXI-MXI IRQ Routing:

Name 1 2 3 4 5 6 7

vximxi I I I I I I I
hpvximxi 0 0 0 0 0 0 0

I - MXI->VXI
0 - VXI->MXI
* - Not Routed

VXI-MXI Registers:

Name

vximxi

Interrupter
1 2 3 4 5 6 7

laddr window register: Ox5b80 range: 128 - 159
a24 window register: disabled
a32 window register: disabled
Interrupt Configuration Register: Ox7f7f

hpvximxi
laddr window register: Ox7b80 range: 128 - 159
a24 window register: disabled
a32 window register: disabled
Interrupt Configuration Register: Ox7f00

E-27

Multiple V7 43 Configuration

This section describes how to configure your system for multiple V7 43 VXI
Controllers in a single VXI mainframe. Before configuring SICL, you must
install the hardware into the mainframe. Keep in mind that you must change
the logical address of the non-slot 0 V743. You are only allowed one V743 as
slot 0 controller. Therefore, any other V7 43s in the mainframe must have a
logical address other than 0.

NOTE

The resource manager should not be run manually or automatically by a script on any non-slot 0 V743.
Also note that SICL does not support commander sessions on the V743.

Once you have installed the V7 43s into the mainframe, use the following
procedure to configure SICL:

1. Login as root on the system to be configured.

2. Run the 1/0 setup utility to add each V743 in your system. The following
command will invoke the 1/0 setup utility:

/opt/sicl/bin/iosetup

3. The available interfaces will be listed on the left side of the window. Click
on the V743 you wish to configure and click on the (Configure) button. The
1/0 setup utility will display information about that interface. Edit the
fields displayed to match your setup. Ensure that the logical address of
each V743 added is correct. If you need more information, click on the
~ button for detailed information about the field content. When done,
click on the (OK) button.

Repeat this step for each interface you wish to configure.

E-28

Customizing Your VXl/MXI System

Multiple V743 Configuration

NOTE

You must ensure that all addresses and interrupt lines (IROsl are unique and do not conflict with an
address or IRQ line used by any other card in the system. The utility will warn you of any conflicts.

4. Once you have added. all desired interfaces, dick on the (Done) key from
the main menu. The VO Setup utility will edit the hwconf ig. cf file and
rebuild the kernel. Status messages will scroll by very quickly. To review
the messages, see the /var/opt/sicl/kernbld.log file.

5. Edit the /etc/opt/sicl/iproc. cf file for each non-slot 0 V743.
Comment out the following lines with the # character:

• sysreset (for example, sysreset vxi2 ivxirm -I vxi2 -t 5&)
• monitor
• boot -p -I vxi

6. If you want the non -slot 0 V7 43s to receive IRQs, then you must edit the
/etc/opt/sicl/vxiLU/irq. cf file for the V743 in slot 0. Edit this file
to exclude IRQ lines used by the other V7 43's. The irq. cf file uses the
following format:

JRQ_line handler _wgicaLaddress interruptor _wgicaLaddress

The following is an example of an irq. cf file in a system that has
three V743s at logical addresses 0, 16, and 24. These V743's have been
configured to use IRQ lines 1, 2, and 3 respectively.

2 16
3 24

16 #exclude line for V743 at logical address 16
24 #exclude line for V743 at logical address 24

There is no need to edit the irq . cf configuration file for the non -slot
0 V7 43s since this file is only used by the resource manager and the
resource manager is only run on the slot 0 device.

7. Run the SICL configuration program on the other V7 43s in the system:

/opt/sicl/bin/siclconf

E-29

This program will configure your system, including building a new kernel
and running the eisa_config(1m) program, if necessary. While the
program runs, it prompts with the following.

• OK to use

You may use other file names if you have customized this file. Note,
however, that many applications expect to find the current kernel
description in the location specified.

• Save backup of ...

This is the name for the kernel backup file. The program copies your old
kernel file to this new file. If you use the default name, the file will be
overwritten with the latest cnode in a cluster upgrade. Use a unique
name if you wish to have a specific file for a particular cnode.

• Would you like to see the log file?

8. When the SICL configuration program finishes, it will ask if you want
to reboot your system. Type y to reboot at this time. If you want to
manually reboot, type n and manually reboot by typing the following:

/shin/reboot

NOTE

With some current kernel configurations, the SICL configuration will be unable to complete until after
the system has rebooted. If this happens, you will be informed of an unsuccessful completion and you
will be asked to reboot your system. After you reboot, login as root and type the following:

/opt/sicl/bin/siclconf -e

The -e option runs only eisa_conf ig.

E-30

Glossary

Glossary

address
A string uniquely identifying a particular interface or a device on that
interface.

bus error
An action that occurs when access to a given address fails either because
no register exists at the given address, or the register at the address
refuses to respond.

bus error handler
Programming code executed when a bus error occurs.

commander session
A session that communicates to the controller of this system.

controller
A computer used to communicate with a remote device such as an
instrument. In the communications between the controller and the device
the controller is in charge of, and controls the flow of communication (i.e.
does the addressing and/or other bus management).

controller role
A computer acting as a controller communicating with a device.

device
A unit that receives commands from a controller. Typically a device is an
instrument but could also be a computer acting in a non-controller role, or
another peripheral such as a printer or plotter.

device driver
A segment of software code that communicates with a device. It may
either communicate directly with a device by reading and writing
registers, or it may communicate through an interface driver.

device session
A session that communicates as a controller specifically with a single
device, such as an instrument.

Glossary-2

handler
A software routine used to respond to an asynchronous event such as an
error or an interrupt.

instrument
A device that accepts commands and performs a test or measurement
function.

interface
A connection and communication media between devices and controllers,
inducting mechanical, electrical, and protocol connections.

interface driver
A software segment that communicates with an interface. It also handles
commands used to perform communications on an interface.

interface session
A session that communicates and controls parameters affecting an entire
interface.

Interpreted SCPI
A SICL interface type that allows you to talk to register-based instruments
with the high-level SCPI commands.

interrupts
Asynchronous events requiring attention out of the normal flow of control
of a program.

lock
A state that prohibits other users from accessing a resource, such as a
device or interface.

logical unit
A logical unit is a number associated an interface. A logical unit, in SICL,
uniquely identHies an interface. Each interface on the controller must
have a unique logical unit. The logical unit is specified during the system
configuration.

mapping
An operation that returns a pointer to a specified section of an address
space as well as makes the specified range of addresses accessible to the
requester.

Glossary-3

non-controller role
A computer acting as a device communicating with a controller.

process
An operating system object containing one or more threads of execution
that share a data space. A multi-process system is a computer system that
allows multiple programs to execute simultaneously, each in a separate
process environment. A single-process system is a computer system that
allows only a single program to execute at a given point in time.

register
An address location that controls or monitors hardware.

session
An instance of a communications channel with a device. A session is
established when the channel is opened with the iopen function and is
closed with a corresponding call to iclose.

SRQ
Service Request. An asynchronous request (an interrupt) from a remote
device indicating that the device requires servicing.

status byte
A byte of information returned from a remote device showing the current
state and status of the device.

symbolic name
A name corresponding to a single interface. This name uniquely identifies
the interface on this controller. If there is more than one interface on
the controller, each interface must have a unique symbolic name. The
symbolic name is specified during the system configuration.

thread
An operating system object that consists of a flow of control within a
process. A single process may have multiple threads that each have
access to the same data space within the process. However, each
thread has its own stack and all threads may execute concurrently with
each other (either on multiple processors, or by time-sharing a single
processor).

Glossary-4

Index

A
Access modes, VME, 6-29
Active Controller, 4-6, 4-10
Address

cmdr, 4-17
GPIO symbolic name, 5-4
HP-IB symbolic name, 4-9
LAN symbolic name, 8-9, 8-16
Primary , 4-5
RS-232 symbolic name, 7-8
Secondary , 4-5
symbolic name, 3-6, 6-23
VXI/MXI symbolic name, 6-23

Addressing
Commander sessions, 3-7
Device sessions, 3-5
G PIO interface sessions, 5-4
HP-IB commander sessions, 4-17
HP-IB device sessions, 4-4
HP-IB interface sessions, 4-9
Interface sessions, 3-6
I-SCPI device sessions, 6-11
LAN-gatewayed sessions, 8-9
LAN interface sessions, 8-16
Parallel interface sessions, 5-4
RS-232 device sessions, 7-4
RS-232 interface sessions, 7-8
Serial device sessions, 7-4
Serial interface sessions, 7 -8
VXI/MXI interface sessions, 6-23
VXI/MXI message-based device

sessions, 6-6

VXI/MXI register-based device
sessions, 6-10

Archive libraries, B-4
Argument modifier, 3-12
Array size, 3-12
Asynchronous events, 3-20

B

Interrupts, 3-21
SIGUSR2, 3-23
SRQs, 3-20

Bad address, 9-11
Buffers, flushing, 3-16
Building SICL applications on

HP-UX 10, B-3
Bus errors, 6-21

Example, 6-21

c
cmdrsrvt . cf file, E-8
cmdr string, 3-7

HP-IB, 4-17
LAN, 8-9

Commander servant hierarchy, E-8
Commander sessions, 3-7

Addressing, 3-7
HP-IB addressing, 4-17
LAN addressing, 8-9

Command Module, 6-4
Communicating, 6-9

Commands, word-serial, 6-35
Comma operator, 3-12

lndex-1

Communication sessions, 3-4
GPIO, 5-3
HP-IB, 4-3
LAN, 8-9
Parallel, 5-3
RS-232, 7-3
Serial, 7-3
VXI/MXI, 6-3

Compile errors
Troubleshooting, 9-6
Unexpected symbol, 9-6
Unsatisfied symbols, 9-7

Compile/Link errors, undefined id,
9-7

Compiling, 2-6
Configuration

LAN, 8-8
Multiple V7 43s, E-28
VXl/MXI system, E-2
VXI/MXI Utilities, E-13

Configuration files, E-5
cmdrsrvt . cf, E-8
dynamic. cf, E-6
irq.cf, E-7
names . cf, E-8
oride. cf, E-8
ttl trig. cf, E-9
vmedev . cf, E-7
vximanuf. cf, E-6
vximodel. cf, E-6

Connection refused (LAN), 9-15
Conversion characters

iprintf, 3-13
is c anf, 3-13

C-SCPI, 6-4
Communicating, 6-9

D
D32, 32-bit access, 6-17
Device I/O Library (DIL), C-2
Device sessions, 3-5

lndex·2

Addressing, 3-5
HP-IB, 4-4
HP-IB addressing, 4-4
HP-IB example, 4-7
1-SCPI example, 6-14
LAN-gatewayed, 8-9
LAN-gatewayed addressing, 8-9
LAN-gatewayed example, 8-14
RS-232, 7-4
RS-232 addressing, 7-4
RS-232 example, 7-7
Serial, 7-4
VME devices, 6-26
VXI/MXI, 6-3
VXI/MXI addressing, 6-6, 6-10
VXI/MXI example, 6-8, 6-18
VXI/MXI register programming,

6-15
di12sicl, C-3
DIL to SICL

Conversion, C-4-8
Procedure, C-3
Recommendations, C-9

Disable events, 3-21
DMA transfers, V743, 6-46
Documentation

GPIO interface, 1-6
HP-UX, 1-6
LAN, 1-6
LAN/HP-IB Gateway, 1-6
Series 700 computer, 1-6
Series 700 RS-232, 1-6
SICL, 1-5
V743, 1-6
VXI/MXI, 1-6

Drivers, 1-SCPI, 6-13
Dynamically configured devices, E-6
dynamic. cf file, E-6

E

E1482
and VME, 6-27
External trigger lines, 6-44

e1489mir utility, E-14
e1489trg utility, E-15
E 1489 trigger lines, 6-39
e1489tsh utility, E-16
e1497cnf, 6-22
e 1497 cnf utility, E-17
eisa_config program, E-29
Enable

Error handler, 3-27
Events, 3-20, 3-21
Interrupt events, 3-21
SRQ handlers, 3-20

END indicator, 3-16
err hand. c example, 3-28
Error handlers, 3-27

Creating your own, 3-29
Example, 3-28
Troubleshooting, 9-3

Error routines, 3-27
I_ERROR_EXIT, 3-27
I_ERROR_NO_EXIT, 3-27

Errors
Codes, 9-4
Messages, 9-4
Troubleshooting, 9-4

Events
Asynchronous, 3-20
Disable, 3-21
Enable, 3-20, 3-21
Interrupts, 3-21
SRQs, 3-20

Examples
Catching bus errors, 6-21
errhand. c, 3-28
formatio. c, 3-15
gpiointr. c, 5-8
gpiomeas. c, 5-7

hpibdev. c, 4-7
hpibintr. c, 4-13
hpibstatus.c,4-11
idn. c, 2-3
interrupts.c,3-25
landev. c, 8-14
locking. c, 3-33
nonformatio.c, 3-19
serialdev. c, 7-7
serialintr.c,7-12
vmeintr. c, 6-32, 6-51
vxiintr. c, 6-25
vxiiscpi. c, 6-14
vximesdev. c, 6-8
vxiregdev. c, 6-18

Executing a program, 2-7
External trigger lines

Inverting, V743, 6-45
Routing, 6-44

F

Field width, 3-11
File structure, A-2

SICL-DIAG, A-7
SICL-GPIO, A-4
SICL-HPIB, A-3
SICL-LAN, A-4
SICL-LANSVR, A-5
SI CL-MAN, A-5
SICL-MAN-GPIO, A-6
SICL-MAN-HPIB, A-5
SICL-MAN-LAN, A-7
SICL-MAN-LANSVR, A-7
SICL-MAN-RS232, A-6
SICL-MAN-VXI, A-6
SICL-PRG, A-2
SICL-RS232, A-4
SICL-RUN, A-2
SICL-VXI, A-2
SICL-VXI-ISCPI, A-3

Flushing buffers, 3-16

lndex-3

Format flags, 3-9
formatio. c example, 3-15
Format string, 3-16
Formatted I/O, 3-8

Argument modifier, 3-12
Array size, 3-12
Buffers, 3-16
Comma operator, 3-12
Conversion, 3-9
Example, 3-15
Field width, 3-11
Format flags, 3-9
Format string, 3-16
iprintf conversion characters,

3-13
iscanf conversion characters,

3-13
Precision, 3-11
Routines, 3-17

Functions
G PIO specific, 5-10
HP-IB specific, 4-20
iclear, 5-5, 7-6, 7-9
ionsrq, 5-5, 7-6, 7-9
iprintf, 5-5, 7-6
ipromptf, 7-6
iread, 5-5, 7-9
ireadstb, 5-6, 7-6
iscanf, 5-5, 7-6
iserialctrl, 7 -10
iserialmclctrl, 7 -11
iserialmclstat, 7-11
iserialstat, 7-10
itermchr, 5-5
itrigger, 5-5, 7-6, 7-9
iwrite, 5-5, 7-9
ixtrig, 5-5, 7-9
LAN specific, 8-26
RS-232 specific, 7-14
VXI/MXI specific, 6-53

lndex-4

G
Gateways, LAN sessions, 8-9
GET, HP-IB interface sessions, 4-10
GPIB, 4-9

Addressing commander sessions,
4-17

Addressing device sessions, 4-4
Addressing interface sessions, 4-9
Communicating with commanders,

4-17
Communicating with interfaces,

4-9
GPIO

Interface sessions, 5-4
Interrupts, 5-5
Manual, 1-6
Service requests (SRQs), 5-5
SICL functions, 5-10

gpiointr. c example, 5-8
gpiomeas. c example, 5-7

H
Handlers

Error, 3-27
Interrupt, 3-21
SRQ, 3-20
Wait for, 3-22

Header file, sicl .h, 3-3
Help, online, 2-8
Hostname, LAN, 8-9
HP-IB, 4-9

Addressing commander sessions,
4-17

Addressing device sessions, 4-4
Addressing interface sessions, 4-9
Communicating with commanders,

4-17
Communicating with interfaces,

4-9
Device session example, 4-7

Interface session example, 4-11,
4-13

Manuals, 1-6
Primary address, 4-5
Secondary address, 4-5
SICL functions, 4-20

HP-IB commander sessions
Interrupts, 4-19
iread, 4-19
ireadstb, 4-19
iwrite, 4-19

hpibdev. c example, 4-7
HP-IB device sessions

iclear, 4-6
Interrupts, 4-6
iread, 4-6
ireadstb, 4-6
i trigger, 4-6
iwrite, 4-6
Service requests, 4-6

HP-IB interface sessions
iclear, 4-10
Interrupts, 4-10
iread, 4-10
itrigger, 4-10
iwri te, 4-10
ixtrig, 4-10
Service requests, 4-11

hpibintr. c example, 4-13
hpibstatus. c example, 4-11
HP-UX

Manuals, 1-6
Signals, 3-23
Updating SICL to HP-UX 10, B-3

Hung LAN server, 9-14
HyperHelp, 2-8

I
iclear, 7-6, 7-9

GPIO interface sessions, 5-5
HP-IB device sessions, 4-6

HP-IB interface sessions, 4-10
LAN interface sessions, 8-17
VXI/MXI device sessions, 6-35
VXI/MXI interface sessions, 6-38

iclear utility, D-2
iclose, 2-5
idn. c example, 2-3
idrvrversion, LAN-gatewayed

sessions, 8-14
I_ERR_NOLOCK, 3-30
I_ERROR_EXIT, 3-27
I_ERROR_NO_EXIT, 3-27
IFC, HP-IB interface sessions, 4-10
ifread, 3-18
ifwri te, 3-18
igetluinfo, LAN interface sessions,

8-17
igettimeout, 8-18
iintroff, 3-21
iintron, 3-21
ilantimeout, 8-18
ilock, 3-30
imap, 6-15
INST, 2-4, 3-4
Interface sessions, 3-6

Addressing, 3-6
GPIO, 5-4
GPIO example, 5-7
HP-IB, 4-9
HP-IB example, 4-11, 4-13
LAN, 8-16
Parallel, 5-4
RS-232, 7-8
RS-232 example, 7-12
Serial, 7-8
VXI/MXI, 6-3
VXI/MXI addressing, 6-23
VXI/MXI example, 6-25

Interrupt handlers, 3-21
Example, 3-25

Interrupts

lndex-5

GPIO example, 5-8
GPIO interface sessions, 5-6
HP-IB commander sessions, 4-19
HP-IB device sessions, 4-6
HP-IB interface sessions, 4-10
1-SCPI, 6-36
RS-232 device sessions, 7-6
RS-232 interface sessions, 7-11
VME, 6-30
VXI/MXI, 6-49

interrupts. c example, 3-25
Invalid address, 9-8
Invalid INST, 9-8
Inverting polarity of V7 43 lines, 6-45
ionerror, 2-4, 3-27
ionintr, 3-21

LAN interface sessions, 8-17
ionsrq, 3-20, 7-6, 7-9

GPIO interface sessions, 5-5
LAN interface sessions, 8-17

1/0 operation timesout, 9-12
iopen, 2-4
iopen fails, 9-8, 9-11, 9-12, 9-13
IP address, 8-9
ipeek, 6-18, 6-30
i peek utility, D-5
ipoke, 6-18, 6-30
ipoke utility, D-6
iprintf, 2-5, 3-8, 5-5, 7-6

Conversion characters, 3-13
iproc utility, E-10, E-18
ipromptf, 2-5, 3-8, 7-6
iread, 3-18, 7-9

GPIO interface sessions, 5-5
HP-IB commander sessions, 4-19
HP-IB device sessions, 4-6
HP-IB interface sessions, 4-10
LAN-gatewayed sessions, 8-14
VXI/MXI device sessions, 6-35
VXI/MXI interface sessions, 6-38

ireadstb, 5-6, 7-6

lndex-6

HP-IB commander sessions, 4-19
HP-IB device sessions, 4-6
VXI/MXI device sessions, 6-35

iread utility, D-7
irq. cf, E-7
IRQ lines, E-7
iscanf, 3-8, 5-5, 7-6

Conversion characters, 3-13
1-SCPI, 6-4

Addressing, 6-11
Communicating, 6-9
Defining a driver, 6-12
Defining an instrument, 6-12
Drivers, 6-13
Interrupts, 6-36
Programming, 6-13
Programming example, 6-14
Service request, 6-36
SICL function support, 6-35

iserialctrl, 7-10
iserialmclctrl, 7-11
iserialstat, 7-10
isetintr, 3-21, 6-39
it ermchr, 5-5
it imeout, 2-4
i trginvrt, 6-45
i trginvrt utility, E-20
itrigger, 6-40, 7-6, 7-9

GPIO interface sessions, 5-5
HP-IB device sessions, 4-6
HP-IB interface sessions, 4-10
VXI/MXI device sessions, 6-35

iunlock, 3-30
iunmap, 6-18, 6-30
ivxirm utility, E-21
i vxisc, E-12
i vxisc utility, E-24
iwaithdlr, 3-22
iwrite, 3-18, 7-9

G PIO interface sessions, 5-5
HP-IB commander sessions, 4-19

HP-IB device sessions, 4-6
HP-IB interface sessions, 4-10
LAN-gatewayed sessions, 8-14
VXI/MXI device sessions, 6-35
VXI/MXI interface sessions, 6-38

iwri te utility, D-8
ixtrig, 6-39, 7-9

GPIO interface sessions, 5-5
HP-IB interface sessions, 4-10

L

LAN
Addressing interface sessions, 8-16
Addressing LAN-gatewayed

sessions, 8-9
Client/server, 8-3
Communication sessions, 8-9
Configuration, 8-8
hostname, 8-9
Interface sessions, 8-16
IP address, 8-9
Manuals, 1-6
Networking protocols, 8-6
Overview, 8-3
Performance, 8-8
Servers, 8-7
SICL functions, 8-26
SICL function support, 8-12
SICL LAN Protocol, 8-6
Signal handling, 8-24
Software architecture, 8-5
TCP /IP Instrument Protocol, 8-6,

8-12
Timeouts, 8-18
Troubleshooting, 9-9

LAN client
Definition, 8-3
LAN-gatewayed sessions, 8-9
Troubleshooting, 9-9, 9-11

landev. c example, 8-14
LAN errors

Bad address, 9-11
Connection refused, 9-15
110 operation timesout, 9-12
iopen fails, 9-11, 9-12, 9-13
portmapper, 9-14
RPC system error, 9-14, 9-15
Syntax error, 9-11
Timeout, 9-11
Unrecognized symbolic name, 9-11

LAN-gatewayed sessions, 8-9
Example, 8-14
idrvrversion, 8-14
iread, 8-14
iwrite, 8-14

LAN/HP-IB Gateway manual, 1-6
LAN interface sessions

iclear, 8-17
igetluinfo, 8-17
ionintr, 8-17
ionsrq, 8-17

LAN server
Appears hung, 9-14
Definition, 8-3
Description of, 8-7
LAN-gatewayed sessions, 8-9
portmapper error, 9-14
RPC system error, 9-15
siclland daemon, 9-13
Troubleshooting, 9-9, 9-13

LAN-to-Instrument Gateway, 8-4
Link errors, troubleshooting, 9-6
Linking, 2-6

Archive libraries, B-4
Lock actions, 3-31
Locking, 3-30

Example, 3-33
Multi-user environment, 3-32

locking. c example, 3-33

lndex-7

M
man pages, 2-9
Manuals

GPIO interface, 1-6
HP-IB interface, 1-6
HP-UX, 1-6
LAN, 1-6
LAN/HP-IB Gateway, 1-6
Series 700 computer, 1-6
Series 700 RS-232, 1-6
SICL, 1-5
V743 Controller, 1-6
VXI/MXI, 1-6

Manufacturer id, E-6
Mapping memory

32-bit access, 6-17
Register-based devices, 6-15
VME, 6-28
VME devices, 6-31

Memory mapping, 6-15
Memory space, mapping, 6-18, 6-30
Message-based devices, 6-4, 6-35

Communicating, 6-5
Message-based programming

Example, 6-8
Messages, error, 9-4
Migration document, C-3
Multi-user environment, locking,

3-32
MXI, triggering, E-9

N
names. cf file, E-8
Networking protocols, 8-6
Newline character, 3-16
nonformatio. c example, 3-19
Non-formatted I/O, 3-18

Example, 3-19
Notification, interrupts, 3-21

lndex-8

0
Online help, 2-8
Opening a session, 3-4
oride. cf file, E-8

and VME, 6-27
Example of using, 6-44

Overview
SICL, 1-4
VXI/MXI configuration, E-3

p

Parallel
Interface sessions, 5-4
Interrupts, 5-5
Service requests (SRQs), 5-5
SICL functions, 5-10

Pass Control, 4-10
Performance, LAN, 8-8
Porting DIL to SICL, C-2-9
portmapper, 9-14
Precision, 3-11
Primary address, 4-5, 6-6, 6-10
Program hangs, 9-8
Programming to registers, 6-15
Protocols, networking, 8-6

R
Register-based devices, 6-4, 6-37

Communicating, 6-9
Mapping memory space, 6-15

Register programming, 6-15, 6-18,
6-30

Catching bus errors, 6-21
Example, 6-18
I-SCPI, 6-13
oride. cf, E-8

Resource Manager, E-2, E-4, E-21
Resources, declaring VME, 6-27
Routing external trigger lines, 6-44
Routing TTL trigger lines, 6-42

rpcinfo troubleshooting, 9-13, 9-14,
9-15

RS-232
Device sessions, 7-4
Documentation, 1-6
Interface sessions, 7 -8
Interrupts, 7-6, 7-9
Service requests (SRQs), 7-9
SICL functions, RS-232 specific,

7-14
Running a program, 2-7
Run-time errors

s

Invalid address, 9-8
Invalid INST, 9-8
iopen fails, 9-8
Program hangs, 9-8
Timeout occurred, 9-8
Troubleshooting, 9-8

SCPI, 6-4
Secondary address, 4-5
Serial

Device sessions, 7 -4
Interface sessions, 7-8
Interrupts, 7-6, 7-9
Service requests (SRQs), 7-9
SICL functions, 7-14

serialdev. c example, 7-7
serialintr. c example, 7-12
Series 700 computer manuals, 1-6
Series 700 RS-232 manuals, 1-6
Servers, LAN, 8-7
Service request

HP-IB device sessions, 4-6
HP-IB interface sessions, 4-11
I-SCPI, 6-36

Sessions, 3-4
Addressing GPIO interfaces, 5-4
Addressing HP-IB commanders,

4-17

Addressing HP-IB devices, 4-4
Addressing HP-IB interfaces, 4-9
Addressing LAN-gatewayed, 8-9
Addressing LAN interfaces, 8-16
Addressing RS-232 devices, 7-4
Addressing RS-232 Interfaces, 7-8
Addressing VXI/MXI interfaces,

6-23
Addressing VXI/MXI message-based

devices, 6-6
Addressing VXI/MXI register-based

devices, 6-10
Commander, 3-7
Device, 3-5
GPIO interface, 5-4
HP-IB, 4-3
HP-IB device, 4-4
Interface, 3-6
LAN, 8-9
LAN-gatewayed sessions, 8-9
LAN interface sessions, 8-16
Opening, 3-4
Parallel interface, 5-4
RS-232 device, 7-4
RS-232 interface, 7-8
Serial device, 7 -4
Serial interface, 7-8
VXI/MXI, 6-3
VXI/MXI device, 6-3
VXI/MXI interface, 6-3

Shared libraries, 2-6
Shared memory, enabling, 6-22
SICL

Building HP-UX 9 applications, B-3
Documentation, 1-5
File structure, A-2
Overview, 1-4
Support, 1-4
Users, 1-4
Utilities, D-2

SICL-DIAG file structure, A-7

lndex-9

SICL-GPIO file structure, A-4
sicl.h, 2-4, 3-3
SICL-HPIB file structure, A-3
siclland daemon, 9-13
SICL-LAN file structure, A-4
SICL LAN Networking Protocol, 8-6
SICL-LANSVR file structure, A-5
SICL-MAN file structure, A-5
SICL-MAN-GPIO file structure, A-6
SICL-MAN-HPIB file structure, A-5
SICL-MAN-LAN file structure, A-7
SICL-MAN-LANSVR file structure,

A-7
SICL-MAN-RS232 file structure, A-6
SICL-MAN-VXI file structure, A-6
SICL-PRG file structure, A-2
SICL-RS232 file structure, A-4
SICL-RUN File structure, A-2
s icl_ tl script, B-3
SICL-VXI file structure, A-2
SICL-VXI-ISCPI file structure, A-3
Signal handling with LAN, 8-24
Signals, HP-UX, 3-23
SIGUSR2, 3-23
SRQ handlers, 3-20
Symbolic name, 3-6, 6-23, E-8

GPIO, 5-4
HP-IB, 4-9
LAN, 8-9, 8-16
RS-232, 7-8
VXI/MXI, 6-23

Syntax error, 9-11

T

TCP/IP Instrument Networking
Protocol, 8-6, 8-12

timeout, 9-11
Timeout occurred, 9-8
Timeouts, LAN, 8-18
Trigger lines

E1489, 6-39

lndex-10

V743, 6-39
Troubleshooting

Compile errors, 9-6
Install error handler, 9-3
LAN, 9-9
LAN client, 9-11
LAN server, 9-13
Link errors, 9-6
Run-time errors, 9-8

ttl trig. cf file, E.:.9
Example, 6-42

TTL trigger lines
Routing, 6-42
ttl trig. cf, E-9

u
Undefined id, 9-7
Unexpected symbol, 9-6
Unmapping memory space, 6-18,

6-30
Unrecognized symbolic name, 9-11
Unsatisfied symbols, 9-7
Utilities

e1489mir, E-14
e1489trg, E-15
e1489tsh, E-16
e1497cnf, E-17
iclear, D-2
ipeek, D-5
ipoke, D-6
iproc, E-10, E-18
iread, D-7
itrginvrt, E-20
i vxirm, E-21
i vxisc, E-24
iwrite, D-8
VXI/MXI, E-13

v
V743

Configuring multiple, E-28

DMA transfers, 6-46
Enabling shared memory, 6-22
Inverting polarity, V7 43, 6-45
Manuals) 1-6
Trigger lines, 6-39

VME ,
Access modes, 6-29
and the E1482, 6-27
Communicating with devices, 6-26
Declaring Resources, 6-27
Example program, 6-31
Interrupts, 6-30
Mapping memory, 6-28
oride. cf file, 6-27

vmedev . cf, E-7
Example, 6-31

vmedev. cf file, 6-27
VME devices, E-7

Example of programming, 6-32
VME interrupts

Example, 6-51
vmeintr. c example, 6-32, 6-51
vxiintr. c example, 6-25
vxiiscpi. c example, 6-14
vximanuf . cf file, E-6
vximesdev. c example, 6-8
vximodel. cf file, E-6
VXI/MXI

Addressing interfaces sessions,
6-23

Addressing message-based device
sessions, 6-6

Addressing register-based device
sessions, 6-10

Communication sessions, 6-3
Configuration, E-2, E-4
Configuration files, E-5
Configuration Utilities, E-13

Interrupts, 6-49
IRQ lines, E-7
1-SCPI programming example, 6-14
Manuals, 1-6
Mapping memory space, 6-15
Message-based devices, 6-4, 6-35
Message-based programming

example, 6-8
Model number, E-6
Overview of configuration, E-3
Register-based devices, 6-4, 6-37
Register programming, 6-15
Register programming example,

6-18
Resource Manager, E-4
Routing external trigger lines, 6-44
Routing trigger lines, 6-42
SICL functions, 6-53
Trigger lines, 6-39
VME devices, 6-26

VXI/MXI device sessions, 6-3
Example, 6-8, 6-14, 6-18
iclear, 6-35
ionsrq, 6-35
iread, 6-35
ireadstb, 6-35
i trigger, 6-35
iwri te, 6-35

VXI/MXI interface sessions, 6-3
Example, 6-25
iclear, 6-38
iread, 6-38
iwri te, 6-38

vxiregdev. c example, 6-18

w
Wait for handlers, 3-22

lndex-11

F//jjW HEWLETT®
~~PACKARD

Copyright © 1996
Hewlett-Packard Company
Printed in U.S.A. E0996

I lllllll llll lllll lllll lllll llll 1111111111111111111111111111111111
E2091-90004

