
Agilent E2090-90100
VISA Libraries
Agilent VISA User’s Guide
for Windows
Agilent Technologies

Notices
© Agilent Technologies, Inc. 2003

No part of this manual may be reproduced in
any form or by any means (including elec-
tronic storage and retrieval or translation
into a foreign language) without prior agree-
ment and written consent from Agilent
Technologies, Inc. as governed by United
States and international copyright laws.

Manual Part Number
E2090-90100

Edition
Sixth edition, April 2003

Printed in USA

Agilent Technologies, Inc.
815 W 14th Street
Loveland, CO 80537 USA

Warranty
The material contained in this docu-
ment is provided “as is,” and is sub-
ject to being changed, without notice,
in future editions. Further, to the max-
imum extent permitted by applicable
law, Agilent disclaims all warranties,
either express or implied, with regard
to this manual and any information
contained herein, including but not
limited to the implied warranties of
merchantability and fitness for a par-
ticular purpose. Agilent shall not be
liable for errors or for incidental or
consequential damages in connec-
tion with the furnishing, use, or per-
formance of this document or of any
information contained herein. Should
Agilent and the user have a separate
written agreement with warranty
terms covering the material in this
document that conflict with these
terms, the warranty terms in the sep-
arate agreement shall control.

Technology Licenses
The hardware and/or software described in
this document are furnished under a license
and may be used or copied only in accor-
dance with the terms of such license.

Restricted Rights Legend
If software is for use in the performance of a
U.S. Government prime contract or subcon-
tract, Software is delivered and licensed as
“Commercial computer software” as
defined in DFAR 252.227-7014 (June 1995),
or as a “commercial item” as defined in FAR
2.101(a) or as “Restricted computer soft-
ware” as defined in FAR 52.227-19 (June
1987) or any equivalent agency regulation or
contract clause. Use, duplication or disclo-
sure of Software is subject to Agilent Tech-
nologies’ standard commercial license
terms, and non-DOD Departments and
Agencies of the U.S. Government will
receive no greater than Restricted Rights as
defined in FAR 52.227-19(c)(1-2) (June

1987). U.S. Government users will receive
no greater than Limited Rights as defined in
FAR 52.227-14 (June 1987) or DFAR
252.227-7015 (b)(2) (November 1995), as
applicable in any technical data.

Safety Notices

CAUTION

A CAUTION notice denotes a haz-
ard. It calls attention to an operat-
ing procedure, practice, or the like
that, if not correctly performed or
adhered to, could result in damage
to the product or loss of important
data. Do not proceed beyond a
CAUTION notice until the indicated
conditions are fully understood and
met.

WARNING

A WARNING notice denotes a
hazard. It calls attention to an
operating procedure, practice, or
the like that, if not correctly per-
formed or adhered to, could result
in personal injury or death. Do not
proceed beyond a WARNING
notice until the indicated condi-
tions are fully understood and
met.
2 Agilent VISA User’s Guide

Agilent VISA User’s Guide for Windows

1 Introduction
Agilent VISA User’s Guide
What’s in This Guide? 8

VISA Overview 9

Using VISA and SICL 9
VISA Support 9
VISA Users 10
VISA Documentation 10
Contacting Agilent 11
2 Building a VISA Application in Windows
Building a VISA Program (C/C++) 14

Compiling and Linking VISA Programs (C/C++) 14
Example VISA Program (C/C++) 16

Building a VISA Program (Visual Basic) 19

Visual Basic Programming Considerations 19
Example VISA Program (Visual Basic) 21

Logging Error Messages 26

Using the Event Viewer 26
Using the Message Viewer 26
Using the Debug Window 27
3 Programming with VISA
VISA Resources and Attributes 30

VISA Resources 30
VISA Attributes 31

Using Sessions 33

Including the VISA Declarations File (C/C++) 33
Adding the visa32.bas File (Visual Basic) 33
Opening a Session 34
3

4

Addressing a Session 36
Closing a Session 40
Searching for Resources 40

Sending I/O Commands 43

Types of I/O 43
Using Formatted I/O 43
Using Non-Formatted I/O 54

Using Events and Handlers 57

Events and Attributes 57
Using the Callback Method 65
Using the Queuing Method 74

Trapping Errors 80

Trapping Errors 80
Exception Events 81

Using Locks 87

Lock Functions 87
viLock/viUnlock Functions 87
VISA Lock Types 88
4 Programming via GPIB and VXI
GPIB and VXI Interfaces Overview 94

General Interface Information 94
GPIB Interfaces Overview 95
VXI Interfaces Overview 98
GPIB-VXI Interfaces Overview 99

Using High-Level Memory Functions 102

Programming the Registers 102
High-Level Memory Functions Examples 105

Using Low-Level Memory Functions 108

Programming the Registers 108
Agilent VISA User’s Guide

Agilent VISA User’s Guide
Low-Level Memory Functions Examples 111

Using Low/High-Level Memory I/O Methods 114

Using Low-Level viPeek/viPoke 114
Using High-level viIn/viOut 115
Using High-level viMoveIn/viMoveOut 115

Using the Memory Access Resource 120

Memory I/O Services 120
MEMACC Attribute Descriptions 123

Using VXI-Specific Attributes 127

Using the Map Address as a Pointer 127
Setting the VXI Trigger Line 128
5 Programming via LAN
LAN Interfaces Overview 132

LAN Hardware Architecture 132
LAN Software Architecture 134
LAN Client Interface Overview 136
VISA LAN Client Interface Overview 140
LAN Server Interface Overview 144

Communicating with LAN-Connected Devices 146

Using the TCPIP Interface Type for LAN Access 146
Using a VISA LAN Client for LAN Access 149
6 Programming via USB
USB Interfaces Overview 154

Communicating with a USB Instrument Using VISA 155
Glossary
5

6 Agilent VISA User’s Guide

Agilent E2094M VISA User’s Guide for Windows
Agilent VISA User’s Guide
1
Introduction

This Agilent Technologies VISA User’s Guide describes the
Agilent Virtual Instrument Software Architecture (VISA) library
and shows how to use it to develop instrument drivers and I/O
applications on Windows 98SE, Windows Me, Windows 2000,
Windows XP, and Windows NT 4.0.
NOTE Before you can use VISA, you must install and configure VISA on your
computer. See the Agilent IO Libraries Installation and Configuration Guide
for Windows for installation on Windows systems.

This guide shows programming techniques using C/C++ and Visual Basic.
Since VISA and SICL are different libraries, using VISA functions and SICL
functions in the same I/O application is not supported. Unless otherwise
indicated, Windows NT refers to Windows NT 4.0.
This chapter includes:

• What’s in This Guide?

• VISA Overview
7Agilent Technologies

1 Introduction
What’s in This Guide?
8

This chapter provides an overview of VISA and shows how to
contact Agilent Technologies. Subsequent chapters in this guide
address the following topics:

• Chapter 2 - Building a VISA Application in Windows
describes how to build a VISA application in a Windows
environment. An example program is provided to help you
get started programming with VISA.

• Chapter 3 - Programming with VISA describes the basics of
VISA and lists some example programs. The chapter also
includes information on creating sessions, using formatted
I/O, events, etc.

• Chapter 4 - Programming via GPIB and VXI provides
guidelines for using VISA to communicate over the GPIB,
GPIB-VXI, and VXI interfaces to instruments.

• Chapter 5 - Programming via LAN provides guidelines for
using VISA to communicate over a LAN (Local Area Network)
to instruments.

• Chapter 6 - Programming via USB provides guidelines for
using VISA to communicate over a USB (Universal Serial
Bus) to instruments.

• Glossary includes a glossary of terms and their definitions.
Agilent VISA User’s Guide

Introduction 1
VISA Overview
Agilent VISA User’s Guide
VISA is a part of the Agilent IO Libraries. The Agilent IO
Libraries consists of two libraries: Agilent Virtual Instrument
Software Architecture (VISA) and Agilent Standard
Instrument Control Library (SICL). This guide describes VISA
for supported Windows environments.

For information on using SICL in Windows, see the Agilent SICL
User’s Guide for Windows. For information on the Agilent IO
Libraries, see the Agilent IO Libraries Installation and
Configuration Guide.
Using VISA and SICL
Agilent Virtual Instrument Software Architecture (VISA) is an
IO library designed according to the VXIplug&play System
Alliance that allows software developed from different vendors
to run on the same system.

Use VISA if you want to use VXIplug&play instrument drivers
in your applications, or if you want the I/O applications or
instrument drivers that you develop to be compliant with
VXIplug&play standards. If you are using new instruments or
are developing new I/O applications or instrument drivers, we
recommend you use Agilent VISA.

Agilent Standard Instrument Control Library (SICL) is an I/O
library developed by Agilent that is portable across many I/O
interfaces and systems. You can use Agilent SICL if you have
been using SICL and want to remain compatible with software
currently implemented in SICL.
VISA Support
This 32-bit version of VISA is supported on Windows 98SE,
Windows Me, Windows 2000, Windows XP, and Windows NT.
Support for the 16-bit version of VISA was removed in version
H.01.00 of the Agilent IO Libraries. However, versions through
G.02.02 support 16-bit VISA. C, C++, and Visual Basic are
supported on all these Windows versions.
9

10

1 Introduction
For Windows, VISA is supported on the GPIB, VXI, GPIB-VXI,
Serial (RS-232), LAN, and USB interfaces. VISA for the VXI
interface on Windows NT is shipped with the Agilent Embedded
VXI Controller product only. LAN support from within VISA
occurs via an address translation such that a GPIB interface can
be accessed remotely over a computer network.
VISA Users
VISA has two specific types of users. The first type is the
instrumentation end user who wants to use VXIplug&play
instrument drivers in his or her applications. The second type
of user is the instrument driver or I/O application developer
who wants to be compliant with VXIplug&play standards.

Software development using VISA is intended for instrument
I/O and C/C+ + or Visual Basic programmers who are familiar
with the Windows 98SE, Windows Me, Windows 2000, Windows
XP, or Windows NT environment. To perform VISA installation
and configuration on Windows 2000, XP, or NT, you must have
system administration privileges on the applicable system.
VISA Documentation
This table shows associated documentation you can use when
programming with Agilent VISA.

Table 1 Agilent VISA Documentation

Document Description

Agilent IO Libraries Installation
and Configuration Guide for
Windows

Shows how to install, configure, and
maintain the Agilent IO Libraries on
Windows.

VISA Online Help Information is provided in the form of
Windows Help.

VISA Example Programs Example programs are provided online to
help you develop VISA applications.

VXIplug&play System Alliance
VISA Library Specification 4.3

Specifications for VISA.
Agilent VISA User’s Guide

Introduction 1

Agilent VISA User’s Guide
IEEE Standard Codes, Formats,
Protocols, and Common
Commands

ANSI/IEEE Standard 488.2-1992.

VXIbus Consortium specifications
(when using VISA over LAN)

TCP/IP Instrument Protocol Specification -
VXI-11, Rev. 1.0
TCP/IP-VXIbus Interface Specification -
VXI-11.1, Rev. 1.0
TCP/IP-IEEE 488.1 Interface Specification -
VXI-11.2, Rev. 1.0
TCP/IP-IEEE 488.2 Instrument Interface
Specification - VXI-11.3, Rev. 1.0

Table 1 Agilent VISA Documentation
Contacting Agilent
• In the USA and Canada, you can reach Agilent Technologies
at these telephone numbers:

USA: 1-800-452-4844
Canada: 1-877-894-4414

• Outside the USA and Canada, contact your country’s Agilent
support organization. A list of contact information for other
countries is available on the Agilent web site:

http://www.agilent.com/find/assist
11

http://www.agilent.com/find/assist

12

1 Introduction
Agilent VISA User’s Guide

Agilent E2094M VISA User’s Guide for Windows
Agilent VISA User’s Guide
2
Building a VISA Application in
Windows

This chapter provides guidelines for building a VISA application
in a Windows environment.

The chapter contains the following sections:

• Building a VISA Program (C/C++)

• Building a VISA Program (Visual Basic)

• Logging Error Messages
13Agilent Technologies

2 Building a VISA Application in Windows
Building a VISA Program (C/C++)
14
This section provides guidelines for building VISA programs
using C/C++ language, including:

• Compiling and Linking VISA Programs (C/C++)

• Example VISA Program (C/C++)
Compiling and Linking VISA Programs (C/C++)
This section provides a summary of important compiler-specific
considerations for several C/C++ compiler products when
developing Win32 applications.

Linking to VISA Libraries

Your application must link to one of the VISA import libraries as
follows, assuming default installation directories.

• VISA on Windows 98SE or Windows Me:

 C:\Program Files\VISA\win95\lib\msc\visa32.lib
 (Microsoft compilers)

 C:\Program Files\VISA\win95\lib\bc\visa32.lib
 (Borland compilers)

• VISA on Windows 2000, XP, or NT:

 C:\Program Files\VISA\winnt\lib\msc\visa32.lib
 (Microsoft compilers)

 C:\Program Files\VISA\winnt\lib\bc\visa32.lib
 (Borland compilers)

Microsoft Visual C++ Version 6.0 Compilers

1 Select Project|Update All Dependencies from the menu.

2 Select Project|Settings from the menu and click the C/C++
button.

3 Select Code Generation from the Category list box and select
Multi-Threaded using DLL from the Use Run-Time Libraries list
Agilent VISA User’s Guide

Building a VISA Application in Windows 2

Agilent VISA User’s Guide
box. (VISA requires these definitions for Win32.) Click OK to
close the dialog boxes.

4 Select Project | Settings from the menu. Click the Link button
and add visa32.lib to the Object/Library Modules list box.
Optionally, you may add the library directly to your project
file. Click OK to close the dialog boxes.

5 You may want to add the include files and library files
search paths. They are set as follows:

• Select Tools | Options from the menu.

• Click the Directories button to set the include file path.

• Select Include Files from the Show Directories For list box.

• Click the Add button and type one of the following:
C:\Program Files\VISA\win95\include or
C:\Program Files\VISA\winnt\include.

6 Select Library Files from the Show Directories For list box.

7 Click the Add button and type one of the following:
C:\Program Files\VISA\win95\lib\msc or
C:\Program Files\VISA\winnt\lib\msc

Borland C++ Version 4.0 Compilers

You may want to add the include files and library files search
paths. They are set under the Options|Project menu selection.
Double-click Directories from the Topics list box and add one of
the following:

 C:\Program Files\VISA\win95\include
 C:\Program Files\VISA\win95\lib\bc

 or

 C:\Program Files\VISA\winnt\include
 C:\Program Files\VISA\winnt\lib\bc
15

2 Building a VISA Application in Windows
Example VISA Program (C/C++)
16
This section lists an example program called idn that queries a
GPIB instrument for its identification string. This example
assumes a Win32 Console Application using Microsoft or
Borland C/C++ compilers on Windows.

• For VISA on Windows 98SE and Windows Me, the idn
example files are in \Program
Files\VISA\win95\agvisa\samples.

• For VISA on Windows 2000, XP, or NT, the idn example files
are in \Program Files\VISA\winnt\agvisa\samples.

Example C/C++ Program Source Code

The source file idn.c follows. An explanation of the various
function calls in the example is provided directly after the
program listing. If the program runs correctly, the following is
an example of the output if connected to a 54601A oscilloscope.

HEWLETT-PACKARD,54601A,0,1.7

If the program does not run, see the Event Viewer for a list of
run-time errors.

/*idn.c
This example program queries a GPIB device for
an identification string and prints the
results. Note that you must change the address.

*/

#include <visa.h>
#include <stdio.h>

void main () {

ViSession defaultRM, vi;
char buf [256] = {0};

/* Open session to GPIB device at address 22 */
viOpenDefaultRM(&defaultRM);
viOpen(defaultRM,
Agilent VISA User’s Guide

Building a VISA Application in Windows 2

Agilent VISA User’s Guide
"GPIB0::22::INSTR",VI_NULL,VI_NULL,
 &vi);

/* Initialize device */
viPrintf(vi, "*RST\n");
/* Send an *IDN? string to the device */
viPrintf(vi, "*IDN?\n");
/* Read results */
viScanf(vi, "%t", buf);

/* Print results */
printf("Instrument identification string:
%s\n", buf);

/* Close session */
viClose(vi);
viClose(defaultRM);}

Example C/C++ Program Contents

A summary of the VISA function calls used in the preceding
example C/C++ program follows. For a more detailed
explanation of VISA functionality, see Chapter 3,
“Programming with VISA.” See the VISA Online Help for more
detailed information on these VISA function calls.

Table 2 Summary of VISA Function Calls Used in the C/C++ Example

Function(s) Description

visa.h This file is included at the beginning of the program to
provide the function prototypes and constants defined by
VISA.

ViSession The ViSession is a VISA data type. Each object that will
establish a communication channel must be defined as
ViSession.

viOpenDefaultRM You must first open a session with the default resource
manager with the viOpenDefaultRM function. This function
will initialize the default resource manager and return a
pointer to that resource manager session.
17

18

2 Building a VISA Application in Windows
viOpen This function establishes a communication channel with
the device specified. A session identifier that can be used
with other VISA functions is returned. This call must be
made for each device you will be using.

viPrintf and
viScanf

These are the VISA formatted I/O functions that are
patterned after those used in the C programming language.
The viPrintf call sends the IEEE 488.2 *RST command to
the instrument and puts it in a known state. The viPrintf
call is used again to query for the device identification
(*IDN?). The viScanf call is then used to read the results.

viClose This function must be used to close each session. When
you close a device session, all data structures that had
been allocated for the session will be deallocated. When
you close the default manager session, all sessions opened
using that default manager session will be closed.

Table 2 Summary of VISA Function Calls Used in the C/C++ Example
Agilent VISA User’s Guide

Building a VISA Application in Windows 2
Building a VISA Program (Visual Basic)
Agilent VISA User’s Guide
This section provides guidelines for building a VISA program in
the Visual Basic language, including:

• Visual Basic Programming Considerations

• Example VISA Program (Visual Basic)
Visual Basic Programming Considerations
Some considerations for programming in Visual Basic follow.

Required Module for a Visual Basic VISA Program

Before you can use VISA specific functions, your application
must add the visa32.bas VISA Visual Basic module found in one
of the following directories (assuming default installation
directories). For Windows 2000/XP/NT, C:\Program
Files\VISA\winnt\include\. For Windows 98SE/Me,
C:\Program Files\VISA\win95\include\.

Installing the visa32.bas File

To install visa32.bas:

1 Select Project | Add Module from the menu.

2 Select the Existing tab.

3 Browse and select the visa32.bas file from the applicable
directory.

4 Click the Open button.

VISA Limitations in Visual Basic

VISA functions return a status code that indicates success or
failure of the function. The only indication of an error is the
value of a returned status code. The VB Error variable is not set
by any VISA function. Thus, you cannot use the 'ON ERROR'
construct in VB or the value of the VB Error variable to catch
VISA function errors.
19

20

2 Building a VISA Application in Windows
VISA cannot callback to a VB function. Thus, you can only use
the VI_QUEUE mechanism in viEnableEvent. There is no way
to install a VISA event handler in VB.

VISA functions that take a variable number of parameters
(viPrintf, viScanf, viQueryf) are not callable from VB. Use
the corresponding viVPrintf, viVScanf and viVQueryf
functions instead.

You cannot pass variables of type Variant to VISA functions. If
you attempt this, the Visual Basic program will probably crash
with a 'General Protection Fault' or an 'Access Violation.'

Format Conversion Commands

The functions viVPrintf, viVscanf and viVqueryf can be
called from VB, but there are restrictions on the format
conversions that can be used. Only one format conversion
command can be specified in a format string (a format
conversion command begins with the % character).

For example, the following is invalid:

status = viVPrintf(vi, "%lf%d" + Chr$(10),
...)

Instead, you must make one call for each format conversion
command, as shown in the following example:

status = viVPVISA User’s Guide for
Windowsntf(vi, "%lf" + Chr$(10), dbl_value)
status = viVPrintf(vi, "%d" + Chr$(10),
int_value)

Numeric Arrays

When reading from or writing to a numeric array, you must
specify the first element of a numeric array as the params
parameter. This passes the address of the first array element to
the function. For example, the following code declares an array
of 50 floating point numbers and then calls viVPrintf to write
from the array.
Agilent VISA User’s Guide

Building a VISA Application in Windows 2

Agilent VISA User’s Guide
Dim flt_array(50) As Double
status = viVPrintf(id, "%,50f", dbl_array(0))

Strings

When reading in a string value with viVScanf or viVQueryf,
you must pass a fixed length string as the params parameter. To
declare a fixed length string, instead of using the normal
variable length declaration:

Dim strVal as String

use the following declaration, where 40 is the fixed length.

 Dim strVal as String * 40
Example VISA Program (Visual Basic)
This section lists an example program called idn that queries a
GPIB instrument for its identification string. This example
builds a Standard .exe application for WIN32 programs using
the Visual Basic 6.0 programming language.

For VISA on Windows 98SE/Me, the idn example files are in
C:\Program
Files\VISA\win95\agvisa\samples\vb\idn.

For VISA on Windows 2000/XP/NT, the idn example files are in
C:\Program
Files\VISA\winnt\agvisa\samples\vb\idn.
21

22

2 Building a VISA Application in Windows
Steps to Running the Program

The steps to building and running the idn example program
follow.

1 Connect an instrument to a GPIB interface that is compatible
with IEEE 488.2.

2 Start the Visual Basic 6.0 application.
NOTE This example assumes you are building a new project (no .vbp file exists
for project). If you do not want to build the project from scratch, from the
menu select File | Open Project... and select and open the idn.vbp file.
Then skip to Step 9.
3 Start a new Visual Basic Standard .exe project. VB 6.0 will
open a new project, Project1 with a blank Form, Form1.

4 From the menu, select Project | Add Module, select the Existing
tab, and browse to the idn directory.

5 The idn example files are located in directory
vb\samples\idn. Select the file idn.bas and click Open.
Since the Main() subroutine is executed when the program is
run without requiring user interaction with a Form, Form1
may be deleted if desired. To do this, right-click Form1 in the
Project Explorer window and select Remove Form1.

6 VISA applications in Visual Basic require the VISA Visual
Basic (VB) declaration file visa32.bas in your VB project.
This file contains the VISA function definitions and constant
declarations needed to make VISA calls from Visual Basic.

7 To add this module to your project in VB 6.0, from the menu
select Project | Add Module, select the Existing tab, browse to
the directory containing the VB Declaration file, select
visa32.bas, and click Open.

8 The name and location of the VB declaration file depends on
which operating system is used. Assuming the 'standard'
VISA directory C:\Program Files\Visa, or the 'standard'
VXIpnp directory C:\VXIpnp, the visa32.bas file can be
found in one of these locations:
Agilent VISA User’s Guide

Building a VISA Application in Windows 2

Agilent VISA User’s Guide
\winnt\include\visa32.bas (Windows 2000/XP/NT)
\win95\include\visa32.bas (Windows 98SE/Me)

9 At this point, the Visual Basic project can be run and
debugged. You will need to change the VISA Interface Name
and address in the code to match your device’s configuration.

10 If you want to compile to an executable file, from the menu
select File | Make idn.exe... and press Open. This will create
idn.exe in the idn directory.

Example Program Source Code

An explanation of the various function calls in the example is
provided after this program listing. If the program runs
correctly, the following is an example of the output in a Message
Box if connected to a 54601A oscilloscope.

HEWLETT-PACKARD,54601A,0,1.7

If the program does not run, see the Event Viewer for a list of
run-time errors. The source file idn.bas follows.

Option Explicit
''
'''''''''''''''''''
' idn.bas
' This example program queries a GPIB device for
' an identification string and prints the
' results. Note that you may have to change the
' VISA Interface Name and address for your
' device from "GPIB0" and "22",respectively.

''
'''''''''''''''''''

Sub Main()
 Dim defrm As Long 'Session to Default
 Resource Manager
 Dim vi As Long 'Session to instrument
 Dim strRes As String * 200 'Fixed length
 string to hold results

 ' Open the default resource manager session
 Call viOpenDefaultRM(defrm)
23

24

2 Building a VISA Application in Windows

 ' Open the session to the resource
 ' The "GPIB0" parameter is the VISA Interface
 ' name to a
 ' GPIB instrument as defined in
 ' Start | Programs | Agilent IO Libraries |
 IO Config
 ' Change this name to what you have defined
 ' your VISA Interface.
 ' "GPIB0::22::INSTR" is the address string
 ' for the device.
 ' this address will be the same as seen in:
 ' Start | Programs | Agilent IO Libraries |
 VISA
 ' Assistant after the VISA Interface Name is
 defined in IO Config)

 Call viOpen(defrm, "GPIB0::22::INSTR", 0, 0,
 vi)

 ' Initialize device
 Call viVPrintf(vi, "*RST" + Chr$(10), 0)

 ' Ask for the device's *IDN string.
 Call viVPrintf(vi, "*IDN?" + Chr$(10), 0)

 ' Read the results as a string.
 Call viVScanf(vi, "%t", strRes)

 ' Display the results
 MsgBox "Result is: " + strRes, vbOKOnly,
 "*IDN? Result"

 ' Close the vi session and the resource
 manager session
 Call viClose(vi)
 Call viClose(defrm)
End Sub
Agilent VISA User’s Guide

Building a VISA Application in Windows 2

Agilent VISA User’s Guide
Example Program Contents

A summary of the VISA function calls used in the preceding
example Visual Basic program follows. For a more detailed
explanation of VISA functionality, see Chapter 3,
“Programming with VISA.” See the VISA Online Help for more
detailed information on these VISA function calls.

Table 3 Summary of VISA Function Calls in Visual Basic Example

Function(s) Description

viOpenDefaultRM You must first open a session with the default resource
manager with the viOpenDefaultRM function. This
function will initialize the default resource manager and
return a pointer (defrm) to that resource manager
session.

viOpen This function establishes a communication channel
with the device specified. A session identifier (vi) that
can be used with other VISA functions is returned. This
call must be made for each device you will be using.

viVPrintf and viVScanf These are the VISA formatted I/O functions. The
viVPrintf call sends the IEEE 488.2 *RST command to
the instrument (plus a linefeed character) and puts it in
a known state. The viVPrintf call is used again to query
for the device identification (*IDN?). The viVScanf call
is then used to read the results (strRes) that are
displayed in a Message Box.

viClose This function must be used to close each session.
When you close a device session, all data structures
that had been allocated for the session will be
deallocated. When you close the default manager
session, all sessions opened using that default
manager session will be closed.
25

2 Building a VISA Application in Windows
Logging Error Messages
26
When developing or debugging your VISA application, you may
want to view internal VISA messages while your application is
running. You can do this by using the Message Viewer utility (for
Windows 98SE/Me), the Event Viewer utility (for Windows
2000/XP/NT), or the Debug Window (for Windows
98SE/Me/2000/XP/NT). There are three choices for VISA
logging:

• Off (default) for best performance

• Event Viewer/Message Viewer

• Debug Window
Using the Event Viewer
For Windows 2000, XP, or NT, the Event Viewer utility provides a
way to view internal VISA error messages during application
execution. Some of these internal messages do not represent
programming errors and are actually error messages from VISA
which are being handled internally by VISA. The process for
using the Event Viewer is:

• Enable VISA logging from the Agilent IO Libraries Control by
clicking the blue IO icon on the taskbar and then clicking
Agilent VISA Options | VISA Logging | Event Viewer.

• Run your VISA program.

• View VISA error messages by running the Event Viewer. From
the Agilent IO Libraries Control, click Run Event Viewer. VISA
error messages will appear in the application log of the Event
Viewer utility.
Using the Message Viewer
For Windows 98SE or Windows Me, the Message Viewer utility
provides a way to view internal VISA error messages during
application execution. Some of these internal messages do not
represent programming errors and are actually error messages
from VISA which are being handled internally by VISA.
Agilent VISA User’s Guide

Building a VISA Application in Windows 2

Agilent VISA User’s Guide
The Message Viewer utility must be run BEFORE you run your
VISA application. However, the utility will receive messages
while minimized. This utility also provides menu selections for
saving the logged messages to a file and for clearing the message
buffer.

The process for using the Message Viewer is:

• Enable VISA logging from the Agilent IO Libraries Control by
clicking the blue IO icon on the taskbar, then clicking Agilent
VISA Options | VISA Logging | Message Viewer.

• Start the Message Viewer. From the Agilent IO Libraries
Control, click Run Message Viewer.

• Run your VISA program.

• View error messages in the Message Viewer window.
Using the Debug Window
When VISA logging is directed to the Debug Window, VISA writes
logging messages using the Win32 API call
OutputDebugString(). The most common use for this feature is
when debugging your VISA program using an application such
as Microsoft Visual Studio. In this case, VISA messages will
appear in the Visual Studio output window. The process for
using the Debug Window is:

1 Enable VISA logging from the Agilent IO Libraries Control by
clicking the blue IO icon on the taskbar and then clicking
Agilent VISA Options | VISA Logging | Debug Window.

2 Run your VISA program from Microsoft Visual Studio (or
equivalent application).

3 View error messages in the Visual Studio (or equivalent)
output window.
27

28

2 Building a VISA Application in Windows
Agilent VISA User’s Guide

Agilent E2094M VISA User’s Guide for Windows
Agilent VISA User’s Guide
3
Programming with VISA

This chapter describes how to program with VISA. The basics of
VISA are described, including formatted I/O, events and
handlers, attributes, and locking. Example programs are also
provided and can be found in the Samples subdirectory on
Windows environments.

See VISA Library Information in the VISA Online Help for the
specific location of the example programs on your operating
system. For specific details on VISA functions, see the VISA
Online Help.

This chapter contains the following sections:

• VISA Resources and Attributes

• Using Sessions

• Sending I/O Commands

• Using Events and Handlers

• Trapping Errors

• Using Locks
29Agilent Technologies

3 Programming with VISA
VISA Resources and Attributes
30
This section introduces VISA resources and attributes,
including:

• VISA Resources

• VISA Attributes
VISA Resources
In VISA, a resource is defined as any device (such as a
voltmeter) with which VISA can provide communication. VISA
defines six resource classes that a complete VISA system, fully
compliant with the VXIplug&play Systems Alliance
specification, can implement. Each resource class includes:

• Attributes to determine the state of a resource or session or
to set a resource or session to a specified state.

• Events for communication with applications.

• Operations (functions) that can be used for the resource
class.

A summary description of each resource class supported by
Agilent VISA follows. See VISA Resource Classes in the VISA
Online Help for a description of the attributes, events, and
operations for each resource class.
NOTE Although the Servant Device-Side (SERVANT) resource is defined by the
VISA specification, the SERVANT resource is not supported by Agilent
VISA. See VISA Resource Classes in the VISA Online Help for a description
of the SERVANT resource.
Table 4 Descriptions of Resource Classes Supported by Agilent VISA

Resource Class Interface Types Resource Class Description

Instrument Control
(INSTR)

Generic, GPIB,
GPIB-VXI, Serial,
TCPIP, USB, VXI

Device operations (reading,
writing, triggering, etc.).
Agilent VISA User’s Guide

Programming with VISA 3

Agilent VISA User’s Guide
GPIB Bus Interface
(INTFC)

Generic, GPIB Raw GPIB interface operations
(reading, writing, triggering,
etc.).

Memory Access
(MEMACC)

Generic, GPIB-VXI,
VXI

Address space of a
memory-mapped bus such as
the VXIbus.

VXI Mainframe
Backplane
(BACKPLANE)

Generic, GPIB-VXI,
VXI (GPIB-VXI
BACKPLANE not
supported)

VXI-defined operations and
properties of each backplane (or
chassis) in a VXIbus system.

Servant Device-Side
Resource (SERVANT)

GPIB, VXI, TCPIP
(not supported)

Operations and properties of the
capabilities of a device and a
device's view of the system in
which it exists.

TCPIP Socket
(SOCKET)

Generic, TCPIP Operations and properties of a
raw network socket connection
using TCPIP.

Table 4 Descriptions of Resource Classes Supported by Agilent VISA
VISA Attributes
Attributes are associated with resources or sessions. You can
use attributes to determine the state of a resource or session, or
to set a resource or session to a specified state.

For example, you can use the viGetAttribute function to read
the state of an attribute for a specified session, event context, or
find list. There are read only (RO) and read/write (RW)
attributes. Use the viSetAttribute function to modify the state
of a read/write attribute for a specified session, event context,
or find list.

The pointer passed to viGetAttribute must point to the exact
type required for that attribute (ViUInt16, ViInt32, etc). For
example, when reading an attribute state that returns a
ViUInt16, you must declare a variable of that type and use it for
the returned data. If ViString is returned, you must allocate an
array and pass a pointer to that array for the returned data.
31

32

3 Programming with VISA
Example: Reading a VISA Attribute

This example reads the state of the VI_ATTR_TERMCHAR_EN
attribute and changes it if it is not true.

ViBoolean state, newstate;
newstate=VI_TRUE;
viGetAttribute(vi, VI_ATTR_TERMCHAR_EN, &state);
if (state err !=VI_TRUE) viSetAttribute(vi,
 VI_ATTR_TERMCHAR_EN, newstate);
Agilent VISA User’s Guide

Programming with VISA 3
Using Sessions
Agilent VISA User’s Guide
This section shows how to use VISA sessions, including:

• Including the VISA Declarations File (C/C++)

• Adding the visa32.bas File (Visual Basic)

• Opening a Session to a Resource

• Addressing a Session

• Closing a Session

• Searching for Resources
Including the VISA Declarations File (C/C++)
For C and C++ programs, you must include the visa.h header file
at the beginning of every file that contains VISA function calls:

#include "visa.h"

This header file contains the VISA function prototypes and the
definitions for all VISA constants and error codes. The visa.h
header file also includes the visatype.h header file.

The visatype.h header file defines most of the VISA types. The
VISA types are used throughout VISA to specify data types used
in the functions. For example, the viOpenDefaultRM function
requires a pointer to a parameter of type ViSession. If you find
ViSession in the visatype.h header file, you will find that
ViSession is eventually typed as an unsigned long. VISA types
are also listed in VISA System Information in the VISA Online
Help.
Adding the visa32.bas File (Visual Basic)
You must add the visa32.bas Basic Module file to your Visual
Basic Project. The visa32.bas file contains the VISA function
prototypes and definitions for all VISA constants and error
codes.
33

3 Programming with VISA
Opening a Session
34
A session is a channel of communication. Sessions must first be
opened on the default resource manager, and then for each
resource you will be using.

• A resource manager session is used to initialize the VISA
system. It is a parent session that knows about all the opened
sessions. A resource manager session must be opened before
any other session can be opened.

• A resource session is used to communicate with a resource
on an interface. A session must be opened for each resource
you will be using. When you use a session you can
communicate without worrying about the type of interface to
which it is connected. This insulation makes applications
more robust and portable across interfaces.

Resource Manager Sessions

There are two parts to opening a communications session with
a specific resource. First, you must open a session to the default
resource manager with the viOpenDefaultRM function. The
first call to this function initializes the default resource
manager and returns a session to that resource manager
session. You only need to open the default manager session
once. However, subsequent calls to viOpenDefaultRM returns a
unique session to the same default resource manager resource.

Resource Sessions

Next, open a session with a specific resource using the viOpen
function. This function uses the session returned from
viOpenDefaultRM and returns its own session to identify the
resource session. The following shows the function syntax.

viOpenDefaultRM(sesn);
viOpen(sesn, rsrcName, accessMode, timeout,
 vi);

The session returned from viOpenDefaultRM must be used in
the sesn parameter of the viOpen function. The viOpen function
then uses that session and the resource address specified in the
Agilent VISA User’s Guide

Programming with VISA 3

Agilent VISA User’s Guide
rsrcName parameter to open a resource session. The vi
parameter in viOpen returns a session identifier that can be
used with other VISA functions.

Your program may have several sessions open at the same time
after creating multiple session identifiers by calling the viOpen
function multiple times. The following table summarizes the
parameters in the previous function calls.

Example: Opening a Resource Session

This example shows one way of opening resource sessions with
a GPIB multimeter and a GPIB-VXI scanner. The example first
opens a session with the default resource manager. The session

Table 5 Parameters Used in Function Calls

Parameter Description

sesn A session returned from the viOpenDefaultRM function that
identifies the resource manager session.

rsrcName A unique symbolic name of the resource (resource address).

accessMode Specifies the modes by which the resource is to be accessed.
The value VI_EXCLUSIVE_LOCK is used to acquire an exclusive
lock immediately upon opening a session. If a lock cannot be
acquired, the session is closed and an error is returned. The
VI_LOAD_CONFIG value is used to configure attributes specified
by some external configuration utility. If this value is not used,
the session uses the default values provided by this
specification.

Multiple access modes can be used simultaneously by specifying
a "bit-wise OR" of the values. (Must use VI_NULL in VISA 1.0.).

timeout If the accessMode parameter requires a lock, this parameter
specifies the absolute time period (in milliseconds) that the
resource waits to get unlocked before this operation returns an
error. Otherwise, this parameter is ignored. (Must use VI_NULL
in VISA 1.0.)

vi This is a pointer to the session identifier for this particular
resource session. This pointer will be used to identify this
resource session when using other VISA functions.
35

36

3 Programming with VISA
returned from the resource manager and a resource address is
then used to open a session with the GPIB device at address 22.
That session will now be identified as dmm when using other
VISA functions.

The session returned from the resource manager is then used
again with another resource address to open a session with the
GPIB-VXI device at primary address 9 and VXI logical address
24. That session will now be identified as scanner when using
other VISA functions. See the following section, “Addressing a
Session” for information on addressing particular devices.

ViSession defaultRM, dmm, scanner;
.

viOpenDefaultRM(&defaultRM);
viOpen(defaultRM, "GPIB0::22::INSTR",VI_NULL,
 VI_NULL,&dmm);
viOpen(defaultRM, "GPIB-VXI0::24::INSTR",
 VI_NULL, VI_NULL,&scanner);
.

viClose(scanner);
viClose(dmm);
viClose(defaultRM);
Addressing a Session
As shown in the previous section, the rsrcName parameter in
the viOpen function is used to identify a specific resource. This
parameter consists of the VISA interface name and the resource
address. The interface name is determined when you run the
VISA configuration utility. This name is usually the interface
type followed by a number.

The following table illustrates the format of the rsrcName for
different interface types. INSTR is an optional parameter that
indicates that you are communicating with a resource that is of
type INSTR, meaning instrument. The keywords are:

• ASRL - establishes communication with asynchronous serial
devices.
Agilent VISA User’s Guide

Programming with VISA 3

Agilent VISA User’s Guide
• GPIB - establishes communication with GPIB devices or
interfaces.

• GPIB-VXI - used for GPIB-VXI controllers.

• TCPIP - establishes communication with LAN instruments.

• VXI - used for VXI instruments.

• USB - used for USB instruments.

The following table describes the parameters used above.

Table 6 The Format of the rsrcName for Different Interface Types

Interface Typical Syntax

ASRL ASRL[board][::INSTR]

GPIB GPIB[board]::primary address[::secondary address][::INSTR]

GPIB GPIB[board]::INTFC

GPIB-VXI GPIB-VXI[board]::VXI logical address[::INSTR]

GPIB-VXI GPIB-VXI[board]::MEMACC

GPIB-VXI GPIB-VXI[board][::VXI logical address]::BACKPLANE

TCPIP TCPIP[board]::host address[::LAN device name]::INSTR

TCPIP TCPIP[board]::host address::port::SOCKET

USB USB[board]::manufacturer ID::model code::serial number[::USB
interface number][::INSTR]

VXI VXI[board]::VXI logical address[::INSTR]

VXI VXI[board]::MEMACC

VXI VXI[board][::VXI logical address]::BACKPLANE

Table 7 Description of Parameters

Parameter Description

board This optional parameter is used if you have more than
one interface of the same type. The default value for
board is 0.
37

38

3 Programming with VISA
Some examples of valid symbolic names follow.

host address The IP address (in dotted decimal notation) or the
name of the host computer/gateway.

LAN device name The assigned name for a LAN device. The default is
inst().

manufacturer ID Manufacturer’s ID for a USB Test & Measurement
class device

model code Model code of a USB device.

port The port number to use for a TCP/IP Socket
connection.

primary address This is the primary address of the GPIB device.

secondary address This optional parameter is the secondary address of
the GPIB device. If no secondary address is specified,
none is assumed.

serial number Serial number of a USB device.

USB interface number Interface number of a USB device.

VXI logical address This is the logical address of the VXI instrument.

Table 8 Examples of Valid Symbolic Names

Address String Description

VXI0::1::INSTR A VXI device at logical address 1 in VXI
interface VXI0.

GPIB-VXI::9::INSTR A VXI device at logical address 9 in a GPIB-VXI
controlled VXI system.

GPIB::1::0::INSTR A GPIB device at primary address 1 and
secondary address 0 in GPIB interface 0.

ASRL1::INSTR A serial device located on port 1.

VXI::MEMACC Board-level register access to the VXI
interface.

Table 7 Description of Parameters
Agilent VISA User’s Guide

Programming with VISA 3

Agilent VISA User’s Guide
Example: Opening a Session

This example shows one way to open a resource session with
the GPIB device at primary address 23.

ViSession defaultRM, vi;
.
.
viOpenDefaultRM(&defaultRM);
viOpen(defaultRM, "GPIB0::23::INSTR", VI_NULL,
 VI_NULL,&vi);
.

GPIB-VXI1::MEMACC Board-level register access to GPIB-VXI
interface number 1.

GPIB2::INTFC Interface or raw resource for GPIB interface 2.

VXI::1::BACKPLANE Mainframe resource for chassis 1 on the
default VXI system, which is interface 0.

GPIB-VXI2:: BACKPLANE Mainframe resource for default chassis on
GPIB-VXI interface 2.

GPIB1::SERVANT Servant/device-side resource for GPIB
interface 1.

VXI0::SERVANT Servant/device-side resource for VXI
interface 0.

TCPIP0::1.2.3.4::999::SOCKET Raw TCPIP access to port 999 at the specified
address.

TCPIP::devicename@company.
com::INSTR

TCPIP device using VXI-11 located at the
specified address. This uses the default LAN
Device Name of inst0.

USB::0x1234::125::A22-5::INSTR A USB Test & Measurement class device with
manufacturer ID 0x1234, model code 125, and
serial number A22-5. This uses the device's
first available USBTMC interface, which is
usually number 0.

Table 8 Examples of Valid Symbolic Names
39

40

3 Programming with VISA
.
viClose(vi);
viClose(defaultRM);
Closing a Session
The viClose function must be used to close each session. You
can close the specific resource session, which will free all data
structures that had been allocated for the session. If you close
the default resource manager session, all sessions opened using
that resource manager session will be closed.

Since system resources are also used when searching for
resources (viFindRsrc), the viClose function needs to be called
to free up find lists. See the following section, “Searching for
Resources” for more information on closing find lists.
Searching for Resources
When you open the default resource manager, you are opening a
parent session that knows about all the other resources in the
system. Since the resource manager session knows about all
resources, it has the ability to search for specific resources and
open sessions to these resources. You can, for example, search
an interface for devices and open a session with one of the
devices found.

Use the viFindRsrc function to search an interface for device
resources. This function finds matches and returns the number
of matches found and a handle to the resources found. If there
are more matches, use the viFindNext function with the handle
returned from viFindRsrc to get the next match:

viFindRsrc(sesn, expr, findList, retcnt,
 instrDesc);
.
.
viFindNext(findList, instrDesc);
.
.
viClose (findList);
Agilent VISA User’s Guide

Programming with VISA 3

Agilent VISA User’s Guide
The parameters are defined as follows.

The handle returned from viFindRsrc should be closed to free
up all the system resources associated with the search. To close
the find object, pass the findList to the viClose function.

Use the expr parameter of the viFindRsrc function to specify
the interface to search. You can search for devices on the
specified interface. Use the following table to determine what to
use for your expr parameter.

Table 9 Definitions of Parameters

Parameter Description

sesn The resource manager session.

expr The expression that identifies what to search (see Table 10).

findList A handle that identifies this search. This handle will then be
used as an input to the viFindNext function when finding the
next match.

retcnt A pointer to the number of matches found.

instrDesc A pointer to a string identifying the location of the match. Note
that you must allocate storage for this string.
NOTE Because VISA interprets strings as regular expressions, the string
GPIB?*INSTR applies to both GPIB and GPIB-VXI devices.
Table 10 Determining What to Use for the expr Parameter

Interface expr Parameter

GPIB GPIB[0-9]*::?*INSTR

VXI VXI?*INSTR

GPIB-VXI GPIB-VXI?*INSTR

GPIB and GPIB-VXI GPIB?*INSTR

All VXI ?*VXI[0-9]*::?*INSTR
41

42

3 Programming with VISA
Example: Searching the VXI Interface for Resources

This example searches the VXI interface for resources. The
number of matches found is returned in nmatches, and matches
points to the string that contains the matches found. The first
call returns the first match found, the second call returns the
second match found, etc. VI_FIND_BUFLEN is defined in the
visa.h declarations file.

ViChar buffer [VI_FIND_BUFLEN];
ViRsrc matches=buffer;
ViUInt32 nmatches;
ViFindList list;
.
.
viFindRsrc(defaultRM, "VXI?*INSTR", &list,
 &nmatches, matches);
..
.
viFindNext(list, matches);
.
.
viClose(list);

ASRL ASRL[0-9]*::?*INSTR

All ?*INSTR

Table 10 Determining What to Use for the expr Parameter
Agilent VISA User’s Guide

Programming with VISA 3
Sending I/O Commands
Agilent VISA User’s Guide
This section provides guidelines for sending I/O commands,
including:

• Types of I/O

• Using Formatted I/O

• Using Non-Formatted I/O
Types of I/O
Once you have established a communications session with a
device, you can start communicating with that device using
VISA's I/O routines. VISA provides both formatted and
non-formatted I/O routines.

• Formatted I/O converts mixed types of data under the
control of a format string. The data is buffered, thus
optimizing interface traffic.

• Non-formatted I/O sends or receives raw data to or from a
device. With non-formatted I/O, no format or conversion of
the data is performed. Thus, if formatted data is required, it
must be done by the user.

You can choose between VISA's formatted and non-formatted
I/O routines. However, since the non-formatted I/O performs
the low-level I/O, you should not mix formatted I/O and
non-formatted I/O in the same session. See the following
sections for descriptions and examples using formatted I/O and
non-formatted I/O in VISA.
Using Formatted I/O
The VISA formatted I/O mechanism is similar to the C stdio
mechanism. The VISA formatted I/O functions are viPrintf,
viQueryf, and viScanf. There are also two non-buffered and
non-formatted I/O functions that synchronously transfer data,
called viRead and viWrite, and two that asynchronously
transfer data, called viReadAsync and viWriteAsync.
43

44

3 Programming with VISA
These are raw I/O functions and do not intermix with the
formatted I/O functions. See “Using Non-Formatted I/O” in this
chapter for details. See the VISA Online Help for more
information on how data is converted under the control of the
format string.

Formatted I/O Functions

As noted, the VISA formatted I/O functions are viPrintf,
viQueryf, and viScanf.

• The viPrintf functions format according to the format string
and send data to a device. The viPrintf function sends
separate arg parameters, while the viVPrintf function sends
a list of parameters in params:

viPrintf(vi, writeFmt[, arg1][, arg2][, ...]);
viVPrintf(vi, writeFmt, params);

• The viScanf functions receive and convert data according to
the format string. The viScanf function receives separate arg
parameters, while the viVScanf function receives a list of
parameters in params:

viScanf(vi, readFmt[, arg1][, arg2][, ...]);
viVScanf(vi, readFmt, params);

• The viQueryf functions format and send data to a device and
then immediately receive and convert the response data.
Hence, the viQueryf function is a combination of the viPrintf
and viScanf functions. Similarly, the viVQueryf function is a
combination of the viVPrintf and viVScanf functions. The
viQueryf function sends and receives separate arg
parameters, while the viVQueryf function sends and receives
a list of parameters in params:

viQueryf(vi, writeFmt, readFmt[, arg1]
 [, arg2][, ...]);
viVQueryf(vi, writeFmt, readFmt, params);
Agilent VISA User’s Guide

Programming with VISA 3

Agilent VISA User’s Guide
Formatted I/O Conversion

The formatted I/O functions convert data under the control of
the format string. The format string specifies how the argument
is converted before it is input or output. The format specifier
sequence consists of a % (percent) followed by an optional
modifier(s), followed by a format code.

%[modifiers]format code

Zero or more modifiers may be used to change the meaning of
the format code. Modifiers are only used when sending or
receiving formatted I/O. To send formatted I/O, the asterisk (*)
can be used to indicate that the number is taken from the next
argument.

However, when the asterisk is used when receiving formatted
I/O, it indicates that the assignment is suppressed and the
parameter is discarded. Use the pound sign (#) when receiving
formatted I/O to indicate that an extra argument is used. The
following are supported modifiers. See the viPrintf function in
the VISA Online Help for additional enhanced modifiers (@1,
@2, @3, @H, @Q, or @B).

Field Width Field width is an optional integer that specifies
how many characters are in the field. If the viPrintf or
viQueryf (writeFmt) formatted data has fewer characters
than specified in the field width, it will be padded on the left,
or on the right if the – flag is present.

You can use an asterisk (*) in place of the integer in viPrintf
or viQueryf (writeFmt) to indicate that the integer is taken
from the next argument. For the viScanf or viQueryf
(readFmt) functions, you can use a # sign to indicate that the
next argument is a reference to the field width.

The field width modifier is only supported with viPrintf and
viQueryf (writeFmt) format codes d, f, s, and viScanf and
viQueryf (readFmt) format codes c, s, and []. (See Table 11
for a description of format codes.)
45

46

3 Programming with VISA
Example: Using Field Width Modifier

The following example pads numb to six characters and
sends it to the session specified by vi:

int numb = 61;
viPrintf(vi, "%6d\n", numb);

Inserts four spaces, for a total of 6 characters: 61

.Precision Precision is an optional integer preceded by a
period. This modifier is only used with the viPrintf and
viQueryf (writeFmt) functions. The meaning of this
argument is dependent on the conversion character used.
You can use an asterisk (*) in place of the integer to indicate
the integer is taken from the next argument.

Example: Using the Precision Modifier

This example converts numb so that there are only two digits
to the right of the decimal point and sends it to the session
specified by vi:

float numb = 26.9345;
viPrintf(vi, "%.2f\n", numb);

Sends : 26.93

Table 11 Descriptions of Format Codes

Format Code Description

d Indicates the minimum number of digits to appear is specified
for the @1, @H, @Q, and @B flags, and the i, o, u, x, and X format
codes.

f Indicates the maximum number of digits after the decimal point
is specified.

s Indicates the maximum number of characters for the string is
specified.

g Indicates the maximum significant digits are specified.
Agilent VISA User’s Guide

Programming with VISA 3

Agilent VISA User’s Guide
Argument Length Modifier The meaning of the optional
argument length modifier h, l, L, z, or Z is dependent on
the conversion character, as listed in the following table.
Note that z and Z are not ANSI C standard modifiers.

, Array Size The comma operator is a format modifier that
allows you to read or write a comma-separated list of
numbers (only valid with %d and %f format codes). It is a
comma followed by an integer. The integer indicates the
number of elements in the array. The comma operator has
the format of ,dd where dd is the number of elements to read
or write.

Table 12 Argument Length Modifiers

Argument
Length
Modifier

Format
Codes

Description

h d,b,B Corresponding argument is a short integer or a reference
to a short integer for d. For b or B, the argument is the
location of a block of data or a reference to a data array. (B
is only used with viPrintf or viQueryf (writeFmt).)

l d,f,b,B Corresponding argument is a long integer or a reference
to a long integer for d. For f, the argument is a double float
or a reference to a double float. For b or B, the argument is
the location of a block of data or a reference to a data
array. (B is only used with viPrintf or viQueryf (writeFmt).)

L f Corresponding argument is a long double or a reference to
a long double.

z b,B Corresponding argument is an array of floats or a
reference to an array of floats. (B is only used with
viPrintf or viQueryf (writeFmt).)

Z b,B Corresponding argument is an array of double floats or a
reference to an array of double floats. (B is only used with
viPrintf or viQueryf (writeFmt).)
47

48

3 Programming with VISA
For viPrintf or viQueryf (writeFmt), you can use an asterisk
(*) in place of the integer to indicate that the integer is taken
from the next argument. For viScanf or viQueryf (readFmt),
you can use a # sign to indicate that the next argument is a
reference to the array size.

Example: Using Array Size Modifier

This example specifies a comma-separated list to be sent to
the session specified by vi:

int list[5]={101,102,103,104,105};
viPrintf(vi, "%,5d\n", list);

Sends: 101,102,103,104,105

Special Characters Special formatting character sequences
will send special characters. The following describes the
special characters and what will be sent.

The format string for viPrintf and viQueryf (writeFmt) puts
a special meaning on the newline character (\n). The newline
character in the format string flushes the output buffer to the
device.

All characters in the output buffer will be written to the
device with an END indicator included with the last byte (the
newline character). This means you can control at what point
you want the data written to the device. If no newline
character is included in the format string, the characters
converted are stored in the output buffer. It will require
another call to viPrintf, viQueryf (writeFmt), or viFlush to
have those characters written to the device.

This can be very useful in queuing up data to send to a
device. It can also raise I/O performance by doing a few large
writes instead of several smaller writes. The * while using the
viScanf functions acts as an assignment suppression
character. The input is not assigned to any parameters and is
discarded.

The grouping operator () in a regular expression has the
highest precedence, the + and * operators in a regular
expression have the next highest precedence after the
Agilent VISA User’s Guide

Programming with VISA 3

Agilent VISA User’s Guide
grouping operator, and the or operator | in a regular
expression has the lowest precedence. The following table
provides detailed descriptions of special characters and
operators. Some example expressions follow in Table 14.

Table 13 Descriptions of Special Characters and Operators

Special
Characters and
Operators

Description

? Matches any one character.

\ Makes the character that follows it an ordinary character
instead of special character. For example, when a question
mark follows a backslash (e.g.,’ '\?’), it matches the '?'
character instead of any one character.

[list] Matches any one character from the enclosed list. A hyphen
can be used to match a range of characters.

[^list] Matches any character not in the enclosed list. A hyphen
can be used to match a range of characters.

* Matches 0 or more occurrences of the preceding character
or expression.

+ Matches 1 or more occurrences of the preceding character
or expression.

exp|exp Matches either the preceding or following expression. The
or operator | matches the entire expression that precedes
or follows it and not just the character that precedes or
follows it. For example, VXI|GPIB means (VXI) | (GPIB),
not VXI(I|G)PIB.

(exp) Grouping characters or expressions.

“ “ Sends a blank space.

\n Sends the ASCII line feed character. The END identifier will
also be sent.

\r Sends an ASCII carriage return character.

\t Sends an ASCII TAB character.

\### Sends ASCII character specified by octal value.
49

50

3 Programming with VISA
\" Sends the ASCII double quote character.

\\ Sends a backslash character.

Table 14 Examples of Expressions and Matches

Example Expression Sample Matches

GPIB?*INSTR Matches GPIB0::2::INSTR, GPIB1::1::1::INSTR, and
GPIB-VXI1::8::INSTR

GPIB[0-9]*::?*INSTR Matches GPIB0::2::INSTR and GPIB1::1::1::INSTR but
not GPIB-VXI1::8::INSTR

GPIB[0-9]::?*INSTR Matches GPIB0::2::INSTR and GPIB1::1::1::INSTR but
not GPIB12::8::INSTR

GPIB[^0]::?*INSTR Matches GPIB1::1::1::INSTR but not GPIB0::2::INSTR
or GPIB12::8::INSTR

VXI?*INSTR Matches VXI0::1::INSTR but not GPIB-VXI0::1::INSTR

GPIB-VXI?*INSTR Matches GPIB-VXI0::1::INSTR but not VXI0::1::INSTR

?*VXI[0-9]*::?*INSTR Matches VXI0::1::INSTR and GPIB-VXI0::1::INSTR

ASRL[0-9]*::?*INSTR Matches ASRL1::INSTR but not VXI0::5::INSTR

ASRL1+::INSTR Matches ASRL1::INSTR and ASRL11::INSTR but not
ASRL2::INSTR

(GPIB|VXI)?*INSTR Matches GPIB1::5::INSTR and VXI0::3::INSTR but not
ASRL2::INSTR

(GPIB0|VXI0)::1::INSTR Matches GPIB0::1::INSTR and VXI0::1::INSTR

?*INSTR Matches all INSTR (device) resources

?*VXI[0-9]*::?*MEMACC Matches VXI0::MEMACC and GPIB-VXI1::MEMACC

VXI0::?* Matches VXI0::1::INSTR, VXI0::2::INSTR, and
VXI0::MEMACC

?* Matches all resources

Table 13 Descriptions of Special Characters and Operators
Agilent VISA User’s Guide

Programming with VISA 3

Agilent VISA User’s Guide
Format Codes. This table summarizes the format codes for
sending and receiving formatted I/O.

Example: Receiving Data From a Session

This example receives data from the session specified by the vi
parameter and converts the data to a string.

Table 15 Format Codes for Sending and Receiving Formatted I/O

Format Codes Description

viPrintf/viVPrintf and viQueryf/viVqueryf (writeFmt)

d, i Corresponding argument is an integer.

f Corresponding argument is a double.

c Corresponding argument is a character.

s Corresponding argument is a pointer to a null terminated string.

% Sends an ASCII percent (%) character.

o, u, x, X Corresponding argument is an unsigned integer.

e, E, g, G Corresponding argument is a double.

n Corresponding argument is a pointer to an integer.

b, B Corresponding argument is the location of a block of data.

viPrintf/viVPrintf and viQueryf/viVqueryf (readFmt)

d,i,n Corresponding argument must be a pointer to an integer.

e,f,g Corresponding argument must be a pointer to a float.

c Corresponding argument is a pointer to a character sequence.

s,t,T Corresponding argument is a pointer to a string.

o,u,x Corresponding argument must be a pointer to an unsigned
integer.

[Corresponding argument must be a character pointer.

b Corresponding argument is a pointer to a data array.
51

52

3 Programming with VISA
char data[180];
viScanf(vi, "%t", data);

Formatted I/O Buffers

The VISA software maintains both a read and write buffer for
formatted I/O operations. Occasionally, you may want to control
the actions of these buffers. You can modify the size of the
buffer using the viSetBuf function. See the VISA Online Help
for more information on this function.

The write buffer is maintained by the viPrintf or viQueryf
(writeFmt) functions. The buffer queues characters to send to
the device so that they are sent in large blocks, thus increasing
performance. The write buffer automatically flushes when it
sends a newline character from the format string. It may
occasionally be flushed at other non-deterministic times, such
as when the buffer fills.

When the write buffer flushes, it sends its contents to the
device. If you set the VI_ATTR_WR_BUF_OPER_MODE attribute
to VI_FLUSH_ON_ACCESS, the write buffer will also be flushed
every time a viPrintf or viQueryf operation completes. See
“VISA Attributes” in this chapter for information
on setting VISA attributes.

The read buffer is maintained by the viScanf and viQueryf
(readFmt) functions. It queues the data received from a device
until it is needed by the format string. Flushing the read buffer
destroys the data in the buffer and guarantees that the next call
to viScanf or viQueryf reads data directly from the device
rather than data that was previously queued.

If you set the VI_ATTR_RD_BUF_OPER_MODE attribute to
VI_FLUSH_ON_ACCESS, the read buffer will be flushed every
time a viScanf or viQueryf operation completes. See “VISA
Attributes” in this chapter for information on setting VISA
attributes.
Agilent VISA User’s Guide

Programming with VISA 3

Agilent VISA User’s Guide
You can manually flush the read and write buffers using the
viFlush function. Flushing the read buffer also includes reading
all pending response data from a device. If the device is still
sending data, the flush process will continue to read data from
the device until it receives an END indicator from the device.

Example: Sending and Receiving Formatted I/O

This C program example shows sending and receiving formatted
I/O. The example opens a session with a GPIB device and sends
a comma operator to send a comma-separated list. This example
program is intended to show specific VISA functionality and
does not include error trapping. Error trapping, however, is
good programming practice and is recommended in your VISA
applications. See “Trapping Errors” in this chapter for more
information.

This example program is installed on your system in the
Samples subdirectory on Windows environments. See VISA
Library Information in the VISA Online Help for locations of
example programs on your operating system.

/*formatio.c
This example program makes a multimeter
measurement with a comma-separated list passed
with formatted I/O and prints the results. You
may need to change the device address. */

#include <visa.h>
#include <stdio.h>

void main () {

 ViSession defaultRM, vi;
 double res;
 double list [2] = {1,0.001};

 /* Open session to GPIB device at address 22*/
 viOpenDefaultRM(&efaultRM);
 viOpen(defaultRM, "GPIB0::22::INSTR",
 VI_NULL,VI_NULL, &vi);

 /* Initialize device */
 viPrintf(vi, "*RST\n");
53

54

3 Programming with VISA
 /* Set up device and send a comma-separated
 list */
 viPrintf(vi, "CALC:DBM:REF 50\n");
 viPrintf(vi, "MEAS:VOLT:AC? %,2f\n", list);

 /* Read results */
 viScanf(vi, "%lf", &res);

 /* Print results */
 printf("Measurement Results: %lf\n", res);

 /* Close session */
 viClose(vi);
 viClose(defaultRM);
 }
Using Non-Formatted I/O
There are two non-buffered, non-formatted I/O functions that
synchronously transfer data called viRead and viWrite. Also,
there are two non-formatted I/O functions that asynchronously
transfer data called viReadAsync and viWriteAsync. These are
raw I/O functions and do not intermix with the formatted I/O
functions.

Non-Formatted I/O Functions

The non-formatted I/O functions follow. For more information,
see the viRead, viWrite, viReadAsync, viWriteAsync, and
viTerminate functions in the VISA Online Help.

viRead. The viRead function synchronously reads raw data
from the session specified by the vi parameter and stores the
results in the location where buf is pointing. Only one
synchronous read operation can occur at any one time.

viRead(vi, buf, count, retCount);

viWrite. The viWrite function synchronously sends the data
pointed to by buf to the device specified by vi. Only one
synchronous write operation can occur at any one time.

viWrite(vi, buf, count, retCount);
Agilent VISA User’s Guide

Programming with VISA 3

Agilent VISA User’s Guide
viReadAsync. The viReadAsync function asynchronously
reads raw data from the session specified by the vi
parameter and stores the results in the location where buf is
pointing. This operation normally returns before the transfer
terminates. Thus, the operation returns jobId, which you can
use with either viTerminate to abort the operation or with
an I/O completion event to identify which asynchronous read
operation completed.

viReadAsync(vi, buf, count, jobId);

viWriteAsync. The viWriteAsync function asynchronously
sends the data pointed to by buf to the device specified by vi.
This operation normally returns before the transfer
terminates. Thus, the operation returns jobId, which you can
use with either viTerminate to abort the operation or with
anI/O completion event to identify which asynchronous write
operation completed.

viWriteAsync(vi, buf, count, jobId);

Example: Using Non-Formatted I/O Functions

This example program illustrates using non-formatted I/O
functions to communicate with a GPIB device. This example
program is intended to show specific VISA functionality and
does not include error trapping. Error trapping, however, is
good programming practice and is recommended in your VISA
applications. See “Trapping Errors” in this chapter for more
information.

/*nonfmtio.c
This example program measures the AC voltage on
a multimeter and prints the results. You may
need to change the device address. */

#include <visa.h>
#include <stdio.h>

void main () {

 ViSession defaultRM, vi;
 char strres [20];
 unsigned long actual;
55

56

3 Programming with VISA
 /* Open session to GPIB device at address 22 */
 viOpenDefaultRM(&defaultRM);
 viOpen(defaultRM, "GPIB0::22::INSTR",
 VI_NULL,VI_NULL, &vi);

 /* Initialize device */
 viWrite(vi, (ViBuf)"*RST\n", 5, &actual);

 /* Set up device and take measurement */
 viWrite(vi, (ViBuf)"CALC:DBM:REF 50\n", 16,
 &actual);
 viWrite(vi, (ViBuf)"MEAS:VOLT:AC? 1, 0.001\n",
 23, &actual);

 /* Read results */
 viRead(vi, (ViBuf)strres, 20, &actual);

 /* NULL terminate the string */
 strres[actual]=0;

 /* Print results */
 printf("Measurement Results: %s\n", strres);

 /* Close session */
 viClose(vi);
 viClose(defaultRM);
 }
Agilent VISA User’s Guide

Programming with VISA 3
Using Events and Handlers
Agilent VISA User’s Guide
This section provides guidelines to using events and handlers,
including:

• Events and Attributes

• Using the Callback Method

• Using the Queuing Method
Events and Attributes
Events are special occurrences that require attention from your
application. Event types include Service Requests (SRQs),
interrupts, and hardware triggers. Events will not be delivered
unless the appropriate events are enabled.
NOTE VISA cannot callback to a Visual Basic function. Thus, you can only use
the queuing mechanism in viEnableEvent. There is no way to install a
VISA event handler in Visual Basic.
Event Notification

There are two ways you can receive notification that an event
has occurred:

• Install an event handler with viInstallhandler, and enable
one or several events with viEnableEvent. If the event was
enabled with a handler, the specified event handler will be
called when the specified event occurs. This is called a
callback.
NOTE VISA cannot callback to a Visual Basic function. This means that you can
only use the VI_QUEUE mechanism in viEnableEvent. There is no way to
install a VISA event handler in Visual Basic.
57

58

3 Programming with VISA
• Enable one or several events with viEnableEvent and call
the viWaitOnEvent function. The viWaitOnEvent function
will suspend the program execution until the specified event
occurs or the specified timeout period is reached. This is
called queuing.

The queuing and callback mechanisms are suitable for different
programming styles. The queuing mechanism is generally useful
for non-critical events that do not need immediate servicing.
The callback mechanism is useful when immediate responses
are needed. These mechanisms work independently of each
other, so both can be enabled at the same time. By default, a
session is not enabled to receive any events by either
mechanism.

The viEnableEvent operation can be used to enable a session to
respond to a specified event type using either the queuing
mechanism, the callback mechanism, or both. Similarly, the
viDisableEvent operation can be used to disable one or both
mechanisms. Because the two methods work independently of
each other, one can be enabled or disabled regardless of the
current state of the other.

Events that can be Enabled

The following table shows the events that are implemented for
Agilent VISA for each resource class, where AP = Access
Privilege, RO - Read Only, and RW = Read/Write. Note that some
resource classes/events, such as the SERVANT class are not
implemented by Agilent VISA and are not listed in the following
tables.

Once the application has received an event, information about
that event can be obtained by using the viGetAttribute function
on that particular event context. Use the VISA viReadSTB
function to read the status byte of the service request.
Agilent VISA User’s Guide

Programming with VISA 3

Agilent VISA User’s Guide
.

Table 16 Instrument Control (INSTR) Resource Events

VI_EVENT_SERVICE_REQUEST
Notification that a service request was received from the device.

Event Attribute Description AP Data Type Range

VI_ATTR_EVENT_TYPE Unique logical identifier of the
event.

RO ViEventType VI_EVENT_SERVICE_REQ

VI_EVENT_VXI_SIGP
Notification that a VXIbus signal or VXIbus interrupt was received from the device.

Event Attribute Description AP Data Type Range

VI_ATTR_EVENT_TYPE Unique logical identifier of the
event.

RO ViEventType VI_EVENT_VXI_STOP

VI_ATTR_SIGP_STATUS_ID The 16-bit Status/ID value retrieved
during the IACK cycle or from the
Signal register.

RO ViUInt16 0 to FFFFh

VI_EVENT_TRIG
Notification that a trigger interrupt was received from the device. For VISA, the only triggers that can be sensed are VXI
hardware triggers on the assertion edge (SYNC and ON trigger protocols only).

Event Attribute Description AP Data Type Range

VI_ATTR_EVENT_TYPE Unique logical identifier of the
event.

RO ViEventType VI_EVENT_TRIG

VI_ATTR_RECV_TRIG_ID The identifier of the triggering
mechanism on which the specified
trigger event was received.

RO ViInt16 VI_TRIG_TTL0 to
VI_TRIG_TTL7; VI_TRIG_ECL0
to VI_TRIG_ECL1*

* Agilent VISA can also return VI_TRIG_PANEL_IN (exception to the VISA Specification)

VI_EVENT_IO_COMPLETION
Notification that an asynchronous operation has completed.

Event Attribute Description AP Data Type Range

VI_ATTR_EVENT_TYPE Unique logical identifier of the
event.

RO ViEventType VI_EVENT_IO_COMPLETION
59

3 Programming with VISA
VI_ATTR_STATUS Return code of the asynchronous
I/O operation that has completed.

RO ViStatus N/A

VI_ATTR_JOB_ID Job ID of the asynchronous
operation that has completed.

RO ViJobId N/A

VI_ATTR_BUFFER Address of a buffer that was used in
an asynchronous operation.

RO ViBuf N/A

VI_ATTR_RET_COUNT Actual number of elements that
were asynchronously transferred.

RO ViUInt32 0 to FFFFFFFFh

VI_ATTR_OPER_NAME Name of the operation generating
the event.

ViString N/A

VI_EVENT_USB_INTR
Notification that a vendor-specific USB interrupt was received from the device.

Event Attribute Description AP Data Type Range

VI_ATTR_EVENT_TYPE Unique logical identifier of the
event.

RO ViEventType VI_EVENT_USB_INTR

VI_ATTR_USB_RECV_INTR_
SIZE

Specifies the size of the data that
was received from the USB
interrupt-IN pipe. This value will
never be larger than the sessions
value of VI_ATTR_USB_MAX_
INTR_SIZE.

RO ViUInt16 0 to FFFFh

VI_ATTR_USB_RECV_INTR
_DATA

Specifies the actual data that was
received from the USB interrupt-IN
pipe. Querying this attribute copies
the contents of the data to the users
buffer. The users buffer must be
sufficiently large enough to hold all
of the data.

RO ViBuf N/A

Table 16 Instrument Control (INSTR) Resource Events
60 Agilent VISA User’s Guide

Programming with VISA 3
VI_ATTR_STATUS Specifies the status of the read
operation from the USB interrupt-IN
pipe. If the device sent more data
than the user specified in
VI_ATTR_USB_MAX_INTR_SIZE,
then this attribute value will contain
an error code.

RO ViStatus N/A

Table 16 Instrument Control (INSTR) Resource Events
Agilent VISA User’s Guide
Table 17 Memory Access (MEMACC) Resource Event

VI_EVENT_IO_COMPLETION
Notification that an asynchronous operation has completed

Event Attribute Description AP Data Type Range

VI_ATTR_EVENT_TYPE Unique logical identifier of the
event.

RO ViEventType VI_EVENT_IO_COMPLETION

VI_ATTR_STATUS Return code of the asynchronous
I/O operation that has completed.

RO ViStatus N/A

VI_ATTR_JOB_ID Job ID of the asynchronous
operation that has completed.

RO ViJobId N/A

VI_ATTR_BUFFER Address of a buffer that was used in
an asynchronous operation.

RO ViBuf N/A

VI_ATTR_RET_COUNT Actual number of elements that
were asynchronously transferred.

RO ViUInt32 0 to FFFFFFFFh

VI_ATTR_OPER_NAME Name of the operation generating
the event.

RO ViString N/A
61

62

3 Programming with VISA
Table 18 GPIB Bus Interface (INTFC) Resource Events

VI_EVENT_GPIB_CIC
Notification that the GPIB controller has gained or lost CIC (controller in charge) status

Event Attribute Description AP Data Type Range

VI_ATTR_EVENT_TYPE Unique logical identifier of the
event.

RO ViEventType VI_EVENT_GPIB_CIC

VI_ATTR_GPIB_RECV_CIC_
STATE

Controller has become
controller-in-charge.

RO ViBoolean VI_TRUE
VI_FALSE

VI_EVENT_GPIB_TALK
Notification that the GPIB controller has been addressed to talk

Event Attribute Description AP Data Type Range

VI_ATTR_EVENT_TYPE Unique logical identifier of the
event.

RO ViEventType VI_EVENT_GPIB_TALK

VI_EVENT_GPIB_LISTEN
Notification that the GPIB controller has been addressed to listen.

Event Attribute Description AP Data Type Range

VI_ATTR_EVENT_TYPE Unique logical identifier of the
event.

RO ViEventType VI_EVENT_GPIB_LISTEN

VI_EVENT_CLEAR
Notification that the GPIB controller has been sent a device clear message.

Event Attribute Description AP Data Type Range

VI_ATTR_EVENT_TYPE Unique logical identifier of the
event.

RO ViEventType VI_EVENT_CLEAR

VI_EVENT_TRIGGER
Notification that a trigger interrupt was received from the interface.

Event Attribute Description AP Data Type Range
Agilent VISA User’s Guide

Programming with VISA 3
VI_ATTR_EVENT_TYPE Unique logical identifier of the
event.

RO ViEventType VI_EVENT_TRIG

VI_ATTR_RECV_TRIG_ID The identifier of the triggering
mechanism on which the
specified trigger event was
received.

RO ViInt16 VI_TRIG_SW

VI_EVENT_IO_COMPLETION
Notification that an asynchronous operation has completed.

Event Attribute Description AP Data Type Range

VI_ATTR_EVENT_TYPE Unique logical identifier of the
event.

RO ViEventType VI_EVENT_IO_
COMPLETION

VI_ATTR_STATUS Return code of the asynch-ronous
I/O operation that has completed.

RO ViStatus N/A

VI_ATTR_JOB_ID Job ID of the asynchronous
operation that has completed.

RO ViJobId N/A

VI_ATTR_BUFFER Address of buffer used in an
asynchronous operation.

RO ViBuf N/A

VI_ATTR_RET_COUNT Actual number of elements that
were asynchronously transferred.

RO ViUInt32 0 to FFFFFFFFh

VI_ATTR_OPER_NAME The name of the operation
generating the event.

RO ViString N/A

Table 19 VXI Mainframe Backplane (BACKPLANE) Resource Events

VI_EVENT_TRIG
Notification that a trigger interrupt was received from the backplane. For VISA, the only triggers that can
be sensed are VXI hardware triggers on the assertion edge (SYNC and ON trigger protocols only).

Event Attribute Description AP Data Type Range

VI_ATTR_EVENT_TYPE Unique logical identifier of the
event.

RO ViEventType VI_EVENT_TRIG

Table 18 GPIB Bus Interface (INTFC) Resource Events
Agilent VISA User’s Guide 63

3 Programming with VISA
VI_ATTR_RECV_TRIG_ID The identifier of the triggering
mechanism on which the specified
trigger event was received.

RO ViInt16 VI_TRIG_TTL0 to
VI_TRIG_TTL7; VI_TRIG_ECL0
to VI_TRIG_ECL1

VI_EVENT_VXI_VME_SYSFAIL
Notification that the VXI/VME SYSFAIL* line has been asserted.

VI_ATTR_EVENT_TYPE Unique logical identifier of the
event.

RO ViEventType VI_EVENT_VXI_VME_
SYSFAIL

VI_EVENT_VXI_VME_SYSRESET
Notification that the VXI/VME SYSRESET* line has been reset

Event Attributes Description AP Data Type Range

VI_ATTR_EVENT_TYPE Unique logical identifier of the
event.

RO ViEventType VI_EVENT_VXI_VME_
SYSRESET

Table 19 VXI Mainframe Backplane (BACKPLANE) Resource Events
64
Table 20 TCPIP Socket (SOCKET) Resource Event

VI_EVENT_IO_COMPLETION
Notification that an asynchronous operation has completed

Event Attribute Description AP Data Type Range

VI_ATTR_EVENT_TYPE Unique logical identifier of the
event.

RO ViEventType VI_EVENT_IO_COMPLETION

VI_ATTR_STATUS Return code of the asynchronous
I/O operation that has completed.

RO ViStatus N/A

VI_ATTR_JOB_ID Job ID of the asynchronous
operation that has completed.

RO ViJobId N/A

VI_ATTR_BUFFER Address of a buffer that was used in
an asynchronous operation.

RO ViBuf N/A

VI_ATTR_RET_COUNT Actual number of elements that
were asynchronously transferred.

RO ViUInt32 0 to FFFFFFFFh
Agilent VISA User’s Guide

Programming with VISA 3
VI_ATTR_OPER_NAME Name of the operation generating
the event.

RO ViString N/A

Table 20 TCPIP Socket (SOCKET) Resource Event
Agilent VISA User’s Guide
Example: Reading Event Attributes

Once you have decided which attribute to check, you can read
the attribute using the viGetAttribute function. The following
example shows one way you could check which trigger line fired
when the VI_EVENT_TRIG event was delivered.

Note that the context parameter is either the event context
passed to your event handler, or the outcontext specified when
doing a wait on event. See “VISA Attributes” in this chapter for
more information on reading attribute states.

ViInt16 state;
.
.
viGetAttribute(context, VI_ATTR_RECV_TRIG_ID,
 &state)
Using the Callback Method
The callback method of event notification is used when an
immediate response to an event is required. To use the callback
method for receiving notification that an event has occurred,
you must do the following.

• Install an event handler with the viInstallHandler function

• Enable one or several events with the viEnableEvent
function

When the enabled event occurs, the installed event handler is
called.

Example: Using the Callback Method

This example shows one way you can use the callback method.
65

66

3 Programming with VISA
ViStatus _VI_FUNCH my_handler (ViSession vi,
 ViEventType eventType, ViEvent context, ViAddr
 usrHandle) {

/* your event handling code here */

return VI_SUCCESS;

}
main(){
ViSession vi;
ViAddr addr=0;
.
.
viInstallHandler(vi, VI_EVENT_SERVICE_REQ,
 my_handler, addr);
viEnableEvent(vi, VI_EVENT_SERVICE_REQ,
 VI_HNDLR, VI_NULL);
.
/* your code here */
.
viDisableEvent(vi, VI_EVENT_SERVICE_REQ,
 VI_HNDLR);
viUninstallHandler(vi, VI_EVENT_SERVICE_REQ,
 my_handler, addr);
.
}

Installing Handlers

VISA allows applications to install multiple handlers for an
event type on the same session. Multiple handlers can be
installed through multiple invocations of the viInstallHandler
operation, where each invocation adds to the previous list of
handlers.

If more than one handler is installed for an event type, each of
the handlers is invoked on every occurrence of the specified
event(s). VISA specifies that the handlers are invoked in Last In
First Out (LIFO) order. Use the following function when
installing an event handler:
Agilent VISA User’s Guide

Programming with VISA 3

Agilent VISA User’s Guide
viInstallHandler(vi, eventType, handler,
 userHandle);

These parameters are defined as follows.

The userHandle parameter allows you to assign a value to be
used with the handler on the specified session. Thus, you can
install the same handler for the same event type on several
sessions with different userHandle values. The same handler is
called for the specified event type.

However, the value passed to userHandle is different. Therefore
the handlers are uniquely identified by the combination of the
handler and the userHandle. This may be useful when you need
a different handling method depending on the userHandle.

Example: Installing an Event Handler

This example shows how to install an event handler to call
my_handler when a Service Request occurs. Note that
VI_EVENT_SERVICE_REQ must also be an enabled event with
the viEnableEvent function for the service request event to be
delivered.

viInstallHandler(vi, VI_EVENT_SERVICE_REQ,
 my_handler, addr);

Table 21 Parameters Used to Install a Handler

Parameter Description

vi The session on which the handler will be installed.

eventType The event type that will activate the handler.

handler The name of the handler to be called.

userHandle A user value that uniquely identifies the handler for the
specified event type.
67

68

3 Programming with VISA
Use the viUninstallHandler function to uninstall a specific
handler, or you can use wildcards (VI_ANY_HNDLR in the
handler parameter) to uninstall groups of handlers. See
viUninstallHandler in the VISA Online Help for more details on
this function.

Writing the Handler

The handler installed needs to be written by the programmer.
The event handler typically reads an associated attribute and
performs some sort of action. See the event handler in the
example program later in this section.

Enabling Events

Before an event can be delivered, it must be enabled using the
viEnableEvent function. This function causes the application to
be notified when the enabled event has occurred, where the
parameters are:

viEnableEvent(vi, eventType, mechanism,
 context);

Using VI_QUEUE in the mechanism parameter specifies a
queuing method for the events to be handled. If you use both
VI_QUEUE and one of the mechanisms listed above, notification
of events will be sent to both locations. See the next subsection
for information on the queuing method.

Table 22 Description of Parameters Used to Install a Handler

Parameter Description

vi The session on which the handler will be installed.

eventType The type of event to enable.
Agilent VISA User’s Guide

Programming with VISA 3

Agilent VISA User’s Guide
Example: Enabling a Hardware Trigger Event

This example illustrates enabling a hardware trigger event.

viInstallHandler(vi, VI_EVENT_TRIG,
 my_handler,&addr);
viEnableEvent(vi, VI_EVENT_TRIG, VI_HNDLR,
 VI_NULL);

The VI_HNDLR mechanism specifies that the handler installed
for VI_EVENT_TRIG will be called when a hardware trigger
occurs.

If you specify VI_ALL_ENABLE_EVENTS in the eventType
parameter, all events that have previously been enabled on the
specified session will be enabled for the mechanism specified in
this function call.

Use the viDisableEvent function to stop servicing the event
specified.

Example: Trigger Callback

This example program installs an event handler and enables the
trigger event. When the event occurs, the installed event handler
is called. This program is intended to show specific VISA
functionality and does not include error trapping. Error
trapping, however, is good programming practice and is
recommended in your VISA applications. See “Trapping Errors”
in this chapter for more information.

mechanism The mechanism by which the event will be enabled. It can be
enabled in several different ways. You can use VI_HNDLR in
this parameter to specify that the installed handler will be
called when the event occurs. Use VI_SUSPEND_HNDLR in
this parameter, which puts the events in a queue and waits to
call the installed handlers until viEnableEvent is called with
VI_HNDLR specified in the mechanism parameter. When
viEnableEvent is called with VI_HNDLR specified, the handler
for each queued event will be called.

context Not used in VISA 1.0. Use VI_NULL.

Table 22 Description of Parameters Used to Install a Handler
69

70

3 Programming with VISA
This example program is installed on your system in the
Samples subdirectory on Windows environments. See VISA
Library Information in the VISA Online Help for locations of
example programs.

/* evnthdlr.c
This example program illustrates installing an
event handler to be called when a trigger
interrupt occurs. Note that you may need to
change the address. */

#include <visa.h>
#include <stdio.h>

/* trigger event handler */
ViStatus _VI_FUNCH myHdlr(ViSession vi,
 ViEventType eventType, ViEvent ctx, ViAddr
 userHdlr){
 ViInt16 trigId;

/* make sure it is a trigger event */
if(eventType!=VI_EVENT_TRIG){
 /* Stray event, so ignore */
 return VI_SUCCESS;
}

/* print the event information */
printf("Trigger Event Occurred!\n");
printf("...Original Device Session = %ld\n",
 vi);

/* get the trigger that fired */
viGetAttribute(ctx, VI_ATTR_RECV_TRIG_ID,
 &trigId);
printf("Trigger that fired: ");
switch(trigId){
 case VI_TRIG_TTL0:
 printf("TTL0");
 break;
 default:
 printf("<other 0x%x>", trigId);
 break;
}

Agilent VISA User’s Guide

Programming with VISA 3

Agilent VISA User’s Guide
printf("\n");

return VI_SUCCESS;
}

void main(){
ViSession defaultRM,vi;

/* open session to VXI device */
viOpenDefaultRM(&defaultRM);
viOpen(defaultRM, "VXI0::24::INSTR", VI_NULL,
 VI_NULL, &vi);

/* select trigger line TTL0 */
viSetAttribute(vi, VI_ATTR_TRIG_ID,
 VI_TRIG_TTL0);
/* install the handler and enable it */
viInstallHandler(vi, VI_EVENT_TRIG, myHdlr,
 (ViAddr)10);
viEnableEvent(vi, VI_EVENT_TRIG, VI_HNDLR,
 VI_NULL);
/* fire trigger line, twice */
viAssertTrigger(vi, VI_TRIG_PROT_SYNC);
viAssertTrigger(vi, VI_TRIG_PROT_SYNC);

/* unenable and uninstall the handler */
viDisableEvent(vi, VI_EVENT_TRIG, VI_HNDLR);

viUninstallHandler(vi, VI_EVENT_TRIG, myHdlr,
 (ViAddr)10);

/* close the sessions */
viClose(vi);
viClose(defaultRM);
}

Example: SRQ Callback

This program installs an event handler and enables an SRQ
event. When the event occurs, the installed event handler is
called. This example program is intended to show specific VISA
functionality and does not include error trapping. Error
71

72

3 Programming with VISA
trapping, however, is good programming practice and is
recommended in your VISA applications. See “Trapping Errors”
in this chapter for more information.

This program is installed on your system in the Samples
subdirectory on Windows environments. See VISA Library
Information in the VISA Online Help for locations of example
programs.

/* srqhdlr.c
This example program illustrates installing an
event handler to be called when an SRQ interrupt
occurs. Note that you may need to change the
address. */

#include <visa.h>
#include <stdio.h>
#if defined (_WIN32)
 #include <windows.h> /* for Sleep() */
 #define YIELD Sleep(10)
#elif defined (_BORLANDC_)
 #include <windows.h> /* for Yield() */
 #define YIELD Yield()
#elif defined (_WINDOWS)
 #include <io.h> /* for _wyield */
 #define YIELD _wyield()
#else
 #include <unistd.h>
 #define YIELD sleep (1)
#endif

int srqOccurred;

/* trigger event handler */
ViStatus _VI_FUNCH mySrqHdlr(ViSession vi,
 ViEventType
eventType, ViEvent ctx, ViAddr userHdlr){

 ViUInt16 statusByte;

 /* make sure it is an SRQ event */
 if(eventType!=VI_EVENT_SERVICE_REQ){
 /* Stray event, so ignore */
 printf("\nStray event of type 0x%lx\n",
Agilent VISA User’s Guide

Programming with VISA 3

Agilent VISA User’s Guide
 eventType);
 return VI_SUCCESS;
 }

 /* print the event information */
 printf("\nSRQ Event Occurred!\n");
 printf("...Original Device Session = %ld\n",
 vi);

 /* get the status byte */
 viReadSTB(vi, &statusByte);
 printf("...Status byte is 0x%x\n",
 statusByte);

 srqOccurred = 1;
 return VI_SUCCESS;
}

void main(){
 ViSession defaultRM,vi;
 long count;

 /* open session to message based VXI device */
 viOpenDefaultRM(&defaultRM);
 viOpen(defaultRM, "GPIB-VXI0::24::INSTR",
 VI_NULL, VI_NULL, &vi);

 /* Enable command error events */
 viPrintf(vi, "*ESE 32\n");

 /* Enable event register interrupts */
 viPrintf(vi, "*SRE 32\n");

 /* install the handler and enable it */
 viInstallHandler(vi, VI_EVENT_SERVICE_REQ,
 mySrqHdlr,
 (ViAddr)10);
 viEnableEvent(vi, VI_EVENT_SERVICE_REQ,
 VI_HNDLR, VI_NULL);

 srqOccurred = 0;
73

74

3 Programming with VISA
 /* Send a bogus command to the message-based
 device to cause an SRQ. Note: 'IDN' causes the
 error -- 'IDN?' is the correct syntax */
 viPrintf(vi, "IDN\n");

 /* Wait a while for the SRQ to be generated and
 for the handler to be called. Print something
 while we wait */

 printf("Waiting for an SRQ to be generated.");
 for (count = 0 ; (count < 10) &&
 (srqOccurred == 0);count++) {
 long count2 = 0;
 printf(".");
 while ((count2++ < 100) && (srqOccurred ==0)
){YIELD;
 }
 }
 printf("\n");

 /* disable and uninstall the handler */
 viDisableEvent(vi, VI_EVENT_SERVICE_REQ,
 VI_HNDLR);
 viUninstallHandler(vi, VI_EVENT_SERVICE_REQ,
 mySrqHdlr, (ViAddr)10);

 /* Clean up - do not leave device in error
 state */
 viPrintf(vi, "*CLS\n");

 /* close the sessions */
 viClose(vi);
 viClose(defaultRM);

 printf("End of program\n");}
Using the Queuing Method
The queuing method is generally used when an immediate
response from your application is not needed. To use the
queuing method for receiving notification that an event has
occurred, you must do the following:
Agilent VISA User’s Guide

Programming with VISA 3

Agilent VISA User’s Guide
• Enable one or several events with the viEnableEvent
function.

• When ready to query, use the viWaitOnEvent function to
check for queued events.

If the specified event has occurred, the event information is
retrieved and the program returns immediately. If the specified
event has not occurred, the program suspends execution until a
specified event occurs or until the specified timeout period is
reached.

Example: Using the Queuing Method

This example program shows one way you can use the queuing
method.

main();
ViSession vi;
ViEventType eventType;
ViEvent event;
.
.
viEnableEvent(vi, VI_EVENT_SERVICE_REQ,
 VI_QUEUE, VI_NULL);
.
.
viWaitOnEvent(vi, VI_EVENT_SERVICE_REQ,
 VI_TMO_INFINITE, &eventType, &event);
.
.
viClose(event);
viDisableEvent(vi, VI_EVENT_SERVICE_REQ,
 VI_QUEUE);
}

Enabling Events

Before an event can be delivered, it must be enabled using the
viEnableEvent function:

viEnableEvent(vi, eventType, mechanism,
 context);
75

76

3 Programming with VISA
These parameters are defined as follows:

When you use VI_QUEUE in the mechanism parameter, you are
specifying that the events will be put into a queue. Then, when a
viWaitOnEvent function is invoked, the program execution will
suspend until the enabled event occurs or the timeout period
specified is reached. If the event has already occurred, the
viWaitOnEvent function will return immediately.

Example: Enabling a Hardware Trigger Event

This example illustrates enabling a hardware trigger event.

viEnableEvent(vi, VI_EVENT_TRIG, VI_QUEUE,
 VI_NULL);

The VI_QUEUE mechanism specifies that when an event occurs,
it will go into a queue. If you specify VI_ALL_ENABLE_EVENTS
in the eventType parameter, all events that have previously
been enabled on the specified session will be enabled for the
mechanism specified in this function call. Use the
viDisableEvent function to stop servicing the event specified.

Wait on the Event

When using the viWaitOnEvent function, specify the session,
the event type to wait for, and the timeout period to wait:

viWaitOnEvent(vi, inEventType, timeout,
 outEventType, outContext);

Table 23 Descriptions of Parameters Used to Enable Events

Parameter Description

vi The session the handler will be installed on.

eventType The type of event to enable.

mechanism The mechanism by which the event will be enabled. Specify
VI_QUEUE to use the queuing method.

context Not used in VISA 1.0. Use VI_NULL.
Agilent VISA User’s Guide

Programming with VISA 3

Agilent VISA User’s Guide
The event must have previously been enabled with VI_QUEUE
specified as the mechanism parameter.

Example: Wait on Event for SRQ

This example shows how to install a wait on event for service
requests.

viEnableEvent(vi, VI_EVENT_SERVICE_REQ,
 VI_QUEUE, VI_NULL);
viWaitOnEvent(vi, VI_EVENT_SERVICE_REQ,
 VI_TMO_INFINITE, &eventType, &event);
.
.
viDisableEvent(vi, VI_EVENT_SERVICE_REQ,
 VI_QUEUE);

Every time a wait on event is invoked, an event context object is
created. Specifying VI_TMO_INFINITE in the timeout
parameter indicates that the program execution will suspend
indefinitely until the event occurs. To clear the event queue for
a specified event type, use the viDiscardEvents function.

Example: Trigger Event Queuing

This program enables the trigger event in a queuing mode. When
the viWaitOnEvent function is called, the program will suspend
operation until the trigger line is fired or the timeout period is
reached. Since the trigger lines were already fired and the
events were put into a queue, the function will return and print
the trigger line that fired.

This program is intended to show specific VISA functionality
and does not include error trapping. Error trapping, however, is
good programming practice and is recommended in your VISA
applications. See “Trapping Errors” in this chapter for more
information.

This example program is installed on your system in the
Samples subdirectory on Windows environments. See VISA
Library Information in the VISA Online Help for locations of
example programs.
77

78

3 Programming with VISA
/* evntqueu.c
This example program illustrates enabling an
event queue using viWaitOnEvent. Note that you
must change the device address. */

#include <visa.h>
#include <stdio.h>

void main(){
 ViSession defaultRM,vi;
 ViEventType eventType;
 ViEvent eventVi;
 ViStatus err;
 ViInt16 trigId;

 /* open session to VXI device */
 viOpenDefaultRM(&defaultRM);
 viOpen(defaultRM, "VXI0::24::INSTR", VI_NULL,
 VI_NULL, &vi);

 /* select trigger line TTL0 */
 viSetAttribute(vi, VI_ATTR_TRIG_ID,
 VI_TRIG_TTL0);

 /* enable the event */
 viEnableEvent(vi, VI_EVENT_TRIG, VI_QUEUE,
 VI_NULL);

 /* fire trigger line, twice */
 viAssertTrigger(vi, VI_TRIG_PROT_SYNC);
 viAssertTrigger(vi, VI_TRIG_PROT_SYNC);

 /* Wait for the event to occur */
 err=viWaitOnEvent(vi, VI_EVENT_TRIG, 10000,
 &eventType, &eventVi);
 if(err==VI_ERROR_TMO){
 printf("Timeout Occurred! Event not
 received.\n");
 return;
 }
Agilent VISA User’s Guide

Programming with VISA 3

Agilent VISA User’s Guide
 /* print the event information */
 printf("Trigger Event Occurred!\n");
 printf("...Original Device Session = %ld\n",
 vi);

 /* get trigger that fired */
 viGetAttribute(eventVi, VI_ATTR_RECV_TRIG_ID,
 &trigId);
 printf("Trigger that fired: ");
 switch(trigId){
 case VI_TRIG_TTL0:
 printf("TTL0");
 break;
 default:
 printf("<other 0x%x>",trigId);
 break;
 }
 printf("\n");

 /* close the context before continuing */
 viClose(eventVi);

 /* get second event */
 err=viWaitOnEvent(vi, VI_EVENT_TRIG, 10000,
 &eventType, &eventVi);
 if(err==VI_ERROR_TMO){
 printf("Timeout Occurred! Event not
 received.\n");
 return;
 }
 printf("Got second event\n");

 /* close the context before continuing */
 viClose(eventVi);

 /* disable event */
 viDisableEvent(vi, VI_EVENT_TRIG, VI_QUEUE);

 /* close the sessions */
 viClose(vi);
 viClose(defaultRM);
}

79

3 Programming with VISA
Trapping Errors
80
This section provides guidelines for trapping errors, including:

• Trapping Errors

• Exception Events
Trapping Errors
The example programs in this guide show specific VISA
functionality and do not include error trapping. Error trapping,
however, is good programming practice and is recommended in
all your VISA application programs. To trap VISA errors you
must check for VI_SUCCESS after each VISA function call.

If you want to ignore WARNINGS, you can test to see if err is
less than (<) VI_SUCCESS. Since WARNINGS are greater than
VI_SUCCESS and ERRORS are less than VI_SUCCESS,
err_handler would only be called when the function returns an
ERROR. For example:

if(err < VI_SUCCESS) err_handler (vi, err);

Example: Checking for VI_SUCCESS

This example illustrates checking for VI_SUCCESS. If
VI_SUCCESS is not returned, an error handler (written by the
programmer) is called. This must be done with each VISA
function call.

ViStatus err;
.
.
err=viPrintf(vi, "*RST\n");
if (err < VI_SUCCESS) err_handler(vi, err);
.
.

Example: Printing Error Code

The following error handler prints a user-readable string
describing the error code passed to the function:
Agilent VISA User’s Guide

Programming with VISA 3

Agilent VISA User’s Guide
void err_handler(ViSession vi, ViStatus err){

 char err_msg[1024]={0};
 viStatusDesc (vi, err, err_msg);
 printf ("ERROR = %s\n", err_msg);
 return;
}

Example: Checking Instrument Errors

When programming instruments, it is good practice to check the
instrument to ensure there are no instrument errors after each
instrument function. This example uses a SCPI command to
check a specific instrument for errors.

void system_err(){

 ViStatus err;
 char buf[1024]={0};
 int err_no;

 err=viPrintf(vi, "SYSTEM:ERR?\n");
 if (err < VI_SUCCESS) err_handler (vi, err);

 err=viScanf (vi, "%d%t", &err_no, &buf);
 if (err < VI_SUCCESS) err_handler (vi, err);

 while (err_no >0){
 printf ("Error Found: %d,%s\n", err_no,
 buf);
 err=viScanf (vi, "%d%t", &err_no, &buf);
 }
 err=viFlush(vi, VI_READ_BUF);
 if (err < VI_SUCCESS) err_handler (vi, err);

 err=viFlush(vi, VI_WRITE_BUF);
 if (err < VI_SUCCESS) err_handler (vi, err);
}

Exception Events
An alternative to trapping VISA errors by checking the return
status after each VISA call is to use the VISA exception event.
On sessions where an exception event handler is installed and
81

82

3 Programming with VISA
VI_EVENT_EXCEPTION is enabled, the exception event handler
is called whenever an error occurs while executing an
operation.

Exception Handling Model

The exception-handling model follows the event-handling model
for callbacks, and it uses the same operations as those used for
general event handling. For example, an application calls
viInstallHandler and viEnableEvent to enable exception
events. The exception event is like any other event in VISA,
except that the queueing and suspended handler mechanisms
are not allowed.

When an error occurs for a session operation, the exception
handler is executed synchronously. That is, the operation that
caused the exception blocks until the exception handler
completes its execution. The exception handler is executed in
the context of the same thread that caused the exception event.

When invoked, the exception handler can check the error
condition and instruct the exception operation to take a specific
action. It can instruct the exception operation to continue
normally (by returning VI_SUCCESS) or to not invoke any
additional handlers in the case of handler nesting (by returning
VI_SUCCESS_NCHAIN).

As noted, an exception operation blocks until the exception
handler execution is completed. However, an exception handler
sometimes may prefer to terminate the program prematurely
without returning the control to the operation generating the
exception. VISA does not preclude an application from using a
platform-specific or language-specific exception handling
mechanism from within the VISA exception handler.

For example, the C++ try/catch block can be used in an
application in conjunction with the C++ throw mechanism from
within the VISA exception handler. When using the C++
Agilent VISA User’s Guide

Programming with VISA 3

Agilent VISA User’s Guide
try/catch/throw or other exception-handling mechanisms, the
control will not return to the VISA system. This has several
important repercussions:

1 If multiple handlers were installed on the exception event,
the handlers that were not invoked prior to the current
handler will not be invoked for the current exception.

2 The exception context will not be deleted by the VISA system
when a C++ exception is used. In this case, the application
should delete the exception context as soon as the
application has no more use for the context, before
terminating the session. An application should use the
viClose operation to delete the exception context.

3 Code in any operation (after calling an exception handler)
may not be called if the handler does not return. For
example, local allocations must be freed before invoking the
exception handler, rather than after it.

One situation in which an exception event will not be generated
is in the case of asynchronous operations. If the error is
detected after the operation is posted (i.e., once the
asynchronous portion has begun), the status is returned
normally via the I/O completion event.

However, if an error occurs before the asynchronous portion
begins (i.e., the error is returned from the asynchronous
operation itself), then the exception event will still be raised.
This deviation is due to the fact that asynchronous operations
already raise an event when they complete, and this I/O
completion event may occur in the context of a separate thread
previously unknown to the application. In summary, a single
application event handler can easily handle error conditions
arising from both exception events and failed asynchronous
operations.

Using the VI_EVENT_EXCEPTION Event

You can use the VI_EVENT_EXCEPTION event as notification
that an error condition has occurred during an operation
invocation. The following table describes the
VI_EVENT_EXCEPTION event attributes.
83

84

3 Programming with VISA
Table 24 VI_EVENT_EXCEPTION Event Attributes.

Attribute Name Access Privilege Data Type Range Default

VI_ATTR_EVENT_TYPE RO Global ViEventType VI_EVENT_EXCEPTION N/A

VI_ATTR_STATUS RO Global ViStatus N/A N/A

VI_ATTR_OPER_NAME RO Global ViString N/A N/A
Example: Exception Events

/* This is an example of how to use exception
events to trap VISA errors. An exception event
handler must be installed and exception events
enabled on all sessions where the exception
handler is used.*/

#include <stdio.h>
#include <visa.h>
ViStatus __stdcall myExceptionHandler (
 ViSession vi,
 ViEventType eventType,
 ViEvent context,
 ViAddr usrHandle
) {
 ViStatus exceptionErrNbr;
 char nameBuffer[256];
 ViString functionName = nameBuffer;
 char errStrBuffer[256];
 /* Get the error value from the exception
 context */
 viGetAttribute(context, VI_ATTR_STATUS,
 &exceptionErrNbr);
/* Get the function name from the exception
 context */
 viGetAttribute(context, VI_ATTR_OPER_NAME,
 functionName);
errStrBuffer[0] = 0;
 viStatusDesc(vi, exceptionErrNbr,
 errStrBuffer);
Agilent VISA User’s Guide

Programming with VISA 3

Agilent VISA User’s Guide
 printf("ERROR: Exception Handler reports\n"
 "(%s)\n","VISA function '%s' failed with
 error 0x%lx\n", "functionName,
 exceptionErrNbr, errStrBuffer);
 return VI_SUCCESS;
}
void main(){
 ViStatus status;
 ViSession drm;
 ViSession vi;
 ViAddr myUserHandle = 0;

 status = viOpenDefaultRM(&drm);
 if (status < VI_SUCCESS) {
 printf("ERROR: viOpenDefaultRM failed with
 error = 0x%lx\n", status);
 return;
 }

/* Install the exception handler and enable
 events for it */
 status = viInstallHandler(drm,
 VI_EVENT_EXCEPTION, myExceptionHandler,
 myUserHandle);
 if (status < VI_SUCCESS)
{
 printf("ERROR: viInstallHandler failed
 with error 0x%lx\n", status);
 }

status = viEnableEvent(drm, VI_EVENT_EXCEPTION,
 VI_HNDLR, VI_NULL);
if (status < VI_SUCCESS) {
 printf("ERROR: viEnableEvent failed with
 error 0x%lx\n", status);
 }

/* Generate an error to demonstrate that the
 handler will be called */
 status = viOpen(drm, "badVisaName", NULL,
 NULL, &vi);
 if (status < VI_SUCCESS) {
85

86

3 Programming with VISA
 printf("ERROR: viOpen failed with error
 0x%lx\n"
 "Exception Handler should have been
 called\n"
 "before this message was printed.\n",status
);
 }
}

Agilent VISA User’s Guide

Programming with VISA 3
Using Locks
Agilent VISA User’s Guide
In VISA, applications can open multiple sessions to a VISA
resource simultaneously. Applications can, therefore, access a
VISA resource concurrently through different sessions.
However, in certain cases, applications accessing a VISA
resource may want to restrict other applications from accessing
that resource.
Lock Functions
For example, when an application needs to perform successive
write operations on a resource, the application may require
that, during the sequence of writes, no other operation can be
invoked through any other session to that resource. For such
circumstances, VISA defines a locking mechanism that restricts
access to resources.

The VISA locking mechanism enforces arbitration of accesses to
VISA resources on a per-session basis. If a session locks a
resource, operations invoked on the resource through other
sessions either are serviced or are returned with an error,
depending on the operation and the type of lock used.

If a VISA resource is not locked by any of its sessions, all
sessions have full privilege to invoke any operation and update
any global attributes. Sessions are not required to have locks to
invoke operations or update global attributes. However, if some
other session has already locked the resource, attempts to
update global attributes or invoke certain operations will fail.

See descriptions of the individual VISA functions in the VISA
Online Help to determine which would fail when a resource is
locked.
viLock/viUnlock Functions
The VISA viLock function is used to acquire a lock on a
resource.

viLock(vi, lockType, timeout, requestedKey,
 accessKey);
87

88

3 Programming with VISA
The VI_ATTR_RSRC_LOCK_STATE attribute specifies the
current locking state of the resource on the given session, which
can be either VI_NO_LOCK, VI_EXCLUSIVE_LOCK, or
VI_SHARED_LOCK.

The VISA viUnlock function is then used to release the lock on a
resource. If a resource is locked and the current session does
not have the lock, the error VI_ERROR_RSRC_LOCKED is
returned.
VISA Lock Types
VISA defines two different types of locks: Exclusive Lock and
Shared Lock.

Exclusive Lock - A session can lock a VISA resource using
the lock type VI_EXCLUSIVE_LOCK to get exclusive access
privileges to the resource. This exclusive lock type excludes
access to the resource from all other sessions.

If a session has an exclusive lock, other sessions cannot
modify global attributes or invoke operations on the
resource. However, the other sessions can still get atttributes.

Shared Lock - A session can share a lock on a VISA resource
with other sessions by using the lock type
VI_SHARED_LOCK. Shared locks in VISA are similar to
exclusive locks in terms of access privileges, but can still be
shared between multiple sessions.

If a session has a shared lock, other sessions that share the
lock can also modify global attributes and invoke operations
on the resource (of course, unless some other session has a
previous exclusive lock on that resource). A session that does
not share the lock will lack these capabilities.

Locking a resource restricts access from other sessions, and in
the case where an exclusive lock is acquired, ensures that
operations do not fail because other sessions have acquired a
lock on that resource. Thus, locking a resource prevents other,
subsequent sessions from acquiring an exclusive lock on that
Agilent VISA User’s Guide

Programming with VISA 3

Agilent VISA User’s Guide
resource. Yet, when multiple sessions have acquired a shared
lock, VISA allows one of the sessions to acquire an exclusive
lock along with the shared lock it is holding.

Also, VISA supports nested locking. That is, a session can lock
the same VISA resource multiple times (for the same lock type)
via multiple invocations of the viLock function. In such a case,
unlocking the resource requires an equal number of invocations
of the viUnlock function. Nested locking is explained in detail
later in this section.

Some VISA operations may be permitted even when there is an
exclusive lock on a resource, or some global attributes may not
be read when there is any kind of lock on the resource. These
exceptions, when applicable, are mentioned in the descriptions
of the individual VISA functions and attributes.

See the VISA Online Help for descriptions of individual
functions to determine which are applicable for locking and
which are not restricted by locking.

Example: Exclusive Lock

This example shows a session gaining an exclusive lock to
perform the viPrintf and viScanf VISA operations on a GPIB
device. It then releases the lock via the viUnlock function.

/* lockexcl.c
This example program queries a GPIB device for
an identification string and prints the results.
Note that you may need to change the address. */

#include <visa.h>
#include <stdio.h>

void main () {

 ViSession defaultRM, vi;
 char buf [256] = {0};

 /* Open session to GPIB device at address 22 */
 viOpenDefaultRM (&defaultRM);
 viOpen (defaultRM, "GPIB0::22::INSTR",
 VI_NULL,VI_NULL, &vi);
89

90

3 Programming with VISA
 /* Initialize device */
 viPrintf (vi, "*RST\n");

 /* Make sure no other process or thread does
 anything to this resource between viPrintf and
 viScanf calls */

 viLock (vi, VI_EXCLUSIVE_LOCK, 2000, VI_NULL,
 VI_NULL);

 /* Send an *IDN? string to the device */
 viPrintf (vi, "*IDN?\n");

 /* Read results */
 viScanf (vi, "%t", &buf);

 /* Unlock this session so other processes and
 threads can use it */
 viUnlock (vi);

 /* Print results */
 printf ("Instrument identification string:
 %s\n", buf);

 /* Close session */
 viClose (vi);
 viClose (defaultRM);}

Example: Shared Lock

This example shows a session gaining a shared lock with the
accessKey called lockkey. Other sessions can now use this
accessKey in the requestedKey parameter of the viLock
function to share access on the locked resource. This example
then shows the original session acquiring an exclusive lock
while maintaining its shared lock.

When the session holding the exclusive lock unlocks the
resource via the viUnlock function, all the sessions sharing the
lock again have all the access privileges associated with the
shared lock.
Agilent VISA User’s Guide

Programming with VISA 3

Agilent VISA User’s Guide
/* lockshr.c
This example program queries a GPIB device for
an identification string and prints the results.
Note that you must change the address. */

#include <visa.h>
#include <stdio.h>

void main () {

 ViSession defaultRM, vi;
 char buf [256] = {0};
 char lockkey [256] = {0};

 /* Open session to GPIB device at address 22 */
 viOpenDefaultRM (&defaultRM);
 viOpen (defaultRM, "GPIB0::22::INSTR",
 VI_NULL,VI_NULL,&vi);

 /* acquire a shared lock so only this process
 and processes that we know about can access
 this resource */
 viLock (vi, VI_SHARED_LOCK, 2000, VI_NULL,
 lockkey);

 /* at this time, we can make 'lockkey'
 available to other processes that we know
 about. This can be done with shared memory or
 other inter-process communication methods.
 These other processes can then call
 "viLock(vi,VI_SHARED_LOCK, 2000, lockkey,
 lockkey)" and they will also have access to
 this resource. */

 /* Initialize device */
 viPrintf (vi, "*RST\n");

 /* Make sure no other process or thread does
 anything to this resource between the
 viPrintf() and the viScanf()calls Note: this
 also locks out the processes with which we
 shared our 'shared lock' key. */

 viLock (vi, VI_EXCLUSIVE_LOCK, 2000,
 VI_NULL,VI_NULL);
91

92

3 Programming with VISA
 /* Send an *IDN? string to the device */
 viPrintf (vi, "*IDN?\n");

 /* Read results */
 viScanf (vi, "%t", &buf);

 /* unlock this session so other processes and
 threads can use it */
 viUnlock (vi);

 /* Print results */
 printf ("Instrument identification string:
 %s\n", buf);

 /* release the shared lock also*/
 viUnlock (vi);

 /* Close session */
 viClose (vi);
 viClose (defaultRM);
}

Agilent VISA User’s Guide

Agilent E2094M VISA User’s Guide for Windows
Agilent VISA User’s Guide
4
Programming via GPIB and VXI

VISA supports three interfaces you can use to access GPIB and
VXI instruments: GPIB, VXI, and GPIB-VXI.

This chapter provides information to program GPIB and VXI
devices via the GPIB, VXI or GPIB-VXI interfaces, including:

• GPIB and VXI Interfaces Overview

• Using High-Level Memory Functions

• Using Low-Level Memory Functions

• Using High/Low-Level Memory I/O Methods

• Using the Memory Access Resource

• Using VXI-Specific Attributes

See Chapter 3, “Programming with VISA” for general
information on VISA programming for the GPIB, VXI, and
GPIB-VXI interfaces. See the VISA Online Help for information
on the specific VISA functions.
93Agilent Technologies

4 Programming via GPIB and VXI
GPIB and VXI Interfaces Overview
94
This section provides an overview of the GPIB, GPIB-VXI, and
VXI interfaces, including:

• General Interface Information

• GPIB Interfaces Overview

• VXI Interfaces Overview
General Interface Information
VISA supports three interfaces you can use to access
instruments or devices: GPIB, VXI, and GPIB-VXI. The GPIB
interface can be used to access VXI instruments via a Command
Module. In addition, the VXI backplane can be directly accessed
with the VXI or GPIB-VXI interfaces.

What is an I/O Interface?

An I/O interface can be defined as both a hardware interface
and as a software interface. The IO Config utility is used to
associate a unique interface name with a hardware interface.
The IO Libraries use a VISA Interface Name to identify an
interface. This information is passed in the parameter string of
the viOpen function call in a VISA program.

IO Config assigns a VISA Interface Name to the interface
hardware, and other necessary configuration values for an
interface when the interface is configured. See the Agilent IO
Libraries Installation and Configuration Guide for Windows
for IO Config information.

VXI Device Types

When using GPIB-VXI or VXI interfaces to directly access the
VXI backplane (in the VXI mainframe), you must know whether
you are programming a message-based or a register-based VXI
device (instrument).

A message-based VXI device has its own processor that allows
it to interpret high-level commands such as Standard
Commands for Programmable Instruments (SCPI). When using
Agilent VISA User’s Guide

Programming via GPIB and VXI 4

Agilent VISA User’s Guide
VISA, you can place the SCPI command within your VISA
output function call. Then, the message-based device interprets
the SCPI command. In this case you can use the VISA formatted
I/O or non-formatted I/O functions and program the
message-based device as you would a GPIB device.

However, if the message-based device has shared memory, you
can access the device's shared memory by doing register peeks
and pokes. VISA provides two different methods you can use to
program directly to the registers: high-level memory functions
or low-level memory functions.

A register-based VXI device typically does not have a processor
to interpret high-level commands. Therefore, the device must be
programmed with register peeks and pokes directly to the
device's registers. VISA provides two different methods you can
use to program register-based devices: high-level memory
functions or low-level memory functions.
GPIB Interfaces Overview
As shown in the following figure, a typical GPIB interface
consists of a Windows PC with one or more GPIB cards (PCI
and/or ISA) cards installed in the PC, and one or more GPIB
instruments connected to the GPIB cards via GPIB cable. I/O
communication between the PC and the instruments is via the
GPIB cards and the GPIB cable. The following figure shows
GPIB instruments at addresses 3 and 5.
95

96

4 Programming via GPIB and VXI
Example: GPIB (82350) Interface

The GPIB interface system in the following figure consists of a
Windows PC with two 82350 GPIB cards connected to three
GPIB instruments via GPIB cables. For this system, the IO
Config utility has been used to assign GPIB card #1 a VISA
name of GPIB0 and to assign GPIB card #2 a VISA name of GPIB1.
VISA addressing is as shown in the figure.

5

82350 GPIB Card #1

Windows PC

3

3

GPIB InstrumentsGPIB Cable

82350 GPIB Card #2

GPIB Interface (82350 PCI GPIB Cards)
Agilent VISA User’s Guide

Programming via GPIB and VXI 4

Agilent VISA User’s Guide
.

5

82350 GPIB Card #1

Windows PC

3

3

GPIB InstrumentsGPIB CableInterface VISA Names

82350 GPIB Card #2

VISA Name

 "GPIB0"

 "GPIB1"

VISA Addressing

viOpen (... "GPIB0::5::INSTR"...)
viOpen (... "GPIB0::3::INSTR"...)
viOpen (... "GPIB1::3::INSTR"...)

GPIB Interface (82350 PCI GPIB Cards)

Open IO path to GPIB instrument at address 5 using 82350 Card #1
Open IO path to GPIB instrument at address 3 using 82350 Card #1
Open IO path to GPIB instrument at address 3 using 82350 Card #2
97

4 Programming via GPIB and VXI
VXI Interfaces Overview
98
As shown in the following figure, a typical VXI (E8491) interface
consists of an E8491 PC Card in a Windows PC that is
connected to an E8491B IEEE-1394 Module in a VXI mainframe
via an IEEE-1394 to VXI cable. The VXI mainframe also includes
one or more VXI instruments.
Windows PC

VXI (E8491) Interfaces

VXI Mainframe

. . .

E
8
4
9
1
B

V
X
I

I
n
s
t
r

V
X
I

I
n
s
t
r

V
X
I

I
n
s
t
r

. .
E8491 PC Card

IEEE-1394
to VXI
Example: VXI (E8491B) Interfaces

The VXI interface system in the following figure consists of a
Windows PC with an E8491 PC card that connects to an E8491B
IEEE-1394 to VXI Module in a VXI Mainframe. For this system,
the three VXI instruments shown have logical addresses 8, 16,
and 24. The IO Config utility has been used to assign the E8491
PC card a VISA name of VXI0. VISA addressing is as shown in
the figure.

For information on the E8491B module, see the Agilent E8491B
User’s Guide. For information on VXI instruments, see the
applicable VXI Instrument User’s Guide.
Agilent VISA User’s Guide

Programming via GPIB and VXI 4

Agilent VISA User’s Guide
GPIB-VXI Interfaces Overview

E8491 PC Card

Windows PC

. . .

Interface VISA Name

VISA Name

"VXI0"

VISA Addressing

viOpen (... "VXI0::24::INSTR"...)

VXI Interface (E18491B IEEE-1394 to VXI Module)

Open IO path to VXI instrument at logical address 24 using
E8491 PC Card and E8491 IEEE-1394 to VXI Module

E
8
4
9
1
B

V
X
I

I
n
s
t
r

V
X
I

I
n
s
t
r

V
X
I

I
n
s
t
r

. .

VXI MainframeIEEE-1394 to VXI

LA 8 LA 24 LA 16
As shown in the following figure, a typical GPIB-VXI interface
consists of a GPIB card (82350 or equivalent) in a Windows PC
that is connected via a GPIB cable to an E1406A Command
Module. The E1406A sends commands to the VXI instruments
in a VXI mainframe. There is no direct access to the VXI
backplane from the PC.
99

100

4 Programming via GPIB and VXI
.

NOTE For a GPIB-VXI interface, VISA uses a DLL supplied by the Command
Module vendor to translate the VISA VXI calls to Command Module
commands that are vendor-specific. The DLL required for
Agilent/Hewlett-Packard Command Modules is installed by the Agilent IO
Libraries Installer. This DLL is installed by default when Agilent VISA is
installed.

GPIB Card

Windows PC

. . .

GPIB-VXI (E1406A) Interfaces

E
1
4
0
6
A

V
X
I

I
n
s
t
r

V
X
I

I
n
s
t
r

V
X
I

I
n
s
t
r

. .

VXI MainframeGPIB
Example: GPIB-VXI (E1406A) Interface

The GPIB-VXI interface system in the following figure consists
of a Windows PC with an 82350 GPIB card that connects to an
E1406A Command Module in a VXI Mainframe. The VXI
mainframe includes one or more VXI instruments.

When the IO Libraries were installed, a GPIB-VXI driver with
GPIB address 9 was also installed and the E1406A was
configured for primary address 9 and logical address (LA) 0.
The three VXI instruments shown have logical addresses 8, 16,
and 24.
Agilent VISA User’s Guide

Programming via GPIB and VXI 4

Agilent VISA User’s Guide
The IO Config utility has been used to assign the GPIB-VXI
driver a VISA Name of GPIB-VXI0 and to assign the 82350 GPIB
card a VISA name of GPIB0. VISA addressing is as shown in the
figure.

For information on the E1406A Command Module, see the
Agilent E1406A Command Module User’s Guide. For
information on VXI instruments, see the applicable VXI
Instrument User’s Guide.
82350 GPIB Card

Windows PC

. . .

Interface VISA Name

VISA Name

"GPIB-VXI0"

"GPIB0"

VISA Addressing

viOpen (... "GPIB-VXI0::24::INSTR"...)

GPIB-VXI Interface (E1406A Command Module)

Open IO path to VXI instrument at logical address 24 using
82350 GPIB Card and E1406A VXI Command Module at
GPIB primary address 9

E
1
4
0
6
A

V
X
I

I
n
s
t
r

V
X
I

I
n
s
t
r

V
X
I

I
n
s
t
r

. .

VXI Mainframe

GPIB

GPIB-VXI Driver
GPIB Address 9 Primary

Address 9

LA 0 LA 8 LA 24 LA 16
101

4 Programming via GPIB and VXI
Using High-Level Memory Functions
102
High-level memory functions allow you to access memory on the
interface through simple function calls. There is no need to map
memory to a window. Instead, when high-level memory
functions are used, memory mapping and direct register access
are automatically done.

The tradeoff, however, is speed. High-level memory functions
are easier to use. However, since these functions encompass
mapping of memory space and direct register access, the
associated overhead slows program execution time. If speed is
required, use the low-level memory functions discussed in
“Using Low-Level Memory Functions” later in this chapter.
Programming the Registers
High-level memory functions include the viIn and viOut
functions for transferring 8-, 16-, or 32-bit values, as well as the
viMoveIn and viMoveOut functions for transferring 8-, 16-, or
32-bit blocks of data into or out of local memory. You can
therefore program using 8-, 16-, or 32-bit transfers.

High-Level Memory Functions

This table summarizes the high-level memory functions.

Table 25 Summary of High-Level Memory Functions

Function Description

viIn8(vi, space, offset, val8); Reads 8 bits of data from the specified
offset.

viIn16(vi, space, offset, val16); Reads 16 bits of data from the specified
offset.

viIn32(vi, space, offset, val32); Reads 32 bits of data from the specified
offset.

viOut8(vi, space, offset, val8); Writes 8 bits of data to the specified offset.

viOut16(vi, space, offset, val16); Writes 16 bits of data to the specified
offset.
Agilent VISA User’s Guide

Programming via GPIB and VXI 4

Agilent VISA User’s Guide
Using viIn and viOut
When using the viIn and viOut high-level memory functions to
program to the device registers, all you need to specify is the
session identifier, address space, and the offset of the register.
Memory mapping is done for you. For example, in this function:

viIn32(vi, space, offset, val32);

vi is the session identifier and offset is used to indicate the
offset of the memory to be mapped. offset is relative to the
location of this device's memory in the given address space. The
space parameter determines which memory location to map the
space. Valid space values are:

• VI_A16_SPACE - Maps in VXI/MXI A16 address space

• VI_A24_SPACE - Maps in VXI/MXI A24 address space

• VI_A32_SPACE - Maps in VXI/MXI A32 address space

The val32 parameter is a pointer to where the data read will be
stored. If instead you write to the registers via the viOut32
function, the val32 parameter is a pointer to the data to write to

viOut32(vi, space, offset, val32); Writes 32 bits of data to the specified
offset.

viMoveIn8(vi, space, offset,
length, buf8);

Moves an 8-bit block of data from the
specified offset to local memory.

viMoveIn16(vi, space, offset,
length, buf16);

Moves a 16-bit block of data from the
specified offset to local memory.

viMoveIn32(vi, space, offset,
length, buf32);

Moves a 32-bit block of data from the
specified offset to local memory.

viMoveOut8(vi, space, offset,
length, buf8);

Moves an 8-bit block of data from local
memory to the specified offset.

viMoveOut16(vi, space, offset,
length, buf16);

Moves a 16-bit block of data from local
memory to the specified offset.

viMoveOut32(vi, space, offset,
length, buf32);

Moves a 32-bit block of data from local
memory to the specified offset.

Table 25 Summary of High-Level Memory Functions
103

104

4 Programming via GPIB and VXI
the specified registers. If the device specified by vi does not
have memory in the specified address space, an error is
returned. The following example uses viIn16.

ViSession defaultRM, vi;
ViUInt16 value;
.
viOpenDefaultRM(&&defaultRM);
viOpen(defaultRM, "VXI::24", VI_NULL, VI_NULL,
&vi);
viIn16(vi, VI_A16_SPACE, 0x100, &value);

Using viMoveIn and viMoveOut
You can also use the viMoveIn and viMoveOut high-level
memory functions to move blocks of data to or from local
memory. Specifically, the viMoveIn function moves an 8-, 16-, or
32-bit block of data from the specified offset to local memory,
and the viMoveOut functions moves an 8-, 16-, or 32-bit block of
data from local memory to the specified offset. Again, the
memory mapping is done for you.

For example, in this function:

viMoveIn32(vi, space, offset, length, buf32);

vi is the session identifier and offset is used to indicate the
offset of the memory to be mapped. offset is relative to the
location of this device's memory in the given address space. The
space parameter determines which memory location to map the
space and the length parameter specifies the number of
elements to transfer (8-, 16-, or 32-bits).

The buf32 parameter is a pointer to where the data read will be
stored. If instead you write to the registers via the viMoveOut32
function, the buf32 parameter is a pointer to the data to write
to the specified registers.
Agilent VISA User’s Guide

Programming via GPIB and VXI 4
High-Level Memory Functions Examples
Agilent VISA User’s Guide
Two example programs follow that use the high-level memory
functions to read the ID and Device Type registers of a device at
the VXI logical address 24. The contents of the registers are
then printed out.

The first program uses the VXI interface and the second
program accesses the backplane with the GPIB-VXI interface.
These two programs are identical except for the string passed to
viOpen.

Example: Using VXI Interface (High-Level) Memory Functions

This program uses high-level memory functions and the VXI
interface to read the ID and Device Type registers of a device at
VXI0::24.

/* vxihl.c
This example program uses the high-level memory
functions to read the id and device type
registers of the device at VXI0::24. Change this
address if necessary. The register contents are
then displayed.*/

#include <visa.h>
#include <stdlib.h>
#include <stdio.h>

void main () {

 ViSession defaultRM, dmm;
 unsigned short id_reg, devtype_reg;

 /* Open session to VXI device at address 24 */
 viOpenDefaultRM(&defaultRM);
 viOpen(defaultRM, "VXI0::24::INSTR", VI_NULL,
 VI_NULL, &dmm);

 /* Read instrument id register contents */
 viIn16(dmm, VI_A16_SPACE, 0x00, &id_reg);
105

106

4 Programming via GPIB and VXI
Example: Using GPIB-VXI Interface (High-Level) Memory
Functions

This program uses high-level memory functions and the
GPIB-VXI interface to read the ID and Device Type registers of a
device at GPIB-VXI0::24.

 /* Read device type register contents */
 viIn16(dmm, VI_A16_SPACE, 0x02,
 &devtype_reg);

 /* Print results */
 printf ("ID Register = 0x%4X\n", id_reg);
 printf ("Device Type Register = 0x%4X\n",
 devtype_reg);

 /* Close sessions */
 viClose(dmm);
 viClose(defaultRM);
}

/*gpibvxih.c
This example program uses the high-level memory
functions to read the id and device type
registers of the device at GPIB-VXI0::24. Change
this address if necessary. The register
contents are then displayed.*/

#include <visa.h>
#include <stdlib.h>
#include <stdio.h>

void main ()
 {
 ViSession defaultRM, dmm;
 unsigned short id_reg, devtype_reg;

 /* Open session to VXI device at address 24 */
 viOpenDefaultRM(&defaultRM);
 viOpen(defaultRM, "GPIB-VXI0::24::INSTR",
 VI_NULL,VI_NULL, &dmm);
Agilent VISA User’s Guide

Programming via GPIB and VXI 4

Agilent VISA User’s Guide

 /* Read instrument id register contents */
 viIn16(dmm, VI_A16_SPACE, 0x00, &id_reg);

 /* Read device type register contents */
 viIn16(dmm, VI_A16_SPACE, 0x02,
 &devtype_reg);

 /* Print results */
 printf ("ID Register = 0x%4X\n", id_reg);
 printf ("Device Type Register = 0x%4X\n",
 devtype_reg);

 /* Close sessions */
 viClose(dmm);
 viClose(defaultRM);
 }
107

4 Programming via GPIB and VXI
Using Low-Level Memory Functions
108
Low-level memory functions allow direct access to memory on
the interface just as do high-level memory functions. However,
with low-level memory function calls, you must map a range of
addresses and directly access the registers with low-level
memory functions, such as viPeek32 and viPoke32.

There is more programming effort required when using
low-level memory functions. However, the program execution
speed can increase. Additionally, to increase program execution
speed, the low-level memory functions do not return error
codes.
Programming the Registers
When using the low-level memory functions for direct register
access, you must first map a range of addresses using the
viMapAddress function. Next, you can send a series of peeks
and pokes using the viPeek and viPoke low-level memory
functions. Then, you must free the address window using the
viUnmapAddress function. A process you could use is:

1 Map memory space using viMapAddress.

2 Read and write to the register's contents using viPeek32 and
viPoke32.

3 Unmap the memory space using viUnmapAddress.

Low-Level Memory Functions

You can program the registers using low-level functions for 8-,
16-, or 32-bit transfers. This table summarizes the low-level
memory functions.

Table 26 Summary of Low-Level Memory Functions

Function Description

viMapAddress(vi, mapSpace,
mapBase, mapSize, access,
suggested, address);

Maps the specified memory space.
Agilent VISA User’s Guide

Programming via GPIB and VXI 4

Agilent VISA User’s Guide
Mapping Memory Space

When using VISA to access the device's registers, you must map
memory space into your process space. For a given session, you
can have only one map at a time. To map space into your
process, use the VISA viMapAddress function:

viMapAddress(vi, mapSpace, mapBase, mapSize,
access, suggested, address);

This function maps space for the device specified by the vi
session. mapBase, mapSize, and suggested are used to indicate
the offset of the memory to be mapped, amount of memory to
map, and a suggested starting location, respectively. mapSpace
determines which memory location to map the space. The
following are valid mapSpace choices:

VI_A16_SPACE - Maps in VXI/MXI A16 address space

VI_A24_SPACE - Maps in VXI/MXI A24 address space

VI_A32_SPACE - Maps in VXI/MXI A32 address space

A pointer to the address space where the memory was mapped
is returned in the address parameter. If the device specified by
vi does not have memory in the specified address space, an
error is returned. Some example viMapAddress function calls
follow.

viPeek8(vi, addr, val8); Reads 8 bits of data from address specified.

viPeek16(vi, addr, val16); Reads 16 bits of data from address specified.

viPeek32(vi, addr, val32); Reads 32 bits of data from address specified.

viPoke8(vi, addr, val8); Writes 8 bits of data to address specified.

viPoke16(vi, addr, val16); Writes 16 bits of data to address specified.

viPoke32(vi, addr, val32); Writes 32 bits of data to address specified.

viUnmapAddress(vi); Unmaps memory space previously mapped.

Table 26 Summary of Low-Level Memory Functions
109

110

4 Programming via GPIB and VXI
/* Maps to A32 address space */
viMapAddress(vi, VI_A32_SPACE, 0x000, 0x100,
VI_FALSE,
 VI_NULL,&address);

/* Maps to A24 address space */
viMapAddress(vi, VI_A24_SPACE, 0x00, 0x80,
VI_FALSE,
 VI_NULL,&address);

Reading and Writing to Device Registers

When you have mapped the memory space, use the VISA
low-level memory functions to access the device's registers.
First, determine which device register you need to access. Then,
you need to know the register's offset. See the applicable
instrument’s user manual for a description of the registers and
register locations. You can then use this information and the
VISA low-level functions to access the device registers.

Example: Using viPeek16
An example using viPeek16 follows.

ViSession defaultRM, vi;
ViUInt16 value;
ViAddr address;
ViUInt16 value;
.
.
viOpenDefaultRM(&&defaultRM);
viOpen(defaultRM, "VXI::24::INSTR", VI_NULL,
VI_NULL,
 &vi);
viMapAddress(vi, VI_A16_SPACE, 0x00, 0x04,
VI_FALSE,
 VI_NULL, &address);
viPeek16(vi, addr, &value)
Agilent VISA User’s Guide

Programming via GPIB and VXI 4

Agilent VISA User’s Guide
Unmapping Memory Space

Make sure you use the viUnmapAddress function to unmap the
memory space when it is no longer needed. Unmapping memory
space makes the window available for the system to reallocate.
Low-Level Memory Functions Examples
Two example programs follow that use the low-level memory
functions to read the ID and Device Type registers of the device
at VXI logical address 24. The contents of the registers are then
printed out. The first program uses the VXI interface and the
second program uses the GPIB-VXI interface to access the VXI
backplane. These two programs are identical except for the
string passed to viOpen.

Example: Using the VXI Interface (Low-Level) Memory Functions

This program uses low-level memory functions and the VXI
interface to read the ID and Device Type registers of a device at
VXI0::24.

/*vxill.c
This example program uses the low-level memory
functions to read the id and device type
registers of the device at VXI0::24. Change this
address if necessary. The register contents are
then displayed.*/

#include <visa.h>
#include <stdlib.h>
#include <stdio.h>

void main () {

 ViSession defaultRM, dmm;
 ViAddr address;
 unsigned short id_reg, devtype_reg;

 /* Open session to VXI device at address 24 */
 viOpenDefaultRM(&defaultRM);
 viOpen(defaultRM, "VXI0::24::INSTR", VI_NULL,
 VI_NULL, &dmm);
111

112

4 Programming via GPIB and VXI
 /* Map into memory space */
 viMapAddress(dmm, VI_A16_SPACE, 0x00, 0x10,
 VI_FALSE,VI_NULL, &address);

 /* Read instrument id register contents */
 viPeek16(dmm, address, &id_reg);

 /* Read device type register contents */
 /* ViAddr is defined as a void so we must cast
 /* it to something else to do pointer
 arithmetic */
 viPeek16(dmm, (ViAddr)((ViUInt16 *)address +
 0x01),
 &devtype_reg);

 /* Unmap memory space */
 viUnmapAddress(dmm);

 /* Print results */
 printf ("ID Register = 0x%4X\n", id_reg);
 printf ("Device Type Register = 0x%4X\n",
 devtype_reg);

 /* Close sessions */
 viClose(dmm);
 viClose(defaultRM);
 }

Example: Using the GPIB-VXI Interface (Low-Level) Memory
Functions

This program uses low-level memory functions and the
GPIB-VXI interface to read the ID and Device Type registers of a
device at GPIB-VXI0::24.

/*gpibvxil.c
This example program uses the low-level memory
functions to read the id and device type
registers of the device at GPIB-VXI0::24. Change
this address if necessary. Register contents are
then displayed.*/
Agilent VISA User’s Guide

Programming via GPIB and VXI 4

Agilent VISA User’s Guide
#include <visa.h>
#include <stdlib.h>
#include <stdio.h>

void main () {

 ViSession defaultRM, dmm;
 ViAddr address;
 unsigned short id_reg, devtype_reg;

 /* Open session to VXI device at address 24 */
 viOpenDefaultRM(&defaultRM);
 viOpen(defaultRM, "GPIB-VXI0::24::INSTR",
 VI_NULL,
 VI_NULL,&dmm);

 /* Map into memory space */
 viMapAddress(dmm, VI_A16_SPACE, 0x00, 0x10,
 VI_FALSE,
 VI_NULL, &address);

 /* Read instrument id register contents */
 viPeek16(dmm, address, &id_reg);

 /* Read device type register contents */
 /* ViAddr is defined as a void so we must
 cast it to something else to do pointer
 arithmetic */
 viPeek16(dmm, (ViAddr)((ViUInt16 *)address +
 0x01),
 &devtype_reg);

 /* Unmap memory space */
 viUnmapAddress(dmm);

 /* Print results */
 printf ("ID Register = 0x%4X\n", id_reg);
 printf ("Device Type Register = 0x%4X\n",
 devtype_reg);

 /* Close sessions */
 viClose(dmm);
 viClose(defaultRM);
 }
113

4 Programming via GPIB and VXI
Using Low/High-Level Memory I/O Methods
114
VISA supports three different memory I/O methods for
accessing memory on the VXI backplane, as shown. All three of
these access methods can be used to read and write VXI
memory in the A16, A24, and A32 address spaces. The best
method to use depends on the VISA program characteristics.

• Low-level viPeek/viPoke

• viMapAddress

• viUnmapAddress

• viPeek8, viPeek16, viPeek32

• viPoke8, viPoke16, viPoke32

• High-level viIn/viOut

• viIn8, viIn16, viIn32

• viOut8, viOut16, viOut32

• High-level viMoveIn/viMoveOut

• viMoveIn8, viMoveIn16, viMoveIn32

• viMoveOut8, viMoveOut16, viMoveOut32
Using Low-Level viPeek/viPoke
Low-level viPeek/viPoke is the most efficient in programs that
require repeated access to different addresses in the same
memory space.

The advantages of low-level viPeek/viPoke are:

• Individual viPeek/viPoke calls are faster than viIn/viOut or
viMoveIn/viMoveOut calls.

• Memory pointer may be directly de-referenced in some cases
for the lowest possible overhead.

The disadvantages of low-level viPeek/viPoke are:

• viMapAddress call is required to set up mapping before
viPeek/viPoke can be used.
Agilent VISA User’s Guide

Programming via GPIB and VXI 4

Agilent VISA User’s Guide
• viPeek/viPoke calls do not return status codes.

• Only one active viMapAddress is allowed per vi session.

• There may be a limit to the number of simultaneous active
viMapAddress calls per process or system.
Using High-level viIn/viOut
High-level viIn/viOut calls are best in situations where a few
widely scattered memory accesses are required and speed is not
a major consideration.

The advantages high-level viIn/viOut are:

• Simplest method to implement.

• No limit on number of active maps.

• A16, A24, and A32 memory access can be mixed in a single vi
session.

The disadvantage of high-level viIn/viOut calls is that they are
slower than viPeek/viPoke.
Using High-level viMoveIn/viMoveOut
High-level viMoveIn/viMoveOut calls provide the highest
possible performance for transferring blocks of data to or from
the VXI backplane. Although these calls have higher initial
overhead than the viPeek/viPoke calls, they are optimized on
each platform to provide the fastest possible transfer rate for
large blocks of data.

For small blocks, the overhead associated with
viMoveIn/voMoveOut may actually make these calls longer
than an equivalent loop of viIn/viOut calls. The block size at
which viMoveIn/viMoveOut becomes faster depends on the
particular platform and processor speed.

The advantages of high-level viMoveIn/viMoveOut are:

• Simple to use.

• No limit on number of active maps.

• A16, A24, and A32 memory access can be mixed in a single vi
session.
115

116

4 Programming via GPIB and VXI
• Provides the best performance when transferring large
blocks of data.

• Supports both block and FIFO mode.

The disadvantage of viMoveIn/viMoveOut calls is that they
have higher initial overhead than viPeek/viPoke.

Example: Using VXI Memory I/O

This program demonstrates using various types of VXI memory
I/O.

/* memio.c
This example program demonstrates the use of
various memory I/O methods in VISA. */

#include <visa.h>
#include <stdlib.h>
#include <stdio.h>

#define VXI_INST "VXI0::24::INSTR"

void main () {
 ViSession defaultRM, vi;
 ViAddr address;
 ViUInt16 accessMode;
 unsigned short *memPtr16;
 unsigned short id_reg;
 unsigned short devtype_reg;
 unsigned short memArray[2];

 /*Open default resource manager and session
 to instr*/
 viOpenDefaultRM (&defaultRM);
 viOpen defaultRM, VXI_INST, VI_NULL,VI_NULL,
 &vi);

/*
==
==
 Low level memory I/O = viPeek16 = direct
 memory dereference (when allowed)

==
Agilent VISA User’s Guide

Programming via GPIB and VXI 4

Agilent VISA User’s Guide
*/
 /* Map into memory space */
 viMapAddress (vi, VI_A16_SPACE, 0x00, 0x10,
VI_FALSE,VI_NULL, &address);

/*
==
=
 Using viPeek

==
*/
 Read instrument id register contents */
 viPeek16 (vi, address, &id_reg);

 /* Read device type register contents
 ViAddr is defined as a (void *) so we must
 cast it to something else in order to do
 pointer arithmetic. */

 viPeek16 (vi, (ViAddr)((ViUInt16 *)address +
 0x01),&devtype_reg);

 /* Print results */
 printf (" viPeek16: ID Register = 0x%4X\n",
 id_reg);
 printf (" viPeek16: Device Type Register =
 0x%4X\n",devtype_reg);

 /* Use direct memory dereferencing if
 supported */
 viGetAttribute(vi, VI_ATTR_WIN_ACCESS,
 &accessMode);
 if (accessMode == VI_DEREF_ADDR) {

 /* assign pointer to variable of correct
 type */
 memPtr16 = (unsigned short *)address;

 /* do the actual memory reads */
 id_reg = *memPtr16;
 devtype_reg = *(memPtr16+1);
117

118

4 Programming via GPIB and VXI
 /* Print results */
 printf ("dereference: ID Register =
 0x%4X\n",id_reg);
 printf ("dereference: Device Type Register
 =0x%4X\n", devtype_reg);
 }

 /* Unmap memory space */
 viUnmapAddress (vi);

/*==
 High Level memory I/O = viIn16

==*/
 /* Read instrument id register contents */
 viIn16 (vi, VI_A16_SPACE, 0x00, &&id_reg);

 /* Read device type register contents */
 viIn16 (vi, VI_A16_SPACE, 0x02,&devtype_reg);

 /* Print results */
 printf (" viIn16: ID Register = 0x%4X\n",
 id_reg);
 printf (" viIn16: Device Type Register =
 0x%4X\n", devtype_reg);

/*==
======
High Level block memory I/O = viMoveIn16

The viMoveIn/viMoveOut commands do both block
read/write and FIFO read write. These commands
offer the best performance for reading and
writing large data blocks on the VXI backplane.
For this example we are only moving 2 words at a
time. Normally, these functions would be used to
move much larger blocks of data.

If the value of VI_ATTR_SRC_INCREMENT is 1 (the
default),viMoveIn does a block read. If the
value of VI_ATTR_SRC_INCREMENT is 0, viMoveIn
does a FIFO read.
Agilent VISA User’s Guide

Programming via GPIB and VXI 4

Agilent VISA User’s Guide
If the value of VI_ATTR_DEST_INCREMENT is 1 (the
default),viMoveOut does a block write. If the
value of VI_ATTR_DEST_INCREMENT is 0, viMoveOut
does a FIFO write.
=== */

/* Demonstrate block read.
 Read instrument id register and device type
 register into an array.*/

 viMoveIn16 (vi, VI_A16_SPACE, 0x00, 2,
 memArray);

 /* Print results */
 printf (" viMoveIn16: ID Register = 0x%4X\n",
 memArray[0]);
 printf (" viMoveIn16: Device Type Register =
 0x%4X\n", memArray[1]);

/* Demonstrate FIFO read.

 First set the source increment to 0 so we will
 repetitively read from the same memory
 location.*/
 viSetAttribute(vi, VI_ATTR_SRC_INCREMENT, 0
);

 /* Do a FIFO read of the Id Register */
 viMoveIn16 (vi, VI_A16_SPACE, 0x00, 2,
 memArray);

 /* Print results */
 printf (" viMoveIn16: 1 ID Register =
 0x%4X\n",
 memArray[0]);
 printf (" viMoveIn16: 2 ID Register =
 0x%4X\n",
 memArray[1]);

 /* Close sessions */
 viClose (vi);
 viClose (defaultRM); }
119

4 Programming via GPIB and VXI
Using the Memory Access Resource
120
For VISA 1.1 and later, the Memory Access (MEMACC) Resource
type has been added to VXI and GPIB-VXI. VXI::MEMACC and
GPIB-VXI::MEMACC allow access to all of the A16, A24, and A32
memory by providing the controller with access to arbitrary
registers or memory addresses on memory-mapped buses.

The MEMACC resource, like any other resource, starts with the
basic operations and attributes of other VISA resources. For
example, modifying the state of an attribute is done via the the
operation viSetAttribute (see VISA Resource Classes in the
VISA Online Help for details).
Memory I/O Services
Memory I/O services include high-level memory I/O services
and low-level memory I/O services.

High-Level Memory I/O Services

High-level Memory I/O services allow register-level access to the
interfaces that support direct memory access, such as the
VXIbus, VMEbus, MXIbus, or even VME or VXI memory through
a system controlled by a GPIB-VXI controller. A resource exists
for each interface to which the controller has access.

You can access memory on the interface bus through operations
such as viIn16 and viOut16. These operations encapsulate the
map/unmap and peek/poke operations found in the low-level
service. There is no need to explicitly map the memory to a
window.

Low-Level Memory I/O Services

Low-level Memory I/O services also allow register-level access to
the interfaces that support direct memory access. Before an
application can use the low-level service on the interface bus, it
must map a range of addresses using the operation
viMapAddress.
Agilent VISA User’s Guide

Programming via GPIB and VXI 4

Agilent VISA User’s Guide
Although the resource handles the allocation and operation of
the window, the programmer must free the window via
viUnMapAddress when finished. This makes the window
available for the system to reallocate.

Example: MEMACC Resource Program

This program demonstrates one way to use the MEMACC
resource to open the entire VXI A16 memory and then calculate
an offset to address a specific device.

/* peek16.c */
#include <stdio.h>
#include <stdlib.h>
#include <visa.h>

#define EXIT1
#define NO_EXIT 0

/* This function simplifies checking for VISA
errors. */
void checkError(ViSession vi, ViStatus status,
char
 *errStr,int doexit){
 char buf[256];
 if (status >= VI_SUCCESS)
 return;
 buf[0] = 0;
 viStatusDesc(vi, status, buf);
 printf("ERROR 0x%lx (%s)\n ’%s’\n", status,
errStr,
 buf);
 if (doexit == EXIT)
 exit (1);
 }

void main() {
 ViSession drm;
 ViSession vi;
 ViUInt16inData16 = 0;
 ViUInt16peekData16 = 0;
 ViUInt8*addr;
121

122

4 Programming via GPIB and VXI
 ViUInt16*addr16;
 ViStatusstatus;
 ViUInt16offset;

 status = viOpenDefaultRM (&drm);
 checkError(0, status, "viOpenDefaultRM",
EXIT);

 /* Open a session to the VXI MEMACC Resource*/
 status = viOpen(drm, "vxi0::memacc",
VI_NULL, VI_NULL,
 &vi);
 checkError (0, status, "viOpen", EXIT);

 /* Calculate the A16 offset of the VXI
REgisters for
 the device at VXI logical address 8. */
 offset = 0xc000 + 64 * 8;

 /* Open a map to all of A16 memory space. */
 status =
viMapAddress(vi,VI_A16_SPACE,0,0x10000,
 VI_FALSE,0,(ViPAddr)(&addr));
 checkError(vi, status, "viMapAddress", EXIT
);

 /* Offset the address pointer returned from
 viMapAddress for use with viPeek16. */
 addr16 = (ViUInt16 *) (addr + offset);

 /* Peek the contents of the card’s ID register
(offset
 0 from card’s base address. Note that
viPeek does
 not return a status code. */
 viPeek16(vi, addr16, &peekData16);

 /* Now use viIn16 and read the contents of the
same
 register */
 status = viIn16(vi, VI_A16_SPACE,
 ViBusAddress)offset, &inData16);
 checkError(vi, status, "viIn16", NO_EXIT);
Agilent VISA User’s Guide

Programming via GPIB and VXI 4

Agilent VISA User’s Guide
 /* Print the results. */
 printf("inData16 : 0x%04hx\n", inData16);
 printf("peekData16: ox%04hx\n", peekData16
);

 viClose(vi);
 viClose (drm);
 }
MEMACC Attribute Descriptions
Generic MEMACC Attributes

The following Read Only attributes (VI_ATTR_TMO_VALUE is
Read/Write) provide general interface information

Table 27 Attributes That Provide General Interface Information

Attribute Description

VI_ATTR_INTF_TYPE Interface type of the given session.

VI_ATTR_INTF_NUM Board number for the given interface.

VI_ATTR_TMO_VALUE Minimum timeout value to use, in milliseconds.
A timeout value of VI_TMO_IMMEDIATE
means operation should never wait for the
device to respond. A timeout value of
VI_TMO_INFINITE disables the timeout
mechanism.

VI_ATTR_INTF_INST_NAME Human-readable text describing the given
interface.

VI_ATTR_DMA_ALLOW_EN Specifies whether I/O accesses should use
DMA (VI_TRUE) or Programmed I/O
(VI_FALSE).
123

124

4 Programming via GPIB and VXI
VXI and GPIB-VXI Specific MEMACC Attributes

The following attributes, most of which are read/write, provide
memory window control information.

Table 28 Attributes That Provide Memory Window Control Information

Attribute Description

VI_ATTR_VXI_LA Logical address of the local controller.

VI_ATTR_SRC_INCREMENT Used in viMoveInxx operation to specify
how much the source offset is to be
incremented after every transfer. The default
value is 1 and the viMoveInxx operation
moves from consecutive elements.

If this attribute is set to 0, the viMoveInxx
operation will always read from the same
element, essentially treating the source as a
FIFO register.

VI_ATTR_DEST_INCREMENT Used in viMoveOutxx operation to specify
how much the destination offset is to be
incremented after every transfer. The default
value is 1 and the viMoveOutxx operation
moves into consecutive elements.

If this attribute is set to 0, the viMoveOutxx
operation will always write to the same
element, essentially treating the destination
as a FIFO register.

VI_ATTR_WIN_ACCESS Specifies modes in which the current
window may be addressed: not currently
mapped, through the viPeekxx or viPokexx
operations only, or through operations
and/or by directly de-referencing the address
parameter as a pointer.

VI_ATTR_WIN_BASE_ADDR Base address of the interface bus to which
this window is mapped.

VI_ATTR_WIN_SIZE Size of the region mapped to this window.
Agilent VISA User’s Guide

Programming via GPIB and VXI 4

Agilent VISA User’s Guide
GPIB-VXI Specific MEMACC Attributes

The following Read Only attributes provide specific address
information about GPIB hardware.

VI_ATTR_SRC_BYTE_ORDER Specifies the byte order used in high-level
access operations, such as viInxx and
viMoveInxx, when reading from the source.

VI_ATTR_DEST_BYTE_ORDER Specifies the byte order used in high level
access operations, such as viOutxx and
viMoveOutxx, when writing to the
destination.

VI_ATTR_WIN_BYTE_ORDER Specifies the byte order used in low-level
access operations, such as viMapAddress,
viPeekxx, and viPokexx, when accessing the
mapped window.

VI_ATTR_SRC_ACCESS_PRIV Specifies the address modifier used in
high-level access operations, such as viInxx
and viMoveInxx, when reading from the
source.

VI_ATTR_DEST_ACCESS_PRIV Specifies the address modifier used in
high-level access operations such as viOutxx
and viMoveOutxx, when writing to
destination.

VI_ATTR_WIN_ACCESS_PRIV Specifies the address modifier used in
low-level access operations, such as
viMapAddress, viPeekxx, and viPokexx,
when accessing the mapped window.

Table 29 Attributes that Provide Specific Address Information

Attribute Description

VI_ATTR_INTF_PARENT_NUM Board number of the GPIB board to
which the GPIB-VXI is attached.

VI_ATTR_GPIB_PRIMARY_ADDR Primary address of the GPIB-VXI
controller used by the session.

Table 28 Attributes That Provide Memory Window Control Information
125

126

4 Programming via GPIB and VXI
MEMACC Resource Event Attribute

The following Read Only events provide notification that an
asynchronous operation has completed

VI_ATTR_GPIB_SECONDARY_ADDR Secondary address of the GPIB-VXI
controller used by the session.

Table 30 Events Providing Notification About Asynchronous Operations

Attribute Description

VI_ATTR_EVENT_TYPE Unique logical identifier of the event.

VI_ATTR_STATUS Return code of the asynchronous I/O operation that
has completed.

VI_ATTR_JOB_ID Job ID of the asynchronous I/O operation that has
completed.

VI_ATTR_BUFFER Address of a buffer used in an asynchronous
operation.

VI_ATTR_RET_COUNT Actual number of elements that were asynchronously
transferred.

Table 29 Attributes that Provide Specific Address Information
Agilent VISA User’s Guide

Programming via GPIB and VXI 4
Using VXI-Specific Attributes
Agilent VISA User’s Guide
VXI specific attributes can be useful to determine the state of
your VXI system. Attributes are read only and read/write. Read
only attributes specify things such as the logical address of the
VXI device and information about where your VXI device is
mapped. This section shows how you might use some of the
VXI-specific attributes. See VISA Resource Classes in the VISA
Online Help for information on VISA attributes.
Using the Map Address as a Pointer
The VI_ATTR_WIN_ACCESS read-only attribute specifies how a
window can be accessed. You can access a mapped window with
the VISA low-level memory functions or with a C pointer if the
address is de-referenced. To determine how to access the
window, read the VI_ATTR_WIN_ACCESS attribute.

VI_ATTR_WIN_ACCESS Settings

The VI_ATTR_WIN_ACCESS read-only attribute can be set to
one of the following:

Table 31 Settings for the VI_ATTR_WIN_ACCESS Attribute

Setting Description

VI_NMAPPED Specifies that the window is not mapped.

VI_USE_OPERS Specifies that the window is mapped and you can only use
the low-level memory functions to access the data.

VI_DEREF_ADDR Specifies that the window is mapped and has a
de-referenced address. In this case you can use the
low-level memory functions to access the data, or you can
use a C pointer. Using a de-referenced C pointer will allow
faster access to data.
127

128

4 Programming via GPIB and VXI
Example: Determining Window Mapping

ViAddr address;
Vi UInt16 access;
ViUInt16 value;
.
.
.

viMapAddress(vi, VI_A16_SPACE, 0x00, 0x04,
VI_FALSE,
 VI_NULL, &address);
viGetAttribute(vi, VI_ATTR_WIN_ACCESS, &access);
.
.
If(access==VI_USE_OPERS) {
 viPeek16(vi, (ViAddr)(((ViUInt16 *)address) +
 4/sizeof(ViUInt16)), &value)
}else if (access==VI_DEREF_ADDR){
 value=*((ViUInt16
*)address+4/sizeof(ViUInt16));
}else if (access==VI_NMAPPED){
 return error;
}
.
.

Setting the VXI Trigger Line
The VI_ATTR_TRIG_ID attribute is used to set the VXI trigger
line. This attribute is listed under generic attributes and
defaults to VI_TRIG_SW (software trigger). To set one of the VXI
trigger lines, set the VI_ATTR_TRIG_ID attribute as follows:

viSetAttribute(vi, VI_ATTR_TRIG_ID,
VI_TRIG_TTL0);
Agilent VISA User’s Guide

Programming via GPIB and VXI 4

Agilent VISA User’s Guide
The above function sets the VXI trigger line to TTL trigger line 0
(VI_TRIG_TTL0). The following are valid VXI trigger lines.
(Panel In is an Agilent extension of the VISA specification.)

Once you set a VXI trigger line, you can set up an event handler
to be called when the trigger line fires. See Chapter 3,
“Programming with VISA” for more information on setting up
an event handler. Once the VI_EVENT_TRIG event is enabled,
the VI_ATTR_TRIG_ID becomes a read only attribute and
cannot be changed. You must set this attribute prior to enabling
event triggers.

The VI_ATTR_TRIG_ID attribute can also be used by
viAssertTrigger function to assert software or hardware
triggers. If VI_ATTR_TRIG_ID is VI_TRIG_SW, the device is sent
a Word Serial Trigger command. If the attribute is any other
value, a hardware trigger is sent on the line corresponding to
the value of that attribute.

Table 32 VXI Trigger Lines and Values

VXI Trigger
Line

VI_ATTR_TRIG_ID Value

TTL 0 VI_TRIG_TTL0

TTL 1 VI_TRIG_TTL1

TTL 2 VI_TRIG_TTL2

TTL 3 VI_TRIG_TTL3

TTL 4 VI_TRIG_TTL4

TTL 5 VI_TRIG_TTL5

TTL 6 VI_TRIG_TTL6

TTL 7 VI_TRIG_TTL7

ECL 0 VI_TRIG_ECL0

ECL 1 VI_TRIG_ECL1

Panel In VI_TRIG_PANEL_IN
129

130

4 Programming via GPIB and VXI
Agilent VISA User’s Guide

Agilent E2094M VISA User’s Guide for Windows
Agilent VISA User’s Guide
5
Programming via LAN

This chapter provides guidelines for programming via a LAN
(Local Area Network). A LAN is a way to extend the control of
instrumentation beyond the limits of typical instrument
interfaces.

The chapter contents are:

• LAN Interfaces Overview

• Communicating with LAN-Connected Devices
NOTE This chapter describes programming using the VISA TCPIP interface type
to communicate directly with a LAN-conected device, as well as using a
VISA LAN client to emulate a GPIB, ASRL, or USB interface on the local
machine to communicate with a LAN-connected device.

See the Agilent IO Libraries Installation and Configuration Guide for
Windows for LAN installation information and to start or stop the LAN
servers.
131Agilent Technologies

5 Programming via LAN
LAN Interfaces Overview
132
This section provides an overview of LAN (Local Area Network)
interfaces. A LAN is a way to extend the control of
instrumentation beyond the limits of typical instrument
interfaces. To communicate over the LAN, you must first
configure the LAN Client interface. There are three main types
of LAN interfaces:

• LAN Client

• VISA LAN Client

• LAN Server
LAN Hardware Architecture
The LAN software provided with the Agilent IO Libraries allows
instrumentation control over a LAN. Using standard LAN
connections, instruments can be controlled from computers
that do not have special interfaces for instrument control.

Client/Server Model

The LAN software uses the client/server model of computing.
Client/server computing refers to a model where an application
(the client) does not perform all necessary tasks of the
application itself. Instead, the client makes requests of another
computing device (the server) for certain services.

As shown in the following figure, a LAN client (such as a Series
700 HP-UX workstation or a Windows 98SE/Me/2000/XP/NT
PC) makes VISA requests over the network to a LAN server
(such as a Series 700 HP-UX workstation, a Windows
98SE/Me/2000/XP/NT PC, or an E5810 LAN/GPIB Gateway).

Gateway Operation

The LAN server is connected to the instrumentation or devices
to be controlled. Once the LAN server has completed the
requested operation on the instrument or device, the LAN
server sends a reply to the LAN client. This reply contains
requested data and status information that indicates whether
Agilent VISA User’s Guide

Programming via LAN 5

Agilent VISA User’s Guide
or not the operation was successful. The LAN server acts as a
gateway between the LAN software that the client system
supports and the instrument-specific interface that the device
supports.
133

5 Programming via LAN
LAN Software Architecture
134
An IO interface can be defined as both a hardware interface
and as a software interface. You can use the IO Config utility to
associate a unique interface name with a hardware interface.
The IO Libraries use a VISA Interface Name to identify an
interface. This information is passed in the parameter string of
the viOpen function call in a VISA program.

IO Config assigns a VISA Interface Name to the interface
hardware, as well as other necessary configuration values for
an interface when the interface is configured. See the Agilent IO
Libraries Installation and Configuration Guide for Windows
for details on using IO Config.

As shown in the following figure, the client system contains the
LAN client software and the LAN software (TCP/IP) needed to
access the server (gateway). The gateway contains the LAN
server software, LAN (TCP/IP) software, and the instrument
driver software needed to communicate with the client and to
control the instruments or devices connected to the gateway.
Agilent VISA User’s Guide

Programming via LAN 5

Agilent VISA User’s Guide

Client VISA System

Application

Agilent VISA

SICL

LAN Client

TCP

IP

LAN Interface

Server (Gateway) Instrument

LAN Server

 TCP
 Instrument
 IP Driver

LAN Interface

Instrument
Firmware

GPIB bus (or other)
The LAN software is built on top of standard LAN networking
protocols. There are two LAN networking protocols provided
with the Agilent IO Libraries software. You can use one or both
of these protocols when configuring your systems (via Agilent
IO Libraries configuration) to use VISA over a LAN.

• SICL-LAN Protocol is a networking protocol developed by
Agilent that is compatible with all VISA LAN products. This
LAN networking protocol is the default choice in the Agilent
IO Libraries configuration when configuring the LAN client.
The SICL-LAN protocol on Windows 98SE/Me/2000/XP/NT
supports VISA operations over LAN to GPIB interfaces.

• VXI-11 (TCP/IP Instrument Protocol) is a networking
protocol developed by the VXIbus Consortium based on the
SICL-LAN Protocol that permits interoperability of LAN
software from different vendors who meet the VXIbus
Consortium standards.
135

136

5 Programming via LAN
When using either of these networking protocols, the LAN
software uses the TCP/IP protocol suite to pass messages
between the LAN client and the LAN server. The server accepts
device I/O requests over the network from the client and then
proceeds to execute those I/O requests on a local interface
(GPIB, etc.).

By default, the LAN Client supports both protocols by
automatically detecting the protocol the server is using. When a
VISA viOpen is performed, the LAN Client driver first tries to
connect using the SICL-LAN protocol. If that fails, the driver
will try to connect using the VXI-11 protocol.

If you want to control the protocol used, you can configure more
than one LAN Client interface and set each interface to a
different protocol. The protocol used will then depend on the
interface you are connecting through.

Thus, you can have more than one SICL-LAN and one VXI-11
protocol for your system. In VISA, the protocol used is
determined by the configuration settings and cannot be
changed programatically. The LAN Client also supports TCP/IP
socket reads and writes.

When you have configured VISA LAN Client interfaces, you can
then use the interface name specified during configuration in a
VISA viOpen call of your program. However, the LAN server
does not support simultaneous connections from LAN clients
using the SICL-LAN Protocol and from LAN clients using
VXI-11 (TCP/IP Instrument Protocol).

There are three LAN servers that can be used with VISA: the
E2050 LAN/GPIB Gateway, the E5810 LAN/GPIB Gateway, or a
PC running Windows 98SE/Me/2000/XP/NT. To use this
capability, the LAN server must have a local GPIB interface
configured for I/O.
LAN Client Interface Overview
There are two main configurations for a LAN Client interface:

• LAN Client (Gateway)

• LAN Client (LAN)
Agilent VISA User’s Guide

Programming via LAN 5

Agilent VISA User’s Guide
This section provides an example of each configuration and
shows applicable VISA viOpen commands. See the VISA Online
Help for details on the VISA commands.

Example: LAN Client (Gateway) Interface

The LAN Client interface system in the following figure consists
of a Windows PC with a LAN card, an E5810 LAN/GPIB
gateway, and two GPIB instruments. For this system, the IO
Config utility has been used to assign the LAN card a VISA
name of TCPIP0.

With this name assigned to the interface, VISA addressing is as
shown in the figure, and you can use the VISA viOpen command
to open the I/O paths to the GPIB instruments as shown.
137

138

5 Programming via LAN

Example: LAN Client (LAN) Interface

The LAN Client interface system in the following figure consists
of a Windows PC with a LAN card and three LAN instruments.
Instrument1 and instrument2 are VXI-11.2 (GPIB Emulation)
instruments and instrument3 is a VXI-11.3 LAN instrument.
Agilent VISA User’s Guide

Programming via LAN 5

Agilent VISA User’s Guide
For this system, the IO Config utility has been used to assign the
LAN card a VISA name of TCPIP0. For the addressing examples,
instrument1 has been addressed by its machine name,
instrument 2 has been addressed by its IP address, and
instrument3 by its LAN name (inst0).

Since unique names have been assigned by IO Config, you can
now use the VISA viOpen command to open the I/O paths to the
GPIB instruments as shown in the figure.
5

LAN Card

Windows PC LAN InstrumentsInterface VISA Name

VISA Name

"TCPIP0"

VISA Addressing (Using LAN Client)

viOpen (... "TCPIP0::instrument1::gpib0,5::INSTR"...)
viOpen (... "TCPIP0::1.2.3.4::gpib0,3::INSTR "...)
viOpen (... "TCPIP0::instrument3::inst0::INSTR"...)

LAN Client (LAN)

Open IO path to LAN instrument at address 5
Open IO path to LAN instrument at address 3
Open IO path to LAN instrument3

LAN

instrument1 machine name

gpib0,5

3

1.2.3.4 IP address

gpib0,3

instrument3

inst0

VXI-11.2
 GPIB Emulation

VXI-11.2
 GPIB Emulation

VXI-11.3
 LAN instrument
139

5 Programming via LAN
VISA LAN Client Interface Overview
140
There are two main configurations for a VISA LAN Client
interface:

• VISA LAN Client (Gateway)

• VISA LAN Client (LAN)

This section provides an example of each configuration and
shows applicable VISA viOpen commands. See the VISA Online
Help for details on the VISA commands.
NOTE A VISA LAN Client interface requires a LAN Client interface. When a VISA
LAN Client interface is configured, it automatically configures a LAN Client
interface if one is not already configured. See “Configuring LAN Client
Interfaces” in the Agilent IO Libraries Installation and Configuration Guide
for Windows for details on configuring a LAN Client interface.
Example: VISA LAN Client (Gateway) Interface

The VISA LAN Client interface system in the following figure
consists of a Windows PC with a LAN card, an E5810 LAN/GPIB
gateway, two GPIB instruments, and an RS-232 (ASRL)
instrument. The IO Config utility has been used to assign the
LAN card a VISA name of TCPIP0.

In addition, a GPIB VISA LAN Client and an ASRL VISA LAN
client have been configured with the interface names and host
names shown in the figure. The E5810 LAN/GPIB Gateway has
been assigned a Hostname of machine1, a GPIB SICL Interface
Name = gpib0, and an RS-232 Interface Name = COM1.

Since unique names have been assigned by IO Config, you can
now use the VISA viOpen command to open the I/O paths to the
GPIB and RS-232 instruments as shown in the figure.
NOTE The SICL-LAN protocol supports both the GPIB VISA LAN Client and the
ASRL VISA LAN Client. The VXI-11 protocol supports only the GPIB-VISA
LAN Client.
Agilent VISA User’s Guide

Programming via LAN 5

Agilent VISA User’s Guide
 141

142

5 Programming via LAN
Example: VISA LAN Client (LAN) Interface

The VISA LAN Client interface system in the following figure
consists of a Windows PC with a LAN card and three LAN
instruments. Instrument1 and instrument2 are VXI-11.2 (GPIB
Emulation) instruments and instrument3 is a VXI-11.3 LAN
instrument.

For this system, the IO Config utility has been used to assign the
LAN card a VISA name of TCPIP0. In addition, two GPIB VISA
LAN Clients have been configured with the interface names and
host names shown in the figure.

For the addressing examples, instrument1 has been addressed
by its hostname, instrument2 has been addressed by its IP
address, and instrument3 by its LAN name (inst0).

Since unique names have been assigned by IO Config, you can
now use the VISA viOpen command to open the I/O paths to the
GPIB instruments as shown in the figure. Note, however, that
you cannot talk to instrument3 with a VISA LAN Client. You
must use the LAN Client to talk to instrument3, since
instrument3 is not a remote GPIB interface.
NOTE When using the VXI-11 protocol with GPIB VISA LAN Client, the Remote
SICL Interface Name must be of the form gpibN where N is 0 or a positive
integer. This restriction does not apply to the SICL-LAN protocol.
Agilent VISA User’s Guide

Programming via LAN 5

Agilent VISA User’s Guide

Interface VISA Names

VISA Name

 "GPIB1"

"GPIB2"

"TCPIP0"

VISA Addressing (Using

viOpen (... "TCPIP0::instru
viOpen (... "TCPIP0::1.2.3
viOpen (... "TCPIP0::instru

VISA Addressing (Using

VISA: viOpen (... "GPIB1:
 viOpen (... "GPIB2:
 Cannot talk to instr

VISA LAN Client Parame

VISA Interface Name
LAN Client SICL Interface
Remote Host Name
Remote SICL Interface Na

5

LAN Card

Windows PC LAN Instruments

 LAN Client)

ment1::gpib0,5::INSTR"...)
.4::gpib0,3::INSTR "...)
ment3::inst0::INSTR"...)

VISA LAN Client (LAN)

Open IO path to LAN instrument at address 5
Open IO path to LAN instrument at address 3
Open IO path to LAN instrument3

LAN

VISA LAN Client
 "GPIB1"
 "lan"
 "instrument1"
 "gpib0"

instrument1 machine name

gpib0,5

3

1.2.3.4 IP address

gpib0,3

instrument3

inst0

 VISA LAN Client)

:5::INSTR"...)
:3::INSTR "...)
ument3

Open IO path to LAN instrument at address 5
Open IO path to LAN instrument at address 3

VISA LAN Client
 "GPIB2"
 "lan"
 "1.2.3.4"
 "gpib0"

ters

 Name

me

GPIB1

"GPIB1"
"lan"
"instrument1"
"gpib0"

GPIB2

"GPIB2"
"lan"
"1.2.3.4"
"gpib0"

VXI-11.2
 GPIB Emulation

VXI-11.2
 GPIB Emulation

VXI-11.3
 LAN instrument
143

5 Programming via LAN
LAN Server Interface Overview
144
This section provides an example of the LAN Server interface
configuration and shows applicable VISA viOpen commands.
See the VISA Online Help for details on the VISA commands.

Example: LAN Server Interface

The LAN Server interface system in the following figure consists
of a Windows PC acting as a LAN client, a second PC acting as a
LAN server, with a GPIB instrument, an RS-232 (ASRL)
instrument, and a USB instrument connected to it. The IO
Config utility has been used to assign the LAN card a VISA
name of TCPIP0. The LAN server PC has been assigned a
hostname of machine2. Also, the GPIB card in the LAN server PC
has been assigned the SICL name of gpib0, the RS-232 port has
been assigned the SICL name COM1, and the USB instrument
has been assigned the alias name UsbDevice1.

Since unique names have been assigned by IO Config, you can
now use the VISA viOpen command to open the I/O paths to the
GPIB instruments as shown in the figure.
Agilent VISA User’s Guide

Programming via LAN 5
Agilent VISA User’s Guide 145

5 Programming via LAN
Communicating with LAN-Connected Devices
146
VISA can communicate with LAN-connected devices in one of
two ways:

• TCPIP interface type

• VISA LAN Client (available only with Agilent VISA)
Using the TCPIP Interface Type for LAN Access
VISA provides the TCPIP interface type to communicate with
LAN-connected devices. These can be devices connected
directly to the LAN, or they can be connected to the LAN
through a LAN gateway such as the Agilent E5810 LAN/GPIB
gateway or through a LAN server running on a remote computer
with instruments connected to it.

The format of a TCPIP VISA resource string is:

TCPIP[<board>]::<hostname>[::<LAN device
name>][::INSTR]

where:

• <board> = board number (default is 0)

• <hostname> = the hostname or IP address of the LAN
device or server

• <LAN device name> = the remote device name (case
sensitive with default name of inst0)

The VXI-11 protocol constrains the LAN device name to be of
the form inst0, inst1, … for VXI-11.3 devices and gpib0,n, gpib1,n, …
for VXI-11.2 (GPIB Emulation) devices.

The SICL-LAN protocol allows any valid SICL name for the LAN
device name. See the Agilent SICL User's Guide for Windows
for additional information on valid SICL names.

Some examples of valid TCPIP resource strings that are valid
for both the VXI-11 and SICL-LAN protocols are:
Agilent VISA User’s Guide

Programming via LAN 5

Agilent VISA User’s Guide
Table 33 Example TCPIP Resource Strings

String Description

TCPIP0::testMachine@agilent.com::gpib0,2::
INSTR

A VXI-11.2 GPIB device at
hostname
testMachine@agilent.com.

TCPIP0::123.456.0.21::gpib0,2::INSTR A VXI-11.2 GPIB device at a
machine whose IP Address is
123.456.0.21.

TCPIP0::myMachine::inst0::INSTR A VXI-11.3 LAN instrument at
hostname myMachine.

TCPIP::myMachine A VXI-11.3 LAN instrument at
hostname myMachine. Note that
default values for board = 0, LAN
device name = inst0, and the
::INSTR resource class are used.

TCPIP0::testMachine1::COM1,488::INSTR An RS-232 device connected to a
LAN server or gateway at
hostname testMachine1. This
device must use SICL-LAN
protocol since RS-232 devices are
not supported by the VXI-11
protocol.

TCPIP0::myMachine::gpib0,2::INSTR A GPIB device at hostname
myMachine. This device must
use SICL-LAN protocol since
gpib0,2 is not a valid remote
name with the VXI-11 protocol.
147

148

5 Programming via LAN
TCPIP0::myMachine::UsbDevice1::INSTR A USB device with a SICL alias of
UsbDevice1 connected to a LAN
server at hostname myMachine.
Note that the SICL alias is defined
on the remote machine, not on
the local machine.

 Although the SICL and VISA alias
names are usually the same, if
they are not, you must be sure to
use the SICL alias and not the
VISA alias.

This device must use SICL-LAN
protocol since USB devices are
not supported by the VXI-11
protocol.

TCPIP0::myMachine::usb0[2391::1031::SN_
00123::0]::INSTR

A USB device with:

 Manufacture ID = 2391
 Model Code = 1031
 Serial Number = 'SN_00123'
 USBTMC Intfc # = 0

connected to a LAN server at
hostname myMachine.

This device must use SICL-LAN
protocol since USB devices are
not supported by the VXI-11
protocol.

Table 33 Example TCPIP Resource Strings

String Description
NOTE A LAN session to a remote interface provides the same VISA function
support as if the interface was local, except that VXI-specific functions are
not supported over LAN.
Agilent VISA User’s Guide

Programming via LAN 5

Agilent VISA User’s Guide
Addressing a Session Using the TCPIP Interface Type

This example shows one way to open a device session with a
GPIB device at primary address 23 on a remote PC that is
running a LAN server. The hostname of the remote PC is
myMachine. See Chapter 3, “Programming with VISA” for more
information on addressing device sessions.

ViSession defaultRM, vi;.

.

viOpenDefaultRM(&defaultRM);

viOpen(defaultRM,
"TCPIP0::myMachine::gpib0,23::INSTR", VI_NULL,
VI_NULL, &vi);

.

.

viClose(vi);

viClose(defaultRM);
Using a VISA LAN Client for LAN Access
Agilent VISA provides three types of VISA LAN Client
interfaces:

• ASRL VISA LAN Client

• GPIB VISA LAN Client

• USB VISA LAN Client

VISA LAN Client interfaces are configured using the Agilent IO
Config utility and provide virtual GPIB, ASRL, or USB
interfaces. This makes it possible to remotely access a
LAN-connected device as if it were connected to a local
interface. If, for example, the GPIB2 VISA interface is configured
as a GPIB VISA LAN interface, a program controlling the
devices GPIB2::5::INSTR and GPIB2::7::INSTR would not be aware of
the fact that these devices are actually connected via LAN and
not to a GPIB interface connected to the local machine.
149

150

5 Programming via LAN
See the Agilent IO Libraries Installation and Configuration
Guide for Windows for specific information on configuring
VISA LAN Clients.

ASRL VISA LAN Client

An ASRL VISA LAN Client can use only the SICL-LAN protocol.
An ASRL SICL LAN Client can be configured to use the serial
port on the Agilent E5810 LAN/GPIB gateway or the serial
ports on a PC running the LAN server.

GPIB VISA LAN Client

A GPIB VISA LAN Client can use both the VXI-11 and SICL-LAN
protocols. Typical uses for GPIB VISA LAN Clients are with
LAN/GPIB gateways (e.g. Agilent E5810), PCs with GPIB
interfaces that are running a LAN server, and VXI-11.2
LAN-based instruments.

A GPIB VISA LAN Client can only be used to communicate with
VXI-11.2 (GPIB Emulation) devices. This is because the VISA
GPIB interface type requires a primary and (optionally) a
secondary address when communicating with a device. VXI-11.3
devices do not support the concept of a primary address, so
they cannot be accessed with a VISA LAN Client.

USB VISA LAN Client

A USB VISA LAN Client can use only the SICL-LAN protocol. It
can communicate with USB devices attached to a remote PC
running a LAN server.

Note that you must use the full USB resource string to access
remote devices with the USB VISA LAN Client. Although an
alias may have been assigned to the USB device on the remote
system, the alias is not available on the local system.

Addressing a Session Using a VISA LAN Client

In general, the rules to address a LAN session are the same as to
address a local session. The only difference for a LAN session is
that you use the VISA Interface Name (provided during I/O
configuration) that relates to the VISA LAN Client.
Agilent VISA User’s Guide

Programming via LAN 5

Agilent VISA User’s Guide
The following example shows one way to open a device session
with a GPIB device at primary address 23 on a remote PC that is
running a LAN server. A GPIB VISA LAN Client has been
configured at GPIB2 to communicate with that machine. See
Chapter 3, “Programming with VISA” for more information on
addressing device sessions.

ViSession defaultRM, vi;.

.

viOpenDefaultRM(&defaultRM);

viOpen(defaultRM, "GPIB2::23::INSTR", VI_NULL,
VI_NULL, &vi);

.

.

viClose(vi);

viClose(defaultRM);
151

152

5 Programming via LAN
Agilent VISA User’s Guide

Agilent E2094M VISA User’s Guide for Windows
Agilent VISA User’s Guide
6
Programming via USB

This chapter provides guidelines for VISA programming of USB
instruments that conform to USBTMC (Universal Serial Bus
Test and Measurement Class) and/or USBTMC-USB488
(Universal Serial Bus Test and Measurement Class, Subclass
USB488 Specification).

The chapter contents are:

• USB Interfaces Overview

• Communicating with a USB Instrument Using VISA
153Agilent Technologies

6 Programming via USB
USB Interfaces Overview
154
USBTMC/USBTMC-USB488 instruments are detected and
automatically configured by Agilent VISA when they are
plugged into the computer. The Agilent IO Libraries
Installation and Configuration Guide for Windows describes
the USB instrument configuration process in more detail.
NOTE Do not confuse the Agilent 82357 USB/GPIB Interface with a USBTMC
device. The 82357 is automatically configured as a GPIB interface, not as a
USBTMC device, when it is plugged into the computer. Only
USBTMC/USBTMC-USB488 devices are configured as USB devices by
Agilent VISA.
Due to the complexity of the VISA USB resource string, an
“alias” name is assigned to each USB instrument when it is
plugged into the computer. You can use either the alias name or
the full VISA resource string when opening a VISA resource, but
using the alias name is recommended because it is simpler and
allows substitution of USB instruments without the need to
change a VISA program.
Agilent VISA User’s Guide

Programming via USB 6
Communicating with a USB Instrument Using VISA
Agilent VISA User’s Guide
To establish communications with a USB device using VISA, you
can use either the full VISA resource string for the device or use
the alias name provided by VISA. Using the alias is
recommended, for reasons described below.

Using the full VISA resource string, a viOpen call would look
something like this:

viOpen(. . .,
"USB0::2391::1031::0000000123::0::INSTR", . . .
);

Following is a summary of the components of this call.

This string uniquely identifies the USB device. The values
needed for the resource string are displayed in a dialog box
when the device is plugged into the computer.

To simplify the way a USB device is identified, Agilent VISA also
provides an alias name which can be used in place of this
resource string. The first USB device that is plugged in is
assigned a default alias name of UsbDevice1. Additional devices
are assigned aliases of UsbDevice2, UsbDevice3, etc. You can
modify the default alias name at the time a device is plugged in,
or by running the IO Configuration program and editing the
USB interface.

Table 34 Summary of Full-String viOpen Call

Value Description Data Type

2391 Manufacturer ID 16-bit unsigned integer

1031 Model Code 16-bit unsigned integer

0000000123 Serial Number string value

0 USBTMC Interface Number 8-bit unsigned integer
155

156

6 Programming via USB
Although the case of an alias name is preserved, case is ignored
when the alias is used in place of the full resource string in an
iopen call. For example, UsbDevice1, usbdevice1 and
USBDEVICE1 all refer to the same device.

Using the alias name, a viOpen call would look something like
this:

viOpen(. . ., "UsbDevice1", . . .);

As you can see, this is much simpler than having to use the full
resource string for a USB device.

Using the alias name in a program also makes it more portable.
For example, two identical USB function generators have
different resource strings because they have different serial
numbers. If these function generators are used in two different
test systems and you use the full resource string to access the
function generator in the test program, you cannot use that
same program for both test systems, since the function
generators’ full resource strings are different. By using the alias
name in the program, however, you can use the same program
in both test systems. All you need to do is make sure the same
alias name is used for the function generator in both systems.
Agilent VISA User’s Guide

Agilent E2094M VISA User’s Guide for Windows
Agilent VISA User’s Guide
Glossary

address

A string (or other language construct) that uniquely locates
and identifies a resource. VISA defines an ASCII-based
grammar that associates strings with particular physical
devices or interfaces and VISA resources.

ADE

Application Development Environment.

API

Application Programmers Interface. The direct interface that
an end user sees when creating an application. The VISA API
consists of the sum of all of the operations, attributes, and
events of each of the VISA Resource Classes.

attribute

A value within a resource that reflects a characteristic of the
operational state of a resource. The operational state of some
attributes can be changed.

bus error

An error that signals failed access to an address. Bus errors
occur with low-level accesses to memory and usually involve
hardware with bus mapping capabilities. For example,
non-existent memory, a non-existent register, or an incorrect
device access can cause a bus error.
157Agilent Technologies

158

Glossary
commander

A device that has the ability to control another device. This
term can also denote the unique device that has sole control
over another device (as with the VXI Commander/Servant
hierarchy).

communication channel

The same as Session. A communication path between a
software element and a resource. Every communication
channel in VISA is unique.

controller

A device, such as a computer, used to communicate with a
remote device, such as an instrument. In the communications
between the controller and the device, the controller is in
charge of and controls the flow of communication (that is,
the controller does the addressing and/or other bus
management).

device

An entity that receives commands from a controller. A device
can be an instrument, a computer (acting in a non-controller
role), or a peripheral (such as a plotter or printer). In VISA,
the concept of a device is generally the logical association of
several VISA resources.

device session

A session that communicates as a controller specifically with
a single device, such as an instrument.

handler

A software routine used to respond to an asynchronous
event such as an SRQ or an interrupt.
Agilent VISA User’s Guide

Glossary

Agilent VISA User’s Guide
instrument

A device that accepts some form of stimulus to perform a
designated task, test, or measurement function. Two common
forms of stimuli are message passing and register reads and
writes. Other forms include triggering or varying forms of
asynchronous control.

instrument driver

Library of functions for controlling a specific instrument.

interface

A generic term that applies to the connection between
devices and controllers. It includes the communication media
and the device/controller hardware necessary for
cross-communication.

interrupt

An asynchronous event requiring attention out of the normal
flow of control of a program.

mapping

An operation that returns a reference to a specified section
of an address space and makes the specified range of
addresses accessible to the requester. This function is
independent of memory allocation.

operation

An action defined by a resource that can be performed on a
resource.

process

An operating system component that shares a system's
resources. A multi-process system is a computer system that
allows multiple programs to execute simultaneously, each in
159

160

Glossary
a separate process environment. A single-process system is a
computer system that allows only a single program to
execute at a given point in time.

register

An address location that either contains a value that is a
function of the state of hardware or can be written into to
cause hardware to perform a particular action or to enter a
particular state. In other words, an address location that
controls and/or monitors hardware.

resource (or resource instance)

An instrument while using VISA. In general, this term is
synonymous with the connotation of the word object in
object-oriented architectures. For VISA, resource more
specifically refers to a particular implementation (or
instance in object-oriented terms) of a Resource Class. In
VISA, every defined software module is a resource.

resource class

The definition for how to create a particular resource. In
general, this is synonymous with the connotation of the word
class in object-oriented architectures. For VISA Instrument
Control Resource Classes, this refers to the definition for
how to create a resource that controls a particular capability
of a device.

session

The same as Communication Channel. An instance of a
communications path between a software element and a
resource. Every communication channel in VISA is unique.

SRQ

IEEE-488 Service Request. This is an asynchronous request
(an interrupt) from a remote GPIB device that requires
service. A service request is essentially an interrupt from a
Agilent VISA User’s Guide

Glossary

Agilent VISA User’s Guide
remote device. For GPIB, this amounts to asserting the SRQ
line on the GPIB. For VXI, this amounts to sending the
Request for Service True event (REQT).

status byte

A byte of information returned from a remote device that
shows the current state and status of the device. If the device
follows IEEE-488 conventions, bit 6 of the status byte
indicates if the device is currently requesting service.

template function

Instrument driver subsystem function common to the
majority of VXIplug&play instrument drivers.

thread

An operating system object that consists of a flow of control
within a process. A single process may have multiple threads
with each having access to the same data space within the
process. However, each thread has its own stack and all
threads may execute concurrently with each other (either on
multiple processors, or by time-sharing a single processor).
Note that multi-threaded applications are only supported
with 32-bit VISA.

top-level example

A high-level test-oriented instrument driver function. It is
typically developed from the instrument driver subsystem
functions.

virtual instrument

A name given to the grouping of software modules (in this
case, VISA resources with any associated or required
hardware) to give the functionality of a traditional
stand-alone instrument. Within VISA, a virtual instrument is
the logical grouping of any of the VISA resources. The VISA
161

162

Glossary
Instrument Control Resources Organizer serves as a means
to group any number of any type of VISA Instrument Control
Resources within a VISA system.

VISA

Virtual Instrument Software Architecture. VISA is a common
I/O library that allows software from different vendors to run
together on the same platform. VISA is also the general name
given to this document and its associated architecture. The
architecture consists of two main VISA components: the
VISA Resource Manager and the VISA Instrument Control
Resources.

VISA instrument control resources

This is the name given to the part of VISA that defines all of
the device-specific resource classes. VISA Instrument Control
Resources encompass all defined device and interface
capabilities for direct, low-level instrument control.

VISA resource manager

This is the name given to the part of VISA that manages
resources. This management includes support for opening,
closing, and finding resources, setting attributes, retrieving
attributes, and generating events on resources, etc.

VISA Resource Template

This is the name given to the part of VISA that defines the
basic constraints and interface definition for the creation
and use of a VISA resource. All VISA resources must derive
their interface from the definition of the VISA Resource
Template.
Agilent VISA User’s Guide

Index
A
addressing

addressing device sessions, 36
devices, 36

Agilent web site, 11
attributes

setting VXI trigger lines, 128
VXI, 127

B
buffers

formatted I/O, 53

C
callbacks and events, 57, 65
closing device sessions, 40
conversion, formatted I/O, 45

D
declarations file, 33
default resource manager, 34
device sessions

addressing device sessions, 36
closing, 40
opening, 34

E
enable events for callback, 68
enable events for queuing, 75
event handler, 68
Agilent VISA User’s Guide
events
callback, 57, 65
enable for callback, 68
enable for queuing, 75
handlers, 57
hardware triggers, 57
interrupts, 57
queuing, 57, 74
SRQs, 57
wait on event, 76
examples
Checking Instrument Errors, 81
Determining Window Mapping, 128
Enabling a Hardware Trigger Event, 69,

76
Example C/C++ Source Code, 16
Exception Events, 84
Exclusive Lock, 89
GPIB-VXI (E1406A) Interface, 100
Installing an Event Handler, 67
LAN Client (LAN) Interface, 138
MEMACC Resource Program, 121
Opening a Device Session, 146
Opening a Resource Session, 35
Opening a Session, 39
Printing Error Code, 80
Reading a VISA Attribute, 32
Receiving Data From a Session, 51
Searching VXI Interface for

Resources, 42
SRQ Callback, 71
Trigger Callback, 69
Trigger Event Queuing, 77
Using Array Size Modifier, 48
Using Non-Formatted I/O

Functions, 55
Using the Callback Method, 65
Using the GPIB-VXI Interface

(Low-Level) Memory Functions, 112
Using the Precision Modifier, 46
Using the Queuing Method, 75
Using the VXI Interface (High-Level)

Memory Functions, 105
Using the VXI Interface (Low-Level)

Memory Functions, 111
Using viPeek16, 110
VISA LAN Client (Gateway)

Interface, 140
VXI (E8491B) Interfaces, 98
163

Index
F
field width, 45
finding resources, 40
formatted I/O

buffers, 53
conversion, 45
field width, 45
functions, 43

functions
formatted I/O, 43

G
glossary, 157
GPIB interfaces, introduction, 94
GPIB-VXI

attributes, 127
high-level memory functions, 104
low-level memory functions, 108
register programming, 102, 108
setting trigger lines, 128

GPIB-VXI interfaces overview, 99

H
handlers, 57

event, 68
installing, 66
prototype, 68

hardware triggers and events, 57
header file, visa.h, 33
high-level memory functions, 102
high-level memory functions for VXI, 102,

104

I
installing handlers, 66
interrupts and events, 57
IP address, 139
164
L
LAN

client interface overview, 136
hardware architecture, 132
interfaces overview, 132
server interface overview, 144
software architecture, 134

locks
using, 87

low-level memory functions, 108
Low-level memory functions for VXI, 108
low-level memory functions for VXI, 108

M
MEMACC attribute descriptions, 123
memory functions, high-level, 102
memory functions, low-level, 108

N
non-formatted I/O

mixing with formatted I/O, 54

O
opening sessions, 34
overview, guide, 8

Q
queuing and events, 57, 74

R
raw I/O, 54
register programming

high-level memory functions, 102
low-level memory functions, 108

resource manager, 34
resource manager session, 34
resources

finding, 40
locking, 87

S
searching for resources, 40
sessions
device, 34
opening, 34
resource manager, 34

SICL
description, 9

SICL-LAN protocol, 135
SRQs, 57
starting the resource manager, 34

T
TCP/IP instrument protocol, 135
trigger lines, 129
triggers and events, 57

U
USB

communicating with instruments using
VISA, 155

interfaces overview, 154

V
VISA LAN

client interface overview, 140
visa.h header file, 33
VXI

attributes, 127
high-level memory functions, 104
low-level memory functions, 108
register programming, 102, 108
setting trigger lines, 128

VXI-11 protocol, 135

W
wait on event, 76
web site, Agilent, 11
Agilent VISA User’s Guide

	Agilent VISA User’s Guide for Windows
	Introduction
	What’s in This Guide?
	VISA Overview
	Using VISA and SICL
	VISA Support
	VISA Users
	VISA Documentation
	Contacting Agilent

	Building a VISA Application in Windows
	Building a VISA Program (C/C++)
	Compiling and Linking VISA Programs (C/C++)
	Linking to VISA Libraries
	Microsoft Visual C++ Version 6.0 Compilers
	Borland C++ Version 4.0 Compilers

	Example VISA Program (C/C++)
	Example C/C++ Program Source Code
	Example C/C++ Program Contents

	Building a VISA Program (Visual Basic)
	Visual Basic Programming Considerations
	Required Module for a Visual Basic VISA Program
	Installing the visa32.bas File
	VISA Limitations in Visual Basic
	Format Conversion Commands
	Numeric Arrays
	Strings

	Example VISA Program (Visual Basic)
	Steps to Running the Program
	Example Program Source Code
	Example Program Contents

	Logging Error Messages
	Using the Event Viewer
	Using the Message Viewer
	Using the Debug Window

	Programming with VISA
	VISA Resources and Attributes
	VISA Resources
	VISA Attributes
	Example: Reading a VISA Attribute

	Using Sessions
	Including the VISA Declarations File (C/C++)
	Adding the visa32.bas File (Visual Basic)
	Opening a Session
	Resource Manager Sessions
	Resource Sessions
	Example: Opening a Resource Session

	Addressing a Session
	Example: Opening a Session

	Closing a Session
	Searching for Resources
	Example: Searching the VXI Interface for Resources

	Sending I/O Commands
	Types of I/O
	Using Formatted I/O
	Formatted I/O Functions
	Formatted I/O Conversion
	Example: Using Field Width Modifier
	Example: Using the Precision Modifier
	Example: Using Array Size Modifier
	Example: Receiving Data From a Session
	Formatted I/O Buffers
	Example: Sending and Receiving Formatted I/O

	Using Non-Formatted I/O
	Non-Formatted I/O Functions
	Example: Using Non-Formatted I/O Functions

	Using Events and Handlers
	Events and Attributes
	Event Notification
	Events that can be Enabled
	Example: Reading Event Attributes

	Using the Callback Method
	Example: Using the Callback Method
	Installing Handlers
	Example: Installing an Event Handler
	Writing the Handler
	Enabling Events
	Example: Enabling a Hardware Trigger Event
	Example: Trigger Callback
	Example: SRQ Callback

	Using the Queuing Method
	Example: Using the Queuing Method
	Enabling Events
	Example: Enabling a Hardware Trigger Event
	Wait on the Event
	Example: Wait on Event for SRQ
	Example: Trigger Event Queuing

	Trapping Errors
	Trapping Errors
	Example: Checking for VI_SUCCESS
	Example: Printing Error Code
	Example: Checking Instrument Errors

	Exception Events
	Exception Handling Model
	Using the VI_EVENT_EXCEPTION Event
	Example: Exception Events

	Using Locks
	Lock Functions
	viLock/viUnlock Functions
	VISA Lock Types
	Example: Exclusive Lock
	Example: Shared Lock

	Programming via GPIB and VXI
	GPIB and VXI Interfaces Overview
	General Interface Information
	What is an I/O Interface?
	VXI Device Types

	GPIB Interfaces Overview
	Example: GPIB (82350) Interface

	VXI Interfaces Overview
	Example: VXI (E8491B) Interfaces

	GPIB-VXI Interfaces Overview
	Example: GPIB-VXI (E1406A) Interface

	Using High-Level Memory Functions
	Programming the Registers
	High-Level Memory Functions
	Using viIn and viOut
	Using viMoveIn and viMoveOut

	High-Level Memory Functions Examples
	Example: Using VXI Interface (High-Level) Memory Functions
	Example: Using GPIB-VXI Interface (High-Level) Memory Functions

	Using Low-Level Memory Functions
	Programming the Registers
	Low-Level Memory Functions
	Mapping Memory Space
	Reading and Writing to Device Registers
	Example: Using viPeek16
	Unmapping Memory Space

	Low-Level Memory Functions Examples
	Example: Using the VXI Interface (Low-Level) Memory Functions
	Example: Using the GPIB-VXI Interface (Low-Level) Memory Functions

	Using Low/High-Level Memory I/O Methods
	Using Low-Level viPeek/viPoke
	Using High-level viIn/viOut
	Using High-level viMoveIn/viMoveOut
	Example: Using VXI Memory I/O

	Using the Memory Access Resource
	Memory I/O Services
	High-Level Memory I/O Services
	Low-Level Memory I/O Services
	Example: MEMACC Resource Program

	MEMACC Attribute Descriptions
	Generic MEMACC Attributes
	VXI and GPIB-VXI Specific MEMACC Attributes
	GPIB-VXI Specific MEMACC Attributes
	MEMACC Resource Event Attribute

	Using VXI-Specific Attributes
	Using the Map Address as a Pointer
	VI_ATTR_WIN_ACCESS Settings
	Example: Determining Window Mapping

	Setting the VXI Trigger Line

	Programming via LAN
	LAN Interfaces Overview
	LAN Hardware Architecture
	Client/Server Model
	Gateway Operation

	LAN Software Architecture
	LAN Client Interface Overview
	Example: LAN Client (Gateway) Interface
	Example: LAN Client (LAN) Interface

	VISA LAN Client Interface Overview
	Example: VISA LAN Client (Gateway) Interface
	Example: VISA LAN Client (LAN) Interface

	LAN Server Interface Overview
	Example: LAN Server Interface

	Communicating with LAN-Connected Devices
	Using the TCPIP Interface Type for LAN Access
	Addressing a Session Using the TCPIP Interface Type

	Using a VISA LAN Client for LAN Access
	ASRL VISA LAN Client
	GPIB VISA LAN Client
	USB VISA LAN Client
	Addressing a Session Using a VISA LAN Client

	Programming via USB
	USB Interfaces Overview
	Communicating with a USB Instrument Using VISA

	Glossary
	address
	ADE
	API
	attribute
	bus error
	commander
	communication channel
	controller
	device
	device session
	handler
	instrument
	instrument driver
	interface
	interrupt
	mapping
	operation
	process
	register
	resource (or resource instance)
	resource class
	session
	SRQ
	status byte
	template function
	thread
	top-level example
	virtual instrument
	VISA
	VISA instrument control resources
	VISA resource manager
	VISA Resource Template

	Index

