
HP Standard Instrument
Control Library

Reference
Manual

HP Standard Instrument Control Library

Reference Manual

Notice

The information contained in this document is subject to change without
notice.

Hewlett-Packard Company (HP) shall not be liable for any errors contained
in this document. HP makes no warranties of any kind with regard to this
document, whether express or implied. HP specifically disclaims the implied
warranties of merchantability and fitness for a particular purpose. HP shall
not be liable for any direct, indirect, special, incidental, or consequential
damages, whether based on contract, tort, or any other legal theory, in
connection with the furnishing of this document or the use of the information
in this document.

Warranty Information.

A copy of the specific warranty terms applicable to your Hewlett-Packard
product and replacement parts can be obtained from your local Sales and
Service Office.

Restricted Rights Legend.

U.S. Government Restricted Rights. The Software and Documentation have
been developed entirely at private expense. They are delivered and licensed
as "commercial computer software" as defined in DFARS 252.227-7013
(Oct 1988), DFARS 252.211-7015 (May 1991) or DFARS 252.227-7014 (Jun
1995), as a "commercial item" as defined in FAR 2. lOl(a), or as "Restricted
computer software" as defined in FAR 52.227-19 (Jun 1987) (or any
equivalent agency regulation or contract clause), whichever is applicable. You
have only those rights provided for such Software and Documentation by the
applicable FAR or DFARS clause or the HP standard software agreement for
the product involved.

Microsoft, Windows NT, and Windows 95 are U.S. registered trademarks of
Microsoft Corporation.

Copyright© 1994, 1995, 1996 Hewlett-Packard Company. All Rights
Reserved.

This document contains proprietary information which is protected by
copyright. All rights are reserved. No part of this document may be
photocopied, reproduced, or translated to another language without the prior
written consent of Hewlett-Packard Company.

Printing History

This is the fifth edition of the HP St;andard Instrument Control Library
Reference Manual.

iv

April 1994 - First Edition

January 1995 - Second Edition

September 1995 - Third Edition

May 1996 - Fourth Edition

September .1996 - Fifth Edition

Contents

1. Introduction
HP SICL Overview

Users
Features

Portability . .
Centralized Error Handling
Formatted I/O
Device, Interface, and Commander Sessions

Other Documentation

2. BP SICL Language Reference
IBLOCKCOPY
ICAUSEERR
I CLEAR
ICLOSE .
IFLUSH ..
IFREAD ..
IFWRITE .
IGETADDR
IGETDATA
IGETDEVADDR
IGETERRNO ..
IGETERRSTR .
IGETGATEWAYTYPE
IG ETINTFSESS
IGETINTFTYPE .
IGETLOCKWAIT .
IGETLU
IGETLUINFO
IGETLULIST ..
IGETONERROR
IGETONINTR .
IGETONSRQ ..
IGETSESSTYPE
IGETTERMCHR
IGETTIMEOUT

1-3
1-3
1-4
1-4
1-4
1-4
1-5
1-6

2-4
2-7
2-8
2-9

2-10
2-12
2-14
2-16
2-17
2-18
2-19
2-21
2-22
2-24
2-25
2-26
2-27
2-28
2-30
2-31
2-32
2-33
2-34
2-35
2-36

Contents-1

IGPIBATNCTL . . .
IGPIBBUSADDR
IGPIBBUSSTATUS .
IGPIBGETTlDELAY
IGPIBLLO
IGPIBPASSCTL ..
IGPIBPPOLL
IGPIBPPOLLCONFIG
IGPIBPPOLLRESP .
IGPIBRENCTL . . .
IGPIBSENDCMD . .
IGPIBSETTlDELAY
IGPIOCTRL ...
IGPIOGETWIDTH
IGPIOSETWIDTH
IGPIOSTAT
IHINT
IINTROFF
IINTRON
ILANGETTIMEOUT
ILANTIMEOUT
!LOCAL ..
ILOCK
IMAP ...
IMAPINFO.
IONERROR
IONINTR
IONSRQ
I OPEN
IPEEK ..
IPOKE
IPOPFIFO
IPRINTF
IPROMPTF
IPUSHFIFO
IRE AD
IREADSTB
!REMOTE .
ISCANF ..
ISERIALBREAK
ISERIALCTRL

Contents-2

2-37
2-39
2-40
2-42
2-43
2-44
2-45
2-46
2-48
2-49
2-50
2-51
2-52
2-56
2-57
2-59
2-63
2-65
2-67
2-69
2-70
2-74
2-75
2-78
2-81
2-83
2-87
2-90
2-92
2-95
2-97
2-99

2-102
2-114
2-116
2-119
2-121
2-122
2-123
2-135
2-136

ISERIALMCLCTRL .
ISERIALMCLSTAT.
ISERIALSTAT
ISETBUF .. .
ISETDATA .. .
ISETINTR .. .
ISETLOCKWAIT
ISETSTB
ISETUBUF .
ISWAP
ITERMCHR
!TIMEOUT
!TRIGGER.
!UNLOCK .
IUNMAP ..
!VERSION .
IVXIBUSSTATUS .
IVXIGETTRIGROUTE
IVXIRMINFO
IVXISERVANTS .
IVXITRIGOFF . . .
IVXITRIGON
IVXITRIGROUTE .
IVXIWAITNORMOP
IVXIWS ..
IWAITHDLR ..
!WRITE
IXTRIG
_SICLCLEANUP

A. HP SICL Error Codes

B. HP SICL Function Summary

Glossary

Index

2-140
2-141
2-142
2-146
2-148
2-149
2-157
2-159
2-160
2-162
2-165
2-167
2-168
2-170
2-172
2-174
2-175
2-177
2-178
2-181
2-182
2-184
2-186
2-188
2-189
2-191
2-194
2-196
2-198

Contents-3

1

Introduction

Introduction

Welcome to the HP St,andard Instrument Control Library (SICL) Reference
Manual. This manual provides the function syntax and description of each
SICL function.

See the HP I/O Libraries Installation and Configuration Guide for HP-UX or
Windows for detailed information on SICL installation and configuration.

This first chapter provides an overview of SICL. In addition, this manual
contains the following chapters and appendices:

• Chapter 2 - HP SICL Language Reference defines all of the supported
SICL functions. The SICL functions are provided in alphabetical order to
make them easier to look-up and reference.

• Appendix A - HP SICL Error Codes lists all the error codes for SICL.

• Appendix B - HP SICL Function Summary contains a table of SICL
functions with supported features.

This manual also contains a Glossary of terms and their definitions, as well as
an Index.

1-2

HP SICL Overview

SICL is a modular instrument communications library that works with a
variety of computer architectures, IIO interfaces, and operating systems.
Applications written in CIC+ + or Visual BASIC using this library can be
ported at the source code level from one system to another without, or with
very few, changes.

SICL uses standard, commonly used functions to communicate over a wide
variety of interfaces. For example, a program written to communicate with
a particular instrument on a given interface can also communicate with
an equivalent instrument on a different type of interface. This is possible
because the commands are independent of the specific communications
interface. SICL also provides commands to take advantage of the unique
features of each type of interface, thus giving you, the programmer, complete
control over 110 communications.

Users

SICL is intended for instrument IIO and CIC+ + or Visual BASIC programmers
developing applications on either HP-UX version 10.20 or later, Microsoft®
Windows 95®, or Microsoft Windows NT® operating system. If you will use
the SICL library, you should become familiar with all of the SICL functions
that are defined in this manual before writing any applications that use SICL.

1-3

Portability

Introduction

HP SICL Overview

Features

SICL has several features that distinguish it from other I/O libraries:

• Portability
• Centralized error handling
• Formatted I/O
• Device, interface, and commander communications sessions

Each of these key features is explained in the following subsections.

SICL can be considered portable at two levels. The first level is that SICL
is a C library that can be called by C, ANSI C, C+ +, and Visual BASIC
applications. As such, it can be ported at the source code level to other
systems.

The second level of portability is found in the types of functions that SICL
provides. The first type are the core (interface-independent) functions. These
functions work on all types of devices and interfaces. The second type are the
interface-specific functions. These functions accomplish tasks that are specific
to an interface.

If applications are written using only core functions, these applications can be
used to talk to equivalent devices on different types of interfaces. Note that
programming with interface-specific functions makes a program less portable
across interface types.

Centralized Error Handling In SICL, an application can install an error handling function that will be
called whenever a_ SICL function encounters an error. By eliminating the need
to check the value returned from SICL functions, you can considerably reduce
the amount of code in an application. Also, I/O errors can be handled in a
uniform way.

Formatted 1/0 SICL provides formatted I/O that is similar to the C stdio mechanism.
However, SICL is designed specifically for instrument communication and is
optimized for IEEE 488. 2 compatible instruments.

1-4

Device, Interface, and
Commander Sessions

Introduction

HP SICL Overview

SICL introduces the concept of a device session. Typically a device is an
instrument, but it could be a computer or another peripheral (such as a
printer or plotter). Device sessions insulate the user from interface-specific
functions. The user can directly access the device without worrying about the
type of interface connecting it. (For example, on GPIB, the user does not have
to address a device to listen before sending data to it). This insulation makes
applications more robust and portable across interfaces. Device sessions
should be used for most applications.

Interface sessions allow the user to access the specified interface in a raw
fashion. There is a full set of interface-specific functions for programming
features that are specific to a particular interface. This gives the user
full control of the activities on the chosen interface. Most of these
interface-specific functions are not available with device sessions.

Commander sessions allow the user to communicate with the controller
of the system (that is, allowing the computer to act like a device on the
interface).

1-5

Other Documentation

The following documentatioff is also helpful when using SICL:

• HP IIO Libraries Installation and Con.figuration Guide explains how to
install and configure the HP Virtual Instrument Software Architecture
(VISA) library and SICL on HP-UX or Microsoft Windows.

• HP SICL User's Guide explains how to program SICL applications on HP-UX
or Windows.

• HP SICL Quick Reference Guide for C Programmers helps you find SICL
function syntax information quickly if you are progranuning in C/C + + .

• HP SICL Quick Reference Guide for Visual BASIC Programmers helps you
find SICL function syntax information quickly if you are progranuning in
Visual BASIC.

• HP SICL Online Help is provided in the form of manual pages (man pages)
and online help on HP-UX, and in the form of Windows Help on Microsoft
Windows.

• HP SICL Example Programs are provided online to help you develop your
SICL applications more easily.

The following VXIbus Consortium specifications may also be helpful when
using SICL over LAN:

• TCP/IP Instrument Protocol Specification - VXI-11, Rev. 1.0
• TCP/IP-VX!bus Interface Specification - VXI-11.1, Rev. 1.0
• TCP/IP-IEEE 488.1 Interface Specification - VXI-11.2, Rev. 1.0
• TCP/IP-IEEE 488.2 Instrument Interface Specification - VXI-11.3, Rev. 1.0

1-6

2

HP SICL Language
Reference

HP SICL Language Reference

This chapter defines all of the supported SICL functions. The functions are
listed in alphabetical order to make them easier for you to look-up and
reference. In this chapter, the entry for each SICL function includes:

• C syntax and Visual BASIC syntax (if the function is supported on Visual
BASIC).

• Complete description.
• Return value(s).
• Related SICL functions that you may want to see also.

NOTE

This edition of this manual supports and shows the syntax structure for programming SICL applications
in Visual BASIC version 4.0 or later.

If you have SICL applications written in an earlier Visual BASIC version than version 4.0 !for example,
version 3.0l, you can easily port your SICL applications to Visual BASIC version 4.0. See Appendix C,
"Porting to Visual BASIC 4.0," in the HP S/Cl User's Gutde for Windows.

Along with this chapter, you may also want to refer to:

• Appendix A, which lists all the SICL error codes.

• Appendix B, which summarizes the supported features of each core and
interface-specific SICL function.

2-2

HP SICL Language Reference

Session Identifiers

SICL uses session identifiers to refer to specific SICL sessions. The iopen
function will create a SICL session and return a session identifier to you. A
session identifier is needed for most SICL functions.

Note that for the C and C + + languages, SICL defines the variable type INST.
C and C+ + programs should declare session identifiers to be of type INST.
For example:

INST id;

Visual BASIC programs should declare session identifiers to be of type Integer.
For example:

DIM id As Integer

Device, Interface, and Commander Sessions

Some SICL functions are supported on device sessions, some on interface
sessions, some on commander sessions, and some on all three. The listing for
each function in this chapter indicates which sessions support that function.

Functions Affected by Locks

In addition, some functions are affected by locks (refer to the ilock
function). This means that if the device or interface that the session refers
to is locked by another process, this function will block and wait for the
device or interface to be unlocked before it will succeed, or it will return
immediately with the error I_ERR_LOCKED. Refer to the isetlockwai t
function.

Functions Affected by Timeouts

Likewise, some functions are affected by timeouts (refer to the itimeout
function). This means that if the device or interface that the session refers to
is currently busy, this function will wait for the amount of time specified by
itimeout to succeed. If it cannot, it will return the error I_ERR_TIMEOUT.

Per-Process Functions

Functions that do not support sessions and are not affected by ilock or
itimeout are per-process functions. The SICL function ionerror is an
example of this. The ionerror function installs an error handler for the
process. As such, it handles errors for all sessions in the process regardless of
the type of session.

2-3

C Syntax

HP SICL Language Reference

IBLOCKCOPY

Supported sessions: device, interface, commander
Affected by functions: ilock, i timeout

2-4

#include <sicl.h>

int ibblockcopy (id, src, dest, cnt) ;
INST id;
unsigned char *src;
unsigned char *dest;
unsigned long cnt;

int iwblockcopy (id, src, dest, cnt, swap) ;
INST id;
unsigned char *src;
unsigned char *dest;
unsigned long cnt;
int swap;

int ilblockcopy (id, src, dest, cnt, swap);
INST id;
unsigned char
unsigned char
unsigned long
int swap;

*src;
*dest;

cnt;

Visual BASIC
Syntax

Description

Function ibblockcopy
(ByVal id As Integer, ByVal src As Long,
ByVal dest As Long, ByVal cnt As Long)

Function iwblockcopy
(ByVal id As Integer, ByVal src As Long,
ByVal dest As Long, ByVal cnt As Long,
ByVal swap As Integer)

Function ilblockcopy
(ByVal id As Integer, ByVal src As Long,
ByVal dest As Long, ByVal cnt As Long,
ByVal swap As Integer)

NOTE

Not supported over LAN.

HP SICL Language Reference

IBLOCKCOPV

The three forms of iblockcopy assume three different types of data: byte,
word, and long word (8 bit, 16 bit, and 32 bit). The iblockcopy functions
copy data from memory on one device to memory on another device. They
can transfer entire blocks of data.

The id parameter, although specified, is normally ignored except to determine
an interface-specific transfer mechanism such as DMA. To prevent using
an interface-specific mechanism, pass a zero (0) for this parameter. The
src argument is the starting memory address for the source data. The dest
argument is the starting memory address for the destination data. The cnt
argument is the number of transfers (bytes, words, or long words) to perform.
The swap argument is the byte swapping flag. If swap is zero, no swapping
occurs. If swap is non-zero the function swaps bytes (if necessary) to change
byte ordering from the internal format of the controller to/from the VXI
(big-endian) byte ordering.

2-5

Return Value

See Also

HP SICL Language Reference

IBLOCKCOPY

NOTE

If a bus error occurs, unexpected results may occur.

For C programs, this function returns zero (0) if successful, or a non-zero
error number if an error occurs.

For Visual BASIC programs, no error number is returned. Instead, the global
Err variable is set if an error occurs.

"!PEEK", "!POKE", "IPOPFIFO", "IPUSHFIFO"

2-6

C Syntax

Visual BASIC
Syntax

Description

See Also

HP SICL Language Reference

ICAUSEERR

I CA USE ERR

Supported sessions: device, interface, commander

#include <sicl.h>

void icauseerr (id, errcode, flag);
INST id;
int errcode;
int flag;

Sub icauseerr
(ByVal id As Integer, ByVal errcode As Integer,
ByVal flag As Integer)

Occasionally it is necessary for an application to simulate a SICL error. The .
icauseerr function performs that function. This function causes SICL to
act as if the error specified by errcode (see Appendix A for a list of errors)
has occurred on the session specified by id. If flag is 1, the error handler
associated with this process is called (if present); otherwise it is not.

On operating systems that support multiple threads, the error is per-thread,
and the error handler will be called in the context of this thread.

"IONERROR", "IGETONERROR", "IGETERRNO", "IGETERRSTR"

2-7

C Syntax

Visual BASIC
Syntax

Description

Return Value

See Also

HP SICL Language Reference

I CLEAR

Supported sessions: device, interface
Affected by functions: ilock, i timeout

#include <sicl.h>

int iclear (id);
INST id;

Function iclear
(ByVal id As Integer)

Use the iclear function to clear a device or interface. If id refers to a
device session, this function sends a device clear command. If id refers to an
interface, this function sends an interface clear command.

The iclear function also discards the data in both the read and the write
formatted 1/0 buffers. This discard is equivalent to performing the following
iflush call (in addition to the device or interface clear function):

iflush (id, I_BUF_DISCARD_READ I I_BUF_DISCARD_WRITE);

For C programs, this function returns zero (0) if successful, or a non-zero
error number if an error occurs.

For Visual BASIC programs, no error number is returned. Instead, the global
Err variable is set if an error occurs.

"!FLUSH", and the interface-specific chapter in the HP SICL User's Guide for
details of implementation.

2-8

C Syntax

Visual BASIC
Syntax

Description

Return Value

See Also

I CLOSE

HP SICL Language Reference

I CLOSE

Supported sessions: device, interface, commander

#include <sicl.h>

int iclose (id);
INST id;

Function iclose
(ByVal id As Integer)

Once you no longer need a session, close it using the iclose function. This
function closes a SICL session. After calling this function, the value in the id
parameter is no longer a valid session identifier and cannot be used again.

NOTE

Do not call iclose from an SRQ or interrupt handler, because it may cause unpredictable behavior.

For C programs, this function returns zero (0) if successful, or a non-zero
error number if an error occurs.

For Visual BASIC programs, no error number is returned. Instead, the global
Err variable is set if an error occurs.

"IOPEN"

2-9

C Syntax

Visual BASIC
Syntax

Description

HP SICL Language Reference

IFLUSH

Supported sessions: device, interface, commander
Affected by functions: ilock, itimeout

#include <sicl.h>

int iflush (id, mask) ;
INST id;
int mask;

Function iflush

(ByVal id As Integer, ByVal mask As Integer)

This function is used to manually flush the read and/or write buffers used by
formatted 1/0. The mask may be one or a combination of the following flags:

I_BUF _READ Indicates the read buffer (iscanf). If data

I_BUF_ WRITE

I_BUF_WRITE_END

I_BUF_DISCARD_READ

is present, it will be discarded until the end
of data (that is, if the END indicator is not
currently in the buffer, reads will be performed
until it is read).

Indicates the write buffer (iprintf). If data is
present, it will be discarded.

Flushes the write buffer of formatted 1/0
operations and sets the END indicator on the
last byte (for example, sets EOI on HP-IB).

Discards the read buffer (does not perform I/O
to the device).

I_BUF _DISCARD_WRITE Discards the write buffer (does not perform I/O
to the device).

The I_BUF _READ and I_BUF _WRITE flags may be used together (by OR-ing
them together), and the I_BUF _DISCARD_READ and I_BUF _DISCARD_ WRITE
flags may be used together. Other combinations are invalid.

2-10

Return Value

See Also

HP SICL Language Reference

I FLUSH

If iclear is called to perform either a device or interface clear, then both the
read and the write buffers are discarded. Performing an iclear is equivalent
to performing the following iflush call (in addition to the device or interface
clear function):

iflush (id, I_BUF_DISCARD_READ I I_BUF_DISCARD_WRITE);

For C programs, this function returns zero (0) if successful, or a non-zero
error number if an error occurs.

For Visual BASIC programs, no error number is returned. Instead, the global
Err variable is set if an error occurs.

"IPRINTF", "ISCANF", "IPROMPTF", "IFWRITE", "IFREAD", "ISETBUF",
"ISETUBUF", "ICLEAR"

2-11

C Syntax

Visual BASIC
Syntax

Description

HP SICL Language Reference

IFREAD

Supported sessions: device, interface, commander
Affected by functions: ilock, itimeout

#include <sicl.h>

int if read (id, buf, bufsize, reason, actualcnt) ;
INST id;
char *buf;
unsigned long bufsize;
int *reason;
unsigned long *actualcnt;

Function ifread
(ByVal id As Integer, buf As String,
ByVal bufsize As Long, reason As Integer,
actual As Long)

This function reads a block of data from the device via the formatted I/O read
buffer (the same buffer used by iscanf). The buf argument is a pointer to
the location where the block of data can be stored. The bufsize argument is
an unsigned long integer containing the size, in bytes, of the buffer specified
in buf.

The reason argument is a pointer to an integer that, upon exiting ifread,
contains the reason why the read terminated. If the reason parameter
contains a zero (0), then no termination reason is returned. Th~ reason
argument is a bit mask, and one or more reasons can be returned.

2-12

Return Value

See Also

HP SICL Language Reference

IFREAD

Values for reason include:

I_TERM_MAXCNT
I_TERM_END
I_TERM_CHR

bufsize characters read.
END indicator received on last character.
Termination character enabled and received.

The actualcnt argument is a pointer to an unsigned long integer which, upon
exit, contains the actual number of bytes read from the formatted 1/0 read
buffer.

If a termination condition occurs, the if read will terminate. However, if
there is nothing in the formatted 1/0 read buffer to terminate the read, then
ifread will read from the device, fill the buffer again, and so forth.

This function obeys the itermchr termination character, if any, for
the specified session. The read terminates only on one of the following
conditions:

• It reads bufsize number of bytes.

• It finds a byte with the END indicator attached.

• It finds the current termination character in the read buffer (set with
itermchr).

• An error occurs.

This function acts identically to the iread function, except the data is not
read directly from the device. Instead the data is read from the formatted
1/0 read buffer. The advantage to this function over iread is that it can be
intermixed with calls to iscanf, while ire ad may not.

For C programs, this function returns zero (0) if successful, or a non-zero
error number if an error occurs.

For Visual BASIC programs, no error number is returned. Instead, the global
Err variable is set if an error occurs.

"IPRINTF" I "ISCANF" I "IPROMPTF" I "IFWRITE" I "ISETBUF" I "ISETUBUF" I

"!FLUSH" I "ITERMCHR"

2-13

C Syntax

Visual BASIC
Syntax

Description

HP SICL Language Reference

IFWRITE

Supported sessions: device, interface, commander
Affected by functions: ilock, i timeout

#include <sicl.h>

int ifwri te (id, buf, data/en, end, actualcnt) ;
INST id;
char *buf;
unsigned long data/en;
int end;
unsigned long *actualcnt;

Function ifwrite
(ByVal id As Integer, ByVal buf As String,
ByVal data/en As Long, ByVal endi As Integer,
actual As Long)

This function is used to send a block of data to the device via the formatted
1/0 write buffer (the same buffer used by iprintf). The id argument
specifies the session to send the data to when the formatted VO write buffer
is flushed. The buf argument is a pointer to the data that is to be sent to
the specified interface or device. The data/en argument is an unsigned long
integer containing the length of the data block in bytes.

If the end argument is non-zero, this function will send the END indicator
with the last byte of the data block. Otherwise, if end is set to zero, no END
indicator will be sent.

The actualcnt argument is a pointer to an unsigned long integer. Upon exit,
it will contain the actual number of bytes written to the specified device. A
NULL pointer can be passed for this argument, and it will be ignored.

2-14

Return Value

See Also

HP SICL Language Reference

IFWRITE

This function acts identically to the i write function, except the data is not
written directly to the device. Instead the data is written to the formatted I/O
write buffer (the same buffer used by iprintf). The formatted I/O write
buffer is then flushed to the device at normal times, such as when the buffer
is full, or when iflush is called. The advantage to this function over iwri te
is that it can be intermixed with calls to iprintf, while iwri te cannot.

For C programs, this function returns zero (0) if successful, or a non-zero
error number if an error occurs.

For Visual BASIC programs, no error number is returned. Instead, the global
Err variable is set if an error occurs.

"IPRINTF", "ISCANF", "IPROMPTF", "IFREAD", "ISETBUF", "ISETUBUF",
"!FLUSH", "ITERMCHR", "!WRITE", "IREAD"

2-15

C Syntax

Description

Return Value

See Also

HP SICL Language Reference

IGETADDR

Supported sessions: device, interface, commander

#include <sicl.h>

int igetaddr (id, addr);
INST id;
char * *addr;

NOTE
Not supported on Visual BASIC.

The igetaddr function returns a pointer to the address string which was
passed to the iopen call for the session id.

This function returns zero (0) if successful, or a non-zero error number if an
error occurs.

"IOPEN"

2-16

C Syntax

Description

Return Value

See Also

IGETDATA

HP SICL Language Reference
IGETDATA

Supported sessions: device, interface, commander

#include <sicl.h>

int igetdata (id, data) ;
INST id;
void * *data;

NOTE

Not supported on Visual BASIC.

The igetdata function retrieves the pointer to the data structure stored by
isetdata associated with a session.

The isetdata/igetdata functions provide a good method of passing data to
event handlers, such as error, interrupt, or SRQ handlers.

For example, you could set up a data structure in the main procedure and
retrieve the same data structure in a handler routine. You could set a device
command string in this structure so that an error handler could re-set the
state of the device on errors.

This function returns zero (0) if successful, or a non-zero error number if an
error occurs.

"ISETDATA''

2-17

C Syntax

Visual BASIC
Syntax

Description

Return Value

See Also

HP SICL Language Reference

IGETDEVADDR

Supported sessions: ... device

#include <sicl.h>

int igetdevaddr (id, prim, sec) ;
INST id;
int *prim;
int *sec;

Function igetdevaddr
(ByVal id As Integer, prim As Integer,
sec As Integer)

The igetdevaddr function returns the device address of the device
associated with a given session. This function returns the primary device
address in prim. The sec parameter contains the secondary address of the
device or -1 if no secondary address exists.

For C programs, this function returns zero (0) if successful, or a non-zero
error number if an error occurs.

For Visual BASIC programs, no error number is returned. Instead, the global
Err variable is set if an error occurs.

"IOPEN"

2-18

C Syntax

Visual BASIC
Syntax

Description

IGETERRNO

#include <sicl.h>

int igeterrno ();

Function igeterrno ()

HP SICL Language Reference

IGETERRNO

All functions (except a few listed below) return a zero if no error occurred
(LERR_NOERROR), or a non-zero error code if an error occurs (see Appendix
A). This value can be used directly. The igeterrno function will return the
last error that occurred in one of the library functions.

Also, if an error handler is installed, the library calls the error handler when
an error occurs.

The following functions do not return the error code in the return value.
Instead, they simply indicate whether an error occurred.

iopen
iprintf
isprintf
ivprintf
isvprintf
iscanf
isscanf
ivscanf
isvscanf
ipromptf
ivpromptf
imap
i?peek
i?poke

For these functions (and any of the other functions), when an error is
indicated, read the error code by using the igeterrno function, or read the
associated error message by using the igeterrstr function.

2-19

Return Value

See Also

HP SICL Language Reference

IGETERRNO

This function returns the error code from the last failed SICL call. If a SICL
function is completed successfully, this function returns undefined results.

On operating systems that support multiple threads, the error number is
per-thread. This means that the error number returned is for the last failed
SICL function for this thread (not necessarily for the session).

"IONERROR", "IGETONERROR", "IGETERRSTR", "ICAUSEERR"

2-20

C Syntax

Visual BASIC
Syntax

Description

Return Value

See Also

IGETERRSTR

#include <sicl.h>

char *igeterrstr (errorcode);
int errorcode;

Function igeterrstr

HP SICL Language Reference

IGETERRSTR

(ByVal errcode As Integer, rnyerrstr As String)

SICL has a set of defined error messages that correspond to error codes (see
Appendix A) that can be generated in SICL functions. To get these error
messages from error codes, use the igeterrstr function.

Pass this function the error code you want, and this function will return a
human-readable string.

"IONERROR"' "IGETONERROR"' "IGETERRNO" I "ICAUSEERR"

2-21

C Syntax

Visual BASIC
Syntax

Description

HP SICL Language Reference

IGETGATEWAYTYPE

Supported sessions: device, interface, commander

#include <sicl.h>

int igetgatewaytype (id, gwtype) ;
INST id;
int *gwtype;

Function igetgatewaytype
(ByVal id As Integer, pdata As Integer) As Integer

NOTE

LAN is not supported with 16-bit SICL on Windows 95.

The igetgatewaytype function returns in gwtype the gateway type
associated with a given session id.

This function returns one of the following values in gwtype:

I_INTF_LAN

I_INTF_NONE

2-22

The session is using a LAN gateway to access the remote
interface.

The session is not using a gateway.

Return Value

See Also

HP SICL Language Reference

IGETGATEWAYTYPE

For C programs, this function returns zero (0) if successful, or a non-zero
error number if an error occurs.

For Visual BASIC programs, no error number is returned. Instead, the global
Err variable is set if an error occurs.

The "Using HP SICL with LAN" chapter of the HP SICL User's Guide.

2-23

C Syntax

Visual BASIC
Syntax

Description

Return Value

See Also

HP SICL Language Reference

IGETINTFSESS

Supported sessions: device, commander

#include <sicl.h>

INST igetintfsess (id);
INST id;

Function igetintf sess
(ByVal id As Integer)

The igetintfsess function takes the device session specified by id and
returns a new session id that refers to an interface session associated with
the interface that the device is on.

Most SICL applications will take advantage of the benefits of device sessions
and not want to bother with interface sessions. Since some functions
only work on device sessions and others only work on interface sessions,
occasionally it is necessary to perform functions on an interface session,
when only a device session is available for use. An example is to perform an
interface clear (see iclear) from within an SRQ handler (see ionsrq).

In addition, multiple calls to igetintf sess with the same id will return the
same interface session each time. This makes this function useful as a filter,
taking a device session in and returning an interface session.

SICL will close the interface session when the device or commander session is
closed. Therefore, do not close this session.

If no errors occur, this function returns a valid session id; otherwise it returns
zero (0).

"!OPEN"

2-24

C Syntax

Visual BASIC
Syntax

Description

Return Value

See Also

HP SICL Language Reference

IGETINTFTYPE

IGETINTFTYPE

Supported sessions: device, interface, commander

#include <sicl.h>

int igetintftype (id, pdata);
INST id;
int *pdata;

Function igetintftype
(ByVal id As Integer, pdata As Integer)

The igetintftype function returns a value indicating the type of interface
associated with a session. This function returns one of the following values in
pdata:

I_INTF _GPIB
I_INTF _GPIO
I_INTF_LAN
I_INTF_RS232
I_INTF_VXI

This session is associated with a GPIB interface.
This session is associated with a GPIO interface.
This session is associated with a LAN interface.
This session is associated with an RS-232 (Serial) interface.
This session is associated with a VXI interface.

For C programs, this function returns zero (0) if successful, or a non-zero
error number if an error occurs.

For Visual BASIC programs, no error number is returned. Instead, the global
Err variable is set if an error occurs.

"!OPEN"

2-25

C Syntax

Visual BASIC
Syntax

Description

Return Value

See Also

HP SICL Language Reference

IGETLOCKWAIT

Supported sessions: device, interface, commander

#include <sicl.h>

int igetlockwait (id, flag);
INST id;
int *flag;

Function igetlockwait
(ByVal id As Integer, flag As Integer)

To get the current status of the lockwait flag, use the igetlockwai t
function. This function stores a one (1) in the variable pointed to by flag if
the wait mode is enabled, or a zero (0) if a no-wait, error-producing mode is
enabled.

For C programs, this function returns zero (0) if successful, or a non-zero
error number if an error occurs.

For Visual BASIC programs, no error number is returned. Instead, the global
Err variable is set if an error occurs.

"ILOCK", "!UNLOCK", "ISETLOCKWAIT"

2-26

C Syntax

Visual BASIC
Syntax

Description

Return Value

See Also

IGETLU

HP SICL Language Reference

IGETLU

Supported sessions: device, interface, commander

#include <sicl.h>

int igetlu (id, lu);
INST id;
int *lu;

Function igetlu
(ByVal id As Integer, lu As Integer)

The igetlu function returns in lu the logical unit (interface address) of the
device or interface associated with a given session id.

For C programs, this function returns zero (0) if successful, or a non-zero
error number if an error occurs.

For Visual BASIC programs, no error number is returned. Instead, the global
Err variable is set if an error occurs.

"IOPEN", "IGETLUINFO"

2-27

C Syntax

Visual BASIC
Syntax

Description

HP SICL Language Reference

IGETLUINFO

#include <sicl.h>

int igetluinfo (lu, luinfo) ;
int lu;
struct lu_info *luinfo;

Function igetluinfo
(ByVal lu As Integer, result As lu_injo)

The igetluinfo function is used to get information about the interface
associated with the lu (logical unit). For C programs, the lu_info structure
has the following syntax:

struct lu_info {

};

long logicaLunit;
char symname[32] ;
char cardname[32];
long intjtype;

/• same as value passed into igetluinfo */
I* symbolic name assigned to interface •/

I* name of interface card */
I* same value returned by igetintftype */

For Visual BASIC programs, the lu_info structure has the following syntax:

Type lu_info
logical_unit As Long
symname As String
cardname As.String
f iller1 As Long
intf type As Long

End Type

2-28

Return Value

See Also

HP SICL Language Reference

IGETLUINFO

Notice that, in a given implementation, the exact structure and contents of
the lu_info structure is implementation-dependent. The structure can contain
any amount of non-standard, implementation-dependent fields. However, the
structure must always contain the above fields. If you are programming in C,
please refer to the s icl . h file to get the exact lu_info syntax. If you are
programming in Visual BASIC, please refer to the SICL. BAS or SICL4. BAS
file for the exact syntax.

Note that igetluinfo will return information for valid local interfaces only,
not remote interfaces being accessed via LAN.

For C programs, this function returns zero (0) if successful, or a non-zero
error number if an error occurs.

For Visual BASIC programs, no error number is returned. Instead, the global
Err variable is set if an error occurs.

"IOPEN", "IGETLU", "IGETLULIST"

2-29

C Syntax

Visual BASIC
Syntax

Description

Return Value

See Also

HP SICL Language Reference

IGETLULIST

#include <sicl.h>

int igetlulist (lulist);
int * *lulist;

Function igetlulist
(list() As Integer)

The igetlulist function stores in lulist the logical unit (interface address)
of each valid interface configured for SICL. The last element in the list is set
to -1.

This function can be used with igetluinfo to retrieve information about all
local interfaces.

For C programs, this function returns zero (0) if successful, or a non-zero
error number if an error occurs.

For Visual BASIC programs, no error number is returned. Instead, the global
Err variable is set if an error occurs.

"IOPEN", "IGETLUINFO", "IGETLU"

2-30

C Syntax

Description

Return Value

See Also

IGETONERROR

#include <sicl.h>

int igetonerror (proc);
void (* *proc)(INST, int);

NOTE

Not supported on Visual BASIC.

NOTE

HP SICL Language Reference

IGETONERROR

For WIN 16 programs on Microsoft Windows platforms, the variable used to store a handler's address
must be declared (_far _pascal * _far *proc).

The igetonerror function returns the current error handler setting. This
function stores the address of the currently installed error handler into the
variable pointed to by proc. If no error handler exists, it will store a zero (0).

This function returns zero (0) if successful, or a non-zero error number if an
error occurs.

"IONERROR", "IGETERRNO", "IGETERRSTR", "ICAUSEERR"

2-31

C Syntax

Description

Return Value

See Also

HP SICL Language Reference

IGETONINTR

Supported sessions: device, interface, corrnnander

#include <sicl.h>

int igetonintr (id, proc);
INST id;
void (* *proc)(INST, long, long);

NOTE
Not supported on Visual BASIC.

NOTE

For WIN 16 programs on Microsoft Windows platforms, the variable used to store a handler's address
must be declared (_far _pascal* _far *proc).

The igetonintr function stores the address of the current interrupt handler
in proc. If no interrupt handler is currently installed, proc is set to zero (0).

This function returns zero (0) if successful, or a non-zero error number if an
error occurs.

"IONINTR", "IWAITHDLR", "IINTROFF", "IINTRON"

2-32

C Syntax

Description

Return Value

See Also

IGETONSRQ

HP SICL Language Reference

IGETONSRQ

Supported sessions: device, interface

#include <sicl.h>

int igetonsrq (id, proc) ;
INST id;
void (* *proc)(INST);

NOTE

Not supported on Visual BASIC.

NOTE

For WIN 16 programs on Microsoft Windows platforms, the variable used to store a handler's address
must be declared (_far _pascal * _far *proc).

The igetonsrq function stores the address of the current SRQ handler in
proc. If there is no SRQ handler installed, proc will be set to zero (0).

This function returns zero (0) if successful, or a non-zero error number if an
error occurs.

"IONSRQ", "IWAITHDLR", "IINTROFF", "IINTRON"

2-33

C Syntax

Visual BASIC
Syntax

Description

Return Value

See Also

HP SICL Language Reference

IGETSESSTYPE

Supported sessions: device, interface, commander

#include <sicl.h>

int igetsesstype (id, pdata);
INST id;
int *pdata;

Function igetsesstype
(ByVal id As Integer, pdata As Integer)

The igetsesstype function returns, in pdata a value indicating the type of
session associated with a given session id.

This function returns one of the following values in pdata:

LSESS_CMDR The session associated with id is a commander session.
LSESS_DEV The session associated with id is a device session.
!_SESS_INTF The session associated with id is an interface session.

For C programs, this function returns zero (0) if successful, or a non-zero
error number if an error occurs.

For Visual BASIC programs, no error number is returned. Instead, the global
Err variable is set if an error occurs.

"IOPEN"

2-34

C Syntax

Visual BASIC
Syntax

Description

Return Value

See Also

IGETTERMCHR

HP SICL Language Reference

IGETTERMCHR

Supported sessions: device, interface, commander

#include <sicl.h>

int igettermchr (id, tchr);
INST id;
int *tchr;

Function igettermchr
(ByVal id As Integer, tchr As Integer)

This function sets the variable referenced by tchr to the termination character
for the session specified by id. If no termination character is enabled for the
session, then the variable referenced by tchr is set to -1.

For C programs, this function returns zero (0) if successful, or a non-zero
error number if an error occurs.

For Visual BASIC programs, no error number is returned. Instead, the global
Err variable is set if an error occurs.

"ITERMCHR"

2-35

C Syntax

Visual BASIC
Syntax

Description

Return Value

See Also

HP SICL Language Reference

IGETTIMEOUT

Supported sessions: device, interface, corrunander

#include <sicl.h>

int igettimeout (id, tval);
INST id;
long *tval;

Function igettimeout
(ByVal id As Integer, tval As Long)

The igettimeout function stores the current timeout value in tval. If no
timeout value has been set, tval will be set to zero (0).

For C programs, this function returns zero (0) if successful, or a non-zero
error number if an error occurs.

For Visual BASIC programs, no error number is returned. Instead, the global
Err variable is set if an error occurs.

"!TIMEOUT"

2-36

C Syntax

Visual BASIC
Syntax

Description

IGPIBATNCTL

HP SICL Language Reference

IGPIBATNCTL

Supported sessions: ... interface
Affected by functions: ilock, i timeout

#include <sicl.h>

int igpibatnctl (id, atnval);
INST id;
int atnval;

Function igpibatnctl
(ByVal id As Integer, ByVal atnval As Integer)

The igpibatnctl function controls the state of the ATN (Attention) line. If
atnval is non-zero, then ATN is set. If atnval is 0, then ATN is cleared.

This function is used primarily to allow GPIB devices to cormnunicate without
the controller participating. For example, after addressing one device to talk
and another to listen, ATN can be cleared with igpibatnctl to allow the
two devices to transfer data.

NOTE

This function will not work with iwri te to send GPIB command data onto the bus. The
iwri te function on a GPIB interface session always clears the ATN line before sending the buffer.
To send GPIB command data, use the igpibsendcmd function.

2-37

Return Value

See Also

HP SICL Language Reference

IGPIBATNCTL

For C programs, this function returns zero (0) if successful, or a non-zero
error number if an error occurs.

For Visual BASIC programs, no error number is returned. Instead, the global
Err variable is set if an error occurs.

"IGPIBSENDCMD", "IGPIBRENCTL'', "!WRITE"

2-38

C Syntax

Visual BASIC
Syntax

Description

Return Value

See Also

HP SICL Language Reference

IGPIBBUSADDR

IGPIBBUSADDR

Supported sessions: ... interface
Affected by functions: ilock, itimeout

#include <sicl.h>

int igpibbusaddr (id, busaddr);
INST id;
int busaddr;

Function igpibbusaddr
(ByVal id As Integer, ByVal busaddr As Integer)

This function changes the interface bus address to busaddr for the GPIB
interface associated with the session id.

For C programs, this function returns zero (0) if successful, or a non-zero
error number if an error occurs.

For Visual BASIC programs, no error number is returned. Instead, the global
Err variable is set if an error occurs.

"IGPIBBUSSTATUS"

2-39

C Syntax

Visual BASIC
Syntax

Description

HP SICL Language Reference

IGPIBBUSSTATUS

Supported sessions: ... interface

#include <sicl.h>

int igpibbusstatus (id, request, result) ;
INST id;
int request;
int *result;

Function igpibbusstatus
(ByVal id As Integer, ByVal request As Integer,
result As Integer)

The igpibbusstatus function returns the status of the GPIB interface. This
function takes one of the following parameters in the request parameter and
returns the status in the result parameter.

I_GPIB_BUS_REM Returns a 1 if the interface is in remote mode, 0
otherwise.

I_GPIB_BUS_SRQ Returns a 1 if the SRQ line is asserted, 0
otherwise.

!_GPIB_BUS_NDAC Returns a 1 if the NDAC line is asserted, 0
otherwise.

!_GPIB_BUS_SYSCTLR Returns a 1 if the interface is the system controller,
0 otherwise.

!_GPIB_BUS_ACTCTLR Returns a 1 if the interface is the active controller,
0 otherwise.

I_GPIB_BUS_TALKER Returns a 1 if the interface is addressed to talk, 0
otherwise.

2-40

Return Value

See Also

HP SICL Language Reference

IGPIBBUSSTATUS

I_GPIB_BUS_LISTENER Returns a 1 if the interface is addressed to listen, 0
otherwise.

LGPIB_BUS_ADDR Returns the bus address (0-30) of this interface on
the GPIB bus.

I_GPIB_BUS_LINES Returns the state of various GPIB lines. The
result is a bit mask with the following bits being
significant (bit 0 is the least-significant-bit):

Bit 0: 1 if SRQ line is asserted.
Bit 1: 1 if NDAC line is asserted.
Bit 2: 1 if ATN line is asserted.
Bit 3: 1 if DAV line is asserted.
Bit 4: 1 if NRFD line is asserted.
Bit 5: 1 if EOI line is asserted.
Bit 6: 1 if IFC line is asserted.
Bit 7: 1 if REN line is asserted.
Bit 8: 1 if in REMote state.
Bit 9: 1 if in 110 (local lockout) mode.
Bit 10: 1 if currently the active controller.
Bit 11: . 1 if addressed to talk.
Bit 12: 1 if addressed to listen.

For C programs, this function returns zero (0) if successful, or a non-zero
error number if an error occurs.

For Visual BASIC programs, no error number is returned. Instead, the global
Err variable is set if an error occurs.

"IGPIBPASSCTL", "IGPIBSENDCMD"

2-41

C Syntax

Visual BASIC
Syntax

Description

Return Value

See Also

HP SICL Language Reference

IGPIBGETTlDELAY

Supported sessions: ... interface
Affected by functions: ilock, itimeout

#include <sicl.h>

int igpibgett1delay (id, delay);
INST id;
int *delay;

Function igpibgett1delay
(ByVal id As Integer, delay As Integer)

This function retrieves the current setting of tl delay on the GPIB interface
associated with session id. The value returned is the time of tl delay in
nanoseconds.

For C programs, this function returns zero (0) if successful, or a non-zero
error number if an error occurs.

For Visual BASIC programs, no error number is returned. Instead, the global
Err variable is set if an error occurs.

"IGPIBSETTlDELAY"

2-42

C Syntax

Visual BASIC
Syntax

Description

Return Value

See Also

HP SICL Language Reference

IGPIBLLO

IGPIBLLO

Supported sessions: ... interface
Affected by functions: ilock, itimeout

#include <sicl.h>

int igpibllo (id);
INST id;

Function igpibllo
(ByVal id As Integer)

The igpibllo function puts all GPIB devices on the given bus in local
lockout mode. The id specifies a GPIB interface session. This function
sends the GPIB LLO command to all devices connected to the specified
GPIB interface. Local Lockout prevents you from returning to local mode by
pressing a device's front panel keys.

For C programs, this function returns zero (0) if successful, or a non-zero
error number if an error occurs.

For Visual BASIC programs, no error number is returned. Instead, the global
Err variable is set if an error occurs.

"!REMOTE", "!LOCAL''

2-43

C Syntax

Visual BASIC
Syntax

Description

Return Value

See Also

HP SICL Language Reference

IGPIBPASSCTL

Supported sessions: ... interface
Affected by functions: ilock, i timeout

#include <sicl.h>

int igpibpassctl (id, busaddr);
INST id;
int busaddr;

Function igpibpassctl
(ByVal id As Integer, ByVal busaddr As Integer)

The igpibpassctl function passes control from this GPIB interface to
another GPIB device specified in busaddr. The busaddr parameter must be
between 0 and 30. Note that this will also cause an LINTR_INTFDEACT
interrupt, if enabled.

For C programs, this function returns zero (0) if successful, or a non-zero
error number if an error occurs.

For Visual BASIC programs, no error number is returned. Instead, the global
Err variable is set if an error occurs.

"IONINTR", "ISETINTR"

2-44

C Syntax

Visual BASIC
Syntax

Description

Return Value

See Also

IGPIBPPOLL

HP SICL Language Reference

IGPIBPPOLL

Supported sessions: ... interface
Affected by functions: ilock, itimeout

#include <sicl.h>

int igpibppoll (id, result)
INST id;
unsigned int *result;

Function igpibppoll
(ByVal id As Integer, result As Integer)

The igpibppoll function performs a parallel poll on the bus and returns the
(8-bit) result in the lower byte of result.

For C programs, this function returns zero (0) if successful, or a non-zero
error number if an error occurs.

For Visual BASIC programs, no error number is returned. Instead, the global
Err variable is set if an error occurs.

"IGPIBPPOLLCONFIG", "IGPIBPPOLLRESP"

2-45

C Syntax

Visual BASIC
Syntax

Description

HP SICL Language Reference

IGPIBPPOLLCONFIG

Supported sessions: device, commander
Affected by functions: ilock, i timeout

#include <sicl.h>

int igpibppollconfig (id, cval);
INST id;
unsigned int cval;

Function igpibppollconf ig
(ByVal id As Integer, ByVal cval As Integer)

For device sessions, the igpibppollconf ig function enables or disables the
parallel poll responses. If cval is greater than or equal to 0, then the device
specified by id is enabled in generating parallel poll responses. In this case,
the lower 4 bits of cval correspond to:

bit 3

bit 2-0

Set the sense of the PPOLL response. A 1 in this bit means that
an affirmative response means service request. A 0 in this bit
means that an affirmative response means no service request.

A value from 0-7 specifying the GPIB line to respond on for
PPOLL's.

If cval is equal to -1, then the device specified by id is disabled from
generating parallel poll responses.

For commander sessions, the igpibppollconf ig function enables/disables
parallel poll responses for this device (that is, how we respond when our
controller PPOLL's us).

2-46

Return Value

See Also

HP SICL Language Reference

IGPIBPPOLLCONFIG

For C programs, this function returns zero (0) if successful, or a non-zero
error number if an error occurs.

For Visual BASIC programs, no error number is returned. Instead, the global
Err variable is set if an error occurs.

"IGPIBPPOLL'', "IGPIBPPOLLRESP"

2-47

C Syntax

Visual BASIC
Syntax

Description

Return Value

See Also

HP SICL Language Reference

IGPIBPPOLLRESP

Supported sessions: .. commander
Affected by functions: ilock, i timeout

#include <sicl.h>

int igpibppollresp (id, sval);
INST id;
int sval;

Function igpibppollresp
(ByVal id As Integer, ByVal sval As Integer)

The igpibppollresp function sets the state of the PPOLL bit (the state of
the PPOLL bit when the controller PPOLL's us).

For C programs, this function returns zero (0) if successful, or a non-zero
error number if an error occurs.

For Visual BASIC programs, no error number is returned. Instead, the global
Err variable is set if an error occurs.

"IGPIBPPOLL'', "IGPIBPPOLLCONFIG"

2-48

C Syntax

Visual BASIC
Syntax

Description

Return Value

See Also

HP SICL Language Reference

IGPIBRENCTL

IGPIBRENCTL

Supported sessions: ... interface
Affected by functions: ilock, itimeout

#include <sicl.h>

int igpibrenctl (id, ren);
INST id;
int ren;

Function igpibrenctl
(ByVal id As Integer, ByVal ren As Integer)

The igpibrenctl function controls the state of the REN (Remote Enable)
line. If ren is non-zero, then REN is set. If ren is 0, then REN is cleared.

For C programs, this function returns zero (0) if successful, or a non-zero
error number if an error occurs.

For Visual BASIC programs, no error number is returned. Instead, the global
Err variable is set if an error occurs.

"IGPIBATNCTL"

2-49

C Syntax

Visual BASIC
Syntax

Description

Return Value

See Also

HP SICL Language Reference

IGPIBSENDCMD

Supported sessions: ... interface
Affected by functions: ilock, itimeout

#include <sicl.h>

int igpibsendcmd (id, buf, length) ;
INST id;
char *buf;
int length;

Function igpibsendcmd
(ByVal id As Integer, ByVal buf As String,
ByVal length As Integer)

The igpibsendcmd function sets the ATN line and then sends bytes to the
GPIB interface. This function sends length number of bytes from buf to the
GPIB interface. Note that the igpibsendcmd function leaves the ATN line
set.

If the interface is not active controller, this function will return an error.

For C programs, this function returns zero (0) if successful, or a non-zero
error number if an error occurs.

For Visual BASIC programs, no error number is returned. Instead, the global
Err variable is set if an error occurs.

"IGPIBATNCTL", "IWRITE"

2-50

C Syntax

Visual BASIC
Syntax

Description

Return Value

See Also

HP SICL Language Reference

IGPIBSETT1 DELAY

IGPIBSETTlDELAY

Supported sessions: ... interface
Affected by functions: ilock, itimeout

#include <sicl.h>

int igpibsett1delay (id, delay);
INST id;
int delay;

Function igpibsett1delay
(ByVal id As Integer, ByVal delay As Integer)

This function sets the tl delay on the GPIB interface associated with session
id. The value is the time of tl delay in nanoseconds, and should be no less
than I_GPIB_T1DELAY_MIN or no greater than I_GPIB_T1DELAY_MAX.

Note that most GPIB interfaces only support a small number of tl delays, so
the actual value used by the interface could be different than that specified in
the igpibsett1delay function. You can find out the actual value used by
calling the igpibgett1delay function.

For C programs, this function returns zero (0) if successful, or a non-zero
error number if an error occurs.

For Visual BASIC programs, no error number is returned. Instead, the global
Err variable is set if an error occurs.

"IGPIBGETTlDELAY"

2-51

C Syntax

Visual BASIC
Syntax

Description

HP SICL Language Reference

IGPIOCTRL

Supported sessions: .. interface
Affected by functions: ilock, i timeout

#include <sicl.h>

int igpioctrl (id, request, setting);
INST id;
int request;
unsigned long setting;

Function igpioctrl
(ByVal id As Integer, ByVal request As Integer,
ByVal setting As Long)

NOTE

GPIO is not supported over LAN.

The igpioctrl function is used to control various lines and modes of the
GPIO interface. This function takes request and sets the interface to the
specified setting. The request parameter can be one of the following:

I_GPIO_AUTO_HDSK

2-52

If the setting parameter is non-zero, then the
interface uses auto-handshake mode (the default).
This gives the best performance for iread and
iwri te operations. If the setting parameter is zero
(0), then auto-handshake mode is canceled. This is
required for programs that implement their own
handshake using I_GPIO_SET_PCTL.

I_GPIO_AUX

I_GPIO_CHK_PSTS

I_GPIO_CTRL

I_GPIO_DATA

HP SICL Language Reference

IGPIOCTRL

The setting parameter is a mask containing the
state of all auxiliary control lines. A 1 bit asserts
the corresponding line; a 0 (zero) bit clears the
corresponding line.

When configured in Enhanced Mode, the HP E207 4/5
interface has 16 auxiliary control lines. In HP 98622
Compatibility Mode, it has none. Attempting to use
I_GPIO_AUX in HP 98622 Compatibility Mode results
in the error: Operation not supported.

If the setting parameter is non-zero, then the
PSTS line is checked before each block of data is
transferred. If the setting parameter is zero (0), then
the PSTS line is ignored during data transfers. If the
PSTS line is checked and false, SICL reports the
error: Device not active or available.

The setting parameter is a mask containing the state
of all control lines. A 1 bit asserts the corresponding
line; a 0 (zero) bit clears the corresponding line.

The HP E207 4/5 interface has two control lines, so
only the two least-significant bits have meaning for
that interface. These can be represented by the
following. All other bits in the setting mask are
ignored.

I_GPIO_CTRL_CTLO
I_GPIO_CTRL_CTL1

The CTLO line.
The CTL 1 line.

The setting parameter is a mask containing the
state of all data out lines. A 1 bit asserts the
corresponding line; a 0 (zero) bit clears the
corresponding line. The HP E207 4/5 interface has
either 8 or 16 data out lines, depending on the
setting specified by igpiosetwidth.

Note that this function changes the data lines
asynchronously, without any type of handshake. It
is intended for programs that implement their own
handshake explicitly.

2-53

HP SICL Language Reference

IGPIOCTRL

I_GPIO_READ_EOI If the setting parameter is I_GPIO_EOI_NONE,
then END pattern matching is disabled for read
operations. Any other setting enables END pattern
matching with the specified value. If the current
data width is 16 bits, then the lower 16 bits of
setting are used. If the current data width is 8 bits,
then only the lower 8 bits of setting are used.

LGPIO_SET _PCTL If the setting parameter is non-zero, then a GPIO
handshake is initiated by setting the PCTL line.
Auto-handshake mode must be disabled to allow
explicit control of the PCTL line. Attempting to use
I_GPIO_SET _PCTL in auto-handshake mode results
in the error: Operation not supported.

I_GPIO_PCTL_DELAY The setting parameter selects a PCTL delay value
from a set of eight "click stops" numbered 0 through
7. A setting of 0 selects 200 ns; a setting of 7 selects
50 µs. For a complete list of delay values, see the
HP E207415 GPIO Interface Installation Guide.

2-54

Changes made by this function can remain in the
interface hardware after your program ends. On
HP-UX and Windows NT, the setting remains until
the computer is rebooted. On Windows 95, it
remains until hp074i16. dll is reloaded.

Return Value

See Also

I_GPIO_POLARITY

I_GPIO_READ_CLK

HP SICL Language Reference

IGPIOCTRL

;

The setting parameter determines the logical polarity
of various interface lines according to the following
bit map. A 0 sets active-low polarity; a 1 sets
active-high polarity.

Bit4 Bit 3 Bit 2 Bit 1 Bit 0

Data Data PSTS PFLG PCTL
Out In

Value= 16 Value=B Value=4 Value=2 Value= 1

Changes made by this function can remain in the
interface hardware after your program ends. On
HP-UX and Windows NT, the setting remains until
the computer is rebooted. On Windows 95, it
remains until hp074i16. dll is reloaded.

The setting parameter determines when the data
input registers are latched. It is recommended that
you represent setting as a hex number. In that
representation, the first hex digit corresponds to the
upper (most-significant) input byte, and the second
hex digit corresponds to the lower input byte. The
clocking choices are: O=Read, l=Busy, 2=Ready.
For an explanation of the data-in clocking, see the
HP E2074!5 GPIO Interface Installation Guide.

Changes made by this function can remain in the
interface hardware after your program ends. On
HP-UX and Windows NT, the setting remains until
the computer is rebooted. On Windows 95, it
remains until hp074i16. dll is reloaded.

For C programs, this function returns zero (0) if successful, or a non-zero
error number if an error occurs.

For Visual BASIC programs, no error number is returned. Instead, the global
Err variable is set if an error occurs.

"IGPIOSTAT", "IGPIOSETWIDTH"

2-55

C Syntax

Visual BASIC
Syntax

Description

Return Value

See Also

HP SICL Language Reference

IGPIOGETWIDTH

Supported sessions: ... interface

#include <sicl.h>

int igpiogetwidth (id, width);
INST id;
int *Width;

Function igpiogetwidth
(ByVal id As Integer, width As Integer)

NOTE

GPIO is not supported over LAN.

The igpiogetwidth function returns the current data width (in bits) of a
GPIO interface. For the HP E2074/5 interface, width will be either 8 or 16.

For C programs, this function returns zero (0) if successful, or a non-zero
error number if an error occurs.

For Visual BASIC programs, no error number is returned. Instead, the global
Err variable is set if an error occurs.

"IGPIOSETWIDTH"

2-56

C Syntax

Visual BASIC
Syntax

Description

IGPIOSETWIDTH

HP SICL Language Reference

IGPIOSETWIDTH

Supported sessions: ... interface
Affected by functions: ilock, i timeout

#include <sicl.h>

int igpiosetwidth (id, width);
INST id;
int width;

Function igpiosetwidth
(ByVal id As Integer, ByVal width As Integer)

NOTE

GPIO is not supported over LAN.

The igpiosetwidth function is used to set the data width (in bits) of a GPIO
interface. For the HP E207 4/5 interface, the acceptable values for width are 8
and 16.

While in 16-bit width mode, all iread calls will return an even number of
bytes, and all iwri te calls must send an even number of bytes.

16-bit words are placed on the data lines using "big-endian" byte order (most
significant bit appears on data line D_ 15). Data alignment is automatically
adjusted for the native byte order of the computer. This is a programming
concern only if your program does its own packing of bytes into words. The
following program segment is an iwri te example. The analogous situation
exists for iread.

2-57

Return Value

See Also

HP SICL Language Reference

IGPIOSETWIDTH

I* System automatically handles byte order */
unsigned short words[5];

/* Programmer assumes responsibility for byte order */
unsigned char bytes[10];

/* Using the GPIO interface in 16-bit mode */
igpiosetwidth(id, 16);

/* This call is platform-independent */
iwrite(id, words, 10, ...);

I* This call is NOT platform-independent */
iwrite(id, bytes, 10, ...);

/* This sequence is platform-independent */
ibeswap(bytes, 10, 2);
iwrite(id, bytes, 10, ...);

There are several notable details about GPIO width. The "count" parameters
for iread and iwri te always specify bytes, even when the interface has
a 16-bit width. For example, to send 100 words, specify 200 bytes. The
i termchr function always specifies an 8-bit character. If a 16-bit width is set,
only the lower 8 bits are used when checking for an i termchr match.

For C programs, this function returns zero (0) if successful, or a non-zero
error number if an error occurs.

For Visual BASIC programs, no error number is returned. Instead, the global
Err variable is set if an error occurs.

"IGPIOGETWIDTH"

2-58

C Syntax

Visual BASIC
Syntax

Description

IGPIOSTAT

HP SICL Language Reference

IGPIOSTAT

Supported sessions: ... interface

#include <sicl.h>

int igpiostat (id, request, result);
INST id;
int request;
unsigned long *re,sult;

Function igpiostat
(ByVal id As Integer, ByVal request As Integer,
ByVal re,sult As Long)

NOTE

GPIO is not supported over LAN.

The igpiostat function is used to determine the current state of various
GPIO modes and lines. The request parameter can be one of the following:

I_GPIO_CTRL The re,sult is a mask representing the state of all control
lines.

The HP E207 4/5 interface has two control lines, so only
the two least-significant bits have meaning for that
interface. These can be represented by the following.
All other bits in the re,sult mask are 0 (zero).

I_GPIO_CTRL_CTLO The CTLO line.
I_GPIO_CTRL_CTL1 The CTLl line.

2-59

HP SICL Language Reference

IGPIOSTAT

I_GPIO_DATA

2-60

The result is a mask representing the state of all data
input latches. The HP E207 4/5 interface has either 8 or
16 data in lines, depending on the setting specified by
igpiosetwidth.

Note that this function reads the data lines
asynchronously, without any type of handshake. It
is intended for programs that implement their own
handshake explicitly.

An igpiostat function from one process will proceed
even if another process has a lock on the interface.
Ordinarily, this does not alter or disrupt any hardware
states. Reading the data in lines is one exception. A
data read causes an "input" indication on the 1/0
line (pin 20). In rare cases, that change might be
unexpected, or undesirable, to the session that owns
the lock.

I_GPIO_INFO

HP SICL Language Reference

IGPIOSTAT

The result is a mask representing the following
information about the device and the HP E207 4/5
interface:

I_GPIO_PSTS

I_GPIO_EIR

I_GPIO_READY

State of the PSTS line.

State of the EIR line.

True if ready for a handshake.
(Exact meaning depends on the
current handshake mode.)

I_GPIO_AUTO_HDSK True if auto-handshake mode is
enabled. False if auto-handshake
mode is disabled.

I_GPIO_CHK_PSTS True if the PSTS line is to be
checked before each block of data
is transferred. False if PSTS is to
be ignored during data transfers.

I_GPIO_ENH_MODE True if the HP E2074/5 data
ports are configured in Enhanced
(bi-directional) Mode. False if the
ports are configured in HP 98622
Compatibility Mode.

I_GPIO_READ_EOI The result is the value of the current END pattern
being used for read operations. If the result is
I_GPIO_EOI_NONE, then no END pattern matching is
being used. Any other result is the value of the END
pattern.

I_GPIO_STAT The result is a mask representing the state of all status
lines.

The HP E207 4/5 interface has two status lines, so only
the two least-significant bits have meaning for that
interface. These can be represented by the following.
All other bits in the result mask are 0 (zero).

I_GPIO_STAT_STIO The STIO line.
I_GPIO_STAT_STI1 The STil line.

2-61

Return Value

See Also

HP SICL Language Reference

IGPIOSTAT

For C programs, this function returns zero (0) if successful, or a non-zero
error number if an error occurs.

For Visual BASIC programs, no error number is returned. Instead, the global
Err variable is set if an error occurs.

"IGPIOCTRL'', "IGPIOSETWIDTH"

2-62

C Syntax

Visual BASIC
Syntax

Description

IHI NT

HP SICL Language Reference

IHINT

Supported sessions: device, interface, commander

#include <sicl.h>

int ihint (id, hint) ;
INST id;
int hint;

Function ihint
(ByVal id As Integer, ByVal hint As Integer)

There are three common ways a driver can implement I/O communications:
Direct Memory Access (DMA), Polling (POLL), and Interrupt Driven (INTR).
Note, however, that some systems may not implement all of these transfer
methods.

The SICL software permits you to "recommend" your preferred method of
communication. To do this, use the ihint function. The hint argument can
be one of the following values:

I_HINT _DONTCARE No preference.

I_HINT_USEDMA Use DMA if possible and feasible. Otherwise use POLL.

I _HINT_ USEPOLL Use POLL if possible and feasible. Otherwise use DMA or
INTR.

I_HINT _USEINTR Use INTR if possible and feasible. Otherwise use DMA or
POLL.

I_HINT _SYSTEM The driver should use whatever mechanism is best suited
for improving overall system performance.

I_HINT_IO The driver should use whatever mechanism is best suited
for improving I/O performance.

2-63

Return Value

See Also

HP SICL Language Reference ·
IHINT

Keep the following in mind as you make your suggestions to the driver:

• DMA tends to be very fast at sending data but requires more time to set up
a transfer. It is best for sending large amounts of data in a single request.
Not all architectures and interfaces support DMA.

• Polling tends to be fast at sending data and has a small set up time.
However, if the interface only accepts data at a slow rate, polling wastes a
lot of CPU time. Polling is best for sending smaller amounts of data to fast
interfaces.

• Interrupt driven transfers tend to be slower than polling. It also has a small
set up time. The advantage to interrupts is that the CPU can perform other
functions while waiting for data transfers to complete. This mechanism is
best for sending small to medium amounts of data to slow interfaces or
interfaces with an inconsistent speed.

NOTE

The parameter passed in ihint is only a suggestion to the driver software. The driver will still
make its own determination of which technique it will use. The choice has no effect on the operation
of any intrinsics, just on the performance characteristics of that operation.

For C programs, this function returns zero (0) if successful, or a non-zero
error number if an error occurs.

For Visual BASIC programs, no error number is returned. Instead, the global
Err variable is set if an error occurs.

"!READ", "!WRITE", "IFREAD", "IFWRITE", "IPRINTF", "ISCANF"

2-64

C Syntax

Description

IINTROFF

#include <sicl.h>

int iintroff () ;

NOTE

Not supported on Visual BASIC.

HP SICL Language Reference

llNTROFF

The iintroff function disables SICL's asynchronous events for a process.
This means that all installed handlers for any sessions in a process will be
held off until the process enables them with iintron.

By default, asynchronous events are enabled. However, the library will not
generate any events until the appropriate handlers are installed. To install
handlers, refer to the ionsrq and ionintr functions.

NOTE

The iintroff/iintron functions do not affect the isetintr values or the handlers in any
way.

Default is on.

2-65

Return Value

See Also

HP SICL Language Reference

llNTROFF

This function returns zero (0) if successful, or a non-zero error number if an
error occurs.

"IONINTR"' "IGETONINTR" I "IONSRQ" I "IGETONSRQ" I "IWAITHDLR" I

"IINTRON"

2-66

C Syntax

Description

IINTRON

#include <sicl.h>

int iintron () ;

N DTE

Not supported on Visual BASIC.

HP SICL Language Reference

llNTRON

The iintron function enables all asynchronous handlers for all sessions in
the process.

NOTE

The iintroff/iintron functions do not affect the isetintr values or the handlers in any
way.

Default is on.

Calls to iintroff/iintron can be nested, meaning that there must be an
equal number of on's and off's. This means that simply calling the iintron
function may not actually enable interrupts again. For example, note how the
following code enables and disables events.

2-67

Return Value

See Also

HP SICL Language Reference

llNTRON

iintroff();
/* Events Disabled */
iintronO;
/* Events Enabled */
iintroff();
/* Events Disabled */
iintroff();
I* Events Disabled */
iintronO;
/* Events STILL Disabled */
iintron();
/* Events NOW Enabled */

This function returns zero (0) if successful, or a non-zero error number if an
error occurs.

"IONINTR", "IGETONINTR", "IONSRQ", "IGETONSRQ", "IWAITHDLR",
"IINTROFF", "ISETINTR"

2-68

C Syntax

Visual BASIC
Syntax

Description

Return Value

See Also

HP SICL Language Reference

I LAN GETTIM EOUT

ILANGETTIMEOUT

Supported sessions: ... interface

#include <sicl.h>

int ilangettimeout (id, tval);
INST id;
long *tval;

Function ilangettimeout
(ByVal id As Integer, tval As Long) As Integer

NOTE

LAN is not supported with 16-bit SICL on Windows 95.

The ilangett imeout function stores the current LAN timeout value in tval.
If the LAN timeout value has not been set via ilant imeout, then tval will
contain the LAN timeout value calculated by the system.

For C programs, this function returns zero (0) if successful, or a non-zero
error number if an error occurs.

For Visual BASIC programs, no error number is returned. Instead, the global
Err variable is set if. an error occurs.

"ILANTIMEOUT", and the "LAN and Timeouts" section of the "Using HP SICL
with LAN" chapter of the HP SICL Use-r's Guide.

2-69

C Syntax

Visual BASIC
Syntax

Description

HP SICL Language Reference

ILANTIMEOUT

Supported sessions: ... interface

#include <sicl.h>

int ilantimeout (id, tval);
INST id;
long tval;

Function ilantimeout
(ByVal id As Integer, ByVal tval As Long) As Integer

NOTE
LAN is not supported with 16-bit SICL on Windows 95.

The ilant imeout function is used to set the length of time that the
application (LAN client) will wait for a response from the LAN server. Once
an application has manually set the LAN timeout via this function, the
software will no longer attempt to determine the LAN timeout which should
be used. Instead, the software will simply use the value set via this function.

In this function, tval defines the timeout in milliseconds. A value of zero (0)
disables timeouts. The value 1 has special significance, causing the LAN client
to not wait for a response from the LAN server. However, the value 1 should
be used in special circumstances only and should be used with extreme
caution. See the following subsection, "Using the No-Wait Value," for more
information.

2-70

NOTE

HP SICL Language Reference
ILANTIMEOUT

The ilantimeout function is per process. Thus, when ilantimeout is called, all sessions
which are going out over the network are affected.

N DTE

Not all computer systems can guarantee an accuracy of one millisecond on timeouts. Some computer
clock systems only provide a resolution of 1/50th or 1/60th of a second. Other computers have a
resolution of only 1 second. Note that the time value is always rounded up to the next unit of
resolution.

This function does not affect the SICL timeout value set via the i timeout
function. The LAN server will attempt the I/O operation for the amount of
time specified via it imeout before returning a response.

NOTE

If the SICL timeout used by the server is greater than the LAN timeout used by the client, the client
may timeout prior to the server, while the server continues to service the request. This use of the
two timeout values is not recommended, since under this situation the server may send an unwanted
response to the client.

2-71

Using the
No-Wait Value

HP SICL Language Reference

ILANTIMEOUT

A tval value of 1 has special significance to ilantimeout, causing the
LAN client to not wait for a response from the LAN server. For a very
limited number of cases, it may make sense to use this no-wait value. One
such scenario is when the performance of paired writes and reads over a
wide-area network (WAN) with long latency times is critical, and losing
status information from the write can be tolerated. Having the write (and
only the write) call not wait for a response allows the read call to proceed
immediately, potentially cutting the time required to perform the paired WAN
write/read in half.

NOTE

This value should be used with great caution. If ilant imeout is set to 1 and then is not reset
for a subsequent call, the system may deadlock due to responses being buffered which are never read,
filling the buffers on both the LAN client and server.

To use the no-wait value, do the following:

• Prior to the i write call (or any formatted I/O call that will write data)
which you do not wish to block waiting for the returned status from the
server, call ilantimeout with a timeout value of 1.

• Make the iwri te call. The iwri te call will return as soon as the message
is sent, not waiting for a reply. The iwri te call's return value will be
I _ERR_ TIMEOUT, and the reported count will be O (even though the data
will be written, assuming no errors).

Note that the server will send a reply to the write, even though the client
will simply discard it. There is no way to directly determine the success or
failure of the write, although a subsequent, functioning read call can be a
good sign.

• Reset the client side timeout to a reasonable value for your network by
calling ilantimeout again with a value sufficiently large enough to allow
a read reply to be received. It is recommended that you use a value
which provides some margin for error. Note that the timeout specified to
ilantimeout is in milliseconds (rounded up to the nearest second).

2-72

Return Value

See Also

HP SICL Language Reference
ILANTIMEOUT

• Make the blocking iread call (or formatted I/O call that will read data).
Since ilantimeout has been set to a value other than 1 (preferably not
0), the iread call will wait for a response from the server for the specified
time (rounded up to the nearest second).

NOTE

If the no-wait value is used in a multi-threaded application and multiple threads are attempting
1/0 over the LAN, the 1/0 operations using the no-wait option will wait for access to the LAN for
2 minutes. If another thread is using the LAN interface for greater than 2 minutes, the no-wait
operation will timeout.

For C programs, this function returns zero (0) if successful, or a non-zero
error number if an error occurs.

For Visual BASIC programs, no error number is returned. Instead, the global
Err variable is set if an error occurs.

"ILANGETTIMEOUT", and the "LAN and Timeouts" section of the "Using HP
SICL with LAN" chapter of the HP SICL User's Guide.

2-73

C Syntax

Visual BASIC
Syntax

Description

Return Value

See Also

HP SICL Language Reference

!LOCAL

Supported sessions: ... device
Affected by functions: ilock, itimeout

#include <sicl.h>

int ilocal (id) ;
INST id;

Function ilocal
(ByVal id As Integer)

Use the ilocal function to put a device into Local Mode. Putting a device in
Local Mode enables the device's front panel interface.

For C programs, this function returns zero (0) if successful, or a non-zero
error number if an error occurs.

For Visual BASIC programs, no error number is returned. Instead, the global
Err variable is set if an error occurs.

"!REMOTE", and the interface-specific chapter of the HP SICL User's Guide
for details of implementation.

2-74

C Syntax

Visual BASIC
Syntax

Description

HP SICL Language Reference

ILOCK

ILOCK

Supported sessions: device, interface, corrunander
Affected by functions: ... itimeout

#include <sicl.h>

int ilock (id) ;
INST id;

Function ilock
(ByVal id As Integer)

NOTE

Locks are not supported for LAN interface sessions, such as those opened with:

lan_intf = iopen("lan");

To lock a session, ensuring exclusive use of a resource, use the ilock
function.

The id parameter refers either to a device, interface, or conunander session.
If it refers to an interface, then the entire interface is locked; other interfaces
are not affected by this session. If the id refers to a device or conunander,
then only that device or commander is locked, and only that session may
access that device or commander. However, other devices either on that
interface or on other interfaces may be accessed as usual.

Locks are implemented on a per-session basis. If a session within a given
process locks a device or interface, then that device or interface is only
accessible from that session. It is not accessible from any other session in this
process, or in any other process.

2-75

HP SICL Language Reference
ILOCK

Attempting to call a SICL function that obeys locks on a device or interface
that is locked will cause the call either to hang until the device or interface
is unlocked, to timeout, or to return with the error !_ERR_LOCKED (see
isetlockwai t).

Locking an interface (from an interface session) restricts other device and
interface sessions from accessing this interface.

Locking a device restricts other device sessions from accessing this device;
however, other interface sessions may continue to use this interface.

Locking a commander (from a commander session) restricts other commander
sessions from accessing this controller; however, interface sessions may
continue to use this interface.

NOTE

Locking an interface does lock out all device session accesses on that interface, such as
iwri te (dw2, ...) , as well as all other SICL interface session accesses on that interface.

The following C example will cause the device session to hang:

intf = iopen (11hpib 11
);

dev = iopen (11 hpib,7 11
);

ilock (intf);
ilock (dev);
iwrite (dev, 11 *CLS", 4, 1, O);

I* this will succeed */
I* this will hang */

The following Visual BASIC example will cause the device session to hang:

intf = iopen(11hpib")
dev = iopen(11 hpib, 7")

call ilock (intf)
call ilock(dev)
call iwrite(dev, "*CLS 11

, 4, 1, Ot)

2-76

' this will succeed
' this will hang

Return Value

See Also

HP SICL Language Reference

ILOCK

Locks can be nested. So every ilock requires a matching iunlock.

NOTE

If iclose is called (either implicitly by exiting the process, or explicitly) for a session that currently
has a lock, the lock will be released.

For C programs, this function returns zero (0) if successful, or a non-zero
error number if an error occurs.

For Visual BASIC programs, no error number is returned. Instead, the global
Err variable is set if an error occurs.

"!UNLOCK" "ISETLOCKWAIT" "IGETLOCKWAIT" , , '

2-77

C Syntax

Visual BASIC
Syntax

Description

HP SICL Language Reference

IMAP

Supported sessions: device, interface, commander
Affected by functions: ilock, i timeout

#include <sicl.h>

char * imap (id, map_space, pagestart, pagecnt, suggested) ;
INST id;
int map_space;
unsigned int pagestart;
unsigned int pagecnt;
char *suggested;

Function imap
(ByVal id As Integer, ByVal mapspace As Integer,
ByVal pagestart As Integer, ByVal pagecnt As Integer,
ByVal suggested As Long) As Long

NOTE

Not supported over LAN.

The imap function maps a memory space into your process space. The SICL
i ?peek and i ?poke functions can then be used to read and write to VXI
address space.

The id argument specifies a VXI interface or device. The pagestart argument
indicates the page number within the given memory space where the
memory mapping starts. The pagecnt argument indicates how many pages to
use. For Visual BASIC, you must specify 1 for the pagecnt argument.

2-78

HP SICL Language Reference

IMAP

The map_space argument will contain one of the following values:

I_MAP_A16

I_MAP_A24

I_MAP_A32

Map in VXI Al6 address space (64 Kbyte pages).

Map in VXI A24 address space (64 Kbyte pages}.

Map in VXI A32 address space (64 Kbyte pages).

I_MAP _ VXIDEV Map in VXI device registers. (Device session only, 64 bytes.)

I _MAP _EXTEND Map in VXI Device Extended Memory address space in A24
or A32 address space. See individual device manuals for
details regarding extended memory address space. (Device
session only.)

I _MAP _SHARED Map in VXI A24/ A32 memory that is physically located on
this device (sometimes called local shared memory). If the
hardware supports it (that is, the local shared VXI memory
is dual-ported), this map should be through the local system
bus and not through the VXI memory. This mapping
mechanism provides an alternate way of accessing local

NOTE

VXI memory without having to go through the normal VXI
memory system. The value of pagestart is the offset (in 64
Kbyte pages) into the shared memory. The value of pagecnt
is the amount of memory (in 64 Kbyte pages) to map.

The E1489 MXlbus Controller Interface can generate 32-bit data reads and writes to VXlbus
devices with 032 capability. To use 32-bit transfers with the E1489, use !_MAP _A16_D32,
I_MAP _A24_D32, and !_MAP _A32_D32 in place of I_MAP _A16, I_MAP _A24, and
I _MAP _A32 when mapping to 032 devices.

The suggested argument, if non-NULL, contains a suggested address to begin
mapping memory. However, the function may not always use this suggested
address. For Visual BASIC, you must pass a O (zero) for this argument.

2-79

Return Value

See Also

HP SICL Language Reference

IMAP

After memory is mapped, it may be accessed directly. Since this function
returns a C pointer, you can also use C pointer arithmetic to manipulate
the pointer and access memory directly. Note that accidentally accessing
non-existent memory will cause bus errors. See the "Using HP SICL with
VXI" chapter in the HP SICL User's Guide for HP-UX for an example of
trapping bus errors. Or see your operating system's programming information
for help in trapping bus errors. You will probably find this information under
the command signal in your operating system's manuals. Note that Visual
BASIC programs can perform pointer arithmetic within a single page.

NOTE

Due to hardware constraints on a given device or interface, not all address spaces may be
implemented. In addition, there may be a maximum number of pages that can be simultaneously
mapped. If a request is made that cannot be granted due to hardware constraints, the process
will hang until the desired resources become available. To avoid this, use the is etlockwai t
command with the flag parameter set to 0, and thus generate an error instead of waiting for the
resources to become available. You may also use the imapinf o function to determine hardware
constraints before making an imap call.

Remember to iunmap a memory space when you no longer need it. The
resources may be needed by another process.

For C programs, this function returns a zero (0) if successful, or a non-zero
number if an error occurs.

For Visual BASIC programs, no error number is returned. Instead, the global
Err variable is set if an error occurs.

"IUNMAP", "IMAPINFO"

2-80

C Syntax

Visual BASIC
Syntax

Description

HP SICL Language Reference

IMAPINFO

IMAP INFO

Supported sessions: device, interface, commander

#include <sicl.h>

int imapinfo (id, map_space, numwindows, winsize);
INST id;
int map_space;
int *numwindows;
int *Winsize;

Function imapinfo
(ByVal id As Integer, ByVal mapspace As Integer,
numwindows As Integer, winsize As Integer)

NOTE

Nat supported over LAN.

To determine hardware constraints on memory mappings imposed by a
particular interface, use the imapinfo function.

The id argument specifies a VXI interface. The map_space argument specifies
the address space. Valid values for map_space are:

I_MAP_A16
I_MAP_A24
I_MAP_A32

VXI A16 address space (64 Kbyte pages).
VXI A24 address space (64 Kbyte pages).
VXI A32 address space (64 Kbyte pages).

2-81

Return Value

See Also

HP SICL Language Reference

IMAPINFO

The numwindows argument is filled in with the total number of windows
available in the address space.

The winsize argument is filled in with the size of the windows in pages.

Hardware design constraints may prevent some devices or interfaces from
implementing all of the various address spaces. Also there may be a limit
to the number of pages that can simultaneously be mapped for usage. In
addition, some resources may already be in use and locked by another
process. If resource constraints prevent a mapping request, the imap function
will hang, waiting for the resources to become available.

Remember to unmap a memory space when you no longer need it. The
resources may be needed by another process.

For C programs, this function returns zero (0) if successful, or a non-zero
error number if an error occurs.

For Visual BASIC programs, no error number is returned. Instead, the global
Err variable is set if an error occurs.

"IMAP", "IUNMAP"

2-82

C Syntax

IONERROR

#include <sicl.h>

int ionerror(proc);
void (*proc) (id, error);

INST id;
int error;

NOTE

HP SICL Language Reference

ION ERROR

For WIN16 programs on Microsoft Windows platforms, handler functions used with ionerror,
ionintr, and ionsrq must be exported and declared as _far _pascal.

NOTE

For Visual BASIC, error handlers are installed using the Visual BASIC On Error statement. See the
section titled "Using Error Handlers in Visual BASIC" in the "Programming with HP SICL" chapter of the
HP SICL User's Guide for Windows for more information on error handling with Visual BASIC.

2-83

Description

HP SICL Language Reference

ION ERROR

The ionerror function is used to install a SICL error handler. Many of
the SICL functions can generate an error. When a SICL function errors, it
typically returns a special value such as a NULL pointer, zero, or a non-zero
error code. A process can specify a procedure to execute when a SICL error
occurs. This allows your process to ignore the return value and simply permit
the error handler to detect errors and do the appropriate action.

The error handler procedure executes irmnediately before the SICL function
that generated the error completes its operation. There is only one error
handler for a given process which handles all errors that occur with any
session established by that process.

On operating systems that support multiple threads, the error handler is still
per-process. However, the error handler will be called in the context of the
thread that caused the error.

Error handlers are called with the following arguments:

void proc (id, error);
INST id;
int error;

The id argument indicates the session that generated the error.

The error argument indicates the error that occurred. See Appendix A for a
complete description of the error codes.

NOTE

The INST id that is passed to the error handler is the same INST id that was passed to the
function that generated the error. Therefore, if an error occurred because of an invalid INST id, the
INST id passed to the error handler is also invalid. Also, if iopen generates an error before a
session has been established, the error handler will be passed a zero (OJ INST id.

2-84

HP SICL Language Reference

IONERROR

Two special reserved values of proc can be passed to the ionerror
procedure:

I_ERROR_EXIT This value installs a special error handler which logs a
diagnostic message and terminates the process.

I_ERROR_NO_EXIT This value also installs a special error handler which
logs a diagnostic message but does not terminate the
process.

If a zero (0) is passed as the value of proc, it will remove the error handler.

Note that the error procedure could perform a setjmp!longjmp or an escape
using the try/recover clauses.

Example for using setjmp!longjmp:

#include <sicl.h>

INST id;
jmp_buf env;

void proc (INST,int) {

}

/• Error occurred, perform a longjmp •/
longjmp (env, 1);

void xyzzy () {

}

if (setjmp (env) == 0) {
I• Normal code */
ionerror (proc);

/• Do actions that could cause errors *I
iwrite (.......) ;
iread (........);
... etc .. .

ionerror (O);
} else {

}

I* Error Code */
ionerror (O);
... do error processing
if (igeterrno () == ...)

... etc ... ;

2-85

irn Value

l\.lso

HP SICL Language Reference

ION ERROR

Or, using try!recover'/escape:
#include <sicl.h>

INST id;

void proc (INST id. int error) {

}

I* Error occurred. perform an escape */
escape (id);

void xyzzy () {
try {

}

I* Normal code */
ionerror (proc);

I* Do actions that could cause errors */
iwrite (.......);
iread (........);
... etc .. .

ionerror (O);
} recover {

}

I* Error Code */
ionerror (O);
... do error processing
if (igeterrno () == ...)

... etc ... ;

This function returns zero (0) if successful, or a non-zero error number if an
error occurs.

"IGETONERROR", "IGETERRNO", "IGETERRSTR", "ICAUSEERR"

2-86

C Syntax

IONINTR

HP SICL Language Reference

IONINTR

Supported sessions: device, interface, commander

#include <sicl.h>

int ionintr (id, proc);
INST id;
void (*proc) (id, reason, secval) ;

INST id;
long reason;
long secval;

N DTE

Not supported on Visual BASIC.

NOTE

For WIN16 programs on Microsoft Windows platforms, handler functions used with ionerror,
ionintr, and ionsrq must be exported and declared as _far _pascal.

2-87

Description

HP SICL Language Reference

IONINTR

The library can notify a process when an interrupt occurs by using the
ionintr function. This function installs the procedure proc as an interrupt
handler.

After you install the interrupt handler with ionintr, use the isetintr
function to enable notification of the interrupt event or events.

The library calls the proc procedure whenever an enabled interrupt occurs. It
calls proc with the following parameters:

void proc (id, reason, se,cval);
INST id;
long reason;
long se,cval;

Where:

id

reason

se,cval

The INST that refers to the session that installed the interrupt
handler.
Contains a value which corresponds to the reason for the
interrupt. These values correspond to the isetintr function
parameter intnum. See a listing of the values below.
Contains a secondary value which depends on the type of
interrupt which occurred. For I_INTR_TRIG, it contains a
bit mask corresponding to the trigger lines which fired. For
interface-dependent and device-dependent interrupts, it contains
an appropriate value for that interrupt.

The reason parameter specifies the cause for the interrupt. Valid reason
values for all interface sessions are:

I_INTR_INTFACT Interface became active.

I_INTR_INTFDEACT Interface became deactivated.

I_INTR_TRIG

I_INTR_*

2-88

A Trigger occurred. The se,cval parameter contains a
bit-mask specifying which triggers caused the interrupt.
See the ixtrig function's which parameter for a list of
valid values.

Individual interfaces may use other interface-interrupt
conditions.

Return Value

See Also

HP SICL Language Reference

IONINTR

Valid reason values for all device sessions are:

I_INTR_* Individual interfaces may include other
interface-interrupt conditions.

To remove the interrupt handler, pass a zero (0) in the proc parameter. By
default, no interrupt handler is installed.

This function returns zero (0) if successful, or a non-zero error number if an
error occurs.

"ISETINTR", "IGETONINTR", "IWAITHDLR", "IINTROFF", "IINTRON",
and the section titled "Asynchronous Events and HP-UX Signals" in the
"Programming with HP SICL" chapter of the HP SICL User's Guide for HP-UX
for protecting I/O calls against interrupts.

2-89

G Syntax

HP SICL Language Reference

IONSRQ

Supported sessions: device, interface

#include <sicl.h>

int ionsrq (id, proc);
INST id;
void (*proc)(id);

INST id;

NOTE

For WIN 16 programs on Microsoft Windows platforms, handler functions used with ion error,
ionintr, and ionsrq must be exported and declared as _far _pascal.

NOTE

Not supported on Visual BASIC.

2-90

Description

Return Value

See Also

·HP SICL Language Reference

IONSRO

Use the ionsrq function to notify an application when an SRQ occurs. This
function installs the procedure proc as an SRQ handler.

An SRQ handler is called any time its corresponding interface generates an
SRQ. If an interface device driver receives an SRQ and cannot determine
the generating device (for example, on HP-IB), it passes the SRQ to all SRQ
handlers assigned to the interface. Therefore, an SRQ handler cannot assume
that its corresponding device actually generated an SRQ. An SRQ handler
should use the ireadstb function to determine whether its corresponding
device generated the SRQ. It calls proc with the following parameters:

void proc (id);
INST id;

To remove an SRQ handler, pass a zero (0) as the proc parameter.

This function returns zero (0) if successful, or a non-zero error number if an
error occurs.

"IGETONSRQ", "IWAITHDLR", "IINTROFF", "IINTRON", "IREADSTB"

2-91

C Syntax

Visual BASIC
Syntax

Description

HP SICL Language Reference

I OPEN

Supported sessions: device, interface, conunander

#include <sicl.h>

INST iopen (addr);
char *addr

Function iopen
(ByVal addr As String)

Before using any of the SICL functions, the application program must
establish a session with the desired interface or device. Create a session by
using the iopen function.

This function creates a session and returns a session identifier. Note that
the session identifier should only be passed as a parameter to other SICL
functions. It is not designed to be updated manually by you.

The addr parameter contains the device, interface, or commander address.

An application may have multiple sessions open at the same time by creating
multiple session identifiers with the iopen function.

NOTE

If an error handler has been installed !see ionerrorl, and an iopen generates an error before
a session has been established, the handler will be called with the session identifier set to zero (0).

Caution must be used if using the session identifier in an error handler.

Also, it is possible for an iopen to succeed on a device that does not exist. In this case, other
functions !such as ireadl will fail with a nonexistent device error.

2-92

Creating A
Device Session

Creating An
Interface
Session

Creating A
Commander
Session

HP SICL Language Reference

IOPEN

To create a device session, specify a particular interface name followed by the
device's address in the addr parameter. For more information on addressing
devices, see the section on "Addressing Device Sessions" in the "Programming
with HP SICL" chapter of the HP SICL User's Guide.

C example:

INST dmm;
dmm = iopen("hpib,15 11

);

Visual BASIC example:

DIM dmm As Integer
dmm = iopen("hpib,15 11

)

To create an interface session, specify a particular interface in the addr
parameter. For more information on addressing interfaces, see the section on
"Addressing Interface Sessions" in the "Progranuning with HP SICL" chapter
of the HP SICL User's Guide.

C example:

INST hpib;
hpib = iopen(11 hpib 11

);

Visual BASIC example:

DIM hpib As Integer
hpib = iopen(11 hpib 11

)

To create a commander session, use the keyword cmdr in the addr parameter.
For more information on commander sessions, see the section on "Addressing
Commander Sessions" in the "Progranuning with HP SICL" chapter of the HP
SICL User's Guide.

C example:

INST cmdr;
cmdr = iopen(11 hpib,cmdr 11

);

Visual BASIC example:

DIM cmdr As Integer
cmdr = iopen("hpib, cmdr 11

)

2-93

Return Value

See Also

HP SICL Language Reference

IOPEN

The iopen function returns a zero (0) id value if an error occurs; otherwise a
valid session id is returned.

"!CLOSE"

2-94

C Syntax

Visual BASIC
Syntax

Description

IP EEK

#include <sicl.h>

unsigned char ibpeek (addr);
unsigned char *addr;

unsigned short iwpeek (addr);
unsigned short *addr;

unsigned long ilpeek (addr);
unsigned long *addr;

Function ibpeek
(ByVal addr As Long) As Byte

Function iwpeek
(ByVal addr As Long) As Integer

Function ilpeek
(ByVal addr As Long) As Long

NOTE

Not supported over LAN.

HP SICL Language Reference

IPEEK

The i ?peek functions will read the value stored at addr from memory and
return the result. The i ?peek functions are generally used in conjunction
with the SICL imap function to read data from VXI address space.

2-95

See Also

HP SICL Language Reference

IPEEK

NOTE

The iwpeek and ilpeek functions perform byte swapping (if necessary) so that VXI memory
accesses follow correct VXI byte ordering.

Also, if a bus error occurs, unexpected results may occur.

"IPOKE", "IMAP"

2-96

C Syntax

Visual BASIC
Syntax

IPOKE

#include <sicl.h>

void ibpoke (addr, val);
unsigned char *addr;
unsigned char val;

void iwpoke (addr, val);
unsigned short *addr;
unsigned short val;

void ilpoke (addr, val) ;
unsigned long *addr;
unsigned long val;

Sub ibpoke

HP SICL Language Reference

IPOKE

(ByVal addr As Long, ByVal value As Integer)

Sub iwpoke
(ByVal addr As Long, ByVal value As Integer)

Sub ilpoke
(ByVal addr As Long, ByVal value As Long)

NOTE

Not supported over LAN.

2-97

Description

See Also

HP SICL Language Referenee

IPOKE

The i ?poke functions will write to memory. The i ?poke functions are
generally used in conjunction with the SICL imap function to write to VXI
address space.

The addr is a valid memory address. The val is a valid data value.

NOTE

The iwpoke and ilpoke functions perform byte swapping (if necessary) so that VXI memory
accesses follow correct VXI byte ordering.

Also, if a bus error occurs, unexpected results may occur.

"IPEEK", "IMAP"

2-98

C Syntax

IPOPFIFO

#include <sicl.h>

int ibpopfifo (id, jifo, dest, cnt);
INST id;
unsigned char *fifo;
unsigned char *dest;
unsigned long cnt;

int iwpopfifo (id, jifo, dest, cnt, swap);
INST id;
unsigned char *fifo;
unsigned char *dest;
unsigned long cnt;
int swap;

int ilpopfifo (id, jifo, dest, cnt, swap);
INST id;
unsigned char *fifo;
unsigned char *dest;
unsigned long cnt;
int swap;

HP SICL Language Reference

IPOPFIFO

2-99

Visual BASIC
Syntax

Description

HP SICL Language Reference

IP OP FIFO

Function ibpopfifo
(ByVal id As Integer, ByVal fifo As Long,
ByVal dest As Long, ByVal cnt As Long)

Function iwpopf ifo
(ByVal id As Integer, ByVal fifo As Long,
ByVal dest As Long, ByVal cnt As Long,
ByVal swap As Integer)

Function ilpopf ifo
(ByVal id As Integer, ByVal fifo As Long,
ByVal dest As Long, ByVal cnt As Long,
ByVal swap As Integer)

NOTE

Not supported over LAN.

The i ?popf ifo functions read data from a FIFO and puts it in memory.
Use b for byte, w for word, and 1 for long word (8-bit, 16-bit, and 32-bit,
respectively). These functions increment the write address, to write
successive memory locations, while reading from a single memory (FIFO)
location. Thus, these functions can transfer entire blocks of data.

The id, although specified, is normally ignored except to determine an
interface-specific transfer mechanism such as DMA. To prevent using an
interface-specific mechanism, pass a zero (0) in this parameter. The dest
argument is the starting memory address for the destination data. The fifo
argument is the memory address for the source FIFO register data. The cnt
argument is the number of transfers (bytes, words, or longwords) to perform.
The swap argument is the byte swapping flag. If swap is zero, no swapping
occurs. If swap is non-zero, the function swaps bytes (if necessary) to change
byte ordering from the internal format of the controller to/from the VXI
(big-endian) byte ordering.

2-100

Return Value

See Also

NOTE

If a bus error occurs, unexpected results may occur.

HP SICL Language Reference

IPOPFIFO

For C programs, this function returns zero (0) if successful, or a non-zero
error number if an error occurs.

For Visual BASIC programs, no error number is returned. Instead, the global
Err variable is set if an error occurs.

"IPEEK", "IPOKE", "IPUSHFIFO", "IMAP"

2-101

C Syntax

Visual BASIC
Syntax

HP SICL Language Reference

IPRINTF

Supported sessions: device, interface, commander
Affected by functions: ilock, itimeout

#include <sicl.h>

int iprintf (id, format [,argl] [,arg2] [, ...]) ;
int isprintf (buf, format [, argl] [, arg2] [, ...]) ;
int i vprintf (id, format, va_list ap) ;
int isvprintf (buf, format, va_list ap) ;
INST id;
char *buf;
const char *format;
param argl, arg2, ... ,
va_list ap;

NOTE
For WIN16 programs on Microsoft Windows platforms, if compiling with tiny, small, or medium models,
make sure all pointer/address parameters are passed as _far.

Function ivprintf
(ByVal id As Integer, ByVal fmt As String,
ByVal ap As Any)

2-102

Description

HP SICL Language Reference

IPRINTF

These functions convert data under the control of the format string. The
format string specifies how the argument is converted before it is output. If
the first argument is an INST, the data is sent to the device to which the
INST refers. If the first argument is a character buffer, the data is placed in
the buffer.

The format string contains regular characters and special conversion
sequences. The iprintf function sends the regular characters (not
a '!. character) in the format string directly to the device. Conversion
specifications are introduced by the '!. character. Conversion specifications
control the type, the conversion, and the formatting of the arg parameters.

NOTE

The formatted 1/0 functions, iprintf and ipromptf, can re-address the bus multiple times
during execution. This behavior may cause problems with instruments which do not comply with IEEE
488.2.

Re-addressing occurs under the following circumstances:

• After the internal buffer fills. (See isetbuf .)
• When a \n is found in the format string in C/C + +, or when a Chr$ (10) is found in the

format string in Visual BASIC.
• When a '/.C is found in the format string.

This behavior affects only non-IEEE 488.2 devices on the GPIB interface.

Use the special characters and conversion commands explained later in this
section to create the format string's contents.

2-103

Restrictions
Using
ivprintf in
Visual BASIC

HP SICL Language Reference

IPRINTF

The following restrictions apply when using ivprintf with Visual BASIC.

• Format Conversion Commands:

Only one format conversion command can be specified in a format string
for i vprintf (a format conversion command begins with the '/. character).
For example, the following is invalid:

nargs'/. = ivprintf(id, 11 '/.lf'/.d 11 + Chr$(10), ...)

Instead, you must call ivprintf once for each format conversion
command, as shown in the following example:

nargs'/. = ivprintf(id, 11 '/.lf" + Chr$(10), dbl_ value)
nargs'/. = ivprintf (id, 11 '/.d" + Chr$(10), int_ value)

• Writing Numeric Arrays:

For Visual BASIC, when writing from a numeric array with i vprintf, you
must specify the first element of a numeric array as the ap parameter to
i vprintf. This passes the address of the first array element to i vprintf.
For example:

Dim flt_array(50) As Double
nargs'/. = ivprintf(id, 11 '/.,SOf", dbl_array(O))

This code declares an array of 50 floating point numbers and then calls
ivprintf to write from the array.

For more information on passing numeric arrays as arguments with Visual
BASIC, see the "Arrays" section of the "Calling Procedures in DLLs"
chapter of the Visual BASIC Programmer's Guide.

• Writing Strings:

The '/.S format string is not supported for i vprintf on Visual BASIC.

2-104

Special
Characters for
CIC++

Special
Characters for
Visual BASIC

HP SICL Language Reference

IPRINTF

Special characters in CIC++ consist of a backslash(\) followed by another
character. The special characters are:

\n Send the ASCII LF character with the END indicator set.
\r Send the ASCII CR character.
\ \ Send the backslash (\) character.
\ t Send the ASCII TAB character.
\### Send the ASCII character specified by the octal value ###.
\v Send the ASCII VERTICAL TAB character.
\f Send the ASCII FORM FEED character.
\

11 Send the ASCII double-quote (11
) character.

Special characters in Visual BASIC are specified with the CHR$ () function.
These special characters are added to the format string by using the + string
concatenation operator in Visual BASIC. For example:

nargs=ivprintf(id, "*RST"+CHR$(10), O&)

The special characters are:

Chr$ (10)
Chr$(13)
\
Chr$(9)
Chr$ (11)
Chr$(12)
Chr$(34)

Send the ASCII LF character with the END indicator set.
Send the ASCII CR character.
Sends the backslash (\) character. 1

Send the ASCII TAB character.
Send the ASCII VERTICAL TAB character.
Send the ASCII FORM FEED character.
Send the ASCII double-quote(") character.

1 In Visual BASIC, the backslash character can be specified in a format string
directly, instead of being "escaped" by prepending it with another backslash.

2-105

Format
Conversion
Commands

HP SICL Language Reference

IPRINTF

An iprintf format conversion command begins with a Y. character. After the
Y. character, the optional modifiers appear in this order: format flags, field
width, a period and precision, a comma and array size (comma operator), and
an argument modifier. The command ends with a conversion character.

precision

Syntax for iprintf
Format Conversion Commands

argument
modifier

The modifiers in a con version command are:

format flags

field width

2-106

Zero or more flags (in any order) that modify the
meaning of the conversion character. See the following
subsection, "List of format flags" for the specific flags
you may use.

An optional minimum field width is an integer (such as
11 Y.8d 11

). If the formatted data has fewer characters than
field width, it will be padded. The padded character is
dependent on various flags. In CIC+ + , an asterisk (*)
may appear for the integer, in which case it will take
another arg to satisfy this conversion command. The
next arg will be an integer that will be the field width
(for example, iprintf (id, "Y.*d", 8, num)).

HP SICL Language Reference

IPRINTF

. precision The precision operator is an integer preceded by a
period (such as 11 %. 6d 11

). The optional precision for
conversion characters e, E, and f specifies the number
of digits to the right of the decimal point. For the d, i,
o, u, x, and X conversion characters, it specifies the
minimum number of digits to appear. For the· s and
S conversion characters, the precision specifies the
maximum number of characters to be read from your
arg string. In CIC++, an asterisk(*) may appear in the
place of the integer, in which case it will take another
arg to satisfy this conversion command. The next
arg will be an integer that will be the precision (for
example, iprintf (id, "Y..*d", 6, num)).

, array size The comma operator is an integer preceded by a comma
(such as "Y., 10d"). The optional comma operator is
only valid for conversion characters d and f. This is a
comma followed by a number. This indicates that a list
of comma-separated numbers is to be generated. The
argument is an array of the specified type instead of the
type (that is, an array of integers instead of an integer).
In CIC+ + , an asterisk (*) may appear for the number,
in which case it will take another arg to satisfy this
conversion command. The next arg will be an integer
that is the number of elements in the array.

argument modifier The meaning of the modifiers h, 1 , w , z , and Z is
dependent on the conversion character (such as 11 Y.wd 11

).

conv char A conversion character is a character that specifies the
type of arg and the conversion to be applied. This is the
only required element of a conversion command. See
the following subsection, "List of conv chars" for the
specific conversion characters you may use.

2-107

Examples of
Format
Conversion
Commands

List of
format flags

HP SICL Language Reference

IPRINTF

The following are some examples of conversion commands used in the format
string and the output that would result from them. (The output data is
arbitrary.)

Conversion Output Description
Command

%<0Hd #H3A41 format flag

%10s str field width

%-10s str format flag !left justify! & field width

%.6f 21.560000 precision

%,3d 18,31,34 comma operator

%6ld 132 field width & argument modifier !long!

%.6ld 000132 precision & argument modifier llongl

%.61d 000132 precision & argument modifier llongl

%<01d 61 format flag !IEEE 488.2 NR1l

%<02d 61.000000 format flag !IEEE 488.2 NR2l

%<03d 6.100000E+01 format flag !IEEE 488.2 NR31

The format.flags you can use in conversion commands are:

©1 Convert to an NRl number (an IEEE 488.2 format integer with no
decimal point). Valid only for Y.d and Y.f. Note that Y.f values will
be truncated to the integer value.

©2 Convert to an NR2 number (an IEEE 488.2 format floating point
number with at least one digit to the right of the decimal point).
Valid only for Y.d and Y.f.

©3 Convert to an NR3 number (an IEEE 488.2 format number
expressed in exponential notation). Valid only for Y.d and Y.f.

©H Convert to an' IEEE 488.2 format hexadecimal number in the form
#Hxxxx. Valid only for Y.d and Y.f. Note that Y.f values will be
truncated to the integer value.

©Q Convert to an IEEE 488.2 format octal number in the form
#Qxxxx. Valid only for Y.d and Y.f. Note that Y.f values will be
truncated to the integer value.

2-108

List of
conv chars

©B

+

space

0

HP SICL Language Reference

IPRINTF

Convert to an IEEE 488.2 format binary number in the form
#Bxxxx. Valid only for Y.d and Y.f. Note that Y.f values will be
truncated to the integer value.

Left justify the result.

Prefix the result with a sign (+ or -) if the output is a signed type.

Prefix the result with a blank () if the output is signed and
positive. Ignored if both blank and+ are specified.

Use alternate form. For the o conversion, it prints a leading zero.
For x or X, a non-zero will have Ox or OX as a prefix. For e, E, f ,
g, and G, the result will always have one digit on the right of the
decimal point.

Will cause the left pad character to be a zero (0) for all numeric
con version types.

The conv chars (conversion characters) you can use in conversion commands
are:

d

f

Corresponding arg is an integer. If no flags are given, send the
number in IEEE 488.2 NRl (integer) format. If flags indicate an
NR2 (floating point) or NR3 (floating point) format, convert the
argument to a floating point number. This argument supports
all six flag modifier formatting options: NR 1 - © 1, NR2 - ©2,
NR3 - ©3, ©H, ©Q, or ©B. If the 1 argument modifier is present,
the arg must be a long integer. If the h argument modifier is
present, the arg must be a short integer for CIC+ +, or an
Integer for Visual BASIC.

Corresponding arg is a double for C/C + + , or a Double for
Visual BASIC. If no flags are given, send the number in IEEE
488.2 NR2 (floating point) format. If flags indicate that NRl
format is to be used, the arg will be truncated to an integer.
This argument supports all six flag modifier formatting options:
NRl - ©1, NR2 - ©2, NR3 - ©3, ©H, ©Q, or ©B. If the 1 argument
modifier is present, the arg must be a double. If the L argument
modifier is present, the arg must be a long double for CIC+ +
(not supported for Visual BASIC).

2-109

HP SICL Language Reference

IPRINTF

b

B

2-110

In C/C + + , corresponding arg is a pointer to an arbitrary block
of data. (Not supported in Visual BASIC.) The data is sent as
IEEE 488.2 Definite Length Arbitrary Block Response Data.
The field width must be present and will specify the number of
elements in the data block. An asterisk (*) can be used in place
of the integer, which indicates that two args are used. The first
is a long used to specify the number of elements. The second is
the pointer to the data block. No byte swapping is performed.

If thew argument modifier is present, the block of data is an
array of unsigned short integers. The data block is sent to the
device as an array of words (16 bits). The field width value
now corresponds to the number of short integers, not bytes.
Each word will be appropriately byte swapped and padded so
that they are converted from the internal computer format to
the standard IEEE 488.2 format.

If the 1 argument modifier is present, the block of data is an
array of unsigned long integers. The data block is sent to the
device as an array oflongwords (32 bits). The field width value
now corresponds to the number of long integers, not bytes.
Each word will be appropriately byte swapped and padded so
that they are converted from the internal computer format to
the standard IEEE 488.2 format.

If the z argument modifier is present, the block of data is an
array of floats. The data is sent to the device as an array of
32-bit IEEE 754 format floating point numbers. The field width
is the number of floats.

If the Z argument modifier is present, the block of data is an
array of doubles. The data is sent to the device as an array of
64-bit IEEE 754 format floating point numbers. The field width
is the number of doubles.

Same as b in C/C + +, except that the data block is sent as IEEE
488. 2 Indefinite Length Arbitrary Block Response Data. (Not
supported in Visual BASIC.) Note that this format involves
sending a newline with an END indicator on the last byte of the
data block.

c

c

t

s

s

'!.
i

o,u,x,X

e,E

HP SICL Language Reference

IPRINTF

In CIC+ + , corresponding arg is a character. (Not supported in
Visual BASIC.)

In CIC+ + , corresponding arg is a character. Send with END
indicator. (Not supported in Visual BASIC.)

In CIC+ +, control sending the END indicator with each LF
character in the format string. (Not supported in Visual
BASIC.) A + flag indicates to send an END with each succeeding
LF character (defa-µlt), a - flag indicates to not send END. If no
+ or - flag appears, an error is generated.

Corresponding arg is a pointer to a null-terminated string that
is sent as a string.

In CIC++, corresponding arg is a pointer to a null-terminated
string that is sent as an IEEE 488.2 string response data block.
(Not supported in Visual BASIC.) An IEEE 488.2 string response
data block consists of a leading double quote (11

) followed by
non-double quote characters and terminated with a double
quote.

Send the ASCII percent('/.) character.

Corresponding arg is an integer. Same as d except that the six
flag modifier formatting options: NRl - ©1, NR2 - ©2, NR3 -
©3, ©H, ©Q, or ©B are ignored.

Corresponding arg will be treated as an unsigned integer.
The argument is converted to an unsigned octal (o), unsigned
decimal (u), or unsigned hexadecimal (x,X). The letters abcdef
are used with x, and the letters ABCDEF are used with X.
The precision specifies the minimum number of characters
to appear. If the value can be represented with fewer than
precision digits, leading zeros are added. If the precision is set
to zero and the value is zero, no characters are printed.

Corresponding arg is a double in CIC+ + , or a Double in Visual
BASIC. The argument is converted to exponential format (that
is, [- J d. dddde+ /-dd). The precision specifies the number
of digits to the right of the decimal point. If no precision is
specified, then six digits will be converted. The letter e will be
used with e and the letter E will be used with E.

2-111

Return Value

Buffers and
Errors

HP SICL language Reference

IPRINTF

g, G Corresponding arg is a double in CIC+ + , or a Double in Visual
BASIC. The argument is converted to exponential (e with g, or
E with G) or floating point format depending on the value of the
arg and the precision. The exponential style will be used if the
resulting exponent is less than -4 or greater than the precision;
otherwise it will be printed as a float.

n Corresponding arg is a pointer to an integer in CIC+ + , or an
Integer for Visual BASIC. The number of bytes written to the
device for the entire iprintf call is written to the arg. No
argument is converted.

F On HP-UX or Windows NT, corresponding arg is a pointer to a
FILE descriptor. (Not supported on Windows 95.) The data will
be read from the file that the FILE descriptor points to and
written to the device. The FILE descriptor must be opened for
reading. No flags or modifiers are allowed with this conversion
character.

This function returns the total number of arguments converted by the format
string.

Since iprintf does not return an error code and data is buffered before it
is sent, it cannot be assumed that the device received any data after the
iprintf has completed.

The best way to detect errors is to install your own error handler. This
handler can decide the best action to take depending on the error that has
occurred.

If an error has occurred during an iprintf with no error handler installed,
the only way you can be informed that an error has occurred is to use
igeterrno right after the iprintf call.

Remember that iprintf can be called many times without any data being
flushed to the session. There are only three (3) conditions where the write
formatted IIO buffer is flushed. Those conditions are:

• If a newline is encountered in the format string.
• If the buffer is filled.
• If iflush is called with the I_BUF_WRITE value.

2-112

See Also

HP SICL Language Reference

IPRINTF

If an error occurs while writing data, such as a timeout, the buffer will be
flushed (that is, the data will be lost) and, if an error handler is installed, it
will be called, or the error number will be set to the appropriate value.

"ISCANF", "IPROMPTF", "!FLUSH", "ISETBUF", "ISETUBUF", "IFREAD",
"IFWRITE"

2-113

C Syntax

HP SICL Language Reference

IPROMPTF

Supported sessions: device, interface, commander
Affected by functions: ilock, i timeout

#include <sicl.h>

int ipromptf (id, writefmt, read,fmt [, argl] [, arg2] [, ...]) ;
int ivpromptf (id, writefmt, readfmt, ap);
INST id;
const char *Writefmt;
const char *readfmt;
param argl,arg2, ... ;
va_list ap;

NOTE

Not supported on Visual BASIC.

NOTE
For WIN16 programs on Microsoft Windows platforms, if compiling with tiny, small, or medium models,
make sure all pointer/address parameters are passed as _far.

2-114

Description

See Also

HP SICL Language Reference

IPROMPTF

The ipromptf function is used to perform a formatted write immediately
followed by a formatted read. This function is a combination of the iprintf
and iscanf functions. First, it flushes the read buffer. It then formats a
string using the writefmt string and the first n arguments necessary to
implement the prompt string. The write buffer is then flushed to the device.
It then uses the read,fmt string to read data from the device and to format it
appropriately.

The writefmt string is identical to the format string used for the iprintf
function.

The read,fmt string is identical to the format string used for the iscanf
function. It uses the arguments immediately following those needed to satisfy
the writefmt string.

This function returns the total number of arguments used by both the read
and write format strings.

"IPRINTF", "ISCANF", "!FLUSH", "ISETBUF", "ISETUBUF", "IFREAD",
"IFWRITE"

2-115

C Syntax

HP SICL Language Reference

IPUSHFIFO

#include <sicl.h>

int ibpushfifo (id, src, .fifo, cnt);
INST id;
unsigned char *src;
unsigned char *fifo;
unsigned long cnt;

int iwpushf ifo (id, src, .fifo, cnt, swap);
INST id;
unsigned short *src;
unsigned short *fifo;
unsigned long cnt;
int swap;

int ilpushf ifo (id, src, .fifo, cnt, swap);
INST id;
unsigned long *src;
unsigned long *fifo;
unsigned long cnt;
int swap;

2-116

Visual BASIC
Syntax

Description

Function ibpushf ifo
(ByVal id As Integer, ByVal src As Long,
ByVal jifo As Long, ByVal cnt As Long)

Function iwpushf ifo
(ByVal id As Integer, ByVal src As Long,
ByVal jifo As Long, ByVal cnt As Long,
ByVal swap As Integer)

Function ilpushf ifo
(ByVal id As Integer, ByVal src As Long,
ByVal jifo As Long, ByVal cnt As Long,
ByVal swap As Integer)

NOTE

Not supported over LAN.

HP SICL Language Reference

IPUSHFIFO

The i ?pushfifo functions copy data from memory on one device to a FIFO
on another device. Use b for byte, w for word, and 1 for long word (8-bit,
16-bit, and 32-bit, respectively). These functions increment-the read address,
to read successive memory locations, while writing to a single memory (FIFO)
location. Thus, they can transfer entire blocks of data.

The id, although specified, is normally ignored except to determine an
interface-specific transfer mechanism such as DMA. To prevent using an
interface-specific mechanism, pass a zero (0) in this parameter. The src
argument is the starting memory address for the source data. The jifo
argument is the memory address for the destination FIFO register data. The
cnt argument is the number of transfers (bytes, words, or longwords) to
perform. The swap argument is the byte swapping flag. If swap is zero, no
swapping occurs. If swap is non-zero the function swaps bytes (if necessary)
to change byte ordering from the internal format of the controller to/from the
VXI (big-endian) byte ordering.

2-117

Return Value

See Also

HP SICL Language Reference

IPUSHFIFO

NOTE

If a bus error occurs, unexpected results may occur.

For C programs, this function returns zero (0) if successful, or a non-zero
error number if an error occurs.

For Visual BASIC programs, no error number is returned. Instead, the global
Err variable is set if an error occurs.

"IPOPFIFO", "IPOKE", "IPEEK", "IMAP"

2-118

C Syntax

Visual BASIC
Syntax

Description

IRE AD

HP SICL Language Reference

IREAD

Supported sessions: device, interface, conunander
Affected by functions: ilock, itimeout

#include <sicl.h>

int iread (id, buf, bufsize, reason, actualcnt);
INST id;
char *buf;
unsigned long bufsize;
int *reason;
unsigned long *actualcnt;

Function iread
(ByVal id As Integer, buj As String,
ByVal bufsize As Long, reason As Integer,
actual As Long)

This function reads raw data from the device or interface specified by id.
The buf argument is a pointer to the location where the block of data can be
stored. The bufsize argument is an unsigned long integer containing the size,
in bytes, of the buffer specified in buf.

The reason argument is a pointer to an integer that, on exiting the iread
call, contains the reason why the read terminated. If the reason parameter
contains a zero (0), then no termination reason is returned. Reasons include:

I_ TERM_MAXCNT bufsize characters read.
I_ TERM_END END indicator received on last character.
I_ TERM_ CHR Termination character enabled and received.

The actualcnt argument is a pointer to an unsigned long integer. Upon exit,
this contains the actual number of bytes read from the device or interface. If
the actualcnt parameter is NULL, then the number of bytes read will not be
returned.

2-119

Return Value

See Also

HP SICL Language Reference

IREAD

If you want to pass a NULL reason or actualcnt parameter to iread in Visual
BASIC, you should pass the expression O&:.

For LAN, if the client times out prior to the server, the actualcnt returned
will be 0, even though the server may have read some data from the device
or interface.

This function reads data from the specified device or interface and stores it
in buf up to the maximum number of bytes allowed by bufsize. The read
terminates only on one of the following conditions:

• It reads bufsize number of bytes.
• It receives a byte with the END indicator attached.
• It receives the current termination character (set with i termchr).
• An error occurs.

For C programs, this function returns zero (0) if successful, or a non-zero
error number if an error occurs.

For Visual BASIC programs, no error number is returned. Instead, the global
Err variable is set if an error occurs.

"IWRITE", "ITERMCHR", "IFREAD", "IFWRITE"

2-120

C Syntax

Visual BASIC
Syntax

Description

Return Value

See Also

IREADSTB

HP SICL Language Reference

IREADSTB

Supported sessions: ... device
Affected by functions: ilock, i timeout

#include <sicl.h>

int ireadstb (id, stb) ;
INST id;
unsigned char *stb;

Function ireadstb
(ByVal id As Integer, stb As String)

The ireadstb function reads the status byte from the device specified by id.
The stb argument is a pointer to a variable which will contain the status byte
upon exit.

For C programs, this function returns zero (0) if successful, or a non-zero
error number if an error occurs.

For Visual BASIC programs, no error number is returned. Instead, the global
Err variable is set if an error occurs.

"IONSRQ", "ISETSTB"

2-121

C Syntax

Visual BASIC
Syntax

Description

Return Value

See Also

HP SICL Language Reference

!REMOTE

Supported sessions: ... device
Affected by functions: ilock, i timeout

#include <sicl.h>

int iremote (id);
INST id;

Function iremote
(ByVal id As Integer)

Use the iremote function to put a device into remote mode. Putting a device
in remote mode disables the device's front panel interface.

For C programs, this function returns zero (0) if successful, or a non-zero
error number if an error occurs.

For Visual BASIC programs, no error number is returned. Instead, the global
Err variable is set if an error occurs.

"!LOCAL'', and the interface-specific chapter in the HP SICL User's Guide for
details of implementation.

2-122

C Syntax

Visual BASIC
Syntax

ISCANF

HP SICL Language Reference

ISCANF

Supported sessions: device, interface, conunander
Affected by functions: ilock, itimeout

#include <sicl.h>

int iscanf (id, format [, argl] [, arg2] [, ...]) ;
int isscanf (buf, format [, argl] [, arg2] [, ...]) ;
int ivscanf (id, format, va_list ap);
int isvscanf (buf, format, va_list ap) ;
INST id;
char *buf;
const char *format;
ptr argl, arg2, ... ,
va_list ap;

NOTE

For WIN 16 programs on Microsoft Windows platforms, if compiling with tiny, small, or medium models,
make sure all pointer/address parameters are passed as _far.

Function ivscanf
(ByVal id As Integer, ByVal fmt As String,
ByRef ap As Any)

2-123

Description

Notes on Using
iscanf

HP SICL Language Reference

ISCANF

These functions read formatted data, convert it, and store the results into
your args. These functions read bytes from the specified device, or from buf,
and convert them using conversion rules contained in the format string. The
number of args converted is returned.

The format string contains:

• White-space characters, which are spaces, tabs, or special characters.

• An ordinary character (not Y.), which must match the next non-white-space
character read from the device.

• Format conversion commands.

Use the white-space characters and conversion commands explained later in
this section to create the format string's contents.

• Using itermchr with iscanf:

The is c anf function only terminates reading on an END indicator. The
i termchr function has no effect on the termination of an iscanf read.

• Using iscanf with Certain Instruments:

The iscanf function cannot be used easily with instruments that do not
send an END indicator.

• Buffer Management with iscanf:

By default, iscanf does not flush its internal buffer after each call. This
means data left from one call of iscanf can be read with the next call to
iscanf. One side effect of this is that successive calls to iscanf may yield
unexpected results. For example, reading the following data:

"1.25\r\n"
"1.35\r\n"
"1.45\r\n"

With:

2-124

iscanf(id, "Y.lf", &res1);
iscanf(id, "Y.lf", &res2);
iscanf(id, "Y.lf", &res3);

II Will read the 1.25
II Will read the \r\n
II Will read the 1.35

There are four ways to get the desired results:

HP SICL Language Reference

ISCANF

o Use the newline and carriage return characters at the end of the format
string to match the input data. This is the recommended approach. For
example:

iscanf (id, "%lfY.\r\n11
, &res1);

iscanf (id, "%lfY.\r\n11
, &res2);

iscanf (id, "%lfY.\r\n", &res3) ;

o Use isetbuf with a negative buffer size. This will create a buffer
the size of the absolute value of bufsize. This also sets a flag that tells
iscanf to flush its buffer after every iscanf call.

isetbuf(id, I_BUF_READ, -128);

o Do explicit calls to ifl ush to flush the read buffer.

iscanf (id, 11 %lf 11
, &res1);

iflush(id, I_BUF_READ);
iscanf (id, "%lf 11

, &res2);
iflush(id, I_BUF_READ);
iscanf (id, "%lf 11

, &res3);
iflush(id, I_BUF_READ);

o Use the Y.*t conversion to read to the end of the buffer and discard the
characters read, if the last character has an END indicator.

iscanf (id, "%lfY.*t", &res1);
iscanf (id, "%lfY.*t", &res2);
iscanf (id, "%lfY.*t", &res3);

Restrictions The following restrictions apply when using ivscanf with Visual BASIC.

Using i VS C anf • Format Conversion Commands:
in Visual BASIC

Only one format conversion command can be specified in a format string
for ivscanf (a format conversion command begins with the Y. character).
For example, the following is invalid:

nargsY. = ivscanf(id, "%,50lf%,50d", ...)

Instead, you must call i vscanf once for each format conversion command,
as shown in the following example:

nargsY. = ivscanf (id, "%, 50lf", dbl_array(O))
nargsY. = ivscanf(id, "%,50d", int_array(O))

2-125

White-Space
Characters for
CIC++

White-Space
Characters for
Visual BASIC

HP SICL Language Reference

ISCANF

• Reading in Numeric Arrays:

For Visual BASIC, when reading into a numeric array with ivscanf, you
must specify the first element of a numeric array as the ap parameter to
ivscanf. This passes the address of the first array element to ivscanf.
For example:

Dim preamble(50) As Double
nargsY. = ivscanf(id, "Y.,50lf", preamble(O))

This code declares an array of 50 floating point numbers and then calls
ivscanf to read into the array.

For more information on passing numeric arrays as arguments with Visual
BASIC, see the "Arrays" section of the "Calling Procedures in DLLs"
chapter of the Visual BASIC Programmer's Guide.

• Reading in Strings:

For Visual BASIC, when reading in a string value with ivscanf, you must
pass a fixed length string as the ap parameter to i vscanf. For more
information on fixed length strings with Visual BASIC, see the "String
Types" section of the "Variables, Constants, and Data Types" chapter of the
Visual BASIC Programmer's Guide.

White-space characters are spaces, tabs, or special characters. For CIC+ + ,
the white-space characters consist of a backslash(\) followed by another
character. The white-space characters are:

\t The ASCII TAB character
\ v The ASCII VERTICAL TAB character
\f The ASCII FORM FEED character
space The ASCII space character

White-space characters are spaces, tabs, or special characters. For Visual
BASIC, the white-space characters are specified with the Chr$ () function.
The white-space characters are:

Chr$(9)
Chr$ (11)
Chr$(12)
space

2-126

The ASCII TAB character
The ASCII VERTICAL TAB character
The ASCII FORM FEED character
The ASCII space character

Format
Conversion
Commands

HP SICL Language Reference

ISCANF

An iscanf format conversion conunand begins with a Y. character. After
the Y. character, the optional modifiers appear in this order: an assignment
suppression character (*), field width, a conrma and array size (comma
operator), and an argument modifier. The command ends with a conversion
character.

Syntax for iscanf
Format Conversion Commands

argument
modifier

The modifiers in a con version command are:

*

field width

An optional, assignment suppression character(*). This
provides a way to describe an input field to be skipped.
An input field is defined as a string of non-white-space
characters that extends either to the next inappropriate
character, or until the field width (if specified) is exhausted.

An optional integer representing the field width. In CIC+ +,
if a pound sign(#) appears instead of the integer, then the
next arg is a pointer to the field width. This arg is a pointer
to an integer for '/.c, '/.s, '/.t, and '/.S. This arg is a pointer
to a long for '/.b. The field width is not allowed for '/.d or '/.f.

2-127

HP SICL Language Reference

ISCANF

, array size

argument
modifier

conv char

NOTE

An optional comma operator is an integer preceded by a
comma. It reads a list of conuna-separated numbers. The
comma operator is in the form of ,dd, where dd is the
number of array elements to read. In C/C + +, a pound sign
(#)can be substituted for the number, in which case the
next argument is a pointer to an integer that is the number
of elements in the array.

The function will set this to the number of elements read.
This operator is only valid with the conversion characters d
and f. The argument must be an array of the type specified.

The meaning of the optional argument modifiers h, 1 , w,
z, and Z is dependent on the conversion character.

A con version character is a character that specifies the
type of arg and the conversion to be applied. This is the
only required element of a conversion conunand. See the
following subsection, "List of conv chars" for the specific
conversion characters you may use.

Unlike C's scanf function, SICL's iscanf functions do not treat the newline (\n) and carriage
return l\rl characters as white-space. Therefore, they are treated as ordinary characters and must
match input characters. (Note that this does not apply in Visual BASIC.)

The conversion conunands direct the assignment of the next arg. The
iscanf function places the converted input in the corresponding variable,
unless the * assignment suppression character causes it to use no arg and to
ignore the input.

This function ignores all white-space characters in the input stream.

2-128

Examples of
Format
Conversion
Commands

List of
conv chars

HP SICL Language Reference

ISCANF

The following are examples of conversion commands used in the format
string and typical input data that would satisfy the conversion commands.

Conversion Input Data Description
Command

%*s one string suppression !no assignment)

%*s %s two strings suppression !two) assignment !strings)

%,3d 21,12,61 comma operator

%hd 64 argument modifier !short)

%10s one string field width

%10c one string field width

%10t two strings field width 110 chars read into 1 arg)

The conv chars (conversion characters) are:

d Corresponding arg must be a pointer to an integer for CIC+ + ,
or an Integer in Visual BASIC. The library reads characters until
an entire number is read. It will convert IEEE 488.2 HEX, OCT,
BIN, and NRf format numbers. If the 1 (ell) argument modifier is
used, the argument must be a pointer to a long integer in CIC+ +,
or it must be a Long in Visual BASIC. If the h argument modifier
is used, the argument must be a pointer to a short integer for
CIC+ + , or an Integer for Visual BASIC.

i Corresponding arg must be a pointer to an integer in CIC+ + , or
an Integer in Visual BASIC. The library reads characters until an
entire number is read. If the number has a leading zero (0), the
number will be converted as an octal number. If the data has a
leading Ox or OX, the number will be converted as a hexidecimal
number. If the 1 (ell) argument modifier is used, the argument
must be a pointer to a long integer in CIC+ + , or it must be a Long
for Visual BASIC. If the h argument modifier is used, the argument
must be a pointer to a short integer for CIC+ + , or an Integer for
Visual BASIC.

2-129

HP SICL Language Reference

ISCANF

f Corresponding arg must be a pointer to a float in C/C + +, or a
Single in Visual BASIC. The library reads characters until an entire
number is read. It will convert IEEE 488.2 HEX, OCT, BIN, and
NRf format numbers. If the 1 (ell) argument modifier is used, the
argument must be a pointer to a double for CIC+ +, or it must be
a Double for Visual BASIC. If the L argument modifier is used,
the argument must be a pointer to a long double for CIC++ (not
supported for Visual BASIC).

e , g Corresponding arg must be a pointer to a float for CIC+ + , or a
Single for Visual BASIC. The library reads characters until an
entire number is read. If the 1 (ell) argument modifier is used, the
argument must be a pointer to a double for CIC+ + , or a Double
for Visual BASIC. If the L argument modifier is used, the argument
must be a pointer to a long double for CIC++ (not supported for
Visual BASIC).

c Corresponding arg is a pointer to a character sequence for CIC+ + ,
or a fixed length String for Visual BASIC. Reads the number of
characters specified by field width (default is 1) from the device
into the buffer pointed to by arg. White-space is not ignored with
'I.e. No null character is added to the end of the string.

s Corresponding arg is a pointer to a string for CIC+ +, or a fixed
length String for Visual BASIC. All leading white-space characters
are ignored, then all characters from the device are read into a
string until a white-space character is read. An optional field
width indicates the maximum length of the string. Note that you
should specify the maximum field width of the buffer being used to
prevent overflows.

S Corresponding arg is a pointer to a string for CIC+ +, or a fixed
length String for Visual BASIC. This data is received as an IEEE
488.2 string response data block. The resultant string will not
have the enclosing double quotes in it. An optional field width
indicates the maximum length of the string. Note that you should
specify the maximum field width of the buffer being used to
prevent overflows.

2-130

HP SICL Language Reference

ISCANF

t Corresponding arg is a pointer to a string for CIC+ + , or a fixed
length String for Visual BASIC. Read all characters from the device
into a string until an END indicator is read. An optional field
width indicates the maximum length of the string. All characters
read beyond the maximum length are ignored until the END
indicator is received. Note that you should specify the maximum
field width of the buffer being used to prevent overflows.

b Corresponding arg is a pointer to a buffer. This conversion code
reads an array of data from the device. The data must be in IEEE
488. 2 Arbitrary Block Program Data format. Note that, depending
on the structure of the data, data may be read until an END
indicator is read.

The field width must be present to specify the maximum number
of elements the buffer can hold. For CIC+ + programs, the field
width can be a pound sign(#). If the field width is a pound sign,
then two arguments are used to fulfill this conversion type. The
first argument is a pointer to a long that will be used as the field
width. The second will be the pointer to the buffer that will hold
the data. After this conversion is satisfied, the field width pointer
is assigned the number of elements read into the buffer. This is a
convenient way to determine the actual number of elements read
into the buffer.

If there is more data than will fit into the buffer, the extra data is
lost.

If no argument modifier is specified, the array is assumed to be an
array of bytes.

If the w argument modifier is specified, then the array is assumed
to be an array of short integers (16 bits). The data read from the
device is byte swapped and padded as necessary to convert from
IEEE 488.2 byte ordering (big endian) to the native ordering of the
controller. The field width is the number of words.

If the 1 (ell) argument modifier is specified, then the array is
assumed to be an array oflong integers (32 bits). The data read
from the device is byte swapped and padded as necessary to
convert from IEEE 488. 2 byte ordering (big endian) to the native
ordering of the controller. The field width is the number of long
words.

2-131

HP SICL Language Reference

ISCANF

If the z argument modifier is specified, then the array is assumed
to be an array of floats. The data read from the device is an array
of 32 bit IEEE-754 floating point numbers. The field width is the
number of floats.

If the Z argument modifier is specified, then the array is assumed
to be an array of doubles. The data read from the device is an
array of 64 bit IEEE-754 floating point numbers. The field width is
the number of doubles.

o Corresponding arg must be a pointer to an unsigned integer
for CIC+ + , or an Integer for Visual BASIC. The library reads
characters until the entire octal number is read. If the 1 (ell)
argument modifier is used, the argument must be a pointer to an
unsigned long integer for CIC++, or a Long for Visual BASIC. If
the h argument modifier is used, the argument must be a pointer
to an unsigned short integer for CIC+ + , or the argument must be
an Integer for Visual BASIC.

u Corresponding arg must be a pointer to an unsigned integer
for CIC++, or an Integer for Visual BASIC. The library reads
characters until an entire number is read. It will accept any
valid decimal number. If the 1 (ell) argument modifier is used,
the argument must be a pointer to an unsigned long integer for
CIC+ + , or a Long for Visual BASIC. If the h argument modifier is
used, the argument must be a pointer to an unsigned short integer
for CIC++, or the argument must be an Integer for Visual BASIC.

x Corresponding arg must be a pointer to an unsigned integer

2-132

for CIC++, or an Integer for Visual BASIC. The library reads
characters until an entire number is read. It will accept any valid
hexadecimal number. If the 1 (ell) argument modifier is used,
the argument must be a pointer to an unsigned long integer for
CIC+ + , or a Long for Visual BASIC. If the h argument modifier is
used, the argument must be a pointer to an unsigned short integer
for CIC+ +, or it must be an Integer for Visual BASIC.

HP SICL Language Reference

ISCANF

[Corresponding arg must be a character pointer for CIC+ +, or a
fixed length character String for Visual BASIC. The [conversion
type matches a non-empty sequence of characters from a set of
expected characters. The characters between the [and the J are
the scanlist. The scanset is the set of characters that match the
scanlist, unless the circumflex C) is specified. If the circumflex
is specified, then the scanset is the set of characters that do not
match the scanlist. The circumflex must be the first character after
the [, otherwise it will be added to the scanlist.

The - can be used to build a scanlist. It means to include all
characters between the two characters in which it appears (for
example, '/. [a -z] means to match all the lower case letters
between and including a and z). If the - appears at the beginning
or the end of conversion string, - is added to the scanlist.

n Corresponding arg is a pointer to an integer for CIC+ + , or it is an
Integer for Visual BASIC. The number of bytes currently converted
from the device is placed into the arg. No argument is converted.

F Supported on HP-UX only. (Not supported on Windows 95 or
Windows NT.) Corresponding arg is a pointer to a FILE descriptor.
The input data read from the device is written to the file referred
to by the FILE descriptor until the END indicator is received. The
file must be opened for writing. No other modifiers or flags are
valid with this con version character.

2-133

Data
Conversions

Return Value

See Also

HP SICL Language Reference

ISCANF

The following table lists the types of data that each of the numeric formats
accept.

d IEEE 488.2 HEX, OCT, BIN, and NRf formats (for example, #HA,
#Ql2, #BlOlO, 10, 10.00, and l.OOE+Ol).

f IEEE 488.2 HEX, OCT, BIN, and NRf formats (for example, #HA,
#Ql2, #BlOlO, 10, 10.00, and 1.00E+Ol).

i Integer. Data with a leading 0 will be converted as octal; data with
leading Ox or OX will be converted as hexidecimal.

u Unsigned integer. Same as i except value is unsigned.

o Unsigned integer. Data will be converted as octal.

x, X Unsigned integer. Data will be converted as hexidecimal.

e, g Floating. Integers, floating point, and exponential numbers will be
converted into floating point numbers (default is float).

Note that the conversion types i and dare not the same. This is also true for
f and e,g.

This function returns the total number of arguments converted by the format
string.

"IPRINTF", "IPROMPTF", "!FLUSH", "ISETBUF", "ISETUBUF", "IFREAD",
"IFWRITE"

2-134

C Syntax

Visual BASIC
Syntax

Description

Return Value

ISERIALBREAK

HP SICL Language Reference

ISERIALBREAK

Supported sessions: ... interface
Affected by functions: ilock, i timeout

#include <sicl.h>

int iserialbreak (id);
INST id;

Function iserialbreak
(ByVal id As Integer)

The iserialbreak function is used to send a BREAK on the interface
specified by id.

For C programs, this function returns zero (0) if successful, or a non-zero
error number if an error occurs.

For Visual BASIC programs, no error number is returned. Instead, the global
Err variable is set if an error occurs.

2-135

C Syntax

Visual BASIC
Syntax

Description

HP SICL Language Reference

ISERIALCTRL

Supported sessions: ... interface
Affected by functions: ilock, i timeout

#include <sicl.h>

int iserialctrl (id, request, setting);
INST id;
int request;
unsigned long setting;

Function iserialctrl
(ByVal id As Integer, ByVal request As Integer,
ByVal setting As Long)

The iserialctrl function is used to set up the serial interface for data
exchange. This function takes request (one of the following values) and sets
the interface to the setting. The following are valid values for request:

I_SERIAL_BAUD

2-136

The setting parameter will be the new speed of the
interface. The value should be a valid baud rate
for the interface (for example, 300, 1200, 9600).
The baud rate is represented as an unsigned long
integer, in bits per second. If the value is not a
recognizable baud rate, an err_param error is
returned. The following are the supported baud
rates: 50, 110, 300, 600, 1200, 2400, 4800, 7200,
9600, 19200, 38400, and 57600.

I_SERIAL_PARITY

I_SERIAL_STOP

I_SERIAL_WIDTH

HP SICL Language Reference

ISERIALCTRL

The following values are acceptable values for
setting:

I_SERIAL_PAR_EVEN
I_SERIAL_PAR_ODD
I_SERIAL_PAR_NONE
I_SERIAL_PAR_MARK
I_SERIAL_PAR_SPACE

Even parity
Odd parity
No parity bit is used
Parity is always one
Parity is always zero

The following are acceptable values for setting:

I_SERIAL_STOP _1
I_SERIAL_STOP_2

1 stop bit
2 stop bits

The following are acceptable values for setting:

I_SERIAL_CHAR_5
I_SERIAL_CHAR_6
I_SERIAL_CHAR_7
I_SERIAL_CHAR_8

5 bit characters
6 bit characters
7 bit characters
8 bit characters

I _SERIAL_READ _BUFSZ This is used to set the size of the read buffer. The
setting parameter is used as the size of buffer to
use. This value must be in the range of 1 and
32767.

I_SERIAL_DUPLEX The following are acceptable values for setting:

I_SERIAL_DUPLEX_FULL Use full duplex
I_SERIAL_DUPLEX_HALF Use half duplex

I_SERIAL_FLOW_CTRL The setting parameter must be set to one of the
following values. If no flow control is to be used,
set setting to zero (0). The following are the
supported types of flow control:

I_SERIAL_FLOW_NONE No handshaking
I_SERIAL_FLOW _XON Software handshaking
I_SERIAL_FLOW_RTS_CTS Hardware handshaking
I_SERIAL_FLOW_DTR_DSR Hardware handshaking

2-137

HP SICL Language Reference

ISERIALCTRL

I_SERIAL_READ_EOI

I_SERIAL_WRITE_EOI

2-138

Used to set the type of END Indicator to use for
reads.

In order for iscanf to work as specified, data
must be terminated with an END indicator. The
RS-232 interface has no standard way of doing this.
SICL gives you two different methods of indicating
EOI.

The first method is to use a character. The
character can have a value between 0 and Oxff.
Whenever this value is encountered in a read
(iread, iscanf, or ipromptf), the read will
terminate and the term reason will include
I_ TERM_END. The default for serial is the newline
character (\n).

The second method is to use bit 7 (if numbered
0-7) of the data as the END indicator. The data
would be bits 0 through 6 and, when bit 7 is set,
that means EOI. The following values are valid for
the setting parameter:

• I_SERIAL_EOI_CHR I (n) - A character is used
to indicate EOI, where n is the character. This is
the default type, and \n is used .

• I_SERIAL_EOI_NONE - No EOI indicator.

• I_SERIAL_EOI_BIT8 - Use the eighth bit of the
data to indicate EOI. On the last byte, the eighth
bit will be masked off, and the result will be
placed into the buffer.

The setting parameter will contain the value of
the type of END Indicator to use for reads. The
following are valid values to use:

• I_SERIAL_EOI_NONE - No EOI indicator. This is
the default for I_SERIAL_WRITE (iprintf).

• I_SERIAL_EOI_BIT8 - Use the eighth bit of the
data to indicate EOI. On the last byte, the eighth
bit will be masked off, and the result will be
placed into the buffer.

Return Value

See Also

I_SERIAL_RESET

HP SICL Language Reference

ISERIALCTRL

This will reset the serial interface. The following
actions will occur: any pending writes will be
aborted, the data in the input buffer will be
discarded, and any error conditions will be reset.
This differs from iclear in that no BREAK will be
sent.

For C programs, this function returns zero (0) if successful, or a non-zero
error number if an error occurs.

For Visual BASIC programs, no error number is returned. Instead, the global
Err variable is set if an error occurs.

"ISERIALSTAT"

2-139

C Syntax

Visual BASIC
Syntax

Description

Return Value

See Also

HP SICL Language Reference

ISERIALMCLCTRL

Supported sessions: ... interface
Affected by functions: ilock, i timeout

#include <sicl.h>

int iserialmclctrl (id, sline, state);
INST id;
int sline;
int state;

Function iserialmclctrl
(ByVal id As Integer, ByVal sline As Integer,
ByVal state As Integer)

The iserialmclctrl function is used to control the Modem Control Lines.
The sline parameter sends one of the following values:

I_SERIAL_RTS .
I_SERIAL_DTR

Ready To Send line
Data Terminal Ready line

If the state value is non-zero, the Modem Control Line will be asserted;
otherwise it will be cleared.

For C programs, this function returns zero (0) if successful, or a non-zero
error number if an error occurs.

For Visual BASIC programs, no error number is returned. Instead, the global
Err variable is set if an error occurs.

"ISERIALMCLSTAT", "IONINTR", "ISETINTR"

2-140

C Syntax

Visual BASIC
Syntax

Description

Return Value

See Also

ISERIALMCLSTAT

HP SICL Language Reference

ISERIALMCLSTAT

Supported sessions: ... interface
Affected by functions: ilock, i timeout

#include <sicl.h>

int iserialmclstat (id, sline, state);
INST id;
int sline;
int *State;

Function iserialmclstat
(ByVal id As Integer, ByVal sline As Integer,
state As Integer)

The iserialmclstat function is used to determine the current state of the
Modem Control Lines. The sline parameter sends one of the following values:

I_SERIAL_RTS
I_SERIAL_DTR

Ready To Send line
Data Terminal Ready line

If the value returned in state is non-zero, the Modem Control Line is asserted;
otherwise it is clear.

For C programs, this function returns zero (0) if successful, or a non-zero
error number if an error occurs.

For Visual BASIC programs, no error number is returned. Instead, the global
Err variable is set if an error occurs.

"ISERIALMCLCTRL''

2-141

C Syntax

Visual BASIC
Syntax

Description

HP SICL Language Reference

ISERIALSTAT

Supported sessions: ... interface
Affected by functions: ilock, itimeout

#include <sicl.h>

int iserialstat (id, request, result);
INST id;
int request;
unsigned long *result;

Function iserialstat
(ByVal id As Integer, ByVal request As Integer,
result As Long)

The iserialstat function is used to find the status of the serial interface.
This function takes one of the following values passed in request and returns
the status in the result parameter:

I_SERIAL_BAUD

I_SERIAL_PARITY

I_SERIAL_STOP

2-142

The result parameter will be set to the speed of
the interface.

The result parameter will be set to one of the
following values:

I_SERIAL_PAR_EVEN
I_SERIAL_PAR_ODD
I_SERIAL_PAR_NONE
I_SERIAL_PAR_MARK
I_SERIAL_PAR_SPACE

Even parity
Odd parity
No parity bit is used
Parity is always one
Parity is always zero

The result parameter will be set to one of the
following values:

I_SERIAL_STOP_1
I_SERIAL_STOP_2

1 stop bits
2 stop bits

I_SERIAL_WIDTH

I_SERIAL_DUPLEX

I_SERIAL_MSL

HP SICL Language Reference

ISERIALSTAT

The result parameter will be set to one of the
followi.ng values:

I_SERIAL_CHAR_5
I_SERIAL_CHAR_6
I_SERIAL_CHAR_7
I_SERIAL_CHAR_8

5 bit characters
6 bit characters
7 bit characters
8 bit characters

The result parameter will be set to one of the
following values:

I_SERIAL_DUPLEX_FULL
I_SERIAL_DUPLEX_HALF

Use full duplex
Use half duplex

The result parameter will be set to the bit wise OR
of all of the Modern Status Lines that are currently
being asserted. The value of the result parameter
will be the logical OR of all of the serial lines
currently being asserted. The serial lines are both
the Modern Control Lines and the Modem Status
Lines. The following are the supported serial lines:

• I_SERIAL_DCD - Data Carrier Detect.

• I_SERIAL_DSR - Data Set Ready.

• I_SERIAL_ CTS - Clear To Send.

• I_SERIAL_RI - Ring Indicator.

• !_SERIAL_ TERI - Trailing Edge of RI.

• I_SERIAL_D_DCD - The DCD line has changed
since the last time this status has been checked.

• I_SERIAL_D_DSR - The DSR line has changed
since the last time this status has been checked.

• I_SERIAL_D _ CTS - The CTS line has changed
since the last time this status has been checked.

2-143

HP SICL Language Reference
ISERIALSTAT

I_SERIAL_STAT This is a read destructive status. That means
reading this request resets the condition.

The result parameter will be set the bit wise OR of
the following conditions:

• I_SERIAL_DAV - Data is available.

• I_SERIAL_PARITY - Parity error has occurred
since the last time the status was checked.

• I_SERIAL_OVERFLOW - Overflow error has
occurred since the last time the status was
checked.

• I_SERIAL_FRAMING - Framing error has
occurred since the last time the status was
checked.

• I_SERIAL_BREAK - Break has been received
since the last time the status was checked.

• I_SERIAL_TEMT - Transmitter empty.

I_SERIAL_READ_BUFSZ The result parameter will be set to the current size
of the read buffer.

I_SERIAL_READ_DAV The result parameter will be set to the current
amount of data available for reading.

I_SERIAL_FLOW_CTRL The result parameter will be set to the value of the
current type of flow control that the interface is
using. If no flow control is being used, result will
be set to zero (0). The following are the supported
types of flow control:

2-144

I_SERIAL_FLOW_NONE No handshaking
I_SERIAL_FLOW_XON Software handshaking
I_SERIAL_FLOW_RTS_CTS Hardware handshaking
I_SERIAL_FLOW _DTR_DSR Hardware handshaking

Return Value

See Also

I_SERIAL_READ_EOI

HP SICL Language Reference

ISERIALSTAT

The result parameter will be set to the value of the
current type of END indicator that is being used
for reads. The following values can be returned:

• I_SERIAL_EOI_CHRI (n) - A character is used
to indicate EOI, where n is the character. These
two values are logically OR-ed together. To find
the value of the character, AND result with Oxff.
The default is a \n.

• I_SERIAL_EOI_NONE - No EOI indicator. This is
the default for I_SERIAL_READ (iscanf) .

• I_SERIAL_EOI_BIT8 - Use the eighth bit of the
data to indicate EOI. This last byte will mask off
this bit and use the rest for the data that is put
in your buffer.

I_SERIAL_WRITE_EOI The result parameter will be set to the value of the
current type of END indicator that is being used
for reads. The following values can be returned:

• I_SERIAL_EOI_NONE - No EOI indicator. This is
the default for !_SERIAL_ WRITE (iprintf).

• I_SERIAL_EOI_BIT8 - Use the eighth bit of the
data to indicate EOI. This last byte will mask off
this bit and use the rest for the data that is put
in your buffer.

For C programs, this function returns zero (0) if successful, or a non-zero
error number if an error occurs.

For Visual BASIC programs, no error number is returned. Instead, the global
Err variable is set if an error occurs.

"ISERIALCTRL"

2-145

C Syntax

Description

HP SICL Language Reference

ISETBUF

Supported sessions: device, interface, conunander
Affected by functions: ilock, itimeout

#include <sicl.h>

int isetbuf (id, mask, size);
INST id;
int mask;
int size;

NOTE
Not supported on Visual BASIC.

This function is used to set the size and actions of the read and/or write
buffers of formatted I/O. The mask can be one or the bit-wise OR of both of
the following flags:

LBUF_READ
LBUF_WRITE

Specifies the read buffer.
Specifies the write buffer.

The size argument specifies the size of the read or write buffer (or both) in
bytes. Setting a size of zero (0) disables buffering. This means that for write
buffers, each byte goes directly to the device. For read buffers, the driver
reads each byte directly from the device.

2-146

Return Value

See Also

HP SICL Language Reference

ISETBUF

Setting a size greater than zero creates a buffer of the specified size. For write
buffers, the buffer flushes (writes to the device) whenever the buffer fills up
and for each newline character in the format string. (However, note that the
buffer is not flushed by newline characters in the argument list.) For read
buffers, the buffer is never flushed (that is, it holds any leftover data for the
next iscanf /ipromptf call). This is the default action.

Setting a size less than zero creates a buffer of the absolute value of the
specified size. For write buffers, the buffer flushes (writes to the device)
whenever the buffer fills up, for each newline character in the format string,
or at the completion of every iprintf call. For read buffers, the buffer
flushes (erases its contents) at the end of every iscanf (or ipromptf)
function.

NOTE

Calling isetbuf flushes any data in the buffer(s) specified in the mask parameter.

This function returns zero (0) if successful, or a non-zero error number if an
error occurs.

"IPRINTF", "ISCANF", "IPROMPTF", "IFWRITE", "IFREAD", "!FLUSH",
"ISETUBUF"

2-147

C Syntax

Description

Return Value

See Also

HP SICL Language Reference

ISETDATA

Supported sessions: device, interface, commander

#include <sicl.h>

int isetdata (id, data);
INST id;
void *data;

NOTE
Nat supported on Visual BASIC.

The isetdata function stores a pointer to a data structure and associates it
with a session (or INST id).

You can use these user-defined data structures to associate device-specific data
with a session such as device name, configuration, instrument settings, and so
forth.

You are responsible for the management of the buffer (that is, if the buffer
needs to be allocated or deallocated, you must do it).

This function returns zero (0) if successful, or a non-zero error number if an
error occurs.

"IGETDATA"

2-148

C Syntax

Description

ISETINTR

HP SICL Language Reference

ISETINTR

Supported sessions: device, interface, commander

#include <sicl.h>

int isetintr (id, intnum, secval);
INST id;
int intnum;
long secval;

NOTE

Not supported on Visual BASIC.

The isetintr function is used to enable interrupt handling for a particular
event. Installing an interrupt handler only allows you to receive enabled
interrupts. By default, all interrupt events are disabled.

The intnum parameter specifies the possible causes for interrupts. A valid
intnum value for any type of session is:

LINTR_OFF Turns off all interrupt conditions previously enabled with
calls to isetintr.

A valid intnum value for all device sessions (except for GPIB and GPIO,
which have no device-specific interrupts) is:

I_INTR_* Individual interfaces may include other interface-interrupt
conditions. See the following information on each interface
for more details.

2-149

Interrupts on
GPIB

HP SICL Language Reference

ISETINTR

Valid intnum values for all interface sessions are:

I_INTR_INTFACT Interrupt when the interface becomes active. Enable if
secval! = O; disable if secval= 0.

I_INTR_INTFDEACT Interrupt when the interface becomes deactivated.

I_INTR_TRIG

I_INTR_*

Enable if secval! = O; disable if secval= 0.

Interrupt when a trigger occurs. The secval parameter
contains a bit-mask specifying which triggers can
cause an interrupt. See tl;le ixtrig function's which
parameter for a list of valid values.

Individual interfaces may include other interface
interrupt conditions. See the following information on
each interface for more details.

Valid intnum values for all commander sessions (except RS-232 and GPIO,
which do not support commander sessions) are:

I_INTR_STB Interrupt when the commander reads the status byte
from this controller. Enable if secval! = O; disable if
secval=O.

I_INTR_DEVCLR Interrupt when the commander sends a device clear
to this controller (on the given interface). Enable if
secval! = O; disable if secval= 0.

GPIB Device Session Interrupts

There are no device-specific interrupts for the GPIB interface.

GPIB Interface Session Interrupts

The interface-specific interrupt for the GPIB interface is:

I_INTR_GPIB_IFC Interrupt when an interface clear occurs. Enable when
secval! =0; disable when secval=O. This interrupt will
be generated regardless of whether this interface is the
system controller or not (that is, regardless of whether
this interface generated the IFC, or another device on
the interface generated the IFC).

2-150

HP SICL Language Reference

ISETINTR

The following are generic interrupts for the GPIB interface:

I_INTR_INTFACT Interrupt occurs whenever this controller becomes the
active controller.

I_INTR_INTFDEACT Interrupt occurs whenever this controller passes
control to another GPIB device. (For example, the
igpibpassctl function has been called.)

GPIB Commander Session Interrupts

The following are commander-specific interrupts for GPIB:

I_INTR_GPIB_PPOLLCONFIG This interrupt occurs whenever there is a
change to the PPOLL configuration. This
interrupt is enabled using is et in tr by
specifying a secval greater than 0. If secval = 0,
this interrupt is disabled.

I_INTR_GPIB_REMLOC

I_INTR_GPIB_GET

This interrupt occurs whenever a remote
or local message is received and addressed
to listen. This interrupt is enabled using
isetintr by specifying a secval greater than 0.
If secval= 0, this interrupt is disabled.

This interrupt occurs whenever the GET
message is received and addressed to listen.
This interrupt is enabled using isetintr by
specifying a secval greater than 0. If secval = 0,
this interrupt is disabled.

2-151

Interrupts on
GPIO

HP SICL ·Language Reference

ISETINTR

I_INTR_GPIB_TLAC This interrupt occurs whenever this device has
been addressed to talk or untalk, or the device
has been addressed to listen or unlisten. When
the interrupt handler is called, the secval value
is set to a bit mask. Bit 0 is for listen, and bit 1
is for talk. If:

• Bit 0 = 1, then this device is addressed to
listen.

• Bit 0 = 0, then this device is not addressed
to listen.

• Bit 1 = 1, then this device is addressed to
talk.

• Bit 1 = 0, then this device is not addressed
to talk.

This interrupt is enabled using isetintr by
specifying a secval greater than 0. If secval = 0,
this interrupt is disabled.

G PIO Device Session Interrupts

GPIO does not support device sessions. Therefore, there are no device session
interrupts for GPIO.

GPIO Interface Session Interrupts

The interface-specific interrupts for the GPIO interface are:

I_INTR_GPIO_EIR

I_INTR_GPIO_RDY

2-152

This interrupt occurs whenever the EIR line is
asserted by the peripheral device. Enabled when
secval! =0, disabled when secval=O.

This interrupt occurs whenever the interface
becomes ready for the next handshake. (The exact
meaning of "ready" depends on the configured
handshake mode.) Enabled when secval! =0,
disabled when secval=O.

NOTE

HP SICL Language Reference

ISETINTR

The GPIO interface is always active. Therefore, the interrupts for I_ INTR_ INTF ACT and
I_INTR_INTFDEACT will never occur.

GPIO Commander Session Interrupts

GPIO does not support conunander sessions. Therefore, there are no
conunander session interrupts for GPIO.

Interrupts on RS-232 Device Session Interrupts

RS-232 (Serial) The device-specific interrupt for the RS-232 interface is:

I_INTR_SERIAL_DAV This interrupt occurs whenever the receive buffer in
the driver goes from the empty to the non-empty
state.

RS-232 Interface Session Interrupts

The interface-specific interrupts for the RS-232 interface are:

!_INTR_SERIAL_MSL This interrupt occurs whenever one of the specified
modem status lines changes states. The secval
argument in ionintr is the logical OR of the Modem
Status Lines to monitor. In the interrupt handler,
the sec argument will be the logical OR of the MSL
line(s) that caused the interrupt handler to be
invoked.

Note that most implementations of the ring indicator
interrupt only deliver the interrupt when the state
goes from high to low (that is, a trailing edge). This
differs from the other MSLs in that it's not simply
just a state change that causes the interrupts.

The status lines that can cause this interrupt are
DCD, CTS, DSR, and RI.

2-153

HP SICL Language Reference

ISETINTR

I_INTR_SERIAL_BREAK This interrupt occurs whenever a BREAK is
received.

I_INTR_SERIAL_ERROR This interrupt occurs whenever a parity, overflow,
or framing error happens. The secval argument in
ionintr is the logical OR of one or more of the
following values to enable the appropriate interrupt.
In the interrupt handler, the sec argument will be
the logical OR of these values that indicate which
error(s) occurred:

• I_SERIAL_PARERR - Parity Error

• I_SERIAL_OVERFLOW- Buffer Overflow Error

• I_SERIAL_FRAMING - Framing Error

I_INTR_SERIAL_DAV This interrupt occurs whenever the receive buffer in
the driver goes from the empty to the non-empty
state.

LINTR_SERIAL_ TEMT This interrupt occurs whenever the transmit buffer
in the driver goes from the non-empty to the empty
state.

The following are generic interrupts for the RS-232 interface:

I_INTR_INTFACT This interrupt occurs when the Data Carrier Detect
(DCD) line is asserted.

I_INTR_INTFDEACT This interrupt occurs when the Data Carrier Detect
(DCD) line is cleared.

RS-232 Commander Session Interrupts

RS-232 does not support commander sessions. Therefore, there are no
commander session interrupts for RS-232.

2-154

Interrupts on
VXI

HP SICL Language Reference

ISETINTR

VXI Device Session Interrupts

The device-specific interrupt for the VXI interface is:

I_INTR_ VXI_SIGNAL A specified device wrote to the VXI signal register
(or a VME interrupt arrived from a VXI device
that is in the servant list), and the signal was an
event you defined. This interrupt is enabled using
isetintr by specifying a secval! = 0. If secval= 0,
then this is disabled. The value written into the
signal register is returned in the secval parameter of
the interrupt handler.

VXI Interface Session Interrupts

The following are interface-specific interrupts for the VXI interface:

I_INTR_ VXI_SYSRESET A VXI SYSRESET occurred. This interrupt

I_INTR_VXI_VME

I_INTR_VXI_UKNSIG

I_INTR_VXI_VMESYSFAIL

I_INTR_VME_IRQ1

I_INTR_VME_IRQ2

I_INTR_VME_IRQ3

I_INTR_VME_IRQ4

I_INTR_VME_IRQ5

is enabled using isetintr by specifying a
secval! =0. If secval=O, then this is disabled.

A VME interrupt occurred from a non-VXI
device, or a VXI device that is not a servant
of this interface. This interrupt is enabled
using isetintr by specifying a secval! =0. If
soc-val= 0, then this is disabled.

A write to the VXI signal register was
performed by a device that is not a servant
of this controller. This interrupt condition
is enabled using isetintr by specifying a
secval! = 0. If soc-val= 0, then this is disabled.
The value written into the signal register
is returned in the sec-val parameter of the
interrupt handler.

The VME SYSFAIL line has been asserted.

VME IRQl has been asserted.

VME IRQ2 has been asserted.

VME IRQ3 has been asserted.

VME IRQ4 has been asserted.

VME IRQ5 has been asserted.

2-155

Return Value

See Also

HP SICL Language Reference

ISETINTR

I_INTR_VME_IRQ6

I_INTR_VME_IRQ7

I_INTR_ANY_SIG

VME IRQ6 has been asserted.

VME IRQ7 has been asserted.

A write has ·occurred to the SIGNAL register
value.

The following are generic interrupts for the VXI interface:

I_INTR_INTFACT This interrupt occurs whenever the interface receives a
BNO (Begin Normal Operation) message.

I_INTR_INTFDEACT This interrupt occurs whenever the interface receives
an ANO (Abort Normal Operation) or ENO (End Normal
Operation) message.

VXI Commander Session Interrupts

The commander-specific interrupt for VXI is:

I_INTR_VXI_LLOCK A lock/clearJock word-serial command has arrived.
This interrupt is enabled using isetintr by
specifying a secval! =0. If secval=O, then this
is disabled. If a lock occurred, the secval in the
handler is passed a 1; if an unlock, the secval in the
handler is passed 0.

This function returns zero (0) if successful, or a non-zero error number if an
error occurs.

"IONINTR", "IGETONINTR", "IWAITHDLR", "IINTROFF", "IINTRON",
"IXTRIG", and the section titled "Asynchronous Events and HP-UX Signals"
in the "Programming with HP SICL" chapter of the HP SICL User's Guide for
HP-UX for protecting 1/0 calls against interrupts.

2-156

C Syntax

Visual BASIC
Syntax

Description

ISETLOCKWAIT

HP SICL Language Reference

ISETLOCKWAIT

Supported sessions: device, interface, cormnander

#include <sicl.h>

int isetlockwait (id, flag);
INST id;
int flag;

Function isetlockwait
(ByVal id As Integer, ByVal flag As Integer)

The isetlockwai t function determines whether library functions wait for a
device to become unlocked or return an error when attempting to operate on
a locked device. The error that is returned is I _ERR_LOCKED.

If flag is non-zero, then all operations on a device or interface locked by
another session will wait for the lock to be removed. This is the default case.

If flag is zero (0), then all operations on a device or interface locked by
another session will return an error (I_ERR_LOCKED). This will disable the
timeout value set up by the itimeout function.

NOTE

If a request is made that cannot be granted due to hardware constraints, the process will hang until
the desired resources become available. To avoid this, use the isetlockwai t command with the
flag parameter set to 0, and thus generate an error instead of waiting for the resources to become
available.

2-157

Return Value

See Also

HP SICL Language Reference

ISETLOCKWAIT

For C programs, this function returns zero (0) if successful, or a non-zero
error number if an error occurs.

For Visual BASIC programs, no error number is returned. Instead, the global
Err variable is set if an error occurs.

"ILOCK", "!UNLOCK", "IGETLOCKWAIT"

2-158

C Syntax

Visual BASIC
Syntax

Description

Return Value

See Also

ISETSTB

HP SICL Language Reference

ISETSTB

Supported sessions: .. commander
Affected by functions: ilock, i timeout

#include <sicl.h>

int isetstb (id, stb);
INST id;
unsigned char stb;

Function isetstb
(ByVal id As Integer, ByVal stb As Byte)

The isetstb function allows the status byte value for this controller to be
changed. This function is only valid for commander sessions.

Bit 6 in the stb (status byte) has special meaning. If bit 6 is set, then an SRQ
notification is given to the remote controller, if its identity is known. If bit 6
is not set, then the SRQ notification is canceled. The exact mechanism for
sending the SRQ notification is dependent on the interface.

For C programs, this function returns zero (0) if successful, or a non-zero
error number if an error occurs.

For Visual BASIC programs, no error number is returned. Instead, the global
Err variable is set if an error occurs.

"IREADSTB", "IONSRQ"

2-159

C Syntax

Description

HP SICL Language Reference

ISETUBUF

Supported sessions: device, interface, commander
Affected by functions: ilock, i timeout

#include <sicl.h>

int isetubuf (id, mask, size, buj);
INST id;
int mask;
int size;
char *buf;

NOTE
Not supported on Visual BASIC.

The isetubuf function is used to supply the buffer(s) used for formatted I/O.
With this function you can specify the size and the address of the formatted
1/0 buffer.

This function is used to set the size and actions of the read and/or write
buffers of formatted 1/0. The mask may be one, but NOT both of the following
flags:

I_BUF_READ
I_BUF_WRITE

Specifies the read buffer.
Specifies the write buffer.

Setting a size greater than zero creates a buffer of the specified size. For
write buffers, the buffer flushes (writes to the device) whenever the buffer
fills up and for each newline character in the format string. For read buffers,
the buffer is never flushed (that is, it holds any leftover data for the next
iscanf /ipromptf call). This is the default action.

2-160

Return Value

See Also

HP SICL Language Reference

ISETUBUF

Setting a size less than zero creates a buffer of the absolute value of the
specified size. For write buffers, the buffer flushes (writes to the device)
whenever the buffer fills up, for each newline character in the format string,
or at the completion of every iprintf call. For read buffers, the buffer
flushes (erases its contents) at the end of every iscanf (or ipromptf)
function.

NOTE

Calling isetubuf flushes the buffer specified in the mask parameter.

NOTE

Once a buffer is allocated to isetubuf, do not use the buffer for any other use. In addition, once
a buffer is allocated to isetubuf (either for a read or write buffer), don't use the same buffer for
any other session or for the opposite type of buffer on the same session (write or read, respectively).

In order to free a buffer allocated to a session, make a call to isetbuf, which
will cause the user-defined buffer to be replaced by a system-defined buffer
allocated for this session. The user-defined buffer may then be either re-used,
or freed by the program.

This function returns zero (0) if successful, or a. non-zero error number if an
error occurs.

"IPRINTF", "ISCANF", "IPROMPTF", "IFWRITE", "IFREAD", "ISETBUF",
"IFLUSH"

2-161

C Syntax

Visual BASIC
Syntax

Description

HP SICL Language Reference

ISWAP

#include <sicl.h>

int iswap (addr, length, datasize) ;
int ibeswap (addr, length, datasize);
int ileswap (addr, length, datasize) ;
char *addr;
unsigned long length;
int datasize;

Function iswap
(ByVal addr As Long, ByVal length As Long,
ByVal datasize As Integer)

Function ibeswap
(ByVal addr As Long, ByVal length As Long,
ByVal datasize As Integer)

Function ileswap
(ByVal addr As Long, ByVal length As Long,
ByVal datasize As Integer)

These functions provide an architecture-independent way of byte swapping
data received from a remote device or data that is to be sent to a remote
device. This data may be received/sent using the iwri te/iread calls, or the
ifwri te/ifread calls.

The iswap function will always swap the data.

The ibeswap function assumes the data is in big-endian byte ordering
(big-endian byte ordering is where the most significant byte of data is stored
at the least significant address) and converts the data to whatever byte
ordering is native on this controller's architecture. Or it takes the data that
is byte ordered for this controller's architecture and converts the data to
big-endian byte ordering. (Notice that these two conversions are identical.)

2-162

HP SICL Language Reference

ISWAP

The ileswap function assumes the data is in little-endian byte ordering
(little-endian byte ordering is where the most significant byte of data is
stored at the most significant address) and converts the data to whatever
byte ordering is native on this controller's architecture. Or it takes the data
that is byte ordered for this controller's architecture and converts the data to
little-endian byte ordering. (Notice that these two conversions are identical.)

NOTE

Depending on the native byte ordering of the controller in use (either little-endian, or big-endian), that
either the ibeswap or ileswap functions will always be a no-op, and the other will always
swap bytes, as appropriate.

In all three functions, the addr parameter specifies a pointer to the data. The
length parameter provides the length of the data in bytes. The datasize must
be one of the values 1, 2, 4, or 8. It specifies the size of the data in bytes and
the size of the byte swapping to perform:

• 1 = byte data and no swapping is performed.
• 2 = 16-bit word data and bytes are swapped on word boundaries.
• 4 = 32-bit longword data and bytes are swapped on longword boundaries.
• 8 = 64-bit data and bytes are swapped on 8-byte boundaries.

The length parameter must be an integer multiple of datasize. If not,
unexpected results will occur.

IEEE 488.2 specifies the default data transfer format to transfer data in
big-endian format. Non-488.2 devices may send data in either big-endian or
little-endian format.

NOTE

These functions do not depend on a SICL session id. Therefore, they may be used to perform non-SICL
related task (namely, file 1/0).

2-163

Return Value

See Also

HP SICL Language Reference

ISWAP

The following constants are available for use by your application to determine
which byte ordering is native to this controller's architecture.

I_ORDER_LE

I_ORDER_BE

This constant is defined if the native controller is
little-endian.

This constant is defined if the native controller is big-endian.

These constants may be used in #if or #ifdef statements to determine the
byte ordering requirements of this controller's architecture. This information
can then be used with the known byte ordering of the devices being used to
determine the swapping that needs to be performed.

For C programs, this function returns zero (0) if successful, or a non-zero
error number if an error occurs.

For Visual BASIC programs, no error number is returned. Instead, the global
Err variable is set if an error occurs.

"IPOKE", "IPEEK", "ISCANF", "IPRINTF"

2-164

C Syntax

Visual BASIC
Syntax

Description

ITERMCHR

HP SICL Language Reference

ITERMCHR

Supported sessions: device, interface, commander

#include <sicl.h>

int itermchr (id, tchr);
INST id;
int tchr;

Function itermchr
(ByVal id As Integer, ByVal tchr As Integer)

By default, a successful iread only terminates when it reads bufsize number
of characters, or it reads a byte with the END indicator. The it ermchr
function permits you to define a termination character condition.

The tchr argument is the character specifying the termination character. If
tchr is between 0 and 255, then iread terminates when it reads the specified
character. If tchr is -1, then no termination character exists, and any previous
termination character is removed.

Calling i termchr affects all further calls to iread and if read until you
make another call to it ermchr. The default termination character is -1,
meaning no termination character is defined.

NOTE

The iscanf function only terminates reading on an END indicator. The i termchr function has
no effect on the termination of an iscanf read.

2-165

Return Value

See Also

HP SICL Language Reference
ITERMCHR

For C programs, this function returns zero (0) if successful, or a non-zero
error number if an error occurs.

For Visual BASIC programs, no error number is returned. Instead, the global
Err variable is set if an error occurs.

"!READ", "IFREAD", "IGETTERMCHR"

2-166

C Syntax

Visual BASIC
Syntax

Description

Return Value

See Also

HP SICL Language Reference

ITIMEOUT

!TIMEOUT

Supported sessions: device, interface, conunander

#include <sicl.h>

int it imeout (id, tval) ;
INST id;
long tval;

Function itimeout
(ByVal id As Integer, ByVal tval As Long)

The it imeout function is used to set the maximum time to wait for an
I/O operation to complete. In this function, tval defines the timeout in
milliseconds. A value of zero (0) disables timeouts.

NOTE

Not all computer systems can guarantee an accuracy of one millisecond on timeouts. Some computer
clock systems only provide a resolution of 1/5Dth or 1/6Dth of a second. Other computers have a
resolution of only 1 second. Note that the time value is always rounded up to the next unit of
resolution.

For C programs, this function returns zero (0) if successful, or a non-zero
error number if an error occurs.

For Visual BASIC programs, no error number is returned. Instead, the global
Err variable is set if an error occurs.

"IGETTIMEOUT"

2-167

C Syntax

Visual BASIC
Syntax

Description

Triggers on
GPIB

Triggers on
GPIO

Triggers on
RS-232 (Serial)

HP SICL Language Reference

!TRIGGER

Supported sessions: device, interface
Affected by functions: ilock, itimeout

#include <sicl.h>

int itrigger (id);
INST id;

Function itrigger
(ByVal id As Integer)

The i trigger function is used to send a trigger to a device.

GPIB Device Session Triggers

The i trigger function performs an addressed GPIB group execute trigger
(GET).

GPIB Interface Session Triggers

The i trigger function performs an unaddressed GPIB group execute trigger
(GET). The i trigger corrunand on a GPIB interface session should be used
in conjunction with igpibsendcmd.

GPIO Interface Session Triggers

The i trigger function performs the same function as calling ixtrig with
the I_ TRIG_STD value passed to it: it pulses the CTLO control line.

RS-232 Device Session Triggers

The i trigger function sends the 488.2 *TRG\n command to the serial
device.

2-168

VXI Triggers

Return Value

See Also

RS-232 Interface Session Triggers

HP SICL Language Reference

ITRIGGER

The i trigger function performs the same function as calling ixtrig with
the I __ TRIG_STD value passed to it: it pulses the DTR modem control line.

VXI Device Session Triggers

The itrigger function sends a word-serial trigger command to the specified
device.

NOTE

The i trigger function is only supported on message-based device sessions with VXI.

VXI Interface Session Triggers

The i trigger function performs the same function as calling ixtrig with
the LTRIG_STD value passed to it: it causes one or more VXI trigger lines
to fire. Which trigger lines are fired is determined by the i vxi trigroute
function.

For C programs, this function returns zero (0) if successful, or a non-zero
error number if an error occurs.

For Visual BASIC programs, no error number is returned. Instead, the global
Err variable is set if an error occurs.

"IXTRIG", and the interface-specific chapter in the HP SICL User's Guide for
more information on trigger actions.

2-169

C Syntax

Visual BASIC
Syntax

Description

HP SICL Language Reference

!UNLOCK

Supported sessions: device, interface, corrunander

#include <sicl.h>

int iunlock (id);
INST id;

Function iunlock
(ByVal id As Integer)

The iunlock function unlocks a device or interface that has been previously
locked. If you attempt to perform an operation on a device or interface that is
locked by another session, the call will hang until the device or interface is
unlocked.

Calls to ilock/iunlock may be nested, meaning that there must be an equal
number of unlocks for each lock. This means that simply calling the iunlock
function may not actually unlock a device or interface again. For example,
note how the following C code locks and unlocks devices:

ilock(id);
/* Device locked */
iunlock (id) ;
I* Device unlocked *I
ilock(id);
I* Device locked */
ilock(id);
I* Device locked */
iunlock(id);
I* Device still locked */
iunlock (id) ;
I* Device unlocked */

2-170

Return Value

See Also

HP SICL Language Reference

IUNLOCK

For C programs, this function returns zero (0) if successful, or a non-zero
error number if an error occurs.

For Visual BASIC programs, no error number is returned. Instead, the global
Err variable is set if an error occurs.

"ILOCK", "ISETLOCKWAIT", "IGETLOCKWAIT"

2-171

C Syntax

Visual BASIC
Syntax

Description

HP SICL Language Reference

IUNMAP

Supported sessions: device, interface, commander

#include <sicl.h>

int iurunap (id, addr, map_space, pagestart, pagecnt);
INST id;
char *addr;
int map_space;
unsigned int pagestart;
unsigned int pagecnt;

Function iunmap
(ByVal id As Integer, ByVal addr As Long,
ByVal mapspace As Integer, ByVal pagestart As Integer,
ByVal pagecnt As Integer)

NOTE

Nat supported over LAN.

The i urunap function unmaps a mapped memory space. The id specifies a
VXI interface or device session. The addr argument contains the address
value returned from the imap call. The pagestart argument indicates the
page within the given memory space where the memory mapping starts. The
pagecnt argument indicates how many pages to free.

2-172

Return Value

See Also

HP SICL Language Reference

IUNMAP

The map_space argument contains the following legal values:

I_MAP_A16
I_MAP_A24
I_MAP_A32
I_MAP_VXIDEV
I_MAP_EXTEND
I_MAP_SHARED

Map in VXI Al6 address space.
Map in VXI A24 address space.
Map in VXI A32 address space.
Map in VXI device registers. (Device session only.)
Map in VXI Al6 address space. (Device session only.)
Map in VXI A24/ A32 memory that is physically located on
this device (sometimes called local shared memory).

For C programs, this function returns zero (0) if successful, or a non-zero
error number if an error occurs.

For Visual BASIC programs, no error number is returned. Instead, the global
Err variable is set if an error occurs.

"IMAP"

2-173

C Syntax

Visual BASIC
Syntax

Description

Return Value

HP SICL Language Reference

!VERSION

#include <sicl.h>

int iversion (siclversion, implversion);
int *siclversion;
int *implversion;

Function iversion
(ByVal id As Integer, siclversion As Integer,
implversion As Integer)

The iversion function stores in siclversion the current SICL revision
number times ten that the application is currently linked with. The SICL
version number is a constant defined in sicl .h for C, and in SICL .BAS or
SICL4. BAS for Visual BASIC, as I_SICL_REVISION. This function stores in
implversion an implementation specific revision number (the version number
of this implementation of the SICL library).

For C programs, this function returns zero (0) if successful, or a non-zero
error number if an error occurs.

For Visual BASIC programs, no error number is returned. Instead, the global
Err variable is set if an error occurs.

2-174

C Syntax

Visual BASIC
Syntax

Description

IVXIBUSSTATUS

HP SICL Language Reference

IVXIBUSSTATUS

Supported sessions: ... interface

#include <sicl.h>

int ivxibusstatus (id, request, result);
INST id;
int request;
unsigned long *result;

Function ivxibusstatus
(ByVal id As Integer, ByVal request As Integer,
result As Long)

The ivxibusstatus function returns the status of the VXI interface. This
function takes one of the following parameters in the request parameter and
returns the status in the result parameter.

I_VXI_BUS_TRIGGER

I_VXI_BUS_LADDR

I_VXI_BUS_SERVANT_AREA

I_VXI_BUS_NORMOP

I_VXI_BUS_CMDR_LADDR

I_VXI_BUS_MAN_ID

I_VXI_BUS_MODEL_ID

Returns a bit-mask corresponding to the
trigger lines which are currently being driven
active by a device on the VXI bus.

Returns the logical address of the VXI
interface (viewed as a device on the VXI bus).

Returns the servant area size of this device.

Returns 1 if in normal operation, and a 0
otherwise.

Returns the logical address of this device's
commander, or -1 if no commander is present
(either this device is the top level commander,
or normal operation has not been established.

Returns the manufacturer's ID of this device.

Returns the model ID of this device.

2-175

Return Value

See Also

HP SICL Language Reference
IVXIBUSSTATUS

I_VXI_BUS_PROTOCOL

I_VXI_BUS_XPROT

I_VXI_BUS_SHM_SIZE

Returns the value stored in this device's
protocol register.

Returns the value that this device will use
to respond to a read protocol word-serial
command.

Returns the size of VXI memory available
on this device. For A24 memory, this value
represents 256 byte pages. For A32 memory,
this value represents 64 Kbyte pages.
Interpret as an unsigned integer for this
command.

I_ VXI_BUS_SHM_ADDR_SPACE Returns either 24 or 32 depending on
whether the device's VXI memory is located
in A24 or A32 memory space.

I_VXI_BUS_SHM_PAGE

I_VXI_BUS_VXIMXI

Returns the location of the device's VXI
memory. For A24 memory, the result is in 256
byte pages. For A32 memory, the result is in
64 Kbyte pages.

Returns O if this device is a VXI device.
Returns 1 if this device is a MXI device.

For C programs, this function returns zero (0) if successful, or a non-zero
error number if an error occurs.

For Visual BASIC programs, no error number is returned. Instead, the global
Err variable is set if an error occurs.

"IVXITRIGON" , "IVXITRIGOFF"

2-176

C Syntax

Visual BASIC
Syntax

Description

Return Value

See Also

IVXIGETTRIGROUTE

HP SICL Language Reference

IVXIGETTRIGROUTE

Supported sessions: ... interface
Affected by functions: ilock, itimeout

#include <sicl.h>

int ivxigettrigroute (id, which, route);
INST id;
unsigned long which;
unsigned long *route;

Function ivxigettrigroute
(ByVal id As Integer, ByVal which As Long,
route As Long)

The i vxigettrigrout e function returns in route the current routing of
the which parameter. See the ivxitrigroute function for more details on
routing and the meaning of route.

For C programs, this function returns zero (0) if successful, or a non-zero
error number if an error occurs.

For Visual BASIC programs, no error number is returned. Instead, the global
Err variable is set if an error occurs.

"IVXITRIGON", "IVXITRIGOFF", "IVXITRIGROUTE", "IXTRIG"

2-177

C Syntax

Visual BASIC
Syntax

Description

HP SICL Language Reference

IVXIRMINFO

Supported sessions: device, interface, commander

#include <sicl.h>

int ivxirminfo (id, laddr, info);
INST id;
int laddr;
struct vxiinfo *info;

Function ivxirminfo
(ByVal id As Integer, ByVal laddr As Integer,
info As vxiinfo)

The i vx irminf o function returns information about a VXI device from the
VXI Resource Manager. The id is the INST for any open VXI session. The
laddr parameter contains the logical address of the VXI device. The info
parameter points to a structure of type struct vxiinfo. The function fills in
the structure with the relevant data.

The structure struct vxiinfo (defined in the file sicl.h) is listed on the
following pages.

2-178

HP SICL Language Reference

IVXIRMINFO

For C programs, the vxiinfo structure has the following syntax:

struct vxiinfo {

}

I* Device Identification */
short l,addr; I* Logical Address */
char name[16];
char manuf_name[16];
char modeLname[16];
unsigned short man_id;
unsigned short model;
unsigned short devc/,ass;

I* Self Test Status */
short selftest;

I* Location of Device */
short cage_num;
short slot;

I* Device Information */

/* Symbolic Name (primary) */
/* Manufacturer Name */

I* Model Name *I
I* Manufacturer ID */
I* Model Number */

I* Device Class */

I* 1=PASSED O=FAILED */

I* Card Cage Number *I
I* Slot #, -1 is unknown, -2 is MXI */

unsigned short protocol; I* Value of protocol register */
unsigned short x_protocol; I* Value from Read Protocol command *I
unsigned short servant_area; I* Value of servant area */

I* Memory Information */
I* page size is 256 bytes
unsigned short addrspace;
unsigned short memsize;
unsigned short memstart;

I* Misc. Information*/
short slotO_l,addr;

short cmdr _l,addr;

for A24 and.64K bytes for A32*/
I* 24=A24, 32=A32, O=none */
I* Amount of memory in pages */
I* Start of memory in pages */

I* LU of slot 0 device, -1 if unknown */
I* LU of commander, -1 if top level*/

I* Interrupt Information */
short int_handler[8]; I* List of interrupt handlers */
short interrupter[8]; I* List of interrupters */

short file[10] ; I* Unused */

This static data is set up by the VXI resource manager.

2-179

Return Value

See Also

HP SICL Language Reference

IVXIRMINFO

For Visual BASIC programs, the vxiinfo structure has the following syntax:

Type vxiinfo
laddr As Integer
name As String * 16
manuf _name As String * 16
model_name As String * 16
man_id As Integer
model As Integer
devclass As Integer
self test As Integer
cage_num As Integer
slot As Integer
protocol As Integer
x_protocol As Integer
servant_area As Integer
addrspace As Integer
memsize As Integer
memstart As Integer
slotO_laddr As Integer
cmdr_laddr As Integer
int_handler(O To 7) As Integer
interrupter(O To 7) As Integer
fill(O To 9) As Integer

End Type

For C programs, this function returns zero (0) if successful, or a non-zero
error number if an error occurs.

For Visual BASIC programs, no error number is returned. Instead, the global
Err variable is set if an error occurs.

See the platform-specific manual for the section on the Resource Manager.

2-180

C Syntax

Visual BASIC
Syntax

Description

Return Value

IVXISERVANTS

HP SICL Language Reference

IVXISERVANTS

Supported sessions: ... interface

#include <sicl.h>

int i vxiservants (id, ma:x:num, list) ;
INST id;
int ma:x:num;
int *list;

Function ivxiservants
(ByVal id As Integer, ByVal ma:x:num As Integer,
list() As Integer)

The i vxiservants function returns a list of VXI servants. This function
returns the first ma:x:num servants of this controller. The list parameter
points to an array of integers that holds at least ma:x:num integers. This
function fills in the array from beginning to end with the list of active VXI
servants. All unneeded elements of the array are filled with -1.

For C programs, this function returns zero (0) if successful, or a non-zero
error number if an error occurs.

For Visual BASIC programs, no error number is returned. Instead, the global
Err variable is set if an error occurs.

2-181

C Syntax

Visual BASIC
Syntax

Description

HP SICL Language Reference

IVXITRIGOFF

Supported sessions: ... interface
Affected by functions: ilock, i timeout

#include <sicl.h>

int ivxitrigoff (id, which);
INST id;
unsigned long which;

Function ivxitrigoff
(ByVal id As Integer, ByVal which As Long)

The i vxi trig off function de-asserts trigger lines and leaves them
deactivated. The which parameter uses all of the same values as the ixtrig
command, namely:

I_TRIG_ALL

I_TRIG_TTLO
I_TRIG_TTL1
I_TRIG_TTL2
I_TRIG_TTL3
I_TRIG_TTL4
I_TRIG_TTL5
I_TRIG_TTL6
I_TRIG_TTL7
I_TRIG_ECLO
I_TRIG_ECL1
I_TRIG_ECL2
I_TRIG_ECL3
I_TRIG_EXTO
I_TRIG_EXT1

All standard triggers for this interface (that is, the bitwise
OR of all valid triggers)
TTL Trigger Line 0
TTL Trigger Line 1
TTL Trigger Line 2
TTL Trigger Line 3
TTL Trigger Line 4
TTL Trigger Line 5
TTL Trigger Line 6
TTL Trigger Line 7
ECL Trigger Line 0
ECL Trigger Line 1
ECL Trigger Line 2
ECL Trigger Line 3
External BNC or SMB Trigger Connector 0
External BNC or SMB Trigger Connector 1

Any combination of values may be used in which by performing a bit-wise
OR of the desired values.

2-182

Return Value

See Also

NOTE

HP SICL Language Reference

IVXITRIGOFF

To simply fire trigger lines (assert then de-assert the lines), use ixtrig instead of i vxi trigon
and i vxi trigoff.

For C programs, this function returns zero (0) if successful, or a non-zero
error number if an error occurs.

For Visual BASIC programs, no error number is returned. Instead, the global
Err variable is set if an error occurs.

"IVXITRIGON", "IVXITRIGROUTE", "IVXIGETTRIGROUTE", "IXTRIG"

2-183

C Syntax

Visual BASIC
Syntax

Description

HP SICL Language Reference

IVXITRIGON

Supported sessions: ... interface
Affected by functions: ilock, i timeout

#include <sicl.h>

int ivxitrigon (id, which);
INST id;
unsigned long which;

Function ivxitrigon
(ByVal id As Integer, ByVal which As Long)

The i vxi trigon function asserts trigger lines and leaves them activated.
The which parameter uses all of the same values as the ixtrig command,
namely:

I_TRIG_ALL

I_TRIG_TTLO
I_TRIG_TTL1
I_TRIG_TTL2
I_TRIG_TTL3
I_TRIG_TTL4
I_TRIG_TTL5
I_TRIG_TTL6
I_TRIG_TTL7
I_TRIG_ECLO
I_TRIG_ECL1
I_TRIG_ECL2
I_TRIG_ECL3
I_TRIG_EXTO
I_TRIG_EXT1

All standard triggers for this interface (that is, the bitwise
OR of all valid triggers)
TTL Trigger Line 0
TTL Trigger Line 1
TTL Trigger Line 2
TTL Trigger Line 3
TTL Trigger Line 4
TTL Trigger Line 5
TTL Trigger Line 6
TTL Trigger Line 7
ECL Trigger Line 0
ECL Trigger Line 1
ECL Trigger Line 2
ECL Trigger Line 3
External BNC or SMB Trigger Connector 0
External BNC or SMB Trigger Connector 1

Any combination of values may be used in which by performing a bit-wise
OR of the desired values.

2-184

Return Value

See Also

HP SICL Language Reference

IVXITRIGON

For C programs, this function returns zero (0) if successful, or a non-zero
error number if an error occurs.

For Visual BASIC programs, no error number is returned. Instead, the global
Err variable is set if an error occurs.

"IVXITRIGOFF", "IVXITRIGROUTE", "IVXIGETTRIGROUTE", "IXTRIG"

2-185

C Syntax

Visual BASIC
Syntax

Description

HP SICL Language Reference

IVXITRIGROUTE

Supported sessions: ... interface
Affected by functions: ilock, i timeout

#include <sicl.h>

int ivxitrigroute (id, in_which, ouLwhich);
INST id;
unsigned long in_ which;
unsigned long ouLwhich;

Function ivxitrigroute
(ByVal id As Integer, ByVal in_ which As Long,
ByVal ouLwhich As Long)

The ivxitrigroute function routes VXI trigger lines. With some VXI
interfaces, it is possible to route one trigger input to several trigger outputs.

The in_which parameter may contain only one of the valid trigger values.
The ouLwhich may contain zero, one, or several of the following valid trigger
values:

I_TRIG_ALL

I_TRIG_TTLO
I_TRIG_TTL1
I_TRIG_TTL2
I_TRIG_TTL3
I_TRIG_TTL4
I_TRIG_TTL5
I_TRIG_TTL6
I_TRIG_TTL7
I_TRIG_ECLO
I_TRIG_ECL1
I_TRIG_ECL2
I_TRIG_ECL3

.2-186

All standard triggers for this interface (that is, the bit-wise
OR of all valid triggers) (ouLwhich ONLY)
TTL Trigger Line 0
TTL Trigger Line 1
TTL Trigger Line 2
TTL Trigger Line 3
TTL Trigger Line 4
TTL Trigger Line 5
TTL Trigger Line 6
TTL Trigger Line 7
ECL Trigger Line 0
ECL Trigger Line 1
ECL Trigger Line 2
ECL Trigger Line 3

Return Value

See Also

HP SICL Language Reference

IVXITRIGROUTE

I_TRIG_EXTO
I_TRIG_EXT1

External BNC or SMB Trigger Connector 0
External BNC or SMB Trigger Connector 1

The in_which parameter may also contain:

I_ TRIG_CLKO Internal clocks provided by the controller (implementation
specific)

I_ TRIG_CLK1 Internal clocks provided by the controller (implementation
specific)

I_ TRIG_CLK2 Internal clocks provided by the controller (implementation-
specific)

This function routes the trigger line in the in_which parameter to the trigger
lines contained in the ouLwhich parameter. In other words, when the line
contained in in_which fires, all of the lines contained in ouLwhich are also
fired.

For example, the following command causes EXTO to fire whenever TTL3
fires:

ivxitrigroute(id, I_TRIG_TTL3, I_TRIG_EXTO);

For C programs, this function returns zero (0) if successful, or a non-zero
error number if an error occurs.

For Visual BASIC programs, no error number is returned. Instead, the global
Err variable is set if an error occurs.

"IVXITRIGON", "IVXITRIGOFF", "IVXIGETTRIGROUTE", "IXTRIG"

2-187

C Syntax

Visual BASIC
Syntax

Description

Return Value

See Also

HP SICL Language Reference

IVXIWAITNORMOP

Supported sessions: device, interface, commander
Affected by functions: ... itimeout

#include <sicl.h>

int ivxiwaitnormop (id);
INST id;

Function ivxiwaitnormop
(ByVal id As Integer)

The i vxiwai tnormop function is used to suspend the process until the
interface or device is active (that is, establishes normal operation). See the
iwai thdlr function for other methods of waiting for an interface to become
ready to operate.

For C programs, this function returns zero (0) if successful, or a non-zero
error number if an error occurs.

For Visual BASIC programs, no error number is returned. Instead, the global
Err variable is set if an error occurs.

"IWAITHDLR", "IONINTR", "ISETINTR", "!CLEAR"

2-188

C Syntax

Visual BASIC
Syntax

Description

IVXIWS

HP SICL Language Reference

IVXIWS

Supported sessions: ... device
Affected by functions: ilock, i timeout

#include <sicl.h>

int ivxivrs(id,wscmd,wsresp,rpe);
INST id;
unsigned short wscmd;
unsigned short *Wsresp;
unsigned short *rpe;

Function ivxivrs
(ByVal id As Integer, ByVal wscmd As Integer,
wsresp As Integer, rpe As Integer)

The i vxivrs function sends a word-serial cormnand to a VXI message-based
device. The wscmd contains the word-serial command. If wsresp contains
zero (0), then this function does not read a word-serial response. If wsresp
is non -zero, then the function reads a word-serial response and stores it in
that location. If ivxivrs executes successfully, rpe does not contain valid
data. If the word-serial cormnand errors, rpe contains the Read Protocol Error
response, the ivxivrs function returns I_ERR_IO, and the wsresp parameter
contains invalid data.

NOTE
The i vx i vrs function will always try to read the response data if the wsresp parameter is non-zero.
If you send a word serial command that does not return response data, and the wsresp argument is
non-zero, this function will hang or timeout (see it imeoutl waiting for the response.

2-189

Return Value

See Also

HP SICL Language Reference

IVXIWS

For C programs, this function returns zero (0) if successful, or a non-zero
error number if an error occurs.

For Visual BASIC programs, no error number is returned. Instead, the global
Err variable is set if an error occurs.

"!TIMEOUT"

2-190

C Syntax

Description

IWAITHDLR

#include <sicl.h>

int iwai thdlr (timeout) ;
long timeout;

NOTE

Not supported on Visual BASIC.

HP SICL Language Reference

IWAITHDLR

The iwai thdlr function causes the process to suspend until either an
enabled SRQ or interrupt condition occurs and the related handler executes.
Once the handler completes its operation, this function returns and
processing continues.

If timeout is non-zero, then iwai thdlr terminates and generates an error if
no handler executes before the given time expires. If timeout is zero, then
iwai thdlr waits indefinitely for the handler to execute.

Specify timeout in milliseconds.

NOTE

Not all computer systems can guarantee an accuracy of one millisecond on timeouts. Some computer
clock systems only provide a resolution of 1 /5Dth or 1 /6Dth of a second. Other computers have a
resolution of only 1 second. Note that the time value is always rounded up to the next unit of
resolution.

2-191

HP SICL Language Reference

IWAITHDLR

The iwaithdlr function will implicitly enable interrupts. In other words, if
you have called iintroff, iwai thdlr will re-enable interrupts, then disable
them again before returning.

NOTE

Interrupts should be disabled if you are using iwai thdlr. Use iintroff to disable interrupts.

The reason for disabling interrupts is because there is a race condition between the isetintr and
iwai thdlr, and, if you only expect one interrupt, it might come before the i wai thdlr
executes.

The interrupts will still be disabled after the iwai thdlr function has completed.

For example:

iintroff ();
ionintr (hpib, act_isr);
isetintr (hpib, I_INTR_INTFACT, 1);

igpibpassctl (hpib, ba);
iwaithdlr (O);
iintron ();

In a multi-threaded application, iwai thdlr will enable interrupts for the
whole process. If two threads call iintroff, and one of them then calls
iwai thdlr, interrupts will be enabled and both threads can receive interrupt
events. Note that this is not a defect, since your application must handle the
enabling/disabling of interrupts and keep track of when all threads are ready
to receive interrupts.

2-192

Return Value

See Also

HP SICL Language Reference

IWAITHDLR

This function returns zero (0) if successful, or a non-zero error number if an
error occurs.

"IONINTR", "IGETONINTR", "IONSRQ", "IGETONSRQ", "IINTROFF",
"IINTRON"

2-193

C Syntax

Visual BASIC
Syntax

Description

HP SICL Language Reference

IWRITE

Supported sessions: device, interface, commander
Affected by functions: ilock, itimeout

#include <sicl.h>

int iwrite (id, buf, datalen, endi, actualcnt);
INST id;
char *buf;
unsigned long datalen;
int endi;
unsigned long *actualcnt;

Function iwrite
(ByVal id As Integer, ByVal buf As String,
ByVal datalen As Long, ByVal endi As Integer,
actual As Long)

The iwri te function is used to send a block of data to an interface or device.
This function writes the data specified in buf to the session specified in id.
The buf argument is a pointer to the data to send to the specified interface
or device. The datalen argument is an unsigned long integer containing the
length of the data block in bytes.

If the endi argument is non-zero, this function will send the END indicator
with the last byte of the data block. Otherwise, if endi is set to zero, no END
indicator will be sent.

The actualcnt argument is a pointer to an unsigned long integer which, upon
exit, will contain the actual number of bytes written to the specified interface
or device. A NULL pointer can be passed for this argument and no value will
be written.

If you want to pass a NULL actualcnt parameter to iwrite in Visual BASIC,
you should pass the expression O&.

2-194

Return Value

See Also

HP SICL Language Reference

IWRITE

For LAN, if the client times out prior to the server, the actualcnt returned
will be 0, even though the server may have written some data to the device
or interface.

For C programs, this function returns zero (0) if successful, or a non-zero
error number if an error occurs.

For Visual BASIC programs, no error number is returned. Instead, the global
Err variable is set if an error occurs.

"IREAD", "IFREAD", "IFWRITE"

2-195

C Syntax

Visual BASIC
Syntax

Description

HP SICL Language Reference

IXTRIG

Supported sessions: ... interface
Affected by functions: ilock, i timeout

#include <sicl.h>

int ixtrig (id, which) ;
INST id;
unsigned long which;

Function ixtrig
(ByVal id As Integer, ByVal which As Long)

The ixtrig function is used to send an extended trigger to an interface. The
argument which can be:

I_TRIG_STD

I_TRIG_ALL

I_TRIG_TTLO
I_TRIG_TTL1
I_TRIG_TTL2
I_TRIG_TTL3
I_TRIG_TTL4
I_TRIG_TTL5
I_TRIG_TTL6
I_ TRIG_ TTL 7
I_TRIG_ECLO
I_TRIG_ECL1
I_TRIG_ECL2
I_TRIG_ECL3

2-196

Standard trigger operation for all interfaces. The exact
operation of I_ TRIG_STD depends on the particular
interface. See the following subsections for interface-specific
information.
All standard triggers for this interface (that is, the bit-wise
OR of all supported triggers).
TTL Trigger Line 0
TTL Trigger Line 1
TTL Trigger Line 2
TTL Trigger Line 3
TTL Trigger Line 4
TTL Trigger Line 5
TTL Trigger Line 6
TTL Trigger Line 7
ECL Trigger Line 0
ECL Trigger Line 1
ECL Trigger Line 2
ECL Trigger Line 3

Triggers on
GPIB

Triggers on
GPIO

Triggers on
RS-232 (Serial)

HP SICL Language Reference

IXTRIG

I_TRIG_EXTO
I_TRIG_EXT1
I_TRIG_EXT2
I_ TRIG _EXT3

External BNC or SMB Trigger Connector 0
External BNC or SMB Trigger Connector 1
External BNC or SMB Trigger Connector 2
External BNC or SMB Trigger Connector 3

When used on a GPIB interface session, passing the I_ TRIG_STD value to
the ixtrig function causes an unaddressed GPIB group execute trigger
(GET). The ixtrig command on a GPIB interface session should be used in
conjunction with the igpibsendcmd. There are no other valid values for the
ixtrig function.

The ixtrig function will pulse either the CTLO or CTLl control line. The
following values can be used:

I_TRIG_STD CTLO

I_TRIG_GPIO_CTLO CTLO

I_TRIG_GPIO_CTL1 CTLl

The ixtrig function will pulse either the DTR or RTS modem control lines.
The following values can be used:

I_TRIG_STD Data Terminal Ready (DTR)

I_TRIG_SERIAL_DTR Data Terminal Ready (DTR)

I_ TRIG_SERIAL_RTS Ready To Send (RTS)

Triggers on VXI When used on a VXI interface session, passing the I_ TRIG_STD value to

Return Value

See Also

the ixtrig function causes one or more VXI trigger lines to fire. Which
trigger lines are fired is determined by the i vxi trigroute function. The
I_TRIG_STD value has no default value. Therefore, if it is not defined before
it is used, no action will be taken.

For C programs, this function returns zero (0) if successful, or a non-zero
error number if an error occurs.

For Visual BASIC programs, no error number is returned. Instead, the global
Err variable is set if an error occurs.

"!TRIGGER", "IVXITRIGON", "IVXITRIGOFF"

2-197

C Syntax

Visual BASIC
Syntax

Description

Return Value

_SICLCLEANUP

#include <sicl.h>

int _siclcleanup(void);

Function siclcleanup () As Integer

This routine is called when a program is done with all SICL 1/0 resources.
The routine must be called before a WIN 16 SICL program terminates on
Windows 95. Calling this routine is not required on Windows NT or HP-UX.
Calling this routine is also not required for WIN32 SICL programs on
Windows 95.

Note that Visual BASIC programs call this routine without the initial
underscore(-)·

For C programs, this function returns zero (0) if successful, or a non-zero
error number if an error occurs.

For Visual BASIC programs, no error number is returned. Instead, the global
Err variable is set if an error occurs.

2-198

A

HP SICL Error Codes

HP SICL Error Codes

The following table contains the error codes for the SICL software.

SICL Error Codes and Messages

Error Code

I_ERR_ABORTED

I_ERR_BADADDR

Error String

Externally aborted

Bad address

I_ERR_BADCONFIG Invalid configuration

I_ERR_BADFMT Invalid format

I_ERR_BADID Invalid INST

I_ERR_BADMAP Invalid map request

I_ERR_BUSY Interface is in use by
non-SICL process

I_ERR_DATA Data integrity violation

I_ERR_INTERNAL Internal error occurred

Description

A SICL call was aborted by external means.

The device/interface address passed to iopen doesn't exist.
Verify that the interface name is the one assigned in the
I/O Setup utility !hwconf ig. cf file! for HP-UX, or
with the I/O Conf ig utility for Windows.

An invalid configuration was identified when calling iopen.

Invalid format string specified for iprintf or iscanf.

The specified INST id does not have a corresponding
iopen.

The imap call has an invalid map request.

The specified interface is busy.

The use of CRC, Checksum, and so forth imply invalid data.

SICL internal error.

I_ERR_INTERRUPT Process interrupt occurred A process interrupt !signal! has occurred in your application.

I_ERR_INVLADDR Invalid address

I_ERR_IO Generic I/O error

I_ERR_LOCKED Locked by another user

A-2

The address specified in iopen is not a valid address !for
example, "hpib, 57"1.

An 1/0 error has occurred for this communication session.

Resource is locked by another session !see
isetlockwai ti.

SICL Error Codes and Messages (continued)

Error Code Error String

I_ERR_NESTEDIO Nested I/O

I_ERR_NOCMDR Commander session is not
active or available

I_ERR_NOCONN No connection

I_ERR_NODEV Device is not active or
available

I_ERR_NOERROR No Error

I_ERR_NOINTF Interface is not active

I_ERR_NOLOCK Interface not locked

I_ERR_NOPERM Permission denied

I_ERR_NORSRC Out of resources

I_ERR_NOTIMPL Operation not implemented

I_ERR_NOTSUPP Operation not supported

I_ERR_OS Generic O.S. error

I_ERR_OVERFLOW Arithmetic overflow

I_ERR_PARAM Invalid parameter

I_ERR_SYMNAME Invalid symbolic name

I_ERR_SYNTAX Syntax error

I_ERR_TIMEOUT Timeout occured

I_ERR_VERSION Version incompatibility

Description

Attempt to call another SICL function when current SICL
function has not completed IWIN16l. More than one 1/0
operation is prohibited.

Tried to specify a commander session when it is not active,
available, or does not exist.

Communication session has never been established, or
connection to remote has been dropped.

Tried to specify a device session when it is not active,
available, or does not exist.

No SICL error returned; function return value is zero 101.

Tried to specify an interface session when it is not active,
available, or does not exist.

An iunlock was specified when device wasn't locked.

Access rights violated.

No more system resources available.

Call not supported on this implementation. The request is
valid, but not supported on this implementation.

Operation not supported on this implementation.

SICL encountered an operating system error.

Arithmetic overflow. The space allocated for data may be
smaller than the data read.

The constant or parameter passed is not valid for this call.

Symbolic name passed to iopen not recognized.

Syntax error occurred parsing address passed to iopen.
Make sure that you have formatted the string properly. White
space is not allowed.

A timeout occurred on the read/write operation. The device
may be busy, in a bad state, or you may need a longer
timeout value for that device. Check also that you passed the
correct address to iopen.

The iopen call has encountered a SICL library that is
newer than the drivers. Need to update drivers.

A-3

B

HP SICL Function
Summary

HP SICL Function Summary

The following tables sununarize the supported features for each SICL
function. The first table lists the core (interface-independent) SICL functions.
The core SICL functions work on all types of devices and interfaces. The
tables after that list the interface-specific SICL functions (that is, the SICL
functions that are specific to HP-IB/GPIB, GPIO, LAN, RS-232/Serial, and VXI
interfaces, respectively).

Each table notes if the particular SICL function that is listed:

• Supports device (DEV), interface (INTF), and/or commander (CMDR)
session(s).

• Is affected by the ilock (LOCK) and/or the itimeout (TIMEOUT)
function(s).

Also, the first table titled "Core SICL Functions" and the last table titled
"VXI-Specific SICL Functions" have the additional column, LAN CLIENT
TIMEOUT. The SICL functions that have X's in this column may timeout over
LAN, even those functions which cannot timeout over local interfaces.

B-2

"HP SICL Function Summary

Core SICL Functions

LAN CLIENT
Function DEV INTF CMOR LOCK TIMEOUT TIMEOUT

IBLOCKCOPY

ICAUSEERR x x x
I CLEAR x x x x x
I CLOSE x x x x
I FLUSH x x x x x x
IFREAD x x x x x x
IFWRITE x x x x x x
IGETADDR x x x
IGETDATA x x x
IGETDEVADDR x
IGETERRNO

IGETERRSTR

IGETINTFSESS x x x
IGETINTFTYPE x x x
IGETLOCKWAIT x x x
IGETLU x x x
IGETLUINFO

IGETLULIST

IGETONERROR x x x
IGETONINTR x x x
IGETONSRQ x x
IGETSESSTYPE x x x
IGEITERMCHR x x x
IGETIIMEOUT x x x
IHINT x x x
llNTROFF

llNTRON

I LOCAL x x x x

B-3

HP SICL Function Summary

Core SICL Functions (continued)

LAN CLIENT
Function DEV INTF CMDR LOCK TIMEOUT TIMEOUT

ILOCK x x x x x
IONERROR

IONINTR x x x x
IONSRQ x x x
IOPEN x x x x
IPOPFIFO

IPRINTF x x x x x x
IPROMPTF x x x x x x
IPUSHFIFO .

IREAD x x x x x x
IREADSTB x x x x
I REMOTE x x x x
ISCANF x x x x x x
ISETBUF x x x x
ISETDATA x x x
ISETINTR x x x x
ISETLOCKWAIT x x x
ISETSTB x x x x
ISETUBUF x x x x
ISWAP

ITERMCHR x x x
!TIMEOUT x x x
!TRIGGER x x x x x
I UNLOCK x x x x
!VERSION x
IWAITHDLR

IWRITE x x x x x x
IXTRIG x x x x

B-4

HP SICL Function Summary

HP-18/GPIB-Specific SICL Functions

Function DEV INTF CMDR LOCK TIMEOUT
IGPIBATNCTL x x x
IGPIBBUSADDR x x x
IGPIBBUSSTATUS x x x
IGPIBGETil DELAY x x x
IGPIBLLO x x x
lGPIBPASSCTL x x x
IGPIBPPOLL x x x
IGPIBPPOLLCONFIG x x x x
IGPIBPPOLLRESP x x x
IGPIBRENCTL x x x
IGPIBSENOCMD x x x
IGPIBSETI1 DELAY x x x

GPIO-Specific SICL Functions

Function DEV INTF CMDR LOCK TIMEOUT

IGPIOCTRL x x x
IGPIOGE1WIDTH x
IGPIOSE1WIDTH x x x
IGPIOSTAT x

LAN-Specific SICl Functions

Function DEV INTF CMDR LOCK TIMEOUT

IGETGATEWAYTYPE x x x
ILANGETIIMEOUT x
ILANTIMEOOUT x

B-5

RS-232/Serial-Specific SICL Functions

function DEV INTF CMDR LOCK TIMEOUT
ISERIALBREAK x x x
ISERIALCTRL x x x
ISERIALMCLCTRL x x x
ISERIALMCLSTAT x x x
ISERIALSTAT x x x

VXl-Specific SICL Functions

LAN CLIENT
Function DEV INTF CMDR LOCK TIMEOUT TIMEOUT

IMAP x x x x x
IMAPINFO x x x
IPEEK

IPOKE

IUNMAP x x x
IVXIBUSSTATUS x x x x
IVXIGETTRIGROUTE x x x x
IVXIRMINFO x x x x
IVXISERVANTS x x
IVXITRIGOFF x x x x
IVXITRIGON x x x x
IVXITRIGROUTE x x x x
IVXIWAITNORMOP x x x x x
IVXIWS x x x x

B-6

Glossary

Glossary

address
A string uniquely identifying a particular interface or a device on that
interface.

bus error
An action that occurs when access to a given address fails either because
no register exists at the given address, or the register at the address
refuses to respond.

bus error handler
Programming code executed when a bus error occurs.

commander session
A session that communicates to the controller of this system.

controller
A computer used to communicate with a remote device such as an
instrument. In the communications between the controller and the device
the controller is in charge of, and controls the flow of communication
(that is, does the addressing and/or other bus management).

controller role
A computer acting as a controller communicating with a device.

device
A unit that receives commands from a controller. Typically a device is
an instrument but could also be a computer acting in a non-controller
(commander) role, or another peripheral such as a printer or plotter.

device driver
A segment of software code that communicates with a device. It may
either communicate directly with a device by reading and writing
registers, or it may communicate through an interface driver.

device session
A session that communicates as a controller specifically with a single
device, such as an instrument.

Glossary-2

handler
A software routine used to respond to an asynchronous event such as an
error or an interrupt.

instrument
A device that accepts commands and performs a test or measurement
function.

interface
A connection and communication media between devices and controllers,
including mechanical, electrical, and protocol connections.

interface driver
A software segment that communicates with an interface. It also handles
commands used to perform communications on an interface.

interface session
A session that communicates and controls parameters affecting an entire
interface.

interrupt
An asynchronous event requiring attention out of the normal flow of
control of a program.

lock
A state that prohibits other users from accessing a resource, such as a
device or interface.

logical unit
A logical unit is a number associated with an interface. A logical unit, in
SICL, uniquely identifies an interface. Each interface on the controller
must have a unique logical unit.

mapping
An operation that returns a pointer to a specified section of an address
space as well as makes the specified range of addresses accessible to the
requester.

non-controller role
A computer acting as a device communicating with a controller.

Glossary-3

process
An operating system object containing one or more threads of execution
that share a data space. A multi-process system is a computer system that
allows multiple programs to execute simultaneously, each in a separate
process environment. A single-process system is a computer system that
allows only a single program to execute at a given point in time.

register
An address location that controls or monitors hardware.

session
An instance of a communications channel with a device, interface, or
commander. A session is established when the channel is opened with the
iopen function and is closed with a corresponding call to iclose.

SRQ
Service Request. An asynchronous request (an interrupt) from a remote
device indicating that the device requires servicing.

status byte
A byte of information returned from a remote device showing the current
state and status of the device.

symbolic name
A name corresponding to a single interface or device. This name uniquely
identifies the interface or device on this controller. If there is more than
one interface or device on the controller, each interface or devie must
have a unique symbolic name.

thread
An operating system object that consists of a flow of control within a
process. A single process may have multiple threads that each have
access to the same data space within the process. However, each
thread has its own stack and all threads may execute concurrently with
each other (either on multiple processors, or by time-sharing a single
processor). Note that multi-threaded applications are only supported with
32-bit SICL.

Glossary-4

Index

A
Address

device, 2-16, 2-18
interface, 2-16, 2-27
lu, 2-27, 2-28, 2-30

ATN, 2-37
Attention Line, 2-37

B
Baud Rate, 2-136
Big-endian, 2-162
Block Transfers, 2-4
Buffers

flushing, 2-10
set size, 2-146, 2-160

Byte Swapping, 2-162

c
Clear

device, 2-8
interface, 2-8

Conversion Characters, 2-109, 2-133

D
Data Transfer

DMA, 2-63, 2-64
interrupts, 2-63, 2-64
polling, 2-63, 2-64
preference, 2-63

Device
address, 2-16, 2-18
clear, 2-8

lock, 2-75
session, 2-92
status byte, 2-121
unlock, 2-170

Disable Events, 2-65
DMA, 2-63, 2-64

E

Enable Events, 2-67
END, 2-12, 2-119
Errors

causing, 2-7
codes, 2-19, A-2
handlers, 2-83
messages, 2-21

Events
disable, 2-65
enable, 2-67

F
Fifo Transfers, 2-99, 2-116
Format

conversion characters, 2-109, 2-133
flags, 2-108
modifiers, 2-108
string, 2-126
white-space, 2-126

Functions
ibblockcopy, 2-4
ibeswap, 2-162
ibpeek, 2-19, 2-95
ibpoke, 2-19, 2-97

lndex-1

ibpopfifo, 2-99
ibpushfifo, 2-116
icauseerr, 2-7
iclear, 2-8
iclose, 2-9
iflush, 2-10
ifread, 2-12
ifwrite, 2-14
igetaddr, 2-16
igetdata, 2-1 7
igetdevaddr, 2-18
igeterrno, 2-19
igeterrstr, 2-21
igetgatewaytype, 2-22
igetintf sess, 2-24
igetintftype, 2-25
igetlockwait, 2-26
igetlu, 2-27
igetluinf o, 2-28
igetlulist, 2-30
igetonerror, 2-31
igetonintr, 2-32
igetonsrq, 2-33
igetsesstype, 2-34
igettermchr, 2-35
igettimeout, 2-36
igpibatnctl, 2-37
igpibbusaddr, 2-39
igpibbusstatus, 2-40
igpibgettldelay, 2-42
igpibllo, 2-43
igpibpassctl, 2-44
igpibppoll, 2-45
igpibppollconfig, 2-46
igpibppollresp, 2-48
igpibrenctl, 2-49
igpibsendcmd, 2-50
igpibsett 1 delay, 2-51
igpioctrl, 2-52
igpiogetwidth, 2-56
igpiosetwidth, 2-57

lndex-2

igpiostat, 2-59
ihint, 2-63
iintroff, 2-65
iintron, 2-67
ilangettimeout, 2-69
ilantimeout, 2-70
ilblockcopy, 2-4
ileswap, 2-162
ilocal, 2-7 4
ilock, 2-75
ilpeek, 2-19, 2-95
ilpoke, 2-19, 2-97
ilpopfifo, 2-99
ilpushfifo, 2-116
imap, 2-19, 2-78
imapinfo, 2-81
ionerror, 2-83
ionintr, 2-87
ionsrq, 2-90
iopen, 2-16, 2-19, 2-92
iprintf, 2-19, 2-102
ipromptf, 2-19, 2-114
iread, 2-119
ireadstb, 2-121
iremote, 2-122
iscanf, 2-19, 2-123
iscanf, notes on using, 2-124
iserialbreak, 2-135
iserialctrl, 2-136
iserialmclctrl, 2-140
iserialmclstat, 2-141
iserialstat, 2-142
isetbuf, 2-146
isetdata, 2-148
isetintr, 2-149
isetlockwait, 2-157
isetstb, 2-159
isetubuf, 2-160
iswap, 2-162
itermchr, 2-165
itimeout, 2-167

itrigger, 2-168
iunlock, 2-170
iunmap, 2-172
iversion, 2-17 4
ivprintf, restrictions in

Visual BASIC, 2-104
ivscanf, restrictions in

Visual BASIC, 2-125
ivxibusstatus, 2-175
ivxigettrigroute, 2-177
ivxirminfo, 2-178
ivxiservants, 2-181
ivxitrigoff, 2-182
ivxitrigon, 2-184
ivxitrigroute, 2-186
ivxiwaitnormop, 2-188
ivxiws, 2-189 ·
iwaithdlr, 2-191
iwblockcopy, 2-4
iwpeek, 2-19, 2-95
iwpoke, 2-19, 2-97
iwpopfifo, 2-99
iwpushfifo, 2-116
iwrite, 2-194
ixtrig, 2-196
_siclcleanup (C), 2-198
siclcleanup (Visual BASIC), 2-198
word-serial, 2-189

G
GPIB

active controller, 2-41
ATN, 2-37
bus address, 2-41, 2-44
bus lines, 2-41
device session, 2-41
interface session, 2-41
interface status, 2-40
interrupts, 2-150
itrigger, 2-168
ixtrig, 2-197

listener, 2-41
local lockout, 2-43
NDAC, 2-41
parallel poll, 2-45, 2-46, 2-48
pass control, 2-44
remote enable, 2-41, 2-49
REN, 2-41
send commands, 2-50
SRQ, 2-41
status, 2-40
talker, 2-41
triggers, 2-168, 2-197

GPIO

H

igpioctrl, 2-52
igpiogetwidth, 2-56
igpiosetwidth, 2-57
igpiostat, 2-59
interface control, 2-52
interface status, 2-59
interrupts, 2-152
itrigger, 2-168
ixtrig, 2-197
triggers, 2-168, 2-197

Handlers

I

address, 2-32
error, 2-83
interrupt, 2-87
remove, 2-87, 2-90
service request, 2-33, 2-90
timeout, 2-191
wait for, 2-191

ibblockcopy, 2-4
ibeswap, 2-162
ibpeek, 2-19, 2-95
ibpoke, 2-19, 2-97
ibpopfifo, 2-99
ibpushfifo, 2-116

lndex-3

icauseerr, 2-7
iclear, 2-8
iclose, 2-9
iflush, 2-10
ifread, 2-12
ifwrite, 2-14
igetaddr, 2-16
igetdata, 2-17
igetdevaddr, 2-18
igeterrno, 2-19
igeterrstr, 2-21
igetgatewaytype, 2-22
igetintfsess, 2-24
igetintftype, 2-25
igetlockwait, 2-26
igetlu, 2-27
igetluinfo, 2-28
igetlulist, 2-30
igetonerror, 2-31
igetonintr, 2-32
igetonsrq, 2-33
igetsesstype, 2-34
igettermchr, 2-35
igettimeout, 2-36
igpibatnctl, 2-37
igpibbusaddr, 2-39
igpibbusstatus, 2-40
igpibgettldelay, 2-42
igpibllo, 2-43
igpibpassctl, 2-44
igpibppoll, 2-45
igpibppollconfig, 2-46
igpibppollresp, 2-48
igpibrenctl, 2-49
igpibsendcmd, 2-50
igpibsettldelay, 2-51
igpioctrl, 2-52
igpiogetwidth, 2-56
igpiosetwidth, 2-57
igpiostat, 2-59
ihint, 2-63

lndex-4

iintroff, 2-65
iintron, 2-67
ilangettimeout, 2-69
ilantimeout, 2-70
ilblockcopy, 2-4
ileswap, 2-162
ilocal, 2-7 4
ilock, 2-75
ilpeek, 2-19, 2-95
ilpoke, 2-19, 2-97
ilpopfifo, 2-99
ilpushfifo, 2-116
imap, 2-19, 2-78
imapinfo, 2-81
Interface

address, 2-16, 2-27
clear, 2-8
lock, 2-75
session, 2-24, 2-92
status byte, 2-121
type, 2-25
unlock, 2-170

Interrupts, 2-63, 2-64, 2-87, 2-149
commander-specific, 2-151, 2-153,

2-154, 2-156
data transfer, 2-64
device-specific, 2-150, 2-152, 2-153,

2-155
enable, 2-149
GPIB, 2-150
GPIO, 2-152
handler, 2-87
handler address, 2-32
interface-specific, 2-150, 2-152,

2-153, 2-155
ionintr, 2-87
isetintr, 2-149
nesting, 2-67
RS-232 (serial), 2-153
VXI, 2-155

ion error, 2-83

ionintr, 2-87
ionsrq, 2-90
iopen, 2-16, 2-19, 2-92
LORDER_BE, 2-162
LORDER_LE, 2-162
iprintf, 2-19, 2-102
ipromptf, 2-19, 2-114
iread, 2-12, 2-119, 2-165
ireadstb, 2-121
iremote, 2-122
iscanf, 2-19, 2-123
iscanf, Notes on Using, 2-124
iserialbreak, 2-135
iserialctrl, 2-136
iserialmclctrl, 2-140
iserialmclstat, 2-141
iserialstat, 2-142
isetbuf, 2-146
isetd~.ta, 2-148
isetintr, 2-149
isetlockwait, 2-157
isetstb, 2-159
isetubuf, 2-160
iswap, 2-162
itermchr, 2-12, 2-119, 2-165
itermchr, using with iscanf, 2-124
itimeout, 2-167
itrigger, 2-168
iunlock, 2-170
iunmap, 2-172
iversion, 2-17 4
ivprintf, Restrictions in Visual BASIC,

2-104
ivscanf, Restrictions in Visual BASIC,

2-125
ivxibusstatus, 2-175
ivxigettrigroute, 2-177
ivxirminf o, 2-178
ivxiservants, 2-181
ivxitrigoff, 2-182
ivxitrigon, 2-184

ivxitrigroute, 2-186
ivxiwaitnormop, 2-188
ivxiws, 2-189
iwaithdlr, 2-191
iwblockcopy, 2-4
iwpeek, 2-19, 2-95
iwpoke, 2-19, 2-97
iwpopfifo, 2-99
iwpushfifo, 2-116
iwrite, 2-14, 2-194
ixtrig, 2-196

L
LAN

igetgatewaytype, 2-22
ilangettimeout, 2-69
ilantimeout, 2-70

Little-endian, 2-162
Local Lockout, 2-43
Local Mode, 2-7 4
Lock

device, 2-75
interface, 2-75
nesting, 2-170

Lockwait Status, 2-26, 2-157
Logical Unit, 2-28

address, 2-27
list, 2-30

M
Memory

hardware constraints, 2-81
map, 2-78
mapinfo, 2-81
read, 2-95
unmap, 2-172
write, 2-97

MXI, 2-176

lndex-5

N

NDAC, 2-41
Nesting

interrupts, 2-67
locks, 2-170

Networking (LAN)
igetgatewaytype, 2-22
ilangettimeout, 2-69
ilantimeout, 2-70

Normal Operation, 2-176, 2-188

p

Parallel Poll, 2-45, 2-46, 2-48
Parity, 2-136
Pass Control, 2-44
Polling, 2-63, 2-64
Preference for Data Transfer, 2-63

R
Read

buffered, 2-12
formatted, 2-123
memory, 2-95
prompted, 2-114
unformatted, 2-119

Remote Enable, 2-41, 2-49
Remote Mode, 2-122
REN, 2-41, 2-49
Resource Manager, 2-178
RS-232

BREAK, 2-135
flow control, 2-136
interface status, 2-142
interrupts, 2-153
itrigger, 2-168
ixtrig, 2-197
Modem Control Lines, 2-140, 2-141
triggers, 2-168, 2-197

lndex-6

s
Send G PIB commands, 2-50
Serial

BREAK, 2-135
flow control, 2-136
interface status, 2-142
interrupts, 2-153
itrigger, 2-168
ixtrig, 2-197
Modem Control Lines, 2-140, 2-141
triggers, 2-168, 2-197

Servant Area, 2-176
Servants, 2-181
Service Requests (SRQs), 2-33, 2-41,

2-90
Session

data structure, 2-17, 2-148
device, 2-92
interface, 2-92
open, 2-92
to close, 2-9
to open, 2-92
type, 2-34

_siclcleanup (C), 2-198
siclcleanup (Visual BASIC), 2-198
Status

GPIB, 2-40
lockwait, 2-26, 2-157
VXI bus, 2-175

Status Byte, 2-121, 2-159
Stop Bits, 2-136

T
Termination Character, 2-12, 2-119,

2-165
Timeouts, 2-36, 2-167, 2-191
Transfer Blocks

from Fifo, 2-99
iblockcopy, 2-4
to Fifo, 2-116

Triggering, 2-177, 2-182, 2-184, 2-186

Triggers
device-specific, 2-168, 2-169
extended, 2-196
GPIB, 2-168, 2-197
GPIO, 2-168, 2-197
interface-specific, 2-168, 2-169
itrigger, 2-168
ixtrig, 2-196
lines, 2-176
RS-232 (serial), 2-168, 2-197
VXI, 2-169, 2-197

u
Unlock

device, 2-170
interface, 2-170
nesting, 2-170

Unmap Memory, 2-172

v
Visual BASIC

restrictions using ivprintf, 2-104
restrictions using ivscanf, 2-125

VXI
bus status, 2-175

information structure, 2-178
interrupts, 2-155
itrigger, 2-169
ixtrig, 2-197
normal operation, 2-176, 2-188
resource manager, 2-178
servant area, 2-176
servants, 2-181
trigger, 2-182, 2-184
trigger lines, 2-176
trigger routing, 2-177, 2-186
triggers, 2-169, 2-197
word-serial commands, 2-189

vxiinfo, 2-178

w
Wait

for handlers, 2-191
for normal operation, 2-188

Word-serial Commands, 2-189
Write

formatted, 2-102
memory, 2-97
unformatted, 2-194

lndex-7

F//'9'1 HEWLETT®
~~PACKARD

Copyright © 1996
Hewlett-Packard Company
Printed in U.S.A. E0996

I lllllll llll lllll lllll lllll llll llllll lllll lllll lllll lllll Ill\ 1111
E2090-90033

