
User's Guide

HP VISA

HP VISA

User's Guide

Notice

The information contained in this document is subject to change without
notice.

Hewlett-Packard Company (HP) shall not be liable for any errors contained
in this document. HP makes no warranties of any kind with regard to this
document, whether express or implied. HP specifically disclaims the implied
warranties of merchantability and fitness for a particular purpose. HP shall
not be liable for any direct, indirect, special, incidental, or consequential
damages, whether based on contract, tort, or any other legal theory, in
connection with the furnishing of this document or the use of the information
in this document.

Warranty Information.

A copy of the specific warranty terms applicable to your Hewlett-Packard
product and replacement parts can be obtained from your local Sales and
Service Office.

Restricted Rights Legend.

U.S. Government Restricted Rights. The Software and Documentation have
been developed entirely at private expense. They are delivered and licensed
as "commercial computer software" as defined in DFARS 252.227-7013
(Oct 1988), DFARS 252.211-7015 (May 1991) or DFARS 252.227-7014 (Jun
1995), as a "commercial item" as defined in FAR 2. lOl(a), or as "Restricted
computer software" as defined in FAR 52.227-19 (Jun 1987) (or any
equivalent agency regulation or contract clause), whichever is applicable. You
have only those rights provided for such Software and Documentation by the
applicable FAR or DFARS clause or the HP standard software agreement for
the product involved.

Copyright © 1984, 1985, 1986, 1987, 1988 Sun Microsystems, Inc.

Microsoft, Windows NT, and Windows 95 are U.S. registered trademark of
Microsoft Corporation.

Pentium is a U.S. registered trademark of Intel Corporation.

UNIX is a registered trademark of the United States and other countries,
licensed exclusively through X/Open Company Limited.

Copyright© 199? Hewlett-Packard Company. All Rights Reserved.

This document contains proprietary information which is protected by
copyright. All rights are reserved. No part of this document may be
photocopied, reproduced, or translated to another language without the prior
written consent of Hewlett-Packard Company.

Printing History

This is the second edition of the HP VISA User's Guide.

May 1996 - First Edition

September 1996 - Second Edition

v

Contents

1. Introduction
HP VISA Overview

Windows Support
HP- UX Support .
Users

Other Documentation
Where to Go Next . .

2. Building an HP VISA Application in Windows
Reviewing an HP VISA Program

Example Program Contents
visa.h
ViSession .. .
viOpenDefaultRM
viOpen
viPrintf and viScanf
viClose

Linking to HP VISA Libraries
Compiling and Linking an HP VISA Program .

32-bit Applications
16-bit Applications

Logging Error Messages
Windows 95
Windows NT

Running an HP VISA Program
Where to Go Next

3. Building an HP VISA Application in HP-UX
Reviewing an HP VISA Program

The Example Program Contents
visa.h
ViSession .. .
viOpenDefaultRM
viOpen
viPrintf and viScanf
vi Close

1-4
1-4
1-5
1-6
1-7
1-8

2-3
2-5

2-5
2-5
2-5
2-5
2-5
2-5
2-6
2-7
2-7
2-8

2-11
2-11
2-11
2-12
2-13

3-3
3-5

3-5
3-5
3-5
3-5
3-5
3-5

Contents-I

Compiling and Linking an HP VISA Program . 3-6
Logging Error Messages 3-7
Running an HP VISA Program 3-8
Getting Online Help 3-9

Using the HyperHelp Viewer 3-9
Using HP-UX Manual Pages 3-10

Where to Go Next 3-11

4. Programming with HP VISA
Including the HP VISA Declarations File 4-3
Opening a Session . 4-4

Device Sessions . 4-5
Addressing a Session 4-7
Closing a Session 4-9
Searching for Resources 4-10
Sending I/ 0 Commands 4-13

Formatted I/O 4-14
Formatted I/ 0 Conversion 4-15
Modifiers . . . 4-15

Field Width 4-15
. Precision 4-16
Argument Length Modifier 4-17
, Array Size 4-18
Special Characters . . 4-18
Conversion Characters 4-19

Formatted I/O Example 4-20
Format String 4-22
Formatted I/ 0 Buffers . 4-22

Non-Formatted I/O . . . 4-23
Non-Formatted I/O Example 4-24

Using Attributes 4-26
HP VISA Resource Attributes 4-27
HP VISA Generic Instrument Attributes 4-28
HP VISA Interface Specific Instrument Attributes 4-29

GPIB and GPIB-VXI Interfaces 4-29
VXI and GPIB-VXI Interfaces 4-29
GPIB-VXI Interface . . 4-31
ASRL Interface 4-31

HP VISA Event Attributes 4-32
Using Events and Handlers 4-33

Events and Attributes . . 4-35

Contents-2

Reading the Attribute
The Callback Method .

Installing Handlers
Writing the Handler .
Enabling Events . . .
Event Callback Example
SRQ Callback Example

The Queuing Method
Enabling Events
Wait on the Event ...
Event Queuing Example

Trapping Errors . .
HP VISA Errors
Instrument Errors

Using Locks
Lock Types ...

Lock Sharing .
Acquiring an Exclusive Lock While Holding

a Shared Lock ·
Nested Locks .
Lock Exam pl es . .

5. Programming VXI Devices
Programming Overview
Using High-Level Memory Functions

Programming to the Registers . .
High-Level Memory Functions Examples

Using Low-Level Memory Functions . . .
Programming to the Registers

Mapping Memory Space
Reading and Writing to the Device Registers
U nmapping Memory Space

Low-Level Memory Functions Examples
Considering VXI Backplane Memory I/ 0 Performance
Using VXI Specific Attributes

Using the Map Address as a Pointer
Setting the VXI Trigger Line . . .

4-36
4-37
4-37
4-38
4-39
4-40
4-42
4-45
4-45
4-46
4-47
4-49
4-49
4-50
4-51
4-53
4-54

4-55
4-56
4-56

5-3
5-5
5-6
5-9

5-11
5-11
5-12
5-13
5-13
5-14
5-17
5-23
5-23
5-25

Contents-3

6. Programming over LAN
Overview of the LAN

LAN Software Architecture .
LAN Networking Protocols .
LAN Client and Threads
LAN Server

Considering LAN Configuration and Performance
Communicating with Devices over LAN

Addressing a Session
LAN Session Exam pie . . .

Using Timeouts with LAN ..
Default LAN Timeout Values
Application Terminations and Timeouts

Using Signal Handling with LAN
SIGIO Signals

HP VISA Function Support with LAN . .
GPIB Sessions and Service Requests over LAN

7. HP VISA Language Reference
vi Assert Trigger
viClear
viClose
viDisableEvent
vi DiscardEven ts
viEnableEvent
viEventHandler
viFindNext
viFindRsrc . .
vi Flush
viGetAttribute
viln8, viln16, and viln32
vilnstallHandler
viLock
viMapAddress
viMemAlloc
viMemFree ..
viMoveln8, viMoveln16, and viMoveln32
viMove0ut8, viMoveOut16, and viMove0ut32
viOpen
viOpenDefaultRM
vi0ut8, vi0ut16, and vi0ut32

Contents-4

6-4
6-6
6-7
6-8
6-8
6-9

6-10
6-10
6-11
6-13
6-14
6-16
6-17
6-17
6-18
6-18

7-7
7-9

7-11
7-13
7-16
7-18
7-21
7-24
7-25
7-27
7-30
7-32
7-34
7-36
7-41
7-44
7-46
7-47
7-50
7-53
7-55
7-57

viPeek8, viPeek16, and viPeek32
viPoke8, viPoke16, and viPoke32 .
viPrintf
viQueryf 0 •

viRead ...
viReadAsync
viReadSTB .
viScanf o " "

viSetAttribute
viSetBuf . .
viStatusDesc .
vi Terminate
vi U ninstallHandler
viUnlock
vi U nmapAddress
viVPrintf .
viVQueryf ..
viVScanf . . .
viWaitOnEvent
vi Write
viWriteAsync .

A. HP VISA System Information
Windows Directory Structure .
UNIX Directory Structure
About the Directories

The HPVISA Subdirectory
Include Files . .
Libraries
Sample Programs
VXIplug&play Instrument Drivers

B. HP VISA Attributes
HP VISA Resource Attributes
HP VISA Generic Instrument Attributes
HP VISA Interface Specific Instrument Attributes

GPIB and GPIB-VXI Interfaces
VXI and GPIB-VXI Interfaces
GPIB-VXI Interface . .
ASRL Interface

HP VISA Event Attributes

7-59
7-61
7-63
7-71
7-73
7-76
7-78
7-80
7-87
7-89
7-91
7-92
7-93
7-95
7-97
7-98

7-100
7-102
7-104
7-107
7-109

A-3
A-5
A-6

A-6
A-6
A-6
A-7
A-7

B-3
B-4
B-5
B-5
B-6
B-7
B-8
B-9

Contents-5

C. HP VISA Completion and Error Codes
Alphabetized Completion and Error Codes C-3
Completion and Error Codes for Each HP VISA Function C-7

D. HP VISA Type Definitions

E. Editing the HP VISA Configuration
On Windows 95 and Windows NT
On HP-UX

Glossary

Index

Contents-6

E-3
E-5

1

Introduction

Introduction

Welcome to the HP VISA User's Guide. This manual describes the HP VISA
(Virtual Instrument Software Architecture) library and how to use it to
develop instrument drivers and 1/0 applications on Microsoft® Windows 95®
and Windows NT®, as well as on HP-UX version 10.20 or later.

Before using VISA, you must install and configure VISA according to the
instructions in the HP 110 Librarie,s Installation and Configuration Guide.

This first chapter provides an overview of VISA. In addition, this guide
contains the following chapters:

• Chapter 2 - Building an HP VISA Application in Windows describes how
to build a VISA application in a Microsoft Windows environment. A simple
example program is also provided to help you get started programming
with VISA.

• Chapter 3 - Building an HP VISA Application in HP-UX describes how
to build a VISA application in the HP-UX environment. A simple example
program is also provided to help you get started programming with VISA.

• Chapter 4 - Programming with HP VISA describes the basics of VISA,
along with some detailed example programs. You can find information
on creating sessions, and on using formatted 1/0, events and handlers,
attributes, locking, and more.

• Chapter 5 - Programming VXI Devices describes how to use VISA to
communicate over the VXI and GPIB-VXI interfaces to VXI instruments.

• Chapter 6 - Programming over LAN provides an overview of the LAN and
describes how to use VISA to communicate with devices over LAN.

• Chapter 7 - HP VISA Language Reference describes the supported VISA
functions. These functions are provided in alphabetical order to make them
easy to look-up and reference.

1-2

Introduction

This guide also contains the following appendices:

• Appendix A - HP VISA System Information provides information on VISA
software files and system interaction.

• Appendix B - HP VISA Attributes provides a table of all VISA attributes
and their associated values.

• Appendix C - HP VISA Completion and Error Codes lists all the
completion and error codes for VISA.

• Appendix D - HP VISA Type Definitions lists the VISA data types and
their definitions.

• Appendix E - Editing the HP VISA Configuration describes how to edit
the VISA configuration to gain better performance.

This guide also includes a Glossary of terms and their definitions, as well as
an Index.

1-3

HP VISA Overview

VISA (Virtual Instrument Software Architecture) is an 1/0 library that can be
used to develop 1/0 applications and instrument drivers that comply with the
VXIplug&play standards. Applications and instrument drivers developed with
VISA can execute on VXIplug&play system frameworks that have the VISA
I/O layer. Therefore, software from different vendors can be used together on
the same system.

Windows Support

There is a 32-bit version of VISA on both Windows 95 and Windows NT, and
a 16-bit version of VISA on Windows 95. Note that you can use one or both
versions of VISA (32-bit and/or 16-bit VISA) on your 32-bit computer when
running Windows 95.

The following two tables summarize the support for the 32-bit and 16-bit
versions of VISA on Windows environments.

Support for 32-bit VISA
on Windows 95 and Windows NT

Programming
Interfaces Languages

GPIB, VXl1 , GPIB-VXI, RS-232, LAN2 C, C + +, Visual BASIC3

1 VISA for the VXI interface on Windows NT (version 4.0 or later) is shipped
with the HP VXI Pentium® Controller product only.
2 LAN support from within VISA occurs via an address translation such that a
GPIB interface can be accessed remotely over a computer network.
3 Although VISA for Windows supports the Visual BASIC programming
language, this manual only supports and shows VISA programming techniques
using the C and C + + programming languages at this time.

1-4

Support for 16-bit VISA
on Windows 95

Programming
Interfaces Languages

GPIB, VXI, GPIB-VXI, RS-232 C, C + +, Visual BASIC4

Introduction
HP VISA Overview

4 Although VISA for Windows supports the Visual BASIC programming
language, this manual only supports and shows VISA programming techniques
using the C and C + + programming languages at this time.

HP-UX Support

The following table summarizes the support for VISA on HP-UX version 10.20
or later.

Support for VISA
on HP-UX Version 10.20 or Later

Pregramming
Interfaces languages

GPIB, VXI, GPIB-VXI, LAN5 C, C+ +

5 LAN support from within VISA occurs via an address translation such that a
GPIB interface can be accessed remotely over a computer network.

1-5

Introduction

HP VISA Overview

Users

VISA has two specific users. The first user is the instrumentation end user
who wants to use VXIplug&play instrument drivers in his or her applications.
The second user is the instrument driver or VO application developer who
wants to be compliant with VXIplug&play standards.

Software development using VISA is intended for instrument I/O programmers
who are familiar with either the Windows 95, Windows NT, or HP-UX
environment. If you will be performing the VISA installation and
configuration on Windows NT or HP-UX, you must also have either system
administration privileges on your Windows NT system, or super-user (root)
privileges on your HP-UX system.

1-6

Other Documentation

The following documentation is also helpful when using VISA:

• HP I/O Libraries Installation and Configuration Guide explains how to
install and configure the HP VISA library and the HP Standard Instrument
Control Library (SICL) on Microsoft Windows or HP-UX.

• HP VISA Quick Reference Guide for C Programmers helps you find VISA
function syntax information quickly.

• HP VISA Online Help is provided in the form of Windows Help on Microsoft
Windows, and in the form of manua.I pages (man pages) and online help on
HP-UX.

• HP VISA Example Programs are provided online to help you develop your
VISA applications more easily.

The following documents may also be helpful when using VISA:

• VXIplug&play System Alliance VISA Library Specification 4.3
• IEEE St;andard Codes, Fbrmats, Protocols, and Common Commands -

ANSI/IEEE Standard 488. 2-1992

The following VXIbus Consortium specifications may also be helpful when
using VISA over LAN:

• TCP/IP Instrument Protocol Specification - VXI-11, Rev. 1.0
• TCP/IP-VX!bus Interface Specification - VXI-11.1, Rev. 1.0
• TCP/IP-IEEE 488.1 Interface Specification - VXI-11. 2, Rev. 1. 0
• TCP/IP-IEEE 488.2 Instrument Interface Specification - VXI-11.3, Rev. 1.0

1-7

Where to Go Next

Now that you have a better understanding of VISA, continue with one of the
following chapters:

• Chapter 2, "Building an HP VISA Application in Windows"

• Chapter 3, "Building an HP VISA Application in HP-UX"

1-8

2

Building an HP VISA
Application
in Windows

Building an HP VISA Application
in Windows

This chapter describes what you need to know to build a VISA application in
a Windows environment. This chapter contains the following sections:

• Reviewing an HP VISA Program~

• Linking to HP VISA Libraries

• Compiling and Linking an HP VISA Program

• Logging Error Messages

• Running an HP VISA Program

• Where to Go Next

2-2

Reviewing an HP VISA Program

In this section, you will first review a simple example program called idn
that queries an HP-IB instrument for its identification string. This example
uses the QuickWin or EasyWin feature of Microsoft and Borland C or C + +
compilers on Windows.

The idn example files are located in the following subdirectories.

32-bit VISA on Windows 95:

\VXIPNP\WIN95\HPVISA\SAMPLES

32-bit VISA on Windows NT:

\VXIPNP\WINNT\HPVISA\SAMPLES

16-bit VISA on Windows 95:

\VXIPNP\WIN\HPVISA\SAMPLES

The source file idn. c is listed on the following page. An explanation of the
various function calls in the example is provided directly after the program
listing for your review.

2-3

Building an HP VISA Application
in Windows
Reviewing an HP VISA Program

/•idn.c
This example program queries a GPIB device for an identification string
and prints the results. Note that you must change the address. •/

#include <visa.h>
#include <stdio.h>

void main () {

}

2-4

ViSession defaultRM, vi;
char buf [256] = {O};

/• Open session to GPIB device at address 22 •/
viOpenDefaultRM(idefaultRM);
viOpen(defaultRM, "GPIB0::22::INSTR", VI_NULL,VI_NULL, ivi);

I• Initialize device •/
viPrintf (vi, "•RST\n");

I• Send an •IDN? string to the device •/
viPrintf (vi, "•IDN?\n");

I• Read results •/
viScanf(vi, 111.t", buf);

I• Print results •/
printf ("Instrument identification string: %s\n", buf);

I• Close session •/
viClose(vi);
viClose(defaultRM);

visa.h

ViSession

Example Program Contents

Building an HP VISA Application
in Windows

Reviewing an HP VISA Program

The following is a sununary of the VISA function calls used in the example
program. For a more detailed explanation of VISA functionality, see
Chapter 4, "Programming with HP VISA."

This file is included at the beginning of the file to provide the function
prototypes and constants defined by VISA.

The ViSession is a VISA data type. Each object that will establish a
communication channel must be defined as ViSession.

viOpenDef aul tRM You must first open a session with the default resource manager with the
viOpenDef aul tRM function. This function will initialize the default resource
manager and return a pointer to that resource manager session.

vi Open

viPrintf and
viScanf

vi Close

This function establishes a communication channel with the device specified.
A session identifier that can be used with other VISA functions is returned.
This call must be made for each device you will be using.

These are the VISA formatted VO functions that are patterned after those
used in the C programming language. The viPrintf call sends the IEEE
488.2 *RST command to the instrument and puts it in a known state. The
viPrintf call is used again to query for the device identification (*IDN?).
The viScanf call is then used to read the results.

This function must be used to close each session. When you close a device
session, all data structures that had been allocated for the session will be
deallocated. When you close the default manager session, all sessions opened
using that default manager session will be closed.

Refer to Chapter 7, "HP VISA Language Reference," for more detailed
information on these VISA function calls and to learn about all of the
functions provided by VISA.

2-5

Linking to HP VISA Libraries

Your application must link to one of the VISA import libraries, as follows.

32-bit VISA on Windows 95:

C: \ VXIPNP\WIN95\LIB\MSC\ VISA32. LIB for Microsoft compilers
C: \ VXIPNP\WIN95\LIB\BC\ VISA32. LIB for Borland compilers

32-bit VISA on Windows NT:

C: \ VXIPNP\ WINNT\LIB\MSC\ VISA32. LIB for Microsoft compilers
C: \ VXIPNP\ WINNT\LIB\BC\ VISA32. LIB for Borland compilers

16-bit VISA on Windows 95:

C: \ VXIPNP\WIN\LIB\MSC\ VISA. LIB for Microsoft compilers
C: \ VXIPNP\WIN\LIB\BC\ VISA. LIB for Borland compilers

See the following section, "Compiling and Linking an HP VISA Program," for
information on how to use the VISA run-time libraries.

2-6

Compiling and Linking an HP VISA Program

32-bit Applications

The following is a summary of important compiler-specific considerations for
several C/C + + compiler products when developing WIN32 applications.

For Microsoft Visual C+ + version 2.0 compilers:

• Select Project I Update All Dependencies from the menu.

• Select Project I Settings from the menu. Click on the C/C++
button. Select Code Generation from the Category list box and select
Multi-Threaded using DLL from the Use Run-Time Libraries list box.
VISA requires these definitions for WIN32. Click on OK to close the dialog
boxes.

• Select Project I Settings from the menu. Click on the Link button and
add visa32. lib to the Object I Library Modules list box. Optionally,
you may add the library directly to your project file. Click on OK to close
the dialog boxes.

• You may wish to add the include file and library file search paths. They are
set by doing the following:

1. Select Tools I Options from the menu.

2. Click on the Directories button to set the include file path.

3. Select Include Files from the Show Directories For list box.

4. Click on the Add button and type in one of the following:

C:\VXIPNP\WIN95\INCLUDE

Or:

C:\VXIPNP\WINNT\INCLUDE

5. Select Library Files from the Show Directories For list box.

2-7

Building an HP VISA Application

in Windows
Compiling and Linking an HP VISA Program

6. Click on the Add button and type in one of the following:

C:\VXIPNP\WIN95\LIB\MSC

Or:

C:\VXIPNP\WINNT\LIB\MSC

For Borland C+ + version 4.0 compilers:

• You may wish to add the include file and library file search paths. They
are set under the Options I Project menu selection. Double-click on
Directories from the Topics list box and add one of the following:

Or:

C:\VXIPNP\WIN95\INCLUDE
C:\VXIPNP\WIN95\LIB\BC

C:\VXIPNP\WINNT\INCLUDE
C:\VXIPNP\WINNT\LIB\BC

16-bit Applications

The following is a summary of important compiler-specific considerations for
several CIC++ compiler products when developing WIN16 applications.

For Microsoft Visual C + + version 1. 5 compilers:

• To set the memory model, do the following:

1. Select Opt ions I Project.

2. Click on the Compiler button, then select Memory Model from the
Category list.

3. Click on the Model list arrow to display the model options, and select
Large.

4. Click on OK to close the Compiler dialog box.

2-8

Building an HP VISA Application
in Windows

Compiling and Linking an HP VISA Program

• You may wish to add the include file and library file search paths. They are
set under the Options I Directories menu selection:

C:\VXIPNP\WIN\INCLUDE
C:\VXIPNP\WIN\LIB\MSC

Otherwise, the library and include files should be explicitly specified in the
project file.

For Borland C (or Turbo C) compilers:

• Make sure large memory model is selected:

1. Select Options I Project.

2. Double-click on 16-bi t Compiler in the Topics list box.

3. Click on Memory Model.

4. Change Mixed Model Override to Large.

5. Click on OK to close the dialog box.

You can do this from the command line environment by specifying the /ml
option to the compiler.

• The Borland C linker defaults to being case-insensitive when resolving
references. Tu link to the VISA libraries, you will need to tell the linker to
be case-sensitive for exports.

Th do this from Borland's Integrated Development Environment:

1. Select Options I Project.

2. Double-click on Linker in the Topics list box.

3. Click on General in the Topics list box.

4. Select Case Sensitive exports and imports.

5. Click on OK to close the dialog box.

You can do this from the command line environment by specifying the /C
option to TLINK.

2-9

Building an HP VISA Application

in Windows
Compiling and Linking an HP VISA Program

• You may wish to add the include file and library file search paths. They
are set under the Options I Project menu selection. Double-click on
Directories from the Topics list box and add:

C:\VXIPNP\WIN\INCLUDE
C:\VXIPNP\WIN\LIB\BC

• The following is required for building Borland Easy Win programs:

#if defined (_BORLANDC_) && !defined(_WIN32_)
_InitEasyWin();

#endif

2-10

Logging Error Messages

Windows 95

While developing or debugging your VISA application, you may wish to view
internal VISA messages while your application is running. This can be done
by using the Message Viewer utility in the HP I/0 Libraries program
group on Windows 95. This utility provides a debug window to which
VISA logs internal messages during application execution. Some of these
internal messages do not represent programming errors and are actually error
messages from VISA which are being handled internally by VISA.

To start the utility, double-click on the Message Viewer icon in the HP I/O
Libraries program group. The utility must be started before execution of
the VISA application. It will receive messages while minimized, however. The
Message Viewer utility also provides menu selections for saving the logged
messages to a file, and for clearing the message buffer.

Windows NT

VISA logs internal messages as Windows NT events. While developing
your VISA application or tracking down pro bl ems, you may wish to view
these messages. You can do so by starting the Event Viewer utility in the
Administrative Tools group. Both system and application messages can
be logged to the Event Viewer from VISA. VISA messages are identified
either by SICL LOG, or by the driver name (for example, hp341i32).

2-11

Running an HP VISA Program

To run the idn example program, do the following:

• If you use the command line interface:

Select File I Run from the Windows Program Manager menu.

• If you use the Windows interface:

o For Borland, select Run I Run.

o For Microsoft, select Project I Execute or Run I Go.

If the program runs correctly, the following is an example of the output if
connected to an HP 5460 lA oscilloscope:

HEWLETT-PACKARD,54601A,0,1.7

If the program does not run, refer to the m~ssage logger for a list of run-time
errors.

2-12

Where to Go Next

Now that you understand some basics of programming with VISA, continue
on to Chapter 4, "Programming with HP VISA." Chapter 4 provides detailed
example programs. It also contains information on sessions, addressing,
interrupt handling, locking, and so forth.

2-13

3

Building an HP VISA
Application
in HP-UX

Building an HP VISA Application
in HP-UX

This chapter describes what you need to know to build a VISA application on
HP-UX version 10.20 or later. This chapter contains the following sections:

• Reviewing an HP VISA Program

• Compiling and Linking an HP VISA Program

• Logging Error Messages

• Running an HP VISA Program

• Getting Online Help

• Where to Go Next

3-2

Reviewing an HP VISA Program

In this section, you will first review a simple example program called idn that
queries an HP-IB instrument for its identification string. The idn example
program is located in the following subdirectory:

opt/vxipnp/hpux/hpvisa/share/examples

The source file idn. c is listed on the following page. An explanation of the
various function calls in the example is provided directly after the program
listing for your review.

3-3

Building an HP VISA Application

in HP-UX
Reviewing an HP VISA Program

/•idn.c
This example program queries a GPIB device for an identification string
and prints the results. Note that you must change the address. •/

#include <visa.h>
#include <stdio.h>

void main () {

}

3-4

ViSession defaultRM, vi;
char buf [256] = {O};

/• Open session to GPIB device at address 22 •/
viOpenDefaultRM(tdefaultRM);
viOpen(defaultRM, "GPIBO:: 24:: INSTR", VI_NULL, VI_NULL, tvi);

I• Initialize device •/
viPrintf (vi, "•RST\n");

/• Send an •IDN? string to the device •/
viPrintf (vi, "•IDN?\n");

I• Read results •/
viScanf(vi, 11 %t 11

, buf);

I• Print results •/
printf ("Instrument identification string: i.s\n", buf);

I• Close sessions •/
viClose(vi);
viClose(defaultRM);

visa.h

ViSession

The Example Program Contents

Building an HP VISA Application
in HP-UX

Reviewing an HP VISA Program

The following is a summary of the VISA function calls used in the example
program. For a more detailed explanation of VISA functionality, see
Chapter 4, "Programming with HP VISA."

This file is included at the beginning of the file to provide the function
prototypes and constants defined by VISA.

The ViSession is a VISA data type. Each object that will establish a
communication channel must be defined as ViSession.

viOpenDef aul tRM You must first open a session with the default resource manager with the
viOpenDef aul tRM function. This function will initialize the default resource
manager and return a pointer to that resource manager session.

vi Open

viPrintf and
viScanf

vi Close

This function establishes a communication channel with the device specified.
A session identifier that can be used with other VISA functions is returned.
This call must be made for each device you will be using.

These are the VISA formatted I/O functions that are patterned after those
used in the C programming language. The viPrintf call sends the IEEE
488.2 *RST command to the instrument and puts it in a known state. The
viPrintf call is used again to query for the device identification (*ION?).
The viScanf call is then used to read the results.

This function must be used to close each session. When you close a device
session, all data structures that had been allocated for the session will be
deallocated. When you close the default manager session, all sessions opened
using that default manager session will be closed.

Refer to Chapter 7, "HP VISA Language Reference," for more detailed
information on these VISA functions and to learn about all of the functions
provided by VISA.

3-5

Compiling and Linking an HP VISA Program

You can create your VISA applications in ANSI C or C + + . When compiling
and linking a C program that uses VISA, use the -lvisa command line option
to link in the VISA library routines. The following example creates the id.n
executable file:

cc -Aa -o idn id.n.c -lvisa

• The -Aa option indicates ANSI C.
• The -o option creates an executable file called idn.
• The -1 option links in the VISA library.

3-6

Logging Error Messages

Tu view any VISA internal errors that may occur on HP-UX, edit the
/etc/opt/vxipnp/hpux/hpvisa/hpvisa. ini file. Change the ErrorLog=
line in this file to the following:

ErrorLog=true

The error messages, if any, will be then be printed to stderr.

3-7

Running an HP VISA Program

Execute your VISA program by typing the program name at the command
prompt. For example:

idn

When using an HP 5460 IA Four Channel Oscilloscope, you should get
something similar to the following:

Hewlett-Packard,54601A,0,1.7

If you have problems running the idn example program, first check to make
sure the device address specified in your program is correct. If the program
still doesn't run, check the 1/0 configuration. See the HP 110 Libraries
Installation and Configuration Guide for HP-UX for information on 1/0
configuration.

3-8

Getting Online Help

Online help for VISA on HP-UX is provided with Bristol Technology's
HyperHelp Viewer, or in the form of HP-UX manual pages (man pages), as
explained in the following subsections.

Using the HyperHelp Viewer

The Bristol Technology HyperHelp Viewer allows you to view the VISA
functions online. To start the HyperHelp Viewer with the VISA help file, type
the following:

hyperhelp /opt/hyperhelp/visahelp.hlp

When you start the Viewer, you can also specify any of the following options:

-k keyward

-p partiaLkeyward

-s viewmode

-display display

Opens the Viewer and searches for the specified
keyward.

Opens the Viewer and searches for a specific partial
keyward.

Opens the Viewer in the specified viewmode. If 1
is specified as the viewmode, then the Viewer is
shared by all applications. If O is specified, then
a separate Viewer is opened for each application
(default).

Opens the Viewer on the specified display.

3-9

•

Building an HP VISA Application
in HP-UX
Getting Online Help

Using HP-UX Manual Pages

Th use manual pages, type the HP-UX man command followed by the VISA
function name:

man function

The following are examples of getting online help on VISA functions:

man viPrintf
man viScanf
man viPeek

3-10

Where to Go Next

Now that you understand some basics of programming with VISA, continue
on to Chapter 4, "Programming with HP VISA." Chapter 4 provides detailed
example programs. It also contains information on sessions, addressing,
interrupt handling, locking, and so forth.

3-11

4

Programming with
HP VISA

Programming with HP VISA

This chapter describes how to program with VISA. The basics of VISA are
described, including formatted 1/0, events and handlers, attributes, and
locking. Example programs are also provided and can be found in the
SAMPLES subdirectory on Windows environments, or in the examples
subdirectory on HP-UX. See Appendix A, "HP VISA System Information," for
the specific location of the example programs on your operating system.

This chapter contains the following sections:

• Including the HP VISA Declarations File

• Opening a Session

• Addressing a Session

• Closing a Session

• Searching for Resources

• Sending 1/0 Commands

• Using Attributes

• Using Events and Handlers

• Trapping Errors

• Using Locks

For specific details on the VISA functions, see Chapter 7, "HP VISA Language
Reference. "

4-2

Including the HP VISA Declarations File

For C and C+ + programs, you must include the visa.h header file at the
beginning of every file that contains VISA function calls:

#include 11 visa.h 11

This header file contains the VISA function prototypes and the definitions for
all VISA constants and error codes. The visa. h header file also includes the
visatype. h header file.

The visatype .h header file defines most of the VISA types. The VISA types
are used throughout VISA to specify data types used in the functions. For
example, the viOpenDefaultRM function requires a pointer to a parameter of
type ViSession. If you find ViSession in the visatype. h header file, you
will find that ViSession is eventually typed as an unsigned long. Note that
the VISA types are also listed in Appendix D, "HP VISA Type Definitions."

4-3

Opening a Session

A session is a channel of conununication. Sessions must first be opened on
the default resource manager, and then for each device you will be using.
The following is a sununary of sessions that can be opened:

• A resource manager session is used to initialize the VISA system. It is
a parent session that knows about all the opened sessions. A resource
manager session must be opened before any other session can be opened.

• A device session is used to conununicate with a device on an interface. A
device session must be opened for each device you will be using. When
you use a device session you can conununicate without worrying about
the type of interface to which it is connected. This insulation makes
applications more robust and portable across interfaces. Typically a device
is an instrument, but could be a computer, a plotter, or a printer.

NOTE

All devices that you will be using need to be connected and in working condition prior to the
first VISA function call lviOpenDef aul tRMI. The system is configured only on the first
viOpenDefaultRM per process. Therefore, if viOpenDefaultRM is called without
devices connected and then called again when devices are connected, the devices will not be
recognized. You must close ALL Resource Manager sessions and reopen with all devices connected and
in working condition.

4-4

Programming with HP VISA

Opening a Session

Device Sessions

There are two parts to opening a conununications session with a specific
device. First you must open a session to the default resource manager with
the viOpenDef aul tRM function. The first call to this function initializes the
default resource manager and returns a session to that resource manager
session. You only need to open the default manager session once. However,
subsequent calls to viOpenDef aul tRM returns a unique session to the same
default resource manager resource.

Next, you open a session with a specific device with the viOpen function.
This function uses the session returned from viOpenDefaul tRM and returns
its own session to identify the device session. The following shows the
function syntax:

viOpenDef aul tRM (sesn);
viOpen(sesn, rsrcName, accessMode, timoout, vi);

The session returned from viOpenDef aul tRM must be used in the sesn
parameter of the viOpen function. The viOpen function then uses that
session and the device address specified in the rsrcName parameter to open a
device session. The vi parameter in viOpen returns a session identifier that
can be used with other VISA functions. /
Your program may have several sessions open at the same time by creating
multiple session identifiers by calling the viOpen function multiple times.

The following summarizes the parameters in the previous function calls:

sesn

rsrcName

accessMode

timoout

vi

This is a session returned from the viOpenDefaul tRM
function that identifies the resource manager session.

This is a unique symbolic name of the device (device
address).

This parameter is not used for VISA 1. 0. Use VI_NULL.

This parameter is not used for VISA 1.0. Use VI_NULL.

This is a pointer to the session identifier for this particular
device session. This pointer will be used to identify this
device session when using other VISA functions.

4-5

Programming with HP VISA
Opening a Session

The following is an example of opening sessions with a GPIB multimeter and
a GPIB-VXI scanner:

ViSession defaultRM, dJnm, scanner;

viOpenDefaultRM(idefaultRM);
viOpen(defaultRM, "GPIB0::22::INSTR", VI_NULL, VI_NULL, idJnm);
viOpen(defaultRM, "GPIB-VXIO: :24: :INSTR", VI_NULL, VI_NULL, &scanner);

viClose(scanner);
viClose(dJnm);
viClose(defaultRM);

The previous example first opens a session with the default resource manager.
The session returned from the resource manager and a device address is then
used to open a session with the GPIB device at address 22. That session
will now be identified as dmm when using other VISA functions. The session
returned from the resource manager is then used again with another device
address to open a session with the GPIB-VXI device at primary address 9 and
VXI logical address 24. That session will now be identified as scanner when
using other VISA functions. See the following section, "Addressing a Session,"
for information on addressing particular devices.

4-6

Addressing a Session

As seen in the previous section, the rsrcName parameter in the viOpen
function is used to identify a specific device. This parameter consists of
the VISA interface name and the device address. The interface name is
determined when you run the VISA configuration utility. This name is usually
the interface type followed by a number. The following table illustrates the
format of the rsrcName for the different interface types:

Interface

VXI

GPIB-VXI

GPIB

ASRL

Syntax

VXl[board]::VXI logical address[::INSTR]

GPIB-VXl[board]::VXI logical address[::INSTR]

GPI B[board]::primary address[::secondary address][::! NSTR]

ASRL[board][::INSTR]

The following describes the parameters used above:

board

VXI logical address

primary address

secondary address

This optional parameter is used if you have more
than one interface of the same type. The default
value for board is 0.

This is the logical address of the VXI instrument.

This is the primary address of the GPIB device.

This optional parameter is the secondary address
of the GPIB device. If no secondary address is
specified, none is assumed.

INSTR is an optional parameter that indicates that you are communicating
with a resource that is of type INSTR, meaning instrument.

4-7

Programming with HP VISA

Addressing a Session

NOTE

If you want to be compatible with future releases of VISA, you must include the INSTR parameter
in the syntax.

The following are examples of valid symbolic names:

VXIO : : 24 : : INSTR Device at VXI logical address 24 that is of VISA type
INSTR.

VXI2:: 128

GPIB-VXIO:: 24

GP IBO: : 7: : 0

ASRL1:: INSTR

Device at VXI logical address 128, in the third VXI
system (VXI2).

A VXI device at logical address 24. This VXI device
is connected via a GPIB-VXI command module.

A GPIB device at primary address 7 and secondary
address 0 on the GPIB interface.

A serial device located on port I that is of VISA type
INSTR.

The following is an example of opening a device session with the GPIB device
at primary address 23.

4-8

ViSession defaultRM, vi;

viOpenDefaultRM(idefaultRM);
viOpen(defaultRM, "GPIBO: :23: :INSTR", VI_NULL, VI_NULL, ivi);

viClose(vi);
viClose(defaultRM);

Closing a Session

The viClose function must be used to close each session. You can close
the specific device session, which will free all data structures that had been
allocated for the session. If you close the default resource manager session,
all sessions opened using that resource manager session will be closed.

Since system resources are also used when searching for resources
(viFindRsrc), the viClose function needs to be called to free up find lists.
See the next section, "Searching for Resources," for more information on
closing find lists.

4-9

. Searching for Resources

When you open the default resource manager, you are opening a parent
session that knows about all the other resources in the system. Since the
resource manager session knows about all resources, it has the ability to
search for specific resources and open sessions to these resources. You can,
for example, search an interface for devices and open a session with one of
the devices found.

Use the viF indRsrc function to search an interface for device resources.
This function finds matches and returns the number of matches found
and a handle to the resources found. If there are more matches, use the
viFindNext function with the handle returned from viFindRsrc to get the
next match:

viFindRsrc(sesn, expr, findList, retcnt, instrDesc);

viFindNext (findList, instrDesc) ;

viClose (findList) ;

Where the parameters are defined as follows:

sesn

findList

retcnt

The resource manager session.

The expression that identifies what to search (see table that
follows).

A handle that identifies this search. This handle will then be
used as an input to the viFindNext function when finding
the next match.

A pointer to the number of matches found.

instrDesc A pointer to a string identifying the location of the match.
Note that you must allocate storage for this string.

The handler returned from viFindRsrc should be closed to free up all the
system resources associated with the search. To close the find object, pass
the findList to the viClose function.

4-10

Programming with HP VISA

Searching for Resources

Use the expr parameter of the viFindRsrc function to specify the interface
to search. You can search for devices on the specified interface. Use the
following table to determine what to use for your expr parameter.

Interface expr Parameter

GPIB GPIB [0-9] *: : ?•INSTR

VXI VXI?•INSTR

G~~V~ GPIB-VXI?*INSTR

GPIB and GPIB-VXI GPIB?•INSTR

All VXI ?•VXI [0-9] *: : ?•INSTR

ASRL ASRL [0-9] *: : ?•INSTR

M ?•INSTR

NOTE

Because VISA interprets strings as regular expressions, notice that the string GPIB?*INSTR
applies to both GPIB and GPIB-VXI devices.

4-11

Programming with HP VISA

Searching for Resources

The following example searches the VXI interface for devices. The number
of matches found is returned in nmatches, and matches points to the string
that contains the matches found. The first call returns the first match found,
the second call returns the second match found, and so on.

ViChar buffer [VI_FIND_BUFLEN];
ViRsrc matches=buffer;
ViUint32 nmatches;
ViFindList list;

viFindRsrc(defaultRM, "VXI?*INSTR", &:list, l:nmatches, matches);

viFindNext(list, matches);

viClose(list);

Note that VLFIND_BUFLEN is defined in the visa.h declarations file.

4-12

Sending I/O Commands

Once you have established a communications session with a device, you
can start communicating with that device using VISA' s I/O routines. VISA
provides both formatted and non-formatted I/O routines:

• Formatted I/O converts mixed types of data under the control of a format
string. The data is buffered, thus optimizing interface traffic.

• Non-formatted I/O sends or receives raw data to or from a device. With
non-formatted I/O, no format or conversion of the data is performed. Thus,
if formatted data is required, it must be done by the user.

You can choose between VISA' s formatted and non -formatted I/O routines.
However, since the non-formatted I/O performs the low-level I/O, you should
not mix formatted I/O and non-formatted I/O in the same session. See the
following sections for a complete description and examples of using formatted
I/O and non-formatted I/O in VISA.

4-13

Programming with HP VISA
Sending 1/0 Commands

Formatted 1/0

The VISA formatted I/O mechanism is similar to the C stdio mechanism.
The VISA formatted I/O functions are buffered. They are as follows:

• The viPrintf functions format according to the format string and send
data to a device. The viPrintf function sends separate arg parameters,
while the vi VPrintf function sends a list of parameters in params:

viPrintf (vi, writePmt[, argl}[, arg2}[, .. .}) ;
vi VPrintf (vi, writePmt, params) ;

• The viScanf functions receive and convert data according to the format
string. The viScanf function receives separate arg parameters, while the
vi VScanf function receives a list of parameters in params:

viScanf (vi, readPmt[, argl}[, arg2][, .. . j) ;
viVScanf (vi, readPmt, params);

• The viQueryf functions format and send data to a device and then
immediately receive and convert the response data. Hence, the viQueryf
function is a combination of the viPrintf and viScanf functions.
Similarly, the vi VQueryf function is a combination of the vi VPrintf and
viVScanf functions.

The viQueryf function sends and receives separate arg parameters, while
the vi VQueryf function sends and receives a list of parameters in params:

viQueryf (vi, writePmt, readPmt[, arglj[, arg2}[, ... j);
viVQueryf (vi, writePmt, readPmt, params);

There are two non-buffered and non-formatted VO functions that
synchronously transfer data called viRead and viWrite, and there are two
that asynchronously transfer data called viReadAsync and viWriteAsync.
These are raw I/O functions and do not intermix with the formatted I/O
functions. See "Non-Formatted 1/0" later in this chapter.

See viPrintf, viQueryf, and viScanf in Chapter 7, "HP VISA Language
Reference," for more information on how data is converted under the control
of the format string.

4-14

Programming with HP VISA

Sending 1/0 Commands

Formatted 1/0 Conversion The formatted 1/0 functions convert data under the control of the format
string. The format string specifies how the argument is converted before it
is input or output. The format specifier sequence consists of a 'I. (percent)
followed by an optional modifier(s), followed by a conversion character:

Modifiers

'!.[modifiers }conversion character

Zero or more modifiers may be used to change the meaning of the conversion
character. Modifiers are only used when sending or receiving formatted 1/0.

For sending formatted 1/0, the asterisk (*) can be used to indicate that the
number is taken from the next argument. However, when the asterisk is used
when receiving formatted 1/0, it indicates that the assignment is suppressed
and the parameter is discarded. Use the pound sign (#)when receiving
formatted 1/0 to indicate that an extra argument is used.

The following are supported modifiers.

Field Width. Field width is an optional integer that specifies how many
characters are in the field. If the viPrintf or viQueryf (writeFmt)
formatted data has fewer characters than specified in the field width, it will
be padded on the left, or on the right if the - flag is present. You can use an
asterisk(*) in place of the integer in viPrintf or viQueryf (writeFmt) to
indicate that the integer is taken from the next argument. For the viScanf
or viQueryf (readFmt) functions, you can use a# sign to indicate that the
next argument is a reference to the field width.

The field width modifier is only supported with viPrintf and viQueryf
(writeFmt) conversion characters d, f , s, and viScanf and viQueryf
(readFmt) conversion characters c, s, and [].

The following example pads numb to six characters and sends it to the session
specified by vi:

int numb = 61;
viPrintf (vi, "1.6d\n", numb);

Inserts four spaces, for a total of 6 characters: 61

4-15

Programming with HP VISA
Sending 1/0 Commands

. Precision. Precision is an optional integer preceded by a period. This
modifier is only used with the viPrintf and viQueryf (wrUeFmt) functions.
The meaning of this argument is dependent on the conversion character used:

Precision Modifiers

Conversion Description
Character

d Indicates that the minimum number of digits to appear is specified for the
CD1 , GH , GQ , and GB flags, and the i , o , u, x , and X
conversion characters.

f Indicates that the maximum number of digits after the decimal point is
specified.

s Indicates that the maximum number of characters for the string is specified.

g Indicates that the maximum significant digits are specified.

You can use an asterisk(*) in place of the integer to indicate that the integer
is taken from the next argument.

The following example converts numb so that there are only two digits to the
right of the decimal point and sends it to the session specified by vi:

float numb = 26.9345;
viPrintf(vi, "Y..2f\n 11

, numb);

Sends: 26.93

4-16

Programming with HP VISA
Sending 1/0 Commands

Argument Length Modifier. The meaning of the optional argument length
modifier h, 1, L, z or Z is dependent on the conversion character, as listed
in the following table. Note that z and Z are not ANSI C standard modifiers.

Argument
Length

Modifier

h

1

L

z

z

Conversion
Character

d, b, B

d, f, b, B

f

b, B

b, B

Argument Length Modifiers

Description

Corresponding argument is a short integer or a reference to a short
integer for d. For b or B, the argument is the location of a block of
data or a reference to a data array. IB is only used with
viPrintf or viQueryf lwntefmtl.l

Corresponding argument is a long integer or a reference to a long
integer for d. For f, the argument is a double float or a reference to
a double float. For b or B, the argument is the location of a block of
data or a reference to a data array. IB is only used with
viPrintf or viQueryf lwntefmtl.l

Corresponding argument is a long double or a reference to a long
double.

Corresponding argument is an array of floats or a reference to an
array of floats. IB is only used with viPrintf or viQueryf
lwrtteFmtl.l

Corresponding argument is an array of double floats or a reference to
an array of double floats. IB is only used with viPrintf or
viQueryf lwrtteFmtl.l

4-17

Programming with HP VISA

Sending 1/0 Commands

, Array Size. The comma operator is a format modifier which allows you to
read or write a comma-separated list of numbers (only valid with Y.d and Y.f
conversion characters). It is a comma followed by an integer. The integer
indicates the number of elements in the array. The comma operator has the
format of ,dd where dd is the number of elements to read or write.

For viPrintf or viQueryf (writeFmt), you can use an asterisk(*) in place
of the integer to indicate that the integer is taken from the next argument.
For viScanf or viQueryf (readFmt), you can use a# sign to indicate that
the next argument is a reference to the array size.

The following example specifies a comma-separated list to be sent to the
session specified by vi:

int list[5]={101,102,103,104,105};
viPrintf(vi, "Y.,5d\n", list);

Sends: 101, 102, 103, 104, 105

See the viPrintf function in Chapter 7, "HP VISA Language Reference," for
additional, enhanced modifiers you may use (<01, <02, ©3, ©H, ©Q, and ©B).

Special Characters. Special formatting character sequences will send
special characters. The following describes the special characters and what
will be sent:

\n

\r

\t

\###

\"

\\

NOTE

Sends the ASCII line feed character. The END identifier will
also be sent.

Sends an ASCII carriage return character.

Sends an ASCII TAB character.

Sends the ASCII character specified by the octal value.

Sends the ASCII double quote character.

Sends a backslash character.

Note that the * while using the viScanf functions acts as an assignment suppression character.
The input is not assigned to any parameters and is discarded.

4-18

Programming with HP VISA
Sending 1/0 Commands

Conversion Characters. The conversion characters for sending and
receiving formatted 1/0 are different. The following tables summarize the
conversion characters for each:

viPrintf/viVPrintf and viOueryf/viVOueryf (writefmt)
Conversion Characters

Conversion Description
Character

d, i Corresponding argument is an integer.

f Corresponding argument is a double.

c Corresponding argument is a character.

s Corresponding argument is a pointer to a null terminated string

% Sends an ASCII percent 1%1 character.

o , u, x, X Corresponding argument is an unsigned integer.

e , E, g, G Corresponding argument is a double.

n Corresponding argument is a pointer to an integer.

b, B Corresponding argument is the location of a block of data.

viScanf/viVScanf and viOueryf/viVOueryf (readfmt)
Conversion Characters

Conversion Description
Character

d, i , n Corresponding argument must be a pointer to an integer.

e , f , g Corresponding argument must be a pointer to a float.

c Corresponding argument is a pointer to a character sequence.

s , t , T Corresponding argument is a pointer to a string.

o , u, x Corresponding argument must be a pointer to an unsigned integer

[Corresponding argument must be a character pointer.

b Corresponding argument is a pointer to a data array.

4-19

Formatted 1/0 Example

Programming with HP VISA
Sending 1/0 Commands

The following example receives data from the session specified by the vi
parameter and converts the data to a string:

char data [180] ;
viScanf(vi, "Y.t", data);

The following C program example shows sending and receiving formatted
IIO. This example opens a session with a GPIB device and sends a comma
operator to send a comma-separated list. This example program is intended
to show specific VISA functionality and does not include error trapping. Error
trapping, however, is good programming practice and is recommended in
your VISA applications. See "Trapping Errors" later in this chapter.

This example program is installed on your system in the SAMPLES
subdirectory on Windows environments, or in the examples subdirectory
on HP-UX. See Appendix A, "HP VISA System Information," for the specific
location of the example programs on your operating system.

4-20

Programming with HP VISA

Sending 1/0 Commands

/•formatio.c
This example program makes a multimeter measurement with a comma
separated list passed with formatted I/O and prints the results.
Note that you must change the device address. •/

#include <visa.h>
#include <stdio.h>

void main () {

}

ViSession defaultRM, vi;
double res;
double list [2] = {1,0.001};

/• Open session to GPIB device at address 22 •/
·viOpenDefaultRM(ldefaultRM);
viOpen(defaultRM, "GPIBO: :22: :INSTR", VI_NULL,VI_NULL, lvi);

I• Initialize device •/
viPrintf (vi, "•RST\n");

/• Set up device and send comma separated list •/
viPrintf (vi, "CALC:DBM:REF 50\n");
viPrintf(vi, 11 MEAS:VOLT:AC? %,2f\n", list);

/• Read results •/
viScanf (vi, 11%lf", ires);

I• Print results •/
printf("Measurement Results: %lf\n", res);

/• Close session •/
viClose(vi);
viClose(defaultRM);

4-21

Format String

Formatted 1/0 Buffers

Programming with HP VISA

Sending 1/0 Commands

The format string for viPrintf and viQueryf (writeFmt) puts a special
meaning on the newline character (\n). The newline character in the format
string flushes the output buffer to the device. All characters in the output
buffer will be written to the device with an END indicator included with
the last byte (the newline character). This means that you can control at
what point you want the data written to the device. If no newline character
is included in the format string, then the characters converted are stored
in the output buffer. It will require another call to viPrintf, viQueryf
(writeFmt), or viFlush to have those characters written to the device.

This can be very useful in queuing up data to send to a device. It can also
raise 1/0 performance by doing a few large writes instead of several smaller
writes.

The VISA software maintains both a read and write buffer for formatted
1/0 operations. Occasionally, you may want to control the actions of these
buffers.

The write buffer is maintained by the viPrintf or viQueryf (writeFmt)
functions. The buffer queues characters to send to the device so that they
are sent in large blocks, thus increasing performance. The write buffer
automatically flushes when it sends a newline character from the format
string. It may occasionally be flushed at other non-deterministic times, such
as when the buffer fills. When the write buffer flushes, it sends its contents
to the device. If you set the VI _ATTR_ WR_BUF _ OPER_MODE attribute to
VI _FLUSH_ ON _ACCESS, the write buffer will also be flushed every time a
viPrintf or viQueryf operation completes. See "Using Attributes" later in
this chapter for information on setting VISA attributes.

The read buffer is maintained by the viScanf and viQueryf (readFmt)
functions. It queues the data received from a device until it is needed by the
format string. Flushing the read buffer destroys the data in the buffer and
guarantees that the next call to viScanf or viQueryf reads data directly
from the device rather than data that was previously queued. If you set
the VI_ATTR_RD_BUF _OPER_MODE attribute to Vl_FLUSH_ON_ACCESS, the
read buffer will be flushed every time a viScanf or viQueryf operation
completes. See "Using Attributes" later in this chapter for information on
setting VISA attributes.

You can manually flush the read and write buffers by using the viFlush
function.

4-22

NOTE

Programming with HP VISA

Sending 1/0 Commands

Flushing the read buffer also includes reading all pending response data from a device. If the device
is still sending data, the flush process will continue to read data from the device until it receives an
END indicator from the device.

You can modify the size of the buffer by using the viSetBuf function. See
Chapter 7, "HP VISA Language Reference," for more information on this
function.

Non-Formatted 1/0

There are two non-buffered, non-formatted 1/0 functions that synchronously
transfer data called viRead and viWrite, and there are two that
asynchronously transfer data called viReadAsync and viWriteAsync. These
are raw 1/0 functions and do not intermix with the formatted VO functions.

The non-formatted VO functions are as follows:

• The viRead function synchronously reads raw data from the session
specified by the vi parameter and stores the results in the location where
buf is pointing. Only one synchronous read operation can occur at any one
time.

viRead(vi, buf, count, retCount);

• The viWri te function synchronously sends the data pointed to by buf to
the device specified by vi. Only one synchronous write operation can occur
at any one time.

viWrite(vi, buf, count, retCount);

4-23

Programming with HP VISA
Sending 1/0 Commands

• The viReadAsync function asynchronously reads raw data from the
session specified by the vi parameter and stores the results in the location
where buf is pointing. This operation normally returns before the transfer
terminates. Thus, the operation returns jobld, which you can use with
either vi Terminate to abort the operation or with an 1/0 completion event
to identify which asynchronous read operation completed.

viReadAsync (vi, buf, count, job Id) ;

• The viWri teAsync function asynchronously sends the data pointed to
by buf to the device specified by vi. This operation normally returns
before the transfer terminates. Thus, the operation returns jobld, which
you can use with either vi Terminate to abort the operation or with an
1/0 completion event to identify which asynchronous write operation
completed.

viWri teAsync (vi, buf, count, jobld) ;

For more information, see the viRead, viWrite, viReadAsync,
viWriteAsync, and vi Terminate functions in Chapter 7, "HP VISA
Language Reference."

Non-Formatted 1/0 Example The following example program illustrates using non-formatted 1/0 functions
to communicate with a GPIB device. A similar example is used to illustrate
formatted I/O earlier in this chapter. This example program is intended to
show specific VISA functionality and does not include error trapping. Error
trapping, however, is good programming practice and is recommended in
your VISA applications. See "Trapping Errors" later in this chapter.

This example program is installed on your system in the SAMPLES
subdirectory on Windows environments, or in the examples subdirectory
on HP-UX. See Appendix A, "HP VISA System Information," for the specific
location of the example programs on your operating system.

4-24

Programming with HP VISA
Sending 1/0 Commands

/*nonfmtio.c
This example program measures the AC voltage on a multimeter and
prints the results. Note that you must change the device address. */

#include <visa.h>
#include <stdio.h>

void main () {

}

ViSession defaultRM, vi;
char strres [20];
unsigned long actual;

/* Open session to GPIB device at address 22 *I
viOpenDefaultRM(tdefaultRM);
viOpen(defaultRM, "GPIBO:: 22: :INSTR", VI_NULL, VI_NULL, tvi);

/* Initialize device */
viWrite(vi, (ViBuf)"*RST\n", 5, tactual);

/* Set up device and take measurement */
viWrite(vi, (ViBuf)"CALC:DBM:REF 50\n", 16, tactual);
viWrite(vi, (ViBuf)"MEAS:VOLT:AC? 1, 0.001\n", 23, tactual);

I* Read results */
viRead(vi, (ViBuf)strres, 20, tactual);

I* NULL terminate the string */
strres[actual]=O;

I* Print results */
printf("Measurement Results: %s\n", strres);

I* Close session */
viClose(vi);
viClose(defaultRM);

4-25

Using Attributes

Attributes are associated with resources or sessions. You can use attributes to
determine the state of a resource or session. You can also use attributes to set
a resource or session to a specified state.

Use the viGetAttribute function to read the state of an attribute for a
specified session, event context, or find list. There are read only (RO) and
read/write (RW) attributes. Use the viSetAttribute function to modify the
state of a read/write attribute for a specified session, event context, or find
list.

The following example reads the state of the VI_ATTR_ TERMCHAR_EN
attribute and changes it if it is not true:

ViBoolean state, newstate;
newstate=VI_TRUE;

viGetAttribute(vi, VI_ATTR_TERMCHAR_EN, tstate);
if (state err !=VI_TRUE) viSetAttribute(vi, VI_ATTR_TERMCHAR_EN, newstate);

NOTE

The pointer passed to viGetAttribute must point to the exact type required for that
attribute: ViUint 16, Vilnt32, and so forth. For example, when reading an attribute state that
returns a ViUint 16, then you must declare a variable of that type and use it for the returned
data. If ViString is returned, then you must allocate an array and pass a pointer to that array
for the returned data.

The attributes are described in the following subsections. For programming
information on attributes, such as attribute types and ranges, see Appendix B,
"HP VISA Attributes."

4-26

Programming with HP VISA
Using Attributes

HP VISA Resource Attributes

The VISA resource attributes are primarily used to find out information about
the VISA version implemented and its manufacturer. Information can also be
obtained about the current resource manager session, as well as the locking
state of a resource.

VI_ATTR_MAX_QUEUE_LENGTH Specifies the maximum number of events
that can be queued.

VI_ATTR_RM_SESSION Returns the session of the resource manager
that was used to open this session.

VI_ATTR_RSRC_IMPL_VERSION Returns the resource identification.

VI_ATR_RSRC_LOCK_STATE

VI_ATTR_RSRC_MANF_ID

VI_ATTR_RSRC_MANF_NAME

VI_ATTR_RSRC_NAME

Returns the current locking state of the
resource.

Returns the VXI manufacturer's
identification of the manufacturer that
created the implementation.

Returns the VXI manufacturer's name
of the manufacturer that created the
implementation.

Returns the identifier of the resource
compliant with the address specified.

VI_ATTR_RSRC_SPEC_ VERSION Returns the VISA version.

VI_ATTR_USER_DATA This is a place for you to store your own
data.

4-27

Programming with HP VISA
Using Attributes

HP VISA Generic Instrument Attributes

The following are generic attributes that can be called on sessions. These
attributes determine such things as when a buffer is flushed, timeout values,
and the type of interface the device is on.

VI_ATTR_INTF_NUM

VI_ATTR_INTF_TYPE

Returns the board number of the specified
interface.

Returns the interface type for the specified
session.

VI_ATTR_IO_PROT For VXI, specifies if you use normal word
serial or fast data channel (FDC) protocol.
For GPIB, only normal data transfers are
accepted.

VI _ATTR_RD _BUF _ OPER_MODE Determines when the read buffer is flushed.

VI_ATTR_SEND_END_EN Specifies whether the END is asserted during
the transfer of the last byte of the buffer.

VI_ATTR_SUPPRESS_END_EN Specifies whether the END is suppressed.

VI_ A TTR_ TERMCHAR Specifies if the termination character is to
be used. When VI _ATTR_ TERMCHAR_EN is
enabled and the termination character is
read, the read operation will terminate.

VI_ A TTR_ TERMCHAR_EN Determines if the read operation will
terminate when a termination character is
received.

VI_ATTR_TMO_VALUE Specifies a timeout value.

VI_ATTR_TRIG_ID Specifies the current trigger line.

VI_ATTR_WR_BUF _OPER_MODE Determines when the write buffer is flushed.

4-28

GPIB and GPIB-VXI
Interfaces

VXI and GPIB-VXI
Interfaces

Programming with HP VISA
Using Attributes

HP VISA Interface Specific Instrument Attributes

The interface specific attributes provide information about an interface or a
device on an interface. The attributes are listed by interface type.

VI_ATTR_GPIB_PRIMARY_ADDR Returns the primary address of the GPIB
device for the specified session.

VI_ATTR_GPIB_SECONDARY _ADDR Returns the secondary address of the

VI_ATTR_CMDR_LA

VI_ATTR_DEST_INCREMENT

VI_ATTR_FDC_CHNL

VI_ATTR_FDC_GEN_SIGNAL_EN

VI_ATTR_FDC_MODE

VI_ATTR_FDC_USE_PAIR

GPIB device for the specified session.

Returns the logical address of the
commander of the VXI device in the
specified session.

Specifies how much the destination
offset is to be incremented after every
transfer in the viMoveOut.XX function.
If set to 0, the viMoveOut.XXfunction
will always write to the same element,
essentially treating the destination as a
FIFO register.

Determines which fast data channel
(FDC) will be used to transfer the buffer.

Setting this attribute to VI_ TRUE lets
the servant send a signal when control
of the FDC channel is passed back to
the conunander. This action frees the
commander from having to poll the
FDC header while engaging in an FDC
transfer.

Determines which FDC mode to use
(Normal or Stream mode).

If set to VI_ TRUE, a channel pair will be
used for transferring data. Otherwise,
only one channel will be used.

4-29

Programming with HP VISA

Using Attributes

VI_ATTR_IMMEDIATE_SERV

VI_ATTR_MAINFRAME_LA

VI_ATTR_MANF_ID

VI_ATTR_MEM_BASE

VI_ATTR_MEM_SIZE

VI_ATTR_MEM_SPACE

VI_ATTR_MODEL_CODE

VI_ATTR_SLOT

VI_ATTR_SRC_INCREMENT

VI_ATTR_VXI_LA

VI_ATTR_WIN_ACCESS

VI_ATTR_WIN_BASE_ADDR

VI_ATTR_WIN_SIZE

4-30

Specifies whether or not the given device
is an inunediate servant of the controller
running VISA.

Returns the lowest logical address in the
mainframe. VI_UNKNOWN_LA is returned
if the logical address is not known.

Returns the manufacturer's identification
number of the VXI device in the specified
session.

Returns the base address of the device in
A24 or A32 VXI memory address space.

Returns the size of memory requested by
the device in A24 or A32 VXI address
space.

Returns the VXI address space used by
the device (A16, A16/A24, or A16/A32).

Returns the model code of the device in
the specified session.

Returns the physical slot location of the
VXI device in the specified session.

Specifies how much the source offset is
to be incremented after every transfer
in the viMoveinXX function. If set to
0, the viMoveinXX function will always
read from the same element, essentially
treating the source as a FIFO register.

Returns the logical address of the VXI
device in the specified session.

Returns the mode in which the current
window can be accessed.

Returns the base address of the interface
bus to which this window is mapped.

Returns the size of the region mapped to
this window.

GPIB-VXI Interface

ASAL Interface

VI_ATTR_INTF_PARENT_NUM

VI_ATTR_ASRL_AVAIL_NUM

VI_ATTR_ASRL_BAUD

VI_ATTR_ASRL_DATA_BITS

VI_ATTR_ASRL_END_IN

VI_ATTR_ASRL_END_OUT

VI_ATTR_ASRL_FLOW_CNTRL

VI_ATTR_ASRL_PARITY

VI_ATTR_ASRL_STOP_BITS

Programming with HP VISA

Using Attributes

Returns the board number of the GPIB
interface to which the GPIB-VXI is
attached.

Returns the number of bytes available in
the global receive buffer.

Returns the baud rate of the interface.

Returns the number of data bits
contained in each frame (from 5 to 8).
The data bits for each frame are located
in the low-order bits of every byte stored
in memory.

Indicates the method used to terminate
read operations.

Indicates the method used to terminate
write operations.

Returns the kind of flow control that the
transfer mechanism is using.

Returns the parity used with every frame
transmitted and received.

Returns the number of stop bits used to
indicate the end of a frame.

4-31

Programming with HP VISA
Using Attributes

HP VISA Event Attributes

The following attributes are read only attributes that can only be read on
event contexts returned from event handlers or vi Wai tOnEvent.

VI_ATTR_EVENT_TYPE

VI_ATTR_SIGP_STATUS_ID

VI_ATTR_RECV_TRIG_ID

VI_ATTR_STATUS

VI_ATTR_JOB_ID

VI_ATTR_BUFFER

VI_ATTR_RET_COUNT

4-32

Returns the type of event enabled.

Returns the 16-bit status (ID) value. (Only
for VI_EVENT _ VXI_SIGP event type.)

Returns which trigger line was fired. (Only
for VI_EVENT _TRIG event type.)

Returns the return code of the asynchronous
VO operation that has completed. (Only for
VI_EVENT _IO_COMPLETION event type.)

Returns the job identifier (ID) of the
asynchronous operation that has completed.
(Only for VI_EVENT_IO_COMPLETION event
type.)

Returns the address of a buffer that was
used in an asynchronous operation. (Only
for VI_EVENT _IO_COMPLETION event type.)

Returns the actual number of elements that
were asynchronously transferred. (Only for
VI_EVENT_IO_COMPLETION event type.)

Using Events and Handlers

Events are special occurrences that require attention from your application.
Event types include Service Requests (SRQs), interrupts, and hardware
triggers. Events will not be delivered unless the appropriate events are
enabled.

There are two ways you can receive notification that an event has occurred:

• Install an event handler with viinstallhandler, and enable one or
several events with viEnableEvent. If the event was enabled with a
handler, the specified event handler will be called when the specified event
occurs. This is called a callback.

• Enable one or several events with viEnableEvent and call the
vi Wai tOnEvent function. The vi Wai tOnEvent function will suspend the
program execution until the specified event occurs or the specified timeout
period is reached. This is called queuing.

These methods are independent of each other, and one or both can be used at
one time. The callback method is generally used when immediate response is
needed, and the queuing method is for non-critical events.

Examples of each of these methods follows. For a more detailed explanation
of each method, see the following sections.

4-33

Programming with HP VISA
Using Events and Handlers

Callback Method:

void my_handler (ViSession vi, ViEventType eventType, ViEvent context,
ViAddr usrHandle) {

I• your event handling code here •/

viClose(context);
}
main(){
ViSession vi;
ViAddr addr=O;

viinstallHandler(vi, VI_EVENT_SERVICE_REQ, my_handler, addr);
viEnableEvent(vi, VI_EVENT_SERVICE_REQ, VI_HNDLR, VI_NULL);

I• your code here•/.

viDisableEvent(vi, VI_EVENT_SERVICE_REQ, VI_HNDLR);
viUninstallHandler(vi, VI_EVENT_SERVICE_REQ, my_handler, addr);

}

Queuing Method:

main();
ViSession vi;
ViEventType eventType;
ViEvent event;

viEnableEvent(vi, VI_EVENT_SERVICE_REQ, VI_QUEUE, VI_NULL);

viWaitOnEvent(vi, VI_EVENT_SERVICE_REQ, VI_TMO_INFINITE, leventType,
levent);

viClose(event);
viDisableEvent(vi, VI_EVENT_SERVICE_REQ, VI_QUEUE);
}

4-34

Programming with HP VISA
Using Events and Handlers

Events and Attributes

The following events can be enabled:

Event Name Description

Notification that a device is requesting service. VI_EVENT_SERVICE_REQ

VI_EVENT_VXI_SIGP Notification that a VXI signal or VXI interrupt has been received
from a device.

VI_EVENT_TRIG

VI_EVENT_IO_COMPLETION

Notification that a hardware trigger was received from a device.

Notification that an asynchronous operation has completed.

NOTE

The VI_EVENT _ VXI_SIGP and VI_EVENT _TRIG events are not supported on the
GPIB-VXI interface.

NOTE

Event contexts should not be closed in event handlers. !That is, do not use viClose to close
contexts in event handlers.I

4-35

Event Name

Programming with HP VISA
Using Events and Handlers

Once the application has received an event, information about that event can
be obtained by using the viGetAttribute function on that particular event
context. The following table lists the events and the associated read only
attributes that can be read to get event information on a specific event.

Attributes Data Type Values

VI_EVENT_SERVICE_REQ VI - ATTR_EVENT_TYPE ViEventType VI_EVENT_SERVICE_REQ

VI_EVENT_VXI_SIGP VI_ATTR_EVENT_TYPE ViEventType VI_EVENT_VXI_SIGP
VI_ATTR_SIGP_STATUS_ID ViUint16 0 to FFFFh

VI_EVENT_TRIG VI_ATTR_EVENT_TYPE ViEventType VI_EVENT_TRIG
VI_ATTR_RECV_TRIG_ID Viint16 VI_TRIG_TTLO to

VI_TRIG_TTL7
VI_ TRIG_ECLO to
VI_TRIG_ECL1

VI_EVENT_IO_COMPLETION VI_ATTR_EVENT_TYPE ViEventType VI_EVENT_IO_COMPLETION

Reading the Attribute

VI_ATTR_STATUS ViStatus N/A
VI_ATTR_JOB_ID ViJobid ViBuf N/A
VI_ATTR_BUFFER ViUint32 N/A
VI_ATTR_RET_COUNT 0 to FFFFFFFFh

Use the VISA viReadSTB function to read the status byte of the service
request.

Once you have decided which attribute to check, you can read the attribute
using the viGetAttribute function. The following shows how you would
check to find out which trigger line fired when the VI_EVENT _TRIG event
was delivered: ·

Viint 16 state;

viGetAttribute(context, VI_ATTR_RECV_TRIG_ID, &state);

Note that the context parameter is either the event context passed to your
event handler, or the outcontext specified when doing a wait on event. See
"Using Attributes" earlier in this chapter for more information on reading
attribute states.

4-36

Installing Handlers

Programming with HP VISA
Using Events and Handlers

The Callback Method

The callback method of event notification is used when you need to
immediately respond to an event. To use the callback method for receiving
notification that an event has occurred, you must do the following:

• Install an event handler with the viinstallHandler function.

• Enable one or several events with the viEnableEvent function.

Then when the enabled event occurs, the installed event handler is called.

A handler is installed on a specified session. Only one handler can be
installed on a specific event in a given session, or you can install a different
handler for each event type. However, the same handler can be installed on
more than one event type. Use the following function when installing an
event handler:

viinstallHandler(vi, eventType, handler, userHandle);

Where the parameters are defined as follows:

vi

event Type

handler

user Handle

The session the handler will be installed on.

The event type that will activate the handler.

The name of the handler to be called.

A user value that uniquely identifies the handler for the
specified event type.

The userHandle parameter allows you to assign a value to be used with the
handler on the specified session. Thus, you can install the same handler for
the same event type on several sessions with different userHandle values.
The same handler is called for the specified event type. However, the value
passed to userHandle is different. Therefore the handlers are uniquely
identified by the combination of the handler and the userHandle. This may
be useful when you need a different handling method depending on the
user Handle.

4-37

Writing the Handler

Programming with HP VISA

Using Events and Handlers

The following shows how to install an event handler to call my _handler
when a Service Request occurs. Note that VI_EVENT _SERVICE_REQ must
also be an enabled event with the viEnableEvent function in order for the
service request event to be delivered.

viinstallHandler(vi, VI_EVENT_SERVICE_REQ, my_handler, addr);

Use the viUninstallHandler function to uninstall a specific handler. Or
you can use wildcards (VI _ANY _HNDLR in the handler parameter) to uninstall
groups of handlers. See viUninstallHandler in Chapter 7, "HP VISA
Language Reference, " for more details on this function.

The handler installed needs to be written by the programmer. The event
handler typically reads an associated attribute and performs some sort of
action. See the event handler in the example program later in this section.

4-38

Enabling Events

Programming with HP VISA
Using Events and Handlers

Before an event can be delivered, it must be enabled using the
viEnableEvent function. This function causes your application to be
notified when the enabled event has occurred:

viEnableEvent (vi, eventType, mechanism, context);

Where the parameters are defined as follows:

vi

event Type

mechanism

NOTE

The session the handler will be installed on.

The type of event to enable.

The mechanism by which the event will be enabled. It can
be enabled in several different ways:

• Use V!_HNDLR in this parameter to specify that the
installed handler will be called when the event occurs.

• Use VI_SUSPEND_HNDLR in this parameter which puts the
events in a queue and waits to call the installed handlers
until viEnableEvent is called with VI_HNDLR specified
in the mechanism parameter. When viEnableEvent
is called with V!_HNDLR specified, the handler for each
queued event will be called.

Using VI_ QUEUE in the mechanism parameter specifies a queuing method for the events to be
handled. If you use both VI_QUEUE and one of the mechanisms listed above, notification of events
will be sent to both locations. See the next subsection for information on the queuing method.

context Not used in VISA 1.0. Use VI_NULL.

4-39

Event Callback Example

Programming with HP VISA
Using Events and Handlers

The following illustrates enabling a hardware trigger event:

viinstallHandler(vi, VI_EVENT_TRIG, my_handler, &addr);
viEnableEvent(vi, VI_EVENT_TRIG, VI_HNDLR, VI_NULL);

The VI _HNDLR mechanism specifies that the handler installed for
VI_EVENT _TRIG will be called when a hardware trigger occurs.

If you specify VI_ALL_ENABLE_EVENTS in the eventType parameter, all
events that have previously been enabled on the specified session will be
enabled for the mechanism specified in this function call.

Use the viDisableEvent function to stop servicing the event specified.

The following example program installs an event handler and enables
the trigger event. When the event occurs, the installed event handler is
called. This example program is intended to show specific VISA functionality
and does not include error trapping. Error trapping, however, is good
programming practice and is recommended in your VISA applications. See
"Trapping Errors" later in this chapter.

This example program is installed on your system in the SAMPLES
subdirectory on Windows environments, or in the examples subdirectory
on HP-UX. See Appendix A, "HP VISA System Information," for the specific
location of the example programs on your operating system.

I* evnthdlr.c
This example program illustrates installing an event handler to
be called when a trigger interrupt occurs. Note that you must
change the address. */

#include <visa.h>
#include <stdio.h>

I* trigger event handler •/
ViStatus _VI_FUNCH myHdlr(ViSession vi, ViEventType eventType,

ViEvent ctx, ViAddr userHdlr){

4-40

Vi!nt16 trig!d;

I* make sure it is a trigger event *I
if (eventType!=VI_EVENT_TRIG){

}

I* Stray event, so ignore */
return VI_SUCCESS;

}

/• print the event information •/
printf("Trigger Event Occurred!\n");

Programming with HP VISA
Using Events and Handlers

printf (" ... Original Device Session = %ld\n" , vi) ;

/* get the trigger that fired •/
viGetAttribute(ctx, VI_ATTR_RECV_TRIG_ID, ttrig!d);
printf ("Trigger that fired: ");
switch(trig!d){

}

case VI_TRIG_TTLO:
printf ("TTLO");
break;

default:
printf("<other Ox%x>", trig!d);
break;

printf ("\n");

return VI_SUCCESS;

void main(){

}

ViSession defaultRM,vi;

I* open session to VXI device •/
viOpenDefaultRM(ldefaultRM);
viOpen(defaultRM, "VXIO: :24: :INSTR", VI_NULL, VI_NULL, tvi);

I* select trigger line TTLO •/
viSetAttribute(vi, VI_ATTR_TRIG_ID, VI_TRIG_TTLO);

I* install the handler and enable it •/
viinstallHandler(vi, VI_EVENT_TRIG, myHdlr, (ViAddr)10);
viEnableEvent(vi, VI_EVENT_TRIG, VI_HNDLR, VI_NULL);

/• fire trigger line, twice •/
viAssertTrigger(vi, VI_TRIG_PROT_SYNC);
viAssertTrigger(vi, VI_TRIG_PROT_SYNC);

/• unenable and uninstall the handler •/
viDisableEvent(vi, VI_EVENT_TRIG, VI_HNDLR);
viUninstallHandler(vi, VI_EVENT_TRIG, myHdlr, (ViAddr)10);

I• close the sessions •/
viClose(vi);
viClose(defaultRM);

4-41

SRQ Callback Example

Programming with HP VISA
Using Events and Handlers

The following example program installs an event handler and enables an SRQ
event. When the event occurs, the installed event handler is called. This
example program is intended to show specific VISA functionality and does
not include error trapping. Error trapping, however, is good prograrmning
practice and is recommended in your VISA applications. See "Trapping
Errors" later in this chapter.

This example program is installed on your system in the SAMPLES
subdirectory on Windows environments, or in the examples subdirectory
on HP-UX. See Appendix A, "HP VISA System Information," for the specific
location of the example programs on your operating system.

/• srqhdlr.c
This example program illustrates installing an event handler to
be called when an SRQ interrupt occurs. Note that you must
change the address. •/

#include <visa.h>
#include <stdio.h>
#if defined (_WIN32)

#include <windows.h> /• for Sleep() •/
#define YIELD Sleep(10)

#el if defined ()
#include <windows.h> /• for Yield() •/
#define YIELD Yield()

#elif defined (_WINDOWS)
#include <io.h> /• for _wyield •/
#define YIELD _wyield()

#else
#include <unistd.h>
#define YIELD sleep (1)

#endif

int srqOccurred;

I• trigger event handler •/
ViStatus _VI_FUNCH mySrqHdlr(ViSession vi, ViEventType eventType,

ViEvent ctx, ViAddr userHdlr){

4-42

ViUint16 statusByte;

I• make sure it is an SRQ event •/
if (eventType!=VI_EVENT_SERVICE_REQ){

I• Stray event, so ignore •/

}

printf("\nStray event of type Ox%lx\n", eventType);
return VI_SUCCESS;

}

I* print the event information */
printf("\nSRQ Event Occurred!\n");

Programming with HP VISA
Using Events and Handlers

printf (" ... Original Device Session = %ld\n", vi) ;

I* get the status byte */
viReadSTB(vi, tstatusByte);
printf(" ... Status byte is Ox%x\n", statusByte);

srqOccurred = 1;
return VI_SUCCESS;

void main(){
ViSession defaultRM,vi;
long count;

/• open session to message based VXI device */
viOpenDefaultRM(tdefaultRM);
viOpen(defaultRM, "GPIB-VXI0::24::INSTR", VI_NULL, VI_NULL, tvi);

I* Enable command error events */
viPrintf (vi, "*ESE 32\n") ;

I* Enable event register interrupts */
viPrintf (vi, "*SRE 32\n") ;

I* install the handler and enable it */
viinstallHandler(vi, VI_EVENT_SERVICE_REQ, mySrqHdlr, (ViAdd.r)10);
viEnableEvent(vi, VI_EVENT_SERVICE_REQ, VI_HNDLR, VI_NULL);

srqOccurred = O;

I* Send a bogus command to the message based device to cause an SRQ */
/• Note: 'IDN' causes the error -- 'IDN?' is the correct syntax */
viPrintf (vi, "IDN\n") ;

/* Wait a vhile for the SRQ to be generated and for the handler */
/* to be called. Print something vhile ve wait */
printf ("Waiting for an SRQ to be generated . ") ;
for (count = 0 ; (count < 10) tt (srqOccurred == 0) count++) {

long count2 = O;

}

printf (" . ") ;
vhile ((count2++ < 100) tt (srqOccurred ==O)){

YIELD;
}

printf ("\n") ;

4-43

Programming with HP VISA
Using Events and Handlers

}

4-44

I• disable and uninstall the handler •/
viDisableEvent(vi, VI_EVENT_SERVICE_REQ, VI_HNDLR);
viUninstallHandler(vi, VI_EVENT_SERVICE_REQ, mySrqHdlr, (ViAddr)10);

I• Clean up after ourselves - don't leave device in error state *I
viPrintf (vi, "•CLS\n") ;

/• close the sessions •/
viClose(vi);
viClose(defaultRM);

printf("End of program\n");

Enabling Events

Programming with HP VISA
Using Events and Handlers

The Queuing Method

The queuing method is generally used when you do not need immediate
response from your application. To use the queuing method for receiving
notification that an event has occurred, you must do the following:

• Enable one or several events with the viEnableEvent function.

• When ready to query, use the viWaitOnEvent function to check for
queued events.

If the specified event has occurred, then the event information is retrieved
and the program returns immediately. If the specified event has not occurred,
then the program suspends execution until a specified event occurs or until
the specified timeout period is reached.

Before an event can be delivered, it must be enabled using the
viEnableEvent function:

viEnableEvent (vi, eventType, mechanism, context) ;

Where the parameters are defined as follows:

vi The session the handler will be installed on.

The type of event to enable. event Type

mechanism The mechanism by which the event will be enabled. Specify
VI_ QUEUE to use the queuing method.

context Not used in VISA 1.0. Use VI_NULL.

When you use VI_ QUEUE in the mechanism parameter, you are specifying
that the events will be put into a queue. Then, when a vi Wai tOnEvent
function is invoked, the program execution will suspend until the enabled
event occurs or the timeout period specified is reached. If the event has
already occurred, the vi Wai tOnEvent function will return immediately.

4-45

Wait on the Event

Programming with HP VISA

Using Events and Handlers

The following illustrates enabling a hardware trigger event:

viEnableEvent(vi, VI_EVENT_TRIG, VI_QUEUE, VI_NULL);

The VI_QUEUE mechanism specifies that when an event occurs, it will go into
a queue.

If you specify VI_ALL_ENABLE_EVENTS in the eventType parameter, all
events that have previously been enabled on the specified session will be
enabled for the mochanism specified in this function call.

Use the viDisableEvent function to stop servicing the event specified.

When using the vi Wai tOnEvent function, specify the session, the event type
to wait for, and the timeout period to wait:

vi Wai tOnEvent (vi, inEventType, timoout, outEventType, outContext) ;

Note that the event must have previously been enabled with VI_QUEUE
specified as the mochanism parameter.

The following shows how to install a wait on event for service requests:

viEnableEvent(vi, VI_EVENT_SERVICE_REQ, VI_QUEUE, VI_NULL);
viWaitOnEvent(vi, VI_EVENT_SERVICE_REQ, VI_TMO_INFINITE, leventType, levent);

viDisableEvent(vi, VI_EVENT_SERVICE_REQ, VI_QUEUE);

Every time a wait on event is invoked, an event context object is created.
Specifying VI_ TMO _INFINITE in the timoout parameter indicates that the
program execution will suspend indefinitely until the event occurs. To clear
the event queue for a specified event type, use the viDiscardEvents
function.

4-46

Event Queuing Example

Programming with HP VISA

Using Events and Handlers

The following example program enables the trigger event in a queuing mode.
When the vi Wai tOnEvent function is called, the program will suspend
operation until the trigger line_ is fired or the timeout period is reached. Since
the trigger lines were already fired and the events were put into a queue,
the function will return and print the trigger line that fired. This example
program is intended to show specific VISA functionality and does not include
error trapping. Error trapping, however, is good programming practice and is
recommended in your VISA applications. See "Trapping Errors" later in this
chapter.

This example program is installed on your system in the SAMPLES
subdirectory on Windows environments, or in the examples subdirectory
on HP-UX. See Appendix A, "HP VISA System Information," for the specific
location of the example programs on your operating system.

I• evntqueu.c
This example program illustrates enabling an event queue
using viWaitOnEvent. Note that you must change the device
address. •/

#include <visa.h>
#include <stdio.h>

void main(){
ViSession defaultRM,vi;
ViEventType eventType;
ViEvent eventVi;
ViStatus err;
Vi!nt16 trigid;

/• open session to VXI device •/
viOpenDefaultRM(&defaultRM);
viOpen(defaultRM, 11 VXI0::24::INSTR 11

, VI_NULL, VI_NULL, bi);

I• select trigger line TTLO •/
viSetAttribute(vi, VI_ATTR_TRIG_ID, VI_TRIG_TTLO);

I• enable the event •/
viEnableEvent(vi, VI_EVENT_TRIG, VI_QUEUE, VI_NULL);

I• fire trigger line, twice •/
viAssertTrigger(vi, VI_TRIG_PROT_SYNC);
viAssertTrigger(vi, VI_TRIG_PROT_SYNC);
I• Wait for the event to occur •/
err=viWaitOnEvent(vi, VI_EVENT_TRIG, 10000, &eventType, &eventVi);

4-47

Programming with HP VISA
Using Events and Handlers

}

4-48

if (err==VI_ERROR_TMO){
printf("Timeout Occurred! Event not received.\n");
return;

}

/• print the event information •/
printf("Trigger Event Occurred!\n");
printf (" ... Original Device Session = 7.ld\n", vi) ;

I• get trigger that fired •/
viGetAttribute(eventVi, VI_ATTR_RECV_TRIG_ID, ltrigid);
printf("Trigger that fired: ");
switch(trigid){

case VI_TRIG_TTLO:
printf("TTLO");
break;

default:
printf("<other Ox7.x>",trigid);
break;

}

printf("\n");

I• close the context before continuing •/
viClose(eventVi);

/• get second event •/
err=viWaitOnEvent(vi, VI_EVENT_TRIG, 10000, leventType, leventVi);
if (err==VI_ERROR_TMO){

printf("Timeout Occurred! Event not received.\n");
return;

}

printf("Got second event\n");

I• close the context before continuing •/
viClose(eventVi);

I• disable event •/
viDisableEvent(vi, VI_EVENT_TRIG, VI_QUEUE);

I• close the sessions •/
viClose(vi);
viClose(defaultRM);

Trapping Errors

HP VISA Errors

The example programs in this guide show specific VISA functionality and· do
not include error trapping. Error trapping, however, is good progranuning
practice and is reconunended in all your VISA applications. To trap VISA
errors you must check for VLSUCCESS after each VISA function call.
The following illustrates checking for VI_SUCCESS. If VI_SUCCESS is not
returned, then an error handler, written by the programmer, is called. This
must be done with each VISA function call.

NOTE

If you want to ignore WARNINGS, you can test to see if err is less than {<I VI_SUCCESS.
Since WARNINGS are greater than VI_SUCCESS and ERRORS are less than VI_SUCCESS,
err _handler would only be called when the function returns an ERROR. For example:

if (err< VI_SUCCESS) err_handler (vi, err);

ViStatus err;

err=viPrintf (vi, "*RST\n");
if (err< VI_SUCCESS) err_handler(vi, err);

4-49

Programming with HP VISA
Trapping Errors

The following error handler prints a user-readable string describing the error
code passed to the function:

void err_handler(ViSession vi, ViStatus err){

}

char err_msg[1024]={0};
viStatusDesc (vi, err, err_msg);
printf ("ERROR= Y.s\n", err_msg);
return;

Instrument Errors

When progranuning instruments, it's good practice to check the instrument
to make sure there are no instrument errors after each instrument function.
The following function uses a SCPI command to check a specific instrument
for errors:

void system_err(){

}

4-50

ViStatus err;
char buf [1024]={0};
int err_no;

err=viPrintf(vi, "SYSTEM:ERR?\n");
if (err< VI_SUCCESS) err_handler (vi, err);

err=viScanf (vi, "Y.dY.t", ierr_no, ibuf);
if (err< VI_SUCCESS) err_handler (vi, err);

while (err_no >O){

}

printf ("Error Found: Y.d,Y.s\n", err_no, buf);
err=viScanf (vi, "Y.dY.t", ierr_no, ibuf);

err=viFlush(vi, VI_READ_BUF);
if (err< VI_SUCCESS) err_handler (vi, err);

err=viFlush(vi, VI_WRITE_BUF);
if (err< VI_SUCCESS) err_handler (vi, err);

Using Locks

In VISA, applications can open multiple sessions to a VISA resource
simultaneously. Applications can therefore access a VISA resource
concurrently through different sessions. However, in certain cases,
applications accessing a VISA resource may want to restrict other applications
from accessing that resource. For example, when an application needs to
perform successive write operations on a resource, the application may
require that, during the sequence of writes, no other operation can be
invoked through any other session to that resource. For such circumstances,
VISA defines a locking mechanism that restricts access to resources.

The VISA locking mechanism enforces arbitration of accesses to VISA
resources on a per-session basis. If a session locks a resource, operations
invoked on the resource through other sessions either are serviced or are
returned with an error, depending on the operation and the type of lock used.

If a VISA resource is not locked by any of its sessions, all sessions have
full privilege to invoke any operation and update any global attributes.
Sessions are not required to have locks to invoke operations or update global
attributes. However, if some other session has already locked the resource,
attempts to update global attributes or invoke certain operations will fail.
Refer to descriptions of the individual VISA functions in Chapter 7, "HP VISA
Language Reference," to determine which would fail when a resource is
locked.

The VISA viLock function is used to acquire a lock on a resource:

viLock(vi, lockType, timoout, requestroKey, accessKey);

The VLATTR_RSRC_LOCK_STATE attribute specifies the current locking state
of the resource on the given session, which can be either VI_NO_LOCK,
VI_EXCLUSIVE_LOCK, or VI_SHARED_LOCK. The VISA viUnlock function is
then used to release the lock on a resource. The following subsection explains
the different types, or access modes, of locks.

4-51

Programming with HP VISA

Using Locks

NOTE

The viLock and viUnlock functions are not supported with 16-bit VISA on Windows 95.

NOTE

If a resource is locked and the current session does not have the lock, the error
VI_ERROR_RSRC_LOCKED is returned.

4-52

Lock Types

VISA defines two different types of locks:

Programming with HP VISA
Using Locks

• Exclusive Lock - A session can lock a VISA resource using the lock type
VI_EXCLUSIVE_LOCK to get exclusive access privileges to the resource.
This exclusive lock type excludes access to the resource from all other
sessions. If a session has an exclusive lock, other sessions cannot modify
global attributes or invoke operations on the resource; however, the other
sessions can still get atttributes.

• Shared Lock - A session can share a lock on a VISA resource with other
sessions by using the lock type VI_SHARED_LOCK. Shared locks in VISA
are similar to exclusive locks in terms of access privileges, but can still be
shared between multiple sessions. If a session has a shared lock, other
sessions that share the lock can also modify global attributes and invoke
operations on the resource (of course, unless some other session has a
previous exclusive lock on that resource). A session that does not share the
lock will lack these capabilities.

See the next subsection, "Lock Sharing," for more information about the
shared lock type.

Locking a resource restricts access from other sessions and, in the case where
an exclusive lock is acquired, ensures that operations do not fail because
other sessions have acquired a lock on that resource. Thus, locking a resource
prevents other, subsequent sessions from acquiring an exclusive lock on that
resource.

Yet, when multiple sessions have acquired a shared lock, note that VISA
allows one of the sessions to acquire an exclusive lock along with the shared
lock it is holding. This is explained in detail later in this section. Also note
that VISA supports nested locking - that is, a session can lock the same VISA
resource multiple times (for the same lock type) via multiple invocations of
the viLock function. In such a case, unlocking the resource requires an
equal number of invocations of the viUnlock function. Nested locking is also
explained in detail later in this section.

4-53

Lock Sharing

Programming with HP VISA

Using Locks

NOTE

Some VISA operations may be permitted even when there is an exclusive lock on a resource, or some
global attributes may not be read when there is any kind of lock on the resource. These exceptions,
when applicable, are mentioned in the descriptions of the individual VISA functions and attributes. See
Chapter 7, "HP VISA Language Reference," for descriptions of the individual functions to determine
which are applicable for locking and which are not restricted by locking.

Because the locking mechanism in VISA is session-based, multiple threads
sharing a session that has locked a VISA resource have the same privileges
for accessing the resource. Some applications, though, may have separate
sessions to a resource and may want all the sessions in that application to
have the same privilege as the session that locked the resource. In other
cases, there may be a need to share locks among sessions in different
applications. Essentially, a session that acquired a lock to a resource may
share the lock with other sessions it selects, and exclude access from other
sessions.

As explained earlier, VISA defines the VI_SHARED_LOCK lock type to give
exclusive access privileges to a session along with the capability to share
these exclusive privileges with other sessions at the discretion of the original
session. When locking the resource using the VI_SHARED_LOCK lock type, the
viLock function returns an accessKey that can be used to share the lock. The
session can then share this lock with any other session by passing around this
accessKey.

Before other sessions can access the locked resource, they need to acquire the
lock by passing the accessKey in the requestooKey parameter of the viLock
function. Invoking viLock with the same key will register the new session
to have the same access privileges as the original session. The new session
that acquired the access privileges through the sharing mechanism can also
pass the accessKey to other sessions for sharing of the resource, and so forth.
Of course, all the sessions sharing a resource via the shared lock should
synchronize their accesses to maintain a consistent state of the resource.

4-54

Programming with HP VISA
Using locks

VISA also provides the flexibility for the application(s) to specify a key
to use as the accessKey, instead of VISA generating the accessKey. The
application(s) can suggest a key value to use through the requestedKey
parameter of the viLock function. If the resource was not locked, the
resource will use this requestedKey as the accessKey. If the resource was
locked using a shared lock, and the requestedKey matches the key with
which the resource was locked, the resource will grant shared access to the
session. If an application attempts to lock a resource using a shared lock, but
passes V!_NULL as the requestedKey parameter, then VISA will generate an
accessKey for the session.

A session seeking to share exclusive access to a resource with other
sessions needs to acquire a VI_SHARED_LOCK for this purpose. If it
requests VI_EXCLUSIVE_LOCK instead, no valid accessKey will be returned.
Consequently, the session will not be able to share the lock with any other
sessions.

Acquiring an Exclusive Lock When multiple sessions have acquired a shared lock on a resource, VISA
While Holding allows one of the sessions to acquire an exclusive lock along with the shared
a Shared Lock lock it is holding via the viLock function. The session holding both the

exclusive and shared lock will have the same access privileges that it had
when it was holding only the shared lock. However, this precludes the other
sessions holding the shared lock from accessing the locked resource. This
is useful when multiple sessions holding a shared lock must synchronize
operations, or when one of the sessions must execute a critical operation.

When the session holding the exclusive lock unlocks the resource via the
viUnlock function, all the sessions (including the one that had acquired the
exclusive lock) will again have all the access privileges associated with the
shared lock.

Note that in the reverse case where a session is holding an exclusive lock
only (no shared locks), VISA does not allow it to change to VI_SHARED_LOCK.

4-55

Programming with HP VISA

Using Locks

Nested Locks

VISA also supports nested locking, in which a session can lock the same VISA
resource multiple times (for the same lock type) via multiple invocations of
the viLock function. Unlocking the resource requires an equal number of
invocations of the viUnlock operation. In other words, for each invocation
of viLock, a lock count will be incremented, and for each invocation of
viUnlock, the lock count will be decremented. A resource will be truly
unlocked only when the lock count is 0 (zero).

Each session maintains a separate lock count for each type of lock. Therefore,
repeated invocations of the viLock function for the same session will
increase the appropriate lock count, depending on the type of lock requested.
In the case of a shared lock, nesting viLock functions will return with the
same accessKey every time. In the case of an exclusive lock, viLock will not
return any accessKey, regardless of whether it is nested or not.

For nesting shared locks, VISA does not require an accessKey be passed in to
invoke the viLock function. That is, a session does not need to pass in the
accessKey obtained from the previous invocation of viLock to gain a nested
lock on the resource. However, if an application does pass in an accessKey
when nesting shared locks, it must be the correct one for that session. See
the description of the viLock function in Chapter 7, "HP VISA Language
Reference, " for further details on the accessKey parameter.

Lock Examples

The following two examples illustrate the two different lock types, exclusive
and shared locks, in VISA. The first example shows a session gaining an
exclusive lock to perform the viPrintf and viScanf VISA operations on a
GPIB device. It then releases the lock via the viUnlock function.

4-56

Programming with HP VISA
Using Locks

I• lockexcl. c
This example program. queries a GPIB device for an identification string
and prints the results. Note that you must change the address. •/

#include <visa.h>
#include <stdio.h>

void main () {

}

ViSession defaultRM, vi;
char buf [256] = {O};

/• Open session to GPIB device at address 22 •/
viOpenDefaultRM (ldefaultRM);
viOpen (def aul tRM, 11 GPIBO: : 22: : INSTR11

, VI_NULL, VI_NULL, tvi) ;

I• Initialize device •/
viPrintf (vi, 11 •RST\n");

/• Make sure no other process or thread does anything to this resource
between the viPrintf () and the viScanf () calls •/

viLock (vi, VI_EXCLUSIVE_LOCK, 2000, VI_NULL, VI_NULL);

I• Send an •IDN? string to the device •/
viPrintf (vi, 11 •IDN?\n11

);

I• Read results •/
viScanf (vi, 11 %t 11

, tbuf);

/• Unlock this session so other processes and threads can use it •/
viUnlock (vi);

I• Print results •/
printf ("Instrument identification string: %s\n", buf);

I• Close session •/
viClose (vi);
viClose (defaultRM);

4-57

Programming with HP VISA

Using Locks

This second locking example shows a session gaining a shared lock with the
accessKey called lockkey. Other sessions can now use this accessKey in
the requestooKey parameter of the viLock function to share access on the
locked resource. This example then shows the original session acquiring an
exclusive lock while maintaining its shared lock. When the session holding
the exclusive lock unlocks the resource via the viUnlock function, all the
sessions sharing the lock again have all the access privileges associated with
the shared lock.

I• lockshr.c
This example program queries a GPIB device for an identification string
and prints the results. Note that you must change the address. •/

#include <visa.h>
#include <stdio.h>

void main () {

ViSession defaultRM, vi;
char buf [256] = {O};
char lockkey [256] = {O};

I• Open session to GPIB device at address 22 •/
viOpenDefaultRM (tdefaultRM);
viOpen (defaultRM, "GPIB0::22::INSTR", VI_NULL,VI_NULL, tvi);

I• acquire a shared lock so only this process and processes that
we know about can access this resource •/

viLock (vi, VI_SHARED_LOCK, 2000, VI_NULL, lockkey);

I• at this time, we can make 'lockkey' available to other processes
that we know about. This can be done with shared memory or other
inter-process communication methods. These other processes can
then call "viLock(vi, VI_SHARED_LOCK, 2000, lockkey, lockkey)"
and they will also have access to this resource.

I• Initialize device •/
viPrintf (vi, "•RST\n");

I• Make sure no other process or thread does anything to this resource
between the viPrintf () and the viScanf () calls
NOTE: this also locks out the processes with which we shared our
'shared lock' key.

•I
viLock (vi, VI_EXCLUSIVE_LOCK, 2000, VI_NULL, VI_NULL);

4-58

}

I* Send an *IDN? string to the device *I
viPrintf (vi, "*IDN?\n");

I* Read results */
viScanf (vi, "%t", tbuf);

I* unlock this session so other processes and threads can use it */
viUnlock (vi);

/* Print results */
printf ("Instrument identification string: %s\n", buf);

I* release the shared lock too *I
viUnlock (vi);

I* Close session */
viClose (vi);
viClose (defaultRM);

4-59

5

Programming VXI Devices

Programming VXI Devices

VISA supports three interfaces you can use to access VXI: GPIB, VXI,
and GPIB-VXI. The GPIB interface can be used to access VXI instruments
via a Command Module. In addition, the VXI backplane can be directly
accessed with the VXI or GPIB-VXI interfaces. This chapter describes
additional information for programming VXI devices with the VXI or GPIB-VXI
interfaces. See Chapter 4, "Progranuning with HP VISA," for general
information on VISA programming for all three interfaces.

This chapter contains the following sections:

• Programming Overview

• Using High-Level Memory Functions

• Using Low-Level Memory Functions

• Considering VXI Backplane Memory 1/0 Performance

• Using VXI Specific Attributes

For information on the specific VISA functions, see Chapter 7, "HP VISA
Language Reference."

5-2

Programming Overview

You can use VISA to program VXI instruments over three different interfaces:

VXI Interface

GPIB-VXI Interface

GPIB Interface

Uses an embedded VXI controller or other VXI
interfaces and accesses VXI instruments directly
over the VXI backplane.

Uses the GPIB interface connected to a Command
Module to directly access the VXI backplane.

Uses the GPIB interface connected to a Command
Module and communicates with the Command
Module, which then sends commands to the VXI
instruments. There is no direct access to the VXI
backplane.

5-3

Programming VXI Devices

Programming Overview

This chapter discusses using the VXI and GPIB-VXI interfaces for direct access
to the VXI backplane. When directly accessing the VXI backplane, you must
be aware of the different types of VXI instruments:

Message-Based

Register-Based

5-4

A message-based device has its own processor
which allows it to interpret the high-level
commands, such as SCPI (Standard Commands
for Programmable Instruments). While using
VISA, you can simply place the SCPI command
within your VISA output function call, and then
the message-based device interprets the SCPI
command. In this case you can use the VISA
formatted I/O or non -formatted I/O functions and
program the message-based device as you would
a GPIB device. However, if your message-based
device has shared memory, you can access the
device's shared memory by doing register peeks
and pokes. VISA provides two different methods
that you can use to program directly to the
registers: high-level memory functions or low-level
memory functions. Each of these programming
methods is discussed in the following sections.

A register-based device typically does not have
a processor to interpret high-level commands;
therefore, it must be programmed with register
peeks and pokes directly to the device's registers.
VISA provides two different methods that you can
use to program register-based devices: high-level
memory functions or low-level memory functions.
Each of these programming methods is discussed in
the following sections.

Using High-Level Memory Functions

High-level memory functions allow you to access memory on the interface
through simple function calls. There is no need to map memory to a window.
Instead, use the high-level memory functions, and the memory mapping and
direct register access is done for you.

The trade off, however, is speed. The high-level memory functions are easier
to use. Yet, because these functions encompass mapping of memory space
and direct register access, the associated overhead slows down the program's
execution time. If speed is what you need, use the low-level memory
functions discussed in the next section.

The high-level memory functions include the viin and viOut functions for
transferring 8-, 16-, or 32-bit values, as well as the viMovein and viMoveOut
functions for transferring 8-, 16-, or 32-bit blocks of data to or from local
memory.

5-5

Programming VXI Devices
Using High-Level Memory Functions

Programming to the Registers

When using the vi!n and viOut high-level memory functions to program
to the device registers, all you have to do is specify the session identifier,
address space, and the offset of the register. The memory mapping is done for
you. For example, in this function:

viln32 (vi, space, offset, val32) ;

vi is the session identifier, and offset is used to indicate the offset of the
memory to be mapped. offset is relative to the location of this device's
memory in the given address space. The space parameter determines which
memory location to map the space. The following are valid space values:

VI_A16_SPACE - Maps in VXI/MXI A16 address space.
VI_A24_SPACE - Maps in VXI/MXI A24 address space.
VI_A32_SPACE - Maps in VXI/MXI A32 address space.

The val32 parameter is a pointer to where the data read will be stored. If,
instead, you were writing to the registers via the vi0ut32 function, the
val32 parameter would be a pointer to the data to write to the specified
registers.

NOTE

If the device specified by vi does not have memory in the specified address space, an error is returned.

The following is an example of using viin16:

5-6

ViSession defaultRM, vi;
ViUint16 value;

viOpenDefaultRM(&defaultRM);
viOpen(defaultRM, "VXI::24", VI_NULL, VI_NULL, &vi);
viin16(vi, VI_A16_SPACE, Ox100, &value);

Programming VXI Devices

Using High-Level Memory Functions

You can also use the viMove!n and viMoveOut high-level memory functions
to move blocks of data to or from local memory. Specifically, the viMove!n
functions moves an 8-, 16-, or 32-bit block of data from the specified offset to
local memory, whereas the viMoveOut functions moves an 8-, 16-, or 32-bit
block of data from local memory to the specified offset. Again, the memory
mapping is done for you. For example, in this function:

viMove!n32 (vi, space, offset, length, buf32) ;

vi is the session identifier, and offset is used to indicate the offset of the
memory to be mapped. offset is relative to the location of this device's
memory in the given address space. The space parameter determines which
memory location to map the space, and the length parameter specifies the
number of elements to transfer (8-, 16-, or 32-bits).

The buf32 parameter is a pointer to where the data read will be stored. If,
instead, you were writing to the registers via the viMove0ut32 function,
the buf32 parameter would be a pointer to the data to write to the specified
registers.

5-7

Programming VXI Devices
Using High-Level Memory Functions

You can therefore program using 8-, 16-, or 32-bit transfers. The following
table sununarizes the high-level memory functions.

Function

v i!n8 (vi, space, offset, val8) ;

vi!n16(v1; space, offset, va/16);

v i!n3 2 (vi, space, offset, va/32) ;

viOut8(v1; space, offset, val8);

viOut 16 (vi, space, offset, va/16);

vi0ut32 (v1; space, offset, val32);

viMovein8(v1; space, offset, length, buf8);

viMovein16(vi, space, offset, length, bufl6);

viMovein32(vi, space, offset, length, buf32);

viMove0ut8(vi, space, offset, length, buf8);

viMove0ut16(v1; space, offset, length, bufl6);

viMove0ut32 (v1; space, offset, length, buf32);

5-8

Description

Reads 8 bits of data from the specified offset.

Reads 16 bits of data from the specified offset.

Reads 32 bits of data from the specified offset.

Writes 8 bits of data to the specified offset.

Writes 16 bits of data to the specified offset.

Writes 32 bits of data to the specified offset.

Moves an 8-bit block of data from the specified offset
to local memory.

Moves a 16-bit block of data from the specified offset
to local memory.

Moves a 32-bit block of data from the specified offset
to local memory.

Moves an 8-bit block of data from local memory to the
specified offset.

Moves a 16-bit block of data from local memory to the
specified offset.

Moves a 32-bit block of data from local memory to the
specified offset.

Programming VXI Devices
Using High-Level Memory Functions

High-Level Memory Functions Examples

The following example programs use the high-level memory functions to read
the ID and Device Type registers of the device at the VXI logical address of
24. The contents of the registers are then printed out. The first program uses
the VXI interface, and the second program accesses the backplane with the
GPIB-VXI interface. Note that these two programs are identical except for the
string passed to viOpen.

/*VXihl.c
This example program uses the high-level memory functions to
read the id and device type registers of the device at
VXI0::24. Change this address if necessary. The
register contents are then displayed.*/

#include <visa.h>
#include <stdlib.h>
#include <stdio.h>

void main () {

}

ViSession defaultRM, dmm;
unsigned short id_reg, devtype_reg;

I* Open session to VXI device at address 24 */
viOpenDefaultRM(ldefaultRM);
viOpen(defaultRM, "VXIO: :24:: INSTR", VI_NULL, VI_NULL, ldmm);

I* Read instrument id register contents */
vi!n16(dmm, VI_A16_SPACE, OxOO, lid_reg);

I* Read device type register contents *I
viin16(dmm, VI_A16_SPACE, Ox02, ldevtype_reg);

I* Print results */
printf ("ID Register= Ox%4X\n", id_reg);
printf ("Device Type Register= Ox%4X\n", devtype_reg);

I* Close sessions */
viClose(dmm);
viClose(defaultRM);

5-9

Programming VXI Devices

Using High-Level Memory Functions

The following example program uses the GPIB-VXI interface for direct register
access through a VXI Command Module.

/•gpibvxih.c
This example program uses the high-level memory functions to
read the id and device type registers of the device at
GPIB-VXI0::24. Change this address if necessary.
The register contents are then displayed.•/

#include <visa.h>
#include <stdlib.h>
#include <stdio.h>

void main () {

}

5-10

ViSession defaultRM, dmm;
unsigned short id_reg, devtype_reg;

/• Open session to VXI device at address 24 •/
viOpenDefaultRM(tdefaultRM);
viOpen(defaultRM, "GPIB-VXI0::24::INSTR", VI_NULL,VT_NULL, tdmm);

/• Read instrument id register contents •/
vi!n16(dmm, VI_A16_SPACE, OxOO, tid_reg);

/• Read device type register contents •/
vi!n16(dmm, VI_A16_SPACE, Ox02, tdevtype_reg);

I• Print results •/
printf ("ID Register= Ox%4X\n", id_reg);
printf ("Device Type Register= Ox%4X\n", devtype_reg);

I• Close sessions •/
viClose(dmm);
viClose(defaultRM);

Using Low-Level Memory Functions

Low-level memory functions allow you direct access to memory on the
interface just as with high-level memory functions. However, with low-level
memory function calls, you must map a range of addresses and directly
access the registers with low-level memory functions, such as viPeek32 and
viPoke32.

There is more programming effort required when using low-level memory
functions. However, the program execution speed can increase. Additionally,
to increase program execution speed, the low-level memory functions do not
return error codes.

Programming to the Registers

When using the low-level memory functions for direct register access, you
must first map a range of addresses using the viMapAddress function. Then
you can send a series of peeks and pokes using the viPeek and viPoke
low-level memory functions. When you are done, you must free the address
window using the viUrunapAddress function. In sum, the process you might
follow is:

1. Map memory space using viMapAddress.

2. Read and write to the register's contents using viPeek32 and viPoke32.

3. Unmap the memory space using viUrunapAddress.

5-11

Programming VXI Devices

Using Low-Level Memory Functions

Mapping Memory Space When using VISA to access the device's registers, you must map memory
space into your process space. Note that on a given session, you can only
have one map at a time. To map space into your process, use the VISA
viMapAddress function:

viMapAddress (vi, mapSpace, mapBase, mapSize, access, suggested, address) ;

This function maps space for the device specified by the vi session. mapBase,
mapSize, and suggested are used to indicate the offset of the memory to
be mapped, amount of memory to map, and a suggested starting location,
respectively. mapSpace determines which memory location to map the space.
The following are valid mapSpace choices:

VI_A16_SPACE - Maps in VXI/MXI Al6 address space.
VI_A24_SPACE - Maps in VXI/MXI A24 address space.
VI_A32_SPACE - Maps in VXI/MXI A32 address space.

A pointer to the address space where the memory was mapped is returned in
the address parameter.

NOTE

If the device specified by vi does not have memory in the specified address space, an error is returned.

The following are example viMapAddress function calls:

I* Maps to A32 address space •/
viMapAddress(vi, VI_A32_SPACE, OxOOO, Ox100, VI_FALSE, VI_NULL, iaddress);

I* Maps to A24 address space •/
viMapAddress(vi, VI_A24_SPACE, OxOO, Ox80, VI_FALSE, VI_NULL, iaddress);

5-12

Reading and Writing to
the Device Registers

Programming VXI Devices

Using Low-Level Memory Functions

Once you have mapped the memory space, use the VISA low-level memory
functions to access the device's registers. First, determine which device
register you need to access. Then, you need to know the register's offset. See
the instrument's user's manual for a description of the registers and register
locations. You can then use this information and the VISA low-level functions
to access the device registers.

The following is an example of using viPeek16:

ViSession defaultRM, vi;
ViUint16 value;
ViAddr address;
ViUint16 value;

viOpenDefaultRM(ldefaultRM);
viOpen(defaultRM, "VXI: :24: :INSTR", VI_NULL, VI_NULL, lvi);
viMapAddress(vi, VI_A16_SPACE, OxOO, Ox04, VI_FALSE, VI_NULL, laddress);
viPeek16(vi, add.r, lvalue)

You can therefore program using 8-, 16-, or 32-bit transfers. The following
table surmnarizes the low-level memory functions.

Function

viMapAddress(v1; mapSpace, mapBase,
mapSize, access, suggested, address) ;

viPeek8(vi, addr, va/8);

viPeek16(vi, addr, va/16);

viPeek32(VJ; addr, va/32);

viPoke8(vi, addr, va/8);

viPoke16(VJ; addr, va/16);

viPoke32(vi, addr, va/32);

viUrunapAddress (vi);

Description

Maps the specified memory space.

Reads 8 bits of data from the address specified.

Reads 16 bits of data from the address specified.

Reads 32 bits of data from the address specified.

Writes 8 bits of data to the address specified.

Writes 16 bits of data to the address specified.

Writes 32 bits of data to the address specified.

Unmaps memory space previously mapped.

Unmapping Memory Space Make sure you use the viUrunapAddress function to unmap the memory
space when it is no longer needed. Unmapping memory space makes the
window available for the system to reallocate.

5-13

Programming VXI Devices

Using Low-Level Memory Functions

Low-Level Memory Functions Examples

The following example programs use the low-level memory functions to read
the ID and Device Type registers of the device at VXI logical address 24. The
contents of the registers are then printed out. The first program uses the VXI
interface, and the second program uses the GPIB-VXI interface to access the
VXI backplane. Note that these two programs are identical except for the
string passed to viOpen.

5-14

Programming VXI Devices

Using Low-Level Memory Functions/

/•vxill.c
This example program uses the low-level memory functions
to read the id and device type registers of the device
at VXI0::24. Change this address if necessary. The
register contents are then displayed.•/

#include <visa.h>
#include <stdlib.h>
#include <stdio.h>

void main 0 {

ViSession defaultRM, dmm;
ViAddr address;
unsigned short id_reg, devtype_reg;

I• Open session to VXI device at address 24 •/
viOpenDefaultRM(ldefaultRM);
viOpen(defaultRM, "VXIO: :24: :INSTR", VI_NULL,VI_NULL, ldmm);

I• Map into memory space •/
viMapAddress(dmm, VI_A16_SPACE, OxOO, Ox10, VI_FALSE, VI_NULL, laddress);

}

I• Read instrument id register contents •/
viPeek16(dmm, address, lid_reg);

/• Read device type register contents •/
/• ViAddr is defined as a void * so we must cast it to something else •/
/• in order to do pointer arithmetic •/
viPeek16(dmm, (ViAddr)((ViUint16 •)address+ Ox01), ldevtype_reg);

I• Unmap memory space •/
viUnmapAddress(dmm);

I• Print results •/
printf ("ID Register= Ox%4X\n", id_reg);
printf ("Device Type Register= Ox%4X\n", devtype_reg);

I• Close sessions •/
viClose(dmm);
viClose(defaultRM);

5-15

Programming VXI Devices

Using Low-Level Memory Functions

This example program uses the GPIB-VXI interface for direct register access
through a VXI Command Module.

/•gpibvxil.c
This example program uses the low-level memory functions
to read the id and device type registers of the device
at GPIB-VXI0::24. Change this address if necessary.
The register contents are then displayed.*/

#include <visa.h>
#include <stdlib.h>
#include <stdio.h>

void main () {

}

ViSession defaultRM, dmm;
ViAddr address;
unsigned short id_reg, devtype_reg;

I• Open session to VXI device at address 24 •/
viOpenDefaultRM(idefaultRM);
viOpen(defaultRM, "GPIB-VXIO: :24: :INSTR", VI_NULL,VI_NULL, l:dmm);

/• Map into memory space •/
viMapAddress(dmm, VI_A16_SPACE, OxOO, Ox10, VI_FALSE, VI_NULL, &:address);

I• Read instrument id register contents •/
viPeek16(dmm, address, iid_reg);

/• Read device type register contents •/
/• ViAddr is defined as a void * so we must cast it to something else •/
/• in order to do pointer arithmetic •/
viPeek16(dmm, (ViAddr)((ViUint16 •)address+ Ox01), l:devtype_reg);

I• Unmap memory space •/
viUnmapAddress(dmm);

I• Print results •/
printf ("ID Register= OxY.4X\n", id_reg);
printf ("Device Type Register= OxY.4X\n", devtype_reg);

I• Close sessions •/
viClose(dmm);
viClose(defaultRM);

5-16

Considering VXI Backplane
Memory 1/0 Performance

VISA supports three different memory VO mechanisms for accessing memory
on the VXI backplane:

• Low-level viPeek/viPoke:

o viMapAddress
o viUrunapAddress
o viPeek8, viPeek16, viPeek32
o viPoke8, viPoke16, viPoke32

• High-level viin/viOut:

o vi!n8, vi!n16, viln32
o vi0ut8, vi0ut16, vi0ut32

• High-level viMovein/viMoveOut:

o viMovein8, viMovein16, viMovein32
o viMoveOut8, viMoveOut16, viMoveOut32

All three of these access mechanisms can be used to read and write VXI
memory in the A16, A24, and A32 address spaces. The best method to use
depends on the VISA program characteristics.

Low-level viPeek/viPoke is the most efficient in programs which require
repeated access to different addresses in the same memory space. The
advantages are:

• Individual viPeek/viPoke calls are faster than viin/viOut or
viMovein/viMoveOut calls.

• Memory pointer may be directly dereferenced in some cases for the lowest
possible overhead. (See the example later in this section.)

5-17

Programming VXI Devices

Considering VXI Backplane
Memory 1/0 Performance

The disadvantages of low-level viPeek/viPoke are:

• viMapAddress call is required to set up mapping before viPeek/viPoke
can be used.

• viPeek/viPoke calls do not return status codes.

• Only one active viMapAddress is allowed per vi session.

• There may be a limit to the number of simultaneous active viMapAddress
calls per process or system.

High-level viin/viOut calls are best in situations where a few, widely
scattered memory access are required and speed is not a major consideration.
The advantages are:

• Simplest method to implement.

• No limit on number of active maps.

• Al6, A24, and A32 memory access can be mixed in a single vi session.

The disadvantage of high-level viin/viOut calls is that they are slower than
viPeek/viPoke.

High-level viMovein/viMoveOut calls provide the highest possible
performance for transferring blocks of data to or from the VXI backplane.
Although these calls have higher initial overhead than the viPeek/viPoke
calls, they are optimized by HP on each platform to provide the fastest
possible transfer rate for large blocks of data. Note that for small blocks, the
overhead associated with viMovein/voMoveOut may actually make these
calls longer than an equivalent loop of viin/viOut calls. The block size
at which viMovein/viMoveOut becomes faster depends on the particular
platform and processor speed. The advantages are:

• Simple to use.

• No limit on number of active maps.

• A 16, A24, and A32 memory access can be mixed in a single vi session.

• Provides the best performance when transferring large blocks of data.

• Supports both block and FIFO mode.

The disadvantage of viMovein/viMoveOut calls is that they have higher
initial overhead than viPeek/viPoke.

The following is an example of the various types of VXI memory VO.

5-18

Programming VXI Devices

Considering VXI Backplane

Memory 1/0 Performance

*/

memio.c
This example program demonstrates the use of various memory I/O
methods in VISA.

#include <visa.h>
#include <stdlib.h>
#include <stdio.h>

#define VXI_INST "VXI024INSTR"

void main () {
ViSession defaultRM, vi;
ViAddr address;
ViUint16 accessMode;
unsigned short *memPtr16;
unsigned short id_reg;
unsigned short devtype_reg;
unsigned short memArray[2];

I* Open the default resource manager and a session to our instrument
*/

viOpenDefaultRM (ldefaultRM);
viOpen (defaultRM, VXI_INST, VI_NULL,VI_NULL, tvi);

I* ==
====================== Low level memory I/O ======================

= viPeek16
= direct memory dereference (when allowed)

== *I

I* Map into memory space •/
viMapAddress (vi, VI_A16_SPACE, OxOO, Ox10, VI_FALSE, VI_NULL,

taddress);

I• ================== using viPeek ================================
I• Read instrument id register contents •/
viPeek16 (vi, address, tid_reg);

5-19

Programming VXI Devices

Considering VXI Backplane

Memory 1/0 Performance

*I

Read device type register contents
ViAddr is defined as a (void *) so we must cast it to something
else in order to do pointer arithmetic.

viPeek16 (vi, (ViAddr)((ViUint16 *)address+ Ox01), &devtype_reg);

I* Print results */
printf (" viPeek16: ID Register= Ox%4X\n", id_reg);
printf (" viPeek16: Device Type Register= Ox%4X\n", devtype_reg);

I* Use direct memory dereferencing if it is supported */
,, viGetAttribute (vi, VI_ATTR_WIN_ACCESS, &:accessMode) ;
if (accessMode == VI_DEREF_ADDR) {

I* assign the pointer to a variable of the correct type */
memPtr16 = (unsigned short *)address;

I* do the actual memory reads */
id_reg = *memPtr16;
devtype_reg = *(memPtr16+1);

I* Print results */
printf ("dereference: ID Register= Ox%4X\n", id_reg);
printf ("dereference: Device Type Register= Ox%4X\n",

devtype_reg);
}

I* Unmap memory space */
viUnmapAddress (vi);

I* ==
====================== High Level memory I/0 =====================

= vi!n16

5-20

== *I

I* Read instrument id register contents *I
vi!n16 (vi, VI_A16_SPACE, OxOO, &:id_reg);

I* Read device type register contents */
vi!n16 (vi, VI_A16_SPACE, Ox02, &:devtype_reg);

Programming VXI Devices

Considering VXI Backplane

Memory 1/0 Performance

I• Print results •/
printf (11 viin16: ID Register= Ox%4X\n 11

, id_reg);
printf (11 viin16: Device Type Register= Ox%4X\n", devtype_reg);

I• ==
================== High Level block memory I/0 ===================

= viMovein16
The viMovein/viMoveOut commands do both block read/write and FIFO
read write.

These commands offer the best performance for reading and writing
large data blocks on the VXI backplane. Note that for this
example we are only moving 2 words at a time. Normally these
functions would be used to move much larger blocks of data.

If the value of VI_ATTR_SRC_INCREMENT is 1 (the default), then
viMovein does a block read.
If the value of VI_ATTR_SRC_INCREMENT is 0 then viMovein does a
FIFO read.

If the value of VI_ATTR_DEST_INCREMENT is 1 (the default), then
viMoveOut does a block write.
If the value of VI_ATTR_DEST_INCREMENT is 0 then viMoveOut does a
FIFO write.

== •/

================ Demonstrate block read ========================

•/

Read the instrument id register and device type register into
an array.

viMovein16 (vi, VI_A16_SPACE, OxOO, 2, memArray);

/• Print results •/
printf (" viMovein16: ID Register= Ox%4X\n 11

, memArray[O]);
printf (" viMovein16: Device Type Register= Ox%4X\n", memArray[1]);

5-21

Programming VXI Devices

Considering VXI Backplane
Memory 1/0 Performance

}

5-22

•/

================== Demonstrate FIFO read ========================
First set the source increment to 0 so we will repetatively read
from the same memory location.

viSetAttribute(vi, VI_ATTR_SRC_INCREMENT, 0);

I• Do a FIFO read of the Id Register •/
viMovein16 (vi, VI_A16_SPACE, OxOO, 2, memArray);

I• Print results •/
printf (" viMovein16: 1 ID Register = Ox%4X\n", memArray [O]) ;
printf (" viMovein16: 2 ID Register= Ox%4X\n", memArray[1]);

I• Close sessions •/
viClose (vi);
viClose (defaultRM);

Using VXI Specific Attributes

The VXI specific attributes can be useful to determine the state of your
VXI system. There are read only and read/write attributes. The read only
attributes specify things such as the logical address of the VXI device, and
information about where your VXI device is mapped.

The following subsections show how you might use some of the VXI
specific attributes. See Appendix B, "HP VISA Attributes," for programming
information on the VISA attributes.

Using the Map Address as a Pointer

The VI _A !TR_ WIN _ACCESS read only attribute specifies how a window can
be accessed. You can access a mapped window with the VISA low-level
memory functions or with a C pointer if the address is de-referenced. To
determine how to access the window, read the VI_ATTR_WIN_ACCESS
attribute. This read only attribute can be set to one of the following:

VI_NMAPPED

VI_USE_OPERS

VI_DEREF_ADDR

Specifies that the window is not mapped.

Specifies that the window is mapped, and you can only
use the low-level memory functions to access the data.

Specifies that the window is mapped and has a
de-referenced address. In this case you can use the
low-level memory functions to access the data, or you
can use a C pointer. Using a de-referenced C pointer will
allow faster access to data.

5-23

Programming VXI Devices

Using VXI Specific Attributes

The following example shows how you can read the VI_ATTR_ WIN_ACCESS
attribute and use the result to determine how to access memory:

ViAddr address;
ViUint16 access;
ViUint16 value;

viMapAddress(vi, VI_A16_SPACE, OxOO, Ox04, VI_FALSE,
VI_NULL, laddress);

viGetAttribute(vi, VI_ATTR_WIN_ACCESS, laccess);

If (access==VI_USE_OPERS) {
viPeek16(vi, (ViAddr)(((ViUint16 •)address) +

4/sizeof(ViUint16)), lvalue)
}else if (access==VI_DEREF_ADDR){

value=•((ViUint16 •)address+4/sizeof(ViUint16));
}else if (access==VI_NMAPPED){

return error;
}

5-24

Programming VXI Devices

Using VXI Specific Attributes

Setting the VXI Trigger Line

The VI_ATTR_ TRIG_ID attribute is used to set the VXI trigger line. This
attribute is listed under generic attributes and defaults to VI_ TRIG_SW
(software trigger). If you would like to set one of the VXI trigger lines, set the
VI_ATTR_ TRIG_ID attribute as follows:

viSetAttribute(vi, VI_ATTR_TRIG_ID, VI_TRIG_TTLO);

The above function sets the VXI trigger line to TTL trigger line 0
(VI_ TRIG_ TTLO). The following are valid VXI trigger lines:

VXI Trigger Line VI_ATTR_TRIG_ID Value

mo VI_TRIG_TTLO

m1 VI_TRIG_TTL1

m2 VI_TRIG_TTL2

TIL3 VI_TRIG_TTL3

TIL4 VI_TRIG_TTL4

TIL5 VI_TRIG_TTL5

TIL6 VI_TRIG_TTL6

m 7 VI_TRIG_TTL7

ECL 0 VI_TRIG_ECLO

ECL 1 VI_TRIG_ECL1

Once you set a VXI trigger line, you can set up an event handler to be called
when the trigger line fires. See "Using Events and Handlers" in Chapter 4 for
more information on setting up an event handler.

NOTE

Once the VI_EVENT_TRIG event is enabled, the VI_ATTR_TRIG_ID becomes a read only
attribute and cannot be changed. You must set this attribute prior to enabling event triggers.

5-25

The VI_ATTR_ TRIG_ID attribute can also be used by the viAssertTrigger
function to assert software or hardware triggers. If VI_ATTR_ TRIG_ID
is VI_TRIG_SW, then the device is sent a Word Serial Trigger cormnand.
If the attribute is any other value, a hardware trigger is sent on the line
corresponding to the value of that attribute.

5-26

6

Programming over LAN

Programming over LAN

This chapter describes how to use VISA over the LAN (Local Area Network).
LAN is a natural way to extend the control of instrumentation beyond
the limits of typical instrument interfaces. In order to conununicate over
the LAN, you must have configured the VISA LAN Client during the
HP 1/0 Libraries configuration. See the HP 110 Libraries Installation and
Configuration Guide for instructions.

NOTE
LAN is not supported with 16-bit VISA on Windows 95.

This chapter contains the following sections:

• Overview of the LAN

• Considering LAN Configuration and Performance

• Conununicating with Devices over LAN

• Using Timeouts with LAN

• Using Signal Handling with LAN

• HP VISA Function Support with LAN

6-2

Programming over LAN

NOTE

To start the LAN server on a Windows 95 or Windows NT system, see the "Starting the LAN
Server" section of Chapter 2, "Installing and Configuring the HP 1/0 Libraries," in the HP 110 Libraries
Installation and Configuration Guide for Windows.

To stop the LAN server on a Windows 95 or Windows NT system, see the "Stopping the LAN
Server" section of Chapter 2, "Installing and Configuring the HP 1/0 Libraries," in the HP 110 Libraries
Installation and Configuration Guide for Windows.

6-3

Overview of the LAN

The LAN software provided with VISA allows you to control instrumentation
over a LAN. LAN connections are included on many systems being sold
today. By making use of these standard LAN connections, instrument control
can be driven from a computer which does not have a special interface for
instrument control.

The LAN software provided with VISA uses the client/server model of
computing. Client/server computing refers to a model where an application,
the client, does not perform all the necessary tasks of the application itself.
Instead, the client makes requests of another computing device, the server,
for certain services. Examples that you may have in your workplace include
shared file servers, print servers, or database servers.

The use of LAN for instrument control also provides other advantages
associated with client/server computing:

• Resource sharing by multiple applications/people within an organization.

• Distributed control, where the computer running the application controlling
the devices need not be in the same room or even the same building as the
devices themselves.

As shown in the following figure, a LAN client computer system (a Series 700
HP-UX workstation, a Windows 95 PC, or a Windows NT PC) makes VISA
requests over the network to a LAN server (a Series 700 HP-UX workstation,
a Windows 95 PC, a Windows NT PC, or an HP E2050 LAN/HP-IB Gateway).
The LAN server is connected to the instrumentation or devices that must be
controlled. Once the LAN server has completed the requested operation on
the instrument or device, the LAN server sends a reply to the LAN client.
This reply contains any requested data and status information which indicates
whether the operation was successful.

6-4

Client

LAN

Server

Serles 700s, Windows 95 PCs, or Windows NT PCs

Series 700s, Windows 95 PCs,
Windows NT PCs

Gateway

D

rP;,_IBot~~~)

HP E2050
LAN/HP-IB
Gateway

HP-IB
Instruments

D '-LLLL
'- LLLL
'- LLLL

LLLL

D '-LLLL
'- LLLL
'- LL.LL

LL.LL

Using the LAN Client and LAN Server (Gateway)

Programming over LAN

Overview of the LAN

HP-IB bus

The LAN server acts as a gateway between the LAN that your client system
supports, and the instrument-specific interface that your device supports. Due
to the LAN server's gateway functionality, we refer to devices or interfaces
which are accessed via one of these LAN-to-instrumenLinterface gateways as
being a LAN-gatewayed device or a LAN-gatewayed interface.

6-5

Programming over LAN

Overview of the LAN

LAN Software Architecture

As the following figure shows, the client system contains the LAN client
software and the LAN software (TCP /IP) needed to access the server
(gateway). The gateway contains the LAN server software, LAN (TCP/IP)
software, and the instrument driver software needed to communicate with
the client and to control the instruments or devices connected to it.

Client System Server (Gateway) Instrument

Application LAN Server Instrument

VISA TCP Firm war€

LAN Client IP
Instrument

LAN Interface
Driver

TCP T
IP HP-18 bus

LAN Interface

1
LAN

LAN Software Architecture

6-6

Programming over LAN

Overview of the LAN

LAN Networking Protocols The LAN software provided with VISA is built on top of standard LAN
networking protocols. There are two LAN networking protocols provided
with the VISA software. You can choose one or both of these protocols when
configuring your systems (via the HP I/O Libraries configuration) to use VISA
over LAN. The two protocols are as follows: ·

• SICL LAN Protocol is a networking protocol developed by HP which is
compatible with all existing VISA LAN products. This LAN networking
protocol is the default choice in the HP 1/0 Libraries configuration
when you are configuring the LAN client. The SICL LAN protocol on
HP-UX 10.20, Windows 95, and Windows NT currently supports VISA
operations over the LAN to GPIB interfaces.

• TCP/IP Instrument Protocol is a networking protocol developed by
the VXIbus Consortium based on the SICL LAN Protocol which permits
interoperability of LAN software from different vendors that meet the
VXIbus Consortium standards. Note that this LAN networking protocol may
not be implemented with all the LAN products at this time. The TCP /IP
Instrument Protocol on Windows 95 and Windows NT currently supports
VISA operations over the LAN to GPIB interfaces.

When using either of these networking protocols, the LAN software provided
with VISA uses the TCP /IP protocol suite to pass messages between the LAN
client and the LAN server. The server accepts device 1/0 requests over the
network from the client and then proceeds to execute those 1/0 requests on a
local interface, such as HP-IB.

You can use both LAN networking protocols (SICL LAN Protocol and TCP /IP
Instrument Protocol) with a LAN client. To do so, configure a LAN client
and a VISA LAN client interface for each protocol, one specifying the SICL
LAN Protocol and one specifying the TCP /IP Instrument Protocol. The
LAN client and VISA LAN client are configured during the HP 1/0 Libraries
configuration. (See the HP 110 Libraries Installation and Configuration
Guide for information.)

Once you have configured VISA LAN client interfaces, one specifying SICL
LAN Protocol, and one specifying TCP/IP Instrument Protocol, then you can
use the interface name specified during configuration in your VISA viOpen
call of your program. Note, however, that the LAN server does not support
simultaneous connections from LAN clients using the SICL LAN Protocol and
from other LAN clients using the TCP /IP Instrument Protocol.

6-7

Programming over LAN

Overview of the LAN

LAN Client and Threads You can use multi-threaded designs (where VISA calls are made from multiple
threads) in WIN32 VISA applications over LAN. However, only one thread is
permitted to access the LAN driver at a time. This sequential handling of
individual threads by the LAN driver prevents multiple threads from colliding
or overwriting one another. Note that requests are handled sequentially even
if they are intended for different LAN servers.

LAN Server

If you want concurrent threads to be processed simultaneously with VISA
over LAN, use multiple processes.

Currently there are three LAN servers that can be used with VISA: the
HP E2050 LAN/HP-IB Gateway, an HP Series 700 running HP-UX, or a
PC running Windows 95 or Windows NT. To use this capability, the LAN
server must have a local HP-IB or GPIB interface configured for VO. See the
HP 110 Libraries Installation and Configuration Guide for information on
configuration.

Note that the timing of operations performed remotely over a network will be
different from the timing of operations performed locally. The extent of the
timing difference will, in part, depend on the bandwidth of and the traffic on
the network being used.

Contact your local HP representative for a current list of other HP supported
LAN servers.

6-8

Considering LAN
Configuration and Performance

As with other client/server applications on a LAN, when deploying an
application which uses VISA over LAN, consideration must be given to
the performance and configuration of the network to which the client and
server will be attached. If the network to be used is not a dedicated LAN or
otherwise isolated via a bridge or other network device, current utilization of
the LAN must be considered. Depending on the amount of data which will
be transferred over the LAN via the VISA application, performance problems
could be experienced by the VISA application or other network users if
sufficient bandwidth is not available. This is not unique to V~SA over LAN,
but is simply a general design consideration when deploying ~my client/server
application.

If you have questions concerning the ability of your network lo handle VISA
traffic, consult with your network administrator or network equipment
providers.

6-9

Communicating with Devices over LAN

VISA supports LAN-gatewayed sessions. What this means is that you can
communicate with configured LAN servers. The LAN server configuration
is determined by the type of server present. The only action required by
the user is to configure VISA for a VISA LAN Client. This configuration is
done during the HP I/O Libraries configuration. See the HP 110 Libraries
Installation and Configuration Guide for information on configuring a VISA
LAN Client.

Addressing a Session

The same rules apply as when addressing a GPIB session. The only difference
is that you use the VISA Interface Name provided during the I/O configuration
that relates to the VISA LAN Client. The following illustrates addressing a
GPIB device configured over the LAN:

GP IBO: : 7: : O A GPIB device at primary address 7 and secondary address 0
on the GPIB interface. Note that this GPIB interface (GPIBO)
happens to be configured as a VISA LAN Client in the
HP I/O Libraries configuration.

The following is an example of opening a device session with the GPIB device
at primary address 23.

ViSession defaultRM, vi;

viOpenDefaultRM(ldefaultRM);
viOpen(defaultRM, "GPIBO: :23: :INSTR", VI_NULL, VI_NULL, lvi);

viClose(vi);
viClose(defaultRM);

See Chapter 4, "Programming with HP VISA," for more information on how
to address device sessions.

6-10

LAN Session Example

Programming over LAN
Communicating with Devices over LAN

The following C program example is the same example program as shown in
Chapter 4, "Programming with HP VISA," only the address is modified to the
GPIB device connected over LAN. This example opens a session with a GPIB
device and sends a comma operator to send a conuna-separated list. This
example program is intended to show specific VISA functionality and does
not include error trapping. Error trapping, however, is good programming
practice and is recommended in your VISA applications. See "Trapping
Errors" in Chapter 4, "Programming with HP VISA."

6-11

Programming over LAN
Communicating with Devices over LAN

/•formatio. c
This example program makes a multimeter measurement with a comma
separated list passed with formatted I/O and prints the results.
Note that you must change the device address. •/

#include <visa.h>
#include <stdio.h>

void main () {

}

6-12

ViSession defaultRM, vi;
double res;
double list [2] = {1,0.001};

/• Open session to GPIB device at address 22 •/
viOpenDefaultRM(idefaultRM);
viOpen(defaultRM, "GPIBO: :22: :INSTR", VI_NULL,VI_NULL, ltvi);

I• Initialize device •/
viPrintf (vi, "•RST\n");

/• Set up device and send comma separated list •/
viPrintf (vi, "CALC:DBM:REF 50\n");
viPrintf(vi, "MEAS: VOLT: AC? %,2f\n", list);

/• Read results •/
viScanf (vi, "%1f", &:res);

I• Print results •/
printf ("Measurement Results: %lf\n", res);

/• Close session •/
viClose(vi);
viClose(defaultRM);

Using Timeouts with LAN

The client/server architecture of the LAN software requires the use
of two timeout values, one for the client and one for the server. The
server's timeout value is specified by setting a VISA timeout via the
VI_ATTR_ TMO _VALUE attribute. The server will also adjust the requested
value if infinity is requested. The client's timeout value is determined by the
values set when you configure the LAN Client during the HP I/O Libraries
configuration. See the HP 110 Libraries Installation and Configuration Guide
for configuration information.

When the client sends an I/O request to the server, the timeout value
determined by the values set with the VI_ATTR_ TMO_ VALUE attribute is
passed with the request. The client may also adjust the value sent to the
server if VI_ TMO_INFINITE was specified. The server will use that timeout
in performing the I/O operation, just as if that timeout value had been used
on a local I/O operation. If the server's operation is not complete in the
specified time, then the server will send a reply to the client which indicates
that a timeout occurred, and the VISA call made by the application will return
an error.

When the client sends an I/O request to the server, it starts a timer and
waits for the reply from the server. If the server does not reply in· the time
specified, then the client stops waiting for the reply from the server and
returns an error.

6-13

Programming over LAN

Using Timeouts with LAN

Def a ult LAN Timeout Values

·The LAN Client configuration specifies two timeout-related configuration
values for the LAN software. These values are used by the software to
calculate timeout values:

Server Timeout

Client Timeout
Delta

Timeout value passed to the server when an application
sets the VISA timeout to infinity (VI_ TMO_INFINITE).
Value specifies the number of seconds the server will
wait for the operation to complete before returning an
error. If this value is zero (0), then the server will wait
forever.

Value added to the VISA timeout value (server's timeout
value) to determine the LAN timeout value (client's
timeout value). Value specifies the number of seconds.

See the HP 110 Libraries Installation and Configuration Guide for
information on setting these values.

The timeouts are adjusted via the following algorithm:

• The VISA timeout, which is sent to the server, for the current call is
adjusted if it is currently infinity (VI_ TMO_INFINITE). In that case it will
be set to the Server Timeout value.

• The LAN timeout is adjusted if the VISA timeout plus the Client Timeout
Delta is greater than the current LAN timeout. In that case the LAN
timeout will be set to the VISA timeout plus the Client Timeout Delta.

• The calculated LAN timeout only increases as necessary to meet the
needs of the application, but never decreases. This avoids the overhead of
readjusting the LAN timeout every time the application changes the VISA
timeout.

6-14

To change the defaults, do the following:

Programming over LAN

Using Timeouts with LAN

1. Run the I/O Conf ig utility (Windows) or the visacfg utility (HP-UX).

2. Edit the LAN Client interface.

3. Change the Server Timeout or Client Timeout Delta parameter. (See the
online help for information on changing these values.)

4. Restart the VISA LAN applications.

6-15

Programming over LAN

Using Timeouts with LAN

Application Terminations and Timeouts

If an application is killed either via (Ctrl 1-© or the HP-UX kill command
while in the middle of a VISA operation which is performed at the LAN
server, the server will continue to try the operation until the server's timeout
is reached. By default, the LAN server associated with an application using a
timeout of infinity which is killed may not discover that the client is no longer
running for 2 minutes. (If you are using a server other than the LAN server
supported with this product, check that server's documentation for its default
behavior.)

If both the LAN client and LAN server are configured to use a long timeout
value, then the server may appear "hung." If this situation is encountered,
the LAN client (via the Server Timeout value) or the LAN server may be
configured to use a shorter timeout value.

If long timeouts must be used, the server may be reset. An HP-UX server
may be reset by logging into the server host and killing the running
siclland daemon(s). Note that the latter procedure will affect all clients
connected to the server. A Windows 95 or Windows NT server may be reset
by typing (Ctrl 1-© in the LAN Server window, and then restarting the server
from the HP I/O Libraries program group. This procedure will also affect
all clients connected to the server.

6-16

Using Signal Handling with LAN

SIGIO Signals

VISA uses SIGIO for SRQs on LAN interfaces on HP-UX. The VISA LAN client
installs a signal handler to catch SIGIO signals. To enable sharing of SIGIO
signals with other portions of an application, the VISA LAN SIGIO signal
handler remembers the address of any previously installed SIGIO handler, and
calls this handler after processing a SIGIO signal itself. If your application
installs a SIGIO handler, it should also remember the address of a previously
installed handler and call it before completing.

The signal number used with LAN (SIGIO) can not be changed.

6-17

HP VISA Function Support with LAN

A LAN session to a remote interface provides the same VISA function support
as if the interface was local, with the following exceptions or qualifications.

All VXI specific functions are not supported over LAN.

GPIB Sessions and Service Requests over LAN

If multiple devices assert SRQs at roughly the same time causing the SRQ line
to stay asserted, even after all devices have been polled using viReadSTB,
then subsequent service requests from devices may be lost since the SRQ
handler(s) will not be invoked again until the line is cleared. For SRQs to be
reliably delivered, an SRQ handler must not exit without first clearing the
SRQ line. However, VISA does not provided a way to check the SRQ line.

One way to ensure reliable delivery of SRQs is to service all devices from one
handler, disabling all devices from sending additional SRQs at the top of the
handler. See the following:

disable all devices from requesting service
serial_poll (device!)
if (needs_service) service_device1
serial_poll (device2)
if (needs_service) service_device2

enable all devices to send service requests

6-18

Even if the different sessions are in different processes, it is important to stay
in the SRQ handler until the SRQ line is released. However, the only way to
ensure true independence of multiple GPIB processes is to use multiple GPIB
interfaces.

Another way in which this situation can be avoided is if a VISA LAN
client is configured to use the SICL LAN protocol and the LAN server is a
Windows 95, Windows NT, or HP-UX 10.x system running the LAN server
that is shipped as part of this product. This method is handled transparently,
just as for other interfaces.

6-19

7

HP VISA Language
Reference

HP VISA Language Reference

This chapter describes each function in the VISA library for the Windows
and HP-UX programming environments. The VISA functions are provided in
alphabetical order in this chapter for easy reference.

The VISA functions can be grouped according to the types of functions
performed, as shown in the following table. Note that the OUT parameters
are identified by the type definition. In other words, all OUT parameters are
defined with a pointer type: ViPUint16, ViPRsrc, and so forth.

NOTE
The data types for the VISA function parameters (for example, ViSession, ViEventType,
and so forth) are defined in the VISA declarations file. They are also explained in Appendix D,
"HP VISA Type Definitions," in this manual.

7-2

Operation

Resource Management:

Open Default Resource Manager Session

Lifecycle:

Open Session

Close Session

Characteristic Control:

Get Attribute

Set Attribute

Get Status Code Description

Asynchronous Operation Control:

Terminate Asynchronous Operation

Access Control:

lock Resource

Unlock Resource

Event Handling:

Enable Event

Disable Event

Discard Events

HP VISA Language Reference

VISA Functions

Function (Type Parameter!, Type Parameter2 9 • • •) ;

viOpenDefaultRM(ViPSession sesn);

viOpen(ViSession sesn, ViRsrc rsrcName,
ViAccessMode accessMode, ViUint32 timeout, ViPSession v1);

viClose(ViSession/ViEvent/ViFindList w);

viGetAttribute (ViSession/ViEvent/ViFindList vi,
ViAttr attribute, ViPAttrState attrState);

viS etA t tribute (ViS es s ion/ViEv en t /ViF indLi st vi,
ViAttr attribute, ViAttrState attrState) ;

viStatusDesc(ViSession/ViEvent/ViFindList ~.
ViStatus status, ViPString desc);

viTerminate(ViSession vi, ViUint16 degree,
ViJobid jobld);

viLock(ViSession vi, ViAccessMode lockType, ViUint32 timeout,
ViKeyid requestedKey, ViPKeyid accessKey);

vi Unlock (ViSession v1) ;

viEnableEvent (ViSession vi, ViEventType event"fl;pe,
ViUint 16 mechanism, ViEventFil ter context);

viDisableEvent (ViSession vi, ViEventType event Type,
ViUint16 mechanism);

viDiscardEvents (ViSession vi, ViEventType event Type,
ViUint16 mechanism);

7-3

HP VISA Language Reference

Operation

Event Handling (continued):

Wait on Event

Install Handler

Uninstall Handler

Event Handler Prototype

Searching:

Find Device

Find Next Device

Basic 1/0:

Read Data from Device

Read Data Asynchronously from Device

Write Data to Device

Write Data Asynchronously to Device

Assert Software/Hardware Trigger

Read Status Byte

Clear a Device

7-4

VISA Functions (continued)

Function(Type Parameter!, Type Parameter2, ...) ;

vi\tlaitOnEvent(ViSession vi, ViEventType inEventType,
ViUint32 timeout, ViPEventType outEventType, ViPEvent outContext) ;

vilnstallHandler (ViSession vi, ViEventType event Type,
ViHndlr handler, ViAddr userHand/e);

viUninstallHandler(ViSession vi, ViEventType eventli;pe,
ViHndlr handler, ViAddr userHandle);

viEventHandler(ViSession vi, ViEventType even(/ijpe,
ViEvent context, ViAddr userHandle);

viFindRsrc (ViSession sesn, ViString expr,
ViPFindList findlist, ViPUint32 retcnt, ViPRsrc instrDesc) ;

viFindNext (ViFindList tindlist, ViPRsrc instrDesc);

viRead(ViSession vi, ViPBuf but, ViUint32 count,
ViPUint32 retCount);

viReadAsync (ViSession vi, ViPBuf but,
ViUint32 count, ViPJobid1ob/d);

viWrite(ViSession vi, ViBuf but, ViUint32 count,
ViPUint32 retCount);

viWriteAsync(ViSession vi, ViBuf but,
ViUint32 count, ViPJobidJob/d);

viAssertTrigger(ViSession vi, ViUint16 protocol);

viReadSTB(ViSession vi, ViPUint16 status);

viClear(ViSession v1);

Operation

Formatted 110:

Set Size of Buffer

Flush Read and Write Buffers

Convert, Format, and Send Parameters

Convert, Format, and Send Parameters

Read, Convert, Format, and Store Data

Read, Convert, Format, and Store Data

Write and Read Formatted Data

Write and Read Formatted Data

Memory 1/0:

Read 8-bit Value from Memory Space

Read 16-bit Value from Memory Space

Read 32-bit Value from Memory Space

Write 8-bit Value to Memory Space

Write 16-bit Value to Memory Space

Write 32-bit Value to Memory Space

HP VISA Language Reference

VISA Functions (continued)

Function(Type Parameter!, Type Parameter2, . . .) ;

viSetBuf (ViSession vi, ViUint 16 mask, ViUint32 size);

viFlush(ViSession vi, ViUint16 mask);

viPrintf (ViSession vi, ViString writefmt, argl, arg2, ...) ;

vi VPrintf (ViSession vi, ViString writefmt,
ViVAList params);

viScanf (ViSession vi, ViString readFmt, argl, arg2, ...) ;

vi VScanf (ViSession vi, ViString readFmt, Vi VAList params) ;

viQueryf (ViSession vi, ViString writefmt, ViString readFmt,
argl 8 arg2» ...) ;

vi VQueryf (ViSession vi, ViString writefmt,
ViString readfmt, ViVAList params);

viin8(ViSession vi, ViUint16 space, ViBusAddress offset,
ViPUin t 8 va/8) ;

viin16(ViSession vi, ViUint 16 space, ViBusAddress offset,
ViPUint 16 va/16) ;

viin32(ViSession vi, ViUint 16 space, ViBusAddress offset,
ViPUint32 va/32);

vi0ut8 (ViSession vi, ViUint 16 space, ViBusAddress offset,
ViUint8 va/8) ;

viOut 16 (ViSession vi, ViUint16 space, ViBusAddress offset,
ViUint 16 va/16);

vi0ut32 (ViSession vi, ViUint16 space, ViBusAddress offset,
ViUint32 va/32);

7-5

HP VISA Language Reference

Operation

Memory 1/0 (continued):

Move 8-bit Value from Device Memory
to Local Memory

Move 16-bit Value from Device Memory
to Local Memory

Move 32-bit Value from Device Memory
to Local Memory

Move 8-bit Value from Local Memory
to Device Memory

Move 16-bit Value from Local Memory
to Device Memory

Move 32-bit Value from Local Memory
to Device Memory

Map Memory Space

Unmap Memory Space

Read 8-bit Value from Address

Read 16-bit Value from Address

Read 32-bit Value from Address

Write 8-bit Value to Address

Write 16-bit Value to Address

Write 32-bit Value to Address

Shared Memory:

Allocate Memory

Free Memory Previously Allocated

VISA Functions (continued)

Function(Type Parameter!, Type Parameter2, ...) ;

viMovein8 (ViSession vi, ViUint 16 space, ViBusAddress offset,
ViBusSize length, ViAUint8 buf8) ;

viMovein16(ViSession vi, ViUint16 space, ViBusAddress offset,
ViBusSize length, ViAUint16 buf/6);

viMovein32 (ViSession vi, ViUint 16 space, ViBusAddress offset,
ViBusSize length, ViAUint32 buf32);

viMove0ut8 (ViSession vi, ViUint 16 space, ViBusAddress offset,
ViBusSize length, ViAUint8 buf8) ;

viMoveOut 16 (ViSession vi, ViUint 16 space, ViBusAddress offset,
ViBusSize length, ViAUint 16 buf/6);

viMove0ut32(ViSession vi, ViUint16 space, ViBusAddress offset,
ViBusSize length, ViAUint32 buf32);

viMapAddress (ViSession vi, ViUint 16 mapSpace,
ViBusAddress mapBase, ViBusSize mapSiZE, ViBoolean access,
ViAddr suggested, V iP Addr address) ;

viUrunapAddress (ViSession vt);

viPeek8(ViSession vi, ViAddr addr, ViPUint8 val8);

viPeek16(ViSession vi, ViAddr addr, ViPUint16 va/!6);

viPeek32(ViSession vi, ViAddr addr, ViPUint32 val32);

viPokeB(ViSession vi, ViAddr addr, ViUintB val8);

viPoke16(ViSession vi, ViAddr addr, ViUint16 va/16);

viPoke32(ViSession vi, ViAddr addr, ViUint32 va/32);

viMemAlloc (ViSession vi, ViBusSize size,
ViPBusAddress offset);

viMemFree(ViSession vi, ViBusAddress offset);

The following sections explain each of the VISA functions in alphabetical
order.

7-6

Syntax

Description

Parameters

HP VISA Language Reference

viAssertTrigger

viAssertTrigger

viAssertTrigger(ViSession vi, ViUint16 protocol);

NOTE

This function is not supported with the GPIB-VXI interface.

This function asserts a software or hardware trigger dependent on the
interface type. For a GPIB device, the device is addressed to listen, and then
the GPIB GET command is sent. For a VXI device, if VI_ATTR_ TRIG_ID is
VI_TRIG_SW, then the device is sent the Word Serial Trigger command. For
a VXI device, if VI_ATTR_ TRIG_ID is any other value, a hardware trigger is
sent on the line corresponding to the value of that attribute.

For GPIB and VXI software triggers, VI_TRIG_PROT_DEFAULT is the only
valid protocol. For VXI hardware triggers, VI_ TRIG _PROT _DEFAULT is
equivalent to VI_ TRIG_PROT _SYNC.

Name Direction Type Description

vi IN ViSession Unique logical identifier to a session.

protocol IN ViUint16 Trigger protocol to use during assertion. Valid
values are:
VI_TRIG_PROT_DEFAULT,
VI_TRIG_PROT_ON,
VI_TRIG_PROT_OFF, and
VI_ TRIG_PROT _SYNC.

7-7

Return Values

HP VISA Language Reference

viAssertTrigger

Type ViStatus This is the function return status. It returns either a
completion code or an error code as follows.

Completion Code Description

VI_SUCCESS The specified trigger was successfully asserted to the device.

Error Code Description

VI_ERROR_INV_SESSION The given session or object reference is invalid !both are the same
VI_ERROR_INV_OBJECT value).

VI_ERROR_NSUP_OPER The given vi does not support this function.

VI_ERROR_RSRC_LOCKED Specified operation could not be performed because the resource
identified by vi has been locked for this kind of access.

VI_ERROR_INV_PROT The protocol specified is invalid.

VI_ERROR_TMO Timeout expired before function completed.

VI_ERROR_RAW_WR_PROT_VIOL Violation of raw write protocol occurred during transfer.

VI_ERROR_RAW_RD_PROT_VIOL Violation of raw read protocol occurred during transfer.

VI_ERROR_INP_PROT_VIOL Device reported an input protocol error occurred during transfer.

VI_ERROR_BERR Bus error occurred during transfer.

VI_ERROR_LINE_IN_USE The specified trigger line is currently in use.

VI_ERROR_NCIC The interface associated with the given vi is not currently the
controller in charge.

VI_ERROR_NLISTENERS No Listeners condition is detected !both NRFD and NDAC are
deasserted I.

7-8

Syntax

Description

Parameters

Return Values

HP VISA Language Reference

viClear

vi Clear

viClear(ViSession vi);

This function performs an IEEE 488. 1-style clear of the device. VXI uses
the Word Serial Clear command, and GPIB uses the Selective Device Clear
command.

Name Direction Type Description

vi IN ViSession Unique logical identifier to a session.

Type ViStatus This is the function return status. It returns either a
completion code or an error code as follows.

Completion Code Description

VI_SUCCESS Operation completed successfully.

7-9

HP VISA Language Reference

viClear

Error Code

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

VI_ERROR_NSUP_OPER

VI_ERROR_RSRC_LOCKED

VI_ERROR_TMO

VI_ERROR_RAW_WR_PROT_VIOL

VI_ERROR_RAW_RD_PROT_VIOL

VI_ERROR_BERR

VI_ERROR_NCIC

VI_ERROR_NLISTENERS

7-10

Description

The given session or object reference is invalid !both are the same
value I.

The given vi does not support this function.

Specified operation could not be performed because the resource
identified by vi has been locked for this kind of access.

Timeout expired before function completed.

Violation of raw write protocol occurred during transfer.

Violation of raw read protocol occurred during transfer.

Bus error occurred during transfer.

The interface associated with the given vi is not currently the
controller in charge.

No Listeners condition is detected !both NRFD and NDAC are
deassertedl.

Syntax

Description

Parameters

vi Close

HP VISA Language Reference

viClose

viClose(ViSession/ViEvent/ViFindList vi);

This function closes the specified resource manager session, device session,
find list (returned from the viFindRsrc function), or event context (returned
from the vi Wai tOnEvent function, or passed to an event handler). In this
process, all the data structures that had been allocated for the specified vi are
freed.

NOTE

The viClose function should not be called from within an event handler.

Name Direction Type Description

vi IN ViSession Unique logical identifier to a session, event, or find list.
ViEvent
ViFindList

7-11

Return Values

See Also

HP VISA Language Reference

viClose

Type ViStatus This is the function return status. It returns either a
completion code or an error code as follows.

Completion Code Description

VI_SUCCESS Session closed successfully.

Error Code Description

VI_ERROR_INV_SESSION The given session or object reference is invalid lboth are the same
VI_ERROR_INV_OBJECT value I.

VI_ERROR_CLOSING_FAILED Unable to deallocate the previously allocated data structures
corresponding to this session or object reference.

"viOpen", "viFind.Rsrc", "viWaitOnEvent", "viEventHandler"

7-12

Syntax

Description

Parameters

viDisableEvent

HP VISA Language Reference

viDisableEvent

viDisableEvent(ViSession vi, ViEventType eventType,
ViUint 16 mechanism) ;

This function disables servicing of an event identified by the eventType
parameter for the mechanisms specified in the mechanism parameter.
Specifying VI_ALL_ENABLED_EVENTS for the eventType parameter allows a
session to stop receiving all events. The session can stop receiving queued
events by specifying VI_QUEUE. Applications can stop receiving callback
events by specifying either VI_HNDLR or VI_SUSPEND_HNDLR. Specifying
VLALL_MECH disables both the queuing and callback mechanisms.

Name Direction Type Description

vi IN ViSession Unique logical identifier to a session.

event Type IN ViEventType logical event identifier. !See the following tables.I

mechanism IN ViUint16 Specifies event handling mechanisms to be disabled.
The queuing mechanism is disabled by specifying
VI_QUEUE; the callback mechanism is disabled by
specifying VI_HNDLR or VI_SUSPEND_
HNDLR. It is possible to disable both mechanisms
simultaneously by specifying VI_ALL_MECH. !See
the following table.I

Special Values for event Type Parameter

Value Action Description

VI_ALL_ENABLED_EVENTS Disable all events that were previously enabled.

7-13

Return Values

HP VISA Language Reference

viDisableEvent

The following events can be disabled:

Event Name Description

VI_EVENT_SERVICE_REQ Notification that a device is requesting service.

VI_EVENT_VXI_SIGP Notification that a VXI signal or VXI interrupt has been received
from a device.

VI_EVENT_TRIG Notification that a hardware trigger was received from a device.

VI_EVENT_IO_COMPLETION Notification that an asynchronous operation has completed.

Special Values for mechanism Parameter

Value Action Description

VI_QUEUE Disable this session from receiving the specified eventlsl via the waiting queue.

VI_HNDLR or Disable this session from receiving the specified eventlsl via a callback handler or a
VI_SUSPEND_HNDLR callback queue.

VI_ALL_MECH Disable this session from receiving the specified eventlsl via any mechanism.

Type ViStatus This is the function return status. It returns either a
completion code or an error code as follows.

Completion Code Description

VI_SUCCESS Event disabled successfully.

VI_SUCCESS_EVENT_DIS Specified ,event is already disabled for at least one of the specified
mechanisms.

Error Code Description

VI_ERROR_INV_SESSION The given session or object reference is invalid !both are the same
VI_ERROR_INV_OBJECT value I.

VI_ERROR_INV_EVENT Specified event type is not supported by the resource.

VI_ERROR_INV_MECH Invalid mechanism specified.

7-14

See Also

HP VISA Language Reference

viDisableEvent

See the handler prototype, "viEventHandler", for its parameter
description, and "viEnableEvent". Also refer to the "vilnstallHandler"
and "viUninstallHandler" descriptions for information about installing and
uninstalling event handlers. Refer to event descriptions for context structure
definitions.

7-15

Syntax

Description

Parameters

HP VISA Language Reference

viDiscardEvents

viDiscardEvents(ViSession vi, ViEventType eventType,
ViUint 16 mechanism) ;

This function discards all pending occurrences of the specified event types
for the mechanisms specified in a given session. The information about all
the event occurrences which have not yet been handled is discarded. This
function is useful to remove event occurrences that an application no longer
needs.

Name Direction Type Description

vi IN ViSession Unique logical identifier to a session.

event?Ype IN ViEventType logical event identifier. !See the following tables.I

mechanism IN ViUint16 Specifies the mechanisms for which the events are to
be discarded. VI_QUEUE is specified for the
queuing mechanism and VI_SUSPEND_HNDLR
is specified for the pending events in the callback
mechanism. It is possible to specify both mechanisms
simultaneously by specifying VI_ALL_MECH. !See
the following table.I

Special Values for event Type Parameter

Value Action Description

VI_ALL_ENABLED_EVENTS Discard events of every type that is enabled.

7-16

Return Values

See Also

HP VISA Language Reference

viDiscardEvents

The following events can be discarded:

Event Name Description

VI_EVENT_SERVICE_REQ Notification that a device is requesting service.

VI_EVENT_VXI_SIGP Notification that a VXI signal or VXI interrupt has been received
from a device.

VI_EVENT_TRIG Notification that a hardware trigger was received from a device.

VI_EVENT_IO_COMPLETION Notification that an asynchronous operation has completed.

Special Values for mechanism Parameter

Value Action Description

VI_QUEUE Discard the specified eventlsl from the waiting queue.

VI_SUSPEND_HNDLR Discard the specified eventlsl from the callback queue.

VI_ALL_MECH Discard the specified eventlsl from all mechanisms.

Type ViStatus This is the function return status. It returns either a
completion code or an error code as follows.

Completion Code Description

VI - SUCCESS Event queue flushed successfully.

VI_SUCCESS_QUEUE_EMPTY Operation completed successfully, but queue was empty.

Error Code Description

VI_ERROR_INV_SESSION The given session or object reference is invalid !both are the same
VI_ERROR_INV_OBJECT value I.

VI_ERROR_INV_EVENT Specified event type is not supported by the resource.

VI_ERROR_INV_MECH Invalid mechanism specified.

"viEnableEvent", "viWaitOnEvent", "vilnstallHandler"

7-17

Syntax

Description

Parameters

HP VISA Language Reference

viEnableEvent

viEnableEvent(ViSession vi, ViEventType eventType,
ViUint16 mechanism, ViEventFilter context);

This function enables notification of an event identified by the eventType
parameter for mechanisms specified in the mechanism parameter. The
specified session can be enabled to queue events by specifying VI_QUEUE.
Applications can enable the session to invoke a callback function to
execute the handler by specifying VI _HNDLR. The applications are required
to install at least one handler to be enabled for this mode. Specifying
VI_SUSPEND_HNDLR enables the session to receive callbacks, but the
invocation of the handler is deferred to a later time. Successive calls to
this function replace the old callback mechanism with the new callback
mechanism. Specifying VI_ALL_ENABLED _EVENTS for the eventType
parameter refers to all events which have previously been enabled on this
session, making it easier to switch between the two callback mechanisms for
multiple events.

Name Direction Type Description

vi IN ViSession Unique logical identifier to a session.

event"/i;pe IN ViEventType logical event identifier. !See the following tables.I

mechanism IN ViUint16 Specifies event handling mechanisms to be enabled.
The queuing mechanism is enabled by specifying
VI_QUEUE, and the callback mechanism is enabled
by specifying VI_HNDLR or VI_SUSPEND_
HNDLR. It is possible to enable both mechanisms
simultaneously by specifying "bit-wise OW of
VI_QUEUE and one of the two mode values for
the callback mechanism.

context IN ViEventFilter VI_NULL !Not used for VISA 1.0.I

7-18

Value

Special Values for event Type Parameter

HP VISA Language Reference

viEnableEvent

Action Description

VI_ALL_ENABLED_EVENTS Switch all events that were previously enabled to the callback
mechanism specified in the mechanism parameter.

The following events can be enabled:

Event Name Description

VI_EVENT_SERVICE_REQ Notification that a device is requesting service.

VI_EVENT_VXI_SIGP Notification that a VXI signal or VXI interrupt has been received
from a device.

VI_EVENT_TRIG Notification that a hardware trigger was received from a device.

VI_EVENT_IO_COMPLETION Notification that an asynchronous operation has completed.

Special Values for mechanism Parameter

Value Action Description

VI_QUEUE Enable this session to receive the specified event via the waiting queue. Events must
be retrieved manually via the viWaitOnEvent function.

VI_HNDLR Enable this session to receive the specified event via a callback handler, which must
have already been installed via viinstallHandler.

VI_SUSPEND_HNDLR Enable this session to receive the specified event via a callback queue. Events will
not be delivered to the session until viEnableEvent is invoked again with the
VI_HNDLR mechanism.

7-19

Return Values

See Also

HP VISA Language Reference

viEnableEvent

NOTE

Any combination of VISA-defined values for different parameters of this function is also supported
(except for VI_HNDLR and VI_SUSPEND_HNDLR, which apply to different modes of the
same mechanism).

Type ViStatus This is the function return status. It returns either a
completion code or an error code as follows.

Completion Code Description

VI_SUCCESS Event enabled successfully.

VI_SUCCESS_EVENT_EN Specified event is already enabled for at least one of the specified
mechanisms.

Error Code Description

VI_ERROR_INV_SESSION The given session or object reference is invalid !both are the same
VI_ERROR_INV_OBJECT value).

VI_ERROR_INV_EVENT Specified event type is not supported by the resource.

VI_ERROR_INV_MECH Invalid mechanism specified.

VI_ERROR_INV_CONTEXT Specified event context is invalid.

VI_ERROR_HNDLR_NINSTALLED A handler is not currently installed for the specified event. The
session cannot be enabled for the VI_HNDLR mode of the
callback mechanism.

See the handler prototype, "viEventHandler", for its parameter
description, and "viDisableEvent". Also refer to the "vilnstallHandler"
and "viUninstallHandler" descriptions for information about installing and
uninstalling event handlers.

7-20

Syntax

Description

Parameters

viEven tHandler

HP VISA Language Reference

viEventHandler

viEventHandler(ViSession vi, ViEventType eventType,
ViEvent context, ViAddr userHandle) ;

This is a prototype for a function, which you define. The function you define
is called whenever a session receives an event and is enabled for handling
events in the VI_HNDLR mode. The handler services the event and returns
VI_SUCCESS on completion.

Because each eventType defines its own context in terms of attributes, refer
to the appropriate event definition to determine which attributes can be
retrieved using the context parameter.

Name Direction Type Description

vi IN ViSession Unique logical identifier to a session.

event Type IN ViEventType logical event identifier. (See the following table.)

context IN ViEvent A handle specifying the unique occurrence of an event.

userHandle IN ViAddr A value specified by an application that can be used
for identifying handlers uniquely in a session for an
event.

7-21

Event Name

HP VISA Language Reference

viEventHandler

The following table lists the events and the associated read only attributes
that can be read to get event information on a specific event:

Attributes Data Type Values

VI_EVENT_SERVICE_REQ VI_ATTR_EVENT_TYPE ViEventType VI_EVENT_SERVICE_REQ

VI_EVENT_VXI_SIGP VI_ATTR_EVENT_TYPE ViEventType VI_EVENT_VXI_SIGP
VI_ATTR_SIGP_STATUS_ID ViUint16 0 to FFFFh

VI_EVENT_TRIG VI_ATTR_EVENT_TYPE ViEventType VI_EVENT_TRIG
VI_ATTR_RECV_TRIG_ID Vi!nt16 VI_ TRIG_ TTLO to

VI_TRIG_TTL7
VI_TRIG_ECLO to
VI_TRIG_ECL1

VI_EVENT_IO_COMPLETION VI_ATTR_EVENT_TYPE ViEventType VI_EVENT_IO_COMPLETION

Return Values

VI_ATTR_STATUS ViStatus N/A
VI_ATTR_JOB_ID ViJob!d N/A
VI_ATTR_BUFFER ViBuf N/A
VI_ATTR_RET_COUNT ViUint32 0 to FFFFFFFFh

Use the VISA viReadSTB function to read the status byte of the service
request. '

Type ViStatus This is the function return status. It returns either a
completion code or an error code as follows.

NOTE

Return values are not used in VISA 1.0, but will be significant in future versions of VISA. Therefore,
you should always return VI_SUCCESS from an event handler.

7-22

See Also

Completion Code

VI - SUCCESS Event handled successfully.

HP VISA Language Reference

viEventHandler

Description

Refer to the "Using Events and Handlers" section of Chapter 4,
"Programming with HP VISA," for more information on event handling and
exception handling.

7-23

Syntax

Description

Parameters

Return Values

See Also

HP VISA Language Reference

viFindNext

viFindNext (ViFindList findList, ViPRsrc instrDe,sc) ;

This function returns the next device found in the list created by
viFindRsrc. The list is referenced by the handle that was returned by
viFindRsrc.

Name Direction Type Description

find list IN ViFindList Describes a find list. This parameter must be created
by viFindRsrc.

instrDesc OUT ViPRsrc Returns a string identifying the location of a device.
Strings can then be passed to viOpen to establish
a session to the given device.

Type ViStatus This is the function return status. It returns either a
completion code or an error code as follows.

Completion Code Description

VI - SUCCESS Resource!sl found.

Error Code Description

VI_ERROR_INV_SESSION The given session or object reference is invalid !both are the same
VI_ERROR_INV_OBJECT value I.

VI_ERROR_NSUP_OPER The given findlist does not support this function.

VI_ERROR_RSRC_NFOUND There are no more matches.

"viFindRsrc"

7-24

Syntax

Description

Parameters

viFindRsrc

HP VISA Language Reference

vifindRsrc

viFindRsrc (ViSession sesn, ViString expr, ViPFindList findList,
ViPUint32 retcnt, ViPRsrc instrDesc) ;

This function queries a VISA system to locate the devices associated with
a specified interface. This function matches the value specified in the expr
parameter with the devices available for a particular interface. On successful
completion, it returns the first device found in the list and returns a count to
indicate if there were more devices found that match the value specified in
the expr parameter.

This function also returns a handle to a find list. This handle points to the
list of devices, and it must be used as an input to viFindNext. When this
handle is no longer needed, it should be passed to viClose.

Name Direction Type Description

sesn IN ViSession Resource Manager session !should always be the
Default Resource Manager for VISA returned from
viOpenDefaultRMJ.

expr IN ViString This expression sets the criteria to search an interface
or all interfaces for existing devices. !See the
following table for description string format.I

find list OUT ViFindList Returns a handle identifying this search session. This
handle will be used as an input in viFindN ext.

re tent OUT ViUint32 Number of matches.

instrDesc OUT ViRsrc Returns a string identifying the location of a device.
Strings can then be passed to viOpen to establish
a session to the given device.

7-25

Return Values

See Also

HP VISA Language Reference

viFindRsrc

Description String for expr Parameter

Interface Expression

GPIB GPIB[0-9]*: :?*INSTR

VXI VXI?*INSTR

GPIB-VXI GPIB-VXI?*INSTR

GPIB and GPIB-VXI GPIB?*INSTR

All VXI ?*VXI[0-9]*::?*INSTR

ASRL ASRL[0-9]*: :?*INSTR

All ?*INSTR

Type ViStatus This is the function return status. It returns either a
completion code or an error code as follows.

Completion Code Description

VI_SUCCESS Resource(sl found.

Error Code Description

VI_ERROR_INV_SESSION The given session or object reference is invalid (both are the same
VI_ERROR_INV_OBJECT value!.

VI_ERROR_NSUP_OPER The given sesn does not support this function.

VI_ERROR_INV_EXPR Invalid expression specified for search.

VI_ERROR_RSRC_NFOUND Specified expression does not match any devices.

"viFindNext", "viClose"

7-26

Syntax

Description

Parameters

viFlush

HP VISA Language Reference

vi flush

viFlush(ViSession vi, ViUint16 mask);

This function manually flushes the read and write buffers associated with
formatted I/O functions.

Name Direction Type Description

vi IN ViSession Unique logical identifier to a session.

mask IN ViUint16 Specifies the action to be taken with flushing the
buffer. (See the following table.I

7-27

HP VISA Language Reference

vi Flush

Flag

VI_READ_BUF

VI_READ_BUF_DISCARD

VI_WRITE_BUF

VI_WRITE_BUF_DISCARD

VI_ASRL_IN_BUF

VI_ASRL_IN_BUF_DISCARD

VI_ASRL_OUT_BUF

VI_ASRL_OUT_BUF_DISCARD

NOTE

Values for mask Parameter

Interpretation

Discard the read buffer contents and, if data was present in the
read buffer and no END-indicator was present, read from the device
until encountering an END indicator !which causes the loss of datal.
This action resynchronizes the next viScanf call to read a
<TERMINATED RESPONSE MESSAGE>. !Refer to the IEEE 488.2
standard.I

Discard the read buffer contents !does not perform any 1/0 to the
device I.

Flush the write buffer by writing all buffered data to the device.

Discard the write buffer contents !does not perform any 1/0 to the
device I.

Discard the receive buffer contents !same as
VI_ASRL_IN_BUF _DISCARD!.

Discard the receive buffer contents !does not perform any 1/0 to the
device I.

Flush the transmit buffer by writing all buffered data to the device.

Discard the transmit buffer contents !does not perform any 1/0 to
the devicel.

It is possible to combine any of these read flags with a write flag land vice versa) by ORing the flags.
However, combining two read flags or two write flags in the same call to viFlush is illegal.

7-28

Return Values

See Also

NOTE

HP VISA Language Reference

vi Flush

In this implementation, it is not possible to discard the ASRL in and out buffers separately.
VI_ASRL_IN_BUF _DISCARD and VI_ASRL_OUT_BUF _DISCARD must always be
set together. If only one is set, VI_ERROR_INV _MASK is returned.

Type ViStatus This is the function return status. It returns either a
completion code or an error code as follows.

Completion Code Description

VI_SUCCESS Buffers flushed successfully.

Error Code Description

VI_ERROR_INV_SESSION The given session or object reference is invalid !both are the same
VI_ERROR_INV_OBJECT value I.

VI_ERROR_RSRC_LOCKED Specified operation could not be performed because the resource
identified by vi has been locked for this kind of access.

VI_ERROR_IO Could not perform read/write function because of 1/0 error.

VI_ERROR_TMO The read/write function was aborted because timeout expired while
function was in progress.

VI_ERROR_INV_MASK The specified mask does not specify a valid flush function on
read/write resource.

"viSetBuf"

7-29

Syntax

Description

Parameters

HP VISA Language Reference

viGetAttribute

viGetAttribute(ViSession/ViEvent/ViFindList vi, ViAttr attribute,
ViPAttrState attrState);

This function retrieves the state of an attribute for the specified session.

Name Direction Type Description

vi IN ViSession Unique logical identifier to a session, event, or find list.
ViEvent
ViFindList

attribute IN ViAttr Resource attribute for which the state query is made.

attrState OUT See Note below. The state of the queried attribute for a specified
resource. The interpretation of the returned value is
defined by the individual resource. Note that you must
allocate space for character strings returned.

NOTE

The pointer passed to viGetAttribute must point to the exact type required for that attribute,
ViUint 16, Vilnt32, and so forth. For example, when reading an attribute state that returns a
Vi Char, you must pass a pointer to a Vi Char variable. You must allocate space for the returned
data.

7-30

Return Values

See Also

HP VISA Language Reference

viGetAttribute

Type ViStatus This is the function return status. It returns either a
completion code or an error code as follows.

Completion Code Description

VI - SUCCESS Resource attribute retrieved successfully.

Error Code Description

VI_ERROR_INV_SESSION The given session or object reference is invalid (both are the same
VI_ERROR_INV_OBJECT value I.

VI_ERROR_NSUP_ATTR The specified attribute is not defined by the referenced resource.

"viSetAttribute"

7-31

Syntax

Description

Parameters

HP VISA Language Reference

viln8, viln16, and viln32

vi!n8 (ViSession vi, ViUint 16 space, ViBusAddress offset,
ViPUint8 valB) ;

viln16(ViSession vi, ViUint16 space, ViBusAddress offset,
ViPUint16 val16);

viln32(ViSession vi, ViUint16 space, ViBusAddress offset,
ViPUint32 val32) ;

This function reads in an 8-bit, 16-bit, or 32-bit value from the specified
memory space (assigned memory base + offset). This function takes the 8-bit,
16-bit, or 32-bit value from the address space pointed to by space. The offset
must be a valid memory address in the space. This function does not require
viMapAddress to be called prior to its invocation.

Name Direction Type Description

vi IN ViSession Unique logical identifier to a session.

space IN ViUint16 Specifies the address space. (See the following table.I

offset IN ViBusAddress Offset (in bytes! of the memory to read from.

va/8, va/16, OUT ViPUint8, Data read from bus !B·bits for viin8, 16-bits for
or va/32 ViPUint 16, or viin16, and 32-bits for viin321.

ViPUint32

7-32

Return Values

See Also

HP VISA Language Reference

viln8, viln16, and viln32

Values for space Parameter

Value Description

VI _A16_SPACE Maps in VXl/MXI A 16 address space.

VI_A24_SPACE Maps in VXl/MXI A24 address space.

VI_A32_SPACE Maps in VXl/MXI A32 address space.

Type ViStatus This is the function return status. It returns either a
completion code or an error code as follows.

Completion Code Description

VI - SUCCESS Operation completed successfully.

Error Code Description

VI_ERROR_INV_SESSION The given session or object reference is invalid !both are the same
VI_ERROR_INV_OBJECT value I.

VI_ERROR_NSUP_OPER The given vi does not support this functi1m.

VI_ERROR_RSRC_LOCKED Specified operation could not be performed because the resource
identified by vi has been locked for this kind of access.

VI_ERROR_BERR Bus error occurred during transfer.

VI_ERROR_INV_SPACE Invalid address space specified.

VI_ERROR_INV_OFFSET Invalid offset specified.

VI_ERROR_NSUP_OFFSET Specified offset is not accessible from this hardware.

VI_ERROR_NSUP_WIDTH Specified width is not supported by this hardware.

"vi0ut8, vi0ut16, and vi0ut32", "viPeek8, viPeek16, and viPeek32",
"viMoveln8, viMoveln16, and viMoveln32"

7-33

Syntax

Description

Parameters

HP VISA Language Reference

vilnstallHandler

vi!nstallHandler(ViSession vi, ViEventType eventType,
ViHndlr handler, ViAddr userHandle) ;

This function allows applications to install handlers on sessions for event
callbacks. The handler specified in the handler parameter is installed along
with previously installed handlers for the specified event. Applications can
specify a value in the userHandle parameter that is passed to the handler on
its invocation. VISA identifies handlers uniquely using the handler reference
and this value.

Name Direction Type Description

vi IN ViSession Unique logical identifier to a session.

event"fi;pe IN ViEventType logical event identifier.

handler IN ViHndlr Interpreted as a valid reference to a handler to be
installed by an application.

userHandle IN ViAddr A value specified by an application that can be used
for identifying handlers uniquely for an event type.

The following events can be enabled:

Event Name Description

VI_EVENT_SERVICE_REQ Notification that a device is requesting service.

VI_EVENT_VXI_SIGP Notification that a VXI signal or VXI interrupt has been received
from a device.

VI_EVENT_TRIG Notification that a hardware trigger was received from a device.

VI_EVENT_IO_COMPLETION Notification that an asynchronous operation has completed.

7-34

Return Values

See Also

HP VISA Language Reference

vii nstallHandler

Type ViStatus This is the function return status. It returns either a
completion code or an error code as follows.

Completion Code Description

VI - SUCCESS Event handler installed successfully.

Error Code Description

VI_ERROR_INV_SESSION The. given session or object reference is invalid I both are the same
VI_ERROR_INV_OBJECT value).

VI_ERROR_INV_EVENT Specified event type is not supported by the resource.

VI_ERROR_INV_HNDLR_REF The given handler reference is invalid.

VI_ERROR_HNDLR_NINSTALLED The handler was not installed. This may be returned if an
application attempts to install multiple handlers for the same event
on the same session.

"viEventHandler"

7-35

Syntax

Description

HP VISA Language Reference

viLock

viLock (ViSess ion vi, ViAccessMode lockType, ViUint32 timeout,
ViKeyid requestedKey, ViPKeyid accessKey);

NOTE

The viLock function is not supported with 16-bit VISA on Windows 95.

This function is used to obtain a lock on the specified resource. The caller can
specify the type of lock requested (exclusive or shared lock) and the length
of time the operation will suspend while waiting to acquire the lock before
timing out. This function can also be used for sharing and nesting locks.

The requestedKey and the accessKey parameters apply only to shared
locks. These parameters are not applicable when using the lock type
VI_EXCLUSIVE_LOCK. In this case, requestedKey and accessKey should be set
to VI _NULL. VISA allows user applications to specify a key to be used for lock
sharing through the use of the requestedKey parameter. Alternatively, a user
application can pass VI_NULL for the requestedKey parameter when obtaining
a shared lock, in which case VISA will generate a unique access key and
return it through the accessKey parameter. If a user application does specify a
requestedKey value, VISA will try to use this value for the accessKey. As long
as the resource is not locked, VISA will use the requestedKey as the access
key and grant the lock. When the operation succeeds, the requestedKey will
be copied into the user buffer referred to by the accessKey parameter.

7-36

HP VISA Language Reference

vi lock

The session that gained a shared lock can pass the accessKey to other
sessions for the purpose of sharing the lock. The session wanting to join the
group of sessions sharing the lock can use the key as an input value to the
requestedKey parameter. VISA will add the session to the list of sessions
sharing the lock, as long as the requestedKey value matches the accessKey
value for the particular resource. The session obtaining a shared lock in this
manner will then have the same access privileges as the original session that
obtained the lock.

It is also possible to obtain nested locks through this function. To acquire
nested locks, invoke the viLock function with the same lock type as the
previous invocation of this function. For each session, viLock and viUnlock
share a lock count, which is initialized to 0. Each invocation of viLock for
the same session (and for the same lockType) increases the lock count. In
the case of a shared lock, it returns with the same accessKey every time.
When a session locks the resource a multiple number of times, it is necessary
to invoke the viUnlock function an equal number of times in order to
unlock the resource. That is, the lock count increments for each invocation
of viLock, and decrements for each invocation of viUnlock. A resource is
actually unlocked only when the lock count is 0.

NOTE

On HP-UX, SIGALRM is used in implementing the viLock when timeout is non-zero. The viLock
function's use of SIGALRM is exclusive - an application should not also expect to use SIGALRM at the
same time.

7-37

HP VISA Language Reference

vi lock

NOTE

On HP-UX, some semaphores used in locking are permanently allocated and diminish the number of
semaphores available for applications. If the operating system runs out of semaphores, the number of
semaphores may be increased by doing the following:

1. Run sam.
2. Double-click on Kernel Configuration.
3. Double-click on Configurable Parameters.
4. Change semmni and semmns to a higher value, such as 300.

7-38

Parameters

Return Values

Name Direction

vi IN

Type

ViSession

HP VISA Language Reference

vi lock

Description

Unique logical identifier to a session.

lockljtpe IN ViAccessMode Specifies the type of lock requested, which can be
either VI_EXCLUSIVE_LOCK or
VI_SHARED_LOCK.

timeout IN ViUint32 Absolute time period (in milliseconds! that a resource
waits to get unlocked by the locking session before
returning this operation with an error.

requested Key IN ViKeyid This parameter is not used and should be set to
VI_NULL when lockType is
VI_EXCLUSIVE_LOCK !exclusive lock!. When
trying to lock the resource as VI_SHARED_LOCK
!shared lock!, a session can either set it to
VI_NULL so that VISA generates an accessKey for
the session, or the session can suggest an accessKey
to use for the shared lock. Refer to the previous
"Description· subsection for more details.

accessKey OUT ViPKeyid This parameter should be set to VI_NULL when
/ockljtpe is VI_EXCLUSIVE_LOCK !exclusive
lock!. When trying to lock the resource as
VI_SHARED_LOCK !shared lock!, the resource
returns a unique access key for the lock if the
operation succeeds. This accessKey can then be
passed to other sessions to share the lock.

Type ViStatus This is the function return status. It returns either a
completion code or an error code as follows.

Completion Code Description

VI_SUCCESS The specified access mode was successfully acquired.

VI_SUCCESS_NESTED_EXCLUSIVE The specified access mode was successfully acquired, and this
session has nested exclusive locks.

VI_SUCCESS_NESTED_SHARED The specifed access mode was successfully acquired, and this
session has nested shared locks.

7-39

See Also

HP VISA Language Reference

vi lock

Error Code

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

VI_ERROR_RSRC_LOCKED

VI_ERROR_INV_LOCK_TYPE

VI_ERROR_INV_ACCESS_KEY

VI_ERROR_TMO

Description

The given vi does not identify a valid session or object.

The specified type of lock cannot be obtained because the resource
is already locked with a lock type incompatible with the lock
requested.

The specified type of lock is not supported by this resource.

The requestedKey value passed is not a valid access key to the
specified resource.

The specified type of lock could not be obtained within the
specified timeout period.

"viUnlock". For more information on locking, see the "Using Locks" section
of Chapter 4, "Programming with HP VISA."

7-40

Syntax

Description

viMapAddress

HP VISA Language Reference

viMapAddress

viMapAddress(ViSession vi, ViUint16 rnapSpace,
ViBusAddress mapBa.se, ViBusSize rnapSize, ViBoolean access,
V iAddr suggested,, V iP Addr address) ;

This function maps in a specified memory space. The memory space that is
mapped is dependent on the type of interface specified by the vi parameter
and the rnapSpace parameter (refer to the following table). The address
parameter returns the address in your process space where memory is
mapped.

NOTE

For a given session, you can only have one map at one time. If you need to have multiple maps to a
device, you must open one session for each map needed.

7-41

Parameters

Return Values

HP VISA Language Reference

viMapAddress

Name Direction Type Description

vi IN ViSession Unique logical identifier to a session.

mapSpace IN ViUint16 Specifies the address space to map. (See the
following table.)

mapBase IN ViBusAddress Offset lin bytes) of the memory to be mapped.

mapSize IN ViBusSize Amount of memory to map lin bytes).

access IN ViBoolean VI_FALSE.

suggested IN ViAddr If suggested parameter is not VI_NULL, the
operating system attempts to map the memory to the
address specified in suggested. There is no guarantee,
however, that the memory will be mapped to that
address. This function may map the memory into an
address region different from suggested.

address OUT ViPAddr Address in your process space where the memory was
mapped.

Values for mapSpace Parameter

Value Description

VI_A16_SPACE Maps in VXl/MXI A 16 address space.

VI_A24_SPACE Maps in VXl/MXI A24 address space.

VI_A32_SPACE Maps in VXl/MXI A32 address space.

Type ViStatus This is the function return status. It returns either a
completion code or an error code as follows.

Completion Code Description

VI _SUCCESS Map successful.

7-42

Error Code

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

VI_ERROR_NSUP_OPER

VI_ERROR_RSRC_LOCKED

VI_ERROR_INV_SPACE

VI_ERROR_INV_OFFSET

VI_ERROR_NSUP_OFFSET

VI_ERROR_TMO

VI_ERROR_INV_SIZE

VI_ERROR_ALLOC

VI_ERROR_INV_ACC_MODE

VI_ERROR_WINDOW_MAPPED

See Also "viUnmapAddress"

HP VISA Language Reference

viMapAddress

Description

The given session or object reference is invalid (both are the same
value).

The given vi does not support this function.

Specified operation could not be performed because the resource
identified by vi has been locked for this kind of access.

Invalid mapSpace specified.

Invalid offset specified.

Specified region is not accessible from this hardware.

viMapAddres s could not acquire resource or perform
mapping before the timer expired.

Invalid size of window specified.

Unable to allocate window of at least the requested size.

Invalid access mode.

The specified session already contains a mapped window.

7-43

Syntax

Description

Parameters

Return Values

HP VISA Language Reference

viMemAlloc

viMemAlloc(ViSession vi, ViBusSize size, ViPBusAddress offset);

This function returns an offset into a device's memory region that has been
allocated for use by this session. If the device to which the given vi refers is
located on the local interface card, the memory can be allocated either on the
device itself or on the computer's system memory.

Name Direction Type Description

vi IN ViSession Unique logical identifier to a session.

size IN ViBusSize Specifies the size of the allocation.

offset OUT ViPBusAddress Returns the offset of the allocated device memory.

Type ViStatus This is the function return status. It returns either a
completion code or an error code as follows.

Completion Code Description

VI_SUCCESS The operation completed successfully.

7-44

Error Code

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

VI_ERROR_NSUP_OPER

VI_ERROR_RSRC_LOCKED

VI_ERROR_INV_SIZE

VI_ERROR_ALLOC

VI_ERROR_MEM_NSHARED

See Also "viMemFree"

HP VISA Language Reference

viMemAlloc

Description

The given session or object reference is invalid !both are the same
value).

The given vi does not support this operation.

Specified operation could not be performed because the resource
identified by vi has been locked for this kind of access.

Invalid size specified.

Unable to allocate shared memory block of the requested size.

The device does not export any memory.

7-45

Syntax

Description

Parameters

Return Values

See Also

HP VISA Language Reference

viMemFree

viMemFree(ViSession vi, ViBusAddress ojfset);

This function frees the memory previously allocated using viMemAlloc.

Name Direction Type Description

vi IN ViSession Unique logical identifier to a session.

offset IN ViBusAddress Specifies the memory previously allocated with
viMemAlloc.

Type ViStatus This is the function return status. It returns either a
completion code or an error code as follows.

Completion Code Description

VI -SUCCESS The operation completed successfully.

Error Code Description

VI_ERROR_INV_SESSION The given session or object reference is invalid !both are the same
VI_ERROR_INV_OBJECT value I.

VI_ERROR_NSUP_OPER The given vi does not support this operation.

VI_ERROR_INV_OFFSET Invalid offset specified.

VI_ERROR_WINDOW_NMAPPED The specified offset is currently in use by viMapAddress.

"viMemAlloc"

7-46

Syntax

Description

HP VISA Language Reference

viMovelnB, viMoveln16, and viMoveln32

viMoveln8, viMovelnl6, and viMovein32

viMove!n8(ViSession vi, ViUint16 space, ViBusAddress offset,
ViBusSize length, ViAUint8 buj8) ;

viMovein16(ViSession vi, ViUint16 space, ViBusAddress offset,
ViBusSize length, ViAUint 16 buf 16) ;

viMove!n32(ViSession vi, ViUint16 space, ViBusAddress offset,
ViBusSize length, ViAUint32 buf32) ;

This function moves an 8-bit, 16-bit, or 32-bit block of data from the specified
memory space (assigned memory base + offset) to local memory. This
function reads the 8-bit, 16-bit, or 32-bit value from the address space
pointed to by space. The offset must be a valid memory address in the space.
These functions do not require viMapAddress to be called prior to their
invocation.

NOTE

The viMovein functions do a block move of memory from a VXI device if
VI_ATTR_SRC_INCREMENT is 1. However, they do a FIFO read of a VXI
memory location if VI_ATTR_SRC_INCREMENT is 0 lzerol.

7-47

Parameters

Return Values

HP VISA Language Reference

viMovelnB, viMoveln16, and viMoveln32

Name Direction Type Description

vi IN ViSession Unique logical identifier to a session.

space IN ViUint16 Specifies the address space. !See the following table.I

offset IN ViBusAddress Offset !in bytes) of the memory to read from.

length IN ViBusSize Number of elements to transfer, where the data width
of the elements to transfer is 8-bits for
viMovein8, 16-bits for viMovein16, or
32-bits for viMovein32.

bufB, bufl 6, OUT ViAUint8, Data read from bus !8-bits for viMovein8,
or buf32 ViAUint 16, or 16-bits for viMovein16, and 32-bits for

ViAUint32 viMovein32).

Values for space Parameter

Value Description

VI_A16_SPACE Maps in VXl/MXI A 16 address space.

VI_A24_SPACE Maps in VXl/MXI A24 address space.

VI_A32_SPACE Maps in VXl/MXI A32 address space.

Type ViStatus This is the function return status. It returns either a
completion code or an error code as follows.

Completion Code Description

VI_SUCCESS Operation completed successfully.

7-48

See Also

Error Code

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

VI_ERROR_NSUP_OPER

VI_ERROR_RSRC_LOCKED

VI_ERROR_BERR

VI_ERROR_INV_SPACE

VI_ERROR_INV_OFFSET

VI_ERROR_NSUP_OFFSET

VI_ERROR_NSUP_WIDTH

VI_ERROR_INV_LENGTH

HP VISA Language Reference

viMovelnB. viMoveln16. and viMoveln32

Description

The given session or object reference is invalid !both are the same
value).

The given vi does not support this function.

Specified operation could not be performed because the resource
identified by vi has been locked for this kind of access.

Bus error occurred during transfer.

Invalid address space specified.

Invalid offset specified.

Specified offset is not accessible from this hardware.

Specified width is not supported by this hardware.

Invalid length specified.

"viMove0ut8, viMove0ut16, and viMove0ut32", "viln8, vilnl6, and viln32"

7-49

Syntax

Description

HP VISA Language Reference

viMove0ut8, viMove0ut16, and viMove0ut32

viMove0ut8(ViSession vi, ViUint16 space, ViBusAddress ojfset,
ViBusSize length j ViAUint8 buf8) ;

viMoveOut16(ViSession vi, ViUint16 space, ViBusAddress ojfset,
ViBusSize length, ViAUint16 buf16);

viMoveOut32(ViSession vi, ViUint16 space, ViBusAddress ojfset,
ViBusSize length, ViAUint32 buf32) ;

This function moves an 8-bit, 16-bit, or 32-bit block of data from local
memory to the specified memory space (assigned memory base + ojfset). This
function writes the 8-bit, 16-bit, or 32-bit value to the address space pointed
to by space. The offset must be a valid memory address in the space. This
function does not require viMapAddress to be called prior to its invocation.

NOTE

The viMoveOut functions do a block move of memory from a VXI device if
VI_ATTR_DEST_INCREMENT is 1. However, they do a FIFO read of a VXI memory location
if VI_ATTR_DEST_INCREMENT is 0 (zero).

7-50

Parameters

Return Values

Name

vi

space

offset

length

bufB, but! 6,
or buf32

Direction

IN

IN

IN

IN

IN

Type

ViSession

ViUint16

ViBusAddress

ViBusSize

ViAUint8,
ViAUint16, or
ViAUint32

HP VISA Language Reference

viMoveOutB, viMoveOut16, and viMove0ut32

Description

Unique logical identifier to a session.

Specifies the address space. (See the following table.I

Offset lin bytesl of the memory to write to.

Number of elements to transfer, where the data width
of the elements to transfer is 8-bits for
viMove0ut8, 16-bits for viMoveOut 16, or
32-bits for viMoveOut32.

Data written to bus 18-bits for viMoveOut8,
16-bits for viMoveOut16, and 32-bits for
viMove0ut321.

Values for space Parameter

Value Description

VI_A16_SPACE Maps in VXl/MXI A 16 address space.

VI_A24_SPACE Maps in VXl/MXI A24 address space.

VI_A32_SPACE Maps in VXl/MXI A32 address space.

Type ViStatus This is the function return status. It returns either a
completion code or an error code as follows.

Completion Code Description

VI_SUCCESS Operation completed successfully.

7-51

HP VISA Language Reference

viMoveOutB, viMoveOut16. and viMoveOut32

Error Code Description

VI_ERROR_INV_SESSION The given session or object reference is invalid (both are the same
VI_ERROR_INV_OBJECT value).

VI_ERROR_NSUP_OPER The given. vi does not support this function.

VI_ERROR_RSRC_LOCKED Specified operation could not be performed because the resource
identified by vi has been locked for this kind of access.

VI_ERROR_BERR Bus error occurred during transfer.

VI_ERROR_INV_SPACE Invalid address space specified.

VI_ERROR_INV_OFFSET Invalid offset specified.

VI_ERROR_NSUP_OFFSET Specified offset is not accessible from this hardware.

VI_ERROR_NSUP_WIDTH Specified width is not supported by this hardware.

VI_ERROR_INV_LENGTH Invalid length specified.

See Also "viMoveln8, viMoveln16, and viMoveln32", "vi0ut8, vi0ut16, and vi0ut32"

7-52

Syntax

Description

Parameters

vi Open

HP VISA Language Reference

viOpen

viOpen(ViSession sesn, ViRsrc rsrcName, ViAccessMode accessMode,
ViUint32 timeout, ViPSession vi);

This function opens a session to the specified device. It returns a session
identifier that can be used to call any other functions to that device.

Name Direction Type Description

sesn IN ViSession Resource Manager session !should always be the
Default Resource Manager for VISA returned from
viOpenDefaultRMl.

rsrcName IN ViRsrc Unique symbolic name of a resource. !See the
following tables.I

accessMode IN ViAccessMode VI_NULL !Not used for VISA 1.0.J

timeout IN ViUint32 VI_NULL !Not used for VISA 1.0.l

vi OUT ViPSession Unique logical identifier reference to a session.

Address String Grammar for rsrcName Parameter

Interface Grammar

VXI VXI [board] : : VXI logical address [: : INSTR]

GPIB-VXI GPIB-VXI [board] : : VXI logical address[: : INSTR]

GPIB GPIB [board] : :primary address[: : secondary address] [: : INSTR]

ASRL ASRL [board] [: : INSTR]

7-53

Return Values

See Also

HP VISA Language Reference

viOpen

Examples of Address Strings for rsrcName Parameter

Address String Description

VXIO : : 1 : : INSTR A VXI device at logical address 1 in VXI interface VXIO.

GPIB-VXI::24: :INSTR A VXI device at logical address 24 in a GPIB-VXI controlled VXI system.

GPIB::1: :O::INSTR A GPIB device at primary address 1 and secondary address 0 in GPIB
interface 0.

ASRL 1 : : INSTR A serial device located on port 1.

Type ViStatus This is the function return status. It returns either a
completion code or an error code as follows.

Completion Code Description

VI - SUCCESS Session opened successfully.

Error Code Description

VI_ERROR_INV_SESSION The given session or object reference is invalid !both are the same
VI_ERROR_INV_OBJECT value).

VI_ERROR_NSUP_OPER The given sesn does not support this function. For VISA, this
function is supported only by the Default Resource Manager session.

VI_ERROR_INV_RSRC_NAME Invalid resource reference specified. Parsing error.

VI_ERROR_INV_ACC_MODE Invalid access mode.

VI_ERROR_RSRC_NFOUND Insufficient location information or resource not present in the
system.

VI_ERROR_ALLOC Insufficient system resources to open a session.

"viClose"

7-54

Syntax

Description

Parameters

viOpenDefaultRM

HP VISA Language Reference

viOpenOefaultRM

viOpenDefaultRM(ViPSession sesn);

This function returns a session to the Default Resource Manager resource.
This function must be called before any VISA functions can be invoked. The
first call to this function initializes the VISA system, including the Default
Resource Manager resource, and also returns a session to that resource.
Subsequent calls to this function return unique sessions to the same Default
Resource Manager resource.

NOTE

All devices that you will be using need to be connected and in working condition prior to the
first VISA function call lviOpenDefaultRMl. The system is configured only on the first
viOpenDef aul tRM per process. Therefore, if viOpenDef aul tRM is called without
devices connected and then called again when devices are connected, the devices will not be
recognized. You must close ALL Resource Manager sessions and reopen with all devices connected and
in working condition.

Name Direction Type Description

sesn OUT ViSession Unique logical identifier to a Default Resource Manager
session.

7-55

Return Values

See Also

HP VISA Language Reference

viOpenDefaultRM

Type ViStatus This is the function return status. It returns either a
completion code or an error code as follows.

Completion Code Description

VI - SUCCESS Session to the Default Resource Manager resource created
successfully.

Error Code Description

VI_ERROR_SYSTEM_ERROR The VISA system failed to initialize.

VI_ERROR_ALLOC Insufficient system resources to create a session to the Default
Resource Manager resource.

VI_ERROR_INV_SETUP Some implementation-specific configuration file is corrupt or does
not exist.

"viOpen", "viFindRsrc", "viClose"

7-56

Syntax

Description

Parameters

HP VISA Language Reference

vi0ut8, vi0ut16, and vi0ut32

vi0ut8, vi0ut16, and vi0ut32

viOut8(ViSession vi, ViUint16 space, ViBusAddress offset,
ViUint8 val8) ;

viOut16(ViSession vi, ViUint16 space, ViBusAddress offset,
ViUint16 vall6);

viOut32(ViSession vi, ViUint16 space, ViBusAddress offset,
ViUint32 val32) ;

This function writes an 8-bit, 16-bit, or 32-bit word to the specified memory
space (assigned memory base + offset). This function takes the 8-bit, 16-bit,
or 32-bit value and stores its contents to the address space pointed to by
space. The offset must be a valid memory address in the space. This function
does not require viMapAddress to be called prior to its invocation.

Name Direction Type Description

vi IN ViSession Unique logical identifier to a session.

space IN ViUint16 Specifies the address space. ISee the following table.I

offset IN ViBusAddress Offset lin bytesl of the memory to write to.

va/8, va/16, IN ViUint8, Data to write to bus 18-bits for vi0ut8, 16-bits for
or va/32 ViUint 16, or viOut 16, and 32-bits for vi0ut32l.

ViUint32

7-57

Return Values

See Also

HP VISA Language Reference

viOutB, vi0ut16, and vi0ut32

Values for space Parameter

Value Description

VI_A16_SPACE Maps in VXl/MXI A 1 B address space.

VI_A24_SPACE Maps in VXl/MXI A24 address space.

VI_A32_SPACE Maps in VXl/MXI A32 address space.

Type ViStatus This is the function return status. It returns either a
completion code or an error code as follows.

Completion Code Description

VI -SUCCESS Operation completed successfully.

Error Code Description

VI_ERROR_INV_SESSION The given session or object reference is invalid !both are the same
VI_ERROR_INV_OBJECT value I.

VI_ERROR_NSUP_OPER The given vi does not support this function.

VI_ERROR_RSRC_LOCKED Specified operation could not be performed because the resource
identified by vi has been locked for this kind of access.

VI_ERROR_BERR Bus error occurred during transfer.

VI_ERROR_INV_SPACE Invalid address space specified.

VI_ERROR_INV_OFFSET Invalid offset specified.

VI_ERROR_NSUP_OFFSET Specified offset is not accessible from this hardware.

VI_ERROR_NSUP_WIDTH Specified width is not supported by this hardware.

"viln8, vilnl6, and viln32", "viPoke8, viPokel6, and viPoke32", "viMove0ut8,
viMoveOut 16, and viMove0ut32"

7-58

Syntax

Description

Parameters

HP VISA Language Reference

viPeekB, viPeek16, and viPeek32

viPeek8, viPeekl6, and viPeek32

viPeek8(ViSession vi, ViAddr addr, ViPUint8 val8);

viPeek16(ViSession vi, ViAddr addr, ViPUint16 val16);

viPeek32(ViSession vi, ViAddr addr, ViPUint32 val32);

This function reads an 8-bit, 16-bit, or 32-bit value from the address location
specified in addr. The address must be a valid memory address in the current
process mapped by a previous viMapAddress call.

Name Direction Type Description

vi IN ViSession Unique logical identifier to a session.

addr IN ViAddr Specifies the source address to read the value.

va/8, va/16, OUT ViPUint8, Data read from bus 18-bits for viPeek8, 16-bits
or va/32 ViPUint16, or for viPeek16, and 32-bits for viPeek321.

ViPUint32

NOTE

ViAddr is defined as a void *· To do pointer arithmetic, you must cast this to an appropriate
type (ViUint8, ViUint 16, or ViUint32l. Then be sure the offset is correct for the type
of pointer you are using. For example, (ViUint8 *) addr + 4 points to the same location as
(ViUint16 *)addr + 2.

7-59

HP VISA Language Reference

viPeekB, viPeek16, and viPeek32

Return Values None.

See Also "viPoke8, viPoke16, and viPoke32", "viMapAddress", "viln8, viln16, and
viln32"

7-60

Syntax

Description

Parameters

HP VISA Language Reference

viPokeB, viPoke16, and viPoke32

viPoke8, viPoke16, and viPoke32

viPoke8(ViSession vi, ViAddr addr, ViUint8 va!B);

viPoke16(ViSession vi, ViAddr addr, ViUint16 val16);

viPoke32(ViSession vi, ViAddr addr, ViUint32 val32);

This function takes an 8-bit, 16-bit, or 32-bit value and stores its content to
the address pointed to by addr. The address must be a valid memory address
in the current process mapped by a previous viMapAddress call.

Name Direction Type Description

vi IN ViSession Unique logical identifier to a session.

addr IN ViAddr Specifies the destination address to store the value.

va/8, va/16, IN ViUint8, Data written to bus (8-bits for viPoke8, 16-bits
or va/32 ViUint 16, or for viPoke16, and 32-bits for viPoke32l.

ViUint32

NOTE

ViAddr is defined as a void *. To do pointer arithmetic, you must cast this to an appropriate
type (ViUint8, ViUint 16, or ViUint32l. Then be sure the offset is correct for the type
of pointer you are using. For example, (ViUint8 *) addr + 4 points to the same location as
(ViUint16 *) addr + 2.

7-61

HP VISA Language Reference

viPokeB, viPoke 16, and viPoke32

Return Values None.

See Also "viPeek8, viPeekl6, and viPeek32", "viMapAddress", "vi0ut8, vi0utl6, and
vi0ut32"

7-62

Syntax

Description

" Parameters

viPrintf

HP VISA Language Reference

viPrintf

viPrintf(ViSession vi. ViString writeFmt, argl, arg2, ...);

This function converts, formats, and sends the parameters argl, arg2, ... to
the device as specified by the format string. Before sending the data, the
function formats the arg characters in the parameter list as specified in the
writeFmt string.

You should not use the viWri te and viPrintf functions in the same session.

The writePmt string can include regular character sequences, special
formatting characters, and special format specifiers. The regular characters
(including white spaces) are written to the device unchanged. The special
characters consist of \ (backslash) followed by a character. The format
specifier sequence consists of'!. (percent) followed by an optional modifier
(flag), followed by a conversion character.

Name Direction Type Description

vi IN ViSession Unique logical identifier to a session.

writeFmt IN ViString String describing the format for arguments.

argl, arg2 IN (varies) Parameters format string is applied to.

7-63

Special
Formatting
Characters

Format
Specifiers

HP VISA Language Reference

viPrintf

The special formatting characters and what they send to the device are:

\n Sends the ASCII LF character. The END identifier will also be
automatically sent.

\r Sends an ASCII CR character.

\ t Sends an ASCII TAB character.

\### Sends the ASCII character specified by the octal value.

\" Sends the ASCII double-quote(") character.

\ \ Sends a backslash (\) character.

The format specifiers convert the next parameter in the sequence according
to the modifier and conversion character, after which the formatted data is
written to the specified device. The format specifier has the following syntax:

'I. [modifiers] conversion character

where conversion character specifies which data type the argument is
represented in. The modifiers are optional codes that describe the target
data.

In the following tables, ad conversion character refers to all conversion codes
of type integer (d, i, o, u, x, X), unless specified as 'l.d only. Similarly, an
f con version character refers to all con version codes of type float (f , e , E ,
g, G), unless specified as 'l.f only.

Every conversion command starts with the'!. character and ends with a
conversion character. Between the '!. character and the conversion character,
the modifiers in the following tables can appear in the sequence.

7-64

Modifier

ANSI C Standard Modifiers

Supported with
Conversion
Character

HP VISA Language Reference

viPrintf

Description

An integer specifying d, f • s This specifies the minimum field width of the converted argument.
field width. conversion characters If an argument is shorter than the field width, it will be padded on

the left (or on the right if the - flag is present).

Special case: For the COH, COQ, and COB flags, the field width
includes the #H, #Q, and #B strings, respectively.

An asterisk l*l may be present in lieu of a field width modifier, in
which case an extra arg is used. This arg must be an integer
representing the field width.

An integer specifying d, f , s The precision string consists of a string of decimal digits. A
precision. conversion characters (decimal point! must prefix the precision string. The precision string

An argument length
modifier.

h, 1, L, z,
and Z are legal
values. (z and Z
are not ANSI C
standard flags.I

h (d, b, B
conversion characters!

specifies the following:

a. The minimum number of digits to appear for the C01, COH,
<OQ, and COB flags and the i, o, u, x, and X
conversion characters.

b. The maximum number of digits after the decimal point in case
of f conversion characters.

c. The maximum numbers of characters for the string Isl specifier.

d. Maximum significant digits for g conversion character.

An asterisk l*l may be present in lieu of a precision modifier, in
which case an extra arg is used. This arg must be an integer
representing the precision of a numeric field.

The argument length modifiers specify one of the following:

a. The h modifier promotes the argument to a short or unsigned
1 (d, f , b, B short, depending on the conversion character type.
conversion characters!

b. The 1 modifier promotes the argument to a long or unsigned
L (f conversion long.
character!

z, Z lb, B
conversion characters!

c. The L modifier promotes the argument to a long double
parameter.

d. The z modifier promotes the argument to an array of floats.

e. The Z modifier promotes the argument to an array of doubles.

7-65

HP VISA Language Reference

viPrintf

Enhanced Modifiers to ANSI C Standards

Supported with
Modifier Conversion Description

Character

A comma I, I %d and %f only The corresponding argument is interpreted as a reference to the
followed by an first element of an array of size n. The first n elements of this list
integer n, where n are printed in the format specified by the conversion character.
represents the array

An asterisk l*l may be present after the , modifier, in which case size.
an extra arg is used. This arg must be an integer representing the
array size of the given type.

CQ1 %d and %f only Converts to an IEEE 488.2 defined NR1 compatible number, which
is an integer without any decimal point !for example, 1231.

02 %d and %f only Converts to an IEEE 488.2 defined NR2 compatible number. The
NR2 number has at least one digit after the decimal point (for
example, 123. 451.

03 %d and %f only Converts to an IEEE 488.2 defined NR3 compatible number. An
NR3 number is a floating point number represented in an
exponential form !for example, 1. 2345E-671.

CQH %d and %f only Converts to an IEEE 488.2 defined <HEXADECIMAL NUMERIC
RESPONSE DATA>. The number is represented in a base of sixteen
form. Only capital letters should represent numbers. The number is
of the form #HXXX., where XXX. is a hexadecimal number !for
example, #HAF35BI.

COQ %d and %f only Converts to an IEEE 488.2 defined <OCTAL NUMERIC RESPONSE
DATA>. The number is represented in a base of eight form. The
number is of the form #QYYY.., where YYY.. is an octal number
!for example, #Q712341.

COB %d and %f only Converts to an IEEE 488.2 defined <BINARY NUMERIC RESPONSE
DATA>. The number is represented in a base two form. The
number is of the form #BZZZ.., where ZZZ.. is a binary number
!for example, #B0111010011.

The following are the allowed conversion characters. A format specifier
sequence should include one and only one conversion character.

7-66

HP VISA Language Reference

viPrintf

Standard ANSI C Conversion Characters

'!. Send the ASCII percent ('/.) character.

c Argument type: A character to be sent.

d Argument type: An integer.

Modifier Interpretation

Default functionality Print an integer in NR1 format (an integer without a decimal point).

@2 or @3 The integer is converted into a floating point number and output in the correct format.

field width Minimum field width of the output number. Any of the six IEEE 488.2 modifiers can also
be specified with field width.

Length modifier 1 arg is a long integer.

Length modifier h arg is a short integer.

, array size arg points to an array of integers (or long or short integers, depending on the length
modifier! of size array size. The elements of this array are separated by array size - 1
commas and output in the specified format.

7-67

HP VISA Language Reference

viPrintf

f Argument type: A floating point number.

Modifier Interpretation

Default functionality Print a floating point number in NR2 format !a number with at least one digit after the
decimal point).

@1 Print an integer in NR1 format. The number is truncated.

@3 Print a floating point number in NR3 format !scientific notation). Precision can also be
specified.

field width Minimum field width of the output number. Any of the six IEEE 488.2 modifiers can also
be specified with field width.

length modifier 1 arg is a double float.

length modifier L arg is a long double.

, array size arg points to an array of floats !or doubles or long doubles), depending on the length
modifier) of size array size. The elements of this array are separated by array size - 1
commas and output in the specified format.

7-68

HP VISA Language , Reference

viPrintf

s Argument type: A reference to a NULL-terminated string that is
sent to the device without change.

b Argument type: A location of a block of data.

Flag or Modifier Interpretation

Default functionality The data block is sent as an IEEE 488.2 <DEFINITE LENGTH ARBITRARY BLOCK RESPONSE
DATA>. A count llongl must appear as a flag that specifies the number of bytes in the
block. A field width or precision modifier is not allowed with this conversion character.

* (asterisk! An asterisk may be present instead of the count. In such a case, two args are used, the
first of which is a count of the number of elements in the data block. The second arg is a
reference to the data block. The size of an element is determined by the optional length
modifier (see below!, the default being byte width.

Length modifier h The data block is assumed to be an array of unsigned short integers (16-bit word!. The
count corresponds to the number of words rather than bytes. The data is swapped and
padded into standard IEEE 488.2 (big endian I format if native computer representation is
different.

Length modifier 1 The data block is assumed to be an array of unsigned long integers. The count correspond~
to the number of longwords (32-bitsl. Each longword data is swapped and padded into
standard IEEE 488.2 lbig endianl format if native computer representation is different.

Length modifier z The data block is assumed to be an array of floats. The count corresponds to the number
of floating point numbers (32-bitsl. The numbers are represented in IEEE 754 (big endianl
format if native computer representation is different.

Length modifier Z The data block is assumed to be an array of doubles. The count corresponds to the
number of double floats (64-bitsl. The numbers are represented in IEEE 754 (big endianl
format if native computer representation is different.

B Argument type: A location of a block of data. The functionality
is similar to b, except the data block is sent as an IEEE 488. 2
<INDEFINITE LENGTH ARBITRARY BLOCK RESPONSE DATA>.
This format involves sending an ASCII LF character with the END
indicator set after the last byte of the block.

7-69

Return Values

See Also

HP VISA Language Reference

viPrintf

Type ViStatus This is the function return status. It returns either a
completion code or an error code as follows.

Completion Code Description

VI_SUCCESS Parameters were successfully formatted.

Error Code Description

VI_ERROR_INV_SESSION The given session or object reference is invalid lboth are the same
VI_ERROR_INV_OBJECT value).

VI_ERROR_RSRC_LOCKED Specified operation could not be performed because the resource
identified by vi has been locked for this kind of access.

VI_ERROR_IO Could not perform write function because of 1/0 error.

VI_ERROR_TMO Timeout expired before write function completed.

VI_ERROR_INV_FMT A format specifier in the writefmt string is invalid.

VI_ERROR_NSUP_FMT A format specifier in the writefmt string is not supported.

VI_ERROR_ALLOC The system could not allocate a formatted 1/0 buffer because of
insufficient resources.

"vi VPrintf"

7-70

Syntax

Description

Parameters

viQueryf

HP VISA Language Reference

viQueryf

viQueryf (ViSession vi, ViString writePmt, ViString readPmt,
argl, arg2, ...);

This function performs a formatted write and read through a single operation
invocation. This function provides a mechanism of "Send, then receive"
typical to a command sequence from a commander device. In this manner,
the response generated from the command can be read immediately.

This function is a combination of the viPrintf and viScanf functions. The
first n arguments correspondingto the first format string are formatted by
using the wriiePmt string and then sent to the device. The write buffer is
flushed immediately after the write portion of the operation completes. After
these actions, the response data is read from the device into the remaining
parameters (starting from parameter n + 1) using the readPmt string.

This function returns the same VISA status codes as viPrintf, viScanf, and
viFlush.

Name Direction Type Description

vi IN ViSession Unique logical identifier to a session.

writefmt IN ViString ViString describing the format of the write
arguments.

readfmt IN ViString ViString describing the format of the read
arguments.

arg!, arg2 IN OUT N/A Parameters on which. write and read format strings
are applied.

7-71

Return Values

See Also

HP VISA Language Reference

viOueryf

Type ViStatus This is the function return status. It returns either a
completion code or an error code as follows.

Completion Code Description

VI_SUCCESS Successfully completed the Query operation.

Error Code Description

VI_ERROR_INV_SESSION The given session or object reference is invalid (both are the same
VI_ERROR_INV_OBJECT value).

VI_ERROR_RSRC_LOCKED Specified operation could not be performed because the resource
identified by vi has been locked for this kind of access.

VI_ERROR_IO Could not perform read/write operation because of 1/0 error.

VI_ERROR_TMO Timeout occurred before read/write operation completed.

VI_ERROR_INV_FMT A format specifier in the writefmt or readfmt string is invalid.

VI_ERROR_NSUP_FMT The format specifier is not supported for current argument type.

VI_ERROR_ALLOC The system could not allocate a formatted 1/0 buffer because of
insufficient resources.

"viPrintf", "viScanf", "viVQueryf"

7-72

Syntax

Description

Parameters

viRead

HP VISA Language Reference

vi Read

viRead(ViSession vi, ViPBuf buf, ViUint32 count,
ViPUint32 retCount) ;

This function synchronously transfers data from a device. The data that is
read is stored in the buffer represented by buf. This function returns only
when the transfer terminates. Only one synchronous read function can occur
at any one time.

NOTE

You must set specific attributes to make the read terminate under specific conditions. See Appendix B,
"HP VISA Attributes."

Name Direction Type Description

vi IN ViSession Unique logical identifier to a session.

buf OUT ViPBuf Represents the location of a buffer to receive data
from device.

count IN ViUint32 Number of bytes to be read.

retCount OUT ViPUint32 Represents the location of an integer that will be set
to the number of bytes actually transferred.

7-73

Return Values

HP VISA Language Reference

vi Read

Type ViStatus This is the function return status. It returns either a
completion code or an error code as follows.

Completion Code Description

VI - SUCCESS The function completed successfully and the END indicator was
received (for interfaces that have END indicators).

VI_SUCCESS_TERM_CHAR The specified termination character was read.

VI_SUCCESS_MAX_CNT The number of bytes read is equal to count.

7-74

Error Code

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

VI_ERROR_NSUP_OPER

VI_ERROR_RSRC_LOCKED

VI_ERROR_TMO

VI_ERROR_RAW_WR_PROT_VIOL

VI_ERROR_RAW_RD_PROT_VIOL

VI_ERROR_OUTP_PROT_VIOL

VI_ERROR_BERR

VI_ERROR_INV_SETUP

VI_ERROR_NCIC

VI_ERROR_NLISTENERS

VI_ERROR_ASRL_PARITY

VI_ERROR_ASRL_FRAMING

VI_ERROR_ASRL_OVERRUN

VI_ERROR_IO

See Also "viWrite"

HP VISA Language Reference

vi Read

Description

The given session or object reference is invalid !both are the same
value).

The given vi dries not support this function.

Specified operation could not be performed because the resource
identified by vi has been locked for this kind of access.

Timeout expired before function completed.

Violation of raw write protocol occurred during transfer.

Violation of raw read protocol occurred during transfer.

Device reported an output protocol error occurred during transfer.

Bus error occurred during transfer.

Unable to start read function because setup is invalid (due to
attributes being set to an inconsistent state!.

The interface associated with the given vi is not currently the
controller in charge.

No Listeners condition is detected !both NRFD and NDAC are
deasserted).

A parity error occurred during transfer.

A framing error occurred during transfer.

An overrun error occurred during transfer. A character was not read
from the hardware before the next character arrived.

An unknown 1/0 error occurred during transfer.

7-75

Syntax

Description

Parameters

Return Values

HP VISA Language Reference

viReadAsync

viReadAsync(ViSession vi~ ViPBuf buf, ViUint32 count,
ViPJobid job/d);

This function asynchronously transfers data from a device. The data that
is read is stored in the buffer represented by buf. This function normally
returns before the transfer terminates. An 1/0 Completion event is posted
when the transfer is actually completed.

This function returns job/d, which you can use either with vi Terminate
to abort the operation, or with an 1/0 Completion event to identify which
asynchronous read operation completed.

Name Direction Type Description

vi IN ViSession Unique logical identifier to a session.

but OUT ViPBuf Represents the location of a buffer to receive data
from the device.

count IN ViUint32 Number of bytes to be read.

job Id OUT ViPJobid Represents the location of a variable that will be set
to the job identifier of this asynchronous read
operation.

Type ViStatus This is the function return status. It returns either a
completion code or an error code as follows.

Completion Code Description

VI - SUCCESS Asynchronous read operation successfully queued.

VI_SUCCESS_SYNC Read operation performed synchronously.

7-76

See Also

Error Code

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

VI_ERROR_RSRC_LOCKED

VI_ERROR_QUEUE_ERROR

HP VISA Language Reference

viReadAsync

Description

The given session or object reference is invalid !both are the same
value).

Specified operation could not be performed because the resource
identified by vi has been locked for this kind of access.

Unable to queue read operation.

"viRead", "viTenninate", "viWrite", "viWriteAsync"

7-77

Syntax

Description

Parameters

Return Values

HP VISA Language Reference

viReadSTB

viReadSTB(ViSession vi, ViPUint16 status);

This function reads a status byte of the service request from a service
requester (the message-based device). For example, on the IEEE 488.2
interface, the message is read by polling devices; for other types of
interfaces, a message is sent in response to a service request to retrieve
status information. If the status information is only one byte long, the most
significant byte is returned with the zero value. If the service requester does
not respond in the actual timeout period, VI_ERROR_ TMO is returned.

Name Direction Type Description

vi IN ViSession Unique logical identifier to the session.

status OUT ViPUint16 Service request status byte.

Type ViStatus This is the function return status. It returns either a
completion code or an error code as follows.

Completion Code Description

VI - SUCCESS Operation completed successfully.

7-78

Error Code

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

VI_ERROR_NSUP_OPER

VI_ERROR_RSRC_LOCKED

VI_ERROR_SRQ_NOCCURRED

VI_ERROR_TMO

VI_ERROR_RAW_WR_PROT_VIOL

VI_ERROR_RAW_RD_PROT_VIOL

VI_ERROR_BERR

VI_ERROR_NCIC

VI_ERROR_NLISTENERS

HP VISA Language Reference

viReadSTB

Description

The given session or object reference is invalid !both are the same
value).

The given vi does not support this function.

Specified operation could not be performed because the resource
identified by vi has been locked for this kind of access.

Service request has not been received for the session.

Timeout expired before function completed.

Violation of raw write protocol occurred during transfer.

Violation of raw read protocol occurred during transfer.

Bus error occurred during transfer.

The interface associated with the given vi is not currently the
controller in charge.

No Listeners condition is detected !both NRFD and NDAC are
deasserted).

7-79

Syntax

Description

HP VISA Language Reference

viScanf

viScanf (ViSession vi, ViString readPmt, argl, arg2, ...);

This function receives data from a device, formats it by using the format
string, and stores the data in the arg parameter list. The format string
can have format specifier sequences, white space characters, and ordinary
characters. The white characters (blank, vertical tabs, horizontal tabs, form
feeds, new line/linefeed, and carriage return) are ignored except in the case of
Y.c and Y. []. All other ordinary characters except Y. should match the next
character read from the device.

A format specifier sequence consists of a Y., followed by optional modifier
flags, followed by one of the conversion characters, in that sequence. It is of
the form:

Y. [modifiers] conversion character

where the optional modifier describes the data format, while conversion
character indicates the nature of data (data type). One and only one
conversion character should be performed at the specifier sequence. A format
specification directs the conversion to the next input arg. The results of the
conversion are placed in the variable that the corresponding argument points
to, unless the asterisk(*) assignment-suppressing character is given. In such
a case, no arg is used, and the results are ignored.

The viScanf function accepts input until an END indicator is read or all the
format specifiers in the readPmt string are satisfied. It also terminates if
the format string character does not match the incoming chqracter. Thus,
detecting an END indicator before the readPmt stri:tt__gkruliy consumed will
result in ignoring the rest of the format string. Also, if some data remains
in the buffer after all format specifiers in the readPmt string are satisfied,
the data will be kept in the buffer and will be used by the next viScanf
function.

7-80

Parameters

HP VISA Language Reference

viScanf

Name Direction Type Description

vi IN ViSession Unique logical identifier to a session.

readfmt IN ViString String describing the format for arguments.

argl, arg2 OUT N/A A list with the variable number of parameters into
which the data is read and the format string is
applied.

The following two tables describe optional modifiers that can be used in a
format specifier sequence.

ANSI C Standard Modifiers

Modifier
Supported with

Conversion
Character

An integer %s , %c, % []
representing the field conversion characters
width

Description

It specifies the maximum field width that the argument will take. A
may also appear instead of the integer field width, in which case
the next arg is a reference to the field width. This arg is a
reference to an integer for %c and %s. The field width is not
allowed for %d or %f.

A length modifier
(1, h, ,z or

h (d, b conversion The argument length modifiers specify one of the following:
characters)

ZI. z and Z are not
ANSI C standard 1 (d' f ' b

conversion characters)

a. The h modifier promotes the argument to be a reference to a
short integer or unsigned short integer, depending on the
conversion character. modifiers.

* (asterisk)

L If conversion
character I

b. The 1 modifier promotes the argument to point to a long
integer or unsigned long integer.

z, Z (b conversion c. The L modifier promotes the argument to point to a long
character) double floating point parameter.

All conversion
characters

d. The z modifier promotes the argument to point to an array of
floats.

e. The Z modifier promotes the argument to point to an array of
double floats.

An asterisk acts as the assignment suppression character. The input
is not assigned to any parameters and is discarded.

7-81

Conversion
Characters

HP VISA Language Reference

viScanf

Enhanced Modifiers to ANSI C Standards

Supported with
Modifier Conversion Description

Character

A comma I, I %d and %f only The corresponding argument is interpreted as a reference to the
followed by an first element of an array of size n. The first n elements of this list
integer n, where n are printed in the format specified by the conversion character.
represents the array

A number sign l#I may be present after the , modifier, in which
size.

case an extra arg is used. This arg must be an integer representing
the array size of the given type.

ANSI C Conversion Characters

c Argument type: A reference to a character.

Flags or Modifiers Interpretation

Default functionality A character is read from the device and stored in the parameter.

field width field width number of characters are read and stored at the reference location lthe default
field width is 1l. No NULL character is added at the end of the data block.

NOTE

White space in the device input stream is not ignored when using Y.c.

7-82

HP VISA Language Reference

viScanf

d Argument type: A reference to an integer.

Flags or Modifiers Interpretation

Default functionality Characters are read from the device until an entire number is read. The number read mus~
be in one of the following IEEE 488.2 formats:

• <DECIMAL NUMERIC PROGRAM DATA>, also known as NRt

• Flexible numeric representation INR1, NR2, NR3, ...).

• <NON-DECIMAL NUMERIC PROGRAM DATA> l#H, #Q, and #Bl.

field width The input number will be stored in a field at least this wide.

Length modifier 1 arg is a reference to a long integer.

Length modifier h arg is a reference to a short integer. Rounding is performed according to IEEE 488.2 rules
(0. 5 and up).

, array size arg points to an array of integers (or long or short integers, depending on the length
modifier! of size array size. The elements of this array should be separated by commas.
Elements will be read until either array size number of elements are consumed or they are
no longer separated by commas.

f Argument type: A reference to a floating point number.

Flags or Modifiers Interpretation

Default functionality Characters are read from the device until an entire number is read. The number read mus1
be in either IEEE 488.2 formats: <DECIMAL NUMERIC PROGRAM DATA> (NRfl, or
<NON-DECIMAL NUMERIC PROGRAM DATA> !#H, #Q, and #Bl.

field width The input number will be stored in a field at least this wide.

Length modifier 1 arg is a reference to a double floating point number.

Length modifier L arg is a reference to a long double number.

, array size arg points to an array of floats (or doubles or long doubles, depending on the length
modifier! of size array size. The elements of this array should be separated by commas.
Elements will be· read until either array size number of elements are consumed or they are
no longer separated by commas.

7-83

HP VISA Language Reference

viScanf

s Argument type: A reference to a string.

Flags or Modifiers Interpretation

Default functionality All leading white space characters are ignored. Characters are read from the device into
the string until a white space character is read.

field width This flag gives the maximum string size. If the field width contains a # sign, two
arguments are used. The first argument read gives the maximum string size. The second
should be a reference to a string. In case of field width characters already read before
encountering a white space, additional characters are read and discarded until a white
space character is found. In case of # field width, the actual number of characters read
are stored back in the integer pointed to by the first argument.

7-84

HP VISA Language Reference

viScanf

Enhanced Conversion Characters

b Argument type: A reference to a data array.

Flags or Modifiers Interpretation

Default functionality The data must be in IEEE 488.2 <ARBITRARY BLOCK PROGRAM DATA> format. The
format specifier sequence should have a flag describing the field width, which will give a
maximum count of the number of bytes (or words or longwords, depending on length
modifiers) to be read from the device. If the field width contains a # sign, two argument~
are used. The first argument read gives the maximum size of the array. The second one
should be a reference to an array. Also in this case, the actual number of elements read is
stored back in the first argument. In absence of length modifiers, the data is assumed to
be of byte-size elements. In some cases, data might be read until an END indicator is read.

Length modifier h The array is assumed to be an array of 16-bit words, and count refers to the number of
words. The data read from the interface is assumed to be in IEEE 488.2 (big endianl byte
ordering. It will be byte swapped and padded as appropriate to the native computer format

Length modifier 1 The array is assumed to be a block of 32-bit longwords rather than bytes, and count refer~
to the number of longwords. The data read from the interface is assumed to be in IEEE
488.2 (big endianl byte ordering. It will be byte swapped and padded as appropriate to
the native computer format.

Length modifier z The data block is assumed to be a reference to an array of floats, and count refers to the
number of floating point numbers. The data block received from the device is an array of
32-bit IEEE 754 format floating point numbers.

Length modifier Z The data block is assumed to be a reference to an array of doubles, and the count refers
to the number of floating point numbers. The data block received from the device is an
array of 64-bit IEEE 754 format floating point numbers.

t Argument type: A reference to a string.

Flags or Modifiers Interpretation

Default functionality Characters are read from the device until the first ENO indicator is received. The character
on which the END indicator was received is included in the buffer.

field width This flag gives the maximum string size. If an END indicator is not received before field
width number of characters, additional characters are read and discarded until an ENO
indicator arrives. #field width has the same meaning as in %s.

7-85

Return Values

See Also

HP VISA Language Reference

viScanf

T Argument type: A reference to a string.

Flags or Modifiers Interpretation

Default functionality Characters are read from the device until the first linefeed character (\nl is received. The
linefeed character is included in the buffer.

field width This flag gives the maximum string size. If a linefeed character is not received before field
width number of characters, additional characters are read and discarded until a linefeed
character arrives. #field width has the same meaning as in %s.

Type ViStatus This is the function return status. It returns either a
completion code or an error code as follows.

Completion Code Description

VI - SUCCESS Data was successfully read and formatted into arg parameter(sl.

Error Code Description

VI_ERROR_INV_SESSION The given session or object reference is invalid (both are the same
VI_ERROR_INV_OBJECT value I.

VI_ERROR_RSRC_LOCKED Specified operation could not be performed because the resource
identified by vi has been locked for this kind of access.

VI_ERROR_IO Could not perform read function because of 1/0 error.

VI_ERROR_TMO Timeout expired before read function completed.

VI_ERROR_INV_FMT A format specifier in the readfmt string is invalid.

VI_ERROR_NSUP_FMT A format specifier in the readfmt string is not supported.

VI_ERROR_ALLOC The system could not allocate a formatted 1/0 buffer because of
insufficient resources.

"viVScanf"

7-86

Syntax

Description

Parameters

Return Values

HP VISA Language Reference

viSetAttribute

viSetAttribute

viSetAttribute(ViSession/ViEvent/ViFindList vi, ViAttr attribute,
ViAttrState attrState);

This function sets the state of an attribute for the specified session.

Name Direction Type Description

vi IN ViSession Unique logical identifier to a session, event, or find list.
ViEvent
ViFindList

attnbute IN ViAttr Resource attribute for which the state is modified.

attrState IN ViAttrState The state of the attribute to be set for the specified
resource. The interpretation of the individual attribute
value is defined by the resource.

Type ViStatus This is the function return status. It returns either a
completion code or an error code as follows.

Completion Code Description

VI_SUCCESS All attribute values set successfully.

VI_WARN_NSUP_ATTR_STATE Although the specified attribute state is valid, it is not supported by
this resource implementation. !The application will still work, but
this may have a performance impact.)

7-87

See Also

HP VISA Language Reference

viSetAttrib ute

Error Code

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

VI_ERROR_RSRC_LOCKED

VI_ERROR_NSUP_ATTR

VI_ERROR_NSUP_ATTR_STATE

VI_ERROR_ATTR_READONLY

Description

The given session or object reference is invalid !both are the same
value).

Specified operation could not be performed because the resource
identified by vi has been locked for this kind of access.

The specified attribute is not defined by the referenced resource.

The specified state of the attribute is not valid, or is not supported
as defined by the resource. !The application probably will not work
if this error is returned.)

The specified attribute is read-only.

"viGetAttribute". Also refer to Appendix B, "HP VISA Attributes," for a list
of attributes and attribute values. Chapter 4, "Programming with HP VISA,"
provides detailed descriptions of the VISA attributes.

7-88

Syntax

Description

Parameters

Return Values

HP VISA Language Reference

viSetBuf

viSetBuf

viSetBuf (ViSession vi» ViUint16 mask, ViUint32 size);

This function sets the size of the read and/or write buffer for formatted VO
and/or serial communication. The mask parameter specifies whether the
buffer is a read or write buffer. The mask parameter can specify multiple
buffers by "bit-ORing" any of the following values together.

Flag Interpretation

VI_READ_BUF Formatted 1/0 read buffer.

VI_WRITE_BUF Formatted 1/0 write buffer.

VI_ASRL_IN_BUF Serial communication receive buffer.

VI_ASRL_OUT_BUF Serial communication transmit buffer.

Name Direction Type Description

vi IN ViSession Unique logical identifier to a session.

mask IN ViUint16 Specifies the type of buffer. (See previous table.I

size IN ViUint32 The size to be set for the specified buffer(sl.

Type ViStatus This is the function return status. It returns either a
completion code or an error code as follows.

Completion Code Description

VI_SUCCESS Buffer size set successfully.

VI_WARN_NSUP_BUF The specified buffer is not supported.

7-89

HP VISA Language Reference

viSetBuf

Error Code

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

VI_ERROR_RSRC_LOCKED

VI_ERROR_ALLOC

VI_ERROR_INV_MASK

7-90

Description

The given session or object reference is invalid (both are the same
value).

Specified operation could not be performed because the resource
identified by vi has been locked for this kind of access.

The system could not allocate the buffer(sl of the specified size
because of insufficient system resources.

The system cannot set the buffer for the given mask.

Syntax

Description

Parameters

Return Values

viStatusDesc

HP VISA Language Reference

viStatusDesc

viStatusDesc(ViSession/ViEvent/ViFindList vi, ViStatus status,
ViPString desc);

This function returns a user-readable string which describes the status code
passed to the function.

Name Direction Type Description

vi IN ViSession Unique logical identifier to a session, event, or find list.
Vi Event
ViFindList

status IN Vi Status Status code to interpret.

desc OUT ViPString The user-readable string interpretation of the status

I 1
code passed to the function.

Type ViStatus This is the function return status. It returns either a
completion code or an error code as follows.

Completion Code Description

VI_SUCCESS Description successfully returned.

VI_WARN_UNKNOWN_STATUS The status code passed to the function could not be interpreted.

7-91

Syntax

Description

Pararn eters

Return Values

See Also

HP VISA Language Reference

vi Terminate

viTerminate(ViSession vi, ViUint16 degree, ViJobld jobld);

This function requests a VISA session to terminate normal execution of an
asynchronous operation.

Name Direction Type Description

vi IN ViSession Unique logical identifier to an object.

degree IN ViUint16 VI_NULL

job Id IN ViJobid Specifies an operation identifier.

Type ViStatus This is the function return status. It returns either a
completion code or an error code as follows.

Completion Code Description

VI - SUCCESS Request serviced successfully.

Error Code Description

VI_ERROR_INV_SESSION The given session or object reference is invalid !both are the same
VI_ERROR_INV_OBJECT value I.

VI_ERROR_INV_DEGREE Invalid degree specified.

VI_ERROR_INV_JOB_ID Invalid job identifier specified.

"viReadAsync", "viWriteAsync"

7-92

Syntax

Description

Parameters

vi U ninstallHandler

HP VISA Language Reference

viUninstallHandler

viUninstallHandler(ViSession vi, ViEventType ev(ffltType,
ViHndlr handler, ViAddr userHandle) ;

This function allows applications to uninstall handlers for events on sessions.
Applications should also specify the value in the userHandle parameter
that was passed to viinstallHandler while installing the handler. VISA
identifies handlers uniquely using the handler reference and this value. All
the handlers, for which the handler reference and the value matches, are
uninstalled.

Name Direction Type Description

vi IN ViSession Unique logical identifier to a session.

eventTYpe IN ViEventType logical event identifier.

handler IN ViHndlr Interpreted as a valid reference to a handler to be
installed by an application. ISee the following table.)

userHandle IN ViAddr A value specified by an application that can be used
for identifying handlers uniquely in a session for an
event.

7-93

Return Values

See Also

HP VISA Language Reference

viUninstallHandler

The following events are valid:

Event Name

VI_EVENT_SERVICE_REQ

VI_EVENT_VXI_SIGP

VI_EVENT_TRIG

VI_EVENT_IO_COMPLETION

Description

Notification that a device is requesting service.

Notification that a VXI signal or VXI interrupt has been received
from a device.

Notification that a hardware trigger was received from a device.

Notification that an asynchronous operation has completed.

Special Values for handler Parameter

Value Action Description

VI _ANY_HNDLR Uninstall all the handlers with the matching value in the UserHandle parameter.

Type ViStatus This is the function return status. It returns either a
completion code or an error code as follows.

Completion Code Description

VI - SUCCESS Event handler successfully uninstalled.

Error Code Description

VI_ERROR_INV_SESSION The given session or object reference is invalid !both are the same
VI_ERROR_INV_OBJECT value I.

VI_ERROR_INV_EVENT Specified event type is not supported by the resource.

VI_ERROR_INV_HNDLR_REF Either the specified handler reference or the user context value !or
bothl does not match any installed handler.

See the handler prototype, "viEventHandler" , for its parameter description.
Also refer to the "viEnableEvent" description for information about enabling
different event handling mechanisms. Refer to individual event descriptions
for context definitions.

7-94

Syntax

Description

Parameters

Return Values

HP VISA Language Reference

viUnlock

vi Unlock

viUnlock(ViSession vi);

NOTE

The viUnlock function is not supported with 16-bit VISA on Windows 95.

This function is used to relinquish a lock previously obtained using the
viLock function.

Name Direction Type Description

VI IN ViSession Unique logical identifier to a session.

Type ViStatus This is the function return status. It returns either a
completion code or an error code as follows.

Completion Code Description

VI_SUCCESS The lock was successfully relinquished.

VI_SUCCESS_NESTED_EXCLUSIVE The call succeeded, but this session still has nested exclusive
locks.

VI_SUCCESS_NESTED_SHARED The call succeeded, but this session still has nested shared
locks.

7-95

See Also

HP VISA Language Reference

viUnlock

Error Code

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

VI_ERROR_SESN_NLOCKED

Description

The given vi does not identify a valid session or object.

The current session did not have any lock on the resource.

"viLock". For more information on locking, see the "Using Locks" section of
Chapter 4, "Progranuning with HP VISA."

7-96

Syntax

Description

Parameters

Return Values

See Also

HP VISA Language Reference

viUnmapAddress

viUnmapAddress

viUnmapAddress(ViSession vi);

This function unmaps memory space previously mapped by the
viMapAddress function.

Name Direction Type Description

vi IN ViSession Unique logical identifier to a session.

Type ViStatus This is the function return status. It returns either a
completion code or an error code as follows.

Completion Code Description

VI_SUCCESS Operation completed successfully.

Error Code Description

VI_ERROR_INV_SESSION The given session or object reference is invalid !both are the same
VI_ERROR_INV_OBJECT value I.

VI_ERROR_NSUP_OPER The given vi does not support this function.

VI_ERROR_WINDOW_NMAPPED The specified session is not currently mapped.

"viMapAddress"

7-97

Syntax

Description

Parameters

Return Values

HP VISA Language Reference

viVPrintf

viVPrintf (ViSession vi, ViString wrUeFmt, ViVAList params);

This function converts, formats, and sends params to the device as specified
by the format string. This function is similar to viPrintf, except that the
Vi VAList parameters list provides the parameters rather than separate arg
parameters.

Name Direction Type Description

vi IN ViSession Unique logical identifier to a session.

writefmt IN ViString The format string to apply to parameters in
Vi VAList. See viPrintf for description.

para ms IN ViVAList A list containing the variable number of parameters on
which the format string is applied. The formatted
data is written to the specified device.

Type ViStatus This is the function return status. It returns either a
completion code or an error code as follows.

Completion Code Description

VI _SUCCESS Parameters were successfully formatted.

7-98

Error Code

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

VI_ERROR_RSRC_LOCKED

VI_ERROR_IO

VI_ERROR_TMO

VI_ERROR_INV_FMT

VI_ERROR_NSUP_FMT

VI_ERROR_ALLOC

See Also "viPrintf"

HP VISA Language Reference

viVPrintf

Description

The given session or object reference is invalid !both are the same
value I.

Specified operation could not be performed because the resource
identified by vi has been locked for this kind of access.

Could not perform write function because of 1/0 error.

Timeout expired before write function completed.

A format specifier in the writefmt string is invalid.

A format specifier in the writefmt string is not supported.

The system could not allocate a formatted 1/0 buffer because of
insufficient resources.

7-99

Syntax

Description

Parameters

Return Values

HP VISA Language Reference

viVQueryf

viVQueryf(ViSession vi, ViString wri,tePmt, ViString readFmt,
ViVAList params);

This function performs a formatted write and read through a single operation
invocation. This function is similar to viQueryf, except that the Vi VAList
parameters list provides the parameters rather than the separate arg
parameter list in viQueryf.

Name Direction Type Description

vi IN ViSession Unique logical identifier to a session.

writeFmt IN ViString The format string is applied to write parameters in
ViVAList.

readFmt IN ViString The format string is applied to read parameters in
ViVAList.

pa rams IN OUT ViVAList A list containing the variable number of write and
read parameters. The write parameters are formatted
and written to the specified device. The read
parameters store the data read from the device after
the format string is applied to the data.

Type ViStatus This is the function return status. It returns either a
completion code or an error code as follows.

Completion Code Description

VI - SUCCESS Successfully completed the Query operation.

7-100

See Also

Error Code

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

VI_ERROR_RSRC_LOCKED

VI_ERROR_IO

VI_ERROR_TMO

VI_ERROR_INV_FMT

VI_ERROR_NSUP_FMT

VI_ERROR_ALLOC

HP VISA Language Reference

viVOueryf

Description

The given session or object reference is invalid !both are the same
value).

Specified operation could not be performed because the resource
identified by vi has been locked for this kind of access.

Could not perform read/write operation because of 1/0 error.

Timeout occurred before read/write operation completed.

A format specifier in the writefmt or readfmt string is invalid.

The format specifier is not supported for current argument type.

The system could not allocate a formatted 1/0 buffer because of
insufficient resources.

"viVPrintf", "viVScanf", "viQueryf"

7-101

Syntax

Description

Parameters

Return Values

HP VISA Language Reference

viVScanf

viVScanf(ViSession vi, ViString readPrnt, ViVAList pararns);

This function reads, converts, and formats data using the format specifier,
and then stores the formatted data in pararns. This function is similar to
viScanf, except that the Vi VAList parameters list provides the parameters
rather than separate arg parameters.

Name Direction Type Description

vi IN ViSession Unique logical identifier to a session.

readfmt IN ViString The format string to apply to parameters in
Vi VAList. See viScanf for description.

pa rams OUT ViVAList A list with the variable number of parameters into
which the data is read and the format string is
applied.

Type ViStatus This is the function return status. It returns either a
completion code or an error code as follows.

Completion Code Description

VI - SUCCESS Data was successfully read and formatted into arg parameterlsl.

7-102

Error Code

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

VI_ERROR_RSRC_LOCKED

VI_ERROR_IO

VI_ERROR_TMO

VI_ERROR_INV_FMT

VI_ERROR_NSUP_FMT

VI_ERROR_ALLOC

See Also "viScanf"

HP VISA Language Reference

viVScanf

Description

The given session or object reference is invalid !both are the same
value I.

Specified operation could not be performed because the resource
identified by vi has been locked for this kind of access.

Could not perform read function because of 1/0 error.

Timeout expired before read function completed.

A format specifier in the readfmt string is invalid.

A format specifier in the readftmt string is not supported.

The system could not allocate a formatted 1/0 buffer because of
insufficient resources.

7-103

Syntax

Description

Parameters

HP VISA Language Reference

viWaitOnEvent .

viWaitOnEvent(ViSession vi, ViEventType inEventType,
ViUint32 timeout, ViPEventType outEventType, ViPEvent outContext);

This function waits for an occurrence of the specified event for a given
session. In particular, this function suspends execution of an application
thread and waits for an event inEventType for at least the time period
specified by timeout. Refer to individual event descriptions for context
definitions.

If the specified inEventType is VI_ALL_ENABLED_EVENTS, the function waits
for any event that is enabled for the given session. If the specified timeout
value is VI_ TMO_INFINITE, the function is suspended indefinitely.

Name Direction Type Description

vi IN ViSession Unique logical identifier to a session.

infllent Type IN ViEventType Logical identifier of the event!sl to wait for.

timeout IN ViUint32 Absolute time period in time units that the resource
shall wait for a specified event to occur before
returning the time elapsed error. The time unit is in
milliseconds.

out Event Type OUT ViPEventType Logical identifier of the event actually received.

out Context OUT ViPEvent A handle specifying the unique occurrence of an event.

7-104

Event Name

NOTE

HP VISA Language Reference

viWaitOnEvent

Since system resources are used when waiting for events lviWai tOnEventl, the vi Close
function needs to be called to free up event contexts loutContextl.

The following table lists the events and the associated read only attributes
that can be read using viGetAttribute to get event information on a
specific event:

Attributes Data Type Values

VI_EVENT_SERVICE_REQ VI_ATTR_EVENT_TYPE ViEventType VI_EVENT_SERVICE_REQ

VI_EVENT_VXI_SIGP VI_ATTR_EVENT_TYPE ViEventType VI_EVENT_VXI_SIGP
VI_ATTR_SIGP_STATUS_ID ViUint16 0 to FFFFh

VI_EVENT_TRIG VI_ATTR_EVENT_TYPE ViEventType VI_EVENT_TRIG
VI_ATTR_RECV_TRIG_ID Viint16 VI_TRIG_TTLO to

VI_TRIG_TTL7
VI_TRIG_ECLO to
VI_TRIG_ECL1

VI_EVENT_IO_COMPLETION VI_ATTR_EVENT_TYPE ViEventType VI_EVENT_IO_COMPLETION
VI_ATTR_STATUS ViStatus N/A
VI_ATTR_JOB_ID ViJobid N/A
VI_ATTR_BUFFER ViBuf N/A
VI_ATTR_RET_COUNT ViUint32 0 to FFFFFFFFh

Use the VISA viReadSTB function to read the status byte of the service
request.

7-105

Return Values

See Also

HP VISA Language Reference

viWaitOnEvent

Type ViStatus This is the function return status. It returns either a
completion code or an error code as follows.

Completion Code Description

VI _SUCCESS Wait terminated successfully on receipt of an event occurrence. The
queue is empty.

VI_SUCCESS_QUEUE_NEMPTY Wait terminated successfully on receipt of an event notification.
There is still at least one more event occurrence of the specified
inEventli;pe type available for this session.

Error Code Description

VI_ERROR_INV_SESSION The given session or object reference is invalid !both are the same
VI_ERROR_INV_OBJECT value I.

VI_ERROR_INV_EVENT Specified event type is not supported by the resource.

VI_ERROR_TMO Specified event did not occur within the specified time period.

Refer to the "Using Events and Handlers" section in Chapter 4,
"Prograrmning with HP VISA," for more information on event handling.

7-106

Syntax

Description

Parameters

Return Values

vi Write

HP VISA Language Reference

viWrite

viWrite(ViSession vi, ViBuf buf, ViUint32 count,
ViPUint32 retCount) ;

This function synchronously transfers data to a device. The data to be
written is in the buffer represented by buf. This function returns only when
the transfer terminates. Only one synchronous write function can occur at
any one time.

Name Direction Type Description

vi IN ViSession Unique logical identifier to a session.

buf IN ViBuf Represents the location of a data block to be sent to
device.

count IN ViUint32 Specifies number of bytes to be written.

retCount OUT ViPUint32 Represents the location of an integer that will be set
to the number of bytes actually transferred.

Type ViStatus This is the function return status. It returns either a
completion code or an error code as follows.

Completion Code Description

VI_SUCCESS Transfer completed.

7-107

See Also

HP VISA Language Reference

viWrite

Error Code

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

VI_ERROR_NSUP_OPER

VI_ERROR_RSRC_LOCKED

VI_ERROR_TMO

VI_ERROR_RAW_WR_PROT_VIOL

VI_ERROR_RAW_RD_PROT_VIOL

VI_ERROR_INP_PROT_VIOL

VI_ERROR_BERR

VI_ERROR_INV_SETUP

VI_ERROR_NCIC

VI_ERROR_NLISTENERS

VI_ERROR_IO

"viRead"

7-108

Description

The given session or object reference is invalid !both are the same
value).

The given vi does not support this function.

Specified operation could not be performed because the resource
identified by vi has been locked for this kind of access.

Timeout expired before function completed.

Violation of raw write protocol occurred during transfer.

Violation of raw read protocol occurred during transfer.

Device reported an input protocol error occurred during transfer.

Bus error occurred during transfer.

Unable to start write function because setup is invalid !due to
attributes being set to an inconsistent state!.

The interface associated with the given vi is not currently the
controller in charge.

No Listeners condition is detected !both NRFD and NDAC are
deassertedl.

An unknown 1/0 error occurred during transfer.

Syntax

Description

Parameters

Return Values

HP VISA Language Reference

viWriteAsync

viWriteAsync

viWriteAsync(ViSession vi, ViBuf buf, ViUint32 count,
ViPJobid jobld);

This function asynchronously transfers data to a device. The data to be
written is in the buffer represented by buf. This function normally returns
before the transfer terminates. An I/O Completion event is posted when the
transfer is actually completed.

This function returns jobld, which you can use either with vi Terminate
to abort the operation, or with an 1/0 Completion event to identify which
asynchronous write operation completed.

Name Direction Type Description

vi IN ViSession Unique logical identifier to a session.

but IN ViBuf Represents the location of a data block to be sent to
the device.

count IN ViUint32 Specifies number of bytes to be written.

job Id OUT ViPJobid Represents the location of a variable that will be set
to the job identifier of this asynchronous write
operation.

Type ViStatus This is the function return status. It returns either a
completion code or an error code as follows.

Completion Code Description

VI_SUCCESS Asynchronous write operation successfully queued.

VI_SUCCESS_SYNC Write operation performed synchronously.

7-109

Error Code Description

VI_ERROR_INV_SESSION The given session or object reference is invalid !both are the same
VI_ERROR_INV_OBJECT value I.

VI_ERROR_RSRC_LOGKED Specified operation could not be performed because the resource
identified by vi has been locked for this kind of access.

VI_ERROR_QUEUE_ERROR Unable to queue write operation.

See Also "viRead", "viTurrninate", "viWrite", "viReadAsync"

7-110

A

HP VISA System
Information

HP VISA System Information

This appendix provides information about the VISA software files. This
information can be used as reference, or for removing the VISA software from
your system, if necessary"

A-2

Windows Directory Structure

The VXlplug&play alliance defines directory structures to be used with the
Windows system framework. As shown the following directory structure,
32-bit VISA is automatically installed into either the WIN95 subdirectory on
Windows 95, or the WINNT subdirectory on Windows NT. The [VXIPNPPATHJ
is an optional path that you can change during the software installation.

[VXIPNPPATH]
KB ASE
WIN95

--WIN NT

BIN
LIB

1--BC
L_MSC

INCLUDE

HP VISA
l-..SAMPLES

<instrument>

BIN
LIB

1--BC
L_MSC

INCLUDE

HP VISA
l-..SAMPLES

<instrument>
Windows Directory Structure for 32-bit VISA

The VISA32 . DLL and HPVISA32 . DLL files are stored in the
\WINDOWS \SYSTEM subdirectory.

A-3

HP VISA System Information

Windows Directory Structure

As shown in the following directory structure, 16-bit VISA on Windows 95
is automatically installed into the WIN subdirectory. The [VPNPPATHj is an
optional path that you can change during the software installation.

[VPNPPATH]

I VXIPNP
1---KBASE
L-wrN

....._-BIN

..__-LIB
1---BC
L_MSC

...,.____INCLUDE

....._-HPVISA
L-SAMPLES

-- <instrument>

Windows Directory Structure for 16-bit VISA

The VISA. DLL file is stored in the \WINDOWS\SYSTEM subdirectory.

A-4

opt

UNIX Directory Structure

The VXIplug&play alliance defines a directory structure to be used with the
UNIX system framework. VISA is automatically installed into the following
directory structure on HP-UX 10.20. The [opt] is an optional path that you
can change during the software installation.

L-vxipnp
t=kbase

hpux
..,.._-bin
----lib
...,.._-include

...,..___ hpvisa
1 share

<instrument> t= examples
man
help

UNIX Directory Structure

A-5

About the Directories

The HPVISA Subdirectory

Any VISA README files, help files, and HP specific DLLs can be found in the
HPVISA subdirectory.

Include Files

The VISA.H, VISATYPE.H, and VPPTYPE.H include files can be found in the
INCLUDE subdirectory.

Libraries

A ViSA library is provided for Microsoft and Borland compilers on Windows,
and the C compiler for HP-UX. You must use the library for your system.

A-6

Sample Programs

Sample programs are provided for the Windows or UNIX operating system,
depending on which you have installed. The VISA sample programs can
be found in the HPVISA \SAMPLES subdirectory on Windows, or in the
hpvisa/share/examples subdirectory on HP-UX 10.20.

VXIplug&play Instrument Drivers

All instrument drivers that comply with the VXIplug&play specification can
be found in the <instrument> subdirectory, where <instrument> is the base
directory of the instrument driver.

A-7

B

HP VISA Attributes

HP VISA Attributes

Use the viGetAttribute function to read the state of an attribute for a
specified session, event context, or find list. There are read only (RO) and
read/write (RW) attributes. Use the viSetAttribute function to modify the
state of a read/write attribute for a specified session, event context, or find
list.

Attributes are also local or global. A local attribute only affects the session
specified. A global attribute affects the specified device from any session.

For descriptions of all the attributes and how to use them, see the "Using
Attributes" section of Chapter 4, "Programming with HP VISA".

B-2

HP VISA Resource Attributes

Attribute Name RO Local Data Type Range
or or

RW Global

VI_ATTR_MAX_QUEUE_LENGTH RW* local ViUint32 1h to 32,767 150 default)

VI_ATTR_RM_SESSION RO local ViSession NIA

VI_ATTR_RSRC_IMPL_VERSION RO Global Vi Version Oh to FFFFFFFFh

VI_ATTR_RSRC_LOCK_STATE RO Global ViAccessMode VI_NO_LOCK !default)
VI_EXCLUSIVE_LOCK
VI_SHARED_LOCK

VI_ATTR_RSRC_MANF_ID RO Global ViUint16 Oh to 3FFFh

VI_ATTR_RSRC_MANF_NAME RO Global ViString NIA

VI_ATTR_RSRC_NAME RO Global ViRsrc NIA

VI_ATTR_RSRC_SPEC_VERSION RO Global Vi Version 001 OOOOOh !default)

VI_ATTR_USER_DATA RW local ViAddr NIA

* For VISA 1.0, this attribute becomes RO (read only) once viEnableEvent
has been called for the first time.

B-3

HP VISA Generic Instrument Attributes

Attribute Name RO Local Data Type Range
or or

RW Global

VI_ATTR_INTF_NUM RO Global ViUint16 0 to FFFFh !O default!

VI_ATTR_INTF_TYPE RO Global ViUint16 VI_INTF_VXI
VI_INTF_GPIB
VI_INTF_GPIB_VXI
VI_INTF_ASRL

VI_ATTR_IO_PROT AW local ViUint16 VI_NORMAL !default!
VI_FDC
VI_HS488

VI_ATTR_RD_BUF_OPER_MODE AW local ViUint16 VI_FLUSH_ON_ACCESS
VI_FLUSH_DISABLE !default!

VI_ATTR_SEND_END_EN AW local ViBoolean VI_ TRUE !default!
VI_FALSE

VI_ATTR_SUPPRESS_END_EN AW local ViBoolean VI_ TRUE
VI_F ALSE !default!

VI_ATTR_TERMCHAR AW local ViUint8 0 to FFh IOAh default!

VI_ATTR_TERMCHAR_EN AW local ViBoolean VI_ TRUE
VI_FALSE !default!

VI_ATTR_TMO_VALUE AW local ViUint32 VI_TMO_IMMEDIATE
1 to FFFFFFFEh
VI_TMO_INFINITE
!2000 milliseconds default!

VI_ATTR_TRIG_ID AW* local Viint16 VI_TRIG_SW !default!
VI_TRIG_TTLOto VI_TRIG_TTL7
VI_TRIG_ECLOto VI_TRIG_ECL1

VI_ATTR_WR_BUF_OPER_MODE AW local ViUint16 VI_FLUSH_ON_ACCESS
VI_FLUSH_WHEN_FULL !default!

* The attribute VI_ATTR_ TRIG_ID is RW (readable and writable) when the
corresponding session is not enabled to receive trigger events. When the
session is enabled to receive trigger events, this attribute is RO (read only).

B-4

HP VISA Interface Specific
Instrument Attributes

GPIB and GPIB-VXI Interfaces

Attribute Name RO Local Data Type
or or

RW Global

VI_ATTR_GPIB_PRIMARY_ADDR RO Global ViUint16

VI_ATTR_GPIB_SECONDARY_ADDR RO Global ViUint16

Range

0 to 30

0 to 30
VI_NO_SEC_ADDR

B-5

HP VISA Attributes

HP VISA Interface Specific

Instrument Attributes

VXI and GPIB-VXI Interfaces

Attribute Name RO Local Data Type
or or

RW Global

VI_ATTR_CMDR_LA RO Global Viint16

VI_ATTR_DEST_INCREMENT RW Local Viint32

VI_ATTR_FDC_CHNL RW Local ViUint16

VI_ATTR_FDC_GEN_SIGNAL_EN RW Local ViBoolean

VI_ATTR_FDC_MODE RW Local ViUint16

VI_ATTR_FDC_USE_PAIR RW Local ViBoolean

VI_ATTR_IMMEDIATE_SERV RO Global ViBoolean

VI_ATTR_MAINFRAME_LA RO Global Viint16

VI_ATTR_MANF_ID RO Global ViUint16

VI_ATTR_MEM_BASE RO Global ViBusAddress

VI_ATTR_MEM_SIZE RO Global ViBusSize
-·

VI~ATTR_MEM_SPACE RO Global ViUint16

VI_ATTR_MODEL_CODE RO Global ViUint16

VI_ATTR_SLOT RO Global Viint16

VI_ATTR_SRC_INCREMENT RW Local Viint32

B-6

Range

0 to 255

0 to 1
! 1 default!

0 to 7

VI_TRUE
VI_F ALSE !default!

VI_FDC_NORMAL !default!
VI_FDC_STREAM

VI_ TRUE
VI_F ALSE !default!

VI_ TRUE
VI_FALSE

0 to 255
VI_UNKNOWN_LA

0 to FFFh

N/A

N/A

VI_A16_SPACE !default!
VI_A24_SPACE
VI_A32_SPACE

0 to FFFFh

0 to 12
VI_UNKNOWN_SLOT

0 to 1
! 1 default!

Attribute Name RO Local
or or

RW Global

VI_ATTR_VXI_LA RO Global

VI_ATTR_WIN_ACCESS RO lncal

VI_ATTR_WIN_BASE_ADDR RO lncal

VI_ATTR_WIN_SIZE RO lncal

GPIB-VXI Interface

Attribute Name RO Local
or or

RW Global

VI_ATTR_INTF_PARENT_NUM RO Global

Data Type

Vi!nt16

ViUint16

ViBusAddress

ViBusSize

Data Type

ViUint16

HP VISA Attributes

HP VISA Interface Specific

Instrument Attributes

Range

0 to 255

VI_NMAPPED
VI_USE_OPERS
VI_DEREF_ADDR

N/A

N/A

Range

0 to FFFFh

B-7

HP VISA Attributes

HP VISA Interface Specific

Instrument Attributes

ASRL Interface

Attribute Name RO
or

RW

VI_ATTR_ASRL_AVAIL_NUM RO

VI_ATTR_ASRL_BAUD RW

VI_ATTR_ASRL_DATA_BITS RW

VI_ATTR_ASRL_END_IN RW

VI_ATTR_ASRL_END_OUT RW

VI_ATTR_ASRL_FLOW_CNTRL RW

VI_ATTR_ASRL_PARITY RW

VI_ATTR_ASRL_STOP_BITS RW

B-8

Local Data Type Range
or

Global

Global ViUint32 0 to FFFFFFFFh

Global ViUint32 0 to FFFFFFFFh
(9800 default!

Global ViUint16 5 to 8
(8 default!

local ViUint16 VI_ASRL_END_NONE
VI_ASRL_END_LAST_BIT
VI_ASRL_END _ TERMCHAR (default!

local ViUint16 VI_ASRL_END_NONE (default!
VI_ASRL_END_LAST_BIT
VI_ASRL_END_BREAK

Global ViUint16 VI_ASRL_FLOW_NONE (default!
VI_ASRL_FLOW_XON_XOFF
VI_ASRL_FLOW_RTS_CTS

Global ViUint16 VI_ASRL_PAR_NONE (default!
VI_ASRL_PAR_ODD
VI_ASRL_PAR_EVEN
VI_ASRL_PAR_MARK
VI_ASRL_PAR_SPACE

Global ViUint16 VI_ASRL_STOP _ONE !default!
VI_ASRL_STOP_TWO

HP VISA Event Attributes

Attribute Name RO Local Data Type Range
or or

RW Global

VI_ATTR_BUFFER . RO Local ViBuf N/A

VI_ATTR_EVENT_TYPE RO Local ViEventType VI_EVENT_SERVICE_REQ
VI_EVENT_VXI_SIGP
VI_EVENT_TRIG
VI_EVENT_IO_COMPLETION

VI_ATTR_JOB_ID RO Local ViJobid N/A

VI_ATTR_RECV_TRIG_ID RO Local Viint16 VI_TRIG_TTLO to VI_TRIG_TTL7
VI_TRIG_ECLO to VI_TRIG_ECL1

VI_ATTR_RET_COUNT RO Local ViUint32 0 to FFFFFFFFh

VI_ATTR_SIGP_STATUS_ID RO local ViUint16 0 to FFFFh

VI_ATTR_STATUS RO Local ViStatus N/A

NOTE

The VI_EVENT_VXI_SIGP and VI_EVENT_TRIG events are not supported with the
GPIB-VXI interface.

B-9

c

HP VISA Completion and
Error Codes

HP VISA Completion and Error Codes

This appendix lists the VISA completion and error codes. The codes are
presented in two different ways. The completion and error codes are listed:

• In alphabetical order for easy look up.

• According to the VISA function that returns the codes. You can use this list
to determine what type of codes to expect from each VISA function.

C-2

Alphabetized Completion and Error Codes

The following tables list the completion and error codes for VISA in
alphabetical order for easy look up.

VISA Completion Codes and Descriptions

Completion Code Description

VI_SUCCESS Operation completed successfully.

VI_SUCCESS_EVENT_DIS The specified event is already disabled.

VI_SUCCESS_EVENT_EN The specified event is already enabled for at least one of the specified
mechanisms.

VI_SUCCESS_MAX_CNT The number of bytes specified were read.

VI_SUCCESS_NESTED_EXCLUSIVE The specified access mode was successfully acquired, and this session has
nested exclusive locks.

VI_SUCCESS_NESTED_SHARED The specified access mode was successfully acquired, and this session has
nested shared locks.

VI_SUCCESS_QUEUE_EMPTY The event queue was empty while trying to discard queued events.

VI_SUCCESS_QUEUE_NEMPTY The event queue is not empty.

VI_SUCCESS_SYNC The read or write operation performed synchronously.

VI_SUCCESS_TERM_CHAR The specified termination character was read.

VI_WARN_NSUP _ATTR_STATE The attribute state is not supported by this resource.

VI_WARN_NSUP _BUF The specified buffer is not supported.

VI_WARN_UNKNOWN_STATUS The status code passed to the function was unable to be interpreted.

C-3

HP VISA Completion and Error Codes

Alphabetized Completion and Error Codes

VISA Error Codes and Descriptions

Error Code Description

VI_ERROR_ALLOC Insufficient system resources to open a session or to allocate the buffer!sl or
memory block of the specified size.

VI_ERROR_ASRL_PARITY A parity error occurred during transfer.

VI_ERROR_ASRL_FRAMING A framing error occurred during transfer.

VI_ERROR_ASRL_OVERRUN An overrun error occurred during transfer. A character was not read from the
hardware before the next character arrived.

VI_ERROR_ATTR_READONLY The attribute specified is read-only.

VI_ERROR_BERR A bus error occurred during transfer.

VI_ERROR_CLOSING_FAILED Unable to deallocate the previously allocated data structures for this session.

VI_ERROR_HNDLR_NINSTALLED A handler is not currently installed for the specified event. The session cannot
be enabled for the VI_HNDLR mode of the callback mechanism.

VI_ERROR_INP_PROT_VIOL Input protocol error occurred during transfer.

VI_ERROR_INV_ACCESS_KEY The requestedKey value passed in is not a valid access key to the specified
resource.

VI_ERROR_INV_ACC_MODE The access mode specified is invalid.

VI_ERROR_INV_CONTEXT The event context specified is invalid.

VI_ERROR_INV_DEGREE The specified degree is invalid.

VI_ERROR_INV_EVENT The event type specified is invalid for the specified resource.

VI_ERROR_INV_EXPR The expression specified is invalid.

VI_ERROR_INV_FMT The format specifier is invalid for the current argument.

VI_ERROR_INV_HNDLR_REF The specified handler reference and/or the user context value does not match
the installed handler.

VI_ERROR_INV_JOB_ID The specified job identifier is invalid.

VI_ERROR_INV_LENGTH The length specified is invalid.

VI_ERROR_INV_LOCK_TYPE The specified type of lock is not supported by this resource.

VI_ERROR_INV_MASK The system cannot set the buffer for the given mask, or the specified mask
does not specify a valid flush operation on the read/write resource.

VI_ERROR_INV_MECH The mechanism specified for the event is invalid.

C-4

HP VISA Completion and Error Codes

Alphabetized Completion and Error Codes

VISA Error Codes and Descriptions (continued)

Error Code

VI_ERROR_INV_OBJECT

VI_ERROR_INV_OFFSET

VI_ERROR_INV_PROT

VI_ERROR_INV_RSRC_NAME

VI_ERROR_INV_SESSION

VI_ERROR_INV_SETUP

VI_ERROR_INV_SIZE

VI_ERROR_INV_SPACE

VI_ERROR_IO

VI_ERROR_LINE_IN_USE

VI_ERROR_MEM_NSHARED

VI_ERROR_NCIC

VI_ERROR_NIMPL_OPER

VI_ERROR_NLISTENERS

VI_ERROR_NSUP_ATTR

VI_ERROR_NSUP_ATTR_STATE

VI_ERROR_NSUP_FMT

VI_ERROR_NSUP_OFFSET

VI_ERROR_NSUP_OPER

VI_ERROR_NSUP_WIDTH

VI_ERROR_QUEUE_ERROR

VI_ERROR_OUTP_PROT_VIOL

VI_ERROR_RAW_RD_PROT_VIOL

VI_ERROR_RAW_WR_PROT_VIOL

The object reference is invalid.

The offset specified is invalid.

The protocol specified is invalid.

Description

The resources specified are invalid.

The session specified is invalid.

The setup specified is invalid, possibly due to attributes being set to an
inconsistent state, or some implementation-specific configuration file is corrupt
or does not exist.

The specified size is invalid.

The address space specified is invalid.

Could not perform read/write function because of an 1/0 error, or an unknown
1/0 error occurred during transfer.

The specified trigger line is in use.

The device does not export any memory.

The session is referring to something other than the controller in charge.

The given operation is not implemented.

No listeners are detected. !Both NRFD and NDAC are deasserted.l

The attribute specified is not supported by the specified resource.

The state specified for the attribute is not supported.

The format specifier is not supported for the current argument type.

The offset specified is not accessible.

The operation specified is not supported in the given session.

The specified width is not supported by this hardware.

Unable to queue read or write operation.

Output protocol error occurred during transfer.

A violation of raw read protocol occurred during a transfer.

A violation of raw write protocol occurred during a transfer.

C-5

HP VISA Completion and Error Codes

Alphabetized Completion and Error Codes

VISA Error Codes and Descriptions (continued)

Error Code Description

VI_ERROR_RSRC_LOCKED The specified operation could not be performed because the resource identifed
by vi has been locked for this kind of access.

VI_ERROR_RSRC_NFOUND The expression specified does not match any device, or resource was not found.

VI_ERROR_SRQ_NOCCURED A service request has not been received for the session.

VI_ERROR_SYSTEM_ERROR Unknown system error.

VI_ERROR_TMO The operation failed to complete within the specified timeout period.

VI_ERROR_WINDOW_MAPPED The specified session already contains a mapped window.

VI_ERROR_WINDOW_NMAPPED The specified session is not currently mapped.

C-6

Completion and Error Codes for
Each HP VISA Function

The following lists the VISA functions in alphabetical order, with the
associated completion and error codes for each function,

viAssertTrigger(vi,protocol)

Codes Description

VI_SUCCESS The specified trigger was successfully asserted to the device,

VI_ERROR_INV_SESSION The given session is invalid,

VI_ERROR_INV_OBJECT The given object reference is invalid,

VI_ERROR_NSUP_OPER The given vi does not support this function,

VI_ERROR_RSRC_LOCKED Specified operation could not be performed because the resource
identified by vi has been locked for this kind of access,

VI_ERROR_INV_PROT The protocol specified is invalid.

VI_ERROR_TMO Timeout expired before function completed,
VI_ERROR_RAW_WR_PROT_VIOL Violation of raw write protocol occurred during transfer,
VI_ERROR_RAW_RD_PROT_VIOL Violation of raw read protocol occurred during transfer,
VI_ERROR_INP_PROT_VIOL Device reported an input protocol error during transfer,
VI_ERROR_BERR Bus error occurred during transfer,
VI_ERROR_LINE_IN_USE The specified trigger line is currently in use,
VI_ERROR_NCIC vi does not refer to an interface that is currently the controller in

charge,

VI_ERROR_NLISTENERS No listeners condition is detected !both NRFD and NDAC are
deasserted),

C-7

HP VISA Completion and Error Codes
Completion and Error Codes for
Each HP VISA Function

vi Clear(vi)

Codes

VI_ SUCCESS
VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT
VI_ERROR_NSUP_OPER
VI_ERROR_RSRC_LOCKED

VI_ERROR_TMO
VI_ERROR_RAW_WR_PROT_VIOL
VI_ERROR_RAW_RD_PROT_VIOL
VI_ERROR_BERR
VI_ERROR_NCIC

VI_ERROR_NLISTENERS

viClose(vi)

Codes

VI_SUCCESS
VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT
VI_ERROR_CLOSING_FAILED

C-8

Description

Operation completed successfully.
The given session is invalid.

The given object reference is invalid.

The given vi does not support this function.

Specified operation could not be performed because the resource
identified by vi has been locked for this kind of access.

Timeout expired before function completed.

Violation of raw write protocol occurred during transfer.

Violation of raw read protocol occurred during transfer.

Bus error occurred during transfer.

vi does not refer to an interface that is currently the controller in
charge.

No listeners condition is detected !both NRFD and NDAC are
deasserted I.

Description

Session closed successfully.
The given vi does not identify a valid session.

The given object reference is invalid.

Unable to deallocate the previously allocated data structures
corresponding to this session or object reference.

HP VISA Completion and Error Codes

Completion and Error Codes for
Each HP VISA Function

viDisableEvent(vi,eventType,mochan'ism)

Codes Description

VI_SUCCESS Event disabled successfully.

VI_SUCCESS_EVENT_DIS Specified event 1s already disabled for at least one of the specified
mechanisms.

VI_ERROR_INV_SESSION The given vi does not identify a valid session.

VI_ERROR_INV_OBJECT The given object reference is invalid.
VI_ERROR_INV_EVENT Specified event type is not supported by the resource.

VI_ERROR INV_MECH Invalid mechanism specified.

viDiscardEvents(vi,eventType,mochan'ism)

Codes Description

VI_SUCCESS Event queue flushed successfully.
VI_SUCCESS_QUEUE_EMPTY Operation completed successfully, but queue empty.

VI_ERROR_INV_SESSION The given vi does not identify a valid session.

VI_ERROR_INV_OBJECT The given object reference is invalid.

VI_ERROR_INV_EVENT Specified event type is not supported by the resource.

VI_ERROR_INV_MECH Invalid mechanism specified.

viEnableEvent(vi, eventType, mochan'ism, context)

Codes Description

VI_ SUCCESS Event enabled successfully.
VI_SUCCESS_EVENT_EN The specified event is already enabled for at least one of the

specified mechanisms.
VI_ERROR_INV_SESSION The given vi does not identify a valid session.
VI_ERROR_INV_OBJECT The given object reference is invalid.

VI_ERROR_INV_EVENT The specified event type is not supported by the resource.
VI_ERROR_INV_MECH Invalid mechanism specified.
VI_ERROR_INV_CONTEXT Invalid event context specified.

VI_ERROR_HNDLR_NINSTALLED A handler is not currently installed for the specified event. The
session cannot be enabled for the VI_HNDLR mode of the
callback mechanism.

C-9

HP VISA Completion and Error Codes

Completion and Error Codes for
Each HP VISA Function

viFindNext(findList, instrDesc)

Codes

VI_SUCCESS
VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT
VI_ERROR_NSUP_OPER
VI_ERROR_RSRC_NFOUND

Description

Resourcelsl found.
The given findlist is not a valid session.

The given object reference is invalid.

The given findlist does not support this function.

There are no more matches.

viFindRsrc(sesn,expr,findList, retcnt, instrDesc)

Codes Description

VI_SUCCESS Resourcelsl found.
VI_ERROR_INV_SESSION The given sesn is not a valid session.

VI_ERROR_INV_OBJECT The given object reference is invalid.
VI_ERROR_NSUP_OPER The given sesn does not support this function.
VI_ERROR_INV_EXPR Invalid expression specified for search.
VI_ERROR_RSRC_NFOUND Specified expression does not match any devices.

viFlush(vi, mask)

Codes Description

VI_SUCCESS Buffers flushed successfully.
VI_ERROR_INV_SESSION The given session is invalid.
VI_ERROR_INV_OBJECT The given object reference is invalid.
VI_ERROR_RSRC_LOCKED Specified operation could not be performed because the resource

identified by vi has been locked for this kind of access.
VI_ERROR_IO Could not perform read/write operation because of 1/0 error.
VI_ERROR_TMO The read/write operation was aborted because timeout expired

while operation was in progress.
VI_ERROR_INV_MASK The specified mask does not specify a valid flush operation on

read/write resource.

C-10

HP VISA Completion and Error Codes
Completion and Error Codes for

Each HP VISA Function

vi Get At tribute(vi, attribute, attrState)

Codes

VI_SUCCESS
VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT
VI_ERROR_NSUP_ATTR

vi In8(vi, space, offset, val8)
vi In 16(vi, space, offset, vall 6)
viin32(vi,space,offset, val32)

Codes

VI_SUCCESS
VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT
VI_ERROR_NSUP_OPER
VI_ERROR_RSRC_LOCKED

VI_ERROR_BERR
VI_ERROR_INV_SPACE
VI_ERROR_INV_OFFSET
VI_ERROR_NSUP_OFFSET
VI_ERROR_NSUP_WIDTH

Description

Resource attribute retrieved successfully.

The given vi does not identify a valid session.

The given object reference is invalid.

The specified attribute is not defined by the referenced resource.

Description

Operation completed successfully.

The given session is invalid.

The given object reference is invalid.

The given vi does not support this function.

Specified operation could not be performed because the resource
identified by vi has been locked for this kind of access.

Bus error occurred during transfer.

Invalid address space specified.

Invalid offset specified.

Specified offset is not accessible from this .hardware.

Specified width is not supported by this hardware.

C-11

HP VISA Completion and Error Codes

Completion and Error Codes for

Each HP VISA Function

v iins t allHandl er(vi, event Type, handler, user Handle)

Codes Description

VI_SUCCESS Event handler installed successfully.
VI_ERROR_INV_SESSION The given session is invalid.
VI_ERROR_INV_OBJECT The given object reference is invalid.
VI_ERROR_INV_EVENT Specified event type is not defined by the resource.
VI_ERROR_INV_HNDLR_REF The given handler reference is invalid.

VI_ERROR_HNDLR_NINSTALLED The handler was not installed. This may be returned if an
application attempts to install multiple handlers for the same event
on the same session.

viLock(vi, lockType, timoout, requestffiKey, accessKey)

Codes Description

VI_SUCCESS The specified access mode was successfully acquired.
VI_SUCCESS_NESTED_EXCLUSIVE The specified access mode was successfully acquired, and this

session has nested exclusive locks.
VI_SUCCESS_NESTED_SHARED The specifed access mode was successfully acquired, and this

session has nested shared locks.
VI_ERROR_INV_SESSION The given session is invalid.
VI_ERROR_INV_OBJECT The given object reference is invalid.
VI_ERROR_RSRC_LOCKED The specified type of lock cannot be obtained because the

resource is already locked with a lock type incompatible with
the lock requested.

VI_ERROR_INV_LOCK_TYPE The specified type of lock is not supported by this resource.
VI_ERROR_INV_ACCESS_KEY The requestedKey value passed is not a valid access key to the

specified resource.
VI_ERROR_TMO The specified type of lock could not be obtained within the

specified timeout period.

C-12

HP VISA Completion and Error Codes

Completion and Error Codes for

Each HP VISA Function

viMapAddress(vi,mapSpace,mapBase,mapSize,access,suggested,address)

Codes Description

VI_ SUCCESS Map successful.

VI_ERROR_INV_SESSION The given session 1s invalid.

VI_ERROR_INV_OBJECT The given object reference is invalid.

VI_ERROR_NSUP_OPER The given vi does not support this function.

VI_ERROR_RSRC_LOCKED Specified operation could not be performed because the resource
identified by vi has been locked for this kind of access.

VI_ERROR_INV_SPACE Invalid address space specified.

VI_ERROR_INV_OFFSET Invalid offset specified.

VI_ERROR_NSUP_OFFSET Specified region is not accessible from this hardware.

VI_ERROR_TMO Could not acquire resource or perform mapping before the timer
expired.

VI_ERROR_INV~SIZE Invalid size of window specified.

VI_ERROR_ALLOC Unable ~o allocate window of at least the requested size.
VI_ERROR_INV_ACC_MODE Invalid access mode.

VI_ERROR_WINDOW_MAPPED The specified session already contains a mapped window.

v iMemAlloc(vi, size, offset)

Codes Description

VI_ SUCCESS The operation completed successfully.
VI_ERROR_INV_SESSION The given session is invalid.

VI_ERROR_INV_OBJECT The given object reference is invalid.

VI_ERROR_NSUP_OPER The given vi does not support this operation.
VI_ERROR_RSRC_LOCKED Specified operation could not be performed because the resource

identified by vi has been locked for this kind of access.

VI_ERROR_INV_SIZE Invalid size specified.
VI_ERROR_ALLOC Unable to allocate shared memory block of the requested size.
VI_ERROR_MEM_NSHARED The device does not export any memory.

C-13

HP VISA Completion and Error Codes
Completion and Error Codes for
Each HP VISA Function

viMemFree(vi, offset)

Codes

VI_SUCCESS
VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT
VI_ERROR_NSUP_OPER
VI_ERROR_INV_OFFSET
VI_ERROR_WINDOW_MAPPED

Description

The operation completed successfully.
The given session is invalid.

The given object reference is invalid.

The given vi does not support this operation.

Invalid offset specified.

The specified offset is currently in use by viMapAddress.

viMovein8(vi,spa.ce,ojfset,length,buf8)
viMovein16(vi,spa.ce,ojfset, length, buf 16)
viMovein32(vi,spa.ce,ojfset,length,buf32)

Codes Description

VI_SUCCESS Operation completed successfully.
VI_ERROR_INV_SESSION The given session is invalid.
VI_ERROR_INV_OBJECT The given object reference is invalid.
VI_ERROR_NSUP_OPER The given vi does not support this function.
VI_ERROR_RSRC_LOCKED Specified operatioo could not be performed because the resource

identified by vi has been locked for this kind of access.
VI_ERROR_BERR Bus error occurred during transfer.
VI_ERROR_INV_SPACE Invalid address space specified.
VI_ERROR_INV_OFFSET Invalid offset specified.
VI_ERROR_NSUP_OFFSET Specified offset is not accessible from this hardware.
VI_ERROR_NSUP_WIDTH Specified width is not supported by this hardware.
VI_ERROR_INV_LENGTH Invalid length specified.

C-14

HP VISA Completion and Error Codes
Completion and Error Codes for

Each HP VISA Function

viMoveOutB(vi,spac~offset, length,buf8)
viMove0ut16(vi,space,offset,length,bufl6)
viMove0ut32(vi,space,offset,length,buf32)

Codes Description

VI_SUCCESS Operation completed successfully.
VI_ERROR_INV_SESSION The given session is invalid.

VI_ERROR_INV_OBJECT The given object reference is invalid.

VI_ERROR_NSUP_OPER The given vi does not support this function.

VI_ERROR_RSRC_LOCKED Specified operation could not be performed because the resource
identified by vi has been locked for this kind of access.

VI_ERROR_BERR Bus error occurred during transfer.

VI_ERROR_INV_SPACE Invalid address space specified.
VI_ERROR_INV_OFFSET Invalid offset specified.

VI_ERROR_NSUP_OFFSET Specified offset is not accessible from this hardware.
VI_ERROR_NSUP_WIDTH Specified width is not supported by this hardware.

VI_ERROR_INV_LENGTH Invalid length specified.

viOpen(sesn, rsrcName, accessMode, timoout, vi)

Codes Description

VI_SUCCESS Session opened successfully.
VI_ERROR_INV_SESSION The given sesn does not identify a valid session.

VI_ERROR_INV_OBJECT The given object reference is invalid.

VI_ERROR_NSUP_OPER The given sesn does not support this function. For VISA, this
operation is supported only by the Default Resource Manager
session.

VI_ERROR_INV_RSRC_NAME Invalid resource reference specified. Parsing error.
VI_ERROR_INV_ACC_MODE Invalid access mode.
VI_ERROR_RSRC_NFOUND Insufficient location information or resource not present in the

system.
VI_ERROR_ALLOC Insufficient system resources to open a session.

C-15

HP VISA Completion and Error Codes
Completion and Error Codes for
Each HP VISA Function

viOpenDef aul tRM(sesn)

Codes

VI_SUCCESS

VI_ERROR_SYSTEM_ERROR
VI_ERROR_ALLOC

VI_ERROR_INV_SETUP

vi Out8(vi, space, offset, va/B)
vi Out 16(vi,space,ojfset, vall 6)
vi0ut32(vi,space,ojfset, val32)

Codes

VI_SUCCESS
VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT
VI_ERROR_NSUP_OPER
VI_ERROR_RSRC_LOCKED

VI_ERROR_BERR
VI_ERROR_INV_SPACE
VI_ERROR_INV_OFFSET
VI_ERROR_NSUP_OFFSET
VI_ERROR_NSUP_WIDTH

viPeek8(vi, addr, va!B)
viPeek16(vi,addr;vall6)
viPeek32(vi, addr; val32)

Description

Session to the Default Resource Manager resource created
successfully.

The VISA system failed to initialize.

Insufficient system resources to create a session to the Default
Resource Manager resource.

Some implementation-specific .configuration file is corrupt or does
not exist.

Description

Operation completed successfully.

The given session is invalid.

The given object reference is invalid.

The given vi does not support this function.

Specified operation could not be performed because the resource
identified by vi has been locked for this kind of access.

Bus error occurred during transfer.

Invalid address space specified.

Invalid offset specified.

Specified offset is not accessible from this hardware.

Specified width is not supported by this hardware.

These functions do not return any completion or error codes.

viPoke8(vi, addr, va/B)
v iPoke 16(vi, addr; vall 6)
v iPoke32(vi, addr; val32)
These functions do not return any completion or error codes.

C-16

HP VISA Completion and Error Codes

Completion and Error Codes for
Each HP VISA Function

viPrintf(vi, writeFmt,argl,arg2)

Codes Description

VI_SUCCESS Parameters were successfully formatted.
VI_ERROR_INV_SESSION The given session is invalid.

VI_ERROR_INV_OBJECT The given object reference is invalid.

VI_ERROR_RSRC_LOCKED Specified operation could not be performed because the resource
identified by vi has been locked for this kind of access.

VI_ERROR_IO Could not perform write operation because of 1/0 error.
VI_ERROR_TMO Timeout expired before write operation completed.
VI_ERROR_INV_FMT A format specifier in the writefmt string is invalid.
VI_ERROR_NSUP_FMT A format specifier in the writefmt string is not supported.

VI_ERROR_ALLOC The system could not allocate a formatted 1/0 buffer because of
insufficient resources.

v iQueryf (vi, writePmt, readPmt, argl, arg2)

Codes

VI_SUCCESS
VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT
VI_ERROR_RSRC_LOCKED

VI_ERROR_IO
VI_ERROR_TMO
VI_ERROR_INV_FMT
VI_ERROR_NSUP_FMT
VI_ERROR_ALLOC

Description

Successfully completed the Query operation.
The given session is invalid.

The given object reference is invalid.

Specified operation could not be performed because the resource
identified by vi has been locked for this kind of access.

Could not perform read/write operation because of 1/0 error.

Timeout occurred before read/write operation completed.
A format specifier in the writefmt or readfmt string is invalid.

The format specifier is not supported for current argument type.

The system could not allocate a formatted 1/0 buffer because of
insufficient resources.

C-17

HP VISA Completion and Error Codes

Completion and Error Codes for
Each HP VISA Function

viRead(vi, buf, count, retCount)

Codes

VI_SUCCESS

VI_SUCCESS_TERM_CHAR
VI_SUCCESS_MAX_CNT
VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT
VI_ERROR_NSUP_OPER
VI_ERROR_RSRC_LOCKED

VI_ERROR_TMO
VI_ERROR_RAW_WR_PROT_VIOL
VI_ERROR_RAW_RD_PROT_VIOL
VI_ERROR_OUTP_PROT_VIOL
VI_ERROR_BERR
VI_ERROR_INV_SETUP

VI_ERROR_NCIC

VI_ERROR_NLISTENERS

VI_ERROR_ASRL_PARITY
VI_ERROR_ASRL_FRAMING
VI_ERROR_ASRL_OVERRUN

VI_ERROR_IO

C-18

Description

The operation completed successfully and the END indicator was
received !for interfaces that have END indicatorsl.
The specified termination character was read.

The number of bytes read is equal to count.
The given session is invalid.

The given object reference is invalid.

The given vi does not support this function.

Specified operation could not be performed because the resource
identified by vi has been locked for this kind of access.

Timeout expired before function completed.

Violation of raw write protocol occurred during transfer.

Violation of raw read protocol occurred during transfer.

Device reported an output protocol error occurred during transfer.

Bus error occurred during transfer.

Unable to start read operation because setup is invalid !due to
attributes being set to an inconsistent statel.

vi does not refer to an interface that is currently the controller in
charge.

No listeners condition is detected !both NRFD and NDAC are
deasserted I.
A parity error occurred during transfer.

A framing error occurred during transfer.

An overrun error occurred during transfer. A character was not read
from the hardware before the next character arrived.

An unknown 1/0 error occurred during transfer.

HP VISA Completion and Error Codes

Completion and Error Codes for

Each HP VISA Function

viReadAsync(vi, buf, count,jobld)

Codes Description

VI_SUCCESS Asynchronous read operation successfully queued.
VI_SUCCESS_SYNC Read operation performed synchronously.
VI_ERROR_INV_SESSION The given session is invalid.

VI_ERROR_INV_OBJECT The given object reference is invalid.
VI_ERROR_RSRC_LOCKED Specified operation could not be performed because the resource

identified by vi has been locked for this kind of access.
VI_ERROR_QUEUE_ERROR Unable to queue read operation.

v iRe adS TB(vi, status)

Codes Description

VI_SUCCESS Operation completed successfully.
VI_ERROR_INV_SESSION The given session is invalid.
VI_ERROR_INV_OBJECT The given object reference is invalid.
VI_ERROR_NSUP_OPER The given vi does not support this function.
VI_ERROR_RSRC_LOCKED Specified operation could not be performed because the resource

identified by vi has been locked for this kind of access.
VI_ERROR_SRQ_NOCCURRED Service request has not been received for the session.
VI_ERROR_TMO Timeout expired before function completed.
VI_ERROR_RAW_WR_PROT_VIOL Violation of raw write protocol occurred during transfer.
VI_ERROR_RAW_RD_PROT_VIOL Violation of raw read protocol occurred during transfer.
VI_ERROR_BERR Bus error occurred during transfer.
VI_ERROR_NCIC vi does not refer to an interface that is currently the controller in

charge.

VI_ERROR_NLISTENERS No listeners condition is detected !both NRFD and NDAC are
deassertedl.

C-19

HP VISA Completion and Error Codes

Completion and Error Codes for
Each HP VISA Function

v iScanf (vi, readPmt, arg 1, arg2)

Codes Description

VI_ SUCCESS Data was successfully read and formatted into arg parameterlsl.
VI_ERROR_INV_SESSION The given session is invalid.
VI_ERROR_INV_OBJECT The given object reference is invalid.

VI_ERROR_RSRC_LOCKED Specified operation could not be performed because the resource
identified by vi has been locked for this kind of access.

VI_ERROR_IO Could not perform read operation because of 1/0 error.
VI_ERROR_TMO Timeout expired before read operation completed.
VI_ERROR_INV_FMT A format specifier in the readfmt string is invalid.

VI_ERROR_NSUP_FMT A format specifier in the readfmt string is not supported.
VI_ERROR_ALLOC The system could not allocate a formatted 1/0 buffer because of

insufficient resources.
-

v iS et At tribute(vi, attribute, attrState)

Codes Description

VI_SUCCESS All attribute values set successfully.
VI_WARN_NSUP_ATTR_STATE Although the specified state of the attribute is valid, it is not

supported by this resource implementation
VI_ERROR_INV_SESSION The given session is invalid.
VI_ERROR_INV_OBJECT The given object reference is invalid.
VI_ERROR_RSRC_LOCKED The specified operation could not be performed because the

resource identified by vi has been locked for this kind of access.
VI_ERROR_NSUP_ATTR The specified attribute is not defined by the referenced resource.
VI_ERROR_NSUP_ATTR_STATE The specified state of the attribute is not valid, or is not supported

as defined by the resource.
VI_ERROR_ATTR_READONLY The specified attribute is read-only.

C-20

viSetBuf(vi, mask, size)

Codes

VI_SUCCESS
VI_WARN_NSUP_BUF
VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT
VI_ERROR_RSRC_LOCKED

VI_ERROR_ALLOC

VI_ERROR_INV_MASK

viStatusDesc(vi,status,desc)

Codes

VI_SUCCESS
VI_WARN_UNKNOWN_STATUS

vi Terminate(vi, degree,jobld)

Codes

VI_SUCCESS
VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT
VI_ERROR_INV_DEGREE
VI_ERROR_INV_JOB_ID

HP VISA Completion and Error Codes

Completion and Error Codes for

Each HP VISA Function

Description

Buffer size set successfully.
The specified buffer is not supported.

The given session is invalid.

The given object reference is invalid.

Specified operation could not be performed because the resource
identified by vi has been locked for this kind of access.

The system could not allocate the buffer(s) of the specified size
because of insufficient system resources.

The system cannot set the buffer for the given mask.

Description

Description successfully returned.

The status code passed to the function could not be interpreted.

Description

Request serviced successfully.

The given session is invalid.

The given object reference is invalid.

Invalid degree specified.

Invalid job identifier specified.

C-21

HP VISA Completion and Error Codes
Completion and Error Codes for

Each HP VISA Function

v iUninst allHandl er(vi, event Type, handler, user Handle)

Codes Description

VI_SUCCESS Event handler successfully uninstalled.
VI_ERROR_INV_SESSION The given session is invalid.
VI_ERROR_INV_OBJECT The given object reference is invalid.

VI_ERROR_INV_EVENT Specified event type is not supported by the resource.
VI_ERROR_INV_HNDLR_REF Either the specified handler reference or the user context value !or

both! does not match any installed handler.

viUnlock(vi)

Codes Description

VI_SUCCESS The lock was successfully relinquished.

VI_SUCCESS_NESTED_EXCLUSIVE The call succeeded, but this session still has nested exclusive
locks.

VI_SUCCESS_NESTED_SHARED The call succeeded, but this session still has nested shared
locks.

VI_ERROR_INV_SESSION The given session is invalid.

VI_ERROR_INV_OBJECT The given object reference is invalid.

VI ERROR_SESN_NLOCKED The current session did not have any lock on the resource.

viUrunapAddress(vi)

Codes Description

VI_SUCCESS Operation completed successfully.
VI_ERROR_INV_SESSION The given session is invalid.
VI_ERROR_INV_OBJECT The given object reference is invalid.
VI_ERROR_NSUP_OPER The given vi does not support this function.
VI_ERROR_WINDOW_NMAPPED The specified session is not currently mapped.

C-22

HP VISA Completion and Error Codes

Completion and Error Codes for

Each HP VISA Function

vi VPrintf(vi, writeFmt,params)

Codes Description

VI_SUCCESS Parameters were successfully formatted.
VI_ERROR_INV_SESSION The given session is invalid.
VI_ERROR_INV_OBJECT The given object reference is invalid.

VI_ERROR_RSRC_LOCKED Specified operation could not be performed because the resource
identified by vi has been locked for this kind of access.

VI_ERROR_IO Could not perform write operation because of 1/0 error.
VI_ERROR_TMO Timeout expired before write operation completed.
VI_ERROR_INV_FMT A format specifier in the wrilefmt string is invalid.

VI_ERROR_NSUP_FMT A format specifier in the writefmt string is not supported.

VI_ERROR_ALLOC The system could not allocate a formatted 1/0 buffer because of
insufficient resources.

vi VQueryf(vi, writeFmt, readFmt,params)

Codes Description

VI_SUCCESS Successfully completed the Query operation.
VI_ERROR_INV_SESSIDN The given session is invalid.
VI_ERROR_INV_OBJECT The given session or object reference is invalid !both are the same

value!.
VI_ERROR_RSRC_LOCKED Specified operation could not be performed because the resource

identified by vi has been locked for this kind of access.
VI_ERROR_IO Could not perform read/write operation because of 1/0 error.
VI_ERROR_TMO Timeout occurred before read/write operation completed.
VI_ERROR_INV_FMT A format specifier in the writefmt or readfmt string is invalid.
VI_ERROR_NSUP_FMT The format specifier is not supported for current argument type.
VI_ERROR_ALLOC The system could not allocate a formatted 1/0 buffer because of.

insufficient resources.

C-23

HP VISA Completion and Error Codes

Completion and Error Codes for

Each HP VISA Function

vi VScanf(vi, readPmt,params)

Codes

VI_SUCCESS
VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT
VI_ERROR_RSRC_LOCKED

VI_ERROR_IO
VI_ERROR_TMO
VI_ERROR_INV_FMT
VI_ERROR_NSUP_FMT
VI_ERROR_ALLOC

Description

Data was successfully read and formatted into arg parameter!sl.

The given session is invalid.

The given object reference is invalid.

Specified operation could not be performed because the resource
identified by vi has been locked for this kind of access.

Could not perform read operation because of 1/0 error.

Timeout expired before read operation completed.

A format specifier in the readfmt string is invalid.

A format specifier in the readfmt string is not supported.

The system could not allocate a formatted 1/0 buffer because of
insufficient resources.

vi Wai tOnEvent(vi, ineventType, timoout, outEventType, outcontext)

VI_SUCCESS

VI_SUCCESS_QUEUE_NEMPTY

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT
VI_ERROR_INV_EVENT
VI_ERROR_TMO

C-24

Wait terminated successfully on receipt of an event occurrence. The
queue is empty.

Wait terminated successfully on receipt of an event notification.
There is still at least one more event occurrence available for this
session.

The given vi does not identify a valid session.

The given object reference is invalid.

Specified event type is not supported by the resource.

Specified event did not occur within the specified time period.

viWri te(vi,buf,count, retCount)

Codes Description

VI_SUCCESS Transfer completed.
VI_ERROR_INV_SESSION The given vi does not identify a valid session.
VI_ERROR_INV_OBJECT The given object reference is invalid.
VI_ERROR_NSUP_OPER The given vi does not support this function.
VI_ERROR_RSRC_LOCKED Specified operation could not be performed because the resource

identified by vi has been locked for this kind of access.
VI_ERROR_TMO Timeout expired before operation completed.
VI_ERROR_RAW_WR_PROT_VIOL Violation of raw write protocol occurred during transfer.
VI_ERROR_RAW_RD_PROT_VIOL Violation of raw read protocol occurred during transfer.

VI_ERROR_INP_PROT_VIOL Device reported an input protocol error occurred during transfer.
VI_ERROR_BERR Bus error occurred during transfer.
VI_ERROR_INV_SETUP Unable to start read operation because setup is invalid !due to

attributes being set to an inconsistent state!.
VI_ERROR_NCIC vi does not refer to an interface that is currently the controller in

charge.
VI_ERROR_NLISTENERS No listeners condition is detected !both NRFD and NDAC are

deassertedl.
VI_ERROR_IO An unknown 1/0 error occurred during transfer.

viWri teAsync(vi,buf,count,jobld)

Codes Description

VI_SUCCESS Asynchronous write operation successfully queued.
VI_SUCCESS_SYNC Write operation performed synchronously.
VI_ERROR_INV_SESSION The given session is invalid.
VI_ERROR_INV_OBJECT The given object reference is invalid.
VI_ERROR_RSRC_LOCKED Specified operation could not be performed because the resource

identified by vi has been locked for this kind of access.
VI_ERROR_QUEUE_ERROR Unable to queue write operation.

C-25

D

HP VISA Type Definitions

HP VISA Type Definitions

This appendix lists the VISA data types and their definitions.

D-2

HP VISA Type Definitions

VISA Type Definitions

VISA Data Type Type Definition Description

ViUint32 unsigned long A 32-bit unsigned integer.

ViPUint32 ViUint32 * The location of a 32-bit unsigned integer.

ViAUint32 ViUint32 * The location of a 32-bit unsigned integer.

Viint32 signed long A 32-bit signed integer.

ViPint32 Viint32 * The location of a 32-bit signed integer.

ViAint32 Vilnt32 * The location of 32-bit signed integer.

ViUint16 unsigned short A 16-bit unsigned integer.

ViPUint16 ViUint16 * The location of a 16-bit unsigned integer.

ViAUint16 ViUint16 * The location of a 16-bit unsigned integer.

Viint16 signed short A 16-bit signed integer.

ViPint16 Viint16 * The location of a 16-bit signed integer.

ViAint16 Viint16 * The location of 16-bit signed integer.

ViUint8 unsigned char An 8-bit unsigned integer.

ViPUint8 ViUint8 * The location of an 8-bit unsigned integer.

ViAUint8 ViUint8 * The location of an 8-bit unsigned integer.

Viint8 signed char An 8-bit signed integer.

ViPint8 Vilnt8 * The location of an 8-bit signed integer.

ViAint8 Viint8 * The location of an 8-bit signed integer.

ViAddr void * A type that references another data type.

ViPAddr ViAddr * The location of a ViAddr

Vi Char char An 8-bit integer representing an ASCII character.

ViPChar ViChar * The location of a ViChar.

ViByte unsigned char An 8-bit unsigned integer representing an extended ASCII
character.

ViPByte ViByte * The location of a ViByte.

D-3

HP VISA Type Definitions

VISA Type Definitions (continued)

VISA Data Type Type Definition Description

ViBoolean ViUint16 A type that is either VI_ TRUE or VI_FALSE.

ViPBoolean ViBoolean * The location of a ViBoolean.

ViBuf ViPByte The location of a block of data.

ViPBuf ViPByte The location of a block of data.

ViString ViPChar The location of a NULL-terminated ASCII string.

ViPString ViPChar The location of a NULL-terminated ASCII string.

ViStatus Vi!nt32 Values that correspond to VISA-defined completion and
error codes.

ViPStatus ViStatus * The location of the completion and error codes.

ViRsrc ViString A ViString type.

ViPRsrc ViString A ViString type.

ViAccessMode ViUint32 Specifies the different mechanisms that control access to
a resource.

ViBusAddress ViUint32 Represents the system dependent physical address.

ViBusSize ViUint32 Represents the system dependent physical address size.

ViAttr ViUint32 Identifies an attribute.

Vi Version ViUint32 Specifies the current version of the resource.

ViPVersion ViVersion * The location of Vi Version.

ViAttrState ViUint32 Specifies the type of attribute.

ViPAttrState void * The location of ViAttrState.

ViVAList va_list The location of a list of variable number of parameters of
differing types.

ViEventType ViUint32 Specifies the type of event.

ViPEventType ViEventType * The location of a ViEventType.

ViEventFilter ViUint32 Specifies filtering masks or other information unique to an
event.

D-4

VISA Type Definitions (continued)

VISA Data Type Type Definition Description

ViObject ViUint32 Contains attributes and can be closed when no longer
needed.

ViPObject ViObject * The location of a ViObj ect.

ViSession ViObject Specifies the information necessary to manage a
communication channel with a resource.

ViPSession ViSession * The location of a ViSession.

ViFindList ViObject Contains a reference to all resources found during a
search operation.

ViPFindList ViFindList * The location of a ViFindList.

ViEvent ViObject Contains information necessary to process an event.

ViPEvent ViEvent * The location of a ViEvent.

ViHndlr ViStatus (*) A value representing an entry point to an operation for
(ViSession, use as a callback.
ViEventType,
ViEvent, ViAddr)

ViReal32 float A 32-bit, single-precision value.

ViPReal32 ViReal32 * The location of a 32-bit, single-precision value.

ViReal64 double A 64-bit, double-precision value.

ViPReal64 ViReal64 * The location of a 64-bit, double-precision value.

ViJobid ViUint32 The location of a variable that will be set to the job
identifier.

ViKeyid ViPString The location of a string.

D-5

E

Editing the HP VISA
Configuration

Editing the HP VISA Configuration

When the HP I/O Libraries are configured, certain values are used as defaults
in the VISA configuration. In some cases the default values will affect your
system performance. If you are having system performance problems, you
may need to edit the configuration and change some default values. This
appendix describes how to edit the configuration for VISA on Windows 95 and
Windows NT, and on HP-UX.

E-2

On Windows 95 and Windows NT

When you first configured the HP I/O Libraries, the default configuration
specified that all VISA devices would be identified at run-time. However,
this is not ideal for all users. If you are experiencing performance problems,
particularly during viOpenDefaultRM, you may want to change the VISA
configuration to identify devices during configuration. This may be especially
helpful if you are using a VISA LAN client.

Tu edit the default VISA configuration on Windows 95 or Windows NT, do the
following:

1. If you have not already done so, start up Windows 95 or Windows NT.

2. Run the I/O Conf ig utility, which is located in the HP I/O Libraries
program group.

3. Select the interface you wish to configure from the Configured
Interfaces box, and click on the (Edit) button.

The Interface Edit window is now displayed.

4. Click on the (Edit VISA Config) button at the bottom of the window.

The dialog box which allows you to add devices is now displayed.

5. You can now manually identify devices by clicking on the (Add Device)

button and entering the device address.

N DTE

If you wish to turn off the default of identifying devices at run-time, you must un-select the
Identify devices at run-time box at the top of the dialog box.

E-3

Editing the HP VISA Configuration
On Windows 95 and Windows NT

You may also click on the (Auto Add Devices) button at the bottom of the
screen to automatically check for devices at this time. If you select this
button, the utility will prompt you to make sure all devices are connected
and turned on. Once this process is complete, you may edit this list with
the (Add Device) and (Remove Device) buttons.

6. Once you have completed adding or removing devices, select the (OK)
button to exit the window. Then exit the I IO Conf ig utility to save the
changes you have made.

E-4

On HP-UX

When you first configured the HP I/O Libraries, the default configuration
specified that all VISA devices would be identified at run-time. However,
this is not ideal for all users. If you are experiencing performance problems,
particularly during viOpenDef aul tRM, you may want to change the VISA
configuration to identify devices during configuration.

To edit the default VISA configuration on HP-UX, use the following command
to run the visacf g utility:

/opt/vxipnp/hpux/hpvisa/visacfg

Follow the instructions provided in the utility. When prompted, select the
(Add Device) button and add all devices that will be used.

E-5

Glossary

Glossary

address
A string uniquely identifying a particular device on an interface.

attributes
Values that determine the state of a resource. The operational state of
some attributes can be changed.

bus error
An action that occurs when access to a given address fails either because
no register exists at the given address, or the register at the address
refuses to respond.

controller
A device, such as a computer, used to communicate with a remote device,
such as an instrument. In the communications between the controller
and the device, the controller is in charge of and controls the flow of
communication (that is, the controller does the addressing and/or other
bus management).

device
A unit that receives commands from a controller. Typically a device is an
instrument but could also be a computer acting in a non-controller role, or
another peripheral such as a printer or plotter.

device driver
A segment of software code that communicates with a device. It may
either communicate directly with a device by reading to and writing from
registers, or it may communicate through an interface driver.

device session
A session that communicates as a controller specifically with a single
device, such as an instrument.

handler
A software routine used to respond to an asynchronous event such as an
SRQ or an interrupt.

Glossary-2

instrument
A device that accepts conunands and performs a test or measurement
function.

interface
A connection and conununication media between devices and controllers,
including mechanical, electrical, and protocol connections.

interrupt
An asynchronous event requiring attention out of the normal flow of
control of a program.

mapping
An operation that returns a pointer to a specified section of an address
space and makes the specified range of addresses accessible to the
requester.

process
An operating system object containing one or more threads of execution
that share a data space. A multi-process system is a computer system that
allows multiple programs to execute simultaneously, each in a separate
process environment. A single-process system is a computer system that
allows only a single program to execute at a given point in time.

register
An address location that controls or monitors hardware.

resource
An instrument while using VISA.

session
An instance of a conununications path between a software element and a
resource.

SRQ
Service Request. An asy:qchronous request (an interrupt) from a remote
device indicating that the device requires servicing.

status byte
A byte of information returned from a remote device showing the current
state and status of the device.

Glossary-3

thread
An operating system object that consists of a flow of control within a
process. A single process may have multiple threads with each having
access to the same data space within the process. However, each thread
has its own stack, and all threads may execute concurrently with
each other (either on multiple processors, or by time-sharing a single
processor). Note that multi-threaded applications are only supported with
32-bit VISA.

VISA
Virtual Instrument Software Architecture. VISA is a common 1/0 library
where software from different vendors can run together on the same
platform.

Glossary-4

Index

A
Addressing

devices, 4-7
over LAN, 6-10
sessions, 4-7

Applications, building, 2-6
Argument length modifier, 4-17
, Array size, 4-18
ASRL, attributes, 4-31, B-8
Attributes

B

ASRL, 4-31, B-8
changing, 4-26
events, 4-32, 4-35, B-9
generic INSTR, 4-28, B-4
GPIB, 4-29, B-5
GPIB-VXI, 4-29, 4-31, B-5, B-6,

B-7
interface specific, 4-29, B-5
reading, 4-26
reading for events, 4-36
resource, 4-27, B-3
serial, 4-31, B-8
setting VXI trigger lines, 5-25
VXI, 4-29, 5-23, B-6

Buffers
flushing, 4-22
formatted I/O, 4-22

Building DLLs, 2-6

c
Callbacks and events, 4-33, 4-37
Closing sessions, 4-9
Compiling

16-bit, 2-8
32-bit, 2-7
in HP-UX, 3-6

Completion codes, C-3
Configuration

editing VISA, E-2
LAN, 6-9

Conversion characters, 4-19
Conversion of formatted I/O, 4-15

D
Declarations file, 4-3
Default resource manager, 4-4
Device sessions

addressing, 4-7
closing, 4-9
opening, 4-5

Directory structure
HP-UX, A-5
Windows, A-3

DLLs, building , 2-6
Documentation, 1-7

E
Editing VISA configuration, E-2
Enable events

for callback, 4-39
for queuing, 4-45

lndex-1

Error codes, C-3
Error messages, logging

on HP-UX, 3-7
on Windows 95, 2-11
on Windows NT, 2-11

Error trapping
instrument errors, 4-50
VISA errors, 4-49

Event attributes, 4-32, 4-35, B-9
Event handler, 4-38
Events

attributes, 4-35
callback, 4-33, 4-37
enable for callback, 4-39
enable for queuing, 4-45
handlers, 4-33
hardware triggers, 4-33
interrupts, 4-33
queuing, 4-33, 4-45
reading attributes, 4-36
SRQs, 4-33
wait on event, 4-46

Event Types
VI_EVENT_IO_COMPLETION,4-35
VI_EVENT_SERVICE_REQ, 4-35
VI_EVENT_TRIG, 4-35
VI_EVENT_VXI_SIGP, 4-35

Event Viewer utility, 2-11
evnthdlr. c example, 4-40
evntqueu. c example, 4-47
Examples

directory location, A-7
evnthdlr. c, 4-40
evntqueu. c, 4-47
formatio. c, 4-20
formatio.c over LAN, 6-11
gpibvxi .c, 5-10
gpibvxil. c, 5-16
idn. c, 2-3, 3-3
lockexcl. c, 4-56
lockshr. c, 4-58

lndex-2

nonfmtio. c, 4-24
running on HP-UX, 3-8
running on Windows, 2-12
srqhdlr. c, 4-42
vxihl. c, 5-9
vxill. c, 5-14

Exclusive locks, 4-53, 4-55

F
Field width, 4-15
Finding resources, 4-10
Flushing buffers, 4-22
formatio. c example, 4-20
formatio. c example over LAN, 6-11
Format string, 4-22
Formatted I/O

argument length modifier, 4-17
, array size, 4-18
buffers, 4-22
conversion, 4-15
conversion characters, 4-19
description, 4-13
field width, 4-15
format string, 4-22
functions, 4-14
modifiers, 4-15
. precision, 4-16
special characters, 4-18

Functions
formatted I/O, 4-14
non-formatted I/O, 4-23
viAssertTrigger, 7-7
viClear, 7-9
viClose, 4-9, 7-11
viDisableEvent, 4-40, 7-13
viDiscardEvents, 7-16
viEnableEvent, 4-39, 4-45, 7-18
viEventHandler, 7-21
viFindNext, 4-10, 7-24
viFindRsrc, 4-10, 7-25
viFlush, 4-22, 7-27

viGetAttribute, 4-26, 7-30
viin16, 5-8, 7-32
viin32, 5-8, 7-32
vi!n8, 5-8, 7-32
viinstallHandler, 4-37, 7-34
viLock, 4-51, 7-36
viMapAddress, 5-12, 5-13, 7-41
viMemAlloc, 7-44
viMemFree, 7-46
viMovein16, 5-8, 7-47
viMovein32, 5-8, 7-47
viMovein8, 5-8, 7-47
viMove0ut16, 5-8, 7-50
viMoveOut32, 5-8, 7-50
viMove0ut8, 5-8, 7-50
viOpen, 4-5, 7-53
viOpenDef aul tRM, 4-4, 7-55
vi0ut16, 5-8, 7-57
vi0ut32, 5-8, 7-57
vi0ut8, 5-8, 7-57
viPeek16, 5-13, 7-59
viPeek32, 5-13, 7-59
viPeek8, 5-13, 7-59
viPoke16, 5-13, 7-61
viPoke32, 5-13, 7-61
viPoke8, 5-13, 7-61
viPrintf, 4-14, 7-63
viQueryf, 4-14, 7-71
viRead, 4-23, 7-73
viReadAsync, 4-23, 7-76
viReadSTB, 7-78
viScanf, 4-14, 7-80
viSetAttribute, 7-87
viSetBuf, 4-22, 7-89
viStatusDesc, 7-91
viTerminate, 7-92
viUninstallHandler, 7-93
viUnlock, 4-51, 7-95
viUnmapAddress, 5-13, 7-97
viVPrintf, 4-14, 7-98
viVQueryf, 4-14, 7-100

G

vi VS c anf, 4-14, 7 -102
viWaitOnEvent, 4-46, 7-104
viWrite, 4-23, 7-107
viWriteAsync, 4-23, 7-109

Generic INSTR attributes, 4-28, B-4
GPIB

and SRQs over LAN, 6-18
attributes, 4-29, B-5
interface, 5-3

GPIB-VXI
attributes, 4-29, 4-31, 5-23, B-5,

B-6, B-7
high-level memory functions, 5-5
interface, 5-3
low-level memory functions, 5-11
mapping memory space, 5-12
message-based devices, 5-4
programming overview, 5-3
register-based devices, 5-4
register programming, 5-6, 5-11
setting trigger lines, 5-25
writing to registers, 5-13

gpibvxi. c example, 5-10
gpibvxil. c example, 5-16

H
Handlers, 4-33

event, 4-38
installing, 4-37
prototype, 4-38

Hardware triggers and events, 4-33
Header file, visa.h, 4-3
Help

Hyper Help on HP-UX, 3-9
man pages on HP-UX, 3-10

High-level memory functions for VXI,
5-5, 5-6

HP-UX
compiling , 3-6

lndex·3

directory structure, A-5
linking , 3-6
logging messages, 3-7
online help, 3-9

HPVISA subdirectory, A-6
HyperHelp on HP-UX, 3-9

I

idn. c example, 2-3, 3-3
IEEE Standard, 1-7
Include files, A-6
Installing handlers, 4-37
INSTR, 4-7
Instrument drivers, directory location,

A-7
Instrument errors, 4-50
Interfaces

GPIB, 5-3
GPIB-VXI, 5-3
LAN, 6-4
VXI, 5-3

Interface specific attributes, 4-29,
B-5

Interrupts and events, 4-33

L
LAN

addressing, 6-10
and SRQs, 6-18
client/server, 6-4
communication, 6-10
configuration, 6-9
networking protocols, 6-7
overview, 6-4
performance, 6-9
servers, 6-8
SICL LAN Protocol, 6-7
signal handling, 6-17
software architecture, 6-6
starting or stopping server, 6-2
TCP/IP Instrument Protocol, 6-7

lndex-4

threads with LAN client, . 6-8
timeouts, 6-13
VISA function support, 6-18

LAN client
definition, 6-4
threads used with, 6-8

LAN server
definition, 6-4
description of, 6-8
starting or stopping, 6-2

LAN-to-Instrument Gateway, 6-5
Libraries, 2-6, A-6
Linking

16-bit, 2-8
32-bit, 2-7
in HP-UX, 3-6

Linking to VISA libraries, 2-6
lockexcl. c example, 4-56
Locks

access modes, 4-53
acquiring exclusive lock while

holding shared lock, 4-55
examples, 4-56
exclusive, 4-53
lockexcl. c example, 4-56
lockshr. c example, 4-58
nested, 4-56
shared, 4-53, 4-54
types, 4-53
using, 4-51

lockshr. c example, 4-58
Logging messages

on HP-UX, 3-7
on Windows 95, 2-11
on Windows NT, 2-11

Low-level memory functions for VXI,
5-11

M
man pages on HP-UX, 3-10

Memory 110 performance with VXI,
5-17

Memory mapping, 5-12
Memory models, 2-8
Memory space, unmapping, 5-13
Message-based devices, 5-4
Message Viewer utility, 2-11
Modifiers, 4-15

N

Nested locks, 4-56
Networking protocols, 6-7
nonfmtio. c example, 4-24
Non-formatted 110

0

description, 4-13
functions, 4-23
mixing with formatted 110, 4-23

Online help in HP-UX, 3-9
Opening sessions, 4-4
Overview

VISA, 1-4

p

Performance
with LAN, 6-9
with VXI, 5-17
Precision, 4-16

Protocols, networking, 6-7

Q
Queuing and events, 4-33, 4-45

R
Raw 110, 4-23
Register-based devices, 5-4
Register programming

high-level memory functions, 5-6
low-level memory functions, 5-11
mapping memory space, 5-12

Resource attributes, 4-27, B-3
Resource manager, 4-4
Resource manager session, 4-4
Resources

finding, 4-10
locking, 4-51

Running an example program, 2-12,
3-8

s
Searching for resources, 4-10
Serial, attributes, 4-31, B-8
Servers, LAN, 6-8
Sessions

addressing, 4-7
closing, 4-9
device, 4-5
LAN, 6-10
opening, 4-4
resource manager, 4-4

Shared locks, 4-53, 4-54, 4-55
SICL LAN Networking Protocol, 6-7
Signal handling with LAN, 6-17
Special characters, 4-18
srqhdlr. c example, 4-42
SRQs

and events, 4-33
over LAN, 6-18

Starting or stopping the LAN Server,
6-2

Starting the resource manager, 4-4

T
TCP /IP Instrument Networking

Protocol, 6-7
Threads in 32-bit, 6-8
Timeouts with LAN, 6-13
Trapping errors

instrument errors, 4-50
VISA errors, 4-49

Trigger lines, 5-25

lndex·5

Triggers and events, 4-33
Types, VISA, D-2

u
Unmapping memory space, 5-13
Utilities

v

Event Viewer, 2-11
Message Viewer, 2-11

viAssertTrigger, 7-7
viClear, 7-9
viClose, 4-9, 7-11
viDisableEvent, 4-40, 7-13
viDiscardEvents, 7-16
viEnableEvent, 4-39, 4-45, 7-18
viEventHandler, 7-21
VI_EVENT_IO_COMPLETION, 4-35
VI_EVENT_SERVICE_REQ, 4-35
VI_EVENT_TRIG, 4-35
VI_EVENT_VXI_SIGP, 4-35
viFindNext, 4-10, 7-24
viFindRsrc, 4-10, 7-25
viFlush, 4-22, 7-27
viGetAttribute, 4-26, 7-30
viin16, 5-8, 7-32
viin32, 5-8, 7-32
viin8, 5-8, 7-32
viinstallHandler, 4-37, 7-34
viLock, 4-51, 7-36
viMapAddress, 5-12, 5-13, 7-41
viMemAlloc, 7-44
viMemFree, 7-46
viMovein16, 5-8, 7-47
viMovein32, 5-8, 7-47
viMovein8, 5-8, 7-47
viMoveOut16, 5-8, 7-50
viMoveOut32, 5-8, 7-50
viMoveOut8, 5-8, 7-50
viOpen, 4-5, 7-53
viOpenDefaultRM, 4-4, 7-55

lndex-6

vi0ut16, 5-8, 7-57
vi0ut32, 5-8, 7-57
vi0ut8, 5-8, 7-57
viPeek16, 5-13, 7-59
viPeek32, 5-13, 7-59
viPeek8, 5-13, 7-59
viPoke16, 5-13, 7-61
viPoke32, 5-13, 7-61
viPoke8, 5-13, 7-61
viPrintf, 4-14, 7-63
viQueryf, 4-14, 7-71
viRead, 4-23, 7-73
viReadAsync, 4-23, 7-76
viReadSTB, 7-78
VISA

completion codes, C-3
editing configuration, E-2
error codes, C-3
errors, 4-49
HP-UX support, 1-5
interfaces on HP-UX, 1-5
interfaces on Windows, 1-4
other documentation, 1-7
overview, 1-4
programming languages on HP-UX,

1-5
programming languages on

Windows, 1-4
specification, 1-7
trigger lines, 5-25
types, D-2
users, 1-6
Windows support, 1-4

visa.h header file, 4-3
viScanf, 4-14, 7-80
viSetAttribute, 7-87
viSetBuf, 4-22, 7-89
viStatusDesc, 7-91
viTerminate, 7-92
viUninstallHandler, 7-93
viUnlock, 4-51, 7-95

viUnmapAddress, 5-13, 7-97
viVPrintf, 4-14, 7-98
viVQueryf, 4-14, 7-100
viVScanf, 4-14, 7-102
viWaitOnEvent, 4-46, 7-104
viWrite, 4-23, 7-107
viWri teAsync, 4-23, 7-109
VXI

attributes, 4-29, 5-23, B-6
high-level memory functions, 5-5
interface, 5-3
low-level memory functions, 5-11
mapping memory space, 5-12
message-based devices, 5-4
performance, 5-17
programming overview, 5-3
register-based devices, 5-4
register programming, 5-6, 5-11
setting trigger lines, 5-25
writing to registers, 5-13

vxihl. c example, 5-9
vxill. c example, 5-14

w
Wait on event, 4-46
Windows

building applications, 2-6
building DLLs, 2-6
directory structure, A-3
linking to VISA libraries, 2-6

Windows 95
compiling for 16-bit, 2-8
compiling for 32-bit, 2-7
LAN client and threads, 6-8
linking for 16-bit, 2-8
linking for 32-bit, 2-7
logging messages, 2-11
starting or stopping LAN server,

6-2
threads in 32-bit, 6-8

Windows NT
compiling, 2-7
LAN client and threads, 6-8
linking, 2-7
logging messages, 2-11
starting or stopping LAN server,

6-2
threads, 6-8

Writing to VXI registers, 5-13

lndex-7

· F//'09 HEWLETT®
~~PACKARD

Copyright © 1996
Hewlett-Packard Company
Printed in U.S.A. E0996

I lllllll llll lllll lllll lllll llll 1111111111111111111111111111111111
E2090-90032

