
Agilent E1437A

20 MSample/second ADC

with Filters and FIFO

User’s Guide

Agilent Part Number E1437-90002

Printed in U.S.A
Print Date: March 2000, Third Edition

Agilent Technologies, Inc., 1997, 2000. All rights reserved.
8600 Soper Hill Road Everett, Washington 98205-1209 U.S.A.

NOTICE

The information contained in this document is subject to change without notice.

AGILENT TECHNOLOGIES, INC., MAKES NO WARRANTY OF ANY KIND WITH REGARD
TO THIS MANUAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Agilent Technologies
shall not be liable for errors contained herein or direct, indirect, special, incidental or
consequential damages in connection with the furnishing, performance, or use of this
material.

WARRANTY

A copy of the specific warranty terms applicable to your Agilent Technologies product and
replacement parts can be obtained from your local Sales and Service Office.

This document contains proprietary information which is protected by copyright.
All rights are reserved. No part of this document may be photocopied, reproduced or
translated to another language without the prior written consent of Agilent Technologies,
Inc.. This information contained in this document is subject to change without notice.

Use of this manual is restricted to this product only.

© Copyright 1983, 1984, 1985, 1986, 1987, 1988, 2000 Agilent Technologies Inc. .

© Copyright 1979 The Regents of the University of Colorado, a body corporate.

© Copyright 1979, 1980, 1983 The Regents of the University of California.

© Copyright 1980, 1984 AT&T Technologies. All Rights Reserved.

© Copyright 1986, 1987 Sun Microsystems, Inc.

© Copyright 1984, 1985 Productivity Products Intl.

TRADEMARKS

FibreXpressTM is a trademark of Systran Corporation.

TachyonTM is a trademark of Agilent Technologies Inc..

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject restrictions as set forth in
subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause in
DFARS 252.227-7013

Agilent Technologies, Inc.
395 Page Mill Road

Palo Alto, CA 94303-0870 USA

Rights for non-DOD U.S. Government Departments and Agencies are as set forth in FAR
52.227-19(c)(1,2).

Copyright © 1997, 2000 Agilent Technologies, Inc., All rights Reserved.

ii

The E1437A at a Glance

The E1437A 20 Msample/second Analog-to-Digital Converter with Filtering
and Memory provides high precision digitizing for time and frequency
domain applications along with signal conditioning, filtering, and memory.
The module plugs into a single C-size slot in a VXI mainframe.

Number of Channels 1
Type of Input 50 ohm
Input Bandwidth 40 MHz, 8 MHz alias protected
Sample Rate 20 MSamp/sec
Voltage Range 20 mV to 10.24 Vpeak
Raw ADC resolution 23 bits
VXI Bus Support VME and Local Bus
VXI Device type Register/Message based
Size C-sized, single slot

iii

What you get with the E1437A

The following items are included with your E1437A

Hardware:

l E1437A ADC, C-size VXI module
l Software media:

MS-Windows® disks
HP-UX tape

Software:

�MS-Windows disks

l A setup program which installs:
The E1437A VXIplug&play libraries and drivers
The E1437A HP-VEE driver
Soft Front Panel program for the E1437A
Windows online help for the E1437A
HPDSP function library and online help
Example programs
Library and example program source files
Microsoft® Visual Basic header files

� HP-UX tape

l An installation utility which installs:
The E1437A C Interface libraries and drivers
Helpview online help for the E1437A
HPDSP function library and online help
E1485 C library binaries
Example programs
Library and example program source and make files

Documentation:

l E1437A User’s Guide (this book)
l Online manual pages for Windows and HP-UX (Windows Help and Helpview

Help formats)

iv

In This Book

This book documents the E1437A module. It provides:

l installion information
l verification information
l operational information
l a programmer’s reference
l circuit descriptions
l technical specifications

If you plan to use this module with the E1485A/B signal processing module
and the 35635T Programmer’s Toolkit you should also use the
documentation for those products in order to form an application program
development environment.

If you are using your E1437A module in the Windows 3.1®, Windows NT®,
Windows 95®, or HP-UX environment the programmer’s reference and other
programming information are available as online help. The online help may
be more convenient to use while programming. See the “Getting Started”
chapter of this book for information on accessing the online help.

v

TABLE OF CONTENTS

1 Installing the E1437A

Installing the E1437A 1-2

To inspect the E1437A 1-2

To install the E1437A 1-3

To store the module 1-6

To transport the module 1-6

2 Getting Started with the E1437A

Introduction 2-2

To Install the Programmer’s Libraries 2-3
System Requirements (Microsoft Windows) 2-3
System Requirements (HP-UX) 2-3
To install the Windows VXIplug&play drivers for the E1437A
(for Windows 3.1, Windows 95 and Windows NT) 2-4
To install the HP-UX C-language drivers for the E1437A
(for HP-UX systems): 2-5
The Resource Manager 2-5

To Use the Program Group (Windows) 2-6
To Use the VXIplug and play Soft Front Panel (SPF) 2-7
To Use Online Help in Windows 2-10

To Use the Example Programs 2-11
To View the Visual Basic Example Program 2-14
To Use the HP-VEE Example Program 2-15

3 Using the E1437A

Programming the E1437A 3-2
WIN framework 3-2
HP-UX, Series 700 Environment 3-3
C Programming 3-3
ASCII Programming 3-4
Register Programming 3-4

The Measurement loop 3-5
The Measurement Loop in Multi-module systems 3-6

Frequency and Filtering 3-7

vii

Managing multiple modules 3-8
Clock distribution 3-8
Managing Multi-module Systems 3-10
Managing Multi-Mainframe Systems 3-11
Synchronizing Changes in Multi-module Systems 3-12
Synchronous Digital Filter Changes 3-12
Synchronous Center Frequency Changes 3-12

Transferring data 3-13

4 E1437A VXIplug&play Programmer’s Reference

Introduction 4-2

Functions Listed by Functional Group 4-3
Analog Setup 4-4
Data Format 4-4
Debugging 4-5
Digital Processing 4-5
Diagnostics 4-5
Initialization 4-5
Interrupts 4-5
Measurement 4-6
Reading data 4-6
Timing 4-6
Trigger 4-6
Synchronization 4-7

Functions Listed alphabetically 4-8

VXIplug&play Programming Reference 4-11

Visual Basic Quick Reference 4-68

Parameter numeric equivalents 4-71

Errors 4-73

Functions Which Abort Measurements 4-75

5 ASCII Overview and Commands

Introduction 5-2

Command Syntax 5-2
Special Syntactic Elements 5-2
Conventions 5-2

Using ASCII Commands in Your Environment 5-3
Using ASCII commands with HP BASIC 5-3
Using ASCII commands with VISA 5-3

ASCII Programming Reference 5-4

Table of Contents

viii

6 Module Description

Front Panel Description 6-2

VXI Backplane Connections 6-3
Power Supplies and Ground 6-3
Data Transfer Bus 6-3
DTB Arbitration Bus 6-3
Priority Interrupt Bus 6-3
Utility Bus 6-3
Local Bus 6-3
Trigger Lines 6-4

Block Diagram and Description 6-5
Clock Generation 6-6
Input Amplifier 6-6
Anti-alias Filter 6-6
Sampling ADC 6-7
Zoom and Decimation Filtering 6-7
Data Formatting and FIFO Memory 6-8
Data Output 6-8
Trigger Detection 6-9
Control Registers 6-9

7 Verifying the E1437A

To verify the E1437A 7-2

8 Replacing Assemblies

Replaceable Parts 8-2
Ordering Information 8-2
Direct Mail Order System 8-3
Code Numbers 8-3
Assemblies 8-4

To remove the top and bottom covers 8-6

To remove the A1, A2, A3 or the A4 assembly 8-7

To remove the front panel 8-8

To remove the A10 main assembly 8-11

9 Backdating

Backdating 9-2

Table of Contents

ix

Glossary

Index

Need Assistance?

About this Edition

Table of Contents

x

1

Installing the E1437A

1-1

Installing the E1437A

This chapter contains instruction for installing the E1437A VXI ADC Module
and its drivers. This chapter also includes instruction for transporting and
storing the module.

To inspect the E1437A

The E1437A single channel VXI ADC Module was carefully inspected both
mechanically and electrically before shipment. It should be free of marks or
scratches and it should meet its published specifications upon receipt.

If the module was damaged in transit, do the following:

l Save all packing materials.

l File a claim with the carrier

l Call your Hewlett-Packard sales and service office.

E1437A User's Guide
Installing the E1437A

1-2

To install the E1437A

Caution To protect circuits from static discharge, observe anit-static techniques
whenever handling the E1437A VXI ADC Module

1 Set up your VXI mainframe. See the installation guide for your mainframe.

2 Select a slot in the VXI mainframe for the E1437A module
The E1437A module’s local bus receives ECL-level data from the module
immediately to its left and outputs ECL-level data to the module
immediately to its right. Every module using the local bus is keyed to
prevent two modules from fitting next to each other unless they are
compatible. If you will be using the local bus, select adjacent slots
immediately to the left of the data-receiving module. If the VXI bus is
used, maximum data rates will be reduced but the module can be placed
in any available slot.

3 Using a small screwdriver or similar tool, set the logical address configuration
switch on the E1437A.
(See the illustration on the next page.) Each module in the system must
have a unique logical address. The factory default setting is 1100 0000
(192). If an GPIB command module will be controlling the E1437A module,
select an address that is a multiple of 8.

E1437A User's Guide
Installing the E1437A

1-3

E1437A User's Guide
Installing the E1437A

1-4

4 Set the mainframe’s power switch to off (0).

Caution Installing or removing the module with power on may damage components in
the module.

5 Place the module’s card edges (top and bottom) into the module guides in the
slot.

6 Slide the module into the mainframe until the module connects firmly with the
backplane connectors. Make sure the module slides in straight.

7 Attach the module’s front panel to the mainframe chassis using the module’s
captive mounting screws.

E1437A User's Guide
Installing the E1437A

1-5

To store the module

Store the module in a clean, dry, and static free environment

For other requirements, see storage and transport restriction in ‘’Technical
Specifications’’.

To transport the module

l Package the module using the orignal factory packaging or packaging identical
to the factory packaging.

l If returning the module to Hewlett-Packard for service, attach a tag describing
the following:
l Type of service required
l Return address
l Model number
l Full serial number
In any correspondence, refer to the module by model number and full serial
number.

l Mark the container FRAGILE to ensure careful handling.
l If necessary to package the module in a container other than original
packaging, observe the following (use of other packaging is not
recommended):

l Wrap the module in heavy paper of anti-static plastic.
l Protect the front panel with cardboard.
l Use a double-wall carton made of at least 350-pound test material.
l Cushion the module to prevent damage.

Caution Do not use styrene pellets in any shape as packing material for the module. The
pellets do not adequately cushion the module and do not prevent the module
from shifting in the carton. In addition, the pellets create static electricity which
can damage electronic components.

E1437A User's Guide
Installing the E1437A

1-6

2

Getting Started with the
E1437A

2-1

Introduction

This chapter will help you to get your E1437A running and making simple
measurements without programming. It shows you how to install the
software libraries and how to run the Soft Front Panel program. It also
introduces you to example programs.

Two versions of the Host Interface Library are available. One is the
Windows 3.1, Windows 95, and Windows NT Library which communicates
with the hardware using VISA (Virtual Instrument Software Architecture).
VISA is the input-output standard upon which all the VIXplug&play software
components are based. The second version is the HP-UX 9.x C-language
Host Interface Library which uses SICL (the Standard Instrument Interface
Library) to communicate with the E1437 hardware.

Getting Started with the E1437A

2-2

To Install the Programmer’s Libraries

System Requirements (Microsoft Windows)

l An IBM-compatible personal computer.
l Microsoft Windows® 3.1, Microsoft Windows 95®, or Microsoft Windows NT®.
l The computer must have a 3 1/2 inch disk drive for the installation media.

System Requirements (HP-UX)

l One of the following workstations

– An HP/Agilent V743 VXI-embedded workstation.

– A stand-alone HP/Agilent Series 700 workstation with an E1489
EISA-to-MXIbus card and an E1483B VXI-MXI Bus Extender.

l The workstation must have a DAT drive for the installation media.
l HP-UX (version 9.x)
l HP SICL for HP-UX (version C.03.08a or later). The SICL product number is HP

E2091C.

Getting Started with the E1437A

2-3

To install the Windows VXIplug&play drivers for the E1437A
(for Windows 3.1, Windows 95 and Windows NT)

This procedure assumes that you have already installed a VISA (Virtual
Instrument Software Architucture) library. If not, you can still install these
drivers but you will receive an error message reminding you to install the
VISA library.

1 Insert the disk labeled: “Agilent E1437A 20 MSample/sec A-to-D Converter”
2 Run the program: drive:\setup.exe

Where drive represents the drive containing the setup disk.

3 Insert the second disk when prompted
4 The setup program asks you to confirm or change the directory path. The

default directory path is recommended.
5 A dialog box asks if you want to install startup icons

This creates a program group called “HPE1437” which includes:

An icon to run the Soft Front Panel
An icon for the E1437A Online Help file
An icon for the HPDSP Online Help file
An icon for UNINSTALL
Several icons for example programs
An icon for a readme file

6 A readme file may be displayed. If so, be sure to read it and follow the
instructions.

Getting Started with the E1437A

2-4

To install the HP-UX C-language drivers for the E1437A
(for HP-UX systems):

1 Log in as root.
2 Insert the “Agilent E1437A 20 MSample/sec A-to-D Converter” tape into the

tape drive
3 To run the software installation utility interactively type:

/etc/update

See the HP-UX Reference manual for information on the update command.

Be sure to read the README file which contains important information on
installation, viewing online help, and compiling example programs.

The Resource Manager

The Resource Manager is a program from your hardware interface
manufacturer. It looks at the VXI mainframe to determine what modules are
installed. You need to run it every time you power up. If you get the
message: “No HP E1437A can be found in the system.” then run the
Resource Manager.

Before running the E1437A software make sure that your hardware is
configured correctly and that the Resource Manager runs successfully.
Before using your measurement system, you must set up all of its devices,
including setting their addresses and local bus locations. No two devices can
have the same address. Usually addresses 0 and 1 are taken by the
Resource Manager and are not available.

For more information about the Resource Manager, see the documentation
with your hardware interface.

NOTE Most Resource Managers will recognize the manufacturer and model number of
the E1437A but if your interface requires that you enter this information
manually, use the following:
Manufacturer number: 4095 (Hex FFF)
Model number: 534 (Hex 216)

Getting Started with the E1437A

2-5

To Use the Program Group (Windows)

If you chose to install the program group during the installation procedure
you will have an icon for a program group similar to one of the two below,
depending on which Windows platform you use.

This program group contains icons which access the Soft Front Panel
program, online help, and example programs. The following pages provide
an overview of these items.

If you did not choose to install the program group, executable files for each
of the items represented by group icons are available in the drive:\vxipnp
directory and its subdirectories.

Getting Started with the E1437A

2-6

To Use the VXIplug&play Soft Front Panel (SPF)

The the best place to start to explore the capabilities of the E1437A is with
the Soft Front Panel (SFP). The Soft Front Panel can be useful for
checking your system to make sure that is is installed correctly and that all
of its parts are working. It can also be used to make actual measurements,
since it accesses most of the E1437A’s functionality.

Select the E1437 Front Panel icon in your program group to start the SFP.
This assumes you have already installed all required hardware and drivers
(including VISA) and have run the configurator and Resource Manager
required by your hardware interface.

When prompted for the resource descriptor, use the default “VXI::192"
unless the logical address of the E1437 has been changed from its default
setting of 192. If it has been changed then type the appropriate logical
address instead of 192. Press OK.

You can also run the SFP in a simulation mode without an E1437 by
typing “sim” in place of the resource descriptor.

Getting Started with the E1437A

2-7

The buttons at the lower left of the SFP are always accessible and control
various measurement and control functions.

The menu bar at the upper left of the SFP allows you to select pull-down
menus.

Corrects DC offset

Adjusts horizontal display

Moves the marker by the step size value

Pauses the measurement

Continues after a pause

Sets an appropriate range

Adjusts vertical display

Starts a measurement

Takes a single measurement

Moves the marker incrementally

Displays options which copy

data to the clipboard

Allows choice of seven control panels

(see the next page for choices)

Displays HPE1437A online help

(Hint: see the Soft Front Panel Help section

for links to SFP parameter descriptions)

Displays reset options for the module

Getting Started with the E1437A

2-8

The left center section of the SFP is an area for which you may select
various panels to control the measurement and display parameters. These
panels are available as selections from the Control pull-down menu:

Hint: the E1437 online help, available from the SFP Help menu item or
from the program group icon, describes these panels and has links to
functions which control and define many of the parameters.

Getting Started with the E1437A

2-9

To Use Online Help in Windows

The E1437 Help icon accesses the online help file for the E1437A. The
online help includes the programming library as well as general information.

The DSP help icon accesses the online help file for the HPDSP library
functions. These functions may be used to synthesize, resample, or perform
special computations on data generated by the E1437A.

Getting Started with the E1437A

2-10

To Use the Example Programs

Several example programs are included to perform useful tasks for you and
to serve as a basis for your own programs. When you installed your E1437A
Windows or HP-UX libraries and drivers using the setup program or utility,
you also installed executable and source code files for several useful
example programs. The programs demonstrate programming the module
with “C”, Microsoft Visual Basic, and HP-VEE.

The executables for these examples require E1437A and, for Windows,
VXIplug&play support; in other words they will not run in simulation mode
like the E1437 Soft Front Panel program.

Icons for the executables appear in the E1437 Windows program group if
you chose to add it during setup:

In Windows environments executable files and source code for the Microsoft
Visual Basic examples are installed in the
drive:\vxipnp\win[95|NT]\hpe1437\vb40 directory. The VEE examples are in
the ...\hpe1437\vee directory, and “C” examples are in the ...\hpe1437\msc
directory.

In the HP-UX environment executable files and source code for the
C-language examples are installed in /opt/vxipnp/hpux/hpe1437/demo.

The group of programs described here may be supplemented with additional
programs later which will be described in the online help or readme file.

acvolts.exe, acvolts_32.exe, acvolts

This is about the simplest practical complete program using the E1437 and
functions like an AC voltmeter. It is written in Visual Basic and can be run
on Win 3.1 (acvolts.exe), Win95 or WinNT (acvolts_32.exe). It is also
available in C for HP-UX (acvolts).

Getting Started with the E1437A

2-11

ascii.exe, ascii_32.exe, ascii

This example shows how to control the E1437 without using the C-function
library. Since all I/O is performed with ASCII commands and the VXI
message protocol, the speed is substantially reduced. This example still uses
the VISA I/O library to send and receive ASCII commands, however any
environment capable of ASCII I/O to VXI could be used. Users interested in
controlling the E1437 via a command module should look at this example.
The code is written in Visual Basic and can be run on Win 3.1, Win95, or
WinNT.

resamp.exe, resamp_32.exe, resamp

This example shows how to use the resample function included in the
HPDSP library shipped with the E1437. It is written in Visual Basic and
runs on Win 3.1 (resamp.exe), Win95, or WinNT (resamp_32.exe). It is also
available in C for HP-UX (resamp).

multchan.exe, multchan_32.exe, multichan

This example shows how to synchronize two modules to achieve
simultaneous sampling, filter decimation, and matched local oscillator phase.
It is written in Visual Basic and runs on Win 3.1 (multchan.exe), Win95 or
WinNT (multchan_32.exe). It is also available in C for HP-UX (multichan).

bench.exe, bench_32.exe, bench

This performance benchmarking program is really more of a utility than an
example, although source code is provided. It allows users to measure data
transfer rates and command processing times on their system without
having to write new code. The utility is written in Visual Basic and runs on
Win 3.1 (bench.exe), Win95 or WinNT (bench_32.exe). It is also available in
C for HP-UX (bench).

demo

This is a simple non-interactive oscilloscope display and is written in C for
the HP-UX environment only.

interupt.exe

This example shows how to set up and trap a VXI interrupt to indicate an
error condition in the E1437. It is written as a consol program in Microsoft
Visual C++ and runs only on Win95 or WinNT. Source code is installed on
Win 3.1, but no executable is provided.

Getting Started with the E1437A

2-12

scope.vee

This is a simple one-channel example written in VEE. In order to view or
execute it, the VEE programming environment must be installed on the
system. It is not installed on Win 3.1 or HP-UX.

thruput.vee

This VEE example demonstrates how to set up a Local Bus data transfer
from the E1437 to an E1562 data disk module. To use this example the
VEE programming environment and the E1562 driver must be installed on
the system. It is not installed on Win 3.1 or HP-UX.

Getting Started with the E1437A

2-13

The next few pages show the structure and some details of a few of the
example programs

To View the Visual Basic Example Program

The acvolts.vbp project from which the acvolts.exe example program was
created demonstrates how to communicate with the E1437A module in
Visual Basic. The example below shows the open project with an open form
and an open object.

Getting Started with the E1437A

2-14

To Use the HP-VEE Example Program

The scope.vee program demonstrates a simple example of how to use the
E1437A in a HP-VEE program. Load HP-VEE and the scope.vee. You may
run the program to measure a signal and may select input parameter
variables in the boxes provided.

You may also view the detail of the HP-VEE program to see how the
program is structured:

Getting Started with the E1437A

2-15

The view below shows detail within the input setup, meas start and status
get boxes. These are examples of how HP-VEE communicates with the
E1437A module.

Getting Started with the E1437A

2-16

3

Using the E1437A

3-1

Programming the E1437A

The E1437A is shipped with software and documentation to support a broad set of
choices of controllers, I/O interfaces, programming languages, and operating
systems. By virtue of its compliance to the VXIplug&play standard, the E1437A is
most easily controlled in an environment conforming to one of the supported
VXIplug&play frameworks. However, support is also supplied for other common
hardware and software environments. The relationship among the various levels of
programming the E1437A is shown in the diagram below.

WIN framework

The primary development environment supported by the E1437A is the
VXIplug&play WIN, WIN95, and WinNT framework specifications. It requires the
following resources prior to the installation of the E1437A:

• An embedded or a stand-alone IBM compatible PC

• Microsoft Windows 3.1 or higher

• VISA interface library

• VISA compatible hardware interface

• Microsoft Visual C++ and/or Microsoft Visual Basic development system.

Additional details on the WIN framework can be found in the VXIplug&play VPP-2
System Frameworks Specification, Revision 2.0.

In addition to the C source code files, the E1437A includes compiled libraries,
example programs, an interactive soft front panel program, online help files, and an
installation program. The interactive soft front panel program allows the E1437A to
be turned on, verified and used for simple tasks without writing any user programs.

Hardware Registers

Message Interface

C-Function Library

WINHP-UX
Register Programming

ASCII Programming

C Programming
HP-UX

Windows & Visual Basic

E1437A User's Guide
Using the E1437A

3-2

Compliance with the VXIplug&play WIN framework allows users of the HP-VEE
graphical programming system to control the E1437A from that environment. This is
accomplished by the capability of HP-VEE to call functions in the C-library.
Documentation and support for that capability is included with HP-VEE and is not
addressed further in this document.

HP-UX, Series 700 Environment

Although HP-UX will not support an official VXIplug&play framework before
version 10.2, the HP-UX environment is supported for developers who prefer
programming tools provided on the UNIX operating system. The system
requirements include:

• HP/Agilent series 700 workstation

• HP-UX operating system 9.x

• Standard Instrument Control Library (SICL)

• SICL compatible VXI hardware interface

• C-language programming system.

In addition to the source code files, the E1437A includes compiled libraries, example
programs, online help files, and an installation utility.

C Programming

The E1437A is shipped with a source library of C-functions which can be called from
user programs. This elevates the interface above the register level so the
programmer no longer has to be concerned with such things as register addresses
and packing or splitting parameters into 16-bit register lengths. The library includes
ANSI compliant source code files with all machine dependent code constrained to a
single source file. By re-writing selected portions of themachine.h file, the
programmer can create and compile an E1437A library which is compatible with
virtually any development environment using the C language. The most common
reason for re-writing machine.h is to accommodate I/O libraries other than VISA or
SICL. In some cases the library may need merely to be re-compiled to target a
different processor type for the host computer.

Porting the E1437A library to a different computer environment is likely to be a
fairly straight forward task. However, some of the higher level tools shipped with the
E1437A may not be as easily ported. The interactive soft front panel and some
example programs include human interfaces which depend on certain display and
keyboard support which may be system dependent. Although source code is
included for these applications, porting them to a different environment may
present a greater problem than porting the library itself. The installation and online
help utilities are specifically targeted to operate on the supported development
environments and may not be available in other environments.

E1437A User's Guide
Using the E1437A

3-3

ASCII Programming

For programmers familiar with instrument control using ASCII string commands, the
E1437A hardware implements a message based interface using ASCII commands
compatible with the IEEE-488.2 standard. This standard defines the command
syntax which is used by the Standard Commands for Programmable Instruments
(SCPI) specification. For consistency with the new VXIplug&play function
definitions, the E1437A ASCII command set does not use the SCPI commands.

Since the ASCII interpreter is built into the E1437A hardware, no host library is
necessary for ASCII programming. Thus, there is no software to install. There is no
need for a separate interpreter in the host computer (CSCPI or ISCPI). There is no
need to download an interpreter to a separate command module. A key advantage of
ASCII programming is that it can be done in virtually any VXI environment which
supports message based I/O. A disadvantage of ASCII programming is the lack of
host-based tools such as diagnostics and demonstration programs. An additional
disadvantage is the reduction in I/O performance due to the character-based serial
message interface and interpreter.

Register Programming

The lowest level of programming supported by the E1437A allows direct writing and
reading to the binary hardware registers. There is no user-level support for register
programming.

E1437A User's Guide
Using the E1437A

3-4

The Measurement loop

The measurement loop progresses through four states. The transition from one state
to the next is tied to the transition of the SYNC signal. The effect of the SYNC signal
is summarized in the following diagram representing the four possible states of an
E1437 module.

In the Idle state the E1437 places no new data into the FIFO output buffer memory
although previously measured data is retained in the buffer memory and is available
for output via the VME or local bus I/O ports. The module stays in the Idle state until
the SYNC line is asserted.

Upon entering the Arm state the E1437 clears old data and starts saving new data
into its FIFO. It remains in the Arm state until the SYNC signal is released. If an
E1437 is programmed with a pre-trigger delay, it collects enough data samples to
satisfy this pre-trigger delay, and then releases the SYNC line. If no pre-trigger delay
has been programmed, the module releases the SYNC line immediately. When all
E1437s in a system have released the SYNC line the module moves to the Trigger

state.

Upon entering the Trigger state an E1437 continues collecting data into the FIFO,
discarding any data prior to the pre-trigger delay. An E1437 remains in the Trigger
state until the SYNC line is asserted. The SYNC line may be asserted by a direct
command or by any E1437 which encounters a trigger condition and is programmed
to assert the SYNC line. When the SYNC signal is asserted, all modules
synchronously move to the Measure state.

In the Measure state the E1437 continues collecting data and sends the data saved
in the FIFO memory to the selected I/O port, starting with the sample indicated by
the trigger arrival, offset by the trigger delay. This data transfer continues until all
data has been transferred or until the module meets the criteria for returning to the
Idle state imposed by block mode or continuous mode operation constraints.

Modules programmed for block mode operation will assert the SYNC line until a
complete block of data, including any pre-programmed pre- or post-trigger delay,
has been collected and is available to the I/O port. The module then releases the
SYNC line and returns to the Idle state.

IDLE ARM

Measure Trigger

Assert

Release
(Block Mode)

Release

Assert

No data collected
Old data available

Data collected and output

New data collected
Old data cleared

Data collected
Pre-trigger data cleared

E1437A User's Guide
Using the E1437A

3-5

In continuous mode a module releases sync immediately but moves to the Idle
state only if explicitly programmed to do so or if the FIFO data buffer overflows
because data cannot be read from the I/O port fast enough.

The Measurement Loop in Multi-module systems

The following rules generally apply to transitions between states when multiple
modules share a SYNC signal:

l If any one module asserts the SYNC line a synchronous state transition occurs
for all modules in a system.

l All modules in a system must have released the SYNC line in order to bring
about a synchronous transition to Trigger state.

l In block mode each module releases the SYNC line after its block of data has
been collected. After each block mode module has released the SYNC line the
individual module moves to the Idle state.

l Immediately upon entering the Measure state in continuous mode each module
releases the SYNC line but does not move into the Idle state. It continues to
collect and output data until it is programatically signaled to stop or until the
FIFO overflows. With the SYNC line released it is then possible to change the
center frequency for one or multiple modules without interrupting the
measurement. See the section on Synchronizing Changes in Multi-Module
Systems.

l A module may be programmed explicitly to inhibit its transition to the Arm state
despite SYNC transitions.

l In addition to controlling the progression through the four module states, the
SYNC signal is used to synchronize the decimation counters and local oscillators
of multiple E1437 modules.

E1437A User's Guide
Using the E1437A

3-6

Frequency and Filtering

The E1437’s center frequency is normally set at zero (baseband measurement).
However, you may set the center frequency to a non-zero value in order to examine
a narrower span away from baseband (zoom measurement). The frequency band of
interest, represented by digitized time data samples from the ADC, is mixed with
the E1437 digital LO, a complex exponential, at the desired center frequency. As a
result the frequency band of interest in the input signal is shifted to a complex
signal centered around DC. See Synchronizing Changes in Multi-module Systems for
special considerations with respect to changing the center frequency in
multi-module systems.

The default filter for E1437 measurements is an analog anti-alias filter. However,
you may further isolate the frequency band of interest for more detailed analysis by
using digital filtering. A decimating digital filter simultaneously decreases the
bandwidth of the signal and decreases the sample rate. The built-in digital filters
conform to the Nyquist sampling theorem which guarantees that the output sample
rate may be reduced by the same factor as the signal bandwidth reduction while still
maintaining a complete representation of the underlying bandlimited signal.

For each octave step in bandwidth reduction (except for the first octave) the E1437
digital filters automatically reduce the data rate by discarding alternate output
samples. This process, called decimation, results in an output sample rate which is
nominally four times the signal bandwidth whenever sigBw>0. This is still double
the theoretical rate necessary to fully characterize the band limited signal. However,
because the digital filters do not have a perfectly abrupt cutoff, the sample rate
cannot be reduced to the theoretical limit without some aliasing of signals in the
transition frequency band of the filters. In many applications this limited aliasing
potential is not important. For this reason you may optionally choose to apply a final
factor-of-two decimation. See the Technical Specifications for detailed information
on the digital filter shapes.

The decimation process used to reduce the output sample rate is driven from a
“decimation counter” which keeps track of which samples to save and which ones to
discard for each of the octave bandwidth reduction filter stages. In multi-module
systems where synchronous sampling is required, the decimation counters in all the
modules must be synchronous with each other. See Synchronizing Changes in
Multi-module Systems.

E1437A User's Guide
Using the E1437A

3-7

Managing multiple modules

The E1437 supports synchronous operation among multiple E1437s by using a
shared ADC clock and SYNC signal to drive all the modules in a system. The shared
SYNC signal is used to synchronize critical operations including arming, triggering
the beginning of data collection, setting a common phase of the local oscillator for
down conversion, and forcing concurrent output sample times whenever decimation
is used. The SYNC line transitions are constrained to not occur during the critical
(setup and hold) regions of the shared ADC clock. Thus, all modules in the group
can be assured of receiving the SYNC signal on exactly the same ADC clock cycle.
The following topics provide details on sharing clock and SYNC signals:

Clock distribution

When shared, the ADC clock and SYNC lines are distributed among modules either
on the VXI backplane using the ECL Trigger lines, or on the front panel using the
SMB Clock/Sync extender connectors. When VXI backplane distribution is used with
more than one VXI mainframe, the front panel Clock/Sync connectors can be used
to buffer the ADC clock and SYNC lines from one mainframe to another.

Since the SYNC transition timing relative to the ADC clock edges is critical, the
module driving the SYNC line should ideally be the same one identified as the
master. However, when using backplane distribution, any E1437 in the same
mainframe as the master can drive the SYNC line.

E1437A User's Guide
Using the E1437A

3-8

When using the multi-sync mode of operation, the selection of front panel or
backplane distribution of ADC clock and SYNC signals involves the following
considerations:

• Backplane distribution requires the use of the ECL Trigger lines on the
backplane, which are then unavailable to other modules.

• The overall time skew between the arrival of ADC clock edges is smaller when
using backplane distribution, particularly if the master (or buffer) module is
physically located in the center of the mainframe.

• Backplane distribution is more susceptible to pickup of jitter on the ADC clock
from other digital activity on the VXI backplane. The extent of this pickup
depends on the mainframe and on the other modules in the mainframe. One
important step in reducing this pickup is to disable, whenever possible, the 10
MHz VXI clock generated by the slot-0 controller.

• For backplane distribution make sure that all modules conform to VXI
specification 1.4 or later with regard to their attachment to the ECL Trigger
lines. See the Technical Specifications for the clock jitter (phase noise)
specification degradation using backplane distribution.

• Front panel distribution requires the use of two short, relatively well matched
cables with SMB connectors between modules. In addition, unused SMB
connectors on modules being used for front panel distribution must be
terminated in 50 ohms.

E1437A User's Guide
Using the E1437A

3-9

Managing Multi-module Systems

Source: N/A
Master: Off
SYNC: Front

Source: N/A
Master: Off
SYNC: Front

Sl
ot

0
Co

nt
ro

lle
r

Source: Internal
Master: On
SYNC: Front

Source: N/A
Master: Off
SYNC: Front

Sharing clock and SYNCamong several
modules via front panel distribution.

Source: Internal
Master: On
SYNC: Front

Source: N/A
Master: Off
SYNC: Front

Sl
ot

0
Co

nt
ro

lle
r

Source: External/PLL
Master: On
SYNC: Front

Source: N/A
Master: Off
SYNC: Front

ADCclock and SYNCdistribution using
front panel SMB clock and SYNC

extender connections.

External clock and SYNCdistribution using
front panel SMB clock and SYNC

extender connections.

Sl
ot

0
Co

nt
ro

lle
r

Source: Internal
Master: On
SYNC: Rear

Source: N/A
Master: Off
SYNC: Rear

Sl
ot

0
Co

nt
ro

lle
r

Source: External/PLL
Master: On
SYNC: Rear

Source: N/A
Master: Off
SYNC: Rear

ADCclock and SYNCdistribution
using VXI backplane ECL trigger lines.

External clock and SYNCdistribution
using VXI backplane ECL trigger lines.

Backplane Backplane

Sl
ot

0
Co

nt
ro

lle
r

E1437A User's Guide
Using the E1437A

3-10

Managing Multi-Mainframe Systems

Source: NA
Master: Off
SYNC: Front

Source: Internal
Master: On
SYNC: Front

Sl
ot

0
Co

nt
ro

lle
r

Source: N/A
Master: Off
SYNC: Front

Source: N/A
Master: Off
SYNC: Front

VXI Mainframe A VXI Mainframe B
Clock and SYNCdistribution using front panel

extender connections within and between mainframes.

Source: NA
Master: Off
SYNC: Rear

Source: External/PLL
Master: On
SYNC: Rear

Sl
ot

0
Co

nt
ro

lle
r

Source: N/A
Master: Buffer

SYNC: Rear

Source: N/A
Master: Off
SYNC: Rear

VXI Mainframe A VXI Mainframe B

Backplane Backplane

Clock and SYNCdistribution using VXI backplane lines
within mainframes and using front panel extender

connections between mainframes.

Source: NA
Master: Off
SYNC: Rear

Source: External/PLL
Master: On
SYNC: Rear

Sl
ot

0
Co

nt
ro

lle
r

Source: N/A
Master: Buffer

SYNC: Rear

Source: N/A
Master: Off
SYNC: Rear

VXI Mainframe A VXI Mainframe B

Backplane Backplane

Source: N/A
Master: Buffer

SYNC: Rear

Source: N/A
Master: Off
SYNC: Rear

VXI Mainframe C

Backplane

Three or more mainf rames with clock and SYNC dist ribut ion using VXI

backplane lines within mainf rames and using f ront panel extender

connect ions between mainf rames.

E1437A User's Guide
Using the E1437A

3-11

Synchronizing Changes in Multi-module Systems

Multi-module systems require special treatment with respect to timing of frequency
and filter changes. Center frequency changes may involve synchronizing the local
oscillators of all modules in a system. Digital filters changes in multi-module systems
require that the decimation counters be synchronized.

Synchronous Digital Filter Changes

In multi-module systems where synchronous sampling is required, the decimation
counters in all the modules must be synchronous with each other. This condition
can be forced by preparing each module in the system in advance. Any
measurement in progress is terminated at this time and the module is placed in the
Idle state. After each module is prepared, the next SYNC line transition causes the
digital decimation counter to be reset and started at the same time. Once this is
done the decimation counters will stay synchronized as long as the same ADC clock
is used.

If you also intend to change the center frequency along with the digital filters, you
should synchronize the digitial filters first. Otherwise the center frequency phase
becomes unsynchronized when the digital filters are changed.

Synchronous Center Frequency Changes

In multi-module systems you may prepare each module in advance of a frequency
change, then perform the change synchronously by asserting the SYNC line. This
preserves the phase relationship of the local oscillators for all modules in the
system. Certain special considerations apply to multi-module frequency changes:

• If all modules in a system are in the Idle state when the SYNC line transition
occurs, the LO frequency will be updated and the next measurement will be
armed.

• If all modules are in the measurement state in continuous mode when the SYNC
line transition occurs, the LO frequency will be synchronously updated, and the
measurement will continue.

• In continuous mode care must be taken to assure that all modules are in the
same state, either the Idle state or the Measure state, before the SYNC line
transition occurs, otherwise some modules will re-arm while others will continue
the current measurement.

• In block mode the SYNC line transition will be ignored unless all modules are
currently in the Idle state.

• If you also intend to change the digital filters along with the center frequency,
you should synchronize the digitial filters first. Otherwise the center frequency
phase becomes unsynchronized when the digital filters are changed.

E1437A User's Guide
Using the E1437A

3-12

Transferring data

You can transfer data from the E1437 two different ways.

• The VMEbus is the universal data bus for VXI architecture. It provides flexibility
and versatility in transferring data. Transfers over the VMEbus are 16 bits wide.

• The Local Bus supports faster transfer rates than the VMEbus. For example, if
you are transferring data from the E1437 to the HP/Agilent E1485A/B, the Local
Bus provides a direct pipeline to the HP/Agilent E1485’s DSPs.
Using the Local Bus, you can transfer data in the background while
processing data in a signal-processing module. All Local Bus data transfers
originate in the E1437 and move towards a signal processing module to the
right of the E1437. If other modules generate data to the left of the input
module, the E1437 will pass the data to its right and insert or append its own
data at the beginning or end of the frame.

E1437A User's Guide
Using the E1437A

3-13

4

E1437A VXIplug&play
Programmer’s Reference

4-1

Introduction

The programmer’s reference is presented as a set of VXIplug&play functions since
this is the primary targeted environment. However, when you performed the setup
for the E1437A, drivers were installed to support various programming
environments as described in the Programing Overview section in the “Using the
E1437A” chapter.

The function descriptions in the programmer’s reference are valid for all
environments except ASCII, which is treated in a separate chapter. Be sure to follow
the instructions in the “Getting Started” chapter to assure proper installation and to
become aware of the capabilities of your E1437A software in various programming
environments. You will find the example programs particularly helpful for
programming in different environments.

Many of the function descriptions in the programming reference include several
related functions. You may use the primary function to set all related parameters or
you may use the other functions within the group to set or query a single parameter.

Parameter variables are presented as alphanumeric values which are descriptive and
easy to remember. However, for faster programming you may use the numeric
equivalents for the parameter variables listed at the end of this chapter. The
numeric equivalents are available as popups in the online help, a good reason to use
the online help, if it is available in your environment, rather than this printed
document.

Unless noted otherwise, all functions in this library return 0 if they complete
succesfully and a non-zero integer if they fail. Always check the the return value and
take appropriate action. The error descriptions are listed at the end of this chapter
and in the online help.

E1437A User's Guide
Introduction

4-2

Functions Listed by Functional Group

The following pages have the programming functions grouped by related functions.
The a brief description of each group follows:

l Initializing the E1437:
You must first initialize the I/O driver and set up each module.

l Configuring the Analog Inputs:
The functions in this group determine how the analog input section is
configured.

l Formatting Data:
An E1437 can collect either real or complex data in 16-bit or 32-bit format. It
can collect data into various blocksizes or in a continuous mode. This data can
be transferred either on the VXI backplane of over the Local Bus. You can
append status information to each block of data indicating ADC overloads or
ADC errors during the block.

l Configuring Digital Processing:
The decimation filter provides bandpass filtering and decimation capabilities.
You may also select limited frequency spans away from baseband.

l Controlling Measurements:
These functions initiate or terminate the measurement loop.

l Timing:
The clock signals for the ADC sample clock and DSP decimation and zoom can
be set from a variety of sources. One E1437 can be enabled to drive the sample
clock line on the VXI backplane or front panel to enable synchronization of
multiple E1437s.

l Triggering:
These functions set all parameters associated with triggering the beginning of
data collection.

l Controlling Multiple Modules:
These functions support synchronous operation among multiple E1437s by
using a shared ADC clock and SYNC signal to drive all the modules in a system.

l Reading Data:
These functions read data from either the VME or the Local Bus data port. This
data can optionally be scaled and converted to floating point.

l Programming Interrupts:
The E1437 can be programmed to interrupt via the VXI backplane whenever
certain status conditions are present.

l Debugging your Program:
Error messages allow you to identify program problems.

l Diagnostics:
Hardware diagnostic routines verify correct hardware operation of the E1437.

E1437A User's Guide
Functions Listed by Functional Group

4-3

Analog Setup

hpe1437_input_setup - sets all the analog input parameters

hpe1437_input_alias_filter - include/bypasse the built-in analog anti-alias filter

hpe1437_input_alias_filter_get - gets the anti-alias filter state

hpe1437_input_autozero - nulls out the input DC offset

hpe1437_input_coupling - selects AC or DC input coupling

hpe1437_input_coupling_get - get the input coupling type

hpe1437_input_float - enables/disables floating the input connector

hpe1437_input_float_get - gets the input connector state

hpe1437_input_range - sets the full scale range

hpe1437_input_range_auto - performs auto-ranging

hpe1437_input_range_get - gets the input range

hpe1437_input_signal - include/bypass the input buffer amplifier

hpe1437_input_signal_get - gets the input buffer amplifier state

Data Format

hpe1437_data_ -sets all format and data output flow parameters

hpe1437_data_append_status - enables/disables appending status information to a data
block

hpe1437_data_append_status_get - gets the append status state

hpe1437_data_blocksize - determines the size of the output data block

hpe1437_data_blocksize_get - gets the output data block size

hpe1437_data_memsize_get - returns module’s memory size

hpe1437_data_mode - selects block mode or continuous mode

hpe1437_data_mode_get - gets the data mode

hpe1437_data_port - selects VME bus or local bus transmission

hpe1437_data_port_get - gets the output port designation

hpe1437_data_resolution - selects 16 or 32 bits data resolution

hpe1437_data_resolution_get - gets the data resolution

hpe1437_data_type - selects real or complex output data

hpe1437_data_type_get - gets output data type

hpe1437_lbus_mode - sets the transmission mode of the local bus

hpe1437_lbus_mode_get - gets the local bus mode

hpe1437_lbus_reset - resets local bus mode

hpe1437_lbus_reset_get - gets the local bus mode reset state

E1437A User's Guide
Functions Listed by Functional Group

4-4

Debugging

hpe1437_error_message - returns error information obtained from function calls

hpe1437_error_query - queries the module for the most recent error

hpe1437_revision_query - returns strings that identify the date of the firmware revision.

hpe1437_status_get - retreives module’s status register information

Digital Processing

hpe1437_filter_setup - sets the digital filter bandwidth and decimation filter parameters

hpe1437_filter_bw - selects a signal filter bandwidth

hpe1437_filter_bw_get - gets the signal filter bandwidth

hpe1437_filter_decimate - enables/disables and extra factor of 2 decimation

hpe1437_filter_decimate_get - gets current state of extra decimation

hpe1437_filter_resp_get - returns the module’s complex frequency response.

hpe1437_filter_sync - synchronizes the decimation filter counter

hpe1437_frequency_setup - sets all center frequency parameters

hpe1437_frequency_center - sets the center frequency

hpe1437_frequency_center_get - gets the current center frequency

hpe1437_frequency_center_raw - A fast way to set the center frequency

hpe1437_frequency_cmplxdc - selects a complex baseband measurement

hpe1437_frequency_cmplxdc_get - gets the state of the baseband measurement mode

hpe1437_frequency_sync - prepares the module for a synchronous frequency change

hpe1437_frequency_sync_get - gets the state of the synchronus change mode

Diagnostics

hpe1437_self_test - performs a self-test on the module and returns the result

Initialization

hpe1437_init - initializes the I/O driver for a module

hpe1437_close - closes the module’s software connection

Interrupts

hpe1437_attrib_get - allows direct access to the I/O library functions

hpe1437_interrupt_setup - sets all interrupt parameters

hpe1437_interrupt_mask_get - gets the interrupt event mask

hpe1437_interrupt_priority_get - gets the VME interrupt line

hpe1437_interrupt_restore - restores the interrupt masks to the most recent setting

Measurement

hpe1437_meas_control - initiates and controls measurements in multi-module systems

hpe1437_meas_start - initiates measurements in single module systems

hpe1437_reset - places the module in a known state

E1437A User's Guide
Functions Listed by Functional Group

4-5

Reading data

hpe1437_data_scale_get - gets data scale factor

hpe1437_read - reads scaled 32-bit float data from FIFO

hpe1437_read64 - reads scaled 64-bit float data from FIFO, specifically for VEE
applications

hpe1437_read_raw - - reads raw data from FIFO

Timing

hpe1437_clock_setup - sets all timing parameters

hpe1437_clock_dsp - selects the clock used to drive the decimation/zoom section

hpe1437_clock_dsp_get - gets the current decimation clock source

hpe1437_clock_fs - provides the frequency of an external sample clock

hpe1437_clock_fs_get - gets the current external sample clock frequency

hpe1437_clock_master - determines whether a module drives the VXI clock line with its
ADC clock

hpe1437_clock_master_get - gets the module’s clock master state

hpe1437_clock_multi_sync - specifies whether the module uses a shared clock and sync

hpe1437_clock_multi_sync_get - gets the module’s current shared clock and sync state

hpe1437_clock_source - selects the source of the ADC clock

hpe1437_clock_source_get - gets the ADC clock source

Trigger

hpe1437_trigger_setup - sets all parameters associated with triggering the beginning of
data collection

hpe1437_trigger_adclevel - specifies the threshold for the ADC trigger

hpe1437_trigger_adclevel_get - gets the trigger threshold

hpe1437_trigger_delay - specifies a pre- or post-trigger delay time

hpe1437_trigger_delay_get - gets the trigger delay time

hpe1437_trigger_delay_actual_get - gets the actual delay time from the most recent
trigger event

hpe1437_trigger_gen - determines whether a module can generate a trigger

hpe1437_trigger_gen_get - gets the trigger generation status

hpe1437_trigger_maglevel - specifies the threshold for a magnitude trigger

hpe1437_trigger_maglevel_get - gets magnitude trigger threshold

hpe1437_trigger_phase_actual_get - gets the actual trigger phase from the most recent
trigger event

hpe1437_trigger_phase_capture - Allows LO phase capture in frequency-synchronized,
multi-module zoom measurements.

hpe1437_trigger_slope - selects a positive or negative trigger

hpe1437_trigger_slope_get - gets trigger slope

hpe1437_trigger_type - determines the trigger type

hpe1437_trigger_type_get - gets trigger type

E1437A User's Guide
Functions Listed by Functional Group

4-6

Synchronization

hpe1437_clock_master - determines whether a module drives the VXI clock line with its
ADC clock

hpe1437_clock_master_get - gets the module’s clock master state

hpe1437_clock_multi_sync - specifies whether the module uses a shared clock and sync

hpe1437_clock_multi_sync_get - gets the module’s current shared clock and sync state

hpe1437_clock_source - selects the source of the ADC clock

hpe1437_clock_source_get - gets the ADC clock source

hpe1437_filter_sync - synchronizes the decimation filter counter

hpe1437_frequency_sync - prepares the module for a frequency change

hpe1437_meas_control - synchronizes arming and triggering in multi-module systems

hpe1437_trigger_gen - determines whether a module can generate a trigger

hpe1437_trigger_gen_get - gets the trigger generation status

hpe1437_wait - facilitates the synchronization and control of multi-module systems

E1437A User's Guide
Functions Listed by Functional Group

4-7

Functions Listed alphabetically

hpe1437_attrib_get - allows direct access to the I/O library functions

hpe1437_clock_dsp - selects the clock used to drive the decimation/zoom section

hpe1437_clock_dsp_get - gets the current decimation clock source

hpe1437_clock_fs - provides the frequency of an external sample clock

hpe1437_clock_fs_get - gets the current external sample clock frequency

hpe1437_clock_master - determines whether a module drives the VXI clock line with its
ADC clock

hpe1437_clock_master_get - gets the module’s clock master state

hpe1437_clock_multi_sync - specifies whether the module uses a shared clock and sync

hpe1437_clock_multi_sync_get - gets the module’s current shared clock and sync state

hpe1437_clock_setup - sets all timing parameters

hpe1437_clock_source - selects the source of the ADC clock

hpe1437_clock_source_get - gets the ADC clock source

hpe1437_close - closes the module’s software connection

hpe1437_data_append_status - enables/disables appending status information to a data
block

hpe1437_data_append_status_get - gets the append status state

hpe1437_data_blocksize - determines the size of the output data block

hpe1437_data_blocksize_get - gets the output data block size

hpe1437_data_memsize_get - returns module’s memory size

hpe1437_data_mode - selects block mode or continuous mode

hpe1437_data_mode_get - gets the data mode

hpe1437_data_port - selects VME bus or local bus transmission

hpe1437_data_port_get - gets the output port designation

hpe1437_data_resolution - selects 16 or 32 bits data resolution

hpe1437_data_resolution_get - gets the data resolution

hpe1437_data_scale_get - gets data scale factor

hpe1437_data_ -sets all format and data output flow parameters

hpe1437_data_type - selects real or complex output data

hpe1437_data_type_get - gets output data type

hpe1437_error_message - returns error information obtained from function calls

hpe1437_error_query - queries the module for the most recent error

hpe1437_filter_bw - selects a signal filter bandwidth

hpe1437_filter_bw_get - gets the signal filter bandwidth

hpe1437_filter_decimate - enables/disables and extra factor of 2 decimation

hpe1437_filter_decimate_get - gets current state of extra decimation

hpe1437_filter_resp_get - returns the module’s complex frequency response.

hpe1437_filter_setup - sets the digital filter bandwidth and decimation filter parameters

E1437A User's Guide
Functions Listed alphabetically

4-8

hpe1437_filter_sync - synchronizes the decimation filter counter

hpe1437_frequency_center - sets the center frequency

hpe1437_frequency_center_get - gets the current center frequency

hpe1437_frequency_center_raw - A fast way to set the center frequency

hpe1437_frequency_cmplxdc - selects a complex baseband measurement

hpe1437_frequency_cmplxdc_get - gets the state of the baseband measurement mode

hpe1437_frequency_setup - sets all center frequency parameters

hpe1437_frequency_sync - prepares the module for a synchronous frequency change

hpe1437_frequency_sync_get - gets the state of the synchronus change mode

hpe1437_init - initializes the I/O driver for a module

hpe1437_input_alias_filter - include/bypass the built-in analog anti-alias filter

hpe1437_input_alias_filter_get - gets the anti-alias filter state

hpe1437_input_ - nulls out the input DC offset

hpe1437_input_coupling - selects AC or DC input coupling

hpe1437_input_coupling_get - get the input coupling type

hpe1437_input_float - enables/disables floating the input connector

hpe1437_input_float_get - gets the input connector state

hpe1437_input_range - sets the full scale range

hpe1437_input_range_auto - performs auto-ranging

hpe1437_input_range_get - gets the input range

hpe1437_input_setup - sets all the analog input parameters

hpe1437_input_signal - include/bypass the input buffer amplifier

hpe1437_input_signal_get - gets the input buffer amplifier state

hpe1437_interrupt_mask_get - gets the interrupt event mask

hpe1437_interrupt_priority_get - gets the VME interrupt line

hpe1437_interrupt_restore - restores the interrupt masks to the most recent setting

hpe1437_interrupt_setup - sets all interrupt parameters

hpe1437_lbus_mode - sets the transmission mode of the local bus

hpe1437_lbus_mode_get - gets the local bus mode

hpe1437_lbus_reset - resets local bus

hpe1437_lbus_reset_get - gets the current local bus reset state

hpe1437_meas_control - initiates and controls measurements in multi-module systems

hpe1437_meas_start - initiates measurements in single module systems

hpe1437_read - reads scaled 32-bit float data from FIFO

hpe1437_read64 - reads scaled 64-bit float data from FIFO, specifically for VEE
applications

hpe1437_read_raw - - reads raw data from FIFO

hpe1437_reset - places the module in a known state

hpe1437_revision_query - returns strings that identify the date of the firmware revision

hpe1437_self_test - performs a self-test on the module and returns the result

hpe1437_status_get - retreives module’s status register information

E1437A User's Guide
Functions Listed alphabetically

4-9

hpe1437_trigger_adclevel - specifies the threshold for the ADC trigger

hpe1437_trigger_adclevel_get - gets the ADC trigger threshold

hpe1437_trigger_delay - specifies a pre- or post-trigger delay time

hpe1437_trigger_delay_get - gets the trigger delay time

hpe1437_trigger_delay_actual_get - gets a representation of the phase value of the LO
at the trigger point

hpe1437_trigger_gen - determines whether a module can generate a trigger

hpe1437_trigger_gen_get - gets the trigger generation status

hpe1437_trigger_maglevel - specifies the threshold for a magnitude trigger

hpe1437_trigger_maglevel_get - gets magnitude trigger threshold

hpe1437_trigger_phase_actual_get - gets the actual trigger phase from the most recent
trigger event

hpe1437_trigger_phase_capture - Allows LO phase capture in frequency-synchronized,
multi-module zoom measurements.

hpe1437_trigger_setup - sets all parameters associated with triggering the beginning of
data collection

hpe1437_trigger_slope - selects a positive or negative trigger

hpe1437_trigger_slope_get - gets trigger slope

hpe1437_trigger_type - determines the trigger type

hpe1437_trigger_type_get - gets trigger type

hpe1437_wait - facilitates the synchronization and control of multi-module systems

E1437A User's Guide
Functions Listed alphabetically

4-10

VXI plug&play Programming Reference

E1437A User's Guide
VXI plug&play Programming Reference

4-11

hpe1437_attrib_get

Allows direct access to the I/O library functions.

VXIplug&play Syntax #include “hpe1437.h”

ViStatus hpe1437_attrib_get(ViSession id, ViInt16 attrib, ViPint32 value);

Description hpe1437_attrib_get is used primarily to manage the use of interrupts. Since interrupts
are a shared resource across all modules using the VXI interface, it is not possible for
the E1437 library, which governs single modules, to provide the functions to properly
manage interrupts.

This function is used to access either the I/O library handle or the mapped I/O base
address of the module. You should refer to the appropriate VISA or SICL
documentation for descriptions of the I/O library functions.

Parameters id is the VXI instrument session pointer returned by the hpe1437_init function.

attrib designates the type of attribute to return. HPE1437_IO_HANDLE accesses the
I/O library handle. HPE1437_IO_ADDRESS points to the mapped I/O base address of
the module. HPE1437_RM_HANDLE accesses the I/O library handle of the default
resource manager. HPE1437_DATA_REGISTER points to the mapped address of the
E1437 data register. One or both of these parameters are used when calling I/O library
functions directly.

value is the value of the requested attribute. For a VTL/VISA I/O library the value of the
handle attribute corresponds to the vi parameter used by the majority of the I/O
functions. For the SICL I/O library the handle is equivalent to the session parameter
used by the majority of the I/O functions. In the case of SICL the long handle value
should be cast to a short in order to be type compatible with the SICL session. The
address attribute points to the base of the mapped I/O address space, regardless of
which underlying I/O library is used.

Effect on Active
Measurement

This command does not abort any measurement in progress.

See Also hpe1437_init, hpe1437_interrupt_setup

E1437A User's Guide
VXI plug&play Programming Reference

4-12

hpe1437_clock_setup

hpe1437_clock_setup sets all timing parameters. This description also includes
information on the following functions which set or query the timing parameters
individually:

hpe1437_clock_dsp selects the clock used to drive the decimation/zoom section.

hpe1437_clock_dsp_get gets the current decimation clock source

hpe1437_clock_fs provides the frequency of an external sample clock.

hpe1437_clock_fs_get gets the current external sample clock frequency

hpe1437_clock_master determines whether a module shares its ADC clock.

hpe1437_clock_master_get gets the module’s clock master state

hpe1437_clock_multi_sync specifies whether the module uses a shared clock and
sync

hpe1437_clock_multi_sync_get gets the module’s current shared clock and sync state

hpe1437_clock_source selects the source of the ADC clock

hpe1437_clock_source_get gets the ADC clock source

VXIplug&play Syntax #include “hpe1437.h”

ViStatus hpe1437_clock_setup(ViSession id, ViInt16 sync, ViInt16 source, ViInt16
dsp, ViInt16master, ViReal64 fs);

ViStatus hpe1437_clock_dsp(ViSession id, ViInt16 dsp);

ViStatus hpe1437_clock_dsp_get(ViSession id, ViPInt16 dspPtr);

ViStatus hpe1437_clock_fs(ViSession id, ViReal64 fs);

ViStatus hpe1437_clock_fs_get(ViSession id, ViPReal64 fsPtr);

ViStatus hpe1437_clock_master(ViSession id, ViInt16master);

ViStatus hpe1437_clock_master_get(ViSession id, ViPInt16masterPtr);

ViStatus hpe1437_clock_multi_sync(ViSession id, ViInt16 sync);

ViStatus hpe1437_clock_multi_sync_get(ViSession id, ViPInt16 syncPtr);

ViStatus hpe1437_clock_source(ViSession id, ViInt16 source);

ViStatus hpe1437_clock_source_get(ViSession id, ViPInt16 sourcePtr);

Description hpe1437_clock_setup is used to configure all timing parameters used for sampling
(ADC clock) and decimation/zoom (DSP clock). This function, as well as the other
hpe1437_clock_ functions covered in this description, is used to select the source and
distribution of clocking and synchronization signals used by the E1437 module. The
primary clock signal used by the module is the ADC clock, for which the rising edges
indicate the time for each sample of the analog-to-digital converter. Another clock
signal is the DSP clock, which drives the digital signal processing and memory sections
of the module. Normally the DSP clock is the same as the ADC clock, and data is
transferred synchronously from the ADC to the DSP portion of the module. However, in
certain situations the two clocks may be independent, requiring asynchronous data
transfers from the ADC to the DSP. The remaining hpe1437_clock_ functions listed
above set or query the parameters individually.

E1437A User's Guide
VXI plug&play Programming Reference

4-13

Parameters id is the VXI instrument session pointer returned by the hpe1437_init function.

sync is used to specify whether the module uses a shared ADC clock and SYNC signal.
If the sync parameter is set to HPE1437_OFF the ADC clock and SYNC are generated
locally. If sync is set to HPE1437_REAR the module uses the shared ADC clock and
SYNC signals which are distributed on the VXI backplane using the ECL trigger lines. If
sync is set to HPE1437_FRONT the module uses the shared clock and SYNC provided
on the front panel distribution connectors. Modules in multi-module systems must all
have the same sync parameter setting.

syncPtr contains the current value of the sync parameter.

source selects the clock source that is used to drive the analog to digital converter
(ADC) for single module operation or when a module is used as the master ADC clock
source for a multi-module system. When set to HPE1437_20000KHZ the clock source
is the internal 20 MHz oscillator. When set to HPE1437_20480KHZ the clock source is
the internal 20.48 MHz oscillator. HPE1437_EXTERNAL selects the TTL, ECL, or sine
signal on the external BNC front panel clock input connector. When using an external
clock the fs parameter is used to provide the module with the frequency of the external
clock. HPE1437_EXT_PLL_REF takes a 10 MHz reference from another instrument
on the external BNC front panel clock input connector and uses a PLL to convert it to a
20 MHz reference. In multi-module systems the source parameter is ignored for all but
the master module.

sourcePtr contains the current value of the source parameter.

dsp selects the clock used to drive the decimation/zoom section within the E1437.
Normally, the DSP clock should be coupled to the ADC clock whenever possible since
the spurious performance specification is degraded when the clocks are independent.
However, when a slow or intermittent ADC clock results in greater than 1 µs between
clock edges, the DSP clock must be generated from the internal oscillator to avoid data
loss in the dynamic RAM. Setting this parameter to HPE1437_ADC forces the DSP
clock to be driven by the ADC clock. HPE1437_OSCILLATOR will cause the DSP
clock to be the internally generated 20.48 MHz oscillator. Note that the computed
results will be the same in either case.

dspPtr contains the current value of the dsp parameter.

master determines whether an E1437 makes its local ADC clock available to other
modules as a shared clock. Multi-module synchronization requires one and only one of
the modules to be identified as the master, that is, the source of the shared ADC clock.
Setting this parameter to HPE1437_ON when sync = HPE1437_FRONT causes the
E1437 to drive the front panel ADC clock; or if sync = HPE1437_REAR causes the
module to use its ADC clock to drive the VXI backplane in the mainframe in which it
resides. HPE1437_OFF means that the E1437 is driving neither the front panel nor the
backplane and is the correct variable to use for all non-master modules in a
multi-module system. Setting this parameter to HPE1437_BUFFER allows the ADC
clock and SYNC lines from the module’s front panel connectors to drive the backplane
of a mainframe not containing the master. Only one module per mainframe may be set
to ON or to BUFFER. In multi-module and multi-mainframe systems only one module
may be set to ON within the entire system. In multi-mainframe systems using backplane
clock and sync distribution only one module per any mainframe not containing the
master may be set to BUFFER.

masterPtr contains the current value of themaster parameter.

E1437A User's Guide
VXI plug&play Programming Reference

4-14

fs provides the module with the frequency of an external sample clock (from >0 to
20600000) connected to the Ext Clk TTL connector. When using an external clock or
when a module is a non-master in a multi-module group, the frequency of the ADC
clock is unknown by the module. It is the responsibility of the programmer to provide
the correct frequency so that library functions dependent on fs will operate properly.
This value has no effect if the module is set up to use the internal ADC clock.

fsPtr contains the current value of the sample clock frequency. If the E1437 is set to
the internal ADC clock, the value of that clock frequency is returned. If the E1437 is set
to the external clock, the last value entered via the hpe1437_clock_fs function is
returned.

Comments For more details on the interaction among source,master, and sync with multiple
modules and multiple mainframes see Managing multiple modules.

Themaster, sync, source, and dsp parameters are interdependent with legitimate
combinations being as follows (along with the resultant DSP clock rates):

E1437A User's Guide
VXI plug&play Programming Reference

4-15

==

MASTER SYNC SOURCE DSP DSP CLOCK RATE

==

N/A OFF 20.x N/A Internal Source

N/A OFF EXT ADC External Source

N/A OFF EXT OSC 20.48

N/A OFF EXT_PLL N/A 20

OFF|BUFFER FRONT N/A ADC Master ADC

OFF|BUFFER FRONT N/A OSC 20.48

OFF REAR N/A ADC Master ADC

OFF REAR N/A OSC 20.48

ON FRONT 20.x N/A Internal Source

ON FRONT EXT ADC External Source

ON FRONT EXT OSC 20.48

ON FRONT EXT_PLL N/A 20

ON REAR 20.x N/A Internal Source

ON REAR EXT ADC External Source

ON REAR EXT OSC 20.48

ON REAR EXT_PLL N/A 20

BUFFER REAR N/A ADC Master ADC

BUFFER REAR N/A OSC 20.48

__

The maximum rate at which data may be transferred to memory is determined by
the DSP clock rate: Max bytes/s = 4 × DSP clock rate. In continuous mode the
maximum rate is limited to (4 × DSP clock rate) ÷ 2. However, you may successfully
perform this type of measurement by adding a level of decimation to reduce the
sample rate.

If fs>20480000 then dsp must=ADC.

Example The programmultichan.exe described in Example Programs provides an example of
how to correctly set up a multi-module system with synchronous clocks.

Reset Values

sync OFF

source 20480KHZ

dsp ADC

master OFF

fs 20.48 e6

Effect on Active
Measurement

Commands in this group, other than those ending in _get and HPE1437_clock_fs, abort
any measurement in progress.

See Also hpe1437_init, hpe1437_filter_setup, hpe1437_data_

E1437A User's Guide
VXI plug&play Programming Reference

4-16

hpe1437_close

Closes the module’s software connection.

VXIplug&play Syntax #include “hpe1437.h”

ViStatus hpe1437_close(ViSession id);

Description hpe1437_close terminates the software connection to the module, deallocates system
resources, and places the module in the IDLE state. After this function has been
executed the specified id identifier is no longer a valid parameter for function calls.

Parameters id is the VXI instrument session pointer returned by the hpe1437_init function.

Effect on Active
Measurement

This command does not abort any measurement in progress.

See Also hpe1437_init

E1437A User's Guide
VXI plug&play Programming Reference

4-17

hpe1437_data_memsize_get

Returns the module’s memory size in megabytes.

VXIplug&play Syntax #include “hpe1437.h”

ViStatus hpe1437_data_memsize_get(ViSession id, ViPInt16memSizePtr);

Description This command allows you to determine whether your module contains standard
memory of 8 Mbytes or a larger memory option.

Parameters id is the VXI instrument session pointer returned by the hpe1437_init function.

memSizePtr contains the memory size in number of Megabytes.

Effect on Active
Measurement

This command does not abort any measurement in progress.

See Also hpe1437_init , hpe1437_data_blocksize

E1437A User's Guide
VXI plug&play Programming Reference

4-18

hpe1437_data_scale_get

Gets data scale factor.

VXIplug&play Syntax #include “hpe1437.h”

ViStatus hpe1437_data_scale_get(ViSession id, ViPReal64 scalePtr);

Description hpe1437_data_scale_get calculates the correct scale factor for raw data using the
current data resolution and range. The factor returned by this function is used to
multiply raw data to get data in volts.

Parameters id is the VXI instrument session pointer returned by the hpe1437_init function.

scalePtr contains the calculated scale factor with which to scale raw data to volts.

NOTE If hpe1437_input_range_auto is pending or in progress this command returns an
error.

Effect on Active
Measurement

This command does not abort any measurement in progress.

See Also hpe1437_ - , hpe1437_read_raw -

E1437A User's Guide
VXI plug&play Programming Reference

4-19

hpe1437_data_setup

hpe1437_data_setup sets all format and data output flow parameters. This
description also includes information on the following functions which set or query
the format and flow parameters individually:

hpe1437_data_append_status appends status information to a data block.

hpe1437_data_append_status_get gets the append status state

hpe1437_data_blocksize determines the size of the output data block.

hpe1437_data_blocksize_get gets the output data block size

hpe1437_data_mode selects block mode or continuous mode.

hpe1437_data_mode_get gets the data mode

hpe1437_data_port selects VME bus or local bus output port.

hpe1437_data_port_get gets the output port designation

hpe1437_data_resolution selects 16 or 32 bits data resolution.

hpe1437_data_resolution_get gets the data resolution

hpe1437_data_type selects real or complex output data.

hpe1437_data_type_get gets output data type

VXIplug&play Syntax #include “hpe1437.h”

ViStatus hpe1437_data_setup(ViSession id, ViInt16 dType, ViInt16 resolution,
ViInt16mode, ViInt32 blocksize, ViInt16 appendStatus, ViInt16 port);

ViStatus hpe1437_data_append_status(ViSession id, ViInt16 appendStatus);

ViStatus hpe1437_data_append_status_get(ViSession id, ViPInt16
appendStatusPtr);

ViStatus hpe1437_data_blocksize(ViSession id, ViInt32 blocksize);

ViStatus hpe1437_data_blocksize_get(ViSession id, ViPint32 blocksizePtr);

ViStatus hpe1437_data_mode(ViSession id, ViInt16mode);

ViStatus hpe1437_data_mode_get(ViSession id, ViPInt16modePtr);

ViStatus hpe1437_data_port(ViSession id, ViInt16 port);

ViStatus hpe1437_data_port_get(ViSession id, ViPInt16 portPtr);

ViStatus hpe1437_data_resolution(ViSession id, ViInt16 resolution);

ViStatus hpe1437_data_resolution_get(ViSession id, ViPInt16 resolutionPtr);

ViStatus hpe1437_data_type(ViSession id, ViInt16 dType);

ViStatus hpe1437_data_type_get(ViSession id, ViPInt16 dTypePtr);

Parameters id is the VXI instrument session pointer returned by the hpe1437_init function.

E1437A User's Guide
VXI plug&play Programming Reference

4-20

dType determines whether the E1437 collects and returns real or complex data. Setting
this parameter to HPE1437_REAL causes only the real part of the data to be returned
for each sample. HPE1437_COMPLEX causes the real data followed by the imaginary
data to be returned in each sample. Normally, if the frequency set with the
hpe1437_frequency_setup function is zero, the type should be set to
HPE1437_REAL since the imaginary component of each sample is zero anyway. When
non-zero center frequencies are used the type should normally be set to
HPE1437_COMPLEX. Otherwise the imaginary component of the signal will be lost.

dTypePtr points to the current value of the dType parameter.

resolution selects data resolution of either 16 or 32 bits by using resolution values of
HPE1437_16BIT or HPE1437_32BIT respectively. Choosing 16-bit precision allows
for more samples in the FIFO memory. Choosing 32 bits allows more dynamic range.
Because of the broadband white noise present on the input of the analog-to-digital
converter, it is normally sufficient to use 16 bit resolution whenever the
hpe1437_filter_setup function specifies a signal bandwidth greater than 250 kHz. For
narrower bandwidths much of the broadband white noise is filtered out, resulting in
lower noise in the output data. To take advantage of this lower noise, the 32-bit data
resolution should be used.

resolutionPtr contains the current value of the resolution parameter.

mode selects whether the E1437’s data collection operates in block mode or
continuous mode. HPE1437_BLOCK selects block transfer mode in which the
measurement is halted after each block of data. To start collection of the next data
block the module must be armed and triggered again. This mode is used whenever each
block of data is to be associated with an individual trigger “event”.
HPE1437_CONTINUOUS means that a single arm and trigger event starts a
measurement which runs continuously with no gaps between output data blocks. As
long as the data is read out fast enough to prevent overflow in the output FIFO, the
measurement will continue. The continuous mode is useful for continuous signal
processing applications where data gaps are unacceptable.

modePtr contains the current value of themode parameter.continuous mode;selecting

blocksize determines the number of sample points in each output data block. The
range of available block sizes depends on the number of bytes required for each sample.
The command accepts any number between 1 and memory size (in bytes)/2. The actual
number used is the first integer power of 2 equal to or larger than the requested
blocksize. If the requested block size falls outside the range shown in the table the
closest valid value will be used and a status register flag (bit 6) will be set indicating a
setup error. If a subsequent change in another parameter permits a block size closer to
the originally requested value, the module will adjust the block size to that value.

E1437A User's Guide
VXI plug&play Programming Reference

4-21

The following table summarizes the available block sizes for each setting of the
dType and resolution parameters.
===

data data resolution bytes per min block max block size

port type Sample size (with standard

8 MByte memory)*

===

vme real 16 2 3 4,194,304

vme real 32 4 2 2,097,152

vme complex 16 4 2 2,097,152

vme complex 32 8 1 1,048,576

lbus real 16 2 6 4,194,304

lbus real 32 4 3 2,097,152

lbus complex 16 4 3 2,097,152

lbus complex 32 8 2 1,048,576

* For optional additional memory, multiply by the appropriate

memory size multiplier. For example, for 32 MByte memory option

multiply max block size by 4.

NOTE Block size does not need to be a power of two. Considerably more samples may
need to be taken in order to set the block available status bit.
blocksizePtr contains the current value of the blocksize parameter. The returned value
will be closest valid value to the requested blocksize.

appendStatus selects whether or not status information is appended to a data block.
Specifying HPE1437_ONmeans that an extra byte of status information is appended to
the end of each data block to indicate whether an ADC overload or error occurred
during the collection of that block of data. In this status byte, Bit 0 will be set if an ADC
overload occurred and bit 1 will be set for an ADC error. The other bits are undefined.
When the appended byte is transferred via the VME backplane, the byte is located in the
lower 8 bits of the 16 bit word after the end of the sampled data block. The upper 8 bits
are undefined. When the appended byte is output via the local bus (as a 32-bit word), it
is marked as the last byte of a transfer block. This status byte should be read separately
from any block read operations in order to not affect the alignment of subsequent
elements. HPE1437_OFF disables this feature.

appendStatusPtr contains the current value of the status parameter.

E1437A User's Guide
VXI plug&play Programming Reference

4-22

port determines which output port is used to take data from the E1437 module. Setting
port to HPE1437_VME means the data is to be output using standard VME register
reads. Setting port to HPE1437_LBUS means the data is to be output as a byte-serial
data stream via the VXI local bus. When using the local bus port the module
immediately to the right of the E1437 must be capable of receiving the local bus byte
sequence. The following table summarizes the output word or byte sequence for each
combination of dType, resolution, and port parameters:
===

type resolution port sequence

===

real 16BIT VME R0[15:0],R1[15:0],...

complex 16BIT VME R0[15:0],Q0[15:0],R1[15:0],Q1[15:0],...

real 32BIT VME R0[31:16],R0[15:0],R1[31:16],R1[15:0],...

complex 32BIT VME R0[31:16],R0[15:0],Q0[31:16],Q0[15:0],

R1[31:16]...

real 16BIT LBUS R0[15:8],R0[7:0],R1[15:8],R1[7:0],...

complex 16BIT LBUS R0[15:8],R0[7:0],Q0[15:8],Q0[7:0],

R1[15:8]..

real 32BIT LBUS R0[31:24],R0[23:16],R0[15:8],R0[7:0],

R1[31:24],...

complex 32BIT LBUS R0[31:24],R0[23:16],R0[15:8],R0[7:0],

Q0[31:24],Q0[23:16],Q0[15:8],Q0[7:0],

R1[31:24],...

portPtr contains the current value of the port parameter.

Comments The maximum rate at which data may be transferred to memory is determined by the
DSP clock rate: Max bytes/s. = 4 × DSP clock rate. In continuous mode the maximum
rate is limited to (4 × DSP clock rate) ÷ 2. However, you may successfully perform this
type of measurement by adding a level of decimation to reduce the sample rate.

A limitation also applies to 32-bit, complex data transfers. Because this type of transfer
cannot be made at the full sample rate, a level of decimation must be added in order to
reduce the sample rate.

E1437A User's Guide
VXI plug&play Programming Reference

4-23

The following table summarizes the relationship between data parameter combinations,
decimation, filter bandwidth, and whether the combination permits block or continuous
measurements:
===

Resolution Type Decimation Filter BW Block Continuous Sample

rate

(MBytes)

==

16 Complex False 0 or 1 Yes No 40

32 Real False 0 or 1 Yes No 80

32 Complex False 0 or 1 No No 40

32 Complex True 0 or 1 Yes No 40

32 Complex False 2 Yes No 40

All other combinations Yes Yes <40

__

Reset Values

dType REAL

resolution 32BIT

mode BLOCK

blocksize 1024

appendStatus OFF

port VME

Effect on Active
Measurement

With the exception of the commands ending in _get, all commands in the group abort
any measurement in progress when any parameter value is changed.

See Also hpe1437_init, hpe1437_frequency_setup, hpe1437_filter_decimate,
hpe1437_meas_control, hpe1437_clock_dsp

E1437A User's Guide
VXI plug&play Programming Reference

4-24

hpe1437_error_message

Returns error information obtained from function calls.

VXIplug&play Syntax #include “hpe1437.h”

ViStatus hpe1437_error_message(ViSession id, ViStatus errNum, ViPString
errMessage);

Description hpe1437_error_message takes an error return value generated by a function and
translates it to a readable string. This function includes host errors as well as firmware
errors.

Parameters id is the VXI instrument session pointer returned by the hpe1437_init function.

errNum represents the instrument numeric error code.

errMessage represents the error message string up to 80 characters long.

NOTE If you are using this function in Visual Basic you should allocate memory for the
return string. For example:

DIM VarName as String *80

Effect on Active
Measurement

This command does not abort any measurement in progress.

See Also hpe1437_init, hpe1437_error_queryPAGE 26

E1437A User's Guide
VXI plug&play Programming Reference

4-25

hpe1437_error_query

Queries the module for the first error in the queue.

VXIplug&play Syntax #include “hpe1437.h”

ViStatus hpe1437_error_query(ViSession id, ViPint32 errNumPtr, ViPString
errMessage);

Description hpe1437_error_query queries the module for the oldest error and returns the
corresponding error message. This function does not trap host errors.

Parameters id is the VXI instrument session pointer returned by the hpe1437_init function.

errNumPtr contains the instrument numeric error code.

errMessagePtr contains the error message string up to 80 characters long. This
message also indicates what function call generated the error.

NOTE If you are using this function in Visual Basic you should allocate memory for the
return string. For example:

DIM VarName as String *80

Effect on Active
Measurement

This command does not abort any measurement in progress.

See Also hpe1437_init, hpe1437_error_message

E1437A User's Guide
VXI plug&play Programming Reference

4-26

hpe1437_filter_resp_get

Returns the module’s complex frequency response.

VXIplug&play Syntax #include “hpe1437.h”

ViStatus hpe1437_filter_resp_get(ViSession id, ViReal64 resp[], ViInt32 n, ViReal64
fmin, ViReal64 fmax);

Description This function uses the current filter and center frequency settings to return the complex
frequency response. The requested number of samples are equally spaced from the
requested minimum frequency to the requested maximum frequency.

Parameters id is the VXI instrument session pointer returned by the hpe1437_init function.

resp returns the response in the format:
resp(re0, im0, re1, im1,..., re(n-1), im(n-1)

n is the number of samples desired.

fmin is the minimum frequency in Hertz.

fmax is the maximum frequency in Hertz.

Effect on Active
Measurement

This command does not abort any measurement in progress.

See Also hpe1437_init, hpe1437_filter_setup, hpe1437_frequency_setup

E1437A User's Guide
VXI plug&play Programming Reference

4-27

hpe1437_filter_setup

hpe1437_filter_setup sets the digital filter bandwidth and decimation filter
parameters. This description also includes information on the following functions
which set or query the decimation filter parameters individually

hpe1437_filter_decimate selects an extra factor of 2 decimation.

hpe1437_filter_decimate_get gets current state of extra decimation

hpe1437_filter_bw selects a signal filter bandwidth.

hpe1437_filter_bw_get gets the signal filter bandwidth

VXIplug&play Syntax #include “hpe1437.h”

ViStatus hpe1437_filter_setup(ViSession id, ViInt16 sigBw, ViInt16 decimate);

ViStatus hpe1437_filter_decimate (ViSession id, ViInt16 decimate);

ViStatus hpe1437_filter_decimate_get(ViSession id, ViPInt16 decimatePtr);

ViStatus hpe1437_filter_bw (ViSession id, ViInt16 sigBw);

ViStatus hpe1437_filter_bw_get(ViSession id, ViPInt16 sigBwPtr);

Parameters id is the VXI instrument session pointer returned by the hpe1437_init function.

sigBw selects an alias protected signal filter bandwidth that is roughly fs/(2.56 *
2^(sigBw)) where fs is the ADC sample frequency. In zoom applications, where the
center frequency is generally not zero, the zoom filter bandwidth is centered on the
frequency programmed with the hpe1437_frequency_setup function. For baseband
measurements the filter may equivalently be considered as a low pass filter of
approximately bandwidth fs/(2.56 * 2^(sigBw)) since the negative frequencies are
generally of no interest. The valid range of sigBw is 0 through 24. When sigBw = 0, no
digital filtering is applied to the signal and the module relies on the analog anti-alias
filter to limit the signal bandwidth to fs/2.56.

To more accurately calculate the bandwidth use the calculation fs * k/2^(sigBw) where:

k=.36 for .25 dB bandwidth

k=.44 for 3 dB bandwidth

k=.5 for 15 dB bandwidth

k=.62 for 110 dB bandwidth

For even more accuracy use the hpe1437_filter_resp_get function.

sigBwPtr contains the current value of the sigBw parameter.

decimate selects the data output sample rate. When this parameter is set to
HPE1437_OFF the output sample rate is: fs when sigBw=0 or fs/2^(sigBw-1) when
sigBw>0. When decimate is set to HPE1437_ON the output sample rate is reduced by
an additional factor of two by discarding alternate samples. You would normally want
to add the extra level of decimation in order to increase the displayed span.

E1437A User's Guide
VXI plug&play Programming Reference

4-28

CAUTION Turning decimation ON when sigBw=0 results in aliasing (garbage data) due to
upper limit of the sampling frequency.

Comments To ensure full alias-free operation the analog anti-alias filter (set by the
hpe1437_input_alias_filter function) should be ON unless the application inherently
bandlimits the input signal to less than fs/2. The analog anti-alias filter has a fixed
bandwidth and thus is fully effective only when fs≥20 MHz. If a slower external ADC
clock is used, an additional analog filter of the appropriate bandwidth may be required
for full alias protection.

The decimation process used to reduce the output sample rate is driven from a
“decimation counter” which keeps track of which samples to save and which ones to
discard for each of the octave bandwidth reduction filter stages. In multi-module
systems where synchronous sampling is required, the decimation counters in all the
modules must be synchronous with each other. This condition can be forced by using
the hpe1437_filter_sync function.

The following table summarizes the relationship between data parameter combinations,
decimation, filter bandwidth, and whether the particular combination permits block
and/or continuous measurements:
===

Resolution Type Decimation Filter BW Block Continuous Sample

rate

(MBytes)

==

16 Complex False 0 or 1 Yes No 40

32 Real False 0 or 1 Yes No 80

32 Complex False 0 or 1 No No 40

32 Complex True 0 or 1 Yes No 40

32 Complex False 2 Yes No 40

All other combinations Yes Yes <40

__

E1437A User's Guide
VXI plug&play Programming Reference

4-29

Example Here are some bandwidth and sample rate results using the “k” calculation for
bandwidth:
===

Fs = 20.48 MHz default internal ADC clock

(all data in MHz)

===

| Signal Bandwidth | Sample rate

sigBw | .25 dB | 15 dB | Decimate OFF | Decimate ON

________|_________|__________|________________|______________________

0 | 7.37 | 10.24 | 20.48 | 10.24 (see Caution)

1 | 3.69 | 5.12 | 20.48 | 10.24

2 | 1.84 | 2.56 | 10.24 | 5.12

3 | 0.92 | 1.28 | 5.12 | 2.56

4 | 0.46 | 0.64 | 2.56 | 1.28

... Continue to decrease by factors of two ...

Reset Values

sigBw 0

decimate OFF

Effect on Active
Measurement

With the exception of the commands ending in _get, all commands in the group abort
any measurement in progress when any parameter value is changed.

See Also hpe1437_init, hpe1437_clock_fs_get, hpe1437_filter_resp_get,
hpe1437_frequency_setup, hpe1437_filter_sync,hpe1437_input_alias_filter,
hpe1437_data_mode

E1437A User's Guide
VXI plug&play Programming Reference

4-30

hpe1437_filter_sync

Synchronizes the decimation counter.

VXIplug&play Syntax #include “hpe1437.h”

ViStatus hpe1437_filter_sync(ViSession id);

Description This function causes the digital decimation counter to be reset by the next SYNC line
rising transition. Any measurement in progress is terminated and the module is placed
in the idle state. By calling hpe1437_filter_sync for every E1437 module using a
shared ADC clock, and then calling hpe1437_meas_control to cause a SYNC
transition, the decimation counters will be started at the same time. Once this is done
the decimation counters will stay synchronized as long as the same ADC clock is used.
It is not necessary to resynchronize the decimation counters when the digital filter
bandwidths are changed.

Parameters id is the VXI instrument session pointer returned by the hpe1437_init function.

Comment If you also want to synchronize frequency or phase, see hpe1437_frequency_sync and
multi module information.

Example The programmultichan.exe described in Example Programs provides an example of
how to correctly set up a multi-module system with synchronous filters.

NOTE Resetting the decimation counter causes a transient in the digital filters. The
transient takes about 30 output sample periods to decay 120 dB. See the
impulse response graphs in the specification section for more detail.

Effect on Active
Measurement

This command aborts any measurement in progress when any parameter value is
changed.

See Also hpe1437_init, hpe1437_filter_setup, hpe1437_frequency_setup , hpe1437_meas_control

E1437A User's Guide
VXI plug&play Programming Reference

4-31

hpe1437_frequency_center_raw

Provides a fast way to set the center frequency.

VXIplug&play Syntax #include “hpe1437.h”

ViStatus hpe1437_frequency_center_raw(ViSession id, ViInt16 coarse, ViInt32 fine);

Description hpe1437_frequency_raw sets the center frequency without relying on the internal
E1437 microprocessor to do any floating point computations, since the internal
microprocessor does not have a floating point co-processor. The resulting center
frequency is approximately:

fs*((coarse/2048)+(fine/1.024*10^12)) where fs is the ADC clock frequency.

Parameters id is the VXI instrument session pointer returned by the hpe1437_init function.

coarse is used to set high frequencies or a low resolution frequency component.

fine is used to set very low frequencies or a high resolution frequency component.

Effect on Active
Measurement

These commands do not abort any measurement in progress

See Also hpe1437_init, hpe1437_frequency_setup, hpe1437_clock_fs_get, hpe1437_data_type,
hpe1437_meas_control

E1437A User's Guide
VXI plug&play Programming Reference

4-32

hpe1437_frequency_setup

hpe1437_frequency_setup sets all the zoom center frequency parameters. This
description also includes information on the following functions which set or query
frequency parameters individually:

hpe1437_frequency_cmplxdc selects a complex baseband measurement

hpe1437_frequency_cmplxdc_get gets the state of the baseband measurement mode

hpe1437_frequency_sync prepares the module for a synchronous frequency change

hpe1437_frequency_sync_get gets the state of the synchronous change mode

hpe1437_frequency_center sets the center frequency

hpe1437_frequency_center_get gets the current center frequency

VXIplug&play Syntax #include “hpe1437.h”

ViStatus hpe1437_frequency_setup(ViSession id, ViInt16 cmplxDc, ViInt16 sync,
ViReal64 freq);

ViStatus hpe1437_frequency_cmplxdc(ViSession id, ViInt16 cmplxDc);

ViStatus hpe1437_frequency_cmplxdc_get(ViSession id, ViPInt16 cmplxDcPtr);

ViStatus hpe1437_frequency_sync(ViSession id, ViInt16 sync);

ViStatus hpe1437_frequency_sync_get(ViSession id, ViPInt16 syncPtr);

ViStatus hpe1437_frequency_center(ViSession id, ViReal64 freq);

ViStatus hpe1437_frequency_center_get(ViSession id, ViPReal64 freqPtr);

Description hpe1437_frequency_setup sets the center frequency of a zoomed measurement. The
center of a frequency band of interest is converted to DC with this function. The
frequency transition is phase continuous unless the center frequency is set to zero in
which case the transition may be selected either to be phase continuous or phase reset.
This function may also be used to synchronously change frequency in multiple-module
systems.

Parameters id is the VXI instrument session pointer returned by the hpe1437_init function.

cmplxDc selects either a phase continuous or phase reset transition when the freq = 0.
HPE1437_OFF, combined with a frequency change to zero, causes phase to be reset to
zero. HPE1437_ON, combined with a frequency change to zero, does not reset the
phase, thereby generating a complex DC measurement at baseband. The state of this
parameter does not affect any transition where freq≠ 0. Whether the real or complex
data is saved and ultimately sent to the output port is determined by the
hpe1437_data_type function.

cmplxDcPtr contains the value of the cmplxDc parameter.

E1437A User's Guide
VXI plug&play Programming Reference

4-33

sync when set to HPE1437_OFF allows an immediate frequency change. In
multiple-module systems, setting this parameter to HPE1437_ON prepares the
modules for a frequency change, but does not actually bring about the change until the
next ADC clock corresponding to the next assertion of the shared SYNC signal. The
SYNC transition is generated by calling the hpe1437_meas_control function. Note
that returning sync to OFF before the SYNC signal transition has occurred forces an
immediate asynchronous frequency change.

syncPtr returns the value of the sync parameter.

freq is a number between −0.5 and +0.5, which will be interpreted as a fraction of the
sample frequency. freq is the desired center frequency divided by the ADC sample
frequency. For example, selecting .25 with a sample clock frequency of 20 MHz will
yield a center frequency of 5.0 MHz. The ADC sample frequency is returned by the
hpe1437_clock_fs_get function. Negative frequencies select the negative image of the
signal, which is spectrally inverted from the input signal.

freqPtr contains the current actual value of the center frequency (as a fraction of the
sample clock frequency).

Comments Although the freq parameter is a double floating point number, its effective resolution is
1/(1024*10^9) or 20 µHz when fs=20.48 MHz. The actual frequency will be set to the
nearest available value. This value is returned by the hpe1437_frequency_center_get
function. In multi-module systems this value represents the pending value rather than
the current value when a frequency change is incomplete due to a pending SYNC signal
transition,.

In multiple-module systems it is often desirable to force the frequency change to occur
synchronously in order to preserve the phase relationship of the LOs. This is
accomplished by setting the sync parameter to ON for all the modules which are to be
changed. See the first example below.

In configurations involving synchronous operation of multiple E1437 modules, the
hpe1437_frequency_setup function provides a mechanism to force all LOs to the
same phase. This can be done by first setting the frequency to zero. See the second
example below.

Example The programmultichan.exe described in Example Programs provides an example of
how to correctly perform synchronous frequency changes in a multi-module system.

Reset Values

cmplxDc OFF

sync OFF

freq 0

Effect on Active
Measurement

These commands do not abort any measurement in progress

See Also hpe1437_init, hpe1437_clock_fs_get, hpe1437_data_type , hpe1437_clock_multi_sync,
hpe1437_meas_control

E1437A User's Guide
VXI plug&play Programming Reference

4-34

hpe1437_init

Initializes the I/O driver for a module.

VXIplug&play Syntax #include “hpe1437.h”

ViStatus hpe1437_init(ViRsrc instrDesc, ViBoolean idQuery, ViBoolean rst,
ViPSession id);

Description hpe1437_initmust be the first routine called when using the E1437 library. It
establishes communication with the module and returns a module identification which
is used with all subsequent functions involving this module. This function performs
whatever initialization the I/O driver needs for the environment in which this library is
running.

Parameters instrDesc specifies the interface and logical address. This descriptor varies depending
on your I/O library.

An example of the descriptor form for a VTL I/O library is:
VXI[Board]::VXIlogical address [::INSTR]

An example of the descriptor form for a SICL I/O library is:
vxi,logical address

idQuery set to HPE1437_ON verifies the identity of the instrument by checking the
manufacturer ID and model number in the module’s VXI register set. If set to
HPE1437_OFF the function does not verify the module’s identity. It is helpful to
disable the ID query if you want to use the driver with a similar module but do not need
to modify the driver source code.

rst places the module in the reset state when set to HPE1437_ON. If set to
HPE1437_OFF, the function disables the reset. Disabling the reset is useful for
debugging in cases where resetting would take the instrument out of the state you want
to test.

id is a pointer to the VXI instrument Session identifier returned by this function for the
module. This identifier is then used with all other functions which address this module.

Comments If you receive a resource descriptor error, see your I/O library documentation to
determine the correct descriptor form.

Effect on Active
Measurement

This command aborts any measurement in progress.

See Also hpe1437_close

E1437A User's Guide
VXI plug&play Programming Reference

4-35

hpe1437_input_autozero

Nulls out the input DC offset voltage

VXIplug&play Syntax #include “hpe1437.h”

ViStatus hpe1437_input_autozero(ViSession id);

Description hpe1437_input_autozero updates a table of DC offset corrections to be used with
each input setup condition. The applicable correction from this table is automatically
added to the input offset parameter to achieve the correct DC offset value. Because of
the length of time needed to execute this function, it is not automatically called when
the module is reset. Thus, the user program is responsible for explicitly initiating the
autozero. This function should be called at least once after the temperature of the
module has stabilized. The interval between calls after that depends on the importance
of DC accuracy in the user application. It is not necessary to call the autozero function
for every change of input setup parameters since the correction table maintains values
for all setup conditions.

NOTE Calling hpe1437_input_autozero aborts any measurement already in progress
and eliminates LO phase coherence and filter synchronization in a synchronous
multi-module system. See the hpe1437_frequency_sync and
hpe1437_frequency_sync functions for details on how to re-establish LO phase
coherence and filter synchronization.

Parameters id is the VXI instrument session pointer returned by the hpe1437_init function.

Effect on Active
Measurement

This command aborts any measurement in progress.

See Also hpe1437_init, hpe1437_input_setup, hpe1437_filter_sync , hpe1437_frequency_sync

E1437A User's Guide
VXI plug&play Programming Reference

4-36

hpe1437_input_setup

hpe1437_input_setup sets all the analog input parameters. This description also
includes information on the following functions which set or query the input
parameters individually:

hpe1437_input_alias_filter selects the built-in analog anti-alias filter

hpe1437_input_alias_filter_get gets the anti-alias filter state

hpe1437_input_coupling selects AC or DC input coupling

hpe1437_input_coupling_get get the input coupling type

hpe1437_input_float selects floating the input connector

hpe1437_input_float_get gets the input connector state

hpe1437_input_range sets the full scale range

hpe1437_input_range_get gets the input range

hpe1437_input_signal selects the input buffer amplifier

hpe1437_input_signal_get gets the input buffer amplifier state

VXIplug&play Syntax #include “hpe1437.h”

ViStatus hpe1437_input_setup(ViSession id, ViInt16 range, ViInt16 coupling,
ViInt16 antiAlias, ViInt16 signal, ViInt16 floatIn);

ViStatus hpe1437_input_alias_filter(ViSession id, ViInt16 antiAlias);

ViStatus hpe1437_input_alias_filter_get(ViSession id, ViPInt16 antiAliasPtr);

ViStatus hpe1437_input_coupling(ViSession id, ViInt16 coupling);

ViStatus hpe1437_input_coupling_get(ViSession id, ViPInt16 couplingPtr);

ViStatus hpe1437_input_float(ViSession id, ViInt16 floatIn);

ViStatus hpe1437_input_float_get(ViSession id, ViPInt16 floatInPtr);

ViStatus hpe1437_input_range(ViSession id, ViInt16 range);

ViStatus hpe1437_input_range_get(ViSession id, ViPInt16 rangePtr);

ViStatus hpe1437_input_signal(ViSession id, ViInt16 signal);

ViStatus hpe1437_input_signal_get(ViSession id, ViPInt16 signalPtr);

E1437A User's Guide
VXI plug&play Programming Reference

4-37

Parameters id is the VXI instrument session pointer returned by the hpe1437_init function.

range is a range index number between 0 and 9 which is transformed to a full scale
voltage value. The corresponding discrete legal values of full scale vary from 0.02 volt
to 10.24 volts with factor-of-two steps (.02 × 2^range). If range is greater than 9 the full
scale value used is 10.24 volts. Signal inputs with an absolute value larger than full scale
generate an ADC overflow error.
Range Full scale voltage Full Scale dBm

0 .02 -24

1 .04 -18

2 .08 -12

3 .16 -6

4 .32 0

5 .64 6

6 1.28 12

7 2.56 18

8 5.12 24

9 10.24 30

rangePtr contains the current value of the range parameter.

NOTE If a hpe1437_input_range_auto command is pending or in progress it is aborted
when an hpe1437_input_range or hpe1437_input_range_get command is
received. hpe1437_input_range_get also returns an error if an autorange is
pending or in progress.
coupling specifies the AC or DC coupling mode of the input. Using HPE1437_DC will
connect the input directly to the 50 Ohm buffer amplifier. HPE1437_AC inserts a 0.2
µF capacitor between the input connector and the 50 Ohm buffer amplifier.

couplingPtr contains the current value of the coupling parameter for an E1437 or
group of E1437s.

antiAlias determines whether or not to use the built-in analog anti-alias filter.
HPE1437_ON inserts a sharp-cutoff (11-pole) 8 MHz lowpass filter ahead of the
analog-to-digital converter. Using HPE1437_OFF disables this filter. It is
recommended that you leave the filter on at all times to insure bandlimited, anti-aliased
data.

antiAliasPtr contains the current value of the state parameter.

signal determines whether or not the input signal is sent to the buffer amplifier.
HPE1437_ON attaches the input signal to the 50 Ohm buffer amplifier.
HPE1437_OFF redirects the input signal to a dummy 50 Ohm load, and feeds the
buffer amplifier from an internally grounded 50 Ohm source resistance. The signal OFF
setting is useful for making reference measurements without the signal applied. When
using AC coupling the 0.2 µF capacitor remains between the input connector and its 50
Ohm termination.

signalPtr contains the current value of the signal parameter.

floatIn determines whether or not to allow the outer shield of the input connector to
float relative to chassis ground. Using HPE1437_ON allows the connector to float in
order to reduce potential ground loop induced pick-up at low frequencies. Using
HPE1437_OFF disables floating by attaching the outer shield of the input connector
directly to chassis ground. See the specifications section for more details.

E1437A User's Guide
VXI plug&play Programming Reference

4-38

floatInPtr contains the current value of the floatin parameter.

Comments To ensure full alias-free operation the analog anti-alias filter should be ON unless the
application inherently bandlimits the input signal to less than fs/2. The analog anti-alias
filter has a fixed bandwidth and thus is fully effective only when fs≥20 MHz. If a slower
external ADC clock is used, an additional analog filter of the appropriate bandwidth
may be required for full alias protection.

When using the analog anti-alias filter, the range parameter may need to be set higher
than the actual range of the input signal. The reason for this is that step changes of
input voltage cause an overshoot and ringing response at the output of the anti-alias
filter. The peak overshoot will actually exceed the input voltage step by about 20%. The
range setting must accommodate this overshoot to avoid an ADC overflow.

Reset Values

range 10.24

coupling DC

antialias ON

signal ON

floatin OFF

Effect on Active
Measurement

Commands in the group do not abort any measurement in progress when parameter
values are changed.

See Also hpe1437_init, hpe1437_input_range_auto

E1437A User's Guide
VXI plug&play Programming Reference

4-39

hpe1437_input_range_auto

Performs auto-ranging.

VXIplug&play Syntax #include “hpe1437.h”

ViStatus hpe1437_input_range_auto(ViSession id, ViReal64 sec);

Description hpe1437_input_range_auto sets the range of a E1437 to the lowest value that will not
cause an ADC overload to occur. The algorithm will start at the lowest range and move
up until there is no ADC overload.

Parameters id is the VXI instrument session pointer returned by the hpe1437_init function.

sec is the time in seconds to take data at each range to insure that an overload is
detected. Setting this parameter to 0.0 will result in this time being set automatically
according to an algorithm that depends on block size and filter bandwidth.

NOTE An autorange that is pending or in progress will be aborted if a input_range or
another input_range_auto command is received.

Reset Values

sec 0

Effect on Active
Measurement

This command does not aborts any measurement in progress.

See Also hpe1437_init, hpe1437_input_setup

E1437A User's Guide
VXI plug&play Programming Reference

4-40

hpe1437_interrupt_restore

Restores the interrupt masks to the setting last programmed with
hpe1437_interrupt_setup.

VXIplug&play Syntax #include “hpe1437.h”

ViStatus hpe1437_interrupt_restore(ViSession id);

Description The interrupt masks set by the hpe1437_interrupt_setup function are cleared during
the interrupt acknowledge cycle. This function restores the cleared interrupt masks.

Parameters id is the VXI instrument session pointer returned by the hpe1437_init function.

Effect on Active
Measurement

This command does not abort any measurement in progress.

See Also hpe1437_init, hpe1437_interrupt_setup

E1437A User's Guide
VXI plug&play Programming Reference

4-41

hpe1437_interrupt_setup

hpe1437_interrupt_setup sets both interrupt parameters. This description also
includes information on the following functions which query the interrupt
parameters individually:

hpe1437_interrupt_mask_get gets the interrupt event mask

hpe1437_interrupt_priority_get gets the VME interrupt line

VXIplug&play Syntax #include “hpe1437.h”

ViStatus hpe1437_interrupt_setup(ViSession id, ViInt16 intrNum, ViInt16 priority,
ViInt16mask);

ViStatus hpe1437_interrupt_mask_get(ViSession id, ViInt16 intrNum, ViPInt16
maskPtr);

ViStatus hpe1437_interrupt_priority_get(ViSession id, ViInt16 intrNum, ViPInt16
priorityPtr);

Description An E1437 has two independent interrupt generators, each capable of interrupting on
one of the seven VME interrupt lines when a status condition specified by a mask
occurs.

hpe1437_interrupt_setup sets the interrupt mask, priority and which of the two
interrupt generators on the E1437 is to be used. The remaining hpe1437_interrupt_
functions query the mask and priority individually:

Parameters id is the VXI instrument session pointer returned by the hpe1437_init function.

intrNum is the number of the interrupt generator. The only values accepted are 0 and 1.

mask specifies the mask of events on which to interrupt. This mask is created by
ORing together the bits defined in bits 8 through 15 of the status register. The mask
parameter format is 0xMM00 where MM represents the maskable upper 8 bits. The
lower 8 bits cannot be used for generating interrupts, and therefore must be set to zero
in this function call.

priority specifies which of the seven VME interrupt lines to use. The only legal values
are 0 through 7. Specifying 0 turns the interrupt off, while 7 is the highest priority.

maskPtr and priorityPtr contain the current value of the either the interrupt mask or
priority parameter.

Comments The mask is cleared during the interrupt acknowledge cycle. Therefore, the command
must be sent again or restored with hpe1437_interrupt_restore in order to generate
further interrupts.

Example The program interupt.exe described in Example Programs provides an example of
how to use interrupts correctly.

Reset Values

priority 0

E1437A User's Guide
VXI plug&play Programming Reference

4-42

mask 0

Effect on Active
Measurement

The commands in this group do not abort any measurement in progress.

See Also hpe1437_init, hpe1437_status_getPAGE 56, hpe1437_attrib_get

E1437A User's Guide
VXI plug&play Programming Reference

4-43

hpe1437_lbus_mode

Sets the local bus mode. This description also includes the query:

hpe1437_lbus_mode_get gets the current local bus mode.

VXIplug&play Syntax #include “hpe1437.h”

ViStatus hpe1437_lbus_mode(ViSession id, ViInt16 lbusMode);

ViStatus hpe1437_lbus_mode_get(ViSession id, ViPInt16 lbusModePtr);

Description hpe1437_lbus_mode sets the local bus to either generate, append, insert or pipeline
data. The data port must be set to the local bus with the hpe1437_data_port function
before these modes take effect.

Parameters id is the VXI instrument session pointer returned by the hpe1437_init function.

lbusMode selects the transmission mode of the local bus when it is enabled by the
hpe1437_data_port function. HPE1437_GENERATE forces the module at id to
generate data only, not passing through data from other modules on the local bus.
HPE1437_APPEND causes the E1437 to pass data through from modules on its left
and append its data to the end. HPE1437_INSERT causes the E1437 to place its data
on the local bus and then pass data through from modules on its left.
HPE1437_PIPELINE causes the E1437 to pipe data through from modules on its left
without appending or inserting its own data. The state of this parameter is unaffected
by switching back and forth between the local bus and the VME backplane with the
hpe1437_data_port function.

lbusModePtr contains the current value of the lbusMode parameter.

Reset Values

lbusMode PIPELINE

Effect on Active
Measurement

This command aborts any measurement in progress when any parameter value is
changed.

See Also hpe1437_init, hpe1437_data_port

Module to RightHP E1437Module(s) to Left

PIPELINE

INSERT APPEND

GENERATE

E1437A User's Guide
VXI plug&play Programming Reference

4-44

hpe1437_lbus_reset

Resets the local bus. This description also includes the query:

hpe1437_lbus_reset_get - gets the current local bus reset state

VXIplug&play Syntax #include “hpe1437.h”

ViStatus hpe1437_lbus_reset(ViSession id, ViInt16 lbusReset);

ViStatus hpe1437_lbus_reset_get(ViSession id, ViPInt16 lbusResetPtr);

Description In order to avoid glitches in the local bus data, the local bus interface has strict
requirements as to the order in which modules in a VXI mainframe have their local bus
interface reset. Upon powerup or whenever any single module in the mainframe is put
into a reset state, all modules should be placed into the reset state from left to right.
Then all modules can be take out of reset from left to right.

lbusReset puts the E1437’s local bus into reset or takes it out of reset. HPE1437_ON
puts the E1437’s local bus into reset while HPE1437_OFF takes the E1437 out of reset.

Parameters id is the VXI instrument session pointer returned by the hpe1437_init function.

lbusResetPtr contains the current value of the lbusReset parameter.

Example When E1437s are used with the E1485 measurement controller, the E1485 must be reset
while all of the E1437s are being held in reset to avoid initial glitches in the local bus
data. The E1437s should be taken out of reset only after the first
hpe1437_meas_control release is issued. The correct way to reset the local bus is as
follows:
lbus_control(LBUS_CTL_RESET, 0); /* reset the E1485 lbus */

for all id{

hpe1437_lbus_reset(id, HPE1437_ON); /* hold HP E1437s in reset */

}

/*Set LBUS mode for all modules....{

....*/}

for all id{

hpe1437_meas_control(id, HPE1437_RELEASE, HPE1437_ASSERT);

/* first arming */

hpe1437_lbus_reset(id, HPE1437_OFF);

/* remove reset from HP E1437s, has no effect after first time */

}

lbus_control(LBUS_CTL_RESET, 1); /* unreset the E1485 lbus */

E1437A User's Guide
VXI plug&play Programming Reference

4-45

Reset Values

lbusReset ON

Effect on Active
Measurement

This command does not abort any measurement in progress .

See Also hpe1437_init

E1437A User's Guide
VXI plug&play Programming Reference

4-46

hpe1437_meas_control

Initiates and controls measurements in multi-module systems.

VXIplug&play Syntax #include “hpe1437.h”

ViStatus hpe1437_meas_control(ViSession id, ViInt16 idle, ViInt16 sync);

Description hpe1437_meas_control explicitly controls the measurement state.

Parameters id is the VXI instrument session pointer returned by the hpe1437_init function.

idle selects the condition of the IDLE state. HPE1437_ASSERT holds the module in
the IDLE state. HPE1437_RELEASE reverses a previous HPE1437_ASSERT or
ensures that no forced IDLE is active.

hpe1437_meas_control also changes the state of the SYNC signal, which is used to
arm or trigger an E1437 module. In systems containing multiple E1437 modules the
SYNC signal is used to arm or trigger all modules simultaneously, and also to
synchronize decimation counters and local oscillators among the E1437 modules.

sync selects the state of the sync signal. HPE1437_ASSERT causes the module to
assert the SYNC signal. HPE1437_RELEASE causes the module to release the SYNC
signal. When the sync parameter of the hpe1437_clock_setup function is set to
HPE1437_FRONT or HPE1437_REAR, the SYNC signal is shared with other E1437
modules. If any one of these modules asserts this shared SYNC signal then it becomes
asserted for all of them. All modules must release it before the shared SYNC signal is
released. Asserting then releasing the SYNC line is used to start a measurement, load
local oscillator values, or take a digital filter out of reset. These situations require a
SYNC line transition but do not require that the SYNC line be held in a asserted state.

NOTE When the SYNC line is asserted, it will remain asserted for an adequate number
of ADC clock cycles to ensure that the signal effect will have propagated to all
the modules in the system. You can determine when the command is completed
by looking as the Sync/Idle Complete bit in the Status Register.

Comments See The Measurement Loop section for details on how a measurement progresses
through the four states.

Special conditions prevail during the Measure state. If programmed for block mode
operation in the Measure state, the module will assert the SYNC signal (regardless of
the hpe1437_meas_control sync parameter setting) until a complete block of data has
been collected and is available to the I/O port. When the shared SYNC signal is released,
indicating that all block mode data collection is finished, all block mode modules move
synchronously to the idle state. In continuous mode the module releases the SYNC
signal immediately after moving into the measure state. This allows the
hpe1437_meas_control function to manipulate the SYNC signal to cause synchronous
changes to LO frequency while a continuous measurement is in progress. In continuous
mode a module moves to the idle state only if explicitly programmed to do so or
whenever the FIFO data buffer overflows.

E1437A User's Guide
VXI plug&play Programming Reference

4-47

In addition to controlling the progression through the four module states, the SYNC
signal is used to allow for synchronizing the decimation counters and local oscillators
of multiple E1437 modules. This is done by calling hpe1437_filter_sync and/or
hpe1437_frequency_sync prior to asserting SYNC with hpe1437_meas_control. This
is normally done with the module in the Idle state; however, the center frequency can
also be changed in the Measure state with hpe1437_frequency_sync if the modules
are all programmed for continuous (non-block mode) data collection.

If all modules in a multi-module system are in the Idle state when the
hpe1437_meas_control sync parameter is asserted, the LO frequency will be updated
and the next measurement will be armed. If all modules are in the measurement state in
continuous mode, the LO frequency will be synchronously updated, and the
measurement will continue. In continuous mode you should ensure that all modules are
in the same state, either the Idle state or the Measure state, before using
hpe1437_meas_control to assert SYNC. Otherwise some modules will re-arm while
others will continue the current measurement. In block mode the sync assertion will be
ignored unless all modules are in the Idle state.

The hpe1437_meas_control function assures that a single module is in a valid state by
checking that the hardware complete and sync valid bits in the status register are both
true. In synchronous multi-module systems you should use the hpe1437_wait function
for each module to assure a valid state in non-master modules within a synchronous
group.

In the case of systems made up of multiple mainframes you must be aware that only
modules in mainframe A may assert sync. Any sync asserted in other mainframes is
ignored.

Example The programmultichan.exe described in Example Programs provides an example of
how to correctly set up a multi-module measurement using hpe1437_meas_control to
initiate state transitions.

Reset Values

idle RELEASE

sync RELEASE

Effect on Active
Measurement

This command may or may not abort any measurement in progress when any
parameter value is changed, depending on the write value.

See Also hpe1437_init, hpe1437_status_getPAGE 56, hpe1437_data_, hpe1437_filter_sync,
hpe1437_frequency_sync, hpe1437_clock_setup, hpe1437_waitPAGE 64

E1437A User's Guide
VXI plug&play Programming Reference

4-48

hpe1437_meas_start

Initiates a measurement in single-module systems.

VXIplug&play Syntax #include “hpe1437.h”

ViStatus hpe1437_meas_start(ViSession id);

Parameters id is the VXI instrument session pointer returned by the hpe1437_init function.

hpe1437_meas_start provides an easy way to initiate a measurement in a single
module system. This command moves the module through the IDLE state and the SYNC
state while checking the status to assure a valid state.

Comments See The Measurement Loop section for details on how a measurement progresses
through the four states.

The hpe1437_meas_start function assures that the module is in a valid state by
checking that the hardware set and idle/sync complete bits in the status register are
both true.

Example The program acvolts.exe described in Example Programs provides an example of how
to initiate a very simple measurement using hpe1437_meas_start.

Effect on Active
Measurement

This command aborts any measurement in progress when any parameter value is
changed.

See Also hpe1437_init, hpe1437_status_getPAGE 56, hpe1437_clock_setup, hpe1437_waitPAGE 64

E1437A User's Guide
VXI plug&play Programming Reference

4-49

hpe1437_read

Reads scaled 32-bit float data from FIFO . This description also includes the
following function:

hpe1437_read64 reads scaled 64-bit float data, implemented specifically for VEE
applications.

VXIplug&play Syntax #include “hpe1437.h”

ViStatus hpe1437_read(ViSession id, ViReal32 rec[], ViInt32 sampleCount, ViPInt16
overloadPtr);

ViStatus hpe1437_read64(ViSession id, ViReal64 rec[], ViInt32 sampleCount,
ViPInt16 overloadPtr);

Description hpe1437_read returns a block of floating point data from the E1437 that has been
scaled to be in volts. The function waits for a block of data to be ready before
attempting to read the block.

These function can only read data from the VME backplane register. The data port of
the E1437 must be set to HPE1437_VME by the hpe1437_data_port function for
these functions to be effective.

Parameters id is the VXI instrument session pointer returned by the hpe1437_init function.

rec is a pointer to the array into which the floating point data is to be placed. Be sure to
allocate sufficient storage space at this location to hold the full data record as
determined by the samplecount parameter. Note that when the module is set to
complex data type, the output data record contains 2 ×samplecount floating point
values. For real data the record contains samplecount floating point values.

sampleCount determines the number of sample points to read into the data array. This
should never be set larger than the blocksize parameter set in the
hpe1437_data_blocksize function. In continuous data collection mode or when
append status is turned on, samplecount should be set equal to blocksize to ensure that
the entire data block is read out and that the last word corresponds to appendStatus.

E1437A User's Guide
VXI plug&play Programming Reference

4-50

overloadPtr is a pointer to a short integer which is set to 1 if an ADC overload was
encountered during the collection of the data record and if appendStatus is turned on.
The value is set to 0 with no overload.

Return Value Returns the following:

0 the read is complete

1 a read is still in progress and data is not yet available

2 measurement is aborted

3 the module is waiting for a trigger

4 the module is still acquiring pre-trigger data.

Effect on Active
Measurement

These commands do not abort any measurement in progress when any parameter value
is changed.

See Also hpe1437_init, hpe1437_data_port, hpe1437_data_blocksize ,
hpe1437_data_scale_getPAGE 19

E1437A User's Guide
VXI plug&play Programming Reference

4-51

hpe1437_read_raw

Reads raw, unscaled data from FIFO

VXIplug&play Syntax #include “hpe1437.h”

ViStatus hpe1437_read_raw(ViSession id, ViInt16 rec[], ViInt32 wordCount);

Description hpe1437_read_raw returns a block of raw, unscaled data from the FIFO.

This function can only read data from the VME backplane register. The data port of the
E1437 must be set to HPE1437_VME by the hpe1437_data_port function for this
function to be effective.

Parameters id is the VXI instrument session pointer returned by the hpe1437_init function.

rec is a pointer to the array into which the raw data record is to be place. Be sure to
allocate sufficient storage space to hold the full data record as determined by the
wordcount parameter.

wordCount is the number of short data values to read into the data array from the
E1437 output FIFO. The maximum wordcount depends on the blocksize, data type, data
resolution, and appendStatus parameter settings according to the following formula:

maxwordcount= W × blocksize + A

where W-=1 for 16-bit real data, W=2 for 32-bit real data, W=2 for 16-bit complex data,
W=4 for 32-bit complex data. A=1 if append ADC status is turned on, or A=0 if append
ADC status is off. In continuous data collection mode or when append ADC status is
turned on, wordcount should be set equal tomaxwordcount to ensure that the entire
data block is read out and that the last word corresponds to appendStatus.

NOTE The primary purpose of the hpe1437_read_raw function is to provide the fastest
possible way to read blocks of data from the module. It reads data regardless of
the instrument state, whether a block of data is available or not. The resulting
data ordering is dependent on the data type and resolution. The array may be
cast as a long before reading the data to provide whole words.

Effect on Active
Measurement

This command does not abort any measurement in progress when any parameter value
is changed.

See Also hpe1437_ - , hpe1437_data_scale_getPAGE 19

E1437A User's Guide
VXI plug&play Programming Reference

4-52

hpe1437_reset

Places the module in a known state.

VXIplug&play Syntax #include “hpe1437.h”

ViStatus hpe1437_reset(ViSession id);

Description hpe1437_reset returns the module and its internal data structures to the power-up
state. This function can be called separately by this function, or may be selected in
conjunction with the hpe1437_init function.

Parameters id is the VXI instrument session pointer returned by the hpe1437_init function.

Comments The reset values are listed with each command description.

The following are not affected by this command:

• Calibration constants

Effect on Active
Measurement

This command aborts any measurement in progress.

See Also hpe1437_init

E1437A User's Guide
VXI plug&play Programming Reference

4-53

hpe1437_revision_query

Returns strings that identify the date of the firmware revision.

VXIplug&play Syntax #include “hpe1437.h”

ViStatus hpe1437_revision_query(ViSession id, ViString driverRev, ViString
instRev);

Parameters id is the VXI instrument session pointer returned by the hpe1437_init function.

driverRev returns the date and time of the module’s driver revision in the form:

mm-dd-yyyy hh:mm

instRev returns the date, time, and board number of the module’s firmware revision in
the form:

mm-dd-yyyy hh:mm board#

Effect on Active
Measurement

This command does not abort any measurement in progress.

See Also hpe1437_init

E1437A User's Guide
VXI plug&play Programming Reference

4-54

hpe1437_self_test

Performs a self-test and returns the result of that self test.

VXIplug&play Syntax #include “hpe1437.h”

ViStatus hpe1437_self_test(ViSession id, ViPInt16 testResultPtr, ViString
testMessage);

Description The E1437 self test includes the following tests:

• Digital: rails the front end to a full scale value then turns on zooming, filtering,
and the final decimation to quickly verify those operations.

• Noise: does a quick baseband measurement with the input signal disconnected,
and verifies that the front-end noise is within specification.

• Bump: Verifies some front-end levels associated with the analog-to-digital
converter.

• Memory: fills the entire DRAM then verifies that all the data is correct.

• Analog: verifies that autozero adjust is working and that the input is triggering.

Parameters id is the VXI instrument session pointer returned by the hpe1437_init function.

testResult contains the instrument numeric error code.

testMessage contains the self test status message string up to 80 characters long.

NOTE The self-test takes about the following amount of time to complete:
========================

Memory size Time

(MBytes) (min.)

========================

8 1.0

16 1.5

32 2.5

64 4.5

Effect on Active
Measurement

This command does not abort any measurement in progress.

See Also hpe1437_init

E1437A User's Guide
VXI plug&play Programming Reference

4-55

hpe1437_status_get

Reads Status Register information for the module.

VXIplug&play Syntax #include “hpe1437.h”

ViStatus hpe1437_status_get(ViSession id, ViPInt16 statusPtr);

Parameters id is the VXI instrument session pointer returned by the hpe1437_init function.

statusPtr contains the status word. The bits are defined below:

1-0 State: These two bits indicate the current state of the measurement loop as shown
in the table below. See the Measurement Loop section for more information about the
states.

Bits State

==============

11 Trigger

10 Measure

01 Arm

00 Idle

2 Passed: This bit is always set to 1.

3 Ready: This bit is set whenever the module is operating as a message-based device
and is set for Normal operation. See the VXIbus Specifications for more information on
the Normal configuration sub-state.

4 ADC Error: This bit is set whenever a hardware error is detected in the ADC. The bit
is cleared when the Status register is read.

5 Ext Clk Speed: This bit is set when a measurement has been aborted because the
external clock is too fast (over 20.48 MHz) with respect to the DSP clock. This situation
only occurs when a fast external ADC clock is used with an internal oscillator DSP clock.
This bit is cleared with the first subsequent read.

6 Setup error: An invalid parameter value was requested. If an invalid block size was
requested, the closest valid block size is used until a change to an interrelated parameter
makes the requested block size valid. If a data resolution, data type, filter bandwidth, or
filter decimation parameter was requested which would result in an inability to make a
measurement, the previous valid parameter is used until a change to an interrelated
parameter makes the requested parameter valid.

7 Sync/Idle Complete: This bit is set when the most recent user-initiated SYNC or
IDLE change has propagated through to all modules in a system. The change is a result
of asserting SYNC or forcing IDLE via the Control Register or issuing a meas_control
command or function.

8 Read Valid: This flag is set whenever there is at least one valid 16-bit data word
available to be read via the Data register.

E1437A User's Guide
VXI plug&play Programming Reference

4-56

9 Measure Done: This bit is set in continuous mode whenever the size of the data in
the FIFO is equal to or greater than the block size register. Check this bit before reading
data to insure that a block of data may be transferred without fear of running out of data,
thereby holding up the Local bus or VME bus. This bit is set in block mode whenever the
module has successfully taken a block size number of samples since the most recent
trigger

10 Armed: This bit is set whenever the module is in the Trigger state, or is in the Arm
state and has satisfied its pre-trigger requirements. When this bit is set, the module
releases the VXI SYNC line. Once all modules release the SYNC line, then all modules go
to the Trigger state.

11 FIFO Overflow: This bit set when the FIFO buffer overflows in continuous mode.

12 Overload: This bit is set whenever the ADC converts a sample that exceeds the
range of the ADC. The bit is cleared when the Status register is read. Repeated ADC
errors may indicate that the module should be recalibrated.

13 Error: This bit is set whenever there is an error in the error queue. It is cleared
when the error queue is empty.

14 ModID*: A (1) in this field indicates that the module is not selected via the P2
MODID line. A (0) indicates that the module is selected by a high state on the P2
MODID line.

15 Hardware Set: This bit is set when all commands are complete and the hardware has
been set.

Effect on Active
Measurement

This command does not abort any measurement in progress.

See Also hpe1437_init

E1437A User's Guide
VXI plug&play Programming Reference

4-57

hpe1437_trigger_delay_actual_get

Returns the actual trigger delay from the most recent trigger event.

VXIplug&play Syntax #include “hpe1437.h”

ViStatus hpe1437_trigger_delay_actual_get(ViSession id, ViPReal64
actualDelayPtr);

Parameters id is the VXI instrument session pointer returned by the hpe1437_init function.

actualDelayPtr contains the returned actual delay from the most recent trigger event
and the resulting first output sample time. This delay value provides more accuracy
than the delay parameter alone since it includes a measurement of the fractional part of
the output sample period between the actual trigger event and the next available output
sample. The trigger delay accuracy improves to one ADC sample clock period rather
than one output sample period. This can result in a substantial improvement in
accuracy when narrow bandwidth decimation filtering is used. The
hpe1437_trigger_delay_actual_get function must be called for each new trigger
event that requires precise delay measurement. The actual delay is still expressed in
output sample periods, however, it can take on non-integer values.

Effect on Active
Measurement

This command does not abort any measurement in progress.

See Also hpe1437_init, hpe1437_trigger_setup

E1437A User's Guide
VXI plug&play Programming Reference

4-58

hpe1437_trigger_phase_actual_get

Returns a representation of the phase value of the LO at the trigger point.

VXIplug&play Syntax #include “hpe1437.h”

ViStatus hpe1437_trigger_phase_actual_get(ViSession id, ViPReal64
actualPhasePtr);

Parameters id is the VXI instrument session pointer returned by the hpe1437_init function.

actualPhasePtr contains the returned value interpreted as follows:

0 <= value < 1.0
where 0 => 0 degrees

.25 => 90 degrees

.5 => 180 degrees

Effect on Active
Measurement

This command does not abort any measurement in progress.

See Also hpe1437_init, hpe1437_trigger_setup, hpe1437_trigger_phase_capturePAGE 60

E1437A User's Guide
VXI plug&play Programming Reference

4-59

hpe1437_trigger_phase_capture

Prepares for LO phase capture in frequency-synchronized, multiple-module zoom
measurements.

VXIplug&play Syntax #include “hpe1437.h”

ViStatus hpe1437_trigger_phase_capture(ViSession id);

Description Use this function if you intend to subsequently use
hpe1437_trigger_phase_actual_get to capture the LO phase on the next SYNC
assertion. You should send hpe1437_trigger_phase_capture to only one module in
the system (typically the master) after you have completed all frequency and filter setup
functions since those functions take the module out of the phase_capture mode.
Therefore, you should call this function just prior to starting the measurement.

When the hpe1437_frequency_sync mode is turned off, the
hpe1437_trigger_phase_capture function is not needed because the module will
revert to the phase_capture mode by default.

Parameters id is the VXI instrument session pointer returned by the hpe1437_init function.

Effect on Active
Measurement

This command does not abort any measurement in progress.

See Also hpe1437_init, hpe1437_trigger_setup, hpe1437_trigger_phase_actual_getPAGE 59,
hpe1437_frequency_sync, hpe1437_trigger_delay_actual_get

E1437A User's Guide
VXI plug&play Programming Reference

4-60

hpe1437_trigger_setup

hpe1437_trigger_setup sets all triggering parameters. This description also
includes information on the following functions which set or query the trigger
parameters individually:

hpe1437_trigger_adclevel specifies the trigger threshold for an ADC trigger

hpe1437_trigger_adclevel_get gets the ADC trigger threshold

hpe1437_trigger_delay specifies a pre- or post-trigger delay time

hpe1437_trigger_delay_get gets the trigger delay time

hpe1437_trigger_gen determines whether a module can generate a trigger

hpe1437_trigger_gen_get gets the trigger generation status

hpe1437_trigger_maglevel specifies the trigger threshold for a magnitude trigger

hpe1437_trigger_maglevel_get gets magnitude trigger threshold

hpe1437_trigger_slope selects a positive or negative trigger

hpe1437_trigger_slope_get gets trigger slope

hpe1437_trigger_type determines the trigger type

hpe1437_trigger_type_get gets trigger type

VXIplug&play Syntax #include “hpe1437.h”

ViStatus hpe1437_trigger_setup(ViSession id, ViInt16 tType, ViInt32 delay, ViInt16
adcLevel, ViInt16magLevel, ViInt16 slope, ViInt16 gen);

ViStatus hpe1437_trigger_adclevel(ViSession id, ViInt16 adcLevel);

ViStatus hpe1437_trigger_adclevel_get(ViSession id, ViPInt16 adcLevelPtr);

ViStatus hpe1437_trigger_delay(ViSession id, ViInt32 delay);

ViStatus hpe1437_trigger_delay_get(ViSession id, ViPint32 delayPtr);

ViStatus hpe1437_trigger_gen(ViSession id, ViInt16 gen);

ViStatus hpe1437_trigger_gen_get(ViSession id, ViPInt16 genPtr);

ViStatus hpe1437_trigger_maglevel(ViSession id, ViInt16magLevel);

ViStatus hpe1437_trigger_maglevel_get(ViSession id, ViPInt16magLevelPtr);

ViStatus hpe1437_trigger_slope(ViSession id, ViInt16 slope);

ViStatus hpe1437_trigger_slope_get(ViSession id, ViPInt16 slopePtr);

ViStatus hpe1437_trigger_type(ViSession id, ViInt16 tType);

ViStatus hpe1437_trigger_type_get(ViSession id, ViPInt16 tTypePtr);

E1437A User's Guide
VXI plug&play Programming Reference

4-61

Description An E1437 can be triggered to collect data in a variety of ways. The trigger can be
internally generated or can come from an external source. Multiple modules can be
triggered synchronously. A variable pre- and post-trigger delay can be programmed for
data collection. The slope and level of the trigger point on a signal can be selected. The
source of the internal trigger can be either the output of the ADC or the magnitude of
the complex output of the decimation filter.

hpe1437_trigger_setup is the function that sets all trigger parameters at once. An
E1437 will generate a trigger only when it is in the TRIGGER state and the SYNC line on
the VXI backplane is released. When a trigger is generated, the E1437 will release the
SYNC line.

Parameters id is the VXI instrument session pointer returned by the hpe1437_init function.

tType determines the trigger source. HPE1437_ADC generates a trigger based on the
raw data samples from the ADC. HPE1437_MAG generates a trigger based on the log
magnitude of the signal after it has been filtered to a selectable bandwidth around the
center frequency established by the hpe1437_frequency_setup function.
HPE1437_EXTERNAL uses transitions on the signal applied to the BNC external
trigger connector on the front panel. HPE1437_USER disables the module from any
event-driven trigger generation though it is still possible to force the module to trigger a
measurement by pulling the SYNC line once the module is in the trigger state. You may
do this by calling the hpe1437_meas_start function, waiting for the module to reach
the trigger state, then triggering the measurement by using hpe1437_meas_control to
pull the SYNC line. HPE1437_IMMEDIATE triggers a measurement immediately upon
entering the trigger state.

NOTE In multi-module systems all modules should be of the same type in order to have
the same actual delay.
tTypePtr contains the current value of tType.

delay is the time delay, in units of output samples, between when a trigger is received
and the first data point in the output data. Negative values indicate a pre-trigger
condition, where samples prior to the trigger event are included in the output data. The
amount of pre-trigger delay is limited to the number of samples which can be saved in
the 8 Mbyte buffer memory. See the hpe1437_data_setup function description for the
number of bytes used per sample. The delay limits depend on the data type as follows:
===

Trigger Delay

(DRAM size in bytes)

===

| | 32 bit real |

| 32 bit complex | 16 bit complex | 16 bit real

—————————————————

Post-trigger | 16,777,116 | 33,554,332 | 67,108,764

Pre-trigger | 132-DRAMsize/8 | 164-DRAMsize/4 | 228-DRAMsize/2

—————————————————

If delay is <132-DRAMsize/8 or >16,777,116 a bad parameter

error will be set. However, the delay is still programmed in order to

accommodate the valid setups generated by other data types.

delayPtr contains the current value of the of delay.

E1437A User's Guide
VXI plug&play Programming Reference

4-62

adcLevel is used to set the triggering signal threshold when using the ADC trigger
source. This threshold is (full scale ×adclevel/256), where −256 ≤ adclevel ≤ 255. There is
hysteresis around the threshold in order to prevent multiple triggers from a single
threshold crossing.

adcLevelPtr contains the current value of the of the adclevel parameter.

magLevel is used to set the triggering threshold when using the mag trigger source.
The threshold is (+0.3762874 ×maglevel)dB relative to full scale signal, where −349 ≤
maglevel ≤ 19.

magLevelPtr contains the current value of themaglevel parameter.

slope selects the edge of the trigger source on which a trigger occurs.
HPE1437_POSITIVE sets triggering on the positive slope and HPE1437_NEGATIVE
on the negative slope.

slopePtr contains the current value of the of the trigger slope.

gen determines whether a module may generate a trigger. HPE1437_ON enables
triggering. HPE1437_OFF disables triggering. This is useful in multi-module systems
with the same trigger type where you want only certain module(s) to generate a trigger.

genPtr contains the current value of the of the gen parameter.

Reset Values

tType IMMEDIATE

delay 0

adcLevel 0

magLevel −128
slope POSITIVE

gen ON

Effect on Active
Measurement

The commands in this group do not abort any measurement in progress.

See Also hpe1437_init, hpe1437_frequency_setup, hpe1437_data_, hpe1437_filter_decimate,
hpe1437_meas_start hpe1437_meas_control, hpe1437_trigger_delay_actual_get

E1437A User's Guide
VXI plug&play Programming Reference

4-63

hpe1437_wait

Facilitates the synchronization and control of multi-module systems.

VXIplug&play Syntax #include “hpe1437.h”

ViStatus hpe1437_wait(ViSession id);

Description This function assures that all slave modules are completely set up before issuing
measurement control commands to the master module. Prior to calling
hpe1437_meas_control for the master module in multi-module systems, you should
call hpe1437_wait for each other module within the related synchronous group to
which you have previously sent commands. The function performs a continuous loop
which polls the status register of the indicated module until the hardware complete and
sync/idle complete bits are both true.

CAUTION This an endless loop which assumes that the firmware will eventually set both
bits.
You do not need to call hpe1437_wait for single modules or non-synchronous groups
since the hpe1437_meas_control and hpe1437_meas_start functions perform an
implicit wait.

Parameters id is the VXI instrument session pointer returned by the hpe1437_init function.

Effect on Active
Measurement

This command does not abort any measurement in progress.

See Also hpe1437_init, hpe1437_meas_start hpe1437_meas_controlPAGE 47

E1437A User's Guide
VXI plug&play Programming Reference

4-64

VXIplug&play Quick Reference

ViStatus hpe1437_attrib_get(ViSession id, ViInt16 attrib, ViPint32 value)

ViStatus hpe1437_clock_setup(ViSession id, ViInt16 sync, ViInt16 source, ViInt16
dsp, ViInt16master, ViReal64 fs);

ViStatus hpe1437_clock_dsp(ViSession id, ViInt16 dsp);

ViStatus hpe1437_clock_dsp_get(ViSession id, ViPInt16 dspPtr);

ViStatus hpe1437_clock_fs(ViSession id, ViReal64 fs);

ViStatus hpe1437_clock_fs_get(ViSession id, ViPReal64 fsPtr);

ViStatus hpe1437_clock_master(ViSession id, ViInt16master);

ViStatus hpe1437_clock_master_get(ViSession id, ViPInt16masterPtr);

ViStatus hpe1437_clock_multi_sync(ViSession id, ViInt16 sync);

ViStatus hpe1437_clock_multi_sync_get(ViSession id, ViPInt16 syncPtr);

ViStatus hpe1437_clock_source(ViSession id, ViInt16 source);

ViStatus hpe1437_clock_source_get(ViSession id, ViPInt16 sourcePtr);

ViStatus hpe1437_close(ViSession id);

ViStatus hpe1437_data_memsize_get(ViSession id, ViPInt16memSizePtr);

ViStatus hpe1437_data_scale_get(ViSession id, ViPReal64 scalePtr);

ViStatus hpe1437_data_setup(ViSession id, ViInt16 dType, ViInt16 resolution,
ViInt16mode, ViInt32 blocksize, ViInt16 appendStatus, ViInt16 port);

ViStatus hpe1437_data_append_status(ViSession id, ViInt16 appendStatus);

ViStatus hpe1437_data_append_status_get(ViSession id, ViPInt16
appendStatusPtr);

ViStatus hpe1437_data_blocksize(ViSession id, ViInt32 blocksize);

ViStatus hpe1437_data_blocksize_get(ViSession id, ViPint32 blocksizePtr);

ViStatus hpe1437_data_mode(ViSession id, ViInt16mode);

ViStatus hpe1437_data_mode_get(ViSession id, ViPInt16modePtr);

ViStatus hpe1437_data_port(ViSession id, ViInt16 port);

ViStatus hpe1437_data_port_get(ViSession id, ViPInt16 portPtr);

ViStatus hpe1437_data_resolution(ViSession id, ViInt16 resolution);

ViStatus hpe1437_data_resolution_get(ViSession id, ViPInt16 resolutionPtr);

ViStatus hpe1437_data_type(ViSession id, ViInt16 dType);

ViStatus hpe1437_data_type_get(ViSession id, ViPInt16 dTypePtr);

ViStatus hpe1437_error_message(ViSession id, ViStatus errNum, ViPString
errMessage);

ViStatus hpe1437_error_query(ViSession id, ViPint32 errNumPtr, ViPString
errMessage);

ViStatus hpe1437_filter_resp_get(ViSession id, ViReal64 resp[], ViInt32 n, ViReal64
fmin, ViReal64 fmax);

ViStatus hpe1437_filter_setup(ViSession id, ViInt16 sigBw, ViInt16 decimate);

ViStatus hpe1437_filter_decimate (ViSession id, ViInt16 decimate);

ViStatus hpe1437_filter_decimate_get(ViSession id, ViPInt16 decimatePtr);

E1437A User's Guide
VXI plug&play Programming Reference

4-65

ViStatus hpe1437_filter_bw (ViSession id, ViInt16 sigBw);

ViStatus hpe1437_filter_bw_get(ViSession id, ViPInt16 sigBwPtr);

ViStatus hpe1437_filter_sync(ViSession id);

ViStatus hpe1437_frequency_center_raw(ViSession id, ViInt16 coarse, ViInt32 fine);

ViStatus hpe1437_frequency_setup(ViSession id, ViInt16 cmplxDc, ViInt16 sync,
ViReal64 freq);

ViStatus hpe1437_frequency_cmplxdc(ViSession id, ViInt16 cmplxDc);

ViStatus hpe1437_frequency_cmplxdc_get(ViSession id, ViPInt16 cmplxDcPtr);

ViStatus hpe1437_frequency_sync(ViSession id, ViInt16 sync);

ViStatus hpe1437_frequency_sync_get(ViSession id, ViPInt16 syncPtr);

ViStatus hpe1437_frequency_center(ViSession id, ViReal64 freq);

ViStatus hpe1437_frequency_center_get(ViSession id, ViPReal64 freqPtr);

ViStatus hpe1437_init(ViRsrc instrDesc, ViBoolean idQuery, ViBoolean rst,
ViPSession id);

ViStatus hpe1437_input_autozero(ViSession id);

ViStatus hpe1437_input_setup(ViSession id, ViInt16 range, ViInt16 coupling,
ViInt16 antiAlias, ViInt16 signal, ViInt16 floatIn);

ViStatus hpe1437_input_alias_filter(ViSession id, ViInt16 antiAlias);

ViStatus hpe1437_input_alias_filter_get(ViSession id, ViPInt16 antiAliasPtr);

ViStatus hpe1437_input_coupling(ViSession id, ViInt16 coupling);

ViStatus hpe1437_input_coupling_get(ViSession id, ViPInt16 couplingPtr);

ViStatus hpe1437_input_float(ViSession id, ViInt16 floatIn);

ViStatus hpe1437_input_float_get(ViSession id, ViPInt16 floatInPtr);

ViStatus hpe1437_input_range(ViSession id, ViInt16 range);

ViStatus hpe1437_input_range_get(ViSession id, ViPInt16 rangePtr);

ViStatus hpe1437_input_signal(ViSession id, ViInt16 signal);

ViStatus hpe1437_input_signal_get(ViSession id, ViPInt16 signalPtr);

ViStatus hpe1437_input_range_auto(ViSession id, ViReal64 sec);

ViStatus hpe1437_interrupt_restore(ViSession id);

ViStatus hpe1437_interrupt_setup(ViSession id, ViInt16 intrNum, ViInt16 priority,
ViInt16mask);

ViStatus hpe1437_interrupt_mask_get(ViSession id, ViInt16 intrNum, ViPInt16
maskPtr);

ViStatus hpe1437_interrupt_priority_get(ViSession id, ViInt16 intrNum, ViPInt16
priorityPtr);

ViStatus hpe1437_lbus_mode(ViSession id, ViInt16 lbusMode);

ViStatus hpe1437_lbus_mode_get(ViSession id, ViPInt16 lbusModePtr);

ViStatus hpe1437_lbus_reset(ViSession id, ViInt16 lbusReset);

ViStatus hpe1437_lbus_reset_get(ViSession id, ViPInt16 lbusResetPtr);

ViStatus hpe1437_meas_control(ViSession id, ViInt16 idle, ViInt16 sync);

ViStatus hpe1437_meas_start(ViSession id);

E1437A User's Guide
VXI plug&play Programming Reference

4-66

ViStatus hpe1437_read(ViSession id, ViReal32 rec[], ViInt32 sampleCount, ViPInt16
overloadPtr);

ViStatus hpe1437_read64(ViSession id, ViReal64 rec[], ViInt32 sampleCount,
ViPInt16 overloadPtr);

ViStatus hpe1437_read_raw(ViSession id, ViInt16 rec[], ViInt32 wordCount);

ViStatus hpe1437_reset(ViSession id);

ViStatus hpe1437_revision_query(ViSession id, ViString driverRev, ViString
instRev);

ViStatus hpe1437_self_test(ViSession id, ViPInt16 testResultPtr, ViString
testMessage);

ViStatus hpe1437_status_get(ViSession id, ViPInt16 statusPtr);

ViStatus hpe1437_trigger_delay_actual_get(ViSession id, ViPReal64
actualDelayPtr);

ViStatus hpe1437_trigger_phase_actual_get(ViSession id, ViPReal64
actualPhasePtr);

ViStatus hpe1437_trigger_phase_capture(ViSession id);

ViStatus hpe1437_trigger_setup(ViSession id, ViInt16 tType, ViInt32 delay, ViInt16
adcLevel, ViInt16magLevel, ViInt16 slope, ViInt16 gen);

ViStatus hpe1437_trigger_adclevel(ViSession id, ViInt16 adcLevel);

ViStatus hpe1437_trigger_adclevel_get(ViSession id, ViPInt16 adcLevelPtr);

ViStatus hpe1437_trigger_delay(ViSession id, ViInt32 delay);

ViStatus hpe1437_trigger_delay_get(ViSession id, ViPint32 delayPtr);

ViStatus hpe1437_trigger_gen(ViSession id, ViInt16 gen);

ViStatus hpe1437_trigger_gen_get(ViSession id, ViPInt16 genPtr);

ViStatus hpe1437_trigger_maglevel(ViSession id, ViInt16magLevel);

ViStatus hpe1437_trigger_maglevel_get(ViSession id, ViPInt16magLevelPtr);

ViStatus hpe1437_trigger_slope(ViSession id, ViInt16 slope);

ViStatus hpe1437_trigger_slope_get(ViSession id, ViPInt16 slopePtr);

ViStatus hpe1437_trigger_type(ViSession id, ViInt16 tType);

ViStatus hpe1437_trigger_type_get(ViSession id, ViPInt16 tTypePtr);

ViStatus hpe1437_wait(ViSession id);

E1437A User's Guide
VXI plug&play Programming Reference

4-67

Visual Basic Quick Reference

Return& = hpe1437_attrib_get(id&, attrib%, value&)

Return& = hpe1437_clock_setup(id&, sync%, source%, dsp%,master%, fs#)

Return& = hpe1437_clock_dsp(id&, dsp%)

Return& = hpe1437_clock_dsp_get(id&, dspPtr%)

Return& = hpe1437_clock_fs(id&, fs#)

Return& = hpe1437_clock_fs_get(id&, fsPtr#)

Return& = hpe1437_clock_master(id&,master%)

Return& = hpe1437_clock_master_get(id&,masterPtr%)

Return& = hpe1437_clock_multi_sync(id&, sync%)

Return& = hpe1437_clock_multi_sync_get(id&, syncPtr%)

Return& = hpe1437_clock_source(id&, source%)

Return& = hpe1437_clock_source_get(id&, sourcePtr%)

Return& = hpe1437_close(id&)

Return& = hpe1437_data_memsize_get(id&,memSizePtr%)

Return& = hpe1437_data_scale_get(id&, scalePtr#)

Return& = hpe1437_data_setup(id&, dType%, resolution%,mode%, blocksize&,
appendStatus%, port%)

Return& = hpe1437_data_append_status(id&, appendStatus%)

Return& = hpe1437_data_append_status_get(id&, appendStatusPtr%)

Return& = hpe1437_data_blocksize(id&, blocksize&)

Return& = hpe1437_data_blocksize_get(id&, blocksizePtr&)

Return& = hpe1437_data_mode(id&,mode%)

Return& = hpe1437_data_mode_get(id&,modePtr%)

Return& = hpe1437_data_port(id&, port%)

Return& = hpe1437_data_port_get(id&, portPtr%)

Return& = hpe1437_data_resolution(id&, resolution%)

Return& = hpe1437_data_resolution_get(id&, resolutionPtr%)

Return& = hpe1437_data_type(id&, dType%)

Return& = hpe1437_data_type_get(id&, dTypePtr%)

Return& = hpe1437_error_message(id&, errNum&, errMessage$)

Return& = hpe1437_error_query(id&, errNumPtr&, errMessage$)

Return& = hpe1437_filter_resp_get(id&, resp#[], n&, fmin#, fmax#)

Return& = hpe1437_filter_setup(id&, sigBw%, decimate%)

Return& = hpe1437_filter_decimate (id&, decimate%)

Return& = hpe1437_filter_decimate_get(id&, decimatePtr%)

Return& = hpe1437_filter_bw (id&, sigBw%)

Return& = hpe1437_filter_bw_get(id&, sigBwPtr%)

E1437A User's Guide
Visual Basic Quick Reference

4-68

Return& = hpe1437_filter_sync(id&)

Return& = hpe1437_frequency_center_raw(id&, coarse%, fine&)

Return& = hpe1437_frequency_setup(id&, cmplxDc%, sync%, freq#)

Return& = hpe1437_frequency_cmplxdc(id&, cmplxDc%)

Return& = hpe1437_frequency_cmplxdc_get(id&, cmplxDcPtr%)

Return& = hpe1437_frequency_sync(id&, sync%)

Return& = hpe1437_frequency_sync_get(id&, syncPtr%)

Return& = hpe1437_frequency_center(id&, freq#)

Return& = hpe1437_frequency_center_get(id&, freqPtr#)

Return& = hpe1437_init(instrDesc$, idQuery%, rst%, ViPSession id)

Return& = hpe1437_input_autozero(id&)

Return& = hpe1437_input_setup(id&, range%, coupling%, antiAlias%, signal%,
floatIn%)

Return& = hpe1437_input_alias_filter(id&, antiAlias%)

Return& = hpe1437_input_alias_filter_get(id&, antiAliasPtr%)

Return& = hpe1437_input_coupling(id&, coupling%)

Return& = hpe1437_input_coupling_get(id&, couplingPtr%)

Return& = hpe1437_input_float(id&, floatIn%)

Return& = hpe1437_input_float_get(id&, floatInPtr%)

Return& = hpe1437_input_range(id&, range%)

Return& = hpe1437_input_range_get(id&, rangePtr%)

Return& = hpe1437_input_signal(id&, signal%)

Return& = hpe1437_input_signal_get(id&, signalPtr%)

Return& = hpe1437_input_range_auto(id&, sec#)

Return& = hpe1437_interrupt_restore(id&)

Return& = hpe1437_interrupt_setup(id&, intrNum%, priority%,mask%)

Return& = hpe1437_interrupt_mask_get(id&, intrNum%,maskPtr%)

Return& = hpe1437_interrupt_priority_get(id&, intrNum%, priorityPtr%)

Return& = hpe1437_lbus_mode(id&, lbusMode%)

Return& = hpe1437_lbus_mode_get(id&, lbusModePtr%)

Return& = hpe1437_lbus_reset(id&, lbusReset%)

Return& = hpe1437_lbus_reset_get(id&, lbusResetPtr%)

Return& = hpe1437_meas_control(id&, idle%, sync%)

Return& = hpe1437_meas_start(id&)

Return& = hpe1437_read(id&, rec&[], sampleCount&, overloadPtr%)

Return& = hpe1437_read64(id&, rec#[], sampleCount&, overloadPtr%)

Return& = hpe1437_read_raw(id&, rec%[],wordCount&)

Return& = hpe1437_reset(id&)

Return& = hpe1437_revision_query(id&, driverRev$, instRev$)

Return& = hpe1437_self_test(id&, testResultPtr%, testMessage$)

Return& = hpe1437_status_get(id&, statusPtr%)

E1437A User's Guide
Visual Basic Quick Reference

4-69

Return& = hpe1437_trigger_delay_actual_get(id&, actualDelayPtr#)

Return& = hpe1437_trigger_phase_actual_get(id&, actualPhasePtr#)

Return& = hpe1437_trigger_phase_capture(id&)

Return& = hpe1437_trigger_setup(id&, tType%, delay&, adcLevel%,magLevel%,
slope%, gen%)

Return& = hpe1437_trigger_adclevel(id&, adcLevel%)

Return& = hpe1437_trigger_adclevel_get(id&, adcLevelPtr%)

Return& = hpe1437_trigger_delay(id&, delay&)

Return& = hpe1437_trigger_delay_get(id&, delayPtr&)

Return& = hpe1437_trigger_gen(id&, gen%)

Return& = hpe1437_trigger_gen_get(id&, genPtr%)

Return& = hpe1437_trigger_maglevel(id&,magLevel%)

Return& = hpe1437_trigger_maglevel_get(id&,magLevelPtr%)

Return& = hpe1437_trigger_slope(id&, slope%)

Return& = hpe1437_trigger_slope_get(id&, slopePtr%)

Return& = hpe1437_trigger_type(id&, tType%)

Return& = hpe1437_trigger_type_get(id&, tTypePtr%)

Return& = hpe1437_wait(id&)

E1437A User's Guide
Visual Basic Quick Reference

4-70

Parameter numeric equivalents

Numeric equivalents may be used in place of alphanumeric variables in function
calls. These numeric equivalents are also available as popups within online function
parameter descriptions.

HPE1437_16BIT 1

HPE1437_32BIT 0

HPE1437_20000KHZ 1

HPE1437_20480KHZ 0

HPE1437_AC 1

HPE1437_ADC 1

HPE1437_APPEND 2

HPE1437_ASSERT 1

HPE1437_BLOCK 0

HPE1437_BUFFER 2

HPE1437_COMPLEX 1

HPE1437_CONTINUOUS 1

HPE1437_DATA_REGISTER 3

HPE1437_DC 0

HPE1437_EXT_PLL_REF 3

HPE1437_EXTEND 3

HPE1437_EXTERNAL 2

HPE1437_FRONT 1

HPE1437_GENERATE 1

HPE1437_IMMEDIATE 4

HPE1437_INSERT 3

HPE1437_INTEL 1

HPE1437_IO_ADDRESS 1

HPE1437_IO_HANDLE 0

HPE1437_LBUS 1

HPE1437_MAG 3

HPE1437_MOTOROLA 0

HPE1437_NEGATIVE 1

E1437A User's Guide
Parameter numeric equivalents

4-71

HPE1437_OFF 0

HPE1437_ON 1

HPE1437_OSCILLATOR 0

HPE1437_PIPELINE 0

HPE1437_POSITIVE 0

HPE1437_REAL 0

HPE1437_REAR 2

HPE1437_RELEASE 0

HPE1437_RM_HANDLE 2

HPE1437_USER 0

HPE1437_VME 0

E1437A User's Guide
Parameter numeric equivalents

4-72

Errors

The following errors are generated by library calls:

0000 HPE1437_SUCCESS “No error.”

0001 HPE1437_NO_DATA_MEASUREMENT_IN_PROGRESS “No data available, a
measurement is in progress.”

0002 HPE1437_NO_DATA_MEASUREMENT_PAUSED “No data available, the
measurement is paused.”

0003 HPE1437_NO_DATA_WAITING_FOR_TRIGGER “No data available, trigger has
not occurred.”

0004 HPE1437_NO_DATA_WAITING_FOR_ARM “No data available, acquiring
pre-trigger data.”

0005 HPE1437_BAD_RESOURCE_DESCRIPTOR “The resource descriptor string is
not valid.”

0006 HPE1437_NO_E1437_FOUND “No E1437 found at specified logical address.”

0007 HPE1437_PROC_READY_TIMEOUT “Timeout is waiting for E1437 command
processor.”

0008 HPE1437_MEMORY_ALLOCATION_ERROR “Memory allocation error.”

0009 HPE1437_CAPABILITY_NOT_SUPPORTED “Capability not supported.”

0010 HPE1437_BAD_ERR_NO “The returned error number does not exist.”

0011 HPE1437_UNSUPPORTED_HARDWARE_CONFIG “Unsupported hardware
configuration.”

0012 HPE1437_CAN’T_START “Unable to start measurement.”

0013 HPE1437_NULL_ID “Hardware addressed does not exist.”

0014 HPE1437_RESOURCE_MANAGER_ERROR “Resource Manager could not be
executed successfully; possible installation error.”

E1437A User's Guide
Errors

4-73

The following errors are generated by firmware:

0097 HPE1437_BAD_COMMAND “Invalid command code.”

0098 HPE1437_PARM_ERROR “Invalid command parameter.”

0100 HPE1437_CAL_SAVE_ERROR “Error in saving calibration constants.”

0101 HPE1437_DOWNLOAD_ERROR “Error while downloading new firmware.”

0102 HPE1437_DSPCLOCK_TOO_SLOW_ERROR “DSP clock slower than minimum
specification.”

0103 HPE1437_AUTOZERO_ERROR “Autozero error, hardware problem.”

0104 HPE1437_MODE_ERROR “Invalid mode requested.”

0105 HPE1437_START_ERROR “Unable to start measurement.”

0106 HPE1437_SELFTEST_ERROR “Error occurred during self test.”

0107 HPE1437_INTERNAL_ERROR “Internal software error occurred.”

0108 HPE1437_AUTORANGE_ERROR “Error occurred during autoranging, hardware
problem.”

0127 HPE1437_BYTE_SWAP_ERROR “Invalid command code, possible byte order
error.”

E1437A User's Guide
Errors

4-74

Functions Which Abort Measurements

The following functions abort any measurement in progress:

hpe1437_clock_dsp

hpe1437_clock_master.

hpe1437_clock_multi_sync

hpe1437_clock_source

hpe1437_data_append_status

hpe1437_data_blocksize

hpe1437_data_mode

hpe1437_data_port

hpe1437_data_resolution

hpe1437_data_type

hpe1437_filter_decimate

hpe1437_filter_bw

hpe1437_filter_sync

hpe1437_init

hpe1437_input_autozero

hpe1437_lbus_mode

hpe1437_meas_control (depending on write value)

hpe1437_meas_start

hpe1437_reset

E1437A User's Guide
Functions Which Abort Measurements

4-75

5

ASCII Overview and
Commands

5-1

Introduction

ASCII commands allow you to communicate with the E1437A without using
the libraries, although most users will find it easier and faster to use
libraries than these ASCII commands. The ASCII commands in this chapter
are provided mainly to accommodate users who have previously used SCPI
(Standard Commands for Programming Instruments) with the HP/Agilent
E1406 Command Module. You will note the similarities in command
structure between these ASCII commands and SCPI.

E1437A
ASCII Overview and Commands

5-2

Command Syntax

This section describes the syntax elements used in the ASCII command
reference.

Special Syntactic Elements

Some syntactic elements have special meanings:

• colon (:) The colon is a part of the program header (command or query) and
does not imply a heirarchy such as that which exists with SCPI commands for
other instruments.

• comma (,) A comma separates the data sent with a command or returned with
a response. For example the FILTER:SETUP command requires two values: one to
select the filter signal bandwidth and one to select extra decimation. A message to
select 460 kHz bandwidth and a decreased sample rate of 1.28 MHz would be:

FILTER:SETUP 4,1

• <WSP> One white space is required to separate a program headers (the
command or query) from its parameters. For example the command
“FILTER:SETUP 4,1" contains a white space between the program header
(FILTER:SETUP) and the parameters (4,1). White space characters are not
allowed within the program header.

Conventions

Syntax and return format description use the following conventions:

• < > Angle brackets enclose the names of items that need further definition. The
definition will be included in accompanying text.

• ::= “is defined as” When two items are separated by this synbol, the second item
replaces the first in any statement that contains the first item. For example, A::=B
indicates that B replaces A in any statment that contains A.

• “or” When items in a list are separated by this symbol one and only one of the
items can be chosen from the list For example, AB indicates that A or B can be
chosen, but not both.

• … an ellipsis (trailing dots) is used to indicate that the preceding element may be
repeated one or more time.

The command interpreter is not case sensitive. No short forms for keywords
are allowed

E1437A
ASCII Overview and Commands

5-3

Using ASCII Commands in Your Environment

ASCII commands require no drivers or other special downloadable files.
They may be sent from the host computer through an GPIB/HPIB interface
to a HP/Agilent E1406 Command Module in a VXI mainframe containing the
E1437A.

Using ASCII commands with HP BASIC

In order to address the module you must know the addressing information
about your GPIB/HPIB interface, your command module, and the E1437A.
The addressing format is as follows:
HCCMM

where H=the HP-IB interface select code
CC=the command module’s HP-IB address
MM=the E1437A module’s logical address divided by 8.

For example if your HPIB/GPIB interface is at select code 7, the HP/Agilent
E1406 command module is at HPIB/GPIB address 9, and the E1437A’s
logical address is 192, the address you use for ASCII commands is 70924.

Example statements in the ASCII Command Reference represent this
environment.

Using ASCII commands with VISA

It is possible to send ASCII commands through the VISA interface, although
using the C function library provides more capability and greater ease of use.

Before using ASCII in this environment be sure that all standard VISA files
are installed and that the interface is properly configured.

The following is an example of sending ASCII commands to the E1437A
through the VISA interface:

Declare Function viReadbin Lib “VISA32.DLL” Alias “#256" (ByVal vi
As Long, Buffer As Any, ByVal count As Long, retCount As Long)
As Long
Dim rec(1024) As Long

er = viOpenDefaultRM(rm)
er = viOpen(rm, “VXI::192", 0, 0, id) output id, ”MEAS:START"
output id, “READ 32"
er = viReadbin(id, rec(0), 4096, retCount&)
REM <The data in rec() is available for use here.> er = viClose(id)
er = viClose(rm)

Sub output(id, a$)
er = viWrite(id, a$, Len(a$), retCount&)
End Sub

E1437A
ASCII Overview and Commands

5-4

ASCII Programming Reference

E1437A
ASCII Overview and Commands

5-5

*IDN? query

Returns a string that identifies the E1437A.

Query syntax: *IDN?

Example Statement: OUTPUT 70924;"*Idn?"

ENTER 70924;identity$

Return Format: HEWLETT-PACKARD, E1437A, <serial number>, <swrev0:swrev1:hwrev3>

Description: The response to this query uniquely identifies your module and the version of the
module’s firmware and hardware.

E1437A *IDN?
ASCII Overview and Commands query

5-6

*RST command

Executes a device reset..

Command syntax: *RST

Example Statement: OUTPUT 70924;"*rst"

Description: This command returns the module to a reset state.

The following are not affected by this command:

• Calibration constants

E1437A *RST
ASCII Overview and Commands command

5-7

*TST? query

Tests the module’s hardware and returns the result..

Query syntax: *TST?

Example Statement: OUTPUT 70924;"*TST?"

Description: The module’s selt-test performs the E1437A diagnostic tests. If the results are
within specified limits, the module returns 0. If the results exceed the secified limits,
the module returns 1 and an error message is placed in the error queue. The length
of the self-test is approximately as follows:

Memory SIze
(MBytes)

Time
(min)

8 1
16 1.5
32 2.5
48 4.5

The query accesses the error queue.

The following tests are performed:

• Digital: rails the front end to a full scale value then turns on zooming, filtering, and
the final decimation to quickly verify those operations.

• Noise: does a quick baseband measurement with the input signal disconnected,
and verifies that the front-end noise is within specification.

• Bump: Verifies some front-end levels associated with the analog-to-digital
converter.

• Memory: fills the entire DRAM then verifies that all the data is correct.
• Analog: verifies that autozero adjust is working and that the input is triggering.

E1437A *TST?
ASCII Overview and Commands query

5-8

CLOCK:SETUP command/query

Sets all timing parameters. This description also includes information on the
following commands which set or query the timing parameters individually:

CLOCK:DSP selects the clock used to drive the decimation/zoom section.

CLOCK:FS provides the frequency of an external sample clock.

CLOCK:MASTER determines whether a module shares its ADC clock.

CLOCK:MULTI:SYNC specifies whether the module uses a shared clock and sync.

CLOCK:SOURCE selects the source of the ADC clock.

Command syntax: CLOCK:SETUP <multisync>,<source>,<dsp>,<master>,<fs>

multisync::= 012
source::= 0123
dsp::= 01
master::= 012
fs <numeric>

numeric::=>0-20600000

CLOCK:MULTI:SYNC 012
CLOCK:SOURCE 0123
CLOCK:DSP 01
CLOCK:MASTER 012
CLOCK:FS <numeric>

numeric::=100000-20600000

Query syntax: CLOCK:DSP?

CLOCK:FS?

CLOCK:MASTER?

CLOCK:MULTI:SYNC?

CLOCK:SOURCE?

Example Statement: OUTPUT 70924;"Clock:setup 1,2,0,2,10000000"

OUTPUT 70924;"Clock:Multi:Sync 2"

E1437A CLOCK:SETUP
ASCII Overview and Commands command/query

5-9

Description: CLOCK:SETUP is used to configure all timing parameters used for sampling (ADC
clock) and decimation/zoom (DSP clock). This command, as well as the other
CLOCK commands covered in this description, is used to select the source and
distribution of clocking and synchronization signals used by the E1437 module. The
primary clock signal used by the module is the ADC clock, for which the rising edges
indicate the time for each sample of the analog-to-digital converter. Another clock
signal is the DSP clock, which drives the digital signal processing and memory
sections of the module. Normally the DSP clock is the same as the ADC clock, and
data is transferred synchronously from the ADC to the DSP portion of the module.
However, in certain situations the two clocks may be independent, requiring
asynchronous data transfers from the ADC to the DSP. The remaining CLOCK
commands and queries listed above set or query the parameters individually.

Parameter definitions: is used to specify whether the module uses a shared ADC clock and
SYNC signal. Modules in multi-module systems must all have the same sync
parameter setting.

parameter
value multisync parameter definition

0 OFF. The ADC clock and SYNC are generated locally

1 FRONT. The module uses the shared clock and SYNC provided on the front panel
distribution connectors

2 REAR. The module uses the shared ADC clock and SYNC signals which are distributed on
the VXI backplane using the ECL trigger lines

selects the clock source that is used to drive the analog to digital converter
(ADC) for single module operation or when a module is used as the master ADC
clock source for a multi-module system. In multi-module systems the source
parameter is ignored for all but the master module.

parameter
value

source parameter definition

0 20.48 MHz internal oscillator

1 20 MHz internal oscillator

2 EXT. TTL, ECL, or sine signal on the external, BNC, front panel clock input connector

3 EXT:PLL. Takes a 10 MHz reference from another instrument on the external, BNC, front
panel clock input connector and uses a PLL to convert it to a 20 MHz reference

E1437A CLOCK:SETUP
ASCII Overview and Commands command/query

5-10

selects the clock used to drive the decimation/zoom section within the E1437.
Normally, the DSP clock should be coupled to the ADC clock whenever possible
since the spurious performance specification is degraded when the clocks are
independent. However, when a slow or intermittent ADC clock results in greater
than 1 µs between clock edges, the DSP clock must be generated from the internal
oscillator to avoid data loss in the dynamic RAM.

parameter
value dsp parameter definition

0 OSC. Causes the DSP clock to be the internally generated 20.48 MHz oscillator.

1 ADC. Forces the DSP clock to be driven by the ADC clock

determines whether an E1437 makes its local ADC clock available to other
modules as a shared clock. Multi-module synchronization requires that one and only
one of the modules to be identified as the master, the source of the shared ADC
clock.

parameter
value master parameter definition

0 OFF. The module is driving neither the front panel nor the back plane. This is the correct
variable to use for all non-master modules in a system.

1
ON. When multisync=1 (front panel) the E1437 drives the front panel ADC clock.
If multisync=2 (back plane) the module uses its ADC clock to drive the VXI backplane in
the mainframe in which it resides.

2* BUFFER. Allows the ADC clock and SYNC lines from the module’s front panel connectors
to drive the backplane of a mainframe not containing the master.

* Only one module per mainframe may be set to 1 or to 2. In multi-mainframe systems using backplane
clock and sync distribution only one module per any mainframe not containing the master may be set to 2.

provides the module with the frequency of an external sample clock connected to
the Ext Clk TTL connector. When using an external clock or when a module is a
non-master in a multi-module group, the frequency of the ADC clock is unknown by
the module. It is the responsibility of the programmer to provide the correct
frequency so that commands dependent on fs will operate properly. This value has
no effect if the module is set up to use the internal ADC clock.

E1437A CLOCK:SETUP
ASCII Overview and Commands command/query

5-11

Comments: For more details on the interaction among source, master and sync with multiple
modules and multiple mainframes see Managing multiple modules.

The master, multisync, source, and dsp parameters are interdependent with
legitimate combinations being as follows (along with the resultant DSP clock rates):

MASTER SYNC SOURCE DSP
DSP CLOCK

RATE

N/A OFF 20.x (internal) N/A Internal source
N/A OFF EXT ADC External source
N/A OFF EXT OSC 20.48
N/A OFF EXT:PLL N/A 20

OFFBUFFER FRONT N/A ADC Master ADC
OFFBUFFER FRONT N/A OSC 20.48

OFF REAR N/A ADC Master ADC
OFF REAR N/A OSC 20.48
ON FRONT 20.x N/A Source
ON FRONT EXT ADC External
ON FRONT EXT OSC 20.48
ON FRONT EXT:PLL N/A 20
ON REAR 20.x N/A Source
ON REAR EXT ADC External
ON REAR EXT OSC 20.48
ON REAR EXT:PLL N/A 20

BUFFER REAR N/A ADC Master ADC
BUFFER REAR N/A OSC 20.48

If fs>20,480,000 then dsp must = ADC

The maximum rate at which data may be transferred to memory is determined by
the DSP clock rate: Max bytes/s. = 4 * DSP clock rate. In continuous mode the
maximum rate is limited to (4 * DSP clock rate)/2. However, you may successfully
perform this type of measurement by adding a level of decimation to reduce the
sample rate.

Example: The correct method to set up a synchronous multi-module group that insures that
all modules share the same ADC clock is:
! First, insure that one module is putting its clock on the backplane
OUTPUT <addrMaster>;" CLOCK:Master 1"
! Put each module into multi-sync mode with internal clock! (unless external
clock is connected to
! master HP E1437 through Ext Clk TTL connector).
! For each module address (except master):
OUTPUT <addrAll>;"Clock:Setup 2,0,1,0,20480000"

Reset State: multisync=OFF, source=20480000, dsp=ADC,master=OFF, fs=20480000

See Also: FILTER:SETUP, DATA:SETUP

E1437A CLOCK:SETUP
ASCII Overview and Commands command/query

5-12

DATA:SETUP command/query

Sets all format and data output flow parameters. This description also
includes information on the following commands which set or query the
format and flow parameters individually:

DATA:APPEND:STATUS appends status information to a data block.

DATA:APPEND:STATUS? gets the append status state

DATA:BLOCKSIZE determines the size of the output data block.

DATA:BLOCKSIZE? gets the output data block size

DATA:MODE selects block mode or continuous mode.

DATA:MODE? gets the data mode

DATA:PORT selects VME bus or local bus output port.

DATA:PORT? gets the output port designation

DATA:RESOLUTION selects 16 or 32 bits data resolution.

DATA:RESOLUTION? gets the data resolution

DATA:TYPE selects real or complex output data.

DATA:TYPE? gets output data type

Command syntax: DATA:SETUP <type>,<resolution>,<mode>,<blocksize>,<append>,<port>

type::=01
resolution::=01
mode::=01
blocksize <numeric>

numeric::= 1 to memorysize/2

append::=01
port::=01
DATA:APPEND:STATUS 0

DATA:BLOCKSIZE <numeric>

numeric::= 1 to memorysize/2

DATA:MODE 01
DATA:PORT 01
DATA:RESOLUTION 01
DATA:TYPE 01

Query syntax: DATA:APPEND:STATUS?

DATA:BLOCKSIZE?

DATA:MODE?

DATA:PORT?

DATA:RESOLUTION?

E1437A DATA:SETUP
ASCII Overview and Commands command/query

5-13

DATA:TYPE?

Example Statement: OUTPUT 70924;"DATA:setup 1,1000000,0,2,0,1"

OUTPUT 70924;"Data:mode 2"

Parameter definitions: determines whether the E1437 collects and returns real or complex data.
Normally, if the frequency set with the FREQUENCY:SETUP command is zero, the
type should be set to real since the imaginary component of each sample is zero
anyway. When non-zero center frequencies are used the type should normally be set
to complex. Otherwise the imaginary component of the signal will be lost.

parameter
value type parameter definition

0 REAL. Causes only the real part of the data to be returned for each sample.

1 COMPLEX. Causes the real data followed by the imaginary data to be returned in each
sample.

selects the data resolution. Choosing 16-bit precision allows for more
samples in the FIFO memory. Choosing 32 bits allows more dynamic range. Because
of the broadband white noise present on the input of the analog-to-digital converter,
it is normally sufficient to use 16 bit resolution whenever the FILTER:SETUP
command specifies a signal bandwidth greater than 250 kHz. For narrower
bandwidths much of the broadband white noise is filtered out, resulting in lower
noise in the output data. To take advantage of this lower noise, the 32-bit data
resolution should be used.

parameter
value resoultion parameter definition

0 32 BIT. Selects data resolution of 32 bits.

1 16 BIT. Selects data resolution of 16 bits.

selects whether the E1437’s data collection operates in block mode or
continuous mode. Block mode is used whenever each block of data is to be
associated with an individual trigger “event”. The continuous mode is useful for
continuous signal processing applications where data gaps are unacceptable.As long
as the data is read out fast enough to prevent overflow in the output FIFO, the
measurement will continue.

parameter
value mode parameter definition

0
BLOCK. Selects block transfer mode in which the measurement is halted after each block
of data. To start collection of the next data block the module must be armed and triggered
again

1 CONTINUOUS. Means that a single arm and trigger event starts a measurement which
runs continuously with no gaps between output data blocks.

E1437A DATA:SETUP
ASCII Overview and Commands command/query

5-14

determines the number of sample points in each output data block. The
range of available block sizes depends on the number of bytes required for each
sample. The command accepts any number between 1 and memory size (in bytes)/2.
The actual number used is the first integer power of 2 equal to or larger than the
requested blocksize. If the requested block size falls outside the range shown in the
table the closest valid value will be used and a status register flag (bit 6) will be set
indicating a setup error. If a subsequent change in another parameter permits a
block size closer to the originally requested value, the module will adjust the block
size to that value.

The following table summarizes the available block sizes for each setting of the
dType and resolution parameters.

Data port Data type Resolution Bytes per
sample

Block size
(with standard 8 Bytes

memory) *
Min Max

VME REAL 16 2 3 4,194,304
VME REAL 32 4 2 2,097,152
VME COMPLEX 16 4 2 2,097,152
VME COMPLEX 32 8 1 1,048,576
LBUS REAL 16 2 6 4,194,304
LBUS REAL 32 4 3 2,097,152
LBUS COMPLEX 16 4 3 2,097,152
LBUS COMPLEX 32 8 2 1,048,576

*For optional additional memory, multiply by the appropriate memory size multiplier. For example, for 32 MByte memory
option multiply max block size by 4.

Note Block size does not need to be a power of two. Considerably more samples may
need to be taken in order to set the block available status bit.

selects whether or not status information is appended to a data block. In
this status byte, Bit 0 will be set if an ADC overload occurred and bit 1 will be set for
an ADC error. The other bits are undefined. When the appended byte is transferred
via the VME backplane, the byte is located in the lower 8 bits of the 16 bit word after
the end of the sampled data block. The upper 8 bits are undefined. When the
appended byte is output via the local bus (as a 32-bit word), it is marked as the last
byte of a transfer block. This status byte should be read separately from any block
read operations in order to not affect the alignment of subsequent elements.

parameter
value append parameter definition

0 OFF. Disables the status append feature.

1
ON. Means that an extra byte of status information is appended to the end of each data
block to indicate whether an ADC overload or error occurred during the collection of that
block of data.

E1437A DATA:SETUP
ASCII Overview and Commands command/query

5-15

determines which output port is used to take data from the E1437 module.

parameter
value port parameter definition

0 VME. Means the data is to be output using standard VME register reads

1
LBUS. Means the data is to be output as a byte-serial data stream via the VXI local bus.
When using the local bus port the module immediately to the right of the E1437 must be
capable of receiving the local bus byte sequence.

The following table summarizes the output word or byte sequence for each
combination of type, resolution, and port parameters:

Type Resolution Port Sequence

REAL 16BIT VME R0[15:0],R1[15:0],...

COMPLEX 16BIT VME R0[15:0],Q0[15:0],R1[15:0],Q1[15:0],...

REAL 32BIT VME R0[31:16],R0[15:0],R1[31:16],R1[15:0],...

COMPLEX 32BIT VME R0[31:16],R0[15:0],Q0[31:16],Q0[15:0],R1[31:16]...

REAL 16BIT LBUS R0[15:8],R0[7:0],R1[15:8],R1[7:0],...

COMPLEX 16BIT LBUS R0[15:8],R0[7:0],Q0[15:8],Q0[7:0],R1[15:8]...

REAL 32BIT LBUS R0[31:24],R0[23:16],R0[15:8],R0[7:0],R1[31:24],...

COMPLEX 32BIT LBUS R0[31:24],R0[23:16],R0[15:8],R0[7:0],Q0[31:24],Q0[23:16],Q0[15
:8],Q0[7:0], R1[31:24],...

Comments The maximum rate at which data may be transferred to memory is determined by
the DSP clock rate: Max bytes/s. = 4 * DSP clock rate. In continuous mode the
maximum rate is limited to (4 * DSP clock rate) / 2. However, you may successfully
perform this type of measurement by adding a level of decimation to reduce the
sample rate.

A limitation also applies to 32-bit, complex data transfers. Because this type of
transfer cannot be made at the full sample rate, a level of decimation must be added
in order to reduce the sample rate

E1437A DATA:SETUP
ASCII Overview and Commands command/query

5-16

The following table summarizes under what data parameter combinations
decimation must be used:

Resolution Type Decimation Filter BW Block Continuous Sample Rate
(MBytes/sec)

16 Complex False 0 or 1 Yes No 80
32 Real False 0 or 1 Yes No 40
32 Complex True 0 or 1 Yes No 40
32 Complex False 2 Yes No 40
32 Complex False 0 or 1 No No 40

All other combinations Yes Yes <40

Reset Values type=REAL, resolution=32BIT,mode=BLOCK, blocksize=1024, append=OFF,
port=VME

See Also FREQUENCY:SETUP, FILTER:DECIMATE, MEAS:CONTROL, CLOCK:DSP

E1437A DATA:SETUP
ASCII Overview and Commands command/query

5-17

DATA:VME:ORDER command/query

Selects the 16-bit word ordering out of the VME port when the data
resolution is 32 bits.

Command syntax; DATA:VME:ORDER <order>

order::=01

Query syntax: DATA:VME:ORDER?

Example Statement: OUTPUT 70924;"DATA:VME:Order 1"

Parameters:

parameter
value order parameter definition

0 MOTOROLA. High word is output first

1 INTEL. Low word is output first

Reset Values WordOrder=MOTOROLA

E1437A DATA:VME:ORDER
ASCII Overview and Commands command/query

5-18

ERROR query

Returns the error number for the oldest error in the queue.

Query syntax: ERROR?

Example Statement: OUTPUT 70924;"ERROR?"

E1437A ERROR
ASCII Overview and Commands query

5-19

FILTER:SETUP command/query

Sets the digital filter bandwidth and decimation filter parameters. This
description also includes information on the following commands which set
or query the decimation filter parameters individually:

FILTER:DECIMATE selects an extra factor of 2 decimation.

FILTER:DECIMATE? gets current state of extra decimation

FILTER:BW selects a signal filter bandwidth.

FILTER:BW? gets the signal filter bandwidth

Command Syntax: FILTER:SETUP <sigBw>,<decimate>

sigBbw::=<numeric>

numeric::=0 to 24

decimate::=01
FILTER:BW <numeric>

<numeric>::=0 to 24

FILTER:DECIMATE::=01

Query Syntax: FILTER:BW?

FILTER:DECIMATE?

Example Statements: OUTPUT 70924;"FILTER:SETUP 12,0"

OUTPUT 70924;"FILTER:BW?"

ENTER 70924;Response$

Parameter Definitions: selects an alias protected signal filter bandwidth that is roughly ±fs/(2.56 *
2^(sigBw)) where fs is the ADC sample frequency. In zoom applications, where the
center frequency is generally not zero, the zoom filter bandwidth is centered on the
frequency programmed with the frequency:setup command. For baseband
measurements the filter may equivalently be considered as a low pass filter of
approximately bandwidth fs/(2.56 * 2^(sigBw)) since the negative frequencies are
generally of no interest.The valid range of sigBw is 0 through 24. When sigBw = 0,
no digital filtering is applied to the signal and the module relies on the analog
anti-alias filter to limit the signal bandwidth to fs/2.56.

To more accurately calculate the bandwidth use the calculation ±fs * k/2^(sigBw)
where:
k=.36 for .25 dB bandwidth
k=.44 for 3 dB bandwidth
k=.5 for 15 dB bandwidth
k=.62 for 110 dB bandwidth

E1437A FILTER:SETUP
ASCII Overview and Commands command/query

5-20

selects the data output sample rate. You would normally want to add the
extra level of decimation in order to increase the displayed span.

parameter
value decimate parameter definition

0 OFF. The output sample rate is: fs when bw=0 or fs/ 2^(bw-1) when bw>0.

1 ON. The output sample rate is reduced by an additional factor of two by discarding
alternate samples

Comments To ensure full alias-free operation the analog anti-alias filter (set by the
INPUT:ALIAS:FILTER command) should be ON unless the application inherently
bandlimits the input signal to less than fs/2. The analog anti-alias filter has a fixed
bandwidth and thus is fully effective only when fs>=20 MHz. If a slower external
ADC clock is used, an additional analog filter of the appropriate bandwidth may be
required for full alias protection.

The decimation process used to reduce the output sample rate is driven from a
“decimation counter” which keeps track of which samples to save and which ones to
discard for each of the octave bandwidth reduction filter stages. In multi-module
systems where synchronous sampling is required, the decimation counters in all the
modules must be synchronous with each other. This condition can be forced by
using the FILTER:SYNC command.

The following table summarizes the relationship between data parameter
combinations, decimation, filter bandwidth, and whether the particular combination
permits block or continuous measurements:

Resolution Type Decimation Filter BW Block Continuous Sample Rate
(MBytes/sec)

16 Complex False 0 or 1 Yes No 80
32 Real False 0 or 1 Yes No 40
32 Complex True 0 or 1 Yes No 40
32 Complex False 2 Yes No 40
32 Complex False 0 or 1 No No 40

All other combinations Yes Yes <40

E1437A FILTER:SETUP
ASCII Overview and Commands command/query

5-21

Example: Here are some bandwidth and sample rate results using the “k” calculation for
bandwidth:

Fs = 20.48 MHz default internal ADC clock

Signal Bandwidth Sample Rate

sigBw 25 Db 15 Db Decimation OFF Decimation ON

0 ±7.37 ±10.24 20.48 10.24
(see CAUTION)

1 ±3.69 ±5.12 20.48 10.24
2 ±1.84 ±2.56 10.24 5.12
3 ±0.92 ±1.28 5.12 2.56
4 ±0.46 ±0.64 2.56 1.28

... Continue to decrease by factors of two ...

CAUTION Turning decimation ON when bw=0 results in aliasing (garbage data) due to
upper limit of the sampling frequency.

Reset Values sigBbw=0, decimate=OFF

See Also CLOCK:FS?, FREQUENCY:SETUP, FILTER:SYNC, INPUT:ALIAS:FILTER,
DATA:MODE

E1437A FILTER:SETUP
ASCII Overview and Commands command/query

5-22

FILTER:SYNC command

Synchronizes the decimation counter.

Command Syntax: FILTER:SYNC

Description: This command causes the digital decimation counter to be reset by the next SYNC
line rising transition. Any measurement in progress is terminated and the module is
placed in the idle state. By calling FILTER:SYNC for every E1437 module using a
shared ADC clock, and then calling MEAS:CONTROL to cause a SYNC transition,
the decimation counters will be started at the same time. Once this is done the
decimation counters will stay synchronized as long as the same ADC clock is used. It
is not necessary to resynchronize the decimation counters when the digital filter
bandwidths are changed.

Comments: If you also want to synchronize frequency or phase, see FREQUENCY:SETUP and
multi-module information .

Example: The following example shows how to use this command while avoiding potential
conflicts and undefined conditions.
! Force all modules to Idle state
OUTPUT <addrAll>; “MEAS:CONTROL 1,0"
! Hold in IDLE to avoid undesired SYNC release */
! Release forced idle on all modules
OUTPUT <addrAll>;"MEAS:CONTROL 0,0"
!
! Wait for last module Sync/Idle Complete bit 7
REPEAT
OUTPUT <addrAll>;"STATUS?"
ENTER <addrAll>;Oper_status

UNTIL BIT (Oper_status,7)

! Put all modules into filter Sync mode
OUTPUT <addrAll>;"FILTER:SYNC"

!
!Assert & release sync to syncronize all modules
OUTPUT <addrMaster>;"MEAS:CONTROL 0,1"
OUTPUT <addrMaster>;"MEAS:CONTROL 0,0"

!Verify Sync Valid on Master
REPEAT
OUTPUT <addrMaster>;"STATUS?"
ENTER <addrMaster>;Oper_status

UNTIL BIT (Oper_status,7)
!
! Toggle SYNC line to arm all modules
OUTPUT <addrMaster>;"MEAS:CONTROL 0,1"
OUTPUT <addrMaster>;"MEAS:CONTROL 0,0"
!
!Allow trigger

E1437A FILTER:SYNC
ASCII Overview and Commands command

5-23

NOTE Resetting the decimation counter causes a transient in the digital filters. The
transient takes about 30 output sample periods to decay 120 dB. See the
impulse response graphs in the specification section for more detail.

See Also: FILTER:SETUP, MEAS:CONTROL, FREQUENCY:CMPLXDC

E1437A FILTER:SYNC
ASCII Overview and Commands command

5-24

FREQUENCY:CENTER:RAW command/query

Provides a fast way to set the center frequency.

Command Syntax: FREQUENCY:CENTER:RAW <coarse>, <fine>

coarse::=0 to 2047

fine::=0 to 499999999

Query Syntax: FREQUENCY:CENTER:RAW?

Example Statements: OUTPUT 70924;"FREQUENCY:CENTER:RAW 1024,1000000

Description: This command sets the center frequency without relying on the internal E1437
microprocessor to do any floating point computations, since the internal
microprocessor does not have a floating point co-processor. The resulting center
frequency is:

fs*((coarse/2048)+(fine/1.024*10^12))

Parameter Definitions: sets high frequencies or a low resolution frequency component.

sets very low frequencies or a high resolution frequency component.

See Also: FREQUENCY:SETUP, CLOCK:FS:GET, DATA:TYPE, MEAS:CONTROL

E1437A FREQUENCY:CENTER:RAW
ASCII Overview and Commands command/query

5-25

FREQUENCY:SETUP command/query

Sets all the zoom center frequency parameters. This description also
includes information on the following commands which set or get frequency
parameters individually:

FREQUENCY:CMPLXDC selects a complex baseband measurement

FREQUENCY:CMPLXDC? gets the state of the baseband measurement mode

FREQUENCY:SYNC prepares the module for a synchronous frequency change

FREQUENCY:SYNC? gets the state of the synchronous change mode

FREQUENCY:CENTER sets the center frequency

FREQUENCY:CENTER? gets the current center frequency

Command Syntax: FREQUENCY:SETUP <cmplxdc>,<sync>,<frequency>

cmplxdc::=01
sync::=01
frequency <numeric>

numeric::= –0.5 - +0.5

FREQUENCY:CMPLXDC 01
FREQUENCY:SYNC 01
FREQUENCY:CENTER <numeric>

<numeric>::= –0.5 - +0.5

Query Syntax: FREQUENCY:CMPLXDC?

FREQUENCY:SYNC?

FREQUENCY:CENTER?

Example statements: OUTPUT 70924;"FREQUENCY:SETUP 1,0, 0.25"

OUTPUT 70924;"FREQUENCY:CENTER?"

ENTER 70924;Response$

Description: FREQUENCY:SETUP sets the center frequency of a zoomed measurement. The
center of a frequency band of interest is converted to DC with this command. The
frequency transition is phase continuous unless the center frequency is set to zero
in which case the transition may be selected either to be phase continuous or phase
reset. This command may also be used to synchronously change frequency in
multiple-module systems.

E1437A FREQUENCY:SETUP
ASCII Overview and Commands command/query

5-26

Parameter Definitions: selects either a phase continuous or phase reset transition when the freq =
0. . The state of this parameter does not affect any transition where freq ≠0.
Whether the real or complex data is saved and ultimately sent to the output port is
determined by the DATA:TYPE command.

parameter
value cmplxdc parameter definition

0 OFF causes phase to be reset to zero when combined with a frequency change to zero

1 ON combined with a frequency change to zero does not reset the phase, thereby
generating a complex DC measurement at baseband.

controls when a frequency transition is implemented.

parameter
value sync parameter definition

0 OFF allows an immediate frequency change.

1

ON. In multiple-module systems, setting this parameter ON prepares the modules for a
frequency change, but does not actually bring about the change until the next ADC clock
corresponding to the next assertion of the shared SYNC signal. The SYNC transition is
generated by calling the MEAS:CONTROL command. Note that returning sync to OFF
before the SYNC signal transition has occurred forces an immediate asynchronous
frequency change.

is a number between -0.5 and +0.5, which will be interpreted as a fraction of the
sample frequency. freq is the desired center frequency divided by the ADC sample
frequency. For example, selecting .25 with a sample clock frequency of 20 MHz will
yield a center frequency of 5.0 MHz. The ADC sample frequency is returned by the
CLOCK:FS? command. Negative frequencies select the negative image of the signal,
which is spectrally inverted from the input signal.

Comments: Although the freq parameter is a double floating point number, its effective
resolution is 1/(1024*10^9) or 20 µHz when fs=20.48 MHz. The actual frequency will
be set to the nearest available value. This value is returned by the
FREQUENCY:CENTER? command. In multi-module systems this value represents
the pending value rather than the current value when a frequency change is
incomplete due to a pending SYNC signal transition.

In multiple-module systems it is often desirable to force the frequency change to
occur synchronously in order to preserve the phase relationship of the LOs. This is
accomplished by setting the sync parameter to ON for all the modules which are to
be changed. See the first example below.

In configurations involving synchronous operation of multiple E1437 modules, the
FREQUENCY:SETUP command provides a mechanism to force all LOs to the same
phase. This can be done by first setting the frequency to zero. See the second
example below.

E1437A FREQUENCY:SETUP
ASCII Overview and Commands command/query

5-27

Example: The following example shows how to synchronously change the center frequency
and maintain the phase relationship between modules in a multi-module system
without stopping a measurement in progress.
! For all ids, check status bits 0 and 1 to assure that all modules are in
MEASURE or IDLE
! state. Changing frequency on modules in TRIGGER or ARM states may risk
unintended
! frequency changes.
!
OUTPUT <addrAll>;"status?"
ENTER <addrAll>;Response$
! ...
!for all ids, prepare all modules for a frequency change.
OUTPUT <addrAll>;"FREQUENCY:SETUP 0,1,0.25"
! Master module asserts and releases SYNC line to move all modules to the new
! center frequency
OUTPUT <addrMaster>;"MEAS:CONTROL 0,1"
OUTPUT <addrMaster>;"MEAS:CONTROL 0,0"

The following example shows how to synchronously change the center frequency
and reset the phase for all modules in a multi-module system without stopping a
measurement in progress.
! For all ids, check status bits 0 and 1to assure that all modules are in
MEASURE or IDLE
! state. Changing frequency on modules in TRIGGER or ARM states is invalid.
!
OUTPUT <addrAll>;"status?"
ENTER <addrAll>;Response$
! ...
! Prepare all modules to change to zero frequency and phase.
OUTPUT <addrAll>;"FREQUENCY:SETUP 0,1,0.0"
! Master module asserts SYNC line to move all modules to the zero center

frequency and phase */
OUTPUT <addrMaster>;"MEAS:CONTROL 0,1"
OUTPUT <addrMaster>;"MEAS:CONTROL 0,0"
! ...
!Master module asserts SYNC line to move all modules to the zero center
frequency and phase */

...
! Prepare all modules for a frequency change
OUTPUT <addrAll>;"FREQUENCY:SETUP 0,1,0.25"
! Master module asserts and releases SYNC line to move all modules to the new
center frequency
! while maintaining the phase
!
!Verify Sync Valid on Master
REPEAT
OUTPUT <addrMaster>;"STATUS?"
ENTER <addrMaster>;Oper_status

UNTIL BIT (Oper_status,7)
!
OUTPUT <addrMaster>;"MEAS:CONTROL 0,1"
OUTPUT <addrMaster>;"MEAS:CONTROL 0,0"

Reset Values: cmplxdc=OFF, sync=OFF, freq=0

See Also CLOCK:FS?, DATA:TYPE, CLOCK:MULTI:SYNC, MEAS:CONTROL

E1437A FREQUENCY:SETUP
ASCII Overview and Commands command/query

5-28

INPUT:AUTOZERO command

Nulls out the input DC offset voltage.

Command Syntax: INPUT:AUTOZERO

Description: INPUT:AUTOZERO updates a table of DC offset corrections to be used with each
input setup condition. The applicable correction from this table is automatically
added to the input offset parameter to achieve the correct DC offset value. Because
of the length of time needed to execute this command, it is not automatically called
when the module is reset. Thus, the user program is responsible for explicitly
initiating the autozero. This command should be called at least once after the
temperature of the module has stabilized. The interval between calls after that
depends on the importance of DC accuracy in the user application. It is not
necessary to call the autozero command for every change of input setup parameters
since the correction table maintains values for all setup conditions.

NOTE Calling INPUT:AUTOZERO aborts any measurement already in progress and
eliminates LO phase coherence and filter synchronization in a synchronous
multi-module system. See the FREQUENCY:SYNC and FILTER:SYNC
commands for details on how to re-establish LO phase and filter synchronization.

See Also INPUT:SETUP, FREQUENCY:SYNC, FILTER:SYNC

E1437A INPUT:AUTOZERO
ASCII Overview and Commands command

5-29

INPUT:RANGE:AUTO command

Performs auto-ranging.

Command Syntax: INPUT:RANGE:AUTO <sec>

sec::=<numeric>

numeric::=≥0 seconds

Description: This command sets the range of a E1437 to the lowest value that will not cause an
ADC overload to occur. The algorithm will start at the lowest range and move up
until there is no ADC overload.

Parameter definitions: is the time in seconds to take data at each range to insure that an overload is
detected. Setting this parameter to 0.0 will result in this time being set automatically
according to an algorithm that depends on block size and filter bandwidth.

NOTE An autorange that is pending or in progress will be aborted if an INPUT:RANGE
or another INPUT:RANGE:AUTO command is received.

See Also INPUT:SETUP

E1437A INPUT:RANGE:AUTO
ASCII Overview and Commands command

5-30

INPUT:SETUP command/query

Sets all the analog input parameters. This description also includes
information on the following commands which set or query the input
parameters individually:

INPUT:ALIAS:FILTER selects the built-in analog anti-alias filter.

INPUT:ALIAS:FILTER? gets the anti-alias filter state

INPUT:COUPLING selects AC or DC input coupling.

INPUT:COUPLING? get the input coupling type

INPUT:FLOAT selects floating the input connector.

INPUT:FLOAT? gets the input connector state

INPUT:RANGE sets the full scale range.

INPUT:RANGE? gets the input range

INPUT:SIGNAL selects the input buffer amplifier.

INPUT:SIGNAL? gets the input buffer amplifier state

Command Syntax: INPUT:SETUP <range>,<coupling>,<alias>,<signal>,<float>

range::=<numeric>

numeric::= INTEGERS 0 to 9

coupling::=01
alias::=01
signal::=01
float::=01
INPUT:ALIAS 01
INPUT:COUPLING 01
INPUT:FLOAT 01
INPUT:RANGE <numeric>

<numeric>::=0 to 9 (integer)

INPUT:SIGNAL 01

Query Syntax: INPUT:ALIAS?

INPUT:COUPLING?

INPUT:FLOAT?

INPUT:RANGE?

INPUT:SIGNAL?

Example Statements: OUTPUT 70924;"Input:setup 5,1,1,1,0"

OUTPUT 70924;"input:signal?"

E1437A INPUT:SETUP
ASCII Overview and Commands command/query

5-31

Parameter Definitions: determines whether or not to use the built-in analog anti-alias filter. It is
recommended that the filter is always on to insure bandlimited, anti-aliased data.

parameter
value alias parameter definition

0 OFF disables the anti-alias filter

1 ON inserts a sharp-cutoff (11-pole) 8 MHz lowpass filter ahead of the analog-to-digital
converter.

specifies the AC or DC coupling mode of the input. Using DC will connect
the input directly to the 50 Ohm buffer amplifier. AC inserts a 0.2 mF capacitor
between the input connector and the 50 Ohm buffer amplifier.

parameter
value coupling parameter definition

0 DC connects the input directly to the 50 Ohm buffer amplifier.

1 AC inserts a 0.2 µF capacitor between the input connector and the 50 Ohm buffer
amplifier.

determines whether or not to allow the outer shield of the input connector to
float relative to chassis ground. Using ON allows the connector to float in order to
reduce potential ground loop induced pick-up at low frequencies. Using OFF
disables floating by attaching the outer shield of the input connector directly to
chassis ground. See the specifications section for more details.

parameter
value float parameter definition

0 OFF disables floating by attaching the outer shield of the input connector directly to
chassis ground. See the specifications section for more details.

1 ON allows the connector to float in order to reduce potential ground loop induced pick-up
at low frequencies.

is a range index number between 0 and 9 which is transformed to a full scale
voltage value. The corresponding discrete legal values of full scale vary from 0.02
volt to 10.24 volts with factor-of-two steps (.02 * 2^range). If range is greater than 9
the full scale value used is 10.24 volts. Non-integer values result in the next higher
range. Signal inputs with an absolute value larger than full scale generate an ADC
overflow error.

E1437A INPUT:SETUP
ASCII Overview and Commands command/query

5-32

Range
Full scale
voltage

Full Scale dBm

0 .02 −24
1 .04 −18
2 .08 −12
3 .16 −6
4 .32 0
5 .64 6
6 1.28 12
7 2.56 18
8 5.12 24
9 10.24 30

NOTE If an INPUT:RANGE:AUTO command is pending or in progress it is aborted
when an INPUT:RANGE or INPUT_RANGE? command is received.
INPUT_RANGE? also returns an error if an autorange is pending or in progress.

determines whether or not the input signal is sent to the buffer amplifier.

parameter
value signal parameter definition

0

OFF redirects the input signal to a dummy 50 Ohm load, and feeds the buffer amplifier
from an internally grounded 50 Ohm source resistance. The signal OFF setting is useful for
making reference measurements without the signal applied. When using AC coupling the
0.2 µF capacitor remains between the input connector and its 50 Ohm termination.

1 ON attaches the input signal to the 50 Ohm buffer amplifier.

Comments: To ensure full alias-free operation the analog anti-alias filter should be ON unless
the application inherently bandlimits the input signal to less than fs/2. The analog
anti-alias filter has a fixed bandwidth and thus is fully effective only when fs≥20
MHz. If a slower external ADC clock is used, an additional analog filter of the
appropriate bandwidth may be required for full alias protection.

When using the analog anti-alias filter, the range parameter may need to be set
higher than the actual range of the input signal. The reason for this is that step
changes of input voltage cause an overshoot and ringing response at the output of
the anti-alias filter. The peak overshoot will actually exceed the input voltage step
by about 20%. The range setting must accommodate this overshoot to avoid an ADC
overflow.

Reset Values: range=10.24, coupling=DC, alias=ON, signal=ON, float=OFF

See Also INPUT:RANGE:AUTO

E1437A INPUT:SETUP
ASCII Overview and Commands command/query

5-33

INTERRUPT:RESTORE command

Restores the interrupt masks to the setting last programmed with
INTERRUPT:SETUP.

Command Syntax: INTERRUPT:RESTORE

Example Statements: OUTPUT 70924;"Interrupt:restore"

Description: The interrupt masks set by the INTERRUPT:SETUP function are cleared during the
interrupt acknowledge cycle. This function restores the cleared interrupt masks.

See Also: INTERRUPT:SETUP

E1437A INTERRUPT:RESTORE
ASCII Overview and Commands command

5-34

INTERRUPT:SETUP command/query

Sets all interrupt parameters. This description also includes information on
the following commands which query the interrupt parameters individually:

INTERRUPT:MASK? gets the interrupt event mask.

INTERRUPT:PRIORITY? gets the VME interrupt line.

Command Syntax: INTERRUPT:SETUP <intrNum>,<priority>,<mask>

IntrNum::=01
priority::=0 to 7

mask::=0 to 255

Query Syntax: INTERRUPT:MASK?

INTERRUPT:PRIORITY?

Example Statements: OUTPUT 70924;"Interrupt:setup 0,5,24"

OUTPUT 70924;"INTERRUPT:MASK?"

Description: An E1437 has two independent interrupt generators, each capable of interrupting
on one of the seven VME interrupt lines when a status condition specified by a mask
occurs.

INTERRUPT:SETUP sets the interrupt mask, priority and which of the two interrupt
generators on the E1437 is to be used. The remaining INTERRUPT commands set or
query the mask and priority individually.

Parameter Definitions: is the number of the interrupt generator. The only values accepted are 0
and 1.

specifies the mask of events on which to interrupt. This mask is created by
ORing together the bits defined in bits 8 through 15 of the status register. The mask
parameter format is 0xMM00 where MM represents the maskable upper 8 bits. The
lower 8 bits cannot be used for generating interrupts, and therefore must be set to
zero in the function call.

specifies which of the seven VME interrupt lines to use. The only legal
values are 0 through 7. Specifying 0 turns the interrupt off, while 7 is the highest
priority.

Comments: The mask is cleared during the interrupt acknowledge cycle. Therefore, the
command must be sent again in order to generate further interrupts.

Reset Values priority=0,mask=0

See Also: STATUS?

E1437A INTERRUPT:SETUP
ASCII Overview and Commands command/query

5-35

LBUS:MODE command/query

Set and query local bus mode.

Command Syntax: LBUS:MODE <mode>

mode::=012 3

Query Syntax: LBUS:MODE?

Example Statements: OUTPUT 70924;"Lbus:Mode 2"

Description: LBUS:MODE sets the local bus to either generate, append, insert or pipeline data.
The data port must be set to the local bus with the DATA:PORT command before
these modes take effect.

Parameter Definitions: selects the transmission mode of the local bus when it is enabled by the
DATA:PORT command. The state of this parameter is unaffected by switching back
and forth between the local bus and the VME backplane with the DATA:PORT
command.

parameter
value mode parameter definition

0 PIPELINE causes the E1437 to pipe data through from modules on its left without
appending or inserting its own data.

1 GENERATE forces the module addressed to generate data only, not passing through data
from other modules on the local bus

2 APPEND causes the E1437 to pass through data from modules on its left and append its
data to the end

3 INSERT causes the E1437 to place its data on the local bus and then pass through data
from modules on its left.

Reset Values: lbusMode=PIPELINE

See Also: DATA:PORT

Module to RightHP E1437Module(s) to Left

PIPELINE

INSERT APPEND

GENERATE

E1437A LBUS:MODE
ASCII Overview and Commands command/query

5-36

LBUS:RESET command/query

Resets local bus. Gets the current local bus reset state.

Command Syntax: LBUS:RESET <reset>

reset::=01

Query Syntax: LBUS:RESET ?

Example Statements: OUTPUT 70924;"Lbus:reset 1"

Description: In order to avoid glitches in the local bus data, the local bus interface has strict
requirements as to the order in which modules in a VXI mainframe have their local
bus interface reset. Upon powerup or whenever any single module in the mainframe
is put into a reset state, all modules should be placed into the reset state from left to
right. Then all modules can be take out of reset from left to right.

Parameter Definitions: puts the E1437’s local bus into reset or takes it out of reset.

parameter
value reset parameter definition

0 OFF takes the E1437 out of reset

1 ON puts the E1437’s local bus into reset.

Example: When E1437s are used with the E1485 measurement controller, the E1485 must be
reset while all of the E1437s are being held in reset to avoid initial glitches in the
local bus data. The E1437s should be taken out of reset only after the first
MEAS:CONTROL release is issued. The correct way to reset the local bus is as
follows:
! For all modules hold HP E1437s in reset

OUTPUT <addrAll>;"Lbus:Reset 1"
! Reset the E1485 lbus

OUTPUT <id1485>;"LBUS:CONTROL 1,0"
! Set desired LBUS mode for all modules
!
!
! For all id first arming

OUTPUT <addrAll>;"Meas:control 0,1"
! Remove reset from HP E1437s, has no effect after first time

OUTPUT <addrAll>;"Lbus:Reset 0"

Reset Values reset=ON

E1437A LBUS:RESET
ASCII Overview and Commands command/query

5-37

MEAS:CONTROL command

Initiates and controls measurements in a multi-module system.

Command Syntax: MEAS:CONTROL <idle>,<sync>

idle::=01
sync::=01

Example Statements: OUTPUT 70924;"Meas:Control 1,0"

Description: MEAS:CONTROL explicitly controls the measurement state.

Parameter Definitions: selects the condition of the IDLE state.

parameter
value idle parameter definition

0 RELEASE reverses a previous HPE1437_ASSERT or ensures that no forced IDLE is active.

1 ASSERT holds the module in the IDLE state.

MEAS:CONTROL also changes the state of the SYNC signal, which is used to arm or
trigger an E1437 module. In systems containing multiple E1437 modules the SYNC
signal is used to arm or trigger all modules simultaneously, and also to synchronize
decimation counters and local oscillators among the E1437 modules.

selects the state of the sync signal. ASSERT causes the module to assert the
SYNC signal. RELEASE causes the module to release the SYNC signal. When the
sync parameter of the CLOCK:SETUP command is set to FRONT or REAR, the
SYNC signal is shared with other E1437 modules. If any one of these modules
asserts this shared SYNC signal then it becomes asserted for all of them. All modules
must release it before the shared SYNC signal is released. Asserting then releasing
the SYNC line is used to start a measurement, load local oscillator values, or take a
digital filter out of reset. These situations require a SYNC line transition but do not
require that the SYNC line be held in a asserted state.

parameter
value sync parameter definition

0 RELEASE causes the module to release the SYNC signal.

1 ASSERT causes the module to assert the SYNC signal.

E1437A MEAS:CONTROL
ASCII Overview and Commands command

5-38

NOTE When the SYNC line is asserted, it will remain asserted for an adequate number
of ADC clock cycles to ensure that the signal effect will have propagated to all
the modules in the system. You can determine when the command is completed
by looking as the Sync/Idle Complete bit in the Status Register.

Comments: See The Measurement Loop section for details on how a measurement progresses
through the four states.

Special conditions prevail during the Measure state. If programmed for block mode
operation in the Measure state, the module will assert the SYNC signal (regardless of
the MEAS:CONTROL sync parameter setting) until a complete block of data has
been collected and is available to the I/O port. When the shared SYNC signal is
released, indicating that all block mode data collection is finished, all block mode
modules move synchronously to the idle state. In continuous mode the module
releases the SYNC signal immediately after moving into the measure state. This
allows the MEAS:CONTROL command to manipulate the SYNC signal to cause
synchronous changes to LO frequency while a continuous measurement is in
progress. In continuous mode a module moves to the idle state only if explicitly
programmed to do so or whenever the FIFO data buffer overflows.

In addition to controlling the progression through the four module states, the SYNC
signal is used to allow for synchronizing the decimation counters and local
oscillators of multiple E1437 modules. This is done by calling FILTER:SYNC and/or
FREQUENCY:SYNC prior to asserting SYNC with MEAS:CONTROL. This is normally
done with the module in the IDLE state; however, the center frequency can also be
changed in the Measure state with FREQUENCY:SYNC if the modules are all
programmed for continuous (non-block mode) data collection.

If all modules in a multi-module system are in the idle state when the
MEAS:CONTROL sync parameter is asserted, the LO frequency will be updated and
the next measurement will be armed. If all modules are in the measurement state in
continuous mode, the LO frequency will be synchronously updated, and the
measurement will continue. In continuous mode care must be taken to ensure that
all modules are in the same state, either the idle state or the measure state, before
using MEAS:CONTROL to assert SYNC. Otherwise some modules will re-arm while
others will continue the current measurement. In block mode the sync assertion will
be ignored unless all modules are currently in the idle state.

In the case of systems made up of multiple mainframes you must be aware that only
modules in mainframe A may assert sync. Any sync asserted in other mainframes is
ignored.

E1437A MEAS:CONTROL
ASCII Overview and Commands command

5-39

Example: The following example shows how to initiate a measurement in a typical
multi-module system
! Place all HP E1437s in IDLE

OUTPUT <addrAll>;"MEAS:CONTROL 1,0"
!
! Take all HP E1437s out of IDLE

OUTPUT <addrAll>;"MEAS:CONTROL 0,0"
!
! Check for Sync/Idle complete on last module (if decimation is synchronous);
! Check all modules if decimation is not synchronous.

OUTPUT <addrAll>;"Status?
ENTER <addrAll> Result$

.....
! Assert SYNC on master module to arm all modules

OUTPUT <addrMaster>;"MEAS:CONTROL 0,1"
!
!Release SYNC to allow triggering by any module

OUTPUT <addrMaster>;"MEAS:CONTROL 0,0"

Reset Values: idle=RELEASE, sync=RELEASE

See Also: STATUS?, DATA:SETUP, FILTER:SYNC, FREQUENCY:SYNC, CLOCK:SETUP

E1437A MEAS:CONTROL
ASCII Overview and Commands command

5-40

MEAS:START command

Initiates a measurement in single-module systems.

Command Syntax: MEAS:START

Example Statements: OUTPUT 70924;"meas:start"

Description: MEAS:START provides an easy way to initiate a measurement in a single module
system. This command moves the module through the IDLE state and the SYNC
state while checking the status to assure a valid state.

Comments: See The Measurement Loop section for details on how a measurement progresses
through the four states.

The meas:start command also checks status to assure that the module is in a valid
state

Example: This example illustrates a simple measurement in a single module system

! Start a measurement
OUTPUT <addr>;"MEAS:START"

! Read data
OUTPUT <addr>;"READ"
ENTER <addr>;Result$

See Also: STATUS?, CLOCK:SETUP

E1437A MEAS:START
ASCII Overview and Commands command

5-41

READ? query

Reads scaled data from FIFO

Query Syntax: READ?<samples>

samples::=1 to 8

Example Statements: OUTPUT 70924;"READ? 4"

Description: This command returns a block of floating point data from the E1437 that has been
scaled to be in volts. The number of samples designated to be read must account for
variations in blocksize, data type and resolution.

Data is returned as an ASCII string with points separated by commas. You can read
up to 4 complex points or 8 real points per read command.

This command can only read data from the VME backplane register. The data port
of the E1437 must be set to VME by the DATA:PORT command for this command to
be effective. To read data using the local bus in an E1485 environment, see the
documentation for local bus data transfers in the E1485 documentation package.

See Also: DATA:PORT, DATA:BLOCKSIZE

E1437A READ?
ASCII Overview and Commands query

5-42

RESET command

Places the module in a known state.

Command Syntax: RESET

Example Statements: OUTPUT 70924;"Reset"

Description: This command returns the module and its internal data structures to the power-up
state.

The reset values are listed with each command description.

The following are not affected by this command:

• Calibration constants

E1437A RESET
ASCII Overview and Commands command

5-43

REVISION? query

Returns strings that identify the date of the firmware revision

Query Syntax: REVISION?

Example Statements: OUTPUT 70924;"revision?"

ENTER 70924;rev$

Parameter Definitions: This command returns the date, time, and board number of the module’s firmware
revision

Return Format: <swrev0:swrev1:board#>

See Also *IDN?

E1437A REVISION?
ASCII Overview and Commands query

5-44

STATUS? query

Reads Status Register information for the module.

Query Syntax: STATUS?

Example Statements: OUTPUT 70924;"Status?

ENTER 70924;Result$

Parameter Definitions: Result$ contains the status word. The bits are defined below:

1-0 State: These two bits indicate the current state of the measurement loop as shown
in the table below. See the Measurement Loop section for more information about the
states

Bits State

11 Trigger

10 Measure

01 Arm

00 Idle

2 Passed: This bit is always set to 1.

3 Ready: This bit is set whenever the module is operating as a message-based device
and is set for Normal operation. See the VXIbus Specifications for more information on
the Normal configuration sub-state.

4 ADC Error: This bit is set whenever a hardware error is detected in the ADC. The bit
is cleared when the Status register is read.

5 Ext Clk Speed: This bit is set when a measurement has been aborted because the
external clock is too fast (over 20.48 MHz) with respect to the DSP clock. This situation
only occurs when a fast external ADC clock is used with an internal oscillator DSP clock.
This bit is cleared with the first subsequent read.

6 Setup error: An invalid parameter value was requested. If an invalid block size was
requested, the closest valid block size is used until a change to an interrelated parameter
makes the requested block size valid. If a data resolution, data type, filter bandwidth, or
filter decimation parameter was requested which would result in an inability to make a
measurement, the previous valid parameter is used until a change to an interrelated
parameter makes the requested parameter valid.

7 Sync/Idle Complete: This bit is set when the most recent user-initiated SYNC or IDLE
change has propagated through to all modules in a system. The change is a result of
asserting SYNC or forcing IDLE via the Control Register or issuing a MEAS:CONTROL
command.

E1437A STATUS?
ASCII Overview and Commands query

5-45

8 Read Valid: This flag is set whenever there is at least one valid 16-bit data word
available to be read via the Data register.

9 Measure Done: This bit is set in continuous mode whenever the size of the data in the
FIFO is equal to or greater than the block size register. Check this bit before reading
data to insure that a block of data may be transferred without fear of running out of data,
thereby holding up the Local bus or VME bus. This bit is set in block mode whenever the
module has successfully taken a block size number of samples since the most recent
trigger

10 Armed: This bit is set whenever the module is in the Trigger state, or is in the Arm
state and has satisfied its pre-trigger requirements. When this bit is set, the module
releases the VXI SYNC line. Once all modules release the SYNC line, then all modules go
to the Trigger state.

11 FIFO Overflow: This bit set when the FIFO buffer overflows in continuous mode.

12 Overload: This bit is set whenever the ADC converts a sample that exceeds the
range of the ADC. The bit is cleared when the Status register is read. Repeated ADC
errors may indicate that the module should be recalibrated.

13 Error: This bit is set whenever there is an error in the error queue. It is cleared when
the error queue is empty.

14 ModID*: A (1) in this field indicates that the module is not selected via the P2
MODID line. A (0) indicates that the module is selected by a high state on the P2
MODID line.

15 Hardware Set: This bit is set when all commands are complete and the hardware has
been set.

E1437A STATUS?
ASCII Overview and Commands query

5-46

TRIGGER:DELAY:ACTUAL? query

Returns the actual trigger delay from the most recent trigger event.

Query Syntax: TRIGGER:DELAY:ACTUAL?

Example Statements: OUTPUT 70924;"trigger:delay:actual?

ENTER 70924;Result$

Parameter Definitions: Result$ contains the returned actual delay from the most recent trigger event and
the resulting first output sample time. This delay value provides more accuracy than
the delay parameter alone since it includes a measurement of the fractional part of
the output sample period between the actual trigger event and the next available
output sample. The trigger delay accuracy improves to one ADC sample clock period
rather than one output sample period. This can result in a substantial improvement
in accuracy when narrow bandwidth decimation filtering is used. The this command
must be sent for each new trigger event that requires precise delay measurement.
The actual delay is still expressed in output sample periods, however, it can take on
non-integer values.

See Also: TRIGGER:SETUP

E1437A TRIGGER:DELAY:ACTUAL?
ASCII Overview and Commands query

5-47

TRIGGER:PHASE:ACTUAL? query

Returns a representation of the phase value of the LO at the trigger point.

Query Syntax: TRIGGER:PHASE:ACTUAL?

Example Statements: OUTPUT 70924;"trigger:phase:actual?

ENTER 70924;Result$

Parameter Definitions: Result$ contains the returned value interpreted as follows:

0 <= value < 1.0
where 0 => 0 degrees

.25 => 90 degrees

.5 => 180 degrees

See Also: TRIGGER:SETUP, TRIGGER:PHASE:CAPTURE

E1437A TRIGGER:PHASE:ACTUAL?
ASCII Overview and Commands query

5-48

TRIGGER:PHASE:CAPTURE command

Prepares for LO phase capture in frequency-synchronized, multiple-module
zoom measurements.

Command Syntax: TRIGGER:PHASE:CAPTURE

Example Statements: OUTPUT 70924;"trigger:phase:Capture

Description: Use this function if you intend to subsequently use TRIGGER:DELAY:ACTUAL? to
capture the LO phase on the next SYNC assertion. You should send
TRIGGER:DELAY:CAPTURE to only one module in the system (typically the
master) after you have completed all frequency and filter setup functions, since
those functions take the module out of the phase_capture mode. Therefore, you
should call TRIGGER:DELAY:CAPTURE just prior to starting the measurement.

When the FREQUENCY:SYNC mode is turned off, the TRIGGER:DELAY:CAPTURE
function is not needed because the module will revert to the phase:capture mode by
default.

See Also: TRIGGER:PHASE:ACTUAL?, TRIGGER_SETUP

E1437A TRIGGER:PHASE:CAPTURE
ASCII Overview and Commands command

5-49

TRIGGER:SETUP command/query

Sets all trigger parameters. This description also includes information on the
following commands which set or query the trigger parameters individually:

TRIGGER:ADCLEVEL specifies the trigger threshold for an ADC trigger.

TRIGGER:ADCLEVEL? gets the ADC trigger threshold

TRIGGER:DELAY specifies a pre- or post-trigger delay time.

TRIGGER:DELAY? gets the trigger delay time

TRIGGER:GEN determines whether a module can generate a trigger.

TRIGGER:GEN? gets the trigger generation status

TRIGGER:MAGLEVEL specifies the trigger threshold for a magnitude trigger.

TRIGGER:MAGLEVEL? gets magnitude trigger threshold

TRIGGER:SLOPE selects a positive or negative trigger.

TRIGGER:SLOPE? gets trigger slope

TRIGGER:TYPE determines the trigger type.

TRIGGER:TYPE? gets trigger type

Command syntax: TRIGGER:SETUP <type>,<delay>,<adclevel>,<maglevel>,<slope>,<gen>

type::= 01234
delay <numeric>

numeric::=0 to 6,777,216 sample periods

adclevel <numeric>

numeric::= −256 to +255
maglevel <numeric>

numeric::= −349 to 19
slope::=01
gen::=01
TRIGGER:ADCLEVEL <numeric>

numeric::= −256 to +255
TRIGGER:DELAY <numeric>

numeric::=0 to 6,777,216 sample periods

TRIGGER:GEN 01
TRIGGER:MAGLEVEL <numeric>

numeric::= −349 to 19
TRIGGER:SLOPE 01
TRIGGER:TYPE 01234

E1437A TRIGGER:SETUP
ASCII Overview and Commands command/query

5-50

Query syntax: TRIGGER:ADCLEVEL?

TRIGGER:DELAY?

TRIGGER:GEN?

TRIGGER:MAGLEVEL?

TRIGGER:SLOPE?

TRIGGER:TYPE?

Example Statement: OUTPUT 70924;"Trigger:setup 1,256,25.6,0,0,1"

OUTPUT 70924;"trigger:type?"

Description: An E1437 can be triggered to collect data in a variety of ways. The trigger can be
internally generated or can come from an external source. Multiple modules can be
triggered synchronously. A variable pre- and post-trigger delay can be programmed
for data collection. The slope and level of the trigger point on a signal can be
selected. The source of the internal trigger can be either the output of the ADC or
the magnitude of the complex output of the decimation filter.

TRIGGER:SETUP is the command that sets all trigger parameters at once. An E1437
will generate a trigger only when it is in the TRIGGER state and the SYNC line on
the VXI backplane is released. When a trigger is generated, the E1437 will release
the SYNC line.

Parameter Definitions: determines the trigger source.

parameter
value type parameter definition

0

USER disables the module from any event-driven trigger generation though it is still
possible to force the module to trigger a measurement by pulling the SYNC line once the
module is in the trigger state. You may do this by calling the MEAS:START function,
waiting for the module to reach the trigger state, then triggering the measurement by
using MEAS:CONTROL to pull the SYNC line.

1 ADC generates a trigger based on the raw data samples from the ADC

2 EXTERNAL uses transitions on the signal applied to the BNC external trigger connector on
the front panel.

3
MAG generates a trigger based on the log magnitude of the signal after it has been
filtered to a selectable bandwidth around the center frequency established by the
FREQUENCY:SETUP function.

4 IMMEDIATE triggers a measurement immediately upon entering the trigger state.

E1437A TRIGGER:SETUP
ASCII Overview and Commands command/query

5-51

NOTE In multi-module systems all modules should be of the same type in order to have
the same actual delay.

is the time delay, in units of output samples, between when a trigger is
received and the first data point in the output data. Negative values indicate a
pre-trigger condition, where samples prior to the trigger event are included in the
output data. The amount of pre-trigger delay is limited to the number of samples
which can be saved in the 8 Mbyte buffer memory. See the DATA:SETUP command
description for the number of bytes used per sample. Valid values depend on
data type as follows:

Trigger Delay
(DRAM size in bytes)

32 bit complex
32 bit real

16 bit complex
16 bit real

Post-trigger 16,777,116 33,554,332 67,108,764

Pre-trigger 132 − DRAMsize/8 164 − DRAMsize/4 228 − DRAMsize/2

If delay is <132 − DRAMsize/8 or >16777116 the software will set a bad parameter error. However,
the delay is still programmed in order to accommodate valid setups for other data types for which larger
values are valid..

adclevel is used to set the triggering signal threshold when using the ADC trigger
source. This threshold is (full scale * adclevel/256), where -256 ≤ adclevel ≤ 255.
There is hysteresis around the threshold in order to prevent multiple triggers from a
single threshold crossing.

is used to set the triggering threshold when using the mag trigger source.
The threshold is (+0.3762874 * maglevel)dB relative to full scale signal, where -349
≤ maglevel ≤ 19.

selects the edge of the trigger source on which a trigger occurs.

parameter
value slope parameter definition

0 POSITIVE sets triggering on the positive slope

1 NEGATIVE sets triggering on the negative slope

E1437A TRIGGER:SETUP
ASCII Overview and Commands command/query

5-52

determines whether a module may generate a trigger.

parameter
value gen parameter definition

0 OFF disables triggering.This is useful in multi-module systems with the same trigger type
where you want only certain module(s) to generate a trigger.

1 ON enables triggering

Reset Values: type=IMMEDIATE, delay=0, adclevel=0,maglevel=−128, slope=POSITIVE,
gen=ON

See Also: FREQUENCY:SETUP, DATA:SETUP, FILTER:DECIMATE, MEAS:START,
MEAS:CONTROL, TRIGGER:DELAY:ACTUAL?

E1437A TRIGGER:SETUP
ASCII Overview and Commands command/query

5-53

6

Module Description

6-1

Front Panel Description

LED lights w henever the input range is

exceeded, producing an overload in the ADC

LED lights w hen the module is

being accessed via the VXI backplane

Clock Extenders are used to extend the

sample c lock from one mainframe or

module to another. It is an SM B connector

for ECL levels and must terminated in

50 ohms at each end of the chain

Sync extenders are used to extend the

sync line from one mainframe or

module to another. It is an SM B connector

for ECL levels and must terminated in

50 ohms at each end of the chain

This is a BNC input for TTL, ECL, or sine

w ave signals w hich can be used as the

ADC sample c lock

This is BNC input for voltage steps

w hich can be used to trigger the

acquisition of a block of data

This is the main input to the ADC. It is a

psuedo-floating single-ended input

terminated into 50 ohms

E1437A User's Guide
Module Description

6-2

VXI Backplane Connections

Power Supplies and Ground

The E1437A conforms to the VME and VXI specifications for pin assignment. The
current drawn from each supply is given in Technical Specifications.

Data Transfer Bus

The E1437A conforms to the VME and VXI specifications for pin assignment and
protocol. Only A16/D16 data transfers are supported. Thus the upper address and
data bits are ignored.

DTB Arbitration Bus

The E1437A module is not capable of requesting bus control. Thus it does not use
the Arbitration bus. To conform to the VME and VXI specifications, it passes the bus
lines through.

Priority Interrupt Bus

The E1437A generates interrupts by applying a programmable mask to its status
bits. The priority of the interrupt is determined by the interrupt priority setting in
the control register.

Utility Bus

The VME specification provides a set of lines collectively called the utility bus. Of
these lines, the E1437A only uses the SYSRESET* line.

Pulling the SYSRESET* line low (a hardware reset) has the same effect as setting
the reset bit in the Control Register (a software reset), with two exceptions. The
exceptions are:

• The Control Register is also reset.

• All logic arrays are reloaded.

Reloading the logic arrays enables the hardware reset to recover from power
dropouts which may invalidate the logic setup.

Local Bus

The VXI specification includes a 12-wire local bus between adjacent module slots.
Using the local bus, Hewlett-Packard has defined a standard byte-wide ECL protocol
that transfers data from left to right at up to 100 Mbyte/s. The E1437A can be
programmed to output its data using this high speed port instead of the VME data
output register. The Data Port Control register determines which output port is
used.

E1437A User's Guide
Module Description

6-3

Trigger Lines

The VXI specification provides 8 TTL and 2 ECL trigger lines which can be used for
module-specific signaling. When programmed in a multi-input configuration, the
E1437A uses the ECL trigger lines, designating ECLTRG0 as the SYNC line and
ECLTRG1 as the ADC sample clock (CLOCK). These lines can be extended to other
mainframes using the SMB connectors on the front panel. The SMB connectors can
also be used for intermodule synchonization within a mainframe, leaving the ECL
trigger lines free for other purposes.

The CLOCK line is the master ADC clock for a synchronous system of multiple
E1437A modules. Only one E1437A module in each mainframe is allowed to drive
this line.

The SYNC line is used to send timing signals among E1437A modules in a
multi-input system. Any module which drives this line must do so synchronously
with CLOCK so that transitions on SYNC do not occur near the rising edge of
CLOCK. This ensures that all modules with a synchronous state machine clocked on
CLOCK will interpret SYNC in a consistent manner for each cycle of the state
machine. SYNC is used for synchronizing, arming, and triggering signals between
E1437A modules. The interpretation of the SYNC line is dependent on the states of
the module described in the Measurement Loop section. The E1437A module is also
capable of controlling the SYNC line synchronously via the control register.

E1437A User's Guide
Module Description

6-4

Block Diagram and Description

Descriptions of sections in the diagram below appear on the following pages.

Clock
Extender

In

Out

Clock to/from
other modules

In

Out

Sync
Extender

Zoom and
Decimation

Filtering

Analog
Input

Input
Amplifier/

Attenuators

Anti-Alias
Filter

Sampling
ADC

Data
Formatting

FIFO
Memory

Data
Output

Clock
Generation

Control
Register

Send Data
Register

External
Clock

Local Bus

Trigger
Detection

External
Trigger Trigger

Sync to/from
other modules

V
X

I
B

a
c
k
p
la

n
e

HP E1437 Block Diagram

E1437A User's Guide
Module Description

6-5

Clock Generation

The usual source for a clock signal is the 20 MHz or the 20.48 MHz crystal oscillator
inside the E1437A. However, the E1437A can also accept an external clock signal
through a front-panel BNC (“Ext Clock”). This signal can be TTL, ECL, or sine wave.

In a system using more than one E1437A, the ADCs can be synchronized by
programming them to use a common ECL line on the backplane. One of the modules
can be the clock master that drives this line. This master clock can be extended to
other mainframes by connecting a “Clock” SMB connector to a “Clock” SMB
connector on an E1437A in the second mainframe.

Input Amplifier

The input amplifier provides an input termination which maintains good flatness to
8 MHz. The gain/attenuation of the input amplifier is programmable.

Under program control, the input signal can be ac coupled. This allows the system to
measure low level ac signals in the presence of a large dc offset. .

Anti-alias Filter

Since the normal ADC sample rate is 20 MHz, a complete representation of the input
signal can be achieved only for bandwidths up to 10 MHz. Frequency components
above 10 MHz can cause ambiguous results (aliasing).

The anti-alias filter attenuates these high frequency components to reduce aliasing.
The anti-alias filter in the E1437A is flat to 8 MHz and rejects signals above 12 MHz
by at least 100 dB. Thus the 0-8 MHz frequency range of the sampled signal will be
alias free. The filter’s transition band from 8 MHz to 12 MHz will affect flatness and
allow some aliasing in the sampled signal frequency range of 8 MHz-10 MHz.

VXI
Clock
Signal

Ext
Clock

In

Analog to
Digital

Converter
Master

ADC Clock
Source

20.0 MHz
or

20.48 Mhz

ON

Multi-
Module

Sync

DSP
Clock
Source

Zoom,
Filters,
FIFO

Internal Clock

HP E1437A Clock Generation

SMB
Extenders

E1437A User's Guide
Module Description

6-6

In cases where alias filtering is not necessary the E1437A can be programmed to
bypass the anti-alias filter. This allows the system to take advantage of the full 40
MHz sampler bandwidth. To avoid incorrect results, the alias filter bypass mode
should be used with caution; it is not recommended for normal operation.

Sampling ADC

The heart of the E1437A is a precision Analog-to-Digital Converter (ADC). The ADC
generates 23 bit outputs at a sample rate up to 20.48 MHz. It has very low noise
density and very low distortion levels.

Zoom and Decimation Filtering

This section uses digital circuitry to allow programmable changes in the center
frequency and signal bandwidth of the E1437A (zoom). This is done at high speed
for real-time operation.

Bandwidth is controlled by a chain of digital low-pass filters (see the diagram
below). Each of the filters reduces the bandwidth by a factor of two (decimation).
With the ADC sample rate (Fs) set to the standard internal 20.48 MHz rate, the
bandwidth choices are 10 MHz, 5 MHz, 2.5 MHz,...0.289 Hz around the programmed
local-oscillator (LO) frequency.

Real and imaginary components of the signal are each computed to 32-bit precision,
so the complex output of the decimation filtering block contains 64 bits. Whether or
not all of these bits are stored in memory is programmable.

90
Phase Shift

Local
Oscillator

Fs/4

Fs/4

2x
Decimate

2x
Decimate

2x
Decimate

2x
Decimate

Fs/8

Fs/8

FS/2
26

FS/2
26

DATA OUTPUT SELECTION AND MULTIPLEXING

Input
from
ADC

/

/

/

/

26

23

21

26

Real

Imag

/

/

32

32

Zoom and Decimation Filtering

E1437A User's Guide
Module Description

6-7

Data Formatting and FIFO Memory

The E1437A can be programmed to save the real component of the signal or to save
the complete complex signal. The data precision can be set to 16 bits or 32 bits.
Thus, each sample will occupy from two to eight bytes of memory in the FIFO. The
data formatting block packs the selected data into 64-bit words which are stored in
the FIFO memory. Since the standard FIFO depth is 1-Mword (8 MByte), it is
possible to hold up to 4-Msamples in memory at one time.

The memory may be configured either in block mode or in continuous mode. In
block mode, data collection initiated by a trigger will proceed until a specified block
length is captured. The measurement is then paused so that the data can be read
out. Before a new block can be collected, the module must be re-armed and
triggered again. This mode is useful in capturing single transient events or whenever
the output data rate is too high to be read and processed in real time.

In continuous mode, data collection is initiated by a trigger and will continue as long
as the FIFO does not overflow. Data may be read out of the memory while the
measurement is in progress. If the reading of data is sufficiently fast, the FIFO will
never overflow and the measurement will continue indefinitely. If the FIFO should
ever overflow then the measurement will stop and wait for data to be read out, the
measurement to be re-armed, and a new trigger. This mode of operation is useful for
real-time applications that employ a high speed signal processor to continuously
read and operate on each sample of data. Data can be read from the FIFO in bursts
to accommodate pauses for such things as disk access times or block mode
computations.

The effective trigger time may be offset from the actual trigger event by
programming a trigger timing offset. See the Technical Specifications for the limits
of the pre-trigger and post-trigger offset.

Data Output

There are two ways to output data from the E1437A: by way of the VXI backplane or
by way of the local bus.

To use the VXI backplane, the E1437A can be programmed so that the output of the
FIFO is sent to the Send Data register. Each 64-bit portion of the FIFO memory is
sent to the 16-bit register as four separate words. The register can then be read by
any controller compatible with the VME standard. Maximum data flow is about 2
MB/s.

The local bus allows data transfers over a high speed 8-bit ECL bus to an adjacent
module (to the right) in the VXI mainframe. Multiple adjacent E1437A modules can
send data to one signal processor module. The signal processor must be one which
supports the Hewlett-Packard ECL local bus protocol, such as the E1485A/B. In
addition to higher speed (up to 40 MB/s), the local bus has the advantage that data
can be output at the same time that control signals are being sent over the VXI
backplane.

In both of the data output modes, the samples must be read out sequentially, offset
by the trigger delay.

E1437A User's Guide
Module Description

6-8

Trigger Detection

The trigger event used to start a measurement can be generated in five different
ways:

• Software trigger

• External

• ADC threshold

• Log-magnitude

• Immediate

All triggering modes support slope selection. In ADC or log-magnitude mode the
trigger threshold can be specified with hysteresis to prevent noise-generated
triggers of the wrong slope. Log-magnitude triggering is based on the magnitude of
the complex signal after zooming and filtering.

For external mode, a trigger signal must be supplied at the “Ext Trigger” connector
on the front panel. Any signal with a sharp rising or falling transition greater than
100 mV (i.e. TTL or ECL) can be used as an external trigger source.

Any E1437A module can trigger other E1437A modules using a shared sync line on
the VXI backplane. This SYNC line can be extended to other mainframes by
connecting a “Sync” SMB connector to a “Sync” SMB connector on a E1437A in the
second mainframe. All modules in a synchronous system are triggered on the same
ADC sample.

The E1437A hardware samples the trigger source once every sample clock, so the
trigger condition must be present for at least one sample clock in order to be
recognized.

Control Registers

The E1437A module is controlled by firmware using registers mapped into the 16-bit
VXI address space. There are 24 writable and 18 readable registers, each has 16 bits.
The control registers are not user accessible.

E1437A User's Guide
Module Description

6-9

7

Verifying the E1437A

7-1

To verify the E1437A

You may perform a quick verification of the basic functions of the E1437A by
performing the built-in self-test function. The self-test verifies the following:

• Digital filtering, zooming, and decimation at full scale voltage range

• Front-end noise specification

• Front-end levels associated with the analog-to-digital converter

• Integrity of the installed memory including all memory options

• Autozero and input triggering

The test is available as:

• the hpe1437_self_test function for Windows VXIplug&play and HP-UX C
language programmers

• the *TST? command for ASCII programmers

• a Soft Front Panel selection from the Control menu

See the online help, “E1437A VXIplug&play Programmer’s Reference” or
“ASCII Overview and Commands” for syntax and details.

E1437A User's Guide
To verify the E1437A

7-2

8

Replacing Assemblies

8-1

Replaceable Parts

For information on upgrading your module or replacing parts, contact
your local Agilent Technologies sales and service office. See the
Technical Specifications or the Agilent Technologies web site
(http://www.agilent.com/find/tmdir) for a list of office locations and addresses.

Ordering Information

To order Agilent Technologies, Inc. parts in the U.S., call Agilent
Technologies, Inc. Parts Direct Ordering at (800) 798-5487. Outside the
U.S., please contact your local Agfilent Technologies, Inc. parts center.

Caution The module is static sensitive. Use the appropriate precautions when removing,
handling, and installing to avoid unnecessary damage.

E1437A User's Guide
Replacing Assemblies

8-2

Code Numbers

The following table provides the name and location for the manufacturers’
code numbers (Mfr Code) listed in the replaceable parts tables.

Mfr No. Mfr Name Location

28480 Agilent Technologies, Inc. Palo Alto, CA U.S.A.
30817 Instrument Specialties Co. Inc. Placentia, CA U.S.A.
13940 Smart Modular Technologies Fremont, CA U.S.A.
02788 M/A-Com Inc. Burlington, MA U.S.A.
04637 Phelps Dodge Corp. New York, NY U.S.A.

E1437A User's Guide
Replacing Assemblies

8-3

Assemblies

MP024

SMB Terminator

(accessory)

MP002 MP003

MP004

A1, A2, A3, A4

A10

MP007

MP001

MP005

MP006

MP018

MP011
MP017

MP016

MP014

MP013

MP009

MP021

MP022

MP004

MP008

MP013

MP012

MP018

MP019
MP020 MP016

MP010

MP017

MP015

MP023

E1437A User's Guide
Replacing Assemblies

8-4

Ref
Des

Part
Number

CD Qty Description Mfr
Code

Mfr Part
Number

A1 1818-6722 1 2 ICM DRAM, 4MB 13940 SM5361000-6
A2 1818-6828 8 2 ICM DRAM, 8MB Opt. UFC 13940 SM536023101P4S6
A3 1818-6728 7 2 ICM DRAM, 16MB Opt. ANC 13940 SM536044002P3S6
A4 1818-6649 1 2 ICM DRAM, 32MB Opt. ANE 13940 SM536084002Q3S6
A10 E1437-69510 3 1 PC ASSEM. EXCHANGE BRD. 28480 E1437-66510

MP001 E1437-00203 7 1 SHTF CVR-BTTM 28480 E1437-00203
MP002 E1437-00202 6 1 SHTF CVR-TOP 28480 E1437-00202
MP003 0515-1135 7 8 SCR-MCH M3.0 25M 28480 0515-1135
MP004 E1485-40602 2 2 GSKT RFI-FRONT PANEL 28480 E1485-40602
MP005 E1485-40601 1 2 GSKT-RFI, BOTTOM COVER 28480 E1485-40601

MP006 8160-0686 6 2 STMP FINGERS-RFI 30817 786-185
MP007 E1450-01202 5 4 STMP SHLD-RFI GRND 28480 E1450-01202
MP008 E1437-00204 8 1 PANEL-FRONT, “E1437A” 28480 E1437-00204
MP009 7121-7964 6 1 LABEL-HP, LOGO 28480 E1400-84308
MP010 7121-7893 5 1 LABEL-VXI, LOGO 28480 E1400-84307

MP011 E1400-45102 6 1 MOLD, HANDLE RIGHT 28480 E1400-45102
MP012 E1400-45101 5 1 MOLD, HANDLE LEFT 28480 E1400-45101
MP013 E1400-00610 7 2 SCR-ASM SHLDR 28480 E1400-00610
MP014 E1400-45011 6 1 MOLD LBUT-ECL 28480 E1400-45011
MP015 E1400-45008 1 1 MOLD BOTTOM-LOGO 28480 E1400-45008

MP016 0515-0664 5 2 SCR-MCH M3.0 12M 28480 0515-0664
MP017 0515-2733 3 2 SCR-MCH M2.5 17 28480 0515-2733
MP018 E1400-40104 8 2 CAST 28480 E1400-40104
MP019 2190-0068 5 3 WSHR-LK .50 NTT 28480 2190-0068
MP020 2950-0154 2 3 NUT-HXP .50-28 .0 28480 2950-0154

MP021 2190-0124 4 4 WSHR-LK #10 NTT 02788 500222
MP022 2950-0078 9 4 NUT-HXP 10-32 .O 04637 500220

MP023 0515-1946 8 4 SCR-MCH M3.0 6MM 28480 0515-1946
MP024 1250-0676 8 TERMN-COAX CONN; 50 Ω 28480 1250-0676

E1437A User's Guide
Replacing Assemblies

8-5

To remove the top and bottom covers

1 Remove the four short and eight long screws using a T-10 torx driver and remove the covers.

Short

E1437A User's Guide
Replacing Assemblies

8-6

To remove the A1, A2, A3 or the A4 assembly

1 Remove top cover, see “To remove the top and bottom covers.” Gently push the silver tabs
outward and tilt the assembly forward releasing it from the connector.

E1437A User's Guide
Replacing Assemblies

8-7

To remove the front panel

1 Remove covers, see “To remove the top and bottom covers”. Using a T-8 torx driver, remove
the two screws that attach the handles to the assembly. NOTE: be sure to label the two handles,
which are different from each other. This will aid you in reassembling the module.

2 Remove the 4 nuts and washers from the gold connectors as shown, using a 1/4" nut driver.

E1437A User's Guide
Replacing Assemblies

8-8

3 Remove the 3 nuts and washers from the BNC connectors as shown, using a 9/16" nut driver.
Slide the front panel off the main assembly.

4 Note: steps 4, 5, and 6 are only necessary if you need to replace the front panel or any of
it’s components. Using an X-acto knife, gently pry the labels from the two keys.

E1437A User's Guide
Replacing Assemblies

8-9

5 Using your hand, remove the two captive screws.

6 Using a T-10 torx driver, remove the two screws that attach the two logo bases and the
two L-blocks to the front panel. Note: there is a left and a right logo base. Also notice the
orientation of the two L-blocks. This will be important when you reassemble the front panel.

L-block

L-block

Lef t logo base

Right logo base

E1437A User's Guide
Replacing Assemblies

8-10

To remove the A10 main assembly

1 Remove covers, see “To remove the top and bottom covers”. Remove the SIMMS, see “To
remove the A1, A2, A3, or the A4 assembly”. Remove the front panel, see steps 1, 2 and 3 of the
“To remove the front panel” section.

E1437A User's Guide
Replacing Assemblies

8-11

9

Backdating

9-1

Backdating

This chapter documents modules that differ from those currently being
produced. With the information provided in this chapter, this guide can be
modified so that it applies to any earlier version or configuration of the
module.

HP E1437A User's Guide
Backdating

9-2

Glossary

ADC

Analog to Digital Converter

ASCII

American Standard Code for Information Interchange, a standard format for
data or commands.

backplane

A set of lines that connects all the modules in a VXI system.

baseband

A band in the frequency spectrum that begins at zero. In contrast a zoomed
band is centered on a specific center frequency.

block mode

A mode in which the HP E1437A stops taking data as soon as a block of
data has been collected.

block size

The number of sample points in a block of data.

continuous mode

A mode in which the HP 1437A collects data continuously. It does not stop
taking data unless the FIFOFIFO overflows.

decimation filter

A digital filter that simultaneously decreases the bandwidth of the signal
and decreases the sample rate. The digital filter provides alias protection
and increases frequency resolution. For more information, see Spectrum and
Network Measurements available through your Hewlett-Packard Sales Office.

DSP

Digital Signal Processing

FIFO

A First In, First Out buffer and controller used to transmit data.

Fs

Sample Frequency or sample rate

HP-VEE

A Hewlett-Packard program for graphical programming

Local Bus

A high-speed port that Hewlett-Packard has defined as a standard byte-wide
ECL protocol which can transfer measurement data from left to right at up
to 2.62 Msamples per second on the VXI backplane.

logical address

The VXI logical address identifies where each module is located in the
memory map of the VXI system.

VXI

VME Extensions for Instrumentation, a standard specification for instrument
systems

VXIplug&play

A set of standards which provides VXI users with a level of standardization
across different vendors beyond what the VXI standard specifications spell
out.

zoom

Selects a frequency span around a specified center frequency. Also known
as band selectable operation, this allows you to focus on a specific
frequency band.

Need Assistance?

If you need assistance, contact your nearest Agilent Technologies
Service Office listed in the Agilent Catalog, or visit our web site:
http:// www.agilent.com/find/tmdir for a current sale office listing. If you
are contacting Agilent Technologies about a problem with your E1437A 20
MSample/second ADC, please provide the following information:

• Model number: E1437A
• Software version:

• Serial number:
• Options:
• Date the problem was first encountered:

• Circumstances in which the problem was encountered:
• Can you reproduce the problem?
• What effect does this problem have on you?

About this edition

January 1997: First Edition

June 1997: Second Edition.

April 2000: Third Edition - Rebranding, Hewlett-Packard to Agilent
Technologies, Inc.

INDEX

A
ac coupling, selecting 4-37
ADC clock
SEE clock, source

ADC, circuit description 6-6
addressing, instrument 4-35
alias filter
SEE anit-alias filter

analog filter
SEE alias filter

analog setup functions 4-4
anti-alias filter
analog 4-37
circuit description 6-6
SEE ALSO decimation filter
default 3-7
described 3-7

appending data on local bus 4-44
Arm state 3-5
arming measurements 4-47
ASCII commands 5-2
ASCII programming overview 3-2
assistance (rear of manual) 1-i
auto range 4-40
auto zero 4-36

B
backdating 10-2
backplane connections 6-3
bandwidth control, circuit description
6-7
bandwidth, filter selection 4-28
baseband measurements 3-7
SEE ALSO zoom

BASIC programming 5-3
block diagram 6-5
block mode
explained 3-5
selecting 4-21

block size, determining 4-20
buffer amplifier, selecting 4-37

C
C programming overview 3-2
center frequency
SEE frequency, center

circuit descriptions 6-5
clock
distribution 3-8
extenders 6-2
external 4-13
external input 6-2
generation 6-6
sharing 3-8, 4-13, 6-6
source 4-13
timing 4-13

clock synchronization
SEE multiple modules, managing

closing an instrument session 4-17
complex data output, specifying 4-20
configuring VXI system 2-5
conformity, declaration of (rear of
manual) 4-23
connectors, front panel 6-2
control registers, circuit description 6-9
corrections, dc offset 4-36
coupling, input 4-37

D
data format functions 4-4
data formatting 4-20
circuit description 6-8

data on local bus 4-44
data output, circuit description 6-8
data port, selecting 4-20
data transfer bus 6-3
data type, specifying 4-20
dc coupling, selecting 4-37
dc measurements, selecting complex
4-33
dc offset correction 4-36
debugging functions 4-5

decimation filter
SEE ALSO anti-alias filter
bandwidth, setting 4-28
changes 3-12
circuit description 6-7
described 3-7
selecting 4-28

diagnostics functions 4-5
digital filter
SEE decimation filter

digital processing functions 4-5
disassembly 8-6
drivers
installing HP-UX 2-5
installing Windows 2-4

DSP clock
SEE clock, source

DSP functions 2-10
DTB arbitration bus 6-3

E
ending an instrument session 4-17
errors
in status register 4-56
messages listed 4-73
reading 4-25
reading firmware 4-26

example programs
HP-VEE 2-15
using 2-11
Visual Basic 2-14

extenders
clock and SYNC 6-2

external clock
SEE clock, source

external trigger
SEE trigger, type

F
FIFO
SEE memory

filtering
SEE anti-alias filter
SEE decimation filters

firmware revision, determining 4-54
floating input, selecting 4-37
formatting data
SEE data formatting

frequency
center, changing 3-7, 3-12, 4-33

synchronizing changes 4-33
frequency response, determining 4-27
front panel description 6-2
functions, by functional group 4-3
functions, listed alphabetically 4-8

G
generating data on local bus 4-44
generating interrupts 4-42
ground 6-3

H
help
HP-UX 2-5
Windows 2-10

HP-UX
example programs 2-12
installing libraries 2-5
online help 2-5
programming environment 3-3
programming overview 3-2

HP-VEE
example program 2-15
reading data in 4-50

HPE1485 environment 1-v

I
IDLE state
described 3-5
forcing 4-17, 4-47

initialization functions 4-5
initializing the I/O driver 4-35
initiating an instrument session 4-35
initiating measurements 4-47, 4-49
input
circuit description 6-6
coupling 4-37
range 4-37
setup 4-37

inserting data on local bus 4-44
installing
hardware 1-3
module 1-3
software 2-4

installing libraries
HP-UX 2-5
Windows 2-4

interrupt
functions 4-5
generation 4-42

mask, setting 4-42
priority, setting 4-42
using 4-12

L
local bus
backplane connections 6-3
described 6-3
generating data 4-44
mode, setting 4-44
resetting 4-45
selecting 4-20
transfers 3-13, 6-8

logical address
default 1-3
selecting 1-3

M
measurement functions 4-6
measurement loop 3-5
measurement states, described 3-5
memory

data block size 4-20
circuit description 6-8
size, determining 4-18

mode, output 4-20
multiple modules, managing 3-6, 3-8,
3-10 - 3-12, 4-13, 4-31, 4-33, 4-47, 4-61,
4-64, 6-4

O
offset correction, dc 4-36
online help
HP-UX 2-5
Windows 2-10

output formatting 4-20
output mode 4-20
overload status, reporting 4-20
overview, programming 3-2

P
parameters
numeric equivalents 4-2, 4-71
programming reference 4-2

parts, ordering 8-2

phase
and frequency 4-33
at trigger 4-59
capturing trigger 4-60
continuous 4-33
preserving 4-34

phone assistance (rear of manual) 1-i
pipelining data on local bus 4-44
port selection, data 4-20
power supplies 6-3
power-up state, forcing 4-53
priority interrupt bus 6-3
programming overview 3-2

Q
quick reference
Visual Basic 4-68
VXIplug&play 4-65

R
range, input 4-37
raw data, scaling 4-19
read data functions 4-6
reading data 4-50, 4-52
real data output, specifying 4-20
register programming 3-2, 3-4
resetting the local bus 4-45
resetting the module 4-35, 4-53
resolution selection, data 4-20
revision, determining firmware 4-54

S
sample output rate, selecting 4-28
scale factor 4-19
scaled data, reading 4-50
scaling raw data 4-19
SCPI programming
SEE ASCII commands

self test, performing 4-55, 7-2
service assistance (rear of manual) 1-i
setting the range automatically 4-40
sharing clock and SYNC 3-8
shipping module 1-6
signal
input connector 6-2

span
SEE zoom measurements

states, measurement 3-5
status information 4-20
status register and interrupts 4-42
status register, bits defined 4-56
storing 1-6

SYNC
and measurement state 3-5
extenders 6-2
sharing 3-8, 6-9
signal, asserting and releasing 4-47

synchronization functions 4-7
synchronizing clocks
SEE multiple modules, managing

synchronizing decimation filters
SEE multiple modules, managing

synchronizing measurements
SEE multiple modules, managing

syntax
Visual Basic 4-68
VXIplug&play 4-65

system requirements 2-3, 3-2 - 3-3

T
telephone assistance (rear of manual) 1-i
terminating an instrument session 4-17
terminators, on connectors 6-2, 8-4
timing functions
SEE clock

transmission mode, local bus 4-44
transporting 1-6
trigger
backplane lines 6-3
delay, setting 4-61
detection, circuit description 6-9
external connector 6-2
generation, selecting 4-61
level, setting 4-61
phase, actual 4-59
slope, selecting 4-61
state 3-5, 4-61
type, selecting 4-61

trigger functions 4-6

U
UNIX
SEE HP-UX

unscaled data, reading 4-52
utility bus 6-3

V
verifying operation 2-7, 4-55, 7-2
Visual Basic
example program 2-14
syntax 4-68

VME port, selecting 4-20
VXI backplane connection 6-3

VXI bus transfers 3-13, 6-8
VXI interface, configuring 2-5

W
Windows
example programs 2-7
installing libraries 2-4
online help 2-10
programming overview 3-2

Z
zoom measurements
circuit description 6-7
selecting 4-33
using 3-7

	TABLE OF CONTENTS
	1
	Installing the E1437A
	Installing the E1437A 1-2
	To
inspect the E1437A 1-2
	To install the E1437A 1-3
	To store the
module 1-6
	To transport the module 1-6

	2
	Getting Started with the E1437A
	Introduction 2-2
	To Install the Programmer™s Libraries 2-3
	System Requirements (Microsoft Windows) 2-3
	System Requirements (HP-UX) 2-3
	To install the Windows VXIplug&play
drivers for the E1437A
	(for Windows 3.1, Windows 95 and Windows NT) 2-4
	To install the HP-UX C-language drivers for the E1437A
	(for HP-UX systems): 2-5
	The Resource Manager 2-5

	To Use the Program Group (Windows) 2-6
	To Use the VXIplug and play Soft Front Panel (SPF) 2-7
	To Use Online Help in Windows 2-10

	To Use the Example Programs 2-11
	To View the Visual Basic Example
Program 2-14
	To Use the HP-VEE Example Program 2-15

	3
	Using the E1437A
	Programming the E1437A 3-2
	WIN framework 3-2
	HP-UX, Series 700 Environment 3-3
	C Programming 3-3
	ASCII Programming 3-4
	Register Programming 3-4

	The Measurement loop 3-5
	The
Measurement Loop in Multi-module systems 3-6

	Frequency and Filtering 3-7

	INDEX
	A
	ac coupling, selecting 4-37
	ADC clock
	 SEE clock, source
	ADC, circuit description 6-6
	addressing, instrument 4-35
	alias filter
	 SEE anit-alias filter
	analog filter
	 SEE alias filter
	analog setup functions 4-4
	anti-alias filter
	 analog
4-37
	 circuit description 6-6
	 SEE ALSO decimation filter
	 default 3-7
	 described 3-7
	appending data on local bus 4-44
	Arm state 3-5
	arming measurements 4-47
	ASCII commands 5-2
	ASCII programming overview 3-2
	assistance (rear of manual) 1-i
	auto range 4-40
	auto zero 4-36

	B
	backdating 10-2
	backplane connections 6-3
	bandwidth control, circuit description 6-7
	6-7
	bandwidth, filter selection 4-28
	baseband measurements 3-7
	 SEE ALSO zoom
	BASIC programming 5-3
	block diagram 6-5
	block mode
	 explained 3-5
	 selecting 4-21
	block size, determining 4-20
	buffer amplifier, selecting 4-37

	C
	C programming overview 3-2
	center frequency
	
SEE frequency, center
	circuit descriptions 6-5
	clock
	 distribution 3-8
	 extenders 6-2
	 external 4-13
	 external input 6-2
	 generation 6-6
	 sharing 3-8, 4-13, 6-6
	 source 4-13
	 timing 4-13
	clock synchronization
	 SEE multiple modules, managing
	closing an instrument session 4-17
	complex data output, specifying 4-20
	configuring VXI system 2-5
	conformity, declaration of (rear of manual) 4-23
	manual) 4-23
	connectors, front panel 6-2
	control registers, circuit description
6-9
	corrections, dc offset 4-36
	coupling, input 4-37

	D
	data format functions 4-4
	data formatting 4-20
	 circuit description 6-8
	data on local bus 4-44
	data output, circuit description 6-8
	data port, selecting 4-20
	data transfer bus 6-3
	data type, specifying 4-20
	dc coupling, selecting 4-37
	dc measurements, selecting complex 4-33
	4-33
	dc offset
correction 4-36
	debugging functions 4-5
	
	decimation filter
	 SEE ALSO anti-alias filter
	 bandwidth, setting 4-28
	 changes 3-12
	 circuit description 6-7
	 described 3-7
	
selecting 4-28
	diagnostics functions 4-5
	digital filter
	 SEE decimation filter
	digital processing functions 4-5
	disassembly 8-6
	drivers
	 installing HP-UX 2-5
	 installing Windows 2-4
	DSP clock
	 SEE clock, source
	DSP functions 2-10
	DTB arbitration bus 6-3

	E
	ending an instrument session 4-17
	errors
	 in status register 4-56
	 messages listed 4-73
	
reading 4-25
	 reading firmware 4-26
	example programs
	 HP-VEE 2-15
	 using 2-11
	 Visual Basic 2-14
	extenders
	 clock
and SYNC 6-2
	external clock
	 SEE clock, source
	external trigger
	 SEE trigger, type

	F
	FIFO
	 SEE memory
	filtering
	 SEE anti-alias filter
	 SEE decimation filters
	firmware revision, determining 4-54
	floating input, selecting 4-37
	formatting data
	 SEE data formatting
	
	frequency
	 center, changing 3-7, 3-12, 4-33
	 synchronizing changes 4-33
	frequency response, determining 4-27
	front panel description 6-2
	functions, by functional group 4-3
	functions, listed
alphabetically 4-8

	G
	generating data on local bus 4-44
	generating interrupts 4-42
	ground 6-3

	H
	help
	 HP-UX 2-5
	 Windows 2-10
	HP-UX
	 example programs 2-12
	 installing libraries 2-5
	 online help 2-5
	 programming environment 3-3
	
programming overview 3-2
	HP-VEE
	 example program 2-15
	 reading data in 4-50
	HPE1485 environment 1-v

	I
	IDLE state
	
described 3-5
	 forcing 4-17, 4-47
	initialization functions
4-5
	initializing the I/O driver 4-35
	initiating an instrument
session 4-35
	initiating measurements 4-47, 4-49
	input
	 circuit description 6-6
	 coupling 4-37
	 range 4-37
	 setup 4-37
	inserting data on local bus 4-44
	installing
	 hardware 1-3
	 module 1-3
	 software 2-4
	installing libraries
	 HP-UX 2-5
	
Windows 2-4
	
	interrupt
	 functions 4-5
	 generation 4-42
	
mask, setting 4-42
	 priority, setting 4-42
	 using 4-12

	L
	local bus
	 backplane connections 6-3
	 described 6-3
	
generating data 4-44
	 mode, setting 4-44
	 resetting 4-45
	 selecting 4-20
	 transfers 3-13, 6-8
	logical address
	 default 1-3
	
selecting 1-3

	M
	measurement functions 4-6
	measurement loop 3-5
	measurement states, described 3-5
	memory
	 data block size 4-20
	 circuit description 6-8
	 size, determining 4-18
	mode, output 4-20
	multiple modules, managing 3-6, 3-8, 3-10 - 3-12, 4-13, 4-31, 4-33, 4-47, 4-61, 4-64, 6-4
	3-10 - 3-12, 4-13, 4-31, 4-33, 4-47, 4-61, 4-64, 6-4
	4-64, 6-4

	O
	offset correction, dc 4-36
	online help
	 HP-UX 2-5
	 Windows
2-10
	output formatting 4-20
	output mode 4-20
	overload status, reporting 4-20
	overview, programming 3-2

	P
	parameters
	 numeric equivalents 4-2, 4-71
	 programming reference 4-2
	parts, ordering 8-2
	

