
 Contents
HP E1429A/B Digitizer User’s Manual

Edition 2

Click here to Return to HP TS-5400Systems On-Line Manuals Main Contents

Warranty . 9
WARNINGS . 10
Safety Symbols . 10
Declaration of Conformity . 11

Chapter 1. Getting Started . 13

Chapter Contents . 13
HP E1429A/B Features and VXIbus Configuration 13

Front Panel Description . 13
HP E1429A/B VXIbus Configuration . 15

Preparation for Use . 16
The Digitizer Logical Address . 16
The Digitizer Bus Request Level . 18
Installing the Digitizer . 18
Addressing the Digitizer over HP-IB . 19
Addressing the Digitizer using an Embedded Controller 19

Introductory Programs . 20
Sending the *IDN? Command . 20
Digitizer Self-Test . 21
Resetting and Clearing the Digitizer . 23
Querying the Digitizer Configuration . 25

Instrument and Programming Languages . 28
SCPI Programming . 28
Coupled Commands . 28
C Language Programs . 30

Introduction to Programming . 33
Using the MEASure and CONFigure Commands 34
Programming Sequence . 36
Configuring the Channels . 37
How to Make Measurements . 37
Using MEASure . 37
Using CONFigure . 39
Querying Command Settings . 43
Checking for Errors . 45
Digitizer/

Command Module Deadlock . 47
Where to go Next . 48

Chapter 2. Using the Digitizer . 49

Chapter Contents . 49
Using the Programs . 49

Configuring the Digitizer Input . 50

Contents HP E1429A/B Digitizer User’s Manual 1

INPUT.C . 50
Comments . 50

Taking a Burst of Readings . 51
ARMCNT.C . 51
Comments . 51

Level Arming . 52
ARMLEVEL.C . 52
Comments . 52

Pre- and Post-Arm Readings . 53
PREPOST.C . 53
Comments . 53

Specifying a Sample Rate . 54
SAMPLE.C . 54
Comments . 54

 Dual Rate Sampling . 55
DUALSAMP.C . 55
Comments . 55

Using Multiple Digitizers . 56
MULT_AD.C . 57
Comments . 58

Using the Packed Data Format . 59
Comments . 62

VME Bus Data Transfers . 63
VME_REAL.C . 63

63
Comments . 66
Comments . 71

VME Bus Data Transfers Using an Embedded Controller 72
SEGTST16.CPP . 72
SEGTST32.CPP . 74
SEGTST16.CPP and SEGTST32.CPP #include Files 77

Local Bus Data Transfers . 83
LOCAL_AD.C . 83
Comments . 87
LBUS2PST.C . 88
Comments . 92
LBUSAUTO.C . 93
Comments . 99

Using the Digitizer Status Registers . 101
STATUS.C . 101
Comments . 102

Chapter 3. Understanding the Digitizer . 103

Chapter Contents . 103
HP E1429 Digitizer Block Diagram . 103
The Message and Register Interfaces . 105

Digitizer Command Paths . 105
The Digitizer Input Section . 106

SCPI Command Control . 106
Setting the Signal Range . 109

Arming and Triggering . 111
The ARM-TRIG State Diagram . 112
Arming the Digitizer . 113

2 HP E1429A/B Digitizer User’s Manual Contents

Triggering the Digitizer . 121
The Sample Period . 122
The Digitizer Reference Clock . 124

The Analog-to-Digital Converter . 129
Data Flow, Storage, and Conversions . 129

Digitizer Data Flow . 129
Digitizer Data Formats . 134
Packed Reading Conversions . 135
Retrieving Readings . 139
Retrieving Readings Using READ? . 140
Retrieving Readings Using FETCh? . 140
Using DIAGnostic:UPLoad:SADDress? . 142

Memory Management . 143
The DIAGnostic Subsystem . 143

VME Bus Data Transfers . 148
Locating the Data Register . 148
The VINStrument Subsystem . 152

Local Bus Data Transfers . 158
Local Bus Description . 158
How Data is Transferred . 159
Local Bus Modes . 159
Digitizer Local Bus Commands . 161
Local Bus Transfer Configurations . 161
Digitizer Configuration Restrictions . 163
Setting the Local Bus Transfer Mode . 164
Setting the Local Bus Data Source . 165
Multiple Local Bus Data Transfers . 167

The Digitizer Status Registers . 168
The Status Subsystem Commands . 168
Status System Registers . 168
The Questionable Signal Status Group . 169
The Operation Status Group . 170
The Standard Event Status Group . 172
The Status Byte Status Group . 174

Saving Digitizer Configurations . 176
How to Save and Recall a Configuration . 177

Chapter 4. Command Reference . 179

Chapter Contents . 179
Command Types . 181

Common Command Format . 181
SCPI Command Format . 182

Keyword Separator . 182
Abbreviated Commands . 182
Implied (Optional) Keywords . 183
Variable Command Syntax . 183

SCPI Command Parameters . 183
Parameter Types, Explanations, and Examples . 183
Optional Parameters . 185
Querying Parameter Settings . 185

SCPI Command Execution . 185
Command Coupling . 186
Executable When Initiated Commands . 186

Contents HP E1429A/B Digitizer User’s Manual 3

Linking Commands . 187
SCPI Command Reference . 187
ABORt . 188
ARM . 189

[:STARt]:COUNt . 190
[:STARt]:DELay . 193
[:STARt][:IMMediate] . 194
[:STARt]:LEVel[<chan>]:NEGative <voltage> . 195
[:STARt]:LEVel[<chan>]:POSitive <voltage> . 196
[:STARt]:SLOPe[<n >] . 197
[:STARt]:SOURce[<n>] . 199

CALibration[<chan>] . 201
:COUNt? . 201
:DATA . 202
:DELay . 204
:GAIN . 205
:SECure:CODE . 208
:SECure:STATe . 209
:STORe . 210
:STORe:AUTO . 211
:VALue . 211
:ZERO . 213

CONFigure[<chan>] . 215
:ARRay:[VOLTage][:DC] . 215

DIAGnostic . 219
:CALibration[<chan >]:CONVerge? . 219
:CALibration[<chan >]:GAIN:SENSitivity? . 220
:CALibration[<chan >]:ZERO:SENSitivity? . 220
:CHANnel[<chan >]:LABel . 220
:FETCh? . 221
:MEMory[<chan>]:FILL . 223
:MEMory[<chan>]:ADDResses? . 223
:PEEK? . 224
:POKE . 225
:SGET? . 226
:SPUT . 226
:TEST? . 226

FETCh[<chan>] . 227
FETCh? . 227
:COUNt? . 229
:RECover? . 230

FORMat . 231
[:DATA] . 231

INITiate . 233
[:IMMediate] . 233

INPut[<port>] . 235
:FILTer[:LPASs][:STATe] . 236
:IMPedance . 236
[:STATe] . 237

MEASure[<chan>] . 239
:ARRay[:VOLTage][:DC]? . 239

MEMory . 243
:BATTery[:STATe] . 243

4 HP E1429A/B Digitizer User’s Manual Contents

:BATTery:CHARge? . 244
OUTPut . 245

:ECLTrg<n>:FEED . 245
:ECLTrg<n>[:STATe] . 246
:EXTernal[1]:FEED . 247
:EXTernal[1][:STATe] . 249
:TTLTrg<n>:FEED . 249
:TTLTrg<n>[:STATe] . 251

READ[<chan>] . 252
READ? . 252

SENSe . 254
[SENSe[<chan>]]:FUNCtion . 255

[SENSe[<chan>]]:FUNCtion . 255
[SENSe[<chan>]]:ROSCillator . 257

:EXTernal:FREQuency . 257
:SOURce . 258

[SENSe[<chan >]]:SWEep . 260
:OFFSet:POINts <count> . 261
:POINts <count> . 263

[SENSe[<chan>]]:VOLTage[:DC] . 265
:RANGe . 265
:RESolution? . 267

STATus . 268
:OPC:INITiate . 269
:OPERation|:QUEStionable:CONDition? . 270
:OPERation|:QUEStionable:ENABle . 270
:OPERation|:QUEStionable[:EVENt]? . 271
:OPERation|:QUEStionable:NTRansition . 272
:OPERation|:QUEStionable:PTRansition . 272
:PRESet . 273

SYSTem . 274
ERRor? . 274
:VERSion? . 274

TRIGger . 275
[:STARt]:COUNt . 277
[:STARt][:IMMediate] . 279
[:STARt]:SOURce . 279
[:STARt]:TIMer[1] . 281
PERIOD VALUE TABLE . 283
[:STARt]:TIMer2 . 283
PERIOD VALUE TABLE . 285

VINStrument . 286
Local Bus transfers . 286
VME (VXI data transfer) Bus transfers . 287
 [:CONFigure]:LBUS:FEED . 288
[:CONFigure]:LBUS:MEMory:INITiate . 289
[:CONFigure]:LBUS[:MODE] . 290
[:CONFigure]:LBUS:RESet . 291
[:CONFigure]:LBUS:SEND:POINts . 292
[:CONFigure]:LBUS:SEND:POINts:AUTO . 293
[:CONFigure]:TEST:DATA . 294
[:CONFigure]:VME:FEED . 296
[:CONFigure]:VME:MEMory:INITiate . 297

Contents HP E1429A/B Digitizer User’s Manual 5

[:CONFigure]:VME[:MODE] . 298
[:CONFigure]:VME:SEND:ADDRess:DATA? . 299
:IDENtity? . 300

IEEE-488.2 Common Commands . 301
*CLS . 302
*DMC . 302
*EMC and *EMC? . 303
*ESE and *ESE? . 303
*ESR? . 304
*GMC? . 304
*IDN? . 305
*LMC? . 305
*LRN? . 306
*OPC . 306
*OPC? . 307
*PMC . 307
*PUD and *PUD? . 307
*RCL . 308
*RMC . 309
*RST . 309
*SAV . 310
*SRE and *SRE? . 310
*STB? . 311
*TRG . 311
*TST? . 312
*WAI . 312

SCPI Conformance Information . 314

Appendix A. Specifications . 317

Appendix Contents . 317
Memory Characteristics . 317
Amplitude Characteristics and Signal Conditioning 319
Frequency and Sample Rate Characteristics . 325
Internal Timer . 325
Trigger (Sample Clock) Subsystem . 325
Bus Access and Connectors . 327
General Characteristics . 328

Appendix B. Useful Tables . 331

Appendix Contents . 331

Appendix C. Register Programming . 341

Appendix Contents . 341
System Configuration . 341
Reading and Writing to the Registers . 342

Addressing the Registers . 343
Determining the A24 Base Address . 344

Register Descriptions . 347
A24 Register Table

348
The Input Configuration Registers . 350

The A/D Status Register . 350

6 HP E1429A/B Digitizer User’s Manual Contents

The A/D Serial Register . 350
The A/D Parallel Strobe Register . 351
The A/D Shift Register . 351

The Arm and Trigger Configuration Registers . 353
The Abort and Arm Immediate Register . 353
The Arm Status Register . 353
The Timebase Initiation Register . 354
The Arm Internal Bus Register . 355
The Arm Source Register . 355
The Arm Control Register . 356
The Trigger Source Register . 357
The Reference Oscillator Register . 359
The Arm delay Register . 360
The Arm Count Register . 360
The Arm Count Latch Register . 360
The Trigger Immediate Register . 361
The Decade Division Register . 361
The Binary Division Register . 361
The Pre-Arm Reading Count Registers . 362
The Post-Arm Reading Count Registers . 362

The Memory Control Registers . 363
The Traffic Register . 363
The Pulse Register . 364
The Channel ID Register . 364
The Data Register . 364
The Memory Control Register . 365
The Memory Address Registers . 366
The Terminal Address Register . 367
The Base Address Registers . 367

Configuring the Digitizer Input . 368
Using the A/D Shift Register . 368
Enabling the Inputs . 369
Setting the Input Impedance . 370
Enabling the

10 MHz Filter . 370
Setting the Measurement Range . 370

Arming and Triggering . 372
Checking the Idle State . 372
Setting the Digitizer Configuration . 373
Setting the Arm Sources . 373
Setting the Arm Count . 374
Setting the Arm Delay . 374
Setting the Reference Source . 375
Setting the Trigger Source . 376
Sending an Arm Immediate Signal . 376
 Sending a Trigger Immediate Signal . 377
Aborting Measurements . 377

Re-initiating the Digitizer . 378
Initializing Digitizer Memory . 378
Initializing and Initiating the Timebase Processor 380

Retrieving Data from Memory . 385
Initializing Digitizer Memory to Retrieve Data . 385

Example Program . 388

Contents HP E1429A/B Digitizer User’s Manual 7

Appendix D. Local Bus Interleaved Transfers . 405

Appendix Contents . 405
Interleaved Transfers . 405
Setting the Interleaved Transfer Mode . 406
Programming Procedure . 407
Example Program . 408
Comments . 413

8 HP E1429A/B Digitizer User’s Manual Contents

Certification
Hewlett-Packard Company certifies that this product met its published specifications at the time of shipment from the factory. Hewlett-
Packard further certifies that its calibration measurements are traceable to the United States National Institute of Standards and Technol-
ogy (formerly National Bureau of Standards), to the extent allowed by that organization’s calibration facility, and to the calibration
facilities of other International Standards Organization members.

Warranty
This Hewlett-Packard product is warranted against defects in materials and workmanship for a period of three years from date of ship-
ment. Duration and conditions of warranty for this product may be superseded when the product is integrated into (becomes a part of)
other HP products. During the warranty period, Hewlett-Packard Company will, at its option, either repair or replace products which
prove to be defective.

For warranty service or repair, this product must be returned to a service facility designated by Hewlett-Packard (HP). Buyer shall pre-
pay shipping charges to HP and HP shall pay shipping charges to return the product to Buyer. However, Buyer shall pay all shipping
charges, duties, and taxes for products returned to HP from another country.

HP warrants that its software and firmware designated by HP for use with a product will execute its programming instructions when
properly installed on that product. HP does not warrant that the operation of the product, or software, or firmware will be uninterrupted
or error free.

Limitation Of Warranty
The foregoing warranty shall not apply to defects resulting from improper or inadequate maintenance by Buyer, Buyer-supplied prod-
ucts or interfacing, unauthorized modification or misuse, operation outside of the environmental specifications for the product, or im-
proper site preparation or maintenance.

The design and implementation of any circuit on this product is the sole responsibility of the Buyer. HP does not warrant the Buyer’s
circuitry or malfunctions of HP products that result from the Buyer’s circuitry. In addition, HP does not warrant any damage that oc-
curs as a result of the Buyer’s circuit or any defects that result from Buyer-supplied products.

NO OTHER WARRANTY IS EXPRESSED OR IMPLIED. HP SPECIFICALLY DISCLAIMS THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

Exclusive Remedies
THE REMEDIES PROVIDED HEREIN ARE BUYER’S SOLE AND EXCLUSIVE REMEDIES. HP SHALL NOT BE LIABLE
FOR ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, WHETHER BASED ON CON-
TRACT, TORT, OR ANY OTHER LEGAL THEORY.

Notice
The information contained in this document is subject to change without notice. HEWLETT-PACKARD (HP) MAKES NO WAR-
RANTY OF ANY KIND WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WAR-
RANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. HP shall not be liable for errors contained
herein or for incidental or consequential damages in connection with the furnishing, performance or use of this material. This docu-
ment contains proprietary information which is protected by copyright. All rights are reserved. No part of this document may be photo-
copied, reproduced, or translated to another language without the prior written consent of Hewlett-Packard Company. HP assumes no
responsibility for the use or reliability of its software on equipment that is not furnished by HP.

Restricted Rights Legend
The Software and Documentation have been developed entirely at private expense. They are delivered and licensed as "commercial
computer software" as defined in DFARS 252.227-7013 (Oct 1988), DFARS 252.211-7015 (May 1991) or DFARS 252.227-7014
(Jun 1995), as a "commercial item" as defined in FAR 2.101(a), or as "Restricted computer software" as defined in FAR 52.227-19
(Jun 1987) (or any equivalent agency regulation or contract clause), whichever is applicable. You have only those rights provided for
such Software and Documentation by the applicable FAR or DFARS clause or the HP standard software agreement for the product involved.

HP E1429A/B 20 MSa/s 2-Channel Digitizer User’s Manual
Edition 2

Copyright © 1993 Hewlett-Packard Company. All Rights Reserved.

HP E1429A/B 20 MSa/s 2-Channel Digitizer User’s Manual 9

Frame or chassis ground terminal—typi-
cally connects to the equipment’s metal
frame.

Alternating current (AC).

Direct current (DC).

Indicates hazardous voltages.

Calls attention to a procedure, practice, or
condition that could cause bodily injury or
death.

Calls attention to a procedure, practice, or con-
dition that could possibly cause damage to
equipment or permanent loss of data.

Indicates the field wiring terminal that must
be connected to earth ground before operat-
ing the equipment—protects against electri-
cal shock in case of fault.

Instruction manual symbol affixed to prod-
uct. Indicates that the user must refer to the
manual for specific WARNING or CAU-
TION information to avoid personal injury
or damage to the product.

or

WARNINGS
The following general safety precautions must be observed during all phases of operation, service, and repair of this product.
Failure to comply with these precautions or with specific warnings elsewhere in this manual violates safety standards of design,
manufacture, and intended use of the product. Hewlett-Packard Company assumes no liability for the customer’s failure to
comply with these requirements.

Ground the equipment: For Safety Class 1 equipment (equipment having a protective earth terminal), an uninterruptible safety earth
ground must be provided from the mains power source to the product input wiring terminals or supplied power cable.

DO NOT operate the product in an explosive atmosphere or in the presence of flammable gases or fumes.

For continued protection against fire, replace the line fuse(s) only with fuse(s) of the same voltage and current rating and type.
DO NOT use repaired fuses or short-circuited fuse holders.

Keep away from live circuits: Operating personnel must not remove equipment covers or shields. Procedures involving the removal
of covers or shields are for use by service-trained personnel only. Under certain conditions, dangerous voltages may exist even with the
equipment switched off. To avoid dangerous electrical shock, DO NOT perform procedures involving cover or shield removal unless
you are qualified to do so.

DO NOT operate damaged equipment: Whenever it is possible that the safety protection features built into this product have been im-
paired, either through physical damage, excessive moisture, or any other reason, REMOVE POWER and do not use the product until
safe operation can be verified by service-trained personnel. If necessary, return the product to a Hewlett-Packard Sales and Service Of-
fice for service and repair to ensure that safety features are maintained.

DO NOT service or adjust alone: Do not attempt internal service or adjustment unless another person, capable of rendering first aid
and resuscitation, is present.

DO NOT substitute parts or modify equipment: Because of the danger of introducing additional hazards, do not install substitute
parts or perform any unauthorized modification to the product. Return the product to a Hewlett-Packard Sales and Service Office for
service and repair to ensure that safety features are maintained.

WARNING

CAUTION

Documentation History
All Editions and Updates of this manual and their creation date are listed below. The first Edition of the manual is Edition 1. The Edi-
tion number increments by 1 whenever the manual is revised. Updates, which are issued between Editions, contain replacement pages
to correct or add additional information to the current Edition of the manual. Whenever a new Edition is created, it will contain all of
the Update information for the previous Edition. Each new Edition or Update also includes a revised copy of this documentation his-
tory page.

Edition 1 . March 1993
Edition 2 . June 1993

Safety Symbols

10 HP E1429A/B 20 MSa/s 2-Channel Digitizer User’s Manual

Declaration of Conformity

according to ISO/IEC Guide 22 and EN 45014

Manufacturer’s Name: Hewlett-Packard Company
Loveland Manufacturing Center

Manufacturer’s Address: 815 14th Street S.W.
Loveland, Colorado 80537

declares, that the product:

Product Name: 20MS a/s Digitizer

Model Number: HP E1429A

Product Options: All

conforms to the following Product Specifications:

Safety: IEC 1010-1 (1990) Incl. Amend 1 (1992)/EN61010-1 (1993)

EMC: CISPR 11:1990/EN55011 (1991): Group1 Class A
IEC 801-2:1991/EN50082-1 (1992): 4kVCD, 8kVAD
IEC 801-3:1984/EN50082-1 (1992): 3 V/m
IEC 801-4:1988/EN50082-1 (1992): 1kV Power Line

Supplementary Information: The product herewith complies with the requirements of the Low Voltage Directive
73/23/EEC and the EMC Directive 89/336/EEC.

Tested in a typical configuration in an HP C-Size VXI mainframe.

European contact: Your local Hewlett-Packard Sales and Service Office or Hewlett-Packard GmbH, Department
ZQ/Standards Europe, Herrenberger Straße 130, D-7030 Böblingen, Germany (FAX +49-7031-143143).

March 1, 1993 Jim White, QA Manager

HP E1429A/B 20 MSa/s 2-Channel Digitizer User’s Manual 11

Notes

12 HP E1429A/B 20 MSa/s 2-Channel Digitizer User’s Manual

Chapter 1
Getting Started

Chapter Contents

This chapter covers the features, configuration, and programming
procedures for the HP E1429A/B 2-Channel, 20 MSa/s Digitizer. The main
sections of this chapter include:

• HP E1429A/B Features and VXIbus Configuration 13
• Preparation for Use . 16
• Introductory Programs . 20

 Sending the *IDN? Command . 20
 Digitizer Self-Test . 21
 Resetting and Clearing the Digitizer 23
 Querying the Digitizer Configuration 25

• Instrument and Programming Languages 28
• Introduction to Programming. 33
• Where to go Next . 48

HP E1429A/B Features and VXIbus Configuration

The HP E1429A/B is a 2-Channel, 20 MSample/second digitizer. The
HP E1429A/B digitizers are VXI message-based instruments, but can also
be programmed at the register level (register programming is covered in
Appendix C). The features of the HP E1429A and HP E1429B are the same,
except that the HP E1429B also has VXI Local bus data transfer capability.
This manual covers the use of both digitizers.

Front Panel
Description

Figure 1-1 describes the front panels of the HP E1429A/B digitizers.

Chapter 1 Getting Started 13

Figure 1-1. The HP E1429A/B Digitizer

14 Getting Started Chapter 1

HP E1429A/B
VXIbus

Configuration

Table 1-1 lists the digitizer’s VXIbus device information and factory
settings. Appendix A has the complete list of HP E1429A/B operating
specifications.

Input signals (DC and AC) which may be connected to this module are
likely to include occasional overvoltage transients. These
overvoltages may be caused by motor inductances, switching circuits,
lightning, etc.

If the input signal is likely to exhibit transients greater than 800 Vpk,
add external transient suppression circuitry to reduce transients to
800 Vpk or less.

VXIbus Device Information

Device type: message-based servant

C-size (1 slot)

Connectors: P1 and P2

Addressing modes: A16/A24

Data transfer modes: D08/D16/D32 slave

A24 size: 4096 bytes

Dynamically Configurable

Non-interrupter/non-interrupt handler

VXIbus Revision Compliance: 1.4

SCPI Revision: 1992.0

See side of module for power/cooling requirements

HP E1429A/B Factory Settings

Parameter Setting

Logical Address 40

Servant Area 0 (not used)

Bus Request Level 3

Table 1-1. HP E1429A/B VXIbus Configuration

Chapter 1 Getting Started 15

Caution The 800 Vpk level is a product safety test specification and
does not assure correct product operation if 800 Vpk transients
have been applied. To maintain product functionality and
performance, do not exceed ±42 Vpk on the single-ended
inputs, or ±102.4 Vpk on the differential inputs.

Preparation for Use

This section contains configuration information specific to the
HP E1429A/B digitizer.

Note For more (VXIbus) system configuration information, refer to the C-Size
VXIbus Systems “ Installation and Getting Started Guide".

The Digitizer
Logical Address

The HP E1429A/B digitizer logical address is used:

• to place the digitizer in the servant area of a commander
(e.g. HP E1406 Command Module, embedded controller, or another
instrument).

• to address the digitizer (see “Addressing the Digitizer” or “ Using
an Embedded Controller” later in this chapter.)

Assigning the Digitizer
to a Commander

In a VXIbus system, every device must be in the servant area of a
commander (with the exception of the top-level comander).

Note the following when assigning the digitizer to a commander:

• A commander’s servant area is defined as:

Servant area = (logical address + 1) through (logical address +
servant area switch setting)

• The HP E1429A/B digitizer is a message-based device. If an
embedded controller and an HP E1406 Command Module are part of
your VXIbus system, put the digitizer in the servant area of the
controller. This enables you to program the digitizer at higher speeds
across the VXIbus backplane, rather than over the Hewlett-Packard
Interface Bus (HP-IB*) via the Command Module.

16 Getting Started Chapter 1

• If your system uses an external controller and the HP E1406
Command Module, put the digitizer in the servant area of the
Command Module. This enables the module to function as the
HP-IB interface to the digitizer.

The HP E1406 Command Module has a factory set logical address of
0 and a servant area switch setting of 255. Using the factory settings,
it is not necessary to change the logical address of the digitizer (40)
to place it in the servant area of the Command Module.

• If the digitizer is used with the HP E1485 Digital Signal Processing
(DSP) module, the digitizer must be in the servant area of the DSP
module.

The digitizer’s logical address switch is shown in Figure 1-2.

Figure 1-2. HP E1429A/B Logical Address Switch Location

Chapter 1 Getting Started 17

* HP-IB is Hewlett-Packard’s implementation of IEEE Std. 488.1-1978

Note The digitizer’s servant area switches are not used and should be left in their
factory-set (0) position.

The Digitizer Bus
Request Level

The bus request level is a priority at which the HP E1429A/B digitizer can
request the use of the VME (VXI Data Transfer) Bus.

Bus Request Level
Guidelines

• There are four bus request lines (BG0 - BG3) from which one is
selected (Figure 1-2). Bus request line 3 has the highest priority, bus
request line 0 has the lowest priority. It is not necessary to change
the bus request level setting (BG3) on the digitizer.

• More information on the Data Transfer Bus can be found in the
C-Size VXIbus Systems “ Installation and Getting Started Guide” .

Installing the
Digitizer

The HP E1429A/B digitizer can be installed in any mainframe slot except
slot 0. However, in applications where the HP E1429B is generating data
over the Local bus, install the digitizer in the left slot adjacent to the
module(s) receiving the data. Figure 1-3 shows the installation of a sample
Local bus configuration.

Figure 1-3. Installing the HP E1429B Digitizer in a Local Bus Configuration

18 Getting Started Chapter 1

Note For compliance with European EMC standards EN 55011 and
EN 50082-1, backplane connector shields are included with each
HP E1429A/B digitizer ordered. The shields need only be installed in the
VXI mainframe if it is necessary to comply with these standards.

Addressing the
Digitizer over HP-IB

Devices in the Series C mainframe and in the servant area of the HP E1406
Command Module are located by an HP-IB address. The HP-IB address is a
combination of the controller’s interface select code, the Command
Module’s primary HP-IB address, and the device’s secondary HP-IB
address. An address in this form appears as:

70905

Interface Select Code (7): Determined by the address of the HP-IB
interface card in the controller. In most Hewlett-Packard controllers, this
card has a factory set address of 7, including the HP 82335 HP-IB Interface
Card (this card was used with an HP Vectra AT compatible personal
computer to create the C programs on the example programs disk).

Primary HP-IB Address (09): This is the address of the HP-IB port on the
Command Module. Valid addresses are 0 to 30. The Command Module has
a factory set address of 9.

Secondary HP-IB Address (05): This address is derived from the logical
address of the digitizer by dividing the logical address by 8. Thus, for the
HP E1429A/B digitizer factory set logical address of 40, the secondary
address is 05.

Addressing the
Digitizer using an

Embedded
Controller

As a message-based device, the HP E1429A/B digitizer can easily be
programmed across the VXIbus backplane from a HP E1499A V/382
embedded controller. The select code of the VXI interface board in
embedded controllers is typically 16. Since no secondary HP-IB address is
required when programming over the backplane, the logical address of the
HP E1429A/B digitizer is combined with the VXI interface select code:

1640 (for device logical address 40; range = 01 to 99)

If the digitizer’s logical address is changed to a value greater than 99, the
address becomes:

160xxx

Chapter 1 Getting Started 19

Introductory Programs

The introductory programs in this section include:

• Sending the *IDN? Command
• Digitizer Self-Test
• Resetting the digitizer and clearing the status registers
• Querying the digitizer configuration

HP BASIC and C language versions of the introductory programs follow. C
language versions of these and all programs in the manual are contained on
the following disk which ships with the manual:

• HP E1429A/B Example Programs: C Language
3.5" 720 KByte disk (HP E1429-10302)

Other than the introductory programs and selected programs throughout the
manual, the program listings show only the digitizer commands.

Sending the *IDN?
Command

The following programs are a fast method for determining if the digitizer is
set to the intended address and is communicating with the computer. The
programs send the *IDN? command which returns:

HEWLETT-PACKARD,E1429A,0,A.02.00

HP BASIC

10 !Send the *IDN? command, enter and display the result.
20 DIM Message$[80]
30 OUTPUT 70905;"*IDN?"
40 ENTER 70905;Message$
50 PRINT Message$
60 END

IDN.C

/* IDN.C - This program sends the *IDN? command to the digitizer as a */
/* way to determine if the computer is communicating with the digitizer */

/* Include the following header files */

#include <stdio.h>
#include <cfunc.h> /* This file is from the HP-IB Command Library Disk */

#define ADDR 70905 /* I/O path from the PC to the digitizer */
Continued on Next Page

20 Getting Started Chapter 1

/**/
void main(void) /* Run the program */
{

char message[80];
int length = 80;

IOOUTPUTS(ADDR, "*IDN?", 5); /* send *IDN? command */
IOENTERS(ADDR, message, &length); /* enter *IDN? response */

printf("%s\n", message); /* print*IDN? response */
}

Digitizer Self-Test The digitizer self-test is executed with the command:

*TST?

The digitizer parameters tested include:

• internal interrupt lines
• measurement range integrity
• measurement RAM integrity
• battery charge
• timebase integrity

The self-test takes approximately 30 seconds to complete. Upon completion,
one of the self-test codes listed in Table 1-2 is returned.

Self-Test Code Description

0 Test passed

1 Test failed. An error message describes the failure.

Table 1-2. HP E1429A/B Self-Test Codes.

Chapter 1 Getting Started 21

Caution Executing the self-test erases the readings in the digitizer’s
non-volatile memory.

If the self-test fails, the command:

DIAGnostic:TEST?

can be executed to obtain additional information on the failure. Note that
DIAGnostic:TEST can return a string up to 40 characters.

HP BASIC

10 !Send the self-test command, enter and display the result.
20 DIM Message$[256],Diagnostic$[40]
30 OUTPUT 70905;"*TST?"
40 ENTER 70905;Rslt
50 IF Rslt <>0 THEN
60 REPEAT
70 OUTPUT 70905;"SYST:ERR?"
80 ENTER 70905;Code,Message$
90 PRINT Code,Message$
100 UNTIL Code =0
110 OUTPUT 70905;"DIAG:TEST?"
120 ENTER 70905;Diagnostic$
130 PRINT Diagnostic$
140 END IF
150 PRINT Rslt
160 END

SLFTST.C

/* SLFTST.C - This program performs a self-test on the digitizer and prints */
/* out the resulting self-test code */

/* Include the following header files */
#include <stdio.h>
#include <cfunc.h> /* This file is from the HP-IB Command Library Disk */

#define ADDR 70905L /* I/O path from the PC to the digitizer, via the E1406 */

Continued on Next Page

22 Getting Started Chapter 1

/**/
void main(void) /* Run the program */
{

char message[256], diagnostic[80];
int length = 256;
float tst;

IOOUTPUTS(ADDR, "*TST?", 5); /* send the self-test command */
IOENTER(ADDR, &tst); /* enter the code */

printf("%d\n\n", (int) tst); /* display the code */

if (tst != 0)
{

IOOUTPUTS(ADDR, "SYST:ERR?", 9); /* query error register */
IOENTERS(ADDR, message, &length); /* enter error message */

printf("Error: %s\n\n", message); /* print error message */

IOOUTPUTS(ADDR, "DIAG:TEST?", 10); /* get diagnostic information */
IOENTERS(ADDR, diagnostic, &length); /* on self-test error */
printf("Diagnostic information: %s\n", diagnostic);

}
}

Resetting and
Clearing the

Digitizer

The commands used to reset and clear the digitizer are:

*RST
*CLS

*OPC? (OPeration Complete) is often executed after *RST and *CLS to
allow the reset and clear to complete before program execution continues.

Resetting the digitizer sets it to its power-on configuration, and clearing the
digitizer clears its status registers. Additional information on the status
registers is located in Chapter 3.

Chapter 1 Getting Started 23

HP BASIC

10 !Assign an I/O path between the computer and digitizer.
20 ASSIGN @A_d TO 70905
30 COM @A_d
40 !Call the subprogram
50 Rst_cls
60 END
70 !
80 SUB Rst_cls
90 Rst_cls: !subprogram which resets and clears the digitizer.
100 COM @A_d
110 OUTPUT @A_d;"*RST;*CLS;*OPC?" !reset and clear
120 ENTER @A_d;Complete
130 SUBEND

RSTCLS.C

/* RSTCLS.C - This program resets the digitizer and clears its status register */

/* Include the following header files */
#include <stdio.h>
#include <cfunc.h> /* This file is from the HP-IB Command Library Disk */

#define ADDR 70905L /* I/O path from PC to the digitizer, via the E1406 */

/* Function Prototypes */

void rst_clr(void);

/**/
void main(void) /* Run the program */
{
rst_clr(); /* Reset and clear the digitizer */
}
/**/
void rst_clr(void)
{

IOOUTPUTS(ADDR, "*RST;*CLS", 9); /* reset and clear the digitizer*/
}

24 Getting Started Chapter 1

Querying the
Digitizer

Configuration

After resetting the digitizer or cycling power, the digitizer parameters are
set to their power-on values. These values are listed in Appendix B, Table
B-2. You can determine the digitizer’s reset settings or its current
configuration using the command:

*LRN?

The data returned by *LRN? is a semicolon (;) separated list of each
parameter setting.

HP BASIC

10 !Assign an I/O path between the computer and the A/D.
20 ASSIGN @A_d TO 70905
30 !Call the subprogram
40 Lrn_conf(@A_d)
50 END
60 !
70 SUB Lrn_conf(@A_d)
80 Lrn_conf: !subprogram which queries the digitizer configuration
90 DIM Lrn$[2000]
100 INTEGER I
110 OUTPUT @A_d;"*LRN?"
120 ENTER @A_d;Lrn$
130 Lrn$=Lrn$&";"
140 REPEAT
150 I=POS(Lrn$,";")
160 PRINT Lrn$[1;I-1]
170 Lrn$=Lrn$[I+1]
180 UNTIL Lrn$=""
190 SUBEND

Chapter 1 Getting Started 25

LRN.C

This program uses a 2,000 element character array. To prevent stack
overflow errors when compiling and running this program using
Microsoft® QuickC©, change the stack size using the /F option of the
“qcl” command. An example of how this program might be compiled is:

qcl /AL /F 8192 b:\lrn.c c:\qc2\lib\clhpib.lib

/* LRN.C - This program queries the digitizer’s reset conditions */

/* Include the following header files */
#include <stdio.h>
#include <string.h>
#include <cfunc.h> /* This file is from the HP-IB Command Library Disk */

#define ADDR 70905L /* I/O path from PC to the digitizer, via the E1406 */

/**/
void main(void) /* Run the program */
{
char static *codes[] = {"*RST","*LRN?;*OPC?"};
char lrndata[2000], *prt, ch;
int loop,

length = 2000;

/* Execute each command group using a loop */

for (loop = 0; loop < (sizeof(codes) / sizeof(char*)); loop++)
IOOUTPUTS(ADDR, codes[loop], strlen(codes[loop]));

/* Enter data returned by *LRN into string */

IOENTERS(ADDR, lrndata, &length);

/* Start line counter */
loop = 1;

/* Separate *LRN? data into tokens delimited by ";". Read and */
/* print the first *LRN? data point */

Continued on Next Page

26 Getting Started Chapter 1

prt = strtok(lrndata,";");
printf("\n\t%s",prt);

/* Print out each (*LRN? data) token */
while (prt != NULL)
{

prt = strtok(NULL,";");

/* Exit when data returned by *OPC? (1) is reached */
if (atoi(prt) == 1)

break;

/* Print one user screen’s worth of *LRN? data, have user */
/* press ’Enter’ to see the next screen of data */

if (loop >= 23)
{

printf("\n\nPress \’Enter\’ to continue");
scanf("%c", &ch);
fflush(stdin);
loop = 0;

}
printf("\n\t%s",prt);

loop ++;/* increment counter */
}
}

Chapter 1 Getting Started 27

Instrument and Programming Languages

The purpose of this manual is to teach you how to use the HP E1429A/B
digitizer. To do this, the manual uses block diagrams, flowcharts, and
example programs. In most cases, the manual’s example programs list only
the digitizer’s SCPI commands. The I/O (input/output) constructs depend on
the programming language you use.

SCPI Programming SCPI (Standard Commands for Programmable Instruments) is an
ASCII-based instrument command language designed for test and
measurement instruments. The message-based digitizer has an on-board
microprocessor which interprets the ASCII command strings and returns
ASCII formatted results.

Command Listings The typical format of commands listed in the command reference and
throughout this manual is:

TRIGger[:STARt]:TIMer1 <period>

To aid in learning the digitizer command set, all headers are included
in the example programs; however, the headers are abbreviated. In an
example program, the previous statement with a period parameter of
10 µs would appear as:

TRIG:STAR:TIM1 10E-6

Note Chapter 4 contains more information on the structure and execution of SCPI
commands.

Coupled Commands Some of the digitizer SCPI commands are functional or value coupled.
Functionally coupled commands are those that for one command to have
affect, another command must be set to a particular value. Value coupled
commands are those where changing the value of one command, changes
the value of the others.

28 Getting Started Chapter 1

Coupled commands can cause “Settings conflict” errors when the program
executes. When a coupled command is executed, the command setting is
evaluated by the digitizer processor. If the setting causes an illegal digitizer
configuration, a "Settings conflict" error occurs. The error message lists the
conflicting settings, and then reports the values set by the digitizer processor.

The "Comments" section of each command reference entry (Chapter 4)
indicates if a command is coupled, and if it is, what the coupling constraints
are.

How to Execute
Coupled Commands

To prevent possible "Settings conflict" errors, coupled commands must be
contiguous and executed in the same program statement. This is done by
placing the commands in the same program line, or for HP BASIC
programs, by suppressing the EOL terminator until the last (coupled)
command has been sent.

To send multiple commands in a single line or in a single statement, the
commands are linked with a semicolon (;) and a colon (:). This is illustrated
in the following lines:

 OUTP:EXT1:STAT ON;:TRIG:SOUR EXT1;:OUTP:EXT1:STAT OFF

or

OUTP:EXT1:STAT ON;

:TRIG:SOUR EXT1;

:OUTP:EXT1:STAT OFF

Notice that the semicolon (;) and colon (:) link commands within different
subsystems. Only a semicolon (;) is required to link commands at the same
level within the same subsystem.

Sending the commands as shown prevents "Settings conflict" errors. The
command settings are not evaluated until the EOL terminator is received
after the last command. If these commands were sent individually (an EOL
terminator after each command), a "Settings conflict" error would occur
because of the coupling between OUTP:EXT1:STAT ON and TRIG:SOUR
EXT1.

Terminating
Commands

A SCPI command string is terminated with a line feed (LF) and/or with an
End Or Identify (EOI) message. The carriage return (CR) is ignored.

Suppressing the
End-Of-Line
Terminator

Suppressing the end-of-line (EOL) terminator on a command line allows
coupled commands to be sent on separate lines, yet as a single program
statement. In HP BASIC programs, the EOL terminator is suppressed by

Chapter 1 Getting Started 29

 placing a semicolon (;) following the quotation mark (") which closes the
command string:

OUTPUT 70905;"OUTP:EXT1:STAT ON;";

OUTPUT 70905;":TRIG:SOUR EXT1;";

OUTPUT 70905;":OUTP:EXT1:STAT OFF"

Since the last command is the end of the command string, the EOL
terminator is not suppressed.

Note In the C language programs contained in this manual, there is no end-of-line
terminator to suppress as the commands are executed as elements of an
array.

C Language
Programs

The C language versions of the example programs (disk P/N E1429-10301)
were written for the HP 82335 HP-IB Interface Card using the HP-IB
Command Library for C. Unless otherwise noted, the library functions used
in the programs are compatible with the ANSI C standard.

The following section identifies the system on which the programs were
written, shows how to compile and link the programs, and describes the
structure of an example program.

System Configuration The C programs were developed on the following system:

Controller: HP Vectra 386/25 personal computer
(386 processor operated at 25 MHz)

HP-IB Interface Card: HP 82335 HP-IB Interface with
Command Library

Mainframe: HP 75000 Series C

Slot0/Resource Manager: HP E1406 Command Module

HP E1429A/B Logical Address: 40

Instrument Language: SCPI

30 Getting Started Chapter 1

C Compilers Used The C Language programs were compiled (and tested) using the following
compilers:

• Microsoft® QuickC© Version 2.0
• Borland Turbo C++© Version 1.0

Compiling and Linking
the Programs

To run a C program, you must compile and link the program to make an
executable file. To compile and link a program:

• Be sure the necessary paths have been added to the
AUTOEXEC.BAT file for the compilers to find the library and
header files (see the appropriate C Language manual to set the
proper paths).

• Link the appropriate HP-IB C library (located on the HP-IB
Command Library disk that came with the HP-IB Interface Card).
Use the following libraries:

– Microsoft® QuickC©: clhpib.lib

– Turbo C++©: tchhpib.lib

• If NOT compiling in the Large/Huge memory model, include the
“cfunc.h” header file (located on the HP-IB Command Library disk)
in the program.

Command Line Compiling

To compile and link the programs from the DOS command line using the
Large memory model, execute the following from the directory containing
“qcl” or “ tcc” .

• Microsoft® QuickC©:

qcl /AL <path \program name > <path \clhpib.lib >

e.g. qcl /AL b:\input.c c:\qc2\lib\clhpib.lib

• Turbo C++©:

tcc -ml <path \program name > <path \tchhpib.lib >

e.g. tcc -ml b:\input.c c:\tc\lib\tchhpib.lib

Change the “ /AL” and “ -ml” parameters to the appropriate types when
compiling in the smaller memory models (see your C language manual for
the parameter type). For some programs executed under the Microsoft®
QuickC© environment, if may be necessary to change the stack size using
the /F option of the ’qcl’ command.

Chapter 1 Getting Started 31

Once compiled and linked, an executable file (.EXE) and object file (.OBJ)
are created in the current directory. You execute the program by typing and
entering the file name (with the .EXE extension).

Compiling in the Integrated Environment

You can compile, link, and run your C programs from the Microsoft®
QuickC© or Turbo C++© integrated environments. To do so, add:

program_name.C
CLHPIB.LIB

to the program list (under the "Make" menu) in the Microsoft® QuickC©
environment. Under ’Environment’ in the "Options" menu, include paths to
the header files and external CLHPIB.LIB library. For example:

Include Files Directory: [c:\qc2\include]

Library Files Directory: [c:\qc2\lib]

In the Turbo C++© environment, add the items:

program_name.C
TCHHPIB.LIB

to the project (under the "Project" menu). Under ’Directories ...’ in the
"Options" menu, include paths to the header files and external
TCHHPIB.LIB library. For example:

Include Directories
C:\TC\INCLUDE

Library Directories
C:\TC\LIB

C Program Format The general format of the C language programs on the example programs
disk is shown in the program listings at the end of this chapter. Generally,
the program flow is:

• reset and clear the digitizer
• configure the digitizer
• check for configuration errors
• trigger the digitizer and retrieve the readings

32 Getting Started Chapter 1

Introduction to Programming

The SCPI commands used to program the digitizer are separated into two
groups: common commands and subsystem commands. Common
commands begin with an asterisk, and include commands such as *RST,
*CLS, *OPC?. Chapter 4 contains a complete listing of the digitizer’s
common commands.

Subsystem commands are those commands which configure the digitizer.
Each subsystem is a set of commands that roughly corresponds to a
functional block inside the digitizer. Figure 1-4 identifies the SCPI
subsystems used with the digitizer.

* Arm source

* Arm count

* Arm delay

* Trigger source

* Trigger count

* Sample rate

* Enable input

* Input impedance

* Input filter

* Reference oscillator source

* Pre- and post-arm reading count

* Measurement range

* Digitizer reading format * Non-volatile memory enable

* Abort measurements

* Initiate measurements

* Retrieve readings

* VME bus data transfers

* Local bus data transfers

 other subsystems
 CONFigure

 MEASure

 CALibration

 DIAGnostic

 OUTPut

 STATus

 SYSTem

Figure 1-4. HP E1429A/B Digitizer Command Subsystems

Chapter 1 Getting Started 33

Using the MEASure
and CONFigure

Commands

Each time the digitizer takes a reading, it does so from a configuration
based on parameters set by the digitizer subsystems (Figure 1-4). The
easiest way to set these parameters is with the MEASure or CONFigure
command.

MEASure[<chan >]:ARRay[:VOLTage][:DC]? (<size >)
 [,<expected value >[,<resolution >]] [,(@<input port >)]

CONFigure[<chan >]:ARRay[:VOLTage][:DC] (<size >)
 [,<expected value >[,<resolution >]] [,(@<input port >)]

< chan > is the digitizer channel (1 or 2) configured. This parameter is
optional. If a channel is not specified, channel 1 is assumed.

(< size >) is the total number of pre-arm and post-arm readings (samples)
taken each time an arm signal occurs. Note the space between the command
header and the <size > parameter.

<expected value > is the amplitude (range) of the signal to be measured.
This optional parameter is used to set the digitizer measurement range. If an
expected value is not specified, the digitizer defaults to the 1V range.

<resolution > is the reading resolution and is determined from the expected
value. There is a fixed resolution for each measurement range (Table 3-2).
If a specified resolution is greater that what is available for that range
(expected value), an error occurs.

(@<input port>) is the channel input port (single ended or differential) to
which the input signal is applied. Readings can be taken on only one input
port per channel at a time.

Table 1-3 lists some of the commands and their settings that are equivalent
to the values set by MEASure and CONFigure.

When MEASure? or CONFigure is executed, many of the digitizer
parameters are set to their reset values (see Appendix B,
Table B-2 for a complete listing of reset values). The parameters specified
within the MEASure or CONFigure command are then set accordingly.
This prevents "Settings conflict" errors from occurring due to previous
digitizer configurations.

34 Getting Started Chapter 1

Parameter Command Setting

Reference
Oscillator Source

SENSe<chan>:ROSCillator:SOURce
<source>

INTernal (the digitizer’s internal 20 MHz oscillator)

Input Port SENSe<chan>:FUNCtion "<function>
<port>"

"VOLT <port>" (where <port> is set by the
(@<input port>) parameter of MEASure? or CONFigure)

Measurement
range

SENSe<chan>:VOLTage:DC:RANGe
<range>

set according to the <expected value> parameter of
MEASure? or CONFigure

Input Impedance INPut<port>:IMPedance <impedance> 50Ω (when <port> is 1 or 2)

10 MHz Input
Filter

INPut<port>:FILTer:LPASs:STATe <mode> ON

Input State INPut<port>:STATe <mode> ON (for all ports)

Arm Source ARM:STARt:SOURce<n > <source > IMMediate (for n = 1)
HOLD (for n = 2)

Arm Count ARM:STARt:COUNt 1

Arm Delay ARM:STARt:DELay 0

Trigger Source TRIGger:STARt:SOURce <source> TIMer1

Pre-arm Readings SENSe<chan>:SWEep:OFFSet:POINts
<count>

0

Trigger Count TRIGger:STARt:COUNt <number>

SENSe<chan>:SWEep:POINts <number>

<number> is set to the (<size>) parameter of MEASure? or
CONFigure

Sample Rate
(single)

TRIGger:STARt:TIMer1 <period> 50 ns

Sample Rate
(dual)

TRIGger:STARt:TIMer2 <period> 100 ns

Output State OUTPut:ECLTrg<n >:STATe <mode >
OUTPut:TTLTrg<n >:STATe <mode >
OUTPut:EXTernal1:STATe <mode >

OFF
OFF
OFF

Output Feed OUTPut:ECLTrg<n >:FEED <source >
OUTPut:TTLTrg<n >:FEED <source >
OUTPut:EXTernal1:FEED <source >

"TRIGger:STARt" (ECLTrg0) "EXTernal1" (ECLTrg1)
"ARM:STARt"
"TRIGger:STARt"

VME Bus Mode VINStrument:CONFigure:VME:MODE
<mode>

OFF

VME Bus Feed VINStrument:CONFigure:VME:FEED
<source >

"MEMory:BOTH32"

Local Bus Mode
(HP E1429B only)

VINStrument:CONFigure:LBUS:MODE
<mode>

OFF

Local Bus Feed
(HP E1429B only)

VINStrument:CONFigure:LBUS:FEED
<source>

"MEMory:BOTH"

Reading Format FORMat[:DATA] <type>[,<length>] ASCii, 9

Data label DIAGnostic:CHANnel[<chan >]:LABel
<label >

0 (channel 1)
0 (channel 2)

Table 1-3. Digitizer Configuration using MEASure? and CONFigure

Chapter 1 Getting Started 35

Programming
Sequence

The recommended sequence for programming the digitizer is shown in
Figure 1-5. Note that CONFigure sets many digitizer parameter values that
usually do not have to be changed with "lower-level" subsystem commands.
The lower-level commands are used when you want to set a value different
from the value set by CONFigure.

CONFigure

command

INPut
subsystem
commands

SENSe
subsystem
commands

ARM and TRIGger
subsystem
commands

OUTPut
subsystem
commands

VINStrument
subsystem
commands

FORMat
subsystem
commands

INITiate and
FETCh or READ

subsystems

MEASure

command

Figure 1-5. HP E1429A Programming Sequence

36 Getting Started Chapter 1

Configuring the
Channels

Digitizer channels 1 and 2 share the digitizer’s arming and triggering
circuitry and memory. Thus, the arming and triggering configuration and
the number of readings set for one channel applies to the other channel as
well. When the digitizer is armed and triggered, both channels sample and
store their readings in memory simultaneously.

How to Make
Measurements

This section explains when to use MEASure or CONFigure to configure the
digitizer. It also shows you how to make measurements when the
configuration has been modified with lower-level commands.

Using MEASure MEASure is used in applications where the digitizer parameters set by the
command are acceptable, and the data is to be retrieved immediately after
the readings are taken. MEASure is equivalent to executing the command
sequence:

ABORt;:CONFigure;:INITiate:IMMediate;:FETCh?

The following programs execute the MEASure command as shown below:

MEAS1:ARR:VOLT? (10),5,(@3)

MEASure configures the digitizer as follows:

channel: 1
number of readings: 10
expected value: 5V
input port: 3

The remainder of the digitizer parameters are set as indicated in Table 1-3.
Because the readings are taken immediately, variations to the digitizer
configuration are limited to the parameters within the MEASure command
(number of readings, expected value, resolution, input port).

HP BASIC

10 DIM Readings(1:10)
20 OUTPUT 70905;"*RST;*CLS;*OPC?"
30 ENTER 70905;Ready
40 OUTPUT 70905;"MEAS1:ARR:VOLT? (10),5,(@3)"
50 ENTER 70905;Readings(*)
60 PRINT Readings(*)
70 END

Chapter 1 Getting Started 37

MEAS.C

/* MEAS.C - This program demonstrates how to take readings using the */
/* digitizer’s MEASure command. In this program, MEASure configures the */
/* digitizer to take 10 readings on the 5V range, using the differential */
/* input port. */

/* Include the following header files */

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <malloc.h>
#include <cfunc.h> /* This file is from the HP-IB Command Library Disk */

#define ADDR 70905L /* I/O path from PC to the digitizer, via the E1406 */

/* Function Prototypes */

void rst_clr(void);
void ad_meas(void);
void check_error(char *func_tion);

/**/
void main(void) /* run the program */
{

rst_clr(); /* reset the digitizer */
ad_meas(); /* function which configures the digitizer and makes */

/* the measurement */

}

/**/
void ad_meas(void)
{

int i = 0, readings = 10;
float *rdgs;

/* dynamically allocate memory for readings */

rdgs = malloc(10 * sizeof(float));

Continued on Next Page

38 Getting Started Chapter 1

/* Use the MEASure command to configure the digitizer and to take */
/* the readings */

IOOUTPUTS(ADDR, "MEAS1:ARR:VOLT? (10),5,(@3)", 27);
/* Send (27) characters */

IOENTERA(ADDR, rdgs, &readings);
/* Read readings from MEASure command */

for (i = 0; i < readings; i++)
{

printf("\nReading %d = %f", i, *rdgs++);
}

free (rdgs - readings);
}

/**/
void rst_clr(void)
{

/* Reset and clear the A/D */

IOOUTPUTS(ADDR, "*RST;*CLS", 9); /* Send (9) characters */
}

Using CONFigure When an application requires a configuration different from that available
with MEASure, CONFigure is used. CONFigure does not take readings
after setting the configuration. Thus, any of the low-level commands (Table
1-3) can be used to change selected parameters before a measurement is
made.

Assume an application requires the following configuration:

• 10 pre-arm and 10 post arm readings

• 1V range

• single ended input

MEASure cannot be used since it sets the pre-arm reading count to 0. By
using CONFigure, the low-level command:

 SENSe[<chan >]:SWEep:OFFSet:POINts <count >

can be used to set the desired number of pre-arm readings:

Chapter 1 Getting Started 39

CONF1:ARR:VOLT (20),1,(@1)

SENS1:SWE:OFFS:POIN -10

Taking Readings After
Using CONFigure

To take readings, the digitizer must be triggered. The MEASure command
automatically triggers the digitizer after setting the configuration.

When CONFigure is used, the digitizer must be triggered using the READ?
command or INITiate[:IMMediate] and
FETCh[<chan >]? commands as shown.

CONF1:ARR:VOLT (20),1,(@1)

SENS1:SWE:OFFS:POIN -10

READ? (readings are sent to the digitizer output buffer from memory)

or

CONF1:ARR:VOLT (20),1,(@1)

SENS1:SWE:OFFS:POIN -10

INIT:IMM (readings are stored in memory)

FETC?(readings are retrieved from memory)

READ? is equivalent to executing ABORt +INITiate:IMMediate +FETCh?.
ABORt stops any measurement or VME or Local bus transfer before
proceeding with INITiate. With READ?, the readings pass directly through
digitizer memory to the device’s output buffer.

INITiate places the digitizer in the wait-for-arm state. FETC? waits for the
readings to complete and then retrieves (fetches) the readings from memory
and places them into the output buffer.

HP BASIC

10 DIM Readings(1:20)
20 OUTPUT 70905;"*RST;*CLS;*OPC?"
30 ENTER 70905;Ready
40 OUTPUT 70905;"CONF1:ARR:VOLT (20),1,(@1)"
50 OUTPUT 70905;" SENS1:SWE:OFFS:POIN -10"
60 OUTPUT 70905;"READ?"
70 ENTER 70905;Readings(*)
80 PRINT Readings(*)
90 END

40 Getting Started Chapter 1

CONF.C

/* CONF.C - This program demonstrates how to use the CONFigure command and */
/* low-level digitizer commands to configure the digitizer. INITialize and */
/* FETCh? are used to trigger the digitizer and retrieve the readings from */
/* digitizer memory. */

/* Include the following header files */

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <malloc.h>
#include <cfunc.h> /* This file is from the HP-IB Command Library Disk */

#define ADDR 70905L /* I/O path from the PC to the digitizer */

/* Function Prototypes */

void rst_clr(void);
void ad_conf(void);
void ad_fetch(void);
void check_error(char *func_tion);

/**/
void main(void) /* run the program */
{

rst_clr(); /* reset the digitizer */
ad_conf(); /* send commands which configure the digitizer */
ad_fetch(); /* send command which retrieves the digitizer readings */

}

/**/
void ad_conf(void)
{

int length = 0, loop = 0;

/* use the "set_commands" array to configure digitizer channel 1 */

char static *set_commands[] =
{"CONF1:ARR:VOLT (20),1,(@1)", /* set 20 readings, 1V range, */

 /* S/E input port 1 */
"SENS1:SWE:OFFS:POIN -10", /* set 10 pre-arm readings */

 "INIT"}; /* place digitizer in */
 /* wait-for-arm state */

Continued on Next Page

Chapter 1 Getting Started 41

length = (sizeof(set_commands) / sizeof(char*));

 /* Execute each command using a loop */

for (loop = 0; loop < length; loop++)
{
IOOUTPUTS(ADDR, set_commands[loop], strlen(set_commands[loop]));
}

/* function call to check for digitizer configuration errors */

check_error("ad_conf");
}

/**/
void ad_fetch(void)
{

char go;
int i = 0, readings = 20;
float *rdgs;

/* dynamically allocate memory for readings */

rdgs = malloc(20 * sizeof(float));

/* fetch (retrieve) and print readings */

IOOUTPUTS(ADDR, "FETC1?", 6);

IOENTERA(ADDR, rdgs, &readings);

for (i = 0; i < readings; i++)
{

printf("\nReading %d = %f", i, *rdgs++);
}

free(rdgs - readings);
 }

/**/
void rst_clr(void)
{

/* Reset and clear the digitizer */
Continued on Next Page

42 Getting Started Chapter 1

IOOUTPUTS(ADDR, "*RST;*CLS", 9);
}

/**/
void check_error(char *func_tion)
{

char into[161];
int length = 160;

IOOUTPUTS(ADDR, "SYST:ERR?", 9); /* Query error register */
IOENTERS(ADDR, into, &length); /* Enter error message */

if (atoi(into) != 0) /* Determine if error is present */
/* If errors present, print and exit */

{
while (atoi(into) != 0)
{

printf("Error %s in function %s\n\n", into, func_tion);
IOOUTPUTS(ADDR, "SYST:ERR?", 9);
IOENTERS(ADDR, into, &length);

}

exit(1);
}

}

Querying
Command Settings

As you configure the digitizer it is often useful to determine command
settings programmatically. This can be done by adding a question mark (?)
at the end of any SCPI command header (except the MEASure command),
and then sending the command without parameters. The following programs
query the parameters of the CONFigure command. Assuming the
CONFigure command was executed as indicated in program CONF.C, the
following query response is returned:

 "ARR (20),1.000000,0.000500,(@1)"

where:

(20) = reading count (size parameter)
1.000000 = expected value
0.000500 = reading resolution
(@1) = input port

Chapter 1 Getting Started 43

HP BASIC

10 DIM Setting$[1000]
20 OUTPUT 70905;"CONF?" !query CONFigure command
30 ENTER 70905;Setting$
40 PRINT Setting$
50 END

QUERY.C

/* This program queries HP E1429 settings */

/* Include the necessary header files */

#include <stdio.h>
#include <string.h>
#include <cfunc.h> /* from HP-IB command library */

/* Define E1429 HP-IB address macro */

#define ADDR 70905L /* I/O path between the PC and the digitizer */

/* Function prototypes */

void query(void);

void main(void)
{

query(); /* function call to query HP E1429 parameters */
}

/**/
void query(void)
{

char *gets();
char qry_cmd[80]; /* query command array */
char qry_resp[80]; /* query response array */
int length = 80;

/* Query user for digitizer query command */

printf("\nEnter query command: ");

gets(qry_cmd); /* get input string (query command) */

Continued on Next Page

44 Getting Started Chapter 1

IOOUTPUTS(ADDR, qry_cmd, strlen(qry_cmd));

IOENTERS(ADDR, qry_resp, &length);

printf("\n%s = %s", qry_cmd, qry_resp);
}

Checking for Errors The following HP BASIC program shows the lines and subprogram which
can be added to HP BASIC programs to check for errors. Line 140 clears
the digitizer standard event status register. Lines 150 and 160 unmask the
appropriate bits in the digitizer’s status byte register and standard event
status register.

When an error occurs, the subprogram "Errmsg" reads the digitizer error
queue and displays the code and message. Note that line 310 is used as an
"end of statement" should a syntax error occur among coupled commands.
Otherwise, line 320 would serve as the end of statement and the ABORT
command would be ignored by the digitizer parser.

Note An alternative HP BASIC error checking program can be found in the
"C-Size VXIbus Systems Installation and Getting Started Guide".

HP BASIC

1 !This program represents one method that can be used to
2 !check for programming errors in HP BASIC programs.
3 !
10 !Assign I/O path between the computer and HP E1429A/B.
20 ASSIGN @A_d TO 70905
30 COM @A_d
40 !Define branch to be taken when an HP E1429A/B error occurs.
50 !Enable HP-IB interface to generate an interrupt when an error
60 !occurs.
70 ON INTR 7 CALL Errmsg
80 ENABLE INTR 7;2
90 !Clear all bits in the standard event status register, unmask the
100 !standard event status group summary bit in the HP E1429A/B status byte
110 !register (decimal weight 32), unmask the query error, device
120 !dependent error, execution error, and command error bits
130 !(decimal sum 60) in the HP E1429A/B standard event status register.

Continued on Next Page

Chapter 1 Getting Started 45

140 OUTPUT @A_d;"*CLS"
150 OUTPUT @A_d;"*SRE 32"
160 OUTPUT @A_d;"*ESE 60"
170 !
180 !Subprogram calls would be here
190 !
200 WAIT .1 !allow error branch to occur before turning intr off
210 OFF INTR 7
220 END
230 !
240 SUB Errmsg
250 Errmsg: !Subprogram which displays HP E1429 programming errors
260 COM @A_d
270 DIM Message$[256]
280 !Read digitizer status byte register and clear service request bit
290 B =SPOLL(@A_d)
300 !End of statement if error occurs among coupled commands
310 OUTPUT @A_d;""
320 OUTPUT @A_d;"ABORT" !abort digitizer activity
330 REPEAT
340 OUTPUT @A_d;"SYST:ERR?" !read digitizer error queue
350 ENTER @A_d;Code,Message$
360 PRINT Code,Message$
370 UNTIL Code=0
380 STOP
390 SUBEND

ERRORCHK.C

/* ERRORCHK.C - This program contains the C function used by the example */
/* programs to check for digitizer configuration errors. When an error */
/* occurs, the function reads the digitizer’s error buffer and prints the */
/* error messages until all of the errors have been read. */

/* Include the following header files */

#include <stdio.h>
#include <cfunc.h> /* This file is from the HP-IB Command Library Disk */

#define ADDR 70905L /* I/O path from PC to the digitizer, via the HP E1406 */

/* Function Prototype */

void check_error(void);

Continued on Next Page

46 Getting Started Chapter 1

/**/
void main(void)
{
check_error(); /* call error check function */
}

/**/
void check_error(void)
{
char into[161];
int length = 160;

IOOUTPUTS(ADDR, "SYST:ERR?", 9); /* Query error register */
IOENTERS(ADDR, into, &length); /* Enter error message */

if (atoi(into) != 0) /* Determine if error is present */
/* If errors present, print and exit */

{
while (atoi(into) != 0)
{

printf("%s\n\n", into);
IOOUTPUTS(ADDR, "SYST:ERR?", 9);
IOENTERS(ADDR, into, &length);

}

exit(1);
}
}

Digitizer/
Command Module

Deadlock

If the digitizer’s access light remains on while programming the digitizer
over HP-IB, it may be due to a deadlock between the digitizer and the
HP E1406 Command Module. If such a deadlock occurs and you cannot
access the Command Module, send the following command sequence:

ABORT 7
ABORT 7
CLEAR 70905 (selected device clear)

Chapter 1 Getting Started 47

Where to go Next

• For additional progamming examples:

Chapter 2: Using the Digitizer

• For the digitizer description of operation:

Chapter 3: Understanding the Digitizer

• For information on the digitizer command set:

Chapter 4: Command Reference

• For the digitizer operating specifications:

Appendix A: Specifications

• For a listing of the digitizer error messages:

Appendix B: Useful Tables

• For register programming information:

Appendix C: Register Programming

48 Getting Started Chapter 1

Chapter 2
Using the Digitizer

Chapter Contents

This chapter contains example programs that show you how to use the
digitizer. The programs, which demonstrate the various features of the
digitizer, are presented in the same sequence as the features are covered in
Chapter 3 - "Understanding the Digitizer". The examples in this chapter
include:

• Configuring the Digitizer Input . 50
• Taking a Burst of Readings . 51
• Level Arming . 52
• Pre- and Post-Arm Readings . 53
• Specifying a Sample Rate . 54
• Dual Rate Sampling . 55
• Using Multiple Digitizers . 56
• Using the Packed Data Format . 59
• VME Bus Data Transfers. 63

 VME_REAL.C . 63
 VME_SEG1.C . 67

• VME Bus Data Transfers Using an Embedded
Controller . 72
 SEGTST16.CPP . 72
 SEGTST32.CPP . 74

• Local Bus Data Transfers. 83
 LOCAL_AD.C . 83
 LBUS2PST.C . 88
 LBUSAUTO.C . 93

• Using the Digitizer Status Registers 101

Using the Programs Each example program listed in this chapter (and on the example programs
disk) begins with the CONFigure command, and then uses lower-level
digitizer commands (Chapter 1, Table 1-3) to customize the configuration.
Using this format, the programs can easily be modified to match your
application.

The Programming
Language

Each example in this chapter lists only the digitizer’s SCPI commands, with
the exception of the VME and Local bus data transfer programs. The I/O
(input/output) constructs of the programming language you use need to be
added to the programs. Note that the example programs disk (HP P/N
E1429-10302) contains copies of the programs compiled and tested using
Borland Turbo C++ © Version 1.0 and Microsoft® QuickC© Version 2.0.
The program name is shown prior to the program listing in the chapter.

Chapter 2 Using the Digitizer 49

Configuring the Digitizer Input

This program demonstrates the commands used to configure the digitizer’s
input section. The program sets up the digitizer to take 10 readings on the
1V range of the digitizer’s single ended input port. This includes:

• enabling/disabling the input ports

• setting the input impedance

• switching the 10 MHz filter into the signal path.

• setting the signal range

INPUT.C

*RST;*CLS /* reset and clear the digitizer */

CONF1:ARR:VOLT (10),(@1) /* set 10 readings on channel 1, input port 1 */

INP3:STAT OFF /* disable differential port 3 */

INP1:IMP 50 /* set input impedance to 50 ohms */

INP1:FILT ON /* switch 10 MHz filter into signal path */

SENS1:VOLT:RANG 1 /* set 1V range */

READ? /* initialize digitizer, fetch readings */

/* retrieve the readings from the digitizer */

Comments 1. Digitizer INPut Commands. The CONFigure command sets most of the
(INPut) subsystem parameters to the same values as set by the INP
commands listed in the program. The INPut commands were executed to
show the context in which they are used.

2. Disabling an Input Port. When taking readings, it is not necessary to
disable the channel’s input port that is not being used (INP3:STAT OFF). It
was done in this program to show the versatility of the digitizer.

3. Digitizer Measurement Range. In this program, the measurement range
is specified with the SENSe:VOLTage:RANGe command, rather than with
the expected value parameter of the CONFigure command. For most
applications, however, it is easier to specify an expected value.
SENSe:VOLTage:RANGe can be used to change the signal range without
changing the entire digitizer configuration with CONFigure.

50 Using the Digitizer Chapter 2

Taking a Burst of Readings

This program demonstrates:

• how to set the arm count for multiple bursts of (post-arm) readings

• how to set the arm source to VXI backplane trigger line ECLTRG0
and use the HP E1406 Command Module to apply arming pulses to
the trigger line.

ARMCNT.C

/* digitizer commands */

*RST;*CLS /* reset and clear the digitizer */

CONF1:ARR:VOLT (10), 1,(@1) /* set 10 readings, 1V range, S/E input */

/* port 1*/

ARM:SOUR1 ECLT0 /* arm source is ECLTRG0 trigger line */

ARM:COUN 3 /* set arm count for 3 bursts */

OUTP:ECLT0:STAT ON /* enable line ECLTRG0 - Command Module */

INIT /* place digitizer in wait-for-arm state */

/* send arming pulse - Command Module commands*/

OUTP:ECLT0:IMM /* apply a pulse to ECLTRG0 */

/* ask for next pulse */

OUTP:ECLT0:IMM /* apply a 2nd pulse to ECLTRG0 */

/* ask for next pulse */

OUTP:ECLT0:IMM /* apply a 3rd pulse to ECLTRG0 */

/* digitizer command */

FETC1? /* retrieve digitizer readings */

Comments 1. Arm and Trigger Counts. The arm count is the number of reading
bursts or arm signals the digitizer is to accept before the digitizer returns to
the idle state. When the digitizer receives an arm, it takes a reading each
time a trigger is received, and continues to take readings until the trigger
count is reached. Notice the CONFigure command specifies (10) readings
(trigger count = 10). Therefore, with an arm count of three, 30 readings are
taken before the digitizer returns to the idle state.

2. Additional Information. Digitizer arming and triggering is covered in
Chapter 3 - "Understanding the Digitizer".

Chapter 2 Using the Digitizer 51

Level Arming

This program demonstrates:

• how to set the arm source such that the digitizer is armed when the
input signal enters a specified voltage range (window) from a level
outside the range.

• how to set the arm slope such that an arm occurs when the input
signal enters the arm window from either a positive-going or
negative-going direction.

• how to set the voltage levels which define the arm window.

For this example, the arm signal should be applied to the HI input of port 3,
with the LO input of port 3 grounded.

ARMLEVEL.C

*RST;*CLS /* reset and clear the digitizer */

CONF1:ARR:VOLT (10),10,(@3) /* set 10 readings on Diff port 3 */

ARM:SOUR1 INT1 /* set arm source 1 to level arming */

ARM:SOUR2 HOLD /* disable arm source 2 */

ARM:SLOP1 EITH /* arm when signal enters window from */

/* either direction */

ARM:LEV1:POS 4 /* set arm window lower boundary */

ARM:LEV1:NEG 6 /* set arm window upper boundary */

ARM:COUN 2 /* set two measurement bursts */

INIT /* put digitizer in wait-for-arm state */

FETCH? /* retrieve readings after arms occur */

Comments 1. The Arm Window. The arming window set by this program is +4V to
+6V on the digitizer’s 10V range. The upper boundary of the window (6V)
is set with the ARM:LEVel1:NEGative command. This means when a
NEGative-going input signal reaches 6V, the digitizer is armed. Similarly,
the lower boundary (4V) of the window is set with the
ARM:LEVel1:POSitive command. Thus, when a POSitive-going input
signal reaches 4V, the digitizer is armed. Because the NEGative-going level
is greater than the POSitive-going level, the digitizer is armed each time (up
to the arm count) the signal enters the window.

2. Additional Information. Level arming is covered in detail in Chapter 3,
in the section "Arming and Triggering".

52 Using the Digitizer Chapter 2

Pre- and Post-Arm Readings

This program demonstrates:

• how to program the digitizer to take a minimum of 100 pre-arm
readings and 100 post-arm readings.

• how to set the arm source to an external signal applied to the "Ext 1"
BNC.

PREPOST.C

*RST;*CLS /* reset and clear the digitizer */

CONF1:ARR:VOLT (200),2,(@3) /* set 200 readings total, 2V range, */
/* Diff input port 3*/

ARM:SOUR1 EXT /* arm source is front panel "Ext 1" BNC */

SENS1:SWE:OFFS:POIN -100 /* set 100 pre-arm readings */

INIT /* put digitizer in wait-for-arm state */

FETCH? /* retrieve pre- and post-arm readings */

Comments 1. Pre-arm and Post-arm Reading Count. When measurements consist of
pre- and post-arm readings, there must be at least three pre-arm readings
and seven post-arm readings specified. Note that pre-arm readings are
preceded by a minus (-) sign.

2. Total Reading Count. The size parameter of the CONFigure command
specifies the total number of readings (pre- and post-arm).
SENS1:SWE:OFFS:POIN specifies the number of pre-arm readings. The
number of post-arm readings in this program is then (200) - 100 = 100. The
total reading count can be changed without re-sending the CONFigure
command by using the TRIGger:STARt:COUNt command or
SENSe:SWEep:POINts command.

3. Pre-arm Readings. Pre-arm readings start when the digitizer receives the
INITiate[:IMMediate] command. Pre-arm readings continue until an arm is
received. Arms are ignored until the pre-arm reading count is reached. If the
pre-arm count is exceeded before the arm occurs, the last
SENSe:SWEep:OFFSet:POINts number of readings taken are stored in
memory.

Chapter 2 Using the Digitizer 53

Specifying a Sample Rate

This program demonstrates:

• how to set the digitizer trigger (sample) source

• how to set the sample rate

In this example, a 1 kHz square wave is sampled at a rate which includes
the 11th harmonic. All samples are post-arm.

SAMPLE.C

*RST;*CLS /* reset and clear the digitizer */

CONF1:ARR:VOLT (50),10,(@3) /* set 50 readings, 10V range */

ARM:SOUR1 IMM /* arm when put in wait-for-arm state */

TRIG:SOUR TIM /* set trigger source to timer 1 */

TRIG:TIM1 20E-6 /* set sample period to 20 us */

READ? /* put digitizer in wait-for-arm state */
/* and retrieve the readings */

Comments 1. Sample Period and Sample Count. The period at which to sample a 1
kHz signal and include the 11th harmonic is determined by:

period = 1 / 4(fc) = 1 / 4(11 kHz) = 22.7 µs

where fc is the frequency of the 11th harmonic (11 kHz). Because of the
trigger source used in this program (TIMer), the sample periods available
are 1, 2, 4, through 1E8, 2E8, 4E8 multiples of the reference clock (the
internal 20 MHz oscillator set by the CONFigure command). Therefore,
given the 22.7 µs sample period calculated, the actual sample period used is
20 µs.

The number of samples to take is computed by:

sample count = signal period (fundamental)/actual sample period
 = .001/.000020 = 50

54 Using the Digitizer Chapter 2

2. Specifying the Sample Count. The sample count (i.e. trigger count) is
specified by the size parameter (50) of the CONFigure command. This is
the most convenient way to specify the sample count since size is a required
parameter of CONFigure. TRIGger:STARt:COUNt can be used to
set/change the sample count without also changing the entire configuration
with CONFigure.

3. Additional Information. Additional information on trigger sources and
sample rates is found in Chapter 3 - "Understanding the Digitizer", and in
Chapter 4 - "Command Reference".

 Dual Rate Sampling

This program demonstrates:

• how to set up the digitizer’s dual rate sampling function whereby
pre-arm and post-arm readings are taken at different sample rates.

• how level arming can be used with dual rate sampling

The digitizer pre-arm samples at 50 ns until the level of the input signal on
channel 1 reaches 5V. At 5V, the digitizer is armed and post-arm samples at
10 ms.

DUALSAMP.C

*RST;*CLS /* clear and reset the digitizer */

CONF1:ARR:VOLT (20),10,(@3) /* set 20 readings, 10V range */

ARM:SOUR1 INT1 /* set arm source 1 for level arming */

ARM:SOUR2 HOLD /* disable arm source 2 */

ARM:SLOP1 POS /* arm on increasing input signal */

ARM:LEV1:POS 5 /* arm at 5V (10V range) */

SENS:SWE:OFFS:POIN -10 /* set 10 pre-arm readings */

TRIG:SOUR DTIM /* set dual rate sampling */

TRIG:TIM1 50E-9 /* set sample rate for pre-arm readings */

TRIG:TIM2 10E-3 /* set sample rate for post-arm readings */

INIT /* put digitizer in wait-for-arm state */

FETCH? /* retrieve readings */

Comments 1. Dual Rate Sampling Periods. The dual rate sampling trigger source
DTIMer uses the internal timer sources. Thus, one sample period must equal
the reference period. In this program, the digitizer’s internal

Chapter 2 Using the Digitizer 55

20 MHz oscillator is the reference source. Therefore, one sample rate must
be 50 ns (1 / 20 MHz).

2. Pre- and Post-Arm Sample Rates. With dual rate sampling, pre-arm
and post-arm readings occur at different sample rates. It is recommended
that pre-arm readings use the faster of the two sample rates. The reason is
once the arm is received, one addtional sample at the pre-arm rate must
occur before the post-arm rate is used.

3. Dual Rate Sampling Reference Sources. The reference sources
available with trigger source DTIMer are:

INTernal - the digitizer’s internal 20 MHz oscillator (default source)
CLK10 - the VXIbus system’s 10 MHz clock
ECLTrg0 - the VXI backplane ECLTrg0 trigger line
ECLTrg1 - the VXI backplane ECLTrg1 trigger line
EXTernal2 - the digitizer’s front panel "Ext 2" BNC port

When using any of these references, one of the two sample rates must be set
to the reference period. Also, the reference used must be specified with the
SENSe:ROSCillator:SOURce command, and if the source is ECLTrg0/1 or
EXTernal2, the frequency of the reference must be specified with the
SENSe:ROSCillator:EXTernal:FREQuency command.

4. Other Dual Rate Sampling Sources. When the dual rate sampling
source is DECLtrg, ECLTrg0 paces the pre-arm readings and ECLTrg1
paces the post-arm readings. The sample rates are determined entirely by
the source(s) driving the trigger lines. When the dual rate sampling source is
DEXTernal, front panel port "Ext 1" paces the pre-arm readings and port
"Ext 2" paces the post-arm readings. The sample rates are determined
entirely by the source(s) driving the ports.

5. Additional Information. More information on dual rate sampling is
found in Chapter 3 - "Understanding the Digitizer".

Using Multiple Digitizers

This program demonstrates:

• how to route the internal reference clock from one digitizer to a
second digitizer, and how to configure the digitizers such that they
are armed simultaneously.

56 Using the Digitizer Chapter 2

MULT_AD.C

/* digitizer 1 */

CONF1:ARR:VOLT (10),1,(@1) /* set 10 readings, 1V range, on */
/* channel 1, S/E input port 1 */

SENS:ROSC:SOUR INT /* reference source is internal */
/* 20 MHz oscillator */

OUTP:ECLT0:FEED ’SENS:ROSC’ /* route reference oscillator */
/* clock signal to ECLT0 */

OUTP:ECLT0:STAT ON /* enable routing of the signal */

ARM:SOUR1 TTLT0 /* arm source is TTLT0 trigger line */

TRIG:SOUR TIM /* trigger source is period derived */
/* from the TRIG:TIM command */

TRIG:TIM1 20E-6 /* set sample period to 20 us */

SENS2:FUNC ’VOLT4’ /* set up input port 4 on channel 2 */

SENS2:VOLT:RANG 5 /* set voltage range on channel 2 */
 /* the arm and trigger sources are */

/* the same as for channel 1 */

/* digitizer 2 */

CONF1:ARR:VOLT (10),1,(@1) /* set 10 readings, 1V range, on */
/* channel 1, S/E input port 1 */

SENS:ROSC:SOUR ECLT0 /* reference oscillator source is */
/* ECLT0 trigger line */

SENS:ROSC:EXT:FREQ 20E6 /* specify frequency of clock signal */

ARM:SOUR1 TTLT0 /* arm source is TTLT0 trigger line */

TRIG:SOUR TIM /* trigger source is period derived */
/* from the TRIG:TIM command */

TRIG:TIM1 20E-6 /* set sample period to 20 us */

SENS2:FUNC ’VOLT4’ /* set up input port 4 on channel 2 */

SENS2:VOLT:RANG 5 /* set voltage range on channel 2 */

/* the arm and trigger sources are */
/* the same as for channel 1 */

Continued on Next Page

Chapter 2 Using the Digitizer 57

/* digitizer commands */

INIT /* put digitizer 1 in wait-for-arm state */

INIT /* put digitizer2 in wait-for-arm state */

/* Command Module commands */

OUTP:TTLT0:STAT ON /* enable line TTLT0 */

 "Press Enter (return) to arm the digitizers"

OUTP:TTLT0:IMM /* apply a pulse to TTLT0 */

/* digitizer commands */

FETC1? /* retrieve readings from digitizer1, channel 1 */

FETC2? /* retrieve readings from digitizer1, channel 2 */

FETC1? /* retrieve readings from digitizer2, channel 1 */

FETC2? /* retrieve readings from digitizer2, channel 2 */

Comments 1. Synchronizing Digitizers. By routing (OUTPut) the reference clock
from one digitizer to all digitizers in the system, the sample rate is derived
from the same reference. Digitizer samples can then be taken at precise
intervals of each other.

2. Input Channels. In this program, samples are taken on the single ended
and differential inputs of two digitizers, for a total of four channels. When
sampling, either the channel’s single ended input or the differential inputs
can be used. You cannot use both sets of inputs simultaneously on a single
channel.

3. CONFiguring Channels Independently. In this program, the digitizers’
single ended input ports (channel 1) and differential input ports (channel 2)
are set to two different signal ranges. This was done using
SENSe:FUNCtion to select the port and SENSe:VOLTage[:DC]:RANGe to
set the range. CONFigure was not used since executing
CONF2:ARR:VOLT (10),5,(@3) would not only set the range on channel
2, but would also change the settings made following the first CONFigure
(CONF1) command.

4. Routing/Sourcing Signals. If a digitizer trigger port (e.g. "Ext 1", "Ext
2") or a VXI backplane trigger line (ECLTrg<n >, TTLTrg<n >) is the
source of a reference signal, arm signal or trigger signal, then that port or
line cannot be used to route (OUTPut) a synchronization signal.

5. Retrieving Readings. When readings are retrieved from digitizer
memory using the FETCh? command, each channel’s readings must be
retrieved separately. That is, channel 1’s readings must be fetched and then
channel 2’s must be fetched, or vice versa. However, VME bus data

58 Using the Digitizer Chapter 2

transfers (retrievals) allow both channels’ readings to be retrieved
simultaneously. The "VME Bus Data Transfers" examples in this chapter
show how this is done.

6. Additional Information. Additional information on using arming,
triggering, and reference signals to synchronize other digitizers can be
found in Chapter 3 - "Understanding the Digitizer". Additional information
on the CONFigure command can be found in
Chapter 1 - "Getting Started".

Using the Packed Data Format

This program demonstrates:

• how to specify the digitizer’s packed data format

• how to remove the ANSI/IEEE Standard 488.2-1987 Definite Length
Arbitrary Block header which preceeds the data

• how to assign a label to identify a set of readings

• how to convert the readings to voltages

The program takes 20 post-arm samples which are returned in the digitizer’s
packed data format. For completeness, the entire C language version of the
program is listed. (The program is also contained on the example programs
disk - HP E1429-10302).

PACKED.C

/* PACKED.C - This program takes 20 post-arm samples and returns the readings */
/* in the digitizer’s packed data format. A label identifying the readings */
/* is assigned to the four least significant bits. The arbitrary block header */
/* preceding the readings is removed and the packed data is coverted to the */
/* measured voltages. The program features the FORMat and READ? commands. */

/* Include the following header files */

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <malloc.h>
#include <cfunc.h> /* This file is from the HP-IB Command Library Disk */

#define ADDR 70905L /* I/O path from PC to the digitizer, via the HP E1406 */

Continued on Next Page

Chapter 2 Using the Digitizer 59

/* Function Prototypes */

void rst_clr(void);
void ad_confread(void);
void check_error(char *func_tion);

/**/
void main(void) /* run the program */
{
rst_clr(); /* reset the digitizer */
ad_confread(); /* function which configures the digitizer */

/* and takes the readings */
}

/**/
void ad_confread(void)
{
int length = 0, loop = 0, i = 0, swap = 0, bytes = 0, label = 0;
int *rdgs;
char lf_remove[1];

/* use the "set_commands" array to configure single ended input port */
/* 1 on digitizer channel 1 */

char static *set_commands[] =
{"CONF1:ARR:VOLT (20),1,(@1)", /* set 20 readings, 1V range */

"FORM PACK", /* set packed reading format */
"DIAG:CHAN:LAB 1"}; /* add label to each reading */

length = (sizeof(set_commands) / sizeof(char*));

/* Execute each command using a loop */

for (loop = 0; loop < length; loop++)
 {
 IOOUTPUTS(ADDR, set_commands[loop], strlen(set_commands[loop]));
 }

 /* function call to check for digitizer configuration errors */

check_error("ad_confread");

/* dynamically allocate memory for readings */

rdgs = malloc(20 * sizeof(int));

Continued on Next Page

60 Using the Digitizer Chapter 2

/* set number of bytes placed in memory, and number of bytes read */

swap = sizeof(int); /* place 2 bytes/reading in memory */
bytes = 20 * swap; /* read 40 bytes */

IOOUTPUTS(ADDR, "READ?", 5); /* retrieve the readings */

IOENTERAB(ADDR, rdgs, &bytes, swap); /* enter the readings and */
/* remove the block header */

/* Remove line feed which trails the last data byte */

length = 1;
IOENTERS(ADDR, lf_remove, &length);

/* print label */

label = (rdgs[0] & 0x000F);
printf("\nLabel #: %d", label);

/* convert and print each reading as a voltage */

for (i = 0; i < 20; i++)
 {

rdgs[i] /= 16; /* remove label from each reading */
if (rdgs[i] >= 2047 || rdgs[i] <= -2046)

printf("\nReading overrange");
else

printf("\nReading %d = %.6E", i, (rdgs[i] * 0.0005));
 }

free(rdgs);
}

/**/
void rst_clr(void)
{

/* Reset and clear the digitizer */

IOOUTPUTS(ADDR, "*RST;*CLS", 9); /* Send (9) characters */
}

Continued on Next Page

Chapter 2 Using the Digitizer 61

/**/
void check_error(char *func_tion)
{
char into[161];
intlength = 160;

IOOUTPUTS(ADDR, "SYST:ERR?", 9); /* Query error register */
IOENTERS(ADDR, into, &length); /* Enter error message */

if (atoi(into) != 0) /* Determine if error is present */
/* If errors present, print and exit */

{
while (atoi(into) != 0)
{

printf("Error %s in function %s\n\n", into, func_tion);
IOOUTPUTS(ADDR, "SYST:ERR?", 9);
IOENTERS(ADDR, into, &length);

}

exit(1);
}
}

Comments 1. Packed Reading Format. Packed digitizer readings are signed, 16-bit
numbers preceded by the ANSI/IEEE Standard 488.2-1987 Definite Length
Arbitrary Block header. Packed readings are always a number between
-1.0230 (-2046) and +1.0235 (2047), and must be converted to voltages by
the user.

2. Line Feed Following Packed Readings. Packed readings preceded by
the arbitrary block header are also followed by a line feed (LF) character.
When readings are retrieved from the digitizer, the LF remains in the output
buffer. If the line feed is not removed with an additional "IOENTERS"
statement, error -410 "Query INTERRUPTED" occurs the next time data is
read from the digitizer.

3. Channel Labels. A numeric label identifying a set of readings can be
specified using the four least significant bits of each reading. The label,
which is any number from 0 to 15, is assigned using the
DIAGnostic:CHANnel<chan >:LABel command. The label is included with
the reading bits when data is returned in the PACKed,16 format. The
assigned label is ignored when the data format is ASCii,9 or REAL,64. If no
label is assigned, the four least significant bits of the reading are ’0’s. See
"How Readings are Stored" in Chapter 3 for more information.

62 Using the Digitizer Chapter 2

4. Packed Reading Conversion Formula. The equation for converting
packed readings to voltages is:

readingvoltage = (readingpacked / 16) * reading resolution

The reading resolutions, which are a function of the signal range, are listed
in Chapter 3 in the section "Converting Packed Readings".

VME Bus Data Transfers

The following programs demonstrate:

• how post-arm readings are transferred from the digitizer’s A/D
converter directly to the VME bus (VME_REAL.C)

• how segmented readings (pre- and post-arm) are transferred from the
digitizer’s A/D converter directly to the VME bus (VME_SEG1.C)

• how segmented, 32-bit readings (channel 2 and channel 1 combined)
are transferred from the A/D converter to the VME bus

The system configuration on which programs VME_REAL.C and
VME_SEG1.C were developed is listed on page 1-10.

VME_REAL.C

/* VME_REAL.C - This program reads data directly from the digitizer’s A/D */

/* converter and places it on the VME (VXI data transfer) bus. Each time the */
/* digitizer’s data register is accessed, a measurement is triggered and the */
/* reading is transferred to the VME bus during the same reading cycle. */

/* Include the following header files */

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <malloc.h>
#include <cfunc.h> /* This file is from the HP-IB Command Library */

#define ADDR 70905L /* I/O path between the digitizer and PC */
#define CMD_MOD 70900L /* I/O path between the digitizer and the Command Module */
Continued on Next Page

Chapter 2 Using the Digitizer 63

/* Function prototypes */

long get_base_addr(void);
void rst_clr(void);
void ad_conf(void);
void mem_read(long base_addr);
void check_error(char *function);
/**/
void main(void)
{
long base_addr; /* variable for digitizer A24 base address */

rst_clr(); /* reset and clear the digitizer */
base_addr = get_base_addr(); /* function call to calculate and */

/* return digitizer A24 base address */
ad_conf(); /* function call to configure the digitizer */
mem_read(base_addr); /* function call which reads the data register */
}

/**/
void ad_conf(void)
{
int length = 0, loop = 0;

/* use the "set_commands" array to configure digitizer channel 1 */

char static *set_commands[] =
{"CONF1:ARR:VOLT (100),1,(@1)", /* set 100 readings, on S/E port 1 */
"TRIG:STAR:SOUR VME", /* trigger source is reads of data register */
"VINS:CONF:VME:MODE GEN", /* enable data transfer over the VME bus */
"VINS:CONF:VME:FEED ’CONV:CHAN1’", /* set real time data transfer */
"INIT"}; /* place the digitizer in the wait-for-arm state */

length = (sizeof(set_commands) / sizeof(char*));

/* Execute each command using a loop */

for (loop = 0; loop < length; loop++)
 {
IOOUTPUTS(ADDR, set_commands[loop], strlen(set_commands[loop]));
 }

/* function call to check for digitizer configuration errors */

check_error("ad_conf");
}
Continued on Next Page

64 Using the Digitizer Chapter 2

/**/
void mem_read(long base_addr)
{
int readings = 100, i = 0;
float *rdgs;

char rd_mem[80]; /* command string variable */

/* dynamically allocate memory for readings */

rdgs = malloc(100 * sizeof(float));

/* Create the (HP E1406 Command Module) command string which reads the data register */

sprintf(rd_mem, "DIAG:PEEK? %ld, %d", base_addr+0x0C,16);

/* Send DIAG:PEEK? command which accesses the data register */
/* and triggers measurements, and then retrieve measurements */

for (i = 0;i < readings; i++)
{

IOOUTPUTS(CMD_MOD, rd_mem, strlen(rd_mem));

IOENTER(CMD_MOD, &rdgs[i]);
}

/* Print a subset of the readings */
for (i = 0;i < 20;i++)
{

rdgs[i] /= 16; /* remove label from reading */

if (rdgs[i] >= 2047 ||rdgs[i] <= -2046)
printf("\nReading overrange");

 else
printf("\nReading %d = %.6E", i, (rdgs[i] * 0.0005));

}

free(rdgs);
}

/**/
long get_base_addr(void)
{
/* digitizer logical address */
long logical_addr = (ADDR - 70900L) * 8;

Continued on Next Page

Chapter 2 Using the Digitizer 65

 /* base address of (A24) offset register in A16 address space */
long base_addr = (0x1FC000 + (logical_addr * 64)) + 6;

float a24offst; /* A24 offset from A16 offset register */
char rd_addr[80]; /* command string variable */

/* Create the command string which reads the A24 base address */
sprintf(rd_addr, "DIAG:PEEK? %ld, %d", base_addr,16);

/* Send DIAG:PEEK? command */
IOOUTPUTS(CMD_MOD, rd_addr, strlen(rd_addr));

/* Read value from offset register */
IOENTER(CMD_MOD, &a24offst);

/* Multiply offset value by 256 for 24-bit address value */
a24offst *= 256.;

return (long)a24offst;
}

/**/
void rst_clr(void)
/**/
void check_error(char *func_tion)

Comments 1. VME Data Transfer Modes. There are two modes of VME data
transfers: real time and post measurement. In a real time data transfer
(shown in this program) accessing the digitizer’s data register triggers a
measurement and returns the A/D reading directly to the VME bus in the
same measurement cycle. The reading(s) is also stored in digitizer memory.
In a post measurement transfer, each data register access transfers a A/D
reading from digitizer memory to the VME bus.

2. Locating the Data Register. Access to the data register is through its
address which is mapped by the HP E1406 Command Module into A24
address space. The data register has an offset of 12 (0C16) which is added to
the A24 base address to form the complete register address. In the program,
the C function long get_base_addr(void) determines the A24 base address
by reading the digitizer’s offset register in A16 address space. Detailed
information on locating the data register can be found in Chapter 3 under
the section "VME Bus Data Transfers".

3. VME Bus Data Format. Data is transferred over the VME bus in the
digitizer’s packed data format. Readings are 16-bits or 32-bits depending on
the source specified by the
VINStrument[:CONFigure]:VME:FEED <source > command. The source

66 Using the Digitizer Chapter 2

parameters are listed in Chapter 3 under the section "Setting the VME bus
Transfer Mode".

4. System Configuration. The system configuration on which the program
VME_REAL.C was developed is listed on page 1-10.

VME_SEG1.C

/* VME_SEG1.C - This program demonstrates how to transfer segmented readings */
/* over the VME bus. The program sets up 2 bursts (segments) of 10 pre-arm */
/* and 10 post-arm readings. A reading is taken each time the digitizer’s */
/* data register is accessed, and is transferred real time, over the VME bus. */
/* Before the next burst is taken, bit 1 of (offset) register 43h is */
/* monitored to determine when the next segment of readings can be taken. */

/* Include the following header files */

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <malloc.h>
#include <cfunc.h> /* This file is from the HP-IB Command Library Disk */

#define ADDR 70905L /* I/O path from the PC to the digitizer */
#define CMD_MOD 70900L /* Path from the PC to the Command Module */

/* Function Prototypes */

long get_base_addr(void);
void rst_clr(void);
void ad_conf(void);
void ad_read(long base_addr);
void check_error(char *func_tion);

/**/
void main(void) /* run the program */
{

long base_addr; /* variable for digitizer A24 base address */
clrscr();
rst_clr(); /* reset the digitizer */
base_addr = get_base_addr(); /* function call to get digitizer */

/* A24 base address */
ad_conf(); /* function call which configures the digitizer */
ad_read(base_addr); /* function call which reads the digitizer */

/* data register */
}

Chapter 2 Using the Digitizer 67

/**/
void ad_conf(void)
{

int length = 0, loop = 0;

/* use the "set_commands" array to configure digitizer channel 1 */

char static *set_commands[] =
{"CONF1:ARR:VOLT (20),5,(@3)", /* set 20 readings per burst, 5V range */

"ARM:STAR:SOUR IMM", /* set arm source immediate */
"ARM:STAR:COUN 2", /* set 2 bursts (arms) */
"TRIG:STAR:SOUR VME", /* Data register access triggers readings */
"SENS:SWE:OFFS:POIN -10", /* set 10 pre-arm readings */
"VINS:CONF:VME:MODE GEN", /* enable VME bus data transfers */
"VINS:CONF:VME:FEED ’CONV:CHAN1’", /* real time data transfer */

 "INIT"}; /* put digitizer in wait-for-arm state */

length = (sizeof(set_commands) / sizeof(char*));

 /* Execute each command using a loop */

for (loop = 0; loop < length; loop++)
{
IOOUTPUTS(ADDR, set_commands[loop], strlen(set_commands[loop]));
}

/* function call to check for digitizer configuration errors */

check_error("ad_conf");
}

/**/
void ad_read(long base_addr)
{

int i, readings = 20, index = 0, loop = 0;
float *rdgs, bit;
char read_str[80], bit_str[80]; /* command string variables */

/* dynamically allocate memory for readings */

rdgs = malloc(40 * sizeof(float));

/* Create the command string which reads the data register */

sprintf(read_str, "DIAG:PEEK? %ld, %d", base_addr+0x0C,16);

Continued on Next Page

68 Using the Digitizer Chapter 2

/* Create the command string which reads bit 1 */

sprintf(bit_str, "DIAG:PEEK? %ld, %d", base_addr+0x43,8);

/* Send DIAG:PEEK? to access the data register 20 times. */

while (loop < 2) /* two bursts (segments) */
{

for (i = index;i < readings; i++)
{

IOOUTPUTS(CMD_MOD, read_str, strlen(read_str));
IOENTER(CMD_MOD, &rdgs[i]);

}

 /* Check bit 1 of offset register 43h before proceeding with */
 /* the next segment. */

do /* decimal value of bit 1 */
{

IOOUTPUTS(CMD_MOD, bit_str, strlen(bit_str));
IOENTER(CMD_MOD, &bit);

 } while ((int)bit & 2 == 0);

index +=20; /* increment index for next segment */
readings +=20; /* increment readings for next segment */
loop++; /* increment loop */

}

/* Convert to voltages and print the readings */
for (i = 0;i < 20; i++)
{

rdgs[i] /= 16; /* remove label from reading */

if (rdgs[i] >= 2047 || rdgs[i] <= -2046)
printf("Reading overrange");

else
printf ("%.6E", (rdgs[i] * 0.0025));

rdgs[i+20] /= 16;

if (rdgs[i+20] >= 2047 || rdgs[i+20] <= -2046)
printf("\t\tReading overrange\n");

else
printf("\t\t%.6E\n", (rdgs[i+20] * 0.0025));

}
Continued on Next Page

Chapter 2 Using the Digitizer 69

free(rdgs);
}

/**/
long get_base_addr(void)
{

/* digitizer logical address */
long logical_addr = (ADDR - 70900L) * 8;

 /* base address of (A24) offset register in A16 address space */
long base_addr = (0x1FC000 + (logical_addr * 64)) + 6;

 float a24offst; /* A24 offset from A16 offset register */

char rd_addr[80]; /* command string variable */

/* Create the command string which reads the A24 base address */
sprintf(rd_addr, "DIAG:PEEK? %ld, %d", base_addr,16);

/* Send DIAG:PEEK? command */
IOOUTPUTS(CMD_MOD, rd_addr, strlen(rd_addr));

/* Read value from offset register */
IOENTER(CMD_MOD, &a24offst);

/* Multiply offset value by 256 for 24-bit address value */
a24offst *= 256.;

return (long)a24offst;
}

/**/
void rst_clr(void)
{

/* Reset and clear the digitizer */

IOOUTPUTS(ADDR, "*RST;*CLS", 9);
}

/**/
void check_error(char *func_tion)
{

char into[161];
int length = 160;

Continued on Next Page

70 Using the Digitizer Chapter 2

IOOUTPUTS(ADDR, "SYST:ERR?", 9); /* Query error register */
IOENTERS(ADDR, into, &length); /* Enter error message */

if (atoi(into) != 0) /* Determine if error is present */
 /* If errors present, print and exit */

{
while (atoi(into) != 0)
{

printf("Error %s in function %s\n\n", into, func_tion);
IOOUTPUTS(ADDR, "SYST:ERR?", 9);
IOENTERS(ADDR, into, &length);

}
exit(1);

}
}

Comments 1. Segmented Readings. Multiple bursts of pre-arm and post-arm readings
segment memory (see Figure 3-13). When transferring segmented readings
over the VME bus real time or post measurement, a partition window must
be accounted for. A partition window is the period during which the
digitizer configures each segment for data transfer. The partition window is
monitored by bit 1 of digitizer offset register 4316, and by bit 9 of the
condition register in the Operation Status Group (Figure 3-13). A
low-to-high transition of the bit indicates the next segment can be
transferred.

2. Monitoring the Partition Window. It is only necessary to monitor the
partition window bits when the digitizer readings are segmented and the
data register is accessed at speeds available through an embedded controller.
Monitoring bit 1 of offset register 4316 is faster than using SCPI commands
to monitor bit 9 of the condition register.

3. Locating the Registers. Access to the data register and offset register
4316 is through their addresses which are mapped by the HP E1406
Command Module or the system resource manager into A24 address space.
The data register offset (1210 or 0C16) and Offset register 4316 (6710) is
added to the A24 base address to form the complete register addresses. In
the program, the C function long get_base_addr(void) determines the A24
base address by reading the digitizer’s offset register in A16 address space.
Detailed information on locating the data and offset 4316 registers can be
found in Chapter 3 under the section "VME Bus Data Transfers".

Chapter 2 Using the Digitizer 71

VME Bus Data Transfers Using an Embedded Controller

The following programs transfer data over the VME bus using the following
system configuration:

• Controller: RadiSys® EPC®-7 Embedded Controller

• Runtime library: Standard Instrument Control Library (SICL) for
DOS

• Compiler: Borland© C++ (.CPP)

These programs are also contained on the C language example programs
disk (HP E1429-10302).

SEGTST16.CPP This program transfers 16-bit readings (real time) from the channel 1 A/D
converter to the VME bus.

The include files and structure definitions used in this this program are
listed following the SEGTST16.CPP and SEGTST32.CPP program listings.

// Options|Compiler|CodeGeneration|Model: Set to Large
// Options|Directories|Include Directories: Add C:\EPCONNEC\INCLUDE
// Options|Directories|Library Directories: Add C:\EPCONNEC\LIB
// Project Items: INST.CPP, E1429.CPP, SEGTST16.CPP, BSICL.LIB, EPCMSC.LIB

#include <stdlib.h>
#include <stdio.h>
#include "e1429.h"

#define BUFLEN 200

extern int ierrno;

int Measure(E1429 *Dig);
int ReadData(E1429 *Dig);

/* *********************** Main *********************** */

void main(void) {
 int Errors;
 E1429 *Dig;

 Errors = 0;
 ierrno = 0;
Continued on Next Page

72 Using the Digitizer Chapter 2

 Dig = new E1429;
 if (!Dig->IsValid()) {
 printf("Digitizer could not be opened (%s).\n",
 igeterrstr(igeterrno()));
 if (Dig != NULL)
 delete Dig;
 Dig = NULL;
 exit(1);
 }

 Errors += Measure(Dig);
 if (!Errors)
 Errors += ReadData(Dig);

 delete Dig;
 exit(0);
}

/* ********************** Measure ********************* */

int Measure(E1429 *Dig) {
 int Errors;
 char Buf[BUFLEN+1], **Com;
 static char *Commands[] = {
 "*RST",
 "CONF1:ARR:VOLT (20), 5, (@3)",
 "ARM:STAR:SOUR IMM",
 "ARM:STAR:COUN 2",
 "TRIG:STAR:SOUR VME",
 "SENS:SWE:OFFS:POIN -10",
 "VINS:CONF:VME:MODE GEN",
 "VINS:CONF:VME:FEED ’CONV:CHAN1’",
 "INIT",
 NULL
 };

 for (Com = Commands; *Com != NULL; Com++)
 Dig->SendMessage(*Com);
 Errors = 0;
 while (Dig->GetErrorMessage(Buf,BUFLEN) != NULL) {
 printf("%s\n",Buf);
 Errors++;
 }
 return Errors;
}

Continued on Next Page

Chapter 2 Using the Digitizer 73

/* ********************* ReadData ********************* */

int ReadData(E1429 *Dig) {
 int SegCnt, ReadCnt;
 WORD *Readings, *Reading, *Reading2;
 const static NReadings = 20, NSegments = 2;
 const static float Scale = 0.0025 / 16.0;

 Reading = Readings = (WORD *)
 malloc(NSegments * NReadings * sizeof(WORD));
 for (SegCnt = 0; SegCnt < NSegments; SegCnt++) {
 while ((Dig->bGet(67) & 2) == 0);
 Dig->MGetDataReg((UWORD *) Reading,NReadings);
 Reading += NReadings;
 }

 printf(" **** Channel 1 ****\n");
 printf(" Seg 1 Seg 2\n");
 printf(" ---------- ----------\n");
 Reading = Readings;
 Reading2 = Readings + NReadings;
 for (ReadCnt = 1; ReadCnt <= NReadings; ReadCnt++)
 printf("%2d%+10.4f%+10.4f\n",ReadCnt,Scale * *Reading++,Scale * *Reading2++);
 printf("\n");

 free(Readings);
 return 0;
}

SEGTST32.CPP This program transfers 32-bit readings (real time) from the channel 2 and
channel 1 A/D converters to the VME bus. In a 32-bit transfer, the upper
16-bits are the reading from channel 2 and the lower 16-bits are the reading
from channel 1 (Figure 3-11).

The include files and structure definitions used in this this program are
listed following the program listing.

74 Using the Digitizer Chapter 2

// Options|Compiler|CodeGeneration|Model: Set to Large
// Options|Directories|Include Directories: Add C:\EPCONNEC\INCLUDE
// Options|Directories|Library Directories: Add C:\EPCONNEC\LIB
// Project Items: INST.CPP, E1429.CPP, SEGTST32.CPP, BSICL.LIB, EPCMSC.LIB

#include <stdlib.h>
#include <stdio.h>
#include "e1429.h"

#define BUFLEN 200

extern int ierrno;

int Measure(E1429 *Dig);
int ReadData(E1429 *Dig);

/* *********************** Main *********************** */

void main(void) {
 int Errors;
 E1429 *Dig;

 Errors = 0;
 ierrno = 0;

 Dig = new E1429;
 if (!Dig->IsValid()) {
 printf("Digitizer could not be opened (%s).\n",
 igeterrstr(igeterrno()));
 if (Dig != NULL)
 delete Dig;
 Dig = NULL;
 exit(1);
 }

 Errors += Measure(Dig);
 if (!Errors)
 Errors += ReadData(Dig);

 delete Dig;
 exit(0);
}

Continued on Next Page

Chapter 2 Using the Digitizer 75

/* ********************** Measure ********************* */

int Measure(E1429 *Dig) {
 int Errors;
 char Buf[BUFLEN+1], **Com;
 static char *Commands[] = {
 "*RST",
 "CONF1:ARR:VOLT (20), 5, (@3)",
 "CONF2:ARR:VOLT (20), 5, (@4)",
 "ARM:STAR:SOUR IMM",
 "ARM:STAR:COUN 2",
 "TRIG:STAR:SOUR VME",
 "SENS:SWE:OFFS:POIN -10",
 "VINS:CONF:VME:MODE GEN",
 "VINS:CONF:VME:FEED ’CONV:BOTH32’",
 "INIT",
 NULL
 };

 for (Com = Commands; *Com != NULL; Com++)
 Dig->SendMessage(*Com);
 Errors = 0;
 while (Dig->GetErrorMessage(Buf,BUFLEN) != NULL) {
 printf("%s\n",Buf);
 Errors++;
 }
 return Errors;
}

/* ********************* ReadData ********************* */

int ReadData(E1429 *Dig) {
 int SegCnt, ReadCnt;
 LONG *Readings, *Reading, *Reading2;
 const static NReadings = 20, NSegments = 2;
 const static float Scale = 0.0025 / 16.0;

 Reading = Readings = (LONG *)
 malloc(NSegments * NReadings * sizeof(LONG));
 for (SegCnt = 0; SegCnt < NSegments; SegCnt++) {
 while ((Dig->bGet(67) & 2) == 0);
 Dig->MGetLongDataReg((ULONG *) Reading,NReadings);
 Reading += NReadings;
 }

Continued on Next Page

76 Using the Digitizer Chapter 2

 printf(" **** Channel 1 **** **** Channel 2 ****\n");
 printf(" Seg 1 Seg 2 Seg 1 Seg 2\n");
 printf(" ---------- ---------- ---------- ----------\n");
 Reading = Readings;
 Reading2 = Readings + NReadings;
 for (ReadCnt = 1; ReadCnt <= NReadings; ReadCnt++) {
 printf("%2d%+10.4f%+10.4f %+10.4f%+10.4f\n",ReadCnt,
 Scale*LOWORD(*Reading), Scale*LOWORD(*Reading2),
 Scale*HIWORD(*Reading), Scale*HIWORD(*Reading2)
);
 Reading++;
 Reading2++;
 }
 printf("\n");

 free(Readings);
 return 0;
}

SEGTST16.CPP
and

SEGTST32.CPP
#include Files

The following files are used with programs SEGTST16.CPP and
SEGTST32.CPP:

• INST.H

• INST.CPP

• E1429.H

• E1429.CPP

 INST.H

#ifndef INST_DEFD

#define INST_DEFD

#include <sicl.h>

#define BYTE char
#define WORD short int
#define LONG long
#define UBYTE unsigned char
#define UWORD unsigned short int
#define ULONG unsigned long

Continued on Next Page

Chapter 2 Using the Digitizer 77

#define LOWORD(lWord) ((WORD)(lWord))
#define HIWORD(lWord) ((WORD)((LONG)(lWord) >> 16))

class RegInst {
 static RegInst *MappedInst;
 int Valid;
 int Mapped;
 int MapSpace;
 unsigned int PageStart, PageCount;
 UBYTE *SuggestedAddr;
protected:
 INST Inst;
 UBYTE *BaseAddr;
 void Unmap(void);
public:
 RegInst(UWORD lAddr = 0);
 ~ RegInst(void);

 int IsValid(void) { return (this != NULL && Valid); }
 INST GetInstID(void) { return Inst; }
 void SetMapping(int mapSpace, unsigned int pageStart, unsigned int pageCount,
UBYTE *suggestedAddr);
 void Map(void);

 UBYTE bGet(UWORD offset) { if (!Mapped) Map(); return ibpeek((UBYTE *)
(BaseAddr+offset)); }
 void bSet(UWORD offset, UBYTE value = 0) { if (!Mapped) Map(); ibpoke((UBYTE *)
(BaseAddr+offset),value); }
 UWORD wGet(UWORD offset) { if (!Mapped) Map(); return iwpeek((UWORD *)
(BaseAddr+offset)); }
 void wSet(UWORD offset, UWORD value = 0) { if (!Mapped) Map(); iwpoke((UWORD *)
(BaseAddr+offset),value); }
 void wMGet(UWORD offset, UWORD *dest, ULONG count) {
 if (!Mapped) Map(); iwpopfifo(Inst,(UWORD *) (BaseAddr+offset),dest,count,1);
 }
 void wMSet(UWORD offset, UWORD *src, ULONG count) {
 if (!Mapped) Map(); iwpushfifo(Inst,(UWORD *) (BaseAddr+offset),src,count,1);
 }
 void lMGet(UWORD offset, ULONG *dest, ULONG count) {
 if (!Mapped) Map(); ilpopfifo(Inst,(ULONG *) (BaseAddr+offset),dest,count,1);
 }
 void lMSet(UWORD offset, ULONG *src, ULONG count) {
 if (!Mapped) Map(); ilpushfifo(Inst,(ULONG *) (BaseAddr+offset),src,count,1);
 }
};

Continued on Next Page

78 Using the Digitizer Chapter 2

class MessInst : public RegInst {
public:
 MessInst(WORD lAddr) : RegInst(lAddr) { }
 void Clear(void) { iclear(Inst); }
 void SendMessage(const char *message);
 char *ReceiveMessage(char *message, int maxLen = 80);
 char *GetErrorMessage(char *message, int maxLen = 80);
};

#endif

INST.CPP

#include <stdlib.h>

#include <stdio.h>
#include <string.h>
#include "inst.h"

#define BUFLEN 200

/* ************************** RegInst ************************** */

RegInst *RegInst::MappedInst = NULL;

RegInst::RegInst(UWORD lAddr) {
 char Buf[32];

 BaseAddr = NULL;
 MapSpace = 0;
 PageStart = 0;
 PageCount = 0;
 sprintf(Buf,"vxi,%u",lAddr);
 Valid = ((Inst = iopen(Buf)) != NULL) ? 1 : 0;
 Mapped = 0;
}

RegInst::~ = RegInst(void) {
 if (Inst != NULL) {
 Unmap();
 iclose(Inst);
 }
}

Continued on Next Page

Chapter 2 Using the Digitizer 79

void RegInst::SetMapping(int mapSpace, unsigned int pageStart, unsigned int
pageCount, UBYTE *suggestedAddr) {
 int WasMapped;

 if (this != NULL) {
 WasMapped = Mapped;
 if (Mapped)
 Unmap();
 MapSpace = mapSpace;
 PageStart = pageStart;
 PageCount = pageCount;
 SuggestedAddr = suggestedAddr;
 if (WasMapped)
 Map();
 }
}

void RegInst::Map(void) {
 if (this != NULL) {
 Valid = 0;
 if (Inst != NULL) {
 MappedInst->Unmap();
 BaseAddr = imap(Inst,MapSpace,PageStart,PageCount,SuggestedAddr);
 if (BaseAddr != NULL) {
 MappedInst = this;
 Valid = 1;
 Mapped = 1;
 }
 }
 }
}

void RegInst::Unmap(void) {
 if (this != NULL) {
 Valid = 0;
 if (Inst != NULL) {
 if (this == MappedInst) {
 iunmap(Inst,BaseAddr,MapSpace,PageStart,PageCount);
 MappedInst = NULL;
 }
 Valid = 1;
 }
 BaseAddr = NULL;
 Mapped = 0;
 }
}
Continued on Next Page

80 Using the Digitizer Chapter 2

/* ************************* MessInst ************************** */

void MessInst::SendMessage(const char *message) {
 unsigned long ActualLen;
 char Buf[BUFLEN+1];

 strcpy(Buf,message);
 strcat(Buf,"\n");
 iwrite(Inst,Buf,strlen(Buf),0,&ActualLen);
}

char *MessInst::ReceiveMessage(char *message, int maxLen) {
 int Reason;
 unsigned long ActualLen;
 char *SPtr, Buf[BUFLEN+1];

 iread(Inst,message,maxLen,&Reason,&ActualLen);
 message[ActualLen] = ’\0’;
 SPtr = message + strlen(message) - 1;
 while (SPtr >= message && *SPtr == ’\n’)
 *SPtr-- = ’\0’;
 while (Reason == I_TERM_MAXCNT)
 iread(Inst,Buf,BUFLEN,&Reason,&ActualLen);
 return message;
}

char *MessInst::GetErrorMessage(char *message, int maxLen) {
 char *MPtr;

 SendMessage("SYST:ERR?");
 ReceiveMessage(message,maxLen);
 MPtr = (atoi(message)) ? message : NULL;
 return MPtr;
}

Chapter 2 Using the Digitizer 81

E1429.H

#ifndef E1429_DEFD

#define E1429_DEFD

#include "inst.h"

class E1429 : public MessInst {
 int MemoryMode;
public:
 E1429(WORD lAddr = 40);
 void SetDataReg(UWORD value) { wSet(0x0c,value); }
 UWORD GetDataReg(void) { return wGet(0x0c); }
 void MGetDataReg(UWORD *dest, ULONG count) { wMGet(0x0c,dest,count); }
 ULONG GetLongDataReg(void); // Cannot use lGet here because of ilpeek problem
 void MGetLongDataReg(ULONG *dest, ULONG count) { lMGet(0x0c,dest,count); }
};

#endif

E1429.CPP

#include <stdlib.h>

#include "e1429.h"

E1429::E1429(WORD lAddr) : MessInst(lAddr) {
 SetMapping(I_MAP_EXTEND,0,1,NULL);
 Map();
}

ULONG E1429::GetLongDataReg(void) {
 ULONG Result;

 lMGet(0x0c,&Result,1);
 return Result;
}

82 Using the Digitizer Chapter 2

Local Bus Data Transfers

The following programs demonstrate:

• how readings are transferred over the Local bus from a single
digitizer to the HP E1488 memory card (LOCAL_AD.C)

• how readings in digitizer memory are transferred over the Local bus
from two digitizers to the HP E1488 memory card (LBUS2PST.C)

• how readings from two digitizer A/Ds are transferred over the Local
bus to the HP E1488 memory card (LBUSAUTO.C)

For completeness, the entire C language versions of these programs are
listed. The programs are also contained on the example programs disk
(HP p/n E1429-10302).

LOCAL_AD.C This program transfers readings from both digitizer channels to the
HP E1488 memory card. The readings are tranferred directly from the
digitizer A/Ds.

/* LOCAL_AD.C - This program demonstrates a Local bus data transfer */
/* directly (real time) from the HP E1429B digitizer A/Ds to the E1488A memory */
/* card. */

/* Include the following header files */

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <malloc.h>
#include <cfunc.h> /* This file is from the HP-IB Command Library Disk */

#define ADDR 70905L /* I/O path from the PC to the digitizer */
#define ADDR_MEM 70903L /* I/O path from the PC to the memory card */

/* Function Prototypes */

void rst_clr(long address);
void configure(void);
void initiate(void);
void check_error(char *array, long address);

Continued on Next Page

Chapter 2 Using the Digitizer 83

/**/
void main(void) /* run the program */
{

rst_clr(ADDR); /* reset the digitizer */
rst_clr(ADDR_MEM); /* reset the memory card */
configure(); /* configure the digitizer and the memory card */
initiate(); /* initiate the digitizer and memory card; */

/* retrieve the readings from the memory card */
}

/**/
void configure(void)
{

int length = 0, loop = 0;

/* use the "digitizer" array to configure the digitizer for readings on */
/* each channel’s (HI) differential input */

char static *digitizer[] =
{"CONF1:ARR:VOLT (10),5,(@3)", /* set 10 readings, 5V range, */

/* channel 1 input port 3 */
 "CONF2:ARR:VOLT (10),5,(@4)", /* configure channel 2, port 4 */
 "VINS:LBUS:RES", /* reset the Local bus chip */
 "VINS:LBUS:MODE GEN", /* set Local bus mode to GENerate */
 "VINS:LBUS:FEED ’CONV:BOTH’"}; /* set Local bus feed (direct from A/D)

/* use the "memory" array to configure the memory card */

char static *memory[] =
{"FORM:DATA PACK", /* set packed data format */
 "TRAC:DEL:ALL", /* delete all readings on memory card */
 "TRAC:DEF SET2, 40", /* store readings (40 bytes) in "SET2" */
 "VINS:LBUS:RES", /* reset the Local bus chip */
 "VINS:LBUS:MODE CONS", /* set Local bus mode to consume */
 "STAT:OPC:INIT OFF"}; /* execute *OPC? after INIT is parsed */

/* Execute each command in "digitizer" */

length = (sizeof(digitizer) / sizeof(char*));

for (loop = 0; loop < length; loop++)
{
IOOUTPUTS(ADDR, digitizer[loop], strlen(digitizer[loop]));
}

/* Execute each command in "memory" */
Continued on Next Page

84 Using the Digitizer Chapter 2

length = (sizeof(memory) / sizeof(char*));

for (loop = 0; loop < length; loop++)
{
IOOUTPUTS(ADDR_MEM, memory[loop], strlen(memory[loop]));
}

/* check for configuration errors */

check_error("digitizer", ADDR);

check_error("memory", ADDR_MEM);

}

/**/
void initiate(void)
{

int i = 0, readings = 20, swap = 0, bytes = 0, length = 1, *rdgs;
float rdy;
char lf_remove[1];

/* dynamically allocate memory for readings */

rdgs = malloc(20 * sizeof(float)); /* allocate computer memory for reading storage */
swap = sizeof(int); /* each reading in memory is two bytes */
bytes = 20 * swap; /* read 40 bytes (2 channels, 10 readings per channel) */

IOOUTPUTS(ADDR_MEM, "INIT", 4); /* initiate the memory card */
IOOUTPUTS(ADDR_MEM, "*OPC?", 5); /* wait for INIT to parse before continuing */
IOENTER(ADDR_MEM, &rdy); /* enter *OPC? response from memory card */

IOOUTPUTS(ADDR, "INIT", 4); /* initiate the digitizer */
IOOUTPUTS(ADDR, "*OPC?", 5); /* allow readings to complete before */

/* retrieving them from the memory card */
IOENTER(ADDR, &rdy); /* enter *OPC? response from digitizer */

IOOUTPUTS(ADDR_MEM, "TRAC:DATA? SET2", 15); /* retrieve readings from memory card
*/

IOENTERAB(ADDR_MEM, rdgs, &bytes, swap); /* enter readings and remove block header */

/* remove line feed which trails the last data byte */

IOENTERS(ADDR_MEM, lf_remove, &length);

Continued on Next Page

Chapter 2 Using the Digitizer 85

/* convert and display the readings; readings are in the sequence */
/* channel 2 reading 1, channel 1 reading 1, channel 2 reading 2, */
/* channel 1 reading 2, and so on */

for (i = 0; i < readings; i++)
{

rdgs[i] /= 16;
if (rdgs[i] >= 2047 || rdgs[i] <= -2046)

printf("\nReading overrange");
else

printf("\nReading %d = %.6E", i, (rdgs[i] * 0.0025));

}

free(rdgs);
}

/**/
void rst_clr(long address)
{

/* Reset and clear the digitizer and memory card */

IOOUTPUTS(address, "*RST;*CLS", 9);
}

/**/
void check_error(char *array, long address)
{

char into[161];
int length = 160;

IOOUTPUTS(address, "SYST:ERR?", 9); /* Query error register */
IOENTERS(address, into, &length); /* Enter error message */

if (atoi(into) != 0) /* Determine if error is present */
/* If errors present, print and exit */

{
while (atoi(into) != 0)
{

printf("Error %s in array %s\n\n", into, array);
length = 160;
IOOUTPUTS(address, "SYST:ERR?", 9);
IOENTERS(address, into, &length);

}
exit(1);

}
}

86 Using the Digitizer Chapter 2

Comments 1. Digitizer Configuration. Both channel’s HI differential inputs (ports 3
and 4) are CONFigured for 10 readings on the 5V range. Two readings
(channel 1 and channel 2) are taken on each sample trigger. The sample
rate, as set by the CONFigure command, is 50 ns (20 MHz). Thus, data is
transferred at a rate of 40 MSamples (80 MBytes)/second.

Before setting the digitizer’s Local bus configuration the Local bus chip is
reset. Next, the Local bus mode is set to GENerate and the feed (data
source) is set to CONVerter:BOTH.

2. Post-Arm Readings. When transferring readings over the Local bus
from the digitizer A/D, all readings must be post-arm.

3. Initiating the Digitizer. After the memory card is configured, it is
INITiated first so that it is ready to receive the digitizer readings. When the
digitizer is INITiated, *OPC? is used to allow the readings to complete and
be transferred before they are retrieved from the memory card.

4. Reading Sequence and Format. When this program executes, the
readings are transferred to the memory card and later displayed in the
following sequence:

channel 2 reading 1
channel 1 reading 1
channel 2 reading 2
channel 1 reading 2
.
.
.

The memory card was set up to store the readings in the digitizer’s packed
data format. The packed readings are signed, 16-bit numbers preceded by
the ANSI/IEEE Standard 488.2-1987 Definite Length Arbitrary Block
header. Packed readings are always numbers between -1.0230 (-2046) and
+1.0235 (2047). To convert the readings to voltages, each reading is divided
by 16 to remove the data label bits (0 - 3), and is multipled by 0.0025 which
is the reading resolution for the 5V range.

5. Additional Information. Additional information on Local bus operation
and on the Local bus commands can be found in Chapter 3 - "Understanding
the Digitizer", and in Chapter 4 - "Command Reference."

Chapter 2 Using the Digitizer 87

LBUS2PST.C This program transfers readings in digitizer memory from two digitizers to
the HP E1488 memory card. The program shows how the digitizers are used
in the Local bus GENerate and APPend modes.

/* LBUS2PST.C - This program demonstrates how to transfer readings in */
/* digitizer memory from multiple digitizers to the E1488 memory card. The */
/* leftmost digitizer is set to GENerate mode and the inner digitizer is set */
/* to the APPend mode. */

/* Include the following header files */

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <malloc.h>
#include <cfunc.h> /* This file is from the HP-IB Command Library Disk */

#define ADDR_G 70905L /* I/O path from the PC to the generator digitizer */
#define ADDR_A 70906L /* I/O path from the PC to the appender digitizer */
#define ADDR_MEM 70903L /* I/O path from the PC to the memory card */

/* Function Prototypes */

void rst_clr(long address);
void configure(void);
void initiate(void);
void check_error(char *func_tion, long address);

/**/
void main(void) /* run the program */
{

rst_clr(ADDR_G); /* reset generator digitizer */
rst_clr(ADDR_A); /* reset appender digitizer */
rst_clr(ADDR_MEM); /* reset memory card */
configure(); /* configure the digitizers and the memory card */
initiate(); /* initiate the digitizers and the memory card; */

/* retrieve the readings from the memory card */
}

/**/
void configure(void)
{

int length = 0, loop = 0;

/* use the "digitizer1" array to configure the generator digitizer */
Continued on Next Page

88 Using the Digitizer Chapter 2

char static *digitizer1[] =
{"CONF1:ARR:VOLT (10),5,(@3)", /* set 10 readings, 5V range, */

/* channel, 1 input port 3 */
 "VINS:LBUS:RES", /* reset the Local bus chip */
 "VINS:LBUS:MODE GEN", /* set Local bus mode to GENerate */
 "VINS:LBUS:FEED ’MEM:CHAN1’"}; /* set Local bus feed */

/* use the "digitizer2" array to configure the appender digitizer */

char static *digitizer2[] =
{"CONF1:ARR:VOLT (10),5,(@3)", /* set 10 readings, 5V range, */

/* channel, 1 input port 3 */
 "VINS:LBUS:RES", /* reset the Local bus chip */
 "VINS:LBUS:MODE APP", /* set Local bus mode to APPend */
 "VINS:LBUS:FEED ’MEM:CHAN1’"}; /* set Local bus feed */

/* use the "memory" array to configure the memory card */

char static *memory[] =
{"FORM:DATA PACK", /* set packed data format */
 "TRAC:DEL:ALL", /* delete all readings on memory card */
 "TRAC:DEF SET1, 40", /* store readings (40 bytes) in "SET1" */
 "VINS:LBUS:RES", /* reset the Local bus chip */
 "VINS:LBUS:MODE CONS", /* set Local bus mode to consume */
 "STAT:OPC:INIT OFF"}; /* execute *OPC? after INIT is parsed */

/* Execute each command in "digitizer1" using a loop */

 length = (sizeof(digitizer1) / sizeof(char*));

for (loop = 0; loop < length; loop++)
{
IOOUTPUTS(ADDR_G, digitizer1[loop], strlen(digitizer1[loop]));
}

/* Execute each command in "digitizer2" using a loop */

 length = (sizeof(digitizer2) / sizeof(char*));

for (loop = 0; loop < length; loop++)
{
IOOUTPUTS(ADDR_A, digitizer2[loop], strlen(digitizer2[loop]));
}

Continued on Next Page

Chapter 2 Using the Digitizer 89

/* Execute each command in "memory" */

length = (sizeof(memory) / sizeof(char*));

for (loop = 0; loop < length; loop++)
{
IOOUTPUTS(ADDR_MEM, memory[loop], strlen(memory[loop]));
}

/* check for digitizer and memory card configuration errors */

check_error("digitizer1", ADDR_G);

check_error("digitizer2", ADDR_A);

check_error("memory", ADDR_MEM);
}

/**/
void initiate(void)
{

int i = 0, readings = 20, swap = 0, bytes = 0, length = 1, *rdgs;
float rdy;
char lf_remove[1];

/* dynamically allocate memory for readings */

rdgs = malloc(20 * sizeof(float)); /* allocate computer memory for reading storage */
swap = sizeof(int); /* each reading in memory is two bytes */
bytes = 20 * swap; /* read 40 bytes */

IOOUTPUTS(ADDR_MEM, "INIT", 4); /* initiate the memory card */
IOOUTPUTS(ADDR_MEM, "*OPC?", 5); /* wait for INIT to parse before continuing */
IOENTER(ADDR_MEM, &rdy); /* enter *OPC? response from memory card */

IOOUTPUTS(ADDR_A, "INIT", 4); /* initiate the appender digitizer */

IOOUTPUTS(ADDR_G, "INIT", 4); /* initiate the generator digitizer */
IOOUTPUTS(ADDR_G, "*OPC?", 5); /* allow the readings to complete before */

/* retrieving them from the memory card */
IOENTER(ADDR_G, &rdy); /* enter *OPC? response from the digitizer */

IOOUTPUTS(ADDR_MEM, "TRAC:DATA? SET1", 15); /* retrieve readings from memory

card */
IOENTERAB(ADDR_MEM, rdgs, &bytes, swap); /* enter readings and remove block header

*/

Continued on Next Page

90 Using the Digitizer Chapter 2

/* remove line feed which trails the last data byte */

IOENTERS(ADDR_MEM, lf_remove, &length);

/* convert and display the readings; the generator digitizer readings */
/* occur first, followed by the appender digitizer readings */

for (i = 0; i < readings; i++)
{

rdgs[i] /= 16;
if (rdgs[i] >= 2047 || rdgs[i] <= -2046)

printf("\nReading overrange");
else

printf("\nReading %d = %.6E", i, (rdgs[i] * 0.0025));

}

free(rdgs);
}

/**/
void rst_clr(long address)
{

/* Reset and clear the instruments */

IOOUTPUTS(address, "*RST;*CLS", 9);

}

/**/
void check_error(char *array, long address)
{

char into[161];
int length = 160;

IOOUTPUTS(address, "SYST:ERR?", 9); /* Query error register */
IOENTERS(address, into, &length); /* Enter error message */

if (atoi(into) != 0) /* Determine if error is present */
/* If errors present, print and exit */

{

Continued on Next Page

Chapter 2 Using the Digitizer 91

while (atoi(into) != 0)
{

printf("Error %s in %s\n\n", into, array);
length =160;
IOOUTPUTS(address, "SYST:ERR?", 9);
IOENTERS(address, into, &length);

}
exit(1);

}
}

Comments 1. GENerator Digitizer Configuration. Channel 1 of the GENerator
digitizer is CONFigured for 10 readings on the 5V range.

Before setting the digitizer’s Local bus configuration, the Local bus chip is
reset. Next, the Local bus mode is set to GENerate and the feed (data
source) is set to MEMory:CHANnel1.

2. APPender Digitizer Configuration. Channel 1 of the APPender
digitizer is CONFigured for 10 readings on the 5V range.

For all digitizer’s doing Local bus transfers, the Local bus chip must be
reset first. Next, the Local bus mode is set to APPend and the feed (data
source) is set to MEMory:CHANnel1.

3. Pre- and Post-Arm Readings. When the Local bus data source is
MEMory: ..., the readings are transferred over the Local bus from digitizer
memory rather than directly from the A/D. In this case, pre- and post-arm
readings are allowed prior to the Local bus transfer.

4. Initiating the Digitizers. After the memory card is configured, the card
is INITiated first so that it is ready to receive the digitizer readings. In a
configuration with multiple digitizers in the APPend mode, the APPender
digitizer(s) is (are) INITiated next. Because CONFigure sets the arm source
to IMMediate, INITiating the (APPender) digitizer causes it to take its
readings. After the APPender is INITiated the GENerator digitizer is
INITiated. *OPC? is used to allow the GENerator readings to complete and
be transferred before they are retrieved from the memory card.

Note that the APPender digitizers must have finished taking data before the
GENerator is finished. All APPenders must be ready to pipeline the
GENerator’s data at the time the data is sent.

92 Using the Digitizer Chapter 2

5. Reading Sequence and Format. When this program executes, the
readings are transferred to the memory card and later displayed in the
following sequence:

GENerator digitizer reading 1
GENerator digitizer reading n
.
.
APPender digitizer reading 1
APPender digitizer reading n

The memory card was set up to store the readings in the digitizer’s packed
data format. The packed readings are signed, 16-bit numbers preceded by
the ANSI/IEEE Standard 488.2-1987 Definite Length Arbitrary Block
header. Packed readings are always numbers between -1.0230 (-2046) and
+1.0235 (2047). To convert the readings to voltages, each reading is divided
by 16 to remove the data label bits (0 - 3), and is multipled by 0.0025 (the
reading resolution for the 5V range).

6. Additional Information. Additional information on Local bus operation
and on the Local bus commands can be found in Chapter 3 - "Understanding
the Digitizer", and in Chapter 4 - "Command Reference."

LBUSAUTO.C This program transfers readings over the Local bus from two digitizer A/Ds
to the HP E1488 memory card. The program shows how the digitizers are
used in the Local bus GENerate and INSert modes. The program is similar
to the previous program; however, rather than INITiate each digitizer
individually, the INSerter digitizer INITiates the GENerator digitizer once
the INSerter digitizer readings are complete.

/* LBUSAUTO.C - This program demonstrates how to transfer readings over the */
/* Local bus from two digitizer A/Ds to the HP E1488 memory card. The leftmost */
/* digitizer is set to the GENerate mode and the inner digitizer is set to the */
/* INSert mode. The generator digitizer is armed from the TTLT0 trigger line */
/* when the inserter digitizer has completed its measurements. */

/* Include the following header files */

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <malloc.h>
#include <cfunc.h> /* This file is from the HP-IB Command Library Disk */
Continued on Next Page

Chapter 2 Using the Digitizer 93

#define ADDR_G 70905L /* I/O path from the PC to the generator digitizer */
#define ADDR_I 70906L /* I/O path from the PC to the inserter digitizer */
#define ADDR_MEM 70903L /* I/O path from the PC to the memory card */
#define CMD_MOD 70900L /* I/O path from the PC to the Command Module */

/* Function Prototypes */

void rst_clr(long address);
long get_base_addr(void);
void configure(void);
void initiate(long base_addr);
void check_error(char *func_tion, long address);

/**/
void main(void) /* run the program */
{

long base_addr; /* variable for A24 base address */
clrscr();

rst_clr(ADDR_G); /* reset the generator digitizer */
rst_clr(ADDR_I); /* reset the inserter digitizer */
rst_clr(ADDR_MEM); /* reset memory card */

base_addr = get_base_addr(); /* get digitizer A24 base address */

configure(); /* configure the digitizers and memory card*/

initiate(base_addr); /* initiate the digitizers and memory card; */
/* retrieve the readings from the memory card */

}

/**/
void configure(void)
{

int length = 0, loop = 0;

/* use the "digitizer1" array to configure the generator digitizer */

char static *digitizer1[] =
{"CONF1:ARR:VOLT (10),5,(@3)", /* set 10 readings, 5V range, */

/* channel, 1 input port 3 */
 "ARM:STAR:SOUR TTLT0", /* set arm source */

 "ARM:STAR:DEL 50E-6", /* set arm delay */
 "VINS:LBUS:RES", /* reset the Local bus chip */
 "VINS:LBUS:MODE GEN", /* set Local bus mode to GENerate */
 "VINS:LBUS:FEED ’CONV:CHAN1’"}; /* set Local bus feed */

Continued on Next Page

94 Using the Digitizer Chapter 2

/* use the "digitizer2" array to configure the inserter digitizer */

char static *digitizer2[] =
{"CONF1:ARR:VOLT (10),5,(@3)", /* set 10 readings, 5V range, */

/* channel, 1 input port 3 */
 "OUTP:TTLT0:FEED ’READY’", /* feed ready signal to next digitizer */
 "OUTP:TTLT0:STAT ON", /* enable ready signal feed */
 "VINS:LBUS:RES", /* reset the Local bus chip */
 "VINS:LBUS:MODE INS", /* set Local bus mode to INSert */
 "VINS:LBUS:FEED ’CONV:CHAN1’"}; /* set Local bus feed */

/* use the "memory" array to configure the memory card */

char static *memory[] =
{"FORM:DATA PACK", /* set packed data format */
 "TRAC:DEL:ALL", /* delete all readings on memory card */
 "TRAC:DEF SET1, 40", /* store readings (40 bytes) in "SET1" */
 "VINS:LBUS:RES", /* reset the Local bus chip */
 "VINS:LBUS:MODE CONS", /* set Local bus mode to consume */
 "STAT:OPC:INIT OFF"}; /* execute *OPC? after INIT is parsed */

/* Execute each command in "digitizer1" using a loop */

 length = (sizeof(digitizer1) / sizeof(char*));

for (loop = 0; loop < length; loop++)
{
IOOUTPUTS(ADDR_G, digitizer1[loop], strlen(digitizer1[loop]));
}

/* Execute each command in digitizer2 using a loop */

 length = (sizeof(digitizer2) / sizeof(char*));

for (loop = 0; loop < length; loop++)
{
IOOUTPUTS(ADDR_I, digitizer2[loop], strlen(digitizer2[loop]));
}

/* Execute each command in "memory" */

length = (sizeof(memory) / sizeof(char*));

Continued on Next Page

Chapter 2 Using the Digitizer 95

for (loop = 0; loop < length; loop++)
{
IOOUTPUTS(ADDR_MEM, memory[loop], strlen(memory[loop]));
}

/* check for digitizer configuration errors */

check_error("digitizer1", ADDR_G);

check_error("digitizer2", ADDR_I);

check_error("memory", ADDR_MEM);
}

/**/
void initiate(long base_addr)
{

int i = 0, readings = 20, swap = 0, bytes = 0, length = 1, *rdgs;
int bit_reg = 0;
float rdy, bit_pat = 0;
char lf_remove[1], command[80];

/* dynamically allocate memory for readings */

rdgs = malloc(20 * sizeof(float)); /* allocate computer memory for reading storage */
swap = sizeof(int); /* each reading in memory is two bytes */
bytes = 20 * swap; /* read 40 bytes */

/* create DIAG:PEEK? command which reads the generator digitizer’s */
/* arm source register */

sprintf(command, "DIAG:PEEK? %ld, %d", base_addr+0x49,8);
IOOUTPUTS(CMD_MOD, command, strlen(command));
IOENTER(CMD_MOD, &bit_pat);

/* retain register settings, set arm source 1 slope to positive */
bit_reg = (int)(bit_pat + ((bit_pat >= 0) ? .5 : -.5));
bit_reg = (bit_reg & 0xF7);
sprintf(command, "DIAG:POKE %ld, %d, %d", base_addr+0x49,8,bit_reg);
IOOUTPUTS(CMD_MOD, command, strlen(command));

IOOUTPUTS(ADDR_MEM, "INIT", 4); /* initiate the memory card */
IOOUTPUTS(ADDR_MEM, "*OPC?", 5); /* wait for INIT to parse before continuing */
IOENTER(ADDR_MEM, &rdy); /* enter *OPC? response from memory card */

IOOUTPUTS(ADDR_G, "INIT", 4); /* initiate the generator digitizer */

Continued on Next Page

96 Using the Digitizer Chapter 2

IOOUTPUTS(ADDR_I, "INIT", 4); /* initiate the inserter digitizer */
IOOUTPUTS(ADDR_G, "*OPC?",5); /* wait for generator digitizer to finish */
IOENTER(ADDR_G, &rdy);

IOOUTPUTS(ADDR_MEM, "TRAC:DATA? SET1", 15); /* retrieve readings from memory card
*/

IOENTERAB(ADDR_MEM, rdgs, &bytes, swap); /* enter readings and remove block header
*/

/* remove line feed which trails the last data byte */

IOENTERS(ADDR_MEM, lf_remove, &length);

/* convert and display readings; the inserter digitizer readings */
/* occur first, followed by the generator digitizer readings */

for (i = 0; i < readings; i++)
{

rdgs[i] /= 16;
if (rdgs[i] >= 2047 || rdgs[i] <= -2046)

printf("\nReading overrange");
else

printf("\nReading %d = %.6E", i, (rdgs[i] * 0.0025));

}

free(rdgs);
}

/**/
long get_base_addr(void)
{

/* base address of generator digitizer’s (A24) offset register in A16 */
/* address space */

long base_addr = (0x1FC000 + (40 * 64)) + 6; /* generator digitizer logical address is 48 */

 float a24offst; /* A24 offset from A16 offset register */

char rd_addr[80]; /* command string variable */

/* Create the command string which reads the A24 base address from the offset register */
sprintf(rd_addr, "DIAG:PEEK? %ld, %d", base_addr,16);

Continued on Next Page

Chapter 2 Using the Digitizer 97

/* Send DIAG:PEEK? command */
IOOUTPUTS(CMD_MOD, rd_addr, strlen(rd_addr));

/* Read value from offset register */
IOENTER(CMD_MOD, &a24offst);

/* Multiply offset value by 256 for 24-bit address value */
a24offst *= 256.;

return (long)a24offst;
}
/**/
void rst_clr(long address)
{

/* Reset and clear the instruments */

IOOUTPUTS(address, "*RST;*CLS", 9);

}

/**/
void check_error(char *array, long address)
{

char into[161];
int length = 160;

IOOUTPUTS(address, "SYST:ERR?", 9); /* Query error register */
IOENTERS(address, into, &length); /* Enter error message */

if (atoi(into) != 0) /* Determine if error is present */
/* If errors present, print and exit */

{
while (atoi(into) != 0)
{

printf("Error %s in %s\n\n", into, array);
length = 160;
IOOUTPUTS(address, "SYST:ERR?", 9);
IOENTERS(address, into, &length);

}
exit(1);

}
}

98 Using the Digitizer Chapter 2

Comments 1. GENerator Digitizer Configuration. Channel 1 of the GENerator
digitizer is CONFigured for 10 readings on the 5V range. The arm source is
set to TTLT0. This VXI backplane trigger line is controlled by the INSerter
digitizer which feeds its READy signal to arm the GENerator digitizer after
its readings are complete. An arm delay of 50 µs is specified to allow for the
INSerter digitizer to switch to the pipeline mode after its readings are
complete (see the "Insert" mode description under "Local Bus Modes" in
Chapter 3).

The INSerter digitizer’s READy signal goes high when the readings are
complete and the digitizer enters the idle state. In order for the GENerator
digitizer to arm on the low-to-high transition, the GENerator digitizer must
be set to accept a positive slope. This is done by writing to the digitizer’s
Arm Source register and setting the slope bit from negative (1) to positive
(0).

The digitizer’s Local bus configuration begins by resetting the Local bus
chip. The Local bus mode is set to GENerate and the feed (data source) is
set to CONVerter:CHANnel1.

2. INSerter Digitizer Configuration. Like the GENerator digitizer, the
INSerter digitizer is CONFigured for 10 readings on the 5V range. The
INSerter digitizer’s arm source and trigger source are INTernal. The
INSerter digitizer transfers (feeds) its READy signal to the GENerator
digitizer over the VXI backplane TTLT0 trigger line.

Again, the digitizer’s Local bus configuration begins by resetting the Local
bus chip. The Local bus mode is set to INSert and the feed (data source) is
set to CONVerter:CHANnel1.

3. Digitizer Sample Rates. The maximum Local bus transfer rate is 80
MBytes/second which is equivalent to 40 MSamples/second. The sample
rate for both digitizers as set by the CONFigure command is 50 ns
(20 MHz). Thus, data is transferred from the two digitizers at a rate of 40
MSamples (80 MBytes)/second.

4. Initiating the Digitizers. After the memory card is configured, the card
is INITiated first so that it is ready to receive the digitizer readings. In a
configuration with multiple digitizers in the INSert mode, the GENerator
digitizer is INITiated next so that it is waiting for an arm signal to begin
taking measurements. When the INSerter is INITiated it takes its readings
and then arms the GENerator digitizer. *OPC? is used to allow the
GENerator readings to complete and be transferred before they are retrieved
from the memory card.

Chapter 2 Using the Digitizer 99

5. Reading Sequence and Format. When this program executes, the
readings are transferred to the memory card and later displayed in the
following sequence:

INSerter digitizer reading 1
INSerter digitizer reading n
.
.
GENerator digitizer reading 1
GENerator digitizer reading n

The memory card stores the readings in the digitizer’s packed data format.
Packed readings are signed, 16-bit numbers preceded by the ANSI/IEEE
Standard 488.2-1987 Definite Length Arbitrary Block header. Packed
readings are always numbers between -1.0230 (-2046) and +1.0235 (2047).
To convert the readings to voltages, each reading is divided by 16 to remove
the data label bits (0 - 3), and is multipled by 0.0025 which is the reading
resolution for the 5V range.

6. Additional Information. Additional information on Local bus operation
and on the Local bus commands can be found in Chapter 3 - "Understanding
the Digitizer", and in Chapter 4 - "Command Reference." Information on
the digitizer’s Arm Source register can be found in Appendix C - "Register
Programming."

100 Using the Digitizer Chapter 2

Using the Digitizer Status Registers

This program demonstrates:

• how to use the condition register, transition filter, enable register,
and status byte to determine when events monitored by the condition
register occur.

One of the conditions monitored by the operation status group’s condition
register is when the digitizer receives an arm signal. When armed, a
high-to-low transition of the wait-for-arm bit (bit 6) in the condition register
occurs. In this program, the digitizer is set to arm when the input signal on
the differential input reaches 3V. When the level is reached and the arm
occurs, the user is notified that the digitizer is armed and is ready to sample.

STATUS.C

CONF1:ARR:VOLT (1),5,(@3) /* set 1 reading, 5V range */
ARM:STAR:SOUR INT1 /* arm on input signal level */
ARM:STAR:SLOP1 POS /* arm on positive-going signal */
ARM:STAR:LEV1:POS 3 /* arm at 3V level */
TRIG:STAR:SOUR HOLD /* set trigger source to hold */
STAT:OPER:PTR 0 /* prevent any positive transitions */

 /* from causing summary bit to set OPER */
STAT:OPER:NTR 64 /* set event register bit on */

 /* negative transition of bit 6 */
STAT:OPER:ENAB 64 /* enable summary bit to set OPER */

 /* bit in status register */
INIT /* put digitizer in wait-for-arm state */

print message "waiting for input signal to reach arm level"

 loop
STB? / read status byte */
enter byte
is byte < 128. ? /* check if OPER bit in status byte is cleared (0) */

end loop

print message "digitizer armed; press Enter (return) to trigger the reading"

TRIG:IMM /* issue a single trigger */
FETC1? /* retrieve reading */

Chapter 2 Using the Digitizer 101

Comments 1. Setting the Transition Filter. When the digitizer is INITiated, a
low-to-high transition of bit 6 in the condition register occurs indicating the
digitizer is in the wait-for-arm state. When an arm is received, a high-to-low
transition of bit 6 occurs. The power-on/reset setting of the transition filter
allows the positive transition to be recognized and the negative transition to
be ignored. Because the application is interested in the high-to-low
transition, the transition filter is set for a negative transition of bit 6
(STATus:OPERation:NTRansition 64), and to ignore the positive transition
(STATus:OPERation:PTRansition 0).

2. Setting the Enable Register. When the high-to-low transition occurs, the
"event" is recorded by setting (to ’1’) a corresponding bit in the event
register. (Event register bits are set from low-to-high regardless of the
transition recognized by the transition filter.)

In order for the controller/computer to know that the event has occurred, the
enable register is set such that the arm event sets a bit in the status byte
(STATus:OPERation:ENABle 64).

3. Reading the Status Byte. Once the program initiates the digitizer (INIT
command), the program continually monitors the digitizer status byte using
*STB?. When the arm event occurs, bit 7 in the status byte is set. (Status
byte bits are also set from low-to-high regardless of the transition
recognized by the transition filter.) This signals the controller/computer that
the event occurred. At this point, the program exits the loop and then
prompts the user to press ’Enter’ which then triggers the digitizer
(TRIGger:IMMediate).

Additional information on the digitizer status groups and on using the
registers in the groups can be found in Chapter 3 - "Understanding the
Digitizer".

102 Using the Digitizer Chapter 2

Chapter 3
Understanding the Digitizer

Chapter Contents

This chapter contains the HP E1429 Digitizer description of operation.
Where applicable, the chapter relates the digitizer’s SCPI commands to the
digitizer hardware they control. The main sections of the chapter include:

• HP E1429A Digitizer Block Diagram. 103
• The Message and Register Interfaces 105
• The Digitizer Input Section . 106
• Arming and Triggering . 111
• The Analog-to-Digital Converter . 129
• Data Flow, Storage, and Conversions 129
• Memory Management . 143
• VME Bus Data Transfers. 148
• Local Bus Data Transfers. 158
• The Digitizer Status Registers . 168
• Saving Digitizer Configurations . 176

HP E1429 Digitizer Block Diagram

The HP E1429 Digitizer block diagram is shown in Figure 3-1. Channels 1
and 2 have their own input section and their own 12-bit,
20 MSample/second analog-to-digital (A/D) converter. The message
interface, register interface, trigger/timebase section, and memory are
common to both channels.

Chapter 3 Understanding the HP E1429 Digitizer 103

Figure 3-1. HP E1429 Digitizer Block Diagram

104 Understanding the HP E1429 Digitizer Chapter 3

The Message and Register Interfaces

The HP E1429 digitizer can be programmed as a message-based device or
as a register-based device (Appendix C). When the digitizer functions as a
message-based device, the processor within the message interface (Figure
3-1) converts SCPI (ASCII) command strings to register reads and writes
through the register interface. When the digitizer functions as a
register-based device, command opcodes are written directly to the digitizer
registers from the register interface.

Digitizer Command
Paths

Figure 3-2 shows the command paths used when programming the digitizer
as a message-based device or as a register-based device.

Figure 3-2. HP E1429 Digitizer Command Paths

Chapter 3 Understanding the HP E1429 Digitizer 105

The Digitizer Input Section

The HP E1429 2-channel digitizer has single-ended and differential input
ports on each channel. Each input port has a BNC connector and is DC
coupled. A detailed block diagram of the input section is shown in Figure
3-3. Only one channel is shown since both are identical.

SCPI Command
Control

The digitizer’s input section including the input state, input impedance, and
low-pass filtering is controlled by the SCPI INPut subsystem. The input port
is selected by the SENSe[<chan >]:FUNCtion subsystem. The input signal
range is controlled by the SENSe[<chan >]:VOLTage subsystem. The
commands in these subsystems are listed below.

INPUT[<port >]
:FILTer

[:LPASs]
[:STATE] <mode >

:IMPedance <impedance >
[:STATe] <mode >

Figure 3-3. HP E1429 Digitizer Input Section

106 Understanding the HP E1429 Digitizer Chapter 3

[SENSe[<chan >]]
:FUNCtion "<function >"

[SENSe[<chan >]]
:VOLTage

[:DC]
:RANGE <range >

 Note Each command in these subsystems is covered in detail in Chapter 4 -
"Command Reference".

Each input parameter setting is unique to each port. The settings are
"remembered" so that changes made to one port do not affect the changes
made previously to the other port. However, the signal range set (or
changed) for one port applies to the other port as well.

Selecting the Input Port The digitizer input channels are numbered 1 and 2. The input ports on each
channel are:

• channel 1
– port 1 - singled-ended input
– port 3 - differential input

• channel 2
– port 2 - single-ended input
– port 4 - differential input

The active input port is specified by the (@<input port >) parameter of the
CONFigure and MEASure commands, and by [<port >] in the other
digitizer commands. In those commands, [<port >] is optional as indicated
by the brackets []. If a port number is not specified, port 1 (channel 1) is
assumed.

The active input port is also selected with the command:

[SENSe[<chan >]]:FUNCtion "<function >"

The "<function >" settings are:

VOLTage[:DC]1port 1 (channel 1)
VOLTage[:DC]2port 2 (channel 2)
VOLTage[:DC]3port 3 (channel 1)
VOLTage[:DC]4port 4 (channel 2)

Readings are taken on only one input port per channel.

Chapter 3 Understanding the HP E1429 Digitizer 107

Enabling the Input
Ports

Each input port has a relay that is used to enable and disable the input. This
relay is controlled by the command:

INPut[<port >][:STATe] <mode >

The <mode > settings are:

ON - the input is enabled.
OFF - the input is disabled. For the single ended input, the port is set to a
high impedance.

At power-on or following a reset, each input port is enabled (<mode > is
ON). However, the port used for the measurement is specified by the
(@<input port >) parameter of CONFigure/MEASure, or by [SENSe[<chan
>]]:FUNCtion.

Setting the Input
Impedance

The impedance of the single-ended input port can be set to 50Ω or 75Ω. The
impedance is set with the command:

INPut[<port >]:IMPedance <impedance >

The <impedance > settings are:

50 - sets single ended input impedance to 50Ω
75 - sets single ended input impedance to 75Ω

At power-on or following a reset, the impedance is set to 50Ω. The
impedance of the differential input ports is 1 MΩ and is not programmable.

The Inverting and Non-inverting Differential Input Ports

The non-inverting (HI) and inverting (LO) differential input ports can be
used singly (the non-used port should be grounded), or together such that
the difference (algebraic sum) of two signals is supplied to the digitizer. If a
single input is applied to the inverting (LO) port, the reading is inverted.

Enabling the 10 MHz
Input Filter

Each digitizer channel has a 10 MHz, 2-pole bessel filter that can be
switched into the signal path of the single-ended or differential input. The
filter is enabled/disabled with the command:

INPut[<port >]:FILTer[:LPASs][:STATe] <mode >

108 Understanding the HP E1429 Digitizer Chapter 3

The <mode > settings are:

ON - 10 MHz filter is switched to the signal path.
OFF - 10 MHz filter is removed from the signal path.

Enabling the filter reduces the noise on the input signal. Disabling the filter
allows sub-sampling applications over the digitizer’s 50 MHz bandwidth.

The filter mode of one input port is independent of the filter mode of the
channel’s other port. At power-on or following a reset, the filter is disabled
on all input ports. CONFigure and MEASure enable the filter on the
specified port.

Setting the Signal
Range

The digitizer’s input signal range is specified in terms of an expected
reading value or as an explicit range value. The commands used for each
method are as follows:

MEASure[<chan >]:ARRay[:VOLTage][:DC]? (<size >)
[,<expected value >[,<resolution >]] [,(@<input port >)]

 CONFigure[<chan >]:ARRay[:VOLTage][:DC] (<size >)
[,<expected value >[,<resolution >]] [,(@<input port >)]

[SENSe[<chan >]]:VOLTage[:DC]:RANGe <range >

Changing Ranges With MEASure or CONFigure, if the <expected value > specified is within
98% of the maximum signal that can be measured on the nearest
measurement range (Table 3-1), that range is selected. If the <expected
value > is greater than 98%, the next higher range is selected. For example,
if the <expected value > is 5.1V, the 10V range is selected since 5.1V is
greater than 98% of 5.1175V.

Specifying a signal range with the SENSe:VOLTage command that is
within a given measurement range (Table 3-1), sets that range. If a signal
range is specified that is outside a given measurement range, the next higher
range is selected. For example, if a <range > of .52 is specified, the 1V
range is selected since .52 is outside the -0.5115 to 0.51175 measurement
range.

The Digitizer Attenuators

The input section of the HP E1429 digitizer has three sets of attenuators
(Figure 3-3):

Chapter 3 Understanding the HP E1429 Digitizer 109

20 dB input attenuator (differential inputs only)
20 dB post attenuator (differential inputs only)

6 dB and 14 dB internal attenuators

The attenuators used are based on the expected value or range specified.
Table 3-1 shows the attenuators used as a function of the expected value and
range.

Using the Single-Ended Input 1V Range

When taking readings of low-level signals on the single-ended input,
selecting the 1V range ensures the most accurate readings. This is achieved
through a path directly to the A/D, which bypasses the attenuators and
amplifier which can add noise and distortion to the signal (Figure 3-3).

The single-ended input 1V range can be set by specifying an
<expected value > of 1V in the MEASure or CONFigure command, or by
specifying a range of 1V in the SENSe:VOLTage command:

SENS:VOLT:RANG 1

Input Port <expected
value>

(MEAS/CONF)

Range
setting

<range>

Measurement
Range

20 dB
Input

Attenuator

20 dB
Post

Attenuator

Internal Attenuators
 6 dB 14 dB

1,2,3,4 ±0.1 0.10235 -0.10230 to 0.10235 off off off off

1,2,3,4 ±0.2 0.2047 -0.2046 to 0.2047 off off on off

1,2,3,4 ±0.5 0.51175 -0.5115 to 0.51175 off off off on

1,2,3,4 ±1.0 1.0235 -1.0230 to 1.0235 off on off off

3,4 ±2.0 2.047 -2.0460 to 2.0470 off on on off

3,4 ±5.0 5.1175 -5.115 to 5.1175 off on off on

3,4 ±10.0 10.235 -10.230 to 10.235 on on off off

3,4 ±20.0 20.470 -20.460 to 20.470 on on on off

3,4 ±50.0 51.175 -51.150 to 51.175 on on off on

3,4 ±100.0 102.35 -102.30 to 102.35 on on on on

Table 3-1. HP E1429 Digitizer Measurement Ranges

110 Understanding the HP E1429 Digitizer Chapter 3

Arming and Triggering

The HP E1429 digitizer uses the SCPI Arm-Trigger configuration shown in
Figure 3-4. This section describes the Arm-Trigger state sequence and
identifies the different ways to arm and trigger the digitizer.

Figure 3-4. HP E1429 Digitizer State Diagram

Chapter 3 Understanding the HP E1429 Digitizer 111

The ARM-TRIG
State Diagram

The state diagram of Figure 3-4 shows that the digitizer operates within four
states: idle, initiated, wait-for-arm, and wait-for-trigger. The path through
the states depends upon whether pre-arm sampling is part of the
measurement configuration.

Both paths begin with the digitizer in the idle state. The digitizer enters the
idle state when power is applied, or following a reset or an ABORt. This is
the state in which the digitizer is configured using CONFigure and its
low-level commands.

Note When configuring the digitizer’s arming and triggering hardware the
configuration applies to both digitizer channels. Thus, both channels enter
the same Arm-Trigger state at the same time. In arming and triggering
commands where a channel can be specified such as

SENSe[<chan >]:SWEep:OFFSet:POINts <count >

the configuration of the last channel specified (or implied) overrides the
previous configuration of both channels.

The Pre-Arm Path The digitizer is capable of pre-arm and post-arm sampling. If pre-arm
samples (readings) have been specified
(SENSe[<chan >]:SWEep:OFFSet:POINts <count >) in addition to
post-arm samples, the digitizer moves to the wait-for-trigger state when
INITiate[:IMMediate] is executed and begins sampling. The digitizer
continues to (pre-arm) sample until the pre-arm reading count is reached
and until the digitizer receives an arm signal. When the arm is received, the
digitizer begins post-arm sampling as triggers are received. The digitizer
continues to (post-arm) sample until the total number of samples (pre- and
post-arm) specified by TRIGger[:STARt]:COUNt <count > is reached.
Once the trigger count is reached, the digitizer determines if the arm count
has been reached. If it has not, the digitzer remains initiated and repeats the
path until the arm count is reached.

The Post-Arm Path When only post-arm samples are specified, the digitizer moves to the
wait-for-arm state when INITiate[:IMMediate] is executed. The digitizer
moves to the wait-for-trigger state when an arm signal is received. The
digitizer remains in the wait-for-trigger state until the number of samples
specified by TRIGger[:STARt]:COUNt <count > is reached. Once the
trigger count is reached, the digitizer determines if the arm count has been
reached. If it has not, the digitizer remains initiated and repeats the path
until the arm count is reached.

112 Understanding the HP E1429 Digitizer Chapter 3

Arming the Digitizer Before the digitizer takes a sample it must be "armed", which means it must
be in the wait-for-trigger state. Figure 3-5 shows the digitizer arming and
triggering sources.

Figure 3-5. HP E1429 Digitizer Arming and Triggering

Chapter 3 Understanding the HP E1429 Digitizer 113

The digitizer hardware associated with arming the digitizer is controlled by
the SCPI ARM subsystem. The commands in this subsystem include:

ARM
[:STARt|SEQuence[1]]

:COUNt <count >
:DELay <period >
[:IMMediate]
:LEVel[<chan >]

:NEGative <voltage >
:POSitive <voltage >

:SLOPe[<n >] <edge >
:SOURce[<n >] <source >

Note Each command in this subsystem is covered in detail in Chapter 4 -
"Command Reference".

ARM Subsystem
Overview

The following information summarizes each command in the ARM
subsystem.

Setting the Arm Source The arm source specifies the signal(s) which arms the digitizer. The source
is specified with the command:

ARM[:STARt]:SOURce[<n >] <source >

Up to two arm sources ([<n >] = 1|2) can be specified. ARM:SOUR1
specifies the first source. ARM:SOUR2 specifies the second source. The
first event to occur on either source arms the digitizer. The digitizer arm
source(s) can be selected from the following:

• BUS - HP-IB Group Execute Trigger (GET) commmand or the
*TRG common command.

• ECLTrg0/ECLTrg1 - the VXIbus ECLTrg0 or ECLTrg1 trigger lines.

• TTLTrg<n > - the VXIbus TTLTrg0 through TTLTrg7 trigger lines.

• EXTernal1 - the "Ext 1" BNC input port.

• INTernal1 - arms when the signal level on channel 1 meets the
conditions specified by ARM:LEVel1.

• INTernal2 - arms when the signal level on channel 2 meets the
conditions specified by ARM:LEVel2.

114 Understanding the HP E1429 Digitizer Chapter 3

• HOLD - disables either ARM:SOURce1 or ARM:SOURce2. This is
the reset source for ARM:SOURce2.

• IMMediate - arms the digitizer immediately after
INITiate[:IMMediate] is received. This choice is only valid for
ARM:SOURce1. If IMMediate is specified, HOLD must be
specified for ARM:SOURce2. IMMediate is the reset value for
ARM:SOURce1.

Note An active reference oscillator is required for the digitizer to recognize and
accept an arm signal from any source.

Setting the Arm Signal
Slope

When the arm source is INTernal1, INTernal2, or EXTernal1, the digitizer
arms on a specified level of a positive-going or negative-going input signal.
For these sources, the digitizer must be informed of the slope on which to
arm (positive-going, negative-going, or either (for INTernal<n >)). This is
done with the command:

ARM[:STARt]:SLOPe[<n >] <edge >

The <edge > settings are:

POSitive - arm on a positive-going edge of the input signal.
NEGative - arm on a negative-going edge of the input signal.
EITHer - arm on either edge of the input signal (INTernal<n > sources only).

The command is used with the arm source and arm level commands as
shown:

!set arm source to INT1 or INT2
ARM[:STARt]:SOURce[<n >] <source >

!set positive or negative transition
ARM[:STARt]:SLOPe[<n >] <edge >

!set arm input voltage level
ARM[:STARt]:LEVel[<chan >]:POSitive <voltage >
or
ARM[:STARt]:LEVel[<chan >]:NEGative <voltage >

The arm slope command allows you to specify a positive transition, a
negative transition, or either transition. When a positive transition is
specified, the digitizer is armed when the increasing signal on the channel
reaches the specified level. When a negative transition is specified, the
digitizer is armed when the decreasing signal on the channel reaches the

Chapter 3 Understanding the HP E1429 Digitizer 115

specified level. When "EITHer" is specified, the digitizer is armed when the
input signal enters or exits the defined window. Refer to Figure 3-6.

Note For arm source TTLTRG<n >, the digitizer arms on the negative-going
edge of the signal. For arm source ECLTrg<n >, the digitizer arms on the
positive-going edge. These sources are not affected by the
ARM:STARt:SLOPe command.

Arm Window
Boundaries

The boundaries of the window are set by the voltage levels of
ARM[:STARt]:LEVel:POSitive and ARM[:STARt]:LEVel:NEGative.

When ARM[:STARt]:LEVel:POSitive specifies a level that is greater than
ARM[:STARt]:LEVel:NEGative, the digitizer is armed when the input
signal exits the defined window. When ARM[:STARt]:LEVel:POSitive
specifies a level that is less than ARM[:STARt]:LEVel:NEGative, the
digitizer is armed when the input signal enters the defined window.

Setting the Arm Level When the arm source is INTernal1 or INTernal2, the level of the input
signal at which the digitizer becomes armed is set with the commands:

ARM[:STARt]:LEVEL[<n >]:NEGative <voltage >

This command sets the voltage level on the specified channel that, when
reached by a negative-going input signal, arms the digitizer.

ARM[:STARt]:LEVEL[<n >]:POSitive <voltage >

This command sets the voltage level on the specified channel that, when
reached by a positive-going input signal, arms the digitizer.

Figure 3-6. Arm Window Boundaries

116 Understanding the HP E1429 Digitizer Chapter 3

The Arm Level Range

When setting the input voltage level which arms the digitizer, the levels are
restricted to the current signal range as set by the expected value parameter
of the CONFigure or MEASure command, or as set by the
SENSE:VOLTage:RANGE command. Table 3-1 lists the digitizer’s signal
ranges.

Note When level arming, arms that occur because of multiple passes through the
arm level are ignored until the trigger count is reached.

Setting the Arm Delay There is an inherent delay of typically 230 ns plus an amount of sample
period uncertainty from when an arm is received, to when the arm is
accepted. When the digitizer is taking only post-arm readings, a delay in
addition to the inherent delay can be specified with the command:

ARM[:STARt]:DELay <period >

The range for <period > is based on the frequency of the reference clock. If
T is the reference period, then the arm delay period is expressed as:

0 to 65534T in steps of T
66540T to 655350T in steps of 10T

Using the digitizer’s internal 20 MHz reference, this is:

0 to 3.27 ms
3.32ms to 32.76 ms

Note Appendix A - "Specifications" contains additional information on the
inherent arm delay.

Setting the Arm Count The arm count is the number of reading cycles (bursts) the digitizer will
take on each channel before it returns to the idle state. The arm count is
specified with the command:

ARM[:STARt]:COUNt <count >

The range for <count > is:

1 through 65,535 or INFinity (post-arm readings only)
1 through 128 (pre-arm and post-arm readings)

Chapter 3 Understanding the HP E1429 Digitizer 117

When only post-arm readings are specified, an error will occur when the
total number of readings (ARM:COUNt * TRIGger:COUNt) is greater than
524,288 readings. However, an error will not occur if the arm count or
trigger count is set to INFinity, or if the readings are going the VME bus or
Local bus directly from the A/D converter.

When pre-arm readings are included in a measurement sequence with an
arm count > 1, digitizer memory is segmented. When memory is segmented,
the maximum number of arms is 128 and the maximum number of pre-arm
and post-arm readings per arm is 524,288 / (number of arms rounded up to a
power of 2).

Note If the arm count is set to INFinity, use the ABORt command to return the
digitizer to the idle state.

Arm Rate When the arm count is greater than one and the sample rate is derived from
the digitizer’s internal oscillator, the next arm occurs 0.5 µs after the last
reading in the burst. This rate will vary with other references.

Immediate Arming Once the digitizer has been placed in the wait-for-arm state with the
INITiate command, the digitizer can be armed immediately with the
following command, regardless of the arm source:

ARM[:STARt][:IMMediate]

ARM:IMM is also the only way to arm the digitizer when the arm source is
HOLD and the digitizer is in the wait-for-arm state.

ARM:IMM decrements the arm count by 1, and any programmed delay
(other than the inherent delay) is ignored.

ARM Synchronization
Signals

As indicated in the block diagram of Figure 3-5, the arm signal can be
"routed" to the following locations:

"Ext 1" BNC port
ECLTRG trigger lines
TTLTRG trigger lines

118 Understanding the HP E1429 Digitizer Chapter 3

This allows the digitizer to synchronize other digitizers or events. The
commands used to output the arm signal are:

OUTPut:EXTernal[1]:FEED <source >

• <source > = "ARM[:STARt|SEQuence[1]]"

The "Ext 1" BNC port goes low when the arm occurs.

• <source > = "RFTRigger"

Outputs the arm signal to the "Ext 1" BNC port after the specified
arm delay has occurred.

OUTPut:ECLTrg<n >:FEED <source >

• <source > = "EXTernal[1]"

Outputs the same signal currently specified by the
OUTPut:EXTernal[1]:FEED command, however, with the polarity
inverted.

OUTPut:TTLTrg<n >:FEED <source >

• <source > = "ARM[:STARt|SEQuence[1]]"

Outputs the arm signal to the specified TTLTRG trigger line as it is
received.

Chapter 3 Understanding the HP E1429 Digitizer 119

Routing the Signal to a Source

The arm signal can be routed to the locations described above, provided the
port or trigger line is not also used as an input for a reference clock source,
arm source, or trigger source. Summarized below are the external sources
available to the digitizer:

External reference clock sources: "Ext 2" BNC port, ECLTRG<n > trigger
line

External arm sources: "Ext 1" BNC port, ECLTRG<n > trigger line,
TTLTRG<n >* trigger line

External trigger sources: "Ext 1" BNC port, "Ext 2" port, ECLTRG<n >
trigger line, TTLTRG<n >* trigger line

If one of these ports or trigger lines is an input source, then that same port
or line cannot be used to route (OUTPut) the signal.

Enabling the Synchronization Signal

In order for the arm synchronization signal to be routed to the "Ext 1" port
or to an ECLTRG or TTLTRG trigger line, the routing must be enabled.
This is done with the commands:

OUTPut:EXTernal[1][:STATe] <mode >

OUTPut:ECLTrg<n >[:STATe] <mode >

OUTPut:TTLTrg<n >[:STATe] <mode >

For each command, the <mode > settings are:

ON - enables the port or trigger line to route the signal.
OFF - disables the port or trigger line from routing the signal.

Multiple TTLTRG trigger lines are individually enabled or disabled by
executing the OUTP:TTLT<n >:STAT command for each line.

Note The TTLTRG trigger lines are not independent with regard to the
synchronization signal supplied by FEED. This means that all TTLTRG
trigger lines enabled by OUTP:TTLT<n >:STAT will carry the same
synchronization pulse.

120 Understanding the HP E1429 Digitizer Chapter 3

Triggering the
Digitizer

After the digitizer is armed it enters the wait-for-trigger state. Thus, when
trigger signals are received, the digitizer samples the inputs on its channels
(Figure 3-5). The hardware associated with triggering the digitizer is
controlled by the SCPI TRIGger subsystem, and by selected commands in
the SENSe subsystem. The commands used in those subsystems include:

TRIGger
[:STARt|SEQuence[1]]

:COUNt <count >
[:IMMediate]
:SOURce <source >
:TIMer1 <period >
:TIMer2 <period >

[SENSe[<chan >]]
:SWEep

:OFFSET
 :POINts <count >
:POINts <count >

TRIGger and SENSe
Subsystems Overview

The following information summarizes each command in the TRIGger
subsystem and the two commands from the SENSe subsystem. The
Command Reference (Chapter 4) contains detailed information on the
parameter settings and on reset conditions.

Setting the Trigger
Source

The trigger source specifies the signal which triggers the digitizer to take a
reading. The source is specified with the command:

TRIGger[:STARt]:SOURce <source >

The <source > parameters are:

• BUS - HP-IB Group Execute Trigger (GET) commmand or the
*TRG common command.

• ECLTrg0/ECLTrg1 - the VXIbus ECLTRG0 or ECLTRG1 trigger
lines.

• TTLTrg<n > - the VXIbus TTLTRG0 through TTLTRG7 trigger
lines.

• EXTernal1 - the "Ext 1" input port.

• EXTernal2 - the "Ext 2" input port.

• HOLD - suspend triggering.

• TIMer - sample rate is specified by the TRIGger:STARt:TIMer1
command. The rate is derived from a reference specified by the
SENSe:ROSCillator subsystem. TIMer is the default trigger source.

Chapter 3 Understanding the HP E1429 Digitizer 121

• VME - sample and/or transfer data from memory to the VME (VXI
data transfer) bus when the data register at offset 12
(0C16) in A24 address space is accessed.

The Sample Period The sample period is the interval at which the digitizer takes readings. The
sample period is derived from a reference which can be the digitizer’s
internal 20 MHz oscillator, or a reference from an external source (see "The
Digitizer Reference Clock").

Setting the Sample
Period

When the trigger source is TIMer, the sample period is set with the
command:

TRIGger[:STARt]:TIMer1 <period >

The TIMer trigger source derives the sample period from the reference
source (see "The Digitizer Reference Clock"). The period is a 1, 2, 4, 10, 20,
40 through 1E8, 2E8, 4E8 multiple of the reference source. Programmed
sample periods that are not an exact 1, 2, 4, ... multiple are rounded to the
nearest multiple of the source. If the digitizer cannot produce a sample rate
that is within 1% of the specified sample rate, bit 2 of the Questionable
Signal Status Group condition register is set.

The sample period required can be determined two ways. First, to take a
given number of samples of a signal with frequency (f), the sample period is
computed as:

<period > = signal period / number of samples

The reference is then divided by a value (N) which gives the sample period.
For example, assuming the digitizer’s 20 MHz oscillator is used and given
the following:

input signal frequency = 1 kHz
number of samples = 100

then the <period > specified by TRIG:STAR:TIM1 is:

1 ms / 100 = 10 µs

122 Understanding the HP E1429 Digitizer Chapter 3

To get the 10 µs sample period (100 kHz rate), the digitizer processor
divides the reference by 200 (N):

20 MHz / N = 20 MHz / 200 = 100 kHz
1 / 100 kHz = 10 µs

Oversampling The Nyquist criteria states that the sample rate must be at least 2 times the
maximum frequency component of the input signal. To limit aliasing, it is
recommended that a sample rate 4 times or greater the maximum frequency
component be used. For example, to oversample at a frequency four times
or 10 times the maximum frequency component, the sample period is
computed as:

<period > = 1 / 4(fc)

<period > = 1 / 10(fc)

The minimum number of samples (i.e. <size > or TRIGger:STARt:COUNt)
to take is determined by:

sample count = signal period (fundamental) / [1 / 4(fc)] or [1 / 10(fc)]

Dual Rate Sampling TheHP E1429 digitizer’s dual rate sampling feature allows pre-arm
readings and post-arm readings to occur at different sample rates. The
following trigger sources specify dual rate sampling:

• DECLtrg - VXIbus trigger line ECLTRG0 paces pre-arm readings,
ECLTRG1 paces post arm readings.

• DEXTernal - input port "Ext 1" paces pre-arm readings, input port
"Ext 2" paces post-arm readings.

• DTIMer - TRIGger[:STARt]:TIMer1 paces pre-arm readings,
TRIGger[:STARt]:TIMer2 paces post-arm readings.

When the dual rate sampling trigger source is DTIM, one sample rate must
equal the reference period. For example, if the digitizer’s 20 MHz oscillator
is used, one sample rate must be 50 ns. Similarly, if VXI CLK10 is used,
one sample rate must be 100 ns (1/10 MHz). If the reference source for
DTIM is ECLT0, ECLT1, or EXT2, one rate must be equal to the reference
period. The other rate can be any other valid sample rate given the reference
source.

When the dual rate sampling trigger source is DECL or DEXT, both
sampling rates can be any periods you choose.

Chapter 3 Understanding the HP E1429 Digitizer 123

Note It is recommended that pre-arm readings use the faster of the two sample
rates. One additional sample pulse at the pre-arm rate, after the arm occurs,
is required for the sample rate to change. The digitizer does not sample on
this additional pulse. Post-arm sample pulses may be ignored depending on
how fast they occur following the rate change. Refer to Appendix A -
"Specifications", for additional information on dual rate sampling
characteristics.

The Digitizer
Reference Clock

When the digitizer trigger source is TIMer or DTIM (dual rate sampling),
the sample (reading) rate is derived from a reference clock (Figure 3-5). The
commands used to select the clock source and its frequency are part of the
SENSe subsystem:

SENSe[<chan >]
:ROSCillator

:EXTernal
:FREQuency <frequency >

:SOURce <source >

Setting the Reference
Source

The reference source is set with the command:

SENSe[<chan >]:ROSCillator:SOURce <source >

The reference sources are:

• CLK10 - the VXIbus 10 MHz clock.
• ECLTrg0 - the VXIbus ECLTRG 0 trigger line.
• ECLTrg1 - the VXIbus ECLTRG 1 trigger line.
• EXTernal2 - the digitizer’s Ext 2 BNC port.
• INTernal - the digitizer’s internal 20 MHz oscillator. This is the

default source.

Specifying the External
Reference Frequency

When the trigger source is TIMer or DTIM, and the clock source is one of
the following:

ECLTrg0
ECLTrg1
EXTernal2

the digitizer processor must be informed of the reference frequency in order
for TRIGger:STARt:TIMer1 or TRIGger:STARt:TIMer2 to generate the
correct sample rate. This is done with the command:

SENSe[<chan >]:ROSCillator:EXTernal:FREQuency <frequency >

124 Understanding the HP E1429 Digitizer Chapter 3

Note An active reference clock (oscillator) is required for the digitizer to
recognize and accept arm signals.

Setting the Trigger
Count

The trigger count is the total number of readings (pre- and post-arm) per
arm event. The trigger count is normally set by the <size > parameter of the
CONFigure and MEASure commands. However, when you want to change
the total reading count without entirely re-configuring the digitizer, the
reading count (trigger count) can be set with either of the following
commands:

TRIGger[:STARt]:COUNt <count >

SENSe[<chan >]:SWEep:POINts <count >

Setting the Pre-Arm
Reading Count

Pre-arm readings are samples the digitizer takes before an arm signal is
accepted. Pre-arm readings start after the digitizer receives the
INITiate[:IMMediate] command. Readings continue until the pre-arm
reading count is reached, and until the arm is received. The command which
sets the minimum number of pre-arm readings is:

SENSe[<chan >]:SWEep:OFFSet:POINts <count >

<count > is specified as a negative number. You must specify at least three
pre-arm readings and seven post-arm readings. Refer to the SENSe
subsystem in Chapter 4 - "Command Reference" for more details on setting
the pre-arm reading count.

If the pre-arm reading count is reached and the arm has not occurred, the
readings continue and overwrite previous readings. When the arm occurs,
the most recent number of <count> readings are stored in memory. If an
arm occurs before the pre-arm reading count is reached, the arm is ignored
and error -212 "Arm ignored" is generated.

Sending an Immediate
Trigger

In some applications the user may want to manually issue a sample trigger.
This is accomplished with the command:

TRIGger[:STARt][:IMMediate]

When the digitizer is armed (wait-for-trigger state), executing
TRIG:STAR:IMM takes a reading regardless of the specified trigger source.
The trigger count is decremented by 1 and the selected trigger source
remains unchanged. TRIG:STAR:IMM is often used with
TRIG:SOUR:HOLD to suspend triggering until the trigger is issued by
TRIG:STAR:IMM.

Chapter 3 Understanding the HP E1429 Digitizer 125

Trigger
Synchronization

Signals

The trigger and reference clock signals can be "routed" to the following
locations:

"Ext 1" BNC port
ECLTRG trigger line

This allows the digitizer to synchronize other digitizers or events. The
commands used to output the trigger and reference signals are:

OUTPut:ECLTrg<n >:FEED <source >

• <source > = "TRIGger[:STARt|SEQuence[1]]"

Outputs a trigger signal to the ECLT<n > trigger line each time a
convert pulse is sent to the A/D converter.

• <source > = "SENSe[1|2]:ROSCillator"

The significant edge of an ECL signal is the rising edge. Therefore,
the ECLTrg <n > trigger line goes high with the falling edge of an
external reference signal, and goes high with the rising edge of

reference sources ECLTrg<n > and CLK10.

• <source > = "EXTernal[1]"

Outputs the same signal currently specified by the
OUTPut:EXTernal[1]:FEED command; however, the polarity is
inverted.

126 Understanding the HP E1429 Digitizer Chapter 3

OUTPut:EXTernal[1]:FEED <source >

• <source > = "TRIGger[:STARt|SEQuence[1]]"

Outputs a trigger signal to the "Ext 1" BNC port each time a convert
pulse is sent to the A/D converter.

• <source > = "SENSe[1|2]:ROSCillator"

The significant edge of a TTL signal is the falling edge. Therefore,
the output goes low with the falling edge of an external reference
signal, and goes low with the rising edge of reference sources
ECLTrg<n > and CLK10.

• <source > = "SENSe:SWEep:OFFSet:POINts"

The normally high output port goes low after the pre-arm reading
count has been reached.

Chapter 3 Understanding the HP E1429 Digitizer 127

OUTPut:TTLTrg<n >:FEED <source >

• <source > = "READy"

The level on the selected TTLTRG trigger line goes low while the
trigger system is initiated. The line goes high after the readings
complete, and then goes low again for the next burst of readings.

When taking post-arm readings only, the signal returns high when the arm
count and trigger count are both satisfied.

Routing the Signal to a Source

The trigger signal can be routed to the locations described above, provided
the port or trigger line is not also used as an input for a reference clock
source, arm source, or trigger source. Summarized are the external sources
available to the digitizer:

External reference clock sources: "Ext 2" BNC port, ECLTrg<n > trigger
line

External arm sources: "Ext 1" BNC port, ECLTrg<n > trigger line,
TTLTrg<n > trigger line

External trigger sources: "Ext 1" BNC port, "Ext 2" port, ECLTrg<n >
trigger line, TTLTrg<n > trigger line

If one of these ports or trigger lines is a source, then that same port or line
cannot be used to route (OUTPut) the signal.

128 Understanding the HP E1429 Digitizer Chapter 3

Enabling the Synchronization Signal

In order for the trigger or clock synchronization signals to be routed to the
"Ext 1" BNC port or to an ECLTRG or TTLTRG trigger line, the routing
must be enabled. This is done with the commands:

OUTPut:EXTernal[1][:STATe] <mode >

OUTPut:ECLTrg<n >[:STATe] <mode >

OUTPut:TTLTrg<n >[:STATe] <mode >

For each command, the <mode > settings are:

ON - enables the port or trigger line to route the signal.
OFF - disables the port or trigger line from routing the signal.

Note The ECLTRG trigger lines are independent with regard to the
synchronization signal supplied by FEED. This means that trigger lines
ECLT0 and ECLT1 (when enabled) can carry different synchronization
pulses.

The Analog-to-Digital Converter

Each channel on the HP E1429 digitizer has a 12-bit, 20 MSample/second
analog-to-digital (A/D) converter. A paper describing the A/D converter,
which was developed by Hewlett-Packard Laboratories, is available from
the following:

Jewett, R., et al., "A 12b 20MS/s Ripple-through ADC", ISSCC DIGEST
OF TECHNICAL PAPERS, pp. 34-35, Feb. 1992.

Data Flow, Storage, and Conversions

This section of the chapter covers the data flow from the A/D to digitizer
memory and to the VME (VXI data transfer) bus. A block diagram of the
data flow is shown in Figure 3-7.

Digitizer Data Flow The HP E1429 digitizer takes readings (samples) on both channels
simultaneously, even if an input signal is applied to only one channel. Each
12-bit reading is combined into a single 24-bit number which is sent to the
data processor. The processor converts the readings from ECL levels to
TTL levels.

Chapter 3 Understanding the HP E1429 Digitizer 129

Readings are stored and retrieved from memory as single 24-bit numbers
(see "How Readings are Stored"). Each 12-bit reading sent to the VME
(VXI data transfer) bus directly from the A/D or from memory is expanded
to 16-bits. When both channels readings are selected, the data is expanded

to 32-bits; 16-bits per reading.

Similarly, readings sent to the Local bus from either the A/D or memory are
expanded to 16- or 32-bits, depending on whether one or two channels is
selected. The readings are transferred eight bits at a time, however.

How Readings are
Stored

The digitizer can store 512K (524,288) readings from each channel in
memory. The readings, which are taken simultaneously, are stored as a
single 24-bit number. A "pair" of readings stored in a single memory
location is shown in Figure 3-8.

Data is not available to the user in the internal storage (12-bit) format
shown. Instead, readings retrieved from memory are expanded to 16- or
32-bits (see "Retrieving Readings from Memory").

Assigning a Data Label When a digitizer reading is expanded to 16- or 32-bits as it is retrieved from
memory, the four least significant bits are normally set to ’0’s. You can
assign the bits a decimal value from 0 to 15 using the command:

DIAGnostic:CHANnel[<chan >]:LABel <label >

Figure 3-7. HP E1429 Digitizer Data Flow

130 Understanding the HP E1429 Digitizer Chapter 3

Assigning a data label allows you to identify the channel from which the
readings came. The assigned lable appears in the four least significant bits
of each reading when the readings are retrieved in the digitizer’s
PACKed,16 data format. The label is ignored if the data format is ASCii,9
or REAL,64.

Segmented Memory The HP E1429 digitizer is capable of pre-arm and post-arm readings.
Pre-arm readings are taken after the digitizer is INITiated and before an arm
is received. Post-arm readings are taken after an arm is received. When
multiple reading sequences consist of pre- and post-arm readings, digitizer
memory is partioned into segments (Figure 3-9).

When the reading sequence consists of pre-arm and post-arm readings, the
number of segments is equal to the arm count. The maximum number of
segments (arm count) under these conditions is 128.

Figure 3-8. HP E1429 Digitizer Reading Storage

Figure 3-9. When the Digitizer Segments Memory

Chapter 3 Understanding the HP E1429 Digitizer 131

Figure 3-10. Memory Segments with Pre - and Post-arm Readings

132 Understanding the HP E1429 Digitizer Chapter 3

Figure 3-10 shows the relationship between pre- and post-arm readings and
memory segments.

 The MEMory
Subsystem

The digitizer’s MEMory subsystem contains commands which enable
non-volatile memory and which query the charge on the battery maintaining
memory. The commands in the subsystem include:

MEMory
:BATTery

:CHARge?
[:STATe] <state >

Enabling Non-Volatile
Memory

Digitizer memory is non-volatile when the battery maintaining memory is
enabled with the command:

MEMory:BATTery[:STATe] < state >

Chapter 3 Understanding the HP E1429 Digitizer 133

The <state > settings are:

ON - enables the battery; memory is non-volatile.
OFF - disables the battery; memory is lost when power is cycled
(factory setting).

If memory is to be battery-backed, the battery must be enabled before
readings are taken.

Cycling power or resetting the digitizer does not affect the battery state set
by MEMory:BATTery:STATe. Battery life is normally four years if it
remains enabled. Battery life can be extended to approximately seven years
if it is disabled when non-volatile memory is not required.

Determining the
Battery Charge

To ensure that the battery has sufficient charge to maintain memory, the
command:

MEMory:BATTery:CHARge?

can be sent. This command returns a ’1’ if the battery has sufficient charge
to maintain memory. If the battery does not have sufficient charge, a ’0’ is
returned. Leaving the digitizer in the VXI mainframe with the power on will
not recharge the battery. A battery with insufficient charge must be
replaced.

Digitizer Data
Formats

There are three digitizer data formats available when readings are taken
using MEASure or READ?, or when the readings are FETCh(ed)? from
memory. These formats are set using the FORMat subsystem which consists
of the command:

FORMat[:DATA] <type > [,<length >]

The formats available are:

 <type > <length >

 ASCii 9
 PACKed 16
 REAL 64

ASCii,9 format returns/retrieves data as comma (,) separated ASCII
numbers (Figure 3-11). This is the default format.

134 Understanding the HP E1429 Digitizer Chapter 3

PACKed,16 format returns signed, 16-bit numbers preceded by the
ANSI/IEEE Standard 488.2-1987 Definite Length Arbitrary Block header
(Figure 3-11). Packed readings always represent a value between -1.0225
and +1.0230 or an overrange value, and must be converted (by the user) to
the actual reading value (see "Packed Reading Conversions").

REAL,64 format returns/retrieves data as 64-bit REAL numbers also
preceded by the ANSI/IEEE Standard 488.2-1987 Definite Length Arbitrary
Block header (Figure 3-11). REAL,64 readings are converted by the
digitizer to the actual reading value. Thus, no further conversions are
required.

A line feed (LF) and End-Or-Identify (EOI) follow the last reading in all
formats.

The Definite Length
Arbitrary Block Header

In the definite length arbitrary block header:

• # indicates the data is in an arbitrary block

• < non-zero digit > is a single digit number which shows the number
of digits contained in "digits". For example, if the "digits" value is
100 or 2000, the "non-zero digit" value is 3 or 4, respectively.

• < digits > is the number of 8-bit data bytes which follow the header.

• <8-bit data byte >are the digitizer readings. For the PACKed
format, each reading is two bytes. For the REAL,64 format, each
reading is eight bytes.

Following the last reading in each block is the line feed (LF) character. The
line feed must be read from the buffer to prevent error -410 "Query
INTERRUPTED" occurs the next time data is read from the digitizer.

Packed Reading
Conversions

When the packed reading format is specified with the FORMat command,
or when readings are read from memory and transferred to the VME bus or
Local bus, the readings must be converted from signed, two’s complement
numbers to voltages. Additionally, when FETChing packed readings, the
definite length arbitrary block header must be removed. This section
explains how to separate the block header from the packed data, and how to
convert the data to voltages.

Chapter 3 Understanding the HP E1429 Digitizer 135

Removing the Arbitrary
Block Header

Following are two methods of removing the block data header. The first
method uses the HP BASIC programming language. The second method
uses a command from the HP 82335 HP-IB Command Library for C.

HP BASIC Example

DIM Ndig$[1],Count$[9]!dimension parameters for header

Count$ = ""!set count to zeros

ASSIGN @X TO 70905;FORMAT OFF!return unformatted data

OUTPUT 70905;"FETC1?"!retrieve readings from channel 1

ENTER @X USING "#,X,K,K";Ndig$;Count$[1;VAL(Ndig$)]

!remove header preceding the data

ALLOCATE INTEGER Meas_data(1:VAL(Count$)/2)

!allocate an array to hold the data

ENTER @X;Meas_data(*)!read in the measurement data

ENTER 70905 USING "B";Junk!remove the line feed character

The parameters of the ENTER ... USING statement function as follows:

- terminate ENTER on last ENTER item (EOI)

X - skip the # character of the header

K - enter the <non-zero digit > part of the header into the Ndig$ variable

K - enter the <digits > part of the header into the Count$ locations specified

B - retrieve one byte (the line feed) from the digitizer

Signal Range Resolution Signal Range Resolution

-0.1023 to 0.10235
-0.2046 to 0.2047

-0.5115 to 0.51175
-1.0230 to 1.0235
-2.0460 to 2.0470

0.00005
0.00010
0.00025
0.0005
0.0010

-5.115 to 5.1175
-10.230 to 10.235
-20.460 to 20.470
-51.15 to 51.175
-102.30 to 102.35

0.0025
0.005
0.010
0.025
0.05

Table 3-2. Reading Resolutions for Packed Data Conversions

136 Understanding the HP E1429 Digitizer Chapter 3

C Language Example (16-bit readings)

/* dynamically allocate memory for readings */

rdgs = malloc(20 * sizeof(int));

/* set number of bytes placed in memory, and number of bytes read */

swap = sizeof(int);/* place 2 bytes/reading in memory */

bytes = 20 * swap;/* read 40 bytes */

IOOUTPUTS(ADDR, "READ?", 5);/* retrieve the readings */

IOENTERAB(ADDR, rdgs, &bytes, swap); /* enter the readings */

/* and remove the block header */

/* Remove line feed which trails the last data byte */

length = 1;

IOENTERS(ADDR, lf_remove, &length);

The command which removes the block header from the readings is
IOENTERAB. The parameters passed to IOENTERAB are:

ADDR - the address of the digitizer

rdgs - the array name which will store the readings

bytes - a variable specifying the maximum number of bytes to be read

Condition Reading A/D Code

A/D Overrange
(positive reading)

+9.900000E+037 +2047

A/D Overrange
(negative reading)

-9.900000E+037 -2046

*S/E Input Amplifier
Overrange

or
Differential Input

Amplifier Overrange

-9.900000E+037 -2048

*A single-ended input amplifier overrange occurs when the input
signal exceeds ± 5V.

A differential input amplifier overrange occurs on the 0.1V, 0.2V, 0.5V,
1V, 2V, and 5V ranges when the signal on the HI or LO input exceeds
±11V. An overrange occurs on the 10V, 20V, 50V, and 100V ranges
when the signal on the HI or LO input exceeds ±110V.

Table 3-3. Digitizer Overload Readings

Chapter 3 Understanding the HP E1429 Digitizer 137

Transfer Method Transfer Rate
(approximate)

Transfer Mode* Reading
Type

Local Bus 80 MBytes/s Real Time /
Post Measurement

Pre-arm /
Post-arm

Embedded Controller
(VME bus with SICL)

8 MBytes/s Real Time /
Post Measurement

Pre-arm /
Post-arm

DIAGnostic:UPLoad:SADDress?
(VME bus)

80 KBytes/s Real Time /
Post Measurement

Pre-arm /
Post-arm

READ?/FETCh?
(VME bus)

11 KBytes/s Post Measurement Pre-arm /
Post-arm

* Real time readings come directly from the A/D. Post measurement readings come from
memory. The transfer mode is set using the digitizer’s VINStrument:LBUS:FEED and
VINStrument:VME:FEED commands. See "‘VME Bus DataTransfers" and "Local Bus Data
Transfers" later in this chapter for more information.

Table 3-4. HP E1429A/B Data Transfer Methods and Rates

Figure 3-11. Retrieving Readings from Digitizer Memory

138 Understanding the HP E1429 Digitizer Chapter 3

swap - a variable specifying how the bytes are placed into memory
(2 bytes per reading)

Converting Packed
Readings

The equation for converting packed readings is:

readingvoltage = (readingpacked / 16) * reading resolution

Reading resolution is a function of the signal range. The resolutions for the
digitizer signal ranges are given in Table 3-2.

Overrange Indications The digitizer indicates an overrange condition (input greater than the
selected range can measure) by returning the values shown in Table 3-3.

An amplifier overrange (single-ended or differential input) sets bit 0 in the
digitizer’s Questionable Signal Status Register. However, the overrange
does not generate an error message.

Retrieving Readings Each time the digitizer is INITiated it takes a new set of readings. Readings
are retrieved directly from the A/D converters or from digitizer memory
(Figure 3-11). Each new set of readings overwrites any readings currently in
memory. Retrieved readings are transferred over the VME (VXI data
transfer) bus or over the Local bus. The methods used to retrieve readings
are listed below, relative to their transfer rates.

• READ? (page 140) slowest
• FETCh? (page 140)
• DIAGnostic:UPLoad:SADDress? (page 142)
• VME bus Data register access(page 148)
• Local bus transfers (page 158) fastest

These methods are described in the following paragraphs. Table 3-4
summarizes the digitizer’s data transfer modes and transfer rates.

Chapter 3 Understanding the HP E1429 Digitizer 139

Retrieving
Readings Using

READ?

The most common method of retrieving readings from the digitizer is using
the READ? subsystem which consists of the command:

READ[<chan >]?

The <chan > parameters are:

1 - returns readings from channel 1 (default channel)
2 - returns readings from channel 2

READ? is equivalent to executing the following sequence of commands:

• ABORt - aborts the readings after the arm count and trigger count is
reached.

• INITiate - places the digitizer in wait-for-arm state.

• FETCh[<chan >]? - retrieves the readings from memory and places
them on the VME (VXI data transfer) bus.

As a result, READ? is used for applications that require readings to be
immediately available to a computer, rather than remaining in digitizer
memory.

Because each READ? initiates the digitizer, executing READ1? followed
by READ2? causes the digitizer to take two sets of measurements. If it is
necessary to obtain readings from both channels during the same period, use
INIT and FETCh? which are described in the next section.

Retrieving
Readings Using

FETCh?

One method of retrieving readings from memory involves the digitizer’s
FETCh? command shown below. FETChing readings from memory places
them on the VME (VXI data transfer) bus
(Figure 3-11).

FETCh[<chan >]?
:COUNt?
:RECover?

FETChing Readings
from Memory

Recall that the HP E1429 digitizer samples both channels simultaneously
and stores the readings as a single 24-bit number (Figure 3-8). Using the
FETCh? command, each channel’s readings can be retrieved from memory
individually.

140 Understanding the HP E1429 Digitizer Chapter 3

The commands used to fetch (retrieve) readings from memory are:

FETCh[<chan >]?

If the <chan > parameter is ’1’ or is not specified, the readings (pre- and
post-arm) from channel 1 and from the most recent INITiate - ARM -
TRIGger sequence are retrieved. If the <chan > parameter is ’2’, the
readings from channel 2 are retrieved.

FETCh[<chan >]:RECover?

This command is used to retrieve readings from non-volatile
(battery-backed) memory following a power failure. The command is also
used to retrieve readings after a digitizer configuration change or reset.
Attempting to fetch (retrieve) readings using FETCh[<chan >]? following
any of these conditions would cause error 230 "Data corrupt or stale" to
occur.

If the <chan > parameter is ’1’ or is not specified, the readings from channel
1 are recovered. If the <chan > parameter is ’2’, the readings from channel 2
are recovered.

Determining the
Number of Readings

FETCh(ed)

The number of readings that FETCh? retrieves can be determined two ways.
The first way is with the command:

FETCh[<chan >]:COUNt?

This command returns the total number of readings (pre- and post-arm) that
the FETCh? command will retrieve. Since both channels always take the
same number of readings, either channel can be specified.

The second way to determine the number of readings is to multiply the arm
count by the trigger count. These two counts can be obtained from the
queries:

ARM:STARt:COUNt? (arm count)

TRIGger:STARt:COUNt? (trigger count)

Separating Pre- and
Post-Arm Readings

The number of pre-arm readings and the number of post-arm readings are
related to the total reading count as follows:

post-arm readings = total readings - pre-arm readings

The FETCh[< chan >]:COUNt? command and the ARM:STARt:COUNt?
and TRIGger:STARt:COUNt? queries described previously return the total
number of readings. The pre-arm count is determined by taking the absolute
value of the query:

Chapter 3 Understanding the HP E1429 Digitizer 141

SENSe[< chan>]:SWEep:OFFSet:POINts?

This command will return 0 if no pre-arm readings are specified, or a
negative number representing the number of pre-arm readings.

Note If the digitizer measurement sequence is aborted (ABORt command), the
FETCh[<chan >]:COUNt? command is the only way to determine the
number of readings to be retrieved by FETCh?. If pre-arm readings are
included in the measurement sequence, there is no way to determine the
number of post-arm readings. The digitizer will attempt to return up to
TRIGger[:STARt]:COUNt readings.

Using
DIAGnostic:UPLoad:

SADDress?

A third method of retrieving readings from memory is using the
HP E1406 Command Module command:

DIAGnostic:UPLoad:SADDress? <address >, <byte_count >

<address > is the address of the digitizer’s data register in A24 address
space. The data register’s offset in A24 space is 12 (0C16). The A24 base
address can be found as described in the section "Determining the A24 Base
Address" later in this chapter.

<byte_count > is the number of (reading) bytes to upload from the digitizer.
Because the HP E1405/06 Command Module is only capable of 8- and
16-bit data transfers over the VXI backplane, the byte_count parameter will
always be 2 (bytes) times the number of readings.

In systems using an HP E1405/06 Command Module and an external
controller, this command is the fastest method of transferring readings from
memory.

Note Appendix C "Register-Based Programming" contains an example program
in which DIAGnostic:UPLoad:SADDress? is used to retrieve readings from
digitizer memory.

142 Understanding the HP E1429 Digitizer Chapter 3

Memory Management

In certain applications it may be necessary to retrieve a selected set of
readings from digitizer memory. This section explains where readings are
stored in memory and how to determine the memory addresses of any set of
readings.

The DIAGnostic
Subsystem

This section introduces two commands used to locate and retrieve readings
from memory. These commands, which are part of the DIAGnostic
subsystem, are:

DIAGnostic
:FETCh[<chan >]? <start_addr >, <count >
:MEMory[<chan >]

:ADDResses?

DIAGnostic:FETCh? returns count number of readings starting at address
start_addr from channel chan. DIAGnostic:MEMory:ADDResses? returns

ARM:STARt:COUNt Number of
Memory

Segments

Maximum Readings
(TRIGger:STARt:COUNt)

1 1 524,288

2 2 262,144

3 - 4 4 131,072

5 - 8 8 65,536

9 - 16 16 32,768

17 - 32 32 16,384

33 - 64 64 8,192

65 - 128 128 4096

NOTE: If the non-volatile mode of memory is enabled
(MEMory:BATTery:STATe ON), then all of the maximum reading counts shown
above decrease by four. These four memory locations in each segment hold
the data necessary to recover all readings after a power failure.

Table 3-5. Arm Count Vs. Memory Segments

Chapter 3 Understanding the HP E1429 Digitizer 143

a list of 32-bit values containing memory address information for each
segment. The use of these commands is shown in the following paragraphs.

Locating Unsegmented
Readings

Unsegmented readings (SENSe:SWEep:OFFSet:POINts 0) are always
contiguous and are stored at:

address location 524287 - (num_readings - 1)

where num_readings = ARM:COUN * TRIG:COUN + pad, and pad are
extra counts to make the total reading count divisible by 4. Therefore, the
first reading is stored at address location
524287 - (num_readings - 1).

As an example, assume ARM:COUN 3 and TRIG:COUN 53. Then:

num_readings = 3 * 53 + 1 = 160
(1 is the pad count added to the total reading count)

first data point address = 524287 - (160 - 1) = 524128

This address, together with the count of 159 (3*53) are specified in the
DIAGnostic:FETch? command to retrieve the readings (from channel 1):

DIAG:FETC1? 524128,159

144 Understanding the HP E1429 Digitizer Chapter 3

Locating Segmented
Readings

For segmented readings (SENSe:SWEep:OFFSet:POINts ≤ -3), the
algorithm for locating the readings is similar to that for unsegmented
readings, but is slightly more complicated. The number of memory
segments is determined by the specified arm count (ARM:STARt:COUNt)
as shown in Table 3-5.

The algorithm for determining where the first reading of each segment
begins is:

first reading in segment = ending segment address - (num_readings - 1)

where num_readings = TRIG:COUN + pad, and pad are extra counts to
make the total reading count divisible by 4. The memory partition
composed of num_readings is circular, and if large amounts of pre-arm data
(readings) are taken, the data keeps overwriting itself until the arm is
received and the post-arm count finishes. NOTE that the actual desired
starting point for retrieving data will be:

last_data_point_address - (TRIG_COUN - 1)

which in most cases will not be the starting address if the segment has
wrapped around at least once with pre-arm data. The digitizer firmware
keeps track of the last address used in each segment and automatically reads
the data in the proper order when a FETCh?, VME bus transfer, or Local
bus data transfer is performed.

The DIAGnostic:MEMory:ADDResses? command returns a list of 32-bit
integers for each segment in memory. In each 32-bit list, bit 1 is the aborted
flag and bit 0 is the memory wrapped flag. Bit 31 through
bit 2 is the value of the address counter for that segment. Thus, to obtain the
memory address only, a divide by 4 (right shift of 2) of the 32-bit list must
be done. Since the address counter points to the memory location where the
next reading will be stored, the address should be decremented by 1 before
use.

As an example, assume: ARM:COUN 5; SENS:SWE:POIN -20;
TRIG:COUN 35

Because of the ARM:COUN specified memory is divided into eight
segments (Table 3-5), each of which could contain up to 65536 readings.
For ARM:COUN 5, only five of the eight possible segments will be used,
starting with the segment that begins at address 0 and ends at address 65535.

The ending address for each of the five segments can be calculated from the
equation:

Chapter 3 Understanding the HP E1429 Digitizer 145

ending segment address = segment_number * 65536 - 1

This yields the following ending addresses for the five segments:

segment 1 = 65535
segment 2 = 131071
segment 3 = 196607
segment 4 = 262143
segment 5 = 327679

Assume you want to read the data from segment number 4. Then, the
number of readings = 35 + 1 = 36 (padded to make divisable by 4). The
first reading in the segment is at address:

first address = ending segment address - (number of readings - 1)

262143 - (36 - 1) = 262108

If the readings in the memory segment did not wrap around, the address
262108 and count 35 would be specified in the DIAGnostic:FETCh?
command.

If, for example, readings in the segment did wrap around, then the starting
address specified in the DIAGnostic:FETCh? command will not be the first
address in the segment where a reading is stored. To determine the starting
address, use the DIAGnostic:MEMory:ADDRess? command and get the 32
bits representing the 4th segment (this would be the 13th through 16th bytes
in the block of data returned).

Assume that this 32-bit value is FFF8116. Bit 0 is high (’1’) indicating
readings have wrapped around the segment. Bit 1 is low (’0’), indicating
that this segment completed normally and was not aborted (by the user with
the ABORt command).

The address returned is divided by 4 so that the aborted and wrapped bits
are discarded, and the address counter value of 3FFE016 (26211210)
remains. To retrieve the most recent 35 readings (with a circular buffer size
of 36), the address of the first reading to retrieve is calculated as:

starting address = address counter value - TRIGger:COUNt +buffer size

 262112 - 35 + 36

starting address = 262113

146 Understanding the HP E1429 Digitizer Chapter 3

Therefore, the DIAGnostic:FETCh? command would be executed as:

DIAG:FETC1? 262113,35

Figure 3-12. Digitizer Registers in A16 and A24 Address Space

Chapter 3 Understanding the HP E1429 Digitizer 147

VME Bus Data Transfers

Another method of transferring readings to the VME (VXI data transfer)
bus is with the digitizer’s VINStrument (Virtual INStrument) subsystem
and accessing the digitizer’s data register. This method, which combines
message-based (SCPI) programming and reading the data register directly,
is faster than the previous methods (READ?, FETCh?,
DIAGNostic:UPLoad:ADDRess?) in that readings can be retrieved from
the A/D converter or from memory in the A/D’s packed data format.

There are two modes of VME data transfers: real-time and post
measurement. In a real-time data transfer, reading the digitizer’s data
register triggers a measurement and returns the A/D reading to the VME bus
in the same measurement cycle. In a post measurement data transfer,
reading the register transfers a A/D reading from digitizer memory to the
VME bus.

How to select the transfer mode is covered in the section "Setting the VME
bus Transfer Mode". Examples of VME bus data transfers are listed in
Chapter 2 - "Using the Digitizer".

Locating the Data
Register

Access to the digitizer’s data register is through its address which is mapped
into A24 address space. At power-on, the system resource manager reads
the digitizer’s device type register (in A16 address space) to determine the
amount of A24 memory the digitizer needs (which is 4096 bytes). The
resource manager allocates a block of A24 memory for the digitizer and
writes the A24 base (starting) address into the digitizer’s offset register
(also in A16 space).

Figure 3-12 is an example of how the digitizer registers are mapped into
A16 and A24 address space. Appendix C contains additional register
programming information.

148 Understanding the HP E1429 Digitizer Chapter 3

Note The following information on determining the data register address is based
on the computer configuration shown in Figure 3-12, and on address
mapping as performed by the HP E1406 Command Module’s resource
manager. For configurations with embedded controllers or configurations
with a resource manager other than the HP E1406 Command Module, refer
to those manual(s) containing information on A24 address mapping.

Determining the A24
Base Address

There are three ways to determine the digitizer’s A24 base address:

1. Note the base address assigned by the resource manager at power-on.
The HP E1406 resource manager configuration sequence can be
monitored using an RS-232 terminal or printer. The "C-Size VXIbus
Systems Installation and Getting Started Guide" contains information
on connecting a terminal.

2. Execute the following HP E1406 Command Module command:

VXI:CONFigure:DeviceLIST? <logical_address>

The C language example programs disk contains the program
Query.C. By changing the line:

#define ADDR 70905L (E1429 digitizer address)

to:

#define ADDR 70900L (E1406 address)

and entering the command:

VXI:CONF:DLIS? 40(or the current E1429 logical address)

a program string similar to the following is returned when the
program executes:

vxi:conf:dlis? 40 = +40,+0,+4095,+448,+1,+0,MSG,A24,
#H00220000, #H00001000,Ready,"","","",MBinstr INSTALLED AT
SECONDARY ADDR 5"

The hexadecimal number in bold is the digitizer’s A24 base address.

3. Read the digitizer’s offset register in A16 address space. As shown in
Figure 3-12, the Offset register is one of the digitizer’s configuration
registers.

In a system where the HP E1406 Command Module allocates address

Chapter 3 Understanding the HP E1429 Digitizer 149

space, the A16 base address of the configuration registers is
computed as:

1FC00016 + (LADDR * 64)16

2,080,768 + (LADDR * 64)

where 1FC00016 is the starting location of the configuration register
addresses, LADDR is the digitizer’s logical address, and 64 is the
number of address bytes in A16 per VXI device.

The digitizer’s factory set logical address is 40. If this address is not
changed, the base address of the digitizer’s configuration registers in
A16 is:

1FC00016 + (40 * 64)16

1FC00016 + A0016 = 1FCA0016

or decimal

2,080,768 + (40 * 64)

2,080,768 + 2560 = 2,083,328

Given the A16 base address and the "offset" of the Offset register (06
from Figure 3-12), the digitizer’s A24 base address can be
determined as shown in the program A24_READ.C.

/* A24_READ.C - This program reads the digitizer’s A24 base address. */

/* Include the following header files */

#include <stdio.h>
#include <cfunc.h> /* This file is from the HP-IB Command Library */

#define CMD_MOD 70900L /* I/O path between the digitizer and the Command Module */

/* Function prototypes */

long get_base_addr(void);
Continued on Next Page

150 Understanding the HP E1429 Digitizer Chapter 3

/**/
void main(void)
{
long base_addr;/* variable for digitizer A24 base address */

base_addr = get_base_addr();/* function call to calculate and */
/* return digitizer A24 base address */

printf("\nA24 base address = %ld", base_addr);
}

/**/
long get_base_addr(void)
{
/* base address of (A24) offset register in A16 address space */
long base_addr = (0x1FC000 + (40 * 64)) + 6; /* digitizer logical address is 40 */

float a24offst;/* A24 offset from A16 offset register */

char rd_addr[80];/* command string variable */

/* Create the command string which reads the A24 base address from the offset register*/
sprintf(rd_addr, "DIAG:PEEK? %ld, %d", base_addr,16);

/* Send DIAG:PEEK? command */
IOOUTPUTS(CMD_MOD, rd_addr, strlen(rd_addr));

/* Read value from offset register */
IOENTER(CMD_MOD, &a24offst);

/* Multiply offset value by 256 for 24-bit address value */
a24offst *= 256.;

return (long)a24offst;
}

Multiplying the value of the offset register (a24offst) by 256 (10016)
converts the 16-bit register value to a 24-bit address.

Chapter 3 Understanding the HP E1429 Digitizer 151

The Data Register
Offset

The offset of the digitizer’s data register is 12 (0C16). The offset is added to
the A24 base address to form the complete register address:

0022000016 + 0C16 = 0022000C16

2,228,224 + 12 = 2,228,236

The offset of the data register can also be read with the SCPI command:

VINStrument[:CONFigure]:VME:SEND:ADDRess:DATA?

This command returns two values: A24,12. A24 indicates that the data
register is in A24 address space and 12 is the offset of the data register.

The VINStrument
Subsystem

The commands within the VINStrument subsystem used for VME data
transfers are shown below:

VINStrument
[:CONFigure]

:VME
:FEED <source >

 :MEMory
:INITiate

[:MODE] <mode >
:SEND

:ADDRess
:DATA?

VME Bus Transfer
Programming

Sequence

To configure the digitizer for VME bus data transfers:

• Use the CONFigure command and the low-level digitizer commands
to specify the number of readings, the expected value of the
readings, the input port, the arm source, etc.

• Use the TRIGger:STARt:SOURce command to set the trigger source
to VME (for real time data transfers only).

• Use the VINStrument subsystem to set the VME bus transfer
mode and data source.

• Use the INITiate:IMMediate command to initiate reading transfers.

Setting the VME Bus
Transfer Mode

The VME bus data transfer mode is set with the command:

VINStrument[:CONFigure]:VME[:MODE] <mode >

152 Understanding the HP E1429 Digitizer Chapter 3

The <mode > parameters are:

GENerate - VME bus data transfers are enabled
OFF - VME bus data transfers are disabled. At power-on or following a
reset, the <mode > is OFF.

Note When transferring data over the VME bus, the Local bus transfer mode
(HP E1429B) must be disabled. This is done with the command:

VINStrument[:CONFigure]:LBUS[:MODE] OFF

Setting the VME bus
Data Source

The source of the readings transferred over the VME bus is set with the
command:

VINStrument[:CONFigure]:VME:FEED <source >

The <source > parameters are given below. Sources beginning with
"MEMory: " are the post measurement sources (modes), sources beginning
with "CONVerter: " are the real time sources (modes).

" MEMory:CHANnel1": Channel 1 memory is the data source for the
VME bus. One 16-bit reading is returned.

" MEMory:CHANnel2": Channel 2 memory is the data source for the
VME bus. One 16-bit reading is returned.

" MEMory:BOTH": Both channels of memory are the data source for the
VME bus. In this mode, channel 1 will be output the first time the data
register is accessed, channel 2 is output the second time the data register is
accessed. One 16-bit reading is returned with each access.

" MEMory:BOTH32": Both channels of memory are the data source for
the VME bus. In this mode, accessing the data register returns a 32-bit
number where the high order 16 bits are the channel 2 reading and the low
order 16 bits are the channel 1 reading (see Figure 3-11).

" CONVerter:CHANnel1": The channel 1 A/D converter is the data
source for the VME bus. One 16-bit reading is returned.

" CONVerter:CHANnel2": The channel 2 A/D converter is the data
source for the VME bus. One 16-bit reading is returned.

Chapter 3 Understanding the HP E1429 Digitizer 153

" CONVerter:BOTH": Accessing the data register triggers both A/D
converters at the same time, and one 16-bit reading (channel 1) is returned.
Accessing the data register a second time returns the second 16-bit reading
(channel 2), but does not trigger the A/Ds.

" CONVerter:BOTH32": Accessing the data register triggers both A/D
converters at the same time, and one 32-bit number is returned. The high
order 16 bits are the channel 2 reading, and the low order 16 bits are the
channel 1 reading (Figure 3-11).

If it is necessary to identify readings from channel 1 and channel 2, a data
label can be assigned to the readings as described in the section "Assigning
a Data Label" on page 130.

Figure 3-13. Monitoring the Partition Window During Segmented Reading Transfers

154 Understanding the HP E1429 Digitizer Chapter 3

Reading the Data
Register

As shown in Figure 3-12, the digitizer’s data register is mapped into the
HP E1406 Command Module’s A24 address space. A command used to
read the data register is the Command Module command:

DIAGnostic:PEEK? <address >, <width >

<address >: the address (A24 base + offset) of the data register

<width >: the number of bits per digitizer reading. For the VME transfer
modes, width is 16 (bits) with the exception of modes "MEMory:BOTH32"
and "CONVerter:BOTH32", which are 32 bits. The HP E1406 Command
Module cannot do 32-bit transfers to/from the VME (VXI data transfer) bus.
However, 32-bit transfers at approximately 8 MByte/ second transfer rates
are possible using an embedded controller.

Note Additional information on the Command Module’s DIAGnostic:PEEK?
command is located in the HP E1406 User’s Manual. Chapter 2 "Using the
Digitizer" contains examples of 16-bit and 32-bit data transfers using an
embedded PC.

VME Bus Data Format Data is transferred (real time or post measurement) over the VME bus in the
digitizer’s packed (A/D) format. Data in this format are left-justified, signed
2’s complement numbers . See "Packed Reading Conversions" on page 135
for information on converting the readings to voltages.

Segmented Reading
Transfers

Multiple arms (bursts) of pre-arm and post-arm readings segment digitizer
memory (Figure 3-13). Real time and post measurement transfers of
segmented readings are also achieved by reading the data register. For
high-speed configurations such as those which use an embedded controller,
the time at which post measurement readings can be retrieved and a delay
(partition window) while the digitizer sets up the next memory segment for
reading storage and retrieval must be accounted for (Figure 3-13). Post
measurement readings (either segmented or non-segmented) can be
retrieved when bit 4 of the traffic register (base + 0216) is set high (’1’). The
partition window delay is monitored by reading bit 1 of the arm status
register (base +4316), or by reading bit 9 (READy) of the digitizer’s
Condition register in the Operation Status Group (page 171). For real time
transfers, monitoring either partition window bit is best accomplished when
the arm source is immediate (ARM:STARt:SOURce IMMediate).

Chapter 3 Understanding the HP E1429 Digitizer 155

To transfer segmented readings, the data register is accessed until each
reading (pre- and post-arm) in the segment is transferred. After the last
reading is transferred, bit 1 of the arm status register (base +4316) or
bit 9 of the condition register is monitored for a low to high transition.
When the bit is high (’1’), the next segment can be transferred.

Note It is only necessary to monitor the partition window bit when the digitizer
readings are segmented and the data register is accessed at speeds available
through an embedded controller. Also, monitoring bit 1 of the arm status
register (base +4316) is faster than using SCPI commands to monitor
condition register bit 9.

Bit 4 of the traffic register (base +0216) is monitored so that post
measurement readings, either segmented or non-segmented, can be
transferred immediately once all of the readings are available.

Figure 3-14. Local Bus Signal Line Definitions

156 Understanding the HP E1429 Digitizer Chapter 3

Multiple VME Bus Data
Transfers

During real time data transfers, readings are taken directly from the A/D
converter and sent to the VME bus. These readings are also stored in
digitizer memory. Transferring (real time or post measurement) readings
from memory does not remove the readings from memory. As a result, a set
of readings can be transferred to the VME bus multiple times. The digitizer
is configured for an additional data transfer with the command:

VINStrument[:CONFigure]:VME:MEMory:INITiate

Reading the data register after executing this command transfers the data to
the VME bus. If a subset of the total number of readings is transferred,
execute the ABORt command following the transfer to allow for additional
transfers. The digitizer should be configured with
VINStrument[:CONFigure]:VME:MEMory:INITiate for each subsequent
data transfer.

Figure 3-15. HP E1429B Local Bus Data Transfer Protocol

Chapter 3 Understanding the HP E1429 Digitizer 157

Local Bus Data Transfers

This section describes the use of the VXI backplane Local bus. The
HP E1429B digitizer uses the Local bus for high-speed (80 MBytes/second)
data transfers between two or more devices installed in adjacent mainframe
slots.

Local Bus
Description

The Local bus is a set of 12 signal lines on the backplane P2 connector. The
Local bus is segmented such that each device with Local bus capability has

158 Understanding the HP E1429 Digitizer Chapter 3

two interfaces, one to each of the modules in the physically adjacent slots. A
device may connect the bus segments together, or connect to each segment
independently. Figure 3-14 shows how the lines are used by the
HP E1429B digitizer.

Data flows left to right over the Local bus through adjacent slots. The
following signal levels are allowed on the bus:

Analog low: ±5.5V, 50Ω
 medium: ±16.0V, 500 mA
 high: ±42.0V, 500 mA

Digital TTL: -0.5V to +5.5V, 200 mA
 ECL: -5.46V to 0.0V, 50 mA

A Local bus key (Figure 1-1) prevents devices with incompatible Local bus
signal levels from being installed in adjacent slots.

How Data is
Transferred

Data is transferred over the Local bus in units of blocks and frames (Figure
3-15). A frame consists of a series of blocks, and each block is a stream of
data bytes generated by a single device. If only one device is generating
data, then the block size and frame size are the same.

Handshake Protocol The LDAV8 and LREQ9 lines are used to handshake bytes of data across
the Local bus. Each data generating device asserts the LBLOCK11 flag with
the last data byte in the block. The device which generates the last block in
the frame asserts the LFRAME10 flag along with the LBLOCK11 flag.

Local Bus Modes There are several modes of operation used to generate or receive data over
the Local bus. The most common modes follow. The digitizer modes are
shown in bold and more information on these modes is contained in the
section "Setting the Local Bus Transfer Mode" on page 164.

Chapter 3 Understanding the HP E1429 Digitizer 159

Generate: In this mode, a device is sending data to the Local bus.

Consume: In this mode, a device is receiving data from the Local bus.

Pipeline: In this mode, a device is neither generating nor consuming data.
Data is passed through from the device on the left to the device on the right.

Append: In this mode, a device pipelines the data until the end-of-frame
flag is detected. When the flag is detected, the device appends its block of
data and sets new end-of-block and end-of-frame flags.

Insert: In this mode, the device places a block of data and an end-of-block
flag on the Local bus, and then pipelines data from the device on the left to
the device on the right.

Strip: In this mode, a device alternates between the pipeline and consume
modes. It removes a block of data from the beginning of each frame.

Eavesdrop: In this mode, a device is simultaneously consuming and
pipelining data. It copies each byte of data as it is passed along.

Transform: In this mode, a device generates and consumes data.

160 Understanding the HP E1429 Digitizer Chapter 3

Digitizer Local Bus
Commands

The commands used to configure the HP E1429B digitizer for Local bus
data transfers are part of the VINStrument subsystem:

VINStrument
[:CONFigure]

:LBUS
:FEED <source >

 :MEMory
:INITiate

[:MODE] <mode >
:RESet
:SEND

:POINts <count >
:AUTO <mode >

:TEST
:DATA <voltage_list >

Local Bus Transfer
Configurations

The programming sequence used for Local bus transfers depends on the
transfer configuration. The transfer configurations covered in this manual
include:

• Single digitizer

– post measurement transfers from digitizer memory

– real time measurement transfers from the digitizer A/D

• Multiple digitizers and serial transfers

– post measurement transfers from digitizer memory

– real time measurement transfers from the digitizer A/D

• Multiple digitizers and interleaved transfers

– interleaved real time transfers from the digitizer A/D

The programming sequences for the first two configurations follow. Chapter
2 contains example programs using these sequences.

Note Refer to Appendix D "Local Bus Interleaved Data Transfers" for
programming information on transferring data from multiple digitizers in an
interleaved sequence.

Chapter 3 Understanding the HP E1429 Digitizer 161

Single Digitizer In a single digitizer configuration, the digitizer is usually the data generator
and a device such as the HP E1488 memory card is the consumer. With this
configuration, the programming sequence is:

1. Use the CONFigure command and the low-level digitizer commands
to configure the digitizer for the required measurements.

2. Use the VINStrument subsystem to reset the digitizer’s Local bus
chip, to set the Local bus transfer mode (generate), and to set the
data source (post measurement or real time transfer).

VINStrument:CONFigure:LBUS:RESet
VINStrument:CONFigure:LBUS:MODE <mode>
VINStrument:CONFigure:LBUS:FEED <source >

3. Reset the consumer’s (i.e. memory card’s) Local bus chip and
configure the consumer to receive data.

4. Activate (initiate) the consumer.

5. Use INITiate:IMMediate to activate the digitizer and start reading
transfers.

Multiple Digitizers and
Serial Transfers

In a configuration with two or more digitizers transferring data serially, the
leftmost digitizer is set to the generate mode and the succeeding digitizer(s)
is set to either the append mode or the insert mode. A device such as the
HP E1488 memory card is usually the consumer.

In a serial transfer, each digitizer transfers data from its memory or directly
from its A/D in sequence. For example, serial transfers from digitizers D1 -
D3 where D1 is in generator mode and D2 and D3 are in append mode
would appear as:

EOF EOB D3 D3 D3 EOB D2 D2 D2 EOB D1 D1 D1 -----> consumer

When D1 is in generator mode and D2 and D3 are in insert mode the
transfer sequence would appear as:

EOF EOB D1 D1 D1 EOB D2 D2 D2 EOB D3 D3 D3 -----> consumer

In these sequences, EOF is the end-of-frame flag, EOB is the end-of-block
flag, and Dn is either a two byte (one channel) or four byte (two channel)
reading. The procedure for a serial transfer is:

162 Understanding the HP E1429 Digitizer Chapter 3

1. Use the CONFigure command and the low-level digitizer commands
to configure the digitizers for the required measurements.

2. Use the VINStrument subsystem to reset the leftmost digitizer’s
Local bus chip, to set the Local bus transfer mode to generate,
and to set the data source (post measurement or real time
transfer).

Use the VINStrument subsystem to reset the inner digitizer’s
Local bus chip, to set the Local bus transfer mode to append or
insert, and to set the data source (post measurement or real time
transfer).

VINStrument:CONFigure:LBUS:RESet
VINStrument:CONFigure:LBUS:MODE <mode>
VINStrument:CONFigure:LBUS:FEED <source >

Note that you must reset the Local bus chip of each appender or
inserter digitizer each time the generator digitizer’s Local bus mode
or data source is changed.

3. Reset the consumer’s (i.e. memory card’s) Local bus chip and
configure the consumer to receive data.

4. Activate (initiate) the consumer.

5. If the digitizer(s) is in the append mode, use INITiate:IMMediate to
activate the appender digitizer first. Then use INITiate:IMMediate to
activate the generator digitizer.

6. If the digitizer(s) is in the insert mode, use INITiate:IMMediate to
activate the generator digitizer first. Then use INITiate:IMMediate to
activate the inserter digitizer.

Digitizer
Configuration

Restrictions

The HP E1429B digitizer can be configured for measurements as required
with the following exceptions:

• If the Local bus data source is the digitizer A/D (real time transfers),
only post-arm readings are allowed. This includes multiple arms
(bursts).

• When the Local bus mode is set to a mode other than OFF or
pipeline, the VME bus transfer mode must be disabled. This is done
with the command:

VINStrument[:CONFigure]:VME[:MODE] OFF

Chapter 3 Understanding the HP E1429 Digitizer 163

Setting the Local
Bus Transfer Mode

The Local bus transfer mode is set with the command:

VINStrument[:CONFigure]:LBUS[:MODE] <mode >

The <mode > parameters are:

APPend: Local Bus data is received from the left, and passed on to the right
until an end of frame is detected. When end of frame is received from the
left side, all data from this module is appended, followed by an end of block
marker and a new end of frame. After sending the end of frame marker, the
module enters the paused state. This mode requires a module to the left that
is in GENerate mode. The mode is not active until either an INITiate
command or a VINStrument:LBUS:MEMory:INITiate command is sent.

GENerate: Local bus data originates in this module and is passed to the
right, followed by an end of frame marker. The mode is not active until
either an INITiate command or a VINStrument:LBUS:MEMory:INITiate
command is sent.

INSert: Local bus data is inserted onto the bus from this module. The
module will place its data out onto the Local bus with an end-of-block flag
at the end. The module will then pass through (pipeline) any data it receives
from the left, and will enter the paused state when an end-of-frame flag is
received from the left. This mode requires at least one module to the left
which is in GENerate mode. The mode is not active until either an INITiate
command or a VINStrument:CONFigure:LBUS:MEMory:INITiate
command is sent.

OFF: The Local bus interface is disabled immediately upon receipt of this
command. Local bus data is neither used nor passed through.

PIPeline: Local bus data is passed through and not altered. This mode
becomes effective immediately upon receipt of this command. Select this
mode when data should be transparently passed through the
HP E1429B. The module will remain in the PIPeline mode even after an
end-of-frame flag is received; therefore, it is necessary to change modes to
take the module out of PIPeline mode.

164 Understanding the HP E1429 Digitizer Chapter 3

Setting the Local
Bus Data Source

The source of the readings transferred over the Local bus is set with the
command:

VINStrument[:CONFigure]:LBUS:FEED <source >

The <source > parameters follow. Sources beginning with "MEMory: " are
the post measurement sources, sources beginning with "CONVerter:" are
the real time (A/D) sources. The Local bus data source is independent of
any Local bus transfer mode.

" MEMory:CHANnel1" : Channel 1 memory is the data source for the
Local bus. Two bytes per reading will be output to the bus.

" MEMory:CHANnel2" : Channel 2 memory is the data source for the
Local bus. Two bytes per reading will be output to the bus.

" MEMory:BOTH" : Both channels of memory are the data source for the
Local bus. In this mode, the channel 2 reading is output first, followed by
the channel 1 reading. With two bytes per reading, four bytes for each set of
readings will be output to the bus.

" CONVerter:CHANnel1" : The channel 1 A/D converter is the data
source for the Local bus. Two bytes per reading will be output to the bus.

" CONVerter:CHANnel2" : The channel 2 A/D converter is the data
source for the Local bus. Two bytes per reading will be output to the bus.

" CONVerter:BOTH" : Both A/D converters are the data source for the
Local bus. In this mode, the channel 2 reading is output first, followed by
the channel 1 reading. With two bytes per reading, four bytes for each set of
readings will be output to the bus.

Local Bus Data Format Data is transferred (real time or post measurement) over the Local bus in the
digitizer’s packed (A/D) format. Data is transferred one byte at a time in the
following sequence:

Two Channels: channel 2 MSByte
channel 2 LSByte
channel 1 MSByte
channel 1 LSByte

One Channel: channel n MSByte
channel n LSByte

Chapter 3 Understanding the HP E1429 Digitizer 165

Questionable Signal Status Group

Standard Event Status Group

 Operation Status Group

Status Byte

 Condition Register

Transition Filter

Event Register

Enable Register

Condition Register

 Transition Filter

 Event Register

Enable Register

Event Register

Enable Register

STATus:QUEStionable:CONDition?

STATus:QUEStionable:NTRansition <unmask>

STATus:QUEStionable:PTRansition <unmask>

STATus:QUEStionable[:EVENt]?

STATus:QUEStionable:ENABle <unmask>

STATus:OPERation:CONDition?

STATus:OPERation:NTRansition <unmask>

STATus:OPERation:PTRansition <unmask>

STATus:OPERation[:EVENt]?

STATus:OPERation:ENABle <unmask>

 0

 1

 2

QUES

MAV

ESB

RQS

OPER

 L

 o

 g

 i

 c

 a

 l

 O

 R

*ESR?

*ESE <unmask>

*STB?

SPOLL

*SRE <unmask>

(Summary bit)

(Summary bit)

(Summary bit)

 0

 1

 2

QUES

MAV

ESB

 X

OPER

Figure 3-16. HP E1429 Status Groups and Associated Registers.

166 Understanding the HP E1429 Digitizer Chapter 3

Additionally, if the transfer configuration involves multiple digitizers,
appender digitizer readings will follow the generator digitizer readings.
Inserter digitizer readings will precede the generator digitizer readings.

Data in the packed format are left-justified, signed 2’s complement numbers
(Figure 3-8). See "Packed Reading Conversions" on page 135 for
information on converting the readings to voltages.

Multiple Local Bus
Data Transfers

During real time data transfers, readings are taken directly from the A/D
converter and sent to the Local bus. These readings are also stored in
digitizer memory. Transferring (real time or post measurement) readings
from memory does not remove the readings from memory. As a result, a set
of readings can be transferred over the Local bus multiple times. The
digitizer is configured for each additional data transfer with the command:

VINStrument[:CONFigure]:LBUS:MEMory:INITiate

Also, if a measurement is aborted with the ABORt command, the digitizer
should be configured with
VINStrument[:CONFigure]:LBUS:MEMory:INITiate for each subsequent
data transfer.

Note Detailed information on the digitizers Local bus commands can be found in
Chapter 4 - "Command Reference".

Chapter 3 Understanding the HP E1429 Digitizer 167

The Digitizer Status Registers

This chapter describes the HP E1429 digitizer status system. Included is
information on the STATus subsystem commands, the status groups used by
the digitizer, the conditions monitored by each group, and information on
how to enable a condition to interrupt a computer.

The Status
Subsystem
Commands

The commands included in the STATus subsystem are:

STATus
:OPC

:INITiate <state >
:OPERation|QUEStionable

[:CONDition]?
:ENABle <unmask >
[:EVENt]?
:NTRansition <unmask >
:PTRansition <unmask >

:PRESet

Status System
Registers

Operating conditions within the digitizer are monitored by registers in
various status groups. The status groups implemented by the digitizer are:

• Questionable Signal Status Group
– condition register
– transition filter
– event register
– enable register

• Operation Status Group
– condition register
– transition filter
– event register
– enable register

• Standard Event Status Group
– standard event status register
– standard event status enable register

• Status Byte Status Group
– status byte register
– service request enable register

The relationship between the registers and filters in these groups is shown in
Figure 3-16.

168 Understanding the HP E1429 Digitizer Chapter 3

The Questionable
Signal Status Group

The digitizer’s Questionable Signal status group monitors overload
conditions, the frequency accuracy of the divide-by-n reference source, and
error conditions in non-volatile calibration memory.

The Condition Register Overload conditions, divide-by-n frequency accuracy, and non-volatile
calibration memory errors are monitored with the following bits in the
Condition register. All other bits are unused.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

unused CAL unused TIME VOLT

VOLTage: Bit 0 is set (1) if an amplifier overrange (single-ended or
differential input) is detected during a measurement sequence. Otherwise,
the bit remains cleared (0).

TIME: Bit 2 is set (1) when the divide-by-n reference source cannot
generate a sample rate that is within 1% of the rate specified by
TRIG:TIMer1 or TRIG:TIMer2. Otherwise, the bit remains cleared (0).

CALibration: Bit 8 is set (1) when an error is detected in non-volatile
calibration memory.

Reading the Condition Register

The current state of bits 0, 2, and 8 can be determined by reading the
Condition register with the command:

STATus:QUEStionable:CONDition?

Bit 0 has a corresponding decimal value of 1, bit 2 has a decimal value of 4,
and bit 8 has a decimal value of 256. Reading the Condition register does
not affect the bit settings. The bits are cleared following a reset (*RST). Bit
8 CALibration will remain set, however; if the error condition persists.

The Transition Filter The Transition Filter specifies which type of bit transition in the Condition
register will set corresponding bits in the Event register. Transition filter
bits may be set for positive transitions (0 to 1), or negative transitions (1 to
0). The commands used to set the transitions are:

STATus:QUEStionable:NTRansition <unmask >

STATus:QUEStionable:PTRansition <unmask >

Chapter 3 Understanding the HP E1429 Digitizer 169

NTRansition sets the negative transition. For each bit unmasked, a 1-to-0
transition of that bit in the Condition register sets the associated bit in the
Event register.

PTRansition sets the positive transition. For each bit unmasked, a 0-to-1
transition of that bit in the Condition register sets the associated bit in the
Event register.

<unmask > is the decimal, hexadecimal (#H), octal (#Q), or binary (#B)
value of the Condition register bit to be unmasked. (The decimal values of
bits 0, 2, and 8 are 1, 4, and 256.)

The Event Register The Event register latches transition events from the Condition register as
specified by the Transition Filter. Bits in the Event register are latched and
remain set until the register is cleared by one of the following commands:

STATus:QUEStionable[:EVENt]?

*CLS

The Enable Register The Enable register specifies which bits in the Event register can generate a
summary bit which is subsequently used to generate a service request. The
digitizer logically ANDs the bits in the Event register with bits in the
Enable register, and ORs the results to obtain a summary bit.

The bits in the Enable register that are to be ANDed with bits in the Event
register are specified (unmasked) with the command:

STATus:QUEStionable:ENABle <unmask >

<unmask > is the decimal, hexadecimal (#H), octal (#Q), or binary (#B)
value of the Enable register bit to be unmasked. (The decimal values of bits
0, 2, and 8 are 1, 4, and 256.)

The Enable register is cleared at power-on, by specifying an <unmask >
value of 0, or by executing the STATus:PRESet command.

The Operation
Status Group

The Operation status group monitors current operating conditions within the
digitizer. The specific conditions include: CALibrating, MEASuring,
entering the wait-for-arm state, and execution of the INITiate[:IMMediate]
command.

170 Understanding the HP E1429 Digitizer Chapter 3

The Condition Register Calibration, waiting for an arm signal, execution of the INITiate:IMMediate
command, and memory partitioning are monitored with the following bits in
the Condition register. All other bits are unused.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

unused READY BUSY ARM unused CAL

CALibrating: Bit 0 is set (1) during calibration. The bit is cleared (0)
otherwise.

Waiting for ARM: Bit 6 is set (1) when the digitizer enters the
wait-for-arm state. The bit is cleared (0) when a start arm is received or
when the measurements are aborted.

BUSY: Bit 8 is set (1) when the INITiate[:IMMediate] command is
executed. The bit is cleared (0) when the measurements are complete or
aborted, and the digitizer returns to the idle state.

READY: Bit 9 is set(1) when a digitizer memory segment is ready for data
storage. The bit is cleared (0) while the digitizer is partitioning the next
memory segment.

Reading the Condition Register

Bit settings in the Condition register can be determined with the command:

STATus:OPERation:CONDition?

Bits 0, 6, 8, and 9 have corresponding decimal values of 1, 64, 256, and 512.
Reading the Condition register does not affect the bit settings. The bits are
cleared following a reset (*RST).

The Transition Filter The Transition Filter specifies which type of bit transition in the Condition
register will set corresponding bits in the Event register. Transition filter
bits may be set for positive transitions (0 to 1), or negative transitions (1 to
0). The commands used to set the transitions are:

STATus:OPERation:NTRansition <unmask >

STATus:OPERation:PTRansition <unmask >

NTRansition sets the negative transition. For each bit unmasked, a 1-to-0
transition of that bit in the Condition register sets the associated bit in the
Event register.

PTRansition sets the positive transition. For each bit unmasked, a 0-to-1
transition of that bit in the Condition register sets the associated bit in the
Event register.

Chapter 3 Understanding the HP E1429 Digitizer 171

<unmask > is the decimal, hexadecimal (#H), octal (#Q), or binary (#B)
value of the Condition register bit to be unmasked. (Bits 0, 6, 8, and 9 have
corresponding decimal values of 1, 64, 256, and 512.)

The Event Register The Event register latches transition events from the Condition register as
specified by the Transition Filter. Bits in the Event register are latched and
remain set until the register is cleared by one of the following commands:

STATus:OPERation[:EVENt]?

*CLS

The Enable Register The Enable register specifies which bits in the Event register can generate a
summary bit which is subsequently used to generate a service request. The
digitizer logically ANDs the bits in the Event register with bits in the
Enable register, and ORs the results to obtain a summary bit.

The bits in the Enable register that are to be ANDed with bits in the Event
register are specified (unmasked) with the command:

STATus:OPERation:ENABle <unmask >

<unmask > is the decimal, hexadecimal (#H), octal (#Q), or binary (#B)
value of the Enable register bit to be unmasked. (Bits 0, 6, 8, and 9 have
corresponding decimal values of 1, 64, 256, and 512.)

The Enable register is cleared at power-on, by specifying an <unmask >
value of 0, or by executing the STATus:PRESet command.

The Standard Event
Status Group

The Standard Event status group monitors command execution errors,
programming errors, and the power-on state.

The Standard Event
Status Register

The conditions monitored by the Standard Event Status register are
identified below.

7 6 5 4 3 2 1 0

PON unused CME EXE DDE QYE unused OPC

Power-on (PON): Bit 7 is set (1) when an off-to-on transition has occurred.

Command Error (CME): Bit 5 is set (1) when an incorrect command
header is received, or if an un-implemented common command is received.

Execution Error (EXE): Bit 4 is set (1) when a command parameter is
outside its legal range.

172 Understanding the HP E1429 Digitizer Chapter 3

Device Dependent Error (DDE): Bit 3 is set (1) when an error other than a
command error, execution error, or query error has occurred.

Query Error (QYE): Bit 2 is set (1) when the digitizer output queue is read
and no data is present, or when data in the output queue has been lost.

Operation Complete (OPC): Bit 0 is set (1) when the *OPC command is
received. *OPC is used to indicate when all pending (or previous) digitizer
commands have completed.

Note that bits 7, 5, 4, 3, 2, and 0 have corresponding decimal values of 128,
32, 16, 8, 4, and 1.

Reading the Standard Event Status Register

The settings of the Standard Event Status register can be read with the
command:

*ESR?

The bits are cleared at power-on, or by *ESR? or *CLS.

The Standard Event
Status Enable Register

The Standard Event Status Enable register specifies which bits in the
Standard Event Status register can generate a summary bit which is
subsequently used to generate a service request. The digitizer logically
ANDs the bits in the Event register with bits in the Enable register, and ORs
the results to obtain a summary bit.

The bits in the Enable register that are to be ANDed with bits in the Event
register are specified (unmasked) with the command:

*ESE <unmask >

<unmask > is the decimal, hexadecimal (#H), octal (#Q), or binary (#B)
value of the Enable register bit to be unmasked. (Bits 7, 5, 4, 3, 2, and 0
have corresponding decimal values of 128, 32, 16, 8, 4, and 1.)

All unmasked bits in the Enable register can be determined with the
command:

*ESE?

The Standard Event Status Enable register is cleared at power-on, or with an
<unmask > value of 0.

Chapter 3 Understanding the HP E1429 Digitizer 173

The Status Byte
Status Group

The registers in the Status Byte Status Group enable conditions monitored
by the other status groups to generate a service request.

The Status Byte
Register

The Status Byte register contains the summary bits of the Questionable
Signal Status Group (QUES), the Operation Status Group (OPER), and the
Standard Event Status Group (ESB). The register also contains the message
available bit (MAV) and the service request bit (RQS).

7 6 5 4 3 2 1 0

OPER RQS ESB MAV QUES unused

Questionable Signal Summary Bit (QUES): Bit 3 is set (1) when a
condition monitored by the Questionable Signal Status Group is present,
when the appropriate bit is latched into the group’s Event register, and when
the bit is unmasked by the group’s Enable register.

Message Available Bit (MAV): Bit 4 is set (1) when data, such as a query
response, is in the digitizer’s output queue.

Standard Event Summary Bit (ESB): Bit 5 is set (1) when a condition
monitored by the Standard Event Status Group is present and the
appropriate bit is set in the group’s Event register, and when the bit is
unmasked by the group’s Enable register.

Service Request Bit (RQS): Bit 6 is set (1) when any other bit in the Status
Byte register is set.

Operation Status Summary Bit (OPER): Bit 7 is set (1) when a condition
monitored by the Operation Status Group is present, when the appropriate
bit is latched into the group’s Event register, and when the bit is unmasked
by the group’s Enable register.

174 Understanding the HP E1429 Digitizer Chapter 3

Reading the Status Byte Register

The Status Byte register can be read with either of the following commands:

*STB?

SPOLL

Both commands return the decimal weighted sum of all set bits in the
register. The difference between the commands is that *STB? does not clear
bit 6 (RQS service request). The serial poll (SPOLL) does clear bit 6. All
bits in the Status Byte register with the exception of MAV are cleared with
the command:

*CLS

MAV is cleared when data is read from the output queue.

The Service Request
Enable Register

The Service Request Enable register specifies which (status group)
summary bit(s) will send a service request message to the computer over
HP-IB. The bits are specified (unmasked) with the command:

*SRE <unmask >

All unmasked bits in the Enable register can be determined with the
command:

*SRE?

The Service Request Enable register is cleared at power-on, or by
specifying an <unmask > value of 0.

 Presetting the Enable
Register and Transition

Filter

The Enable registers and Transition Filters in the Questionable Signal and
Operation Status Groups can be preset (initialized) with the command:

STATus:PRESet

All bits in the Enable registers are masked (i.e. <unmask > is 0), and all bits
in the Condition registers set corresponding bits in the Event registers on
positive (0-to-1) transitions.

Chapter 3 Understanding the HP E1429 Digitizer 175

Synchronizing the
Digitizer

One method of synchronizing the digitizer with other digitizer’s or with
other instruments is to determine when the digitizer parser is idle. This is
done using the command:

STATus:OPC:INITiate <state >

together with the commands:

*OPC
*OPC?
*WAI

The behavior of *OPC, *OPC?, and *WAI depends on the state set by
STATus:OPC:INITiate. When state is ON, sending *OPC, *OPC?, or
*WAI following INITiate:IMMediate,
VINStrument:CONFigure:VME:MEMory:INITiate, or
VINStrument:CONFigure:LBUS:MEMory:INITiate requires the digitizer to
complete all measurements or complete the VME or Local bus data transfer
before allowing further digitizer operations to continue. ON is the power-on
state.

When state is OFF, the execution of *OPC, *OPC?, or *WAI following the
above commands indicates the previous commands have executed and that
further operations (command execution) can resume without the digitizer in
the idle state. Digitizer commands that can be executed during this time are
identified in the command reference (Chapter 4) as being "executable when
initiated". Refer also to the command reference for detailed information on
*OPC, *OPC?, and *WAI.

Saving Digitizer Configurations

To minimize repeated programming, up to 10 digitizer configurations can
be saved and later recalled. The configuration saved is restored, with the
exception of the STATus subsystem parameters, the CALibration:SECure
command state, or any other parameters not affected by *RST.

A configuration is identified by a number from 0 thru 9. The
configuration(s) is saved until power is cycled.

176 Understanding the HP E1429 Digitizer Chapter 3

How to Save and
Recall a

Configuration

Digitizer configurations are saved and recalled with the commands:

*SAV <register>
*RCL <register>

where register is a number from 0 to 9. The following example shows how
a configuration can be saved and recalled.

CONF1:ARR:VOLT (10),10,(@3) /* set 10 readings on (+) Diff port 3 */

ARM:SOUR1 INT1 /* set arm source 1 for level arming */

ARM:SOUR2 HOLD /* disable arm source 2 */

ARM:SLOP1 EITH /* arm when signal enters window from */

/* either direction */

ARM:LEV1:POS 4 /* set arm window lower boundary */

ARM:LEV1:NEG 6 /* set arm window upper boundary */

ARM:COUN 2 /* set two reading bursts */

SAV 0 / save the configuration in location 0 */

RST / reset the digitizer */

RCL 0 / recall the configuration */

This program saves a configuration in register 0. The digitizer is then reset
in order to change the current configuration to the power-on configuration.
The configuration in register 0 is recalled which also leaves the digitizer in
the idle state. By placing the digitizer in the wait-for-arm state (with
READ? or INIT), readings are taken when the arm occurs and when trigger
signals are received.

Chapter 3 Understanding the HP E1429 Digitizer 177

Notes

178 Understanding the HP E1429 Digitizer Chapter 3

Chapter 4
Command Reference

Chapter Contents

This chapter describes the Standard Commands for Programmable
Instruments (SCPI) command set and the IEEE 488.2 Common
Commands for the HP E1429A/B 20 MSa/s 2-Channel Digitizer. Included
in this chapter are the following sections:

• Command Types . 181
• SCPI Command Format . 182
• SCPI Command Parameters. 183
• SCPI Command Execution . 185
• SCPI Command Reference . 187
• Common Command Reference . 301
• HP E1429 Command Quick Reference 310
• SCPI Conformance Information . 314

Chapter 4 Command Reference 179

ABORt . 188

ARM . 190
 [:STARt|:SEQuence[1]] 190
 :COUNt . 193
 :DELay . 194
 [:IMMediate] 195
 :LEVel[<chan>] 195
 :NEGative 195
 :POSitive 196
 :SLOPe[<n>] 197
 :SOURce[<n>] 199

CALibration[<chan>] 201
 :COUNt?. 201
 :DATA. 202
 :DELay . 204
 :GAIN . 205
 :SECure . 208
 :CODE . 208
 :STATe . 209
 :STORe . 210
 :AUTO. 211
 :VALue . 211
 :ZERO . 213

CONFigure. 215

DIAGnostic . 219
 :CALibration . 219
 :CONVerge? 219
 :GAIN . 220

 SENSitivity 220
 :ZERO . 220
 :SENSitivity 220
 :CHANnel[<chan>] 220
 :LABel . 220
 :FETCh?[<chan>] 221
 :MEMory[<chan>]. 223
 :FILL . 223
 :ADDResses? 223
 :PEEK?. 224
 :POKE . 225
 :SGET?. 226
 :SPUT. 226
 :TEST? . 226

FETCh[<chan>]? 227
 :COUNt?. 229
 :RECover? . 230

FORMat . 231
 [:DATA]. 231

INITiate. 233
 [:IMMediate] . 233

INPut[<port>] . 236
 :FILTer . 236
 [:LPASs] . 236
 [:STATe] 236
 :IMPedance . 236
 [:STATe] . 237

180 Command Reference Chapter 4

MEASure . 239

MEMory . 243
 :BATTery . 243
 [:STATe] . 243
 :CHARge? 244

OUTPut . 245
 :ECLTrg<n>.. 245
 :FEED . 245
 [:STATe] . 246
 :EXTernal[1]. 247
 :FEED . 247
 [:STATe] . 249
 :TTLTrg<n>. 249
 :FEED . 249
 [:STATe] . 251

READ[<chan>]? 252

[SENSe[<chan>]] 255
 :FUNCtion. 255
 :ROSCillator . 257
 :EXTernal . 257
 :FREQuency 257
 :SOURce. 258
 :SWEep . 261
 :OFFSet . 261
 :POINts . 261
 :POINts . 263
 :VOLTage . 265
 [:DC] . 265
 :RANGe. 265
 :RESolution? 267

STATus . 269
 :OPC. 269
 :INITiate . 269
 :OPERation|:QUEStionable 270

 :CONDition? 270
 :ENABle . 270
 [:EVENt]? . 271
 :NTRansition. 272
 :PTRansition 272
 :PRESet . 273

SYSTem. 274
 :ERRor? . 274
 :VERSion? . 274

TRIGger . 277
 [:STARt|:SEQuence[1]] 277
 :COUNt . 277
 [:IMMediate] 279
 :SOURce. 279
 :TIMer1 . 281
 :TIMer2 . 283

VINStrument . 288
 [:CONFigure] 288
 :LBUS . 288
 :FEED . 288
 :MEMory 289
 :INITiate. 289
 [:MODE] 290
 :RESet. 291
 :SEND . 292
 :POINts 292
 :AUTO 293
 :TEST . 294
 :DATA . 294
 :VME. 296
 :FEED . 296
 :MEMory 297
 :INITiate. 297
 [:MODE] 298
 :SEND . 299
 :ADDRess 299
 :DATA? 299
 :IDENtity? . 300

Command Types

Commands are separated into two types: IEEE 488.2 Common Commands
and SCPI Commands.

Common
Command Format

The IEEE 488.2 standard defines the Common commands that perform
functions like reset, self-test, status byte query, etc. Common commands are
four or five characters in length, always begin with the asterisk character
(*), and may include one or more parameters. The command keyword is
separated from the first parameter by a space character. Some examples of
Common commands are shown below:

*RST, *CLS, *ESE <unmask >, *OPC?, *STB?

Chapter 4 Command Reference 181

SCPI Command Format

The HP E1429 digitizer is programmed with SCPI commands. SCPI
commands are based on a hierarchical structure, also known as a tree
system. In this system, associated commands are grouped together under a
common node or root, thus, forming subtrees or subsystems. An example is
the digitizer’s ’ARM’ subsystem shown on the following page.

ARM
[:STARt | :SEQuence[1]]

:COUNt <number >
:DELay < period >
[:IMMediate] [no query]
:LEVel<n >

:NEGative < voltage >
:POSitive < voltage >

:SLOPe[< n >] <edge >
:SOURce[< n >] <source >

ARM is the root keyword of the command; :STARt|SEQuence1 is the
second level keyword; :COUNt, :DELay, ... are third level keywords, and so
on.

Keyword Separator A colon (:) always separates one command keyword from a lower level
command keyword as shown below:

ARM:LEV:NEG 2

Abbreviated
Commands

The command syntax shows most commands as a mixture of upper and
lower case letters. The upper case letters indicate the abbreviated spelling
for the command. For shorter program lines, send the abbreviated form. For
better program readability, you may want to send the entire command. The
digitizer will accept either the abbreviated form or the entire command.

For example, if a command’s syntax contains the keyword COUNt, then
COUN and COUNT are acceptable forms. Other forms of COUNt such as
COU will generate an error.

You can use upper or lower case letters. Therefore, COUNT, coun, or Coun
are all acceptable.

182 Command Reference Chapter 4

Implied (Optional)
Keywords

Implied or optional keywords are those which appear in square brackets
([]). The brackets are not part of the command syntax and must not be sent
to the digitizer. Consider the syntax ARM[:STARt]COUNt. Suppose you
send the following command:

ARM:COUN 100

In this case, the digitizer responds as if you had executed the command as:

ARM:STAR:COUN 100

Variable Command
Syntax

Some commands will have what appears to be a variable syntax. For
example:

OUTPut:ECLTrg<n >[:STATe] <mode >

In this command, <n > is replaced by a number. No space is left between the
keyword (ECLTrg) and the number because the number is part of the
keyword.

SCPI Command Parameters

The following information contains explanations and examples of the
parameter types found in this chapter.

Parameter Types,
Explanations, and

Examples

• Numeric

Accepts all commonly used decimal representations of numbers
including optional signs, decimal points, and scientific notation:

123, 123E2, -123, -1.23E2, .123, 1.23E-2, 1.23000E-01.

Special cases include MIN, MAX, and INFinity. The Comments
section within the Command Reference will state whether a
numeric parameter can also be specified in hex, octal, and/or binary:

#H7B, #Q173, #B1111011

• Boolean

Represents a single binary condition that is either true or false. Any
non-zero value is considered true:

ON, OFF, 1, 0

Chapter 4 Command Reference 183

• Discrete

Selects from a finite number of values. These parameters use
mnemonics to represent each valid setting. An example is the
TRIGger[:STARt]:SOURce <source> command where source can
be BUS, ECLTrg0, ECLTrg1,EXTernal1, EXTernal2, ...

• String

STRING PROGRAM DATA parameters are enclosed with single
quotation marks (’) or double quotation marks ("). Examples of
string program data parameters are those associated with the
OUTPut...FEED commands:

OUTPut:ECLTrg<n >:FEED <source >

OUTPut:EXTernal[1]:FEED <source >

OUTPut:TTLTrg<n >:FEED <source >

Some of the <source > parameters include:

"EXTernal[1]"
"SENSe[1|2]:ROSCillator"
"SENSe:SWEep:OFFSet:POINts"

As an example, the syntax for sending this type of command in an
HP BASIC program is:

OUTPUT 70905;"OUTP:ECLT0:FEED ’EXT’"

or

OUTPUT 70905;"OUTP:ECLT0:FEED ""EXT"""

In a C language program, the syntax is:

"OUTP:ECLT0:FEED ’EXT’"

or

"OUTP:ECLT0:FEED \"EXT\""

• Arbitrary Block Program Data

This parameter type is used to transfer a block of data in the form of
bytes. The block of data bytes is preceded by a header which
indicates the number of data bytes which follow. The syntax of the
block header is as follows:

184 Command Reference Chapter 4

Definite length block:

#<non-zero digit><digit(s)><data byte(s)>

 Where the value of <non-zero digit> equals the number of
<digit(s)>. The value of <digit(s)> taken as a decimal integer
indicates the number of <data byte(s)> in the block.

Optional
Parameters

Command parameters shown within square brackets ([]) are optional. The
brackets are not part of the syntax and are not sent to the digitizer. If you do
not specify a value for an optional parameter, the instrument chooses a
default value.

For example, consider the command

CONFigure[<chan >]:ARRay[:VOLTage][:DC] (<size >)
[,<expected value >[,<resolution >]] [,(@<input port >)]

If you send the command without specifying the expected value, resolution,
or input port parameters, the digitizer sets default values. Similarly, if chan
in the command keyword is not specified, the default channel 1 is used.

Querying
Parameter Settings

Unless otherwise noted in the subsystem syntax, parameter settings can be
queried by adding a question mark (?) to the command. For example:

TRIG:SOUR HOLD

sets the trigger source to HOLD. The value can be queried by executing:

TRIG:SOUR?

The MINimum or MAXimum value of a parameter is determined by adding
the word MIN or MAX to the end of the query. See below.

SENS:SWE:OFFS:POIN? MIN

SENS:SWE:OFFS:POIN? MAX

The minimum and maximum values returned are based on the current
settings of other digitizer parameters.

SCPI Command Execution

The following information should be remembered when executing SCPI
commands.

Chapter 4 Command Reference 185

Command Coupling Some of the digitizer SCPI commands are functional or value coupled.
Functionally coupled commands are those that for one command to have
affect, another command must be set to a particular value. A value coupled
command changes the settings of other commands.

Command couplings can often result in “Settings conflict” errors when the
program executes. When a coupled command is executed, the command
setting is evaluated by the digitizer processor. If the setting causes an illegal
digitizer configuration, a "Settings conflict" error occurs. The error message
lists the conflicting settings, and then reports the values set by the digitizer
processor.

The "Comments" section of each command entry indicates if a command is
coupled, and if it is, what the coupling constraints are.

MIN and MAX
Parameters in Coupled

Commands

When MINimum or MAXimum is a command parameter in a group of
coupled commands, that command should be the last command executed.
Unlike other parameters that are set when an end-of-line indication is
received, MIN and MAX are evaluated by the digitizer processor when the
command is parsed. Thus, the value of MIN or MAX is based on the values
of the other (coupled) commands at that time. For example, if the following
commands are sent:

ARM:COUN 1
TRIG:COUN MAX
ARM:COUN 128

A “Settings conflict” error will occur when ARM:COUN 128 is executed
because the trigger count value set by TRIG:COUN MAX (524,288) is based
upon the ARM:COUN 1 setting. For an arm count of 128, the maximum
trigger count allowed is 4,096. Because of these types of interactions, MIN
and MAX are not recommended for specifying a parameter value.

Executable When
Initiated Commands

In the "Comments" section of each command listing is the item
"Executable when initiated: Yes/No". This identifies the command as
being executable when the digitizer is in the INITiated state as the result of
one of the following commands:

INITiate:IMMediate
 VINStrument:CONFigure:VME:MEMory:INITiate
VINStrument:CONFigure:LBUS:MEMory:INITiate

186 Command Reference Chapter 4

Linking Commands Linking commands means sending multiple commands in the same output
string. This is done to avoid "settings conflict" errors since (command)
coupling interactions are not resolved until the carriage return (CR) is
received.

 Linking IEEE 488.2 Common Commands

Use a semicolon between the commands. For example:

*RST;*CLS;*OPC?

Linking Multiple SCPI Commands

A semicolon (;) is used to separate commands within the same subsystem
and saves typing. For example, sending this command message:

TRIG:SOUR TIM;TIM1 100E-9;COUN 100

Is the same as sending these three commands:

TRIG:SOUR TIM
TRIG:TIM1 100E-9
TRIG:COUN 100

When linking commands in different subsystems, a semicolon (;) and a
colon (:) are used. For example:

ARM:SOUR IMM;COUN10;:TRIG:SOUR TIM;TIM1 100E-9;COUN 30000

Command Choices Some commands are listed as two commands separated with a vertical bar
(“ |”). This means that either command name can be used. For example, you
could use either “ :STAR” or “ :SEQ1” when
“ [:STARt |SEQuence1]” is shown.

SCPI Command Reference

This section describes the SCPI commands for the HP E1429 Digitizer.
Commands are listed alphabetically by subsystem, and alphabetically within
each subsystem. A command guide is printed in the top margin of each
page. The guide indicates the first command listed on that page.

Chapter 4 Command Reference 187

ABORt

The ABORt command removes the HP E1429 from the wait-for-trigger state and
places it in the idle state, irrespective of any other settings. Measurement is halted
and can only be restarted by another INITiate[:IMMediate] command.

There is no query form of this command.

Comments • ABORt does not affect any other settings of the HP E1429.

• Both measurement channels are aborted with this command.

• Local bus and VME bus data transfers are aborted.

• The Pending Operation Flag (as defined by IEEE-488.2) will be set false as a
consequence of entering the idle state. *OPC? will therefore return 1 after an
ABORt command.

• Executable when initiated: Yes

• Coupled Command: No

• If an ABORt or power failure occurs during a sequence of measurements, the
digitizer will return (FETCh?) or recover (FETCh:RECover?) between one and
TRIGger:STARt:COUNt number of readings. Because the digitizer processor
does not know when the arm occurs, the readings returned may be pre-arm only,
post-arm only, or a combination of both. If less than TRIGger:STARt:COUNt
readings have been taken, then that number of readings are returned. If at least
TRIGger:STARt:COUNt readings have been taken, then
TRIGger:STARt:COUNt readings are returned.

• Related Commands: INITiate, *OPC, *OPC?

• *RST Condition: After a *RST, the HP E1429 is placed in the trigger idle state,
as if ABORt had been executed.

Example Aborting a measurement

ABOR Place HP E1429 in idle state

ABORt

ABORt Subsystem Command Reference 188

ARM

The ARM command subsystem controls the third state in a four state measurement
process. The four states which occur during a successful reading are idle, initiated,
wait-for-arm, and wait-for-trigger. The last two states have event detection
associated with them which control when they exit the current state. These four
states are more fully described as follows:

• Idle -- In this state, the instrument is not sampling. This is the state where setting
changes are done via commands to the instrument. This state is exited when an
INITiate command is received. This state is returned to after a reset, after
successful completion of measurement, or after a measurement is aborted.

• Initiated -- Once the instrument is initiated with the INITiate command, it passes
through this state, and continues down to the wait-for-arm state if all readings are
post-arm and ARM:COUNt is not yet satisfied. If pre-arm readings are specified,
the digitizer passes through to the wait-for-trigger state.

• Wait-for-arm -- In this state, the instrument waits for the specified ARM event to
occur before progressing to the wait-for-trigger state to make a measurement.

• Wait-for-trigger -- In this state, the instrument waits for the specified trigger event
to occur, and when it occurs, a reading is taken. After a reading is taken, the
cumulative number of readings taken is compared to the count specified in
TRIGger:COUNt or SENSe:SWEep:POINts. When the count is reached, the state
is exited, otherwise, the instrument waits for another trigger and takes another
reading. Upon exit from this state, the instrument returns to the initiated state and
checks to see whether or not ARM:COUNt is satisfied. If the arm count is
reached, the instrument returns to the idle state. If not, another loop is executed by
entering the wait-for-arm state.

The following controls can be specified from the ARM subsystem:

• The event(s) which will cause the transition out of the wait-for-arm state
(ARM:SOURce1 and ARM:SOURce2). There is a rich set of event sources to
choose from, and when both sources are enabled (neither set to source HOLD), a
logical OR of the two sources occurs. The occurrance of the appropriate event on
either source will cause the HP E1429 to exit from the wait-for-arm state.

• The number of start arm events to occur before the digitizer returns to the idle
state (ARM:COUNt). Another way to think of this is the number of bursts of
readings which will occur.

189 Command Reference ARM Subsystem

• The active edge for generation of an arm event (ARM:STARt:SLOPe<n >) on the
selected arm source (n = 1 or n = 2).

• The measurement signal level to attain before allowing a measurement to begin
(ARM:STARt:LEVel<n>). This is used with ARM:SOURce INTernal<n>. It is
also possible to create a window bounded by two levels (ARM:LEVel:POSitive
and ARM:LEVel:NEGative) such that arming occurs when the signal level either
exits or enters the defined window.

• The additional delay between the arm event and entry into the wait-for-trigger
state (ARM:DELay).

Subsystem
Syntax

ARM
[:STARt |:SEQuence[1]]
 :COUNt <count>
 :DELay <period>
 [:IMMediate] [no query]
 :LEVel<chan >
 :NEGative <voltage>
 :POSitive <voltage>
 :SLOPe[<n>] <edge>
 :SOURce[<n>] <source>

[:STARt]:COUNt

ARM[:STARt]:COUNt <count> specifies how many measurement cycles will
occur after an INITiate, before the trigger system returns to the idle state. Each
post-arm measurement cycle begins when the event specified by the active arm
source(s) occurs. Multiple readings may be taken during each cycle, as defined by
the TRIGger:STARt:COUNt or SENSe:SWEep:POINts commands.

ARM:STARt:COUNt values greater than 1 in conjunction with pre-arm readings is
a special case which causes memory to be partitioned. Partitioning is done because
a large number of pre-arm readings may be taken before the arming event, while a
smaller number of pre-arm readings will actually be kept for read back. Therefore,
for each ARM:STARt:COUNt specified, a separate circular buffer (partition) is set
up to hold the specified number of "desired total readings"
(TRIGger:STARt:COUNt). With this scheme, pre-arm data may overwrite itself
until the arming event occurs, at which time, the post-arm data count will be
completed by overwriting the oldest pre-arm data. Due to this complexity, the
ARM:COUNt for this type of measurement is restricted to a much lower value than
what can be specified if all data is post-arm only.

ARM[:STARt]:COUNt

ARM Subsystem Command Reference 190

Parameters

Parameter
Name

Parameter
Type

Range of
Values

Default
Units

count numeric 1 through 65535 |
MINimum|MAXimum|

9.9E+37|INFinity

none

MINimum selects 1 arm.

When only post-arm readings are specified, MAXimum is computed as:
524,288 / TRIGger:COUNt, up to a maximum of 65,535 arms . When
pre-arm readings have been specified, MAXimum selects 128 arms.

9.9E+37 is equivalent to INFinity.

Comments • Executable when initiated: No

• Coupled Command: Yes. This command is coupled to the total reading count
(TRIGger:STARt:COUNt). An error will result if TRIGger:STARt:COUNt is too
large for the specified ARM:STARt:COUNt. See the following table for the
relationship between ARM:STARt:COUNt and TRIG:STARt:COUNt.

• If the count is set to INFinity or 9.9E+37, the ABORt command must be used to
return the trigger system to the idle state.

• If pre-arm readings are specified (SENSe:SWEep:OFFSet:POINts < 0), then the
maximum number of arms is 128.

• When pre-arm readings are specified (SENSe:SWEep:OFFSet:POINts < 0), an
ARM:STARt:COUNt > 1 causes memory to be partitioned, and limits to be
placed on TRIGger:STARt:COUNt. See the following table for limits.

ARM[:STARt]:COUNt

191 Command Reference ARM Subsystem

ARM:STARt:COUNt Number of
Memory

Segments

Maximum Readings
(TRIGger:STARt:COUNt)

1 1 524,288

2 2 262,144

3 - 4 4 131,072

5 - 8 8 65,536

9 - 16 16 32,768

17 - 32 32 16,384

33 - 64 64 8,192

65 - 128 128 4096

NOTE: If the non-volatile mode of memory is enabled
(MEMory:BATTery:STATe ON), then all of the maximum reading counts
shown above decrease by four. These four memory locations in each
segment hold the data necessary to recover all readings after a power
failure.

• Normally, when only post-arm readings are specified, an error will occur if
ARM:COUNt * TRIG:COUNt exceeds memory size, since post-arm data would
be overwritten if this were allowed. There are two exceptions to this rule.

a. The first exception is when the local bus is enabled (VINS:LBUS:MODE
GEN), and VINStrument:LBUS:FEED is the
A/D converter ("CONVerter:xxx"). In this case, an
ARM:COUNt * TRIG:COUNt greater than memory size is allowed.
Readings sent out directly over the local bus are also routed to memory at
the same time, and counts greater than memory size simply overwrite older
data in memory. Thus a FETCh? command will return a historical record of
what was sent over the local bus in the last "memory size" transfers. This
block of readings returned will be in chronological order, with the oldest
readings first and the most recent readings last.

b. The second exception is when either TRIGger:STARt:COUNt INF or
ARM:STARt:COUNt INF has been specified. It is assumed in this case
that the user knows data is being overwritten. After the ABORt is done to
stop the measurement, a FETCh? command would bring back the entire
memory contents, with the most recent readings at the end of the block of
data.

ARM[:STARt]:COUNt

ARM Subsystem Command Reference 192

• Related Commands: ABORt, INITiate:IMMediate, TRIGger:STARt:COUNt,
SENSe:SWEep:POINts, SENSe:SWEep:OFFSet:POINts

• *RST Condition: ARM:STARt:COUNt 1

Example Setting the arm count

ARM:COUN 10 Set 10 measurement cycles per INITiate

[:STARt]:DELay

ARM[:STARt]:DELay <period> specifies how long to delay entering the
wait-for-trigger state after the arming pulse is received and processed. Delays of
greater than 0 can be specified only if no pre-arm readings are being taken with the
post-arm readings (i.e. SENSe:SWEep:OFFSet:POINts is 0).
The delay time is generated using either the reference oscillator period or ten times
the reference oscillator period. If we designate the current reference oscillator
period as T, then the two ranges of delay can be expressed as:

0 to 65534T in steps of T
65540T to 655350T in steps of 10T

Parameters

Parameter
Name

Parameter
Type

Range of
Values

Default
Units

period numeric MINimum|MAXimum|
value(see below)

Seconds

MINimum selects 0 delay. MAXimum selects 655350 reference oscillator
periods delay.

The above values bound the valid range for period. The period value is
rounded to the nearest period that can be produced.

Comments • Executable when initiated: No

• Coupled Command: Yes. This command is coupled to
SENSe:SWEep:OFFSet:POINts and to SENSe:ROSCillator:SOURce.

• If pre-arm readings are specified, then delay will be forced to 0, regardless of
what value was specified for delay. A settings conflict error will also occur.

ARM[:STARt]:DELay

193 Command Reference ARM Subsystem

• The actual delay time after receipt of arm event is not precisely the delay time
specified above. There is an inherent delay of typically 230 ns plus an amount of
sample period uncertainty. Refer to Appendix A - "Specifications" for additional
information on the inherent delay.

• Related Commands: TRIGger:STARt:COUNt, SENSe:SWEep:OFFSet:POINts

• *RST Condition: ARM:STARt:DELay 0

Example Setting the arming delay

ARM:DEL .001 Delay 1 millisecond after arm pulse before
arming the start trigger

[:STARt][:IMMediate]

ARM[:STARt][:IMMediate] will cause the start trigger to be armed immediately,
regardless of the selected ARM:STARt:SOURce. The selected
ARM:STARt:SOURce remains unchanged. The INITiate:IMMediate command
must have been sent before this command, otherwise error -212,"Arm ignored" will
occur.

There is no query form of this command.

Comments • Executable when initiated: Yes

• Coupled Command: No

• If the instrument is in the idle or wait-for-trigger states, the
ARM:STARt:IMMediate command will cause error -212,"Arm ignored" to be
generated.

• If ARM:STARt:COUNt is greater than 1, only a single measurement cycle is
affected by ARM:STARt:IMMediate; the count is decremented by one, and the
remaining ARM:STARt:COUNt cycles will be executed with the original arming
source active.

• When ARM:STARt:IMMediate is sent, any ARM:STARt:DELay is bypassed for
that arm only.

• Related Commands: INITiate:IMMediate, ARM:STARt:COUNt, TRIGger
subsystem

• *RST Condition: none

ARM[:STARt][:IMMediate]

ARM Subsystem Command Reference 194

Example Arming for measurement

ARM:SOUR1 EXTernal Set arming source1 to be the EXT1 BNC
connector

INITiate Begin measurement, wait for arming pulse

ARM Arm start trigger immediately, don’t wait
for external pulse

[:STARt]:LEVel[<chan>]:NEGative <voltage>

ARM[:STARt]:LEVel[<chan>]:NEGative <voltage> selects the input voltage
level which will arm a measurement cycle. The ARM:LEVel:NEGative setting is
used only when either of the ARM:STARt:SOURce(s) is set to INTernal1 or
INTernal2, and the corresponding ARM:STARt:SLOPe<n> setting is NEGative or
EITHer. The value programmed is retained (but not used) when other sources are
selected, or when the corresponding ARM:STARt:SLOPe<n > setting is POSitive.

The allowable levels depend on the measurement range as set by the
SENSe:VOLTage:RANGe command.

Parameters

Parameter
Name

Parameter
Type

Range of
Values

Default
Units

chan numeric 1 | 2 none

level numeric -102.2418 to 102.2418
MINimum | MAXimum

Volts

Comments • Executable while initiated: No

• Coupled Command: Yes. The command is coupled to the
ARM[:STARt]:SLOPe, ARM[:STARt]:SOURce, and SENSe:VOLTage:RANGe
commands. The level value is limited to the range limits.

• When POSitive and NEGative voltage levels are specified, the levels must be
separated by an amount defined by:

(50 mV / 1.0235V) * measurement range

This accounts for offset errors in the levels specified and enables the levels to be
detected.

• Related Commands: ARM:STARt:SOURce<n >,
 ARM:STARt:SLOPe<n >

• *RST Condition: ARM:STARt:LEVel<n >:NEG -1.022418

ARM[:STARt]:LEVel[<chan>]:NEGative <voltage>

195 Command Reference ARM Subsystem

Example Setup to arm only when the signal on channel 2 falls through -0.48 volts.

ARM:SOUR1 INT2 Set arming source 1 to arm when the
specified level is met on channel 2

ARM:SLOP1 NEG The signal must fall through the level set by
ARM:LEVel2:NEG for arming to occur

ARM:LEV2:NEG -0.48 Arm when the signal passes through the
-.48V level

[:STARt]:LEVel[<chan>]:POSitive <voltage>

ARM[:STARt]:LEVel[<chan>]:POSitive <voltage> selects the input voltage
level which will arm a measurement cycle. The ARM:LEVel:POSitive setting is
used only when either of the ARM:STARt:SOURce(s) is set to INTernal1 or
INTernal2, and the corresponding ARM:STARt:SLOPe<n> setting is POSitive or
EITHer. The value programmed is retained (but not used) when other sources are
selected, or when the corresponding ARM:STARt:SLOPe<n> setting is NEGative.

The allowable levels depend on the measurement range as set by the
SENSe:VOLTage:RANGe command.

Parameters

Parameter
Name

Parameter
Type

Range of
Values

Default
Units

chan numeric 1 | 2 none

level numeric -102.2418 to 102.2418
MINimum | MAXimum

Volts

Comments • Executable while initiated: No

• Coupled Command: Yes. The command is coupled to the
ARM[:STARt]:SLOPe, ARM[:STARt]:SOURce, and SENSe:VOLTage:RANGe
commands. The level value is limited to the range limits.

ARM[:STARt]:LEVel[<chan>]:POSitive <voltage>

ARM Subsystem Command Reference 196

• When POSitive and NEGative voltage levels are specified, the levels must be
separated by an amount defined by:

(50 mV / 1.0235V) * measurement range

This accounts for offset errors in the levels specified, and enables arms at those
levels to be accepted.

• Related Commands: ARM:STARt:SOURce<n>, ARM:STARt:SLOPe<n>

• *RST Condition: ARM:STARt:LEVel<n >:POS 1.022418

Example Setup to arm when the signal on channel 1 goes outside of a the window
bounded by 0.5V and 0V.

ARM:SOUR1 INT1 Set arming source 1 to be channel 1 level(s).

ARM:LEV1:POS 0.50

ARM:LEV1:NEG 0

ARM:SLOP1 EITH Specify that both ARM:LEVel1:POS and
ARM:LEVel1:NEG will be used to form a
window. If the signal rises above the 0.5
volt level (the POSitive slope level
specified), or falls below the 0 volt level (the
NEGative slope level specified), arming will
occur and the measurement will proceed.

[:STARt]:SLOPe[<n >]

ARM[:STARt]:SLOPe[<n >] <edge > selects which edge - POSitive, NEGative,
or EITHer on arming source <n > will cause the arm event to occur.
ARM:STARt:SLOPe is only active when either of the two arm sources is set to
EXTernal1, INTernal1, or INTernal2. The "EITHer" setting may be used only when
the corresponding ARM:STARt:SOURce is set to INTernal<n >. The "EITHer"
setting causes the window specified by ARM:STARt:LEVel<chan>:POSitive and
ARM:STARt:LEVel<chan>:NEGative to be in effect.

Parameters

Parameter
Name

Parameter
Type

Range of
Values

Default
Units

n numeric 1|2 none

edge discrete NEGative|POSitive|
EITHer

none

ARM[:STARt]:SLOPe[<n >]

197 Command Reference ARM Subsystem

Comments • Executable when initiated: No

• Coupled Command: Yes. A settings conflict error occurs if
ARM:STARt:SLOPe EITHer is set and ARM:STARt:SOURce EXTernal is
set.The EITHer setting is only valid when the associated ARM:STARt:SOURce is
set to INTernal<n >.

• ARM:STARt:SLOPe1 controls the slope on ARM:STARt:SOURce1 and
ARM:STARt:SLOPe2 controls the slope on ARM:STARt:SOURce2. Note that
’1’ and ’2’ refer to the arm source and not a channel number.

• When ARM:STARt:SLOPe is EITHer, having a value of
ARM:STARt:LEVel:POSitive greater than the value of
ARM:STARt:LEVel:NEGative will cause arming to occur when the signal exits
the defined window. If ARM:STARt:LEVel:NEGative is greater than
ARM:STARt:LEVel:POSitive, then an arm event will occur when the signal
enters into the defined window.

• The edge selected by ARM:STARt:SLOPe<n > is ignored when
ARM:STARt:SOURce<n > is set to any source other than EXTernal1, INTernal1,
or INTernal2. Other trigger sources have standardized active edges: NEGative for
TTLTrg<n> or POSitive for ECLTrg<n>.

• Related Commands: ARM:STARt:SOURce<n >, ARM:STARt:LEVel<chan
>:POSitive, ARM:STARt:LEVel<chan>:NEGative

• *RST Condition: ARM:STARt:SLOPe<n > POSitive

Example Setting the arm slope

ARM:SOUR1 EXT1 Set arming source1 to "Ext 1" BNC

ARM:SLOP1 NEG Arm on the falling edge of source1

ARM[:STARt]:SLOPe[<n >]

ARM Subsystem Command Reference 198

[:STARt]:SOURce[<n>]

ARM[:STARt]:SOURce[<n >] <source > configures the arm system to respond to
the specified source(s). Unless one of the two sources is set to HOLD, both will be
active, and an occurrence of the selected event on either source will arm the system
for measurement.

The sources available are:

• BUS: The Group Execute Trigger (GET) HP-IB command or the IEEE-488.2
*TRG common command.

• ECLTrg0 and ECLTrg1: The VXIbus ECL trigger lines.

• TTLTrg0 through TTLTrg7: The VXIbus TTL trigger lines.

• EXTernal1: The HP E1429’s front panel "Ext 1" BNC connector.

• INTernal[1]: Arms the start trigger when the signal on channel 1 meets the
conditions specified by ARM:STARt:LEVel1.

• INTernal2: Arms the start trigger when the signal on channel 2 meets the
conditions specified by ARM:STARt:LEVel2.

• HOLD: Disable this arming source. If both sources are set to HOLD, then the
ARM:STARt:IMMediate command must be sent before measurements will
proceed.

• IMMediate: Arm the start trigger as soon as the INITiate:IMMediate command is
received. This choice is only valid for ARM:STARt:SOURce1, and requires that
ARM:STARt:SOURce2 be set to HOLD.

ARM[:STARt]:SOURce[<n>]

199 Command Reference ARM Subsystem

Parameters

Parameter
Name

Parameter
Type

Range of
Values

Default
Units

n decimal 1|2 none

source discrete BUS|ECLTrg0|
ECLTrg1|IMMediate|

EXTernal1|INTernal[1]|
INTernal2|HOLD

TTLTrg0 to TTLTrg7

none

Choice IMMediate is only available for ARM:STARt:SOURce1.

Comments • Executable when initiated: No

• Coupled Command: Yes. The command is coupled to the
ARM[:STARt]:SLOPe[<n >], ARM[:STARt]:LEVel:NEGative, and
ARM[:STARt]:LEVel:POSitive commands.

• The active edge for the EXTernal1 source is specified by the
ARM:STARt:SLOPe[<n >] command.

• The active edge(s) for level detection (ARM:STARt:SOUR:LEVel<chan >) is
specified by the ARM:STARt:SLOPe[<n >] command.

• Related Commands: ARM:STARt:SLOPe[<n >],
ARM:STARt:LEVel[<chan >]

• *RST Condition: ARM:STARt:SOURce1 IMMediate, ARM:STARt:SOURce2
HOLD

Example Setting two arm start sources

ARM:SOUR1 EXT1 Set one arming source to be the front panel
"Ext 1" BNC.

ARM:SOUR2 ECLT0 Set the second arming source to be the
ECLTRG line.

ARM[:STARt]:SOURce[<n>]

ARM Subsystem Command Reference 200

CALibration[<chan>]

The CALibration command subsystem is used in the calibration of the HP E1429.
The HP E1429 has commands to prevent and detect accidental or unauthorized
calibration of the instrument. The CALibration subsystem includes both these
security-related commands and the actual calibration commands.

Subsystem
Syntax

CALibration[<chan >]
:COUNt? [query only]
:DATA<block data >
:DELay [no query]
:GAIN [<readings >[,<period >]] [no query]
:SECure

:CODE <code > [no query]
:STATe <mode >[,<code >]

:STORe
:AUTO <mode >

:VALue <number >
:ZERO [<readings>[,<period >,[<mode >]]] [no query]

:COUNt?

CALibration[<chan >]:COUNt? returns a number that shows how often the
HP E1429 has been calibrated. Since executing the CAL:GAIN, CAL:ZERO, or
CAL:STORe commands increments the number, the CALibration:COUNt?
command detects any accidental or unauthorized HP E1429 calibration.

Parameters

Parameter
Name

Parameter
Type

Range of
Values

Default
Units

chan numeric 1 or 2 none

Comments • Executable when initiated: Yes

• Coupled Command: No

• Your HP E1429 was calibrated before it left the factory. Before using, read the
calibration count to determine its initial value.

• Both channels share the same counter, so it does not matter whether channel 1 or
channel 2 is specified; the same answer is returned for either.

• The HP E1429 stores the calibration number in its non-volatile calibration
memory which remains intact even with power off.

201 Command Reference CALibration[<chan>] Subsystem

• Executing the CALibration:GAIN, or CALibration:ZERO commands with
calibration security disabled (CALibration:SECure:STATe OFF set) and with
CALibration:STORe:AUTO ON, increments the calibration number by one. With
CALibration:STORe:AUTO ON, a complete calibration of all input ranges
increments the number by several counts. It is possible by setting
CALibration:STORe:AUTO to OFF, to defer the storing of calibration constants
until explicitly told to do so by invoking the CALibration:STORe command.

• The count increments whenever either channel stores calibration data to memory.
The maximum value of the number is 2,147,483,647, after which it wraps around
to 0.

• Related commands: CALibration:SECure:STATe, CALibration:GAIN,
CALibration:ZERO, CALibration:STORe:AUTO, CALibration:STORe

• *RST Condition: unaffected

Example Querying the calibration count

CAL:COUN? Query calibration count, the count is shared
by both channels

:DATA

CALibration[<chan >]:DATA <block data > manually sets or queries the
calibration constants. The query form of this command returns the calibration
constants in IEEE-488.2 definite length arbitrary block format. The command
(non-query) form is used to send calibration constants to the digitizer in indefinite or
definite length arbitrary block format. The new calibration constants take effect
immediately, but are not saved to non-volatile calibration memory unless the
CALibration:STORe command is executed.

Parameters

Parameter
Name

Parameter
Type

Range of
Values

Default
Units

chan numeric 1 or 2 none

block data IEEE 488.2
block data

-2046 to 2047 none

CALibration[<chan>]:DATA

CALibration[<chan>] Subsystem Command Reference 202

Comments • Executable when initiated: No

• Coupled Command: No

• Sending calibration constants with this command will cause the HP E1429 to
calibrate to these constants. A check is done on the values before usage and an
error (-222 "Data out of range") results if they are not within a valid range.

• It is possible with this command for the user to have tables of calibration
constants which are downloaded for usage whenever the load characteristics of
what is connected to the front panel of the HP E1429 change. The storage to, and
retrieval from memory of these tables would be under the control of the host
controller, external to the HP E1429.

• The query form of this command will return the calibration constants that the
digitizer is currently using; note that these may not be the same values which are
stored in non-volatile calibration memory unless the CALibration:STORe
command has been previously executed on these constants.

• Related commands: CALibration[<chan>]:STORe

• *RST Condition: none

Example 1 Sending an array of new cal constants (HP BASIC program)

ASSIGN @X TO 70905;FORMAT OFF
 Turn format off for array data

OUTPUT 70905 USING "#,K";"CAL:DATA #3124"
 Specify 124 bytes coming (62
constants)

OUTPUT @X;Array(*),CHR$(10),END Send the array of calibration constants

Example 2 Querying the calibration constants on channel 2 (HP BASIC program)

DIM Ndig$[1],Count$[9] Dimension parameters for header

ASSIGN @To TO 70905 I/O path to digitizer

ASSIGN @From TO 70905;FORMAT OFF I/O path from digitizer. Turn format off for
array data

OUTPUT @To;"FORM PACK" Set packed data format

OUTPUT @To;"CAL2:DATA?" Query for calibration data

ENTER @From USING "#,X,K,K";Ndig$;Count$[1;VAL(Ndig$)]
 Strip the header preceeding the data

ALLOCATE INTEGER Cal_data(1:VAL(Count$)/2)
 Allocate an array to hold the data

ENTER @From;Cal_data(*) Read in the calibration constants

ENTER @To USING "B";Junk Need to remove left over line feed

CALibration[<chan>]:DATA

203 Command Reference CALibration[<chan>] Subsystem

Each channel contains 62 calibration constants. The following list describes what
the constant is at each array index location. The array is assumed to start with index
number 0.

Index Contents Index Contents

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

offset for 1.0235V range
A to D chip internal setting
A to D chip internal setting
A to D chip internal setting
A to D chip internal setting
A to D chip internal setting
linearity bit 5 left
linearity bit 5 right
linearity bit 6 left
linearity bit 6 right
linearity bit 7 left
linearity bit 7 right
linearity bit 8 left
linearity bit 8 right
linearity bit 9 left
linearity bit 9 right
linearity bit 10 left
linearity bit 10 right
gain msb
gain lsb
conversion delay adjust
trigger level negative
trigger level positive
offset for single-ended .10235 V range
gain msb for single-ended .10235 V range
gain lsb for single-ended .10235 V range
offset for single-ended .2047V range
gain msb for single-ended .2047 V range
gain lsb for single-ended .2047 V range
offset for single-ended .51175 V range
gain msb for single-ended .51175 V range

31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61

gain lsb for single-ended .51175 V range
offset for differential .10235 V range
gain msb for differential .10235 V range
gain lsb for differential .10235 V range
offset for differential .2047 V range
gain msb for differential .2047 V range
gain lsb for differential .2047 V range
offset for differential .51175 V range
gain msb for differential .51175 V range
gain lsb for differential .51175 V range
offset for differential 1.0235 V range
gain msb for differential 1.0235 V range
gain lsb for differential 1.0235 V range
offset for differential 2.047 V range
gain msb for differential 2.047 V range
gain lsb for differential 2.047 V range
offset for differential 5.1175 V range
gain msb for differential 5.1175 V range
gain lsb for differential 5.1175 V range
offset for differential 10.235 V range
gain msb for differential 10.235 V range
gain lsb for differential 10.235 V range
offset for differential 20.47 V range
gain msb for differential 20.47 V range
gain lsb for differential 20.47 V range
offset for differential 51.175 V range
gain msb for differential 51.175 V range
gain lsb for differential 51.175 V range
offset for differential 102.35 V range
gain msb for differential 102.35 V range
gain lsb for differential 102.35 V range

:DELay

CALibration[<chan >]:DELay will calibrate the delay constant for the A to D
converter. Both channels are calibrated with this command, regardless of which
<chan> value is specified. This calibration only needs to be done once or twice in
the lifetime of the instrument. Also, this calibration determines a nominal value for
convert time at room temperature (25 degrees C). It is, therefore, important that this
command be executed at an ambient temperature near 25 degrees C.

Parameters

Parameter
Name

Parameter
Type

Range of
Values

Default
Units

chan numeric 1 or 2 none

CALibration[<chan>]:DELay

CALibration[<chan>] Subsystem Command Reference 204

Comments • Executable when initiated: No

• Coupled Command: No

• Before executing this command, both channels must be set to the single-ended
setting and 1.0235 volt range. This can be accomplished by executing either
*RST or the combination of CONF:ARR:VOLT (1),1.0,(@1) with
CONF2:ARR:VOLT (1),1.0,(@2).

• This setting was calibrated before the HP E1429 left the factory. Under normal
conditions, it is not necessary to execute this command again. The symptom of
needing this calibration is that the fastest sample rate will appear to be 10 MHz
instead of 20 MHz, especially at higher ambient operating temperatures (such as
50 or 60 degrees C).

• Both channels are calibrated with a single call to this command, so a single call
will be sufficient to calibrate.

• If CALibration:STORe:AUTO is ON, then the new settings will be stored to
non-volatile calibration ram. Calibration security must also be turned off for the
new constants to be permanently stored in non-volatile calibration ram.

• CALibration:COUNt will be incremented with this command when the values are
stored to non-volatile calibration RAM.

• Related commands: CALibration:SECure:STATe, CALibration:STORe:AUTO,
CALibration:STORe

• *RST Condition: unaffected

Example Querying the calibration delay

CAL:DEL? Query calibration delay, the delay is shared
by both channels

:GAIN

CALibration[<chan >]:GAIN [<readings >[,<period >[,<flag >]]] performs a
calibration for gain using the specified number of readings and sample rate. The
CALibration:VALue voltage specified is used as the full scale value to calibrate to,
and must be between 85.0 and 99.5 percent of the full scale reading for the current
configuration. The 99.5 percent upper limit is to insure that noise will not cause
erroneous full scale (overload) readings. A linearity calibration is also done on the
1V measurement range with the single ended port (0 or 2). This linearity calibration
may be disabled by setting the flag parameter to OFF. Omitting the optional flag
parameter will cause linearity to be performed.

CALibration[<chan>]:GAIN

205 Command Reference CALibration[<chan>] Subsystem

Parameters

Parameter
Name

Parameter
Type

Range of
Values

Default
Units

chan numeric 1 or 2 none

readings numeric 100 to 32767 |DEFault none

period numeric reference period to
reference period * 4E8

|DEFault

Seconds

flag boolean ON | OFF | defaults to ON none

Comments • Executable when initiated: No

• Coupled Command: No

• Before executing CALibration[<chan>]:GAIN you must do the following steps.
Note that if you use the CONFigure command, it must be sent first; otherwise
several of the settings such as CALibration:SECure:STATe and
CALibration:VALue will be reset to their *RST values.

a. Disable the calibration security by setting
CALibration[<chan>]:SECure:STATe OFF.

b. Use the CONFigure command, or the SENSe:VOLTage:RANGe and
SENSe:FUNCtion commands to place the HP E1429 in the desired range
and using the desired port: i.e CONF<channel>:ARR:VOLT
(1000),<range>,(@<port>).

c. Program the input filter and impedance (if applicable) to the desired
settings (use the INPut:FILTer and INPut:IMPedance commands).

d. Specify the voltage which will be applied using the CALibration:VALue
command. This voltage must be 85% to 99.5% of the full scale input for
the range being calibrated. The CONFigure command will reset the value
of this setting, so this step must be done after any CONFigure command is
used.

e. Connect a fixed standard DC voltage to the input to be calibrated, where
the standard is between 85.0% and 99.5% of the full scale reading for the
range being calibrated.

• MINimum and MAXimum are not allowed with this command.

• Optional parameters that are left blank are filled from left to right. Therefore, it
may be necessary to use the syntax DEFault to note that a particular parameter has
been defaulted. For example, to default the number of readings and specify a

CALibration[<chan>]:GAIN

CALibration[<chan>] Subsystem Command Reference 206

sample rate, the command would appear as:

CAL:GAIN DEF, .05, one

• CALibration:GAIN forces the internal reference (20 MHz) oscillator to be used.
Sample rates are attained using that reference.

• The default number of readings is 1000, and the default period is 1.0E-4 seconds.
These numbers were chosen such that the product of the two is a period that is an
integral multiple of both 50 Hz and 60 Hz line cycles (.1 seconds in this case).

• When calibrating gain on the differential ports, an error could occur which
contains the text "All readings have same value in cal_mean routine". The most
likely cause of this error is that the two differential inputs on the port are not
grounded properly, and a common mode overload is occurring.

• The product of the period and number of readings will be checked to see if it
exceeds 10 seconds, and if so, error -221;"Settings conflict; Calibration time too
long" occurs.

• Normally, upon completion the new gain values would be stored to the
non-volatile calibration memory. This can be overridden by setting
CALibration:STORe:AUTO OFF, in which case the new gain values will be
stored to calibration memory only when the CALibration:STORe command is
executed.

• Related commands: CALibration:VALue, CALibration:SECure:STATe,
CALibration:STORe:AUTO, CALibration:STORe

• *RST Condition: none

Example Performing a gain calibration

CONF:ARR:VOLT (100),4.8,DEF,(@1) Configure for 5 volt range. If CONF is
used, it must be the first step because it
performs a soft reset of most other settings.

CAL:SEC:STAT OFF,E1429 Disable security, assuming factory-set
security code

CAL:STOR:AUTO OFF Disable automatic storage of calibration
constants

CAL1:VAL 5.05 Set value to > 85% of positive full scale on
5 volt range

CAL1:GAIN DEF,DEF Calibrate channel 1 for gain using default
sample rate and number of points. Note
that linearity will not be done because this
is not the 1 volt range.

CAL1:STOR Force the gain settings just calculated to be
stored into calibration RAM.

CALibration[<chan>]:GAIN

207 Command Reference CALibration[<chan>] Subsystem

:SECure:CODE

CALibration[<chan >]:SECure:CODE <code > sets the code which is required to
disable calibration security. Calibration security must have been previously disabled.

Parameters

Parameter
Name

Parameter
Type

Range of
Values

Default
Units

chan numeric 1 or 2 none

code character
data

1 to 12 characters none

Comments • Executable when initiated: Yes

• Coupled Command: No

• The calibration security code must begin with a letter, and can contain letters,
digits, and underscores. Lower case letters are converted to upper case.

• The calibration code is shared by both channels. It does not matter which channel
is specified (if any), the same code is shared by both and gives access to calibrate
either.

• If calibration security has not been previously disabled by
CALibration[<chan>]:SECure:STATe OFF, the HP E1429 generates the error
311,"Calibration security on". To disable the calibration security requires
knowledge of the previous security code.

• Before shipping, the factory sets the calibration security code to E1429. You
should change it before you use your HP E1429 to prevent unauthorized
calibration. Record the new security code and store in a secure place. If you
forget the new code, defeating the security involves instrument disassembly.

• The HP E1429 stores the security code in its non-volatile calibration memory
which remains intact even with power off.

• Related commands: CALibration[<chan>]:SECure:STATe

• *RST Condition: unaffected

Example Changing the factory-shipped security password

CAL:SEC:STAT OFF,E1429 Disable security for both channels

CAL:SEC:CODE NEWCODE Set new security code for both channels

CAL:SEC ON Re-enable security on both channels

CALibration[<chan>]:SECure:CODE

CALibration[<chan>] Subsystem Command Reference 208

:SECure:STATe

CALibration[<chan >]:SECure:STATe <mode >,[<code >] enables or disables
calibration security. Disable the calibration security to calibrate the
HP E1429, change the security code, or change the protected user data.

Parameters

Parameter
Name

Parameter
Type

Range of
Values

Default
Units

chan numeric 1 or 2 none

mode boolean OFF|0|ON|1 none

code character
data

1 to 12 characters none

Comments • Executable when initiated: Yes

• Coupled Command: No

• Either channel may be referenced, enabling/disabling is done to both channels at
once with this command.

• The code parameter must be present to disable the security, or it generates error
-109,"Missing parameter". The value supplied must match the currently
programmed security code or it generates error -224,"Illegal parameter value". A
1 second delay will then occur before the HP E1429 executes any subsequent
commands.

• To enable security, the code parameter is not required, but is checked if it is
present. If a code is given and is incorrect, error -224, "Illegal parameter value"
will be generated.

• Security must be disabled to calibrate the HP E1429, or to use the *PUD
command.

• Related commands: CALibration:GAIN, CALibration:ZERO,
CALibration:STORe, CALibration:SECure:CODE, *PUD

• *RST Condition: unaffected

Example Disabling calibration security

CAL:SEC:STAT OFF,E1429 Disable security, assuming factory-set
security code

CALibration[<chan>]:SECure:STATe

209 Command Reference CALibration[<chan>] Subsystem

:STORe

CALibration[<chan >]:STORe stores the current calibration constants into
non-volatile calibration memory.

Parameters

Parameter
Name

Parameter
Type

Range of
Values

Default
Units

chan numeric 1 or 2 none

Comments • Executable when initiated: No

• Coupled Command: No

• CALibration:SECure:STATe must be OFF before executing this command.

• Related commands: CALibration[<chan>]:DATA,
CALibration:SECure:STATe, CALibration:COUNt?, CALibration:STORe:AUTO

• *RST Condition: none

Example Sending and storing an array of new cal constants

ASSIGN @X TO 70905;FORMAT OFF
 Turn format off for array data

OUTPUT 70905 USING "#,K";"CAL:DATA #3124"
 Specify 124 bytes coming (62
constants)

OUTPUT @X;Array(*),CHR$(10),END Send the array of calibration constants

OUTPUT 70905;"CAL:SEC:OFF,E1429"
 Disable security

OUTPUT 70905;"CAL:STOR" Store the calibration data in non-volatile
RAM

CALibration[<chan>]:STORe

CALibration[<chan>] Subsystem Command Reference 210

:STORe:AUTO

CALibration[<chan >]:STORe:AUTO <mode > selects whether or not the
calibration constants will be automatically stored when commands like
CALibration:GAIN and CALibration:ZERO complete.

Parameters

Parameter
Name

Parameter
Type

Range of
Values

Default
Units

chan numeric 1 or 2 none

mode boolean ON|1|OFF|0 none

Comments • Executable when initiated: Yes

• Coupled Command: No

• Enabling CALibration[<chan >]:STORe:AUTO for either channel enables it for
both channels.

• Related commands: CALibration:GAIN, CALibration:SECure:STATe,
CALibration:ZERO, CALibration:STORe

• *RST Condition: CALibration:STORe:AUTO ON

Example Turn automatic storage of calibration values off

CAL:STOR:AUTO OFF Disable automatic storage

:VALue

CALibration[<chan >]:VALue <number > specifies the voltage level supplied at
the input. This voltage value is then used in subsequent CALibration:GAIN or
CALibration:ZERO commands. The HP E1429 can not distinguish between a value
which is exactly full scale, and one which is an overload -- both cases would
generate the same measured value. Therefore, the voltage specified for
CALibration:VALue is not allowed to be closer than 10 counts from full scale
(approximately 99.5% of full scale). The following table shows the allowable
CALibration:VALues which are closest to full scale on their respective voltage
ranges.

CALibration[<chan>]:STORe:AUTO

211 Command Reference CALibration[<chan>] Subsystem

Maximum Gain
Calibration Values (V)

Voltage Range
 (Volts)

Allowable
Ports

-.10180 and .10185 0.10235 1,2,3,4

-.2036 and .2037 0.2047 1,2,3,4

-.5090 and .50925 0.51175 1,2,3,4

-1.0180 and 1.0185 1.0235 1,2,3,4

-2.036 and 2.037 2.037 3,4

-5.090 and 5.0925 5.1175 3,4

-10.180 and 10.185 10.235 3,4

-20.360 and 20.370 20.37 3,4

-50.900 and 50.925 51.175 3,4

-101.80 and 101.85 102.35 3,4

< -48.925 and > 48.975 102.35 3,4

Parameters

Parameter
Name

Parameter
Type

Range of
Values

Default
Units

number numeric -101.80 to 101.85 volts

Comments • Executable when initiated: No

• Coupled Command: No

• Calibration values on the 102.35 volt range have a special low end allowed, so
that voltages much less than full scale may be used to calibrate gain on this range.
Values < -48.975 and > 48.975 are accepted as legal values for calibrating the
102.35 volt range.

• CALibration:VALues used for GAIN calibration are at least 85% of full scale and
≤ 10 counts away from absolute full scale. The previous table lists the gain
calibration values.

• Related commands: CALibration:GAIN

• *RST Condition: CALibration<chan >:VALue 1.0185

CALibration[<chan>]:VALue

CALibration[<chan>] Subsystem Command Reference 212

Example Setting the calibration value

CAL2:VAL 5.00 Input on channel 2 is 5.00 V

:ZERO

CALibration[<chan >]:ZERO [<readings >[,<period >,[<mode >]]] performs a
calibration of the zero offset using the specified number of readings and sample rate
on the specified range(s). When this command completes, the new calibration
constants will be automatically stored to non-volatile calibration memory unless the
CALibration:STORe:AUTO command is set to OFF.

Parameters

Parameter
Name

Parameter
Type

Range of
Values

Default
Units

chan numeric 1 or 2 none

readings numeric 100 to 32767 |DEFault none

period numeric reference period to
reference period * 4E8

|DEFault

Seconds

mode discrete ALL |ONE none

Comments • Executable when initiated: No

• Coupled Command: No

• Before executing CALibration[<chan>]:ZERO, you must do the following steps.

a. If mode is not ALL, use the CONFigure command or the
SENSe:VOLTage:RANGe and SENSe:FUNCtion commands to place the
HP E1429 in the desired range and using the desired port: i.e
CONF<channel>:ARR:VOLT (1000),<range>,(@<port>).

b. Program the input filter and impedance (if applicable) to the desired
settings (use the INPut:FILTer and INPut:IMPedance commands).

c. If it is desirable for the new constants to be stored to non-volatile
calibration memory upon completion of the CALibration:ZERO command,
then set CALibration:STORe:AUTO to ON, and turn calibration security
OFF. If a complete calibration involving gain and linearity is to be done,
then it may be more desirable to only store the calibration constants when
everything is complete; for this case, set CALibration:STORe:AUTO to
OFF, and use the CALibration:STORe command to force storage when all
calibrations are complete.

CALibration[<chan>]:ZERO

213 Command Reference CALibration[<chan>] Subsystem

• MINimum and MAXimum are not allowed with this command.

• Optional parameters that are left blank are filled from left to right. Therefore, it
may be necessary to use the syntax DEFault to note that a particular parameter has
been defaulted. For example, to default the number of readings and specify a
sample rate, the command would appear as:

CAL:ZERO DEF, .05, one

• CALibration:ZERO forces the internal reference (20 MHz) oscillator to be used.
Sample rates are attained using that reference.

• The default number of readings is 1000, and the default period is 1.0E-4 seconds.
These numbers were chosen such that the product of the two is a period that is an
integral multiple of both 50 Hz and 60 Hz line cycles
(0.1 seconds in this case).

• The product of the period and number of readings will be checked to see if it
exceeds 10 seconds, and if so, error -221;"Settings conflict; Calibration time too
long" occurs.

• The default <mode> is ONE, which calibrates using the current settings of
SENSe:VOLTage:RANGe and SENSe:FUNCtion. Specifying <mode> ALL will
do a zero calibration on all voltage range settings for both of the ports on the
specified channel.

• Related commands: CALibration:GAIN, CALibration:VALue,
CALibration:SECure:STATe

• *RST Condition: none

Example Performing a zero calibration

CAL:SEC:STAT OFF,E1429 Disable security, assuming factory-set
security code

CAL1:ZERO DEF,DEF,ALL Calibrate channel 1 using default sample
rate and number of points, calibrate all gain
ranges on both ports.

CALibration[<chan>]:ZERO

CALibration[<chan>] Subsystem Command Reference 214

CONFigure[<chan>]

The CONFigure subsystem provides a fast way to place the HP E1429 into a known
state, ready to take measurements. An INITiate;FETCh? is then all that is necessary
to take a measurement after the CONFigure command has been executed. If
desired, CONFigure may be used to quickly get to a known state, from which other
states such as TRIGger:STARt:SOURce or TRIGger:STARt:TIMer can be "fine
tuned" to desired values before the INITiate;FETCh? sequence is executed.

Subsystem
Syntax

CONFigure[<chan>]
:ARRay

[:VOLTage]
[:DC] (<size>)[,<expected value>[,<resolution>]] [,(@<input port>)]

:ARRay:[VOLTage][:DC]

CONFigure[<chan>]:ARRay[:VOLTage][:DC] (<size>)[,<expected
value>[,<resolution>]] [,(@<input port>)] will configure for taking <size> number
of readings on the specified channel and <input port>. The <expected value> and
<resolution> parameters are used to set SENSe:VOLTage:RANGe to an appropriate
setting for making the measurement on the specified input port and channel. If no
expected value is given, the 1V range (1.0235 V peak) is used. If a resolution is
specified, it is checked for correctness against what is possible with the expected
value range, and if too fine for the given expected value, error -231,"Data
questionable;CONF or MEAS unable to attain resolution specified" will occur.

Each channel consists of two ports; one port is single ended, and the other is
differential. The two ports on channel 1 have odd numbers: port 1 is the single
ended input and port 3 is the differential input. On channel 2, the single ended input
is port 2 and the differential input is port 4.

The expected value parameter specified should be the maximum expected
measurement value. The voltage range is set according to the expected value
supplied. If the expected value is greater than 98% of a given range, the next higher
range is automatically chosen. The table under the "Settings" heading gives the
crossover points for range changes.

215 Command Reference CONFigure[<chan>] Subsystem

Parameters

Parameter
Name

Parameter
Type

Range of
Values

Default
Units

chan numeric 1 | 2 none

size numeric 1 | 7 to 524288 none

expected
value

numeric -102.30 to 102.35 |
DEFault |

MINimum | MAXimum

volts

resolution numeric .00005 to .05 |
DEFault |

MINimum | MAXimum

volts

input port numeric 1|3 with CONFigure1
 2|4 with CONFigure2

1 and 2 are single ended
3 and 4 are differential

none

The maximum size parameter will be 524284 if the battery is
enabled instead of 524288.

For expected value, MINimum selects the 0.100 V range and
MAXimum selects either the 1.0 volt range (single ended ports)
or the 100 V range (differential ports). DEFault selects the 1V
range.

For resolution, MINimum, MAXimum, and DEFault select the
same value.

Settings Maximum expected value settings per range are shown in the following table, along
with the resolution associated with each range. The highlighted area shows the
setting used when the expected value is not specified or DEFault is used.

CONFigure[<chan>]:ARRay:[VOLTage][:DC]

CONFigure[<chan>] Subsystem Command Reference 216

Maximum
Expected
 Value (V)

Voltage
 Range
 (Volts)

Resolution
 (Volts)

± .1 0.10235 .00005

± .2 0.2047 .00010

± .5 0.51175 .00025

± 1 1.0235 .0005

± 2 2.047 .0010

± 5 5.1175 .0025

± 10 10.235 .005

± 20 20.47 .010

± 50 51.175 .025

±100 102.35 .05

Comments • Executable when initiated: No

• Coupled Command: No

• If no input port is given, CONFigure1 defaults to (@1) and CONFigure2 defaults
to (@2).

• Resolution varies by range, and is constant for each range. For any given range,
specifying MINimum, MAXimum, or DEFault for resolution yields the same
result.

• It is important to note that the expected value determines the resolution and not
vice versa. The digitizer always uses 12-bit resolution and a coarser resolution
value has no effect. If, for some reason a coarser resolution is desired, specify a
larger expected value. See the previous table for expected values and resolutions.

CONFigure[<chan>]:ARRay:[VOLTage][:DC]

217 Command Reference CONFigure[<chan>] Subsystem

• The CONFigure command configures the HP E1429 to do the measurement
specified by the parameters given with CONFigure. All instrument settings will
be forced to their *RST values, with the following exceptions. In particular, note
that all OUTPut signals are turned off and their FEED’s are changed to reset
values, and that both the local bus (VINStrument:LBUS) and VME bus
(VINS:VME) are turned off. Be aware that these new states will still be in effect
after the CONFigure command is complete. See Appendix B, Table B-2 for a
complete list of the reset settings for the HP E1429. The following states are set
up after the reset, and thus in most cases, will not be the *RST value for that
command:

a. SENSe<n>:FUNCtion is set to "VOLTage[:DC] <port>"

b. SENSe<n>:VOLTage:DC:RANGe is set to the value implied by the
expected value given.

c. INPut[<port>]:FILTer is set to ON.

d. SENSe:SWEep:POINts and TRIGger:STARt:COUNt are set to the <size>
parameter.

• Related commands: SENSe:FUNCtion, SENSe:VOLTage:RANGe,
SENSe:SWEep:POINts, SENSe:ROSCillator:SOURce, TRIGger:STARt
subsystem, ARM:STARt subsystem.

• *RST Condition: none

Example Measuring 1.5 V on the differential input of channel 1

CONF:ARRay:VOLT (20),1.5,(@3) Set up to take 20 readings of 1.5 Volts peak
on port 3 of channel 1.

INIT Start the measurement

FETC? Get channel 1 readings

CONFigure[<chan>]:ARRay:[VOLTage][:DC]

CONFigure[<chan>] Subsystem Command Reference 218

DIAGnostic

The DIAGnostic subsystem contains several commands which were developed to
test the instrument at the factory. Several of these commands may prove useful for
trouble shooting or special applications, and so they are written up here.

Subsystem
Syntax

DIAGnostic
:CALibration[<chan >]

:CONVerge [query only]
:GAIN

:SENSitivity [query only]
:ZERO

:SENSitivity [query only]
:CHANnel[<chan >]

:LABel <label >
:FETCh[<chan >] <start_addr >, <count > [query only]
:MEMory[<chan >]

:FILL <num_segments >, <count >
:ADDresses? [query only]

:PEEK <address >, <bits > [query only]
:POKE <address >, <bits >
:SGET <bit > [query only]
:SPUT <bit >, <value>
:TEST? [query only]

:CALibration[<chan >]:CONVerge?

DIAGnostic:CALibration[<chan >]:CONVerge? returns a real array containing
convergance data from the latest CAL:ZERO or CAL:GAIN command. This array
contains pairs of data points, with the first data point in a pair being the average of
the readings taken, and the second data point is the new calibration constant which
will be used on the next convergance iteration. The channel number passed in is
irrelevant, as the data brought back always pertains to the most recently attempted
CAL:GAIN or CAL:ZERO.

Parameters

Parameter
Name

Parameter
Type

Range of
Values

Default
Units

channel numeric 1 | 2 none

Comments • Executable when initiated: Yes

• Coupled Command: No

219 Command Reference DIAGnostic Subsystem

:CALibration[<chan >]:GAIN:SENSitivity?

DIAGnostic:CALibration[<chan >]:GAIN:SENSitivity? returns a real number
which is the sensitivity constant calculated for use during the most recently executed
CAL:GAIN command. The channel parameter is irrelevant because the data
returned always applies to the last executed CAL:GAIN command regardless of
which channel was involved.

Parameters

Parameter
Name

Parameter
Type

Range of
Values

Default
Units

channel numeric 1 | 2 none

Comments • Executable when initiated: Yes

• Coupled Command: No

:CALibration[<chan >]:ZERO:SENSitivity?

DIAGnostic:CALibration[<chan >]:ZERO:SENSitivity? returns a real number
which is the sensitivity constant calculated for use during the most recently executed
CAL:ZERO command. The channel parameter is irrelevant because the data
returned always applies to the last executed CAL:ZERO command regardless of
which channel was involved.

Parameters

Parameter
Name

Parameter
Type

Range of
Values

Default
Units

channel numeric 1 | 2 none

Comments • Executable when initiated: Yes

• Coupled Command: No

:CHANnel[<chan >]:LABel

DIAGnostic:CHANnel[<chan >]:LABel <label > puts the bit pattern specified
into the lower 4 bits of all data on the specified channel. These four bits are ignored
when data is fetched or read with FORMat:DATA ASCii or REAL, but they are
sent with FORMat:DATA is PACKed, and they are transmitted out over the local
bus or VME bus when data is sent out via those routes. This command could be

DIAGnostic:CALibration[<chan >]:GAIN:SENSitivity?

DIAGnostic Subsystem Command Reference 220

useful for tagging data which is going out over the local bus or VME bus when
multiple channels or HP E1429’s are involved.

Parameters

Parameter
Name

Parameter
Type

Range of
Values

Default
Units

channel numeric 1 | 2 none

label numeric 0 through 15|
MINimum | MAXimum

none

Comments • Executable when initiated: Yes

• Coupled Command: No

• Related Commands: ABORt, FETCh?

• *RST Condition: DIAG:CHAN1:LAB 0, DIAG:CHAN2:LAB 0

Example 1 Tagging the data with channel number

DIAG:CHAN1:LAB 1 Make the lower 4 bits of all channel 1 data
contain the bit pattern 0001

DIAG:CHAN2:LAB 2 Make the lower 4 bits of all channel 2 data
contain the bit pattern 0010

:FETCh?

DIAGnostic:FETCh[<chan >]? <start_addr >, <count > returns count number of
readings starting with the one at start_addr. The data is returned in PACKed format
(block of 16 bit integers).

Parameters

Parameter
Name

Parameter
Type

Range of
Values

Default
Units

channel numeric 1 | 2 | 3 none

start_addr numeric 0 through 524287 none

count numeric 1 through 2000 none

Comments • Executable when initiated: No

• Coupled Command: No

DIAGnostic:FETCh?

221 Command Reference DIAGnostic Subsystem

• Refer to the "Memory Management" section in Chapter 3 for information on
where segmented readings are stored in memory.

• Both channels can be fetched interleaved by specifying DIAG:FETC3?. When
both channels are fetched, the channel 1 data is the first data point, and the count
specified is the number of readings to be taken on each channel, and is thus
limited to 1000 per channel.

• The start_addr must be divisible by 4. If it is not, then the next lowest memory
location divisible by 4 will be the actual start_addr used, i.e. a start_addr of 511
would be rounded down to be 508.

• Data is sent back in binary block format with a header string preceeding the data.
The header is made of the ascii string: #,number_of_digits,number_of_bytes --
where # indicates binary block data, number_of_digits is how many ascii digits
make up the following byte count, and number_of_bytes is the byte count. After
the header, the stream of data bytes occurs. Example 2 below shows how to
accomodate the header string using the HP Rocky Mountain Basic programming
language.

• Related Commands: ABORt, FORMat, INITiate:IMMediate,
ARM:STARt:COUNt, TRIGger:STARt:COUNt, SENSe:SWEep:POINts:DELay

• *RST Condition: none

Example 1 Examining readings in a portion of memory

DIAG:FETC? 5200,300 Get 300 readings from channel 1, beginning
at address 5200.

Example 2 Reading back PACKed data (HP BASIC program)

DIM Ndig$[1],Count$[9] Dimension parameters for header

ASSIGN @X TO 70905;FORMAT OFF
 Turn format off for array data

OUTPUT 70905;"DIAG:FETC1? 5200,300" Query for channel 1 measurement data

ENTER @X USING "#,X,K,K";Ndig$;Count$[1;VAL(Ndig$)]
 Strip the header preceeding the data

ALLOCATE INTEGER Meas_data(1:VAL(Count$)/2)
 Allocate an array to hold the data

ENTER @X;Meas_data(*) Read in the measurement data

ENTER 70905 USING "B";Junk Need to strip off left over line feed

DIAGnostic:FETCh?

DIAGnostic Subsystem Command Reference 222

:MEMory[<chan>]:FILL

DIAGnostic:MEMory[<chan >]:FILL <num_segments, count> sets up
num_segments in memory and fills each with count readings. Each data point is
calculated from the formula:

 data<n> = (((current_segment - 1) * 10 + n) modulo 2000) * 16

Where n is the data point of interest between 1 and count. Only the specified
channel is filled with these data points, the other channel is filled with reading
values of 0.

Parameters

Parameter
Name

Parameter
Type

Range of
Values

Default
Units

channel numeric 1 | 2 none

num_segments numeric 0 thru 128 none

count numeric 1 thru 524288 none

Comments • Executable when initiated: No

• Coupled Command: No

• *RST Condition: none

:MEMory[<chan>]:ADDResses?

DIAGnostic:MEMory[<chan >]:ADDResses? returns a binary block of integers
which comprise a list of memory address data for each segment in memory. If there
is no valid data, then an error occurs and no values are returned; otherwise, a 32 bit
value is returned for each segment in memory containing valid data. Bits 0 and 1
contain flags for segment wrapped and segment aborted respectively; the next 19
bits are the final value of the address counter (A0 to A18) when the segment was
completed or aborted, and bits 21 through 31 are filled with 0. Be aware that the
address counter value returned is actually 1 greater than the location of the last data
point taken in the segment.

Comments • Executable when initiated: No

• Coupled Command: No

DIAGnostic:MEMory[<chan>]:FILL

223 Command Reference DIAGnostic Subsystem

• The wrapped bit (bit 0) usually indicates that enough pre-arm data was taken to
cause data to be overwritten, since each segment is a circular buffer. It is possible
for a wrapped bit to be set even though no data was actually overwritten. This
occurs because the address counter always points to the next location in memory
that is to be filled, and therefore a false wrap indication will occur if exactly
"buffer size" data points were taken. The buffer size is a number divisable by 4
which for post-arm only measurements is ARM:COUN * TRIG:COUN (padded
to a multiple of 4), or TRIG:COUN (padded to a multiple of 4) for pre-arm with
post-arm measurements.

• *RST Condition: none

Example Querying the memory segment address(es), HP BASIC Program

DIM Ndig$[1],Count$[9] Dimension parameters for header

ASSIGN @X TO 70905;FORMAT OFF
 Turn format off so we can enter
unformatted bytes with this path

OUTPUT 70905;"DIAG:MEM:ADDR?" Query for memory addresses

ENTER @X USING "#,X,K,K";Ndig$;Count$[1;VAL(Ndig$)]
 Obtain the header information
preceeding the data

ALLOCATE INTEGER Mem_addrs(1:VAL(Count$)/2)
 Allocate an array to hold the data.
Note that HP BASIC’s integers are 16
bits and not 32, hence the divide by 2
instead of by 4

ENTER @X;Mem_addrs(*) Read in the memory addresses

ENTER 70905 USING "B";Junk Need to strip off left over line feed

:PEEK?

DIAGnostic:PEEK? <address, bits> shows the specified number of bits from the
memory location specified.

Parameters

Parameter
Name

Parameter
Type

Range of
Values

Default
Units

address numeric 0 thru FFFFFF16 none

bits numeric 8 | 16 | 32 none

DIAGnostic:PEEK?

DIAGnostic Subsystem Command Reference 224

Comments • Executable when initiated: Yes

• Coupled Command: No

• The specified address is assumed to be relative to the local processor and is not
the A24 offset, but is instead the full address (i.e. E0000C16 would specify the
data register, as opposed to the VME A24 offset of C16).

Example Examining the setting of the traffic register

DIAG:PEEK? #HE00002,8 Retrieve the contents of the 8 bit traffic
register

:POKE

DIAGnostic:POKE <address, bits, value> places the specified value into the
memory location specified.

Parameters

Parameter
Name

Parameter
Type

Range of
Values

Default
Units

address numeric 0 thru FFFFFF16 none

bits numeric 8 | 16 | 32 none

value numeric -2147483648 thru
2147483647

none

Comments • Executable when initiated: Yes

• Coupled Command: No

• The specified address is assumed to be relative to the local processor and is not
the A24 offset, but is instead the full address (i.e. E0000C16 would specify the
data register, as opposed to the VME A24 offset of C16).

Example Changing the contents of the traffic register

DIAG:POKE #HE00002,8,#H4B Set traffic register to value of 4B hex

DIAGnostic:POKE

225 Command Reference DIAGnostic Subsystem

:SGET?

DIAGnostic:SGET? <bit > returns the state (0 or 1) of the specified bit of the serial
control register. This register is the one which controls things such as signal
conditioning, signal routing, input filter state, and input impedance.

Parameters

Parameter
Name

Parameter
Type

Range of
Values

Default
Units

bit numeric 0 through 55 none

Comments • Executable when initiated: Yes

• Coupled Command: No

:SPUT

DIAGnostic:SPUT <bit, value > changes the state (0 or 1) of the specified bit of
the serial control register to the value given. This register is the one which controls
things such as signal conditioning, signal routing, input filter state, and input
impedance.

Parameters

Parameter
Name

Parameter
Type

Range of
Values

Default
Units

bit numeric 0 through 55 none

Comments • Executable when initiated: Yes

• Coupled Command: No

:TEST?

DIAGnostic:TEST? returns additional data on a failed self-test. The string returned
may be up to 40 characters in length.

DIAGnostic:SGET?

DIAGnostic Subsystem Command Reference 226

FETCh[<chan>]

The FETCh? command is used in conjunction with the INITiate:IMMediate
command to obtain readings. The FETCh:COUNt command is used to indicate how
many readings are available.

Subsystem
Syntax

FETCh[<chan>]? [query only]
:COUNt? [query only]
:RECover? [query only]

FETCh?

FETCh[<chan>]? returns readings from the specified channel in the format set by
the FORMat:DATA command. An INITiate:IMMediate command must have been
issued previously or else error -230, "Data corrupt or stale" will occur.

Parameters

Parameter
Name

Parameter
Type

Range of
Values

Default
Units

chan numeric 1 | 2 none

Comments • If measurements are still being taken when the FETCh? command is sent, the
command will wait until readings have completed and will then return the data.
Note that this could generate a deadlock error message if either the arming source
or the trigger source is set to BUS, because a software trigger could not break in
after FETCh? is sent.

• If desired, the negative transition of the BUSY bit (bit 8) in the
STATus:OPERation:CONDition register can be used to determine when
measurements have completed so a FETCh? could execute without delay or threat
of deadlock. This status register bit can be enabled to generate an SRQ when
readings are complete, and thus interrupt the controller. See the STATus
subsystem in the Command Reference for more details.

• If error -230 "Data corrupt or stale" occurs and you must read the data, the
FETCh:RECover? command can be used to force data read with no error.

• FETCh? or FETCh1? will return readings from channel 1 only. FETCh2? will
return readings from channel 2 only.

227 Command Reference FETCh[<chan>] Subsystem

• The data may be read any number of times, as long as no parameters have
changed which could affect new data (such as changing TRIGger:STARt:COUNt,
ARM:STARt:COUNt, SENSe:SWEep:OFFSet:POINts, *RST, *RCL, etc.). If
any measurement parameters are changed, then error -230;"Data corrupt or stale"
will occur.

• The number of readings that FETCh? is going to return for each channel can be
determined two ways. The simplest way is to use the FETCh:COUNt? query. This
will return how many readings will be fetched. The second way is to calculate
how many readings should have been taken. This number is calculated as:

(number of start triggers) * (pre-arm readings + post-arm readings)

The above equation may be built from the following queries:

(ARM:STARt:COUNt?) * (TRIG:STARt:COUNt?)

The number of pre-arm readings may be determined by taking the absolute value
of the query SENSe:SWEep:OFFSet:POINts? which returns either 0 (no pre-arm
readings), or a negative number which is the pre-arm count.
If the measurement was ABORted, then FETCh:COUNt? is the only reliable way
to determine how many readings will be returned by the FETCh<chan >?

• As noted immediately above, it is possible to calculate the end of pre-arm data
and the beginning of post-arm data when both are present in a measurement. The
data will always be returned with the specified number of pre-arm readings
followed by post-arm readings.

• If the measurement was aborted and pre-arm readings were specified, there is no
way to determine how many readings (if any) are post-arm. The HP E1429 will
attempt to bring back TRIGger:STARt:COUNt number of readings and if there
are not that many, it will bring back as many readings as were taken.

• Related Commands: ABORt, FORMat:DATA, INITiate:IMMediate, READ?,
ARM:STARt:COUNt, TRIGger:STARt:COUNt,
SENSe:SWEep:OFFSet:POINts, STATus subsystem

• *RST Condition: none

Example 1 Obtaining readings from the HP E1429

CONF1:ARR:VOLT (30),.6,(@1) Configure for 30 readings on channel 1,
port 1

INIT Take the measurement

FETC? Get readings from channel 1.

FETCh[<chan>] Subsystem Command Reference 228

Example 2 Reading back PACKed data (HP BASIC program)

DIM Ndig$[1],Count$[9] Dimension parameters for header

ASSIGN @X TO 70905;FORMAT OFF
 Turn format off for array data

OUTPUT 70905;"FETC1?" Query for channel 1 measurement data

ENTER @X USING "#,X,K,K";Ndig$;Count$[1;VAL(Ndig$)]
 Strip the header preceeding the data

ALLOCATE INTEGER Meas_data(1:VAL(Count$)/2)
 Allocate an array to hold the data

ENTER @X;Meas_data(*) Read in the measurement data

ENTER 70905 USING "B";Junk Need to strip off left over line feed

:COUNt?

FETCh[<chan>]:COUNt? returns the total number of readings stored in memory
for the channel specified. The count is the same for both channels, so either channel
may be queried.

Parameters

Parameter
Name

Parameter
Type

Range of
Values

Default
Units

chan numeric 1 | 2 none

Comments • This command is most useful after an ABORt command has been issued on a
measurement in progress. The number returned will be the number of readings
which were taken before the ABORt command forced measurements to stop. If
an infinite measurement was aborted, then the number returned will be the
maximum memory size, if more than that number of readings were taken.

• Related Commands: ABORt, INITiate:IMMediate, ARM:STARt:COUNt,
TRIGger:STARt:COUNt, SENSe:SWEep:OFFSet:POINts

• *RST Condition: none

Example Determining how many readings are in memory

FETC1:COUN? Query how many readings are available for
channel 1 -- this is also how many are
available on channel 2.

FETCh[<chan>]:COUNt?

229 Command Reference FETCh[<chan>] Subsystem

:RECover?

FETCh[<chan>]:RECover? returns readings from the specified channel in the
format set by the FORMat:DATA command. This command is used to fetch data
that was saved during a power failure and which cannot be fetched by the
FETCh<chan >? command due to the "Data corrupt or stale" error.

Parameters

Parameter
Name

Parameter
Type

Range of
Values

Default
Units

chan numeric 1 | 2 none

Comments • Executable when initiated: No

• Coupled Command: No.

• As mentioned above, this command is intended to retrieve battery backed data
after a power failure. Attempting to use FETCh<chan >? in this case may cause
an error if any measurement parameters were changed after power is returned.
With FETCh:RECover? it is also possible to retrieve readings that were taken
previously, but which are not accessable to FETCh? because of a setting change
or reset.

• If error 1018 "Battery backed data corrupt" occurs, FETCh:RECover? will not
return the readings since a problem with the data was detected. If the data must be
recovered, use the DIAGnostic:FETCh? command.

• Related Commands: INITiate:IMMediate, ARM:STARt:COUNt,
TRIGger:STARt:COUNt, SENSe:SWEep:OFFSet:POINts:

• *RST Condition: none

Example Recovering readings in memory

FETC1:REC? Do a fetch on the data on channel 1. The
battery must be enabled for this to work.

FETCh[<chan>]:RECover?

FETCh[<chan>] Subsystem Command Reference 230

FORMat

The FORMat command subsystem is used to specify the output format of the
readings from the HP E1429 Digitizer.

Subsystem
Syntax

FORMat
[:DATA] <type>[,<length>]

[:DATA]

FORMat[:DATA] <type>[,<length>] specifies the output format for measurement
data.

Parameters

Parameter
Name

Parameter
Type

Range of
Values

Default
Units

type discrete ASCii|PACKed| REAL none

length numeric 9 (ASCii)|16 (PACKed)|
64 (REAL)

none

Comments • PACKed format is signed 16 bits, however, the original 12-bit reading is shifted
left 4 bits and the lower most 4 bits are 0 filled. Thus, to get the actual value of the
reading, the packed value should be divided by 16. Packed readings always
represent a value between -1.023 and +1.0235 (i.e. there is no correction done
internally for the range setting), and further post-processing by the user is
necessary to get the actual reading value if the SENSe<chan >:VOLTage:RANGe
setting is not 1V.

• REAL,64 format sends data back as IEEE-754 64-bit real numbers. The data is
converted internally to reflect the SENSe<chan >:VOLTage:RANGe setting, and
no further conversion is needed by the user.

• Both PACKed,16 and REAL,64 formats return data preceded by the IEEE-488.2
definite length arbitrary block header. The header is as follows:

<num_digits > <num_bytes >

signifies a block transfer
<num_digits > is a single digit (1 through 9) which specifies how many digits
(ASCII characters) are in the <num_bytes > descriptor which follows
<num_bytes > is the number of data bytes which immediately follow the
<num_bytes > field

231 Command Reference FORMat Subsystem

• ASCii,9 format sends data back as comma separated ASCII numbers. The data is
converted internally to reflect the SENSe<chan >:VOLTage:RANGe setting, and
no further conversion is needed by the user. The optional parameter 9 is the
number of significant digits in the data. This parameter is always 9 and may not
be changed. To read this data into an array, it is first necessary to determine how
many readings are coming back from the FETCh? or READ? . If using FETCh?,
then the FETCh:COUNt? command will specify how many readings will be
returned. READ? requires the user to calculate in advance how many readings to
expect. See the next comment below for details on how to calculate number of
readings.

• The number of readings that FETCh? or READ? will return for each channel can
be calculated as:

 (number of start triggers) * (pre-arm readings + post-arm readings)

The above equation may be built from the following queries:

(ARM:COUNt?) * (TRIGger:COUNt?)

• To determine how many readings are pre-arm, take the absolute value of the
number returned by the SENSe:SWEep:OFFSet:POINts? query.

• Related Commands: READ?, FETCh?

• *RST Condition: FORMat:DATA ASCii,9

Example 1 Setting the data format to 64 bit reals

FORM REAL Output data in 64 bit real format, the ",64"
is defaulted

Example 2 Reading back PACKed data (HP BASIC program)

DIM Ndig$[1],Count$[9] Dimension parameters for header

ASSIGN @X TO 70905;FORMAT OFF
 Turn format off for array data

OUTPUT 70905;"FETC1?" Query for channel 1 measurement data

ENTER @X USING "#,X,K,K";Ndig$;Count$[1;VAL(Ndig$)]
 Strip the header preceeding the data

ALLOCATE INTEGER Meas_data(1:VAL(Count$)/2)
 Allocate an array to hold the data

ENTER @X;Meas_data(*) Read in the measurement data

ENTER 70905 USING "B";Junk Need to strip off left over line feed

FORMat[:DATA]

FORMat Subsystem Command Reference 232

INITiate

The INITiate subsystem controls the initiation of the trigger subsystem and prepares
the HP E1429 to take voltage measurements. Once initiated, triggers are armed on
both channels, and a trigger received from the programmed source
(TRIGger:STARt:SOURce command) will cause voltage measurements to begin on
both channels.

Normally, all measurement setup (setting measurement ranges, arm and trigger
sources, etc.) should be done before this command is sent. Sending this command
will cause the HP E1429 to begin the measurement process, using the currently
active sources and settings.

Subsystem
Syntax

INITiate
[:IMMediate] [no query]

[:IMMediate]

INITiate[:IMMediate] initiates the trigger system and places all trigger sequences
in the wait-for-arm or wait-for-trigger state, as appropriate. When the number of
readings specified by ARM:COUNt and TRIGger:COUNt have been taken, the
trigger system returns to the idle state, and measurements are no longer taken.

This command is an overlapped command as described in IEEE-488.2, Section 12.
The exit from idle state caused by INITiate:IMMediate shall cause the Pending
Operation Flag to be set true (*OPC will return 0). The Pending Operation Flag will
be set false when the idle state is re-entered, either when the trigger cycle completes
or when an ABORt or *RST command is executed.

The STATus:OPC:INITiate command controls whether *OPC, *OPC? and *WAI
will test the Pending Operation Flag and wait until it is false (trigger system in the
idle state).

233 Command Reference INITiate Subsystem

Readings may not be obtained from memory until the trigger system has returned to
the idle state. The FETCh? and READ? commands may be invoked before the
trigger system is in the idle state. These commands will wait until the trigger
system is idle before returning readings. The trigger idle state may be determined
externally from the high-to-low transition of the BUSY bit (bit 8) of the
STATus:OPERation:CONDition register.

Comments • Executable when initiated: No

• Coupled Command: No

• Both measurement channels are affected by this command.

• If the trigger system is not in the idle state, error -123,"Init ignored" will be
generated, and the trigger system will be unaffected.

• The ABORt command may be used to prematurely halt the trigger system and
place the HP E1429A in the idle state.

• Related Commands: *OPC, *OPC?, *RST, *WAI, ABORt, ARM subsystem,
STATus:OPC:INITiate, TRIGger subsystem

• *RST Condition: The trigger system is in the idle state.

Example Placing the HP E1429A in the wait-for-arm state

INIT Initiate signal measurement

INITiate[:IMMediate]

INITiate Subsystem Command Reference 234

INPut[<port>]

The INPut command subsystem controls characteristics of the input signal,
including state (on/off), low-pass filtering, and input source impedance. There are
two types of input ports on the HP E1429, single ended and differential, for a total
of 4 input ports.

Since this is a two channel instrument, two input ports share each channel. The
differential input ports are labeled ports 3 and 4. Input ports 1 and 2 are single
ended. Ports 1 and 3 share channel 1, and ports 2 and 4 share channel 2.

Since IMPedance, FILTer, and STATe are settable for each input port, they are
"remembered" so that changes made to FILTer on input port 3 for example, will not
change the settings made previously on input port 1 or vice versa. Just note that the
currently active settings may change when switching between input ports on a given
channel.

The selection mechanism for specifying which of two ports is connected to a given
channel is the SENSe<chan>:FUNCtion "VOLTage:DC <port>" command. See the
SENSe:FUNCtion command for more information.

Note The input filter, impedance, and state can be changed while the HP E1429 is taking
readings (initiated). Due to settling times associated with changing these parameters,
readings taken during this period may have unexpected values.

Subsystem
Syntax

INPut[<port>]
:FILTer

[:LPASs]
[:STATe] <mode >

:IMPedance <impedance >
[:STATe] <mode >

235 Command Reference INPut[<port>] Subsystem

:FILTer[:LPASs][:STATe]

INPut[<port>]:FILTer[:LPASs][:STATe] <mode> enables or disables the 10
MHz input filter.

Parameters

Parameter
Name

Parameter
Type

Range of
Values

Default
Units

port numeric 1|2|3|4 none

mode boolean OFF|0|ON|1 none

Comments • Executable when initiated: Yes

• Coupled Command: No

• Enabling or disabling the filter while the digitizer is taking readings (initiated)
may cause unexpected reading values due to relay settling during the transition.

• Enabling the filter on an input port does not affect the input filter setting on the
channel’s other port.

• Related commands: SENSe:FUNCtion "VOLTage <port>"

• *RST Condition: INPut<port >:FILTer:LPASs:STATe OFF

Example Enabling the 10 MHz low-pass filter

INP1:FILT:LPAS ON Enable input filtering on input port 1

:IMPedance

INPut[<port>]:IMPedance <impedance> selects the input impedance for the
HP E1429. Either 50 or 75Ω may be selected on input ports 1 and 2, while 1 MΩ is
the only setting allowed for input ports 3 and 4. Values other than 50 or 75Ω on
input ports 1 and 2 will generate error -222,"Data out of range". Similarly, attempts
to set input ports 3 or 4 to an impedance value other than 1 MΩ will generate error
-222,"Data out of range".

INPut[<port>]:FILTer[:LPASs][:STATe]

INPut[<port>] Subsystem Command Reference 236

Parameters

Parameter
Name

Parameter
Type

Range of
Values

Default
Units

port numeric 1|2|3|4 none

impedance numeric 50|75|1.0E6|1MOHM|
MINimum|MAXimum

Ohms

Input ports 1 and 2 : MINimum selects 50Ω; MAXimum selects
75Ω.
Input ports 3 and 4 : MINimum selects 1 MΩ; MAXimum selects
1 MΩ.

Comments • Executable when initiated: Yes

• Coupled Command: No

• Changing the input impedance while the digitizer is taking readings (initiated)
may cause unexpected reading values due to relay settling during the transition.

• Related commands: SENSe:FUNCtion "VOLTage <port>"

• *RST Condition: INPut1|2:IMPedance 50 OHM, INPut3|4:IMPedance 1 MOHM
.

Example Setting 75 Ω input impedance

INP:IMP 75 OHM Set 75Ω impedance (defaults to input 1)

[:STATe]

INPut[<port>][:STATe] <mode> connects/disconnects the input ports to/from the
measurement signal path. All ports have a special relay which is used to isolate the
input from the signal path, regardless of whether the sensor channel is currently
connected to that port or not.

Parameters

Parameter
Name

Parameter
Type

Range of
Values

Default
Units

port numeric 1|2|3|4 none

mode boolean OFF|0|ON|1 none

INPut[<port>][:STATe]

237 Command Reference INPut[<port>] Subsystem

Comments • Executable when initiated: Yes

• Coupled Command: No

• Enabling or disabling the input port while the digitizer is taking readings
(initiated) may cause unexpected reading values due to relay settling during the
transition.

• Related commands: SENSe:FUNCtion "VOLTage:DC <port>"

• *RST Condition: INPut<port >:STATe ON

Example Disabling input port 2

INP2 OFF Disconnect input port 2 from the
measurement signal path

INPut[<port>][:STATe]

INPut[<port>] Subsystem Command Reference 238

MEASure[<chan>]

The MEASure? query subsystem provides a complete measurement sequence,
including configuration and reading of the data. MEASure? is used when the
generic measurement is acceptable and default triggering and timebase values may
be used. The MEASure? query is the same as doing the command sequence of
ABORt;CONFigure;INITiate;FETCh?.

Subsystem
Syntax

MEASure[<chan>]
:ARRay

[:VOLTage]
[:DC]? (<size>)[,<expected value>[,<resolution>]][,(@<input port>)]

:ARRay[:VOLTage][:DC]?

MEASure[<chan>]:ARRay[:VOLTage][:DC] (<size>)[,<expected
value>[,<resolution>]][,(@<input port>)] will configure for taking <size> number
of readings on the specified channel and <input port>. The <expected value> and
<resolution> parameters are used to set SENSe:VOLTage:RANGe to an appropriate
setting for making the measurement on the specified input port and channel. If no
expected value is given, the 1V range (1.0235 V peak) is used. If a resolution is
specified, it is checked for correctness against what is possible with the expected
value range, and if too fine for the given expected value, error -231,"Data
questionable;CONF or MEAS unable to attain resolution specified" will occur.

Each channel consists of two ports; one port is single ended, and the other is
differential. The two ports on channel 1 have odd numbers: port 1 is the single
ended input and port 3 is the differential input. On channel 2, the single ended input
is port 2 and the differential input is port 4.

The expected value parameter specified should be the maximum expected
measurement value. The voltage range is set according to the expected value
supplied. If the expected value is greater than 98% of a given range, the next higher
range is automatically chosen. The table under the "Settings" heading gives the
crossover points for range changes.

239 Command Reference MEASure[<chan>] Subsystem

Parameters

Parameter
Name

Parameter
Type

Range of
Values

Default
Units

chan numeric 1 | 2 none

size numeric 1 | 7 to 524288 none

expected
value

numeric -102.30 to 102.35 |
DEFault |

MINimum | MAXimum

volts

resolution numeric .00005 to .05 |
DEFault |

MINimum | MAXimum

volts

input port numeric 1|3 with MEASure1
 2|4 with MEASure2

1 and 2 are single ended
3 and 4 are differential

none

The maximum size parameter will be 524284 if the battery is
enabled instead of 524288.

For expected value, MINimum selects the 0.100 V range and
MAXimum selects either the 1.0 volt range (single ended ports)
or the 100 V range (differential ports). DEFault selects 1V.

For resolution, MINimum, MAXimum, and DEFault select the
same value.

Settings Maximum expected value settings per range are shown in the following table, along
with the resolution associated with each range. The highlighted area shows the
setting used when the expected value is not specified or DEFault is used.

MEASure[<chan>]:ARRay[:VOLTage][:DC]?

MEASure[<chan>] Subsystem Command Reference 240

Maximum
Expected
 Value (V)

Voltage
 Range
 (Volts)

Resolution
 (Volts)

± .1 0.10235 .00005

± .2 0.2047 .00010

± .5 0.51175 .00025

± 1 1.0235 .0005

± 2 2.047 .0010

± 5 5.1175 .0025

± 10 10.235 .005

± 20 20.47 .010

± 50 51.175 .025

±100 102.35 .05

Comments • Executable when initiated: No

• Coupled Command: No

• If no input port is given, MEASure1 defaults to (@1) and MEASure2 defaults to
(@2).

• Resolution varies by range, and is constant for each range. For any given range,
specifying MINimum, MAXimum, or DEFault for resolution yields the same
result.

• It is important to note that the expected value determines the resolution and not
vice versa. The digitizer always uses 12-bit resolution and a coarser resolution
value has no effect. If, for some reason a coarser resolution is desired, specify a
larger expected value. See the previous table for expected values and resolutions.

• The MEASure command is equivalent to the command sequence:
ABORt;CONFigure;INITiate:IMMediate;FETCh?. Because of the ABORt, VME
(VXI data transfer) bus or Local bus transfers in progress will be aborted. This
includes the pipelining of data.

MEASure[<chan>]:ARRay[:VOLTage][:DC]?

241 Command Reference MEASure[<chan>] Subsystem

• The MEASure command configures the HP E1429 to do the measurement
specified by the parameters given with MEASure. All instrument settings will be
forced to their *RST values, with the following exceptions. In particular, note that
all OUTPut signals are turned off and their FEED’s are changed to reset values,
and that both the local bus (VINStrument:LBUS) and VME bus (VINS:VME) are
turned off. Be aware that these new states will still be in effect after the MEASure
command is complete. See the -- mumble which section -- for a complete list of
the reset settings for the HP E1429. The following states are set up after the reset,
and thus in most cases, will not be the *RST value for that command:

a. SENSe<n>:FUNCtion is set to "VOLTage[:DC] <port>"

b. SENSe<n>:VOLTage:DC:RANGe is set to the value implied by the
expected value given.

c. INPut[<port>]:FILTer is set to ON.

d. SENSe:SWEep:POINts and TRIGger:STARt:COUNt are set to the <size>
parameter.

• Related commands: SENSe:FUNCtion, SENSe:VOLTage:DC:RANGe,
SENSe:SWEep:POINts, SENSe:ROSCillator:SOURce), TRIGger:STARt
subsystem, ARM:STARt subsystem.

• *RST Condition: none

Example Measuring 1.5 V on the differential input of channel 1

MEAS1:ARRay:VOLT? (20),1.5,(@3) Set up, take, and bring back 20 readings of
1.5 Volts peak on port 3 of channel 1.

MEASure[<chan>]:ARRay[:VOLTage][:DC]?

MEASure[<chan>] Subsystem Command Reference 242

MEMory

The MEMory subsystem controls whether memory will be non-volatile and
determines the battery charge.

Subsystem
Syntax

MEMory
:BATTery

[:STATe] <state>
CHARge? [query only]

:BATTery[:STATe]

MEMory:BATTery[:STATe] <state> enables or disables non-volatile memory. If
state ON (1) is set, then measurement data will be preserved in the
 HP E1429A’s internal memory when power fails or the instrument is turned off.

Note For data to be saved, MEMory:BATTery:STATe ON must be set before the
readings are taken (i.e. before the INITiate:IMMediate command is sent).

Parameters

Parameter
Name

Parameter
Type

Range of
Values

Default
Units

state discrete OFF|ON|0|1 none

Comments • Executable when initiated: No

• Coupled Command: Yes. The state is coupled to the maximum trigger count.

• *RST Condition: not affected

• Power-On condition: The factory setting for MEMory:BATTery:STATe is OFF.
The battery state does not change at power-down or power-on.

• Enabling the battery abbreviates the power-on selt-test. A complete self-test is
executed with *TST?, which erases memory.

Example Enable memory to be non-volatile

MEM:BATT ON Turn the battery on

243 Command Reference MEMory Subsystem

:BATTery:CHARge?

MEMory:BATTery:CHARge? returns 1 if the battery has sufficient charge to
maintain memory, and returns 0 if the battery has insufficient charge to maintain
memory.

Comments • Executable when initiated: Yes

• Coupled Command: No

• Related commands: MEMory:BATTery:STATe

• *RST Condition: none

Example Check the battery charge

MEM:BATT:CHAR? A 1 is returned if the battery has enough
charge

MEMory:BATTery:CHARge?

MEMory Subsystem Command Reference 244

OUTPut

The OUTPut subsystem controls which output path (if any) will receive the
synchronization pulses generated by the HP E1429. Sync pulses can be sent to the
"Ext 1" BNC, the VXI TTL trigger lines, the VXI ECL trigger lines, or any
combination of these three.

Subsystem
Syntax

OUTPut
:ECLTrg<n>

:FEED<source>
[:STATe] <mode>

:EXTernal[1]
:FEED<source>
[:STATe] <mode>

:TTLTrg<n>
:FEED<source>
[:STATe] <mode>

:ECLTrg<n>:FEED

OUTPut:ECLTrg<n>:FEED <source> specifies the source for the
synchronization pulse which will be routed to ECLTrg0 and/or ECLTrg1. The
available sources are:

“ EXTernal[1]” : Outputs the signal currently specified by the
OUTPut:EXTernal[1]:FEED command with the polarity inverted.
OUTPut:EXTernal1:STATe ON must be set for output to occur. See the
OUTPut:EXTernal[1]:FEED command for descriptions of the possible sources.

“ [SENSe[1|2]]:ROSCillator” : The signal level will go high with the falling
edge of an external reference oscillator (SENSe:ROSCillator:SOURce
EXTernal), and will go high with the rising edge of all other reference oscillator
sources: SENSe:ROSCillator:SOURce (INT | ECLT<n> | CLK10). When the
output state is enabled, the signal is output as soon as this feed is selected, and
will be output continuously until the feed source is changed to some other
selection.

“ TRIGger[:STARt|:SEQuence[1]]” : Outputs an approximately 25
nanosecond wide positive going pulse each time a convert pulse (TRIGger) is
sent to the A to D converter.

245 Command Reference OUTPut Subsystem

Note These pulses will also be generated when data is read out of memory from the
VINStrument:LBUS or VINStrument:VME subsystems.

Parameters

Parameter
Name

Parameter
Type

Range of
Values

Default
Units

n numeric 0|1 none

source string “EXTernal[1]”|
“[SENSe[1|2]]:ROSCillator”|

“TRIGger[:STARt|:SEQuence[1]]”

none

Comments • Executable when initiated: No

• Coupled Command: No

• Note that if the feed is EXTernal1, then OUTPut:EXTernal1:STATe must be ON
in addition to OUTPut:ECLTrg<n>:STATe ON for an output to occur on the
chosen trigger line.

• The source of the synchronization pulse is independent for each ECLTRG trigger
line.

• Related Commands: OUTPut:ECLTrg<n>:STATe, OUTPut:EXTernal1:FEED,
OUTPut:EXTernal1:STATe

• *RST Condition:
OUTPut:ECLTrg0:FEED “TRIGger:STARt|SEQuence1” ,
 OUTPut:ECLTrg1:FEED “EXTernal1”

Example Setting the ECLTrg0 sync pulse source

OUTP:ECLT0:FEED “TRIG” Output a pulse whenever a reading is taken

:ECLTrg<n>[:STATe]

OUTPut:ECLTrg<n>[:STATe] <mode> enables or disables the routing of the
selected synchronization pulse to the specified VXIbus ECLTRG trigger line
(ECLTrg0 or ECLTrg1).

OUTPut:ECLTrg<n>[:STATe]

OUTPut Subsystem Command Reference 246

Parameters

Parameter
Name

Parameter
Type

Range of
Values

Default
Units

n numeric 0|1 none

mode boolean OFF|0|ON|1 none

Comments • Executable when initiated: No

• Coupled Command: Yes, this command will cause a settings conflict error if the
same ECLTRG trigger line is used in any of the following:
SENSe:ROSCillator:SOURce, ARM:STARt|SEQuence1:SOURce1,
ARM:STARt|SEQuence1:SOURce2 or TRIGger:STARt|SEQuence1:SOURce.

• Routing synchronization pulses to the ECLTRG trigger lines is independently
enabled/disabled for each line.

• Related Commands: OUTPut:ECLTrg<n>:FEED

• *RST Condition: OUTPut:ECLTrg<n >:STATe OFF

Example Enabling sync pulse output to ECLTRG0 and ECLTRG1

OUTP:ECLT0 ON Enable ECLTRG0

OUTP:ECLT1 ON Enable ECLTRG1

:EXTernal[1]:FEED

OUTPut:EXTernal[1]:FEED <source> specifies the source for the
synchronization pulse which will be output on the "Ext 1" BNC. The available
sources are:

“ ARM[:START|:SEQuence[1]]” : Changes the normally high output level to
low as soon as an ARM event (ARM:SOURce) is processed, and before any
programmed ARM:DELay occurs. The level remains low until the ARM cycle
is completed by TRIGger:STARt:COUNt readings being taken. This signal
begins at the detection of the arm event, and does not include any programmed
delay (ARM:STARt:DELay). The expected use of this signal is to allow a
master module to detect an arm event and then arm other modules by using this
signal.

“ RFTRigger” : When Ready For TRigger is selected, the normally high output
level goes low after an ARM event occurs and the ARM:DELay specified has
been met. At this point, the HP E1429 is ready to accept sample triggers. The
level stays low until all sample triggers (TRIGger:STARt:COUNt) associated
with the current arm cycle have completed.

OUTPut:EXTernal[1]:FEED

247 Command Reference OUTPut Subsystem

“ [SENSe[1|2]]:SWEep:OFFSet:POINts”: Changes the normally high output
level to low after the pre-arm count (SENSe:SWEep:OFFSet:POINts) has been
met. This would be used to determine when an arming event could occur
without getting an "Arm ignored" error due to the pre-arm count not being
satisfied. The level would not return to high again until either the next arm
cycle (if ARM:STARt:COUNt > 1) or the next INITiate command if this is the
last or only arm cycle. This source is only useful when pre-arm and post-arm
readings are being taken; it is allowed without error in post-arm measurements,
but is not of any real use.

“ [SENSe[1|2]]:ROSCillator” : The reference oscillator clock is output. For all
reference oscillator sources except EXTernal, the resulting output signal is the
inverse of the actual reference (i.e. the output pulse goes low on the rising edge
of the reference oscillator). For SENSe:ROSCillator:SOURce EXTernal, the
output level goes low on the falling edge. Note that this signal begins being
output as soon as this feed is selected, and will be output continuously until the
feed source is changed to some other selection.

“ TRIGger[:STARt|:SEQuence[1]]” : Outputs an approximately 25
nanosecond wide negative going pulse each time a convert pulse (TRIGger) is
sent to the A to D converter. Note that these pulses will also be generated when
data is read out of memory from the VINStrument:LBUS or
VINStrument:LBUS subsystems.

Note These pulses will also be generated when data is read out of memory from the
VINStrument:LBUS or VINStrument:VME subsystems.

Parameters

Parameter
Name

Parameter
Type

Range of
Values

Default
Units

source string “ARM[:STARt|:SEQuence[1]]”|
“RFTRigger”|

“[SENSe[1|2]]:ROSCillator”|
“[SENSe]:SWEep:OFFSet:POINts”|
“TRIGger[:STARt|:SEQuence[1]]”

none

OUTPut:EXTernal[1]:FEED

OUTPut Subsystem Command Reference 248

Comments • Executable when initiated: No

• Coupled Command: No

• Related Commands: OUTPut:EXTernal[1]:[:STATe]

• *RST Condition: OUTPut:EXTernal:FEED “TRIGger:STARt”

Example Setting the sync pulse source

OUTP:EXT:FEED “ROSC” Output the reference oscillator pulses

:EXTernal[1][:STATe]

OUTPut:EXTernal[1][:STATe] <mode > enables or disables output of the
synchronization pulse on the front panel "Ext 1" BNC.

Parameters

Parameter
Name

Parameter
Type

Range of
Values

Default
Units

mode boolean OFF|0|ON|1 none

Comments • Executable when initiated: No

• Coupled Command: Yes, this command will cause a settings conflict error if the
EXTernal1 BNC connector is already in use. The following commands can use
the EXTernal1 connector: ARM:STARt:SOURce1 or ARM:STARt:SOURce2

• *RST Condition: OUTPut:EXTernal[1][:STATe] OFF

Example Enabling sync pulse output to the front panel "Ext 1" BNC

OUTP:EXT ON Enable sync pulse output on "Ext 1" BNC

:TTLTrg<n>:FEED

OUTPut:TTLTrg<n>:FEED<source > selects which event will cause a pulse or
level change on the TTL trigger line(s). Note that unlike the ECL trigger lines, there
is only a single FEED that goes to all TTL trigger lines. Therefore, it does not
matter what value of <n> is specified with this command, because all TTL trigger
lines share the same feed. The available feed sources are:

OUTPut:EXTernal[1][:STATe]

249 Command Reference OUTPut Subsystem

“ ARM[:START|:SEQuence[1]]” : Changes the normally high output level to
low as soon as an ARM event (ARM:STARt:SOURce) is processed. The level
remains low until the ARM cycle is completed by TRIGger:STARt:COUNt
readings being taken. This signal begins at the detection of the arm event, and
does not include any programmed delay (ARM:STARt:DELay). The expected
use of this signal is to allow a master module to detect an arm event and then
arm other modules by using this signal.

“ READy” : Changes the normally high output level to low whenever the trigger
system is initiated. If multiple groups (ARM:STARt:COUNt > 1) of pre-arm
and post-arm measurements are being taken, the level changes back to high
while the microprocessor changes which memory segment will receive the next
burst of data, and then the level goes low again when the HP E1429 is again
initiated. If only one burst of pre-arm and post-arm readings are taken, or if all
data is post-arm, then the level changes back to high when the measurement is
complete.

Parameters

Parameter
Name

Parameter
Type

Range of
Values

Default
Units

n numeric 0 through 7 none

source string “ARM[:STARt|:SEQuence[1]]”|
“READy”

none

Comments • Executable when initiated: No

• Coupled Command: No

• Related Commands: OUTPut:TTLTrg<n>[:STATe]

• *RST Condition: OUTPut:TTLTrg<n>:FEED “ARM:STARt”

Example Enabling sync pulse for READy on TTLTrg5*

OUTP:TTLT5:FEED “READ” Change output level when initiated

OUTP:TTLT5 ON Enable TTLTRG5* line to transmit the
signal

OUTPut:TTLTrg<n>:FEED

OUTPut Subsystem Command Reference 250

:TTLTrg<n>[:STATe]

OUTPut:TTLTrg<n>[:STATe] <mode> enables or disables routing of the
synchronization pulse to the specified VXIbus TTL trigger lines (TTLTRG0*
through TTLTRG7*).

Parameters

Parameter
Name

Parameter
Type

Range of
Values

Default
Units

n numeric 0 through 7 none

mode boolean OFF|0|ON|1 none

Comments • Executable when initiated: No

• Coupled Command: Yes. This command will cause a settings conflict error if
the same TTL trigger line is used in any of the following:
ARM:STARt:SOURce1, ARM:STARt:SOURce2 or TRIG:STARt:SOURce.

• Unlike the ECLTRG trigger lines, the TTLRG trigger lines are not independent
with regard to FEED. All TTLTRG triggers enabled will be outputting the same
synchronization signal specified by the OUTPut:TTLTrg<n>:FEED command.

• Routing synchronization pulses to the TTLTRG trigger lines is independently
enabled/disabled for each line.

• *RST Condition: OUTPut:TTLTrg<n>:STATe OFF

Example Enabling sync pulse output to TTLTRG0* and TTLTRG5*

OUTP:TTLT0 ON Enable TTLTRG0*

OUTP:TTLT5 ON Enable TTLTRG5*

OUTPut:TTLTrg<n>[:STATe]

251 Command Reference OUTPut Subsystem

READ[<chan>]

The READ? command is used to cause a measurement and to retrieve the readings
from that measurement. It is equivalent to executing the commands: ABORt,
INITiate:IMMediate, FETCh<chan >?.

Subsystem
Syntax

READ[<chan >]? [query only]

READ?

READ[<chan >]? returns readings from the specified channel in the format
specified by the FORMat:DATA command.

Parameters

Parameter
Name

Parameter
Type

Range of
Values

Default
Units

chan numeric 1 | 2 none

Comments • READ? or READ1? will return data from channel 1 only. READ2? will return
data from channel 2 only.

• A READ1? followed by a READ2? will take two sets of measurements since an
INITiate is done with each read. If it is desired to look at each channel separately
for readings taken during the same time period, use the INITiate and FETCh?
sequence of commands instead of READ?.

• There are a few settings which, if allowed, would cause READ? to deadlock and
never complete. TRIGger:COUNt INFinite and ARM:COUNt INFinite are not
allowed because the measurement is continuous and therefore would never finish.
Also, ARM:SOURce BUS or HOLD and TRIG:SOURce BUS or HOLD are not
allowed because the parser would be unable to accept any commands to arm or
trigger the instrument during measurement because the READ? command would
not have completed. Any of the above settings active during a READ? command
will cause an error to occur and no measurements to be taken.

• The number of readings that READ? is going to return for each channel can be
calculated as

(number of start triggers) * (pre-arm readings + post-arm readings)

The above equation may be built from the following queries:

(ARM:COUNt?) * (TRIG:COUNt?)

READ[<chan>] Subsystem Command Reference 252

The number of pre-arm readings may be determined by taking the absolute value
of the query SENSe:SWEep:OFFSet:POINts? which returns either 0 (no pre-arm
readings) or a negative number which is the pre-arm count. If the measurements
were ABORted, use FETCh:COUNt? to determine the number of readings.

• Using the above method, it is also possible to calculate the end of pre-arm data
and the beginning of post-arm data when both are present in a measurement. The
data will always be returned with the specified number of pre-arm readings
followed by post-arm readings.

• The READ command is equivalent to the command sequence:
ABORt;INITiate:IMMediate;FETCh?. Because of the ABORt, VME (VXI data
transfer) bus or Local bus transfers in progress will be aborted. This includes the
pipelining of data.

• Related Commands: ABORt, FETCh?, FORMat:DATA, INITiate:IMMediate,
ARM:STARt:COUNt, TRIGger:STARt:COUNt, SENSe:SWEep:OFFSet:POINts

• *RST Condition: none

Example 1 Obtaining readings from the HP E1429

CONF1:ARR:VOLT (30),.6,DEF,(@1) Configure for 30 readings on channel 1,
port 1

READ1? Start measurement and get readings from
channel 1.

Example 2 Reading back PACKed data (HP BASIC program)

DIM Ndig$[1],Count$[9] Dimension parameters for header

ASSIGN @X TO 70905;FORMAT OFF
 Turn format off for array data

OUTPUT 70905;"READ1?" Query for channel 1 measurement data

ENTER @X USING "#,X,K,K";Ndig$;Count$[1;VAL(Ndig$)]
 Strip the header preceeding the data

ALLOCATE INTEGER Meas_data(1:VAL(Count$)/2)
 Allocate an array to hold the data

ENTER @X;Meas_data(*) Read in the measurement data

ENTER 70905 USING "B";Junk Need to strip off left over line feed

253 Command Reference READ[<chan>] Subsystem

SENSe

The SENSe subsystem is used to specify the reference oscillator frequency (if
external) and source, the input port used on a particular channel, and the pre-arm
and post-arm reading counts. Each section of the subsystem is separately
documented in the following sections of the Command Reference.

Subsystem
Syntax

The first level SENSe syntax tree is:

[SENSe[<chan>]]
:FUNCtion <function >
:ROSCillator

:EXTernal
:FREQuency <frequency >

:SOURce <source >
:SWEep
 :OFFSet

:POINts <count >
:POINts <count >

:VOLTage
[:DC]

:RANGe <range >
:RESolution? [query only]

SENSe Subsystem Command Reference 254

[SENSe[<chan>]]:FUNCtion

The SENSe:FUNCtion commands select which of the input ports gets connected to
a particular channel. SENSe1 selects the input for the sensor on channel 1 (ports 1
or 3), and SENSe2 selects the input for the sensor on channel 2 (ports 2 or 4).

Subsystem
Syntax

[SENSe[<chan >]]
:FUNCtion "<function >"

[SENSe[<chan>]]:FUNCtion

[SENSe[<chan>]]:FUNCtion "<function>" determines which input port will be
connected to the specified sensing channel. Each sense channel has two input ports;
one port is single ended and the other is differential. Odd numbered ports (1 and 3)
connect to channel 1, and the even numbered ports (2 and 4) connect to channel 2.

Parameters

Parameter
Name

Parameter
Type

Range of
Values

Default
Units

chan numeric 1|2 none

function quoted
string

"VOLTage[:DC]1" |
"VOLTage[:DC]2" |
"VOLTage[:DC]3" |
"VOLTage[:DC]4"

none

Comments • Executable when initiated: No

• Coupled Command: Yes. This command is coupled to
SENSe:VOLTage:DC:RANGe, ARM:STARt:LEVel:NEGative, and
ARM:STARt:LEVel:POSitive.

• Function choices ending in 1 and 3 ("VOLTage:DC1" or "VOLTage:DC3") are
the only choices for channel 1 (SENSe1:FUNCtion). Function choices ending in 2
and 4 ("VOLTage:DC2" or "VOLTage:DC4") are the only legal choices for
channel 2 (SENSe2:FUNCtion). Specifying an illegal function choice on a sense
channel will result in error -151, "Invalid string data".

• Related Commands: SENSe:VOLTage:DC:RANGe,
ARM:STARt:LEVel:NEGative, ARM:STARt:LEVel:POSitive

255 Command Reference [SENSe[<chan>]]:FUNCtion Subsystem

• *RST Condition: SENSe1:FUNCtion "VOLT1", SENSe2:FUNCtion "VOLT2"

Example Selecting the single ended input on channel 2

SENS2:FUNC “VOLT4” Connect port 4 to channel 2

[SENSe[<chan>]]:FUNCtion [SENSe[<chan>]]:FUNCtion

[SENSe[<chan>]]:FUNCtion Subsystem Command Reference 256

[SENSe[<chan>]]:ROSCillator

The SENSe:ROSCillator subsystem controls the reference oscillator source and
frequency used to generate sample rates for taking measurements.

Subsystem
Syntax

[SENSe[<chan>]]
:ROSCillator

:EXTernal
:FREQuency <frequency>

:SOURce <source>

Since the triggering and timebase circuits of the HP E1429 are shared between both
sensing channels, the settings for [SENSe[<chan>]]:ROSCillator are the same for
both values of chan (1 and 2). Setting SENSe1:ROSCillator values will also set
SENSe2:ROSCillator values and vice versa.

:EXTernal:FREQuency

[SENSe[<chan>]]:ROSCillator:EXTernal:FREQuency <frequency> indicates to
the HP E1429 the frequency of an external reference oscillator signal. The
SENSe:FREQuency subsystem uses this value to generate the sample rate when
SENSe:ROSCillator:SOURce is set to EXTernal, ECLTrg0, or ECLTrg1.

Parameters

Parameter
Name

Parameter
Type

Range of
Values

Default
Units

chan numeric 1|2 none

frequency numeric 10 KHz through 20 MHz
MINimum|MAXimum

Hz

MINimum selects 10 KHz; MAXimum selects 20 MHz.

Comments • Executable when initiated: No

• Coupled command: Yes. This command is coupled to the commands in the
TRIGger subsystem.

• Indicating an incorrect frequency for an external reference oscillator will cause
the sample rate and trigger delay to be incorrect.

• The amplitude of the external reference signal should be a TTL level:
low = 0.0V to 0.8V, high = 2.5V to 5.0V.

257 Command Reference [SENSe[<chan>]]:ROSCillator Subsystem

• Using MINimum or MAXimum to specify this frequency is not recommended
unless the external reference frequency is 20 kHz (MINimum) or 20 MHz
(MAXimum). In order for the digitizer processor to produce the intended sample
rates, the exact frequency value must be specified.

• Related Commands: SENSe:ROSCillator:SOURce, TRIGger:STARt:TIMer,
ARM:STARt:DELay

• *RST Condition: SENSe:ROSCillator:EXTernal:FREQuency 20 MHZ

Example Specifying the external reference oscillator frequency

SENS:ROSC:EXT:FREQ 5 MHZ External oscillator is 5 MHz

:SOURce

[SENSe[<chan>]]:ROSCillator:SOURce <source> selects the reference oscillator
source. The available sources are:

• CLK10: The VXIbus CLK10 (10 MHz) line.

• ECLTrg0: The VXIbus ECLTRG0 line.

• ECLTrg1: The VXIbus ECLTRG1 line.

• EXTernal2: The HP E1429’s front panel "Ext 2" BNC.

• INTernal: The internal 20 MHz oscillator.

Parameters

Parameter
Name

Parameter
Type

Range of
Values

Default
Units

chan numeric 1|2 none

source discrete CLK10|EXTernal2|
ECLTrg0|ECLTrg1

INTernal

none

Comments • Executable when initiated: No

• Coupled command: Yes. This command is coupled to the TRIGger subsystem,
the OUTPut subsystem, and ARM:STARt:DELay.

• The reference oscillator is used to generate the sample rate and trigger delay.

[SENSe[<chan>]]:ROSCillator:SOURce

[SENSe[<chan>]]:ROSCillator Subsystem Command Reference 258

• Use SENSe:ROSCillator:EXTernal:FREQuency to indicate the frequency of an
external reference oscillator.

• Related Commands: SENSe:ROSCillator:EXTernal:FREQuency,
ARM:STARt:DELay, TRIGger:STARt:TIMer[1|2]

• *RST Condition: SENSe:ROSCillator:SOURce INTernal

Example Setting the Reference Oscillator Source

SENS:ROSC:SOUR CLK10 Select VXI CLK10 line as oscillator source

[SENSe[<chan>]]:ROSCillator:SOURce

259 Command Reference [SENSe[<chan>]]:ROSCillator Subsystem

[SENSe[<chan >]]:SWEep

The SENSe:SWEep commands select how many readings will be taken during a
measurement, and how many of the readings occur before (pre-arm) and after
(post-arm) the arm event.

Since the triggering and timebase circuits of the HP E1429 are shared between both
sensing channels, the settings for [SENSe[<chan>]]:SWEep are the same for both
values of chan (1 and 2). Setting SENSe1:SWEep values will also set
SENSe2:SWEep values and vice versa.

Memory Usage Measurements which specify multiple bursts (ARM:STARt:COUNt > 1) of both
pre-arm and post-arm readings (SENSe:SWEep:OFFSet:POINts ≤ -3 with
SENSe:SWEep:POINts > 9) cause memory to be partitioned into segments to hold
each burst of readings. The HP E1429 will automatically allocate
ARM:STARt:COUNt memory partitions large enough to hold the specified number
of pre-arm and post-arm readings. Since a large number of pre-arm readings may
occur before the arm event causes post-arm readings to be taken, each memory
partition is treated like a circular buffer where pre-arm readings may "wrap" or
overwrite each other multiple times before the arm event occurs and the burst of
readings completes with the post-arm readings being taken. After all post-arm
readings have been taken in a partition, if ARM:STARt:COUNt is not yet satisfied,
the instrument directs the next burst of readings into the next memory partition.

Note There is a time window of typically 630 µs where pre-arm readings will be lost
while the HP E1429 arranges for readings to be directed into the next memory
partition. If an ARM event (ARM:STARt:SOURce) or TRIGger event (sample)
occurs during this time window, it will be ignored with no error reported.

[SENSe[<chan >]]:SWEep Subsystem Command Reference 260

Number of
Memory Segments

Maximum Number
of Readings

1 524,288

2 262,144

4 131,072

8 65,536

16 32,768

32 16,384

64 8,192

128 4,096

NOTE: If the non-volatile mode of memory is enabled then the maximum
number of readings for each memory partition decreases by four. These four
memory locations in each segment hold the data necessary to recover all
readings after a power failure.

Subsystem
Syntax

[SENSe[<chan>]]
 :SWEep

:OFFSet
 :POINts <count >
:POINts <count >

:OFFSet:POINts <count>

[SENSe[<chan>]]:SWEep:OFFSet:POINts <count> specifies how many pre-arm
readings will be taken. When pre-arm readings are not 0, then there must always be
at least 7 post-arm readings taken. Note that count is specified as a negative number.

Parameters

Parameter
Name

Parameter
Type

Range of
Values

Default
Units

chan numeric 1|2 none

count numeric -65535 to -3 | 0 |
MINimum | MAXimum

none

MINimum and MAXimum vary depending on
ARM:STARt:COUNt and SENSe:SWEep:POINts.

[SENSe[<chan >]]:SWEep:OFFSet:POINts <count>

261 Command Reference [SENSe[<chan >]]:SWEep Subsystem

Comments • Executable when initiated: No

• Coupled Command: Yes. This command is coupled to
TRIGger:STARt:COUNt, SENSe:SWEep:POINts, ARM:STARt:COUNt,
ARM:STARt:DELay, and MEMory:BATTery:STATe.

• Readings which are taken before the arm event occurs are called "pre-arm"
readings. Readings taken after the arm event are called "post-arm" readings.

• The INITiate command "triggers" pre-arm readings. If any arming events occur
before the pre-arm count is satisfied, the arms are ignored and an error occurs.
When the pre-arm count is satisfied and a legal arm event occurs, post-arm
sampling begins. The remaining number of TRIGger:STARt:COUNt
(SENSe:SWEep:POINts) readings are then taken.

• If pre-arm readings are not 0, then there must be at least 7 post-arm readings.
Therefore, (SENSe:SWEep:POINts + SENSe:SWEep:OFFSet:POINts) must be
≥ 7. (Note that in the previous equation, :OFFSet:POINts will be a negative
number).

• Pre-arm reading count values between -3 and 0 will be rounded to -3 or 0,
whichever is closer to the specified count.

• If an ABORt or power failure occurs during a sequence of measurements, the
digitizer will return (FETCh?) or recover (FETCh:RECover?) between one and
TRIGger:STARt:COUNt number of readings. Because the digitizer processor
does not know when the arm occurs, the readings returned may be pre-arm only,
post-arm only, or a combination of both. If less than TRIGger:STARt:COUNt
readings have been taken, then that number of readings are returned. If greater
than TRIGger:STARt:COUNt readings have been taken, then
TRIGger:STARt:COUNt readings are returned.

• Related Commands: SENSe:SWEep:POINts, TRIGger:STARt:COUNt,
ARM:STARt:COUNt

• *RST Condition: SENSe:SWEep:OFFSet:POINts 0

Example Setting 50 pre-arm readings on channel 1, input port 3

CONF1:ARR:VOLT (100),5,(@3) Configure channel 1 for 100 readings, 5V
range

SENS1:SWE:OFFS:POIN -50 Of the 100 total readings, set 50 to be
pre-arm

[SENSe[<chan >]]:SWEep:OFFSet:POINts <count>

[SENSe[<chan >]]:SWEep Subsystem Command Reference 262

:POINts <count>

[SENSe[<chan>]]:SWEep:POINts <count> specifies how many readings will be
taken during each ARM:STARt:COUNt cycle of the trigger system. This command
is the same as (and is coupled to) TRIGger:STARt:COUNt. Changing either
changes the value of the other as well.

Parameters

Parameter
Name

Parameter
Type

Range of
Values

Default
Units

chan numeric 1|2 none

count numeric 1 | 7 through 16,777,215 |
MINimum|MAXimum|

9.9E+37|INFinity

none

MINimum selects 1 reading.

Memory, post-arm readings only: MAXimum = 524,288 / ARM:STARt:COUNt
Memory battery enabled: MAXimum = (524,288 / ARM:STARt:COUNt) - 4
A/D converter to VME (VXI data transfer) bus: MAXimum = 16,777,215
A/D converter to Local bus: MAXimum = 16,777,215
Digitizer memory, pre- and post-arm readings: see below

ARM:STARt:COUNt Number of
Memory

Segments

Maximum Readings
(TRIGger:STARt:COUNt)

1 1 524,288

2 2 262,144

3 - 4 4 131,072

5 - 8 8 65,536

9 - 16 16 32,768

17 - 32 32 16,384

33 - 64 64 8,192

65 - 128 128 4096

NOTE: If the non-volatile mode of memory is enabled
(MEMory:BATTery:STATe ON), then all of the maximum reading counts
shown above decrease by four. These four memory locations in each
segment hold the data necessary to recover all readings after a power
failure.

[SENSe[<chan >]]:SWEep:POINts <count>

263 Command Reference [SENSe[<chan >]]:SWEep Subsystem

Comments • Executable when initiated: No

• Coupled Command: Yes. This command is coupled to TRIGger:STARt:COUNt,
SENSe:SWEep:OFFSet:POINts, ARM:STARt:COUNt, and
MEMory:BATTery:STATe.

• SENSe:SWEep:POINts values between 1 and 7 will be rounded to 1 or 7,
whichever is closer to the specified count.

• If the count is set to INFinity or 9.9E+37, the ABORt command must be used to
return the trigger system to the idle state before any readings taken may be read
from memory. Due to this, the READ? command can not be used when
SENSe:SWEep:POINts is set to INFinity; attempts to do so will result in error
-214, "Trigger deadlock".

• The count is the total of both pre-arm readings. The number of pre-arm readings
is specified by the SENSe:SWEep:OFFSet:POINts command as a negative count.
If SENSe:SWEep:OFFSet:POINts is 0, then all readings will be post-arm.

• Related Commands: ABORt, INITiate:IMMediate, ARM subsystem,
SENSe:SWEep:OFFSet:POINts, TRIGger:STARt:COUNt.

• *RST Condition: SENSe1:SWEep:POINts 1

Example Setting 500 readings.

SENS1:SWE:POIN 500 set reading count

[SENSe[<chan >]]:SWEep:POINts <count>

[SENSe[<chan >]]:SWEep Subsystem Command Reference 264

[SENSe[<chan>]]:VOLTage[:DC]

The SENSe:VOLTage[:DC] commands select the voltage range, and report back the
resolution associated with the selected range.

Subsystem
Syntax

[SENSe[<chan >]]
:VOLTage

[:DC]
:RANGe <range >
:RESolution? [query only]

:RANGe

[SENSe[<chan >]]:VOLTage[:DC]:RANGe <range > selects the range for
voltage measurement on the specified channel.

Parameters

Parameter
Name

Parameter
Type

Range of
Values

Default
Units

chan numeric 1|2 none

range numeric -102.30 to 102.35 |
MINimum | MAXimum

volts

The various range settings are given in the following table, along with the input
ports supported on each range, and the measurement range spanned by the given
range.

265 Command Reference [SENSe[<chan>]]:VOLTage[:DC] Subsystem

Range
Setting

(V)

Measurement
 Range (V)

Resolution
(Volts)

Allowable

Ports

0.10235 -.10230 to .10235 .00005 1,2,3,4

0.2047 -.2046 to .2047 .00010 1,2,3,4

0.51175 -.5115 to .51175 .00025 1,2,3,4

1.0235 -1.0230 to 1.0235 .0005 1,2,3,4

2.047 -2.046 to 2.047 .0010 3,4

5.1175 -5.115 to 5.1175 .0025 3,4

10.235 -10.230 to 10.235 .005 3,4

20.470 -20.460 to 20.470 .010 3,4

51.175 -51.150 to 51.175 .025 3,4

102.35 -102.30 to 102.35 .05 3,4

Comments • Executable when initiated: Yes

• Coupled Command: Yes. The command is coupled to
ARM[:STARt]:LEVel[<chan >]:NEGative, ARM[:STARt]:LEVel[<chan
>]:POSitive, and SENSe[<chan >]:FUNCtion.

• Though the range setting may be changed while the HP E1429 is taking readings
(INITiated), it will take at least 3 ms for the relay to settle. Also, it is up to the
user to determine where in the data archive the new range setting was switched in,
as the HP E1429 does not stamp the data in any way. If the data format is not
PACKed, then the HP E1429 will use the resolution associated with the final
range setting to convert all readings into voltage values when FETCh? is executed.

• MAXimum values for the range setting will depend on the current
SENSe:FUNCtion setting for that channel. For single-ended ports (1 and 2),
MAXimum is 1.0235, and for differential ports (3 and 4) MAXimum is 102.35.

• *RST Condition: SENSe1:VOLTage:DC:RANGe 1.0235, and
SENSe2:VOLTage:DC:RANGe 1.0235

[SENSe[<chan>]]:VOLTage[:DC] :RANGe

[SENSe[<chan>]]:VOLTage[:DC] Subsystem Command Reference 266

Example Selecting the 102.35 Volt range on channel 2

SENS2:FUNC “VOLT4” Connect differential port 4 to channel 2

SENS2:VOLT:RANG 75 Select 102.35 volt range. Any number
greater than 51.175 forces the next highest
(102.35 V) range.

:RESolution?

[SENSe[<chan >]]:VOLTage[:DC]:RESolution? returns the resolution associated
with the current SENS:VOLT:RANGe setting, on the specified channel.

Parameters

Parameter
Name

Parameter
Type

Range of
Values

Default
Units

chan numeric 1|2 none

Comments • Executable when initiated: Yes

• Coupled Command: No

• *RST Condition: None

Example Querying the current resolution on channel 2

SENS2:VOLT:RES? Query channel 2 for resolution setting

[SENSe[<chan>]]:VOLTage[:DC] :RESolution?

267 Command Reference [SENSe[<chan>]]:VOLTage[:DC] Subsystem

STATus

The STATus subsystem controls the SCPI-defined Operation and Questionable
Signal status registers. Each is comprised of a condition register, an event register,
an enable mask, and negative and positive transition filters.

Each status register works as follows: when a condition occurs, the appropriate bit
in the condition register is set or cleared. If the the corresponding transition filter is
enabled for that bit, the same bit is set in the associated event register. The contents
of the event register and the enable mask are logically ANDed bit-for-bit; if any bit
of the result is set, the summary bit for that register is set in the status byte. The
status byte summary bit for the Operation status register is bit 7; for the
Questionable Signal status register, bit 3.

Operation Status Register

Only bits 0 (CALibrating), 6 (Waiting for ARM), 8 (BUSY), and 9 (READy) are
defined for the HP E1429. All other bits are always zero.

Bit 0 - CALibrating: Set (1) during the execution of the CALibration:ZERO,
CALibration:GAIN, or CALibration:DELay command. Cleared (0) otherwise.

Bit 6 - Waiting for ARM: Set (1) when waiting for a start arm. Cleared (0)
when a start arm is accepted or when measurement is aborted.

Bit 8 - BUSY: Set (1) by the INITiate:IMMediate,
VINStrument:CONFigure:VME:MEMory:INITiate, or
VINStrument:CONFigure:LBUS:MEMory:INITiate command. Cleared (0)
when the measurement is complete or is aborted, returning the digitizer to the
idle state.

Bit 9 - READy: Set(1) when the digitizer memory segment is ready for data
storage. Cleared (0) while the digitizer is partitioning the next memory segment.

STATus Subsystem Command Reference 268

Questionable Signal Status Register

Only bits 0 (VOLTage), 2 (TIME), and 8 (CALibration) are defined. All other bits
are always 0.

Bit 0 - VOLTage: Set (1) if an overload voltage is detected during a
measurement. Cleared (0) otherwise.

Bit 2 -TIME: Set (1) if the divide-by-n of the reference oscillator source can not
generate a sample rate that is within 1% of the rate specified by TRIG:TIMer1
or TRIG:TIMer2. Cleared (0) otherwise.

Bit 8 - CALibration: Set (1) if an error has been detected in the non-volatile
calibration memory. Cleared (0) otherwise.

Subsystem
Syntax

STATus
:OPC

:INITiate <state >
:OPERation|:QUEStionable

:CONDition? [query only]
:ENABle <unmask >
[:EVENt]? [query only]
:NTRansition <unmask >
:PTRansition <unmask >

:PRESet [no query]

:OPC:INITiate

STATus:OPC:INITiate <state > controls whether the *OPC, *OPC?, and *WAI
commands will complete immediately or whether they will wait for all
measurements to complete. With STATe OFF set, these commands will complete
immediately, which indicates that the parser is idle and ready for the next command,
even though the HP E1429 may still be in the INITiated state and taking a
measurement. With STATe ON set, these commands will wait for the Pending
Operation Flag set true by INITiate:IMMediate,
VINStrument:CONFigure:VME:MEMory:INITiate, or
VINStrument:CONFigure:LBUS:MEMory:INITiate to return false, indicating that
the trigger system is in the idle state and that all measurements have completed or
been aborted by the ABORt or *RST commands.

Parameters

Parameter
Name

Parameter
Type

Range of
Values

Default
Units

state boolean OFF|0|ON|1 none

STATus:OPC:INITiate

269 Command Reference STATus Subsystem

Comments • Executable when initiated: Yes

• Coupled command: No

• Related commands: *OPC, *OPC?, *RST, *WAI, ABORt, INITiate:IMMediate,
VINStrument:CONFigure:VME:MEMory:INITiate,
VINStrument:CONFigure:LBUS:MEMory:INITiate, STATus:PRESet

• *RST Condition: unaffected

• Power-on Condition: STATus:OPC:INITiate ON

Example Setting immediate completion mode

STAT:OPC:INIT OFF Complete immediately for *OPC, etc.

:OPERation|:QUEStionable:CONDition?

STATus:OPERation|:QUEStionable:CONDition? returns the contents of the
appropriate condition register. Reading the register does not affect its contents.

Comments • Executable when initiated: Yes

• Coupled command: No

• Related commands: STATus subsystem, *SRE, *STB?

• *RST Condition: all bits of both condition registers are cleared as a result of the
state present after *RST, except for the CALibration bit in the Questionable
Signal register, which will remain set if the error condition persists.

Example Querying the Operation condition register

STAT:OPER:COND? Query Operation condition register

:OPERation|:QUEStionable:ENABle

STATus:OPERation|:QUEStionable:ENABle <unmask > specifies which bits of
the associated event register are included in its summary bit. The summary bit is the
bit-for-bit logical AND of the event register and the unmasked bit(s).

STATus:OPERation|:QUEStionable:CONDition?

STATus Subsystem Command Reference 270

Parameters

Parameter
Name

Parameter
Type

Range of
Values

Default
Units

unmask numeric or
non-decimal

numeric

0 through +32767 none

The non-decimal numeric forms are the #H, #Q, or #B formats specified by
IEEE-488.2.

Comments • Executable when initiated: Yes

• Coupled command: No

• Related commands: STATus subsystem, *SRE, *STB?

• *RST Condition: unaffected

• Power-on Condition: STATUS:OPERation|QUEStionable:ENABLE 0

Example Setting the Operation register enable mask

STAT:OPER:ENAB #H0040 Enable summary on Waiting for ARM bit

:OPERation|:QUEStionable[:EVENt]?

STATus:OPERation|:QUEStionable[:EVENt]? returns the contents of the
appropriate event register. Reading the register clears it to 0.

Comments • Both event registers are also cleared to 0 by the *CLS common command.

• Executable when initiated: Yes

• Coupled command: No

• Related commands: STATus subsystem, *SRE, *STB?

• *RST Condition: unaffected

• Power-on Condition: Both event registers are cleared to 0.

Example Querying the Operation event register

STAT:OPER? Query Operation event register

STATus:OPERation|:QUEStionable[:EVENt]?

271 Command Reference STATus Subsystem

:OPERation|:QUEStionable:NTRansition

STATus:OPERation|:QUEStionable:NTRansition <unmask > sets the negative
transition mask. For each bit unmasked, a 1-to-0 transition of that bit in the
associated condition register will set the same bit in the associated event register.

Parameters

Parameter
Name

Parameter
Type

Range of
Values

Default
Units

unmask numeric or
non-decimal

numeric

0 through +32767 none

The non-decimal numeric forms are the #H, #Q, or #B formats specified by
IEEE-488.2.

Comments • Executable when initiated: Yes

• Coupled command: No

• Related commands: STATus subsystem, *SRE, *STB?

• *RST Condition: unaffected

• Power-on Condition: STATUS:OPERation|QUEStionable:NTRansition 0

Example Setting the Operation register negative transition mask

STAT:OPER:NTR 64 Set event bit when wait-for-arm state is
entered

:OPERation|:QUEStionable:PTRansition

STATus:OPERation|:QUEStionable:PTRansition <unmask > sets the positive
transition mask. For each bit unmasked, a 0-to-1 transition of that bit in the
associated condition register will set the same bit in the associated event register.

STATus:OPERation|:QUEStionable:NTRansition

STATus Subsystem Command Reference 272

Parameters

Parameter
Name

Parameter
Type

Range of
Values

Default
Units

unmask numeric or
non-decimal

numeric

0 through +32767 none

The non-decimal numeric forms are the #H, #Q, or #B formats specified by
IEEE-488.2.

Comments • Executable when initiated: Yes

• Coupled command: No

• Related commands: STATus subsystem, *SRE, *STB?

• *RST Condition: unaffected

• Power-on Condition: STATUS:OPERation|QUEStionable:PTRansition 32767

Example Setting the Operation register positive transition mask

STAT:OPER:PTR 64 Set event bit when wait-for-arm state is
entered

:PRESet

STATus:PRESet initializes the enable registers and transition masks for the
Operation and Questionable Signal status registers and sets STATus:OPC:INITiate
ON. For both status registers, the enable registers are set to 0, the negative
transition masks are set to 0, and the positive transition masks are set to 32767.

Comments • Executable when initiated: Yes

• Coupled command: No

• Related commands: STATus subsystem, *SRE, *STB?

• *RST Condition: none

Example Presetting the STATus subsystem

STAT:PRES Preset STATus subsystem

STATus:PRESet

273 Command Reference STATus Subsystem

SYSTem

The SYSTem command subsystem returns error messages and the SCPI version
number to which the HP E1429A/B complies.

Subsystem
Syntax

SYSTem
:ERRor? [query only]
:VERSion? [query only]

ERRor?

SYSTem:ERROR? returns the error messages in the error queue. See Appendix B
for a listing of the digitizer error numbers and messages.

Comments • As errors are detected, they are placed in the error queue. The queue is first-in,
first out, meaning that if several error messages are waiting in the queue,
SYSTem:ERRor? returns the oldest unread error message.

• The error queue can hold 30 error messages. If more than 30 messages are
generated without being read, the last error message in the queue is replaced with
error -350,"Too many errors". No additional messages are placed into the queue
until SYSTem:ERRor? reads some messages or until the queue is cleared using
the *CLS (clear status) command.

• When the error queue is empty, SYSTem:ERRor? returns +0,"No error".

• *RST Condition: unaffected

• Power-On Condition: no errors are in the error queue

Example Reading the error queue

SYST:ERR? Query the error queue

:VERSion?

SYSTem:VERSion? returns the SCPI version number to which the
HP E1429A/B complies: "1992.0".

Example Querying the SCPI revision

SYST:VERS? Query SCPI revision

• *RST Condition: none

SYSTem Subsystem Command Reference 274

TRIGger

The TRIGger command subsystem controls the fourth state in a four state
measurement process. The four states which occur during a successful reading are
idle, initiated, wait-for-arm, and wait-for-trigger. The last two states have event
detection associated with them which control when they exit the current state.
These four states are more fully described as follows:

• Idle -- In this state, the instrument is not measuring. This is the state where
setting changes are done via commands to the instrument. This state is exited
when an INITiate command is received. This state is returned to after a reset,
successful completion of measurement, or abort of measurement.

• Initiated -- Once the instrument is initiated with the INITiate command, it passes
through this state, and continues down to the wait-for-arm state if
ARM:STARt:COUNT is not yet satisfied.

• Wait-for-arm -- In this state, the instrument waits for the specified ARM event to
occur before exiting to the wait-for-trigger state to make a measurment.

• Wait-for-trigger -- In this state, the instrument waits for the specified trigger event
to occur, and when it occurs, a reading is taken. After a reading is taken, the
cumulative number of readings taken thus far is compared to the count specified
in TRIGger:STARt:COUNt or SENSe:SWEep:POINts. When the count is met,
the state is exited, otherwise, the instrument waits for another trigger and takes
another reading. Upon exit from this state, the instrument goes to the initiated
state and checks to see whether or not ARM:STARt:COUNt is satisfied.

The following controls can be specified from the TRIGger:STARt subsystem:

• The number of triggers (readings) to occur before the digitizer returns to the
initiated state (TRIGger:STARt:COUNt).

• The source of the trigger (TRIGger:STARt:SOURce).

• The sample time for each reading (TRIGger:STARt:TIMer1) and
(TRIGger:STARt:TIMer2).

Memory Usage Measurements which specify multiple bursts (ARM:STARt:COUNt > 1) of both
pre-arm and post-arm readings (SENSe:SWEep:OFFSet:POINts ≤ -3 with
SENSe:SWEep:POINts > 9) cause memory to be partitioned into segments to hold
each burst of readings. The HP E1429 will automatically allocate
ARM:STARt:COUNt memory partitions large enough to hold the specified number
of pre-arm and post-arm readings. Since a large number of pre-arm readings may
occur before the arm event causes post-arm readings to be taken, each memory
partition is treated like a circular buffer where pre-arm readings may "wrap" or

275 Command Reference TRIGger Subsystem

overwrite each other multiple times times before the arm event occurs and the
current cycle of readings completes with the post-arm readings being taken. After
all post-arm readings have been taken in a partition, if ARM:STARt:COUNt is not
yet satisfied, the instrument directs the next burst of readings into the next memory
partition. There is a time window of typically 630 µs between bursts, where no
readings will be taken, while the HP E1429 arranges for readings to be directed into
the next memory partition. If an ARM event (ARM:STARt:SOURce) occurs during
this time window, it will be ignored with no error reported.

The number of partitions allowed is a function of ARM:STARt:COUNt, and is
shown in the table below along with the maximum number of readings
(TRIGger:STARt:COUNt) allowed in each partition.

ARM:STARt:COUNt Number of
Memory

Segments

Maximum Readings
(TRIGger:STARt:COUNt)

1 1 524,288

2 2 262,144

3 - 4 4 131,072

5 - 8 8 65,536

9 - 16 16 32,768

17 - 32 32 16,384

33 - 64 64 8,192

65 - 128 128 4,096

NOTE: If the non-volatile mode of memory is enabled
(MEMory:BATTery:STATe ON), then all of the maximum reading counts
shown above decrease by four. These four memory locations in each
segment hold the data necessary to recover all readings after a power
failure.

Subsystem
Syntax

TRIGger
[:STARt|:SEQuence[1]]

:COUNt <number >
 [:IMMediate] [no query]
 :SOURce <source >
 :TIMer1 <period >
 :TIMer2 <period >

TRIGger Subsystem Command Reference 276

[:STARt]:COUNt

TRIGger[:STARt]:COUNt <number> specifies the total number of readings
which will be taken during each ARM:STARt:COUNt cycle of a measurement. This
command is identical to (and coupled to) SENSe:SWEep:POINts; setting either will
set both to the same count.

Parameters

Parameter
Name

Parameter
Type

Range of
Values

Default
Units

chan numeric 1|2 none

number numeric 1 | 7 through 16,777,215 |
MINimum|MAXimum|

9.9E+37|INFinity

none

MINimum selects 1 reading.

Memory, post-arm readings only: MAXimum = 524,288 / ARM:STARt:COUNt
Memory battery enabled: MAXimum = (524,288 / ARM:STARt:COUNt) - 4
A/D converter to VME (VXI data transfer) bus: MAXimum = 16,777,215
A/D converter to Local bus: MAXimum = 16,777,215
Digitizer memory, pre- and post-arm readings: see below

ARM:STARt:COUNt Number of
Memory

Segments

Maximum Readings
(TRIGger:STARt:COUNt)

1 1 524,288

2 2 262,144

3 - 4 4 131,072

5 - 8 8 65,536

9 - 16 16 32,768

17 - 32 32 16,384

33 - 64 64 8,192

65 - 128 128 4096

NOTE: If the non-volatile mode of memory is enabled
(MEMory:BATTery:STATe ON), then all of the maximum reading counts
shown above decrease by four. These four memory locations in each
segment hold the data necessary to recover all readings after a power
failure.

TRIGger[:STARt]:COUNt

277 Command Reference TRIGger Subsystem

Comments • Executable when initiated: No

• Coupled Command: This command is coupled to SENSe:SWEep:POINts,
SENSe:SWEep:OFFSet:POINts, ARM:STARt:COUNt, and
MEMory:BATTery:STATe.

• TRIGger:STARt:COUNt values between 1 and 7 will be rounded to 1 or 7,
whichever is closer to the specified count.

• If the count is set to INFinity or 9.9E+37, the ABORt command must be used to
return the trigger system to the idle state before any readings taken may be read
from memory. Due to this, the READ? command can not be used when
TRIGger:STARt:COUNt is set to INFinity, attempts to do so will result in error
-214, "Trigger deadlock".

• Multiple bursts of a measurement process involving both pre-arm and post-arm
readings (ARM:STARt:COUNt > 1 and SENSe:SWEep:OFFSet:POINts < 0) is a
special case which causes memory partitioning to occur. This partitioning of
memory is handled automatically by the instrument, and is a function of
ARM:STARt:COUNt and TRIGger:STARt:COUNt (SENSe:SWEep:POINts).
TRIGger:STARt:COUNt is satisfied first, and then ARM:STARt:COUNt is
attempted.

• Related Commands: ABORt, INITiate:IMMediate, ARM subsystem,
SENSe:SWEep:POINts, SENSe:SWEep:OFFSet:POINts

• *RST Condition: TRIGger:STARt:COUNt 1

Example Taking 20 readings (8 pre-arm and 12 post-arm)

ARM:COUNt 1 ARM the reading trigger once

TRIG:COUN 20 Take 20 readings each arm cycle

SENS:SWE:OFFS:POIN -8 Set 8 readings as pre-arm

TRIGger[:STARt]:COUNt

TRIGger Subsystem Command Reference 278

[:STARt][:IMMediate]

TRIGger[:STARt][:IMMediate] will cause a reading to be taken immediately
when the digitizer is in the wait-for-trigger state (ARM event has occurred),
regardless of the selected trigger source. The number of triggers (set by
TRIGger:STARt:COUNt) will be decremented by one. The selected trigger source
remains unchanged.

There is no query form of this command.

Comments • Executable when initiated: Yes

• Coupled Command: No

• If the trigger system is in the idle or wait-for-arm state,
TRIGger:STARt:IMMediate will cause error -211,"Trigger ignored" to be
generated, and no action will be taken.

• Related Commands: INITiate:IMMediate

• *RST Condition: none

Example Forcing a measurement to occur

ARM:SOUR IMM Arm trigger immediately after INIT
command received

TRIG:SOUR HOLD Set trigger source to hold

INIT Initiate trigger system, trigger will go to
hold

TRIG Override the hold and take a reading

[:STARt]:SOURce

TRIGger[:STARt]:SOURce <source > configures the trigger system to respond to
the specified source for taking readings.

The available sources are:

• BUS: The Group Execute Trigger (GET) HP-IB command or the IEEE-488.2
*TRG common command.

• ECLTrg0 and ECLTrg1: The VXIbus ECL trigger lines.

• DECLtrg: Samples are taken at a dual rate, using the VXIbus ECLTRG0 trigger
line to pace pre-arm readings, and the ECLTRG1 trigger line to pace the post-arm
readings.

TRIGger[:STARt][:IMMediate]

279 Command Reference TRIGger Subsystem

• DEXTernal: Samples are taken at a dual rate, using the signal on the Ext 1 input
to pace pre-arm readings, and the signal on the Ext 2 input to pace the post-arm
readings.

• DTIMer: Samples are taken at a dual rate, using the TRIGger:STARt:TIMer1
rate to pace pre-arm readings, and the TRIGger:STARt:TIMer2 rate to pace the
post-arm readings.

• TTLTrg0 through TTLTrg7: The VXIbus TTL trigger lines.

• EXTernal1: The HP E1429’s front panel "Ext 1" BNC connector.

• EXTernal2: The HP E1429’s front panel "Ext 2" BNC connector.

• HOLD: Suspend triggering. The TRIGger:STARt:IMMediate command must be
used to trigger a reading.

• TIMer: Use the period specified by TRIGger:STARt:TIMer1 as the sample rate.

• VME: This source is used to either trigger readings from VME A24 register
accesses, or to read measurement data out of the HP E1429 internal memory by
reading a VME A24 address. This allows for faster data transfer rates over the
VME bus than would be possible over HPIB. For more information on how to
transfer data out over the VME bus using this command, see the
VINStrument:VME commands.

Parameters

Parameter
Name

Parameter
Type

Range of
Values

Default
Units

source discrete BUS|HOLD|
DECLtrg|DEXTernal

|DTIMer|
ECLTrg0|ECLTrg1|

IMMediate|
EXTernal1|EXTernal2|

TIMer|
TTLTrg0 to TTLTrg7|

VME

none

Comments • Executable when initiated: No

• Coupled Command: This command is coupled to the TRIGger, OUTPut, and
SENSe subsystems.

TRIGger[:STARt]:SOURce

TRIGger Subsystem Command Reference 280

• The active edges for the various sources are as follows:

ECLtrg0, ECLtrg1 and DECLtrg active edge is the rising edge.

TTLTrg<n> and DTTLtrg active edge is the falling edge.

EXTernal1, EXTernal2, and DEXTernal active edge is the falling edge.

• When using DECLtrg, DEXTernal, or DTIMer, at least one pre-arm pulse must
occur after the arming signal has been received. This means that after the pre-arm
count is reached and the arm is accepted, there must be another pre-arm pulse
which arrives ([reference period * 3] + 60 ns) after the arming signal. This would
typically be 210 ns if SENSe:ROSCillator:SOURce is INTernal. The digitizer
does not sample on the additional pulse.

• When TIMer is the source, the desired period must be specified by the
TRIGger:STARt:TIMer1 and/or the TRIGger:STARt:TIMer2 commands. See
these commands for a table of allowable values.

• Related Commands: SENSe:ROSCillator:SOURce, ARM:STARt:SOURce,
OUTPut subsystem, TRIGger:STARt:TIMer1, TRIGger:STARt:TIMer2,
SENSe:SWEep:POINts

• *RST Condition: TRIGger:STARt:SOURce TIMer

Example Setting the start trigger source

TRIG:SOUR ECLT0 A reading will be taken with each ECLT0
pulse

[:STARt]:TIMer[1]

TRIGger[:STARt]:TIMer[1] <period > specifies the time period between each
sampling event. The time period must be a multiple of the reference oscillator
period, with allowable multiples being 1,2,4,10,20,40,........1E8, 2E8, 4E8. See the
table below for the exact periods available with the internal 20 MHz reference.

Parameters

Parameter
Name

Parameter
Type

Range of
Values

Default
Units

period numeric reference period to
reference period * 4E8 |
MINimum | MAXimum

seconds

TRIGger[:STARt]:TIMer[1]

281 Command Reference TRIGger Subsystem

Comments • Executable when initiated: No

• Coupled Command: This command is coupled to the TRIGger:STARt:TIMer2
command and TRIGger:STARt:SOURce command as noted below:

Unless TRIGger:STARt:SOURce is DTIMer, the settings of
TRIGger:STARt:TIMer1 and TRIGger:STARt:TIMer2 are not coupled, and
changing one will not affect the setting of the other.

If TRIGger:STARt:SOURce is DTIM, then both TRIGger:STARt:TIMer1
and TRIGger:STARt:TIMer2 are used, and there is a coupling between the
two settings. The relationship between the two settings is such that one of
these two values must be exactly one reference oscillator period and the
other must be a multiple (greater than 1.0) of the reference oscillator period.
A record is kept of which setting was changed the most recently, and that
setting (TRIGger:STARt:TIMer1 or TRIGger:STARt:TIMer2) is assumed to
be the desired setting. For example, consider a reference oscillator period of
1µs; if TRIGger:STARt:TIMer2 was last changed to a value of 1µs while
TRIGger:STARt:SOUR was set to DTIM, and the TRIGger:STARt:TIMer1
setting was also 1µs, TRIGger:STARt:TIMer1 would be changed to 2µs (the
multiple 2.0 was chosen arbitrarily) so that both settings are not 1.0 times the
reference period. Similarly, if TRIGger:STARt:TIMer2 were set to 4µs, and
TRIGger:STARt:TIMer1 was some value greater than 1µs (like 2µs),
TRIGger:STARt:TIMer1 would be automatically changed to1µs so that one
of the two values is 1.0 times the reference period.

• If dual rate sampling is enabled (TRIGger:STARt:SOUR is DTIM), then the
sample period specified by TIMer1 will be the sample rate for the pre-arm
readings of the dual rate measurement, and TRIGger:STARt:TIMer2 will be the
post-arm sample rate.

• If TRIGger:STARt:SOUR is TIMer, then only the sample rate specified by
TIMer1 is used.

• Note that it is only necessary to set the longest sample rate if
TRIGger:STARt:SOURce is DTIM. The other setting will be automatically
forced to be one reference oscillator period due to the coupling between the two
rates when TRIGger:STARt:SOURce is DTIM.

• If TRIGger:STARt:SOUR is neither TIMer or DTIM, then the sample rates
specified by TRIGger:STARt:TIMer1 and TRIGger:STARt:TIMer2 are retained,
but are not used nor coupled to each other.

• If the HP E1429 can not sample within 1 percent of the period specified by
TRIGger:STARt:TIMer1, then the TIME bit (bit 2) in the QUEStionable Status
register is set.

TRIGger[:STARt]:TIMer[1]

TRIGger Subsystem Command Reference 282

• Related Commands: TRIGger:STARt:TIMer2, TRIGger:STARt:SOURce

• *RST Condition: 5.0E-8 seconds.

PERIOD VALUE TABLE

The following sample periods are available with the digitizer’s internal 20 MHz
reference oscillator.

Multiple Period
(Seconds)

Multiple Period
(Seconds)

Multiple Period
(Seconds)

1 5.0E-8 2 1.0E-7 4 2.0E-7

10 5.0E-7 20 1.0E-6 40 2.0E-6

100 5.0E-6 200 1.0E-5 400 2.0E-5

1000 5.0E-5 2000 1.0E-4 4000 2.0E-4

10,000 5.0E-4 20,000 1.0E-3 40,000 2.0E-3

100,000 5.0E-3 200,000 1.0E-2 400,000 2.0E-2

1,000,000 0.050 2,000,000 0.10 4,000,000 0.20

10,000,000 0.50 20,000,000 1.0 40,000,000 2.0

100,000,000 5.0 200,000,000 10.0 400,000,000 20

[:STARt]:TIMer2

TRIGger[:STARt]:TIMer2 <period > specifies the time period between each
sampling event of the post-arm portion of a dual rate measurement. The time period
must be a multiple of the reference oscillator period, with allowable multiples being
1,2,4,10,20,40,........1E8, 2E8, 4E8.

Parameters

Parameter
Name

Parameter
Type

Range of
Values

Default
Units

period numeric reference period to
reference period * 4E8 |
MINimum | MAXimum

seconds

283 Command Reference TRIGger Subsystem

Comments • Executable when initiated: No

• Coupled Command: This command is coupled to the TRIGger:STARt:TIMer1
command and TRIGger:STARt:SOURce command as noted below:

Unless TRIGger:STARt:SOURce is DTIMer, the settings of
TRIGger:STARt:TIMer1 and TRIGger:STARt:TIMer2 are not coupled, and
changing one will not affect the setting of the other.

If TRIGger:STARt:SOURce is DTIM, then both TRIGger:STARt:TIMer1
and TRIGger:STARt:TIMer2 are used, and there is a coupling between the
two settings. The relationship between the two settings is such that one of
these two values must be exactly one reference oscillator period and the
other must be a multiple (greater than 1.0) of the reference oscillator period.
A record is kept of which setting was changed the most recently, and that
setting (TRIGger:STARt:TIMer1 or TRIGger:STARt:TIMer2) is assumed to
be the desired setting. For example, consider a reference oscillator period of
1µs; if TRIGger:STARt:TIMer2 was last changed to a value of 1µs while
TRIGger:STARt:SOUR was set to DTIM, and the TRIGger:STARt:TIMer1
setting was also 1µs, TRIGger:STARt:TIMer1 would be changed to 2µs (the
multiple 2.0 was chosen arbitrarily) so that both settings are not 1.0 times the
reference period. Similarly, if TRIGger:STARt:TIMer2 were set to 4µs, and
TRIGger:STARt:TIMer1 was some value greater than 1µs (like 2µs),
TRIGger:STARt:TIMer1 would be automatically changed to1µs so that one
of the two values is 1.0 times the reference period.

• If dual rate sampling is enabled (TRIGger:STARt:SOUR is DTIM), then the
sample period specified by TIMer1 will be the sample rate for the pre-arm
readings of the dual rate measurement, and TRIGger:STARt:TIMer2 will be the
post-arm sample rate.

• Note that it is only necessary to set the longest sample rate if
TRIGger:STARt:SOURce is DTIM. The other setting will be automatically
forced to be one reference oscillator period due to the coupling between the two
rates when TRIGger:STARt:SOURce is DTIM.

• If TRIGger:STARt:SOUR is TIMer, then only the sample rate specified by
TIMer1 is used.

• If dual rate sampling is not enabled (TRIGger:STARt:SOUR DTIM), then the
TRIGger:STARt:TIMer2 setting is retained, but not used.

• If the HP E1429 can not sample within 1 percent of the period specified by
TRIGger:STARt:TIMer2, then the TIME bit (bit 2) in the QUEStionable Status
register is set.

TRIGger[:STARt]:TIMer2

TRIGger Subsystem Command Reference 284

• Related Commands: TRIGger:STARt:TIMer1, TRIGger:STARt:SOURce

• *RST Condition: 1.0E-7 seconds.

PERIOD VALUE TABLE

The following sample periods are available with the digitizer’s internal 20 MHz
reference oscillator.

Multiple Period
(Seconds)

Multiple Period
(Seconds)

Multiple Period
(Seconds)

1 5.0E-8 2 1.0E-7 4 2.0E-7

10 5.0E-7 20 1.0E-6 40 2.0E-6

100 5.0E-6 200 1.0E-5 400 2.0E-5

1000 5.0E-5 2000 1.0E-4 4000 2.0E-4

10,000 5.0E-4 20,000 1.0E-3 40,000 2.0E-3

100,000 5.0E-3 200,000 1.0E-2 400,000 2.0E-2

1,000,000 0.050 2,000,000 0.10 4,000,000 0.20

10,000,000 0.50 20,000,000 1.0 40,000,000 2.0

100,000,000 5.0 200,000,000 10.0 400,000,000 20

285 Command Reference TRIGger Subsystem

VINStrument

The VINStrument subsystem operates with the ARM and TRIGger subsystems to
control the virtual instrument features of the HP E1429A/B. These features include
the ability to use the Local bus and the VME (VXI data transfer) bus to obtain
buffered measurement data from memory or real time measurement data directly
from the analog to digital converter.

Local Bus transfers

There are two ways to transfer data over the Local bus:

Data can be transferred directly from the analog to digital converter(s) using the
ARM and TRIGger subsystems in conjunction with the INITiate command.
Everything proceeds exactly the same as if readings were going to HP E1429B
internal memory, except in this case, readings are going to the Local bus as well as
to internal memory. If the consumer on the Local Bus is unable to maintain the data
transfer (sampling) rate, then the data going out over the Local bus is lost and an
error is indicated.

The second method of transferring data over the Local bus is to empty the
HP E1429B internal memory after the measurements have occurred. This transfer
will automatically proceed after the measurements are completed if the user has
previously set the VINStrument:CONFigure:LBUS:MODE to APPend, GENerate,
or INSert, and if VINStrument:CONFigure:LBUS:FEED is one of the "MEM:xxx"
choices. If the measurement is aborted with the ABORt command, or if
VINStrument:LBUS:MODE is OFF or PIPline during the measurement, then no
automatic transfer is attempted. Instead, the
VINStrument:CONFigure:LBUS:MEMory:INITiate command must be used to start
the transfer after the MODE and FEED have been set to the desired values. When
using this method, the ARM source is automatically set to IMMediate, and the
trigger source is set to LBUS. This allows the receiving module(s) on the right to
control the data transfer, and assures that transfers occur only when the receiving
module is ready to receive data; thus no data will ever be lost. The trigger and arm
sources are returned to their previous values with the next INITiate command.

VINStrument Subsystem Command Reference 286

VME (VXI data transfer) Bus transfers

When data is transferred over the VME bus directly from the A/D converter, a read
of VME A24 address space, offset 12 (0C16), causes a measurement to be taken and
transferred all in the same read cycle. During the read cycle, the
HP E1429 takes a reading and puts the data into the register before the read cycle
completes. The ARM sources may be set to any legal source for this mode, but
TRIGger:START:SOURce must be set to VME. Selections can be made using the
VINStrument:CONFigure:VME:FEED command such that a single read produces
data from only one channel (16 bits), or both channels simultaneously (32 bits).

When the data is transferred post measurement, completion of the
INITiate:IMMediate command will automatically configure for a VME transfer
from memory, based on the settings of the VINStrument:VME:FEED command.
When the measurement has completed and the VME transfer has been set up by the
HP E1429, bit 1 (Memory Read Enable) of the A24 memory control register (base +
2116) will go high (1). At this point, data transfer can be initiated by the receiver by
reading the A24 data register (base + 0C16). Again, the VINStrument:VME:FEED
command is used to specify whether a single read will produce one channel (16 bits)
of data, or two channels (32 bits) of data. The
VINStrument:VME:MEMory:INITiate command will also configure for a post
measurement VME data transfer, but it need not be sent unless it is desirable to read
the same data multiple times.

Subsystem
Syntax

VINStrument
[:CONFigure]

:LBUS
:FEED <source >
:MEMory

 :INITiate [no query]
[:MODE] <mode >
:RESet [no query]
:SEND

:POINts <count >
:AUTO <mode >

:TEST
:DATA <voltage_list > [no query]

:VME
:FEED <source >
:MEMory

:INITiate [no query]
 [:MODE] <mode >

:SEND
:ADDRess

 :DATA? [query only]
:IDENtity?

287 Command Reference VINStrument Subsystem

 [:CONFigure]:LBUS:FEED

VINStrument[:CONFigure]:LBUS:FEED <source > indicates the source of the
data which will be output to the Local bus. The data source may be channel 1,
channel 2, or both channels. The data may come from memory or directly from the
A/D converter(s). Sources beginning with "MEMory: " are the post measurement
modes, sources beginning with "CONVerter: " are the real time modes. The possible
sources are:

" MEMory:CHANnel1" : Channel 1 memory is the data source for the Local bus.
Two bytes per reading will be output to the bus.

" MEMory:CHANnel2" : Channel 2 memory is the data source for the Local bus.
Two bytes per reading will be output to the bus.

" MEMory:BOTH" : Both channels of memory are the data source for the Local
bus. In this mode, the channel 2 reading is output first, followed by the
channel 1 reading. Four bytes for each set of readings will be output to the bus.

" CONVerter:CHANnel1" : The channel 1 A/D converter is the data source for
the Local bus. Two bytes per reading will be output to the bus.

" CONVerter:CHANnel2" : The channel 2 A/D converter is the data source for
the Local bus. Two bytes per reading will be output to the bus.

" CONVerter:BOTH" : Both A/D converters are the data source for the Local bus.
In this mode, the channel 2 reading is output first, followed by the
channel 1reading. Four bytes for each set of readings will be output to the bus.

Parameters

Parameter
Name

Parameter
Type

Range of
Values

Default
Units

source string "CONVerter:BOTH" |
"CONVerter:CHANnel1" |
 "CONVerter:CHANnel2" |

"MEMory:BOTH" |
"MEMory:CHANnel1" |
"MEMory:CHANnel2" |

none

Comments • Executable when initiated: No

• Coupled command: Yes, this command is set but ignored if
VINStrument:CONFigure:LBUS:MODE is not GENerate, APPend, or INSert.

VINStrument [:CONFigure]:LBUS:FEED

VINStrument Subsystem Command Reference 288

• When VINStrument:CONFigure:LBUS:FEED is one or both A/D converters, care
must be taken that other active instruments in the pipeline can maintain the data
generation rate. If data is available from the A/D converter but the Local bus is
busy and can not accept it, the data is lost and error 1019; "Data loss detected
during LBUS transfer" is reported.

• For VINStrument:CONFigure:LBUS:FEED "MEMory:BOTH" and
VINStrument:CONFigure:LBUS:FEED "CONVerter: BOTH", data is sent
interleaved with channel 2 reading 1 as the first point.

• Related Commands: VINStrument:CONFigure:LBUS:MODE, ARM subsystem,
TRIGger subsystem, VINStrument:CONFigure:LBUS:MEMory:INITiate

• *RST Condition: VINStrument:CONFigure:LBUS:FEED "MEMory:BOTH"

Example Send channel 1 memory data to consumer automatically after measurement

VINS:CONF:LBUS:MODE GEN Set this module’s mode to GENerate data
for the Local bus

VINS:CONF:LBUS:FEED "MEM:CHAN1" Set data source to channel 1 memory

Set up other modules to right of this one Last module on right must be in
VINS:LBUS:MODE CONSume

INIT Start the measurement, data will be
transferred over the Local bus as soon as
the measurement completes

[:CONFigure]:LBUS:MEMory:INITiate

VINStrument[:CONFigure]:LBUS:MEMory:INITiate causes the instrument to
begin the process of transferring data from memory out over the Local bus. If the
FEED and MODE are set correctly (e.g. MODE = APPend, GENerate, or INSert)
before the measurement is taken, this command is not necessary because the data
will automatically be sent. If, however, the measurement was aborted, or if it is
necessary to change the MODE or FEED after the measurement has completed, then
executing this command will start the data transfer.

Comments • Executable when initiated: No

• Coupled command: Yes. This command will error if
VINStrument:CONFigure:LBUS:FEED is not "MEMory:xxx", if
VINStrument:CONFigure:LBUS:MODE is OFF, or if the HP E1429 is already
INITiated.

VINStrument[:CONFigure]:LBUS:MEMory:INITiate

289 Command Reference VINStrument Subsystem

• This command results in an error if VINStrument:CONFigure:LBUS:FEED is not
one of the "MEMory" choices (i.e. "MEMory:BOTH", etc.).

• If the data in memory is in multiple segments (ARM:STARt:COUNt > 1 and
SENSe:SWEep:POINts:DELay < 0), then there will be a small time delay
between transfer of each segment while the CPU switches the memory address to
point to the next segment.

• This command has no query form.

• Related Commands: VINStrument:CONFigure:LBUS:MODE

• *RST Condition: None

Example Send both channels of memory data to consumer

VINS:CONF:LBUS:MODE GEN Set this module’s mode to GENerate data
for the Local bus

VINS:CONF:LBUS:FEED "MEM:BOTH" Set data source to be both channels

Set up modules to the right of this one Last module on right must be in
VINS:LBUS:MODE CONSume

VINS:LBUS:MEM:INIT Begin sending data from memory out over
the Local bus

[:CONFigure]:LBUS[:MODE]

VINStrument[:CONFigure]:LBUS[:MODE] <mode > selects the operating mode
for the VXI Local bus. The available modes are:

APPend: Local bus data is received from the left, and passed on to the right
until an end of frame is detected. When end of frame is received from the left
side, all data from this module is appended, followed by an end of block flag
and a new end of frame flag. After sending the end of frame flag, the module
enters the paused state. This mode requires a module to the left that is in
GENerate mode. The mode is not active until either an INITiate command or a
VINStrument:LBUS:MEMory:INITiate command is sent.

GENerate: Local bus data originates in this module and is passed to the right,
followed by an end of frame flag. The mode is not active until either an
INITiate command or a VINStrument:LBUS:MEMory:INITiate command is
sent.

INSert: Local bus data is inserted onto the bus from this module. The module
will place its data out onto the Local bus with an end of block flag at the end
and no end of frame flag. The module will then pass through (pipeline) any data
it receives from the left, and will enter the paused state when an end of frame
flag is received from the left. This mode requires at least one module to the left

VINStrument[:CONFigure]:LBUS[:MODE]

VINStrument Subsystem Command Reference 290

which is in GENerate mode. The mode is not active until either an INITiate
command or a VINStrument:CONFigure:LBUS:MEMory:INITiate command is
sent.

OFF: The Local bus interface is disabled immediately upon receipt of this
command. Local bus data is neither used nor passed through.

PIPeline: Local bus data is passed through and not altered. This mode becomes
effective immediately upon receipt of this command. Select this mode when
data should be transparently passed through the HP E1429B. The module will
remain in the PIPeline mode even after an end of frame flag is received;
therefore, it is necessary to change modes to take the module out of PIPeline
mode.

Parameters

Parameter
Name

Parameter
Type

Range of
Values

Default
Units

mode discrete APPend|GENerate|
INSert|OFF|

PIPeline

none

Comments • Executable when initiated: No

• Coupled command: Yes

• Related Commands: ARM subsystem, TRIGger subsystem,
VINStrument:CONFigure:LBUS:FEED,
VINStrument:CONFigure:LBUS:MEMory:INITiate, INITiate,
VINStrument:CONFigure:VME:MODE

• *RST Condition: VINStrument:CONFigure:LBUS:MODE OFF

Example Setting the Local Bus operation mode

VINS:LBUS PIP Set pipeline (pass through) mode; this
becomes active immediately

[:CONFigure]:LBUS:RESet

VINStrument[:CONFigure]:LBUS:RESet will reset the digitizer’s Local bus
chip. This command should be used when it is necessary to put the Local bus chip
into a known state without altering any other digitizer settings
(TRIGger:STARt:COUNt, TRIGger:STARt:SOURce, etc.). The *RST command
also resets the Local bus chip, but *RST forces all instrument settings to initial
values.

VINStrument[:CONFigure]:LBUS:RESet

291 Command Reference VINStrument Subsystem

Comments • Executable when initiated: No

• Coupled command: No

• The HP E1429B Local bus chip must be reset after each data transfer. When
resetting the Local bus chip, the Local bus chips on all devices to the right of the
HP E1429B must also be reset in a left-to-right sequence. Refer to the product
documentation for information on how a particular device’s Local bus chip is
reset.

• Related Commands: *RST, ABORt

• *RST Condition: none

Example Reset the Local bus chip

VINS:LBUS:RES Reset the chip

[:CONFigure]:LBUS:SEND:POINts

VINStrument[:CONFigure]:LBUS:SEND:POINts<count > specifies how many
readings will be output over the Local bus per block. There are two possible count
settings: 1 point per feed channel or all points per feed channel. Normally, there is
no need to set a count with this command because with
VINStrument:CONFigure:LBUS:SEND:POINts:AUTO ON (the power-on and
*RST setting), the number of points will automatically be matched to the current
setting of VINStrument:CONFigure:LBUS:FEED. Therefore, the count will
normally be TRIGger:COUNt * 2 if VINS:LBUS:FEED is "xxx:BOTH" or
TRIGger:COUNt * 1 if the feed is "xxx:CHAN1" or "xxx:CHAN2".

If VINStrument:CONFigure:LBUS:SEND:POINts:AUTO is set to OFF, then the
number of points sent per block must either be 2 (for feed "CONV:BOTH") or 1
(for feeds "CONV:CHAN1 and "CONV:CHAN2"). This setting is only allowed
when the feed is one of the "CONV:xxx" (direct from A/D converter) settings. The
combination of VINStrument:CONFigure:LBUS:SEND:POINts:AUTO OFF and
VINStrument:CONFigure:LBUS:SEND:POINts 1 or 2 is needed only when the
goal is to multiplex readings directly from multiple digitizers onto the Local bus.

Parameters MINimum and MAXimum will both set the same value, which is the number of
readings that will be transferred as determined by the current
VINStrument:CONFigure:LBUS:SEND:POINts:AUTO and
VINStrument:CONFigure:LBUS:FEED settings.

Comments • Executable when initiated: No

VINStrument[:CONFigure]:LBUS:SEND:POINts

VINStrument Subsystem Command Reference 292

• Coupled command: VINStrument:CONFigure:LBUS:SEND:POINts:AUTO and
VINStrument:CONFigure:LBUS:FEED settings determine the allowable values
of this command.

• For a more complete discussion and example of when this command should be
used, see "Local Bus Data Transfers" in Chapter 3.

• If a measurement was halted using the ABORt command and "MEM:xxx" is one
of the VINStrument:CONFigure:LBUS:FEED choices, the query form of this
command will return the number of points that will actually be transferred
(assuming VINStrument:CONFigure:LBUS:SEND:POINts:AUTO ON) when the
VINStrument:CONFigure:LBUS:MEMory:INITiate command is invoked.

• Related Commands: VINStrument:CONFigure:LBUS:FEED

• *RST Condition: 2

Example Query number of readings output per block

VINS:LBUS:SEND:POIN? Query points

[:CONFigure]:LBUS:SEND:POINts:AUTO

VINStrument[:CONFigure]:LBUS:SEND:POINts:AUTO <mode > determines
how the digitizer will send its data over the Local bus. In most cases AUTO ON
would be used, which sends all of a measurement’s data over the Local bus followed
by an end-of-block flag and an end-of-frame flag.
The AUTO OFF setting is a special setting which is only used when it is desirable
for multiple digitizers to output A/D data from each (common) trigger event onto
the Local bus at approximately the same time (i.e. in parallel). In this mode, the
end-of-block and end-of-frame flags are sent with each reading (trigger event). This
mode requires that all digitizers are set to the same trigger count and have their
trigger sources synchronized such that each digitizer’s data is available to the Local
bus before the next trigger event can occur on any digitizer in the data stream.
Otherwise, data loss will occur and an error will be indicated by one or more of the
digitizers.

Parameters

Parameter
Name

Parameter
Type

Range of
Values

Default
Units

mode Boolean ON | OFF | 1 | 0 none

Comments • Executable when initiated: No

VINStrument[:CONFigure]:LBUS:SEND:POINts:AUTO

293 Command Reference VINStrument Subsystem

• Coupled command: Yes, VINStrument:CONFigure:LBUS:FEED and
VINStrument:CONFigure:LBUS:SEND:POINts are coupled to this command.

• If VINStrument:CONFigure:LBUS:SEND:POINts:AUTO is OFF, the
measurement does not complete normally. After the data has been taken and
transferred, the Local bus is left in a running state. Therefore, it is necessary
to send the ABORt command to each digitizer in the data stream (in a left to
right sequence) after the data is transferred and before proceeding with the
next setup or INITiate. Additionally, any other Local bus devices
(non-digitizers) will need to reset their Local bus chips in a left to right sequence.
See "Local Bus Data Transfers" in Chapter 3 for more information.

• Related Commands: VINStrument[:CONFigure]:LBUS:FEED,
VINStrument[:CONFigure]:LBUS:SEND:POINts, ABORt

• *RST Condition: ON

Example Setup for multiple transfers of direct A/D data

VINS:LBUS:FEED "CONV:BOTH" Send both channels directly from A/D
converter

VINS:LBUS:SEND:POIN 2; POIN:AUTO OFF

Set up to send end-of-block and
end-of-frame every two readings

[:CONFigure]:TEST:DATA

VINStrument[:CONFigure]:TEST:DATA <voltage_list > configures the
 HP E1429B for Local bus testing, and transmits the data given in voltage_list. This
data will be temporarily stored in internal memory before being output at the fastest
possible speed over the Local bus. The data will be stored into alternate channels,
beginning with channel 2. The data is output over the Local bus the same way
(interleaved, with channel 2 data point 1 first). Regardless of their current settings,
VINStrument:CONFigure:LBUS:FEED is set to "MEM:BOTH",
VINStrument:CONFigure:LBUS:MODE is set to GENerate, and
VINStrument:CONFigure:VME:MODE is set to OFF. These changes will remain
in effect after the command has completed.

Parameters The voltage_list must be an IEEE-488.2 definite length block containing values in
16-bit integer format, with the most significant byte being the first byte in a pair (i.e.
Motorola format).

VINStrument[:CONFigure]:TEST:DATA

VINStrument Subsystem Command Reference 294

The legal range of values is -32768 to 32767. Only the upper 12 bits are stored into
memory. The lower 4 bits are ignored, and the actual values sent over the Local bus
for these lower 4 bits are determined by the current setting of the
DIAGnostic:CHANnel:LABel command.

Comments • Executable when initiated: No

• Coupled command: Yes. VINStrument:CONFigure:LBUS:FEED will be
changed to "MEMory:BOTH", VINStrument:CONFigure:LBUS:MODE will be
set to GENerate, and VINStrument:CONFigure:VME:MODE will be set to OFF.

• The module receiving the data must have been previously set up so that it is ready
to CONSume data.

• When testing the Local bus, you must send a minimum of 28 bytes and the byte
count must be a multiple of 4. If less than 28 bytes are sent, error -109 "Missing
parameter" occurs. If the byte count is not a multiple of 4, error -161 "Invalid
block data" occurs.

• Because MEMory:BOTH is the FEED, the first data point is sent from channel 2,
the second data point is sent from channel 1, the third data point from channel 2,
and so on.

• As mentioned above, the lower 4 bits of each 16-bit reading sent out over the
Local bus are determined by the current setting of DIAGnostic:CHANnel:LABel
for the channel the data was stored into. These 4 bits may not have the same
value as the data sent with this command. Therefore, the consuming module may
receive slightly different data than what was downloaded with this command.

• Related Commands: VINStrument:CONFigure:LBUS:FEED,
VINStrument:CONFigure:LBUS:MODE

• *RST Condition: none

Example Testing Local Bus operation

VINS:TEST:DATA #240<40 bytes of data>
Send 40 bytes (10 readings per channel),
using IEEE-488.2 definite length block

VINStrument[:CONFigure]:TEST:DATA

295 Command Reference VINStrument Subsystem

[:CONFigure]:VME:FEED

VINStrument[:CONFigure]:VME:FEED <source > selects which data source
will feed the VME (VXI data transfer) bus. The bus is driven by reading the data
register, offset 12 (0C16) in A24 address space. Sources beginning with "MEMory: "
are the post measurement modes, sources beginning with "CONVerter: " are the real
time modes. The possible sources are:

" MEMory:CHANnel1" : Channel 1 memory is the data source for the VME bus.
One 16-bit reading is returned.

" MEMory:CHANnel2" : Channel 2 memory is the data source for the VME bus.
One 16-bit reading is returned.

" MEMory:BOTH" : Both channels of memory are the data source for the VME
bus. In this mode, channel 1 will be output the first time the data register is
accessed, channel 2 is output the second time the data register is accessed. One
16-bit reading is returned with each access.

" MEMory:BOTH32" : Both channels of memory are the data source for the VME
bus. In this mode, accessing the data register returns a 32-bit number where the
high order 16 bits are the channel 2 reading and the low order 16 bits are the channel
1 reading.

" CONVerter:CHANnel1" : The channel 1 A/D converter is the data source for
the VME bus. One 16-bit reading is returned.

" CONVerter:CHANnel2" : The channel 2 A/D converter is the data source for
the VME bus. One 16-bit reading is returned.

" CONVerter:BOTH" : Accessing the data register triggers both A/D converters at
the same time, and one 16-bit reading (channel 1) is returned. Accessing the data
register a second time returns the second 16-bit reading (channel 2), but does not
trigger the A/Ds.

" CONVerter:BOTH32" : Accessing the data register triggers both A/D converters
at the same time, and one 32-bit number is returned. The high order 16 bits are the
channel 2 reading, and the low order 16 bits are the channel 1 reading.

VINStrument[:CONFigure]:VME:FEED

VINStrument Subsystem Command Reference 296

Parameters

Parameter
Name

Parameter
Type

Range of
Values

Default
Units

source string "CONVerter:BOTH" |
"CONVerter:BOTH32" |
"CONVerter:CHANnel1" |
"CONVerter:CHANnel2" |

"MEMory:BOTH" |
"MEMory:BOTH32" |

"MEMory:CHANnel1" |
"MEMory:CHANnel2" |

none

Comments • Executable when initiated: No

• Coupled command: Yes. This command is coupled to the TRIGger subsystem.

• If the data in memory is in multiple segments, then there will be a small delay
(630 µs) between segments while the CPU switches the memory address to point
to the next segment. It is possible to determine when data is available again by
monitoring bit 1 of the A24 arm status register (base + 4316). This bit goes high
when the data is again ready for transfer. See "VME Bus Data Transfers" in
Chapter 3 for additional information.

• Related Commands: TRIGger:STARt:COUNt,
VINStrument:CONFigure:VME:MODE,
VINStrument:CONFigure:VME:MEMory:INITiate, TRIGger:STARt:SOURe

• *RST Condition: VINStrument:VME:FEED "MEMory:BOTH32"

Example Reading both channels out to the VME (VXI data transfer) bus

TRIG:SOUR VME Set up trigger system for VME transfer

VINS:VME GEN Set GENerate mode

VINS:VME:FEED " MEM:BOTH32 " Set data source to be both channels

INIT Begin the transfer

[:CONFigure]:VME:MEMory:INITiate

VINStrument[:CONFigure]:VME:MEMory:INITiate configures the HP
E1429 for data transfer over the VME bus when the data register in A24 address
space is read. The configuration is done automatically if the
INITiate:IMMediate command is executed while
VINStrument:CONFigure:VME:MODE is GENerate and any of the
"MEMory:xxx" settings is the selection for

VINStrument[:CONFigure]:VME:MEMory:INITiate

297 Command Reference VINStrument Subsystem

VINStrument:CONFigure:VME:FEED. However, if these settings were not in
effect when the measurement was taken, then
VINStrument:CONFigure:VME:MEMory:INITiate must be sent before data is
retrieved from memory via the data register.

This command results in an error if VINStrument:CONFigure:VME:MODE is OFF.

This command has no query form.

Comments • Executable when initiated: No

• Coupled command: Yes, this command will error if
VINStrument:CONFigure:VME:MODE is OFF, or if the HP E1429 is already
initiated or transferring data.

• If the data in memory is in multiple segments, then there will be a small time
delay (630 µs) between segments while the CPU switches the memory address to
point to the next segment. It is possible to determine when data is available again
by monitoring bit 1 of the A24 arm status register (base + 4316). This bit goes
high when the data is again ready for transfer. See Chapter 3 for additional
information.

• Related Commands: VINStrument:CONFigure:VME:MODE,
VINStrument:CONFigure:VME:FEED, ARM subsystem, TRIGger subsystem

• *RST Condition: None

Example Send channel 2 of memory data out over the VXIbus, whenever the VME data
register is accessed

VINS:VME:MODE GEN Set mode to GENerate

VINS:VME:FEED "MEM:CHAN2" Set data source to be memory channel 2

VINS:VME:MEM:INIT Begin sending data to VXIbus when the
VME A24 register is read

[:CONFigure]:VME[:MODE]

VINStrument[:CONFigure]:VME[:MODE] <mode > selects the operating mode
for the VME bus. The only available modes are GENerate and OFF.

This command is used when it is desirable to transfer data over the VME bus by
reading the data register at offset 12 (0C16) in A24 address space.

VINStrument[:CONFigure]:VME[:MODE]

VINStrument Subsystem Command Reference 298

Parameters

Parameter
Name

Parameter
Type

Range of
Values

Default
Units

mode discrete GENerate|OFF none

Comments • Executable when initiated: No

• Coupled command: Yes, VINStrument:CONFigure:VME:MODE GENerate is
not allowed unless VINStrument:CONFigure:LBUS:MODE is set to OFF or
PIPeline.

• Related Commands: VINStrument:CONFigure:VME:FEED

• *RST Condition: VINStrument:CONFigure:VME:MODE OFF

Example Setting the VXIbus data transfer bus operation mode

VINS:VME GEN Set GENerate mode

[:CONFigure]:VME:SEND:ADDRess:DATA?

VINStrument[:CONFigure]:VME:SEND:ADDRess:DATA? returns two values:
A24,12. A24 indicates that the HP E1429’s A24 address space should be used for
reading measurement data, and 12 (0C16) is the offset of the data register in A24
address space.

Comments • Executable when initiated: Yes

• Coupled command: No

• Related Commands: VINStrument:CONFigure:VME:MODE,
TRIGger:STARt:SOURce, VINStrument:CONFigure:VME:MEMory:INITiate

• *RST Condition: A24,12

Example Querying the A24 address space offset

VINS:VME:SEND:ADDR:DATA? Query A24 offset for data reads

VINStrument[:CONFigure]:VME:SEND:ADDRess:DATA?

299 Command Reference VINStrument Subsystem

:IDENtity?

VINStrument:IDENtity? returns a response consisting of 4 fields, indicating the
virtual instrument capability of the HP E1429:

HEWLETT-PACKARD VIRTUAL INSTRUMENT,ANY ATOD,0,A.01.00

The first and last fields indicate that the HP E1429 conforms to revision A.01.00 of
HP’s Virtual Instrument/Local Bus System Specification. The second field
indicates that the HP E1429 is a analog-to-digital converter. The third field is
reserved for future use.

Comments • Executable when initiated: Yes

• Coupled command: No

• *RST Condition: none

Example Querying virtual instrument capability

VINS:IDEN? Query capability

VINStrument:IDENtity?

VINStrument Subsystem Command Reference 300

IEEE-488.2 Common Commands

This section describes the IEEE-488.2 Common Commands implemented in the
HP E1429. The table below shows the commands listed by functional group;
however, commands are listed alphabetically in the reference. Examples are shown
in the reference when the command has parameters or returns a non-trivial response;
otherwise, the command string is as shown in the table. For additional information,
refer to IEEE Standard 488.2-1987.

Category Command Title

System Data *IDN?

*PUD <data>

*PUD?

Identification Query

Protected User Data Command

Protected User Data Query

Internal Operations *LRN?

*RST

*TST?

Learn Device Setup Query

Reset Command

Self Test Query

Synchronization *OPC

*OPC?

*WAI

Operation Complete Command

Operation Complete Command

Wait-to-Continue Command

Macro *DMC <name>,<data>

*EMC <enable>

*EMC?

*GMC? <name>

*LMC?

*PMC

*RMC <name>

Define Macro Command

Enable Macro Command

Enable Macro Query

Get Macro Contents Query

Learn Macro Query

Purge Macros Command

Remove Individual Macro Command

Status & Event *CLS

*ESE <mask>

*ESE?

*ESR?

*SRE

*SRE?

*STB?

Clear Status Command

Standard Event Status Enable Command

Standard Event Status Enable Query

Standard Event Status Register Query

Service Request Enable Command

Service Request Enable Query

Read Status Byte Query

Trigger *TRG Trigger Command

Stored Settings *RCL

*SAV

Recall Command

Save Command

Chapter 4 Command Reference 301

*CLS

*CLS clears the Standard Event Status Register, the Operation Status Register, the
Questionable Signal Register, and the error queue. This clears the corresponding
summary bits (3, 5, & 7) in the Status Byte Register. *CLS does not affect the
enable masks of any of the status registers.

Comments • Executable when initiated: Yes

• Coupled command: No

• Related Commands: STATus:PRESet

• *RST Condition: none

*DMC

*DMC <name>,<data> creates a macro with the specified name and assigns zero,
one, or a sequence of commands to the name. The sequence may be composed of
SCPI and/or Common Commands.

Parameters

Parameter
Name

Parameter
Type

Range of
Values

Default
Units

name string
data

1 through 12 characters none

data block
data
or

string

any valid command
sequence

none

Comments • Legal macro names must start with an alphabetic character and contain only
alphabetic, numeric, and underscore ("_") characters. Alphabetic character case
(upper vs. lower) is ignored.

The name is allowed to be the same as a SCPI command, but may be not be the
same as a Common Command. When the name is the same as a SCPI command,
the macro rather than the command will be executed when the name is received if
macro usage is enabled. The SCPI command will be executed if macro usage is
disabled.

• The <data > in the *DMC command is parsed by the digitizer when the *DMC
command is executed.

• Executable when initiated: Yes

*CLS

302 Command Reference Chapter 4

• Coupled command: No

• Related Commands: *EMC, *GMC, *LMC, *RMC

• *RST Condition: none; macro definitions are unaffected

• Power-On Condition: no macros are defined

Example Define macro to start measurement

*DMC " RESTART","ABOR;INIT" Define macro

*EMC and *EMC?

*EMC <enable> enables and disables macro usage. When enable is zero, macros
usage is disabled. Any non-zero value enables macro usage.

The query form returns 1 if macro usage is enabled, 0 if disabled.

Comments • Macro definitions are not affected by this command.

• Executable when initiated: Yes

• Coupled command: No

• *RST Condition: macro usage is disabled

• Power-On Condition: macro usage is enabled

*ESE and *ESE?

*ESE <mask> enables one or more event bits of the Standard Event Status Register
to be reported in bit 5 (the Standard Event Status Summary Bit) of the Status Byte
Register. Mask is the sum of the decimal weights of the bits to be enabled.

The query form returns the current enable mask.

Parameters

Parameter
Name

Parameter
Type

Range of
Values

Default
Units

mask numeric 0 through 255 none

A 1 in a bit position enables the corresponding event; a 0 disables it.

Comments • Executable when initiated: Yes

*EMC and *EMC?

Chapter 4 Command Reference 303

• Coupled command: No

• Related Commands: *ESR?, *SRE, *STB?

• *RST Condition: unaffected

• Power-On Condition: no events are enabled

Example Enable all error events

*ESE 60 Enable error events

*ESR?

*ESR? returns the value of the Standard Event Status Register. The register is then
cleared (all bits 0).

Comments • Executable when initiated: Yes

• Coupled command: No

• *RST Condition: none

• Power-On Condition: register is cleared

*GMC?

*GMC? <name> returns the definition of the specified macro in IEEE-488.2
definite block format.

Parameters

Parameter
Name

Parameter
Type

Range of
Values

Default
Units

name string
data

defined macro name none

Comments • Executable when initiated: Yes

• Coupled command: No

• Related Commands: *DMC

• *RST Condition: none

• Power-On Condition: no macros are defined

*ESR?

304 Command Reference Chapter 4

Example Query macro definition

*GMC? " RESTART" Query macro definition

*IDN?

*IDN? returns indentification information for the HP E1429. The response consists
of four fields:

HEWLETT-PACKARD,E1429,0,A.01.00

The first two fields identify this instrument as model number E1429 manufactured
by Hewlett-Packard. The third field is 0 since the serial number of the HP E1429 is
unknown to the firmware. The last field indicates the revision level of the firmware.

Note The firmware revision field will change whenever the firmware is revised. A.01.00
is the initial revision. The first two digits indicate the major revision number, and
increment when functional changes are made. The last two digits indicate bug fix
level.

Comments • Executable when initiated: Yes

• Coupled command: No

• *RST Condition: none

• Power-On Condition: register is cleared

*LMC?

*LMC? returns a comma-separated list of quoted strings, each containing the name
of a macro. If no macros are defined, a single null string ("") is returned.

Comments • Executable when initiated: Yes

• Coupled command: No

• Related Commands: *DMC

• *RST Condition: none

• Power-On Condition: no macros are defined

*IDN?

Chapter 4 Command Reference 305

*LRN?

*LRN? returns a sequence of commands that may be re-sent to the HP E1429 to
return it to its current programming state.

Only those commands that are affected by *RST are included in the sequence.
Exceptions include MEMory:BATTery:STATe, the STATus subsystem commands,
and the CALibration:SECurity command state.

Note *LRN? should be sent singly in a program message, since the number of commands
in the returned sequence is large, and may vary depending on firmware revision.

Comments • Executable when initiated: Yes

• Coupled command: No

• Related commands: *RCL, *RST, *SAV

• *RST Condition: none

*OPC

*OPC causes the HP E1429 to wait for all pending operations to complete. The
Operation Complete bit (bit 0) in the Standard Event Status Register is then set.

If STATus:OPC:INITiate OFF is set, the Operation Complete bit will be set when
all commands received prior to the *OPC have been executed. If ON is set, *OPC
waits for the digitizer to return to the idle state before setting the Operation
Complete bit. No other commands will be executed until the Operation Complete
bit is set.

Comments • Executable when initiated: Yes

• Coupled command: No

• Related commands: *OPC?, *WAI

• *RST Condition: none

*LRN?

306 Command Reference Chapter 4

*OPC?

*OPC? causes the HP E1429 to wait for all pending operations to complete. A
single ASCII “1" is then placed in the output queue.

If STATus:OPC:INITiate OFF is set, the ASCII “1" will be placed in the output
queue when all commands received prior to the *OPC? have been executed. If ON
is set, *OPC? waits for the digitizer to return to the idle state before placing the ”1"
in the output queue. No other commands will be executed until the “1" is placed in
the output queue.

Comments • Executable when initiated: Yes

• Coupled command: No

• Related commands: *OPC, *WAI

• *RST Condition: none

*PMC

*PMC purges all macro definitions.

Comments • Use the *RMC command to purge an single macro definition.

• Executable when initiated: Yes

• Coupled command: No

• Related commands: *DMC, *RMC

• *RST Condition: none

*PUD and *PUD?

*PUD <data> stores the specified data in the HP E1429’s non-volatile calibration
memory. The data must be sent in IEEE-488.2 definite or indefinite block format.
Calibration security must have been previously disabled.

The query form returns the current protected user data in IEEE-488.2 definite block
format. The query form may be executed regardless of the state of calibration
security.

*OPC?

Chapter 4 Command Reference 307

Note When shipped from the factory, the protected user data area contains information
regarding when the HP E1429 was last calibrated.

Parameters

Parameter
Name

Parameter
Type

Range of
Values

Default
Units

mask block
data
or

string

0 through 63 characters none

Comments • Executable when initiated: Yes

• Coupled command: No

• *RST Condition: unaffected

• Power-On Condition: unaffected

Example Setting the protected user data

*PUD #17Unit #5 Set data to “Unit #5"

*RCL

*RCL <number> restores a previously stored programming state from one of the 10
possible stored state areas. Number indicates which of the stored state areas should
be used.

This command affects the same command settings as does *RST. Notable
exceptions include MEMory:BATTery:STATe, the STATus subsystem commands,
and the CALibration:SECurity command state.

Parameters

Parameter
Name

Parameter
Type

Range of
Values

Default
Units

number numeric 0 through 9 none

Comments • Executable when initiated: No

• Coupled command: No

• Related Commands: *LRN?, *RST, *SAV

*RCL

308 Command Reference Chapter 4

• *RST Condition: all saved states set to the same state as the *RST state

*RMC

*RMC <name> purges only the specified macro definition.

NOTE: At printing time, *RMC is a command proposed and accepted for a revision
and re-designation of IEEE-488.2.

Comments • Use the *PMC command to purge all macro definitions in one command.

• Executable when initiated: Yes

• Coupled command: No

• Related commands: *DMC, *PMC

• *RST Condition: none

*RST

*RST resets the HP E1429 as follows:

• Sets all commands to their *RST state.
• Aborts all pending operations including VME bus or Local bus transfers.
• Loads calibration constants from non-volatile calibration memory.

*RST does not affect:

• The state of VXIbus word serial protocol
• The output queue
• The Service Request Enable Register
• The Standard Event Status Enable Register
• The enable masks for the OPERation Status and Questionable Signal registers
• Calibration security state
• Protected user data
• The memory backup battery

Comments • Executable when initiated: Yes

• Coupled command: No

• *RST Condition: none

*RMC

Chapter 4 Command Reference 309

*SAV

*SAV <number> stores the current programming state into one of the 10 possible
stored state areas. Number indicates which of the stored state areas should be used.

This command stores the states of all commands affected by *RST. Exceptions
include MEMory:BATTery:STATe, the STATus subsystem commands, and the
CALibration:SECurity command state.

Parameters

Parameter
Name

Parameter
Type

Range of
Values

Default
Units

number numeric 0 through 9 none

Comments • Executable when initiated: Yes

• Coupled command: No

• Related Commands: *LRN?, *RCL, *RST

• *RST Condition: unaffected

• Power-on Condition: all saved states set to the same state as the *RST state

*SRE and *SRE?

*SRE <mask> specifies which bits of the Status Byte Register are enabled to
generate a service request (VXIbus reqt signal). Event and summary bits are always
set and cleared in the Status Byte Register regardless of the enable mask. Mask is
the sum of the decimal weights of the bits to be enabled.

The query form returns the current enable mask.

Parameters

Parameter
Name

Parameter
Type

Range of
Values

Default
Units

mask numeric 0 through 255 none

A 1 in a bit position enables service request generation when the corresponding
Status Byte Register bit is set; a 0 disables it.

Comments • Executable when initiated: Yes

• Coupled command: No

*SAV

310 Command Reference Chapter 4

• *RST Condition: unaffected

• Power-On Condition: no bits are enabled

Example Enable service request on Message Available bit

*SRE 16 Enable request on MAV

*STB?

*STB? returns the value of the Status Byte Register. Bit 6 (decimal weight 64) is
set if a service request is pending. STB? should not be used to read the Status Byte
register if a service request is generated by a message available (MAV) condition.

Comments • *STB? is a query. Thus, sending the command in response to a MAV condition
will generate Error -410 "Query interrupted".

• Executable when initiated: Yes

• Coupled command: No

• Related commands: *SRE

• *RST Condition: none

*TRG

*TRG is the command equivalent of the HP-IB Group Execute Trigger and the
VXIbus Trigger word serial command and has exactly the same effect.

Comments • Executable when initiated: Yes

• Coupled command: No

• Related commands: ARM and TRIGger subsystem SOURce commands

• *RST Condition: none

*STB?

Chapter 4 Command Reference 311

*TST?

*TST? causes the HP E1429 to execute its internal self-test and return a value
indicating the results of the test.

A zero (0) response indicates that the self-test passed. A one (1) response indicates
that the test failed. A failure also generates an error message with information on
why the test failed. Additional information on the failure is provided by the
DIAGnostic:TEST? command.

When the test completes, all commands are set to their *RST values.

Caution Executing the self-test using *TST? erases all data in the digitizer’s
non-volatile memory.

Comments • Executable when initiated: No

• Coupled command: No

• *RST Condition: none

*WAI

*WAI causes the HP E1429 to wait for all pending operations to complete before
executing any further commands.

If STATus:OPC:INITiate OFF is set, command execution resumes when all
commands received prior to *WAI have been executed. If ON is set, *WAI waits
for the digitizer to return to the idle state before resuming command execution.

Comments • Executable when initiated: Yes

• Coupled command: No

• Related commands: *OPC, *OPC?

• *RST Condition: none

*TST?

312 Command Reference Chapter 4

Subsystem Commands Description

ARM ARM[:STARt]:COUNt <count >

ARM[:STARt]:DELay <period >

ARM[:STARt][:IMMediate]

ARM[:STARt]:LEVel[<chan >]:NEGative <voltage >

ARM[:STARt]:LEVel[<chan >]:POSitive <voltage >

ARM[:STARt]:SLOPe[<n >] <edge >

ARM[:STARt]:SOURce[<n >] <source >

Specifies the number of measurement
cycles (bursts) to occur.

Delay from when the digitizer is armed to
when it enters the wait-for- trigger state.

Places the digitizer in the wait-for-trigger
state, independent of the selected
ARM:STARt:SOURce.

Selects the (negative-going) signal level
which arms the digitizer.

Selects the (positive-going) signal level
which arms the digitizer.

Selects the edge: positive, negative, or
either, which will arm the digitizer.

 Sets the digitizer arm source.

CALibration CALibration[<chan >]:COUNt?

CALibration[<chan >]:DATA <block_data >

CALibration[<chan >]:DELay

CALibration[<chan >]:GAIN [<readings >
[,<period >[,<flag >]]]

CALibration[<chan >]:SECure:CODE <code >

CALibration[<chan >]:SECure:STATe <mode > [,<code >]

CALibration[<chan >]:STORe

CALibration[<chan >]:STORe:AUTO <mode >

CALibration[<chan >]:VALue <number >

CALibration[<chan >]:ZERO [<readings >
[,<period >,[<mode >]]]

Returns a number that indicates how often
the digitizer has been calibrated.

Manually sets or queries the calibration
constants.

Calibrates the A/D converter delay constant.

Performs a gain calibration using the
specified number of readings and sample
rate.

Sets the code required to disable
calibration security.

Enables/disables calibration security.

Stores the currently selected channel’s
calibration constants into non-volatile
memory.

Selects whether or not calibration constants
will be automatically stored.

Specifies the voltage level at the input.

Performs a calibration of the zero offset.

CONFigure CONFigure[<chan >]:ARRay[:VOLTage][:DC] (<size>)
[,<expected value >[,<resolution >]]
[,(@<input port>)]

Configures the digitizer for <size> number
of readings on the specified channel and
input port.

DIAGnostic DIAGnostic:CALibration[<chan >]:CONVerge?

DIAGnostic:CALibration[<chan >]:GAIN:SENSitivity?

DIAGnostic:CALibration[<chan >]:ZERO:SENSitivity?

DIAGnostic:CHANnel[<chan >]:LABel <label >

Returns convergence data from the latest
CAL:ZERO or CAL:GAIN.

Returns the sensitivity constant used during
the last CAL:GAIN command.

Returns the sensitivity constant used during
the last CAL:ZERO command.

Sets the bit pattern (label) specified on the
four least significant bits of the reading.

Table 4-1. HP E1429A/B Command Quick Reference.

310 Command Quick Reference Chapter 4

Subsystem Commands Description

DIAGnostic
(cont’d)

DIAGnostic:FETCh[<chan >]? <start_addr >, <count>

DIAGnostic:MEMory[<chan >]:FILL <num_segments > ,
<count >

DIAGnostic:MEMory[<chan >]:ADDResses?

DIAGnostic:PEEK? <address >, <bits >

DIAGnostic:POKE <address >, <bits >, <value >

DIAGnostic:SGET? <bit >

DIAGnostic:SPUT? <bit >, <value >

DIAGnostic:TEST?

Returns count number of readings
beginning at start_addr.

Fill num_segments in memory with count
readings.

Returns the addresses of the next memory
locations to be written to in each segment.

Read the specified number of bits from the
memory location specified.

Write the value to the address specified.

Returns the state (0 or 1) of the specified
bit in the serial control register.

Sets the state (0 or 1) of the specified bit in
the serial control register.

Returns information on a failed self-test.

FETCh FETCh[<chan >]?

FETCh[<chan >]:COUNt?

FETCh[<chan >]:RECover?

Returns readings from the specified
channel.

Returns the number of readings stored in
memory from the channel specified.

Returns readings from the specified
channel following a power-failure, digitizer
configuration change, or reset.

FORMat FORMat[:DATA] <type >[,<length >] Specifies the output format for the
measurement data.

INITiate INITiate[:IMMediate] Initiates the digitizer trigger system and
places the digitizer in the wait-for-arm or
wait-for-trigger state.

INPut INPut[<port >]:FILTer[:LPASs][:STATe] <mode >

IINPut[<port >]:IMPedance <impedance >

INPut[<port >][:STATe] <mode >

Enables/disables the 10 MHz input filter.

Sets the single ended port input impedance.

Connects/disconnects the input ports from
the signal path.

MEASure MEASure[<chan >]:ARRay[:VOLTage][:DC]? (<size>)
[,<expected value >[,<resolution >]]
[,(@<input por t>)]

Configures the digitizer and takes <size>
number of readings on the specified
channel and input port.

MEMory MEMory:BATTery:CHARge?

MEMory:BATTery[:STATe] <state >

Checks the charge on the battery
supporting non-volatile memory.

Enables/disables the battery supporting
non-volatile memory.

Table 4-1. HP E1429A/B Command Quick Reference (Cont’d).

Chapter 4 Command Quick Reference 311

Subsystem Commands Description

OUTPut OUTPut:ECLTrg<n>:FEED <source >

OUTPut:ECLTrg<n>[:STATe] <mode >

OUTPut:EXTernal[1]:FEED <source >

OUTPut:EXTernal[1][:STATe] <mode>

OUTPut:TTLTrg<n >:FEED <source >

OUTPut:TTLTrg<n >[:STATe] <mode >

Specifies the source of the synchronization
pulse routed to ECLTRG0 or ECLTRG1.

Enables/disables the routing of the
synchronization pulse.

Specifies the source of the synchronization
pulse routed to the "Ext 1" BNC port.

Enables/disables the routing of the
synchronization pulse.

Specifies the source of the synchronization
pulse routed to a TTLTRG trigger line.

Enables/disables the routing of the
synchronization pulse.

READ READ[<chan >]? Returns readings from the specified
channel.

SENSe [SENSe[<chan >]]:FUNCtion <function >

[SENSe[<chan >]]:ROSCillator:EXTernal:FREQuency
<frequency >

[SENSe[<chan >]]:ROSCillator:SOURce <source >

[SENSe[<chan >]]:SWEep:OFFSet:POINts <count >

[SENSe[<chan >]]:SWEep:POINts <count >

[SENSe[<chan >]]:VOLTage[:DC]:RANGe <range >

[SENSe[<chan >]]:VOLTage[:DC]:RESolution?

Selects the channel’s input port that will be
used.

Indicates the frequency of the external
reference source.

Selects the reference frequency source.

Specifies the number of pre-arm readings.

Specifies the total number of (pre- and
post-arm) readings taken during each arm
cycle.

Sets the digitizer measurement range.

Queries the digitizer reading resolution.

STATus STATus:OPC:INITiate <state >

STATus:OPERation|:QUEStionable:CONDition?

STATus:OPERation|:QUEStionable:ENABle <unmask >

STATus:OPERation|:QUEStionable[:EVENt]?

STATus:OPERation|:QUEStionable:NTRansition
<unmask >

STATus:OPERation|:QUEStionable:PTRansition
<unmask >

STATus:PRESet

Controls whether *OPC, *OPC?, and *WAI
will complete immediately, or wait for the
measurement or data transfer to complete.

Reads the settings of the condition register.

Specifies which bits in the event register
are included in the summary bit.

Reads the settings of the event register.

Sets the negative transition mask.

Sets the positive transition mask.

Initializes the enable registers and
transition masks, and sets
STATus:OPC:INITiate ON.

SYSTem SYSTem:ERRor?

SYSTem:VERsion?

Reads the error codes and messages in
the digitizer error queue.

Returns the SCPI conversion to which the
digitizer complies.

Table 4-1. HP E1429A/B Command Quick Reference (Cont’d).

312 Command Quick Reference Chapter 4

Subsystem Commands Description

TRIGger ABORt

TRIGger[:STARt]:COUNt <number >

TRIGger[:STARt][:IMMediate]

TRIGger[:STARt]:SOURce <source >

TRIGger[:STARt]:TIMer1 <period >

TRIGger[:STARt]:TIMer2 <period >

Removes the digitizer from the
wait-for-trigger state.

Specifies the total number of (pre- and
post-arm) readings taken during each arm
cycle.

Sends an immediate trigger to the digitizer.
A reading is taken if the digitizer is in the
wait-for-trigger state.

Sets the trigger source.

Sets the digitizer sample rate.

Sets the post-arm sample rate for dual rate
sampling.

VINStrument VINStrument[:CONFigure]:LBUS:FEED <source>

VINStrument[:CONFigure]:LBUS:MEMory:INITiate

VINStrument[:CONFigure]:LBUS[:MODE] <mode>

VINStrument[:CONFigure]:LBUS:RESet

VINStrument[:CONFigure]:LBUS:SEND:POINts
 <count>

VINStrument[:CONFigure]:LBUS:SEND:POINts:AUTO
<mode >

VINStrument[:CONFigure]:TEST:DATA <voltage_list>

VINStrument[:CONFigure]:VME:FEED <source>

VINStrument[:CONFigure]:VME:MEMory:INITiate

VINStrument[:CONFigure]:VME[:MODE] <mode>

VINStrument[:CONFigure]:VME:SEND:ADDRess:DATA?

VINStrument:IDENtity?

Sets the Local bus data source.

Places the digitizer in the wait-for-trigger
state and starts the data transfer from
digitizer memory to the Local bus.

Sets the Local bus operating mode.

Resets the digitizer’s (E1429B) Local bus
chip.

Sets the number of readings per Local bus
transfer block.

Sets the digitizers to the Local bus
interleaved transfer mode.

Tests the Local bus by transmitting a list of
data.

Sets the VME (VXI data transfer) bus data
source.

Places the digitizer in the wait-for-trigger
state and starts the data transfer from
digitizer memory to the VME (VXI data
transfer) bus.

Sets the VME (VXI data transfer) bus mode.

Returns the A24 offset address used to
read measurement data from memory.

Indicates the virtual instrument capability of
the digitizer.

Table 4-1. HP E1429A/B Command Quick Reference (Cont’d).

Chapter 4 Command Quick Reference 313

SCPI Conformance Information

The HP E1429A/B 20 MSa/s 2-Channel Digitizer conforms to the
SCPI-1992.0 standard.

The following tables list all the SCPI confirmed, approved, and non-SCPI
commands that the HP E1429A/B can execute.

ABORt

ARM
 [:START |:SEQuence[1]]
 :COUNt <count>
 :DELay <period>
 [:IMMediate]
 :LEVel[<chan>]
 :NEGative <voltage>
 :POSitive <voltage>
 :SLOPe[<n>] <edge>
 :SOURce[<n>] <source>

CALibration[<chan >]
 :DATA <block_data >
 :GAIN [<readings >[,<period>]]
 :VALue <number >
 :ZERO [<readings >
 [,<period>,[<mode >]]]

CONFigure[<chan >]
 :ARRay
 [:VOLTage]
 [:DC] (<size >)
[,expected value >[,<resolution >]]
[,(@ <input port >)]

FETCh[<chan>]?

FORMat
 [:DATA] <type > [,<length >]

INITiate
 [:IMMediate]

INPut[<port >]
 :FILTer
 [:LPASs]
 [:STATe] <mode >
 :IMPedance <impedance >
 [:STATe] <mode >

MEASure[<chan >]
 :ARRay
 [:VOLTage]
 [:DC]? (<size >)
[,expected value >[,<resolution >]]
[,(@ <input port >)]

OUTPut
 :ECLTrg<n >
 [:STATe] <mode >
 :TTLTrg<n >
 [:STATe] <mode>

READ[<chan >]?

[SENSe[chan]]
 :FUNCtion <function >
 :ROSCillator
 :EXTernal
 :FREQuency <frequency >
 :SOURce <source >
 :SWEep
 :OFFSet
 :POINts <count >
 :POINts <count >
 :VOLTage
 [:DC]
 :RANGe <range >
 :RESolution?

STATus
 :OPERation |:QUEStionable
 :CONDition?
 :ENABle <unmask>
 [:EVENt]?
 :NTRansition <unmask>
 :PTRansition <unmask>
 :PRESet

SYSTem
 :ERRor?
 :VERSion?

TRIGger
 [:STARt |:SEQuence[1]]
 :COUNt <number>
 [:IMMediate]
 :SOURce <source>
 :TIMer1 <period >
 :TIMer2 <period>

Table 4-2. SCPI Confirmed Commands.

314 SCPI Conformance Information Chapter 4

CALibration[<chan >]
 :DELay
 :COUNt?
 :SECure
 :CODE <code >
 [:STATe] <mode >[,<code >]
 :STORe
 :AUTO <mode >

DIAGnostic
 :CALibration[<chan >]
 :CONVerge?
 :GAIN
 :SENSitivity?
 :ZERO
 :SENSitivity?
 :CHANnel[<chan >]
 :LABel <label >
 :FETCh[<chan >] <start_addr >,
 <count >
 :MEMory[<chan >]
 :FILL <num_segments >, <count >
 :ADDResses?
 :PEEK <address >, <bits >
 :POKE <address >, <bits >
 :SGET <bit >
 :SPUT <bit >, <value>
 :TEST?

FETCh[<chan >]
 :COUNt?
 :RECover?

MEMory
 :BATTery
 :CHARge?
 [:STATe] <state >

OUTPut
 :ECLTrg<n >
 :FEED <source >
 :EXTernal[1]
 :FEED <source >
 [:STATe] <mode >
 :TTLTrg<n >
 :FEED <source>

STATus
 :OPC
 :INITiate <state>

VINStrument
 [:CONFigure]
 :LBUS
 :FEED <source>
 :MEMory
 :INITiate
 [:MODE] <mode >
 :RESet
 :SEND
 :POINts <count >
 :AUTO <mode >
 :TEST
 :DATA <voltage_list >
 :VME
 :FEED <source>
 :MEMory
 :INITiate
 [:MODE] <mode >
 :SEND
 :ADDRess
 :DATA?
 :IDENtity?

Table 4-3. Non-SCPI Commands.

Chapter 4 SCPI Conformance Information 315

Notes

316 SCPI Conformance Information Chapter 4

Appendix A
Specifications

Appendix Contents

This appendix contains the HP E1429A/B 20 MSa/s 2-Channel Digitizer
operating specifications. Except as noted, the specifications apply under the
following conditions:

• Period: 1 year
• Temperature: 0° - 55° C
• Relative humidity: ≤ 65% @ 0° - 40° C
• Warm up time: 1 hour

References to the Local Bus Interface apply ONLY to E1429B; otherwise,
E1429A and E1429B are identical except as noted. Characteristics given as
"typical” , “nominal” , or "supplemental" are non-warranted; they provide
additional information for application assistance.

NOTE (4.1.2.1) and similar notation refer to sections of "IEEE Standard 1057:
Trial-Use Standard for Digitizing Waveform Recorders", published
July 21, 1989. This document prescribes standard measurement procedures
for several performance characteristics.

NOTE "Full-scale" refers to the entire two-sided range (+ and -) of the A/D, NOT
to the one-sided interpretation customarily used by HP. The usage here
conforms to that defined by IEEE 1057.

Memory
Characteristics

Architecture Equal amounts of memory are dedicated to channel 1 and channel 2.
During measurements, both channels sample simultaneously and send data
to their respective portions of memory. Memory is not dual-ported, and
may not be read while it is being filled. However, data being routed to the
memory may simultaneously be routed to the Local Bus or the VME Bus,
according to their respective speed capabilities.

Appendix A Specifications 317

Read-Out

To VME Bus

After measurement completion, memory read-out may be requested for
either channel separately or for both channels interleaved. Memory access is
via repeated reading from a single VME register address; 16- or 32-bit
accesses are permitted. This is the "channel I/O" model; i.e. memory can
not be mapped or shared as can VME memory. Speed to VME Bus should
be up to 2M transfers/s (16- or 32-bit transfers, 2M readings/s or 4M
readings/s respectively); however, rates this high have not been tested with
existing controllers.

To Local Bus (E1429B only)

After measurement completion, memory read-out may be requested for
either channel separately or for both channels interleaved. (Data may also
be routed to Local Bus in real-time, while digitizing is occurring.) Speed is
up to 40 MBytes/s (20 Mreadings/s) for either channel separately, or 80
MBytes/s (40 Mreadings/s) for both channels interleaved.

Memory Size 524,288 readings per channel (512K, 1K=1024)

Nonvolatile memory A battery and associated support functions are provided to make the
memory non-volatile for 4 years (nominal). Battery life can be extended to 7
years (nominal) shelf life by electronically disconnecting it. A register
indicates low battery.

Partitions (Segments) When pre-arm readings are to be taken, and ARM:COUNt is from 1 to 128,
memory is partitioned. This permits each partition to be used as a circular
buffer, without disturbing data already recorded in other partitions. Each
partition records data (both pre-arm and post-arm data) from one arm event.

Number of Partitions

1, 2, 4, 8, 16, 32, 64, or 128

Partitions are always equal-sized. The number of partitions is sufficient for
the value programmed for ARM:COUNt. For example, an ARM:COUNt
value of 5,6,7, or 8 will cause 8 partitions to be created.

318 Specifications Appendix A

Total Readings per Partition

(total memory size)/(number of partitions)

When the non-volatile mode of memory is enabled, this number is reduced
by four readings.

Pre-Arm Data before the arm event can be stored in a circular-overwrite mode (per
partition) until the event occurs.

Amplitude
Characteristics and
Signal Conditioning

A/D Converter 50Ω input, -1.0225V to 1.0230V range

Each channel contains a high-performance 12-bit, 20MSa/s A/D converter.
For best A/D performance (highest linearity and lowest noise), choose the
50Ω input port and select its ± 1 volt input range. Except as noted, this port
is used for A/D performance characteristics listed below. Due to amplitude
and frequency limitations of available test sources, and other practical
considerations, some parameters are specified only for this port and range.

Resolution

12 bits (including sign)

Codes from -2048 to +2047 indicate results as follows:

-2048 : amplifier overload (single-ended or differential inputs)
-2047 : not used
-2046 : normal-mode overload (negative)
-2045 : minimum on-scale reading
 .
 .
+2046 : maximum on-scale reading
+2047 : normal-mode overload (positive)

Appendix A Specifications 319

Output Formats

ASCII (9 significant digits) or REAL 64 (IEEE 64-bit binary) formats
represent input voltage in volts, scaled appropriately according to voltage
range setting used.

PACKED denotes 2’s complement binary integers, with the raw A/D code
(including sign) occupying the leftmost 12 bits of a 16-bit word, padded
with four zero bits on the right.

Any of the above formats can be returned under the Word Serial protocol.
The Packed format is also the format returned by direct VME register read
operations and transmitted onto the Local Bus.

Gain and Offset (4.3.1, note 1057-1)

nominal gain : 2000 codes per volt
nominal offset : zero

Filtering

2-pole Bessel (10 MHz nominal) or none. For no filter, the analog
bandwidth depends on the input port used (see below).

Effective Bits (4.5.2; 4.1.3) sampling at 20 MSa/s

Input signal 500 kHz : 10.0 (10.3 typical)
 10 MHz : 9.5 (9.8 typical)

Harmonic Distortion (4.4.2.1)

Sample rate 20 MSa/s
-64 dB THD at 500 kHz input
-61 dB THD at 10 MHz input
(THD includes 2nd through 6th harmonics)

Signal-to-Noise Ratio (4.5.1)

62 dB (500 kHz)
59 dB (10 MHz)

("Noise" includes noise, distortion, and all other undesired effects, as
defined in IEEE 1057.)

320 Specifications Appendix A

Differential Nonlinearity (4.4.1.2, 3680 Hz sine wave, codes
-2045 to +2046)

1 LSB (no missing codes)

A/D Converter
Supplemental

Characteristics

Integral Nonlinearity (4.4.3, Note 1057-1)

2 LSB

Maximum Static Error (4.4.4.1, Note 1057-1)

2%

Word Error Rate (4.15)

qualified error level word error rate
>16 LSB <2.5E-7
>32 LSB <6E-8
>64 LSB <5E-9

Single-ended inputs Connector : BNC

Coupling : DC

Impedance : 50Ω or 75Ω ±0.5% (nominal) selection is programmable

Disconnect : via internal relay, impedance -> high

Ranges :- 0.10225V to 0.10230V
- 0.2045V to 0.2046V
- 0.51125V to 0.5115V
-1.0225V to 1.0230V

Overload : Flagged on-the-fly as ±FS in binary data. Input impedance
remains nominally constant up to ±5V transient and continuous. Input
voltages substantially exceeding this level cause a protection relay to trip,
which resets itself when the overload is removed. Never exceed ±42 Vpk.

DC Accuracy : ±0.4% of reading ±0.25% of peak-to-peak full-scale

Appendix A Specifications 321

Accuracy is specified for the average of 100 readings (with CAL:ZERO
performed within 24 hours prior to reading in a stable environment).

For temperatures outside 18-28 degrees C, add the following temperature
coefficients for each degree below 18 C or above 28 C:

Range % of peak-to-peak full-scale, per degree

 0.1 0.055
 0.2 0.035
 others 0.025

Single-ended inputs,
supplemental

characteristics

Analog Bandwidth (4.6.1) (filter off)

>50 MHz (1V range)
>40 MHz (other ranges)

Effective bits on different ranges

(For performance on 1V single-ended range, see the previous A/D section.)

Typical effective bits relative to 1 v range:

Range 500 kHz 10 MHz

 0.1 -0.4 0
 0.2 -0.2 0
 0.5 0 0

Crosstalk between channels (4.11)

Relative to full-scale input, DC - 10 MHz: -80 dB

Differential Inputs Connectors: Two BNCs, one with positive (+) gain to A/D, one with
negative (-) gain to A/D. The BNCs’ outer shells (shield), though not
grounded at the front panel, ARE connected internally to ground; they are
NOT floating.

322 Specifications Appendix A

Coupling : DC

Impedance : 1 MΩ in parallel with 25 pF (nominal)

Ranges : A/D responds to the difference of the two input voltages on
the(+) and (-) connectors.

-0.10225V to 0.10230V
-0.2045V to 0.2046V
-0.51125V to 0.5115V
-1.0225V to 1.0230V

 -2.045V to 2.046V
-5.1125V to 5.115V
-10.225V to 10.230V
-20.45V to 20.46V

 -51.125V to 51.15V
 -102.25V to 102.30V

Overload: On-the-fly flagging includes amplifier overload. Ranges 0.1V to
5V: input impedance remains nominally constant up to ±10V.After removal
of ±20 Vpk input, recovery is typically to within 1% of peak-to-peak
full-scale in 250 µsec. Ranges 10V to 100V: input impedance remains
nominally constant upto ±102.3V. After removal of ±100Vpk input,
recovery is typically to within 1 % of peak-to-peak full-scale in 30 µsec.
Never exceed ±102.3V input.

CMRR : Ranges 0.1023V to 5.115V:

for |Vcm|<= 10 volts peak and slew rate <150 v/µs:

DC: >68 dB
AC: >60 dB (1 MHz)

Ranges 10.23V to 102.3V:

for |Vcm|<=102.3 volts peak and slew rate <1500 v/µs:

DC: >45 dB
AC: >40 dB

 CMRR is measured by applying a signal from a 50Ω through a "Tee"
connector to both inputs.

Appendix A Specifications 323

DC Accuracy:

±0.5% of reading ±1% of peak-to-peak full-scale

Accuracy is specified for the average of 100 readings with inputs
terminated in <1 kΩ and CAL:ZERO performed within 24 hours prior to
reading in a stable ambient. For temperatures outside18-28 degrees C, add
the following temperature coefficients for eachdegree below
18 C or above 28 C:

Range % of peak-to-peak full scale, per degree

0.1024 0.055
0.2048 0.035
others 0.025

Differential Inputs,
supplemental

characteristics

Analog Bandwidth (4.6.1) (filter off)

15 MHz on 0.1023V through 1.023V ranges, plus 10.23V range
10 MHz on 2.046V and 20.46V ranges
4 MHz on 5.115V and 51.15V ranges
2 MHz on 102.3V range

Effective bits, relative to 1V single-ended range

(For 1 volt single-ended performance, see the previous A/D section.)
Typical effective bits relative to 1V single-ended:

Range 500 kHz 10 MHz

 0.1 -1.4 -0.9
 0.2 -0.7 -0.3
 0.5 -0.2 -0.1
 1.0 -0.1 -0.3

324 Specifications Appendix A

Crosstalk (4.11)

On 1V range, relative to full-scale input:

DC - 1 MHz -75 dB
1 - 10 MHz -70 dB

Frequency and
Sample Rate

Characteristics

Both channels always sample simultaneously at the indicated rates and
times.

Tolerances: All internally-generated frequencies and rates are ±0.0075%
initial tolerance.

Internal Timer The Internal Timer generates time intervals useful in controlling the sample
rate. It divides a reference frequency by 1x10n, 2x10n, or 4x10n, n = 0 to 8.
When the reference frequency is the internal 20 MHz oscillator, the
resulting rates are from 0.05 Sa/s to 20 MSa/s in a 1,2,5 sequence. Other
programmable choices for the reference source are VXI CLK10, the ECL
Trigger lines, and the Ext2 BNC.

Trigger (Sample
Clock) Subsystem

Each event in this subsystem causes one A/D conversion in both channels.
(In Standard Commands for Programmable Instruments (SCPI), this is the
meaning of "Trigger". The SCPI term for the commencement of a series of
one or more triggers is "Arm".)

Rate: (Internal Timer using built-in reference oscillator)
0.05 Sa/s to 20 MSa/s in 5,1,2 sequence

External: VXI Trigger Busses (TTL and ECL), External BNCs, software,
or VME Read cycle

Post-Count: 1, or 7 to 224-1, or continuous. (This specifies the
desired number of sample triggers after the Arm event.)
Additional limitations apply when the "Pre-Count"feature is used; see
below.

Pre-Count: 0, or 3 to 65535. When this mode is used (pre-count0)
the Digitizer samples continuously until the pre-count is satisfied and then
an Arm event occurs. Memory is used as a circular buffer with older
readings overwritten by newer readings. The programmed
pre-count value specifies the number of pre-arm samples to be protected
from overwriting by post-arm sample data. This mode limits the number of
Post-Count read-ings: The total of (pre-count + post-count) must be no
larger than the memory partition size.

Appendix A Specifications 325

Dual-Rate: The Pre-Count readings can be measured at one sample
rate; then the Post-Count readings can be measured at another sample rate.
The possible sample rate sources occur in pairs. There are four possible
pairs:

{ EXT1 BNC (pre), EXT2 BNC (post); or vice-versa }
{ ECLTRG0 (pre), ECLTRG1 (post); or vice-versa }
{ REFERENCE (pre), REFERENCE/N (post)}
{ REFERENCE/N (pre), REFERENCE (post)}

(N=2,4,10,20,40...4E8).

 Timebase and Trigger
additional

supplemental
characteristics

Fixed error in sample
time (4.9.1)

40 psec (record size 32K)

 Arm Subsystem Each event in this subsystem allows acquisition of one waveform record
(i.e., a burst of one or more dual-channel A/D conversions). (Note that in
SCPI, each A/D conversion event is a "Trigger".)

Sources: VXI Trigger Busses (TTL and ECL), External BNC, plus
input channel voltage (*). The logical "OR" condition of any two of these
sources may be used.

(*) Each channel’s detection circuitry uses two programmed voltage levels,
so that it is possible to generate the arm event when the signal either enters
or leaves a defined voltage window. Voltage level set points typically are
accurate to 3% of full-scale and have hysteresis 0.5% of full-scale.

Rate: when not taking Pre-[Arm]count readings: up to 2M/sec.
when taking Pre-[Arm]count readings: 650 µsec typical

Count: 1 to 65535 or continuous (no pre-arm readings)
1 to 128 (with pre-arm readings)

Delay: Specifies additional programmed time delay from an
arm’s causative event to when the arming actually occurs. This is in
addition to irreducible internal delays.

326 Specifications Appendix A

Let the Reference period be T. Added delay can be:

0T to 65534T in steps of T
65540T to 655350T in steps of 10T

Bus Access and
Connectors

 Front Panel Connectors (BNC) :

Channel 1 Inputs : 50Ω/75Ω single-ended
1 MΩ (+)
1 MΩ (-)

Channel 2 Inputs : as for channel 1

Ext 1 : In : Arm, Trigger
 Out: Arm, Trigger, Reference, Ready for Trigger, Pre-Arm Count

Complete

 Ext 2 : In : Trigger, Reference

VXI ECLTrig: In: Arm, Trigger, Reference
Out: Arm, Trigger, Reference, Ext 1 BNC signal

VXI TTLTrig: In: Arm, Trigger
 Out: Arm, Ready

VME Bus: The HP E1429A can be used as either a VXI Message-Based
or register-based instrument.

Message-Based operation: Uses Standard Commands for
Programmable Instruments (SCPI). This provides easy operation with

an industry-standard programming interface.

Register-Based operation: Registers controlling the hardware
are directly accessible, providing the highest possible throughput,
at the cost of programming effort. Documentation provided

includes descriptive material and "C" source code. Some functions,
such as calibration, can only be performed with the assistance of the
on-board 68000 processor.

Appendix A Specifications 327

P2 Local Bus : (E1429B only)

Modes per HP Virtual Instrument Protocol:
Append
Generate
Off
Pipeline

 Data Source
Data can be sourced directly from the A/Ds or from memory --
either channel or both channels interleaved.

Pacing
Real-time (during measurements) paced by arm/trigger system

From memory (after measurements) paced by receiving
module on local bus

Maximum speed: 80 MByte/sec (i.e., can do full speed on both
channels)

General
Characteristics

Size : C
Slots : 1
Connectors : P1, P2
Weight (kg) : 1.9
Device Type : Message-Based Servant
VXIBus Revision Compliance : 1.4
Register Level Documentation : Subset
SCPI Revision : 1992.0
Manufacturer Code : 4095 Decimal
Model Code : 448 Decimal
Slave : A16/A24 D08/D16/D32

328 Specifications Appendix A

Currents in Amps (typical) E1429A E1429B
+5V : I(pm) 2.9 3.1

 I(dm) 0.5 0.5
+12V : I(pm) 0.2 0.2

I(dm) 0.04 0.04
- 12V : I(pm) 0.2 0.2

I(dm) 0.04 0.04
+24V : I(pm) 0.1 0.1

I(dm) 0.05 0.05
-24V : I(pm) 0.1 0.1

I(dm) 0.05 0.05
-5.2V : I(pm) 3.6 4.1

I(dm) 0.36 0.36
-2V : I(pm) 1.2 1.3

I(dm) 0.12 0.12
+5VS : I(pm) 0 0

I(dm) 0 0

Typical Watts/Slot: 41.5 45.3
dPressure (H2O): 0.8 mm
AirFlow (liters/s):3.8
EMC: To meet EMC requirements in Europe, a backplane connector
shield kit is included.

 Built-In Test : Extensive built-in test checks memory, timebase, much of
the trigger system, and part of the analog signal path.

Notes pertaining to IEEE 1057:

1057-1:
Based on Code Transition Levels per 4.1.2 except that levels -2047
and -2046 are not included in this characterization. The minimum
code transition level characterized is (from -2046 to) -2045; the maximum

is (from +2046 to) +2047.

Appendix A Specifications 329

Notes

330 Specifications Appendix A

Appendix B
Useful Tables

Appendix Contents

The tables in this appendix contain information often referred to during
HP E1429A/B programming. The tables in this appendix include:

• Table B-1. HP E1429A/B Example Program Listing 332
• Table B-2. HP E1429A/B Power-on/Reset Conditions 334
• Table B-3. HP E1429A/B Error Messages 336

Appendix B Useful Tables 331

Location Program Name Language Description

Chapter 1 IDN.C

SLFTST.C

RSTCLS.C

LRN.C

MEAS.C

CONF.C

QUERY.C

ERRORCHK.C

HP BASIC, C

"

"

"

"

"

"

"

Program to test communication between
the PC and the digitizer.

E1429A/B Self Test.

Resetting and clearing the digitizer.

Power-on/reset configuration.

Making a measurement with the digitizer.

Configuring the digitizer.

Queries SCPI command settings.

Error checking program.

Chapter 2 INPUT.C

ARMCNT.C

ARMLEVEL.C

PREPOST.C

SAMPLE.C

DUALSAMP.C

MULT_AD.C

PACKED.C

VME_REAL.C

VME_SEG1.C

SEGTST16.CPP

SEGTST32.CPP

INST.H

INST.CPP

E1429.H

E1429.CPP

C

"

"

"

"

"

"

"

"

"

C++

"

"

"

"

"

Configures the digitizer input.

Takes a burst of readings.

Arm on a specified input signal level.

Taking pre- and post-arm readings.

Specifying a sample rate.

Pre- and post-arm dual rate sampling.

Uses multiple digitizers.

Uses the packed data format.

VME bus data transfers.

Transfers segmented readings.

VME bus data (16-bit) transfers using
embedded controller.

VME bus data (32-bit) transfers using
embedded controller.

Used with SEGTST.16 and SEGTST.32.

Used with SEGTST.16 and SEGTST.32.

Used with SEGTST.16 and SEGTST.32.

Used with SEGTST.16 and SEGTST.32.

Table B-1. HP E1429A/B Example Program Listing

332 Useful Tables Appendix B

Location Program Name Language Description

Chapter 2
(Cont’d)

LOCAL_AD.C

LBUS2PST.C

LBUSAUTO.C

STATUS.C

C

"

"

"

Local bus data transfer using a single
digitizer.

Local bus data transfer from digitizer
memory using multiple digitizers.

Local bus data transfer from the digitizer
A/D using multiple digitizers.

Demonstrates the use of the digitizer
status registers.

Appendix C REG_PROG.C C Sets the measurement range, trigger
source, sample rate, reading count, and
re-initiates the digitizer using register
reads and writes.

Appendix D LBUSINTR.C C Transfers data using the Local bus
interleaved transfer mode.

Table B-1. HP E1429A/B Example Program Listing (Cont’d)

Appendix B Useful Tables 333

Parameter Command Power-on/Reset Setting

Macro useage

Automatic cal constant storage

Channel 1 calibration value

Channel 2 calibration value

Reading format

Channel 1 S/E input filter

Channel 1 S/E input impedance

Channel 1 S/E input state

Channel 2 S/E input filter

Channel 2 S/E input impedance

Channel 2 S/E input state

Channel 1 differential input filter

Channel 1 differential input state

Channel 2 differential input filter

Channel 2 differential input state

Input port select (channel 1)

Measurement range (channel 1)

Input port select (channel 2)

Measurement range (channel 1)

Reference oscillator freqency

Reference oscillator source

VME bus data source

VME bus data transfer mode

Local bus data source

Local bus data transfer mode

Local bus readings per block

Interleaved transfer mode

*EMC

CAL:STOR:AUTO

CAL1:VAL

CAL2:VAL

:FORM

:INP1:FILT

IMP

STAT

:INP2:FILT

IMP

STAT

:INP3:FILT

STAT

:INP4:FILT

STAT

:FUNC

:VOLT:RANG

:SENS2:FUNC

:SENS2:VOLT:RANG

:ROSC:EXT:FREQ

:ROSC:SOUR

:VINS:VME:FEED

MODE

:VINS:LBUS:FEED

MODE

:VINS:LBUS:SEND:POIN

POIN:AUTO

+0

1 (enabled)

+1.01850000E+000

+1.01850000E+000

ASC,+9

0 (disabled)

+5.00000000E+001

1 (enabled)

0 (disabled)

+5.00000000E+001

1 (enabled)

0 (disabled)

1 (enabled)

0 (disabled)

1 (enabled)

"VOLT1"

+1.02350000E+000

"VOLT2"

+1.02350000E+000

+2.00000000E+007

INTernal

"MEM:BOTH32"

OFF

"MEM:BOTH"

OFF

+2.00000000E+000

ON

Table B-2. HP E1429A/B Power-On/Reset Configuration (returned by *LRN?)

334 Useful Tables Appendix B

Parameter Command Power-on/Reset Setting

Arm count

Arm delay

Arm source1

Arm slope1

Arm level1 (negative)

Arm level1 (positive)

Arm source2

Arm slope2

Arm level2 (negative)

Arm level2 (positive)

Trigger source

Sample rate1

Sample rate2

Reading count

Pre-arm reading count

ECLTrg0 synchronization pulse
source

ECLTrg0 synchronization state

ECLTrg1 synchronization pulse
source

ECLTrg0 synchronization state

External 1 BNC synchronization
source

External 1 BNC synchronization
state

TTLTrg0 synchronization pulse
source

TTLTrg0 synchronization state

TTLTrg1 - TTLTrg7
synchronization states

:ARM:COUN

DEL

SOUR

SLOP1

:ARM:LEV:NEG

POS

:ARM:SOUR2

SLOP2

:ARM:LEV2:NEG

POS

:TRIG:SOUR

TIM1

TIM2

:SWE:POIN

OFFS:POIN

:OUTP:ECLT0:FEED

STAT

:OUTP:ECLT1:FEED

STAT

:OUTP:EXT:FEED

STAT

:OUTP:TTLT0:FEED

STAT

STAT

+1.00000000E+000

+0.00000000E+000

IMMediate

POSitive

-1.02241848E+000

+1.02241848E+000

HOLD

POSitive

-1.02241848E+000

+1.02241848E+000

TIMer

+5.00000000E-008

+1.00000000E-007

+1.000000000E+000

+0

"TRIG"

0 (disabled)

"EXT"

0 (disabled)

"TRIG"

0 (disabled)

"ARM"

0 (disabled)

0 (disabled)

Table B-2. HP E1429A/B Power-On/Reset Configuration (Cont’d)

Appendix B Useful Tables 335

Code Message Description

-101 Invalid character Unrecognized character in parameter.

-102 Syntax error Command is missing a space or comma between
parameters.

-103 Invalid separator Parameter is separated by a character other than a
comma.

-104 Data type error The wrong data type (number, character, string,
expression) was used when specifying the parameter.

-105 GET not allowed An HP-IB Group Execute Trigger was included in a
command string sent to the digitizer.

-108 Parameter not allowed More parameters were received than expected for the
command header.

-109 Missing parameter Command requires a parameter or parameters.

-112 Program mnemonic too long Command keyword >12 characters

-113 Undefined header Command header (keyword) was incorrectly specified.

-121 Invalid character in number A character other than a comma or number is in the
middle of a number.

-123 Exponent too large The magnitude of the exponent was larger than
32000.

-124 Too many digits More than 255 digits were used to specify a number.

-128 Numeric data not allowed A number was specified when a letter was required.

-131 Invalid suffix Parameter suffix incorrectly specified (e.g. 10 MZ
rather than 10 MHZ).

-138 Suffix not allowed Parameter suffix is specifed when one is not allowed.

-141 Invalid character data Discrete parameter specified is not a valid choice.

-144 Character data too long A character data type parameter is >12 characters.

-148 Character data not allowed Discrete parameter was specified when another type
(e.g. numeric, boolean) is required.

-151 Invalid string data The string data specified (such as for the
OUTPut:ECLTrg:FEED <source>command) is not a
valid choice.

-158 String data not allowed A string was specified when another parameter type
(i.e. discrete, numeric, boolean) is required.

Table B-3. HP E1429A/B Error Messages

336 Useful Tables Appendix B

Code Message Description

-161 Invalid block data The number of bytes in a definite length data block
does not equal the number of bytes indicated by the
block header.

-168 Block data not allowed Block data was specified when another parameter
type (i.e. discrete, numeric, boolean) is required.

171 Invalid Expression The expression used to calculate a parameter value
is invalid.

-178 Expression data not allowed An expression cannot be used to calculate a
parameter value .

181 Invalid outside macro definition A macro parameter placeholder ($<number) was
encountered outside of a macro definition.

-183 Invalid inside macro definition A command was encountered that is not allowed
inside a macro.

184 Macro parameter error A command inside the macro definition had the wrong
number or wrong type of parameters.

-211 Trigger ignored A trigger was received and the digitizer was not in the
wait-for-trigger state. Or, a trigger was received from
a source other than the specified source.

-212 Arm ignored An arm was received and the digitizer was not in the
wait-for-arm state. Or, an arm was received from a
source other than the specified source.

-213 Init ignored INITiate:IMMediate received while the digitizer was
initiated.

-214 Trigger deadlock Readings cannot be retrieved using FETCh? or
READ? because TRIGer:STARt:COUNt INFinite is
set. Also occurs with READ? and
TRIGger:STARt:SOURce HOLD or
TRIGger:STARt:SOURce BUS set.

-215 Arm deadlock Readings cannot be retrieved using FETCh? or
READ? because ARM:STARt:COUNt INFinite is set.
Also occurs with READ? and ARM:STARt:SOURce
HOLD, ARM:STARt:SOURce BUS, or
ARM:STARt:SOURce OFF set.

-221 Settings conflict Refer to the statement appended to the "Settings
conflict" message for a description of the conflict and
how it was resolved.

-222 Data out of range Parameter value is out of range for any digitizer
configuration.

-224 Illegal parameter value An exact value, from a list of possible choices, was
expected.

Table B-3. HP E1429A/B Error Messages (Cont’d)

Appendix B Useful Tables 337

Code Message Description

-230 Data corrupt or stale Attempting to FETCh? data from the digitizer
following a reset or other digitizer configuration
change.

-231 Data questionable Reading accuracy is questionable. An example is
when the expected value and resolution parameters
of the CONFigure or MEASure command are
specified. If the resolution is too fine for the expected
value, this error occurs.

-240 Hardware error The command could not be executed because of a
hardware failure.

-270 Macro error *RMC <name>was executed and name is not defined.

-271 Macro syntax error A syntax error occurred among the commands within
the macro.

-272 Macro execution error Macro program data sequence could not be executed
due to a syntax error within the macro definition.

-273 Illegal macro label The macro label defined in the *DMC command was
too long, the same as a common command keyword,
or contained invalid header syntax.

-274 Macro parameter error The macro definition improperly used a macro
parameter placeholder.

-275 Macro definition too long The commands within the macro could not be
executed because the string or block contents were
too long.

-276 Macro recursion error A macro program data sequence could not be
executed because the sequence leads to the
execution of a macro being defined.

-277 Macro redefinition not allowed A macro label in the *DMC command could not be
executed because the macro label was already
defined.

-278 Macro header not found A legal macro label in the *GMC? query could not be
executed because the header was not previously
defined.

-312 PUD memory lost The protected user data saved by the *PUD
command has been lost.

-313 Calibration memory lost The nonvolatile calibration data used by the *CAL
command has been lost.

-330 Self-test failed Note the information associated with the message for
a description of the failure.

-350 Queue overflow The digitizer error queue is full and additional errors
have occurred.

Table B-3. HP E1429A/B Error Messages (Cont’d)

338 Useful Tables Appendix B

Code Message Description

-410 Query INTERRUPTED The digitizer was sent a command before it was
finished responding to a query command.

-420 Query UNTERMINATED The controller (computer) attempts to read a query
response from the digitizer without having first sent a
complete query command.

-430 Query DEADLOCKED The digitizer’s input and output buffers are full and the
digitizer cannot continue.

-440 Query UNTERMINATED after
indefinite response

Occurs when the *IDN? query is not the last query
executed in a command string.

1002 Cal security enabled Calibration security must be disabled to calibrate the
digitizer, to read or write calibration data, to change
the security code, or to change the protected user
data.

1004 Cal write fail Writing calibration or protected user data (*PUD) to
nonvolatile memory failed.

1005 Error during CAL An error occurred during calibration. Refer to the
statement appended to this message for a description
of the error.

1007 Calibration security defeated A jumper was moved to defeat calibration security.

1008 Error during zero cal An error occurred during calibration of the zero offset.
Refer to the statement appended to this message for
a description of the error.

1009 Error during gain cal An error occurred during gain calibration. Refer to the
statement appended to this message for a description
of the error.

1010 Error during linearity cal An error occurred during linearity calibration. Refer to
the statement appended to this message for a
description of the error.

1015 A/D control register not responding The serial interface register was not working properly
at power-on.

1016 Illegal during LBUS or VME
memory transfer

The command can not be executed while a VME bus
or Local bus data transfer is in progress.

1017 Battery too low, data may be lost The battery does not contain sufficient charge to
maintain memory over an extended period. This error
occurs when readings are taken, when the battery is
enabled/disabled, or during the self-test.

1018 Battery backed data corrupt This error is due to a low battery charge, or if the
battery is enabled after readings are in memory.

Table B-3. HP E1429A/B Error Messages (Cont’d)

Appendix B Useful Tables 339

Code Message Description

1019 Data loss detected during LBUS
transfer

Readings from the digitizer A/D were lost during a
Local bus transfer. This error usually occurs when
multiple digitizers are used and arming/triggering
signals between them cause readings to be missed.

1020 Indefinite block not allowed When executing the VINStrument:TEST:DATA
command, the data must be in the IEEE-488.2
definite length block format.

1021 LBUS still running, ABOR or
VINS:LBUS:RES needed

The HP E1429B digitizer is in the interleaved transfer
mode and the LBUS chip is still active. The chip must
be reset before the next INITiate command.

1022 Local bus test data size not
multiple of 4 bytes

When executing the VINStrument:TEST:DATA
command, the amount of data sent must be a multiple
of 4 (bytes).

1213 Illegal when initiated The command can not be executed while the digitizer
is INITiated.

2003 Memory address incorrect Address specified by DIAGnostic:POKE or
DIAGnostic:PEEK? is not valid.

2004 Invalid address for 32-bit access Attemping a 32-bit read from an odd numbered
address.

2007 Bus error Error during DIAGnostic:PEEK or DIAGnostic:POKE?

Table B-3. HP E1429A/B Error Messages (Cont’d)

340 Useful Tables Appendix B

Appendix C
Register Programming

Appendix Contents

The HP E1429A/B 20 MSa/s 2-Channel Digitizer is a message-based
device. As such, it supports the VXI word-serial protocol used to transfer
ASCII command strings and is capable of converting the SCPI commands it
receives to reads and writes of its hardware registers.

Register-based programming allows direct access to the hardware registers.
This increases the speed at which events in the digitizer occur since the
parsing (converting to register reads and writes) of SCPI commands is
eliminated.

This appendix is not a 1-to-1 correlation between each digitizer SCPI
command and an equivalent register read or write. However, basic digitizer
configuration is covered, together with methods of re-initiating the digitizer
and retrieving data from memory through direct register access. The
sections of the appendix include:

• Addressing the Registers . 343
• Register Descriptions . 347
• Configuring the Digitizer Input . 368
• Arming and Triggering . 372
• Re-initiating the Digitizer . 378
• Retrieving Data from Memory . 385
• Example Program. 388

System
Configuration

The example programs and programming techniques shown in this appendix
are based on the following system configuration:

Controller: HP Vectra 386/25 personal computer

HP-IB Interface Card: HP 82335 HP-IB Interface with
Command Library

Mainframe: HP 75000 Series C

Slot0/Resource Manager: HP E1406 Command Module

HP E1429A/B Logical Address: 40

Appendix C Register Programming 341

Each program uses a combination of SCPI commands and register
reads/writes. In most cases SCPI commands set the initial digitizer
configuration. Register reads/writes are used to modify the configuration,
re-initialize the digitizer, and retrieve readings.

Reading and
Writing to the

Registers

The examples in this appendix are based on the system configuration listed
previously. With this configuration, the digitizer’s A24 registers are read,
and written to, using the HP E1406 Command Module’s
DIAGnostic:PEEK?, DIAGnostic:POKE, and
DIAGnostic:UPLoad:SADDress? commands:

DIAGnostic:PEEK? <address >, <width >

DIAGnostic:POKE <address >, <width >, <data >

DIAGnostic:UPLoad:SADDress? <address >, <byte_count >

<address > - the address (A24 base address + register offset) of the register.

<width > - the number of bits read (DIAG:PEEK?), or the number of data
bits written to the register (DIAG:POKE). Unless otherwise noted,
register reads and writes are 8-bits.

<data >- the integer data written to the register.

<byte_count >- the number of reading bytes uploaded (read) from digitizer
memory. Since each reading is two bytes, byte_count is equal to 2 times the
number of readings to upload. In the example program at the end of this
appendix, DIAGnostic:UPLoad:SADDress? is used to retrieve all the
readings from memory once the digitizer has been re-initiated.

Note With an embedded controller, the Standard Instrument Control Library
(SICL), and the programming procedures found in this appendix, higher
throughput rates can be achieved than the rates available with the system
configuration listed. To use these procedures, note the A24 address mapping
of the embedded controller, and replace DIAG:PEEK?, DIAG:POKE, and
DIAG:UPL:SADD? with the appropriate SICL reads and writes.

342 Register Programming Appendix C

Addressing the Registers

Access to the digitizer’s registers is through addresses mapped into A24
address space. At power-on, the system resource manager (HP E1406) reads
the digitizer’s Device Type register (in A16 address space) to determine the
amount of A24 memory the digitizer needs (4096 bytes). The resource
manager allocates a block of A24 memory to the digitizer and writes the
base (starting) address into the digitizer’s Offset register (also in A16 space).

Figure C-1 is an example of how the HP E1406 resource manager maps the
digitizer registers into A16 and A24 address space.

Figure C-1. HP E1429A/B A24 Address Space

Appendix C Register Programming 343

Note The following information on determining register addresses is based on the
computer configuration shown in Figure C-1, and on address mapping as
performed by the HP E1406 Command Module’s resource manager. For
configurations with embedded controllers or configurations with a resource
manager other than the HP E1406 Command Module, refer to those
manuals containing information on A24 address mapping.

Determining the
A24 Base Address

When you are reading or writing to a digitizer register, a hexadecimal or
decimal register address is specified. An A24 register address is:

A24 register address = A24 base address + register offset

There are three ways to determine the digitizer’s A24 base address:

1. Note the base address assigned by the resource manager at power-on.
The HP E1406 resource manager configuration sequence can be
monitored using an RS-232 terminal or printer. The "C-Size VXIbus
Systems Installation and Getting Started Guide" contains information
on connecting a terminal.

2. Execute the following HP E1406 Command Module command:

VXI:CONFigure:DeviceLIST? <logical_address>

The C language example programs disk contains the program
Query.C. By changing the line:

#define ADDR 70905L (E1429 digitizer address)

to:

#define ADDR 70900L (E1406 address)

and entering the command:

VXI:CONF:DLIS? 40(or the current E1429 logical address)

a program string similar to the following is returned when the
program executes:

vxi:conf:dlis? 40 = +40,+0,+4095,+448,+1,+0,MSG,A24,
#H00220000, #H00001000,Ready,"","","",MBinstr INSTALLED AT
SECONDARY ADDR 5"

344 Register Programming Appendix C

3. The hexadecimal number in bold is the digitizer’s A24 base address.

4. Read the digitizer’s offset register in A16 address space. As shown in
Figure C-1, the Offset register is one of the digitizer’s configuration
registers.

In a system where the HP E1406 Command Module allocates address
space, the A16 base address of the configuration registers is
computed as:

1FC00016 + (LADDR * 64)16

2,080,768 + (LADDR * 64)

where 1FC00016 is the starting location of the configuration register
addresses, LADDR is the digitizer’s logical address, and 64 is the
number of address bytes in A16 per VXI device.

The digitizer’s factory set logical address is 40. If this address is not
changed, the base address of the digitizer’s configuration registers in
A16 is:

1FC00016 + (40 * 64)16

1FC00016 + A0016 = 1FCA0016

or decimal

2,080,768 + (40 * 64)

2,080,768 + 2560 = 2,083,328

Given the A16 base address and the "offset" of the Offset register (06
from Figure C-1), the digitizer’s A24 base address can be determined
as shown in the program A24_REAL.C.

Appendix C Register Programming 345

A24_READ.C

/* A24_READ.C - This program reads the digitizer’s A24 base address. */

/* Include the following header files */

#include <stdio.h>
#include <cfunc.h> /* This file is from the HP-IB Command Library */

#define CMD_MOD 70900L /* I/O path between the digitizer and the Command Module */

/* Function prototypes */

long get_base_addr(void);

/**/
void main(void)
{
long base_addr;/* variable for digitizer A24 base address */

base_addr = get_base_addr(); /* function call to calculate and */
/* return digitizer A24 base address */

printf("\nA24 base address = %ld", base_addr);
}

/**/
long get_base_addr(void)
{
/* base address of (A24) offset register in A16 address space */
long base_addr = (0x1FC000 + (40 * 64)) + 6; /* digitizer logical address is 40 */

float a24offst; /* A24 offset from A16 offset register */

char rd_addr[80]; /* command string variable */

/* Create the command string which reads the A24 base address from the offset register*/
sprintf(rd_addr, "DIAG:PEEK? %ld, %d", base_addr,16);

/* Send DIAG:PEEK? command */
IOOUTPUTS(CMD_MOD, rd_addr, strlen(rd_addr));

/* Read value from offset register */
IOENTER(CMD_MOD, &a24offst);

Continued on Next Page

346 Register Programming Appendix C

/* Multiply offset value by 256 for 24-bit address value */
a24offst *= 256.;

return (long)a24offst;
}

Note Multiplying the value of the offset register (a24offst) by 256 (10016)
converts the 16-bit register value to a 24-bit address.

Register Descriptions

The registers used to configure the digitizer are shown on the following
pages. The registers are listed by functional group. Listed with each register
are its bit definitions and, where applicable, the bit settings at power-on or
following a reset. Note that "base" is the A24 base address.

Appendix C Register Programming 347

A24 Register Table

Category Address Read Registers Write Registers See Page...

Input Configuration
Registers

base + 0316 A/D Status Register C-350

base + 0516 A/D Serial Read Register A/D Serial Write Register C-350

base + 0B16 A/D Parallel Strobe Register C-351

A/D Shift Register C-351

Arm and Trigger
(timebase)

Configuration
Registers

base + 4116 Arm Immediate Register Abort Register C-353

base + 4316 Arm Status Register C-353

base + 4516 Sample Trigger Register Timebase Initiation Register C-354

base + 4716 Arm Trigger Register C-355

base + 4916 Arm Source Register C-355

base + 4B16 Arm Control Register C-356

base +4D16 Trigger Source Register C-357

base +4F16 Reference Oscillator Register C-359

base +5116 MSByte Arm Delay Register C-360

base + 5316 LSByte Arm Delay Register C-360

base +5516 MSByte Arm Count Register C-360

base +5716 LSByte Arm Count Register C-360

base +5D16 Trigger Immediate Register C-361

base + 5F16 Timebase Reset Register C-380

base +5916 Arm Count Latch Register C-360

base +6116 Decade Division Register C-361

base +6316 Binary Division Register C-361

base + 6516 Interpolator Control Register C-380

base +6716 Stop Data Register C-380

base + 6916 Interpolator Calibration Register C-380

base + 6B16 Self-test Register C-380

base +7316 LSByte Pre-arm Count Register C-362

base +7516 MSByte Pre-arm Count Register C-362

base +7716 LSByte Post-arm Count Register C-362

base +7916 MIDByte Post-arm Count
Register

C-362

base +7B16 MSByte Post-arm Count Register C-362

base +7D16 Timebase Initialization Register C-380

base +7F16 Timebase Initialization Register C-380

348 Register Programming Appendix C

Category Address Read Registers Write Registers See Page...

Memory Control
Registers

base + 0216 Traffic Register C-363

base + 0816 Pulse Register C-364

base +0A16 Channel ID Register C-364

base +0C16 Data Register C-364

base +2116 Memory Control Register C-365

base +2316 Memory address register 0 C-366

base +2516 Memory address register 1 C-366

base +2716 Memory address register 2 C-366

base +2B16 Terminal Address Register C-367

base + 2D16 Base Address 0 Register C-367

base +2F16 Base Address 1 Register C-367

Appendix C Register Programming 349

The Input Configuration Registers

The input configuration registers are used to set the following digitizer input
parameters:

• Input enable
• Input impedance
• Input filter
• Measurement range

The A/D Status Register base +0316

The A/D status register is a read only register that returns the status of the
digitizer’s input section. The register bits are defined below. Only the use of
bit 0 is documented.

Address 7 6 5 4 3 2 1 0

base + 0316 Ch. 2 Diff.
ovld

Ch. 1 Diff.
ovld

Ch2. S/E
ovld

Ch1. S/E
ovld

unused Ovld
clr

Error
LED

Bit State

0 - no ovld
1 - ovld

0 - no ovld
1 - ovld

0 - no ovld
1 - ovld

0 - no ovld
1 - ovld

--- 0 - OFF
1 - ON

out data

The state (’1’ or ’0’) of bit 0 represents the state of the A/D shift register’s
output bit (bit 55). A read of the status register (and the output bit) does not
cause a shift of the A/D shift register.

The A/D Serial Register base +0516

The A/D serial register is a read/write register that receives and sends
configuration data from/to the A/D shift register. The shift register is used
to enable the inputs, and to set the input impedance, filter, and measurement
range.

Address 7 6 5 4 3 2 1 0

base + 0516 unused register write: shifts one bit into the shift
register
register read: reads one bit out of the shift
register

Each time a ’1’ or ’0’ is written to the serial register, one bit is loaded into
the A/D shift register at bit position 0.

Each time the serial register is read, one bit is shifted out of the A/D shift
register.

350 Register Programming Appendix C

The A/D Parallel Strobe Register base +0B16

 The A/D parallel strobe register is a write only register that latches the A/D
configuration held by the A/D shift register to the analog-to-digital
converter.

Address 7 6 5 4 3 2 1 0

base + 0B16 not used 0 - idle
1 - strobe

not used

Setting bit 2 to ’1’ latches the configuration represented by the bits in the
A/D shift register to the A/D. Only one strobe is required.

The A/D Shift Register

The A/D shift register is a 56-bit serial register used to configure various
parameters of the digitizer. The register does not have an A24 address since
it is accessed using the A/D serial register and the A/D strobe register as
shown in Figure C-2.

Each time the configuration is changed, all 56 bits must be written to the
shift register from the A/D serial register (base +0516). The configuration
is then latched to the A/D with a single write to the A/D strobe register
(base + 0B16). The bits of the shift register are defined as follows. Only the
unshaded bits are covered in this appendix. Bits 55 - 52 are undefined and
are not shown.

Appendix C Register Programming 351

Bit Name Function Bit Name Function

0 ENSYNC1 Enable Ext1 output 26 OPENINH Input protection inhibit

1 ENSYNC2 Enable Ext2 output 27 TESTLEDS LED test

2 ENEXT1 Enable Ext1 input 28 not used

3 ENEXT2 Enable Ext2 input 29 not used

4 CALSELA Lower bit of cal source select 30 not used

5 CALSELB Upper bit of cal source select 31 not used

6 TERM75 1 0 - Ch1 input impedance 50Ω
1 - Ch1 input impedance 75Ω

32 CH1HCAL 0 - switches H_CAL to ch1 +input
1 - switches HI to ch1 +input

7 SINGEND1 0 - Ch1 S/E input disabled
1 - Ch1 S/E input enabled

33 CH1LCAL 0 - switches L_CAL to ch1 -input
1 - switches LO to ch1 -input

8 DUMMY1 Ch1 dummy load select 34 ATT20DB 0 - Ch1 20dB input attenuator ON
1 - Ch1 20dB input attenuator OFF

9 FILTER1 0 - Ch1 filter disabled
1 - Ch1 filter enabled

35 CH1POST 0 - Ch1 20dB post attenuator ON
1 - Ch1 20dB post attenuator OFF

10 PIGGY1 0 - Ch1 attenuators disabled
1- Ch1 attenuators enabled

36 CH1INPT 0 - Ch1 differential input enabled
1 - Ch1 differential input disabled

11 TERM75 2 0 - Ch2 input impedance 50Ω
1 - Ch2 input impedance 75Ω

37 CH1INT 0 - Ch1 6dB int attenuator ON
1 - Ch1 6dB int attenuator OFF

12 SINGEND2 0 - Ch2 S/E input disabled
1 - Ch2 S/E input enabled

38 CH1INT 0 - Ch1 14dB int attenuator ON
1 - Ch1 14dB int attenuator OFF

13 DUMMY2 Ch2 dummy load select 39 not used

14 FILTER2 0 - Ch2 filter disabled
1 - Ch2 filter enabled

40 CH2HCAL Ch2 - see bit 32

15 PIGGY2 0 - Ch2 attenuators disabled
1- Ch2 attenuators enabled

41 CH2LCAL Ch2 - see bit 33

16 CAL1A(0) Ch1 cal address line 0 42 ATT20DB 0 - Ch2 20dB input attenuator ON
1 - Ch2 20dB input attenuator OFF

17 CAL1A(1) Ch1 cal address line 1 43 CH2POST 0 - Ch2 20dB post attenuator ON
1 - Ch2 20dB post attenuator OFF

18 CAL1A(2) Ch1 cal address line 2 44 CH2INPT 0 - Ch2 differential input enabled
1 - Ch2 differential input disabled

19 CAL1A(3) Ch2 cal address line 3 45 CH2INT 0 - Ch2 6dB int attenuator ON
1 - Ch2 6dB int attenuator OFF

20 CAL1EN Ch1 cal enable 46 CH2INT 0 - Ch2 14dB int attenuator ON
1 - Ch2 14dB int attenuator OFF

21 CAL2A(0) Ch2 cal address line 0 47 not used

22 CAL2A(1) Ch2 cal address line 1 48 - 49 HCALMUX
Output

LCALMUX
Output

Bits: 49/51 48/50
 0 0 GND
 0 1 +10V REF
 1 0 +1V REF
 1 1 CALSIG

23 CAL2A(2) Ch2 cal address line 2
50 - 51

352 Register Programming Appendix C

The Arm and Trigger Configuration Registers

The following registers are used to set the digitizer’s arm and trigger
parameters.

The Abort and Arm Immediate Register base + 4116

The function of the Abort and Arm Immediate register depends on whether
you are writing to the register, or reading the register. Its useage is defined
as follows

Address 7 6 5 4 3 2 1 0

base + 4116 register write: measurements aborted
register read: arm immediate

Writing any 8-bit value to this register aborts the current measurements.

Reading this register arms the digitizer if the digitizer is initiated
(wait-for-arm state). Once armed, the digitizer moves to the wait-for-trigger
state.

The Arm Status Register base + 4316

The arm status register monitors states and conditions associated with the
digitizer’s arming hardware. The register bits are defined below.

Address 7 6 5 4 3 2 1 0

base + 4316 128 64 32 16 8 4 2 1

Purpose Pre-
delay

Stage2Q No arm Last
TRG*

Begin
samp

Delayed Initiated Initialized

Pre-delay: Bit 7 is set to ’1’ when an arm signal is received, but the arm
delay (as set by the arm delay register) must elapse before the digitizer is
armed. When arm immediate is used with the dual rate sampling mode (bit
5: base + 4B16), bit 7 is set to ’1’, one reference period before the digitizer
is actually armed.

Stage2Q: Bit 6 is set to ’1’ when an arm signal other than an arm
immediate is received.

No arm: Bit 5 is set to ’1’ while the digitizer is taking pre-arm readings.
The bit is set to ’0’ when the pre-arm count is reached. This bit is checked
before an arm immediate is sent (a write to base + 4116).

Appendix C Register Programming 353

Last TRG*: Bit 4 is set to ’0’ when the last programmed arm count is
reached (base + 5516 and base + 5716). The bit is set to ’1’ when the burst of
readings associated with the arm are complete.

Begin samp: Bit 3 is set to ’0’ with the first reading in each arm burst and
is set to ’1’ after the last reading in each arm burst.

Delayed: Bit 2 is set to ’1’ after the programmed arm delay (base + 5116
and base + 5316) has elapsed.

Initiated: Bit 1 is set to ’1’ when the digitizer is initiated and can accept an
arm trigger. This bit is monitored when taking multiple bursts of pre- and
post-arm readings and transferring the readings over the VME bus. Multiple
bursts of pre- and post-arm readings segment memory (Figure 3-13). There
is a period (partition window) between each segment that is used by the
processor to set up the next segment. When bit 1 is set to ’1’, the next
segment is ready for data storage and transfer. See "VMEbus Data
Transfers" in Chapter 3 for more information.

Initialized: Bit 0 is set to ’1’ when the digitizer is initialized and is ready to
accept an initiate pulse.

The Timebase Initiation Register base + 4516

The function of the timebase initiation register is defined below.

Address 7 6 5 4 3 2 1 0

base + 4516 register write: initiates the timebase processor
register read: sample trigger

Writing any 8-bit value to the register initiates the timebase processor.

Reading this register generates a sample trigger when the trigger source is
an HP-IB Group Execute Trigger or the IEEE-488.2 *TRG command.

354 Register Programming Appendix C

The Arm Internal Bus Register base + 4716

The function of the arm internal bus register is defined below.

Address 7 6 5 4 3 2 1 0

base + 4716 register write: arm trigger

Writing any 8-bit value to the register generates an arm trigger when the
arm source is an HP-IB Group Execute Trigger or the IEEE-488.2 *TRG
command.

The Arm Source Register base + 4916

The Arm source register is used to set the source and slope of the signal
which arms the digitizer. The register bits are described below.

Address 7 6 5 4 3 2 1 0

base + 4916 128 64 32 16 8 4 2 1

Purpose Source 2
slope

Arm source 2 Source 1
slope

Arm source 1

Setting 0 - positive
1 - negative

0 0 0 - 1 1 1 0 - positive
1 - negative

0 0 0 - 1 1 1

Arm Source Register Power-on/Reset Settings

At power-on or following a reset, the arm source register is set to
0111 1111 or 7F16.

Bit Descriptions Source 2 slope: Bit 7 sets the slope of arm source 2. For all arm sources
except a TTLTrg trigger line (bits 6 - 4 =001) and the HP-IB GET
command or *TRG command (bits 6 - 4 =010), the slope should be set to
positive (0).

Arm source 2: Bits 6 - 4 set arm trigger source 2. Arm source 2 and arm
source 1 are ORed together so that an arm from either source arms the
digitizer. Setting bits 6 - 4 as follows sets the arm source indicated.

0 0 0 - "Ext 1" BNC connector.
0 0 1* - TTLTrg trigger line (negative-edge triggered)
0 1 0* - HP-IB GET command or IEEE-488.2 *TRG command(negative
edge triggered)
0 1 1 - arm when a specified input level on channel 1 is reached
1 0 0 - arm when a specified input level on channel 2 is reached
1 0 1 - ECLTrg0 trigger line
1 1 0 - ECLTrg1 trigger line
1 1 1 - OFF (arm source 2 is disabled)

Appendix C Register Programming 355

Source 1 slope: Bit 3 sets the slope of arm source 1. For all arm sources
except a TTLTrg trigger line (bits 2 - 0 =001) and the HP-IB GET
command or *TRG command (bits 2 - 0 =010), the slope should be set to
positive (0).

Arm source 1: Bits 2 - 0 set arm trigger source 1. Arm source 2 and arm
source 1 are ORed together so that an arm from either source arms the
digitizer. Setting bits 2 - 0 as follows sets the arm source indicated.

0 0 0 - "Ext 1" BNC connector.
0 0 1* - TTLTrg trigger line (negative-edge triggered)
0 1 0* - HP-IB GET command or IEEE-488.2 *TRG command(negative
edge triggered)
0 1 1 - arm when a specified input level on channel 1 is reached
1 0 0 - arm when a specified input level on channel 2 is reached
1 0 1 - ECLTrg0 trigger line
1 1 0 - ECLTrg1 trigger line
1 1 1 - arm immediate (arm source 2 must be OFF when selecting this

source)

The Arm Control Register base + 4B16

The arm control register controls various digitizer arming parameters. The
register bits are defined below.

Address 7 6 5 4 3 2 1 0

base + 4B16 128 64 32 16 8 4 2 1

Purpose not used enintr0 2 speed reclk/
10

pre-trig thold triginf delay
ref

Setting --- 0 - off
1 - on

0 - off
1 - on

0 - off
1 - on

0 - off
1 - on

0 - off
1 - on

0 - off
1 - on

0 - off
1 - on

Arm Control Register Power-on/Reset Settings

At power-on or following a reset, the arm control register is set to
0000 0001 or 0116.

Bit Descriptions enintr0: Enable local interrupt 0. Setting bit 6 to ’1’ enables local interrupt
0 to go ’high’ if an arm trigger is received while arm source hold is set, or
if the digitizer is already armed. The bit is cleared (’0’) when the digitizer is
initiated.

2 speed: Setting bit 5 to ’1’ enables the dual rate sampling mode.

356 Register Programming Appendix C

reclk/10: Setting bit 4 to ’1’ causes the reference divider to be reclocked by
the reference clock / 10. Setting bit 4 to ’0’ causes the reference divider to
be reclocked by the reference clock.

pre-trig: Setting bit 3 to ’1’ enables pre- and post-arm readings.

thold: Setting bit 2 to ’1’ sets arm trigger hold which prevents the digitizer
from accepting arm signals from any source except an arm immediate
(writing any value to base + 4116). This bit is used to suspend arming while
changing the arm source when the digitizer is initiated.

triginf: Setting bit 1 to ’1’ sets the digitizer to accept an infinite number of
arm triggers. The bit overrides the arm count registers, however; the arm
count remains active. Thus, if a number of arms less than the arm count
have occurred when bit 1 is set, the counter will keep track of the number of
arms which have occurred. When bit 1 is cleared (’0’), the digitizer returns
to the idle state if the arm count was reached. Otherwise, arms are accepted
until the arm count is reached.

delay ref: When bit 0 is set to ’1’ , the arm delay is derived from the
reference clock. When bit 0 is cleared (’0’), the arm delay is derived from
the reference clock / 10. See "Setting the Arm Delay" for more information.

The Trigger Source Register base + 4D16

The trigger source register is used to set the digitizer’s trigger (sample)
source. The register bits are defined below.

Address 7 6 5 4 3 2 1 0

base + 4D16 128 64 32 16 8 4 2 1

Purpose Sample/
Hold

Sample
Infinite

Sample
Once

Trigger Source Internal TTL
Sources

Setting 0 - OFF
1 - ON

0 - OFF
1 - ON

0 - OFF
1 - ON

0 0 0 - 1 1 1 0 0 - 1 1

Trigger Source Register Power-on/Reset Settings

At power-on or following a reset, the trigger source register is set to
0010 0000 or 2016.

Appendix C Register Programming 357

Bit Descriptions Sample/Hold: Setting bit 7 to ’1’ sets sample trigger hold which prevents
the digitizer from accepting sample trigger signals.

Sample Infinite: Setting bit 6 to ’1’ sets infinite sample triggers.
Triggering continues until aborted (base + 4116) or until the bit is set to ’0’
and the post arm reading count is reached. One sample trigger occurs after
the bit is set to ’0’ even if the post-arm trigger count is reached. Sample
Infinite overrides Sample Once (bit 5).

Sample Once: Setting bit 5 to ’1’ causes the digitizer to take one sample
and return to the idle state, regardless of the pre-arm and post-arm reading
counts. This bit should not be set if the pre-arm and post-arm reading mode
is set (arm control register bit 3: base + 4B16). The bit is overridden by bit
6 (Sample Infinite).

Trigger Source: Bits 4 - 2 set the digitizer trigger (sample) source. Setting
bits 4 - 2 as follows sets the trigger source indicated.

0 0 0 - reference oscillator output.
0 0 1 - ECLTrg0 trigger line.
0 1 0 - "Ext 1" BNC connector.
0 1 1 - internal TTL source as specified by bits 1 - 0.
1 0 0 - reference period / n.
1 0 1 - ECLTrg1 trigger line.
1 1 0 - "Ext 2" BNC connector.
1 1 1 - not used.

Internal TTL Sources: Bits 1 - 0 are additional sample sources which are
selected when bits 4 - 2 are set to 011. The sources set by bits 1 - 0 are:

0 0 - VME (VXI data transfer) bus. Trigger when data register (base + 1216)
is read.
0 1 - HP-IB Group Execute Trigger or IEEE-488.2 *TRG command
1 0 - TTLTrg trigger line
1 1 - user during local bus data transfer (does not take data)

358 Register Programming Appendix C

The Reference Oscillator Register base + 4F16

The reference oscillator register sets the reference source from which the
sample rate is derived. The register is also used to output synchronization
signals.

Address 7 6 5 4 3 2 1 0

base + 4F16 128 64 32 16 8 4 2 1

Purpose Arm source
1 enable

ECLTrg1 source ECLTrg0 source Reference oscillator source

Setting 0 - enabled
1 - disabled

0 0 - 1 1 0 0 - 1 1 0 0 0 - 1 0 0

Reference Oscillator Register Power-on/Reset Settings

At power-on or following a reset, the reference oscillator register is set to
0111 1000 or 7816.

Bit Descriptions Arm source 1 enable: Setting bit 7 to ’0’ enables the arm source 1 trigger
source (arm source register: base + 4916) to arm the digitizer. Setting bit 7
to ’1’ disables arm source 1.

ECLTrg1 source: Bits 6 - 5 set the signal source that is output on the
ECLTrg1 trigger line. The sources include:

0 0 - a 25 ns wide negative-going pulse each time a convert pulse is sent
tothe A/D converter.
0 1 - reference oscillator as selected by bits 2 - 0. The falling edge is
synchronous with the rising edge of the internal 20 MHz oscillator, the
ECLTrg lines, CLK10, and is synchronous with the falling edge of an
external reference oscillator.
1 0 - reserved.
1 1 - off. Outputs an ECL high level which then allows ECLTrg1 to be used
as an input.

ECLTrg0 source: Bits 4 - 3 set the signal source that is output on the
ECLTrg0 trigger line. The sources include:

0 0 - a 25 ns wide negative-going pulse each time a convert pulse is sent
tothe A/D converter.
0 1 - reference oscillator as selected by bits 2 - 0. The falling edge is
synchronous with the rising edge of the internal 20 MHz oscillator, the
ECLTrg lines, CLK10, and is synchronous with the falling edge of an
external reference oscillator.
1 0 - reserved.
1 1 - off. Outputs an ECL high level which then allows ECLTrg1 to be used
as an input.

Appendix C Register Programming 359

Reference oscillator source: Bits 2 - 0 set the reference oscillator source
from which the sample rate is derived. The sources include:

0 0 0 - the digitizer’s internal 20 MHz oscillator.
0 0 1 - backplane trigger line ECLTrg0.
0 1 0 - backplane trigger line ECLTrg1.
0 1 1 - the EXT2 front panel BNC connector.
1 0 0 - backplane 10 MHz (CLK10) signal.

The Arm delay Register base + 5116 and base +5316

The arm delay is set using the arm delay registers defined below.

Address 7 6 5 4 3 2 1 0

base + 5116
base + 5316

base + 5116 = arm delay most significant byte
base + 5316 = arm delay least significant byte

Register 51: Contains the most significant byte of the arm delay.
Register 53: Contains the least significant byte of the arm delay.

The Arm Count Register base + 5516 and base + 5716

The arm count is set using the arm count registers defined below.

Address 7 6 5 4 3 2 1 0

base + 5516
base + 5716

base + 5516 = arm count most significant byte
base + 5716 = arm count least significant byte

Register 55: Contains the most significant byte of the arm count.
Register 57: Contains the least significant byte of the arm count.

The Arm Count Latch Register base + 5916

The arm count latch register is used to load the arm count and initialize the
trigger counters. It is written to three times prior to sending the timebase
processor an initiate pulse.

Address 7 6 5 4 3 2 1 0

base + 5916 register write: loads the arm count and initializes the trigger counters

360 Register Programming Appendix C

The Trigger Immediate Register base + 5D16

A trigger immediate occurs when any 8-bit value is written to the trigger
immediate register shown below.

Address 7 6 5 4 3 2 1 0

base + 5D16 register write: sends trigger (sample) immediate

The Decade Division Register base +6116

The decade division register is used with the binary division register to
divide the reference frequency in order to obtain the desired sample rate.
The register bits are defined below.

Address 7 6 5 4 3 2 1 0

base + 6116 128 64 32 16 8 4 2 1

Purpose divide by
10E7

divide by
10E6

divide by
10E5

divide by
10E4

divide by
1000

divide by
100

divide by
10

divide by
1

Setting 0 - off
1 - on

0 - off
1 - on

0 - off
1 - on

0 - off
1 - on

0 - off
1 - on

0 - off
1 - on

0 - off
1 - on

0 - off
1 - on

Only one bit at a time can be set in this register. The decade division
selected (bits 7 - 0 or bit 0 of base + 6316) is combined with the binary
division selected (bits 3 - 1 of base + 6316) to derive the sample rate from
the reference source.

The Binary Division Register base + 6316

The binary division register is used with the decade division register to
divide the reference frequency in order to obtain the desired sample rate.
The register bits are defined below.

Address 7 6 5 4 3 2 1 0

base + 6316 128 64 32 16 8 4 2 1

Purpose reserved (bits 7 - 4 must be set to 1000) divide by
4

divide by
2

divide by
1

divide by
10E8

Setting 1 0 0 0 0 - off
1 - on

0 - off
1 - on

0 - off
1 - on

0 - off
1 - on

Appendix C Register Programming 361

The Pre-Arm Reading Count Registers base + 7316 and base + 7516

The pre-arm reading count registers are defined below.

Address 7 6 5 4 3 2 1 0

base + 7316
base + 7516

base + 7316 = pre-arm reading count least significant byte
base + 7516 = pre-arm reading count most significant byte

Register 73: Contains the least significant byte of the pre-arm reading count.

Register 75: Contains the most significant byte of the pre-arm reading
count.

Pre-Arm Reading Count Register power-On/Reset Settings

At power-on or following a reset, the digitizer is set for 0 pre-arm readings.
When the pre-arm reading mode is set (base +4B16 bit 3 set to ’1’), the
digitizer is set for 3 pre-arm readings.

The Post-Arm Reading Count Registers base + 7716 to base + 7B16

The post-arm reading count registers are defined below.

Address 7 6 5 4 3 2 1 0

base + 7716
base + 7B16

base + 7716 = post-arm reading count least significant byte
base + 7916 = post-arm reading count middle significant byte
base + 7B16 = post-arm reading count most significant byte

Register 77: Contains the least significant byte of the pos-arm reading
count.

Register 79: Contains the middle significant byte of the post-arm reading
count.

Register 7B: Contains the most significant byte of the post-arm reading
count.

Post-Arm Reading Count Register power-On/Reset Settings

At power-on or following a reset, the digitizer is set for 7 post-arm readings.
The digitizer is also set for 7 post-arm readings when the pre-arm reading
mode is set (base +4B16 bit 3 set to ’1’).

362 Register Programming Appendix C

The Memory Control Registers

The following memory control registers are used to initialize digitizer
memory.

The Traffic Register base +0216

The traffic register is a read/write register that selects data and clock sources
for the high-speed data bus. The bits are defined as follows.

Address 7 6 5 4 3 2 1 0

base + 0216 128 64 32 16 8 4 2 1

Purpose Data Register Mode not used Read
Data

High-Speed Clock
Source

High-Speed Data
Source

Setting 0 0 - invalid
0 1 - channel 1
1 0 - channel 2
1 1 - alternate
channels

0 - data
not ready

1 - data
ready

0 0 - pulse register
0 1 - A/D
1 0 - data register
1 1 - Local bus

0 0 - A/D
0 1 - data register
1 0 - not used
1 1 - memory data

Traffic Register Power-on/Reset Settings

At power-on or following a reset, the traffic register is set to
1100 0100 or C416.

Bit Descriptions Data Register Mode. Bits 7 - 6 specify how data will be presented when
read by the data register, and how it will be written into memory as written
by the data register. Writing data to only one channel’s memory is not
recommended since invalid data is placed in the unselected channel. When
’alternate channels’ is selected, the two channels alternate, beginning with
the channel previously selected. For example, alternate channels beginning
with channel 2 can be achieved by setting the Data Register Mode field to 1
0, and then setting it to 1 1.

Read Data. Bit 4 is set to 1 when data can be read from digitizer memory.
See "Segmented Reading Transfers" in Chapter 3 for information on how
the bit is used.

High-Speed Clock Source. Bits 3 - 2 set the source which clocks data
transfers over the internal high-speed bus.

High-Speed Bus Source. Bits 1 - 0 select the data source which drives the
internal high-speed bus.

Appendix C Register Programming 363

The high-speed internal (data) bus routes data between the A/D, digitizer
memory, the local bus, and the VME (VXI data transfer) bus (Figure 3-7).
There is no user-access to the high-speed internal bus.

The Pulse Register base +0816

The pulse register is a read/write register that generates high-speed clock
signals when the traffic register’s high-speed clock source is set to ’pulse
register’ .

Address 7 6 5 4 3 2 1 0

base + 0816 register read/write: generates high-speed bus clock pulse

Reading, or writing to this register generates a clock pulse for the internal
high-speed bus.

The Channel ID Register base +0A16

The channel ID register is a read/write register that allows user-defined
identifiers to be appended to each channel’s readings.

Address 7 6 5 4 3 2 1 0

base + 0A16 channel 1 ID
LSB MSB

channel 2 ID
LSB MSB

The ID assigned is represented by the 4 least significant bits of each
reading. The ID bits are not stored in memory with the readings, but are
appended to each reading as it is read over the VME (VXI data transfer) bus
or Local bus.

The Data Register base +0C16

The data register is a read/write register used to retrieve readings from
digitizer memory or to retrieve them from the digitizer’s A/D converter.

Address 7 6 5 4 3 2 1 0

base + 0C16 register read/write: retrieves a reading from digitizer memory

Each digitizer reading is stored in memory as a 12-bit, two’s complement
number. When a reading is retrieved, it is expanded to 16-bits with the
reading left-justified in the 16-bit field. The four least significant bits are
normally zeros, but can be set as indicated by the channel ID register (base
+0A16). The channel from which readings are retrieved is set with the "Data
register Mode" field of the traffic register (base +0216).

364 Register Programming Appendix C

The Memory Control Register base +2116

The memory control register is a read/write register that controls the
operation of digitizer memory. The register bits are defined below.

Address 7 6 5 4 3 2 1 0

base + 0216 128 64 32 16 8 4 2 1

Purpose Backup
Enable

TTL Mux BNC Mux Address
Count
Enable

Memory
Read

Enable

Memory
Write

Enable

Setting 0 - OFF
1 - ON

0 - OFF
1 - ON

0 - reset
1 - enable

0 - reset
1 - enable

Memory Control Register Power-on/Reset Settings

At power-on or following a reset, the memory control register is set to
0011 1000 or 3816.

Bit Descriptions Backup Enable. Bit 7 is used to enable/disable the battery which maintains
memory at power-down.

TTL Mux and BNC Mux. Bit 6 and bits 5 - 3 are used by the digitizer’s
timebase processor. Their usage is not covered in this appendix.

Address Count Enable. Bit 2 is used to initialize the memory address
counter. Setting bit 2 to ’0’ disables the memory address counter but sets it
to receive the next memory address from the base address registers. Setting
bit 2 to ’1’ enables the address counter to receive addresses from the
terminal address register, thus allowing the counter to wrap around and
make repeated passes through memory.

Memory Read Enable. Setting bit 1 to ’1’ places digitizer memory in the
read mode. Data is placed on the internal high-speed bus if enabled by bits 1
- 0 of the traffic register.

Memory Write Enable. Bit 0 enables A/D readings to be written to
digitizer memory when bit 1 (memory read enable) is set to ’0’.

Appendix C Register Programming 365

The Memory Address Registers base +2316 to base +2716

The memory address registers are read only registers that return the address
where the last reading in the set will be stored. These registers are useful for
determining if the digitizer has been re-initiated by indicating the number of
readings that have been taken. For example, if 100 readings are to be taken
when the digitizer is re-initiated, the memory address registers point to the
location where the 100th reading is to be stored.

Address 7 6 5 4 3 2 1 0

base + 2316 128 64 32 16 8 4 2 1

Purpose Wrapped Memory
Size

Address
Valid

Local
Interrupt

Reserved current address

Setting 0 - no
1 - yes

0 - 128K
1 - 512K

0 - no
1 - yes

A18 - A16

Address 7 6 5 4 3 2 1 0

base + 2516 Memory address register 1: current address A15 - A08

Address 7 6 5 4 3 2 1 0

base + 2716 Memory address register 2: current address A07 - A00

Bit Descriptions Wrapped. Bit 7 indicates if the data memory address counter has wrapped
around.

Memory Size. Bit 6 indicates the number of 2-channel readings digitizer
memory can hold. For all digitizers this is 512K.

366 Register Programming Appendix C

The Terminal Address Register base +2B16

The terminal address register is a read/write register that sets the last
address of a memory segment. It is used with the base address registers to
define the memory segment.

Address 7 6 5 4 3 2 1 0

base + 2B16 Terminal address Base address

Terminal Address. The terminal address field specifies the last address in a
memory segment before returning to the base address.

Base Address. The Base Address (bit 0) is the most significant bit
(bit 18) of the memory segment’s base address.

The Base Address Registers base +2D16 and base +2F16

The base address registers are read/write registers that specify the beginning
of a memory segment. This is the address where the segment starts after
either being reset by the address count enable bit (bit 2) of the memory
control register, or after reaching the terminal address.

Address 17 16 15 14 13 12 11 10

base + 2D16 Base address 0: start address MSByte

Address 9 8 7 6 5 4 3 2

base + 2F16 Base address 1: start address LSByte

The most significant byte of the segment’s base address is store in the least
significant byte of register base +2D16 . The least significant byte of the
base address is stored in the least significant byte of base +2F16. The data
written to these registers is held in a temporary register until it is loaded into
the actual address counter by clearing and then setting the address count
enable bit (bit 2) of the memory control register (base +2116).

Appendix C Register Programming 367

Configuring the Digitizer Input

This section contains the procedures used to configure the digitizer’s input
section. The configuration includes:

• Enabling the Single Ended and Differential Inputs
• Setting the input impedance
• Enabling the 10 MHz filter
• Setting the measurement range

The digitizer must be in the idle state when configuring the input section.

Using the A/D Shift
Register

Each input parameter listed above is set by the digitizer’s A/D shift register.
This register is accessed through the A/D status register
(base + 0316), the A/D serial register (base + 0516), and by the A/D parallel
strobe register (base + 0B16) as shown in Figure C-2. The procedure for
setting the configuration using the register is described in the following
section.

Figure C-2. Accessing the A/D Shift Register

368 Register Programming Appendix C

Reading and Writing to
the Shift Register

1. Define a programming loop which counts from 55 to 0 and which
contains the following.

A. Read and save the current shift register bit at the output
(bit 55) position using the A/D status register (base + 0316).

B. If the loop count does not equal the bit position to be changed,
write back the bit using the A/D serial register
(base + 0516). This restores the bit and shifts it to the bit 0 position,
which shifts a new shift register bit to the output
(bit 55) position.

C. If the loop count does equal the bit position to be changed, write
the new bit setting using the A/D serial register
(base + 0516). This sets the bit and shifts it to the bit 0 position,
which shifts a new shift register bit to the output (bit 55) position.

D. Continue through the loop until the loop count is 0. This shifts
each bit back to its original position.

2. After the configuration is set, write a value of 4 to the A/D parallel strobe
register (base + 0B16). This copies each shift register bit to the shift register
latch at which point the configuration is set.

Enabling the Inputs At power-on or following a reset, the single-ended and differential inputs of
channels 1 and 2 are enabled such that input signals can be applied. An
input can be disabled (and later enabled) using the following bits of the A/D
shift register.

Bit
Position

Name Setting

7 SINGEND1 0 - Ch1 S/E input disabled
1 - Ch1 S/E input enabled

12 SINGEND2 0 - Ch2 S/E input disabled
1 - Ch2 S/E input enabled

36 CH1INPT 0 - Ch1 differential input enabled
1 - Ch1 differential input disabled

44 CH2INPT 0 - Ch1 differential input enabled
1 - Ch1 differential input disabled

Procedure With the bit positions known, disable/enable the inputs as required using the
procedure for reading and writing to the shift register.

Appendix C Register Programming 369

Setting the Input
Impedance

The impedance of the single-ended inputs can be set to 50Ω or 75Ω. At
power-on or following a reset, the impedance is set to 50Ω. The impedance
is changed using the following bits of the A/D shift register.

Bit
Position

Name Setting

6 TERM75 1 0 - Ch1 50Ω input imedance selected
1 - Ch1 75Ω input impedance select

11 TERM75 2 0 - Ch2 50Ω input imedance selected
1 - Ch2 75Ω input impedance select

Procedure With the bit position known, set the input impedance as required using the
procedure for reading and writing to the shift register.

Enabling the
10 MHz Filter

At power-on or following a reset, the 10 MHz filter is switched out of the
signal path (disabled) of the single-ended and differential inputs. The filter
can be switched into the path (enabled) using the following bits of the A/D
shift register.

Bit
Position

Name Setting

9 FILTER1 0 - Ch1 10 MHz filter disabled
1 - Ch1 10 MHz filter enabled

14 FILTER 2 0 - Ch2 10 MHz filter disabled
1 - Ch2 10 MHz filter enabled

Procedure With the bit position known, disable/enable the filter as required using the
procedure for reading and writing to the shift register.

Setting the
Measurement

Range

The digitizer measurement range is set using a series of attenuators (Figure
3-3). Table C-1 shows the attenuator settings used to select the
corresponding measurement range.

Note There is a 3 ms relay settling time following each range change. Samples
cannot be taken during the settling time.

370 Register Programming Appendix C

The A/D shift register bits used to turn the attenuators off and on are listed
below.

Bit
Position

Name Setting

10 PIGGY1 0 - Ch1 attenuators disabled
1 - Ch1 attenuators enabled

34 ATT20DB 0 - Ch1 20dB input attenuator ON
1 - Ch1 20dB input attenuator OFF

35 CH1POST 0 - Ch1 20dB post attenuator ON
1 - Ch1 20dB post attenuator OFF

37 CH1INT 0 - Ch1 6dB internal attenuator ON
1 - Ch1 6dB internal attenuator OFF

38 CH1INT 0 - Ch1 14dB internal attenuator ON
1 - Ch1 14dB internal attenuator OFF

15 PIGGY2 0 - Ch2 attenuators disabled
1 - Ch2 attenuators enabled

42 ATT20DB 0 - Ch2 20dB input attenuator ON
1 - Ch2 20dB input attenuator OFF

43 CH2POST 0 - Ch2 20dB post attenuator ON
1 - Ch2 20dB post attenuator OFF

45 CH2INT 0 - Ch2 6dB internal attenuator ON
1 - Ch2 6dB internal attenuator OFF

46 CH2INT 0 - Ch2 14dB internal attenuator ON
1 - Ch2 14dB internal attenuator OFF

Measurement
Range

20 dB
Input

Attenuator

bits 34, 42

20 dB
Post

Attenuator

bits 35, 43

Internal Attenuators
 6 dB 14 dB

 bits
 37,45 38,46

-0.10230 to 0.10235 OFF OFF OFF OFF

-0.2046 to 0.2047 OFF OFF ON OFF

-0.5115 to 0.51175 OFF OFF OFF ON

-1.0230 to 1.0235 OFF ON OFF OFF

-2.0460 to 2.0470 OFF ON ON OFF

-5.115 to 5.1175 OFF ON OFF ON

-10.230 to 10.235 ON ON OFF OFF

-20.460 to 20.470 ON ON ON OFF

-51.150 to 51.175 ON ON OFF ON

-102.30 to 102.35 ON ON ON ON

Table C-4. HP E1429 Digitizer Attenuator Settings

Appendix C Register Programming 371

Procedure 1. Route the input signal to the attenuators.

A. To set the measurement range, the input signal must be routed to
the attenuators. This is done by setting bit 10
(channel 1) or bit 15 (channel 2) to ’1’.

2. Set the required attenuation.

A. From Table C-1 and with the bit positions known, set the bits for
the required attenuation (measurement range) using the procedure
for reading and writing to the shift register.

3. Copy the shift register bits to the shift register latch.

A. Write a value of 4 to the A/D parallel strobe register
(base +0B16) to copy the shift register bits to the shift register latch.

Using the Packed
Reading Format

When the measurement range is set using registers, the reading resolution
used to convert the readings to voltages is unknown to the processor. As a
result, the packed data format should be used, and the readings converted by
the user as described in Chapter 3 - "Understanding the Digitizer".

Arming and Triggering

This section contains the procedures used to configure the digitizer’s arm
and triggering (timebase) hardware.

Checking the Idle
State

Except as noted, configuring the arming and triggering hardware occurs
when the digitizer is in the idle state. The register used to check the idle
state is listed below.

• Arm status register
base + 4316

Procedure 1. Determine if the digitizer is in the idle state by checking bit 1 of the arm
status register (base + 4316).

If bit 1 is set to ’0’, the digitizer is in the idle state and can be configured.

If bit 1 is set to ’1’, the digitizer is in the initiated state and should not be
configured.

372 Register Programming Appendix C

Setting the Digitizer
Configuration

The digitizer configuration covered in this section includes:

• setting the arm sources
• setting the arm count
• setting the arm delay
• setting the reference source
• setting the trigger source
• sending arm immediate
• sending trigger immediate
• aborting measurements

Note The trigger count (pre-arm and post-arm reading counts) and the sample
rate are set when the timebase processor is initialized. See "Initializing the
Timebase Processor" in the section "Re-initiating the Digitizer" for more
information.

Setting the Arm
Sources

The registers used to set the arm sources are listed below.

• Arm Source register
base + 4916

• Arm Control register
base + 4B16 (used when changing arm source while initiated)

Procedure The arm source can be set/changed when the digitizer is in the idle state or
while it is initiated.

1. Setting/changing the arm source in the idle state:

A. Write the decimal equivalent bit pattern to the arm source
register (base + 4916).

2. Setting/changing the arm source while initiated:

A. Suspend the arm trigger by setting bit 2 of the arm control
register (base + 4B16) to ’1’ . Retain the settings of the other
register bits.

B. Write the decimal equivalent bit pattern for the desired arm
source to the arm source register (base + 4916).

C. Enable the arm trigger by setting bit 2 of the arm control register
(base + 4B16) to ’0’ . Retain the settings of the other register bits.

Appendix C Register Programming 373

Setting the Arm
Count

The registers used to set the arm count are listed below.

• Arm count registers
base + 5516 and base + 5716

Procedure 1. Load the arm count registers.

A. With the digitizer in the idle state, write the decimal equivalent
of the most significant byte to register 55. Writing the decimal
equivalent of the least significant byte to register 57. You can set
the arm count from 1 to 65,535 arms. For example, to program an
arm count of 20:

 MSB LSB
 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0

0 2010
0 is written to register 55
2010 is written to register 57

To program an arm count of 300:

 MSB LSB
 0 0 0 0 0 0 0 1 0 0 1 0 1 1 0 0
 110 4410
110 is written to register 55
4410 is written to register 57

Setting the Arm
Delay

The arm delay is the amount of additional delay to occur from when the
digitizer accepts the arm signal, to when it enters the wait-for-trigger state.
There is always a delay of one reference clock cycle. The registers used to
set the arm delay are listed below.

• Arm Control register
base + 4B16

• Arm Delay registers
base + 5116 and base + 5316

374 Register Programming Appendix C

Procedure 1. Determine the reference period.

A. The reference from which the arm delay is derived is set with bit
0 of the arm control register. The setting of bit 0 (to ’0’ or ’1’)
depends on the reference clock and the amount of delay required.
Determine the reference from which the delay is derived and set bit
0 accordingly. Retain the settings of bits 7 - 1.

If delay / reference clock period ≤ 65,534

bit 0 is set to ’1’ and the maximum delay is 65,534 * reference
period

If delay / reference clock period > 65,534

bit 0 is set to ’0’ and the maximum delay is 655,350 * reference
period

2. Load the arm delay registers.

A. Write the decimal equivalent of the most significant byte to
register 51. Write the decimal equivalent of the least significant
byte + 1 to register 53. The additional count (1) is required because
there is always a one reference cycle delay from when the digitizer
is armed to when it enters the wait-for-trigger state (i.e. is ready to
begin sampling).

For example, to program an arm delay of 1 ms:

 MSB LSB
 0 1 0 0 1 1 1 0 0 0 1 0 0 0 0 1

 7810 3310
7810 is written to register 51
3310 is written to register 53

Setting the
Reference Source

The reference source from which the sample rate is derived is set with the
register listed below.

• Reference oscillator register
base +4F16

Procedure Write the decimal equivalent bit pattern for the desired reference source to
the reference source register (base + 4F16). Retain the settings of bits 7 - 3.

Appendix C Register Programming 375

Setting the Trigger
Source

The register used to set the digitizer’s trigger (sample) source is listed below.

• Trigger source register
base + 4D16

Procedure The trigger source can be set/changed when the digitizer is in the idle state
or while it is initiated.

1. Setting/changing the trigger source while in the idle state:

A. Write the decimal equivalent bit pattern to the trigger source
register while retaining the settings of the other bits
(base + 4D16).

2. Setting/changing the trigger source while initiated:

A. Suspend the sample trigger by setting bit 7 of the trigger source
register (base + 4D16) to ’1’ . Retain the settings of the other
register bits.

B. Write the decimal equivalent bit pattern for the desired trigger
source to the trigger source register.

C. Enable the sample trigger by setting bit 7 of the trigger control
register (base + 4D16) to ’0’ . Retain the settings of the other
register bits.

Sending an Arm
Immediate Signal

An arm immediate signal arms the digitizer, overriding arm source ’hold’
and any programmed arm delay. The registers used to send an arm
immediate signal are listed below.

• Abort and Arm Immediate register
base + 4116

• Arm Status register
base + 4316

Procedure 1. Determine the arm state:

A. Read bits 7 and 5 of the arm status register (base + 4316). If bit 7
is ’1’, the digitizer is already armed and it is not necessary to send
an arm immediate. If bit 5 is ’1’, arm immediate must not be sent
since the pre-arm reading count has not been reached.

376 Register Programming Appendix C

2. Send the arm immediate signal.

A. Read the Abort and Arm Immediate register (base + 4116).
Reading the registers sends an arm immediate signal.

 Sending a Trigger
Immediate Signal

A trigger immediate signal triggers the digitizer, overriding the sample/hold
bit of the trigger source register.’The registers used to send a trigger
immediate signal are:

• Trigger Immediate register
base + 5D16

• Trigger Source register
base + 4D16

Procedure 1. Suspend sample triggers (e.g. trigger hold).

A. Set trigger source register (base + 4D16) bit 7 to ’1’ to suspend
sample triggers. Be sure retain the settings of bits 6 - 0.

2. Send a trigger immediate signal.

A. Write any 8-bit value to the trigger immediate register
(base + 5D16).

3. Re-enable sample triggers.

A. Set bit 7 (base + 4D16) to ’0’ to enable sampling for the next
reading (measurement) sequence. Retain the settings of bits
6 - 0.

Aborting
Measurements

The registers used to abort digitizer measurements are shown below. "base"
is the A24 base address.

• Trigger Source register
base + 4D16

• Abort and Arm Immediate register
base + 4116

Procedure 1. Suspend sample triggers (e.g. trigger hold).

A. Set trigger source register (base + 4D16) bit 7 to ’1’ to suspend
sample triggers. Be sure retain the settings of bits 6 - 0.

Appendix C Register Programming 377

2. Send abort signal.

A. Write any 8-bit value to the Abort and Arm Immediate register
(base + 4116).

3. Re-enable sample triggers.

A. Set bit 7 (base + 4D16) to ’0’ to enable sampling for the next
reading (measurement) sequence.

Re-initiating the Digitizer

Initiating the digitizer places the digitizer in the wait-for-arm state. When an
arm is received while in this state, the digitizer moves to the wait-for-trigger
state where it samples when trigger signals are received.

This section describes how the digitizer is re-initiated. A re-initiation is
done following a SCPI CONFigure ... INITiate sequence. Using register
reads and writes, digitizer parameters can be changed and the digitizer
re-initiated at a faster rate than sending another INITiate command. There
are two parts to the re-initiation sequence:

1. initializing digitizer memory

2. initializing and initiating the timebase processor

The re-initiation sequence described in this section is restricted to post-arm
readings only. The other digitizer parameters can be set as required.

Initializing Digitizer
Memory

The registers used to initialize digitizer memory are summarized below.

• memory control register
base + 2116

• terminal address register
base + 2B16

• base address registers
base + 2D16 and base + 2F16

Initializing digitizer memory involves initializing the memory control
register, setting the ending and beginning addresses in memory where the
data will be stored, and enabling data to be written to memory. For the
complete digitizer re-initiation to occur, the registers must be read and
written to in the sequence covered in the procedure.

378 Register Programming Appendix C

Procedure 1. Initialize the memory control register.

A. Set bits 2 - 0 of the memory control register (base + 2116) to ’0’. Retain
the settings of bits 7 - 3.

2. Determine the starting address of the memory segment.

A. The segment size is the number of readings to be taken and must
be divisible by 4. The starting address is computed as:

starting address = ending address - (segment size - 1)

The re-initiation procedure assumes one segment of post-arm
readings. Therefore, the ending address (524,287) is the size of
digitizer memory.

3. Set the terminal (ending) address.

A. The terminal address is the ending address of the memory
segment. This address is computed as:

terminal address = (ending address - 4095) / 2048

Again, the procedure is for one segment of post-arm readings.
Therefore, the terminal address is:

terminal address = (524,287 - 4095) / 2048 = 254

B. Divide the starting address (see Step 2) by 4. If this value
is > 65,535 (FFFF16), add 1 to the terminal address value (254).

C. Write the terminal address to the terminal address register (base
+ 2B16).

4. Set the base (starting) address.

A. The base address is the (starting address / 4) of the memory
segment. Write the most significant byte of (starting address / 4) to
the base 0 address register (base + 2D16). Write the least significant
byte of (starting address / 4) to the base 1 address register (base +
2F16).

Appendix C Register Programming 379

For example, if the segment size is 10,000 readings, the terminal
and base addresses would be:

start address = 524,287 - 9,999 = 514,288

514,288 / 4 = 128,572 = 1F63C16

terminal address = 254 + 1 (since 128,572 > 65,535)

base address = F63C (the ’1’ is part of the terminal address: 254 +
1)

MSB LSB
1 1 1 1 0 1 1 0 0 0 1 1 1 1 0 0
 24610 6010

24610 is written to register base + 2D16
6010 is written to register base + 2F16

5. Enable memory to be written to.

A. Enable data to be written to digitizer memory and enable the address
counter by setting memory control register (base + 2116) bits 2 - 0 to
’1 0 1’.

Initializing and
Initiating the

Timebase
Processor

The second step in re-initiating the digitizer is initializing and initiating the
timebase processor. The timebase processor must be initialized each time
the pre-arm reading count, post-arm reading count, or sample rate is
changed.

380 Register Programming Appendix C

The registers used to initialize the processor are summarized below.

Timebase reset

• Abort and arm immediate register
base + 4116

• Timebase reset register
base + 5F16

• Interpolator control register
base + 6516

• Stop data register
base + 6716

• Interpolator calibration register
base + 6916

• Self test register
base + 6B16

• Time base registers
base + 7D16 and base + 7F16

Trigger count

• Pre-arm reading count registers
base + 7316 to base +7516

• Post-arm reading count registers
base + 7716 to base + 7B16

Sample rate

• Arm control register
base + 4B16

• Decade division register
base + 6116

• Binary division register
base + 6316

Data source

• Traffic register
base + 0216

• Pulse register
base + 0816

Timebase initiate

• Timebase initiation register
base + 4516

• Arm count latch register
base + 5916

For the complete digitizer re-initiation to occur, the registers must be read
and written to in the sequence given in the procedure.

Appendix C Register Programming 381

Procedure 1. Reset and initialize the timebase processor.

A. Write the following data to the registers indicated. Except for the
abort and arm immediate register (base +4116), these registers must
not be set to any other values; therefore, they are not listed in the
"Register Descriptions" section.

write any 8-bit value to base + 4116
write any 8-bit value to base + 5F16
write a value of 1 to base + 6516
write a value of 5 to base + 6716
write a value of 0 to base + 6916
write a value of 0 to base + 6B16
write a value of 0 to base + 7D16
write a value of 0 to base + 7F16

2. Set the Trigger count.

The number of readings the digitizer takes each time it is armed is set with
the pre-arm and post-arm reading count registers listed below.

• Pre-arm reading count registers
base + 7316 and base +7516

• Post-arm reading count registers
base + 7716 and base + 7B16

When taking (x) pre-arm and (y) post-arm readings, and (x) and (y) are the
intended number of each set of readings, the count loaded into the pre-arm
reading count registers is x-2. The count loaded into the post-arm reading
count registers is y-6. When taking post-arm readings only, the pre-arm
count is 1 and the post-arm count is y-3.

382 Register Programming Appendix C

A. Load the pre-arm reading count registers. With the digitizer in
the idle state, write the decimal equivalent of the least significant
byte to register 73. Write the decimal equivalent of the most
significant byte to register 75. You can set the pre-arm reading
count from 3 to 65,535 readings. For example, to program 500
pre-arm readings, a pre-arm reading count of 498 (500 - 2) is loaded
into the registers.

 MSB LSB
 0 0 0 0 0 0 0 1 1 1 1 1 0 0 1 0

110 24210
24210 is written to register 73
1 is written to register 75

B. Load the post-arm reading count registers. Write the decimal
equivalent of the least significant byte to register 77. Write the
decimal equivalent of the middle significant byte to register 79.
Write the decimal equivalent of the most significant byte to register
7B. You can set the post-arm reading count from 7 to 16,777,215
readings. For example, to program 100,000 post-arm readings with
no pre-arm readings, a post-arm reading count of 99,997 (100,000 -
3) is loaded into the post-arm registers. (A count of 1 is written to
the pre-arm registers.)

 MSB MIDSB LSB
 0 0 0 0 0 0 0 1 1 0 0 0 0 1 1 0 1 0 0 1 1 1 0 1

 110 13410 15710
15710 is written to register 77
13410 is written to register 79
110 is written to register 7B

3. Initialize the sample rate registers.

A. Write the decimal value of 129 to register base +6316, and write
the decimal value of 255 to register base +6116.

B. Disable reference divider reclocking (for divider values greater
than 100,000 - see Step 4). Set arm control register
(base +4B16) bit 4 to ’0’ while retaining the settings of the other bits.

Appendix C Register Programming 383

4. Set the sample rate.

A. If the trigger source is not reference period / N (base + 4D16 bits
4 - 2 =1 0 0), the decade division register and binary division
register must be set as follows:

write a value of 1 to base + 6116
write a value of 132 to base + 6316

B. If the trigger source is the reference period / N (base + 4D16 bits
4 - 2 =1 0 0), then to set the sample rate (period) you must know the
rate you want and the reference frequency. From these values, a
value (N) is determined as shown below.

N = reference frequency / required sample rate

The reference frequency is then divided by N (Ref/N) to obtain the
sample rate. N is represented by the decade division register (6116)
and the binary division register (6316).

For example, to program a sample rate of 1 kHz (1 ms period) using
the digitizer’s internal 20 MHz reference:

N = 20 MHz / 1 kHz = 20,000

1610 is written to the decade division register (base + 6116) to set a
division by 10,000. All other bits are set to 0. 13210 is written to the
binary division register (base + 6316) to set a division by 2. (Bits 7 -
4 must always be set to 1 0 0 0.) These settings divide the reference
frequency by 20,000 which gives the required sample rate of 1 kHz.

5. Set the digitizer A/D converter as the high-speed clock source and data
source for memory.

A. Using the traffic register (base +0216), set the pulse register as
the high-speed clock source by setting bits 3 - 2 to ’0 0’. Retain the
settings of the other bits.

B. Send a clock pulse to the internal high-speed bus by reading or
writing (any value) to the pulse register (base +0816).

C. Using the traffic register (base +0216), set the A/D as the
high-speed clock source and as the high-speed data source by
setting bits 3 - 0 to ’0 1 0 0’. Retain the settings of the other bits.

384 Register Programming Appendix C

6. Load the arm count and send the initiate pulse.

A. Load the arm count and initialize the trigger counters by writing
(any value) to the arm count latch register (base + 5916) three
times.

B. Initiate the timebase processor by writing any value to the
timebase initiation register (base +4516).

Note The memory address registers (base +2316 to base +2716) are useful for
determining if the digitizer has been re-initiated by indicating the number of
readings that have been taken. For example, if 100 readings are to be taken
when the digitizer is re-initiated, the memory address registers point to the
location where the 100th reading is to be stored.

Retrieving Data from Memory

This section explains how to use register reads/writes to retrieve readings
from memory and transfer them over the VME (VXI data transfer) bus.

The procedure given in this section for reading data from memory assumes
that data is stored under the following digitizer configuration restrictions:

• a single burst of post-arm readings

Initializing Digitizer
Memory to Retrieve

Data

As with storing data in memory, digitizer memory must be initialized before
data is retrieved from memory. The registers used in the data retrieval
process are:

• traffic register
base + 0216

• pulse register
base + 0816

• memory control register
base + 2116

• terminal address register
base + 2B16

• base address registers
base + 2D16 and base + 2F16

• data register
base + 0C16

Appendix C Register Programming 385

Procedure 1. Place the last reading (from the A/D) into memory.

A. Using the traffic register (base + 0216) set the pulse register as
the high-speed clock source by setting bits 3 - 2 to 0 0. Retain the
settings of the other bits.

B. Send a clock pulse to the internal high-speed bus by reading or
writing (any value) to the pulse register (base + 0816).

2. Initialize the memory control register.

A. Set bits 2 - 0 of the memory control register (base + 2116) to ’0’.
Retain the settings of bits 7 - 3.

3. Enable memory.

A. Enable data to be retrieved from digitizer memory by setting the
memory control register (base + 2116) as indicated. Retain the
settings of the other bits.

bits 2 - 0 = 1 1 0

B. Using the traffic register (base + 0216), set digitizer memory as
the data source for the internal high-speed bus, and set the pulse
register as the high-speed clock source by setting the following
traffic register bits as indicated:

bits 3 - 2 = 0 0(clock source is pulse register)
bits 1 - 0 = 1 1(memory is internal bus data source)

(The internal high-speed bus links digitizer memory to the VME
bus which is accessed by the user (Figure 3-7) .)

C. Send a clock pulse to the internal high-speed bus by reading or
writing (any value) to the pulse register (base + 0816).

4. Determine the starting address of the memory segment.

A. The segment size (which is the number of readings that were
taken) must be divisible by 4. The starting address is computed as:

starting address = ending address - (segment size - 1)

The data retrieval procedure is for one segment of post-arm
readings. Therefore, the ending address (524,287) is the size of
digitizer memory.

386 Register Programming Appendix C

5. Set the terminal (ending) address.

A. The terminal address is the ending address of the memory
segment. This address is computed as:

terminal address = (ending address - 4095) / 2048

Again, the procedure is for one segment of post-arm readings.
Therefore, the terminal address is:

terminal address = (524,287 - 4095) / 2048 = 254

B. Divide the starting address (see Step 4) by 4. If this value
is > 65,535 (FFFF16), add 1 to the terminal address value (254).

C. Write the terminal address to the terminal address register (base
+ 2B16).

6. Set the base (starting) address.

A. The base address is the (starting address / 4) of the memory
segment. Write the most significant byte of (starting address / 4) to
the base 0 address register (base + 2D16). Write the least significant
byte of starting address / 4 to the base 1 address register (base +
2F16).

For example, if the segment size is 10,000 readings, the terminal
and base addresses would be:

start address = 524,287 - 9,999 = 514,288

514,288 / 4 = 128,572 = 1F63C16

terminal address = 254 + 1 (since 128,572 > 65,536)

base address = F63C (the ’1’ is part of the terminal address:
254 + 1)

MSB LSB
1 1 1 1 0 1 1 0 0 0 1 1 1 1 0 0
 24610 6010

24610 is written to register base + 2D16
6010 is written to register base + 2F16

Appendix C Register Programming 387

7. Send three clock pulses to the internal high-speed bus by reading or
writing (any value) to the pulse register (base + 0816) three times. This
initializes the transfer stages.

8. Set the clock source to the digitizer data register.

A. In the traffic register (base + 0216), set the digitizer’s data
register as the high-speed clock source by setting bits 3 - 2 as
indicated:

bits 3 - 2 = 1 0

Setting the data register (base + 0C16) as the clock source transfers
a reading from memory to the VME bus each time the data register
is read.

Example Program
The following program demonstrates the procedures used to register
program the digitizer. The program was developed using the
configuration listed on page C-1. To adapt the program for use with
an embedded controller, you will need to change the A24 base
address accordingly, as well as make the modifications noted in the
program listing.

This program accomplishes the following:

• SCPI programming

– configures the digitizer to take 20 readings on the 5V range
using the CONFigure command, and then retrieves the readings
using the READ? command.

• Register programming

– changes the measurement range to 1V

– changes the trigger source to the reference oscillator period/N

– sets the post-arm reading count to 20 readings

– changes the sample rate to 10 kHz (100 µs)

– re-initiates the digitizer to take the next 20 readings on the 1V
range

– retrieves the readings from memory by reading the data register.
This places the readings on the VME(VXI data transfer) bus.

388 Register Programming Appendix C

All other digitizer parameters (e.g. arm source, arm count) remain as set by
the previous CONFigure command.

Note The following program contains a C function which re-initiates the digitizer
(void initiate (long base_addr)). This function shows the exact sequence the
registers must be written to in order to successfully re-initate the digitizer.
When modifying this program, be sure that the sequence for re-initiating the
digitizer remains the same.

Appendix C Register Programming 389

REG_PROG.C

/* REG_PROG.C - This program configures the digitizer using register reads */
/* and writes. The program sets an initial digitizer configuration using */
/* the CONFigure command and takes a set of readings using the READ? */
/* command. Register reads and writes are then used to change the measurement */
/* range, change the trigger source, change the post-arm reading count, re-initiate */
/* the digitizer, and retrieve the readings. */

/* Include the following header files */

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <malloc.h>
#include <cfunc.h> /* This file is from the HP-IB Command Library */

#define ADDR 70905L /* I/O path between the digitizer and PC */
#define CMD_MOD 70900L /* I/O path between the PC and the Command Module */

/* Function prototypes */

long get_base_addr(void);
void rst_clr(void);
void conf_read(void);
void input_config(long base_addr);
void set_trig_source(long base_addr);
void initialize(long base_addr);
void initiate(long base_addr);
void memory_retrieve(long base_addr);
void data_read(long base_addr);
void check_error(char *function);

/**/
void main(void)
{

long base_addr; /* variable for digitizer A24 base address */

rst_clr(); /* reset and clear the digitizer */
base_addr = get_base_addr(); /* function call to calculate and */

/* return digitizer A24 base address */
conf_read(); /* function call to take first set of readings */
input_config(base_addr); /* function call to set the 1V measurement range */
set_trig_source(base_addr); /* function call which sets the trigger source */
initialize(base_addr);

Continued on Next Page

390 Register Programming Appendix C

initiate(base_addr); /* function call which prepares memory to store readings */
memory_retrieve(base_addr); /* function call which prepares memory to retrieve readings */
data_read(base_addr); /* function call which reads the data register */

}

/**/
void conf_read(void)
{
/* This function uses the CONFigure command to set up 20 readings on the */
/* 5V range. The READ? command is used to take the readings. */

char go;
int readings = 20, i = 0;
float *rdgs, *readcnt;

/* dynamically allocate memory for readings */

rdgs = malloc(20 * sizeof(float));
readcnt = rdgs;

/* configure the digitizer for 20 readings, 5V range, on input */
/* port 3 */

IOOUTPUTS(ADDR, "CONF1:ARR:VOLT (20),5,(@3)", 26);

/* check for errors in the CONFigure command */

check_error("conf_read");

/* initiate the digitizer and read (fetch) the readings */

IOOUTPUTS(ADDR, "READ?", 5);

IOENTERA(ADDR, rdgs, &readings);

for (i = 0; i < readings; i++)
{

printf("\nReading %d = %f", i, *readcnt++);
}

free(rdgs);

printf("\nPress Enter (return) to change configuration with register reads and writes");
scanf("%c", go);

}
Continued on Next Page

Appendix C Register Programming 391

/**/
void input_config(long base_addr)
{
/* This function changes the measurement range from 5V as set by the CONFigure */
/* command, to 1V using the A/D shift register. The range is changed by */
/* enabling/disabling various attenuators on the input signal path. */

int shift_count = 55, bit_set = 0;
float bit = 0;
char stat_read[80], stat_write[80], strobe_write[80];

/* create DIAG:PEEK? command which reads the A/D status register */
sprintf(stat_read, "DIAG:PEEK? %ld, %d", base_addr+0x03,8);

/* Set channel 1 range to 1V by setting bits 38, 37, 35, 34, and 10 */
/* as required in the A/D shift register. */

for(shift_count = 55; shift_count >= 0; shift_count--)
 {

switch (shift_count)
{
/* turn channel 1 14 dB internal attenuator off */

/* read bit 38 by reading the A/D status register */
case 38:IOOUTPUTS(CMD_MOD, stat_read, strlen(stat_read));

IOENTER(CMD_MOD, &bit);

/* set bit 38 to ’1’ by writing to the A/D serial register */
sprintf(stat_write,"DIAG:POKE %ld, %d, %d", base_addr+0x05,8,1);
IOOUTPUTS(CMD_MOD, stat_write, strlen(stat_write));
break;

/* turn channel 1 6 dB internal attenuator off */

/* read bit 37 by reading the A/D status register */
case 37:IOOUTPUTS(CMD_MOD, stat_read, strlen(stat_read));

IOENTER(CMD_MOD, &bit);

/* set bit 37 to ’1’ by writing to the A/D serial register */
sprintf(stat_write,"DIAG:POKE %ld, %d, %d", base_addr+0x05,8,1);
IOOUTPUTS(CMD_MOD, stat_write, strlen(stat_write));
break;

Continued on Next Page

392 Register Programming Appendix C

/* turn channel 1 20 dB post attenuator on */

/* read bit 35 by reading the A/D status register */
case 35:IOOUTPUTS(CMD_MOD, stat_read, strlen(stat_read));

IOENTER(CMD_MOD, &bit);

/* set bit 35 to ’0’ by writing to the A/D serial register */
sprintf(stat_write,"DIAG:POKE %ld, %d, %d", base_addr+0x05,8,0);
IOOUTPUTS(CMD_MOD, stat_write, strlen(stat_write));
break;

/* turn channel 1 20 dB input attenuator off */

 /* read bit 34 by reading the A/D status register */
case 34:IOOUTPUTS(CMD_MOD, stat_read, strlen(stat_read));

IOENTER(CMD_MOD, &bit);

 /* set bit 34 to ’1’ by writing to the A/D serial register */
sprintf(stat_write,"DIAG:POKE %ld, %d, %d", base_addr+0x05,8,1);
IOOUTPUTS(CMD_MOD, stat_write, strlen(stat_write));
break;

/* route input signal to channel 1 attenuators */

/* read bit 10 by reading the A/D status register */
case 10:IOOUTPUTS(CMD_MOD, stat_read, strlen(stat_read));

IOENTER(CMD_MOD, &bit);

/* set bit 10 to ’1’ by writing to the A/D serial register */
sprintf(stat_write,"DIAG:POKE %ld, %d, %d", base_addr+0x05,8,1);
IOOUTPUTS(CMD_MOD, stat_write, strlen(stat_write));
break;

/* read and shift all other shift register bits to restore each bit */
/* to its original position */

default:IOOUTPUTS(CMD_MOD, stat_read, strlen(stat_read));
IOENTER(CMD_MOD, &bit);
bit_set = (int)(bit + ((bit >= 0) ? .5 : -.5));
sprintf(stat_write,"DIAG:POKE %ld, %d, %d", base_addr+0x05,8,bit_set);
IOOUTPUTS(CMD_MOD, stat_write, strlen(stat_write));
break;

}

}
Continued on Next Page

Appendix C Register Programming 393

/* copy the shift register bits to the shift register latch by */
/* writing a value of 4 to the strobe register */
sprintf(strobe_write,"DIAG:POKE %ld, %d, %d", base_addr+0x0B,8,4);
IOOUTPUTS(CMD_MOD, strobe_write, strlen(strobe_write));

}

/**/
void set_trig_source(long base_addr)
{
/* This function sets the digitizer trigger source to the reference period / n. */
/* The reference source is the digitizer’s internal 20 MHz oscillator which */
/* was set by the CONFigure command. */

char command[80];
int bit_reg = 0;
float bit_pat = 0;

/* read trigger source register */

sprintf(command, "DIAG:PEEK? %ld, %d", base_addr+0x4D,8);
IOOUTPUTS(CMD_MOD, command, strlen(command));
IOENTER(CMD_MOD, &bit_pat);
/* retain register settings, set trigger source to reference period / n */
bit_reg = (int)(bit_pat + ((bit_pat >= 0) ? .5 : -.5));
bit_reg = (bit_reg & 0xE3) | 0x10;
sprintf(command, "DIAG:POKE %ld, %d, %d", base_addr+0x4D,8,bit_reg);
IOOUTPUTS(CMD_MOD, command, strlen(command));

}

/**/
void initialize(long base_addr)
{
/* This function initializes digitizer memory. This includes initializing the */
/* memory control register, specifying the data storage locations in memory, */
/* and enabling data to be written to memory. Note that the registers must be */
/* read and written to in the sequence shown. */

char command[80];
int bit_reg = 0;
float bit_pat = 0;

Continued on Next Page

394 Register Programming Appendix C

/* initialize the memory control register by setting bits 2 - 0 to ’0’*/

sprintf(command, "DIAG:PEEK? %ld, %d", base_addr+0x21,8);
IOOUTPUTS(CMD_MOD, command, strlen(command));
IOENTER(CMD_MOD, &bit_pat);
/* retain register settings, set memory control register bits 2 - 0 */
/* to ’0’ */
bit_reg = (int)(bit_pat + ((bit_pat >= 0) ? .5 : -.5));
bit_reg = (bit_reg & 0xF8);
sprintf(command, "DIAG:POKE %ld, %d, %d", base_addr+0x21,8,bit_reg);
IOOUTPUTS(CMD_MOD, command, strlen(command));

/* write the terminal (ending) address to the terminal address register */

sprintf(command, "DIAG:POKE %ld, %d, %d", base_addr+0x2B,8,255);
IOOUTPUTS(CMD_MOD, command, strlen(command));

/* set the base (starting) address - most significant byte */

sprintf(command, "DIAG:POKE %ld, %d, %d", base_addr+0x2D,8,255);
IOOUTPUTS(CMD_MOD, command, strlen(command));

/* set the base (starting) address - least significant byte */

sprintf(command, "DIAG:POKE %ld, %d, %d", base_addr+0x2F,8,251);
IOOUTPUTS(CMD_MOD, command, strlen(command));

/* enable memory to be written to and enable the address counter */
/* by setting bits 2 - 0 to ’1 0 1’. */

sprintf(command, "DIAG:PEEK? %ld, %d", base_addr+0x21,8);
IOOUTPUTS(CMD_MOD, command, strlen(command));
IOENTER(CMD_MOD, &bit_pat);
/* retain register settings, set memory control register bits 2 and 0 */
/* to ’1’ */

 bit_reg = (int)(bit_pat + ((bit_pat >= 0) ? .5 : -.5));
bit_reg = (bit_reg & 0xF8) | 0x05;
sprintf(command, "DIAG:POKE %ld, %d, %d", base_addr+0x21,8,bit_reg);
IOOUTPUTS(CMD_MOD, command, strlen(command));

}

Continued on Next Page

Appendix C Register Programming 395

/**/
void initiate(long base_addr)
{
/* This function initializes and initiates the timebase processor. This includes */
/* initializing the processor, setting the trigger (post-arm) count, setting */
/* the sample rate, setting the A/D as the data source for memory, and initiating */
/* the timebase processor. Note that the registers must be read and written to */
/* in the sequence shown. */

char command[80];
float bit_pat = 0;
int *addr_ptr, *data_ptr, bit_reg = 0;
int tb_addr [] = {0x41,0x5F, 0x65, 0x67, 0x69, 0x6B, 0x7D, 0x7F, -1};
int tb_data [] = {0, 1, 1, 5, 0, 0, 0, 0};

data_ptr = tb_data;

/* reset the timebase processor by writing the values to the corresponding */
/* registers shown above */

for (addr_ptr = tb_addr; *addr_ptr != -1; addr_ptr++)
{

sprintf(command, "DIAG:POKE %ld, %d, %d", base_addr + *addr_ptr, 8, *(data_ptr++));
IOOUTPUTS(CMD_MOD, command, strlen(command));

}

/* since only post-arm readings are taken, set the pre-arm reading count */
/* to 1 */

/* write least significant byte of pre-arm count */
sprintf(command, "DIAG:POKE %ld, %d, %d", base_addr+0x73,8,1);
IOOUTPUTS(CMD_MOD, command, strlen(command));

/* write most-significant-byte of pre-arm count */
sprintf(command, "DIAG:POKE %ld, %d, %d", base_addr+0x75,8,0);
IOOUTPUTS(CMD_MOD, command, strlen(command));

/* set the trigger count (post-arm readings only) by loading the post-arm */
/* reading count registers. This program sets up 20 post-arm readings. */

/* write least-significant-byte of post-arm count (count - 3) */
sprintf(command, "DIAG:POKE %ld, %d, %d", base_addr+0x77,8,17);
IOOUTPUTS(CMD_MOD, command, strlen(command));

Continued on Next Page

396 Register Programming Appendix C

/* write middle-significant-byte of post-arm count */
sprintf(command, "DIAG:POKE %ld, %d, %d", base_addr+0x79,8,0);
IOOUTPUTS(CMD_MOD, command, strlen(command));

/* write most-significant-byte of post-arm count */
sprintf(command, "DIAG:POKE %ld, %d, %d", base_addr+0x7B,8,0);
IOOUTPUTS(CMD_MOD, command, strlen(command));

/* initialize the sample rate registers */

sprintf(command, "DIAG:POKE %ld, %d, %d", base_addr+0x63,8,129);
IOOUTPUTS(CMD_MOD, command, strlen(command));

sprintf(command, "DIAG:POKE %ld, %d, %d", base_addr+0x61,8,255);
IOOUTPUTS(CMD_MOD, command, strlen(command));

/* disable reclocking of the reference divider (enabled for reference */
/* divider values of 100,000 or greater) */

sprintf(command, "DIAG:PEEK? %ld, %d", base_addr+0x4B,8);
IOOUTPUTS(CMD_MOD, command, strlen(command));
IOENTER(CMD_MOD, &bit_pat);

/* retain register settings, disable reclocking */
bit_reg = (int)(bit_pat + ((bit_pat >= 0) ? .5 : -.5));
bit_reg = (bit_reg & 0xEF);
sprintf(command, "DIAG:POKE %ld, %d, %d", base_addr+0x4B,8,bit_reg);
IOOUTPUTS(CMD_MOD, command, strlen(command));

/* set the sample rate to 10 kHz (100 us) */

/* set decade division register for a division by 1,000 */
sprintf(command, "DIAG:POKE %ld, %d, %d", base_addr+0x61,8,8);
IOOUTPUTS(CMD_MOD, command, strlen(command));

/* set binary division register for a division by 2 */
sprintf(command, "DIAG:POKE %ld, %d, %d", base_addr+0x63,8,132);
IOOUTPUTS(CMD_MOD, command, strlen(command));

/* For systems using an embedded controller, it may be necessary to monitor */
/* bit 1 of the arm status register (base + 43) until it is cleared (set to ’0’) */
/* before continuing with the next set of instructions. */

/* using the traffic register, set the pulse register as the high-speed */
/* clock source, write to the pulse register to remove any "old" readings */
/* from the data bus */

Continued on Next Page

Appendix C Register Programming 397

sprintf(command, "DIAG:PEEK? %ld, %d", base_addr+0x02,8);
IOOUTPUTS(CMD_MOD, command, strlen(command));
IOENTER(CMD_MOD, &bit_pat);

/* retain register settings, set pulse register as the high-speed */
/* clock source */
bit_reg = (int)(bit_pat + ((bit_pat >= 0) ? .5 : -.5));
bit_reg = (bit_reg & 0xF3);
sprintf(command, "DIAG:POKE %ld, %d, %d", base_addr+0x02,8,bit_reg);
IOOUTPUTS(CMD_MOD, command, strlen(command));

/* Send a clock pulse to the internal high-speed bus */
sprintf(command, "DIAG:POKE %ld, %d, %d", base_addr+0x08,8,0);
IOOUTPUTS(CMD_MOD, command, strlen(command));

/* using the traffic register, set the digitizer A/D as the clock */
/* source and as the data source for memory */

sprintf(command, "DIAG:PEEK? %ld, %d", base_addr+0x02,8);
IOOUTPUTS(CMD_MOD, command, strlen(command));
IOENTER(CMD_MOD, &bit_pat);

/* retain register settings, set the A/D as the high-speed */
/* clock source and as the data source */
bit_reg = (int)(bit_pat + ((bit_pat >= 0) ? .5 : -.5));
bit_reg = (bit_reg & 0xF0) | 0x04;
sprintf(command, "DIAG:POKE %ld, %d, %d", base_addr+0x02,8,bit_reg);
IOOUTPUTS(CMD_MOD, command, strlen(command));

/* initiate the timebase processor */

/* load the arm count and initialize the trigger counters */
sprintf(command, "DIAG:POKE %ld, %d, %d", base_addr+0x59,8,0);
IOOUTPUTS(CMD_MOD, command, strlen(command));
IOOUTPUTS(CMD_MOD, command, strlen(command));
IOOUTPUTS(CMD_MOD, command, strlen(command));

/* send the timebase processor initiate pulse */
sprintf(command, "DIAG:POKE %ld, %d, %d", base_addr+0x45,8,0);
IOOUTPUTS(CMD_MOD, command, strlen(command));

}

Continued on Next Page

398 Register Programming Appendix C

/**/
void memory_retrieve(long base_addr)
{
/* This function sets the address locations of the readings in digitizer memory, */
/* and enables the readings to be retrieved using the digitizer’s data register. */

 char command[80];
int bit_reg = 0;
float bit_pat = 0;

/* using the traffic register set the pulse register as the high-speed */
/* clock source, the A/D is still the data source */

sprintf(command, "DIAG:PEEK? %ld, %d", base_addr+0x02,8);
IOOUTPUTS(CMD_MOD, command, strlen(command));
IOENTER(CMD_MOD, &bit_pat);

/* retain register settings, set pulse register as the high-speed */
/* clock source */
bit_reg = (int)(bit_pat + ((bit_pat >= 0) ? .5 : -.5));
bit_reg = (bit_reg & 0xF3);
sprintf(command, "DIAG:POKE %ld, %d, %d", base_addr+0x02,8,bit_reg);
IOOUTPUTS(CMD_MOD, command, strlen(command));

/* send a clock pulse to the internal high-speed bus to place the last */
/* A/D reading into memory */
sprintf(command, "DIAG:POKE %ld, %d, %d", base_addr+0x08,8,0);
IOOUTPUTS(CMD_MOD, command, strlen(command));

/* initialize the memory control register by setting bits 2 - 0 to ’0 0 0’ */

sprintf(command, "DIAG:PEEK? %ld, %d", base_addr+0x21,8);
IOOUTPUTS(CMD_MOD, command, strlen(command));
IOENTER(CMD_MOD, &bit_pat);

/* retain register settings, set memory control register bits 2 - 0 */
/* to ’0’ */
bit_reg = (int)(bit_pat + ((bit_pat >= 0) ? .5 : -.5));
bit_reg = (bit_reg & 0xF8);
sprintf(command, "DIAG:POKE %ld, %d, %d", base_addr+0x21,8,bit_reg);
IOOUTPUTS(CMD_MOD, command, strlen(command));

Continued on Next Page

Appendix C Register Programming 399

/* enable data to be read from memory and enable the address counter */

sprintf(command, "DIAG:PEEK? %ld, %d", base_addr+0x21,8);
IOOUTPUTS(CMD_MOD, command, strlen(command));
IOENTER(CMD_MOD, &bit_pat);

/* retain register settings, set memory control register bits 2 - 0 */
/* to ’1 1 0’ */
bit_reg = (int)(bit_pat + ((bit_pat >= 0) ? .5 : -.5));
bit_reg = (bit_reg & 0xF8) | 0x06;
sprintf(command, "DIAG:POKE %ld, %d, %d", base_addr+0x21,8,bit_reg);
IOOUTPUTS(CMD_MOD, command, strlen(command));

/* set digitizer memory as the high-speed bus data source and the */
/* pulse register as the clock source */

sprintf(command, "DIAG:PEEK? %ld, %d", base_addr+0x02,8);
IOOUTPUTS(CMD_MOD, command, strlen(command));
IOENTER(CMD_MOD, &bit_pat);

/* retain register settings, set the data source and clock source */
bit_reg = (int)(bit_pat + ((bit_pat >= 0) ? .5 : -.5));
bit_reg = (bit_reg & 0xF0) | 0x03;
sprintf(command, "DIAG:POKE %ld, %d, %d", base_addr+0x02,8,bit_reg);
IOOUTPUTS(CMD_MOD, command, strlen(command));

/* Send a clock pulse to the internal high-speed bus */
sprintf(command, "DIAG:POKE %ld, %d, %d", base_addr+0x08,8,0);
IOOUTPUTS(CMD_MOD, command, strlen(command));

/* write the terminal (ending) address to the terminal address register */

sprintf(command, "DIAG:POKE %ld, %d, %d", base_addr+0x2B,8,255);
IOOUTPUTS(CMD_MOD, command, strlen(command));

/* set the base (starting) address - most significant byte */
sprintf(command, "DIAG:POKE %ld, %d, %d", base_addr+0x2D,8,255);
IOOUTPUTS(CMD_MOD, command, strlen(command));

/* set the base (starting) address - least significant byte */
sprintf(command, "DIAG:POKE %ld, %d, %d", base_addr+0x2F,8,251);
IOOUTPUTS(CMD_MOD, command, strlen(command));

Continued on Next Page

400 Register Programming Appendix C

/* initialize the transfer stages by sending three clock pulses to the */
/* internal high-speed bus */

sprintf(command, "DIAG:POKE %ld, %d, %d", base_addr+0x08,8,0);
IOOUTPUTS(CMD_MOD, command, strlen(command));
IOOUTPUTS(CMD_MOD, command, strlen(command));
IOOUTPUTS(CMD_MOD, command, strlen(command));

/* set the digitizer data register as the high-speed clock source */
/* (digitizer memory is still the data source) */

sprintf(command, "DIAG:PEEK? %ld, %d", base_addr+0x02,8);
IOOUTPUTS(CMD_MOD, command, strlen(command));
IOENTER(CMD_MOD, &bit_pat);

/* retain register settings, set data register as the clock source */
bit_reg = (int)(bit_pat + ((bit_pat >= 0) ? .5 : -.5));
bit_reg = (bit_reg & 0xF3) | 0x0B;
sprintf(command, "DIAG:POKE %ld, %d, %d", base_addr+0x02,8,bit_reg);
IOOUTPUTS(CMD_MOD, command, strlen(command));

}

/**/
void data_read(long base_addr)
{
/* This function retrieves the new set of readings (those taken on the 1V range) */
/* by reading the data register using the HP E1406 Command Module */
/* DIAGnostic:UPLoad:SADDress? command. Reading the data register places the */
/* readings on the VME (VXI data transfer) bus. */

int *rdgs, i = 0, swap = 0, bytes = 0, length = 1;
char rd_mem[80], lf_remove[1];

rdgs = malloc(20 * sizeof(int));

swap = sizeof(int);
bytes = 20 * swap;

/* Create the (HP E1406 Command Module) command string which reads the data register */

sprintf(rd_mem, "DIAG:UPL:SADD? %ld, %d", base_addr+0x0C,40);

Continued on Next Page

Appendix C Register Programming 401

/* Send the DIAG:UPL:SADD? command which accesses the data register */
/* and retrieves the readings */

IOOUTPUTS(CMD_MOD, rd_mem, strlen(rd_mem)); /* retrieve and enter the readings, */
IOENTERAB(CMD_MOD, rdgs, &bytes, swap); /* remove the block header */

/* remove the line feed which trails the last data byte */
IOENTERS(CMD_MOD, lf_remove, &length);

/* convert and print each reading as a voltage */

for (i = 0; i < 20; i++)
 {

rdgs[i] /= 16; /* remove label from each reading */
if (rdgs[i] >= 2047 || rdgs[i] <= -2046)

printf("\nReading overrange");
else

printf("\nReading %d = %.6E", i, (rdgs[i] * 0.0005));
 }

free(rdgs);
}

/**/
long get_base_addr(void)
{
/* This function returns the digitizer’s A24 base address. */

/* digitizer logical address */
long logical_addr = (ADDR - 70900L) * 8;

 /* base address of (A24) offset register in A16 address space */
long base_addr = (0x1FC000 + (logical_addr * 64)) + 6;

 float a24offst; /* A24 offset from A16 offset register */

char rd_addr[80]; /* command string variable */

/* Create the command string which reads the A24 base address */
sprintf(rd_addr, "DIAG:PEEK? %ld, %d", base_addr,16);

/* Send DIAG:PEEK? command */
IOOUTPUTS(CMD_MOD, rd_addr, strlen(rd_addr));

/* Read value from offset register */
IOENTER(CMD_MOD, &a24offst);

Continued on Next Page

402 Register Programming Appendix C

/* Multiply offset value by 256 for 24-bit address value */
a24offst *= 256.;

return (long)a24offst;
}

/**/
void rst_clr(void)
{

/* Reset and clear the digitizer */

IOOUTPUTS(ADDR, "*RST;*CLS", 9);
}

/**/
void check_error(char *func_tion)
{

char into[161];
int length = 160;

IOOUTPUTS(ADDR, "SYST:ERR?", 9); /* Query error register */
IOENTERS(ADDR, into, &length); /* Enter error message */

if (atoi(into) != 0) /* Determine if error is present */
/* If errors present, print and exit */

{
while (atoi(into) != 0)
{

printf("Error %s in function %s\n\n", into, func_tion);
IOOUTPUTS(ADDR, "SYST:ERR?", 9);
IOENTERS(ADDR, into, &length);

}

exit(1);
}

}

Appendix C Register Programming 403

Notes

404 Register Programming Appendix C

Appendix D
Local Bus Interleaved Transfers

Appendix Contents

This appendix contains information on interleaved data transfers using the
HP E1429B and the Local bus.

Interleaved
Transfers

In an interleaved transfer, multiple digitizers transfer one reading or one set
of readings (both channels) per block. The leftmost digitizer is set to the
GENerate mode and the inner digitizer(s) is set to the INSert mode. A
device such as the HP E1488 memory card is usually the consumer.
Readings are taken directly from the digitizer A/Ds.

As an example, the transfer sequence from digitizers D1 - D3, where D1 is
in generator mode (leftmost slot) and D2 and D3 (rightmost slot) are in
insert mode would appear as:

EOF EOB D1 EOB D2 EOB D3 ----->consumer

where EOF is the end-of-frame flag, EOB is the end-of-block flag, and Dn
is either a two byte (one channel) or four byte (two channel) reading.

Note If you are using the interleaved transfer mode of the HP E1429B with the
HP E1485 Digital Signal Processor module, note that the E1485 can accept
no more than 256 blocks.

Maximum Data
Transfer Rate

The maximum data transfer rate over the Local bus is 80 MBytes/second
which is equivalent to 40 MSamples/second. The HP E1429B digitizer
transfers data at 40 MSamples/second when readings are taken on two
digitizer channels at the maximum sample rate of 20 MHz.

When doing interleaved transfers, the transfer rate cannot exceed
40 MSamples/second, regardless of the number of digitizers used. The
maximum sample (transfer) rate allowed is determined by:

40 MSamples / number of channels

Appendix D Local Bus Interleaved Transfers 405

For example, if a configuration consists of two digitizers and both channels
on each digitizer are used, the maximum sample rate for each digitizer is:

40 MSamples / 4 channels = 10 MHz

As another example, if a configuration consists of two digitizers and only
three channels are used, the maximum sample rate for each digitizer is:

40 MSamples / 3 channels = 13.3 MHz

For the digitizer using two channels this would be 26.6 MSamples/ second
since a single sample trigger causes both channels to sample. For the
digitizer using only a single channel, the sample rate would be
13.3 MSamples/second. Together, the two digitizers are within the
40 MSample (80 MByte)/second Local bus transfer specification.

Note The maximum sample rates computed may not always be available using
the digitizer’s internal reference. In those instances, select a slower sample
rate that is available from the internal reference, or use an external reference
or an external trigger source.

Setting the
Interleaved

Transfer Mode

In addition to resetting the digitizer’s Local bus chip, setting the Local bus
mode, and setting the data source, the interleaved transfer mode must be set.
This is done using the commands:

VINStrument:CONFigure:LBUS:SEND:POINts <count >
VINStrument:CONFigure:LBUS:POINts:AUTO <mode >

<count > is the number of readings per block. If readings are taken on only
one channel, <count > is set to 1. If readings are taken on both channels,
<count > is set to 2.

Setting <mode > to OFF sets the interleaved transfer mode. In this mode the
end-of-block flag is sent after each reading or set of readings. The
end-of-frame flag is sent with the GENerator’s end-of-block flag.

406 Local Bus Interleaved Transfers Appendix D

These commands are sent as a single command string in order to prevent
"Settings conflict" errors. Note that the readings per block and the
interleaved transfer mode need only be specified when doing interleaved
Local bus transfers.

Programming
Procedure

The programming procedure for interleaved transfers is:

1. Use the CONFigure command and the low-level digitizer commands
to configure the digitizers for the required measurements.

All digitizers must have the same trigger source and the same
sample rate. The digitizers must be synchronized such that readings
are taken and the frame is transferred before the next sample occurs.
The example program which follows shows how the digitizers are
synchronized using one trigger source for both digitizers.

2. Use the VINStrument subsystem to reset the leftmost digitizer’s
Local bus chip, to set the Local bus transfer mode to GENerate,
to set the data source to the digitizer’s A/D
(CONVerter:CHANneln), and to set the interleaved transfer
mode.

Use the VINStrument subsystem to reset the inner digitizer’s
Local bus chip, to set the Local bus transfer mode to INSert, to
set the data source to the digitizer’s A/D
(CONVerter:CHANneln), and to set the interleaved transfer
mode.

VINStrument:CONFigure:LBUS:RESet
VINStrument:CONFigure:LBUS:MODE <mode >
VINStrument:CONFigure:LBUS:FEED <source >
VINStrument:CONFigure:LBUS:SEND:POINts <count >
VINStrument:CONFigure:LBUS:POINts:AUTO <mode >

Only the INSert (and GENerate) mode is supported for
interleaved transfers.

3. Reset the consumer’s (i.e. memory card’s) Local bus chip and
configure the consumer to receive data.

4. Activate (initiate) the consumer.

5. Use INITiate:IMMediate to activate the leftmost (GENerator)
digitizer.

6. Use INITiate:IMMediate to activate the inner (INSerter) digitizer.

Appendix D Local Bus Interleaved Transfers 407

7. Use INITiate:IMMediate to activate the rightmost (INSerter)
digitizer.

8. Beginning with the leftmost (GENerator) digitizer, abort each
digitizer before using the Local bus again.

Example Program This program demonstrates how to use multiple digitizers to transfer
readings, interleaved, to an HP E1488 memory card (consumer). The
program takes 10 readings on both channels of two digitizers. Therefore, 10
frames of data (40 readings) are sent to the memory card. The example
follows the programming procedure listed above.

LBUSINTR.C

/* LBUSINTR.C - This program demonstrates how to transfer interleaved readings */
/* from multiple digitizers to the HP E1488 memory card. In an interleaved transfer, */
/* each digitizer transfers one set of readings or one reading (if using a */
/* single channel) per block. The readings are taken directly from the A/Ds. */
/* The leftmost digitizer is set to the GENerate mode and the inner digitizer */
/* is set to the INSert mode. */

/* Include the following header files */

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <malloc.h>
#include <cfunc.h> /* This file is from the HP-IB Command Library Disk */

#define ADDR_G 70905L /* I/O path from the PC to the generator digitizer */
#define ADDR_I 70906L /* I/O path from the PC to the inserter digitizer */
#define ADDR_MEM 70903L /* I/O path from the PC to the memory card */

/* Function Prototypes */

void rst_clr(long address);
void configure(void);
void initiate(void);
void check_error(char *func_tion, long address);

Continued on Next Page

408 Local Bus Interleaved Transfers Appendix D

/**/
void main(void) /* run the program */
{

clrscr();
rst_clr(ADDR_G); /* reset generator digitizer */
rst_clr(ADDR_I); /* reset inserter digitizer */
rst_clr(ADDR_MEM); /* reset memory card */
configure(); /* configure the digitizers and the memory card */
initiate(); /* initiate the digitizers and the memory card */

 /* retrieve the readings from the memory card */
}
/**/
void configure(void)
{

int length = 0, loop = 0;

/* use the "digitizer1" array to configure the generator digitizer */

char static *digitizer1[] =
{"CONF1:ARR:VOLT (10),5,(@3)", /* set 10 readings, 5V range, */

/* channel 1, input port 3 */
 "CONF2:ARR:VOLT (10),5,(@4)", /* configure channel 2, port 4 */
 "TRIG:STAR:SOUR ECLT0", /* set trigger source */
 "VINS:LBUS:RES", /* reset the Local bus chip */
 "VINS:LBUS:MODE GEN", /* set Local bus mode to GENerate */
 "VINS:LBUS:FEED ’CONV:BOTH’", /* set Local bus feed (A/Ds) */
 "VINS:LBUS:SEND:POIN 2; POIN:AUTO OFF"}; /* set number of readings per block */

 /* send end-of-block and end-of frame */
 /* after each reading */

/* use the "digitizer2" array to configure the inserter digitizer */

char static *digitizer2[] =
{"CONF1:ARR:VOLT (10),5,(@3)", /* set 10 readings, 5V range, */

/* channel, 1 input port 3 */
 "CONF2:ARR:VOLT (10),5,(@4)", /* configure channel 2, port 4 */
 "TRIG:STAR:SOUR TIM", /* set trigger source */
 "TRIG:STAR:TIM 1E-6", /* set sample rate (1 MHz) */
 "OUTP:ECLT0:FEED ’TRIG’", /* feed trigger to generator from ECLT0 */
 "OUTP:ECLT0:STAT ON", /* enable feed */
 "VINS:LBUS:RES", /* reset the Local bus chip */
 "VINS:LBUS:MODE INS", /* set Local bus mode to INSert */
 "VINS:LBUS:FEED ’CONV:BOTH’", /* set Local bus feed (A/Ds) */
 "VINS:LBUS:SEND:POIN 2; POIN:AUTO OFF"}; /* set number of readings per block */

 /* send end-of-block and end-of frame */
 /* after each reading */

Continued on Next Page

Appendix D Local Bus Interleaved Transfers 409

/* use the "memory" array to configure the memory card */

char static *memory[] =
{"FORM:DATA PACK", /* set packed data format */
 "TRAC:DEL:ALL", /* delete all readings on memory card */
 "TRAC:DEF SET1, 80", /* store readings (80 bytes) in "SET1" */
 "VINS:LBUS:RES", /* reset the Local bus chip */
 "VINS:LBUS:MODE CONS", /* set Local bus mode to consume */
 "STAT:OPC:INIT OFF"}; /* execute *OPC? after INIT is parsed */

/* Execute each command in "digitizer1" using a loop */

 length = (sizeof(digitizer1) / sizeof(char*));

for (loop = 0; loop < length; loop++)
{
IOOUTPUTS(ADDR_G, digitizer1[loop], strlen(digitizer1[loop]));
}

/* Execute each command in "digitizer2" using a loop */

 length = (sizeof(digitizer2) / sizeof(char*));

for (loop = 0; loop < length; loop++)
{
IOOUTPUTS(ADDR_I, digitizer2[loop], strlen(digitizer2[loop]));
}

/* Execute each command in "memory" */

length = (sizeof(memory) / sizeof(char*));

for (loop = 0; loop < length; loop++)
{
IOOUTPUTS(ADDR_MEM, memory[loop], strlen(memory[loop]));
}

/* check for digitizer and memory card configuration errors */

check_error("digitizer1", ADDR_G);

check_error("digitizer2", ADDR_I);

check_error("memory", ADDR_MEM);
}

Continued on Next Page

410 Local Bus Interleaved Transfers Appendix D

/**/
void initiate(void)
{

int i = 0, readings = 40, swap = 0, bytes = 0, length = 1, *rdgs;
float rdy;
char lf_remove[1];

/* dynamically allocate memory for readings */

rdgs = malloc(40 * sizeof(float)); /* allocate computer memory for reading storage */
swap = sizeof(int); /* each reading in memory is two bytes */
bytes = 40 * swap; /* read 80 bytes */

IOOUTPUTS(ADDR_MEM, "INIT", 4); /* initiate the memory card */
IOOUTPUTS(ADDR_MEM, "*OPC?", 5); /* wait for INIT to parse before continuing */
IOENTER(ADDR_MEM, &rdy); /* enter *OPC? response from memory card */

IOOUTPUTS(ADDR_G, "INIT", 4); /* initiate the generator digitizer */

IOOUTPUTS(ADDR_I, "INIT", 4); /* initiate the inserter digitizer */

IOOUTPUTS(ADDR_G, "*OPC?", 5); /* wait for generator digitizer readings */
IOENTER(ADDR_G, &rdy); /* to complete */

IOOUTPUTS(ADDR_MEM, "TRAC:DATA? SET1", 15); /* retrieve readings from memory card
*/

IOENTERAB(ADDR_MEM, rdgs, &bytes, swap); /* enter readings and remove block header */

/* remove line feed which trails the last data byte */

IOENTERS(ADDR_MEM, lf_remove, &length);

IOOUTPUTS(ADDR_G, "ABOR", 4); /* abort generator digitizer */
IOOUTPUTS(ADDR_I, "ABOR", 4); /* abort inserter digitizer */

/* convert and display the readings; the reading sequence is: */
/* inserter digitizer channel 2 reading 1 */
/* inserter digitizer channel 1 reading 1 */
/* generator digitizer channel 2 reading 1 */
/* generator digitizer channel 1 reading 1 */
/* inserter digitizer channel 2 reading 2 and so on */

for (i = 0; i < readings; i++)
{

rdgs[i] /= 16;
if (rdgs[i] >= 2047 || rdgs[i] <= -2046)

printf("\nReading overrange");

Appendix D Local Bus Interleaved Transfers 411

else
printf("\nReading %d = %.6E", i, (rdgs[i] * 0.0025));

}

free(rdgs);
}

/**/
void rst_clr(long address)
{

/* Reset and clear the instruments */

IOOUTPUTS(address, "*RST;*CLS", 9);

}

/**/
void check_error(char *array, long address)
{

char into[161];
int length = 160;

IOOUTPUTS(address, "SYST:ERR?", 9); /* Query error register */
IOENTERS(address, into, &length); /* Enter error message */

if (atoi(into) != 0) /* Determine if error is present */
/* If errors present, print and exit */

{
while (atoi(into) != 0)
{

printf("Error %s in %s\n\n", into, array);
length =160;
IOOUTPUTS(address, "SYST:ERR?", 9);
IOENTERS(address, into, &length);

}

exit(1);
}

}

412 Local Bus Interleaved Transfers Appendix D

Comments 1. GENerator Digitizer Configuration. Both channels of the GENerator
digitizer are CONFigured for 10 readings on the 5V range. Thus, each block
of data generated is four bytes (two bytes/reading), followed by the
end-of-block (EOB) and end-of-frame (EOF) flags.

The GENerator digitizer’s trigger source is set to ECLT0. This VXI
backplane trigger line is controlled by the INSerter digitizer which feeds its
(internal) trigger signal to the GENerator digitizer. This causes both
digitizers to sample and transfer readings at approximately the same rate -
which is required for interleaved transfers.

Before setting the digitizer’s Local bus configuration, the Local bus chip is
reset. Next, the Local bus mode is set to GENerate and the feed (data
source) is set to CONVerter:BOTH. Finally, the interleaved transfer mode is
set. The number of readings per block is set to 2, and the end-of-block and
end-of-frame flags are sent after each set of readings. These settings are sent
as a single command string in order to prevent "Settings conflict" errors.

2. INSerter Digitizer Configuration. Like the GENerator digitizer, both
channels of the INSerter digitizer are CONFigured for 10 readings on the
5V range. Each block of data generated is four bytes (two bytes/reading),
followed by the end-of-block (EOB) flag.

The INSerter digitizer’s trigger source is its internal trigger. This trigger is
transferred to the GENerator digitizer over the VXI backplane ECLT0
trigger line. In this program the INSerter digitizer’s sample rate is set to 1
µs, thus, both digitizers sample and transfer readings at approximately a
1MHz rate.

For all digitizers in the interleaved transfer configuation, the Local bus chip
must be reset first. Next, the Local bus mode is set to INSert and the feed
(data source) is set to CONVerter:BOTH. Finally, the interleaved transfer
mode is set.

3. Digitizer Trigger Sources and Sample Rates. When doing interleaved
transfers over the Local bus, all digitizers must have the same trigger source
and the same sample rate. The maximum Local bus transfer rate is 80
MBytes/second which is equivalent to 40 MSamples/ second. The transfer
rate cannot exceed 40 MSamples/second regardless of the number of
digitizers.

4. Arming the Digitizers. In order for all digitizers to sample when a
trigger is received, the digitizers to the left of the rightmost digitizer are
armed (initiated) before the rightmost digitizer is triggered.

Appendix D Local Bus Interleaved Transfers 413

5. Aborting the Digitizers. Following interleaved transfers, the Local bus
chip of each digitizer is left in an active (running) state. Starting with the
leftmost (GENerator) digitizer, it is necessary to ABORt each digitizer
before the next use of the Local bus.

6. Reading Sequence and Format. When this program executes, the
readings are transferred to the memory card (and later displayed) in the
following sequence:

INSerter digitizer channel 2 reading 1
INSerter digitizer channel 1 reading 1
GENerator digitizer channel 2 reading 1
GENerator digitizer channel 1 reading 1
.
.
.
INSerter digitizer channel 2 reading n
INSerter digitizer channel 1 reading n
GENerator digitizer channel 2 reading n
GENerator digitizer channel 1 reading n

The memory card was set up to store the readings in the digitizer’s packed
data format. The packed readings are signed, 16-bit numbers preceded by
the ANSI/IEEE Standard 488.2-1987 Definite Length Arbitrary Block
header. Packed readings are always numbers between -1.0230 (-2046) and
+1.0235 (2047). To convert the readings to voltages, each reading is divided
by 16 to remove the data label bits (0 - 3), and is multipled by 0.0025 which
is the reading resolution for the 5V range (refer to Chapter 3 for more
information on data labels and packed reading conversions).

414 Local Bus Interleaved Transfers Appendix D

 Index
HP E1429A/B Digitizer User’s Manual

*IDN? command, sending, 20

A

A/D readings, 139
A24 base address, 344
A24 base address, determining, 149
A24 registers, accessing, 343
Abbreviated Commands, 182
ABORt, 188
ABORt subsystem, 188
Aborting measurements, procedure, 377
Accessing the registers, 343
Addressing the digitizer over HP-IB, 19
Addressing the digitizer using an embedded
controller, 19
Analog-to-digital converter, 129
Arm count, setting, 117
Arm delay, setting, 117
Arm immediate, register procedure, 376 - 377
Arm immediate, using registers, 376
Arm level range, 117
Arm level, setting, 116
Arm rate, 118
Arm signal slope, setting, 115
ARM signals, synchronization, 118
Arm source, setting, 114
ARM subsystem overview, 114
ARM Synchronization signals, 118
Arm window boundaries, 116
ARM-TRIG state diagram, 112

 post-arm path, 112
 pre-arm path, 112

Arming and triggering, 111
Arming and triggering, register-based, 372
Arming the Digitizer, 113
Arming, immediate, 118
Assigning the Digitizer to a commander, 16
Attenuators, 109

B

Base address, A24 address space, 344
Battery charge, 134
Block diagram, 103
Bus request level, 18

guidelines, 18

C

C language programming, 28
C language programs, development, 30
C program format, 32
Certification, 9
Channels

 configuring with MEASure or CONFigure, 37
Checking for errors, 45
Clock, reference, 124
Command

Abbreviated, 182
Linking, 187
Separator, 182
Types, 181

Command coupling, 28
Command line compiling, 31
Command listings

 as found in the manual, 28
Command parameters, SCPI, 183
Command Reference

ABORt subsystem, 188
Command settings, querying, 43
Commander, E1429A/B digitizer, 16
Commands

ABORt, 188
coupling groups, 186

Common Command Format, 181
Compiling and linking programs, 31
Compiling in the integrated environment, 32
Condition register

 Operation status group, 171
 Questionable signal status group, 169

Condition register, reading, 169, 171
Configuration, Local bus restrictions, 163
CONFigure

Using, 39
when to use, 39

CONFigure command, using, 34

HP E1429A/B User’s Manual Index - 415

CONFigure, taking readings, 40
Configuring the channels, 37
Configuring the digitizer input, register-based, 368
Conformance Information

SCPI, 314
Conformity, declaration, 11
Converting packed readings, 139
Coupled Commands

Executing, 29
Coupling groups, 186
Coupling groups, with MIN and MAX parameters, 186

D

Data flow and storage, 129
Data flow, digitizer, 129
Data format

 Local bus transfers, 165
 VME bus transfers, 155

Data formats, 134
Data Register Offset, 152
Data register, locating, 148
Data register, reading, 155
Data source, Local bus, 165
Data source, VME bus, 153
Data storage, and flow, 129
Data transfer rate, Local bus, 405
Data transfer rates, 139
Data transfers

 Local bus, 158
 VME bus, 148

Declaration of conformity, 11
Definite length arbitrary block header, 135

 removing, 136
Determining the A24 base address, 149
Determining the Battery Charge, 134
Determining the number of readings FETCh(ed)?, 141
DIAGnostic subsystem, 143
DIAGnostic:UPLoad:SADDress?, 142
Differential input ports

 inverting and non-inverting, 108
Digitizer

 arming, 113
 Triggering, 121

Digitizer attenuators, 109
Digitizer block diagram, 103
Digitizer command paths, 105
Digitizer configuration restrictions, 163
Digitizer configurations

 saving, 176
Digitizer data flow, 129
Digitizer data formats, 134
Digitizer features, 13

Digitizer front panel description, 13
Digitizer HP-IB address, 19
Digitizer input section

 block diagram description, 106
 SCPI command control, 106

Digitizer Local bus commands, 161
Digitizer logical address, 16
Digitizer memory

 initializing to retrieve data, 385
 initializing to store data, 378

Digitizer memory configuration, 130
Digitizer programming sequence, 36
Digitizer reference clock, 124
Digitizer sample period, 122
Digitizer specifications, 317
Digitizer status registers, 168
Digitizer VXIbus configuration, 13
Digitizer, re-initiating, 378
Digitizer, VXIbus configuration, 15
Documentation history, 10
Dual rate sampling, 123

E

E1429A/B Logical Address, 16
Embedded controller, addressing the E1429A/B using
an, 19
Embedded controller, VME bus data transfers, 72
Enable register

 Operation status group, 172
 Questionable signal status group, 170

Enabling non-volatile memory, 133
Enabling the 10 MHz filter, register-based, 370
Enabling the input ports, 108
Enabling the inputs, register-based, 369
Enabling the synchronization signal, 120, 129
End-of-line terminator

 suppressing, 29
EOI, terminating commands, 29
EOL terminator

 suppressing, 29
Event register

 Operation status group, 172
 Questionable signal status group, 170

Example program
 Local bus interleaved transfers, 408

Example program configuration, 30
Example program programming language, 49
Example programs

 configuring the digitizer input, 50
 dual rate sampling, 55
 level arming, 52
 Local bus data transfers, 83

416 - Index HP E1429A/B User’s Manual

 pre- and post-arm readings, 53
 specifying a sample rate, 54
 taking a burst of readings, 51
 using, 49
 using multiple digitizers, 56
 using the digitizer status registers, 101
 using the packed data format, 59
 VME bus data transfers, 63
 VME bus data transfers using an embedded

controller, 72
Example programs disk

 C compiliers used, 31
 compiling and linking, 31

Executable when initiated, commands, 186
Executing Coupled Commands, 29

F

FETCh? subsystem, retrieving readings, 140
FETChing readings from memory, 140
Format

Common Command, 181
SCPI Command, 182

Front panel description, 13

G

Getting Started, 13

H

Handshake protocol, 159
High-speed data transfer

 Local bus, 158
 VME bus, 148

How readings are stored in memory, 130
How to make measurements, 37
HP E1429A/B Digitizer Features, 13
HP E1429A/B VXIbus configuration, 15
HP-IB addressing, digitizer, 19

I

Immediate arming, 118
Impedance, setting, 108
Implied keywords, 183
Initializing digitizer memory

 retrieving data, 385
 storing data, 378

Initializing the time base processor, procedure, 382
Initializing the timebase processor

 register programming, 380
INITiate

subsystem syntax, 233
Initiated, executing commands when, 186
Input filter, enabling, 108
Input impedance, setting, 108
Input port, selecting, 107
Input ports, enabling, 108
Input section, 106
Input signal range, setting, 109
Installation, mainframe, 18
Instrument language, SCPI, 28
Interfaces

 message, 105
 register, 105

Interleaved transfer mode, 406
 example program, 408

Interleaved transfers, 405
Introduction to programming, 33
Introductory programs, 20

checking for errors, 45
Digitizer self-test, 21
querying the power-on/reset configuration, 25
resetting and clearing the digitizer, 23
Sending the *IDN? command, 20

Inverting and non-inverting differential input ports,
108

K

Keywords
 optional, 183
implied, 183

L

Languages
 C, 28

Level arming, window boundaries, 116
Line feed, terminating commands, 29
Linking Commands, 187
Local bus

 how data is transferred, 159
Local bus commands, 161
Local bus data format, 165
Local bus data transfer rate, 405
Local bus data transfers, 158

 example programs, 83
 handshake protocol, 159

Local bus description, 158
Local bus device modes, 159
Local bus installation, 18
Local bus interleaved transfers

 programming procedure, 407
Local bus programming sequence

HP E1429A/B User’s Manual Index - 417

 multiple digitizers and interleaved transfers, 405
 multiple digitizers and serial transfers, 162
 single digitizer, 162

Local bus transfer configurations, 161
Local bus transfers, digitizer configuration
restrictions, 163
Local bus transfers, setting the mode, 164
Local bus, setting the interleaved transfer mode, 406
Locating readings in memory, 143
Locating segmented readings, 145
Locating the data register, 148
Locating unsegmented readings, 144
Logical address

 purpose, 16

M

Mainframe installation, 18
Managing memory, 143
MEASure

Using, 37
when to use, 37

MEASure command, using, 34
MEASure? and CONFigure

equivalent commands, 34
Measurement range, register-based, 370
Measurements

how to make, 37
Memory configuration, 130
Memory management, 143
MEMory subsystem, 133
Memory, non-volatile, 133
Message interface, 105
Methods of retrieving readings, 139
MIN and MAX parameters in coupling groups, 186
Modes, Local bus, 159
Multimeter Configurations

Recalling, 177
Multiple digitizers and interleaved transfers, 405
Multiple digitizers and serial transfers, 162
Multiple VME bus data transfers, 157, 167

N

Non-volatile memory, 133
 battery charge, 134

O

Operation status group, 170
 condition register, 171
 enable register, 172
 event register, 172

 transition filter, 171
Optional keywords, 183
Output buffer

READ?, 40
Outputting synchronization signals, 120, 129
Overrange Indications, 139
Oversampling, 123

P

Packed reading conversions, 135
Packed readings, converting, 139
Parameter

 examples, 183
 explanations, 183
 types, 183

Parameters, querying settings, 185
Power-on configuration, 25
Pre- and post-arm readings, separating, 141
Pre-arm reading count, setting, 125
Preparation for use, 16
Presetting the enable register and transition filter, 175
Program flow, 32
Programming

C language, 28
SCPI instrument language, 28

Programming procedure
 Local bus interleaved transfers, 407

Programming sequence, digitizer, 36
Programming, introduction, 33
Programs

introductory, 20

Q

Querying command settings, 43
Querying parameter settings, 185
Questionable signal status group, 169

 condition register, 169
 enable register, 170
 event register, 170
 transition filter, 169

R

Rate, arm, 118
Re-initiating the digitizer, 378
READ? subsystem, retrieving readings, 140
Reading and writing to the shift register, 369
Reading resolution, 139
Reading the data register, 155
Readings, locating in memory, 143
Readings, transfer rates, 139

418 - Index HP E1429A/B User’s Manual

Recalling digitizer configurations
*RCL, 177

Reference clock, 124
Reference source

 setting, 124
Register descriptions

arm count, 374
arm delay, 360
arm source, 373

Register interface, 105
Register programming

 aborting measurements, 377
 setting the arm count, 374
 setting the arm delay, 374
 setting the arm source, 373

Register-based programming
example program system configuration, 341

Registers
arm count, 374
arm delay, 360
arm source, 373

Removing the arbitrary block header, 136
Reset configuration, 25
Resetting and clearing the digitizer, 23
Resolution, reading, 139
Retrieving readings using
DIAGnostic:UPLoad:SADDress?, 142
Retrieving readings using READ?, 140
Retrieving readings with the FETCh? subsystem, 140
Retrieving readings, determining the number of, 141
Retrieving readings, methods, 139
Retrieving readings, transfer speeds, 139
Routing the signal to a source, 120, 128

S

Safety warnings, 10
Sample period

 description, 122
 setting, 122

Sampling
 dual rate, 123

Saving digitizer configurations, 176
*SAV, 177

SCPI
Conformance Information, 314

SCPI command control
 input section, 106

SCPI command coupling, 186
SCPI command execution, 185
SCPI command listings

 as found in the manual, 28
SCPI command parameters, 183

SCPI Commands, 179
Format, 182
Reference, 187

SCPI Conformance Information, 314
SCPI programming, 28
SCPI programming, introduction, 33
Segmented memory, 131
Segmented Reading transfers, 155
Segmented readings, where they are stored, 145
Selecting the input port, 107
Self-test, digitizer, 21
Sending an immediate trigger, 125
Sending commands to the digitizer, 105
Sending the *IDN? command, 20
SENSe, and TRIGger subsystems overview, 121
Separating pre- and post-arm readings, 141
Separator

Command, 182
Setting the arm count, 117
Setting the arm count, procedure, 374
Setting the arm delay, 117
Setting the arm delay, procedure, 375
Setting the arm level, 116
Setting the arm signal slope, 115
Setting the arm source, 114
Setting the arm source, procedure, 373
Setting the input impedance, 108
Setting the input impedance, register-based, 370
Setting the interleaved transfer mode, 406
Setting the Local bus data source, 165
Setting the Local bus transfer mode, 164
Setting the measurement range, register-based, 370
Setting the pre-arm reading count, 125
Setting the reference source, 124
Setting the signal range, 109
Setting the trigger count, 125
Setting the trigger source, 121
Setting the VME bus data source, 153
Setting the VME bus transfer mode, 152
Settings, querying, 43
Shift register, reading and writing, 369
Shift register, using, 368
Signal phase, changing with registers, 376
Single digitizer, 162
Single-ended input

 1V range, 110
Specifications, 317
Specifying the external reference frequency, 124
Standard Commands for Programmable Instruments,
SCPI, 187
Standard Event status group, 172

 standard event status enable register, 173
 standard event status register, 172

HP E1429A/B User’s Manual Index - 419

Standard Event status register
 reading, 173

Status Byte register
reading, 175

Status Byte status group, 174
 Service Request Enable register, 175
 Status Byte register, 174

Status registers, 168
Status registers, example program, 101
Status system registers, 168
Storing readings in memory, 130
Storing readings, segmented, 145
Storing readings, unsegmented, 144
Synchronizing the Digitizer, 176
Syntax, Variable Command, 183

T

Taking readings
 using CONFigure, 40

Terminating commands, 29
Transfer mode, interleaved, 406
Transfer rates, data, 139
Transition filter

 Operation status group, 171
 Questionable signal status group, 169

TRIG, ARM- state diagram, 112
TRIGger and SENSe subsystems overview, 121
Trigger count, setting, 125
Trigger immediate, using registers, 377
Trigger signals, synchronization, 126
Trigger source, setting, 121
Trigger Synchronization signals, 126
Triggering the Digitizer, 121
Triggering, and arming, 111

U

Unsegmented readings, where they are stored, 144
Using MEASure and CONFigure, 34
Using the 1V single-ended input range, 110
Using the A/D Shift Register, 368
Using the digitizer status registers

 example program, 101
Using the example programs, 49
Using the packed reading format, register-based, 372

V

Variable Command Syntax, 183
VINStrument subsystem, 152
VME bus data format, 155
VME bus data transfer, programming sequence, 152

VME bus data Transfers, 148
 multiple, 157, 167

VME bus transfers, setting the mode, 152
VXIbus configuration, digitizer, 15

W

WARNINGS, 10
Warranty, 9
Where segmented readings are stored, 145
Where unsegmented readings are stored, 144

420 - Index HP E1429A/B User’s Manual

	HP E1429A/B Digitizer User's Manual
	HP E1429A/B Digitizer User's Manual
	
	*IDN? command, sending, 20
	A
	A/D readings, 139
	A24 base address, 344
	A24 base address, determining, 149
	A24 registers, accessing, 343
	Abbreviated Commands, 182
	ABORt, 188
	ABORt subsystem, 188
	Aborting measurements, procedure, 377
	Accessing the registers, 343
	Addressing the digitizer over HP-IB, 19
	Addressing the digitizer using an embedded controller, 19
	controller, 19
	Analog-to-digital converter, 129
	Arm count, setting, 117
	Arm delay, setting, 117
	Arm immediate, register procedure, 376 - 377
	Arm immediate, using registers, 376
	Arm level range, 117
	Arm level, setting, 116
	Arm rate, 118
	Arm signal slope, setting, 115
	ARM signals, synchronization, 118
	Arm source, setting, 114
	ARM subsystem overview, 114
	ARM Synchronization signals, 118
	Arm window boundaries, 116
	ARM-TRIG state diagram, 112
	 post-arm path, 112
	 pre-arm path, 112
	Arming and triggering, 111
	Arming and triggering, register-based, 372
	Arming the Digitizer, 113
	Arming, immediate, 118
	Assigning the Digitizer to a commander, 16
	Attenuators, 109
	B
	Base address, A24 address space, 344
	Battery charge, 134
	Block diagram, 103
	Bus request level, 18
	 guidelines, 18
	C
	C language programming, 28
	C language programs, development, 30
	C program format, 32
	Certification, 9
	Channels
	 configuring with MEASure or CONFigure, 37
	Checking for errors, 45
	Clock, reference, 124
	Command
	 Abbreviated, 182
	 Linking, 187
	 Separator, 182
	 Types, 181
	Command coupling, 28
	Command line compiling, 31
	Command listings
	 as found in the manual, 28
	Command parameters, SCPI, 183
	Command Reference
	 ABORt subsystem, 188
	Command settings, querying, 43
	Commander, E1429A/B digitizer, 16
	Commands
	 ABORt, 188
	 coupling groups, 186
	Common Command Format, 181
	Compiling and linking programs, 31
	Compiling in the integrated environment, 32
	Condition register
	 Operation status group, 171
	 Questionable signal status group, 169
	Condition register, reading, 169, 171
	Configuration, Local bus restrictions, 163
	CONFigure
	 Using, 39
	 when to use, 39
	CONFigure command, using, 34
	CONFigure, taking readings, 40
	Configuring the channels, 37
	Configuring the digitizer input, register-based, 368
	Conformance Information
	 SCPI, 314
	Conformity, declaration, 11
	Converting packed readings, 139
	Coupled Commands
	 Executing, 29
	Coupling groups, 186
	Coupling groups, with MIN and MAX parameters, 186
	D
	Data flow and storage, 129
	Data flow, digitizer, 129
	Data format
	 Local bus transfers, 165
	 VME bus transfers, 155
	Data formats, 134
	Data Register Offset, 152
	Data register, locating, 148
	Data register, reading, 155
	Data source, Local bus, 165
	Data source, VME bus, 153
	Data storage, and flow, 129
	Data transfer rate, Local bus, 405
	Data transfer rates, 139
	Data transfers
	 Local bus, 158
	 VME bus, 148
	Declaration of conformity, 11
	Definite length arbitrary block header, 135
	 removing, 136
	Determining the A24 base address, 149
	Determining the Battery Charge, 134
	Determining the number of readings FETCh(ed)?, 141
	DIAGnostic subsystem, 143
	DIAGnostic:UPLoad:SADDress?, 142
	Differential input ports
	 inverting and non-inverting, 108
	Digitizer
	 arming, 113
	 Triggering, 121
	Digitizer attenuators, 109
	Digitizer block diagram, 103
	Digitizer command paths, 105
	Digitizer configuration restrictions, 163
	Digitizer configurations
	 saving, 176
	Digitizer data flow, 129
	Digitizer data formats, 134
	Digitizer features, 13
	Digitizer front panel description, 13
	Digitizer HP-IB address, 19
	Digitizer input section
	 block diagram description, 106
	 SCPI command control, 106
	Digitizer Local bus commands, 161
	Digitizer logical address, 16
	Digitizer memory
	 initializing to retrieve data, 385
	 initializing to store data, 378
	Digitizer memory configuration, 130
	Digitizer programming sequence, 36
	Digitizer reference clock, 124
	Digitizer sample period, 122
	Digitizer specifications, 317
	Digitizer status registers, 168
	Digitizer VXIbus configuration, 13
	Digitizer, re-initiating, 378
	Digitizer, VXIbus configuration, 15
	Documentation history, 10
	Dual rate sampling, 123
	E
	E1429A/B Logical Address, 16
	Embedded controller, addressing the E1429A/B using an, 19
	an, 19
	Embedded controller, VME bus data transfers, 72
	Enable register
	 Operation status group, 172
	 Questionable signal status group, 170
	Enabling non-volatile memory, 133
	Enabling the 10 MHz filter, register-based, 370
	Enabling the input ports, 108
	Enabling the inputs, register-based, 369
	Enabling the synchronization signal, 120, 129
	End-of-line terminator
	 suppressing, 29
	EOI, terminating commands, 29
	EOL terminator
	 suppressing, 29
	Event register
	 Operation status group, 172
	 Questionable signal status group, 170
	Example program
	 Local bus interleaved transfers, 408
	Example program configuration, 30
	Example program programming language, 49
	Example programs
	 configuring the digitizer input, 50
	 dual rate sampling, 55
	 level arming, 52
	 Local bus data transfers, 83
	 pre- and post-arm readings, 53
	 specifying a sample rate, 54
	 taking a burst of readings, 51
	 using, 49
	 using multiple digitizers, 56
	 using the digitizer status registers, 101
	 using the packed data format, 59
	 VME bus data transfers, 63
	 VME bus data transfers using an embedded controller, 72
	controller, 72
	Example programs disk
	 C compiliers used, 31
	 compiling and linking, 31
	Executable when initiated, commands, 186
	Executing Coupled Commands, 29
	F
	FETCh? subsystem, retrieving readings, 140
	FETChing readings from memory, 140
	Format
	 Common Command, 181
	 SCPI Command, 182
	Front panel description, 13
	G
	Getting Started, 13
	H
	Handshake protocol, 159
	High-speed data transfer
	 Local bus, 158
	 VME bus, 148
	How readings are stored in memory, 130
	How to make measurements, 37
	HP E1429A/B Digitizer Features, 13
	HP E1429A/B VXIbus configuration, 15
	HP-IB addressing, digitizer, 19
	I
	Immediate arming, 118
	Impedance, setting, 108
	Implied keywords, 183
	Initializing digitizer memory
	 retrieving data, 385
	 storing data, 378
	Initializing the time base processor, procedure, 382
	Initializing the timebase processor
	 register programming, 380
	INITiate
	 subsystem syntax, 233
	Initiated, executing commands when, 186
	Input filter, enabling, 108
	Input impedance, setting, 108
	Input port, selecting, 107
	Input ports, enabling, 108
	Input section, 106
	Input signal range, setting, 109
	Installation, mainframe, 18
	Instrument language, SCPI, 28
	Interfaces
	 message, 105
	 register, 105
	Interleaved transfer mode, 406
	 example program, 408
	Interleaved transfers, 405
	Introduction to programming, 33
	Introductory programs, 20
	 checking for errors, 45
	 Digitizer self-test, 21
	 querying the power-on/reset configuration, 25
	 resetting and clearing the digitizer, 23
	 Sending the *IDN? command, 20
	Inverting and non-inverting differential input ports, 108
	108
	K
	Keywords
	 optional, 183
	 implied, 183
	L
	Languages
	 C, 28
	Level arming, window boundaries, 116
	Line feed, terminating commands, 29
	Linking Commands, 187
	Local bus
	 how data is transferred, 159
	Local bus commands, 161
	Local bus data format, 165
	Local bus data transfer rate, 405
	Local bus data transfers, 158
	 example programs, 83
	 handshake protocol, 159
	Local bus description, 158
	Local bus device modes, 159
	Local bus installation, 18
	Local bus interleaved transfers
	 programming procedure, 407
	Local bus programming sequence
	 multiple digitizers and interleaved transfers, 405
	 multiple digitizers and serial transfers, 162
	 single digitizer, 162
	Local bus transfer configurations, 161
	Local bus transfers, digitizer configuration restrictions, 163
	restrictions, 163
	Local bus transfers, setting the mode, 164
	Local bus, setting the interleaved transfer mode, 406
	Locating readings in memory, 143
	Locating segmented readings, 145
	Locating the data register, 148
	Locating unsegmented readings, 144
	Logical address
	 purpose, 16
	M
	Mainframe installation, 18
	Managing memory, 143
	MEASure
	 Using, 37
	 when to use, 37
	MEASure command, using, 34
	MEASure? and CONFigure
	 equivalent commands, 34
	Measurement range, register-based, 370
	Measurements
	 how to make, 37
	Memory configuration, 130
	Memory management, 143
	MEMory subsystem, 133
	Memory, non-volatile, 133
	Message interface, 105
	Methods of retrieving readings, 139
	MIN and MAX parameters in coupling groups, 186
	Modes, Local bus, 159
	Multimeter Configurations
	 Recalling, 177
	Multiple digitizers and interleaved transfers, 405
	Multiple digitizers and serial transfers, 162
	Multiple VME bus data transfers, 157, 167
	N
	Non-volatile memory, 133
	 battery charge, 134
	O
	Operation status group, 170
	 condition register, 171
	 enable register, 172
	 event register, 172
	 transition filter, 171
	Optional keywords, 183
	Output buffer
	 READ?, 40
	Outputting synchronization signals, 120, 129
	Overrange Indications, 139
	Oversampling, 123
	P
	Packed reading conversions, 135
	Packed readings, converting, 139
	Parameter
	 examples, 183
	 explanations, 183
	 types, 183
	Parameters, querying settings, 185
	Power-on configuration, 25
	Pre- and post-arm readings, separating, 141
	Pre-arm reading count, setting, 125
	Preparation for use, 16
	Presetting the enable register and transition filter, 175
	Program flow, 32
	Programming
	 C language, 28
	 SCPI instrument language, 28
	Programming procedure
	 Local bus interleaved transfers, 407
	Programming sequence, digitizer, 36
	Programming, introduction, 33
	Programs
	 introductory, 20
	Q
	Querying command settings, 43
	Querying parameter settings, 185
	Questionable signal status group, 169
	 condition register, 169
	 enable register, 170
	 event register, 170
	 transition filter, 169
	R
	Rate, arm, 118
	Re-initiating the digitizer, 378
	READ? subsystem, retrieving readings, 140
	Reading and writing to the shift register, 369
	Reading resolution, 139
	Reading the data register, 155
	Readings, locating in memory, 143
	Readings, transfer rates, 139
	Recalling digitizer configurations
	 *RCL, 177
	Reference clock, 124
	Reference source
	 setting, 124
	Register descriptions
	 arm count, 374
	 arm delay, 360
	 arm source, 373
	Register interface, 105
	Register programming
	 aborting measurements, 377
	 setting the arm count, 374
	 setting the arm delay, 374
	 setting the arm source, 373
	Register-based programming
	 example program system configuration, 341
	Registers
	 arm count, 374
	 arm delay, 360
	 arm source, 373
	Removing the arbitrary block header, 136
	Reset configuration, 25
	Resetting and clearing the digitizer, 23
	Resolution, reading, 139
	Retrieving readings using DIAGnostic:UPLoad:SADDress?, 142
	DIAGnostic:UPLoad:SADDress?, 142
	Retrieving readings using READ?, 140
	Retrieving readings with the FETCh? subsystem, 140
	Retrieving readings, determining the number of, 141
	Retrieving readings, methods, 139
	Retrieving readings, transfer speeds, 139
	Routing the signal to a source, 120, 128
	S
	Safety warnings, 10
	Sample period
	 description, 122
	 setting, 122
	Sampling
	 dual rate, 123
	Saving digitizer configurations, 176
	 *SAV, 177
	SCPI
	 Conformance Information, 314
	SCPI command control
	 input section, 106
	SCPI command coupling, 186
	SCPI command execution, 185
	SCPI command listings
	 as found in the manual, 28
	SCPI command parameters, 183
	SCPI Commands, 179
	 Format, 182
	 Reference, 187
	SCPI Conformance Information, 314
	SCPI programming, 28
	SCPI programming, introduction, 33
	Segmented memory, 131
	Segmented Reading transfers, 155
	Segmented readings, where they are stored, 145
	Selecting the input port, 107
	Self-test, digitizer, 21
	Sending an immediate trigger, 125
	Sending commands to the digitizer, 105
	Sending the *IDN? command, 20
	SENSe, and TRIGger subsystems overview, 121
	Separating pre- and post-arm readings, 141
	Separator
	 Command, 182
	Setting the arm count, 117
	Setting the arm count, procedure, 374
	Setting the arm delay, 117
	Setting the arm delay, procedure, 375
	Setting the arm level, 116
	Setting the arm signal slope, 115
	Setting the arm source, 114
	Setting the arm source, procedure, 373
	Setting the input impedance, 108
	Setting the input impedance, register-based, 370
	Setting the interleaved transfer mode, 406
	Setting the Local bus data source, 165
	Setting the Local bus transfer mode, 164
	Setting the measurement range, register-based, 370
	Setting the pre-arm reading count, 125
	Setting the reference source, 124
	Setting the signal range, 109
	Setting the trigger count, 125
	Setting the trigger source, 121
	Setting the VME bus data source, 153
	Setting the VME bus transfer mode, 152
	Settings, querying, 43
	Shift register, reading and writing, 369
	Shift register, using, 368
	Signal phase, changing with registers, 376
	Single digitizer, 162
	Single-ended input
	 1V range, 110
	Specifications, 317
	Specifying the external reference frequency, 124
	Standard Commands for Programmable Instruments, SCPI, 187
	SCPI, 187
	Standard Event status group, 172
	 standard event status enable register, 173
	 standard event status register, 172
	Standard Event status register
	 reading, 173
	Status Byte register
	 reading, 175
	Status Byte status group, 174
	 Service Request Enable register, 175
	 Status Byte register, 174
	Status registers, 168
	Status registers, example program, 101
	Status system registers, 168
	Storing readings in memory, 130
	Storing readings, segmented, 145
	Storing readings, unsegmented, 144
	Synchronizing the Digitizer, 176
	Syntax, Variable Command, 183
	T
	Taking readings
	 using CONFigure, 40
	Terminating commands, 29
	Transfer mode, interleaved, 406
	Transfer rates, data, 139
	Transition filter
	 Operation status group, 171
	 Questionable signal status group, 169
	TRIG, ARM- state diagram, 112
	TRIGger and SENSe subsystems overview, 121
	Trigger count, setting, 125
	Trigger immediate, using registers, 377
	Trigger signals, synchronization, 126
	Trigger source, setting, 121
	Trigger Synchronization signals, 126
	Triggering the Digitizer, 121
	Triggering, and arming, 111
	U
	Unsegmented readings, where they are stored, 144
	Using MEASure and CONFigure, 34
	Using the 1V single-ended input range, 110
	Using the A/D Shift Register, 368
	Using the digitizer status registers
	 example program, 101
	Using the example programs, 49
	Using the packed reading format, register-based, 372
	V
	Variable Command Syntax, 183
	VINStrument subsystem, 152
	VME bus data format, 155
	VME bus data transfer, programming sequence, 152
	VME bus data Transfers, 148
	 multiple, 157, 167
	VME bus transfers, setting the mode, 152
	VXIbus configuration, digitizer, 15
	W
	WARNINGS, 10
	Warranty, 9
	Where segmented readings are stored, 145
	Where unsegmented readings are stored, 144

