
Programmer’s Guide

Publication number 01670-97021
March 2002

For Safety information, Warranties, and Regulatory

information, see the pages behind the Index

© Copyright Agilent Technologies 1992-2002
 All Rights Reserved

Agilent Technologies
1670G-Series Logic Analyzers

ii

In This Book

This programmer’s guide contains general
information, instrument level commands,
logic analyzer commands, oscilloscope
module commands, pattern generator
module commands, and programming
examples for programming the Agilent
Technologies 1670G-series logic
analyzers. This guide focuses on how to
program the instrument over the GPIB
and the RS-232-C interfaces. For
information on using Ethernet refer to
the LAN section of your User’s Guide.

Instruments covered by the Agilent

Technologies 1670G-Series

Programmer’s Guide

The Agilent 1670G-series logic analyzers
are available with or without oscilloscope
measurement capabilities and pattern
generator capabilities. The Agilent
1670G-series logic analyzer has a hard
disk drive and optional Ethernet
capability.

What is in the Agilent Technologies

1670G-Series Programmer’s Guide?

The Agilent Technologies 1670G-Series
Programmer’s Guide is organized in six
parts.

Introduction to Programming the
Agilent Technologies 1670G1

Programming Over GPIB2

Programming Over RS-232-C3

Programming and
Documentation Conventions4

Message Communication
and System Functions5

Status Reporting6

Error Messages7

Common Commands8

Instrument Commands9

Module Level Commands10

SYSTem Subsystem11

MMEMory Subsystem12

WLISt Subsystem14

SFORmat Subsystem15

MACHine Subsystem13

iii

Part 1 Part 1, consists of chapters 1 through 7 and contains general
information about programming basics, GPIB and RS-232-C interface
requirements, documentation conventions, status reporting, and error
messages.

If you are already familiar with IEEE 488.2 programming and GPIB or
RS-232-C, you may want to just scan these chapters. If you are new to
programming the system, you should read part 1.

Chapter 1 is divided into two sections. The first section, "Talking to the
Instrument," concentrates on program syntax, and the second section,
"Receiving Information from the Instrument," discusses how to send queries
and how to retrieve query results from the instrument.

Read either chapter 2, "Programming Over GPIB," or chapter 3,
"Programming Over RS-232-C" for information concerning the physical
connection between the Agilent Technologies 1670G-series logic analyzer
and your controller.

Chapter 4, "Programming and Documentation Conventions," gives an
overview of all instructions and also explains the notation conventions used
in the syntax definitions and examples.

Chapter 5, "Message Communication and System Functions," provides an
overview of the operation of instruments that operate in compliance with the
IEEE 488.2 standard.

Chapter 6 explains status reporting and how it can be used to monitor the
flow of your programs and measurement process.

Chapter 7 contains error message descriptions.

Part 2 Part 2, chapters 8 through 13, explains each command in the
command set for the entire logic analyzer. These chapters are organized
in subsystems with each subsystem representing a front-panel menu.

The commands explained in this part give you access to common commands,
instrument commands, system level commands, disk commands,
intermodule measurement, and module level commands. This part is
designed to provide a concise description of each command.

Part 3 Part 3, chapters 14 through 27, explains each command in the
subsystem command set for the logic analyzer. Chapter 27 contains
information on the SYSTem:DATA and SYSTem:SETup commands for
the logic analyzer.

iv

The commands explained in this part give
you access to all the commands used to
operate the logic analyzer portion of the
Agilent 1670-series system. This part is
designed to provide a concise description
of each command.

Part 4 Part 4, chapters 28 through 36
explain each command in the subsystem
command set for the oscilloscope. The
information covered in Part 4 is only
relevant to models containing an
oscilloscope.

The commands explained in this part give
you access to all the commands used to
operate the oscilloscope. This part is
designed to provide a concise description
of each command.

Part 5 Part 5, chapters 37 through 42
explain each command in the subsystem
command set for the pattern generator.
The information covered in Part 5 is only
relevant to models containing a pattern
generator.

The commands explained in this part give
you access to all the commands used to
operate the pattern generator portion of
the Agilent 1670G-series system. This
part is designed to provide a concise
description of each command.

STRigger (STRace) Subsystem16

SLISt Subsystem17

SWAVeform Subsystem18

SCHart Subsystem19

COMPare Subsystem20

TFORmat Subsystem21

TTRIGger {TTRACe} Subsystem22

TWAVeform Subsystem23

TLISt Subsystem24

SPA Subsystem25

SYMBol Commands26

DATA and SETup Commands27

Oscilloscope Root Level
Commands28

ACQuire Subsystem29

CHANnel Subsystem30

v

Part 6 Part 6, chapter 43, contains program examples of actual tasks
that show you how to get started in programming the Agilent
1670G-series logic analyzers. The complexity of your programs and the
tasks they accomplish are limited only by your imagination. These
examples are written in HP Basic 6.2; however, the program concepts
can be used in any other popular programming language that allows
communications over GPIB or RS-232 buses.

vi

MEASure Subsystem33

TIMebase Subsystem34

MARKer Subsystem32

DISPlay Subsystem31

TRIGger Subsystem35

WAVeform Subsystems36

Programming the Pattern
Generator37

FORMat Subsystem38

SEQuence Subsystem39

MACRo Subsystem40

SYMBol Subsystem41

DATA and SETup Commands42

Programming Examples43

Index

vii

viii

Table of Contents

Part 1 General Information

1 Introduction to Programming the Agilent Technologies 1670G-

Series Logic Analyzer

Talking to the Instrument 1–3

Initialization 1–4
Instruction Syntax 1–5
Output Command 1–5
Device Address 1–6
Instructions 1–6
Instruction Terminator 1–7
Header Types 1–8
Duplicate Keywords 1–9
Query Usage 1–10
Program Header Options 1–11
Parameter Data Types 1–12
Selecting Multiple Subsystems 1–14

Receiving Information from the Instrument 1–15

Response Header Options 1–16
Response Data Formats 1–17
String Variables 1–18
Numeric Base 1–19
Numeric Variables 1–19
Definite-Length Block Response Data 1–20
Multiple Queries 1–21
Instrument Status 1–22

2 Programming Over GPIB

Interface Capabilities 2–3
Command and Data Concepts 2–3
Addressing 2–3
Communicating Over the GPIB Bus (HP 9000 Series 200/300 Controller) 2–4
Local, Remote, and Local Lockout 2–5

Contents–1

Bus Commands 2–6

3 Programming Over RS-232-C

Interface Operation 3–3
RS-232-C Cables 3–3
Minimum Three-Wire Interface with Software Protocol 3–4
Extended Interface with Hardware Handshake 3–4
Cable Examples 3–6
Configuring the Logic Analyzer Interface 3–8
Interface Capabilities 3–9
RS-232-C Bus Addressing 3–10
Lockout Command 3–11

4 Programming and Documentation Conventions

Truncation Rule 4–3
Infinity Representation 4–4
Sequential and Overlapped Commands 4–4
Response Generation 4–4
Syntax Diagrams 4–4
Notation Conventions and Definitions 4–5
The Command Tree 4–5
Tree Traversal Rules 4–6
Command Set Organization 4–12
Subsystems 4–12
Program Examples 4–13

5 Message Communication and System Functions

Protocols 5–3
Syntax Diagrams 5–5
Syntax Overview 5–7

6 Status Reporting

Event Status Register 6–4
Service Request Enable Register 6–4
Bit Definitions 6–4

Contents

Contents–2

Key Features 6–6
Serial Poll 6–7

7 Error Messages

Device Dependent Errors 7–3
Command Errors 7–3
Execution Errors 7–4
Internal Errors 7–4
Query Errors 7–5

Part 2 Instrument Commands

8 Common Commands

*CLS (Clear Status) 8–5
*ESE (Event Status Enable) 8–6
*ESR (Event Status Register) 8–7
*IDN (Identification Number) 8–9
*IST (Individual Status) 8–9
*OPC (Operation Complete) 8–11
*OPT (Option Identification) 8–12
*PRE (Parallel Poll Enable Register Enable) 8–13
*RST (Reset) 8–14
*SRE (Service Request Enable) 8–15
*STB (Status Byte) 8–16
*TRG (Trigger) 8–17
*TST (Test) 8–18
*WAI (Wait) 8–19

9 Instrument Commands

BEEPer 9–6
CAPability 9–7
CARDcage 9–8
CESE (Combined Event Status Enable) 9–9
CESR (Combined Event Status Register) 9–10
EOI (End Or Identify) 9–11

Contents

Contents–3

LER (LCL Event Register) 9–11
LOCKout 9–12
MENU 9–12
MESE<N> (Module Event Status Enable) 9–14
MESR<N> (Module Event Status Register) 9–16
RMODe 9–18
RTC (Real-time Clock) 9–18
SELect 9–19
SETColor 9–21
STARt 9–22
STOP 9–22
XWINdow 9–23

10 Module Level Commands

ARMLine 10–5
DBLock 10–5
MACHine 10–6
WLISt 10–6

11 SYSTem Subsystem

DATA 11–5
DSP (Display) 11–6
ERRor 11–7
HEADer 11–8
LONGform 11–9
PRINt 11–10
SETup 11–11

12 MMEMory Subsystem

AUToload 12–7
CATalog 12–8
CD (Change Directory) 12–9
COPY 12–10
DOWNload 12–11
INITialize 12–13

Contents

Contents–4

LOAD[:CONFig] 12–14
LOAD:IASSembler 12–15
MKDir (Make Directory) 12–16
MSI (Mass Storage Is) 12–17
PACK 12–18
PURGe 12–18
PWD (Present Working Directory) 12–19
REName 12–19
STORe[:CONFig] 12–20
UPLoad 12–21
VOLume 12–22

Part 3 Logic Analyzer Commands

13 MACHine Subsystem

MACHine 13–4
ARM 13–5
ASSign 13–6
LEVelarm 13–7
NAME 13–8
REName 13–8
RESource 13–9
TYPE 13–10

14 WLISt Subsystem

WLISt (Waveforms/LISting) 14–4
DELay 14–5
INSert 14–6
LINE 14–7
OSTate 14–7
OTIMe 14–8
RANGe 14–8
REMove 14–9
XOTime 14–9
XSTate 14–10
XTIMe 14–10

Contents

Contents–5

15 SFORmat Subsystem

SFORmat 15–6
CLOCk 15–6
LABel 15–7
MASTer 15–9
MOPQual 15–10
MQUal 15–11
REMove 15–12
SETHold 15–12
SLAVe 15–14
SOPQual 15–15
SQUal 15–16
THReshold 15–16

16 STRigger (STRace) Subsystem

Qualifier 16–7
STRigger (STRace) (State Trigger) 16–9
ACQuisition 16–9
BRANch 16–10
CLEar 16–12
FIND 16–13
MLENgth 16–14
RANGe 16–15
SEQuence 16–16
STORe 16–17
TAG 16–18
TAKenbranch 16–19
TCONtrol 16–20
TERM 16–21
TIMER 16–22
TPOSition 16–23

17 SLISt Subsystem

SLISt 17–7
COLumn 17–7

Contents

Contents–6

CLRPattern 17–8
DATA 17–9
LINE 17–9
MMODe (Marker Mode) 17–10
OPATtern 17–11
OSEarch 17–12
OSTate 17–13
OTAG 17–14
OVERlay 17–15
REMove 17–15
RUNTil (Run Until) 17–16
TAVerage 17–17
TMAXimum 17–17
TMINimum 17–18
VRUNs 17–18
XOTag 17–19
XOTime 17–19
XPATtern 17–20
XSEarch 17–21
XSTate 17–21
XTAG 17–22

18 SWAVeform Subsystem

SWAVeform 18–4
ACCumulate 18–5
ACQuisition 18–5
CENTer 18–6
CLRPattern 18–6
CLRStat 18–7
DELay 18–7
INSert 18–8
MLENgth 18–8
RANGe 18–9
REMove 18–10
TAKenbranch 18–10
TPOSition 18–11

Contents

Contents–7

19 SCHart Subsystem

SCHart 19–4
ACCumulate 19–4
CENTer 19–5
HAXis 19–5
VAXis 19–6

20 COMPare Subsystem

COMPare 20–4
CLEar 20–5
CMASk 20–5
COPY 20–6
DATA 20–6
FIND 20–8
LINE 20–8
MENU 20–9
RANGe 20–9
RUNTil (Run Until) 20–10
SET 20–12

21 TFORmat Subsystem

TFORmat (Timing Format) 21–4
ACQMode 21–5
LABel 21–6
REMove 21–7
THReshold 21–8

22 TTRigger (TTRace) Subsystem

Qualifier 22–6
TTRigger (TTRace)(Trace Trigger) 22–8
ACQuisition 22–9
BRANch 22–9
CLEar 22–12
EDGE 22–13
FIND 22–14

Contents

Contents–8

MLENgth 22–15
RANGe 22–16
SEQuence 22–17
SPERiod 22–18
TCONtrol (Timer Control) 22–19
TERM 22–20
TIMER 22–21
TPOSition (Trigger Position) 22–22

23 TWAVeform Subsystem

TWAVeform 23–7
ACCumulate 23–7
ACQuisition 23–8
CENTer 23–8
CLRPattern 23–9
CLRStat 23–9
DELay 23–9
INSert 23–10
MLENgth 23–11
MMODe (Marker Mode) 23–12
OCONdition 23–12
OPATtern 23–13
OSEarch 23–14
OTIMe 23–15
RANGe 23–16
REMove 23–16
RUNTil (Run Until) 23–17
SPERiod 23–18
TAVerage 23–18
TMAXimum 23–19
TMINimum 23–19
TPOSition 23–19
VRUNs 23–20
XCONdition 23–21
XOTime 23–21
XPATtern 23–22

Contents

Contents–9

XSEarch 23–23
XTIMe 23–24

24 TLISt Subsystem

TLISt 24–7
COLumn 24–7
CLRPattern 24–8
DATA 24–9
LINE 24–9
MMODe (Marker Mode) 24–10
OCONdition 24–11
OPATtern 24–12
OSEarch 24–13
OSTate 24–14
OTAG 24–14
REMove 24–15
RUNTil (Run Until) 24–15
TAVerage 24–16
TMAXimum 24–16
TMINimum 24–17
VRUNs 24–17
XCONdition 24–18
XOTag 24–18
XOTime 24–19
XPATtern 24–19
XSEarch 24–20
XSTate 24–21
XTAG 24–21

25 SPA Subsystem

MODE 25–7
OVERView:BUCKet 25–8
OVERView:HIGH 25–9
OVERView:LABel 25–10
OVERView:LOW 25–11
OVERView:MLENgth 25–12

Contents

Contents–10

OVERView:OMARker 25–13
OVERView:OVSTatistic 25–14
OVERView:XMARker 25–15
HISTogram:HSTatistic 25–16
HISTogram:LABel 25–17
HISTogram:OTHer 25–18
HISTogram:QUALifier 25–19
HISTogram:RANGe 25–20
HISTogram:TTYPe 25–21
TINTerval:AUTorange 25–22
TINTerval:QUALifier 25–22
TINTerval:TINTerval 25–24
TINTerval:TSTatistic 25–25

26 SYMBol Subsystem

SYMBol 26–5
BASE 26–5
PATTern 26–6
RANGe 26–7
REMove 26–8
WIDTh 26–8

27 DATA and SETup Commands

Introduction 27–2

Data Format 27–3
SYSTem:DATA 27–4
Section Header Description 27–6
Section Data 27–6
Data Preamble Description 27–6
Acquisition Data Description 27–10
Tag Data Description 27–12
SYSTem:SETup 27–12

Part 4 Oscilloscope Commands

Contents

Contents–11

28 Oscilloscope Root Level Commands

AUToscale 28–3
DIGitize 28–5

29 ACQuire Subsystem

COUNt 29–4
TYPE 29–5

30 CHANnel Subsystem

COUPling 30–4
ECL 30–5
OFFSet 30–6
PROBe 30–7
RANGe 30–8
TTL 30–9

31 DISPlay Subsystem

ACCumulate 31–4
CONNect 31–5
INSert 31–6
LABel 31–7
MINus 31–8
OVERlay 31–8
PLUS 31–9
REMove 31–9

32 MARKer Subsystem

AVOLt 32–6
ABVolt? 32–7
BVOLt 32–7
CENTer 32–8
MSTats 32–8
OAUTo 32–9
OTIMe 32–10

Contents

Contents–12

RUNTil (Run Until) 32–11
SHOW 32–12
TAVerage? 32–12
TMAXimum? 32–13
TMINimum? 32–13
TMODe 32–14
VMODe 32–15
VOTime? 32–16
VRUNs? 32–16
VXTime? 32–17
XAUTo 32–18
XOTime? 32–19
XTIMe 32–19

33 MEASure Subsystem

ALL? 33–4
FALLtime? 33–5
FREQuency? 33–5
NWIDth? 33–6
OVERshoot? 33–6
PERiod? 33–7
PREShoot? 33–7
PWIDth? 33–8
RISetime? 33–8
SOURce 33–9
VAMPlitude? 33–10
VBASe? 33–10
VMAX? 33–11
VMIN? 33–11
VPP? 33–12
VTOP? 33–12

34 TIMebase Subsystem

DELay 34–4
MODE 34–5
RANGe 34–6

Contents

Contents–13

35 TRIGger Subsystem

CONDition 35–5
DELay 35–7
LEVel 35–8
LOGic 35–10
MODE 35–11
PATH 35–12
SLOPe 35–12
SOURce 35–13

36 WAVeform Subsystem

Format for Data Transfer 36–3
Data Conversion 36–5
COUNt? 36–8
DATA? 36–8
FORMat 36–9
POINts? 36–9
PREamble? 36–10
RECord 36–11
SOURce 36–11
SPERiod? 36–12
TYPE? 36–12
VALid? 36–13
XINCrement? 36–13
XORigin? 36–14
XREFerence? 36–14
YINCrement? 36–15
YORigin? 36–15
YREFerence? 36–16

Part 5 Pattern Generator Commands

37 Programming the Pattern Generator

Programming Overview 37–3

Contents

Contents–14

Example Pattern Generator Program 37–3
Selecting the Pattern Generator 37–4
Command Set Organization 37–5

Pattern Generator Level Commands 37–7

STEP 37–8
RESume 37–10

38 FORMat Subsystem

FORMat Subsystem 38–2

CLOCk 38–3
DELay 38–4
LABel 38–5
MODe 38–7
REMove 38–8

39 SEQuence Subsystem

SEQuence Subsystem 39–2

COLumn 39–4
EPATtern 39–5
INSert 39–7
PROGram 39–10
REMove 39–14

40 MACRo Subsystem

MACRo Subsystem 40–2

INSert 40–5
NAME 40–8
PARameter 40–9
PROGram 40–10
REMove 40–13

Contents

Contents–15

41 SYMBol Subsystem

SYMBol Subsystem 41–2

BASE 41–4
PATTern 41–5
RANGe 41–6
REMove 41–7
WIDTh 41–8

42 DATA and SETup Commands

Data and Setup Commands 42–2

SYSTem:DATA 42–4
SYSTem:SETup 42–5

Part 6 Programming Examples

43 Programming Examples

Making a Timing Analyzer Measurement 43–3
Making a State Analyzer Measurement 43–5
Making a State Compare Measurement 43–9
Transferring the Logic Analyzer Configuration 43–14
Checking for Measurement Completion 43–17
Sending Queries to the Logic Analyzer 43–18

Contents

Contents–16

Part 1

General Information

1

Introduction to Programming
the Agilent Technologies
1670G-Series Logic Analyzer

Introduction

This chapter introduces you to the basics of remote programming and
is organized in two sections. The first section, "Talking to the
Instrument," concentrates on initializing the bus, program syntax and
the elements of a syntax instruction. The second section, "Receiving
Information from the Instrument," discusses how queries are sent and
how to retrieve query results from the mainframe instruments.

The programming instructions explained in this book conform to
IEEE Std 488.2-1987, "IEEE Standard Codes, Formats, Protocols, and
Common Commands." These programming instructions provide a
means of remotely controlling the Agilent Technologies 1670G-series
logic analyzer. There are three general categories of use. You can:

• Set up the instrument and start measurements.

• Retrieve setup information and measurement results.

• Send measurement data to the instrument.

The instructions listed in this manual give you access to the
measurements and front panel features of the Agilent
Technologies 1670G-series logic analyzer. The complexity of your
programs and the tasks they accomplish are limited only by your
imagination. This programming reference is designed to provide a
concise description of each instruction.

1–2

Talking to the Instrument

In general, computers acting as controllers communicate with the
instrument by sending and receiving messages over a remote
interface, such as GPIB or RS-232-C. Instructions for programming
the Agilent Technologies 1670G-series logic analyzer will normally
appear as ASCII character strings embedded inside the output
statements of a "host" language available on your controller. The host
language’s input statements are used to read in responses from the
Agilent Technologies 1670G-series logic analyzer.

For example, HP 9000 Series 200/300 BASIC (Y2K updates for
currently supported versions of HP BASIC can be found at
http://hp.iwcon.com/tm-y2k/cgi-bin/tm_search.pl) uses the OUTPUT
statement for sending commands and queries to the Agilent
Technologies 1670G-series logic analyzer. After a query is sent, the
response can be read in using the ENTER statement. All
programming examples in this manual are presented in HP BASIC.

Example This BASIC statement sends a command that causes the logic analyzer’s
machine 1 to be a state analyzer:

OUTPUT XXX;":MACHINE1:TYPE STATE" <terminator>

Each part of the above statement is explained in this section.

1–3

Initialization

To make sure the bus and all appropriate interfaces are in a known state,
begin every program with an initialization statement. BASIC provides a
CLEAR command that clears the interface buffer. If you are using GPIB,
CLEAR will also reset the parser in the logic analyzer. The parser is the
program resident in the logic analyzer that reads the instructions you send to
it from the controller.

After clearing the interface, you could preset the logic analyzer to a known
state by loading a predefined configuration file from the disk.

Refer to your controller manual and programming language reference manual
for information on initializing the interface.

Example This BASIC statement would load the configuration file "DEFAULT " (if it
exists) into the logic analyzer.

OUTPUT XXX;":MMEMORY:LOAD:CONFIG ’DEFAULT ’"

Refer to chapter 12, "MMEMory Subsystem" for more information on the
LOAD command.

Example This program demonstrates the basic command structure used to program
the Agilent Technologies 1670G-series logic analyzers.

10 CLEAR XXX !Initialize instrument interface
20 OUTPUT XXX;":SYSTEM:HEADER ON" !Turn headers on
30 OUTPUT XXX;":SYSTEM:LONGFORM ON" !Turn longform on
40 OUTPUT XXX;":MMEM:LOAD:CONFIG ’TEST E’" !Load configuration file
50 OUTPUT XXX;":MENU FORMAT,1" !Select Format menu for machine 1
60 OUTPUT XXX;":RMODE SINGLE" !Select run mode
70 OUTPUT XXX;":START" !Run the measurement

Introduction to Programming the Agilent Technologies 1670G-Series Logic Analyzer
Initialization

1–4

Instruction Syntax

To program the logic analyzer remotely, you must have an understanding of
the command format and structure. The IEEE 488.2 standard governs syntax
rules pertaining to how individual elements, such as headers, separators,
parameters and terminators, may be grouped together to form complete
instructions. Syntax definitions are also given to show how query responses
will be formatted. Figure 1-1 shows the three main syntactical parts of a
typical program statement: Output Command, Device Address, and
Instruction. The instruction is further broken down into three parts:
Instruction header, White space, and Instruction parameters.

Figure 1-1

Program Message Syntax

Output Command

The output command depends on the language you choose to use.
Throughout this guide, HP 9000 Series 200/300 BASIC 6.2 is used in the
programming examples. If you use another language, you will need to find
the equivalents of BASIC Commands, like OUTPUT, ENTER and CLEAR in
order to convert the examples. The instructions are always shown between
the double quotes.

Introduction to Programming the Agilent Technologies 1670G-Series Logic Analyzer
Instruction Syntax

1–5

Device Address

The location where the device address must be specified also depends on the
host language that you are using. In some languages, this could be specified
outside the output command. In BASIC, this is always specified after the
keyword OUTPUT. The examples in this manual use a generic address of
XXX. When writing programs, the number you use will depend on the cable
you use, in addition to the actual address. If you are using an GPIB, see
chapter 2, "Programming over GPIB." If you are using RS-232-C, see
chapter 3, "Programming Over RS-232-C."

Instructions

Instructions (both commands and queries) normally appear as a string
embedded in a statement of your host language, such as BASIC, Pascal or C.
The only time a parameter is not meant to be expressed as a string is when
the instruction’s syntax definition specifies block data. There are just a few
instructions which use block data.

Instructions are composed of two main parts: the header, which specifies the
command or query to be sent; and the parameters, which provide additional
data needed to clarify the meaning of the instruction. Many queries do not
use any parameters.

Instruction Header

The instruction header is one or more keywords separated by colons (:). The
command tree in figure 4-1 illustrates how all the keywords can be joined
together to form a complete header (see chapter 4, "Programming and
Documentation Conventions").

The example in figure 1-1 shows a command. Queries are indicated by
adding a question mark (?) to the end of the header. Many instructions can
be used as either commands or queries, depending on whether or not you
have included the question mark. The command and query forms of an
instruction usually have different parameters.

Introduction to Programming the Agilent Technologies 1670G-Series Logic Analyzer
Device Address

1–6

When you look up a query in this programmer’s reference, you’ll find a
paragraph labeled "Returned Format" under the one labeled "Query." The
syntax definition by "Returned format" will always show the instruction
header in square brackets, like [:SYSTem:MENU], which means the text
between the brackets is optional. It is also a quick way to see what the
header looks like.

White Space

White space is used to separate the instruction header from the instruction
parameters. If the instruction does not use any parameters, white space
does not need to be included. White space is defined as one or more spaces.
ASCII defines a space to be a character, represented by a byte, that has a
decimal value of 32. Tabs can be used only if your controller first converts
them to space characters before sending the string to the instrument.

Instruction Parameters

Instruction parameters are used to clarify the meaning of the command or
query. They provide necessary data, such as: whether a function should be
on or off, which waveform is to be displayed, or which pattern is to be looked
for. Each instruction’s syntax definition shows the parameters, as well as the
range of acceptable values they accept. This chapter’s "Parameter Data
Types" section has all of the general rules about acceptable values.

When there is more than one parameter, they are separated by commas (,).
White space surrounding the commas is optional.

Instruction Terminator

An instruction is executed after the instruction terminator is received. The
terminator is the NL (New Line) character. The NL character is an ASCII
linefeed character (decimal 10).

The NL (New Line) terminator has the same function as an EOS (End Of
String) and EOT (End Of Text) terminator.

Introduction to Programming the Agilent Technologies 1670G-Series Logic Analyzer
Instruction Terminator

1–7

Header Types

There are three types of headers: Simple Command, Compound Command,
and Common Command.

Simple Command Header

Simple command headers contain a single keyword. START and STOP are
examples of simple command headers typically used in this logic analyzer.
The syntax is: <function><terminator>

When parameters (indicated by <data>) must be included with the simple
command header, the syntax is: <function><white_space><data>
<terminator>

Example :RMODE SINGLE<terminator>

Compound Command Header

Compound command headers are a combination of two or more program
keywords. The first keyword selects the subsystem, and the last keyword
selects the function within that subsystem. Sometimes you may need to list
more than one subsystem before being allowed to specify the function. The
keywords within the compound header are separated by colons. For
example, to execute a single function within a subsystem, use the following:
:<subsystem>:<function><white_space><data><terminator>

Example :SYSTEM:LONGFORM ON

To traverse down one level of a subsystem to execute a subsystem within
that subsystem, use the following:
<subsystem>:<subsystem>:<function><white_space>
<data><terminator>

Example :MMEMORY:LOAD:CONFIG "FILE "

Introduction to Programming the Agilent Technologies 1670G-Series Logic Analyzer
Header Types

1–8

Common Command Header

Common command headers control IEEE 488.2 functions within the logic
analyzer, such as, clear status. The syntax is:
 *<command header><terminator>

No white space or separator is allowed between the asterisk and the
command header. *CLS is an example of a common command header.

Combined Commands in the Same Subsystem

To execute more than one function within the same subsystem, a semicolon
(;) is used to separate the functions:
:<subsystem>:<function><white
space><data>;<function><white space><data><terminator>

Example :SYSTEM:LONGFORM ON;HEADER ON

Duplicate Keywords

Identical function keywords can be used for more than one subsystem. For
example, the function keyword MMODE may be used to specify the marker
mode in the subsystem for state listing or the timing waveforms:

• :SLIST:MMODE PATTERN - sets the marker mode to pattern in
the state listing.

• :TWAVEFORM:MMODE TIME - sets the marker mode to time in
the timing waveforms.

SLIST and TWAVEFORM are subsystem selectors, and they determine which
marker mode is being modified.

Introduction to Programming the Agilent Technologies 1670G-Series Logic Analyzer
Duplicate Keywords

1–9

Query Usage

Logic analyzer instructions that are immediately followed by a question mark
(?) are queries. After receiving a query, the logic analyzer parser places the
response in the output buffer. The output message remains in the buffer
until it is read or until another logic analyzer instruction is issued. When
read, the message is transmitted across the bus to the designated listener
(typically a controller).

Query commands are used to find out how the logic analyzer is currently
configured. They are also used to get results of measurements made by the
logic analyzer.

Example This instruction places the current full-screen time for machine 1 in the
output buffer.

:MACHINE1:TWAVEFORM:RANGE?

In order to prevent the loss of data in the output buffer, the output buffer
must be read before the next program message is sent. Sending another
command before reading the result of the query will cause the output buffer
to be cleared and the current response to be lost. This will also generate a
"QUERY UNTERMINATED" error in the error queue. For example, when you
send the query :TWAVEFORM:RANGE? you must follow that with an input
statement. In BASIC, this is usually done with an ENTER statement.

In BASIC, the input statement, ENTER XXX; Range , passes the value
across the bus to the controller and places it in the variable Range.

Additional details on how to use queries is in the next section of this chapter,
"Receiving Information for the Instrument."

Introduction to Programming the Agilent Technologies 1670G-Series Logic Analyzer
Query Usage

1–10

Program Header Options

Program headers can be sent using any combination of uppercase or
lowercase ASCII characters. Logic analyzer responses, however, are always
returned in uppercase.

Both program command and query headers may be sent in either long form
(complete spelling), short form (abbreviated spelling), or any combination of
long form and short form.

Programs written in long form are easily read and are almost self-
documenting. The short form syntax conserves the amount of controller
memory needed for program storage and reduces the amount of I/O activity.

The rules for short form syntax are discussed in chapter 4, "Programming and
Documentation Conventions."

Example Either of the following examples turns on the headers and long form.
Long form:

OUTPUT XXX;":SYSTEM:HEADER ON;LONGFORM ON"

Short form:

OUTPUT XXX;":SYST:HEAD ON;LONG ON"

Introduction to Programming the Agilent Technologies 1670G-Series Logic Analyzer
Program Header Options

1–11

Parameter Data Types

There are three main types of data which are used in parameters. They are
numeric, string, and keyword. A fourth type, block data, is used only for a few
instructions: the DATA and SETup instructions in the SYSTem subsystem
(see chapter 11); the CATalog, UPLoad, and DOWNload instructions in the
MMEMory subsystem (see chapter 12). These syntax rules also show how
data may be formatted when sent back from the Agilent 1670G-series logic
analyzer as a response.

The parameter list always follows the instruction header and is separated
from it by white space. When more than one parameter is used, they are
separated by commas. You are allowed to include one or more white spaces
around the commas, but it is not mandatory.

Numeric data

For numeric data, you have the option of using exponential notation or using
suffixes to indicate which unit is being used. However, exponential notation
is only applicable to the decimal number base. Tables 5-1 and 5-2 in chapter
5, "Message Communications and System Functions," list all available
suffixes. Do not combine an exponent with a unit.

Example The following numbers are all equal:

28 = 0.28E2 = 280E-1 = 28000m = 0.028K.

The base of a number is shown with a prefix. The available bases are binary
(#B), octal (#Q), hexadecimal (#H) and decimal (default).

Example The following numbers are all equal:

#B11100 = #Q34 = #H1C = 28

You may not specify a base in conjunction with either exponents or unit
suffixes. Additionally, negative numbers must be expressed in decimal.

Introduction to Programming the Agilent Technologies 1670G-Series Logic Analyzer
Parameter Data Types

1–12

When a syntax definition specifies that a number is an integer, that means
that the number should be whole. Any fractional part would be ignored,
truncating the number. Numeric parameters that accept fractional values are
called real numbers.

All numbers are expected to be strings of ASCII characters. Thus, when
sending the number 9, you send a byte representing the ASCII code for the
character "9" (which is 57, or 0011 1001 in binary). A three-digit number,
like 102, will take up three bytes (ASCII codes 49, 48 and 50). This is taken
care of automatically when you include the entire instruction in a string.

String data

String data may be delimited with either single (’) or double (") quotes.
String parameters representing labels are case-sensitive. For instance, the
labels "Bus A" and "bus a" are unique and should not be used
indiscriminately. Also pay attention to the presence of spaces, because they
act as legal characters just like any other. So, the labels "In" and " In" are
also two different labels.

Keyword data

In many cases a parameter must be a keyword. The available keywords are
always included with the instruction’s syntax definition. When sending
commands, either the longform or shortform (if one exists) may be used.
Uppercase and lowercase letters may be mixed freely. When receiving
responses, upper-case letters will be used exclusively. The use of longform
or shortform in a response depends on the setting you last specified via the
SYSTem:LONGform command (see chapter 11).

Introduction to Programming the Agilent Technologies 1670G-Series Logic Analyzer
Parameter Data Types

1–13

Selecting Multiple Subsystems

You can send multiple program commands and program queries for different
subsystems on the same line by separating each command with a semicolon.
The colon following the semicolon enables you to enter a new subsystem.
<instruction header><data>;:<instruction header><data>
<terminator>

Multiple commands may be any combination of simple, compound and
common commands.

Example :MACHINE1:ASSIGN2;:SYSTEM:HEADERS ON

Introduction to Programming the Agilent Technologies 1670G-Series Logic Analyzer
Selecting Multiple Subsystems

1–14

Receiving Information from the Instrument

After receiving a query (logic analyzer instruction followed by a question
mark), the logic analyzer interrogates the requested function and places the
answer in its output queue. The answer remains in the output queue until it
is read, or, until another command is issued. When read, the message is
transmitted across the bus to the designated listener (typically a controller).
The input statement for receiving a response message from an logic
analyzer’s output queue usually has two parameters: the device address and
a format specification for handling the response message.

All results for queries sent in a program message must be read before another
program message is sent. For example, when you send the query
:MACHINE1:ASSIGN? , you must follow that query with an input statement.
In BASIC, this is usually done with an ENTER statement.

The format for handling the response messages is dependent on both the
controller and the programming language.

Example To read the result of the query command :SYSTEM:LONGFORM? you can
execute this BASIC statement to enter the current setting for the long form
command in the numeric variable Setting.

ENTER XXX; Setting

1–15

Response Header Options

The format of the returned ASCII string depends on the current settings of
the SYSTEM HEADER and LONGFORM commands. The general format is
<instruction_header><space><data><terminator>

The header identifies the data that follows (the parameters) and is controlled
by issuing a :SYSTEM:HEADER ON/OFF command. If the state of the
header command is OFF, only the data is returned by the query.

The format of the header is controlled by the :SYSTEM:LONGFORM ON/OFF
command. If long form is OFF , the header will be in its short form and the
header will vary in length, depending on the particular query. The separator
between the header and the data always consists of one space.

A command or query may be sent in either long form or short form, or in any
combination of long form and short form. The HEADER and LONGFORM
commands only control the format of the returned data, and, they have no
affect on the way commands are sent.

Refer to chapter 11, "SYSTem Subsystem" for information on turning the
HEADER and LONGFORM commands on and off.

Example The following examples show some possible responses for a
:MACHINE1:SFORMAT:THRESHOLD2? query:

with HEADER OFF:

<data><terminator>

with HEADER ON and LONGFORM OFF:

:MACH1:SFOR:THR2<white_space><data><terminator>

with HEADER ON and LONGFORM ON:

:MACHINE1:SFORMAT:THRESHOLD2<white_space><data><terminator>

Introduction to Programming the Agilent Technologies 1670G-Series Logic Analyzer
Response Header Options

1–16

Response Data Formats

Both numbers and strings are returned as a series of ASCII characters, as
described in the following sections. Keywords in the data are returned in the
same format as the header, as specified by the LONGform command. Like
the headers, the keywords will always be in uppercase.

Example The following are possible responses to the MACHINE1: TFORMAT: LAB?
’ADDR’ query.

Header on; Longform on

MACHINE1:TFORMAT:LABEL "ADDR ",19,POSITIVE<terminator>

Header on;Longform off

MACH1:TFOR:LAB "ADDR ",19,POS<terminator>

Header off; Longform on

"ADDR ",19,POSITIVE<terminator>

Header off; Longform off

"ADDR ",19,POS<terminator>

Refer to the individual commands in Parts 2 and 3 of this guide for
information on the format (alpha or numeric) of the data returned from each
query.

Introduction to Programming the Agilent Technologies 1670G-Series Logic Analyzer
Response Data Formats

1–17

String Variables

Because there are so many ways to code numbers, the Agilent
Technologies 1670G-series logic analyzer handles almost all data as ASCII
strings. Depending on your host language, you may be able to use other
types when reading in responses.

Sometimes it is helpful to use string variables in place of constants to send
instructions to the Agilent Technologies 1670G-series logic analyzer, such as,
including the headers with a query response.

Example This example combines variables and constants in order to make it easier to
switch from MACHINE1 to MACHINE2. In BASIC, the & operator is used for
string concatenation.

 5 OUTPUT XXX;":SELECT 1" !Select the logic analyzer
10 LET Machine$ = ":MACHINE2" !Send all instructions to machine 2
20 OUTPUT XXX; Machine$ & ":TYPE STATE" !Make machine a state analyzer
30 ! Assign all labels to be positive
40 OUTPUT XXX; Machine$ & ":SFORMAT:LABEL ’CHAN 1’, POS"
50 OUTPUT XXX; Machine$ & ":SFORMAT:LABEL ’CHAN 2’, POS"
60 OUTPUT XXX; Machine$ & ":SFORMAT:LABEL ’OUT’, POS"
99 END

If you want to observe the headers for queries, you must bring the returned
data into a string variable. Reading queries into string variables requires little
attention to formatting.

Example This command line places the output of the query in the string variable
Result$.

ENTER XXX;Result$

In the language used for this book (HP BASIC 6.2), string variables are case-
sensitive and must be expressed exactly the same each time they are used.

Introduction to Programming the Agilent Technologies 1670G-Series Logic Analyzer
String Variables

1–18

The output of the logic analyzer may be numeric or character data depending
on what is queried. Refer to the specific commands, in Parts 2 and 3 of this
guide, for the formats and types of data returned from queries.

Example The following example shows logic analyzer data being returned to a string
variable with headers off:
10 OUTPUT XXX;":SYSTEM:HEADER OFF"
20 DIM Rang$[30]
30 OUTPUT XXX;":MACHINE1:TWAVEFORM:RANGE?"
40 ENTER XXX;Rang$
50 PRINT Rang$
60 END

After the program runs, the controller displays: +1.00000E-05

Numeric Base

Most numeric data will be returned in the same base as shown onscreen.
When the prefix #B precedes the returned data, the value is in the binary
base. Likewise, #Q is the octal base and #H is the hexadecimal base. If no
prefix precedes the returned numeric data, then the value is in the decimal
base.

Numeric Variables

If your host language can convert from ASCII to a numeric format, then you
can use numeric variables. Turning off the response headers will help you
avoid accidentally trying to convert the header into a number.

Example The following example shows logic analyzer data being returned to a numeric
variable.
10 OUTPUT XXX;":SYSTEM:HEADER OFF"
20 OUTPUT XXX;":MACHINE1:TWAVEFORM:RANGE?"
30 ENTER XXX;Rang
40 PRINT Rang
50 END

Introduction to Programming the Agilent Technologies 1670G-Series Logic Analyzer
Numeric Base

1–19

This time the format of the number (such as, whether or not exponential
notation is used) is dependent upon your host language. The output will
resemble 1.E-5 in BASIC.

Definite-Length Block Response Data

Definite-length block response data, also referred to as block data, allows any
type of device-dependent data to be transmitted over the system interface as
a series of data bytes. Definite-length block data is particularly useful for
sending large quantities of data, or, for sending 8-bit extended ASCII codes.
The syntax is a pound sign (#) followed by a non-zero digit representing the
number of digits in the decimal integer. Following the non zero digit is the
decimal integer that states the number of 8-bit data bytes to follow. This
number is followed by the actual data.

Indefinite-length block data is not supported on the Agilent Technologies
1670G-series logic analyzer.

For example, for transmitting 80 bytes of data, the syntax would be:

Figure 1-2

Definite-Length Block Response Data

The "8" states the number of digits that follow, and "00000080" states the
number of bytes to be transmitted, which is 80.

Introduction to Programming the Agilent Technologies 1670G-Series Logic Analyzer
Definite-Length Block Response Data

1–20

Multiple Queries

You can send multiple queries to the logic analyzer within a single program
message, but you must also read them back within a single program message.
This can be accomplished by either reading them back into a string variable
or into multiple numeric variables.

Example You can read the result of the query :SYSTEM:HEADER?;LONGFORM? into
the string variable Results$ with the command:

ENTER XXX; Results$

When you read the result of multiple queries into string variables, each
response is separated by a semicolon.

Example The response of the query :SYSTEM:HEADER?:LONGFORM? with HEADER
and LONGFORM turned on is:

:SYSTEM:HEADER 1;:SYSTEM:LONGFORM 1

If you do not need to see the headers when the numeric values are returned,
then you could use numeric variables. When you are receiving numeric data
into numeric variables, the headers should be turned off. Otherwise the
headers may cause misinterpretation of returned data.

Example The following program message is used to read the query
:SYSTEM:HEADERS?;LONGFORM? into multiple numeric variables:

ENTER XXX; Result1, Result2

Introduction to Programming the Agilent Technologies 1670G-Series Logic Analyzer
Multiple Queries

1–21

Instrument Status

Status registers track the current status of the logic analyzer. By checking
the instrument status, you can find out whether an operation has been
completed, whether the instrument is receiving triggers, and more.
Chapter 6, "Status Reporting," explains how to check the status of the
instrument.

Introduction to Programming the Agilent Technologies 1670G-Series Logic Analyzer
Instrument Status

1–22

2

Programming Over GPIB

Introduction

This section describes the GPIB interface functions and some general
concepts of GPIB. In general, these functions are defined by IEEE
488.1 (GPIB bus standard). They deal with general bus management
issues, as well as messages which can be sent over the bus as bus
commands.

2–2

Interface Capabilities

The interface capabilities of the Agilent 1670G-series logic analyzer, as
defined by IEEE 488.1 are SH1, AH1, T5, TE0, L3, LE0, SR1, RL1, PP0, DC1,
DT1, C0, and E2.

Command and Data Concepts

GPIB has two modes of operation: command mode and data mode. The bus
is in command mode when the ATN line is true. The command mode is used
to send talk and listen addresses and various bus commands, such as a group
execute trigger (GET). The bus is in the data mode when the ATN line is
false. The data mode is used to convey device-dependent messages across
the bus. These device-dependent messages include all of the instrument
commands and responses found in chapters 8 through 27 of this manual.

Addressing

By attaching the logic analyzer printer or controller to the GPIB Port, you
automatically place the GPIB interface in "talk-only" or "talk/listen" mode.
Talk only mode must be used when you want the logic analyzer to talk
directly to a printer without the aid of a controller. Addressed talk/listen
mode is used when the logic analyzer will operate in conjunction with a
controller. When the logic analyzer is in the addressed talk/listen mode, the
following is true:

• Each device on the GPIB resides at a particular address ranging from 0 to
30.

• The active controller specifies which devices will talk and which will listen.

• An instrument, therefore, may be talk-addressed, listen-addressed, or
unaddressed by the controller.

Programming Over GPIB
Interface Capabilities

2–3

If the controller addresses the instrument to talk, it will remain configured to
talk until it receives:

• an interface clear message (IFC)

• another instrument’s talk address (OTA)

• its own listen address (MLA)

• a universal untalk (UNT) command

If the controller addresses the instrument to listen, it will remain configured
to listen until it receives:

• an interface clear message (IFC)

• its own talk address (MTA)

• a universal unlisten (UNL) command

Communicating Over the GPIB Bus (HP 9000 Series
200/300 Controller)

Because GPIB can address multiple devices through the same interface card,
the device address passed with the program message must include not only
the correct instrument address, but also the correct interface code. The
device address is calculated by multiplying the Interface Select Code by 100,
and adding the instrument address.

Interface Select Code (Selects the Interface)

Each interface card has its own interface select code. This code is used by
the controller to direct commands and communications to the proper
interface. The default is always "7" for GPIB controllers.

Instrument Address (Selects the Instrument)

Each instrument on the GPIB port must have a unique instrument address
between decimals 0 and 30. The device address passed with the program
message must include not only the correct instrument address, but also the
correct interface select code.

Programming Over GPIB
Communicating Over the GPIB Bus (HP 9000 Series 200/300 Controller)

2–4

Example For example, if the instrument address is 4 and the interface select code is 7,
the instruction will cause an action in the instrument at device address 704.

DEVICE ADDRESS = (Interface Select Code) × 100 + (Instrument
Address)

Local, Remote, and Local Lockout

The local, remote, and remote with local lockout modes may be used for
various degrees of front-panel control while a program is running. The logic
analyzer will accept and execute bus commands while in local mode, and the
front panel will also be entirely active. If the Agilent 1670G-series logic
analyzer is in remote mode, the logic analyzer will go from remote to local
with any front panel activity. In remote with local lockout mode, all controls
(except the power switch) are entirely locked out. Local control can only be
restored by the controller.

 C A U T I O N Cycling the power will restore local control, but this will also reset certain
GPIB states. It also resets the logic analyzer to the power-on defaults and
purges any acquired data in the acquisition memory.

The instrument is placed in remote mode by setting the REN (Remote
Enable) bus control line true, and then addressing the instrument to listen.
The instrument can be placed in local lockout mode by sending the local
lockout (LLO) command (see :LOCKout in chapter 9, "Instrument
Commands"). The instrument can be returned to local mode by either
setting the REN line false, or sending the instrument the go to local (GTL)
command.

Programming Over GPIB
Local, Remote, and Local Lockout

2–5

Bus Commands

The following commands are IEEE 488.1 bus commands (ATN true). IEEE
488.2 defines many of the actions which are taken when these commands are
received by the logic analyzer.

Device Clear

The device clear (DCL) or selected device clear (SDC) commands clear the
input and output buffers, reset the parser, clear any pending commands, and
clear the Request-OPC flag.

Group Execute Trigger (GET)

The group execute trigger command will cause the same action as the
START command for Group Run: the instrument will acquire data for the
active waveform and listing displays.

Interface Clear (IFC)

This command halts all bus activity. This includes unaddressing all listeners
and the talker, disabling serial poll on all devices, and returning control to the
system controller.

Programming Over GPIB
Bus Commands

2–6

3

Programming Over RS-232-C

Introduction

This chapter describes the interface functions and some general
concepts of RS-232-C. The RS-232-C interface on this instrument is
Agilent’s implementation of EIA Recommended Standard RS-232-C,
"Interface Between Data Terminal Equipment and Data
Communications Equipment Employing Serial Binary Data
Interchange." With this interface, data is sent one bit at a time, and
characters are not synchronized with preceding or subsequent data
characters. Each character is sent as a complete entity without
relationship to other events.

3–2

Interface Operation

The Agilent 1670G-series logic analyzer can be programmed with a controller
over RS-232-C using either a minimum three-wire or extended hardwire
interface. The operation and exact connections for these interfaces are
described in more detail in the following sections. When you are
programming an Agilent 1670G-series over RS-232-C with a controller, you
are normally operating directly between two DTE (Data Terminal
Equipment) devices as compared to operating between a DTE device and a
DCE (Data Communications Equipment) device.

When operating directly between two DTE devices, certain considerations
must be taken into account. For a three-wire operation, XON/XOFF must be
used to handle protocol between the devices. For extended hardwire
operation, protocol may be handled either with XON/XOFF or by
manipulating the CTS and RTS lines of the RS-232-C link. For both three-
wire and extended hardwire operation, the DCD and DSR inputs to the logic
analyzer must remain high for proper operation.

With extended hardwire operation, a high on the CTS input allows the logic
analyzer to send data, and a low disables the logic analyzer data transmission.
Likewise, a high on the RTS line allows the controller to send data, and a low
signals a request for the controller to disable data transmission. Because
three-wire operation has no control over the CTS input, internal pull-up
resistors in the logic analyzer assure that this line remains high for proper
three-wire operation.

RS-232-C Cables

Selecting a cable for the RS-232-C interface depends on your specific
application, and, whether you wish to use software or hardware handshake
protocol. The following paragraphs describe which lines of the
Agilent 1670G-series logic analyzer are used to control the handshake
operation of the RS-232-C bus relative to the system. To locate the proper
cable for your application, refer to the reference manual for your computer or
controller. Your computer or controller manual should describe the exact
handshake protocol your controller can use to operate over the RS-232-C
bus. Also in this chapter you will find cable recommendations for hardware
handshake.

Programming Over RS-232-C
Interface Operation

3–3

Minimum Three-Wire Interface with Software Protocol

With a three-wire interface, the software (as compared to interface
hardware) controls the data flow between the logic analyzer and the
controller. The three-wire interface provides no hardware means to control
data flow between the controller and the logic analyzer. Therefore,
XON/OFF protocol is the only means to control this data flow. The
three-wire interface provides a much simpler connection between devices
since you can ignore hardware handshake requirements.

The communications software you are using in your computer/controller must
be capable of using XON/XOFF exclusively in order to use three-wire interface
cables. For example, some communications software packages can use
XON/XOFF but are also dependent on the CTS and DSR lines being true to
communicate.

The logic analyzer uses the following connections on its RS-232-C interface
for three-wire communication:

• Pin 7 SGND (Signal Ground)

• Pin 2 TD (Transmit Data from logic analyzer)

• Pin 3 RD (Receive Data into logic analyzer)

The TD (Transmit Data) line from the logic analyzer must connect to the RD
(Receive Data) line on the controller. Likewise, the RD line from the logic
analyzer must connect to the TD line on the controller. Internal pull-up
resistors in the logic analyzer assure the DCD, DSR, and CTS lines remain
high when you are using a three-wire interface.

Extended Interface with Hardware Handshake

With the extended interface, both the software and the hardware can control
the data flow between the logic analyzer and the controller. This allows you
to have more control of data flow between devices. The logic analyzer uses
the following connections on its RS-232-C interface for extended interface
communication:

Programming Over RS-232-C
Minimum Three-Wire Interface with Software Protocol

3–4

• Pin 7 SGND (Signal Ground)

• Pin 2 TD (Transmit Data from logic analyzer)

• Pin 3 RD (Receive Data into logic analyzer)

The additional lines you use depends on your controller’s implementation of
the extended hardwire interface.

• Pin 4 RTS (Request To Send) is an output from the logic analyzer which
can be used to control incoming data flow.

• Pin 5 CTS (Clear To Send) is an input to the logic analyzer which
controls data flow from the logic analyzer.

• Pin 6 DSR (Data Set Ready) is an input to the logic analyzer which
controls data flow from the logic analyzer within two bytes.

• Pin 8 DCD (Data Carrier Detect) is an input to the logic analyzer which
controls data flow from the logic analyzer within two bytes.

• Pin 20 DTR (Data Terminal Ready) is an output from the logic analyzer
which is enabled as long as the logic analyzer is turned on.

The TD (Transmit Data) line from the logic analyzer must connect to the RD
(Receive Data) line on the controller. Likewise, the RD line from the logic
analyzer must connect to the TD line on the controller.

The RTS (Request To Send), is an output from the logic analyzer which can
be used to control incoming data flow. A true on the RTS line allows the
controller to send data and a false signals a request for the controller to
disable data transmission.

The CTS (Clear To Send), DSR (Data Set Ready), and DCD (Data Carrier
Detect) lines are inputs to the logic analyzer, which control data flow from
the logic analyzer. Internal pull-up resistors in the logic analyzer assure the
DCD and DSR lines remain high when they are not connected. If DCD or
DSR are connected to the controller, the controller must keep these lines
along with the CTS line high to enable the logic analyzer to send data to the
controller. A low on any one of these lines will disable the logic analyzer data
transmission. Pulling the CTS line low during data transmission will stop
logic analyzer data transmission immediately. Pulling either the DSR or DCD
line low during data transmission will stop logic analyzer data transmission,
but as many as two additional bytes may be transmitted from the logic
analyzer.

Programming Over RS-232-C
Extended Interface with Hardware Handshake

3–5

Cable Examples

HP 9000 Series 300

Figure 3-1 is an example of how to connect the Agilent 1670G-series to the
HP 98628A interface card of an HP 9000 series 300 controller. For more
information on cabling, refer to the reference manual for your specific
controller.

Because this example does not have the correct connections for hardware
handshake, you must use the XON/XOFF protocol when connecting the logic
analyzer.

Figure 3-1

Cable Example

HP Vectra Personal Computers and Compatibles

Figures 3-2 through 3-4 give examples of three cables that will work for the
extended interface with hardware handshake. Keep in mind that these
cables should work if your computer’s serial interface supports the four
common RS-232-C handshake signals as defined by the RS-232-C standard.
The four common handshake signals are Data Carrier Detect (DCD), Data
Terminal Ready (DTR), Clear to Send (CTS), and Ready to Send (RTS).

Figure 3-2 shows the schematic of a 25-pin female to 25-pin male cable. The
following cables support this configuration:

• 17255D, DB-25(F) to DB-25(M), 1.2 meter

• 17255F, DB-25(F) to DB-25(M), 1.2 meter, shielded.

In addition to the female-to-male cables with this configuration, a
male-to-male cable 1.2 meters in length is also available:

• 17255M, DB-25(M) to DB-25(M), 1.2 meter

Programming Over RS-232-C
Cable Examples

3–6

Figure 3-2

25-pin (F) to 25-pin (M) Cable

Figure 3-3 shows the schematic of a 25-pin male to 25-pin male cable 5
meters in length. The following cable supports this configuration:

• 13242G, DB-25(M) to DB-25(M), 5 meter

Figure 3-3

25-pin (M) to 25-pin (M) Cable

Programming Over RS-232-C
Cable Examples

3–7

Figure 3-4 shows the schematic of a 9-pin female to 25-pin male cable. The
following cables support this configuration:

• 24542G, DB-9(F) to DB-25(M), 3 meter

• 24542H, DB-9(F) to DB-25(M), 3 meter, shielded

• 45911-60009, DB-9(F) to DB-25(M), 1.5 meter

Figure 3-4

9-pin (F) to 25-pin (M) Cable

Configuring the Logic Analyzer Interface

The RS-232-C menu field in the System External I/O menu allows you access
to the RS-232-C Settings menu where the RS-232-C interface is configured.
If you are not familiar with how to configure the RS-232-C interface, refer to
the Agilent 1670G-Series Logic Analyzers User’s Guide.

Programming Over RS-232-C
Configuring the Logic Analyzer Interface

3–8

Interface Capabilities

The baud rate, stopbits, parity, protocol, and databits must be configured
exactly the same for both the controller and the logic analyzer to properly
communicate over the RS-232-C bus. The RS-232-C interface capabilities of
the Agilent 1670G-series logic analyzer are listed below:

• Baud Rate: 110, 300, 600, 1200, 2400, 4800, 9600, or 19.2k

• Stop Bits: 1, 1.5, or 2

• Parity: None, Odd, or Even

• Protocol: None or Xon/Xoff

• Data Bits: 8

Protocol

None With a three-wire interface, selecting None for the protocol does
not allow the sending or receiving device to control data flow. No control
over the data flow increases the possibility of missing data or transferring
incomplete data.

With an extended hardwire interface, selecting None allows a hardware
handshake to occur. With hardware handshake, the hardware signals control
dataflow.

Xon/Xoff Xon/Xoff stands for Transmit On/Transmit Off. With this
mode, the receiver (controller or logic analyzer) controls dataflow, and,
can request that the sender (logic analyzer or controller) stop dataflow.
By sending XOFF (ASCII 19) over its transmit data line, the receiver
requests that the sender disables data transmission. A subsequent XON
(ASCII 17) allows the sending device to resume data transmission.

Data Bits

Data bits are the number of bits sent and received per character that
represent the binary code of that character. Characters consist of either 7 or
8 bits, depending on the application. The Agilent 1670G-series supports 8 bit
only.

8-Bit Mode Information is usually stored in bytes (8 bits at a time).
With 8-bit mode, you can send and receive data just as it is stored,
without the need to convert the data.

Programming Over RS-232-C
Interface Capabilities

3–9

The controller and the Agilent 1670G-series logic analyzer must be in the
same bit mode to properly communicate over the RS-232-C. This means that
the controller must have the capability to send and receive 8-bit data.

See Also For more information on the RS-232-C interface, refer to the Agilent

1670G-Series Logic Analyzers User’s Guide. For information on RS-232-C
voltage levels and connector pinouts, refer to the Agilent 1670G-Series

Logic Analyzers Service Guide.

RS-232-C Bus Addressing

The RS-232-C address you must use is dependent on the computer or
controller you are using to communicate with the logic analyzer.

HP Vectra Personal Computers or compatibles

If you are using an HP Vectra Personal Computer or compatible, it must have
an unused serial port to which you connect the logic analyzer’s RS-232-C
port. The proper address for the serial port is dependent on the hardware
configuration of your computer. Additionally, your communications software
must be configured to address the proper serial port. Refer to your computer
and communications software manuals for more information on setting up
your serial port address.

HP 9000 Series 300 Controllers

Each RS-232-C interface card for the HP 9000 Series 300 controller has its
own interface select code. This code is used by the controller for directing
commands and communications to the proper interface by specifying the
correct interface code for the device address.

Generally, the interface select code can be any decimal value between 0 and
31, except for those interface codes which are reserved by the controller for
internal peripherals and other internal interfaces. This value can be selected
through switches on the interface card. For example, if your RS-232-C
interface select code is 9, the device address required to communicate over
the RS-232-C bus is 9. For more information, refer to the reference manual
for your interface card or controller.

Programming Over RS-232-C
RS-232-C Bus Addressing

3–10

Lockout Command

To lockout the front-panel controls, use the instrument command LOCKout.
When this function is on, all controls (except the power switch) are entirely
locked out. Local control can only be restored by sending the :LOCKout
OFF command.

 C A U T I O N
Cycling the power will also restore local control, but this will also reset
certain RS-232-C states. It also resets the logic analyzer to the power-on
defaults and purges any acquired data in the acquisition memory of all the
installed modules.

See Also For more information on the LOCKout command see chapter 9, "Instrument
Commands."

Programming Over RS-232-C
Lockout Command

3–11

3–12

4

Programming and
Documentation Conventions

Introduction

This chapter covers the programming conventions used in
programming the instrument, as well as the documentation
conventions used in this manual. This chapter also contains a detailed
description of the command tree and command tree traversal.

4–2

Truncation Rule

The truncation rule for the keywords used in headers and parameters is:

If the long form has four or fewer characters, there is no change in the short
form. When the long form has more than four characters the short form is
just the first four characters, unless the fourth character is a vowel. In that
case only the first three characters are used.

There are some commands that do not conform to the truncation rule by design.
These will be noted in their respective description pages.

Some examples of how the truncation rule is applied to various commands
are shown in table 4-1.

Table 4-1 Truncation Examples

Long Form Short Form

OFF OFF

DATA DATA

START STAR

LONGFORM LONG

DELAY DEL

ACCUMULATE ACC

Programming and Documentation Conventions
Truncation Rule

4–3

Infinity Representation

The representation of infinity is 9.9E+37 for real numbers and 32767 for
integers. This is also the value returned when a measurement cannot be
made.

Sequential and Overlapped Commands

IEEE 488.2 makes the distinction between sequential and overlapped
commands. Sequential commands finish their task before the execution of
the next command starts. Overlapped commands run concurrently; therefore,
the command following an overlapped command may be started before the
overlapped command is completed. The overlapped commands for the
Agilent 1670G-series logic analyzers are STARt and STOP.

Response Generation

IEEE 488.2 defines two times at which query responses may be buffered.
The first is when the query is parsed by the instrument and the second is
when the controller addresses the instrument to talk so that it may read the
response. The Agilent 1670G-series logic analyzers will buffer responses to a
query when it is parsed.

Syntax Diagrams

At the beginning of each chapter in Parts 2 and 3, "Commands," is a syntax
diagram showing the proper syntax for each command. All characters
contained in a circle or oblong are literals, and must be entered exactly as
shown. Words and phrases contained in rectangles are names of items used
with the command and are described in the accompanying text of each
command. Each line can only be entered from one direction as indicated by
the arrow on the entry line. Any combination of commands and arguments
that can be generated by following the lines in the proper direction is
syntactically correct. An argument is optional if there is a path around it.
When there is a rectangle which contains the word "space," a white space
character must be entered. White space is optional in many other places.

Programming and Documentation Conventions
Infinity Representation

4–4

Notation Conventions and Definitions

The following conventions are used in this manual when describing
programming rules and example.

< > Angular brackets enclose words or characters that are used to symbolize a
program code parameter or a bus command

::= "is defined as." For example, A ::= B indicates that A can be replaced by B in
any statement containing A.

| "or." Indicates a choice of one element from a list. For example, A | B
indicates A or B, but not both.

... An ellipsis (trailing dots) is used to indicate that the preceding element may
be repeated one or more times.

[] Square brackets indicate that the enclosed items are optional.

{ } When several items are enclosed by braces and separated by vertical bars (|),
one, and only one, of these elements must be selected.

XXX Three Xs after an ENTER or OUTPUT statement represent the device
address required by your controller.

<NL> Linefeed (ASCII decimal 10).

The Command Tree

The command tree (figure 4-1) shows all commands in the
Agilent 1670G-series logic analyzers and the relationship of the commands to
each other. Parameters are not shown in this figure. The command tree
allows you to see what the Agilent 1670G-series parser expects to receive. All
legal headers can be created by traversing down the tree, adding keywords
until the end of a branch has been reached.

Programming and Documentation Conventions
Notation Conventions and Definitions

4–5

Command Types

As shown in chapter 1, in the topic, "Header Types," there are three types of
headers. Each header has a corresponding command type. This section
shows how they relate to the command tree.

System Commands The system commands reside at the top level of
the command tree. These commands are always parsable if they occur at
the beginning of a program message, or are preceded by a colon. START
and STOP are examples of system commands.

Subsystem Commands Subsystem commands are grouped together
under a common node of the tree, such as the MMEMORY commands.

Common Commands Common commands are independent of the tree,
and do not affect the position of the parser within the tree. *CLS and
*RST are examples of common commands.

Tree Traversal Rules

Command headers are created by traversing down the command tree. For
each group of keywords not separated by a branch, one keyword must be
selected. As shown on the tree, branches are always preceded by colons. Do
not add spaces around the colons. The following two rules apply to traversing
the tree:

A leading colon (the first character of a header) or a <terminator> places
the parser at the root of the command tree.

Executing a subsystem command places you in that subsystem until a leading
colon or a <terminator> is found. The parser will stay at the colon above
the keyword where the last header terminated. Any command below that
point can be sent within the current program message without sending the
keywords(s) which appear above them.

Programming and Documentation Conventions
Tree Traversal Rules

4–6

The following examples are written using HP BASIC 6.2. The quoted string is
placed on the bus, followed by a carriage return and linefeed (CRLF). The
three Xs (XXX) shown in this manual after an ENTER or OUTPUT statement
represents the device address required by your controller.

Example 1 In this example, the colon between SYSTEM and HEADER is necessary since
SYSTEM:HEADER is a compound command. The semicolon between the
HEADER command and the LONGFORM command is the required <program
message unit separator> . The LONGFORM command does not need
SYSTEM preceding it, since the SYSTEM:HEADER command sets the parser
to the SYSTEM node in the tree.

OUTPUT XXX;":SYSTEM:HEADER ON;LONGFORM ON"

Example 2 In the first line of this example, the subsystem selector is implied for the
STORE command in the compound command. The STORE command must
be in the same program message as the INITIALIZE command, since the
<program message terminator> will place the parser back at the root
of the command tree.

A second way to send these commands is by placing MMEMORY: before the
STORE command as shown in the fourth line of this example 2.

OUTPUT XXX;":MMEMORY:INITIALIZE;STORE ’FILE ’,’FILE
DESCRIPTION’"

or

OUTPUT XXX;":MMEMORY:INITIALIZE"
OUTPUT XXX;":MMEMORY:STORE ’FILE ’,’FILE DESCRIPTION’"

Example 3 In this example, the leading colon before SYSTEM tells the parser to go back
to the root of the command tree. The parser can then see the
SYSTEM:PRINT command.

OUTPUT XXX;":MMEM:CATALOG?;:SYSTEM:PRINT ALL"

Programming and Documentation Conventions
Tree Traversal Rules

4–7

Figure 4-1

Agilent 1670G-Series Command Tree

Programming and Documentation Conventions
Tree Traversal Rules

4–8

Figure 4-1 (continued)

Agilent 1670G-Series Command Tree (continued)

Programming and Documentation Conventions
Tree Traversal Rules

4–9

Table 4-2

Alphabetic Command Cross-Reference

Command Subsystem
ACCumulate SCHart, SWAVeform, TWAVeform,

ACQMode TFORmat
ACQuisition STRigger, SWAVeform, TTRigger,

TWAVeform
ARM MACHine
ASSign MACHine
AUToload MMEMory
AUTorange TINTerval
BASE SYMBol
BEEPer Mainframe
BRANch STRigger, TTRigger
BUCKet OVERView
CAPability Mainframe
CARDcage Mainframe
CATalog MMEMory
CD MMEMory
CENTer SWAVeform, TWAVeform
CESE Mainframe
CESR Mainframe
CLEar COMPare, STRigger, TTRigger
CLOCk SFORmat
CLRPattern SLISt, SWAVeform, TLISt, TWAVeform
CLRStat SWAVeform, TWAVeform
CMASk COMPare
COLumn SLISt, TLISt
COPY COMPare, MMEMory
DATA COMPare, SLISt, SYSTem, TLISt
DELay SWAVeform, TWAVeform, WLISt
DELete INTermodule
DOWNload MMEMory
DSP SYSTem
EDGE TTRigger
EOI Mainframe
ERRor SYSTem
FIND COMPare, STRigger, TTRigger
GLEDge TTRigger
HAXis SCHart
HEADer SYSTem

Command Subsystem
HIGH OVERView
HISTogram SPA, MODE
HSTatistic HISTogram
HTIMe INTermodule
INITialize MMEMory
INPort INTermodule
INSert INTermodule, SWAVeform, TWAVeform,

WLISt
LABel SFORmat, TFORmat, OVERView,

HISTogram
LER Mainframe
LEVelarm MACHine
LINE COMPare, SLISt, TLISt, WLISt
LOAD MMEMory
LOCKout Mainframe
LONGform SYSTem
LOW OVERView
MACHine Mainframe
MASTer SFORmat
MENU COMPare, Mainframe
MESE Mainframe
MESR Mainframe
MKDir MMEMory
MLENgth STRigger, SWAVeform, SCHart, TTRigger,

TWAVeform
MMEMory Mainframe
MMODe SLISt, TLISt, TWAVeform
MODE SFORmat, SPA
MOPQual SFORmat
MQUal SFORmat
MSI MMEMory
NAME MACHine
OCONdition TLISt, TWAVeform
OMARker OVERView
OPATtern SLISt, TLISt, TWAVeform
OSEarch SLISt, TLISt, TWAVeform
OSTate SLISt, TLISt, WLISt
OTAG SLISt, TLISt
OTHer HISTogram

Programming and Documentation Conventions
Tree Traversal Rules

4–10

Table 4-2 (continued)

Alphabetic Command Cross-Reference

Command Subsystem
OTIMe TWAVeform, WLISt
OVERlay SLISt
OVERView SPA
OVSTatistic OVERView
PACK MMEMory
PATTern SYMBol
PRINt SYSTem
PURGe MMEMory
PWD MMEMory
RANGe COMPare, STRigger, SWAVeform,

SYMBol, TTRigger, TWAVeform, WLISt,
HISTogram

REMove SFORmat, SLISt, SWAVeform, SYMBol,
TFORmat, TLISt, TWAVeform

REName MACHine, MMEMory
RESource MACHine
RMODe Mainframe
RTC Mainframe
RUNTil COMPare, SLISt, TLISt, TWAVeform
SELect Mainframe
SEQuence STRigger, TTRigger
SET COMPare
SETColor Mainframe
SETHold SFORmat
SETup SYSTem
SKEW INTermodule
SLAVe SFORmat
SOPQual SFORmat
SPA Mainframe
SPERiod TTRigger, TWAVeform
SQUal SFORmat
STARt Mainframe
STOP Mainframe
STORe MMEMory, STRigger
TAG STRigger
TAKenbranch STRigger, SWAVeform
TAVerage SLISt, TLISt, TWAVeform
TCONtrol STRigger, TTRigger
TERM STRigger, TTRigger

Command Subsystem
THReshold SFORmat, TFORmat
TIMER STRigger, TTRigger
TINTerval SPA, MODE, TINTerval
TMAXimum SLISt, TLISt, TWAVeform
TMINimum SLISt, TLISt, TWAVeform
TPOSition STRigger, SWAVeform, TTRigger,

TWAVeform
TREE INTermodule
TSTatistic TINTerval
TTIMe INTermodule
TTYPe HISTogram
TYPE MACHine
UPLoad MMEMory
VAXis SCHart
VOLume MMEMory
VRUNs SLISt, TLISt, TWAVeform
WIDTh SYMBol
WLISt Mainframe
XCONdition TLISt, TWAVeform
XMARker OVERView
XOTag SLISt, TLISt
XOTime SLISt, TLISt, TWAVeform, WLISt
XPATtern SLISt, TLISt, TWAVeform
XSEarch SLISt, TLISt, TWAVeform
XSTate SLISt, TLISt, WLISt
XTAG SLISt, TLISt
XTIMe TWAVeform, WLISt
XWINdow Mainframe

Programming and Documentation Conventions
Tree Traversal Rules

4–11

Command Set Organization

The command set for the Agilent 1670G-series logic analyzers is divided into
19 separate groups: common commands, system commands, and 17 sets of
subsystem commands. Each of the 19 groups of commands is described in a
separate chapter in Parts 2 and 3, "Commands." Each of the chapters contain
a brief description of the subsystem, a set of syntax diagrams for those
commands, and finally, the commands for that subsystem in alphabetical
order. The commands are shown in the long form and short form using upper
and lowercase letters. As an example AUToload indicates that the long form
of the command is AUTOLOAD and the short form of the command is AUT .
Each of the commands contain a description of the command, its arguments,
and the command syntax.

Subsystems

There are 17 subsystems in this instrument. In the command tree (figure
4-1) they are shown as branches, with the node above showing the name of
the subsystem. Only one subsystem may be selected at a time. At power on,
the command parser is set to the root of the command tree; therefore, no
subsystem is selected. The 17 subsystems in the Agilent 1670G-series logic
analyzers are:

• SYSTem - controls some basic functions of the instrument.

• MMEMory - provides access to the disk drives.

• INTermodule - provides access to the Intermodule bus (IMB).

• MACHine - provides access to analyzer functions and subsystems.

• WLISt - allows access to the mixed (timing/state) functions.

• SFORmat - allows access to the state format functions.

• STRigger - allows access to the state trigger functions.

• SLISt - allows access to the state listing functions.

• SWAVeform - allows access to the state waveforms functions.

• SCHart - allows access to the state chart functions.

• COMPare - allows access to the compare functions.

• TFORmat - allows access to the timing format functions.

Programming and Documentation Conventions
Command Set Organization

4–12

• TTRigger - allows access to the timing trigger functions.

• TWAVeform - allows access to the timing waveforms functions.

• TLISt - allows access to the timing listing functions.

• SYMBol - allows access to the symbol specification functions.

• SPA - allows access to the System Performance Analysis (SPA)
functions.

Program Examples

The program examples in the following chapters and chapter 28,
"Programming Examples," were written on an HP 9000 Series 200/300
controller using the HP BASIC 6.2 language. The programs always assume a
generic address for the Agilent 1670G-series logic analyzers of XXX.

In the examples, you should pay special attention to the ways in which the
command and/or query can be sent. Keywords can be sent using either the
long form or short form (if one exists for that word). With the exception of
some string parameters, the parser is not case-sensitive. Uppercase and
lowercase letters may be mixed freely. System commands like HEADer and
LONGform allow you to dictate what forms the responses take, but they have
no affect on how you must structure your commands and queries.

Example The following commands all set the timing waveform delay to 100 ms.
Keywords in long form, numbers using the decimal format.
OUTPUT XXX;":MACHINE1:TWAVEFORM:DELAY .1"
Keywords in short form, numbers using an exponential format.
OUTPUT XXX;":MACH1:TWAV:DEL 1E-1"
Keywords in short form using lowercase letters, numbers using a suffix.
OUTPUT XXX;":mach1:twav:del 100ms"

In these examples, the colon shown as the first character of the command is
optional on the Agilent 1670G-series logic analyzer. The space between DELay
and the argument is required.

Programming and Documentation Conventions
Program Examples

4–13

4–14

5

Message Communication and
System Functions

Introduction

This chapter describes the operation of instruments that operate in
compliance with the IEEE 488.2 (syntax) standard. It is intended to
give you enough basic information about the IEEE 488.2 standard to
successfully program the logic analyzer. You can find additional
detailed information about the IEEE 488.2 standard in ANSI/IEEE Std
488.2-1987, "IEEE Standard Codes, Formats, Protocols, and Common
Commands."

The Agilent Technologies 1670G-series logic analyzer is designed to
be compatible with other IEEE 488.2 compatible instruments.
Instruments that are compatible with IEEE 488.2 must also be
compatible with IEEE 488.1 (GPIB bus standard); however, IEEE
488.1 compatible instruments may or may not conform to the IEEE
488.2 standard. The IEEE 488.2 standard defines the message
exchange protocols by which the instrument and the controller will
communicate. It also defines some common capabilities, which are
found in all IEEE 488.2 instruments. This chapter also contains a few
items which are not specifically defined by IEEE 488.2, but deal with
message communication or system functions.

The syntax and protocol for RS-232-C program messages and
response messages for the 1670G-series logic analyzer are structured
very similarly to those described by 488.2. In most cases, the same
structure shown in this chapter for 488.2 also works for RS-232-C.
Because of this, no additional information has been included for
RS-232-C.

5–2

Protocols

The protocols of IEEE 488.2 define the overall scheme used by the controller
and the instrument to communicate. This includes defining when it is
appropriate for devices to talk or listen, and what happens when the protocol
is not followed.

Functional Elements

Before proceeding with the description of the protocol, a few system
components should be understood.

Input Buffer The input buffer of the instrument is the memory area
where commands and queries are stored prior to being parsed and
executed. It allows a controller to send a string of commands to the
instrument which could take some time to execute, and then proceed to
talk to another instrument while the first instrument is parsing and
executing commands.

Output Queue The output queue of the instrument is the memory area
where all output data (<response messages>) are stored until read
by the controller.

Parser The instrument’s parser is the component that interprets the
commands sent to the instrument and decides what actions should be
taken. "Parsing" refers to the action taken by the parser to achieve this
goal. Parsing and executing of commands begins when either the
instrument recognizes a <program message terminator> (defined
later in this chapter) or the input buffer becomes full. If you wish to
send a long sequence of commands to be executed and then talk to
another instrument while they are executing, you should send all the
commands before sending the <program message terminator> .

Message Communication and System Functions
Protocols

5–3

Protocol Overview

The instrument and controller communicate using <program message> s
and <response message> s. These messages serve as the containers into
which sets of program commands or instrument responses are placed.
<program message> s are sent by the controller to the instrument, and
<response message> s are sent from the instrument to the controller in
response to a query message. A <query message> is defined as being a
<program message> which contains one or more queries. The instrument
will only talk when it has received a valid query message, and therefore has
something to say. The controller should only attempt to read a response
after sending a complete query message, but before sending another
<program message> . The basic rule to remember is that the instrument
will only talk when prompted to, and it then expects to talk before being told
to do something else.

Protocol Operation

When the instrument is turned on, the input buffer and output queue are
cleared, and the parser is reset to the root level of the command tree.

The instrument and the controller communicate by exchanging complete
<program message> s and <response message> s. This means that the
controller should always terminate a <program message> before
attempting to read a response. The instrument will terminate <response
message> s except during a hardcopy output.

If a query message is sent, the next message passing over the bus should be
the <response message> . The controller should always read the
complete <response message> associated with a query message before
sending another <program message> to the same instrument.

The instrument allows the controller to send multiple queries in one query
message. This is referred to as sending a "compound query." As will be
noted later in this chapter, multiple queries in a query message are separated
by semicolons. The responses to each of the queries in a compound query
will also be separated by semicolons.

Commands are executed in the order they are received.

Message Communication and System Functions
Protocols

5–4

Protocol Exceptions

If an error occurs during the information exchange, the exchange may not be
completed in a normal manner. Some of the protocol exceptions are shown
below.

Command Error A command error will be reported if the instrument
detects a syntax error or an unrecognized command header.

Execution Error An execution error will be reported if a parameter is
found to be out of range, or if the current settings do not allow execution
of a requested command or query.

Device-specific Error A device-specific error will be reported if the
instrument is unable to execute a command for a strictly device
dependent reason.

Query Error A query error will be reported if the proper protocol for
reading a query is not followed. This includes the interrupted and
unterminated conditions described in the following paragraphs.

Syntax Diagrams

The example syntax diagram is in this chapter are similar to the syntax
diagrams in the IEEE 488.2 specification. Commands and queries are sent to
the instrument as a sequence of data bytes. The allowable byte sequence for
each functional element is defined by the syntax diagram that is shown.

The allowable byte sequence can be determined by following a path in the
syntax diagram. The proper path through the syntax diagram is any path
that follows the direction of the arrows. If there is a path around an element,
that element is optional. If there is a path from right to left around one or
more elements, that element or those elements may be repeated as many
times as desired.

Message Communication and System Functions
Syntax Diagrams

5–5

Figure 5-1

Example Syntax Diagram

Message Communication and System Functions
Syntax Diagrams

5–6

Syntax Overview

This overview is intended to give a quick glance at the syntax defined by
IEEE 488.2. It will help you understand many of the things about the syntax
you need to know.

IEEE 488.2 defines the blocks used to build messages which are sent to the
instrument. A whole string of commands can therefore be broken up into
individual components.

Figure 5-1 is an example syntax diagram and figure 5-2 shows a breakdown of
an example <program message> . There are a few key items to notice:

• A semicolon separates commands from one another. Each <program
message unit> serves as a container for one command. The
<program message unit> s are separated by a semicolon.

• A <program message> is terminated by a <NL> (new line). The
recognition of the <program message terminator> , or <PMT>, by
the parser serves as a signal for the parser to begin execution of
commands. The <PMT> also affects command tree traversal (Chapter 4,
"Programming and Documentation Conventions").

• Multiple data parameters are separated by a comma.

• The first data parameter is separated from the header with one or more
spaces.

• The header MACHINE1:ASSIGN 2,3 is an example of a compound header.
It places the parser in the machine subsystem until the <NL> is
encountered.

• A colon preceding the command header returns you to the top of the
command tree.

Message Communication and System Functions
Syntax Overview

5–7

Figure 5-2

<program message> Parse Tree

Message Communication and System Functions
Syntax Overview

5–8

Upper/Lower Case Equivalence

Upper and lower case letters are equivalent. The mnemonic SINGLE has
the same semantic meaning as the mnemonic single .

<white space>

<white space> is defined to be one or more characters from the ASCII set
of 0 - 32 decimal, excluding 10 decimal (NL). <white space> is used by
several instrument listening components of the syntax. It is usually optional,
and can be used to increase the readability of a program.

Suffix Multiplier The suffix multipliers that the instrument will accept
are shown in table 5-1.

Table 5-1 <suffix mult>

Value Mnemonic

1E18 EX

1E15 PE

1E12 T

1E9 G

1E6 MA

1E3 K

1E-3 M

1E-6 U

1E-9 N

1E-12 P

1E-15 F

1E-18 A

Message Communication and System Functions
Syntax Overview

5–9

Suffix Unit The suffix units that the instrument will accept are shown
in table 5-2.

Table 5-2

<suffix unit>

Suffix Referenced Unit

V Volt

S Second

Message Communication and System Functions
Syntax Overview

5–10

6

Status Reporting

Introduction

Status reporting allows you to use information about the instrument in
your programs, so that you have better control of the measurement
process. For example, you can use status reporting to determine
when a measurement is complete, thus controlling your program, so
that it does not get ahead of the instrument. This chapter describes
the status registers, status bytes and status bits defined by IEEE
488.2 and discusses how they are implemented in the
Agilent 1670G-series logic analyzers. Also in this chapter is a sample
set of steps you use to perform a serial poll over GPIB.

The status reporting feature available over the bus is the serial poll.
IEEE 488.2 defines data structures, commands, and common bit
definitions. There are also instrument-defined structures and bits.

The bits in the status byte act as summary bits for the data structures
residing behind them. In the case of queues, the summary bit is set if
the queue is not empty. For registers, the summary bit is set if any
enabled bit in the event register is set. The events are enabled via the
corresponding event enable register. Events captured by an event
register remain set until the register is read or cleared. Registers are
read with their associated commands. The *CLS command clears all
event registers and all queues except the output queue. If *CLS is
sent immediately following a <program message terminator> ,
the output queue will also be cleared.

6–2

Figure 6-1

Status Byte Structures and Concepts

Status Reporting

6–3

Event Status Register

The Event Status Register is an IEEE 488.2-defined register. The bits in this
register are latched. Once an event happens which sets a bit, that bit will
only be cleared if the register is read.

Service Request Enable Register

The Service Request Enable Register is an 8-bit register. Each bit enables
the corresponding bit in the status byte to cause a service request. The sixth
bit does not logically exist and is always returned as a zero. To read and
write to this register, use the *SRE? and *SRE commands.

Bit Definitions

The following mnemonics are used in figure 6-1 and in chapter 8, "Common
Commands":

MAV - message available

Indicates whether there is a response in the output queue.

ESB - event status bit

Indicates if any of the conditions in the Standard Event Status Register are
set and enabled.

MSS - master summary status

Indicates whether the device has a reason for requesting service. This bit is
returned for the *STB? query.

RQS - request service

Indicates if the device is requesting service. This bit is returned during a
serial poll. RQS will be set to 0 after being read via a serial poll (MSS is not
reset by *STB?).

Status Reporting
Event Status Register

6–4

MSG - message

Indicates whether there is a message in the message queue (Not
implemented in the Agilent 1670G-series logic analyzer).

PON - power on

Indicates power has been turned on.

URQ - user request

Always returns a 0 from the Agilent 1670G-series logic analyzer.

CME - command error

Indicates whether the parser detected an error.

The error numbers and strings for CME, EXE, DDE, and QYE can be read from a
device-defined queue (which is not part of IEEE 488.2) with the query
:SYSTEM:ERROR?.

EXE - execution error

Indicates whether a parameter was out of range, or inconsistent with current
settings.

DDE - device specific error

Indicates whether the device was unable to complete an operation for device
dependent reasons.

QYE - query error

Indicates whether the protocol for queries has been violated.

RQC - request control

Always returns a 0 from the Agilent 1670G-series logic analyzer.

OPC - operation complete

Indicates whether the device has completed all pending operations. OPC is
controlled by the *OPC common command. Because this command can
appear after any other command, it serves as a general-purpose operation
complete message generator.

Status Reporting
Bit Definitions

6–5

LCL - remote to local

Indicates whether a remote to local transition has occurred.

MSB - module summary bit

Indicates that an enable event in one of the status registers has occurred.

Key Features

A few of the most important features of Status Reporting are listed in the
following paragraphs.

Operation Complete

The IEEE 488.2 structure provides one technique that can be used to find
out if any operation is finished. The *OPC command, when sent to the
instrument after the operation of interest, will set the OPC bit in the
Standard Event Status Register. If the OPC bit and the RQS bit have been
enabled, a service request will be generated. The commands that affect the
OPC bit are the overlapped commands.

Example OUTPUT XXX;"*SRE 32 ; *ESE 1" !enables an OPC service
request

Status Byte

The Status Byte contains the basic status information which is sent over the
bus in a serial poll. If the device is requesting service (RQS set), and the
controller serial-polls the device, the RQS bit is cleared. The MSS (Master
Summary Status) bit (read with *STB?) and other bits of the Status Byte are
not be cleared by reading them. Only the RQS bit is cleared when read.

The Status Byte is cleared with the *CLS common command.

Status Reporting
Key Features

6–6

Figure 6-2

Service Request Enabling

Serial Poll

The Agilent 1670G-series logic analyzer supports the IEEE 488.1 serial poll
feature. When a serial poll of the instrument is requested, the RQS bit is
returned on bit 6 of the status byte.

Status Reporting
Serial Poll

6–7

Using Serial Poll (GPIB)

This example will show how to use the service request by conducting a serial
poll of all instruments on the GPIB bus. In this example, assume that there
are two instruments on the bus: a logic analyzer at address 7 and a printer at
address 1.

The HP BASIC 6.2 program command for serial poll is Stat = SPOLL(707) .
The address 707 is the address of the logic analyzer in the this example. The
command for checking the printer is Stat = SPOLL(701) because the
address of that instrument is 01 on bus address 7. This command reads the
contents of the GPIB Status Register into the variable called Stat. At that
time bit 6 of the variable Stat can be tested to see if it is set (bit 6 = 1).

The serial poll operation can be conducted in the following manner:

1 Enable interrupts on the bus. This allows the controller to see the
SRQ line.

2 Disable interrupts on the bus.
3 If the SRQ line is high (some instrument is requesting service) then

check the instrument at address 1 to see if bit 6 of its status register is
high.

4 To check whether bit 6 of an instruments status register is high, use
the following BASIC statement: IF BIT (Stat, 6) THEN

5 If bit 6 of the instrument at address 1 is not high, then check the
instrument at address 7 to see if bit 6 of its status register is high.

6 As soon as the instrument with status bit 6 high is found check the
rest of the status bits to determine what is required.

The SPOLL(707) command causes much more to happen on the bus than
simply reading the register. This command clears the bus automatically,
addresses the talker and listener, sends SPE (serial poll enable) and SPD
(serial poll disable) bus commands, and reads the data. For more
information about serial poll, refer to your controller manual, and
programming language reference manuals.

After the serial poll is completed, the RQS bit in the Status Byte Register will
be reset if it was set. Once a bit in the Status Byte Register is set, it will
remain set until the status is cleared with a *CLS command, or the
instrument is reset.

Status Reporting
Serial Poll

6–8

7

Error Messages

Introduction

This chapter lists the error messages that are returned by the
Agilent 1670G-series logic analyzers.

7–2

Device Dependent Errors

200 Label not found

201 Pattern string invalid

202 Qualifier invalid

203 Data not available

300 RS-232-C error

Command Errors

–100 Command error (unknown command)(generic error)

–101 Invalid character received

–110 Command header error

–111 Header delimiter error

–120 Numeric argument error

–121 Wrong data type (numeric expected)

–123 Numeric overflow

–129 Missing numeric argument

–130 Non numeric argument error (character,string, or block)

–131 Wrong data type (character expected)

–132 Wrong data type (string expected)

–133 Wrong data type (block type #D required)

–134 Data overflow (string or block too long)

–139 Missing non numeric argument

–142 Too many arguments

–143 Argument delimiter error

–144 Invalid message unit delimiter

Error Messages
Device Dependent Errors

7–3

Execution Errors

–200 Can not do (generic execution error)

–201 Not executable in Local Mode

–202 Settings lost due to return-to-local or power on

–203 Trigger ignored

–211 Legal command, but settings conflict

–212 Argument out of range

–221 Busy doing something else

–222 Insufficient capability or configuration

–232 Output buffer full or overflow

–240 Mass Memory error (generic)

–241 Mass storage device not present

–242 No media

–243 Bad media

–244 Media full

–245 Directory full

–246 File name not found

–247 Duplicate file name

–248 Media protected

Internal Errors

–300 Device failure (generic hardware error)

–301 Interrupt fault

–302 System error

–303 Time out

–310 RAM error

–311 RAM failure (hardware error)

–312 RAM data loss (software error)

–313 Calibration data loss

–320 ROM error

Error Messages
Execution Errors

7–4

–321 ROM checksum

–322 Hardware and firmware incompatible

–330 Power on test failed

–340 Self test failed

–350 Too many errors (error queue overflow)

Query Errors

–400 Query error (generic)

–410 Query INTERRUPTED

–420 Query UNTERMINATED

–421 Query received. Indefinite block response in progress

–422 Addressed to talk, nothing to say

–430 Query DEADLOCKED

Error Messages
Query Errors

7–5

7–6

Part 2

Instrument Commands

8

Common Commands

Introduction

The common commands are defined by the IEEE 488.2 standard.
These commands must be supported by all instruments that comply
with this standard. Refer to figure 8-1 and table 8-1 for the common
commands syntax diagram and parameter values.

The common commands control some of the basic instrument
functions such as instrument identification and reset, how status is
read and cleared, and how commands and queries are received and
processed by the instrument. The common commands are:

• *CLS • *PRE

• *ESE • *RST

• *ESR • *SRE

• *IDN • *STB

• *IST • *TRG

• *OPC • *TST

• *OPT • *WAI

Common commands can be received and processed by the
Agilent 1670G-series logic analyzers, whether they are sent over the
bus as separate program messages or within other program messages.
If an instrument subsystem has been selected and a common
command is received by the instrument, the logic analyzer will remain
in the selected subsystem.

Example If the program message in this example is received by the logic
analyzer, it will initialize the disk and store the file and clear the status
information. This is not be the case if some other type of command is
received within the program message.

":MMEMORY:INITIALIZE;*CLS; STORE ’FILE ’,’DESCRIPTION’"

8–2

Example This program message initializes the disk, selects the logic analyzer,
then stores the file. In this example, :MMEMORY must be sent again
in order to reenter the memory subsystem and store the file.

":MMEMORY:INITIALIZE;:SELECT 1;:MMEMORY:STORE ’FILE ’,
’DESCRIPTION’"

Status Registers

Each status register has an associated status enable (mask) register.
By setting the bits in the status enable register you can select the
status information you wish to use. Any status bits that have not been
masked (enabled in the enable register) will not be used to report
status summary information to bits in other status registers.

Refer to chapter 6, "Status Reporting," for a complete discussion of
how to read the status registers and how to use the status information
available from this instrument.

Common Commands

8–3

Figure 8-1

 Common Commands Syntax Diagram

Common Commands

8–4

Table 8-1 Common Command Parameter Values

Parameter Values

mask An integer, 0 through 255.

pre_mask An integer, 0 through 65535.

*CLS (Clear Status)

Command *CLS

The *CLS common command clears all event status registers, queues, and
data structures, including the device defined error queue and status byte. If
the *CLS command immediately follows a <program message terminator>,
the output queue and the MAV (Message Available) bit will be cleared. Refer
to chapter 6, "Status Reporting," for a complete discussion of status.

Example OUTPUT XXX;"*CLS"

Common Commands
*CLS (Clear Status)

8–5

*ESE (Event Status Enable)

Command *ESE <mask>

The *ESE command sets the Standard Event Status Enable Register bits.
The Standard Event Status Enable Register contains a bit to enable the
status indicators detailed in table 8-2. A 1 in any bit position of the Standard
Event Status Enable Register enables the corresponding status bit in the
Standard Event Status Register. Refer to Chapter 6, "Status Reporting" for a
complete discussion of status.

<mask> An integer from 0 to 255

Example In this example, the *ESE 32 command will enable CME (Command Error),
bit 5 of the Standard Event Status Enable Register. Therefore, when a
command error occurs, the event summary bit (ESB) in the Status Byte
Register will also be set.
OUTPUT XXX;"*ESE 32"

Query *ESE?

The *ESE? query returns the current contents of the enable register.
Returned Format <mask><NL>

Example OUTPUT XXX;"*ESE?"

Common Commands
*ESE (Event Status Enable)

8–6

Table 8-2 Standard Event Status Enable Register

Bit Position Bit Weight Enables

7 128 PON - Power On

6 64 URQ - User Request

5 32 CME - Command Error

4 16 EXE - Execution Error

3 8 DDE - Device Dependent Error

2 4 QYE - Query Error

1 2 RQC - Request Control

0 1 OPC - Operation Complete

*ESR (Event Status Register)

Query *ESR?

The *ESR? query returns the contents of the Standard Event Status Register.
Reading the register clears the Standard Event Status Register.

Returned Format <status><NL>

<status> An integer from 0 to 255

Example If a command error has occurred, and bit 5 of the ESE register is set, the
string variable Esr_event$ will have bit 5 (the CME bit) set.
10 OUTPUT XXX;"*ESE 32" !Enables bit 5 of the status register
20 OUTPUT XXX;"*ESR?" !Queries the status register
30 ENTER XXX; Esr_event$!Reads the query buffer

Common Commands
*ESR (Event Status Register)

8–7

Table 8-3 shows the Standard Event Status Register. The table details the
meaning of each bit position in the Standard Event Status Register and the
bit weight. When you read Standard Event Status Register, the value
returned is the total bit weight of all the bits that are high at the time you
read the byte.

Table 8-3 The Standard Event Status Register

Bit Position Bit Weight Bit Name Condition

7 128 PON 0 = register read - not in power up mode
1 = power up

6 64 URQ 0 = user request - not used - always zero

5 32 CME 0 = no command errors
1 = a command error has been detected

4 16 EXE 0 = no execution errors
1 = an execution error has been detected

3 8 DDE 0 = no device dependent error has been detected
1 = a device dependent error has been detected

2 4 QYE 0 = no query errors
1 = a query error has been detected

1 2 RQC 0 = request control - not used - always zero

0 1 OPC 0 = operation is not complete
1 = operation is complete

Common Commands
*ESR (Event Status Register)

8–8

*IDN (Identification Number)

Query *IDN?

The *IDN? query allows the instrument to identify itself. It returns the string:

"Agilent,1670G,0,REV <revision_code>"

An *IDN? query must be the last query in a message. Any queries after the
*IDN? in the program message are ignored.

Returned Format Agilent,1670G,0,REV <revision code>

<revision
code>

Four digit-code in the format XX.XX representing the current ROM revision.

Example OUTPUT XXX;"*IDN?"

*IST (Individual Status)

Query *IST?

The *IST? query allows the instrument to identify itself during parallel poll by
allowing the controller to read the current state of the IEEE 488.1 defined
"ist" local message in the instrument. The response to this query is
dependent upon the current status of the instrument.

Figure 8-2 shows the *IST data structure.
Returned Format <id><NL>

<id> 0 or 1

1 Indicates the "ist" local message is false.

0 Indicates the "ist" local message is true.

Example OUTPUT XXX;"*IST?"

Common Commands
*IDN (Identification Number)

8–9

Figure 8-2

*IST Data Structure

Common Commands
*IST (Individual Status)

8–10

*OPC (Operation Complete)

Command *OPC

The *OPC command will cause the instrument to set the operation complete
bit in the Standard Event Status Register when all pending device operations
have finished. The commands which affect this bit are the overlapped
commands. An overlapped command is a command that allows execution of
subsequent commands while the device operations initiated by the
overlapped command are still in progress. The overlapped commands for the
Agilent 1670G-series logic analyzer are STARt and STOP.

Example OUTPUT XXX;"*OPC"

Query *OPC?

The *OPC? query places an ASCII "1" in the output queue when all pending
device operations have been completed.

Returned Format 1<NL>

Example OUTPUT XXX;"*OPC?"

Common Commands
*OPC (Operation Complete)

8–11

*OPT (Option Identification)

Query *OPT?

The *OPT? query identifies the software installed in the Agilent 1670G-series
logic analyzer. This query returns nine parameters. The first parameter
indicates whether you are in the system. The next two parameters indicate
any software options installed, and the next parameter indicates whether
intermodule is available for the system. The last five parameters list the
installed software for the modules in slot A through E for an 16500A
mainframe. However, the Agilent 1670G-series logic analyzers have only one
slot, A; therefore, only the first parameter of the last five will be relevant. A
zero in any of the last eight parameters indicates that the corresponding
software is not currently installed. The name returned for software options
and module software is the same name that appears in the field in the
upper-left corner of the menu for each option or module.

Returned Format {SYSTEM},{<option>|0},{<option>|0},{INTERMODULE|0},{<module>|0}
,0,0,0,0<NL>

<option> Name of software option.

<module> Name of module software.

Example OUTPUT XXX;"*OPT?"

Common Commands
*OPT (Option Identification)

8–12

*PRE (Parallel Poll Enable Register Enable)

Command *PRE <mask>

The *PRE command sets the Parallel Poll Register enable bits. The Parallel
Poll Enable Register contains a mask value that is ANDed with the bits in the
Status Bit Register to enable an "ist" during a parallel poll. Refer to table 8-4
for the bits in the Parallel Poll Enable Register and for what they mask.

<pre_mask> An integer from 0 to 65535.

Example This example will allow the Agilent 1670G-series logic analyzer to generate
an "ist" when a message is available in the output queue. When a message is
available, the MAV (Message Available) bit in the Status Byte Register will be
high.
Output XXX;"*PRE 16"

Query *PRE?

The *PRE? query returns the current value of the register.
Returned format <mask><NL>

<mask> An integer from 0 through 65535 representing the sum of all bits that are set.

Example OUTPUT XXX;"*PRE?"

Common Commands
*PRE (Parallel Poll Enable Register Enable)

8–13

Table 8-4 Parallel Poll Enable Register

Bit Position Bit Weight Enables

15 -8 Not used

7 128 Not used

6 64 MSS - Master Summary Status

5 32 ESB - Event Status

4 16 MAV - Message Available

3 8 LCL - Local

2 4 Not used

1 2 Not used

0 1 MSB - Module Summary

*RST (Reset)

The *RST command is not implemented on the Agilent 1670G-series logic
analyzer. The Agilent 1670G-series logic analyzer will accept this command,
but the command has no effect on the logic analyzer.

The *RST command is generally used to place the logic analyzer in a
predefined state. Because the Agilent 1670G-series allows you to store
predefined configuration files for individual modules, or for the entire system,
resetting the logic analyzer can be accomplished by simply loading the
appropriate configuration file. For more information, refer to chapter 12,
"MMEMory Subsystem."

Common Commands
*RST (Reset)

8–14

*SRE (Service Request Enable)

Command *SRE <mask>

The *SRE command sets the Service Request Enable Register bits. The
Service Request Enable Register contains a mask value for the bits to be
enabled in the Status Byte Register. A one in the Service Request Enable
Register will enable the corresponding bit in the Status Byte Register. A zero
will disable the bit. Refer to table 8-5 for the bits in the Service Request
Enable Register and what they mask.

Refer to Chapter 6, "Status Reporting," for a complete discussion of status.

<mask> An integer from 0 to 255

Example This example enables a service request to be generated when a message is
available in the output queue. When a message is available, the MAV
(Message Available) bit will be high.

OUTPUT XXX;"*SRE 16"

Query *SRE?

The *SRE? query returns the current value.
Returned Format <mask><NL>

<mask> An integer from 0 to 255 representing the sum of all bits that are set.

Example OUTPUT XXX;"*SRE?"

Common Commands
*SRE (Service Request Enable)

8–15

Table 8-5 Agilent 1670G-Series Service Request Enable Register

Bit Position Bit Weight Enables

15-8 not used

7 128 not used

6 64 MSS - Master Summary Status (always 0)

5 32 ESB - Event Status

4 16 MAV - Message Available

3 8 LCL- Local

2 4 not used

1 2 not used

0 1 MSB - Module Summary

*STB (Status Byte)

Query *STB?

The *STB? query returns the current value of the instrument’s status byte.
The MSS (Master Summary Status) bit, not the RQS (Request Service) bit, is
reported on bit 6. The MSS indicates whether or not the device has at least
one reason for requesting service. Refer to table 8-6 for the meaning of the
bits in the status byte.

Refer to Chapter 6, "Status Reporting" for a complete discussion of status.
Returned Format <value><NL>

<value> An integer from 0 through 255

Example OUTPUT XXX;"*STB?"

Common Commands
*STB (Status Byte)

8–16

Table 8-6 Status Byte Register

Bit Position Bit Weight Bit Name Condition

7 128 not used

6 64 MSS 0 = instrument has no reason for service
1 = instrument is requesting service

5 32 ESB 0 = no event status conditions have occurred
1 = an enabled event status condition has occurred

4 16 MAV 0 = no output messages are ready
1 = an output message is ready

3 8 LCL 0 = a remote-to-local transition has not occurred
1 = a remote-to-local transition has occurred

2 4 not used

1 2 not used

0 1 MSB 0 = a module or the system has activity to report
1 = no activity to report

0 = False = Low
1 = True = High

*TRG (Trigger)

Command *TRG

The *TRG command has the same effect as a Group Execute Trigger (GET):
it starts an intermodule group run. If the analyzer is not configured for a
group run, this command has no effect.

Example OUTPUT XXX;"*TRG"

Common Commands
*TRG (Trigger)

8–17

*TST (Test)

Query *TST?

The *TST? query returns the results of the power-up self-test. The result of
that test is a 9-bit mapped value which is placed in the output queue. A one
in the corresponding bit means that the test failed and a zero in the
corresponding bit means that the test passed. Refer to table 8-7 for the
meaning of the bits returned by a TST? query.

Returned Format <result><NL>

<result> An integer 0 through 511

Example 10 OUTPUT XXX;"*TST?"
20 ENTER XXX;Tst_value

Table 8-7 Bits Returned by *TST? Query (Power-Up Test Results)

Bit Position Bit Weight Test

8 256 Flexible Disk Test

7 128 Hard Disk Test

6 64 not used

5 32 not used

4 16 PS2 Controller Test

3 8 Display Test

2 4 Interrupt Test

1 2 RAM Test

0 1 ROM Test

Common Commands
*TST (Test)

8–18

*WAI (Wait)

Command *WAI

The *WAI command causes the device to wait until completing all of the
overlapped commands before executing any further commands or queries.
An overlapped command is a command that allows execution of subsequent
commands while the device operations initiated by the overlapped command
are still in progress. Some examples of overlapped commands for the Agilent
1670G-series logic analyzer are STARt and STOP.

Example OUTPUT XXX;"*WAI"

Common Commands
*WAI (Wait)

8–19

8–20

9

Instrument Commands

Introduction

Instrument commands control the basic operation of the instrument
for the Agilent 1670G-series logic analyzers. The Agilent 1670G-series
logic analyzers are similar to an 16500 logic analysis system with a
single logic analyzer module (Agilent 1670G).

This chapter contains instrument commands with a syntax example
for each command. Each syntax example contains parameters for the
Agilent 1670-series only. Refer to figure 9-1 and table 9-1 for the
syntax diagram and parameter values of the commands. The
instrument commands are:

• BEEPer • MESE
• CAPability • MESR
• CARDcage • RMODe
• CESE • RTC
• CESR • SELect
• EOI • SETColor
• LER • STARt
• LOCKout • STOP
• MENU • XWINdow

9–2

Figure 9-1

Mainframe Commands Syntax Diagram

Instrument Commands

9–3

Figure 9-1 (continued)

Mainframe Commands Syntax Diagram (continued)

Instrument Commands

9–4

Table 9-1 Mainframe Parameter Values

Parameter Values

value An integer from 0 to 65535

module An integer 0 or 1 (2 through 10 unused)

menu An integer

enable_value An integer from 0 to 255

index An integer from 0 to 5

day An integer from 1 through 31

month An integer from 1 through 12

year An integer from 1990 through 2089

hour An integer from 0 through 23

minute An integer from 0 through 59

second An integer from 0 through 59

color An integer from 1 to 7

hue An integer from 0 to 100

sat An integer from 0 to 100

lum An integer from 0 to 100

display name A string containing an Internet Address and a display number

Instrument Commands

9–5

BEEPer

Command :BEEPer [{ON|1}|{OFF|0}]

The BEEPer command sets the beeper mode, which turns the beeper sound
of the instrument on and off. When BEEPer is sent with no argument, the
beeper will be sounded without affecting the current mode.

Example OUTPUT XXX;":BEEPER"

OUTPUT XXX;":BEEP ON"

Query :BEEPer?

The BEEPer? query returns the mode currently selected.
Returned Format [:BEEPer] {1|0}<NL>

Example OUTPUT XXX;":BEEPER?"

Instrument Commands
BEEPer

9–6

CAPability

Query :CAPability?

The CAPability? query returns the system language and lower level capability
sets implemented in the device.

Table 9-2 lists the capability sets implemented in the Agilent 1670G-series
logic analyzer.

Returned Format [:CAPability]
IEEE488,1987,SH1,AH1,T5,L4,SR1,RL1,PP1,DC1,DT1,C0,E2<NL>

Example OUTPUT XXX;":CAPABILITY?"

Table 9-2 Agilent 1670G-Series Capability Sets

Mnemonic Capability Name Implementation

SH Source Handshake SH1

AH Acceptor Handshake AH1

T Talker (or TE - Extended Talker) T5

L Listener (or LE - Extended Listener) L4

SR Service Request SR1

RL Remote Local RL1

PP Parallel Poll PP1

DC Device Clear DC1

DT Device Trigger DT1

C Any Controller C0

E Electrical Characteristic E2

Instrument Commands
CAPability

9–7

CARDcage

Query :CARDcage?

The CARDcage? query returns 10 integers which identify the card setup that
is installed in the logic analyzer. The Agilent 1670G-series logic analyzers
always return the same series of integers since the analyzers are not
expandable the way an 16500 logic analysis system is.

The string returned by the query is in two parts. The first five two-digit
numbers identify the card type. There are five numbers because this
command also works on the 16500 logic analysis system, which has five card
slots. The identification number for the logic analyzer is 34, and appears
first. If your logic analyzer is a 1672G model, then the next four numbers are
-1. If your logic analyzer is a 1670G or 1671G model, then the next number is
35, and the last three numbers are -1. A "-1" indicates no card is installed.

The second part of the string is five single-digit numbers, which indicate
whether the card’s software is installed. The possible values are 0 and 1
where 0 indicates the card software is not recognized or not loaded. The
value for the logic analyzer will always be 1.

Returned Format [:CARDcage] <ID>,<ID>,<ID>,<ID>,<ID>,
<assign>,<assign>,<assign>,<assign>,<assign><NL>

For the Agilent 1670G and Agilent 1671G logic analyzers, the returned string
is [:CARDcage] 34,35,-1,-1,-1,1,1,0,0,0

For the Agilent 1672G logic analyzer, the returned string is
[:CARDcage] 34,-1,-1,-1,-1,1,0,0,0,0

<ID> An integer indicating the identification number (-1 for not installed).

<assign> An integer indicating the card assignment (0 for not loaded).

Example OUTPUT XXX;":CARDCAGE?"

Instrument Commands
CARDcage

9–8

CESE (Combined Event Status Enable)

Command :CESE <value>

The CESE command sets the Combined Event Status Enable register. This
register is the enable register for the CESR register and contains the
combined status of all of the MESE (Module Event Status Enable) registers
of the Agilent 1670G-series logic analyzers. Table 9-3 lists the bit values for
the CESE register.

<value> An integer from 0 to 65535

Example OUTPUT XXX;":CESE 32"

Query :CESE?

The CESE? query returns the current setting.
Returned Format [:CESE] <value><NL>

Example OUTPUT XXX;":CESE?"

Table 9-3 Agilent 1670G-Series Combined Event Status Enable Register

Bit Weight Enables

3 to 15 not used

2 not used

1 2 logic analyzer

0 1 Intermodule

Instrument Commands
CESE (Combined Event Status Enable)

9–9

CESR (Combined Event Status Register)

Query :CESR?

The CESR? query returns the contents of the Combined Event Status
register. This register contains the combined status of all of the MESRs
(Module Event Status Registers) of the Agilent 1670G-series. Table 9-4 lists
the bit values for the CESR register.

Returned Format [:CESR] <value><NL>

<value> An integer from 0 to 65535

Example OUTPUT XXX;":CESR?"

Table 9-4 Agilent 1670G-Series Combined Event Status Register

Bit Bit Weight Bit Name Condition

2 to 15 0 = not used

1 2 Logic analyzer 0 = No new status
1 = Status to report

0 1 Intermodule 0 = No new status
1 = Status to report

Instrument Commands
CESR (Combined Event Status Register)

9–10

EOI (End Or Identify)

Command :EOI {{ON|1}|{OFF|0}}

The EOI command specifies whether or not the last byte of a reply from the
instrument is to be sent with the EOI bus control line set true or not. If EOI
is turned off, the logic analyzer will no longer be sending IEEE 488.2
compliant responses.

Example OUTPUT XXX;":EOI ON"

Query :EOI?

The EOI? query returns the current status of EOI.
Returned Format [:EOI] {1|0}<NL>

Example OUTPUT XXX;":EOI?"

LER (LCL Event Register)

Query :LER?

The LER? query allows the LCL Event Register to be read. After the LCL
Event Register is read, it is cleared. A one indicates a remote-to-local
transition has taken place. A zero indicates a remote-to-local transition has
not taken place.

Returned Format [:LER] {0|1}<NL>

Example OUTPUT XXX;":LER?"

Instrument Commands
EOI (End Or Identify)

9–11

LOCKout

Command :LOCKout {{ON|1}|{OFF|0}}

The LOCKout command locks out or restores front panel operation. When
this function is on, all controls (except the power switch) are entirely locked
out.

Example OUTPUT XXX;":LOCKOUT ON"

Query :LOCKout?

The LOCKout? query returns the current status of the LOCKout command.
Returned Format [:LOCKout] {0|1}<NL>

Example OUTPUT XXX;":LOCKOUT?"

MENU

Command :MENU <module>[,<menu>]

The MENU command displays the specified menu. The first parameter
indicates system or analyzer. The optional second parameter specifies the
menu. The default is 0. Table 9-5 lists the parameters and the menus. If you
choose a menu that is not available, the logic analyzer returns error -211.

<module> Selects module or system. 0 (integer) selects the system, 1 selects the logic
analyzer. (–2, –1 and 2 to 10 unused)

<menu> Selects menu (integer)

Example OUTPUT XXX;":MENU 0,1"

Instrument Commands
LOCKout

9–12

Table 9-5 Menu Parameter Values

Parameters Menu

0,0 System External I/O

0,1 System Hard Disk

0,2 System Flexible Disk

0,3 System Utilities

0,4 System Test

1,0 Analyzer Configuration

1,1 Format 1

1,2 Format 2

1,3 Trigger 1

1,4 Trigger 2

1,5 Waveform 1

1,6 Waveform 2

1,7 Listing 1

1,8 Listing 2

1,9 Mixed

1,10 Compare 1

1,11 Compare 2

1,12 Chart 1

1,13 Chart 2

Query :MENU?

The MENU? query returns the current menu selection.
Returned Format [:MENU] <module>,<menu><NL>

Example OUTPUT XXX;":MENU?"

Instrument Commands
MENU

9–13

MESE<N> (Module Event Status Enable)

Command :MESE<N> <enable_value>

The Agilent 1670G-series logic analyzers support the MESE command for
compatibility with other logic analyzer programs but do not take any action
when the command is sent. In 16500 programs, the MESE command sets the
Module Event Status Enable register. The <N> index specifies the module,
and the parameter specifies the enable value.

<N> An integer, 0 through 10.

<enable_value> An integer from 0 through 255.

Example OUTPUT XXX;":MESE1 3"

Query :MESE<N>?

The query returns the current setting. Tables 9-6 and 9-7 list the Module
Event Status Enable register bits, bit weights, and what each bit masks for
the mainframe and logic analyzer respectively.

Returned Format [:MESE<N>] <enable_value><NL>

Example OUTPUT XXX;":MESE1?"

Instrument Commands
MESE<N> (Module Event Status Enable)

9–14

Table 9-6 Agilent 1670G-Series Logic Analyzer Mainframe (Intermodule) Module Event Status
Enable Register

Bit Position Bit Weight Enables

7 128 not used

6 84 not used

5 32 not used

4 16 not used

3 8 not used

2 4 not used

1 2 RNT - Intermodule Run Until Satisfied

0 1 MC - Intermodule Measurement Complete

Table 9-7 Agilent 1670G-Series Logic Analyzer Module Event Status Enable Register

Bit Position Bit Weight Enables

7 128 not used

6 84 not used

5 32 not used

4 16 not used

3 8 Pattern searches failed

2 4 Trigger found

1 2 RNT - Run Until Satisfied

0 1 MC - Measurement Complete

Instrument Commands
MESE<N> (Module Event Status Enable)

9–15

MESR<N> (Module Event Status Register)

Query :MESR<N>?

The MESR? query returns the contents of the Module Event Status register.
The <N> index specifies the module. For the Agilent 1670G-series, the <N>
index 0 or 1 refers to system or logic analyzer respectively.

Refer to table 9-8 for information about the Module Event Status Register
bits and their bit weights for the system, and table 9-9 for the logic analyzer.

Returned Format [:MESR<N>] <enable_value><NL>

<N> An integer 0 through 10 (2 through 10 unused).

<enable_value> An integer from 0 through 255

Example OUTPUT XXX;":MESR1?"

Instrument Commands
MESR<N> (Module Event Status Register)

9–16

Table 9-8 Agilent 1670G-Series Logic Analyzer System Module Event Status Register (<N>=0)

Bit Bit Weight Bit Name Condition

7 128 not used

6 64 not used

5 32 not used

4 16 not used

3 8 not used

2 4 not used

1 2 RNT 0 = Run until not satisfied
1 = Run until satisfied

0 1 MC 0 = Measurement not satisfied
1 = Measurement satisfied

Table 9-9 Agilent 1670G-Series Logic Analyzer Module Event Status Register (<N>=1)

Bit Bit Weight Condition

7 128 not used

6 64 not used

5 32 not used

4 16 not used

3 8 1 = One or more pattern searches failed
0 = Pattern searches did not fail

2 4 1 = Trigger found
0 = Trigger not found

1 2 0 = Run until condition not satisfied
1 = Run until condition satisfied

0 1 0 = Measurement not satisfied
1 = Measurement satisfied

Instrument Commands
MESR<N> (Module Event Status Register)

9–17

RMODe

Command :RMODe {SINGle|REPetitive}

The RMODe command specifies the run mode for the logic analyzer.

After specifying the run mode, use the STARt command to start the acquisition.

Example OUTPUT XXX;":RMODE SINGLE"

Query :RMODe?

The query returns the current setting.
Returned Format [:RMODe] {SINGle|REPetitive}<NL>

Example OUTPUT XXX;":RMODE?"

RTC (Real-time Clock)

Command :RTC {<day>,<month>,<year>,<hour>,<minute>,
<second>|DEFault}

The real-time clock command allows you to set the real-time clock to the
current date and time. The DEFault option sets the real-time clock to 01
January 1992, 12:00:00 (24-hour format).

<day> integer from 1 to 31

<month> integer from 1 to 12

<year> integer from 1990 to 2089

Instrument Commands
RMODe

9–18

<hour> integer from 0 to 23

<minute> integer from 0 to 59

<second> integer from 0 to 59

Example This example sets the real-time clock for 1 January 1992, 20:00:00 (8 PM).
OUTPUT XXX;":RTC 1,1,1992,20,0,0"

Query :RTC?

The RTC? query returns the real-time clock setting.
Returned Format [:RTC] <day>,<month>,<year>,<hour>,<minute>,<second>

Example OUTPUT XXX;":RTC?"

SELect

Command :SELect <module>

The SELect command selects which module (or system) will have parser
control. SELect defaults to System (0) at power up. The appropriate module
(or system) must be selected before any module (or system) specific
commands can be sent. SELECT 0 selects the System, and SELECT 1 selects
the logic analyzer (state and timing). Select –2, –1 and, 2 through 10 are
accepted but no action will be taken. When a module is selected, the parser
recognizes the module’s commands and the System/Intermodule commands.
When SELECT 0 is used, only the System/Intermodule commands are
recognized by the parser. Figure 9-2 shows the command tree for the SELect
command.

<module> An integer 0 through 1 (–2, –1, and 2 through 10 unused).

Instrument Commands
SELect

9–19

The command parser in the Agilent 1670G-series logic analyzer is designed to
accept programs written for the 16500 logic analysis system with an 16550A
logic analyzer module; however, if the parameters 2 through 10 are sent, an
Agilent 1670G-series logic analyzer will take no action.

Example OUTPUT XXX;":SELECT 0"

Query :SELect?

The SELect? query returns the current module selection.
Returned Format [:SELect] <module><NL>

Example OUTPUT XXX;":SELECT?"

Figure 9-2

Select Command Tree

Instrument Commands
SELect

9–20

SETColor

Command :SETColor {<color>,<hue>,<sat>,<lum>|DEFault}

The SETColor command is used to change a grayscale shade on the logic
analyzer screen, or to return to the default screen colors. The colors on a
remote display are not affected. Four parameters are sent with the
command to change a color:

• Color Number (first parameter)

• Hue (second parameter)

• Saturation (third parameter)

• Luminosity (last parameter)

<color> An integer from 0 to 7

<hue> An integer from 0 to 100.

<sat> An integer from 0 to 100.

<lum> An integer from 0 to 100

Color Number 0 cannot be changed.

Example OUTPUT XXX;":SETCOLOR 3,60,100,60"
OUTPUT XXX;":SETC DEFAULT"

Query :SETColor? <color>

The SETColor? query returns the values for a specified grayscale shade.
Returned Format [:SETColor] <color>,<hue>,<sat>,<lum><NL>

Example OUTPUT XXX;":SETCOLOR? 3"

Instrument Commands
SETColor

9–21

STARt

Command :STARt

The STARt command starts the logic analyzer running in the specified run
mode (see RMODe).

The STARt command is an overlapped command. An overlapped command is a
command that allows execution of subsequent commands while the device
operations initiated by the overlapped command are still in progress.

Example OUTPUT XXX;":START"

STOP

Command :STOP

The STOP command stops the logic analyzer.

The STOP command is an overlapped command. An overlapped command is a
command that allows execution of subsequent commands while the device
operations initiated by the overlapped command are still in progress.

Example OUTPUT XXX;":STOP"

Instrument Commands
STARt

9–22

XWINdow

Command :XWINdow {OFF|0}
:XWINdow {ON|1}[,<display name>]

The XWINdow command opens or closes a window on an X Window display
server, that is, a networked workstation or personal computer with X Window
software. The XWINdow ON command opens a window. If no display name
is specified, the display name already stored in the logic analyzer X Window
configuration menu is used. If a display name is specified, that name is used.
The specified display name also is stored in non-volatile memory in the logic
analyzer.

<display name> A string containing an Internet (IP) Address optionally followed by a display
and screen specifier. For example,
"12.3.47.11"

or
"12.3.47.11:0.0"

Example To open a window specifying and storing the display name:
OUTPUT XXX;":XWINDOW ON,’12.3.47.11’"

To open a window, using the stored display name:
OUTPUT XXX;":XWINDOW ON"

To close the X Window:
OUTPUT XXX;":XWINDOW OFF"

Instrument Commands
XWINdow

9–23

9–24

10

Module Level Commands

Introduction

The logic analyzer module-level commands access the global functions
of the Agilent 1670G-series logic analyzer. These commands are:

• ARMLine

• MACHine

• WLISt

• DBLock

10–2

Module Level Syntax Diagram

Figure 10-1

Module Level Commands

10–3

Table 10-1 Module Level Parameter Values

Parameter Type of Parameter or Command Reference

machine_num MACHine{1|2}

arm_parm arm parameters see chapter 13

assign_parm assignment parameters see chapter 13

level_parm level parameters see chapter 13

name_parm name parameters see chapter 13

rename_parm rename parameters see chapter 13

res_parm resource parameters see chapter 13

type_parm type parameters see chapter 13

sformat_cmds state format subsystem commands see chapter 15

strace_cmds state trace subsystem commands see chapter 16

slist_cmds state list subsystem commands see chapter 17

swaveform_cmds state waveform subsystem commands see chapter 18

schart_cmds state chart subsystem commands see chapter 19

compare_cmds compare subsystem commands see chapter 20

tformat_cmds timing format subsystem commands see chapter 21

ttrace_cmds timing trace subsystem commands see chapter 22

twaveform_cmds timing waveform subsystem
commands

see chapter 23

tlist_cmds timing listing subsystem commands see chapter 24

symbol_cmds symbol subsystem commands see chapter 26

Module Level Commands

10–4

ARMLine

Command :ARMLine MACHine{1|2}

The ARMLine command selects which machine (analyzer) generates the arm
out signal. This command is only valid when two analyzers are on. However,
the query is always valid.

Example OUTPUT XXX;":ARMLINE MACHINE1"

Query :ARMLine?

Returned Format [:ARMLine]MACHine<N><NL>

Example OUTPUT XXX;":ARMLine?"

DBLock

Command :DBLock {PACKed | UNPacked}

The DBLock command specifies the data block format that is contained in
the response from a :SYSTem:DATA? query. See Chapters 11 and 27 for
more information on the :SYSTem:DATA command and query.

The PACKed option (default) uploads data in a compressed format. This
option is used to upload data for archiving, or for reloading back into the
analyzer. When an analyzer configuration is saved to disk, the PACKed data
format is always used (regardless of the current DBLock selection).

The UNPacked option uploads data in a format that is easy to interpret and
process. The UNPacked format cannot be downloaded back into the analyzer.

Example OUTPUT XXX;":DBLOCK PACKED"

Module Level Commands
ARMLine

10–5

Query :DBLock?

The DBLock query returns the current data block format selection.
Returned Format [:DBLock]{PACKed | UNPacked}<NL>

Example OUTPUT XXX;":DBLock?"

MACHine

Command :MACHine{1|2}

The MACHine command selects which of the two machines (analyzers) the
subsequent commands or queries will refer to. MACHine is also a subsystem
containing commands that control the logic analyzer system level functions.
Examples include pod assignments, analyzer names, and analyzer type. See
chapter 13 for details about the MACHine Subsystem.

Example OUTPUT XXX;":MACHINE1:NAME ’DRAMTEST’"

WLISt

Command :WLISt

The WLISt selector accesses the commands used to place markers and query
marker positions in Timing/State Mixed mode. The WLISt subsystem also
contains commands that allows you to insert waveforms from other
time-correlated machines and modules. The details of the WLISt subsystem
are in chapter 14.

Example OUTPUT XXX;":WLIST:OTIME 40.0E −6"

Module Level Commands
MACHine

10–6

11

SYSTem Subsystem

Introduction

SYSTem subsystem commands control functions that are common to
the entire Agilent 1670G-series logic analyzer, including formatting
query responses and enabling reading and writing to the advisory line
of the instrument. The command parser in the Agilent 1670G-series
logic analyzer is designed to accept programs written for the 16500
logic analysis system with an 16550A logic analyzer module.

Refer to figure 11-1 and table 11-1 for the System Subsystem
commands syntax diagram and parameter values. The SYSTem
Subsystem commands are

• DATA

• DSP

• ERRor

• HEADer

• LONGform

• PRINt

• SETup

11–2

Figure 11-1

SYSTem Subsystem Commands Syntax Diagram

SYSTem Subsystem

11–3

Table 11-1 SYSTem Parameter Values

Parameter Values

block_data Data in IEEE 488.2 format.

string A string of up to 68 alphanumeric characters.

pathname A string of up to 10 alphanumeric characters for LIF in the
following form:
NNNNNNNNNN
or
A string of up to 64 alphanumeric characters for DOS in one of
the following forms:
NNNNNNNN.NNN when the file resides in the present
working directory
or
\NAME_DIR\FILENAME when the files does not reside in the

present working directory

SYSTem Subsystem

11–4

DATA

Command :SYSTem:DATA <block_data>

The DATA command allows you to send and receive acquired data to and
from a controller in block form. This helps saving block data for:

• Reloading to the logic analyzer

• Processing data later in the logic analyzer

• Processing data in the controller

The format and length of block data depends on the instruction being used
and the configuration of the analyzer. This chapter describes briefly the
syntax of the Data command and query. See chapter 27, "DATA and SETup
Commands" for additional information.

Example OUTPUT XXX;":SYSTEM:DATA" <block_data>

<block_data> <block_length_specifier><section>

<block_length_
specifier>

#8<length>

<length> The total length of all sections in byte format (must be represented with 8
digits)

<section> <section_header><section_data>

<section_
header>

16 bytes, described in the "Section Header Description" section in chapter
27, "DATA and SETup Commands."

<section_data> The format depends on the type of data

SYSTem Subsystem
DATA

11–5

Query :SYSTem:DATA?

The SYSTem:DATA query returns the block data. The data sent by the
SYSTem:DATA? query reflects the configuration of the machines when the
last run was performed. Any changes made since then through either
front-panel operations or programming commands do not affect the stored
configuration.

Returned Format [:SYSTem:DATA] <block_data><NL>

Example See chapter 28, "Programming Examples" for an example of transferring data.

DSP (Display)

Command :SYSTem:DSP <string>

The DSP command writes the specified quoted string to a device-dependent
portion of the instrument display. This command is useful for labeling
screenshots within the picture.

<string> A string of up to 68 alphanumeric characters

Example OUTPUT XXX;":SYSTEM:DSP ’The message goes here’"

SYSTem Subsystem
DSP (Display)

11–6

ERRor

Query :SYSTem:ERRor? [NUMeric|STRing]

The ERRor query returns the oldest error from the error queue. The optional
parameter determines whether the error string should be returned along with
the error number. If no parameter is received, or if the parameter is
NUMeric, then only the error number is returned. If the value of the
parameter is STRing, then the error should be returned in the following form:

<error_number>,<error_message (string)>

A complete list of error messages for the Agilent 1670G-series logic analyzer
is shown in chapter 7, "Error Messages." If no errors are present in the error
queue, a zero (No Error) is returned.

Returned Formats Numeric:
[:SYSTem:ERRor] <error_number><NL>

String:
[:SYSTem:ERRor] <error_number>,<error_string><NL>

<error_number> An integer

<error_string> A string of alphanumeric characters

Example Numeric:
10 OUTPUT XXX;":SYSTEM:ERROR?"
20 ENTER XXX;Numeric

String:
50 OUTPUT XXX;":SYST:ERR? STRING"
60 ENTER XXX;String$

SYSTem Subsystem
ERRor

11–7

HEADer

Command :SYSTem:HEADer {{ON|1}|{OFF|0}}

The HEADer command tells the instrument whether or not to output a
header for query responses. When HEADer is set to ON, query responses will
include the command header.

Example OUTPUT XXX;":SYSTEM:HEADER ON"

Query :SYSTem:HEADer?

The HEADer? query returns the current state of the HEADer command.
Returned Format [:SYSTem:HEADer] {1|0}<NL>

Example OUTPUT XXX;":SYSTEM:HEADER?"

Headers should be turned off when returning values to numeric variables.

SYSTem Subsystem
HEADer

11–8

LONGform

Command :SYSTem:LONGform {{ON|1}|{OFF|0}}

The LONGform command sets the longform variable, which tells the
instrument how to format query responses. If the LONGform command is set
to OFF, command headers and alpha arguments are sent from the instrument
in the abbreviated form. If the the LONGform command is set to ON, the
whole word will be output. This command has no affect on the input data
messages to the instrument. Headers and arguments may be input in either
the longform or shortform regardless of how the LONGform command is set.

Example OUTPUT XXX;":SYSTEM:LONGFORM ON"

Query :SYSTem:LONGform?

The query returns the status of the LONGform command.
Returned Format [:SYSTem:LONGform] {1|0}<NL>

Example OUTPUT XXX;":SYSTEM:LONGFORM?"

SYSTem Subsystem
LONGform

11–9

PRINt

Command :SYSTem:PRINt ALL[,DISK, <pathname>[,<msus>]]
:SYSTem:PRINt PARTial,<start>,<end>
[,DISK, <pathname>[,<msus>]]
:SYSTem:PRINt SCReen[,DISK, <pathname> [,<msus>],
{BTIF|CTIF|PCX|EPS}]

The PRINt command initiates a print of the screen or listing buffer over the
current PRINTER communication interface to the printer or to a file on the
disk. The PRINT SCREEN option allows you to specify a graphics type.
BTIF format is a black & white TIFF version 5.0, CTIF and PCX formats are
grayscale, and EPS is a line drawing in encapsulated PostScript format. If a
file extension is not specified, one is appended automatically to the file name.
The PRINT PARTIAL option allows you to specify a START and END state
number. To print a straight TIFF (not BTIF) file you must use the print
screen command and copy the file to a disk.

<pathname> A string of up to 10 alphanumeric characters for LIF in the form
NNNNNNNNNN when the file resides in the present working directory, or a
string of up to 64 alphanumeric characters for DOS in the forms
NNNNNNNN.NNN or \NAME_DIR\FILENAME when the file does not reside
in the present working directory.

<start>, <end> An integer specifying a state number.

Example This instruction prints the screen to the printer:
OUTPUT XXX;":SYSTEM:PRINT SCREEN"

This instruction prints all, to a file named STATE:
OUTPUT XXX;":SYSTEM:PRINT ALL, DISK,’STATE’"

This instruction prints partial data to a file named LIST.
OUTPUT XXX;":SYSTEM:PRINT PARTIAL,-9,30, DISK,’list’

Query :SYSTem:PRINt? {SCReen|ALL}

The PRINt? query sends the screen or listing buffer data over the current
CONTROLLER communication interface to the controller.

SYSTem Subsystem
PRINt

11–10

The print query should NOT be sent with any other command or query on the
same command line. The print query never returns a header. Also, since
response data from a print query may be sent directly to a printer without
modification, the data is not returned in block mode.

Example OUTPUT 707;":SYSTEM:PRINT? SCREEN"

SETup

Command :SYStem:SETup <block_data>

The :SYStem:SETup command configures the logic analyzer module as
defined by the block data sent by the controller. This chapter describes
briefly the syntax of the Setup command and query. Because of the
capabilities and importance of the Setup command and query, a complete
chapter is dedicated to it. The dedicated chapter is chapter 27, "DATA and
SETup Commands."

<block_data> <block_length_specifier><section>

<block_length_
specifier>

#8<length>

<length> The total length of all sections in byte format (must be represented with 8
digits)

<section> <section_header><section_data>

<section_
header>

16 bytes, described in the "Section Header Description" section in chapter 27.

<section_data> Format depends on the type of data

The total length of a section is 16 (for the section header) plus the length of
the section data. When calculating the value for <length> , don’t forget to
include the length of the section headers.

Example OUTPUT XXX USING "#,K";":SYSTEM:SETUP " <block_data>

SYSTem Subsystem
SETup

11–11

Query :SYStem:SETup?

The SYStem:SETup? query returns a block of data that contains the current
configuration to the controller.

Returned Format [:SYStem:SETup] <block_data><NL>

Example See "Transferring the logic analyzer configuration" in chapter 28,
"Programming Examples" for an example.

SYSTem Subsystem
SETup

11–12

12

MMEMory Subsystem

Introduction

The MMEMory (mass memory) subsystem commands provide access
to the disk drives. The Agilent 1670G-series logic analyzers support
both LIF (Logical Information Format) and DOS (Disk Operating
System) formats.

The Agilent 1670G-series logic analyzers have two disk drives, a hard
disk drive and a flexible disk drive. Refer to figure 12-1 and table 12-1
for the MMEMory Subsystem commands syntax diagram and
parameter values. The MMEMory subsystem commands are

• AUToload

• CATalog

• CD (Change Directory)

• COPY

• DOWNload

• INITialize

• LOAD

• MKDir (Make Directory)

• MSI

• PACK

• PURGe

• PWD (Present Working Directory)

• REName

• STORe

• UPLoad

• VOLume

12–2

Figure 12-1

MMEMory Subsystem Commands Syntax Diagram

MMEMory Subsystem

12–3

Figure 12-1 (Continued)

MMEMory Subsystem Commands Syntax Diagram (continued)

MMEMory Subsystem

12–4

Figure 12-1 (Continued)

MMEMory Subsystem Commands Syntax Diagram (continued)

MMEMory Subsystem

12–5

Table 12-1 MMEMory Parameter Values

Parameter Values

auto_file A string of up to 10 alphanumeric characters for LIF in the
following form: "NNNNNNNNNN"
or
A string of up to 12 alphanumeric characters for DOS in the
following form: "NNNNNNNN.NNN"

msus Mass Storage Unit specifier. INTernal0 for the hard disk
drive and INTernal1 for the flexible disk drive.

name A string of up to 10 alphanumeric characters for LIF in the
following form: "NNNNNNNNNN"
or
A string of up to 12 alphanumeric characters for DOS in the
following form: "NNNNNNNN.NNN"

description A string of up to 32 alphanumeric characters.

directory_name A string of up to 64 characters for DOS disks ending in a
directory name. Separators can be the slash (/) or the
backslash (\) character. The string of two periods (..)
represents the parent of the present working directory.

type An integer, refer to table 12-2.

block_data Data in IEEE 488.2 format.

ia_name A string of up to 10 alphanumeric characters for LIF in the
following form: "NNNNNNNNNN"
or
A string of up to 12 alphanumeric characters for DOS in the
following form: "NNNNNNNN.NNN"

new_name A string of up to 10 alphanumeric characters for LIF in the
following form: "NNNNNNNNNN"
or
A string of up to 12 alphanumeric characters for DOS in the
following form: "NNNNNNNN.NNN"

module An integer, 0 through 1.

MMEMory Subsystem

12–6

AUToload

Command :MMEMory:AUToload {{OFF|0}|{<auto_file>}}[,<msus>]

The AUToload command controls the autoload feature which designates a set
of configuration files to be loaded automatically the next time the instrument
is turned on. The OFF parameter (or 0) disables the autoload feature. A
string parameter may be specified instead to represent the desired autoload
file. If the file is on the current disk, the autoload feature is enabled to the
specified file.

<auto_file> A string of up to 10 alphanumeric characters for LIF in the following form:
NNNNNNNNNN
or
A string of up to 12 alphanumeric characters for DOS in the following form:
NNNNNNNN.NNN

<msus> Mass Storage Unit specifier. INTernal0 for the hard disk drive and
INTernal1 for the flexible disk drive.

Example OUTPUT XXX;":MMEMORY:AUTOLOAD OFF"
OUTPUT XXX;":MMEMORY:AUTOLOAD ’FILE1_A’"
OUTPUT XXX;":MMEMORY:AUTOLOAD ’FILE2 ’,INTERNAL0"

Query :MMEMory:AUToload?

The AUToload query returns 0 if the autoload feature is disabled. If the
autoload feature is enabled, the query returns a string parameter that
specifies the current autoload file. The appropriate slot designator is
included in the filename and refers to the slot designator A for the logic
analyzer. If the slot designator is _ (underscore) the file is for the system.

Returned Format [:MMEMory:AUToload] {0|<auto_file>},<msus><NL>

MMEMory Subsystem
AUToload

12–7

<auto_file> A string of up to 10 alphanumeric characters for LIF in the following form:
NNNNNNNNNN
or
A string of up to 12 alphanumeric characters for DOS in the following form:

NNNNNNNN.NNN

Example OUTPUT XXX;":MMEMORY:AUTOLOAD?"

CATalog

Query :MMEMory:CATalog? [[All][<msus>]]

The CATalog query returns the directory of the disk in one of two block data
formats. The directory consists of a 51 character string for each file on the
disk when the ALL option is not used. Each file entry is formatted as follows:

"NNNNNNNNNN TTTTTTT FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF"

where N is the filename, T is the file type (see table 12-2), and F is the file
description.

The optional parameter ALL returns the directory of the disk in a
70-character string as follows:

"NNNNNNNNNNNN TTTTTTT FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
DDMMMYY HH:MM:SS"

where N is the filename, T is the file type (see table 12-2), F is the file
description, and, D, M, Y, and HH:MM:SS are the date, month, year, and time
respectively in 24-hour format.

<msus> Mass Storage Unit specifier. INTernal0 for the hard disk drive and
INTernal1 for the flexible disk drive.

MMEMory Subsystem
CATalog

12–8

Returned Format [:MMEMory:CATalog] <block_data>

<block_data> ASCII block containing <filename> <file_type>
<file_description>

Example This example is for sending the CATALOG? ALL query:
OUTPUT 707;":MMEMORY:CATALOG? ALL"

This example is for sending the CATALOG? query without the ALL option.
Keep in mind if you do not use the ALL option with a DOS disk, each
filename entry will be truncated at 51 characters:
OUTPUT 707;":MMEMORY:CATALOG?"

CD (Change Directory)

Command :MMEMory:CD <directory_name> [,<msus>]

The CD command allows you to change the current working directory on the
hard disk or a DOS flexible disk. The command allows you to send path
names of up to 64 characters for DOS format. Separators can be either the
slash (/) or backslash (\) character. Both the slash and backslash characters
are equivalent and are used as directory separators. The string containing
double periods (..) represents the parent of the directory.

<directory_
name>

String of up to 64 characters for DOS disks ending in the new directory name

Example OUTPUT 707;":MMEMory:CD ’CHILD_DIR’"
OUTPUT 707;":MMEMory:CD ’..’"
OUTPUT 707;":MMEMory:CD ’\SYSTEM\SOURCE_DIR\DIR’, INTernal0"

The slash (/) character in DOS path names will be automatically translated to
the backslash character (\) on the disk; therefore, any flexible DOS disk used in
the Agilent 1670G-series logic analyzer will be compatible in DOS computers.

MMEMory Subsystem
CD (Change Directory)

12–9

COPY

Command :MMEMory:COPY <name>[,<msus>],<new_name>[,<msus>]

The COPY command copies one file to a new file or an entire disk’s contents
to another disk. The two <name> parameters are the filenames. The first
pair of parameters specifies the source file. The second pair specifies the
destination file. An error is generated if the source file doesn’t exist, or if the
destination file already exists.

<name> A string of up to 10 alphanumeric characters for LIF in the following form:
NNNNNNNNNN
or
A string of up to 12 alphanumeric characters for DOS in the following form:
NNNNNNNN.NNN

<new_name> A string of up to 10 alphanumeric characters for LIF in the following form:
NNNNNNNNNN
or
A string of up to 12 alphanumeric characters for DOS in the following form:
NNNNNNNN.NNN

<msus> Mass Storage Unit specifier. INTernal0 for the hard disk drive and
INTernal1 for the flexible disk drive.

Example To copy the contents of "FILE1" to "FILE2":
OUTPUT XXX;":MMEMORY:COPY ’FILE1’,’FILE2’"

MMEMory Subsystem
COPY

12–10

DOWNload

Command :MMEMory:DOWNload <name>[,<msus>],<description>,
<type>,<block_data>

The DOWNload command downloads a file to the mass storage device. The
<name> parameter specifies the filename, the <description> parameter
specifies the file descriptor, and the <block_data> contains the contents
of the file to be downloaded.

Table 12-2 lists the file types for the <type> parameter.

<name> A string of up to 10 alphanumeric characters for LIF in the following form:
NNNNNNNNNN
or
A string of up to 12 alphanumeric characters for DOS in the following form:
NNNNNNNN.NNN

<msus> Mass Storage Unit specifier. INTernal0 for the hard disk drive and
INTernal1 for the flexible disk drive.

<description> A string of up to 32 alphanumeric characters

<type> An integer (see table 12-2)

<block_data> Contents of file in block data format

Example OUTPUT XXX;":MMEMORY:DOWNLOAD ’SETUP ’,INTERNAL0,’FILE
CREATED FROM SETUP QUERY’,-16127,#800000643..."

MMEMory Subsystem
DOWNload

12–11

Table 12-2 File Types

File File Type

1660E/ES and 1670G ROM Software -15599

1660E/ES and 1670G System Software -15598

1660E/ES and 1670G System External I/O -15605

1660E/ES Logic Analyzer Software -15597

1660E/ES Logic Analyzer Configuration -16096

1670G Logic Analyzer Software -15595

1670G Logic Analyzer Configuration -16094

1660E/ES and 1670G Option Software -15594

Autoload File -15615

Inverse Assembler -15614

Enhanced Inverse Assembler -15604

DOS File (from Print to Disk) -5813

MMEMory Subsystem
DOWNload

12–12

INITialize

Command :MMEMory:INITialize [{LIF|DOS}[,<msus>]]

The INITialize command formats the disk in either LIF (Logical Information
Format) or DOS (Disk Operating System). If no format is specified, then the
initialize command will format the disk in the LIF format.

<msus> Mass Storage Unit specifier. INTernal0 for the hard disk drive and
INTernal1 for the flexible disk drive.

Example OUTPUT XXX;":MMEMORY:INITIALIZE DOS"
OUTPUT XXX;":MMEMORY:INITIALIZE LIF,INTERNAL0"

 C A U T I O N Once executed, the initialize command formats the specified disk,
permanently erasing all existing information from the disk. After that, there
is no way to retrieve the original information.

MMEMory Subsystem
INITialize

12–13

LOAD[:CONFig]

Command :MMEMory:LOAD[:CONfig] <name>[,<msus>][,<module>]

The LOAD command loads a configuration file from the disk into the logic
analyzer, software options, or the system. The <name> parameter specifies
the filename from the disk. The optional <module> parameter specifies
which module(s) to load the file into. The accepted values are 0 for system
and 1 for logic analyzer. Not specifying the <module> parameter is
equivalent to performing a LOAD ALL from the front panel which loads the
appropriate file for the system, logic analyzer, and any software options.

<name> A string of up to 10 alphanumeric characters for LIF in the following form:
NNNNNNNNNN
or
A string of up to 12 alphanumeric characters for DOS in the following form:
NNNNNNNN.NNN

<msus> Mass Storage Unit specifier. INTernal0 for the hard disk drive and
INTernal1 for the flexible disk drive.

<module> An integer, 0 or 1.

Example OUTPUT XXX;":MMEMORY:LOAD:CONFIG ’FILE ’"
OUTPUT XXX;":MMEMORY:LOAD ’FILE ’,0"
OUTPUT XXX;":MMEM:LOAD:CONFIG ’FILE A’,INTERNAL0,1"

MMEMory Subsystem
LOAD[:CONFig]

12–14

LOAD:IASSembler

Command :MMEMory:LOAD:IASSembler <IA_name>[,<msus>],{1|2}
[,<module>]

This variation of the LOAD command allows inverse assembler files to be
loaded into a module that performs state analysis. The <IA_name>
parameter specifies the inverse assembler filename from the desired
<msus>. The parameter after the optional <msus> specifies which machine
to load the inverse assembler into.

The optional <module> parameter is used to specify which slot the state
analyzer in. 1 refers to the logic analyzer. If this parameter is not specified,
the state analyzer will be selected.

<IA_name> A string of up to 10 alphanumeric characters for LIF in the following form:
NNNNNNNNNN
or
A string of up to 12 alphanumeric characters for DOS in the following form:
NNNNNNNN.NNN

<msus> Mass Storage Unit specifier. INTernal0 for the hard disk drive and
INTernal1 for the flexible disk drive.

<module> An integer, always 1

Example OUTPUT XXX;":MMEMORY:LOAD:IASSEMBLER ’I68020 IP’,1"
OUTPUT XXX;":MMEM:LOAD:IASS ’I68020 IP’,INTERNAL0,1,2"

MMEMory Subsystem
LOAD:IASSembler

12–15

MKDir (Make Directory)

Command :MMEMory:MKDir <directory_name> [,<msus>]

The MKDir command allows you to make a directory on the hard drive or a
DOS disk in the flexible drive. Directories cannot be made on LIF disks.
MKDir will make a directory under the present working directory on the
current drive if the optional path is not specified. Separators can be either
the slash (/) or backslash (\) character. Both the slash and backslash
characters are equivalent and are used as directory separators. The string
containing two periods (..) represents the parent of the present working
directory.

<directory
_name>

String of up to 64 characters for DOS disks ending in the new directory name.

<msus> Mass Storage Unit specifier. INTernal0 for the hard disk drive and
INTernal1 for the flexible disk drive.

Example OUTPUT XXX;":MMEMORY:MKDIR ’NEW.DIR’"
OUTPUT XXX;":MMEM:MKD ’\SYSTEM\NEW.DIR’,INT0 "

The slash (/) character in DOS path names will be automatically translated to
the backslash character (\) on the disk; therefore, any flexible DOS disk used in
the Agilent 1670G-series logic analyzer will be compatible in DOS computers.

MMEMory Subsystem
MKDir (Make Directory)

12–16

MSI (Mass Storage Is)

Command :MMEMory:MSI [<msus>]

The MSI command selects a default mass storage device.

<msus> Mass Storage Unit specifier. INTernal0 for the hard disk drive and
INTernal1 for the flexible disk drive.

Example OUTPUT XXX;":MMEMORY:MSI"
OUTPUT XXX;":MMEM:MSI INTERNAL0"

Query :MMEMory:MSI?

The MSI? query returns the current MSI setting.
Returned Format [:MMEMory:MSI] <msus><NL>

Example OUTPUT XXX;":MMEMORY:MSI?"

MMEMory Subsystem
MSI (Mass Storage Is)

12–17

PACK

Command :MMEMory:PACK [<msus>]

The PACK command packs the files on a LIF disk. If a DOS disk is in the
drive when the PACK command is sent, no action is taken.

<msus> Mass Storage Unit specifier. INTernal0 for the hard disk drive and
INTernal1 for the flexible disk drive.

Example OUTPUT XXX;":MMEMORY:PACK"
OUTPUT XXX;":MMEM:PACK INTERNAL0"

PURGe

Command :MMEMory:PURGe <name>[,<msus>]

The PURGe command deletes a file from the disk in the drive. The <name>
parameter specifies the filename to be deleted.

<name> A string of up to 10 alphanumeric characters for LIF in the following form:
NNNNNNNNNN
or
A string of up to 12 alphanumeric characters for DOS in the following form:
NNNNNNNN.NNN

<msus> Mass Storage Unit specifier. INTernal0 for the hard disk drive and
INTernal1 for the flexible disk drive.

Example OUTPUT XXX;":MMEMORY:PURGE ’FILE1’"
OUTPUT XXX;":MMEM:PURG ’FILE1’,INTERNAL0"

 C A U T I O N Once executed, the purge command permanently erases all the existing
information about the specified file. After that, there is no way to retrieve
the original information.

MMEMory Subsystem
PACK

12–18

PWD (Present Working Directory)

Query :MMEMory:PWD? [<msus>]

The PWD query returns the present working directory for the specified drive.
If the <msus> option is not sent, the present working directory will be
returned for the current drive.

Returned Format [:MMEMory:PWD] <directory>,<msus><NL>

<directory> String of up to 64 characters with the backslash (\) as separator for DOS and
LIF disks.

<msus> Mass Storage Unit specifier. INTernal0 for the hard disk drive and
INTernal1 for the flexible disk drive.

Example OUTPUT XXX;":MMEMORY:PWD?"
OUTPUT XXX;":MMEMORY:PWD? INTERNAL1"

REName

Command :MMEMory:REName <name>[,<msus>],<new_name>

The REName command renames a file on the disk in the drive. The <name>
parameter specifies the filename to be changed and the <new_name>
parameter specifies the new filename.

You cannot rename a file to an already existing filename.

<name> A string of up to 10 alphanumeric characters for LIF in the following form:
NNNNNNNNNN
or
A string of up to 12 alphanumeric characters for DOS in the following form:
NNNNNNNN.NNN

MMEMory Subsystem
PWD (Present Working Directory)

12–19

<msus> Mass Storage Unit specifier. INTernal0 for the hard disk drive and
INTernal1 for the flexible disk drive.

<new name> A string of up to 10 alphanumeric characters for LIF in the following form:
NNNNNNNNNN
or
A string of up to 12 alphanumeric characters for DOS in the following form:
NNNNNNNN.NNN

Example OUTPUT XXX;":MMEMORY:RENAME ’OLDFILE’,’NEWFILE’"
OUTPUT XXX;":MMEM:REN ’OLDFILE’[,INTERNAL1],’NEWFILE’"

STORe[:CONFig]

Command :MMEMory:STORe [:CONfig]<name>[,<msus>],
<description>[,<module>]

The STORe command stores configurations onto a disk. The [:CONFig]
specifier is optional and has no effect on the command. The <name>
parameter specifies the file on the disk. The <description> parameter
describes the contents of the file. The optional <module> parameter allows
you to store the configuration for either the system or the logic analyzer. 1
refers to the logic analyzer, and 0 refers to the system.

If the optional <module> parameter is not specified, the configurations for
both the system and the logic analyzer are stored.

<name> A string of up to 10 alphanumeric characters for LIF in the following form:
NNNNNNNNNN
or
A string of up to 12 alphanumeric characters for DOS in the following form:
NNNNNNNN.NNN

<msus> Mass Storage Unit specifier. INTernal0 for the hard disk drive and
INTernal1 for the flexible disk drive.

<description> A string of up to 32 alphanumeric characters

<module> An integer, 0 through 1

MMEMory Subsystem
STORe[:CONFig]

12–20

Example OUTPUT XXX;":MMEM:STOR ’DEFAULTS’,’SETUPS FOR ALL MODULES’"
OUTPUT XXX;":MMEMORY:STORE:CONFIG ’STATEDATA’,INTERNAL0,
’ANALYZER 1 CONFIG’,1"

The appropriate module designator "_X" is added to all files when they are
stored. "X" refers to either an __ (double underscore) for the system or an _A
for the logic analyzer.

UPLoad

Query :MMEMory:UPLoad? <name>[,<msus>]

The UPLoad query uploads a file. The <name> parameter specifies the file to
be uploaded from the disk. The contents of the file are sent out of the
instrument in block data form.

This command should only be used for 16550A, 1660E/ES-series, or 1670G-series
configuration files.

<name> A string of up to 10 alphanumeric characters for LIF in the form
NNNNNNNNNN
or
A string of up to 12 alphanumeric characters for DOS in the form
NNNNNNNN.NNN

<msus> Mass Storage Unit specifier. INTernal0 for the hard disk drive and
INTernal1 for the flexible disk drive.

Returned Format [:MMEMory:UPLoad] <block_data><NL>

MMEMory Subsystem
UPLoad

12–21

Example 10 DIM Block$[32000] !allocate enough memory for block data
20 DIM Specifier$[2]
30 OUTPUT XXX;":EOI ON"
40 OUTPUT XXX;":SYSTEM HEAD OFF"
50 OUTPUT XXX;":MMEMORY:UPLOAD? ’FILE1’" !send upload query
60 ENTER XXX USING "#,2A";Specifier$!read in #8
70 ENTER XXX USING "#,8D";Length !read in block length
80 ENTER XXX USING "-K";Block$!read in file
90 END

VOLume

Query :MMEMory:VOLume? [<msus>]

TheVOLume query returns the volume type of the disk. The volume types
are DOS or LIF. Question marks (???) are returned if there is no disk, if the
disk is not formatted, or if a disk has a format other than DOS or LIF.

<msus> Mass Storage Unit specifier. INTernal0 for the hard disk drive and
INTernal1 for the flexible disk drive.

Returned Format [:MMEMory:VOLume]{DOS|LIF|???}<NL>

Example OUTPUT XXX;":MMEMORY:VOLUME?"

MMEMory Subsystem
VOLume

12–22

Part 3

Logic Analyzer Commands

13

MACHine Subsystem

Introduction

The MACHine subsystem contains the commands that control the
machine level of operation of the logic analyzer. The functions of five
of these commands reside in the State/Timing Configuration menu.
These commands are

• ARM

• ASSign

• LEVelarm

• NAME

• TYPE

Even though the functions of the following commands reside in the
Trigger menu they are at the machine level of the command tree and
are therefore located in the MACHine subsystem. These commands
are

• REName

• RESource

13–2

MACHine Subsystem Syntax Diagram

Figure 13-1

MACHine Subsystem

13–3

Table 13-1 MACHine Subsystem Parameter Values

Parameter Value

arm_source {RUN | INTermodule | MACHine {1|2}}

pod_list {NONE | <pod_num>[, <pod_num>]...}

pod_num integer from 1 to 8

arm_level integer from 1 to 11 representing sequence level

machine_name string of up to 10 alphanumeric characters

res_id {<state_terms>|H|J} for state analyzer
or
{<state_terms>|EDGE{1|2}} for timing analyzer

new_text string of up to 8 alphanumeric characters

state_terms {A|B|C|D|E|F|G|I| RANGE{1|2}|TIMER{1|2}}

res_terms {<res_id>[,<res_id>]...}

MACHine

Selector :MACHine<N>

The MACHine <N> selector specifies which of the two analyzers (machines)
available in the Agilent 1670G-series logic analyzer which the commands or
queries will refer to. Because the MACHine<N> command is a root level
command, it will normally appear as the first element of a compound header.

<N> {1|2} (the machine number)

Example OUTPUT XXX; ":MACHINE1:NAME ’TIMING’"

MACHine Subsystem
MACHine

13–4

ARM

Command :MACHine{1|2}:ARM <arm_source>

The ARM command specifies the arming source of the specified analyzer
(machine). The RUN option disables the arm source. For example, if you do
not want to use either the intermodule bus or the other machine to arm the
current machine, you specify the RUN option.

<arm_source> {RUN|INTermodule|MACHine{1|2}}

Example OUTPUT XXX;":MACHINE1:ARM MACHINE2"

Query :MACHine{1|2}:ARM?

The ARM query returns the source that the current analyzer (machine) will
be armed by.

Returned Format [:MACHine{1|2}:ARM] <arm_source>

Example OUTPUT XXX;":MACHINE:ARM?"

MACHine Subsystem
ARM

13–5

ASSign

Command :MACHine{1|2}:ASSign <pod_list>

The ASSign command assigns pods to a particular analyzer (machine). The
ASSign command will assign two pods for each pod number you specify
because pods must be assigned to analyzers in pairs. NONE clears all pods
from the specified analyzer (machine) and places them in the "unassigned"
category.

<pod_list> {NONE | <pod#>[, <pod#>]...}

<pod#> an integer from 1 to 8

Example OUTPUT XXX;":MACHINE1:ASSIGN 5, 2, 1"

Query :MACHine{1|2}:ASSign?

The ASSign query returns which pods are assigned to the current analyzer
(machine).

Returned Format [:MACHine{1|2}:ASSign] <pod_list><NL>

Example OUTPUT XXX;":MACHINE1:ASSIGN?"

MACHine Subsystem
ASSign

13–6

LEVelarm

Command :MACHine{1|2}:LEVelarm <arm_level>

The LEVelarm command allows you to specify the sequence level for a
specified machine that will be armed by the Intermodule Bus or the other
machine. This command is only valid if the specified machine is on and the
arming source is not set to RUN with the ARM command.

<arm_level> integer from 1 to 11 representing sequence level

Example OUTPUT XXX;":MACHINE1:LEVELARM 2"

Query :MACHine{1|2}:LEVelarm?

The LEVelarm query returns the current sequence level receiving the arming
for a specified machine.

Returned Format [:MACHine{1|2}:LEVelarm] <arm_level><NL>

Example OUTPUT XXX;":MACHINE1:LEVELARM?"

MACHine Subsystem
LEVelarm

13–7

NAME

Command :MACHine{1|2}:NAME <machine_name>

The NAME command allows you to assign a name of up to 10 characters to a
particular analyzer (machine) for easier identification.

<machine_name> string of up to 10 alphanumeric characters

Example OUTPUT XXX;":MACHINE1:NAME ’DRAMTEST’"

Query :MACHine{1|2}:NAME?

The NAME query returns the current analyzer name as an ASCII string.
Returned Format [:MACHine{1|2}:NAME] <machine name><NL>

Example OUTPUT XXX;":MACHINE1:NAME?"

REName

Command :MACHine{1|2}:REName {{<res_id>, <new_text>} |
DEFault}

The REName command allows you to assign a specific name of up to eight
characters to terms A through J, Range 1 and 2, and Timer 1 and 2 in the
state analyzer. In the timing analyzer, EDGE 1 and 2 can be renamed in
addition to the terms available in the state analyzer minus H and J. The
DEFault option sets all resource term names to the default names assigned
when turning on the instrument.

<res_id> {<state_terms>|H|J} for state analyzer
{<state_terms>|EDGE{1|2}} for timing analyzer

MACHine Subsystem
NAME

13–8

<new_text> string of up to 8 alphanumeric characters

<state_terms> {A|B|C|D|E|F|G|I| RANGe1 | RANGe2 | TIMer1 | TIMer2}

Example OUTPUT XXX;":MACHINE1:RENAME A,’DATA’"

Query :MACHine{1|2}:RENAME? <res_id>

The REName query returns the current names for specified terms assigned
to the specified analyzer.

Returned Format [:MACHine{1|2}:RENAME] <res_id>,<new_text><NL>

Example OUTPUT XXX;":MACHINE1:RENAME? D"

RESource

Command :MACHine{1|2}:RESource {<res_id>[,<res_id>]...}

The RESource command allows you to assign resource terms A through G
and I, Range 1 and 2, and Timer 1 and 2 to a particular analyzer (machine 1
or 2).

In the timing analyzer only, two additional resource terms are available.
These terms are EDGE 1 and 2. These terms will always be assigned to the
the machine that is configured as the timing analyzer. In the State analyzer
only, two additional resource terms are available. These terms are H and J.
These terms cannot be assigned to a timing analyzer.

<res_id> {<state_terms>|H|J} for state analyzer or
{<state_terms>|EDGE{1|2}} for timing analyzer

<state_terms> {A|B|C|D|E|F|G|I|RANGe1| RANGe2 | TIMer1|TIMer2}

Example OUTPUT XXX;":MACHINE1:RESOURCE A,C,RANGE1"

MACHine Subsystem
RESource

13–9

Query :MACHine{1|2}:RESOURCE?

The RESource query returns the current resource terms assigned to the
specified analyzer.

Returned Format [:MACHine{1|2}:RESOURCE] <res_id>[,<res_id>,...]<NL>

Example OUTPUT XXX;":MACHINE1:RESOURCE?"

TYPE

Command :MACHine{1|2}:TYPE <analyzer type>

The TYPE command specifies what type a specified analyzer (machine) will
be. The analyzer types are state or timing. The TYPE command also allows
you to turn off a particular machine.

Only one timing analyzer can be specified at a time.

<analyzer
type>

{OFF|STATe|TIMing|COMPare|SPA}

Example OUTPUT XXX;":MACHINE1:TYPE STATE"

Query :MACHine{1|2}:TYPE?

The TYPE query returns the current analyzer type for the specified analyzer.
Returned Format [:MACHine{1|2}:TYPE] <analyzer type><NL>

Example OUTPUT XXX;":MACHINE1:TYPE?"

MACHine Subsystem
TYPE

13–10

14

WLISt Subsystem

Introduction

The commands in the WLISt (Waveforms/LISting) subsystem control
the X and O marker placement on the waveforms portion of the mixed
mode display. The XSTate and OSTate queries return what states the
X and O markers are on. Because the markers can only be placed on
the timing waveforms, the queries return what state (state acquisition
memory location) the marked pattern is stored in.

In order to have mixed mode, one machine must be a state analyzer
with time tagging on (use MACHine<N>:STRigger:TAG TIME).

• DELay

• INSert

• LINE

• OSTate

• OTIMe

• RANGe

• REMove

• XOTime

• XSTate

• XTIMe

14–2

WLISt Subsystem Syntax Diagram

Figure 14-1

WLISt Subsystem

14–3

Table 14-1 WLISt Subsystem Parameter Values

Parameter Value

delay_value real number between -2500 s and +2500 s

module_spec 1

bit_id integer from 0 to 31

label_name string of up to 6 alphanumeric characters

line_num_mid_screen integer from -1032192 to +1032192

time_value real number

time_range real number between 10 ns and 10 ks

WLISt (Waveforms/LISting)

Selector :WLISt

The WLISt selector is used as a part of a compound header to access the
settings normally found in the Mixed Mode menu. Because the WLISt
command is a root level command, it will always appear as the first element
of a compound header.

The WLISt subsystem is only available when one or more state analyzers with
time tagging on are specified.

Example OUTPUT XXX;":WLIST:XTIME 40.0E −6"

WLISt Subsystem
WLISt (Waveforms/LISting)

14–4

DELay

Command :WLISt:DELay <delay_value>

The DELay command specifies the amount of time between the timing
trigger and the horizontal center of the the timing waveform display. The
allowable values for delay are −2500 s to +2500 s.

<delay_value> real number between −2500 s and +2500 s

Example OUTPUT XXX;":WLIST:DELAY 100E −6"

Query :WLISt:DELay?

The DELay query returns the current time offset (delay) value from the
trigger.

Returned Format [:WLISt:DELay] <delay_value><NL>

Example OUTPUT XXX;":WLIST:DELAY?"

WLISt Subsystem
DELay

14–5

INSert

Command :WLISt:INSert [<module_spec>,]<label_name>
[,{<bit_id>|OVERlay|ALL}]

The INSert command inserts waveforms in the timing waveform display. The
waveforms are added from top to bottom up to a maximum of 96 waveforms.
Once 96 waveforms are present, each time you insert another waveform, it
replaces the last waveform.

The first parameter specifies from which module the waveform is coming,
however, the Agilent 1670G-series logic analyzers are single-module
instruments and this parameter is not needed. It is described here as a
reminder that programs for the 16500 logic analysis system can be used.

The second parameter specifies the label name that will be inserted. The
optional third parameter specifies the label bit number, overlay, or all. If a
number is specified, only the waveform for that bit number is added to the
screen.

If you specify OVERlay, all the bits of the label are displayed as a composite
overlaid waveform. If you specify ALL, all the bits are displayed sequentially.
If you do not specify the third parameter, ALL is assumed.

<module_spec> 1

<label_name> string of up to 6 alphanumeric characters

<bit_id> integer from 0 to 31

Example OUTPUT XXX;":WLIST:INSERT, ’WAVE’,9"

WLISt Subsystem
INSert

14–6

LINE

Command :WLISt:LINE <line_num_mid_screen>

The LINE command allows you to scroll the timing analyzer listing vertically.
The command specifies the state line number relative to the trigger that the
analyzer highlights at the center of the screen.

<line_num_mid_
screen>

integer from -1032192 to +1032192

Example OUTPUT XXX;":WLIST:LINE 0"

Query :WLISt:LINE?

The LINE query returns the line number for the state currently in the box at
center screen.

Returned Format [:WLISt:LINE] <line_num_mid_screen><NL>

Example OUTPUT XXX;":WLIST:LINE?"

OSTate

Query :WLISt:OSTate?

The OSTate query returns the state where the O Marker is positioned. If data
is not valid, the query returns 2147483647.

Returned Format [:WLISt:OSTate] <state_num><NL>

<state_num> integer

Example OUTPUT XXX;":WLIST:OSTATE?"

WLISt Subsystem
LINE

14–7

OTIMe

Command :WLISt:OTIMe <time_value>

The OTIMe command positions the O Marker on the timing waveforms in the
mixed mode display. If the data is not valid, the command performs no
action.

<time_value> real number

Example OUTPUT XXX;":WLIST:OTIME 40.0E −6"

Query :WLISt:OTIMe?

The OTIMe query returns the O Marker position in time. If data is not valid,
the query returns 9.9E37.

Returned Format [:WLISt:OTIMe] <time_value><NL>

Example OUTPUT XXX;":WLIST:OTIME?"

RANGe

Command :WLISt:RANGe <time_value>

The RANGe command specifies the full-screen time in the timing waveform
menu. It is equivalent to ten times the seconds per division setting on the
display. The allowable values for RANGe are from 10 ns to 10 ks.

<time_range> real number between 10 ns and 10 ks

Example OUTPUT XXX;":WLIST:RANGE 100E −9"

WLISt Subsystem
OTIMe

14–8

Query :WLISt:RANGe?

The RANGe query returns the current full-screen time.
Returned Format [:WLISt:RANGe] <time_value><NL>

Example OUTPUT XXX;":WLIST:RANGE?"

REMove

Command :WLISt:REMove

The REMove command deletes all waveforms from the display.

Example OUTPUT XXX;":WLIST:REMOVE"

XOTime

Query :WLISt:XOTime?

The XOTime query returns the time from the X marker to the O marker. If
data is not valid, the query returns 9.9E37.

Returned Format [:WLISt:XOTime] <time_value><NL>

<time_value> real number

Example OUTPUT XXX;":WLIST:XOTIME?"

WLISt Subsystem
REMove

14–9

XSTate

Query :WLISt:XSTate?

The XSTate query returns the state where the X Marker is positioned. If data
is not valid, the query returns 2147483647.

Returned Format [:WLISt:XSTate] <state_num><NL>

<state_num> integer

Example OUTPUT XXX;":WLIST:XSTATE?"

XTIMe

Command :WLISt:XTIMe <time_value>

The XTIMe command positions the X Marker on the timing waveforms in the
mixed mode display. If the data is not valid, the command performs no
action.

<time_value> real number

Example OUTPUT XXX;":WLIST:XTIME 40.0E −6"

Query :WLISt:XTIMe?

The XTIMe query returns the X Marker position in time. If data is not valid,
the query returns 9.9E37.

Returned Format [:WLISt:XTIMe] <time_value><NL>

Example OUTPUT XXX;":WLIST:XTIME?"

WLISt Subsystem
XSTate

14–10

15

SFORmat Subsystem

Introduction

The SFORmat subsystem contains the commands available for the
State Format menu in the Agilent 1670G-series logic analyzer. These
commands are:

• CLOCk

• LABel

• MASTer

• MOPQual

• MQUal

• REMove

• SETHold

• SLAVe

• SOPQual

• SQUal

• THReshold

15–2

SFORmat Subsystem Syntax Diagram

Figure 15-1

SFORmat Subsystem

15–3

Figure 15-1 (continued)

SFORmat Subsystem Syntax Diagram (continued)

SFORmat Subsystem

15–4

Table 15-1 SFORmat Subsystem Parameter Values

Parameter Value

<N> an integer from 1 to 8

label_name string of up to 6 alphanumeric characters

polarity {POSitive | NEGative}

clock_bits format (integer from 0 to 65535) for a clock (clocks are assigned
in decreasing order)

upper_bits format (integer from 0 to 65535) for a pod (pods are assigned in
decreasing order)

lower_bits format (integer from 0 to 65535) for a pod (pods are assigned in
decreasing order)

clock_id {J | K | L | M}

clock_spec {OFF | RISing | FALLing | BOTH}

clock_pair_id {1 | 2}

qual_operation {AND|OR}

qual_num {1 | 2 | 3 | 4}

qual_level {OFF | LOW | HIGH}

pod_num an integer from 1 to 8

set_hold_value {0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9}

value voltage (real number) -6.00 to +6.00

SFORmat Subsystem

15–5

SFORmat

Selector :MACHine{1|2}:SFORmat

The SFORmat (State Format) selector is used as a part of a compound
header to access the settings in the State Format menu. It always follows the
MACHine selector because it selects a branch directly below the MACHine
level in the command tree.

Example OUTPUT XXX;":MACHINE2:SFORMAT:MASTER J, RISING"

CLOCk

Command :MACHine{1|2}:SFORmat:CLOCk<N> <clock_mode>

The CLOCk command selects the clocking mode for a given pod when the
pod is assigned to the state analyzer. When the MASTer option is specified,
the pod will sample all 16 channels on the master clock. When the SLAVe
option is specified, the pod will sample all 16 channels on the slave
clock. When the DEMultiplex option is specified, only one pod of a pod pair
can acquire data. The 16 bits of the selected pod will be clocked by the
demultiplex master for labels with bits assigned under the Master pod. The
same 16 bits will be clocked by the demultiplex slave for labels with bits
assigned under the Slave pod. The master clock always follows the slave
clock when both are used.

<N> an integer from 1 to 8

<clock_mode> {MASTer | SLAVe | DEMultiplex}

Example OUTPUT XXX;":MACHINE1:SFORMAT:CLOCK2 MASTER"

SFORmat Subsystem
SFORmat

15–6

Query :MACHine{1|2}:SFORmat:CLOCk<N>?

The CLOCk query returns the current clocking mode for a given pod.
Returned Format [:MACHine{1|2}:SFORmat:CLOCK<N>] <clock_mode><NL>

Example OUTPUT XXX; ":MACHINE1:SFORMAT:CLOCK2?"

LABel

Command :MACHine{1|2}:SFORmat:LABel
<name>[,<polarity>,<clock_bits>,[<clock_bits>,]
<upper_bits>,<lower_bits>[,<upper_bits>,
<lower_bits>]...]

The LABel command allows you to specify polarity and assign channels to
new or existing labels. If the specified label name does not match an existing
label name, a new label will be created.

The order of the pod-specification parameters is significant. The first one
listed will match the highest numbered pod assigned to the machine you’re
using. Each pod specification after that is assigned to the next highest
numbered pod. This way they match the left-to-right descending order of the
pods you see on the Format display. Not including enough pod specifications
results in the lowest numbered pod(s) being assigned a value of zero (all
channels excluded). If you include more pod specifications than there are
pods for that machine, the extra ones will be ignored. However, an error is
reported anytime when more than 22 pod specifications are listed.

The polarity can be specified at any point after the label name.

Because pods contain 16 channels, the format value for a pod must be
between 0 and 65535 (216−1). When giving the pod assignment in binary
(base 2), each bit will correspond to a single channel. A "1" in a bit position
means the associated channel in that pod is assigned to that pod and bit. A
"0" in a bit position means the associated channel in that pod is excluded
from the label. For example, assigning #B1111001100 is equivalent to
entering "......****..**.." through the touchscreen.

A label can not have a total of more than 32 channels assigned to it.

SFORmat Subsystem
LABel

15–7

<name> string of up to 6 alphanumeric characters

<polarity> {POSitive | NEGative}

<clock_bits> format (integer from 0 to 63) for a clock (clocks are assigned in decreasing
order)

<upper_bits> format (integer from 0 to 65535) for a pod (pods are assigned in decreasing
order)

<lower_bits> format (integer from 0 to 65535) for a pod (pods are assigned in decreasing
order)

<assignment> format (integer from 0 to 65535) for a pod (pods are assigned in decreasing
order

Example OUTPUT XXX;":MACHINE2:SFORMAT:LABEL ’STAT’, POSITIVE,
0,127,40312"
OUTPUT XXX;":MACHINE2:SFORMAT:LABEL ’SIG 1’,
#B11,#B0000000011111111,
#B0000000000000000 "

Query :MACHine{1|2}:SFORmat:LABel? <name>

The LABel query returns the current specification for the selected (by name)
label. If the label does not exist, nothing is returned. The polarity is always
returned as the first parameter. Numbers are always returned in decimal
format.

Returned Format [:MACHine{1|2}:SFORmat:LABel] <name>,<polarity>
[, <assignment>]...<NL>

Example OUTPUT XXX;":MACHINE2:SFORMAT:LABEL? ’DATA’"

SFORmat Subsystem
LABel

15–8

MASTer

Command :MACHine{1|2}:SFORmat:MASTer
<clock_id>,<clock_spec>

The MASTer clock command allows you to specify a master clock for a given
machine. The master clock is used in all clocking modes (Master, Slave, and
Demultiplexed). Each command deals with only one clock (J,K,L,M);
therefore, a complete clock specification requires four commands, one for
each clock. Edge specifications (RISing, FALLing, or BOTH) are ORed.

At least one clock edge must be specified.

<clock_id> {J|K|L|M}

<clock_spec> {OFF|RISing|FALLing|BOTH}

Example OUTPUT XXX;":MACHINE2:SFORMAT:MASTER J, RISING"

Query :MACHine{1|2}:SFORmat:MASTer? <clock_id>

The MASTer query returns the clock specification for the specified clock.
Returned Format [:MACHine{1|2}:SFORmat:MASTer] <clock_id>,<clock_spec><NL>

Example OUTPUT XXX;":MACHINE2:SFORMAT:MASTER? <clock_id>"

SFORmat Subsystem
MASTer

15–9

MOPQual

Command :MACHine{1|2}:SFORmat:MOPQual
<clock_pair_id>,<qual_operation>

The MOPQual (master operation qualifier) command allows you to specify
either the AND or the OR operation between master clock qualifier pair 1 and
2, or between master clock qualifier pair 3 and 4. For example, you can
specify a master clock operation qualifier 1 AND 2.

<clock_pair_
id>

{1|2} where 1 indicates pair 1 and 2 and 2 indicates pair 3 and 4.

<qual_
operation>

{AND|OR}

Example OUTPUT XXX;":MACHINE1:SFORMAT:MOPQUAL 1,AND"

Query :MACHine{1|2}:SFORmat:MOPQUal? <clock_pair_id>

The MOPQual query returns the operation qualifier specified for the master
clock.

Returned Format [:MACHine{1|2}:SFORmat:MOPQUal <clock_pair_id>]
<qual_operation><NL>

Example OUTPUT XXX;":MACHine1:SFORMAT:MOPQUAL? 1"

SFORmat Subsystem
MOPQual

15–10

MQUal

Command :MACHine{1|2}:SFORmat:MQUal
<qual_num>,<clock_id>,<qual_level>

The MQUal (master qualifier) command allows you to specify the level
qualifier for the master clock.

<qual_num> {1|2|3|4}

<clock_id> {J|K|L|M}

<qual_level> {OFF|LOW|HIGH}

Example OUTPUT XXX;":MACHINE2:SFORMAT:MQUAL 1,J,LOW"

Query :MACHine{1|2}:SFORmat:MQUal? <qual_num>

The MQUal query returns the qualifier specified for the master clock.
Returned Format [:MACHine{1|2}:SFORmat:MQUal] <qual_level><NL>

Example OUTPUT XXX;":MACHINE2:SFORMAT:MQUAL? 1"

SFORmat Subsystem
MQUal

15–11

REMove

Command :MACHine{1|2}:SFORmat:REMove {<name>|ALL}

The REMove command allows you to delete all labels or any one label for a
given machine.

<name> string of up to 6 alphanumeric characters

Example OUTPUT XXX;":MACHINE2:SFORMAT:REMOVE ’A’"
OUTPUT XXX;":MACHINE2:SFORMAT:REMOVE ALL"

SETHold

Command :MACHine{1|2}:SFORmat:SETHold
<pod_num>,<set_hold_value>

The SETHold (setup/hold) command allows you to set the setup and hold
specification for the state analyzer.

Even though the command requires integers to specify the setup and hold,
the query returns the current settings in a string. For example, if you send
the integer 0 for the setup and hold value, the query will return 3.5/0.0 ns as
an ASCII string when you have one clock and one edge specified.

<pod_num> {0|1|2|3|4|5|6|7|8}

<set_hold_
value>

{0|1|2|3|4|5|6|7|8|9} representing the setup and hold values shown
in Table 9-2 on the next page.

Example OUTPUT XXX;":MACHINE2:SFORMAT:SETHOLD 1,2"

SFORmat Subsystem
REMove

15–12

Table 15-2 Setup and hold values

For one clock and one edge For one clock and both edges Multiple Clocks

0 = 3.5/0.0 ns 0 = 4.0/0.0 ns 0 = 4.5/0.0 ns

1 = 3.0/0.5 ns 1 = 3.5/0.5 ns 1 = 4.0/0.5 ns

2 = 2.5/1.0 ns 2 = 3.0/1.0 ns 2 = 3.5/1.0 ns

3 = 2.0/1.5 ns 3 = 2.5/1.5 ns 3 = 3.0/1.5 ns

4 = 1.5/2.0 ns 4 = 2.0/2.0 ns 4 = 2.5/2.0 ns

5 = 1.0/2.5 ns 5 = 1.5/2.5 ns 5 = 2.0/2.5 ns

6 = 0.5/3.0 ns 6 = 1.0/3.0 ns 6 = 1.5/3.0 ns

7 = 0.0/3.5 ns 7 = 0.5/3.5 ns 7 = 1.0/3.5 ns

N/A 8 = 0.0/4.0 ns 8 = 0.5/4.0 ns

N/A N/A 9 = 0.0/4.5 ns

Query :MACHine{1|2}:SFORMAT:SETHOLD? <pod_num>

The SETHold query returns the current setup and hold settings.
Returned Format [:MACHine{1|2}:SFORmat:SETHold <pod_num>]

<setup_and_hold_string><NL>

Example OUTPUT XXX;":MACHINE2:SFORMAT:SETHOLD? 3"

SFORmat Subsystem
SETHold

15–13

SLAVe

Command :MACHine{1|2}:SFORmat:SLAVe
<clock_id>,<clock_spec>

The SLAVe clock command allows you to specify a slave clock for a given
machine. The slave clock is only used in the Slave and Demultiplexed
clocking modes. Each command deals with only one clock (J,K,L,M);
therefore, a complete clock specification requires four commands, one for
each clock. Edge specifications (RISing, FALLing, or BOTH) are ORed.

When slave clock is being used at least one edge must be specified.

<clock_id> {J|K|L|M}

<clock_spec> {OFF|RISing|FALLing|BOTH}

Example OUTPUT XXX;":MACHINE2:SFORMAT:SLAVE J, RISING"

Query :MACHine{1|2}:SFORmat:SLAVe?<clock_id>

The SLAVe query returns the clock specification for the specified clock.
Returned Format [:MACHine{1|2}:SFORmat:SLAVe] <clock_id>,<clock_spec><NL>

Example OUTPUT XXX;":MACHINE2:SFORMAT:SLAVE? K"

SFORmat Subsystem
SLAVe

15–14

SOPQual

Command :MACHine{1|2}:SFORmat:SOPQual
<clock_pair_id>,<qual_operation>

The SOPQual (slave operation qualifier) command allows you to specify
either the AND or the OR operation between slave clock qualifier pair 1 and
2, or between slave clock qualifier pair 3 and 4. For example you can specify
a slave clock operation qualifier 1 AND 2.

<clock_pair_
id>

{1|2} 1 specifies qualifier pair 1/2; 2 specifies qualifier pair 3/4.

<qual_
operation>

{AND|OR}

Example OUTPUT XXX;":MACHine2:SFORMAT:SOPQUAL 1,AND"

Query :MACHine{1|2}:SFORmat:SOPQual? <clock_pair_id>

The SOPQual query returns the operation qualifier specified for the slave
clock.

Returned Format [:MACHine{1|2}:SFORmat:SOPQual <clock_pair_id>]
<qual_operation><NL>

Example OUTPUT XXX;":MACHiNE2:SFORMAT:SOPQUAL? 1"

SFORmat Subsystem
SOPQual

15–15

SQUal

Command :MACHine{1|2}:SFORmat:SQUal
<qual_num>,<clock_id>,<qual_level>

The SQUal (slave qualifier) command allows you to specify the level qualifier
for the slave clock.

<qual_num> {1|2|3|4}

<clock_id> {J|K|L|M}

<qual_level> {OFF|LOW|HIGH}

Example OUTPUT XXX;":MACHINE2:SFORMAT:SQUAL 1,J,LOW"

Query :MACHine{1|2}:SFORmat:SQUal?<qual_num>

The SQUal query returns the qualifier specified for the slave clock.
Returned Format [:MACHine{1|2}:SFORmat:SQUal] <clock_id>,<qual_level><NL>

Example OUTPUT XXX;":MACHINE2:SFORMAT:SQUAL? 1"

THReshold

Command :MACHine{1|2}:SFORmat:THReshold<N>
{TTL|ECL|<value>}

The THReshold command allows you to set the voltage threshold for a given
pod to ECL, TTL, or a specific voltage from −6.00 V to +6.00 V in 0.05 volt
increments.

SFORmat Subsystem
SQUal

15–16

<N> pod number (an integer from 1 to 8)

<value> voltage (real number) −6.00 to +6.00

TTL default value of +1.6 V

ECL default value of −1.3 V

Example OUTPUT XXX;":MACHINE1:SFORMAT:THRESHOLD1 4.0"

Query :MACHine{1|2}:SFORmat:THReshold<N>?

The THReshold query returns the current threshold for a given pod.
Returned Format [:MACHine{1|2}:SFORmat:THReshold<N>] <value><NL>

Example OUTPUT XXX;":MACHINE1:SFORMAT:THRESHOLD4?"

SFORmat Subsystem
THReshold

15–17

15–18

16

STRigger (STRace) Subsystem

Introduction

The STRigger subsystem contains the commands available for the
State Trigger menu in the Agilent 1670G-series logic analyzer. The
State Trigger subsystem will also accept the STRace selector as used
in previous 16500-series logic analyzer modules to eliminate the need
to rewrite programs containing STRace as the selector keyword. The
STRigger subsystem commands are:

• ACQuisition

• BRANch

• CLEar

• FIND

• MLENgth

• RANGe

• SEQuence

• STORe

• TAG

• TAKenbranch

• TCONtrol

• TERM

• TIMER

• TPOSition

16–2

STRigger Subsystem Syntax Diagram

Figure 16-1

STRigger (STRace) Subsystem

16–3

Figure 16-1 (continued)

STRigger Subsystem Syntax Diagram (continued)

STRigger (STRace) Subsystem

16–4

Figure 16-1 (continued)

STRigger Subsystem Syntax Diagram (continued)

STRigger (STRace) Subsystem

16–5

Table 16-1 STRigger Subsystem Parameter Values

Parameter Value

branch_qualifier <qualifier>

to_lev_num integer from 1 to last level

proceed_qualifier <qualifier>

occurrence number from 1 to 1048575

label_name string of up to 6 alphanumeric characters

start_pattern "{#B{0|1} . . . |
#Q{0|1|2|3|4|5|6|7} . . . |
#H{0|1|2|3|4|5|6|7|8|9|A|B|C|D|E|F} . .
. |
{0|1|2|3|4|5|6|7|8|9} . . . } "

stop_pattern "{#B{0|1} . . . |
#Q{0|1|2|3|4|5|6|7} . . . |
#H{0|1|2|3|4|5|6|7|8|9|A|B|C|D|E|F} . .
. |
{0|1|2|3|4|5|6|7|8|9} . . . }"

num_of_levels integer from 2 to 12

lev_of_trig integer from 1 to (number of existing sequence levels - 1)

store_qualifier <qualifier>

state_tag_qualifier <qualifier>

timer_num {1|2}

timer_value 400 ns to 500 seconds

term_id {A|B|C|D|E|F|G|H|I|J}

pattern "{#B{0|1|X} . . . |
#Q{0|1|2|3|4|5|6|7|X} . . . |
#H{0|1|2|3|4|5|6|7|8|9|A|B|C|D|E|F|X} .
. . |
{0|1|2|3|4|5|6|7|8|9} . . . }"

qualifier see "Qualifier" on page 16–7

post_value integer from 0 to 100 representing percentage

memory_length {4096 | 8192 | 16384 | 32768 | 65536 |
131072 | 262144 | 524288 | 1032192 }

STRigger (STRace) Subsystem

16–6

Qualifier

The qualifier for the state trigger subsystem can be terms A - J, Timer 1 and
2, and Range 1 and 2. In addition, qualifiers can be the NOT boolean function
of terms, timers, and ranges. The qualifier can also be an expression or
combination of expressions as shown below and figure 16-2, "Complex
Qualifier," on page 16-11.

The following parameters show how qualifiers are specified in all commands
of the STRigger subsystem that use <qualifier> .

<qualifier> { "ANYSTATE" | "NOSTATE" | "<expression>" }

<expression> {<expression1a>|<expression1b>|<expression1a> OR
<expression1b>|<expression1a> AND <expression1b>}

<expression1a> {<expression1a_term>|(<expression1a_term>[OR
<expression1a_term>]*)|(<expression1a_term>[AND
<expression1a_term>]*)}

<expression1a_
term>

{ <expression2a>|<expression2b>|<expression2c>|<expression2d>}

<expression1b> {<expression1b_term>|(<expression1b_term>[OR
<expression1b_term>]*)|(<expression1b_term>[AND
<expression1b_term>]*)}

<expression1b_
term>

{<expression2e>|<expression2f>|<expression2g>|<expression2h>}

<expression2a> {<term3a>|<term3b>|(<term3a> <boolean_op> <term3b>)}

<expression2b> {<term3c>|<range3a>|(<term3c> <boolean_op> <range3a>)}

<expression2c> {<term3d>}

<expression2d> {<term3e>|<timer3a>|(<term3e> <boolean_op> <timer3a>)}

<expression2e> {<term3f>|<term3g>|(<term3f> <boolean_op> <term3g>)}

<expression2f> {<term3g>|<range3b>|(<term3g> <boolean_op> <range3b>)}

<expression2g> {<term3i>}

<boolean_op> {AND | NAND | OR | NOR | XOR | NXOR}

STRigger (STRace) Subsystem
Qualifier

16–7

<term3a> { A | NOTA }

<term3b> { B | NOTB }

<term3c> { C | NOTC }

<term3d> { D | NOTD }

<term3e> { E | NOTE }

<term3f> { F | NOTF }

<term3g> { G | NOTG }

<term3h> { H | NOTH }

<term3i> { I | NOTI }

<term3j> { J | NOTJ }

<range3a> { IN_RANGE1 | OUT_RANGE1 }

<range3b> { IN_RANGE2 | OUT_RANGE2 }

<timer3a> { TIMER1< | TIMER1>}

<timer3b> { TIMER2< | TIMER2>}

Qualifier Rules

The following rules apply to qualifiers:

• Qualifiers are quoted strings and, therefore, need quotation marks.

• Expressions are evaluated from left to right.

• Parentheses are used to change the order evaluation and so are optional.

• An expression must map into the combination logic presented in the
combination pop-up menu within the STRigger menu (see figure 16-2 on
page 16-11).

Example ’A’

’(A OR B)’

’((A OR B) AND C)’

’((A OR B) AND C AND IN_RANGE2)’

’((A OR B) AND (C AND IN_RANGE1))’

’IN_RANGE1 AND (A OR B) AND C ’

STRigger (STRace) Subsystem
Qualifier

16–8

STRigger (STRace) (State Trigger)

Selector :MACHine{1|2}:STRigger

The STRigger selector is used as a part of a compound header to access the
settings found in the State Trace menu. It always follows the MACHine
selector because it selects a branch directly below the MACHine level in the
command tree.

Example OUTPUT XXX;":MACHINE1:STRIGGER:TAG TIME"

ACQuisition

Command :MACHine{1|2}:STRigger:ACQuisition
{AUTOmatic|MANual}

The ACQuisition command allows you to specify the acquisition mode for the
State analyzer.

Example OUTPUT XXX;":MACHINE1:STRIGGER:ACQUISITION AUTOMATIC"

Query :MACHine{1|2}:STRigger:ACQuisition?

The ACQuisition query returns the current acquisition mode specified.
Returned Format [:MACHine{1|2}:STRigger:ACQuisition] {AUTOmatic|MANual}<NL>

Example OUTPUT XXX;":MACHINE1:STRIGGER:ACQUISITION?"

STRigger (STRace) Subsystem
STRigger (STRace) (State Trigger)

16–9

BRANch

Command :MACHine{1|2}:STRigger:BRANch<N>
<branch_qualifier>,<to_level_number>

The BRANch command defines the branch qualifier for a given sequence
level. When this branch qualifier is matched, it will cause the trigger
sequence to jump to the specified sequence level.

The terms used by the branch qualifier (A through J) are defined by the
TERM command. The meaning of IN_RANGE and OUT_RANGE is
determined by the RANGE command.

Within the limitations shown by the syntax definitions, complex expressions
may be formed using the AND and OR operators. Expressions are limited to
what you could manually enter through the State Trigger menu. For required
and allowable use of parentheses, the syntax definitions on the next page
show only the required ones. Additional parentheses are allowed as long as
the meaning of the expression is not changed. Figure 16-2 shows a complex
expression as seen in the State Trigger menu.

Example The following statements are all correct and have the same meaning. Notice
that the conventional rules for precedence are not followed. The expressions
are evaluated from left to right.
OUTPUT XXX;":MACHINE1:STRIGGER:BRANCH1 ’C AND D OR F OR G’, 1"
OUTPUT XXX;":MACHINE1:STRIGGER:BRANCH1 ’((C AND D) OR (F OR
G))’, 1"
OUTPUT XXX;":MACHINE1:STRIGGER:BRANCH1 ’((C AND D) OR F) OR
G’,1"

<N> integer from 1 to <number_of_levels>

<to_level_
number>

integer from 1 to <number_of_levels>

<number_of_
levels>

integer from 2 to the number of existing sequence levels (maximum 12)

<branch_
qualifier>

<qualifier> see "Qualifier" on page 16-7

STRigger (STRace) Subsystem
BRANch

16–10

Example OUTPUT XXX;":MACHINE1:STRIGGER:BRANCH1 ’ANYSTATE’, 3"
OUTPUT XXX;":MACHINE2:STRIGGER:BRANCH2 ’A’, 7"
OUTPUT XXX;":MACHINE1:STRIGGER:BRANCH3 ’((A OR B) OR NOTG)’, 1"

Query :MACHine{1|2}:STRigger:BRANch<N>?

The BRANch query returns the current branch qualifier specification for a
given sequence level.

Returned Format [:MACHine{1|2}:STRigger:BRANch<N>]
<branch_qualifier>,<to_level_num><NL>

Example OUTPUT XXX;":MACHINE1:STRIGGER:BRANCH3?"

Complex qualifier

Figure 16-2 is a front panel representation of the complex qualifier (a Or
b) Or (f Or g) .

Figure 16-2

STRigger (STRace) Subsystem
BRANch

16–11

Example The following example would be used to specify this complex qualifier.
OUTPUT XXX;":MACHINE1:STRIGGER:BRANCH1 ’((A OR B) AND (F OR
G))’, 2"

Terms A through E, RANGE 1, and TIMER 1 must be grouped together
and terms F through J, RANGE 2, and TIMER 2 must be grouped together.
In the first level, terms from one group may not be mixed with terms from the
other. For example, the expression ((A OR IN_RANGE2) AND (C OR
G)) is not allowed because the term C cannot be specified in the F through
J group.

In the first level, the operators you can use are AND, NAND, OR, NOR,
XOR, NXOR. Either AND or OR may be used at the second level to join the
two groups together. It is acceptable for a group to consist of a single term.
Thus, an expression like (B AND G) is legal, since the two operands are both
simple terms from separate groups.

CLEar

Command :MACHine{1|2}:STRigger:CLEar
{All|SEQuence|RESource}

The CLEar command allows you to clear only the Sequence levels, clear only
the resource term patterns, or clear all settings in the State Trigger menu and
replace them with the default.

Example OUTPUT XXX;":MACHINE1:STRIGGER:CLEAR RESOURCE"

STRigger (STRace) Subsystem
CLEar

16–12

FIND

Command :MACHine{1|2}:STRigger:FIND<N>
<proceed_qualifier>,<occurrence>

The FIND command defines the proceed qualifier for a given sequence level.
The qualifier tells the state analyzer when to proceed to the next sequence
level. When this proceed qualifier is matched the specified number of times,
the trigger sequence will proceed to the next sequence level. In the
sequence level where the trigger is specified, the FIND command specifies
the trigger qualifier (see SEQuence command).

The terms A through J are defined by the TERM command. The meaning of
IN_RANGE and OUT_RANGE is determined by the RANGe command.
Expressions are limited to what you could manually enter through the State
Trigger menu. Regarding parentheses, the syntax definitions below show
only the required ones. Additional parentheses are allowed as long as the
meaning of the expression is not changed. See figure 16-2 for a detailed
example.

<N> integer from 1 to (number of existing sequence levels −1)

<occurrence> integer from 1 to 1048575

<proceed_
qualifier>

<qualifier> see "Qualifier" on page 16-7

Example OUTPUT XXX;":MACHINE1:STRIGGER:FIND1 ’ANYSTATE’, 1"
OUTPUT XXX;":MACHINE1:STRIGGER:FIND3 ’((NOTA AND NOTB) OR
G)’, 1"

STRigger (STRace) Subsystem
FIND

16–13

Query :MACHine{1|2}:STRigger:FIND<N>?

The FIND query returns the current proceed qualifier specification for a
given sequence level.

Returned Format [:MACHine{1|2}:STRigger:FIND<N>]
<proceed_qualifier>,<occurrence><NL>

Example OUTPUT XXX;":MACHINE1:STRIGGER:FIND4?"

MLENgth

Command :MACHine{1|2}:STRigger:MLENgth <memory_length>

The MLength command allows you to specify the analyzer memory depth.
Valid memory depths range from a range from 4096 states (or samples)
through the maximum system memory depth minus 8192 states. Memory
depth is affected by acquisition mode. If the <memory_depth> value sent
with the command is not a legal value, the closest legal setting will be used.

<memory_length> {4096 | 8192 | 16384 | 32768 | 65536 | 131072 | 262144
| 524288 | 1032192}

Example OUTPUT XXX;":MACHINE1:STRIGGER:MLENGTH 262144"

Query :MACHine{1|2}:STRigger:MLENgth?

The MLENgth query returns the current analyzer memory depth selection.
Returned Format [:MACHine{1|2}:STRigger:MLENgth] <memory_length><NL>

Example OUTPUT XXX;":MACHINE1:STRIGGER:MLENGTH?"

STRigger (STRace) Subsystem
MLENgth

16–14

RANGe

Command :MACHine{1|2}:STRigger:RANGe<N>
<label_name>,<start_pattern>,<stop_pattern>

The RANGe command allows you to specify a range recognizer term for the
specified machine. Since a range can only be defined across one label and,
since a label must contain 32 or fewer bits, the value of the start pattern or
stop pattern will be between (232)−1 and 0.

Because a label can only be defined across a maximum of two pods, a range
term is only available across a single label; therefore, the end points of the
range cannot be split between labels.

When these values are expressed in binary, they represent the bit values for
the label at one of the range recognizers’ end points. Don’t cares are not
allowed in the end point pattern specifications.

<label_name> string of up to 6 alphanumeric characters

<start_pattern> "{#B{0|1} . . . |
#Q{0|1|2|3|4|5|6|7} . . . |
#H{0|1|2|3|4|5|6|7|8|9|A|B|C|D|E|F} . . . |
{0|1|2|3|4|5|6|7|8|9} . . . }"

<stop_pattern> "{#B{0|1} . . . |
#Q{0|1|2|3|4|5|6|7} . . . |
#H{0|1|2|3|4|5|6|7|8|9|A|B|C|D|E|F} . . . |
{0|1|2|3|4|5|6|7|8|9} . . . }"

<N> {1 | 2}

Example OUTPUT XXX;":MACHINE1:STRIGGER:RANGE1 ’DATA’, ’127’, ’255’ "
OUTPUT XXX;":MACHINE1:STRIGGER:RANGE2 ’ABC’, ’#B00001111’,
’#HCF’ "

STRigger (STRace) Subsystem
RANGe

16–15

Query :MACHine{1|2}:STRigger:RANGe<N>?

The RANGe query returns the range recognizer end point specifications for
the range.

Returned Format [:MACHine{1|2}:STRigger:RANGe<N>]
<label_name>,<start_pattern>,
 <stop_pattern><NL>

Example OUTPUT XXX;":MACHINE1:STRIGGER:RANGE1?"

SEQuence

Command :MACHine{1|2}:STRigger:SEQuence
<number_of_levels>,<level_of_trigger>

The SEQuence command redefines the state analyzer trace sequence. First,
it deletes the current trace sequence. Then it inserts the number of levels
specified, with default settings, and assigns the trigger to be at a specified
sequence level. The number of levels can be between 2 and 12 when the
analyzer is armed by the RUN key.

<number_of_
levels>

integer from 2 to 12

<level_of_
trigger>

integer from 1 to (number of existing sequence levels − 1)

Example OUTPUT XXX;":MACHINE1:STRIGGER:SEQUENCE 4,3"

STRigger (STRace) Subsystem
SEQuence

16–16

Query :MACHine{1|2}:STRigger:SEQuence?

The SEQuence query returns the current sequence specification.
Returned Format [:MACHine{1|2}:STRigger:SEQuence] <number_of_levels>,

 <level_of_trigger><NL>

Example OUTPUT XXX;":MACHINE1:STRIGGER:SEQUENCE?"

STORe

Command :MACHine{1|2}:STRigger:STORe<N> <store_qualifier>

The STORe command defines the store qualifier for a given sequence level.
Any data matching the STORe qualifier will actually be stored in memory as
part of the current trace data. The qualifier may be a single term or a
complex expression. The terms A through J are defined by the TERM
command. The meaning of IN_RANGE1 and 2 and OUT_RANGE1 and 2 is
determined by the RANGe command.

Expressions are limited to what you could manually enter through the State
Trigger menu. Regarding parentheses, the syntax definitions below show
only the required ones. Additional parentheses are allowed as long as the
meaning of the expression is not changed.

A detailed example is provided in figure 16-2 on page 16-11.

<N> an integer from 1 to the number of existing sequence levels (maximum 12)

<store_
qualifier>

<qualifier> see "Qualifier" on page 16-7

Example OUTPUT XXX;":MACHINE1:STRIGGER:STORE1 ’ANYSTATE’"
OUTPUT XXX;":MACHINE1:STRIGGER:STORE2 ’OUT_RANGE1’"
OUTPUT XXX;":MACHINE1:STRIGGER:STORE3 ’(NOTC AND NOTD AND
NOTI)’"

STRigger (STRace) Subsystem
STORe

16–17

Query :MACHine{1|2}:STRigger:STORe<N>?

The STORe query returns the current store qualifier specification for a given
sequence level <N>.

Returned Format [:MACHine{1|2}:STRigger:STORe<N>] <store_qualifier><NL>

Example OUTPUT XXX;":MACHINE1:STRIGGER:STORE4?"

TAG

Command :MACHine{1|2}:STRigger:TAG
{OFF|TIME| <state_tag_qualifier >}

The TAG command selects the type of count tagging (state or time) to be
performed during data acquisition. State tagging is indicated when the
parameter is the state tag qualifier, which will be counted in the qualified
state mode. The qualifier may be a single term or a complex expression. The
terms A through J are defined by the TERM command. The terms
IN_RANGE1 and 2 and OUT_RANGE1 and 2 are defined by the RANGe
command.

Expressions are limited to what you could manually enter through the State
Trigger menu. Regarding parentheses, the syntax definitions below show
only the required ones. Additional parentheses are allowed as long as the
meaning of the expression is not changed. A detailed example is provided in
figure 16-2 on page 16-11.

<state_tag_
qualifier>

<qualifier> see "Qualifier" on page 16-7

Example OUTPUT XXX;":MACHINE1:STRIGGER:TAG OFF"
OUTPUT XXX;":MACHINE1:STRIGGER:TAG TIME"
OUTPUT XXX;":MACHINE1:STRIGGER:TAG ’(IN_RANGE OR NOTF)’"
OUTPUT XXX;":MACHINE1:STRIGGER:TAG ’((IN_RANGE OR A) AND E)’"

STRigger (STRace) Subsystem
TAG

16–18

Query :MACHine{1|2} :STRigger:TAG?

The TAG query returns the current count tag specification.
Returned Format [:MACHine{1|2}:STRigger:TAG]

{OFF|TIME|<state_tag_qualifier>}<NL>

Example OUTPUT XXX;":MACHINE1:STRIGGER:TAG?"

TAKenbranch

Command :MACHine{1|2}:STRigger:TAKenbranch {STORe|NOSTore}

The TAKenbranch command allows you to specify whether the state causing
the branch is stored or not stored for the specified machine. The state
causing the branch is defined by the BRANch command.

Example OUTPUT XXX;":MACHINE2:STRIGGER:TAKENBRANCH STORE"

Query :MACHine{1|2}:STRigger:TAKenbranch?

The TAKenbranch query returns the current setting.
Returned Format [:MACHine{1|2}:STRigger:TAKenbranch] {STORe|NOSTore}<NL>

Example OUTPUT XXX;":MACHINE2:STRIGGER:TAKENBRANCH?

STRigger (STRace) Subsystem
TAKenbranch

16–19

TCONtrol

Command :MACHine{1|2}:STRigger:TCONtrol<N> <timer_num>,
{OFF|STARt|PAUSe|CONTinue}

The TCONtrol (timer control) command allows you to turn off, start, pause,
or continue the timer for the specified level. The time value of the timer is
defined by the TIMER command. There are two timers and they are available
for either machine but not both machines simultaneously.

<N> integer from 1 to the number of existing sequence levels (maximum 12)

<timer_num> {1|2}

Example OUTPUT XXX;":MACHINE2:STRIGGER:TCONTROL6 1, PAUSE"

Query :MACHine{1|2}:STRigger:TCONTROL<N>? <timer_num>

The TCONtrol query returns the current TCONtrol setting of the specified
level.

Returned Format [:MACHine{1|2}:STRigger:TCONTROL<N> <timer_num>]
{OFF|STARt|PAUSe|CONTinue}<NL>

Example OUTPUT XXX;":MACHINE2:STRIGGER:TCONTROL6? 1"

STRigger (STRace) Subsystem
TCONtrol

16–20

TERM

Command :MACHine{1|2}:STRigger:TERM
<term_id>,<label_name>,<pattern>

The TERM command allows you to specify a pattern recognizer term in the
specified machine. Each command deals with only one label in the given
term; therefore, a complete specification could require several commands.
Since a label can contain 32 or less bits, the range of the pattern value will be
between 232 − 1 and 0. When the value of a pattern is expressed in binary, it
represents the bit values for the label inside the pattern recognizer term.
Because the pattern parameter may contain don’t cares and be represented
in several bases, it is handled as a string of characters rather than a number.

Eight of the 10 terms (A through G and I) are available (terms H and J are
not available to timing analyzers) for either machine but not both
simultaneously. If you send the TERM command to a machine with a term
that has not been assigned to that machine, the error message "Legal
command but settings conflict" is returned.

<term_id> {A|B|C|D|E|F|G|H|I|J}

<label_name> string of up to 6 alphanumeric characters

<pattern> "{#B{0|1|X} . . . |
#Q{0|1|2|3|4|5|6|7|X} . . . |
#H{0|1|2|3|4|5|6|7|8|9|A|B|C|D|E|F|X} . . . |
{0|1|2|3|4|5|6|7|8|9} . . . }"

Example OUTPUT XXX;":MACHINE1:STRIGGER:TERM A,’DATA’,’255’ "
OUTPUT XXX;":MACHINE1:STRIGGER:TERM B,’ABC’,’#BXXXX1101’ "

STRigger (STRace) Subsystem
TERM

16–21

Query :MACHine{1|2}:STRigger:TERM?
<term_id>,<label_name>

The TERM query returns the specification of the term specified by term
identification and label name.

Returned Format [:MACHine{1|2}:STRAce:TERM]
<term_id>,<label_name>,<pattern><NL>

Example OUTPUT XXX;":MACHINE1:STRIGGER:TERM? B,’DATA’ "

TIMER

Command :MACHine{1|2}:STRigger:TIMER{1|2} <time_value >

The TIMER command sets the time value for the specified timer. The limits
of the timer are 400 ns to 500 seconds in 16 ns to 500 µs increments. The
increment value varies with the time value of the specified timer. There are
two timers and they are available for either machine but not both machines
simultaneously.

<time_value> real number from 400 ns to 500 seconds in increments which vary from 16 ns
to 500 µs.

Example OUTPUT XXX;":MACHINE1:STRIGGER:TIMER1 100E −6"

Query :MACHine{1|2}:STRigger:TIMER{1|2}?

The TIMER query returns the current time value for the specified timer.
Returned Format [:MACHine{1|2}:STRigger:TIMER{1|2}] <time_value><NL>

Example OUTPUT XXX;":MACHINE1:STRIGGER:TIMER1?"

STRigger (STRace) Subsystem
TIMER

16–22

TPOSition

Command :MACHine{1|2}:STRigger:TPOSition
{STARt|CENTer|END| POSTstore,<poststore >}

The TPOSition (trigger position) command allows you to set the trigger at
the start, center, end or at any position in the trace (poststore). Poststore is
defined as 0 to 100 percent with a poststore of 100 percent being the same as
start position and a poststore 0 percent being the same as an end trace.

<poststore> integer from 0 to 100 representing percentage of poststore.

Example OUTPUT XXX;":MACHINE1:STRIGGER:TPOSITION END"
OUTPUT XXX;":MACHINE1:STRIGGER:TPOSITION POSTstore,75"

Query :MACHine{1|2}:STRigger:TPOSition?

The TPOSition query returns the current trigger position setting.
Returned Format [:MACHine{1|2}:STRigger:TPOSition] {STARt|CENTer|END|

 POSTstore, <poststore >} <NL>

Example OUTPUT XXX;":MACHINE1:STRIGGER:TPOSITION?"

STRigger (STRace) Subsystem
TPOSition

16–23

16–24

17

SLISt Subsystem

Introduction

The SLISt subsystem contains the commands available for the State
Listing menu in the Agilent 1670G-series logic analyzer. These
commands are:

• COLumn • RUNTil

• CLRPattern • TAVerage

• DATA • TMAXimum

• LINE • TMINimum

• MMODe • VRUNs

• OPATtern • XOTag

• OSEarch • XOTime

• OSTate • XPATtern

• OTAG • XSEarch

• OVERlay • XSTate

• REMove • XTAG

17–2

SLISt Subsystem Syntax Diagram

Figure 17-1

SLISt Subsystem

17–3

Figure 17-1 (continued)

SLISt Subsystem Syntax Diagram (continued)

SLISt Subsystem

17–4

Figure 17-1 (continued)

SLISt Subsystem Syntax Diagram (continued)

SLISt Subsystem

17–5

Table 17-1 SLISt Subsystem Parameter Values

Parameter Value

mod_num 1 (2 through 10 not used)

mach_num {1|2}

col_num integer from 1 to 61

line_number integer from -1032192 to +1032192

label_name a string of up to 6 alphanumeric characters

base {BINary|HEXadecimal|OCTal|DECimal|TWOS|
ASCii|SYMBol|IASSembler} for labels or
{ABSolute|RELative} for tags

line_num_mid_screen integer from -1032192 to +1032192

label_pattern "{#B{0|1|X} . . . |
#Q{0|1|2|3|4|5|6|7|X} . . . |
#H{0|1|2|3|4|5|6|7|8|9|A|B|C|D|E|F|X} .
. . |
{0|1|2|3|4|5|6|7|8|9} . . . }"

occurrence integer from -1032192 to +1032192

time_value real number

state_value real number

run_until_spec {OFF|LT,<value>|GT,<value>|INRange,
<value>,<value>|OUTRange,<value>,<value
>}

value real number

SLISt Subsystem

17–6

SLISt

Selector :MACHine{1|2}:SLISt

The SLISt selector is used as part of a compound header to access those
settings normally found in the State Listing menu. It always follows the
MACHine selector because it selects a branch directly below the MACHine
level in the command tree.

Example OUTPUT XXX;":MACHINE1:SLIST:LINE 256"

COLumn

Command :MACHine{1|2}:SLISt:COLumn
<col_num>[,<module_num>, MACHine{1|2}],
<label_name>,<base>

The COLumn command allows you to configure the state analyzer list display
by assigning a label name and base to one of the 61 vertical columns in the
menu. A column number of 1 refers to the leftmost column. When a label is
assigned to a column it replaces the original label in that column.

When the label name is "TAGS," the TAGS column is assumed and the next
parameter must specify RELative or ABSolute.

A label for tags must be assigned in order to use ABSolute or RELative state
tagging.

SLISt Subsystem
SLISt

17–7

<col_num> integer from 1 to 61

<module_num> 1 (2 through 10 are not used)

<label_name> a string of up to 6 alphanumeric characters

<base> {BINary|HEXadecimal|OCTal|DECimal|TWOS|ASCii|SYMBol|
IASSembler} for labels or
{ABSolute|RELative} for tags

Example OUTPUT XXX;":MACHINE1:SLIST:COLUMN 4,’A’,HEX"

Query :MACHine{1|2}:SLISt:COLumn? <col_num>

The COLumn query returns the column number, label name, and base for the
specified column.

Returned Format [:MACHine{1|2}:SLISt:COLumn]
<col_num>,<module_num>,MACHine{1|2}, <label_name>,<base><NL>

Example OUTPUT XXX;":MACHINE1:SLIST:COLUMN? 4"

CLRPattern

Command :MACHine{1|2}:SLISt:CLRPattern {X|O|ALL}

The CLRPattern command allows you to clear the patterns in the selected
Specify Patterns menu.

Example OUTPUT XXX;":MACHINE1:SLISt:CLRPATTERN X"

SLISt Subsystem
CLRPattern

17–8

DATA

Query :MACHine{1|2}:SLISt:DATA?
<line_number>,<label_name>

The DATA query returns the value at a specified line number for a given
label. The format will be the same as the one shown in the listing display.

Returned Format [:MACHine{1|2}:SLISt:DATA] <line_number>,<label_name>,
 <pattern_string><NL>

<line_number> integer from -1032192 to +1032192

<label_name> string of up to 6 alphanumeric characters

<pattern_
string>

"{#B{0|1|X} . . . |
#Q{0|1|2|3|4|5|6|7|X} . . . |
#H{0|1|2|3|4|5|6|7|8|9|A|B|C|D|E|F|X} . . . |
{0|1|2|3|4|5|6|7|8|9} . . . }"

Example OUTPUT XXX;":MACHINE1:SLIST:DATA? 512, ’RAS’"

LINE

Command :MACHine{1|2}:SLISt:LINE <line_num_mid_screen>

The LINE command allows you to scroll the state analyzer listing vertically.
The command specifies the state line number relative to the trigger that the
analyzer highlights at the center of the screen.

<line_num_mid_
screen>

integer from -1032192 to +1032192

Example OUTPUT XXX;":MACHINE1:SLIST:LINE 0"

SLISt Subsystem
DATA

17–9

Query :MACHine{1|2}:SLISt:LINE?

The LINE query returns the line number for the state currently in the box at
the center of the screen.

Returned Format [:MACHine{1|2}:SLISt:LINE] <line_num_mid_screen><NL>

Example OUTPUT XXX;":MACHINE1:SLIST:LINE?"

MMODe (Marker Mode)

Command :MACHine{1|2}:SLISt:MMODe <marker_mode>

The MMODe command selects the mode controlling the marker movement
and the display of marker readouts. When PATTern is selected, the markers
will be placed on patterns. When STATe is selected and state tagging is on,
the markers move on qualified states counted between normally
stored states. When TIME is selected and time tagging is enabled, the
markers move on time between stored states. When MSTats is selected and
time tagging is on, the markers are placed on patterns, but the readouts will
be time statistics.

<marker_mode> {OFF|PATTern|STATe|TIME|MSTats}

Example OUTPUT XXX;":MACHINE1:SLIST:MMODE TIME"

SLISt Subsystem
MMODe (Marker Mode)

17–10

Query :MACHine{1|2}:SLISt:MMODe?

The MMODe query returns the current marker mode selected.
Returned Format [:MACHine{1|2}:SLISt:MMODe] <marker_mode><NL>

Example OUTPUT XXX;":MACHINE1:SLIST:MMODE?"

OPATtern

Command :MACHine{1|2}:SLISt:OPATtern
<label_name>,<label_pattern>

The OPATtern command allows you to construct a pattern recognizer term
for the O Marker which is then used with the OSEarch criteria when moving
the marker on patterns. Because this command deals with only one label at a
time, a complete specification could require several invocations.

When the value of a pattern is expressed in binary, it represents the bit
values for the label inside the pattern recognizer term. In whatever base is
used, the value must be between 0 and 232 − 1, since a label may not have
more than 32 bits. Because the <label_pattern> parameter may contain
don’t cares, it is handled as a string of characters rather than a number.

<label_name> string of up to 6 alphanumeric characters

<label_pattern> "{#B{0|1|X} . . . |
#Q{0|1|2|3|4|5|6|7|X} . . . |
#H{0|1|2|3|4|5|6|7|8|9|A|B|C|D|E|F|X} . . . |
{0|1|2|3|4|5|6|7|8|9} . . . }"

Example OUTPUT XXX;":MACHINE1:SLIST:OPATTERN ’DATA’,’255’ "
OUTPUT XXX;":MACHINE1:SLIST:OPATTERN ’ABC’,’#BXXXX1101’ "

SLISt Subsystem
OPATtern

17–11

Query :MACHine{1|2}:SLISt:OPATtern? <label_name>

The OPATtern query returns the pattern specification for a given label name.
Returned Format [:MACHine{1|2}:SLISt:OPATtern]

<label_name>,<label_pattern><NL>

Example OUTPUT XXX;":MACHINE1:SLIST:OPATTERN? ’A’"

OSEarch

Command :MACHine{1|2}:SLISt:OSEarch <occurrence>,<origin>

The OSEarch command defines the search criteria for the O marker, which is
then used with associated OPATtern recognizer specification when moving
the markers on patterns. The origin parameter tells the marker to begin a
search with the trigger, the start of data, or with the X marker. The actual
occurrence the marker searches for is determined by the occurrence
parameter of the OSEarch recognizer specification, relative to the origin. An
occurrence of 0 places the marker on the selected origin. With a negative
occurrence, the marker searches before the origin. With a positive
occurrence, the marker searches after the origin.

<occurrence> integer from -1032192 to +1032192

<origin> {TRIGger|STARt|XMARker}

Example OUTPUT XXX;":MACHINE1:SLIST:OSEARCH +10,TRIGGER"

SLISt Subsystem
OSEarch

17–12

Query :MACHine{1|2}:SLISt:OSEarch?

The OSEarch query returns the search criteria for the O marker.
Returned Format [:MACHine{1|2}:SLISt:OSEarch] <occurrence>,<origin><NL>

Example OUTPUT XXX;":MACHINE1:SLIST:OSEARCH?"

OSTate

Query :MACHine{1|2}:SLISt:OSTate?

The OSTate query returns the line number in the listing where the O marker
resides. If data is not valid , the query returns 2147483647.

Returned Format [:MACHine{1|2}:SLISt:OSTate] <state_num><NL>

<state_num> integer from -1032192 to +1032192 or 2147483647

Example OUTPUT XXX;":MACHINE1:SLIST:OSTATE?"

SLISt Subsystem
OSTate

17–13

OTAG

Command :MACHine{1|2}:SLISt:OTAG
{<time_value>|<state_value>}

The OTAG command specifies the tag value on which the O Marker should be
placed. The tag value is time when time tagging is on, or states when state
tagging is on. If the data is not valid tagged data, no action is performed.

<time_value> real number

<state_value> real number

Example :OUTPUT XXX;":MACHINE1:SLIST:OTAG 40.0E −6"

Query :MACHine{1|2}:SLISt:OTAG?

The OTAG query returns the O Marker position in time when time tagging is
on or in states when state tagging is on, regardless of whether the marker
was positioned in time or through a pattern search. If data is not valid, the
query returns 9.9E37 for time tagging, or returns 2147483647 for state
tagging.

Returned Format [:MACHine{1|2}:SLISt:OTAG] {<time_value>|<state_value>}<NL>

Example OUTPUT XXX;":MACHINE1:SLIST:OTAG?"

SLISt Subsystem
OTAG

17–14

OVERlay

Command :MACHine{1|2}:SLISt:OVERlay
<col_num>,<module_num>,MACHine{1|2},<label_name>

The OVERlay command allows you to add time-correlated labels from the
other analyzer to the state listing.

<col_num> integer from 1 to 61

<module_num> 1 (2 through 10 not used)

<label_name> a string of up to 6 alphanumeric characters

Example OUTPUT XXX;":MACHINE1:SLIST:OVERlay,25,1,MACHINE2,’DATA’"

REMove

Command :MACHine{1|2}:SLISt:REMove

The REMove command removes all labels, except the leftmost label, from
the listing menu.

Example OUTPUT XXX;":MACHINE1:SLIST:REMOVE"

SLISt Subsystem
OVERlay

17–15

RUNTil (Run Until)

Command :MACHine{1|2}:SLISt:RUNTil <run_until_spec>

The RUNTil command allows you to define a stop condition when the trace
mode is repetitive. Specifying OFF causes the analyzer to make runs until
either STOP is selected from the front panel or the STOP command is issued.

There are four conditions based on the time between the X and O markers.
Using this difference in the condition is effective only when time tags have
been turned on (see the TAG command in the STRace subsystem). These
four conditions are as follows:

• The difference is less than (LT) some value.

• The difference is greater than (GT) some value.

• The difference is inside some range (INRange).

• The difference is outside some range (OUTRange).

End points for the INRange and OUTRange should be at least 8 ns apart since
this is the minimum time resolution of the time tag counter.

<run_until_
spec>

{OFF|LT,<value>|GT,<value>|INRange,<value>,<value>
|OUTRange,<value>,<value>}

<value> real number from −9E9 to +9E9

Example OUTPUT XXX;":MACHINE1:SLIST:RUNTIL GT,800.0E −6"

Query :MACHine{1|2}:SLISt:RUNTil?

 The RUNTil query returns the current stop criteria.
Returned Format [:MACHine{1|2}:SLISt:RUNTil] <run_until_spec><NL>

Example OUTPUT XXX;":MACHINE1:SLIST:RUNTIL?"

SLISt Subsystem
RUNTil (Run Until)

17–16

TAVerage

Query :MACHine{1|2}:SLISt:TAVerage?

The TAVerage query returns the value of the average time between the X
and O Markers. If the number of valid runs is zero, the query returns 9.9E37.
Valid runs are those where the pattern search for both the X and O markers
was successful, resulting in valid delta-time measurements.

Returned Format [:MACHine{1|2}:SLISt:TAVerage] <time_value><NL>

<time_value> real number

Example OUTPUT XXX;":MACHINE1:SLIST:TAVERAGE?"

TMAXimum

Query :MACHine{1|2}:SLISt:TMAXimum?

The TMAXimum query returns the value of the maximum time between the X
and O Markers. If data is not valid, the query returns 9.9E37.

Returned Format [:MACHine{1|2}:SLISt:TMAXimum] <time_value><NL>

<time_value> real number

Example OUTPUT XXX;":MACHINE1:SLIST:TMAXIMUM?"

SLISt Subsystem
TAVerage

17–17

TMINimum

Query :MACHine{1|2}:SLISt:TMINimum?

The TMINimum query returns the value of the minimum time between the X
and O markers. If data is not valid, the query returns 9.9E37.

Returned Format [:MACHine{1|2}:SLISt:TMINimum] <time_value><NL>

<time_value> real number

Example OUTPUT XXX;":MACHINE1:SLIST:TMINIMUM?"

VRUNs

Query :MACHine{1|2}:SLISt:VRUNs?

The VRUNs query returns the number of valid runs and total number of runs
made. Valid runs are those where the pattern search for both the X and O
markers was successful resulting in valid delta time measurements.

Returned Format [:MACHine{1|2}:SLISt:VRUNs] <valid_runs>,<total_runs><NL>

<valid_runs> zero or positive integer

<total_runs> zero or positive integer

Example OUTPUT XXX;":MACHINE1:SLIST:VRUNS?"

SLISt Subsystem
TMINimum

17–18

XOTag

Query :MACHine{1|2}:SLISt:XOTag?

The XOTag query returns the time from the X to the O marker when marker
mode is time or the number of states from the X to the O marker when
marker mode is state. If there is no data in the time mode the query returns
9.9E37. If there is no data in the state mode, the query returns 2147483647.

Returned Format [:MACHine{1|2}:SLISt:XOTag] {<XO_time>|<XO_states>}<NL>

<XO_time> real number

<XO_states> integer

Example OUTPUT XXX;":MACHINE1:SLIST:XOTAG?"

XOTime

Query :MACHine{1|2}:SLISt:XOTime?

The XOTime query returns the time from the X to the O marker when marker
mode is time or the number of states from the X to the O marker when
marker mode is state. If there is no data in the time mode the query returns
9.9E37. If there is no data in the state mode, the query returns 2147483647.

Returned Format [:MACHine{1|2}:SLISt:XOTime] {<XO_time>|<XO_states>}<NL>

<XO_time> real number

<XO_states> integer

Example OUTPUT XXX;":MACHINE1:SLIST:XOTIME?"

SLISt Subsystem
XOTag

17–19

XPATtern

Command :MACHine{1|2}:SLISt:XPATtern
<label_name>,<label_pattern>

The XPATtern command allows you to construct a pattern recognizer term
for the X marker which is then used with the XSEarch criteria when moving
the marker on patterns. Since this command deals with only one label at a
time, a complete specification could require several invocations.

When the value of a pattern is expressed in binary, it represents the bit
values for the label inside the pattern recognizer term. In whatever base is
used, the value must be between 0 and 232 − 1, since a label may not have
more than 32 bits. Because the <label_pattern> parameter may contain
don’t cares, it is handled as a string of characters rather than a number.

<label_name> string of up to 6 alphanumeric characters

<label_pattern> "{#B{0|1|X} . . . |
#Q{0|1|2|3|4|5|6|7|X} . . . |
#H{0|1|2|3|4|5|6|7|8|9|A|B|C|D|E|F|X} . . . |
{0|1|2|3|4|5|6|7|8|9} . . . }"

Example OUTPUT XXX;":MACHINE1:SLIST:XPATTERN ’DATA’,’255’ "
OUTPUT XXX;":MACHINE1:SLIST:XPATTERN ’ABC’,’#BXXXX1101’ "

Query :MACHine{1|2}:SLISt:XPATtern? <label_name>

The XPATtern query returns the pattern specification for a given label name.
Returned Format [:MACHine{1|2}:SLISt:XPATtern]

<label_name>,<label_pattern><NL>

Example OUTPUT XXX;":MACHINE1:SLIST:XPATTERN? ’A’"

SLISt Subsystem
XPATtern

17–20

XSEarch

Command :MACHine{1|2}:SLISt:XSEarch <occurrence>,<origin>

The XSEarch command defines the search criteria for the X marker, which is
then used with the associated XPATtern recognizer specification when
moving the markers on patterns. The origin parameter tells the marker
to begin a search with the trigger or with the start of data. The
occurrence parameter determines which occurrence of the XPATtern
recognizer specification, relative to the origin, the marker actually searches
for. An occurrence of 0 places a marker on the selected origin.

<occurrence> integer from -1032192 to +1032192

<origin> {TRIGger|STARt}

Example OUTPUT XXX;":MACHINE1:SLIST:XSEARCH +10,TRIGGER"

Query :MACHine{1|2}:SLISt:XSEarch?

The XSEarch query returns the search criteria for the X marker.
Returned Format [:MACHine{1|2}:SLISt:XSEarch] <occurrence>,<origin><NL>

Example OUTPUT XXX;":MACHINE1:SLIST:XSEARCH?"

XSTate

Query :MACHine{1|2}:SLISt:XSTate?

The XSTate query returns the line number in the listing where the X marker
resides. If data is not valid, the query returns 2147483647.

Returned Format [:MACHine{1|2}:SLISt:XSTate] <state_num><NL>

<state_num> integer from -1032192 to +1032192 or 2147483647

SLISt Subsystem
XSEarch

17–21

Example OUTPUT XXX;":MACHINE1:SLIST:XSTATE?"

XTAG

Command :MACHine{1|2}:SLISt:XTAG
{<time_value>|<state_value>}

The XTAG command specifies the tag value on which the X marker should be
placed. The tag value is time when time tagging is on or states when state
tagging is on. If the data is not valid tagged data, no action is performed.

<time_value> real number

<state_value> integer

Example OUTPUT XXX;":MACHINE1:SLIST:XTAG 40.0E −6"

Query :MACHine{1|2}:SLISt:XTAG?

The XTAG query returns the X marker position in time when time tagging is
on or in states when state tagging is on, regardless of whether the marker
was positioned in time or through a pattern search. If data is not valid tagged
data, the query returns 9.9E37 for time tagging, or returns 2147483647 for
state tagging.

Returned Format [:MACHine{1|2}:SLISt:XTAG] {<time_value>|<state_value>}<NL>

Example OUTPUT XXX;":MACHINE1:SLIST:XTAG?"

SLISt Subsystem
XTAG

17–22

18

SWAVeform Subsystem

Introduction

The commands in the State Waveform subsystem allow you to
configure the display so that you can view state data as waveforms on
up to 96 channels identified by label name and bit number. The 12
commands are analogous to their counterparts in the Timing
Waveform subsystem. However, in this subsystem the x-axis is
restricted to representing only samples (states), regardless of
whether time tagging is on or off. As a result, the only commands
which can be used for scaling are DELay and RANge.

The way to manipulate the X and O markers on the Waveform display
is through the State Listing (SLISt) subsystem. Using the marker
commands from the SLISt subsystem will affect the markers on the
Waveform display.

The commands in the SWAVeform subsystem are:

• ACCumulate

• ACQuisition

• CENter

• CLRPattern

• CLRStat

• DELay

• INSert

• MLENgth

• RANGe

• REMove

• TAKenbranch

• TPOSition

18–2

SWAVeform Subsystem Syntax Diagram

Figure 18-1

SWAVeform Subsystem

18–3

Table 18-1 SWAVeform Subsystem Parameter Values

Parameter Value

number_of_samples integer from -1032192 to +1032192

label_name string of up to 6 alphanumeric characters

bit_id {OVERlay|<bit_num>|ALL}

bit_num integer representing a label bit from 0 to 31

range_values integer from 10 to 5000 (representing (10 × states/Division))

mark_type {X|O|XO|TRIGger}

percent integer from 0 to 100

memory_length {4096 | 8192 | 16384 | 32768 | 65536 |
131072 | 262144 | 524288 | 1032192}

SWAVeform

Selector :MACHine{1|2}:SWAVeform

The SWAVeform (State Waveform) selector is used as part of a compound
header to access the settings in the State Waveform menu. It always follows
the MACHine selector because it selects a branch directly below the
MACHine level in the command tree.

Example OUTPUT XXX;":MACHINE2:SWAVEFORM:RANGE 40"

SWAVeform Subsystem
SWAVeform

18–4

ACCumulate

Command :MACHine{1|2}:SWAVeform:ACCumulate
{{ON|1}|{OFF|0}}

The ACCumulate command allows you to control whether the waveform
display gets erased between individual runs or whether subsequent
waveforms are displayed over the previous waveforms.

Example OUTPUT XXX;":MACHINE1:SWAVEFORM:ACCUMULATE ON"

Query MACHine{1|2}:SWAVeform:ACCumulate?

The ACCumulate query returns the current setting. The query always shows
the setting as the characters, "0" (off) or "1" (on).

Returned Format [MACHine{1|2}:SWAVeform:ACCumulate] {0|1}<NL>

Example OUTPUT XXX;":MACHINE1:SWAVEFORM:ACCUMULATE?"

ACQuisition

Command :MACHine{1|2}:SWAVeform:ACQuisition
{AUTOmatic|MANual}

The ACQuisition command allows you to specify the acquisition mode for the
state analyzer. The acquisition modes are automatic and manual.

Example OUTPUT XXX;":MACHINE2:SWAVEFORM:ACQUISITION AUTOMATIC"

SWAVeform Subsystem
ACCumulate

18–5

Query MACHine{1|2}:SWAVeform:ACQuisition?

The ACQusition query returns the current acquisition mode.
Returned Format [MACHine{1|2}:SWAVeform:ACQuisition] {AUTOmatic|MANual}<NL>

Example OUTPUT XXX;":MACHINE2:SWAVEFORM:ACQUISITION?"

CENTer

Command :MACHine{1|2}:SWAVeform:CENTer <marker_type>

The CENTer command allows you to center the waveform display about the
specified markers. The markers are placed on the waveform in the SLISt
subsystem.

<marker_type> {X|O|XO|TRIGger}

Example OUTPUT XXX;":MACHINE1:SWAVEFORM:CENTER X"

CLRPattern

Command :MACHine{1|2}:SWAVeform:CLRPattern {X|O|ALL}

The CLRPattern command allows you to clear the patterns in the selected
Specify Patterns menu.

Example OUTPUT XXX;":MACHINE1:SWAVEFORM:CLRPATTERN"

SWAVeform Subsystem
CENTer

18–6

CLRStat

Command :MACHine{1|2}:SWAVeform:CLRStat

The CLRStat command allows you to clear the waveform statistics without
having to stop and restart the acquisition.

Example OUTPUT XXX;":MACHINE1:SWAVEFORM:CLRSTAT"

DELay

Command :MACHine{1|2}:SWAVeform:DELay <number_of_samples>

The DELay command allows you to specify the number of samples between
the State trigger and the horizontal center of the screen for the waveform
display. The allowed number of samples is from -1032192 to +1032192.

<number_of_
samples>

integer from -1032192 to +1032192

Example OUTPUT XXX;":MACHINE2:SWAVEFORM:DELAY 127"

Query MACHine{1|2}:SWAVeform:DELay?

The DELay query returns the current sample offset value.
Returned Format [MACHine{1|2}:SWAVeform:DELay] <number_of_samples><NL>

Example OUTPUT XXX;":MACHINE1:SWAVEFORM:DELAY?"

SWAVeform Subsystem
CLRStat

18–7

INSert

Command MACHine{1|2}:SWAVeform:INSert <label_name>,
<bit_id>

The INSert command adds waveforms to the state waveform display.
Waveforms are added from top to bottom on the screen. When 96 waveforms
are present, additional waveforms replace the last waveform. Bit numbers are
zero-based, so a label with 8 bits is referenced as bits 0 through 7. Specifying
OVERlay causes a composite waveform display of all bits or channels for the
specified label. Specifying ALL inserts all of the bits individually.

<label_name> string of up to 6 alphanumeric characters

<bit_id> {OVERlay|<bit_num>| ALL}

<bit_num> integer representing a label bit from 0 to 31

Example OUTPUT XXX;":MACHINE1:SWAVEFORM:INSERT ’ABC’, OVERLAY"
OUTPUT XXX;":MACH1:SWAV:INSERT ’POD1’, #B1001"

MLENgth

Command :MACHine{1|2}:SWAVeform:MLENgth <memory_length>

The MLENgth command specifies the analyzer memory depth. Valid memory
depths range from 4096 states (or samples) through the maximum system
memory depth minus 8192. Memory depth is affected by acquisition mode.
If the <memory_depth> value sent is not a legal value, the closest legal
setting is used.

<memory_length> {4096 | 8192 | 16384 | 32768 | 65536 | 131072 | 262144
| 516096 | 1032192}

Example OUTPUT XXX;":MACHINE1:SWAVEFORM:MLENGTH 262144"

SWAVeform Subsystem
INSert

18–8

Query :MACHine{1|2}:SWAVeform:MLENgth?

The MLENgth query returns the current analyzer memory depth selection.
Returned Format [:MACHine{1|2}:SWAVeform:MLENgth] <memory_length><NL>

Example OUTPUT XXX;":MACHINE1:SWAVEFORM:MLENGTH?"

RANGe

Command MACHine{1|2}:SWAVeform:RANGe <number_of_samples>

The RANGe command allows you to specify the number of samples across
the screen on the State Waveform display. It is equivalent to ten times the
states per division setting (states/Div) on the front panel. A number between
10 and 5000 may be entered.

<number_of_
samples>

integer from 10 to 5000

Example OUTPUT XXX;":MACHINE2:SWAVEFORM:RANGE 80"

Query MACHine{1|2}:SWAVeform:RANGe?

The RANGe query returns the current range value.
Returned Format [MACHine{1|2}:SWAVeform:RANGe] <number_of_samples><NL>

Example OUTPUT XXX;":MACHINE2:SWAVEFORM:RANGE?"

SWAVeform Subsystem
RANGe

18–9

REMove

Command :MACHine{1|2}:SWAVeform:REMove

The REMove command clears the waveform display.

Example OUTPUT XXX;":MACHINE1:SWAVEFORM:REMOVE"

TAKenbranch

Command MACHine{1|2}:SWAVeform:TAKenbranch {STORe|NOSTore}

The TAKenbranch command controls whether the states that cause
branching are stored or not stored. This command is only available when the
acquisition mode is set to manual.

Example OUTPUT XXX;":MACHINE2:SWAVEFORM:TAKENBRANCH STORE"

Query MACHine{1|2}:SWAVeform:TAKenbranch?

The TAKenbranch query returns the current setting.
Returned Format [MACHine{1|2}:SWAVeform:TAKenbranch] {STORe|NOSTore}<NL>

Example OUTPUT XXX;":MACHINE2:SWAVEFORM:TAKENBRANCH?"

SWAVeform Subsystem
REMove

18–10

TPOSition

Command MACHine{1|2}:SWAVeform:TPOSition
{STARt|CENTer|END|POSTstore,<percent>}

The TPOSition command controls where the trigger point is placed. The
trigger point can be placed at the start, center, end, or at a percentage of
poststore. The poststore option is the same as the User Defined option when
setting the trigger point from the front panel.

The TPOSition command is only available when the acquisition mode is set to
manual.

<percent> integer from 1 to 100

Example OUTPUT XXX;":MACHINE2:SWAVEFORM:TPOSITION CENTER"

Query MACHine{1|2}:SWAVeform:TPOSition?

The TPOSition query returns the current trigger setting.
Returned Format [MACHine{1|2}:SWAVeform:TPOSition]

{STARt|CENTer|END|POSTstore,
 <percent>}<NL>

Example OUTPUT XXX;":MACHINE2:SWAVEFORM:TPOSition?"

SWAVeform Subsystem
TPOSition

18–11

18–12

19

SCHart Subsystem

Introduction

The State Chart subsystem provides the commands necessary for
programming the Agilent 1670G-series logic analyzer State Chart
display. The commands allow you to build charts of label activity,
using data normally found in the Listing display. The chart’s Y axis is
used to show data values for the label of your choice. The X axis can
be used in two different ways. In one, the X axis represents states
(shown as rows in the State Listing display). In the other, the X axis
represents the data values for another label. When states are plotted
along the X axis, X and O markers are available. Because the State
Chart display is simply an alternative way of looking at the data in the
State Listing, the X and O markers can be manipulated through the
SLISt subsystem. Because the programming commands do not force
the menus to switch, you can position the markers in the SLISt
subsystem and see the effects in the State Chart display.

The commands in the SCHart subsystem are:

• ACCumulate

• CENTer

• HAXis

• VAXis

19–2

SCHart Subsystem Syntax Diagram

Table 19-1 SCHart Subsystem Parameter Values

Parameter Value

state_low_value integer from -1032192 to + 1032192

state_high_value integer from <state_low_value> to +1032192

label_name a string of up to 6 alphanumeric characters

label_low_value string from 0 to 232 - 1 (#HFFFFFFFF)

label_high_value string from <label_low_value> to 232 - 1 (#HFFFFFFFF)

low_value string from 0 to 232 - 1 (#HFFFFFFFF)

high_value string from low_value to 232 - 1 (#HFFFFFFFF)

marker_type {X | O | XO | TRIGger}

Figure 19-1

SCHart Subsystem

19–3

SCHart

Selector :MACHine{1|2}:SCHart

The SCHart selector is used as part of a compound header to access the
settings found in the State Chart menu. It always follows the MACHine
selector because it selects a branch below the MACHine level in the
command tree.

Example OUTPUT XXX;":MACHINE1:SCHART:VAXIS ’A’, ’0’, ’9’"

ACCumulate

Command MACHine{1|2}:SCHart:ACCumulate {{ON|1} | {OFF|0}}

The ACCumulate command controls whether the chart display gets erased
between each individual run or whether subsequent waveforms are allowed
to be displayed over the previous waveforms.

Example OUTPUT XXX;":MACHINE1:SCHART:ACCUMULATE OFF"

Query MACHine{1|2}:SCHart:ACCumulate?

The ACCumulate query returns the current setting. The query always shows
the setting as the character "0" (off) or "1" (on).

Returned Format [:MACHine{1|2}:SCHart:ACCumulate] {0|1}<NL>

Example OUTPUT XXX;":MACHINE1:SCHART:ACCUMULATE?"

SCHart Subsystem
SCHart

19–4

CENTer

Command MACHine{1|2}:SCHart:CENTer <marker_type>

The CENTer command centers the waveform display about the specified
markers. The markers are placed on the waveform in the SLISt subsystem.

<marker_type> {X|O|XO|TRIGger}

Example OUTPUT XXX;":MACHINE1:SCHART:CENTER XO"

HAXis

Command MACHine{1|2}:SCHart:HAXis
{STAtes,<state_low_value>,<state_high_value> |
<label_name>,<label_low_value>,<label_high_value>,
<state_low_value>,<state_high_value>}

The HAXis command selects whether states or a label’s values will be plotted
on the horizontal axis of the chart. The axis is scaled by specifying the high
and low values. The shortform for STATES is STA. This is an intentional
deviation from the normal truncation rule.

<state_low_
value>

integer from -1032192 to +1032192

<state_high_
value>

integer from <state_low_value> to 1032192

<label_name> a string of up to 6 alphanumeric characters

<label_low_
value>

string from 0 to 232−−1 (#HFFFFFFFF)

<label_high_
value>

string from <label_low_value> to 232–1 (#HFFFFFFFF)

SCHart Subsystem
CENTer

19–5

Example OUTPUT XXX;":MACHINE1:SCHART:HAXIS STATES, −100, 100"

OUTPUT XXX;":MACHINE1:SCHART:HAXIS ’READ’, ’ −511’, ’511’,
0,300"

Query MACHine{1|2}:SCHart:HAXis?

The HAXis query returns the current horizontal axis label and scaling.
Returned Format [:MACHine{1|2}:SCHart:HAXis]

{STAtes,<state_low_value>,<state_high_value> |
<label_name>,<label_low_value>,<label_high_value>,
<state_low_value>,<state_high_value>}

Example OUTPUT XXX;":MACHINE1:SCHART:HAXIS?"

VAXis

Command MACHine{1|2}:SCHart:VAXis
<label_name>,<low_value>,<high_value>

The VAXis command allows you to choose which label will be plotted on the
vertical axis of the chart and scale the vertical axis by specifying the high
value and low value.

<label_name> a string of up to 6 alphanumeric characters

<low_value> string from 0 to 232-1 (#HFFFFFFFF)

<high_value> string from <low_value> to 232-1 (#HFFFFFFFF)

Example OUTPUT XXX;":MACHINE2:SCHART:VAXIS ’SUM1’, ’0’, ’99’"
OUTPUT XXX;":MACHINE1:SCHART:VAXIS ’BUS’, ’#H00FF’, ’#H0500’"

SCHart Subsystem
VAXis

19–6

Query MACHine{1|2}:SCHart:VAXis?

The VAXis query returns the current vertical axis label and scaling.
Returned Format [:MACHine{1|2}:SCHart:VAXis]

<label_name>,<low_value>,<high_value><NL>

Example OUTPUT XXX;":MACHINE1:SCHART:VAXIS?"

SCHart Subsystem
VAXis

19–7

19–8

20

COMPare Subsystem

Introduction

Commands in the state COMPare subsystem provide the ability to do a
bit-by-bit comparison between the acquired state data listing and a
compare data image. The commands are:

• CLEar

• CMASk

• COPY

• DATA

• FIND

• LINE

• MENU

• RANGe

• RUNTil

• SET

20–2

COMPare Subsystem Syntax Diagram

Figure 20-1

COMPare Subsystem

20–3

Table 20-1 COMPare Subsystem Parameter Values

Parameter Value

label_name string of up to 6 characters

care_spec "{*|.}..."

* care

. don’t care

line_num integer from -245760 to +245760

data_pattern "{#B{0|1|X} . . . |
#Q{0|1|2|3|4|5|6|7|X} . . . |
#H{0|1|2|3|4|5|6|7|8|9|A|B|C|D|E|F|X}
. . . |
{0|1|2|3|4|5|6|7|8|9} . . . }"

difference_occurrence integer from 1 to 245760

start_line integer from -245760 to +245760

stop_line integer from <start_line> to +245760

COMPare

Selector :MACHine{1|2}:COMPare

The COMPare selector is used as part of a compound header to access the
settings found in the Compare menu. It always follows the MACHine selector
because it selects a branch directly below the MACHine level in the command
tree.

Example OUTPUT XXX;":MACHINE1:COMPARE:FIND? 819"

COMPare Subsystem
COMPare

20–4

CLEar

Command :MACHine{1|2}:COMPare:CLEar

The CLEar command clears all "don’t cares" in the reference listing and
replaces them with zeros except when the CLEar command immediately
follows the SET command (see SET command).

Example OUTPUT XXX;":MACHINE2:COMPARE:CLEAR

CMASk

Command :MACHine{1|2}:COMPare:CMASk
<label_name>,<care__spec>

The CMASk (Compare Mask) command allows you to set the bits in the
channel mask for a given label in the compare listing image to "compares" or
"don’t compares."

<label_name> a string of up to 6 alphanumeric characters

<care_spec> string of characters "{*|.}..." (32 characters maximum)

* care

. don’t care

Example OUTPUT XXX;":MACHINE2:COMPARE:CMASK ’DATA’, ’*.**..**’"

Query :MACHine{1|2}:COMPare:CMASk <label_name>?

The CMASk query returns the state of the bits in the channel mask for a
given label in the compare listing image.

Returned Format [:MACHine{1|2}:COMPare:CMASk] <label_name>,<care_spec>

COMPare Subsystem
CLEar

20–5

Example OUTPUT XXX;":MACHINE2:COMPARE:CMASK ’DATA’?"

COPY

Command :MACHine{1|2}:COMPare:COPY

The COPY command copies the current acquired State Listing for the
specified machine into the Compare Listing template. It does not affect the
compare range or channel mask settings.

Example OUTPUT XXX;":MACHINE2:COMPARE:COPY"

DATA

Command :MACHine{1|2}:COMPare:DATA
{<label_name>,<line_num>,<data_pattern>|
<line_num>,<data_pattern>[, <data_pattern>]... }

The DATA command allows you to edit the compare listing image for a given
label and state row. When DATA is sent to an instrument where no compare
image is defined (such as at power-up) all other data in the image is set to
don’t cares.

Not specifying the <label_name> parameter allows you to write data patterns
to more than one label for the given line number. The first pattern is placed
in the leftmost label, with the following patterns being placed in a left-to-right
fashion (as seen on the Compare display). Specifying more patterns than
there are labels simply results in the extra patterns being ignored.

Because don’t cares (Xs) are allowed in the data pattern, it must always be
expressed as a string. You may still use different bases but "don’t cares"
cannot be used in a decimal number.

COMPare Subsystem
COPY

20–6

<label_name> a string of up to 6 alphanumeric characters

<line_num> integer from –245760 to +245760

<data_pattern> "{#B{0|1|X} . . . |
#Q{0|1|2|3|4|5|6|7|X} . . . |
#H{0|1|2|3|4|5|6|7|8|9|A|B|C|D|E|F|X} . . . |
{0|1|2|3|4|5|6|7|8|9} . . . }"

Example OUTPUT XXX;":MACHINE2:COMPARE:DATA ’CLOCK’, 42, ’#B011X101X’"
OUTPUT XXX;":MACHINE2:COMPARE:DATA ’OUT3’, 0, ’#HFF40’"
OUTPUT XXX;":MACHINE1:COMPARE:DATA 129, ’#BXX00’, ’#B1101’,
’#B10XX’"

OUTPUT XXX;":MACH2:COMPARE:DATA −511, ’4’, ’64’, ’16’, 256’,
’8’, ’16’"

Query :MACHine{1|2}:COMPare:DATA? <label_name>,<line_num>

The DATA query returns the value of the compare listing image for a given
label and state row.

Returned Format [:MACHine{1|2}:COMPare:DATA] <label_name>,<line_num>,
<data_pattern><NL>

Example

10 DIM Label$[6], Response$[80]
15 PRINT "This program shows the values for a signal’s Compare listing"
20 INPUT "Enter signal label: ", Label$
25 OUTPUT XXX;":SYSTEM:HEADER OFF" !Turn headers off (from responses)
30 OUTPUT XXX;":MACHINE2:COMPARE:RANGE?"
35 ENTER XXX; First, Last !Read in the range’s end-points
40 PRINT "LINE #", "VALUE of "; Label$
45 FOR State = First TO Last !Print compare value for each state
50 OUTPUT XXX;":MACH2:COMPARE:DATA? ’" Label$ "’," VAL$(State)
55 ENTER XXX; Response$
60 PRINT State, Response$
65 NEXT State
70 END

COMPare Subsystem
DATA

20–7

FIND

Query :MACHine{1|2}:COMPare:FIND?
<difference_occurrence>

The FIND query is used to get the line number of a specified difference
occurrence (first, second, third, etc) within the current compare range, as
dictated by the RANGe command. A difference is counted for each line
where at least one of the current labels has a discrepancy between its
acquired state data listing and its compare data image.

Invoking the FIND query updates both the Listing and Compare displays so
that the line number returned is in the center of the screen.

Returned Format [:MACHine{1|2}:COMPare:FIND] <difference_occurrence>,
<line_number><NL>

<difference_
occurrence>

integer from 1 to 245760

<line_number> integer from –245760 to +245760

Example OUTPUT XXX;":MACHINE2:COMPARE:FIND? 26"

LINE

Command :MACHine{1|2}:COMPare:LINE <line_num>

The LINE command allows you to center the compare listing data about a
specified line number.

<line_num> integer from –245760 to +245760

Example OUTPUT XXX;":MACHINE2:COMPARE:LINE –511"

COMPare Subsystem
FIND

20–8

Query :MACHine{1|2}:COMPare:LINE?

The LINE query returns the current line number specified.
Returned Format [:MACHine{1|2}:COMPare:LINE] <line_num><NL>

Example OUTPUT XXX;":MACHINE2:COMPARE:LINE?"

MENU

Command :MACHine{1|2}:COMPare:MENU {REFerence|DIFFerence}

The MENU command allows you to display the reference or the difference
listing in the Compare menu.

Example OUTPUT XXX;":MACHINE2:COMPARE:MENU REFERENCE"

RANGe

Command :MACHine{1|2}:COMPare:RANGe {FULL |
PARTial,<start_line>,<stop_line>}

The RANGe command allows you to define the boundaries for the
comparison. The range entered must be a subset of the lines in the acquire
memory.

<start_line> integer from –245760 to +245760

<stop_line> integer from <start_line> to +245760

Example OUTPUT XXX;":MACHINE2:COMPARE:RANGE PARTIAL, –511, 512"
OUTPUT XXX;":MACHINE2:COMPARE:RANGE FULL"

COMPare Subsystem
MENU

20–9

Query :MACHine{1|2}:COMPare:RANGe?

The RANGe query returns the current boundaries for the comparison.
Returned Format [:MACHine{1|2}:COMPare:RANGe] {FULL | PARTial,<start_line>,

<stop_line>}<NL>

Example 10 DIM String$[100]
20 OUTPUT 707;":SELECT 2"
30 OUTPUT 707;":MACHINE1:COMPARE:RANGE?"
40 ENTER 707;String$
50 PRINT "RANGE IS ";String$
60 END

RUNTil (Run Until)

Command :MACHine{1|2}:COMPare:RUNTil {OFF | LT,<value> |
GT,<value> | INRange,<value>,<value> |
OUTRange,<value>,<value> | EQUal | NEQual}

The RUNTil command allows you to define a stop condition when the trace
mode is repetitive. Specifying OFF causes the analyzer to make runs until
either the display’s STOP field is touched or the STOP command is issued.

There are four conditions based on the time between the X and O markers.
Using this difference in the condition is effective only when time tags have
been turned on (see the TAG command in the STRace subsystem). These
four conditions are as follows:

• The difference is less than (LT) some value.

• The difference is greater than (GT) some value.

• The difference is inside some range (INRange).

• The difference is outside some range (OUTRange).

COMPare Subsystem
RUNTil (Run Until)

20–10

End points for the INRange and OUTRange should be at least 8 ns apart since
this is the minimum time resolution of the time tag counter.

There are two conditions which are based on a comparison of the acquired
state data and the compare data image. You can run until one of the
following conditions is true:

• Every channel of every label has the same value (EQUal).

• Any channel of any label has a different value (NEQual).

The RUNTil instruction (for state analysis) is available in both the SLISt and
COMPare subsystems.

<value> real number from −9E9 to +9E9

Example OUTPUT XXX;":MACHINE2:COMPARE:RUNTIL EQUAL"

Query :MACHine{1|2}:COMPare:RUNTil?

The RUNTil query returns the current stop criteria for the comparison when
running in repetitive trace mode.

Returned Format [:MACHine{1|2}:COMPare:RUNTil] {OFF| LT,<value>|GT,<value>l
INRange,<value>,<value>|OUTRange,<value>,<value>|EQUal|NEQual}
<NL>

Example OUTPUT XXX;":MACHINE2:COMPARE:RUNTIL?"

COMPare Subsystem
RUNTil (Run Until)

20–11

SET

Command :MACHine{1|2}:COMPare:SET

The SET command sets every state in the reference listing to "don’t cares." If
you send the SET command by mistake you can immediately send the CLEar
command to restore the previous data. This is the only time the CLEar
command will not replace "don’t cares" with zeros.

Example OUTPUT XXX;":MACHINE2:COMPARE:SET"

COMPare Subsystem
SET

20–12

21

TFORmat Subsystem

Introduction

The TFORmat subsystem contains the commands available for the
Timing Format menu in the Agilent 1670G-series logic analyzer. These
commands are:

• ACQMode

• LABel

• REMove

• THReshold

21–2

TFORmat Subsystem Syntax Diagram

Figure 21-1

TFORmat Subsystem

21–3

Table 21-1 TFORmat Subsystem Parameter Values

Parameter Value

<N> an integer from 1 to 8, indicating pod

name string of up to 6 alphanumeric characters

polarity {POSitive | NEGative}

upper_bits format (integer from 0 to 65535) for a pod (pods are
assigned in decreasing order)

lower_bits format (integer from 0 to 65535) for a pod (pods are
assigned in decreasing order)

value voltage (real number) -6.00 to +6.00

clock_bits format (integer from 0 to 65535) for a clock (clocks are
assigned in decreasing order)

TFORmat (Timing Format)

Selector :MACHine{1|2}:TFORmat

The TFORmat selector is used as part of a compound header to access those
settings normally found in the Timing Format menu. It always follows the
MACHine selector because it selects a branch directly below the MACHine
level in the language tree.

Example OUTPUT XXX;":MACHINE1:TFORMAT:ACQMODE?"

TFORmat Subsystem
TFORmat (Timing Format)

21–4

ACQMode

Command :MACHine{1|2}:TFORmat:ACQMode {FULL | HALF}

The ACQMode (acquisition mode) command selects the acquisition mode for
the timing analyzer. The options are:

• conventional mode at full-channel 125 MHz

• conventional mode at half-channel 250 MHz

Example OUTPUT XXX;":MACHINE2:TFORMAT:ACQMODE HALF"

Query :MACHine{1|2}:TFORmat:ACQMode?

The ACQMode query returns the current acquisition mode.
Returned Format [:MACHine{1|2}:TFORmat:ACQMode] {FULL | HALF}<NL>

Example OUTPUT XXX;":MACHINE2:TFORMAT:ACQMODE?"

TFORmat Subsystem
ACQMode

21–5

LABel

Command :MACHine{1|2}:TFORmat:LABel <name>
[,<polarity>,<clock_bits>, [<clock_bits>,]
<upper_bits>, <lower_bits>[,<upper_bits>,
<lower_bits>]...]

The LABel command specifies polarity and assigns channels to new or
existing labels. If the specified label name does not match an existing label
name, a new label will be created.

The order of the pod specification parameters is significant. The first one
listed will match the highest numbered pod assigned to the machine you’re
using. Each pod specification after that is assigned to the next highest
numbered pod. This way they match the left-to-right descending order of the
pods you see on the Format display. Not including enough pod specifications
results in the lowest numbered pods being assigned a value of zero (all
channels excluded). If you include more pod specifications than there are
pods for that machine, the extra ones will be ignored. However, an error is
reported anytime more than 22 pod specifications are listed.

You can specify the polarity at any point after the label name.

Because pods contain 16 channels, the format value for a pod must be
between 0 and 65535 (216−1). When giving the pod assignment in binary
(base 2), each bit will correspond to a single channel. A "1" in a bit position
means the associated channel in that pod is assigned to that pod and bit. A
"0" in a bit position means the associated channel in that pod is excluded
from the label. For example, assigning #B1111001100 is equivalent to
entering "......****..**.." through the touchscreen.

A label cannot have a total of more than 32 channels assigned to it.

<name> string of up to 6 alphanumeric characters

<polarity> {POSitive | NEGative}

<clock_bits> format (integer from 0 to 63) for a clock (clocks are assigned in decreasing
order)

<upper_bits> format (integer from 0 to 65535) for a pod (pods are assigned in decreasing
order)

TFORmat Subsystem
LABel

21–6

<lower_bits> format (integer from 0 to 65535) for a pod (pods are assigned in decreasing
order)

<assignment> format (integer from 0 to 65535) for a pod (pods are assigned in decreasing
order)

Example OUTPUT XXX;":MACHINE2:TFORMAT:LABEL ’STAT’, POSITIVE,
0,127,40312"
OUTPUT XXX;":MACHINE2:TFORMAT:LABEL ’SIG 1’,
#B11,#B0000000011111111,
#B0000000000000000 "

Query :MACHine{1|2}:TFORmat:LABel? <name>

The LABel query returns the current specification for the selected (by name)
label. If the label does not exist, nothing is returned. Numbers are always
returned in decimal format.

Returned Format [:MACHine{1|2}:TFORmat:LABel] <name>,<polarity>[,
<assignment>]...<NL>

Example OUTPUT XXX;":MACHINE2:TFORMAT:LABEL? ’DATA’"

REMove

Command :MACHine{1|2}:TFORmat:REMove {<name>|ALL}

The REMove command deletes all labels or any one label specified by name
for a given machine.

<name> string of up to 6 alphanumeric characters

Example OUTPUT XXX;":MACHINE1:TFORMAT:REMOVE ’A’"
OUTPUT XXX;":MACHINE1:TFORMAT:REMOVE ALL"

TFORmat Subsystem
REMove

21–7

THReshold

Command :MACHine{1|2}:TFORmat:THReshold<N>
{TTL|ECL|<value>}

The THReshold command allows you to set the voltage threshold for a given
pod to ECL, TTL, or a specific voltage from −6.00 V to +6.00 V in 0.05 volt
increments.

<N> pod number (integer from 1 to 8)

<value> voltage (real number) −6.00 to +6.00

TTL default value of +1.6 V

ECL default value of −1.3 V

Example OUTPUT XXX;":MACHINE1:TFORMAT:THRESHOLD1 4.0"

Query :MACHine{1|2}:TFORmat:THReshold<N>?

The THReshold query returns the current threshold for a given pod.
Returned Format [:MACHine{1|2}:TFORmat:THReshold<N>] <value><NL>

Example OUTPUT XXX;":MACHINE1:TFORMAT:THRESHOLD2?"

TFORmat Subsystem
THReshold

21–8

22

TTRigger (TTRace) Subsystem

Introduction

The TTRigger subsystem contains the commands available for the
Timing Trigger menu in the Agilent 1670G-series logic analyzer. The
Timing Trigger subsystem will also accept the TTRace selector as
used in previous 16500-series logic analyzer modules to eliminate the
need to rewrite programs containing TTRace as the selector keyword.
The TTRigger subsystem commands are:

• ACQuisition

• BRANch

• CLEar

• EDGE

• FIND

• MLENgth

• RANGe

• SEQuence

• SPERiod

• TCONtrol

• TERM

• TIMER

• TPOSition

22–2

TTRigger Subsystem Syntax Diagram

Figure 22-1

TTRigger (TTRace) Subsystem

22–3

Figure 22-1 (continued)

TTRigger Subsystem Syntax Diagram (continued)

TTRigger (TTRace) Subsystem

22–4

Table 22-1 TTRigger Parameter Values

Parameter Value

branch_qualifier <qualifier>

to_level_num integer from 1 to last level
proceed_qualifier <qualifier>

occurrence number from 1 to 1048575
label_name string of up to 6 alphanumeric characters
start_pattern "{#B{0|1} . . . |

#Q{0|1|2|3|4|5|6|7} . . . |
#H{0|1|2|3|4|5|6|7|8|9|A|B|C|D|E|F} . . |
{0|1|2|3|4|5|6|7|8|9} . . . }"

stop_pattern "{#B{0|1} . . . |
#Q{0|1|2|3|4|5|6|7} . . . |
#H{0|1|2|3|4|5|6|7|8|9|A|B|C|D|E|F} . . |
{0|1|2|3|4|5|6|7|8|9} . . . }"

num_of_levels integer from 1 to 10
timer_num {1|2}

timer_value 400 ns to 500 seconds
term_id {A|B|C|D|E|F|G|I}

pattern "{#B{0|1|X} . . . |
#Q{0|1|2|3|4|5|6|7|X} . . . |
#H{0|1|2|3|4|5|6|7|8|9|A|B|C|D|E|F|X} .
. . |
{0|1|2|3|4|5|6|7|8|9} . . . }"

qualifier see "Qualifier" on page 22-6
post_value integer from 0 to 100 representing percentage
time_val real number from 2 x sample_period to 1032192
duration_time real number from 8 ns to 5s based on the sample period
sample_period real number from 4ns to 41µs
edge_spec string consisting of {E | F | R | .}

memory_length {4096 | 8192 | 16384 | 32768 | 65536 |
131072 | 262144 | 524288 | 1032192}

TTRigger (TTRace) Subsystem

22–5

Qualifier

The qualifier for the timing trigger subsystem can be terms A through G and
I, Timer 1 and 2, and Range 1 and 2. In addition, qualifiers can be the NOT
boolean function of terms, timers, and ranges. The qualifier can also be an
expression or combination of expressions as shown below and figure 22-2,
"Complex Qualifier," on page 22-11.

The following parameters show how qualifiers are specified in all commands
of the TTRigger subsystem that use <qualifier> .

<qualifier> { "ANYSTATE" | "NOSTATE" | "<expression>" }

<expression> {<expression1a>|<expression1b>|<expression1a> OR
<expression1b>|<expression1a> AND <expression1b>}

<expression1a> {<expression1a_term>|(<expression1a_term>[OR
<expression1a_term>]*)|(<expression1a_term>[AND
<expression1a_term>]*)}

<expression1a_
term>

{<expression2a>|<expression2b>|<expression2c>}

<expression1b> {<expression1b_term>|(<expression1b_term>[OR
<expression1b_term>]*)|(<expression1b_term>[AND
<expression1b_term>]*)}

<expression1b_
term>

{<expression2e>|<expression2f>|<expression2g>| <expression2h>}

<expression2a> {<term3a>|<term3b>|(<term3a> <boolean_op> <term3b>)}

<expression2b> {<term3c>|<range3a>|(<term3c> <boolean_op> <range3a>)}

<expression2c> {<term3d>|<edge3a|(<term3d> <boolean_op> <edge3a>)}

<expression2d> {<term3e>|<timer3a>|(<term3e> <boolean_op> <timer3a>)}

<expression2e> {<term3f>|<term3g>|(<term3f> <boolean_op> <term3g>)}

<expression2f> {<term3g>|<range3b>|(<term3g> <boolean_op> <range3b>)}

<expression2g> {<term3i>|<edge3b>|(<term3i> <boolean_op> <edge3b>)}

<boolean_op> {AND | NAND | OR | NOR | XOR | NXOR}

TTRigger (TTRace) Subsystem
Qualifier

22–6

<term3a> { A | NOTA }

<term3b> { B | NOTB }

<term3c> { C | NOTC }

<term3d> { D | NOTD }

<term3e> { E | NOTE }

<term3f> { F | NOTF }

<term3g> { G | NOTG }

<term3i> { I | NOTI }

<range3a> { IN_RANGE1 | OUT_RANGE1 }

<range3b> { IN_RANGE2 | OUT_RANGE2 }

<edge3a> {EDGE1 | NOT EDGE1}

<edge3b> {EDGE2 | NOT EDGE2}

<timer3a> { TIMER1< | TIMER1>}

<timer3b> { TIMER2< | TIMER2>}

* = is optional such that it can be used zero or more times
+ = must be used at least once and can be repeated

TTRigger (TTRace) Subsystem
Qualifier

22–7

Qualifier Rules

The following rules apply to qualifiers:

• Qualifiers are quoted strings and, therefore, need quotes.

• Expressions are evaluated from left to right.

• Parentheses are used to change the order evaluation and, therefore, are
optional.

• An expression must map into the combination logic presented in the
combination pop-up menu within the TTRigger menu.

Example ’A’

’(A OR B)’

’((A OR B) AND C)’

’((A OR B) AND C AND IN_RANGE2)’

’((A OR B) AND (C AND IN_RANGE1))’

’IN_RANGE1 AND (A OR B) AND C ’

TTRigger (TTRace)(Trace Trigger)

Selector :MACHine{1|2}:TTRigger

The TTRigger selector is used as a part of a compound header to access the
settings found in the Timing Trace menu. It always follows the MACHine
selector because it selects a branch directly below the MACHine level in the
command tree.

Example OUTPUT XXX;":MACHINE1:TTRIGGER:TAG TIME"

TTRigger (TTRace) Subsystem
TTRigger (TTRace)(Trace Trigger)

22–8

ACQuisition

Command :MACHine{1|2}:TTRigger:ACQuisition
{AUTOmatic|MANual}

The ACQuisition command specifies the acquisition mode for the Timing
analyzer.

Example OUTPUT XXX;":MACHINE1:TTRIGGER:ACQUISITION AUTOMATIC"

Query :MACHine{1|2}:TTRigger:ACQuisition?

The ACQuisition query returns the current acquisition mode specified.
Returned Format [:MACHine{1|2}:TTRigger:ACQuisition] {AUTOmatic|MANual}<NL>

Example OUTPUT XXX;":MACHINE1:TTRIGGER:ACQUISITION?"

BRANch

Command :MACHine{1|2}:TTRigger:BRANch<N>
<branch_qualifier>,<to_level_number>

The BRANch command defines the branch qualifier for a given sequence
level. When this branch qualifier is matched, it will cause the sequencer
to jump to the specified sequence level.

The terms used by the branch qualifier (A through G and I) are defined by
the TERM command. The meaning of IN_RANGE and OUT_RANGE is
determined by the RANGE command.

TTRigger (TTRace) Subsystem
ACQuisition

22–9

Within the limitations shown by the syntax definitions, complex expressions
may be formed using the AND and OR operators. Expressions are limited to
what you could manually enter through the Timing Trigger menu. As far as
required and optional parentheses, the syntax definitions on the next page
show only the required ones. Additional parentheses are allowed as long as
the meaning of the expression is not changed. Figure 22-2 on page 22-11
shows a complex expression as seen in the Timing Trigger menu.

Example The following statements are all correct and have the same meaning. Notice
that the conventional rules for precedence are not followed. The expressions
are evaluated from left to right.

OUTPUT XXX;":MACHINE1:TTRIGGER:BRANCH1 ’C AND D OR F OR G’, 1"
OUTPUT XXX;":MACHINE1:TTRIGGER:BRANCH1 ’((C AND D) OR (F OR G))’, 1"
OUTPUT XXX;":MACHINE1:TTRIGGER:BRANCH1 ’F OR (C AND D) OR G’,1"

<N> integer from 1 to <number_of_levels>

<to_level_
number>

integer from 1 to <number_of_levels>

<number_of_
levels>

integer from 1 to the number of existing sequence levels (maximum 10)

<branch_
qualifier>

<qualifier> see "Qualifier" on page 22-6

Example OUTPUT XXX;":MACHINE1:TTRIGGER:BRANCH1 ’ANYSTATE’, 3"
OUTPUT XXX;":MACHINE2:TTRIGGER:BRANCH2 ’A’, 7"
OUTPUT XXX;":MACHINE1:TTRIGGER:BRANCH3 ’((A OR B) OR NOTG)’,
1"

TTRigger (TTRace) Subsystem
BRANch

22–10

Query :MACHine{1|2}:TTRigger:BRANch<N>?

The BRANch query returns the current branch qualifier specification for a
given sequence level.

Returned Format [:MACHine{1|2}:TTRigger:BRANch<N>]
<branch_qualifier>,<to_level_num><NL>

Example OUTPUT XXX;":MACHINE1:TTRIGGER:BRANCH3?"

Complex Qualifier

Figure 22-2 is a front-panel representation of the complex qualifier (a Or
b) Or (f Or g).

Example This example would be used to specify this complex qualifier.

OUTPUT XXX;":MACHINE1:TTRIGGER:BRANCH1 ’((A OR B) AND (F OR
G))’, 2"

Figure 22-2

TTRigger (TTRace) Subsystem
BRANch

22–11

Terms A through E, RANGE 1, and EDGE1 must be grouped together and terms
F, G, RANGE 2, and EDGE2, and must be grouped together. In the first level,
terms from one group may not be mixed with terms from the other. For example,
the expression ((A OR IN_RANGE2) AND (C OR G)) is not allowed
because the term C cannot be specified in the F, G group.

In the first level, the operators you can use are AND, NAND, OR, NOR,
XOR, NXOR. Either AND or OR may be used at the second level to join the
two groups together. It is acceptable for a group to consist of a single term.
Thus, an expression like (B AND G) is legal since the two operands are both
simple terms from separate groups.

CLEar

Command :MACHine{1|2}:TTRigger:CLEar
{All|SEQuence|RESource}

The CLEar command allows you to clear all settings in the Timing Trigger
menu and replace them with the default, clear only the sequence levels, or
clear only the resource term patterns.

Example OUTPUT XXX;":MACHINE1:TTRIGGER:CLEAR RESOURCE"

TTRigger (TTRace) Subsystem
CLEar

22–12

EDGE

Command :MACHine{1|2}:TTRigger:EDGE<N> <label_name>,
<edge_spec>

The EDGE command defines edge specifications for a given label. Edge
specifications can be R (rising), F (falling), E (either), or "." (don’t care).
Edges are sent in the same string with the rightmost string character
specifying what the rightmost bit will be.

The <edge_spec> string length must match the exact number of bits assigned
to the specified label. If the string length does not match the number of bits, the
"Parameter string invalid" message is displayed.

<N> {1|2}

<label_name> string of up to 6 alphanumeric characters

<edge_spec> string consisting of {R|F|E|.} to total number of bits

Example For 8 bits assigned:
OUTPUT XXX;":MACHINE1:TTRIGGER:EDGE1 ’DATA’, ’....F..E’"

For 16 bits assigned:
OUTPUT XXX;":MACHINE1:TTRIGGER:EDGE1 ’DATA’,
’....EEE.....F..R’"

Query :MACHine{1|2}:TTRigger:EDGE<N>? <label_name>

The EDGE query returns the current specification for the given label.
Returned Format [:MACHine{1|2}:TTRigger:EDGE<N>] <label_name>,<edge_spec><NL>

Example OUTPUT XXX;":MACHINE1:TTRIGGER:EDGE1? ’DATA’"

TTRigger (TTRace) Subsystem
EDGE

22–13

FIND

Command :MACHine{1|2}:TTRigger:FIND<N>
<time_qualifier>,<condition_mode>

The FIND command defines the qualifier for a given sequence level. The
qualifier tells the timing analyzer when to proceed to the next sequence level.
When this proceed qualifier is matched for either the specified time or
occurrence, the trigger sequence will proceed to the next sequence level. In
the sequence level where the trigger is specified, the FIND command
specifies the trigger qualifier (see SEQuence command).

The terms A through G and I are defined by the TERM command. The
meaning of IN_RANGE and OUT_RANGE is determined by the RANGe
command. Expressions are limited to what you could manually enter through
the Timing Trigger menu. Regarding parentheses, the syntax definitions
below show only the required ones. Additional parentheses are allowed as
long as the meaning of the expression is not changed. See figure 22-2 on
page 22-11 for a detailed example.

<N> integer from 1 to the number of existing sequence levels (maximum 10)

<condition_
mode>

{{GT|LT}, <duration_time>|OCCurrence, <occurrence>}

GT greater than

LT less than

<duration_
time>

real number from 8 ns to 5.00 seconds depending on sample period

<occurrence> integer from 1 to 1048575

<time_
qualifier>

<qualifier> see "Qualifier" on page 22-6

TTRigger (TTRace) Subsystem
FIND

22–14

Example OUTPUT XXX;":MACHINE1:TTRIGGER:FIND1 ’ANYSTATE’, GT, 10E −6"
OUTPUT XXX;":MACHINE1:TTRIGGER:FIND3 ’((NOTA AND NOTB) OR
G)’, OCCURRENCE, 10"

Query :MACHine{1|2}:TTRigger:FIND<N>?

The FIND query returns the current time qualifier specification for a given
sequence level.

Returned Format [:MACHine{1|2}:TTRigger:FIND<N>]
<time_qualifier>,<condition_mode><NL>

Example OUTPUT XXX;":MACHINE1:TTRIGGER:FIND4?"

MLENgth

Command :MACHine{1|2}:TTRigger:MLENgth <memory_length>

The MLENgth command specifies the analyzer memory depth. Valid memory
depths range from 4096 states (or samples) through the maximum system
memory depth minus 8192 states. Memory depth is affected by acquisition
mode. If the <memory_depth> value sent with the command is not a legal
value, the closest legal setting will be used.

<memory_length> {4096|8192|16384|32768|65536|131072|262144|524288|
1032192}

Example OUTPUT XXX;":MACHINE1:TTRIGGER:MLENGTH 262144"

TTRigger (TTRace) Subsystem
MLENgth

22–15

Query :MACHine{1|2}:TTRigger:MLENgth?

The MLENgth query returns the current analyzer memory depth selection.
Returned Format [:MACHine{1|2}:TTRigger:MLENgth] <memory_length><NL>

Example OUTPUT XXX;":MACHINE1:TTRIGGER:MLENGTH?"

RANGe

Command :MACHine{1|2}:TTRigger:RANGe<N>
<label_name>,<start_pattern>,<stop_pattern>

The RANGe command specifies a range recognizer term for the specified
machine. Since a range can only be defined across one label and, since a
label must contain 32 or less bits, the value of the start pattern or stop
pattern will be between (232)−1 and 0.

Since a label can only be defined across a maximum of two pods, a range
term is only available across a single label; therefore, the end points of the
range cannot be split between labels.

When these values are expressed in binary, they represent the bit values for
the label at one of the range recognizers’ end points. Don’t cares are not
allowed in the end point pattern specifications.

<label_name> string of up to 6 alphanumeric characters

<N> {1|2}

<start_pattern> "{#B{0|1} . . . |
#Q{0|1|2|3|4|5|6|7} . . . |
#H{0|1|2|3|4|5|6|7|8|9|A|B|C|D|E|F} . . . |
{0|1|2|3|4|5|6|7|8|9} . . . }"

<stop_pattern> "{#B{0|1} . . . |
#Q{0|1|2|3|4|5|6|7} . . . |
#H{0|1|2|3|4|5|6|7|8|9|A|B|C|D|E|F} . . . |
{0|1|2|3|4|5|6|7|8|9} . . . }"

TTRigger (TTRace) Subsystem
RANGe

22–16

Example OUTPUT XXX;":MACHINE1:TTRIGGER:RANGE1 ’DATA’, ’127’, ’255’ "
OUTPUT XXX;":MACHINE1:TTRIGGER:RANGE2 ’ABC’, ’#B00001111’,
’#HCF’ "

Query :MACHine{1|2}:TTRigger:RANGe<N>?

The RANGe query returns the range recognizer end point specifications for
the range.

Returned Format [:MACHine{1|2}:TTRiger:RANGe<N>] <label_name>,<start_pattern>,
 <stop_pattern><NL>

Example OUTPUT XXX;":MACHINE1:TTRIGGER:RANGE1?"

SEQuence

Command :MACHine{1|2}:TTRigger:SEQuence <number_of_levels>

The SEQuence command defines the timing analyzer trace sequence. First,
it deletes the current trace sequence. Then, it inserts the number of levels
specified, with default settings. The number of levels can be between 1 and
10 when the analyzer is armed by the RUN key.

<number_of_
levels>

integer from 1 to 10

<level_of_
trigger>

always equal to the last level number

Example OUTPUT XXX;":MACHINE1:TTRIGGER:SEQUENCE 4"

TTRigger (TTRace) Subsystem
SEQuence

22–17

Query :MACHine{1|2}:TTRigger:SEQuence?

The SEQuence query returns the current sequence specification.
Returned Format [:MACHine{1|2}:TTRigger:SEQuence] <number_of_levels>,

 <level_of_trigger><NL>

Example OUTPUT XXX;":MACHINE1:TTRIGGER:SEQUENCE?"

SPERiod

Command :MACHine{1|2}:TTRigger:SPERiod <sample_period>

The SPERiod command sets the sample period of the timing analyzer.

<sample_period> real number from 4 ns to 100us

Example OUTPUT XXX;":MACHINE1:TTRIGGER:SPERIOD 50E −9"

Query :MACHine{1|2}:TTRigger:SPERiod?

The SPERiod query returns the current sample period.
Returned Format [:MACHine{1|2}:TTRigger:SPERiod] <sample_period><NL>

Example OUTPUT XXX;":MACHINE1:TTRIGGER:SPERIOD?"

TTRigger (TTRace) Subsystem
SPERiod

22–18

TCONtrol (Timer Control)

Command :MACHine{1|2}:TTRigger:TCONtrol<N> <timer_num>,
{OFF|STARt|PAUSe|CONTinue}

The TCONtrol command turns off, starts, pauses, or continues the timer for
the specified level. The time value of the timer is defined by the TIMER
command.

<N> integer from 1 to the number of existing sequence levels (maximum 10)

<timer_num> {1|2}

Example OUTPUT XXX;":MACHINE2:TTRIGGER:TCONTROL6 1, PAUSE"

Query :MACHine{1|2}:TTRigger:TCONTROL<N>? <timer_num>

The TCONtrol query returns the current TCONtrol setting of the specified
level.

Returned Format [:MACHine{1|2}:TTRigger:TCONTROL<N> <timer_num>]
{OFF|STARt|PAUSe|CONTinue}<NL>

Example OUTPUT XXX;":MACHINE2:TTRIGGER:TCONTROL6? 1"

TTRigger (TTRace) Subsystem
TCONtrol (Timer Control)

22–19

TERM

Command :MACHine{1|2}:TTRigger:TERM
<term_id>,<label_name>,<pattern>

The TERM command specifies a pattern recognizer term in the specified
machine. Each command deals with only one label in the given term;
therefore, a complete specification could require several commands. Since a
label can contain 32 or less bits, the range of the pattern value will be
between 232 − 1 and 0. When the value of a pattern is expressed in binary, it
represents the bit values for the label inside the pattern recognizer term.
Since the pattern parameter may contain don’t cares and be represented in
several bases, it is handled as a string of characters rather than a number.

Eight of the 10 terms (A through G and I) are available (terms H and J are
not available) to either machine but not both simultaneously. If you send the
TERM command to a machine with a term that has not been assigned to that
machine, an error message "Legal command but settings conflict" is returned.

<term_id> {A|B|C|D|E|F|G|I}

<label_name> string of up to 6 alphanumeric characters

<pattern> "{#B{0|1|X} . . . |
#Q{0|1|2|3|4|5|6|7|X} . . . |
#H{0|1|2|3|4|5|6|7|8|9|A|B|C|D|E|F|X} . . . |
{0|1|2|3|4|5|6|7|8|9} . . . }"

Example OUTPUT XXX;":MACHINE1:TTRIGGER:TERM A,’DATA’,’255’ "
OUTPUT XXX;":MACHINE1:TTRIGGER:TERM B,’ABC’,’#BXXXX1101’ "

TTRigger (TTRace) Subsystem
TERM

22–20

Query :MACHine{1|2}:TTRigger:TERM?
<term_id>,<label_name>

The TERM query returns the specification of the term specified by term
identification and label name.

Returned Format [:MACHine{1|2}:TTRigger:TERM]
<term_id>,<label_name>,<pattern><NL>

Example OUTPUT XXX;":MACHINE1:TTRIGGER:TERM? B,’DATA’ "

TIMER

Command :MACHine{1|2}:TTRigger:TIMER{1|2} <time_value >

The TIMER command sets the time value for the specified timer. The limits
of the timer are 400 ns to 500 seconds in 16 ns to 500 µs increments. The
increment value varies with the time value of the specified timer.

<time_value> real number from 400 ns to 500 seconds in increments which vary from 16 ns
to 500 µs.

Example OUTPUT XXX;":MACHINE1:TTRIGGER:TIMER1 100E −6"

Query :MACHine{1|2}:TTRigger:TIMER{1|2}?

The TIMER query returns the current time value for the specified timer.
Returned Format [:MACHine{1|2}:TTRigger:TIMER{1|2}] <time_value><NL>

Example OUTPUT XXX;":MACHINE1:TTRIGGER:TIMER1?"

TTRigger (TTRace) Subsystem
TIMER

22–21

TPOSition (Trigger Position)

Command :MACHine{1|2}:TTRigger:TPOSition
{STARt|CENTer|END|DELay,<time_val> |
POSTstore,<poststore>}

The TPOSition command sets the trigger at the start, center, end or any
position in the trace (poststore). Poststore is defined as 0 to 100 percent
with a poststore of 100 percent being the same as putting the trigger start
position and a poststore of 0 percent being the same as ending the trace with
the trigger.

The DELay mode sets the time between the trigger point and the start of the
trace, causing the trace to begin after the trigger point.

<time_val> real number from either (2 × sample period) or 16 ns, whichever is greater, to
(516096 × sample period).

<poststore> integer from 0 to 100 representing percentage of poststore.

Example OUTPUT XXX;":MACHINE1:TTRIGGER:TPOSITION END"
OUTPUT XXX;":MACHINE1:TTRIGGER:TPOSITION POSTstore,75"

Query :MACHine{1|2}:TTRigger:TPOSition?

The TPOSition query returns the current trigger position setting.
Returned Format [:MACHine{1|2}:TTRigger:TPOSition] {STARt|CENTer|END|DELay,

<time_val>|POSTstore, <poststore >} <NL>

Example OUTPUT XXX;":MACHINE1:TTRIGGER:TPOSITION?"

TTRigger (TTRace) Subsystem
TPOSition (Trigger Position)

22–22

23

TWAVeform Subsystem

Introduction

The TWAVeform subsystem contains the commands available for the
Timing Waveforms menu in the Agilent 1670G-series logic analyzer.
These commands are

• ACCumulate

• ACQuisition

• CENTer

• CLRPattern

• CLRStat

• DELay

• INSert

• MLENgth

• MMODe

• OCONdition

• OPATtern

• OSEarch

• OTIMe

• RANGe

• REMove

• RUNTil

• SPERiod

• TAVerage

• TMAXimum

• TMINimum

• TPOSition

• VRUNs

• XCONdition

• XOTime

• XPATtern

• XSEarch

• XTIMe

23–2

TWAVeform Subsystem Syntax Diagram

Figure 23-1

TWAVeform Subsystem

23–3

Figure 23-1 (continued)

TWAVeform Subsystem Syntax Diagram (continued)

TWAVeform Subsystem

23–4

Figure 23-1 (continued)

TWAVeform Subsystem Syntax Diagram (continued)

TWAVeform Subsystem

23–5

Table 23-1 TWAVeform Parameter Values

Parameter Value

delay_value real number between -2500 s and +2500 s

module_spec 1

bit_id integer from 0 to 31

label_name string of up to 6 alphanumeric characters

label_pattern "{#B{0|1|X} . . . |
#Q{0|1|2|3|4|5|6|7|X} . . . |
#H{0|1|2|3|4|5|6|7|8|9|A|B|C|D|E|F|X} .
. . |
{0|1|2|3|4|5|6|7|8|9} . . . }"

occurrence integer

time_value real number

time_range real number between 10 ns and 10 ks

run_until_spec {OFF|LT,<value>|GT,<value>|INRange,
<value>,<value>|OUTRange,<value>,<value>}

GT greater than

LT less than

value real number

time_val real number from 2 x sample_period to
524288 x sample_period

sample_period real number from 4ns to 41µs

marker_type {X | O | XO | TRIGger}

memory_length {4096 | 8192 | 16384 | 32768 | 65536 |
131072 | 262144 | 524288 | 1032192}

percent integer from 1 to 100

TWAVeform Subsystem

23–6

TWAVeform

Selector :MACHine{1|2}:TWAVeform

The TWAVeform selector is used as part of a compound header to access the
settings found in the Timing Waveforms menu. It always follows the
MACHine selector because it selects a branch below the MACHine level in the
command tree.

Example OUTPUT XXX;":MACHINE1:TWAVEFORM:DELAY 100E−9"

ACCumulate

Command :MACHine{1|2}:TWAVeform:ACCumulate <setting>

The ACCumulate command controls whether the waveform display gets
erased between each individual run or whether subsequent waveforms are
displayed over the previous ones.

<setting> {0|OFF} or {1|ON}

Example OUTPUT XXX;":MACHINE1:TWAVEFORM:ACCUMULATE ON"

Query :MACHine{1|2}:TWAVeform:ACCumulate?

The ACCumulate query returns the current setting. The query always shows
the setting as the characters, "0" (off) or "1" (on).

Returned Format [:MACHine{1|2}:TWAVeform:ACCumulate] {0|1}<NL>

Example OUTPUT XXX;":MACHINE1:TWAVEFORM:ACCUMULATE?"

TWAVeform Subsystem
TWAVeform

23–7

ACQuisition

Command :MACHine{1|2}:TWAVeform:ACQuisition
{AUTOmatic|MANual}

The ACQuisition command specifies the acquisition mode for the timing
analyzer. The acquisition modes are automatic and manual.

Example OUTPUT XXX;":MACHINE2:TWAVEFORM:ACQUISITION AUTOMATIC"

Query MACHine{1|2}:TWAVeform:ACQuisition?

The ACQuisition query returns the current acquisition mode.
Returned Format [MACHine{1|2}:TWAVeform:ACQuisition] {AUTOmatic|MANual}<NL>

Example OUTPUT XXX;":MACHINE2:TWAVEFORM:ACQUISITION?"

CENTer

Command :MACHine{1|2}:TWAVeform:CENTer <marker_type>

The CENTer command centers the waveform display about the specified
markers.

<marker_type> {X|O|XO|TRIGger}

Example OUTPUT XXX;":MACHINE1:TWAVEFORM:CENTER X"

TWAVeform Subsystem
ACQuisition

23–8

CLRPattern

Command :MACHine{1|2}:TWAVeform:CLRPattern {X|O|ALL}

The CLRPattern command clears the patterns in the selected Specify
Patterns menu.

Example OUTPUT XXX;":MACHINE1:TWAVEFORM:CLRPATTERN ALL"

CLRStat

Command :MACHine{1|2}:TWAVeform:CLRStat

The CLRStat command clears the waveform statistics without having to stop
and restart the acquisition.

Example OUTPUT XXX;":MACHINE1:TWAVEFORM:CLRSTAT"

DELay

Command :MACHine{1|2}:TWAVeform:DELay <delay_value>

The DELay command specifies the amount of time between the timing
trigger and the center of the the timing waveform display. The allowable
values for delay are −2500 s to +2500 s.

<delay_value> real number between −2500 s and +2500 s

Example OUTPUT XXX;":MACHINE1:TWAVEFORM:DELAY 100E−6"

TWAVeform Subsystem
CLRPattern

23–9

Query :MACHine{1|2}:TWAVeform:DELay?

The DELay query returns the current time offset (delay) value from the
trigger.

Returned Format [:MACHine{1|2}:TWAVeform:DELay] <time_value><NL>

Example OUTPUT XXX;":MACHINE1:TWAVEFORM:DELAY?"

INSert

Command :MACHine{1|2}:TWAVeform:INSert
[<module_spec>,]<label_name>
[,{<bit_id>|OVERlay|ALL}]

The INSert command inserts waveforms in the timing waveform display. The
waveforms are added from top to bottom up to a maximum of 96 waveforms.
Once 96 waveforms are present, each time you insert another waveform, it
replaces the last waveform.

The second parameter specifies the label name that will be inserted. The
optional third parameter specifies the label bit number, overlay, or all. If a
number is specified, only the waveform for that bit number is added to the
screen. If you specify OVERlay, all the bits of the label are displayed as a
composite overlaid waveform. If you specify ALL, all the bits are displayed
sequentially. If you do not specify the third parameter, ALL is assumed.

<module_spec> 1

<label_name> string of up to 6 alphanumeric characters

<bit_id> integer from 0 to 31

Example OUTPUT XXX;":MACHINE1:TWAVEFORM:INSERT 1, ’WAVE’,9"

TWAVeform Subsystem
INSert

23–10

MLENgth

Command :MACHine{1|2}:TWAVeform:MLENgth <memory_length>

The MLENgth command specifies the analyzer memory depth. Valid memory
depths range from 4096 states (or samples) through the maximum system
memory depth minus 8192 states. Memory depth is affected by acquisition
mode. If the <memory_depth> value sent with the command is not a legal
value, the closest legal setting will be used.

<memory_length> {4096 | 8192 | 16384 | 32768 | 65536 | 131072 |
262144 | 524288 | 1032192}

Example OUTPUT XXX;":MACHINE1:TWAVEFORM:MLENGTH 262144"

Query :MACHine{1|2}:TWAVeform:MLENgth?

The MLENgth query returns the current analyzer memory depth selection.
Returned Format [:MACHine{1|2}:TWAVeform:MLENgth] <memory_length><NL>

Example OUTPUT XXX;":MACHINE1:TWAVEFORM:MLENGTH?"

TWAVeform Subsystem
MLENgth

23–11

MMODe (Marker Mode)

Command :MACHine{1|2}:TWAVeform:MMODe
{OFF|PATTern|TIME|MSTats}

The MMODe command selects the mode controlling marker movement and
the display of the marker readouts. When PATTern is selected, the markers
will be placed on patterns. When TIME is selected, the markers move based
on time. In MSTats, the markers are placed on patterns, but the readouts will
be time statistics.

Example OUTPUT XXX; ":MACHINE1:TWAVEFORM:MMODE TIME"

Query :MACHine{1|2}:TWAVeform:MMODe?

The MMODe query returns the current marker mode.
Returned Format [:MACHine{1|2}:TWAVeform:MMODe] <marker_mode><NL>

<marker_mode> {OFF|PATTern|TIME|MSTats}

Example OUTPUT XXX;":MACHINE1:TWAVEFORM:MMODE?"

OCONdition

Command :MACHine{1|2}:TWAVeform:OCONdition
{ENTering|EXITing}

The OCONdition command specifies where the O marker is placed. The O
marker can be placed on the entry or exit point of the OPATtern when in the
PATTern marker mode.

Example OUTPUT XXX; ":MACHINE1:TWAVEFORM:OCONDITION ENTERING"

TWAVeform Subsystem
MMODe (Marker Mode)

23–12

Query :MACHine{1|2}:TWAVeform:OCONdition?

The OCONdition query returns the current setting.
Returned Format [:MACHine{1|2}:TWAVeform:OCONdition] {ENTering|EXITing}<NL>

Example OUTPUT XXX;":MACHINE1:TWAVEFORM:OCONDITION?"

OPATtern

Command :MACHine{1|2}:TWAVeform:OPATtern
<label_name>,<label_pattern>

The OPATtern command constructs a pattern recognizer term for the
O marker which is then used with the OSEarch criteria and OCONdition
when moving the marker on patterns. Since this command deals with only
one label at a time, a complete specification could require several invocations.

When the value of a pattern is expressed in binary, it represents the bit
values for the label inside the pattern recognizer term. In whatever base is
used, the value must be between 0 and 232 − 1, since a label may not have
more than 32 bits. Because the <label_pattern> parameter may contain
don’t cares, it is handled as a string of characters rather than a number.

<label_name> string of up to 6 alphanumeric characters

<label_pattern> "{#B{0|1|X} . . . |
#Q{0|1|2|3|4|5|6|7|X} . . . |
#H{0|1|2|3|4|5|6|7|8|9|A|B|C|D|E|F|X} . . . |
{0|1|2|3|4|5|6|7|8|9} . . . }"

Example OUTPUT XXX; ":MACHINE1:TWAVEFORM:OPATTERN ’A’,’511’"

TWAVeform Subsystem
OPATtern

23–13

Query :MACHine{1|2}:TWAVeform:OPATtern? <label_name>

The OPATtern query, in pattern marker mode, returns the pattern
specification for a given label name. In the time marker mode, the query
returns the pattern under the O marker for a given label. If the O marker is
not placed on valid data, don’t cares (X) are returned.

Returned Format [:MACHine{1|2}:TWAVeform:OPATtern]
<label_name>,<label_pattern><NL>

Example OUTPUT XXX;":MACHINE1:TWAVEFORM:OPATTERN? ’A’"

OSEarch

Command :MACHine{1|2}:TWAVeform:OSEarch
<occurrence>,<origin>

The OSEarch command defines the search criteria for the O marker which is
then used with the associated OPATtern recognizer specification and the
OCONdition when moving markers on patterns. The origin parameter tells
the marker to begin a search from the beginning of the acquisition, from the
trigger, or from the X marker. The actual occurrence the marker searches for
is determined by the occurrence parameter of the OPATtern recognizer
specification, relative to the origin. An occurrence of 0 places a marker on
the selected origin. With a negative occurrence, the marker searches before
the origin. With a positive occurrence, the marker searches after the origin.

<origin> {STARt|TRIGger|XMARker}

<occurrence> integer from −1032192 to +1032192

Example OUTPUT XXX; ":MACHINE1:TWAVEFORM:OSEARCH +10,TRIGGER"

TWAVeform Subsystem
OSEarch

23–14

Query :MACHine{1|2}:TWAVeform:OSEarch?

The OSEarch query returns the search criteria for the O marker.
Returned Format [:MACHine{1|2}:TWAVeform:OSEarch] <occurrence>,<origin><NL>

Example OUTPUT XXX;":MACHINE1:TWAVEFORM:OSEARCH?"

OTIMe

Command :MACHine{1|2}:TWAVeform:OTIMe <time_value>

The OTIMe command positions the O marker in time when the marker mode
is TIME. If data is not valid, the command performs no action.

<time_value> real number −2.5 ks to +2.5 ks

Example OUTPUT XXX; ":MACHINE1:TWAVEFORM:OTIME 30.0E −6"

Query :MACHine{1|2}:TWAVeform:OTIMe?

The OTIMe query returns the O marker position in time. If data is not valid,
the query returns 9.9E37.

Returned Format [:MACHine{1|2}:TWAVeform:OTIMe] <time_value><NL>

Example OUTPUT XXX;":MACHINE1:TWAVEFORM:OTIME?"

TWAVeform Subsystem
OTIMe

23–15

RANGe

Command :MACHine{1|2}:TWAVeform:RANGe <time_value>

The RANGe command specifies the full-screen time in the timing waveform
menu. It is equivalent to ten times the seconds-per-division setting on the
display. The allowable values for RANGe are from 10 ns to 10 ks.

<time_value> real number between 10 ns and 10 ks

Example OUTPUT XXX;":MACHINE1:TWAVEFORM:RANGE 100E−9"

Query :MACHine{1|2}:TWAVeform:RANGe?

The RANGe query returns the current full-screen time.
Returned Format [:MACHine{1|2}:TWAVeform:RANGe] <time_value><NL>

Example OUTPUT XXX;":MACHINE1:TWAVEFORM:RANGE?"

REMove

Command :MACHine{1|2}:TWAVeform:REMove

The REMove command deletes all waveforms from the display.

Example OUTPUT XXX;":MACHINE1:TWAVEFORM:REMOVE"

TWAVeform Subsystem
RANGe

23–16

RUNTil (Run Until)

Command :MACHine{1|2}:TWAVeform:RUNTil <run_until_spec>

The RUNTil command defines stop criteria based on the time between the X
and O markers when the trace mode is in repetitive. When OFF is selected,
the analyzer will run until either STOP is selected from the front panel or the
STOP command is sent. Run until options are:

• Less Than (LT) a specified time value

• Greater Than (GT) a specified time value

• In Range (INRange) between two time values

• Out of Range (OUTRange) between two time values

End points for INRange and OUTRange should be at least 2 ns apart since
this is the minimum time at which data is sampled.

This command affects the timing analyzer only, and has no relation to the
RUNTil commands in the SLISt and COMPare subsystems.

<run_until_
spec>

{OFF | LT,<value> | GT,<value> | INRange,<value>,
<value> | OUTRange,<value>,<value>}

<value> real number

Example OUTPUT XXX;":MACHINE1:TWAVEFORM:RUNTIL GT, 800.0E −6"
OUTPUT XXX;":MACHINE1:TWAVEFORM:RUNTIL INRANGE, 4.5, 5.5"

Query :MACHine{1|2}:TWAVeform:RUNTil?

The RUNTil query returns the current stop criteria.
Returned Format [:MACHine{1|2}:TWAVeform:RUNTil] <run_until_spec><NL>

Example OUTPUT XXX;":MACHINE1:TWAVEFORM:RUNTIL?"

TWAVeform Subsystem
RUNTil (Run Until)

23–17

SPERiod

Command :MACHine{1|2}:TWAVeform:SPERiod <samp_period>

The SPERiod command sets the sample period of the timing analyzer.

<samp_period> real number from 4 ns to 100 us

Example OUTPUT XXX;":MACHINE1:TWAVEFORM:SPERIOD 50E−9"

Query :MACHine{1|2}:TWAVeform:SPERiod?

The SPERiod query returns the current sample period.
Returned Format [:MACHine{1|2}:TWAVeform:SPERiod] <samp_period><NL>

Example OUTPUT XXX;":MACHINE1:TWAVEFORM:SPERIOD?"

TAVerage

Query :MACHine{1|2}:TWAVeform:TAVerage?

The TAVerage query returns the value of the average time between the
X and O markers. If there is no valid data, the query returns 9.9E37.

Returned Format [:MACHine{1|2}:TWAVeform:TAVerage] <time_value><NL>

<time_value> real number

Example OUTPUT XXX;":MACHINE1:TWAVEFORM:TAVERAGE?"

TWAVeform Subsystem
SPERiod

23–18

TMAXimum

Query :MACHine{1|2}:TWAVeform:TMAXimum?

The TMAXimum query returns the value of the maximum time between the X
and O markers. If there is no valid data, the query returns 9.9E37.

Returned Format [:MACHine{1|2}:TWAVeform:TMAXimum] <time_value><NL>

<time_value> real number

Example OUTPUT XXX;":MACHINE1:TWAVEFORM:TMAXIMUM?"

TMINimum

Query :MACHine{1|2}:TWAVeform:TMINimum?

The TMINimum query returns the value of the minimum time between the X
and O markers. If there is no valid data, the query returns 9.9E37.

Returned Format [:MACHine{1|2}:TWAVeform:TMINimum] <time_value><NL>

<time_value> real number

Example OUTPUT XXX;":MACHINE1:TWAVEFORM:TMINIMUM?"

TPOSition

Command MACHine{1|2}:TWAVeform:TPOSition
{STARt|CENTer|END|DELay, <time_val>|
POSTstore,<percent>}

The TPOSition command controls where the trigger point is placed. The
trigger point can be placed at the start, center, end, a percentage of
poststore, or a value specified by delay. The poststore option is the same as

TWAVeform Subsystem
TMAXimum

23–19

the User Defined option when setting the trigger position from the front
panel.

The TPOSition command is only available when the acquisition mode is set to
manual.

<time_val> real number from (2 × sample_period) to (516096 × sample_period)

<percent> integer from 1 to 100

Example OUTPUT XXX;":MACHINE2:TWAVEFORM:TPOSITION CENTER"

Query MACHine{1|2}:TWAVeform:TPOSition?

The TPOSition query returns the current trigger setting.
Returned Format [MACHine{1|2}:TWAVeform:TPOSition] {STARt|CENTer|END|DELay,

<time_val>| POSTstore,<percent>}<NL>

Example OUTPUT XXX;":MACHINE2:TWAVEFORM:TPOSition?"

VRUNs

Query :MACHine{1|2}:TWAVeform:VRUNs?

The VRUNs query returns the number of valid runs and total number of runs
made. Valid runs are those where the pattern search for both the X and O
markers was successful resulting in valid delta time measurements.

Returned Format [:MACHine{1|2}:TWAVeform:VRUNs] <valid_runs>,<total_runs><NL>

<valid_runs> zero or positive integer

<total_runs> zero or positive integer

Example OUTPUT XXX;":MACHINE1:TWAVEFORM:VRUNS?"

TWAVeform Subsystem
VRUNs

23–20

XCONdition

Command :MACHine{1|2}:TWAVeform:XCONdition
{ENTering|EXITing}

The XCONdition command specifies where the X marker is placed. The X
marker can be placed on the entry or exit point of the XPATtern when in the
PATTern marker mode.

Example OUTPUT XXX; ":MACHINE1:TWAVEFORM:XCONDITION ENTERING"

Query :MACHine{1|2}:TWAVeform:XCONdition?

The XCONdition query returns the current setting.
Returned Format [:MACHine{1|2}:TWAVeform:XCONdition] {ENTering|EXITing}<NL>

Example OUTPUT XXX;":MACHINE1:TWAVEFORM:XCONDITION?"

XOTime

Query :MACHine{1|2}:TWAVeform:XOTime?

The XOTime query returns the time from the X marker to the O marker. If
data is not valid, the query returns 9.9E37.

Returned Format [:MACHine{1|2}:TWAVeform:XOTime] <time_value><NL>

<time_value> real number

Example OUTPUT XXX;":MACHINE1:TWAVEFORM:XOTIME?"

TWAVeform Subsystem
XCONdition

23–21

XPATtern

Command :MACHine{1|2}:TWAVeform:XPATtern
<label_name>,<label_pattern>

The XPATtern command constructs a pattern recognizer term for the
X marker which is then used with the XSEarch criteria and XCONdition when
moving the marker on patterns. Since this command deals with only one
label at a time, a complete specification could require several iterations.

When the value of a pattern is expressed in binary, it represents the bit
values for the label inside the pattern recognizer term. In whatever base is
used, the value must be between 0 and 232 − 1, since a label may not have
more than 32 bits. Because the <label_pattern> parameter may contain
don’t cares, it is handled as a string of characters rather than a number.

<label_name> string of up to 6 alphanumeric characters

<label_pattern> "{#B{0|1|X} . . . |
#Q{0|1|2|3|4|5|6|7|X} . . . |
#H{0|1|2|3|4|5|6|7|8|9|A|B|C|D|E|F|X} . . . |
{0|1|2|3|4|5|6|7|8|9} . . . }"

Example OUTPUT XXX; ":MACHINE1:TWAVEFORM:XPATTERN ’A’,’511’"

Query :MACHine{1|2}:TWAVeform:XPATtern? <label_name>

The XPATtern query, in pattern marker mode, returns the pattern
specification for a given label name. In the time marker mode, the query
returns the pattern under the X marker for a given label. If the X marker is
not placed on valid data, don’t cares (X) are returned.

Returned Format [:MACHine{1|2}:TWAVeform:XPATtern]
<label_name>,<label_pattern><NL>

Example OUTPUT XXX;":MACHINE1:TWAVEFORM:XPATTERN? ’A’"

TWAVeform Subsystem
XPATtern

23–22

XSEarch

Command :MACHine{1|2}:TWAVeform:XSEarch
<occurrence>,<origin>

The XSEarch command defines the search criteria for the X marker which is
then used with the associated XPATtern recognizer specification and the
XCONdition when moving markers on patterns. The origin parameter tells
the marker to begin a search with the trigger. The occurrence parameter
determines which occurrence of the XPATtern recognizer specification,
relative to the origin, to which the marker actually searches. An occurrence
of 0 (zero) places a marker on the origin.

<origin> {TRIGger|STARt}

<occurrence> integer from −1032192 to +1032192

Example OUTPUT XXX; ":MACHINE1:TWAVEFORM:XSEARCH,+10,TRIGGER"

Query :MACHine{1|2}:TWAVeform:XSEarch?
<occurrence>,<origin>

The XSEarch query returns the search criteria for the X marker.
Returned Format [:MACHine{1|2}:TWAVeform:XSEarch] <occurrence>,<origin><NL>

Example OUTPUT XXX;":MACHINE1:TWAVEFORM:XSEARCH?"

TWAVeform Subsystem
XSEarch

23–23

XTIMe

Command :MACHine{1|2}:TWAVeform:XTIMe <time_value>

The XTIMe command positions the X marker in time when the marker mode
is TIME. If data is not valid, the command performs no action.

<time_value> real number from −10.0 ks to +10.0 ks

Example OUTPUT XXX; ":MACHINE1:TWAVEFORM:XTIME 40.0E −6"

Query :MACHine{1|2}:TWAVeform:XTIMe?

The XTIMe query returns the X marker position in time. If data is not valid,
the query returns 9.9E37.

Returned Format [:MACHine{1|2}:TWAVeform:XTIMe] <time_value><NL>

Example OUTPUT XXX;":MACHINE1:TWAVEFORM:XTIME?"

TWAVeform Subsystem
XTIMe

23–24

24

TLISt Subsystem

Introduction

The TLISt subsystem contains the commands available for the Timing
Listing menu in the Agilent 1670G-series logic analyzer and is the
same as the SLISt subsystem (except the OCONdition and
XCONdition commands). The TLISt subsystem commands are:

• COLumn • TAVerage

• CLRPattern • TMAXimum

• DATA • TMINimum

• LINE • VRUNs

• MMODe • XCONdition

• OCONdition • XOTag

• OPATtern • XOTime

• OSEarch • XPATtern

• OSTate • XSEarch

• OTAG • XSTate

• REMove • XTAG

• RUNTil

24–2

TLISt Subsystem Syntax Diagram

Figure 24-1

TLISt Subsystem

24–3

Figure 24-1 (continued)

TLISt Subsystem Syntax Diagram (continued)

TLISt Subsystem

24–4

Figure 24-1 (continued)

TLISt Subsystem Syntax Diagram (continued)

TLISt Subsystem

24–5

Table 24-1 TLISt Parameter Values

Parameter Value

mod_num 1 (2 through 10 not used)

col_num integer from 1 to 61

line_number integer from -1032192 to +1032192

label_name a string of up to 6 alphanumeric characters

base {BINary|HEXadecimal|OCTal|DECimal|TWOS|
ASCii|SYMBol|IASSembler} for labels or
{ABSolute|RELative} for tags

line_num_mid_screen integer from -1032192 to +1032192

label_pattern "{#B{0|1|X} . . . |
#Q{0|1|2|3|4|5|6|7|X} . . . |
#H{0|1|2|3|4|5|6|7|8|9|A|B|C|D|E|F|X} .
. . |
{0|1|2|3|4|5|6|7|8|9} . . . }"

occurrence integer from -1032192 to +1032192

time_value real number

run_until_spec {OFF|LT,<value>|GT,<value>|INRange,
<value>,<value>|OUTRange,<value>,<value>}

value real number

TLISt Subsystem

24–6

TLISt

Selector :MACHine{1|2}:TLISt

The TLISt selector is used as part of a compound header to access those
settings normally found in the Timing Listing menu. It always follows the
MACHine selector because it selects a branch directly below the MACHine
level in the command tree.

Example OUTPUT XXX;":MACHINE1:TLIST:LINE 256"

COLumn

Command :MACHine{1|2}:TLISt:COLumn
<col_num>[,<module_num>,MACHine{1|2}],<label_name>,
<base>

The COLumn command configures the timing analyzer list display by
assigning a label name and base to one of the 61 vertical columns in the
menu. A column number of 1 refers to the leftmost column. When a label is
assigned to a column it replaces the original label in that column.

When the label name is "TAGS," the TAGS column is assumed and the next
parameter must specify RELative or ABSolute.

A label for tags must be assigned in order to use ABSolute or RELative state
tagging.

TLISt Subsystem
TLISt

24–7

<col_num> integer from 1 to 61

<module_num> 1 (2 through 10 not used)

<label_name> a string of up to 6 alphanumeric characters

<base> {BINary|HEXadecimal|OCTal|DECimal|TWOS|ASCii|SYMBol|
IASSembler} for labels
or
{ABSolute|RELative} for tags

Example OUTPUT XXX;":MACHINE1:TLIST:COLUMN 4,2,’A’,HEX"

Query :MACHine{1|2}:TLISt:COLumn? <col_num>

The COLumn query returns the column number, instrument, machine, label
name, and base for the specified column.

Returned Format [:MACHine{1|2}:TLISt:COLumn]
<col_num>,<module_num>,MACHine{1|2},<label_name>,<base><NL>

Example OUTPUT XXX;":MACHINE1:TLIST:COLUMN? 4"

CLRPattern

Command :MACHine{1|2}:TLISt:CLRPattern {X|O|ALL}

The CLRPattern command clears the patterns in the selected Specify
Patterns menu.

Example OUTPUT XXX;":MACHINE1:TLIST:CLRPATTERN O"

TLISt Subsystem
CLRPattern

24–8

DATA

Query :MACHine{1|2}:TLISt:DATA?
<line_number>,<label_name>

The DATA query returns the value at a specified line number for a given
label. The format will be the same as the one shown in the Listing display.

Returned Format [:MACHine{1|2}:TLISt:DATA] <line_number>,<label_name>,
<pattern_string><NL>

<line_number> integer from -1032192 to +1032192

<label_name> string of up to 6 alphanumeric characters

<pattern_
string>

"{#B{0|1|X} . . . |
#Q{0|1|2|3|4|5|6|7|X} . . . |
#H{0|1|2|3|4|5|6|7|8|9|A|B|C|D|E|F|X} . . . |
{0|1|2|3|4|5|6|7|8|9} . . . }"

Example OUTPUT XXX;":MACHINE1:TLIST:DATA? 512, ’RAS’"

LINE

Command :MACHine{1|2}:TLISt:LINE <line_num_mid_screen>

The LINE command moves the timing analyzer listing vertically. The
command specifies the state line number relative to the trigger that the
analyzer highlights at the center of the screen.

<line_num_mid_
screen>

integer from -1032192 to +1032192

Example OUTPUT XXX;":MACHINE1:TLIST:LINE 0"

TLISt Subsystem
DATA

24–9

Query :MACHine{1|2}:TLISt:LINE?

The LINE query returns the line number for the state currently in the box at
the center of the screen.

Returned Format [:MACHine{1|2}:TLISt:LINE] <line_num_mid_screen><NL>

Example OUTPUT XXX;":MACHINE1:TLIST:LINE?"

MMODe (Marker Mode)

Command :MACHine{1|2}:TLISt:MMODe <marker_mode>

The MMODe command selects the mode controlling the marker movement
and the display of marker readouts. When PATTern is selected, the markers
will be placed on patterns. When TIME is selected the markers move on time
between stored states. When MSTats is selected the markers are placed on
patterns, but the readouts will be time statistics.

<marker_mode> {OFF|PATTern|TIME|MSTats}

Example OUTPUT XXX;":MACHINE1:TLIST:MMODE TIME"

Query :MACHine{1|2}:TLISt:MMODe?

The MMODe query returns the current marker mode selected.
Returned Format [:MACHine{1|2}:TLISt:MMODe] <marker_mode><NL>

Example OUTPUT XXX;":MACHINE1:TLIST:MMODE?"

TLISt Subsystem
MMODe (Marker Mode)

24–10

OCONdition

Command :MACHine{1|2}:TLISt:OCONdition {ENTering|EXITing}

The OCONdition command specifies where the O marker is placed. The O
marker can be placed on the entry or exit point of the OPATtern when in the
PATTern marker mode.

Example OUTPUT XXX; ":MACHINE1:TLIST:OCONDITION ENTERING"

Query :MACHine{1|2}:TLISt:OCONdition?

The OCONdition query returns the current setting.
Returned Format [:MACHine{1|2}:TLISt:OCONdition] {ENTering|EXITing}<NL>

Example OUTPUT XXX;":MACHINE1:TLIST:OCONDITION?"

TLISt Subsystem
OCONdition

24–11

OPATtern

Command :MACHine{1|2}:TLISt:OPATtern
<label_name>,<label_pattern>

The OPATtern command allows you to construct a pattern recognizer term
for the O Marker which is then used with the OSEarch criteria when moving
the marker on patterns. Since this command deals with only one label at a
time, a complete specification could require several iterations.

When the value of a pattern is expressed in binary, it represents the bit
values for the label inside the pattern recognizer term. In whatever base is
used, the value must be between 0 and 232 − 1, since a label may not have
more than 32 bits. Because the <label_pattern> parameter may contain
don’t cares, it is handled as a string of characters rather than a number.

<label_name> string of up to 6 alphanumeric characters

<label_pattern> "{#B{0|1|X} . . . |
#Q{0|1|2|3|4|5|6|7|X} . . . |
#H{0|1|2|3|4|5|6|7|8|9|A|B|C|D|E|F|X} . . . |
{0|1|2|3|4|5|6|7|8|9} . . . }"

Example OUTPUT XXX;":MACHINE1:TLIST:OPATTERN ’DATA’,’255’ "
OUTPUT XXX;":MACHINE1:TLIST:OPATTERN ’ABC’,’#BXXXX1101’ "

Query :MACHine{1|2}:TLISt:OPATtern? <label_name>

The OPATtern query returns the pattern specification for a given label name.
Returned Format [:MACHine{1|2}:TLISt:OPATtern]

<label_name>,<label_pattern><NL>

Example OUTPUT XXX;":MACHINE1:TLIST:OPATTERN? ’A’"

TLISt Subsystem
OPATtern

24–12

OSEarch

Command :MACHine{1|2}:TLISt:OSEarch <occurrence>,<origin>

The OSEarch command defines the search criteria for the O marker, which is
then used with associated OPATtern recognizer specification when moving
the markers on patterns. The origin parameter tells the marker to begin a
search with the trigger, the start of data, or with the X marker. The actual
occurrence the marker searches for is determined by the occurrence
parameter of the OSEarch recognizer specification, relative to the origin. An
occurrence of 0 places the marker on the selected origin. With a negative
occurrence, the marker searches before the origin. With a positive
occurrence, the marker searches after the origin.

<occurrence> integer from -1032192 to +1032192

<origin> {TRIGger|STARt|XMARker}

Example OUTPUT XXX;":MACHINE1:TLIST:OSEARCH +10,TRIGGER"

Query :MACHine{1|2}:TLISt:OSEarch?

The OSEarch query returns the search criteria for the O marker.
Returned Format [:MACHine{1|2}:TLISt:OSEarch] <occurrence>,<origin><NL>

Example OUTPUT XXX;":MACHINE1:TLIST:OSEARCH?"

TLISt Subsystem
OSEarch

24–13

OSTate

Query :MACHine{1|2}:TLISt:OSTate?

The OSTate query returns the line number in the listing where the O marker
resides. If data is not valid , the query returns 2147483647.

Returned Format [:MACHine{1|2}:TLISt:OSTate] <state_num><NL>

<state_num> integer from -1032192 to +1032192 or 2147483647

Example OUTPUT XXX;":MACHINE1:TLIST:OSTATE?"

OTAG

Command :MACHine{1|2}:TLISt:OTAG <time_value>

The OTAG command specifies the tag value on which the O Marker should be
placed. The tag value is time. If the data is not valid tagged data, no action is
performed.

<time_value> real number

Example :OUTPUT XXX;":MACHINE1:TLIST:OTAG 40.0E −6"

Query :MACHine{1|2}:TLISt:OTAG?

The OTAG query returns the O Marker position in time regardless of whether
the marker was positioned in time or through a pattern search. If data is not
valid, the query returns 9.9E3.

Returned Format [:MACHine{1|2}:TLISt:OTAG] <time_value><NL>

Example OUTPUT XXX;":MACHINE1:TLIST:OTAG?"

TLISt Subsystem
OSTate

24–14

REMove

Command :MACHine{1|2}:TLISt:REMove

The REMove command removes all labels, except the leftmost label, from
the listing menu.

Example OUTPUT XXX;":MACHINE1:TLIST:REMOVE"

RUNTil (Run Until)

Command :MACHine{1|2}:TLISt:RUNTil <run_until_spec>

The RUNTil command defines a stop condition when the trace mode is
repetitive. Specifying OFF causes the analyzer to make runs until either
STOP is selected from the front panel or the STOP command is issued.

There are four conditions based on the time between the X and O markers:

• The difference is less than (LT) some value

• The difference is greater than (GT) some value

• The difference is inside some range (INRange)

• The difference is outside some range (OUTRange)

End points for the INRange and OUTRange should be at least 2 ns apart since
this is the minimum time between samples.

<run_until_
spec>

{OFF|LT,<value>|GT,<value>|INRange,<value>,<value>
|OUTRange,<value>,<value>}

<value> real number from −9E9 to +9E9

Example OUTPUT XXX;":MACHINE1:TLIST:RUNTIL GT,800.0E −6"

Query :MACHine{1|2}:TLISt:RUNTil?

TLISt Subsystem
REMove

24–15

The RUNTil query returns the current stop criteria.
Returned Format [:MACHine{1|2}:TLISt:RUNTil] <run_until_spec><NL>

Example OUTPUT XXX;":MACHINE1:TLIST:RUNTIL?"

TAVerage

Query :MACHine{1|2}:TLISt:TAVerage?

The TAVerage query returns the value of the average time between the X
and O markers. If the number of valid runs is zero, the query returns 9.9E37.
Valid runs are those where the pattern search for both the X and O markers
was successful, resulting in valid delta-time measurements.

Returned Format [:MACHine{1|2}:TLISt:TAVerage] <time_value><NL>

<time_value> real number

Example OUTPUT XXX;":MACHINE1:TLIST:TAVERAGE?"

TMAXimum

Query :MACHine{1|2}:TLISt:TMAXimum?

The TMAXimum query returns the value of the maximum time between the X
and O markers. If data is not valid, the query returns 9.9E37.

Returned Format [:MACHine{1|2}:TLISt:TMAXimum] <time_value><NL>

<time_value> real number

Example OUTPUT XXX;":MACHINE1:TLIST:TMAXIMUM?"

TLISt Subsystem
TAVerage

24–16

TMINimum

Query :MACHine{1|2}:TLISt:TMINimum?

The TMINimum query returns the value of the minimum time between the X
and O markers. If data is not valid, the query returns 9.9E37.

Returned Format [:MACHine{1|2}:TLISt:TMINimum] <time_value><NL>

<time_value> real number

Example OUTPUT XXX;":MACHINE1:TLIST:TMINIMUM?"

VRUNs

Query :MACHine{1|2}:TLISt:VRUNs?

The VRUNs query returns the number of valid runs and total number of runs
made. Valid runs are those where the pattern search for both the X and
O markers was successful resulting in valid delta time measurements.

Returned Format [:MACHine{1|2}:TLISt:VRUNs] <valid_runs>,<total_runs><NL>

<valid_runs> zero or positive integer

<total_runs> zero or positive integer

Example OUTPUT XXX;":MACHINE1:TLIST:VRUNS?"

TLISt Subsystem
TMINimum

24–17

XCONdition

Command :MACHine{1|2}:TLISt:XCONdition {ENTering|EXITing}

The XCONdition command specifies where the X marker is placed. The X
marker can be placed on the entry or exit point of the XPATtern when in the
PATTern marker mode.

Example OUTPUT XXX; ":MACHINE1:TLIST:XCONDITION ENTERING"

Query :MACHine{1|2}:TLISt:XCONdition?

The XCONdition query returns the current setting.
Returned Format [:MACHine{1|2}:TLISt:XCONdition] {ENTering|EXITing}<NL>

Example OUTPUT XXX;":MACHINE1:TLIST:XCONDITION?"

XOTag

Query :MACHine{1|2}:TLISt:XOTag?

The XOTag query returns the time from the X to O markers. If there is no
data in the time mode the query returns 9.9E37.

Returned Format [:MACHine{1|2}:TLISt:XOTag] <XO_time><NL>

<XO_time> real number

Example OUTPUT XXX;":MACHINE1:TLIST:XOTAG?"

TLISt Subsystem
XCONdition

24–18

XOTime

Query :MACHine{1|2}:TLISt:XOTime?

The XOTime query returns the time from the X to O markers. If there is no
data in the time mode the query returns 9.9E37.

Returned Format [:MACHine{1|2}:TLISt:XOTime] <XO_time><NL>

<XO_time> real number

Example OUTPUT XXX;":MACHINE1:TLIST:XOTIME?"

XPATtern

Command :MACHine{1|2}:TLISt:XPATtern <name>,<pattern>

The XPATtern command constructs a pattern recognizer term for the X
marker which is then used with the XSEarch criteria when moving the
marker on patterns. Since this command deals with only one label at a time,
a complete specification could require several iterations.

When the value of a pattern is expressed in binary, it represents the bit
values for the label inside the pattern recognizer term. In whatever base is
used, the value must be between 0 and 232 − 1, since a label may not have
more than 32 bits. Because the <label_pattern> parameter may contain
don’t cares, it is handled as a string of characters rather than a number.

<name> string of up to 6 alphanumeric characters

<pattern> "{#B{0|1|X} . . . |
#Q{0|1|2|3|4|5|6|7|X} . . . |
#H{0|1|2|3|4|5|6|7|8|9|A|B|C|D|E|F|X} . . . |
{0|1|2|3|4|5|6|7|8|9} . . . }"

Example OUTPUT XXX;":MACHINE1:TLIST:XPATTERN ’DATA’,’255’ "
OUTPUT XXX;":MACHINE1:TLIST:XPATTERN ’ABC’,’#BXXXX1101’ "

TLISt Subsystem
XOTime

24–19

Query :MACHine{1|2}:TLISt:XPATtern? <label_name>

The XPATtern query returns the pattern specification for a given label name.
Returned Format [:MACHine{1|2}:TLISt:XPATtern]

<label_name>,<label_pattern><NL>

Example OUTPUT XXX;":MACHINE1:TLIST:XPATTERN? ’A’"

XSEarch

Command :MACHine{1|2}:TLISt:XSEarch <occurrence>,<origin>

The XSEarch command defines the search criteria for the X marker, which is
then with associated XPATtern recognizer specification when moving the
markers on patterns. The origin parameter tells the marker to begin a search
with the trigger or with the start of data. The occurrence parameter
determines which occurrence of the XPATtern recognizer specification,
relative to the origin, the marker actually searches for. An occurrence of
0 (zero) places a marker on the selected origin.

<occurrence> integer from -1032192 to +1032192

<origin> {TRIGger|STARt}

Example OUTPUT XXX;":MACHINE1:TLIST:XSEARCH +10,TRIGGER"

Query :MACHine{1|2}:TLISt:XSEarch?

The XSEarch query returns the search criteria for the X marker.
Returned Format [:MACHine{1|2}:TLISt:XSEarch] <occurrence>,<origin><NL>

Example OUTPUT XXX;":MACHINE1:TLIST:XSEARCH?"

TLISt Subsystem
XSEarch

24–20

XSTate

Query :MACHine{1|2}:TLISt:XSTate?

The XSTate query returns the line number in the listing where the X marker
resides. If data is not valid, the query returns 2147483647.

Returned Format [:MACHine{1|2}:TLISt:XSTate] <state_num><NL>

<state_num> integer from -1032192 to +1032192 or 2147483647

Example OUTPUT XXX;":MACHINE1:TLIST:XSTATE?"

XTAG

Command :MACHine{1|2}:TLISt:XTAG <time_value>

The XTAG command specifies the tag value in time on which the X marker
should be placed. If the data is not valid tagged data, no action is performed.

<time_value> real number

Example OUTPUT XXX;":MACHINE1:TLIST:XTAG 40.0E −6"

Query :MACHine{1|2}:TLISt:XTAG?

The XTAG query returns the X Marker position in time regardless of whether
the marker was positioned in time or through a pattern search. If data is not
valid tagged data, the query returns 9.9E37.

Returned Format [:MACHine{1|2}:TLISt:XTAG] <time_value><NL>

Example OUTPUT XXX;":MACHINE1:TLIST:XTAG?"

TLISt Subsystem
XSTate

24–21

24–22

25

SPA Subsystem

25–2

SPA Subsystem

25–3

SPA Subsystem

25–4

SPA Subsystem

25–5

Table 25-1 SPA Subsystem Parameter Values

Parameter Value

bucket_num 0 to (number of valid buckets - 1)

high_patt <pattern>

label_name a string of up to 6 alphanumeric characters

low_patt <pattern>

memory {4096 | 8192 | 16384 | 32768 | 65536 |
131072 | 262144 | 524288 | 1032192 }

o_patt <pattern>

x_patt <pattern>

range_num an integer from 0 to 10

range_name a string of up to 16 alphanumeric characters

min_time real number

max_time real number

start_pattern <pattern>

end_pattern <pattern>

interval_num an integer from 0 to 7

pattern "{#B{0|1}...|
#Q{0|1|2|3|4|5|6|7}...|
#H{0|1|2|3|4|5|6|7|8|9|A|B|C|D|E|F}..
.|
{0|1|2|3|4|5|6|7|8|9}...}"

SPA Subsystem

25–6

MODE

Command :SPA{1|2}:MODE {OVERView|HISTogram|TINTerval}

The MODE command selects which menu to display: State Overview, State
Histogram, or Time Interval. A query returns the current menu mode.

Example OUTPUT XXX;":SPA1:MODE OVERView"
OUTPUT XXX;":SPA2:MODE HISTogram"
OUTPUT XXX;":SPA1:MODE TINTerval"

Query :SPA{1|2}:MODE?

Returned Format [:SPA{1|2}:MODE] {OVERView|HISTogram|TINTerval}<NL>

Example 10 DIM String$[100]
20 OUTPUT XXX;":SELECT 1"
30 OUTPUT XXX;":SPA1:MODE?"
40 ENTER XXX;String$
50 PRINT String$
60 END

SPA Subsystem
MODE

25–7

OVERView:BUCKet

Query :SPA{1|2}:OVERView:BUCKet?
{SIZE|NUMBer|<bucket_num>}

The OVERView:BUCKet query returns data relating to the State Overview
measurement. You specify SIZE for width of each bucket, NUMBer for
number of buckets, or <bucket_num> for the number of hits in the specified
bucket number

Returned Format [:SPA{1|2}:OVERView:BUCKet] {SIZE|NUMBer|<bucket_num>},
<number><NL>

<bucket_num> 0 to (number of valid buckets – 1)

<number> integer number

Example 10 DIM String$[100]
20 OUTPUT XXX;":SELECT 1"
30 OUTPUT XXX;":SPA2:OVERView:BUCKet? 23"
40 ENTER XXX;String$
50 PRINT String$
60 END

SPA Subsystem
OVERView:BUCKet

25–8

OVERView:HIGH

Command :SPA{1|2}:OVERView:HIGH <high_pattern>

The OVERView:HIGH command sets the upper boundary of the State
Overview measurement. A query returns the current setting of the upper
boundary.

Setting the upper boundary defaults the data accumulators, statistic
counters, and the number of buckets and their size.

<high_pattern> "{#B{0|1}...|
#Q{0|1|2|3|4|5|6|7}...|
#H{0|1|2|3|4|5|6|7|8|9|A|B|C|D|E|F}.. .|
{0|1|2|3|4|5|6|7|8|9}...}"

Example OUTPUT XXX;":SPA1:OVERView:HIGH ’23394’"
OUTPUT XXX;":SPA2:OVERView:HIGH ’#Q4371’"

Query :SPA{1|2}:OVERView:HIGH?

Returned Format [:SPA{1|2}:OVERView:HIGH]<high_pattern><NL>

Example 10 DIM String$[100]
20 OUTPUT XXX;":SELECT 1"
30 OUTPUT XXX;":SPA1:OVERView:HIGH?"
40 ENTER XXX;String$
50 PRINT String$
60 END

SPA Subsystem
OVERView:HIGH

25–9

OVERView:LABel

Command :SPA{1|2}:OVERView:LABel <label_name>

The OVERView:LABel command selects a new label for collecting the SPA
measurements. A query returns the name of the currently selected label.

Selecting a new label defaults the State Overview data accumulators, statistic
counters, and the number of buckets and their size.

<label_name> string of up to 6 alphanumeric characters

Example OUTPUT XXX;":SPA2:OVERView:LABel ’A’"

Query :SPA{1|2}:OVERView:LABel?

Returned Format: [:SPA{1|2}:OVERView:LABel]<label_name><NL>

Example 10 DIM String$[100]
20 OUTPUT XXX;":SELECT 1"
30 OUTPUT XXX;":SPA2:OVERView:LABel?"
40 ENTER XXX;String$
50 PRINT String$
60 END

SPA Subsystem
OVERView:LABel

25–10

OVERView:LOW

Command :SPA{1|2}:OVERView:LOW <low_pattern>

The OVERView:LOW command sets the lower boundary of the State
Overview measurement. A query returns the current setting of the lower
boundary.

Setting the lower boundary defaults the data accumulators, statistic counters,
and the number of buckets and their size.

<low_pattern> "{#B{0|1}...|
#Q{0|1|2|3|4|5|6|7}...|
#H{0|1|2|3|4|5|6|7|8|9|A|B|C|D|E|F}...|
{0|1|2|3|4|5|6|7|8|9}...}"

Example OUTPUT XXX;":SPA2:OVERView:LOW ’23394’"
OUTPUT XXX;":SPA1:OVERView:LOW ’#Q4371’"

Query :SPA{1|2}:OVERView:LOW?

Returned Format [:SPA{1|2}:OVERView:LOW]<low_pattern><NL>

Example 10 DIM String$[100]
20 OUTPUT XXX;":SELECT 1"
30 OUTPUT XXX;":SPA1:OVERView:LOW?"
40 ENTER XXX;String$
50 PRINT String$
60 END

SPA Subsystem
OVERView:LOW

25–11

OVERView:MLENgth

Command :SPA{1|2}:OVERView:MLENgth <memory_length>

The MLENgth command specifies the memory depth. Valid memory depths
range from 4096 states (or samples) through the maximum system memory
depth minus 8192 states. Memory depth is affected by acquisition mode. If
the <memory_depth> value sent with the command is not a legal value, the
closest legal setting will be used.

<memory_length> {4096 | 8192 | 16384 | 32768 | 65536 | 131072 | 262144
| 524288 | 1032192}

Example OUTPUT XXX;":SPA1:OVERVIEW:MLENGTH 262144"

Query :SPA{1|2}:OVERView:MLENgth?

The MLENgth query returns the current analyzer memory depth selection.
Returned Format [:SPA{1|2}:OVERView:MLENgth] <memory_length><NL>

Example OUTPUT XXX;":MACHINE1:STRIGGER:MLENGTH?"

SPA Subsystem
OVERView:MLENgth

25–12

OVERView:OMARker

Command :SPA{1|2}:OVERView:OMARker <o_pattern>

The OVERView:OMARker command sends the O marker to the lower
boundary of the bucket where the specified pattern is located. A request to
place the marker outside the defined boundary forces the marker to the
appropriate end bucket. A query returns the pattern associated with the
lower end of the bucket where the marker is placed.

<o_pattern> "{#B{0|1}...|
#Q{0|1|2|3|4|5|6|7}...|
#H{0|1|2|3|4|5|6|7|8|9|A|B|C|D|E|F}.. .|
{0|1|2|3|4|5|6|7|8|9}...}"

Example OUTPUT XXX;":SPA2:OVERView:OMARker ’#H3C31’"

Query :SPA{1|2}:OVERView:OMARker?

Returned Format [:SPA{1|2}:OVERView:OMARker]<o_pattern><NL>

Example 10 DIM String$[100]
20 OUTPUT XXX;":SELECT 1"
30 OUTPUT XXX;":SPA1:OVERView:OMARker?"
40 ENTER XXX;String$
50 PRINT String$
60 END

SPA Subsystem
OVERView:OMARker

25–13

OVERView:OVSTatistic

Query :SPA{1|2}:OVERView:OVSTatistic?
{XHITs|OHITs|TOTal}

The OVERView:OVSTatistic query returns the number of hits associated with
the requested statistic or returns the number of hits in the specified bucket.
XHITs requests the number of hits in the bucket where the X marker is
located. OHITs requests the number of hits in the bucket where the O
marker is located. TOTal requests the total number of hits.

Returned Format [:SPA{1|2}:OVERView:OVSTatistic] {XHITs|OHITs|TOTal},
<number_hits><NL>

<number_hits> integer number

Example 10 DIM String$[100]
20 OUTPUT XXX;":SELECT 1"
30 OUTPUT XXX;":SPA2:OVERView:OVSTatistic? OHITs"
40 ENTER XXX;String$
50 PRINT String$
60 END

SPA Subsystem
OVERView:OVSTatistic

25–14

OVERView:XMARker

Command :SPA{1|2}:OVERView:XMARker <x_pattern>

The OVERView:XMARker command sends the X marker to the lower
boundary of the bucket where the specified pattern is located. A request to
place the marker outside the defined boundary forces the marker to the
appropriate end bucket. A query returns the pattern associated with the
lower end of the bucket where the marker is placed.

<x_pattern> "{#B{0|1}...|
#Q{0|1|2|3|4|5|6|7}...|
#H{0|1|2|3|4|5|6|7|8|9|A|B|C|D|E|F}.. .|
{0|1|2|3|4|5|6|7|8|9}...}"

Example OUTPUT XXX;":SPA2:OVERView:XMARker ’#H3C31’"

Query :SPA{1|2}:OVERView:XMARker?

Returned Format [:SPA{1|2}:OVERView:XMARker]<x_pattern><NL>

Example 10 DIM String$[100]
20 OUTPUT XXX;":SELECT 1"
30 OUTPUT XXX;":SPA2:OVERView:XMARker?"
40 ENTER XXX;String$
50 PRINT String$
60 END

SPA Subsystem
OVERView:XMARker

25–15

HISTogram:HSTatistic

Query :SPA{1|2}:HISTogram:HSTatistic?
{TOTal|OTHer|<range_number>}

The HISTogram:HSTatistic query returns the total number of samples or
returns the number of samples in the specified range. Specify TOTal for the
total number of samples, OTHer for the number of hits in "other" range, or
<range_number> for the number of hits in that range.

Depending on whether the "other" range is on or off, the statistic TOTal
includes or excludes the number of hits in the "other" range.

Returned Format [:SPA{1|2}:HISTogram:HSTatistic] {TOTal|OTHer|
<range_number>},<number_hits><NL>

<range_number> 0 to 10

<number_hits> integer number

Example 10 DIM String$[100]
20 OUTPUT XXX;":SELECT 1"
30 OUTPUT XXX;":SPA1:HISTogram:HSTatistic? 7"
40 ENTER XXX;String$
50 PRINT String$
60 END

SPA Subsystem
HISTogram:HSTatistic

25–16

HISTogram:LABel

Command :SPA{1|2}:HISTogram:LABel <label_name>

The HISTogram:LABel command selects a new label for collecting SPA
measurements. A query returns the name of the currently selected label.

Selecting a new label defaults the State Histogram range names, bucket sizes,
and hit accumulators.

<label_name> string of up to 6 alphanumeric characters

Example OUTPUT XXX;":SPA2:HISTogram:LABel ’A’"

Query :SPA{1|2}:HISTogram:LABel?

Returned Format [:SPA{1|2}:HISTogram:LABel] <label_name><NL>

Example 10 DIM String$[100]
20 OUTPUT XXX;":SELECT 1"
30 OUTPUT XXX;":SPA2:HISTogram:LABel?"
40 ENTER XXX;String$
50 PRINT String$
60 END

SPA Subsystem
HISTogram:LABel

25–17

HISTogram:OTHer

Command :SPA{1|2}:HISTogram:OTHer {INCLuded|EXCLuded}

The HISTogram:OTHer command selects including or excluding the "other"
histogram bucket. A query returns data indicating whether the "other"
bucket is currently included or excluded.

Example OUTPUT XXX;":SPA2:HISTogram:OTHer INCLuded"
OUTPUT XXX;":SPA1:HISTogram:OTHer EXCLuded"

Query :SPA{1|2}:HISTogram:OTHer?

Returned Format [:SPA{1|2}:HISTogram:OTHer]{INCLuded|EXCLuded}<NL>

Example 10 DIM String$[100]
20 OUTPUT XXX;":SELECT 1"
30 OUTPUT XXX;":SPA2:HISTogram:OTHer?"
40 ENTER XXX;String$
50 PRINT String$
60 END

SPA Subsystem
HISTogram:OTHer

25–18

HISTogram:QUALifier

Command :SPA{1|2}:HISTogram:QUALifier <label_name>,
<pattern>

The HISTogram:QUALifier command sets the pattern associated with the
specified label. The pattern is a condition for triggering and storing the
measurement. A query of a label returns the current pattern setting for that
label.

<label_name> string of up to 6 alphanumeric characters

<pattern> "{#B{0|1}...|
#Q{0|1|2|3|4|5|6|7}...|
#H{0|1|2|3|4|5|6|7|8|9|A|B|C|D|E|F}.. .|
{0|1|2|3|4|5|6|7|8|9}...}"

Example OUTPUT XXX;":SPA2:HISTogram:QUALifier ’A’,’255’"

Query :SPA{1|2}:HISTogram:QUALifier? <label_name>

Returned Format [:SPA{1|2}:HISTogram:QUALifier] <label_name>,<pattern><NL>

Example 10 DIM String$[100]
20 OUTPUT XXX;":SELECT 1"
30 OUTPUT XXX;":SPA1:HISTogram:QUALifier? ’A’"
40 ENTER XXX;String$
50 PRINT String$
60 END

SPA Subsystem
HISTogram:QUALifier

25–19

HISTogram:RANGe

Command :SPA{1|2}:HISTogram:RANGe {OFF |
<range_num>,<range_name>,<low_patt>,<high_patt>}

The HISTogram:RANGe command turns off all ranges or defines the range
name, low boundary, and high boundary of the specified range. Defining a
specified range turns on that range. For the specified range, a query returns
the name, low boundary, high boundary, and whether the range is on or off.

<range_num> 0 to 10

<range_name> string of up to 16 alphanumeric characters

<low_patt>
<high_patt>

"{#B{0|1}...|
#Q{0|1|2|3|4|5|6|7}...|
#H{0|1|2|3|4|5|6|7|8|9|A|B|C|D|E|F}.. .|
{0|1|2|3|4|5|6|7|8|9}...}"

Example OUTPUT XXX;":SPA1:HISTogram:RANGe OFF"
OUTPUT XXX;":SPA2:HISTogram:RANGe 5,’A’,’255’,’512’"
OUTPUT XXX;":SPA1:HISTogram:RANGe 8,’DATA’,’#B0100110’,’#H9F’"

Query :SPA{1|2}:HISTogram:RANGe? <range_num>

Returned Format [:SPA{1|2}:HISTogram:RANGe]
<range_number>,<range_name>,<low_pattern>,<high_pattern>,
<range_onoff><NL>

<range_onoff> {ON|OFF}

Example 10 DIM String$[100]
20 OUTPUT XXX;":SELECT 1"
30 OUTPUT XXX;":SPA1:HISTogram:RANGe? 4"
40 ENTER XXX;String$
50 PRINT String$
60 END

SPA Subsystem
HISTogram:RANGe

25–20

HISTogram:TTYPe

Command :SPA{1|2}:HISTogram:TTYPe {ALL|QUALified}

The HISTogram:TTYPe command sets the trigger to trigger on anystate or on
qualified state. A query returns the current trace type setting.

Example OUTPUT XXX;":SPA2:HISTogram:TTYPe ALL"

Query :SPA{1|2}:HISTogram:TTYPe?

Returned Format [:SPA{1|2}:HISTogram:TTYPe]{ALL|QUALified}<NL>

Example 10 DIM String$[100]
20 OUTPUT XXX;":SELECT 1"
30 OUTPUT XXX;":SPA1:HISTogram:TTYPe?"
40 ENTER XXX;String$
50 PRINT String$
60 END

SPA Subsystem
HISTogram:TTYPe

25–21

TINTerval:AUTorange

Command :SPA{1|2}:TINTerval:AUTorange
{LOGarithmic|LINear},<min_time>,<max_time>

The TINTerval:AUTorange command automatically sets the Time Interval
ranges in a logarithmic or linear distribution over the specified range of time.
When the AUTorange command is executed, the data accumulators and
statistic counters are reset.

<min_time> real number

<max_time> real number

Example

OUTPUT XXX;":SPA2:TINTerval:AUTorange LINear,4.0E-3,55.6E+2"
OUTPUT XXX;":SPA1:TINTerval:AUTorange LOGarithmic,3.3E+1,8.6E+2"

TINTerval:QUALifier

Command :SPA{1|2}:TINTerval:QUALifier
<label_name>,<start_pattern>,<end_pattern>

The TINTerval:QUALifier command defines the start and stop patterns for a
specified label. The start and stop patterns determine the time windows for
collecting data. A query returns the currently defined start and stop patterns
for a given label.

<label_name> string of up to 6 alphanumeric characters

<start_pattern> "{#B{0|1}...|
#Q{0|1|2|3|4|5|6|7}...|
#H{0|1|2|3|4|5|6|7|8|9|A|B|C|D|E|F}.. .|
{0|1|2|3|4|5|6|7|8|9}...}"

SPA Subsystem
TINTerval:AUTorange

25–22

<end_pattern> "{#B{0|1}...|
#Q{0|1|2|3|4|5|6|7}...|
#H{0|1|2|3|4|5|6|7|8|9|A|B|C|D|E|F}.. .|
{0|1|2|3|4|5|6|7|8|9}...}"

Example OUTPUT XXX;":SPA1:TINTerval:QUALifier ’A’,’#Q231’,’#Q455’"
OUTPUT XXX;":SPA2:TINTerval:QUALifier ’DATA’,’#H3A’,’255’"

Query :SPA{1|2}:TINTerval:QUALifier? <label_name>

Returned Format [:SPA{1|2}:TINTerval:QUALifier]
<label_name>,<start_pattern>,<end_pattern><NL>

Example 10 DIM String$[100]
20 OUTPUT XXX;":SELECT 1"
30 OUTPUT XXX;":SPA1:TINTerval:QUALifier? ’A’"
40 ENTER XXX;String$
50 PRINT String$
60 END

SPA Subsystem
TINTerval:QUALifier

25–23

TINTerval:TINTerval

Command :SPA{1|2}:TINTerval:TINTerval
<interval_number>,<min_time>,<max_time>

The TINTerval:TINTerval command specifies the minimum and maximum
time limits for the given interval. A query returns these limits for a specified
interval.

<interval_
number>

0 to 7

<min_time> real number

<max_time> real number

Example OUTPUT XXX;":SPA2:TINTerval:TINTerval 4,1.0E-3,47.0E5"
OUTPUT XXX;":SPA1:TINTerval:TINTerval 3,6.8E-7,4.90E2"

Query :SPA{1|2}:TINTerval:TINTerval? <interval_number>

Returned Format [:SPA{1|2}:TINTerval:TINTerval]<interval_number>,<min_time>,
<max_time><NL>

Example 10 DIM String$[100]
20 OUTPUT XXX;":SELECT 1"
30 OUTPUT XXX;":SPA2:TINTerval:TINTerval? 6"
40 ENTER XXX;String$
50 PRINT String$
60 END

SPA Subsystem
TINTerval:TINTerval

25–24

TINTerval:TSTatistic

Query :SPA{1|2}:TINTerval:TSTatistic?
{TMINimum|TMAXimum|TAVerage|TOTal|TTOTal|
<interval_number>}

The TINTerval:TSTatistic query returns either the time or the number of
samples associated with the requested statistic. The statistics you can
request are:

• TMINimum - overall minimum interval time

• TMAXimum - overall maximum interval time

• TAVerage - overall average interval time

• TOTal - total number of samples

• TTOTal - overall total time of all interval samples

• <interval_number> - number of hits in given interval

If TMINimum, TMAXaximum, TAVErage, or TTOTal are not currently valid,
the real value 9.9E37 is returned.

Returned Format [:SPA{1|2}:TINTerval:TSTatistic] {
{ {TMINimum|TMAXimum|TAVerage|TTOTal} <time_number>} |
{ {TOTal|<interval_number>}, <number_hits>} }<NL>

<interval_
number>

0 to 7

<number_hits> integer number

<time_number> real number

Example 10 DIM String$[100]
20 OUTPUT XXX;":SELECT 1"
30 OUTPUT XXX;":SPA1:TINTerval:TSTatistic? 3"
40 ENTER XXX;String$
50 PRINT String$
60 END

SPA Subsystem
TINTerval:TSTatistic

25–25

25–26

26

SYMBol Subsystem

Introduction

The SYMBol subsystem contains the commands to define symbols on
the controller and download them to the Agilent 1670G-series logic
analyzer. The commands in this subsystem are:

• BASE

• PATTern

• RANGe

• REMove

• WIDTh

26–2

SYMBol Subsystem Syntax Diagram

Figure 26-1

SYMBol Subsystem

26–3

Table 26-1 SYMBol Parameter Values

Parameter Value

label_name string of up to 6 alphanumeric characters

symbol_name string of up to 16 alphanumeric characters

pattern_value "{#B{0|1|X} . . . |
#Q{0|1|2|3|4|5|6|7|X} . . . |
#H{0|1|2|3|4|5|6|7|8|9|A|B|C|D|E|F|X} .
. . |
{0|1|2|3|4|5|6|7|8|9} . . . }"

start_value "{#B{0|1} . . . |
#Q{0|1|2|3|4|5|6|7} . . . |
#H{0|1|2|3|4|5|6|7|8|9|A|B|C|D|E|F} . .
. |
{0|1|2|3|4|5|6|7|8|9} . . . }"

stop_value "{#B{0|1} . . . |
#Q{0|1|2|3|4|5|6|7} . . . |
#H{0|1|2|3|4|5|6|7|8|9|A|B|C|D|E|F} . .
. |
{0|1|2|3|4|5|6|7|8|9} . . . }"

width_value integer from 1 to 16

SYMBol Subsystem

26–4

SYMBol

Selector :MACHine{1|2}:SYMBol

The SYMBol selector is used as a part of a compound header to access the
commands used to create symbols. It always follows the MACHine selector
because it selects a branch directly below the MACHine level in the command
tree.

Example OUTPUT XXX;":MACHINE1:SYMBOL:BASE ’DATA’, BINARY"

BASE

Command :MACHine{1|2}:SYMBol:BASE
<label_name>,<base_value>

The BASE command sets the base in which symbols for the specified label
will be displayed in the symbol menu. It also specifies the base in which the
symbol offsets are displayed when symbols are used.

BINary is not available for labels with more than 20 bits assigned. In this case
the base will default to HEXadecimal.

<label_name> string of up to 6 alphanumeric characters

<base_value> {BINary | HEXadecimal | OCTal | DECimal | ASCii}

Example OUTPUT XXX;":MACHINE1:SYMBOL:BASE ’DATA’,HEXADECIMAL"

SYMBol Subsystem
SYMBol

26–5

PATTern

Command :MACHine{1|2}:SYMBol:PATTern <label_name>,
<symbol_name>,<pattern_value>

The PATTern command creates a pattern symbol for the specified label.

Because don’t cares (X) are allowed in the pattern value, it must always be
expressed as a string. You may still use different bases, but "don’t cares"
cannot be used in a decimal number.

<label_name> string of up to 6 alphanumeric characters

<symbol_name> string of up to 16 alphanumeric characters

<pattern_value> "{#B{0|1|X} . . . |
#Q{0|1|2|3|4|5|6|7|X} . . . |
#H{0|1|2|3|4|5|6|7|8|9|A|B|C|D|E|F|X} . . . |
{0|1|2|3|4|5|6|7|8|9} . . . }"

Example OUTPUT XXX;":MACHINE1:SYMBOL:PATTERN ’STAT’,
’MEM_RD’,’#H01XX’"

SYMBol Subsystem
PATTern

26–6

RANGe

Command :MACHine{1|2}:SYMBol:RANGe <label_name>,
<symbol_name>,<start_value>,<stop_value>

The RANGe command creates a range symbol containing a start value and a
stop value for the specified label. The values may be in binary (#B), octal
(#Q), hexadecimal (#H) or decimal (default). You cannot use don’t cares in
any base.

<label_name> string of up to 6 alphanumeric characters

<symbol_name> string of up to 16 alphanumeric characters

<start_value> "{#B{0|1} . . . |
#Q{0|1|2|3|4|5|6|7} . . . |
#H{0|1|2|3|4|5|6|7|8|9|A|B|C|D|E|F} . . . |
{0|1|2|3|4|5|6|7|8|9} . . . }"

<stop_value> "{#B{0|1} . . . |
#Q{0|1|2|3|4|5|6|7} . . . |
#H{0|1|2|3|4|5|6|7|8|9|A|B|C|D|E|F} . . . |
{0|1|2|3|4|5|6|7|8|9} . . . }"

Example OUTPUT XXX;":MACHINE1:SYMBOL:RANGE ’STAT’,
’IO_ACC’,’0’,’#H000F’"

SYMBol Subsystem
RANGe

26–7

REMove

Command :MACHine{1|2}:SYMBol:REMove

The REMove command deletes all symbols from a specified machine.

Example OUTPUT XXX;":MACHINE1:SYMBOL:REMOVE"

WIDTh

Command :MACHine{1|2}:SYMBol:WIDTh <label_name>,
<width_value>

The WIDTh command specifies the width (number of characters) in which
the symbol names will be displayed when symbols are used.

The WIDTh command does not affect the displayed length of the symbol
offset value.

<label_name> string of up to 6 alphanumeric characters

<width_value> integer from 1 to 16

Example OUTPUT XXX;":MACHINE1:SYMBOL:WIDTH ’DATA’,9 "

SYMBol Subsystem
REMove

26–8

27

DATA and SETup Commands

Introduction

The DATA and SETup commands are SYSTem commands that send
and receive block data between the Agilent 1670G-series logic
analyzer and a controller. Use the DATA instruction to transfer
acquired timing and state data, and the SETup instruction to transfer
instrument configuration data. This is useful for:

• Re-loading to the logic analyzer

• Processing data later

• Processing data in the controller

This chapter explains how to use these commands.

The format and length of block data depends on the instruction being
used, the configuration of the instrument, and the amount of acquired
data. The length of the data block can be up to 11 Mbytes.

The SYSTem:DATA section describes each part of the block data as it
will appear when used by the DATA instruction. The beginning byte
number, the length in bytes, and a short description is given for each
part of the block data. This is intended to be used primarily for
processing of data in the controller.

Data sent to a controller with the DBLock mode set to PACKed can be
reloaded into the analyzer. Data sent to a controller with the DBLock
mode set to UNPacked cannot be reloaded into the analyzer.

Do not change the block data in the controller if you intend to send the block
data back into the logic analyzer for later processing. Changes made to the
block data in the controller could have unpredictable results when sent back to
the logic analyzer.

27–2

Data Format

To understand the format of the data within the block data, keep these
important things in mind.

• Data is sent to the controller in binary form.

• Each byte, as described in this chapter, contains 8 bits.

• The first bit of each byte is the MSB (most significant bit).

• Byte descriptions are printed in binary, decimal, or ASCII depending on
how the data is described.

Example The first ten bytes that describe the section name contain a total of 80 bits as
follows:

Binary 0100 0100 0100 0001 0101 0100 0100 0001 0010 0000...0010 0000

Decimal 68 65 84 65 32 32 32 32 32 32

ASCII DATA space space space space space space

Byte 10Byte 1

MSB LSB

DATA and SETup Commands
Data Format

27–3

SYSTem:DATA

Command :SYSTem:DATA <block data>

The SYSTem:DATA command transmits the acquisition memory data from
the controller to the Agilent 1670G-series logic analyzer.

The block data consists of a variable number of bytes containing information
captured by the acquisition chips. Because no parameter checking is
performed, out-of-range values could cause instrument lockup; therefore,
take care when transferring the data string to the logic analyzer.

The <block data> parameter can be broken down into a
<block length specifier> and a variable number of <section> s.

The <block length specifier> always takes the form #8DDDDDDDD.
Each D represents a digit (ASCII characters "0" through "9"). The value of
the eight digits represents the total length of the block (all sections). For
example, if the total length of the block is 14522 bytes, the block length
specifier would be "#800014522".

Each <section> consists of a <section header> and <section
data> . The <section data> format varies for each section and may be
any length. For the DATA instruction, there is only one <section> , which
is composed of a data preamble followed by the acquisition data. This
section has a variable number of bytes depending on configuration and
amount of acquired data.

Example OUTPUT XXX;":SYSTEM:DATA" <block data>

DATA and SETup Commands
SYSTem:DATA

27–4

<block data> <block length specifier><section>...

<block length
specifier

#8<length>

<length> the total length of all sections in byte format (must be represented with 8
digits)

<section> <section header><section data>

<section
header>

16 bytes, described on the following page

<section data> format depends on the type of data

The total length of a section is 16 (for the section header) plus the length of the
section data. When calculating the value for <length>, remember to include
the length of the section headers.

Query :SYSTem:DATA?

The SYSTem:DATA query returns the block data to the controller. The data
sent by the SYSTem:DATA query reflect the configuration of the machines
when the last run was performed. Any changes made since the last run,
through either front-panel operations or programming commands, do not
affect the stored configuration until a new run is performed.

Returned Format [:SYSTem:DATA] <block data><NL>

DATA and SETup Commands
SYSTem:DATA

27–5

Section Header Description

The section header uses bytes 1 through 16 (this manual begins counting at
1; there is no byte 0). The 16 bytes of the section header are as follows:

Byte Position

1 10 bytes - Section name ("DATA space space space space space
space" in ASCII for the DATA instruction).

11 1 byte - Reserved

12 1 byte - Module ID (34 decimal for the Agilent 1670G)

13 4 bytes - Length of block in number of bytes that when converted to decimal,
specifies the number of bytes contained in the data block.

Section Data

For the SYSTem:DATA command, the <section data> parameter consists of
two parts: the data preamble and the acquisition data. These are described
in the following two sections.

Data Preamble Description

The block data is organized as 554 bytes of preamble information, followed by
a variable number of bytes of data. The preamble gives information for each
analyzer describing the amount and type of data captured, where the trace
point occurred in the data, which pods are assigned to which analyzer, and
other information.

The preamble (bytes 17 through 590) consists of the following 574 bytes:

17 4 bytes - Instrument ID (always 1670 decimal)

21 4 bytes - Revision Code

25 4 bytes - number of pod pairs used in last acquisition

29 4 bytes - Analyzer ID (0 for Agilent 1670G)

DATA and SETup Commands
Section Header Description

27–6

The values stored in the preamble represent the captured data currently
stored in this structure and not the current analyzer configuration. For
example, the mode of the data (bytes 33 and 103) may be STATE with
tagging, while the current setup of the analyzer is TIMING.

The next 70 bytes are for Analyzer 1 Data Information.

Byte Position

33 4 bytes - Machine data mode in one of the following decimal values:
 −1 = off

0 = 100 MHz State data, no tags
1 = 100 MHz State data, tag data in

 unassigned pod
2 = 100 MHz State data, tag data

 interleaved with acquired data
 10 = conventional timing data on all channels
 13 = conventional timing data on half channels

37 4 bytes - List of pods in this analyzer, where a binary 1 indicates that the
corresponding pod is assigned to this analyzer

bit 31 bit 30 bit 29 bit 28 bit 27 bit 26 bit 25 bit 24

unused unused unused unused unused unused unused unused

bit 23 bit 22 bit 21 bit 20 bit 19 bit 18 bit 17 bit 16

unused clock
pod 2

clock
pod 1

unused unused unused unused unused

bit 15 bit 14 bit 13 bit 12 bit 11 bit 10 bit 9 bit 8

unused unused unused unused unused unused unused Pod 8

bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

Pod 7 Pod 6 Pod 5 Pod 4 Pod 3 Pod 2 Pod 1 unused

Example xxxx xxxx x01x xxxx xxxx xxx0 0001 111x indicates that data
pods 1 through 4 and clock pod 1 are assigned to this analyzer (x = unused
bit).

DATA and SETup Commands
Data Preamble Description

27–7

Byte Position

41 4 bytes - Master chip for this analyzer

45 4 bytes - Maximum hardware memory depth available for this analyzer

49 4 bytes - Unused

53 8 bytes - Sample period in picoseconds (timing only)

Example The following 64 bits represent a sample period of 8,000 picoseconds
(8 nanoseconds):

00000000 00000000 00000000 00000000 00000000 00000000 00011111 01000000

61 4 bytes - Tag type for state mode in one of the following decimal values:
0 = off
1 = time tags
2 = state tags

65 8 bytes - Trigger offset. The time offset (in picoseconds) from when this
analyzer is triggered and when this analyzer provides an output trigger to the
IMB or port out. The value for one analyzer is always zero and the value for
the other analyzer is the time between the triggers of the two analyzers.

73 30 bytes - Unused

103 70 bytes - The next 70 bytes are for Analyzer 2 Data Information. They are
organized in the same manner as Analyzer 1 above, but they occupy bytes
103 through 172.

DATA and SETup Commands
Data Preamble Description

27–8

Byte Position

173 88 bytes - Number of valid rows of data (starting at byte 591) for each pod.

Bytes 173 through 228 are unused.

Byte Position Bytes 229 through 232 - contain the number of valid rows of data for pod 8.
Bytes 233 through 236 - contain the number of valid rows of data for pod 7.
Bytes 237 through 240 - contain the number of valid rows of data for pod 6.
Bytes 241 through 244 - contain the number of valid rows of data for pod 5.
Bytes 245 through 248 - contain the number of valid rows of data for pod 4.
Bytes 249 through 252 - contain the number of valid rows of data for pod 3.
Bytes 253 through 256 - contain the number of valid rows of data for pod 2.
Bytes 257 through 260 - contain the number of valid rows of data for pod 1.

261 88 bytes - The trace point location for each pod. This byte group is organized
in the same way as the data rows (starting at byte 173 above). These
numbers are base zero numbers which start from the first sample stored for
a specific pod. For example, if bytes 341 and 344 contain the value 101008,
the data in row 101008 for that pod is the trigger. There are 101008 rows of
pre-trigger data as shown below.

row 0
row 1

.
row 101007
row 101008 – trigger point
row 101009
row 101010

349 234 bytes - Unused

583 2 bytes - Real Time Clock (RTC) year at time of acquisition. Year value is
equal to the current year minus 1990.

585 1 byte - RTC month (1 = January . . . 12 = December) at time of acquisition.

586 1 byte - RTC day of the month at time of acquisition.

587 1 byte - RTC day of the week at time of acquisition.

588 1 byte - RTC hour (0 through 23) at time of acquisition.

589 1 byte - RTC minutes at time of acquisition.

590 1 byte - RTC seconds at time of acquisition.

DATA and SETup Commands
Data Preamble Description

27–9

Acquisition Data Description

The acquisition data section consists of a variable number of bytes depending
on the acquisition mode and the tag setting. The data is grouped in rows of
bytes with one sample from each pod in a single row.

Model Clock Pod Bytes Data Bytes Total Bytes Per Row

1672G 4 bytes 8 bytes 12 bytes

1670G,71E 4 bytes 16 bytes 20 bytes

The sequence of pod data within a row is the same as shown above for the
number of valid rows per pod (starting at byte 229).

Agilent 1672G configuration has the following data arrangement (per row):

<not used> <clk pod> <pod 4> <pod 3> <pod 2> <pod 1>

Agilent 1670G and Agilent 1671G configurations have the following data
arrangement (per row):

<not used> <clk> <pod 8> <pod 7> <pod 6> <pod 5>
<pod 4> <pod 3> <pod 2> <pod 1>

If the data block is unloaded without first using the DBLock command to
specify UNPacked data, this data block description does not apply.

Unused pods always have data, but it is invalid and should be ignored.

The depth of the data array is equal to the pod with the greatest number of
rows of valid data (starting at byte 229). If a pod has fewer rows of valid data
than the data array, unused rows will contain invalid data that should be
ignored.

Pod positions 7 and 8 will contain invalid data for Agilent 1671G.

DATA and SETup Commands
Acquisition Data Description

27–10

The clock pods contain data mapped according to the clock designator and
the board (see below). Unused clock lines should be ignored.

 pod8--5 pod4--1
Clock Pod 1 < XXXX MLKJ >

Where x = not used.

Byte Position

591 1 byte - Not used (MSB of clock pod 2).

592 1 byte - LSB of clock pod 2. Not Used.

593 1 byte - MSB of clock pod 1.

594 1 byte - LSB of clock pod 1.

595 1 byte - MSB of data pod 4.

596 1 byte - LSB of data pod 4.

597 1 byte - MSB of data pod 3.

598 1 byte - LSB of data pod 3.

599 1 byte - MSB of data pod 2.

600 1 byte - LSB of data pod 2.

601 1 byte - MSB of data pod 1.

602 1 byte - LSB of data pod 1.

.

.

Byte n where n = 591 + (bytes per row × maximum number of valid rows) - 1

DATA and SETup Commands
Acquisition Data Description

27–11

Tag Data Description

If tags are enabled for one or both analyzers, the tag data follows the
acquisition data. The first byte of the tag data is determined as follows:

 591 + (bytes per row × maximum number of valid rows)

Each row of the tag data array consists of one (single tags enabled) or two
(both analyzer’s tags enabled) eight-byte tag values per row. When both
analyzers have tags enabled, the first tag value in a row belongs to analyzer
number one and the second tag value belongs to analyzer number two.

If the tag value is a time tag, the number is an integer representing time in
picoseconds. If the tag value is a state tag, the number is an integer state
count.

The total size of the tag array is eight or 16 bytes per row (as described in
Acquisition Data Description on page 27-10) times the greatest number of
valid rows.

SYSTem:SETup

Command :SYStem:SETup <block data>

The SYStem:SETup command configures the logic analyzer module as
defined by the block data sent by the controller.

Three data sections are always included. These are the strings which would
be included in the section header.

"CONFIG "
"DISPLAY1 "
"BIG_ATTRIB"

Additionally, the following sections may also be included, depending on
what’s available:

"SYMBOLS A "
"SYMBOLS B "
"INVASM A "
"INVASM B "

DATA and SETup Commands
Tag Data Description

27–12

<block data> <block length specifier><section>...

<block length
specifier

#8<length>

<length> the total length of all sections in byte format (must be represented with 8
digits)

<section> <section header><section data>

<section
header>

16 bytes in the following format:
10 bytes for the section name
1 byte reserved
1 byte for the module ID code (34 for the Agilent 1670G-series logic analyzer)
4 bytes for the length of the section data in bytes

<section data> format depends on the type of data.

The total length of a section is 16 (for the section header) plus the length of the
section data. When calculating the value for <length>, remember to include
the length of the section headers. The format of the setup block is not affected
by the DBLock command setting.

Example OUTPUT XXX;"SETUP" <block data>

Query :SYStem:SETup?

The SYStem:SETup query returns a block of data that contains the current
configuration to the controller.

Returned Format [:SYStem:SETup] <block data><NL>

DATA and SETup Commands
SYSTem:SETup

27–13

27–14

Part 4

Oscilloscope Commands

28

Oscilloscope Root Level
Commands

Introduction

Oscilloscope Root Level commands control the basic operation of the
oscilloscope. Refer to figure 28-1 for the module level syntax
command diagram. The Root Level commands are:

• AUToscale

• DIGitize

This chapter only applies to the oscilloscope option.

28-2

Figure 28-1

Root Level Command Syntax Diagram

AUToscale

Command :AUToscale

The AUToscale command causes the oscilloscope to automatically select the
vertical sensitivity, vertical offset, trigger source, trigger level, and timebase
settings for optimum viewing of any input signals. The trigger source is the
lowest numbered channel on which the trigger was found. If no trigger is
found, the oscilloscope defaults to auto-trigger. The display window
configuration is not altered by AUToscale.

Example OUTPUT XXX;":AUTOSCALE"

To demonstrate a quick oscilloscope setup requires hardware. Use the AC
CAL OUTPUT signal available at the rear panel of the card. The square wave
put out by the AC CAL OUTPUT is normally used for calibration and probe
compensation.

Connect the AC CAL OUTPUT signal from the rear panel output connector to
CHAN 1, also on the rear panel. Ensure that the mainframe is connected to a
controller. Enter the program listed on the next page and execute it.

The following program expects the oscilloscope to be connected to a signal.

Oscilloscope Root Level Commands
AUToscale

28-3

Example This program selects the oscilloscope in slot B, issues an autoscale command,
waits 5 seconds for the oscilloscope to collect data, and then gets and prints
the measurement.
10 OUTPUT XXX;":SELECT 2"
20 OUTPUT XXX;":AUTOSCALE"
25 WAIT 5
30 DIM Me$[200]
40 OUTPUT ;":MEASURE:SOURCE CHANNEL1;ALL?"
50 ENTER XXX;Me$
60 PRINT Me$
70 END

The three Xs (XXX) after the OUTPUT and ENTER statements in the above
example refer to the device address required for programming over either GPIB
or RS-232-C. Refer to chapter 1, "Introduction to Programming" for information
on initializing the interface.

For more information on the specific oscilloscope commands, refer to
chapters 29 through 36 of this manual.

Oscilloscope Root Level Commands
AUToscale

28-4

DIGitize

Command :DIGitize

The DIGitize command is used to acquire waveform data for transfer over
GPIB and RS-232-C. The command initiates Repetitive Run for the
oscilloscope and the analyzer if it is grouped with the oscilloscope via Group
Run. If a RUNtil condition has been specified in any module, the oscilloscope
and the grouped analyzer acquire data until the RUNtil conditions have been
satisfied.

The Acquire subsystem commands may be used to set up conditions such as
acquisition type and average count for the DIGitize command. See the
Acquire subsystem for the description of these commands.

When a count number in the average acquisition type has been specified, the
oscilloscope and grouped analyzer acquire data until these conditions have
been satisfied.

When both the RUNtil and the ACQuire:COUNt have been satisfied, the
acquisition stops.

For faster data transfer over the interface bus, display a menu that has no
waveforms on screen.

The DIGitize command is an overlap command, so ensure that all data has been
acquired and stored in the channel buffers before executing any other
commands. The MESE command and the MESR query may be used to check
for run complete or a WAIt instruction may be inserted after the DIGitize
command to ensure enough time for command execution.

Example OUTPUT XXX;":DIGITIZE"

See Also Chapter 43, "Programming Examples," for an example using the DIGitize
command.

Oscilloscope Root Level Commands
DIGitize

28-5

28-6

29

ACQuire Subsystem

Introduction

The Acquire Subsystem commands are used to set up acquisition
conditions for the DIGitize command of the oscilloscope system. The
subsystem contains commands to select the type of acquisition and
the number of averages to be taken if the average type is chosen.
Refer to Figure 28-1 for the ACQuire Subsystem Syntax Diagram. The
ACQuire Subsystem commands are:

• COUNt

• TYPE

This chapter applies only to the oscilloscope option.

29-2

Figure 29-1

ACQuire Subsystem Syntax Diagram

Table 29-1 ACQuire Parameter Values

Parameter Value

count_arg {2|4|8|16|32|64|128|256}
The number of averages to be
taken of each time point.

ACQuire Subsystem

29-3

COUNt

Command :ACQuire:COUNt <count>

The COUNt command specifies the number of acquisitions for the running
weighted average. The COUNt command is only available when the
acquisition mode is AVERage. This command generates error 211 ("Legal
command but Settings conflict") if Normal acquisition mode is specified.

<count> {2|4|8|16|32|64|128|256}

Example OUTPUT XXX;":ACQUIRE:COUNT 16"

Query :ACQuire:COUNt?

The COUNt query returns the last specified count.
Returned Format [:ACQuire:COUNt] <count><NL>

Example OUTPUT XXX;":ACQ:COUN?"

ACQuire Subsystem
COUNt

29-4

TYPE

Command :ACQuire:TYPE {NORMal|AVERage}

The TYPE command selects the type of acquisition that is to take place
when a DIGitize or STARt command is executed. One of two acquisition
types may be chosen: the NORMal or AVERage mode.

In the NORMal mode, with the ACCumulate command OFF, the oscilloscope
acquires waveform data and then displays the waveform. When the
oscilloscope makes a new acquisition, the previously acquired waveform is
erased from the display and replaced by the newly acquired waveform. When
the ACCumulate command is ON, the oscilloscope displays all the waveform
acquisitions without erasing the previously acquired waveform.

In the AVERage mode, the oscilloscope averages the data points on the
waveform with previously acquired data. Averaging helps eliminate random
noise from the displayed waveform. In this mode the ACCumulate command
is OFF. When AVERage mode is selected, the number of averages must also
be specified using the COUNt command. Previously averaged waveform data
is erased from the display and the newly averaged waveform is displayed.

Example OUTPUT XXX;":ACQUIRE:TYPE NORMAL"

Query :ACQuire:TYPE?

The TYPE query returns the last specified type.
Returned Format [:ACQuire:TYPE] {NORMal|AVERage}<NL>

Example OUTPUT XXX;":ACQUIRE:TYPE?"

ACQuire Subsystem
TYPE

29-5

29-6

30

CHANnel Subsystem

Introduction

The Channel Subsystem commands control the channel display and
the vertical axis of the oscilloscope. Each channel must be
programmed independently for all offset, range, and probe functions.
When ECL or TTL commands are executed, the vertical range, offset,
and trigger levels are automatically set for optimum viewing. Refer to
figure 30-1 for the CHANnel Subsystem Syntax Diagram. The
CHANnel Subsystem commands are:

• COUPling

• ECL

• OFFSet

• PROBe

• RANGe

• TTL

This chapter applies only to the oscilloscope option.

30-2

Figure 30-1

CHANnel Subsystem Syntax Diagram

CHANnel Subsystem

30-3

Table 30-1 CHANnel Parameter Values

Parameter Value

channel_number {1|2}

offset_arg a real number defining the voltage at the center of the display. The
offset range is as follows (for a 1:1 probe setting):

Vertical Sensitivity Vertical Range Offset Voltage

4 mV - 100 mV/div 16 mV - 400 mV ±2 V

>100 mV - 400 mV/div >400 mV - 1.6 V ±10 V

>400 mV - 2.5 V/div >1.6 V - 10 V ±50 V

>2.5 V - 10 V/div >10 V - 40 V ±250 V

probe_arg an integer from 1 through 1000

range_arg a real number from 16 mV to 40 V specifying vertical sensitivity.

COUPling

Command :CHANnel<N>:COUPling {DC|AC|DCFifty}

The COUPling command sets the input impedance for the selected channel.
The choices are 1MΩ DC (DC), 1MΩ AC (AC), or 50 Ω DC (DCFifty).

<N> {1|2}

Example OUTPUT XXX;":CHANNEL1:COUPLING DC"

CHANnel Subsystem
COUPling

30-4

Query :CHANnel<N>:COUPling?

The COUPling query returns the current input impedance for the specified
channel.

Returned Format [:CHANnel<N>:COUPling:] {DC|AC|DCFifty}<NL>

Example OUTPUT XXX;":CHANNEL1:COUPLING?"

ECL

Command :CHANnel<N>:ECL

The ECL command sets the vertical range, offset, and trigger levels for the
selected input channel for optimum viewing of ECL signals. ECL values are:

Range: 2.0 V (500 mV per division)

Offset: -1.3 V

Trigger level: -1.3 V

<N> {1|2}

Example OUTPUT XXX;":CHANNEL1:ECL"

To return to "Preset User", change the CHANnel:RANGe, CHANnel:OFFSet, or
TRIGger:LEVel value.

CHANnel Subsystem
ECL

30-5

OFFSet

Command :CHANnel<N>:OFFSet <value>

The OFFSet command sets the voltage that is represented at center screen
for the selected channel. The allowable offset voltage values are shown in
the table below. The table represents values for a Probe setting of 1:1. The
offset value is recompensated whenever the probe attenuation factor is
changed.

<N> {1|2}

<value> allowable offset voltage value shown in the table below.

Vertical Range Offset Voltage

16 mV - 400 mV ±2 V

>400 mV - 1.6 V ±10 V

>1.6 V - 10 V ±50 V

>10 V - 40 V ±250 V

Example OUTPUT XXX;":CHAN1:OFFS 1.5"

Query :CHANnel<N>:OFFSet?

The OFFSet query returns the current value for the selected channel.
 Returned Format [:CHANnel<N>:OFFSet] <value><NL>

Example OUTPUT XXX;":CHANNEL1:OFFSET?"

CHANnel Subsystem
OFFSet

30-6

PROBe

Command :CHANnel<N>:PROBe <atten>

The PROBe command specifies the attenuation factor for an external probe
connected to a channel. The command changes the channel voltage
references such as range, offset, trigger level, and automatic measurements.
The actual sensitivity is not changed at the channel input. The allowable
probe attenuation factor is an integer from 1 to 1000.

<N> {1|2}

<atten> An integer from 1 to 1000

Example OUTPUT XXX;":CHAN1:PROB 10"

Query :CHANnel<N>:PROBe?

The PROBe query returns the probe attenuation factor for the selected
channel.

Returned Format [:CHANnel<N>:PROBe]<atten><NL>

Example OUTPUT XXX;":CHANNEL1:PROBE?"

CHANnel Subsystem
PROBe

30-7

RANGe

Command :CHANnel<N>:RANGe <range>

The RANGe command defines the full-scale (4 × Volts/Div) vertical axis of
the selected channel. The values for the RANGe command are dependent
on the current probe attenuation factor for the selected channel. The
allowable range for a probe attenuation factor of 1:1 is 16 mV to 40 V. For a
larger probe attenuation factor, multiply the range limit by the probe
attenuation factor.

<N> {1|2}

<range> 16 mV to 40 V for a probe attenuation factor of 1:1

Example OUTPUT XXX;":CHANNEL1:RANGE 4.8"

Query :CHANnel<N>:RANGe?

The RANGe query returns the current range setting.
Returned Format [:CHANnel<N>:RANGe] <range><NL>

Example OUTPUT XXX;":CHANNEL1:RANGE?"

CHANnel Subsystem
RANGe

30-8

TTL

Command :CHANnel<N>:TTL

The TTL command sets the vertical range, offset, and trigger level for the
selected input channel for optimum viewing of TTL signals. TTL values are:

Range: 6.0 V (1.50 V per division)

Offset: 2.5 V

Trigger Level: 1.62 V

<N> {1|2 }

Example OUTPUT XXX;":CHANNEL1:TTL"

To return to "Preset User" change the CHANnel:RANGe, CHANel:OFFSet, or
TRIGger:LEVel value.

CHANnel Subsystem
TTL

30-9

30-10

31

DISPlay Subsystem

Introduction

The Display Subsystem is used to control the display of data from the
oscilloscope. Refer to Figure 31-1 for the DISPlay Subsystem Syntax
Diagram. The DISPlay Subsystem commands are:

• ACCumulate

• CONNect

• INSert

• LABel

• MINus

• OVERlay

• PLUS

• REMove

This chapter applies only to the oscilloscope option.

31-2

Figure 31-1

DISPlay Subsystem Syntax Diagram

DISPlay Subsystem

31-3

Table 31-1 DISPlay Parameter Values

Parameter Value

slot_# 1 or 2 1=analyzer, 2=oscilloscope.

bit_id an integer from 0 to 31.

channel_# 1 or 2.

label_str up to five characters enclosed in single quotes making up a
label name.

label_id a string of 1 alpha and 1 numeric character for the
oscilloscope, or 6 characters for the timing modules.

ACCumulate

Command :DISPlay:ACCumulate {{ON|1}|{OFF|0}}

The ACCumulate command works in conjunction with the commands in the
Acquisition Subsystem. In the Normal mode, the ACCumulate command
turns infinite persistence on or off.

Example OUTPUT XXX;":DISPLAY:ACC ON"

Query :DISPLAY:ACCumulate?

The ACCumulate query reports if accumulate is turned on or off.
Returned Format [:DISPlay:ACCumulate] {1|0}<NL>

Example OUTPUT XXX;":DISPLAY:ACCUMULATE?"

DISPlay Subsystem
ACCumulate

31-4

CONNect

Command :DISPlay:CONNect {{ON|1}|{OFF|0}}

The CONNect command sets the Connect Dots mode. When ON, each
displayed sample dot will be connected to the adjacent dot by a straight line.
When OFF, only the sampling points will be displayed.

Example OUTPUT XXX;":DISPLAY:CONNECT ON"

Query :DISPlay:CONNect?

The CONNect query reports if connect is on or off.
Returned Format [:DISPlay:CONNect] {1|0}<NL>

Example OUTPUT XXX;":DISPLAY:CONNECT?"

DISPlay Subsystem
CONNect

31-5

INSert

Command :DISPlay:INSert {[2,]<label> | 1,<label>,<bit_id>}

The INSert command inserts waveforms into the current display.
Time-correlated waveforms from the logic analyzer may be added to the
current display. The waveforms are added just below any currently displayed
signals. Only two oscilloscope waveforms can be displayed at any time.

The first parameter is optional when inserting an oscilloscope waveform. The
parameter specifies the instrument from which the waveform is to be taken.
If an instrument is not specified, the oscilloscope is assumed. The second
parameter is the label of the waveform that is to be added to the current
display. If you specify the waveform is from the analyzer by setting the first
parameter to 1, then you must also specify which bit.

<label> string of 1 alpha and 1 numeric character enclosed by single quotes for
oscilloscope waveforms or a string of up to 6 alphanumeric characters
enclosed by single quotes for analyzer waveforms.

<bit-id> integer from 0 to 31

Example OUTPUT XXX;":DISPLAY:INSERT ’C1’"
OUTPUT XXX;":DISPLAY:INSERT 1,’WAVE’,10"

For a complete explanation of the label name and the <bit_id> for the logic
analyzer, refer to chapter 15, "SFORmat Subsystem."

DISPlay Subsystem
INSert

31-6

LABel

Command :DISPlay:LABel CHANnel<N>,<label_str>

The LABel command is used to assign a label string to an oscilloscope
channel. For single channel traces, the label string (up to five characters)
appears on the left of the waveform area of the display. Note that the label
string cannot be used in place of the channel number when programming the
oscilloscope module.

<N> {1|2}

<label_str> a string of up to five characters enclosed in single quotes

Example OUTPUT XXX;":DISPLAY:LABEL CHANNEL1,’CLK’"

Query :DISPlay:LABel? CHANnel<N>

The LABel query returns the label string assigned to the specified channel. If
no label has been assigned, the default channel identifier (single character
and single number) is returned.

Returned Format [:DISPlay:LABel] CHANnel<N>,<label_str><NL>

Example OUTPUT XXX;":DISPLAY:LABEL? CHANNEL2"

DISPlay Subsystem
LABel

31-7

MINus

Command :DISPlay:MINus [<module_number>,]<label>,<label>

The MINus command algebraically subtracts one channel from another and
inserts the resultant waveform on the display. The first parameter is an
optional module specifier, always 2 for the oscilloscope. The next two
parameters are the labels of the waveforms selected to be subtracted. The
label names are defined in the same manner as the INSert command.

You cannot subtract analyzer waveforms.

<module_
number>

Always 2

<label> string of 1 alpha and 1 numeric character enclosed by single quotes

Example OUTPUT XXX;":DISPLAY:MINUS 2,’C1’,’C2’"

OVERlay

Command :DISPlay:OVERlay <label>,<label>

The OVERlay command overlays oscilloscope waveforms. The syntax
parameters are the labels of the waveforms that are to be overlaid. A label
may be used only once with each OVERlay command.

<label> string of 1 alpha and 1 numeric character enclosed by single quotes

Example OUTPUT XXX;":DISPLAY:OVERLAY ’C1’,’C2’"

DISPlay Subsystem
MINus

31-8

PLUS

Command :DISPlay:PLUS [<module_number>,]<label>,<label>

The PLUS command algebraically adds two channels and inserts the
resultant waveform to the current display. The first parameter is an optional
module specifier, always 2 for the oscilloscope. The next two parameters are
the labels of the waveforms that are to be added.

<module_
number>

Always 2

<label> string of 1 alpha and 1 numeric character enclosed by single quotes

Example OUTPUT XXX;":DISPLAY:PLUS 2,’C1’,’C2’"

REMove

Command :DISPlay:REMove

The REMove command removes all displayed waveforms from the current
display.

Example OUTPUT XXX;":DISPLAY:REMOVE"

DISPlay Subsystem
PLUS

31-9

31-10

32

MARKer Subsystem

Introduction

The oscilloscope has four markers for making time and voltage
measurement. These measurements may be made automatically or
manually. Additional features include the run until time (RUNTil)
mode and the ability to center on trigger or markers in the display
area (CENTer) and . The RUNTil mode allows you to set a stop
condition based on the time interval between the X marker and the O
marker. When this condition is met, the oscilloscope will stop
acquiring data. Refer to Figure 32-1 for the Marker Subsystem Syntax
Diagram. The MARKer Subsystem commands are:

• AVOLt • TMAXimum

• ABVolt • TMINimum

• BVOLt • TMODe

• CENTer • VMODe

• MSTats • VOTime

• OAUTo • VXTime

• OTIMe • VRUNs

• RUNTil • XAUTo

• SHOW • XTIMe

• TAVerage • XOTime

This chapter only applies to the oscilloscope option.

32-2

Figure 32-1

MARKer Subsystem Syntax Diagram

MARKer Subsystem

32-3

Figure 32-1 (continued)

MARKer Subsystem Syntax Diagram (continued)

MARKer Subsystem

32-4

Figure 32-1 (continued)

MARKer Subsystem Syntax Diagram (continued)

Table 32-1 MARKer Parameter Values

Parameter Value

channel_# {1|2}

marker_time time in seconds

lt_arg time in seconds

gt_arg time in seconds

inrange_gt time in seconds

inrange_lt time in seconds

level level in volts

outrange_gt time in seconds

outrange_lt time in seconds

V level percentage of waveform voltage level, ranging from 10 to 90 of the
Vtop to Vbase voltage, or a specific voltage level

type {ABSolute | PERCent}

slope {POSitive | NEGative}

occurrence integer from 1 to 100

MARKer Subsystem

32-5

AVOLt

Command :MARKer:AVOLt CHANnel<N>,<level>

The AVOLt command moves the A marker to the specified voltage on the
indicated channel.

<N> {1|2}

<level> the desired marker voltage level, ±(2 × maximum offset)

Example OUTPUT XXX;":MARKER:AVOLT CHANNEL1,2.75"

Query :MARKer:AVOLt?

The AVOLt query returns the current voltage and channel selection for the A
marker.

Returned Format [:MARKer:AVOLt]CHANnel<N>,<level><NL>

Example OUTPUT XXX;":MARKER:AVOLT?"

MARKer Subsystem
AVOLt

32-6

ABVolt?

Query :MARKer:ABVolt?

The ABVolt query returns the difference between the A marker voltage and
the B marker voltage (Vb – Va).

Returned Format [:MARKer:ABVolt]<level><NL>

<level> level in volts of the B marker minus the A marker

Example OUTPUT XXX;":MARKER:ABVOLT?"

BVOLt

Command :MARKer:BVOLt CHANnel<N>,<level>

The BVOLt command moves the B marker to the specified voltage on the
indicated channel.

<N> {1|2}

<level> the desired marker voltage level, ±(2 × maximum offset)

Example OUTPUT XXX;":MARKER:BVOLT CHANNEL1,2.75"

Query :MARKer:BVOLt?

The BVOLt query returns the current voltage and channel selection for the B
marker.

Returned Format [:MARKer:BVOLt]CHANnel<N>,<level><NL>

Example OUTPUT XXX;":MARKER:BVOLT?"

MARKer Subsystem
ABVolt?

32-7

CENTer

Command :MARKer:CENTer {TRIGger|X|O}

The CENTer command allows you to position the indicated marker (TRIGger,
X, or O) at the center of the waveform area on the scope display. The
CENTer command adjusts the timebase delay to cause the trace to be
centered around the indicated marker (s/Div remains unchanged).

Example OUTPUT XXX;":MARKER:CENTER X"

MSTats

Command :MARKer:MSTats {{ON|1}|{OFF|0}}

The MSTats command allows you to turn statistics ON or OFF in the auto
marker mode. When statistics is turned on, Min X-O, Max X-O, and Mean
X-O times are displayed on screen. When off, X-O, Trig-X, and Trig-O times
will be displayed on screen.

Example OUTPUT XXX;":MARKER:MSTATS ON"

Query :MARKer:MSTats?

The MSTats query returns the current setting.
Returned Format [:MARKer:MSTats]{1|0}<NL>

Example OUTPUT XXX;":MARKER:MSTATS?"

MARKer Subsystem
CENTer

32-8

OAUTo

Command :MARKer:OAUTo {MANual|CHANnel<N>,<type>,<level>,
<slope>,<occurrence>}

The OAUTo command specifies the automatic placement specification for
the O marker. The first parameter specifies if automarker placement is to be
in the manual mode or on a specified channel. If a channel is specified, four
other parameters must be included in the command syntax. The four
parameters are marker type, level, the slope, and the occurrence count.

<N> {1|2}

<type> {ABSolute | PERCent}

<level> percentage of waveform voltage level, ranging from 10 to 90 of the Vtop to
Vbase voltage or a voltage level

<slope> {POSitive | NEGative}

<occurrence> integer from 1 to 100

Example OUTPUT XXX;":MARKER:OAUTO CHANNEL1,PERCent,50,POSITIVE,5"

Query :MARKer:OAUTo?

The OAUTo query returns the current settings.
Returned Format [:MARKer:OAUTo] (MANual|CHANnel<N>,<type>

<level>,<slope>,<occurrence>}<NL>

Example OUTPUT XXX;":MARKER:OAUTO?"

MARKer Subsystem
OAUTo

32-9

OTIMe

Command :MARKer:OTIMe <O_marker_time>

The OTIMe command moves the O marker to the specified time with respect
to the trigger marker.

<O_marker
_time>

time in seconds from trigger marker to O marker

Example OUTPUT XXX;":MARKER:OTIME 1E-6"

Query :MARKer:OTIMe?

The OTIMe query returns the time in seconds between the O marker and the
trigger marker.

Returned Format [:MARKer:OTIMe]<O_marker_time><NL>

Example OUTPUT XXX;":MARKER:OTIME?"

MARKer Subsystem
OTIMe

32-10

RUNTil (Run Until)

Command :MARKer:RUNTil
{OFF|LT,<time>|GT,<time>|INRange,<time>,<time>|
OUTRange,<time>,<time>}

The RUNTil command allows you to set a stop condition based on the time
interval between the X marker and the O marker. In repetitive runs, when
the time specification is met, the oscilloscope stops acquiring data and the
advisory "Stop condition satisfied" is displayed on screen.

<time> a real number specifying the time in seconds between the X and O markers

Example OUTPUT XXX;":MARKER:RUNTIL LT,1MS"

Query :MARKer:RUNTil?

The RUNTil query will return the current Run Until Time X - O setting.
Returned Format [:MARKer:RUNTil] {OFF|LT,<time>|GT,<time>|INRange,<time>,

<time>|OUTRange,<time>,<time>}<NL>

Example OUTPUT XXX;":MARKER:RUNTIL?"

MARKer Subsystem
RUNTil (Run Until)

32-11

SHOW

Command :MARKer:SHOW {SAMPle|MARKer}

The SHOW command allows you to select either SAMPle rate or MARKer
data (when markers are enabled) to appear on the oscilloscope menus above
the waveform area.

The SAMPle rate or MARKer data appears on the channel, trigger, display,
and auto-measure menus. Marker data is always present on the marker
menu. While sample rate data is only present on the marker menu when time
markers are turned off.

Example OUTPUT XXX;":MARKER:SHOW MARKER"

TAVerage?

Query :MARKer:TAVerage?

The TAVerage query returns the average time between the X and O markers.
If there is no valid data, the query returns 9.9E37.

Returned Format [:MARKER:TAVERAGE] <time_value><NL>

<time_value> real number

Example OUTPUT XXX;":MARKER:TAVERAGE?"

MARKer Subsystem
SHOW

32-12

TMAXimum?

Query :MARKer:TMAXimum?

The TMAXimum query returns the value of the maximum time between the X
and O markers. If there is no valid data, the query returns 9.9E37.

Returned Format [:MARKer:TMAXimum] <time_value><NL>

<time_value> real number

Example OUTPUT XXX;":MARKER:TMAXIMUM?"

TMINimum?

Query :MARKer:TMINimum?

The TMINimum query returns the value of the minimum time between the X
and O markers. If there is no valid data, the query returns 9.9E37.

Returned Format [:MARKer:TMINimum] <time_value><NL>

<time_value> real number

Example OUTPUT XXX;":MARKER:TMINIMUM?"

MARKer Subsystem
TMAXimum?

32-13

TMODe

Command :MARKer:TMODe {OFF|ON|AUTO}

The TMODe command allows you to select the time marker mode. The
choices are OFF, ON, and AUTO. When OFF, time marker measurements
cannot be made. When the time markers are turned on, the X and O markers
can be moved to make time and voltage measurements. The AUTO mode
allows you to make automatic marker placements by specifying channel,
slope, and occurrence count for each marker. Also the Statistics mode may
be used when AUTO is chosen. Statistics mode allows you to make
minimum, maximum, and mean time interval measurements from the X
marker to the O marker.

Example OUTPUT XXX;":MARKER:TMODE ON"

Query :MARKer:TMODe?

The TMODe query returns the current marker mode choice.
Returned Format [:MARKer:TMODe] <state><NL>

<state> {ON | OFF | AUTO}

Example OUTPUT XXX;":MARKER:TMODE?"

For compatibility with older systems, the MMODe command/query functions the
same as the TMODe command/query.

MARKer Subsystem
TMODe

32-14

VMODe

Command :MARKer:VMODe {{OFF|0} | {ON|1}}

The VMODe command allows you to select the voltage marker mode. The
choices are OFF or ON. When OFF, voltage marker measurements cannot be
made. When the voltage markers are turned on, the A and B markers can be
moved to make voltage measurements. When used in conjunction with the
time markers (TMODe), both "delta t" and "delta v" measurements are
possible.

Example OUTPUT XXX;":MARKER:VMODE OFF"

Query :MARKer:VMODe?

The VMODe query returns the current voltage marker mode choice.
Returned Format [:MARKer:VMODe] <state><NL>

<state> {1|0} 1 = on, 0 = off

Example OUTPUT XXX;":MARKER:VMODE?"

MARKer Subsystem
VMODe

32-15

VOTime?

Query :MARKer:VOTime? CHANNEL<N>

The VOTime query returns the current voltage level of the selected source at
the O marker.

Returned Format [:MARKer:VOTime]<level><NL>

<N> {1|2}

<level> level in volts where the O marker crosses the waveform

Example OUTPUT XXX;":MARKER:VOTIME? CHANNEL1"

For compatibility with older systems, the OVOLt query functions the same as the
VOTime query.

VRUNs?

Query :MARKer:VRUNs?

The VRUNs query returns the number of valid runs and the total number of
runs made. Valid runs are those where the edge search for both the X and O
markers was successful, resulting in valid marker time measurement.

Returned Format [:MARKer:VRUNs] <valid_runs>,<total_runs><NL>

<valid_runs> positive integer

<total_runs> positive integer

Example OUTPUT XXX;":MARKER:VRUNS?"

MARKer Subsystem
VOTime?

32-16

VXTime?

Query :MARKer:XVOLt? CHANnel<N>

The VXTime query returns the current voltage level of the selected channel
at the X marker.

Returned Format [:MARKer:VXTime]<level><NL>

<N> {1|2}

<level> level in volts where the X marker crosses the waveform

Example OUTPUT XXX;":MARKER:VXTIME? CHANNEL1"

For compatibility with older systems, the XVOLt query functions the same as the
VXTime query.

MARKer Subsystem
VXTime?

32-17

XAUTo

Command :MARKer:XAUTo {MANual|CHANnel<N>,<type>,<level>,
<slope>,<occurrence>}

The XAUTo command specifies the automatic placement specification for
the X marker. The first parameter specifies if automarker placement is to be
in the Manual mode or on a specified channel. If a channel is specified, four
other parameters must be included in the command syntax. The four
parameters are marker type, level, slope, and the occurrence count.

<N> {1|2}

<type> {ABSolute | PERCent}

<level> percentage of waveform voltage level, ranging from 10 to 90 of the Vtop to
Vbase voltage or a voltage level

<slope> {POSitive | NEGative}

<occurrence> integer from 1 to 100

Example OUTPUT XXX;":MARKER:XAUTO CHANNEL1,ABS,4.75,POSITIVE,5"

Query :MARKer:XAUTo?

The XAUTo query returns the current settings.
Returned Format [:MARKer:XAUTo] {MANual | CHANnel<N>,<type>,

<level>,<slope>,<occurrence>}<NL>

Example OUTPUT XXX;":MARKER:XAUTO?"

MARKer Subsystem
XAUTo

32-18

XOTime?

Query :MARKer:XOTime?

The XOTime query returns the time in seconds from the X marker to the O
marker. If data is not valid, the query returns 9.9E37.

Returned Format [:MARKer:XOTime]<time><NL>

<time> real number

Example OUTPUT XXX;":MARKER:XOTIME?"

XTIMe

Command :MARKer:XTIMe <X_marker_time>

The XTIMe command moves the X marker to the specified time with respect
to the trigger marker.

<X_marker
_time>

time in seconds from trigger marker to X marker

Example OUTPUT XXX;":MARKER:XTIME 1E-6"

Query :MARKer:XTIMe?

The XTIMe query returns the time in seconds between the X marker and the
trigger marker.

Returned Format [:MARKer:XTIMe]<X_marker_time><NL>

Example OUTPUT XXX;":MARKER:XTIME?"

MARKer Subsystem
XOTime?

32-19

32-20

33

MEASure Subsystem

Introduction

The commands in the Measure Subsystem are used to make automatic
parametric measurements on oscilloscope waveforms. Except for
SOURce, no commands in the MEASure subsystem set values. The
MEASure subsystem commands are:

• ALL • SOURce
• FALLtime • VAMPlitude
• FREQuency • VBASe
• NWIDth • VMAX
• OVERshoot • VMIN
• PERiod • VPP
• PREShoot • VTOP
• PWIDth
• RISetime

This chapter applies only to the oscilloscope option.

33-2

Figure 33-1

MEASure Subsystem Syntax Diagram

Table 33-1 MEASure Parameter Values

Parameter Value

channel_# {1|2}

MEASure Subsystem

33-3

ALL?

Query :MEASure:[SOURce CHANnel<N>;]ALL?

The ALL query makes a set of measurements on the displayed waveform
using the selected source.

<N> {1|2}

Returned Format [:MEASure:ALL PERiod] <real number>;
[RISetime] <real number>;
[FALLtime] <real number>;
[FREQuency] <real number>;
[PWIDth] <real number>;
[NWIDth] <real number>;
[VPP] <real number>;
[VAMPlitude] <real number>;
[PREShoot] <real number>;
[OVERshoot] <real number><NL>

Example OUTPUT XXX;":MEASURE:SOURCE CHANNEL1;ALL?"

If a parameter cannot be measured, the instrument responds with 9.9E37.

MEASure Subsystem
ALL?

33-4

FALLtime?

Query :MEASure:[SOURce CHANnel<N>;]FALLtime?

The FALLtime query makes a fall time measurement on the selected channel.
The measurement is made between the 90% to the 10% voltage point of the
first falling edge displayed on screen. If a parameter cannot be measured, the
instrument responds with 9.9E37.

Returned Format [:MEASure:FALLtime] <value><NL>

<N> {1|2}

<value> time in seconds between the 90% and 10% voltage points of the first falling
edge displayed on the screen

Example OUTPUT XXX;":MEASURE:SOUR CHAN2;FALLTIME?"

FREQuency?

Query :MEASure:[SOURce CHANnel<N>;]FREQuency?

The FREQency query makes a frequency measurement on the selected
channel. The measurement is made using the first complete displayed cycle
at the 50% voltage level. If a parameter cannot be measured, the instrument
responds with 9.9E37.

Returned Format [:MEASure:FREQuency]<value><NL>

<N> {1|2}

<value> frequency in Hertz

Example OUTPUT XXX;":MEASURE:SOUR CHAN1;FREQ?"

MEASure Subsystem
FALLtime?

33-5

NWIDth?

Query :MEASure:[SOURce CHANnel<N>;]NWIDth?

The NWIDth query makes a negative width time measurement on the
selected channel. The measurement is made between the 50% points of the
first falling and the next rising edge displayed on screen. If a parameter
cannot be measured, the instrument responds with 9.9E37.

Returned Format [:MEASure:NWIDth] <value><NL>

<N> {1|2}

<value> negative pulse width in seconds

Example OUTPUT XXX;":MEASURE:SOURCE CHAN2;NWID?"

OVERshoot?

Query :MEASure:[SOURce CHANnel<N>;]OVERshoot?

The OVERshoot query makes an overshoot measurement on the selected
channel. The measurement is made by finding a distortion following the first
major transition. The result is the ratio of OVERshoot to VAMPlitude. If
either cannot be measured, the instrument responds with 9.9E37.

Returned Format [:MEASure:OVERshoot]<value><NL>

<N> {1|2}

<value> ratio of OVERshoot to VAMPlitude

Example OUTPUT XXX;":MEASURE:SOURCE CHAN1;OVER?"

MEASure Subsystem
NWIDth?

33-6

PERiod?

Query :MEASure:[SOURce CHANnel<N>;]PERiod?

The PERiod query makes a period measurement of the first complete cycle
displayed on the selected channel at the 50% level. The measurement is
equivalent to the inverse of the frequency. If a parameter cannot be
measured, the instrument responds with 9.9E37.

Returned Format [:MEASure:PERiod] <value><NL>

<N> {1|2}

<value> waveform period in seconds

Example OUTPUT XXX;":MEASURE:SOURCE CHANNEL1;PERIOD?"

PREShoot?

Query :MEASure:[SOURce CHANnel<N>;]PREShoot?

The PREShoot query makes the preshoot measurement on the selected
channel. The measurement is made by finding a distortion which precedes
the first major transition on screen. The result is the ratio of PREshoot to
VAMPlitude. If a parameter cannot be measured, the instrument responds
with 9.9E37.

Returned Format [:MEASure:PREShoot] <value><NL>

<N> {1|2}

<value> ratio of PREShoot to VAMPlitude

Example OUTPUT XXX;":MEASURE:SOURCE CHANNEL2;PRES?"

MEASure Subsystem
PERiod?

33-7

PWIDth?

Query :MEASure:[SOURce CHANnel<N>;]PWIDth?

The PWIDth query makes a positive pulse width measurement on the
selected channel. The measurement is made by finding the time difference
between the 50% points of the first rising and the next falling edge displayed
on screen. If a parameter cannot be measured, the instrument responds with
9.9E37.

Returned Format [:MEASure:PWIDth] <value><NL>

<N> {1|2}

<value> positive pulse width in seconds

Example OUTPUT XXX;":MEASURE:SOURCE CHANNEL2;PWIDTH?"

RISetime?

Query :MEASure:[SOURce CHANnel<N>;]RISetime?

The RISetime query makes a risetime measurement on the selected channel
by finding the 10% and 90% voltage levels of the first rising edge displayed on
screen. If a parameter cannot be measured, the instrument responds with
9.9E37.

Returned Format [:MEASure:RISetime] <value><NL>

<N> {1|2}

<value> risetime in seconds

Example OUTPUT XXX;":MEASURE:SOUR CHAN1;RISETIME?"

MEASure Subsystem
PWIDth?

33-8

SOURce

Command :MEASure:SOURce CHANnel<N>

The SOURce command specifies the source to be used for subsequent
measurements. If the source is not specified, the last waveform source is
assumed.

<N> {1|2}

Example OUTPUT XXX;":MEASURE:SOURCE CHAN1"

Query :MEASure:SOURce?

The SOURce query returns the presently specified channel.
Returned Format [:MEASure:SOURce] CHANnel<N><NL>

Example OUTPUT XXX;":MEASURE:SOURCE?"

MEASure Subsystem
SOURce

33-9

VAMPlitude?

Query :MEASure:[SOURce CHANnel<N>;]VAMPlitude?

The VAMPlitude query makes a voltage measurement on the selected
channel. The measurement is made by finding the relative maximum (VTOP)
and minimum (VBASe) points on screen. If a parameter cannot be
measured, the instrument responds with 9.9E37.

Returned Format [:MEASure:VAMPlitude] <value><NL>

<N> {1|2}

<value> difference between top and base voltage

Example OUTPUT XXX;":MEASURE:SOURCE CHANNEL2;VAMP?"

VBASe?

Query :MEASure:[SOURce CHANnel<N>;]VBASe?

The VBASe query returns the base voltage (relative minimum) of a displayed
waveform. The measurement is made on the selected source. If a parameter
cannot be measured, the instrument responds with 9.9E37.

Returned Format [:MEASure:VBASe] <value><NL>

<N> {1|2}

<value> voltage at base (relative minimum) of selected waveform

Example OUTPUT XXX;":MEASURE:SOURCE CHAN1;VBAS?"

MEASure Subsystem
VAMPlitude?

33-10

VMAX?

Query :MEASure:[SOURce CHANnel<N>;]VMAX?

The VMAX query returns the absolute maximum voltage of the selected
source. If a parameter cannot be measured, the instrument responds with
9.9E37.

Returned Format [:MEASure:VMAX] <value><NL>

<N> {1|2}

<value> maximum voltage of selected waveform

Example OUTPUT XXX;":MEASURE:SOURCE CHAN2;VMAX?"

VMIN?

Query :MEASure:[SOURce CHANnel<N>;]VMIN?

The VMIN query returns the absolute minimum voltage present on the
selected source. If a parameter cannot be measured, the instrument
responds with 9.9E37.

Returned Format [:MEASure VMIN] <value><NL>

<N> {1|2}

<value> minimum voltage of selected waveform

Example OUTPUT XXX;":MEASURE:SOURCE CHAN1;VMIN?"

MEASure Subsystem
VMAX?

33-11

VPP?

Query :MEASure:[SOURce CHANnel<N>;]VPP?

The VPP query makes a peak-to-peak voltage measurement on the selected
source. The measurement is made by finding the absolute maximum
(VMAX) and minimum (VMIN) points on the displayed waveform. If a
parameter cannot be measured, the instrument responds with 9.9E37.

Returned Format [:MEASure:VPP]<value><NL>

<N> {1|2}

<value> peak-to-peak voltage of selected waveform

Example OUTPUT XXX;":MEASURE:SOURCE CHAN1;VPP?"

VTOP?

Query :MEASure:[SOURce CHANnel<N>;]VTOP?

The VTOP query returns the voltage at the top (relative maximum) of the
waveform on the selected source.

Returned Format [:MEASure:VTOP] <value><NL>

<N> {1|2}

<value> voltage at the top (relative maximum) of the selected waveform

Example OUTPUT XXX;":MEASURE:SOURCE CHAN2;VTOP?"

MEASure Subsystem
VPP?

33-12

34

TIMebase Subsystem

Introduction

The commands of the TIMebase Subsystem control the Timebase,
Trigger Delay Time, and the Timebase Mode. If TRIGgered mode is to
be used, ensure that the trigger specifications of the Trigger
Subsystem have been set.

The commands of the TIMebase subsystem are:

• DELay

• MODe

• RANGe

This chapter applies only to the oscilloscope option.

34-2

Figure 34-1

TIMebase Subsystem Syntax Diagram

Table 34-1 TIMebase Parameter Values

Parameter Value

delay_arg delay time in seconds, from -2500 seconds through +2500 seconds.

range_arg a real number from 1 ns through 5 s

TIMebase Subsystem

34-3

DELay

Command :TIMebase:DELay <delay_time>

The DELay command sets the time between the trigger and the center of the
screen. The full range is available for panning the waveform when acquisition
is stopped.

<delay_time> delay time in seconds, from -2500 seconds through +2500 seconds.

Example OUTPUT XXX;":TIM:DEL 2US"

Query :TIMebase:DELay?

The DELay query returns the current delay setting.
Returned Format [:TIMebase DELay] <delay_time><NL>

Example OUTPUT XXX;":TIM:DEL?"

TIMebase Subsystem
DELay

34-4

MODE

Command :TIMebase:MODE {TRIGgered|AUTO}

The MODE command sets the oscilloscope timebase to either Auto or
Triggered mode. When the AUTO mode is chosen, the oscilloscope waits
approximately 50 ms for a trigger to occur. If a trigger is not generated
within that time, then auto trigger is executed. If a signal is not applied to
the input, a baseline is displayed. If there is a signal at the input and the
specified trigger conditions have not been met within 50 ms, the waveform
display will not be synchronized to a trigger.

When the TRIGgered mode is chosen, the oscilloscope waits until a trigger is
received before data is acquired. The TRIGgered mode should be used when
the trigger source signal has less than a 20-Hz repetition rate, or when the
trigger events counter is set so that the number of trigger events would not
occur before 50 ms.

The Auto-Trig On field in the trigger menu is the same as the AUTO mode
over GPIB or RS-232-C. The TRIGgered command is the same as the
Auto-Trig Off on the front panel.

Example OUTPUT XXX;":TIM:MODE AUTO"

Query :TIMebase:MODE?

The MODE query returns the current Timebase mode.
Returned Format [:TIMebase:MODE] {AUTO|TRIGgered}<NL>

Example OUTPUT XXX;":TIMebase:MODE?"

TIMebase Subsystem
MODE

34-5

RANGe

Command :TIMebase:RANGe <range>

The RANGe command sets the full-scale horizontal time in seconds. The
RANGE value is ten times the value in the s/Div field.

<range> time in seconds

Example OUTPUT XXX;":TIMEBASE:RANGE 2US"

Query :TIMebase:RANGe?

The RANGe query returns the current setting.
Returned Format [:TIMebase:RANGe] <range><NL>

Example OUTPUT XXX;":TIMEBASE:RANGE?"

TIMebase Subsystem
RANGe

34-6

35

TRIGger Subsystem

Introduction

The commands of the Trigger Subsystem set all the trigger conditions
necessary for generating a trigger for the oscilloscope. Many of the
commands in the Trigger subsystem may be used in either the EDGE
or the PATTern trigger mode. If a command is a valid command for
the chosen trigger mode, then that setting will be accepted by the
oscilloscope. If the command is not valid for the trigger mode, an
error will be generated. None of the commands of this subsystem
(except Mode) are used in conjunction with Immediate trigger mode.

See Figure 35-1 for the TRIGger Subsystem Syntax Diagram.

The commands of the TRIGger subsystem are:

• CONDition

• DELay

• LEVel

• LOGic

• MODE

• PATH

• SLOPe

• SOURce

This chapter applies only to the oscilloscope option.

35-2

Figure 35-1

TRIGger Subsystem Syntax Diagram

TRIGger Subsystem

35-3

Figure 35-1 (continued)

TRIGger Subsystem Syntax Diagram (continued)

Table 35-1 TRIGger Parameter Values

Parameter Value

channel_# An integer from 1 to 2

count_# an integer from 1 through 32000

level_value a real number from -6.0 V to +6.0 V

time a real number from 20 ns through 160 ms

TRIGger Subsystem

35-4

CONDition

Command :TRIGger:[MODE PATTern:] CONDition {ENTer|EXIT|
GT,<time>|LT,<time>|RANGe,<time>,<time>}

The CONDition command specifies if a trigger is to be generated on entry
(ENTer) to a specific logic pattern, when exiting (EXIT) the specified
pattern, or if a specified pattern duration (LT, GT, RANGe) is met. The
specified pattern is defined by using the LOGic command.

When ENTer is chosen, the oscilloscope will trigger on the first transition
that makes the pattern specification true for every input the number of times
specified by the trigger event count (DELay command).

When EXIT is selected, the oscilloscope will trigger on the first transition that
causes the pattern specification to be false after the pattern has been true for
the number of times specified by the trigger event count (DELay command).

When RANge is selected, the oscilloscope will trigger on the first transition
that causes the pattern specification to be false, after the pattern has been
true for the number of times specified by the trigger event count (DELAY
command). The first event in the sequence will occur when the specified
pattern is true for a time greater than that indicated by the first duration
term, and less than that indicated by the second duration term. All other
pattern true occurrences in the event count are independent of the pattern
duration range time.

When GT (greater than) is selected, the oscilloscope will trigger on the first
transition that causes the pattern specification to be false, after the pattern
has been true for the number of times specified by the trigger event count
(DELAY command). The first event in the sequence will occur when the
specified pattern is true for a time greater than that indicated by the trigger
specification. All other pattern true occurrences in the event count are
independent of the pattern duration time.

TRIGger Subsystem
CONDition

35-5

When LT (less than) is selected, the oscilloscope will trigger on the first
transition that causes the pattern specification to be false, after the pattern
has been true for the number of times specified by the trigger event count
(DELAY command). The first event in the sequence will occur when the
specified pattern is true for a time less than that indicated by the trigger
specification. All other pattern true occurrences in the event count are
independent of the pattern duration time.

<time> real number between 20 ns and 160 ms

Example OUTPUT XXX;":TRIG:COND ENT"

The oscilloscope cannot be programmed for a pattern duration (GT, LT, or
RANge) trigger if it is being armed by another module via Group Run or Arm In.

Query :TRIGger:CONDition?

The CONDition query returns the present condition.
Returned Format [:TRIGger CONDition]

{ENTer|EXIT|GT,<time>|LT,<time>|RANGe,<time>,<time>}<NL>

Example OUTPUT XXX;":TRIG:COND?"

TRIGger Subsystem
CONDition

35-6

DELay

Command :TRIGger:DELay [EVENt,]<count>

The DELay command is used to specify the number of events at which
trigger occurs. The time delay (see TIMe:DELay) is counted after the events
delay. The DELay command cannot be used in the IMMediate trigger mode.

In pattern mode, the DELay value corresponds to the Count field displayed
on the TRIGger menu.

<count> integer from 1 to 32000

Example OUTPUT XXX;":TRIGGER:DELAY 5"

Query :TRIGger:DELay?

The DELay query returns the current trigger events count.
Returned Format [:TRIGger:DELay] <count><NL>

Example OUTPUT XXX;":TRIG:DEL?"

TRIGger Subsystem
DELay

35-7

LEVel

Command For EDGE trigger mode:

:TRIGger:[MODE EDGE:SOURce CHANnel<N>;]
LEVel<value>

For PATTern trigger mode:

:TRIGger:[MODE PATTern:PATH CHANnel<N>;]
LEVel<value>

The LEVel command sets the trigger level voltage for the selected source or
path. This command cannot be used in the IMMediate trigger mode. In
EDGE trigger mode, the SOURce command is used; in PATTern mode, the
trigger PATH is used for the trigger level source. The LEVel command in
PATTern trigger mode sets the high/low threshold for the pattern.

<N> {1|2}

<value> Trigger level in volts

Example For EDGE trigger mode:
OUTPUT XXX;":TRIG:MODE EDGE;SOUR CHAN1;LEV 1.0"

For PATTern trigger mode:
OUTPUT XXX;":TRIG:MODE PATTERN;PATH CHANNEL2;LEVEL 1.0"

TRIGger Subsystem
LEVel

35-8

Query For EDGE trigger mode:

:TRIGger:[MODE EDGE;SOURce CHANnel<N>;]LEVel?

For PATTern trigger mode:

:TRIGger:[MODE PATTern;PATH CHANnel<N>;]LEVel?

The LEVel query returns the trigger level for the current path or source.
Returned Format [:TRIGger:LEVel] <value><NL>

Example For EDGE trigger mode:
OUTPUT XXX;":TRIGGER:SOURCE CHANNEL1;LEVEL?"

For PATTern trigger mode:
OUTPUT XXX;":TRIGGER:PATH CHANNEL1;LEVEL?"

TRIGger Subsystem
LEVel

35-9

LOGic

Command :TRIGger:[MODE PATTern;PATH CHANnel<N>;] LOGic
{HIGH|LOW|DONTcare}

The LOGic command sets the logic for each trigger path in the PATTern
trigger mode. The choices are HIGH, LOW, and DONTcare. The trigger level
set by the LEVel command determines logic high and low threshold levels.
Any voltage higher than the edge trigger level is considered a logic high for
that trigger path; any voltage lower than the trigger level is considered a logic
low for that trigger path.

<N> {1|2}

Example OUTPUT XXX;":TRIG:PATH CHAN1;LOG HIGH"

Query :TRIGger:LOGic?

The LOGic query returns the current logic of the previously selected trigger
or path.

Returned Format [:TRIGger:LOGic] {HIGH|LOW|DONTcare}<NL>

Example OUTPUT XXX;":TRIG:MODE PATT;PATH CHAN1;LOG?"

TRIGger Subsystem
LOGic

35-10

MODE

Command :TRIGger:MODE {EDGE|PATTern|IMMediate}

The MODE command allows you to select the trigger mode for the
oscilloscope. In the IMMediate trigger mode, the oscilloscope goes to a
freerun mode and does not wait for a trigger. Generally, the IMMediate mode
is used when correlating measurements with the analyzer.

In EDGE trigger mode, the oscilloscope triggers on an edge of a waveform,
specified by the SOURce, DELay, LEVel, and SLOPe commands. If a source
is not specified, then the current source is assumed.

In PATTern trigger mode, the oscilloscope triggers when entering or exiting a
specified pattern of the two internal channels and external trigger. The
pattern is generated using the CONDition, DELay, LEVel, LOGic and PATH
commands. The CONDition command allows the oscilloscope to trigger when
entering the specified pattern or exiting the pattern. The DELay value
corresponds to the Count field displayed on the TRIGger menu. The LOGic
command defines the pattern. The PATH command is used to change the
trigger pattern and level. The path consists of two channels.

Example OUTPUT XXX;":TRIGGER:MODE PATTERN"

Query :TRIGger:MODE?

The MODE query returns the current trigger mode selection.
Returned Format [:TRIGger:MODE] {EDGE|PATTern|IMMediate}<NL>

Example OUTPUT XXX;":TRIGGER:MODE?"

TRIGger Subsystem
MODE

35-11

PATH

Command :TRIGger:[MODE PATTern;]PATH CHANnel<N>

The PATH command is used to select a trigger path for the subsequent
LOGic and LEVel commands. This command can only be used in the
PATTern trigger mode.

<N> {1|2}

Example OUTPUT XXX;":TRIGGER:PATH CHANNEL1"

Query :TRIGger:PATH?

The PATH query returns the current trigger path.
Returned Format [:TRIGger PATH] CHANnel<N><NL>

Example OUTPUT XXX;":TRIGGER:PATH?"

SLOPe

Command :TRIGger:[MODE EDGE;SOURce CHANnel<N>;]SLOPe
{POSitive|NEGative}

The SLOPe command selects the trigger slope for the specified trigger
source. This command can only be used in the EDGE trigger mode.

<N> {1|2}

Example OUTPUT XXX;":TRIG:SOUR CHAN1;SLOP POS"

TRIGger Subsystem
PATH

35-12

Query :TRIGger:SLOPe?

The SLOPe query returns the slope of the current trigger source.
Returned Format [:TRIGger:SLOPe] {POSitive|NEGative}<NL>

Example OUTPUT XXX;":TRIG:SOUR CHAN1;SLOP?"

SOURce

Command :TRIGger:[MODE EDGE;]SOURce CHANnel<N>

The SOURce command is used to select the trigger source and is used for any
subsequent SLOPe and LEVel commands. This command can only be used in
the EDGE trigger mode. It is the equivalent to the PATH command for the
PATTern trigger mode.

<N> {1|2}

Example OUTPUT XXX;":TRIG:SOUR CHAN1"

Query :TRIGger:SOURce?

The SOURce query returns the current trigger source.
Returned Format [:TRIGger:SOURce] CHANnel<N><NL>

Example OUTPUT XXX;":TRIGGER:SOURCE?"

TRIGger Subsystem
SOURce

35-13

35-14

36

WAVeform Subsystem

Introduction

The commands of the Waveform subsystem are used to transfer
waveform data from the oscilloscope to a controller. The waveform
record is actually contained in two portions; the waveform data and
preamble. The waveform data is the actual data acquired for each
point when a DIGitize command is executed. The preamble contains
the information for interpreting waveform data. Data in the preamble
includes number of points acquired, format of acquired data, average
count, and the type of acquired data. The preamble also contains the
X and Y increments, origins, and references for the acquired data for
translation to time and voltage values.

The values set in the preamble are based on the settings of the
variables in the Acquire, Waveform, Channel, and Timebase
subsystems. The Acquire subsystem determines the acquisition type
and the average count, the Waveform subsystem sets the number of
points and format mode for sending waveform data over the remote
interface and the Channel and Timebase subsystems set all the X – Y
parameters.

Refer to Figure 36-3 for the Waveform Subsystem Syntax Diagram.

The two acquisition modes are Normal or Average.

The commands of the WAVeform subsytem are:

• COUNt • TYPE
• DATA • VALid
• FORMat • XINCrement
• POINts • XORigin
• PREamble • XREFerence
• RECord • YINCrement
• SOURce • YORigin
• SPERiod • YREFerence

This chapter only applies to the oscilloscope option.

36-2

Format for Data Transfer

There are three formats for transferring waveform data over the remote
interface. These formats are WORD, BYTE, or ASCII.

WORD and BYTE formatted waveform records are transmitted using the
arbitrary block program data format specified in IEEE-488.2. When you use
this format, the ASCII character string "#8 <DD...D>" is sent before the actual
data.

The <D>s are eight ASCII numbers which indicate how many data bytes will
follow.

For example, if 8192 points of data are to be transmitted, the ASCII string
#800008192 would be sent.

BYTE Format

In BYTE format, the seven least significant bits represent the waveform data.
This means that the possible range of data is divided into 128 vertical
increments. The most significant bit is not used. If all "1"s are returned in
the seven least significant bits, the waveform is clipped at the top of the
screen. If all "0"s are returned, the waveform is clipped at the bottom of the
screen (see figure 36-1).

The data returned in BYTE format is the same for either Normal or Average
acquisition types. The data transfer rate in this format is faster than the
other two formats.

Figure 36-1

Byte Data Structure

WAVeform Subsystem
Format for Data Transfer

36-3

WORD Format

Word data is two bytes wide with the most significant byte of each word
being transmitted first. In WORD format, the 15 least significant bits
represent the waveform data. The possible range of data is divided into
32768 vertical increments. The WORD data structure for normal and average
acquisition types are shown in figure 36-2. If all "1"s are returned in the 15
least significant bits, the waveform is clipped at the top of the screen. If all
"0"s are returned in the 15 least significant bits, the waveform is clipped at
the bottom of the screen.

WORD and ASCII format data are more accurate than BYTE format data.
BYTE format simply truncates the 8 least significant bits of WORD format
data.

Figure 36-2

Word Data Structure

ASCII Format

ASCII-formatted waveform records are transmitted one value at a time,
separated by a comma. The data values transmitted are the same as would
be sent in the WORD format except that they are converted to an integer
ASCII format (six or less characters) before being transmitted. The header
before the data is not included in this format.

WAVeform Subsystem
Format for Data Transfer

36-4

Data Conversion

Data sent from the oscilloscope is raw data and must be scaled for useful
interpretation. The values used to interpret the data are the X and Y
references, X and Y origins, and X and Y increments. These values are read
from the waveform preamble (see the PREamble command) or by the
queries of these values.

Conversion from Data Value to Voltage

The formula to convert a data value returned by the instrument to a voltage
is:

voltage = [(data value - yreference) * yincrement] + yorigin

Conversion from Data Value to Time

The time value of a data point can be determined by the position of the data
point. As an example, the third data point sent with XORIGIN = 16ns,
XREFERENCE = 0 and XINCREMENT = 2ns. Using the formula:

time = [(data point number - xreference) * xincrement] + xorigin

would result in the following calculation:

time = [(3 - 0) * 2ns] + 16ns = 22ns.

Conversion from Data Value to Trigger Point

The trigger data point can be determined by calculating the closest data point
to time 0.

WAVeform Subsystem
Data Conversion

36-5

Figure 36-3

WAVeform Subsystem Syntax Diagram

WAVeform Subsystem
Data Conversion

36-6

Figure 36-3 (continued)

WAVeform Subsystem Syntax Diagram (Continued)

Table 36-1 WAVeform Parameter Values

Parameter Value

channel_# {1|2}

WAVeform Subsystem
Data Conversion

36-7

COUNt?

Query :WAVeform:COUNt?

The COUNt query returns the count last specified in the ACQuire Subsystem.
Returned Format [:WAVeform:COUNt] <count><NL>

<count> {2|4|8|16|32|64|128|256}

Example OUTPUT XXX;":WAVEFORM:COUNT?"

DATA?

Query :WAVeform:[SOURce CHANnel<N>;]DATA?

The DATA query returns the waveform record stored in a specified channel
buffer. The WAVeform:SOURce command is used to select the specified
channel. The data is transferred based on the FORMAT (BYTE, WORD, or
ASCII) chosen and the RECORD specified (FULL or WINDOW). Since
WAVeform:DATA is a query, it cannot be used to send a waveform record
back to the scope from the controller. If a waveform record is saved for later
reloading into the oscilloscope, the SYSTem:DATA command should be used.

Returned Format [:WAVeform:DATA]#800008000 <block data><NL>

<N> {1|2}

Example OUTPUT XXX;":WAVEFORM:DATA?"

See Also Chapter 37, "Programming Examples," for an example using the DATA
command.

WAVeform Subsystem
COUNt?

36-8

FORMat

Command :WAVeform:FORMat {BYTE|WORD|ASCii}

The FORMat command specifies the data transmission mode of waveform
data over the remote interface. See "Format for Data Transfer" earlier in this
chapter for information on the formats.

Example OUTPUT XXX;":WAV:FORM WORD"

Query :WAVeform:FORMat?"

The FORMat query returns the current format.
Returned Format [:WAVeform:FORMat]{BYTE|WORD|ASCii}<NL>

Example OUTPUT XXX;":WAVEFORM:FORMAT?"

POINts?

Query :WAVeform:POINts?

When WAVeform RECord is set to FULL, the POINts query always returns a
value of 8000 points. When WAVeform RECord is set to WINdow, then the
query returns the number of points displayed on screen.

Returned Format [:WAVeform:POINts] <points><NL>

<points> integer

Example OUTPUT XXX;":WAVEFORM:POINTS?"

WAVeform Subsystem
FORMat

36-9

PREamble?

Query :WAVeform[:SOURce CHANnel<N>;]PREamble?

The PREamble query returns the preamble of the specified channel. The
channel is specified using the SOURCE command.

Returned Format [:WAVeform:PREamble]<format>,<type>,<points>,<count>,
<Xincrement>,<Xorigin>,<Xreference>,<Yincrement>,<Yorigin>,
<Yreference><NL>

<N> {1|2}

<format> {0|1|2} 0 = ASCII, 1 = BYTE, 2 = WORD

<type> {1|2} 1 = Normal, 2 = Average

Example OUTPUT XXX;":WAVEFORM:PREAMBLE?"

For more information on the fields in PREamble, see the commands which query
the individual fields. For example, see the FORmat command for an explanation
of the format field.

WAVeform Subsystem
PREamble?

36-10

RECord

Command :WAVeform:[SOURce CHANnel<N>;]RECord {FULL|WINDow}

The RECord command specifies the data you want to receive over the bus.
The choices are FULL or WINdow. When FULL is chosen, the entire
8000-point record of the specified channel is transmitted over the bus. In
WINdow mode, only the data displayed on screen will be returned.

Example OUTPUT XXX;":WAV:SOUR CHAN1;REC FULL"

Query :WAVeform:RECord?

The RECord query returns the present mode chosen.
Returned Format [:WAVeform:RECord] {FULL|WINDow}<NL>

Example OUTPUT XXX;":WAVEFORM:RECORD?"

SOURce

Command :WAVeform:SOURce CHANnel<N>

The SOURce command specifies the channel that is to be used for all
subsequent waveform commands.

<N> {1|2}

Example OUTPUT XXX;":WAVEFORM:SOURCE CHANNEL1"

WAVeform Subsystem
RECord

36-11

Query :WAVeform:SOURce?

The SOURce query returns the presently selected channel.
Returned Format [:WAVeform:SOURce] CHANnel<N><NL>

Example OUTPUT XXX;":WAVEFORM:SOURCE?"

SPERiod?

Query :WAVeform:SPERiod?

The SPERiod query returns the present sampling period. The sample period
is determined by the DELay and the RANGe commands of the TIMEbase
subsystem.

Returned Format [:WAVeform:SPERiod] <period><NL>

<period> time in seconds

Example OUTPUT XXX;":WAVEFORM:SPERIOD?"

TYPE?

Query :WAVeform:TYPE?

The TYPE query returns the presently acquisition type (normal or average).
The acquisition type is specified in the ACQuire Subsystem using the
ACQuire TYPE command.

Returned Format [:WAVeform:TYPE]{NORMal|AVERage}<NL>

Example OUTPUT XXX;":WAVEFORM:TYPE?"

WAVeform Subsystem
SPERiod?

36-12

VALid?

Query :WAVeform:VALid?

The VALid query checks the oscilloscope for acquired data. If a
measurement is completed, and data has been acquired by all channels, then
the query reports a 1. A 0 is reported if no data has been acquired for the
last acquisition.

Returned Format [:WAVeform:VALid] {0|1}<NL>

0 No data acquired

1 Data has been acquired

Example OUTPUT XXX;":WAVEFORM:VALID?"

XINCrement?

Query :WAVeform:XINCrement?

The XINCrement query returns the X increment currently in the preamble.
This value is the time difference between the consecutive data points.
X increment is determined by the RECord mode as follows:

• In FULL record mode, the X-increment equals the time period between
data samples (or sample period).

• In WINDow record mode, the X increment is the time between data points
on the display. The X increment for WINDow record data will be less than
or equal to the sample period.

Returned Format [:WAVeform:XINCrement]<value><NL>

<value> X increment value currently in preamble

Example OUTPUT XXX;":WAVEFORM:XINCREMENT?"

WAVeform Subsystem
VALid?

36-13

XORigin?

Query :WAVeform:[SOURce CHANnel<N>;]XORigin?

The XORigin query returns the X origin value currently in the preamble. The
value represents the time of the first data point in memory with respect to
the trigger point.

Returned Format [:WAVeform:XORigin]<value><NL>

<N> {1|2}

<value> X origin currently in preamble

Example OUTPUT XXX;":WAV:XOR?"

XREFerence?

Query :WAVeform:XREFerence?

The XREFerence query returns the current X reference value in the
preamble. This value specifies the X value of the first data point in memory
and is always 0.

Returned Format [:WAVeform:XREFerence]<value><NL>

<value> X reference value in the preamble

Example OUTPUT XXX;":WAVEFORM:XREFERENCE?"

WAVeform Subsystem
XORigin?

36-14

YINCrement?

Query :WAVeform:[SOURce CHANnel<N>;]YINCrement?

The YINCrement query returns the Y increment value currently in the
preamble. This value is the voltage difference between consecutive data
values.

Returned Format [:WAVeform:YINCrement]<value><NL>

<N> {1|2}

<value> Y increment value in preamble

Example OUTPUT XXX;":WAVEFORM:YINCREMENT?"

YORigin?

Query :WAVeform:[SOURce CHANnel<N>;]YORigin?

The YORigin query returns the Y origin value currently in the preamble. This
value is the voltage at center screen.

Returned Format [:WAVeform:YORigin]<value><NL>

<N> {1|2}

<value> Y origin value in preamble

Example OUTPUT XXX;":WAVEFORM:YORIGIN?"

WAVeform Subsystem
YINCrement?

36-15

YREFerence?

Query :WAVeform:YREFerence?

The YREFerence query returns the Y reference value currently in the
preamble. This value specifies the data value at center screen where Y origin
occurs.

Returned Format [:WAVeform:YREFerence]<value><NL>

<value> Y reference data value in preamble

Example OUTPUT XXX;":WAVEFORM:YREFERENCE?"

WAVeform Subsystem
YREFerence?

36-16

Part 5

Pattern Generator Commands

37

Programming the Pattern
Generator

Programming the Pattern Generator

This chapter provides you with the information needed to program
the pattern generator of the Agilent 1670G-series logic analyzer.

• Programming overview and instructions to help you get started

• Pattern Generator command tree

• Alphabetic command-to-subsystem directory

The next section contains the pattern generator commands and the
following four sections contain the subsystem commands for the
pattern generator. The final section contains information on the
SYSTem:DATA and SYSTem:SETup commands.

37–2

Programming Overview

This section introduces you to the basic command structure used to
program the pattern generator.

Example Pattern Generator Program

A typical pattern generator program includes the following tasks:

• select the pattern generator

• set program parameters

• define a pattern generator program

• run the pattern generator program

The following example program generates a pattern using two of output pods:
10 OUTPUT XXX;":SELECT 2"
20 OUTPUT XXX;":FORMAT:REMOVE ALL"
30 OUTPUT XXX;":FORMAT:LABEL ’A’,POSITIVE,127,0"
40 OUTPUT XXX;":FORMAT:LABEL ’B’,POSITIVE,0,255"
50 OUTPUT XXX;":SEQ:REMOVE ALL"
60 OUTPUT XXX;":SEQ:INSERT 0,NOOP,’#H7F’,’#HFF’"
70 OUTPUT XXX;":SEQ:INSERT 4,NOOP,’#H7F’,’#HFF’"
80 OUTPUT XXX;":RMODE REPETITIVE"
90 OUTPUT XXX;":START"
100 END

The three Xs (XXX) after the OUTPUT statement in the above example refer to
the device address required for programming over either GPIB or RS-232-C.
Refer to your controller manual and programming language reference manual
for information on initializing the interface.

Program Comments

Line 10 selects the pattern generator

Line 20 removes all labels previously assigned

37–3

Line 30 assigns label ’A’, positive polarity and assigns the seven least
significant bits of pod 5

Line 40 assigns label ’B’ and assigns all eight bits of pod 4

Line 50 removes all program lines

Line 60 inserts a new line (after line 0) in the INIT SEQUENCE portion of the
program.

Line 70 inserts a new line (after line 4) in the MAIN SEQUENCE portion of
the program. Recall that the default MAIN SEQUENCE already has two lines
of program

Line 80 Sets the RMODE to repetitive. If the program is to be run only once,
select the :RMODE SINGLE command.

Line 90 Starts the program.

Selecting the Pattern Generator

Before you can program the pattern generator, you must first "select" it,
otherwise, there is no way to direct your commands to the pattern generator.

To select the pattern generator, use this command:

:SELect 2

Programming the Pattern Generator
Selecting the Pattern Generator

37–4

Command Set Organization

The command set for the Agilent 1670G pattern generator is divided into four
separate subsystems. The subsystems are: FORMat, SEQuence, MACRo, and
the SYMBol subsystem. Each of the subsystems commands are covered in
their individual sections later in this chapter.

Each of these sections contain a description of the subsystem, syntax
diagrams and the commands in alphabetical order. The commands are
shown in long form and short form using upper and lower-case letters. For
example, FORMat indicates that the long form of the command is FORMAT
and the short form is FORM. Each of the commands contain a description of
the command and its arguments, the command syntax, and a programming
example.

The following figure shows the command tree for the pattern generator.

Pattern Generator Command Tree

Programming the Pattern Generator
Command Set Organization

37–5

Table 37-1 shows the alphabetical command to subsystem directory.

Table 37-1 Alphabetical Command to Subsystem Directory

Command Where Used

BASE SYMBol

CLOCk FORMat

COLumn SEQuence

DELay FORMat

EPATtern SEQuence

INSert MACRo, SEQuence

LABel FORMat

MODe FORMat

NAME MACRo

PARameter MACRo

PATTern SYMBol

PROGram SEQuence, MACRo

RANGe SYMBol

REMove FORMat, SEQuence, MACRo, SYMBol

RESume Pattern Generator Level

STEP Pattern Generator Level

WIDTh SYMBol

Programming the Pattern Generator
Command Set Organization

37–6

Pattern Generator Level Commands

The Pattern Generator Level Commands control the operation of pattern
generator programs. The two commands are STEP and RESume.

Pattern Generator Level Syntax Diagram

count = integer from 1 to 100,000 specifying the number of vectors stepped.

37–7

STEP

Command/Query The STEP command consists of four types: the STEP Count command, the
STEP command, the the STEP query, and the STEP FSTate command.

The STEP Count command specifies the vector range for the STEP
command. The valid vector range for the STEP Count command is from 1 to
100,000. The default is 1. If <count> is greater than the number of lines in
the program, STEP will loop back to the beginning until it has stepped
through <count> number of vectors.

The STEP command causes the pattern generator to step through the
number of vectors specified by the STEP Count command. If one of the
instructions is BREAK, STEP will not stop for it.

The STEP query returns the current count.

The STEP FSTate (step first state) command outputs the first vector of the
sequence.

If the vectors have been changed since last run, they must be loaded into the
hardware with either the :START command or :STEP FSTate.

STEP command
Syntax

:STEP

Example OUTPUT XXX;":STEP"

STEP Count
command Syntax

STEP <count>

<count> an integer from 1 to 100,000 specifying the number of vectors stepped.

Example 10 OUTPUT XXX;":STEP 20"
20 OUTPUT XXX;":STEP"

This example sets the step count to 20 in line 10, then in line 20 begins the
step command through the number of lines specified in line 10.

Programming the Pattern Generator
STEP

37–8

Query :STEP?

Returned Format [STEP] <count>

Example 10 DIM Sc$[100]
20 OUTPUT XXX;":STEP?"
30 ENTER XXX;Sc$
40 PRINT Sc$
50 END

This example queries and prints the step count.

STEP FSTate
command Syntax

:STEP FSTate

Example OUTPUT XXX;":STEP FSTATE"

Programming the Pattern Generator
STEP

37–9

RESume

Command When the pattern generator encounters a BREAK instruction, program
execution is halted. The RESume command allows the program to continue
until another BREAK instruction is encountered, or until the end of the
program is reached.

Command Syntax :RESume

Example OUTPUT XXX;":RESUME"

Programming the Pattern Generator
RESume

37–10

38

FORMat Subsystem

FORMat Subsystem

The commands of the Format subsystem control the pattern generator values
such as data output rate, delay, and the channels that you want to be active.
The Format subsystem also lets you specify the clock source and allows you
to group channels together under a common, user-defined name.

Format Subsystem Syntax Diagram

label name = a string of up to 6 alphanumeric characters
chan_assignment = an integer from 0 to 255
clk_period = a real number specifying the internal clock period
delay_arg = a integer specifying the delay

38–2

CLOCk

Command/Query The CLOCk command is used to specify the clock source for the pattern
generator. The choices are INTernal or EXTernal. With an internal clock
source, the clock period must also be specified (real number value).

With an external clock source, the clock frequency range must be specified
as one of the following:

• Less than or equal to 50 MHz (LEFifty)

• Greater than 50 MHz and less than or equal to 100 MHz (GTFifty)

• Greater than 100 MHz (GTONe)

The maximum clock rate is limited by the output channel mode selected (see
FORMat:MODe command).

Command Syntax :FORMat:CLOCk INTernal,<clk_period>
:FORMat:CLOCk EXTernal,{LEFifty|GTFifty|GTONe}

<clk_period> a real number clock period that corresponds to the front-panel selectable
clock period values.

Query Syntax :FORMat:CLOCk?

Returned Format [:FORMat:CLOCk] INTernal,<clk_period>
[:FORMat:CLOCk] EXTernal,{LEFifty|GTFifty|GTONe}

Example 10 DIM Cl$[100]
20 OUTPUT XXX;":FORMAT:CLOCK?"
30 ENTER XXX;Cl$
40 PRINT Cl$
50 END

This example queries and prints the current clock settings.

FORMat Subsystem
CLOCk

38–3

DELay

Command/Query The DELay command is used to specify the clock out delay. The clock out
delay setting allows positioning of the clock with respect to the data. The
delay setting that corresponds to zero is uncalibrated and must be measured
by the user to determine the basic clock/data timing. Subsequent settings
delay the clock approximately 1.3 ns per step.

The query returns the current clock out delay value.

Command syntax :FORMat:DELay<delay_arg>

<delay_arg> integer from 0 through 9

Query syntax :FORMat:DELay?

Returned format [FORMat:DELay]<delay_arg>

FORMat Subsystem
DELay

38–4

LABel

Command/Query The LABel command inserts a new label or modifies the contents of an
existing label. If more than 126 labels are specified, and an attempt is made
to insert another new label, the last label (bottom label) will be modified.

Only 16 labels may be inserted or modified at a time. If more than 16 labels
are specified per command, you will receive an error message.

Pattern generator channels can be assigned to only one label at a time. If
duplicate assignments are made, the last channel assignments take
precedence.

The second parameter sets the channel polarity. If the polarity is not
specified, the last polarity assignment is used. The last parameters assign the
active channels for each pod.

Each assignment parameter is a binary encoding of the channel assignments
of the pod. The pods are numbered in the same order as they appear in the
format menu, with zero representing the left-most pod (pod 5) of the pattern
generator. A "1" in a bit position means that the associated channel in that
pod is included in the label. A "0" in a bit position excludes the channel from
the label. The minimum value for any pod specification is 0, the maximum
value for all pods is 255. A value of 255 includes all channels of a pod
assignment. The query must specify a label name and returns the current pod
assignments and channel polarity for that label. A maximum of 32 bits can be
assigned to a label.

In half channel mode, only pods one and three are used.

Command Syntax :FORMat:LABel <label name>,[<polarity>,]<channel
assignment>, <channel assignment>

<label name> string of up to 6 alphanumeric characters

<polarity> polarity of the channel outputs,NEGative or POSitive

FORMat Subsystem
LABel

38–5

<channel
assignment>

a string in one of the following forms:
’#B01...’ for binary
’#Q01234567..’ for octal
’#H0123456789ABCDEF...’ for hexadecimal
’0123456789...’ for decimal.

Example Full channel mode, all bits on pod 4:
OUTPUT XXX;":FORMAT:LABEL ’DATA’,POS,255,255,0,0"

Example Half channel mode, all bits on pods 3 and 5:
OUTPUT XXX;":FORMAT:LABEL ’STATUS’,NEG,15,255,0"

Query Syntax: :FORMat:LABel? <label name>

Returned Format: [:FORMat:LABel] <label name>,<polarity>,<channel
assignment>, <channel assignment><NL>

Example 10 DIM La$[100]
20 OUTPUT XXX;":FORMAT:LABEL? ’A’"
30 ENTER XXX;La$
40 PRINT La$
50 END

This example queries and prints the definition of label ’A’.

FORMat Subsystem
LABel

38–6

MODe

The MODe command is used to specify either FULL or HALF channel output
mode. Half channel mode allows a higher output data rate (greater than 100
MHz), but with only 20 channels per .

Full channel output mode limits the maximum data rate to 100 MHz but
allows use of 40 channels per .

The output mode selection sets the upper limit for the clock rate (see
FORMat:CLOCk command).

Command syntax: :FORMat:MODe{FULL|HALF}

Query syntax: :FORMat:MODe?

Returned format: [FORMat:MODe]{FULL|HALF}

Assigning labels in half-channel mode erases previously-assigned labels.

FORMat Subsystem
MODe

38–7

REMove

Command The REMove is used to delete a single label, or all labels from the format
menu. If a label name is specified, it must exactly match a label name
currently active in the format menu.

Command Syntax: :FORMat:REMove {ALL|<label name>}

<label name> a string of up to 6 alphanumeric characters

Example OUTPUT XXX;":FORMAT:REMOVE ALL"

FORMat Subsystem
REMove

38–8

39

SEQuence Subsystem

SEQuence Subsystem

The commands of the Sequence subsystem allow you to write a pattern
generator program using the parameters set in the Format subsystem.

SEQuence Subsystem Syntax Diagram

39–2

SEQuence Subsystem Syntax Diagram (cont.)

column_num = an integer specifying the column that is to receive the new label
label_name = the label name that is to be removed
prog_line_num = an integer specifying the program line number
label_value = a string in one of the following forms:

’#B01...’ for binary
’#Q01234567...’ for octal
’#H0123456789ABCDEF...’ for hexadecimal
’0123456789...’ for decimal

repeat_cnt = an integer from 1 through 20,000
macro# = an integer from 0 to 99
if_event = {IF | IMB}
wait_event = {A | B | C | D | IMB}
patter_spec = an integer from 0 to 255

SEQuence Subsystem

39–3

COLumn

Command/Query The COLumn command allows you to reorder the labels in the Sequence and
Macro menus and set the numerical base for each label. Label order in the
Format menu is not changed when the COLUMN command is used.

The first parameter of the command specifies the column number, followed
by a label name and an optional number base. If a number base is not
specified, the current number base for the label is used. The instruction field
(leftmost column on screen) cannot be moved.

The query must include a column number and returns the label in that
column and its base.

Command Syntax: :SEQuence:COLumn <column number>,’<label name>’
[,{BINary|OCTal|DECimal|HEXadecimal|ASCii|SYMBol
|TWOs}]

<column
number>

an integer specifying the column that is to receive the new label

<label name> a string of up to six alphanumeric characters specifying the label name that is
to be moved

Example OUTPUT XXX;":SEQ:COL 1,’A’,HEX"

Query Syntax: :SEQuence:COLumn? <column number>

Returned Format: [SEQuence:COLUMN] <column number>,<label name>,
{BINary|OCTal|DECimal|HEXadecimal|ASCII|
SYMBol|TWOS}

Example 10 DIM Co$[100]
20 OUTPUT XXX;":SEQ:COL? 1"
30 ENTER XXX;Co$
40 PRINT Co$
50 END

SEQuence Subsystem
COLumn

39–4

EPATtern

Command/Query The EPATtern command is used to specify the event patterns used by the
WAIT and IF commands. The pattern generator has three external input
qualifiers (WAIT2, WAIT1, and WAIT0). There are eight combinations of the
three input qualifiers that may be OR’ed together to create an event pattern
specification. Mapping of these input qualifier patterns to an event pattern
specification is shown below.

WAIT2 WAIT1 WAIT0

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

MSB x x x x x x x x LSB

<pattern_spec>

The query returns the current pattern specification for the given event.
Command syntax: :SEQuence:EPATtern { A|B|C|D|IF },<pattern_spec>

<pattern_spec> an integer between 0 and 255 mapping input qualifier combinations as shown
above.

Query syntax: :SEQuence:EPATtern? { A|B|C|D|IF }

Return format: [:SEQuence:EPATtern] { A|B|C|D|IF },<pattern_spec>

See next page for an example.

SEQuence Subsystem
EPATtern

39–5

Example To specify an event pattern of (0, 1, 0) [Wait2=0, Wait1=1, Wait0=0] use a
<pattern_spec> of 4 (0000 0100).

To specify an event pattern of (0, 0, 0) use a <pattern_spec>
of 1 (0000 0001).

To specify an event pattern of (0, 1, 1) OR (1, 1, 0) OR (1, 1, 1) use a
<pattern_spec> of 200 (1100 1000).

SEQuence Subsystem
EPATtern

39–6

INSert

Command The INSert command is the basic command used to build a pattern generator
sequence. This command is used to insert (or add) a sequence statement
after the specified line number.

The first parameter is the line number. The instruction is inserted in the
sequence after the specified line number. Sequence lines with instructions
other than NOOP cannot be inserted:

• Immediately after the INIT SEQUENCE START line.

• Immediately before or after the start of an IF.

• Immediately before or after the end of an IF.

• Immediately after the MAIN SEQUENCE START line.

• After the MAIN SEQUENCE END line.

• Immediately before the MAIN SEQUENCE END line.

No sequence lines may be inserted between the INIT SEQUENCE END and
the MAIN SEQUENCE START lines.

If the line number specified is greater than the MAIN SEQUENCE END line
number, the line will be inserted at the last legal location in the main
sequence. A legal pattern generator sequence is required to have at least two
lines in the main sequence (between MAIN SEQUENCE START and MAIN
SEQUENCE END lines).

The second parameter is the instruction for this sequence line. The available
instructions are described below

The third parameter is an optional instruction argument. This parameter will
only appear when required by a specific instruction.

The last parameter(s) are the data assignments for this line. These
assignments are normally made one per label, starting with the left-most
column in the display. Note the exception described for the MACRo
instruction.

You cannot assign values to more than 16 labels per instruction.

SEQuence Subsystem
INSert

39–7

Instructions

NOOP The NOOP instruction means there is no instruction for this line.

BREak The BREak instruction causes the execution of the sequence to
stop at this line. Use the RESume command to advance to the next
sequence line.

SIGNal The SIGNal instruction is the complement of the WAIT IMB
instruction. When the pattern generator encounters a SIGNal
instruction, it will output a signal to the internal Intermodule Bus (IMB).
This signal is used to trigger the logic analyzer.

WAIT The Wait instruction causes the pattern generator to stop and
wait for the occurrence of the specified event pattern(s). The event
patterns are specified elsewhere (SEQuence: EPATtern command). The
event to be waited for by this particular command is specified by the
optional instruction argument parameter. Once the specified event
occurs, the pattern generator program proceeds to the next state.

Valid wait events are { A | B | C | D | IMB }

IF The IF instruction allows a sequence of program states to occur if a
specified condition is true. The IF event pattern can be specified
elsewhere (SEQuence:EPATtern command).

The condition to be tested by the IF instruction is specified by the optional
instruction argument parameter. If the specified condition is true, the
sequence states included in the IF (lines between IF and IF END) are
executed. If the condition is not true, the sequence states within the IF are
skipped. Valid IF events are {IF | IMB}.

Note that there are clock speed, channel count, and location restrictions on
the use of the IF instruction.

REPeat The REPeat instruction allows a group of sequence states to be
executed repetitively some number of times. The repeat count is
specified in the optional instruction argument parameter.

Inserting a REPeat instruction causes three sequence lines to be generated.
The REPeat instruction line, a data line within the body of the repeat, and an
END LOOP instruction line.

No data appears in the REPEAT and END LOOP lines. The data specified as
part of the remote control command string appears in the body of the repeat
loop. Additional data lines can be added to the body of the repeat loop by

SEQuence Subsystem
INSert

39–8

inserting lines as needed. The repeat loop is assigned a loop number by the
system and is used to connect the limits of the repeat loop.

Note that there are location restrictions on the use of the REPeat instruction.

MACRo# The MACRo# instruction is used to invoke a previously
defined user macro. The macro number is part of the instruction string
(not the optional instruction argument parameter). If the macro has
been defined to use passed-in parameters, those parameter values are
passed in via the data value fields. If no parameters are defined, a single
dummy parameter must be used (’0’). There is otherwise no data
associated with a macro instruction.

Command Syntax :SEQuence:INSert <line_number>,{NOOP|IF,<event>|
WAIT,<event>|SIGNal|REPeat,<count>|BREAK|
MACRo<#>},<data_value>,<data_value>,...

<line_number> integer where instruction/data will be inserted after

<event> { A | B | C | D | IF | IMB }

<count> integer repeat count

<#> macro number

<data_value> a string in one of the following forms:
’#B01...’ for binary
’#Q01234567...’ for octal
’#H0123456789ABCDEF...’ for hexadecimal
’0123456789...’ for decimal

Example 10 OUTPUT XXX; " :SEQ: INS 248, NOOP, ’17’, ’34’, ’121’"
20 OUTPUT XXX; " :SEQ: INS 1786, WAIT, A,’17’, ’34’, ’121’"
30 OUTPUT XXX; " :SEQ: INS 2652, REPEAT, 26, ’17’, ’34’, ’121’"
40 OUTPUT XXX; " :SEQ: INS 3166, MACR4, ’#HABCD’"
41 !Passes a single parameter to this instance of MACRO #4.
50 OUTPUT XXX; " :SEQ: INS 3186, MACR6, ’0’"
51 !Assume no parameter defined for MACRO 6.

SEQuence Subsystem
INSert

39–9

PROGram

Command/Query The PROGram command is used to modify an existing pattern generator
sequence line.

The first parameter is the line number. The instruction to be modified is at
the specified line number. Note that some lines cannot be modified
(SEQUENCE START and END) and some instructions can have parameters
modified, but the instruction type cannot be changed (REPeat can have the
repeat count changed, but it cannot be changed to a NOOP).

The second parameter is an optional label name. The label name allows any
data values specified in the command to be assigned starting with the label
name rather than defaulting to the first label. This is useful when modifying
only a portion of the data for a sequence line.

You cannot specify more than 16 labels per PROGram command. Use the
optional label parameter if the line you want to modify has more than 16 labels.

The third parameter is the instruction. The options for this parameter are
described below.

The fourth parameter is an optional instruction argument. This parameter
will only appear when required by a specific instruction as described below.

The last parameter(s) are the data assignments for this line. These
assignments are normally made one per label, starting with the left-most
column in the display.

Note that some instructions cannot be modified. To change the instruction
type in these cases, it is necessary to first REMove the line(s) and INSert
new lines(s).

The query returns the current contents (instruction and data) for the
specified line number.

SEQuence Subsystem
PROGram

39–10

Instructions

NOOP The NOOP instruction means there is no instruction for this line.

BREak The BREak instruction causes the execution of the sequence to
stop at this line. Use the RESume command to advance to the next line
sequence.

When operating at 200 MHz you can not have two Break events in succession.

SIGNal The SIGNal instruction outputs a signal to the internal
Intermodule Bus (IMB). This signal is used to trigger the logic analyzer.

WAIT The WAIT instruction causes the pattern generator to stop and
wait for the occurrence of the specified event pattern(s). The event
patterns are set by the SEQuence: EPATtern command. The event to be
waited for by this particular command is specified by the optional
instruction argument parameter. Once the specified event occurs, the
pattern generator program proceeds to the next state.

When operating at 200 MHz you can not have two Wait events in succession.

IF The IF instruction allows a sequence of program states to occur if a
specified condition is true. The IF event pattern is specified by the
SEQuence:EPATtern command.

The IF and END IF sequence lines cannot be modified other than changing
the if condition.

The condition to be tested by the IF instruction is specified by the optional
instruction argument parameter. If the specified condition is true, the
sequence states include the IF (lines between IF and IF END) are executed.
If the condition is not true, the sequence states within the IF are skipped.

Valid IF events are {IF | IMB}.

SEQuence Subsystem
PROGram

39–11

REPeat The REPeat instruction allows a group of sequence states to be
executed repetitively some number of times. The repeat count is
specified in the optional instruction argument parameter.

The REPeat and END LOOP sequence lines cannot be modified other than by
changing the loop count.

MACRo# The MACRo# instruction is used to invoke a previously
defined user macro. The macro number is part of the instruction string
(not the optional instruction argument parameter). If the macro has
been defined to use passed-in parameters, those parameter values are
passed in via the data value fields. If there are on parameters associated
with the macro, a single dummy parameter must be used (’0’). There is
otherwise no data associated with a macro instruction.

Command Syntax :SEQuence:PROGram <line_number>, [<optional_label>,]{ NOOP |
IF,<event> | WAIT,<event> | SIGNal | REPeat,<count> | BREAK |
MACRo<#> },<data_value>,<data_value>,...

SEQuence Subsystem
PROGram

39–12

<line_number> integer where instruction/data will be modified

<optional_
label>

a string of up to 6 alphanumeric characters specifying the label where
modification begins.

<event> {A|B|C|D|IF|IMB}

<count> integer repeat count

<#> macro number

<data_value> a string in one of the following forms:

’#B01...’ for binary
’#Q01234567...’ for octal
’#H0123456789ABCDEF...’ for hexadecimal
’0123456789...’ for decimal

Query Syntax: :SEQuence:PROGram? <line_number>

Returned Format: {IF (External Pattern = #) | END IF | WAIT
<event> | SIG IMB | START LOOP # REPEAT # TIMES |
END LOOP # | BREAK | MACRO Macro# () | INIT
SEQUENCE START | INIT SEQUENCE END | MAIN
SEQUENCE START | MAIN SEQUENCE END},<data_value>,
<data_value>, ...

Example 10 OUTPUT XXX; " :SEQ: PROG 248, NOOP, ’17’, ’34’, ’121’"
20 OUTPUT XXX; " :SEQ: PROG 1786, WAIT, A,’17’, ’34’, ’121’"
30 OUTPUT XXX; " :SEQ: PROG 2652, REPEAT, 26, ’17’, ’34’,
’121’"
40 OUTPUT XXX; " :SEQ: PROG 3166, MACR4, ’#HABCD’"
41 ! Passes a single parameter to this instance of MACRO #4.
50 OUTPUT XXX; " :SEQ: PROG 3186, MACR6, ’0’"
51 ! Assume no parameter defined for MACRO 6.

SEQuence Subsystem
PROGram

39–13

REMove

Command The REMove command allows you to remove one or several lines from the
pattern generator program. If only one parameter number is given, that line
number is deleted. If two numbers are given, the range of lines between those
two values inclusive is deleted. The command REMove ALL deletes the entire
program.

Command Syntax: SEQuence:REMove{ <program line number[,<program
line range>]|ALL>}

<program line
number>

an integer specifying the program line to be removed

<program line
range>

an integer specifying the last line number in a range of lines to remove.

Example OUTPUT XXX;":SEQ:REM 1,4"

39–14

40

MACRo Subsystem

MACRo Subsystem

The commands of the MACRo subsystem allow you to write and edit macros
for use in the pattern generator program. Up to 100 macros may be called
into the main listing program. The macros are labeled Macro0 through
Macro99.

Macro0 is always available (initial contents are START/END lines only). All
other macros are created whenever a MACRo<#> subheader that is not yet
defined is used. The new macro will then appear on all macro lists until a
MACRo<#>:REMove command is issued.

A macro can be named (MACRo<#>:NAME command) but cannot be
referenced by remote control commands using that name.

The SEQuence:COLumn command is used to define the ordering of the
sequence display listing. Macro display listings will appear in the same order
as the main sequence. Changing the display while on a macro listing will also
affect the main sequence when you return to that display listing.

The SEQuence:EPATtern command is used to define event patterns that are
shared by both the main sequence and all macros. Changing an event pattern
definition for use by a single macro will change its definition for all other
macros and the main sequence.

The command REMove ALL can be used to totally clear the contents of a
macro, but it does not remove the macro from the macro list. The macro is
still accessible from the sequence, but the macro consist of only two lines.

The command REMove MACRo can be used to totally remove all contents of
a macro as well as any external reference to that macro. Note that while
Macro0 can be totally cleared, it cannot be removed from the macro list.

40–2

Figure 40-1

MACRo Subsystem Syntax Diagram

MACRo Subsystem

40–3

Figure 40-1 (continued)

MACRo Subsystem Syntax Diagram (cont.)

prog_line_num = an integer specifying the program line number
macro_name = character string up to 6 characters in length
macro_number = an integer 0 through 99 specifying macro to act on
param_name = character string up to 6 characters in length
param_number = an integer 0 through 9
repeat_count = an integer from 1 through 20000
wait_event = { A | B | C | D | IMB }
label_name = character string up to 6 characters in length
label_value = data entry in one of the following forms:

’#B01...’ for binary
’#Q01234567...’ for octal
’#H012345679ABCDEF...’ for hexadecimal
’0123456789...’ for decimal
PARameter<#> for passed in macro parameter (# = 0 through 9)

MACRo Subsystem

40–4

INSert

Command The INSert command is the basic command used to build a pattern generator
macro. This command is used to insert (or add) a macro statement after the
specified line number.

The first parameter is the line number. The instruction and/or data will be
inserted in the macro after the specified line number. You cannot insert a
line just before the last data row. Macro lines cannot be inserted after the
MACRO END line.

If the line number specified is greater than the MACRO END line number, the
line will be inserted at the last legal location in the macro.

The second parameter is the instruction for this macro line. The available
instructions are described below

The third parameter is an optional instruction argument. This parameter will
only appear when required by a specific instruction.

The last parameter(s) are the data assignments for this line. These
assignments are normally made one per label, starting with the left-most
column in the display. In addition to the normal data values, parameters
passed in with a macro call can be inserted within the body of the macro.

Instructions

NOOP The NOOP instruction means there is no operation for this line.

BREak The BREak instruction causes the execution of the sequence to
stop at this line. Use the RESume command to advance to the next
macro line.

MACRo Subsystem
INSert

40–5

SIGNal The SIGNal instruction outputs a signal to the internal
Intermodule Bus (IMB). This signal is used to trigger the logic analyzer.

WAIT The WAIT instruction causes the pattern generator to stop and
wait for the occurrence of the specified event pattern(s). The event to
be waited for by this particular command is specified by the optional
instruction argument parameter. Once the specified event occurs, the
pattern generator program proceeds to the next state.

Valid wait events are { A | B | C | D | IMB }. Their patterns are set using the
SEQuence: EPATtern command.

REPeat The REPeat instruction allows a group of states to be executed
repetitively some number of times. The repeat count is specified in the
optional instruction argument parameter.

Inserting a REPeat instruction causes three lines to be generated: the
REPeat instruction line, a data line within the body of the repeat, and an
END LOOP instruction line. No data appears in the REPEAT and END LOOP
lines. The data specified as part of the remote control command string
appears in the body of the repeat loop. Additional data lines can be added to
the body of the repeat loop by inserting lines as needed. The repeat loop is
assigned a loop number by the system and is used to connect the limits of the
repeat loop.

MACRo Subsystem
INSert

40–6

Command Syntax :MACRo<m#>:INSert <line_number>, { NOOP |
WAIT,<event> | SIGNal | REPeat,<count> | BREAK }
,<data_value>,<data_value>,...

<line_number> integer which line instruction/data will be inserted after

<event> { A | B | C | D | IMB }

<count> integer repeat count

<m#> macro number (integer 0 through 99)

<p#> parameter number (integer 0 through 9)

<data_value> a string in one of the following forms:

’#B01...’ for binary
’#Q01234567...’ for octal
’#H0123456789ABCDEF... ’ for hexadecimal
’0123456789...’ for decimal
PARameter<p#>

Example OUTPUT XXX;":MACRO4:INSERT 3, BREAK, PAR1, ’13’"

MACRo Subsystem
INSert

40–7

NAME

Command/Query The NAME command is used to specify a name for a macro. This name will
then appear in the front panel lists and displays in place of the more generic
"Macro #" string.

The name cannot be used to reference the macro in programs. It is intended
for use as a means to clarify or document sequence listings and displays.

The query returns the user-defined macro name.

Command syntax: :MACRo<#>:NAME <macro_name>

<macro_name> a string up to six alphanumeric characters in length

<#> macro number (integer 0 through 99).

Query syntax: :MACRo<#>:NAME?

Return format: [:MACRo<#>:NAME] <macro_name>

MACRo Subsystem
NAME

40–8

PARameter

Command/Query The PARameter command is used to enable and name parameters for a
macro. The parameter name is optional, and if used, is for use on displays
and listings only. When a parameter is enabled, macro calls from the
sequence can pass values to the macro. These values can then be used as
data values in the body of the macro.

The query returns the current status of a parameter and its name.

Command syntax: :MACRo<m#>:PARameter<p#> { ON | OFF }[,<name>]

<m#> macro number (integer 0 through 99)

<p#> parameter number (integer 0 through 9)

<name> string up to six alphanumeric characters in length

Query syntax: :MACRo<m#>:PARameter<p#>?

Returned format: [:MACRo<m#>:PARameter<P#>] { ON | OFF },<name>

MACRo Subsystem
PARameter

40–9

PROGram

Command/Query The PROGram command is used to modify an existing pattern generator
macro line.

The first parameter is the line number of the instruction to be modified. Note
that some lines cannot be modified (MACRO and MACRO END) and some
instructions can have parameters modified. The instruction type cannot be
changed (REPeat can have the repeat count changed, but it cannot be
changed to a NOOP).

The second parameter is an optional label name. The label name allows any
data values specified in the command to be assigned starting with the label
name rather than defaulting to the first label. This is useful when modifying
only a portion of the data for a macro line.

You can only modify 16 labels per PROGram command. To modify more than 16
labels, use the optional label name parameter.

The third parameter is the instruction. The options for this parameter are
described below.

The fourth parameter is an optional instruction argument. This parameter
will only appear when required by a specific instruction as described below.

The last parameter(s) are the data assignments for this line. These
assignments are normally made one per label, starting with the left-most
column in the display. In addition to the normal data values, parameters
passed in with a macro call can be inserted within the body of the macro.
Specifying more than 16 data assignments will cause a command error.

Note that some instructions cannot be modified. To change the instruction
type in these cases, it is necessary to first REMove the line(s) and INSert
new lines(s).

The query returns the current contents (instruction and data) for the
specified line number.

MACRo Subsystem
PROGram

40–10

Instructions

NOOP The NOOP instruction means there is no operation for this line.

BREak The BREak instruction causes the execution of the macro to
stop at this line. Use the RESume command to advance to the next line
macro.

SIGNal The SIGNal instruction outputs a signal to the internal
Intermodule Bus (IMB). This signal is used to trigger the logic analyzer.

WAIT The WAIT instruction causes the pattern generator to stop and
wait for the occurrence of the specified event pattern(s). The event to
be waited for by this particular command is specified by the optional
instruction argument parameter. Once the specified event occurs, the
pattern generator program proceeds to the next state.

Valid WAIT events are { A | B | C | D | IMB }. Their patterns are set using the
SEQuence: EPATtern command.

REPeat The REPeat instruction allows a group of macro states to be
executed repetitively some number of times. The repeat count is
specified in the optional instruction argument parameter.

The REPeat and END LOOP sequence lines cannot be modified other than to
change the loop count.

MACRo Subsystem
PROGram

40–11

Command Syntax :MACRo<m#>:PROGram <line_number>,
[<optional_label>,]{ NOOP | WAIT,<event> | SIGNal
| REPeat,<count> | BREAK }
,<data_value>,<data_value>,...

<line_number> integer specifying the line of instruction/data to be modified

<optional_
label>

a string of up to six characters specifying a label

<event> { A | B | C | D | IMB}

<count> integer repeat count

<m#> macro number (integer 0 through 99)

<p#> parameter number (integer 0 through 9)

<data_value> a string in one of the following forms:

’#B01...’ for binary
’#Q01234567...’ for octal
’#H0123456789ABCDEF...’ for hexadecimal
’0123456789...’ for decimal
PARameter<p#>

Query Syntax: :MACRo<#>:PROGram? <line_number>

Returned Format: [:MACRo<#>:PROGram] <line_number>, { NOOP | WAIT
<event> | SIG IMB | BREAK | MACRO END | START
LOOP # REPEAT # TIMES | END LOOP # | MACRO
Macro# () },<data_value>, <data_value>, ...

MACRo Subsystem
PROGram

40–12

REMove

Command The REMove allows you to remove one or several lines from the macro. If
only one parameter is given, only that line is deleted. If two numbers are
specified, the range of lines between those values, inclusive, is deleted.

The command REMove ALL can be used to totally clear the contents of a
macro, but it does not remove the macro from the macro list. This means the
macro is still accessible from the sequence, but the macro consists of only
two lines.

The command REMove MACRo can be used to totally remove all contents of
a macro as well as any external reference to the macro. Note that while
Macro0 can be totally cleared, it cannot be removed from the macro list.

Command Syntax: :MACRo<macro number>:REMove {<program line
number>[,<program line number>]|ALL|MACRo}

<macro number> an integer, 0 through 99

<program line> an integer specifying the program line to be removed

Example OUTPUT XXX;":MACRO1:REM 1,3"

MACRo Subsystem
REMove

40–13

40–14

41

SYMBol Subsystem

SYMBol Subsystem

The SYMBol subsystem contains the commands that allow you to define
symbols on the controller and download them to the Pattern Generator.

SYMBol Subsystem Syntax Diagram

41–2

<label_name> = string of up to 6 alphanumeric characters
<symbol_name> = string of up to 16 alphanumeric characters
<pattern_value> = string of one of the following forms:

’#B01X...’ for binary
’#Q01234567X..’ for octal
’#H0123456789ABCDEFX...’ for hexadecimal
’0123456789...’ for decimal

<start_value> = string of one of the following forms:
’#B01...’ for binary
’#Q01234567..’ for octal
’#H0123456789ABCDEF...’ for hexadecimal
’0123456789...’ for decimal

<stop_value> = string of one of the following forms:
’#B01... for binary
’#Q01234567..’ for octal
"#H0123456789ABCDEF..." for hexadecimal
’0123456789...’ for decimal

<width_value> = integer from 1 to 16

SYMBol Subsystem

41–3

BASE

Command The BASE command sets the base in which symbols for the specified label
will be displayed in the symbol menu. It also specifies the base in which the
symbol offsets are displayed when symbols are used.

Note that BINary is not available for labels with more than 20 bits assigned.
In this case the base will default to HEXadecimal.

Command Syntax: :SYMBol:BASE <label_name>,<base_value>

<label_name> string of up to 6 alphanumeric characters

<base_value> {BINary | HEXadecimal | OCTal | DECimal | ASCii }

Example OUTPUT XXX;":SYMBol:BASE ’DATA’,HEXadecimal"

SYMBol Subsystem
BASE

41–4

PATTern

Command The PATTern command allows you to specify a symbol for a pattern on the
specified label. The pattern may contain "don’t cares" in the form of XX...X’s.

Command Syntax: :SYMBol:PATTern<label_name>,<symbol_name>,<pattern_value>

<label_name> string of up to 6 alphanumeric characters

<symbol_name> string of up to 16 alphanumeric characters

<pattern_value> string of one of the following forms:

’#B01X...’ for binary
’#Q01234567X..’ for octal
’#H0123456789ABCDEFX...’ for hexadecimal
’0123456789...’ for decimal

Example OUTPUT XXX;":SYMBol:PATTern ’STAT’, ’MEM_RD’,’#H01XX’"

SYMBol Subsystem
PATTern

41–5

RANGe

Command The RANGe command allows you to create a symbol for a range of values on
a label. Note that Don’t Cares are not allowed in range symbols.

Command Syntax: :SYMBol:RANGe<label_name>,<symbol_name>,
<start_value>,<stop_value>

<label_name> string of up to 6 alphanumeric characters

<symbol_name> string of up to 16 alphanumeric characters

<start_value>
<stop_value>

string in one of the following forms:
’#B01...’ for binary
’#Q01234567..’ for octal
’#H0123456789ABCDEF...’ for hexadecimal
’0123456789...’ for decimal

Example OUTPUT XXX;":SYMBol:RANGe ’STAT’,
’IO_ACCESS’,’#H0000’,’#H000F’"

SYMBol Subsystem
RANGe

41–6

REMove

Command The REMove command deletes all symbols from the symbol menu.

Command Syntax: :SYMBol:REMove

Example OUTPUT XXX;":SYMBol:REMove"

SYMBol Subsystem
REMove

41–7

WIDTh

Command The WIDTh command specifies the number of characters displayed when
symbols are used.

Note that the WIDTh command does not affect the displayed length of the
symbol value.

Command Syntax: :SYMBol:WIDTh <label_name>,<width_value>

<label_name> string of up to 6 alphanumeric characters

<width_value> integer from 1 to 16

Example OUTPUT XXX;":SYMBol:WIDTh ’DATA’,9 "

SYMBol Subsystem
WIDTh

41–8

42

DATA and SETup Commands

Data and Setup Commands

The DATA and SETup commands are system commands that allow you to
send and receive instrument configuration, setup and program data to and
from a controller in block form. This is useful for saving block data for
re-loading the pattern generator. This chapter explains how to use these
commands.

The block data for the DATA command is broken into byte positions and
descriptions. The SETup command block data is not described in detail. No
changes should be made to the "config" section of the block data.

Definition of Block Data

Block data is made up of a block length specifier and a variable number of
sections.

<block length specifier><section 1>...<section N>

<block length
specifier>

#8<length>

<length> the total length of all sections in byte format (must be represented with 8
digits)

Example If the total length of the block (all sections) is 14506 bytes, the block length
specifier would be "#800014506" since the length must be represented with 8
digits.

Sections consist of a section header followed by the section data as follows:

<section> <section header><section data>

<section
header>

16 bytes total: 10 bytes for the section name, 1 byte reserved (always 0),
1 byte for the module ID code (25 for pattern generator),
4 bytes for the length of the data in bytes

42–2

<section data> The section data format varies for each section and may be any length.

Note that the total length of a section is 16 (for the section header) plus the
length of the section data. Thus, when calculating the length of a block of
configuration data, don’t forget to add the length of the headers.

Example 10 DIM Block$[32000] !allocate enough memory for block data
20 DIM Specifier$[2]
30 OUTPUT XXX;"EOI ON"
40 OUTPUT XXX;"SYSTEM:HEAD OFF"
50 OUTPUT XXX;"SELECT 1" !select module
60 OUTPUT XXX;"SYSTEM:DATA? !send the data query
70 ENTER XXX USING"#,2A";Specifier$!read in #8
80 ENTER XXX USING"#,8D",Blocklength !read in block length
90 ENTER XXX USING"-K",Block$!read in data

DATA and SETup Commands

42–3

SYSTem:DATA

The DATA command is used to send and receive the pattern generator main
program listings and the macro listings. The complete pattern generator data
block consists of two sections not counting the SYMBOL section. The
sections are:

Section 1 "DATA "
Section 2 "MACROS "

Command Syntax: :SYSTem:DATA <block data>

Query Syntax: :SYSTem:DATA?

Returned Format: [:SYSTem:DATA] <block data><NL>

Section 1 "DATA "

The Main Program section contains the program listing data in binary form.
The length of this section depends on the length of the program listing.

Section 2 "MACROS "

The MACROS section contains all the program listing for all the macros. The
length of this section varies depending on the length of the macro listings.

DATA and SETup Commands
SYSTem:DATA

42–4

SYSTem:SETup

The SETup command for the pattern generator is used to configure system
parameters, such as the pod and bit assignment, clock rates, and output
mode by loading saved configurations.

The "CONFIG" section consists of 4082 bytes of information which fully
describe the main parameters for the pattern generator. The total length of
the section is 4082 bytes (recall that the section header is 16 bytes).

The data in this section of the block should not be changed to ensure proper
pattern generator operation.

Command Syntax: :SYSTem:SETup <block data>

Query Syntax: :SYSTem:SETup?

Returned Format: [:SYSTem:SETup] <block data><NL>

DATA and SETup Commands
SYSTem:SETup

42–5

42–6

Part 6

Programming Examples

43

Programming Examples

Introduction

This chapter contains short, usable, and tested program examples
that cover the most asked for cases. HP BASIC 6.2.

• Making a timing analyzer measurement

• Making a state analyzer measurement

• Making a state compare analyzer measurement

• Transferring logic analyzer configuration between the logic analyzer
and the controller

• Checking for measurement completion

• Sending queries to the logic analyzer

43–2

Making a Timing Analyzer Measurement

This program sets up the logic analyzer to make a simple timing analyzer
measurement. This example can be used with the E2433 Logic Analyzer
Training Board to acquire and display the output of the ripple counter. It can
also be modified to make any timing analyzer measurement.

10 ! ****************** TIMING ANALYZER EXAMPLE ******************
20 ! for the Agilent 1670G Logic Analyzer
30 !
40 ! **
50 ! Select the module slot in which the Agilent 1670G is installed.
60 !
70 !
80 OUTPUT 707;":SELECT 1"
90 !
100 ! **
110 ! Name Machine 1 "TIMING," configure Machine 1 as a timing analyzer,
120 ! and assign pod 1 to Machine 1.
130 !
140 OUTPUT 707;":MACH1:NAME ’TIMING’"
150 OUTPUT 707;":MACH1:TYPE TIMING"
160 OUTPUT 707;":MACH1:ASSIGN 1"
170 !
180 ! **
190 ! Make a label "COUNT," give the label a positive polarity, and
200 ! assign the lower 8 bits.
210 !
220 OUTPUT 707;":MACHINE1:TFORMAT:REMOVE ALL"
230 OUTPUT 707;":MACH1:TFORMAT:LABEL ’COUNT’,POS,0,0,#B0000000011111111"
240 !
250 ! **
260 ! Specify FF hex for resource term A, which is the default trigger term
270 ! for the timing analyzer.
280 !
290 OUTPUT 707;":MACH1:TTRACE:TERM A, ’COUNT’, ’#HFF’"
300 !
310 ! ***
320 ! Remove any previously inserted labels, insert the "COUNT"
330 ! label, change the seconds-per-division to 100 ns, and display the
340 ! waveform menu.
350 !

Programming Examples
Making a Timing Analyzer Measurement

43–3

360 OUTPUT 707;":MACH1:TWAVEFORM:REMOVE"
370 OUTPUT 707;":MACH1:TWAVEFORM:INSERT ’COUNT’, ALL"
380 OUTPUT 707;":MACH1:TWAVEFORM:RANGE 1E-6"
390 OUTPUT 707;":MENU 1,5"
400 !
410 ! **
420 ! Set the marker mode (MMODE) to time so that patterns are available
430 ! for marker measurements. Place the X-marker on 03 hex and the O-
440 ! marker on 07 hex. Then tell the timing analyzer to find the first
450 ! occurrence of 03h after the trigger and the first occurrence of 07h
460 ! after the X-marker is found.
470 !
480 OUTPUT 707;":MACHINE1:TWAVEFORM:MMODE PATTERN"
490 !
500 OUTPUT 707;":MACHINE1:TWAVEFORM:XPATTERN ’COUNT’,’#H03’"
510 OUTPUT 707;":MACHINE1:TWAVEFORM:OPATTERN ’COUNT’,’#H07’"
520 !
530 OUTPUT 707;":MACHINE1:TWAVEFORM:XCONDITION ENTERING"
540 OUTPUT 707;":MACHINE1:TWAVEFORM:OCONDITION ENTERING"
550 !
560 OUTPUT 707;":MACHINE1:TWAVEFORM:XSEARCH +1, TRIGGER"
575 WAIT 2
580 OUTPUT 707;":MACHINE1:TWAVEFORM:OSEARCH +1, XMARKER"
595 WAIT 2
600 !
610 ! **
620 ! Run the timing analyzer in single mode.
630 !
640 OUTPUT 707;":RMODE SINGLE"
650 OUTPUT 707;":START"
660 WAIT 2
650 ! ***
660 ! Turn the longform and headers on, dimension a string for the query
670 ! data, send the XOTIME query and print the string containing the
680 ! XOTIME query data.
690 !
700 OUTPUT 707;":SYSTEM:LONGFORM ON"
710 OUTPUT 707;":SYSTEM:HEADER ON"
720 !
730 DIM Mtime$[100]
740 OUTPUT 707;":MACHINE1:TWAVEFORM:XOTIME?"
750 ENTER 707;Mtime$
760 PRINT Mtime$
770 END

Programming Examples
Making a Timing Analyzer Measurement

43–4

Making a State Analyzer Measurement

This state analyzer program selects the Agilent 1670G-series logic analyzer,
displays the configuration menu, defines a state machine, displays the state
trigger menu, and sets a state trigger for multilevel triggering. This program
then starts a single acquisition measurement while checking for
measurement completion.

This program is written so that you can run it with the E2433 Logic Analyzer
Training Board.

10 ! ******************** STATE ANALYZER EXAMPLE *************************
20 ! for the Agilent 1670G Logic Analyzer
30 !
40 ! ************* SELECT THE Agilent 1670G MODULE *****************
50 ! Select the module slot in which the Agilent 1670G is installed.
60 !
70 !
80 OUTPUT 707;":SELECT 1"
90 !
100 ! ******************** CONFIGURE THE STATE ANALYZER **********************
110 ! Name Machine 1 "STATE," configure Machine 1 as a state analyzer, assign
120 ! pod 1 to Machine 1, and display System External I/O menu of the
130 ! Agilent 1670G Logic Analyzer.
140 !
150 OUTPUT 707;":MACHINE1:NAME ’STATE’"
160 OUTPUT 707;":MACHINE1:TYPE STATE"
170 OUTPUT 707;":MACHINE1:ASSIGN 1"
180 OUTPUT 707;":MENU 1,0"
190 !
200 ! ******************* SETUP THE FORMAT SPECIFICATION *********************
210 ! Make a label "SCOUNT," give the label a positive polarity, and
220 ! assign the lower 8 bits.
230 !
240 OUTPUT 707;":MACHINE1:SFORMAT:REMOVE ALL"
250 OUTPUT 707;":MACHINE1:SFORMAT:LABEL ’SCOUNT’, POS, 0,0,255"
260 !
270 ! ******************* SETUP THE TRIGGER SPECIFICATION ********************
280 ! The trigger specification will use five sequence levels with the trigger
290 ! level on level four. Resource terms A through E, and RANGE1 will be
300 ! used to store only desired counts from the 8-bit ripple counter.
310 !
320 ! Display the state trigger menu.

Programming Examples
Making a State Analyzer Measurement

43–5

330 !
340 OUTPUT 707;":MENU 1,3"
350 !
360 ! Create a 5 level trigger specification with the trigger on the
370 ! fourth level.
380 !
390 OUTPUT 707;":MACHINE1:STRIGGER:SEQUENCE 5,4"
400 !
410 ! Define pattern terms A, B, C, D, and E to be 11, 22, 33, 44 and 59
420 ! decimal respectively.
430 !
440 OUTPUT 707;":MACHINE1:STRIGGER:TERM A,’SCOUNT’,’11’"
450 OUTPUT 707;":MACHINE1:STRIGGER:TERM B,’SCOUNT’,’22’"
460 OUTPUT 707;":MACHINE1:STRIGGER:TERM C,’SCOUNT’,’33’"
470 OUTPUT 707;":MACHINE1:STRIGGER:TERM D,’SCOUNT’,’44’"
480 OUTPUT 707;":MACHINE1:STRIGGER:TERM E,’SCOUNT’,’59’"
490 !
500 ! Define a Range having a lower limit of 50 and an upper limit of 58.
510 !
520 OUTPUT 707;":MACHINE1:STRIGGER:RANGE1 ’SCOUNT’,’50’,’58’"
530 !
540 ! ***************** CONFIGURE SEQUENCE LEVEL 1 ***************************
550 ! Store NOSTATE in level 1 and Then find resource term "A" once.
560 !
570 OUTPUT 707;":MACHINE1:STRIGGER:STORE1 ’NOSTATE’"
580 OUTPUT 707;":MACHINE1:STRIGGER:FIND1 ’A’,1"
590 !
600 ! ***************** CONFIGURE SEQUENCE LEVEL 2 ***************************
610 ! Store RANGE1 in level 2 and Then find resource term "E" once.
620 !
630 OUTPUT 707;":MACHINE1:STRIGGER:STORE2 ’IN_RANGE1’"
640 OUTPUT 707;":MACHINE1:STRIGGER:FIND2 ’E’,1"
650 !
660 ! ***************** CONFIGURE SEQUENCE LEVEL 3 ***************************
670 ! Store NOSTATE in level 3 and Then find term "B" once.
680 !
690 OUTPUT 707;":MACHINE1:STRIGGER:STORE3 ’NOSTATE’"
700 OUTPUT 707;":MACHINE1:STRIGGER:FIND3 ’B’,1"
710 !
720 ! ***************** CONFIGURE SEQUENCE LEVEL 4 ***************************
730 ! Store a combination of resource terms (C or D or RANGE1) in level 4 and
740 ! Then Trigger on resource term "E."
750 !
760 OUTPUT 707;":MACHINE1:STRIGGER:STORE4 ’(C OR D OR IN_RANGE1)’"
770 !

Programming Examples
Making a State Analyzer Measurement

43–6

780 ! ************************ NOTE ***********************
790 ! The FIND command selects the trigger in the
800 ! sequence level specified as the trigger level.
810 ! ***
820 !
830 OUTPUT 707;":MACHINE1:STRIGGER:FIND4 ’E’,1"
840 !
850 ! ***************** CONFIGURE SEQUENCE LEVEL 5 ***************************
860 ! Store anystate on level 5
870 !
880 OUTPUT 707;":MACHINE1:STRIGGER:STORE5 ’ANYSTATE’"
890 !
900 ! ***************** START ACQUISITION ************************************
910 ! Place the logic analyzer in single acquisition mode, then determine when
920 ! the acquisition is complete.
930 !
940 OUTPUT 707;":RMODE SINGLE"
950 OUTPUT 707;"*CLS"
960 OUTPUT 707;":START"
970 !
980 ! ****************** CHECK FOR MEASUREMENT COMPLETE **********************
990 ! Query the register for a measurement
1000 ! complete condition.
1010 !
1020 OUTPUT 707;":SYSTEM:HEADER OFF"
1030 OUTPUT 707;":SYSTEM:LONGFORM OFF"
1040 !
1050 Status=0
1070 OUTPUT 707;":MESR1?"
1080 ENTER 707;Status
1090 !
1100 ! Print the MESR register status.
1110 !
1120 CLEAR SCREEN
1130 PRINT "Measurement complete status is ";Status AND 1
1140 PRINT "0 = not complete, 1 = complete"
1150 ! Repeat the MESR query until measurement is complete.
1160 WAIT 1
1170 IF (Status AND 1)=1 THEN GOTO 1190
1180 GOTO 1070
1190 PRINT TABXY(30,15);"Measurement is complete"
1200 !
1210 ! ************************ VIEW THE RESULTS *****************************
1220 ! Display the State Listing and select a line number in the listing that
1230 ! allows you to see the beginning of the listing on the logic analyzer

Programming Examples
Making a State Analyzer Measurement

43–7

1240 ! display.
1250 !
1260 OUTPUT 707;":MACHINE1:SLIST:COLUMN 1, ’SCOUNT’, DECIMAL"
1270 OUTPUT 707;":MENU 1,7"
1280 OUTPUT 707;":MACHINE1:SLIST:LINE -16"
1290 !
1300 END

Programming Examples
Making a State Analyzer Measurement

43–8

Making a State Compare Measurement

This program example acquires a state listing, copies the listing to the
compare listing, acquires another state listing, and compares both listings to
find differences.

This program is written so that you can run it with the E2433 Logic Analyzer
Training Board. This example is the same as the "State Compare" example in
chapter 3 of the Logic Analyzer Training Kit.

10 ! *********** STATE COMPARE EXAMPLE ********************************
20 ! for the Agilent 1670G-series Logic Analyzer
30 !
40 !
50 !************ SELECT THE Agilent 1670G MODULE ****************
60 ! Select the module slot in which the Agilent 1670G is installed.
70 !
80 OUTPUT 707;":SYSTEM:HEADER OFF"
90 OUTPUT 707;":SELECT 1"
100 !
110 !************** CONFIGURE THE STATE ANALYZER ***********************
120 ! Name Machine 1 "STATE," configure Machine 1 as a state analyzer in
130 ! Compare mode, and assign pod 1 to Machine 1.
140 !
150 OUTPUT 707;":MACHINE1:NAME ’STATE’"
160 OUTPUT 707;":MACHINE1:TYPE COMPARE"
170 OUTPUT 707;":MACHINE1:ASSIGN 1"
180 !
190 ! **
200 ! Remove all labels previously set up, make a label "SCOUNT," specify
210 ! positive logic, and assign the lower 8 bits of pod 1 to the label.
220 !
230 OUTPUT 707;":MACHINE1:SFORMAT:REMOVE ALL"
240 OUTPUT 707;":MACHINE1:SFORMAT:LABEL ’SCOUNT’, POS, 0,0,255"
250 !
260 ! **
270 ! Make the "J" clock the Master clock and specify the falling edge.
280 !
290 OUTPUT 707;":MACHINE1:SFORMAT:MASTER J, FALLING"
300 !
310 ! **
320 ! Specify two sequence levels, the trigger sequence level, specify
330 ! FF hex for the "a" term which will be the trigger term, and store

Programming Examples
Making a State Compare Measurement

43–9

340 ! no states until the trigger is found.
350 !
360 OUTPUT 707;":MACHINE1:STRIGGER:SEQUENCE 2,1"
370 OUTPUT 707;":MACHINE1:STRIGGER:TERM A,’SCOUNT’,’#HFF’"
380 OUTPUT 707;":MACHINE1:STRIGGER:STORE1 ’NOSTATE’"
390 OUTPUT 707;":MENU 1,3"
400 !
410 ! **
420 ! Change the displayed menu to the state listing and start the state
430 ! analyzer in repetitive mode.
440 !
450 OUTPUT 707;":MENU 1,7"
460 OUTPUT 707;":RMODE REPETITIVE"
470 OUTPUT 707;":START"
480 !
490 ! **
500 ! The logic analyzer is now running in the repetitive mode
510 ! and will remain in repetitive until the STOP command is sent.
520 !
530 PRINT "The logic analyzer is now running in the repetitive mode"
540 PRINT "and will remain in repetitive until the STOP command is sent."
550 PRINT
560 PRINT "Press CONTINUE to send the STOP command."
570 PAUSE
580 !
590 !***
600 ! Stop the acquisition & copy the acquired data to the compare reference
610 ! listing.
620 !
630 OUTPUT 707;":STOP"
640 OUTPUT 707;":MENU 1,10"
650 OUTPUT 707;":MACHINE1:COMPARE:MENU REFERENCE"
660 OUTPUT 707;":MACHINE1:COMPARE:COPY"
670 !
680 ! The logic analyzer acquisition is now stopped, the Compare menu
690 ! is displayed, and the data is now in the compare reference
700 ! listing.
710 !
720 !***
730 ! Display the last line of the compare listing and start the analyzer
740 ! in a repetitive mode. If your analyzer does not have extended memory,
741 ! setting the line to 61439 causes a warning but the listing still
742 ! moves to the last line.
750 !

Programming Examples
Making a State Compare Measurement

43–10

760 OUTPUT 707;":MACHINE1:COMPARE:LINE 61439"
770 OUTPUT 707;":START"
780 !
790 ! The last line of the listing is now displayed at center screen
800 ! in order to show the last four states acquired. In this
810 ! example, the last four states are stable. However, in some
820 ! cases, the end points of the listing may vary thus causing
830 ! a false failure in compare. To eliminate this problem, a
840 ! partial compare can be specified to provide predictable end
850 ! points of the data.
860 !
870 PRINT "Press CONTINUE to send the STOP command."
880 PAUSE
890 OUTPUT 707;":STOP"
900 !
910 !**
920 ! The end points of the compare can be fixed to prevent false failures.
930 ! In addition, you can use partial compare to compare only sections
940 ! of the state listing you are interested in comparing.
950 !
960 OUTPUT 707;":MACHINE1:COMPARE:RANGE PARTIAL, 0, 508"
970 !
980 ! The compare range is now from line 0 to +508
990 !
1000 !**
1010 ! Change the Glitch jumper settings on the training board so that the
1020 ! data changes, reacquire the data & compare which states are different.
1030 PRINT "Change the glitch jumper settings on the training board so that "
1040 PRINT "the data changes, reacquire the data and compare which states are "
1041 PRINT "different."
1050 !
1060 PRINT "Press CONTINUE when you have finished changing the jumper."
1070 !
1080 PAUSE
1090 !
1100 !**
1110 ! Start the logic analyzer to acquire new data then stop it to compare
1120 ! the data. When the acquisition is stopped, the Compare Listing Menu is
1130 ! displayed.
1140 !
1150 OUTPUT 707;":START"
1151 WAIT 2 ! Allow the analyzer to fill memory at least once
1160 OUTPUT 707;":STOP"
1170 OUTPUT 707;":MENU 1,10"
1180 !

Programming Examples
Making a State Compare Measurement

43–11

1190 !**
1200 ! Dimension strings in which the compare find query (COMPARE:FIND?)
1210 ! enters the line numbers and error numbers.
1220 !
1230 DIM Line$[20]
1240 DIM Error$[4]
1250 DIM Comma$[1]
1260 !
1270 ! ***
1280 ! Display the Difference listing.
1290 !
1300 OUTPUT 707;":MACHINE1:COMPARE:MENU DIFFERENCE"
1310 !
1320 ! **
1330 ! Loop to query all 508 possible errors.
1340 !
1350 FOR Error=1 TO 508
1360 !
1370 ! Read the compare differences
1380 !
1390 OUTPUT 707;":MACHINE1:COMPARE:FIND? "&VAL$(Error)
1400 !
1410 ! **
1420 ! Format the Error$ string data for display on the controller screen.
1430 !
1440 IF Error>99 THEN GOTO 1580
1450 IF Error>9 THEN GOTO 1550
1460 !
1470 ENTER 707 USING "#,1A";Error$
1480 ENTER 707 USING "#,1A";Comma$
1490 ENTER 707 USING "K";Line$
1500 Error_return=IVAL(Error$,10)
1510 IF Error_return=0 THEN GOTO 1820
1520 !
1530 GOTO 1610
1540 !
1550 ENTER 707 USING "#,2A";Error$
1551 ENTER 707 USING "#,1A";Comma$
1560 ENTER 707 USING "K";Line$
1570 GOTO 1610
1580 !
1590 ENTER 707 USING "#,3A";Error$
1591 ENTER 707 USING "#,1A";Comma$
1600 ENTER 707 USING "K";Line$
1610 !

Programming Examples
Making a State Compare Measurement

43–12

1620 ! **
1630 ! Test for the last error. The error number of the last error is the same
1640 ! as the error number of the first number after the last error.
1650 !
1660 Error_line=IVAL(Line$,10)
1670 IF Error_line=Error_line2 THEN GOTO 1780
1680 Error_line2=Error_line
1690 !
1700 ! **
1710 ! Print the error numbers and the corresponding line numbers on the
1720 ! controller screen.
1730 !
1740 PRINT "Error number ",Error," is on line number ",Error_line
1750 !
1760 NEXT Error
1770 !
1780 PRINT
1790 PRINT
1800 PRINT "Last error found"
1810 GOTO 1850
1820 PRINT "No errors found"
1830 !
1840 !
1850 END

Programming Examples
Making a State Compare Measurement

43–13

Transferring the Logic Analyzer Configuration

This program uses the SYSTem:SETup? query to transfer the logic analyzer
configuration to your controller. This program also uses the SYSTem:SETup
command to transfer a logic analyzer configuration from the controller back
to the logic analyzer. The SYSTem:SETup command differs from the
SYSTem:DATA command because it only transfers the configuration and not
the acquired data.

10 ! ****************** SETUP COMMAND AND QUERY EXAMPLE ********************
20 ! for the Agilent 1670G-series
30 !
40 ! **************** INITIALIZE GPIB DEFAULT ADDRESS *********************
50 !
60 REAL Address
70 Address=707
80 ASSIGN @Comm TO Address
90 !
100 CLEAR SCREEN
110 !
120 ! ************* INTITIALIZE VARIABLE FOR NUMBER OF BYTES ***************
130 ! The variable "Numbytes" contains the number of bytes in the buffer.
140 !
150 REAL Numbytes
160 Numbytes=0
170 !
180 ! *********************** SEND THE SETUP QUERY **************************
190 OUTPUT @Comm;":SYSTEM:HEADER ON"
200 OUTPUT @Comm;":SYSTEM:LONGFORM ON"
210 OUTPUT @Comm;":SELECT 1"
220 OUTPUT @Comm;":SYSTEM:SETUP?"
230 !
240 ! ******************** ENTER THE BLOCK SETUP HEADER *********************
250 ! Enter the block setup header in the proper format.
260 !
270 ENTER @Comm USING "#,15A";Header$
280 PRINT Header$;
290 ENTER @Comm USING "#,A";Always_8$
300 PRINT Always_8$;
310 ENTER @Comm USING "#,8A";Numbytes$
320 PRINT Numbytes$
330 Numbytes=VAL(Numbytes$)

Programming Examples
Transferring the Logic Analyzer Configuration

43–14

340 !
350 ! ******************** TRANSER THE SETUP ********************************
360 ! Transfer the setup from the logic analyzer to the buffer.
370 !
380 ! ********** RE-INITIALIZE TRANSFER BUFFER POINTERS ****************
390 ASSIGN @Buff TO BUFFER [Numbytes]
400 CONTROL @Buff,3;1
410 CONTROL @Buff,4;0
420 TRANSFER @Comm TO @Buff;COUNT Numbytes,WAIT
430 !
440 ! Get termination character
450 ENTER @Comm;Term$
460 !
470 PRINT "**** GOT THE SETUP ****"
480 PRINT "Press Continue to continue the program."
490 PAUSE
500 ! ********************* SEND THE SETUP **********************************
510 ! Make sure buffer is not empty.
520 !
530 IF Numbytes=0 THEN
540 PRINT "BUFFER IS EMPTY"
550 PAUSE
560 END IF
570 !
580 ! ********************* SEND THE SETUP COMMAND **************************
590 ! Send the Setup command
600 !
610 OUTPUT @Comm USING "#,16A";":SYSTEM:SETUP #8"
620 PRINT "SYSTEM:SETUP command has been sent"
630 PRINT "Press Continue to continue program."
640 PAUSE
650 !
660 ! ********************* SEND THE BLOCK SETUP ****************************
670 ! Send the block length to the Agilent 1670G in the proper
680 ! format.
690 !
700 OUTPUT @Comm USING "#,8A";Numbytes$
710 !
720 ! *********************** SAVE BUFFER POINTERS *************************
730 ! Save the transfer buffer pointer so it can be restored after the
740 ! transfer.
750 !
760 STATUS @Buff,5;Streg
770 !

Programming Examples
Transferring the Logic Analyzer Configuration

43–15

780 ! ************ TRANSFER SETUP TO THE Agilent 1670G ****************
790 ! Transfer the setup from the buffer to the Agilent 1670G.
800 !
810 TRANSFER @Buff TO @Comm;COUNT Numbytes,WAIT
820 !
830 ! ********************** RESTORE BUFFER POINTERS ***********************
840 ! Restore the transfer buffer pointer
850 !
860 CONTROL @Buff,5;Streg
870 !
880 ! ******************** SEND TERMINATING LINE FEED **********************
890 ! Send the terminating linefeed to properly terminate the setup string.
900 !
910 OUTPUT @Comm;""
920 !
930 PRINT "**** SENT THE SETUP ****"
940 END

Programming Examples
Transferring the Logic Analyzer Configuration

43–16

Checking for Measurement Completion

You can append this program or insert it into another program when you
need to know when a measurement is complete. If it is at the end of a
program it will tell you when measurement is complete. If you insert it into a
program, it will halt the program until the current measurement is complete.

This program is also in the state analyzer example program in "Making a state
analyzer measurement" on page 28-5. It is included in the state analyzer
example program to show how it can be used in a program to halt the
program until measurement is complete.

420 ! ****************** CHECK FOR MEASUREMENT COMPLETE **********************
430 ! Enable the MESR register and query the register for a measurement
440 ! complete condition.
450 !
460 OUTPUT 707;":SYSTEM:HEADER OFF"
470 OUTPUT 707;":SYSTEM:LONGFORM OFF"
480 !
490 Status=0
510 OUTPUT 707;":MESR1?"
520 ENTER 707;Status
530 !
540 ! Print the MESR register status.
550 !
560 CLEAR SCREEN
570 PRINT "Measurement complete status is ";Status AND 1
580 PRINT "0 = not complete, 1 = complete"
590 ! Repeat the MESR query until measurement is complete.
600 WAIT 1
610 IF (Status AND 1)=1 THEN GOTO 630
620 GOTO 510
630 PRINT TABXY(30,15);"Measurement is complete"
640 !
650 END

Programming Examples
Checking for Measurement Completion

43–17

Sending Queries to the Logic Analyzer

This program example contains the steps required to send a query to the
logic analyzer. Sending the query alone only puts the requested information
in an output buffer of the logic analyzer. You must follow the query with an
ENTER statement to transfer the query response to the controller. When the
query response is sent to the logic analyzer, the query is properly terminated
in the logic analyzer. If you send the query but fail to send an ENTER
statement, the logic analyzer will display the error message "Query
Interrupted" when it receives the next command from the controller and the
query response is lost.

10 !************************ QUERY EXAMPLE ***********************
20 ! for the Agilent 1670G-series Logic Analyzers
30 !
40 ! ************************ OPTIONAL ***************************
50 ! The following two lines turn the headers and longform on so
60 ! that the query name, in its long form, is included in the
70 ! query response.
80 !
90 ! ************** NOTE ****************
100 ! If your query response includes real
110 ! or integer numbers that you may want
120 ! to do statistics or math on later, you
130 ! should turn both header and longform
140 ! off so only the number is returned.
150 ! *************************************
160 !
170 OUTPUT 707;":SYSTEM:HEADER ON"
180 OUTPUT 707;":SYSTEM:LONGFORM ON"
190 !
200 ! ***
210 ! Select the slot in which the logic analyzer is located.
220 ! Always a 1 for the Agilent 1670-series logic analyzers.
230 OUTPUT 707;":SELECT 1"
240 !
250 ! **
260 ! Dimension a string in which the query response will be entered.
270 !
280 DIM Query$[100]
290 !
300 ! **

Programming Examples
Sending Queries to the Logic Analyzer

43–18

310 ! Send the query. In this example the MENU? query is sent. All
320 ! queries except the SYSTem:DATA and SYSTem:SETup can be sent with
330 ! this program.
340 !
350 OUTPUT 707;"MENU?"
360 !
370 ! **
380 ! The two lines that follow transfer the query response from the
390 ! query buffer to the controller and then print the response.
400 !
410 ENTER 707;Query$
420 PRINT Query$
430 !
440 !
450 END

Programming Examples
Sending Queries to the Logic Analyzer

43–19

43–20

Index

!

*CLS command, 8–5
*ESE command, 8–6
*ESR command, 8–7
*IDN command, 8–9
*IST command, 8–9
*OPC command, 8–11
*OPT command, 8–12
*PRE command, 8–13
*RST command, 8–14
*SRE command, 8–15
*STB command, 8–16
*TRG command, 8–17
*TST command, 8–18
*WAI command, 8–19
..., 4–5
32767, 4–4
9.9E+37, 4–4
::=, 4–5
 , 4–5
[], 4–5
{ }, 4–5
|, 4–5

A

ACCumulate command/query, 18–5,
19–4, 19–5, 23–8
ACQMode command/query, 21–5
ACQuisition command/query, 16–9, 18–5,
22–9, 23–9
Analyzer 1 Data Information, 27–7
Analyzer 2 Data Information, 27–8
Angular brackets, 4–5
Arguments, 1–7
ARM command/query, 13–5
ARMLine selector, 10–5
ASSign command/query, 13–6
AUToload command, 12–7

B

BASE command, 26–5
Bases, 1–12
Basic, 1–3
Baud rate, 3–9
BEEPer command, 9–6
Bit definitions, 6–4, 6–5
Block data, 1–6, 1–20, 27–4
Block length specifier, 27–4
Block length specifier, 11–5, 11–11, 27–13

Block length specifier>, 27–5
Braces, 4–5
BRANch command/query, 16–10, 16–11,
22–9, 22–10, 22–11

C

Cable
RS-232C, 3–3

CAPability command, 9–7
CARDcage?, 9–8
CATalog command, 12–8
CD command, 12–9
CENTer command, 18–6, 23–9
CESE command, 9–9
CESR command, 9–10
chart display, 19–2
CLEar command, 16–12, 20–5, 22–12
Clear To Send (CTS), 3–5
CLOCk command/query, 15–6
CLRPattern command, 17–8, 18–6,
23–10, 24–8
CLRStat command, 18–7, 23–10
CMASk command/query, 20–5
CME, 6–5
COLumn command/query, 17–7, 24–7
Combining commands, 1–9
Comma, 1–12
Command, 1–6, 1–16

*CLS, 8–5
*ESE, 8–6
*OPC, 8–11
*PRE, 8–13
*RST, 8–14
*SRE, 8–15
*TRG, 8–17
*WAI, 8–19
ACCumulate, 18–5, 19–4, 23–8
ACQMode, 21–5
ACQuisition, 16–9, 22–9
ARM, 13–5
ARMLine, 10–5
ASSign, 13–6
AUToload, 12–7
BASE, 26–5
BEEPer, 9–6
BRANch, 16–10, 22–9
CD (change directory, 12–9
CENTer, 18–6, 23–9
CESE, 9–9

CLEar, 20–5
CLOCk, 15–6
CLRPattern, 17–8, 18–6, 23–10, 24–8
CLRStat, 18–7, 23–10
CMASk, 20–5
COLumn, 17–7, 24–7
COMPare, 20–4
COPY, 12–10, 20–6
DATA, 11–5, 20–6, 27–4
DBLock, 10–5
DELay, 14–5, 18–7, 23–10
DOWNload, 12–11
DSP, 11–6
EDGE, 22–13
EOI, 9–11
FIND, 16–13, 22–14
HAXis, 19–5
HEADer, 1–16, 11–8
HISTogram:LABel, 25–17
HISTogram:OTHer, 25–18
HISTogram:QUALifier, 25–19
HISTogram:RANGe, 25–20
HISTogram:TTYPe, 25–21
INITialize, 12–13
INSert, 14–6, 18–8, 23–11
LABel, 15–7, 21–6
LEVelarm, 13–7
LINE, 14–7, 17–9, 20–8, 24–9
LOAD:CONFig, 12–14
LOAD:IASSembler, 12–15
LOCKout, 3–11, 9–12
LONGform, 1–16, 11–9
MACHine, 10–6, 13–4
MASTer, 15–9
MENU, 9–12, 20–9
MESE, 9–14
MKDir, 12–16
MLENgth, 16–14, 18–8, 22–15, 23–12,

25–12
MMODe, 17–10, 23–13, 24–10
MODE, 25–7
Module Level, 10–2
MSI, 12–17
NAME, 13–8
OCONdition, 23–13, 24–11
OPATtern, 17–11, 23–14, 24–12
OSEarch, 17–12, 23–15, 24–13
OTAG, 17–14, 24–14
OTIMe, 14–8, 23–16

Index–1

OVERView:HIGH, 25–9
OVERView:LABel, 25–10
OVERView:LOW, 25–11
OVERView:OMARker, 25–13
OVERView:XMARker, 25–15
PACK, 12–18
PATTern, 26–6
PRINt, 11–10
PURGe, 12–18
RANGe, 14–8, 16–15, 18–9, 20–9, 22–16,

23–17, 26–7
REMove, 14–9, 15–12, 17–15, 18–10,

21–7, 23–17, 24–15, 26–8
REName, 12–19, 13–8
RESource, 13–9
RMODe, 9–18
RUNTil, 17–16, 20–10, 23–18, 24–15
SCHart, 19–4
SELect, 9–19
SEQuence, 16–16, 22–17
SET, 20–12
SETColor, 9–21
SETup, 11–11, 27–12
SFORmat, 15–6
SLAVe, 15–14
SLISt, 17–7
SPERiod, 22–18, 23–19
STARt, 9–22
STOP, 9–22
STORe, 16–17
STORe:CONFig, 12–20
SWAVeform, 18–4
SYMBol, 26–5
SYStem:DATA, 11–5, 27–2, 27–4
SYStem:SETup, 11–11, 27–2, 27–12
TAG, 16–18
TAKenbranch, 16–19, 18–10
TCONtrol, 16–20, 22–19
TERM, 16–21, 22–20
TFORmat, 21–4
THReshold, 15–16, 21–8
TIMER, 16–22, 22–21
TINTerval:AUTorange, 25–22
TINTerval:QUALifier, 25–22
TINTerval:TINTerval, 25–24
TLISt, 24–7
TPOSition, 16–23, 18–11, 22–22, 23–20
TYPE, 13–10

VAXis, 19–6
WIDTh, 26–8
WLISt, 10–6, 14–4
XCONdition, 23–22, 24–18
XPATtern, 17–20, 23–23, 24–19
XSEarch, 17–21, 23–24, 24–20
XTAG, 17–22, 24–21
XTIMe, 14–10, 23–25
XWINdow, 9–23

Command errors, 7–3
Command mode, 2–3
Command set organization, 4–12
Command structure, 1–4
Command tree, 4–5

SELect, 9–20
Command types, 4–6
Common commands, 1–9, 4–6, 8–2
Communication, 1–3
COMPare selector, 20–4
COMPare Subsystem, 20–1, 20–3, 20–4,
20–5, 20–6, 20–7, 20–8, 20–9, 20–10,
20–11, 20–12
Complex qualifier, 16–11, 22–11
Compound commands, 1–8
Configuration file, 1–4
Controllers, 1–3
Conventions, 4–5
COPY command, 12–10, 20–6

D

DATA, 11–5, 27–4
command, 11–5
State (no tags, 27–10, 27–11

Data and Setup Commands, 27–1, 27–3,
27–4, 27–5, 27–6, 27–7, 27–8, 27–9,
27–10, 27–11, 27–12, 27–13
Data bits, 3–9

8-Bit mode, 3–9
Data block

Analyzer 1 data, 27–7
Analyzer 2 data, 27–8
Data preamble, 27–6
Section data, 27–6
Section header, 27–6

Data Carrier Detect(DCD), 3–5
DATA command/query, 11–5, 20–6, 20–7
Data mode, 2–3
Data preamble, 27–6, 27–7, 27–8, 27–9

DATA query, 17–9, 24–9
Data Terminal Equipment, 3–3
Data Terminal Ready(DTR), 3–5
DataCommunications Equipment, 3–3
DataSet Ready (DSR), 3–5
DBLock selector, 10–5
DCE, 3–3
DCL, 2–6
DDE, 6–5
Definite-length block response data, 1–20
DELay command/query, 14–5, 18–7,
23–10
Device address, 1–6

HP-IB, 2–4
RS-232C, 3–10

Device clear, 2–6
Device dependent errors, 7–3
Documentation conventions, 4–5
DOWNload command, 12–11
DSP command, 11–6
DTE, 3–3
Duplicate keywords, 1–9

E

EDGE command/query, 22–13
Ellipsis, 4–5
Embedded strings, 1–3, 1–6
Enter statement, 1–3
EOI command, 9–11
ERRor command, 11–7
Error messages, 7–2
ESB, 6–4
Event Status Register, 6–4
Examples

program, 28–2
EXE, 6–5
Execution errors, 7–4
Exponents, 1–12
Extended interface, 3–4

F

File types, 12–12
FIND command/query, 16–13, 22–14
FIND query, 20–8
Fractional values, 1–13

Index

Index–2

G

GET, 2–6
Group execute trigger, 2–6

H

HAXis command/query, 19–5
HEADer command, 1–16, 11–8
Headers, 1–6, 1–8, 1–11
HISTogram:HSTatistic query, 25–16
HISTogram:LABel command/query, 25–17
HISTogram:OTHer command/query,
25–18
HISTogram:QUALifier command/query,
25–19
HISTogram:RANGe command/query,
25–20
HISTogram:TTYPe command/query,
25–21
Host language, 1–6
HP-IB, 2–2, 6–8
HP-IB address, 2–3
HP-IB device address, 2–4
HP-IB interface code, 2–4
HP-IB interface functions, 2–2

I

Identification number, 9–8
Identifying modules, 9–8
IEEE 488.1, 2–2, 5–2
IEEE 488.1 bus commands, 2–6
IEEE 488.2, 5–2
IFC, 2–6
Infinity, 4–4
Initialization, 1–4
INITialize command, 12–13
Input buffer, 5–3
INSert command, 14–6, 18–8, 23–11
Instruction headers, 1–6
Instruction parameters, 1–7
Instruction syntax, 1–5
Instruction terminator, 1–7
Instructions, 1–5
Instrument address, 2–4
Interface capabilities, 2–3

RS-232C, 3–9
Interface clear, 2–6
Interface code

HP-IB, 2–4
Interface selectcode

RS-232C, 3–10
Internal errors, 7–4

K

Keyword data, 1–13
Keywords, 4–3

L

LABel command/query, 15–7, 15–8, 21–6
LCL, 6–6
LER command, 9–11
LEVelarm command/query, 13–7
LINE command/query, 14–7, 17–9, 20–8,
24–9
Linefeed, 1–7, 4–5
LOAD:CONFig command, 12–14
LOAD:IASSembler command, 12–15
Local, 2–5
Local lockout, 2–5
LOCKout command, 3–11, 9–12
Longform, 1–11
LONGform command, 1–16, 11–9
Lowercase, 1–11

M

MACHine selector, 10–6, 13–4
MACHine Subsystem, 13–1, 13–3, 13–4,
13–5, 13–6, 13–7, 13–8, 13–9, 13–10
Mainframe commands, 9–2
MASTer command/query, 15–9
MAV, 6–4
MENU command, 9–12, 20–9
MESE command, 9–14
MESR command, 9–16
MKDir command, 12–16
MLENgth command/query, 16–14, 18–8,
22–15, 23–12, 25–12
MMEMory subsystem, 12–2
MMODe command/query, 17–10, 23–13,
24–10
Mnemonics, 1–13, 4–3
MODE command/query, 25–7
Module Level Commands, 10–1, 10–3,
10–4, 10–5, 10–6
MSB, 6–6
MSG, 6–5

MSI command, 12–17
MSS, 6–4
Multiple numeric variables, 1–21
Multiple program commands, 1–14
Multiple queries, 1–21
Multiple subsystems, 1–14

N

NAME command/query, 13–8
New Line character, 1–7
NL, 1–7, 4–5
Notation conventions, 4–5
Numeric base, 1–19
Numeric bases, 1–12
Numeric data, 1–12
Numeric variables, 1–19

O

OCONdition command/query, 23–13,
24–11
OPATtern command/query, 17–11,
23–14, 24–12
OPC, 6–5
Operation Complete, 6–6
OR notation, 4–5
OSEarch command/query, 17–12, 23–15,
24–13
OSTate query, 14–7, 17–13, 24–14
OTAG command/query, 17–14, 24–14
OTIMe command/query, 14–8, 23–16
Output buffer, 1–10
Output queue, 5–3
OUTPUT statement, 1–3
Overlapped command, 8–11, 8–19, 9–22
Overlapped commands, 4–4
OVERView:BUCKet query, 25–8
OVERView:HIGH command/query, 25–9
OVERView:LABel command/query, 25–10
OVERView:LOW command/query, 25–11
OVERView:OMARker command/query,
25–13
OVERView:OVSTatistic query, 25–14
OVERView:XMARker command/query,
25–15

Index

Index–3

P

PACK command, 12–18
Parameter syntax rules, 1–12
Parameters, 1–7
Parity, 3–9
Parse tree, 5–8
Parser, 5–3
PATTern command, 26–6
PON, 6–5
Preamble description, 27–6
PRINt command, 11–10
program example

sending queries to the logic analyzer,
28–18

state analyzer, 28–5
state compare, 28–9
SYSTem:SETup command, 28–14
SYSTem:SETup query, 28–14
timing analyzer, 28–3
transferring configuration to analyzer,

28–14
transferring configuration to the

controller, 28–14
Program examples, 4–13, 28–2
Program message syntax, 1–5
Program message terminator, 1–7
Program syntax, 1–5
programming, 25–2
Programming conventions, 4–5
Protocol, 3–9, 5–4

None, 3–9
XON/XOFF, 3–9

Protocol exceptions, 5–5
Protocols, 5–3
PURGe command, 12–18

Q

Query, 1–6, 1–10, 1–16
*ESE, 8–6
*ESR, 8–7
*IDN, 8–9
*IST, 8–9
*OPC, 8–11
*OPT, 8–12
*PRE, 8–13
*SRE, 8–15
*STB, 8–16
*TST, 8–18

ACCumulate, 18–5, 19–4, 23–8
ACQMode, 21–5
ACQuisition, 16–9, 22–9
ARM, 13–5
ASSign, 13–6
AUToload, 12–7
BEEPer, 9–6
BRANch, 16–11, 22–11
CAPability, 9–7
CATalog, 12–8
CESE, 9–9
CESR, 9–10
CLOCk, 15–7
CMASk, 20–5
COLumn, 17–8, 24–8
DATA, 11–6, 17–9, 20–7, 24–9, 27–5
DELay, 14–5, 18–7, 23–11
EDGE, 22–13
EOI, 9–11
ERRor, 11–7
FIND, 16–14, 20–8, 22–15
HAXis, 19–6
HEADer, 11–8
HISTogram:HSTatistic, 25–16
HISTogram:LABel, 25–17
HISTogram:QUALifier, 25–19
HISTogram:RANGe, 25–20
HISTogram:TTYPe, 25–21
LABel, 15–8, 21–7
LER, 9–11
LEVelarm, 13–7
LINE, 14–7, 17–10, 20–9, 24–10
LOCKout, 9–12
LONGform, 11–9
MASTer, 15–9
MENU, 9–13
MESE, 9–14
MESR, 9–16
MLENgth, 16–14, 18–9, 22–16, 23–12,

25–12
MMODe, 17–11, 23–13, 24–10
MODE, 25–7
MSI, 12–17
NAME, 13–8
OCONdition, 23–14, 24–11
OPATtern, 17–12, 23–15, 24–12
OSEarch, 17–13, 23–16, 24–13
OSTate, 14–7, 17–13, 24–14

OTAG, 17–14, 24–14
OTIMe, 14–8, 23–16
OVERView:BUCKet, 25–8
OVERView:HIGH, 25–9
OVERView:LABel, 25–10
OVERView:LOW, 25–11
OVERView:OMARker, 25–13
OVERView:OVSTatistic, 25–14
OVERView:XMARker, 25–15
PRINt, 11–10
RANGe, 14–9, 16–16, 18–9, 20–10, 22–17,

23–17
REName, 13–9
RESource, 13–10
RMODe, 9–18
RUNTil, 17–16, 20–11, 23–18, 24–16
SELect, 9–20
SEQuence, 16–17, 22–18
SETColor, 9–21
SETup, 11–12, 27–13
SLAVe, 15–14
SPERiod, 22–18, 23–19
STORe, 16–18
SYSTem:DATA, 11–6, 27–5
SYStem:SETup, 11–12, 27–13
TAG, 16–19
TAKenbranch, 16–19, 18–10
TAVerage, 17–17, 23–19, 24–16
TCONtrol, 16–20, 22–19
TERM, 16–22, 22–21
THReshold, 15–17, 21–8
TIMER, 16–22, 22–21
TINTerval:QUALifier, 25–22
TINTerval:TINTerval, 25–24
TINTerval:TSTatistic, 25–25
TMAXimum, 17–17, 23–20, 24–16
TMINimum, 17–18, 23–20, 24–17
TPOSition, 16–23, 18–11, 22–22, 23–21
TYPE, 13–10
UPLoad, 12–21
VAXis, 19–7
VRUNs, 17–18, 23–21, 24–17
XCONdition, 23–22, 24–18
XOTag, 17–19, 24–18
XOTime, 14–9, 17–19, 23–22, 24–19
XPATtern, 17–20, 23–23, 24–20
XSEarch, 17–21, 23–24, 24–20
XSTate, 14–10, 17–21, 24–21

Index

Index–4

XTAG, 17–22, 24–21
XTIMe, 14–10, 23–25

Query errors, 7–5
query program example, 28–18
Query responses, 1–15, 4–4
Question mark, 1–10
QYE, 6–5

R

RANGe command, 26–7
RANGe command/query, 14–8, 16–15,
18–9, 20–9, 22–16, 23–17
Receive Data (RD), 3–4, 3–5
Remote, 2–5
Remote enable, 2–5
REMove command, 14–9, 15–12, 17–15,
18–10, 21–7, 23–17, 24–15, 26–8
REN, 2–5
REName command, 12–19
REName command/query, 13–8
Request To Send (RTS), 3–5
RESource command/query, 13–9
Response data, 1–20
Responses, 1–16
RMODe command, 9–18
Root, 4–6
RQC, 6–5
RQS, 6–4
RS-232C, 3–2, 3–10, 5–2
RUNTil command/query, 17–16, 20–10,
20–11, 23–18, 24–15

S

SCHart selector, 19–4
SCHart Subsystem, 19–1, 19–3, 19–4,
19–5, 19–6, 19–7
SDC, 2–6
Section data, 27–6
Section data format, 27–4
Section header, 27–6
SELect command, 9–19
Select command tree, 9–20
Selected device clear, 2–6
SEQuence command/query, 16–16, 22–17
Sequential commands, 4–4
Serial poll, 6–7
Service Request Enable Register, 6–4
SET command, 20–12

SETColor command, 9–21
SETup, 11–11, 27–12
SETup command/query, 11–11, 11–12
SFORmat selector, 15–6
SFORmat Subsystem, 15–1, 15–3, 15–4,
15–5, 15–6, 15–7, 15–8, 15–9, 15–10,
15–11, 15–12, 15–13, 15–14, 15–15,
15–16, 15–17
Shortform, 1–11
Simple commands, 1–8
SLAVe command/query, 15–14
SLISt selector, 17–7
SLISt Subsystem, 17–1, 17–3, 17–4, 17–5,
17–6, 17–7, 17–8, 17–9, 17–10, 17–11,
17–12, 17–13, 17–14, 17–15, 17–16,
17–17, 17–18, 17–19, 17–20, 17–21, 17–22
Spaces, 1–7
SPERiod command/query, 22–18, 23–19
Square brackets, 4–5
STARt command, 9–22
state analyzer

program example, 28–5
Status, 1–22, 6–2, 8–3
Status byte, 6–6
Status registers, 1–22, 8–3
Status reporting, 6–2
Stop bits, 3–9
STOP command, 9–22
STORe command/query, 16–17
STORe:CONFig command, 12–20
STRace selector, 16–9
STRigger selector, 16–9
STRigger/STRace Subsystem, 16–1, 16–3,
16–4, 16–5, 16–6, 16–7, 16–8, 16–9,
16–10, 16–11, 16–12, 16–13, 16–14,
16–15, 16–16, 16–17, 16–18, 16–19,
16–20, 16–21, 16–22, 16–23
String data, 1–13
String variables, 1–18
STTRace selector, 22–8
Subsystem

COMPare, 20–2
MACHine, 13–2
MMEMory, 12–2
SCHart, 19–2
SFORmat, 15–1, 15–3, 15–4, 15–5, 15–6,

15–7, 15–8, 15–9, 15–10, 15–11, 15–12,
15–13, 15–14, 15–15, 15–16, 15–17

SLISt, 17–1, 17–3, 17–4, 17–5, 17–6,
17–7, 17–8, 17–9, 17–10, 17–11, 17–12,
17–13, 17–14, 17–15, 17–16, 17–17,
17–18, 17–19, 17–20, 17–21, 17–22

STRigger/STRace, 16–1, 16–3, 16–4,
16–5, 16–6, 16–7, 16–8, 16–9, 16–10,
16–11, 16–12, 16–13, 16–14, 16–15,
16–16, 16–17, 16–18, 16–19, 16–20,
16–21, 16–22, 16–23

SWAVeform, 18–2
SYMBol, 26–1, 26–3, 26–4, 26–5, 26–6,

26–7, 26–8
SYSTem, 11–2
TFORmat, 21–1, 21–3, 21–4, 21–5, 21–6,

21–7, 21–8
TLISt, 24–1, 24–3, 24–4, 24–5, 24–6,

24–7, 24–8, 24–9, 24–10, 24–11, 24–12,
24–13, 24–14, 24–15, 24–16, 24–17,
24–18, 24–19, 24–20, 24–21

TTRigger/TTRace, 22–1, 22–3, 22–4,
22–5, 22–6, 22–7, 22–8, 22–9, 22–10,
22–11, 22–12, 22–13, 22–14, 22–15,
22–16, 22–17, 22–18, 22–19, 22–20,
22–21, 22–22

TWAVeform, 23–1, 23–3, 23–4, 23–5,
23–6, 23–7, 23–8, 23–9, 23–10, 23–11,
23–12, 23–13, 23–14, 23–15, 23–16,
23–17, 23–18, 23–19, 23–20, 23–21,
23–22, 23–23, 23–24, 23–25

WLISt, 14–1, 14–3, 14–4, 14–5, 14–6,
14–7, 14–8, 14–9, 14–10
Subsystem commands, 4–6
Suffix multiplier, 5–9
Suffix units, 5–10
SWAVeform selector, 18–4
SWAVeform Subsystem, 18–1, 18–3,
18–4, 18–5, 18–6, 18–7, 18–8, 18–9,
18–10, 18–11
SYMBol selector, 26–5
SYMBol Subsystem, 26–1, 26–3, 26–4,
26–5, 26–6, 26–7, 26–8
Syntax diagram

Common commands, 8–4
COMPare Subsystem, 20–3
MACHine Subsystem, 13–3
Mainframe commands, 9–3, 9–4
MMEMory subsystem, 12–3, 12–4, 12–6
SCHart Subsystem, 19–3

Index

Index–5

SFORmat Subsystem, 15–3
SLISt Subsystem, 17–3
STRigger Subsystem, 16–3, 16–4, 16–5
SWAVeform Subsystem, 18–3
SYMBol Subsystem, 26–3
TFORmat Subsystem, 21–3
TLISt Subsystem, 24–3
TTRigger Subsystem, 22–3
TWAVeform Subsystem, 23–3, 23–4
WLISt Subsystem, 14–3

Syntax diagrams
IEEE 488.2, 5–5

System commands, 4–6
SYSTem subsystem, 11–2
SYSTem:DATA, 27–4, 27–5
SYStem:SETup, 27–12, 27–13
SYSTem:SETup command program
example, 28–14
SYSTem:SETup query program example,
28–14

T

TAG command/query, 16–18
TAKenbranch command/query, 16–19,
18–10
TAVerage query, 17–17, 23–19, 24–16
TCONtrol command/query, 16–20, 22–19
TERM command/query, 16–21, 22–20
Terminator, 1–7
TFORmat selector, 21–4
TFORmat Subsystem, 21–1, 21–3, 21–4,
21–5, 21–6, 21–7, 21–8
Three-wire Interface, 3–4
THReshold command/query, 15–16,
15–17, 21–8
time tag data description, 27–12
TIMER command/query, 16–22, 22–21
timing analyzer

program example, 28–3
TINTerval:AUTorange command, 25–22
TINTerval:QUALifier command/query,
25–22
TINTerval:TINTerval command/query,
25–24
TINTerval:TSTatistic query, 25–25
TLISt selector, 24–7
TLISt Subsystem, 24–1, 24–3, 24–4, 24–5,
24–6, 24–7, 24–8, 24–9, 24–10, 24–11,

24–12, 24–13, 24–14, 24–15, 24–16,
24–17, 24–18, 24–19, 24–20, 24–21
TMAXimum query, 17–17, 23–20, 24–16
TMINimum query, 17–18, 23–20, 24–17
TPOSition command/query, 16–23,
18–11, 22–22, 23–20
Trailing dots, 4–5
Transmit Data (TD), 3–4, 3–5
Truncation rule, 4–3
TTRigger selector, 22–8
TTRigger/TTRace Subsystem, 22–1,
22–3, 22–4, 22–5, 22–6, 22–7, 22–8, 22–9,
22–10, 22–11, 22–12, 22–13, 22–14,
22–15, 22–16, 22–17, 22–18, 22–19,
22–20, 22–21, 22–22
TWAVeform selector, 23–8
TWAVeform Subsystem, 23–1, 23–3,
23–4, 23–5, 23–6, 23–7, 23–8, 23–9,
23–10, 23–11, 23–12, 23–13, 23–14,
23–15, 23–16, 23–17, 23–18, 23–19,
23–20, 23–21, 23–22, 23–23, 23–24, 23–25
TYPE command/query, 13–10

U

Units, 1–12
UPLoad command, 12–21
Uppercase, 1–11
URQ, 6–5

V

VAXis command/query, 19–6, 19–7
VRUNs query, 17–18, 23–21, 24–17

W

White space, 1–7
White space, 5–9
WIDTh command, 26–8
WLISt selector, 10–6, 14–4
WLISt Subsystem, 14–1, 14–3, 14–4,
14–5, 14–6, 14–7, 14–8, 14–9, 14–10

X

XCONdition command/query, 23–22,
24–18
XOTag query, 17–19, 24–18
XOTime query, 14–9, 17–19, 23–22, 24–19
XPATtern command/query, 17–20,

23–23, 24–19
XSEarch command/query, 17–21, 23–24,
24–20
XSTate query, 14–10, 17–21, 24–21
XTAG command/query, 17–22, 24–21
XTIMe command/query, 14–10, 23–25
XWINdow command, 9–23
XXX, 4–5, 4–7
XXX (meaning of), 1–6

Index

Index–6

© Copyright Agilent
Technologies 1992-2002
All Rights Reserved.

Reproduction, adaptation, or
translation without prior
written permission is
prohibited, except as allowed
under the copyright laws.

Restricted Rights Legend

Use, duplication, or
disclosure by the U.S.
Government is subject to
restrictions set forth in
subparagraph (C) (1) (ii)
of the Rights in Technical
Data and Computer Software
Clause in DFARS
252.227-7013. Agilent
Technologies, 3000 Hanover
Street, Palo Alto, CA 94304
U.S.A.
Rights for non-DOD U.S.
Government Departments
and Agencies are set forth in
FAR 52.227-19(c)(1,2).

Document Warranty

The information contained in
this document is subject to
change without notice.
Agilent Technologies

makes no warranty of any

kind with regard to this

material, including, but

not limited to, the implied

warranties of

merchantability or fitness

for a particular purpose.

Agilent Technologies shall
not be liable for errors
contained herein or for
damages in connection with
the furnishing, performance,
or use of this material.

Safety

This apparatus has been
designed and tested in
accordance with IEC
Publication 348, Safety
Requirements for Measuring
Apparatus, and has been
supplied in a safe condition.
This is a Safety Class I
instrument (provided with
terminal for protective
earthing). Before applying
power, verify that the correct
safety precautions are taken
(see the following warnings).
In addition, note the external
markings on the instrument
that are described under
"Safety Symbols."

Warning

• Before turning on the
instrument, you must connect
the protective earth terminal
of the instrument to the
protective conductor of the
(mains) power cord. The
mains plug shall only be
inserted in a socket outlet
provided with a protective
earth contact. You must not
negate the protective action
by using an extension cord
(power cable) without a
protective conductor
(grounding). Grounding one
conductor of a two-conductor
outlet is not sufficient
protection.

• Only fuses with the
required rated current,
voltage, and specified type
(normal blow, time delay,
etc.) should be used. Do not
use repaired fuses or
short-circuited fuseholders.
To do so could cause a shock
of fire hazard.

• Service instructions are for
trained service personnel. To
avoid dangerous electric
shock, do not perform any
service unless qualified to do
so. Do not attempt internal
service or adjustment unless
another person, capable of
rendering first aid and
resuscitation, is present.

• If you energize this
instrument by an auto
transformer (for voltage
reduction), make sure the
common terminal is
connected to the earth
terminal of the power source.

• Whenever it is likely that
the ground protection is
impaired, you must make the
instrument inoperative and
secure it against any
unintended operation.

• Do not operate the
instrument in the presence of
flammable gasses or fumes.
Operation of any electrical
instrument in such an
environment constitutes a
definite safety hazard.

• Do not install substitute
parts or perform any
unauthorized modification to
the instrument.

• Capacitors inside the
instrument may retain a
charge even if the instrument
is disconnected from its
source of supply.

• Use caution when exposing
or handling the CRT.
Handling or replacing the
CRT shall be done only by
qualified maintenance
personnel.

Safety Symbols

Instruction manual symbol:
the product is marked with
this symbol when it is
necessary for you to refer to
the instruction manual in
order to protect against
damage to the product.

Hazardous voltage symbol.

Earth terminal symbol: Used
to indicate a circuit common
connected to grounded
chassis.

W A R N I N G

The Warning sign denotes a
hazard. It calls attention to a
procedure, practice, or the
like, which, if not correctly
performed or adhered to,
could result in personal
injury. Do not proceed
beyond a Warning sign until
the indicated conditions are
fully understood and met.

C A U T I O N

The Caution sign denotes a
hazard. It calls attention to
an operating procedure,
practice, or the like, which, if
not correctly performed or
adhered to, could result in
damage to or destruction of
part or all of the product. Do
not proceed beyond a
Caution symbol until the
indicated conditions are fully
understood or met.

Agilent Technologies
P.O. Box 2197
1900 Garden of the Gods Road
Colorado Springs, CO 80901-2197, U.S.A.

Product Warranty

This Agilent Technologies
product has a warranty
against defects in material
and workmanship for a period
of one year from date of
shipment. During the
warranty period, Agilent
Technologies will, at its
option, either repair or
replace products that prove
to be defective.
For warranty service or
repair, this product must be
returned to a service facility
designated by Agilent
Technologies.
For products returned to
Agilent Technologies for
warranty service, the Buyer
shall prepay shipping charges
to Agilent Technologies and
Agilent Technologies shall
pay shipping charges to
return the product to the
Buyer. However, the Buyer
shall pay all shipping charges,
duties, and taxes for products
returned to Agilent
Technologies from another
country.
Agilent Technologies
warrants that its software and
firmware designated by
Agilent Technologies for use
with an instrument will
execute its programming
instructions when properly
installed on that instrument.
Agilent Technologies does
not warrant that the
operation of the instrument
software, or firmware will be
uninterrupted or error free.

Limitation of Warranty

The foregoing warranty shall
not apply to defects resulting
from improper or inadequate
maintenance by the Buyer,
Buyer-supplied software or
interfacing, unauthorized
modification or misuse,
operation outside of the
environmental specifications
for the product, or improper
site preparation or
maintenance.

No other warranty is

expressed or implied.

Agilent Technologies

specifically disclaims the

implied warranties of

merchantability or fitness

for a particular purpose.

Exclusive Remedies

The remedies provided herein
are the buyer’s sole and
exclusive remedies. Agilent
Technologies shall not be
liable for any direct, indirect,
special, incidental, or
consequential damages,
whether based on contract,
tort, or any other legal theory.

Assistance

Product maintenance
agreements and other
customer assistance
agreements are available for
Agilent Technologies
products.
For any assistance, contact
your nearest Agilent
Technologies Sales Office.

Certification

Agilent Technologies certifies
that this product met its
published specifications at
the time of shipment from the
factory. Agilent Technologies
further certifies that its
calibration measurements are
traceable to the United States
National Institute of
Standards and Technology, to
the extent allowed by the
Institute’s calibration facility,
and to the calibration
facilities of other
International Standards
Organization members.

About this edition

This is the Agilent

Technologies 1670G-Series

Logic Analyzers

Programmer’s Guide

Publication number
01670-97021, March 2002
Printed in Malaysia.
Edition dates are as follows:
01670-97013, January 2000

New editions are complete
revisions of the manual.
Many product updates do not
require manual changes and
manual corrections may be
done without accompanying
product changes. Therefore,
do not expect a one-to-one
correspondence between
product updates and manual
updates.

HP is a registered

trademark and/or

Hewlett-Packard is a

registered trademark of

Hewlett-Packard Company.

	In This Book
	Table of Contents
	General Information
	Introduction to Programming the Agilent Technologies 1670G-Series Logic Analyzer
	Talking to the Instrument
	Initialization
	Instruction Syntax
	Output Command
	Device Address
	Instructions
	Instruction Terminator
	Header Types
	Duplicate Keywords
	Query Usage
	Program Header Options
	Parameter Data Types
	Receiving Information from the Instrument
	Selecting Multiple Subsystems
	Response Header Options
	Response Data Formats
	String Variables
	Numeric Base
	Numeric Variables
	Definite-Length Block Response Data
	Multiple Queries
	Instrument Status

	Programming Over GPIB
	Interface Capabilities
	Command and Data Concepts
	Addressing
	Communicating Over the GPIB Bus (HP 9000 Series
	Local, Remote, and Local Lockout
	Bus Commands

	Programming Over RS-232-C
	Interface Operation
	RS-232-C Cables
	Minimum Three-Wire Interface with Software Protocol
	Extended Interface with Hardware Handshake
	Cable Examples
	Configuring the Logic Analyzer Interface
	Interface Capabilities
	RS-232-C Bus Addressing
	Lockout Command

	Programming and Documentation Conventions
	Truncation Rule
	Infinity Representation
	Sequential and Overlapped Commands
	Response Generation
	Syntax Diagrams
	Notation Conventions and Definitions
	The Command Tree
	Tree Traversal Rules
	Command Set Organization
	Subsystems
	Program Examples

	Message Communication and System Functions
	Protocols
	Syntax Diagrams
	Syntax Overview

	Status Reporting
	Event Status Register
	Service Request Enable Register
	Bit Definitions
	Key Features
	Serial Poll

	Error Messages
	Device Dependent Errors
	Command Errors
	Execution Errors
	Internal Errors
	Query Errors

	Instrument Commands
	Common Commands
	*CLS (Clear Status)
	*ESE (Event Status Enable)
	*ESR (Event Status Register)
	*IDN (Identification Number)
	*IST (Individual Status)
	*OPC (Operation Complete)
	*OPT (Option Identification)
	*PRE (Parallel Poll Enable Register Enable)
	*RST (Reset)
	*SRE (Service Request Enable)
	*STB (Status Byte)
	*TRG (Trigger)
	*TST (Test)
	*WAI (Wait)

	Instrument Commands
	BEEPer
	CAPability
	CARDcage
	CESE (Combined Event Status Enable)
	CESR (Combined Event Status Register)
	EOI (End Or Identify)
	LER (LCL Event Register)
	LOCKout
	MENU
	MESE<N> (Module Event Status Enable)
	MESR<N> (Module Event Status Register)
	RMODe
	RTC (Real-time Clock)
	SELect
	SETColor
	STARt
	STOP
	XWINdow

	Module Level Commands
	ARMLine
	DBLock
	MACHine
	WLISt

	SYSTem Subsystem
	DATA
	DSP (Display)
	ERRor
	HEADer
	LONGform
	PRINt
	SETup

	MMEMory Subsystem
	AUToload
	CATalog
	CD (Change Directory)
	COPY
	DOWNload
	INITialize
	LOAD[:CONFig]
	LOAD:IASSembler
	MKDir (Make Directory)
	MSI (Mass Storage Is)
	PACK
	PURGe
	PWD (Present Working Directory)
	REName
	STORe[:CONFig]
	UPLoad
	VOLume

	Logic Analyzer Commands
	MACHine Subsystem
	MACHine
	ARM
	ASSign
	LEVelarm
	NAME
	REName
	RESource
	TYPE

	WLISt Subsystem
	WLISt (Waveforms/LISting)
	DELay
	INSert
	LINE
	OSTate
	OTIMe
	RANGe
	REMove
	XOTime
	XSTate
	XTIMe

	SFORmat Subsystem
	SFORmat
	CLOCk
	LABel
	MASTer
	MOPQual
	MQUal
	REMove
	SETHold
	SLAVe
	SOPQual
	SQUal
	THReshold

	STRigger (STRace) Subsystem
	Qualifier
	STRigger (STRace) (State Trigger)
	ACQuisition
	BRANch
	CLEar
	FIND
	MLENgth
	RANGe
	SEQuence
	STORe
	TAG
	TAKenbranch
	TCONtrol
	TERM
	TIMER
	TPOSition

	SLISt Subsystem
	SLISt
	COLumn
	CLRPattern
	DATA
	LINE
	MMODe (Marker Mode)
	OPATtern
	OSEarch
	OSTate
	OTAG
	OVERlay
	REMove
	RUNTil (Run Until)
	TAVerage
	TMAXimum
	TMINimum
	VRUNs
	XOTag
	XOTime
	XPATtern
	XSEarch
	XSTate
	XTAG

	SWAVeform Subsystem
	SWAVeform
	ACCumulate
	ACQuisition
	CENTer
	CLRPattern
	CLRStat
	DELay
	INSert
	MLENgth
	RANGe
	REMove
	TAKenbranch
	TPOSition

	SCHart Subsystem
	SCHart
	ACCumulate
	CENTer
	HAXis
	VAXis

	COMPare Subsystem
	COMPare
	CLEar
	CMASk
	COPY
	DATA
	FIND
	LINE
	MENU
	RANGe
	RUNTil (Run Until)
	SET

	TFORmat Subsystem
	TFORmat (Timing Format)
	ACQMode
	LABel
	REMove
	THReshold

	TTRigger (TTRace) Subsystem
	Qualifier
	TTRigger (TTRace)(Trace Trigger)
	ACQuisition
	BRANch
	CLEar
	EDGE
	FIND
	MLENgth
	RANGe
	SEQuence
	SPERiod
	TCONtrol (Timer Control)
	TERM
	TIMER
	TPOSition (Trigger Position)

	TWAVeform Subsystem
	TWAVeform
	ACCumulate
	ACQuisition
	CENTer
	CLRPattern
	CLRStat
	DELay
	INSert
	MLENgth
	MMODe (Marker Mode)
	OCONdition
	OPATtern
	OSEarch
	OTIMe
	RANGe
	REMove
	RUNTil (Run Until)
	SPERiod
	TAVerage
	TMAXimum
	TMINimum
	TPOSition
	VRUNs
	XCONdition
	XOTime
	XPATtern
	XSEarch
	XTIMe

	TLISt Subsystem
	TLISt
	COLumn
	CLRPattern
	DATA
	LINE
	MMODe (Marker Mode)
	OCONdition
	OPATtern
	OSEarch
	OSTate
	OTAG
	REMove
	RUNTil (Run Until)
	TAVerage
	TMAXimum
	TMINimum
	VRUNs
	XCONdition
	XOTag
	XOTime
	XPATtern
	XSEarch
	XSTate
	XTAG

	SPA Subsystem
	MODE
	OVERView:BUCKet
	OVERView:HIGH
	OVERView:LABel
	OVERView:LOW
	OVERView:MLENgth
	OVERView:OMARker
	OVERView:OVSTatistic
	OVERView:XMARker
	HISTogram:HSTatistic
	HISTogram:LABel
	HISTogram:OTHer
	HISTogram:QUALifier
	HISTogram:RANGe
	HISTogram:TTYPe
	TINTerval:AUTorange
	TINTerval:QUALifier
	TINTerval:TINTerval
	TINTerval:TSTatistic

	SYMBol Subsystem
	SYMBol
	BASE
	PATTern
	RANGe
	REMove
	WIDTh

	DATA and SETup Commands
	Data Format
	SYSTem:DATA
	Section Header Description
	Section Data
	Data Preamble Description
	Acquisition Data Description
	Tag Data Description
	SYSTem:SETup

	Oscilloscope Commands
	Oscilloscope Root Level Commands
	AUToscale
	DIGitize

	ACQuire Subsystem
	COUNt
	TYPE

	CHANnel Subsystem
	COUPling
	ECL
	OFFSet
	PROBe
	RANGe
	TTL

	DISPlay Subsystem
	ACCumulate
	CONNect
	INSert
	LABel
	MINus
	OVERlay
	PLUS
	REMove

	MARKer Subsystem
	AVOLt
	ABVolt?
	BVOLt
	CENTer
	MSTats
	OAUTo
	OTIMe
	RUNTil (Run Until)
	SHOW
	TAVerage?
	TMAXimum?
	TMINimum?
	TMODe
	VMODe
	VOTime?
	VRUNs?
	VXTime?
	XAUTo
	XOTime?
	XTIMe

	MEASure Subsystem
	ALL?
	FALLtime?
	FREQuency?
	NWIDth?
	OVERshoot?
	PERiod?
	PREShoot?
	PWIDth?
	RISetime?
	SOURce
	VAMPlitude?
	VBASe?
	VMAX?
	VMIN?
	VPP?
	VTOP?

	TIMebase Subsystem
	DELay
	MODE
	RANGe

	TRIGger Subsystem
	CONDition
	DELay
	LEVel
	LOGic
	MODE
	PATH
	SLOPe
	SOURce

	WAVeform Subsystem
	Format for Data Transfer
	Data Conversion
	COUNt?
	DATA?
	FORMat
	POINts?
	PREamble?
	RECord
	SOURce
	SPERiod?
	TYPE?
	VALid?
	XINCrement?
	XORigin?
	XREFerence?
	YINCrement?
	YORigin?
	YREFerence?

	Pattern Generator Commands
	Programming the Pattern Generator
	Programming Overview
	Example Pattern Generator Program
	Selecting the Pattern Generator
	Command Set Organization

	Pattern Generator Level Commands
	STEP
	RESume

	FORMat Subsystem
	FORMat Subsystem
	CLOCk
	DELay
	LABel
	MODe
	REMove

	SEQuence Subsystem
	SEQuence Subsystem
	COLumn
	EPATtern
	INSert
	PROGram

	REMove

	MACRo Subsystem
	MACRo Subsystem
	INSert
	NAME
	PARameter
	PROGram
	REMove

	SYMBol Subsystem
	SYMBol Subsystem
	BASE
	PATTern
	RANGe
	REMove
	WIDTh

	DATA and SETup Commands
	Data and Setup Commands
	SYSTem:DATA
	SYSTem:SETup

	Programming Examples
	Programming Examples
	Making a Timing Analyzer Measurement
	Making a State Analyzer Measurement
	Making a State Compare Measurement
	Transferring the Logic Analyzer Configuration
	Checking for Measurement Completion
	Sending Queries to the Logic Analyzer

	Index
	Warrenty

