SERVICE MANUAL

Color Video Monitor

ZVM-1380

NOTE: This preliminary manual is based upon preliminary engineering information. Your monitor may be slightly different than the one represented in this manual.

The purpose of this page is to make sure that all service bulletins are entered in this manual. When a service bulletin is received, mark the manual and list the information in the record below.

Record of Field Service Bulletins

SERVICE BULLETIN NUMBER	DATE OF ISSUE	CHANGED PAGE(S)		

LIMITED RIGHTS LEGEND

Contractor is Zenith Data Systems Corporation of St. Joseph, Michigan 49085. The entire document is subject to Limited Rights data provisions.

[^0]
WARNINGS and CAUTIONS

IMPORTANT SAFETY NOTICE: Under no circumstances should the original design be modified or altered without permission from Zenith Electronics Corporation. All components should be replaced only with types identical to those in the original circuit, and their physical location, wiring, and lead dress must conform to the original layout upon completion of repairs.

In some instances, redundant circuitry is used for additional circuit protection and X -radiation protection. Special circuits are also used to prevent shock and fire hazard. These special circuit components contain an X in their reference designator (CX501 is an example). They are to be replaced with identical components only.

WARNING: No work should be attempted on any part of the chassis by anyone not familiar with Zenith service procedures and precautions. Otherwise, personal injury may result.

WARNING: External isolation transformers should always be used when test equipment is connected to the monitor. This is to reduce a lethal shock hazard, monitor damage, and test equipment damage that could result from the monitor and/or test equipment chassis being connected to different sides of the AC line.

WARNING: Do not operate a monitor with excessive high voltage because the monitor will produce X -rays from the CRT when the high voltage is excessive. Always verify that the high voltage is at the normal level when servicing the unit.

WARNING: Discharge the high voltage at the anode lead of the CRT before attempting service on the high voltage supply or associated circuits. Refer to the servicing section of this manual for detailed instructions.

WARNING: The CRT and the attached CRT board loses support once the back cover is removed. Use extra care when repositioning the monitor. Turn the power off and disconnect the power cord before attempting to reposition the monitor.

WARNING: Handle the cathode-ray tube carefully when you hold, remove, or install it; otherwise implosion and/or personal injury may result.

WARNING: To prevent electrical shock after reassembly, perform an AC leakage test on all exposed metal parts of the monitor. Do not use a line isolation transformer to perform this test.

Any leakage voltage measurement that exceeds 0.75 volts rms (0.5 milliamperes AC) constitutes a potential shock hazard and must be corrected. These voltage and current values are based upon the following test meter circuit (Figure 1) and the following test instructions.

1. Connect the test circuit as shown in Figure 1.
2. With monitor power turned on, measure the leakage voltage between earth ground and an exposed monitor metal part.
3. Repeat the measurement with the meter leads reversed.
4. Repeat steps 2 and 3 until all exposed monitor metal parts are verified to have satisfactory AC leakage levels.

Figure 1
AC Leakage Voltmeter Circuit

WARNING: Unplug the monitor's power cable before cleaning; otherwise, electrical shock and/or personal injury may result.

WARNING: Removing or lifting the ground from the AC power source may present a lethal shock hazard.

CAUTION: The monitor must be located in an area that will provide proper ventilation. Inform the user that the air vents at the bottom, back, and top of the monitor must not be blocked.

CAUTION: Be sure the signal and power cables are unplugged from the computer or other signal and power sources before disassembling the monitor.

CAUTION: Some of the ICs (integrated circuits) used in this unit are electrostatic-sensitive devices. These devices can be damaged by static electricity. When handling any IC, be sure to equalize the static charge before touching the IC, by using a grounding strap.

Contents

Chapter 1: Characteristics
Specifications 1-1
Controls, Indicators and Cables 1-3
Front Panel 1-3
Rear Panel 1-4
Chapter 2: Installation
Color Bar Test 2-1
Fill Screen Test 2-2
Video Cable Interface 2-2
Chapter 3: Circult Description
Video Signal Processing 3-1
Chapter 4: Servicing
Safety Guidelines 4-1
AC Leakage Test 4-2
Suggested Supplies and Equipment 4-2
Tools and Supplies 4-2
Test Equipment 4-2
Inspection and Troubleshooting 4-3
Cleaning Procedure 4-4
Servicing Diagrams 4-4

Chapter 5: Parts Lists

Figures

1-1: Front Panel Controls and Indicators 1-3
1-2: Rear Panel Controls and Cables 1-4
2-1: Video Cable Connector 2-2
4-1: AC Leakage Voltmeter Circuit 4-2
4-2: Block Diagram 4-4
5-1: Monitor Schematic 5-9
Tables
2-1: Video Connector Signals 2-2
3-1: Input Signals 3-1
3-2: Displayed Colors 3-1
4-1: Fault Isolation 4-3
5-1: Electronic parts 5-1
Listings
2-1: BASIC Color Bar Program 2-1
2-2: BASIC Program to Fill the Screen 2-2

PRELLIMINARY COPY

Characteristics

The Zenith Data Systems ZVM-1380 monitor is a 13 inch, non-glare color display that provides two modes of operation. Mode 1 will provide 16 colors and is used with computers that supply an RGBI video output, such as the Z-150 and Z-200 computer series. Mode 2 will
provide 64 colors and is used with computers that supply an enhanced RGB video output, such as the Z-158 and Z-241 that support an enhanced graphics card. The monitor determines the mode of operation from the vertical sync polarity.

Specifications

The following specifications represent optimum video input signal operation. Other display presentations may be used with some change in display position or appearance.

Power Input.	$\begin{aligned} & 98-132 / 208-262 \text { VAC, } 48-62 \mathrm{~Hz} \text {, } \\ & 90 \text { watts. } \end{aligned}$
Video Input	16 color, RGBI positive TTL. 64 color, RGBrgb positive TTL.
Horizontal Sync .	Positive TTL, switching by TTL. $15.75 \mathrm{kHz}+/-300 \mathrm{~Hz}$, mode 1 . $21.85 \mathrm{kHZ} \pm /-300 \mathrm{~Hz}$, mode 2.
Vertical Sync	Positive TTL 47 to 63 Hz , mode 1. Negative TTL 47 to 63 Hz , mode 2 .
Video Cable Connector	9-pin D connector
CRT	13 inch, 0.31 mm pitch, dark tint nonglare.
Display Area	250 mm wide by 170 mm high.
Display Colors	16 colors @ 15.75 kHz (Mode 1), 64 colors @ 21.85 kHz (Mode 2).
Display Characters	$\begin{aligned} & 2000 \text { characters, } \\ & 80 \times 25 @ 15.75 \mathrm{kHZ} \text { (Mode 1, } \\ & 8 \times 8 \text { dot matrix). } \\ & 80 \times 25 @ 21.85 \mathrm{kHz} \text { (Mode 2, } \\ & 8 \times 14 \text { dot matrix). } \end{aligned}$
Horizontal Display Time	$\begin{aligned} & 44.5 * * S @ 15.75 \text { kHz (Mode 1), } \\ & 39.37 \text { **S @ } 21.85 \text { kHz (Mode 2), } \end{aligned}$

Horizontal Retrace Time	$\begin{aligned} & 6.0 \text { **S @ } 15.75 \text { kHz (Mode 1), } \\ & 6.0 \text { **S @ } 21.85 \text { kHz (Mode 2). } \end{aligned}$
Vertical Display Time	$\begin{aligned} & 12.58 \mathrm{mS} @ 15.75 \mathrm{kHz} \text { (Mode 1), } \\ & 16.01 \mathrm{mS} @ 21.85 \mathrm{kHz} \text { (Mode 2). } \end{aligned}$
Vertical Retrace Time	$\begin{aligned} & 1.2 \mathrm{mS} @ 15.75 \mathrm{kHz} \text { (Mode 1), } \\ & 0.6 \mathrm{mS} @ 21.85 \mathrm{kHz} \text { (Mode 2). } \end{aligned}$
Horizontal Resolution.	640 dots (Mode 1 and Mode 2).
Vertical Resolution	200 lines, noninterlaced (Mode 1), 400 lines, interlaced (Mode 1), 350 lines, noninterlaced (Mode 2), 700 lines, interlaced (Mode 2).
Misconvergence	0.5 mm maximum within data area.

Zenith Data Systems reserves the right to discontinue products and to change specifications at any time without incorporating these changes into products previously sold.

Controls Indicators and Cables

The following is a description of the controls, indicators and cables for the video monitor. Refer to Figure 1-1 for their location.

Front Panel

Power indicator - Lights when monitor power is on.
Power switch - Switches monitor power on or off.

Contrast - Adjusts the intensity of the intensified data on the screen.

Brightness - Adjusts the intensity of the entire display.
G N A switch - Selects green, normal, or amber display.

CAUTION: Avoid setting the contrast and brightness controls for an excessively bright display. A bright, fixed pattern, if displayed for long periods of time, may permanently imprint the pattern on the CRT.

Figure 1-1
Front Panel Controls and Indicators

Rear Panel

Video input cable - Transmits the video signal from the computer to the monitor.

Power connector - Supplies AC power to the computer. The ZVM-1380 uses a switchable power supply that permits use of a 120 VAC or a 240 VAC cable.

Voltage Select switch — Selects 115 VAC or 230 VAC operation.

V Size 1 control - Control vertical size for mode 1.
V Size 2 control - Controls vertical size for mode 2.

H Center 1 control - Controls horizontal center for mode 1.

H Center 2 control - Controls horizontal center for mode 2.

Figure 1-2
Rear Panel Controls and Cables

Chapter 2

Installation

This chapter discusses basic installation of the monitor. It includes the set-up procedure and performance test for the monitor.

1. Place the monitor on a horizontal surface that is near the computer and near AC power. The monitor must be located in an area that will provide proper ventilation and allow airflow through the unit. Verify that the vents on the top and bottom of the monitor are free from obstruction.
2. Connect the video monitor signal cable to the computer.
3. Connect the power cable to the monitor and then to the correct AC power source. Verify that the power source corresponds to the monitor's power requirements.

WARNING: Removing or lifting the ground from the AC power source may present a lethal shock hazard.
4. Turn on the computer and the monitor. The power indicator on the front of the monitor should light.
5. Perform the color bar test or the fill screen test to adjust the brightness and contrast to the desired levels. If further adjustments are required, refer to Chapter 4, "Servicing."

NOTE: Changes in room lighting or repositioning the monitor screen may require resetting the brightness and contrast controls.

Color Bar Test

The color bar test displays 16 different colors in the form of a bar graph. A gray scale (shades of a single color) is displayed if the monitor is used with a computer that does not have color capabilities. If the moni-
tor is to be used with a PC-compatible computer, display the PC color bar from the ROM. Display the color bar with a Z-100 PC series computer as follows:

1. Press the CTRL, ALT, and INS keys simultaneously to display the monitor prompt.
2. Enter C and press RETURN to call up the color bar display.
3. Proceed to the fill screen test.

NOTE: Not all video cards are capable of providing the RGBI video signals to the monitor. If the intensity bit is not used, only eight colors will be displayed.

The BASIC program in Listing 2-1 may also be used to generate a color bar pattern when used with a computer that has RGB color capabilities.

Listing 2-1

BASIC Color Bar Program

[^1]

Fill Screen Test

The fill screen test will fill the screen with any character entered from the keyboard. If a Z-100 PC computer is being used, fill the screen as follows:

1. Press the CTRL, ALT, and INS keys simultaneously to display the monitor prompt.
2. Type TEST and press RETURN to enter the TEST menu.
3. Select the Keyboard Test by pressing the $\mathbf{2}$ key.
4. Choose any character to fill the screen by pressing the corresponding key. The capital Z is recommended.
5. Check to see if the screen is filled with the character and if the width and height of the display. are correct. Refer to the specifications for dimensions.
6. After setting the desired controls, press the DELETE key to return to the test menu.
7. Press the $\mathbf{5}$ key to return to the monitor prompt.

The BASIC program shown in Listing 2-2 may also be used to fill the screen with any character as follows:

1. Prepare the computer for the BASIC program operation.
2. Enter the program shown in Listing 2-2.
3. Run the program by typing RUN and pressing the RETURN key. The screen will be filled with the letter Z or any other character inserted in line 20.
4. To end the program, press the CTRL and BREAK keys at the same time.

Listing 2-2
BASIC Program to Fill the Screen

10 FOR I = 1 TO 2000
20 PRINT "Z";
30 NEXT I
40 GO TO 40
50 END

Video Cable Interface

The video cable is fixed to the monitor on one end and supplied with a D-type 9 -pin connector on the other. Figure 2-1 illustrates the connector, and Table 2-1 lists the connector signals.

Figure 2-1
Video Cable Connector

Table 2-1
Video Connector Signals

PIN NO.	MODE 1	MODE 2
$\mathbf{1}$	Ground.	Ground.
2	Ground.	R'.
3	R.	R.
4	G.	G.
5	B.	B.
6	Intensity.	G^{\prime}.
7	Monochrome Video*	B^{\prime}.
8	Horizontal Sync.	Horizontal Sync. 9
	Vertical Sync.	Vertical Sync.

NOTE: Secondary red (R^{\prime}), green (G^{\prime}), and blue (B^{\prime}) signals are indicated by the lower case r, g, and b throughout this manual.

* Present, but not used by this monitor.

Chapter 3

Refer to the block diagram and the schematics in Chapter 4, while reading the following material.

Video Signal Processing

The RGBI inputs are all TTL level, digital signals supplied by the computer. These signals are listed in Table 3-1.

Table 3-1
Input Signals

PIN NO.	MODE 1	MODE 2
1	Ground.	Ground.
2	Ground.	R'.
3	R.	R.
4	G.	G.
5	B.	B.
6	Intensity.	G'.
7	Monochrome Video*	B^{\prime}.
8	Horizontal Sync.	Horizontal Sync.
9	Vertical Sync.	Vertical Sync.

NOTE: Secondary red (R^{\prime}), green (G^{\prime}), and blue (B^{\prime}) signals are indicated by the lower case r, g, and b throughout this manual.
*Present, but not used by this monitor.

The monitor determines the mode of operation by decoding the vertical sync signal. A positive polarity directs the monitor into mode 1 and a negative polarity directs the monitor into mode 2. The RGB (red, green, and blue) signals contain the primary color information. In mode 1, the intensity bit is used to enhance the hue of a particular color by providing additional drive to the displayed color. In this manner, as many as 16 different colors can be displayed.

Circuit Descriptions

In mode 2, additional color information is contained in the secondary colors r, g, and b . These bits of data are used in a similar manner as the intensity bit in mode 1. They are used to enhance the hue of a primary color by providing additional drive to the color signal. 64 color combinations are available using 6 input bits. The 16 colors and the input signal combinations required to generate those colors for both modes are listed in Table 3-2.

Table 3-2
Displayed Colors

	MODE 1	MODE 2
Color	R G B I	Rr Gg Bb
Black	0000	000000
Gray	0001	000010
Biue	0010	001000
Light blue	0011	001010
Green	0100	100000
Light green	0101	100010
Cyan	0110	100100
Light cyan	0111	101010
Red	1000	010101
Light red	1001	010111
Magenta	1010	011101
Light magenta	1011	011111
Yellow	1100	110101
Light yellow	1101	110111
White	1110	111101
Intensified white	1111	111111
$0=$ No signal.		
1 $=$ Signal active.		

PRELIMIINARY COPY

Chapter 4

Servicing

The following service procedures provide information on how to adjust, align and troubleshoot the monitor. These procedures are intended to be used with the schematics, component views, and waveforms found at the end of this chapter. Review the following safety guidelines before beginning service and perform the final checks at the end of this chapter after repairing the unit.

Safety Guidelines

WARNING: No work should be attempted on any part of the chassis by anyone not familiar with Zenith service procedures and precautions; otherwise personal injury may result.

WARNING: With monitor power turned off and disconnected, discharge the high voltage anode lead at the CRT using a jumper lead connected between the chassis and screwdriver as illustrated in Figure 6-1.

WARNING: Operation of the CRT at voltages higher than 28 KV may produce X-rays. Always verify that the voltage is at normal levels when servicing the monitor. Do not operate the monitor with excessive high voltage any longer than necessary to locate the cause of the excessive voltage.

WARNING: Carefully handle the CRT when holding, removing, or installing it; otherwise, implosion and/or personal injury may result.

CAUTION: Many integrated circuits are electrostaticsensitive and can be damaged by static electricity if they are handled improperly. Once an IC or board is removed from its protective foam packing, envelope, or computer do not lay the IC or board down or let go of it until it is installed in the unit. When bending the leads of an IC, hold the IC in one hand and place the other hand on the work surface before touching the IC to the work surface. This will equalize the static electricity between the work surface, you, and the IC.

WARNING: Under no circumstances should the original design be modified or altered without permission from Zenith Electronics Corporation. All components should be replaced only with types identical to those in the original circuit, and their physical location, wiring, and lead dress must conform to the original layout upon completion of repairs.

AC leakage Test

To prevent electrical shock after reassembly, perform an AC leakage test on all exposed metal parts of the monitor. Do not use an isolation transformer to perform this test.

1. Connect the test circuit as shown in Figure 4-1.
2. With the monitor turned on, measure the leakage voltage between earth ground and an exposed monitor metal part.
3. Repeat the measurement with the meter leads reversed.
4. Repeat steps 2 and 3 until all exposed metal parts are verified to have satisfactory AC leakage levels.

Figure 4-1
AC Leakage Voltmeter Circuit

WARNING: An isolation transformer must be used during troubleshooting to prevent personal injury and/ or damage to the monitor or test equipment.

Suggested Supplies and Equipment

TOOLS AND SUPPLIES

The following items are recommended to be at hand when servicing the monitor.

- $1 / 4$-inch nut driver.
- Flat-blade screwdriver, $1 / 4$-inch blade.
- Phillips screwdriver, No. 1 tip.
- Phillips screwdriver, No. 2 tip.
- Diagonal cutters.
- Wire strippers.
- Long-nose pliers.
- Desoldering tool.
- Soldering iron, 25 to 40 watts.
- Solder, 60/40, HE-490-185.
- Desoldering braid, HE-354-59.
- Lint-free cloths.
- Z-100 PC or equivalent.
- Diagnostic disk, CB-5063-28

TEST EQUIPMENT

The following items are recommended to troubleshoot the monitor to the board level. The test equipment specification should meet or exceed those listed after each item.

- Oscilloscope - DC to 100 MHz , dual-trace triggered sweep. Tektronix Model 2235, or equivalent.
- Digital voltmeter - High impedance input, zero to 1000 volts, zero to 1 megohm. Heath Model SM-2215, or equivalent.
- Low capacitance oscilloscope probe - Input capacitance adjustable from 15 pF to $50 \mathrm{pF}, 4$ ns rise time. Heath Model PKW-105, or equivalent.
- High voltage probe - Zero to 40 kV . Heath Model IM-5215, or equivalent.

Isolation transformer.

Inspection and Troubleshooting

Use the following procedures to determine possible external causes of monitor failure.

- Verify proper computer operation and compatibility.
- Check monitor controls for proper response and settings.
- Check the signal and power cables for proper connection. Inspect these cables for burnt insulation, broken wires, or loose prongs on the plugs.
- Check the AC power source for proper operating voltage.

If the previous inspection did not reveal the cause of monitor failure, refer to Table 4-1. This table will help to identify the problem area and suggest the most likely cause. A board or module will be recommended for further investigation. The checkout procedure for each board or module follows after Table 4-1.

Table 4-1
Fault Isolation

PROBLEM	POSSIBLE CAUSE	ITEM TO CHECK
Dead monitor, power LED is not lit.	No power.	Power source. Power cord. Power switch. Power supply. Fuse.
No raster, power LED is lit.	High-voltage or horizontal circuits.	G2 adjustment. High-voltage to anode. Main board Power supply.
No display.	No video.	Brightness, contrast, RGB gain, drive, or cutoff adjustments. Video cable. Main board. CRT socket board.
No vertical deflection.	Vertical circuit.	Main board. Deflection yoke.
Poor vertical linearity.	Vertical circuit.	Vertical linearity or pincushion adjustment. Main board.
Poor horizontal linearity.	Horizontal circuit.	Horizontal linearity adjustment. Main board.
Narrow picture.	Horizontal circuit.	Width adjustment. Main board
Poor color.	Video circuit.	RGB gain, drive or cutoff adjustments. Main board. CRT socket board.
Out of focus.	High-voltage circuit.	Focus adjustment. Main board
Insufficient brightness.	Video circuit.	Brightness, contrast, RGB gain, drive, cutoff or G2 adjustments. Main board. CRT socket board.

Cleaning Procedure

WARNING: Be sure that the monitor's power cable is unplugged before cleaning.

- Clean the cabinet with a lint-free cloth, lightly dampened with a mild cleaning solution. Do not spray liquids directly on the monitor or use a wet, saturated cloth.
- Clean the screen with a good quality glass cleaner.
- Be sure that the monitor is completely dry before applying electric power.

Servicing Diagrams

Schematic and component location drawings are provided in this section. The source location of waveforms referenced in the text are shown on both schematic and component location drawings.

A Z-150 PC computer was used to supply the RGB signals for generating the waveforms.

NOTE: Some input and output waveforms for some boards are taken from the adjacent boards because test points having the same signal are more accessible there.

Figure 4-2
Block Diagram

Parts Lists

This section contains the replacement parts list for the monitor.

CAUTION: Many integrated circuits are electrostaticsensitive and can be damaged by static electricity if they are handled improperly. Once an IC or board is removed from its protective foam packing, envelope, or computer do not lay the IC or board down or let
go of it until it is installed in the monitor. When bending the leads of an IC, hold the IC in one hand and place the other hand on the work surface before touching the IC to the work surface. This will equalize the static electricity between the work surface, you, and the IC.

WARNING: Under no circumstances should the original design be modified or altered without permission from Zenith Electronics Corporation. All components should be replaced only with types identical to those in the original circuit, and their physical location, wiring, and lead dress must conform to the original layout upon completion of repairs.

In some instances redundant circuitry is incorporated for additional circuit protection and X -radiation protection. Special circuits are also used to prevent shock and fire hazard. The letter X in the schematic, parts list, and the component views designate special critical safety components. These components should be replaced only with components identical to the original component.

Table 5-1
Electronic Parts

CIRCUIT		C319
REFERENCE	C320	
DESIGNATOR	DESCRIPTION	C321
	C322	
Capacitors		C323
C201	Capacitor, $22 \mu \mathrm{~F}, 35$ volts, electrolytic	C324
C202	Capacitor, $.01 \mu \mathrm{~F}$, ceramic disc	C 325
C203	Capacitor, $100 \mu \mathrm{~F}, 16$ volts, electrolytic	C 401
C204	Capacitor, $47 \mu \mathrm{~F}, 25$ volts, electrolytic	C 402
C205	Capacitor, $47 \mu \mathrm{~F}, 25$ volts, electrolytic	

Capacitor, $10 \mu \mathrm{~F}, 35$ volts, electrolytic Capacitor, $22 \mu \mathrm{~F}, 35$ volts, electrolytic Capacitor, $22 \mu \mathrm{~F}, 35$ volts, electrolytic Capacitor, $100 \mu \mathrm{~F}, 16$ volts, electrolytic Capacitor, $100 \mu \mathrm{~F}, 16$ volts, electrolytic

Capacitor, $2.2 \mu \mathrm{~F}, 250$ volts, electrolytic
Capacitor, $.033 \mu \mathrm{~F}$
Capacitor, $.033 \mu \mathrm{~F}, 50$ volts
Capacitor, $1 \mu \mathrm{~F}, 50$ volts, electrolytic
Capacitor, 100 pF , ceramic disc
Capacitor, 680 pF , ceramic disc
Capacitor, 150 pF , ceramic disc Capacitor, $1.5 \mu \mathrm{~F}, 35$ volts, tantalum Capacitor, 4700 pF , ceramic disc Capacitor, $330 \mu \mathrm{~F}, 16$ volts

Capacitor, 180 pF, ceramic disc Capacitor, $100 \mu \mathrm{~F}, 50$ volts, electrolytic Capacitor, $10 \mu \mathrm{~F}, 35$ volts, electrolytic Capacitor, $10 \mu \mathrm{~F}, 16$ volts, electrolytic
Capacitor, $.027 \mu \mathrm{~F}, 250$ volts
Capacitor, $4.7 \mu \mathrm{~F}, 160$ volts, electrolytic Capacitor, $220 \mu \mathrm{~F}, 50$ volts, electrolytic Capacitor, $3.3 \mu \mathrm{~F}, 160$ volts, electrolytic Capacitor, $4.7 \mu \mathrm{~F}, 50$ volts, electrolytic Capacitor, $10 \mu \mathrm{~F}, 35$ volts, electrolytic, identified as C308, next to J30

Capacitor, 4700 pF , ceramic disc
Capacitor, $.047 \mu \mathrm{~F}, 100$ volts
Capacitor, $4.7 \mu \mathrm{~F}$, 50 volts, electrolytic Capacitor, $47 \mu \mathrm{~F}, 50$ volts, electrolytic Not used

Capacitor, $10 \mu \mathrm{~F}, 35$ volts, electrolytic Capacitor, $100 \mu \mathrm{~F}, 16$ volts, electrolytic Capacitor, $2.2 \mu \mathrm{~F}, 50$ volts, electrolytic Not used
Capacitor, $1 \mu \mathrm{~F}, 50$ volts, electrolytic

C403	Capacitor, $22 \mu \mathrm{~F}, 16$ volts, electrolytic	C482
C404	Capacitor, $.015 \mu \mathrm{~F}$	C483
C405	Capacitor, $.015 \mu \mathrm{~F}$	C484
C406	Capacitor, $0001 \mu \mathrm{~F}$	C501
C407	Capacitor, . $0047 \mu \mathrm{~F}$	C502
C408	Capacitor, $.027 \mu \mathrm{~F}$	C503
C409	Capacitor, $47 \mu \mathrm{~F}, 16$ volts, electrolytic	C504
C410	Capacitor, . $0068 \mu \mathrm{~F}$	C505
C411	Capacitor, 100 pF , ceramic disc	C506
C412	Capacitor, $1 \mu \mathrm{~F}, 50$ volts, electrolytic	C541
C413	Capacitor, 4700 pF , ceramic disc	C542
C414	Capacitor, $.0095 \mu \mathrm{~F}, 1600$ volts	C543
C415	Capacitor, $.1 \mu \mathrm{~F}, 250$ volts	C544
C416	Capacitor, $22 \mu \mathrm{~F}, 100$ volts, electrolytic	C544
C417	Capacitor, $1 \mu \mathrm{~F}, 100$ volts	C545
C418	Capacitor, $2.7 \mu \mathrm{~F}, 250$ volts	
C419	Capacitor, $22 \mu \mathrm{~F}, 160$ volts, electrolytic	C546
C420	Capacitor, 100 pF , ceramic disc	C571
C421	Capacitor, $1 \mu \mathrm{~F}, 50$ volts, electrolytic	C572
C422	Capacitor, . $022 \mu \mathrm{~F}, 250$ volts	$\begin{aligned} & \mathrm{C} 573 \\ & \mathrm{C} 574 \end{aligned}$
C423	Capacitor, 4700 pF , ceramic disc	
C424	Capacitor, $47 \mu \mathrm{~F}, 200$ volts, electrolytic	C575
C425	Capacitor, $2.2 \mu \mathrm{~F}, 250$ volts	C576
C426	Capacitor, . $0022 \mu \mathrm{~F}, 1600$ volts	C901
C427	Capacitor, . $47 \mu \mathrm{~F}, 100$ volts	C902
C428	Capacitor, $.01 \mu \mathrm{~F}$, ceramic disc	
C430	Capacitor, 2200 pF	
C431	Capacitor, $.1 \mu \mathrm{~F}, 100$ volts	D201
C432	Capacitor, $22 \mu \mathrm{~F}, 50$ volts, electrolytic	D202
C433	Not used	D302
C434	Not used	D304
C435	Capacitor, $47 \mu \mathrm{~F}, 35$ volts, electrolytic	
C436	Capacitor, $.22 \mu \mathrm{~F}, 50$ volts	D305
C443	Capacitor, . $0033 \mu \mathrm{~F}, 600$ volts	D307
C481	Capacitor, 330 pF , ceramic disc	D308
		D309

Capacitor, 82 pF	
	Capacitor, $1 \mu \mathrm{~F}, 50$ volts, electrolytic
	Capacitor, $1 \mu \mathrm{~F}, 50$ volts, electrolytic
	Capacitor, . $01 \mu \mathrm{~F}$, ceramic disc
	Capacitor, $.01 \mu \mathrm{~F}$, ceramic disc
	Capacitor, . $022 \mu \mathrm{~F}$
Capacitor, $22 \mu \mathrm{~F}, 35$ volts, electrolytic	
Capacitor, $.033 \mu \mathrm{~F}, 250$ volts	
	Capacitor, $.01 \mu \mathrm{~F}$, ceramic disc
Capacitor, $.01 \mu \mathrm{~F}$, ceramic disc	
	Capacitor, $10 \mu \mathrm{~F}, 35$ volts, electrolytic
Capacitor, . $022 \mu \mathrm{~F}$	
Capacitor, $.022 \mu \mathrm{~F}, 50$ volts Capacitor, $22 \mu \mathrm{~F}, 35$ volts, electrolytic	
Capacitor, $.033 \mu \mathrm{~F}$ Capacitor, $.01 \mu \mathrm{~F}$, ceramic disc Capacitor, $.01 \mu \mathrm{~F}$, ceramic disc Capacitor, $10 \mu \mathrm{~F}, 35$ volts, electrolytic Capacitor, $.022 \mu \mathrm{~F}$	
Capacitor, $22 \mu \mathrm{~F}, 35$ volts, electrolytic Capacitor, $.033 \mu \mathrm{~F}$ Capacitor, $.022 \mu \mathrm{~F}$ Capacitor, 330 pF	
Diode, 1N4148 or 1S2076	
Diode, 1S2076	
Diode, 1N4148 or 1S2076	
Diode, 1N4148 or 1S2076	
Diode, V09C	
Diode, V09C	
Diode, Zener, HZ-11A2	
Diode, 1S2076	
Diode, Zener, HZ-6C2	
Diode, 1N4148 or 1S2076	

D402	Diode, 1N4148 or 1 S 2076	Q206
D402	Diode, 1N4148 or 1S2076	Q207
D403	Diode, 1N4148 or 1S2076	Q208
D404	Diode, 1N4148 or 1S2076	Q209
D405	Diode, Zener, HZ-12A1	Q210
D406	Diode, RGP10G	Q211
D406	Diode, V06E	Q212
D407	Diode, RGP15M	Q301
D408	Diode, RGP10G	Q302
D409	Diode, RGP10G	Q303
D410	Diode, RGP10G	Q304
D411	Diode, RGP10G	Q305
D412	Diode, RGP10G	Q401
D413	Diode, RGP15M	Q402
D414	Diode, RGP10G	Q403
D415	Diode, Zener, HZ-5C2 or 05Z5-1X	Q404
D416	Diode, 1N4148 or 1S2076	Q405
D417	Diode, 1N4148 or 1S2076	Q406
D501	Diode, 1N4148 or 1S2076	Q407
D502	Diode, 1N4148 or 1S2076	Q408
D541	Diode, 1N4148 or 1S2076	Q409
D542	Diode, 1N4148 or 1S2076	Q410
D571	Diode, 1N4148 or 1S2076	Q411
D572	Diode, 1N4148 or 1S2076	Q412
		Q413
Inductors		Q501
L301	Coil, air core	Q502
L401	Transformer, TCH-141	Q503
L402	Choke, horizontal linearity, TLH-140	Q504
L403	Coil, iron core, TCH-139	Q505
L404	Choke, iron core, TSH-138	
		Q506
		Q541
ICs and Transistors		Q542
Q201	IC, 74S472	Q543
Q202	IC, 74LS86	Q544
Q203	IC, LM324 or HA17324	
Q204	Transistor, BC237B	
Q205	Transistor, BC307B	

Transistor, BC237B
Transistor, BC237B
Transistor, BC237B
Transistor, BC237B
Transistor, BC237B
IC, regulator, 7805
IC, 74LS05
Transistor, 2SC1921
Transistor, 2SC1138
Transistor, 2SB861C
IC, LM324 or HA17324
IC, HD14053BP or TC4053BP
IC, HA11235
Transistor, 2SD667C
Transistor, 2SD1094
Transistor, 2SD667C
Transistor, 2SB856
Transistor, 2SD667C
Transistor, BU208
Transistor, 2SC2898
IC, LM324 or HA17324
Transistor, 2SC458
Transistor, 2SA844E
IC, HD14053BP or TC4053BP Transistor, 2SC458

Transistor, 2N2396 or 2SC641K Transistor, 2N2396 or 2SC641K Transistor, BC237B
Transistor, 2SC1507 or 2SC1514 Transistor, 2N2396 or 2SC1906

Transistor, 2SC1507 or 2SC1514
Transistor, 2N2396 or 2SC641K
Transistor, 2N2396 or 2SC641K
Transistor, BC237B
Transistor, 2SC1507 or 2SC1514

Q545	Transistor, 2N2396 or 2SC1906	R228
Q546	Transistor, 2SC1507 or 2SC1514	R229
Q571	Transistor, 2N2396 or 2SC641K	R302
Q572	Transistor, 2N2396 or 2SC641K	R304
Q573	Transistor, BC237B	R305
Q574	Transistor, 2SC1507 or 2SC1514	R306
Q575	Transistor, 2N2396 or 2SC1906	R307
Q576	Transistor, 2SC1507 or 2SC1514	R309
		R310
		R312
Resistors		
R202	Resistor, $10 \mathrm{k} \Omega, 1 / 4$ watt, 5%	R313
R203	Resistor, $10 \mathrm{k} \Omega, 1 / 4$ watt, 5%	R314
R204	Resistor, $22 \mathrm{k} \Omega$	R315
R205	Resistor, $1.2 \mathrm{k} \Omega, 1 / 4$ watt, 5%	R316
R206	Resistor, $3.3 \mathrm{k} \Omega$	R317
R207	Resistor, $5.6 \mathrm{k} \Omega$	R318
R208	Control, $10 \mathrm{k} \Omega$, brightness	R319
R209	Control, $10 \mathrm{k} \Omega$, contrast	R320
R210	Resistor, $56 \mathrm{k} \Omega$	R321
R211	Resistor, 33Ω	R322
R212	Resistor, $10 \mathrm{k} \Omega, 1 / 4$ watt, 5%	R323
R213	Resistor, $5.6 \mathrm{k} \Omega$	R324
R214	Resistor, 33Ω	R325
R215	Resistor, $2.2 \mathrm{k} \Omega$	R326
R216	Resistor, $2.2 \mathrm{k} \Omega$	R327
R217	Resistor, $2.2 \mathrm{k} \Omega$	R328
R218	Resistor, $2.2 \mathrm{k} \Omega$	R329
R219	Resistor, $2.2 \mathrm{k} \Omega$	R330
R220	Resistor, $2.2 \mathrm{k} \Omega$	R331
R221	Resistor, 33Ω	R332
R223	Resistor, 820Ω	R333
R224	Resistor, $1.5 \mathrm{k} \Omega, 1 / 4$ watt, 5%	R334
R225	Resistor, $1 \mathrm{k} \Omega$	R335
R226	Resistor, $1.5 \mathrm{k} \Omega, 1 / 4$ watt, 5%	R336
R227	Resistor, 33Ω, 1/2 watt	R337

Resistor, $33 \Omega, 1 / 2$ watt
Resistor, $1.2 \mathrm{k} \Omega, 1 / 4$ watt, 5%
Resistor, 470Ω
Resistor, $2 \mathrm{k} \Omega$
Resistor, $15 \mathrm{k} \Omega$
Control, dual, $1 \mathrm{k} \Omega-1 \mathrm{k} \Omega$
Resistor, $10 \mathrm{k} \Omega, 1 / 4$ watt, 5%
Control, $5 \mathrm{k} \Omega$
Resistor, $27 \mathrm{k} \Omega$
Resistor, 120Ω
Resistor, $11 \mathrm{k} \Omega$
Resistor, $9.1 \mathrm{k} \Omega$
Resistor, $1.2 \mathrm{k} \Omega$, $1 / 4 \mathrm{watt}, 5 \%$ Resistor, $1.2 \mathrm{k} \Omega, 1 / 4$ watt, 5%
Resistor, 75Ω
Resistor, $1.5 \Omega, 1 / 2$ watt, 5%
Resistor, $10 \Omega, 1$ watt, 5%
Thermistor, 2.2Ω, 1 watt
Resistor, 2.0Ω
Resistor, 4.7Ω
Resistor, $33 \mathrm{k} \Omega$
Resistor, $10 \mathrm{k} \Omega, 1 / 4$ watt, 5%
Resistor, 120Ω, 2 watts
Control, $10 \mathrm{k} \Omega, 1 / 2$ watt
Resistor, 1 k Ω, $1 / 2$ watt
Resistor, $6.8 \mathrm{k} \Omega$
Resistor, $1.2 \mathrm{k} \Omega, 1 / 4$ watt, 5% Resistor, $100 \mathrm{k} \Omega, 1 / 4$ watt, 5% Resistor, $1 \mathrm{M} \Omega$
Resistor, $10 \mathrm{k} \Omega$, $1 / 4$ watt, 5%
Control, $10 \mathrm{k} \Omega$, E-W APL
Resistor, $10 \mathrm{k} \Omega$, $1 / 4$ watt, 5%
Resistor, $100 \mathrm{k} \Omega, 1 / 4$ watt, 5%
Resistor, $100 \mathrm{k} \Omega, 1 / 4$ watt, 5%
Resistor, $1 \mathrm{M} \Omega$

R338	Resistor, 820Ω	R433
R339	Resistor, $10 \mathrm{k} \Omega, 1 / 4$ watt, 5%	R434
R340	Resistor, $82 \mathrm{k} \Omega$	R435
R341	Resistor, 1 k $\Omega, 1 / 2$ watt, 5%	R436
R401	Resistor, $2.4 \mathrm{k} \Omega$, 3 watts	R437
R402	Resistor, $6.8 \mathrm{k} \Omega$	R438
R403	Resistor, $68 \mathrm{k} \Omega$	R439
R404	Resistor, $6.8 \mathrm{k} \Omega$	R440
R405	Resistor, $5.6 \mathrm{k} \Omega$	R441
R406	Resistor, $5.6 \mathrm{k} \Omega$	R442
R407	Resistor, $5.6 \mathrm{k} \Omega$	R443
R408	Resistor, $2.4 \mathrm{k} \Omega$	R444
R409	Control, $5 \mathrm{k} \Omega$, Frequency 1	R445
R410	Resistor, 470Ω	R446
R411	Resistor, $22 \mathrm{k} \Omega$	R447
R412	Resistor, $1 \mathrm{k} \Omega, 1 / 4 \mathrm{watt}, 5 \%$	R448
R413	Control, $10 \mathrm{k} \Omega$, Horizontal phase 1	R449
R415	Resistor, $1.5 \mathrm{k} \Omega$, $1 / 4$ watt, 5%	R450
R416	Resistor, $4.7 \mathrm{k} \Omega$	R451
R417	Resistor, $1 \mathrm{k} \Omega$	R452
R418	Resistor, 620Ω	R453
R419	Resistor, $1.5 \mathrm{k} \Omega, 1 / 4$ watt, 5%	R454
R420	Resistor, $270 \Omega, 1 / 2$ watt, 5%	R455
R421	Resistor, $100 \Omega, 1 / 4$ watt, 5%	R456
R422	Resistor, $2.2 \mathrm{k} \Omega, 1 / 4$ watt, 5%	R457
R423	Resistor, $2.2 \mathrm{k} \Omega$, $1 / 4$ watt, 5%	
R424	Resistor, 330Ω, $1 / 4$ watt, 5%	R459
R425	Resistor, 220Ω, 1/2 watt, 5\%	R463
R426	Resistor, 100Ω, 1/4 watt, 5\%	R466
R427	Resistor, $56 \mathrm{k} \Omega$	R467
R428	Resistor, $510 \Omega, 1$ watt	R468
R429	Resistor, $100 \mathrm{k} \Omega, 1 / 4$ watt, 5%	R469
R430	Resistor, $3.3 \mathrm{k} \Omega$, $1 / 4$ watt, 5%	R473
R431	Resistor, $100 \mathrm{k} \Omega, 1 / 4$ watt, 5%	R481
R432	Resistor, $1 \mathrm{k} \Omega$, $1 / 4$ watt, 5%	R482

R483	Resistor, $3.9 \mathrm{k} \Omega$	R543
R484	Resistor, $15 \mathrm{k} \Omega$	R544
R485	Resistor, $1 \mathrm{k} \Omega$	R545
R486	Resistor, $5.6 \mathrm{k} \Omega$	R546
R486	Resistor, $680 \mathrm{k} \Omega$	R547
R493	Control, $5 \mathrm{k} \Omega$	R548
R501	Resistor, 680Ω	R549
R502	Resistor, 680Ω	R550
R503	Resistor, $1.2 \mathrm{k} \Omega, 1 / 4 \mathrm{watt}, 5 \%$	R551
R504	Resistor, $1.2 \mathrm{k} \Omega, 1 / 4$ watt, 5%	R552
R505	Resistor, $100 \Omega, 1 / 4$ watt, 5%	R553
R506	Resistor, 100Ω, $1 / 4$ watt, 5%	R554
R507	Resistor, 470Ω	R555
R508	Resistor, 470Ω	R556
R509	Resistor, $1.5 \mathrm{k} \Omega$, $1 / 4 \mathrm{watt}, 5 \%$	R557
R510	Resistor, $1.5 \mathrm{k} \Omega$, $1 / 4 \mathrm{watt}, 5 \%$	R558
R511	Resistor, 470Ω	R559
R512	Resistor, 470Ω	R560
R513	Resistor, $1 \mathrm{k} \Omega$	R561
R514	Resistor, $1 \mathrm{k} \Omega$	R562
R515	Resistor, 560Ω	R563
R516	Resistor, $3.3 \mathrm{k} \Omega$	R564
R517	Resistor, 820Ω	R565
R518	Resistor, $2.7 \mathrm{k} \Omega$, 2 watts	R556
R519	Resistor, $2.7 \mathrm{k} \Omega$, 2 watts	R567
R520	Resistor, $6.8 \mathrm{k} \Omega$, 2 watts	R571
R521	Resistor, $6.8 \mathrm{k} \Omega$, 2 watts	R572
R522	Resistor, $330 \Omega, 1 / 4$ watt, 5%	R573
R523	Control, 500Ω, red cutoff	R574
R524	Resistor, $100 \Omega, 1 / 4$ watt, 5%	R575
R525	Resistor, $68 \Omega, 1 / 4$ watt, 5%	R576
R526	Control, $2.2 \mathrm{k} \Omega$	R577
R527	Control, $2.2 \mathrm{k} \Omega$	R578
R541	Resistor, 680Ω	R579
R542	Resistor, 680Ω	R580

Resistor, $1.2 \mathrm{k} \Omega, 1 / 4$ watt, 5% Resistor, $1.2 \mathrm{k} \Omega, 1 / 4$ watt, 5%
Resistor, $100 \Omega, 1 / 4$ watt, 5%
Resistor, 100Ω, $1 / 4$ watt, 5%
Resistor, 470Ω
Resistor, 470Ω
Resistor, $1.5 \mathrm{k} \Omega$, $1 / 4$ watt, 5%
Resistor, $1.5 \mathrm{k} \Omega, 1 / 4$ watt, 5%
Resistor, 470Ω
Resistor, 470Ω
Resistor, $1 \mathrm{k} \Omega$
Resistor, $1 \mathrm{k} \Omega$
Resistor, 560Ω
Resistor, $3.3 \mathrm{k} \Omega$
Resistor, 820Ω
Resistor, $2.7 \mathrm{k} \Omega$, 2 watts
Resistor, $2.7 \mathrm{k} \Omega$, 2 watts
Resistor, $6.8 \mathrm{k} \Omega$, 2 watts
Resistor, $6.8 \mathrm{k} \Omega$, 2 watts
Resistor, $300 \Omega, 1 / 4$ watt, 5%
Control, 500Ω, green cutoff
Resistor, $100 \Omega, 1 / 4$ watt, 5%
Resistor, 68Ω
Control, $2.2 \mathrm{k} \Omega$
Control, $2.2 \mathrm{k} \Omega$
Resistor, 680Ω
Resistor, 680Ω
Resistor, $1.2 \mathrm{k} \Omega, 1 / 4$ watt, 5%
Resistor, $1.2 \mathrm{k} \Omega, 1 / 4$ watt, 5%
Resistor, $100 \Omega, 1 / 4$ watt, 5%
Resistor, $100 \Omega, 1 / 4$ watt, 5%
Resistor, 470Ω
Resistor, 470Ω
Resistor, $1.5 \mathrm{k} \Omega, 1 / 4$ watt, 5%
Resistor, 1.5 k $\Omega, 1 / 4$ watt, 5%

R581	Resistor, 475Ω	R901	Resistor, $330 \Omega, 1 / 2$ watt, 5%
R582	Resistor, 475Ω	R902	Resistor, $330 \Omega, 1 / 2$ watt, 5%
R583	Resistor, $178 \mathrm{k} \Omega$	R903	Resistor, $330 \Omega, 1 / 2$ watt, 5%
R584	Resistor, 178Ω	R904	Resistor, 1 k $\Omega, 1 / 2$ watt, 5%
R585	Resistor, 560Ω	R905	Resistor, $150 \mathrm{k} \Omega, 1 / 4 \mathrm{watt}, 2 \%$
R586	Resistor, $3.3 \mathrm{k} \Omega$	R906	Resistor, $330 \mathrm{k} \Omega, 1 / 2$ watt, 5%
R587	Resistor, 820Ω	R907	Control, $10 \mathrm{k} \Omega$
R588	Resistor, $27 \mathrm{k} \Omega$, 2 watts		
R589	Resistor, $27 \mathrm{k} \Omega$, 2 watts		
R590	Resistor, $6.8 \mathrm{k} \Omega$, 2 watts	Trans	
		T402	Transformer, TLN-125A
R591	Resistor, $6.8 \mathrm{k} \Omega$, 2 watts	T403	Transformer, TFB-176, flyback
R592	Resistor, $330 \Omega, 1 / 4$ watt, 5%	T408	Transformer, TLN-125A
R593	Control, 500Ω, blue cutoff		
R594	Resistor, 100Ω, $1 / 4$ watt, 5%		
R595	Resistor, $68 \Omega, 1 / 4$ watt, 5%	Misce	
		CRT	Cathode-Ray Tube, 30×66, M $34 J$ JU
		S201	Switch, green-normal, amber selection

Figure 5-1 Part 1
Monitor Schematic

Figure 5-1 Part 2
Monitor Schematic

[^0]: Copyright © 1986 by Zenith Data Systems Corporation
 Printed in the United States of America
 Zenith Data Systems Corporation
 St. Joseph, Michigan 49085

[^1]: 10 REM clear screen
 20 CLS
 30 REM produce color bar
 40 LINE $(0,0)-(79,106), 0$, BF
 50 LINE $(80,0)-(159,106), 1, \mathrm{BF}$
 60 LINE $(160,0)-(239,106), 4$, BF
 70 LINE $(240,0)-(319,106), 5, \mathrm{BF}$
 80 LINE $(320,0)-(399,106), 2$, BF
 $90 \operatorname{LINE}(400,0)-(479,106), 3, \mathrm{BF}$
 100 LINE $(480,0)-(599,106), 6$, BF
 $110 \operatorname{LINE}(560,0)-(639,106), 7, \mathrm{BF}$
 120 REM label bars
 130 LOCATE 13, 5
 140 PRINT TAB (5) ; "BLACK"; TAB (15) ;"BLUE"; TAB (25);"RED";
 150 PRINT TAB (35);"MAGENTA"; TAB (45);"GREEN"; TAB (55);"CYAN";
 160 PRINT TAB (65);"YELLOW"; TAB (75);"WHITE
 170 REM end of program
 180 END

