SM-ZVM-134

 Color Monitor

 Color Monitor}

Service Manual

ZEMTH $\left\lvert\, \begin{aligned} & \text { data } \\ & \text { Systems }\end{aligned}\right.$

CAUTIONS . . . WARNINGS

- When you are servicing the ZVM-134 Monitor, under no circumstances should you alter or modify its design without permission from Zenith Data System.
- Replace all components with the original parts listed in Replacement Parts List in this Manual.
- The CRT uses integral implosion protection.
- The yoke is permanently bonded to the CRT. Do not attempt to separate the yoke from the neck of the CRT.

NOTE: Reference to Hot Ground and Cold Ground are made throughout the text.

Hot Ground is an AC hot ground. It is taken from the metal plate located on the right side of the monitor that holds the sweep assembly together.

Cold Ground is a DC cold ground. It is taken from the main chassis across the top of the monitor.

Discharge the high voltage lead going to the anode of the CRT. One method of discharging it is to use a screwdriver and a $12^{\prime \prime}$ jumper wire with an alligator clip on each end. Clip one alligator clip to the chassis or to the DAG connector on the CRT, and place the other one on your screwdriver. Then slide the end of the screwdriver under the high voltage cap at the anode of the CRT. Refer to the illustration below.

We recommend that you use an isolation transformer when you are working on this Monitor.

Illustration 1
High Voltage lead discharge

Table of Contents

INTRODUCTION 1-1
SPECIFICATIONS 2-1
INSTALLATION AND START UP 3-1
Location 3-1
Cable Description 3-1
Cable Connection 3-3
Green/White Switch 3-3
On-Off Switch 3-4
THEORY OF OPERATION 4-1
Input Voltage 4-1
Degaussing Coil 4-1
Horizontal Output Transistor 4-1
Modules 4-2
Main Board 4-2
Sweep Assembly 4-2
Video Output Board 4-2
RGB Input Signal 4-2
DISASSEMBLY 5-1
Back Cover 5-1
Video Output Board 5-2
Main Board 5-3
Sweep Module and High Voltage Section 5-4
CRT 5-6
On-Off Switch 5-8
SERVICE PROCEDURES 6-1
Quick Checks 6-1
Conditions Symptoms and Checks 6-2
Adjustments 6-3
Measurements 6-16
REPLACEMENT PARTS LIST 7-1
Exploded View 7-1
Horizontal Width Sweep Assembly 7-3
Main Board 7-4
CIRCUIT BOARD X-RAYS VIEWS
fold-out from 8-1
SCHEMATIC DIAGRAMS fold-in

Introduction

The ZVM-134 is a high resolution Color Monitor which accepts direct RGB video inputs, displays twenty-five 80 -character lines, has 20 MHz bandwidth and 20 ns rise time, and uses modular chassis design for ease of service.

This Monitor is certified to comply with the limits for a class B computing device pursuant to subpart J of part 15 of the FCC rules.

Service of the ZVM-134 is to board level. When you determine that a circuit board is at fault, it must be replaced. Return the defective board to your Ze nith Data Systems Distributor.

Tools and test equipment required for servicing the ZVM-134 monitor:

- $1 / 4^{\prime \prime}$ nut driver
- $1 / 4^{\prime \prime}$ long shank nut driver
- $1 / 4^{\prime \prime}$ flat screwdriver
- Needle-nose pliers
- Digital voltmeter
- Oscilloscope
- Isolation transformer
- Software - ZDOS with VMEMTEST
- ZBASIC

Specifications

Operating Voltage	120 VAC 60 Hz . "E" version: 240 VAC, 50 Hz .
Operating Current	. 87 Amps maximum.
Normal Power	69 Watts.
Nominal High Voltage	33 kV .
Fuse Protection	4 Amp, type FX3201.
Input	DB-15 type connector. RGB signals - TTL positive (Analog, 0-5 V). Composite sync - TTL positive or negative (Analog, 1-5 V). Horiz sync - TTL positive or negative (Analog, 1-5 V). Vert sync - TTL Positive or negative (Analog, 1-5 V). Ground.
CRT	$13^{\prime \prime}, 90$ degree, .43 mm fine pitch dot mask. 26 kV at 0 beam. $450 \mu \mathrm{~A}$ max beam current. 100 volt cutoff. Internal magnetic shield. .7 mm max convergence error. Sealed system tube, yoke, beam-bender.
Pixel Display	640×250.
Color/Monochrome Display	Green/White switch.
Size .	$13.5{ }^{\prime \prime} \mathrm{H} \times 20^{\prime \prime} \mathrm{W} \times 15^{\prime \prime} \mathrm{D}$

Zenith Data Systems reserves the right to discontinue products and to change specifications at any time without incurring any obligation to incorporate new features in products previously sold.

Installation and Start Up

Abstract

The ZVM-134 Monitor should be located near an AC power source, and in an area which will provide proper ventilation. There are vents on the bottom, back, and top of the cabinet which permit air to flow through the cabinet, keeping the components cool. Be sure these vents are not blocked.

CABLE DESCRIPTION

The following two RGB cables are available for the ZVM-134 Monitor.

CABLE	COMPUTER
ZVM-134-1	Z-100 family of computers
ZVM-134-2	IBM
ZVM-134-3	Apple

The connector pinout for the RGB cable is as follows. Refer to Figure 3-1.

Figure 3-1
Connector pinout

NOTE: Composite sync can be used. However, negative composite sync must be applied to both pins 1 and 9 , or positive composite sync must be applied to both pins 2 and 4 . This will require a modified cabie.教

Installation and Start Up

NOTE: Composite sync can be used. However, negative composite sync must be applied to both pins 1 and 9 , or positive composite sync must be applied to both pins 2 and 4. This will require a modified cable.
The connector pinout for the RGB cable is as follows. Refer to Figure 3-1.

Figure 3-1
Connector pinout

CABLE CONNECTION

Refer to Figure 3-2 and connect your RGB cable to J9, located at the rear of the Z-100 Computer. Connect the other end of the RGB cable to the back of the ZVM-134 Monitor.

ON-OFF SWITCH

With the Monitor plugged into a power source and the RGB cable properly connected, turn the On-Off switch, located on the front panel, clockwise to the On position.

GREEN/WHITE SWITCH

Position the rear panel Green/White switch to White if you want a color display, or to GREEN if you want

Theory of Operation

Refer to the fold-in schematic diagrams when reading the following section.

INPUT VOLTAGE

The input line voltage enters the main module at connector 3R8, where it goes through a line fuse and an LCI (line-conducted interference) choke. The LCI prevents monitor-generated noises from feeding back into the AC line.

Line voltage is applied across the bridge rectifier, which is referenced to hot (AC) ground. Hot ground is considered as the hot part of the chassis. (Use an isolation transformer when you are working on this Monitor.) The output of the bridge rectifier then goes through a pie-type filter, where it supplies power to various circuits.

DEGAUSSING COIL

Any external magnetic force may magnetize the mask of the CRT. Therefore, it becomes necessary to degauss the CRT every time the Monitor is turned on. The CRT is degaussed by the line voltage which is applied to a coil wrapped around the the tube.

The degaussing circuit includes thermistor R3245, which is located across the AC line. Due to the positive temperature coefficient on the thermistor, its resistance is very low when the Monitor is off. When the Monitor is turned on and current begins to flow through the thermistor, the thermistor heats up, and
its resistance increases to several megohms. This increased resistance decreases the current through diodes CR3210 and CR3211, which causes the degaussing coil to become inactive.

HORIZONTAL OUTPUT TRANSISTOR

When the Monitor is turned on, the first voltage to come up in the sweep module is the 150 VDC supply. This is the B + voltage for the H.O.T. (horizontal output transistor).

In order for the power supply system to work, the horizontal oscillator must be running so that it can drive the H.O.T. and other voltage pulses from the sweep assembly.

Transformer T3201 on the main board provides the 26 VAC SU and 12 VAC SU (SU = start up) voltages necessary to start the oscillator running. At start up, these voltages are closer to $12-15$ VAC and 6-8 VAC respectively.

These voltages are applied to various points on the sync processor chip to start the horizontal drive oscillator running. When the oscillator is running, the horizontal drive output is generated. You can measure this output drive at pin 5 of sync processor IC3401, located on the main board.

When you are taking measurements from the various supplies, we recommend that you sync-lock the Monitor to a signal source.

MODULES

The ZVM-134 consists of three primary modules having various sub-assemblies:

- Main board
- Video output board
- Sweep assembly

Main Board

The main board's primary function is to generate horizontal and vertical drive outputs for the scan signals.

All sync processing uses the sync processor IC (\#221-264). This processor contains horizontal and vertical oscillators, horizontal and vertical output drivers, horizontal APC, and accepts positive or negative horizontal and vertical sync.

The vertical output is on pin 14 and drives a stacked pair of transistors for vertical scan generation. The vertical output also goes to connector 3G3 on the main board which is fed to the sweep assembly.

The horizontal output on pin 5 drives the horizontal output transistor. The horizontal output also goes to connector 3G3 on the main board, and is then fed to the sweep assembly.

There are two grounds to be considered, hot ground (AC), and cold ground (DC). AC hot ground is referenced to the low side of the line. The potential on AC ground may be rather large relative to earth ground. DC ground is isolated through the horizontal driver transformer.

Sweep Assembly

The high voltage is generated by the sweep transformer, which is driven by the horizontal output transformer. The sweep transformer also has several pulse windings on it. These secondary windings generate different pulse amplitudes that are fed back to the main module, where they are rectified and filtered to provide supply voltages. The transformer is also tapped to provide G2 and focus voltage for the CRT.

Video Output

The video output board is located on the neck of the CRT. This board consist of the video output drivers that drive the CRT.

RGB INPUT SIGNAL

The RGB input signals enter the Monitor through a DB-15 connector located at the rear of the unit. Next to this connector is a two-position slide switch that is labled Green/White. When the switch is in the Green position, the red and blue signals are disabled for monochrome (green) display. When the switch is in the White position, all red, green, and blue signals will be displayed.

Disassembly

BACK COVER (Refer to Figure 5-1.)

The back cover is secured to main chassis with six screws across the rear of the cabinet. To remove the back cover:

- Remove the power cord from the power source.

Disconnect the RGB cable.
Remove the two short hex screws near the top (A).

- Remove the three long hex screws near the bottom (B).
- Remove the one short hex screw next to the RGB IN connector (C).
- Remove the back cover.

Figure 5-1
Back cover removal

VIDEO OUTPUT BOARD (Refer to Figure 5-2.)

The video output board is connected to the CRT by the socket connector.
To remove the driver board:

- Remove the back cover.
- Carefully remove the board from the CRT neck.
- Remove cable 5A2 from the video output board.
- Remove cable 5C2 from the video output board.
- Disconnect the focus voltage lead by twisting the two plastic leads about $1 / 8$ turn, and then pulling them apart.
- Disconnect the gray grounding wire that goes to the grounding strap on the CRT.

Figure 5-2
Video output board removal

MAIN BOARD (Refer to Figure 5-3.)

The main board is fastened to the chassis with two screws, four plastic tabs, and two plastic pins. To remove the main board:

- Remove the back cover.
- Remove screws A and B.
- Remove cables at 2A5, 2B5, and 3F3 on the main board.
- Remove cables at 3T8, 3S8, and 3R8.
- Remove cables at D and E.
- Remove cables at 3D3 and 3G3.
- Remove cables at 3W3 and 3V3.
- Pull out on the two tabs (X,X) in front and lift the board until it passes the notch on the tabs.
- Pull out on the two tabs on the sides and lift the board until it passes the notch on the tabs.
- Free the board from the two pins (Z), located on each side toward the rear, by pulling up on the board.
- Remove the main board.

WARNING: Due to a large power supply filter capacitor, there may be 150 VDC residual voltage present at connectors 3W3 and 3V3. Use caution in this area.

Figure 5-3
Main board removal

SWEEP MODULE and HIGH VOLTAGE SECTION (Refer to Figure 5-3 and 5-4.)

The sweep module and high voltage section are contained in one assembly. To remove this assembly:

- Remove the back cover.
- CAUTION - Before you go any further, discharge the high voltage lead going to the anode of the CRT. For discharge procedures, refer to the following paragraphs.

One method of discharging the high voltage lead is to use a screwdriver and a $12^{\prime \prime}$ jumper wire with an alligator clip on each end. Connect one alligator clip to the chassis, or to the DAG connector on the CRT, and place the other alligator clip on your screwdriver. Slide the end of the screwdriver under the rubber high voltage cap at the anode of the CRT.

You may or may not see a discharge spark depending on how much charge is built up.

- Remove the red and white focus voltage lead by twisting the two white plastic pieces $1 / 8$ turn.
- Remove connector 3F3 from the main board (green, white/blue).
- Remove connector 5X3 from the video output board (white/brown).
- Remove connector 5 H 3 from the video output board (gray,brown).
- Remove connector 3S3 from the sweep module board (red,blue).
- Remove connector 2A3 from the high voltage board (yellow,white).
- Remove the ground wire from the CRT grounding strap.
- Remove hex nut screw B.
- Remove hex nut screw C.
- Remove hex nut screw D (a long shank or short shank $1 / 4^{\prime \prime}$ nut driver is necesssary).
- Pull out the high voltage assembly.
- Remove connector 3V3 from the main board (gray,red).
- Remove connector 3W3 from the main board (white,violet,yellow).
- Remove connector 3G3 from the main board (white,violet,yellow,red,white/ yellow).
- Remove connector 3D3 from the main board (white/black, violet,white/green, orange,white/violet,white,orange).
- Remove the complete high voltage assembly.

Figure 5-4
Sweep module, high voltage assembly removal

CRT (Refer to Figure 5-5.)

The CRT is fastened to the chassis with four screws located inside the cabinet. To remove the CRT:

- Remove the back cover.
- CAUTION - Before you go any further, discharge the High Voltage lead going to the anode of the CRT. For discharge procedures, refer to the following paragraphs.

One method of discharging the high voltage lead is to use a screwdriver and a $12^{\prime \prime}$ jumper wire with an alligator clip on each end. Connect one alligator clip to the chassis, or to the DAG connector on the CRT, and place the other clip on your screwdriver. Slide the end of the screwdriver under the high voltage cap at the anode of the CRT.

You may or may not see a discharge spark depending on how much charge is built up.

- Remove the driver board from the neck of the CRT.
- Remove connector 3T8 from the main board (red,red).
- Remove connector 2A3 from the high voltage board (yellow, white).
- Remove connector 3S3 from the sweep module board (red,blue).
- Place the Monitor so the front is lying face down on a padded or protected surface.
- Remove hex nut screws A,B,C.
- Remove hex nut screw D (this nut will require a long shank nut driver).
- Carefully lift out the CRT by grasping it on its sides. Do not lift the CRT by the neck or yoke.
- Remove the degaussing coil.

Figure 5-5
CRT removal

ON-OFF SWITCH (Refer to Figure 5-6.)

The On-Off switch is fastened to a bracket which is mounted to the inside front chassis. To remove the On-Off switch:

- Remove the back cover.
- Pull the switch knob off from the front of the cabinet.
- Remove the hex nut screws (X) from the switch mounting bracket.
- Remove the large hex nut holding the switch to the bracket.

Figure 5-6
On-Off switch removal

Service Procedures

QUICK CHECKS

Make the following preliminary checks to confirm the operating condition of the Monitor.

- Check all connectors for good connections.
- Check the Green/White switch position. Refer to Page 3-2.
- Check the RGB connector for a good connection. Refer to Page 3-2.
- Check the CRT filament for filament light.
- When power is applied, check for high voltage static on the face of the CRT by rubbing your hand on the screen.

CONDITION SYMPTOMS AND CHECKS

The following list of Conditions, Symptoms, and Checks provides you with some problems you may encounter, and the most probable areas to check.

This list is not intended to be inclusive of all problems you may encounter, but rather to provide you with a systematic approach to diagnosing the problem. If you encounter a symptom not listed in this chart, analyze where the problem is located by the way the circuits relate to each other.

When you have determined the area to check, refer to the pages that follow this chart for checkout procedures, voltage measurements, and signal checks.

SYMPTOM	AREA TO CHECK
No color.	Green/White switch. Improper software.
No display.	RGB cable. 95 V test point. Refer to Page 6-4.
Out of focus.	Focus control.
Raster displayed.	Control G2.
Display will not fit properly on CRT.	P1,P2 on sweep board. Width control (LX3261). 95 V adjust (R3409).
Dead monitor.	Power cord. Fuse. Connector 3R8. Connector 3S8. On Off switch.
Green color only.	Green/White switch. Improper software.

ADJUSTMENTS

The video adjustments for the ZVM-134 are located inside the cabinet on the main board, on the high voltage board, and on the neck of the CRT. The adjustments are listed below with reference letters to help you locate them in Figures 6-1, and 6-2.

NOTE: References to Hot Ground and Cold Ground are made throughout the text.

Hot Ground is an AC hot ground. It is taken from the metal plate located on the right side of the monitor that holds the sweep assembly together.

Cold Ground is a DC cold ground. It is taken from the main chassis across the top of the monitor.

MAIN BOARD

- Horizontal Center (A)
- Horizontal Oscillator adjustment (B)
- Horizontal Oscillator test point (C)
- Red Drive (D)
- Green Drive (E)
- Blue Drive (F)
- \quad Red Cutoff (G)
- Green Cutoff (H)
- Blue Cutoff (I)
- Vertical Height (J)
- Vertical Center (K)
- $\quad 95$-volt B + adjustment (L)

Figure 6-1
Adjustments

DISPLAY/KEYBOARD TEST

If your Z-100 Computer has the diagnostic ROM (HE 444-87-5) at location U190, you may use the Display/ Keyboard Test to fill the screen.

- When the prompt appears, type "T".
- Select Keyboard Test.
- Type any character and it will fill the screen.
- Press the DELETE key to exit.

ZBASIC PROGRAM

- Boot up ZBASIC
- Enter the following program:

KEY ON
10 FOR Z = 1 TO 2000
20 PRINT "Z";
30 NEXT Z
40 GOTO 40

- The screen will be filled with Z's.

95-VOLT ADJUSTMENT — R3409 (L)

The 95 -volt $\mathrm{B}+$ adjustment is located on the main board. The test point for this voltage is located near the bottom of the horizontal sweep module. Refer to Figure 6-1 for the test point (P) and adjustment location (L).

This test point is on the hot side of the chassis. To measure the $B+$ voltage:

- Connect the monitor to the AC line through an isolation transformer.
- Connect the ground lead of your voltmeter to Hot AC Ground.
- Connect the hot lead of your voltmeter to test point P.

The voltage should be set at +95 volts, $\pm 5 \%$.

WIDTH CONTROL — LX3261 (0)

The Width control, LX3261, is located in the horizontal sweep section. Refer to Figure 6-2. This control is the fine adjustment Width control. To adjust the Width control, use either the Display/Keyboard Test or ZBASIC Program to fill the screen.

Adjust the width control until the active video is equal on both sides.

WIDTH CONTROLS - (P1 and P2)

Width controls P1 and P2 are coarse adjustment jumpers. For Heath/Zenith computers, these jumpers should be set as shown in Figure 6-1. P1 is in the upper vertical position and P2 is in the lower vertical position.

Other computers may require these jumpers to be arranged in a different order.

With both P1 and P2 in the lower vertical position, the display width is much wider and rolls off the screen when you are using a Z-100 computer.

With P1 in the upper vertical position and P2 in the lower vertical position, the display width becomes much narrower when you are using a Z-100 computer.

NOTE: If the controls are adjusted to fill the screen with active video from a Z-100 Computer, then the IBM PC display will be shifted left, and at least the first column of characters will be off the screen.

RGB CUT-OFF ADJUSTMENTS

These adjustments are easier to make in a darkened room. The RGB cut-off adjustments are located on the main board. Refer to Figure 6-1.

> Red Cutoff - R2505 (G).
> Green Cutoff - R2516 (H).
> \quad Blue Cutoff - R2527 (I).

To adjust the RGB cut-offs:

- Turn each Cutoff fully counterclockwise.
- Adjust G2 until a raster just appears.
- Adjust each Cutoff until a gray raster appears.
- Adjust G2 until the raster just disappears.

RGB DRIVE ADJUSTMENTS

To adjust the RGB drives, first create a white screen using the following procedure:

- Boot up ZBASIC.
- Enter this statement - PAINT (0, 0), 7

This statement will create a white screen. Observe the screen for red, green, or blue tints. If they are present, adjust out the color by using the appropiate Drive Adjust. Refer to Figure 6-1.

$$
\begin{array}{ll}
\quad & \text { Red Drive adjust - R2506 (D). } \\
\text { Green Drive adjust - R2517 (E). } \\
\text { Blue Drive adjust - R2528 (F). }
\end{array}
$$

VERTICAL CENTER ADJUSTMENT R2125 (K)

The Vertical Center Adjustment is located on the main board. Refer to Figure 6-1. This control is used to shift the display up or down. To adjust this control, use either the Display/Keyboard Test or ZBASIC Program to fill the screen.

Adjust the Vertical Center control until the active video display is equal on the top and bottom.

VERTICAL HEIGHT ADJUSTMENT R3418 (J)

The Vertical Height adjustment is located on the main board. Refer to Figure 6-1. This control is used to adjust the vertical size of the display. To adjust the vertical height, use either the Display/Keyboard Test or ZBASIC Program to fill the screen.

Adjust the Vertical Height control so the display is equal on the top and bottom.

HORIZONTAL CENTER ADJUSTMENT R3441 (A)

The Horizontal Center control is located on the main board. Refer to Figure 6-1. This control is used to move the display either left or to the right. To adjust the horizontal center control, use either the Display/ Keyboard Test or ZBASIC Program.

Adjust the Horizontal Center control to center the display on the screen.

HORIZONTAL OSCILLATOR ADJUSTMENT L3402 (B)

The Horizontal Oscillator adjustment is located on the main board. Refer to Figure 6-1.

To adjust the oscillator, first defeat the APC (Automatic Phase Control) loop. You accomplish this by applying +12 VDC to pin 27 of the sync processor. This will disable the horizontal oscillator to freerun. The oscillator (L3402), should then be adjusted to $15734 \pm 15 \mathrm{~Hz}$. This can be accomplished by connecting a frequency counter to pin 3 or 5 of 221264, and adjusting L3402. Another method of adjusting L3402 is to use a Z-100 and apply the RGB signals to the input of the ZVM-134. Then, adjust L3402 for zero beat of the CRT display.

HIGH VOLTAGE ASSEMBLY

- $\quad \mathrm{G} 2(\mathrm{M})$
- \quad Focus (N)
- Width adjustment - fine (O)
- $\quad 95$-volt test point (P)
- Width adjustment - coarse (P1, P2)

G2 ADJUSTMENT (M)

The G2 adjustment is located in the horizontal sweep section. Refer to Figure 6-2. Adjust G2 by first turning it up until a raster is shown. Then back it down until the raster just disappears. This adjustment works best in a darkened room.

FOCUS CONTROL (N)

The Focus control is located in the horizontal sweep section. Refer to Figure 6-2. This control sets the focus of the display. To adjust the focus, use either the Display/Keyboard Test or ZBASIC Programs to fill the screen.

Adjust the focus control for best focus at a point halfway between center and any corner of the active display area.

Figure 6-2
Adjustments

MEASUREMENTS

All voltage and signal measurements require the ZVM-134 to be sync-locked to a signal source.

Connect the monitor to the AC line through an isolation transformer.

NOTE: Reference to Hot Ground and Cold Ground are made throughout the text.

Hot Ground is an AC hot ground. It is taken from the metal plate located on the right side of the monitor that holds the sweep assembly together.

Cold Ground is a DC cold ground. It is taken from the main chassis across the top of the monitor.

MAIN BOARD MEASUREMENTS

The main board develops +150 VDC, $\mathrm{B}+$ voltage for the horizontal output transformer; and the +12 VDC and +26 VDC start up voltages required to start the oscillator running. If the oscillators do not run, there will be no high voltage or voltage pulses generated. All RGB and sync inputs are fed into the main board, where they are sent to the video driver module.

Connector locations for the main board are shown in Figure 6-3.

Figure 6-3
Main board connectors

To check out the main board, perform the following steps: (Reference your scope or meter to hot ground.)

- Measure pin 2 of connector 3V3.

If 150 volts is not present on pin 2, replace the main board.

- Measure pin 2 of connector 3F3. Reference to DC (cold) chassis ground.

If the voltage reading on pin 2 is less than +4.5 VDC , replace the main board.

- Measure pin 2 of connector 3G3.

Reference to DC (cold) chassis ground.

If the voltage on pin 2 is less than +.3 VDC, replace the main board.

- Measure pins 1,3,5, and 6 of connector 3D3. Reference to DC (cold) chassis ground.

FROM SWEEP ASSEMBLY

If the voltages listed are not present, replace the sweep assembly.

- With a high voltage probe, verify the presence of 26 kV on the anode lead to the CRT. Reference to DC (cold) chassis ground.
- If the the 26 kV is not present, replace the sweep assembly.
- Boot up ZBASIC and enter PAINT (0,0$), 7$ to apply a white field to the CRT.

With connector 5A2 disconnected from the video driver board, measure pins 2,3 , and 4. Reference to DC (cold) chassis ground.

TO VIDEO OUTPUT BOARD

If the voltages listed are not present, replace the main board.

If all the preceding voltages are present, make the following checks on the video output board.

VIDEO OUTPUT BOARD MEASUREMENTS

The video output board receives the RGB signal from connector 2A5 on the main board. The grid voltages for the CRT are received from the sweep assembly.

Connector locations for the video output board are shown in Figure 6-4.

Figure 6-4
Video output board connectors

To check the video output board, perform the following steps. (Reference your scope or meter to DC (cold) chassis ground.):

- Measure pins 3,4, and 5 of connector 5C2.

If the voltages listed are not present, replace the main board.

- With your oscilloscope, measure for RGB signals on pins 1,2 , and 3 of connector 5A2.

FROM RGB MAIN BOARD

If the RGB signals are not present, check the RGB cable. If the RGB signal is being fed to the monitor and signals at pins 1,2 and 3 are not present, replace the main board.

- Measure pin 1 of connector 5X3.

If the 275 volts is not present, replace the horizontal sweep board.

- Measure pins 1 and 2 of connector 5 H 3 .

If the 3.5 volts is not present, replace the horizontal sweep board.

SWEEP ASSEMBLY MEASUREMENTS

The sweep assembly develops high voltage and voltage pulses. It also provides G2 and focus voltage for the CRT and for the vertical and horizontal drives.

Connector locations are for the sweep assembly are shown in Figure 6-5.

Figure 6-5
Sweep assembly connectors
To check out the sweep assembly, perform the following steps (Reference your scope or meter to DC [cold] chassis ground.):

- Measure pins 1 and 2 of connector 2A3.

If the vertical hi and low signals are not present at pins 1 and 2 , replace the main board.

- Measure pins 1,2 , and 3 of connector 3R3.

If the horizontal hi signal or the horizontal drive signal are not present at pins 1 and 2 , replace the main board.

- Measure pins 1 and 2 of connector 3S3.

If the vertical and horizontal signals are not present at pins 1 and 2 , replace the main board.

Replacement Parts List

The Replacement Parts List is divided into the
"Exploded View", the "Horizontal Width Sweep "Exploded watr, the "Horizontal Width Swee

EXPLODED VIEW

The component numbers relate to the components in the exploded view.		
COMPONENT NO	$\begin{aligned} & \text { PDS } \\ & \text { PART } \\ & \hline \end{aligned}$	description
		Hande assembly
${ }_{3}$	${ }_{\substack{146-11266-36 \\ 46-1080}}$	${ }_{\substack{\text { Cabinet } \\ \text { Contort } \\ \text { conob }}}$
${ }_{5}^{4}$	- 12.7209 .03	Criss brace
${ }_{7}^{6}$	(12.7208.01	${ }_{\text {Henandil mounting bracket }}$
8	19.733 .04	Wiretie
9	A.11397	Line cord and
11	${ }^{30-1047}$	Claar plastic
13	${ }^{\text {14-1267-26 }}$	Cabinetrar
${ }_{14}^{13}$	125-19807	Strain
${ }^{14}$		${ }_{\text {coup - Cabinet back }}$
${ }_{16}^{15}$		ONOFF swich ass

component	zDS	dESCRIPTION	hardwa	
$\frac{\mathrm{NO} .}{25}$	${ }_{\text {PART }}^{\text {P2828 }}$	CRT positioning bracket CRT mounting bracketCRT, yoke, and beam bender assembly	ZDS PABT NO	DESCRIPTION
$\begin{aligned} & 26 \\ & 27 \end{aligned}$	$\begin{aligned} & 12.82080 \\ & \left.\begin{array}{l} 128000 \\ A-11161 \end{array}\right) \end{aligned}$		Washer	
28		Wire tie Degaussing coil HV and sweep assembly Cable 5A2 Cable 5C2 CRT ground strap	93-2106	Interalexexemat tooth
30			Screws	
32			114.804	$8.18 \times .500 \mathrm{hex}$ washer head
${ }_{34}^{33}$			${ }_{\substack{114.805 \\ 114.1274}}$	
				${ }_{8,10} \times .625$ hex xasher
			${ }^{114.1393 .03}$	
			114.1393.05	
			(114-139309	

HORIZONTAL WIDTH SWEEP ASSEMBLY
 (assembled part number A-10530)

The circuit component numbers relate to the compo-nents on the horizontal width sweep assembly.
CIRCUIT ZDS DESCRIPTION
COMP. NO. PART NO.
RESISTORS
CAPACITORS
C1-C4 22-6466 $530 \mathrm{pF}, 3 \mathrm{kV}, \pm 10 \%$, ceramic
INDUCTORS
L1-L2 20-4031 $120 \Omega \mathrm{H}$

MAIN BOARD
 (Assembled part number 9-227-01)

The circuit component numbers relate to the components on the main board.

$\begin{aligned} & \text { CIRCUIT } \\ & \text { COMP. NO. } \end{aligned}$	$\begin{aligned} & \text { ZDS } \\ & \text { PART NO. } \end{aligned}$	DESCRIPTION
RESISTORS		
NOTE: All resistors are $1 / 4$-watt, 5% unless specified otherwise.		
R2116	63-10235-60	330Ω
R2117	63-10235-80	2200Ω
R2118	63-10235-88	4700Ω
R2119	63-10235-54	180Ω
R2128	63-10243-66	$510 \Omega, 1$ W
R2120	63-10565-08	$2.2 \Omega, 1 / 2 \mathrm{~W}$
R2121	63-10243-52	$150 \Omega, 1 / 2 \mathrm{~W}$
R2129	63-10243-65	$510 \Omega, 1 / 2 \mathrm{~W}$
R2122	63-10243-52	$150 \Omega, 1 / 2 \mathrm{~W}$
R2125	63-9023-02	$550 \Omega, 20 \%$, potentiometer
R2126	63-10243-66	$560 \Omega, 1 / 2 \mathrm{~W}$
R2127	63-10243-69	$750 \Omega, 1 / 2 \mathrm{~W}$
R2501	63-10236-52	$2.2 \mathrm{M} \Omega$
R2502	63-10235-90	5600Ω
R2503	63-10235-58	220Ω
R2504	63-10235-69	750Ω
R2505	63-10857-27	800Ω, potentiometer, red cutoff
R2506	63-10857-27	800Ω, potentiometer, red drive
R2507	63-10235-75	1300Ω
R2508	63-10235-82	2700Ω
R2510	63-10235-48	100Ω
R2511	63-10235-67	620Ω
R2512	63-10236-52	$2.2 \mathrm{M} \Omega$
R2513	63-10235-90	5600Ω
R2514	63-10235-58	270Ω
R2515	63-10235-71	910Ω

CIRCUIT ZDS
COMP. NO. PART NO.

R2516	$63-10857-25$
R2517	$63-10857-25$

R2518
R2519
R2521
R2523
R2524
R2525
R2527
R2528
R2529
R2530
R2532
R2534
R2538
R2539
R2540
R2541
R2542
R2543
R2544
R2545
R2546
R2548
R2549
R2550
R2552
R2552
R3201
R3202
R3203
R3205
R3206
R3210
R3212
R3213
R3214
R3215
R3216

63-10235-73	1100Ω
$63-10235-82$	2700Ω
$63-10235-48$	100Ω
$63-10236-52$	$2.2 \mathrm{M} \Omega$
$63-10235-90$	5600Ω
$63-10235-58$	270Ω
$63-10857-26$	800Ω, potentiometer,
	blue cutoff
$63-10857-26$	800Ω, potentiometer,
	blue drive
$63-10235-75$	1300Ω
$63-10235-82$	2700Ω
$63-10235-48$	100Ω
$63-10235-52$	150Ω
$63-10235-48$	100Ω
$63-10235-48$	100Ω
$63-10235-48$	100Ω
$63-10235-54$	180Ω
$63-10235-53$	160Ω
$63-10235-54$	180Ω
$63-10235-54$	180Ω
$63-10235-54$	180Ω
$63-10235-53$	160Ω
$63-10235-67$	620Ω
$63-10235-67$	620Ω
$63-10235-32$	22Ω
$63-10235-32$	22Ω
$63-10235-32$	22Ω
$63-10235-59$	300Ω
$63-10235-44$	68Ω
$63-10235-52$	150Ω
$63-7781$	$820 \Omega, 1 / 2 \mathrm{~W}$
$63-10460-50$	$12 \Omega, 10 \%, 10 \mathrm{~W}$
$63-10420-31$	$2 \Omega, 2 \mathrm{~W}$
$63-10235-76$	1500Ω
$63-10235-86$	3900Ω
$63-10235-74$	1200Ω
$63-10244-38$	$680 \mathrm{k} \Omega, 1 / 2 \mathrm{~W}$
$63-10244-25$	$160 \mathrm{k} \Omega, 1 / 2 \mathrm{~W}$
6	

CIRCUIT	ZDS	DESCRIPTION	CIRCUIT		DESCRIPTION
COMP. NO.	PART NO.		COMP. NO.	PART NO.	
			R3433	63-10236-20	$100 \mathrm{k} \Omega$
R3217	63-10244-33	$360 \mathrm{k} \Omega, 1 / 2 \mathrm{~W}$	R3434	63-10236-22	$120 \mathrm{k} \Omega$
R3218	63-10235-80	2200Ω	R3435	63-10235-63	430Ω
R3219	63-10244-38	$560 \mathrm{k} \Omega, 1 / 2 \mathrm{~W}$	R3436	63-10235-72	1000Ω
R3222	63-10235-40	47Ω	R3439	63-10243-79	$2000 \Omega, 1 / 2 \mathrm{~W}$
R3231	63-9982	$1 \Omega, 2 \mathrm{~W}$	R3440	63-10235-86	3900Ω
R3233	63-10565-14	3.9Ω, 1/2 W	R3441	63-10857-02	250Ω, potentiometer,
R3234	63-10565-14	$3.9 \Omega, 1 / 2 \mathrm{~W}$			horizontal centering
R3239	63-10244-20	$100 \mathrm{k} \Omega, 1 / 2 \mathrm{~W}$	R3442	63-10235-86	3900Ω
R3241	63-8246	$4 \Omega, 10 \mathrm{~W}$	R3443	63-10235-80	2200Ω
R3244	63-10840-40	$47 \Omega, 3 \mathrm{~W}$	R3444	63-10235-60	330Ω
R3245	63-10710	Thermistor	R3445	63-10235-80	2200Ω
RX3246	63-10657-03	1.2 M $\Omega, 1 / 2 \mathrm{~W}$	R3446	63-10235-72	1000Ω
R3260	63-10243-96	$10 \mathrm{k} \Omega, 1 / 2 \mathrm{~W}$	R3451	63-10235-88	4700Ω
R3261	63-10244-24	$150 \mathrm{k} \Omega, 1 / 2 \mathrm{~W}$	R3452	63-10235-92	6800Ω
R3262	63-10235-68	680Ω	R3453	63-10235-75	1300Ω
R3401	63-10236-46	$1.2 \mathrm{M} \Omega$	R3461	63-10236	$15 \mathrm{k} \Omega$
R3402	63-10236-22	$120 \mathrm{k} \Omega$	R3462	63-10236-13	$51 \mathrm{k} \Omega$
R3403	63-10235-86	3900Ω	R3463	63-10235-72	1000Ω
R3404	63-10235-86	3900Ω	R3465	63-10235-72	1000Ω
R3405	63-10236-08	$33 \mathrm{k} \Omega$	R3466	63-10235-86	3.9Ω
R3406	63-10235-68	680Ω	R3467	63-10235-94	8.2Ω
R3407	63-10236-18	$82 \mathrm{k} \Omega$	R3468	63-10235-10	3900Ω
R3408	63-10236-04	$22 \mathrm{k} \Omega$	R3469	63-10235-72	1000Ω
R3409	63-10857-17	$100 \mathrm{k} \Omega$, potentiometer, green	$\begin{aligned} & \text { R3470 } \\ & \text { R3471 } \end{aligned}$	$\begin{aligned} & 63-10236-16 \\ & 63-10235-93 \end{aligned}$	$\begin{aligned} & 68 \mathrm{k} \Omega \\ & 7500 \Omega \end{aligned}$
R3410	63-10236-31	$300 \mathrm{k} \Omega$	R3472	63-10235-86	3900Ω
R3411	63-10236-03	$20 \mathrm{k} \Omega$	R3473	63-10235-86	3900Ω
R3412	63-10236-13	$51 \mathrm{k} \Omega$	R3474	63-10235-72	1000Ω
R3413	63-10236-07	30Ω	R3475	63-10235-72	1000Ω
R3414	63-10235-98	$12 \mathrm{k} \Omega$			
R3415	63-10236-02	$18 \mathrm{k} \Omega$			
R3417	63-10243-60	$330 \Omega, 1 / 2 \mathrm{~W}$			
R3418	63-10857-08	2000Ω, potentiometer, yellow			
R3419	63-10235-84	3300Ω			
R3420	63-10236-10	$39 \mathrm{k} \Omega$			
R3421	63-10235-73	1100Ω			
R3422	63-10243-60	$330 \Omega, 1 / 2 \mathrm{~W}$			
R3423	63-10243-60	$330 \Omega, 1 / 2 \mathrm{~W}$			
R3424	63-10235-72	1000Ω			
R3425	63-10235-88	4700Ω			
R3428	63-10235-82	2700Ω			
R3429	63-10235-76	1500Ω			
R3431	63-10235-80	2200Ω			
R3432	63-10235-79	2000Ω			

CIRCUIT COMP. NO.	$\begin{aligned} & \text { ZDS } \\ & \text { PART NO. } \end{aligned}$	DESCRIPTION	CIRCUIT COMP. NO.	$\begin{aligned} & \text { ZDS } \\ & \text { PART NO. } \end{aligned}$	DESCRIPTION
CAPACITORS			C3423	22-7613-08D	$470 \mathrm{pF}, 10 \%$, 50 V
			C3424	22-7742-10	$390 \mathrm{pF}, 10 \%$, 50 V
NOTE: All capacitors are 20\%, unless otherwise specified.			C3425	22-7742-10	. $001 \mu \mathrm{~F}, 10 \%$, 50 V
			C3426	22-7742-10	. $001 \mu \mathrm{~F}, 10 \%$, 50 V
C2101	22-7775-10A	. $0068 \mu \mathrm{~F}, 100 \mathrm{~V}$	C3427	22-7647-35C	$150 \mathrm{pF}, 10 \%$, 50 V
C2102	22-7775-24A	$0.1 \mu \mathrm{~F}, 100 \mathrm{~V}$	C3428	22-7774-12	. $01 \mu \mathrm{~F}, 10 \%, 50 \mathrm{~V}$
C2103	22-7709-09C	$100 \mu \mathrm{~F},+50-10 \%, 35 \mathrm{~V}$	C3429	22-7405-04	$4.7 \mu \mathrm{~F}, 25 \mathrm{~V}$
C2104	22-7613-24D	. $01 \mu \mathrm{~F}, 10 \%$, 50 V	C3430	22-7613-24D	. $01 \mu \mathrm{~F}, 10 \%$, 50 V
C2105	22-7390-02	. $47 \mu \mathrm{~F}, 50 \mathrm{~V}$	C3431	22-7774-16A $22-7742-06$	$.022 \mu \mathrm{~F}, 10 \%, 100 \mathrm{~V}$
C2106	22-7710-07C	$33 \mu \mathrm{~F},+50-10 \%, 50 \mathrm{~V}$	C3434	$22-7742-06$ $22-7742-10$	$470 \mu \mathrm{~F}, 10 \%, 50 \mathrm{~V}$ $.001 \mu F, 10 \%, 50 \mathrm{~V}$
C2107	22-7615-03D	. $0033 \mu \mathrm{~F},+80-10 \%, 50 \mathrm{~V}$	C3436	22-7742-10	. $001 \mu \mathrm{~F}, 10 \%$, 50 V
C2110	22-7742-10	. $001 \mu \mathrm{~F}, 10 \%$, 50 V	C3461		$.27 \mu \mathrm{~F}, 10 \%, 50 \mathrm{~V}$ $1.0 \mu \mathrm{~F}+50-10 \%, 50 \mathrm{~V}$
C2111	22-7774-17A	. $027 \mu \mathrm{~F}, 10 \%$, 100 V	C3461 C3462	$\begin{aligned} & \text { 22-7710-01C } \\ & 20-7739-09 \end{aligned}$	$1.0 \mu \mathrm{~F},+50-10 \%, 50 \mathrm{~V}$ $.0056 \mu \mathrm{~F}, 10 \%, 100 \mathrm{~V}$
C2176	22-7725	$680 \mu \mathrm{~F},+100-10 \%, 50 \mathrm{~V}$	C3463	22-7508	$47 \mu \mathrm{~F}, 35 \mathrm{~V}$
C2501	22-7621-42C	$220 \mathrm{pF}, 5 \%, 50 \mathrm{~V}$		22-7508	
C2502	22-7621-42C	$220 \mathrm{pF}, 5 \%$, 50 V			
C2503	22-7621-42C	$220 \mathrm{pF}, 5 \%$, 50 V			
C3201	22-7775-24A	$0.1 \mu \mathrm{~F}, 100 \mathrm{~V}$			
C3204	22-7603	$4.7 \mu \mathrm{~F},+100-10 \%, 315 \mathrm{~V}$	CIRCUIT	ZDS	
C3205	22-3512	$.01 \mu \mathrm{~F},+40-20 \%, 1 \mathrm{kV}$	COMP. NO.	PART NO.	
3206	22-7603-01A	$10 \mu \mathrm{~F},+100-10 \%, 315 \mathrm{~V}$			
C3207	22-7742-10	. $001 \mu \mathrm{~F}, 10 \%$, 50 V			
C3208	22-7742-10	. $001 \mu \mathrm{~F}, 10 \%$, 50 V	DIODES		
C3209	22-7395	470 pF, 5\%, 500 V			
C3234	22-7395	$470 \mathrm{pF}, 5 \%, 500 \mathrm{~V}$	CR2104	103-142-01	
C3236	22-7861-14	$2200 \mu \mathrm{~F}, 35 \mathrm{~V}$	CR2105	103-254-01	
C3246	22-7603-01A	$10 \mu \mathrm{~F},+100-10 \%, 315 \mathrm{~V}$	CR2106	103-254-01	
C3247	22-7860-12	$470 \mu \mathrm{~F}, 25 \mathrm{~V}$	CR2107	103-254-01	
C3249	22-7431-06	. $0047 \mu \mathrm{~F}$	CR2501	103-142-01	
CX3250	22-7431-06	. $0047 \mu \mathrm{~F}$	CR2502	103-142-01	
C3251	22-7811	. $001 \mu \mathrm{~F}, 10 \%$, 1 kV	CR2503	103-142-01	
C3252	22-7811	. $001 \mu \mathrm{~F}, 10 \%, 1 \mathrm{kV}$	CR3202	103-330A	
C3253	22-7811	. $001 \mu \mathrm{~F}, 10 \%$, 1 kV	CR3205	103-309-01	
C3254	22-7404-06	$22 \mu \mathrm{~F}, 16 \mathrm{~V}$	CR3206	103-254-01	
C3256	22-7508-05B	$2200 \mu \mathrm{~F},+50-10 \%$, 35 V	CR3208	103-326A	
C3257	22-7395	470 pF, 5\%, 500 V	CR3210	103-254-01	
C3401	22-7613-24D	. $01 \mu \mathrm{~F}, 10 \%$, 50 V	CR3211	103-284A	
C3402	22-7406-01	$1.0 \mu \mathrm{~F}, 35 \mathrm{~V}$	CR3214	103-284A	
C3403	22-7773-18A	. $033 \mu \mathrm{~F}, 5 \%$, 500 V	CR3217	103-326A	
C3404	22-7773-17A	. $027 \mu \mathrm{~F}, 5 \%, 100 \mathrm{~V}$	CR3219	103-330A	
C3405	22-7775-10A	. $0068 \mu \mathrm{~F}, 100 \mathrm{~V}$	CR3223	103-330A	
C3407	22-7710-01A	$1.0 \mu \mathrm{~F},+50-10 \%, 50 \mathrm{~V}$	CR3224	103-330A	
C3409	22-7709-09C	$100 \mu \mathrm{~F},+100-10 \%, 35 \mathrm{~V}$	CR3231	103-315-06A	
C3410	22-7404-06A	$22 \mu \mathrm{~F}, 16 \mathrm{~V}$	CR3232	103-315-06A	
C3411	22-7708-09	$100 \mu \mathrm{~F},+50-10 \%, 25 \mathrm{~V}$	CR3233	103-315-06A	
C3412	22-7710-01C	$1.0 \mu \mathrm{~F},+50-10 \%, 50 \mathrm{~V}$	CR3234	103-315-06A	
C3413	22-7562-32	. $47 \mu \mathrm{~F}, 5 \%, 100 \mathrm{~V}$	CR3235	103-284A	
C3414	22-7774-16A	. $022 \mu \mathrm{~F}, 10 \%$, 100 V	CR3401	103-142-01	
C3419	22-7751-39	$180 \mathrm{pF}, 5 \%$, 50 V	CR3404	103-142-01	
C3420	22-7710-01C	$1.0 \mu \mathrm{~F},+50-10 \%, 50 \mathrm{~V}$	CR3405	103-142-01	
C3421	22-7773-18B	. $033 \mu \mathrm{~F}, 5 \%, 100 \mathrm{~V}$	CR3406	103-142-01	
C3422	22-7613-24D	. $01 \mu \mathrm{~F}, 10 \%$, 50 V	CR3408	103-279-14	

CIRCUIT COMP. NO.	$\begin{aligned} & \text { ZDS } \\ & \text { PART NO. } \end{aligned}$	DESCRIPTION	CIRCUIT COMP. NO.	ZDS PART NO.
INDUCTORS			Q2501	121-1019
			Q2502	121-895
12502	20-3887-01	$1.2 \mu \mathrm{H}$	Q2503	121-1019
L2503	20-3887-01	$1.2 \mu \mathrm{H}$	Q2504	121-895
$\underline{L 2504}$	20-3887-01	$1.2 \mu \mathrm{H}$	Q2505	121-1019
L3201	20-2021	$100 \mu \mathrm{H}$	Q2506	121-895
LX3202	95-3501-01	$60 \mu \mathrm{H}$	Q2507	121-1019
L3401	20-3887-01	$1.2 \mu \mathrm{H}$	Q2509	121-1019
L3402	20-2998	$39 \mu \mathrm{H}$	Q3200	F-12737
			Q3201	121-499-01
TRANSFORMERS			Q3202	121-1034
			Q3203	121-1059
T3201	95-3558-02	Start up	Q3401	121-895
		(power transformer)	Q3401	121-966
TX3202	95-3439	LCI	Q3402	121-966
			Q3403	121-895
TRANSISTORS			Q3404	121-895
			Q3405	121-895
Q2101	F-10896			
Q2102	F-10896		SEMICON	UCTOR
Q2103	121-1019			
Q2104	121-1064		IC3401	221-175

Circuit Board X-Ray Views

NOTE: To find the PART NUMBER of a component
for the purpose of ordering a replacement part:
A. Find the circuit component number (C101 R104, etc.) on the proper X-ray View.
B. Refer to the Replacement Parts List for that circuit board. Then locate this same numbe

Adjacent to this circuit component number, you will find the ZDS PART NUMBER.

MAIN BOARD (9-227-01)
(Shown from the component side.)

VIDEO OUTPUT BOARD (9-155-12)
(Shown from the component side.)

HIGH VOLTAGE SWEEP BOARD (9-247)
(Shown from the component side.)

ZемиTн $\left\lvert\, \begin{aligned} & \text { data } \\ & \text { systems }\end{aligned}\right.$

NOTES:
 SPECIFIED.
2. ALL CAPACITOR VALUES A
3. REFER TO THE CIRCUIT BOARD x may ver for phrsical location of parts.

LEGEND;

1. \doteq Chassisgroun
2. $\overline{\text { ウ }}$ CIRCUITBOARDGROUND
3. \rightarrow DIRECTION
4. \square sIGNALFROMS-100Bus
5. \sqsubset signaltos-100Bus
6. \rightarrow MECHANICALCONNECTIO
7. \rightarrow Maleconnection

PARTS ORDERING INFORMATION:

ZVM-134
MAIN BOARD SCHEMATIC
SHEET 1 of 1
9. + noconnection
10. $-\downarrow$ connection

ZENATH $\left\lvert\, \begin{aligned} & \text { data } \\ & \text { systems }\end{aligned}\right.$

notes

1. ALL RESITTOR VALUES AREINOHMS $(K=1,00, \mathrm{M}=1,000,000)$
ALL ALL RESIIST
SPECIFIED.
2. ALL CAPACITOR VALUES ARE IN μ IF (MCROOFARADS), U
3. ReEER To THE CIIRCUIT BoARD X-RAY VIEWS FOR THE

EGEND

1. \equiv chassisground
2. $\boldsymbol{\gamma}$ Circuitboadogrouid
3. \longrightarrow DIRECTION
. D sIINALFROMS-100BUS
4. \square sIINALTOS-100BuS
5. \rightarrow - MECHANICALCONNECTION
6. \longrightarrow MALECONNECTION
7. - femaleconnection
8. 十 noconnection
9. $-\phi$ - connection
10. -o calibaationoratestron
parts ordering information:

If you order a part from Zenith Data Systems, use the (HE) prefix. Example HE 443-730
If you order a part from Heath Company, DO NOT use the (HE) prefix. Example $443-730$
For semiconductor type numbers (Example: 74LS153), refe to the "Semiconductor Identification Chart."

ZVM-134
SWEEP BOARD SCHEMATIC
SHEET 1 of 1

NOTES:

1. ALL RESISTOR VALUES ARE IN OHMS ($\mathrm{k}=1,000, \mathrm{M}=1,000,000)$ ALL RESISTORS ARE $1 / 4$-WATT, 5% UNLESS OTHERWISE SPECIFIED.
2. ALL CAPACITOR VALUES ARE $\operatorname{IN} \mu \mathrm{F}$ (MICROFARADS), UNLESS OTHERWISE SPECIFIED
3. REFER to the circuit board X-bay Views for the PHYSICAL LOCATION OF PARTS

LEGEND:

1. \perp CHASSISGROUND
2. \downarrow CIRCUITBOARD GROUND
3. \longrightarrow DIRECTION
4.SIGNALFROMS-100BUS
4. $<$SIGNALTOS-100BUS
5. \rightarrow MECHANICALCONNECTION
6. \rightarrow MALECONNECTION
7. - FEMALECONNECTION
8. 十 Noconnection
9. - CONNECTION
10. \longrightarrow CALIBRATION ORATEST POINT

PARTS ORDERING INFORMATION:
If you order a part from Zenith Data Systems, use the (HE)
prefix. Example: HE 443-730

If you order a part from Heath Company, DO NOT use the (HE) prefix. Example:

443-730
For semiconductor type numbers (Example: 74LS153), refer
to the "Semiconductor Identification Chart.

ZVM-134
 WIDTH STEP BOARD SCHEMATIC
 SHEET 1 of 1

Part Number 585-23

Copyright © 1983
Copyright © 1983
Heath Company Heath Company
All Rights Reserved Printed in the United States of America

ZENUTM data
 systems

NOTES:

1. ALL RESISTOR VALUES ARE IN OHMS ($k=1,000, \mathrm{M}=1,000,000$ ALL RESIST
SPECIFIED.
2. all capacitor values are in $\mu \mathrm{F}$ (microfarads), un ALL CAPACITOR VALUES AR
LESS OTHERWISE SPECIFIED.
3. Refer to the circuit board x-ray views for the PhYSICAL LOCATION OF PARTS.

EGEND

. \perp Chassisground
2. $\boldsymbol{\nabla}$ CIRCUITBOARD GROUND
3. \longrightarrow direction
4. Signalfroms-100Bus
5. \measuredangle signaltos-100Bus
6. \rightarrow MECHANICALCONNECTIO
7. \rightarrow MALECONNECTION

PARTS ORDERING INFORMATION:
$\left.\begin{array}{l}\text { If you order a part from Zenith Data Systems, use the (HE) } \\ \text { prefix. Example: } \\ \text { HE } 443 \text {-730 }\end{array}\right\} \begin{aligned} & \text { If you order a part from Heath Company, DO NOT use the } \\ & \text { (HE) prefix. Example: } \\ & \text { 443-730 }\end{aligned}$

ZVM-134

VIDEO OUTPUT BOARD SCHEMATIC SHEET 1 of 1

NNEC
9. 十 NoCONNECTION
10. - \downarrow CONNECTION
11. - o calibrationoratestpoint

