
1btorial. Volume IT

MAINSAIL· Tutorial, Part II:

Efficiency and Implementation Tips
for the Advanced MAINSAIL Programmer

with Answers to the Exercises of Part I

24 March 1989

Copyright (c) 1984, 1985,1986,1987,1989, by XIDAK, Inc., Menlo Park, California.

The software described herein is the property ofXIDAK. Inc., with all rights reserved, and is a confidential trade secret
of XIDAK. The software described herein may be used only under license from XIDAK.

MAINSAIL is a registered trademark ofXIDAK. Inc. MAINDEBUG, MAINEDIT, MAINMEDIA, MAINPM.
Structure Blaster, TDB. and SQIJr are trademarks of XIDAK, Inc.

CONCEN1R1X is a trademark of Alliant Computer Systems Corporation.

Amdahl. Universal TlDle-Sharing System, and UTS are trademarks of Amdahl Corporation.

Aegis, Apollo, DOMA1N, GMR. and GPR are trademarks of Apollo Computer Inc.

UNIX and UNIX System V are trademarks of AT&T.

DASHER, DG/UX, ECLIPSE, ECLIPSE MV/4000, ECUPSE MV /8000, ECLIPSE MV/lOOOO, and ECLIPSE
MV 120000 are trademarks of Data General Corporation.

DEC,PDP, TOPS-IO, TOPS-20, VAX-II, VAX,MicroVAX,MicroVMS, ULTRIX-32,and VAXNMS are
trademarks of Digital Equipment Corporation.

EMBOS and ELXSI System 6400 are trademarks of ELXSI, Inc.

The KERMIT File Transfer Protocol was named after the star of THE MUPPET SHOW television series. The name is
used by penniasion of Henson Associates, Inc.

HP-UX and Vectra are trademarks of Hewlett-Packard Company.

Intel is a trademark of Intel Corporation.

CLIPPER. CLIX, Intergraph, InterPro 32, and InterPro 32C are trademarks of Intergraph Corporation.

System/370, YM/SP CMS, and CMS are trademarks of International Business Machines Corporation.

MC68000, M68000, MC68020, and MC68881 are trademarks of Motorola Semiconductor Products Inc.

ROS and Ridge 32 are trademarks of Ridge Computers.

SP ARC, Sm Microsystems, Sm Workstation. and the combination of Sun wilh a numeric suffix are trademarks of Sun
Microsystems, Inc.

WINfI'CP is a trademark of The Wollongong Group, Inc.

wy-so, WY-60, WY-75, and WY-IOO are trademarks ofWyse Technology.

Some XIDAK documentation is published in the typefaces "TlDles" and "Helvetica", used by pennission of Apple
Computer, Inc., under its license with the Allied Corporation. Helvetica and Times are trademarks of the Allied
Corporation, valid under applicable law.

The use herein of any of the above trademarks does not create any right, title, or interest in or to the trademarks.

-ii-

Table of Contents

1. Program Efficiency •
1.1. Detecting Sources of Inefficiency
1.2. Use of Low-Level Data Types and Primitives
1.3. Explicit Disposal.
1.4. Free Lists; $newRecords. •
1.5. Areas • . . • • .
1.6. Use of String Space. • • .
1.7. String Comparison. • • . . . • •
1.8. Concatenation of Strings in Calls to write .
1.9. Inline Procedures • • . . • • • • • .
1.10. Compiletime Evaluation • •
1.11. Substitution of Short for Long Operations
1.12. Comparisons with Zero • . .
1.13. Intermodule vs. Local Calls. • .
1.14. Using exceptionPointerArg to Determine the Current Exception
1.15. Input and Output of Large Quantities of Data . .
1.16. The Structure Blaster

2. More on Memory Management and String Space .
2.1. Module Swapping • . • . . •
2.2. Selecting Memory Management Parameters .
2.3. Implementation of Strings
2.3.1. Introduction. . •
2.3.2. Operations That Do Not Put Characters into String Space .
2.3.3. String-Producing Operations
2.3.4. String Space and String Garbage Collection • .
2.3.5. String Space Control . . . • '. . .

3. Implementation Note on Exceptions and Stack Frames
3.1.
3.2 ..
3.3.
3.4.
3.5.
3.6.
3.7.
3.8.

Handle Statement . .
Stack Frames
An Exception Occurs. . .
Finding an Active Handler .
Termination of the Handler.
Exception Information
Coroutines
Summary ••••••

4. Debugging Hints
4.1. Solving Debugger Confusion with Source Text ..
4.1.1. The Problem.
4.1.2. The Solution. . . • • . •

- iii-

1
1
1
2
2
3
4
4
5
6
6
7
7
8
8
8

10

11
11
12
12
12
13
17
21
22

23
23
24
25
26
28
31
31
31

33
33
33
34

4.2. Solving Non-Deterministic Errors and Garbage Collector Errors. . • • • •
4.2.1. The Problem. • • • . • • • • . • . . • . • • • • • • . • . • .
4.2.2. If the Bug Is Still Non-Deterministic or Goes Away When You Try to Use the

Debugger •........••......•..
4.3. Determining Where MAINSAll.. Is in an Infinite Loop .
4.4. Displaying the Contents of a Structure

5. Common Pitfalls and Portability Problems
5.1. Character Set Assumptions. • . .
5.2. End-of-File, eof, and $gotValue. .
5.3. File Name Syntax . • . . • . .
5.4. Case Sensitivity in File Names . .
5.5. Random Access to Files•
5.6. Simultaneously Opening the Same File Several Times .
5.7. Number of File Handles •••••
5.8. Redirection of Input and Output. • • • . . • .
5.9. Assignment to cmdFile and logFile .•..
5.10. Reading Non-String Values from a Text File .
5.11. Sizes of Data Types • • • . . .
5.12. Logical File Name Fonnats . • • . •
5.13 . Valid Addresses
5.14. Garbage Collections during $storageUnitRead and $storageUnitWrite .
5.15. Date and Time Addition and Subtraction.
5.16. Searching for" in the Line-Oriented Debugger Interface ..
5.17. Multiline CONF Commands. • .
5.18. Including Brackets in Bracketed Text •.
5.19. Reallocating a Local Own Array. . . .
5.20. Final Procedure Order • . .
5.21. Use of $next in Coroutine Scheduling.

6. Miscellaneous. . • . . • . . .
6.1. Compiletime Libraries . . .
6.2. MAINED Editing Techniques
6.2.1. Deleting in Insert Mode . .

• • l •

6.2.2. Search and Replace Macro • .
6.2.3. Defining Mode-Independent Macros with "QRM". .
6.3. Rationale for MAINSAIL's Binding Rules . . . • .
6.4. Selective Compilation of Modules in a File
6.4.1. Asking Which Module Should Be Compiled
6.4.2. Asking Whether Each Module Should Be Compiled . . .

- iv-

34
34

37
38
39

40
40
41
41
42
42
43
43
44
44
44
44
45
45
46
46
46
47
47
47
48
48

50
50
52
52
52
53
53
54
54
55

Appendices

A. Solutions to Most Exercises

B. Comparison of MAINS All.. and C
B.l. Portability
B.2. Modules and Dynamic Linking. . .
B.3. Compiletime Facilities
B.4. Control Structures
B.S. Operators . . • . . . • • • . •
B.6. Data Types and Data Structures.
B. 7. Strings. . •
B.S. Garbage Collection.
B.9. Input and Output.
B.IO. Coroutines and Exceptions .
B.II. Tools.

-v-

·

·
·
·

S7

129
129

· . 130
131

· . 133

· 133

· 134
136

· 137

· 137
138

· . 138

List of Examples

1.4-1. Special-Purpose Allocation and Disposal Procedures.
1.4-2. Use of $newRecords . . • . . • • . . •
1.14-1. Using exceptionPointerArg to Recognize an Exception Quicldy.
2.3.2.3-1. Equivalent Procedures to Certain String Manipulation Procedures .
2.3.2.4-1. Equivalent Procedures to the Two Forms of Substring.
3.1-1. Typical Assembly Code Generated for a Handle Statement .
3.1-2. Exiting More Than One Handler 0 ••••••••

3.2-1. Snapshot of Stack Growing towards Low Memory
3.3-1. Stack's Appearance upon Entry to $raise
3.4-1. Nested Handle Statements . . . •
3.4-2. After Control Is Transferred to the Handler
3.4-3. After B Calls D
3.5-1. After the Stack Is Unwound.
3.5-2. After $raiseRetum Is Called
3.5-3. After an Exception Occurs in E
3.5-4. Unwinding the Stack All the Way to A's Frame. • .
4.2.1-1. An Improper Access to a Disposed Record.
5.19-1. Allocating an Own Array Only Once•.
6.1-2. Declaration of Procedures in "lib" . • . . • . • .
6.1-1. Use of a Compiletime Library. • • •
6.4.1-l. A File That Asks Which Module Should Be Compiled .
6.4.2-1. A File That Asks Whether Each Module Should Be Compiled .

List of Tables

B.3-1. MAINSAll.. and C Compiletime Facilities.
B.4-1. MAINSAll.. and C Control Structures
B.5-l. MAINSAll.. and C Operators. . . .
B .6-1. MAINSAll.. and C Simple Data Types • .

~vi-

3
4
9

15
16
23
24
25
25
27
27
28
29
29
30
30
36
48
50
51
55
56

132
133
134
135

1. Program Efficiency

This chapter describes a variety of techniques for writing efficient MAINSAll.. code. Some of
the techniques may make a considerable difference in a program's execution speed, and others
have relatively minor effects. Of course, if a program is to execute well, its algorithm must be
properly chosen to begin with; most "efficient programming techniques", including those
described in this chapter, can be used to fine-tune a program but cannot rescue one that is
grossly miswritten.

1.1. Detecting Sources of Inefficiency

The first step in improving a program's execution speed, once a satisfactory overall algorithm
has been chosen, is to determine where the program is spending most of its time.
Improvements to infrequently executed code are usually not worth a programmer's time, since
they result in a negligible improvement in the performance of the program as a whole.

The MAINSAIL performance monitor, MAINPM, is an excellent tool for tracking the
execution of programs in order to determine where they need improvement. MAINPM can
give timings for various parts of a program as well as counts of individual statement
executions. MAINPM can also be made to keep track of any user-specified quantity during
program execution instead of CPU time. Furthermore, it can keep track of use of chunks
(records, arrays, and data sections) and string space. MAINPM is described in detail in the
"MAINPM User's Guide".

1.2. Use of Low-Level Data Types and Primitives

As described in Chapter 18 of part I of the "MAINSAIL Tutorial", the use of charadrs and
addresses can be used to avoid some of the overhead associated with MAINSAIL high-level
data types. Caution must be used when substituting low-level operations for high-level ones,
for several reasons:

• Low-level operations are less convenient and more difficult to code than high-level
ones. The programmer is more likely to err in writing low-level code.

• Low-level errors may be subtle and difficult to trace, since the program can
inadvertently overwrite MAINSAIL data structures. Particular care must be used if
an address or charadr points into a MAINSAll.. data structure or into string space,
since a garbage collection may move data structures or characters in string space.

• High-level primitives often provide built-in explicit checks for errors (e.g .• array
subscript checking). Such automatic checking is unavailable with low-level
primitives.

• If garbage is accidentally generated in a static storage area. it cannot be reclaimed by
MAINSAIL·s garbage collector.

1.3. Explicit Disposal

Avoiding unnecessary garbage collections is the purpose of many MAINSAIL efficiency
techniques. A garbage collection brings MAINSAIL execution to a halt until the collection
finishes; this can be annoying in an interactive program. especially if the collection is long.

On systems that provide virtual memory (most modern operating systems do), garbage
collection can take much longer than usual if a process·s virtual address space has exceeded the
amount of physical memory on the machine. MAINSAIL memory management accesses the
pages of MAINSAIL's address space in an almost random fashion. which causes a virtual
memory system to page heavily. The slowdown after a process has "gone virtual" can
dramatic; garbage collections can take literally orders of magnitude longer.

Section 18.2 of part I of the "MAINSAll.. Tutorial" describes the use of the system procedure
"dispose". dispose recycles memory without requiring a garbage collection; in some cases.
sufficiently frequent use of dispose may avoid collections altogether. The use of dispose is
therefore recommended for efficiency reasons, although, as described in Section 18.2 of part I
of the "MAINSAIL Tutorial", considerable caution is required.

MAINPM facilities may be useful in determining where garbage is generated; see the
"MAINPM User's Guide".

1.4. Free Lists; $newRecords

Some programs allocate and dispose records of some class with great frequency. In such cases,
the overhead of the system procedures "new" and "dispose" may be considered too great. A
program may keep its own free list of a class. making allocation and disposal of a record of the

. class very fast. Example 1.4-1 shows the allocation and disposal procedwes for a class fooCls.

It is not worthwhile for a program to maintain its own free list unless the allocation and
disposal of records is quite frequent The built-in new and dispose already use a free-list-like
mechanism; their overhead is often not much greater than that of the procedures shown in
Example 1.4-1. A program maintaining its own free list also gives up some flexibility. A free
list maintained as in Example 1.4-1 grows to the maximum number of records needed at one
time and does not shrink thereafter, even if the number of records needed becomes smaller
again. Unlike records recycled with the built-in dispose, the space occupied by the free list

-2-

CLASS fooCls (
POINTER (fooCls) next: # free list link
.•. other fields ..•

) :

POINTER (fooCls) fooClsFreeList:

INLINE POINTER(fooCls) PROCEDURE newFooCls:
Use built-in new only when free list is exhausted 0

BEGIN
POINTER (fooCls) p:
IF p :- fooClsFreeList THENB

fooClsFreeList := p.next: RETURN(p) END:
RETURN(new(fooCls»i
END:

INLINE PROCEDURE disposeFooCls
(MODIFIES POINTER (fooCls) p):

BEGIN
p.next := fooClsFreeList; fooClsFreeList := Pi
p := NULLPOINTER;
END:

Example 1.4-1. Special-Purpose Allocation and Disposal Procedures

cannot be used for data -structures other than records of fooCls. Records allocated with the
special-purpose mechanism are not initially cleared.

An effective way of reducing the overhead of record allocation is to call $newRecords, which
allocates many records at once. Example 1.4-2 shows the procedure newFooCls of Example
1.4-1 rewritten to allocate 50 new records whenever the free list is close to exhaustion.
$newRecords also exists in a fonn that allocates an array of records; consult the "MAINSAIL
Language Manual" for details.

1.S. Areas

Areas are portions of memory that can contain an entire data structure: records, arrays, data
sections, and string text. An entire area can be disposed at once, which is a very efficient

-3-

POINTER (fooCls) PROCEDURE newFooCls;
t The free list is assumed initialized to contain at
least one record by the initial procedure.
BEGIN
POINTER (fooCls) p;
IF (p := fooClsFreeList) .next THEN

fooClsFreeList := fooClsFreeList.next
EF NOT fooClsFreeList :=

$newRecords(p,DSP(fooCls.next),SOL) THEN
errMsg("Couldn't allocate records","",fatal);

RETURN (p) ;
END;

Example 1.4-2. Use of $newRecords

operation. In programs where large amounts of data become obsolete at some well-defined
point, allocating the data in an area and disposing the entire area at once can greatly reduce
memory managment overhead. Areas are also appropriate for data structures in which no
garbage is being generated, since garbage collection may be disabled forjust those areas.

When using areas, considerable care must be taken to avoid errors that are difficult to track.
See the "MAINSAIL Language Manual" for details.

1.6. Use of String Space

Garbage collections can be triggered by use of string space. Many string operations use string
space, and it is difficult to avoid using string space entirely. Section 2.3.3 describes how a
number of system procedures affect string space, and includes examples of code that makes
good use of string space.

1.7. String Comparison

As desribed in Section 10.6 of part I of the "MAINSAIL Tutorial", string comparison may be
most effiCiently performed with the standard comparison operators (It=", "NEQ", ">", etc.) or
with the special-purpose procedures "compare" and ttequtt, depending on the circumstances.

-4-

1.S. Concatenation of Strings in Calls to write

A common source of unnecessary inefficiency is the improper use of concatenation in a string
written to a file. The inefficiency comes from two sources:

1. The failure to allow the compiler to perform concatenation at compiletime when it
can, requiring that "write" be called more often than necessary.

2. The unnecessary concatenation of strings constructed at runtime, rather than making
multiple calls to "write It. This can eat up quite a bit of string space, and is the more
serious source of inefficiency.

Assuming that i and j are integer variables, consider the following call to "write":

write(logFile,"First number:",tab,i,eol,
"Second number:",tab,j,eol);

It makes eight calls to the string and integer instances for write to a textFile. Fewer calls could
be made if adjacent string constants were concatenated to produce the recommended way of
writing these strings to 10gFile:

write(logFile,"First number:" & tab,i,eol
& "Second number:" & tab,j,eol);

which makes only five calls to write. The concatenations (between constant strings only!) are
perfonned at compiletime; e.g.:

eol & "Second number:" & eol

is evaluated by the compiler to produce a single string.

It would be a mistake (the second source of inefficiency mentioned above) to concatenate
evetything to be written:

write(logFile,"First number:" & tab & cvs(i) & eol &
"Second number:" & tab & cvs(j) & eol);

In this case, some of the strings concatenated together are not constants, since "cvs(i)" and
"cvs(j)" cannot be evaluated at compiletime (although they could be if i and j were constants
instead of variables). The compiler, recognizing that the concatenated expression is not
composed entirely of constants, may fail to perform.mJ.X of the possible concatenations at
compiletime. Worse, since the compiler may evaluate the operands of "&" in any order, it may
start by placing the last operand into string space, then concatenating it with the previous
operand (requiring the copying of the last operand), then with the previous (requiring the

-5-

copying of the last two operands), and so on. Enonnous quantities of string space can be used
if enough strings are concatenated together.

1.9. InUne Procedures

Example 1.4-1 shows two inline procedures: procedures that are expanded inline, somewhat
like macros. That is, a separate body for the procedure is not produced in the objmod; the body
of the procedure is expanded inside the calling procedure, and the normal procedure call
overhead is avoided. The semantics of an inline procedure call are exactly the same as a
regular ("closed") call.

An inline procedure declaration is preceded by the qualifier "INLINE". An individual
procedure call may also be preceded by the keyword "INLINE", in which case that call is also
made inline (unless it is an interface procedure of another module). The keyword
"$AL WAYS" must precede "INLINE" if a procedure or call is to be made inline when
compiled debuggable, since the "DEBUG" option normally forces calls to be closed (so that the
debugger can jump into them).

An inline procedure is often a better way to package a small amount of code than a macro.
Inline procedures are more flexible with respect to parameters; they can take advantage of the
generic mechariism, and can use the "REPEATABLE" and "OPTIONAL" qualifiers, with the
usual effect. Furthermore, inline procedures can have local variables. Macros are best used
when their strong point, the substitution of arbitrary text into source code, is really needed.

Although inline calls are faster, they usually consume more space than closed calls. It is
inadvisable to make a frequently called procedure inline unless it is quite small; otherwise, the
objrnod may become quite large, or the compiler may run out of memory trying to compile it

1.10. Compiletime Evaluation

Compiletime evaluation may be used for data types other than strings; it performs the
operations only once, at compiletime, instead of (potentially) many times, at runtime.
Attention must be paid to the order of evaluation of operands; constant operands should be
grouped together, either using "DEFINE" to create a new constant identifier or using
parentheses to force operators with constant operands to be evaluated first. Otherwise, the
compiler may not recognize the constant expression, and unneCessarily evaluate it at runtime.
For example, if i is an integer variable, then:

i + 2 + 4

may be evaluated by the compiler as:

(i + 2) + 4

-6-

instead of:

i + (2 + 4)

The former expression entails two additions at runtime, the second only one. An alternative
that makes it clearer to the reader that compiletime evaluation is being performed is:

DEFINE six - 2 + 4;
. .. i + six ...

since macro constants can be defined only as constant expressions.

(Long) real expressions are never evaluated at compiletime, so this strategy does not work for
them.

1.11. Substitution of Short for Long Operations

Avoid unnecessary long integer multiplication and division, since some processors on which
MAINSAil.. runs do not provide these operations as instructions; the operations are performed
in software, which is slow. For example, if it is known that the product of two integers i and j
is within the guaranteed integer range, use:

cvli(i * j)

rather than:

cvli(i) * cvli(j)

1.12. Comparisons with Zero

Comparison with Zero is more efficient on many processors than comparison with non-Zero
values. For example, if it is known that an integer variable i must have either the value -1 or
the value 0, then the code:

IF i THEN ...

often compiles to more efficient object code than:

IF i - -1 THEN ...

-7-

1.13. Intermodule vs. Local Calls

A local (within the same module) call is faster than an intennodule call, though usually not so
much faster as to make a great difference in execution speed. In some cases, though, it may be
better to compile a small, frequently called procedure into every module that uses it than to put
it in a single module as an interface procedure.

1.14. Using exceptionPointer Arg to Determine the Current Exception

Detennining the current exception can be inefficient if many different exceptions are possible.
For example, code to handle each of the following exceptions:

Exception 1
Exception 2
Exception 3
Exception A
Exception B
Exception C

would look like:

IF $exceptionName .. "Exception 1" THENB END
EF $exceptionName == "Exception 2" THENB END
EF $exceptionName = "Exception 3" THENB END
EF $exceptionName - "Exception A" THENB END
EF $exceptionName - "Exception B" THENB END
EF $exceptionName "Exception CIt THENB END
EL $raisei

A sUing compare is not a very fast operation. It would be more desirable to use a Case
Statement in this instance, but it is not possible to use a string as a Case Statement index. The
solution is to pass a known record containing an exception code in the exceptionPointerArg
parameter of $raise. See Example 1.14-1. This strategy requires an integer assignment (the
exception code) at the time the exception is raised, a pointer comparison in the handler, and a
Case Statement in order to get to the code to handle the exception properly. This is typically
much faster than a series of string comparisons, especially if the list of possibilities is long.

1.15. Input and Output of Large Quantities of Data

Section 18.3 of part I of the "MAINSAll... Tutorial" discusses $storageUnitRead,
$storageUnitWrite, $characterRead, $characterWrite, $pageRead, and $pageWrite, which may
be considerably faster than reading or writing with "read" and "write" when large quantities of

-8-

CLASS excptCodeCls (
INTEGER exceptionCode;

) ;

POINTER (excptCodeCls) excptCode;

* Code to raise an exception:
excptCode.exceptionCode := .. 0;
$raise(nException o •• ","","",excptCode);

* Code to handle an exception:
$HANDLE ..•
$WITH

IF $exceptionPointerArq NEQ excptCode THEN $raise
EL CASE excptCode.exceptionCode OFB * Assume codes range from 1 to n

[1] •••

en] •••
END;

INITIAL PROCEDURE;
... allocate excptCode .•.

Example 1.14-1. Using exceptionPointerArg to Recognize an Exception Quickly

data are involved. Opening high-volume I/O files with the $unbuffered bit may also result in
improVed efficiency, but beware of the restrictions on unbuffered files listed in the description
of "open" in the "MAINSAil.. Language Manual".

-9-

1.16. The Structure Blaster

The Structure Blaster (see the "MAINSAIL Structure Blaster User's Guide") provides a way to
read and write MAINSAIL data structures. The Structure Blaster is designed to be especially
fast on input; indeed, for large structures, it may be faster to read a structure with the Structure
Blaster than with "hand-crafted" routines written especially for the classes in the data structure.
The Structure Blaster is typically slower on output than special-purpose routines, however. If a
data structure is small, or if it is written almost as frequently as it is read, then it may be more
efficient (although certainly less convenient) to write special code to store and retrieve a given
data structure.

The $unbuffered bit may be used for Structure Blaster files. Its use is advisable unless only
small, non-page-aligned structures are being read or written.

-10 -

2. More on Memory Management and String Space

This chapter continues the discussion of memory management begun in Chapter 18 of part I of
the "MAINSAIL Tutorial". It discusses the implementation of strings and string space in some
detail.

The contents of this chapter are current as of the date of this writing, but some details are
subject to change in future releases. Only those features described in the "MAINSAil..
Language Manual" are actually guaranteed to be available in the future.

2.1. Module Swapping

MAINSAIL does not need to keep in memory all control sections for which data sections exist
Some control sections may be "swapped out"; in fact, only the currently executing control
section (and the MAINSAil.. kernel module's control section) need be in memory at any given
time. Module swapping takes place entirely automatically; most programs are completely
unaware when swapping takes place.

A swapped-out control section is written to a file called the "swap file", unless the module was
taken from an open module library, in which case MAINSAIL assumes that the control section
may be re-read from the library when necessary. One side effect of closeLibrary is to read into
memory (and perhaps then copy to the swap file) any modules from the library of which the
control sections may be needed in the future.

MAINSAIL attempts to choose a unique name for the swap file, i.e., a name that does not
match that of any other file on the current directory; otherwise, problems would arise if two
MAINSAIL processes connected to the same directory were both swapping.

Modules are normally swapped only when the memory available to MAINSAIL is nearly full.
Module swapping can be time-consuming, so a MAINSAil.. program that starts swapping
intensively can appear to come to a halt (a program low on memory may be executing slowly
even before swapping because of frequent garbage collection). The solution to this problem is
to increase the amount of memory allowed to MAINSAIL by the bootstrap parameters or to
rewrite the program so that fewer data structures are in memory (MAINSAIL swaps only code,
never data). If neither of these is possible, you need to move to a computer with more memory.

The MAINEX subcommmand "SW APINFO" causes MAINSAIL to display a message
whenever mod~le swapping occurs; consult the "MAINSAIL Utilities User's Guide" for
details.

- 11 -

2.2. Selecting Memory Management Parameters

The memory management parameters provided in the MAINSAIL bootstrap for all operating
systems are "COLLECTMEMORYPERCENT", "MAXMEMORYSIZE", and
"INITIALSTATICPOOLSIZE". Some additional parameters may be provided on some
operating systems, including the maximum address to be used by MAINSAIL and the size of
MAINSAIL's stack; consult the appropriate system-specific MAINSAIL user's guide for
details. In addition, MAINSAIL provides a variety of procedures to-control the caching of
random access files (see the "MAINSAll.. Language Manual" for details).

It is not possible to determine a priori the best combination of bootstrap (and runtime, in the
case of the file cache) settings of memory management parameters for a given application; this
must be determined by experimentation. Users who are having problems with performance of
large MAINSAll:. programs should experiment with different combinations of
"COLLECTMEMORYPERCENT", "MAXMEMORYSIZE", "INITIALSTA TICPOOLSIZE",
and other relevant parameters. Some considerations in the choice of parameters are:

• On many operating systems, it is better to allow MAINSAIL to garbage collect or
swap modules than to allow the operating system's virtual memory facility to swap
pages of the MAINSAIL process. On such systems the limit on MAINS All.. 's
memory should not exceed the physical memory available. On other systems, the
tradeoff may be reversed, and a large virtual memory should be specified.

• Applications that produce garbage at a more or less steady rate may benefit more
from frequent but short garbage collections than from infrequent, long collections.
Long collections can be particularly annoying in interactive applications.

XIDAK regrets that it is not possible to offer more concrete advice on memory management
performance, but it is our experience that such performance varies considerably from system to
system and application to application. Users of MAINSAIL are invited to contact XIDAK with
results of their own memory management experiments, if any interesting phenomena tum up.

2.3. Implementation of Strings

2.3.1. Introduction

The MAINSAIL string data type differs from the strings provided in most programming
languages. In the typical Pascal-like language, a string is just a character array, and thus
inherits the limitations of Pascal-like arrays, such as fixed bounds. The user must declare the
length of the string as a constant, and the individual characters .are altered when the string is
altered, just like the elements of an array. Often, strings of different length cannot be compared
or assigned to one another.

-12 -

In contrast, a MAINSAll... string is a variable-length sequence of characters that can
dynamically grow and shrink. The programmer does not give an upper bound to the length of
the string (though no suing can exceed 32,766 characters). A MAINSAll... suing is
implemented as a "string descriptor", which is an integer length and the charadr (character
address) of the first character:

+-----------------------+
I length I
+-----------------------+
I charadr of first char I

+-----------------------+
"length(s)" returns the length part, while "cvc(s)" returns the charadr part. Both these
procedures are very efficient. The null string has both parts equal to Zero.

The length is actually allocated as a long integer so that the length and charadr parts are the
same size (on all machines for which MAINSAIL is implemented, long integers and charadrs
are the same size). On eight-bit-byte-addressable machines, the format of a charadr is the same
as that of an address.

The characters themselves reside in an area of memory called "string space". As strings are
built up from new characters, string space fills up. When it becomes full, a garbage collection
is perfonned that compresses string space to one end, squeezing out characters no longer
referenced by any accessible string descriptor.

2.3.2. Operations That Do Not Put Characters into String Space

Certain string opemtions, such as assignment and substring access, involve just string
descriptors, and hence are more memory-efficient than those that put characters into string
space.

2.3.2.1. newString

"newString(c,t)" builds a string descriptor with length equal to t and charadr equal to c. This is
a very efficient intine operation.

It is possible for a string descriptor to reference characters that are not in string space. For
example, if the progmmmer has n characters on a static page at an address that he or she wishes
to treat as a string, then the assignment:

s :- newString(cvc(a),n)

-13 -

creates a string descriptor that references those characters and assigns it to s. It is now possible
to use s in subsequent string operations like any other string, since MAINSAll.. has been
designed to properly handle such "foreign" strings.

2.3.2.2. Assignment, Parameter Passing

String assignment and parameter passing assign or pass the string descriptor, not the characters
themselves. For example, if sis "abcdef', and the assignment "r := S" is executed, s's
descriptor is copied to r, so that r and s are identical and reference the same characters:

+----------------------------+
I 6 I
+----------------------------+
I charadr of 'a' in "abcdef" I

+----------------------------+
Such sharing of characters does not lead to any confusion since there are no string operations
that alter the characters of an existing string. String characters are "immutable objects" that can
be created, but not altered. This is quite different from Pascal-like strings of which the
individual characters can be altered like array elements. Since MAINSAll.. string characters
cannot be altered, there is no danger that after "r := s", the characters referenced by s could
somehow be altered, thereby implicitly altering r.

Actually, MAINSAll... strings can be altered, but only by low-level use of charadrs, not by using
the standard string manipulation facilities. For example, the following procedure sets the
charNum'th character of s to charVal:

PROCEDURE changeChar (STRING s; INTEGER charNum,charVal);
IF 1 LEQ charNum LEQ length(s) THEN

store(cvc(s),charVal,charNum - 1);

This is dangerous if the string is in MAINSAll... string space, because if any other string
descriptors reference the altered character, the strings they represent will also be altered. For
example:

r := s; changeChar(s,1,'x');

changes both r and s. If the programmer feels the need to alter individual characters of a string
(for example, due to familiarity with Pascal), then the use of an integer array, or at least a string
in scratch space, is recommended instead of a string in MAINSAIL string space. This is
especially true if a string is passed to a MAINSAll... system procedure, since such procedures
may "hold on" to strings when the programmer does not expect them to. The MAINSAIL
system procedures are not designed for strings that .change their text.

-14 -

2.3.2.3. first(s), last(s), cRead(s), rcRead(s)

The procedures first, last, cRead, and reRead generate efficient inline code. They are
equivalent to the procedures listed in Example 2.3.2.3-1.

INLINE INTEGER PROCEDURE firatEquivalent (STRING a)i

RETURN(IF a THEN cLoad(cvc(a» EL -1)i

INLINE INTEGER PROCEDURE lastEquivalent (STRING S)i

RETURN(IF a THEN cLoad(cvc(a),length(a) - 1) EL -1)i

INLINE INTEGER PROCEDURE cReadEquivalent
(MODIFIES STRING S)i

BEGIN
INTEGER i,t;
CHARADR Ci

IF NOT a THEN RETURN(-1);
c :- cvc(s); t :- length(s);
i :- cRead(c); s :- IF t .- 1 THEN newString(c,t) EL
RETURN (i) END;

"". ,

INLINE INTEGER PROCEDURE rcReadEquivalent
(MODIFIES STRING a);

BEGIN
INTEGER i,ti
CHARADR Ci

IF NOT a THEN RETURN(-1);
c :- cvc(a); t
i :- cLoad(c,t
RETURN (i) END;

:- length(s);
- 1)i a :- IF t THEN newString(c,t) EL "". ,

Example 2.3.2.3-1. Equivalent Procedures to Certain String Manipulation Procedures

The typical way to examine successive characters of a MAINSAll.. string is as follows:

-15 -

WHILE t := cRead(s) GEQ 0 DOB •.. examine te .. END;

To examine from last to first use:

WHILE t := rcRead(s) GEQ 0 DOB 000 examine t .•• END;

In both cases the loop terminates when s becomes the null string, since t is then assigned -1. If
the original value of s is needed after such a loop, then just assign s to r, and use r in the loop:

r := s; WHILE t := cRead(r) GEQ 0 DOB .•. END;
<s still references the original string>

Since the assignment copies just the descriptors rather than the characters, it takes a negligible
amount of time.

2.3.2.4. Substring: s[i TO j], s[i FOR j]

The substring operator builds a new string descriptor; no characters are accessed or put into
string space. The two forms (using "TO" and "FOR") are equivalent to the procedures in
Example 2.3.2.4-1.

INLINE STRING PROCEDURE toSubstring
(STRING s; INTEGER i,j);

BEGIN
i .MAX 1; j .MIN length(s);
IF i > j THEN RETURN("");
i .- 1; RETURN(newString(displace(cvc(s),i),j - i» END;

INLINE STRING PROCEDURE forSubstring
(STRING s; INTEGER i,j);

RETURN(toSubstring(s,i,i + j - 1»;

Example 2.3.2.4-1. Equivalent Procedures to the Two Forms of Substring

If read-only, random access to the characters of a string is required, the macro ith can be
defined to access the ith character of a string s:

DEFINE ith(s,i) = [first«s) [(i) FOR 1])];

-16 - r

If s is Zero or i < 1, or i > length(s), the result is -1. However, if the characters are being
accessed in order, it is more efficient to use cRead (forwards) or reRead (backwards) than ith.

2.3.3. String-Producing Operations

There are many operations that cause characters to be put into string space. In each case,
characters are put into the "top" of string space. Consider the following picture of string space,
where the x' s represent used-up string space, and the blank space is available. The top of string
space is just after the last x:

+-----------------------+
I xxxxxxxxxxxxxxxxxxxxxxx I
Ixxxxxxxxxxxxxxxxxxxxxxxi
Ixxxxxxxxxxxxxxxxxxxxxxxi
Ixxxxxxxxxxxxxxxxxxxxxxxi
Ixxxxxxxxxxxxxxxxxxxxxxxi
Ixxxxxxxxx I
I I
I I
I I
+-----------------------+

If the user types "abcdef<eol>tI to tls:= ttyRead", string space looks like the following:

+-----------------------+
Ixxxxxxxxxxxxxxxxxxxxxxxi
Ixxxxxxxxxxxxxxxxxxxxxxxi
Ixxxxxxxxxxxxxxxxxxxxxxxi
Ixxxxxxxxxxxxxxxxxxxxxxxi
I xxxxxxxxxxxxxxxxxxxxxxx I
Ixxxxxxxxxabcdef I
I I
I I
I I
+-----------------------+

The string descriptor for s has length = 6 and a charadr that references the 'a' of "abcdeft.

A description of the most common operations that put characters into string space should help
the user to avoid inefficient string space usage when possible.

2.3.3.1. cvs(x)

x is one of the following data types: i, li, r, Jr, b, lb. The sUing representation for x is put into
the top of string space.

2.3.3.2. cvcs(i)

The character with code i is put into the top of sUing space.

2.3.3.3. cvl(s), cvu(s)

cvl copies s to the top of string space only if s contains an uppercase character. Similarly, cvu
copies s only if s contains a lowercase character. Otherwise, the original string descriptor is
returned, and no string space is used.

2.3.3.4. scan(s,. • .,upperCase)

If any of the scanned chars are lowercase, the result is copied to the top of string space;
otherwise, a substring of s is returned, and no string space is used. If the omit option is used,
no characters are put into sUing space (and the result is the null sUing).

2.3.3.5. "abc" (any string constant)

The first time a data section is created for a given module, an implicit array of string descriptors
is allocated, with one element for each unique string constant in the module. All subsequent
data sections of the module share the same array. If the same string constant occurs many
times in a module, a single element represents all of them. The first time a sUing constant is
referenced in (any instance ot) a module, it is copied to the top of string space, and its element
is initialized to reference the copied characters. Subsequent use of the same sUing constant
detects that the element is already initialized, and hence does not copy the characters again.

2.3.3.6. ttyRead, scan(f, ...), read(f,s), fldRead(f, •••)

The string is read from the file into the top of suing space. If the omit option is used for scan,
no characters are put into sUing space (and the result is the null sUing).

-18 -

2.3.3.7. r & s

In the general case, r is copied to the top of string space, and then s is copied to the new top of
string space (immediately after r). A string descriptor referencing the concatenated characters
is returned.

Special cases are detected to avoid copying characters:

• If r is Zero, return s.

• If s is Zero, return r.

• Ifr and s are already concatenated (i.e., s occurs immediately afterr in string space),
then do not copy any characters.

• If r is already at the top of string space, do not copy it.

2.3.3.8. write(s,x)

x is one of the following data types: i, Ii, r, lr, b, lb, s. If x is a string, "write(s,x)" is equivalent
to Its.& x"; otherwise, it is equivalent to"s.& cvs(x)".

Note that "write(s,a,b,c)" usually uses less string space than the equivalent "s .& (cvs(a) &
cvs(b) & cvs(c»" since the fonner is really "write(s,a); wrlte(s,b); write(s,c)" , which first copies
s to the top of string space, then cvs(a) (s is already at top), then cvs(b) (s is already at top), and
finally cvs(c) (s is already at top). The latter operation is evaluated as if it were Itr := cvs(a) &
cvs(b) & ·cvs(c); s .& r". This causes r to be formed at the top of string space. Unless s was
already at the top, it will have to copied on top ofr, and then r copied once more on top of s, an
inefficient operation.

2.3.3.9. cWrite(s,i)

Copy S to the top of string space if not Zero and not already at top, then put i immediately after
s. Repeated use ofcWrite, such as:

s :- ""; FOR i := 1 UPTO n DO cWrite(s,char[i]);

efficiently builds s at the top of string space, one character at a time, since after the first cWrite,
s remains at the top. However, a loop that alternately calls cWrite to append to two different
strings, such as:

-19 -

r := ""I s := ""I
FOR i := 1 UPTO n DOB

cWrite(r,charl[i]); cWrite(s,char2[i]) END;

is inefficient in its use of string space. For example, for n = 5, charI initialized to
'a' ,'b' ,'c\'d' ,'e\ and char2 initialized to '1 ','2'/3' ,'4','5', string space will be used as follows:

+-----------------------+
I xxxxxxxxxxxxxxxxxxxxxxx I
Ixxxxxxxxxxxxxxxxxxxxxxxi
Ixxxxxxxxxxxxxxxxxxxxxxxi
Ixxxalab12abc123abcd1234I
labcde1234S I
I I
I I
+-----------------------+

Each iteration had to recopy r or s to the top of string space before adding the next character. It
would be far better to use separate loops:

r := "H.
I

"H.
I s :-

FOR i := 1 UPTO n DO cWrite(r,charl[i]);
FOR i :- 1 UPTO n DO cWrite(s,char2[i]);

This would use only 10 characters of string space, rather than 30:

2.3.3.10. rcWrite(s,i)

+-----------------------+
I xxxxxxxxxxxxxxxxxxxxxxx I
Ixxxxxxxxxxxxxxxxxxxxxxxi
I xxxxxxxxxxxxxxxxxxxxxxx I
Ixxxabcde1234S I
I I
I I
I I
+-----------------------+

Put the character i at the top of string space, then copy s to the new top of string space,
immediately after i.

reWrite is inefficient in its use of string space, since it must copy s after i (unless s is zero).
Consider the following:

- 20-

s :- "". I

r := "";
FOR i
FOR i

:- 1 UPTO n DO cWrit~(s,char[i]);
:= n DOWNTO 1 DO rcWrite(r,char[i]);

Though both lines build the same suing, the first line uses 5 characters of string space, while
the second uses 15:

2.3.3.11. Areas

+-----------------------+
Ixxxxxxxxxxxxxxxxxxxxxxxi
Ixxxxxxxxxxxxxxxxxxxxxxxi
Ixxxxxxxxxxxxxxxxxxxxxxxi
Ixxxedecdebcdeabcde I
I I
I I
I I
+-----------------------+

Most of the above procedures take an optional area parameter. String space is really
maintained on a per-area basis, meaning each area has its own suing space (which has its own
top). _When an area is specified to these procedures, string text is put at the top of that area's
string space, if string text is generated.

2.3.4. String Space and String Garbage Collection

Actually, there can be any number of string spaces in an area. An area starts out with just one.
At anyone time there is a "current" string space that is in use in that area. When it fills up,
MAINSAIL checks to see whether there is another suing space in the area with enough room;
if not, a new string space is created, or a garbage collection occurs to attempt to reclaim space
in the existing string spaces. Whether or not to garbage collect is based on various parameters
that monitor how much garbage has already been collected, and on the predicted success of a
garbage collection in reclaiming string space.

Conceptually, string garbage collection is sttaightforward For the algorithm, consider all
string spaces in an area to be concatenated to fonn one large string space. There are three
phases:

1. Mark accessible characters: for each string descriptor, mark the characters that it
references. This can be visualized as turning on a "mark bit" in each referenced
character, though in practice the mark bits are stored elsewhere.

2. Update string descriptors: once again find each string descriptor, as in step 1. Count
how many characters preceding the string have a cleared mark bit, say n. Displace

- 21-

the charadr part of the suing by -no This adjusts each string descriptor to reference
the charadr to which the string will be moved after step 3.

3. Compress string space: compress all marked characters towards the base of string
space, squeezing out unmarked characters. Clear the mark bits.

It is possible to find each string descriptor because the MAINSAIL runtime data structures are
self-descriptive; each data structure provides a way to locate each of its string descriptors.
Each record has an implicit pointer to a class descriptor that describes the type of each field;
each array has an implicit pointer to an array descriptor that gives the type of the array; each
procedure frame has a descriptor that indicates the location of the strings, and so forth.

In practice, several "tricks" are used to avoid actually examming all previous characters to
check the mark bits. Also, there is a complication in that a string must not be moved so that it
spans two string spaces.

No matter what tricks are used in the above algorithm, it is time-consuming since every
accessible string descriptor and character is manipulated several times. Furthermore, the
memory accesses tend to touch randomly a large number of memory pages, which can cause a
virtual memory system to "thrash" as real pages are brought into memory.

2.3.5. String Space Control

Using the string space facilities of areas, the programmer can indicate which area's string space
is to be used by a string-producing operation. All an area's string space can be discarded at
once when the programmer knows that its text is no longer needed For example, the
MAINSAIL compiler can read the source files into a particular area, then clear that area's string
space (or dispose the area) when the compilation is finished. This immediately reclaims the
occupied memory without the need for garbage collection.

The ability to suppress garbage collection of 'specified areas is provided. This is useful if the
programmer knows that (almost) all characters in a particular area's string space are accessible,
since the garbage collector can avoid marking and examining characters in the string space.

MAINPM's "SPACE" command can help keep track of the use of suing space during a
program's execution; see the "MAINPM User's Guide" for details.

3. Implementation Note on Exceptions and Stack Frames

An understanding of how a language or runtime feature is implemented can facilitate its use. It
must be understood that the description given here is not guaranteed to remain valid; the user
must not write code that depends upon exceptions being implemented as described here. Even
if this description is not rigorous, or becomes invalid with time, it should still shed light on the
mechanisms behind the scenes, and thus show the way towards the proper use of exceptions.

3.1. Handle Statement

Consider the following Handle Statement, where the si are statements:

sO;
$HANDLE sl $WITH s2;
s3

The assembly code generated for a typical ~achine looks something like Example 3.1-1.

sO # code for sO
sl # code for sl
BRANCH x # branch to s3
s2 # code for s2
PUSH #1 # number of handlers to e"xit:

1
KERCALL $handlerExit" # MAINSAIL kernel interface

procedure call
x: s3 t code for 83

Example 3.1-1. Typical Assembly Code Generated for a Handle Statement

A Handle Statement causes just one extra instruction to be executed when no exception occurs,
namely the BRANCH around the handler statement s2 and the handler exit code.

s2 can be given control only if an exception occurs in sl (or a procedure called from sl, to any
level). If execution "falls through" the handler statement s2, then it falls into the instructions
(pUSH, KERCALL) that invoke tt$handlerExit(I)". The argument, 1, means to exit one
handler. Every "exit" from s2 (including the "fall throughtt exit shown here) first calls

- 23-

"ShandlerExit(n) II, where n is the appropriate number of handlers to exit. An example of n > 1,
i.e., exiting more than one handler, is depicted in Example 3.1-2.

DOB
$HANDLEB

sO;
$HANDLE sl $WITH s2;
s3;

END
$WITH s4;

END

Example 3.1-2. Exiting More Than One Handler

If the statement s2 is a Done or Return Statement, then two Handle Statements are exited.
$handlerExit needs to know how many handlers to exit so it can properly "unwind" the stack as
described below.

3.2. Stack Frames

An understanding of what happens when an exception occurs requires some understanding of
MAINSAIL stack frames. Every procedure allocates (pushes) a stack frame on top of the stack
upon entry, and deallocates (pops) it upon exit. Each stack frame contains parameters, local
variables, and a frame header. The frame header for a frame X contains the caller"s return
address (X.rtnAdr), the address of the caller's frame header (X.rtnFp), a pointer to the current
data section (X.db), and a frame descriptor (X.dscr) that gives some fonnat infonnation about
the frame.

Assuming that the stack grows towards low memory (upwards towards top of page), Example
3.2-1 shows what a snapshot of the stack might look like after a procedure A has called a
procedure B and B has called a procedure C.

SP is the stack pointer register, which points to the top of the stack. FP is the frame pointer
register, which points to the frame header of the currently executing procedure. As described
below, FP does not always point to the top stack frame.

-24 -

low memory

sp --> +-----------+
FP --> I C I

+-----------+
I B I
+-----------+
I A I
+-----------+
I I

high memory

Example 3.2-1. Snapshot of Stack Growing towards Low Memory

3.3. An Exception Occurs

A procedure A has called a procedure B, which has in turn has called a procedure C. Suppose
an exception occurs in C. This exception can be either an explicit call to $raise, a hardware
exception such as overflow or divde-by-zero, or a software exception such as a subscript error
or nullPointer access. In all cases, MAINSAIL makes it appear that a call has been made from
the point of the exception to the procedure $raise (implemented as a kernel interface
procedure). The stack looks as in Example 3.3-1 upon entry to $raise:

sp --> +-----------+
FP --> I $raise I

+-----------+
I C I
+-----------+

B

+-----------+
I A I
+-----------+
I I

Example 3.3-1. Stack's Appearance upon Entry to $raise

$raise searches the stack frames, in the order C, B, A, etc., looking for an active Handle
Statement. A Handle Statement is active if it encloses code that would be executed upon return
from $raise, or C, or B, or A, etc. That is, if the flow of control has entered sl in "$HANDLE
sl $WITH s2", and has not yet exited, then the Handle Statement is active.

3.4. Finding an Active Handler

How does $raise find an an active handler? The frame descriptor contains a bit,
$hasHandlerBit, which is set if and only if the corresponding procedure contains a Handle
Statement. $raise skips over frames until it finds one with $hasHandlerBit set, thereby quickly
ignoring frames that have no Handle Statement.

Once $raise finds such a procedure frame, it must then determine whether there is an active
Handle Statement in the procedure. A procedure may contain many Handle Statements, but it
could be the case that none, some, or all of them are currently active. Two or more Handle
Statements can be active for a given exception only if they are nested. For example, consider
the example in Example 3.4-1.

The procedure foo has five Handle Statements. If an exception occurs in sO, 81, s4, or s9 there
are no active handlers in foo; if in sl, s3, or s8 there is one; if in s5 or s7 there are two; and if in
s6 there are three.

To determine whether there is an active handler, $raise consults the handler table that the code
generator puts into each object module. For each Handle Statement "$HANDLE sl $WITH
81" in the module, the handler table gives the displacements (from the base of the control
section) to sl and s2. $raise converts the return address (in the previous frame) into a return
displacement (from the start of the module). It then searches the handler table to see if the
return displacement falls within s1. The handler table is ordered in ascending value of the s2
displacements, so that nested handlers are examined from the inside out.

For example, consider the frame for B. The return address to B is in the frame for C. B.db
points to the data section, which in turn points to the module descriptor (a record allocated for
each control section), which in turn points to the control section itself. $raise subtracts the
address of B 's control section from the return address to B to get the return address
displacement. It then searches the handler table contained in B' s control section to see if there
is an active handler in B.

If there is an active handler, for example in B, the frame pointer register FP is pointed at B's
frame header and control is transferred to the handler at:

(address of control section) +
(handler displacement obtained from the handler table)

At this point the stack looks like Example 3.4-2.

-26-

PROCEDURE foo;
BEGIN

sO;

$ HANDLE sl $WITH s2;

$ HANDLE 53 $WITH 54;

$HANDLEB

$ HAND LE s5
$WITHB

$ HAND LE s6 $WITH s7;

END
s8;
END

$WITH 59;

END

Example 3.4-1. Nested Handle Statements

sp --> +-----------+
I $raise I
+-----------+
I C I
+-----------+

FP --> I B I
+-----------+
I A I
+-----------+
I I

Example 3.4-2. After Control Is Transferred to the Handler

-27 -

Note that the frame B for the currently executing procedure is not the top stack frame.
(Unfortunately, some computer architectures assume that the currently executing frame is
always the top stack frame, causing XIDAK's code generator writers to resort to a certain
amount of fakery to get the effect shown above.) If B calls a procedure D, the stack looks like
Example 3.4-3.

SP --> +-----------+
FP --> I D I

+-----------+
I $raise I
+-----------+
I C I
+-----------+
I B I
+-----------+
I A
+-----------+
I I

Example 3.4-3. After B Calls D

In this case, both D.rtnFp and $raise.rtnFp point at B. Also, D.rtnAdr and $raise.rtnAdr both
return to B, though to different places.

3.5. Termination of the Handler

The handler statement s2 can be "terminated" in several ways:

• s2 can "handle" the exception by either "falling through", or by means of a Done,
Continue, or Return Statement.

• s2 can "propagate" the exception by calling $raise (no arguments).

• s2 can call $raiseRetum to return from the exception.

Another exception can occur while s2 is active, and be handled by a procedure at or before the
frame for A.

If the exception is handled (first case), the stack is "unwound" to make B the top stack frame
before execution is continued (see Example 3.5-1).

-28 -

SP --> +-----------+
FP --> I B I

+-----------+
I -A I
+-----------+
I I

Example 3.5-1. After the Stack Is Unwound

If the exception is propagated (second case) by calling $raise (no arguments), then rather than
pushing a new frame for $raise onto the stack, MAINSAIL realizes that an exception is being
propagated and continues execution in the current invocation of $raise, and the search for
another handler resumes. This search continues looking in the same handler table, since there
may be another Handle Statement that encloses the one that just propagated the exception. If
one is not found, it goes to the next frame, and so forth.

If s2 calls $raiseReturn (third case), control returns from the call to $raise that caused the
exception, and the stack looks just as it did prior to the call to $raise (see Example 3.5·2).

Sp --> +-----------+
FP --> C

+-----------+
I B I
+-----------+
I A I
+-----------+

Example 3.5-2. After $raiseRetum Is Called

Such continuation is allowed only for exceptions caused by an explicit call to $raise, since
some computer architectures do not provide enough information to proceed from a hardware
exception such as arithmetic overflow.

If another exception occurs in s2 or in a procedtu'e invoked from s2, to any depth (fourth case),
then the entire mechanism described here occurs recursively. For example, suppose the handler
s2 in B calls D, which calls E, and then another exception occurs in E. The stacks looks as in
Example 3.5-3.

-29 -

SP --> +-----------+
FP --> I $raise I

+-----------+
E I

+-----------+
I D I
+-----------+
I $raise I
+-----------+
I C I
+-----------+
I B I
+-----------+
I A I
+-----------+

Example 3.5-3. After an Exception Occurs in E

In Example 3.5-3, E.rtnFp points to D, and D.rtnFp points to B. Thus the rtnFp's do not always
point to the physically previous frame. $raise uses the rtnFp field to search E, D, B, A, etc.,
looking for a handler. If the exception is handled by a handler in A, the stack is unwound to be
that shown in Example 3.5-4, and the previous exception is simultaneously handled. If instead
the exception is handled within D, then the stack is unwound to D, and eventually D returns to
B as if no other exception had occurred, and execution of the handler in B continues.

SF --> +-----------+
FP --> A

+-----------+
I I

Example 3.5-4. Unwinding the Stack All the Way to A's Frame

If the active handler search falls off the end of the stack, then either an error occurs (fiNo
handler for exception ... "), or a $miseRetum is simulated (this occurs if the $returnlfNoHandler
bit is set in the ctrlBits argument to $raise; in this case, the $noHandler bit is set in the
resultBits produces argument of $raise to let the $raise caller know this happened).

- 30-

3.6. Exception Information

All information about an active exception is contained in the stack frame for the invocation of
$raise that raised the exception. The kernel interface variable $raiseFnune points to the frame
for the most recent invocation of $raise (corresponding to the current exception). For example,
the value of $exceptionName is obtained from a variable local to the frame referenced by
$raiseFrame ("" if $raiseFrame = Zero).

The $raise frames are linked together from most recent to least recent MAINSAIL can
determine whether there is an active exception by checking whether or not $raiseFrame is Zero.

It is important that the exception information is stored in a stack frame rather than in a
dynamically allocated record since exceptions can occur at times (such as during memory
management "critical sections") when record allocation is not possible.

3.7. Coroutines

All of the above descriptions assume there is just one coroutine. Since each coroutine has its
own stack, the mechanism must be generalized to cope with situations such as exceptions being
raised in one coroutine, but handled in another. The details are not described here; let us know
if you would like to know more about how exceptions interact with coroutines.

3.8. Summary

In summary, the exception implementation involves a lot of stack traversal, plus some
supporting information in the control sections. The implementation has been careful too'support
recursive exceptions properly (an exception during the handling of another exception). If there
are not many stack frames, the overhead to raise and handle an exception is small. There is
almost no overhead for Handle Statements in the absence of exceptions. The size of an object
module is slightly increased by the handler table, which contains two long integers for each
Handle Statement

The implementation is dynamic in the sense that the decision as to whether a handler will
handle a particular exception is determined at runtime rather than at compiletime as with some
languages; this is because MAINSAIL exceptions are dynamically determined strings rather
than entities defined at compiletime.

Each active handler is given control in tum, and decides whether it wants to handle the
exception by examining values such as $exceptionName. Since the pending stack frames are
not discarded when a handler is given control (and hence the handler may be executing out of a
frame that is deep on the stack), a handler may decide to continue execution (of some types of

- 31 -

exception) at the point of the exception by means of $raiseReturn, a feature also lacking in
many other exception implementations.

- 32-

4. Debugging Hints

This chapter contains some suggestions on the use of MAINDEBUG. Everything described
herein works under the current version of MAINSAIL, but is subject to change in future
releases.

4.1. Solving Debugger Confusion with Source Text

4.1.1. The Problem

Many MAINSAIL programmers have encountered a situation where the debugger seems to be
confused about the position of statements in the source text The symptoms are usually as
follows:

• An error occurs in a module and the programmer edits and recompiles the module.

• The program that references the newly fixed module is re-executed, but although the
debugger can find the modified source text, the position of the cursor is incorrect.

Such problems are most often due to the inadvertent use of an outdated inunod or objmod.
This typically occurs under the following conditions:

• The source code for a module M is compiled to produce an inunod 1M and an objmod
OM.

• A program that references M is executed

• During the course of program execution, MAINSAIL brings the objmod OM and/or
the inunod 1M into memory.

• The program terminates execution.

• The module M is edited and recompiled to produce a new objmod OM* and a new
inunodIM*.

• A program that references M is executed

- 33-

• MAINSAIL determines that M's objmod OM is already in memory, or that 1M is
already open, so it uses the old version rather than bringing OM* or IM* into
memory.

"

• The debugger is invoked during program execution and context is set to module M.

• The debugger finds the modified source text, but since it is using OM instead of OM*
or 1M instead of IM* , and since the debug information recorded in OM or 1M is out
of date, the cursor placement is wrong.

4.1.2. The Solution

The problem is that MAINSAll... has no way of knowing that OM is no longer the current object
module. In general, objmods stay in memory and intmods stay open and are reused, unless
they are explicitly gotten rid of. For example, if the compiler is invoked, and some other
programs are run, and then the compiler is used again, it is likely that the compiler modules are
still in memory and hence do not need to be loaded again. It is the ~ responsibility to
ensme that outdated modules are disposed of. The debugger's" -M" command can be used to
dispose of old objmods and close old intmods when modules have to be recompiled. Exiting
MAINSAll... and then running MAINSAll... again has the effect of disposing of all modules and
closing all intmods, and hence gets rid of outdated modules.

4.2. Solving Non-Deterministic Errors and Garbage Collector Errors

4.2.1. The Problem

Many MAINSAll... programmers have encountered bugs with these symptoms:

• An error occurs: the" garbage collector has detected an error" message, or some sort
of processor-dependent memory error, unexpected arithmetic error, or perhaps some
other exception.

• When the program is re-executed, the error disappears, or appears at a different point
in the program, or manifests itself differently, making it very difficult to track.

Frequently, such problems are due to improper use of the system procedure" dispose". Use of
misclassified pointers and of the low-level (charadr and address) primitives in such a way as to
overwrite MAINSAIL data sttuctures can have the same effect. Another possibility for some
types of error is an uninitialized local variable. More rarely, the problems are due to bugs in
the MAlNSAa code generator or runtime system, or even in the operating system on which
MAINSAIL is running.

- 34-

Problems with dispose occur in the following way:

1. The program has two or more pointers to the same data structure (array, record, or
data section);

2. The data structure is disposed, using one of the pointers;

3. Then a component (field or element) of the disposed data structure is accessed using
another pointer to it. Since the memory formerly occupied by the component of the
disposed data structure may have been reallocated, this access has undefined effects,
possibly including:

• Getting or assigning an invalid value for an arithmetic component. On
some operating systems, using an invalid floating point value can cause an
arithmetic exception, so this is one possible symptom of the bug;
alternatively, an unexpected value for a (long) integer could cause integer
overflow or division by zero.

• Storing into a memory location used by the memory manager to keep track
of the structure of memory. This can cause the collector to report an error
at the time of the next collection (or perhaps earlier, at the time of
allocation or disposal of some other data structure). If the next collection
does not occur for a long time, the context in which the bug occurred may
have disappeared, and the bug will appear to come from "out of nowhere".

• Storing into a pointer, address, or charadr component of some other data
structure. If the component so altered does not represent a valid memory
address, a processor-dependent memory error may occur the next time it is
used. If the component does represent a valid address, it in turn can be
used to load from or store into some unpredictable location in memory,
which may damage the structure of memory or overwrite some component
of yet another data structure. In this way, the manifestation of the bug can
become far removed from its source.

The bug may not be repeatable because the input has changed. Try to run the program with
EXACTLY the same input as the run that elicited the bug.

Since the bug may occur a long time before the garbage collector detects the problem you
would like a way to "run the program backwards" from the point where the garbage collector
issues its message back to the point where the problem is found. Needless to say, MAINSA~
doesn't allow you to run a program backwards, but you can use the MAINDEBUG's count
break facility (see the "MAINDEBUG User's Guide") to provide a similar capability. The
module CONCHK (see the "MAINSAIL Utilities User's Guide") checks for some of the same
error conditions the garbage collector checks for, but without actually doing a garbage
collection.

- 35-

BEGIN "dspBug"

CLASS c (INTEGER i);

POINTER (c) pl,p2;

INITIAL PROCEDURE;
BEGIN
pl := p2 := new(c);

dispose(pl);
p2. i := 1;

END;

END "dspBug"

t Both pointers point to the same
,. record
t The record is now gone
t This has undefined effects; p2
t is pointing to a disposed record

Example 4.2.1-1. An Improper Access to a Disposed Record

Assuming the error has been made reproducible (otherwise, see Section 4.2.2), the following
steps should help you track it down:

• Compile the relevant modules of the program with the "DEBUG" compiler option.

• Run the program using the new bootsttap (the bug may "go away" when the
debuggable version of the module is executed; see Section 4.2.2).

• If the error occurs and gives an "Error response" prompt, enter MAINDEBUG (using
the response "DEBUG").

• Note the count break where the error occurred (use the MAINDEBUG command "V
#CNT").

• Do a binary search for the procedure in which the bug occurs:

1. Run the debugger (although running the debugger first may cause the bug
to "go away"; see Section 4.2.2).

2. Set the new count break for some value that is approximately half of the
value of the count break where the error occurred (e.g., if the original error
occurred with a count break of 500, set the new count break to 250).

- 36-

3. Execute the program.

4. Invoke CONCHK (tiE CONCHKtI
) when the count break is reached.

5. If CONCHK doesn't report an error then set the count break to a value that
is halfway between the current count and the count at which the error
occurred, continue program execution, and go to step 4.

6. If CONCHK reports an error then go to step 1, but at step 2 use a count
break that is halfway between the highest count break at which there was
no error and the lowest count break at which there was an error.

• Once the procedure in which the bug occurs is isolated, re-run the program, setting
the count break to one less than that which gives the error. Then single step,
invoking CONCHK at each statement to determine which one is causing the problem.

This type of binary search is a useful debugging tool for tracking many other kinds of bugs.

4.2.2. If the Bug Is Still Non-Deterministic or Goes Away When You Try to Use the
Debugger

It may be that you cannot get the bug to reproduce consistently from execution to execution. In
this case, the problem is usually either:

• An uninitialized local variable (on a system where the procedure stack is not cleared
before each program execution), or

• A change outside MAINSAIL's direct control in its execution environment, but
affecting the run of the program, e.g., a change in the layout of memory into which
MAINSAIL is loaded, a change in the file system, affecting the sequence in which
MAINSAIL performs file I/O calls, different behavior in another process with which
the MAINSAIL process is communicating, or perhaps even a change in the time of
day (if time-dependent code is executed by the program), or

• A bug in the operating system.

If you can, eliminate any changes in the execution environment; e.g., delete any files that might
be opened by the program and have been created since the bug first appeared, or if the state of
memory is dependent on the state of your login session, log out and log in again each time you
try to reproduce the bug.

If the bug continues to occur in a non-deterministic fashion, or if the bug goes away when you
compile with the "DEBUG" option or attempt to use the debugger, it may still be beneficial to
run the program with CONCHK if the bug manifests itself as an address error or garbage

- 37-

collection error. Execute the program with the debugger, running CONCHK. at arbitrary
intervals. If it does detect an error, it may provide valuable clues on where to look, even if you
can't zero in on the bug immediately.

You may wish to instrument your program with calls to "write", or add procedures to verify the
consistency of the state of your program. These methods may sometimes disturb the state of
execution less than compiling your modules with the "DEBUG" option or attempting to use
MAINDEBUG, and may give clues as to the location of the bug.

If a bug in the operating system is suspected, it is best to try to reproduce the problem in a
language other than MAINSAIL, and then (if the bug occurs in the other language), report the
problem to the manufacturer. XIDAK personnel may be of assistance in this endeavor.

If all else has failed, it may be necessary to use your system's instruction-level debugger. If
you are familiar with this debugger, you may be able to use the kernel's $modTimer field in a
fashion analagous to the use of the debugger's count break (contact XIDAK for directions on
how to do this). Otherwise, report the problem to XIDAK (including as many details as
possible, and reducing the offending program to as small an example as possible), and we will
try to track it

4.3. Determining Where MAINSAIL Is in an Infinite Loop

On some operating systems, there is a command to send an operating system exception to a
program. For example, on UNIX, you can issue the shell command:

kill -SEGV <process id>

to simulate a segmentation violation (one of the UNIX signals caught by MAINSAIL) in the
process with process number <process id> (use the UNIX lipS" command to determine the
process number of your MAINSAIL program). This can be used (sometimes) to stop a
MAINSAIL program in an infinite loop and determine what the program was doing when the
segmentation violation was simulated. If all goes well, MAINSAIL traps the segmentation
violation and raises the appropriate exception; if the program permits, an "error response"
prompt is written, and the "CALLS" response may be used to examine the execution stack.
This is an unreliable technique, however; there are many critical sections in a MAINSAIL
program where the raising of an excpetion is impossible. If you simulate the operating system
exception in a critical section, you may well not reach the "error response" prompt, but instead
do further damage to the MAINSAIL process (perhaps causing the process to abort or to hang
in such a way that it is difficult to kill).

On UNIX, you can actually use the "K" response to the prompt given when SIGQUIT (usually
CTRL-\) is caught instead of actually issuing a "kill" command; this is a little more convenient.

-38 -

The same technique may be used on non-UNIX systems if the operating system provides a
command to simulate one of the operating system exceptions caught by MAINSAIL. Check
the operating system command guide and the appropriate system-specific MAINSAIL
documentation for details.

4.4. Displaying the Contents of a Structure

The debuggert s "A" and ". V" commands are useful for displaying the contents of an array or
recor~ but it is sometimes useful to display an entire structure with a single command and then
browse through the output. No such command exists in the debugger itself; however, those
users licensed to run the Structure Blaster may display a structure by calling $structureWrite.
For example, if a structure has its root at a pointer Pt the debugger command:

XS $structureWrite(logFile,p)

writes the entire structure as a text form to 10gFile. The usual $structure Write caveats apply.
Be aware that writing a large structure to a terminal may take a long time; a temporary disk file
"struct.txt" can be used instead with the command sequence:

.0 POINTER(textFile) f;
XS open(f,"struct.txt",create!output);
XS $structureWrite(f,p); close(f);

The contents of "strucltxt" then describe the structure pointed to by p.

- 39-

5. Common Pitfalls an~.Portability Problems

This chapter describes some common errors in writing MAINSAIL programs. Portability
errors are an important category of error; a program that compiles and executes correctly on
one machine can fail to compile for or execute properly on another machine if it has been
written based on non-portable assumptions.

5.1. Character Set Assumptions

MAINSAIL does not assume that the Ascn character set is used; indeed, MAINSAIL
implementations exist for EBCDIC machines. The guaranteed MAINSAil... character set does
include all the printing characters in the ASCII character set, but there are printing characters in
the EBCDIC character set that do not correspond to AScn characters. These characters should
not be used in MAINSAIL source programs (since the source programs cannot then be moved
from the EBCDIC machine), nor should a portable MAINSAIL program assume that these
characters can be generated or interpreted by peripherals.

A common pitfall on programs that are to run on both ASCII and EBCDIC machines is to
assume that the alphabetic characters are contiguous within the character set. This is true of
ASCn, but not of EBCDIC, which has gaps in the middle of the alphabet. MAINSAIL
guarantees that the character codes for the digits '0' through '9' are contiguous (e.g., '0' + 1 =
, 1 '), but not the letters. This test to see whether ch is an alphabetic character works on an
ASCn machine:

'A' LEQ ch LEQ 'z'

but not on an EBCDIC one, since non-alphabetic characters may lie in the range' A' to 'Z'.
The correct test for an alphabetic character is:

isAlpha(ch)

which works on both ASCn and EBCDIC machines. The correct way to find the next
alphabetic character after ch is not

ch + 1

but rather:

nextAlpha(ch)

-40 -

Other procedures that allow character-set portability between ASCII and EBCDIC machines
(and any other character set. in the unlikely event that such a character set is encountered) are
cvu, cvl, isLowerCase, isUpperCase, prevAlpha, and isNul. Always use these procedures when
appropriate rather than hardwiring assumptions about the ordering of character codes within the
character sel

5.2. End.of.File, eof, and $gotValue

On some operating systems, programs cannot detect the exact end-of-file position, because the
operating system does not record sufficient information about the file. On other operating
systems, the exact end-of-file position is detectable; however, "eof(1)" may become true either
immediately before or immediately after an attempt is made to read a datum beyond the end of
the file, depending on the fonn of the operating system's I/O calls, and perhaps on the format of
the file itself.

The use of the system procedure "eo£" for detecting the end of a file is no longer encouraged.
The system procedure $gotValue, available in Version 11 and subsequent versions of
MAINSAll..., provides a more uniform behavior on all files on which the exact end-of-file
position can be detected.

"$gotValue(1)" returns false after some form of the system procedure "read" has been issued on
f, and that read failed because end-of-file had been reached. $gotValue is not set by procedures
other than read, since other input procedures (e.g., ftdRead, cRead, scan~ etc.) retwn a
distinctive value when end-of-file is reached. The moment at which $gotValue becomes true is
better defined than the moment at which eof becomes true.

Whether $gotValue or eof is used, it is still the case on some operating systems that the end
of-file position can be detected only imprecisely; e.g., some operating systems store the end
of-file position rounded up to the nearest page. On such systems, $gotValue will not become
false until after the entire last page of the file has been read. For this reason, it is best for a
program, if possible, to structure a file so that its end position is apparent from the data in it,
rather than depending on $gotValue or eof.

5.3. File Name Syntax

All that MAINSAll... guarantees about file names is that the operating systems on which it runs
will support file names that correspond to an identifier (case mayor may not be distinguished)
of six or fewer characters. In practice, most operating systems permit longer identifiers (up to
nine characters), and also permit an extension of up to three characters, separated from the base
file name by a period. Assumptions that longer file names, multiple extensions, and non
identifier characters are permitted can lead to trouble when an application is moved from one
machine to another. In particular, directory, volume, or device syntax in file names varies
considerably from operating system to operating system.

-41-

MAINSAIL provides logical file names and searchpaths in order to make it possible to write
system-independent applications that use files. A recommended use of searchpaths is to prefix
the names of related files in a program with a common prefix, then (either in the bootstrap or at
runtime) issue MAINEX subcommands to establish the correspondence between the prefixes
used by the program and the actual location in the local file system of the files used. For
example, if a program uses two initialization files and three data files, it might use the names:

initiinitl
initiinit2
dataidatal
dataidata2
dataidata3

In the subcommands in the bootstrap, "SEARCHPATH" commands could define the ltinit#1t
files to reside on a directory "/foo/init" (in a UNIX-like file system), and the "data#1t files on
"/bar/data" :

SEARCHPATH initi* /foo/init/*
SEARCHPATH datai* /bar/data/*

For a strategy like this one to work on all machines, the names prefixed with ltinit#1t and
It data#" must still be identifiers of no more than six characters, since this part of the file name is
being used as the operating system's Itleaf' file name.

5.4. Case Sensitivity in File Names

On some operating systems, file names are case-sensitive; i.e., "filel" names a different file
from "File I " or "Fll..Ellt. On other systems, all three of these names designate the same file.
Programs should be consistent about file name case for portability between case-sensitive and
case-insensitive file systems; e.g., don't use "Foo" as a file name in one place in a program (or
collection of related programs) and "foo" in another place referring to the same file. If
necessary, a program can determine whether it is running on an operating system with case
sensitive file names by:

$attributes TST $fileNamesAreCaseSensitive

5.5. Random Access to Files

It is not guaranteed that a file is in a format that can be accessed for random output unless it
was created by a MAINSAIL program with the "random It open bit set. On some operating
systems (e.g., V AXNMS) , the default text file format is a record-oriented file that cannot be
opened for random output (this is for compatibility with other V AXNMS programs). It is a

-42 -

common error to create a file by writing it sequentially (without opening it for random access),
then to close it and reopen it, expecting to be able to perfonn random output to the file.

Even when a random file is opened input-only (which is possible on the V AX/VMS-style
record-oriented file), it may be a good idea to create the file with the random bit set The
reason is that the mechanism for random input to a record-oriented file is slow and consumes a
great deal of memory. In sum, the rule of thumb is:

If a file is ~ to be opened for random access,
create it with the random bit set in the call to "open".

5.6. Simultaneously Opening the Same File Several Times

The same operating system file may be reliably opened by more than one process, or several
times by the same process, only if the file is opened input-only each time. Some operating
systems do not generate an error when one program is writing and another reading or writing
the same file, but unless special (operating-system-dependent) synchronization methods are
used among the simultaneous readers and writers, the values read from or written to the file
may be invalid or logically inconsistent.

If two MAINSAIL programs are reading from and writing to the same file at the same time (not
possible on many operating systems if the files are opened with the system procedure "open"),
it is not sufficient for one program to write a datum in order to make it show up in the file the
other program is reading. The MAINSAIL runtime system buffers files; modifications to a file
may be delayed until the file is closed.

There is, at present, no portable way in MAINSAIL to provide synchronization for
simultaneous read and write accesses to a large body of information. XIDAK is developing
database software for this purpose and expects this software to be available in the near future.

5.7. Number of File Handles

Some operating systems place tight restrictions on the number of files a process may have open
simultaneously. Programmers should not write progriuns that require large numbers of
simultaneously open files, because such programs may fail to open some of the files on some
operating systems.

The Lm device module, described in the "MAINSAIL Utilities User's Guide", can be used to
reduce the number of operating system file handles needed to access a group of files.

-43 -

s.s. Redirection of Input and Output

cmdFile and logFile are redirectable from within MAINSAIL. Some operating systems also
permit the primary input and output files of a MAINSAIL process (i.e. t "TTY") to be
redirected, but this facility is not available on all systems. A portable program of which the
input is to be redirected should avoid ttyRead and ttyWrite, using instead "read(cmdFile, ...)"
and "write(logFile, ...)" .

5.9. Assignment to cmdFile and logFiIe

The redirection of cmdFile and 10gFile is a perfectly standard thing to do; i.e., a program may
assign to the system variables cmdFile and 10gFile without fear of "messing up" MAINSAIL.
However, if a program does not thereafter reassign the old cmdFile and/or logFile pointers back
to logFile and/or cmdFile, it needs to be sure to close the old cmdFile and/or 10gFile.

5.10. Reading Non-String Values from a Text File

"read(f,x)" , where x is a non-string variable, leaves all characters after the suing representation
of x in the file, including a terminating eol, if any. Example 8.4-1 of part I of the "MAINSAIL
Tutorial" demonstrates the problems that may arise if a user is prompted for a value which is
then read using a non-string form of "read". The usual way to read from an interactive file is to
read entire lines with the string form of read, then parse the resulting strings.

S.11. Sizes of Data Types

A programmer who works consistently on one machine may find it easy to forget that the sizes
of MAINSAIL data types vary from machine to machine. This can lead to several different
kinds of portability errors:

• Hardwiring data type sizes, particularly in file positions. For example, to position
past the third long integer in a data file, use "setPos(f,cvli(3 *
SioSize(f,longlntegeICode»)", never "setPos(f,3L)" or "setPos(f,I2L)".

• Assuming that the sign bit in a number is some particular bit For example, on two's
complement machines where a long integer occupies 32 bits, the bit pattern for -IL is
'HFFFFFFFFL; however, it is incorrect to assume this bit pattern represents -IL on
every machine (on a 64-bit machine, this number would be 2 1\ 32 - 1). The portable
way to create a bit pattern in which all bits are set is:

lbMask(O,$bitsPerStorageUnit * size(longBitsCode) - 1)

-44 -

• Assuming that a set bit will be shifted out of a bits or long bits value if it is shifted
left by some hardwired number of bits. On a machine with 16-bit bits values,
"'HFOOO Sm.., 4" is '0, but on a machine with 32-bit bits values, it is 'HFOOOO.

S.12. Logical File Name Formats

Logical file names that redirect one file to another may be established with the "ENTER"
subcommand or the procedure enterLogicalName (the searchpath facility provides an
alternative mechanism of redirecting file I/O). This facility can be used to suppress or redirect
the reading or writing of default files (like the editor's "eparms" file; see Example 9.4.1-7 of
part I of the "MAINSAIL Tutorial").

Many XIDAK programs make use of logical names of the form:

(the logical name)

i.e., some text enclosed in parentheses. Such names are valid to the system procedure open:

open(f, " (the logical name)", ..•)

but may confuse many utility programs, which interpret spaces as file name separators; e.g., the
MODLm command:

add (the logical name) xxx yyy

interprets "(the" as the name of the library to which to add the modules "logical", "name)",
"xxx", and "yyy". To avoid such problems, use logical names without spaces, or use the actual
file name to which the logical name maps (provided that the actual file name does not contain
spaces! XIDAK programs may be confused by such operating system file names as well).

XIDAK recommends that users avoid the parenthesized logical name convention, as it may
conflict with future XIDAK logical names. Conventions using other punctuation characters are
less likely to run into trouble; e.g., a company could decide to prefix its logical names with
underscores:

5.13. Valid Addresses

As described in Section 18.1.6 of part I of the "MAINSAIL Tutorial", some addresses are not
valid for storing or retrieving data because of machine alignment requirements. Addresses in
portable programs should always be computed in terms of linear combinations of the sizes of
MAINSAIL data types, rather than specified with explicitly integer constants.

-45 -

Section 18.1.6 of part I of the "MAINSAIL Tutorial" also points out that alignment
considerations may cause "cvc(cva(c)", where c is a charadr, to be different from c.

5.14. Garbage Collections during $storageUnitRead and
$storageUnitWrite

Garbage collections may occur during a call to $storageUnitRead or $storageUnitWrite.
Therefore, converting an array to an address before reading data into it or writing data from it
by means of these procedures has undefined effects, since the array may be moved during the
operation, and the elements loaded into the wrong part of memory. The proper way to do a
$storageUnitRead of n elements of type t from a file f into an array ary (starting at the first
element) is to convert it to pointer:

$storageUnitRead(f,n * cvli(size(tCode»,cvp(ary),
IDisplacement(cva(cvp(ary»,$adrOfFirstElement(ary»)

where tCode is the type code for type t, i.e., one of integerCode, longIntegerCode, bitsCode,
etc.

S.IS. Date and Time Addition and Subtraction

The procedures $addToDateAndTime and $dateAndTimeDifference perfonn arithmetic on
dates and times where both date and time are present. Such procedures are not necessary if
only a date or only a time is involved; all MAINSAIL date formats are a number of days, and
all MAINSAIL time formats are a number of seconds. The long integer "+" and "." operators
can therefore be used, provided that:

• In the case of II +" , one operand must be a valid MAINSAIL date or date difference,
and the other operand must be a difference.

• In the case of ".", both operands must have the same fonnat (GMT times, local times,
or time differences).

For example, if d is a date, lid + 3L" is the date that is three days later.

5.16. Searching for" in the Line-Oriented Debugger Interface

To search for a double quote character in the line-oriented debugger interface, the double quote
must appear twice, as in a MAINSAIL string constant; e.g., use:

"He said, ""What?"""

-46 -

to search for:

He said, "What?"

5.17. Multiline CONF Commands

Some CONF commands allow arguments of more than one line. To specify a multiline
argumen4 type the command name on a line by itself and argument lines on subsequent lines.
Multiline arguments are terminated with a single blank line (blank lines are not valid in the
arguments to any multiline CONF command).

To add new lines to an existing multiline value, type "=" on the first line (see the "MAINSAIL
Utilities User's Guide" for examples).

S.IS. Including Brackets in Bracketed Text

It is often desirable to include brackets within a macro body. For example, you may want to
define a macro body like:

p.s := "]"

However, if you try to use this macro definition:

DEFINE xyz = [p.s := "]"];

you run into the problem that the compiler thinks the definition is tenninated by the first right
square bracket, i.e., the one in quotes (which you wanted to appear within the macro body).
The way around this is to concatenate the bracketed text with a string containing the bracket. It
is legal, on. the right side of a macro equate, to concatentate bracketed text with string constants
to produce bracketed text (a piece of bracketed text must be the first thing on the right side of
the macro equate, but it may be followed by any number of concatenated strings and pieces of
bracketed text). A macro definition with the desired effectis:

DEFINE xyz = [p.s := "] & "]" & ["];

Section 13.10 of part I of the "MAINSAIL Tutorial" discusses some other common problems
with macros.

5.19. Reallocating a Local Own Array

The programmer must be careful not to reallocate inadvertently an own array declared local to
a procedure. The proper approach is shown in Example 5.19-1.

PROCEDURE Pi
BEGIN
OWN STRING ARRAY(1 TO 10) sAry; # OWN so it does not go

IF NOT sAry THEN new(sArY)i

END

i away upon procedure exit

i allocate it the first
i time

Example 5.19-1. Allocating an Own Army Only Once

5.20. Final Procedure Order

When a MAINSAIL execution tenninates, all data sections are disposed, causing their final
procedures to be eXeGuted. The order in which the final procedures execute is unspecified.
This can lead to problems if, for example, a module A accesses an interface field of a module B
in its final procedure. If the interface field is a data field, and B is disposed before A, then A
will get an unbound data access when MAINSAIL tries to exit. On the other hand, during
another execution, A may be disposed before B, and no problem will occur. If A's final
procedure calls an interface procedure ofB, and B's final procedure calls an interface
procedure of A, an infinite loop may result when MAINSAIL tries to exit, since A's final
procedure will bind B, which means that B needs to be disposed, so its final procedure will be
called, which will bind A, etc. Problems can also arise if a module disposes a data structure in
its final procedure if the data structure may be accessed by the final procedures of other
modules.

It is best to avoid the use of final procedures altogether if the logic of a program pennits
cleanup to be done at the end of the root module's initial procedure. Final procedures are really
useful only in modules which, once bound, remain in memory indefinitely, which are
potentially used by more than one application (if they are used by only one application, then
that application should dispose them when it is finished with them), and which have allocated
resources they must free before MAINSAIL exits. When final procedures are used, they must
be carefully .written.

S.21. Use of $next in Coroutine Scheduling

$thisCoroutine.$next is usually the coroutine that resumed the current one. However, if an
application consists of several coroutines, it should not depend on $next to'detennine which
coroutine to schedule next. The reasons are:

-48 -

• The search for an exception handler rummages through the coroutine list and changes
the value of $next. IT an unexpected exception occurs, it can set $thisCoroutine.$next
to a value that would not be expected from reading the text of the program. Note that
when a coroutine calls $resumeCoroutine with the delete bit set,
$descendantKilledExcpt is raised before resuming the target coroutine.

• The MAINSAIL runtime system may make use of coroutines. For example, if
opening a special kind of file requires the creation and resumption of a coroutine,
then $thisCoroutine.$next may be altered after the file is opened and every time I/O is
performed to the file.

Programs using several coroutines should always remember which coroutines belong to them,
and choose the coroutine to resume based on the logic of the application.

-49 -

6. Miscellaneous

6.1. Compiletime Libraries

Compiletime libraries (also called "source libraries") are a technique for creating a repository of
procedures used by a number of modules. The introduction of intmods has made this technique
more or less obsolete, since intmods are more flexible in that they can contain common
variables as well as common procedures and they are more efficiently compiled. Nonetheless,
users may need to examine or maintain existing compiletime libraries, so this section has been
retained.

The compiler directives "NEEDBODY(p)", "NEEDANYBODIES", "NEEDANYBODIES (c) " ,
and "FORW ARD(c)" are all provided to promote the use of compiletime libraries. A
compiletime library is a file that contains procedure bodies that can be "compiled into" a
number of different modules.

The diagrams and text in Example 6.1-1 shows the use of a compiletime library. Each
procedure declaration in the file "lib" is surrounded by the directives shown in Example 6.1-2.

<eop>
BEGINSCAN

t

IFC NOT NEEDBODY(p) THENC SKIPSCAN

PROCEDURE p;
BEGIN
.•. <procedure body> ...
END;

"". t ENDC

IFC NOT NEEDANYBODIES("lib") THENC DONESCAN; ENDC
<eop>

Example 6.1-2. Declaration of Procedures in "lib"

Any procedure declared forward in "hdr", and called in mi (but not given a body there), causes
an automatic sourcefile of "lib". In "lib", the conditional compilation and compiler directives
result in the compilation of only those procedures which were used (called) in mi. The use of
"NEEDANYBODIES" together with "DONESCAN" is an optimization to stop compilation of
"lib" when all needed procedure bodies have been obtained from it

- 50-

header file "hdr"

+-------------------------------+
lmacro definitions
Iclass declarations
Imodule declarations
I forward procedure declarations
I (each procedure header is
I preceded by FORWARD (" lib ,.))

+-------------------------------+
module ml module m2

+-------+ +-------+
I I I I
I I I I
+-------+ +-------+
compiletime library "lib"

+-------------------------------+
I"body" declarations of procs I
I declared with FORWARD("lib") I
I in "hdr" I

+-------------------------------+

module mn

+-------+
I I
I I
+-------+

The forward declarations in hdr are qualified
with FORWARD (ttlibtt) •

Each module mi has the form:

module mi

+-------------------------------+
IBEGIN "mi"
ISOURCEFILE "hdr";
I ...
lEND "mi"

+-------------------------------+

Example 6.1-1. Use of a Compiletime Library

To convert a compiletime library to an intmod, go through the file(s) containing the procedure
bodies (in this case, "lib") and remove all the directives bracketing each procedure declaration.
Add the directives:

- 51-

SAVEON;
$DIRECTIVE "NOGENCODE";

to the file "hdr", and add:

BEGIN "hdr"

and:

END "hdr"

at the beginning and end of "hdr", respectively. "hdr" is now the source file for an intmod,
which can be used (once it has been compiled) by modules that contain:

RESTOREFROM "hdr";

If any of the procedures requires "private" procedure or outer variable or macro declarations,
these may be hidden from the using module with the symbol visibility directives. For example,
to hide a symbol "xxx", include the line:

$DlRECTIVE "MAKENOTVISIBLE xxx";

before the end of "hdr" .

Most compiletime libraries can be converted to intmods. Sometimes, however, the procedures
in a compiletime library may use identifiers that have been defined before their bodies are
picked up from the compile time library; e.g., a procedure might use an identifier "xxx" that it
expects the calling module to have defined. Such procedures with source dependencies cannot
be converted to procedures in intmods, since all identifiers in them must be defined when the
intmod is compiled.

6.2. MAINED Editing Techniques

6.2.1. Deleting in Insert Mode

If you want to delete some stuff at the end of a line, and replace it with some other stuff, just go
into insert mode and press the delete key. This deletes old text to the left

6.2.2. Search and Replace Macro

To define a search and replace macro:

t<search string><eol>
/<macro id>
<do the replacement>t<search string><eol>
/

6.2.3. Defining Mode-Independent Macros with "QRM"

A macro execution can leave MAINED in command mode (or some other mode explicitly
specified in the macro), or it can leave it in the mode which was in effect when the macro was
invoked. The "QRM" command restores the saved mode (remembered at the start of macro
execution). For example, to define a macro to search for "foo" and retain the editor mode, issue
the following commands:

/<macro Id>t foo<eol>qrm<ecm>/

The editor mode remains unchanged by the invocation of <macrold>. The "QRM" command
works for named as well as for unnamed macros.

6.3. Rationale for MAINSAIL's Binding Rules

Often, interface variables do not really "belong" to any module (they are equally shared by a
number of modules) so that it is natural to put them in a single interface. In those cases when
some interface variables are naturally associated with a module which would not necessarily
bound when the variables are accessed, the programmer must choose between moving those
variables to a "root" module that will be bound when the variables are accessed and explicitly
binding the module with the interface variables in all modules that access the variables ... There
are good reasons why MAINSAll.. imposes this minor inconvenience instead of automap.cally
binding every module accessed by m when m is allocated or binding a module whenever one of
its interface variables is accessed:

• Automatically binding every module accessible from m when m was allocated would
lead to an "explosive" allocation of all potentially accessible modules in the entire
progmm, since the allocation of each module would in ttun cause the allocation of all
its referenced modules. This defeats MAINSAIL's concept of a program as an open
ended collection of modules brought into execution only as necessary. For example,
the runtime system contains many modules, perhaps only a few of which are used
during a particular program execution. Also, it is common for an initial procedure to
allocate data sttuctures such as arrays; it would be potentially fatal to program
execution if all such arrays were allocated at once.

• The check required to allocate a module on intermodule data access would make
intermodule data access substantially less efficient.

- S3-

6.4. Selective Compilation of Modules in a File

The techniques described here are most useful for large programs with many modules, where it
is convenient to keep the source code for the modules in a single file. The programmer may
want to put modules which are somehow "related" in the same file. Or if a program consists of
a large number of small modules, rather than having a large number of files (one for each
module), the programmer may wish to have a small number of files, each containing a number
of the modules. .

There are several ways to carry out compilation of a file containing more than one module.
Four are discussed here; the programmer can doubtless come up with other approaches using
the scanning directives combined with interactive "REDEFINE" directives.

1. If there are no scanning directives in the file, then the modules are compiled one after
another; i.e., the compiler compiles all the modules (one after the other, as if each
were in the file alone) in a file if it encounters no "OONESCAN" directive.

2. The use of interactive "REDEFINE" and the scanning directives make it possible to
compile just one of the modules in the file. This is useful when, for example, all
modules but one have been compiled correctly, so that just one needs to be
recompiled. An example of this is described in Section 6.4.1. .

3. The use of interactive "REDEFINE" and the "SKIPSCAN" and "BEGINS CAN"
directives make it possible to ask the user, before each module is encountered (by the
compiler) in the file, whether or not that module should be compiled. An example of
this is described in Section 6.4.2.

4. A combination of the previous two methods make it possible for the user either to
specify just one module to be compiled or to have the compiler ask whether or not
each module should be compiled.

6.4.1. Asking Which Module Should Be Compiled

This example shows the use of an interactive "REDEFINE" and the scanning directives to
allow the user to specify just one module in a file as the module to be compiled.

If a file "n" contains a number of modules, two of which are MTHMOD and STRMOD, then
"0" might look as shown in Example 6.4.1-1.

When MAINSAll.. starts to compile 0, it encounters the "REDEFINE", and so it outputs to the
user's terminal (assuming logFile is associated with tty):

Desired module (MTHMOD STRMOD ...):

- 54-

REDEFINE 5canName "Desired module (MTHMOD STRMOD ...): ";
SKIPSCAN scanName;
<eop>
BEGINSCAN "mthMod";
BEGIN "mthMod"

END "mthMod"
DONESCAN;
<eop>
BEGINSCAN "strMod";
BEGIN "strMod"

END "strMod"
DONESCAN;

i first line of a new page

i first line of new page

Example 6.4.1-1. A File That Asks Which Module Should Be Compiled

If the user types "strmod", the effect is the same as if:

REDEFINE scanName = "strmod"i

had occurred in the file instead of the interactive "REDEFINE". Then a "SKIPSCAN
"strMod";" is done; the compiler examines the first line of each page until it finds:

BEGINSCAN "strMod"

Then it compiles the STRMOD module. The "OONESCAN" after the end of STRMOD
prevents the compiler from looking any further in the file.

6.4.2. Asking Whether Each Module Should Be Compiled

This sample shows how to allow the user to specify whether or not each module in a file should
be compiled.

Before each module in the file is encountered, the user is asked with an interactive
"REDEFINE" whether or not that module should be compiled. If the answer is "TRUE", the
module is compiled; if not, a "SKIPSCAN '"'" is done; that is, the compiler skips to the next
"BEGINS CAN" . In either case, further scanning directives direct the compiler to ask the same
question about the next module.

- 55-

In this case, the file "fl" looks like Example 6.4.2-1, where the last two lines are given to
terminate the "SKIPSCAN """ that would be done if the user answered that "xyzMod" was not
to be compiled.

REDEFINE xxx "Compile mthMod (TRUE or FALSE): ";
IFC NOT xxx THENC SKIPSCAN ""; ENDC

BEGIN "mthMod"

END "mthMod"
<eop>
BEGINSCAN "strMod"; * first line of new page

REDEFINE xxx "Compile strMod (TRUE or FALSE): ";
IFC NOT xxx THENC SKIPSCAN ""; ENDC

BEGIN "strMod"

END "strMod"
<eop>
BEGINSCAN "xyzMod"; * first line of new page

REDEFINE xxx "Compile xyzMod (TRUE or FALSE): ";
IFC NOT xxx THENC SKIPSCAN ""; ENDC

BEGIN "xyzMod"

END "xyzMod"
<eop>
BEGINSCAN "";
DONESCAN;

* first line of last page

Example 6.4.2-1. A File That Asks Whether Each Module Should Be Compiled

This method can be combined with the previous method to enable the user to state at the start of
compilation whether all modules should be compiled, or whether a prompt should be given for
each.

-56 -

Appendix A. Solutions to Most Exercises

There are no "right" answers to most of the programming problems; any program that works
and is easy for the human reader to understand is a good solution. The programs that appear
here are therefore just suggestions.

Exercise 2-1 of part I of the "MAINSAIL Tutorial":

String
ABCDEFG

lX

abc

Module Name
Illegal, too many
characters (6 max) .

Illegal, must start
with letter.

Illegal, may not
contain underscore.

Legal, same as "ABC".

Exercise 2-2 of part I of the "MAINSAIL Tutorial":

BEGIN "byeBye"

INITIAL PROCEDURE;
BEGIN

Identifier
Legal

Illegal, must start
with letter.

Illegal, may not
contain underscore.

Legal, same as "ABC".

write (logFile, "Bye, folks!" & eol);
END;

END "byeBye"

Exercise 3-1 of part I of the "MAINSAIL Tutorial":

- 57-

BEGIN "writeX"

INITIAL PROCEDURE;
BEGIN
DEFINE strl
DEFINE str2

"This is a sentence.";
eol;

write(logFile,strl & str2);
END;

END "writeX"

Exercise 3-2 of part I of the "MAINSAil.. Tutorial":

BEGIN "vars3"

INITIAL PROCEDURE;
BEGIN
INTEGER i,j,k;
STRING s;

write(logFile,"First number: "); read(cmciFile,s); read(s,i);
write (logFile, "Second number: If); read(cmdFile,s); read(s,j);
write (logFile,"Third number: "); read(cmciFile,s); read(s,k);
write(logFile,"First - 2 = ",i - 2,eol &

END;

"Second * Third = ",j * k,eol &
"Third - First = ",k - i,eol);

END "vars3"

Exercise 3-3 of part I of the "MAINSAil.. Tutorial":

- 58-

Expression
«(5»)

* 62

"Time" & " is " & " money."

eol + 4

tab & eop & eop

Answer
Legal, integer. Nested
parentheses are OK to any depth
as long as they are correctly
paired ("««5»" would be
illegal). Means the same as 5
all by itself.

Illegal; "*" needs two operands,
one before and one after.

Legal, string.

Illegal; eol is a string, so is
not a legal operand to "+",
which operates only on numbers.

Legal, string.

Exercise 4-1 of part I of the "MAINSAIL Tutorial":

BEGIN "vDelta" * Vertical Delta

INITIAL PROCEDURE;
BEGIN
INTEGER i,j,count;
STRING s;

write (logFile, "Height: "); read(cmdFile,s); read(s,count);
FOR i :- count DOWNTO 1 DO

END;

BEGIN
FOR j := 1 UPTO i - 1 DO write(logFile," ");
FOR j := 1 UPTO 2 * (count - i) + 1 DO

write(logFile,"*");
write(logFile,eol);
END;

END "vDelta"

Exercise 4-2 of part I of the "MAINSAIL Tutorial":

- 59-

BEGIN "yOrN" * Answer Yes or No

INITIAL PROCEDURE;
BEGIN
BOOLEAN answerOK;
STRING s;
DOB write(logFile,"YES or NO: It); read(cmdFile,s);

answerOK :=

END;

(s .. "YES" OR s = "yes" OR s = "NO" OR s = "no")i
IF NOT answerOK THEN write(logFile,

"Only YES and NO (all uppercase or all lowercase)" &
eol & "are acceptable answers." & eol);

END UNTIL answerOKi

END "yOrN"

A better method of testing for "YES" or "NO" would be:

equ(s,"YES",upperCase) OR equ(s,"NO",upperCase)

but the procedure equ has not been introduced at the point of the exercise. Another strategy
permitting prefixes of "YES" or "NO" would involve the use of the system procedure
cmdMatch.

Exercise 5-1 of part I of the "MAINSAIL Tutorial":

-60-

BEGIN "colorP" :It Colors with procedures

DEFINE red = 1;
DEFINE yellow 2;
DEFINE blue = 4;

INTEGER PROCEDURE getColor (STRING promptStr);
BEGIN
INTEGER colorNum;
STRING s;
write(logFile,promptStr); read(cmdFile,s);
IF s "red" THEN colorNum := red
EF s = "yellow" THEN colorNum := yellow
EF s = "blue" THEN colorNum := blue
EB write(logFile,s,": unknown color, red assumed" & eol);

colorNum := red END;
RETURN(colorNum);
END;

INITIAL PROCEDURE;
BEGIN
INTEGER colorl,color2,totaIColor;

colorl := getColor("First paint color: ");
color2 := getColor("Se~ond paint color: ");

totalColor := colorl + color2;

write (logFile, "By mixing the two you get If);

IF totalColor = red + red THEN write(logFile,"red")
EF totalColor - red + yellow THEN write (logFile, "orange")
EF totalColor = yellow + yellow THEN

write (logFile, "yellow")
EF totalColor red + blue THEN write(logFile,"purple")
EF totalColor = yellow + blue THEN write (logFile, "green")
EF totalColor = blue + blue THEN write(logFile,"blue");
write(logFile,eol);

END;

END "colorP"

- 61-

The long If Statement at the end of the initial procedure could be better written as a Case
Statement, which is not yet introduced at the point of the exercise. It would look like:

CASE totalColor OFB
[red + red] write(logFile,"red");
[red + yellow] write(logFile,"orange");
[yellow + yellow] write(logFile,"yellow");
[red + blue] write(logFile,"purple");
[yellow + blue] write(logFile,"green");
[blue + blue] write(logFile,"blue");
END;

Exercise 5-2 of part I of the "MAINSAIL Tutorial":

The two code fragments don't necessarily do the same thing. In the first instance, the order of
the two calls to getString is known. In the second, since MAINSAIL doesn't guarantee the
order in which procedure arguments are evaluated, it is possible that the second call to
getString may be performed first, with the result that the prompts appear in the order:

Second string:
First string:

which is hardly desirable.

Exercise 5-3 of part I of the "MAINSAIL Tutorial":

BEGIN "odPrSq" t Odds, primes, and squares

BOOLEAN PROCEDURE isOdd (INTEGER i);
BEGIN
RETURN«i DIV 2) * 2 NEO i);
END;

BOOLEAN PROCEDURE iSPrime (INTEGER i);
Prime iff no integer between 2 and i - 1 divides i.
BEGIN
INTEGER j;
IF i LEO 1 THEN RETURN(FALSE);
FOR j := 2 UPTO i - 1 DO

IF (i DIV j) * j = i THEN RETURN(FALSE);
RETURN(TRUE);
END;

-62 -

BOOLEAN PROCEDURE perfectSquare (INTEGER i)i
BEGIN
INTEGER j;
IF i - 0 THEN RETURN(TRUE)i
j := 1;
WHILE j * j LEQ i DOB

IF j * j = i THEN RETURN(TRUE)i
j := j + 1 END;

RETURN (FALSE) ;
END;

INITIAL PROCEDURE;
BEGIN
INTEGER i;
STRING s;
write (logFile,"A nonnegative integer: "); read(cmdFile,s)i
read(s,i);
write(logFile,i," is ");
IF isOdd(i) THEN write(logFile,"odd")
EL write(logFile,"even");
write(logFile,"." & eol,i," is ");
IF NOT isPrime(i) THEN write (logFile, "not If);

write(logFile,"prime." & eol,i," is If);

IF NOT perfectSquare(i) THEN write (logFile, "not ");
write(logFile,"a perfect square." & eol);
END;

END "odP rSq"

The operator "MOD", not yet introduced at the point of the exercise, allows a more succinct
test for whether an integer a is divisible by an integer b:

a MOD b - 0

so that, e.g., the body of isOdd could be rewritten:

RETURN(i MOD 2 NEQ 0)

Exercise 6-1 of part I of the "MAINSAll.. Tutorial" is easier to do with the addition of another
procedure digitRead:

- 63-

INTEGER PROCEDURE digitRead (MODIFIES STRING s);
BEGIN
IF s NEQ "" THEN RETURN(rcRead(s» EL RETURN('O');
END;

STRING PROCEDURE stringAdd (STRING s,t);
The strings sand t represent nonnegative integers.
Return the string that represents their sum.
BEGIN
INTEGER carry,ch;

·STRING u;
u :- ""; carry := 0;
WHILE s OR t· DOB

carry :-
digitRead(s) - '0' + digitRead(t) - '0' + carry;

IF carry GEO 10 THENB ch := carry - 10; carry := 1 END
EB ch := carry; carry := 0 END;
rcWrite(u,ch + '0') END;

IF carry NEQ 0 THEN rcWrite(u,'l'); RETURN(u);
END;

Exercise 6-2 of part I of the "MAINSAIL Tutorial":

BEGIN "rpn2"

BOOLEAN timeToQuit; :If: An outer variable; true if "0"
:If: command seen

STRING stack; :If: The stack of numbers.

INTEGER stackDepth; :If: How many numbers are on the stack
:If: now.

STRING PROCEDURE getCommand (MODIFIES STRING S)i

:If: Return the next thing on the command line. If it is
t "0" or the end of the line, return the null string. * If it is illegal, write an error message and return
t the null string.
Remove the string read from s.
BEGIN
INTEGER Chi
STRING t,u;

-64 -

WHILE first(s) = , , OR first(s) = first(tab) DO cRead(s);
'* Remove initial blanks and tabs, if any

t := "";
WHILE s NEQ "" AND

(first(s) NEQ ' , AND first(s) NEQ first(tab» DO
cWrite(t,cRead(s»; '* Add the next character to the

'* result string

IF t = "Q" THENB timeToQuit := TRUE; RETURN ("") END;
IF t = "+,, OR t = "-" OR t = "*" OR t = "I" OR t = "5" OR

t = "c" OR t = "?" OR t = "" THEN RETURN(t);

=I If it isn't "Q", "5", "+", or nothing, then it must be
'* an integer or illegal.
u .,. t;
IF first(u) = '-' THEN cRead(u);
WHILE u DOB

ch := cRead(u);
=I Take advantage of the assumption that the digit
t characters are contiguous (see the "MAINSAIL
'* Language Manual") •
IF ch < '0' OR ch > '9' THENB

write(logFile,"Illegal command ",t,eol);
RETURN (" ") END END;

RETURN(t); '* It was an integer
END;

PROCEDURE push (STRING s);
'* Add the integer in s to the top of the stack. The
integers are separated by the space character.
BEGIN
cWrite(stack,' '); stack := stack & s;
stackDepth :- stackDepth + 1;
END;

STRING PROCEDURE stackTop (OPTIONAL BOOLEAN doNotPop);
=I Unless doNotPop is true, remove the top item from the
=I stack.
BEGIN
INTEGER Chi
STRING s;

-65 -

IF stackDepth < 1 THENB
write (logFile, "Stack empty."); RETURN ("") END;

s := "";
DOB-ch := rcRead(stack);

IF ch NEQ ' , THEN rcWrite(s,ch);
END UNTIL ch = , ';

stackDepth :- stackDepth - 1;
IF doNotPop THEN push(s); * Put it back onto the stack
RETURN(s);
END;

INTEGER PROCEDURE digitRead (MODIFIES STRING s);
BEGIN
IF s NEQ "" THEN RETURN(rcRead(s» EL RETURN('O');
END;

STRING PROCEDURE nonnegativeAdd (STRING s,t); * The strings sand t represent nonnegative integers.
Return the string that represents their sum.
BEGIN
INTEGER carry,ch;
STRING u;
u :- ""; carry :- 0;
WHILE s OR t DOB

carry :==
digitRead(s) - '0' + digitRead(t) - '0' + carry;

IF carry GEQ 10 THENB ch :== carry - 10; carry := 1 END
EB ch :== carry; carry := 0 END;
rcWrite(u,ch + '0') END;

IF carry NEQ 0 THEN rcWrite(u,'l'); RETURN(u);
END;

STRING PROCEDURE nonnegativeSub (STRING s,t); * The strings sand t represent nonnegative integers,
* s > t. Return the string that represents their * difference.
BEGIN
INTEGER borrow,ch;
STRING u;
u :- ""; borrow := 0;
WHILE s OR t DOB

borrow := digitRead(s) - digitRead(t) - borrow;
IF borrow < 0 THENB ch :- borrow + 10; borrow := 1 END
EB ch := borrow; borrow := 0 END;
rcWrite(u,ch + '0') END;

WHILE first(u) = '0' DO cRead(u);
RETURN(u);
END;

INTEGER PROCEDURE nonnegativeCompare (STRING s,t); * Compare two signless strings; return -1 if s < t,
t 0 if s = t, 1 if s > t
BEGIN
INTEGER chS,chT;
WHILE length(s) > length(t) DO

IF cRead(s) NEQ '0' THEN RETURN(l);
WHILE length(s) < length(t) DO

IF cRead(t) NEQ '0' THEN RETURN(-l); * Now lengths are equal:
WHILE s DOB

chS := cRead(s); chT :- cRead(t);
IF chS < chT THEN RETURN(-l)
EF chS > chT THEN RETURN(l) END;

RETURN(O);
END;

BOOLEAN PROCEDURE wasNeg (MODIFIES STRING s);
BEGIN
IF first(s) = '-' THENB cRead(s); RETURN (TRUE) END;
RETURN (FALSE) ;
END;

-67 -

STRING PROCEDURE stringAdd (STRING s,t);
BEGIN
BOOLEAN sNeg,tNeg;
INTEGER ii
STRING Ui
sNeg := wasNeg(s); tNeg := wasNeg(t);
IF sNeg = tNeg THENB

u := nonnegativeAdd(s,t); IF sNeg THEN rcWrite(u,'-');
RETURN (u) END; * Signs differ. Make t the smaller one.

i := nonnegativeCompare(s,t); IF i = 0 THEN RETURN("O");
IF i -1 THENB

u := s; s := t; t := U; sNeg := NOT sNeg END;
u := nonnegativeSub(s,t)i IF sNeg THEN rcWrite(u,'-');
RETURN (u) ;
END;

STRING PROCEDURE stringSub (STRING s,t);
BEGIN * Change sign of t and add
IF NOT wasNeg(t) THEN rcWrite(t,'-');
RETURN(stringAdd(s,t»;
END;

STRING PROCEDURE stringMul (STRING s,t);
BEGIN
BOOLEAN sNeg,tNeg;
INTEGER i,j,k;
STRING u,v,ss;
sNeg := wasNeg(s); tNeg := wasNeg(t); u := "0"; j := 0;
WHILE t DOB * Multiply s by each digit of t

v := ""; FOR k := 1 UPTO j DO cwrite(v,'O');
i :=rcRead(t) - '0'; ss := s; k := 0;
WHILE ss DOB

k := k + i * (rcRead(ss) - '0');
rcWrite(v,k - «k DIV 10) * 10) + '0');
k := k DIV 10 END;

IF k NEQ 0 THEN rcWrite(v,k + '0');
u := nonnegativeAdd(u,v); j := j + 1 END;

IF sNeg NEQ tNeg THEN rcWrite(u,'-');
RETURN (u) ;
END;

- 68-

STRING PROCEDURE stringDiv (STRING s,t); * s DIV t, 'except always truncates towards zero (direction
i of truncation of MAINSAIL DIV is unspecified for
* negative arguments). Standard long division algorithm.
BEGIN
BOOLEAN sNeg,tNeg;
INTEGER shiftCount,i,numSubs;
STRING u;
sNeg := wasNeg(s); tNeg := wasNeg(t);
* Check for division by zero, and return zero if so:
WHILE t AND first(t) - '0' DO cRead(t);
IF t = "" THENB

write (logFile, "Division by zero!" & eo1);
RETURN ("on) END;

IF nonnegativeCompare(s,t) < 0 THEN RETURN(no"); * Dividend less than divisor * Shift divisor left until larger than dividend:
shiftCount := -1; i Account for later shift right
DOB shiftCount :- shiftCount + 1;

cwrite(t,'O') END UNTIL nonnegativeCompare(t,s) > 0; * Since shift was too far, now shift back one:
rcRead(t); u :_ "n; * Now do repeated subtracts at each position:
FOR i := 0 UPTO shiftCount DOB

numSubs :- 0;
WHILE nonnegativeCompare(t,s) LEQ 0 DOB

numSubs : - numSubs + 1;
s :- nonnegativeSub(s,t) END;

cWrite(u,numSubs + '0'); * Accumulate a digit
rcRead(t); * Shift divisor right one position
END;

IF sNeg NEQ tNeg THEN rcwrite(u,'-');
RETURN (u) ;
END;

-69 -

PROCEDURE processCommand (STRING s);
• If s = "+", pop the top two items from the stack, add
• them, then push the result onto the stack. If s is * an integer, push it onto the stack.
BEGIN
STRING t,u;
IF s = "1" THEN write(logFile,

tIS show stack" & eol &
"C clear stack" & eol &
"<integer> push integer" & eol &
"+, -, *, I add, subtract, multiply or" & eol &
" divide top two stack elements" & eol)

EF s = "5" THEN write (logFile, "Stack:",stack,eol)
EF s = "C" THENB

stack := ""; stackDepth := 0;
write (logFile, "Stack cleared" & eol) END

EF s = ,,+" OR s :& "-" OR s = "*" OR s = "I" THENB
IF stackDepth < 2 THEN

write(logFile,"Impossible; stack has only",
stackDepth," items." & eol)

EL
END;

EB u := stackTop; t := stackTop;
IF s = "+,, THEN t := stringAdd(t,u)
EF s ,,_It THEN t := stringSub(t,u)
EF s - "*" THEN t :- stringMul(t,u)
EL
push (t) END END

push(s);

t := stringDiv(t,u);

INITIAL PROCEDURE;
BEGIN
STRING s,t;

timeToQuit := FALSE; * Haven't seen "Q" yet
stack := ""; stackDepth := 0; * No numbers on stack yet

-70-

DOB write(logFile,"CALC: It); read(cmdFile,s);
s := CVU(S)i t Convert to upper' case so as not to

have to distinguish "a"/"q", "S"/"s"
DOB t :- getCommand(s); # getCommand returns the null

t string at end of line or if
command "a" seen

END;

IF t NEa ,It, THEN processCommand (t) ;
END UNTIL t = "";

write(logFile,stackTop(TRUE),eol);
END UNTIL timeToauit;

END "rpn2"

Less string manipulation would be done in the multiplication algorithm if arrays were used
instead of strings, but arrays have not been introduced at the point of the exercise. Overall,
efficiency has been sacrificed for simplicity of implementation in this program.

Nothing is done to prevent leading zeros or negative zeros; a real string calculator would
probably do so. This would allow the test to see if s is a zero value to be:

first(s) .. '0'

Exercise 7-1 of part I of the "MAINSAll.. Tutorial":

BEGIN "pigLat"

BOOLEAN PROCEDURE isvowel (INTEGER ch);
Disregard 'y'
BEGIN
RETURN(ch

ch
END;

'a' OR ch
, u') ;

'e' OR ch = 'i' OR ch

·71-

'0' OR

STRING PROCEDURE pigify (STRING s);
i Return Pig Latin translation of s.
BEGIN
BOOLEAN wasCap;
INTEGER Chi
STRING ss,t,u;
ss := '''';
WHILE s DOB

* Remove non-letter characters and put into result:
WHILE s AND NOT isAlpha(first(s» DO

cWrite(ss,cRead(s»;
IF NOT s THEN DONE;
t := ""; * Gather the next word into t:
WHILE isAlpha(first(s» DO cWrite(t,cRead(s»;
i P"reserve case of initial letter:
wasCap := isUpperCase(first(t»; t := cvl(t);
IF isVowel(first(t» THEN u :- t & "yay"
EB u:= "n;

WHILE t AND NOT isVowel(first(t» DO
cWrite(u,cRead(t»;

u := t & u & "ay" END;
IF wasCap THENB

ch :- cvu(cRead(u»; rcWrite(u,ch) END;
ss := ss & u END;

RETURN (ss) ;
END;

INITIAL PROCEDURE;
BEGIN
STRING s;
DOB write (logFile, "String to translate to Pig Latin" &

"«eol.> to stop): "); read(cmciFile,s);
IF NOT s THEN DqNE;
write(logFile,pigify(s),eol) END;

END;

END "pigLat"

Exercise 7-2 of part I of the "MAINSAIL Tutorial":

BEGIN "hexClc" * Hexadecimal calculator

STRING x,y,z; i Values in the accumulators

-72-

BOOLEAN PROCEDURE isHexChar (INTEGER Ch)i
BEGIN
RETURN('O' LEO ch LEO '9' OR ch - 'A' OR ch ... 'B' OR

ch - 'c' OR ch - '0' OR ch - 'E' OR ch ... 'F')i
ENDi

INTEGER PROCEDURE hexVal (INTEGER Ch)i
BEGIN
IF ch GEO '0' AND ch LEO '9' THEN RETURN(ch - '0')
EF ch ... , A' THEN RETURN (10)
EF ch - , B' THEN RETURN (11)
EF ch = , C' THEN RETURN (12)
EF ch - '0' THEN RETURN (13)
EF ch ' E' THEN RETURN (14)
EF ch ' F' THEN RETURN (15)
EB write (logFile, "Unexpected character '",cvcs(ch),"'" &

eol)i
RETURN (0) ENDi

ENDi

INTEGER PROCEDURE hexChar (INTEGER val)i
BEGIN
IF val GEO 0 AND val LEO 9 THEN RETURN (val
EF val = 10 THEN RETURN (' A')
EF val 11 THEN RETURN (' B')
EF val - 12 THEN RETURN('C')
EF val 13 THEN RETURN('D')
EF val 14 THEN RETURN (, E')
EF val 15 THEN RETURN ('F')

+ ' 0')

EB write (logFile, "Unexpected value ",val,eol)i
RETURN(' 0') ENDi

ENDi

STRING PROCEDURE getToken (MODIFIES STRING S)i

t Remove the next thing from s.
BEGIN
INTEGER Chi
STRING ti

-73 -

WHILE first(s) = , , OR first(s) = first(tab) DO cRead(s);
IF NOT s THEN RETURN(""); t End of string
ch := cRead(s);
*' Everything but integers· is one character; "_,, may be * an operator or the start of an integer:
IF (ch = '-' AND NOT isHexChar(first(s») OR

(ch NEQ '-' AND NOT isHexChar(ch» THEN
RETURN(cvcs(ch»;

*' Now it must be an integer:
t := cvcs(ch);
WHILE isHexChar(first(s» DO cWrite(t,cRead(s»;
RETURN (t) ;
END;

PROCEDURE ungetToken (MODIFIES STRING s;
REPEATABLE STRING token);

t Put token back at the front of s.
BEGIN
s := token & " " & s;
END;

BOOLEAN PROCEDURE validHexInteger (STRING s);
*' Returns true if s is a (possibly negative) hex integer.
BEGIN
IF NOT s THEN RETURN(FALSE);
IF first(s) = ,~, THEN cRead(s);
WHILE s DO IF NOT isHexChar(cRead(s» THEN RETURN(FALSE);
RETURN(TRUE); t If made it to here, must be OK
END;

INTEGER PROCEDURE digitRead (MODIFIES STRING s);
BEGIN
IF s THEN RETURN(hexVal(rcRead(s») EL RETURN(O);
END;

-74 -

STRING PROCEDURE nonnegativeAdd (STRING s,t);
* The strings sand t represent nonnegative hex integers.
* Return the string that represents their sum.
BEGIN
INTEGER carry,ch;
STRING u;
u := ""; carry := 0;
WHILE s OR t DOB

carry :="digitRead(s) + digitRead(t) + carry;
IF carry GEQ 16 THENB ch := carry - 16; carry := 1 END
EB ch := carry; carry := 0 END;
rcWrite(u,hexChar(ch» END;

IF carry THEN rcWrite(u,'l'); RETURN(u);
END;

STRING PROCEDURE nonnegativeSub (STRING s,t);
t The strings sand t represent nonnegative integers,
t s > t. Return the string that represents their
difference.
BEGIN
INTEGER borrow,ch;
STRING u;
u := ""; borrow := 0;
WHILE s OR t DOB

borrow := digitRead(s) - digitRead(t) - borrow;
IF borrow < 0 THENB ch := borrow + 16; borrow := 1 END
EB ch :- borrow; borrow :- 0 END;
rcWrite(u,hexChar(ch» END;

WHILE first(u) = '0' DO cRead(u);
RETURN(u);
END;

-75-

INTEGER PROCEDURE nonnegativeCompare (STRING s,t); * Compare two signless strings; return -1 if s < t, * 0 if s = t, 1 if s > t
BEGIN
INTEGER chS,chT;
WHILE length(s) > length(t) DO

IF cRead(s) NEQ '0' THEN RETURN(1);
WHILE length(s) < length(t) DO

IF cRead(t) NEQ '0' THEN RETURN(-l); * Now lengths are equal:
WHILE s DOB

chS := cRead(s); chT := cRead(t);
IF hexVal(chS) < hexVal(chT) THEN RETURN(-l)
EF hexVal(chS) > hexVal(chT) THEN RETURN(l) END;

RETURN (0) ;

END;

BOOLEAN PROCEDURE wasNeg (MODIFIES STRING s);
BEGIN
IF first(s) - '-' THENB cRead(s); RETURN (TRUE) END;
RETURN(FALSE);
END;

STRING PROCEDURE stringAdd (STRING s,t);
BEGIN
BOOLEAN sNeg,tNegi
INTEGER i;
STRING u;
sNeg :- wasNeg(s); tNeg :- wasNeg(t);
IF sNeg = tNeg THENB

u := nonnegativeAdd(s,t); IF sNeg THEN rcWrite(u,'-')i
RETURN (u) END; * Signs differ. Make t the smaller one.

i := nonnegativeCompare(s,t); IF i = 0 THEN RETURN("O");
IF i - -1 THENB

u := s; s := t; t := u; sNeg := NOT sNeg END;
u := nonnegativeSub(s,t); IF sNeg THEN rcWrite(u,'-');
RETURN (u) ;
END;

-76 -

STRING PROCEDURE stringSub (STRING s,t);
BEGIN * Change sign of t and add
IF NOT wasNeg(t) THEN rcWrite(t,'-');
RETURN(stringAdd(s,t»;
END;

STRING PROCEDURE stringMul (STRING s,t);
BEGIN
BOOLEAN sNeg,tNeg;
INTEGER i,j,k;
STRING u,v,ss;
sNeg :- wasNeg(s); tNeg :- wasNeg(t); u := "0"; j := 0;
WHILE t DOB * Multiply s by each digit of t

v :- ""; FOR k :- 1 UPTO j DO cWrite(v,'O');
i := hexVal(rcRead(t»; ss := s; k := 0;
WHILE ss DOB

k := k + i * hexVal(rcRead(ss»;
rcWrite(v,hexChar(k - «k DIV 16) * 16»);
k :- k DIV 16 END;

IF k THEN rcWrite(v,hexChar(k»;
u := nonnegativeAdd(u,v); j := j + 1 END;

IF sNeg NEQ tNeg THEN rcWrite(u,'-');
RETURN(u);
END;

-77 -

STRING PROCEDURE stringDiv (STRING s,t); * s DIV t, except always truncates towards zero (direction
i of truncation of MAINSAIL DIV is unspecified for * negative arguments). Standard long division algorithm.
BEGIN
BOOLEAN sNeg,tNeg;
INTEGER shiftCount,i,numSubs;
STRING u;
sNeg := wasNeg(s); tNeg := wasNeg(t); * Check for division by zero, and return zero if so:
WHILE t AND first(t) = '0' DO cRead(t);
IF NOT t THENB

write (logFile, "Division by zero!" & eol);
RETURN (" 0") END;

IF nonnegativeCompare(s,t) < 0 THEN RETURN("O"); * Dividend less than divisor
i Shift divisor left until larger than dividend:
shiftCount :- -1; * Account for later shift right
DOB shiftCount := shiftCount + 1;

cWrite(t,'O') END UNTIL nonnegativeCompare(t,s) > 0;
• Since shift was too far, now shift back one:
rcRead(t); u := "";
• Now do repeated subtracts at each position:
FOR i :- 0 UPTO shiftCount DOB

numSubs := 0;
WHILE nonnegativeCompare(t,s) LEQ 0 DOB

numSubs := numSubs + 1;
s := nonnegativeSub(s,t) END;

cWrite(u,hexChar(numSubs»; * Accumulate a digit
rcRead(t); * Shift divisor right one position
END;

IF sNeg NEQ tNeg THEN rcWrite(u,'-');
RETURN (u) ;
END;

FORWARD STRING PROCEDURE value (MODIFIES STRING s);

STRING PROCEDURE factor (MODIFIES STRING s);
BEGIN
STRING t,i;

-78 -

t :- getToken(s);
IF t "X" THEN RETURN(x)
EF t "Y" THEN RETURN (y)

EF t "Z" THEN RETURN(z)
EF t "(" THENB

i := value(s); t :- getToken(s);
IF t NEQ ")" THEN

write (logFile, "Factor: missing ')' at ",t,eol);
RETURN (i) END

EF validHexInteger(t) THENB read(t,i); RETURN (i) END
EB write (logFile, "Factor: illegal factor ",t,eol);

RETURN ("0") END; * Treat garbage as a zero
END;

STRING PROCEDURE ter.m (MODIFIES STRING s);
BEGIN
STRING t,product;

product :- factor(s);
DOB t :- getToken(s);

IF t ""' "*" THEN
product :- stringMul(product,factor(s»

EF t - "/" THEN
product :- stringDiv(product,factor(s»

EB ungetToken(s,t); DONE END END;
RETURN(product);
END;

STRING PROCEDURE expression (MODIFIES STRING s);
BEGIN
STRING sum,t;

sum := ter.m(s);
DOB t :- getToken(s);

IF t = "+,, THEN sum := stringAdd(sum,ter.m(s»
EF t - "_,, THEN sum :- stringSub(sum,ter.m(s»
EB ungetToken(s,t); DONE END END;

RETURN (sum) ;
END;

-79 -

STRING PROCEDURE assignment (MODIFIES STRING, s);
BEGIN
STRING val,regName;

regName := getToken(s); getToken(s); *' Discard "="
val :- value(s);
IF regName "X" THEN x := val
EF regName = "Y" THEN Y := val
EF regName = "Z" THEN z := val
EL write(logFile,"Assignment: illegal register name ",

regName,eol);
RETURN (val) ;
END;

STRING PROCEDURE value (MODIFIES STRING s);
BEGIN
BOOLEAN isAssignment;
STRING t,u;

t :- getToken(s); u := getToken(s);
isAssignment := (u - "_");
ungetToken(s,u,t);
IF isAssignment THEN RETURN(assignment(s»
EL RETURN(expression(s»;
END;

BOOLEAN PROCEDURE doCommand (STRING s);
f Return false if the command was "Q", true otherwise.
BEGIN
STRING t;

- 80-

t :
IF t
IF t

getToken(s);
- "Q" THEN RETURN(FALSE);

"?" THEN write(logFile,
"Q quit" & eol &
ItS show accumulators (named X, Y, Z)" & eol &
"Else, type an infix arithmetic expression" & eol &
"using the operators +, -, *, I, or" & eol &
"= (assignment to register), and parentheses;" & eol &
"constants are in hex and are negative if" & eol &
"prefixed by ""-"". Examples:" & eol &
eol &
" 3AB + EOO" & eol &
" z - «x = 100) - 1eab4004 * e31) I 2" & eol)

EF t = "S" THEN
write (logFile, "X: ",x,eol & tty: ",y,eol & "Z: ",z,eol)

EF t THENB
ungetToken(s,t); write(logFile,value(s),eol) END;

IF t :- getToken(s) THEN i Something was left over
write(logFile,"Illegal leftover token ",t,eol);

RETURN (TRUE) ;
END;

INITIAL PROCEDURE;
BEGIN
STRING s;

i Set up the accumulators:
x := "0"; y := "0"; z := "0";

DOB write(logFile,"HEX CALC command ('Q' to quit): WI);
read(cmdFile,s) END UNTIL NOT doCommand(cvu(s»;

END;

END "hexClc"

The names of the accumulators have been changed from A, B, and C in Example 7.2.2-2 of part
I of the "MAINSAll.. Tutorial" to X, Y, and Z, since A, B, and C are valid hexadecimal digits.
The string math procedures from Exercise 6-2 of part I of the "MAINSAll.. Tutorial" have been
adapted to handle hexadecimal number strings. The syntax is a little more liberal than that of
Example 7.2.2-2 of part I of the "MAINSAll.. Tutorial" in that it allows an assignment
embedded in an expression (e.g., "2 + (x = 1oo)", meaning assign 100 to X, then add 2); a call
to the procedure "value" was substituted for the call to "expression" in the procedure "factor".

- 81-

isHexChar,hexVal, and hexChar would be better implemented with arrays, but arrays have not
been introduced at the point of the exercise.

Exercise 8-1 of part I of the "MAINSAIL Tutorial":

(b1 SHR n TST '1) AND NOT (b2 SHR n TST '1)

Exercise 8-2 of part I of the "MAINSAIL Tutorial":

BEGIN "bitAdd"

BITS PROCEDURE bitByBitAdd (BITS bl,b2);
BEGIN
BOOLEAN carry,result,bol,bo2;
INTEGER i;
BITS b;
b := '0; carry := FALSE;
FOR i := 0 UPTO 15 DOB

bo1 := b1 TST ('1 SHL i); bo2 := b2 TST ('1 SHL i);
IF result := «bo1 NEQ bo2) NEQ carry) THEN

b := b lOR ('1 SHL i);
If result NEQ carry, then carry is unchanged; if
t result = carry, then bo1 = bo2 = new carry
IF result - carry THEN carry := bol END;

IF carry THEN write (logFile, "Overflow!" & eol);
RETURN (b) ;

END;

PROCEDURE writeBits (BITS b);
BEGIN
write(logFile,b," (oct) ",cvs(b,hex)," (hex) ",

cvs(b,binary)," (bin) ",cvli(b)," (int)" & eol);
END;

INITIAL PROCEDURE;
BEGIN
BITS b1,b2;
STRING s;
write(logFile,"First bits value: "); read(cmdFile,s);
b1 :- cvb(s); writeBits(b1);
write (logFile, "Second bits value: H); read(cmdFile,s);
b2 := cvb(s); writeBits(b2);
write(logFile,"Sum is "); writeBits(bitByBitAdd(b1,b2»;
END;

END "bitAdd"

Exercise 9-1 of part I of the "MAINSAIL Tutorial":

- 83-

BEGIN "calcFT" # CALC with F and T commands

INTEGER a,b,c; # Values in the accumulators

POINTER (textFile) inFile,outFile;

STRING PROCEDURE getLine;
BEGIN
STRING Si

IF inFile THENB
read(inFile,s);
IF NOT $gotValue(inFile) THENB

write(logFile,eol & "Reached end-of-file on ",
inFile.name,", returning to cmdFile",eol);

close(inFile); RETURN (getLine) END;
write (logFile,s,eol) END

EL read(cmdFile,s);
IF outFile THEN write(outFile,s,eol);
RETURN(s);
END;

PROCEDURE iPut (REPEATABLE INTEGER i);
BEGIN
IF outFile THEN write(outFile,i);
write(logFile,i);
END;

PROCEDURE sPut (REPEATABLE STRING s);
BEGIN
IF outFile THEN write(outFile,s);
write(logFile,s);
END;

GENERIC PROCEDURE put "iPut,sPut";

STRING PROCEDURE getToken (MODIFIES STRING s);
t Remove the next thing from s.
BEGIN
INTEGER Chi
STRING ti

WHILE first(s) - , , OR first(s) first (tab) DO cRead(s);
IF NOT s THEN RETURN(""); t End of string
ch :- cRead(s);
t Everything but integers is one character:
IF ch < '0' OR ch > '9' THEN RETURN(cvcs(ch»;
t Now it must be an integer:
t :- cvcs(ch);
WHILE first(s) GEO '0' AND first(s) LEO '9' DO

cWrite(t,cRead(s»;
RETURN (t) ;
END;

PROCEDURE ungetToken (MODIFIES STRING s;
REPEATABLE STRING token);

Put token back at the front of s.
BEGIN
s :- token & " " & s;
END;

BOOLEAN PROCEDURE validInteger (STRING s);
Returns true if s is an unsigned integer.
BEGIN
INTEGER Chi

IF NOT s THEN RETURN(FALSE);
WHILE s DOB

ch :- cRead(s);
IF ch < '0' OR ch > '9' THEN RETURN(FALSE) END;

RETURN(TRUE); # If made it to here, must be OK
ENDi

FORWARD INTEGER PROCEDURE expression (MODIFIES STRING s);

- 85-

INTEGER PROCEDURE factor (MODIFIES STRING s);
BEGIN
INTEGER ii
STRING ti

t := getToken(s)i
IF t "A" THEN RETURN(a)
EF t = "B" THEN RETURN(b)
EF t "c" THEN RETURN(c)
EF t = "(" THENB

i := expression(s); t := getToken(s);
IF t NEQ ")" THEN put ("Factor: missing ')'" & eol);
RETURN (i) END

EF validInteger(t) THENB read(t,i)i RETURN (i) END
EB put ("Factor: illegal factor ",t,eol);

RETURN (0) END; t Treat garbage as a zero
END;

INTEGER PROCEDURE ter.m (MODIFIES STRING s);
BEGIN
INTEGER product,i;
STRING t;

product := factor(s)i
DOB t := getToken(s);

IF t - "*" THEN product :- product * factor(s)
EF t = "I" THENB

i := factor(s);
IF i NEQ 0 THEN product := product DIV i
EB put ("Ter.m: division by zero" & eol);

product := 0 END END t Give zero result
EB ungetToken(s,t); DONE END END;

RETURN(product);
END;

INTEGER PROCEDURE expression (MODIFIES STRING S)i

BEGIN
INTEGER sum;
STRING ti

- 86-

sum := term(s);
DOB t := getToken(s);

IF t = "+,, THEN sum := sum + term(s)
EF t = "_,, THEN sum := sum - term(s)
EB ungetToken(s,t); DONE END END;

RETURN (sum) ;
END;

FORWARD INTEGER PROCEDURE value (MODIFIES STRING s);

INTEGER PROCEDURE assignment (MODIFIES STRING S)i

BEGIN
STRING regName;
INTEGER val;

regName :- getToken(s); getToken(s)i :it Discard "="
val := value(s);
IF regName "A" THEN a := val
EF regName .. "B" THEN b := val
EF regName .. "c" THEN c := val
EL put ("Assignment: illegal register name ",regName,eol);
RETURN (val) ;
ENDi

INTEGER PROCEDURE value (MODIFIES STRING s);
BEGIN
BOOLEAN isAssignment;
STRING t,u;

t := getToken(s)i u := getToken(s)i
isAssignment := (u = "=")i
ungetToken(s,u,t)i
IF isAssignment THEN RETURN(assignment(s»
EL RETURN(expression(s»;
ENDi

BOOLEAN PROCEDURE doCommand (STRING S)i

4/: Return false if the command was "Q", true otherwise.
BEGIN
STRING t;

- 87-

· t := cvu (getToken (a)) ;
IF t "Q" THEN RETURN(FALSE);
IF t "5" THEN put ("A: ",a," B: ",b," C: ",c,eol)
EF t "F" THENB

IF inFile THEN
put ("''''F'''' command not allowed in command file" &

eol)
EB IF inFile THEN cloae(inFile);

WHILE first(s) = , , OR first(s) firat(tab) DO
cRead(a) ;

open (inFile, a, input) END;
s := "" END

EF t = "T" THENB
WHILE firat(a) = , , OR firat(a) = first (tab) DO

cRead(a);
IF outFile THEN cloae(outFile);
IF a THENB open(outFile,s,create!output); s := "" END;
END

EF t THENB
ungetToken(s,t); a := cvu(s); put(value(a),eol) END;

IF t := getToken(s) THEN * Something was left over
put("Illegal token ",t,eol);

RETURN (TRUE) ;
END;

INITIAL PROCEDURE;
BEGIN
STRING s;

t Set up the accumulators:
a := 0; b :- 0; c :- 0;

DOB put ("CALC command ('Q' to quit): If);

s := getLine END UNTIL NOT doCommand(s);

IF inFile THEN close(inFile);
IF outFile THEN close(outFile);
END;

END "calcFT"

The procedure doCommand is upgraded to handle the new "P" and "T" commands. Calls to
"write(logFile, ...)" and "read(cmdFile, ...)" are now funneled through the new procedures put (a

- 88-

generic procedure, like write) and getLine, which take care of all the necessary echoing. The
initial procedure closes its files at the end, as all good programs should.

Exercise 9-2 of part I of the "MAINSAIL Tutorial":

BEGIN "datClc" * Data file calculator

INITIAL PROCEDURE;
BEGIN
BITS b;
REAL acc,r;
POINTER (dataFile) d;
open(d,"Input data file: ",input!prompt);
acc :- 0.0;
DOB read(d,r,b); IF b NTST '4 THEN DONE; b :- b MSK '3;

IF b - '0 THENB
write(logFile,"Adding "); acc :- acc + r END

EF b - '1 THENB
write(logFile,"Subtracting "); acc :- acc - r END

EF b - '2 THENB
write (logFile, "Multiplying by");
acc :- acc * r END

EB write (logFile, "Dividing by"); acc := acc / rEND;
write(logFile,r,"; new value = ",acc,eol);
END;

write(logFile,"Done." & eol); close(d);
END;

END "datClc"

Exercise 10-1 of part I of the "MAINSAIL Tutorial":

BEGIN "symDel" * Symbol table with delete

Maintains a symbol table or primitive database in the
* form of a random-access data file.
POINTER (dataFile) f; * The database file
INTEGER numBuckets; * How many buckets in the file

DEFINE numBucketsPos - OL;

INTEGER PROCEDURE fSize (INTEGER typeCode);
RETURN($ioSize(f,typeCode»;

- 89-

LONG INTEGER PROCEDURE nullRecordPos;
RETURN(numBucketsPos + cvli(fSize(integerCode»);

LONG INTEGER PROCEDURE eofPosPos;
RETURN(nullRecordPos + cvli(fSize(longIntegerCode»);

LONG INTEGER PROCEDURE firstBucketPos;
RETURN(eofPosPos + cvli(fSize(longIntegerCode»);

* Now free list starts right after last bucket start pos
LONG INTEGER PROCEDURE freeListPos;
RETURN(firstBucketPos +

cvli(numBuckets * fSize(longIntegerCode»);

BOOLEAN PROCEDURE createNewDataBase (STRING name); * Return true if successful creation.
BEGIN
INTEGER i;
LONG INTEGER eofPos;
STRING s;

-90-

IF NOT confirm("Create new database file " & name) THEN
RETURN(FALSE);

IF NOT open(f,name,create!input!output!random!errorOK)
THENB
errMsg("Couldn't create",name); RETURN (FALSE) END;

setPos(f,nullRecordPos); write(f,OL); * Create null rec.
write(logFile,"Number of hash buckets to use in file ",

name," «eol> for 131): "); * 131 is a good number
read(cmdFile,s);
numBuckets :- IF NOT s THEN 131 EL cvi(s);
IF numBuckets < 1 OR numBuckets > 1000 THENB * Sensible numBuckets?

errMsg("Bad number of buckets " & s,eol &
"Should be 1 - 1000"); RETURN (FALSE) END;

setPos(f,numBucketsPos); write(f,numBuckets);
i Now initialize all the buckets to be empty:
setPos(f,firstBucketPos); * + 1 to add free list:
FOR i :- 1 UPTO numBuckets + 1 DO write(f,nullRecordPos);
eofPos :- getPos(f); setPos(f,eofPosPos);
write(f,eofPos); * eofPos is current end-of-file position
RETURN (TRUE) ;
END;

INTEGER PROCEDURE hash (STRING s);.
f Returns a value in the range 0 to numBuckets - 1
BEGIN
INTEGER h,i,j;
i := (h :- length(s» MIN 4; j := 1;
WHILE (i .~ 1) GEQ 0 DO h .+ cRead(s) * (j .+ 2);
RETURN(h MOD numBuckets) END;

STRING PROCEDURE getString (INTEGER numChars);
* Read the next numChars integers from the file into a
f string.
BEGIN
INTEGER Chi
STRING s;

- 91-

s : = "";
WHILE (numChars .- 1) GEQ 0 DOB

read(f,ch); cWrite(s,ch) END;
RETURN(S);
END;

LONG INTEGER PROCEDURE bucketpos (INTEGER hashCode)i
t Return the position of the start of the hash list with
t hash code hashCode.
RETURN(firstBucketPos +

cvli(hashCode * fSize(longIntegerCode»);

BOOLEAN PROCEDURE lookup
(STRING recName;
PRODUCES OPTIONAL STRING recVal;

'PRODUCES OPTIONAL LONG INTEGER atPos);
* Return true if record recName is found, or if recName
* is "" (illegal record name); atPos is record pos or -lL * if recName ""
BEGIN
INTEGER nameLen,valLeni
LONG INTEGER nextPos,prevPos;

IF NOT recName THENB
errMsg("Null record name"); recVal :- "";
atPos := -lL; RETURN (TRUE) END; * Act as if found it

* position to hash list for this record name:
setPos(f,bucketPos(hash(recName»); read(f,atPos);
setPos(f,atPos); i Pos of first record in list
DOB read(f,nextPos);

END;

IF NOT nextPos THEN RETURN(FALSE); i End of this list
read(f,prevPos,nameLen);
IF getString(nameLen) NEQ recName THENB

setPos(f,atPos := nextPos)i CONTINUE END;
read(f,valLen); recVal :- getString(valLen);
RETURN (TRUE) ENDi

-92 -

LONG INTEGER PROCEDURE setUpRecordAtPos
(LONG INTEGER pos,theBucketPos); * Put in the record prefix (next and prev links) for a

t record at pos in the bucket starting at theBucketPos.
t Return the position just after the next and prev links.
BEGIN
LONG INTEGER listPos,endPos; * Insert the record at the head of the hash list:
setPos(f,theBucketPos);
t Overwrite the head of the list position:
read(f,listPos); relPos(f,- fSize(longIntegerCode»;
write(f,pos); setPos(f,pos);
t nullRecordPos means no back link
write(f,listPos,nullRecordPos);
endPos := getPos(f);
t Now update back link in former head record of bucket
IF listpos NEQ nullRecordPos THENB

setPos(f,listPos + cvli(fSize(longIntegerCode»);
write (f,pos) END;

RETURN(endPos);
END;

PROCEDURE writeRecord (STRING recName,recVal;
LONG INTEGER pos);

t Write the new record at pos.
BEGIN
LONG INTEGER endPos,eofPos;

setPos(f,setUpRecordAtPos(pos,bucketPos(hash(recName»));
write(f,length(recName»;
WHILE recName DO write(f,cRead(recName»;
write(f,length(recVal»;
WHILE recVal DO write(f,cRead(recVal»;
endPos :- getPos(f);
t Now update eofPos if wrote record at end of file
setPos(f,eofPosPos); read(f,eofPos);
IF endPos > eofPos THENB

setPos(f,eofPosPos); write (f,endPos) END;
END;

-93-

LONG INTEGER PROCEDURE findFreeSpaceFor
(STRING recName,recVal); * Currently looks for a record of exactly the same size on * the free list. Could be set up also to merge adjacent * free records and to break up large free records when * allocating a smaller record. Return -lL if not found.

BEGIN
INTEGER lenl,len2;
LONG INTEGER pos,nextPos,prevPos;
pos := freeListPos;
WHILE pos NEQ nullRecordPos DOB

setPos(f,pos); read(f,nextPos,prevPos,lenl);
relPos(f,lenl * fSize(integerCode»;
read(f,len2);
IF length(recName) + length(recVal) = lenl + len2 THEN

RETURN(pos);
pos :- nextPos END;

RETURN(-lL);
END;

PROCEDURE removeFromList (LONG INTEGER atPos,listPos); * Remove the record at atPos from the list at listpos.
BEGIN
LONG INTEGER nextRec,prevRec,ii;
setPos(f,atPos); read(f,nextRec,prevRec);
IF prevRec NEQ nullRecordPos THENB * link prev to next

setPos(f,prevRec); write (f,nextRec) END;
IF nextRec NEQ nullRecardPas THENB * link next to prev

setPos(f,nextRec + cvli(fSize(longlntegerCade»);
write (f,prevRec) END;

setPos(f,listPos); read(f,ii);
IF ii - atPos THENB * removed head of list, make atPos's next new head

setPos(f,listPos); write (f,nextRec) END;
END;

PROCEDURE createRecord (STRING s);
BEGIN
LONG INTEGER pas;
STRING recVal,ti

-~-

scan(s," " & tab,proceed!omit); * Remove leading blanks
IF lookup(s) THENB

errMsg("Record already exists:",s); RETURN END; * Now read the record value from cmdFile:
write (logFile,

"Enter record value; end with blank line" & eol);
recVal :- "";
DOB read(cmdFile,t); IF NOT t THEN DONE;

write(recVal,t,eol); i Same as "recVal .& (t & eol)"
END;

i Now write it into the file
IF pos :- findFreeSpaceFor(s,recVal) < OL THENB

setPos(f,eofPosPos); read(f,pos) END
EL removeFromList(pos,freeListPos);
writeRecord(s,recVal,pos);
END;

PROCEDURE deleteRecord (STRING s);
BEGIN
LONG INTEGER atPos;
STRING recVal;

scan(s," " & tab,proceed!omit); * Remove leading blanks
IF NOT s OR NOT lookup(s,recVal,atPos) THENB

errMsg("No such record:",s);RETURN END; * Remove the record from its current bucket and add to * the free list.
removeFromList(atPos,bucketPos(hash(s»);
setUpRecordAtPos(atPos,freeListPos);
END;

PROCEDURE lookupRecord (STRING s);
BEGIN
STRING recVal;

scan(s," " & tab,proceed!omit); * Remove leading blanks
IF NOT lookup(s,recVal) THEN errMsg("No such record:",s)
EL write(logFile,recVal);
END;

-95 -

PROCEDURE showRecords:
BEGIN
INTEGER i,nameLen;
LONG INTEGER nextPos,prevPos:

FOR i :- 0 UPTO numBuckets - 1 DOB
setPos(f,bucketPos(i»: read(f,nextPos):
setPos(f,nextPos); * Pos of first record in list
DOB read(f,nextPos); IF NOT nextPos THEN DONE;

END;

read(f,prevPos,nameLen);
write(logFile,getString(nameLen),eol);
setPos(f,nextPos) END END;

BOOLEAN PROCEDURE processCommand (STRING s);
BEGIN * Return false if s is the quit command, true otherwise. * The commands are "Q" (quit), "C" (create a new record)', * "S" (show names of all existing records), and "L" (look * up an e..xisting record). "C" and "L" commands are
* followed by the record name.
s :- cvu(s); * So we don't have to worry about case
CASE cRead(s) OFB

[-1] ; * Do nothing if blank line
['Q'] RETURN(FALSE);
['5'] showRecords;
['C'] createRecord(s):
['0'] deleteRecord(s):
[' L'"] 100kupRecord (s) :
['1'] ['H'] write (logFile,

"Q to quit" & eol &
"5 show names of all records" & eol &
"C recName create record recName" & eol &
"0 recName
"L recName
"1 or H

delete record recName" & eol &
look up record recName" & eol &
get this message" & eol);

[] write (logFile,
"Invalid command (1 for help)" & eol):

END:
RETURN (TRUE) :
END:

- 96-

INITIAL PROCEDURE;
BEGIN
STRING s;

DOB write(logFile,"Database file name: ");
read(cmdFile,s) END
UNTIL open(f,s,random!input!output!errorOK) OR

createNewDataBase(s); * Note use of short-circuit evaluation: * createNewDataBase is called only if open fails

setPos(f,numBucketsPos);
read(f,numBuckets); * Get the number of buckets

DOB write (logFile, "Command: "); read(cmdFile,s) END
UNTIL NOT processCommand(s);

close(f);
END;

END "symDel"

The file fonnat has been changed to have a free list after the last bucket position. The format of
individual records has been changed to add a backwards link as well as a forwards link:

+-------+-------+-------+----------+-------+----------+
InextReclprevReclnameLenlname charsldataLenldata chars I
+-------+-------+-------+----------+-------+----------+

The backwards link facilitates the removing of a record from the list, at the cost of a little extra
work when adding the record to the list.

$ioSize has been used instead of size to allow PDF I/O on the database file.

Exercise 10-2 of part I of the "MAINSAIL Tutorial":

BEGIN "symTxt"

* Maintains a symbol table or primitive database in the
* form of a random-access text file.
POINTER (textFile) f; * The database file
INTEGER numBuckets; * How many buckets in the file

-97 -

DEFINE liSpace 20Li * Space allocated for long integer * and eol (20 chars should be more
* than enough)

DEFINE numBucketsPos = OLi
DEFINE nullRecordPos = numBucketsPos + liSpacei
DEFINE eofPosPos = nullRecordPos + liSpacei
DEFINE firstBucketPos = eofPosPos + liSpacei

BOOLEAN PROCEDURE createNewDataBase (STRING name)i * Return true if successful creation.
BEGIN
INTEGER ii
LONG INTEGER eofPosi
STRING Si

IF NOT confirm("Create new database file " & name) THEN
RETURN(FALSE);

IF NOT open
(f,name,create!input!output!random!errorOK)
THENB
errMsg ("Couldn't create", name) i- RETURN (FALSE) END;

* Create null rec:
setPos(f,nullRecordPos); write(f,OL,eol);
write(logFile,"Number of hash buckets to use in file ",

name," «eol> for 131): "); * 131 is a good number
read(cmdFile,s);
numBuckets :~ IF NOT s THEN 131 EL CVi(S)i
IF numBuckets < 1 OR numBuckets > 1000 THENB * Sensible numBuckets?

errMsg ("Bad number of buckets ." & s, eol &

"Should be 1 - 1000"); RETURN (FALSE) ENDi
setPos(f,numBucketsPos); write(f,numBuckets,eol); * Now initialize all the buckets to be empty:
FOR i := 0 UPTO numBuckets.- 1 DOB

setPos(f,firstBucketPos + cvli(i) * liSpace)i
write (f,nullRecordPos,eol) END;

eofPos := firstBucketPos + cvli(numBuckets) * liSpace;
setPos(f,eofPosPos); write(f,eofPos,eol)i RETURN(TRUE)i
ENDi

- 98-

INTEGER PROCEDURE hash (STRING s); * Returns a value in the range 0 to numBuckets - 1
BEGIN
INTEGER h,i,j;
i :== (h := length(s» MIN 4; j :== 1;
WHILE (i .- 1) GEQ 0 DO h .+ cRead(s) * (j .+ 2);
RETURN(h MOD numBuckets) END; >

STRING PROCEDURE getString (INTEGER numChars); * Read the next numChars integers from the file into a
* string.
BEGIN
STRING s;

S .== ,
WHILE (numChars - 1) GEQ 0 DO cWrite(s,cRead(f»;
RETURN(s);
END;

LONG INTEGER PROCEDURE bucketpos (INTEGER hashCode); * Return the position of the start of the hash list with * hash code hashCode.
RETURN(firstBucketPos + cvli(hashCode) * liSpace);

BOOLEAN PROCEDURE lookup
(STRING recName; PRODUCES OPTIONAL STRING recVal); * Return true if record recName is found, or if recName * is .". (illegal record name)

BEGIN
INTEGER nameLen,valLen;
LONG INTEGER nextPos;
STRING s;

IF NOT recName THENB
errMsg("Null record name"); recVal :== ;
RETURN (TRUE) END; * Act as if we found it

- 99-

f position to hash list for this record name:
setPos(f,bucketPos(hash(recName»); read(f,nextPos);
setPos(f,nextPos); f Pos of first record in list
DOB read(f,s); nextPos := cvli(s);

END;

IF NOT nextPos THEN RETURN(FALSE)i i End of this list
read(f,s); nameLen :- cvi(s);
IF getString(nameLen) NEQ 'recName THENB

setPos(f,nextPos); CONTINUE END;
read(f,s); valLen := cvi(s);
recVal :- getString(valLen); RETURN (TRUE) END;

PROCEDURE writeRecord (STRING recName,recVal);
t Write the new record at the current end-af-file
t positiono
BEGIN
LONG INTEGER eofPos,buckPos,listPos;

setPos(f,eofPosPos); read(f,eofPos);
Insert the record at the head of the hash list:
setPos(f,buckPos := bucketPos(hash(recName»);
f Overwrite the head of the list position:
read(f,listPos); setPos(f,buckPos);
write(f,eofPos,eol); setPos(f,eofPos);
write(f,listPos,eol,length(recName),eol,recName,

length(recVal),eol,recVal);
eofPos := getPos(f); setPos(f,eofPosPos);
write(f,eofPos,eol);
END;

PROCEDURE createRecord (STRING s);
BEGIN
STRING recVal,t;

0100 a

scan(s," " & tab,proceed!omit); * Remove leading blanks
IF lookup(s) THENB

errMsg("Record already exists:",s); RETURN END; * Now read the record value from cmdFile:
write (logFile,

"Enter record value; end with blank line" & eol);
recVal := "";
DOB read(cmdFile,t); IF NOT t THEN DONE;

write (recVal,t,eol) END;
writeRecord(s,recVal); * Now write it into the file
END;

PROCEDURE lookupRecord (STRING s);
BEGIN
STRING recVal;

scan(s," " & tab,proceed!omit); * Remove leading blanks
IF NOT 10okup(s,recVal) THEN errMsg("No such record:",s)
EL write(logFile,recVal);
END;

PROCEDURE showRecords;
BEGIN
INTEGER i,nameLen;
LONG INTEGER nextPosi
STRING Si

FOR i := 0 UPTO numBuckets - 1 DOB
setPos(f,bucketPos(i»; read(f,nextPos);
setPos(f,nextPos); * Pos of first record in list
DOB read(f,s)i nextPos := cvli(s)i

END;

IF NOT nextPos THEN DONE;
read(f,s)i nameLen :- CVi(S)i
write(logFile,getString(nameLen),eol)i
setPos(f,nextPos) END END;

- 101-

BOOLEAN PROCEDURE processCommand (STRING s);
BEGIN
Return false if s is the quit command, true otherwise.
The commands are "Q" (quit), "C" (create a new record),
"5" (show names of all existing records), and "L" (look
up an existing record). "C" and "L" commands are * followed by the record name.
s := cvu(s); # So we don't have to worry about case
CASE cRead(s) OFB

[-1] ; # Do nothing if blank line
['Q'] RETURN(FALSE);
['5'] showRecords;
['C'] createRecord(s);
['L'] lookupRecord(s);
['1'] ['H'] write (logFile,

"Q to quit" & eol &
"5 show names of all records" & eol &
tIC recName
"L recName
"1 or H

[] write (logFile,

create record recName" & eol &
look up record recName" & eol &
get this message" & eol);

"Invalid command (1 for help)" & eol);
END;

RETURN (TRUE) ;
END;

INITIAL PROCEDURE;
BEGIN
STRING s;

DOB write (logFile, "Database file name: ");
read(cmdFile,s) END
UNTIL open(f,s,random!input!output!errorOK) OR

createNewDataBase(s);
Note use of short-circuit evaluation:
createNewDataBase is called only if open fails

setPos(f,numBucketsPos);
read(f,numBuckets); # Get the number of buckets

DOB write (logFile, "Command: "); read(cmdFile,s) END
UNTIL NOT processCommand(s);

-102-

close(f);
END;

END "symTxt"

The fonnat of the file is basically unchanged from Example 10.11-4 of part I of the
"MAINSAll.. Tutorial", except that integers and long integers take up an amount of space that
varies with the value of the (long) integer. The long integer values that can be changed as new
records-are added to the database must therefore be padded in case a longer value overwrites a
shorter one. Twenty characters' worth of space is alloted for the values and a terminating eol.
Numbers in the records themselves are terminated with eol but not padded (note the use of the
string form of read to remove the eol at the same time as the number). Since this version does
not allow for changing or deleting a record, the numbers in a record are never changed, so
padding is unnecessary.

The null character may appear in the file as part of the padding, but is never actually read by the
program, so the keepNul but is not set in the call to open (the hint in the exercise suggested this
might be necessary). Other solutions to the program might involve encoding (long) integers in
a special way that sometimes writes the null character to represent a zero value.

Exercise 11-1 of part I of the "MAINSAIL Tutorial":

From p:
REC's 1 (- p), 2 (= p.pl), 3 (= p.pl.p),

4 (= p.p2), 5 (= p.p2.p2)
From q:

REC's 4 (- q), 5 (= q.p2), 2 (= q.p2.pl),
3 (= q.p2.pl.p)

Exercise 11-2 of part I of the "MAINSAIL Tutorial":

BEGIN "linLst"

CLASS lineLstCls
STRING line;
POINTER (lineLstCls) prev,next;

) ;

POINTER (lineLstCls) lineLst;

-103 -

PROCEDURE addToLineLst (STRING s);
BEGIN
INTEGER i;
POINTER (lineLstCls) p,pNext,q;
IF NOT P :- lineLst OR

compare (s, lineLst.line,upperCase) < 0 THENB
lineLst := new(lineLstCls); lineLst.line := s;
IF lineLst.next := p THEN p.prev := lineLst;
RETURN END;

IF compare(s,lineLst.line,upperCase) = 0 THEN RETURN;
DOB pNext := p.next;

IF NOT pNext OR
i := compare(s,pNext.line,upperCase) LEQ 0 THEN
DONE;

p := pNext END;
IF NOT pNext OR i < 0 THENB * Otherwise i - 0 and line already added

p.next := q := new(lineLstCls); q.line := s;
q.prev := p;
IF q.next .- pNext THEN pNext.prev :- q END;

END;

PROCEDURE printList;
BEGIN
POINTER (lineLstCls) p;
p := lineLst;
WHILE p DOB write(logFile,p.line,eol); p := p.next END;
END;

INITIAL PROCEDURE;
BEGIN
STRING s;
POINTER (textFile) f;

open(f,"Input file: ",input!prompt);
DOB read(f,s); IF NOT $gotValue(f) THEN DONE;

IF s THEN addToLineLst(s) END;
close(f); printList;
END;

END "linLst"

-104 -

The above linear list program produces the same output given the same input as the binary tree
program in Example 11.5-2 of part I of the "MAINSAIL Tutorial". Run on unordered input
files, the time required to add a new line to the binary tree data structure is proportional to the
logarithm of the number of lines already seen; to the linear data structure, it is directly
proportional to the number of lines seen. The binary tree is thus much faster for typical input
A quick benchmark, run on the same 2000-line file, shows the binary tree taking 4 seconds
versus the linear list's 39 seconds. Procedure recursion, used in the binary tree program, is
often thought of as an "expensive" technique compared to the Iterative Statement loop of the
linear list program; however, the superior biliary tree data structure more than makes up for the
difference. Of course, it is also possible to construct a binary tree with an Iterative Statement
(an exercise left to the reader).

Exercise 12-1 of part I of the "MAINSAIL Tutorial":

BEGIN "chars"

INITIAL PROCEDURE;
BEGIN
INTEGER Chi
LONG INTEGER ARRAY(O TO $maxChar) ary;
POINTER (textFile) f;
open(f,"Input file: ",input!keepNul!prompt); new(ary);
WHILE ch := cRead(f) GEQ 0 DO ary[ch] .+ 1L; c10se(£);
FOR ch :- 0 UPTO $maxChar DO IF ary[ch] THEN

write(logFile,"Character code ",ch," (''',cvcs(ch),
"'): ", ary [ch] ,eol) ;

END;

END "chars"

Exercise 12-2 of part I of the "MAINSAIL Tutorial":

BEGIN "maze"

DEFINE minX = 1;
DEFINE minY - 1;
DEFINE initialX 10;
DEFINE initialY - 10;

INTEGER
maxX,maxY, t Dimensions of maze within theMaze array
sX,sY, * position of '5'
eX,eY; t Position of 'E'

INTEGER ARRAY(minX TO *,minY TO *) theMaze;

-105 -

PROCEDURE enlargeTheMazeIfNecessary; * Make sure theMaze.ubl GEQ maxX and theMaze.ub2 GEQ maxY
BEGIN
INTEGER i,j;
INTEGER ARRAY(minX TO *,minY TO *) ary;
IF theMaze.ubl < maxX OR theMaze.ub2 < maxY THENB

new(ary,minX,2 * (maxX MAX theMaze.ubl),
minY,2 * (maxY MAX theMaze.ub2»;

END;

FOR i := minX UPTO theMaze.ubl DO
FOR j := minY UPTO theMaze.ub2 DO

ary[i, j] := theMaze [i, j];
theMaze := ary END;

BOOLEAN PROCEDURE checkForChar
(INTEGER ch,targCh,x,y; MODIFIES INTEGER targX,targY); * Return FALSE iff duplicate targCh seen.

BEGIN
IF ch NEQ targCh THEN RETURN(TRUE);
IF targX THENB

write (logFile, "More than one H);
cWrite(logFile,targCh); write(logFile,"!" & eol);
RETURN (FALSE) END;

targX := X; targY := y; RETURN(TRUE);
END;

-106 -

BOOLEAN PROCEDURE readFile;
BEGIN
INTEGER i,ch;
STRING s;
POINTER (textFi1e) f;
open(f,"Maze input file: ",input!prompt);
new(theMaze,minX,initialX,minY,initialY);
maxX := maxY := 0;
DOB read(f,s); IF NOT s := cvu(s) THEN DONE;

maxY .MAX 1ength(s); maxX .+ 1;
en1argeTheMazeIfNecessary;
FOR i :- 1 UPTO length(s) DOB

ch :- theMaze[maxX,i] := cRead(s);
IF NOT checkForChar(ch,'S',maxX,i,sX,8Y) OR

NOT checkForChar(ch,'E',maxX,i,eX,eY) THEN
RETURN (FALSE) END END;

c108e(f);
IF NOT sX THEN write(logFile,"Didn't see an S!" & eol);
IF NOT eX THEN write(logFile,"Didn't see an E!" & eo1);
RETURN (sX AND eX);
END;

PROCEDURE printMaze;
BEGIN
INTEGER i,j,ch;
FOR i := minX UPTO maxX DOB

FOR j :- minY UPTO maxY DO
cWrite(logFile,

END;

FORWARD

IF ch := theMaze [i, j] THEN ch EL '" ') ;
write (logFile,eol) END;

BOOLEAN PROCEDURE solveMazeFrom (INTEGER x,y);

-107 -

BOOLEAN PROCEDURE tryFrom (INTEGER x,y);
BEGIN
IF x < minX OR x > maxX OR y < minY OR y > maxY OR

(theMaze[x,y] NEQ ' , AND theMaze[x,y] NEQ 0) THEN
RETURN (FALSE) ; * Mark attempted trail so don't try this spot again while * already trying a trail through it:

theMaze[x,y] := '.' i
IF solveMazeFrom(x,y) THEN RETURN(TRUE);
theMaze[x,y] :- , '; * Didn't succeed, restore blank
RETURN (FALSE) i

END;

BOOLEAN PROCEDURE solveMazeFrom (INTEGER x,y);
BEGIN
IF (abs(x - eX) = 1 AND abs(y - eY) = 0) OR

(abs(x - eX) - 0 AND abs(y - eY) = 1) THEN
RETURN(TRUE); * Right next to end point

IF tryFrom(x + 1,y) OR tryFrom(x,y + 1) OR
tryFrom(x - 1,y) OR tryFrom(x,y - 1) THEN
RETURN(TRUE)i

RETURN (FALSE) ;
END;

BOOLEAN PROCEDURE solveMazei
RETURN(solveMazeFrom(sX,sY»;

INITIAL PROCEDURE;
BEGIN
IF NOT readFile THEN RETURN;
write(logFile,eol & "Unsolved maze:" & eol);
printMaze;
IF solveMaze THENB

write(logFile,eol & "Solved maze:" & eol);
printMaze END

EL write (logFile, "Maze has no solution." & eol);
END;

END "maze"

-108 -

The program shown relaxes the constraints of the exercise a little bit; it tolerates mazes in
which not all the lines are the same length by treating 0 (an uninitialized array element) as a
blank. The program still doesn't do anything to expand tabs into blanks, however.

Exercise 13-1 of part I of the "MAINSAIL Tutorial":

DEFINE
strDecls (n)

[REDEFINE strDeclStr = ""i
$FORC i = 1 UPTO n $DOC

REDEFINE strDeclStr = strDeclStr &
"STRING s" & cvs(i) & "i" & eoli

ENDC
REDEFINE doStrDecls = [] & strDeclStr;
doSt rDecls] i

Exercise 14-1 of part I of the "MAINSAIL Tutorial":

File "arhdr,msl";

CLASS nodeCls (
STRING 0Pi
POINTER (nodeCls) down, right, lefti

) ;

MODULE arith (

) ;

INTEGER ARRAY(O TO $maxChar) OpSi
PROCEDURE evaluate (POINTER (nodeCls) p)i
STRING PROCEDURE getToken (MODIFIES STRING S)i
BOOLEAN PROCEDURE isNumber (STRING S)i

* Nodes represent expressions and are represented by * records of nodeCls. If op is an operator (e.g., "+", * "-ttl, then its list of operands is found on downi the
f operands are connected through right. If op is a * constant (e.g., "32") then down is nullPointer.

f The left link may be useful to the input processor but * need not be set in a structure passed to ARITH.evaluate.

* All operators are single characters. The number of * operands of each operator is given by ARITH in the * array ops. Invalid operators have ops[op] = -1.

-109 -

t ARITH.evaluate takes a ser~es of nodes connected through * the right field and evaluates them, printing out the * results.

* ARITH.getToken and ARITH.isNumber are utility procedures
t useful to all input processor modules.

File "arith.msl~;

BEGIN "arith"

SOURCEFILE "arhdr.msl";

LONG INTEGER aReg,bReg,cReg;

STRING PROCEDURE getToken (MODIFIES STRING s);
t Return an integer or a (one-character) operator.
BEGIN
STRING ss;
$removeLeadingBlankSpace(s);
IF NOT ss :- $removeInteger(s) THENB * If no valid integer, must be single character

ss := s[l FOR 1]; s := s[2 TO INF] END;
RETURN (ss) ;
END;

BOOLEAN PROCEDURE isNumber (STRING s);
RETURN('O' LEQ first(s) LEQ '9' OR length(s) > 1);

-110 -

LONG INTEGER PROCEDURE eval (POINTER (nodeCls) p);
BEGIN
LONG INTEGER ii;
STRING op;
op := p.op;
IF isNumber(op) THEN RETURN(cvli(op»;
CASE first(op) OFB

END;

['A'] RETURN(aReg);
[' B'] RETURN (bReg) ;
['C'] RETURN(cReg);
['M'] RETURN(- eval(p.down»i
['+'] RETURN (eval (p.down) + eval(p.down.right»;
['-'] RETURN (eval (p.down) - eval(p.down.right»;
['*'] RETURN (eval (p.down) * eval(p.down.right»;
['I'] BEGIN

IF NOT ii := eval(p.down.right) THENB
errMsg("Division by zero"); RETURN (OL) END;

RETURN (eval (p.down) DIV ii) END;
['='] CASE first(p.down.op) OFB

END;

['A'] RETURN(aReg := eval(p.down.right»;
['B'] RETURN(bReg := eval(p.down.right});
['C'] RETURN(cReg := eval(p.down.right»;
[] BEGIN

END;

errMsg("Invalid left side of assignment:",
p.down.op) i

RETURN (OL) END;

PROCEDURE evaluate (POINTER (nodeCls) p); * Expressions are assumed to contain only legal * operators/operands and operators to have the right * number of operands.
BEGIN
WHILE P DOB write(logFile,eval(p)," "); p := p.right END;
write(logFile,eol);
END;

- 111-

INITIAL PROCEDURE;
BEGIN
INTEGER i;
new(ops); FOR i :- 0 UPTO $maxChar DO ops[i] := -1; * Now fill in the implemented ones:
ops['A'] := ops['B'] := ops['C'] := 0; * Registers (0 arg)
ops['M'] := 1; * Unary minus
ops['+'] := ops['-'] := ops['*'] := ops['I'] :=

ops['='] := 2; * Binary ops; = is assignment
END;

END "arith"

File "rpn.msl":

BEGIN "rpn"

SOURCEFILE "arhdr.msl";

POINTER (nodeCls) expr,exprEnd;

PROCEDURE addNode (STRING 0Pi OPTIONAL POINTER down); * Add to end of expr
BEGIN
POINTER (nodeCls) p;
p := new(nodeCls); p.op := 0Pi p.down := down;
IF exprEnd THENB

(exprEnd.right := p) . left := exprEnd;
exprEnd := p END

EL expr := exprEnd := Pi

END;

-112 -

BOOLEAN PROCEDURE addToExpr (STRING S)i * Return false iff error
BEGIN
INTEGER i,ji
POINTER (nodeCls) Pi
IF NOT s THEN RETURN(TRUE)i
IF isNumber(s) THEN addNode(s)
EB IF j := ops[first(s)] < 0 THENB

errMsg("Not a valid operator/operand:",s)i
RETURN (FALSE) END; * Remove this many operands

IF NOT j THEN P := NULLPOINTER
EB P := exprEnd;

FOR i := 2 UPTO j WHILE P DO P := p.lefti
IF NOT P THENB

errMsg("Insufficient operands for operator:",
s) ;

RETURN (FALSE) ENDi
t Unlink operands from expr list
IF NOT exprEnd := p.left THEN expr := NULLPOINTER
EL p.left := exprEnd.right := NULLPOINTER ENDi * Add operator, with operands, if any, (back) to list

a ddNo de (s,p) END;
RETURN(TRUE);
END;

INITIAL PROCEDURE;
BEGIN
BOOLEAN bo;
STRING s;
bind(arith);
DOB write (logFile,"RPN expression(s) «eol> to quit): ")i

read(cmdFile,s); IF NOT s := cvu(s) THEN DONE;

END;

expr := exprEnd := NULLPOINTER;
WHILE bo := addToExpr(getToken(s» DO UNTIL NOT Si
IF bo THEN evaluate(expr) ENDi

END "rpn"

File "std.msl":

BEGIN "std"

SOURCEFILE "arhdr.msl";

-113 -

POINTER (nodeCls) PROCEDURE newNode
(STRING op; OPTIONAL POINTER(nodeCls) down);

BEGIN
POINTER (nodeCls) p;
p := new(nodeCls); p.op := op; p.down := down; RETURN(p);
END;

FORWARD
POINTER (nodeCls) PROCEDURE expr (MODIFIES STRING s);

POINTER (nodeCls) PROCEDURE maybeBinaryOp
(POINTER (nodeCls) p; MODIFIES STRING s);

t Just saw p; must be about to see end of string,
i binary op, or "In. Return appropriate tree if binary
i op, else p.
BEGIN
STRING ss,sss;
sss := s;
IF NOT ss := getToken(s) THEN RETURN(p);
i must be binary op or ")"
IF ss - ")" THENB s := sss; RETURN(p) END;
IF isNumber(ss) OR ops[first(ss)] NEQ 2 THENB

errMsg("Expected binary op or) or end at:",sss);
RETURN (NULLPOINTER) END;

IF NOT p.right := expr(s) THEN RETURN(NULLPOINTER);
RETURN(newNode(ss,p»;
END;

-114 -

POINTER (nodeCls) PROCEDURE expr (MODIFIES STRING s); * Precedence information isn't given by ARITH, so
* some operator precedences here are non-standard; * use parentheses when in doubt.
BEGIN
STRING ss;
POINTER (nodeCls) p;
IF NOT ss := getToken(s) THENB

errMsg ("Unexpected end of string");
RETURN (NULLPOINTER) END;

IF 55 = n(" THENB
IF NOT P := expr(s) THEN RETURN(NULLPOINTER);
ss := 5;

IF getToken(s) NEQ ")" THENB
errMsg("Expected) at:",ss);
RETURN (NULLPOINTER) END;

RETURN(maybeBinaryOp(p,s» END; * Handle O-ary, unary, and binary operators only
IF isNumber(ss) OR ops[first(ss)] = 0 THENB

IF NOT P := newNode(ss) THEN RETURN(NULLPOINTER);
RETURN(maybeBinaryOp(p,s» END;

IF ops[first(ss)] = 1 THENB
IF NOT P := expr(s) THEN RETURN(NULLPOINTER);
RETURN(newNode(ss,p» END;

errMsg("Unexpected operator:",ss);
RETURN(NULLPOINTER);
END;

INITIAL PROCEDURE;
BEGIN
STRING s;
POINTER (nodeCls) p;
bind (arith) ;
DOB write(logFile,

"Arithmetic expression «eol> to quit): ");
read(cmdFile,s); IF NOT s := cvu(s) THEN DONE;

END;

IF P :- expr(s) AND s THEN errMsg("Leftover text:",s);
IF p THEN evaluate(p) END;

END "std"

Exercise 15-1 of part I of the "MAINSAIL Tutorial":

- 115-

This exercise is too open-ended and would require too large a solution to be presented here. If
you want additional ideas, examine also the ecological simulation of Section 19.4 of part I of
the "MAINS~ Tutorial", which uses coroutines to represent different creatures in a
rectangular grid world. Coroutine-based creatures would probably be appropriate to a dungeon
game as well.

Exercise 19-1 of part I of the "MAINS~ Tutorial":

BEGIN "sched"

REDEFINE $scanName - "dpyHdr"; SOURCEFILE "msl:syslib";

MODULE (dpyCls) dpy; # required by display module

MODULE sched (

) ;

STRING PROCEDURE readInput;
PROCEDURE writeOutput (REPEATABLE STRING s);
PROCEDURE pOll;

CLASS coroutLstCls (
POINTER ($coroutine) co;

) ;

STRING applicationName,inBuffer,inLineBuffer,
outBuffer;

POINTER dataSec;
BOOLEAN wantsInput,hasInput;
POINTER (coroutLstCls) next,prev; # circular list
INTEGER firstScreenRow,lastScreenRow,

outputEndRow,outputEndCol;

POINTER (coroutLstCls) coroutLst,curCorout,cursorCorout;
POINTER ($coroutine) parent;

PROCEDURE screenMsg (STRING s);
Show a message and wait for a keystroke
BEGIN
setCursorOnScreen(lastRowOfScreen,O);
clearToEndOfLine; overStrikeChars(s); dpycRead;
END;

-116 -

STRING PROCEDURE readInputi
t This is called from the application.
BEGIN
STRING Si

curCorout.wantsInput := TRUE;
curCorout.co := $thisCoroutine; * In case switched
$resumeCoroutine(parent);
s := curCorout.inLineBuffer; curCorout.inLineBuffer :=
curCorout.wantsInput := curCorout.hasInput := FALSEi
RETURN(s);
END;

PROCEDURE writeOutput (REPEATABLE STRING s);
t This is called from the application.
BEGIN
curCorout.outBuffer .& Si

curCorout.co := $thisCoroutinei t In case switched
$resumeCoroutine(parent);
END;

PROCEDURE pOll;
t This is called from the application.
$resumeCoroutine(parent)i

PROCEDURE runApplication;
t This is each application coroutine's initializing
t procedure.
BEGIN
IF NOT curCorout.dataSec :=

new (curCorout.applicationName,errorOK) THEN
screenMsg("Couldn't find module" &

curCorout.applicationName &
"; any char continues");

IF curCorout.dataSec THEN dispose(curCorout.dataSec);
$resumeCoroutine(parent,delete);

t when done, coroutine dies
END;

-117 -

"". I

PROCEDURE scroll (POINTER (coroutLstCls) c); * scroll by one line
BEGIN
setCursorOnScreen(c.firstScreenRow,O);
deleteLines(l,c.lastScreenRow - c.firstScreenRow + 1);
c.outputEndRow - 1;
END;

PROCEDURE doWriteOutput; * If there is input waiting, move it over
BEGIN
INTEGER chi
STRING s;
setCursorOnScreen(curCorout.outputEndRow,

curCorout.outputEndCol);
IF curCorout.inBuffer THEN clearToEndOfLine;
WHILE curCorout.outBuffer DOB

END;

s := scan(curCorout.outBuffer,eol,break!discard,ch);
overstrikeChars(s);
IF ch GEQ 0 THENB

IF curCorout.outputEndRow .+ 1 >
curCorout.lastScreenRow THEN
scroll(curCorout);

curCorout.outputEndCol := 0 END;
curCorout.outputEndCol .+ length(s);
IF ch < 0 THENB

setCursorOnScreen(curCorout.outputEndRow,
curCorout.outputEndCol) ;

overstrikeChars(curCorout.inBuffer) END END;

PROCEDURE updateCursor; * current "correct" cursor pos.
BEGIN
setCursorOnScreen(cursorCorout.outputEndRow,

cursorCorout.outputEndCol +
length(cursorCorout.inBuffer»;

dpyInfo(dumpScreenBuffer);
END;

-118 -

PROCEDURE processChar (INTEGER ch);
* process input char; if see eol, move inBuffer to
* inLineBuffer
BEGIN
updateCursor;
IF ch = dpyEol THENB

IF cursorCorout.outputEndRow .+ 1 >
cursorCorout.lastScreenRow THEN
scroll(cursorCorout);

cursorCorout.outputEndCol := 0;
cursorCorout.inLineBuffer := cursorCorout.inBuffer;
cursorCorout.hasInput :- TRUE;
cursorCorout.inBuffer := "" END

EL CASE ch OFB
[dpyUp] cursorCorout := cursorCorout.prev;
[dpyDown] cursorCorout := cursorCorout.next;

IFC $charSet = $ascii THENC
[8] [127] * Backspace, delete

$EFC $charSet = $ebcdic THENC
[22] [4] * Backspace, delete

ELSEC MESSAGE "Unknown character set","error";
ENDC

IF cursorCorout.inBuffer THENB
rcRead(cursorCorout.inBuffer);
updateCursor; deleteChars(l) END

EL ringBell;
[] BEGIN * Normal printing char

overstrikeChar(ch);
cWrite(cursorCorout.inBuffer,ch) END;

END;
updateCursor;
END;

PROCEDURE findRunnableCoroutine;
* set curCorout to one that doesn't want input (or that
* wants it and already has it), if any; otherwise, don't
* change curCorout.
BEGIN
POINTER (coroutLstCls) p,q;
p := q := curCorout;
WHILE q.wantslnput AND NOT q.inLineBuffer DO q := q.next

UNTIL q = Pi
curCorout := q;
END;

-119 -

INITIAL PROCEDURE;
BEGIN
INTEGER i,j,ki
STRING 5;
POINTER (coroutLstCls) p,endPi
parent := $thisCoroutinei i := 0;
DOB write(logFile,

"Application to run «eol> to end list): ");
read(cmdFile,s); IF NOT s THEN DONE;
P := new(coroutLstCls)i
p.co := $createCoroutine

(thisDataSection,"runApplication")i
p.applicationName := Si

IF coroutLst THENB
(p.next := coroutLst) .prev := p;
(endP.next := p) .prev := endPi
coroutLst := p END

EL coroutLst := p.next := p.prev := endP := Pi
i .+ 1 ENDi

write (logFile, "Display module: "); read(cmdFile,s);
setModName("dpy",S)i initializeTerminali clearScreen;

Now partition the screen among the applications
j := lastRowOfScreen DIV ii # num lines per appl.
p := coroutLsti
FOR k := 0 UPTO i - 1 DOB

p.lastScreenRow :=
(p.outputEndRow := p.firstScreenRow := k * j) +
j - 1;

p := p.next END;

-120-

cursorCorout :- curCorout :- coroutLst; * Round-robin scheduling, except that gives preference to
t applications that don't want input. Input is put into
t the window that has the cursor in it; arrow keys change
* windows.
t Ideally would get input "simultaneously" with output,
t but can't check for typeahead, so input always blocks.
updateCursor;
DOB findRunnableCoroutine;

IF curCorout.wantsInput THENB
t All living coroutines must want input, or would
t not have run one that wants input
updateCursor;
DO processChar(dpycRead)

UNTIL cursorCorout.hasInput;
curCorout :- cursorCorout END;

$HANDLE $resumeCoroutine(curCorout.co)
$WITH * Kill only if fatal error

IF $exceptionBits TST $cannotReturn AND
$exceptionBits NTST $cannotFallOut THENB
$kiIICoroutine(curCorout.co);
screenMsg ("Killed " &

curCorout.applicationName &
" because of .. & $exceptionName &
"; any key continues");

curCorout.wantsInput :- FALSE END
EL $raise;

IF curCorout.outBuffer THEN doWriteOutput;
IF $killedCoroutine(curCorout.co) THENB

IF curCorout.prev - curCorout THEN DONE; * no more coroutines if killing last one
curCorout.prev.next :- curCorout.next;
curCorout.next.prev :- curCorout.prev;
IF curCorout - cursorCorout THEN

cursorCorout :- curCorout.next END;
curCorout :- curCorout.next END;

screenMsg("AII applications done; hit any key to end");
clearScreen; deInitializeTerminal;
unbind (dpy); relModName ("dpy") ;
END;

END "sched"

The STREAMS package provides a pre-built mechanism for automatically scheduling different
applications on separate I/O channels (streams).

-121-

Exercise 19-2 of part I of the "MAINSAIL Tutorial":

BEGIN "nCrt"

RESTOREFROM "crtHdr";
RESTOREFROM "srtMod";

BOOLEAN underAttack;

INTEGER
attackerX,attackerY,
childsBirthEnergy,reserve;

STRING origInheritance;

POINTER (what) ARRAY (-2 TO 2,-2 TO 2) W;

* For.mat of inheritance string is:

* * n mXxx

* * n is the birth energy for children; m is the reserve; * xxx is some sequence of L's, S's, and T's. Before the * creature does anything else, it tries to produce a leaf * for each L, a shell unit for each 5, and a tooth for * each T, in the order given.

STRING PROCEDURE get Inheritance;
BEGIN
POINTER (textFile) f;
IF NOT origInheritance := myGeneticString THENB

origInheritance := ""; * Arbitrary but reasonable initial default:
write(origInheritance,halfBirthEnergy * 2," It,

energyPerShell,"LST") END;
IF NOT open(f,"ncrt.dat",input!output!random!errorOK)

THEN open(f,"ncrt.dat",create!input!output!random);
setPos{f,$getEofPos(f»;
write(f,$thisCoroutine.$name,": ",origInheritance,eol);
close(f);
read(origInheritance,childsBirthEnergy,reserve) ;
RETURN(origInheritance);
END;

-122-

STRING PROCEDURE childs Inheritance;
BEGIN
INTEGER i;
STRING s,ss;
i :- child5BirthEnergy;
IF NOT ran(0,2) THEN i .+ ran(-2,2); .. Perturb?
i .MAX energyForLeave5; .. Reasonable minimum
5 := cvs(i);
i := reserve;
IF NOT ran(0,2) THEN i .+ ran(-2,2); .. Perturb?
i .MAX 0;
write(s," ",i);
i Now, should we make the LST list the same or different?
IF ran(0,5) THENB .. remove old energy, ss is old LST list

ss := origInheritance; read(ss,i) END
EB ss := ""; i ss is new LST list, random length/content

FOR i := 1 UPTO ran(O,lO) DO
CASE ran(1,3) OFB

[1] cWrite(ss,'L');
[2] cWrite(ss,'S');
[3] cWrite(ss,'T');
END END;

RETURN(s & 55);
END;

-123 -

PROCEDURE checkCell
(INTEGER x,y; MODIFIES INTEGER

tShell,tTeethLo,tTeethHi,tTotEn,enemyX,enemyY,
foodX,foodY;

MODIFIES OPTIONAL INTEGER emptyX,emptyY); * Find best enemy and food, based on shell, teeth, and * energy. Creature of same name is not candidate for
* either food or enemy. Any empty cell will do for * (emptyX,emptyY).
BEGIN
INTEGER pShell,pTeeth,pTotEn,meTeeth,meShell;
POINTER (what) p;
p := w[x,y];
CASE p.status OFB

END;

[emptyCell] BEGIN emptyX :- x; emptyY :- y END;
[ceIIOutsideWorld] ;
[critterCell]

END;

IF p.critterName NEQ w[O,O].critterName THENB
pShell := p.shellAmounti
pTeeth := p.teethAmount;
pTotEn :- p.totalEnergy;
meTeeth := w[O,O] .teethAmounti
meShell :- w[O,O] .shellAmount;
IF pShell < meTeeth AND pTeeth < meTeeth AND

pTeeth < meShell AND pShell < tShell AND
pTeeth < tTeethLo OR
pShell = tShell AND pTeeth = tTeethLo AND
pTotEn > tTotEn THENB # best food so far
foodX :- x; foodY :- y;
tShell := pShell; tTeethLo := pTeeth;
tTotEn := pTotEn ENDi

IF (pTeeth > meTeeth OR pTeeth > meShell) AND

pTeeth > tTeethHi THENB # worst enemy
enemyX := x; enemyY := Yi
tTeethHi :- pTeeth END END;

-124 -

BOOLEAN PROCEDURE emptyCellAdjacentTo
(INTEGER tX,tY; PRODUCES INTEGER x,y);

If there is an empty cell adjacent to both (0,0) and
(tX,tY), return it as (x,y) and return true. (tX,tY)
is on outer perimeter of square, so
t abs(x) MAX abs(y) = 2.
BEGIN
FOR x := -1 UPTO 1 DO FOR Y := -1 UPTO 1 DO

IF abs(tX - x) LEO 1 AND abs(tY - y) LEO 1 AND
w[x,y] . status = emptyCell THEN RETURN(TRUE)i

RETURN(FALSE);
END;

PROCEDURE mainLoop;
BEGIN
INTEGER en,x,y,emptyX1,emptyYl,enemyXl,enemyYl,

edibleXl,edibleYl,enemyX2,enemyY2,edibleX2,edibleY2,i,
tShel11,tTeethLol,tTeethHi1,tTotEn1,
tShel12,tTeethL02,tTeethHi2,tTotEn2,moveCost;

POINTER (what) me;
INTEGER ARRAY(O TO 24) ary,ind;

new(ary); new(ind);

DOB 100kAround(w); me := w[O,O];
en := me.spareEnergy - reserve;
moveCost :=

(me.totalEnergy + me.teethAmount + me.shellAmount)
DIV costs1ToMove + 1;

Always make sure has leaf .if possible
IF NOT me.hasLeaves AND en > energyForLeaves THEN

addLeaves;

t Use the SRTMOD indexed sort to search the cells in
visible part of the world in a random order. A
deterministic order imparts a bias to the creature's
actions.
FOR i := 0 UPTO 24 DO ary[i] := ran(1,10000);
sort(ary,O,24,ind);
This leaves ind as a randomly ordered array of
numbers 0 to 24, representing the positions in the
t visible square

-125 -

t Now check for empty space, enemies, and edibles
emptyXl := emptyYl := enemyXl := enemyYl :=

edibleXl := edibleYl := enemyX2 := enemyY2 :=
edibleX2 := edibleY2 := 0;

tShelll := tTeethLol := tShell2 := tTeethLo2 :=
$maxInteger;

tTotEnl := tTeethHil := tTotEn2 := tTeethHi2 :=
$minInteger;

FOR ~ := 0 UPTO 24 DOB
x := ind[i] MOD 5 - 2; y := ind[i] DIV 5 - 2;
IF x - Y = 0 THEN CONTINUE;
IF abs(x) MAX abs(y) = 1 THEN

checkCell(x,y,tShelll,tTeethLol,tTeethHil,
tTotEnl,enemyXl,enemyYl,edibleXl,edibleYl,
emptyXl, emptyYl)

EL checkCell(x,y,tShell2,tTeethLo2,tTeethHi2,
tTotEn2,enemyX2,enemyY2,
edibleX2,edibleY2) END;

IF underAttack THENB t Run away
IF w[x := - attackerX,y := - attackerY].status

emptyCell THEN underAttack := FALSE
EF emptyXl OR emptyYl THENB

x := emptyXl; y := emptyYl;
underAttack := FALSE END;

IF NOT underAttack THENB
move(x,y); underAttack := FALSE; CONTINUE END;

underAttack :- FALSE END;

t Reproduce if possible
IF (emptyXl OR emptyYl) AND

en > birthCost + childsBirthEnergy THENB
reproduce (emptyXl,emptyYl,childsBirthEnergy,

childsInheritance);
CONTINUE END;

t Eat if possible
IF (edibleXl OR edibleYl) AND en > attackCost THENB

attack(edibleXl,edibleYl); CONTINUE END;

t Run away if possible
IF (enemyXl OR enemyYl) AND (emptyXl OR emptyYl) AND

en > moveCost THENB
move(emptyXl,emptyYl); CONTINUE END;

-126-

* Move towards far food if possible
IF (edibleX2 OR edibleY2) AND en > moveCost AND

tTotEn2 > moveCost AND
emptyCellAdjacentTo(edibieX2,edibleY2,x,y) THENB
move(x,y); CONTINUE END;

* Now move if there is far enemy
IF (enemyX2 OR enemyY2) AND (emptyX1 OR emptyY1) AND

en > moveCost THENB
move(emptyX1,emptyY1); CONTINUE END;

* Now add shell if need shell
IF me.shellAmount < maxShell AND en > energyPerShell

THENB addShell; CONTINUE END;

* Now add teeth if need teeth
IF me.teethAmount < maxTeeth AND en > energyPerTooth

THENB addTeeth; CONTINUE END;

* Now just move, but only if fully armed sometimes * at random
IF (emptyX1 OR emptyY1) AND

me.shellAmount GEQ maxShell AND
me.teethAmount GEQ maxTeeth AND NOT ran(O,100) AND
en > move Cost THENB
move(emptyX1,emptyY1); CONTINUE END;

END;
END;

INITIAL PROCEDURE;
BEGIN
STRING inheritance;

inheritance := getInheritance;
f First add the mandatory characteristics required by
* inheritance:
DO CASE cRead(inheritance) OFB

[-1] DONE;
['L'] addLeaves;
['5'] addShelli
['T'] addTeeth;
END;

-127 -

$HANDLE mainLoop
$WITHB

END;

IF $exceptionName = attackExcpt THENB
underAttack := TRUE;
attackerX := cvi($exceptionStringArgl);
attackerY := cvi($exceptionStringArg2) END;

$raise END;

END "nCrt"

This creature makes use of the genetic string facility. Note also the use of the SRTMOD
procedure "sort" to shuffle a sequence of integers 0 through 24.

Experimentation shows that this module usually performs pretty well against the creatures of
Examples 19.4-3 and 19.4-4 of part I of the "MAINSAIL Tutorial", polishing them off in a few
juicy bites.

-128 -

Appendix B. Comparison of MAINSAIL and C

The most popular programming language today is C (we wish we could say it were
MAINSAil.., but alas, that is not so). MAINSAil.. and C are both general-purpose
programming languages, suitable to a great variety of tasks.

MAINSAil.. provides many facilities that C does not, including garbage collection, dynamic
linkage, coroutines, and a well-developed exception mechanism. MAINSAil..' s approach to
programming tasks is, generally speaking, more high-level than C's. MAINSAIL is
particularly well suited to writing large, complicated systems; on the other hand, its large size
can be inconvenient in programs that must fit into a small address space or that cannot afford to
spend any time on program initialization. Because of garbage collection considerations,
MAINSAil.. is unsuited to real-time applications unless great care is taken to avoid generating
garbage data.

C is more suitable for small tasks than MAINSAIL. It is also closer to the UNIX operating
system, so that it is less awkward to write UNIX-specific code. C's lack of garbage collection
can be annoying when designing large programs that allocate and deallocate data freely, since
much of the program design is concerned with memory management. On the other hand, a lack
of garbage collections means that time-critical tasks are not interrupted, so C is more suitable
for real-time applications. C has relatively powerful compiletime facilities, such as macros and
the ability to include one source file in another; however, MAINSAIL's compiletime facilities
are more extensive. C programs are linked with the operating system linker, which may
impose non-portable restrictions (such as the maximum length of an external symbol) and also
usually fails to provide interface consistency checking and information hiding among C
modules (both are available in MAINSAIL).

B.1. Portability

MAINSAIL and C are both highly portable programming languages. In the case of C,
portability is a consequence of the widespread popularity of the UNIX operating system, which
is implemented in C. C's portability depends on the presence of a library that provides calls
that emulate UNIX system calls (sometimes imperfectly, if the underlying operating system is
not UNIX). In MAINSAIL's case, the language was designed from the beginning to be ported
to a variety of operating systems. MAINSAIL therefore adapts somewhat better to C to non
UNIX operating systems, although it runs quite satisfactorily on UNIX as well.

-129 -

B.2. Modules and Dynamic Linking

One of MAINS All/s great strengths is its concept of a module. In C, all (non-static)
procedures and variables from all files that are linked together to fonn a program are on an
equal footing. All non-static identifiers are visible in every module in the program. In
MAINSAIL, each module has a well-defined interface. Only those modules that declare
external modules can see the external procedures and variables provided by those modules.

MAINSAIL modules are linked dynamically, i.e., at runtime. A MAINSAIL module is not
brought into memory until it is needed (e.g., when one of its interface procedures is called). In
many cases, the MAINSAIL module is brought into memory automatically, without the calling
module's having to do any setup. When the code for a module is no longer needed, it may also
be removed from memory automatically. MAINSAIL programs can be much larger than C
programs, since they do not have to be linked together all at once. A MAINSAIL system can
consist of hundreds or thousands of modules, which might be too large to fit in memory if all
loaded at once; however, in a typical execution, only some of the modules may ever be actually
loaded, and those that are loaded but then no longer needed may be swapped ouL

MAINSAIL module interfaces are checked for consistency when the module is loaded. This
allows the runtime system to catch interface inconsistency errors that may be difficult to detect
in a C program.

A MAINSAIL module may have more than one instance; all the interface variables and
module-specific ("outer") variables are maintained in a record-like structure called a "data
section". Many data sections can share the same code. The replication of data sections with
identical interfaces encourages an object-oriented programming style difficult to achieve in
s~dardC.

MAINSAIL does pay a penalty for its dynamic linking; the file I/O entailed by module loading
does require some time, and intennodule calls are slightly (although usually not noticeably) less
efficient thanlocal (within one module) calls. Furthennore, some MAINSAll.. functions must
be a part of the MAINSAIL kernel, a memory-resident module loaded when MAINSAIL
execution starts. Because it is not known a priori which kernel features will be used during an
execution, the entire Oarge) kernel must be loaded each time. A C program can be selectively
linked to include only those procedures that are necessary to support a given program, which
can result in a small object file if the program does not use many features of the C runtime
system. In practice, MAINSAIL's runtime overhead is usually negligible, but the large kernel
requirement means that MAINSAIL is not suited for small computers. MAINSAIL just does
not fit on most personal computers with typical amounts of memory; it usually needs an
engineering workstation or a mainframe.

-130-

B.3. Compiletime Facilities

MAINSAIL and C each provide a more extensive set of compiletime preprocessing than do
most programming languages. Facilities provided by the two languages are summarized in
Table B.3-1.

Both languages provide macro facilities that are usually sufficient. MAINSAIL's are more
general, since they allow multiline macro text, and macro text can be built up by concatenating
arbitrary text and string constants. This also allows individual identifiers to be built up using
macro parameters. MAINSAIL does not provide the ability to forget a macro identifier
analogous to C's "#Undef'.

MAINSAIL provides "inline procedures", which are procedures compiled inline in the calling
procedure like a macro definition. Inline procedures look syntactically like regular procedures.
They provide type checking as well as avoiding the common macro problems with multiple
evaluations of macro arguments and unintended interactions between macro text and argument
text or surrounding text

MAINSAIL's conditionals are more flexible than C's. In addition to "IFC", a compiletime
analogue of the If Statement and similar to C's "#if', MAINSAIL provides compiletime .•
analogues of Iterative and Case (switch) Statements, "$DOC" and "$CASEC".

The MAINSAIL compiletime system procedure $compileTimeValue provides information on
the current compiler subcommands in effect, the name of the file being compiled, the name of
the current procedure (if any), and the date and time of the current compilation, among other
information. Since this information is available at compiletime, it can be used to govern
conditional compilation. It can also be used to automate the generation of runtime debugging
or error messages.

"SKIPSCAN" and "BEGINS CAN" in MAINSAIL provide a way to cause compilation to skip
forward long distances in the current sourcefile, and are more convenient than "IFC" for this
purpose.

MAINSAIL intmods are repositories of precompiled symbols and procedure bodies. If many
different modules share common information, it is better to create an intmod than to use the
"SOURCEFn.£" directive to recompile the same text into every module, as C must do.
Intmods also provide information hiding; i.e., symbols that support an intmod's public interface
may be hidden so that they do not conflict with identifiers in the programs that use the intmod.
This is more reliable than just choosing a long name for such supporting symbols, as must be
done if common code is picked up as source text

MAINSAIL's flexible compiletime facilities simplify the writing of very large programs, which
often contain numerous repetitions of nearly similar text. For such programs, the more
powerful a programming language's macro facilities, the better.

- 131-

Facility
macro definition

forgetting a macro
definition

arbitrary macro text

repeatable macro
arguments

argument substitution
in string constants
and identifiers

inline procedures

conditional

conditional based on
whether identifier
defined

compiletime
iteration, case
(switch)

setting line and file

including another
source file

information about
current compilation

skipping large
amounts of text

saved symbol tables

MAINSAIL
DEFINE, REDEFINE

no

yes, delimited
by [and]

REPEATABLE

yes, identifiers
can be
constructed

INLINE

IFC

IFC DCL

$DOC, $CASEC

no

SOURCEFILE

$compileTimevalue

SKIPSCAN,
BEGINSCAN

intmods

.c.
idefine

iundef

no, must fit on
one line

no

no

no

iif

iifdef

no

iline

iinclude

no

no

no

Table B.3-!. MAINSAIL and C Compiletime Facilities

-132 m

B.4. Control Structures

MAINSAIL and C both have large and flexible sets of control structures. Approximate
correspondences are shown in Table B.4-1. In addition, MAINSAIL provides coroutines
(interleaved executions) and exceptions (something like an interprocedure "gotolt

), as described
in Section B.IO.

MAINSAIL
BEGIN, END
IF, THEN, ELSE
CASE
WHILE, FOR, DO, UNTIL
DONE
CONTINUE
RETURN
named DONE or CONTINUE

.c
{ ,
if, else
switch
while, for, do
break (in loop)
continue
return
goto

Table B.4-1. MAINSAIL and C Control Structures

B.S. Operators

MAINSAIL and C both provide a large set of operators for use in constructing expressions.
Correspondences are shown in Table B.S-l.

Most of the operations that do not have exact correspondences in the other language are easy to
construct equivalents for using an additional operator or two. The exceptions on the
MAINSAIL side are the 1t&1t (string concatenation) and "1\1t (power) operators:

• "&": C's strings are not at all equivalent to MAINSAIL's. Because MAINSAIL
manages the allocation of storage occupied by string text automatically, it can
provide a simple concatenation operator. In Ct the programmer must be sure to
allocate sufficient space and to copy string text explicitly, dea110cating space if it
becomes unused.

• "1\": The integer power operator is easy to write as a procedure in C. The power
function is provided by the UNIX library function "pow".

-133 -

MAINSAIL
:=
NOT
OR, AND
-, NEQ, <,

LEQ, >, GEQ
TST
+, -
IOR, XOR, MSK
*, / (DIV) ,

MOD
SHL, SHR
IF •.. THEN

• •• ELSE .••
. +, . -, etc.

II, &&

==, !=, <,
<=, >, >=

&

+, -
I , " & ,
*, /,

%
«, »

? •••

+=, ,-=, etc .

There are no simple C equivalents for
the following MAINSAIL operators:

NTST, TSTA, NTSTA, MIN, MAX, CLR, &, "

There are no simple MAINSAIL equivalents
for the following C operators:

-, ++, --

Table B.S-l. MAINSAIL and C Operators

On the C side, "++" and " __ " are frequently used and convenient operators. However, when
used for string or arbitrary storage management, the equally convenient MAINSAIL procedures
read, write, cRead, and cWrite are often approximate equivalents.

B.6. Data Types and Data Structures

The approximate correspondence between MAINSAIL's and C's simple data types is shown in
Table B.6-l.

C and MAINSAIL have different models of data structures. C's allow for more possibilities,
but there is no garbage collection; MAINSAIL's are somewhat restricted by the requirement

-134 -

MAIHSAIL ~
BOOLEAN int
INTEGER short
LONG INTEGER long
REAL float
LONG REAL double
BITS short
LONG BITS long
ADDRESS short *
CHARADR char *
POINTER short *, but collectable

MAINSAIL has no equivalent of C's char (character
codes are treated as integers). C has no equivalent
of MAINSAIL strings; char pointers or arrays provide
some of the functionality.

Table B.6-1. MAINSAIL and C Simple Data Types

that the runtime system be able to keep track of allocated data and determine when the data
become inaccessible.

C structure tags correspond approximately to MAINSAIL classes, and pointers to C arrays
approximately to MAINSAIL arrays. However, all MAINSAIL records and arrays must be
explicitly allocated at runtime; they are never allocated automatically on entry to a procedure,
and are always accessed through pointers (the MAINSAIL"." operator is the equivalent of the
C "->" operator; there is no equivalent of the C "." operator).

C pointers may point to any data type, but MAINSAIL pointers always point to records (the
equivalent of structure objects). C's unions can allow different views of an object by imposing
different storage templates on it. MAINSA~ has a somewhat similar notion in prefix classes,
but the difference is that a MAINSAIL record is not just a series of storage locations that can be
viewed however the program likes, but actually has a class associated with it when it is created.
Consequently, some views of the record are "right" and others inherently "wrong".

A MAINSAIL array is a special kind of pointer that points to a series of elements of the same
data type instead of to a record of heterogeneous fields. Like records, arrays must be allocated
at runtime. Like records, arrays are tagged with information about their structure, and this
information can be examined by a program (e.g., "a.ub!" is the upper bound of~e first
dimension of an array a). Character strings are not arrays, but have a special data type of their
own.

-135 -

By default, the MAINSAIL compiler emits code that checks at runtime that pointers used are
non-null and that array element references are within the bounds of an array. C cannot provide
such checks, since C structures are not tagged.

B.7. Strings

Many C programmers who learn MAINSAll.. are baffled by the string data type. It is difficult
for them to understand MAINSAIL strings as anything other than read-only arrays, but
MAINSAIL strings are not arrays at all, and provide a number of facilities that arrays do not

A string is implemented as a character address and a length (the combination is called a "string
descriptor"). The character address usually points into an area of memory called "string space",
which is managed by the MAINSAll.. runtime system. Space is never allocated explicitly for a
string in string space; it is always allocated and reclaimed automatically by the MAINSAIL
runtime system.

No explicit facility is provided for accessing individual characters by position in the string,
other than first and last; i.e., individual characters are not accessed by index (although
sUbtstrings can be constructed using indices, and the first or last character taken). The first or
last character can be removed from the string, or a character can be added to the beginning or
end of the string, or two entire strings can be concatenated. It is not possible-to change a
character in the middle of a string; a new string must be constructed with the desired text and
the string descriptor made to point at it.

The string rules ensure that unless a programmer "cheats" by using the charadr data type to
change storage in an uncontrolled fashion, a string variable always points at the same text until
explicitly changed. String operations on one string cannot change the text to which another
string points. Strings thus do not act like pointers, since altering a field of a data·structure using
a pointer changes the field when accessed using any other pointer pointing to the same place.
MAINSAIL ensures that when a string's text is modified in such a way that it cannot be shared
by other string descriptors, the text is copied if necessary and the string descriptor made to
point to the new location .

. Many C programmers are tempted by the similarity of MAINSAIL's substring syntax to C's
element access syntax to step through a string with code looking something like:

FOR i := 1 UPTO length(s) DO
... first(s[i FOR 1])

It is more efficient, and produces more readable code, to use the system procedure cRead to
read and remove the first character on each iteration of the loop:

WHILE s DO
cRead(s)

-136 e

Strings can likewise be built up sequentially using cWrite, which extends the space occupied by
the string automatically as required.

B.S. Garbage Collection

Garbage collection is usually triggered automatically by the MAINSAIL runtime system,
although there are mechanisms for suppressing or explicitly causing collections. A garbage
collection rummages through memory reclaiming the space occupied by data sections, records,
and arrays that are no longer referenced by accessible pointers. Garbage collections also
reclaim unreferenced string space~

A collection may entail moving data structures about, so that pointers and the character pointer
components of string descriptors may change in value following a collection. This is normally
transparent to the programmer, except when using the data types address and charadr. Address
and charadr are intended to point into static memory t and so are not updated if they point to
collectable data. It is not usually necessary for the programmer to use addresses or charadrs
that reference collectable data, so this is rarely a problem in practice.

Although garbage collection automatically frees the space occupied by inaccessible data, it is
still a good idea to reclaim space explicitly by calling the system procedure" dispose" if the
program's structure allows it. Judicious use of dispose can reduce the frequency and scope of
garbage collections, which can be quite time consuming when there is a lot of garbage to
collect.

B.9. Input and Output

MAINSAIL's I/O facilities were designed from the beginning for portability among operating
systems. They were also designed to provide complete functionality, including random access
to files. C provides some high-level I/O routines that are often not used by programs because
they are inadequate; instead, programs must use the lower level provided by UNIX or the
UNIX compatibility library.

The MAINSA~ Structure Blaster provides a way to read or write an entire data structure with
a single procedure call. The tagged nature of MAINSAIL data structures makes it possible for
MAINSAIL to find all relevant data from a single root pointer; this cannot be done in C.

MAINSAIL STREAMS provides a portable approach to low-level device and process control,
along with a higher-level facility, RPC (Remote Procedure Calls), for interproeess
communication.

-137 -

B.IO. Coroutines and Exceptions

Coroutines and exceptions are two methods of controlling a program's execution that have no
standard C equivalents. It is difficult to duplicate their behavior in a language that does not
have these facilities built in.

A coroutine is a context that preserves the state of a procedure so that its execution may be
resumed at the preserved state by a procedure in some other coroutine. Each coroutine has its
own procedure stack. The coroutines must cooperate; rescheduling of coroutines is done not by
timer interrupt but by implicit or explicit calls to resume another coroutine. Careful use of
coroutines can give the illusion of simultaneous execution of different programs in a single
MAINS.Aa process. MAINSAa STREAMS can be used in conjunction with coroutines to
achieve genuine simultaneous execution: several processes are set up on different machines,
and a coroutine is set up to talk to each. The programming of a coroutine talking to a single
remote process is simpler than having a single thread of execution talking to multiple
processes.

Exceptions are something like the setjmp/longjmp facility provided by UNIX, except that they
are more flexible. When an exception occurs, the exception context is preserved so that, in
addition to aborting the code that caused the exception, the program has the option of resuming
the code that caused the exception. It is also possible to propagate the exception; if a given
handler does not know how to handle it, it is possible that a calling procedure does.

Exceptions are less error-prone than setjmp/longjmp's. Problems like those with accidental
returns to nonexistent environments or with improperly restored register variables cannot occur
in MAINSAll.., exceptions.

B.II. Tools

The MAINSAll.. environment contains a large set of highly portable tools. Among the most
important of these for the programmer are MAINDEBUG, the MAINSAIL debugger, and
MAINPM, the perfonnance monitor. MAINDEBUG is a source-level debugger that interfaces
conveniently to the MAINSAll.. text editor, MAINEDIT (which includes a front end that
emulates vi, the popular UNIX editor). MAINPM is useful for tracking time usage and
memory consumption in a program.

-138 D

"t searching in debugger 46

& 5,19

[and] in macro text 47

address 1
$addToDateAndTime 46
alignment of addresses 45
$ALWAYS 6
array allocation 47
ASCII 40

BEGINS CAN 54
binary search for bugs 36
bits, guaranteed range 45
bracketed text macro 47
bugs

binary search for 36
tracking collection-influenced 34

cache (of files) 12
case sensitivity in file name 42
character set assumptions 40
$characterRead 8
$characterWrite 8
charadr 1
cmdFile, redirection 44
COLLECTMEMORYPERCENT 12
compare 4
comparison with Zero 7
compilation, selective 54
compiletime

evaluation 6
library 50

concatenation 5
CONCHK, using to track bugs 37
CONF, multiline commands 47
control section 11
cRead 15
cvcs 18
cvl 18

Index

-139 -

cvs 18
cvu 18
cWrite 19

date and time arithmetic 46
$dateAndTimeDifference 46
debugger

and source text confusion 33
displaying structure 39

debugging collection-influenced bugs 34
$descendantKilledExcpt 49
differences between times 46
displaying structure in debugger 39
dispose 2

improper use 34
DSPBUG example module 36

EBCDIC 40
efficiency 1
efficient string comparison 4
end-of-file 41
ENTER MAINEX subcommand 45
enterLogicalName 45
eof 41
equ 4
evaluation, compiletime 6
examining structure in debugger 39
exception

efficient recognition of 8
tracking infinite loop with 38

$exceptionPointerArg 8
exceptions, implementation 23

file
cache 12
name syntax 41
random access 42
simultaneous open 43

file handles, limit 43
file name

case 42
logical 45

final procedure caveat 48
first 15
fldRead 18

-140-

frame pointer 24
free list 2

garbage
collection 1,2,12,13,46
collector errors 34

garbage collection, string 21
$gotValue 41

handle limit on files 43
Handle Statement, code for 23
handler, search for 26

infinite loop, tracking 38
INITIALSTATICPOOLSIZE 12
INLINE 6
inline procedures 6
intermodule call 8
intmod, converting source library to 51
invalid address 45

kill command on UNIX 38

last 15
IbMask 44
library, compiletime 50
limit on file handles 43
local call 8
logFile, redirection 44
logical file name 42, 45
long bits, guaranteed range 45
low-level data types 1

macro, bracketed text 47
MAINPM 1
MAXMEMORYSIZE 12
memory management 12
module swapping 11
multiple

file open 43
modules in one source file 54

$newRecords 2
non-deterministic bugs 34

-141-

open, simultaneous 43

$pageRead 8
$pageWrite 8
procedure call, local vs. intermodule 8
propagating an exception, implementation 29

$raiseReturn implementation 29
random access to file 42
reRead 15
reWrite 20
read 18
REDEFINE 54
redirecting cmdFile and logFile 44
RESTOREFROM 51
runtime efficiency 1

SAVEON 51
scan 18
searcbpath 42
setPos caveat 44
shift overflow 45
sign bit 44
signal, tracking infinite loop with 38
simultaneous file open 43
SKIPSCAN 54
source

file with multiple modules 54
library 50

stack
fnunes 24
pointer 24
size 12
unwinding 24

$storageUnitRead 8
and collections 46

$storageUnitWrite 8
and collections 46

sUing
comparison 4
constant 18
descriptor 13
implementation 12
space 1,4, 13

string space, top 17

-142-

Structure Blaster 10
structure, displaying in debugger 39
$structure Write in debugger 39
substring 16
swapping of modules 11

$thisCoroutine.$next 48
time arithmetic 46
top of string space 17
ttyRead 18

$unbuffered 8
uninitialized local variable 37
UNIX, tracking infinite loops on 38
unwinding the stack 24

valid address 45

write 5, 19

Zero, comparison with 7

-143 -

XIDAK, Inc., 530 Oak Grove Avenue, MIS 101, Menlo Park, CA 94025 , (415) 324-8745

