
XEROX
... .., .. ,.

X-eroxDevelopmeltt"~n vironment

. . Mesa-iPr(>gran.mer's MatlUal

... XDE3.6-400 1
Versioa:a.q .
Novetft~r\'984

PR,ElLIMINART , . 1'\ •. ","

Office Systems Division
Xerox Corperation--
3450 Hillview Avenue
Palo Alt~ CalifOrnia 94304

t ..

Xerox Development Environment

Notice

This manual is the current release of the' Xerox Development Environment (XDE) and may be revised by Xerox

without notice. No representations or warranties of any kind are made relative to this manual and use thereof,

including implied warranties of merchantability and fitness for a particular purpose or that any utilization

thereof will be free from the proprietary rights of a third party. Xerox does not assume any responsibility or

liability for any errors or inaccuracies that may be contained in the manual or have any liabilities or obligations

for any damages, including but not limited to special, indirect or consequential damages, arising out of or in

connection with the use of this manual or products or proirams developed from its use. No part ofthis manual,

either in whole or part, may be reproduced or transIqitted mechanically or .electronically without the written

permission of Xerox Corporation.

Copyright @ 1984 by Xerox Corporation.
All Righ~s Reserved.

Preface

This document is one of a series of manuals written to aid in programming and operating
the Xerox Development Environment (XDE).

Comments and suggestions on this document and its use are encouraged. The form at t!J:e
back of this document has been prepared for this purpose. Please send your comments to.

Xerox Corporation
Office Systems Division
XDE Technical Documentation, MIS 37-18
3450 Hillview Avenue
Palo Alto, California 94304

HI

Preface

iv

Table of contents

I General environment

1.1 Files 1-1

1.2 Philosophy and contents 1-2

1.2.1 Users and Clients. . 1-2

1.2.2 Tools Philosophy. 1-2

1.2.3 Notifier. 1-2

1.2.4 Multiple processes, multiple instances. 1-3

1.2.5 Resource management. 1-4

1.2.6 Tool state conventions . 1-5

1.2.7 Program invocations. 1-5

1.2.8 Stopping tools 1-6

1.3 Interface abstracts 1-6

1 AddressTranslation

1.1 Types 1-1

1.2 Constants and data objects 1-1

1.3 Signals and errors 1-1

1.4 Procedures 1-2

1.5 Examples 1-3

2· Atom

2.1 Types 2-1

2.2 Constants and data objects 2-1

2.3 Signals and errors 2-1

2.4 Procedures 2-1

v

Table of contents

3 CmFile

3.1 Types 3-1
3.2 Constants and data objects , ~ ~ 3-1
3.3 Signals and errors 3-1
3.4 Procedures 3-2
3.5 Examples. 3-4

4 Date

4.1 Types 4-1
4.2 Constants and data objects 4-1
4.3 Signals and errors 4-1
4.4 Procedures 4-1

5 Exec

5.1 Types 5-1
5.2 Constants and data objects 5-2
5.3 Signals and errors 5-2
5.4 Procedures 5-2
5.5 Examples. 5-7

6 Expand

6.1 Types 6-1
',. ~ ,

6.2 Constants and data objects 6-2
6.3 Signals and errors -I': r 6-2
6.4 Procedures 6-2

.. '

7 HeraldWindow

7.1 Types 7-1
7.2 Constants and data objects 7-1
7.3 Signals and errors 7-2
7.4 Procedures 7-2

8 Profile

8.1 Types 8-1
8.2 Constants and data objects 8-2
8.3 Signals and errors 8-3
8.4 Procedures 8-3

vi

Mesa Programmer's Manual

9 Token

9.1 Types 9-1

9.2 Constants and data objects 9-2

9.3 Signals and errors 9-3

9.4 Procedures 9-3

9.5 Discussion and Examples. 9-8

10 ToolDriver

10.1 Types 10-1

10.2 Constants and data objects 10-2

10.3 Signals and errors 10-2

10.4 Procedures 10-2

10.5 Example 10-3

II Tool building

11.1 Interface Abstracts. II-I

11 FileSW

11.1 Types 11-1

11.2 Constants and data objects 11-1

11.3 Signals and errors 11-1

11.4 Procedures 11-1

12 FileWindow

12.1 Types 12-1

12.2 Constants and data objects 12-1

12.3 Signals and errors 12-1

12.4 Procedures 12-1

13 FormSW

13.1 Types 13-1

13.2 Constants and data objects 13-12

13.3 Signals and errors 13-13

13.4 Procedures 13-14

vii

Table of contents

14 MsgSW

14.1 Type 14-1

14.2 Constants and data objects 14-1

14.3 Signals and errors 14-1

14.4 Procedures 14-2

15 ScratchSW

15.1 Types 15-1

15.2 Constants and data objects 15-1

15.3 Signals and errors 15-1

15.4 Procedures 15-12

16 StringSW

16.1 Types 16-1

16.2 Constants and data objects 16-1

16.3 Signals and errors 16-1

16.4 Procedures 16-1

17 TextSW

17.1 Types 17-1

17.2 Constants and data objects 17-2

17.3 Signals and errors 17-2

17.4 Procedures 17-2

18 TTYSW

lS.l Types IS-1

IS.2 Constants and data objects 18-1

IS.3 Signals and errors IS-1

lS.4 Procedures lS-2
lS.5 Procedures mapped to calls on TTY IS-3

19 Put

19.1 Types 19-1

19.2 Constants and data objects 19-1

19.3 Signals and errors 19-1

19.4 Procedures 19-1

viii

Table of contents

25 Caret

25.1 Types 25-1

25.2 Constants and data objects 25-2

25.3 Signals and errors 25-2

25.4 Procedures 25-2

26 Cursor

26.1 Types 26-1

26.2 Constants and data objects 26-1

26.3 Signals and errors 26-2

26.4 Procedures 26-2

27 Menu

27.1 Types 27-1

27.2 Constants and data objects 27-2

27.3 Signals and errors 27-2

27.4 Procedures 27-3

27.5 Examples. 27-5

28 Scrollbar

28.1 Types 28-1

28.2 Constants and data objects 28-2

28.3 Signals and errors 28-2

28.4 Procedures 28-2

28.5 Discussion 28-3

29 Selection

29.1 Types 29-1

29.2 Constants and data objects 29-4

29.3 Signals and errors 29-4

29.4 Procedures 29-4

30 ToolFont

30.1 Types 30-1

30.2 Constants and data objects 30-1

30.3 Signals and errors 30-1

30.4 Procedures 30-1

x

Mesa Programmer's Manual

31 Window Font

31.1 Types 31-1

31.2 Constants and data objects 31-2

31.3 Signals and errors 31-2

31.4 Procedures 31-2

32 AsciiSink

32.1 Types 32-1

32.2 Constants and data objects 32-1

32.3 Signals and errors 32-1

32.4 Procedures 32-1

33 BlockSource

33.1 Types 33-1

33.2 Constants and data objects 33-1

33.3 Signals and errors 33-1

33.4 Procedures 33-1

34 DiskSource

34.1 Types 34-1

34.2 Constants and data objects 34-1

34.3 Signals and errors 34-1

34.4 Procedures 34-1

35 Piece Source

35.1 Types 35-1

35.2 Constants and data objects 35-1

35.3 Signals and errors 35-1

35.4 Procedures 35-1

36 ScratchSource

36.1 Types 36-1

36.2 Constants and data objects 36-1

36.3 Signals and errors 36-1

36.4 Procedures 36-1

Xl

'fable of contents

37 StringSource

37.1 Types 37-1

37.2 Constants and data objects 37-1

37.3 Signals and errors 37-1

37.4 Procedures 37-1

38 TextData

38.1 Types 38-1

38.2 Constants and data objects 38-2

38.3 Signals and errors 38-2

38.4 Procedures 38-2

39 TextSink

39.1 Types 39-1

39.2 Constants and data objects 39-4

39.3 Signals and errors 39-4

3904 Procedures 39-4

40 TextSource

40.1 Types 40-1

40.2 Constants and data objects 40-4

40.3 Signals and errors 40-4

4004 Procedures 40-4

40.5 Discussion 40-5

IV User input and events

IV.l Events. IV-l

IV.2 TIP tables. IV-l

IV.2.1 Example of a NotifyProc IV-2

IV.2.2 TIP table semantics IV-2

IV.2.3 TIP table syntax IV-2

IV.2.4 How to create a TIP table IV-3

IV.3 Advanced topics IV-4

IV.3.l The GPM macro package IV-5

IV.3.2 Another TIP example IV-5

IVA Interface abstracts IV-6

xii

Mesa Programmer's Manual

41 Event

41.1 Types 41-1

41.2 Constants and data objects 41-2

41.3 Signals and errors 41-3

41.4 Procedures 41-3

41.5 Examples. 41-3

42 EventTypes

42.1 Types 42-1

42.2 Constants and data objects 42-2

42.3 Signals and errors 42-6

42.4 Procedures 42-6

42.5 Examples. 42-6

43 TIP

43.1 Types 43-1

43.2 Constants and data objects 43-2

43.3 Signals and errors 43-3

43.4 Procedures 43-3

43.5 Discussion 43-5

43.5.1 Overview 43-5

43.5.2 U sing TIP tables 43-6

43.5.3 Syntax of TIP tables 43-6

43.5.4 Semantics of TIP tables 43-7

43.5.5 GPM: macro package 43-11

44 UserInput

44.1 Types 44-1

44.2 Constants and data objects 44-2

43.3 Signals and errors 44-2

44.4 Procedures 44-2

44.5 Examples. 44-6

V File management

V.1 Overview. V-I

V.2 File access V-2

V.3 Notification V-3

V.4 Append files V-4

V.5 Examples V-5

xiii

Table of contents

V.5.1 File windows V-5

V.5.2 File managers V-5

V.5.3 Append file processing V-6

V.6 Concurrency Problems in Writing Call-Back Procedures .. V-6

V.7 Interface Abstracts V-9

45 FileName

45.1 Types 45-1

45.2 Constants and data objects 45-1

45.3 Signals and errors 45-1

45.4 Procedures 45-2

45.5 Examples. 45-3

46 FileTransfer

46.1 Types 46-1

46.2 Constants and data objects 46-4

46.3 Signals and errors 46-4

46.4 Procedures 46-5

46.5 Examples. 46-10

47 MFile

47.1 Types 47-2

47.2 Constants and data objects 47-6

.47.3 Signals and errors 47-6

47.4 Procedures 47-9

47.5 Discussion and examples . 47-20

47.5.1 Release procedures. 47-20

47.5.2 Notification 47-22

48 MFileProperty

48.1 Types 48-1

48.2 Constants and data objects 48-1

47.3 Signals and errors 48-1

48.4 Procedures 48-1

xiv

Mesa Programmer's Manual

49 MLoader

49.1 Types 49-1

49.2 Constants and data objects 49-1

49.3 Signals and errors 49-1

49.4 Procedures 49-2

50 MSegment

50.1 Types 50-1

50.2 Constants and data objects 50-2

50.3 Signals and errors 50-2

50.4 Procedures 50-3

50.5 Examples. 50-7

51 MStream

51.1 Types 51-1

51.2 Constants and data objects 51-1

51.3 Signals and errors 51-2

51.4 Procedures 51-2

51.5 Stream-specific operations 51-5

52 MVolume

52.1 Types 52-1

52.2 Constants and data objects 52-1

52.3 Signals and errors 52-1

52.4 Procedures 52-1

VI Sorting and searching

Vr.l Interface abstracts. VI-l

53 BTree

53.1 Types 53-1

53.2 Constants and data objects 53-1

53.3 Signals and errors 53-1

53.4 Procedures 53-2

xv

Table of contents

54 GSort

54.1 Types 54-1

54.2 Constants and data objects 54-3

54.3 Signals and errors 54-3

54.4 Procedures 54-3

54.5 Examples 54-3

55 StringLook Up

55.1 Types 55-1

55.2 Constants and data objects 55-1

55.3 Signals and errors 55-2

55.4 Procedures 55-2

55.5 Examples. 55-3

VII Program analysis

VII.1 Interface abstracts VII-l

56 DebugU seful Defs

56.1 Types 56-1

56.2 Constants and data objects 56-2

56.3 Signals and errors 56-2

56.4 Procedures 56~3

56.5 Sample Printer 56-7

VIII Miscellaneous

VIII. 1 Interface abstracts VIII-l

57 TajoMisc

57.1 Types 57-1

57.2 Constants and data objects 57-1

57.3 Signals and errors 57-1

57.4 Procedures 57-1

58 Version

58.1 Types 58-1

58.2 Constants and data objects . 58-1

58.3 Signals and errors 58-1

XVI

Mesa Programmer's Manual

58.4 Procedures

Appendices

A f1~xample Tool

A.l Creation and startup of Example'i'ooi

A.2 Tool slates and storage sanagement

A.3 Data

A.4 Subwindows

A.5 Form subwindows

A.5.1 Command items

A.5.2 String items

A.5.3 Enumerated items .

A.5.4 N umber items

A.5.5 Boolean items

A.S Menus

A.7 The ExampleTool program

B References.

c Listing of Public Symbols .

Index

Illustrations

Example 13.1: ExampleTool

Example 43.1: Dependency Structure of Global Tables.

Example V.1: Procedures for Acquiring and Releasing Files

Example V.2: PleaseReleaseProc Declarations.

Example V.3: SetAccess Declarations.

Example V.4: NotifyProc Declarations.

Example V.5: Example PleaseReleaseProc.

Example V.S: Race Condition if File System Permitted Release to Execute

Example V.7: Client-Caused Deadlock in PleaseReleaseProc
Example A.l: ExampleTool

58-1

A-I

A-2

A-Z

A-3

A-3

A-4

A-5

A-5

A-6

A-6

A-S

A-7

B-1

C-l

13-2

43-3

V-Z

V-Z

V-3

V-4

V-8

V-8

V-9
A-Z

xvii

Table of' contents

xviii

1.1 Files

I

General environment

The Xerox Development Environment provides interfaces for building tools and whole
systems from start to finish. Interfaces suitable for use by programmers at differing levels
of ability and familiarity with XDE are available for many tasks.

The interfaces in this section are all basic and should be studied both for content and to get
a feel for the XDE paradigm of "tools and interfaces." The simplest interfaces are Atom
and Date, followed by Token, Executive, Expand, HeraldWindow, and Profile interfaces.
The most important interfaces in this group are AddressTranslation, along with CmFile
and the ToolDriver.

In general, a programmer new to the Xerox Development Environment can get started
building tools by looking at the interfaces in this and the next (Tool building) sections and
then studying the Example Tool in Appendix A for specifics. The interfaces discussed later
in this manual can be added to the programmer's repertoire as needed.

Most facilities described in this manual are implemented by boot files. Some of the
facilities are provided by packages that can be loaded in the boot files.

This manual does not explicitly mention the location of files. This information is in the
documentation issued with each release of Mesa.

1.2 Philosophy and conventions

The development environment assumes that programs that run in it are friendly and are
not trying to circumvent or sabotage the system. The system does not enforce many of the
conventions described here, but it assumes that tool writers will adhere to them
voluntarily. As with rules of etiquette, if these conventions are not followed,
communication and sharing can break down: the development environment may degrade
or break down altogether.

1-1

I

1-2

General environment

1.2.1 Users and cHen ts

Throughout, this manual refers to users and to clients. These terms are not
interchangeable, but refer to very different things.

A user is human being sitting at a workstation, typing keys, pressing buttons, and moving
the mouse. User actions are not predictable or controllable by programs. Users never
invoke program interfaces; they interact with facilities of the development environment
in ways described in the XDE User's Guide.

A client is a program that invokes the facilities of the development environment. The
client may act as a result of some user action, but the client's behavior is the result of a
program and under the control of its implementor.

Tajo refers to the piece of the development environment that implements the user
interface facilities.

1.2.2 Tools philosophy

The most important principle in the development environment is that users should have
complete control over their environment. In particular, clients should not pre-empt users.
A user should never be forced by a client into a situation where the only thing that can be
done is to interact with one tool. Furthermore, the client should avoid falling into a
particular "mode" when interacting with the user. The tool should avoid imposing
unnecessary restrictions on the permitted sequencing of user actions.

This goal of user control has important implications for tool design. A client should never
seize control of the processor while getting user input. This tends to happen when the
client wants to use the "get a command from the user and execute it" mode of operation.
Instead, a tool should arrange for Tajo to notify it when the user wishes to communicate
some event to the tool. This is known as the "don't call us, we'll call you" principle.

The user owns the window layout on the screen. Although the client can rearrange the
windows, this is discouraged. Users have particular and differing tastes in the way they
wish to layout windows on the display; it is not the client's role to override the user's
decisions. In particular, clients should avoid making windows jump up and down to
capture the user's attention. If the user has put a window off to the side, he does not want
to be bothered by it.

The facilities provided by the development environment are designed to facilitate this
same program writing style. In particular, the Tool interface makes it easy for a
programmer to write a program that interacts with the user in this way. The development
environment manages the details of user interaction so that tools are presented with a
sequence of discrete commands or actions. Programmers should study the Example Tool in
Appendix A for an example of how to use these facilities.

1.2.3 N otifier

Tajo sends most user input actions to the window that has set itself to be the focus for user
input; the rest of the actions are directed to the window containing the cursor. (See the TIP
interface for details on how the decision is made where to send these actions.) A process in
Tajo notes all user input actions and determines which window should receive each. A

Mesa Prog.oamme.o's Manual I

client is concerned only with the actions that are directed to its window; it need not
concern itself with determing which actions are intended for it.

Two processes are involved in user input management. One is a high-priority process that
queues user actions as they happen. The first process is called the Interrupt Level, the
Stimulus Level, orthe StimLev. The other is a normal-priority process that processes the
user actions. This second process is called the Notifier, Processing Level, or the Matcher.

The Notifier informs a tool of a user action directed to it by calling a tool-supplied
NotifyProc procedure. The standard tool facilities provide appropriate NotifyProcs so that
tool writers need not worry about providing their own. Ambitious tool writers can, of
course provide their own; see the TIP and Userlnput interfaces. Tool writers creating their
own subwindow types will probably have to do this.

It is important to realize that most tools operate from the Notifier process. The Notifier
waits until a NotifyProc finishes for one user action before processing the next user action.
The procedures associated with form subwindow commands, for instance, are executed in
the N otifier process.

One implication of this use of the Notifier process is that a NotifyProc that requires a lot of
computing or communicating will delay the processing of all other user actions until it
completes. As a result, it is considered very impolite to "steal the Notifier" for any great
length of time, thus preventing the user from using other tools. It is the Tajo philosophy
that tools should never pre-empt the machine. Tool writers should FORK any command
that will take more than three to five seconds to complete. Of course, the tool writer must
take great care when stepping into this world of parallel processing. See the Example Tool
in Appendix A for one method of protecting the tool when FORKing.

Another implication of this use of the Notifier process is that the Notifier can be used to
obtain mutual exclusion for processing user actions. This is desirable when a client wants
to make a "background" request, one that will only receive machine resources if the
Notifier is otherwise unoccupied. It is also desirable when a client wants to stop as much
activity as possible, such as when a world swap is about to take place (see the section on
Stopping tools).

Some facilities require that their procedures be invoked "from the Notifier." To allow non­
Notifier processes to invoke these functions, Tajo provides a mechanism called a Periodic
Notifier. The blinking caret in Tajo uses a Periodic Notifier. The Userlnput interface
describes Periodic N otifiers.

1.2.4 Multiple processes, multiple instances

Tajo supports many programs running simultaneously. The designer of a package should
bear in mind that his package may be invoked by several different asynchronous clients.
One implication of this constraint is that a package should be monitored.

The simplest design is to have a single entry procedure that all clients must call. While
one client is using the package, all other clients will block on the monitor lock. Of course,
no state should be maintained internally between successive calls to the package, since
there is no guarantee that the same client is calling each time.

1-3

I

1-4

General environment

This simple approach has the disadvantage that clients are stopped for what may be a long
time, with no option of taking alternate action. The restriction can be eased by having the
entry procedure check a "busy" bit in the package. If the package is busy, the procedure
can return this result to the client. 1'he client can then decide whether to give up, try
something else, or try again. This flexibility is less likely to tie up a tool for a long period,
and the user can use the tool for other purposes.

If the package is providing a collection of procedures and cannot conform to the constraint
that it provide its services in a single procedure, the package and its clients must pass
state back and forth in the form of an object. For instance, the FileTransfer package
implements a Connection object that holds information about a client's remote connection.
The package can either use a single monitor on its code to protect the object or provide a
monitor as part of each object. If it does the latter, several clients can be executing safely
at the same time.

Some packages require that a client provide procedures to be called by the package. The
designer of such a package should have these client-provided procedure take an extra
parameter, a long pointer to client-instance data. When the client provides the package
with the procedures, it also provides the instance data to pass to the procedures when they
are called. This instance data can then be used by the client to distinguish between several
different instances of itself that are sharing the same code.

As an example, the FTP program uses the FileTransfer facility to move files. For each file to
be transferred, FileTransfer calls a procedure provided by FTP that decides whether the
transfer should take place. This procedure uses the value of some switches to make this
decision. FTP cannot keep these switches in global variables, since there may be several
clients using its facilities at the same time. Instead, FTP passes the switch values to
FileTransfer as its instance data, and FileTransfer passes the switches back to FTP's
procedure when it is called.

1.2.5 Resource management

Programs in the development environment must explicitly manage resources. For
example, memory is explicitly allocated and deallocated by programs; there is no garbage
collector to reclaim unused memory. All programs share the same pool of resources, and
there is no scheduler watching for programs using more than their share of execution
time, memory, or any other resource.

Programs must manage resources carefully. If a program does not return a resource when
it is done with it, that resource will never become available to any other program and the
performance of the environment will degrade. The most common resource, and one of the
more difficult to manage, is memory.

When interfaces exchange resources, clients must be very careful about who is responsible
for the resource. The program responsible for deallocating a resource is the owner of that
resource. One example of a resource is a file handle. If a program passes a file handle to
another program, both programs must agree about who owns that file handle. Did the
caller transfer ownership by passing the file handle or is it retaining ownership and only
letting the called procedure use the file handle? If the two programs disagree, the file will
be released either twice or not at all. All interfaces involving resources must state
explicitly whether ownership is transferred. To ease the problem of memory management
when the ownership of memory can change, a common heap, called the system heap, is

Mesa P."ogramme."·s Manual I

used in Tajo. If a piece of memory can have its ownership transferred, it is either allocated
from the system heap or a deallocation procedure must be provided for it. The Storage
interface is useful for allocating and deallocating objects from the system heap.

The most common resource appearing in interfaces is a STRING or LONG STRING. There must
be agreement about which program is responsible for deallocating the string body.
Typically, a string passed as an input parameter does not carry ownership with it;
implementors of such procedures should not deallocate or change the string. If the
implementor must modify the string or use it after the procedure returns, it should first be
copied. Tool writers should be particularly careful when a procedure returns a string to
note whether ownership has come with it.

1.2.6 Tool state conventions

Tools can be in one of three states, active, tiny, or inactive. If a tool is active, the user has
access to its full functionality and interface. If a tool is tiny, its window is displayed as a
small icon, but its functions are still available. (Of course, the user may not be able to
invoke them directly because the window is small.) If a tool is inactive, the tool window
does not appear on the display and the tool is not functional. The tool appears on a menu of
inactive tools.

A user makes a tool active when he wishes to use it. He makes a tool tiny when he expects
to use it in the near future, but needs its space on the display for some other use. A user
makes a tool inactive if he does not expect to use it at least for a while. An inactive tool
might never be reactivated by the user.

Tool writers are responsible for supporting these definitions of tool state. Tajo provides the
window management for these transitions, deallocating its resources as a tool is
deactivated, and reallocating them when it is activated again. However, the tool writer
must manage the resources the tool uses by providing a transition procedure that is called
as the tool changes from one state to another. When a tool becomes tiny, its state is close to
that of an active tool. However, it should not consume resources only needed for the
display of the window, since the window is represented by an icon. When a tool becomes
inactive, it should release all of its resources (free all streams, turn off all communications
packages, deallocate all storage from the system heap, and so forth).

1.2.7 Program in vocation

The development environment provides two styles of tool invocation, an interactive style
and a batch style. The interactive style is supported by the tool window paradigm: users
communicate with tools via a window and interact frequently with the program. A tool
writer typically provides an interactive interface by creating a form sub window with
command items for each procedure. The batch style is supported by the Executive: users
invoke programs via a command line and have very little interaction with the program
while it is running. A tool writer typically provides a batch interface by writing one or
more Exec. Exec:Proc:s that can be called from the Executive.

It is usually desirable to be able to access the facilities of a package in either style as well
as to access them from other programs. By taking care in the package design, a tool writer
can make supporting these different invocation methods straightforward.

1-5

I Gener'ul environment

The tool writer should provide an interface that defines the function provided by his
package. This functional interface can be called directly from programs, making it
possible for client programs to use the package directly. The tool writer can then write two
interface packages that invoke the functions of the package through the functional
interface. One interface package implements an ExecProc; the other implements a tool
window.

A few requirements must be satisfied by the functional interface to make it possible to
write both interface packages. The functional interface should make no assumptions
about where its input comes from or where its output goes. If the package must interact
with the user, it requires interface packages for the interaction. It must not assume that it
has a window it can communicate through. Also, the package should not assume it knows
the location of input parameters. All input should be passed to the package explicitly by
the interface packages, even if the input isjust in the form ofa command line that must be
parsed. An output procedure should be provided by the caller.

1.2.8 Stopping tools

The development environment consists of cooperating processes. There are no facilities for
cleanly terminating an arbitrary collection of processes. It is assumed that tool writers
will be good citizens and design their tools to stop voluntarily when asked to stop.

A tool should stop if the user aborts it. The Userlnput interface contains procedures that
check whether a user has aborted a tool with the ABORT key in the tool's window. A tool
should check for a user abort at frequent intervals and be prepared both to stop executing
and to clean up after itself. Because the tool controls when it checks, it can check at points
in its execution when its state is easy to clean up. Packages that can be called from several
programs should take a procedure parameter that can be called to see whether the user
has aborted.

There is another reason that a tool might be asked to stop: when it is running in CoPilot
and CoPilot is about to return to the debuggee. CoPilot must take a snapshot of the state of
the world; it requires that all processes stop so that the snapshot it takes corresponds to
the state of the world when it does the core swap. CoPilot guarantees that the Notifier is
not running, so tools that execute in the Notifier are automatically stopped. However,
other programs must watch for the Supervisor event Event.aboutToSwap. If a program is
notified about the swap while it has a process running, it must either stop the process or
abort the world swap by raising the signal Supervisor.EnumerationAborted from within its
agent procedure.

1.3 Interface abstracts

1-6

AddressTranslation translates between various elements in the internal form of network
addresses and Ascii strings. Address translation is involved in any tool built for network
activities.

Atom provides the mechanism for making TIP Atoms.

CmFile provides a simple set of procedures for processing "User. em" format files. User. em

contains information for tailoring the environment to a user's taste.

Mesa Programmer's Manual I

Date converts dates and their string representations.

Exec supports program loading and running in the batch Executive. It includes operations
for command line access and manipulation.

Expand provides facilities for the Executive-style expansion of lines containing expansion
characters.

HeraldWindow implements routines for providing feedback to the user and for booting
files and volumes.

Profile provides an interface to commonly accessed user and system data such as
passwords, domains, and names.

Token provides a general text scanning facility, including several standard scanning
procedures such as those for parsing numbers and boo leans. It also permits clients to
define their own entities.

ToolDriver allows a tool to inform the ToolDriver package of its existence and of the
existence of its subwindows. The ToolDriver package can thus use a tool's functions on
behalf of a user communicating with the package via a script file.

1-7

I General environment

1-8

1.1 Types

1

AddressTranslation

The AddressTranslation interface translates strings into the internal representation of
network addresses. Ira string cannot be translated locally, the Clearinghouse service will
be consulted. Use the Format interface to convert network addresses from internal
representation to text.

AddressTranslation.NetworkAddress: TYPE = System.NetworkAddress;

1.2 Constants and data objects

None.

1.3 Signals and errors

AddressTranslation.Error: ERROR [errorRecord: AddressTranslation.ErrorRecord];

AddressTranslation.ErrorRecord: TYPE = RECORD [
SELECT errorType: AddressTranslation.ErrorType FROM

scanError = > [position: CARDINAL],
badSyntax = > [field: AddressTranslation.Field],
chLookupProblem = > [rc: cH.ReturnCode),

otherCHProblem = > [reason: AddressTranslation.Reason].

ENDCASE];

AddressTranslation.Field: TYPE = {net, host, socket, ambiguous};
AddressTranslation.ErrorType: TYPE = {

scanError, badSyntax, chLookupProblem, otherCHProblem};

scan Error is raised if the input string contains illegal
characters; position is the position of the offending
character.

badSyntax is raised if the string to be parsed does not have the
proper syntax; field identifies the incorrect field.

1 1

1 AddressTranslation

chLookupproblem

otherCHProblem

AddressTranslation.Reason: TYPE = {

is raised if a Clearinghouse service could not find the
name; rc gives details of the failure.

is raised if a name or value was not parseable by the
Clearinghouse code or if the Clearinghouse service
could not provide the address; reason gi yes more
information on the failure.

noUsefulProperties. ambiguousSeparators, tooManySeparators, authentication,
invalidName. invalidPassword, couldntDetermineAddress, spare1, spare2. spare3};

noUsefulProperties

ambiguousSeparators

tooManySeparators

authentication

invalidName

invalidPassword

couldntDetermineAddress

the name was found, but did not have any of the
desired properties associated with it (Le., it did not
have a network address).

the input string contained both ': and '@ separators.

the input string had more than two separators.

a problem occurred with the authentication servers.

the user was logged in with an invalid name.

the user was logged in with an invalid password.

the string given to AddressTranslation was not found
in the Clearinghouse service.

1.4 Procedures

1-2

AddressTranslation.StringToNetworkAddress: PROCEDURE [
s: LONG STRING, id: Auth.ldentityHandle NIL.
distingName: LONG STRING +- NIL]
RETURNS [
addr: AddressTranslation.NetworkAddress, chUsed: BOOLEAN];

The StringToNetworkAddress procedure parses 5 and returns a network address. When
contacting the Clearinghouse service, AddressTranslation will look for a network address;
id is the Auth identity that is used to contact the Clearinghouse service. If defaulted to NIL,
one will be created from the Profile Tool. distingName, if not NIL, will be filled in with the
actual distinguished name used in the Clearinghouse lookup; that is, the name obtained
after dereferencing all aliases. chUsed win be TRUE if the Clearinghouse swas contacted.
This procedure can raise the error Error.

Mesa Programmer's Manual

AddressTranslation.StringToHostNumber: PROCEDURE [
LONG STRING] RETURNS [System.HostNumber];

1

The StringToHostNumber procedure parses the LONG STRING and returns a
System.HostNumber. This procedure only translates numeric strings; the Clearinghouse
service will not be contacted. This procedure can raise the error Error.

AddressTranslation.StringToNetworkNumber: PROCEDURE [
LONG STRING] RETURNS [System.NetworkNumber];

The StringToNetworkNumber procedure parses the LONG STRING and returns a
System.NetworkNumber. This procedure only translates numeric strings; the
Clearinghouse service will not be contacted. This procedure can raise the error Error.

AddressTranslation.PrintError: PROCEDURE [
error: AddressTranslation.ErrorRecord. proc: Format.StringProc. clientData: LONG POINTER

NIL];

The PrintError procedure prints an error message to the proc provided by the client.
clientData will be passed to the client's proc.

1.5 Examples

The standard format for network addresses is hostllumber or
netllumber .hostllumber. socketllumber. For compatibility, 'N may be used to delimit the parts of

an address, but'. is preferred.

hostNumber can have four forms:

• An octal number optionally followed by a 'B or 'b

• A Clearinghouse name

• The special string "*"

• The special string "ME"

Clearinghouse names are strings of the form local:domain:organization. The local
part of the name must start with an alphabetic character; the lengths of the parts of a
name may not exceed cH.maxLocaINameLength, cH.maxDomainNameLength, and
cH.maxOrgNameLength characters, respectively. Clearinghouse names are looked up in
the Clearinghouse database using types from the unordered set {workstation, fileserver,
printserver, mailserver, router, nsAddress, its, gws, ciu, ecs} until a match is found. The
special string * gets the broadcast host number. The special string ME will not call
Clearinghouse functions, but will get the host number of the machine that it is running
on. For compatibility, '@ may be used to separate the parts of a Clearinghouse name, but ': is preferred.

netNumber and socketNumber, if used, can only be a octal number optionally followed by
a 'B or 'b. Both netNumber and soc:ketNumber can be defaulted. netNumber defaults to
the caller's local network number; socketNumber defaults to System.nuflSocket.

1-3

1

1-4

AddressTranslation

The translation routine will translate any string that is well formed and unambiguous.
Examples:

748.25200000016.2

Lassen

Lassen:OS8U North:Xerox

25200000016

74.Lassen

*
74. * •
• Lassen. 28

.25200000016b.2

74 • 2 is ambiguous because it could mean net. host or host. socket.

If the domain or organization fields are omitted, the default values are obtained from the
Profile interface.

AddressTranslation has been extended to handle more types of numeric input. The three
fields ofa network address (net, host, and socket> may be specified in any of your favorite
numeric bases including octal, decimal, hex, and even the baroque "product format."

Parsing rules are as follows:

• The possible bases are defined by the following ordered enumeration: {octal,
decimal, hex, clearinghouse}.

• The character '- is ignored when determining the base, and ignored again when
determining the value of a numeric specificaton.

• All fields are assumed to be octal. The assumption holds as long as no characters are
encountered outside the range ['0 .. '7]. The last character of the field may be a 'B or
'b, which affirms the octal assertion.

• If a character in the range ['8 .. '9] is encountered, the assumed base is assigned the
MAx[decimal, current base]. The last character of the field may be a '0 or 'd, which
affirms the decimal assertion.

• If a character in the range [' A .. 'F] is encountered, the assumed base is assigned the
MAx[hex, current basel. The last character of the field may be an 'H or 'h, which
affirms the hex assertion.

• If the first character of a field is an alpha, the field is assumed to be a Clearinghouse
name. This leads to the rule that hex specifications must begin with a number.

Mesa Programmer's Manual

Examples:

14InchesBaby is a clearinghouse specification.

BEADFACE is a clearinghouse specification.

OBEADFACE is a hex numeric specification.

1

1-5

1 AddressTranslation

1-6

2.1 Types

2

Atom

The Atom interface provides the definitions and procedures to create and manipulate
atoms (unique objects; in this case text strings, something like Lisp Atoms).

Atom.ATOM: TYPE .. LONG STRING +- NIL;

An Atom.ATOM is a LONG POINTER TO StringBody that is guaranteed to be equal to any other
ATOM with an equal StringBody. That is, String.EquaIStrings[atom1. atom2. FALSE] if atom1

.. atom2.

Atom.AList: TYPE .. LONG POINTER TO DPCell +- NIL;

This type is not used by the Atom implementation.

Atom.DPCell: TYPE .. RECORD [first: LONG STRING. rest: AList];

This type is not used by the Atom implementation.

2.2 Constants and data objects

None.

2.3 Signals and erro rs

None.

2.4 Procedures

Atom.MakeAtom: PROCEDURE [ref: LONG STRING] RETURNS [Atom.ATOM];

MakeAtom returns the ATOM corresponding to ref, creating one if necessary.

Atom.GetPName: PROCEDURE [atom: Atom.ATOM] RETURNS [pName: LONG STRING];

GetPName returns the STRING corresponding to atom, returning NIL if atom is unknown
(not an ATOM).

2 1

2 Atom

2-2

3.1 Types

3

CmFile

This interface provides a simple set of procedures for processing User. em format files. See
also the Token interface, since it is assumed that clients will use Token to parse the
contents of em files.

A em file is a sequence of sections. A section is a title line followed by zero or more name­
value pairs. A section may not have embedded blank lines because a blank line is considered to terminate a

section. The title line begins with a [and the section title is defined to terminate with the
first succeeding]. The section title may be optionally preceded by a logical volume name
and a colon, with no embedded spaces. An example of this would be [Tajo;System), If the section
title is preceded by a logical volume name, the lines in that section will be recognized only
on the named volume and will override specific lines in sections by the same name with no
volume qualification. Each name-value pair is on a separate line; the name must be
followed by :. Both the name and the value can be preceded by white space. The value field
is terminated by the first carriage return. A comment line is a line beginning with--; it
may appear anywhere within a section.

CmFile.Handle: TYPE = Token.Handle;

A CmFile.Handle can be used with any of the routines in the Token interface for parsing.
Many of the procedures in this interface take a Handle parameter and provide standard
routines for parsing em files.

3.2 Constants and data objects

CmFile.noMatch: CARDINAL = StringLookUp.noMatch;

3.3 Signals and errors

CmFile.Error: SIGNAL (code: CmFile.ErrorCodel;

CmFile.ErrorCode: TYPE = {fileNotFound, invalidHandle, other};

3-1

3 CmFile

fileNotFound

invalidHandle

the tile to be processed could not be acquired for reading.

a Cmfile procedure has been called with a Token.Handle that was not
created by CmFile.

CmFile.TableError: SIGNAL[h: CmFile.Handle. name: LONG STRING);

Within the procedure NextValue, a name was encountered in the CmSection that was not
in the table of names expected. h is the handle that was used in the em file parsing, and
name is the unrecognized name. If this signal is resumed, the name/value pair is ignored
and processing continues. h is positioned to the beginning of the value field of the item.
The client may read from h up through but not past the closing carriage return while in
the catch frame without interfering with further processing.

3.4 Procedures

3-2

CmFile.Close: PROCEDURE [h: CmFile.Handle] RETURNS [nil: CmFile.Handle];

The Close procedure frees the Handle and returns NIL. If an illegal CmFile.Handle is
supplied, CmFile.Error{invalidHandlel is raised.

CmFile.Findltem:PROCEDURE [h:CmFile.Handle, title. name: LONG STRING] RETURNS [found:
BOOLEAN];

Findltem searches for the entry name in section title in the file on which the Handle h was
opened. If the search is successful, Findltem returns TRUE. Otherwise, it returns FALSE. If
the search is successful, the Handle h will be positioned to the beginning of the value for
name. Procedures in the Token interface can then be used to parse the value field; e.g.,
Token.Boolean can be used to parse a boolean value. If an illegal CmFile.Handle is supplied,
CmFile.Error(invalidHandle] is raised.

CmFile.FindSection: PROCEDURE [
h: CmFile.Handle, title: LONG STRING] RETURNS [opened: BOOLEAN];

The FindSection procedure searches for the section named title in the file on which the
Handle was opened. If it finds the section, it returns TRUE and positions the Handle to parse
that section. If an illegal CmFile.Handle is supplied, CmFile.Error[invalidHandle] is raised.

CmFile.FreeStri ng :PROCEDURE [LONG STRING] RETURNS [ni I: LONG STRING];

FreeString deallocates strings returned from other procedures in CmFile.1t returns NIL.

CmFile.Line: PROCEDURE [
fileName. title, name: LONG STRING] RETURNS [LONG STRING];

The Line procedure returns the value for name from section title in the file on which the
handle h was opened. It returns NIL if the file, section, or the named entry cannot be found.
It is the caller's responsibility to deallocate the LONG STRING returned from Line using
FreeString. If the file named fileName is not found or cannot be acquired for reading,
cmFile.Error[fileNotFoundl is raised.

Mesa Progrnmmer's Mnnunl 3

CmFile.Nextltem: PROCEDURE [h: CmFile.Handle] RETURNS [name, value: LONG STRING];

The Nextltem procedure is used for enumerating the entries in a section. To start the
enumeration, position the Handle by calling FindSection. When name is NIL, the end of the
::-;ection has been encountered. name i::-; the name partion of an item; that is, the part
preceding the colon. value i::-; the rest of the line with leading white space suppressed. It is
the caller's responsibility to deallocate the LO.NG STRINGS returned from Nextltem using
CmFile.FreeString.

CmFile.NextValue: PROCEDURE [h: CmFile.Handle, table: StringLookUp.TableDesc] RETURNS
[index: CARDINAL];

The NextValue procedure is used for enumerating the entries in a section. To start the
enumeration, position the Handle by calling FindSection. The name of the next item in the
section is looked up in table, and the index of the item is returned. Standard Token
procedures can then be used to parse the value of the entry. When index is CmFile.noMatch,
the end of the section has been encountered. If an item that is not in the table is found, the
resumable SIGNAL CmFile.TableError is raised. If TableError is resumed, the value is skipped
and the scan continues.

CmFile.Open: PROCEDURE [fileName: LONG STRING] RETURNS [h: CmFile.Handle];

The Open procedure returns a CmFile.Handle on the file fileName. This handle is then used
by other CmFile or Token routines for processing the file. If the file does not exist or cannot be
acquired for reading, CmFile.ErrorlfileNotFound] is raised. If CmFile.ErrorlfileNotFound] is
resumed, NIL is returned.

CmFile.ReadLineOrToken: PROCEDURE [
h: Token.Handle, buffer: LONG STRING, terminator: CHARACTER];

ReadLineOrToken reads from h until terminator is found, unless either end-of-line or end­
of-stream is encountered. The resulting line or token is returned via buffer and the break
character is retained in the Token.Object pointed to by h. If buffer is too short,
ReadLineOrToken quits and the break character is the character that was ,being processed
when the buffer overflowed.

CmFile. TitleMatch: PROCEDURE [
buffer, title: LONG STRING] RETURNS [matches: BOOLEAN];

TitleMatch returns TRUE if and only if the contents of buffer is in the right format to be the
start of the section specified by title. For example, if buffer were [ld] and title were Id,
TitleMatch would return TRUE.

CmFile.UserDotCmLine: PROCEDURE [title. name: LONG STRING] RETURNS [LONG STRING];

The UserDotCmLine procedure performs a Line operation on the file named User. cm.

CmFile.UserDotCmOpen: PROCEDURE RETURNS [h: CmFile.Handle];

The UserDotCmOpen procedure performs an Open on the file named User. cm.

3-3

3.5 Example

3-4

The following examples are based on the User. em processing done by the Print program.
It uses facilities of both the CmFile, StringLookUp, and the Token interfaces. The type field
in the User. em section corresponds to an enumerated type. The Interpress file
corresponds to a name (string) that may be a quoted string containing spaces.
SetupOptions returns the values found in the User. em or the default values of the items
ifthey are not present in the User. em. The first example is more straightforward than the
second, but it invol ves more string copying.

SetupOptions: PROCEDURE RETURNS [
type: PrintOps.FileFormat 4- OldPress, interpressPrinter LONG STRING 4- NIL] =
BEGIN
Option: TYPE = MACHINE DEPENDENT{

preferredFormat(O). interpress(1), noMatch(StringLookUp.noMatch)};
DefinedOption: TYPE = Option [preferredFormat .. interpress];
optionTable: ARRAY DefinedOption OF LONG STRING 4- [

preferredFormat: "PreferredFormat"L. interpress: "lnterpress"L];
userCm: CmFile.Handle 4- NIL;
i: Option;
entry, value: LONG STRING 4-. NIL;
thisOption: Option;
userCm 4- CmFile.UserDotCmOpen[! CmFile.Error • > CONTINUE];
IF userCm # NIL AND CmFile.FindSection[userCm, "HardCopy"l] THEN

DO ENABLE UNWIND = > (
entry +- CmFile.FreeString[entry); value 4- CmFile.FreeString[value]};

[entry. value) 4- CmFile.Nextltem[userCm);
IF entry = NIL THEN EXIT;
thisOption 4- StringLookup.lnTable[

key: entry. table: DESCR'PTOR[BASE[optionTable]. LENGTH[optionTable]]];
SELECTthisOption FROM

preferred Format = >
BEGIN
parseHandle: Token.Handle 4- Token.StringToHandle[value];
parseValue:LONG STRING 4- Token.ltem(parseHandle];
IF String.EquivalentStrings[parseValue, "lnterpress"L] THEN

type 4-lnterpress;
[] 4- Token.FreeTokenString[parseValue];
[] 4- Token.FreeStri ngHandle[parseHandle];
END;

interpress = >
BEGIN
parseHandle: Token.Handle 4- Token.StringToHandle[value];
InterpressPrinter 4- Token.FreeTokenString[lnterpressPrinter];
InterpressPrinter 4- Token.MaybeQuoted[

h: parseHandle, data: NIL, filter: Token.NonWhiteSpace,
isQuote: Token.Quote, skip: whiteSpace,
-- allocate minimum space for the string, since we will use it directly
temporary: FALSE];

[] 4- Token.FreeStringHandle(parseHandle];
END;

Mesa Programmer's Manual

ENDCASE;
entry Eo- CmFile.FreeString[entry); value Eo- CmFile.FreeString[value);

ENDLOOP;
IF userCm # NIL THEN [] Eo- CmFile.Close[userCm];
END;

SetupOptions: PROCEDURE RETURNS [
type: PrintOps.FileFormat Eo- OldPress, interpressPrinter: LONG STRING Eo- NIL) =
BEGIN

Option: TYPE = MACHINE DEPENDENT{
preferredFormat(O), interpress(1), noMatch(StringLookUp.noMatch)};

DefinedOption: TYPE = Option [preferredFormat .. interpress);
optionTable: ARRAY DefinedOption OF LONG STRING Eo- [

preferredFormat: "PreferredFormat"L, interpress: "lnterpress"L);

userCm: CmFile.Handle Eo- NIL; i: Option;
-- the following declaration exists to make the LOOPHOLE in MyNextValue safe.
-- If CmFile. NextValue changes type, the compiler will flag the following as an error.
CheckType: PROCEDURE [h: CmFile.Handle, table: StringLookUp.TableDesc]

RETURNS [index: CARDINAL] = CmFile.NextValue; .

--loophole Check Type into the type expected by StringLookUp
MyNextValue: PROCEDURE [

th: CmFile.Handle,

table: LONG DESCRIPTOR FOR ARRAY DefinedOption OF LONG STRING]
RETURNS [index: Option] = LOOPHOLE[CheckType];

userCm Eo- CmFile.UserDotCmOpen[! CmFile.Error := > CONTINUE);

IF userCm # NIL AND CmFile.FindSection[userCm, "HardCopy"L] THEN
DO

SELECT
(i Eo- MyNextValue[h: userCm, table: DESCRIPTOR[optionTable]

! CmFile. TableError = > RESUME]) FROM
noMatch = > EXIT;
preferred Format := >

BEGIN
value: LONG STRING = Token.ltem[userCm];

IF String.EquivalentStrings[value, "lnterpress"L) THEN

type ~ Interpress;
[] ~ Token.FreeTokenString[value];
END;

interpress = >
BEGIN

value: LONG STRING = Token.MaybeQuoted[
h: userCm. data: NIL, filter: Token.NonWhiteSpace.

isQuote: Token.QuOte, skip: whiteSpace,
-- allocate minimum space for the string, since we will use it as the value
temporary: FALSE];
InterpressPrinter Eo- value;

END;

ENDCASE;
ENDLOOP;

IF userCm # NIL THEN [] Eo- CmFile.Close[userCm];
END;

3

3-5

3 CmFile

3-6

4.1 Types

4

Date

The Date interface provides for a conversion between dates and their string
representations. (Also see Time in the Pilot Programmer's Manual).

Date.Packed: TYPE = Time.Packed;

Packed is copied from the Time interface.

Date.Notes: TYPE = {normal. noZone. zoneGuessed, noTime. timeAndZoneGuessed};

Notes is used as one of the return values from the call on StringToPacked. normal means
the value returned is unambiguous; noZone means that a time-or-day was present, but
without a time zone indication. (The local time zone as provided by
System.localTimeParameters is assumed.) zoneGuessed is returned instead of noZone if
local time parameters are not available, and the time zone is assumed to be Pacific Time
(standard or daylight time is determined by the date). noTime and timeAndZoneGuessed
are equivalent to noZone and zoneGuessed, respectively, where the time is assumed to be
00:00:00 (local midnight).

4.2 Constants and data objects

None.

4.3 Signals and errors

Date.Unintelligible: ERROR [vicinity: NATURAL];

If StringToPacked cannot reasonably interpret its input as a date, Unintelligible is raised;
vicinity gives the approximate index in the input string where the parser gave up.

4.4 Proced ures

Date.PackedTolongString: PROCEDURE [Date.Packed] RETURNS [LONG STRING];

4-1

4

4-2

Date

The PackedToLongString procedure converts the date to a LONG STRING that is allocated
from the system heap. The format is identical to that obtained by a call on Time.Append.

Date.PackedToString: PROCEDURE [Date.Packed] RETURNS [STRING];

The PackedToString procedure converts the date to a STRING that is allocated from the
system MDS heap.

Date.StringToPacked: PROCEDURE [LONG STRING]
RETURNS [dt:Date.Packed, notes:Date.Notes, length:NATURAL];

The StringToPacked procedure parses the string and returns a C:VIT time according to the
Pilot standard. The date is. generally assumed to precede the time, although if the time
precedes the date it will usually be properly recognized. The date syntax is a somewhat
less restrictive version of RFC733; full RFC733 is recognized, plus forms like "month day,
year," "mmlddlyy," and variations with Roman numerals used for the month. The form
"year month day" is also accepted if the year is a full 4-digit quantity. Forms with "-"
instead of significant space are also acceptable, as well as forms in which a delimiter
(space or "_") can be elided without confusion. The time is generally assumed to be in
RFC733 format, optionally including a time zone specification. In addition, "am" or "pm"
may optionally appear following the time (but preceding the time zone, if any). notes is
interpreted as described above. length indicates the number of characters consumed by
the parser; that is, it is the index of the first character of the argument that was not
examined by the parser. This procedure can raise the error Date.Unintelligible.

5.1 Types

5

Exec

The Exec interface supports program loading and running as well as command line access
and manipulation. The paradigm for programs running from the Executive is that they
will register with the Executive one or more command names and a corresponding
procedure to be called for each command.

Exec.CheckAbortProc: TYPE = PROCEDURE [h: Handle] RETURNS [abort: BOOLEAN];

A CheckAbortProc procedure is used to check if a subsystem has been aborted by the user.
CheckAbortProc procedures are used by Run and ProcessCommandLine.

Exec.ExecProc:TYPE = PROCEDURE [h: Handle,clientData: LONG POINTER ~ NILl
RETURNS[outcome: Outcome ~ normal];

An ExecProc procedure is the type of procedure a subsystem registers with the Executive
so that its facilities can be invoked. The Executive calls the procedure with a Handle that
can be used for input and output, as well as a LONG POINTER, c1ientData, which can be used
for optional instance data. The subsystem returns an outcome that the Executive uses to
decide whether to continue with the current command line. If the result is normal, the
Executive continues; if it is any other value, the Executive skips the remainder of the
current command line and prompts the user for more commands.

Exec.GetCharProc: TYPE = PROCEDURE [h: Handle,] RETURNS [char: CHARACTER];

GetCharProc is the type declaration for the Executive procedure that returns the next
character on the command line (see Exec. GetChar).

Exec.Handle: TYPE = LONG POINTER TO Exec.Object;

When the Executive calls one of its registered procedures, it passes it a Handle that the
subsystem can use to obtain the Executive's facilities.

5-1

5 Exec

Exec.Object: TYPE = ... ;

Exec.Outcome: TYPE = MACHINE OEPENDENT{
normal(o). warning. error. abort. spare1. spare2. spare3.last(LAST[CAROINAL])};

Outcome is returned by an ExecProc to indicate the status of the operation.

normal the procedure was completed successfully.

warning the procedure wishes to warn you about suspicious results.

error the procedure was not able to be completed successfully.

abort the procedure was aborted by the user.

All outcomes except normal cause the Executive to abort the rest of the current command
line.

Exec.RemovedStatus: TYPE = {ok, noCommand, nOProgram};

RemovedStatus is used by the Unload command to indicate its success.

ok the program associated with the command was successfully unloaded.

noCommand a command of the requested name was not found.

nOProgram the requested command was found, but the program that implements the
command could not be located.

5.2 Constants and data objects

None.

5.3 Signals and errors

None.

5.4 Proced ures

5-2

Exec.Abort: PROCEDURE RETURNS [error: ERROR];

The Abort procedure returns the error that subsystems should raise to ab'ort processing.

Exec.AddCommand: PROCEOURE [
name: LONG STRING, proc: Exec.ExecProc, help, unload: Exec.ExecProc +- NIL];
unload: ExecProc 4- DefaultUnloadProc. clientData: LONG POINTER +- NIL);

The Executive maintains a list of commands that are invoked by typing their name into
the Executive window. Each command has an associated procedure that implements its
functions, as well as a help procedure, a cleanup procedure, and optional client-instance
data. The AddCommand procedure adds name to the Executive's list of commands and
associates proc with it as the procedure to call when the command is invoked. Even

Mesa Prog.·ammer's Manual 5

though by convention all command names in the Executive terminate with .-, these
characters are not automatically appended to name, but instead are the client's
responsibility. [f there is already a command by the same name, AddCommand overrides
the old entry.

In addition to the name parameter, AddCommand takes three other parameters, help,
unload, and ciientData. The help procedure is run whenever you ask for help on the
corresponding registered command. The unload procedure is called when you wish to
remove a command from the command list and unload its corresponding procedure.
Unloading an Executive command consists of two steps: first, all commands added by the
module being unloaded must be removed from the Executive's list of commands; and
second, one of the procedures associated with any command added by the module that
implements the subsystem must be unloaded. It is sufficient to unload only one procedure
in the implementing module because unloading any procedure causes the entire module to
be unloaded. The first step, that of removing commands from the command list, is done in
the unload procedure. That is, the client's unload procedure must initiate a
RemoveCommand on itself and all other commands registered by that module, as well as
perform any other cleanup necessary before being unloaded. UnloadCommand will call
unload and then automatically perform the second step, which is to actually unload an
associated procedure (there are restrictions on the client unload procedure; see
UnloadCommand and RemoveCommand for details). Usually, the command being
unloaded is the only one registered by its containing module, and there are no other
cleanup functions to perform. In this case, the client need not have its own unload
procedure but instead may use DefaultUnloadProc, since DefaultUnloadProc removes the
command for the subsystem it is associated with and then unloads the corresponding
procedure (see DefaultUnloadProc).

Exec.AliasCommand:PROCEDURE(old. new: LONG STRING) RETURNS(ok: BOOLEAN);

AliasCommand allows youto associate the same procedure with more than one command,
after the original command has already been registered. old is the name of the command
originally added with AddCommand, and new is the name of the command to associate
with the same procedure as old. Any number of commands can be aliases of an original
command, and any number of aliases can have aliases also.

Exec.AppendCommands: PROCEDURE [h: Exec.Handle, command: LONG STRING];

The AppendCommands procedure appends the parameter command to the current
command line. The effect is as if you had typed the contents of command after the current
command line. Note that it is processed before any commands that have been typed ahead
to the Executive.

Exec.CheckForAbort: CheckAbortProc;

The CheckForAbort procedure indicates whether the subsystem should abort.

Exec.Confirm: PROCEDURE [h: Exec.Handle] RETURNS [yes: BOOLEAN];

The Confirm procedure asks you for confirmation.

5-3

i
;1
I

5

5-4

Exec

Exec.DefaultUnloadProc: ExecProc;

DefaultUnloadProc is a default value for the unload procedure; it is specified at the time a
command is registered with the Executive (see AddCommand). It can be used in cases
when the subsystem registers only one command, itself, and no other cleanup is to be done
upon being unloaded.

Exec.EndOfCommandLine: PROCEDURE [h: Exec.Handle) RETURNS [BOOLEAN];

The EndOfCommandLine procedure indicates whether there are any more characters for
this subsystem on the command line.

Exec.EnumerateCommands: PROCEDURE [
userProc: PROCEDURE [
name: LONG STRING, proc, help, unload: Exec.ExecProc,
clientData: LONG POINTER]RETURNS [stop: BOOLEAN));

The EnumerateCommands procedure enumerates the commands currently registered
with the Executive. It calls the procedure userProc on the data for each command. name
belongs to the Executive and should not be deallocated by the client. If stop is TRUE, the
enumeration will halt.

Exec.FeedbackProc: PROCEDURE (h: Exec.Handle] RETURNS [proc: Format.StringProc];

FeedbackProc provides a way for clients to differentiate between feedback, which reports
the current status during processing; and output, which can be thought of as the results of
executing the command.

Exec.FreeTokenString: PROCEDURE [s: LONG STRING] RETURNS [NIL: LONG STRING];

The FreeTokenString procedure frees strings that were obtained via Exec.GetToken. It
returns NIL.

Exec.GetChar: GetCharProc;

The GetChar procedure returns the next character from the command line. Note that the
portion of the command line seen by a subsystem starts immediately after the name of the
command. When the command line is exhausted, GetChar will return Ascii.NUL. (See also
EndOfCommandline).

Exec.GetNameandPassword: PROCEDURE [
h: Handle name, password: LONG STRING, prompt: LONG STRING ~ NIL];

,

The GetNameandPassword procedure prompts you for a name and password. If the
prompt parameter is Nil, the name prompt is "User: ". If the prompt parameter is not NIL, it
will be used as the name prompt.

Exec.GetToken: PROCEDURE [h: Exec.Handle] RETURNS [token, switches: LONG STRING];

The GetToken procedure obtains the next token and its switches from the command line;
leading white space is skipped. A token is defined to be the contents of a quoted string
(e.g., "This is a token") or the smallest sequence of characters containing no white-space
characters (SP, TAB, or CR) and no slash character (f). If the character immediately

Mesa Programmer's Manual 5

following the token is a slash, all characters up to the next white-space character or slash
character are read as switches. ~ote that the token string or switches string may be NIL.
The strings returned from this procedure should be freed by the client using
FreeTokenString.

Exec.GetTIY: PROCEDURE [h: Exec.Handle] RETURNS [tty: TTY.Handle];

The functions provided by the Executive for interacting with the user (as opposed to
interacting with the command line) are quite limited (Confirm and
GetNameandPassword). Subsystems that require more extensive interaction with the
user can obtain a TTY.Handle from the Executive with GetTIY. The procedures in Pilot's
TTY interface can then be used with this Handle for interaction with the user. ReleaseTIY
is used to free the TTY.HandJe when the subsystem is finished with it. In general, a
subsystem interacting heavily with users should create its own tool window instead of
interacting in a TTY style.

Exec.Load: PROCEDURE [
write: Format.StringProc. name: LONG STRING. codeLinks: BOOLEAN +- FALSE.
RETURNS [handle: MLoader.Handle];

The Load procedure loads a program specified by name. write is used by the Load
procedure for all its output to the user. codeLinks indicates whether code links should be
used in loading. The handle returned by Load can be passed to the Start procedure to start
the program.

Exec.Login: PROCEDURE [h: Exec.Handle. name. password: LONG STRING];

The Login procedure is equivalent to calling. GetNameandPassword with a prompt of NIL.

Exec.LOokUpCommand: PROCEDURE [command: LONG STRING] RETURNS [
name: LONG STRING. proc. help. unload: Exec.ExecProc. didExpand: BOOLEAN].
clientData: LONG POINTER];

The LookUpCommand procedure permits a client to look up a specific command. The
didExpand result of LookupCommand indicates whether the command parameter was an
exact match of name or whether it was a unique prefix of name and had to be expanded to
match. name is owned by the Executive, and should neither be changed nor deallocated.

Exec.MatchPattern: PROCEDURE [string. pattern: LONG STRING]
RETURNS [matched: BOOLEAN]

The MatchPattern procedure is provided for clients that need to match names against
patterns containing * and #. * matches zero or more charact~rs and # matches exactly one
character.

Exec.OutputProc: PROCEDURE [h: Exec.Handle] RETURNS [proc: Format.StringProc]

The OutputProc procedure returns a Format.StringProc that can be used with the Format
interface for output. This procedure directs output to the Executive that called the
ExecProc.

5-5

5

5-6

Exec

Exec.PrependCommands: PROCEDURE [h: Exec.Handle, command: LONG STRING)

The PrependCommands procedure inserts the parameter command in the front of the
command line. [t will be executed as soon as the current command completes.

Exec.ProcessCommandLine: PROCEDURE [
cmd: LONG STRING, write: Format.StringProc,
checkAbort: Exec.CheckAbortProc] RETURNS[outcome: Outcome];

It is possible for a program to invoke the Executive facilities without having an
Exec.Handle; that is, without being in the process of executing an Exec.ExecProc. ([f it does
have an Exec.Handle, it can invoke the facilities via PrependCommands or
AppendCommands by calling ProcessCommandline.l The subsystem must not only
provide the command line to be executed but must also provide the output and checkAbort
procedures that would normally be supplied by an Executive window.

Exec.PutChar: PROCEDURE [h: Exec.Handle. c: CHARACTER]

The PutChar procedure outputs a single character to the Executive.

Exec.ReleaseTTY: PROCEDURE [tty: TTY.Handle]

The ReleaseTTY procedure is used to free the TTv.Handle obtained via GetTTY when the
subsystem is finished with it. If tty was not created by GetTTY, the procedure does
nothing.

Exec.RemoveCommand: PROCEDURE [h: Exec.Handle. name: LONG STRING] ;

The RemoveCommand procedure removes a command from the list of commands
registered with the Executive; it is used in conjunction with unloading a subsystem (see
UnloadCommand and AddCommand). To successfully unload a particular subsystem, all
commands registered by the module that implements the subsystem must be removed
using RemoveCommand.

Exec.RenameCommand: PROCEDURE [
old. new: LONG STRING] RETURNS[ok: BOOLEAN];

The RenameCommand provides a way for you to change the name of a command
registered with the Executive.

Exec.Run: PROCEDURE [
h: Token.Handle. write: Format.StringProc,
checkAbort: PROCEDURE RETURNs(abort: BOOLEAN1. codeLinks: BOOLEAN ~ FALSE];

The Run procedure reads a command line by asking the Token facility for the next line in
h. Run then runs the programs listed on the command line. write is the output procedure
to be used to report to the client. codeLinks indicates whether codeLinks should be used in
loading.

Exec.Start: PROCEDURE [handle: MLoader.Handle];

The Start procedure starts a program that has been loaded by Load.

Mesa Programmer's Manual 5

Exec.Unload: PROCEDURE [handle: MLoader.Handle];

The Unload procedure unloads a program that has been loaded by Load.

Exec.UnloadCommand: PROCEDURE [
h: Handle. name: LONG STRING] RETURNs[RemovedStatus);

UnloadCommand invokes the unload procedure associated name. If name has been
changed using RenameCommand or AliasCommand, UnloadCommand finds the correct
unload procedure, regardless of whether name represents the original command or an
aliasedlrenamed command. Because of the way the Executive is monitored, the client's
unload procedure may not contain calls to AddCommand, AliasCommand,
EnumerateCommands, LookupCommand, or Rena.!""eCommand. (See also
AddCommand.)

5.5 Examples

The following example registers the procedure Dolt under the command name
MyCommand. The procedure takes a sequence of tokens with switches from the command
line and processes them. It checks at regular intervals to see if you have aborted it. Write
is used within the procedure for output. Dolt is an entry procedure that protects any global
data it might use from being accessed by several concurrent calls on Dolt.

Dolt: ENTRY Exec.ExecProc =
BEGIN
name. switches: LONG STRING +- NIL;
Write: Format.StringProc = Exec.OutputProc[h];
outcome: Exec.Outcome +- normal;
00

ENABLE UNWind = > {
name +- Exec.FreeTokenString[name);
switches +- Exec.FreeTokenString[switches]};

IF Exec.CheckForAbort[h] THEN {outcome +- abort; EXIT};
[name. switches] +- Exec.GetToken[h];
IF name = NIL AND switches • NIL THEN EXIT;
--- perform function --
name +- Exec.FreeTokenString[name];
switches +- Exec.FreeTokenString[switches];
ENDLOOP;

RETURN[outcome);
END;

Exec.AddCommand[" MyCommand ilL. Dolt];

5-7

5

5-8

Kxec

The following is an example of how to define an unload procedure. The DefaultUnloadProc
is not sufficient in this case: first, there is global cleanup to perform; second, the program
registers more than one command with the Executive.

Test: PROGRAM =

BEGIN
message: LONG STRING;
Test1: Exec.ExecProc =

BEGIN

END;

Test2: Exec.ExecProc =
BEGIN

END;

Test: Exec.ExecProc =
BEGIN

END;

MyUnload: Exec.ExecProc ,.
BEGIN
Heap.systemZone.FREE(@message];
-- Order of command removal doesn't matter
Exec.RemoveCommand[h, "Test1 ilL];
Exec.RemoveCommand[h, "Test2"L);
Exec.RemoveCommand[h, "Test"L);
END;

message ~ String.CopyToNewString["Output message: "L, Heap.SystemZone];
Exec.AddCommand[name: "Test1"L. proc: Test1, unload: MyUnload];
Exec.AddCommand[name: "Test2"L, proc: Test2, unload: MyUnload];
Exec.AddCommand[name: "Test"L, proc: Test, unload: MyUnload);
END;

6.1 Types

6

Expand

The Expand interface provides facilities for the Executive-style expansion of lines
containing *, @, t or t. Expansion is done within a local directory, if one is specified;
otherwise, it is done within the current search path. The expansion characters to be used
are specified in a mask and have the following meanings:

star matches zero or more characters.

atSign the following token is a file name and should be replaced by the contents of
that file.

upArrow ignore the up arrow character and the one immediately following it.

quote do not treat the next character as an expansion character.

Expand.AbortProcType: TYPE = PROCEDURE RETURNS [BOOLEAN];

To permit a client to abort the expansion, a procedure of type AbortProcType must be
provided to the Expand package. It is called at intervals during an expansion.

Expand.ExpandQ: TYPE [1];

This is a private type, included for use by the Executive.

Expand.Mask: TYPE = RECORD (
star, atSign, quote: BOOLEAN,
upArrow: Expand.UpArrowAction),
localDirectory: LONG STRING);

If star, atSign, or quote az:.e TRUE, the procedures expand according to the description
above. If local Directory is specified, expansion is done only within that directory. If an
incomplete directory name is provided (that is, if localDirectory does not begin with' <), it
is assumed to be directly beneath the volume root directory.

6-1

6 Expand

Expand.UpArrowAction: TYPE = {skip, remove, none};

skip skips the up arrow and succeeding character but leaves them in the expanded
string.

remove

none

skips the up arrow and succeeding character and removes them from the
expanded string.

treats the up arrow as a regular character.

6.2 Constants and data objects

Expand.defaultMask: Expand.Mask .. (
star: TRUE, atSign: TRUE, quote: TRUE, upArrow: remove,
localDirectory: NIL];

6.3 Signals and errors

Expand.UnknownCommandFile: SIGNAL [name: LONG STRING) RETURNS [LONG STRING];

A call to Expand.ExpandString raises the signal UnknownCommandFile if an @ is
encountered and the corresponding command file cannot be found. name is the name of
the missing file; the client can catch this signal and resume with a string containing the
contents of the missing command file. See the example below.

6.4 Proced ures

6-2

Expand.ExpandQueues: PROCEDURE [toQ, fromQ: Expand.ExpandQ, all: BOOLEAN ~ FALSE,
isAborted: Expand.AbortProcType ~ NIL, mask: Expand.Mask ~ Expand.defaultMask];

The ExpandQueues procedure is a private procedure for use by the Executive.

Expand.ExpandString: PROCEDURE [cmdLine: LONG STRING,
isAborted: Expand.AbortProcType ~ NIL, mask: Mask ~ Expand.defaultMask] RETURNS
[LONG STRING];

The ExpandString procedure expands the command line according to its mask and return
the expanded line: The string it returns is allocated from the system heap; it is the client's
responsibility to free it. If -c:mdLine is NIL, then no actions are performed. If an unknown
command file is encountered, the signal UnknownCommandFile is raised.

Expand.ExpandToTokens: PROCEDURE [cmdLine: LONG STRING, proc: PROCEDURE [LONG STRING]
RETURNS (BOOLEAN],

isAborted: Expand.AbortProcType +- NIL, mask: Mask ~ Expand.defaultMask];

The ExpandToTokens proc~dure expands cmdLine according to its mask, parses it into
Token.Jtems, and calls the client's procedure proc once on each token until the command
line is exhausted or proc returns TRUE. The client need not be concerned with allocation
and de allocation of the Token.Jtems created by this procedure. If cmdLine is NIL, no actions
are performed.

Mesa Programmer's Manual 6

6.5 ~:xam pIe

The following is an example of a tool that runs in the Executive. It attempts to expand
commandLine; if it encounters an unknown file, you are prompted to type the contents of
the file. The contents of the file are then returned to the Expand package, which continues
processing commandLine.

DIRECTORY

Example: PROGRAM IMPORTS .. , =
BEGIN

MainBody: Exec.ExecProc = BEGIN

GetCommandFileFromUser: PROCEDURE [h: Exec.Handle. name: LONG STRING)
RETURNS [result: LONG STRING] ..
BEGIN
tty: TTY.Handle +- Exec.GetTIV [h);
result +- Storage.String[100];
TTY.PutCR[tty);
TTY.PutString[tty. "File name L];
TTY.PutString[tty. name];
TTY.PutString[

tty unknown. Type what it would contain. "L];
TTY.PutCR[tty];
TTY.GetLine[tty, result];
Exec.ReleaseTTV[tty];
END;

Expand.ExpandString[commandLine, abortProc. mask!
Expand.UnknownCommandFile .. >

REsuME[GetCommandFileFromUser[h. name]];

END;

.• mainline

Exec.AddCommand["Example.-". MainBody];

END.

6-3

6 Expand

6-4

7.1 Types

7

HeraldWindow

The HeraldWindow interface provides two functions to the client: feedback and hooting. It
also allows the client to access some of the global state maintained by the tool that
implements the HeraldWindow interface.

HeraldWindow.ConfirmProcType: TYPE = PROCEDURE [
post: Format.StringProc, cleanup: BOOLEAN +- TRUE] RETURNS [okay: BOOLEAN];

Feedback and confirmation of booting are provided through a Format.StringProc and
ConfirmProcType. If cleanup is TRUE, the Supervisor notifies subsystems of the event.

HeraldWindow.CursorState: TYPE = {invert, negative, positive};

HeraldWindow.Slot: TYPE = LONG POINTER TO HeraldWindow.SlotObject;

HeraldWindow.SlotObject: TYPE = ... ;

Multiple cursor-sized feedback regions are supported in the HeraldWindow.

7.2 Constants and data objects

HeraldWindow.displayedPages: READONL Y LONG CARDINAL;

While the Herald Window is not inactive, displayedPages contains the number of free
pages on the system volume.

HeraldWindow.switches: READONLY System.Switches;

switches contains the current booting switches, to be used as the default switches by
booting commands unless explicitly overwritten.

HeraldWindow.window: READONL Y Window.Handle;

window is the handle for the HeraldWindow's window.

7-1

7 HeraldWindow

7.3 Signals and errors

HeraldWindow.lnvalidSwitches: SIGNAL;

InvalidSwitches is raised by ScanSwitches if the \ character has been used with an invalid
following character. It can be resumed to ignore the illegal characters.

7.4 Procedures

7-2

HeraldWindow.AlwaysConfirm: HeraldWindow.ConfirmProcType;

The AlwaysConfirm procedure does not wait for confirmation but simply notifies
subsystems that booting is about to take place (the parameter cleanup is defaulted to
TRUE).

HeraldWindow.AppendBrokenMessage: PROCEDURE [
msg1. msg2. msg3: LONG STRING +- NIL, newline. clearOld: BOOLEAN +- TRUE];

The AppendBrokenMessage procedure provides a mechanism for client programs to
provide textual feedback in a standard location to the user. The HeraldWindow has room
for two lines of text; old messages are automatically erased after 30 seconds and new ones
are placed in a queue. If newline is TRUE, this message starts a new line on the display. If
clearOld is TRUE, all old messages are deleted. AppendBrokenMessage permits the display
of messages that are a combination of several strings. (See also AppendMessage.)

HeraldWindow.AppendLogicaIVolumeName: PROCEDURE [
s: LONG STRING. id: volume.lD +- volume.systemID];

The AppendLogicalVolumeName procedure appends the name of the logical volume id
onto the client-owned string s. Ifs is not large enough, String.StringBoundsFault is raised.

HeraldWindow.AppendMessage: PROCEDURE [
msg: LONG STRING +- NIL, newline. clearOld: BOOLEAN +- TRUE];

The AppendMessage procedure is just like AppendBrokenMessage except that it accepts
only a single string parameter.

HeraldWindow.AppendPhysicaIVolumeName: PROCEDURE [s: LONG STRING];

The AppendLogicalVolumeName procedure appends the name of the physical volume
onto the client-owned string s. Ifs is not large enough, String.StringBoundsFault is raised.

HeraldWindow.AppendSwitches: PROCEDURE [s: LONG STRING];

The AppendSwitches procedure appends the current booting switches to the client-owned
string s. If s is not large enough, String.StringBoundsFault is raised.

HeraldWindow. BootFrom Fi Ie: PROCEDURE [
name: LONG STRING. bootSwitches: System.Switches +- switches.

Mesa Pr'ogrammer's Manual 7

postProc: Format.StringProc ~ DefaultPost.
confirmProc: HeraldWindow.ConfirmProcType ~ HeraldWindow.DefaultConfirm];

The BootFromFile procedure boots a file in the local directory (appending the extension
". boot" if necessary). bootSwitches are the Pilot switches to be used when booting. The
procedure scans the string name for any switches. These optional switches appear after
the file name, separated from it by a slash (/). They obey escape procedures described in
the discussion of ScanSwitches and are used in preference to the bootSwitches parameter.
confirmProc is called to confirm that the boot should really be performed. This procedure
should always be called from within the Notifier process. The file will be locked for read
access if confirmProc returns FALSE.

HeraldWindow.BootFromVolumeID: PROCEDURE [
id: l/olume.lD. bootSwitches: System.Switches ~ switches,
postProc: Format.StringProc ~ HeraldWindow.DefaultPost.
confirmProc: HeraldWindow.ConfirmProcType ~ HeraldWindow.DefaultConfirm];

The BootFromVolumelD procedure boots the logical volume specified by id. bootSwitches
are the Pilot switches to be used when booting. confirmProc is called to confirm that the
boot should really be performed. This procedure should always be called from within the
~otifier process.

HeraldWindow.BootFromVolumeName: PROCEDURE [
name: LONG STRING, bootSwitches: System.Switches ~ switches,
postProc: Format.StringProc ~ HeraldWindow.DefaultPost.
confirmProc: HeraldWindow.ConfirmProcType ~ HeraldWindow.DefaultConfirm];

The BootFromVolumeName procedure boots the logical volume specified by name.
bootSwitches are the Pilot switches to be used when booting. The procedure scans the
string name for any switches. These optional switches appear after the file name,
separated from it by a slash (I). They obey escape procedures described in the discussion of
ScanSwitches and are used in preference to the bootSwitches parameter. confirmProc is
called to confirm that the boot should really be performed. This procedure should always
be called from within the N otifier process. If name does not match a logical volume name,
the system volume is booted with no switches.

HeraldWindow. DefaultConfirm: HeraldWindow .Confi rmProcType;

The DefaultConfirm procedure waits for you to confirm the boot by waiting for
confirmation with POINT or denial with EXTEND, while displaying a mouse Red cursor (see
the Cursor interface). If you confirm the boot, the Supervisor notifies subsystems of the
event (cleanup is TRUE).

HeraldWindow.DefaultPost: Format.StringProc;

The DefaultPost procedure sends output to whichever window is taking indirect type-out.
If there is no such window, the output is discarded.

HeraldWindow.FreeCursorSlot: PROCEDURE [
slot: HeraldWindow.Slot) RETURNS [nil: HeraldWindow.Slot)

The FreeCursorSlot procedure frees one of the cursor slots allocated by the HeraldWindow.

7-3

7

7-4

HeraldWindow

HeraldWindow.GetCursorSlot: PROCEDURE RETURNS [Slot: HeraldWindow.Slot]

The GetCursorSlot procedure allocates a cursor slot in the HeraldWindow. If it cannot find
a slot, NIL is returned.

HeraldWindow.ScanSwitches: PROCEDURE [s: LONG STRING. defaultSwitches: System.Switches +­
System.defaultSwitches) RETURNS [switches: System.Switches)

The ScanSwitches procedure returns the defaultSwitches, modified by the switches in the
strings. The scanner recognizes the following syntax: The characters - and - change the
sense of the following switch. Each character of the string is the character representation
of the switch. ScanSwitches supports a slightly expanded version of the Mesa compiler
escape convention, with \ as the escape character:

\n, \N, \r, \R
\t, \T
\b, \B
\f, \F
\1, \L
\ddd
\\
\'
\"
\­
\-

Interpretation

Ascii.CR
Ascii.TAB
Ascii.BS
Ascii.FF
Ascii.LF
dddC
\

-- note that\n is LF in C.
-- where d is an octal digit, ddd S 3778

-- not recognized by the Compiler
-- not recognized by the Compiler

Any other character following \ causes the signallnvalidSwitches to be raised. This signal
can be resumed to ignore the switch character.

HeraldWindow.SetCursor: PROCEDURE [slot: HeraldWindow.Slot, cursor: Cursor.Defined];

The SetCursor procedure displays a cursor at a previously acquired cursor slot. The cursor
is one of those that are predefined by the Cursor interface.

HeraldWindow.SetCursorState: PROCEDURE [
slot: HeraldWindow.Slot, state: HeraldWindow.CursorState];

The SetCursorState procedure modifies (e.g., inverts) the display state of the indicated
cursor.

HeraldWindow.SetSwitches: PROCEDURE [new: System.Switches];

The SetSwitches procedure changes the switches used during booting.

HeraldWindow.StoreCursor: PROCEDURE [
slot: HeraldWindow.Slot, cursor: LONG POINTER TO UserTerminaI.CUrsOrArray];

The StoreCursor'procedure displays a cursor at a previously acquired cursor slot.

8.1 Types

8

Profile

Profile provides an interface to a number of commonly accessed user and system data
items. All these items are read-only. Changes to the variables defined below are
monitored by the Pilot Supervisor notification facility. See Events and EventTypes for
more discussion of the Supervisor.

This interface supports non-product protocols for Pup-based file servers and Grapevine
registries. Support for these protocols will be removed in a future release. Clients are
encouraged to remove dependencies on these protocols.

Profile.BalanceBeamChoice: TYPE = {never. notForCharacter. always};

BalanceBeamChoice

never

notForCharacter

always

determines where the insertion point is placed when a selection
is made.

the insertion point is always at the end of the selection.

the insertion point is always at the end of a character selection
but uses a balance beam algorithm for word or line selections.

the balance beam algorithm is always used.

Profile.FileServerProtocol: TYPE = {PUP. ns};

Fi leServerProtocol

PUP

ns

determines the type of protocol used to communicate with file
servers. Support for the Pup file server protocol will be removed
in a future release.

communicates with Pup-based servers

communicates with the product-based Network Services.

8-1

8 Profile

Profile.Place: TYPE = MACHINE DEPENDENT {
unknown(o), tajo, copilot, last(LAsT(CARDINAL])};

Place distinguishes between Tajo, CoPilot, or some other boot file. Clients may depend on
particular facilities in Tajo or CoPilot.

Profile.Qualification: TYPE = {registry, clearinghouse, none};

Qualification is a parameter to Profile.Qualify. An unqualified token is qualified by
appending the qualifing name(s) to the token, separated by the necessary punctuation.
:'IIote: registry qualification appends a "." followed by the registry; e.g., Jones.PA. clearinghouse qualification
appends the domain and organization using ":" as the punctuation; e.g., Jones:OSBl: North:Xerox.

Profile.String: TYPE = LONG STRING;

String is the type of all string variables. It will be changed to LONG POINTER TO READONLY
StringBody when other definitions can be changed as well.

8.2 Constants and data objects

8-2

Profile.balanceBeamChoice: READONL Y BalanceBeamChoice;

balanceBeamChoice is the current setting of the balance beam algorithm. Changes to this
variable notify the subsystem Event.tajoOefaults and the event EventTypes.debugging.

Profile.debugg i ng: READONL Y BOOLEAN;

U sed internally by Tajo to decide whether to attempt error recovery or call the debugger. If
debugging is TRUE, the debugger will be called. IfTajo invokes the debugger, it may not be
possible to continue the session. Changes to this variable are monitored by subsystem
Event.tajoDefaults and the event EventTypes.debugging.

Profile.defa ultFi leServerProtocol: READONL Y Fi leServerProtocol;

defaultFileServerProtocol is the default file server protocol. Changes to this variable
notify the subsystem Event.tajoOefaults and the event EventTypes.FileServerProtocol.

Profile.initiaITooIStateDefault: READONLY TooIWindow.State;

This is the state in which a tool is created if it does not override the default provided in the
Tool.Create call.

Profile.noChange: LONG STRING. LOOPHOLE[LAST[LONG CARDINAL]];

This is the default string value used in Profile procedures to indicate that a string variable
should not be changed.

Profile. place: READONl Y Profile.Place;

This is the type of boot file running (e.g, Tajo or CoPilot).

Mesa Programmer's Manual 8

Profile.swapCtrfAndCommand: REAOONLY BOOLEAN;

swapCtrfAndCommand is TRUE if the mapping of the CONTROL key and COMMAND key should
be swapped.

8.3 Signals and errors

None.

8.4 Proced ures

Profile.GetDefaultDomain: PROCEDURE [PROCEDURE [String]];

The GetDefauftDomain procedure calls the procedure parameter with the default
Clearinghouse domain. The call is made from with the Profile machinery's monitor lock.

Profile.GetDefauftOrganization: PROCEDURE [PROCEDURE [String]];

The GetDefaultOrganization procedure calls the procedure parameter with the default
Clearinghouse organization. The call is made from within the Profile machinery's monitor
lock.

Profile.GetDefauItRegistry: PROCEDURE [PROCEDURE [String]];

The GetDefaultRegistry procedure calls the procedure parameter with the default Grapevine
registry. The call is made from within the Profile machinery's monitor lock. Support for Grapevine will be
removed in a future release.

Profile.GetID: PROCEDURE [
flavor, Auth.Flavor Eo- simple, proc: PROCEDURE rid: Auth.ldentityHandle));

The GetlD procedure calls the procedure parameter with the user identity corresponding
to the current user name and password and having the specified authentication flavor. id
is not authenticated. The call is made from within the Profile machinery's monitor lock.

Profile.GetLibrarian: PROCEDURE [PROCEDURE [String]];

The GetLibrarian procedure calls the procedure parameter with the name of the default
librarian server used in librarian transactions. The call is made from within the Profile
machinery's monitor lock.

Profile.GetLibrarianNames: PROCEDURE [PROCEDURE [prefix, suffix: String]];

The GetLibrarianNames procedure calls the procedure parameter with the default name
prefix and suffix to be used when nameing libjects. The call is made from within the
Profile machinery's monitor lock.

Profile.GetUser: PROCEDURE [
proc: PROCEDURE [name, password: String], qualification: Qualification Eo- none];

The GetUser procedure calls the procedure parameter with the user name and password.
The call is made from within the Profile machinery's monitor lock. If the current user

8-3

8

8-4

Profile

name is already qualified with an appropriate qualification, it is not changed. Otherwise,
any qualification is stripped from the token. Note: If qualification is registry, the Grapevine registry

is used to qualify the name. If qualification is clearinghouse, the Clearinghouse domain and
organization are used to qualify the name.

Profile.Qualify: PROCEDURE [
token, newToken: LONG STRING, qualification: Profile.Qualification];

The Qualify procedure produces the requested qualification for a token. If the token is
already qualified with an appropriate qualification, it is not changed. Otherwise, any
qualification is stripped from the token. Note: If qualification is registry, the Grapevine registry is

used to qualify the token. If qualification is clearinghouse, the Clearinghouse domain and
organization are used to qualify the token. _newToken contains the ·qualified token. This
procedure may raise String.StringBoundsFault if newToken is not long enough.

Profile.SetBalanceBeamChoice: PROCEDURE [BalanceBeamChoice];

The SetBalanceBeamChoice procedure changes the variable Profile.balanceBeamChoice.

Profile.SetDebugging: PROCEDURE [BOOLEAN];

The SetDebugging procedure changes the variable Profile.debugging. This procedure
notifies the subsystem Event.tajoDefaults with the event EventTypes.debugging.

Profile.SetDefaultDomain: PROCEDURE [domain: String];

The SetDefaultDomain procedure changes the default Clearinghouse domain. The
parameter string is copied. This procedure notifies the subsystem Event.tajoDefal.!lts with
the event EventTypes.domain.

Profile.SetDefaultOrganization: PROCEDURE [organization: String];

The SetDefaultOrganization procedure changes the default Clearinghouse organizataion.
The parameter string is copied. This procedure notifies the subsystem Event.tajoDefaults
with the event EventTypes.organization.

Profile.SetDefaultRegistry: PROCEDURE [registry: LONG STRING];

The SetDefaultRegistry procedure changes the default Grapevine registry. The parameter string is copied.

This procedure notifies the subsystem Event.tajoDefaults with the event EventTypes.registry.

Profile.SetFileServerProtocol: PROCEDURE [FileServerProtocol];

The SetFileServerProtocol procedure changes the variable
Profile.defaultFileServerProtocol. This procedure notifies the subsystem Event.tajoDefaults
with the event EventTypes.fileServerProtocol.

Mesa Programmer"s Manual 8

Profile.SetLibrarian: PROCEDURE [
name, prefix, suffix: LONG STRING +- Profile.noChange];

The SetLibrarian procedure changes the default librarian name prefix, the default
librarian name suffix and the default librarian server name. Parameters that are
defaulted are not changed. The parameter strings are copied. This procedure notifies the
subsystem Event.tajoOefaults with the event EventTypes.librarian.

Profile.SetSwapCtrIAndCommand: PROCEDURE [BOOLEAN];

The SetSwapCtrlAndCommand procedure sets the variable Profile.swapCtrIAndCommand.

Profile.SetUser: PROCEDURE [name, password: String-+- Profile.noChange];

The SetUser procedure changes the user name and password. Parameters that are
defaulted are not changed. The parameter strings are copied. This procedure notifies the
subsystem Event.primaryCredentials with the event EventTypes.primaryCredentials.

8-5

8 Profile

8-6

9.1 Types

9

Token

The Token interface provides general scanning and simple parsing facilities for any source
of characters. The interface supports client-defined filters; some standard token filters are
also provided.

Token.FilterProcType: TYPE = PROCEDURE [
c: CHARACTER, data: Token.FilterState] RETURNS [inClass: BOOLEAN];

A FilterProcType is the mechanism by which a client defines a class of tokens. Procedures
that use filters call them once for each candidate character. Instance data permits the
client to maintain the state of the parse. If a client tries to access instance data but none
was passed in, the signal Nil Data should be raised. The FilterProcType returns a boolean
indicating whether the character is part of the token.

Token.FilterState: TYPE = LONG POINTER TO StandardFilterState;

A FilterState is a LONG POINTER to client instance data that is passed to a client's
FilterProcType procedure. A client may LOOPHOLE the FilterState to a more convenient type.
The system-provided filters that require a non-NIL FilterState (such as Delimited) use the
first two words of data.

Token.GetCharProcType: TYPE = PROCEDURE [
h: TOken.Handle] RETURNS [c: CHARACTER];

A GetCharP,rocType provides a stream of characters to be parsed. When a
GetCharProcType procedure returns Ascii.NUL, the Token package assumes that the source
has been exhausted. The Handle is passed into the GetCharProcType so that a client can
hide instance data in its object. Although there is not an instance data field in Object, the
client could LOOPHOLE a pointer to a larger record that contained its data.

Token.Handle: TYPE = LONG POINTER TO Token.Object;

Token.NetFormat: TYPE = Format.NetFormat;

9-1

9 Token

Token.Object: TYPE = MACHINE DEPENDENT RECORD [
getChar(O): Token.GetCharProcType, break(1): CHARACTER +- Ascii.NUL];

The Object encapsulates the source of characters to be parsed. The Token package uses the
getChar field of the Handle to obtain the stream of characters. It assumes that the source
has been exhausted when getChar returns Ascii.NUL. Token uses the break field to record
the final character that it reads. It records the final character because there is no way to
put back a character into the character source. It must read one character beyond the
token it is parsing to ensure that it has reached the end. If it simply returned the token,
this character would be lost. Since the Token package stores the last character in the
Object, that character is available to the client. The client can ignore it, inspect it to
decide what to parse next, or put it back into the character source. ::'{ote that when a client
attempts to parse past the end of the input, the break character contains Ascii.NUL.

Token.QuoteProcType: TYPE = PROCEDURE [
c: CHARACTER] RETURNS [closing: CHARACTER];

The QuoteProcType is used to recognize quoted tokens. If c is a quote character recognized
by the QuoteProcType, closing is the matching character that closes the quotation. If
closing is Token.nonQuote, c was not a quote ·character.

Token.SkipMOde: TYPE = {none. whiteSpace. nonToken};

The SkipMode controls what characters a procedure will skip before collecting a token.

none no characters should be skipped and the token should start with the
next character.

whiteSpace

nonToken

white-space characters (space, carriage return, and tab) should be
skipped before collecting the token.

any characters that are not legal token characters should be skipped
before collecting the token.

Token.StandardFilterState: TYPE = ARRAY [0 .. 2) OF UNSPECIFIED;

The StandardFilterState is client data that is passed to a client's FilterProcType procedure.
A client that uses instance data can use a StandardFilterState for storing two words of
state data.

9.2 Constants and data objects

9-2

Token.nonQuote: CHARACTER = ... ;
The nonQuote character is returned from a QuoteProcType to indicate that the character
passed to it is not a quote character.

Mesa Programmer's Manual 9

9.3 Signals and errors

Token.NilData: SIGNAL;

Procedures that take a FilterProcType argument also take an argument that is a pointer
to client instance data. If the client has no need for instance data, it can pass a NIL as the
instance data pointer. If a FilterProcType attempts to access the client instance data, but
the client passed in NIL instead of a pointer to instance data, the signal NilData should be
raised. Implementors of FilterProcTypes are strongly encouraged to check for NIL and raise
this condition if they use client instance data.

Token.SyntaxError: SIGNAL [s: LONG STRING];

The resumable SIGNAL SyntaxError can be raised if incorrect syntax is encountered by
Boolean, Decimal, HostNumber, LongNumber, LongDecimal, NetworkAddress,
NetworkNumber, Octal, or SocketNumber. In each case, resuming the signal causes the
procedure to return a default value (described in the discussion of the various procedures).

Token.U ntermi natedQuote: SIGNAL

The resumeable SIGNAL UnterminatedQuote is raised from MaybeQuoted if the getChar
procedure of the Handle returns Ascii.NUL before the terminating quote character has been
read. If the signal is resumed, MaybeQuoted will return as if it had read a closing-quote
character.

9.4 Procedures

Token.AI phabetic: Token.Fi IterProcType;

Alphabetic can be used to collect tokens composed of alphabetic characters; that is, the
characters 'a through 'z and 'A through 'z. This procedure requires no client data (data
maybe NIL).

Token.AlphaNumeric: Token.FilterProcType;

AlphaNumeric can be used to collect tokens composed of alphanumeric characters; that is,
the characters 'a through 'z, 'A through 'z, and '0 through '9. This procedure requires no
client data (data may be NIL).

Token.Boolean: PROCEDURE [
h: Token.Handle. signalOnError: BOOLEAN ~TRUE] RETURNS [true: BOOLEAN];

The Boolean procedure parses the next characters of the source as a boolean constant.
Valid Boolean values are "TRUE" or "FALSE," but unlike the Mesa language, case does
not matter ("true" and "false" are also acceptable). In case of a syntax error, the signal
SyntaxError is optionally raised. If signalOnError is FALSE, or SyntaxError is resumed, then
FALSE is returned for a syntax error. This procedure skips leading white space.

9-3

9

9-4

Token

Token.Brackets: Token.QuoteProcType;

Brackets recognizes the following sets of matching open/close-quote pairs: (), [], { }, and <
>.

Token.Decimal: PROCEDURE [
h: Token.Handle, signalOnError: BOOLEAN Eo-TRUE) RETURNS [i: INTEGER];

The Decimal procedure parses the next characters of the source as a decimal constant.
Decimals have the format as specified in the Mesa Language Manual. In case of a syntax
error, the signal SyntaxError is optionally raised. If signalOnError is FALSE or SyntaxError
is resumed, then zero is returned for a syntax error. This procedure skips leading white
space.

Token.Delimited: Token.FilterProcType;

When Delimited is passed to a procedure such as Filtered, the value of skip passed along
with it must be nonToken. It skips leading white space, then defines the first character of
the token to be both the opening-quote character and the closing-quote character,
returning all characters occurring between the first and second appearance of that
character. As an example, Delimited would return the token "XXX" from either of the
following input strings:" YXXXY"and "/XXXi". Delimited requires a non-NIL data.

Token.FileName: Token.FilterProcType;

The FileName FilterProcType can be used to collect tokens composed of file name
characters; that is, '[, fJ, '<, '>, '*, '!, ';, '#, '-, '., '$, '+, or AlphaNumeric characters. ~ote
that the filter does not guarantee that the token forms a valid file name, only that the
token contains only these characters. This procedure requires no client data (data may be
NIL).

Token.Filtered: PROCEDURE [
h: Token.Handle, data: Token.FilterState, filter: Token.FilterProcType, skip:
Token.SkipMode Eo- whiteSpace, temporary: BOOLEAN Eo- TRUE]
RETURNS [value: LONG STRING];

The Filtered procedure collects the token string defined by the client's filter. If the client­
instance data parameter data is not NIL, the first two words of data are set to zero before
any calls are made to filter. filter is called with data once on each character until it returns
FALSE. The string returned, which may be NIL, must be freed by calling FreeTokenString.
Leading characters are skipped according to the value of skip. If temporary is TRUE, it is
8;ssumed that the string will be freed shortly and no effort is made to use the minimum
storage for it. If temporary is FALSE, the minimum amount of storage is used. filter may
raise NilData.

Token.FreeStringHandle: PROCEDURE [h: Token.Handle] RETURNS [nil: Token.Handle);

The FreeStringHandle procedure destroys a Token.Handle created by StringToHandle. It
does not destroy the underlying string. It returns NIL.

Token.FreeTokenString: PROCEDURE [s: LONG STRING] RETURNS [nil: LONG STRING Eo- NIL];

Mesa Programmer's Manual 9

The FreeTokenString procedure frees a string allocated by Token. It returns NIL. All such
strings are allocated from the system heap.

Token.HostNumber: PROCEDURE [
h: Token.Handle. format: NetFormat +- octal, signalOnError: BOOLEAN +- TRUE]
RETURNS [host: 5ystem.HostNumber];

The HostNumber procedure pan,es the next characters of the source as a host number in
format format. See the Format interface for a description of host numbers. In case of a
syntax error, the signal SyntaxError is optionally raised. If signalOnError is FALSE, or
SyntaxError is resumed, then System.nullHostNumber is returned for a syntax error. This
procedure skips leading white space.

Token.ltem: PROCEDURE [
h: Token.Handle. temporary: BOOLEAN +-TRUE] RETURNS [value: LONG STRING];

The Item procedure returns the next token delimited by white space. Leading white space
is skipped and the characters are collected until another white-space character is
encountered. The string returned must be freed by calling FreeTokenString. If temporary
is TRUE, it is assumed that the string will be freed shortly and no effort is made to use the
minimum storage for it. If temporary is FALSE, only as much storage is used for the string
as needed.

Token.Line: Token.FilterProcType;

The Line FilterProcType can be used to collect a line. It collects characters until it
encounters a carriage return. This procedure requires no client data (data may be NIL).

Token.LongNumber: PROCEDURE [
h: Token.Handle, radix: CARDINAL, signalOnError: BOOLEAN +- TRUE]
RETURNS [u: LONG UNSPECIFIED);

The LongNumber procedure parses the next characters of the source as a long number in
radix radix. Numbers have the format specified in the Mesa Language Manual. In case of
a syntax error, the signal SyntaxError is optionally raised. If signalOnError is FALSE or
SyntaxError is resumed, then zero is returned for a syntax error. This procedure skips
leading white space.

Token.LongDecimal: PROCEDURE [

h: Token.Handle, signalOnError: BOOLEAN +- TRUE] RETURNS Ii: LONG INTEGER];

LongDecimal is just like LongNumber, but with a radix of 10.

Token.LongOctal: PROCEDURE [

h: Token.Handle, signalOnError: BOOLEAN +- TRUE] RETURNS [c: LONG CARDINAL];

LongOctal isjust like LongNumber, but with a radix of8.

Token.MaybeQuoted: PROCEDURE [

h: Token.Handle, data: Token.FilterState, filter: Token.FilterProcType +­
Token.NOnWhiteSpace, isQuote: Token.QuoteprocType +- Token.Quote, skip:
Token.SkipMode +- whiteSpace, temporary: BOOLEAN +- TRUE];

9-5

9

9-6

Token

The MaybeQuoted procedure permits the client to scan for one of two kinds of token. The
first candidate character is passed to isQuote, which either returns Token.nonQuote or the
closing-quote character. If a closing-quote character other than Token.nonQuote is
returned, characters are collected in the token until the closing quote is encountered. If
the input is exhausted before the closing quote is encountered, the signal
UnterminatedQuote is raised. If it is resumed, MayBeQuoted returns the token collected
up to that point. The closing-quote character may be included in the token by including
two instances of the character in the input; that is, if MaybeQuoted encounters two
closing-quote characters in a row, it will insert one closing-quote character in the token
rather than terminating the token on the first closing quote. The outer quote characters
are not part of the token and are discarded. If Token.nOnQuote is returned from the
isQuote procedure, the filter is used to collect characters the same way as in Filtered: filter
is called with the client-instance data parameter data once on each character until it
returns FALSE. [n either case (quoted or filtered), the break character returned in the
Handle will be the character following the token.

Leading characters are skipped according to the value of skip.

If temporary is TRUE, it is assumed that the string will be freed shortly and no effort is
made to use the minimum storage for it. If temporary is FALSE, only as much storage is used
for the string as is needed. The string returned must be freed by calling FreeTokenString.

Token.NetworkAddress: PROCEDURE [
h: Token.Handle, format: NetFormat ~ octal, signalOnError: BOOLEAN ~ TRUE]
RETURNS [address: System.NetworkAddress);

The NetworkAddress procedure parses the next characters of the source as a network
address in format format. (See the Format interface for a description of network
addresses.) In case of a syntax error, the signal SyntaxError is optionally raised. If
signal On Error is FALSE or SyntaxError is resumed, then System.nullNetworkAddress is
returned for a syntax error. This procedure skips leading white space.

Token.NetworkNumber: PROCEDURE [
h: Token.Handle. format: NetFormat ~ octal, signal On Error: BOOLEAN Eo- TRUE}
RETURNS [networkNumber: System.NetworkNumber);

The NetworkNumber procedure parses the next characters of the source as a network
number in format format. (See the format interface for a description of network numbers.)
In case of a syntax error, the signal SyntaxError is optionally raised. If signalOnError is
FALSE or SyntaxError is resumed, then System.nuliNetworkNumber is returned for a syntax
error. This procedure skips leading white space.

Token.NonWhiteSpace: Fi IterProcType;

The NonWhiteSpace FilterProc defines all characters that are not white space; that is,
WhiteSpace(char) = -NonWhiteSpace(char]. This procedure requires no client data (data
maybe NIL).

Token.Number: PROCEDURE [
h: Token.Handle, radix: CARDINAL, signalOnError: BOOLEAN Eo- TRUE]
RETURNS [u: UNSPECIFIED];

Mesa Programmer's Manual 9

The Number procedure parses the next characters of the source as a number in radix
radix. Numbers have the format specified in the Mesa Language Manual. In case of a
syntax error, the signal SyntaxError is optionally raised. If signalOnError is FALSE or
SyntaxError is resumed, then zero is returned for a syntax error. This procedure skips
leading white space.

Token.Numeric: Token.FilterProcType;

The Numeric FilterProcType can be used to collect a composed of digits; that is, the
characters '0 through '9. This procedure requires no client data (data may be NIL).

Token.Octal: PROCEDURE [
h: Token.Handle, signalOnError: BOOLEAN +- TRUE] RETURNS [c: CARDINAL];

Octal isjust like Number, but with radix = 8.

Token.QuOte: Token.QuOteProcType;

The Quote QuoteProcType recognizes the single quote and double quote as quotation
characters and looks for another instance of the open-quote character to close the
quotation.

Token.Skip: PROCEDURE [
h: Token.Handle, data: Token.FilterState, filter: Token.FilterProcType,
skiplnClass: BOOLEAN +- TRUE];

The Skip procedure is used to skip over characters. A filter is provided to define the class of
characters, and the boolean skiplnClass indicates whether the characters to be skipped are
those accepted or rejected by the filter. If the client-instance data parameter data is not
NIL, the first two words of data are set to zero before any calls are made to filter. If data is
NIL and filter references data, the signal NilData should be raised.

Token.SocketNumber: PROCEDURE [
h: Token.Handle, format: NetFormat +- octal, signalOnError: BOOLEAN +- TRUE]
RETURNS [socketNumber: System.SocketNumber);

The SocketNumber procedure parses the next characters of the source as a socket number
in format format. (See the Format interface for a description of socket numbers.) In case of
a syntax error, the signal SyntaxError is optionally raised. If signalOnError is FALSE, or
SyntaxError is resumed, then System.nuliSocketNumber is returned for a syntax error. This
procedure skips leading white space.

Token.StringToHandle: PROCEDURE [s: LONG STRING. offset: CARDINAL +- 0)
RETURNS [h: Token.Handle];

The StringToHandle procedure creates a Token.Handle whose source is a string. offset is
the index into the string that marks the beginning of the characters to be parsed. The
string is not copied, so clients are responsible for synchronizing access to the string with
the Token package.

Token.Switches: Token.FilterProcType;

9-7

9 Token

The Switches FilterProcType can be used to collect switch characters. It accepts the
characters '-, '-, and AlphaNumeric characters. This procedure requires no client data
(data may be NIL).

Token.WhiteSpace: Token.FilterProcType;

The WhiteSpace FilterProcType defines the white-space characters. This filter is used by
Token for skipping white space. This procedure requires no client data (data may be NIL).

Token.WindowBox: PROCEDURE [h: Token.Handle] RETURNS [Window.Box];

The WindowBox procedure parses the next data in the Handle as a window box and
returns the corresponding Window.Box. The syntax of the entry for a window boxes is as
follows:

WindowBox: [x: number, 'I: number, w: number, h: numberl

White space is ignored and the keywords x, y ,wand h may appear in any order or case. It is
not necessary to have all four values present. Ifa value is to be omitted, its keyword must
also be omitted. The result is initialized to Window.NuIiBox, so omitted values remain
unchanged from this initialization. The values for the numbers refer to absolute screen
coordinates and should obey the syntax for Token.Decimal. If an invalid Token.Handle is
supplied, the results are undefined.

9.5 Discussion and examples

9-8

An example of the Token interface in parsing User. em entries can be found at the end of
the CmFile chapter.

The following example demonstrates how the Token interface could be used to parse
command line input into "tokens," optionally followed by switches. In this context, tokens
and switches are defined to be any sequence of non-white-space characters not including
the slash character (I).

GetToken: PROCEDURE [h: Exec.Handle] RETURNS [token. switches: LONG STRING] ==

BEGIN
get: PROCEDURE [Token. Handle] RETURNS [c: CHARACTER] == {

RETURN[Exec.GetChar[h]]};
getToken: Token.Object ~ [getChar: get. break: Ascii.NUL];

tokenFilter: Token.FilterProcType == {

RETURN[SELECT TRUE FROM
Token.WhiteSpace[c, datal. c == Ascii.NUL == > FALSE.
c == " == > FALSE,
ENDCASE == > TRUE]};

token ~ Token.Filtered[@getToken, NIL, tokenFilter];
switches ~ IF getToken.break == "THEN

Token.Filtered[@getToken. NIL. tokenFilter]
ELSE NIL;
END;

Mesa Programmer's Manual 9

We can extend this example so that the token is defined to be either a sequence of non­
white-space characters or i.l sequence of characters (possibly containing white-space
characters) between double quotes.

GetToken: PROCEDURE [h: Exec.Handle1 RETURNS [token, switches: LONG STRING1 =
BEGIN
get: PROCEDURE [Token. Handle) RETURNS [c: CHARACTER) = {

RETURN[Exec.GetChar[h)]};
getToken: Token.Object +- [getChar: get, break: Ascii.NUL);
isQuote: Token.QuoteProcType =0 {

RETURN[IF c = '" THEN C ELSE Token.nonQuote]};
tokenFilter: Token.FilterProcType +- {

RETURN[SELECT TRUE FROM
Token.WhiteSpace[c, data], c = Ascii.NUL = > FALSE,
c = 'f = > FALSE,
ENDCASE = > TRUE]};

token +-Token.MaybeQuoted(@getToken, NIL, tokenFilter, isQuote];
switches +-IF getToken.break =0 "THEN

Token.Filtered[@getToken, NIL, tokenFilter]
ELSE NIL;
END;

9-9

9 Token

9-10

10.1 Types

10

ToolDriver

The ToolOriver interface allows a tool to inform the ToolOriver package of its existence
and of the existence of its subwindows. The ToolOriver package can thus use the tool's
functions on behalf of a user communicating with the package via a script file. Every tool
that provides some generally useful function should use the ToolOriver facilities.
Although the ToolDriver is an add-on package (not built into the regular Tajo) , the
interface routines are available in Tajo even without the ToolDriver so that the tool being
STARTed need not concern itself with unbound procedures.· For details on running the
ToolOriver itself, see the XDE User's Guide.

Too/Driver.Address: TYPE = RECORD [name: LONG STRING. sw: Window.Handle];

Address is an element of the array passed to NoteSWs to describe the relationship between
a subwindow of a tool and its name.

Too/Driver.AddressOescriptDr: TYPE =
LONG DESCRIPTOR FOR ARRA Y OF ToolDriver .Address;

AddressOescriptor is the array passed to NoteSWs describing the subwindows of a tool.

TOoIDriver.FindOataProcType: TYPE = PROCEDURE [
toollO: Too/Driver.TooIIO] RETURNS [LONG POINTER];

The FindOataProcType procedure is obsolete.

Too/Driver.NoteDataProcType: TYPE = PROCEDURE [
toollO: Too/Driver.TooIIO, data: LONG POINTER);

The NoteOataProcType procedure is obsolete.

Too/Driver.NoteSWsProcType: TYPE = PROCEDURE [
tool: LONG STRING, subwindows: Too/Driver.AddressDescriptor];

NoteSWsProcType is the type of the NoteSWs procedure.

10-1

10 ToolOriver

TooIDriver.RemoveOataProcType: TYPE = PROCEDURE [tooIlO: TooIDriver.TooIID);

The RemoveDataProcType type is obsolete.

TooIDriver.RemoveSWsProcType: TYPE = PROCEDURE [tool: LONG STRING];

RemoveSWsProcType is the type of the RemoveSWs procedure.

TooIDriver.TooIID: TYPE = CARDINAL [0 .. 1024);

TooliO is private and should not be used.

10.2 Constants and data objects

None.

10.3 Signals and errors

None.

10.4 Procedures

10-2

ToolDriver .Fi ndData: ToolDriver .Fi ndOataProcType;

The FindData procedure is obsolete and not implemented.

ToolDriver .NoteOata: ToolDriver .NoteOataProcType;

The NoteOata procedure is obsolete and not implemented.

ToolDriver .NoteSWs: ToolDriver .NoteSWsProcType;

The NoteSWs procedure is used by a tool to announce its existence. tool is whatever name
the tool wishes to go by for purposes of the ToolDriver. It need not be the same as the name
displayed in the herald of the tool's window; in general, it will be different because the
ToolDriver restricts the tool to contain only alphanumerics. subwindows is a list of
subwindows that the tool wishes to make available to the ToolDriver. The name for each
of these must also contain only alphanumerics. Tools that register with the ToolOriver
interface should have unique names in each of the menus used by the tool so as not to be
ambiguous to the ToolOriver package.

ToolDriver .RemoveData: ToolDriver .RemoveDataProcType;

The RemoveData procedure is obsolete and not implemented.

ToolDriver .RemoveSWs: ToolDriver .RemoveSWsProcType;

The RemoveSWs procedure should be called when a tool goes inactive, unless it is
prepared to be called by the ToolDriver while inactive.

Mesa Programmer's Manual

ToolDriver. SetDataProcs: PROCEDURE [
fi ndData: ToolDriver .FindDataProcType, noteData: TooIDriver.NoteDataProcType,
removeData: ToolDriver. RemoveDataProcType);

The SetDataProcs procedure is obsolete and not implemented.

TooIDriver.SetSWsProcs: PROCEDURE [
noteSWsProc: ToolDriver. NoteSWsProcType.
removeSWsProc: ToolDriver. RemoveSWsProcType);

The SetSWsProcs procedure is obsolete and not implemented.

10.5 Example

10

The following example registers a tool and its subwindows when the subwindows are
created, which happens whenever a tool becomes active.

MakeSWs: Tool.MakeSWsProc =
BEGIN

addresses: ARRAV [0 .. 3) OF TooIDriver.Address;

msgSW +- Tool.MakeMsgSW[...);
formSW +- Tool.MakeFormSW[...);
fileSW +- Tool.MakeFileSW[...);

address +- [
[name: "MsgSW"L, sw: msgSW);
[name: "FormSW"L, sw: formSW);
[name: "FlleSW"L, sw: fileSW]];

TooIDriver.NoteSWs[tool: "Samp/e"L. subwindows: DESCRIPTOR[addresses]];
END;

10-3

10 ToolDriver

10-4

II

Tool building

These interfaces support most tool builders, who need only prepackaged parts. The
subwindow types given here can easily be combined into tools. The Example Tool,
discussed in Appendix A, shows how to put these pieces together and how to use them with
other interfaces such as file management interfaces (see the File Management section).

If you require significantly more or different functionality for a new tool, use the
interfaces described in the next major section of this document (Window and Subwindow
Building). It is not recommended, however, that you use the lower-level interfaces unless
you have tool-building experience. Those interfaces require much greater attention to
detail to apply them properly, especially when integrating them into the system.

ILl Interface abstracts

FileSW provides the definitions and procedures for creating text sub windows whose
backing storage is a disk file, plus procedures that are specific to file subwindows.

FormSW implements a form subwindow, which is a. mechanism for invoking commands
and specifying command parameters. This type of subwindow is standard for invoking
tools.

MsgSW implements message subwindows, which provide a simple way of posting
messages to the user.

ScratchSW creates a subwindow backed by a scratch source; that is, by a piece of virtual
memory.

StringSW provides the definitions and procedures for creating and manipulating text
sub windows whose backing store is a LONG STRING.

TextSW defines extensive facilities for viewing text independent ofits source.

TTYSW implements a TTY subwindow, which emulates a teletype.

Put provides procedures for converting data types to formatted text and outputting that
text to windows.

II-I

II

II-2

Tool Building

Tool provides facilities for building an interactive tool. It is designed to make the writing
of tools with a standard user interface as easy as possible, by allowing the client to avoid
many ofTajo's low-level facilities at the cost of some loss in flexibility.

ToolWindow provides facilities for constructing subwindows in a tool window. Many
standard subwindow types are provided by the development environment; normally only
clients that wish to make complex tools need this interface.

11.1 Types

11

FileSW

The FileSW interface provides the definitions and procedures for creating text subwindows
whose backing storage is a disk file. It also provides procedures that are specific to file­
type subwindows. All non-file subwindow-specific manipulations are contained in the
interface TextSW.

FileSW.Access: TYPE = TextSource.Access;

Filesw.EnumerateProcType: TYPE = PROCEDURE[
sw: Window. Handle, name: LONG STRING, access: FileSw.Access]
RETURNS [done: BOOLEAN];

FileSW.Options: TYPE = Textsw.Options;

11.2 Constants and data objects

Filesw.defaultOptions: FileSW.Options = [
access: read, menu: TRUE, split: TRUE, wrap: TRUE, scrollbar: TRUE,
flushTop: FALSE, flushBottom: FALSE];

11.3 Signals and errors

FileSW.Error: SIGNAL [code: Filesw.ErrorCode];

FileSw.ErrorCode: TYPE = {
notAFileSW, isAFileSW, notEditable. isEditable, accessDenied, other};

'11.4 Procedures

FileSW.Create: PROCEDURE [
sw: Window.Handle, name: LONG STRING,
options: FileSW.Options Eo- Filesw.defaultOptions,

11-1

11

11-2

FileSW

s: Stream.Handle Eo- NIL, position: TextSource.Position Eo- 0,
allowTypeln: BOOLEAN +- TRUE, resetLengthOnNewSession: BOOLEAN +- FALSE];

The Create procedure creates a disk source and then creates a text subwindow using that
disk source. The name Create is something of a misnomer, since the subwindow must
already have been created by a call on ToolWindow.Create or TooIWindow.CreateSubwindow;
the call on Create is actually a differentiation process. If s is NIL, a stream is automatically
opened on the file name. If s is not NIL, name must be the name of the file to which s is
attached. Note that if s is not NIL, the file subwindow owns the stream and will destroy it
when the window is Destroyed. The text is positioned so that the character specified by
position is displayed on the first line of sw. If options.access is read and the file can't be
found, TextSource.Error[fileNameError] is raised. The parameter allowTypeln controls
whether the window permits user type-in. The parameter resetLengthOnNewSession,
which controls whether the file length is reset to zero on a new session, is probably of
interest only to the implementation of CoPilot or tools that run in CoPilot. Subwindows
created by FileSw.Create should always be destroyed by FileSw.Destroy, not by
TextSW . Destroy .

Filesw.Destroy: PROCEOURE [sw: Window.Handle);

The Destroy procedure destroys a file subwindow created by FileSW.Create and deletes the
stream backing the window.

Filesw.Enumerate: PROCEDURE [proc: Filesw.EnumerateProcType);

The Enumerate procedure enumerates all the current file subwindows, including file
sub windows that are not in the window tree and file subwindows that are part of inactive
tools.

FileSW.GetFile: PROCEDURE [
sw: Window.Handle] RETURNS [name: LONG STRING. s: Stream.Handle];

The GetFile procedure returns the file name and stream that are currently attached to a
file subwindow. The string returned by GetFile is owned by Tajo and must not be freed by
the client.

FileSW.lsEditable: PROCEDURE [sw: Window.Handle] RETURNS [yes: BOOLEAN];

The IsEditable procedure returns TRUE if and only if a window is currently editable.

FileSW.lslt: PROCEDURE [sw: Window.Handle] RETURNS [yes: BOOLEAN];

The Islt procedure returns TRUE if and only if a window is a file subwindow.

Filesw.LoadMCR: Menu.MCRType;

The LoadMCR procedure is a menu command routine that does the standard load
operation using the current selection as the file-name argument. Clients that construct
their own menus may call it.

Mesa Programmer's Manual 11

Filesw.MakeEditable: PROCEDURE [SW: Window.Handle] RETURNS [ok: BOOLEAN];

The MakeEditable procedure makes a file subwindow editable. It returns an indication of
success.

FileSW.PutEditableFile: PROCEDURE [
SW: Window.Handle, name: LONG STRING] RETURNS [ok: BOOLEAN];

The PutEditableFile procedure stores the edited file on the new file name. If name = NIL,
the old version of the file is saved as "currentNameS" and the edited file is output to
currentName. It returns an indication of success.

FileSW.ResetEditableFile: PROCEDURE [SW: Window.Handle];

The ResetEditableFile procedure resets an edited file to its original state. The file
sub window is not editable after the call.

FileSW.SetFile: PROCEDURE [
SW: Window.Handle, name: LONG STRING, s: Stream.Handle ~ NIL,
position: TextSource.Position ~ 0];

The SetFile procedure loads a new file into a file subwindow. Note that if s is not NIL, the
file subwindow owns the stream s and will destroy it when the window is Destroyed.

11-3

11 FileSW

11-4

12.1 Types

12

FileWindow

The FileWindow interface provides facilities for manipulating file windows. It also
maintains a mapping between file windows and the files that are loaded into them. A file
window is a tool containing a text subwindow for manipulating and displaying text. All of
the FileWindow procedures that have Window.Handle parameters or results deal with the
text subwindow in the FileWindow. Some procedures also accept the tool window or even
the clipping window for the FileWindow. The text subwindow is either an editable or non­
editable file sub window (see FileSW), or a scratch subwindow (see ScratchSW).

FileWindow.ContinueStop: TYPE = {continue. stop};

FileWindow.EnumerateProcType: TYPE = PROC [
sw: Window.Handle] RETURNS [continue: FileWindow.ContinueStop];

12.2 Constants and data objects

FifeWindow.defaultOptions: TextSw.Options • [
access: read, menu: TRUE, split: TRUE, wrap: TRUE, scrollbar: TRUE,
flushTop: FALSE, flushBottom: FALSE);

12.3 Signals and errors

None.

12.4 Procedures

FifeWindow.Create: PROC [
box: Window.Box, options: TextSw.Options +- FifeWindow.defaultOptions,
initialState: ToolWindow.State +- active]
RETURNS [sw: Window.Handle];

12-1

12

12-2

l<'ileWindow

Create creates an empty file window. [t takes the dimensions of the desired window and a
set of options for the state of the window. Create returns the text subwindow for the file
window. The options parameter is ignored.

FileWindow .CreateMCR: Menu. MCRType;

CreateMCR is the File Window package's implementation of the Create menu operation. It
is defined in the FileWindow interface so that clients can create their own menus with this
procedure implementing one of the operations.

FileWindow.Destroy: PROC [sw: Window.Handle];

Destroy destroys a file window. The parameter may be either the tool window, the clipping
window, or the text subwindow for a file window.

FileWindow .DestroyMCR: Menu. MCRType;

DestroyMCR implements the Destroy menu operation. If it would reduce the number of
file windows below the minimum, the display blinks. Otherwise, the user is asked to
confirm destruction of the window by clicking the POINT mouse button. DestroyMCR is
defined in the FileWindow interface so that clients can create their own menus with this
procedure implementing one of the operations.

FileWindow.Enumerate: PROC [proc: FileWindow.EnumerateProcType];

Enumerate calls proc with the text sub window for each file window until proc returns
stop or all file windows have been enumerated.

FileWindow.FilelnWindow: PROC [
sw: Window.Handle] RETURNS [fileName: LONG STRING. s: Stream.Handle];

The FilelnWindow procedure returns the file name and stream that back the window. The
sw parameter is expected to be the text subwindow for the file window. or NIL. If it is NIL, a
file window is selected using the same heuristics as WindowForFile and the results for
that window are returned. IfWindowForFile fails, [NIL. NIL] is returned. The results do not
belong to the user and should be treated as read-only. They are potentially dangling
references, since the file in the window may change. If needed, the string should be copied
immediately. Even this is not 100% safe.

FileWindow.Getlnfo: PROC RETURNS (
ext: LONG STRING, fileMenu, sourceMenu: Menu.Handle,
minimumWi ndows: CARDINAL];

The Getlnfo procedure returns the global data maintained by the FileWindow package.
This data is set by SetExtension, SetSourceMenu, and SetMinimumWindows.

FileWindow.lslt: PROC [sw: Window.Handle] RETURNS [BOOLEAN];

Islt returns TRUE if the window is a file window and FALSE otherwise. The parameter may be
either the tool window, the clipping window, or the text subwindow for a file window.

Mesa Programmer's Manual

FileWindow.LoadWindow: PROC [
fileName: LONG STRING, position: LONG CARDINAL +- 0, s: Stream.Handle +- NIL,
loadlFSame: BOOLEAN +- FALSE, sw: Window.Handle +- NIL];

12

LoadWindow loads a file into a file window. s must be an MStream.Handle. If s is not NIL, it
is assumed to be a stream on file fileName and is used as the backing stream. The file is
positioned in the window at position; that is, the top line in the window contains the
character in that position. loadlFSame controls whether to reload the requested file if it is
already loaded in the window. If sw is not NIL, it is the text subwindow of a file window in
which to load the file. If it is NIL, the file window package searches for a suitable window to
load the file into, using the same heuristics as WindowForFile. If sw is NIL and
WindowForFile fails, then either an unnamed ERROR or an address fault results.

FileWindow.Position: PROC [sw: window.Handle, position: LONG CARDINAL];

Position sets the position of the file in the window so that the top line in the window
contains the character at that position. If the position is out ofrange for the file, no action
is taken. The sw parameter is expected to be the text sub window for the file window, or NIl.

FileWindow.SetExtension: PROC [ext: LONG STRING];

In loading a window, the FileWindow package first attempts to find a file with the
specified name. If that fails, it tries three different extensions, in turn, to the name in an
attempt to find a file to load. These extensions are ".mesa" (initially), ".config", and ".cm".
The first extension can be modified by a client using SetExtension. SetExtension will copy
the contents of ext.

FileWindow.SetMinimumWindows: PROC [keep: CARDINAL);

SetMinimumWindows permits the client to set the minimum number of file windows that
must exist at all times. Destroy operations that would take the number of windows below
this minimum will fail to destroy any window.

FileWindow.SetSize: PROC [sw: Window.Handle. box: Window. Box];

SetSize changes the size of the file window. The parameter may be either the tool window,
the clipping window, or the text subwindow for a file window.

FileWindow.SetSourceMenu: PROC [menu: Menu.Handle];

SetSourceMenu associates a menu with all file windows.

FileWindow.WindowForFile: PROC [fileName: LONG STRING) RETURNS [Window.Handle];

WindowForFile searches for a file window into which the file can be loaded. It returns the
first non-editable file window containing a file whose full name or simple name matches
fileName. If a non-editable file window already contains the file, that window is returned.
If no such window is found, the file window package searches all file windows that are
either non-editable windows or nearly empty scratch subwindows. In order of preference,

12-3

12

12-4

FileWindow

WindowForFile tries to lind either an empty active, a full active, an empty tiny, or a full
tiny file window. If it cannot lind a suitable file window, it returns NIL.

13

FormSW

The FormSW interface is used in building tools that interact with the user via the window
user interface. A form subwindow is a mechanism for invoking commands and specifying
the command parameters. A form subwindow consists of form items, which are
rectangular regions in the subwindow, similar to ruled-off areas on a preprinted form.

A form item can be one of the following types. Command items correspond to the
operations a tool can perform. A command item appears in the form subwindow as a
keyword followed by an "!". String items are strings filled in by the user that serve as
parameters to command items. A ": " is appended to string item keywords. Enumerated
items are lists of string items.

These items may be displayed in two ways: "keyword: {a, b, c, ... }" or "keyword: {a}." In both
cases, choosing is done via menu prompts. Menu prompts are always available for
enumerated items and sometimes for string items. When you press the menu button over
the keyword for an enumerated field, a menu of allowed values is displayed. Choosing one
of the values from the menu sets the enumerated item to that value. Similarly, when you
press the menu button over the keyword for a string item, a menu of character strings is
displayed. Choosing one of the items (strings) from the menu appends the menu string at
the current position of the type-in point. Enumerated items may also be chosen by
bringing up a menu and selecting the desired item with the mouse. In the first example
above, the current value becomes highlighted. In the other example, only the current
value is displayed.

Boolean items are form items that can have one of two values, either TRUE or FALSE. The
boolean state of the item is indicated by highlighting. Highlighted means TRUE. Numeric
items are like string items, except that only strings representing numbers are permitted.
A "= "is appended to numeric item keywords. Tag items are used to clarify an otherwise
complicated form subwindow by separating the items along logical divisions and labeling
them as such. The labels, which are tag items, do not correspond to any user-input actions,
but instead serve to annotate the form.

The ItemObject is the fundamental data structure of the form subwindow interface; TYPES

and PROCEDURES in FormSW provide mechanisms for defining and manipulating them.
Readers not familiar with the form subwindow interface are advised first to carefully

13-1

13

12.1 Types

13-2

FormSW

study ExampleTool. bcd, found in Appendix A, and then to examine Formsw.ltemObject
before learning about other TYPES and PROCEDUREs in this interface.

The client constructs a form subwindow by specifying an array of form-item handles. Each
handle points to an item; each item is a variant record containing a pointer to the tool's
internal data that will be displayed and altered. The elements of the item handle array
point to objects that contain information about how and where the corresponding form
item should be displayed in the form subwindow. An item object may also contain
notification procedures that are called by the form sub window interface to inform the
client of events affecting that item.

~Co_nd!

; Password:

~ReadOnly: Read Only String

Vanilla:

Cardinal = 0

: boolean(trueFalse): <liliJFALSE} .llllillll ..
~enumerated(one): {A} enumerated(all) {x, ~ z}

Figure 13.1: Example Tool

The client's items are displayed in a sub window; the user can alter them at any time
unless explicitly prohibited by the client. The form subwindow interface supplies
procedures to display, select, or alter any of these items.

Clients of this interface should keep in mind that forms cannot be arbitrarily large because of sizable storage

requirements. The fixed overhead in heap usage per form item is 23 words (broken down as follows: 4 words for

the item record, 2 words for the handle, 8 words for the item's TextSource plus 1 word for heap overhead, and 9

words for the item's TextDisplay Object). The variable overhead is due to the STRINGs associated with an item

(the tag, for example), line tables associated with multi-line items, and the variant part of the item record.

It is important to distinguish between the user actions of choice and selection: the user is
said to select an item (or part of an item) if that action changes the current selection;
otherwise the user is said to make a choice of (or in) the item. It is not always possible to
distinguish between the two cases by simply looking at the display-marking actions.

Formsw.BooleanHandle: TYPE = LONG POINTER TO boolean Formsw.ltemObject;

See the description of ItemObject for the definitions of the common fields of the ItemObject
record. There is no special trailer appended to the tag for boolean parameter items. When

Mesa Programmer's Manual 13

the user chooses a boolean parameter item, the tag is inverted on the display, the sense of
the BOOLEAN pointed to by switch is inverted, and then the supplied client proc is invoked.
(See also NopNotifyProc and BooleanChoices.)

switch is a LONG POINTER TO BOOLEAN provided so that the client can access the BOOLEAN
without necessarily accessing the ItemObject. The BOOLEAN must occupy its own
word in memory. This can be achieved by allocating the BOOLEAN in the client's
global frame (but not in a RECORD in the global frame unless it is a MACHINE
DEPENDENT RECORD and the BOOLEAN is specified to occupy a word) or by using the
overlaid variant Formsw.WordBoolean. Using the overlaid variant is clumsy and
should be avoided.

proc is called every time the user changes the boolean.

Formsw.ClientltemsProcType: TYPE = PROCEDURE [
SW: Window.Handle] RETURNS [items: Formsw.ltemDescriptor, freeDesc: BOOLEAN];

The ClientltemsProcType procedure is called when the form subwindow package needs to
create the form subwindow, usually when the enclosing tool window is created or made
active. The procedure returns the ItemDescriptor that describes the contents of the form
subwindow. If freeDesc is TRUE, then the ItemDescriptor has been allocated from the
system heap and the form subwindow package frees it when the subwindow is destroyed
(usually when the enclosing tool window is deactivated). If freeDesc is FALSE, the
ItemDescriptor is not deallocated, and the management of its storage is the client's
responsibility.

Formsw.CommandHandle: TYPE = LONG POINTER TO command Formsw.ltemObject;

See the description ofitemObject for the definitions of the common fields of the ItemObject
record. For command parameter items the character "!" is appended to the tag to remind
the user that this is a command item. User choice of this type of parameter item causes
invocation of the supplied client proc to be invoked like menu-command choice. (See also
NopNotifyProc.)

Formsw.Enumerated: TYPE = RECORD [string: LONG STRING, value: UNSPECIFIED];

This type is used to specify the representation of an element of an enumerated item in an
enumerated ItemObject. The element displayed as string has the value value associated
with it. (See also EnumeratedHandle and EnumeratedDescriptor.)

Formsw.EnumeratedDescriptor: TYPE =
LONG DESCRIPTOR FOR ARRAY OF FormSW.Enumerated;

An EnumeratedDescriptor lists the possible values of an enumerated item. (See also
EnumeratedHandle and EnumeratedDescriptor.)

Formsw.EnumeratedFeedback: TYPE = {all, one};

This type specifies whether to display all or one of the enumerated ItemObjects. (See also
EnumeratedHandle.) Examples ofthe two forms offeedback are:

13-3

13

13-4

FormSW

all The item displays as "tag: {a, b, c}". Choosing an item within the curly brackets
video-inverts that item.

one The item displays as "tag: {a}". Depressing the menu mouse button displays the set of
strings available for choice. Choosing an item causes it to be displayed.

Formsw.EnumeratedHandle: TYPE = LONG POINTER TO enumerated Formsw.ltemObject;

See the description of Item Object for the definitions of the common fields of the ItemObject
record. For enumerated parameter items the special trailer ": {It is appended to the tag. In
addition, a "}" is appended at the end of the item's display representation. When the user
modifies this type of parameter item, the display is updated according to the value of
feedback, the UNSPECIFIED pointed to by value is updated to match the display, and then the
supplied client proc is invoked. (See also NopEnumeratedNotifyProc, BooleanChoices.
and nullEnumeratedValue.l

choices

value

For both forms of feedback, all or one, the items available for choice are
those STRINGS supplied by the client in the choices. When the string from
one of the choices is chosen, the corresponding value from the Enumerated
is stored into ItemObject.value f. Depressing the menu mouse button
displays the set of strings available for choice.

This field is a POINTER TO UNSPECIFIED so that the client need not have access
to the ItemObject in order to have access to the UNSPECIFIED. This introduces
the same word-alignment problems that occur with the boolean
ItemObject's switch, and the same solutions and caveats apply here. value
points to an UNSPECIFIED so that its possible values can be from any type
(usually an enumeration).

proc This field is a PROCEDURE that is called whenever the user changes value.
(See also NopEnumeratedNotifyProc.)

copyChoices This field indicates whether the client's choices were copied into the
system heap and can be freed to the system heap automatically by
FormSW.

FormSw.EnumeratedNotifyProcType: TYPE = PROCEDURE [
sw: Window. Handle +- NIL, item: Form5w.ltemHandie +- NIL,
index: CARDINAL +- Formsw.nulllndex, oldValue:
UNSPECIFIED +- Formsw.nuIlEnumeratedValue);

A EnumeratedNotifyProcType is called whenever the user changes the corresponding
enumerated item in a form subwindow. sw is the subwindow containing the item. item is
the ItemHandle of the enumerated item. index is the index of the item in the
ItemDescriptor for the subwindow. oldValue is the value of the enumerated item before
the user changed it. (See also EnumeratedHandle.)

Mesa Programmer's Manual

Formsw.FilterProcType: TYPE = PROCEDURE[
Sw: Window.Handle, item: FormSw.ltemHandle, insert: CARDINAL,
string: LONG STRING];

13

A FilterProcType is called to permit a client to perform editing operations on a string
ItemObject. sw is the subwindow containing the item. item is the ItemHandle of the
enumerated item. string, which may be NIL, contains the characters to edit into the
backing-store string at position insert. The zero position is defined to be the left of the first
character of the string. (See also StringHandle.)

Formsw.Flag: TYPE = {c1ientOwnsltem, drawBox, hasContext, invisible, readOnly};

Flag defines the types of state bits maintained for a form subwindow item. (See also
Item Flags.)

FormSw.FreeHintsProcType: TYPE = PROCEDURE[FormSW.Hints];

A FreeHintsProcType is called to free the Hints in a string ItemObject, allowing the Hints
to be somewhere other than in the client's global frame.

FormSW.Hints: TYPE = LONG DESCRIPTOR FOR ARRAY OF LONG STRING;

Hints is a set of strings that is available to the user in a menu to suggest possible strings
for use when editing a string ItemObject. (See also StringHandle.)

Formsw.ltemFlags: TYPE = RECORD [
readOnly: BOOLEAN +- FALSE,
invisible: BOOLEAN +- FALSE,
drawBox: BOOLEAN +- FALSE.
hasContext: BOOLEAN +- FALSE.
c1ientOwnsltem: BOOLEAN +- FALSE.
modified: BOOLEAN +- FALSE];

ItemFlags is a RECORD of state bits for an item in a form subwindow. The meaning of the
flags is as follows:

readOnly

invisible

drawBox

hasContext

If this flag is TRUE, the user cannot modify this parameter. If any
modification is attempted, the readOnlyNotifyProc for this subwindow
is called.

If this flag is TRUE, the item is not displayed in the subwindow, and it is
treated by form subwindows exactly as if it were not present, except
that it is occupying an index slot.

If this flag is TRUE, the item is displayed enclosed within a box that is
one bit thick.

If this flag is TRUE, a client context two words long is associated with
the item. This context serves the same function as a client context
associated with a subwindow. However, unlike Context, FormSW
returns a pointer to the client data words, not the value of the data
words. (See also ContextFromltem.)

13-5

13

13-6

1"ormSW

clientOwnsltem If this flag is TRUE, the form subwindow will not try to de-allocate the
item if the subwindow is destroyed. This flag is usually FALSE, meaning
that the client does not need to be concerned with storage allocation
and dc-allocation. Instead, the form subwindow "owns" the storage and
is responsible for maintaining it.

modified The modified flag is set when an item on the form subwindow has been
modified. See the FormSw.SetModifyNotification procedure for setting a
notificiation procedure on this flag.

Formsw.ltemHandle: TYPE = LONG POINTER TO Formsw.ltemObjecti

Formsw.ltemObject: TYPE = RECORD [
tag: LONG STRING,
place: Window.Place,
flags: FormSw.ltemFlags,
body: SELECT type: Formsw.ltemType FROM
boolean = > [

switch: LONG POINTER TO BOOLEAN,
proc: FormSw.NotifyProcType),

command .. > [proc: Formsw.ProcType),
enumerated .. > [

feedback: Formsw.EnumeratedFeedback,
copyChoices: BOOLEAN,
value: LONG POINTER TO UNSPECIFIED,
proc: Formsw.EnumeratedNotifyProcType,
choices: Formsw.EnumeratedDescriptor],

10ngNumber .. > [
signed, notNegative: BOOLEAN.
radix: Formsw.Radix.
boxWidth: CARDINAL [0 .. 256).
proc: Formsw.LongNumberNotifyProcType,
default: LONG UNSPECIFIED.
value: LONG POINTER TO LONG UNSPECIFIED,
string: LONG STRING. bias: INTEGER].

number = > [
signed. notNegative: BOOLEAN.
radix: Formsw.Radix.
boxWidth: CARDINAL [0 .. 128),
proc: FormSw.NumberNotifyProcType,
default: UNSPECIFIED.
value: LONG POINTER TO UNSPECIFIED.
string: LONG STRING. bias: INTEGER).

source = > [
source: TextSource.Handle.
boxWidth: CARDINAL.
filterProc: Formsw.FilterProcType.
menuProc: Formsw.MenuProcType].

string = > [
feedback: Formsw.StringFeedback.
inHeap: BOOLEAN.
string: LONG POINTER TO LONG STRING,

Mesa Programmer's Manual

boxWidth: CARDINAL.
filterProc: FormSw.FilterProcType.
menuProc: FormSW.MenuProcType].

tagOnly = > [SW: Window:Handle. otherltem: CARDINAL].
ENDCASE];

13

The ItemObject is complex so that it can provide sufficient flexibility for the tool writer
who wants fine control over displaying and altering items. Most clients should not
explicitly construct an ItemObject, but should instead use the procedures that allocate an
ItemObject and take advantage of default values. In FormSW procedure types, the
argument is called item if it is an ItemHandle and items if it is an Item Descriptor. Note that

DESCRIPTOR FOR ARRAY is implicitly a DESCRIPTOR FOR ARRAY (O .. O). Trying to index an ItemDescriptor by

an enumerated type results in a compilation error. Instead of indexing by an enumerated type, the procedure

FindIndex should be used to get the desired index.

Only the common fields of the ItemObject are described here. For a description of the fields
of each variant part, see the descriptions of the corresponding handles (BooleanHandle,
CommandHandle, EnumeratedHandle, LabelHandle, LongNumberHandle,
NumberHandle, SourceHandle, StringHandle, and TagOnlyHandle).

tag is a client-supplied string that is displayed immediately preceding the data
associated with the parameter (e.g., "tag: string"). It may be NIL, in which case any
trailer characters that are usually displayed after the tag will be suppressed (e.g.,
": tt).

place is used only if the type field of the sub window option has the value fixed;
otherwise it is ignored. place is the x,y position (sub window relative) where the tag
and data are to be displayed. The array of item pointers is required to have the
places in ascending (English-reading) order; i.e., left to right, top to bottom. If the
position is negative, it is treated as a relative offset, where the magnitude of x
specifies the number of bits to leave between the end of the preceding item and the
start of the tag for this item. The use of a negative x following a string or number
item that uses defaultBoxWidth results in the ERROR ItemError[iliegaICoordinate,
i), where i is the index of the offending item. Negative y positions are also
interpreted specially. They are line positions; i.e., they specify position as a
multiple of the line height for the subwindow. The constants lineO through line9
can be used as y values to specify that the item should be on the zero through ninth
lines in the subwindow. (See also the procedure LineHeight, lineN, SetTagPlaces
and the constants newline, nextLine, nextPlace, and sameLine.)

flags is a RECORD of state bits for the item. (See ItemFlags for the meaning of the flags.)

Formsw.ltemType: TYPE = {

boolean. command. enumerated.longNumber. number. source. string. tagOnly};

ItemType defines the different types ofform subwindow items supported by FormSW.

FormSW.LabeIHandle: TYPE = FormSw.TagOnlyHandle;

One use of a tagOnly item type is to act as a label for some part of the form. For example, a
form might consist of two parts, one for specifying input parameters and the other for
output parameters. The client could distinguish the individual items by prefixing their

13-7

13

13-8

FormSW

tags with "Input-" or "Output-", or two sets of items could,have the same tags but be
preceded by a labeling line consisting of an item whose tag was "Input parameters" or
"Output parameters." (See also TagOnlyHandle.)

sw This is the form subwindow that contains the item. It is automatically set by
Create; clients should ignore it.

otherltem This is the index of the other item for which this item is acting as a tag. For
labels, otherltem should be nullindex.

Formsw.LongNumberHandle: TYPE =
LONG POINTER TO longNumber FormSW.ltemObject;

The number and longNumber item types are for specifying numeric form items and are
very similar, with only a few exceptions. See the description of ItemObject for the
definitions of the common fields of the ItemObject record. The long Number parameter
item differs in the following ways: boxWidth must be larger; value points to a LONG
UNSPECIFIED instead of an UNSPECIFIED; default is a LONG UNSPECIFIED instead of an UNSPECIFIED;
and proc takes a LONG UNSPECIFIED instead of an UNSPECIFIED for the old value. Refer to
FormSw.NumberHandle for an explanation of the fields in the longNumber variant. (See
also NopLongNumberNotifyProc.)

Formsw.LongNumberNotifyProcType: TYPE = PROCEDURE [
sw: Window.Handle +- NIL, item: Formsw.ltemHandle +- NIL.
index: CARDINAL +- FormSw.nullindex, oldValue: LONG UNSPECIFIED +- LAST[INTEGER));

A LongNumberNotifyProcType is called each time the user edits a longNumber
ItemObject. sw is the sub window containing the item. item is the Item Handle of the
longNumber item. index is the index of the item in the ItemDescriptor for the sub window.
oldValue is the value of tbe longNumber item before it was changed by the user. (See also
LongNumberHandle.)

Formsw.MenuProcType: TYPE = PROCEDURE [SW: Window.Handle, index: CARDINAL]
RETURNS [hints: FormSw.Hints, freeHintsProc: FormSw.FreeHintsProcType,
replace: BOOLEAN];

A MenuProcType procedure is associated with a string Item Object. It is called whenever
the user selects the string item with the menu button. This gives the client the
opportunity to supply a list of strings to be displayed in a menu. sw is the subwindow
containing the item. item is the ItemHandle of the string item. The MenuProcType
procedure returns the information needed for the menu. If replace is FALSE, the menu item
will be inserted into the item's string when the user chooses it, just as if the user had typed
the menu string. If BASE[hints] = NIL, no prompt menu will be available.freeHintsProc is
called to free the hints, allowing the hints to be somewhere other than in the client's global
frame. (See also InHeapFreeHintsProc, NopFreeHintsProc, VanillaMenuProc and
StringHandle.)

FormSW.NotifyProcType: TYPE = FormSW.ProcType;

Mesa Programmer's Manual 13

A NotifyProcType procedure is called whenever a client changes a boolean item. sw is the
subwindow containing the item. item is the Item Handle of the boolean item. index is the
index of the item in the ItemDescriptor for the sub window.

Formsw.NumberHandle: TYPE = LONG POINTER TO number Formsw.ltemObject;

See the description ofitemObject for the definitions of the common fields of the ItemObject
record. For number (and longNumber) parameter items the special trailer "= " is
appended to the tag. The user can select and edit a number (or longNumber) item just like
a string item, and the client can also exercise control over its alteration and display.

signed FormSW needs to know whether to treat the value as a signed number (i.e.,
INTEGER~. It is treated as a CARDINAL ifsigned is FALSE.

notNegative The user is permitted to enter negative values ifnotNegative is FALSE.

radix

boxWidth

proc

default

value

string

bias

If the user does not provide a specific radix ('D for decimal or '8 for octal)
when he enters or modifies the item, then the radix is assumed to be 10 if
radix is decimal, 8 if radix is octal.

This is added to the tag's width (including the supplied trailer) to
determine the width of the box in which the number is displayed. If the
special value defaultBoxWidth is used, then the box will extend to the
right edge of the subwindow or to the next item, whichever is closer.

The client's proc is called after each user edit to the item. (See also
NumberNotifyProc and NopNumberNotifyProc).

The user might not want to enter any value for the item. In this case, the
value is forced to default.

is a LONG POINTER TO UNSPECIFIED so that the client need not have access to the
ItemObject in order to have access to the UNSPECIFIED. FormSW assumes that
the UNSPECIFIED occupies a full word; hence it should not be declared by the
client to be a subrange of CARDINAL or INTEGER. value points to an UNSPECIFIED
so that it can be either a CARDINAL or an INTEGER.

is the string representation of value i. string is always convertible to
value l' unless it is empty, in which case value i will be default.

is the difference between the displayed number and value t. (Displayed
number + bias = value t .)

Formsw.Options: TYPE = RECORD [
type: FormSw.Type E-fixed,
boldTags: BOOLEAN E- TRUE,
autoScroll: BOOLEAN E- TRUE,
scrollVertical: BOOLEAN E- TRUE];

Options are associated with a form subwindow to control certain formatting aspects of the
window.

13-9

13

13-10

FormSW

type If type is fixed, then the client specifies the layout of items in the
window; that is, the place field of each ItemObject specifies the location of
the item in the window. If type is relative, then the place field of the
ItemObjects is ignored and FormSW decides where to locate each item in
the window.

boldTags If boldTags is TRUE, then all tags aredisplayed in a bold font. If boldTags
is FALSE, all tags are displayed normally.

autoScroil If autoScroil is TRUE, then when editing an item would cause it to
disappear from the bottom of the window, the window is automatically
scrolled so that the item remains visible. If autoScroli is FALSE, no such
automatic scrolling is done.

scroll Vertical If scroliVertical is TRUE, then the user is permitted to scroll the
subwindow. IfscroliVertical is FALSE, the user is not permitted to scroll it.

FormSw.ProcType: TYPE = PROCEDURE [
sw: Window.Handle +- NIL. item: FormSw.ltemHandle +- NIL,
index: CARDINAL +- Form5w.nullindex);

A ProcType procedure is called whenever a client issues a command. sw is the subwindow
containing the item. item is the ItemHandle of the command item. index is the index of the
item in the ItemDescriptor for the subwindow.

Form5W.Radix: TYPE = {decimal, octal};

In number ItemObjects and longNumber ItemObjects, if the user does not provide a
specific radix ('0 for decimal or 'B for octal) when he enters or modifies the item, then the
radix is assumed to be 10 if radix is decimal, 8 ifradix is octal.

FormSw.ReadOnlyProcType: TYPE = Form5w.ProcType;

A ReadOnlyProcType procedure is called whenever a client tries to edit a read-only item.
sw is the subwindow containing the item. item is the ItemHandle of the item. index is the
index of the item in the ItemDescriptor for the subwindow.

FOrm5w.SourceHandle: TYPE = LONG POINTER TO source FormSw.ltemObject;

Not implemented.

Form5w.StringFeedback: TYPE = {normal, password};

This type controls the style of feedback for string ItemObjects.

normal the characters themselves are to be displayed.

password a "*" is displayed in place of each character.

Form5w.StringHandle: TYPE = LONG POINTER TO string Form5w.ltemObject;

See the description of ItemObject for the definitions of the common fields of the ItemObject
record. For string parameter items, the characters ": " are appended to the tag to indicatie

Mesa Programmer's Manual 13

that this is a string item. String items give the tool writer explicit control over the
alteration of the supplied string and how it is to be displayed. The tool-supplied procedures
are called whenever characters are to be added to the string.

inHeap If this BOOLEAN is TRUE, the Tajo StringEditProc dynamically allocates and de­
allocates the backing string from the system heap.

string This is a LONG POINTER TO LONG STRING that contains the characters entered by
the user. The level of indirection is provided so that the original string may be
replaced.

feedback The characters of string are displayed on the screen as text unless feedback is
password, in which case a "*" is printed in place of each character of string.

boxWidth This is added to the tag's width (including the supplied trailer) to determine
the width of the box in which the LONG STRING is displayed. If the special value
defaultBoxWidth is used, then the box extends to the right edge of the
subwindow or to the next item, whichever is closer.

filterProc The client's filterProc is called whenever the user inputs characters to a
selected string item. string, which may be NIL, con.tains the characters to edit
into the backing-store string at position insert. The backing-store
modification is performed by calling StringEditProc. By interposing a
filterProc between the user and StringEditProc, FormSW can optimize the
display updating and maintain the consistency of selection and insert. (See
also StringEditProc.)

menuProc The client's menuProc is called whenever the user selects the string item with
the menu button. This gives the client the opportunity to supply a list of
strings to be displayed in a menu. (See also MenuProcType and
VanillaMenuProc.)

FormSw.TagOnlyHandle: TYPE = LONG POINTER TO tagOnly FormSw.ltemObject;

See the description of Item Object for the definitions of the common fields of the ItemObject
record. One use of a tagOnly ItemObject is to substitute for the tag of a string item. This is
useful when the client wishes to present the illusion that the tag for an item is not on the
same line as the item's body. (See also LabelHandle.>

sw This is the form subwindow that contains the item. It is automatically set by
Create; clients should ignore it.

otherltem This is the index of the other item for which this item is acting as a tag. For a
TagOnlyHandle, it must be the index of a string item (otherwise the ERROR

ItemError[notStringOtherltem. i] will be generated by Create, where i is the
index of the tagOnly item).

To allow a tagOnly to act as a substitute tag, no special trailer is appended to the tag.
When a tagOnly item is used as a substitute tag, all of the user actions directed at its tag
are redirected by FormSW to the otherltem. Because of this redirection, the notification
procedures of the target string item are called with arguments identical to those provided
by FormSW when the string item's tag is operated on by the user.

13-11

13 l<'ormSW

Formsw.Type: TYPE = {fixed. relative};

Type indicates whether the client controls the formatting of a form subwindow or whether
FormSW automatically formats the window.

fixed The client specifies the location of each item in the form subwindow by
specifying the place field of the ItemObjects.

relative FormSW arranges the items in the window automatically.

Formsw.WordBoolean: TYPE = RECORD [SELECT OVERLAID * FROM
f1 = > [b: BOOLEAN].
f2 = > [w: WORD].
ENDCASE];

WordBoolean is an overlaid variant record provided for forcing a boolean to occupy its
own word in memory. This is a requirement of any boolean to be used with a boolean
ItemObject.

13.2 Constants and data objects

13-12

Formsw.defaultBoxWidth: CARDINAL = 0;

defaultBoxWidth indicates that the display box of an item should extend to the right edge
of a subwindow or to the next item, whichever is closer.

Formsw.lineDiff: PRIVATE INTEGER = -1;

Formsw.lineO: INTEGER = -3;

Formsw.line1: INTEGER = Formsw.lineO + Formsw.lineDiff;

Formsw.line2: INTEGER = Formsw.line1 + Formsw.lineDiff;

Formsw.line3: INTEGER = Formsw.line2 + Formsw.lineDiff;

Formsw.line4: INTEGER = Formsw.line3 + Formsw.lineDiff;

Formsw.line5: INTEGER = Formsw.line4 + Formsw.lineDiff;

Formsw.line6: INTEGER = Formsw.line5 + Formsw.lineDiff;

Formsw.line7: INTEGER = Formsw.line6 + Formsw.lineDiff;

Formsw.line8: INTEGER = Formsw.line7 + Formsw.lineDiff;

Formsw.line9: INTEGER = Formsw.line8 + Formsw.lineDiff;

Formsw.newLine: Window.Place = [0, Formsw.nextLine];

newline specifies that this item should start on the next line down from the preceding
item. It works even if there is no preceding item.

Mesa Programmer's Manual 13

FormSw.nextLine: INTEGER = ·2;

nextline specifies that the y position for an item should be the next line after the y
position of the preceding item.

FormSw.nextPlace: Window.Place = [·10, FormSw.sameLine];

nextPlace specifies that this item should be on the same line as the preceding one, and
should start a little past where the previous one left off. This is subject to all of the caveats

mentioned for negative x's in the discussion of places.

Formsw.nuIiEnumeratedValue: UNSPECIFIED = LAST[CARDINAL);

An enumerated value can never have an unknown value (unless the client is not playing
by the rules). The value given to an enumerated value when no value is chosen is
nullEnumeratedValue. If an enumerated value has nullEnumeratedValue, the display of
the item has nothing between the braces (for one feedback) or nothing selected (for all
feedback). (See also EnumeratedHandle.)

Formsw.nulllndex: CARDINAL = LAST[CAROINAL];

nulllndex is used as an index in SetSelection or SetTypeln when the client wants nothing
selected or wants no insert point.

Formsw.nuilltems: FormSW.ltemDescriptor = DESCRIPTOR[LONG[NIL], 0];

FormSW.sameLine: INTEGER = ·1;

sameline specifies that the y position for this item should be the same as the y position for
the preceding item. If this is the first item, the ERROR ItemError[illegalCoordinate, ----]
results.

13.3 Signals and errors

FormSW.Error: SIGNAL [code: FormSw.ErrorCode];

FormSW.ErrorCode: TYPE = {alreadyAFormSW, notAFormSW, other};

alreadyAFormSW a client has passed a form subwindow to the Create procedure.

notAFormSW a client has passed a subwindow that is not a form subwindow to the
Destroy procedure.

other should never be raised.

Formsw.ltemError: SIGNAL [code: Formsw.ltemErrorCode, index: CARDINAL];

The index argument"to Item Error is the index of the item that FormSW was processing
when it discovered the error condition.

FormSw.ltemErrorCode: TYPE = {
ilIegalCoordinate, notStringOtherltem, nilBackingStore, other};

13-13

13 FormSW

iliegalCoordinate the client has made a error in specifying the layout of items in the
form subwindow, such as not presenting the items in ascending
order. Either an index has been skipped or the items are not
ordered left to right, top to bottom. Another layout error is
specifying a relative position for the first visible item in the
subwindow, either using sameLine or a relative (negative) x value.
Another layout error is specifying a relative (negative) x value for
the item after an item that uses defaultBoxWidth.

notStringOtherltem is raised if a tagOnly item refers to an item that is not a string
item.

nilBackingStore is raised if NIL has been passed as the pointer to the bac~ing object
for a boolean, enumerated, longNumber, number, or string item.

other should never be raised.

13.4 Proced ures

13-14

FormSW.Adjust: TooIWindow.Adj ustProcType;

The Adjust procedure adjusts a subwindow if it is necessary to move the subwindow within
the parent window or to change its size.

FormSw.AIJocateltemDescriptor: PROCEDURE [
nltems: CARDINAL, Z:UNCOUNTED ZONES ~NIL]

RETURNS [Formsw.ltemDescriptor];

The AIJocateltemDescriptor procedure allocates an ItemDescriptor for the nltem number
of items from z. Z is defaulted to the system heap.

FormSW.BooleanChoices: PROCEDURE RETURNS [Formsw.EnumeratedDescriptor);

The procedure BooleanChoices permits a tool to display a BOOLEAN choice without using
the boolean ItemObject's display conventions. It provides the EnumeratedDescriptor to be
used in an enumerated ItemObject to display the enumerated values TRUE and FALSE.

FormSW.Booleanltem: PROCEDURE [
tag: LONG STRING ~ NIL.
readOnly, invisible, drawBox, hasContext: BOOLEAN ~ FALSE,
place: Window. Place ~ FormSw.nextPlace.
proc: FormSw.NotifyProcType ~ FormSw.NopNotifyProc,
switch: LONG POINTER TO BOOLEAN.
z: UNCOUNTED ZONES ~NIL]
RETURNS [FormSw.BooleanHandle];

The procedure Boole~nltem allocates a record of type boolean ItemObject from z. Z is
defaulted to the system heap. Such an item has a FALSE clientOwnsltem. It occupies a node
large enough only for a boolean ItemObject, not for any ItemObject. For a discussion of
the parameters, see BooleanHandle.

Mesa Programmer's Manual

FormSW.Commandltem: PROCEDURE [
tag: LONG STRING +- NIL,
readOnly, invisible, drawBox, hasContext: BOOLEAN +- FALSE,
place: Window. Place +- Formsw.nextPlace, proc: FormSW.ProcType,
z: UNCOUNTED ZONES +-NIL]
RETURNS [FormSW.CommandHandle];

13

The procedure Commandltem allocates a record of type command ItemObject from z. z is
defaulted to the system heap. Such an item has a FALSE clientOwnsltem. [t occupies a node
large enough only for a command ItemObject, not for any ItemObject. For a discussion of
the parameters, see CommandHandle.

FormSW.ContextFromltem: PROCEDURE [Formsw.ltemHandle] RETURNS [LONG POINTER];

The procedure ContextFromltem returns a pointer to the client data associated with an
item.

FormSW.Create: PROCEDURE [
SW: Window.Handle, clientltemsProc: Formsw.ClientltemsProcType,
readOnlyNotifyProc: FormSw.ReadOnlyProcType +- FormSw.lgnoreReadOnlyProc,
options: Formsw.Options +- [],
initialState: ToolWindow.State +- active];
zone: UNCOUNTED ZONE +- Heap.systemZone];

The procedure Create
Error[al readyAFormSW],
notStringOtherltem, ... J.

creates a form subwindow. It can
and ItemError[... , nilBackingStore,

raise the errors
i lIegalCoordi nate,

sw is the sub window that is transformed into a form subwindow.lfthe
subwindow is already a form subwindow, the ERROR
Error[alreadyAFormSW] results.

clientltemsProc is called to get the items. If the ItemDescriptor was manufactured
from the system heap, which can be done by calling
AllocateltemDescriptor, then the client can have FormSW free it
by returning a TRUE freeDesc.

readOnlyNotifyProc is called whenever the user attempts to modify an item with a TRUE
readOnly flag. (See also IgnoreReadOnlyProc and
NopReadOnlyProc).

options If a type = relative, then where and how the items and th,eir
associated data are displayed is automatically determined by the
form subwindow .. If the client specifies a type of fixed, it must
designate a subwindow place for each item to be displayed. It is the
client's responsibility to avoid overlapping or overwriting items
and their data. If scroll\{ertical is TRUE, a vertical scrollbar is
provided. [Note: In the relative case the parameter items are simply displayed

one per line. This implies that the height of a subwindow that would contain all of

your parameters is = n*LineHeight[].]

13-15

13

13-16

FormSW

initialState

zone

determines whether the form subwindow is awake when created. If
initialState is not active, then the form subwindow is asleep. If
initialState is active, then the clientltemsProc is called while still
in Create.

A heap can be passed to the Create procedure, from which storage
will be allocated. The default heap is the system heap.

Formsw.Destroy: PROCEDURE [Window. Handle];

The Destroy procedure transforms a form subwindow back into an undifferentiated
subwindow. Ifit is not currently a form subwindow, the ERROR Error[notAFormSW] results.
(See also Islt.)

FormSw.Display: PROCEDURE [w: Window.Handle, yOffset: CARDINAL +-0];

The Display procedure allows a tool to redisplay the contents of the subwindow. Note that
Display allows the tool to scroll, or unscroll, the items before the redisplay via the yOffset,
which specifies the number of bits to offset the items upward.

FormSw.Displayltem: PROCEDURE [SW: Window. Handle, index: CARDINAL];

The Displayltem procedure is provided to allow a tool to redisplay the contents of an
individual item. Redisplaying a single item may cause other items to also be redisplayed.
Displayltem must be called immediately if the client changes any of the flags that affect
the way the item is displayed or if the client changes the backing store for the item. Such
changes are not safe in an arbitrary pre·emption environment, as there is a potential race condition. (See also
ModifyEditable and ToggleVisibility.)

FormSW.Enumeratedltem: PROCEDURE [
tag: LONG STRING +- NIL,
readOnly, invisible, drawBox, hasContext: BOOLEAN +- FALSE,
place: Window.Place +- Formsw.nextPlace.
feedback: Formsw.EnumeratedFeedback +- one,
proc: FormSW.EnumeratedNotifyProcType +- Formsw.NopEnumeratedNotifyProc,
copyChoices: BOOLEAN +- TRUE, choices: Formsw.EnumeratedDescriptor,
value: LONG POINTER TO UNSPECIFIED,
z: UNCOUNTED ZONES +- NIL]
RETURNS [Formsw.EnumeratedHandle];

The procedure Enumeratedltem allocates a record of type enumerated ItemObject from z.
z is defaulted to the system heap. Such an item has a FALSE c1ientOwnsltem. It occupies a
node large enough only for an enumerated ItemObject, not for any ItemObject. The
parameters are used to initialize the ItemObject. For a discussion of their meaning, see
EnumeratedHandle.

Formsw.Findlndex: PROCEDURE [sw: Window.Handle, item: Formsw.ltemHandle] RETURNS
[CARDINAL]; •

FormSW assumes that there is a unique mapping between an item and an index into the
ItemDescriptor for each subwindow. Given an item, the procedure Findlndex fmds its
index. (See also Findltem.)

Mesa Programmer's Manual 13

FormSW.Findltem: PROCEDURE [
SW: Window.Handle, index: CARDINAL] RETURNS [Formsw.ltemHandle];

FormSW assumes that there is a unique mapping between an item and an index into the
ItemDescriptor for each subwindow. Given an index into an Item Descriptor, the procedure
Findltem finds its item. If index is too large (that is, does not correspond to an item in the
subwindow's ItemDescriptor), Findltem returns NIL. (See also Findlndex.)

Formsw.FreeAllltems: PROCEDURE [SW: Window,Handle];

The procedure FreeAllltems deallocates all the items in a form subwindow. (See Freeltem
for the semantics of deallocating an item.) Items are freed from the UNCOUNTED ZONE passed
to the Create procedure.

FormSW.Freeltem: PROCEDURE [
item: Formsw.ltemHandle, z: UNCOUNTED ZONE E-NIL] RETURNS [Formsw.ltemHandle];

The procedure Freeltem deallocates from Z an item allocated by FormSW by one of the
procedures Booleanltem, Commandltem, Enumeratedltem, Labelltem, LongNumberltem,
Numberltem, Stringltem, or TagOnlyltem. z is defaulted to the system heap.

If item.clientOwnsltem is TRUE, then for each item type, the following actions are taken:

enumerated If copyChoices is TRUE, the choices are freed.

10ngNumber, number The ItemObject.string is freed.

string IfinHeap is TRUE, the ItemObject.string is freed.

All other types Nothing is freed.

The client must be very careful when using this procedure. It may deallocate the item that
contains either the selection or insertion, in which case the client must guarantee there
will be no references to either. It is considerably safer to deallocate all ofthe items at once.
(See FreeAllltems.)

Formsw.GetSelection: PROCEDURE [
Window.Handle] RETURNS [index: CARDINAL, first, last: CARDINAL];

The GetSelection procedure allows a tool to get the currently selected item. index is the
index of the form item containing the current selection. If nullindex is returned, then
there is no current selection. The current selection is described using the character
positions first and last. These positions are relative to a zero origin, which is to the left of
the first character of the tag (or main body of the item, if there is no tag). The interval is
half open (Le., first = last = 0 is an empty selection, and first = 0, last = 1 is a selection
containing the first character in the item).

FormSw.GetTypeln: PROCEDURE [
Window.Handle) RETURNS [index: CARDINAL, position: CARDINAL);

The GetTypeln procedure allows a tool to get the item containing the insert point. position
indicates the number of characters to the left of the insertion point. This position is
relative to a zero origin, which is to the left of the first character of the tag (or main body of

13-17

13

13-18

FormSW

the item, if there is no tag). index is the index of the form item containing the insertion
point. Ifnullindex is returned, then there is no insertion point.

FormSw.lgnoreReadOnlyProc: FormSW.ReadOnlyProcType;

The IgnoreReadOnlyProc procedure blinks the display when called.

Formsw.lndexFromEnumeratedValue: PROCEDURE [
FormSW.EnumeratedHandle] RETURNS [CARDINAL];

The IndexFromEnumeratedValue procedure returns the index into choices of the current
value of enumerated ItemObject.

FormSw.lnHeapFreeHintsProc: FormSw.FreeHintsProcType;

The InHeapFreeHintsProc procedure is a FreeHintsProcType that assumes the hints are
from the system heap and returns them there. If the hints are not from the system heap,
then the client should supply its own FreeHintsProc.

Formsw.lslt: PROCEDURE [sw: Window.Handle] RETURNS [yes: BOOLEAN];

The Islt procedure returns TRUE if sw is a form subwindow and FALSE otherwise.

Formsw.lsltemlnverted: PROCEDURE [
sw: Window.Handle, index: CARDINAL] RETURNS [yes: BOOLEAN];

This procedure is not currently implemented.

FormSw.Labelltem: PROCEDURE [
tag: LONG STRING ~ NIL,
readOnly, invisible, drawBox, hasContext: BOOLEAN ~ FALSE,
place: Window.Place ~ Formsw.nextPlace,
Z: UNCOUNTED ZONE ~ NIL]
RETURNS [FormSW.LabeIHandle];

The procedure Labelltem allocates a record of type tagOnly ItemObject from z. z is
defaulted to the system heap with has a FALSE clientOwnsltem. It occupies a node large
enough only for a boolean ItemObject, not for any ItemObject. For a discussion of the
parameters, see LabelHandle.

Formsw.LineHeight: PROCEDURE [sw: Window.Handle ~ NIL] RETURNS [CARDINAL];

The height of a line can be determined by calling LineHeight, which accounts for all fudge
factors added to the fontHeight. The parameter sw is ignored.

Formsw.LineN: PROCEDURE [n: CARDINAL] RETURNS [INTEGER];

The procedure lineN takes a line number and returns the appropriate negative y for use as
a place parameter. This is helpful for calculating where the next item should be positioned
in the form subwindow.

Mesa Programmer's Manual

Formsw.LongNumberltem: PROCEDURE [
tag: LONG STRING +- NIL,
readOnly, invisible, drawBox, hasContext: BOOLEAN +- FALSE,
place: Window.place +- Formsw.nextPlace,
signed: BOOLEAN +- TRUE, notNegative: BOOLEAN +- FALSE.
radix: Formsw.Radix +- decimal, boxWidth: CARDINAL [0 .. 256) +- 64,
proc: FormSw.LongNumberNotifyProcType +­
FormSw.NopLongNumberNotifyProc,
default: LONG UNSPECIFIED +- LAST[LONG INTEGER].
value: LONG POINTER TO LONG UNSPECIFIED,
bias: INTEGER ... O. z: UNCOUNTED ZONE ... NIL]
RETURNS [Formsw.LongNumberHandle];

13

The procedure LongNumberltem allocates a record of type longNumber ItemObject from
z. z is defaulted to the system heap. clientOwnsltem is defaulted to FALSE. It occupies a
node large enough only for a longNumber ItemObject. (For a discussion of the parameters,
see LongNumberHandle.) bias is the difference between what value points to and what is
displayed. (Displayed number + bias = value i.)

Formsw.Markltem: PROCEDURE [
sw: Window.Handle, index: CARDINAL, action: TextData.MarkingAction,
mode: TextData.SelectionMode];

This procedure is not currently implemented.

FormSw.MinHeight: PROCEDURE [
items: Formsw.ltemDescriptor, type: FormSw.Type] RETURNS [CARDINAL];

The procedure MinHeight returns the minimum height a form subwindow would need to
display items. The form subwindow that displays items need not exist when this procedure
is called. (See also NeededHeight).

Formsw.ModifyBoolean: PROCEDURE [
sw: Window.Handle, index: CARDINAL, mark: BOOLEAN, notify: BOOLEAN];

This procedure is not currently implemented.

Formsw.MOdifyCommand: PROCEDURE [
sw: Window.Handle, index: CARDINAL, mark: BOOLEAN, notify: BOOLEAN];

This procedure is not currently implemented.

Formsw.ModifyEditable: PROCEDURE [
sw: Window. Handle, index: CARDINAL, position, length: CARDINAL,
new: LONG STRING +- NIL, keepTrash: BOOLEAN +- FALSE];

The best way to modify the backing store of an editable item (Le., one of type string,
number, or longNumber) is to call ModifyEditable, which changes the backing store and
the display as little and as quickly as possible. position is the left end of the text in the
item's body that is to be changed. The zero position is to the left of the first character of the
main body of the item. If new is NIL, then the modification is a deletion; otherwise, if
length is 0, it is an insertion. Iflength is non-zero, the modification is a replacement. In all

13-19

13

13-20

FormSW

cases, the removed characters are discarded unless keepTrash is TRUE, in which case they
become the current contents of the global trash bin. (See the Selection interface for a
discussion of the trash bin.) The item to be modified cannot be readOnly.

FormSw.ModifyEnumerated: PROCEDURE [
SW: Window. Handle, index: CARDINAL, mark: BOOLEAN, notify: BOOLEAN, newValue:
UNSPECIFIED];

This procedure is not currently implemented.

FormSw.NeededHeight: PROCEDURE [
Window. Handle] RETURNS [min, current: CARDINAL];

A tool often needs to know how high a form subwindow should be to display all items.
There are two heights of interest: the minimum height for the subwindow is the height if
none of the textual item types (Le., longNumber, number, string, source) overflow a single
line; the current height is the true height of the subwindow, accounting for overflowing
items. These are returned by NeededHeight as min and current, respectively.
NeededHeight requires that the form subwindow already exist. (See also MinHeight.)

FormSw.NopEnumeratedNotifyProc: Formsw.EnumeratedNotifyProcType;

NopNotifyProc is a EnumeratedNotifyProcType that does nothing when called.

Formsw.NopFreeHintsProc: Formsw.FreeHintsProcType;

NopFreeHintsProc is a FreeHintsProcType that does nothing when called. It is appropriate
if the hints are in the client's global frame.

Formsw.NopLongNumberNotifyProc: Formsw.LongNumberNotifyProcType;

NopLongNumberNotifyProc is a LongNumberNotifyProcType that does nothing when
called.

FormSw.NopNotifyProc: FormSw.NotifyProcType;

NOpNotifyProc is a NotifyProcType that does nothing when called.

FormSw.NopNumberNotifyProc: FormSw.NumberNotifyProcType;

NopNumberNotifyProc is a NumberNotifyProcType that does nothing when called.

Formsw.NopReadOnlyProc: FormSw.ReadOnlyProcType;

NopReadOnlyProc is a ReadOnlyProcType that does nothing when called.

FormSw.Numberltem: PROCEDURE [
tag:-LONG STRING +- NIL,
readOnly, invisible, drawBox, hasContext: BOOLEAN +- FALSE,
place: Window.Place +- FormSw.nextPlace. signed: BOOLEAN +- TRUE,
notNegative: BOOLEAN +- FALSE, radix: Formsw.Radix +- decimal,
boxWidth: CARDINAL [0 .. 128) +-64,
proc: Formsw.NumberNotifyProcType +- FormSw.NopNumberNotifyProc.

Mesa Programmer's Manual

default: UNSPECIFIED ~ LAST[lNTEGER], value: LONG POINTER TO UNSPECIFIED,
bias: INTEGER ~ 0, z: UNCOUNTED ZONE ~ NIL]
RETURNS [Formsw.NumberHandle];

13

The procedure Numberltem allocates a record of type number ItemObject from z. z is
defaulted to the system heap. clientOwnsltem is set to FALSE. It occupies a node large
enough only for a number ItemObject. (For a discussion of the parameters, see
NumberHandle.l bias is the difference between what value points to and what is
displayed. (Displayed number + bias = value f .)

Formsw.Redisplayltem: PROCEDURE [
sw: Window.Handle, index: CARDINAL, sameSize: BOOLEAN];

This procedure is not currently implemented.

FormSW.SetCurrent: PROCEDURE [sw: Window.Handle, index: CARDINAL];

The SetCurrent procedure is equivalent to SetSelection, with first and last selecting the
non-tag and trailer portion of the item. It also places the insert point at the item's end.

Formsw.SetModifyNotificationProc: PROCEDURE [
sw: Window.Handle, proc: FormSw.ProcType];

The SetModifyNotificationProc allows the client to have a procedure that is called when
the form subwindow has been modified. The procedure Proc should reset the modified bit
by calling Formsw.ToggleFlag [modified}.

Formsw.SetOptions: PROCEDURE [sw: Window.Handle, options: Formsw.Options);

The procedure SetOptions changes the current Options for the subwindow sw.

Formsw.SetSelection: PROCEDURE [
sw: Window. Handle, index: CARDINAL. first, last: CARDINAL];

The procedure SetSelection allows a tool to set the current selection to one of the items in
the form subwindow. (See the Selection interface for a discussion of the current selection.)
This procedure should be used judiciously to avoid pre-empting the user. index is the index
of the form item containing the current selection. nulllndex is used as an index when the
client wants "nothing" selected. The new selection is delimited by the character positions
first and last. These positions are relative to a zero origin, which is to the left of the first
character of the tag (or main body of the item, if there is no tag). The interval is half open,
(Le., first = last = 0 is an empty selection, and first = 0, last = 1 is a selection containing
the first character in the item).

Formsw.SetTagPlaces: PROCEDURE [
items: FormSW.ltemDescriptor,
tabStops: LONG DESCRIPTOR FOR ARR,AY OF CARDINAL, bitTabs: BOOLEAN];

It is often desirable for items on different lines to have the same horizontal positions. The
SetTagPlaces procedure simplifies this task. The tabStops are in raster points if bitTabs is
TRUE; otherwise, they are multiplied by the width of the digit O. A positive x is used as a
zero-origin index into the tabStops array. If the place is nextPlace, it means "move to the

13-21

13

13-22

FormSW

next tab stop". Negative x's are ignored. This routine is a pre-processor that changes the
items' places; it should be called before giving the items to the FormSW package.

Formsw.SetTypeln: PROCEDURE [
sw: Window.Handle, index: CARDINAL. position: CARDINAL];

The procedure SetTypeln allows a tool to set the insert point of the window to a location in
an item. (See the Selection interface for a discussion of the insert point.) It should be used
judiciously to avoid pre-empting the user. index is the index of the form item containing
the insertion point. nulllndex is used as an index when the client wants no insert point.
position indicates the number of characters to the left of the new insertion point. The zero
position is to the left of the first. character of the tag (or main body of the item, if there is no
tag).

FormSw.SkipToNext: PROCEDURE [sw: Window.Handle];

SkipToNext implements the Next function. If a client notification procedure wants to
implement a synonym for the Next function, it should call SkipToNext.

FormSW.Sleep: PROCEDURE [Window. Handle];

If a tool window is being made tiny, its subwindows do not need to keep state information
for display. A form subwindow can be told to discard such state data by calling Sleep. This is

done automatically if using the Tool interface. (See also Wakeup.)

FormSW.SourceEditProc: FormSw.FilterProcType;

This procedure is not currently implemented.

Formsw.Sourceltem: PROCEDURE [
tag: LONG STRING +- NIL,
readOnly. invisible. drawBox. hasContext, inHeap: BOOLEAN +- FALSE,
place: Window.Place +- Formsw.nextPlace,
boxWidth: CARDINAL +-FormSw.defaultBoxWidth,
filterProc: Formsw.FilterProcType +- FormSW.SourceEditProc.
menuProc: Formsw.MenuProcType +- Formsw.VaniliaMenuProc.
source: TextSource.Handle. Z: UNCOUNTED ZONE +- NIL]
RETURNS [Formsw.SourceHandle];

This procedure is not currently implemented.

Formsw.StringEditProc: FormSw.FilterProcType;

The StringEditProc procedure is the standard editing procedure provided by Tajo for
editing string ItemObject.

Formsw.Stringltem: PROCEDURE [
tag: LONG STRING +- NIL.
readOnly. invisible. drawBox. hasContext. inHeap: BOOLEAN +- FALSE,
place: Window.Place +- FormSw.nextPlace.
feedback: Formsw.StringFeedback +- normal,
boxWidth: CARDINAL +- Formsw.defaultBoxWidth.
filterProc: FormSw.FilterProcType +- Formsw.StringEditProc,

Mesa Programmer's Manual

menuProc: FormSW.MenuProcType +- Formsw.VaniliaMenuProc,
string: LONG POINTER TO LONG STRING, Z: UNCOUNTED ZONE +- NIL]
RETURNS [Formsw.StringHandle];

13

The procedure Stringltem allocates a record of type string ItemObject from z. Z is defaulted
to the system heap. Such an item has a FALSE clientOwnsltem. It occupies a node large
enough only for a string ItemObject, not for any ItemObject. (For a discussion of the
parameters, see StringHandle.)

FormSW.TagOnlyltem: PROCEDURE [
tag: LONG STRING +- NIL,
readOnly, invisible, drawBox, hasContext: BOOLEAN +- FALSE,
place: Window. Place +- FormSw.nextPlace,
otherltem: CARDINAL +- Formsw.nullindex, Z: UNCOUNTED ZONE +- NIL]
RETURNS [FormSw.TagOnlyHandle];

The procedure TagOnlyltem allocates a record of type tag Only ItemObject from z. z is
defaulted to the system heap. Such an item has a FALSE clientOwnsltem. It occupies a node
large enough only for a tagOnly ItemObject, not for any ItemObject. (For a discussion of
the parameters, see TagOnlyHandle.)

FormSw.ToggleFlag: PROCEDURE [
sw: Window.Handle, index: CARDINAL,
flag: Formsw.Flag];

The procedure ToggleFlag toggles the flag of index's item.

FormSW. ToggleVisibility: PROCEDURE [sw: Window. Handle, index: CARDINAL];

The ToggleVisibility procedure changes the visibility of an item from visible to invisible.
It minimizes the necessary repainting when the item's visibility is changed. In addition,
the procedure deals properly with making the item invisible when it contains the current
selection or insertion point. (See the Selection interface for a discussion of the current
selection and insertion point.) sw is the form sub window containing the item, and index is
the index of the item in the subwindow's ItemDescriptor.

Formsw.VanillaMenuProc: Formsw.MenuProcType;

The VanillaMenuProc procedure is a MenuProcType for which BASE[hints] = NIL, implying
that no prompt menu will be available to the user.

FormSW.Wakeup: PROCEDURE [Window.Handle];

If the tool window is being made tiny, its sub windows do not need to keep state
information for display. A form subwindow can be told to recreate the display state (when
the window becomes big) by calling Wakeup. This is done automatically if using the Tool interface.

(See also Sleep.)

13-23

13 FormSW

13-24

14.1 Types

14

MsgSW

The MsgSW interface implements message subwindows. Message subwindows provide a
simple way of posting messages to the user. Typical tools have a message subwindow as
their first subwindow. See ExampleTool. mesa in Appendix A. A Message subwindow is
built on a String subwindow (see StringSW).

Msgsw.Severity: TYPE = {info, warning, fatal};

Every message subwindow has a Severity associated with it, which is the Severity of the
latest message sent to it by MsgSW.Post or MsgSw.PostAndLog if prefix is TRUE. Messages of
severity warning are prefaced by "Warning: It, and messages of severity fatal are prefaced
by "Fatal Error: ".

14.2 Constants and data objects

Msgsw.defaultOptions: TextSw.Options • [
access: append, menu: TRUE, split: TRUE, wrap: TRUE, scrollbar: TRUE,
flushTop: FALSE, flushBottom: FALSE];

defaultOptions are the default window options used in creating a message subwindow.

14.3 Signals and errors

Msgsw.Error: SIGNAL [code: MsgSw.ErrorCode];

Msgsw.ErrorCode: TYPE. {appendOnly, notAMsgSW, other};

appendOnly is raised by MsgSw.Create if options.access is not append.

notAMsgSW is raised when a client performs a MsgSW operation on a window that is not a
message subwindow.

14 1

14 MsgSW

14.4 Procedures

14-2

MsgSw.AppendString: userlnput.StringProcType;

The AppendString procedure appends the parameter string onto the latest message. This
is the procedure used for Userlnput.StringOut. The Severity associated with sw is set to
info. This procedure can raise Error[notAMsgSW].

Msgsw.Clear: PROCEDURE [sw: Window.Handle];

The Clear procedure erases the contents of the message subwindow. The Severity
associated with sw is set to info. This procedure can raise Error[notAMsgSW].

MsgSW.Create: PROCEDURE [
sw: Window.Handle, lines: CARDINAL +-1,
options: Textsw.Options +- Msgsw.defaultOptions];

The Create procedure creates a message subwindow from an ordinary sub window. The
lines parameter specifies the minimum number of lines that the sub window will keep in
its backing store before discarding the oldest line. The sub window height controls how
many lines will be visible. If the number of lines visible to the user is greater than lines,
then all the visible lines are kept in the backing store. When the options.access parameter
is anything but append, an Error is raised with a code of appendOnly. Subwindows
created by MsgSw.Create should be destroyed by MsgSw.Destroy, not by Textsw.Destroy.

Msgsw.Destroy: PROCEDURE [SW: Window.Handle];

The Destroy procedure destroys the backing store and transforms the message subwindow
into an ordinary subwindow. This procedure can raise Error[notAMsgSW).

Msgsw.GetSeverity: PROCEDURE [w: Window.Handle] RETURNS [severity: Msgsw.Severity];

The GetSeverity procedure returns the severity associated with the message subwindow
SW. This is either the severity of the last message sent to the subwindow or the severity set
by SetSeverity, whichever happened last. This procedure can raise Error[notAMsgSW).

Msgsw.lslt: PROCEDURE [SW: Window.Handle] RETURNS [yes: BOOLEAN];

The Islt procedure returns TRUE if and only if sw is a message sub window .

Msgsw.LastLine: PROCEDURE [SW: Window. Handle, ss: String.SubString);

The LastLine procedure fills in the parameter S5 with the base, offset, and length of the
current message. The client may want to copy ss and the string 5s.base, because this
information may change. This procedure can raise Error(notAMsgSW].

MsgSW.Post: PROCEDURE [
SW: Window.Handle, string: LONG STRING, severity: Msgsw.Severity +- info,

prefix: BOOLEAN +-TRUE, endOfMsg: BOOLEAN +-TRUE];

The Post procedure appends string onto the latest message. The severity of the message is
severity. If the prefix parameter is TRUE and the message is starting a new line, a short
string that depends on severity (info: ,nt, warning: "Warning: " or fatal: "Fatal Error: ")

Mesa Programmer's Manual 14

starts the line before the client message. The endOfMsg parameter set to TRUE delimits
the message without having to put an Ascii.CR in string. (See also PostAndLog.) This
procedure can raise Error[notAMsgSW].

MsgSw.PostAndLog: PROCEDURE [
SW: Window.Handle, string; LONG STRING, severity: Msgsw.Severity ~ info,
prefix: BOOLEAN ~ TRUE, endOfMsg: BOOLEAN ~ TRUE,logSW: Window.Handle ~ NIL];

The PostAndLog procedure acts like MsgSW.Post. In addition, the logSW parameter
enables the same message appearing in the message subwindow to be directed to another
subwindow for logging. If the value is NIL, the output is directed to the default Put window
and the tool's name is prefixed to the message. (See also Post.) This procedure can raise
Error[notAMsgSW] .

Msgsw.SetSeverity: PROCEDURE [
SW: Window.Handle, severity: Msgsw.Severity ~ info];

The SetSeverity procedure sets the severity associated with the message subwindow sw.
This procedure can raise Error[notAMsgSW].

14·3

14 MsgSW

14-4

15.1 Types

15

ScratchSW

The ScratchSW interface creates a subwindow that is backed by a scratch source; that is,
by a piece of virtual memory. It should be used when an editable window not backed by a
file is desired. An example of the use of ScratchSW is for the implementation of an empty
file window. (See also ScratchSoLirce.)

Scratchsw.Options: TYPE := Textsw.Options;

15.2 Constants and data objects

Scratchsw.defaultOptions: Scratchsw.Options = [
access: edit, menu: TRUE, split: TRUE, wrap: TRUE, scrollbar: TRUE,
flushTop: FALSE, flush Bottom: FALSE];

15.3 Signals and errors

None.

15.4 Procedures

Scratchsw.Create: PROCEDURE [
sw: Window.Handle, block: Environment.Block +- Environment.nuIlBlock,
extraRoom: CARDINAL +-0, expandable: BOOLEAN +- TRUE,
options: Scratchsw.Options +- Scratchsw.defaultOptions];

The Create procedure creates a scratch subwindow. sw is the ordinary window from which
the scratch subwindow is created. If sw is NIL. the signal windowlsNil is generated from
the Context interface; it is not caught by ScratchSW. block is the initialized storage that is
used to back the subwindow. extra Room is the amount of storage beyond the end of block
that the scratch subwindow can use. If expandable is FALSE and the scratch sUhwindow
runs out of room in the block, editing operations have no effect. If expandable is TRUE, the
scratch subwindow allocates another larger block when it runs out of room, copies the old
block into it, and deallocates the old block (see Scratch Source). In this case, the block must
have been allocated from MSegment.GetPages, and the block is dealloctated byScratchSw

15-1

15

15-2

ScratchSW

when the subwindow is destroyed. options indicates the initial value of the subwindow's
Options. Subwindows created by ScratchSW.Create should be destroyed by
Scratchsw.Destroy, not by TextSw.Destroy, since TextSw.Destroy is called from within
ScratchSW. Destroy.

Scratchsw.Destroy: PROCEDURE [SW: Window.Handle];

The Destroy procedure destroys a scratch subwindow that was created by Scratchsw.Create,
turning it back into an ordinary subwindow. If sw is NIL, then no errors or signals are
generated and no actions are performed.

scratchsw.lnfo: PROCEDURE [SW: Window.Handle]
RETURNS [block: Environment.Block, extraRoom: CARDINAL,
expandable: BOOLEAN, options: Scratchsw.Options];

The Info procedure returns the block backing the scratch subwindow, how much extra
room there is after the block, whether the block is expandable, and the current value of the
subwindow options. Ifsw is NIL, then the returned values are:

[block: Environment.nu"Block, extraRoom: 0,
expandable: FALSE, options: scratchsw.defaultOptions].

Scratchsw.lslt: PROCEDURE [SW: Window.Handle] RETURNS [yes: BOOLEAN];

The Islt procedure returns TRUE if the Handle is a scratch subwindow and FALSE otherwise.
Ifsw is NIL, then Scratchsw.lslt returns FALSE.

16.1 Types

16

StringSW

The StringSW interface provides the definitions and procedures to create and manipulate
text subwindows whose backing store is a LONG STRING. (See TextSW for more information.)

Stringsw.Options: TYPE = Textsw.Options;

16.2 Constants and data objects

Stringsw.defaultOptions: Scratchsw.Options = [
access: edit. menu: TRUE. split: TRUE, wrap: TRUE, scrollbar: TRUE,
flushTop: FALSE, flushBottom: FALSE];

defaultOptions are the default window options used in creating a string subwindow.

16.3 Signals and errors

Stringsw.DoesNotExist: SIGNAL;

The signal DoesNotExist is never raised. It is deleted when the interface is next changed.

16.4 Procedures

StringSw.Create: PROCEDURE [
sw: Window.Handle, s: LONG POINTER TO LONG STRING +- NIL,
options: Stringsw.Options +- Stringsw.defaultOptions,
expandable: BOOLEAN +-TRUE);

The Create procedure creates a string subwindow. expandable indicates whether the
string is automatica!ly expandable by the string window implementation. If s is NIL,
expandable is forced to be TRUE. If s t is NIL and expandable is TRUE or S is NIL, the
subwindow will allocate and manage a heap string for the backing store. Expandable
strings must be allocated from the system heap. If expandable is FALSE and s is not NIL, the
client is responsible for the storage management of the string. If expandable is FALSE and

16-1

16

16-2

StringSW

the string source runs out of room in the string, String.StringBoundsFault(ps] is raised.

Subwindows created by StringSw.Create should be destroyed using StringSw.Destroy, not

TextSw.Destroy, because StringSw.Destroy calls TextSw.Destroy.

StringSw.Destroy: PROCEDURE [SW: Window.Handle];

The Destroy procedure destroys a string subwindow created by StringSw.Create, turning it
back into an ordinary subwindow.

Stringsw.GetString: PROCEDURE [w: Window.Handle] RETURNS [s: LONG POINTER TO LONG STRING];

The GetString procedure returns the current backing string for a string subwindow.

StringSw.lnfo: PROCEDURE [SW: Window.Handle] RETURNS [

s: LONG POINTER TO LONG STRING, options: Stringsw.Options, expandable: BOOLEAN];

The Info procedure returns the current backing string for a string subwindow, whether
the string is expandable, and the current value of the subwindow options.

StringSw.lslt: PROCEDURE [SW: Window.Handle] RETURNS [yes: BOOLEAN];

The Islt procedure returns TRUE if the Handle is a string subwindow and FALSE otherwise.

17.1 Types

17

TextSW

The TextSW interface defines a comprehensive set of facilities for viewing text
independent of the source. It takes a client-created subwindow and text source, creates the
necessary data structures, and then provides appropriate procedures for viewing,
scrolling, and text selection. Throughout this chapter, a display region is either a
subwindow or one of its splits. Splits are horizontal subregions created by means of the
SplitMCR.

TextSW.Access: TYPE = TextSource.Access; -. {read. append. edit}

TextSW.Bounds: TYPE :I RECORD [from, to: TextSource.Position, delta: LONG INTEGER];

Textsw.lnvalidRegions: TYPE == LONG POINTER TO Textsw.lnvalidList;

Textsw.lnvalidList: TYPE :I RECORD [
length: CARDINAL,
seq: SEQUENCE maxLength: CARDINAL OF TextSw.Bounds];

A Textsw.lnvalidRegions is returned by the client procedure passed to
Textsw.ModifySource. It describes the regions in the source that have been modified so
that TextSW can update its display region accordingly. TextSw.Bounds describes a single
region where the source was modified. from and to are the positions in the source where
modifications were made, resulting in a change in length of delta in the source.

TextSw.OnOff: TYPE = {on, off};

TextSw.Options: TYPE = RECORD [
access: TextSw.Access, menu: BOOLEAN, split: BOOLEAN, wrap: BOOLEAN,
scrollbar: BOOLEAN, flushTop: BOOLEAN, flushBottom: BOOLEAN];

menu indicates whether to instantiate the standard text operations menu with the
subwindow at create time. split indicates whether to allow the subwindow to be divided
into an arbitrary number of splits or horizontal subregions. wrap indicates whether a line
too long to fit across the subwindow should be broken at a word boundary and continued
on the next line or be clipped at the subwindow boundary. scrollbar indicates whether the

17-1

17 TextSW

subwindow should have a vertical scrollbar. flushTop indicates whether the standard
border should be supplied at the top of the subwindow. flushBottom indicates whether the
standard border should be supplied at the bottom of the subwindow.

TextSw.SplitlnfoProcType: TYPE = PROCEDURE [
first, last: TextSource.PDsition. nLines: CARDINAL] RETURNS [BOOLEAN];

17.2 Constants and data objects

Textsw.defaultOptions: TextSw.Options = [
access: read, menu: TRUE, split: TRUE, wrap: TRUE, scroll bar: TRUE,
flushTop: FALSE, flushBottom: FALSE];

17.3 Signals and errors

TextSw.DoesNotExist: SIGNAL;

17.4 Procedures

17-2

TextSw.Adj ust: ToolWindow .Adj ustProcType;

The Adjust procedure is called when a text subwindow is moved or sized.

TextSw.BlinkingCaret: PROCEDURE [sw: Window.Handle, state: TextSw.OnOff);

The BlinkingCaret procedure enables or disables the blinking caret for an append or edit
text sub window .

TextSW.Create:PRoCEDURE [
sw: Window.Handle, source: TextSource.Handle, sink: TextSink.Handle E-NIL.
options: TextSw.Options E-Textsw.defaultOptions. position: TextSource.Position E- 0,
allowTypeln: BOOLEAN E-TRUE. resetLengthOnNewSession: BOOLEAN E-FALSE];

The Create procedure creates a text subwindow from an ordinary subwindow. position
indicates the initial character position in source that should be displayed at the top of the
subwindow. Ifsink is NIL, an ASCII sink is used as a sink.

TextSw.DeleteText: PROCEDURE [
sw: Window.Handle, pos: TextSource.Position, count: LONG CARDINAL,
keepTrash: BOOLEAN E- TRUE];

The DeleteText procedure allows the client to alter the contents of the text source
currently being displayed in the text subwindow by deleting count positions starting at
pos. keepTrash determines whether the deleted text is placed in the trashbin. (See the
Selection interface for documentation of the trashbin.) The text subwindow and source
must have either edit or append access to use this operation correctly.

TextSw.Destroy: PROCEDURE [sw: Window.Handle];

The Destroy procedure destroys a text sub window , freeing all data structures. However.
the client-supplied source is not destroyed. Attempting to destroy a non-text subwindow

Mesa Programmer's Manual 17

results in no action. This procedure should not be used to destroy "differentiated"
subwindows (subwindows created by interfaces such as FileSW or StringSW) because
auxiliary data structures may not be recorded in the subwindow's context object and hence
would be lost. An example of such a data structure is the backing string for a StringSW
when it is allocated by Tajo rather than by the client. Such subwindows should be
destroyed by calling the appropriate routine in the interface for that subwindow type.

TextSw.DoEditAction:PROCEDURE [
sw: Window.Handle. action: TextSource.EditAction] RETURNS [delta: LONG INTEGER];

The DoEditAction procedure deletes characters in the source according to action. The
characters are deleted starting at and preceding the current insertion point. delta is
always non-negative.

TextSw.EnumerateSecondarySelections: PROCEDURE [
SW: Window.Handle. proc: PROCEDURE [TextData.Selection] RETURNS [BOOLEAN));

The EnumerateSecondarySelections procedure enumerates the secondary selections of a
text subwindow, calling proc for each one. These will have been defined by previous
SecondarySelectionFromPosition and SetSecondarySelection calls.

Textsw.EnumerateSplits: PROCEDURE [

SW: Window.Handle. proc: TextSw.SplitlnfoProcType];

The EnumerateSplits procedure enumerates the splits of a text subwindow. Note that a
text subwindow always has at least one split.

TextSw.FindMCR: Menu.MCRType;

The FindMCR procedure implements the Find command of the TextOps menu. It uses the
current selection as the text to find. If the current selection is contained in this display
region, it searches from that position; otherwise, it uses the current top of the region. This
procedure allows clients to construct their own menus.

TextSw.ForceOutput: PROCEDURE [SW: Window.Handle];

All output to text sub windows is buffered for efficiency. The ForceOutput procedure
ensures that all pending output has made it to the source.

TextSw.GetEOF: PROCEDURE [sw: Window.Handle] RETURNS [TextSource.Position);

The GetEOF procedure obtains the "end-of-file" position of a text subwindow.

Textsw.Getlnsertion: PROCEDURE [SW: Window.Handle] RETURNS [TextSource.Positionl;

The Getlnsertion procedure obtains the insertion position of a text subwindow.

TextSw.GetOptions: PROCEDURE [

SW: Window.Handle] RETURNS [options: Textsw.Options);

The GetOptions procedure returns the current options setting for a text subwindow.

17-3

17

17-4

TextSW

TextSW.GetPosition: PROCEDURE [
SW: Window.Handle, line: CARDINAL] RETURNS [TextSource.Positionj;

The GetPosition procedure determines the position of the first character on line.

Textsw.GetSelection: PROCEDURE [
SW: Window.Handle] RETURNS [left, right: TextSource.Position);

The GetSelection procedure obtains the selection position of a text subwindow.

TextSW.GetSource: PROCEDURE [
SW: Window. Handle] RETURNS [source: TextSource.Handlel;

The GetSource procedure returns the text source backing a text subwindow.

Textsw.lnsertBlock: PROCEDURE [
SW: Window.Handle. block: Environment.Block.
pos: TextSource.Position +- TextSource.nuIlPosition);

The InsertBlock procedure allows the client to alter the contents of the text source
currently being displayed in the text subwindow by inserting the block block at position
pos. If pos is nul/Position, the block is inserted at the current insertion position. The text
sub window and source must have either edit or append access to correctly use this
operation.

Textsw.lnsertChar: PROCEDURE [
SW: Window.Handle, char: CHARACTER.
pos: TextSource.Position +- TextSource.nuIlPosition];

The InsertChar procedure allows the client to alter the contents of the text source currently
being displayed in the text subwindow by inserting the character char at position pos. If
pos is nul/Position, the character is inserted at the current insertion position. The text
subwindow and source must have either edit or append access to correctly use this
operation.

Textsw.lnsertString: PROCEDURE [
SW: Window.Handle, s: LONG STRING,
pos: TextSource.Position +- TextSource.nuIlPosition);

The InsertString procedure allows the client to alter the contents of the text source
currently being displayed in the text subwindow by inserting the string s at position pos.
If pos is nullPosition, the string is inserted at the current insertion position. The text
subwindow and source must have either edit or append access to correctly use this
operation.

Textsw.lnsertSubString: PROCEDURE [
SW: Window.Handle, ss: String.SubString,
pos: TextSource.Position +- TextSource.nuIlPosition);

The InsertSubString procedure allows the client to alter the contents of the text source
currently being displayed in the text subwindow by inserting the substring ss at position
pos. If pos is nullPosition, the substring is inserted at the current insertion position. The

Mesa Programmer's Manual 17

text subwindow and source must have either edit or append access to correctly use this
operation.

TextSw.lslt: PROCEDURE [SW: Window.Handle] RETURNS [yes: BOOLEAN];

The Islt procedure returns TRUE if the window is a text subwindow, and FALSE otherwise.

TextSw.JumpEndMCR: Menu.MCRType;

The JumpEndMCR procedure implements the J.End function of the TextOps menu. It
positions the display region with the last line of the source at the top.

TextSw.JumplnsertionMCR: Menu.MCRType;

The JumplnsertionMCR procedure implements the J.lnsert function of the TextOps menu.
It positions the display region with the line containing the insertion position at the top.

TextSw.JumpSelectionMCR: Menu.MCRType;

The JumpSelectionMCR procedure implements the J.Select function of the TextOps menu.
If the subwindow contains the current selection, it positions the display region with the
line containing the current selection at the top.

TextSw.JumpTopMCR: Menu.MCRType;

The JumpTopMCR procedure implements the J.First function of the TextOps menu. It
positions the display region with the first line ofthe source at the top.

TextSw.ModifySource:PROCEDURE [
sw: window.Handle,
proc: PROCEDURE [Window.Handle, TextSource.Handle, LONG POINTER]

RETURNS [invalidRegions: Textsw.lnvalidRegions],
data: LONG POINTER];

The ModifySource procedure is provided for clients who wish to batch several changes to a
text subwindow's source. ModifySource acquires the TextSW monitor and then calls proc
with SW, its source, and whatever data was passed in to make these changes. proc is
expected to return a description of the regions in the source that were modified in
invalidRegions. The text subwindow updates its display region according to this
information.

Textsw.PositionFromPlace: PROCEDURE [
sw: Window.Handle, place: Window.Place] RETURNS [position: TextSource.Position];

The PositionFromPlace procedure enables clients to resolve window coordinates to the
nearest text source position. It always returns a valid position.

TextSW.PositionlsVisible: PROCEDURE [
SW: Window.Handle, position: TextSource.Position] RETURNS [BOOLEAN];

The PositionlsVisible procedure returns TRUE if position position of the source is currently
being displayed. It does not take other windows overlapping sw into account.

17 -5

17

17-6

TedSW

TextSW.PositionMCR: Menu.MCRType;

The PositionMCR procedure implements the Position function of the TextOps menu. It
interprets the current selection as a number and positions the display region that contains
the cursor with the line containing the current selection at the top.

TextSW.PositionToLine: PROCEDURE [SW: Window.Handle. position: TextSource.Position];

The PositionToLine procedure positions the top of a text subwindow to the first line after
the specified position. However, if the position corresponds to the first character of a line,
that line is displayed. (Compare this procedure with SetPosition.)

TextSw.RemoveAIiSecondarySelections: PROCEDURE [SW: Window.Handle];

The RemoveAIiSecondarySelections procedure removes each secondary selection in a text
subwindow.

TextSw.RemoveSecondarySelection: PROCEDURE [
sw: Window.Handle. s: TextData.Selection];

The RemoveSecondarySelection procedure removes a specified secondary selection.

TextSw.ReplaceText: PROCEDURE [
SW: Window.Handle. pos: TextSource.Position, count: LONG CARDINAL.
block: Environment.Block. keepTrash: BOOLEAN +- TRUE];

The ReplaceText procedure allows the client to alter the contents of the text source
currently being displayed in sw by replacing the count characters beginning at pos with
block. keepTrash determines whether the deleted text is placed in the trashbin. (See the
Selection interface for documentation on the trashbin.) The text subwindow and source
must have edit access to use this operation correctly.

Textsw.SecondarySelectionFromPosition: PROCEDURE [
SW: Window.Handle. position: TextSource.Position] RETURNS [s: TextData.Selection];

The SecondarySelectionFromPosition procedure returns the secondary selection in the
window at position position. If there is no secondary selection there, NIL is returned.

TextSw.SetEOF: PROCEDURE [SW: Window. Handle. eof: TextSource.Position];

The SetEOF procedure alters the "end-of-file" position of the source in the subwindow.

TextSw.Setlnsertion: PROCEDURE [SW: Window.Handle, position: TextSource.Position];

The Setlnsertion procedure alters the insertion position of the source in the subwindow.

TextSw.SetOptions: PROCEDURE [SW: Window.Handle. options: TextSw.Options];

The SetOptions procedure sets the current options for a text subwindow.

TextSw.SetPosition: PROCEDURE [SW: Window.Handle. position: TextSource.Position);

Mesa Programmer's Manual 17

The SetPosition procedure positions the top of a text subwindow to the line containing the
character at the specified position. (Compare this procedure with PositionToLine.) If the
position is not visible because of a long wrapped line, the subwindow may scroll a line at a
time until it is visible.

Textsw.SetSecondarySelection: PROCEDURE [
sw: Window.Handle.left. right: TextSource.Position. mode: TextData.SelectionMode]
RETURNS [s: TextData.Selection];

The SetSecondarySelection procedure defines a secondary selection starting at left and
ending at right. The secondary selection is highlighted according to mode.

TextSw.SetSelection: PROCEDURE [
SW: Window.Handle.left. right: TextSource.Position];

The SetSelection procedure alters the selection position of the subwindow.

TextSw.SetSource: PROCEDURE [
SW: Window.Handle. source: TextSource.Handle. position: TextSource.Position +- O.
reset: BOOLEAN +- TRUE];

The SetSource procedure changes the text source for a text subwindow. reset indicates
whether the current display/source correspondence is valid or should be rebuilt.

TextSw.Sleep: PROCEDURE [SW: Window.Handle];

The Sleep procedure requests that the text subwindow package minimize its resource
requirements by destroying all state related to text display.

TextSw.SplitMCR: Menu.MCRType;

The SplitMCR procedure implements the Split function of the TextOps menu. It splits the
display region in two.

TextSw.SplitView: PROCEDURE [
SW: Window. Handle. key: TextSw.KeyName. y: INTEGER];

The Splitview procedure splits a text subwindow y pixels down from the top of sw. key is
an ignored obsolete parameter. This procedure, used internally in building the menu and
split view facilities, is potentially useful for constructing client menu routines.

Textsw.Update: PROCEDURE [
sw: Window.Handle. from. to: TextSource.Position. charSDeleted: BOOLEAN +- TRUE];

The Update procedure is called when the display/source correspondence is invalid. The
characters between from and to are redisplayed to reflect any changes in the source. If any
characters were deleted, charsDeleted must be set TRUE because more computation may be
required to reestablish the display/source correspondence. This operation, as well as the
next two update procedures, are intended for more experienced TextSW users who wish to
create their own editors.

17-7

17

17-8

TextSW

Textsw.UpdateRange: PROCEDURE [
SW: Window. Handle, from, to: TextSource.Position, delta: LONG INTEGER,

charsDeleted: BOOLEAN +-TRUE];

The UpdateRange procedure is called to reestablish the display/source correspondence
after changes have been made to the source. The modifications were between from and to,

and resulted in a change delta in the total number of characters. If any characters were
deleted, charsDeleted must be set TRUE because more computation may be required to
reestablish the display/source correspondence.

TextSw.UpdateToEnd: PROCEDURE [
sw: Window.Handle, from: TextSource.Position, charsDeleted: BOOLEAN +-TRUE];

The UpdateToEnd procedure is called when the display/source correspondance is invalid.
The characters after from will be redisplayed to reflect any changes in the source. If any
characters were deleted, charsDeleted must be set TRUE because more computation may be
required to reestablish the display/source correspondence.

Textsw.Wakeup: PROCEDURE [sw: Window.Handle];

The Wakeup procedure requests that the text subwindow package recompute all its
display state that it discarded when Sleep was called.

TextSw.WrapMCR: Menu.MCRType;

The WrapMCR procedure implements the Wrap function of the TextOps menu. It toggles
the wrap BOOLEAN in the text subwindow options record.

18.1 Types

18

TTYSW

The TTYSW interface allows for traditional teletype interaction. Other Tajo user­
interaction facilities are based on the notification concept. Because many programs are
already written using a teletype-like control structure, the teletype subwindow is
available to clients for upward compatibility.

TTYSWs are built on the TTY abstraction that is available as a common software interface.
See the TTY section of the Pilot Programmer's Manual for details on some of the following.

None.

18.2 Constants and data objects

TTYSw.defaultOptions: TextSw.Options ,. [
access: append, menu: TRUE, split: TRUE, wrap: TRUE, scrollbar: TRUE,
flushTop: FALSE, flushBottom: FALSE];

18.3 Signals and errors

TTYSw.Error: SIGNAL [code: TTYSw.ErrorCode];

TTysw.ErrorCode: TYPE,. {notATTYSW, badTTYHandle, other};

notATTYSW a passed-in subwindow is not a TTY subwindow.

badTTYHandle an obsolete error code, never used.

other an obsolete error code, never used.

18-1

18 TTYSW

TTYSw.LineOverflow: SIGNAL [S: LONG STRING] RETURNS [ns: LONG STRING];

TTYsw.Rubout: SIGNAL;

The procedures below that read strings from the user are implemented by calls on similar
functions from the TTY interface. If any of those routines raise LineOverflow or Rubout,
that signal is mapped into the corresponding one from the TTYSW interface.

18.4 Procedures

18-2

TTYSw.AppendChar: PROCEDURE [sw: Window.Handle, char: CHARACTER];

The AppendChar procedure can be used for output to a teletype subwindow. (See also
AppendString and the Put interface.) This procedure can raise TTYSw.Error[notATIVSW).

TTYSw.AppendString: Userlnput.StringProcType;

The AppendString procedure can be used to produce formatted output to a teletype
subwindow. (See also the Put interface.) This procedure can raise
TTYSw.Error[notA TIVSW].

TTYSw.Create: PROCEDURE [
sw: Window.Handle, backupFile: LONG STRING. s: Stream.Handle +- NIL.
newFile: BOOLEAN +- TRUE. options: TextSw.Options +- TTYSw.defaultOptions.
resetlengthOnNewSession: BOOLEAN +- FALSE];

The Create procedure creates a teletype subwindow from an ordinary sub window. The
backupFile parameter specifies the name of the file on which the teletype subwindow
writes. However, if s is not NIL, s is assumed to be the stream handle on the file. When
newFile is TRUE, the length of the file is set to zero at create time; otherwise, the existing
length is used. When the teletype subwindow is created, the client must FORK a process (the
input process) that plans to do input (Le., a procedure called directly from the Notifier
cannot do input from a TTY subwindow). This process should be able to handle the signals
LineOverflowand Rubout and the errors Error. ABORTED, and String.lnvalidNumber.

TTysw.Destroy: PROCEDURE [sw: Window.Handle];

The Destroy procedure destroys teletype subwindow attributes of the subwindow.
However, before this procedure is called the input process should be aborted. (See also
DestroyFromBackgroundProcess.)

TTYSw.DestroyFromBackgroundProcess: PROCEDURE [sw: Window.Handle];

The DestroyFromBackgroundProcess procedure destroys the teletype sub window from
within the input process. The client should call this procedure as it returns from the Input
process. (See also Destroy.)

Mesa Programmer's Manual 18

TTYSw.EndOf: PROCEDURE [SW: Window.Handle] RETURNS [yes: BOOLEAN];

If characters have been typed in but not yet seen by the client program, TTYSw.EndOf

returns FALSE; otherwise it returns TRUE. This is equivalent to testing that the number
returned from CharsAvailable is O.

TTYSW.GetTIVHandle: PROCEDURE [SW: Window.Handle] RETURNS [tty: TTY.Handle];

The GetTIVHandle procedure returns the TTY.Handle associated with SW. If there is no
corresponding TTY.Handle, TTY.nuliHandle is returned.

TTYSw.lslt: PROCEDURE [SW: Window.Handle] RETURNS [yes: BOOLEAN];

The Islt procedure returns TRUE if the subwindow is a teletype subwindow and FALSE
otherwise.

18.5 Procedures mapped to calls on TIV

The rest of the procedures in this interface are implemented by converting the subwindow
passed into them into a TTY.Handle and calling the corresponding routine from the TTY
interface. Any of them may raise TTYSw.Error[notATIVSW). TTY. Rubout and
TTY. LineOverllow are mapped into the corresponding signals from the TTYSW interface. The
type of each of the following procedures can be determined by replacing the "h:
TTY.Handle" argument with .. SW: Window. Handle". The one exception is that the second
argument of TTYSw.PutBackChar is "char: CHARACTER" and the second argument of
TTY.PutBackChar is "c: CHARACTER". All of these procedures will be withdrawn in a future
release. You are advised to convert your calls to be directly on the TTY interface.

BackingStream
CharsAvailable
GetChar
GetDecimal

GetEcho
GetEditedString
Getld

GetLine

GetLongDecimal
GetLongNumber
GetLongOctal
GetNumber

GetOctal

GetPassword
GetString
Newline
PopAlternatelnputStreams

PushAlternatel nputStrea ms
PutBackChar

RemoveCharacter
RemoveCharacters

SetBackingSize
SetEcho

18-3

18 TTYSW

18-4

19.1 Types

19

Put

The Put interface provides output procedures for windows. All the procedures in the Put
interface take a Window.Handle, a piece of data to be formatted and. where appropriate, a
format specification. See the documentation on the Format interface for comments about
the actual output format of these procedures.

put.NetFormat: TYPE = Format.NetFormat;

19.2 Constants and data objects

None.

19.3 Signals and errors

None.

19.4 Procedures

In all the following procedures, the output is directed to the userlnput.StringOut procedure
associated with the Window.Handle. If the Window.Handle is NIL, the output is directed to the
default output sink.

put.Blank, put.Blanks: PROCEDURE [h: Window.Handle +- NIL, n: CARDINAL +-1];

The Blank procedure invokes Format.Blank.

Put.Block: PROCEDURE [h: Window.Handle +- NIL, block: Environment.Block];

The Block procedure invokes Format. Block.

put.Char: PROCEDURE [h: Window.Handle +- NIL, char: CHARACTER];

The Char procedure invokes Format.Char.

19-1

19

19-2

Put

Put.CR: PROCEDURE (h: Window.Handle +- NIL];

The CR procedure invokes Format.CR.

put.CurrentSelection: PROCEDURE [h: Window.Handle +- NIL];

The CurrentSelection procedure passes the string that is the current selection to the
output procedure of the Userlnput.StringOut procedure associated with the Window.Handle.
If the Window.Handle is NIL, the output is directed to the default output sink.

put.Date: PROCEDURE [

h: Window.Handle +- NIL, pt: Time.Packed.

format: Format.DateFormat +- noSeconds1;

The Date procedure invokes Format. Date.

put.Decimal: PROCEDURE [h: Window.Handle +- NIL, n: INTEGER];

The Decimal procedure invokes Format. Decimal.

put.HostNumber: PROCEDURE [
h: Window.Handle +- NIL, host: System.HostNumber, format: Format.NetFormat +- octal];

The HostNumber procedure invokes Format.HostNumber.

put.Line: PROCEDURE [h: Window.Handle +- NIL, S: LONG STRING];

The Line procedure invokes Format. Line.

put.LongDecimal: PROCEDURE [h: Window.Handle +- NIL, n: LONG INTEGER];

The LongDecimal procedure invokes Format. LongDeci mal.

put.LongNumber: PROCEDURE [
h: Window.Handle +- NIL. n: LONG UNSPECIFIED, format: Format.NumberFormat);

The LongNumber procedure invokes Format.LongNumber.

put.LongOctal: PROCEDURE [h: Window.Handle +- NIL, n: LONG UNSPECIFIED];

The LongOctal procedure invokes Format. LongOctal.

put.LongString: PROCEDURE [h: Window.Handle +- NIL. s: LONG STRING];

The LongString procedure invokes Format.LongString.

put.LongSubString: PROCEDURE [h: Window.Handle +- NIL, 5S: String.SubString];

The LongSubString procedure invokes Format.LongSubString.

Mesa Programmer's Manual

put.NetworkAddress: PROCEDURE [
h: Window. Handle Eo- NIL, address: System.NetworkAddress,
format: Format.NetFormat Eo- octal];

The NetworkAddress procedure invokes Format. NetworkAddress.

put.NetworkNumber: PROCEDURE [
h: Window.Handle Eo- NIL, networkNumber: System.NetworkNumber,
format: Format.NetFormat];

The NetworkNumber procedure invokes Format. NetworkNumber.

put.Number: PROCEDURE [
h: Window.Handle Eo- NIL, n: UNSPECIFIED, format: Format.NumberFormat];

The Number procedure invokes Format.Number.

put.Octal: PROCEDURE [h: Window.Handle Eo- NIL, n: UNSPECIFIED];

The Octal procedure invokes Format.Octal.

Put.SocketNumber: PROCEDURE [
h: Window.Handle Eo- NIL, socketNumber: System.SocketNumber,
format: Format. NetFormat];

The SocketNumber procedure invokes Format.SocketNumber.

put.SubString: PROCEDURE [h: Window.Handle Eo- NIL,S: String.SubString);

The SubString procedure invokes Format.SubString.

Put. Text: PROCEDURE [h: Window.Handle Eo- NIL, s: LONG STRING];

19

The Text procedure invokes Format. Text. [Text is not String because it causes a name conflict with the

interface named String. J

19-3

19 Put

19-4

20.1 Types

20

Tool

The Tool interface permits tool writers to use the Tajo user interface mechanism without
worrying about the details of invocation. It reduces to a minimum the knowledge the
client needs of Tajo's more basic levels. Refer to the ExampleTool in Appendix A for a tool
that uses the Tool interface.

Tool.MakeSWsProc: TYPE = PROCEDURE [window: Window. Handle];

At various points, depending on the initial state of the tool and user actions, Tajo calls on
the MakeSWsProc procedure supplied to Create to let the client create subwindows and
menus.

Tool.State: TYPE = {inactive, tiny, active, default};

Tool.SWProc: TYPE = PROCEDURE [sw: Window.Handle];

Tool.SWType: TYPE = MACHINE DEPENDENT{ vanilla(o), predefi ned(376B), last(377B)};

The Tool interface manages client-defined subwindow types just as it manages the
predefined subwindow types: Form, File, Message, String, and TTY. If a client wants to
register a subwindow type that would use the SimpleAdjustProc, the NopSleepProc, and
the NopWakeupProc, it can instead use a Tool.SWType of vanilla.

20.2 Constants and data objects

Tool.DefaultHeight: INTEGER = TooIWindow.nullBox.dims.h;

20.3 Signals and errors

Tool.Error: SIGNAL [code: TooI.ErrorCode];

Tool.ErrorCode: TYPE = {
notATool, unknownSWType, swNotFound, invalidWindow. invalidParameters,
other};

20·1

20 Tool

invalidWindow can be raised by any proccdure that takes a Window.Handle
argument, if the associated window is not a valid tool window.

notA Tool can be raised by any procedure that takes a Window.Handle
argumcnt, ifthc associated window was not created by Tool.Create.

unknownSWType can be raised by any procedure that takes a Tool.SWType argument.

20.4 Procedures

20-2

Tool.AddThisSW: PROCEDURE [
window: Window.Handle, sw: Window.Handle,
swType: Tool.SWType +- predefined, nextSW: Window.Handle +- NIL,
h: INTEGER +- Tool.DefaultHeight];

The AddThisSW procedure allows clients that use methods other than Tool procedures to
create subwindows for communicating these methods to the Tool interface. The Tool
interface inserts sw above the nextSW subwindow, and the bottom subwindow is grown or
shrunk to accommodate the new subwindow. [Warning: Usually the Create call hasn't returned

when the MakeSWsProc procedure is called. The Window.Handle variable into which the client assigns the

value returned from Create is uninitialized. Thus, the client should not reference this variable in its

MakeSWsProc procedure. Instead, the client should use the window parameter passed to the

MakeSWsProc procedure.)

Tool.Create: PROCEDURE [
name: LONG STRING, makeSWsProc: Tool.MakeSWsProc,
initialState: Tool.State +- default,
clientTransition: ToolWindow. TransitionProcType +- NIL,
movableBoundaries: BOOLEAN +- TRUE,
initialBox: Window. Box +-TooIWindow.nuilBox,
cmSection, tinyName1, tinyName2: LONG STRING +- NIL,
named: BOOLEAN +- TRUE)
RETURNS [window: Window.Handle];

The Create procedure creates a tool. The name parameter is the string that appears in a
tool's name stripe if the named parameter is TRUE; the string used in the inactive menu is
derived from this string. The parameters tiny1 and tiny2 specify both parts of the tiny
name used when the tool is made tiny. If these parameters are NIL, the tiny name is derived
from the name parameter. cmSection specifies the name of the section in the User. em
that contains the symbiote menu, initial state, tiny place, and initial window box. When
the initialState is default. the tool assumes a predetermined state, depending on how it is
created. The tool is initialized to be active when loaded while the user is in Tajo, because
the user will probably want to use it right away. If the clientTransition procedure is not NIL,
it is called before the tool is about to change state (e.g., before calling MakeSWsProc, see
below) and before anything is done to the data managed by the Tool interface. The one
exception to this ordering rule is that Formsw.FreeAllltems is called for each FormSW in the
tool when the tool is going inactive before the client's transition procedure is called. It is
common for a client's transition procedure to deallocate a record containing data that the
Formsw.FreeAliltems procedure references. Thus, the data must be referenced before it goes
away. [lfthe client doesn't like being called in this order, it could set its own procedure to be the window­

transition procedure that could call Tool.Transition. This could be important if the client has a process that is

updating things in a form subwindow.) When the movableBoundaries parameter is TRUE, the user

Mesa Programmer's Manual 20

may select the boundary line between subwindows and reposition it. The initialBox
parameter can be used to specify the tool box (bitmap relative). A value of
ToolWindow.nullBox lets Tajo assign the box from the next available box slot.

Tool.DeleteThisSW: PROCEDURE [sw: Window.Handle];

The DeleteThisSW procedure removes the subwindow sw from its tool window and
distributes the window space among the remaining subwindows of the tool. The
subwindow will not be deleted if it is the only subwindow in the tool. Clients should first
free all menus and FormSW items specific to sw. Menus should be destroyed by
Menu.Uninstantiate followed by Menu.Destroy. FormSW items should be destroyed by
Formsw.FreeAllltems. The space that was taken by sw will be given to the bottom
subwindow of the tool.

Tool.Destroy: PROCEDURE [window: Window.Handle);

The Destroy procedure is used to destroy a tool window created by the Tool interface. It
may also be used for removing a subwindow of the tool. This procedure also calls the
client-transition procedure supplied to Tool.Create with a new Tool.State of inactive before
the tool is destroyed. Ifwindow is a subwindow, its associated data structures are cleaned
up as follows: normally, the client should destroy anything that it creates, such as any
private data, before a tool goes inactive. The tool mechanism relieves the client from
having to destroy subwindows and menus that were created in a standard way. In
particular, menus should be created by a call to Menu.Make; FormSw.ltemDescriptors
should be created by a call to Formsw.AllocateltemDescriptor; FormSw.ltemObjects should
be created by calls to FormSW. *Item procedures.

Tool.DestroySW: PROCEDURE [window: Window.Handle);

The DestroySW procedure is not currently implemented.

Tool.lnfo: PROCEDURE [window: Window.Handle] RETURNS [
name, cmSection: LONG STRING, makeSWsProc: Tool.MakeSWsProc.
clientTransition: ToolWindow. TransitionProcType,
movableBoundaries: BOOLEAN];

The Info procedure returns the values of certain parameters supplied to Tool.Create. The
client should not modify name or cmSection, as these values may become dangling
references when the tool is destroyed.

Tool.l5lt: PROCEDURE [window: Window.Handle] RETURNS [BOOLEAN);

The Islt procedure returns TRUE if window was created by Tool.Create and FALSE otherwise.

Tool.MakeClientSW: PROCEDURE [
window: Window.Handle, clientProc: PROCEDURE [sw: Window.Handle,
clientData: LONG POINTER), clientData: LONG POINTER,
swType: Tool.SWType, h: INTEGER Eo- Tool.DefaultHeight]
RETURNS [Sw:Window.Handle];

The MakeClientSW procedure allows clients to create their own subwindow types. The
clientProc is the client's procedure that will create the subwindow. The client passes
dientData to the Tool interface, which in turn is passed to the c1ientProc procedure. The

20-3

20

20-4

Tool

swType is obtained from Tool. RegisterSWType. The h parameter is the new subwindow's
initial height.

Tool.MakeDefaultSWs: PROCEDURE [
window: Window.Handle, messageLines: CARDINAL ~ 0,
formProc: Formsw.C1ientltemsProcType ~ NIL.
formHeight: CARDINAL ~ Tool.DefaultHeight, logName: LONG STRING ~ NIL]
RETURNS [msgSW, formSW, logSW: Window.Handle];

The MakeDefaultSWs procedure creates a message subwindow, a form subwindow, and a
log file subwindow as subwindows of window. If message Lines is 0, there will be no
message subwindow. IfformProc is NIL, there will be no form subwindow. IflogName is NIL,
there will be no file subwindow.

Tool.MakeFileSW: PROCEDURE [
window: Window.Handle, name: LONG STRING, access: FileSw.Access ~ append,
h: INTEGER ~ Tool.DefaultHeight, allowTypeln: BOOLEAN ~ TRUE,
resetLengthOnNewSession: BOOLEAN ~ FALSE.
resetLengthOnActivate: BOOLEAN ~ FALSE]
RETURNS [sw: Window.Handle];

The MakeFileSW procedure is usually called from a MakeSWsProc to create a file
subwindow. (See the FileSW interface for details on file subwindows.) This procedure may
raise TextSource.Error[fi leNameError] if access is read and the file is not found, or if the file
cannot be acquired. The BOOLEAN parameter allowTypeln specifies whether the log accepts
type-in. The BOOLEAN parameter resetLengthOnNewSession specifies whether the length
of the file is set to zero at the start of a new debugging session. resetLengthOnActivate
specifies whether the length of the file is set to zero when the tool is activated.

Tool.MakeFormSW: PROCEDURE [
window: Window.Handle, formProc: Formsw.ClientltemsProcType,
options: Formsw.Options ~ [], h: INTEGER ~Tool.DefaultHeight,
zone: UNCOUNTED ZONE ~ NIL]
RETURNS [sw: Window.Handle];

The MakeFormSW procedure is usually called from a MakeSWsProc to create a form
subwindow. (See the FormSW interface for details on form subwindows.) To take
advantage of automatic tool deallocation, FormSw.ltemDescriptors should be created by a
call to FormSw.AllocateltemDescriptor and FormSw.ltemObjects should be created by calls
to FormSW. *Item procedures. The zone parameter is passed to FormSW when the FormSW
items are allocated.

Tool.MakeMsgSW: PROCEDURE [
window: Window.Handle, lines: CARDINAL ~ 1, h: INTEGER ~Tool.DefaultHeight] RETURNS
[sw: Window.Handle];

. The MakeMsgSW procedure is usually called from a MakeSWsProc to create a message
subwindow. (See the MsgSW interface for details on message subwindows.)

Mesa Pr'ogrammer's Manual

TOol.MakeStringSW: PROCEDURE [
window: Window.Handle. s: LONG POINTER TO LONG STRING ~ NIL.
access: TextSW.Access ~append. h: INTEGER ~Tool.DefaultHeight.
expandable: BOOLEAN ~ FALSE]
RETURNS [sw: Window.Handle];

20

The MakeStringSW procedure is usually called from a MakeSWsProc to create a string
subwindow. (See the StringSW interface for details on string subwindows.)

Tool.MakeTextSW: PROCEDURE [
window: Window.Handle. source: TextSource.Handle, sink: TextSink.Handle ~ NIL.
options: Textsw.Options ~ Textsw.defaultOptions.
position: TextSource.Position ~ O. ailowTypeln: BOOLEAN ~ TRUE]
RETURNS [sw: Window.Handle];

The MakeTextSW procedure is usually called from a MakeSWsProc to create a text
subwindow. (See the TextSW interface for details on text subwindows.)

Tool.MakeTIVSW: PROCEDURE [
window: Window.Handle. name: LONG STRING. h: INTEGER ~ Tool.DefaultHeight.
resetLengthOnNewSession: BOOLEAN ~ FALSE]
RETURNS [sw: Window.Handle];

The MakeTIVSW procedure is usually called from a MakeSWsProc to create a TTY
subwindow. (See the TIVSW interface for details on TTY subwindows.)

Tool.NopSleepProc: Tool.SWProc;

The NopSleepProc procedure is provided for those who wish to register a new Tool.SWType;
it does nothing when called.

Tool.NopWakeupProc: Tool.SWProc;

The NopWakeupProc procedure is provided for those who wish to register a new
Tool.SWType; it does nothing when called.

Tool.RegisterSWType: PROCEDURE [
adjust: Toolwindow.AdjustProcType ~ Tool.SimpleAdjustProc,
sleep: ToolWindow.SWProc ~ Tool.NopSleepProc,
wakeup: ToolWindow.SWProc ~ Tool.NopWakeupProc)
RETURNS [uniqueSWType: Tool.SWType);

The RegisterSWType procedure registers a client-defined subwindow type with the Tool
interface. The adjust procedure is called whenever the user moves the subwindow or
changes the subwindow size. The sleep procedure is called whenever the window in which
the sub window lives becomes tiny. The subwindow is then expected to throwaway any
data that it uses only to display its contents. The wakeup procedure undoes what sleep did
when the tool becomes active again. If a client wants to register a sub window type that
would use the SimpleAdjustProc, the NopSleepProc, and the NopWakeupProc, it can
instead use a Tool.SWType of vanilla.

20-5

20

20-6

Tool

Tool.SimpleAdjustProc: TOoIWindow.AdjustProcType;

The SimpleAdjustProc is a null procedure. If no ToolWindow.AdjustProcType is passed to
RegisterSWType, the SimpleAdjustProc is used.

Tool.SwapSWs: PROCEDURE [
window, oldSW, newSW: Window.Handle, newType: Tool.SWType predefined]
RETURNS [oldType: Tool.SWType);

The SwapSWs procedure switches one subwindow for another subwindow in a tool.
window is the tool window. oidSW identifies the currently displayed subwindow that will
be replaced by newSW. newSW cannot currently be part of the tree that makes up the
hierarchy of displayed windows. When this procedure has returned, oidSW has been
removed from this tree. Error(code: swNotFound] may be raised from this procedure. The
original newSW must be created with procedures other then the ones provided in the Tool
interface; for example, you might call ToolWindow.CreateSubwindow followed by
Formsw.Create. In addition, the call to ToolWindow.CreateSubwindow should supply NIL as
the parent argument.

Tool. Transition: ToolWindow. TransitionProcType;

The Transition procedure is called whenever the tool changes state. In turn, it calls the
client transition procedure supplied to Tool.Create. If the new Tool.State of the tool is
inactive, the Formsw.ltems are freed before the client transition procedure is called. The
client transition procedure is called before the Tool interface takes any other action.

Tool.UnusedLogName: PROCEDURE [unused. root: LONG STRING);

The UnusedLogName procedure guarantees unique log file names among file and TTY
subwindows by enumerating all the current file and TTY subwindows and checking that
each name is not currently in use. If a name is in use, a derived name is generated and
checked until a unique name is generated. Note that the development environment file
system does not permit multiple writeable handles on a file, so this procedure should be
called if there might be multiple instances of the tool. A unique name is generated by
setting the length of unused to 0, appending the root, and appending a number.

21.1 Types

21

ToolWindow

The facilities of ToolWindow enhance those provided by the Window interface.
Specifically, they provide functions that implement Tajo's window illusion for tools.

TooIWindow.AdjustProcType: TYPE = PROC [
window: TooIWindow.Handle, box: TooIWindow.Box, when: TooIWindow.When];

Because users can change the location and size of windows on the display, Tajo provides
the individual tools with a mechanism for knowing when one of their windows has been
adjusted. Before the system adjusts a window's location or size, it calls the tool's limit
procedure (see LimitProcType). It then uses the box returned by the limit procedure to call
the tool's adjust procedure. The adjust procedure is called both before and after the actual
adjustment is ptade; the when parameter is used by the AdjustProcType to indicate the
difference.

TooIWindow.Box: TYPE = Window. Box;

TooIWindow.BoxProcType: TYPE = PROC RETURNS [box: TooIWindow.Box];

A BoxProcType is the type of the parameters passed to SetBoxAllocator.

TooIWindow.DisplayProcType: TYPE = PROC [window: TooIWindow.Handle);

A DisplayProcType is called whenever the contents of the window need to be refreshed on
the display; for example, when a window previously on top of a given window is mov:ed out
of the way. For all Tajo-supplied subwindow types, display procedures are automatically
supplied at create time.

TooIWindow.EnumerateProcType: TYPE = PROC [
window: TooIWindow.Handle] RETURNS [done: BOOLEAN];

TooIWindow.EnumerateSWProcType: TYPE = PROC [
window, sw: TooIWindow.Handle] RETURNS [done: BOOLEAN];

21-1

21

21-2

ToolWindow

TooIWindow.Handle: TYPE = Window. Handle;

TOOIWindow.LimitProcType: TYPE = PROCEDURE [
window: ToolWindow.Handle, box: TooIWindow.Box] RETURNS [ToolWindow.Box);

Although the user moves windows around on the display, Tajo allows the individual tools
to exercise veto or modification rights over moves. This is particularly useful for allowing
a tool to prohibit, for example, its window becoming smaller than some certain size or
moving completely off the visible display region. When the system adjusts the window's
location or size, it first calls the limit procedure with the requested box and then passes
the returned box to the tool's adjust procedure.

TooIWindow.OnOff: TYPE = {on. Off};

OnOff is the type used to set and unset the tool name stripe.

TooIWindow.Place: TYPE = Window.Place;

Place is the type of the top left corner of a box.

TooIWindow.Size: TYPE = {tiny. normal, zoomed};

A tool always has one of three Sizes.

tiny displays as a small rectangular box that contains a name for the tool.

zoomed displays as a normal tool, but fills the whole screen.

TooIWindow.State: TYPE = {inactive, tiny, active};

A tool is always in one ofthree States.

inactive indicates that the user is not interested in any of the functions the tool
implements, and all resources it utilizes should be freed. When a tool is inactive,
a menu entry whose text is derived from its name is placed on the Inactive
menu.

tiny the user is not interested what the tool normally displays; therefore resources
associated with the display state should be freed.

TooIWindow.TransitionProcType: TYPE = PROC [
window: old, new: TooIWindow.State1;

A tool's TransitionProcType is called to notify a tool whenever a user action causes Tajo to
change the tool's state (see ToolWindow.State above). TransitionProcs are often used to free
some of a tool's resources when its state changes.

TooIWindow.When: TYPE = {before. after};

TOoIWindow.WindowType: TYPE = {root, tool, clipping. sub, other};

Whereas the Window interface allows arbitrary window tree structures to be created,
ToolWindow restricts the types of window trees that can be created and imposes specific

Mesa Programmer's Manual 21

semantics on those trees. A ToolWindow tree consists of a root level, a tool window level, a
clipping window level, and (optionally) subwindow levels.

root window is the underlying bitmap.

tool window is referred to in this document as a tool window.

clipping window is associated with each tool window, where the clipping window is the
child of the tool window. Clipping windows prevent subwindows from obscuring
their parents; they should be of no concern to clients.

sub windows are subwindows of tool windows,

other windows are all lower levels.

21.2 Constants and data objects

TooIWindow.nuIlBox: ToolWindow.Box = [[0.0]. [0, 011;

21.3 Signals and errors

None.

21.4 Procedures

TooIWindow.Activate: PROC [window: TooIWindow.Handle];

Activate activates a tool; that is, changes its state to active. The tool's transition
procedure is called to allow it to respond to the change in state.

TooIWindow.Create: PROC [
name: LONG STRING. adjust: TooIWindow.AdjustProcType.
transition: ToolWindow. TransitionProcType.
box: ToolWindow.Box ~ TooIWindow.nuIlBox.
limit: ToolWindow.LimitProcType ~ TooIWindow.StandardLimitProc.
initialState: ToolWindow.State ~ active. named: BOOLEAN ~ TRUE.
gravity: Window.Gravity ~ nw]
RETURNS [TooIWindow.Handle];

Create creates an empty tool window with the indicated box. If box is null Box, Tajo uses
the normal box allocator to assign a box to the tool. If named is TRUE, the window will have
a black band across the top that displays name. initialState is the State with which the
window is created. (See AdjustProcType, TransitionProcType, and LimitProcType above
for explanations of the meaning of these parameters.) gravity is the window.Gravity that
Tajo should use when changing the size of the tool window.

ToolWindow.CreateSubwindow: PROC [
parent: TooIWindow.Handle. display: ToolWindow.DisplayProcType ~ NIL.
box: ToolWindow.Box ~ TooIWindow.nuIiBox. gravity: Window. Gravity ~ nw]
RETURNS [TooIWindow.Handle];

21-3

21

21-4

ToolWindow

Subwindows are normally created by the client to simplify window manipulations. A
subwindow is a box (a rectangle defined by an x, y and a width and height) within the the
parent tool's clipping window (i.e., within that box occupied by the tool, but not including
its borders or name stripe). The subwindow is clipped at its parent's clipping window so
that it does not obscure the parent. However, a subwindow can extend "outside" the
parent's window (it is legal for a subwindow's box to have a negative x, or a height greater
than that of the window); only those bits within the parent's clipping window are
displayed.

CreateSubwindow creates a new subwindow object with the indicated box within its
window and links it into the parent window's chain of subwindows. The display procedure
is called whenever the content of the window needs to be refreshed onto the bitmap
display. For all Tajo-supplied subwindow types, display procedures are automatically
supplied at create time. (See also EnlinkSubwindow and DelinkSubwindow.)

TooIWindow.Deactivate: PROC [window: TooIWindow.Handle] RETURNS [aborted: BOOLEAN];

Deactivate changes a tool's state to inactive. The window's transition procedure is called to
respond to the state change. Deactivate notifies subsystems that depend on
Event.toolWindow first. If the event is aborted, the tool is not deactivated, and Deactivate
returns FALSE.

TooIWindow.DelinkSubwindow: PROC [child: TooIWindow.Handle];

DelinkSubwindow removes the subwindow and its children from the window structure.
This procedure is not normally called by Tajo clients.

TooIWindow.Destroy: PROC [window: TooIWindow.Handle);

Destroy destroys both tool windows and subwindows.

TooIWindow.DrawNameFrame: Toolwindow.DisplayProcType;

DrawNameFrame draws the tool's name frame, which is the stripe containing the tool
name at the top of the window.

TooIWindow.DrawRectangle: PROC [
window: TooIWindow.Handle, box: TooIWindow.Box, width: CARDINAL +-1];

DrawRectangle paints the outline of a rectangular box with dimensions box. width is the
width (in pixels) of the rectangle's border.

ToolWindow.EnlinkSubwindow: PROC [parent. child, youngerSibling: TooIWindow.Handle];

EnlinkSubwindow links the subwindow into parent's subwindow chain in the indicated
position. This procedure is not normally used by Tajo clients, as subwindows are linked
upon creation.

ToolWindow.EnumeratelnactiveWindows : PRDC [proc: TooIWindow.EnumerateProcType];

EnumeratelnactiveWindows enumerates the tool windows on the Inactive menu.

Mesa Programmer's Manual 21

TooIWindow.EnumerateSWs: PROC [
window: Window.Handle. proc: TooIWindow.EnumerateSWProcType];

EnumerateSWs enumerates all the subwindows within a tool window.

TooIWindow.GetAdjustProc: PROC [
window: TooIWindow.Handle] RETURNS [TooIWindow.AdjustProcType];

GetAdjustProc returns the AdjustProcType associated with a tool window.

TooIWindow.GetBox: PROC [window: TooIWindow.Handle] RETURNS [TooIWindow.Box];

GetBox returns the tool window's box.

TooIWindow.GetClippedDims: PROC [window: TooIWindow.Handle] RETURNS [Window.Dims];

GetClippedDims returns the dimensions of the window for the tool in its active state. The
tool need not be acti ve when this procedure is called.

TOOIWindow.GetGravity: PROC [
window: TooIWindow.Handle] RETURNS [gravity: Window.Gravity];

GetGravity returns the gravity used to change the tool window's size.

TooIWindow.GetlnactiveName: PROC [
window: TooIWindow.Handle] RETURNS [name: LONG STRING];

GetlnactiveName returns the name that the tool will be given when it becomes inactive
(see SetName). This is the name that is entered in the inactive menu when the tool is
deactivated. It is the client's responsibility to free the string returned by this procedure to
the system heap.

TooIWindow.GetLimitProc: PROC [
window: ToolWindow.Handle] RETURNS [TooIWlndow.LimitProcType];

GetLimitProc returns the LimitProcType associated with the tool window.

TooIWindow.GetName: PROC [window: ToolWindow.Handle] RETURNS [name: LONG STRING];

GetName returns the name of the tool. The client must free the string returned by this
procedure to the system heap.

TooIWindow.GetNameStripe: PROC [
window: TooIWindow.Handle] RETURNS [TooIWindow.OnOff];

GetNameStripe returns the state of the name stripe, on or off.

TooIWindow.GetState: PROC [window: ToolWindow.Handle] RETURNS [state: TooIWindow.State];

GetState returns the state ofa tool window.

21-5

21

21-6

ToolWindow

TooIWindow.GetTinyName: PROC [
window: ToolWindow.Handle] RETURNS [name. name2: LONG STRING];

GetTinyName copies the tiny name of the window into two strings allocated from the
system heap. It is the client's responsibility to free these strings.

TooIWindow.GetTinyPlace: PROC [
window: TooIWindow.Handle] RETURNS [place: TooIWindow.Place];

GetTinyPlace returns the place of the tool window when it is in its tiny state. The tool need
not be tiny at the time this procedure is called.

TooIWindow.GetTransitionProc: PROC [
window: TooIWindow.Handle] RETURNS [TooIWindow.TransitionProcType];

GetTransitionProc returns the TransitionProcType associated with the tool window.

TooIWindow.Hide: PROC [window: TooIWindow.Handle);

Hide removes window from the group of windows displayed on the bitmap. This
procedure is not normally called by Tajo clients.

ToolWindow.lsPlacelnWindow: PROC [
place: TooIWindow.Place. window: TooIWindow.Handle] RETURNS [BOOLEAN];

IsPlacelnWindow returns TRUE if place is within window; otherwise it returns FALSE.

TooIWindow.MakeSize: PROC [window: TooIWindow.Handle. size: TooIWindow.Size];

MakeSize changes the size ofa tool window.

TooIWindow.SetAdjustProc: PROC [

window: ToolWindow.Handle, proc: TooIWindow.AdjustProcType]
RETURNS [old: ToolWindow .Adj ustProcType];

SetAdjustProc makes proc the AdjustProc for a tool window and returns the old one.

TooIWindow.SetBox: PROC [window: TooIWindow.Handle. box: TooIWindow.Box];

Set Box changes the size and position of a tool window.

TooIWindow.SetBoxAliocator: PROC [normal. tiny: TooIWindow.BoxProcType];

SetBoxAliocator registers procedures that determine where to display the tool upon
creation.

TooIWindow.SetGravity: PROC [window: TooIWindow.Handle.gravity: window.Gravity];

SetGravity sets the gravity of a tool window.

Mesa Programmer's Manual

TooIWindow.SetlimitProc: PROC [
window: TooIWindow.Handle, proc: ToolWindow.limitProc]

RETURNS [old: TooIWlndow.limitProcType);

SetLimitProc associates proc with the tool window and returns the old limitProc.

TooIWindow.SetName: PROC [window: ToolWindow.Handle, name: LONG STRING);

21

SetName procedure changes the text of the menu entry placed on the Inactive menu when
the tool is inactive.

ToOIWindow.SetNameStripe: PROC [window: ToolWindow.Handle, onOff: TooIWindow.OnOff];

SetNameStripe sets the state of the name stripe on or off.

TooIWindow.SetTinyName: PROC [
window: Toolwindow.Handle, name: LONG STRING, name2: LONG STRING ~NIL);

SetTinyName changes the text that is displayed when the window is tiny. name is the first
line of text and name2 is the second.

TOoIWindow.SetTinyPlace: PROC [window: TooIWindow.Handle. place: TooIWindow.Place);

SetTinyPlace dictates where the tool will be positioned when it is tiny.

TooIWindow.SetTransitionProc: PROC [
window: TooIWindow.Handle, proc: ToolWindow.TransitionProcType]
RETURNS [ToolWindow. TransitionProcType];

SetTransitionProc associates proc with the tool window and returns the old
TransitionProc.

TooIWindow.Show:PROC [window: TooIWindow.Handle];

Show causes window and its subtree of windows to be displayed. It should be called after
a tool window is set up.

TooIWindow.StandardLimitProc: TooIWindow.LimitProcType;

StandardLimitProc performs the normal Tajo window-limiting operations. These prevent
a window from being moved off the bitmap and prevent a tool from being made smaller
than a tiny window.

TooIWindow.Type: PROC [
window: TooIWindow.Handle] RETURNS [type: TooIWindow.WindowType];

The Type procedure tells you the type of the window.

TooIWindow.WindowForSubwindow: PROC [
sw: TooIWindow.Handle] RETURNS [window: TooIWindow.Handle);

WindowForSubwindow returns the tool window of a subwindow.

21-7

21 ToolWindow

21-8

III

Window and subwindow building

Windows and subwindows are the most basic building blocks for tools in the XDE system.
The interfaces described in this section are lower level than those described in the
previous section (Tool building). In particular, those interfaces were built using these
interfaces.

I1L1 The window package

The window package provides procedures that enable the client to display data by
whitening and blackening the bits in the window. These include procedures for painting
characters and strings and blackening, whitening, or graying boxes. The window package
also provides procedures for copying arrays of bits and brush-and-trajectory painting,
which allows graphics curves to be easily drawn. (See the Display interface.)

A window is conceptually an instance of an abstract window object. The window package
obtains storage for window objects from Tajo. Contact the Tajo implementors if you must
allocate your own window objects.

Each window object contains a client-supplied display procedure, which, on demand, will
repaint all or part of the window. This procedure is invoked by the window package, for
instance, when a window that was obscured by an overlapping window suddenly becomes
more visible. However, clients should not call their display procedure directly. Instead,
they should update their data, call InvalidateBox to mark part or all of the window
invalid, and then call Validate to indicate to the window package that any invalid areas
should be validated by calling the window's display procedure.

The window package allows clients to supply bitmap unders. These are blocks of memory
used to maintain the bits that would appear in the bitmap where a window is if the
window and the windows covering it did not exist. The window package can then fix up the
bitmap without calling the display procedure of all the windows (partially) hidden by this
one when it is removed from the tree. Menus can thus appear and disappear quickly.

III-I

III

III-2

Window and suhwindow building

The window package that implements the Window interface is passive, responding only to
calls from the client's program. It creates no processes and allocates almost no storage.

111.1.1 Windows

Windows overlap other windows and may be manipulated even when they are under other
windows. Windows are contained within their parent's rectangular regions: if they would
stick out of their parent, their display is trimmed at their parent's edge.

For instance, the Window interface defines the window management package that is used
by Tajo. The Window interface manipulates a tree of windows. There is one root window
(at level "zero") that is always equated to the visible bitmap and that supplies the
background gray. Any window may have child windows contained within it. Child
windows obscure their parent; that is, they are above their parent in the apparent stack of
windows visible on the screen. Sibling windows may overlap: the eldest sibling--the one
that appears first in the list--is the sibling on top of the stack. The Window interface
contains routines for creating and destroying windows, for arranging them, and for
displaying data within them.

Windows occupy (possibly overlapping) rectangular regions of the display. A window's
location and size are defined in terms of its parent's location. The root window is always at
bitmap location [0,0) even though its box.place may not be [0,0). The box. place of
rootWindow is the screen place of the bitmap origin. routines.

Arbitrary scrolling can be implemented quite simply by imbedding a window (the one that
paints the data to be scrolled) within another window (the "frame") and then just altering
the position (y coordinate for vertical scrolling) of the former within the latter; routines
are provided that will perform the appropriate BITBlTs to minimize the area to be painted.

Within a window as shown on the bitmap, sections of bits may become incorrect because of
external circumstances--for example, because a window that was hiding them was just
deleted. The window package accumulates these invalid areas and then calls the client's
display procedure to adjust them.

Normally, when the client is called to paint the invalid area(s), there are no bits in the
area that are black but should be white (the window package has possibly cleared the area
to ensure this) so the repaint procedure can use "or" functions_ If the client knows that its
repaint procedure always sets all the bits in the area(s), it indicates this in the window
object, which may save the window package from performing unnecessary clearings.

When a window is being validated, a bad phosphor list is set up for it just before its display
procedure is called. This list consists of the visible portions of the window's invalid areas.
When there is a bad phosphor list for a window, any painting done to that window will be
clipped to the list. This lets the client avoid calls to EnumeratelnvalidBoxes to find exactly
which regions need repainting. So, for example, if the window provides a gray background
in a particular area, the display procedure may call Display.Gray for the entire region that
the gray background should appear in. This guarantees that valid areas of the window
will not be overwritten. Window.FreeBadPhosphorList causes this bad phosphor list to be
ignored.

Mesa Prog.oamme,o's Manual III

111.2 Sources and sinks

Sources and sinks are interfaces for data input and output. For instance, a source need not
be dealt with as a particular structure, such as a disk file or a teletype, but can be thought
of as a source of input (such as the backing store for screen display). Similarly, a sink can
be thought of as a generic place to send output.

There are only two pre-defined sinks in XDE, AsciiSink and TextSink; most kinds of data
can be put into those categories. AsciiSink is a special case of TextSink. There are several
different sources, however. The interface TextData consists of data types shared by sources
and sinks.

Advanced programmers may want to create sources and sinks to use as backing storage
and output for their own text subwindows. For example, a source that maintains text
attributes along with the text is required to display text in various fonts.

1II.3 Interface abstracts

111.3.1 Windows

Context allows clients to associate data with windowso It is used by clients that implement
their own window types.

Display provides facilities for display in windows.

111.3.2 Subwindows

Caret allows clients to implement and manage a blinking caret that marks the insertion
point in editable windows.

Cursor manipulates the appearance of the cursor that represents the mouse position on the
screen.

Menu provides the menu facility used by many tools for simple command invocation. It
gives a client control over which menus the user sees and what actions art individual menu
item performs.

Scrollbar provides a mechanism for specifying and invoking scroll actions, maintaining a
consistent user interface for them.

Selection allows clients to manipulate the current selection; that is, the text or graphics
designated by the user and highlighted on the screen.

ToolFont provides Tajo's interface to the WindowFont facilities, including font storage
management.

WindowFont converts • s tri ke fonts into a representation more convenient for the
Wi ndow package to display characters.

III-3

III

III-4

Window and subwindow building

111.3.3 Sources and sinks

AsciiSink implements a text sink that outputs Ascii text. (Text sinks are defined by the
interface TextSink.)

BlockSource creates a text source backed by a block of Ascii characters.

DiskSource creates a text source backed by a stream or a file in the local file system.

PieceSource creates a text source backed by a piece table maintained on a text source.

Scratch Source creates a text source backed by a block of virtual memory containing Ascii
characters.

StringSource creates a text source backed by a LONG STRING containing Ascii text.

TextData provides the definitions of data types that a few procedures in TextSW and
FormSW need. It is not of interest to most clients.

TextSink defines a sink for text that is displayed in a window. Text sinks help isolate Tajo's
uniform text display, selection, and editing facilities from the representation of text. It is
intended for clients that have other than Ascii representation of information. The
standard interface AsciiSink is provided for normal clients and is used as the default.

TextSource defines a source for text that is displayed in a window. Sources help isolate
Tajo's uniform text display, selection, and editing facilities from the representation of text.
It is intended for clients that wish to maintain their own data structures to be displayed in
a window.

22.1 Types

22

Context

When a tool performs various functions, it may wish to save and retrieve state from one
notification to the next. This is an immediate consequence of the notification scheme, for a
tool cannot keep its state in the program counter without stealing the processor after
responding to an event. Thus a tool must explicitly store its state in data. Because most
notification calls to a tool provide a window or subwindow handle, it is natural to associate
these contexts with windows. The context mechanism is an alternative to the tool's having
to build its own associative memory for retrieving its context, given a window handle.

Context.Type: TYPE = MACHINE DEPENDENT(
all(D). first(1).lastAliocated(37737B).last(37777B)};

Type is unique for each client of the context mechanism. An argument of this type is
passed to most of the procedures in this interface so that the correct client data can be
identified.

Context. Data : TYPE = LONG POINTER TO UNSPECIFIED;

Data, the value that a client may associate with each window, is typically a pointer to a
record containing the client's state for some window.

Context.CreateProcType: TYPE =
PROCEDURE RETURNS [Context. Data. Context.DestroyProcType);

CreateProcType is used by FindOrCreate. The procedure passed in as an argument to
FindOrCreate is called to create a context only if a context of the appropriate type cannot
be found.

Context.DestroyProcType: TYPE = PROCEDURE [Context. Data. Window.Handle);

A DestroyProcType is passed to Create so that the client can be notified when the context
should be destroyed. It may be the result of the window being destroyed.

22-1

22 Context

22.2 Constants and data objects

None.

22.3 Signals and errors

Context.Error: ERROR [code: Context.ErrorCode];

Error is the only error raised by any of the Context procedures.

Context.ErrorCode: TYPE = (duplicateType, windowlsNIL. tooManyTypes, other);

duplicateType is raised by Create if there is already a context of the given type on the
window passed as an argument.

windowlsNIL is raised if the client has passed in a Nil window.

tooManyTypes is raised ifUniqueType has been called too many times.

22.4 Proced ures

22-2

Context.Acquire: PROCEDURE [type: Context. Type, window: Window.Handle)
RETURNS [Context. Data];

The procedure Acquire retrieves the data field from the specified window. Nil is returned if
no such context exists on the window. It also locks the context object so that no other calls
on Acquire or Destroy with the same type and window will complete until the context is
freed by a call on Release.

Context. Create: PROCEDURE [
type: Context.Type, data: Context. Data, proc: Context.DestroyProcType,
window: Window.Handle);

The procedure Create creates a new context of type type that contains data. The context is
associated with the indicated window; it is said to "hang" on the window. If window
already possesses a context of the specified type, the ERROR Error[duplicateType] is raised.
If the window is Nil, the ERROR Error[windowlsNIL] is raised. The proc is supplied so that
when the window is destroyed, all the context data can be destroyed (deallocated) in an
orderly way.

Context. Destroy: PROCEDURE [type: Context.Type, window: Window.Handle];

The procedure Destroy destroys a context of a specific type on window. If the context
exists on the window, it calls the DestroyProcType for the context being destroyed.

Context.DestroyAII: PROCEDURE [window: Window.Handle);

The procedure DestroyAIl destroys all the contexts on window. DestroyAll can be very
dangerous because Tajo keeps its window-specific data in contexts on the window. DestroyAIl should not be used
except in special circumstances. It is called by the routines that destroy windows.

Mesa Pr'ogrammer's Manual

Context.Find: PROCEDURE [type: Context. Type, window: Window.Handle)
RETURNS [Context. Data);

The procedure Find retrieves the data field from the specified context for window. NIL is
returned ifno such conll'xt exists on the window.

Context.FindOrCreate: PROCEDURE [
type: Context. Type, window: Window.Handle, createProc: Context.CreateProcType)
RETURNS [Context. Data);

The procedure FindOrCreate resolves the outcome of the race that occurs when creating
new contexts in a multi-process environment. [f a context of type type exists on window,
it returns the context's data; otherwise, it creates a context of type by calling createProc
and then return data. [fthe window is NIL, the ERROR Error[windowlsNIL] is raised.

Context.NopDestroyProc: Context.DestroyProcType;

The procedure NopDestroyProc does nothing. It is provided as a convenience to clients
that do not want to create their own "do-nothing" DestroyProcType to pass to Create.

Context.Release: PROCEDURE [type: Context. Type. window: Window.Handle];

The procedure Release releases the lock on the specified context object for window that
was locked by the call on Acquire. If the specified context cannot be found or if it is not
locked, Release is a no-op.

Context.Set: PROCEDURE [
type: Context. Type. data: Context. Data. window: Window.Handle);

The procedure Set changes the actual data pointer of a context. Subsequent Finds return
the new data. The client can change the data pointed to by the data field of a context at
any time. Race conditions could occur if multiple processes are doing Finds for the same
context and modifying the data. It is the client's responsibility to MONITOR the data in such
cases. If the window is NIL, the ERROR Error[windowlsNIL] is raised.

Context.SimpleDestroyProc: Context.DestroyProcType;

The procedure SimpleDestroyProc merely calls the system heap deallocator on the data
field. It is provided for clients whose context data is a simple heap node in the system zone.

Context.UniqueType: PROCEDURE RETURNS [type: Context. Type);

The procedure UniqueType is called if a client needs a unique Type not already in use
either by Tajo or by another client. If no more unique types are available, the ERROR
Error[tooManyTypes] is raised.

22.5 Discussion

Acquire and Release can be used in much the same way as a Mesa MONITOR. It is important
that the client call Release for every context that has been obtained by Acquire; this is not
done automatically. The cost of doing an Acquire is barely more than entering

22-3

22

22

22-4

Context

MONITOR and doing a Find. C sing this technique allows the client to monitor its data rather
than its code .

. I[it b necessary [or several tools to share global data, it is possible to place a context on
Window.rootWindow that is never destroyed, even when the bitmap is turned off. To share
a Context. Type without having to EXPORT a variable, you can use one in the range
(lastAliocated . ./ast]. Contact the support organization to have one allocated to you.

23.1 Types

23

Display

The Display interface provides routines for painting into windows on the user's screen.
(See Window for details of the Tajo window package.) Unless stated otherwise, all
procedures that paint to the screen clip to the window's bad phosphor list. (This list is
explained in the Window chapter.)

Some procedures in this interface are not available in the released boot file. Displaylmpl
must be loaded before these procedures can be called.

Display.BreakReason: TYPE = {normal. margin. stop};

BreakReason is returned by Block, MeasureBlock, and ResolveBlock to indicate why these
procedures terminated.

normal all data is displayed.

margin the next character overlaps the margin.

stop the next character has no representation in the font.

Display.Brick: TYPE = LONG DESCRIPTOR FOR ARRAY OF CARDINAL;

Bricks are used by Gray and Trajectory to describe a gray pattern with which to tile a
window. The maximum size ofa Brick is 16 words; each word is one row of the pattern.

Display.TrajectoryProc: TYPE = PROC [Window.Handle] RETURNS [Window. Box. INTEGER];

TrajectoryProc is the type of the procedure that is passed to Trajectory. When called, the
procedure should return a small area within the window where painting should occur.
Think of it as a "brush stroke."

23-1

23 Display

23.2 Constants and data objects

Display.fiftyPercent: Brick

This is a 50% gray pattern.

Display.infinity: INTEGER = INTEGER.LAST;

infinity is used as an argument to the Block and Text routines. It indicates that the
operation should terminate at the right edge of the window.

Display.paintGrayFlags, bitFlags: BitBlt.BitBltFlags = [
direction: forward, disjoint: TRUE, disjointltems: TRUE, gray: TRUE,
srcFunc: null, dstFunc: or, reserved: 0];

Display.replaceGrayFlags, boxFlags: BitBlt.BitBltFlags = [
direction: forward, disjoint: TRUE, disjointltems: TRUE, gray: TRUE,
srcFunc: null, dstFunc: null, reserved: 0];

Display.xorGrayFlags, xorBoxFlags: BitBlt.BitBltFlags = [
direction: forward, disjoint: TRUE, disjointltems: TRUE, gray: TRUE,
srcFunc: null, dstFunc: xor, reserved: 0];

Display.replaceFlags: BitBlt.BitBltFlags = [
direction: forward, disjoint: TRUE, disjointltems: TRUE, gray: FALSE,
srcFunc: null, dstFunc: null, reserved: 0];

Display.textFlags, paintFlags: BitBlt.BitBltFlags = [
direction: forward, disjoint: TRUE, disjointltems: FALSE. gray: FALSE,
srcFunc: null, dstFunc: or, reserved: 0];

Display.xorFlags: BitBlt.BitBltFlags = [
direction: forward, disjoint: TRUE, disjointltems: FALSE, gray: FALSE,
srcFunc: null, dstFunc: xor, reserved: 0];

BitBlt.BitBltFlags are passed into several display procedures; they control what actually
happens on the display. These flags are provided for some of the most common cases; they
include painting, replacing, and xORing of text, bits, and gray patterns. Use
Display.paintGrayFlags to paint black, Display.replaceGrayFlags to paint white, and
Display.xorGrayFlags to invert. These flags are documented further in the Mesa Processor
Principles of Operation.

23.3 Signals and errors

None.

23-2

Mesa Programmer's Manual

23.4 Procedures

Display.Arc: PROC [
window: Window.Handle,place: Window.Place, radius: INTEGER,
startSector, stopSector: CARDINAL, start, stop: Window.Place,
bounds: Window.BoxHandle +-Nll];

23

Arc displays a portion of a circular arc centered at place of radius in window. The arc goes
from start in the startSector to stop in the stopSector. Sectors are simply octants
numbered from 1 to 8, starting with 1 at NNE going clockwise. The arc is clipped to the
Window. Box described by bounds; a bounds of Nil clips the arc at window's bounding box.
This procedure is not available in the released boot file. Displaylmpl must be loaded before itean be called.

Display.BitAddressFromPlace: PROC [
base: BitBlt.BitAddress, x, y: NATURAL, raster: CARDINAL]
RETURNS [BitBlt.BitAddress];

BitAddressFromPlace returns the BitBlt.BitAddress of the (x, y) coordinates in the bitmap
described by base. raster is the number of bits per line in the bitmap. This procedure is
provided as a utility to calculate the address parameter to Display.Bitmap.

Display. Bitmap: PROC [
window: Window.Handle, box: Window.Box, address: BitBlt.BitAddress,
bitmapBitWidth: CARDINAL, flags: BitBlt.BitBltFlags +- Display.pai ntFlags];

Bitmap paints the bitmap described by address and bitmapBitWidth into box in window.
using flags to control the interaction with bits already displayed in the window.
box.dims.w should be less than or equal to bitmapBitWidth. This procedure may also be
used instead of Display.Gray to display a gray pattern that is not aligned relative to the
window origin.

Display.Black: PROC [window: Window.Handle, box: Window.Box];

Black makes the region of window described by box black.

Display.Block: PROC [
window: Window.Handle, block: Environment.Block,
lineLength: INTEGER +- Display.infinity, place: Window.Place,
font: WindowFont.Handle +- Nil, flags: BitBlt.BitBltFlags +- Display.textFlags,
bounds: Window.BoxHandle +- Nil]
RETURNS [newPlace: Window.Place, positions: CARDINAL, why: Display.BreakReason];

Block is used to display a block of characters in a window. block describes the block of
characters to be displayed. The characters are painted into window starting at place. The
total width of the characters painted will not exceed lineLength. If lineLength is
Display.infinity, characters will be painted up to (but not past) the right edge of the window.
Painting will also stop if block is consumed or a character is encountered that is not
represented in font. font is the character font to be used; if font is Nil, the default font will
be used. (See WindowFont.SetDefault.) flags is used to affect how the bits are painted into
the window. bounds is an optional box to which the text should be clipped. newPlace is

23-3

23

23-4

-----------.---------.--- ~-- --.--~~---

Display

where the next character would have been painted. positions is the number of characters
painted. why is the reason painting was stopped.

Display.Character: PROC [
window: Window.Handle, char: CHARACTER, place: Window.Place,
font: WindowFont.Handle +- NIL, flags: BitBlt.BitBltFlags +- Display.textFlags,
bounds: Window.BoxHandle +- NIL]
RETURNS [Window.Place];

Character displays a single character. If the character has no representation in font, the
special undefined character in the font will be displayed. bounds is an optional box to
which the character should be clipped. The returned Window. Place is where the next
character should be displayed.

Display.Circle: PROC [
window: Window.Handle, place: Window.Place, radius: INTEGER,
bounds: Window.BoxHandle +-NIL);

Circle displays a circle centered at place of radius in window. The circle is clipped to the
Window. Box described by bounds; a bounds of NIL clips the circle to window's bounding
box. This procedure is not available in the released boot file. Displaylmpl must be loaded before itcan be called.

Display.Conic: PROC [
window: Window.Handle, a, b, c, d. e, errorTerm: LONG INTEGER,
start, stop, errorRef: Window. Place,
sharpCornered, unboundedStart. unboundedStop: BOOLEAN,
bounds: Window.BoxHandle +-NIL);

Conic displays the portion of the curve of the equation ax2 + by2 + cxy + dx + ey + f = 0
in window from start to stop. Instead of passing in the last coefficient, f, this procedure
takes the errorTerm resulting from substituting start into the equation. If the conic
contains points whose radius of curvature is less than or equal two pixels, it must be
displayed using multiple calls with sharpCornered boolean TRUE; otherwise
sharpCornered should be FALSE. These "sharp-cornered" conics must be broken up into
segments where the corners become a new segment's start and stop points. For example, a
very long skinny ellipse must be displayed in two pieces. errorRef and the boo leans
unboundedStart and unboundedStop are ignored. The curve is clipped to the Window. Box
described by bounds; a bounds of NIL clips to the window's bounding box. This procedure is not
available in the released boot file. Displaylmpl must be loaded before it can be called.

Display.Ellipse: PROC [
window: Window.Handle, center: Window.Place, xRadius, yRadius: INTEGER,
bounds: Window.BoxHandle +- NIL);

Ellipse only displays ellipses with axes parallel to the x-y coordinate system centered at
center with an x radius of xRadius and a y radius of yRadius in window. The ellipse is
clipped to the Window. Box described by bounds; a bounds of NIL clips the ellipse to
window's bounding box. Other types of ellipses must be displayed with the Display.Conic
procedure. This procedure is not available in the released boot file. Displaylmpl must be loaded before it can be
called.

Mesa Programmer's Manual

Display.Gray: PROC [
window: Window.Handle, box: Window. Box, gray: Brick +- Display.fiftyPercent.
dstFunc: BitBlt.DstFunc +- null];

23

Gray paints thc the gray pattcrn described by gray into the box region of window. dstFunc
affects how the bits are painted into the window. The gray pattern is aligned relative to
the window origin.

Display.lnvert: PROC [window: Window.Handle, box: Window.Box];

Invert inverts the box region of window.

Display.Line: PROC [
window: Window.Handle, start, stop: Window.Place,
bounds: Window. BoxHandle +- NIL];

Line displays a single pixel-wide line from start to stop in window. The line is clipped to
the Window. Box described by bounds; a bounds of NIL clips the line to window's bounding
box. This procedure is not available in the released boot file. Displaylmpl must be loaded before it can be called.

Display.MeasureBlock: PROC [
window: Window.Handle, block: Environment.Block,
lineLength: INTEGER +- Display.infinity, place: Window.Place,
font: WindowFont.Handle +- NIL]
RETURNS [newPlace: Window.Place, positions: CARDINAL, why: Display.BreakReason];

MeasureBlock is used to measure the length of a block of text if it were painted to the
screen. The arguments and return values are the same as described by Display.Block.

Display.Point: PRoc[window: Window. Handle, point: Window.Place];

Point turns a single pixel black at point in window, if it is visible.

Display.ResolveBlock: PROC [
window: Window.Handle, block: Environment.Block,
offsets: LONG POINTER TO ARRAY CARDINAL [0 .. 0) OF CARDINAL,
font: WindowFont.Handle +- NIL]
RETURNS [positions: CARDINAL, why: Display.BreakReason];

ResolveBlock is used to determine the locations of characters in a block of text. The offset
of the left edge of each character in block is stored into offsets. It is the client's
responsibility to ensure that this array is long enough to hold the offsets of all the
characters in block. This procedure terminates either because it has reached the end of
block (why = normal) or it has reached a character that has no representation in font
(why = stop). In either case, positions is the number of characters processed.

Display.Shift: PROC [
window: Window.Handle, box: Window. Box, newPlace: window.Place];

Shift does a bitblt-style move of part of the window contents. box describes the region of
window to be moved to newPlace. This call may produce invalid areas within the window
(bits that should be moved into visible areas of the window but are not available because
they have either been clipped or obscured). To avoid difficulties with the client's display

23-5

23

23-6

Display

procedure, it is not called; this call simply leaves the window marked invalid. It is the
client's responsibility to call Window. Validate or Window.ValidateTree as soon as it has
corrected its data structures to reflect the call. Shift does not invalidate the areas where
the box has been moved "from." If they should be repainted, invalidating them is the
client's responsibility. Shift does not clip the actual region painted to window's bad
phosphor list (see the Window chapter for an explanation of the bad phosphor list.)

Display.Text: PROC [
window: Window.Handle, string: LONG STRING, place: Window.Place,
font: WindowFont.Handle +- NIL,lineLength: INTEGER +- Display.infinity,
flags: BitBlt.BitBltFlags +- Display.textFlags, bounds: Window.BoxHandle +- NIL]
RETURNS [newPlace: Window.Place];

Text uses a single call on Display.Block to paint characters from string at place in window.
The value returned is the window-relative place where the next character should go. Note
that the string is painted only up to the first character that is not represented in font.

Display. Textlnline: PROC [
window: Window.Handle, string: LONG STRING, place: Window.Place,
font: WindowFont.Handle +- NIL,lineLength: INTEGER +- infinity,
flags: BitBlt.BitBltFlags +- Display. textFlags, bounds: Window.8oxHandle +- NIL]
RETURNS [Window.Place] = INLINE {
RETURN[Display.Block[

window, [LOOPHOLE[@string. text), 0, string.length], IineLength, place,
font, flags, bounds].newPlace]};

Textlnline is an INLINE version of Display. Text provided for clients who are willing to trade
some code space in their own module to avoid an extra procedure call at run time.

Display.Trajectory: PROC [
window: Window.Handle, box: Window. Box +-Window.nuIlBox,
proc: Display.TrajectoryProc, source: LONG POINTER +- NIL, bpi: CARDINAL +-16,
height: CARDINAL +-16, flags: BitBlt.BitBltFlags +- Display.bitFlags,
missesChildren: BOOLEAN +-FALSE, brick: Display.Brick +- NIL];

Trajectory is designed to avoid much of the overhead of successive calls to the normal
display routines. window is the window of interest. box is the window region where
painting might occur; the client promises it will not try to paint outside this area. proc is
the client procedure that, when called, repeatedly returns a window-relative box in which
painting should occur (think of it as a brush stroke) and the x-offset into the client's source
data. To end the trajectory, proc should return Window.nuIlBox. The client may wish to
alter the brush shape along the trajectory by defining the source bitmap as a wide one
with several different brush shapes in it and then returning the x-offset into the source
bitmap with the brush-box. flags is used to describe the type of painting that should be
performed on each small area. The use of this argument is similar to Display.Bitmap. brick
is a gray brick to be used if flags.gray is TRUE. (This is described in more detail for
Display.Gray.) missesChildren is unused.

Display.White: PROCEDURE [window: Window.Handle, box: Window.Box];

White makes the region of window described by box white.

24.1 Types

24

Window

The Window interface defines the window management package that Tajo uses. These
procedures are mostly of interest to clients who are implementing their own subwindow
types. (See Display for routines that paint into windows.)

Window.Box: TYPE = RECORD [place: Window.Place, dims: Window.Dims];

Box describes a window-relative region. place describes the top left corner of the region.
[place.x + dims.w, place.y + dims.h] describes the bottom right corner of the region. This
point is actually outside the region described by the Box.

Window.BoxHandle: TYPE = LONG POINTER TO Box;

Window.Clarity: TYPE = {isClear, isDirty};

Clarity is used by a client of InvalidateBox to indicate whether an invalid region is known
to be white.

isClear

isDirty

window package believes that the region is all white and performs no
clearing.

window package believes that the region is not all white and clears it.

Window.Dims: TYPE = RECORD [w, h: INTEGER];

Dims is the size of a window. w is the the number of pixels in the window's width. h is the
the number of pixels in the window's height.

Window.Gravity: TYPE = {nil, nw, n, ne, e, se, s, sw, w, c, xxx};

Gravity indicates what to do with the current contents of a window when it changes size.

nil the contents stay in the same place on the bitmap.

24-1

24 Window

nvv,n,ne,e,se,s,svv,vv

c

xxx

the contents stay attached to the indicated compass point,
which is either a corner or the middle of a side (e.g., for nvv

the contents stay in the upper-left corner).

the contents stay in the middle (i.e., trimming occurs
equally at all edges).

no attempt is made to save the contents: the window is
repainted.

Window.Handle: TYPE = LONG POINTER TO Window.Object;

Handle represents a window.

Window.MinusLandBitmapUnder: TYPE = [4] ;

MinusLandBitmapUnder is provided for clients who need to allocate their own window
objects.

Window.MouseTransformerProc: TYPE = PROC [Window.Handle. Window.Place]
RETURNS [Window.Handle, Window.Place];

MouseTransformerProc is not supported in this release.

Window.Object: TYPE = [18]

Window.Place: TYPE = UserTerminal.Coordinate;

Place is a window-relative coordinate.

Window.UnderChangedProc: TYPE = PROCEDURE [Window.Handle, Window.Box];

UnderChangedProc is not supported in this release.

24.2 Constants and data objects

Window.nuIl8ox: Window.Box = [[0,0], [0,0]];

null Box is a zero-sized Box at the upper-left corner of a window.

Window.rootWindovv: READONLY Window.Handle;

rootWindovv is the exported root of the window tree. It represents the entire display.

24.3 Signals and errors

Window.Error: ERROR [code: Window.ErrorCode);

Error is the only error raised by any of the Wi ndovv procedures.

24-2

Mesa Programmer's Manual 24

Window.ErrorCode: TYPE = {iliegaIBitmap, iliegalFloat, windowNotChildOfParent,
whosSlidingRoot, noSuchSibling, nOUnderVariant,windowlnTree,
sizingWithBitmapUnder, iliegaIStack};

illegal Bitmap

illegal Float

wiridowNotChildOfParent

whosSlidingRoot

noSuchSibling

nOUnderVariant

windowlnTree

sizi ngWithBitmapU nder

illegal Stack

24.4 Procedures

Window.BitmapPlace: PROC [

This error is never raised.

The client passed illegal parameters to Float.

The window passed as a parameter is not in the list of its
parent's children. This error can be raised by any
procedure that deals with a window; that is, by most of the
procedures in the Window interface.

The client has attempted to move the root window.

The client has requested a change to the window tree,
asking that a window's new sibling be a window that is not
a child ofits new parent.

A client has attempted to manipulate the bitmapUnder
data of a window for which underVariant is FALSE.

An attempt was made to use one of the "Set" procedures on
a window that is currently a descendant of rootWindow.
In most cases, you should use one of the
SlideAndSizeAndStack procedures instead.

A client has tried to change the size of a window that
currently has a bitmap under~

The client is attempting to move a window between
parents, one of which is in the window tree and the other is
not.

window: Window.Handle, place: Window.Place +-[0,0]] RETURNS [Window.Place];

BitmapPlace returns the bitmap-relative coordinates of place in window.

Window .BitmapPlace ToWi ndowAndPlace: PROC [bitmapPlace: Window.Place]
RETURNS [window: Window. Handle, place: Window.Place];

Given a bitmap-relative place, bitmapPlace, BitmapPlaceToWindowAndPlace returns the
most deeply nested window containing bitmapPlace and the window-relative coordinates
of bitmapPlace.

Window.BOxeSAreDisjoint: PROC [a, b: Window. Box] RETURNS [BOOLEAN];

BoxesAreDisjoint returns TRUE if and only if a and b do not intersect.

24-3

24

24-4

Window

Window.EnulT,1eratelnvalidBoxes: PROC [
window: Window.Handle. proc: PROC [Window.Handle. Window.Box]];

EnumeratelnvalidBoxes procedure calls proc for each of the invalid boxes of window; it
should only be called from within window's display procedure. window is passed through
to proc as its first parameter. The second parameter to proc describes the region that is
invalid. The invalid areas are clean unless the client has set clearingNotRequired for
window; that is, there are no pixels in them that are currently black but should be white.

Window.EnumerateTree: PROC [
root: Window.Handle. proc: PROC [window: window.Handle)];

EnumerateTree calls proc for each window that is a descendant of root. root need not itself
be a descendant of Window. root Window. The order of enumeration is not specified.

Window.Float: PROC [window, temp: Window.Handle,
proc: PROC [window: Window.Handle]

RETURNS [place: Window.Place. done: BOOLEAN]];

Float changes window's position and adjusts the display. It requires that window be a
bitmap-under window. It also requires that the user supply for scratch storage a temp
window with a bitmap under, exactly the same size as window but not in the window tree.
Float repeatedly calls proc and does a continuous move to the new place as long as done is
FALSE. The window is forced to the top of the sibling stack before the move begins. A new
place that would require moving the window so it is not completely visible is a client error.
ValidateTree is called to pick up the bits that must be on the bitmap when the window is
moved away. This procedure can raise the error Error[illegaIFloat].

Window.FreeBadPhosphorList : PROC [window: Window.Handle];

FreeBadPhosphorList forces the window package to ignore window's bad phosphor list
when painting to it.

Window.GetBitmapUnder: PROC [window: Window.Handle] RETURNS [LONG POINTER];

GetBitmapUnder returns a long pointer to the bitmap-under data for window. window
must be a bitmap-under variant or Error[noUnderVariant] will be raised. If there is no
current bitmap-under pointer, this procedure returns NIL.

Window.GetBox: PROC [Window. Handle] RETURNS [Window.BOX];

GetBox returns the current Box for a window.

Window.GetChild: PROC[Window.Handle] RETURNS [Window.Handle];

GetChild returns the window's topmost (eldest) child.

Window.GetCiearingRequired: PROC [Window.Handle] RETURNS [BOOLEAN];

GetCiearingRequired returns the current value of the clearing-required flag for a window.

Mesa Programmer's Manual

Window.GetDisplayProc: PROC [Window.Handle] RETURNS [PROC [Window.Handle]];

GetDisplayProc returns the window's display procedure.

Window.GetParent: PROC [Window.Handle] RETURNS [Window.Handle];

GetParent returns the the window's current parent.

Window.GetSibling: PROC [Window~Handle] RETURNS [Window.Handle];

GetSibling returns the window's topmost (eldest) sibling.

Window.lnitializeWindow: PROC [

window: Window.Handle. display: PROC [Window.Handle], box: Window.Box.
parent: Window.Handle ~Window.rootWindow, sibling, child: Window.Handle ~NIL.
clearingRequired: BOOLEAN ~TRUE, under: BOOLEAN ~FALSE];

24

InitializeWindow sets the values of the listed fields in the window object. This procedure
should be called before InsertlntoTree. (Most Tajo clients should not need this procedure.)

Window.lnsertlntoTree: PROC [window: Window.Handle];

InsertlntoTree adds the client-supplied Window.Object to the window tree. The caller must
have set the following fields of the window object by calling InitializeWindow or one of the
"Set" procedures: parent, sibling, child, display, under. sibling should be NIL if this window
is to be the last child of its parent. The root window must have been defined before this
procedure is called. The client can force all the just-inserted windows to be painted by
calling ValidateTree and passing a window that contains all of the inserted windows. If an

inserted window has a bitmap under and the new window is partially obscured (if all the bits needed for the

bitmap under are not available), then ValidateTree is called on the parent of the inserted window to obtain those

bits. This procedure can raise Error[noSuchSibling). (Most Tajo clients should not need this
procedure.)

Window.lntersectBoxes; PROC [b1,b2: Window. Box] RETURNS [box: Window.Box];

IntersectBoxes returns a Box that is the intersection of b1 and b2. If their intersection is
empty, Window.nullBox is returned.

Window.lnvalidateBox: PROC [

window: Window. Handle, box: Window. Box, clarity: Window.Clarity ~ isDirty];

InvalidateBox adds the region described by box to the list of invalid regions of window.
clarity controls whether the window package should clear the region; if clarity is isClean,
the region is not cleared. InvalidateBox does not update the display; the client should call
Validate on window to cause the window package to update the display. The client should
not call its display procedure directly when its window needs repainting. Instead, it should
update its data to reflect the newly desired content and call InvalidateBox. A call on

Invalidate Box followed by a call on Validate may result in no call to the display procedure if, for instance, the

invalidated areas stick out of the parent.

24-5

24

24-6

Window

window.lsBitmapUnderVariant:PROC(Window.Handle]RETURNS (BOOLEAN);

IsBitmapUnderVariant returns the value of the under parameter as of the last call on
InitializeWindow for the window. If InitializeWindow has not been called, this procedure
returns FALSE.

Window.lsOescendantOfRoot: PROC [Window.Handle] RETURNS [BOOLEAN];

IsOescendantOfRoot determines if the window is currently a part of the tree rooted at
Window.rootWindow.

window.lsPlacelnBox: PROC [place: Window.Place, box: Window. Box] RETURNS [BOOLEAN];

IsPlacelnBox is a utility that determines whether place is inside box. Points on box's
border are considered to be inside.

Window.ObscuredBySibling: PROC [Window.Handle] RETURNS [BOOLEAN];

ObscuredBySibling returns TRUE if and only if the box of an older sibling (one closer to the
top of the sibling stack) intersects window's box.

Window.RemoveFromTree: PROC [Window.Handle];

RemoveFromTree removes the argument window and its children from the visible window
tree. (Most Tajo clients should never have to call this procedure.)

Window.Root: PROC RETURNS [Window.Handle];

Root returns WJndow.rootWindow.

Window.SetBitmapUnder: PROC [
window: Window.Handle, pointer: LONG POINTER Eo- NIL.
underChanged: Window.UnderChangedProc Eo- NIL,
mouseTransformer: Window.MouseTransformerProc Eo- NIL]
RETURNS [LONG POINTER];

SetBitmapUnder allows the client to specify a bitmap under for the window, allowing the
window package to maintain the pixels that would appear on the display if the window did
not exist. The window package can thus quickly adjust the display when the window is
removed from the tree without having to call the display procedure of all the (partially)
hidden windows. A client clears the data by passing in NIL for pointer. The old value of the
data pointer is returned, and the client can free it at that time. The allocation of an
appropriate amount of space is the caller's responsibility (see
Window.WordsForBitmapUnder.) The underChanged and mouseTransformer parameters
are ignored in the current release. While the bitmap under is in effect, the window's size
cannot be changed. This procedure can raise Error[noUnderVariant).

Window.SetChild: PROC [window, newChild: Window.Handle]
RETURNS [oldChild: Window.Handle];

Mesa Programmer's Manual 24

SetChild allows you to change the value of window's eldest child. This procedure should
not be called for a window that is part of the visible window tree: Window.Error[inTree] will
be raised in this case. Use Window. Stack instead.

Window.SetClearingRequired: PROC [window: Window.Handle, required: BOOLEAN]

RETURNS [old: BOOLEAN];

SetClearingRequired changes the value of the clearing required field in window. It
returns the old value of this field.

Window.SetDisplayProc: PROC [Window.Handle, PROC [Window.Handle]]
RETURNS [PROC [Window.Handle]];

SetDisplayProc sets the window display procedure. It returns the old display procedure.

Window.SetParent: PROC [window, newParent: Window.Handle]
RETURNS [oldParent: Window.Handle];

SetParent allows you to change the value of window's parent. This procedure should not
be called for a window that is part of the visible window tree: Window.Error[inTree] will be
raised in this case. Use Window.Stack instead.

Window.SetSibling: PROC [window, newSibling: Window.Handle]
RETURNS [oldSibling: Window.Handle];

SetSibling allows you to change the value of window's eldest sibling. This procedure
should not be called for a window that is part of the visible window tree:
Window.Error[inTree] will be raised in this case. Use Window.Stack instead.

Window.Slide: PROC [window: Window.Handle, newPlace: Window.Place];

Slide changes window's place within its parent. This procedure can be used for any child
movement. It can raise Error(whosSlidingRoot). Tajo clients do not usually call this
procedure directly.

Window.SlideAndSize: PROC [

window: Window.Handle, newBox: Window.Box, gravity: Window.Gravity ~ nw];

SlideAndSize changes both the place and the dims of window's box relative to window's
parent. (See Window.Gravity for the use of gravity in changing the size of a window.) The
window package tries to minimize the amount of repainting necessary. This procedure can
raise Error(sizingWithBitmapUnder] and Error(whosSlidingRoot). Tajo clients do not
usually call this procedure directly.

Window.SlideAndSizeAndStack: PROC [

window: Window.Handle, newBox: Window.Box, newSibling: Window. Handle,
newParent: window.Handle ~ NIL, gravity: Window.Gravity ~ nw];

SlideAndSizeAndStack performs the SlideAndSize and Stack functions; that is, it changes
both window's box and window's location in the window tree. This procedure can raise
Error[sizingWithBitmapUnder], Error[illegalStack], and Error[whosSlidingRoot]. Tajo
clients do not usually call this procedure directly.

24-7

24

24-8

Window

Window.SlideAndStack: PROC [
window: Window.Handle. newPlace: Window.Place. newSibling: Window.Handle.
newParent: Window. Handle +- NIL];

SlideAndStack performs the Slide and Stack functions; that is, it changes both window's
place and window's location in the window tree. This procedure can raise
Error[illegalStackJ, and Error[whosSlidingRoot). Tajo clients do not usually call this
procedl..lre dir·ectly.

Window.Slidelconically: PROC [window: Window.Handle. newPlace: Window.Place];

Slideiconically is not currently implemented.

Window.Stack: PROC[
window. newSibling: Window. Handle, newParent: Window.Handle +- NIL];

Stack changes window's location in the window tree. If newParent is not NIL, then window
is moved to be a child of newParent. The sibling list containing window is modified so
that window is now immediately above newSibling in the stack. Supplying
newSibling=NIL puts window on the bottom of the sibling stack. Unless window is
already on top, supplying newSibling = window.GetParent.GetChild puts window on the
top of the stack. If window is on top, the previous expression is a client error that is not
guarded against. This procedure can raise Error[illegaIStack]. Tajo clients do not usually
call this procedure directly.

Window.TrimBoxStickouts: PROC [
window: Window.Handle, box: Window.Box] RETURNS [Window.Box];

TrimBoxStickouts returns a box that is the result of excluding any portion of box that
sticks out of window or its ancestors.

Window.Validate: PROC [window: Window.Handle];

Validate calls window's display procedure if window has any visible invalid regions.

Window. ValidateTree: PROC [window: Window.Handle +- Window.rootWindow];

ValidateTree calls the display procedure for each window in the tree rooted at window
that has any visible invalid regions.

Window.WordsForBitmapUnder: PROC [window: Window.Handle] RETURNS [CARDINAL];

The WordsForBitmapUnder procedure returns the number of words of storage needed for a
bitmapUnder for a window the size of window.GetBox.dims.

25.1 Types

25

Caret

The Caret interface provides a way for clients to manage a blinking caret that marks the
insertion point. It is intended for clients implementing their own subwindow types. The
procedures in this interface create a caret, clear it, cause it to blink, and start or stop it
from blinking, regardless of which client is the current manager. A client can also
implement a set of actions to perform when another client forces it to relinquish control of
the caret.

This interface does not determine where a caret should be displayed, nor can it paint the
caret on the screen. The client must maintain the information necessary for positioning
and displaying the caret. Whenever an action is to be performed on the caret, client
procedures should not only implement the definition of the various caret actions but also
position and display it.

Caret.Action: TYPE = MACHINE DEPENDENT (
clear(o), mark(1}, invert(2), start(3), stOP(4), reset(s), firstFree(6), last(2SS)};

action defines the operations that can be performed on a caret.

clear removes the caret.

mark creates the caret and sets it to the on (positive) polarity.

invert sets it to off (negative) polarity.

start starts the caret blinking between the on and off polarities.

stop stops it from blinking.

reset causes the current owner to relinquish control of the caret.

firstFree is used internally by UniqueAction and should not be used by Tajo clients.

25-1

25 Caret

Caret.ClientData: TYPE = LONG POINTER;

Caret.MarkProcType: TYPE = PROCEDURE [data: Caret.ClientData, action: caret.Action];

A MarkProcType procedUl'e is provided by the manager of a caret to execute actions on a
caret.

25.2 Constants and data objects

None.

25.3 Signals and errors

None.

25.4 Proced ures

Caret.ActOn: PROCEDURE [Caret.Action];

The ActOn procedure allows clients to act on the current caret without regard to the
current owner.

Caret.NopMarkerProc: Caret.MarkProcType;

The NopMarkerProc procedure is used by a client that does not want to display anything
on the screen when it is the manager of the caret. It is passed as the marker parameter to
the Set procedure.

caret.ResetOnMatch: PROCEDURE [data: Caret.ClientData);

The ResetOnMatch procedure allows a client to relinquish control of the blinking caret if
it is currently the owner. If data is NIL, no actions are performed. Simply doing a Caret.Set with
data set to NIL and a marker that is the NopMarkerProc does not accomplish the same effect because of race
conditions in an arbitrary pre-emption environment.

Caret.Set: PROCEDURE [data: caret.ClientData, marker: Caret.MarkProcType];

The Set procedure allows a client to become the manager of the caret. data is passed back
to marker whenever it is called. If a client does not want to mark the display when it is the
manager of the caret, it can use NopMarkerProc as its marker. If data is NIL, then the
caret's current manager is forced to relinquish control. No client manages the caret until
the next Set operation is performed with a non-nil data value.

Caret.UniqueAction: PROCEDURE RETURNS [Caret.Action];

The UniqueAction procedure allows clients to define private actions. Implementors of
caret-marking procedures should thus ignore actions they do not implement.

26.1 Types

26

Cursor

The Cursor interface provides a procedural interface to the hardware mechanism that
implements the cursor on the screen. To prevent chaos, all tools must manipulate the
cursor through this interface.

Cursor.Defined: TYPE = Cursor. Type [activate .. groundedText);

There is a distinction between user and system-manufactured cursors. To keep things
straight, clients may access system cursors only by their type. The range Defined contains
the system-manufactured cursors.

Cursor.Handle: TYPE = POINTER TO Cursor.Object;

Cursor.lnfo: TYPE = RECORD [type: Cursor.Type. hotX: [0 .. 16), hotY: [0 .. 16)];

Cursor.Object: TYPE = RECORD [info: Cursor.lnfo, array: UserTerminal.CursorArray);

The cursor facilities define an Object that contains a cursor type, a specification of which
bit in the cursor is to be considered "hot". and a 16-by-16 array of bits that is the bitmap for
the cursor (Le., the array of bits that are or'ed into the display). When the cursor is on the
screen, the "hot" bit is the place to which the cursor points.

Cursor. Type: TYPE = MACHINE DEPENDENT{

activate(o). blank(1). bullseye(2). confirm(3). crossHairsCircle(4). ftp(5). ftpBoxeS(6).
hourGlasS(7).lib(8). menu(9). mouseRed(10). mouseYellow(11). mouseBlue(12). mtp(13).
pointDown(14). pointLeft(15). pointRight(16).pointUp(17). questionMark(18). retrY(19).
scroll DOwn(20). scroll Left(21). scroll LeftRight(22). scroll Right(23). scroll U P(24).
scroIiUpDown(25). textPointer(26). typeKey(27). groundedText(28).last(377B)};

26.2 Constants and data objects

The cursors in the subrange Type[activate .. groundedTE!j(t] are built in (system supplied).
Some special notes on what some of the built-in cursors look like follow:

261

26 Cur'sor

activate used by the Librarian interface to indicate that a libject is being
activated. LIB is in the upper half, ACT in the lower.

ftp used to indicate a file transfer in progress. FTP is along the diagonal
from the upper left to the lower right; triangles are in in the lower-left
and upper-right corners.

ftpBoxes also used to indicate a file transfer in progress .. Black quadrants are in
the upper left and lower right, white quadrants elsewhere.

lib used to indicate a Librarian transaction in progress. LIB is along the
diagonal from the upper left to the lower right; triangles are in the lower­
left and upper-right corners.

mouseRed a three-button mouse with the left button highlighted.

mouseY ell ow a three-button mouse with the center button highlighted.

mouseBlue a three-button mouse with the right button highlighted.

textPointer an arrow pointing up and to the left.

groundedText a textPointer with a small bar though the tail.

26.3 Signals and errors

None.

26.4 Procedures

26-2

Cursor.Fetch: PROCEDURE [Cursor.Handle];

The Fetch procedure copies the current cursor object into the cursor object pointed to by
Handle.

Cursor.FetchFromType: PROCEDURE [cursor: Cursor.Handle. type: cursor.Defined];

The FetchFromType procedure copies the cursor object corresponding to type into the
cursor object pointed to by Handle.

Cursor.Getlnfo: PROCEDURE RETURNS [Cursor.lnfo];

The Getlnfo procedure allows clients to find out about the current cursor.

Cursor.lnvert: PROCEDURE RETURNS [BOOLEAN];

The Invert procedure makes each white bit in the current cursor black, and vice versa. It
returns TRUE if the new state of the cursor is positive.

Mesa Progr'ammer's Manual 26

Cursor.MakeNegative: PROCEDURE;

The MakeNegative procedure is equivalent to MakePositive followed by Invert.

Cursor .MakePositive: PROCEDURE;

The MakePositive procedure restores the current cursor's polarity to be as if a Set or Store
hadjust been done.

Cursor.MovelntoWindow: PROCEDURE [
window: Window.Handle, place: Window.Place];

The MovelntoWindow procedure causes the cursor to appear at place in window.

Cursor.Set: PROCEDURE [Cursor.Defined];

The Set procedure sets the displayed cursor to be one of the system-defined cursors.

Cursor.Store: PROCEDURE [Cursor.Handle];

The Store procedure sets the displayed cursor to be a client-defined cursor.

Cursor.Swap: PROCEDURE [old, new: cursor.Handle];

The Swap procedure places the old cursor object in to old t and Stores the new cursor.

cursor.UniqueType: PROCEDURE RETURNS [Cursor.Type];

The UniqueType procedure lets clients assign a unique type to their defined cursors. It
returns a Cursor.Type that is different from all predefined types as well as different from
any that has previously been returned by UniqueType.

26-3

26 Cursor

26-4

27.1 Types

27

Menu

The Menu interface gives a tool writer control over which menus the user sees and what
actions an individual menu item performs. The General Tools section of the XDE User's
Guide describes how menus appear to the user and how to interact with them.

Menu.EnumerateFor: TYPE = {all. inSW. availablelnSW};

EnumerateFor is used to control which menus will be passed back to you by Enumerate.

all all menus instantiated with a window should be enumerated.

inSW only menus instantiated with a subwindow are enumerated.

availablelnSW all menus that the user could display for a subwindow are enumerated
(including the system menus and menus instantiated on the Tool
window).

Menu.EnumerateProcType: TYPE =
PROCEDURE [window: Window.Handle. menu: Menu.Handle]
RETURNS [stop: BOOLEAN];

This procedure type is used with the Enumerate procedure. window is the window to
which menu is attached, and menu is one of the menus that are being enumerated. If stop
is TRUE, the enumeration is terminated.

Menu.Handle: TYPE = LONG POINTER TO Menu.Object;

Most procedures in the Menu interface take a Handle as an argument.

Menu.ltemHandle: TYPE = LONG POINTER TO Menu.ltemObject;

Item Handle is not used by the Menu package but is provided as a convenience to the client.

Menu.ltemObject: TYPE = RECORD [

keyword: LONG STRING. mcrProc: Menu.MCRType];

27-1

27 Menu

Each menu item has u keyword (a string of characters) and a Menu Command Routine
(MCR) associated with it.

Menu.ltems: TYPE = LONG DESCRIPTOR FOR ARRAY OF Menu.ltemObject;

A variable of type Items is a parameter to the Create operation. This variable is stored in
Object; the data referenced hy Items (the keywords and procedures) must not be
deallocated until the menu is destroyed.

Menu.MCRType: TYPE = PROCEDURE [

window: Window.Handle oE-NIL. menu: Menu.Handle oE-NIL.

index: CARDINAL oE-LAST[CARDINAL));

A Menu Command Routine (MCR) is a procedure that is called when the user invokes the
associated menu item. index allows the procedure to determine which menu item was
selected. Clients have often found that using one MCR per menu is useful because only one large catch phrase

need be written to handle common exception cases.

Menu.Object: TYPE = RECORD [

permanent: BOOLEAN.

nlnstances: CARDINAL [0 .. 777778].
name: LONG STRING.

items: Menu.ltemsj;

The Object contains the normally invariant data associated with a menu. An unlimited
number of menus may be associated (instantiated) with the Tool window or any
subwindow. The menu mechanism maintains a ring of menu instances (pointers to
associated menus) for each subwindow (if there is at least one associated menu). One of
these associated menus is taken to be the "current" menu for that subwindow. Some
menus (at least the system global ones) want to be available from virtually every
subwindow. This could be accomplished by creating an Object for each use, but the
primary memory cost·of multiple copies of an Object is large. In addition, you may want to
dynamically alter the items contained in menus (such as lists of available fonts). As a
result, a level of indirection is used. Thus, Tajo never copies a client's Object; instead it
always keeps a pointer to that Object. It is the client's responsibility to guarantee that the
Object is valid as long as Tajo has a pointer to it. The client should only Make or Create a
menu once, but you may Instantiate that menu over as many windows as you like. Objects
are created and destroyed by the menu implementation.

27.2 Constants and data objects

None.

27.3 Signals and errors

27-2

Menu.Error: ERROR [code: Menu.ErrorCode];

Menu.ErrorCode: TYPE = {
islnstantiated. alreadylnstantiated. notlnstantiated, contextNotAvailable.
isPermanent. other};

Mesa Programmer·'s Manual 27

islnstantiated a client is attempting to destroy a menu that is currently
instantiated by the user.

alreadylnstantiated a client is attempting to instantiate a menu that is already
instantiated.

notlnstantiated a client is attempting to un-instantiate a menu that is not
instantiated.

contextNotAvailable Tajo has detected an internal inconsistency in its data structures.

isPermanent a client is attempting to destroy a permanent menu.

27.4 Procedures

Menu.Create: PROCEDURE [

items: Menu.ltems, name: LONG STRING. permanent: BOOLEAN FALSE]

RETURNS [Menu.Handle];

The Create procedure allows a tool to create a menu. It returns a pointer to a menu Object
named name, which is made up of items. The permanent flag indicates whether the
created object can subsequently be destroyed. Ownership of items is passed to the menu
mechanism. name is copied and you retain ownership of the original string, which may be
a local STRING.

Menu.Destroy: PROCEDURE [Menu.Handle];

The Destroy procedure allows a tool to destroy a menu. It deallocates storage for the
Object pointed to by Handle. It first verifies that the Object has an instantiation count =
0; if not, the ERROR Error[islnstantiated] is generated. See Instantiate and Uninstantiate. If
the menu is permanent, the ERROR Error[isPermanent] is generated.

Menu.Enumerate: PROCEDURE [

window: Window. Handle, which: Menu.EnumerateFor,
proc: Menu.EnumerateProcType];

The Enumerate procedure enumerates the menus instantiated with a window. The which
argument specifies which menus that proc will be called with during the enumeration. If
which is all, window is expected to be a Tool window and all the menus instantiated with
window are enumerated. Ifwhich is inSW, window is expected to be a subwindow and all
the menus instantiated with the subwindow are enumerated. If which is availablelnSW,
window is expected to be a subwindow and all the menus that you could display are
enumerated (this includes the system menus and menus instantiated on the Tool window).
If TRUE is returned from proc, the enumeration is terminated.

Menu.Free: PROCEDURE [menu: Menu.Handle, freeStrings: BOOLEAN TRUE];

The Free procedure frees a menu, optionally freeing the copied strings. Free is the
complement of Make. After freeing the items that were created in the call to Make,
Destroy is called.

27-3

27

27-4

Menu

Menu.Freeltem: PROCEDURE [Menu.ltemObject];

The Freeltem procedure frees a menu item.

Menu.GetFont: PROCEDURE RETURNS [font: WindowFont.Handle];

The GetFont procedure allows a tool to get a handle for the font used for menus.

Menu.lnstantiate: PROCEDURE [menu: Menu.Handle, window: Window.Handle];

The menus chosen for display depend on the window that the cursor is over. This allows
the displayed menu stack to vary, depending on the window layout. The Instantiate
procedure associates the menu with the passed window so it will be displayed when the
cursor is over that window. [t also increments a use count in menu. [f this is the first menu
to be instantiated in window, the window manager menu is also instantiated. If menu is
NIL,only the system global window manager menu is instantiated. [f menu is already
instantiated, the ERROR Error[alreadylnstantiated] is generated. Uninstantiate is the
complement of Instantiate.

Menu.lnvoke: PROCEDURE [window: Window.Handle, place: Window.Place];

Invoke displays the menu stack that is available at that place in the window. This is
normally called from a TIP.NotifyProc (see the TIP chapter).

Menu.Make: PROCEDURE [
name: LONG STRING, strings: LONG DESCRIPTOR FOR ARRAY OF LONG STRING.
merProe: Menu.MCRType, copyStrings: BOOLEAN ~ TRUE,
permanent: BOOLEAN ~ FALSE]
RETURNS [Menu.Handle];

The Make procedure makes a menu named name that has the elements contained in
strings. When one of the strings is selected, the mcrProe is called, indicating the index of
the string in the array. The permanent flag indicates whether the created object can
subsequently be destroyed. The eopyStrings flag indicates whether strings should be
copied into the system heap. Free is the complement of Make. Make is usually followed by
Instantiate.

Menu.Makeltem: PROCEDURE [keyword: LONG STRING, mcrProc: Menu.MCRType] RETURNS
[Menu.ltemObjeet] ;

The Makeltem procedure makes a menu item. keyword is copied and may be a local
STRING.

Menu.MCRForKeyword: PROCEDURE [
sw: Window.Handle, menuName, keyword: LONG STRING]
RETURNS [mer: Menu.MCRType, menu: Menu.Handle, index: CARDINAL];

The MCRForKeyword procedure allows the client to get the arguments necessary to
invoke a menu item knowing only the subwindow, menu name, and item name. If the
menu item is not found, the ERROR Error[notlnstantiated] is generated.

Menu.SetFont: PROCEDURE [font: WindowFont.Handle];

Mesa Progr'ammer"s Manual 27

The Set Font procedure allows a tool to set the font used for all menus.

Menu.SetPNR: PROCEDURE [window: Window.Handle];

If a window is not munHg-ed hy Tajo (if it is a client-defined window type), the client may
set the standard menu PNR by calling the SetPNR procedure. If a window is managed by
Tajo, the standard menu PNR is already set up. (See also PNR.)

Menu.Uninstantiate: PROCEDURE [menu: Menu.Handle, window: Window.Handle];

The menus chosen for display depend on the window that the cursor is over. This allows
the displayed menu stack to vary, depending on the window layout. The Uninstantiate
procedure rem<.>ves menu from the window so it will not be displayed when the cursor is
over this window. It also decrements its use count. Eventual deallocation of the menu
must be performed by the client. If this menu is not instantiated with this window, then
the ERROR Error[notlnstantiated] is generated. It is also possible that the ERROR

Error[contextNotAvailable] will be generated, indicating that Tajo has detected an
internal inconsistency in its data structures.

27.5 Examples

For an example of how to use menus, see ExampleTool in Appendix A.

27-5

27 Menu

27-6

28.1 Types

28

Scrollbar

The Scroll bar interface provides a consistent user interface and mechanism for specifying
and invoking scroll actions. It does not scroll (move bits on the screen).

Scrollbar.Direction: TYPE = {forward. backward, relative};

A Direction is used to specify the type of scrolling requested.

forward scrolls the window so that data near the bottom (right) of the window is
moved toward the top (left).

backward scrolls the window so that data near the top (left) of the window is moved
toward the bottom (right).

relative indicates that the window should display the data at a relative location in the
underlying source.

Scrollbar.Percent: TYPE = [0 .. 100];

Percent controls the amount of information scrolled or the location in the file to be
displayed. (See ScroliProcType for the interaction between the interpretation of Direction
and Percent.) It is possible to overflow when multiplying a Percent with a
window.box.dims.w while converting between percentage locations and coordinates.

Scrollbar.ScrolibarProcType: TYPE = PROCEDURE [window: Window.Handle]
RETURNS [box: Window. Box. offset. portion: Scrollbar.Percent];

A ScrollbarProcType procedure gets the scrollbar data from the client to display it. box is
the region of window occupied by the scrollbar; offset is the relative position in the file
occupied by the first character in the window and portion is the percentage of the file
displayed (the percentage of the file represented by the offset of the last character in the
window minus the offset ofthe first character of the window).

28-1

28 Scroll bar

scrollbar.ScroIiProcType: TYPE = PROCEDURE [

window: Window.Handle, direction: Scrollbar.Direction,
percent: Scrollbar.Percent);

A ScroliProcType procedure communicates to the client a user's scroll request. window is
the window in which the scrollbar was created, and direction is the direction of scrolling.
desired. If direction is relative, percent specifies the location in the file to display; for
example, 0 is the beginning, 100 is the end, and 50 is the middle. If direction is not
relative, percent is the amount of the window to be scrolled; for example, 0 means "don't
scroll at all," 100 means "scroll one window contents," 50 means "scroll so that half of the
current window contents is still displayed."

Scrollbar.Type: TYPE = (horizontal, vertical};

Type indicates whether the scrollbar controls the up-down movement of data (vertical) or
the left-right movement (horizontal).

28.2 Constants and data 0 bjects

None.

28.3 Signals and errors

Scrollbar.Error: ERROR [code: Scrollbar.ErrorCode);

Scrollbar.ErrorCode: TYPE = {alreadyExists. doesNotExist, other};

alreadyExists the client is attempting to add to a window a scrollbar of a type that
already exists on that window.

doesNotExist is raised by GetNotifier and SetNotifier if no scrollbar exists on the
window in question.

other is not used.

28.4 Procedures

28-2

Scrollbar.Adjust: PROCEDURE [window: Window.Handle, box: Window. Box] RETURNS [

clientBox: Window.Box,
verticalWindow: Window.Handle, verticalBox: Window.Box,
horizontalWindow: Window.Handle, horizontal Box: Window.Box];

Adjust is used by the client whenever it changes the size or position of a subwindow that
has scrollbars. The client calculates the box to contain both the sub window and its
scrollbar windows. clientBox describes the area that the subwindow (minus the scroll bars)
should actually occupy. verticalWindow is the window used to display the vertical
scrOllbar, and vertical Box is the region that verticalWindow should occupy.
horizontalWindow and horizontalBox are similar. verticalWindow or horizontalWindow
is NIL if that type of scrollbar does not exist for the subwindow. (If the subwindow has no
scrollbars, then both verticalWindow and horizontalWindow are NIL and clientBox equals

Mesa Programmer's Manual 28

box.) The client must use this information for the actual Window.SlideAndSize for its
subwindow and each of the scrollbar windows.

Scrollbar.Create: PROCEDURE [
window: Window.Handle, type: Scrollbar.Type, scroll: Scrollbar.ScroIlProcType, scrollbar:
Scrollbar.ScrollbarProcType, notify: Scrollbar.ScrollProcType +- NIL];

Create creates a scrollbar in the subwindow window for vertical or horizontal scroll
functions. scroll is called to request a scrolling action. scroll bar is called to obtain
information about the scrollbar and its window. notify is called every time a scrolling
action occurs; it permits the client to monitor scrolling actions. If Create is called for a
subwindow that already has a scrollbar of that type, the error Error[alreadyExists] is
generated.

Scrollbar.Destroy: PROCEDURE [window: Window.Handle, type: Scrollbar.Type];

Destroy deletes a scrollbar. If Destroy is called for a sub window that has no scrollbar of
that type, no operation is performed.

Scrollbar.GetNotifier: PROCEDURE [window: Window.Handle, type: Scrollbar.Type]
RETURNS [scrollbar.ScroIlProcType);

GetNotifier is called to find out what notify procedure has been associated with window
and type.

Scrollbar.HasScrollbar: PROCEDURE [
window: Window. Handle, type: Scrollbar.Type] RETURNS [BOOLEAN];

HasScrollbar returns a TRUE if and only if window has a scroll bar of type type.

Scrollbar.SetNotifier: PROCEDURE [
window: Window.Handle, type: Scrollbar.Type, notify: Scrollbar.ScroIlProcType]
RETURNS [Scrollbar.ScroIlProcType];

SetNotifier is called to change the notify procedure associated with window and type. It
returns the old notify procedure.

Scrollbar.WindowNowDelinked: PROCEDURE [window: Window.Handle];

WindowNowDelinked is used by the client when it removes a sub window from a tool
without destroying the scrollbar property associated with that window.

Scrollbar.WindowNowEnlinked: PROCEDURE [window: Window.Handle];

WindowNowEnlinked gets the scrollbar windows attached to the tool window when the
client has inserted its window back as a son of the tool window.

28.5 Discussion

Clients of the Tool interface should not have to call Adjust, WindowNowDelinked, or
WindowNowEnlinked.

28-3

28 Scroll bar

28-4

29.1 Types

29

Selection

The Selection interface is the mechanism that communicates the current selection among
various tools. It is the responsibility of a client of this interface to provide for actual
selection of text or graphics within its window(s). The client window containing the
current selection is referred to as the manager of the current selection. The Selection
interface also defines two abstractions known as the trashbin and the insertion. The trash
bin saves the most recent text cuts for subsequent pastes. The insertion saves the most
recent text inserted into a text subwindow. (Note that text inserted elsewhere, such as
form subwindows, is not saved.)

Two classes of clients use the Selection interface. Most commonly, tools that wish to
obtain the value of the current selectioncall Convert (or maybe (Long)Number, which in
turn calls Convert). These tools need not be concerned with the details of how selection
happens. There is one slightly tricky concept for such tools to understand--ifthey want the
selection as a STRING, they should also be prepared to get the selection as a Source in case it
is longer than Selection.maxStringLength.

The other class is those clients who wish to manage the current selection. In this case, the
tool calls Selection. Set and provides procedures that may be called to convert the selection or
perform various actions on it. The tool remains in control of the current selection until
some other tool calls Selection. Set.

Selection.Action: TYPE = MACHINE DEPENDENT {
clear(o). mark(1). unmark(2). delete(3). clearlfHaslnsert(4). firstFree(S).last(255)};

clear

mark

unmark

delete

"unselects" and de highlights the current selection.

highlights the current selection.

dehighlights the current selection.

deletes the contents of the current selection. The manager of the
current selection may decide against actually deleting it.

29-1

29

29-2

Selection

clearlfHaslnsert same as clear, but only if the insertion point is in the selection.

firstFree is used internally by UniqueAction and should not be used by clients.

Selection.ActOnProcType: TYPE = PROCEDURE [
data: Selection.ClientData, action: Selection.Action];

ActOnProcType procedures are provided by the manager of the selection to handle actions.

Selection.ClearTrashBinProcType: TYPE = PROCEDURE [data: Selection.ClientData];

ClearTrashBinProcType procedures are provided by the manager of the trashbin or the
insertion.

Selection.ClientData: TYPE = LONG POINTER;

Selection.ConvertProcType: TYPE = PROCEDURE [
data: Selection.ClientData, target: Selection.Target] RETURNS (LONG POINTER];

ConvertProcType procedures are provided by the manager of the selection, trash bin, or
insertion to implement Convert.

Selection.DestroyProc: TYPE = PROCEDURE (source: Selection. Source];

DestroyProc procedures are provided for clean-up when a manager ceases to be the
manager of the selection, trashbin, or insertion (when Selection. Set is called again).

Selection.SOurCe: TYPE = LONG POINTER TO Selection.SourceObject;

Selection.SourceObject: TYPE = RECORD (
data: LONG POINTER TO UNSPECIFIED, proc: Selection.SourceProc,
destroy: Selection.DestroyProc];

The Source mechanism processes textual selections that are longer than a few hundred
characters. It works as follows: The client asks for the current selection to be converted as
a Source by calling Convert with a Selection. Target of source. The manager of the current
selection creates an instance of the Source data structure and returns a pointer to it to the
client. The client then makes repeated calls on proc, supplying a string of arbitrary size.
The manager of the current selection fills the string with text and returns. The manager
does not need to fill the string completely, but it must return some data with each call, as
end-of-selection is indicated by returning an empty string. When the client receives a zero­
length string, it must call the destroy procedure supplied in the SourceObject; otherwise,
the space allocated for the source is lost.

Selection.SourceProc: TYPE = PROCEDURE [
data: Selection.ClientData, string: LONG STRING];

SourceProc procedures are contained in Selection.SOurceObjects, and are called by client
procedures to have string filled with characters from the selection. The data that is passed
to the SourceProc should be the data field of the SourceObject that contains the
SourceProc. The selection source need not completely fill string, but must return at least
one character unless the source is exhausted.

Mesa Progl·ammer's Manual 29

Selection. Target: TYPE = MACHINE DEPENDENT{
window(o)~ subwindow(1), string(2), sOurce(3), length(4), position(5), pieceList(6),
longlnteger(7), interpressMaster(8), potentialinterpressMaster(9), token(10),
firstFree(11),last(255)};

Target describes the type of data to which a selection may be converted (see Convert).
Tools that manage the current selection (by calling Selection. Set) may choose not to
implement conversion to some (or all) of these types:

window

subwindow

string

source

length

position

pieceList

longlnteger

interpressMaster

potentiallnterpressMaster

token

returns a Window.Handle to the window containing the
selection.

returns a Window.Handle to the subwindow containing
the selection.

returns a LONG STRING allocated from the system heap
that contains a copy of the selection. If the current
selection is too large, the manager of the selection may
return NIL when asked to convert to a string. The client
program should then ask for the selection as a source.

returns a Selection. Source on the selection.

returns a LONG POINTER TO LONG CARDINAL containing the
length of the selection in characters.

returns a LONG POINTER TO LONG CARDINAL containing the
position in the source.

returns a list of pieces, understood by the internals of
PieceSource.

returns LONG POINTER TO LONG INTEGER containing the
result of converting the contents of the selection to a
number.

converts the contents of the selection into an Interpress
master.

returns NIL if the manager is not willing to produce an
Interpress master, or a non-NIL pointer (to an otherwise
uninteresting small quantity) if it is willing. Even
though the quantity is uninteresting, the client must
free it to the system heap, or storage will be lost
(Convert uniformly returns a legitimate pointer to
storage that the client should free.>

returns a LONG STRING allocated from the system heap
that contains the first token of the current selection.
What constitutes a token is not defined by the
Selection interface; all that is necessary is that the
manager and a client agreed to a definition.

29-3

29 Selection

firstFree is used internally by Unique Target and should not be
used by clients.

Only the following targets are supported by the standard Tajo selection manager: length,
source, string (only if the length is less than Selection.maxStringlength characters),
subwindow, window.

29.2 Constants and data objects

Selection.maxStringLength: CARDINAL = 200;

maxStringlength is the largest string that can be produced by Convert.

29.3 Signals and errors

None.

29.4 Procedures

29-4

Selection.ActOn: PROCEDURE [Selection.Action];

The ActOn procedure communicates a request for an action to the manager of the current
selection. (See also UniqueAction.)

Selection.Clear: PROCEDURE;

The Clear procedure requests that the current selection be cleared. It is equivalent to
calling Selection.ActOn[clear].

Selection.ClearlnsertionOnMatch: PROCEDURE [pointer: LONG POINTER];

It is sometimes difficult to determine if you are the manager of the current insertion. The
ClearlnsertionOnMatch procedure will clear the current selection if and only if the client
is the current owner. A client is the current owner if pointer is equal to the latest pointer
that was passed into Setlnsertion.

Selection.ClearOnMatch: PROCEDURE [pointer: LONG POINTER];

It is sometimes difficult to determine if you are the manager of the current selection. The
ClearOnMatch procedure will clear the current selection if and only if the client is the
current owner. A client is the current owner if pointer is equal to the latest pointer that
was passed into Set.

Selection.Convert: PROCEDURE [Selection. Target] RETURNS [LONG POINTER];

The Convert procedure will perform the requested conversion and return a LONG POINTER to
the data. The data returned for many types of items is allocated out of the system heap.
The storage ownership is passed to the recipient, which must deallocate it. (See Target for
the effect of different conversion targets.) NIL is returned if the manager of the current
selection does not implement the desired conversion. (See also SourceObject.)

Mesa P.·og.·amme.·'s Manual 29

Selection.Converttnsertion: PROCEDURE [Selection. Target] RETURNS [LONG POINTER];

The Convertlnsertion procedure converts the conlents of the inserlion like Convert.

Selection.ConvertTrashBin: PROCEDURE [Selection. Target] RETURNS [LONG POINTER];

The ConvertTrashBin procedure converts the conlents of the trash bin like Convert.

Selection.LongNumber: PROCEDURE [radix: CARDINAL +-10] RETURNS [LONG CARDINAL];

The LongNumber procedure will perform the requested conversion to a number. If the
current selection is not acceptable to the Mesa runtime, then String.lnvalidNumber will be
raised by the runtime and allowed to propagate through these procedures.

Selection.Number: PROCEDURE [radix: CARDINAL +-10] RETURNS [CARDINAL];

The Number procedure will perform the requested conversion to a number. If the current
selection is not acceptable to the Mesa runtime as a number, then String.lnvalidNumber
will be raised by the runtime and allowed to propagate through these procedures

Selection.Set: PROCEDURE [
pointer: LONG POINTER, conversion: Selection.ConvertProcType,
actOn: Selection.ActOnProcType];

The Set procedure allows a client to become the manager of the current selection by
supplying the Selection interface with a pair of procedures. The ActOnProcType is called
to modify the current selection. The ConvertProcType is called to get the value of the
current selection. The value of pointer passed to Set will be used as the data argument in
calls to conversion or actOn.

Selection.Setlnsertion: PROCEDURE [
pointer: LONG POINTER, conversion: Selection.ConvertProcType,
clear: Selection.ClearTrashBinProcType];

The Setlnsertion procedure allows a client to become the owner of the insertion.

selection.SetTrashBin: PROCEDURE [
pointer: LONG POINTER, conversion: Selection.ConvertProcType,
clear: selection.ClearTrashBinProcType];

The SetTrashBin procedure allows a client to become the owner of the trashbin.

selection.UniqueAction: PROCEDURE RETURNS [Selection.Action];

The UniqueAction procedure allows a client to define its own private operations on the
selection. It returns a new Action in [firstFree .. last].

Selection.UniqueTarget: PROCEDURE RETURNS (Selection. Target];

The UniqueTarget procedure allows a client to define its own private conversion type. It
returns a new Target in [firstFree . .last].

29-5

29 Selection

29-6

30.1 Types

30

ToolFont

The ToolFont interface provides Tajo's interface to the WindowFont facilities. These
routines provide font storage management. (See also WindowFont.)

None.

30.2 Constants and data objects

None.

30.3 Signals and errors

None.

30.4 Procedures

TooIFont.Create: PROCEDURE [MFile.Handle] RETURNS [WindowFont.Handle);

The Create procedure allocates a font object and initializes it. Do not call Create if
MFile.Handle is Nil; it causes an error in MSegment.

TooIFont.Destroy: PROCEDURE [WindowFont.Handle);

The Destroy procedure destoys the data segment and font object. Do not call Destroy with
a Nil WindowFont.Handle; it causes an address fault.

TooIFont.StringWidth: PROCEDURE [
string: LONG STRING, font: WindowFont.Handle ~ Nil] RETURNS [[O .• LAST[INTEGER]]];

The StringWidth procedure computes the width of string in font font. If font is Nil, the
default font is used (see WindowFont.SetDefault). If the width of string in the given font is
wider than can be represented in an INTEGER, the return value will be meaningless. This
routine maps non-printing characters (such as control characters.) into a font-specific
default character. If string is Nil, an address fault results.

30-1

30 ToolFont

30-2

31.1 Types

31

WindowFont

The WindowFont interface converts. str ike fonts into a representation that makes it
more convenient for Tajo's window package to display characters.

WindowFont.Handle: TYPE = LONG POINTER TO WindowFont.Object;

The text-painting procedures of the Display interface take as an argument a Handle on an
object from WindowFont. Most of the fields of a Handle are private to the implementation.

WindowFont.Object: TYPE = RECORD [

height: [0 .. 77778] NULL.

kerned: BOOLEAN FALSE.

width: PACKED ARRAY CHARACTER [OC •• 377C] OF [0 .. 255] ALL[OJ.

raster: CARDINAL NULL.

maxWidth: CARDINAL NULL.

min. max: CHARACTER NULL.

address: LONG POINTER.

bitmap: LONG POINTER TO ARRAY [0 .. 0) OF WORD NULL.

xlnSegment: LONG POINTER TO ARRAY CHARACTER [OC •• OC) OF

CARDINAL NULL];

The bits within the font object that define the character pictures are private to the
implementation. The public interfaces only allow the client to determine the sizes of the
characters in screen dots.

Each of the measurement values in Object is in units of bits.

height is the font height.

kerned must be FALSE, because fonts are not supported by the window package.

width contains the width of each character.

raster is the width of the bitmap.

31 1

31 WindowFont

maxwidth is the width of the widest character in the font.

min, max are the lowest and highest characters that exist in the font, respectively.

address is the address in memory of the first word of the . s t r ike font.

bitmap is the address of the first word of the actual data for the character pictures.

xlnSegment contains the number of bits from the beginning of bitmap to the left edge of
the character, for each character in the font.

31.2 Constants and data objects

WindowFont.defaultFont: READONL Y WindowFont.Handle;

31.3 Signals and errors

WindowFont.Error: ERROR [code: WindowFont.ErrorCode];

WindowFont.ErrorCode: TYPE = {illegal Format};

31.4 Procedures

31-2

WindowFont.CharlsDefined: PROC [
char: CHARACTER, font: WindowFont.Handle +- WindowFont.defaultFont]

RETURNS [BOOLEAN];

CharlsDefined returns TRUE if a picture exists for char, FALSE otherwise. If font is NIL, the
defaultFont is used.

WindowFont.CharWidth: PROC [
char: CHARACTER, font: WindowFont.Handle +- WindowFont.defaultFont]
RETURNS [NATURAL];

CharWidth allows the client to determine the width of a character in screen dots. A font

argument of NIL for these routines means use the defaultFont.

WindowFont.FontHeight: PROC [

font: WindowFont.Handle +- WindowFont.defaultFont] RETURNS [NATURAL];

FontHeight allows the client to determine the height of the characters in a font in screen
dots. A font argument of NIL for these routines means use the defaultFont.

WindowFont.lnitialize: PROC [font: WindowFont.Handle];

The Initialize procedure creates an internal font of the client's choice. font points to a font
record that is at least Object. SIZE words long. The client is responsible for setting
font.address before calling Initialize. This address must point to the first word in memory
of a • s tr ike font. This implies, of course, that font cannot be NIL. Tajo clients do not
usually call this procedure. (See TajoFont.Create for a more convenient way of initializing
fonts.)

Mesa Programmer's Manual 31

WindowFont.SetDefault: PROC [font: WindowFont.Handle);

The SetDefault procedure sets the defaultFont to be font. Using defaultFont before this
procedure has been called is a client error. Tajo clients do not usually call this procedure.

31·3

31 Window Font

31-4

32.1 Types

32

AsciiSink

This interface implements a text sink that outputs Ascii text. (See TextSink for a
description of text sinks.)

AsciiSink. TabStops: TYPE = LONG DESCRIPTOR FOR ARRAY OF CARDINAL;

TabStops describes the tab settings for text output through an AsciiSink. Each element of
the array specifies the number of pixels from the left margin for that tab stop.

32.2 Constants and data objects

None.

32.3 Signals and errors

None.

32.4 Procedures

AsciiSink.Create: PROC [font: WindowFont.Handle] RETURNS [TextSink.Handle];

Create takes a font to be used for output and returns a TextSink.Handle.

AsciiSink.GetTabs: PROC [sink: TextSink.Handle] RETURNS [AsciiSink.TabStops];

GetTabs returns the current tab stops for sink. A returned value of NIL means that the
default tab stops (one every eight spaces) are in effect.

Asciisink.lnfo: PROC [sink: TextSink.Handle) RETURNS [font: WindowFont.Handle);

Info returns the font with which the sink was created.

32 1

32

32-2

AsciiSink

AsciiSink.lslt: PROC [sink: TextSink.Handle) RETURNS [BOOLEAN);

Islt returns TRUE if this sink is an AsciiSink (created by AsciiSink.Create) and FALSE otherwise.

AsciiSink.SetTabs: PROC [sink: TextSink.Handle. tabStops: AsciiSink.TabStops E-NIL);

SetTabs sets the tab stops for sink. If tabStops is defaulted, the default tab stops (one
every eight spaces) are set.

33.1 Types

33

BlockSource

This interface creates a text source (see TextSource) that is backed by an Environment.Block
of Ascii characters. It is the same as a scratch source (see ScratchSource) with an access of
read-only.

BlockSource.Block: TYPE = Environment.Block;

BlockSource.Handle: TYPE = TextSource.Handle;

33.2 Constants and Data Objects

None.

33.3 Signals and Errors

None are defined by this interface; however, TextSource.Error can be raised by the procedure
Info.

33.4 Procedures

BlockSource.Create: PROCEDURE [
block: BlockSource.Block] RETURNS [source: BlockSource.Handle);

The Create procedure creates a block source. The characters in the block must not change
as long as the source is using that block.

BlockSource.lnfo: PROCEDURE [
source: BlockSource.Handle) RETURNS [block: BlockSource.Block);

Info returns the block backing the block source. source cannot be NIL. This procedure raises
TextSource.Error[other] if source is not a pointer to a block source.

33-1

33

33-2

BlockSource

BlockSource.Jslt: PROCEDURE [source: BlockSource.Handle] RETURNS [yes: BOOLEAN];

Islt returns TRUE if the Handle is a block source and FALSE otherwise. source cannot be NIl.

BlockSource.Set: PROCEDURE [source: BlockSource.Handle. block: BlockSource.Block];

Set changes the block backing the block sources; the old block is not deallocated. source

cannot be NIL.

34.1 Types

34

DiskSource

The DiskSource interface creates a text source (see the TextSource chapter) that is backed
by a stream or a file in the local file system.

None.

34.2 Constants and data objects

None.

34.3 Signals and errors

None.

34.4 Procedures

DiskSource.Create: PROCEDURE [
name: LONG STRING, access: TextSource.Access, s: Stream.Handle +- NIL]
RETURNS [source: TextSource.Handle];

The Create procedure creates a disk source. If s is not NIL, it is used as the stream backing
the source. If s is NIL, a stream is opened on the file name. access may be either read or
append. This procedure may raise TextSource.Error[••• , accessError, fileNameError, •.• J.

DiskSource.lnfo: PROCEDURE [source: TextSource.Handle]
RETURNS [name: LONG STRING, s: Stream.Handle, access: TextSource.Access];

The Info procedure returns the name of the file backing the disk source, the stream
backing the source, and the access on the source.

DiskSource.lslt: PROCEDURE [source: TextSource.HandleJ RETURNS [BOOLEAN];

The Islt procedure returns TRUE if the Handle is a disk source and FALSE otherwise.

34-1

34

34-2

DiskSource

DiskSource.Rename: PROCEDURE [
source: TextSource.Handle, newName: LONG STRING. access: TextSource.Access]
RETURNS [TextSource.Handle];

The Rename procedure renames a currently existing disk source. The current disk source
is destroyed and a disk source for the new file, with the specified access. is created. This
procedure may raise TextSource.Error[.•. , accessError, fileNameError •.•. J. source cannot be
NIL.

DiskSource.SetMaxDiskLength: PROCEDURE [
source: TextSource.Handle, maxLength: LONG CARDINAL];

The SetMaxDiskLength procedure provides a way to implement circular files, which are
particularly useful for logs. When the source reaches maxLength characters in length, it
starts over at the beginning of the stream, rather than extending the file. source cannot be
NIL.

35.1 Types

35

PieceSQurce

The PieceSource interface creates a text source (see TextSource) that is backed by a piece
table maintained on a text source.

None.

35.2 Constants and data objects

None.

35.3 Signals and errors

None.

35.4 Procedures

PieceSource.Create: PROCEDURE [original, scratch: TextSource.Handle]
RETURNS [source: TextSource.Handle);

The Create procedure creates a piece source. original is the text source on which the piece
table is made. The piece source takes over ownership of this text source. scratch is a text
source with append access that the piece table code uses for maintaining the interim state.

PieceSource.lnfo: PROCEDURE [source: TextSource.Handle)
RETURNS [original, scratch: TextSource.Handle);

The Info procedure returns the original and scratch text sources with which the piece
source was created. source cannot be NIL.

PieceSource.lslt: PROCEDURE [source: TextSource.Handle) RETURNS [yes: BOOLEAN];

The !slt procedure returns TRUE if the Handle is a piece source and FALSE otherwise.

35-1

35

35-2

PieceSource

PieceSource.Put: PROCEDURE [source: TextSource.Handle. name: LONG STRING] RETURNS [new:
TextSource.Handle] ;

The Put procedure converts the piece table into a stream and stores it into the file named
name. It returns a disk source with read access on the file after storing the contents of the
piece table. source cannot be NIL. Any of the errors from MFile.WriteOnly may be raised.

PieceSource.Reset: PROCEDURE [source: TextSource.Handle]
RETURNS [origi nal: TextSource.Handle);

The Reset procedure causes the piece source to discard all modifications made to the piece
table and return the original source passed to the PieceSource.Create procedure. The text
source scratch is destroyed in the process. source cannot be NIL.

36.1 Types

36

ScratchSource

The ScratchSource interface creates a text source (see TextSource for more information)
that is backed by a block of virtual memory containing Ascii characters.

None.

36.2 Constants and data objects

None.

36.3 Signals and errors

None.

36.4 Procedures

ScratchSource.Create: PROCEDURE [
block: Environment.Block +- Environment.nuIiBlock, extraRoom: CARDINAL +- 0, access:
TextSource.Access +- edit, expandable: BOOLEAN +- TRUE]
RETURNS [source: TextSource.Handle];

The Create procedure creates a scratch source. block is storage that is used to back the
source. A block of nuliBlock means the source allocates the block using
MSegment.GetPages. For any other block passed in, the source has as initial data any
characters contained in the block. extraRoom is the amount of storage beyond the end of
block that may be used by the source. If expandable is FALSE and the source runs out of
room in the block while performing a replace operation, that operation returns a no­
change value (see TextSource). If expandable is TRUE, the source takes over ownership of
the block passed in; the block must be allocated using MSegment.GetPages so that the
source may replace it with another larger block if necessary. In this case, the block is
deallocated when the source is destroyed. access is the access desired on this source. A
scratch source whose access is read and whose block is not null is the same as a block
source (see BlockSource).

36-1

36

36-2

ScratchSource

ScratchSource.lnfo: PROCEDURE [source: TextSource.Handle]
RETURNS [block: Environment.Block. extraRoom: CARDINAL,
access: TextSource.Access, expandable: BOOLEAN];

The Info procedure returns the block backing the scratch source, the amount of extra room
left after the block, whether the block is expandable, and the access on the source. source
cannot be NIL. TextSource.Error[otherJ is raised if source does not point to a scratch source.

ScratchSource.lslt: PROCEDURE [source: TextSource.Handle] RETURNS [yes: BOOLEAN];

The Islt procedure returns TRUE if the Handle is a scratch source and FALSE otherwise.

37.1 Types

37

StringSource

The StringSource interface creates a text source (see TextSource) that is backed by a
string containing Ascii text.

None.

37.2 Constants and data objects

StringSource.cannotExpand: CARDINAL = ... ;

cannotExpand is used by the procedure InsertString to indicate that a string is non­
expandable. It will be deleted from the interface when it is next changed, because
InsertString will also be deleted.

37.3 Signals and errors

None.

37.4 Procedures

StringSource.Create: PROCEDURE [
ps: LONG POINTER TO LONG STRING, expandable: BOOLEAN]
RETURNS [source: TextSource.Handle];

The Create procedure creates a string source with edit access. ps is a pointer to the string
backing the source. If ps is NIL, TextSource.Error[invalidParameters] is raised. If expandable
is FALSE and the string source runs out of room in the string (such as during a call to
source.replaceText), String.StringBoundsFault(ps] is raised. If expandable is TRUE and the
string source runs out of room in the string, it allocates a new string, copies the old string,
and deallocates it. If expandable is TRUE, the string must have been allocated from the
system heap; the string is deallocted when the source is destroyed using its ActOn
procedure.

37-1

37

37-2

StringSource

Note: The current implementation of string sources requires a contiguous block of memory large enough to

completely contain the backing string. More important. when the string is expanded. a new larger string is

allocated and copied. which req ui res 2* n + delta characters of memory in the system heap.

StringSource.DeleteSubString: PROCEDURE [
ss: String.SubString, keepTrash: BOOLEAN] RETURNS [trash: LONG STRING];

The DeleteSubString procedure is no longer implemented. It will be deleted from the
interface when the interfaces are next changed.

StringSource.l nfo: PROCEDURE [source: TextSource.Handle]
RETURNS [ps: LONG POINTER TO LONG STRING. expandable: BOOLEAN];

The Info procedure returns the string backing the string source and whether the string is
expandable. source cannot be NIL. If source is not a string source, it returns NIL, FALSE.

StringSource.lnsertString: PROCEDURE [
string: LONG POINTER TO LONG STRING, position: CARDINAL, toAdd: String.SubString. extra:
CARDINAL];

The InsertString procedure is no longer implemented. It will be deleted from the interface
when the interfaces are next changed.

StringSource.lslt: PROCEDURE [source: TextSource.Handle] RETURNS [yes: BOOLEAN];

Islt returns TRUE if the Handle is a string source and FALSE otherwise.

38.1 Types

38

TextData

The TextData interface is not of interest to most clients. It defines data types that a few
procedures in TextSW and FormSW need. The TextDisplay interface depends heavily on
the following definitions.

TextData.lnsertion: TYPE = LONG POINTER TO TextData.lnsertionObject;

TextData.lnsertionMode: TYPE = {triangle, box};

TextData.lnsertionObject: TYPE = RECORD [
position: TextData.Position,
place: Window.Place,
mode: TextData.lnsertionMode,
marked: BOOLEAN];

Insertion points for editable text are typically marked by a blinking caret. The
TextDisplay routines take a pointer to the insertion object so that they can maintain the
necessary values. When an insertion point is displayed, it is usually a blinking triangle;
however, the convention is that append-only editing is indicated by a blinking rectangular
box.

TextData.MarkingAction: TYPE = MACHINE DEPENDENT{dear{o). mark(1). invert(2). (3)};

The client may ask the display routines to change the marking of a displayed insertion
point.

dear causes the insertion point to no longer be visible.

mark forces the insertion point to be visible.

invert toggles the visibility of the insertion point.

TextData.Position: TYPE = TextSource.Position;

Text is addressed by Position, which is a LONG CARDINAL.

38-1

38 TextData

TextData.Selection: TYPE = LONG POINTER TO TextData.SelectionObject;

TextData.SelectionEntity: TYPE = MACHINE DEPENDENT {
text(o), WOrd(1), element(2),line(3), paragraph(s), document(7)};

TextData.SelectionMode: TYPE = MACHINE DEPENDENT {
video(o), grayBOx(1), underline(2), clearText(3), strikeOut(4), splat(6), (1S)};

The SelectionMode is how the selection will be displayed to the user.

video video-inverts the selection.

grayBox displays the selection on a light gray background.

underline underlines the selection.

clearText selections are not indicated to the user.

strikeOut draws a one-bit-wide line through all characters of the selection.

splat raises ERROR.

TextData.SelectionObject: TYPE = RECORD [
left, right: TextData.Position, entity: TextData.SelectionEntity,
mode: TextData.SelectionMode, marked: BOOLEAN];

Text selections are also maintained by the TextDisplay routines and may be set by client
code. A selection consists of the marking mode and the current entity. The entity is
maintained with the selection so that multiple clicks can grow the selection to the next
higher value.

TextData.SelectionType: TYPE = {select, extend};

SelectionType is used by the display routines to either make a new selection or adjust the
old.

38.2 Constants and data objects

None.

38.3 Signals and errors

None.

38.4 Procedures

None.

38-2

39.1 Types

39

TextSink

TextSource and TextSink isolate Tajo's uniform text display, selection, and editing
facilities from the representation of text. The TextSink interface defines a sink for text that
is displayed in a window. It defines the standard set of operations that display text,
measure displayed text, and resolve display positions to character positions. For each
representation of text, there should be at least one sink and one source. The default
sources and sinks display Ascii characters. Specific implementations may use additional
operations for setting or altering the state of a text sink. (See also the interface AsciiSink.)

A client who wishes to implement its own sink must implement the sink's operations with
the semantics defined below. The text display code in Tajo invokes these operations,
behind which hide the representation of the text. Although text is addressed by
Environment.Block, only the sink and its corresponding source look inside the block.

TextSink.Action: TYPE = {destroy, sleep, wakeup};

An Action is the parameter to the ActOnProc that tells the sink to change state.

destroy the sink should destroy itself, freeing all storage and releasing all resources
associated with the text sink instance.

sleep the source should release whatever resources it can without losing information;
it is a hint that the text sink will not be used for a while.

wakeup the sink is going to be used and should resume its normal state, undoing
whatever was done for sleep.

Note: sleep and wakeup are only hints for storage and resource management; implementors must be able to
handle all operations on sleeping text sources.

TextSink.ActionResult: TYPE = {ok, bad};

An ActionResult is the result of ActOnProc. [Note: only a result of ok is expected.]

39-1

39

39-2

TextSink

TextSink.ActOnProc: TYPE = PROCEDURE [
sink: TextSink.Handle, action: TextSink.Action] RETURNS [TextSink.ActionResult];

The sink's ActOnProc is invoked to change a sink's state.

TextSink.BreakReason: TYPE = {eol, consumed, margin};

A DisplayBlockProc, MeasureBlockProc, or ResolveBlockProc can stop displaying,
measuring, or resolving for one of several reasons, any of which may mean that the
procedure has not finished the task.

eol it encountered the end of a line in the text it is operating on.

margin it encountered the edge of the area in which it can operate on.

consumed it finished operating on the requested text.

TextSink.DisplayBlockProc: TYPE = PROCEDURE [
sink: TextSink.Handle, block: TextSink.TextBlock, lineLength, offset: INTEGER, window:
Window.Handle, place: Window.Place, bbop: Window.BBoperation,
bbso: Window.BBsourcetype]
RETURNS [

newPlace: Window.Place, positions: CARDINAL, why: TextSink.BreakReason];

The sink's DisplayBlockProc displays text in a window. block is the text to be displayed.
lineLength is the farthest that the displayed text can extend. offset is the offset from the
edge of the window to the beginning of the region where the text is displayed; it is used in
calculating the position of tabs. window is the Window in which the text is to be
displayed, and place is the location where the displayed text should start. bbop and bbso,
used in painting the text, are described as part of Window. The DisplayBlockProc returns
why, a BreakReason. In addition to the reason for stopping, the routine returns the
number of positions it displayed and the position in the window where the next text will be
displayed. The Environment.Block referenced by block should be updated.

TextSink.FontlnfoProc: TYPE = PROCEDURE [
sink: TextSink.Handle] RETURNS [IineHeight, minWidth, maxWidth: CARDINAL];

The sink's FontlnfoProc returns information about the font being used by the sink.
IineHeight is the height of a line of text, and minWidth and maxWidth bound the width of
characters.

TextSink.Handle: TYPE = LONG POINTER TO TextSink.Procedures;

A Handle is an object-oriented pointer to a pointer to a record of procedures that defines
the operations on a text sink.

Mesa Programmer's Manual

TextSink.MeasureBlockProc: TYPE = PROCEDURE [
sink: TextSink.Handle. block: TextSink.TextBlock.linelength. offset: INTEGER. place:
Window.Place, placelsleft: BOOLEAN +- TRUE]
RETURNS [

newPlace: Window.Place. positions: CARDINAL. why: TextSink.BreakReason];

39

The sink's MeasureBlockProc measures text in a window. It behaves very much like the
DisplayBlockProc, except that the characters are not actually painted in the window.
Because no painting is done, neither the window nor the painting parameters are passed.
The parameter placelsLeft indicates the direction of the measuring. If placelsLeft is TRUE,
the window position is the leftmost edge of the text, and measuring should be done from
left to right. If it is FALSE, the position is the rightmost edge of the text, and measuring
should be done from right to left. The results returned from the MeasureBlockProc should
be the same as those from the DisplayBlockProc, if placelsLeft is TRUE and the other
parameters are the same.

TextSink.PositionslnBlockProc: TYPE = PROCEDURE [
sink: TextSink.Handle. block: TextSink.TextBlock) RETURNS [CARDINAL];

The sink's PositionslnBlockProc determines the number of positions the block represents,
which is not necessarily the number of bytes in the block. The sink parameter is included
to pass the instance data.

TextSink.Procedures: TYPE = LONG POINTER TO TextSink.ProceduresObject;

TextSink.ProceduresObject: TYPE = RECORD [
actOn: TextSinkActOnProc,
displayBlock: TextSink.DisplayBlockProc,
fontinfo: TextSink.FontlnfoProc,
measureBlock: TextSink.MeasureBlockProc,
positionslnBlock: TextSink.PositionslnBlockProc,
resolveBlock: TextSink.ResolveBlockProc);

TextSink.ResolveBlockProc: TYPE = PROCEDURE [
sink: TextSink.Handle, block: TextSink.TextBlock, startX, xToFind, offset: INTEGER,
halfCharResolve: BOOLEAN]
RETURNS [newX: INTEGER. positions: CARDINAL, why: TextSink.BreakReason]

The sink's ResolveBlockProc locates the position corresponding to a place in the window.
block is the TextBlock in which to search. startX is the place on the line that corresponds to
the first character of block. xToFind is the place on the line where the corresponding
character .position is desired. These parameters are integers instead of Window.Places
because the MeasureBlockProc assumes that the places are on the same line. offset is the
offset from the edge of the window to the edge of the text display area, as in the
DisplayBlockProc and MeasureBlockProc. halfCharResolve indicates what to do if xToFind
corresponds to the rightmost part of a position. If halfCharResolve is TRUE, the position
returned is the next position (round up); ifit is FALSE, the position is the one containing the
place (truncate). The ResolveBlockProc should return a place (newX), the distance that
place is from startX, tile number of character positions scanned, and the reason why it
stopped resolving (why). If newX = xToFind, the procedure was successful. If newX is
different from xToFind, ResolveBlockPlace is called again to find the desired place.

39-3

39 TextSink

TextSink.TextBlock: TYPE = POINTER TO Environment.BIOck;

A text sink represents its information as a TextBlock.

39.2 Constants and data objects

None.

39.3 Signals and errors

TextSink.ErrOr: ERROR [code: ErrorCode];

TextSink.ErrorCode: TYPE = {invalidSink. isBad. invalidParameters. other};

invalidSink the sink is invalid.

isBad the sink no longer works.

invalidParameters the parameters were not sensible.

39.4 Procedures

None.

39-4

40.1 Types

40

TextSource

TextSource and TextSink isolate Tajo's uniform text display, selection, and editing
facilities from the representation of text. The TextSource interface defines a source of text
that may be displayed in a window. It defines the standard set of operations that access a
text source. A text source implementation is responsible for implementing text source
operations on its underlying representation of the text. For each representation of text,
there should be at least one sink and one source. Default sources and sinks display Ascii
characters. Specific implementations may use additional operations for setting or altering
the state of a text source. (See also BlockSource, DiskSource, PieceSource, ScratchSource,
and StringSource.)

TextSource.Access: TYPE = {read, append, edit};

Access is provided for source implementations.

TextSource.Action: TYPE = {destroy, mark, sleep, truncate, wakeup};

An Action is the parameter to the ActOnProc that tells the source to change state.

destroy the source should destroy itself, freeing all storage and releasing all resources
associated with the text source instance.

mark it should mark the logical end of the data.

sleep it should release whatever resources it ,can without losing information. (This is
a hint that the text source will not be used for a while.)

truncate it should truncate its data to its current length. (This has a noticable effect only
for sources that have some representation in a file system.)

wakeup the source is going to be used and should resume its normal state, undoing
whatever was done for sleep.

40-1

40

40-2

TextSource

Note: sleep and wakeup are only hints for storage and resource management. Implementors must be able to
handle all operations on sleerin~ text sources.

TextSource.ActOnProc: TYPE = PROC [source: TextSource.Handle. action: TextSource.Action];

The source's ActOnProc changes a source's state.

TextSource.Class: TYPE = {none. eol. alpha. space. other};

Class divides characters into classes; it is a parameter of the ReadTextProc.

TextSource.Direction: TYPE = {left. right};

Direction indicates the direction of a scan.

TextSource.DoEditActionProc: TYPE III PROC (
source: TextSource.Handle. action: TextSource.EditAction. editPos: TextSource.Position]
RETURNS (delta: LONG INTEGER);

The source's DoEditActionProc moves within the source. The result delta is the number of
positions that the source backed up. Ascii sources may use Ascii DoEditAction.

TextSource.EditAction: TYPE = {none. backSpace. backWord. backLine};

EditAction enumerates the possible edit actions for DoEditActionProc. none means "no
action should be taken." backSpace means "back up one position from editPos." backWord
means "back up until the source is positioned at the beginning of the next alphanumeric
character." backLine means "back up until the source is positioned just to the right of the
last end-of-line."

TextSource.GetLengthProc: TYPE = PROCEDURE [
source: TextSource.Handle] RETURNS [TextSoufce.Position);

The source's GetLengthProc obtains the number of Positions in a source. This operation is
used extensively, and it should be implemented efficiently.

TextSource.Handle: TYPE = LONG POINTER TO TextSource.Procedures;

A Handle is an object-oriented pointer to a pointer to a record of procedures that defines
the operations on a text source.

TextSource.Position: TYPE = LONG CARDINAL;

TextSource procedures operate in terms of Positions, which are displayable units.

TextSource.Procedures: TYPE = LONG POINTER TO TextSource.ProceduresObject;

TextSource.ProceduresObject: TYPE = RECORD (
actOn: ActOnProc. doEditAction: DoEditActionProc, getLength: GetLengthProc,
readText: ReadTextProc, replaceText: ReplaceTextProc,
scanText: ScanTextProc, setLength: SetLengthProc];

Mesa Programmer's Manual

TextSource.ReadTextProc: TYPE = PROCEDURE [
source: TextSource.Handle, position: TextSource.Position, maxLength: CARDINAL,
class: TextSource.Class]
RETURNS [block: Environment.Block, next: TextSource.Position);

40

The source's ReadTextProc obtains a block of text. The block should contain text in
position position and contain at most maxLength characters. class is used as a hint to
limit the amount of characters read. If class is not none, the block may be terminated after
a character of that class is read. (See the Discussion section for a discussion of limitations.)

TextSource.ReplaceTextProc: TYPE = PROCEDURE [
source: TextSource.Handle, block: Environment.Block, from, to: TextSource.Position,
deleteToTrashbin: BOOLEAN +- TRUE]
RETURNS [new: TextSource.Position, delta: LONG INTEGER];

The source's ReplaceTextProc replaces part of the source with a block of text. The source
positions to be replaced are those between positions from and to. The text to insert in that
place is in block. If deleteToTrashbin is TRUE, the data removed from the source should be
placed in the trash bin, where it can be recovered. The procedure should return new, the
position at the start of the inserted text, and delta, the change in the source's size resulting
from this operation.

TextSource.ScanType: TYPE = {
alpha. invisible. line. nonAlpha, word.leftMark. rightMark. spare};

ScanType, a parameter to ScanTextProc, defines the type of character that will terminate
the scan.

TextSource.ScanTextProc: TYPE = PROCEDURE [
source: TextSource.Handle. start: TextSource.Position. type: TextSource.ScanType.
direction: TextSource.Direction]
RETURNS [position: TextSource.Position];

The source's ScanTextProc scans a source, starting at the specified position and going in
the specified direction until a character of the requested type is found. The position of the
matching character should be returned; if no character of the requested class can be found,
nullPosition should be returned.

TextSource.SetLengthProc: TYPE = PROCEDURE [
source: TextSource.Handle. position: TextSource.Position]
RETURNS [TextSource.Position);

The source's SetLengthProc sets the number of positions in a source. position is the length
to be set; the return value is the actual number of positions the source was set to.
Attempting to lengthen most sources with this operation is undefined and will produce
unexpected results.

TextSource.State: TYPE = {asleep. awake. bad};

State is provided for source implementations.

40-3

40 TextSource

40.2 Constants and data objects

TextSource.cannotExpand: CARDINAL = LAST[CARDINAL);

cannotExpand may be used as a parameter to AsciilnsertBlock to indicate that the string
may not be expanded.

TextSource.nuIiPosition: TextSource.Position = LAST[LONG CARDINAL];

nuliPosition is returned by a ScanTextProc if no character of the requested class can be
found.

40.3 Signals and errors

TextSource.Error: ERROR [code: TextSource.ErrorCode];

TextSource.ErrorCode: TYPE = {
fileNameError, access Error, isBad, invalidParameters, other};

fileNameError either the file doesn't exist or bad file name syntax was used.

accessError in operation that violates the created access option was attempted.

isBad the source no longer exists. This occurs on core swaps when the file
is deleted.

invalidParameters the parameters were not sensible.

TextSource.SearchFailed: ERROR;

SearchFailed is raised by AsciiTextSearch if there is no match.

40.4 Procedures

40-4

TextSource.AsciiAppend: PROCEDURE [
string: LONG STRING, source: TextSource.Handle. start: TextSource.Position,
n: CARDINAL];

The AsciiAppend procedure appends n characters onto string from source starting at
position start. It may raise String.StringBoundsFault if string does not have room for n
characters.

TextSource.AsciiDeleteSubString: PROCEDURE [
ss: String.SubString, keepTrash: BOOLEAN] RETURNS [trash: LONG STRING);

The AsciiDeleteSubString procedure deletes a substring in the source and optionally
returns the deleted substring.

TextSource.AsciiDoEditAction: TextSource.DoEditActionProc;

AsciiDoEditAction is a standard DoEditActionProc on an Ascii text source.

Mesa Programmer's Manual 40

TextSource.AsciilnsertBlock: PROCEDURE [
string: LONG POINTER TO LONG STRING. position: CARDINAL. toAdd: Environment.BIOck. extra:
CARDINAL];

The AsciilnsertBlock procedure inserts the contents of a block into a string, starting at a
specified position. [f there is not enough room in the string and extra is cannotExpand,
then String.StringBoundsFault is raised; otherwise, the string is expanded.

TextSource.AsciiScanText: TextSource.ScanTextProc;

The AsciiScanText procedure is a standard ScanTextProc on an Ascii text source.

TextSource.AsciiTestClass: PROCEDURE [
char: CHARACTER. class: TextSource.Class] RETURNS [equal: BOOLEAN];

The AsciiTestClass procedure tests to see if a character is a member of a Class.

TextSource.AsciiTextSearch: PROCEDURE [
source: TextSource.Handle. string: LONG STRING. start: TextSource.Position +- O.
stop: TextSource.Position +-LAST[LONG CARDINAL))
RETURNS (IineStart. left: TextSource.Position);

The AsciiTextSearch procedure searches a range of positions in a source for an instance of
string. It returns both the leftmost position of the match and the position of the first
character in the line that contains the match. If there is no match, it raises the error
SearchFailed.

TextSource.ActOn: TextSource.ActOnProc • INLINE { ••• };

TextSource.DoEditAction: TextSource.DoEditActionProc = INLINE { ... };

TextSource.GetLength: TextSource.GetlengthProc = INLINE { ••• };

TextSource.ReadText: TextSource.ReadTextProc = INLINE { ••• };

TextSource.ReplaceText: TextSource.ReplaceTextProc = INLINE { ••• };

TextSource.ScanText: TextSource.ScanTextProc = INLINE { ••. };

TextSource.SetLength: TextSource.SetLengthProc = INLINE { ••. };

These procedures are for clients who wish to use object notation when dealing with
sources. (See the next section.)

40.5 Discussion

The following additional semantic rules for reading text sources ease the job of
implementing text sources and discontinuous sources. Discontinuous sources are text
sources that either have holes in them or contain embedded sequences of non-textual data
(such as text files with formatting information).

A text source may not return more text than was requested.

40-5

40

40-6

TextSource

A single call on read may not return text that is not contiguous in the text source's address
space (that is, it cannot concatenate two discontiguous runs of text).

A text source may return less text than was requested.

A text source may only return no text (i.e., length = 0) if the position is equal to the value
returned by getLength or pos is greater than position.

The following code fragment shows an example of the INlINE procedures described above
with object notation:

source: TextSource.Handle;
lastPosition: TextSource.Position;
lastPosition +- source.GetLength;

This is equivalent to:

source: TextSource.Handle;
lastPosition: TextSource.Position;
lastPosition +- source.getlength[source];

IV

User input and events

User input and other events in the Xerox Development Environment are handled by the
Userlnput, Event, EventTypes, and TIP interfaces. These interfaces are useful in tool­
building because they allow programmers to concentrate on design rather than details of
exactly how the system handles user type-in or other actions. The Userlnput interface is
the most commonly used for handling keyboard type-in, especially the important ABORT

key.

IV.l Events

Events are initiated by users and by tools or processes that want to notify a tool about a
change in state, to request permission to boot the volume (which cannot be done during
disk writes, for instance), or to start other major system-level activities. Event and
EventTypes are used this way, in particular. They interact with an important Pilot-level
interface called the supervisor, which keeps track of the tools and the events they want to
be notified about. (For more information about the supervisor, refer to the Pilot
Programmer's Manual.)

TIP (terminal interface package) is less frequently used by most programmers than the
other interfaces in this section. TIP tables map between keyboard keys (or mouse clicks)
.and their meanings. Restructuring this mapping is a task for more advanced XDE
programmers. The next section gives a brief overview of TIP tables and gives examples.
The TIP chapter gives more detail.

IV.2 TIP tables

The system uses TIP tables to look up and execute commands based on user-initiated
actions. It employs both a process to watch for user actions and a queue to store them until
it can process them.

The StimLev process watches the hardware for user actions and queues them along with
their time of occurrence in the user'action queue, which is the queue of key transitions and
mouse movements.

The Matcher, also called the Notifier, figures out which window and TIP table a given
event is intended for. If a left side of a TIP statement has been matched, the Notifier calls

IV-l

IV

IV-2

User input and events

the associated NotifyProc with a list of results. If no match is found, the action is
discarded.

A NotifyProc is a process called (by the Notifier) to let a TIP table know when a desired
condition is true, by setting appropriate values.

IV.2.1.1 Example of a NotifyProc

The right sides of TIP statements are usually atoms, but they can also be window-relative
coordinates, characters, and numbers. A NotifyProc is given a list of such results when it
is called. There are two handy routines for stepping through this list: TIP.First[] and
TIP.Rest£].

TipMe: TIP.NotifyProc == {

FOR input: TIP.Results results. input. Rest UNTIL input,. NIL DO
WITH z: input.First SELECTFROM

char,. > {
IF -Userlnput.StuffCharacter[window, z.e] THEN
UserTerminal.BlinkDisplay[]};

eoords ,. > tipPlaee z.place;
atom,. >

SELECT z.a FROM
Exit,. > {trackOnGrid FALSE; SetMouseTraeking[FALSE]};
Enter,. > EnterWindow[clear);
Copy" > CopyFunction[];
SuperCopy ,. > SuperCopyFunction[];
Delete,. > DeleteFunction[);
Drawline ,. > DrawFunction[];
TakelnputFoeus ,. > Userlnput.SetlnputFoeus[pictureWindow. DontCare. TRUE];
Stuff == >

IF -Userlnput.StuffCurrentSelection[window] THEN
UserTerminal.BlinkDisplay[];
ENDCASE;

string == >
IF -Userlnput.StuffString[window. z.s] THEN UserTerminal.BlinkDisplay[];
ENDCASE;

ENDLOOP};

The notify procedure TIPMe looks at the results and understands atoms and string input.

IV.2.2 TIP table keyword semantics

The keywords TRIGGER and AND refer to events that have just happened; that is, the event in
question has just been dequeued from the User Action Queue.

The keywords ENABLE and WHILE refer to events that have already happened and are still
true. These events are sometimes called enabling conditions.

Essentially, the whole TIP table can be viewed as a SELECT statement. The match process is
continuously reading key transitions, mouse movements, or key states from the input
queue. A TRIGGER statement has the effect of looking at the next action recorded in the

Mesa Programmer's Manual IV

input queue and branching to the appropriate choice. An ENABLE statement implies
selection between the choices according to the current state of the keyboard or the mouse
keys. AND terms connect sequences of TRIGGER terms. They might be mixed with ENABLE

terms, which are characterized by WHilE.

A timeout following a trigger indicates a timing condition that must hold between this
trigger and its predecessor. The number associated with the timeout expresses a time
interval in milliseconds. Events starting with the same sequence of trigger or enable
terms are expressed as nested statements. Result items may be identifiers, numbers,
strings, or the keywords COORDS, BUFFEREDCHAR, CHAR, KEYS, or TIME. The
results of the successfully parsed event are passed to the client.

IV.2.3 TIP table syntax example

This example of a TIP table uses TRIGGER, AND, ENABLE, and WHilE:

SELECT TRIGGER FROM

A Down = > Foo;
-- something has just happened

B Down = > SelECT ENABLE FROM -- what else is true right now?
CUp = > {Atom1 Atom2 Atom3 Atom4};
E Down = > Atom1, Atom2, Atom3, Atom4; --if more than one is true, the

first is matched
ENDCASE;

H Up AND K Down = > HAndK; -- H has just gone Up; we'll
wai t to see if K Down is the
next action

M Up WHilE L Up = > MAndL; -- M has just gone Up and L is
already Up

ENDCASE •• -- TIP bug! You need at least
two • 's to end a TIP table

IV.2.4 How to create a TIP table

The following procedure sets up a typical TIP table:

MakeMySWs: Tool.MakeSWsProc =-
BEGIN

msgSW Tool.MakeMsgSW[window: window, lines: 2];
formSW Tool.MakeForm5W[window: window, formProc: AnchorsAway];
frameWindow TooIWindow.CreateSubwindow[parent: window];
tool.AddThisSW[window: window, sw: frameWindow. swType: vanilla];
pictureWindow TajoOps.AllocateWindow[];
Window.lnitializeWindow[

window: pictureWindow. display: DisplayPictureWindow,
box: [[0,0], [30000. 3000011. parent: frameWindow];

Window.lnsertlntoTree[pictureWindow);
Userlnput.CreateStringlnOut[

window: pictureWindow. in: AddStringTolabel. out: AddStringToLabel];
scrollbar.Create[

window: frameWindow, type: horizontal, scroll: HScroll,
scrollbar: HScroIlBar);

Scroll bar .Create[

IV·3

IV

IV-4

User input and events

window: frameWindow, type: vertical, scroll: VScroll,
scrollbar: VScroIlBar);

TIP.CreateClient[window: pictureWindow, table: tipTabfe, notify: TipMe];
END;

tipTable: TIP.Table NIL;

Init: PROC .. {
tipContents: STRING =" -- the default TIP table

OPTIONS DefaultKeys;
SELECT TRIGGER FROM
COpy Down = > SELECT ENABLE FROM

CONTROL Down = > SuperCopy;
ENOCASE = > Copy;

DELETE Down = > Delete;
Three Down AND DOlT Down BEFORE 100 .. > DrawLine;
Six Down .. > CHAR, CHAR;
Seven Down = > 8'"';
STUFF Down .. > Stuff;
ENTER .. > Enter;
EXIT • > Exit;
Point Down .. > COORDS, TakelnputFocus;
ENDCASE ...

"l;
MakeAtoms[J;
tipTable TIP.CreateTable[contents: tipContents,

file: "TugBoat.TIP"l! TIP.lnvalidTabfe .. > RESUME];
toolWindow Toof.Create[

makeSWsProc: MakeMySWs, clientTransition: MyTransitionProc, name:
"TugBoat",

tinyName1: "toot toot"l, cmSection: "TugBoat"l];
END;

MakeAtoms: PRoe .. {
Enter Atom.MakeAtom["Enter"l];
Exit Atom.MakeAtom["Exit"l];
Copy Atom.MakeAtom["Copy"l];
SuperCopy Atom.MakeAtom["SuperCopy"l];
Delete Atom.MakeAtom[nDelete"l];
Drawline Atom.MakeAtom["Drawline"L];
Stuff Atom.MakeAtom["Stuff"l];
Paste Atom.MakeAtom["Paste"l];
TakelnputFocus Atom.MakeAtom["TakelnputFocus"l];
};

Mesa Programmer's Manual IV

IV.3 More advanced topics

See the TIP chapter for a list of the basic commands. These are given here as hints for
more experienced programmers.

NewManager

TIP Tree

PushLocal

PushGlobal

"I" switch orRESUME

Opaque Table

ActionToWi ndow

CreateClient

A NewManager command is used when you want to lock up the
notifier, as is done in scrollbars, confirm cursors, adjusting and
growing windows, the hourglass, adjusting and selecting text,
FontMonster, and so forth.

A TIP tree is a hierarchical series of TIP tables that can be
searched until you find a match, reach the root table, or encounter
an opaque table.

The PushLocal command is used when you want another TIP table,
but you still want the window's NotifyProc to get the atoms.
Example: a keyhack TIP table that maps G Down = > BEGIN I END

The PushGlobal command is used when you have created a TIP
table of global interest and want it to be searched by all processes.
Perhaps DOlT Up WHILE USERABORT Down = > ReBoot?

TIP.CreateTable[] uses the contents: field to build the TIP table
instead oflooking for the TIPC and then the TIP file.

An opaque table is used if you want no further TIP table searching
to be done. If this TIP table doesn't handle the current sequence of
user actions, they are discarded.

The ActionToWindow command sends all user input to the
window with the input focus except: Adjust, Menu, Point. FIND,

JFIRST, MENU, and USERABORT.

CreateClient is used when you want your own TIP table to be the
only one for a window, disjoint from the TIP tree.

Iv.a. 1 The GPM macro package

The GPM Macro Package translates mouse and keyboard interface language into
encrypted code that is very compact and difficult to read. It is briefly documented here but
is not recommended for extensive use except by experienced programmers.

A macro call consists of a macro name and a list of actual parameters, each separated by a
comma. The name is preceded by a left square bracket (D and the last parameter is
followed by a right square bracket. A macro is defined by the special macro DEF, which
takes two arguments: the name of the macro to be defined and the defining string. The
defining string may contain special symbols that stand for the formal parameters.
Enclosing any string in parentheses prevents evaluation of any macro calls inside; in
place of evaluation, one "layer" of quotes is removed. It is usual to enclose the defining
string of a macro definition in string quotes in order to prevent any macro calls or uses of
formal parameters from being effective during the process of definition.

IV-5

IV

IV-6

User input and events

Here is a macro:

[OEF,lfShift,(SElECT ENABLE FROM
LeftShift Down/ RightShift Down = > -1;

ENOCASE = > -2))

BS Down = > [lfShift.BackWord,BackSpace]

Here is a macro and its expansion from Mouse. TIP:

[OEF,ButtonEvents,(
[OEF.ButtonEvent,(

[OEF,SHIFT,(LeftShift Down / RightShift Down))
[OEF,CTRl,(CONTROl Down)]
[OEF,COM,(COMMANO Down))
[OEF. TC.CTlME COOROS)]
-1 -2 = > SELECT ENABLE. FROM

[SHIFT] =- > SELECT ENABLE FROM
[CTRL] =- > SELECT ENABLE FROM

[COM] = > {[TC] Command Control Shift -1-2 };
ENOCASE = > {[TC] Control Shift -1-2};

ENDCASE = > SELECT ENABLE FROM
[COM] =- > {[Te] Command Shift -1-2};
ENDeASE =- > {[Te] Shift -1-2};

[eTRL] = > SELECT ENABLE FROM
[COM] = > {[TC] Command Control-1-2};
ENDCASE • > { [Te] Control -1-2 };

[COM] • > { [TC] Command -1-2 };
ENDCASE =- > { [TC] -1-2 })]

[Button Event, -1 ,Down] ; [Button Event, -1,U p])]

[Button Events, Point]

-- Expansion of Mouse. TIP

OPTIONS
Fast;

SELECT TRIGGER FROM

MOUSE = > SELECT ENABLE FROM

Top-level trigger select

Mouse and button actions

Point Down = > COORDS, PointMotlon;
Menu Down = > COORDS, MenuMotion;
Adjust Down = > COORDS, AdjustMotion;
ENDCASE;

Point Down = > SELECT ENABLE FROM
LeftShift Down / RightShift Down = > SELECT ENABLE FROM

CONTROL Down = > SELECT ENABLE FROM
COMMAND Down = > { TIME COORDS Command Control Shift PointDown };
ENDCASE = > { TIME COOROS Control Shift PointDown };

ENOCASE • > SELECT ENABLE FROM

Mesa Programmer's Manual

COMMAND Down = > { TIME COORDS Command Shift PointDown };
ENDCASE = > {TIME COORDS Shift PointDown};

CONTROL Down = > SELECT ENABLE FROM

COMMAND Down = > {TIME COORDS Command Control PointDown };
ENDCASE = > {TIME COORDS Control PointDown };

COMMAND Down = > {TIME COORDS Command PointDown };
ENDCASE = > {TIME COORDS PointDown};

Point Up = > SELECT ENABLE FROM

LeftShift Down I RightShift Down = > SELECT ENABLE FROM

CONTROL Down = > SELECT ENABLE FROM

COMMAND Down = > { TIME COORDS Command Control Shift PointUp };
ENDCASE == > {TIME COORDS Control Shift PointUp };

ENDCASE == > SELECT ENABLE FROM

COMMAND Down = > {TIME COORDS Command Shift PointUp};
ENDCASE = > {TIME COORDS Shift PointUp};

CONTROL Down = > SELECT ENABLE FROM

COMMAND Down == > {TIME COORDS Command Control PointUp };
ENDCASE == > {TIME COORDS Control PointUp};

COMMAND Down = > { TIME COORDS Command PointUp };
ENDCASE = > {TIME COORDS PointUp};

Menu Down == > SELECT ENABLE FROM

LeftShift Down I RightShift Down == > SELECT ENABLE FROM

CONTROL Down = > SELECT ENABLE FROM

COMMAND Down = > { TIME COORDS Command Control Shift MenuDown };
ENDCASE == > { TIME COORDS Control Shift MenuDown };

ENDCASE = > SELECT ENABLE FROM

COMMAND Down = > { TIME COORDS Command Shift MenuDown };
ENDCASE = > {TIME COORDS Shift MenuDown};
CONTROL Down = > SELECT ENABLE FROM

COMMAND Down == > {TIME COORDS Command Control MenuDown };
ENDCASE = > { TIME COORDS Control MenuDown };

COMMAND Down = > { TIME COORDS Command MenuDown };
ENDCASE = > { TIME COORDS MenuDown };

Menu Up == > SELECT ENABLE FROM

leftShift Down I RightShift Down • > SELECT ENABLE FROM

CONTROL Down • > SELECT ENABLE FROM

COMMAND Down • > {TIME COORDS Command Control Shift MenuUp };
ENDCASE = > {TIME COORDS Control Shift MenuUp };

ENDCASE = > SELECT ENABLE FROM

COMMAND Down = > { TIME COORDS Command Shift MenuUp };
ENDCASE = > { TIME COORDS Shift MenuUp};

CONTROL Down == > SELECT ENABLE FROM

COMMAND Down == > {TIME COORDS Command Control MenuUp };
ENDCASE == > { TIME COORDS Control MenuUp };

COMMAND Down. > {TIMECOORDS Command MenuUp};
ENDCASE == > { TIME COORDS MenuUp };

IV

IV-7

IV

IV-8

User input and events

Adjust Down == > SELECT ENABLE FROM

LeftShift Down I RightShift Down == > SELECT ENABLE FROM

CONTROL Down = > SELECT ENABLE FROM

COMMAND Down = > {TIME COORDS Command Control Shift AdjustDown };
ENDCASE = > {TIME COORDS Control Shift AdjustDown };

ENDCASE == > SELECT ENABLE FROM

COMMAND Down = > {TIME CO OR as Command Shift AdjustDown };
ENDCASE = > {TIME COORDS Shift AdjustDown};

CONTROL Down = > SELECT ENABLE FROM

COMMAND Down = > {TIME COORDS Command Control AdjustDown };
ENDCASE = > {TIME COORDS Control AdjustDown};

COMMAND Down == > {TIME COORDS Command AdjustDown };
ENDCASE == > {TIME COORDS AdjustDown};

Adjust Up = > SELECT ENABLE FROM

LeftShift Down I RightShift Down = > SELECT ENABLE FROM

CONTROL Down = > SELECT ENABLE FROM

COMMAND Down == > {TIME COORDS Command Control Shift AdjustUp};
ENDCASE = > {TIME COORDS Control Shift AdjustUp };

ENDCASE = > SELECT ENABLE FROM

COMMAND Down == > {TIME COORDS Command Shift AdjustUp };
ENDCASE == > { TIME COORDS Shift AdjustUp};

CONTROL Down == > SELECT ENABLE FROM

COMMAND Down = > {TIME COORDS Command Control AdjustUp};
ENDCASE = > {TIME COORDS Control AdjustUp };

COMMAND Down == > {TIME COORDS Command AdjustUp };
ENDCASE == > { TIME COORDS AdjustUp };

ENTER == > Enter;
EXIT == > Exit;

USERABORT Down == > Abort;

ENDCASE •••

IV.3.2 Another TIP example

The following TIP table simulates a Tele Video 920c terminal:

SELECT TRIGGER FROM

A Down WHILE B Up WHILE C Up WHILE D Up ... WHILE Z Up == > CHAR.

B Down WHILE A Up WHILE C Up WHILE D Up ... WHILE Z Up == > CHAR

ENDCASE ...

Mesa Programmer's Manual IV

IV.4 Interface abstracts

Event is used with the EventTypes interface to allow clients to be notified of events that
take place asynchronously on a system-wide basis.

EventTypes is llsed with the Event interface to allow clients to be notified of events that
take place asynchronously on a system-wide basis.

TIP provides facilities for handling user input, including all key and mouse actions.

Userlnput provides the client with routines for interpreting user actions and notifying
tools of a change in the user state.

IV-9

IV User input and events

IV-tO

41.1 Types

41

Event

The Event interface allows clients to be notified of actions (or events) that take place
asynchronously on a system-wide basis. The actual notification mechanism is supplied by
the Supervisor (see the Supervisor chapter of the Pilot Programmer's Manual for details).
Tajo and CoPilot both invoke Supervisor.NotifyDirectSubsystems to notify clients of events
that may interest them.

Event is used with the interface EventTypes to define events of interest. The Event
interface contains Supervisor.SubsystemHandles, on which a client may add dependencies.
A Supervisor.SubsystemHandle may be thought of as a class of related events. A client
specifies interest in a particular clasS" of events by registering a dependency on the
Supervisor.SubsystemHandle obtained from Event, specifying it as the implementor. The
interface EventTypes provides some of the specific Supervisor. Events that are raised. A
client that has registered to be notified about a class of events uses the Supervisor. Event to
determine which element of that class has occurred.

To write a program that will be notified about an event, first find the event definition in
EventType and then add a dependency on the corresponding Supervisor.SubsystemHandle
defined in Event. Unfortunately, there is not always a one-to-one correspondence between
the events defined in EventType and Supervisor.SubsystemHandles in Event. You must
consider an event to be defined by the pair of items, one from Event and one from
EventTypes.

Event.Handle: Type = LONG POINTER TO Object;

Object: TYPE;

This type is for use with Event.StartingProcess and Event. DoneWithProcess.

41.2 Constants and data objects

Event.aboutToSwap: READONLY Supervisor.SubsystemHandle;

The aboutToSwap event class is used by the debugger and the Herald Window in Tajo to
request permission to swap back to its client. The assQciated EventTypes are

41-1

41

41-2

Event

aboutToAbortSession, aboutToBoot and aboutToBootPhysicalVolume. Clients may
optionally abort this event by raising the error Supervisor.EnumerationAborted from their
agent procedures. If no client vetoes the request to swap, the debugger broadcasts the
appropriate event in Event.swapping. (See the discussion at the end of this chapter.)

Event.displayState: READONl Y Supervisor.SubsystemHandle;

Event.displayState is used to tell whether the display is on or off. Its EventTypes are
displayOff and displayOn. (This event is not used by Tajo or CoPilot; it is included for
future use.)

Event.fileSystem: READONl Y Supervisor.SubsystemHandle;

File-system events that may interest clients include changing the search path, creating or
deleting directories, and opening or closing volumes. The related EventTypes are
aboutToChangeSearchPath, newSearchPath, abortedSearchPathChange,
directoryCreated, directoryDeleted, volumeOpened, and volumeClosed. Events from
EventTypesExtra are aboutToOpenVolume and aboutToCloseVolume.

Event.fileWindow: READONlY Supervisor.SubsystemHandle;

The fileWindow event class is concerned with events that affect windows maintained by
the FileWindow interface. The eventData passed to the agent procedure is a
Window.Handle for the affected window. The following events are defined in EventTypes
for events on windows: createWindow, destroy, edit, load, reset, and store.

Event.powerOff: READONLY Supervisor.SubsystemHandle;

The powerOff event class is available for clients interested in performing some action
before the machine powers down. The associated event defined in EventTypes is also
called powerOff.

Event.primaryCredentials: READONLY Supervisor.SubsystemHandle;

The primaryCredentials event class is available for clients interested in monitoring
changes to the user name and password. The associated event defined in EventTypes is

. also called primaryCredentials.

Event.swapping: READONlY Supervisor.SubsystemHandle;

The swapping event class is concerned with swapping; that is, with returning from the
debugger to the client volume or entering the debugger from the client volume. These
events cannot be vetoed; clients wishing to veto swaps should register for
Event.aboutToSwap (see the end of this chapter for examples). Because clients can veto a
swap, they must be notified whether the swap took place. Therefore, associated events
defined in EventTypes fall into three categories: swap-out reasons, swap-in reasons, and
swap-cancellations. The swap-in reasons are newSession and resumeSession. Swap-out
reasons are abortSession bootPhysicalVolume and resumeDebuggee. swapCancelied and
bootPhysicalVolumeCancelied are cancellation reasons. (Some private defaults that are
unavailable to clients are used internally.)

Event.tajoDefaults: READONl Y Supervisor .SubsystemHandle;

Mesa Programmer's Manual 41

The tajoDefaults event class is concerned with system-wide defaults; the ones currently
defined in EventTypes are debugging, librarian, domain, organization, registry,
fileServerProtocol, and system Font.

Event. toolWindow: READONl Y Supervisor. Subsystem Handle;

The toolWindow event class notifies clients when a tool is activated, deactivated, or
created; the corresponding EventTypes are createTool, activate, and deactivate.

41.3 Signals and errors

None.

41.4 Proced ures

The two procedures Event.StartingProcess and Event.DoneWithProcess keep track of non­
notifier processes that are not otherwise protected against swapping. Conceptually, these
procedures are actually counters: Event.StartingProcess adds 1 to the current count of
running processes, and Event.DoneWithProcess decrements the count. When a swapping
event occurs, it is aborted if the count of running processes is non-zero.

Event.DoneWithProcess: PROCEDURE [Event.Handle];

The parameter passed to this procedure is obtained by calling Event.StartingProcess.

Event.StartingProcess: PROCEDURE[id: LONG STRING] RETURNs[Handle];

Event.StartingProcess adds 1 to the total count of running processes. id is a message posted
in the Herald Window if the swapping event is aborted.

41.5 Examples

The interface EventTypes provides some of the specific Supervisor. Events that are raised
while the Event interface contains Supervisor.SubsystemHandles to which the client may
wish to add dependencies. A typical fragment of client code might appear as follows:

NoteCredentialsChange: Supervisor.AgentProcedure =
BEGIN
SELECT event FROM

EventTypes.primaryCredentials = > ...
EventTypes.registry = > ...
ENDCASE;

END;
-- mainline
me: Supervisor.SubsystemHandle =

Supervisor.CreateSubsystem[agent: NoteCredentialsChange.
instanceData: mylnstanceData];
Supervisor .AddDependency[cI ient: me. implementor: Event. tajoDefaults];
Supervisor .AddDependency[

41-3

41

41-4

Event

client: me. implementor: Event.primaryCredentials];

Tool writers should pay particular attention to the events involved in a world swap. When
the user asks to leave CoPilot and return to the client, CoPilot notifies on the event
Event.aboutToSwap. If any tool is unwilling or unable to stop for a world swap, it should
abort this event by raising the error Supervisor.EnumerationAborted. If no clients abort the
swap, CoPilot notifies on the event Event.swapping with a swap-out reason
(EventType.abortSession, EventType.resumeDebugee, or EventType.bootPhysicaIVolume). All
tools are expected to stop when this event is notified. When CoPilot is re-entered for any
reason, it raises the event Event.swapping with a swap-in reason (EventType.newSession or
EventType.resumeSession) to let tools know that they can resume processing. The following
example is typical of the swapping behavior expected of tools:

swapDone: CONDITION;
subsystemRunning. swapping: BOOLEAN +- FALSE;

aboutToSwapAgent: Supervisor.SubsystemHandle =
Supervisor.CreateSubsystem[agent: AboutToSwap];

swappingAgent: Supervisor.SubsystemHandle =
supervisor.CreateSubsystem[agent: Swapping];

StartSubsystem: ENTRY PROCEDURE II {

IF swapping THEN WAIT swapDone;
subsystemRunning +- TRUE};

SubsystemStopped: ENTRY PROCEDURE II {subsystemRunning +- FALSE};

AboutToSwap: ENTRY Supervisor.AgentProcedure =
BEGIN
ENABLE UNWIND II > NULL;
IF subsystemRunning THEN {

HeraldWindow.AppendMessage["MyTool busy: aborting swap. ilL];
ERROR Supervisor. EnumerationAborted};

END;

Swapping: ENTRY Supervisor.AgentProcedure =
BEGIN
ENABLE UNWIND = > NULL;
SELECT event FROM
EventTypes.newSession. EventTypes.resumeSession. EventTypes.SwapCancelled,

EventTypes.bootPhysicalVolumeCancelied II > {
swapping +- FALSE; BROADCAST swapDone};

EventTypes.abortSession, EventTypes.resumeDebuggee,
EventTypes.bootPhysicalVolume = >

swapping +- TRUE;
ENDCASE;

END;

-- mainline
Supervisor.AddDependency[client: aboutToSw~pAgent,
implementor: Event.aboutToSwapl;

Mesa Programmer's Manual

Supervisor .Add Dependency[
client: swappingAgent. implementor: Event.swapping);

DO

SubsystemStopped[) ;
-- wait for user input from the Notifier
StartSubsystem[);
-- perform computation
ENDLOOP;

41

41-5

41 Event

41-6

42.1 Types

42

EventTypes

The EventTypes interface allows clients to be notified of actions (or events) that take place
asynchronously on a system-wide basis. The actual notification mechanism is supplied by
the Supervisor (see the Supervisor chapter of the Pilot Programmer's Manual for details).
Each of the EventTypes defined here is passed as the result of a
Supervisor.NotifyDirectSubsystems for one of the events defined in the Event interface.

The interface Event is used with EventTypes to define events of interest. The Event
interface contains Supervisor.SubsystemHandles on which a client may add dependencies. A
Supervisor.SubsystemHandle may be thought of as a class of related events; a client
specifies interest in a particular class of events by adding a dependency on the
corresponding Supervisor.SubsystemHandle. The interface EventTypes provides some of the
specific Supervisor. Events that are raised. A client that has registered to be notified about a
class of events uses the Supervisor. Event to determine which element of that class has
actually occurred.

Two of the EventTypes documented in this chapter are actually in the EventTypesExtra
interface. They are EventTypesExtra.aboutToOpenVolume and
EventTypesExtra.aboutToCloseVolume.

The following EventTypes are used by Tajo for internal bookkeeping:

EventTypes.CredentiaIEvents: TYPE ••••

EventTypes.DebugEvents: TYPE = •..

EventTypes.DisplayEvents: TYPE = •••

EventTypes.FileSystemEvents: TYPE = ...
EventTypes.FileWinqowEvents: TYPE = •••

EventTypes.OtherEvents: TYPE = •••

42-1

42 EventTypes

EventTypes.SpareEvents: TYPE = ..•

EventTypes.TajoDefaultEvents: TYPE = •.•

EventTypes.TooIWindowEvents: TYPE = ...

EventTypes.VetoEvents: TYPE = ... ;

42.2 Constants and data objects

42-2

EventTypes.abortedSearchPathChange: Supervisor. Event = [EventTypes.firstFileSystem + 2];

abortedSearchPathChange is an event in the event class Event.fileSystem. It means that a
previous notification that the search path would change has been aborted.

EventTypes.abortSession: Supervisor. Event = [EventTypes.firstDebugEvent + 5];

abortSession is an event in the event class Event.swapping. It means that the user has quit
a debugging session and is returning to the client.

EventTypes.aboutToAbortSession: Supervisor. Event .. [EventTypes.firstVetoEvent + 1];

aboutToAbortSession is an event in the event class Event.aboutToSwap. It informs
interested clients that a world swap is about to occur. Tools should behave as though they
will be interrupted but expect to be resumed later. This event should be vetoed by any
process that is unable or unwilling to stop for the duration of the world swap.

EventTypes.aboutToBoot: Supervisor. Event .. [EventTypes.firstVetoEvent];

aboutToBoot is an event in the event class Event.aboutToSwap. It means that a
HeraldWindow boot is about to occur. In this case, the state of the current volume is going
to disappear, never to return. Processes doing something physically destructive across
reboots, like writing on the disk, should veto this event.

EventTypes.aboutToBootPhysicaIVolume: Supervisor. Event .. [EventTypes.firstVetoEvent + 3];

aboutToBootPhysicalVolume is an event in the event class Event.aboutToSwap. It means
that the physical volume is about to be booted. It is similar to aboutToBoot because the
current state will disappear, never to return. Processes doing something physically
destructive across reboots, like writing on the disk, should veto this event.

EventTypes.aboutToChangeSearchPath: Supervisor. Event = [EventTypes.firstFileSystem];

aboutToChangeSearchPath is an event in the event class Event.fileSystem. It means that
the current search path is about to be changed. Clients may veto this event.

EventTypesExtra.aboutToCloseVolume: Supervisor. Event .. [EventTypes.firstFileSystem + 8];

aboutToCloseVolume is an event in the event class Event.fileSystem. It means that a
logical volume is about to be closed. The parameter eventData passed to the agent

Mesa Programmer's Manual 42

procedure contains the volume id of the volume that will be closed. Clients may veto this
event.

EventTypesExtra.aboutToOpenVolume: Supervisor. Event = [EventTypes.firstFileSystem + 7];

aboutToOpenVolume is an event in the event class Event.fileSystem. It means that a
logical volume is about to be opened, The parameter eventData passed to the agent
procedure contains the volume id of the volume that will be opened. Clients may veto this
event.

EventTypes.aboutToResume: Supervisor. Event .. [EventTypes.firstVetoEvent + 2];

aboutToResume is an event in the event class Event.aboutToSwap. It means that the
debugging session is about to be resumed. Clients should behave as though they will be
temporarily interrupted, to be resumed later. Processes unable to stop for the duration of
the world swap should veto this event.

EventTypes.activate: Supervisor. Event .. [EventTypes.firstToolWndowEvent + 1];

activate is an event in the event class Event.tooIWindow. It means that a particular tool
has been activated. The window handle for the tool is passed as the eventData.

EventTypes.bootPhysicaIVolume: Supervisor. Event .. [EventTypes.firstDebugEvent + 7];

bootPhysicalVolume is an event in the event class Event.swapping. It means that no client
has vetoed the previous aboutToBootPhysicalVolume, and the physical volume will be
booted.

EventTypes.bootPhysicaIVolumeCancelled: Supervisor. Event = [EventTypes.firstDebugEvent +
4];

bootPhysicalVolumeCancelled is an event in the event class Event.swapping. It means that
at least one client has vetoed the previous aboutToBootPhysicalVolume, and the physical
volume will not be booted.

EventTypes.createTool: Supervisor. Event .. [EventTypes.fi rstToolWi ndowEvent];

createTool is an event in the class Event.tooIWindow. It means that a tool has just been
created. The window handle for the tool is passed as the eventData.

EventTypes.createWi ndow: Supervisor. Event = [EventTypes.fi rstFileWi ndowEvent];

createWindow is an event in the event class Event.fileWindow. It means that a new file
window has been created. The window handle for the new window is passed as the
eventData.

EventTypes.deactivate: Supervisor. Event = [EventTypes.firstTooIWindowEvent + 2];

deactivate is an event in the class Event.tooIWindow. It means that a tool has just been
deactivated. The window handle for the tool is passed as the eventData. This event can be
vetoed.

42-3

42

42-4

EventTypes

EventTypes.debugging: Supervisor. Event = [EventTypes.firstDefaultEvent + 1];

debugging is an event in the event class Event.tajoDefaults. It means that the value of the
variable debugging, maintained in the Profile module, has changed.

EventTypes.destroy: Supervisor. Event = [EventTypes. firstFi leWi ndowEvent + 1];

destroy is an event in the event class Event.fileWindow. It means that a file window has
been destroyed. The window handle for the window is passed as the eventData.

EventTypes.directoryCreated: Supervisor. Event • [EventTypes.firstFileSystem + 3];

directoryCreated is an event in the class Event.fileSystem. It means that a new directory
has just been created.

EventTypes.directoryDeleted: Supervisor. Event = [EventTypes.firstFileSystem + 4];

directoryDeleted is an event in the class Event.fileSystem. It means that an old directory
has just been deleted.

EventTypes.displayOff: Supervisor. Event • [EventTypes.firstDisplayEvent);

displayOff is not currently used; it is included for future use.

EventTypes.displayOn: Supervisor. Event • [EventTypes.firstDisplayEvent + 1];

displayOn is not currently used; it is included for future use.

EventTypes.domain: Supervisor. Event = [EventTypes.firstDefaultEvent + 3];

domain is an event in the class Event.tajoDefaults. It means that the value of the variable
domain, maintained in the Profile module, has changed.

EventTypes.edit: Supervisor. Event = [EventTypes.firstFileWindowEvent+ 2];

edit is an event in the event class Event.fileWindow. It means that a file window has been
opened for editing. The window handle for the window is passed as the eventData.

EventTypes.fileServerProtocol: Supervisor. Event = [EventTypes.firstDefaultEvent + 6];

fileServerProtocol is an event in the class Event. tajoDefaults. It means that the file server
protocol, which is maintained by the Profile module, has changed from NS to PUP or vice versa. This
event will never occur in a product configuration because file server protocols are always NS. This event
type will be removed in a future release.

The following EventTypes are used by Tajo for internal bookeeping:

firstCredentialEvent, firstDebugEvent, firstDefaultEvent, firstDisplayEvent,
firstFileSystemEvent, firstFileWindowEvent, firstOtherEvent, firstSpare and
firstVetoEvent.

Mesa Programmer's Manual 42

EventTypes.flushSymbols: Supervisor. Event = [EventTypes.firstDebugEvent];

flushSymbols is in the event class Event.swapping and is for private use by the debugger.

EventTypes.librarian: Supervisor. Event = [EventTypes.firstDefaultEvent + 2];

librarian is an event in the event class Event.tajoDefaults. It means that the value of the
default librarian server, maintained in the Profile module, has changed.

EventTypes.load: Supervisor. Event = [EventTypes.firstFileWindowEvent + 3];

load is an event in the event class Event.fileWindow. It means that a file window has been
loaded with a new file. The window handle for the window is passed as the eventData.

EventTypes.newSearchPath: Supervisor. Event = [EventTypes.firstFileSystem + 1];

newSearchPath is an event in the event class Event.fileSystem. It means that the previous
notification of aboutToChangeSearchPath was not vetoed, and the search path will be
changed.

EventTypes.newSession: Supervisor. Event = [EventTypes.firstDebugEvent+ 1];

newSession is an event in the event class Event.swapping. It represents a swapping-in
reason and means that CoPilot has been entered for debugging for the first time in a
session.

EventTypes.organization: Supervisor. Event = [EventTypes.firstDefaultEvent + 4];

organization is an event in the event class Event. tajoDefaults. When the organization field
of the Profile Tool changes, interested clients are notified with the reason
EventTypes.organization.

EventTypes.powerOff: Supervisor. Event = [EventTypes.firstOtherEvent);

powerOff is an event in the event class Event.powerOff. It means that the machine is
about to be turned off.

EventTypes.primaryCredentials: Supervisor. Event = [EventTypes.firstCredentiaIEvent];

primaryCredentials is an event in the event class Event.primaryCredentials. It means that
the user name, password, or both have changed.

EventTypes.registry: Supervisor. Event = [EventTypes.firstDefaultEvent + 5];

registry is an event in the event class Event.tajoDefaults. It means that the value of the
default registry, maintained in the Profile module, has changed.

EventTypes.reset: Supervisor. Event = [EventTypes.firstFileWindowEvent + 4];

reset is an event in the event class Event.fileWindow. It means that a file window has been
reset. The window handle for the window is passed as the eventData.

42-5

42 EventTypes

EventTypes.resumeDebuggee: Supervisor. Event = [EventTypes.firstDebugEvent + 6];

resumeDebuggee is an event in the event class Event.swapping. It means that the user is
proceeding from a debugging session and returning to the client.

EventTypes.resumeSession: Supervisor. Event = [EventTypes.firstDebugEvent+2];

resumeSession is an event in the event class Event.swapping. It means that Copilot has
been re-entered for debugging.

EventTypes.store: Supervisor. Event = [EventTypes.firstFileWindowEvent+ 5];

store is an event in the event class Event.fileWindow. It means that the file in a file
window open for editing has been saved or stored and the window is no longer open for
editing. The window handle for the window is passed as the eventData.

EventTypes.swapCancelled: Supervisor. Event = [EventTypes.firstDebugEvent + 3];

swapCancelied is an event in the class Event.swapping. It means that a previous
notification of a swap was vetoed by at least one client.

EventTypes.systemFont: Supervisor. Event = [EventTypes.firstDefaultEvent + 7];

system Font is an event in the class Event.tajoDefaults. It is used to notify clients when the
default font used to display text is changed.

EventTypes.teIiFileSystemSwappingln:Supervisor.Event = [EventTypes.firstDebugEvent + 9];
EventTypes.teIiFileSystemSwappingOut:Supervisor.Event = [EventTypes.firstDebugEvent + 8];

These two events, in the class Event.swapping, are for private use by CoPilot.

EventTypes.volumeClosed:Supervisor.Event = [EventTypes.firstFileSystem + 6];
EventTypes.volumeOpened:supervisor.Event = [EventTypes.firstFileSystem + 51;

These two events, in the class Event.fileSystem, are used to notify when a logical volume
has been opened or closed. The parameter eventData, passed to the agent procedure,
contains the volume id of the volume that is opening or closing.

42.3 Signals and errors

None.

42.4 Procedures

None.

42.5 Examples

See Event.

42-6

43.1 Types

43

TIP

TIP allows you to customize the keyboard for programming the user interface. It
translates hardware-level actions from the keyboard, mouse, and keyset into higher-level
client action requests (result lists). The acronym TIP stands for terminal interface
package. (See also the Userinput chapter.)

TIP.DownUp: TYPE = Keys.DownUp; ee {down, up}

DownUp is an enumerated type that describes the two possible key and button states.

TIP.GlobaITable: TYPE = {
root, formSW, textSW, fileWindow, ttySW, executive, spare1, spare2};

These are the indices of the predefined global TIP table array TIP.globaITable.

TIP.KeyName: TYPE = Keys.KeyName;

KeyName is an enumerated type that describes the keyboard and mouse buttons. It is used
to index the table TIP.actionToWindow and is provided here for convienience. (See the Pilot
Programmer's Manual for a complete list ofits elements.)

TIP.NotifyProc: TYPE = PROCEDURE [window: Window. Handle, results: TIP.Results];

When a sequence of user actions matching the left side of a statement in a TIP table
occurs, a NotifyProc is called with the results list of that statement.

TIP.ResultElement: TYPE = RECORD [
SELECT type: * FROM

char = > [c: CHARACTER],
coords = > [place: Window.Place],
keys = > [keys: LONG POINTER TO Keys.KeyBits].
atom = > [a: Atom.ATOM],
int = > [i: LONG INTEGER],
string = > [s: LONG STRING],

43-1

43 'I'll'

time = > [time: System.Pulses],
ENDCASE];

The right side of a stat£!Ilwnt in a TlP table is a list of results to be passed to the client
when the specified action(s) occurs. Each element in this list is described by a
ResultElement. (See also the descriptions of TIP. Results, TIP.First, and T,IP.Rest') :'Iiote: The place
in a coords ResultElement is relative to the window argument of the NotifyProc.

TIP.Results: TYPE = LONG POINTER TO TIP.ResultsList;
TIP.ResultsList: TYPE;

A NotifyProc is passed a list of results. The client enumerates the list with the procedure
TIP. Rest and extracts the elements of the list with the procedure TlP.First (q.u.).

TlP.Table: TYPE = LONG POINTER TO TIP.TableObject;
TIP.TableObject: TYPE;

A Table is a pointer to the internal representation of a TIP table.

43.2 Constants and data objects

43-2

TIPExtras.clickTimeout: System.Pulses;

clickTimeout determines the maximum time allowed between two clicks of a multi-click.
If a mouse button goes down more than clickTimeout Pulses after the previous button
transition, it is treated as a separate selection action. The current selection does not go to
the next level of the selection hierarchy (Character -> Word -> Line -> Window). This
value is global for the entire environment. This item is currently in the TIPExtras interface.

TIP.actionToWindow: PACKED ARRAY Keys.KeyName OF BOOLEAN;

actionToWindow determines if a user action should be sent to the window containing the
cursor (TRUE) or to the window containing the current input focus (FALSE). This array is
global for the entire environment. It is initialized for all actions to go to the input focus,
except those associated with the Adjust, Menu, and Point mouse buttons and the FIND,
JFIRST, MENU. and USERABORT keys.

globalTable: READONLY ARRAY GlobalTable OF TIP.Table;

Elements of globalTable are predefined, globally available TIP tables. These tables are
definied at boot time and do not change after they are initialized. Figure 43.1 shows how
they form a chain. (See TIP.PushGlobal and TIP.PushLocal for examples of how they are
used.)

TIPExtras.mouseTIP: TIP.Table;

mouseTIP is a convenient TIP table that is made available to clients who need to watch
mouse events, both buttons and tracking. It has no successor tables. This item is currently in the
TIPExtras interface.

Mesa Progl'ammel"s Manual 43

formsw~

fileWindow ~ ~ root

>textSW ~
executive ----I.~ ttySW ~

Figure 43.1: Dependency Structure of Global Tables

43.3 Signals and errors

TIP.lnvalidTable: SIGNAL [type: TIP.TableError, message: LONG STRING);
TlP.TableError: TYPE = {fileNotFound, badSyntax};.

InvalidTable is raised only by TlP.CreateTable. The type is fileNotFound if the file could not
be found and the contents string was empty. fileNotFound is raised as an ERROR. The type
is badSyntax if the current file is syntactically incorrect. If badSyntax is RESUMEd, and
contents is not empty, the contents are written into file and it is reparsed. If the file has
been overwritten or contents is empty and a syntax error occurs, the error will be
badSyntax. In this case, if the signal is resumed, CreateTable simply returns NIL.

43.4 Procedures

TIP.CreateClient: PROCEDURE [
window: Window.Handle, table: TIP.Table ~ NIL, notify: TIP.NotifyProc ~ NIL];

CreateClient makes window a potential TIP client. If window is already a TIP client and
table or notify is NIL, then the old value is retained. Note: This procedure is not called by most clients

of this interface since all windows created by Tool, ToolWindow, or any of the Subwindow interfaces are already

TIP clients. Call this routine only if you are creating your own subwindow type.

TlP.CreateTable: PROCEDURE [
file: LONG STRING ~ NIL, opaque: BOOLEAN ~ FALSE, Z: UNCOUNTED ZONE ~NIL,
contents: LONG STRING ~ Nil]
RETURNS [table: TIP.Table);

CreateTable generates a TIP.Table from the text file named by file (which may not be NIL). If
opaque is TRUE, then unrecognized actions are discarded without searching the table chain
past this entry. table will be allocated in z. If z is NIL, it is allocated from a zone owned by
the TIP table manager. There is no procedure provided for destroying TIP tables, so if you will want to free

table later, provide a zone that you may destroy. Further, note that you should not destroy 'tables on which you

haved done a push global. contents is the default contents offile and will be used if (1) you boot
with the "I" switch, (2) file cannot be read, or (3) you RESUME TIP.lnvalidTable[badSyntax,
...]. (See TlP.lnvalidTable for further details on how to treat that SIGNAL.)

When file is parsed, a compiled form of the table is written into a file with a name
constructed by appending a "C" on the end of file. file should typically have the extentsion ".TIP".

43-3

43

43-4

TIP

When CreateTable is called, if a ".TIPC" file exits that was created from file, the ".TIPC"
file is used to generate table.

This procedure may raise the SIGNAL TlP.lnvalidTable.

TIP.DestroyClient: PROCEDURE [window: Window.Handle];

DestroyClient frees the resources allocated by CreateClient.

TIP.First: PROCEDURE [results: TIP.Results] RETURNS [TIP.ResultElement];

First returns the first TIP.ResultElement associated with the list results.

TIP.FlushUserlnput: PROCEDURE;

FlushUserlnput empties the queue of pending user actions (type-ahead and button-ahead).

TIP. GetNotifyProc: PROCEDURE [window: Window. Handle) RETURNS [TIP.NotifyProc);

GetNotifyProc returns the TIP. NotifyProc associated with window.

TIP. GetNotifyProcFromTable: PROCEDURE [table: TIP. Table] RETURNS [TIP.NotifyProc];

GetNotifyProc FromTable returns the TlP.NotifyProc associated with table.

TIP. GetPlace: PROCEDURE [window: Window.Handle] RETURNS [Window.Place);

GetPlace returns the window-relative coordinate of the last user action that was matched.
GetPlace should be invoked only while in the call stack of a TIP.NotifyProc.

TIP. GetTable: PROCEDURE [window: Window.Handle) RETURNS [TIP. Table);

GetTable returns the head of the TIP.Table chain associated with window.

TIP.NewManager: PROCEDURE [
window: Window.Handle. table: TIP.Table. notify: TIP.NotifyProc ~ NIL);

NewManager sends all user actions through table and notify using window, instead of
through the window, table, and notify procedure determined by TIP.actionToWindow and
the Match process. If table is NIL, the standard mechanisms determine where actions are
sent.

TIP.NextTable: PROCEDURE [table: TIP.Table] RETURNS [next: TIP.Table];

NextTable returns the TIP table following table in the chain. next will be NIL if there is no
successor table.

TIP.PushGlobal: PROCEDURE [
push: TIP.Table. onto: TIP.GlobaITable. opaque: BOOLEAN ~ FALSE];

TIP.PushLocal: PROCEDURE [push, onto: TlP.Table, opaque: BOOLEAN ~ FALSE];

Mesa Pt'ogt'ammet"s Manual 43

PushGlobal and PushLocal manipulate the relationships among TlP.Tables. If opaque is
TRUE, unrecognized lIser actions will be discarded without searching the table chain past
the opaque entry.

PushGlobal inserts push after the global table indexed by onto.

PushLocal appends the chain of TIP.Tables headed by onto the successor of the chain
headed by push. Other clients sharing onto will not be affected.

Note: Never supply the same actual parameter to the formal paramenter push more than
once.

TlP.Rest: PROCEDURE [results: TIP.Results] RETURNS [TIP.Results];

Rest advances results one element. NIL is returned when results is exhausted.

TIP. SetNotifyProc: PROCEDURE [window: Window.Handle, notify: TIP.NotifyProc]
RETURNS [oldNotify:TIP.NotifyProc];

SetNotifyProc sets the TlP.NotifyProc associated with window to be notify and returns the
old TIP. NotifyProc.

TIP. SetNotifyProcForTable: PROCEDURE [table: TIP.Table, notify: TIP.NotifyProc]
RETURNS [oldNotify: TIP.NotifyProc];

SetNotifyProcForTable sets the TIP.NotifyProc associated with table to be notify and
returns the old TIP.NotifyProc. Note: results from statements in table go to notify instead of to the Notify
Pro(for whatever window this chain is associated with.

TIP. SetTable: PROCEDURE [window: Window.Handle, table: TIP.Table]
RETURNS [oldTable: TIP.Table];

SetTable sets the TIP. Table associated with window to be table and returns the old
TIP.Table.

43.5 Discussion

TIP tables describe the translation from keyboard and mouse actions into client actions.
Every time a user action (key transition, button transition, or mouse movement) occurs,
the TIP software determines which window that event is for and looks the event up in the
first table of the chain of TIP tables associated with that window. If the event matches the
left side of a statement in that TIP table, the right side (result list) of the statement is
passed to the NotifyProc for that window. Ifno match is found, the next table in the chain
is checked, and so on. If no match is found in any table, the event is discarded.

43.5.1 Overview

A TIP table specifies a translation between a sequence of user actions and a sequence of
client actions. These tables are created and linked by the client and made available to the
translation process (the TIP matcher).

43-5

43

43-6

TIP

The Stimulus Level (or StimLevl watches the hardware f()r user actions and queues them,
along with their time of occurrence, in the User Action Queue.

The match process (also called the Matcher or Notifierl dequeues each user action and
then determines which window this· event is associated with. [f the entry in
TIP.actionToWindow is TRUE, the window is the one containing the cursor; otherwise, it is
the window with the input focus. After determining the appropriate window, the match
process gets the first TIP table in the chain aS50ciated with that window. It then attempts
to match the user action against statements in that TIP table and succeeding tables until
(1) a match is found, (2) an opaque table is encountered, or (3) the end of the table chain is
reached. If no match is found, that user action is discarded and the match process
dequeues the next user action. If a match is found, the appropriate notify procedure is
called. (Normally this is the notify procedure for that window.) Thus you can add a table
with results that the client window's notification procedure is expected to understand
without having to write an interpreter for those results yourself. In special circumstances, a

notify procedure can be associated with the TIP table itself. In that case, the table's notify procedure is called

instead of the window's.

Predefined system-supplied global tables provide basic mouse, chord, and character
facilities, or change or add functions to these basic facilities for specific window types. The
structure of tables is an inverted tree or a number of linked lists with separate heads and
common tails. For example, TTY subwindows need to transmit an ASCII backspace
character when the BS key goes down. TTY subwindows are also text subwindows, and text
subwindows already define BS as an editing action. Therefore TTY subwindows have their
own table that overrides the text subwindow definition of the action to take when this key
goes down.

Fine point: The StimLev will not enqueue more than a certain fixed number of continuous mouse motions. After

n continuous mouse motions are enqueued, with none dequeued and no intervening user actions, instead of

enqueuing the n + 1st, it replaces the nth with the n + 1st .

. 43.5.2 Using TIP tables

If you need to become a client of this interface, use TIP.CreateTable to make a TIP. Table from
its user-editable disk representation. (See the following sections for details on the
internals of a .TIP file.) Link this table with whatever system-supplied TIP table you find
useful, using TIP.PushGlobal. TIP.PushLocal, or TIP.CreateClient, and passing it your table
and your NotifyProc.

When the match process recognises an event, the NotifyProc is called with the parameter
results, which is a list of values collected from the table while parsing an event. This list
structure is opaque; clients should use the procedures TIP.First and TIP.Rest to access its
elements.

43.5.3 Syntax of TIP tables

Here is the BNF description for syntactically correct TIP tables. Non-terminals are
boldface, terminals are non-bold Titan (such as FastMouse). The characters """, ". ",
"i", ",", "=>", "{", and "}"intheBNFbelowareterminalsymbols.

Mesa Prof.{l'ammer"s Manual 43

TIPTable

Options
Optionlist
Option
SmallOrFast
PrintOrOefaultKeys
FastOrSlowMouse
Expression
Statement

TriggerStmt
EnableStmt

TriggerChoiceSeries

EnableChoiceSeries

TriggerChoice
EnableChoice
FinalChoice

TriggerTerm
EnableTerm

TimeOut

KeyEna bleList

Key

Results

Resultltems
Resultltem

String

Resultldent
Keyldent
Predicateldent

:: = Options TriggerStmt •

:: = empty I OPT IONS OptionList ;
:: = Option I Option, OptionList
:: = SmallOrFast I PrintOrOefaultKeys I FastOrSlowMouse
:: = SmalllFast
:: = PrintKeyslDefaultKeys
:: = Fa.stMouse I SlowMouse
:: = AND TriggerChoice I WHILE EnableChoice I => Statement
:: = TriggerStmt I EnableStmt I Results

:: = SELECT TRIGGER FROM TriggerChoiceSeries
:: = SELECT ENABLE FROM EnableChoiceSeries

:: = TriggerChoice ; TriggerChoiceSeries
I TriggerChoice ENDCASE FinalChoice
I ENDCASE FinalChoice

:: = EnableChoice ; EnableChoiceSeries
I EnableChoice ENDCASE FinalChoice
I ENDCASE FinalChoice

:: = TriggerTerm Expression
:: = EnableTerm Expression
:: = empty I => Statement

:: = (Key I MOUSE I ENTER I EX IT) TimeOut
:: = KeyEnableList I Predicateldent

:: = empty I BEFORE Number I AFTER Number

:: = Key I Key I KeyEnableList
Note: the I between Key and KeyEnableList is a
terminal and must be entered.
:: II Keyldent UP I Keyldent DOWN

:: = Resultltem I Resultltem , Results I Resultltem Expression
I { Resultltems }

:: .. Resultltem I Resultltem Resultltems
:: = COORDS I CHAR I KEYS I TIME I String I Number

I Resultldent

:::1 "any sequence of characters not containing a""

:: = Ident
:::1 Ident
:: = Ident

43.5.4. Semantics of TIP tables

TIPTable :: = Options TriggerStmt •
Note that TIP tables terminate with a period,

43-7

43

43-8

'I'll'

Options
OptionList

.. = empty I OPTIONS OptionList i

.. = Option I Option, OptionList
Option
SmaliOrFast
PrintOrDefaultKeys
FastOrSlowMouse

., = SmaliOrFast I PrintOrDefaultKeys I FastOrSlowMouse
:: = Small I Fast
:: = Pr intReys I Defaul tReys
:: = FastMouse I SlowMouse

Small

Fast

PrintKeys

OefaultKeys

FastMouse

SlowMouse

Expression

Indicates to table builder that you favor storage over lookup speed
(default).
Indicates to table builder that you favor lookup speed over storage.

As above, but only printing keys (not 'Return', control combinations, or
mouse actions).
Adds all normal keyboard events, including control characters.

Indicates to table matcher that you want to see ALL mouse movement
when you use TriggerTerm MOUSE.
Indicates to table matcher that you want to see only the last mouse
motion when you use TriggerTerm MOUSE (default).

:: = AND TriggerChoice I WHILE EnableChoice I => Statement

AND TriggerChoice matches if and only if TriggerChoice happens immediately after
the preceding choice. For example, A Down AND B Down
means "A goes down and then B goes down" (with no
intervening actions like A Up or Mouse motion).

WHILE EnableChoice matches if EnableChoice is also true at this point. For example,
A Down WHILE B Down matches if A goes down while B is
down.

=> Statement

Statement
TriggerStmt
EnableStmt

EnableStmt
TriggerStmt

TriggerChoiceSeries

EnableChoiceSeries

TriggerChoice
EnableChoice
FinalChoice

continue processing at Statement (used for results and common
prefixes) .

:: = TriggerStmt I EnableStmt I Results
:: = SELECT TRIGGER FROM TriggerChoiceSeries
:: = SELECT ENABLE FROM EnableChoiceSeries

matches if any of the EnableChoiceSeries has already happened.
matches if any of the TriggerChoiceSeries has just happened.

.. = TriggerChoice ; TriggerChoiceSeries
I TriggerChoice ENDCASE FinalChoice
I ENDCASE FinalChoice

:: = EnableChoice : EnableChoiceSeries
I EnableChoice ENDCASE FinalChoice
I ENDCASE FinalChoice

:: = TriggerTerm Expression
:: = EnableTerm Expression
:: == empty I => Statement

Mesa PI"ogr"ammel"'s Manual 43

TriggerTerm
TimeOut

Key
MOUSE

ENTER
EXIT

BEFORE Number

AFTER Number

EnableTerm
KeyEnableList

KeyEnableList

Key

Key

Results

Resultltems
Resultltem

String
Resultldent

COORDS

CHAR

KEYS

TIME

String

.. = (Key I MOUSE I ENTER I EXIT) TimeOut

.. = empty I BEFORE Number I AFTER Number

matches if the appropriate key transition occurs.
matches if there is mouse motion (useful for tracking the
mouse).
matches if the mouse enters the window.
matches if the mouse leaves the window.

matches if the associated TriggerTerm happens within a given
number of milliseconds of the preceding (matched) user action.
For example, A Down AND B Down BEFORE 200
matches if A went down and then B went down within 115
second (and if there were no intervening actions).

matches if the associated TriggerTerm happens a given number
of milliseconds or more after the preceding user action. For
example, A Down AND B Down AFTER 200 matches if
A went down and then B went down more than 115 second later
(and if there were no intervening actions).

:: = KeyEnableList I Predicateldent
:: = Key I Key I KeyEnableList
Note: the I between Keyand KeyEnableList is a
terminal and must be entered.

is true if any of the Keys are true.

:: = Keyldent UP I Keyldent DOWN

is true if the appropriate transition has happened (either is the
current user action if part of a trigger term, or has already
happened if an enable term).

:: = Resultltem I Resultltem , Results I Resultltem Expression
I { Resultltems }

:: = Resultltem I Resultltem Resultltems
:: = COORDS I CHAR I KEYS I TIME I String I Number

I Resultldent
:: = "any sequence of characters not containing a ""
:: = Ident

returns a coord ResultElement with the coords of the last user
action
returns a char ResultElement with the character representation
of the last user action
returns a keys ResultElement with the current state of all the
keys. (This is not recommended in normal usage. Usually a
more complex TIP table is indicated if you are using this result.)
returns a time ResultElement (with the time of the last
(matched) user action.
returns a string ResultElement.

43-9

43

43-10

TIP

Number
Resultldent

Keyldent

One of:

Predicateldent

Predicateldent

returns an int ResultElement.
returns an atom ResultElement.

:: = Ident

A ... Z, One, Two, Three, ... Zero, Adjust, AGAIN, Arrow,
ATTENTION, BackSlash, BS, CLIENTl, CLlENT2, Comma,
COM:vIAND, COMPLETE, CONTROL, COPY, Dash, DELETE,
DOlT, Equal, EXPAND, FIND, IIELP,.JFIRST,.JSELECT,
Keysetl, Keyset2, Keyset3, Keyset4, Keyset5, LeftBracket,
LeftShift, LOCK, Menu, MENU, MOVE, NEXT, PASTE,
Period, Point, Quote, RESERVED, RETURN, RightBracket,
RightShift, SCROLLBAR, SemiColon, Slash, Space, STUFF,
TAB, UNDO, USERABORT, AS, A9, AlO, All, A12, Ll, L4, L7,
LIO, Key47,R3,R4,R9,RI0

:: = Ident

is not currently implemented.

The whole match process can be viewed as a SELECT statement that is continuously reading
key transitions, mouse movements, or key states from the input queue. A trigger
statement looks at the next action recorded in the input queue and branches to the
appropriate choice. An enable statement selects between the different choices according to
the current state of the keyboard or the mouse keys. Trigger terms may appear in
sequence, separated by AND. They may be mixed with enable terms, which in turn are
characterized by the keyword WHILE. A timeout following a trigger indicates a timing
condition that has to hold between this trigger and its predecessor. The number associated
with the timeout expresses a time interval in milliseconds. Events starting with the same
sequence of trigger and/or enable terms are expressed as nested statements. Result items
may be names, numbers, strings, or the keywords COORDS, CHAR, KEYS, or TIME. The
results of a successfully parsed event are passed to the user as an opaque list whose
elements are extracted with the procedures TIP.First and TIP.Rest. Names appear as
identifiers, numbers as LONG INTEGERS, and strings as LONG STRINGS. Char comes as CHARACTER

containing the ASCII interpretation of the key involved with the event. Coords results in
a Window. Place containing the mouse coordinates of the event.

For example, the PrintKeys entry for the letter "a" can be represented as:

SELECT TRIGGER FROM
A Down WHILE CONTROL Up => CHAR:

This event is triggered when the A key goes down only if the CONTROL key is up. It puts a
result on the list that will be the character a.

A more elaborate example may look like this:

SELECT TRIGGER FROM
Point Down =>

SELECT TRIGGER FROM
Point Up BEFORE 200 AND Point Down BEFORE 200 =>

SELECT ENABLE FROM

Mesa Pr'ogl'lunmel"s Manual 43

LeftShift Down => COORDS, ShiftedDoubleClick
ENDCASE => COORDS, NormalDoubleClick;

Adjust Down BEFORE 300 => PointAndAdjust;
ENDCASE => COORDS, SimpleClick;

This table produces the result element (atom) NormalDoubleClick along with the
mouse coordinates if the left mouse button goes down. remains there not longer than
200 ms. and goes down again before another 200-ms lapse. The result is
Shi ftedDoubleClick if the same actions occur and the left shift key is down. If the
right mouse button also goes down less than 300 ms after the initial Point Down and
the right mouse button also goes down, PointAndAdjust results. Finally, the table
specifies the result SimpleClick (with coordinates) if Point goes down but none of the
succeeding actions occurs.

Following is a list of namesyou might want to use for the keys:

Letters:

Numbers:

Functions:

Others:

A ... Z.

One, Two, Three, ... Zero.

Adjust, AGAIN, Arrow, ATTENTION, BackSlash, BS, CLIENT1,
CLIENT2, Comma, COMMAND, COMPLETE, CONTROL, COPY,
Dash, DELETE, DOlT, Equal, EXPAND, FIND, HELP, JFIRST,
JSELECT, Keysetl, Keyset2, Keyset3, Keyset4, Keyset5, LeftBracket,
LeftShift, LOCK, Menu, MENU, MOVE, NEXT, PASTE, Period, Point,
Quote, RESERVED, RETURN, RightBracket, RightShift,
SCROLLBAR, SemiColon, Slash, Space, STUFF, TAB, UNDO,
USERABORT.

AS, A9, A10, All, A12, L1, L4, L7, L10, Key47, R3, R4, R9, RIO

There are no names for shifted characters like left or right paren. Instead, you must
specify one or both shift keys plus the unshifted key name. For example, Nine Down
WHILE LeftShift Down instead of Left Par en Down

43.5.5. GPM: macro package

The macro package used in TIP is based on the "General-Purpose Macrogenerator"
described by Strachey in Computer Journal (October 1965). The following summary is
based on that article; refer to the article itselffor more details.

A macro call consists of a macro name and a list of actual parameters, each separated by
a comma. The name is preceded by a left square bracket ([) and the last parameter is
followed by a right square bracket. A macro is defined by the special macro DEF, which
takes two arguments: the name of the macro to be defined and the defining string. The
defining string may contain the special symbols -1, -2, etc., which stand for the first,
second, etc., formal parameters. Enclosing any string in parentheses prevents
evaluation of any macro calls inside; in place of evaluation, one "layer" of string quotes
is removed. It is usual to enclose the defining string of a macro definition in string
quotes to prevent any macro calls or uses of formal parameters from being effective
during definition.

Here are some sample macros and an example:

43-11

43

43-12

'I'll'

-- macro definitions
[DEF,LSHIFT,(LeftShift Down)]
[DEF,RSHIFT,(RightShift Down)]
[DEF,EitherShift,(

[LSHIFT] => -I;
[RSHIFT] => -1)]

-- trigger cases
SELECT TRIGGER FROM
BS Down => SELECT ENABLE FROM

[Ei therShi ft, {BackWard}] ;
ENDCASE = > {BackSpace};

-- more cases
ENDCASE ...

The above example expands to:

BS Down => SELECT ENABLE FROM
LeftShift Down = > BackWard;
RightShift Down = > BackWord;
ENDCASE => {BackSpace};

44.1 Types

44

UserInput

The Userlnput interface provides the client with routines that manage the input focus,
user type-in, the periodic notifier, and UserAbort. (See TIP for keyboard-handling
facilities.)

The User Typeln facility, which is built with the TIP facilities, lets the client supply a
procedure to be called whenever actions have taken place that correspond to a character
being typed (such as key down, key up, shift). Type-in frees the client from being
concerned about how it is done.

The procedure UserAbort may be called to see if the user has pressed ABORT while the
cursor is in its window. Periodic notifiers are useful for procedures that are to be
performed at regular intervals and for procedures that must be executed from within the
Notifier. (See the examples at the end of this chapter.)

Userlnput.AttentionProcType: TYPE = PROC [window: Window.Handle];

An AttentionProcType is called whenever the ABORT key is pressed. It is called "outside"
the Notifier as soon as the stimulus level sees the key go down.

userfnput.CaretProcType: TYPE = PROC window:
[Window.Handle, startStop: Userlnput.StartStop];

A CaretProcType is called when the input focus changes. startStop is a flag designating
whether to start or stop blinking the caret marking the type-in point (see
CreateStringlnOut).

userlnput.PeriodicNotifyHandle: TYPE [1];

Clients sometimes want to wake up at regular time intervals to do some operation.
However, a client may need operations that, if done while the Notifier was invoking some
other operation, would either preempt the user or cause serious problems in Tajo (such as
blinking the type-in caret). Thus, the periodic notification mechanism is provided.

44 I

44 Userlnput

Userlnput.PeriodicProcType: TYPE = PROC [window: Window.Handle. place: Window.Place];

A PeriodicProcType is one that is called by the periodic notifier at regular intervals, as
described in CreatePeriodicNotify. window is the window passed to CreatePeriodicNotify;
place is the window-relative place of the cursor when the procedure is called.

Userlnput.StartStop: TYPE = {start. stop};

This is used as an argument to a CaretProcType.

Userlnput.StringProcType: TYPE = PROC [window: Window.Handle. string: LONG STRING];

By attaching a StringProcType to window, the system converts keystrokes into strings, so
the client can ignore the details of keys going up and down.

44.2 Constants and data objects

Userlnput.ca ret Rate : Process. Ticks;

Userlnput.noSuchCharacter: CHARACTER == 377c;

noSuchCharacter is used by the TIP match process when a request is made to translate a
key into a character and there is no translation ..

Userlnput.nuIlPeriodicNotify: userlnput.PeriodicNotifyHandle == ... ;

Allows a client to initialize its handle to a well-known null value.

44.3 Signals and errors

Userlnput.Error: ERROR [code: Userlnput.ErrorCode];

Userlnput.ErrorCode: TYPE == {

windowAlreadyHasStringlnOut. noStringlnOutForWindow. noSuchPeriodicNotifier.
other};

Userlnput.ReturnToNotifier: ERROR [string: LONG STRING];

A client may be deep in the call stack of some Notifier-invoked operation from which it
wishes to unwind. The ERROR ReturnToNotifier can be raised and will be caught at the top
level of the TIP match process. Clients can catch this error, post a message with string in
it, and let the error propagate up.

44.4 Procedures

44-2

Userlnput.CanceIPeriodicNotify: PROC [
Userlnput.PeriodicNotifyHandle] RETURNS [nil: userlnput.PeriodicNotifyHandle];

CancelPeriodicNotify stops the periodic notification passed in by removing the notification
from Tajo's list of registered procedures and returns nullPeriodicNotify. This procedure
raises Error[noSuchPeriodicNotifier] if the handle passed in is not valid. (Calling it with
nullPeriodicNotify has no effect.)

Mesa Programmer's Manual 44

Userlnput. ClearlnputFocusOnMatch: PROC [w: Window.Handle];

ClearlnputFocusOnMatch clears the input focus in a window if that window has the input
focus. This procedure is usually called by clients who are implementing their own window
type when they are destroying a window.

Userlnput.CreatelndirectStringln: PROC [from. to: Window.Handle];

CreatelndirectStringln redirects input from one subwindow to another.
Error[windowAlreadyHasStringln] will be raised if the from already has type-in.

Userlnput.CreatelndirectStringlnOut: PROC [from. to: Window.Handle];

CreatelndirectStringlnOut redirects input and output from one subwindow to another.
Error[windowAlreadyHasStringlnOut] will be raised if the window already has type-in or
type-out.

Userlnput.CreateindirectStringOut: PROC [from. to: Window.Handle];

CreatelndirectStringOut redirects output from one subwindow to another.
Error[windowAlreadyHasStringlnOut] will be raised if the window already has type-out

Userlnput.CreatePeriodicNotify: PROC [
proc: userlnput.PeriodicProcType. window: Window.Handle. rate: Process. Ticks]
RETURNS [userlnput.PeriodicNotifyHandle];

CreatePeriodicNotify registers a periodic notification with Tajo. proc is called once every
interval defined by rate as long as no TIP client notifications are taking place. If rate = 0,
it runs once and then destroys itself. The proc has a parameter of type Window.Handle.
When proc is called, it is passed the value of window used in the call of
CreatePeriodicNotify, not of the window that currently contains the cursor or input focus.

userlnput.CreateStringlnOut: PROC [
window: Window.Handle. in, out: userlnput.StringProcType.
caretProc: userlnput.CaretProcType ~ userlnput.NopCaretProc];

CreateStringlnOut attaches StringProcType procedures to the given window, allowing the
client program to be unconcerned with the details of keyboard activity within the window.
The caretProc is used to turn on and off a blinking caret at the type-in point when the
input focus changes to and from window. CreateStringlnOut must be called before
Userlnput.SetStringlnOut. It is usually not called directly by clients, but is called as a side
effect of creating a window of a type that accepts type-in(-out).

Userlnput.Destroylndi rectStringln: PROC [Window. Handle] ;

DestroylndirectStringln halts redirection of input from the sub window.

userlnput.DestroylndirectStringlnOut: PROC [Window.Handle];

DestroylndirectStringlnOut halts redirection ofinput and output.

userlnput.DestroylndirectStringOut: PROC [Window.Handle];

DestroylndirectStringOut halts redirection of output from the subwindow.

44-3

44

44-4

Userlnput

Userlnput.DestroyStri ngl nOut: PROC [Window .Handl e);

DestroyStringlnOut removes the procedures supplied for dealing with input and output in
the subwindow.

Userlnput. FocusTakeslnput: PROC RETURNS [BOOLEAN];

FocusTakeslnput returns TRUE if the current input focus accepts input, FALSE otherwise.

Userlnput.GetDefaultWindow: PROC RETURNS [Window. Handle];

GetDefaultWindow procedure returns the current default window.

Userlnput. GetlnputFocus: PROC RETURNS [Window.Handle];

GetlnputFocus returns the window that currently has the input focus.

Userlnput.NopCaretProc: userlnput.CaretProcType;

NopCaretProc does nothing when called.

Userlnput.NopStringProc: Userlnput.StringProcType;

NopStringProc does nothing when called.

Userlnput.ResetUserAbort: PROC [Window.Handle];

ResetUserAbort sets the state of the window to appear that the user has not aborted its
operation.

Userlnput.SetAttention: PROC [Window.Handle. attention: Userlnput.AttentionProcType]

SetAttention sets the attention procedure for the window. The procedure attention is
called asynchronously whenever the USERABORT key is pressed. If no attention proc is
available for the window, UserAbort is set for that window.

SetinputFocus: PROC [w: Window.Handle, notify: PROC [Window.Handle, LONG POINTER],
takeslnput: BOOLEAN. data: LONG POINTER +- NIL];

SetlnputFocus should be called by your TIP.NotifyProc when you want to set the input
focus. It makes w the target of type-in. If wallows type-in, then takeslnput should be set
to TRUE; otherwise, takeslnput should be set to FALSE. notify is called when w loses the
input focus. It is passed data as the value of its LONG POINTER parameter.

Userlnput.SetStringln: PROC [
window: Window.Handle. proc: userlnput.StringProcType)
RETURNS [old: Userlnput. Stri ngProcType]

SetStringln alters the procedure to be called for a window with existing type-in.
Error[noStringlnOutForWindow] can be raised if the window has no type-in.

Mesa Programmer's Manual

Userlnput.SetStringOut: PROC [
window: Window.Handle. proc: userlnput.StringProcType]
RETURNS [old: Userlnput.StringProcType]

44

SetStringOut alters the procedure to be called for a window with existing type-out.
Error[noStringlnOutForWindow] can be raised if the window has no type-out.

Userlnput.SetUserAbort: PROC [Window. Handle]

SetUserAbort sets the state of the window to appear that the user has aborted its
operation. It does not call the window's attention procedure, even if there is one.

Userlnput.StringOut: PROC [window: Window.Handle. string: LONG STRING]

StringOut allows a client to output directly to a window, bypassing any input filtering that
might have been performed.

Userlnput.StuffCharacter: PROC [
window: Window.Handle. char: CHARACTER] RETURNS [BOOLEAN]

Stuff Character allows a client to drive the type-in mechanism as though a character were
coming from the user. The returned BOOLEAN is TRUE only if window was prepared to accept
input.

Userlnput.StuffCurrentSelection: PROC [window.Handle] RETURNS [BOOLEAN]

StuffCurrentSelection allows a client to drive the type-in mechanism as though the
contents of the current selection were coming from the user. (See the Selection interface
for a description of the current selection.) The returned BOOLEAN is TRUE only if window
was prepared to accept input.

Userlnput.StuffString: PROC [window: Window.Handle. string: LONG STRING] RETURNS [BOOLEAN]

StuffString allows a client to drive the type-in mechanism as though string were coming
from the user. The returned BOOLEAN is TRUE only ifwindow was prepared to accept input.

Userlnput.StuffTrashBin: PROC [Window.Handle] RETURNS [BOOLEAN]

StuffTrashBin allows a client to drive the type-in mechanism as though the user had typed
in the exact contents of the last deletion. (See the Selection interface for a description of
the trash bin.) The returned BOOLEAN is TRUE only ifwindow was prepared to accept input.

Userlnput.UserAbort: PROC [Window.Handle] RETURNS [BOOLEAN];

A client operation that runs for more than a few seconds can poll UserAbort on its window
to see if you have indicated that you want to abort the operation in that window. If
window is NIL, the Userlnput package checks to see whether you have done a global abort.
When the TIP match process calls a client, this flag is cleared. (See the XDE User's Guide
for the abort procedure.) [f there is an attention procedure for the window, UserAbort is not set
automatically.

userlnput.WaitForConfirmation: PROC RETURNS [place: Window.Place. okay: BOOLEAN];

Before calling this procedure, the client should call Cursor.Set[mouseRed].
WaitForConfirmation then gets the confirmation from the user. If okay =TRUE, then the
user pushed the point button; otherwise the user pushed either the menu or the adjust

44-5

44 Userlnput

buttons. place is the bitmap-relative position.of the cursor when the button went down.
The cursor should be set back to its previous type upon return 'from this procedure. This
procedure does the equivall'llt ,.fTIP.NewManager(NIL, NIL, NIL) as a side effect.

Userlnput. WaitNoButtons: PROC;

WaitNoButtons returns when all the mouse buttons are released. This procedure does the
equivalent ofTIP.NewManager(NIL. NIL. NIL] as a side effect.

44.5 Examples

44-6

The following example shows a periodic notifier updating a display of the volume page
count in a tool. The page count is updated every 20 seconds if the Notifier is not otherwise
occupied.

window: Window.Handle +- ... ; -- this to of's window

pageNotifier: Userlnput.PeriodicNotifyHandle +- Userlnput.nuIiPeriodicNotify;

Cleanup: ToolWindow.TransitionProcType = {-- the Transition Proc for window
IF old = active THEN

pageNotifier +- Userlnput.CanceIPeriodicNotify[pageNotifier];
IF new = active THEN

pageNotifier +- userlnput.CreatePeriodicNotify[
proc: UpdatePageCount, window: window,
rate: Process.MsecToTicks[20000]]};

UpdatePageCount: userlnput.PeriodicProcType = {
-- code to update page count on screen;
-- this procedure probably ignores both input parameters
};

The following example shows a kamikaze periodic notifier, one whose only purpose is to let
a procedure be executed from the Notifier process, such as booting another volume. Rather
than executing the procedure at regular intervals, it is executed once and then the periodic
notifier is destroyed.

kamikaze: userlnput.PeriodicNotifyHandle +- userlnput.nuIiPeriodicNotify;

RunProc: userlnput.PeriodicProcType = {
kamikaze +- userlnput.userlnput.nuIlPeriodicNotify;};

--main body
-- call procedure that must be run from Notifier;
IF kamikaze = userlnput.nuliPeriodicNotify THEN

kamikaze +- userlnput.CreatePeriodicNotify[
proc: RunProc. window: NIL,
rate: 0]; -- rate of 0 means only execute once

v

File management

File management interfaces support loading, storing, and transfering files among local
and remote disks or other storage media. These interfaces hide the details of the various
types of storage hardware from the software, thus presenting a uniform surface to the
tools that must interact with these media.

If you are less experienced with the XDE, it would be helpful to study the MStream, MFile,
and FileTransfer interfaces before the others. Also, the FileName interface, though not as
important by itself, is used by other File Management interfaces, so you should familiarize
yourself with it.

The other file management interfaces allow the more advanced XDE programmers to
exercise more control over the specifics of data access.

V.l Overview

The XDE file system views processes as cooperative, allowing sophisticated file sharing
among independent processes. If one process wishes to use a file in a way that conflicts
with the way a second process is using it, the process that is using the file may be asked to
relinquish it. For example, if a process wants to write a file being read by another process,
the process reading the file is asked to stop. In addition, a process may ask to be notified
when a file becomes available for a particular use. The processes that share files need
neither communicate explicitly nor know one another's identities.

The XDE file system facilitates cooperation among processes by asking clients to provide
procedures that the file system can call to ask a client to give up a file (PleaseReleaseProc)
or tell a client that a file is available (NotifyProc). Such procedures are called call-back
procedures because the file system uses them to call back the client at its discretion.

The next three sections of this chapter describe the file system procedures clients use for
accessing and sharing files. The File access section discusses how a client gains access to a
file and how it can respond if the file system asks it to give up a file. The Notification
section discusses the mechanism by which a client might ask to be notified that a file is
available for access. The Append files section discusses a controlled type of file access that
lets clients read and write the same file at the same time.

VI

v «'ile management

The Examples section contains three examples of the file system's cooperative features.
The section on Concurrency problems discusses the subtleties of writing the call-back
procedures that clients provide, and the Implementation section discusses the
implementation of this file system.

V.2 File access

V-2

To use a file, a client must have a handle on the file that identifies it in other calls to the
file system. To obtain a handle, the client calls the procedure Acquire (see
Example V.l).When a client finishes with a file, it must release its handle and
relinquish its use by calling Release. The access parameter indicates how the file is to
be used. Anchor access is used both to keep a file from being deleted or renamed and to
change some file properties. readOnly, writeOnly, readWrite, delete, and rename are
self-evident; append will be discussed below. null is used only for client initialization,
not to acquire a file. The release parameter, used for asking the client to relinquish its
use of the file, is discussed in the following paragraphs.

Example V.l: Procedures for acquiring and releasing files

Acquire: PROCEDURE [

name: LONG STRING.

access: Access,
release: ReleaseData,
mightWrite: BOOLEAN,

initial Length : LONG CARDINAL,
type:Type)

RETURNS [Handle];

Release: PROCEDURE [file: Handle];

Access: TYPE = {anchor, readOnly, readWrite, writeOnly, append, delete, rename,
null};
Type: TYPE = {unknown, text, binary};

The file system checks that the requested use of the file does not conflict with its other
current uses. If there is no conflict, the file system asks each of the current owners of a
conflicting handle on that file to release its handle, by calling the PleaseReleaseProc
associated with the conflicting handle (see Example V.2). If all the clients with conflicting
declarationshandles release them, the request is honored and the new use is granted.
Otherwise, the request is denied.

Example V.2: PleaseReleaseProc declarations

PleaseReleaseProc: TYPE = PROCEDURE [file: Handle, instanceData: LONG POINTER]

RETURNS [ReleaseChoice];

ReleaseData: TYPE == RECORD [
proc: PleaseReleaseProc,
c1ientlnstanceData: LONG POINTER];

ReleaseChoice: TYPE = {later, no, goAhead. allowRename};

Mesa Programmer's Manual v

When a client's PleaseReleaseProc is called, the client can do one of four things. It can
refuse to relinquish its use of the file, returning the value no, in which case the conflicting
request cannot be honored. Ifit returns allowRename, it refuses to relinquish its use of the
file, but allows the file to be renamed. If it returns goAhead, it relinquishes the file, and
the file system releases its handle. (It is a client error to use this handle thereafter.) If it
returns later, it promises to release the file soon, so the file system should delay processing
the new request until that handle has been released.

Let us consider how the different return values might be used. If a client's
PleaseReleaseProc were called in the middle of writing a file, it returns no. A file-cache
client returns the value goAhead after it removes the requested file from the cache. If a
client notes that it is already in the process of releasing a file when its PleaseReleaseProc
is called, it returns later.

If a client is concerned only with a file's contents, not with its name, it returns
allowRename from its PleaseReleaseProc. A loader is such a client; it does not want the
contents of a loaded program to change, but does not care if the program is renamed.

A client can acquire a new handle on a file for each use of it. Alternatively, a client can
change the use associated with a given handle by calling the procedure SetAccess (see
Example V.3). For instance, a client can acquire a file with readOnly access and change
the access to readWrite only when it determines that it must write into the file.

Example V.3: SetAccess declarations

SetAccess: PROCEDURE [file: Handle, access: Access];

SetAccess provides a quicker way to release and reacquire a file with a new access. In
particular, PleaseReleaseProcs are called if required to obtain the new access, and file
notification takes place if appropriate (see the section on Notification)

V.3 Notification

A client can ask the file system to notify it whenever a file (or class of files) becomes
available for some particular access. For example, when a client is denied access to a file,
it might want to be awakened when that file is available so it can try again.

AddNotifyProc is called to register such a request with the file system, and the procedure
RemoveNotifyProc is called to remove it (see Example V.4). The filter parameter
determines the class of files of interest. The name field of the filter is a pattern to be
matched against file names. Patterns can include wildcard characters that match zero or
more characters in a file name. The type field of the filter is the type of the files that the
client is interested in; if type is unknown, all types match. The access field of the filter
ensures that the client is notified only when a file with the needed access becomes
available, such as when a file that was being written becomes available for reading.

'l·3

v File management

Example V.4: NotifyProc declarations

AddNotifyProc: PROCEDURE [
proc:NotifyProc, filter: Filter, clientlnstanceData: LONG POINTER];

RemoveNotifyProc: PROCEDURE [
proc: NotifyProc. filter: Filter, clientlnstanceData: LONG POINTER];

Filter: TYPE = REcoRD[name: LONG STRING, type: Type, access: Access];

NotifyProc: TYPE = PROCEDURE [name: LONG STRING, file: Handle,
clientlnstanceData: LONG POINTER]

RETURNS [removeNotifyProc: BOOLEAN);

When the file system determines that the conditions of a filter have been satisfied, it calls
the NotifyProc passed in with the filter. The name parameter is the name of the file; file is
a handle on the file; and clientlnstanceData is the value passed to the file system when
AddNotifyProc was called. The NotifyProc returns TRUE when it wishes to be removed from
the file system's notification list.

Because a client can acquire a file for a conflicting access before other interested clients
have been notified that the file is available for some weaker access, there is no guarantee
that a client will be called for every state change of a file. For instance, clients to be
notified that a file is available for readOnly access will not be notified if another client
acquires the file for readWrite access in the interim. When a client is notified, however, it
is guaranteed that it can acquire the file for its desired access.

V.4 Append files

V-4

A client may request append access to a file for typescript applications in which a file can
be concurrently read and written. In such an application, the file can be divided into two
parts: an unchangeable initial portion and a final portion that may still be changed. The
read length of the file divides these two sections.

A client with append access to a file may change either the contents of the final portion of
the file or its size. This client is also responsible for setting the read length of the file when
it has finished writing a new section of the file. The read length may never decrease.

The file system always honors requests to read a file for which another client has
append access. It will appear to the reader, however, that the file is only as long as its
read length at the time it was acquired. To encourage a client with append access to let
the reader read as much as possible, the file system will call the PleaseReleaseProc of
the append client, ignoring the result returned. This allows the append client to set the
read length from the PleaseReleaseProc, which may have been called because some
client is trying to read the append file.

Append files are particularly useful for applications in which a client is continually
adding information to the end of a file, but another client needs to read the current
contents. For instance, a command executive program may write a typescript of
commands typed by the user together with their output. One of the executive's
commands may store a file. It is useful to store a copy of the typescript file itself. If the
typescript file is an append file and the command executive sets the read length to the

Mesa Programmer's Manual v
end of the output from the previ!>us command, the executive can store the contents of its
own typescript file up to the point where the command was issued.

The next section gi ves another exa mple of append files.

V.5 Examples

The Xerox Development Environment uses the file system's cooperative features to
solve several problems that can be quite awkward otherwise, such as those involved in
dealing with windows that display files, file managers, and append files for processing
data.

V.5.1 File windows

While a file is loaded in a window so that you can read or edit it, the file window
program has a handle on it. Some other client may need to write into that file. For
instance, you may load the compiler error log into a window to look at your compilation
errors while you edit your source file. If, after finishing the edits, you recompile the
source file without unloading the compiler log, the compiler will need to write into the
log if it encounters additional errors.

If you are not editing the file in a file window, the file window program will unload the
window and relinquish ownership of the file. When the PleaseReleaseProc is called for
the file window's file handle, the file window program checks the state of the window. If
the file is being edited, it refuses to release the handle. Otherwise, it unloads the
window, registers a NotifyProc for read access on the file, and relinquishes ownership of
the file.

When the client that was writing the file completes and releases its handle, the file
system notices that read access has become available on the file. Since it can satisfy the
file window's notification request, it calls the file window's NotifyProc. The file window
program acquires the file for read once more and reloads it into the window. Hence, a
client will not be blocked if a file that it needs has been left loaded in a window; file
windows automatically update themselves to the most recent version of whichever files
they contain.

V.5.2 File managers

Some clients cache file handles that are expected to be needed again, some of which may
be in use. This saves looking up the file in the file system each time it is needed and
remapping the file contents into memory.

When another client needs a file maintained by the file manager, the
PleaseReleaseProc for the file manager checks its reference counts to see if the file is in
use. If not, the file manager clears the file from its set of file handles and relinquishes
ownership.

Hence, the PleaseReleaseProc facility allows a client to gain the performance
advantages of a file cache without interfering with other clients that need to use the
files in the cache.

V5

v File management

V.5.3 Append file processing

Consider a data analysis system in which one process continuously gathers data that
several other processes analyze as the data is gathered. These processes can be
coordinated straightforwardly using an append file.

As data comes in, the data-gathering process appends it to an append file and sets the
new read length for the file. Setting the read length causes file notification to take place
for read access.

The analysis processes have a NotifyProc on the append file. When the file is extended
with new information, the NotifyProc is called. The NotifyProc performs a broadcast on
a condition variable to awaken the analysis processes blocked waiting for data. Each
analysis process loops, checking to see whether there is more data by comparing the
current read length of the file with the last length processed. If there is no new data, the
process again waits on the condition variable. If there is more data, the process acquires
the append file for read access and processes the data starting from where it last left off,
continuing to the end of the file.

Note that the data-gathering process does not need to know the identity of or even the
number of analysis processes. It simply provides a service to whatever clients may be
interested. Analysis processes can be added or removed dynamically without affecting
other processes.

Only one copy of the data need be produced, since it can be freely shared among the
analysis processes. The analysis processes can read any available data at any time, not
just the previously unseen data.

V.6 Concurrency problems in writing call-back procedures

V-6

Writing call-back procedures correctly is often difficult because the client must be
prepared to have its call-back procedures invoked at any time. Although clients that use
PleaseReleaseProcs and NotifyProcs may appear to be simple sequential programs, subtle
synchronization issues are involved in the interprocess communication between the client,
the file system, and (indirectly) other clients.

The difficulties are inherent in writing multi-process programs. As the means of
communication, the call-back procedures expose these difficulties. Note that clients need
not master the subtleties of call-back procedures to use the file system. They can choose
instead not to cooperate in their use of files, using a system-provided PleaseReleaseProc
that always returns no. Often, tools are first written with little or no cooperation and
gradually evolve to allow more. The rest ofthis section discusses the difficulties in writing
call-back procedures.

As an example of the type of locking that the client must do, the client monitors data
accessed by its PleaseReleaseProc and carefully synchronizes which process has released
the file. To see how this might be done, consider the code fragments in Example V.5. In
this example, the PleaseReleaseProc returns later if the client is done with the file and is
in the process of releasing it. Otherwise, it will return no. The state of the file, state, is

Mesa Programmer"s Manual v
always changed by the client and examined by the PleaseReleaseProc from within the
client monitor.

Example V.5: Example PleaseReleaseProc

FileState; TYPE = {busy, beingReleased, released};
file: Handle;
state: FileState or released;

ChangeState: ENTRY PROCEDURE [newState: FileState] =
BEGIN
state or newState;
END;

-- PieaseReleaseProc for file

MyReleaseProc: ENTRY ReleaseProc ..
BEGIN
SELECT state FROM

busy = > RETURN[no];
beingRelease, released = > RETuRN[later1;

ENDCASE;
END;

-- code to acquire file

ChangeState[busy);
file or MFile.Acquire["FileName", readWrite, []];

-- code to release file when done

ChangeState [beingReleased];
MFile.Release[file] ;
ChangeState[released1;

This is an extremely simple PleaseReleaseProc. The only difference between providing
it and none at all is that later will be returned during the small interval after the client
has decided to release the file but before that operation is complete. If some other client
requests the file in that interval, that second client will succeed when otherwise it
would not.

Because many clients may be calling it simultaneously, the file system must lock some
of its internal data structures while it calls the client-provided PleaseReleaseProc or
NotifyProc. Although this lock is essential for preserving the consistency of data
structures and behavior, it means that some file system operations cannot be invoked
from a PleaseReleaseProc or NotifyProc without causing deadlock.

As an example of the type of locking that the file system must do, the file system must
guarantee that once a client has released a file, the file system will not call the
associated PleaseReleaseProc. Thus, while the file system is calling the
PleaseReleaseProc for a file, it blocks all attempts to call Release on that file. This
blocking guards against the case in which the call on the PleaseReleaseProc is blocked
on a client monitor while the client has called Release on that file. If the file system
executes the Release before the PleaseReleaseProc completes, it will appear to the client

V-7

v

V-8

«'He management

that the PleaseReleaseProc was called after the Release completed, as seen in Example
V.6.

Example V.6: Race condition if file system permitted Release to execute while calling a
PreaseReleaseProc.

1. enter monitor to release file

3. call Release

5. leave monitor

File System

2. call PleaseReleaseProc (blocks on client
monitor)

4. process call of Release and return to client

6. process call ofPleaseReleaseProc

7. call from 2 completes

A PleaseReleaseProc should not wait for a monitor that may be held by a process
waiting for the file system. In Example V.5, it is important that the actual release of the
file was done outside the client monitor. Instead, only the state change of the file is
protected by the monitor, and Release is called from outside the monitor. Otherwise, the
deadlock sequence in Example V.7 might occur.

Example V.7: Client-caused deadlock in PteaseReteaseProc

Client 1

1. enter monitor to
release file X

Client 2

2. call Acquire on
file X.

5. call Release (blocks on
file system's lock on
file X'sdata structure)

File System

3. lock data structure for file X

4. call Clientl's
PleaseReleaseProc for file X
(blocks on Client l's
monitor)

Some of the file system procedures may not be called from within a PieaseReleaseProc;
these include Acquire, Release, or SetAccess. If the PleaseReleaseProc calls one of these
procedures, the process will deadlock on the file system's monitor for that file. Ifit must
call one of these procedures, it must fork another process to perform the call and not
wait for that process to complete, since the process will not complete until the
PleaseReleaseProc returns. The return value later from a PleaseReleaseProc may
indicate that a process has been forked that will release the file.

Mesa Programmer's Manual v

Writing PleaseReleaseProcs and NotifyProcs requires very careful thought and
attention as well as a good understanding of the principles of multi-process programs.

V.7 Interface abstracts

FileName provides facilities for parsing local and remote tile names.

FileTransfer provides a uniform interface for the manipulation of files. It makes invisible
to the client whether the files are in the local tile system or on a remote tile server. It
provides facilities for copying tiles, opening streams on tiles, and enumerating tiles.

MFileProperty defines a list of registered client-defined tile properties for tiles in the
development environment tile system.

MLoader provides the facilities for loading and running programs stored in tiles in the
development environment tile system.

MSegment maps files in the development environment file system into memory.

MStream creates streams on local tiles. The facilities of Pilot's Stream interface as well as
the operations in MStream are used to manipulate the streams provided by this interface.

V-9

v File management

V-tO

45.1 Types

45

FileName

The FileName interface provides a general data structure and procedures for dealing with
file names, whether remote or local. This allows clients and interfaces to communicate
through a standard representation of file names. The FileTransfer interface, for example,
takes a FileName. VFN as a parameter to all of its procedures that operate on files.

FileName. Virtual Filename. VFN: TYPE = LONG POINTER TO VirtualFilenameObject;

FileName.VirtuaIFilenameObject: TYPE = RECORD [
host. directory. name. version: LONG STRING];

45.2 Constants and data objects

None.

45.3 Signals and errors

FileName.Error: SIGNAL

Error is raised by AllocVFN and UnpackFilename. indicating that the client provided an
invalid file name. A file name has the following syntax, with all fields optional:

[hostldiqldir2/ .. .ldirnlfilename!version

It is also raised by GetRemoteName and SetRemoteName when certain string lengths are
exceeded.

45.4 Procedures

FileName.AllocVFN: PROCEDURE [LONG STRING]
RETURNS [FileName.VirtuaIFilename];

The AllocVFN procedure allocates a new VirtualFilenameObject and parses its parameter
into a VirtuafFilename. The strings in the object are allocated from the system heap; they

45-1

45

45-2

l<'ileName

are part of the object and clients are free to replace them. The object itself is not allocated
from the system heap and must be deallocated by FreeVFN. (See examples at the end of the
chapter.) Note that a client is free to allocate its own VirtualFilenameObject from
someplace other than the system heap (such as its private heap, its local frame, or its
global frame). However, the strings in the VirtualFilenameObject must be allocated from
the system heap so that FileName can change their sizes as necessary. This procedure can
raise Error if the file name provided cannot be parsed.

FileName.FreeFilename: PROCEDURE [s: LONG STRING];

The FreeFilename procedure frees a string allocated with PackFilename.

FileName.FreeVFN: PRDCI!DURE [FileName. Virtual Filename];

The FreeVFN procedure frees a VirtualFilenameObject. It also frees its component strings
to the system heap. The VirtualFilenameObject must have been allocated by AllocVFN.

FileName.GetRemoteName: PROCEDURE [file: MFile.Handle. remoteName: LONG STRING];

The GetRemoteName procedure copies the remote name associated with file into the
parameter remoteName. If remoteName is not long enough to hold the complete name,
Error is raised.

FileName.NormalizeVFN: PROCEDURE [vfn: FileName.VirtuaIFileName];

The NormalizeVFN procedure reparses the information in the Virtual Filename so that all
host information is in the host field, all directory information is in the directory field, and
so forth. All strings in vfn must be allocated from the system heap, since NormalizeVFN
may return them to the system heap while reparsing the information.

FileName.PackFilename: PROCEDURE [
vfn: FileName.VirtuaIFileName, h. d. n. v: BOOLEAN +- FALSE1
RETURNS [s: LONG STRING];

The PackFilename procedure converts the information in selected fields of a
VirtualFilename into a string, adding appropriate delimiters when necessary. h, d, n, and v
indicate whether the host, directory, name, and version fields, respectively, are to be
included in the string returned. Hosts are delimited by [], directories are terminated by >
or /, and versions are preceded by!. If no version appears in vfn, enough room is left in s for
a version at least six characters long ... <" receives no special treatment but is considered a
normal character in a file name field. s is allocated from the system heap; it must be freed
by the client with FreeFilename .

FileName.ResetVFN: PROCEDURE [
vfn: FileName. VirtualFileName. h. d. n. v: BOOLEAN +- FALSE];

The ResetVFN procedure resets selected fields of a Virtual Filename to NIL, freeing the
associated storage to the system heap. h, d, n and v indicate whether the host, directory,
name, and version fields, respectively, are to be reset.

Mesa Programmer's Manual 45

FileName.SetRemoteName: PROCEDURE [file: MFile.Handle, remoteName: LONG STRING];

The SetRemoteName pr-ocedure sets the remote name property offile to be remoteName.
If the length of remoteName exceeds 150, Error is raised.

FileName.UnpackFilename: PROCEDURE [
S: LONG STRING, vfn: FileName.VirtuaIFileName];

The UnpackFilename procedure parses a string into a VirtualFilename. If a directory is
present in vfn and the directory within s does not begin with <, then the directory from 5

is appended. Otherwise, the directory is overwritten. UnpackFilename creates
VirtualFilenames that no longer have a final> on the directory string. This procedure
raises Error if the file name, 5, cannot be parsed. See examples below.

45.5 Examples

This example describes how file names are parsed by AllocVFN and UnpackFilename.
These procedures differ only in that AllocVFN first allocates a VFN before unpacking. The
string

s = "[Server] AlphaMesa/Defs/FileName. mesa! 2

is unpacked into

host: server
directory: AlphaMesa/Defs
name: FileName.mesa
version: 2

If s = doclNew.doc and vfn.directory = emerson with the remaining fields Nil, s is
unpacked into

host: NIL
directory: emerson/doc
name: New.doc
version: NIL

Note: FileName performs only minimal error checking, forcing the client to pass in
properly formatted file names.

45-3

45 li'ileName

45-4

46.1 Types

46

FileTransfer

The FileTransfer interface provides a uniform interface for manipulating files, whether
they are local (and in the Xerox Development Environment file system) or remote. It
provides facilities for copying files, opening streams on files, and enumerating files. It
insulates the client from the network; in particular, FileTransfer does not give up if a
connection to a file server cannot be opened on the first attempt. Examples of the use of
FileTransfer are given at the end of the chapter.

FileTransfer.CheckAbortProc:TYPE .. PROCEDURE [clientData: LONG POINTER]
RETURNS [abort: BOOLEAN];

The CheckAbortProc of a Connection is called at intervals to see whether the user has
aborted an operation. The client may also attach some instance data to a Connection that
is passed back to CheckAbortProc. When a CheckAbortProc returns TRUE, the error ABORTED
is raised.

FileTransfer.ClientProc: TYPE .. PROCEDURE [clientData: LONG POINTER];

Clients can specify ClientProcs for doing logins and giving an indication of progress. These
procedures are passed the clientData associated with the corresponding Connection.

FileTransfer.Confirmation: TYPE" MACHINE DEPENDENT {
do(O), skip, abort, firstPrivate(8), null(255)};

A Confirmation is returned from a VetoProc to give the client fine control over certain
operations. do means that FileTransfer should perform the operation. skip means that the
current file operation should not be performed, but that FileTransfer should proceed to the
next file operation in this command. abort means that this and all succeeding operations
should not be performed. skip and abort are identical for procedure calls involving single
files. All other Confirmation values, including firstPrivate and null, act like skip.

FileTranster.Connection: TYPE = LONG POINTERTO ConnectionObject;

File Transfer requires a Connection for most operations. A Connection contains only state
information used by FileTransfer. Large amounts of system resources are used during a

46-1

46

46-2

FileTransfer

remote operation or until the Close procedure is called after a remote operation. A
ConnectionObject contains private data and must be monitored by the client if it is to be
accessed by multiple processes simultaneously.

FileTransfer.ConnectionObject: TYPE" ... ;

FileTransfer.DesiredProperties: TYPE .. PACKED ARRAY ValidProperties OF BOOLEAN +-ALL[FALSE);

DesiredProperties is the type of property array passed to SetDesiredProperties and
ret.urned from GetDesiredProperties.

FileTransfer.Filelnfo: TYPE .. LONG POINTER TO FilelnfoObject;

FileTransfer.FilelnfoObject: TYPE.. RECORD [
host. directory. body, version. author: LONG STRING +-NIL.
create, read. write: Time.Packed +- System.gmtEpoch.
size: LONG CAROINAL +- 0,
type: FileType +- unknown,
oldFile: BOOLEAN +-TRUE.
readProtect: BOOLEAN +- FALSE,
...);

A FilelnfoObject contains information about a local or remote file. host, directory, body,
and version are the pieces of the file name. author is the name of the user that created the
file. create, read, and write are the times that the file was created, last read, and last
written. size is the size of the file in bytes. type is the type of the file. oldFile is TRUE if and
only if the file exists; if old File is FALSE, information other than the file name is undefined.
read protect is TRUE if and only if the file exists and is read-protected. Only those fields
indicated by FileTransfer.SetDesiredProperties will be valid. Initially, all fields are valid.

FileTransfer.FileType: TYPE .. {unknown. text. binary. directory, null};

FileTransfer.lnfoProc: TYPE .. PROCEDURE [FileTransfer.Connection)
RETURNS [source, target: FileTransfer.Filelnfo);

The InfoProc is used inside a VetoProc to obtain information about files if it is needed for
deciding whether to veto the operation.

FileTransfer.ListProc: TYPE .. PROCEDURE [
conn: FileTransfer.Connection. clientData: LONG POINTER, file: LONG STRING.
post: FileTransfer.MessageProc. info: FileTransfer.lnfoProc]
RETURNS [FileTransfer.Confirmation);

The ListProc is called for each file in an enumeration. The ListProc returns a Confirmation;
A confirmation of other than do aborts the enumeration. The parameters post and
clientData can be used by the ListProc for output. The InfoProc can be called by the ListProc
to obtain information about the file if more than the file name is needed. The parameter
file contains the fully qualified name of the file, including the directory, name, and version
number.

Mesa Programmer's Manual 46

FileTransfer.Me5sageProc: TYPE = PROCEDURE [
clientData: LONG POINTER, level: Severity. 51,52. s3, s4: LONG STRING +-NIL];

The Me5sageProc is u~ed by FileTran5fer for feedback. It is called to notify the user of
errors and of details of the operations taking place. level indicates the importance of a
message; it can be used by the Me5sagePrDc to filter out undesired feedback.

FileTransfer.ServerType: TYPE = MACHINE DEPENDENT{unknown{O). 10cal.IFS. tenex, n5,
null(7)};

ServerType is the type of a host; it is defaulted to local when a connection is created. When
a remote operation is to be performed, the ServerType defaults to
PrOfile.defaultFileServerProtocol. The values IFS and Tenex correspond t,o protocols no longer supported;
they should not be used. Support for ServerType will be dropped in a future release.

local the machine on which the program is running.

IFS an interim file server.

tenex a machine running tenex.

ns a product file server.

FileTransfer.Severity: TYPE = {verbose, terse, warning, fatal};

Severity indicates the urgency of a message sent to a MessageProc. verbose is the least
important information, and fatal is the most important information.

FileTransfer.StreamType: TYPE = {remote. local. temporary};

When a client creates a stream on a remote file, it may also supply information about the
way the stream is to be accessed; the Stream Type is ignored for local files.

remote

local

temporary

the client intends to read the stream quickly (fast enough so that
the file server does not time out) and will not position the stream.

works the same as if the client had done a Copy, then opened a
stream; all local stream operations are valid on such streams.

is the same as local, except that a temporary local file is created;
the file is deleted when the stream is destroyed.

FileTransfer.ValidProperties: TYPE = {host. directory. body, version, author. size, type,
oldFile, readProtect};

ValidProperties are the properties of a file that the client can know about through
FileTransfer, that is, the fields of the FilelnfoObject.

46-3

46 l<'ileTransfer

FileTransfer.VetoProc: TYPE :II PROCEDURE [
conn: FileTransfer.Connection, c1ientData: LONG POINTER,
post: FileTransfer.MessageProc, info: FileTransfer.lnfoProc,
showingDates: BOOLEAN]
RETURNS [confirm: FileTransfer.Confirmation, showDates: BOOLEAN];

A VetoProc is used by the operations Copy, Delete, ReadStream, and StoreStream to give
the client finc~ control over these operations. The return value confirm tells FileTransfer
how to proceed. The return value showDates indicates whether the date should be
included in the message output to the MessageProc on succeeding files. showDates is
ignored on a call to Delete. If the VetoProc wants to send an output, it can call post with
c1ientData and the message. The client VetoProc can obtain information about the file(s)
involved in the operation by calling info. If the vetoProc was called by Copy, info returns
information about both the source and target file; if it was called by Delete, ReadStream,
or StoreStream, target is Nil and information about the file is returned in source.

46.2 Constants and data objects

None.

46.3 Signals and errors

46-4

FileTransfer.Error: SIGNAL [conn: Connection, code: ErrorCode);

FileTransfer.ErrorCode: TYPE :II MACHINE DEPENDENT {
iIIegaIParameters(O), invalidObject. notAStream, iIIegallogin(4), '"egaIConnect, skip,
retry, cantModify, directoryFull, notFound, spare1, spare2, unknown(31)};

illegal Parameters

invalidObject

notAStream

iIIegallogin

iIIegalConnect

skipOperation

skipFile

the client provided illegal parameters to a call to FileTransfer.

the client provided a connection that was NIL, smashed, or has been
freed.

the client provided a stream that was NIL, smashed, freed, or not
created by FileTransfer.

the operation could not proceed because of illegal login credentials,
and no login procedure was provided through SetProcs.

the operation could not proceed because of illegal connect
credentials.

the code skipOperation is raised whenever an operation fails and
should not be retried; it probably means that user intervention is
required to make the operation succeed. Details will have been
reported by calls to the MessageProc supplied by SetProcs before
this error is raised.

the code skipFile is only raised when attempting a remote to
remote Copy. For some reason, a particular file iIi the
enumeration could not be accessed. In this case, the signal may be

Mesa Programmer's Manual 46

retry

cantModify

di rectoryFul1

notFound

accessDenied

unknown

rcsumed to coninue the enumeration. Details will have been
"cported by calls to the MessageProc.

This code is raised from calls to ReadNextStream and any of the
Stream. Get procedures on a FileTransfer stream when the
connection to a remote file server has timed out; the ReadStream
enumeration should be restarted.

the operation could not get proper access to modify a file. If the
operation involves wildcards, this error will not be raised until
FileTransfer has attempted the operation on all files involved; it is
only raised once.

the remote directory or local volume is full.

the file was not found.

either the current primary credentials are not sufficient for the
operation to proceed, or secondary credentials are required.

the operation uncoverd an implementation error.

The codes iIIegalParameters, invalidObject, and notAStream are client errors. The
ErrorCodes iIIegalLogin, iIIegalConnect, skipOperation, skipFile, retry, cantModify,
directoryFull, notFound, and accessDenied are not normally client errors; however, they
should be caught by client code. The client is also expected to catch the error ABORTED,
which is raised if the checkAbortProc returns true when called by FileTransfer.

46.4 Procedures

FileTransfer insists that the client parse file names into a FileName. VirtualFilename (or
VFN). The Filename interface provides procedures for converting between strings and
VirtualFilenames (see the FileName chapter). All procedures in FileTransfer that
manipulate files take VirtualFilenames as parameters. Any field (with the exception of
host) contained in a Virtual Filename may contain wildcard characters. However, the
interpretation of these characters is left entirely to the file system that contains the file.

FileTransfer .Close: PROCEDURE [FileTransfer .Connection];

The Close procedure frees any resources used to communicate with remote hosts; it does
not destroy the ConnectionObject. It can raise Error[invalidObject].

FileTransfer.CodeToString: PROCEDURE [FileTransfer.ErrorCode, LONG STRING];

The CodeToString procedure translates the code describing a FileTransfer.Error into a client­
provided string. If the string is not long enough, CodeToString fills it in with as much
information as will fit. If the client has provided a MessageProc by SetProcs, the error has
already been reported by the MessageProc, and it may not be necessary to convert the
ErrorCode to a message.

FiIeTransfer.COpy: PROCEDURE [
sourceFile, destFile: FileName.VirtuaIFileName,

46-5

46

46-6

f;'ileTransfer

sourceConn, destConn: FileTransfer.COnnection +-NIL,
veto: FileTransfer.VetoProc +-NIL, showDates: BOOlEAN +-FALSEJ;

The Copy procedure copies files. It will copy between any combination of remote and local
Virtual Filenames. If the .source VFN contains wildcard characters, a single invocation of
Copy may copy several files. If the name field of destFile is NIL, the name portion of the
source file will be used. Wildcards may not be used in destFile. If a client knows that a file
is local (and hence no connection need be established with a file server), the connection
parameter corresponding to that file may be NIL. The showDates parameter in Copy
indicates whether FileTransfer should print the file creation date after the file name in its
feedback messages that are sent to the connection's MessageProc. If the VetoProc is not
NIL, it is called before each transfer operation to give the client closer control of which files
are copied. This procedure can raise Error[... , iliegalParameters, invalidObject.
iIIegalLogin, illegalConnect, notFound. directoryFull, spare1, skip, cantModify, retry, ... J.
The error ABORTED can also be raised.

FileTransfer.Create: PROCEDURE RETURNS [FileTransfer,Connection];

The Create procedure makes a new ConnectionObject.

FileTransfer.Delete: PROCEDURE [
conn: FileTransfer.Connection, file: FileName. Virtual FileName,
veto: FileTransfer. VetoProc +- NIL];

The Delete procedure can be used to delete files, either local or remote. If the file is remote
and contains wildcard characters, several files may be deleted. If the VetoProc is not NIL, it
is called before each delete operation to give the client closer control. This procedure can
raise Error[.... invalidObject, iliegalParameters, iIIegalLogin, iIIegalConnect, cantModify,
skip, notFound, spare1, ...]. The error ABORTED can also be raised.

File Transfer . Destroy : PROCEDURE [FileTransfer .Connection];

The Destroy procedure frees a ConnectionObject, closing the connection if it is open. This
procedure can raise Error[invalidObject]. Note: Unpredictable results occur if Destroy is
called from within a catch phrase on a call to any FileTransfer procedure for that same
connection.

FileTransfer.Enumerate: PROCEDURE [
conn: FileTransfer.Connection, files: FileName.VirtuaIFileName,
proc: FileTransfer.ListProc];

The Enumerate procedure enumerates the files specified by files, calling.proc for each file.
proc returns a Confirmation; if the confirmation is something other than do, the
enumeration stops. The file name information (the host, directory, body, and version
fields) returned by the InfoProc passed to proc are filled in from the files parameter of
Enumerate. Since this name information can contain wildcards, the file parameter passed
to the InfoProc can be used to obtain the actual name of each enumerated file. This
procedure can raise Error[... , invalidObject, iIIegalLogin, iIIegalConnect, skip, notFound,
spare1, ...]. The error ABORTED can also be raised.

Mesa Programmer's Manual

File Transfer. GetDesi red Properties : PROCEDURE [File Transfer. Connection]

RETURNS [props: DesiredProperties];

46

The GetDesiredProperties gives the current list of valid properties returned in a
FilelnfoObject .

FileTransfer.GetProcs: PROCEDURE [conn: FileTransfer.Connection]
RETURNS [clientData: LONG POINTER, messages: FileTransfer.MessageProc,

login, noteProgress: FileTransfer.ClientProc);

The GetProcs procedure returns the values of the c1ient·provided procedures associated
with a Connection. This procedure can raise Error[invalidObject].

FileTransfer.GetServerType: PROCEDURE [
conn: FileTransfer.Connection, host: LONG STRING]
RETURNS [FileTransfer.ServerType];

The GetServerType procedure returns the type of file server; if the host string is empty,
the last host used with the Connection determines the type of server. This procedure can
raise Error[invalidObject).

FileTransfer.GetStreamlnfo: PROCEDURE [remoteStream: Stream. Handle]
RETURNS [File Transfer .Filelnfo];

The GetStreamlnfo procedure returns information on the file behind a stream. This
procedure can raise Error[notAStream, skip].

FileTransfer.GetStreamName: PROCEDURE [remoteStream: Stream. Handle]
RETURNS [file: LONG STRING];

The GetStreamName procedure returns the fully qualified name of the file behind a
stream. For local streams, this is faster than GetStreamlnfo. The string returned belongs
to the implementation and should not be freed by the client. This procedure can raise
Error[notAStream].

FileTransfer.HighestVersion: PROCEDURE [

conn: FileTransfer.Connection, remote: FileName.VirtualFileName]

RETURNS [exists: BOOLEAN];

The HighestVersion procedure takes a Virtual FileName that refers to a remote file and
updates the version field of the VirtualFileName to the highest version of that file existing
on the remote file server. Ifthere is no file by that name on the file server, it returns FALSE.
This procedure can raise Error[.. , iIIegalParameters, illegal Login, iIIegalConnect, spare1,
skip, ...] and ABORTED.

FileTransfer.LocaIVFN: PROCEDURE [

conn: FileTransfer.Connection, vfn: FileName.VirtualFileName]
RETURNS [BOOLEAN];

The LocalVFN procedure returns TRUE if the connection and VirtualFilename passed to it
refer to a local file. lfthe host field of the VirtualFilename is empty, the last host used with

467

46

46-8

«'ileTransfer

the Connection determines the location of a tile. This procedure can raise Error[
invalidObject).

FileTransfer.lookUp: PROCEDURE [
conn: FileTransfer.Connection, file: FileName.VirtuaIFileName)
RETURNS [filelnfo: FileTransfer. Filelnfo);

The lookUp procedure is not implemented.

FileTransfer.ReadNextStream: PROCEDURE [Stream.Handle) RETURNS [Stream.Handle);

Streams can be enumerated using the ReadNextStream procedure. Th! first stream is
read using ReadStream. Successive streams can be obtained by calling ReadNextStream
with the last stream from the enumeration. ReadNextStream returns NIL when there are
no more streams. As a side effect, the stream passed in is deleted, so the client should not
attempt the same. This procedure can raise Error[. .. , notAStream, retry, ...]. The error
ABORTED can also be raised. (See the example of stream enumeration at the end of this
chapter.)

FileTransfer .ReadStream: PROCEDURE [
conn: FileTransfer.Connection, files: FileName.VirtuaIFileName,
veto: FileTransfer.VetoProc +-NIL, showDates: BOOLEAN +-FALSE,
type: FileTransfer.StreamType +- remote]
RETURNS [Stream.Handle);

The ReadStream procedure opens a stream on a tile, either local or remote. If the VetoProc
is not NIL, it is called before the stream is obtained to permit the client closer control. The
VirtualFilename passed ReadStream may contain wildcards. ReadStream returns a
stream on the first tile that matches files; NIL is returned if no matches are found.
Successive streams can be obtained by calling ReadNextStream with the last stream from
the enumeration. This procedure can raise Error[... , notAStream, illegallogin,
iIIegalConnect, retry, skip, notFound, spare1, ...). The error ABORTED can also be raised.
Note: In the case of an ns server, veto is called from a separate process, so the client must
catch all signals raised from within veto with code inside the veto procedure, or they will
not be caught.

FileTransfer.Rename: PROCEDURE [
conn: FileTransfer.Connection, old, new: FileName.VirtuaIFileName];

The Rename procedure is used to rename a file on a single file system; the credentials
associated with the connection must permit access to both VirtualFilenames. This
procedure can raise Error[... invalidObject, iIIegalParameters, illegal Login,
iIIegalConnect, notFound, spare1, ...] and ABORTED.

FileTransfer.SetDefaultServerType: PROCEDURE [
conn: FileTransfer.COnnection, type: FileTransfer.ServerType);

If FileTransfer is unable to determine the type of host, it uses a default type (as determined
by Profile.defaultFileServerProtocol); the procedure SetDefaultServerType sets the
default for a Connection to be type. This procedure can raise Error[invalidObject).

Mesn Programme.··s Manual 46

FileTransfer.SetDesiredProperties: PROCEDURE [
conn: FileTransfer.Connection, props: DesiredProperties];

On any succcedin~ calls to procedures that return FilelnfoObjects, only properties with
TRUE \'ulues indicated by props are valid.

FileTransfer .SetPrimaryCredentials: PROCEDURE [
conn: FileTransfer .Connection, user, password: LONG STRING];

The SetPrimaryCredentials procedure sets the primary credentials to be used for a
Connection. [I' no primary credentials have been supplied, FileTransfer uses the user name
and password maintained by Profile. [f these do not work, FileTransfer calls the login
procedure associated with conn. Finally, if there is no login procedure, FileTransfer raises
the error Error with a code ofiOegalLogin. This procedure can raise Error[invalidObject].

FileTransfer.SetProcs: PROCEDURE [
conn: FileTransfer.Connection, clientData: LONG POINTER,
messages: FileTransfer.MessageProc +-NIL,login: FileTransfer.ClientProc +- NIL.
noteProgress: FileTransfer.ClientProc +-NIL.
checkAbort: FileTransfer .CheckAbortProc +- NIL];

The SetProcs procedure lets a client specify for a Connection the procedures to be used for
certain functions. NIL parameters do not change the values in the Connection. The
MessageProc is used by FileTransfer for user feedback; it is called to notify the user of
errors and details of the operations taking place. The login procedure is called if
FileTransfer needs a set of valid primary credentials. The noteProgress procedure is called
by FileTransfer at intervals during the actual transfer of bytes between remote and local
machines (during calls to Copy and StoreStream) so the client can provide feedback
during a transfer. checkAbort is called at intervals to see whether the user has aborted the
operation. If it returns TRUE, FileTransfer raises the error ABORTED. If no CheckAbort is
specified, fileTransfer checks if the ABORT key has been pressed, and if so, raises ABORTED.
The client may also attach some instance data, dientData, to a Connection that is passed
back to each of these client-provided procedures. This procedure can raise
Error[i nval idObject].

FiIeTransfer.SetSecondaryCredentials: PROCEDURE [
conn: FileTransfer.COnnection, connectName, connectPassword: LONG STRING];

The SetSecondaryCredentials procedure sets the secondary (connect) credentials to be
used for a Connection. When FileTransfer needs secondary credentials and none have
been set, Error[spare1] is raised. If secondary credentials have been set and they are
invalid, Error[illegalConnect] is raised. This procedure can raise Error[invalidObject).

FileTransfer.StoreStream: PROCEDURE [
conn: FileTransfer.Connection, remote: FileName.VirtuaIFileName,
veto: FileTransfer.VetoProc +-NIL, showDates: BOOLEAN +-FALSE,
stream: Stream.Handle, creation: Time.Packed. bytes: LONG CARDINAL,
fileType: FileTransfer.FileType];

The StoreStream procedure stores the contents of a stream into a remote file. StoreStream
is passed a Virtual FileName that may .not contain wildcards; the version field of the
Virtual Filename is updated by FileTransfer. The VetoProc is called before the stream is

46-9

46 (t'ileTransfer

stored. showDates indicates whether FileTransfer should also output the creation date of a
file when it posts its name with the connection's MessageProe. stream is the stream to be
copied into the remote file. creation is the creation date to be given to the remote file.
bytes, the length of the file, should be supplied if the client needs this information from
info in its veto p,'occdure. In the case of an ns server, bytes provides a hint of the file's
size. fileType is the type of the Iile. This procedure can raise Error[... , invalidObject,
iliegalParameters, iliegalLogin, iliegalConnect, retry, skip, spare1, ...). The error ABORTED
can also be raised.

FileTransfer.WriteStream: PROCEDURE [
conn: FileTransfer .Connection,file: FileTransfer. Virtual FileName,
veto: FileTransfer.VetoProc ~NIL, showDates: BOOLEAN ~FALSE,
creation: Time.Packed, fiJeType: FileTransfer.FileType]
RETURNS [Stream.Handle};

The WriteStream procedure is not implemented.

46.5 Examples

46-10

A common use of ReadStream/ReadNextStream is to perform the same operation on a list
of streams obtained from a VFN containing the "." wildcard:

sh: Stream.Handle;
conn: Connection;
vfn: FileName.VirtuaIFilename;
fileName: LONG STRING;

vfn ~ FileName.AlloeVFN[fileName};

sh ~ ReadStream[conn, vfn, remote};
WHILE sh # NIL DO

-- Process the stream
sh ~ ReadNextStream[sh};
ENDLOOP;

-- It is not necessary to delete the stream
FileName.FreeVFN[vfn};

47

MFile

The MFile interface provides operations on files, directories, and search paths. All files
have a property list that contains the file name; the byte length; read, write, and creation
dates; delete-protect, write-protect, and read-protect bits; and the file's type. Clients may
add other properties to the property list.

The syntax of file names used by the development environment file system is defined in
the XDE User's Guide; its conventions are summarized here for convenience.

The Xerox Development Environment file system provides a hierarchical directory
structure. The top-level directory on a volume is named the same as the volume; that is,
<VolumeName> specifies the top-level directory for volume VolumeName. A file name is
fully specified (or fully qualified) if it starts with the root directory of a volume; that is, if
it starts with <VolumeName>.

The search path is a sequence of directories used for looking up files that are not fully
specified. The file system looks up a file name on the search path by searching for it in
each successive directory until a match is found. There is only one search path in the file
system. It is not possible to set up several concurrent search environments.

Directories on the search path may be write-protected, in which case it is not possible to
change any of the files in the directory or add or delete files from it. If a file looked up on
the search path is to be created or written into, two problems can occur: no match could be
found, or the first match might occur in a search path directory that is write-protected. In
this case, the file is created in the first directory in the search path that is not write­
protected. This directory acts somewhat like a working directory. There must always be at
least one directory in a search path that is not write-protecte4. If the search path contains
directories that are all write-protected or on read-only volumes and a file must be created,
Error [iliegaISearchPath) is raised. If the first directory in the search path is write­
protected, anomalies (to the client) may result, such as the file that is written may not
necessarily be the file that is subsequently read.

47-1

47

47.1 Types

47-2

MFUe

MFile.Access: TYPE = MACHINE DEPENDENT {
anchor(O), readOnly, readWrite, writeOnly, log, delete, rename, null}

anchor access is requested to ascertain that a file exists or read its properties, for
example. Anchor access is not enough to permit a client to read or write a
file, but it does keep it from being deleted or renamed.

readOnly access permits the contents of the file to be read but not written.

readWrite access permits the contents of the file to be read and written and permits the
length of the file to change.

writeOnly access permits the contents of the file to be written but not read and permits
the length of the file to change.

log access truncates the file to zero length and permits new data to be appended
to it. It is provided so that a client can let other clients read initial portions
of a file that it is writing. (See MFile.Log.)

delete access permits a file to be deleted.

rename access permits the name/file binding of a file to be changed, either by
renaming a file or swapping two files.

null access is provided only as an initialization value; it is not possible to acquire
a handle with null access. Calling procedures with an access of null raises
Error[nullAccess] .

MFile.ByteCount:TYPE = LONG CARDINAL;

The type ByteCount is used to specify length in bytes.

MFile.EnumerateProc: TYPE = PROCEDURE [
name, fuliName: LONG STRING, fileProc: MFile.FileAcquireProc, type: MFile.Type,
splndex: CARDINAL]
RETURNS [done: BOOLEAN 4-FALSE);

A client-provided EnumerateProc is called on every file matched by EnumerateDirectory.
The name parameter is the name of the file, stripped of all directory information.
full Name is the fully qualified name of the file starting at the character corresponding to
the first character of the pattern. If no search path entry was used in the enumeration, it is the fully
qualified name; if the search path was used, it is the part of the fully qualified name following the search path
directory. (For example, if the pattern matched were <Tajo>"', the fullname might be
<Tajo>Defs>Environment.bcd; if the pattern matched were * and the search path contained <lajo>, the
fullname might be Defs > Environment.bed). Enumerations do not lock out other operations, so you
can call your EnumerateProc on a file that has since been deleted from the directory, and
so forth. The error noSuchFile is raised if the current file has been deleted by some other
process during the enumeration. The filePro(is provided so that the client can obtain a
Handle on the file if desired. type is the type of the file (such as text, binary, or directory).
If the search path was used to resolve the pattern, the splndex parameter indicates which

Mesa IJrogrammer's Manual 47

directory was used for this file. If the search path was not used, splndex has the value
MFile.searchPathNotUsed. If the search path was used, the fully qualified name of the file
is the concatenation of search path entry splndex with full Name. The parameter type can
be used to filter out files you aren't interested in. done indicates whether the client wishes
to terminate the enumeration.

MFile.EnumRec: TYPE = ... ;

The file system maintains its enumeration state for GetNextHandleForReading in an
EnumRec.

MFile.EnumerateState: TYPE = LONG POINTER TO EnumRec;

MFile.EnumerationType: TYPE = {filesOnly, directoriesOnly. fileAndDirectories};

EnumerationType controls which types of files will be enumerated by EnumerateDirectory
and GetNextHandleForReading. Only the distinction between directory and non-directory
files is supported.

MFile.FileAcquireProc; TYPE = PROCEDURE [
access: MFile.Access. release: MFile.ReleaseData] RETURNS [MFile.Handle];

A FileAcquireProc is provided by EnumerateDirectory to obtain a Handle on the currently
enumerated file if the client requires one The access parameter is the desired access on
the file. fileProc can raise Error[... , conflictingAccess, protectionFault. volumeNotOpen,
noSuchFile •...).

MFile.Filter: TYPE = RECORD [
name: LONG STRING +- NIL, type: MFile.Type +- unknown, access: MFile.Access);

A Filter is used by the file·notification mechanism to indicate which files a client is
interested in. name is a pattern that is matched against the name of the file (with all
directory information stripped). If name is NIL, all files match. type is the type of file the
client is interested in; if type is null, all types match. The client is notified only when
access access becomes available after having been unavailable.

MFile.Handle: TYPE = LONG POINTER TO MFile.Object;

MFile.lnitialLength: TYPE = MFile.ByteCount;

Initial Length is used by Acquire to specify the minimum physical size of the file. It is a byte
length.

MFile.NotifyProc: TYPE = PROCEDURE [
name: LONG STRING. file: Handle. clientlnstanceData: LONG POINTER]
RETURNS [removeNotifyProc: BOOLEAN +- FALSE];

A NotifyProc is provided to the file-notification mechanism to be called when a file of
interest to the client changes state. name contains the name of the file of interest; file
contains a Handle on tha~ file if the file exists. If the file does not exist, file is NIL. The client
should check that the handle is not NIL before using it. This handle belongs to the file
system. If the client wants a handle on the file, it must call MFile.CDpyFileHandle on the
handle passed in, and it must explicitly specify the access required (the access parameter

47-3

47

47-4

MFile

to CopyFileHandle cannot be null). The file system does not guarantee that a client can
obtain the desired access; the notification should be viewed as a strong hint. The
NotifyProc returns TRUE if it wishes to be removed and FALSE if it wishes to remain on the
file system's notification list. The procedures AddNotifyProc and RemoveNotifyProc must
not be called from within a NotifyProc or the file system will deadlock. (See also
AddNotifyProc and RemoveNotifyProc.)

MFile.Object: TYPE = ... ;

MFile.PleaseReleaseProc: TYPE = PROCEDURE [
file: MFile.Handle, instanceData: LONG POINTER] RETURNS [MFile.ReleaseChoice);

Whcne~'er a client attempts to acquire a file in a way that conflicts with its current uses,
each of the file's current owners is asked to give up ownership by calling the owner's
PleaseReleaseProc with its instance data. The PleaseReleaseProc and instance data are
registered when an agent calls Acquire and passes in the ReleaseData parameter. The
PleaseReleaseProc can take steps to relinquish ownership. (Maintaining proper
synchronization and data integrity can be quite difficult when PleaseReleaseProcs are
used. Invoking certain file system operations from a PleaseReleaseProc will cause the file
system to deadlock. Clients using this facility should carefully read the discussion and
examples at the end ofthi::; chapter. See also Acquire and SetLogReadLength.)

To avoid deadlock, a PleaseReleaseProc must not call any of t.he following procedures on
the file for which it has been called: Acquire. AcquirelD, CopyfileHandle. Delete.
DeleteWhenReleased. Log ReadOnly. ReadWrite. Release. SetAccess. SetRelease.
WriteOnly. In addition, the client should not perform an enumeration that lists the file.
The file system guarantees that once a handle has been released, it will not invoke its
PleaseReleaseProc. If a client must invoke one of these actions under the above
circumstances, it must fork a separate process. Note that the file system calls
PleaseReleaseProc asynchronously; clients using these facilities should be aware that they
must deal with all the problems of a multi-process system, even though the rest of their
program may be a simple, single process. Thus the client must carefully monitor its own
data, particularly that manipulated by PleaseReleaseProc. The client must take care that
it does not attempt to release a file twice, once from the mainline code of the program and
once from the PleaseReleaseProc. Because the call to release a file may be blocked on a file
system monitor when the PleaseReleaseProc on that file is called, the client must carefully
maintain its state so that the PleaseReleaseProc knows whether to release the file by
returning goAhead or indicate that it is already being released by returning later.

MFile.Property: TYPE = RECORD [property: CARDINAL]

Clients may add properties to the property list of files. A Property is a registered value
that is allocated by the Manager of System Development. (See the interface MFileProperty
for the currently allocated client file properties. See also RegisteredProperty and
UnregisteredProperty.)

MFile.RegisteredProperty: TYPE = CARDINAL [0 .. 777778];

This is the range of Property that is administrated by the Manager of System
Development. A client should not use values in this range without making suitable
arrangements.

Mesa Programmer's Manual 47

MFile.ReleaseChoice: TYPE = {later, no, gOAhead, aliowRename}

later

no

goAhead

the client is not ready to release the file, but promises to do so shortly.
The file system will delay the Acquire until the conflict caused by this
handle has been removed. This result should be returned when a client
wishes to release the file but cannot do so directly from the
PleaseReleaseProc because of the file system's synchronization
restrictions. The operations that might remove the conflict are Release,
SetAccess, or Rename.

the client refuses to release the file.

the client gives up all claim to the file; the file system releases the
MFile.Handle. The client should behave as if the last statement of its
PleaseReleaseProc were MFile.Release; it must guarantee not to use the
handle again after returning from the PleaseReleaseProc

aliowRename the client refuses to release the file. However, if the requested access is
rename, the client has no objections to having the file renamed.

MFile.ReleaseOata: TYPE = RECORD [
proc: MFile.PleaseReleaseProc +- NIL, clientlnstanceData: LONG POINTER +- NIL];

If the ReleaseData.proc is NIL, the file is not relinquished on an attempt to acquire it in a
conflicting way.

MFile.SearchPath: TYPE = LONG POINTER TO MFile.SearchPathObject;

A search path is a sequence of directories used for looking up files that are not fully
specified. The file system looks up a file name on the search path by searching for it in
each successive directory until a match is found.

MFile.SearchPathObject: TYPE = RECORD [
length: CARDINAL, directories: SEQUENCE I: CARDINAL OF LONG STRING];

length is the number of items in the sequence that are elements of the search path.
directories is the sequence of strings containing the names of the search path directories.
The search path represented by this object is the first length search path element of
directories. Note that length is less than or equal to I. The first element of the search path
is indexed by O. The directory strings in a search path must be fully qualified names of
existing directory files.

Directories on the search path may be write-protected, in which case it is not possible to
change, add, or delete any of the files in the directory. If a file looked up on the search path
is to be created or written into, two problems can occur: no match could be found, or the
first match might occur in a search path directory that is write-protected. In this case, the
file is created in the first directory in the search path that is not write-protected. This
directory acts somewhat like a working directory. There must always be at least one
directory in a search path that is not write-protected. If the search path contains
directories that are all write-protected or on read-only volumes and a file must be created,
Error [illegalSearchPath] is raised. If the first directory in the search path is write-

47-5

47 MI<'i1e

protected, anomalies (to the client) may result, such as the file that is written may not
necessarily be the file that is subsequcnUy read.

MFile.Type: TYPE = MACHINE DEPENDENT (unknown(o). text, binary, directory, null(255)};

Files of type unknown have no known type; they were not created with one of the other file
system types. Files of type text should contain characters. Files of type binary may contain
any data. Files of type directory are special files containing part of the directory structure
of a file system.

MFile.UnregisteredProperty: TYPE = CARDINAL [1000008 .. 1777778];

This is the range of Property for which no administrative conflict resolution is done.

47.2 Constants and data objects

MFile.dontCare: MFile.lnitiallength == ••• ;

If dontCare is specified as the initialLength to Acquire, the physical size of an existing file
is not changed. If a new file is created, it has an initial physical size of 512 bytes.

MFile.maxNameLength: CARDINAL = 100;

A file or directory name can be no more than maxNamelength characters long; path
names can be longer, of course

MFile.noSearchPathUsed :CARDINAl = lAST[CARDINAl];

nOSearchPathUsed is returned in an enumeration if the file enumerated was not obtained
by using a search path entry.

MFile.dontRelease: MFile.ReleaseData == [];

dontRelease is the ReleaseData that refuses to release the file.

47.3 Signals and errors

47-6

MFile.Error: ERROR [file: MFile.Handte, code: ErrorCode];

MFile.Error is raised to indicate all file system errors that are not a result of manipulating
client-defined file properties. file is the handle of the file causing the error. It may be NIL if
the error occurs in the process of creating a file. code describes the error condition. All file
system procedures can be invoked from the catch phrase of MFile.Error, subject to the
deadlock restrictions imposed on the surrounding block or procedure (see
PleaseReteaseProc and NotifyProc). See MFile.AppendErrorMsg for an easy way to
construct a string containing an MFile error message.

MFile.ErrorCode: TYPE == MACHINE DEPENDENT (noSuchFile(O), conflictingAccess,
insufficientAccess, directoryFull, directoryNotEmpty, illegal Name, noSuchDirectory,
noRootOirectory, nullAccess, protectionFault, directoryOnSearchPath, iIIegalSearchPath,
volumeNotOpen, noRoomOnVolume, noSuchVolume, crossingVolumes,

Mesa Programmer's Manual 47

fileAlreadyExists, filelsRemote, filelsOirectory, invalidHandle, courierError,
addressTranslationError, connectionSuspended, other(377B)}

noSuchFile

confl i cti ngAccess

insufficientAccess

directoryFuli

directoryNotEmpty

iIIegalName

noSuch Oi rectory

noRootOi rectory

nullAccess

protectionFault

directoryOnSearchPath

iIIegalSearchPath

volumeNotOpen

nORoomOnVolume

noSuchVolume

crossingVolumes

fileAlreadyExists

you are trying to access a file that does not exist.

you arc trying to read a file that someone else is writing, for
example.

you are trying to read a file with writeOnly access, for
example.

you arc trying to create a file in a directory with no more
room.

you are trying to delete a directory that contains files.

the given file name contains illegal characters.

you are attempting to access a directory that does not exist.

you are trying to access a volume that has no development
environment directory. The only file system action that can be
taken on such a volume is to create a root directory using
MFile.CreateOir.

you are trying to use a file with null access.

you are trying to access a file in a way conflicting with its
protection or the protection of its directory.

you are trying to delete a directory that is on the current
search path.

you haven't included a directory that is not write-protected in
the search path.

you are trying to write on a volume opened read-only or read
an unopened volume.

you are trying to create a file, hut there is no room on the
volume.

you are attempting to access a logical volume that does not
exist.

the current operation would cause a file that had been created
on one logical volume to be added to a directory on a different
logical volume.

you are trying to rename a file, but there is already one by
that name.

47-7

47

47-8

MF'ile

filelsRemote you are performing an operation on a remote file that is not
gupporled by the current implementation. This error code is
inlmdpd for future use and will not be seen by standard users
of Mesa 11.0.

filelsDirectory the current operation is not permitted on a directory.

invalidHandle the Handle parameter to an operation is invalid; it has
probably been released already.

courierError a courier error has occurred while manipulating a remote
file. This error code is intended for future use and will not be
seen by standard users of Mesa 11.0.

addressTranslationError an address translation error has occurred while acquiring a
remote file. This error code is intended for future use and will
not be seen by standard users of Mesa 11.0.

connectionSuspended the connection to the remote machine has been suspended
while manipulating a remote file. This error code is intended
for future use and will not be seen by standard users of Mesa
11.0.

other{377B) is raised by other errors, in particular implementation errors.

MFile.NameForError: SIGNAL RETURNS [errorName: LONG STRING];

If an MFile.Error is raised while acquiring a file (so that the file parameter of Error is NIL),

the name of the desired file can be obtained by raising NameForError in the catch phrase
for MFile.Error. The LONG STRING returned by NameForError belongs to the file system and
should not be deallocated by the client.

MFile.PropertyError: ERROR [code: MFile.PropertyErrorCode);

The error PropertyError can be raised when calling operations that manipulate a file
property list.

MFile.PropertyErrorCode: {
noSuchProperty. noRoomlnPropertyList. insufficientSpaceForProperty I wrongSize};

noSuchProperty

noRoomlnPropertyList

i nsufficientSpaceForProperty

wrongSize

the system can't find a property of this type in the
property list.

the property list is full.

the property can't be copied into the space provided.

an AddProperty has been attempted with a
maxLength different than the previous one.

Mesa Programmer's Manual 47

47.4 Procedures

MFile.Acquire: PROCEDURE [
name: LONG STRING. access: MFile.Access. release: MFile.ReleaseData. mightWrite:
BOOLEAN +-FALSE. initialLength: MFile.lnitialLength +- MFile.dontCare. type: MFile.Type +­
unknown)
RETURNS [MFile.Handle);

The Acquire procedure obtains a tile handle with the requested access rights to tile name.
The search path may be used to look up name (see the description of
MFILE.SearchPathObject for an explanation of how a tile name is looked up). This procedure
can raise MFile.Error[...• addressTranslationError. connectionSuspended, courierError,
noSuchFile, conflictingAccess. directoryFuli. illegal Name, volumeNotOpen.
noRootDirectory, nuliAccess, protection Fault. noRoomOnVolume, nOSuchDirectory,
noSuchVolume. other, ...).

If access is anchor, readOnly, delete, or rename, the file must already exist or the error
MFile.Error[nOSuchFile] will be raised. If access is readWrite, writeOnly, or log, the file
system first checks to see if the file already exists. If it does, Acquire ensures that the
number of bytes in the file is at least as large as initial Length, although it does not set the
logical length of the file. If it does not exist, a new tile of size initialLength and type type
will be created.

The parameter mightWrite is significant only if access is anchor or readOnly. If
mightWrite is TRUE, Acquire will not return a handle on a file in a write-protected
directory. It will skip write-protected directories in the search path if the search path is
used to resolve name, and it will raise MFile.Error(protectionFault] if the search path is not
used but would otherwise return a handle in a write-protected directory.

Table 47.1 defines which accesses conflict on an Acquire. Each row is the old access
(already held by some other client) and each column is the new access (requested in the
Acquire).

A client may wish to gain use of a file in a way that conflicts with current access rights
held by other clients. Whenever a client attempts to acquire a file in a way that conflicts
with its current uses, each of the file's current owners is asked to give up ownership by
calling the owner's PleaseReleaseProc with its instance data. If all clients with conflicting
accesses relinquish ownership, the new use is granted. Otherwise, the access is refused.
Access may also be refused if the file has been protected against the access required; for
example, readWrite access will be denied to a file that is write-protected.

If a client requests readOnly access to a file for which some other agent has log access, no
conflict occurs. However, the PleaseReleaseProc of the log file is called to make as much as
possible of the file readable (see MStream.SetLogReadLength). The client will be able to
read only as much of the file as is available when it is granted readOnly access.

MFile.AcquireTemp: PROCEDURE [
type: MFile.Type, initialLength: MFile.lnitialLength +- MFife.dontCare]
RETURNS [MFile.Handle];

47-9

47

47-10

MFile

New Access

Old anchor read read write log delete rename null

Access Only Write Only

anchor ok ok ok ok ok no no no

readOnly ok ok no no no no no no

readWrite ok no no no no no no no

writeOnly ok no no no no no no no

log ok * no no no no no no

delete no no no no no no no no

rename no no no no no no no no

Table 47.1: Acquire accesses

The AcquireTemp procedure returns a handle with readWrite access on a Pilot temporary
file created on the volume containing the first non-write-protected directory on the search
path. If all the directories on the search path are protected, it is created on the system
volume. This file is not in the file system directory, and it will be deleted when the last
handle on it is released. Its name is the empty string. It is not possible to generate an
access conflict or protection conflict with AcquireTemp. This procedure can raise
MFile.Error[... ,nuIlAccess, nORoomOnVolume, other, ... J.

MFile.AddNotifyProc: PROCEDURE [
proc: MFile.NotifyProc, filter: MFile.Filter, dientlnstanceData: LONG POINTER];

The AddNotifyProc procedure adds a notification request to the file system notification
list. proc will be called when the event specified by filter occurs; see NotifyProc and Filter.
clientlnstanceData will be passed to proc, The file system will deadlock if this procedure is
called from within a NotifyProc.

MFile.AddProperty: PROCEDURE [
file: MFile.Handle, property: MFile.Property. maxLength: CARDINAL];

The AddProperty procedure is used to add a client property to the property list.
maxLength is the maximum number of bytes that the property will need. If there is
insufficient room for the property to be added, PropertyError[noRoomlnPropertyList] will
result. If the property already exists for this file and if the maxLength is equal to the
existing version, this operation is a no-op. Otherwise, PropertyError[wrongSize] is raised.
This procedure can be called on a file handle with any access. It can also raise
MFile.Error[addressTranslationError, connectionSuspended. courierError].

Mesa Programmer's Manual 47

MFile.AppendErrorMessage: PROCEDURE [
msg:LONG STRING, code: MFile.ErrorCode, file: MFile.Handle];

The AppendErrorMessage procedure fills into lhe string msg a description of the error
code on the file file. If the description is too long to fit into msg, it is truncated.

MFile.CompleteFilename: PROCEDURE [name, addedPart: LONG STRING]
RETURNS [exactMatch: BOOLEAN, matches: CARDINAL];

The CompleteFilename procedure attempts to "complete" a file name: * is appended to
name and the files in the file system are searched for matches. The number of matches is
returned in matches, and the common prefix of the extensions (which may be empty) is
returned in addedPart. If addedPart is too short, a String.StringBoundsFault will be raised.
If the concatenation of name and addedPart yields a unique file name that could be used to
acquire a file, exactMatch will be TRUE.

MFile.ComputeFileType: PROCEDURE [file: MFile.Handle] RETURNS [type: MFile.Type];

The ComputeFileType procedure implements a heuristic for calculating the type of a file of
unknown type. It reads all the bytes of file; if all represent character codes, it returns the
type text. Otherwise, it returns the type binary.

MFile.COpy: PROCEDURE [file: MFile.Handle, newName: LONG STRING];

The Copy procedure copies a file into another file. The client must have readOnly or
readWrite access to file, and it must be able to open file newName for writeOnly. This
procedure can raise MFile.Error[... , nOSuchFile, directoryFull, filelsRemote, file IsDirectory,
insufficientAccess, volumeNotOpen. noRootDirectory, noRoomOnVolume,
addressTransiationError, connectionSuspended, courierError, other, ... J.

MFile.CopyFileHandle: PROCEDURE [
file: MFile.Handle, release: MFile.ReleaseData. access: MFile.Access of- null]
RETURNS [MFile.Handle];

The CopyFileHandie procedure produces a new MFile.Handie on the same file as file. This
operation is an accelerator for Acquire that avoids looking up the file in the directory
again. It may obtain the new handle with a different access. If the access parameter is
null, the new handle has the same access as the old handle; otherwise, it has the requested
access. (Note that null access cannot be used when copying the handle passed to a
NotifyProc; see the discussion of the type NotifyProc.) Because it can change the access,
CopyFileHandie can raise Error(... , conflictingAccess, protectionFault ...].

This operation provides an escape hatch for some of the file system's access control. If the
access requested for the copy is no stronger than the original access, the file system will
make the copy even though it would not permit another client to gain that access to the
file. For instance, if a client already has a file handle with readWrite access, it can obtain
a copy with readOnly access or readWrite access, although another client requesting a
handle with either of these accesses would be refused. It is assumed that a client that
produces such conflicting handles is responsible for the potential chaos that might result if
those handles are misused.

47-11

47

47-12

M"'ile

Table 47.2 defines the relative strengths of accesses; < means that the new access is
weaker than the old, and > means that the new access is stronger than the old. [f the
requested access is stronger than the access on the file, the usual access checking is
performed.

New Access

Old anchor read read write log delete rename null
Access Only Write Only

anchor < > > > > > > <

readOnly < < > > > > > <

readWrite < < < < > > > <

writeOnly < > > > > > > <

log < > > > > > > <

delete < > > > > > > <

rename < > > > > > > <

Table 47.2: Access strengths

MFile.CopYProperties: PROCEDURE [from. to: MFile.Handle);

The CopyProperties procedure is typically used by a utility to copy all of the existing
properties of some base file into a new version. It can raise
MFile.Error[addressTransiationError. connectionSuspended. courierError). Client
properties are preserved while a file stays in the development environment file system.
However, they may be lost if, for instance, the file is stored on a remote file server. This
procedure can be called on file handles with any access.

MFile.CreateDirectory: PROCEDURE [dir: LONG STRING];

The CreateDirectory procedure ensures that a directory exists, creating new directories if
necessary. All the intermediate subdirectories on the path will be created as necessary; for
example, ifdir is < Tajo>Ders>Source and subdirectory Dersdoes not exist, it as well
as subdirectory Source will be created. The root directory is not created automatically,
and an error will be raised if it does not exist. If dir is not completely specified, the search
path will be used. Trailing >s are stripped from dir. Hence
CreateDirectory["<Tajo>Temp>"L) and CreateDirectory["<Tajo>Temp"L] both create
a subdirectory in the root directory on a volume named Tajo. CreateDirectory[">Temp"L]
creates a subdirectory in the first writeable directory of the current search path. If a file

. named dir already exists and is a directory, this procedure is a no-op. Ifdir is not a
directory, the error code fileAlreadyExists is raised. This procedure can raise Error[...•
directoryFull, filelsRemote. il/egaIName, volumeNotOpen, noRootDirectory.
fileAlreadyExists ... J.

Mesa Programmer's Manual 47

MFile.Delete: PROCEDURE [file: MFile.Handle];

The Delete procedure deletes a file. I\s directories are just files,this procedure can be used
to delete directories. Delete can only be called with a handle with delete access.
Directories can be deleted only if they are empty and they are not on the search path.
Delete always releases the MFile.Handle passed in if it is successful. Delete can raise
Error[.... conflictingAccess. directoryNotEmpty. insufficientAccess. filefsRemote,
volumeNotOpen, noRootDirectory. directoryOnSearchPath. courierError.
addressTranslationError. connectionSuspended •... J. (See also DeleteWhenReleased).

MFile.DeleteWhenReleased: PROCEDURE [file: MFile.Handle];

The DeleteWhenReleased procedure arranges for a file to be deleted when all its current
uses of the file. If no other client is currently accessing the file, DeleteWhenReleased has
the same semantics as Delete. If the file is in use by other agents, DeleteWhenReleased
removes it from the directory and makes it a temporary file, sets its name in the leader
page to the empty string, and marks it to be deleted when all other agents have released it.
DeleteWhenReleased can be called with a handle with any access. Directories can be
deleted only if they are empty and they are not on the search path. DeleteWhenReleased
always releases the MFile.Handle passed in if it is successful. DeleteWhenReleased can
raise Error[.... directoryNotEmpty. fifefsRemote. filefsDirectory. volumeNotOpen,
noRootDirectory. directoryOnSearchPath, ...]. (See also Delete.)

Mfile.EnumerateDirectory: PROCEDURE [

name: LONG STRING. proc: MFile.EnumerateProc, which: MFile.EnumerationType1.

The EnumerateDirectory procedure enumerates the files in the file system. Enumerations
can be performed on files, directories, or both, depending on the parameter which. The
procedure proc is called for every file matching the pattern name. The enumeration can be
terminated early by returning TRUE from proc. It is possible to enumerate only within a
directory or within a directory and all its offspring. A # in name matches any single
character in a file name except >. A single * occurring in name matches zero or more
characters in a file name, but does not match>. Hence, enumerating * in a directory lists
all the files in that directory but not in its subdirectories. Multiple consecutive *s do match
>, so enumerating ** matches all files in a directory and in the entire directory tree below
it. EnumerateDirectory does not guarantee to enumerate the files in any particular order
(that is, they will not necessarily be alphabetical). If the pattern is not completely
specified (if it does not start with < VolumeN arne» EnumerateDirectory uses the search
path. It enumerates from every directory in the search path successively. It is possible to
enumerate a file several times if it occurs below several search path directories. See also
FileAcquireProc and EnumerateProc. EnumerateDirectory can raise Mfile.Error[... ,
filelsRemote, volumeNotOpen, illegal Name, noRootDirectory, other, ... J.

Mfile.FreeSearchPath: PROCEDURE [Mfile.SearchPathJ;

The FreeSearchPath procedure frees a search path allocated by GetSearchPath. Note that
the search path is not allocated from the system heap, so the client must be careful not to
free search paths that contain strings allocated from the system heap.

47·13

47

47-14

MI<'ile

MFile.GetAccess: PROCEDURE [file: MFile.Handle] RETURNS [access: MFile.Access];

The GetAccess procedure returns the current access associated with a Handle.It can raise
MFile.Error with the error codes addressTranslationError, connectionSuspended, and
courierError.

Mfile.GetCreateDate: PROCEDURE [file: MFile.Handle] RETURNS [create: Time.Packed];

The GetCreateDate procedure returns the create time of file, which is updated when a file
is acquired with readWrite, writeOnly, or log access. This procedure can he called on a file
handle with any access.

MFile.GetDirectoryN,ame: PROCEDURE [file: MFile.Handle, name: LONG STRING];

The GetDirectoryName procedure appends to the string name as much of the directory
portion of the fully qualified name of file as will fit. The name has a trailing> if file was
not the top level directory. PropertyError[insufficientSpaceForProperty] is raised if it does
not fit. This procedure can he called on a file handle with any access. It also raises
MFile. Error[addressTranslationError, connectionSuspended, courierError].

Mfile.GetFuIlName: PROCEDURE [file: MFile.Handle, name: LONG STRING];

The GetFullName procedure appends to the string name as much of the fully qualified
name of file as will fit. PropertyError[insufficientSpaceForProperty] is raised if it does not
fit. Error[addressTranslationError, connectionSuspended, courierError] can also he raised.
This procedure can be called on a tile handle with any access.

MFile.Getlength: PROCEDURE [file: MFile.Handle] RETURNS [MFile.ByteCount];

The GetLength procedure returns the length of file in bytes. It can raise
Mfile.Error[addressTranslationError, connectionSuspended, courierError]. This procedure
can be called on a file handle with any access.

MFile.GetNextHandleForReading: PROCEDURE [
filter, name: LONG STRING, release: ReleaseData,lastState: EnumerateState, stopNow:
BOOLEAN ~ FALSE)
RETURNS [file: Handle, state: EnumerateState];

The GetNextHandleForReading procedure provides a restricted form of "stateless"
enumeration. A Handle with ReadOnly access is created for each file in the directory that
is not ReadProtected and that matches the filter. (See EnumerateDirectory for a
description of when a file matches a filter.) The current state of the enumeration is passed
back and forth on each call. lastState must be NIL on the initial call, and filter should
contain the same value for each call in the stateless enumeration. name is a client­
provided string that will be filled in with the name of the file file. When the enumeration
terminates, name.length will be 0 and state will he NIL. If the enumeration is to be
terminated early, a final call with stopNow :I TRUE must be made, permitting the file
system to free its enumeration state. This procedure can raise MFile.Error with error code
fi lelsRemote.

Mesa Programmer's Manual

MFile.GetProperties: PROCEDURE [file: MFile.Handle, name: LONG STRING ~ NIL]
RETURNS [create, write, read: Time.Packed, length: MFile.ByteCount, type: MFile.Type,
deleteProtected, writeProtected, readProtected: BOOLEAN];

47

1'he GetProperties procedure returns the values of the built-in properties of a file. If name
is not NIL, it is filled in with the name of the file. If read Protected is TRUE, all other
information is invalid. This procedure can be called on a file handle with any access. It
can raise MFile.Error[addressTranslationError, connectionSuspended, courierError].

MFile.GetProperty: PROCEDURE [
file: MFile.Handle, property: MFile.Property, block: Environment.Block]
RETURNS [length: CARDINAL);

The GetProperty procedure gets the value of a client property. As much of the property as
fits will be placed into block. The actual number of bytes copied is returned. The error
MFile.PropertyError[wrongSize] will be raised if the number of bytes in block is smaller
than the number of bytes of information stored in this property val ue. If the property is not
found, the error PropertyError[noSuchProperty] is raised. MFile.Error can also be raised
with the error codes addressTranslationError, connectionSuspended, and courierError.
This procedure can be called on a file handle with any access.

MFile.GetProtection: PROCEDURE [file: MFile.Handle]
RETURNS [deleteProtected, writeProtected, readProtected: BOOLEAN);

The GetProtection procedure returns the protection status offile. It can raise MFile.Error[
addressTranslationError, connectionSuspended, courierError] . This procedure can be
called on a file handle with any access.

MFile.GetReleaseData: PROCEDURE [
file: MFile.Handle] RETURNS [release: MFile.ReleaseData];

The GetReleaseData procedure returns the current release data associated with a Handle.
It can raise MFile.Error[addressTranslationError, connectionSuspended, courierError].
This procedure can be called on a file handle with any access.

MFile.GetSearchPath: PROCEDURE RETURNS [MFile.SearchPath];

The GetSearchPath procedure returns a copy of the file system search path. The client is
responsible for deallocating the returned search path by calling FreeSearchPath.

MFile.GetTimes: PROCEDURE [
file:MFile.Handle] RETURNS [create, write, read: Time.Packed];

The GetTimes procedure returns the create, read, and write times of file. The create and
write times of a file are updated when a file is acquired with readWrite, writeOnly, or log
access. The read time of a file is updated when a file is acquired with readOnly or
readWrite access. GetTimes can raise Error[addressTranslationError,
connectionSuspended, courierError] . This procedure can be called on a file handle with
any access.

47-15

47

47-16

MFile

Mfile.GetType: PROCEDURE [file: Mfile.Handle] RETURNS [type: Mfile.Type];

The GetType procedure rctums the type of file. It can raise
[addressTranslationError, connectionSuspended, courierError] .

Mfile.GetVolume: PROCEDURE [file: MFile.Handle] RETURNS [Volume.ID);

Mfile.Error

The GetVolume procedure retums the volume.lD of the logical volume containing file. If
file is a remote file, it returns Volume.nuIIlD.

Mfile.l n itial i zeFi leSystem: PROCEDURE;

The InitializeFileSystem procedure statts t~e file system; it should only be called by clients
that include the file system. It causes a top-level directory to be created on the volume
from which it is called. Clients of this procedure must be prepared to catch the resumable
SIGNAL AboutToScavenge, defined in the friends interface MScavenge.

Mfile.Log: PROCEDURE (
name: LONG STRING. release: MFile.ReleaseData.
initialLength: Mfile.lnitialLength +- MFile.dontCare)
RETURNS [Mfile.Handle);

The Log procedure acquires the file name with log access. It ensures that the file is at least
as large as initialLength, although it will not set the file's logical length. If file name does
not exist, a new file of size initialLength and type text is created. See Acquire and
PleaseReleaseProc for a discussion of access conflicts. See also MStream.SetLogReadLength.
This procedure can raise MFile.Error[.... nOSuchFile. conflictingAccess, directoryFull,
iIIegalName, volumeNotOpen, noRootDirectory,. nuliAccess, protectionFault,
noRoomOnVolume, addressTranslationError, connectionSuspended, courierError, other
...),

Mfile.ReadOnly: PROCEDURE [
name: LONG STRING, release: MFile.ReleaseData, mightWrite: BOOLEAN +- FALSE] RETURNS
[MFile.Handle];

The ReadOnly procedure acquires the file name with read Only access. See Acquire and
PleaseReleaseProc for a discussion of access conflicts and the meaning of mightWrite. This
procedure can raise MFile.Error(... , nOSuchFile, conflictingAccess, directoryFull,
illegal Name, volumeNotOpen, noRootDirectory, nOSuchDirectory,
nOSuchVolume,nuIlAccess, protectionFault, noRoomOnVolume,
addressTranslationError, connectionSuspended, courierError, other, ... J.

MFile.ReadWrite: PROCEDURE [
name: LONG STRING, release: MFile.ReleaseData, type: MFile.Type,
initialLength: MFile.lnitialLength +- MFile.dontCare)
RETURNS [MFile.Handle];

The ReadWrite procedure acquires the file name with readWrite access. It ensures that
the file is at least as large as initialLength, although it will not set the file's logical length.
If file name does not exist, a new file of size initial Length and type type is created. See
Acquire and PleaseReleaseProc for a discussion of access conflicts. This procedure can
raise MFile.Error[... , noSuchFile, conflictingAccess, directoryFull, illegalName,

Mesa Programmer's Manual 47

volumeNotOpen. no Root Directory. nullAccess. protection Fault. nORoomOnVolume.
addressTranslationError. connectionSuspended. courierError. other •...).

MFile.Release: PROCEDURE [file: MFile.Handle);

When a client is through using a handle, it returns it to the file system by calling Release.
This procedure can raise MFile.Error[addressTranslationError. connectionSuspended.
courierError. invalidHandle).

MFile.RemoveNotifyProc: PROCEDURE [

proc: MFile.NotifyProc. filter: MFile.Filter. dientlnstanceData: LONG POINTER];

The RemoveNotifyProc procedure removes a client notification request from the file
system notification list. A call on RemoveNotifyProc that finds no match is a no-op, and NIL

clientlnstanceData matches anything. If this procedure is called from a NotifyProc, the file
system will deadlock. (See also NotifyProc.)

MFile.RemoveProperties: PROCEDURE [file: MFile.Handle);

The RemoveProperties procedure removes all client properties from file. It can raise
MFile.Error [addressTranslationError. connectionSuspended. courierError). This procedure
can be called on a file handle with any access.

MFile.RemoveProperty: PROCEDURE [file: MFile.Handle. property: MFile.Property);

The RemoveProperty procedure removes a client property. It can raise MFile.Error
[addressTranslationError. connectionSuspended. courierError). This procedure can be
called on a file handle with any access.

MFile.Rename: PROCEDURE [file: MFile.Handle, newName: LONG STRING);

The Rename procedure changes the name of a file, potentially moving it between
directories but not between volumes. If Rename is called with a temporary file, the file
will be made permanent and given the specified name; if Rename is called with an empty
string, the file will be made temporary. The client must have rename access to file. This
procedure can raise MFile.Error[... , noSuchFile, directoryFull. insufficientAccess,
volumeNotOpen, noRootDirectory, fileAlreadyExists, filelsDirectory, filelsRemote,
addressTranslationError, connectionSuspended, courierError, other, ... J

MFile.SameFile: PROCEDURE [file1, file2: MFile.Handle] RETURNS [BOOLEAN);

The SameFile procedure returns TRUE iffile1 and file2 are Handles on the same underlying
. file.

MFile.SetAccess: PROCEDURE [file: MFile.Handle, access: MFile.Access);

The SetAccess procedure changes the access associated with a Handle. As with Acquire,
the PleaseReleaseProc of other clients with conflicting access may be called. Because it
changes the access, SetAccess can raise Error[... , conflictingAccess
addressTranslationError, connectionSuspended, courierError, protectionFault ...].

47-17

47

47-18

Mft'i1e

Mfile.SetDeleteProtect: PROCEDURE [file: Mfile.Handle, deleteProtected: BOOLEAN];

The SetDeleteProtect procedure changes the deleteProtection attribute offile. It can raise
Mfile.Error[addressTranslationError, connectionSuspended, courierError). This procedure
can be called on a file handle with any access.

Mfile.Setlength: PROCEDURE [file: MFile.Handle, length: MFile.Bytelength);

The Setlength procedure changes the length of a file, where length is specified in bytes.
The liIe is grown or shrunk as necessary. If it must be grown, this happens immediately;
however, it will not. be shrunk until all users of the file Release their Handles. This
procedure can raise MFile.Error[addressTranslationError, connectionSuspended,
courierError].

MFile.SetProperties: PROCEDURE [
file: MFile.Handle, create, write, read: Time.Packed +- System.gmtEpoch, length:
MFile.Bytelength, type: Type, deleteProtected, writeProtected, readProtected:
BOOLEAN +- FALSE);

The SetProperties procedure sets many of the built-in properties of file. The name
property must be changed by calling Rename. The type cannot be changed from or to
directory. If SetType would change the type of the file from directory, the operation is
ignored but no error is raised; if it would change the type of the file to directory, the error
MFile.Error[other] is raised. The procedure can also raise [addressTranslationError.
connectionSuspended, courierError). It can be called on a file handle with any access.

Mfile.SetProperty: PROCEDURE [
file: MFile.Handle, property: Mfile.Property, block: Environment.Block];

The SetProperty procedure sets the value of a client property. The error
Mfile.PropertyError[noSuchProperty] will be raised if the property is not associated with
file. The error Mfile.PropertyError[wrongSize] will be raised if the number of bytes in the
block is greater than the maximum associated with this property. The actual number of
bytes is recorded so that, for instance, it is not necessary to pad string properties with NULS.
This procedure can also raise Mflle.Error with error codes addressTranslationError,
connectionSuspended, courierError. It can be called on a file handle with any access.

Mfile.SetProtection: PROCEDURE [
file: Mfile.Handle, deleteProtected, writeProtected, readProtected: BOOLEAN +- fALSE];

The SetProtection procedure changes the protection attributes of file. (See also
SetReadProtect, SetWriteProtect, and SetDeleteProtect.) This procedure can raise
MFile.Error [addressTranslationError, connectionSuspended, courierErrorl. It can be called
on a file handle with any access.

MFile.SetReadProtect: PROCEDURE [file: Mfile.Handle. readProtected: BOOLEAN];

The SetReadProtect procedure changes the read-protect attribute of file. Read protection
may be used by a client to mark a file as inconsistent; for example, the compiler read­
protects the object file if the corresponding source failed to compile. By not deleting the
file, the user's directory structure is preserved. If a file is read-protected, its contents,
including its other properties, are assumed to be invalid. This procedure can raise

Mesa Programmer's Manual 47

MFile.Error[addressTranslationError, connectionSuspended, courierError]. It can be called
on a file handle with any access.

MFile.SetReleaseData: PROCEDURE [file: MFile.Handle, release: MFile.ReleaseData);

The SetReleaseData procedure changes the release data associated with a Handle. It can
raise MFile.Error [addressTranslationError, connectionSuspended, courierError]. This
procedure can be called on a tile handle with any access.

MFile.SetSearchPath: PROCEDURE [
Mfile.SearchPath] RETURNS [succeeded: BOOLEAN +- TRUE];

The SetSearchPath procedure sets the file system search path. Before setting the search
path, the file system raises the Supervisor event aboutToChangeSearchPath, which can
be aborted by clients wishing to forbid the change. If a client aborts the event
aboutToChangeSearchPath, the file system raises the Supervisor event
abortedSearchPathChange and returns. SetSearchPath copies the search path object and
does not consume it. After successfully changing the search path, the file system raises the
Supervisor event newSearchPath.The volumes named in the search path must be open
and the directories named must already exist; SetSearchPath will not create them
automatically. SetSearchPath can raise Error[... , noSuchFile, illegal Name,
volumeNotOpen, noRootDirectory, iIIegalSearchPath, ...]. If the error code is
iIIegalSearchPath, the search path is unchanged. Any other error causes the search path to
be set to NIL. (See also filesystem, aboutToChangeSearchPath, and newSearchPath.)

MFile.SetTimes: PROCEDURE [
file: MFile.Handle, create, read. write: Time.Packed +- System.gmtEpoch];

The SetTimes procedure changes the read, write and/or create dates of file .. Defaulted
values are not changed. The procedure can raise MFile.Error[addressTranslationError,
connectionSuspended, courierError]. It can be called on a file handle with any access.

MFile.SetType: PROCEDURE [file: MFile.Handle, type: MFile.Type];

The SetType procedure changes the type of file. The type cannot be changed from or to
directory. If SetType would change the type of the file from directory, the operation is
ignored but no error is raised; if it would change the type of the file to directory, the error
MFile.Error[other] is raised. This procedure can be called on a file handle with any access.

MFile.SetWriteProtect: PROCEDURE [file: MFile.Handle. writeProtected: BOOLEAN];

The SetWriteProtect procedure changes the write-protect attribute of the file. This
procedure can be called on a file handle with any access.
MFile.Error[addressTranslationError. connectionSuspended. courierError) can be raised.

MFile.SwapNames: PROCEDURE [f1, f2: MFile.Handle);

The SwapNames procedure swaps the contents for a pair of files; they may be temporary
files or in different directories, but they must be on the same volume. This is a very cheap
operation, and the contents of the files are not copied. The client must have rename access
to both f1 and f2. This procedure can raise MFile.Error[... , addressTranslationError.

47-19

47 MI"i1e

connectionSuspended. courierError. noSuchFile. directoryFull, insufficientAccess,
vol umeNotOpen. noRootDi rectory, fi lelsDi rectory ,other, ... J.

MFile.ValidFilename: PROCEDURE [name: LONG STRING) RETURNS [ok: BOOLEAN);

The ValidFilename procedure returns TRUE if name contains a syntactically valid file
name.

MFile.WriteOnly: PROCEOURE [

name: LONG STRING, release: MFile.ReleaseData. type: MFile.Type, initialLength:
MFile.lnitialLength +- MFile.dontCareJ
RETURNS [MFile.Handle];

"

The WriteOnly procedure acquires lhe file name with writeOnly access. It ensures that the
file is at least as large as initialLength, although it will not set the file's logical length. If
file name does not exist, a new file of size initial Length and type type is created. (See
Acquire and PleaseReleaseProc for a discussion of access conflicts.) This procedure can
raise MFile.Error[.... noSuchFile, conflictingAccess, directoryFull, illegal Name,
volumeNotOpen, noRootDirectory, nullAccess, protectionFault, noRoomOnVolume,
addressTranslationError, connectionSuspended, courierError, other, ... J.

47.5 Discussion and examples

47-20

The following contains discussion and examples of PleaseReleaseProc and Notification.
This material may be skipped by the casual client ofMFile.

47.5.1 Release procedures

A client should provide a PleaseReleaseProc for a file if it is making relatively passive use
of the file and might be willing to relinquish it. For example, a file window is willing to
release a file if it is not open for edit, and a file cache releases an old version of a file so that
a new version may be retrieved.

The call on a client's PleaseReleaseProc is made from the process that is requesting the file
in a conflicting way, such as when (1) the file system has locked some of the data
structures associated with the file, and (2) the client's processes are running at the same
time. Special care must be taken in writing PleaseReleaseProc both to avoid
synchronization problems in the client's code and to avoid deadlock in the file system.

To protect itself, the client must monitor data accessed by the PleaseReleaseProc and also
carefully synchronize which process has actually released the file. The PleaseReleaseProc
should not wait for a monitor that may be held by a process that might be waiting for the
file system. For example, the actual release of the file should not be done from within the
client monitor, since the release may be blocked, waiting for the PleaseReleaseProc.

The PleaseReleaseProc may determine that it can release the file, in which case the client
process must not access the file handle again. The PleaseReleaseProc does not actually
perform the release but returns the value goAhead, asking the file system to do the
release. The PleaseReleaseProc may determine that the file will be released in the near
future, either because the client process is already releasing it or because the
PleaseReleaseProc will fork another process to actually release the file. In this case, the
PleaseReleaseProc returns the value later, and the file system delays the conflicting

Mesa Programmer's Manual 47

request for the liIe until it has been released. The PleaseReleaseProc may determine that
it cannot release the liIe, in which case it returns no. If the client does not wish to release
the file but does not care ifit is renamed, it returns the value aliowRename.

To avoid deadlock with the file system, the PleaseReleaseProc should not call any of the
following procedures on the liIe requested: Acquire, Acquireld (a friends-level procedure),
CopyFileHandle, Delete, DeleteWhenReleased, Log, ReadOnly, ReadWrite, Release,
SetAccess, SetRelease, WriteOnly. In addition. the PleaseReleaseProc should not perform
an enumeration that lists the tile. If a PleaseReleaseProc must invoke one of these actions,
it must fork a separate process and not wait for that process, since the procedures will not
be executed until after the PleaseReleaseProc returns. The file system guarantees that
once a handle has been released, it will not invoke its PleaseReleaseProc.

The following simple example of a PleaseReleaseProc shows a simple-minded module
managing a single file that it is always willing to release.

FileNotAvailable: ERROR = CODE;
f: MFile.Handle +- NIL;
busy, pleaseFree: BOOLEAN +- FALSE;

Acquire: ENTRY PROCEDURE = {
busy +- FALSE;
pleaseFree +- FALSE;
f +- MFile.Acquire[name: "Some.File"L, release: [proc: MyReleaseProc], ...]};

DoneWith: PROCEDURE RETURNS [file: MFile.Handle] = {
FileToFree: ENTRY PROCEDURE RETURNS [file: MFile.Handle] == {file +- f; f +- Nil};
10ca1F: MFile.Handle == FileToFree[];
IF 10caiF # Nil THEN MFile.Release[locaIF)};

MyReleaseProc: ENTRY MFile.PleaseReleaseProc == {
SELECT TRUE FROM

busy = > {pleaseFree +- TRUE; RETURN[later]};
f = Nil = > RETURN[later];
ENDCASE = > {f +- Nil; RETURN[goAhead]}};

DoSomeWorkUsingFile: PROCEDURE = {
MakeBusy: ENTRY PROCEDURE RETURNS [file: MFile.Handle] = {

busy +- TRUE; RETURN[f)};
MakeUnbusy: ENTRY PROCEDURE RETURNS [file: MFile.Handle] == {

busy +- FALSE;
IF pleaseFree THEN {file +-f; f +-Nll; pleaseFree +-FAlSE}
ELSE file +- Nil};

file: MFile.Handle = MakeBusy[];
IF file == Nil THEN ERROR FileNotAvailable;
•• do the work using file
IF (file +- MakeUnbusy[]) # Nil THEN MFile.Release[file]};

Acquire[];
DO

.- do some computing
DoSomeWorkUsingFile[! FileNotAvaiiable = > EXIT];

47-21

47

47-22

Mft'i1e

•• do some more computing
ENOlOOP;

DoneWith[] ;

47.5.2 Notification

Some clients wish to be notified whenever a file becomes available for access. For instance,
a cache may wish to know whenever there is a new version of one of its files; that is,
whenever one of its files becomes available for readOnly access. If a client gives up a file
because its PleaseReleaseProc was called, it may wish to be notified when the file is
available again so it can resume using it. Clients ask to be notified by calling
AddNotifyProc with the file name and access of interest, and add a NotifyProc to be called
when the file becomes available.

Notification is performed by a special process in the file system. The file system maintains
a list of files that are eligible for notification, and the notification process examines each
file in the list. The notification process first checks whether a NotifyProc is interested in
the tile; that is, whether the file name matches the name in the filter and whether the
access in the filter corresponds to a recent access transition on the file. If the NotifyProc
matches, the notification process checks whether it can obtain the filter's access on the
file. (It may not be possible because some previous NotifyProc has created a conflicting
handle on the file; also, if several NotifyProcs want to know when they can get writeOnly
access to a file, only one of them will actually succeed).

There is no guarantee about the order of notification; in particular, files may be released
in one order and notification may take place in the other. There is also no guarantee about
how quickly notification will take place after a file is released, since the notification takes
place in another process. Because the notification process checks whether the filter access
is available before calling a NotifyProc, a NotifyProc may not be called for every transition
it is interested in.

Like PleaseReleaseProc, NotifyProcs are called by a separate process from the client
process, so the client must protect itself from the effects of concurrent processing. Common
data must be monitored. Furthermore, the client must not make any assumptions about
the relative timing of file system manipulations. If a client releases a file in one statement
and adds a NotifyProc on that file in the next, the file may in fact have been acquired and
released between the two statements, and the client will miss the notification of this state
change.

To avoid deadlock with the file system, the NotifyPro(should not directly or indirectly call
AddNotifyProc or RemoveNotifyProc. The boolean result of the NotifyProc may be used to
allow the NotifyProc to remove itselffrom the notify list.

The following simple example of a NotifyProc and a PleaseReleaseProc shows a simple­
minded module managing a single file. It it is willing to release the file if it is not in use,
but wishes to be notified when the file is available again.

fileName: LONG STRING: •

f: MFile.Handle;
useCount: CARDINAL;

- .. ,

Mesa Programmer's Manual

Acquire: PUBLIC ENTRY PROCEDURE RETURNS [MFile.Handle] = {
IF f # NIL THEN useCount ~ useCount + 1;
RETURN[f]};

Release: PUBLIC ENTRY PROCEDURE = {useCount ~ useCount - 1};

Initialize: PUBLIC ENTRY PROCEDURE = {
f ~ MFile.Acquire[

name: fileName. access: readOnly. release: [proc: MyReleaseProc]. !
MFile.ErrDr = > {

MFile .Add NotifyProc[
proc: MyNotifyProc.
filter: [name: fileName, access: readOnly]];

f~NIL;

CONTINue}]];
useCount ~O};

MyReleaseProc: ENTRY MFile.PleaseReleaseProc = {
IF useCount # 0 THEN RETURN[no];
f~NIL;

MFile.AddNotifyProc[
proc: MyNotifyProc. filter: [name: fileName. access: readOnly]];

RETURN [goAhead]} };

MyNotifyProc: ENTRY MFile.NotifyProc = {
removeNotifyProc ~ TRUE;
f ~ MFile.CopyFileHandle[

file: file. access: readOnly, release: [proc: MyReleaseProc]!
MFile.Error = > {

f~NIL;

removeNotifyProc ~ FALSE;
CONTINUE}]};

-- main line code
Initialize[];
00

Acquire[];
-- do some computing
Release[]

ENDLOOP;

"

47

47-23

47 MI<'iJe

47-24

48

MF"ileProperty

The MFileProperty interface is a constants-only definitions file that contains the list of the
registered client file property numbers.

48.1 Types

~one.

48.2 Constants and data objects

MFileProperty.AdobeReportSortTime: CARDINAL = ... ;

MFileProperty.Checksum: CARDINAL = ... ;

MFileProperty.PropagationDate: CAROINAL = ... ;

MFileProperty.RemoteName: CARDINAL = ... ;

48.3 Signals and errors

None.

48.4 Procedures

None.

48-1

48 M (o'ileProperty

48-2

49.1 Types

49

MLoader

The Mloader interface allows clients to load and start programs stored in files in the
development environment file system. This facility is used in place of the Pilot loader
facility because clients do not have direct access to file capabilities.

MLoader.Handle: TYPE = LONG POINTER TO Object;

MLoader.Object: TYPE = .. , ;

MLoader.Options: TYPE = RECORD [codeLinks: BOOLEAN];

49.2 Constants and data objects

Mloader.defaultOptions: Mloader.Options == [codeLinks: TRUE];

49.3 Signals and errors

Mloader.Error: ERROR == [code: ErrorCode, string: LONG STRING];

Mloader.ErrorCode: TYPE == {

invalidParameters, missingCode, badCode, exportedTypeClash, lookupFailure, gftFull,
loadStateFull.insufficientAccess, alreadyStarted, other};

invalidParameters the file is an invalid configuration.

missingCode code was not copied into the file when it was bound.

badCode code was for the wrong machine.

exportedTypeClash code contains conflicting exported type implementation.

lookupFailure reserved for future use.

gftFull no room in the Global Frame Table.

49-1

49 MLoadt>I'

loadStateFull reserved for future usc.

insufficientAccess Ii 1(' docs not ha ve readOnly access.

alreadyStarted handle has already been started.

other implementation error.

MLoader.VersionMismatch: SIGNAL [module: lONG STRING];

The VersionMismatch signal is raised when an interface is exported with one version and
imported with another. The parameter is the name of the interface. If this signal is
resumed, the item from the imported version remains unbound.

49.4 Procedures

49-2

MLoader.HandleFromProgram: PROCEDURE [PROGRAM) RETURNS [Mloader.Handle];

The HandleFromProgram procedure returns the handle for a loaded program that was
loaded by load or Run. It returns Nil ifno handle can be found.

Mloader.load: PROCEDURE [
file: MFile.Handle. options: Mloader.Options +- Mloader.defaultOptions]
RETURNS [Mloader.Handle];

The Load procedure requires an MFile.Handle with (exactly) readOnly access. It loads the
file with the options passed in and returns a handle that cal1 be used by Start or Unload. If
options = Mloader.defaultOptions, any module for which code links were requested
during binding will be loaded with external links in its code rather than its frame.
Ownership of the MFile.Handle is transfered to the MLoader package. If the client wishes to
maintain control of the file, it must call MFile.COpyFileHandle before calling load. This
procedure may raise Mloader.VersionMismatch or Mloader.Error[...• insufficientAccess,
gftFull, badCode. invalidParameters. missingCode. exportedTypeClash. other •... J.

Mloader.Run: PROCEDURE [
file: MFile.Handle. options: Mloader.Options +- Mloader.defaultOptions]
RETURNS [Mloader.Handle];

The Run procedure is equivalent to a Load followed by a Start. This procedure may raise
Mloader.VersionMismatch or Mloader.Error[.... insufficientAccess. gftFull. badCode.
invalidParameters. missingCode. exportedTypeClash. alreadyStarted. other •...].

Mloader.Start: PROCEDURE [Mloader.Handle];

The Start procedure starts a handle that has been loaded by Load. This procedure may
raise Mloader.Error[.... alreadyStarted. other •...].

Mloader.Unload: PROCEDURE [Mloader.Handle);

The Unload procedure unloads a' loaded file that has been loaded by Load or Run. This
procedure may raise MLoader.Error[other].

50.1 Types

50

MSegment

The MSegment interface supports file mapping to spaces in virtual memory called
segments. Although most of its operations have direct counterparts in the Space interface,
MSegment is used because clients of the Xerox Development Environment file system do
not have access to File.Files. For more information on these operations, consult the
documentation on Space in the Pilot Programmer's Manual.

Addressing data pages through the MSegment interface is zero-origin. Only files in the
Xerox Development Environment file system can have segments created on them.

A segment is created and associated with a portion of a file by the Create operation (see its
declaration below). The new segment can be used to read and modify the contents of the
file (depending on the MFile.Access of the file handle passed to Create) because the file is
the "backing store" for the segment.

Nothing in the MSegment interface will change the size of the backing file. If a client
wishes to change the size of a file, it should first call MFile.SetLength. One situation in
which this must be done, for example, is when a client creates a file via MFile.Acquire with
a large physical size hint and uses MSegment to initialize its contents. Since the file is
physically large (although logically empty), a segment can be created on it and written
into. However, if MFile.SetLength is not called, the logical length of the file does not
change, and it will appear to later users as if the file were empty.

MSegment.Handle: TYPE = LONG POINTER TO MSegment.Object;

MSegment.Object: TYPE;

MSegment.PleaseReleaseProc: TYPE = PROCEDURE [
segment: MSegment.Handle, instanceData: LONG POINTER]
RETURNS [MFile.ReleaseChoice];

Note that these types are different than those in MFile; in particular, the Handle is an
MSegment.Handle, not an MFile.Handle. Each owner of an MSegment is notified when some
other client wishes to have access to the MFile.Handle in a way that conflicts with the
original use. If the ReleaseData.proc is NIL, the new agent is denied access to the file. As

50-1

50 MSegment

with MFile, MSegment.Delete cannot be issued from the PleaseReleaseProc directly, and the
client must synchronize carefully, (See MFile for more discussion on PleaseReleaseProcs
and Space in the Pilot Progmmmer's Manual for discussion of Swap Unit Option

MSegment.ReleaseData: TYPE = RECORD [
proc: MSegment.PleaseReleaseProc +- NIL,
dientlnstanceData: LONG POINTER +- Nil);

MSegment.SwapUnitOption: TYPE = RECORD [
body: SELECT tag: MSegment.SwapUntilType FROM

unitary == > NULL,
uniform = > [size: MSegment.SwapUnitSize),
irregular == > [sizes: MSegment.SwapUnitSequence)
ENDCASE);

MSegment.SwapUnitSequence: TYPE = LONG POINTER TO MSegment.SwapUnitSequenceObject;

MSegment.SwapUnitSequenceObject: TYPE == RECORD [
swap: SEQUENCE length: CARDINAL OF MSegment.SwapUnitSize);

MSegment.SwapUnitSize: TYPE = Environment.PageCount;

A SwapUnitSize specifies the size in pages of the uniform swap units to be used.

MSegment.SwapUnitType: TYPE = {unitary, uniform, irregular};

50.2 Constants and data objects

MSegment.defaultPages: Environment,PageCount == ... ;

MSegment.defaultSwapUnits: MSegment.SwapUnitOption == ... ;

Ifthe defaultSwapUnits value is used, the swap unit size defaults to 1,2, or 4 pages,
depending on whether the size of the segment is less than 11 pages, between 11 and 50
pages, or greater than 50 pages.

MSegment.dontChangeFile: MFile.Handle III , •• ;

MSegment.dontChangeFileBase: File.PageNumber == ... ;

MSegment.dontChangePages: Environment,PageCount == ... ;

MSegment.dontChangeReleaseData: ReleaseOata :I .•. ;

50.3 Signals and errors

50-2

MSegment.Error: SIGNAL [segment: MSegment.Handle, code: MSegment,ErrorCode];

MSegment.ErrorCode: TYPE == MACHINE DEPENDENT {
zeroLength(O), insufficientVM, noSuchSegment,
sharedSegment, baseOutOfRange, conflictingAccess,

Mesa Programmer's Manual 50

illegal Access, invalidFile, dataSegmentNeedsPages,noRoomOnVolume,
other(lAST[CARDINAl])}

zerolength(O)

insufficientVM

noSuchSegment

sharedSegment

baseOutOfRange

conflictingAccess

il/egalAccess

invalidFile

dataSegmentNeedsPages

nORoomOnVolume

other

50.4 Procedures

a zero-length segment cannot be created.

there is not enough VM left to create the desired segment.

there is no segment containing the address or base
requested, or the segment is invalid.

the segment you are resetting is shared with some other
client.

a segment cannot have a base larger than
Fi le.lastPageNumber.

the requested access of the file cannot be obtained.

the file access is illegal for the operation.

an invalid MFile.Handle has been used.

the pages parameter may not be defaulted when creating
a data segment.

there is not enough free space on the volume to map the
segment.

implementation error.

MSegment.Activate: PROCEDURE [segment: MSegment.Handle];

The Activate procedure is called to indicate that the segment is likely to be referenced soon
and that Pilot should begin swapping it in. (See space.Activate.)

MSegment.Address: PROCEDURE [segment: MSegment.Handle] RETURNS [LONG POINTER];

The Address procedure returns the virtual memory address of the start of the segment.
Address should be called after the segment is modified by MSegment.Reset, as well as when
it is created. This procedure may raise MSegment.Error[noSuchSegment].

MSegment.AddresstoSegment: PROCEDURE [pointer: LONG POINTER] RETURNS
[MSegment.Handle];

The AddresstoSegment procedure returns the smallest segment containing the virtual
memory address. This procedure may raise MSegment.Error[noSuchSegment].

50-3

50

50-4

MSegment

MSegment.Base: PROCEDURE [
segment: MSegment.Handle] RETURNS [Environment.PageNumber);

The Base procedure returns the virtual memory page number containing the start of the
segment. Base should be called after the segment is modified by MSegment.Reset, as well as
when it is created. This procedure may raise MSegment.Error[noSuchSegment).

MSegment.8asetoSegment: PROCEDURE [
page: Environment.PageNumber) RETURNS [MSegment.Handle);

The BasetoSegment procedure returns the smallest segment containing the virtual
memory page number. This procedure may raise MSegment.Error[noSuchSegment).

MSegment.Copyln: PROCEDURE [
segment: MSegment.Handle. file: MFile.Handle. fileBase: File.PageNumber. count:
Environment.PageCount) ;

The Copyln procedure copies data into the segment from the file starting at page fileBase
for count pages. Unlike Create, Copyln does not own the file when it is done. This
procedure may raise MSegment.Error[... , zeroLength, noSuchSegment, baseOutOfRange,
iliegalAccess. invalidFile)

MSegment.CopyOut: PROCEDURE [
segment: MSegment.Handle. file: MFile.Handle. fileBase: File.PageNumber. count:
Environment.PageCou nt];

The CopyOut procedure copies data from the segment into the file starting at page
fileBase for count pages. It does not own the file when it is done. This procedure may raise
MSegment.Error[.... zeroLength. noSuchSegment. baseOutOfRange. iliegalAccess.
invalidFile).

MSegment.CopySegment: PROCEDURE [
segment: MSegment.Handle) RETURNS [newSegment: MSegment.Handle);

The CopySegment procedure permits a segment to be shared by different programs.
Shared segments cannot be modified by MSegment.Reset. This procedure may raise
MSegment.Error[noSuchSegment).

MSegment.Create: PROCEDURE [
file: MFile.Handle NIL. release: MSegment.ReleaseData.
fileBase: File.PageNumber O. pages: MSegment.PageCount defaultPages.
swaplnfo: MSegment.SwapUnitOption defaultSwapUnits]
RETURNS [segment: MSegment.Handle);

The Create procedure creates a segment. Operations on it are restricted by the MFile.Access
associated with the file that is passed in. To create a segment, readOnly or readWrite
access to the file is needed. If this operation succeeds, ownership of the file is passed to the
MSegment package. If the client wishes to maintain control of the file, it must call
MFile.CopyFileHandle before calling MSegment.Create. The segment will be pages long; if
pages is defaultPages, the segment will be the logical size of the file. An important special
case: if file is NIL, the segment will be a data segment backed by a temporary file. It is
possible to create a segment on nonexistent file pages; that is, fileBase + pages may be

Mesa Programmer's Manual 50

larger than lhe number of pages in the file. However, if the client tries to reference such
pages, an address fault will result. This procedure may raise MSegment.Error[...•
zeroLength. insufficientVM, baseOutOfRange, iliegalAccess, invalidFile,
dataSegmentNeedsPages, noRoomOnVolume, other, ...].

MSegment.Deactivate: PROCEDURE [segment: MSegment.Handle]; (

The Deactivate procedure is cuBed to indicate that the segment IS not likely to be
referenced soon and that Pilot can swap it out. (See Space.Deactivate.)

MSegment.Delete: PROCEDURE [segment: MSegment.Handle];

The Delete procedure deletes the segment created by MSegment.Create or
MSegment.CopySegment. The virtual memory occupied by this segment is freed and the
segment object is released. This procedure may raise MSegment.Error[noSuchSegment].

MSegment.EquivalentSegments: PROCEDURE [seg1, seg2: MSegment.Handle] RETURNS
[BOOLEAN];

The EquivalentSegments procedure checks whether two segments refer to the same pages
of the same file. It returns TRUE if both arguments are NIL, or if both are segments on the
same span of pages of the same file.

MSegment.ForceOut: PROCEDURE [segment: MSegment.Handle];

The ForceOut procedure forces out the segment; that is, writes its dirty pages to disk. It
does not return until all output is complete. (See Space.ForceOut.) This procedure may
raise MSegment.Error[noSuchSegment].

MSegment.FreePages: PROCEDURE [base: LONG POINTER];

The FreePages procedure deallocates a page-aligned block allocated with
MSegment.GetPages.

MSegment.FreeWords: PROCEDURE [base: LONG POINTER];

The FreeWords procedure deallocates a page-aligned block allocated with
MSegment.GetWords.

MSegment.GetFile: PROCEDURE [segment: MSegment.Handle] RETURNS [MFile.Handle];

The GetFile procedure returns the file handle on which this segment was created. This
procedure may raise MSegment.Error[noSuchSegment).

MSegment.GetFileBase: PROCEDURE [
segment: MSegment.Handle] RETURNS [File.PageNumber];

The GetFileBase procedure returns the starting page in the file of this segment. This
procedure may raise MSegment.Error[noSuchSegment).

50-5

50

50-6

MSegment

MSegment.GetFilePages: PROCEDURE [
segment: MSegment.Handle) RETURNS [File.PageCount);

The GetFilePages procedure returns the number of physical data pages in the file on which
this segment was created. It may raise MSegment.Error[noSuchSegment].

MSegment.GetPages: PROCEDURE [npages: CARDINAL] RETURNS [base: LONG POINTER];

The GetPages procedure allocates a page-aligned block containing a specified number of
pages. This block must later be freed by MSegment.FreePages.

MSegment.GetReleaseData: PROCEDURE [
segment: MSegment.Handle] RETURNS [MSegment.ReleaseData];

The GetReleaseData procedure returns the release data associated with this segment.
This procedure may raise MSegment.Error[noSuchSegment).

MSegment.GetWords: PROCEDURE [nwords: CARDINAL] RETURNS [base: LONG POINTER);(

The GetWords procedure allocates a page-aligned block containing at least a specified
number of words. MSegment.FreeWords is used to free this block. (An integral number of
pages will actually be allocated.)

MSegment.Kill: PROCEDURE [segment: MSegment.Handle];

The Kill procedure, which kills the mapped pages of a segment, is used when the current
contents of the segment are not needed. If a word is read from a killed page, the page is not
read from backing store. This is useful when the segment has just been created and the
backing file does not contain any useful information. If the killed segment is deleted or
reset, its pages are not written to disk. (See Space.KiIL) This procedure may raise
MSegment.Error[noSuchSegment).

MSegment.MakeReadOnly: PROCEDURE [segment: MSegment.Handle);

The MakeReadOnly procedure makes the segment read-only. (See Space.ReadOnly.) This
procedure may raise MSegment.Error[noSuchSegment).

MSegment.MakeWritable: PROCEDURE [segment: MSegment.Handle];

The MakeWritable procedure makes the segment writable. (See Space.Writable.) This
procedure may raise MSegment.Error[... , noSuchSegment, iIIegalAccess, ... J.

MSegment.Pages: PROCEDURE [
segment: MSegment.Handle) RETURNS [Environment.PageCount);

The Pages procedure returns the number of pages in the segment. This procedure may
raise MSegment.Error[noSuchSegment).

MSegment.PagesForWords: PROCEDURE [nwords: CARDINAL] RETURNS [CARDINAL];

The PagesForWords procedure returns the number of pages needed to hold nwords words.

Mesa Programmer's Manual

MSegment.Reset: PROCEDURE (
segment: MSegment.Handle,
file: MFile.Handle..- MSegment.dontChangeFile,
release: MSegment.ReleaseData ..- MSegment.dontChangeReleaseData,
fileBase: File.PageNumber..- MSegment.dontChangeFileBase,
pages: Environment.PageCount..- MSegment.defaultPages,
swaplnfo: MSegment.SwapUnitOption ..- MSegment.defaultSwapUnits];

50

The Reset procedure changes the properties of the segment without creating a new
segment object. Parameter:; that receive the default values are not changed. Since the
segment's virtual memory location might be different, MSegment.Address should be called
again to obtain, he new starting address and MSegment.Base should be called for the new
base. It is possible to reset to a segment on nonexistent file p.ages; that is, fileBase + pages
may be larger than the number of pages in the file. If a client tries to reference such pages,
however, an address fault results. This procedure may raise MSegment.Error[... ,
insufficientVM, noSuchSegment, sharedSegment, iIIegalAccess, baseOutOfRange,
invalidFile, noRoomOnVolume, ...].

MSegment.SetReleaseData: PROCEDURE [
segment: MSegment.Handle, release: MSegment.ReleaseData);

The SetReleaseData procedure sets the release data associated with the segment. It may
raise MSegment. Error[noSuchSeg ment].

50.5 Examples

The following program fragment reads and updates a data structure stored on the file
"MyFile":

f: MFile.Handle;
seg: MSegment.Handle;
data: LONG POINTER TO MyData;
.- create a read/write segment on the file
f MFile.ReadWrite(name: "MyFile", release: n. type: binary];
seg ..- MSegment.Create[file: f, release: []];
data..- MSegment.Address[seg];
-- now manipulate the data structure
data.updateCount ..- data.updateCount + 1;

MSegment.Delete[seg];

Ownership of the file handle is passed to the segment by Create. Consequently, the file is
released when the segment is deleted. If the client needs to retain access to the file, it must
call MFile.CopyFileHandle before creating the segment.

It is also possible to create "data segments" that have temporary backing files by passing a
Nil file handle to Create. Data segments are most often used with the Copyln and CopyOut
operations. These procedures copy data between a segment and a file, much like the read.
and write operations of traditional file systems. They do not create a permanent
association between a segment and a file window, and are relatively fast.

50-7

50

50-8

MSegment

In the program fragment that follows, a data segment is used as a buffer. It is created at
the beginning of the program, and data is copied into it from several different files during
program execution. Note that ownership of the file handle is not passed to the segment by
Copy.n: each input file must be explicitly released by the client.

buffer: MSegment.Handle;
data: LONG POINTER TO ARRAY 10 .. 0) OF Environment.Byte;
source: MFile.Handle;
buffer to- MSegment.Create[file: NIL, release: [], pages: 20];
data to- MSegment.Address[buffer];
source to- MFile.ReadOnly[name: "Input.data", release: []];
MSegment.Copyln[segment: buffer, file: source, fileBase: 0, count: 20]; -- read one file's
data
MFile.Release[source]; -- done with input file now
-- process the data
FOR i: CARDINAL IN [o .. (20*Environment.bytesPerPage)) 00

IF data[i] = 0 THEN ...
ENDLOOP;

MSegment.Delete[buffer] ;

51.1 Types

51

MStream

The MStream interface implements a Pilot transducer for accessing a file as a positionable
byte stream. Only files in the Xerox Development Environment directory may have
MStreams created on them.

MStream.Handle: TYPE = Stream.Handle;

An MStream.Handle is the same type as a Stream.Handle. Clients may pass streams obtained
from some other source to the procedures; the error MStream.Error[invalidHandle] is raised
in most instances.

MStream.PleaseReleaseProc; TYPE = PROCEDURE [
stream: MStream.Handle, instanceData: LONG POINTER]
RETURNS [MFile.ReleaseChoice];

The PleaseReleaseProc is similar to that of MFile. Each user of an MStream is notified
when some other agent wishes to have access to the MFile.Handle in a way that conflicts
with the original use. If the ReleaseData.proc is NIL, the new agent is denied access to the
file. As with MFile, the stream cannot be destroyed from the PleaseReleaseProc directly,
and the client must synchronize carefully. (See the documentation of
MFile.PleaseReleaseProc and the discussion at the end of MFile for the semantics of release
procedures.> A stream is released by calling Stream.Delete.

MStream.ReleaseData: TYPE = RECORD [
proc: MStream.PleaseReleaseProc +- NIL, clientlnstanceData: LONG POINTER +- NIL];

51.2 Constants and data objects

None.

51-1

51 MStream

51.3 Signals and errors

MStream.Error: ERROR [stream: Stream.Handle. code: MStream.ErrorCode);

MStream.ErrorCode: TYPE = MACHINE DEPENDENT {
invalidHandle{O). indexOutOfRange. invalidOperation, fileToolong, fileNotAvailable,
invalidFile,other{lAST[CARDINAl])};

invalidHandle

indexOutOfRange

invalidOperation

fileToolong

fileNotAvailable

invalid File

an invalid stream handle has been passed to a file stream
procedure.

a client tried to extend a file without the proper access.

a client tried to operate on a stream in a way conflicting with its
access; for example, to write on a read-only stream.

a client tried to extend a stream beyond 65,535 pages.

a file cannot be acquired from MFile with the requested access.

an invalid MFile.Handle was used.

51.4 Procedures

51-2

MStream.Backuplog: PROCEDURE [
stream: MStream.Handle, count: MFile.ByteCount] RETURNS [backedUp: MFile.ByteCount];

The Backuplog procedure permits a client to back up in a file of type log. The number of
characters to be backed over is given by count; the number actually backed over is
returned by backedUp. BackupLog may not back the file up past the point made available
for reading by SetLogReadLength. (See also SetLogReadlength.) This procedure may
raise MStream.Error[... , invalidHandle, indexOutOfRange. invalidOperation, ...].

MStream.Copy: PROCEDURE [from, to: Stream,Handle, bytes: MFile.ByteCount]
RETURNS [bytesCopied: MFile.ByteCount];

The Copy procedure copies bytes either to or from an MStream. Either from or to must be
a Stream.Handle obtained from the MStream, or the error MStream.Error[.. .invalidHandle] is
raised. It is legal for endOfStream to be reached before bytes bytes can be copied. To copy
the rest of a file, you might call [] Eo- Copy[from, to, LAST[lONG CARDINAL]]. Iffrom is not an
MStream, and if a call of Stream.GetBlock[from, ...] returns a why of sstChange, this
procedure may raise MStream.Error[other]. It raises MFile.Error[noRoomOnVolume] if there
is not enough room on the logical volume for the copied file.

MStream.Create: PROCEDURE [
file: MFile.Handle, release: MStream.ReleaseData,
options: Stream.lnputOptions Eo- Stream.defaultlnputOptions,
streamBase: File.PageNumber Eo- 0]
RETURNS [stream: MStream.Handle];

The Create procedure creates an MStream. If the PleaseReleaseProc release.proc passed
in to Create is NIL, the stream and underlying file are not released. Note that any

Mesa Programmer's Manual 51

MFile.PleaseReleaseProc previously associated with this MFile.Handle is discarded.
Operations on the stream are restricted by the Mfile.Access associated with the file that is
passed in. Ownership of file is passed to the MStream package. If the client wishes to
maintain control of the file, it must call MFile.CopyFileHandle before calling
MStream.Create. The streamBase parameter indicates the starting page number for the
stream. It permits a client to have a segment and a stream open on a file simultaneously,
the segment on the first portion of the file and the stream on the remainder. This
procedure may raise MStream.Error[... , invalidOperation, fileTooLong, invalidFile, ...].

MStream.EndOf: PROCEDURE (stream: MStream.Handle] RETURNS (BOOLEAN];

The EndOf procedure returns TRUE if an MStream is at the end of the file. This procedure
may raise MStream.Error[invalidHandle).

MStream.GetFile: PROCEDURE [stream: MStream.HandleJ RETURNS [Mfile.Handle];

The GetFile procedure returns Mfile.Handle underlying an MStream. It can be used to
examine properties of the file, etc. The file is still owned by the MStream. This procedure
may raise MStream.Error[invalidHandle].

MStream.GetLength: PROCEDURE [
stream: MStream.Handle) RETURNS [fileLength: MFile.ByteCount];

The GetLength procedure returns the current length of an MStream. The result is the
current length of the file in bytes; it does not change the position of the stream. This
procedure may raise MStream.Error[invalidHandle).

MStream.GetReleaseData: PROCEDURE [
stream: MStream.HandleJ RETURNS [release: MStream.ReleaseData];

The GetReleaseData procedure returns the ReleaseData associated with a stream. This
procedure may raise MStream.Error[invalidHandle).

MStream.lslt: PROCEDURE [stream: Stream.Handle] RETURNS [BOOLEAN];

The procedure Islt returns TRUE if stream is a stream created by MStream that can be used
in operations that require an MStream stream.

MStream.Log: PROCEDURE [name: LONG STRING, release: MStream.ReleaseDataJ RETURNS
[MStream.Handle];

The Log procedure acquires the file name with log access and then creates the stream.
This procedure may raise MStream.Error[... , invalidOperation, fileTooLong,
fileNotAvailable, ... J. (See also Backuplog and SetLogReadlength.)

MStream.ReadOnly: PROCEDURE [name: LONG STRING, release: MStream.ReleaseDataJ RETURNS
[MStream.Handle];

The ReadOnly procedure acquires the file name with readOnly access and then creates the
stream. This procedure may raise MStream.Error[... , invalidOperation, fileToolong,
fileNotAvailable, ...].

51·3

51

51-4

MStream

MStream.ReadWrite: PROCEDURE [
name: LONG STRING, release: MStream.ReleaseData, type: MFile.Type +- unknown]
RETURNS [MStream.HandleJ;

The ReadWrite procedure acquires the file name with readWrite access and then creates
the stream. 'rhis procedure may raise MStream.Error[... , invalidOperation, fileTooLong,
fileNotAvailable, ... J.

MStream.SetLength: PROCEDURE [
stream: MStream.Handle, fileLength: MFile.ByteCount);

The SetLength procedure changes the length of a file (access permitting). This operation
sets the current position only if the file is made shorter than the old position. In that event,
the current position is set to be the new end of the file. (See also BackupLog.)This
procedure may raise MStream.Error[... , invalidHandle, indexOutOfRange,
invalidOperation, fileTooLong, ...].

MStream.SetLogReadLength: PROCEDURE [
stream: MStream.Handle, position: MFile.ByteCount];

The SetLogReadLength procedure makes parts of a file of type log available for reading.
Position is the last posit.ion in the file that other clients may read. Owners of log files are
encouraged to call this procedure in their PleaseReleaseProcs because it enables other
clients to I'ead the log file. BackupLog may not back the file up past the point made
available for reading by SetLogReadLength. (See also BackupLog.) This procedure may
raise MStream.Error[... , invalidHandle. indexOutOfRange, invalidOperation, ... J.

MStream.SetReleaseData: PROCEDURE [
stream: MStream.Handle, release: MStream.ReleaseData];

The SetReleaseData procedure changes the ReleaseData associated with a stream. This
procedure may raise MStream.Error[invalidHandle).

MStream.ShareBlock: PROCEDURE [
stream: MStream.Handle, start: MFile.ByteCount, length: CARDINAL]
RETURNS [block: Environment.Block];

The ShareBlock procedure permits a client to use the mapped buffers of a file directly. To
minimize mapping operations, the entire requested block may not be returned. However,
at least one byte will be in the block returned if start is less than the current length of the
file. Subsequent calls with updated values for start can be used to get at all the desired
addresses of the file. The current position is set to one past the position of the last
character in the block returned. The block that is returned is valid only until the next
stream operation is executed on this stream. This procedure may raise MStream.Error[...•
invalidHandle, indexOutOfRange •... J.

MStream.WriteOnly: PROCEDURE [name: LONG STRING, release: MStream.ReleaseData, type:
MFile.Type) RETURNS [MStream.Handle);

The WriteOnly procedure acquires the file name with writeOnly access and then creates
the stream. This procedure may raise MStream.Error[... , invalidOperation, fileTooLong,
fileNotAvailable, ... J.

Mesa (Jrogrammer's Manual 51

51.5 Stream-specific operations

delete: Stream.OeleteProcedure;

When this procedure is invoked and the stream has writeOnly access, the file may be
shortened according to the following algorithm:

IF access = writeOnly AND Stream.GetPosition[s] # 0 THEN

MStream.Setlength[s, Stream.GetPosition[s));

get: Stream.GetProcedure;

This procedure may raise Stream.EndOfStream if the stream is positioned at the end of the
file and the options specify signaiEndOfStream. It may raise Stream.ShortBlock if the
stream is positioned at the end of the file and the options specify signalShortBlock. This
procedure raises MStream.Error[invalidOperation] if the stream was created with
writeOnly access.

getByte: Stream.GetByteProcedure;

getWord: Stream.GetWordProcedure;

These procedures may raise Stream.EndOfStream if the stream is positioned at the end of
the file. They raise MStream.Error[invalidOperation] if the stream was created with
writeOnlyaccess.

put: Stream.PutProcedure;

putByte: Stream.PutByteProcedure;

putWord: Stream.PutWordProcedure;

These procedures raise MStream.Error[invalidOperation] if the stream was created with
readOnly access. They may raise MFile.Error[noRoomOnVolume] if the file needs to be
grown and there is no room on the logical volume.

setPosition: Stream.SetPositionProcedure;

This procedure may raise MStream.Error[indexOutOfRange] if the stream was created with
readOnly access and the new position is past the end of the file, or for any stream if the
new position is greater than 33,553,920 (65,535 pages).

setSST: Stream.SetSSTProcedure;

sendAttention: Stream.SendA ttentionProcedure;

waitAttention: Stream.WaitA ttentionProcedure;

These procedures ha ve no effect.

51 :'i

51 MStream

51-6

52.1 Types

52

MVolume

The MVofume interface exports an error raised by the Supervisor (see the Supervisor
chapter of the Pilot Programmer's Manual).

:'>rone.

52.2 Constants and data objects

:'>rone.

52.3 Signals and errors

MVolume.CloseAborted: ERROR;

Closing a volume (Volume.Close, as defined in the Pilot Programmer's Manual) under XDE
raises the supervisor event EventTypes.aboutToCloseVolume, which can be vetoed. If a
client vetos this event, the error MVolume.CloseAborted is raised by the implementation of
volume.Close.

52.4 Procedures

None.

521

52 MVolume

52-2

VI

Sorting and searching

The sorting and searching interfaces, BTree, GSort, and StringLookUp, are largely self­
explanatory and are of interest to most programmers.

The BTree package was used in implementing the XDE file and directory system.
Programmers designing file management tools may want to study it.

VI.l Interface abstracts

BTree implements a B-tree whose keys are LONG STRINGs and values are ARRAYs of
CARDINAL.(see D. Knuth, "Sorting and Searching," in The Art of Computer Programming,
vol. 3, 473-79)

GSort provides a general package for sorting arbitrarily large amounts of data.

StringLookUp provides a facility for looking up an identifier in a list of names. It is
particularly useful to programs that process User. em sections and that permit users to
abbreviate commands.

VI-l

VI SOI·ting and sean'hing

VI-2

53.1 Types

53

BTree

The BTree package implements a searching algorithm based on multiway tree branching
called 8-trep.s (see D. Knuth, "Sorting and Searching," in The Art of Computer
Programming, vol. 3, 473-79). The keys are LONG STRINGs and the values associated with
them are LONG DESCRIPTORS FOR ARRAY OF CARDINAL. The directories in the file system are
implemented using BTree.

BTree. Tree: TYPE = LONG POINTER TO BTree. TreeObject;

BTree.TreeObject: TYPE;

BTree.Value: TYPE = LONG DESCRIPTOR FOR ARRAY OF CARDINAL;

BTree.ValueSize: TYPE = [1 .. 32);

A value is an uninterpreted array of words. Its size, specified in words and fixed for any
given B-tree, must be in the range ValueSize.

53.2 Constants and data objects

BTree.defaultValueSize: BTree.ValueSize = 6;

BTree.maxNameLength: CARDINAL =100;

A name is a string with a maximum length of 100 characters.

53.3 Signals and errors

BTree.ValueTooSmall: ERROR [tree: BTree.Tree);

If the BTree implementation needs to copy values to or from the B-tree and there is
insufficient room in the destination, ValueTooSma11 is raised. (See the individual
procedures for more details.)

53-1

53 RTree

53.4 Proced ures

53-2

BTree.Delete: PROCEDURE (tree: BTree.Tree];

Delete deletes a B-tree as well as the data space associated with it, causing the B-tree to be
saved in its associated file.

BTree.Empty: PROCEDURE [tree: BTree.Tree) RETURNS [BOOLEAN];

Empty returns FALSE if there are any entries in the B-tree, and TRUE otherwise.

BTree.Find: PROCEDURE [tree: BTree.Tree, name: LONG STRING. value: BTree.Value]
RETURNS [ok: BOOLEAN];

Find locates the H-tree entry corr'esponding to name and returns the associated value in
value. If the entry does not exist, ok is returned FALSE. If value is too small to hold the
associated value, BTree.ValueTooSmall is raised after the leftmost words of the value have
been transferred into value.

BTree.Getlnfo: PROCEDURE [
tree: BTree.TreeJ RETURNS [valueSize: BTree.ValueSize, file: MFile.Handle);

Getlnfo returns the size of the values stored in a B-tree and the file associated with it. If
there is no file associated with the B-tree, file is returned NIl.

BTree.GetNext: PROCEDURE [
tree: BTree.Tree, name: LONG STRING, nextName: LONG STRING, value: BTree.Value,
mask: LONG STRING +- NIL];

GetNext is a stateless enumerator of a B-tree. The string nextName is set to the name
following name in alphabetical order in the B-tree. The value associated with nextName
is returned in value. If the length of the string name is zero, nextName is set to the the
first entry in the B-tree and the corresponding value is returned. If name is the last entry
in the B-tree, the length of nextName is set to zero. If name is not in the B-tree, nextName
is set to the name in the 8-tree that would logically follow name. An optional mask may be
specified with this procedure. This mask uses the standard syntax in which a # matches
anyone character and a * matches any string of characters, including the empty string. If
mask is specified, nextNarne is set to the first name following name that matches mask,
and the corresponding value is returned. If value is too small to hold the associated value,
BTree.ValueTooSmall is raised after the leftmost words of the value have been transferred
into value.

BTree.lnsert: PROCEDURE [tree: BTree.Tree, name: LONG STRING, value: BTree.Value] RETURNS
[ok, noRoom: BOOLEAN);

Insert inserts the < name, value> pair into a B-tree. If the name ·is successfully inserted
into the B-tree, ok is returned TRUE and noRoom is returned FALSE. If an entry with that
name already exists in the B-tree, both ok and noRoom are returned FALSE. If the B-tree is
too full to add the new entry, ok is returned FALSE and noRoom is returned TRUE. If value is
larger than the value size associated with this B-tree, BTree.ValueTooSmall is raised after
the leftmost words of the value have been inserted into the B-tree.

Mesa I)t'ogrammet"s Manual

BTree.Make: PROCEDURE [
file: MFile.Handle ~ NIL, valueSize: BTree.ValueSize ~ BTree.defaultValueSize ,
reset: BOOLEAN ~ FALSE] RETURNS [tree: BTree.Treel;

53

Make creates a B-trce. The tile passed to Make is the tile in which a B-tree is located. If
either the tile is newly created (that is, if the first word of the tile is a zero) or if reset is
TRUE, this tile is initialized to an empty B-tree that contains values of size valueSize;
otherwise, the tile is assumed to be a previously created B-tree (and valueSize is ignored).
The tile is enlarged as the B-tree grows, up to 256 pages. The initial tile size may be zero.

If the default value for the tile is used, a data space of256 pages is used to store a new B­
tree. If the client wishes to create a temporary B-tree but does not wish to have the
overhead of a 256-page space, the client should pass in to Make a Pilot temporary file
created with MFile.AcquireTemp.

BTree.Remove: PROCEDURE PROCEDURE [
tree: BTree.Tree, name: LONG STRING, value: BTree.Value) RETURNS [ok: BOOLEAN];

Remove removes the entry name from a B-tree. If the entry was successfully removed, ok
is returned TRUE and the associated value is returned in value. If the entry was not found in
the B-tree, ok is returned FALSE. If value is smaller than the value size associated with this
B-tree, BTree.ValueTooSmall is raised after the leftmost words of the value have been
transferred into value.

BTree.SwapValue: PROCEDURE [
tree: BTree.Tree, name: LONG STRING, oldValue, newValue: BTree.Value]
RETURNS [ok: BOOLEAN];

The SwapValue procedure replaces the value associated with name with newValue. If the
entry was found, ok is returned TRUE and the previous value is returned in oldValue. If the
entry was not found in the B-tree, ok is returned FALSE. If newValue is larger than the
value size associated with this B-tree, the inserted value will be truncated on the right. If
oldValue is smaller than the value size associated with this B-tree, only the leftmost
words of the previous value have been transferred into oldValue. If either or both of these
conditions occur, BTree.ValueTooSmall is raised.

53-3

53 nTI"t~e

53-4

54.1 Types

54

GSort

The GSort interface provides a handy package for sorting arbitrarily large amounts of
data. The client program tells the sort package the maximum and expected size of records
and provides procedures that the sort package can call for reading, writing, and comparing
records. If all of the records can fit in memory, the sort algorithm is an n log n in-core
sort-if not, up to three scratch files are created and a polyphase merge sort is used (see D.
Knuth, "Sorting and Searching," in The Art of Computer Programming, vol. 3, 473-79).
This interface is not exported from Tajo; it is implemented by file
Basies>GSor tlmpl. bed on the release directory.

GSort.CompareProcType: TYPE = PROCEDURE (

p1: LONG POINTER, p2: LONG POINTER) RETURNS (INTEGER);

One of the parameters passed to the sort package is a procedure that can be called with
pointers to two records to compare them. The client program is expected to know how to
compare them and to return an integer value in the following range.

Condition value returned

Record at p1 > Record at p2 >0

Record at p1 < Record at p2 <0

Record at p1 = Record at p2 o

GSort.GetProcType: TYPE = PROCEDURE [p: LONG POINTER) RETURNS (CARDINAL);

Another of the parameters passed to the sort package is a procedure that will be called to
get the input records. The procedure is called with a pointer to a buffer area. It is the
responsibility of the client program to place the input record into the buffer and then
return to the sort package the actual size (in words) of the record read. The maximum
allowable size of input record (and hence the size of the buffer) is specified by the client
program when it calls the procedure GSort.Sort. If the get procedure returns a length larger
than the maximum, the signal GSort.RecordTooLong is raised. (Of course, the client

54·1

54

54-2

GSort

program has already smashed the sort package's heap by writing outside the buffer, so you
should not write programs that routinely expect this signal.)

GSort.PutProcType: TYPE = PROCEDURE [p: LONG POINTER, len: CARDINAL];

Another of the parameters passed to the sort package is a procedure that can be called
with the records in sorted order. This procedure is passed a pointer to the record and the
length that was returned by the get procedure when the record was first introduced to the
sort process. It's not clear how useful the len parameter is, because the client program
probably needs to know the length of records from the pointer to compare them properly.

GSort.Port: TYPE = MACHINE DEPENDENT RECORD [in, out: UNSPECIFIED];

The current version of Mesa does not have a suitable lightweight co-routine mechanism.
The Mesa instruction set, on the other hand, allows co-routine operation of the sort
package. This type is used with appropriate LOOPHOLES for setting up the co-routine
linkage. While the sort package does not require them, co-routines may simplify some
programs that use GSort.

GSort.SortltemPort: TYPE = PORT [len: CARDINAL] RETURNS [p: LONG POINTER];

When the sort package is being run as a co-routine, the SortltemPort is called with the
length of the current input record and returns a pointer to the buffer in which to build the
next input record. To get started, the SortltemPort is LOOPHOLEd into a GSort.Port and its
out field is set to GSort.Sort.

GSort.SortStarter: TYPE = PORT [
nextltem: POINTER TO GSort.SortltemPort,
put: GSort.PutProcType,
compare: GSort.CompareProcType,
expectedltemSize: CARDINAL +- 30, maxltemSize: CARDINAL +-1000,
pageslnHeap: CARDINAL +-100] RETURNS [p: LONG POINTER];

When the sort package is being run as a co-routine with the producer of input records, the
SortltemPort is LOOPHOLEd into a SortStarter to get the sort package started (the out field
of the port must be initialized first). The nextltem parameter is a pointer to the same port
being LOOPHOLEd. This call returns with a pointer to a buffer where the client procedure is
to place the first input record. (The meaning of the other parameters is the same as for
GSort.Sort.)

GSort.SortStopper: TYPE = PORT [len: CARDINAL O];

When the sort package is being run as a co-routine, the SortltemPort is LOOPHOLEd into a
GSort.SortStopper and called to tell the sort package that there are no more input records.
After this call, the put procedure is called with the sorted output records.

Mesa Programmer's Manual 54

54.2 Constants and data objects

None.

54.3 Signals and errors

GSort.RecordToolong: ERROR;

This signal is raised when the get procedure returns a length that is greater than the size
of the buffer. With any luck, the client only clobbered the sort package's heap.

54.4 Procedures

GSort.Sort: PROCEDURE [
get: GSort.GetProcType. put: GSort.PutProcType,
compare: GSort.CompareProcType,
expectedltemSize: CARDINAL ~ 30, maxltemSize: CARDINAL ~ 1000, pageslnHeap:
CARDINAL ~ 100];

The Sort procedure is called to start up the sort package. The client passes in procedures
that are called to obtain input records (get), to compare two records (compare), and to
receive the sorted records (put). The sort package knows nothing about the contents of the
records: it only knows that they will all be not greater than maxltemSize in length (they
need not be of equal length). The amount of memory used for buffers and the tournament
area is specified by pageslnHeap. The package uses the expectedltemSize hint to decide
how to partition its use of memory.

In operation, the get procedure is called for each input record. These records are
maintained in a sorted heap by calling compare. If the heap fills up before get returns a
length of zero, runs of sorted records are written on temporary disk files. When there are
no more input records, get returns a length of zero; put is then called with the sorted
records, which are obtained either from the heap or by merging the scratch files into a
single run. The maximum number of scratch files is three; they are deleted when the
procedure GSort.Sort returns.

The re-entrant procedure G5ort.Sort is also suitably protected by UNWIND catch phrases so
that it cleans up (destroys its heap, deletes its scratch files, etc.) if it terminates
abnormally. For example, the put procedure could raise a signal that is caught by the call
on Sort, which does a CONTINUE.

54.5 Examples

The program fragment below shows how to use GSort to sort a text file alphabetically by
lines.

SortLines: PROCEDURE [in, out: Stream.Handle] =
BEGIN
maxLineLength: CARDINAL = 1000;
maxRecordSize: CARDINAL = 5tring.WordsForString[maxLinelength);

GetLine: GSort.GetProcType =

54-3

54

54-4

GSort

BEGIN
s: LONG STRING = p;
sf+- [length: 0, maxlength: maxLineLength. text:];
DO

c: CHARACTER = Stream.GetChar[in ! Stream.EndOfStream = > EXIT];
String.AppendChar[s, c];
IF c = Ascii.CR THEN EXIT;
ENDLOOP;

IF s.length = 0 THEN RETURN [0]
ELSE RETURN [String.WordsForString[s.length));
END;

Putline: GSort.PutProcType =
BEGIN
s: LONG STRING = p;
block: Environment.Block = [

blockPointer: LOOPHOLE[@s.text],
startlndex: 0,
stoplndexPlusOne: s.length);

Stream.PutBlock[out, block];
END;

Comparelines: GSort.CompareProcType = {
RETURN [String.COmpareStrings[p1, p2]]};

GSort.Sort [
get: GetLine, put: PutLine, compare: CompareLines,
expectedltemSize: String.WordsForString[80],
maxltemSize: maxRecordSize];

END; -- SortLines

It is sometimes inconvenient to write a procedure that can be called for the next input (a
GSort.GetProcType), such as when the data to be sorted might be obtained by enumerating
some complicated tree structure. Such enumerators are easy to write in a recursive
descent manner in which the enumerator calls the sort package whenever it finds a record.
The interface GSort contains type declarations that allow reasonably simple co-routine
execution of the sort package. Below, the same SortLines procedure is written running the
sort package as a co-routine:

SortLines: PROCEDURE [in, out: Stream.Handle] =­
BEGIN
maxLineLength: CARDINAL = 1000;
maxRecordSize: CARDINAL =- String.WordsForString[maxLineLength];
buffer: LONG STRING;

OutToSort: GSort.SortltemPort;

PutLine: GSort.PutProcType =­
BEGIN
5: LONG STRING = p;
block: Environment.Block = [

blockPointer: LOOPHOLE[@s.text],

Mesa Programmer's Manual

startlndex: O.
stoplndexPlusOne: s.lengthJ;

Stream.PutBlock[out. blockJ;
ENO;

CompareLines: GSort.CompareProcType = {
RETURN [String.CompareStrings[p1. p2J]};

-- initialization of the port for co-routine linkage
LOOPHOLE[OutToSort. GSort.PortJ.out.- GSort.Sort;

-- get the sort package started. Its first call of "get" looks like a return of this call
buffer.- LOOPHOLE [OutToSort, GSort.SortStarterJ [

DO

nextltem: @OutToSort.
put: PutLine. compare: CompareLines.
expectedltemSi ze: String.WordsForStri ng[80J,
maxltemSize: maxRecordSizeJ;

buffer i .- [length: 0, maxlength: maxLineLength, text:J;
DO

c: CHARACTER = Stream.GetChar[in ! Stream.EndOfStream = > EXITJ;
String.AppendChar[buffer, cJ;
IF c = Ascii.CR THEN EXIT;
ENDLOOP;

IF buffer. length = 0 THEN EXIT;

-- the sort package thinks this call is a return from "get. " We think its next call
-- of "get" is the return of this call
buffer .- OutToSort[String. WordsForString[buffer .length));
ENDLOOP;

54

-- the sort package thinks this call is a return of 0 from "get. " This call returns when
-- the sort package returns from the "Sort " procedure
LOOPHOLE[OutToSort, GSort.SortStopperJ [J;
END; -- SortLines

54-5

54 GSort

54-6

55.1 Types

55

StringLookUp

The StringLookUp interface provides a facility for looking up an identifier in a list of
names. It is particularly useful for programs that process User. em sections or that permit
users to abbreviate commands.

StringLookUp.GeneratorProcType: TYPE = PROCEDURE [buffer: LONG STRING);

A GeneratorProcType provides a way to get the elements of a list of names, one by one.
The implementor of a GeneratorProcType can assume that buffer is not NIL and that it is
long enough to hold any of the names it generates. Each time the generator is called,
buffer contains the previous name generated; the generator should replace the contents of
buffer with the next name in its list. On the initial call, buffer.length is zero. When the
generator's list is exhausted, it should set buffer. length to zero. The string buffer is owned
by the caller of the generator and should not be deallocated by the generator.

StringLookUp.Table: TYPE = ARRAY OF LONG STRING;

A Table provides a list of names.

StringLookUp.TableDesc: TYPE = LONG DESCRIPTOR FOR StringLookUp.Table;

55.2 Constants and data objects

StringLookUp.ambiguous: CARDINAL = StringLookup.emptyKey· 1;

ambiguous is the index indicating that the look-up key matched more than one of the
names in the list.

StringLookUp.emptyKey: CARDINAL = StringLookUp.noMatch - 1 ;

emptyKey is the index indicating that the look-up key was NIL or had zero length.

StringLookUp.noMatch: CARDINAL = ... ;

55-1

55 StringLookUp

noMatch is the index indicating that the look-up key did not match any of the names.

55.3 Signals and errors

None.

55.4 Procedures

55-2

StringLookup.lnitial: PROCEDURE [key. entry: LONG STRING. caseFold: BOOLEAN +- TRUE]
RETURNS [matchLength: CARDINAL];

The Initial procedure compares two strings and returns the length of their common prefix.
If casefold is TRUE, the case-shift of characters is ignored; that is, lower-case and upper­
case instances of the same character are considered to be equivalent. If casefold is FALSE,
they are considered to be different.

StringLookup.lnitialinternal: PROCEDURE [
key, entry: LONG STRING, maxLength: CARDINAL, caseFold: BOOLEAN +-TRUE]
RETURNS [matchLength: CARDINAL];

This procedure is the internal procedure used to implement Initial. It is provided as an
accelerator in case the client can meet the requirements on the input: the caller must
guarantee that neither key nor entry is NIL and that neither string is longer than
maxLength. If these conditions are not met, the result is undefined and an address fault
may occur. Initiallnternal compares two strings and returns the length of their common
prefix. If casefold is TRUE, the case-shift of characters is ignored; that is, lower-case and
upper-case instances of the same character are considered to be equivalent. If casefold is
FALSE, they are considered to be different.

StringLookup.lnTable: PROCEDURE [
key: LONG STRING, table: StringLookUp. TableDesc, caseFold: BOOLEAN +- TRUE,
nOAbbreviation: BOOLEAN +- FALSE]
RETURNS [index: CARDINAL];

The InTable procedure returns the index of the matching table entry if key matches
exactly one of the entries in table. Otherwise, it returns ambiguous, emptyKey, or
noMatch, as appropriate. If casefold is TRUE, the case-shift of characters is ignored; that is,
lower-case and upper-case instances of the same character are considered to be equivalent.
If casefold is FALSE, they are considered to be different. If nOAbbreviation is TRUE, the
comparison must yield an exact match. If nOAbbreviation is FALSE, key may be a prefix of
the table entry and still match it. If nOAbbreviation is FALSE and key is both the prefix of
one table entry and the exact match of another, the index of the exact match is returned
rather than ambiguous.

StringLookUp.lsPrefix: PROCEDURE [
maybePrefix, string: LONG STRING, caseFold: BOOLEAN +- TRUE]
RETURNS [yes: BOOLEAN];

The IsPrefix procedure indicates whether maybePrefix is a prefix of string. If casefold is
TRUE, the case-shift of characters is ignored; that is, lower-case and upper-case

Mesa Programmer's Manual 55

instances of the same character are considered to be equivalent. If casefold is FALSE, they
are considered to be different. f~ither maybePrefix or string may be NIL.

StringLookUp.UsingGenerator: PROCEDURE [
key: LONG STRING, generator: GeneratorProcType, caseFold: BOOLEAN E- TRUE,
nOAbbreviation: BOOLEAN E- FALSE, bufferBytes: CARDINAL E- 500]
RETURNS [index: CARDINAL];

The UsingGenerator procedure returns the index of the matching entry if key matches
exactly one of the entries in the list generated by generator. Otherwise, it returns
ambiguous, emptyKey, or noMatch, as appropriate. If casefold is TRUE, the case-shift of
characters is ignored; that is, lower-case and upper-case instances of the same character
are considered to be equivalent. If casefold is FALSE, they are considered to be different. If
nOAbbreviation is TRUE, the comparison must yield an exact match. If nOAbbreviation is
FALSE, key may be a prefix of the table entry and still match it. If nOAbbreviation is FALSE
and key is both the prefix of one table entry and the exact match of another, the index of
the exact match is returned rather than ambiguous. bufferBytes indicates the maxiumum
number of characters in any name that will be generated by generator. If generator
generates a name longer than bufferBytes characters, the results are unspecified and are
dependent on the implementation of the client-provided procedure generator.

StringLookUp.UsingGeneratorWithBuffer: PROCEDURE [
key: LONG STRING, generator: GeneratorProcType, caseFold: BOOLEAN E- TRUE,
nOAbbreviation: BOOLEAN E- FALSE, buffer: LONG STRING]
RETURNS [index: CARDINAL];

The UsingGeneratorWithBuffer procedure returns the index of the matching entry if key
matches exactly one of the entries in the list generated by generator. Otherwise, it
returns ambiguous, emptyKey, or noMatch, as appropriate. If casefold is TRUE, the case­
shift of characters is ignored; that is, lower-case and upper-case instances of the same
character are considered to be equivalent. If casefold is FALSE, they are considered to be
different. If nOAbbreviation is TRUE, the comparison must yield an exact match. If
nOAbbreviation is FALSE, key may be a prefix of the table entry and still match it. If
nOAbbreviation is FALSE and key is both the prefix of one table entry and the exact match
of another, the index of the exact match is returned rather than ambiguous. buffer is the
client-provided storage to be passed to generator for buffering the name. If buffer is NIL or
generator generates a name longer than buffer.length characters, the results are
unspecified and are dependent on the implementation of the client-provided procedure
generator.

55.5 Examp~es

The following example demonstrates how the StringLookUp facilities can be used to look
up a (possibly abbreviated) command in a command table:

MyCommands: TYPE = MACHINE DEPENDENT{
alpha(O), beta, gamma, noMatch(StringLookUp.noMatch)};

commandTable: ARRAY MyOptions OF LONG STRING E- [

alpha: "Alpha"L, beta: "Beta"L, gamma: "Gamma"L);
commands: StringLookup.TableDesc = LOOPHOLE[OESCRIPToR[commandTable]];

55-3

55

55-4

StringLook U p

GetCommand: PROCEDURE [command: LONG STRING] RETURNS {index: MyOptions] =
BEGIN

index +- StringLookup.lnTable(key: command, table: commands];
IF index = StringLookUp.ambiguous OR index = Stringlookup.emptyKey THEN

index +- StringlookUp.noMatch;
END;

For a use of the StringlookUp facilities for parsing User. em entries, see the example at
the end of the CmFile chapter.

VII

Program analysis

There is currently one interface to aid in program analysis: OebugUsefulOefs. It is a
public interface that provides access to debugger information. Tools such as the
Performance Tools use OebugUsefulOefs to get information about such things as stack
allocation. A programmer designing a system-monitoring tool may want to use this
interface.

VII.t Interface abstract

OebugUsefulOefs provides access to some of CoPilot's basic debugging utilities and data
structures. It also allows a client to display variables itself instead of using the debugger's
default display routines. This interface is exported only by CoPilot.

VIl-l

VII Program analysis

VII-2

56.1 Types

56

DebugUsefulDefs

The DebugUsefulDefs interface provides access to some of CoPilot's basic debugging
utilities and data structures. Many of these facilities act on data structures in the Mesa
processor. They are provided in this interface for special debugging tools (such as the
performance tools and DebugHeap); contact your local support group to discuss any
application involving these procedures.

In addition, it is the interface to a facility known as Printers. By writing and registering a
Printer, clients can take over the debugger's display of variables of client-defined types
instead of using the default display routines. The client can thus deal with situations that
CoPilot cannot, such as interpreting OVERLAID variant records. It also allows the client to
supress printing of irrelevant record fields.

The client's state can change considerably between invocations of the debugger. Tools that
live inside the debugger should be careful about cacheing information between calls to its
operations; there may be several days between calls, and the debugee need not even be in
the same boot file. The most direct course is to validate the debugee's state on each
operation; for example, call DebugusefulDefs.Frame each time rather than save the global
frame address.

DebugUsefuIDefs.Bits: TYPE = [O .. Environment.bitsPerWord);

This type is used for describing the bit offset in a word for a client variable.

DebugUsefuIDefs.FrameList: TYPE = LONG POINTER TO FrameSeq;

DebugUsefuIDefs.FrameSeq: TYPE = RECORD [
SEQUENCE count: NATURAL OF DebugUsefuIDefs.GFHandle);

DebugUsefuIDefs.GFHandle: TYPE = Princops.GlobaIFrameHandle;

DebugUsefuIDefs.Handle: TYPE = LONG POINTER TO Object;

56-1

56 DebugUsefulDefs

A Handle is a pointer to an object that describes a variable in the client's core image.
Variables have the following interesting properties: type, address, size, and bit offset.
There are procedures in this interface that return a Handle.

DebugUsefuIDefs.Object: TYPE;

The storage for Objects and any values copied into them by ReadValue is owned by the
debugger; it is freed between commands. The BOOLEAN returned is whether or not the
Printer actually displayed the variable; if it is FALSE, CoPilot displays it. A Printer may be
called as either the result of invoking the interpreter or the Di splay S tack command.

DebugUsefuIDefs.Printer: TYPE PROCEDURE (DebugUsefuIDefs.Handle] RETURNS [BOOLEAN);

56.2 Constants and data objects

.DebugusefuIDefs.fileSW: READONL Y Window.Handle;

This is the file subwindow containing Debug. log; it is set to NIL when CoPilot is
deactivated.

DebugUsefuIDefs.window: READONLY Window.Handle;

This is the tool window for CoPilot.

56.3 Signals and errors

56-2

DebugUsefulDefs.lnvalidAddress: ERROR [address: LONG POINTER];

This is raised if a reference to the debugger client's memory is made using one of the READ
or WRITE procedures that would have caused an address fault in the client program.

DebugUsefulDefs.lnvalidFrame: ERROR If: POINTER];

This error may be raised by any procedure that takes either a GlobalFrameHandle or
LocalFrameHandle.

DebugUsefulDefs.lnvalidNumber: ERROR [p: LONG POINTER];

This error may be raised by the interpreter when it has an expression it cannot convert to
a number. The para~eter is used internally by CoPilot.

DebugUsefuIDefs.MultipleFrames: ERROR [list: DebugUsefuIDefs.FrameList);

This error is raised only by Frame if there is more than one instance of a module; the
argument is a sequence of GlobalFrameHandles. The procedure ConfigForFrame may be
used to determine which configurations the frames are in.

DebugUsefuIDefs.NotFound: ERROR (s: LONG STRING];

This is raised whenever the debugger fails in an attempt to look up an identifier; the
argument is the identifier.

Mesa Programmer's Manual 56

DebugUsefuIDefs.UserAborted: SIGNAL;

This is treated the same way as the predefined error, ABORTED; it may be raised by any
procedure if you strike the ABORT key.

DebugUsefuIDefs.WriteProtected: ERROR [page: CARDINAL];

This is raised if a WRITE to the debugger's client memory is made that would have caused a
write-protect fault in the client program.

56.4 Procedures

DebugUsefuIDefs.AddPrinter: PROCEDURE [
type: LONG STRING, proc: DebugUsefuIDefs.Printer];

This procedure allows you to take over display of all variables of a known type; proc is
called whenever a variable of type type is about to be displayed. CoPilot's interpreter
evaluates type at the beginning of each session and remembers the target type of the
result. Unfortunately, type is not a simple type expression, but rather a statement
evaluated by the interpreter; the type is extracted from the result. Any additional information,

such as the address of a variable used when evaluating the statement, is ignored.

A good technique for debugging the string used in the call to AddPrinter is to actually try
it out using the interpreter. For example, all REALS could be intercepted by supplying the
following STRING to AddPrinter: O%(REAL)

DebugUsefuIDefs.ConfigForFrame: PROCEDURE [
gf: DebugUsefuIDefs.GFHandle, config: LONG STRING];

This procedure fills in the name of the configuration containing the GlobalFrameHandle
passed in; it is useful for imding a particular instance of a module that has multiple copies.
It may raise the error InvalidFrame.

DebugUsefuIDefs.Copied: PROCEDURE [DebugUsefuIDefs.GFHandle) RETURNS [BOOLEAN);

This procedure returns TRUE if the frame corresponding to the GFHandle was copied and
FALSE otherwise.

DebugUsefuIDefs.Enumerate: PROCEDURE[
proc: PROCEDURE [DebugUsefuIDefs.GFHandle] RETURNS [BOOLEAN)) RETURNS [
gf: DebugUsefuIDefs.GFHandle); .

This procedure enumerates all GFHandles. The client procedure (proc) can halt the
enumeration by returning TRUE. Enumerate returns the GFHandle that the client stopped
the enumeration on. If the client doesn't stop the enumeration before all GFHahdles are
enumerated, Enumerate returns NIL ..

56-3

56

56-4

DebugUsefulDefs

DebugUsefulDefs.Frame: PROCEDURE [
name: LONG STRING] RETURNS [DebugUsefulDefs.GFHandle];

This procedure looks up the GFHandle that corresponds to name; it is extremely useful for
printers that need things like a BASE POINTER to display complicated data structures. The
following code reads a LONG BASE POINTER out of CoPilot's client, SomeProg:

DIRECTORY
SomeProg USING [basePtr],

MyPrinterlmpl: PROGRAM •.• SHARES SomeProg •
BEGIN
GetBase: PROCEDURE RETURNS [myBase: LONG POINTER) • {

frame: POINTER TO FRAME[SomeProg]

END.

LOOPHOLE[DebugUsefulDefs.Frame["SomeProg"L));
DebugUsefuleDefs.ShortCopyRead[

from: @frame.basePtr, nwords: SIZE[LONGBASEPOINTER].
to: @myBase]};

Frame may raise the errors MultipleFrames and NotFound.

DebugUsefulDefs. GetAdd ress : PROCEDURE [DebugusefulDefs.Handle]
RETURNS [base: LONG POINTER, offset: DebugusefulDefs.Bits, there: BOOLEAN];

This procedure returns the address of a variable. base is its location in memory and offset
may be non-zero if the variable is less than a word long (e.g., inside a record). If there is
TRUE, the base is a pointer in the debugee's core image. The client can ensure that there
will be FALSE by first calling DebugusefulDefs.ReadValue, but should only do so if the variable
is reasonably small.

DebugUsefulDefS.GetSize: PROCEDURE [DebugUsefuIDefs.Handle]
RETURNS [words: CARDINAL, bits: DebugusefulDefs.Bits);

This procedure returns the size of a variable; bits may be non-zero only ifwords is zero.

DebugUsefulDefs.lnterpreter: PROCEDURE [
exp: LONG STRING. results: PROC [DebugUsefulDefs.Handle));

This procedure invokes CoPilot's interpreter on a given string. Any resulting variable is
described by a Handle passed to the results procedure. It may raise any of the errors
defined in this interface.

DebugusefulDefs.Lengthen: PROCEDURE [POINTER] RETURNS [LONG POINTER];

This procedure lengthens a short (MDS-relative) pointer in the debuggee's core image.

DebugUsefulDefs.LongCopyREAD: PROCEDURE [
from: LONG POINTER, nwords: CARDINAL. to: LONG POINTER];

Mesa Programmer's Manual 56

This procedure copies a block of memory from the debuggee's core image. It may raise the
error InvalidAddress or UserAborted.

DebugUsefuIDefs.LongCopyWRITE: PROCEDURE [
from: LONG POINTER, nwords: CARDINAL,10: LONG POINTER];

This procedure writes a block of memory into the debuggee's core image. It may raise the
error InvalidAddress, Wri1ePr01ec1ed, or UserAborted.

DebugUsefuIDefs.LongREAD: PROCEDURE [Ioc: LONG POINTER) RETURNS [val: UNSPECIFIED];

This procedure returns one word from the debuggee's core image. It may raise the error
InvalidAddress or UserAborted.

DebugUsefuIDefs.LongWRITE: PROCEDURE [loc: LONG POINTER, val: UNSPECIFIED];

This procedure writes one word into the debuggee's core image. It may raise the error
InvalidAddress, Wri1ePr01eaed, or UserAborted.

DebugUsefuIDefs.Name: PROCEDURE [
name: LONG STRING, gf: DebugUsefuIDefs.GFHandle];

This procedure appends name with the module name whose GlobalFrameHandle is gf. It
may raise the error InvalidFrame or the signal String.S1ringBoundsFault.

DebugUsefuIDefs.Original: PROCEDURE [
new: DebugUsefuIDefs.GFHandle] RETURNS [old: DebugUsefuIDefs.GFHandle];

This procedure returns a handle for the original (uncopied) frame of which this frame is a
copy. If this frame was not copied, Original returns the GFHandle it was passed.

DebugUsefulDefs.ReadVal ue: PROCEDURE (DebugusefuIDefs.Handle);

This procedure copies a variable described by the Handle from the debuggee's core image
into CoPilot's; it also flXes up the Object to reflect this copying. It should only be used on
variables that are relatively small; large data structures should only be accessed with the
LongREAD and LongCopyREAD procedures. CoPilot keeps these copies in its own heap; any variable

up to about a page in size is safe to copy. The space is freed between commands.

DebugUsefuIDefs.ShortCopyREAD: PROCEDURE [
from: POINTER, nwords: CARDINAL, to: LONG POINTER];

This procedure operates like LongCopyREAD except that it takes a short (MDS-relative)
pointer as the source. CoPilot lengthens the pointer and then performs the operation.

DebugUsefuIDefs.ShortCopyWRITE: PROCEDURE [
from: LONG POINTER, nwords: CARDINAL, to: POINTER];

This procedure operates like LongCopyWRITE except that it takes a short (MDS-relative)
pointer as the destination. CoPilot lengthens the pointer and then performs the operation.

DebugUsefuIDefs.ShortREAD: PROCEDURE [loc: POINTER) RETURNS [val: UNSPEOFIED];

56-5

56

56-6

DebugUsefulDefs

This procedure operates like LongREAD except that it takes a short (MDS-relative) pointer
as the source. CoPilot lengthens the pointer and then performs the operation.

DebugUsefuIDefs.ShortWRITE: PROCEDURE [loc: POINTER, val: UNSPECIFIED];

This procedure operates like LongWRITE except that it takes a short (MDS-relative)
pointer as the destination. CoPilot lengthens the pointer and then performs the operation.

DebugUsefuIDefs.Started: PROCEDURE [GDebugUsefuIDefs.FHandle] RETURNS [BOOLEAN];

This procedure returns TRUE if the module corresponding to the GFHandle has been started
and FALSE otherwise.

DebugUsefuIDefs.StringExpToDecimal: PROCEDURE [exp: LONG STRING]

RETURNS (INTEGER);

This procedure converts an expression to an INTEGER. Any expression may be passed in.
CoPilot invokes its interpreter ifnecessary. It may raise the error InvalidNumber.

DebugUsefulDefs.Stri ngExpToLDeci mal : PROCEDURE [exp: LONG STRING]

RETURNS (LONG INTEGER];

This procedure converts an expression to a LONG INTEGER. It may raise the error
InvalidNumber.

DebugusefuIDefs.StringExpToLNum: PROCEDURE [

exp: LONG STRING, radix: CARDINAL] RETURNS (LONG UNSPECIFIED];

This procedure converts an expression to a long number; it uses radix as the default radix
if one is not explicitly contained in expo It may raise the error InvalidNumber.

DebugUsefuIDefs.StringExpToNum: PROCEDURE [

exp: LONG STRING, radix: CARDINAL) RETURNS IUNSPEOFIED];

This procedure converts an expression to a short number. It may raise the error
InvalidNumber.

DebugusefuIDefs.StringExpToLOctal: PROCEDURE [exp: LONG STRING]

RETURNS (LONG CARDINAL);

This procedure converts an expression to a LONG CARDINAL. It may raise the error
InvalidNumber.

DebugUsefuIDefs.StringExpToOctal: PROCEDURE [exp: LONG STRING] RETURNS (CARDINAL];

"-
This procedure converts an expression to a CARDINAL. It may raise the error InvalidNumber.

DebugUsefuIDefs.Text: Format.StringProc;

This procedure displays text in CoPilot's window (DebugusefuIDefs.fileSW). It may raise the
error UserAborted.

Mesa Programmer's Manual 56

DebugUsefulDefs. Valid: PROCEDURE [DebugUsefuIDefs.GFHandle] RETURNS [BOOLEAN];

This procedure returns TRUE if the GFHandle describes a valid global frame and FALSE
otherwise.

56.5 Sample Printer

Once StackPrinter is loaded in CoPilot, PrintStack is called whenever the debugger wants
to display a StackObject. Since PrintStack understands the format of StackObjects, it can
show the complete contents of a stack, which CoPilot is unable to do because of the zero­
length array. Note the type passed into AddPrinter:

LOOPHOLE [200000B. StackFormat$Stack] t

The constant 2000008 is simply a location that is always mapped; AddPrinter's evaluation of this type does not
actually read or write that location.

-- StackFormat.mesa - Last edit: Keith. October 21,198010:30 PM
Stack Format: DEFINITIONS • {

Stack: TYPE. LONG POINTER TO StackObject;
Stack Object: TYPE • RECORD [

top: CARDINAL +-0,
max: CARDINAL +-0,
overflowed: BOOLEAN +- FALSE,
stack: ARRAY [O .. O} OF CARDINAL]}.

-- StackPrinter.mesa - Last Edited:
-- Keith, October 21, 198010:38 PM
-- Bruce, February 26,19824:05 PM

DIRECTORY
Ascii USING [CR, SP],
DebugUsefulDefs USING [AddPrinter, GetAddress, Handle, LongREAD, ReadValue, Text].
Format USING [Char, Octal, StringProc].
StackFormat USING [Stack];

StackPrinter: PROGRAM IMPORTS DebugUsefulDefs, Format.
BEGIN
PrintRecord: PROC [here, there: StackFormat.Stack] • {

out: Format.StringProc - DebugUsefuIDefs.Text;
IpStack: LONG POINTER TO CARDINAL +- LOOPHOLE[@there.stack];
IF here.top • 0 THEN out["empty "L]
ELSE

FOR i: CARDINAL DECREASING IN [O •• here.top} DO
Format.Octal[out. DebugUsefuIDefs.LongREA~[lpStack + i));
Format.Char[out, Asdi.SP]; -
ENDLOOP;

IF here.overflowed THEN out["(overflow!} "L];
IF here.max • here.top THEN out["(fulll}"L];
Format.Char[out, Ascii.CR]};

PrintStack: PRoc[h: DebugUsefuIDefs.Handle] RETURNS[BOOLEAN] • {
address: StackFormat.Stack = DebugUsefuIDefs.GetAddress[h].base;

56-7

56

56-8

DebugUsefulDefs

DebugUsefuIDefs.ReadValue[h];
PrintRecord[DebugUsefuIDefs.GetAddress[h].base. address};
RETURN[TRUE]};

DebugUsefuIDefs.AddPrinter[
type: "LOOPHOLE[200000B, StackFormat$Stack] til.
proc: PrintStack};

END.

VII 1.2

VIII

Miscellaneous

The TajoMisc chapter describes various facilities, including those to determine whether
the ToolDriver is currently running and to wait a specified number of milliseconds. The
Version interface supports determining the running boot file's version number. These
interfaces are straightforward to use.

Interface abstracts

TajoMisc is a catch-all for public and semi-public Tajo utilities that did not fit logically
into other interfaces.

Version provides the single procedure Append, used by various tools to construct heralds.

VIII-l

VIII Miscellaneous

VIII-2

57.1 Types

57

TajoMisc

The TajoMisc interface is a catch-all for public and semi-public Tajo utilities that did not
fit logically into any of the other interfaces.

None.

57.2 Constants and data objects

TajoMisc.tooIDriverRunning: READONLY BOOLEAN;

toolDriverRunning can be polled to determine if the Tool Driver is currently running.
Tools that can cause destructive changes to a large data base may wish to use this to
restrict their operations when run by the Tool Driver instead of interacti vely by a user.

57.3 Signals and errors

None.

57.4 Procedures

TajoMisc.FindClippingWindow: PROCEDURE [
Window.Handle] RETURNS [Window.Handle];

The FindClippingWindow procedure returns the clipping window of the tool window
associated with some window. This is the only safe way to get at the clipping, because the
clipping window will not be a child of the tool window if the tool is tiny. The argument may
be a tool window, a clipping window, a subwindow, or the root window. If the argument is
the root window, the root is returned.

TajoMisc.GetWindowManagerMenu: PROCEDURE RETURNS [Menu.Handle];

The GetWindowManagerMenu procedure returns the handle for the Window Manager
menu.

57-1

57

57-2

TajoMisc

TajoMisc.Quit: PROCEDURE [powerOff: BOOLEAN ~ FALSE];

The Quit procedure lets a client stop Tajo and all other tools safely. Since access to this
procedure is through the lIeraldWindow's menu, it is expected that calls on this procedure
will be rare. Consult your support personnel before using it.

TajoMisc.SetState: PROCEDURE [
new: UserTerminal.State) RETURNS [old: UserTerminaI.State);

The SetState procedure must be used rather than UserTerminal.SetState to change the state
of the display bitmap because UserTerminal. SetS tate bypasses Tajo with disastrous
consequences.

TajoMisc.SetTooIOriverRunning:PROCEDURE [BOOLEAN);

The SetToolOriverRunning procedure allows you to change the value of
toolOriverRunning. This procedure is provided for use by the Tool Driver. Other clients
should not call this procedure.

TajoMisc.StartClient: PROCEDURE;

The StartClient procedure is an outward call that Tajo makes before starting the Notifier.
Tajo checks to make sure that the procedure is bound before making the call. Clients may
build their own boot files containing a procedure that will satisfy the IMPORT and have
their modules started by Tajo as part of the normal startup sequence.

TajoMisc.WaitMiIIiSecs: PROCEDURE [msec: CARDINAL);

The WaitMiIIiSecs procedure allows a process to do a WAIT for a period of milliseconds
without having to be in a convenient MONITOR. It returns within 1 second if
Userlnput.UserAbort[NIL] is TRUE.

TajoMisc.WaitSecs: PROCEDURE [sees: CARDINAL);

The WaitSecs procedure allows a process to do a WAIT for a period of seconds without
having to be in a convenient MONITOR. It returns within 1 second if
Userlnput.UserAbort[NIL] is TRUE.

58.1 Types

58

Version

The Version interface, which provides the single procedure Append, is used by various
tools to construct heralds.

None.

58.2 Constants and data objects

None.

58.3 Signals and errors

None.

58.4 Proced ures

Version.Append: PROCEDURE [LONG STRING];

The Append procedure appends a version number (five characters long, with no leading or
trailing blanks) to the string passed in. Tools that wish to provide more precise
information about when they were built should use Runtime.GetBcdTime as well. If the
string argument is NIL, no actions will be performed. If the length of the string passed in is
not at least 5 less than the maxLength (that is, ifthere is not enough storage allocated for
appending 5 more characters> the signal String.StringBoundsFault is raised. It will not be
caught in Version.Append.

58-1

58 Vet"sion

58-2

A

ExampleTool

ExampleTool is a tool that illustrates the features and techniques used in writing tools
that run in the Xerox Development Environment. This appendix presents a description of
the important features in ExampleTool as well as a code listing of the ExampleTool
program.

A.I Creation and start-up of ExampleTool

The user interacts with ExampleTool either via the Executive's command line or the
standard tool window interface. To be able to type input to the Executive's command line,
the tool must register a command with the Executive. The call to Exec.AddCommand is
invoked in ExampleTool's initialization procedure (lnit). The proc parameter,
ExampleToolCommand, is responsible for eventually creating the tool window itself.
Although no Executive command line processing is done in ExampleToolCommand, this
would be the logical place to handle it. Some applications look first for command line
input; if there is any, they do not create the tool window. Such applications are operating
under the assumption that the user simply wants to type to the Executive and has no need
for the tool interface.

The unload parameter sent to Exec.AddCommand must destroy the tool window before the
program is unloaded; thus the tool writer cannot use the Executive's defaultUnloadProc.

To create the tool window interface, the procedure TooI.Create is called. Two important
parameters in this call are ClientTransition and MakeSWs. ClientTransition is a procedure
(of type TooIWindow.TransitionProcType) that is called whenever the tool changes state.
MakeSWs is the procedure (of type Tool.MakeSWsProc) responsible for creating the
subwindows and menus provided by the tool.

Since users may wish to use the tool with the ToolDriver, the necessary ToolDriver
registration is performed in the MakeSWs procedure. All tool writers should incorporate
this feature.

A-I

A ExampleTool

;Command!

: Password:

~ReadOnly: Read Only String

jboolean(trueFalSe): {~FALSE}

Vanilla:

Cardinal = 0

~enWlerated(one): {A} enumerated(all) {x, I, z}

Figure 13.1: Example Tool

A.2 Tool states and storage management

A.3 Data

A-2

A tool is always in one of three states: inactive, tiny, or active.

inactive the user is no longer interested in any of the tool's functions. When a tool
enters the inactive state, all the resources it utilized should be released.
Deactivating a tool causes a menu entry for that tool to be placed on the
Inactive menu.

tiny the user is not interested in what the tool displays. When the tiny state is
entered, the resources associated with the display state should be freed.

active the user wants access to the functions provided by the tool. Typically, all the
storage for tool data is allocated when the active state is entered.

Whenever ExampleTool enters a new state, ClientTransition is called; the old state and the
new state are passed to ClientTransition. If the old state is inactive, ClientTransition must
perform the necessary reallocation of storage. Since ExampleTool uses its own heap,
resource allocation involves re-creating ExampleTool's heap and re-allocating its data.
When going to the inactive state, all items allocated from the heap are deallocated in
ClientTransition. Those items include storage allocated for ExampleTool's form
subwindow, its menu, and other global tool data. Once these items are deallocated, the
heap itself is destroyed.

The data needed by ExampleTool is contained within a single record structure. This
enables the necessary storage to be allocated with a single call to heap.NEw. When the tool

Mesa Programmer's Manual A

is deactivated, the storage is freed by a call to heap.FREE, where heap is ExampleTool's
private heap. This technique minimizes the memory used by the tool when it is inactive.

The fields within the record structure storing the tool data must be aligned at word
boundaries. Therefore, this data must be stored in a MACHINE DEPENDENT RECORD. Addresses
must be generated for the locations used to store values of enumerated and boolean items
that are displayed in form subwindows (see "value" in the Enumerated items section and
"switch" in the Boolean items section). Normally. the compiler allocates the minimum
amount of space necessary for these items, and they are not word aligned. This MACHINE
DEPENDENT RECORD allocates an entire word for each boolean and enumerated item.

A.4 Subwindows

ExampleTool uses three types of subwindows: file, message, and form. There are three
other types of subwindows: text, string, and TTY.

tellt

file

string

lieS sage

fora

TTY

subwindows provide a way to view text from a wide variety of sources. The
TextSW interface contains a comprehensive set of facilities for viewing and
manipulating text independent of its source. File and string sub windows are
specific types of text subwindows.

subwindows are text subwindows whose backing store is a disk file. When
creating a file subwindow, the client must specify the name of the file to be
used as the backing store. (Backing store refers to the data object used to hold
the information, typically text, that is displayed.)

subwindows are text subwindows whose backing store is a LONG STRING. When
creating a string sub window , the client specifies the address of the LONG
STRING used as the backing store.

subwindows provide a simple way of posting feedback messages to the user.

subwindows allow the user to indicate parameters, options, and commands
for the tool to process. When creating a form subwindow, the client must
specify a procedure (of type Formsw.ClientltemsProcType) that sets up the
items within the form sub window (see the next section on Form subwindows).

subwindows provide traditional teletype interaction with the user.

When a tool is created, the specified MakeSWsProc is called. Within ExampleTool's
MakeSwProc, subwindows are created by calls to the following Tool interface procedures:
MakeFileSW, MakeMsgSW and MakeFormSW.

A.5 Form subwindows

The call to Tool.MakeFormSW must supply the procedure parameter (of type
Formsw.ClientltemsProcType) specifying the items to be included in the form. In
ExampleTool this procedure is called MakeForm. A procedure of this type must return an
array descriptor; each element within this array is a record describing one of the items in
the form subwindow. In ExampleTool, the variable formltems is declared as a LONG
POINTER TO ARRAY, which eventually is LOOPHOLEd into the base of the descriptor returned by
MakeForm. Although at first glance this seems like a confusing way to build an array

A-3

A

A-4

l<;xampleTool

descriptor, ExampleTool was written this way to allow for indexing with an enumerated
type (Formlndex), which is not only more readable but also simplifies the addition or
deletion of items.

Items within a form subwindow have a "tag" and a "place" (in addition to other fields
within the variant record describing that item). A tag is a client-supplied LONG STRING used
as a label for an item. place is a record that specifies where in the form subwindow an item
is located. place contains two integer fields: x and y. x specifies the number of bits from
the left side of the subwindow that an item is shifted to the right; y specifies the number of
lines from the top of the subwindow that an item is shifted down. [0. 0] places an item in
the upper-left corner of the form subwindow. Each item in a form subwindow must be
located below or to the right of the previous item.

Initial values for items in the form subwindow may be set by reading from the tool's
section of the User.cm. The procedure ProcessUserDotCM in ExampleToollooks for initial
values for enumOne and enumAIl and is called from ClientTransition each time the tool is
activated.

ExampleTool illustrates the use and construction of five principal types of items:
command, string, enumerated, number, and boolean.

A.S.I Command items

Command items enable the tool user to invoke a desired operation by selecting an item
with the mouse. A command item can be created by a call to FormSW.Commandltem. An
important parameter of FormSW.Commandltem is proc. proc is the procedure to be invoked
when the user selects the comand item.

The first element in formltems is a command. When the user selects this command, the
procedure FormSWCommandRoutine is executed. FormSWCommandRoutine forks a
process for CommandRoutine, which is the procedure that does the actual work associated
with the command. In general, command procedures that take a fair amount of time to
execute should be forked. However, for short procedures it is not always worth the extra
synchronization overhead.

Part of the synchronization is accomplished by using facilities in the Supervisor, Event and
EventTypes interfaces. If the command process has been forked, there are two dangers to
guard against while the process is running: a request to deactivate the tool and a request
to swap to or from a debugger volume. ExampleTool registers an agent procedure on the
supervisor event Event.tooIWindow. This notifies ExampleTool whenever any active or
tiny tool window is about to deactivate. CheckDeactive, which is the agent procedure that
gets called when this event happens, flrst checks to see if the window that is about to
deactivate is ExampleTool's. If so, a check on the boolean toolData.commandlsRunning
(maintained in Command Routine) is made to determine whether the command process is
currently running. If the command process is running, the request to deactivate is
aborted; otherwise it is allowed to proceed. Since ExampleTool is interested only in being
notified about deactivation when it is active, the dependency on Event.toolWindow is
added and removed when ExampleTool changes states in ClientTransition.

Protecting the command process from an untimely swap to or from a debugger volume is
accomplished by making a call to Event.StartingProcess upon entry to the process and by
calling Event.DoneWithProcess when the command process has finished doing its work.

Mesa Programmer's Manual A

ThIS will ensure that any request to swap will abort and display the string passed as a
parameter to Event.StartingProcess if the swap request comes during execution of the
command.

A.5.2 String items

String items allow a lIscr to provide textual input. A string item can be created by a call
to Formsw.Stringltem. Five important parametm"s of Formsw.Stringltem are string,
readOnly, feedback, z, and inHeap.

string

readOnly

feedback

Z

inHeap

is a LONG POINTER to the LONG STRING to be used as the backing store for this
item.

is a BOOLEAN. If readOnly is TRUE, the user cannot alter this item. If
readOnly is FALSE, the user can edit this string item.

describes the displayed appearance of characters within the string, either
normal or password. normal means that the characters themselves are
displayed. password means that a "." is displayed in place of each
character.

signifies the heap from which the storage for the string must be allocated.
The value ofz should match the zone initially passed to Tool.MakeFormSW.

is a BOOLEAN used to indicate whether the FormSW interface should
automatically grow the backing string when necessary. If inHeap is TRUE,
FormSW takes care of allocating storage dynamically for the string.
ExampleTool's strings are grown by FormSW.

A.5.3 Enumerated items

Enumerated items allow a user to select from a list of values. An enumerated item can be
created by a call to Formsw.Enumeratedltem. Four important parameters of
Formsw.Enumeratedltem are feedback, value, proc , and choices.

feedback

value

choices

describes how the item is to be displayed; the options are one and all.

all displays all the enumerated item's options (e.g., "tag: {a, b, c}").
Selecting an item within the curly brackets video-inverts that item.

one diplays only the selected item (e.g., "tag: {c}"). Depressing a mouse
chord over the tag displays a menu containing all the allowable options;
selecting an entry from this menu displays that selection.

is the LONG POINTER indicating where the current value of the enumerated
item is to be placed (see choices below).

specifies the options available for an enumerated item. The records
decribing the enumerated options (of type Formsw.Enumerated) contain
two fields: a LONG STRING and a value (of UNSPECIFIED type). The LONG STRING
is used to describe the option; when the option is selected, the value is
stored in the location pointed to by the value parameter described above.

A-5

A "~xampleTool

proc

A.5.4 Number items

(n ExampleTool, a SEQUENCE of Formsw.Enumerated is created. Sequences
are used so that backing storage for the enumerated items can be allocated
from ExampleTool's private heap. Note also that the string associated with
a particular choice is allocated locally, thus minimizing storage
management overhead. To avoid passing the entire array of records, the
choices parameter is actually a DESCRIPTOR of the ARRAY OF
Formsw.Enumerated; therefore the sequence is made into a descriptor to
sutisi(y the type constraints of the FormSW.Enumeratedltem procedure.

The item with the tag "Boolean(TRUE FALSE)" in ExampleTool is an
enumerated item, but a choices array descriptor is not constructed.
(nstead, a call to Formsw.BooleanChoices[] is used. BooleanChoices is a
procedure that returns "choices" appropriate for creating an enumerated
item whose options are TRUE and FALSE.

permits the client to specify a procedure that will be called when the user
selects a value for an enumerated item. ExampleTool does not illustrate
this feature.

N umber items provide a way for clients to solicit arithmetic input. The item whose tag is
"Cardinal" illustrates this feature.

A.5.5 Boolean items

Boolean items are form subwindow items with two possible states: TRUE and FALSE. The
state is toggled when the user selects the item. When a boolean item is TRUE, it is displayed
in inverse video. A boolean item can be created by a call to Formsw.Booleanltem. Two
important parameters of Booleanltem are switch and proc.

switch

proc

is the LONG POINTER indicating where the current value of the boolean item
is to be placed.

permits the client to specify a procedure that will be called when the user
toggles the value of a boolean item. The item in ExampleTool whose tag is
"boolean(video)" illustrates a boolean item that has a proc parameter.

A.6 Menus

A-6

Menus that appear when the user holds both mouse buttons down can be created by a call
to Menu.Make. Menus are normally created in the client procedure that is resposible for
creating subwindows (in ExampleTooI this is procedure MakeSWs).

Three important parameters of Menu. Make are name, strings, and mcrProc.

name

strings

is the name to be placed at the top of the menu.

is a LONG DESCRIPTOR FOR ARRAY OF LONG STRINGS. The array contains the
strings used as menu options. Procedure MakeSWs in ExampleTool

Mesa Programmer's Manual A

illustrates a simple way of creating the array of LONG STRINGS and passing
its descriptor.

mcrProc is the procedure that will be called when the user selects a menu item.

After a menu is created, the client must indicate the window(s) in which it should be
present. This is accomplished by procedure Menu.lnstantiate. :v1enlls may be attached to
the tool window or any of its subwindows. ExampleTool attaches its menu to the form
subwindow.

When a window containing a menu is deactivated, the menu should be removed from that
window and its storage freed. These operations generally occur in the transition procedure
for a tool window before deallocating the tool data record structure. Menu.Uninstantiate
removes a menu from a window, and Menu.Free deallocates the storage associated with it.

A.7 The ExampleTool program

DIRECTORY
CmFiJe USING [

Close, Error, FindSection, Handle, NextValue,
TableError, UserDotCmOpen],

Event USING [DoneWithProcess, Handle, StartingProcess, toolWindow],
EventTypes USING [deactivate],
Exec USING [AddCommand, ExecProc, OutputProc, RemoveCommand],
Format USING (StringProc],

FormSW USING [
AliocateltemDescriptor, BooieanChoices, Booleanltem, ClientltemsProcType,
Commandltem, Destroy, Enumerated, Enumeratedltem.ltemHandle.lineO. line1.
line2, line3.line4. LongNumberltem. NotifyProcType. ProcType. Stringltem].

Heap USING [Create, Delete].
Menu USING [Free. Handle. Instantiate. Make, MCRType. Uninstantiate],

Process USING [Detach. Pause. SecondsToTicks].
Put USING [Line].
Runtime USING [GetBcdTime].
Supervisor USING [

Add Dependency, AgentProcedure. CreateSubsystem, EnumerationAborted.
RemoveDependency. SubsystemHandle].

String USING [AppendString. CopyToNewString].
StringLookUp USING [tnTabie. noMatch. TableDesc].
Time USING [Append. Unpack].
Token USING [FreeTokenString.ltem].
Tool USING [

Create. Destroy. MakeFileSW. MakeFormSW. MakeMsgSW.
MakeSWsProc. Unused Log Name].

ToolDriver USING [Address. NoteSWs. RemoveSWs].
ToolWindow USING [Activate. TransitionProcType].
Version USING [Append].
Window USING [Handle];

A-7

A

A-8

l<~xampleTool

ExampleTool: MONITOR

IMPORTS
CmFile, Event, Exec, FormSW, Heap, Menu, Process, Put, Runtime,
Supervisor, String, StringLookUp, Time, Tool, Token, ToolDriver, ToolWindow,
Version =

BEGIN

---TYPEs
Formlndex: TYPE = {

command, vanilla, password, readOnly, number, boolTF, boolVideo, enumOne,
enumAII};

StringN~mes: TYPE. {vanilla, password, readOnly};
Menulndex: TYPE. {postMessage, aCommand, bCommand};
DataHandle: TYPE = LONG POINTER TO Data;

Data: TYPE = MACHINE DEPENDENT RECORD [
msgSW(O): Window.Handle Eo-NIL,
fileSW(2): Window.Handle Eo- NIL,
formSW(4): Window.Handle Eo-NIL,
< < Note: enumerateds and booleans must be word-boundary
aligned as addresses for them must be generated> >
commandlsRunning(6): BOOLEAN Eo-FALSE,
switch1(7): BOOLEAN Eo-TRUE,
switch2(8): BOOLEAN Eo-TRUE,
enum1(9): Enum1 [a .. c] Eo- a,
enum1Seq(10): LONG POINTER TO EnumSeq Eo-NIL,
enum2(12): Enum2[x .. z] Eo- y,
enum2Seq(13): LONG POINTER TO EnumSeq Eo- NIL,
number(15): LONG CARDINAL Eo- 0,
menu(17): Menu.Handle Eo-NIL.
strings(19): ARRAY String Names OF LONG STRING Eo-ALL[NIL]];

Enum1: TYPE • MACHINE DEPENDENT
{atOl, b, c. noMatch{stringLookup.noMatch)};

Enum1 Options: TYPE • Enum1 [a .• c];
Enum2: TYPE • MACHINE DEPENDENT

{x(O). y. z. noMatch{StringLookUp.noMatch)};
Enum20ptions: TYPE = Enum2[x .. z];
EnumSeq: TYPE. RECORD [seq: SEQUENCE n: CARDINAL OF Formsw.Enumerated];

--Variable declarations

--This data is for minimizing memory use when this tool is inactive
toolData: DataHandle Eo-NIL;
wh: Window.Handle Eo-NIL;
heap: UNCOUNTED ZONE Eo- NIL;
heraldName: LONG STRING Eo-NIL;
inactive: BOOLEAN Eo- TRUE;
agent: supervisor.SubsystemHandle • Supervisor.CreateSubsystem[CheckDeactivate];

Mesa Programmer's Manual

CheckDeactivate: Supervisor.AgentProcedure =
BEGIN
IF event =0 EventTypes.deactivate AND

wh # NIL AND wh = event Data
AND tooiData.commandlsRunning THEN {
put.Line[tooiData.msgSW, "The tool is still processsing a command: aborting

deactivation "L};
ERROR Supervisor.EnumerationAborted};

END;

--Example Tool Menu support routines

MenuCommandRoutine: Menu.MCRType :I

BEGIN
-- Do the tasks necessary to execute a menu command.
mx: Menulndex :I vAL[index];
SELECT mx FROM

postMessage • > put.Line[tooIData.msgSW, "Message posted. "L];
aCommand = > put.Line[tooIData.fileSW, "A Menu command called."L];
ENDCASE • > put.Line[tooIData.fileSW, "B Menu command called. ilL]

END;

--Example Tool FormSW support routines
CommandRoutine: ENTRY PROCEDURE.

BEGIN
handle: Event.Handle +- Event.StartingProcess[

"CommandRoutine in SampleTool is running"L];
toolData.commandlsRunning +-TRUE;
< < The following statement represents 10 seconds of work done
outside the monitor> >
Process.Pa use [Process. SecondsTo Ticks[10));
put.Line[tooIData.fileSW, "The Command Procedure has been called. "L];
toolData.commandlsRunning +-FALSE;
Event.DoneWithProcess[handle] ;
END;

FormSWCommandRoutine: FormSw.ProcType =
BEGIN
--Do the tasks necessary to executf! a form subwindow command.
Process.Detach[FoRK CommandRoutine];
END;

NotifyClientOfBooleanAction: FormSW.NOtifyProcType :I

BEGIN
< < This procedure is called whenever a state change
(user action) occurs to the boolean item of the Form subwindow. > >
put.Line[tooIData.fileSW, "The Boolean Notify Procedure has been called. "L]
END;

ProcessUserDotCM: PROCEDURE =
BEGIN
CMOption: TYPE = MACHINE DEPENDENT {

A

A-9

A

A-lO

ExampleTool

EnumOne(O), EnumAII. noMatch(StringLookUp.noMatch)};
OefinedOption: TYPE = CMOption{EnumOne .. EnumAII);
cmOptionTable: ARRAY OefinedOption OF LONG STRING ~ [

EnumOne: "EnumOne"l. EnumAII: "EnumAII"l];
cmlndex: CMOption;

CheckType: PROCEDURE[h: CmFile.Handle, table: StringLookup.TableOesc]
RETURNs[index: CARDINAL] = CmFile.NextValue;

MyNextValue: PROCEDURE[
h: CmFile.Handle,
table: LONG DESCRIPTOR FOR ARRAY OefinedOption OF LONG STRING]
RETURNS [index: CMOption] .. LOOPHoLE[CheckType];

TranslateValueToEnum1: PROCEDURE[
key: LONG STRING, table: LONG DESCRIPTOR FOR ARRAY
Enum10ptions OF LONG STRING, caseFold: BOOLEAN ~TRUE,
noAbbreviation: BOOLEAN ~FALSE]
RETURNS [index: CARDINAL] .. LOOPHOLE[StringLookUp.lnTable];

TranslateValueToEnum2: PROCEDURE[
key: LONG STRING, table: LONG DESCRIPTOR FOR ARRA Y
Enum20ptions OF LONG STRING, caseFDld: BOOLEAN ~ TRUE,
noAbbreviation: BOOLEAN ~FALSE]
RETURNS [index: CARDINAL] = LOOPHOLE[StringLookUp.lnTable);

cmFile: CmFile.Handle ~CmFile.UserOotCmOpen[
!CmFile.Error .. > IF code .. fileNotFound THEN GO TO return);

IF CmFile.FindSection[cmFile, "ExampleTool"L] THEN
00

SELECT
(cmlndex ~ MyNextValue[h: cmFile, table: DESCRIPTOR[cmOptionTable]

! CmFile.TableError .. > RESUME]) FROM
no Match .. > EXIT;
EnumOne = > BEGIN

enum1Table: ARRAY Enum10ptions OF LONG STRING ~ [
a: "a"L, b: "b"L, c: "c"L];

e1lndex: Enum10ptions;
value: LONG STRING .. Token.ltem[cmFile];
SELECT e11ndex ~ VAL[TranslateValueToEnum1 [

value, DESCRIPTOR[enum1Table), FALSE, TRUE)) FROM
no Match .. > NULL;
ENDCASE .. > toolOata.enum1 ~e1Index;

[] ~ Token.FreeTokenString[value);
END;

EnumAIl = > BEGIN
enum2Table: ARRAY Enum20ptions OF LONG STRING ~ [

x: "x"l, y: "y"L. Z: "z"L);
e2lndex: Enum20ptions;
value: LONG STRING = Token.ltem[cmFile];
SELECT e21ndex ~ VAL[TranslateValueToEnum2[

Mesa Programmer's Manual

value, DESCRIPTOR[enum2Table], FALSE, TRUE]] FROM
noMatch :I > NULL;

ENDCASE = > toolData.enum2 +- e2lndex;
[] +- Token.FreeTokenString[value];
END;

ENDCASE;
ENDlOOP;

[] +-CmFile.Close[cmFile];
EXITS return = > NUll;
END;

ClientTransition: Toolwindow.TransitionProcType :I

< < This procedure is called whenever the tool's state is undergoing a
user-invoked transition.
This procedure demonstrates a technique that minimizes the memory
requirements for an inactive tool. > >
BEGIN
SELECT TRUE FROM

old :II inactive = >
BEGIN

IF heap .. NIL THEN InitHeap[];
IFtoolData :II Nil THEN tool Data +- heap.NEw[Data +- []];
ProcessUserDotCM[] ;
inactive +-FALSE;
END;

new:l inactive :I >
BEGIN

A

Supervisor. RemoveDependency[cI ient: agent, implementor: Event. toolWi ndow];
IF tool Data # NIL THEN BEGIN

Formsw.Destroy[tooIData.formSW);
Menu.Uninstantiate[menu: tooIData.menu, window: tooIData.formSW);
Menu.Free[tooIData.menu);
heap.FREE[@tooIData);
heap.FREE[@heraldName);
END;

IF heap # NIL THEN Kill Heap[];
ToolDriver .RemoveSWs[tool: "ExampleTool"L];
inactive +-TRUE;
END;

ENDCASE
END;

Help: Exec.ExecProc :I

BEGIN
OutputProc: Format.StringProc +-Exec.OutputProc[h];
OutputProc[

"This command activates the ExampleTool window. The ExampleTool is an
example of a 'Tool' that runs in Tajo.lt demonstrates the use of a comprehensive set of

A-II

A

A-12

ExampleTool

commonly used Tajo facilities. Specifically we present examples of the definition,
creation, use, and destruction of the following:

Windows and subwindows, Menus. Msg subwindows, Formsubwindows and File
subwindows"L];

END;

Unload: Exec.ExecProc =
BEGIN
IF wh # NIL THEN Tool.Destroy [wh];
wh +-NIL;
[] +- Exec.RemoveCommand[h, "Example Tool.- "L];
END;

InitHeap: PROCEDURE == INLINE
BEGIN
heap +-Heap.Create[initial: 1];
END;

KillHeap: PROCEDURE == INlINE
BEGIN
Heap.Delete[heap);
heap+-Nll;
END;

Init: PROCEDURE ==
BEGIN
Exec.AddCommand["ExampleTool.-"L. ExampleToolCommand, Help, Unload);
END;

MakeHeraldName: PROCEDURE ==

BEGIN
tempName: LONG STRING +- heap.NEw[StringBody [60));
String.AppendString [tempName, "Example Tool ilL];
Version.Append[tempName);
String.AppendString[tempName, II of ilL);
Time.Append[tempName, Time.Unpack[Runtime.GetBcdTime []]];
tempName.length +- tempName.length - 3; - gun the seconds
heraldName +- String.CopyToNewString[tempName, heap];
heap.FREE[@tempName];
END;

MakeTool: PROCEDURE RETURNS[wh: Window.Handle] ==

BEGIN
RETURN[Tool.Create[
makeSWsProc: MakeSWs, initialState: default,
dientTransition: ClientTransition, name: heraldName,
cmSection: "ExampleTool"L, tinyName1: "Example"L, tinyName2: "Tool"L]]
END;

Mesa Programmer's Manual

ExampleToolCommand: Exec.ExecProc =
BEGIN
IF heap = NIL THEN InitHeap[];
IF heraldName = NIL THEN MakeHeraldName[];
IF (wh # NIL) AND inactive THEN TooIWindow.Activate[wh)
ELSE IF wh = NIL THEN wh +- MakeTool[];
END;

MakeForm: FormSW.ClientltemsProcType =
BEGIN
OPEN FormSW;
--This procedure creates a sample FormSW.
formltems: LONG POINTER TO ARRAY Formlndex OF Formsw.ltemHandle +-NIL;
toolData.enum1 Seq +- heap.NEw[EnumSeq[3]];
toolData.enum2Seq +- heap.NEw[EnumSeq[3]];
toolData.enum1 Seq[O) +- ["A "L, Enum1.a];
toolData.enum1 Seq[1] +- ["B"L, Enum1.b);
toolData.enum1 Seq[2] +- ["C"L, Enum1.c);
tooIData.enum2Seq(0) Eo- ["X"L, Enum2.x];
tooIData.enum2Seq(1) Eo- ["Y"L, Enum2.y);
tool Data.enum2Seq(2) Eo- ["Z"L, Enum2.z];
tooIData.strings[vanilla] Eo- tooIData.strings[password] Eo- NIL;
tooIData.strings[readOnly] Eo-String.CopyToNewString[

"Read Only String"L, heap];
items Eo- AllocateltemDescriptor[nltems: Formlndex.LAsT.ORD + 1, z: heap];
formltems Eo- LOOPHOLE[BAsE[items]];
formltems· Eo- [

command: Commandltem[

A

tag: "Command"L, place: [0, lineO]. z: heap, proc: FormSWCommandRoutine],
vanilla: Stringltem[

tag: "Vanilla"L, place: [200, IineO], z: heap, string: @tooIData.strings[vanilla].
inHeap: TRUE}.

password: Stringltem[
tag: "Password"L, place: [0, line1}, z: heap,
string: @tooIData.strings[password],
feedback: password. inHeap: TRUE].

readOnly: Stringltem[
tag: "ReadOnly"L, place: [0, line2]. z: heap,
string: @tooIData.strings[readOnly),
readOnly: TRUE. inHeap: TRUE].

number: LongNumberltem[
tag: "Cardinal"L, place: [200.line2]. z: heap, value: @tooIData.number.
notNegative: TRUE, signed: FALSE).

boolTF: Enumeratedltem[
tag: "boolean(trueFalse)"L, place: [0, line3], z: heap. feedback: all.
value: @tooIData.switch1,copyChoices: FALSE. choices: BooleanChoices[]],

boolVideo: Booleanltem[
tag: "boolean(video)"L, place: [250, line3]. z: heap,
switch: @tooIData.switch2,
proc: NotifyClientOfBooleanAction),

enumOne: Enumeratedltem[
tag: "enumerated(one)"L, place: [0, line4), z: heap, feedback: one,

A-13

A

A-14

l<~xampleTool

value: @tooIData.enum1,copyChoices:TRuE.
choices: DESCRIPTOR{tooIData.enum1Seq"JJ.

enumAII: Enumeratedltem{
tag: "enumerated(all)"L, place: (175, line4]. z: heap, feedback: all.
value: @tooIData.enum2, copyChoices: TRUE,
choices: DESCRIPTOR[tooIData.enum2Seq "J]];

heap.FREE[@tooIData.enum1Seq];
heap.FREE[@tooIData.enum2Seq];
RETuRN[items: items, freeDesc: TRUE]
END;

MakeSWs: Tool.MakeSWsProc =
BEGIN
logName: STRING +- [40);
addresses: ARRA Y [0 •. 3) OF TooIDriver.Address;
menuStrings: ARRAY Menulndex OF LONG STRING +- (
postMessage: "Post message"L. aCommand: "A Command"L,
bCommand: "B Command"L];
toolData.menu +- Menu.Make[
name: "Tests"L. strings: DESCRIPToR[menuStrings.BAsE. menuStrings.LENGTH).
mcrProc: MenuCommandRoutine);
TooI.UnusedLogName[unused: logName. root: "Example.log"L);
toolData.msgSW +-TooI.MakeMsgSW[window: window];
toolData.formSW +-TooI.MakeFormSW[window: window, formProc: MakeForm.

zone: heap];
toolData.fileSW +-Tool.MakeFileSW[window: window. name: 10gName];
Menu.lnstantiate[tooIData.menu, too/Data. formSW];
Supervisor.AddDependency[client: agent, implementor: Event.tooIWindow);
--do the Too/Driver stuff
addresses +- [

[name: "msgSW"L, sw: tooIOata.msgSW),
[name: "formSW"L. sw: tooIData.formSW).
[name: "fileSW"L. sw: tooIData.fileSW]];

TooIDriver.NoteSWs[too/: "ExampleTool"L, subwindows: DESCRIPTOR[addresses]]
END;

--Mainline code
Init[];
END.

B

References

The following documents should be studied before or in conjunction with this manual:

• Mesa Language Manual, Version 3.0. [November 1984).

• XDE User's Guide. [November 19841.

• Pilot Programmer's Manual, Version 3.0. [November 19841.

In addition, any other documentation accompanying a release of Mesa should be consulted
before you write Mesa programs. A list of this documentation can be found in the release
change summary.

B-1

B References

B-2

c

Listing of Public Symbols

-- PUBLIC SYMBOLS FOR
-- AddressTrans/ation Answer Ascii AsciiSink Atom Authenticator Backstop

BackstopNub BandBL T BitBlt BlockSource BodyDefs BTree ByteBlt Caret CH Checksum
CHLookup CHPIDs CmFile CommOnlineDiagnostics CommonSoftwareFile Types Context
Courier Cursor Date DebuggerHacks DebugUsefulDefs Device DeviceTypes Dialup
DiskSource Display Environment Event EventTypes Exec Expand ExpeditedCourier
ExtendedString File FileExtras FileName FileSW FileTransfer File Types FileWindow
Floppy F/oppyChannel Fonts Format FormatPi/otDisk FormatPiiotDiskExtras FormSW
GSort Heap HeraldWindow Inline JLevellVKeys Keys KeyStations LevellllKeys
LevellVKeys LexiconDefs LibrarianUtility Log LogFile LsepFace MailParse MDSStorage
MemoryStream Menu MFile MFi/eProperty MLoader MoreCH MSegment MsgSW
MStream MVo/ume NetworkStream NSAddr NSAssignedTypes NSConstants
NSDataStream NSFile NSName NSPrint NSSegment NSSessionContro/ NSString
NSTimeServer NSVolumeContro/ ObJAlloc OnlineDiagnostics OthelloOps
PacketExchange PageScavenger PerformancePrograms Performance Too/File Types
Physica/Vo/ume PieceSource Pi/otClient Pi/otSwitches Pi/otSwitchesExtraExtraExtras
PilotSwitchesExtraExtras PilotSwitchesExtras PrincOps Process Profile
Protoco/Certification Put RavenFace Rea/ Rea/Fns RemoteCommDiags RetrieveDefs
Router RS232C RS232CControi RS232CCorrespondents RS232CEnvironment Runtime
Scavenger ScavengerExtras ScratchSource ScratchSW Scrollbar Selection SendDefs
Space SpaceUsage SpaceUsageExtras SpyClient Storage Stream String StringLookUp
StringSource StringSW Supervisor SupervisorEvent/ndex SupervisorEventlndexExtras
System TajoMisc TemporaryBooting TextBlt TextData Te?CtSink TextSource TextSW
Time TimeServerLog TIP Token Too/ Too/Driver Too/Font Too/Window TTY TTYPort
TTYPortEnvironment TTYSW Userlnput UserTermina/ UserTermina/Extras Version
Volume VolumeConversion Window WindowFont Zone

A 10: --KeyStations-- Bit = 108;
A 11: --KeyStations-- Bit = 110;
A 12: --KeyStations-- Bit = 111;
A 1: --KeyStations-- Bit = 50;
A2: --KeyStations-- Bit = 31;
A3: --KeyStations-- Bit = 72;
A4: --KeyStations-- Bit = 60;
A5: --KeyStations-- Bit = 57;
A6: --KeyStations-- Bit = 76;
A7: --KeyStations-- Bit = 73;
A8: --KeyStations-- Bit = 88;
A9: --KeyStations-- Bit = 86,

C-l

c

C-2

Listing of Public Symbols

Abort: --fxec- PROCEDURE RETURNS [error: ERROR);
Abort: --NSDataStream-- PROCEDURE [stream: Handle);
Abort: --Process-- PROCEDURE [process: UNSPECIFIED];
AbortCall: --Dialup-- PROCEDURE [dialerNumber: CARDINAL];
Aborted: --NSDataStream- ERROR;
abortedSearchPathChange: - EventTypes-- Supervisor. Event;
AbortPending: --Process-- PROCEDURE RETURNS [abortPending: BOOLEAN];
AbortProcType: --Expand-- TYPE = PROCEDURE RETURNS [BOOLEAN];
abortSession: --EventTypes-- Supervisor .Event;
aboutToAbortSession: --EventTypes-- Supervisor. Event;
aboutToBoot: --EventTypes-- Supervisor. Event;
aboutToBootPhysicalVolume. --EventTypes-- Supervisor. Event;
aboutToChangeSearchPath: --EventTypes-- Su pervisor. Event;
aboutToCloseVol ume: --EventTypes-- Supervisor. Event;
aboutToOpenVolume: --EventTypes-- Supervisor. Event;
aboutToResume: --EventTypes-- Supervisor_Event;
aboutToSwap: --Event-- READONLY Supervisor.SubsystemHandle;
Access: --FileSW-- TYPE = TextSource.Access;
Access: --MFile-- TYPE = MACHINE DEPENDENT{

anchor, readOnly, readWrite, writeOnly, log, delete, rename, null};
Access: --NSFile-- TYPE = PACKED ARRAY AccessType OF BooleanFalseDefault;
Access: --TextSource-- TYPE = {read, append, edit};
Access: --TextSW-- TYPE = TextSource.Access;
AccessEntries: --NSFile-- TYPE = LONG DESCRIPTOR FOR ARRAY CARDINAL OF

AccessEntry;
AccessEntry: --NSFile-- TYPE = MACHINE DEPENDENT RECORD [

key(O:O .. 63): String,
type(4:0 .. 15): AccessEntryType,
access(S:O .. 15): Access];

AccessEntryType: --NSFile-- TYPE = {individual, alias, group, other};
accessList: --NSAssignedTypes-- AttributeType = 19;
AccessList: --NSFile-- TYPE = MACHINE DEPENDENT RECORD [

entries(O:O .. 47): AccessEntries Eo- NIL, defaulted{3:0 .. 15): BOOLEAN Eo- FALSE];
accessOffset: --PrincOps-- CARDINAL = 2;
AccessProblem: --NSFile-- TYPE = MACHINE DEPENDENT{

accessRightslnsufficient, accessRightslndeterminate, fileChanged, fileDamaged,
filelnUse, fileNotFound, fileOpen, fileNotLocal, volumeNotFound};

AccessProcs: --RetrieveDefs-- TYPE = RECORD [
nextMessage: PROCEDURE [handle: Handle]

RETURNS [msgExists: BOOLEAN, archived: BOOLEAN, deleted: BOOLEAN],
nextltem: PROCEDURE [handle: Handle] RETURNS [BodyDefs.ltemHeader1,
nextBlock: PROCEDURE [handle: Handle, buffer: Environment.Block]

RETURNS [bytes: CARDINAL],
accept: PROCEDURE [handle: Handle],
extra: SEI..ECT type: ServerType FROM

MTP = > NULL,
GV = > [

readTOC: PROCEDURE [handle: Handle, text: LONG STRING],
startMessage: PROCEDURE [

handle: Handle, postmark: LONG POINTER TO BodyDefs.Timestamp Eo- NIL,
sender: BodyDefs.RName Eo- NIL, returnTo: BodyDefs.RName Eo- NIL],

writeTOC: PROCEDURE [handle: Handle, text: LONG STRING],
deleteMessage PROCEDURE [handle: Handle]],

ENDCASE];
AccessType: --NSFile . TYPE.:: MACHINE DEPENDENT{

read, write, owner, add, remove};

Mesa Programmer's Manual.

ACLFlavor: --MoreCH-- TYPE = MACHINE DEPENDENT{
readers, value, administrators, self Controllers, (177777B)};

Acquire: --Context-- PROCEDURE [type: Type, window: Window. Handle]
RETURNS [Data];

Acquire: --MFile-- PROCEDURE [
name: LONG STRING, access: Access, release: ReleaseData,
mightWrite: BOOLEAN Eo- FALSE, initialLength: Initial Length Eo- dontCare,
type: Type Eo- unknown] RETURNS [Handle];

AcquireBcd: --DebuggerHacks-- PROCEDURE [
info: LoadStateFormat.Bcdlnfo, space: LONG POINTER TO Space. Interval] ,
RETURNS [success: BOOLEAN];

AcquireTemp: --MFile-- PROCEDURE [
type: Type, initial Length: Initial Length Eo- dontCare,
volume: Volume.ID Eo- Volume.nuIlID] RETURNS [Handle];

Action: --Caret-- TYPE = MACHINE DEPENDENT{
clear, mark, invert, start, stop, reset, firstFree, last(255)};

Action: --PageScavenger-- TYPE = {
fixDataCRCError, fixHardware, boot, IvScavenge, pVScavenge};

Action: --TextSink-- TYPE = {destroy, sleep, wakeup};
Action: --TextSource-- TYPE = {destroy, mark, sleep, truncate, wakeup};
ActionResult: --TextSink-- TYPE = {ok, bad};
actionToWindow: --TIP-- PACKED ARRAY Keys.KeyName OF BOOLEAN;
activate: --EventTypes-- Supervisor. Event;
Activate: --MSegment-- PROCEDURE [segment: Handle];
Activate: --TooIWindow-- PROCEDURE [window: Handle];
ActOn: --Caret-- PROCEDURE [Action];
ActOn: --TextSink-- ActOnProc;
ActOn: --TextSource-- ActOnProc;
ActOnProc: --TextSink-- TYPE = PROCEDURE [sink: Handle, action: Action]

RETURNS [ActionResult];
ActOnProc: --TextSource-- TYPE = PROCEDURE [source: Handle, action: Action];
Add: --NSSegment-- PROCEDURE [

file: NSFlle.Handle, segment: 10, size: PageCount,
session: Session Eo- nuIlSession];

AddAlias: --CH-- PROCEDURE [
cred: Authenticator.Credentials, ver: Authenticator.Verifier, name: Name,
newAliasName: Name, distingName: Name] RETURNS [rc: ReturnCode];

AddCommand: --Exec-- PROCEDURE [
name: LONG STRING, proc: ExecProc, help: ExecProc Eo- NIL,
unload: ExecProc Eo- DefaultUnloadProc, clientData: LONG POINTER Eo- NIL];

AddDistinguishedName: --CH-- PROCEDURE [
cred: Authenticator.Credentials, ver: Authenticator.Verifier, name: Name,
distingName: Name] RETURNS [rc: ReturnCode];

AddDomainAccessMember: --MoreCH-- PROCEDURE [
cred ~ Authenticator. Credential s, ver: Authenticator. Veri fier,
element: cH.Element, domain: cH.Name, ad: ACLFlavor]
RETURNS [rc: cH.ReturnCode],

AddGroupMember: --CH-- PROCEDURE [
cred: Authenticator.Credentials, ver: Authenticator.Verifier,
element: Element, name: Name, pn: PropertylD, distingName: Name]
RETURNS [rc: ReturnCodel;

AddGroupProperty: --CH-- PROCEDURE [
cred: Authenticator.Credentials, ver: Authenticator. Verifier, name: Name,
pn: PropertylD, elementEnumerator: EnumerateNewGroupElements Eo- NIL,
distingName: Name) RETURNS [rc: ReturnCodel;

AddlnfinityNaN: --Real·- LONG CARDINAL = 3;

c

C-3

c

C-4

Listing of Public Symbols

AddNotifyProc: --MFile-- PROCEDURE [
proc: NotifyProc, filter: Filter, clientlnstanceData: LONG POINTER);

AddOrgAccessMember: --MoreCH-- PROCEDURE [
cred: Authentlcator.Credentials, ver: Authenticator.Verifier,
element: cH.Element, org: cH.Name, acl: ACLFlavor}
RETURNS [rc: cH.ReturnCode};

AddPrinter: --DebugUsefu/Defs-- PROCEDURE [type: LONG STRING, proc: Printer];
AddProperty: --MFi/e-- PROCEDURE [

file: Handle, property: Property, maxLength: CARDINAL);
AddPropertyAccessMember: --MoreCH-- PROCEDURE [

cred: Authentlcator.Credentials, ver: Authenticator. Verifier,
element: cH.Element, name: cH.Name, pn: cH.PropertylD, acl: ACLFlavor,
distingName: cH.Name] RETURNS [rc: cH.ReturnCode];

Address: --MSegment-- PROCEDURE [segment: Handle] RETURNS [LONG POINTER];
Address: --NSAddr-- TYPE = LONG DESCRIPTOR FOR ARRAY CARDINAL OF

System. NetworkAddress;
Address: --Too/Driver-- TYPE = RECORD [name: LONG STRING, sw: Window. Handle];
AddressDescriptor: --Too/Driver-- TYPE = LONG DESCRIPTOR FOR ARRAY CARDINAL OF

Address;
AddressToRhs: --NSAddr-- PROCEDURE [address: Address} RETURNS [rhs: CH.Buffer};
AddresstoSegment: --MSegment-- PROCEDURE [pointer: LONG POINTER]

RETURNS [Handle];
AddrList: --ExpeditedCourier-- TYPE = LONG POINTER TO Add rObj ect;
AddrObject: --ExpeditedCourier-- TYPE = RECORD [

next: AddrList, address: System.NetworkAddress];
AddSegment: --Zone-- PROCEDURE [

zH: Handle, storage: LONG POINTER, length: BlockSize]
RETURNS [sH: SegmentHandle, s: Status];

AddSelf: --CH-- PROCEDURE [
cred: Authenticator.Credentials, ver: Authenticator.Verifier, name: Name,
pn: PropertylD, distingName: Name] RETURNS [rc: ReturnCode);

AddString: --LexiconDefs-- PROCEDURE [LONG STRING];
AddThisSW: --Tool-- PROCEDURE [

window: Window. Handle, sw: Window. Handle, swType: SWType ~ predefined,
nextSW: Window. Handle ~ NIL, h: INTEGER ~ 0];

AddToListOflDs: --LibrarianUtility-- PROCEDURE [
id: librarian.LibjectlD, ids: IDArrayHandle] RETURNS [BOOLEAN};

AddValueProperty: --CH-- PROCEDURE [
cred: Authenticator.Credentials, ver: Authenticator.Verifier, name: Name,
pn: PropertylD, rhs: Buffer, distingName: Name] RETURNS [rc: ReturnCode);

Adjust: --FormSW-- TooIWindow.AdjustProcType;
Adjust: -TextSW-- TooIWindow.AdjustProcType;
AdjustProcType: --TooIWindow-- TYPE = PROCEDURE [

window: Handle, box: Box, when: When];
AdobeReportSortTime: --MFi/eProperty-- MFile.Property;
AdvanceBand: --RavenFace-- PROCEDURE [currentBand: Index]

RETURNS [nextBand: Index, nextBandAddress: BandPointer];
alias: --CHPIDs-- cH.PropertylD = 1;
AliasCommand: --Exec-- PROCEDURE [old: LONG STRING, new: LONG STRING}

RETURNS [ok: BOOLEAN];
aliases: --CHP/Ds-- cH.PropertylD = 2;
AlignedBandBl TTable: --BandBLT-- PROCEDURE lip: POINTER TO BBTableSpace}

RETURNS [b: BandBL TTablePtr];
AlignedBBTable: --BitB/t- PROCEDURE lip: POINTER TO BBTableSpace)

RETURNS [b:BBptr];

Mesa Programmer's Manual

AlignedTextBltArg: --TextS/t-- PROCEDURE (ip: POINTER TO TextBltArgSpace)
RETURNS [p: POINTER TO TextBltArg);

Alignment: --Zone-- TYPE = {a 1, a2, a4, as, a 16};
AList: --Atom-- TYPE = LONG POINTER TO OPCell +- NIL;
all: -CHPIDs-- CH. Propertyl 0 = 0;
allControlSelections: --NSFile-- ControlSelections;
All Exceptions: --Real-- ExceptionFlags;
all ExtendedSelections: --NSFile- READONL y ExtendedSelections;
allExtendedSelectionsRepresentation: --NSFile-- ARRAY (0 .. 0) OF

ExtendedA ttri bute Type;
alii nterpretedSel ecti ons: --NSFile-- I nterpretedSel ecti ons;
Allocate: --ObjAlloc-- PROCEDURE [

pool: AllocPoolOesc, count: ItemCount, willTakeSmaller: BOOLEAN +- FALSE]
RETURNS [interval: Interval];

AliocateBands: -RavenFace-- PROCEDURE [
bandVirtualPageNumber: Environment.PageNumber, nBands: BandBufferCount,
sizeEachBand: Environment.PageCount, slop: Environment.PageCount];

AliocateltemDescriptor: --FormSW-- PROCEDURE [
nltems: CARDINAL, z: UNCOUNTED ZONE +- NIL] RETURNS (ItemDescriptorj;

AliocateListOflDs: --Librar;anUtifity-- PROCEDURE [maxi Os: CARDINAL]
RETURNS [IOArrayHandle];

AllocationPool: --ObjAlloc-- TYPE = PACKED ARRAY [0 .. 0) OF AllocFree;
AllocationVector: --PrincOps-- TYPE = ARRAY FSlndex OF AVltem;
AllocFree: --ObjAlloc-- TYPE = MACHINE DEPENDENT{free, alloc};
AllocPoolDesc: --ObjAlloc-- TYPE = RECORD [

allocPool: LONG POINTER TO AliocationPool, poolSize: ItemCount);
AllocTag: --PrincOps-- TYPE = {frame, empty, indirect, unused};
AllocVFN: --FileName-- PROCEDURE [LONG STRING) RETURNS [VFN];
allSelections: --NSFile-- READONL Y Selections;
AlmostEqual: --ReaIFns-- PROCEDURE [y: REAL, x: REAL, distance: [-126 .. 0]]

RETURNS [BOOLEAN);
AlmostZero: --ReaIFns-- PROCEDURE [x: REAL, distance: [-126 .. 127))

RETURNS [BOOLEAN];
Alphabetic: --Token-- FilterProcType;
AlphaNumeric: -Token-- FilterProcType;
AlreadyFormatted: --Floppy-- SIGNAL [IabelString: LONG STRING);
AlreadyFreed: -ObjAlloc-- ERROR [item: Itemlndex];
altLO: --ProtocoICertification-- Stage;
altL 1: --ProtocoICertification-- Stage;
AlwaysConfirm: --Hera/dWindow- ConfirmProcType;
AnnounceStream: --NSDataStream-- PROCEDURE [cH: Courier. Handle);
AnonymousBackingFileSize: --PilotSwitches-- TYPE = PilotOomainC [173C .. 175C];
anyEthernet: --Device Types-- Device. Type;
anyPilotOisk: --Device Types-- Device. Type;
~ppend: --Time-- PROCEDURE (

s: LONG STRING, unpacked: Unpacked, zone: BOOLEAN +- FALSE,
zoneStandard: TimeZoneStandard +-ANSI];

Append: --Version-- PROCEDURE (LONG STRING);
AppendBrokenMessage. -·HeraldWindow-- PROCEDURE [

msg1: LONG STRING +- NIL, msg2: LONG STRING +- NIL, msg3: LONG STRING +- NIL,
newline: BOOLEAN +- TRUE, clearOld: BOOLEAN +-TRUE);

AppendChar: --MDSStorage-· PROCEDURE [p: POINTER TO STRING, c: CHARACTER];
AppendChar: --TTYSW-- PROCEDURE [sw: Window. Handle, char: CHARACTER];
AppendCharacter: --NSString·· PROCEDURE [to: String, from: Character]

RETURNS (String);
AppendCommands: ·-Exec-- PROCEDURE [h: Handle, command: LONG STRING);

c

C-5

c

C-6

Listing of Pu blie Symbols

AppendCurrent: --Time-- PROCEDURE [
s: LONG STRING, zone: BOOLEAN Eo- FALSE, Itp: LTP Eo- useSystem,
zoneStandard: TimeZoneStandard Eo-ANSI];

AppendDecimal: --ExtendedString-- PROCEDURE [
field: LONG POINTER, size: CARDINAL, string: LONG STRING);

AppendDecimal: --NSString-- PROCEDURE (s: String, n: INTEGER] RETURNS (String];
AppendErrorMessage; --MFi/e-- PROCEDURE [

msg: LONG STRING, code: ErrorCode, file: Handle];
AppendExtensionlfNeeded: --MDSStorage-- PROCEDURE [

to: POINTER TO STRING, extension: LONG STRING) RETURNS [BOOLEAN];
AppendLogicalVolumeName: --HeraldWindow-- PROCEDURE [

s: LONG STRING, id: Volume.IO Eo- Volume.systemIO];
AppendLongDecimal: --NSString-- PROCEDURE [s: String, n: LONG INTEGER]

RETURNS [String];
AppendLongNumber: --NSString-- PROCEDURE [

s: String, n: LONG UNSPECIFIED, radix: CARDINAL Eo- 10] RETURNS [String);
AppendMessage: --HeraldWindow-- PROCEDURE [

msg: LONG STRING Eo- NIL, newline: BOOLEAN Eo- TRUE, clearOld: BOOLEAN Eo- TRUE];
AppendNameToString: --NSName-- PROCEDURE [

s: String, name: Name, resetLengthFirst: BOOLEAN Eo- FALSE]
RETURNS [newS: String];

AppendNumber: --ExtendedString-- PROCEDURE [
field: LONG POINTER, size: CARDINAL, base: CARDINAL, string: LONG STRING];

AppendNumber: --NSString-- PROCEDURE [
s: String, n: UNSPECIFIED, radix: CARDINAL Eo- 10) RETURNS [String];

AppendOctal: --ExtendedString-- PROCEDURE [
field: LONG POINTER, size: CARDINAL, string: LONG STRING];

AppendOctal: --NSString-- PROCEDURE [s: String, n: UNSPECIFIED]
RETURNS [String];

AppendPhysicalVolumeName: --HeraldWindow-- PROCEDURE [s: LONG STRING];
AppendReal: --Real-- PROCEDURE [

s: LONG STRING, r: REAL, precision: CARDINAL Eo- OefaultSinglePrecision,
forceE: BOOLEAN Eo- FALSE];

AppendString: --MDSStorage-- PROCEDURE [
to: POINTER TO STRING, from: LONG STRING, extra: CARDINAL Eo- 0];

AppendString: -MsgSW-- userlnput.StringProcType;
AppendString: --NSString-- PROCEDURE [to: String, from: String]

RETURNS [String];
AppendString: --TTYSW-- Userlnput.StringProcType;
AppendSubString: --NSString-- PROCEDURE [to: String, from: SubString]

RETURNS [String];
AppendSwitches: --HeraldWindow-- PROCEDURE [s: LONG STRING]; ,
AppendToMesaString: --NSString-- PROCEDURE [to: MesaString, from: String];

Block: --Environment-- TYPE = RECORD [
blockPointer: LONG POINTER TO PACKED ARRAY [0 .. 0) OF Byte,
startlndex: CARDINAL,
stoplndexPlusOne: CARDINAL];

Block: -Format-- PROCEDuRE [
proc: StringProc, block: Emmonment.Block, clientOata: LONG POINTER Eo- NIL1;

Block: --Put-- PROCEDURE [h: Window. Handle Eo- NIL, block: Environment.Block];
BlockSize: --Zone-- TYPE = CARDINAL;
Boolean: --Token-- PROCEDURE [h: Handle, signalOnError: BOOLEAN Eo- TRUE]

RETURNS [true: BOOLEAN];
BooleanChoices: --FormSW-- PROCEDURE RETURNS [EnumeratedOescriptor];
BooleanOefaultFalse: --Vo/ume-- TYPE = BOOLEAN Eo- FALSE;
BooleanFalseOefault: --NSFile-- TYPE = BOOLEAN Eo- FALSE;

Mesa Programmer's Manual

BooleanFalseDefault: --NSSessionContro/-- TYPE = BOOLEAN E- FALSE;
BooleanHandle: --FormSW-- TYPE = LONG POINTER TO boolean ItemObject;
Booleanltem: --FormSW-- PROCEDURE (

tag: LONG STRING E- NIL, readOnly: BOOLEAN E- FALSE, invisible: BOOLEAN E- FALSE,
drawBox: BOOLEAN E- FALSE, hasContext: BOOLEAN E- FALSE,
place: Window.Place E- nextPlace, proc: NotifyProcType E- NopNotifyProc,
switch: LONG POINTER TO BOOLEAN, Z: UNCOUNTED ZONE E- NIL]
RETURNS [BooleanHandle];

BootFilePointer: --Floppy-- TYPE = RECORD (file: FilelD, page: PageNumber];
BootFileType: --Othel/oOps-- TYPE = {hardMicrocode, softMicrocode, germ, pilot};
BootFromFile: --HeraldWindow-- PROCEDURE [

name: LONG STRING, bootSwitches: System.Switches E- switches,
postProc: Format_StringProc E- DefaultPost,
confirmProc: ConfirmProcType E- DefaultConfirm];

BootFromVolumelD: --HeraldWindow-- PROCEDURE [
id: Volume.IO, bootSwitches: System.Switches E-switches,
postProc: Format.StringProc E- OefaultPost,
confirmProc: ConfirmProcType E- OefaultConfirm];

BootFromVolumeName: --HeraldWindow-- PROCEDURE (
name: LONG STRING, bootSwitches: System.Switches E- switches,
postProc: Format.StringProc E- DefaultPost,
confirmProc: ConfirmProcType E- DefaultConfirm];

bootPhysicalVolume: --EventTypes-- Supervisor. Event;
bootPhysicalVolumeCancelled: --EventTypes-- Supervisor. Event;
bootServerSocket: --NSConstants-- System.SocketNumber;
Bounds: --TextSW-- TYPE = RECORD (

from: Position, to: Position, delta: LONG INTEGER];
Box: --Too/Window-- TYPE = Window Box;
Box: --Window-- TYPE = RECORD (place: Place, dims: Dims];
BoxesAreDisjoint: --Window-- PROCEDURE [a: Box, b: Box] RETURNS [BOOLEAN];
boxFlags: --Display-- BitBltFlags;
BoxHandle: -Window-- TYPE = LONG POINTER TO Box;
BoxProcType: --TooIWindow-- TYPE = PROCEDURE RETURNS [box: Box];
Brackets: --Token-- QuoteProcType;
BracketType: --MaiIParse-- TYPE = RECORD [

group: BOOLEfo:N E- FALSE, routeAddr: BOOLEAN E- FALSE];
breakO: --PilotSwitches-- PilotOomainA = 60C;
break 1 : --PilotSwitches-- PilotOomainA = 61C;
break2: --PilotSwitches-- PilotOomainA = 62C;
breakFileMgr: --PilotSwitches-- PilotOomainA = 72C;
BreakReason: --Display-- TYPE = {normal, margin, stop};
BreakReason: --TextSink-- TYPE = {eol, consumed, margin};
breakVMMgr: --PilotSwitches-- PilotDomainA = 73C;
Brick: --Display-- TYPE = LONG DESCRIPTOR FOR ARRAY CARDINAL OF CARDINAL;
BS: -Ascii-- CHARACTER = 10C;
Buffer: --CH-- TYPE = LONG POINTER TO BufferArea;
BufferArea: --CH-- TYPE = MACHINE DEPENDENT RECORD [

maxlength(0:0 .. 15): CARDINAL [O .. 7777B],
length(1 :0 .. 1 5): CARDINAL [O .. 7777B1.
data(2): SEQUENCE COMPUTED CARDINAL OF WORD];

BufferTooSmall: --CH-- SIGNAL [offender: Buffer, length Needed : CARDINAL]
RETURNS [newBuffer: Buffer);

BuildPropertyArray: --LibrarianUtility-- PROCEDURE [fileName: LONG STRING]
RETURNS [PropertyArray];

bypassDebuggerSu bstitute: --Pt/otSwitchesExtras-- PliotSwitches.Pi lotOomai nC =
370C;

c

C-7

c

e-8

Listing of Public Symbols

Byte: --Environment-- TYPE = [0 .. 2551;
BYTE: --PrincOps-- TYPE = [0 .. 255];
ByteBlt: --ByteBlt-- PROCEDURE [

to: Environment.Block, from: Environment.Block,
overlap: OverlapOption +- ripple] RETURNS [nBytes: CARDINAL];

ByteCount: --MFile-- TYPE = LONG CARDINAL;
ByteCount: --NSSegment-- TYPE = LONG CARDINAL;
BytePair: --Inline-- TYPE = MACHINE DEPENDENT RECORD [

high(O: 0 .. 7): [0 .. 255], low(O:8 .. 15): [0 .. 255]};
BytePC: --PrincOps-- TYPE = RECORD [CARDINAL];
bytesPerPage: --Environment-- CARDINAL = 512;
bytesPerWord: --Environment-- CARDINAL = 2;
CADFileType: --FileTypes-- TYPE = CARDINAL [22400B .. 22777B];
CalculatelncrementalEthernetStats: --RemoteCommDiags-- PROCEDURE [

host: System.NetworkAddress,
baseEthernetStatistics: LONG POINTER TO

Com mOnlineDiagnostics. EtherStatsResu It,
currentEthernetStatistics: LONG POINTER TO

CommOnlineDiagnostlcs. EtherStatsResu It]
RETURNS [CommOnlineDlagnostlcs. EtherStatsResult);

Call: --Courier-- PROCEDURE [
cH: Handle, procedureNumber: CARDINAL, arguments: Parameters +-

null Parameters,
results: Parameters +- null Parameters,
timeoutlnSeconds: LONG CARDINAL +- 37777777777B,
requestDataStream: BOOLEAN +- FALSE,
streamCheckoutProc: PROCEDURE [cH: Handle1 +- NIL1 RETURNS [sH: Stream.Handle);

Call: --ExpeditedCourier-- PROCEDURE [
program Number: LONG CARDINAL, versionNumber: CARDINAL,
procedureNumber: CARDINAL,
arguments: Courier. Parameters +- Courier.nuIlParameters,
address: System.NetworkAddress, response: ResponseProc);

CallToAddresses: --ExpeditedCourier-- PROCEDURE [
programNumber: LONG CARDINAL, versionNumber: CARDINAL,
procedureNumber: CARDINAL,
arguments: Courier.Parameters +- Courier.nuIlParameters,
socket: System.SocketNumber, addresses: AddrList, response: ResponseProc,
responseBufferCount: CARDINAL +- 51;

CallTolnternetRing: --ExpeditedCourier-- PROCEDURE [
programNumber: LONG CARDINAL, version Number: CARDINAL,
procedureNumber: CARDINAL,
arguments: Courier. Parameters +- Courier.nuIlParameters, ring: RingBound,
socket: System.SocketNumber, action: ExpandingRingAction,
eachResponse: ResponseProc, newRadiusNotify: NewRadiusNotifyProc +- NIL,
responseBufferCount: CARDINAL +- 51;

CancelAbort: --Process-- PROCEDURE [process: UNSPECIFIED];
CancelPeriodicNotify: -Userlnput-- PROCEDURE [PeriodicNotifyHandlej

RETURNS [nil: PeriodicNotifyHandle1;
CancelTicket: --NSDataStream-- PROCEDURE [ticket: Ticket, cH: Courier. Handle];
cannotExpand: --TextSource-- CARDINAL = 177777B;
CantlnstallUCodeOnThisDevice: --FormatPiiotDisk-- ERROR;
CaretProcType: --Userlnput-- TYPE = PROCEDURE [

window: Window.Handle, startStop: StartStop];
caretRate: --Userlnput-- Process. Ticks;
Cause: --Authenticator-- TYPE = MACHINE DEPENDENT{

userKeyNotFound, serverKeyNotFound, authServerDown,

Mesa Programmer's Manual

remoteAuthServerDown,
communicationError, protocolViolation, weakAndStrongNotlmplemented,
(1777778)};

ede9730: --Device Types-- Device. Type;
CedarFileType: --FileTypes-- TYPE = CARDINAL [230008 .. 233778];
eh3chs: --CHPIDs-- cH.PropertylD = 2S;
eh3ciu: --CHPIDs-- cH.PropertylD = 22;
eh3ees: --CHPIDs-- cH.PropertylD = 20;
eh3fileserver: --CHPIDs-- cH.PropertylD = 10;
eh3gws: --CHPIDs-- cH.PropertylD = 24;
eh3its: --CHPIDs-- cH.PropertylD = 23;
eh3mailserver: --CHPIDs-- cH.PropertylD = 1 S;
eh3printserver: --CHPIDs-- cH.PropertylD = 11;
eh3remote: --CHPIDs-- CH.Propertyl0 = 16;
eh3router: -CHPIDs-- cH.PropertylD = 12;
eh3rs232eport: --CHPIDs-- cH.PropertylD = 21;
eh3user: --CHPIDs-- CH.Propertyl0 = 14;
eh3workstation: --CHPIDs-- cH.PropertylD = 17;
eh4ciu: --CHPIDs-- cH.PropertylD = 28;
eh4rs232ePort: --CHPIDs-- cH.PropertylD = 27;
ehSees: --CHPIDs-- cH.PropertylD = 46;
eh5fileserver: --CHPIDs-- cH.PropertylD = 49;
eh5gws: --CHPIDs-- cH.PropertylD = 48;
eh5ibm3270host: --CHPIDs-- cH.PropertylD = 54;
eh5irs: --CHPIDs-- cH.PropertylD = 45;
ehSits: --CHPIDs-- cH.PropertylD = 47;
eh5printserver: --CHPIDs-- cH.PropertylD = 50;
eh5server: --CHPIDs-- cH.PropertylD = 42;
eh5starUser: -CHPIDs-- cH.PropertylD = 44;
eh5starWorkstation: --CHPIDs-- cH.PropertylD = 41;
eh5user: --CHPIDs-- cH.PropertylD = 43;
eh5workstation: --CHPIDs-- cH.PropertylD = 40;
ChangeAttributes: --NSFile-- PROCEDURE [

file: Handle, attributes: AttributeList, session: Session ~ nuIiSession];
ChangeAttributesByName: --NSFile-- PROCEDURE [

directory: Handle, path: String, attributes: AttributeList,
session: Session ~ nuIiSession];

ChangeAttributesChild: --NSFile-- PROCEDURE [
directory: Handle, id: 10, attributes: AttributeList,
session: Session ~ nuIiSession];

ChangeControls: --NSFi/e-- PROCEDURE [
file: Handle, controlSeleetions: ControlSeleetions, controls: Controls,
session: Session ~ nuIiSession];

ChangeLabelString: -Volume-- PROCEDURE [volume: 10, newLabel: LONG STRING];
ChangeName: -PhysicaIVolume-- PROCEDURE [pvID: 10, newName: LONG STRING];
ChangeSessionRestrictions: --NSSessionContro/-- PROCEDURE [

selections: SessionRestrictionSeleetions, restrictions: SessionRestrictions,
terminateRestrictedSessions: BOOLEAN ~ FALSE];

ChangeValueProperty: --CH-- PROCEDURE [
cred: Authenticator.Credentials, ver: Authenticator.Verifier, name: Name,
pn: PropertylD, newRhs: Buffer, distingName: Name] RETURNS [rc: ReturnCode];

ChannelAlreadyExists: --TTYPort-- ERROR;
Channel Handle: --RS232C-- TYPE [2];
Channel Handle: --TTYPort-- TYPE = LONG POINTER;
ChannellnUse: --RS232C-- ERROR;
ChannelQuiesced: --TTYPort-- ERROR;

c

C-9

c

COlO

Listing of Pu bUe Symbols

Channel Suspended: --RS232C-- ERROR;
Char: --Format-- PROCEDURE [

proc: StringProc, char: CHARACTER, clientData: LONG POINTER oE- NIL];
Char: --Put-- PROCEDURE [h: Wtndow.Handle oE- NIL, char: CHARACTER];
Character: --Disp/ay-- PROCEDURE [

window: Handle, char: CHARACTER, place: Window. Place,
font: WindowFont.Handle oE- NIL, flags: BitBltFlags oE- textFlags,
bounds: Wtndow.BoxHandle oE- NIL] RETURNS [Window. Place];

Character: --NSString-- TYPE = MACHINE DEPENDENT RECORD [
chset(O:O .. 7): Envlronment.Byte, code(0:8 .. 1 5): Environment.Byte];

CharacterLength: --TTYPort-- TYPE = ITYPortEnvironment.CharacterLength;
CharacterLength: --TTYPortEnvironment-- TYPE = {

lengthls5bits, lengthls6bits, lengthls7bits, lengthls8bits};
Characters: --NSString-- TYPE = LONG DESCRIPTOR FOR ARRAY CARDINAL OF Character;
characterSetChangeOverhead: --NSName-- CARDINAL = 2;
charCmd: -BandBL T-- CARDINAL = 0;
CharEntry: --Fonts-- TYPE = MACHINE DEPENDENT RECORD [

leftKern(O:O .. O): BOOLEAN,
rightKern(O: 1 .. 1): BOOLEAN,
offset(0:2 .. 1 5): CARDINAL [0 .. 37777B],
mica(l :0 .. 1 5): CARDINAL];

CharlsDefined: --WindowFont-- PROCEDURE [
char: CHARACTER, font: Handle oE- defaultFont] RETURNS [BOOLEAN];

CharLength: --RS232C-- TYPE = RS232CEnvlronment.CharLength;
CharLength: --RS232CEnvironment-- TYPE = [5 .. 8];
CharsAvailable: --TTY-- PROCEDURE [h: Handle] RETURNS [number: CARDINAL];
CharsAvailable: --TTYPort-- PROCEDURE [channel: Channel Handle]

RETURNS [number: CARDINAL];
CharsAvailable: --TTYSW-- PROCEDURE [SW: Window. Handle] RETURNS [CARDINAL];
charsPerPage: --Environment-- CARDINAL = 512;
charsPerWord: --Environment-- CARDINAL = 2;
CharStatus: --TTY-- TYPE = {ok, stop, ignore};
CharWidth: --WindowFont-- PROCEDURE [

char: CHARACTER, font: Handle oE- defaultFont] RETURNS [NATURAL];
CheckAbortProc: --Exec-- TYPE = PROCEDURE [h: Handle] RETURNS [abort: BOOLEAN];
CheckAbortProc: --FileTransfer-- TYPE = PROCEDURE [clientData: LONG POINTER]

RETURNS [abort: BOOLEAN];
CheckChanges: --RetrieveDefs-- PROCEDURE [handle: Handle];
CheckCredentialsProc: --NSSessionControl-- TYPE = PROCEDURE [

credentials: NSFile.Credentials, verifier: NSFile.Verifier,
privileged: BOOLEAN]
RETURNS [status: AuthenticationStatus, full Name: NSString.String];

CheckForAbort: --Exec-- CheckAbortProc;
CheckOwner: --Heap-- PROCEDURE [p: LONG POINTER, Z: UNCOUNTED lONE];
CheckOwnerMDS: --Heap-- PROCEDURE [p: POINTER, Z: MDSZone];
Checksum: --MFileProperty-- MFile. Property;
checksum: --NSAssignedTypes-- AttributeType = 0;
CheckVerifier: --NSSessionControl- PROCEDURE [

verifier: NSFlle.Verifier, session: NSFile.Session]
RETURNS [AuthenticationStatus];

childrenUniquelyNamed: --NSAssignedTypes-- AttributeType = 1;
CHLookupProblem: --AddressTranslation-- ERROR [rc: cH.ReturnCode];
Circle: --Display-- PROCEDURE [

window: Handle, place: Wtndow.Place, radius: INTEGER,
bounds: Window.BoxHandle oE- NIL];

Mesa Programmer's Manual

CIU: --CHLookup-- TYPE = MACHINE DEPENDENT RECORD [
location(0:0 .. 63): NSString.String,
owningECS(4:0 .. 63): NSString.String,
model(8:0 .. 1 5): CIUModel,
timeStamp(9:0 .. 31): System.GreenwichMe~nTime,
address(ll :0 .. 31): NSAddr.NSAddr);

CIUDescribe: --CHLookup-- Couner.Description;
CIUModel: --CHLookup-- TYPE = MACHINE DEPENDENT{

oneBoard, twoBoards, threeBoards, fourBoards};
CIUPt: --CHLookup-- TYPE = LONG POINTER TO CIU;
Clarity: --Window-- TYPE = {isClear, isDirty};
Class: --TextSource-- TYPE = {none, eol, alpha, space, other};
ClassOfService: --NetworkStream-- TYPE = {bulk, transactional};
Clear: --MsgSW-- PROCEDURE [sw: Window.Handle];
ClearAttributeList: --NSFile-- PROCEDURE [attributeList: AttributeList];
ClearAttributes: --NSFile-- PROCEDURE [attributes: Attributes];
cI eari ngHouseSocket: --NSConstants-- System. SocketN umber;
ClearlnputFocusOnMatch: --User1nput-- PROCEDURE [w: Window.Handle];
ClearName: --NSName-- PROCEDURE [z: UNCOUNTED lONE, name: Name];
clickTimeout: --TlP-- System.Pulses;
ClientData: --Caret-- TYPE = LONG POINTER;
ClientDest: --DebugUsefuIDefs-- TYPE = POINTER;
clientDirectoryWords: --NSAssignedTypes-- AttributeType = 10373B;
clientFileWords: --NSAssignedTypes-- AttributeType = 10372B;
ClientltemsProcType: --FormSW-- TYPE = PROCEDURE [sw: Window. Handle]

RETURNS [items: ItemDescriptor, freeDesc: BOOLEAN];
ClientProc: --FileTransfer-- TYPE = PROCEDURE [clientData: LONG POINTER];
clientSize: --NSAssignedTypes-- Attri buteType = 103758;
ClientSource: -DebugUsefuIDefs-- TYPE = POINTER TO READONLY UNSPECIFIED;
clientStatus: --NSAssignedTypes-- AttributeType = 10374B;
Close: --CmFile-- PROCEDURE [h: Handle] RETURNS [nil: Handle];
Close: --FileTransfer-- PROCEDURE [conn: Connection];
Close: --Floppy-- PROCEDURE [volume: VolumeHandle];
Close: --Log-- PROCEDURE;
Close: --NetworkStream-- PROCEDURE [sH: Stream.Handle} RETURNS [CloseStatus];
Close: --NSFile-- PROCEDURE [file: Handle, session: Session +- nuIlSession];
Close: --NSVolumeContro/-- PROCEDURE [volume: Volume.ID];
Close: --Volume-- PROCEDURE [volume: 10];
CloseAborted: --MVolume-- ERROR;
CloseReply: --NetworkStream-- PROCEDURE [sH: Stream. Handle]

RETURNS [CloseStatus];
closeReplySST: --NetworkStream-- Stream.SubSequenceType = 255;
closeSST: --NetworkStream-- Stream.SubSequenceType = 254;
CloseStatus: --NetworkStream-- TYPE = {good, nOReply, incomplete};
cmcll: --RS232CCorrespondents-- RS232CEnvironment.COrrespondent;
Code: --CH-- TYPE = MACHINE DEPENDENT{

done, notAllowed, rejectedTooBusy, allDown, (4), badProtocol,
illegaIPropertyID(10), illegalOrgName, illegalDomainName, illegal Local Name,
noSuchOrg, noSuchDomain, noSuchLocal, propertyIDNotFound(20),
wrongPropertyType, noChange(30), outOfDate, overflowOfName,
overflowOfDataBase, (50), (60), wasUpNowDown(70), (177777B)};

codebaseHighOffset: --PrincOps-- CARDINAL = 1;
codebaseLowOffset: --PrincOps-- CARDINAL = 2;
CodeSegment: --PrincOps-- TYPE = MACHINE DEPENDENT RECORD [

header(O:O .. 63): PrefixHeader];
CodeToString: --FileTransfer-- PROCEDURE [ErrorCode, LONG STRING];

c

C-ll

c

C-12

Listing of Public Symbols

Command: --BandBLT-- TYPE = CARDINAL [0 .. 15];
CommandHandle: --FormSW-- TYPE = LONG POINTER TO command ItemObject;
Commandltem: --FormSW-- PROCEDURE [

tag: LONG STRING ~ NIL, readOnly: BOOLEAN ~ FALSE, invisible: BOOLEAN ~ FAisE,
drawBox: BOOLEAN ~ FALSE, hasContext: BOOLEAN ~ FALSE,
place: Window.Place ~ nextPlace, proc: ProcType, Z: UNCOUNTED ZONE ~ NIL]
RETURNS [Command Handle];

CommError: --CommOnlineDiagnostics-- ERROR [reason: CommErrorCode];
CommErrorCode: --CommOnlineDiagnostics-- TYPE = MACHINE DEPENDENT{

transmissionMediumProblem, noAnswerOrBusy, noRouteToSystemElement,
remoteSystemElementNotResponding, tooManyConnections, noSuchDiagnostic,
communicationError};

ApproveConnection: --NetworkStream-- PROCEDURE [
listenerH: ListenerHandle, streamTimeout: WaitTime ~ infiniteWaitTime,
classOfService: ClassOfService ~ bulk] RETURNS [sH: Stream.Handle];

Arc: --Display-- PROCEDURE [
window: Handle, place: Window.Place, radius: INTEGER, startSector: CARDINAL,
stopSector: CARDINAL, start: Wlndow.Place, stop: Window.Place,
bounds: Window.BoxHandle ~ NIL];

ArcTan: --ReaIFns-- PROCEDURE [V: REAL, x: REAL] RETURNS [radians: REAL];
ArcTanDeg: --ReaIFns-- PROCEDURE [V: REAL, x: REAL] RETURNS [degrees: REAL];
ArgumentProblem: --NSFile-- TYPE = MACHINE DEPENDENT{

illegal, disallowed, unreasonable, unimplemented, duplicated, missing};
Arguments: --Courier-- TYPE = PROCEDURE [

argumentsRecord: Parameters ~ null Parameters];
ascendingPositionOrdering: --NSFile-- key Ordering;
AsciiAppend: --TextSource-- PROCEDURE [

source: Handle, string: LONG STRING, start: Position, n: CARDINAL];
AsciiDeleteSubString: --TextSource-- PROCEDURE [

ss: String.SubString, keepTrash: BOOLEAN] RETURNS [trash: LONG STRING];
Ascii DoEditAction: -TextSource-- DoEditActionProc;
AsciilnsertBlock: --TextSource-- PROCEDURE [

string: LONG POINTER TO LONG STRING, position: CARDINAL,
toAdd: Environment.Block, extra: CARDINAL];

AsciiScanText: -TextSource-- ScanTextProc;
AsciiTestClass: --TextSource-- PROCEDURE [char: CHARACTER, class: Class]

RETURNS [equal: BOOLEAN];
AsciiTextSearch: --TextSource-- PROCEDURE [

source: Handle, string: LONG STRING, start: Position ~ 0,
stop: Position ~ 37777777777B, ignoreCase: BOOLEAN ~ FALSE]
RETURNS [lineStart: Position, left: Position];

AssertLocal: --NSDataStream-- PROCEDURE [stream: Handle];
AssertNotAPilotVolume: --PhysicaIVolume-- PROCEDURE [instance: Handle];
AssertPilotVolume: --PhysicaIVolume-- PROCEDURE [instance: Handle] RETURNS [ID];
AssignAddress: --Router-- PROCEDURE'RETURNS [System.NetworkAddress};
AssignDestinationRelativeAddress: -Router-- PROCEDURE [System.NetworkNumber]

RETURNS [System.NetworkAddress];
AssignedType: --NSAssignedTypes-- TYPE = LONG CARDINAL;
AssignNetworkAddress: --NetworkStream-- PROCEDURE

RETURNS [System. NetworkAddress];
AssignServiceJD: --NSSessionControl-- PROCEDURE RETURNS [ServiceID];
ATOM: --Atom-- TYPE = LONG STRING ~ NIL;
AttentionProcType: --Userlnput-- TYPE = PROCEDURE [window: Window. Handle];
Attribute: --NSFile-- TYPE = MACHINE DEPENDENT RECORD [

var(O:O .. lll): SELECT type(O:O .. l 5): AttributeType FROM
filelD = > (value(l :0 .. 79): ID),

Mesa Programmer's Manual

parentlO = > [value(l :0 .. 79): 10],
checksum = > [value(l :0 .. 15): CARDINAL),
type = > [value(l :0 .. 31): Type],
position = > [value(l :0 .. 47): Position],
systemElement = > [value(l :0 .. 95): SystemElement),
volumefO = > [value{l :0 .. 79): Volume],
ordering = > [value(l :0 .. 79): Ordering],
accessList = > [value{l :0 .. 63): AccessList),
defaultAccessList = > [value{l :0 .. 63): AccessList),
backedUpOn = > [value{l :0 .. 31): Time),
createdOn = > [value{l :0 .. 31): Time),
filedOn = > [value(l :0 .. 31): Time),
modifiedOn = > [value{l :0 .. 31): Time),
readOn = > [value{l :0 .. 31): Time),
createdBy = > [value{l :0 .. 63): String),
filedBy = > [value(l :0 .. 63): String],
modifiedBy = > [value(l :0 .. 63): String),
name = > [value{l :0 .. 63): String],
pathname = > [value(l :0 .. 63): String],
readBy = > [value(l :0 .. 63): String],
childrenUniquelyNamed = > [value(l :0 .. 15): BOOLEAN],
isOirectory = > [value{l :0 .. 15): BOOLEAN],
isTemporary = > [value(1:0 .. 15): BOOLEAN],
version = > [value(l :0 .. 15): CARDINAL),
numberOfChildren = > [value{l :0 .. 15): CARDINAL],
sizelnBytes = > [value(l :0 .. 31): LONG CARDINAL],
sizelnPages = > [value(l :0 .. 31): LONG CARDINAL],
subtreeSize = > [value(1:0 .. 31): LONG CARDINAL],
subtreeSizeLimit = > [value(l :0 .. 31): LONG CARDINAL],

c

extended = > [type(l :0 .. 31): ExtendedAttributeType, value{3:0 .. 47): Words],
ENDCASE];

AttributeList: --NSFile-- TYPE = LONG DESCRIPTOR FOR ARRAY CARDINAL OF
Attribute;

Attributes: --F/oppyChannel-- TYPE = RECORD [
deviceType: {SA800, SA850},
numberOfCylinders: [0 .. 255],
numberOfHeads: [0 .. 255],
trackLength: CARDINAL];

Attributes: --Heap-- TYPE = RECORD [
SELECT tag: Type FROM
normal = > [

largeNodePages: Environment.PageCount,
threshold: NWords,
largeNodeThreshold: NWordsJ,

uniform = > [objectSize: NWords],
ENDCASE};

Attributes: --NSFile-- TYPE = LONG POINTER TO AttributesRecord;
AttributesProc: --NSFile-- TYPE = PROCEDURE [attributes: Attributes]

RETURNS [continue: BOOLEAN +- TRUE];
AttributesRecord: --NSFile-- TYPE = RECORD [

filelD: 10,
systemElement: System Element,
volumelO: Volume,
name: String,
pathname: String,
version: CARDINAL,

C-13

c

C-14

Listing of Pu bUe Symbols

checksum: CARDINAL,
type: Type,
isOirectory: SOOLEAN,
isTemporary: BOOLEAN,
parentlD: 10,
position: Position,
backedUpOn: Time,
createdOn: Time,
filedOn: Time,
modifiedOn: Time,
readOn: Time,
createdBy: String,
filedBy: String,
modifiedBy: String,
readBy: String,
sizelnBytes: LONG CARDINAL,
sizelnPages: LONG CARDINAL,
accessList: AccessList,
defaultAccessList: AccessList,
ordering: Ordering,
childrenUniquelyNamed: BOOLEAN,
subtreeSizeLimit: LONG CARDINAL,
subtreeSize: LONG CARDINAL,
numberOfChiidren: CARDINAL,
extended: ExtendedAttributeList];

AttributeType: --NSAssignedTypes-- TYPE = NSFile. ExtendedAttri buteType;
AttributeType: --NSFile-- TYPE = MACHINE DEPENDENT{

checksum, childrenUniquelyNamed, created By, createdOn, filelO, isOirectory,
isTemporary, modifiedBy, modifiedOn, name, numberOfChiidren, ordering,
parentlO, position, read By, readOn, sizelnBytes, type, version, accessList,
defaultAccessList, pathname, volumelO, backed UpOn, filedBy, filedOn,
sizelnPages, subtreeSize, subtreeSizeLimit, system Element, extended};

Authenticate: --Authenticator-- PROCEDURE [
serverKey: Key, credentials: Credentials, verifier: Verifier, userName: Name]
RETURNS [flavor: Flavor, status: Status];

AuthenticationProblem: --NSName-- TYPE = MACHINE DEPENDENT{
credentialslnvalid, verifierlnvalid};

AuthenticationStatus: --NSSessionControl-- TYPE = {
valid, noSuchUser, incorrectPassword, cannotAuthenticate, invalidCredentials,
invalidVerifier};

AutoRecognitionOutcome: --RS232C-- TYPE =
RS232CEnvironment.AutoRecognitionOutcome;

AutoRecognitionWait: --RS232C-- PROCEDURE [channel: Channel Handle]
RETURNS [outcome: AutoRecognitionOutcome];

AV: --PrincOps--AVHandle;
AVHandle: --PrincOps-- TYPE = POINTER TO AllocationVector;
AVHeap: --PrincOps-- TYPE = ARRAY [0 .. 31] OF AVltem;
AVHeapSize: --PrincOps-- CARDINAL = 32;
AVltem: --Pr;ncOps-- TYPE = MACHINE DEPENDENT RECORD [

SELECT OVERLAID 1< FROM
data = > [fsi(O:O .. 13): [0 .. 37777B], tag(O: 14 .. 15): AllocTag],
link = > [link(0:0 .. 15): POINTER TO AVltem],
frame = > [frame(O:O .. 15): LocalFrameHandle],
ENDCASE];

Mesa Programmer's Manual

AwaitStateChange: --PhysicaIVolume-- PROCEDURE [
changeCount: CARDINAL, index: CARDINAL ~ null Devicelndex]
RETURNS [currentChangeCount: CARDINAL];

backedUpOn: --NSAssignedTypes-- AttributeType = 23;
Background: --OnlineDiagnostics-- TYPE = {white, black};
Background: --UserTerminal-- TYPE = {white, black};
BackingStream: --TTY-- PROCEDURE [h: Handle] RETURNS [stream: Stream.Handle];
BackingStream: --TTYSW-- PROCEDURE [sw: Window. Handle] RETURNS [Stream.Handle];
BackupLog: --MStream-- PROCEDURE [stream: Handle, count: MFile.ByteCount]

RETURNS [backedUp: MFlle.ByteCount];
BadFormatSnapShot: --LibrarianUtility-- SIGNAL [badLine: LONG STRING];
BadPage: --FormatPilotDisk-- SIGNAL [p: DiskPageNumber];
BadSwitches: --OthelioOps-- ERROR;
BadSyntax: --AddressTranslation-- ERROR [field: Field];
balanceBeamChoice: --Profi/e-- READONL Y BalanceBeamChoice;
BalanceBeamChoice: --Profi/e-- TYPE = {never, notForCharacter, always};
Band: --LsepFace-- TYPE = LONG POINTER;
BandBLT: --BandBL T-- PROCEDURE [BandBl TIablePtr] RETURNS [LONG POINTER];
BandBlTTable: --BandBLT-- TYPE = MACHINE DEPENDENT RECORD [

readlO(0:0 .. 15): PageNumber,
bandlist(l :0 .. 31): LONG POINTER,
writelO(3:0 .. 15): PageNumber,
bandbuf(4:0 .. 31): LONG POINTER,
fontPtrTbl(6:0 .. 15): PageNumber,
fontRasters(7:0 .. 15): PageNumber,
inkwells(8:0 .. 15): PageNumber];

BandBlTTableAlignment: --BandBLT-- CARDINAL = 16;
BandBlTTablePtr: --BandBLT-- TYPE = POINTER TO BandBl TTable;
BandBufferCount: --RavenFace-- TYPE = CARDINAL [1 .. 8];
bandBufferSize: --BandBLT-- Environment.PageCount = 16;
BandFull: --RavenFace-- PROCEDURE [band: tndex] RETURNS [bandBusy: BOOLEAN];
BandListttemlongPointer: --BandBLT-- TYPE = MACHINE DEPENDENT RECORD [

SELECT OVERLAID'" FROM
ptr = > [ptr(0:0 .. 31): LONG POINTER],
char = > [char(0:0 .. 31): LONG POINTER TO char Blltem],
leftOverChar = > [leftOverChar(0:O .. 31): LONG POINTER TO leftOverChar Blttem],
rectangle = > [rectangle(O: 0 .. 31): LONG POINTER TO rectangle Blttem],
set level = > [setlevel(O:O .. 31): LONG POINTER TO setlevel Blltem],
setlnk = > [settnk(0:O .. 31): LONG POINTER TO setlnk Blltem],
end Of Band = > [endOfBand(O:0 .. 31): LONG POINTER TO endOfBand Blttem],
endOfPage = > [endOfPage(O:O .. 31): LONG POINTER TO endOfPage Blltem],
rulette = > [rulette(O:0 .. 31): LONG POINTER TO rulette Blttem],
nopl = > [nopl(0:0 .. 31): LONG POINTER TO nopl Blltem],
nop2 = > [nop2(0:O .. 31): LONG POINTER TO nop2 Blltem],
ENDCASE];

BandOverrun: --RavenFace-- PROCEDURE RETURNS [BOOLEAN];
BandPointer: --RavenFace-- TYPE = LONG POINTER;
Base: --Environment-- TYPE = LONG BASE POINTER;

c

Base: --MSegment-- PROCEDURE [segment: Handle] RETURNS [Environment.PageNumber);
Base: --Zone-- TYPE = Emllronment.Base;
BaseDirectoryProc: --NSVo/umeContro/-- TYPE = PROCEDURE [

baseString: NSStnng.String, base Reference: NSFile.Reference]
RETURNS [status: BaseDirectoryStatus ~ valid);

BaseDirectoryStatus: --NSVo/umeControl-- TYPE = {
cannotDetermine, invalid, invalidSyntax, valid};

C-15

c

C-16

Listing of Public Symbols

BasetoSegment: --MSegment-- PROCEDURE [page: Environment.PageNumber]
RETURNS [Handle];

BBptr: --BitBlt-- TYPE = POINTER TO BBTable;
BBTable: --BitBlt-- TYPE = MACHINE DEPENDENT RECORD [

dst(0:0 .. 47): BitAddress,
dstBpl(3:0 .. 1 5): INTEGER,
src(4:0 .. 47); BitAddress,
srcDesc(7:0 .. 15): SrcDesc,
width(8:0 .. 15): CARDINAL,
height(9:0 .. 15): CARDINAL,
flags(10:0 .. lS): BitBltFlags,
reserved(11 :0 .. 15): UNSPECIFIED E- 0];

BBTableAlignment: --BitBlt-- CARDINAL = 16;
BBTableSpace: --BandBLT-- TYPE = ARRAY [1..24] OF WORD;
BBTableSpace: --BitBlt-- TYPE = ARRAY [1 .. 27] OF UNSPECIFIED;
Beep: --UserTerminal- PROCEDURE [

frequency: CARDINAL E-l 000, duration: CARDINAL E- 500];
BEL: --Ascii-- CHARACTER = 7C;
Bit: --JLeveIlVKeys-- TYPE = KeyStations.Bit;
Bit: --Keys-- TYPE = KeyStations.Bit;
Bit: --KeyStations-- TYPE = KeyStation;
Bit: --LeveIlIlKeys-- TYPE = KeyStatlons.Bit;
Bit: --LeveflVKeys-- TYPE = KeyStatlons.Bit;
BitAddress: --BitBlt-- TYPE = Envlronment.BitAddress;
BitAddress: --Display-- TYPE = BltBlt.BitAddress;
BitAddress: --Environment-- TYPE = MACHINE DEPENDENT RECORD [

word(0:0 .. 31): LONG POINTER,
reserved(2:0 .. 11): [O .. 7776B] E-O,
bit(2: 12 .. 15): [0 .. 15]];

BitAddressFromPIace: --Display-- PROCEDURE [
base: BitAddress, x: NATURAL, y: NATURAL, raster: CARDINAL]
RETURNS [BitAddress];

BITAND: --Inline-- BitOp;
BITBLT: --BitBlt-- PROCEDURE [ptr: BBptr];
BitBltFlags: --BitBlt-- TYPE = MACHINE DEPENDENT RECORD [

direction(O:O .. O): Direction E- forward,
disjoint(O: 1 .. 1): BOOLEAN E- FALSE,
disjointltems(0:2 .. 2): BOOLEAN E- FALSE,
gray(0:3 .. 3): BOOLEAN E- FALSE,
srcFunc(0:4 .. 4): SrcFunc E- null,
dstFunc(0:5 .. 6): DstFunc E- null,
reserved(0:7 .. 15): [0 .. 511] E- 0];

BitBltFlags: --Display-- TYPE = BitBlt.BitBltFlags;
BitBltTable: --BitBlt-- TYPE = BBTable;
BitBltTablePtr: --BitBlt-- TYPE = BBptr;
bitFIags: --Display-- BitBltFlags;
Bitmap: --Disp/ay-- PROCEDURE [.

window: Handle, box: Window. Box, address: BitAddress,
bitmapBitWidth: CARDINAL, flags: BitBltFlags E- paintFlags1;

BitmaplsDisconneded: --UserTerminal-- ERROR;
BitmapPlace: --Window-- PROCEDURE [window: Handle, place: Place E- [0,0]]

RETURNS [Place];
BitmapPlaceToWindowAndPIace: --Window-- PROCEDURE [bitmapPlace: Place]

RETURNS [window: Handle, place: Place];
BITNOT: --Inline-- PROCEDURE [UNSPECIFIED] RETURNS {UNSPECIFIED];

Mesa Programmer's Manual

BitOp: --Inline-- TYPE = PROCEDURE [UNSPECIFIED, UNSPECIFIED]
RETURNS [UNSPECIFIED];

BITOR: --Inline-- BitOp;
BITROTATE: --Inline-- PROCEDURE [value: UNSPECIFIED, count: INTEGER]

RETURNS [UNSPECIFIED];
Bits: --DebugUsefuIDefs-- TYPE = [0 .. 15];
BITSHIFT: --Inline-- PROCEDURE [value: UNSPECIFIED, count: INTEGER]

RETURNS [UNSPECIFIED];
bitsPerByte: --Environment-- CARDINAL = 8;
bitsPerCharacter: --Environment-- CARDINAL = 8;
bitsPerWord: --Environment-- CARDINAL = 16;
BITXOR: --Inline-- BitOp;
Black: --Display-- PROCEDURE [window: Handle, box: Window.Box];
Blank: --Format-- PROCEDURE [

proc: StringProc, n: CARDINAL ~ 1, clientData: LONG POINTER ~ NIL];
Blank: --Put-- PROCEDURE [h: Window. Handle ~ NIL, n: CARDINAL ~ 1];
Blanks: --Format-- PROCEDURE [

proc: StringProc, n: CARDINAL ~ 1, clientData: LONG POINTER ~ NIL];
Blanks: --Put-- PROCEDURE [h: Window. Handle ~ NIL, n: CARDINAL ~ 1];
BlinkDisplay: --TrY-- PROCEDURE [h: Handle];
BlinkDisplay: --UserTerminal-- PROCEDURE;
BlinkingCaret: --TexfSW-- PROCEDURE [sw: Window. Handle, state: OnOtt];
Blltem: --SandSL T-- TYPE = MACHINE DEPENDENT RECORD [

tag(0:0 .. 47): SELECT OVERLAID * FROM
char = > [

type(O:O .. O): [0 .. 1] ~ charCmd,
tont(O: 1 .. 7): Font,
cc(0:8 .. 15): [0 .. 255],
xloc(l :0 .. 3): [0 .. 15],
yloc(l :4 .. 15): [O .. 7777B]],

leftOverChar = > [
type(O:O .. O): [0 .. 1] ~ charCmd,
tont(O: 1 . .7): Font,
cc(0:8 .. 15): [0 .. 255],
mustBeZero(l :0 .. 3): [0 .. 15] ~ 0,
yloc(l :4 .. 15): [O .. 7777B],
alsoMustBeZero(2:0 .. 3): [0 .. 15] ~ 0,
scansToSkip(2:4 .. 15): [O .. 7777B]],

rectangle = > [
type(0:0 .. 3): Command ~ rectangleCmd,
yloc(0:4 .. 15): [O .. 7777B],
mustBeZero(l :0 .. 3): [0 .. 15] ~ 0,
bitsPerScan(1 : 4 .. 15): [0 .. 7777B],
nScans(2:0 .. 11): [O .. 7777B],
xloc(2:12 .. 15): [0 .. 15)],

setLevel = > [
type(0:0 .. 3): Command ~setLeveICmd,
mustBeZero(0:4 .. 4): [0 .. 1) ~ 0,
pad(0:5 .. 7): [0 .. 7] ~O,
levelnum(0:8 .. 15): [0 .. 255]],

setlnk = > [
type(0:0 .. 3): Command ~ setlnkCmd,
srcFunc(0:4 .. 4): BltBlt.SrcFunc ~ null,
dstFunc(0:5 .. 6): BitBlt.DstFunc ~ null,
unused(0:7 .. 7): BOOLEAN ~ NULL,
inknum(0:8 .. 15): [0 .. 255]1,

c

C 17

c

C-18

Listing of Public Symbols

0],

0],

endOfBand = > (
type(0:0 .. 3): Command E-endOfBandCmd, pad(0:4 .. 15): [0 .. 7777B] E-O],

endOfPage = > [
type(0:0 .. 3): Command E-endOfPageCmd, pad(0:4 .. 15): [O .. 7777B] E-O],

rulette = > [
type(0:0 .. 3): Command E- ruletteCmd,
yloc(0:4 .. 15): [0 .. 7777B],
length(1 :0 .. 11): [O .. 7777B],
xloc(l: 12 .. 15): [0 .. 15]],

nopl = > [type(0:0 .. 3): Command E-nopCmd1, pad(0:4 .. lS): [O .. 7777BJ E-

nop2 = > [type(0:0 .. 3): Command E- nopCmd2, pad(0:4 .. 15): [O .. 7777B] E-

ENDCASE];
Block: --BlockSource-- TYPE = Environment.Block;
Block: --Display-- PROCEDURE [

window: Handle, block: Environment.Block, lineLength: INTEGER E- infinity,
place: Window.Place, font: WindowFont.Handle E- NIL,
flags: BitBltFlags E-textFlags, bounds: Window.BoxHandle E- NIL]
R~TURNS [newPlace: Window.Place, positions: CARDINAL, why: BreakReason];

CommonSoftwareFileType: --CommonSoftwareFileTypes-- TYPE =
FileTypes.CommonSoftwareFileType;

CommonSoftwareFileType: --FileTypes-- TYPE = CARDINAL [4000B .. 5777B1;
CommParamHandle: --RS232C-- TYPE = RS232CEnvironment.COmmParamHandle;
CommParamHandle: --RS232CEnvironment-- TYPE = POINTER TO CommParamObject;
CommParamObject: --RS232C-- TYPE = RS232CEnvironment.CommParamObject;
CommParamObject: --RS232CEnvironment- TYPE = MACHINE DEPENDENT RECORD [

duplex(0:0 .. 15): Duplexity,
lineType(1 :0 .. 1 5): LineType,
lineSpeed(2:0 .. 1 5): LineSpeed,
accessDetail(3:0 .. 63): SELECT netAccess(3:0 .. 1 5): NetAccess FROM

directConn = > NULL,
dialConn = > [

diaIMode(4:0 .. 1 5): DialMode,
dialerNumber(S:0 .. 1 5): CARDINAL,
retryCount(6:0 .. 15): RetryCount],

ENDCASE];
Compact: --Floppy-- PROCEDURE [volume: VolumeHandle];
CompareAddresses: --NSAddr-- PROCEDURE [

a: Address, b: Address, ignoreSockets: BOOLEAN, ignoreNets: BOOLEAN]
RETURNS [similar: BOOLEAN];

CompareNames: --NSName-- PROCEDURE [
n1: Name, n2: Name, ignoreOrg: BOOLEAN E- FALSE, ignoreDomain: BOOLEAN E­

FALSE,
ignoreLocal: BOOLEAN E- FALSE] RETURNS [NSString.Relation];

CompareNSAddrs: --NSAddr-- PROCEDURE [
a: NSAddr, b: NSAddr, ignoreSockets: BOOLEAN, ignoreNets: BOOLEAN]
RETURNS [similar: BOOLEAN];

CompareProcType: --GSort-- TYPE = PROCEDURE [p1: LONG POINTER, p2: LONG POINTER]
RETURNS [INTEGER];

CompareStrings: --NSString-- PROCEDURE [
s 1: String, s2: Stri ng, ignoreCase: BOOLEAN E- TRUE] RETURNS [Relation];

CompareStringsAndStems: --NSString-- PROCEDURE [
s1: String, s2: String, ignoreCase: BOOLEAN E-TRUE]
RETURNS [relation: Relation, equalStems: BOOLEAN];

Mesa Programmer's Manual

CompareStringsTruncated: --NSString-- PROCEDURE [
s 1: String, s2: String, trunc 1: BOOLEAN ~ FALSE, trunc2: BOOLEAN ~ FALSE,
ignoreCase: BOOLEAN ~ TRUE] RETURNS [Relation];

CompareSubStrings: --NSString-- PROCEDURE [
sl: SubString, s2: SubString, ignoreCase: BOOLEAN ~ TRUE] RETURNS [Relation];

compatibility: --NSAssignedTypes-- AttributeType = 10376B;
CompleteFilename: --MFile-- PROCEDURE [

name: LONG STRING, addedPart: LONG STRING]
RETURNS [exactMatch: BOOLEAN, matches: CARDINAL];

Completion Handle: --RS232C-- TYPE = RS232CEnvironment.CompletionHandle;
Completion Handle: --RS232CEnvironment-- TYPE [2];
ComputeChecksum: --Checksum-- PROCEDURE [

cs: CARDINAL ~ 0, nWords: CARDINAL, p: LONG POINTER]
RETURNS [checksum: CARDINAL];

ComputeFileType: --MFile-- PROCEDURE [file: Handle] RETURNS [type: Type];
ConfigForFrame: --DebugUsefuIDefs-- PROCEDURE [

gf: GFHandle, config: LONG STRING];
Confirm: --Exec-- PROCEDURE [h: Handle] RETURNS [yes: BOOLEAN];
Confirmation: -FileTransfer-- TYPE = MACHINE DEPENDENT{

do, skip, abort, firstPrivate(8), null(255)};
ConfirmProcType: --HeraldWindow-- TYPE = PROCEDURE [

post: Form,at.StringProc, cleanup: BOOLEAN ~ TRUE] RETURNS [okay: BOOLEAN];
Conic: --Disp/ay-- PROCEDURE [

window: Handle, a: LONG INTEGER, b: LONG INTEGER, c: LONG INTEGER,
d: LONG INTEGER, e: LONG INTEGER, errorTerm: LONG INTEGER,
start: Window.Place, stop: Window.Place, error Ref: Window.Place,
sharpCornered: BOOLEAN, unboundedStart: BOOLEAN, unboundedStop: BOOLEAN,
bounds: Window.BoxHandle ~ NIL];

Connect: -BodyDefs-- TYPE = LONG STRING;
Connection: --FileTransfer-- TYPE = LONG POINTER TO ConnectionObject;
ConnectionFailed: --NetworkStream-- SIGNAL [why: FailureReason];
ConnectionlO: --NetworkStream-- TYPE [1];
ConnectionObject: -FileTransfer-- TYPE;
ConnectionProblem: --NSFile-- TYPE = MACHINE DEPENDENT{

no Route, noResponse, transmissionHardware, transportTimeout,
tooManyLocalConnections, tooManyRemoteConnections, missingCourier,

c

m i ssi ngProgram, m issi ngProcedu re, protocol Mismatch, parameterl nconsi stency,
invalidMessage, returnTimedOut, otherCaIlProblem(177777B)};

ConnectionProblem: --NSPrint-- TYPE = MACHINE DEPENDENT{
noRoute, noResponse, transmissionHardware, transportTimeout,
tooManyLocalConnections, tooManyRemoteConnections, missingCourier,
missi ngProgram, m i ssi ngProcedu re, protocol Mi smatch, parameterl nconsi stency,
invalidMessage, returnTimedOut};

ConnectionSuspended: --NetworkStream-- ERROR [why: SuspendReason];
ConsoleCharacter: --RavenFace-- TYPE = MACHINE DEPENDENT{

(0), F(47), zero, one, two, three, four, five, six, seven, eight, nine, A, L,
C, 0, E, blank};

Context: -FloppyChanne/- TYPE = RECORD [
protect: BOOLEAN,
format: {IBM, Troy},
density: {single, double},
sectorLength: CARDINAL [0 .. 1023]];

ContextFromltem: --FormSW-- PROCEDURE [Item Handle] RETURNS [LONG POINTER];
ContinueStop: --FileWindow- TYPE = {continue, stop};
Control: --ProtocoICertification-- TYPE = LONG POINTER TO Control Packet;
ControlA: --Ascii-- CHARACTER = 1 C;

C-19

c

C-20

Listing of Pu bUe Symbols

Control8: --Ascii-- CHARACTER = 2C;
ControlC: --Ascii-- CHARACTER = 3C;
ControlO: --Ascii-- CHARACTER = 4C;
Control E: --Ascii-- CHARACTER = 5C;
Control Error: --NSSessionControl-- ERROR [type: ControJErrorType];
Control ErrorType: -NSSessionControl-- TYPE = {

alreadySet, invalidRestrictions, notEntered, notlocal, notRemote, notSet};
ControlF: --Ascii-- CHARACTER = 6C;
ControlG: --Ascii-- CHARACTER = 7C;
Control H: --Ascii-- CHARACTER = 10C;
Controll:--Ascii--CHARACTER = l1C;
ControlJ: --Ascii-- CHARACTER = 12C;
Control K: --Ascii-- CHARACTER = 13C;
Controll: --Ascii-- CHARACTER = 14C;
ControllerLinkType: --CHLookup- TYPE = MACHINE DEPENDENT{sdlc, bsc, (177777B)};
Control Link: --PrincOps-- TYPE = MACHINE DEPENDENT RECORD [

SELECT OVERLAID Control LinkTag FROM
frame = > [frame(0:0 .. 15): localFrameHandle, fill(l :0 .. 15): WORD ~ 0],
procedure = > [gf(0:0 .. 15): GlobalFrameHandle, pc(l :0 .. 1 S): BytePC],
indirect = > [

SELECT OVERLAID * FROM
port = > [port(0:0 .. 15): PortHandle, fill(l :O .. lS): WORD ~O],
link = > [link(0:0 .. 15): POINTER TO Control Link, fill(l :0 .. 15): WORD ~ 0],
ENDCASE],

rep = > [
fiIlO(O:O .. 13): [0 .. 37777B],
indirect(O: 14 .. 14): BOOLEAN,
proc(O: 1 S .. 15): BOOLEAN,
fill(l :0 .. 15): WORD],

ENDCASE];
Control Link: --Runtime-- TYPE = LONG UNSPECIFIED;
ControlLinkTag: --PrincOps-- TYPE = {frame, procedure, indirect, rep};
ControlM: --Ascii-- CHARACTER = 1 SC;
Control N: --Ascii-- CHARACTER = 16C;
ControlO: --Ascii-- CHARACTER = 17C;
ControlP: --Ascii-- CHARACTER = 20C;
Control Packet: --Protoco/Certification-- TYPE = MACHINE DEPENDENT RECORD [

checksum(0:0 .. 15): CARDINAL,
pktlength(l :0 .. 15): CARDINAL,
transportControl(2: 0 .. 7): NSTypes. TransportControl,
packetType(2:8 .. 15): NSTypes.PacketType,
destination(3:0 .. 95): System.NetworkAddress,
source(9:0 .. 95): System.NetworkAddress,
operation(15:0 .. 15): OperationType,
stage(16:0 .. 31): Stage,
results(18:0 .. 15): CARDINAL];

ControlQ: --Ascii-- CHARACTER = 21 C;
Control R: --Ascii-- CHARACTER = 22C;
ControlS: --Ascii-- CHARACTER = 23C;
Controls: --NSFile-- TYPE = RECORD [

lock: Lock ~ none,
timeout: Timeout ~ defaultTimeout,
access: Access ~ fuIlAccess];

ControlSelections: --NSFile- TYPE = PACKED ARRAY ControlType OF
BooleanFalseDefault;

ControlT: --Ascii-- CHARACTER = 24C;

Mesa Programmer's Manual

Control Type: --NSFile-- TYPE = MACHINE DEPENDENT{lock, timeout, access};
ControlU: --Ascii-- CHARACTER = 25C;
ControlV: --Ascii-- CHARACTER = 26C;
ControlW: --Ascii-- CHARACTER = 27C;
ControlX: --Ascii-- CHARACTER = 30C;
ControlY: --Ascii-- CHARACTER = 31 C;
ControlZ: --Ascii-- CHARACTER = 32C;
ConversionLog: --VolumeConversion-- TYPE = MACHINE DEPENDENT RECORD [

seal(0:0 .. 15): CARDINAL ~ Seal,
versi on(1 : 0 .. 15): CAROl NAL ~ cu rrentVersi on,
date(2:0 .. 31): System.GreenwichMeanTime,
numberOfFiles(4:0 .. 31): LONG CARDINAL,
logState(6:0 .. 15): LogState,
reserved(7:0 .. 3983): Reserved,
files(256): ARRAY [0 .. 0) OF LogEntry];

Coordinate: --OnlineDiagnostics-- TYPE = MACHINE DEPENDENT RECORD [
x(O:O .. 15): INTEGER, y(1 :0 .. 15): INTEGER];

Coordinate: --UserTerminal-- TYPE = MACHINE DEPENDENT RECORD [
x(0:0 .. 15): INTEGER, y(l :0 .. 15): INTEGER];

Copied: --DebugUsefuIDefs-- PROCEDURE [GFHandle] RETURNS [BOOLEAN];
Copy: --FileTransfer-- PROCEDURE [

sourceFile: FileName.VFN, destFile: FileName.VFN,
sourceConn: Connection ~ NIL, destConn: Connection ~ NIL,
veto: VetoProc ~ NIL, showOates: BOOLEAN ~ FALSE];

COPY: --Inline-- PROCEDURE [from: POINTER, nwords: CARDINAL, to: POINTER];
Copy: --MFile-- PROCEDURE [file: Handle, newName: LONG STRING];
Copy: --MStream-- PROCEDURE [from: Handle, to: Handle, bytes: MFile.ByteCount]

RETURNS [bytesCopied: MFile.ByteCountl;
Copy: --NSFile-- PROCEDURE [

file: Handle, destination: Handle,
attributes: AttributeList ~ nullAttributeList, controls: Controls ~ [],
session: Session ~ nul/Session] RETURNS [newFile: Handle];

CopyAccessList: --NSFile-- PROCEDURE [list: AccessList] RETURNS [AccessList];
CopyAttributes: --NSFile-- PROCEDURE [attributes: Attributes]

RETURNS [Attributes];
CopyByName: --NSFile-- PROCEDURE [

directory: Handle, path: String, destination: Handle,
attributes: AttributeList ~ nul/AttributeList, session: Session ~ nul/Session]
RETURNS [10];

CopyChild: --NSFile-- PROCEDURE [
directory: Handle, id: 10, destination: Handle,
attributes: AttributeList ~ nul/AttributeList, session: Session ~ nul/Session]
RETURNS [10];

CopyExtendedAttributes: -NSFile-- PROCEDURE [
extendedAttributes: ExtendedAttributeList] RETURNS [ExtendedAttributeList];

CopyFileHandle: --MFile-- PROCEDURE [
file: Handle, release: ReleaseOata, access: Access ~ nul/] RETURNS [Handle];

CopyFromPilotFile: --Floppy-- PROCEDURE [
pilotFile: File.File, floppyFile: FileHandle, firstPilotPage: File.PageNumber,
firstFloppyPage: PageNumber, count: PageCount ~ defaultPageCount];

Copyl": --MSegment-- PROCEDURE [
segment: Handle, file: MFile.Handle, fileBase: File.PageNumber,
count: Environment.PageCount];

Copyl": --NSSegment-- PROCEDURE [
pointer: LONG POINTER, origin: Origin, session: Session ~ nul/Session]
RETURNS [countRead: PageCountJ;

c

C-21

c

C-22

Listing of Public Symbols

CopyName: --NSName- PROCEDURE [Z: UNCOUNTED ZONE, name: Name] RETURNS [Name];
CopyNameFields: --NSName-- PROCEDURE [

z: UNCOUNTED ZONE, source: Name, destination: Name];
CopyOut: --MSegment-- PROCEDURE [

segment: Handle, file: MFile.Handle, fileBase: File.PageNumber,
count: Environment.PageCount];

CopyOut: --NSSegment-- PROCEDURE [
pointer: LONG POINTER, origin: Origin, session: Session Eo- nuliSession]
RETURNS [countWritten: PageCount];

CopyProperties: --MFile-- PROCEDURE [from: Handle, to: Handle];
CopySegment: --MSegment-- PROCEDURE [segment: Handle]

RETURNS [newSegment: Handle];
CopyString: --MDSStorage-- PROCEDURE [s: LONG STRING, longer: CARDINAL Eo- 0]

RETURNS (newS: STRING];
CopyString: --NSString-- PROCEDURE [Z: UNCOUNTED ZONE, s: String]

RETURNS [String];
CopyToPiiotFile: --Floppy-- PROCEDURE [

floppyFile: FileHandle, pilotFile: File.File, firstFloppyPage: PageNumber,
firstPilotPage: File.PageNumber, count: PageCount Eo- defaultPageCount];

CopyWords: --NSFile-- PROCEDURE [words: Words] RETURNS [Words];
Correspondent: --RS232C-- TYPE = RS232CEnvironment.Correspondent;
Correspondent: --RS232CEnvironment-- TYPE = RECORD [[0 .. 255]];
Cos: --ReaIFns-- PROCEDURE [radians: REAL] RETURNS [cos: REAL];
CosOeg: --ReaIFns-- PROCEDURE [degrees: REAL] RETURNS [cos: REAL];
CountType: --CommOnlineDiagnostics-- TYPE = MACHINE DEPENDENT RECORD [

sendOk(0:0 .. 31): LONG CARDINAL,
bytesSent(2:0 .. 31): LONG CARDINAL,
recOk(4:0 .. 31): LONG CARDINAL,
bytesRec(6:0 .. 31): LONG CARDINAL,
deviceError(8: 0 .. 31): LONG CARDINAL,
dataLost(10:0 .. 31): LONG CARDINAL,
checkSum(12:0 .. 31): LONG CARDINAL,
parity(14:0 .. 31): LONG CARDINAL,
invalidChar(16:0 .. 31): LONG CARDINAL,
invalidFrame(18:0 .. 31): LONG CARDINAL,
asynchFrame(20:0 .. 31): LONG CARDINAL,
breakOetected(22:0 .. 31): LONG CARDINAL,
frameTimeout(24:0 .. 31): LONG CARDINAL,
badSeq(26:0 .. 31): LONG CARDINAL,
missing(28:0 .. 31): LONG CARDINAL,
sendErrors(30:0 .. 31): LONG CARDINAL];

Couple: --NSDataStream-- TYPE = RECORD [sink: SinkStream, source: SourceStream];
CourierError: --RemoteCommDiags-- ERROR [reason: Courier.ErrorCode];
courierSocket: --NSConstants-- System.SocketNumber;
CR: --Ascii-- CHARACTER = 15C;
CR: --Format-- PROCEDURE [proc: StringProc, clientData: LONG POINTER Eo- NIL];
CR: --Put-- PROCEDURE [h: Window. Handle Eo- NIL];
Create: --AsciiSink-- PROCEDURE [font: WindowJ;.ont.Handle]

RETURNS [TextSink.Handle];
Create: --BlockSource-- PROCEDURE [block: Block] RETURNS [source: Handle];
Create: --Context-- PROCEDURE [

type: Type, data: Data, proc: DestroyProcType, window: Window. Handle];
Create: --Courier-- PROCEDURE [

remote: SystemElementi programNumber: LONG CARDINAL, versionNumber:
CARDINAL,

Mesa Programmer's Manual

zone: UNCOUNTED ZONE, classOfService: NetworkStream.ClassOfService]
RETURNS [cH: Handle];

Create: --OiskSource-- PROCEDURE [
name: LONG STRING, access: TextSource.Access, s: Stream.Handle ~ NIL]
RETURNS [source: TextSource.Handle];

Create: --File-- PROCEDURE [
volume: System.VolumeID, initialSize: PageCount, type: Type]
RETURNS [file: File];

Create: --Fi/eSW-- PROCEDURE [
sw: Window. Handle, name: LONG STRING, options: Options ~ defaultOptions,
s: Stream. Handle ~ NIL, position: TextSource.Position ~ 0,
allowTypeln: BOOLEAN ~ TRUE, resetLengthOnNewSession: BOOLEAN ~ FALSE];

Create: --FileTransfer-- PROCEDURE RETURNS [Connection];
Create: --FileWindow-- PROCEDURE [

box: Window. Box, options: TextSw.Options ~ defaultOptions,
initialState: ToolWindow.State ~ active] RETURNS [sw: Window. Handle];

Create: --FormSW-- PROCEDURE [
sw: Window. Handle, clientltemsProc: ClientltemsProcType,
readOnlyNotifyProc: ReadOnlyProcType ~ IgnoreReadOnlyProc,
options: Options ~ [], initialState: ToolWindow.State ~ active,
zone: UNCOUNTED ZONE ~ NIL];

Create: --Heap-- PROCEDURE [
initial: Environment.PageCount,
maxSize: Environment.PageCount ~ unlimitedSize,

c

increment: Environment.PageCount ~ 4, swapUnitSize: Space.SwapUnitSize ~ 0,
threshold: NWords ~ minimumNodeSize, largeNodeThreshold: NWords ~ 128,
ownerChecking: BOOLEAN ~ FALSE, checking: BOOLEAN +- FALSE]
RETURNS [UNCOUNTED ZONE];

Create: --MemoryStream-- PROCEDURE [b: Environment.Block]
RETURNS [sH: Stream. Handle];

Create: --Menu-- PROCEDURE [
items: Items, name: LONG STRING, permanent: BOOLEAN +- FALSE] RETURNS [Handle];

Create: --MSegment-- PROCEDURE [
file: MFile.Handle ~ NIL, release: ReleaseData, fileBase: File.PageNumber ~ 0,
pages: Environment.PageCount ~ defaultPages,
swaplnfo: SwapUnitOption ~ defaultSwapUnitOption, usage: Space. Usage +- 0]
RETURNS [segment: Handle];

Create: --MsgSW-- PROCEDURE [
sw: Window.Handle, lines: CARDINAL ~ 1,
options: TextSw.Options +- defaultOptions];

Create: --MStream-- PROCEDURE [
file: MFile.Handle, release: ReleaseData,
options: Stream.lnputOptions +- Stream.defaultlnputOptions,
streamBase: File.PageNumber ~ 0] RETURNS [stream: Handle];

Create: --NetworkStream-- PROCEDURE [
remote: System.NetworkAddress,
connectData: Environment.Block +- Environment.nuIiBlock,
timeout: WaitTime ~ defaultWaitTime, classOfService: ClassOfService ~ bulk]
RETURNS [Stream.Handle];

Create: --NSFi/e-- PROCEDURE [
directory: Handle, attributes: AttributeList +- nullAttributeList,
controls: Controls ~ [], session: Session ~ nuliSession]
RETURNS [file: Handle];

Create: --PieceSource-- PROCEDURE [
original: TextSource.Handle, scratch: TextSource.Handlel
RETURNS [source: TextSource.Handle];

C-23

c

C-24

Listing of Public Symbols

Create: ~-Retr;eveDefs~~ PROCEDURE [
pollinglriterval: CARDINAL +- 300,
reportChanges: PROCEDURE [MBXState, LONG POINTER] +- NIL,
clientOata: LONG POINTER +- NIL] RETURNS [Handle];

Create: ~-RS232C~~ PROCEDURE [
lineNumber: CARDINAL, commParams: CommParamHandle, preemptOthers:

ReserveType,
preemptMe: ReserveType] RETURNS [channel: Channel Handle];

Create: --TextSW~- PROCEDURE [
sw: Window. Handle, source: TextSource.Handle, sink: TextSink.Handle +- NIL,
options: Options +- defaultOptions, position: Position +- 0,
allowTypeln: BOOLEAN +- TRUE, resetLengthOnNewSession: BOOLEAN +- FALSE1;

Create: --Tool-- PROCEDURE [
name: LONG STRING, makeSWsProc: MakeSWsProc, initialState: State +- default,
clientTransition: ToolWindow.TransitionProcType +- NIL,
movableBoundaries: BOOLEAN +- TRUE,
initial Box: Window. Box +- TooIWindow.nuIiBox, cmSection: LONG STRING +- NIL,
tinyNamel: LONG STRING +- NIL, tinyName2: LONG STRING +- NIL,
named: BOOLEAN +- TRUE] RETURNS [window: Window.Handle];

Create: --TooIFont- PROCEDURE [MFile.Handle1 RETURNS [WindowFont.Handle];
Create: --TooIWindow-- PROCEDURE [

name: LONG STRING, adjust: AdjustProcType, transition: TransitionProcType,
box: Box +- nuliBox, limit: LimitProcType +-StandardLimitProc,
initialState: State +- active, named: BOOLEAN +- TRUE,
gravity: Window.Gravity +- nw] RETURNS [Handle1;

Create: --TrY-- PROCEDURE [
name: LONG STRING +- NIL, backingStream: Stream.Handle +- NIL,
ttylmpl: Stream.Handle +- NIL] RETURNS (h: Handle1;

Create: --TrYPort-- PROCEDURE [lineNumber: CARDINAL] RETURNS [Channel Handle];
Create: --TrYSW-- PROCEDURE [

sw: Window.Handle, backupFile: LONG STRING, s: Stream. Handle +- NIL,
newFile: BOOLEAN +- TRUE, options: TextSw.Options +- defaultOptions,
resetLengthOnNewSession: BOOLEAN +- FALSE];

Create: --Volume-- PROCEDURE [
pvlO: System.PhysicaIVolumeIO, size: PageCount, name: LONG STRING, type: Type,
minPVPageNumber: PhyslcalVolume.PageNumber +-1] RETURNS [volume: 10];

Create: --Zone-- PROCEDURE [
storage: LONG POINTER, length: BlockSize, zoneBase: Base,
threshold: BlockSize +- minimumNodeSize, checking: BOOLEAN +- FALSE]
RETURNS [zH: Handle, s: Status];

CreateBackstopLog: --Backstop-- PROCEDURE [
size: CARDINAL, file: File.File, firstPageNumber: File.PageNumber +- 0];

CreateClient: --TIP-- PROCEDURE [
window: Window. Handle, table: Table +- NIL, notify: NotifyProc +- NIL];

CreateCouple: --NSDataStream-- PROCEDURE RETURNS [Couple];
created By: --NSAss;gnedTypes-- AttributeType = 2;
CreateDirectory: -MFile-- PROCEDURE [dir: LONG STRING];
createdOn: --NSAss;gnedTypes--AttcibuteType = 3;
CreateFile: --Floppy-- PROCEDURE [

volume: VolumeHandle, size: PageCount, type: File.Type]
RETURNS [file: FileHandle];

CreateFloppyFromlmage: --Floppy-- PROCEDURE [
floppyOrive: CARDINAL +- 0, imageFile: File.File,
firstlmagePage: File.PageNumber, reformatFloppy: BOOLEAN,
floppyOensity: Density +- default, floppySides: Sides +- default,
numberOfFiles: CARDINAL +- 0, newLabelString: LONG STRING +- NIL];

Mesa Programmer's Manual

CreatelndirectStringln: --Userlnput-- PROCEDURE [
from: Wlndow.Handle, to: Window. Handle];

CreatelndirectStringlnOut: --Userlnput-- PROCEDURE [
from: Window. Handle, to: Window. Handle];

CreatelndirectStringOut: --Userlnput-- PROCEDURE [
from: Window.Handle, to: Window. Handle];

CreatelnitialMicrocodeFile: --Floppy-- PROCEDURE [
volume: VolumeHandle, size: PageCount, type: File.Type,
startingPageNumber: PageNumber Eo-1) RETURNS [file: FileHandle]; .

CreateListener: --NetworkStream-- PROCEDURE [addr: System.NetworkAddress]
RETURNS [ListenerHandle];

CreateMCR: --FileWindow-- Menu.MCRType;
CreateMDS: --Heap-- PROCEDURE [

initial: Environment.PageCount,
maxSize: Environment.PageCount Eo- unlimitedSize,

c

increment: Environment.PageCount Eo- 4, swapUnitSize: Space.SwapUnitSize Eo- 0,
threshold: NWords Eo- minimumNodeSize, largeNodeThreshold: NWords Eo- 128,
ownerChecking: BOOLEAN Eo- FALSE, checking: BOOLEAN Eo- FALSE) RETURNS

[MOSZone];
CreatePeriodicNotify: --Userlnput-- PROCEDURE [

proc: PeriodicProcType, window: Window.Handle, rate: Process. Ticks]
RETURNS [PeriodicNotifyHandle];

CreatePhysicalVolume: --PhysicaIVolume-- PROCEDURE [
instance: Handle, name: LONG STRING) RETURNS [10];

CreateProcType: --Context-- TYPE = PROCEDURE RETURNS [Data, OestroyProcType];
CreateReplier: --PacketExchange-- PROCEDURE [

local: System.NetworkAddress, requestCount: CARDINAL Eo- 1,
waitTime: WaitTime Eo- defaultWaitTime,
retransmissionlnterval: WaitTime Eo- defaultRetransmissionlnterval]
RETURNS [ExchangeHandle];

Create Requestor: -PacketExchange-- PROCEDURE [
waitTime: WaitTime Eo-defaultWaitTime,
retransmissionlnterval: WaitTime Eo- defaultRetransmissionlnterval]
RETURNS [ExchangeHandle];

CreateScrollWindow: --UserTerminaIExtras-- PROCEDURE [
locn: UserTerminal.COOrdinate, width: CARDINAL, height: CARDINAL];

CreateServer: --NSTimeServer-- PROCEDURE;
CreateStringlnOut: --Userlnput-- PROCEDURE [

window: Window. Handle, in: StringProcType, out: StringProcType,
caretProc: CaretProcType Eo- NopCaretProc];

CreateSubwindow: --TooIWindow-- PROCEDURE [
parent: Handle, display: OisplayProcType Eo- NIL, box: Box Eo- nullBox,
gravity: Window.Gravity Eo- nw] RETURNS [Handle];

CreateTable: --TlP-- PROCEDURE [
file: LONG STRING Eo- NIL, opaque: BOOLEAN Eo- FALSE, z: UNCOUNTED ZONE Eo- NIL,
contents: LONG STRING Eo- NIL] RETURNS [table: Table];

create Tool: --EventTypes-- Supervisor. Event;
Create Transducer: --NetworkStream- PROCEDURE [

local: System.NetworkAddress, remote: System.NetworkAddress,
connectOata: Environment.Block Eo- Environment.nuIlBlock,
10calConnl0: ConnectionlD, remoteConnlD: ConnectionlO,
activelyEstablish: BOOLEAN, timeout: WaitTime Eo- defaultWaitTime,
classOfService: ClassOfService Eo- bulk1 RETURNS [Stream.Handle];

CreateTTYlnstance: --TTY-- PROCEDURE [
name: LONG STRING, backingStream: Stream.Handle, tty: Handle]
RETURNS [ttylmpl: Stream. Handle, backing: Stream.Handle);

C-25

c

C-26

Listing of Public Symbols

CreateUniform: --Heap-- PROCEDURE [
initial: Environment.PageCount,
maxSize: Environment.PageCount +- unlimitedSize,
increment: Environment.PageCount +- 4, swapUnitSize: Space.SwapUnitSize +- 0,
objectSize: NWords, ownerChecking: BOOLEAN +- FALSE, checking: BOOLEAN +-

FALSE]
RETURNS [UNCOUNTED ZONE];

createWindow: --EventTypes-- Supervisor. Event;
Credential Events: --EventTypes-- TYPE = [400 .. 499);
Credentials: --Authenticator-- TYPE = NSName.Credentials;
Credentials: --NSFile-- TYPE = NSName.Credentials;
Credentials: --NSName-- TYPE = RECORD [

type: CredentialsType, value: CredentialsContent];
CredentialsContent: --NSName-- TYPE [3];
CredentialsType: --NSName-- TYPE = MACHINE DEPENDENT{

superWeak, weak, strong, (177777B)};
Current: --Time-- PROCEDURE RETURNS [time: System.GreenwichMeanTime);
CurrentSelection: --Put-- PROCEDURE [h: Window. Handle +- NIL];
currentVersion: --VolumeConversion-- CARDINAL = 0;
cursor: --UserTerminal-- READONLY LONG POINTER TO READONLY Coordinate;
CursorArray: --OnlineDiagnostics-- TYPE = ARRAY [0 .. 15) OF WORD;
CursorArray: --UserTerminal-- TYPE = ARRAY [0 .. 15] OF WORD;
CursorState: --HeraldWindow-- TYPE = {invert, negative, positive};
01: --KeyStations-- Bit = 96;
02: --KeyStations-- Bit = 95;
DamageStatus: --Phys;caIVo/ume-- TYPE = {okay, damaged, lost};
Data: --Context-- TYPE = LONG POINTER;
DataError: --Floppy-- ERROR [

file: FileHandle, page: PageNumber, vm: LONG POINTER);
Date: --Format-- PROCEDURE [

proc: StringProc, pt: Time.Packed, format: DateFormat +- noSeconds,
zone: Time.TimeZoneStandard +-ANS/, clientData: LONG POINTER +- NIL];

Date: --Put-- PROCEDURE [
h: Window.Handle +- NIL, pt: Time.Packed,
format: Format.DateFormat +- noSeconds];

DateFormat: --Format-- TYPE = {dateOnly, noSeconds, dateTime, full, maiIDate};
DateFormat: --TTY-- TYPE = Format.DateFormat;
DB/TAND: -Inline-- DBitOp;
DBITNOT: --Inline-- PROCEDURE [LONG UNSPECIFIED] RETURNS [LONG UNSPECIFIED];
DBitOp: '--Inline-- TYPE = PROCEDURE [LONG UNSPECIFIED, LONG UNSPECIFIED]

RETURNS [LONG UNSPECIFIED];
DBITOR: --Inline-- DBitOp;
DBITSHIFT: --Inline-- PROCEDURE [value: LONG UNSPECIFIED, count: INTEGER]

RETURNS [LONG UNSPECIFIED];
DB/TXOR: --Inline-- DBitOp;
DCSFileType: --FileTypes--TYPE = CARDINAL[512 .. 767];
deactivate: --EventTypes-- Supervisor. Event;
Deactivate: --MSegment-- PROCEDURE [segment: Handle];
Deactivate: -TooIWindow-- PROCEDURE [window: Handle]

RETURNS (aborted: BOOLEAN];
DealiocateBands: --RavenFace-- PROCEDURE;
DeallocateListOflDs: --LibrarianUtility-- PROCEDURE (array: IDArrayHandle]

RETURNS [iDArrayHandle];
DebugEvents: --EventTypes-- TYPE = [0 .. 99];
debuggerVolumelD: --Volume-- READONLY 10;
debugging: --EventTypes-- Supervisor. Event;

Mesa Programmer's Manual

debugging: --Profile-- READONLY BOOLEAN;
debuggingOnUtilityPilot: --PiiotSwitches-- PilotDomainA = 77C;
Decimal: --Format-- PROCEDURE [

proc: StringProc, n: INTEGER, clientData: LONG POINTER ~ NIL];
Decimal: --Put-- PROCEDURE [h: Wlndow.Handle ~ NIL, n: INTEGER];
Decimal: --Token-- PROCEDURE [h: Handle, signalOnError: BOOLEAN ~ TRUE]

RETURNS [i: INTEGER];
DecimalFormat: --Format-- NumberFormat;
DecodeBoolean: --NSFi/e-- PROCEDURE [Words] RETURNS [b: BOOLEAN];
DecodeCardinal: --NSFile-- PROCEDURE [Words] RETURNS [c: CARDINAL];
Decodelnteger: --NSFile-- PROCEDURE [Words] RETURNS [i: INTEGER];
DecodeLongCardinal: --NSFile-- PROCEDURE [Words] RETURNS [Ie: LONG CARDINAL];
DecodeLonglnteger: --NSFile-- PROCEDURE [Words] RETURNS [Ii: LONG INTEGER];
DecodeParameters: --NSName-- PROCEDURE [

z: UNCOUNTED ZONE,
encoding: LONG DESCRIPTOR FOR ARRAY CARDINAL OF UNSPECIFIED,

. parameters: Courier.Parameters];
DecodeSimpleCredentials: --NSName-- PROCEDURE [credentials: Credentials]

RETURNS [SimpleCredentials];
DecodeSimpleVerifier: --NSName-- PROCEDURE [verifier: Verifier]

RETURNS [SimpleVerifier];
DecodeString: --NSFile- PROCEDURE [Words] RETURNS [s: String];
DecodeSwitches: --OthelloOps-- PROCEDURE [switchString: LONG STRING]

RETURNS [switches: System.Switches];
defaultAccessList: --NSAssignedTypes-- AttributeType = 20;
defaultBaseDirectoryProc: --NSVo/umeContro/-- READONLY BaseDirectoryProc;
defaultBoxWidth: -FormSW-- CARDINAL = 0;
DefaultCheckCredentialsProc: --NSSessionContro/-- CheckCredentialsProc;
DefaultConfirm: --HeraldWindow-- ConfirmProcType;
defaultExpirationTime: --Authenticator-- Seconds = 250600B;
defaultFileServerProtocol: --Profile-- READONLY FileServerProtocol;
defaultFont: --WindowFont-- READONL Y Handle;
DefaultGetCredentialsProc: --NSSessionContro/-- GetCredentialsProc;
DefaultHeight: --Too/-- INTEGER = 0;
defaultlD: --NSSegment--ID = 0;
defaultMask: --Expand-- Mask;
DefaultMem bershi pProc: --NSSessionContro/-- Membershi pProc;
defaultName: --NSVo/umeContro/-- READONLY NSString.String;
defaultOptions: --FileSW-- Options;
defaultOptions: --FileWindow-- TextSw.Options;
defaultOptions: --MLoader-- Options;
defaultOptions: --MsgSW-- TextSw.Options;
defaultOptions: --TextSW-- Options;
defaultOptions: --TTYSW-- TextSw.Options;
defaultOrdering: --NSFile-- key Ordering;
defaultPageCount: --Floppy-- PageNumber = 37777777777B;
defaultPages: --MSegment-- Environment.PageCount = 37777777777B;
DefaultPost: --HeraldWindow-- Format.StringProc;
DefaultPutback: --Real-- PROCEDURE [CHARACTER];
defaultRetransmissionlnterval: --PacketExchange-- WaitTime = 72460B;
DefaultSinglePrecision: --Real-- CARDINAL = 7;
defaultSwapUnitOption: --MSegment-- SwapUnitOption;
defaultSwapUnitSize: --MSegment-- SwapUnitSize = 0;
defaultTime: --Time-- System.GreenwichMeanTime;
defaultTi meout: --NSFile-- Ti meout = 177777B;
defaultTi meout: --NSVo/umeContro/-- READONL Y NSFile. Ti meout;

c

C-27

c Listing of Public Symbols

OefaultUnloadProc: -·Exec-- ExecProc;
defaultValueSize: --BTree-- ValueSize = 3;
defaultVolume: --NSVolumeContro/-- READONLY Volume.IO;
defaultWaitTime: --NetworkStream-- WaitTime = 1651408;
defaultWaitTime: --PacketExchange-- WaitTime = 1651408;
Defined: --Cursor-- TYPE = Type [activate .. groundedText);
DEL: --Ascii-- CHARACTER = 177C;
Delete: --BTree-- PROCEDURE [tree: Tree];
Delete: --Courier-- PROCEDURE [cH: Handle];
Delete: --File-- PROCEDURE [fife: File];
Delete: --FileTransfer-- PROCEDURE [

conn: Connection, file: FileName.VFN, veto: VetoProc Eo- NIL];
Delete: --Heap-- PROCEDURE [z: UNCOUNTED lONE, checkEmpty: BOOLEAN Eo- FALSE];
Delete: -MFile-· PROCEDURE [file: Handle];
Delete: --MSegment-- PROCEDURE [segment: Handle];
Delete: --NSFile-- PROCEDURE [file: Handle, session: Session Eo- nuIiSession];
Delete: --NSSegment-- PROCEDURE [

file: NSFile.Handle, segment: 10, session: Session Eo- nuIlSession);
Delete: --PacketExchange-- PROCEDURE [h: ExchangeHandle];
Delete: --RS232C-- PROCEDURE [channel: Channel Handle];
Delete: --TTYPort-- PROCEDURE [channel: Channel Handle];
DeleteAlias: --CH- PROCEDURE [

cred: Authenticator.Credentials, ver: Authenticator. Verifier, aliasName: Name,
distingName: Name] RETURNS [rc: ReturnCode];

DeleteByName: --NSFile-- PROCEDURE [
directory: Handle, path: String, session: Session Eo- nuIiSession];

DeleteChild: --NSFile-- PROCEDURE [
directory: Handle, id: 10, session: Session Eo- nuIlSession];

DeleteDistinguishedName: --CH-- PROCEDURE [
cred: Authenticator.Credentials, ver: Authenticator.Verifier, name: Name,
distingName: Name] RETURNS [rc: ReturnCode];

DeleteDomainAccessMember: --MoreCH-- PROCEDURE [
cred: Authenticator.Credentials, ver: Authenticator.Verifier,
element: cH.Element, domain: cH.Name, ad: AClFlavor]
RETURNS [rc: cH.ReturnCode];

DeleteFile: --Floppy-- PROCEDURE [file: FileHandle];
DeleteGroupMember: --CH-- PROCEDURE [

cred: Authenticator.Credentials, ver: Authenticator.Verifier,
element: Element, name: Name, pn: PropertylO, distingName: Name]
RETURNS [rc: ReturnCode]; .

DeleteListener: --NetworkStream-- PROCEDURE [IistenerH: ListenerHandle];
DeleteLog: --VolumeConversion-- PROCEDURE [volume: Volume.IO];
DeleteMDS: --Heap-- PROCEDURE [z: MOSZone, checkEmpty: BOOLEAN Eo- FALSE];
DeleteOrgAccessMember: --MoreCH-- PROCEDURE [

cred: Authenticator. Credentials, ver: Authenticator. Verifi er,
element: cH.Element, org: cH.Name, ad: AClFlavor]
RETURNS [rc: cH.ReturnCode];

DeleteProperty: --CH-- PROCEDURE [
cred: Authenticator.Credentials, ver: Authenticator.Verifier, name: Name,
pn: PropertylO, distingName: Name] RETURNS [rc: ReturnCode];

DeletePropertyAccessMember: --MoreCH-- PROCEDURE [
cred: Authenticator.Credentials, ver: Authenticator.Verifier,
element: cH.Element, name: cH.Name, pn: cH.PropertyIO, ad: ACLFlavor,
distingName: cH.Name] RETURNS [rc: cH.ReturnCode];

DeleteScrollWi ndow: --UserTerm; nal Extras-- PROCEDURE;

Mesa Programmer's Manual

DeleteSelf: --CH-- PROCEDURE [
cred: Authenticator.Credentials, ver: Authenticator.Verifier, name: Name,
pn: PropertylD, distingName: Name) RETURNS [rc: ReturnCode];

DeleteServer: --NSTimeServer-- PROCEDURE;
DeleteSubString: --NSString-- PROCEDURE [s: SubString] RETURNS [String);
DeleteTempFiles: --Othel/oOps-- PROCEDURE [Volume.ID];
DeleteText: --TextSW-- PROCEDURE [

sw: Window. Handle, pos: Position, count: LONG CARDINAL,
keepTrash: BOOLEAN ~ TRUE);

DeleteThisSW: --Tool-- PROCEDURE [sw: Window.Handle];
DeleteWhenReleased: --MFile-- PROCEDURE [file: Handle];
Delimited: --Token-- FilterProcType;
DelinkSubwindow: --TooIWindow-- PROCEDURE [child: Handle];
Density: --Floppy-- TYPE = {single, double, default};
descendingPositionOrdering: --NSFile-- key Ordering;
Describe: --CHLookup-- PROCEDURE [

sH: Stream.Handle, op: Operation, type: CHPIDs.PropertyID,
buffer: LONG POINTER];

DescribeAddress: --NSAddr-- Courier. Descri ption;
DescribeCredentials: --NSName-- Courier. Descri ption;
Descri beHeader: --ExpeditedCourier-- Courier. Descri ption;
DescribeNameRecord: --NSName-- Courier.Description;
DescribeNSAddr: --NSAddr-- Courter. Descri ption;
DescribeString: --NSString-- Courier. Descri ption;
DescribeTicket: --NSDataStream-- Courier. Description;
DescribeVerifier: --NSName-- Courier.Description;END.
Description: --Courier-- TYPE = PROCEDURE [notes: Notes];
Deserialize: --NSFile-- PROCEDURE [

directory: Handle, source: Source,
attributes: AttributeList Eo- nullAttributeList, controls: Controls Eo- [],

session: Session Eo- nullSession] RETURNS [file: Handle];
DeserializeFromBlock: --CH-- PROCEDURE [

parms: Courier.Parameters, heap: UNCOUNTED ZONE, blk: EnVIronment. Block]
RETURNS [succeeded: BOOLEAN];

DeserializeFromBlock: --ExpeditedCourier-- PROCEDURE [
parms: Courier. Parameters, heap: Heap.Handle, blk: Environment.Block]
RETURNS [succeeded: BOOLEAN];

DeserializeFromRhs: --CH-- PROCEDURE [
parms: Courier.Parameters, heap: UNCOUNTED ZONE, rhs: Buffer]
RETURNS [succeeded: BOOLEAN];

DeserializeParameters: --Courier-- PROCEDURE [
parameters: Parameters, sH: Stream. Handle, zone: UNCOUNTED ZONE];

DesiredProperties: --FileTransfer-- TYPE = PACKED ARRAY ValidProperties OF
BOOLEAN Eo- ALL[FALSE];

Destroy: --Context-- PROCEDURE [type: Type, window: Window. Handle];
destroy: --EventTypes-- Supervisor. Event;
Destroy: --FileSW-- PROCEDURE [sw: Window. Handle];
Destroy: --FileTransfer-- PROCEDURE [Connection];
Destroy: --FileWindow-- PROCEDURE [sw: Window. Handle];
Destroy: --FormSW-- PROCEDURE [Window. Handle];
Destroy: --MemoryStream-- PROCEDURE [sH: Stream. Handle];
Destroy: --Menu-- PROCEDURE [Handle];
Destroy: --MsgSW-- PROCEDURE [SW: Window. Handle];
Destroy: --RetrieveDefs-- PROCEDURE [Handle];
Destroy: --TextSW-- PROCEDURE [SW: Window. Handle];
Destroy: --Tool-- PROCEDURE [window: Window. Handle];

c

C-29

c

C-30

Listing of Pu hlie Symbols

Destroy: --TooIFont- PROCEDURE (WindowFont.Handle];
Destroy: --Too/Window-- PROCEDURE [window: Handle];
Destroy: --TTY-- PROCEDURE [h: Handle, deleteBackingFile: BOOLEAN +- FALSE];
Destroy: --TTYSW-- PROCEDURE [sw: Window.Handle];
DestroyAII: --Context-- PROCEDURE [window: Window.Handle];
DestroyClient: --TlP-- PROCEDURE [window: Window. Handle];
DestroyFromBackgroundProcess: --TTYSW-- PROCEDURE [sw: Window. Handle];
DestroylndirectStringln: --Userlnput-- PROCEDURE [Window. Handle];
DestroylndirectStringlnOut: --Userlnput-- PROCEDURE [Window. Handle];
DestroylndirectStringOut: --Userlnput-- PROCEDURE [Window. Handle];
DestroyMCR: --FileWindow-- Menu.MCRType;
DestroyProcType: --Context-- TYPE = PROCEDURE [Data, Window. Handle];
DestroyStringlnOut: --Userlnput-- PROCEDURE [Window. Handle];
DestroySW: --Too/-- PROCEDURE [window: Window. Handle];
Detach: --Process-- PROCEDURE [process: PROCESS];
Detail: -CommOnlineDiagnostics-- TYPE = MACHINE DEPENDENT RECORD [

msec(0:0 .. 15): CARDINAL, count(1 :0 .. 15): CARDINAL];
DevelopmentEnvironmentDomain: --PilotSwitches-- TYPE = SwitchName

[101C .. 132C];
Devicelndex: --PageScavenger-- TYPE = CARDINAL;
DeviceStatus: --RS232C-- TYPE = RECORD [

statusAborted: BOOLEAN,
dataLost: BOOLEAN,
break Detected : BOOLEAN,
clearToSend: BOOLEAN,
dataSetReady: BOOLEAN,
carrierDetect: BOOLEAN,
ringHeard: BOOLEAN,
ringlndicator: BOOLEAN,
deviceError: BOOLEAN];

DeviceStatus: --TTYPort-- TYPE = RECORD [
aborted: BOOLEAN,
break Detected : BOOLEAN,
dataTerminalReady: BOOLEAN,
readyToGet: BOOLEAN,
readyToPut: BOOLEAN,
requestToSend: BOOLEAN];

DiagnosticsFileType: --Fi/eTypes-- TYPE = CARDINAL [22300B .. 223778];
diagnosticsServerSocket: --NSConstants-- System.SocketNumber;
Dial: --Dialup-- PROCEDURE [.

dialerNumber: CARDINAL, number: LONG POINTER TO Number, retries: RetryCount]
RETURNS [Outcome];

DialMode: --RS232C-- TYPE = RS232CEnvironment.DiaIMode;
DialMode: --RS232CEnvironment-- TYPE = {manual, auto};
DialupOutcome: --CommOnlineDiagnostics- TYPE = MACHINE DEPENDENT{

success, failure, aborted, formatError, transmission Error, dataLineOccupied,
dialerNotPresent, dialingTimeout, transferTimeout, otherError, noHardware,
noSuchLine, channellnUse, unimplementedFeature, invalidParamater};

DialupTest: --CommOnlineDiagnostics-- PROCEDURE [
rs232ClineNumber: CARDINAL, phoneNumber: LONG POINTER TO Dialup.Number,
host: System. NetworkAddress Eo- System.nuIiNetworkAddress]
RETURNS [outcome: DialupOutcome];

DialupTest: --RemoteCommDiags- PROCEDURE [
host: System.NetworkAddress, rs232C1ineNumber: CARDINAL,
phoneNumber: LONG POINTER TO Dialup.Number]
RETURNS [outcome: Com mOnllneDlagnostics. Dial upOutcome];

Mesa Programmer's Manual

DifferentType: --LogFile-- ERROR;
Dims: --Window-- TYPE = RECORD [w: INTEGER, h: INTEGER);
DirectedBroadcastCall: --ExpeditedCourier-- PROCEDURE [

program Number: LONG CARDINAL, versionNumber: CARDINAL,
procedureNumber: CARDINAL, arguments: Courier.Parameters,
address: System. NetworkAddress, action: ExpandingRingAction,
each Response: ResponseProc, responseBufferCount: CARDINAL ~ 5);

Direction: --BitBlt-- TYPE = {forward, backward};
Direction: --NSFile-- TYPE = MACHINE DEPENDENT{forward, backward};
di rectory Created : --EventTypes-- Su pervisor. Event;
di rectory Del eted : --EventTypes-- Supervisor. Event;
Disable: --Log-- PROCEDURE RETURNS [State);
DisableAborts: --Process-- PROCEDURE [condition: LONG POINTER TO CONDITION);
disableMapLog: --PiiotSwitches-- PilotDomainA = 67C;
DisableTimeout: --Process-- PROCEDURE [condition: LONG POINTER TO CONDITION);
DiskAddress: --FloppyChanne/-- TYPE = MACHINE DEPENDENT RECORD [

cylinder(0:0 .. 15): CARDINAL,
head(1 :0 .. 7): [0 .. 255),
sector(1:8 .. 15): [0 .. 255));

DiskPageNumber: --FormatPiiotDisk-- TYPE = PhysicaIVolume.PageNumber;
DiskStatus: --PageScavenger-- TYPE = {

goodCompletion, noSuchPage, label DoesNotMatch, seekFailed, checkError,
data Error, hardwareError, notReady, labeIError};

Dispatcher: --Courier-- TYPE = PROCEDURE [
cH: Handle, procedureNumber: CARDINAL, arguments: Arguments,
results: Results);

DispatcherProc: --ExpeditedCourier-- TYPE = PROCEDURE [

c

program Number: LONG CARDINAL, version: CARDINAL, procedureNumber: CARDINAL,
serializedRequest: Environment.Block, replyMemoryStream: Stream. Handle,
callWasABroadcast: BOOLEAN) RETURNS [send Reply: BOOLEAN];

Display: --FormSW-- PROCEDURE [SW: Window.Handle, yOffset: CARDINAL ~O];
Display: --RavenFace-- PROCEDURE [char: ConsoleCharacter];
displayed Pages: --HeraidWindow-- READONL Y LONG CARDINAL;
DisplayEvents: --EventTypes-- TYPE = [800 .. 999];
DisplayFieldsProc: --OnlineDiagnostics-- TYPE = PROCEDURE [

fields: DESCRIPTOR FOR ARRAY CARDINAL OF Field, title: FloppyMessage ~ tFirst,
fieldType: FieldDataType, numberOfColumns: CARDINAL ~ 3];

Displayltem: --FormSW-- PROCEDURE [SW: Window. Handle, index: CARDINAL];
DisplayLibjectlD: --LibrarianUtility-- PROCEDURE [

sw: Window.Handle, id: Librarian.LibjectID];
DisplayNumberedTableProc: --OnlineDiagnostics-- TYPE = PROCEDURE [

values: LONG DESCRIPTOR FOR ARRAY CARDINAL OF UNSPECIFIED,
rowNameHeader: FloppyMessage ~tFirst, title: FloppyMessage ~tFirst,
numOfColumns: CARDINAL, startNum: INTEGER, fieldType: FieldDataType);

displayOff: --EventTypes-- Supervisor. Event;
displayOn: --EventTypes-- Supervisor. Event;
DisplayProcType: --TooIWindow-- TYPE = PROCEDURE [wiDdow: Handle];
DisplayPropertyList: --LibrarianUtility-- PROCEDURE [

sw: Window. Handle, plist: llbrarian.PropertyList, properties: PropertyArray,
leader: LONG STRING, outputTags: BOOLEAN];

DisplayPropertyPair: --LibrarianUtility-- PROCEDURE [
sw: Window. Handle, pp: lIbrarian.PropertyPair, properties: PropertyArray,
leader: LONG STRING, outputTags: BOOLEAN];

displayState: --Event-- READONL Y Supervisor.SubsystemHandle;
DisplayTableProc: --OnlineDiagnostics-- TYPE = PROCEDURE [

headers: DESCRIPTOR FOR ARRAY CARDINAL OF FloppyMessage,

C-31

c Listing of Public Symbols

rowNames: DESCRIPTOR FOR ARRAY CARDINAL OF FloppyMessage,
values: DESCRIPTOR FOR ARRAY CARDINAL OF DESCRIPTOR FOR ARRAY CARDINAL OF

UNSPECIFIED, title: FloppyMessage +-tFirst, fieldType: FieldDataType);
DisplayVersion: --LibrarianUtility-- PROCEDURE [

sw: Window. Handle, version: Librarian.LibjectVersion);
DistinguishSegmentedFileType: --NSVolumeContro/-- PROCEDURE [type: NSFile.Type);
DivideCheck: --Runtime-- SIGNAL;
DividelnfinityNaN: --Real-- LONG CARDINAL = 5;
DIVMOD: --Inline-- PROCEDURE [num: CARDINAL, den: CARDINAL]

RETURNS [quotient: CARDINAL, remainder: CARDINAL];
DocProcFileType: --FileTypes-- TYPE = CARDINAL [6000B .. 77776];
DOEditAdion: --TextSW-- PROCEDURE [

sw: Window. Handle, action: TextSource.EditAction]
RETURNS [delta: LONG INTEGER];

DoesNotExist: --TextSW-- SIGNAL;
domain: --EventTypes-- Supervisor. Event;
Domain: -NSName-- TYPE = String +- NSString.nuIlString;
DomainName: --CH-- TYPE = NSName.Domain;
DoneWithProcess: --Event-- PROCEDURE [Handle];
dontCare: --MFile--lnitiaILength = 37777171777B;
dontChangeFile: --MSegment-- MFile.Handle;
dontChangeFileBase: --MSegment-- File.PageNumber = 37717777777B;
dontC~angePages: --MSegment-- Environment.PageCount = 37777777776B;
dontChangeReleaseData: --MSegment-- ReleaseData;
dontChangeUsage: --MSegment-- Space.Usage = 255;
dontRelease: --MFile-- ReleaseData;
DownUp: --JLeveIlVKeys-- TYPE = KeyStations.DownUp;
DownUp: -Keys-- TYPE = KeyStations.DownUp;
DownUp: --KeyStations-- TYPE = {down, up};
DownUp: --LevellilKeys-- TYPE = KeyStations.DownUp;
DownUp: --LeveIlVKeys-- TYPE = KeyStations.DownUp;
DownUp: --TIP--TYPE = Keys.DownUp;
DozeOff: --RavenFace-- PROCEDURE;
DPCell: --Atom-- TYPE = RECORD [first: LONG STRING, rest: AList);
DrawNameFrame: --Too/Window-- DisplayProcType;
DrawRedangle: --Too/Window-- PROCEDURE [

window: Handle, box: Box, width: CARDINAL +- 1];
Drive: --FloppyChannel-- TYPE = CARDINAL;
DstFunc: --8it8It-- TYPE = {null, and, or, xor};
DstFunc: -Display-- TYPE = BitBlt.DstFunc;
DumpObject: --CH-- PROCEDURE [

cred: Authenticator.Credentials, ver: Authenticator.Verifier, name: Name,
eachBlock: PROCEDURE [LONG POINTER, CARDINAL], distingName: Name]
RETURNS [rc: ReturnCode];

Duplexity: --RS232C-- TYPE = RS232CEnvironment.Duplexity;
Duplexity: --RS232CEnvironment-- TYPE = {full, half};
eatGerm: --PiiotSwitches-- PilotDomainC = 376C;
ebcdicByteSync: --RS232CCorrespondents--

RS232CEnvironment.AutoRecognitionOutcome;
EchoClass: --TTY-- TYPE = {none, plain, stars};
echoerSocket: --NSConstants-- System.SocketNumber;
EchoEvent: --CommOnlineDiagnostics-- TYPE = MACHINE DEPENDENT{

success, late, timeout, badDataGoodCRC, sizeChange, unexpected};
EchoParams: --CommOnlineDiagnostics-- TYPE = MACHINE DEPENDENT RECORD [

totaICount(0:0 .. 15): CARDINAL +-177777B,
safetyTOlnMsecs(l :0 .. 31): LONG CARDINAL +-165140B,

Mesa Programmer's Manual

minPacketSizelnBytes(3:0 .. 1 5): CARDINAL Eo- 2,
maxPacketSizelnBytes(4:0 .. 1 5): CARDINAL Eo- 512,
wordContents(S:O .. 1 5): WordslnPacket Eo- incrWords,
constant(6:0 .. 1 5): CARDINAL Eo- 1252528,
waitForResponse(7:0 .. 1 5): BOOLEAN Eo- TRUE,
minMsecsBetweenPackets(8:0 .. 15): CARDINAL Eo- 0,
checkContents(9:0 .. 1 5): BOOLEAN Eo- TRUE,
showMpCode(l 0:0 .. 15): BOOLEAN Eo- FALSE];

EchoResults: --CommOnlineDiagnostics-- TYPE = MACHINE DEPENDENT RECORD [
totaITime(0:0 .. 31): LONG CARDINAL,
totaIAttempts(2:0 .. 31): LONG CARDINAL,
successes(4:0 .. 31): LONG CARDINAL,
timeouts(6:0 .. 31): LONG CARDINAL,
late(8:0 .. 31): LONG CARDINAL,
unexpected(10:0 .. 31): LONG CARDINAL,
bad(12:0 .. 31): LONG CARDINAL,
avgDelaylnMsecs(14:0 .. 31): LONG CARDINAL,
okButDribble(16: 0 .. 31): LONG CARDINAL,
badAlignmentButOkCrc(18:0 .. 31): LONG CARDINAL,
packetToolong(20:0 .. 31): LONG CARDINAL,
overrun(22:0 .. 31): LONG CARDINAL,
idlelnput(24:0 .. 31): LONG CARDINAL,
tooManyCollisions(26:0 .. 31): LONG CARDINAL,
lateCollisions(28:0 .. 31): LONG CARDINAL,
underrun(30:0 .. 31): LONG CARDINAL,
stuckOutput(32:0 .. 31): LONG CARDINAL,
spare(34:0 .. 31): LONG CARDINAL];

echoServer: --ProtocoICertification-- Stage;
echoUser: --ProtocoiCertification-- Stage;
ECS: --CHLookup-- TYPE = MACHINE DEPENDENT RECORD [

address(0:0 .. 95): System.NetworkAddress, location(6:0 .. 63): NSString.String];
ECSDescribe: --CHLookup-- Courier. Descri ption;
ECSPt: --CHLookup-- TYPE = LONG POINTER TO ECS;
edit: --EventTypes-- Supervisor. Event;
ElapseTime: --ExpeditedCourier-- TYPE = NSTypes.WaitTime;
electronicMailFirstSocket: --NSConstants-- System.SocketNumber;
el ectronicMai IlastSocket: --NSConstants-- System .SocketN umber;
Element: --CH- TYPE = LONG POINTER TO ThreePartName;
Ellipse: --Display-- PROCEDURE [

window: Handle, center: Window.Place, xRadius: INTEGER, yRadius: INTEGER,
bounds: Window.BoxHand~e Eo- NIL];

Empty: --BTree-- PROCEDURE [tree: Tree] RETURNS [BOOLEAN];
EmptyString: --MDSStorage-- PROCEDURE [s: LONG STRING) RETURNS [BOOLEAN);
EnableAborts: --Process-- PROCEDURE [condition: LONG POINTER TO CONDITION];
EncodeBoolean: --NSFile-- PROCEDURE [b: BOOLEAN] RETURNS [Words];
EncodeCardinal: --NSFile-- PROCEDURE [c: CARDINAL] RETURNS [Words];
Encodelnteger: --NSFile-- PROCEDURE [i: INTEGER] RETURNS [Words];
EncodeLongCardinal: --NSFile-- PROCEDURE [Ie: LONG CARDINAL] RETURNS [Words];
EncodeLonglnteger: --NSFi/e-- PROCEDURE [Ii: LONG INTEGER] RETURNS [Words];
EncodeParameters: --NSName-- PROCEDURE [

z: UNCOUNTED ZONE, parameters: Courier. Parameters]
RETURNS [LONG DESCRIPTOR FOR ARRAY CARDINAL OF UNSPECIFIED];

EncodeSimpleCredentials: --NSName-- PROCEDURE [
z: UNCOUNTED ZONE, simpleCredentials: SimpleCredentials]
RETURNS [Credentials];

c

C-33

c

C-34

Listing of Public Symbols

EncodeSimpleVerifier: --NSName-- PROCEDURE (simpleVerifier: SimpleVerifier]
RETURNS [Verifier];

EncodeString: --NSFile-- PROCEDURE [s: String] RETURNS [Words];
endEnumeration: --Router-- READONLY System.NetworkNumber;
EndOf: --MStream-- PROCEDURE [stream: Handle] RETURNS [BOOLEAN];
EndOf: -TTYSW-- PROCEDURE [sw: Window. Handle] RETURNS [yes: BOOLEAN];
endOfBandCmd: --BandBL T-- CARDINAL = 8;
EndOfCommandLine: --Exec-- PROCEDURE [h: Handle] RETURNS [BOOLEAN];
endOflnput: --MailParse-- CHARACTER = 203C;
endOfList: --MailParse-- CHARACTER = 204(;
endOfPageCmd: --BandBLT-- CARDINAL = 9;
EnlinkSubwindow: --TooIWindow-- PROCEDURE [

parent: Handle, child: Handle, youngerSibling: Handle];
Enter: --NSSessionControl-- PROCEDURE [session: NSFile.Session, id: ServiceID];
Entry: --NSVolumeControl- TYPE = MACHINE DEPENDENT RECORD [

file(0:0 .. 79): NSFile.lD,
type(S:O .. 31): NSFile.Type,
numberOfProblems(7:0 .. 31): LONG CARDINAL];

EntryPointer: --NSVolumeContro/-- TYPE = LONG POINTER TO Entry;
EntryType: --Scavenger-- TYPE = MACHINE DEPENDENT{

unreadable, missing, duplicate, orphan};
Enumerate: --CH-- PROCEDURE [

cred: Authentlcator.Credential.s, ver: Authenticator.Verifier, name: Pattern,
pn: PropertylD, eachName: NameStreamProc] RETURNS [rc: ReturnCode];

Enumerate: --DebugUsefuIDefs-- PROCEDURE [
proc: PROCEDURE [GFHandle] RETURNS [BOOLEAN]] RETURNS [gf: GFHandlel;

Enumerate: --FileSW-- PROCEDURE [proc: EnumerateProcType];
Enumerate: --FileTransfer-- PROCEDURE [

conn: Connection, files: FileName.VFN, proc: ListProc];
Enumerate: --FileWindow-- PROCEDURE [proc: EnumerateProcType];
Enumerate: --Menu-- PROCEDURE [

window: Window.Handle, which: EnumerateFor, proc: EnumerateProcType];
EnumerateAliases: --CH-- PROCEDURE [

cred: Authenticator.Credentials, ver: Authenticator.Verifier, name: Pattern,
eachAlias: NameStreamProc] RETURNS [rc: ReturnCode];

EnumerateCommands: --Exec-- PROCEDURE [
userProc: PROCEDURE [

name: LONG STRING, proc: ExecProc, help: ExecProc, unload: ExecProc,
clientData: LONG POINTER] RETURNS [stop: BOOLEAN]];

Enumerated: -FormSW-- TYPE = RECORD [string: LONG STRING, value: UNSPECIFIED];
EnumeratedDescriptor: --FormSW-- TYPE = LONG DESCRIPTOR FOR ARRAY CARDINAL OF

Enumerated;
EnumeratedFeedback: --FormSW-- TYPE = {all, one};
EnumeratedHandle: --FormSW-- TYPE = LONG PO.INTER TO enumerated ItemObject;
EnumerateDirectory: --MFile-- PROCEDURE [

name: LONG STRING, proc: EnumerateProc, which: EnumerationType];
Enumeratedltem: --FormSW-- PROCEDURE [

tag: LONG STRING E- NIL, readOnly: BOOLEAN E- FALSE, invisible: BOOLEAN E- FALSE,
drawBox: BOOLEAN E- FALSE, hasContext: BOOLEAN E- FALSE,
place: Window. Place E- nextPlace, feedback: EnumeratedFeedback E- one,
proc: EnumeratedNotifyProcType E- NopEnumeratedNotifyProc,
copyChoices: BOOLEAN E- TRUE, choices: EnumeratedDescriptor,
value: LONG POINTER, z: UNCOUNTED ZONE E- NIL] RETURNS [Enumerated Handle];

EnumeratedNotifyProcType: --FormSW-- TYPE = PROCEDURE [
sw: Window. Handle E- NIL, item: ItemHandle E- NIL, index: CARDINAL E- nullindex,
oldValue: UNSPECIFIED E- null EnumeratedValue];

Mesa Programmer's Manual

EnumerateDomains: --CH-- PROCEDURE [
cred: Authenticator.Credentials, ver: Authenticator.Verifier, name: Pattern,
eachDomain: NameStreamProcl RETURNS [rc: ReturnCode];

EnumerateExports: --Courier-- PROCEDURE
RETURNS [enum: LONG DESCRIPTOR FOR Exports];

EnumerateFileType: --LibrarianUtility-- TYPE = {id, name};

c

EnumerateFor: --Menu-- TYPE = {all, inSW, availablelnSW};
EnumeratelnactiveWindows: --TooIWindow-- PROCEDURE [proc: EnumerateProcType];
EnumeratelnvalidBoxes: --Window-- PROCEDURE [

window: Handle, proc: PROCEDURE [Handle, Box]];
EnumerateLibjectProc: --LibrarianUtility-- TYPE = PROCEDURE [

Librarian.Handle, Librarian. LibjectlD, Librarian.PropertyList, CARDINAL]
RETURNS [continue: BOOLEAN];

EnumerateLibjectStructure: --LibrarianUtility-- PROCEDURE [
Librarian.Handle, LONG STRING, Librarian.SnapShotHandle,
Librarian.PropertyList, BOOLEAN, EnumerateLibjectProc]
RETURNS [Librarian. Handle];

EnumerateLibjectVersions: --LibrarianUtility-- PROCEDURE [
Librarian.Handle, Librarian.LibjectID, Librarian.SnapShotHandle,
Librarian.PropertyList, EnumerateVersionProc];

EnumerateNearbyDomains: --CH-- PROCEDURE [
cred: Authenticator.Credentials, ver: Authenticator.Verifier,
eachDomain: NameStreamProc] RETURNS [rc: ReturnCode];

EnumerateNewGroupElements: --CH-- TYPE = PROCEDURE [NameStreamProc];
EnumerateObjects: --CH-- PROCEDURE [

cred: Authenticator. Credentials, ver: Authenticator.Verifier, name: Name,
eachName: NameStreamProc] RETURNS [rc: ReturnCode];

EnumerateOrganizations: --CH-- PROCEDURE [
cred: Authenticator.Credentials, ver: Authenticator.Verifier,
orgPattern: Pattern, eachOrg: NameStreamProc] RETURNS [rc: ReturnCode];

EnumerateProc: --MFi/e-- TYPE = PROCEDURE [
name: LONG STRING, full Name: LONG STRING, fileProc: FileAcquireProc,
type: Type, splndex: CARDINAL] RETURNS [done: BOOLEAN Eo- FALSE];

EnumerateProcType: --FileSW-- TYPE = PROCEDURE [
sw: Window.Handle, name: LONG STRING, access: Access] RETURNS [done: BOOLEAN];

EnumerateProcType: --FileWindow-- TYPE = PROCEDURE [SW: Window. Hand Ie]
RETURNS [continue: ContinueStop];

EnumerateProcType: --Menu-- TYPE = PROCEDURE [
window: Window. Handle, menu: Handle] RETURNS [stop: BOOLEAN];

EnumerateProcType: --TooIWindow-- TYPE = PROCEDURE [window: Window. Handle]
RETURNS [done: BOOLEAN];

EnumerateRoutingTable: --Router-- PROCEDURE [
previous: System.NetworkNumber, delay: CARDINAL]
RETURNS [net: System.NetworkNumber];

EnumerateSecondarySelections: --TextSW-- PROCEDURE,[
sw: Window.Handle, proc: PROCEDURE [TextData.Selection] RETURNS [BOOLEAN]];

EnumerateSessionAttributes: --NSSessionControl-- PROCEDURE [
procedure: PROCEDURE [SessionAttributes]];

EnumerateSplits: --TextSW- PROCEDURE [
sw: Window. Handle, proc: SplitlnfoProcType];

EnumerateState: --MFile-- TYPE = LONG POINTER TO EnumRec;
EnumerateSWProcType: --TooIWindow-- TYPE = PROCEDURE [

window: Window. Handle, sw: Window. Handle] RETURNS [done: BOOLEAN];
EnumerateSWs: --Too/Window-- PROCEDURE [

window: Window. Handle, proc: EnumerateSWProcType];

C-35

c

C-36

Listing of Public Symbols

EnumerateTree: --Window-- PROCEDURE [
root: Handle, proc: PROCEDURE [window: Handle]];

EnumerateUsingFile: --LibrarianUtility-- PROCEDURE [
Librarian. Handle, LONG STRING, librarian.SnapShotHandle,
Librarian.PropertyLi5t, BOOLEAN, EnumerateFileType, EnumerateLibjectProc];

EnumerateUsingFile$erver: --LibrarianUti/ity-- PROCEDURE [
LONG STRING, Librarian.SnapShotHandle, Llbranan.PropertyList, BOOLEAN,
EnumerateLibjectProc];

EnumerateVersionProc: --LibrarianUtility-- TYPE = PROCEDURE [
Librarian.Handle, Librarian.FuIILibjectIOHandle, Librarian.PropertyList]
RETURNS [continue: BOOLEAN];

EnumerationType: --MFile-- TYPE = {
filesOnly, directoriesOnly, fileAndOirectories};

EnumRec: -MFile-- TYPE;
envoySocket: --NSConstants-- System.SocketNumber;
EqualCharacter: --NSString-- PROCEDURE [

c: Character, s: String, index: CARDINAL] RETURNS [BOOLEAN);
EqualString: --NSString-- PROCEDURE [s 1: String, s2: String] RETURNS [BOOLEAN];
EqualStrings: --NSString-- PROCEDURE [s 1: String, s2: String] RETURNS [BOOLEAN];
EqualSubString: --NSString-- PROCEDURE [sl: SubString, s2: SubString]

RETURNS [BOOLEAN];
EqualSubStrings: -NSString-- PROCEDURE [s 1: SubString, s2: SubString]

RETURNS [BOOLEAN];
EqualSystemElements: --NSSessionContro/-- PROCEDURE [

systemElement1: NSFile.SystemElement, systemElement2: NSFile.SystemElement]
RETURNS [BOOLEAN];

EquivalentNames: --NSName-- PROCEDURE [n1: Name, n2: Name] RETURNS [BOOLEAN];
EquivalentSegments: --MSegment-- PROCEDURE [seg1: Handle, 5eg2: Handle]

RETURNS [BOOLEAN];
EquivalentString: --NSString-- PROCEDURE [s 1: String, 52: String]

RETURNS [BOOLEAN];
EquivalentStrings: --NSString-- PROCEDURE [sl: String, 52: String]

RETURNS [BOOLEAN);
EquivalentSubString: --NSString-- PROCEDURE [sl: SubString, s2: SubString]

RETURNS [BOOLEAN);
EquivalentSubStrings: --NSString-- PROCEDURE [sl: SubString, 52: SubString]

RETURNS [BOOLEAN];
Erase: --Vo/ume-- PROCEDURE [volume: 10];
errL 1: --Protoco/Certification-- Stage;
Error: -Authenticator-- ERROR [reason: Cause, forWhom: Name];
Error: --CHLookup-- ERROR [reason: cH.ReturnCode);
Error: --CmFile-- SIGNAL [code: ErrorCode];
Error: --Context-- ERROR [code: ErrorCode];
Error: --Courier-- ERROR [errorCode: ErrorCode];
Error: --File-- ERROR [type: ErrorType];
Error: --FileName-- SIGNAL;
Error: --FileSW-- SIGNAL [code: ErrorCode);
Error: --FileTransfer-- SIGNAL [conn: Connection, code: ErrorCode);
Error: --Floppy-- ERROR [error: ErrorType];
Error: --FloppyChannel-- ERROR [type: ErrorType);
Error: --FormSW-- SIGNAL [code: ErrorCode];
Error: --Heap-- ERROR [type: ErrorType];
Error: --Log-- ERROR [reason: ErrorType];
Error: --MailParse-- ERROR [code: ErrorCode, position: CARDINAL];
Error: --Menu-- ERROR [code: ErrorCode];
Error: --MFile-- ERROR [file: Handle, code: ErrorCode];

Mesa Programmer's Manual

Error: --MLoader-- ERROR [code: ErrorCode, string: LONG STRING];

Error: --MSegment-- ERROR [segment: Handle, code: ErrorCode];
Error: --MsgSW-- SIGNAL [code: ErrorCode];
Error: --MStream-- ERROR [stream: Handle, code: ErrorCode];
Error: --NSDataStream-- ERROR [errorCode: ErrorCode];
Error: --NSFile-- ERROR [error: ErrorRecord];
Error: -NSName-- ERROR [type: ErrorType];
Error: --NSPrint-- ERROR [why: ErrorRecord];
Error: --NSSegment-- ERROR [type: ErrorType];
Error: --NSVolumeControl-- ERROR [type: ErrorType];
Error: --ObjAlloc- ERROR [error: ErrorType];
Error: --PacketExchange-- ERROR [why: ErrorReason];
Error: --PageScavenger-- ERROR [errorType: ErrorType];
Error: --PhysicaIVolume-- ERROR [error: ErrorType];
Error: --Scavenger-- ERROR [error: ErrorType];
Error: --Tool-- SIGNAL [code: ErrorCode];
Error: -TTYSW-- SIGNAL [code: ErrorCode];
Error: --Userlnput-- ERROR [code: ErrorCode];
Error: --UserTerminaIExtras-- ERROR [type: ErrorType];
Error: --Volume-- ERROR (error: ErrorType];
Error: --VolumeConversion-- ERROR (error: ErrorType];
Error: --Window-- ERROR [code: ErrorCodel;
Error: --WindowFont-- ERROR (code: ErrorCode];
ErrorCode: --CmFile-- TYPE = {fileNotFound, invalidHandle, other};

c

ErrorCode: --Context-- TYPE = {duplicateType, windowlsNIL, tooManyTypes, other};
ErrorCode: --Courier-- TYPE = {

transmissionMediumHardwareProblem, transmissionMediumUnavailable,
transmissionMediumNotReady, noAnswerOrBusy, noRouteToSystemElement,
transportTi meout, remoteSystem EI ementNotRespond i ng,

noCourierAtRemoteSite,
tooManyConnections, invalidMessage, noSuchProcedureNumber,

returnTimedOut, .
callerAborted, unknownErrorlnRemoteProcedure, stream NotYours,
truncatedTransfer, parameterlnconsistency, i nval idArguments,
noSuchProgramNumber, protocol Mismatch, duplicateProgramExport,
noSuchProgramExport, invalid Handle, noError};

ErrorCode: --FileSW-- TYPE = {
notAFileSW, isAFileSW, notEditable, isEditable, accessDenied, other};

ErrorCode: --FileTransfer-- TYPE = MACHINE DEPENDENT{

illegalParameters, invalidObject, notAStream, illegal Login(4), iliegalConnect,
skip, cantModify, retry, directoryFull, notFound, spare1, spare2,
unknown(31)};

ErrorCode: --FormSW-- TYPE = {alreadyAFormSW, notAFormSW, other};
ErrorCode: --MaiIParse-- TYPE = {

illegalCharacter, unclosed Bracket, bracketNesting, implementationBug,
phraseExpected, domainExpected, atom Expected, commaOrColonExpected,
atExpected, spacelnLocalName, mailBoxExpected, missingSemiColon,

nestedGroup,
endOflnput, commaExpected, fieldsAreAtoms, colonExpe<:ted, lessThanExpected,
greaterThanExpected, noFromField};

ErrorCode: --Menu-- TYPE = {
islnstantiated, alreadylnstantiated, notlnstantiated, contextNotAvailable,
isPermanent, other};

ErrorCode: --MFi/e-- TYPE = MACHINE DEPENDENT{

noSuchFile, conflictingAccess, insufficientAccess, directoryFull,
directoryNotEmpty, illegal Name, noSuchDirectory, noRootDirectory, nullAccess,

C-37

c

C-38

Listing of Public Symbols

protectionFault, directoryOnSearchPath. iIIegalSearchPath, volumeNotOpen,
volumeReadOnly, noRoomOnVolume, noSuchVolume, crossingVolumes,
fileAlreadyExists, filelsRemote, filelsDirectory, invalidHandle, courierError,
addressTranslationError, connectionSuspended, other(255)};

ErrorCode: --MLoader-- TYPE = {
invalidParameters, missingCode, bad Code, exportedTypeClash, lookupFailure,
gftFull, loadStateFull, insufficientAccess, alreadyStarted, invalidHandle.
invalidGlobalFrame, other};

ErrorCode: --MSegment-- TYPE = MACHINE DEPENDENT{

zeroLength, insufficientVM, noSuchSegment, sharedSegment. baseOutOfRange,
conflictingAccess, illegalAccess, invalidFile, dataSegmentNeedsPages.
noRoomOnVolume, volumeReadOnly, other(177777B)};

ErrorCode: ~-MsgSW-- TYPE = {append Only, notAMsgSW, other};
ErrorCode: --MStream-- TYPE = MACHINE DEPENDENT{

invalidHandle, indexOutOfRange, invalidOperation, fileTooLong,
fileNotAvailable, invalidFile. other(177777B)};

ErrorCode: --NSDataStream-- TYPE = {
local Endlncorrect, tooManyLocalConnections, tooManyTickets,

unimplemented};
ErrorCode: --Too/-- TYPE = {

notATool, unknownSWType, swNotFound, invalidWindow, invalidParameters,
other};

ErrorCode: --TTYSW--TYPE = {notATTYSW, badTTYHandle, other};
ErrorCode: --Userlnput-- TYPE = {

windowAlreadyHasStringlnOut, noStringlnOutForWindow,
noSuchPeriodicNotifier,

other};
ErrorCode: --Window-- TYPE = {

illegalBitmap, illegal Float, windowNotChildOfParent, whosSlidingRoot,
noSuchSibling, noUnderVariant, windowlnTree, sizingWithBitmapUnder,
illegaIStack};

ErrorCode: --WindowFont-- TYPE = {illegal Format};
ErrorEntry: -BackstopNub-- TYPE = MACHINE DEPENDENT RECORD [

globaIFrame(0:0 .. 15): GlobalFrame,
pc(l :0 .. 15): PC,
time(2:0 .. 31): System.GreenwichMeanTime,
options(4: 0 .. 287): SELECT error(4: 0 .. 15): ErrorType FROM

signal = > [
signal(5:0 .. 31): Signal,
msg(7:0 .. 15): SignalMsg,
stk(8:0 .. 223): ARRAY [0 .. 13] OF UNSPECIFIED],

call = > [msg(5:0 .. 31): StringBody],
unused = > NULL,

interrupt = > NULL,

addressfault = > [faultedProcess(5,:0 .. 15): PSBlndex],
writeprotectfault = > [fau ItedProcess(5: 0 .. 15): PSBlndex],
other = > [reason(5:0 .. 15): SwapReason],
bug = > [bugtype(5:0 .. 15): CARDINAL],

ENDCASE];

ErrorHandling: --OnlineDiagnostics-- TYPE = {
noChecking, stopOnError, loopOnError, continueOnError};

ErrorReason: --PacketExchange-- TYPE = {
blockTooBig, blockTooSmall, noDestinationSocket, noRouteToDestination,
noReceiverAtDesti nation, i nsuffi ci entResou rcesAtDesti nation,
rejectedByReceiver, hardwareProblem, aborted, timeout};

Mesa Programmer's Manual

ErrorRecord: --NSFile-- TYPE = RECORD [
SELECT errorType: ErrorType FROM
access = > [croblem: AccessProblemj,
attributeType = > [

problem: ArgumentProblem,
type: AttributeType,
extendedType: ExtendedAttributeType +- 377777777778],

attributeValue = > [
problem: ArgumentProblem,
type: AttributeType,
extendedType: ExtendedAttributeType +- 377777777778j,

authentication = > [problem: NSName.AuthenticationProblemj,
connection = > [problem: ConnectionProblemj,
controlType = > [problem: ArgumentProblem, type: Control Type],
controlValue = > [problem: ArgumentProblem, type: Control Type],
handle = > [problem: HandleProblemj,
insertion = > [problem: InsertionProblemj,
scopeType = > [problem: ArgumentProblem, type: ScopeTypej,
scopeValue = > [problem: ArgumentProblem, type: ScopeType],
service = > [problem: ServiceProblemj,
session = > [problem: SessionProblemj,
space = > [problem: SpaceProblemj,
transfer = > [problem: TransferProblemj,
undefined = > [problem: UndefinedProblemj,
ENDCASEj;

ErrorRecord: --NSPrint-- TYPE = RECORD [
SELECT errorType: ErrorType FROM
busy = > NULL,
insufficientSpoolSpace = > NULL,
invalidPrintParameters = > NULL,
masterTooLarge = > NULL,
mediumUnavailable = > NULL,
serviceUnavailable = > NULL,
spoolingDisabled = > NULL,
spoolingQueueFull = > NULL,
systemError = > NULL,
tooManyClients = > NULL,
undefinedError = > [undefined: UndefinedProblem],
transferError = > [transfer: TransferProblem],
connection Error = > [connection: ConnectionProblem],
courier = > [courier: coufler.ErrorCodej,
ENDCASE);

errorServer: -Protoco/Certification-- Stage;
errorSocket: -NSConstants-- System.SocketNumber;
ErrorType: --BackstopNub-- TYPE = MACHINE DEPENDENT{

addressfault, writeprotectfault, signal, call, unused, interrupt, other, bug};
ErrorType: -Fi/e-- TYPE = {invalidParameters, reservedType};
ErrorType: --Ffoppy-- TYPE = {

badDisk, badSectors, endOfFile, fileListFull, fileNotFound, hardwareError,
incompatibleSizes, invalidFormat, invalidPageNumber, invalidVolumeHandle,
insufficientSpace, needsScavenging, noSuchDrive, notReady, onlyOneSide,
onlySingleDensity, initialMicrocodeSpaceNotAvailable, stringTooShort,
volumeNotOpen, writelnhibited, zeroSizeFile, fileListLengthTooShort,
floppylmagelnvalid, floppySpaceTooSmall};

ErrorType: --FfoppyChanne/-- TYPE = {invalidDrive, invalidHandle};

c

C-39

c

C-40

Listing of Public Symbols

ErrorType: --Heap-- TYPE = {
insufficientSpace, invalidHeap, invalidNode, invalidZone, invalidOwner,
otherError, invalidSize, invalidParameters, maxSizeExceeded};

ErrorType: --Log-- TYPE = MACHINE DEPENDENT{
iliegalLog, invalidFile, logNoEntry, logNotOpened. tooSmaIiFile};

ErrorType: --NSFile-- TYPE = {
access, attributeType, attributeValue, authentication, connection,
control Type, controlValue, handle, insertion, scopeType, scopeValue, service,
session, space, transfer, undefined};

ErrorType: --NSName-- TYPE = {
ambiguousSeparators, i nval idCredentials, notSuperWeak, tooManySeparators};

ErrorType: --NSPrint-- TYPE = MACHINE DEPENDENT{
busy, insufficientSpoolSpace, invalidPrintParameters, masterTooLarge,
mediumUnavailable, serviceUnavailable, spoolingDisabled, spoolingQueueFull,
system Error, tooManyClients, undefinedError, connection Error, transferError,
courier};

ErrorType: --NSSegment-- TYPE = {
illegalForDefault, improperByteCount, invalidSegmentlD, noSuchSegment,
segmentAl readyExists, tooM anySegments};

ErrorType: --NSVolumeContro/-- TYPE = {
alreadylnitialized, alreadyOpen, badPilotLog, cannotScavengeSystemVolume,
cannotWriteLog, incompatibleVolume, invalidVolume, logVolumeNotOpen,
needsScavenging, noFileSystem, notMounted, notOpen, openFiles,
pilotScavengeFailed, pilotScavengerError, unknownPilotVolume};

ErrorType: --ObjAlloc-- TYPE = {insufficientSpace, invalidParameters};
ErrorType: --PageScavenger-- TYPE = {

driveNotAvailable, driveNotReady, invalidPageNumber, unknown Drive};
ErrorType: --PhysicaIVolume-- TYPE = {

badDisk, badSpotTableFull, containsOpenVolumes, diskReadError,
hardwareError,

hasPilotVolume, alreadyAsserted, insufficientSpace, invalidHandle,
nameRequired, notReady, noSuchDrive, noSuchLogicalVolume,
physicalVol u meU nknown, write Protected, wrong Format, needsConversion};

ErrorType: --Scavenger-- TYPE = {
cannotWriteLog, noSuchPage, orphanNotFound, volumeOpen,

diskHardwareError,
diskNotReady, needsRiskyRepair, needsConversion};

ErrorType: -UserTerminaIExtras-- TYPE = {
multipleWindows, noScrollWindow,lineCountError, yQuantumError,
xQuantumError};

ErrorType: --Volume-- TYPE'= {
nameRequired, pageCountTooSmall ForVolume,

5ubvolumeHasTooManyBadPages,
tooManySubvolumes};

ErrorType: --VolumeConversion-- TifPE = {
hardwareBroken, lostLog, runPreviousScavenger, volumeVersionTooNew,
volumeVersionTooOld};

errorUser: --ProtocoICertification-- Stage;
ESC: -Ascii-- CHARACTER = 33C;
ESCTrapTable: --PrincOps-- OpTrapTable;
etherBooteeFirstSocket: --NSConstants-- System.5ocketNumber;
etherBooteeLastSocket: --NSConstants-- System.SocketNumber;
etherBootGermSocket: --NSConstants-- System.SocketNumber;
EtherDiagError: --CommOnlineDiagnostics-- ERROR [reason: EtherErrorReason];
EtherDiagError: --RemoteCommDiags-- ERROR [

reason: CommOnlineDiagnostics. EtherErrorReason];

Mesa Programmer's Manual

EtherErrorReason: --CommOnlineDiagnostics-- TYPE = MACHINE DEPENDENT{
echoUserNotThere, noMoreNets, tooManyEchoUsers};

Ethernet: --Device-- TYPE = CARDINAL [5 .. 15];
ethernet: --DeviceTypes-- Device.Type;
ethernetOne: --DeviceTypes-- Device. Type;
EtherStatslnfo: --CommOnlineDiagnostics-- TYPE = ARRAY Statslndices OF LONG

CARDINAL;
EventReporter: --CommOnlineDiagnostics-- TYPE = PROCEDURE [event: EchoEvent];
Exception: --Real-- TYPE = MACHINE DEPENDENT{

fixOverflow, inexactResult, invalidOperation, divisionByZero, overflow,
underflow};

ExceptionFIags: --Real-- TYPE = PACKED ARRAY Exception OF Flag;
ExchangeClientType: --PacketExchange-- TYPE = MACHINE DEPENDENT{

unspecified, timeService, clearinghouseService, teledebug(8),
electronicMail FirstPEType(16), electronicMai I LastPEType(23),
remoteDebugFirstPEType, remoteDebugLastPEType(31),

acceptanceTestRegistration,

c

performanceTestData, protocoICertification(40), voyeur, dixieDataPEType(65),
dixieAckPEType, dixieBusyPEType, dixieErrorPEType, outsideXeroxFirst{100000B),
outsideXeroxLast(177777B)};

ExchangeHandle: --PacketExchange-- TYPE [2];
ExchangelD: --PacketExchange-- TYPE = MACHINE DEPENDENT RECORD [

a(0:0 .. 15): WORD, b(1 :0 .. 15): WORD];
ExchWords: --PacketExchange-- PROCEDURE [LONG UNSPECIFIED]

RETURNS [LONG UNSPECIFIED];
ExecProc: --Exec-- TYPE = PROCEDURE [h: Handle, c1ientData: LONG POINTER ~ NIL]

RETURNS [outcome: Outcome ~ normal];
Exit: --NSSessionControl-- PROCEDURE [session: NSFile.Session, id: ServiceID];
Exp: --ReaIFns-- PROCEDURE [REAL) RETURNS [REAL];
Expand: -Heap- PROCEDURE [z: UNCOUNTED ZONE, pages: EnVironment.PageCount];
Expand: --MDSStorage-- PROCEDURE [pages: CARDINAL];
ExpandAliocation: --ObjAlloc-- PROCEDURE [

pool: AllocPoolDesc, where: Itemlndex, count: ItemCount,
willTakeSmaller: BOOLEAN ~ FALSE] RETURNS [extendedBy: ItemCount];

ExpandingRingAction: --ExpeditedCourier-- TYPE = {
findMostServerslnShortTime, reliablyFindAIIServers};

ExpandMDS: --Heap-- PROCEDURE [z: MDSZone, pages: Environment.PageCount];
ExpandQ: --Expand-- TYPE [1];
ExpandQueues: --Expand-- PROCEDURE [

toQ: ExpandQ, fromQ: ExpandQ, all: BOOLEAN ~ FALSE,
isAborted: AbortProcType ~ NIL, mask: Mask ~ defaultMask];

ExpandString: --Expand- PROCEDURE [
cmdLine: LONG STRING, isAborted: AbortProcType ~ NIL,
mask: Mask ~ defaultMask] RETURNS [LONG STRING];

ExpandString: --MDSStorage--. .PROCEDURE [s: POINTER TO STRING, longer: CARDINAL];
ExpandString: --NSString-- PROCEDURE [z: UNCOUNTED ZONE, s: String]

RETURNS [Characters];
ExpandToTokens: --Expand-- PROCEDURE [

cmdLine: LONG STRING, proc: PROCEDURE [LONG STRING] RETURNS [BOOLEAN],
isAborted: AbortProcType ~ NIL, mask: Mask ~ defaultMask];

ExpeditedServiceHandle: --ExpeditedCourier-- TYPE [2];
ExportExpeditedPrograms: --ExpeditedCourier-- PROCEDURE [

services: Services, socket: System.SocketNumber]
RETURNS [h: ExpeditedServiceHandle);

Exportltem: --Courier-- TYPE = MACHINE DEPENDENT RECORD [
programNumber(0:0 . .31): LONG CARDINAL,

C-41

c

C-42

Listing of Public Symbols

versionRange(2:0 .. 31): VersionRange,
serviceName(4:0 .. 31): LONG STRING,
exportTime(6:0 .. 31): System.GreenwichMeanTime];

ExportRemoteProgram: --Courier-- PROCEDURE [
program Number: LONG CARDINAL, version Range: Version Range,
dispatcher: Dispatcher, serviceName: LONG STRING +- NIL, zone: UNCOUNTED ZONE,
classOfService: NetworkStream.ClassOfService};

Exports: --Courier-- TYPE = ARRAY CARDINAL OF Exportltem;
Extended: --Real-- TYPE = RECORD [

type: NumberType, sign: BOOLEAN, exp: INTEGER, frac: LONG CARDINAL];
ExtendedAttributeList: --NSFile-- TYPE = LONG DESCRIPTOR FOR ARRAY CARDINAL OF

extended Attribute;
ExtendedAttributeType: --NSFile-- TYPE = LONG CARDINAL;
ExtendedSelections: --NSFile-- TYPE = LONG DESCRIPTOR FOR ARRAY CARDINAL OF

ExtendedAttri bute Type;
ExtractHashedPassword: --Authenticator-- PROCEDURE [verifier: Verifier]

RETURNS [hash: CARDINAL];
FAdd: --Real-- PROCEDURE [a: REAL, b: REAL] RETURNS [REAL};
Failed: --RetrieveDefs-- ERROR [why: FailureReason};
failure: --RS232CCorrespondents-- RS232CEnvironment.AutoRecognitionOutcome;
FailureReason: --NetworkStream-- TYPE = {

timeout, noRouteToDestination, noServiceAtDestination, remoteReject,
tooManyConnections, noAnswerOrBusy, noTranslationForDestination,

ci rcuitlnUse,
ci rcuitNotReady, noDial i ng Hardware, dial erHa rdwareProbl em};

FailureReason: --RetrieveDefs-- TYPE = {
communicationFailure, noSuchServer, connectionRejected, badCredentials,
unknownFailure};

FailureType: --FormatPiiotDisk-- TYPE = {
emptyFile, firstPageBad, flakeyPageFound, microcodeTooBig, other};

FComp: --Real-- PROCEDURE [a: REAL, b: REAL] RETURNS [INTEGER];
FDiv: --Real-- PROCEDURE [a: REAL, b: REAL] RETURNS [REAL};
Feed: --RavenFace-- PROCEDURE [

paperSource: PaperSource, paperStacking: PaperStacking];
FeedAII: --LsepFace-- PROCEDURE [paperSource: PaperSource};
FeedbackProc: --Exec-- PROCEDURE [h: Handle] RETURNS [proc: Format.StringProc];
FeedExit: --LsepFace-- PROCEDURE;
Fetch: --Cursor-- PROCEDURE [Handle];
FetchFromType: --Cursor-- PROCEDURE [cursor: Handle, type: Defined];
FF: --Ascii-- CHARACTER = 14C;
Field: --AddressTranslation-- TYPE = {net, host, socket, ambiguous};
Field: --OnlineDiagnostics-- TYPE = RECORD [

fieldName: FloppyMessage, fieldValue: UNSPECIFIED];
FieldDataType: --OnlineDiagnostics-- TYPE = {

boolean, cardinal, character, hexadecimal, hexbyte, integer, octal, string};
FieldDescriptor: --PrincOps-- TYPE = MACHINE DEPENDENT RECORD [

offset(0:0 .. 7): BYTE, posn(0:8 .. 11): [0 .. 15], size(O: 12 .. 1 5): [1 .. 16}];
fiftyPercent: --Display-- Brick;
File: --File-- TYPE = RECORD [fileID: 10, volumelD: System.VolumeID];
FileAcquireProc: --MFile-- TYPE = PROCEDURE [

access: Access, release: ReleaseData} RETURNS [Handle];
filedBy: --NSAssignedTypes--AttributeType = 24;
filedOn: --NSAssignedTypes-- AttributeType = 25;
FileEntry: --Scavenger-- TYPE = MACHINE DEPENDENT RECORD [

file(0:0 .. 31): File.IO,
sortKey(2:0 .. 31): LONG CARDINAL,

Mesa Programmer's Manual

numberOfProblems(4:0 .. 15): CARDINAL,
problems(5): ARRAY [0 .. 0) OF Problem];

FileHandle: --Floppy-- TYPE = RECORD [volume: VolumeHandle, file: FileID];
FilelD: --Floppy-- TYPE = PRIVATE MACHINE DEPENDENT RECORD [

a(0:0 .. 15): WORD, b(l :0 .. 15): WORD];
filelD: --NSAssignedTypes-- AttributeType = 4;
Filelnfo: --FileTransfer-- TYPE = LONG POINTER TO FilelnfoObject;
FilelnfoObject: --FileTransfer-- TYPE = MACHINE DEPENDENT RECORD (

host(0:0 .. 31): LONG STRING Eo-NIL,
directory(2:0 .. 31): LONG STRING Eo- NIL,
body(4:0 .. 31): LONG STRING Eo- NIL,
version(6:0 .. 31): LONG STRING Eo-NIL,
author(8:0 .. 31): LONG STRING Eo- NIL,
create(10:0 .. 31): Time.Packed Eo-System.gmtEpoch,
read(12:0 .. 31): Time.Packed Eo-System.gmtEpoch,
write(14:0 .. 31): Time.Packed Eo-System.gmtEpoch,
size(16:0 .. 31): LONG CARDINAL Eo- 0,
type(18:0 .. 7): FileType Eo- unknown,
oldFile(18:8 .. 8): BOOLEAN Eo-TRUE,
readProtect(18:9 .. 9): BOOLEAN Eo- FALSE,
pad(18: 1 0 .. 1 5): (0 .. 63] Eo- 0];

FilelnWindow: --FileWindow-- PROCEDURE [sw: Window. Handle]
RETURNS [fileName: LONG STRING, s: Stream. Handle];

FileName: --Token-- FilterProcType;
Fileserver: --CHLookup-- TYPE = MACHINE DEPENDENT RECORD (

address(0:0 .. 95): System. NetworkAddress, location(6:0 .. 63): NSString.String];
FileserverDescribe: --CHLookup-- Courier.Description;
fi I eServerProtocol: --EventTypes-- Supervisor. Event;
FileServerProtocol: --Profile--TYPE = {pup, ns};
FileserverPt: --CHLookup-- TYPE = LONG POINTER TO Fileserver;
FileServiceFileType: --FileTypes-- TYPE = CARDINAL [100008 .. 217778];
fileSW: --DebugUsefuIDefs-- READONLY Window. Handle;
fileSystem: --Event-- READONL Y Supervisor.SubsystemHandle;
FileSystemEvents: --EventTypes-- TYPE = [200 .. 299];
FileType: --FileTransfer-- TYPE = MACHINE DEPENDENT{

unknown, text, binary, directory, null(255)};
FileType: --Fi/eTypes-- TYPE = File.Type;
FileType: --NSAssignedTypes-- TYPE = NSFiJe. Type;
fileWindow: --Event-- READONLY Supervisor.SubsystemHandle;
FileWindowEvents: --EventTypes-- TYPE = (500 .. 599];
fillMapLog: --PilotSwitches-- PilotDomainC = 375C;
FiliRoutingTable: --Router-- PROCEDURE (maxDelay: CARDINAL Eo- infinity];
Filter: --MFile-- TYPE = RECORD (

name: LONG STRING Eo- NIL, type: Type Eo- null, access: Access];
Fi Iter: --NSFile-- TYPE =, RECORD (

var: SELECTtype: FilterType FROM
less = > (attribute: Attribute, interpretation: Interpretation Eo- none],
lessOrEqual = > [

attribute: Attribute, interpretation: Interpretation Eo- none],

c

equal = > (attribute: Attribute, interpretation: Interpretation Eo- none],
notEqual = > [attribute: Attribute, interpretation: Interpretation Eo- none],
greaterOrEqual = > [

attribute: Attribute, interpretation: Interpretation Eo- none),
greater = > [attribute: Attribute, interpretation: Interpretation Eo- none],
matches = > [attribute: Attribute],
and = > [list: LONG DESCRIPTOR FOR ARRAY CARDINAL OF Filter),

C-43

c

C-44

Listing of Public Symbols

or = > [list: LONG DESCRIPTOR FOR ARRAY CARDINAL OF Filter],
not = > [filter: LONG POINTER TO Filter],
none = > NULL,
a" = > NULL,
ENDCASE];

Filtered: --Token-- PROCEDURE [
h: Handle, data: FilterState, filter: FilterProcType,
skip: SkipMode ~ whiteSpace, temporary: BOOLEAN ~ TRUE]
RETURNS [value: LONG STRING];

FilterProcType: --FormSW-- TYPE = PROCEDURE [
sw: Window. Handle, item: Item Handle, insert: CARDINAL, string: LONG STRING];

FilterProcType: --Token-- TYPE = PROCEDURE [c: CHARACTER, data: FilterState]
RETURNS [inCiass: BOOLEAN];

FilterState: --Token-- TYPE = LONG POINTER TO StandardFilterState;
FilterType: --NSFile-- TYPE = MACHINE DEPENDENT{

less, lessOrEqual, equal, notEqual, greaterOrEqual, greater, and, or, not,
none, all, matches};

Finalize: -MailParse-- PROCEDURE [h: Handle];
Find: --BTree-- PROCEDURE [tree: Tree, name: LONG STRING, value: Value]

RETURNS [ok: BOOLEAN];
Find: --Context-- PROCEDURE [type: Type, window: Window. Handle] RETURNS [Data];
Find: --NSFile-- PROCEDURE [

directory: Handle, scope: Scope ~ [], controls: Controls ~ [],
session: Session ~ nuliSession] RETURNS [file: Handle];

FindAddresses: --NetworkStream-- PROCEDURE [sH: Stream. Handle]
RETURNS [local: System.NetworkAddress, remote: System.NetworkAddress];

FindOata: --Too/Driver-- FindOataProcType;
FindOataProcType: --Too/Driver-- TYPE = PROCEDURE [tooIlO: TooIIO]

RETURNS [LONG POINTER];
FindDestinationRelativeNetlD: --Router-- PROCEDURE [System. NetworkNumber]

RETURNS [System.NetworkNumber];
Findlndex: --FormSW-- PROCEDURE [sw: Window.Handle, item: ItemHandle]

RETURNS [CARDINAL];
Findltem: --CmFile-- PROCEDURE [

h: Handle, title: LONG STRING, name: LONG STRING] RETURNS [found: BOOLEAN];
Findltem: --FormSW-- PROCEDURE [sw: Window.Handle, index: CARDINAL]

RETURNS [Item Handle];
FindMCR: --TextSW-- Menu.MCRType;
FindMyHostlD: --Router-- PROCEDURE RETURNS [System.HostNumber];
FindOrCreate: --Context-- PROCEDURE [

type: Type, window: Window. Handle, createProc: CreateProcType] RETURNS"[Oata];
FindSection: --CmFile-- PROCEDURE [h: Handle, title: LONG STRING]

RETURNS [opened: BOOLEAN];
FindString: --LexiconDefs-- PROCEDURE [LONG STRING] RETURNS [BOOLEAN];
FindUnused: --NSSegment-- PROCEDURE [

file: NSFile.Handle, startlO: 10 ~defaultIO, session: Session ~ nullSession]
RETURNS [10];

finishStage: --Protoco/Certification-- Stage;
FinishWithNonPilotVolume: --Physica/Volume-- PROCEDURE [instance: Handle];
first64K: --Environment-- Base;
First: --TlP-- PROCEDURE [results: Results] RETURNS [ResultElement];
firstCredentialEvent: --EventTypes-- CARDINAL = 400;
firstOebugEvent: --EventTypes-- CARDINAL = 0;
firstOefaultEvent: --EventTypes-- CARDINAL = 300;
firstOisplayEvent: --EventTypes-- CARDINAL = 800;
firstFileSystem: --EventTypes-- CARDINAL = 200;

Mesa Programmer's Manual

firstFileWindowEvent: --EventTypes-- CARDINAL = 500;
FirstNearerThenSecond: --NSAddr-- PROCEDURE [

first: System. NetworkAddress, second: System.NetworkAddress]
RETURNS [itls: BOOLEAN];

firstOtherEvent: --EventTypes-- CARDINAL = 700;
firstPageCount: --Environment-- PageCount = 0;
firstPageCount: --File-- PageCount = 0;
firstPageCount: --Floppy-- PageNumber = 0;
firstPageCount: --PhysicaIVolume-- PageCount = 0;
firstPageCount: --Volume-- PageCount = 0;
firstPageNumber: --Environment-- PageNumber = 0;
firstPageNumber: --File-- PageNumber = 0;
firstPageNumber: --PhysicaIVolume-- PageNumber = 0;
firstPageNumber: --Volume-- PageNumber = 0;
firstPageOffset: --Environment-- PageOffset = 0;
firstPosition: --NSFile-- READONLY Position;
firstPositionRepresentation: --NSFi/e-- ARRAY [0 .. 0] OF UNSPECIFIED;
FirstQ2000PageForPilot: --FormatPiiotDisk-- DiskPageNumber = 128;
FirstSA 1000PageForPilot: --FormatPiiotDisk-- DiskPageNumber = 128;
firstServicesAType: --NSAssignedTypes-- AssignedType = 10000B;
firstServicesBType: --NSAssignedTypes--AssignedType = 11000B;
firstSpare: --EventTypes-- CARDINAL = 1000;
firstStandardType: --NSAssignedTypes-- AssignedType = 0;
firstStarType: --NSAssignedTypes-- AssignedType = 1 0400B;
Firstt300PageForPilot: --FormatPiiotDisk-- DiskPageNumber = 570;
Firstt80PageForPilot: --FormatPilotDisk-- DiskPageNumber = 150;
firstToolWindowEvent: --EventTypes-- CARDINAL = 600;
firstVerifier: --Authenticator-- Verifier;
fi rstVetoEvent: --EventTypes-- CARDINAL = 100;
fi rstWS860Type: --NSAssignedTypes-- Assi gnedType = 12000B;
Fix: --Real-- PROCEDURE [REAL] RETURNS [LONG INTEGER];
FixC: --Real-- PROCEDURE [REAL] RETURNS [CARDINAL];
Fixl: --Real-- PROCEDURE [REAL] RETURNS [INTEGER];
Flag: --FormSW-- TYPE = {

clientOwnsltem, drawBox, hasContext, invisible, readOnly, modified};
Flag: --Real-- TYPE = BOOLEAN E- FALSE;
Flags: --Fonts-- TYPE = MACHINE DEPENDENT RECORD [

pad(O:O .. O): BOOLEAN, stop(O: 1 .. 1): BOOLEAN];
Flavor: --Authenticator- TYPE = NSName.CredentialsType;
Float: -Real-- PROCEDURE [LONG INTEGER] RETURNS [REAL];
Float: -Window-- PROCEDURE [

window: Handle, temp: Handle,
proc: PROCEDURE [window: Handle] RETURNS [place: Place, done: BOOLEAN]];

FloppyCleanReadWriteHeads: --OnlineDiagnostics-- PROCEDURE [
displayFields: DisplayFieldsProc, displayTable: DisplayTableProc,
displayNumberedTable: DisplayNumberedTableProc, putMessage:

PutMessageProc,
getConfirmation: GetConfirmationProc, getYesOrNo: GetYesOrNoProc,
getFloppyChoice: GetFloppyChoiceProc] RETURNS [floppyReturn: FloppyReturn];

FloppyCommandFileTest: --OnlineDiagnostics-- PROCEDURE [
density: SingleDouble, sides: SingleDouble, sectorsPerTrack: CARDINAL [8 .. 26].
sectorlength: Sectorlength, errorHandling: ErrorHandling,
cmdFile: LONG STRING, displayFields: DisplayFieldsProc,
displayTable: DisplayTableProc,
displayNumberedTable: DisplayNumberedTableProc, putMessage:

PutMessageProc,

c

C-45

c

C-46

Listing of Pu blic Symbols

getConfirmation: GetConfirmationProc, getYesOrNo: GetYesOrNoProc,
getFloppyChoice: GetFloppyCho;ceProc);

FloppyOisplayErrorlog: --OnlineDiagnostics-- PROCEDURE [
displayFields: DisplayFieldsProc, displayTable: DisplayTableProc,
displayNumberedTable: DisplayNumberedTableProc, putMessage:

PutMessageProc,
getConfirmation: GetConfirmationProc, getYesOrNo: GetYesOrNoProc,
getFloppyChoice: GetFI oppyChoi ceProc];

FloppyExerciser: --OnlineDiagnostics-- PROCEDURE [
displayFields: DisplayFieldsProc, displayTable: DisplayTableProc,
displayNumberedTable: DisplayNumberedTableProc, putMessage:

PutMessageProc,
getConfirmation: GetConfirmationProc, getYesOrNo: GetYesOrNoProc,
getFI oppyChoice: GetFI oppyChoiceProc);

FloppyFormatOiskette: --OnlineDiagnostics-- PROCEDURE [
displayFields: DisplayFieldsProc, displayTable: DisplayTableProc,
displayNumberedTable: DisplayNumberedTableProc, putMessage:

PutMessageProc,
getConfirmation: GetConfirmationProc, getYesOrNo: GetYesOrNoProc,
getFI oppyChoice: GetFI oppyChoiceProc);

FloppyMessage: --OnlineDiagnostics- TYPE = {
cFirst, cCaIlCSC, cCloseWn, cEnsureReady, cExit, clnsDiffCleanDisk,
clnsertCleanDisk, clnsertDiagDisk, clnsertWriteable, cNBNotReady,
cOtherDiskErr, cRemoveCleanDisk, cRemoveDiskette, cLast, hFirst, hBusy,
hExpec1, hExpec2, hCRC1, hCRC2, hCRCErr, hDelSector, hDiskChng, hErrDetc,
hGoodComp, hHead, hHeadAddr, hlllglStat, hlncrtLngth, hObser1, hObser2,
hReadHead, hReadSector, hReadStat, hReady, hRecal, hRecalErr, hSector,
hSectorAddr, hSectorCntErr, hSectorLgth, hSeekErr, hTimeExc, hTrack, hTrackO,
hTrackAddr, hTwoSide, hWriteDelSector, hWritePro, hWriteSector, hLast, iFirst,
iBadContext, iBadLabel, iBadSector, iBadTrackO, iCheckPanel, iCIERec,
iCleanDone, iCleanProgress, iErrDet, iErrNoCRCErr, iExerWarning, iFormDone,
iFormProgress, iFormWarning, iHardErr, iHeadDataErr, ilnsertDiagDisk,
i InsertFormDisk, iOneSided, i RunStdTest, iSoftErr, iTnx, iTwoSided,
iUnitNotReady, iVerDataErr, iLast, tFirst, tByteCnt, tCIERH, tCIERS, tCIEVer,
tCIEWDS, tCIEWS, tHeadDataErr, tHeadDisp, tHeadErrDisp, tSectorDisp,
tStatDisp, tSummErrLog, tVerDataErr, tLast, yFirst, yDispSects,
yDispExpObsData, yDoorJustOpened, yDoorOpenNow, yDoorOpenShut,

ylsltDiagDisk,
ylsltWrProt, ySti II Conti nue, yStillSure, yLast};

FloppyReturn: --OnlineDiagnostics-- TYPE = {
deviceNotReady, notDiagDiskette, floppyFailure, noErrorFound};

FloppyStandardTest: --OnlineDiagnostics-- PROCEDURE [
displayFields: DisplayFieldsProc, displayTable: DisplayTableProc,
displayNumberedTable: DisplayNumberedTableProc, putMessage:

PutMessageProc,
getConfirmation: GetConfirmationProc, getYesOrNo: GetYesOrNoProc,
getFloppyChoice: GetFloppyChoiceProc] RETURNS [floppyReturn: FloppyReturnj;

FloppyWhatToDoNext: --OnlineDiagnostics-- TYPE = {
continueToNextError, loopOnThisError, displayStuff, exit};

FlowControl: --RS232C-- TYPE = RS232CEnvironment. FlowControl;
FlowControl: --RS232CEnvironment-- TYPE = MACHINE DEPENDENT RECORD [

type(0:0 .. 1S): MACHINE DEPENDENT{none, xOnXOff},
xOn(1 :0 .. 15): UNSPECIFIED,
xOff(2:0 .. 15): UNSPECIFIED];

Flush: --Heap-- PROCEDURE [z: UNCOLJNTED lONE];
FlushMOS: --Heap-- PROCEDURE [z: MDSZone];

Mesa Programmer's Manual

flushSymbols: --EventTypes-- Supervisor. Event;
FlushUserlnput: --TlP-- PROCEDURE;
FMul: --Real-- PROCEDURE [a: REAL, b: REAL) RETURNS [REAL);
FocusTakeslnput: --Userfnput-- PROCEDURE RETURNS [BOOLEAN);
Font: -BandBLT-- TYPE = CARDINAL [0 .. 127);
FontBitsPtr: --Fonts-- TYPE = LONG POINTER TO ARRAY [0 .. 0) OF UNSPECIFIED;
FontCharPtr: --Fonts-- TYPE = LONG POINTER TO ARRAY CHARACTER OF CharEntry;
FontHeight: --WindowFont-- PROCEDURE [font: Handle oE- defaultFont)

RETURNS [NATURAL);
FontRecord: --Fonts-- TYPE = MACHINE DEPENDENT RECORD [

fontbits(0:0 .. 31): FontBitsPtr,
fontwidths(2: 0 .. 31): FontWidthsPtr,
fontchar(4:0 .. 31): FontCharPtr,
rgflags(6:0 .. 31): RgflagsPtr,
height(8:0 .. 15): CARDINAL];

FontWidthsPtr: --Fonts-- TYPE = LONG POINTER TO PACKED ARRAY CHARACTER OF
CARDINAL [0 .. 255];

ForceOut: --MSegment-- PROCEDURE [segment: Handle];
forkAgi ngProcess: --Pi/otSwitchesExtraExtraExtras-- PiiotSwitches. Pi I otDomai nC =

365C;
Format: --Floppy-- PROCEDURE [

drive: CARDINAL, maxNumberOfFileListEntries: CARDINAL,
labelString: LONG STRING, density: Density +- default, sides: Sides oE- default);

Format: --FormatPiiotDisk-- PROCEDURE [
h: PhyslcaIVolume.Handle, firstPage: DiskPageNumber, count: LONG CARDINAL,
passes: CARDINAL oE- 10, retries: RetryLimit oE- noRetries];

FormatBootMicrocodeArea: --FormatPiiotDisk-- PROCEDURE [
h: PhysicaIVolume.Handle, passes: CARDINAL, retries: RetryLimit];

Formatter: --NSPrint-- TYPE = MACHINE DEPENDENT{available, busy, disabled};
FormattingMustBe TrackAligned: --FormatPiiotDisk -- ERROR;
FormatTracks: --FIoppyChannel-- PROCEDURE [

handle: Handle, start: DiskAddress, trackCount: CARDINAL]
RETURNS [status: Status, countDone: CARDINAL];

Frame: --Backstop-- TYPE [1];
Frame: --DebugUsefuIDefs-- PROCEDURE [name: LONG STRING] RETURNS [GFHandle];
FrameDesc: --DebugUsefuiDefs-- TYPE = LONG DESCRIPTOR FOR READONL Y ARRAY

CARDINAL OF GFHandle;
framelink: --PrincOps-- CARDINAL = 0;
FrameSizelndex: --PrincOps-- TYPE = [0 .. 30];
frameSizeMap: --PrincOps-- ARRAY FrameSizelndex OF [0 .. 7774B];
FrameVec: --PrincOps-- ARRAY FrameSizelndex OF [0 .. 7774B];
Free: --Courier-- PROCEDURE [parameters: Parameters, zone: UNCOUNTED ZONE];
Free: --MDSStorage-- PROCEDURE [p: POINTER];
Free: --Menu-- PROCEDURE [menu: Handle, freeStrings: BOOLEAN +- TRUE);
Free: --ObjAlloc-- PROCEDURE [

pool: AllocPoolDesc, interval: Interval, validate: BOOLEAN +- TRUE);
FreeAccessList: --NSFi/e-- PROCEDURE [list: AccessList);
FreeAddress: --NSAddr-- PROCEDURE [address: Address]

RETURNS [nuIiAddress: Address];
FreeAllltems: --FormSW-- PROCEDURE [sw: Window. Handle];
FreeAttributeList: --NSFile-- PROCEDURE [list: AttributeList];
FreeAttributes: --NSFile-- PROCEDURE [attributes: Attributes);
FreeBadPhosphorList: --Window-- PROCEDURE [window: Handle);
FreeCharacters: --NSString-- PROCEDURE [z: UNCOUNTED ZONE, c: Characters);
FreeCredentials: --Authenticator-- PROCEDURE [

Z: UNCOUNTED ZONE, credentials: LONG POINTER TO Credentials];

c

C-47

c

C-48

Listing of Public Symbols

FreeCredentials: --NSName-- PROCEDURE [
z: UNCOUNTED ZONE, credentials: Credentials);

FreeCursorSlot: --HeraldWindow-- PROCEDURE [slot: Slot] RETURNS [nil: Slot1;
FreeEncodedParameters: --NSName-- PROCEOURE [

Z: UNCOUNTED ZONE,
encoding: LONG DESCRIPTOR FOR ARRAY CARDINAL OF UNSPECIFIEDJ;

FreeEnumeration: --Courier-- PROCEDURE [enum: LONG DESCRIPTOR FOR Exports1;
FreeExtendedAttributes: --NSFile-- PROCEDURE [

extendedAttributes: ExtendedAttributeList};
FreeFilename: --FileName-- PROCEDURE [LONG STRING};
FreeHintsProcType: --FormSW-- TYPE = PROCEDURE [hints: Hints1;
FreeHistogram: --CommOnlineDiagnostics-- PROCEDURE [hist: Histogram};
Freeltem: --FormSW-- PROCEDURE [item: Item Handle, z: UNCOUNTED ZONE Eo- NIL]

RETURNS [ltemHandle];
Freeltem: --Menu-- PROCEDURE [ltemObject1;
FreeMDSNode: --Heap-- PROCEDURE [Z: MDSZone Eo- systemMDSZone, p: POINTER];
FreeMedia: --NSPrint-- PROCEDURE [media: LONG POINTER TO Media];
FreeName: --NSName-- PROCEDURE [Z: UNCOUNTED ZONE, name: Name];
FreeNameFields: --NSName-- PROCEDURE [Z: UNCOUNTED ZONE, name: Name];
FreeNode: --Heap-- PROCEDURE [Z: UNCOUNTED ZONE Eo- system Zone, p: LONG POINTER];
FreeNode: --Zone-- PROCEDURE [zH: Handle, p: LONG POINTER] RETURNS [s: Status];
FreeNodeNil: --MDSStorage-- PROCEDURE [p: POINTER] RETURNS [nil: POINTER];
FreeNSAddrStorage: --NSAddr-- PROCEDURE [nsAddr: NSAddrJ;
FreePages: --MDSStorage-- PROCEDURE [base: POINTER];
FreePages: --MSegment-- PROCEDURE [base: LONG POINTER];
FreePagesNil: --MDSStorage-- PROCEDURE [base: POINTER] RETURNS [nil: POINTER];
FreePrinterProperties: --NSPrint-- PROCEDURE [

printerProperties: LONG POINTER TO PrinterProperties];
FreePrinterStatus: --NSPrint-- PROCEDURE [

printerStatus: LONG POINTER TO PrinterStatus];
FreeRequestStatus: --NSPrint-- PROCEDURE [

requestStatus: LONG POINTER TO RequestStatus];
FreeRhs: --CH-- PROCEDURE [rhs: Buffer, heap: UNCOUNTED ZONE];
FreeRhsStorage: --NSAddr-- PROCEDURE [rhs: cH.Buffer];
FreeSearchPath: --MFile-- PROCEDURE [SearchPath];
FreeString: --CmFile-- PROCEDURE [LONG STRING] RETURNS [nil: LONG STRING];
FreeString: --MDSStorage-- PROCEDURE [s: STRING];
FreeString: --NSPrint-- PROCEDURE [string: LONG POINTER TO String];
FreeString: --NSString-- PROCEDURE [Z: UNCOUNTED ZONE, s: String];
FreeStringHandle: --Token-- PROCEDURE [h: Handle] RETURNS [nil: Handle];
FreeStringNil: --MDSStorage-- PROCEDURE [s: STRING] RETURNS [nil: STRING];
FreeTokenString: --Exec-- PROCEDURE [s: LONG STRING] RETURNS [nil: LONG STRING];
FreeTokenString: --Token-- PROCEDURE [s: LONG STRING]

RETURNS [nil: LONG STRING Eo- NIL];
FreeVFN: --FileName-- PROCEDURE [VFN];
FreeWords: --MDSStorage-- PROCEDURE [base: POINTER];
FreeWords: --MSegment-- PROCEDURE [base: LONG POINTER];
FreeWords: --NSFile-- PROCEDURE [words: Words];
FRem: --Real-- PROCEDURE [a: REAL, b: REAL] RETURNS [REAL];
FSlndex: --PrincOps-- TYPE = CARDINAL [0 .. 255J;
FSub: --Real-- PROCEDURE [a: REAL, b: REALI RETURNS [REAL];
fuliAccess: --NSFile-- Access;
galaxySocket: --NSConstants-- System.SocketNumber;
GenericProgram: --Runtime-- TYPE = LONG UNSPECIFIED;
germExtendedErrorReports: --PiiotSwitches-- PilotDomainC = 360C;

Mesa Programmer's Manual

Get: --RS232C-- PROCEDURE [channel: Channel Handle, rec: Physical Record Handle)
RETURNS [CompletionHandle);

Get: --TTYPort-- PROCEDURE [channel: Channel Handle]
RETURNS [data: CHARACTER, status: TransferStatus];

GetAccess: --MFi/e-- PROCEDURE [file: Handle] RETURNS [access: Access];
GetAddress: --DebugUsefuIDefs·- PROCEDURE [Handle]

RETURNS [base: LONG POINTER, offset: Bits, there: BOOLEAN];
GetAddress: --NSAddr-- PROCEDURE RETURNS [address: Address);
GetAdjustProc: --TooIWindow-- PROCEDURE [window: Handle]

RETURNS [AdjustProcType);
GetAttributes: --File-- PROCEDURE [file: File]

RETURNS [type: Type, temporary: BOOLEAN];
GetAttributes: --Floppy-- PROCEDURE [

volume: VolumeHandle, labelString: LONG STRING]
RETURNS [

freeSpace: PageCount, largestBlock: PageCount, fileList: FileHandle,
rootFile: FileHandle, density: Density [single .. double],
sides: Sides [one .. two], maxFileListEntries: CARDINAL];

GetAttributes: --Heap-- PROCEDURE [z: UNCOUNTED ZONE]
RETURNS [

heapPages: Environment.PageCount, maxSize: Envlronment.PageCount,
increment: Environment.PageCount, swapUnitSize: space.SwapUnitSize,
o\ll(nerChecking: BOOLEAN, checking: BOOLEAN, attributes: Attributes];

GetAttributes: --LogFile-- PROCEDURE [
file: File.File, current: Log.lndex, firstPageNumber: File.PageNumber oE- 1]
RETURNS [

time: System.GreenwichMeanTime, type: Type, level: Log.Level,
size: CARDINAL];

GetAttributes: --NSFile-- PROCEDURE [
file: Handle, selections: Selections, attributes: Attributes,
session: Session oE- nuIISession];

GetAttributes: --NSVo/umeControl-- PROCEDURE [volume: VOlume.ID}
RETURNS [

used: LONG CARDINAL, available: LONG CARDINAL, index: IndexAttributes,
root: NSFile.ID];

GetAttributes: --PhysicaIVo/ume-- PROCEDURE [pvID: 10, label: LONG STRING oE- NIL]
RETURNS [instance: Handle, layout: Layout];

GetAttributes: --Volume-- PROCEDURE [volume: 10]
RETURNS [volumeSize: PageCount, freePageCount: PageCount, readOnly:

BOOLEAN];
GetAttributes: --Zone-- PROCEDURE [zH: Handle]

RETURNS [
zoneBase: Base, threshold: BlockSize, checking: BOOLEAN,
storage: LONG POINTER, length: BlockSize, next: SegmentHandle];

.. GetAttributesByName: --NSFile-- PROCEDURE [
directory: Handle, path: String, selections: Selections,
attributes: Attributes, session: Session oE- nuIlSession];

GetAttributesChild: --NSFi/e-- PROCEDURE [
directory: Handle, id: 10, selections: Selections, attributes: Attributes,
session: Session oE- nuIlSession];

GetAttributesMDS: --Heap-- PROCEDURE [z: MDSZone]
RETURNS [

c

heapPages: Environment.PageCount, largeNodePages: Environment.PageCount,
maxSize: Envlronment.PageCount, increment: Environment.PageCount,
swapUnitSize: space.SwapUnitSize, threshold: NWords,
largeNodeThreshold: NWords, ownerChecking: BOOLEAN, checking: BOOLEAN];

C-49

c

C-50

Listing of Public Symbols

GetBackground: --UserTerminal-- PROCEDURE RETURNS [background: Background];
GetBase: --NSSegment-- PROCEDURE [

pointer: LONG POINTER, session: Session +- nullSession) RETURNS [PageNumber);
GetBcdTime: --Runtime-- PROCEDURE RETURNS [System.GreenwichMeanTime];
GetBitBltTable: --UserTermina/-- PROCEDURE RETURNS [bbt: BitBlt.BBTable];
GetBitmapUnder: --Window-- PROCEDURE [window: Handle] RETURNS [LONG POINTER];
GetBlock: --LogFile-- PROCEDURE [

file: File.File, current: Log.lndex, place: LONG POINTER,
firstPageNumber: File.PageNumber +-1];

GetBootFiles: --Floppy-- PROCEDURE [volume: VolumeHandle]
RETURNS [

initialMicrocode: BootFilePointer, pilotMicrocode: BootFilePointer,
diagnosticMicrocode: ijootFilePointer, germ: BootFilePointer,
pilotBootFile: BootFilePointer];

GetBox: --Too/Window-- PROCEDURE [window: Handle] RETURNS [Box];
GetBox: --Window-- PROCEDURE (Handle] RETURNS [Box];
GetBuildTime: --Runtime-- PROCEDURE RETURNS [System.GreenwichMeanTime);
GetCaller: --Runtime-- PROCEDURE RETURNS [PROGRAM];
GetChar: --Exec-- GetCharProc;
GetChar: --TTY-- PROCEDURE [h: Handle] RETURNS [c: CHARACTER];
GetChar: --TTYSW-- PROCEDURE [sw: Window.Handle] RETURNS [CHARACTER];
GetCharProc: --Exec-- TYPE = PROCEDURE [h: Handle] RETURNS [char: CHARACTER);
GetCharProcType: --Token-- TYPE = PROCEDURE [h: Handle] RETURNS [c: CHARACTER];
GetChild: --Window-- PROCEDURE [Handle] RETURNS [Handle];
GetClearingRequired: --Window-- PROCEDURE [Handle] RETURNS [BOOLEAN];
GetClientSystemElement: -NSSessionContro/-- PROCEDURE (session: NSFile.Session]

RETURNS [NSFile.SystemElement];
GetClippedDims: --Too/Window-- PROCEDURE [window: Handle] RETURNS

[Window. Dims];
GetConfirmationProc: --OnlineDiagnostics-- TYPE = PROCEDURE [

msg: FloppyMessage];
GetContainingPhysicalVolume: --Physica/Volume-- PROCEDURE [

IvID: System.VolumelDj RETURNS [pvID: 10];
GetContext: --F/oppyChannel-- PROCEDURE [handle: Handle]

RETURNS [context: Context];
GetControls: --NSFi/e-- PROCEDURE [

file: Handle, controlSelections: ControlSelections +- allControlSelections,
session: Session +- nullSessionj RETURNS [Controls];

GetConversationCredentials: --Authenticator-- PROCEDURE [
Z: UNCOUNTED ZONE, flavor: Flavor +- superWeak, userName: Name, userKey: Key,
serverName: Name, secondsToExpiration: Seconds +- defaultExpirationTime]
RETURNS [credentials: Credentials, conversation Key: Key];

GetCount: --Log-- PROCEDURE RETURNS [count: CARDINAL];
GetCount: --LogFi/e-- PROCEDURE [

file: File.File, firstPageNumber: File.PageNumber +- 1]
RETURNS [count: CARDINAL];

GetCreateDate: --MFile-- PROCEDURE [file: Handle] RETURNS [create: Time.Packed];
GetCredentials: --NSSessionContro/-- PROCEDURE [

name: NSString.String, password: NSString.String,
server: NSFile.SystemElement]
RETURNS [

status: AuthenticationStatus, credentials: NSFile.Credentials,
verifier: NSFile. Verifier];

Mesa Programmer's Manual

GetCredentialsProc: --NSSessionControl-- TYPE = PROCEDURE [
name: NSString.String, password: NSString.String,
server: NSFile.SystemElement]
RETURNS [

status: AuthenticationStatus, credentials: NSFile.Credentials,
verifier: NSFile.Verifier];

GetCurrent: --Process-- PROCEDURE RETURNS [process: PROCESS];
GetCurrentProcess: --Backstop-- PROCEDURE RETURNS [process: Process];
GetCursorPattern: --UserTerminal-- PROCEDURE

RETURNS [cursorPattern: CursorArray];
GetCursorSlot: --HeraldWindow-- PROCEDURE RETURNS [slot: Slot];
GetDecimal: --TTY-- PROCEDURE [h: Handle] RETURNS [n: INTEGER];
GetDecimal: --TTYSW-- PROCEDURE [sw: Window. Handle] RETURNS [INTEGER];
GetDefaultDomain: --Profile-- PROCEDURE [PROCEDURE [String));
GetDefaultOrganization: --Profile-- PROCEDURE [PROCEDURE [String]];
GetDefaultRegistry: --Profile-- PROCEDURE [PROCEDURE [String]];
GetDefaultSession: --NSFile- PROCEDURE RETURNS [Session];
GetDefaultSocketNumber: --ExpeditedCourier-- PROCEDURE

RETURNS [System.SocketNumber];
GetDefaultWindow: --Userlnput-- PROCEDURE RETURNS [Window.Handle];
GetDelayToNet: -Router-- PROCEDURE [net: System.NetworkNumber]

RETURNS [delay: CARDINAL];
GetDesiredProperties: --File Transfe(-- PROCEDURE [conn: Connection]

RETURNS [props: DesiredProperties];
GetDeviceAttributes: --FloppyChannel-- PROCEDURE [handle: Handle]

RETURNS [attributes: Attributes];
GetDialerCount: --Dialup-- PROCEDURE RETURNS [numberOfDialers: CARDINAL];
GetDirectoryName: --MFile-- PROCEDURE [file: Handle, name: LONG STRING];
GetDisplayProc: --Window-- PROCEDURE [Handle] RETURNS [PROCEDURE [Handle));
GetDriveSize: --OthelloOps-- PROCEDURE [h: PhysicaIVolume.Handle]

RETURNS [nPages: LONG CARDINAL];
GetEcho: --TTY-- PROCEDuRE [h: Handle] RETURNS [old: EchoClass];
GetEcho: --TTYSW-- PROCEDURE [sw: Window. Handle] RETURNS [old: TTY.EchoClass];
GetEchoCounters: --CommOnlineDiagnostics- PROCEDURE [

host: System. NetworkAddress ~ System.nuIiNetworkAddress]
RETURNS [

packets: LONG CARDINAL, bytes: LONG CARDINAL,
time: System.GreenwichMeanTime];

GetEchoCounters: --RemoteCommDiags-- PROCEDURE [host: System.NetworkAddress]
RETURNS [

packets: LONG CARDINAL, bytes: LONG CARDINAL,
time: System.GreenwichMeanTime];

GetEchoResults: --CommOnlineDiagnostics-- PROCEDURE [
stoplt: BOOLEAN, host: System.NetworkAddress~System.nuIINetworkAddress]
RETURNS [totalsSinceStart: EchoResults, hist: Histogram];

GetEchoResults: --RemoteCommDiags-- PROCEDURE [
host: System.NetworkAddress, echoUser: CommOnlineDiagnostlcs. EchoUserHandle,
stoplt: BOOLEAN]
RETURNS [

totalsSi nceStart: Com mOnlineDlagnostlcs. EchoResults,
hist: CommOnlineDlagnostics.Histogram];

GetEditedString: --TTY-- PROCEDURE [
h: Handle, s: LONG STRING,
t: PROCEDURE [c: CHARACTER] RETURNS [status: CharStatus])
RETURNS [c: CHARACTER];

c

C-51

c

C-52

Listing of Public Symbols

GetEditedString: --TTYSW-- PROCEDURE [
sw: Window. Handle, s: LONG STRING,
t: PROCEDURE [CHARACTER] RETURNS [TTY.CharStatusl1 RETURNS [CHARACTER};

GetError: --Backstop-- PROCEDURE RETURNS [BackstopNub.ErrorType);
GetEthernetStats: --CommOnlineDiagnostics-- PROCEDURE [

physicalOrder: CARDINAL Eo- 1,
host: System. NetworkAddress Eo- System.nullNetworkAddress]
RETURNS [info: EtherStatslnfo, time: System.GreenwichMeanTime];

GetEthernetStats: --RemoteCommDiags-- PROCEDURE [
host: System.NetworkAddress, physical Order: CARDINAL Eo-l]
RETURNS [

info: CommOnlineDiagnostlcs.EtherStatsResult,
time: System.GreenwichMeanTime1;

GetExpirationDate: --Othel/oOps-- PROCEDURE [
file: File.File, firstPage: File.PageNumberl
RETURNS [GetExpi rati onDateSuccess, System. Greenwi chMean Ti me];

GetExpirationDateSuccess: --Othel/oOps-- TYPE = SetDebuggerSuccess
[success .. other];

GetFaultedProcess: --Backstop-- PROCEDURE RETURNS [process: Process];
GetFieldBody: --MailParse-- PROCEDURE [

h: Handle, string: LONG STRING, suppressWhiteSpace: BOOLEAN Eo- FALSE];
GetFieldName: --Mai/Parse-- PROCEDURE [h: Handle, field: LONG STRING]

RETURNS [found: BOOLEAN);
GetFile: --FileSW-- PROCEDURE [sw: Window. Handle]

RETURNS [name: LONG STRING, s: Stream. Handle];
GetFile: --MSegment-- PROCEDURE [segment: Handle] RETURNS [MFile.Handle);
GetFile: --MStream-- PROCEDURE [stream: Handle) RETURNS [file: MFile.Handle];
GetFileAttributes: --Floppy-- PROCEDURE [file: FileHandle)

RETURNS [size: PageCount, type: File.Type);
GetFileBase: --MSegment-- PROCEDURE [segment: Handle] RETURNS

[File.PageNumber);
GetFilePages: --MSegment-- PROCEDURE [segment: Handle] RETURNS

[File.PageCount);
GetFloppyChoiceProc: --OnlineDlagnostics-- TYPE = PROCEDURE

RETURNS [FloppyWhatToDoNext];
GetFont: --Menu-- PROCEDURE RETURNS [font: WindowFont.Handle];
GetFullName: --MFile-- PROCEDURE [file: Handle, name: LONG STRING];
GetGravity: --Too/Window-- PROCEDURE [window: Handle1

RETURNS [gravity: Window.Gravity1;
GetGroupPhrase: --MailParse-- PROCEDURE [h: Handle, phrase: LONG STRING];
GetHandle: --FloppyChannel-- PROCEDURE [drive: Drive1 RETURNS [handle: Handle];
GetHandle: --PhysicaIVo/ume-- PROCEDURE [index: CARDINAL1 RETURNS [Handle];
GetHints: --PhysicaIVolume-- PROCEDURE [

instance: Handle, label: LONG STRING E- NIL]
RETURNS [pvID: 10, volumeType: VolumeType];

GetlD: --TTY-- PROCEDURE [h: Handle, s: LONG STRING];
Getl!;): --TTYSW-- PROCEDURE [sw: Window.Handle, s: LONG STRING];
GetlmageAttributes: --Floppy-- PROCEDURE [

imageFile: File.File, firstlmagePage: File.PageNumber,
name: LONG STRING Eo- NIL]
RETURNS [

maxNumberOfFiles: CARDINAL, currentNumberOfFiles: CARDINAL,
density: Density [single .. double]' sides: Sides [one .. twoll;

GetlnactiveName: --Too/Window-- PROCEDURE [window: Handle]
RETURNS [name: LONG STRING1;

Getlndex: --Log-- PROCEDURE RETURNS [index: Index];

Mesa Programmer's Manual

Getlndex: --MemoryStream-- PROCEDURE [sH: Stream. Handle]
RETURNS [position: Stream.Position];

Getlnfo: --BTree-- PROCEDURE [tree: Tree]
RETURNS [valueSize: ValueSize, file: MFile.Handle, usage: Space.Usage];

Getlnfo: --Cursor-- PROCEDURE RETURNS [Infol;
Getlnfo: --FileWindow-- PROCEDURE

RETURNS [
ext: LONG STRING, fileMenu: Menu.Handle, sourceMenu: Menu.Handle,
minimumWindows: CARDINAL];

GetlnputFocus: --Userlnput-- PROCEDURE RETURNS [Window. Handle];
GetLabelString: --Volume-- PROCEDURE [volume: 10, s: LONG STRING];
GetLength: --MFile-- PROCEDURE [file: Handle] RETURNS [ByteCount];
GetLength: --MStream-- PROCEDURE [stream: Handle]

RETURNS [fileLength: MFile.ByteCount];
GetLibrarian: --Profile- PROCEDURE [PROCEDURE [String));
GetLibrarianNames: --Profile-- PROCEDURE [

PROCEDURE [prefix: String, suffix: String));
GetLimitProc: --TooIWindow-- PROCEDURE [window: Handle] RETURNS

[LimitProcType];
GetLine: --TTY-- PROCEDURE [h: Handle, s: LONG STRING];
GetLine: --TTYSW-- PROCEDURE [sw: Window. Handle, s: LONG STRING];
GetLog: --Scavenger-- PROCEDURE [volume: Volume.ID]

RETURNS [IogFile: File.File];
GetLog: --VolumeConversion-- PROCEDURE [volume: Volume.ID]

RETURNS [logFile: File.File];
GetLogEntry: --BackstopNub-- PROCEDURE [

log: File.File, current: Log.lndex, place: Handle,
firstPageNumber: File.PageNumber +- 0];

GetLongDecimal: --TTY-- PROCEDURE [h: Handle] RETURNS [n: LONG INTEGER];
GetLongDecimal: --TTYSW-- PROCEDURE [sw: Window. Handle] RETURNS [LONG

INTEGER];
GetLongNumber: --TTY-- PROCEDURE [

h: Handle, default: LONG UNSPECIFIED, radix: CARDINAL,
showDefault: BOOLEAN +- TRUE] RETURNS [n: LONG UNSPECIFIED];

GetLongNumber: --TTYSW-- PROCEDURE [
SW: Window. Handle, default: LONG UNSPECIFIED, radix: CARDINAL,
showDefault: BOOLEAN +- TRUE] RETURNS [LONG UNSPECIFIED];

GetLongOctal: --TTY-- PROCEDURE [h: Handle] RETURNS [n: LONG UNSPECIFIED];
GetLongOctal: --TTYSW-- PROCEDURE [sw: Window. Handle]

RETURNS [lONG UNSPECIFIED];
GetLost: --Log-- PROCEDURE RETURNS [lost: CARDINAL];
GetLost: --LogFile-- PROCEDURE [

file: File.File, firstPageNumber: File.PageNumber +-1]
RETURNS [count: CARDINAL];

GetName: --TooIWindow-- PROCEDURE [window: Handle] RETURNS [name: LONG
STRING];

GetNameandPassword: --Exec-- PROCEDURE [
h: Handle, name: lONG STRING, password: LONG STRING,
prompt: lONG STRING +- NIL];

GetNameStripe: --TooIWindow-- PROCEDURE [window: Handle] RETURNS [OnOff];
GetNetworklD: --Router-- PROCEDURE (

physical Order: CARDiNAL, medium: PhysicalMedium]
RETURNS [System.NetworkNumber];

GetNext: --BackstopNub-- PROCEDURE [
log: File.File, current: Log.lndex, firstPageNumber: File.PageNumber +- 0]
RETURNS [next: Log.lndex];

c

C-53

c

C-54

Listing of Public Symbols

GetNext: --BTree-- PROCEDURE [
tree: Tree, name: LONG STRING, nextName: LONG STRING, value: Value,
mask: LONG STRING ~ NIL];

GetNext: --LogFi/e-- PROCEDURE [
file: File.File, current: Log.lndex, firstPageNumber: File.PageNumber ~ 1]
RETURNS [next: Log. Index];

GetNext: --NSSegment-- PROCEDURE [
file: NSFiie.Handle, currentSegment: 10, session: Session ~ nullSession]
RETURNS [10];

GetNext: --Physica/Vo/ume-- PROCEDURE [pvID: 10] RETURNS [10);
GetNext: --Vo/ume-- PROCEDURE [

volume: 10, inciudeWhichVolumes: TypeSet ~ onlyEnumerateCurrentType]
RETURNS [nextVolume: 10);

GetNextBadPage: --Physica/Vo/ume-- PROCEDURE [
pvlD: 10, thisBadPageNumber: PageNumber]
RETURNS [nextBadPageNumber: PageNumber];

GetNextBadSedor: --Floppy-- PROCEDURE [
volume: VolumeHandle, oldlndex: CARDINAL]
RETURNS [newlndex: CARDINAL, file: FileHandle, page: PageNumber];

GetNextDrive: --F/oppyChanne/-- PROCEDURE [lastDrive: Drive]
RETURNS [nextDrive: Drive];

GetNextDrive: --Physica/Vo/ume-- PROCEDURE [index: CARDINAL]
RETURNS [nextlndex: CARDINAL];

GetNextFile: --Floppy-- PROCEDURE [previousFile: FileHandle]
RETURNS [nextFile: FileHandle];

GetNextFrame: --Backstop-- PROCEDURE [process: Process, frame: Frame]
RETURNS [next: Frame];

GetNextHandleForReading: --MFile-- PROCEDURE [
filter: LONG STRING, name: LONG STRING, release: ReleaseData.
lastState: EnumerateState, stopNow: BOOLEAN ~ FALSE]
RETURNS [file: Handle, state: EnumerateState];

GetNextLine: --RS232C-- PROCEDURE [lineNumber: CARDINAL]
RETURNS [nextLineNumber: CARDINAL];

GetNextLogicalVolume: --Physica/Vo/ume-- PROCEDURE [
pvlD: 10, IvID: System.VolumeID] RETURNS [System.VolumeID);

GetNextProcess: --Backstop-- PROCEDURE [process: Process]
RETURNS [next: Process];

GetNextRootFile: --Vo/ume-- PROCEDURE [
lastType: Flle.Type, volume: 10 ~systemlD]
RETURNS [file: File.File, type: Flle.Type];

GetNextSubVolume: --Othel/oOps-- PROCEDURE [
pvlD: PhysicaIVolume.ID, thisSv: SubVolume) RETURNS [nextSV: SubVolume);

GetNextVerifier: --Authenticator-- PROCEDURE [
credentials: Credentials, conversationKey: Key,
lastVerifier: Verifier ~ firstVerifier] RETURNS [nextV: Verifier];

GetNotifier: -Scrollbar-- PROCEDURE [window: Window. Handle, type: Type]
RETURNS [ScroIiProcType); .

GetNotifyProc: --TlP-- PROCEDURE [window: Window.Handle] RETURNS [NotifyProc];
GetNotifyProcFromTable: --TlP-- PROCEDURE [table: Table] RETURNS [NotifyProc];
GetNSAddr: --NSAddr-- PROCEDURE [nsAddr: NSAddr);
GetNumber: --TrY-- PROCEDURE [

h: Handle, default: UNSPECIFIED, radix: CARDINAL, showDefault: BOOLEAN ~
TRUE]

RETURNS [n: UNSPECIFIED);

Mesa Programmer's Manual

GetNumber: --TTYSW-- PROCEDURE [
sw: Window. Handle, default: UNSPECIFIED, radix: CARDINAL,
showDefault: BOOLEAN Eo- TRUE] RETURNS [UNSPECIFIED];

GetOctal: --TTY-- PROCEDURE [h: Handle] RETURNS [n: UNSPECIFIED};
GetOctal: --TTYSW-- PROCEDURE [sw: Window. Handle} RETURNS [UNSPECIFIED];
GetPages: -MSegment-- PROCEDuRE {npages: CARDINAL]

RETURNS [base: LONG POINTER];
GetParent: --Window-- PROCEDURE [Handle] RETURNS [Handle];
GetPassword: -- TTY-- PROCEDURE [h: Handle, s: LONG STRING];
GetPassword: -- TTYSW-- PROCEDlJRE [sw: Window. Handle, s: LONG STRING];
GetPhysicalVolumeBootFile: --Othel/oOps-- PROCEDURE [

pvlD: PhyslcaIVolume.ID, type: BootFileType]
RETURNS [file: File.File, firstPage: File.PageNumber];

GetPlace: --TlP-- PROCEDURE [window: Window. Handle] RETURNS [Window.Place];
GetPName: --Atom-- PROCEDURE [atom: ATOM] RETURNS [pName: LONG STRING];
GetPrinterProperties: --NSPrint-- PROCEDURE [system Element: System Element]

RETURNS [properties: PrinterProperties];
GetPrinterStatus: --NSPrint-- PROCEDURE [system Element: System Element]

RETURNS [status: PrinterStatus];
GetPrintRequestStatus: --NSPrint-- PROCEDURE [

printRequestlD: RequestlD, system Element: System Element]
RETURNS [status: RequestStatus];

GetPriority: --Process-- PROCEDURE RETURNS [priority: Priority];
GetPracs: --FileTransfer-- PROCEDURE [cann: Connection]

RETURNS [
clientData: LONG POINTER, messages: MessageProc, login: ClientProc,
notePragress: ClientProc, checkAbart: CheckAbortProc];

GetProcType: --GSort-- TYPE = PROCEDURE [p: LONG POINTER] RETURNS [CARDINAL];
GetPraperties: --CH-- PROCEDURE [

cred: Authenticator.Credentials, ver: Authenticator.Verifier, name: Pattern,
getArray: PropertiesAllocatar, distingName: Name]
RETURNS [rc: ReturnCode, properties: Properties];

GetPraperties: --MFile-- PROCEDURE [file: Handle, name: LONG STRING Eo- NIL]
RETURNS [

create: Time.Packed, write: Time.Packed, read: Time.Packed,
length: ByteCount, type: Type, deleteProtected: BOOLEAN,
writeProtected: BOOLEAN, readProtected: BOOLEAN];

GetPraperty: --MFile-- PROCEDURE [
file: Handle, property: Praperty, block: Environment.Block]
RETURNS [length: CARDINAL];

GetProtection: -MFi/e-- PROCEDURE [file: Handle]
RETURNS [

deleteProtected: BOOLEAN, writeProtected: BOOLEAN, read Protected :
BOOLEAN];

GetRandamKey: --Authenticator-- PROCEDURE RETURNS [key: Key];
GetReference: --NSFile-- PROCEDURE [

file: Handle, reference: Reference, session: Session Eo- nul/Session];
GetReleaseOata: --MFi/e-- PROCEDURE [file: Handle]

RETURNS [release: ReleaseData];
GetReleaseOata: --MSegment-- PROCEDURE [segment: Handle] RETURNS

[ReleaseData];
GetReleaseOata: --MStream-- PROCEDURE [stream: Handle]

RETURNS [release. ReleaseData];
GetRemateName: --FileName-· PROCEDURE [

file: MFile.Handle, remoteName: LONG STRING];

c

C-55

c

C-56

Listing of Public Symbols

GetRestart: --LogFile-- PROCEDURE [
file: File.File, firstPageNumber: Ftle.PageNumber E-1]
RETURNS [restart: Restart];

GetRootNode: --Zone-- PROCEDURE {zH: Handle}
RETURNS [node: Base RELATIVE POINTER];

GetRouteAddrPhrase: --MailParse-- PROCEDURE [h: Handle, name: LONG STRING];
GetRouterFunction: --Router-- PROCEDURE RETURNS [RoutersFunction];
GetRS232CResults: --CommOnlineDiagnostics-- PROCEDURE [

stoplt: BOOLEAN, host: System. NetworkAddress E­
System.nuIINetworkAddress]

RETURNS [counters: CountType];
GetSearchPath: --MFile-- PROCEDURE RETURNS [SearchPath];
GetSegmentAttributes: --Zone-- PROCEDURE [zH: Handle, sH: SegmentHandle]

RETURNS [storage: LONG POINTER, length: BlockSize, next: SegmentHandle];
GetSelection: --FormSW-- PROCEDURE [Window.Handle]

RETURNS [index: CARDINAL, first: CARDINAL, last: CARDINAL1;
GetServerType: --FileTransfer-- PROCEDURE [conn: Connection, host: LONG STRING]

RETURNS [ServerType];
GetServiceData: --NSSessionContro/-- PROCEDURE [

session: NSFile.Session, id: ServicelO] RETURNS [ServiceOata];
GetSessionAttributes: --NSSessionContro/-- PROCEDURE [session: NsFile.Session]

RETURNS [SessionAttributes];
GetSession.Restrictions: --NSSessionContro/-- PROCEDURE

RETURNS [SessionRestrictions];
GetSeverity: --MsgSW-- PROCEDURE [sw: Window. Handle}

RETURNS [severity: Severity];
GetSibling: --Window- PROCEDURE [Handle] RETURNS [Handle];
GetSize: --BackstopNub-- PROCEDURE [

log: File.File, current: Log.lndex, firstPageNumber: File.PageNumber E- 0]
RETURNS [size: CARDINAL];

GetSize: --DebugUsefuiDefs-- PROCEDURE [Handle]
RETURNS [words: CARDINAL, bits: Bits];

GetSize: --File-- PROCEDURE [file: File] RETURNS [size: PageCount];
GetSizelnBytes: --NSSegment-- PROCEDURE [

file: NSFile.Handle, segment: 10 E- defaultlO, session: Session E- nullSession]
RETURNS [ByteCount1;

GetSizelnPages: --NSSegment-- PROCEDURE [
file: NSFile.Handle, segment: 10 E-defaultIO, session: Session E- nullSession]
RETURNS [PageCount1;

GetSnapShotFromFile: --LibrarianUtility-- PROCEDURE [fileName: LONG STRING]
RETURNS [Librarian.SnapShotHandle1;

GetState: --Log-- PROCEDURE RETURNS [state: State!;
GetState: --TooIWindow-- PROCEDURE [window: Handle] RETURNS [state: State];
GetState: --UserTerminal-- PROCEDURE RETURNS [state: State];
GetStatus: --LsepFace-- PROCEDURE RETURNS [status: PrinterStatus];
GetStatus: --RavenFace-- PROCEDURE RETURNS [status: PrinterStatus];
GetStatus: --RS232C-- PROCEDURE [channel: Channel HandLe]

RETURNS [stat: OeviceStatus];
GetStatus: --TTYPort-- PROCEDURE [channel: Channel Handle]

RETURNS [stat: OeviceStatus];
GetStatus: --Volume-- PROCEDURE [volume: 10] RETURNS [Status];
GetStickyFlags: --Real-- PROCEDURE RETURNS [ExceptionFlags1;
GetStreamlnfo: --FileTransfer-- PROCEDURE [remoteStream: Stream. Handle]

RETURNS [Filelnfo];
GetStreamName: --FileTransfer PROCEDURE [remoteStream: Stream.Handle]

RETURNS [file: LONG STRING];

Mesa Programmer's Manual

GetString: --LogFile-- PROCEDURE [
file: File.File, current: Log.lndex, place: LONG STRING,
firstPageNumber: File.PageNumber +-1];

GetString: --TTY-- PROCEDURE [
h: Handle, s: LONG STRING,
t: PROCEDURE [c: CHARACTER] RETURNS [status: CharStatus]];

GetString: --TTYSW-- PROCEDURE [
sw: Window. Handle, s: LONG STRING,
t: PROCEDURE [CHARACTER] RETURNS [TTY.CharStatusll;

GetSwitches: --OthelloOps-- PROCEDURE [
file: File.File, firstPage: File.PageNumber]
RETURNS [SetGetSwitchesSuccess, System.Switches];

GetTable: --TlP-- PROCEDURE [window: Window.Handle] RETURNS [Table];
GetTableBase: --Runtime-- PROCEDURE [frame: PROGRAM] RETURNS [LONG POINTER];
GetTabs: --AsciiSink-- PROCEDURE [sink: TextSink.Handle] RETURNS [TabStops];
GetTimeFromTimeServer: --OthelloOps-- PROCEDURE

RETURNS [
serverTime: System.GreenwichMeanTime,
serverLTPs: System. LocaITimeParameters];

GetTimes: --MFile-- PROCEDURE [file: Handle]
RETURNS [create: Time.Packed, write: Tlme.Packed, read: Time.Packed];

GetTinyName: --TooIWindow-- PROCEDURE [window: Handle]
RETURNS [name: LONG STRING, name2: LONG STRING];

GetTinyPlace: --TooIWindow-- PROCEDURE [window: Handle] RETURNS [place:
Place];

GetToken: --Exec-- PROCEDURE [h: Handle]
RETURNS [token: LONG STRING, switches: LONG STRING];

GetToolsPropertyArray: --LibrarianUtility-- PROCEDURE RETURNS [PropertyArray];
GetTransitionProc: --TooIWindow-- PROCEDURE [window: Handle]

RETURNS [TransitionProcType];
GetTTY: --Exec-- PROCEDURE [h: Handle] RETURNS [tty: TTY.Handle1;
GetTTYHandle: --TTYSW-- PROCEDURE [sw: Window. Handle] RETURNS [tty:

TTY.Handle];
GetType: --FileExtras-- PROCEDURE [file: File.File] RETURNS [type: File.Type];
GetType: --MFile-- PROCEDURE [file: Handle] RETURNS [type: Type];
GetType: --NSFile-- PROCEDURE [file: Handle, session: Session +- nullSession]

RETURNS [Type];
GetType: --Vo/ume-- PROCEDURE [volume: 10] RETURNS [type: Type];
GetTypeln: --FormSW-- PROCEDURE [Window. Handle]

RETURNS [index: CARDINAL, position: CARDINAL];
GetUniqueConnectionlD: --NetworkStream-- PROCEDURE RETURNS [iO:

ConnectionIO];
GetUpdate: --Log-- PROCEDURE RETURNS [time: System.GreenwichMeanTime];
GetUser: --Profile-- PROCEDURE [

proc: PROCEDURE [name: String, password: String],
qualification: Qualification +- none];

GetVolume: --MFile-- PROCEDURE [file: Handle] RETURNS [Volume.IO];
GetVolumeBootFile: --OthelloOps-- PROCEDURE [

IvIO: Volume.IO, type: BootFileType]
RETURNS [file: Flle.File, firstPage: File.PageNumber];

GetWords: --MSegment-- PROCEDURE [nwords: CARDINAL]
RETURNS [base: LONG POINTER);

GetYesOrNoProc: --OnlineOiagnostics-- TYPE = PROCEDURE [msg: FloppyMessage]
RETURNS [YesOrNo];

GFHandle: --OebugUsefu/Oefs-· TYPE = Pnncops.GlobaIFrameHandle;
globalbase: --PrincOps-- CARDINAL = 0;

c

C-57

c

C-58

Listing of Public Symbols

GlobalCodebase: --PrincOps-- TYPE = MACHINE DEPENDENT RECORD [
SELECT OVERLAID * FROM
code = > [codebase(0:0 .. 31): PrefixHandle],
offset = > [offset{0:0 .. 15): CARDINAL, highHalf(l :0 .. 15): CARDINAL],
either = > [

fill(0:0 .. 14): CARDINAL [0 .. 77777B],
out(o: 15 .. 15): BOOLEAN,
highByte(1:0 .. 7): BYTE,
otherByte(l :8 .. 15): BYTE],

ENDCASE);
GlobalFrame: --BackstopNub-- TYPE [1];
GlobalFrame: --Runtime-- PROCEDURE [link: ControlLink] RETURNS [PROGRAM];
GlobalFrameBase: --PrincOps-- TYPE = POINTER TO GlobalOverhead;
GlobalFrameHandle: --PrincOps-- TYPE = POINTER TO GlobalVariables;
globalOffset: --PrincOps-- CARDINAL = 2;
GlobalOverhead: --PrincOps-- TYPE = MACHINE DEPENDENT RECORD [

extra(0:0 .. 15): WORD,
word(l :0 .. 15): GlobalWord,
codebase(2:0 .. 31): GlobalCodebase,
global(4): GlobalVariablesj;

globalTable: --TIP-- READONLY ARRAY GlobalTable OF Table;
GlobalTable: --TlP-- TYPE = {

root, formSW, textSW, fileWindow, ttySW, executive, spare 1, spare2};
GlobalVariables: --PrincOps-- TYPE = ARRAY CARDINAL [0 .. 0) OF UNSPECIFIED;
GlobalWord: --PrincOps-- TYPE = MACHINE DEPENDENT RECORD [

index(O:O .. 8): CARDINAL [0 .. 511],
started(0:9 .. 9): BOOLEAN,
copy(O: 10 .. 10): BOOLEAN,
copied(O: 11 .. 11): BOOLEAN,
al/oced(O: 12 .. 12): BOOLEAN,
shared(O: 13 .. 13): BOOLEAN,
trapxfers(O: 14 .. 14): BOOLEAN,
codelinks(O: 15 .. 15): BOOLEAN];

globalWordOffset: --PrincOps-- CARDINAL = 3;
Gravity: --Window-- TYPE = {nil, nw, n, ne, e, se, 5, sw, W, c, xxx};
Gray: --Display-- PROCEDURE [

window: Handle, box: Window. Box, gray: Brick E- fiftyPercent,
dstFunc: DstFunc E- null);

GrayParm: --BitBlt-- TYPE = MACHINE DEPENDENT RECORD [
reserved(0:0 .. 3): [0 .. 15] E-O,
yOffset(0:4 .. 7): [0 .. 15],
widthMinusOne(0:8 .. 11): [0 .. 15],
heightMinusOne(O: 12 .. 15): [0 .. 15]];

GWS: --CHLookup-- TYPE = MACHINE DEPENDENT RECORD [
address(0:0 .. 95): System.NetworkAddress,
location(6:0 .. 63): NSString.String,
maiIClerk(10:0 .. 31): NSName.Name];

GWSDescribe: --CHLookup-- Courier. Description;
GWSPt: --CHLookup-- TYPE = LONG POINTER TO GWS;
Handle: --BackstopNub-- TYPE = LONG POINTER TO ErrorEntry;
Handle: --BlockSource-- TYPE = TextSource.Handle;
Handle: --CmFile-- TYPE = Token.Handle;
Handle: --Courier-- TYPE = LONG POINTER TO READONL Y Object;
Handle: --Cursor-- TYPE = POINTER TO Object;
Handle: --DebugUsefuIDefs-- TYPE = "LONG POINTER TO Object;
Handle: --Disp/ay-- TYPE = Window. Handle;

Mesa Programmer's Manual

Handle: --Event-- TYPE = LONG POINTER TO Object;
Handle: --Exec-- TYPE = LONG POINTER TO Object;
Handle: --FloppyChannel-- TYPE [2];
Handle: --Heap-- TYPE = UNCOUNTED ZONE;
Handle: --MailParse-- TYPE = LONG POINTER TO Object;
Handle: --Menu-- TYPE = LONG POINTER TO Object;
Handle: --MFile-- TYPE = LONG POINTER TO Object;
Handle: --MLoader-- TYPE = LONG POINTER TO Object;
Handle: --MSegment-- TYPE = LONG POINTER TO Object;
Handle: --MStream-- TYPE = Stream.Handle;
Handle: --NSDataStream-- TYPE = RECORD [Stream.Handle];
Handle: --NSFile-- TYPE [2];
Handle: --PhysicaIVolume-- TYPE [3];
Handle: --RetrieveDefs-- TYPE [2];
Handle: --SendDefs-- TYPE [2];
Handle: --Token-- TYPE = LONG POINTER TO Object;
Handle: --Too/Window-- TYPE = Window. Handle;
Handle: --TTY-- TYPE [2];
Handle: --Window-- TYPE = LONG POINTER TO Object;
Handle: --WindowFont-- TYPE = LONG POINTER TO Object;
Handle: --Zone-- TYPE [2];
HandleFromProgram: --MLoader-- PROCEDURE [PROGRAM] RETURNS [Handle];
HandleProblem: --NSFile-- TYPE = MACHINE DEPENDENT{

invalid, nullOisallowed, di rectoryRequi red, obsolete};
hang: --PiiotSwitches-- PilotOomainA = 46C;
hasBorder: --UserTerminal-- READONL Y BOOLEAN;
Hashed Password : --NSName-- TYPE = CARDINAL;
HashPassword: --NSName-- PROCEDURE [password: String] RETURNS

[Hashed Password] ;
HashSimplePassword: --Authenticator-- PROCEDURE [password: NSString.Stri ng]

RETURNS [hash: CARDINAL];
HasScrollbar: --Scrollbar-- PROCEDURE [window: Window. Handle, type: Type]

RETURNS [BOOLEAN];
Header: -ExpeditedCourier-- TYPE = MACHINE DEPENDENT RECORD [

protRange(0:0 .. 31): Courierlnternal.ProtocolRange +- [protocoI3, protocol3],
body(2: 0 .. 95): Courierlnternal. ProtocoI3Body];

Header: --NSVo/umeControl-- TYPE = MACHINE DEPENDENT RECORD [
volume(0:0 .. 79): Volume.IO,
date(5:0 .. 31): System.GreenwichMeanTime,
incomplete(7:0 .. 14): BOOLEAN,
repaired(7: 15 .. 15): BOOLEAN,
numberOfFiles(8:0 .. 31): LONG CARDINAL];

Header: --Scavenger-- TYPE = MACHINE DEPENDENT RECORD [
seal(O:O .. l 5): CARDINAL +- LogSeal,
version(1 :0 .. 15): CARDINAL +- currentLogVersion,
volume(2:0 .. 79): Volume.IO,
date(7:0 .. 31): System.GreenwichMeanTime,
repairMode(9:0 .. 1): RepairType,
incomplete(9:2 .. 2): BOOLEAN,
repaired(9:3 .. 3): BOOLEAN,
bootFilesOeleted(9:4 .. 9): BootFileArray,
pad(9: 10 .. 15): [0 .. 0] +- 0,
numberOfFiles(10:0 .. 31): LONG CARDINAL];

HeaderPointer: --NSVo/umeControl-- TYPE = LONG POINTER TO Header;
heapChecking: --PilotSwitches-- PilotOomainB = 136C;
heapOwnerChecking: --PilotSwitches-- PilotOomainA = 66C;

c

C-59

c

C-60

Listing of Public Symbols

heapParamsFromClient: --PiiotSwitches-- PilotOomainC = 374C;
Hide: --TooIWindow-- PROCEDURE [window: Handle];
hierachicalLevels: --CH-- CARDINAL = 3;
hierarchical Levels: --NSName-- CARDINAL = 3;
HighByte: --Inline-- PROCEDURE [u: UNSPECIFIED] RETURNS [UNSPECIFIED];
HighestVersion: --FileTransfer-- PROCEDURE [

conn: Connection, remote: FileName.VFNj RETURNS [exists: BOOLEAN];
highestVersion: --NSFile-- CARDINAL = 177777B;
HighHalf: --Inline-- PROCEDURE [u: LONG UNSPECIFIED] RETURNS [UNSPECIFIED);
Hints: --FormSW-- TYPE = LONG DESCRIPTOR FOR ARRAY CARDINAL OF LONG STRING;
Histogram: --CommOnlineDiagnostics-- TYPE = LONG DESCRIPTOR FOR ARRA Y

CARDINAL
OF Detail;

Hop: --ExpeditedCourier-- TYPE = [0 .. 15];
HostNumber: --Format-- PROCEDURE [

proc: StringProc, hostNumber: System.HostNumber, format: NetFormat,
clientOata: LONG POINTER ~ NIL);

HostNumber: --Put-- PROCEDURE [
h: Window. Handle ~ NIL, host: System. HostNumber, format: NetFormat ~

octal];
HostNumber: --Token-- PROCEDURE [

h: Handle, format: NetFormat ~ octal, signalOnError: BOOLEAN ~ TRUE]
RETURNS [host: System.HostNumber); .

i bm2770Host: --RS232CCorrespondents-- RS232CEnvironment. Correspondent;
ibm3270Host: --CHPIDs-- cH.PropertylO = 26;
i bm3270Host: --RS232CCorrespondents-- RS232CEnvironment. Correspondent;
ibm6670: --RS232CCorrespondents-- RS232CEnvironment.Correspondent;
ibm6670Host: --RS232CCorrespondents-- RS232CEnvironment.Correspondent;
IBMHost: --CHLookup-- TYPE = MACHINE DEPENDENT RECORD [

description(0:0 .. 63): NSString.String,
controllers(4:0 .. 47): LONG DESCRIPTOR FOR ARRAY CARDINAL OF

IBM HostControllerRecordj;
IBMHostControllerRecord: --CHLookup-- TYPE = MACHINE DEPENDENT RECORD [

controllerAddress(0:0 .. 15): CARDINAL,
portsOnController(l :0 .. 15): CARDINAL,
IinkType(2:0 .. 15): ControllerLinkType,
path(3:0 .. 31): NSName.Name,
language(5:0 .. 15): IBM Languages,
terminaIModelType(6:0 .. 127): ARRAY PortRange OF IBMTerminalType ~ ALL[

model2)];
IBMHostOescribe: --CHLookup-- Courier. Descri ption;
IBMHostPt: --CHLookup-- TYPE = LONG POINTER TO IBMHost;
IBM Languages: --CHLookup-- TYPE = MACHINE DEPENDENT{

USenglish, Austrian, AustrianAlt, German, GermanAlt, Belgian, Brazilian,
CanadianFrenCh' Danish, OanishAlt, Norwegian, NorwegianAlt, Finnish,
FinnishAlt, Swedish, SwedishAlt, French, International, Italian,
JapaneseEnglish, JapaneseKana, Portuguese, Spanish, SpanishAlt,
SpanishSpeaking, U Kenglish, unused 1, unused2, unused3, unused4,

unused5,
unused6, (177777B)};

IBMTerminalType: --CHLookup-- TYPE = MACHINE DEPENDENT{
(0), modell, model2, model3, model4, modelS, (177777B)};

10: --File-- TYPE (2);
10: --NSFile-- TYPE [5];
10: --NSSegment-- TYPE = CARDINAL;
10: --PhysicaIVolume-- TYPE = System.PhysicaIVolumeIO;

Mesa Programmer's Manual

10: --Volume-- TYPE = System.VolumeIO;
10ArrayHandle: --LibrarianUtility-- TYPE = LONG POINTER TO 10ArrayObject;
10ArrayObject: --LibrarianUtility-- TYPE = RECORD [

numberOflOs: CARDINAL,
idArray: LONG DESCRIPTOR FOR ARRAY CARDINAL OF Librarian.LibjectIO);

IgnoreReadOnlyProc: --FormSW-- ReadOnlyProcType;
ill egal: --RS232CCorrespondents-- RS232CEnvironment_AutoRecognitionOutcome;
Illegal Enumerate: --LogFile-- ERROR;
lIIegalUserldentifier: --CH-- ERROR [why: Result];
Inconsistent: --LogFile-- ERROR;
IncrementBand: --LsepFace-- PROCEDURE;
IncrementLine: --LsepFace-- PROCEDURE;
Index: --Log-- TYPE = CARDINAL;
Index: --RavenFace-- TYPE [1];
IndexAttributes: --NSVolumeContro/-- TYPE = RECORD [

size: LONG CARDINAL +- 100,
pagelncrement: LONG CARDINAL +-100,
percentlncrement: Percent +- 20];

IndexFromEnumeratedValue: --FormSW-- PROCEDURE [Enumerated Handle)
RETURNS [CARDINAL];

IndexOutOfRange: --MemoryStream-- ERROR;
infiniteWaitTime: --NetworkStream-- READONLY WaitTime;
infinity: --OisplaY--INTEGER = 77777B;
i nfi nity: --Router-- CARDINAL = 16;
Info: --AsciiSink-- PROCEDURE [sink: TextSink.Handle]

RETURNS [font: WindowFont.Handle);
Info: --810ckSource-- PROCEDURE [source: Handle] RETURNS [block: Block];
Info: --Cursor-- TYPE = RECORD [type: Type, hotX: [0 .. 15], hotY: [0 .. 15]];
Info: --OiskSource-- PROCEDURE [source: TextSource.Handle]

RETURNS [name: LONG STRING, s: Stream. Handle, access: TextSource.Access];
Info: --PieceSource-- PROCEDURE [source: TextSource.Handle]

RETURNS [original: TextSource.Handle, scratch: TextSource.Handle];
Info: --ScratchSource-- PROCEDURE [source: TextSource.Handle]

RETURNS [
block: Environment. Block, extra Room : CARDINAL, access: TextSource.Access,
expandable: BOOLEAN];

Info: --ScratchSW-- PROCEDURE [sw: Window. Handle]
RETURNS [

block: Environment.Block, extra Room : CARDINAL, expandable: BOOLEAN,
options: Options];

Info: --Too/-- PROCEDURE [window: Window. Handle]
RETURNS [

name: LONG STRING, cmSection: LONG STRING, makeSWsProc:
MakeSWsProc,

clientTransition: ToolWindow.TransitionPr:ocType,
movableBoundaries: BOOLEAN];

InfoProc: --FileTransfer-- TYPE = PROCEDURE [Connection]
RETURNS [source: Filelnfo, target: Filelnfo];

InHeapFreeHintsProc: --FormSW-- FreeHintsProcType;
Initialize: --MailParse-- PROCEDURE [next: PROCEDURE RETURNS [CHARACTER]]

RETURNS [Handle];
Initialize: --NSVolumeContro/-- PROCEDURE [

volume: Volume.IO, index: IndexAttributes +- [],
root: N$Ftle.AttributeList +- NIL];

Initialize: --WindowFont-- PROCEDURE [font: Handle];

c

C-61

c

C-62

Listing of Public Symbols

InitializeBand: --LsepFace-- PROCEDURE [band: Band]
RETURNS [scanData: LONG POINTER];

InitializeCleanUp: --LsepFace-- PROCEDURE;
InitializeCleanUp: --RavenFace-- PROCEDURE;
InitializeCondition: --Process-- PROCEDURE t

condition: LONG POINTER TO CONDITION, ticks: Ticks];
InitializeFileSystem: --MFile-- PROCEDURE;
InitializeLine: --LsepFace-- PROCEDURE [band: SingleLineBand]

RETURNS [scanData: LONG POINTER];
InitializeMonitor: --Process-- PROCEDURE [monitor: LONG POINTER TO MONITORLOCKj;
InitializePilotCounter: --PerformancePrograms-- PROCEDURE;
InitializePilotPerfMonitor: --PerformancePrograms-- PROCEDURE;
InitializePool: --ObjAlloc-- PROCEDURE [

pool: AllocPoolDesc, initialState: AllocFree];
InitializeWindow: --Window-- PROCEDURE [

window: Handle, display: PROCEDURE [Handle], box: Box,
parent: Handle ~ rootWindow, sibling: Handle ~ NIL, child: Handle ~ NIL,
clearingRequired: BOOLEAN ~ TRUE, under: BOOLEAN ~ FALSE,
cookieCutter: BOOLEAN ~ FALSE];

InitialLength: --MFile-- TYPE = ByteCount;
initialToolStateDefault: --Profile-- READONLY TooIWindow.State;
InitiateBand: --LsepFace-- PROCEDURE [band: Band];
InitiateLine: --LsepFace-- PROCEDURE [band: SingleLineBand];
InitReals: --Real-- PROCEDURE;
Insert: --BTree-- PROCEDURE [tree: Tree, name: LONG STRING, value: Value]

RETURNS [ok: BOOLEAN, noRoom: BOOLEAN];
InsertlntoTree: --Window-- PROCEDURE [window: Handle];
InsertionProblem: --NSFile-- TYPE = MACHINE DEPENDENT{

positionUnavailable, fileNotUnique, looplnHierarchy};
InsertRootfile: --Volume-- PROCEDURE [type: File.Type, file: File.File];
Install: --Log-- PROCEDURE [

file: File.File, firstPageNumber: File.PageNumber ~ 1];
InstailBootMicrocode: --FormatPiiotDisk-- PROCEDURE [

h: PhysicaIVolume.Handle, getPage: PROCEDURE RETURNS [LONG POINTER]];
Instantiate: --Menu-- PROCEDURE [menu: Handle, window: Window.Handle];
InstWord: --PrincOps-- TYPE = MACHINE DEPENDENT RECORD [

evenbyte(O:O .. 7): BYTE, oddbyte(O:8 .. 15): BYTE];
InsufficientSpace: --Volume-- ERROR [currentFreeSpace: PageCount, volume: 101;
Interpretation: --NSFile-- TYPE = MACHINE DEPENDENT{

none, boolean, cardinal, longCardinal, integer, longlnteger, string, time};
InterpretedSelections: --NSFile-- TYPE = PACKED ARRAY AttributeType OF

BooleanFalseDefault;
Interpreter: --DebugUsefuIDefs-- PROCEDURE [

exp: LONG STRING, results: PROCEDURE [Handle]];
InterpretHandle: --FloppyChannel-- PROCEDURE [handle: Handle]

RETURNS [drive: Drivel;
InterpretHandle: --PhysicaiVolume-- PROCEDURE [instance: Handle]

RETURNS [type: Device.Type, index: CARDINAL];
Interrupt: --Runtime-- PROCEDURE;
interruptWatcher: --PilotSwitches-- PilotDomainA = 70C;
IntersectBoxes: --Window-- PROCEDURE [b1: Box, b2: Box] RETURNS [box: Box1;
Interval: --ObjAlloc--TYPE = RECORD [first: Item Index, count: ItemCount];
Interval: --Space-- TYPE = RECORD [

pointer: LONG POINTER, count: EnVironment.PageCount]; . ' InvahdAddress: --DebugUsefuIDefs-- ERROR [address: LONG POINTER];
InvalidArguments: --Courier-- ERROR;

Mesa Programmer's Manual

InvalidateBox: --Window-- PROCEDURE [
window: Handle, box: Box, clarity: Clarity +- isDirty];

InvalidBase: --ExtendedString-- ERROR;
InvalidFile: --LogFile-- ERROR;
InvalidFrame: --DebugUsefuIDefs-- ERROR [f: POINTER];
InvalidFrame: --Runtime-- ERROR [frame: UNSPECIFIED];
InvalidGlobalFrame: --Runtime-- ERROR [frame: GenericProgram];
InvalidlineNumber: --RS232C-- ERROR;
InvalidLineNumber: --TTYPort-- ERROR;
InvalidNode: --MDSStorage-- ERROR [p: POINTER];
InvalidNumber: --DebugUsefu/Defs-- ERROR [p: LONG POINTER];
InvalidNumber: --NSString-- ERROR;
InvalidParameter: --RS232C-- ERROR;
InvalidProcess: --Process-- ERROR [process: UNSPECIFIED];
InvalidString: --NSString-- ERROR;
InvalidSwitches: --HeraldWindow-- SIGNAL;
InvalidType: --CHLookup-- ERROR;
InvalidVersion: --OthelloOps-- ERROR;
Invert: --Cursor-- PROCEDURE RETURNS [BOOLEAN];
Invert: --Disp/ay-- PROCEDURE [window: Handle, box: Window.Box];
Invoke: --Menu-- PROCEDURE [window: Window. Handle, place: Window.Place];
IRS: --CHLookup-- TYPE = MACHINE DEPENDENT RECORD [

address(O:O .. 9S): System.NetworkAddress, location(6:0 .. 63): NSString.String];
IRSDescribe: --CHLookup-- Courrer.Description;
IRSPt: --CHLookup-- TYPE = LONG POINTER TO IRS;
ISBandFinished: --LsepFace-- PROCEDURE [band: Band] RETURNS [BOOLEAN];
IsBandlmageBegun: --LsepFace-- PROCEDURE [band: Band] RETURNS [BOOLEAN];
IsBitmapUnderVariant: --Window-- PROCEDURE [Handle] RETURNS [BOOLEAN];
IsBound: --Runtime-- PROCEDURE [link: Control Link] RETURNS [BOOLEAN];
IsCookieVariant: --Window-- PROCEDURE [Handle] RETURNS [BOOLEAN];
IsDescendantOfRoot: --Window-- PROCEDURE [Handle] RETURNS [BOOLEAN];
isDirectory: --NSAssignedTypes-- Attri buteType = 5;
IsEditable: --FileSW-- PROCEDURE [sw: Window. Handle] RETURNS [yes: BOOLEAN];
Islt: --AsciiSink-- PROCEDURE [sink: TextSink.Handle] RETURNS [BOOLEAN];
Islt: --81ockSource-- PROCEDURE [source: Handle] RETURNS [yes: BOOLEAN];
Islt: --DiskSource-- PROCEDURE [source: TextSource.Handle] RETURNS [BOOLEAN];
Islt: --Fi/eSW-- PROCEDURE [sw: Window. Handle] RETURNS [yes: BOOLEAN];
Islt: --FileWindow-- PROCEDURE [sw: Window. Handle] RETURNS [BOOLEAN];
Islt: --FormSW-- PROCEDURE [sw: Window. Handle] RETURNS [yes: BOOLEAN];
Islt: --MsgSW-- PROCEDURE [sw: Window. Handle] RETURNS [yes: BOOLEAN];
Islt: --MStream-- PROCEDURE [stream: Handle] RETURNS [BOOLEAN];
Islt: --PieceSource-- PROCEDURE [source: TeKtSource.Handle]

RETURNS [yes: BOOLEAN];
Islt: --ScratchSource-- PROCEDURE [source: TextSource. Handle]

RETURNS [yes: BOOLEAN];
Islt: --ScratchSW-- PROCEDURE [sw: Window. Handle] RETURNS [yes: BOOLEAN];
Islt: --Too/-- PROCEDURE [window: Window. Handle] RETURNS [BOOLEAN];
Islt: --TTYSW-- PROCEDURE [sw: Window. Handle] RETURNS [yes: BOOLEAN];
Isltemlnverted: --FormSW-- PROCEDURE [sw: Window. Handle, index: CARDINAL]

RETURNS [yes: BOOLEAN];
IsLineFinished: --LsepFace-- PROCEDURE [band: SingleLineBand] RETURNS

[BOOLEAN];
IsLinelmageBegun: --LsepFace-- PROCEDURE [band: SingleLineBand]

RETURNS [BOOLEAN];
IsMember: --CH-- PROCEDURE [

cred: Authenticator. Credenti al 5, ver: Authenticator. Verifi er,

c

c

C-64

Listing of Public Symbols

element: Element, name: Pattern, pn: PropertylD, distingName: Name]
RETURNS [rc: ReturnCode, isMember: BOOLEAN);

IsMemberClosure: --CH-- PROCEDURE [
cred: Authenticator.Credentials, ver: Authenticator.Verifier,
element: Element, name: Pattern, pn: Property I 0, distingName: Name,
pn2: PropertylD Eo- unspecified) RETURNS [rc: ReturnCode, isMember:

BOOLEAN);
IsMemberOfDomainAccess: --MoreCH-- PROCEDURE [

cred: Authenticator. Credenti als, ver: Authenticator. Verifier,
element: cH.Element, domain: cH.Name, ad: ACLFlavor,
pn2: cH.PropertylD Eo- unspecified]
RETURNS [rc: cH.ReturnCode, isMember: BOOLEAN];

IsMemberOfOrgAccess: --MoreCH-- PROCEDURE [
cred: Authenticator.Credentials, ver: Authenticator.Verifier,
element: cH.Element, org: cH.Name, ad: ACLFlavor,
pn2: cH.PropertylD Eo- unspecified]
RETURNS [rc: cH.ReturnCode, isMember: BOOLEAN];

IsMemberOfPropertyAccess: --MoreCH-- PROCEDURE [
cred: Authenticator.Credentials, ver: Authenticator. Verifier,
element: cH.Element, name: cH.Name, pn: cH.PropertyID, ad: ACLFlavor,
distingName: cH.Name, pn2: cH.PropertylD Eo- unspecified]
RETURNS [rc: cH.ReturnCode, isMember: BOOLEAN];

IsPlacelnBox: --Window-- PROCEDURE [place: Place, box: Box] RETURNS [BOOLEAN];
IsPlacelnWindow: --TooIWindow-- PROCEDURE [place: Place, window: Handle]

RETURNS [BOOLEAN];
IsReady: --PhysicaIVolume-- PROCEDURE [instance: Handle]

RETURNS [ready: BOOLEAN];
IsSegmentedFileType: --NSVolumeContro/-- PROCEDURE [type: NSFile. Type]

RETURNS [BOOLEAN];
IsSegmentEmpty: --Zone-- PROCEDURE [zH: Handle, sH: SegmentHandle]

RETURNS [empty: BOOLEAN];
isTemporary: --NSAssignedTypes-- AttributeType = 6;
ISTimeValid: --OthelloOps-- PROCEDURE RETURNS [valid: BOOLEAN];
IsZoneEmpty: --Zone-- PROCEDURE [zH: Handle] RETURNS [empty: BOOLEAN];
Item: --BodyOefs-- TYPE = LONG POINTER TO Item Header;
Item: --Token-- PROCEDURE [h: Handle, temporary: BOOLEAN Eo- TRUE]

RETURNS [value: LONG STRING];
ItemCount: --ObjAlloc-- TYPE = LONG CARDINAL;
Item Descriptor: --FormSW-- TYPE = LONG DESCRIPTOR FOR ARRAY CARDINAL OF

Item Handle;
ItemError: --FormSW-- SIGNAL [code: ItemErrorCode, index: CARDINAL];
ItemErrorCode: --FormSW-- TYPE = {

illegalCoordinate, notStringOtherltem, nilBackingStore, other};
Item Flags: -FormSW-- TYPE = RECORD [

read Only: BOOLEAN Eo- FALSE,
invisible: BOOLEAN Eo- FALSE,
drawBox: BOOLEAN Eo- FALSE,
hasContext: BOOLEAN Eo- FALSE,
dientOwnsltem: BOOLEAN Eo- FALSE,
modified: BOOLEAN Eo- FALSE];

ItemHandle: --FormSW-- TYPE = LONG POINTER TO ItemObject;
ItemHandle: --Menu-- TYPE = LONG POINTER TO ItemObject;
Item Header: --BodyOefs-- TYPE = MACHINE DEPENDENT RECORD [

type(0:0 .. 15): Item Type, length(1 :0 .. 31): Item Length];
Itemlndex: --ObjAlloc-- TYPE = LONG CARDINAL;'
ItemLength: --BodyOefs-- TYPE = LONG CARDINAL;

Mesa Programmer's Manual

ItemObject: --FormSW-- TYPE = RECORD [
tag: LONG STRING,
place: Window.Place,
flags: Item Flags,
body: SELECT type: Item Type FROM

boolean = > [switch: LONG POINTER TO BOOLEAN, proc: NotifyProcType),
command = > [proc: ProcType],
enumerated = > [

feedback: EnumeratedFeedback,
copyChoices: BOOLEAN,
value: LONG POINTER,
proc: EnumeratedNotifyProcType,
choices: EnumeratedDescriptor),

longNumber = > [
signed: BOOLEAN,
notNegative: BOOLEAN,
radix: Radix,
boxWidth: CARDINAL [0 .. 255],
proc: LongNumberNotifyProcType,
default: LONG UNSPECIFIED,
value: LONG POINTER TO LONG UNSPECIFIED,
string: LONG STRING,
bias: INTEGER],

number = > [
signed: BOOLEAN,
notNegative: BOOLEAN,
radix: Radix,
boxWidth: CARDINAL [0 .. 127],
proc: NumberNotifyProcType,
default: UNSPECIFIED,
value: LONG POINTER,
string: LONG STRING,
bias: INTEGER],

source = > [
source: TextSource.Handle,
boxWidth: CARDINAL,
filterProc: FilterProcType,
menuProc: MenuProcType),

string = > [
feedback: StringFeedback,
inHeap: BOOLEAN,
string: LONG POINTER TO LONG STRING,
boxWidth: CARDINAL,
filterProc: FilterProcType,
menuProc: MenuProcType],

tagOnly = > [sw: Window. Handle, otherltem: CARDINAL],
ENDCASE);

ItemObject: -Menu-- TYPE = RECORD [keyword: LONG STRING, mcrProc: MCRType);
Items: --Menu-- TYPE = LONG DESCRIPTOR FOR ARRAY CARDINAL OF ItemObject;
Item Type: --BodyDefs-- TYPE = MACHINE DEPENDENT{

PostMark(8), Sender(16), ReturnTo(24), Recipients(32), Text(S20),
Capability(S28), Audio(S36), updateltem(1024), reMail(2100B),
Lastltem(177777B)};

Item Type: --FormSW-· TYPE = {
boolean, command, enumerated, longNumber, number, source, string,

tagOnly};

c

C-65

c

C-66

Listing of Public Symbols

ITS: --CHLookup-- TYPE = MACHINE DEPENDENT RECORD [
address(0:0 .. 95): $ystem.NetworkAddress, location(6:0 .. 63): NSString.String1;

ITSDescribe: --CHLookup-- Courier. Description;
ITSPt: --CHLookup-- TYPE = LONG POINTER TO ITS;
k10: --KeyStations-- Bit = 19;
k 11: --KeyStations-- Bit = 21;
k12: --KeyStations-- Bit = 17;
k 13: --KeyStations-- Bit = 53;
k 14: --KeyStations-- Bit = 64;
k 15: --KeyStations-- Bit = 51;
k16: --KeyStations-- Bit = 16;
k 17: --KeyStations-- Bit = 23;
k 18: --KeyStations-- Bit = 65;
k 19: --KeyStations-- Bit = 66;
k 1 : --KeyStations-- Bit = 48;
k20: --KeyStations-- Bit = 18;
k21: --KeyStations-- Bit = 55;
k22: --KeyStations-- Bit = 67;
k23: --KeyStations-- Bit = 68;
k24: --KeyStations-- Bit = 20;
k25: --KeyStat;ons-- Bit = 70;
k26: --KeyStations-- Bit = 22;
k27: --KeyStations-- Bit = 54;
k28: --KeyStations-- Bit = 69;
k29: --KeyStations-- Bit = 71;
k2: --KeyStations-- Bit = 35;
k30: --KeyStations-- Bit = 39;
k31: --KeyStations-- Bit = 25;
k32: --KeyStations-- Bit = 38;
k33: --KeyStations-- Bit = 43;
k34: --KeyStations-- Bit = 41;
k35: --KeyStations-- Bit = 42;
k36: -KeyStations-- Bit = 24;
k37: --KeyStations-- Bit = 58;
k38: --KeyStations-- Bit = 27;
k39: --KeyStations- Bit = 59;
k3: --KeyStations-- Bit = 37;
k40: --KeyStations-- Bit = 26;
k41: --KeyStations-- Bit = 28;
k42: --KeyStations-- Bit = 74;
k43: --KeyStations-- Bit = 44;
k44: --KeyStations-- Bit = 75;
k45: --KeyStations-- Bit = 45;
k46: --KeyStations-- Bit = 61;
k47: --KeyStations-- Bit = 107;
k48: --KeyStations-- Bit = 49;
k4: --KeyStations-- Bit = 33;
k5: --KeyStations-- Bit = 56;
k6: --KeyStations-- Bit = 34;
k7: --KeyStations-- Bit = 36;
k8: --KeyStations-- Bit = 32;
k9: --KeyStations-- Bit = 40;
Key: --Authenticator-- TYPE [4];
KeyBits: --JLeveIlVKeys-- TYPE = PACKED ARRAY KeyName OF DownUp;
KeyBits: --Keys-- TYPE = PACKED ARRAY KeyName OF DownUp;
KeyBits: --KeyStations-- TYPE = PACKED ARRAY KeyStation OF DownUp;

Mesa Programmer's Manual

KeyBits: --LeveIllIKeys-- TYPE = PACKED ARRAY KeyName OF DownUp;
KeyBits: --LeveIlVKeys-- TYPE = PACKED ARRAY KeyName OF DownUp;
keyboard: --UserTerminal-- READONL Y LONG POINTER TO READONL Y ARRAY CARDINAL OF

WORD;

KeyboardAndMouseTest: --OnlineDiagnostics-- PROCEDURE [

keyboardType: KeyboardType. screenHeight: CARDINAL [0 .. 77777B],
screenWidth: CARDINAL [O .. 77777B],
SetBackground: PROCEDURE [background: Background],
SetBorder: PROCEDURE [oddPairs: [0 .. 255], evenPairs: [0 .. 255]1.
GetMousePosition: PROCEDURE RETURNS [Coordinate],
SetMousePosition: PROCEDURE [newMousePosition: C.oordinate],
SetCursorPattern: PROCEDURE [cursorArray: CursorArray].
SetCursorPosition: PROCEDURE [newCursorPosition: Coordinate],
keyboard: LONG POINTER. Beep: PROCEDURE [duration: CARDINAL],

ClearDisplay: PROCEDURE,

BlackenScreen: PROCEDURE [

x: CARDINAL, y: CARDINAL, width: CARDINAL, height: CARDINAL],

InvertScreen: PROCEDURE [

x: CARDINAL, y: CARDINAL, width: CARDINAL, height: CARDINAL],

WaitForKeyTransition: PROCEDURE];

KeyboardType: --OnlineDiagnostics-- TYPE = {american, european, japanese};
KeyName: --JLeveIlVKeys-- TYPE = MACHINE DEPENDENT{

G,

Red(13), Blue, Five(16), Four, Six, E, Seven, 0, U, V, Zero. K, Dash, P,
Slash, Font, SameAs, BS, Three, Two, W, Q, S, A, Nine, I, X, 0, L, Comma,
Quote, RightBracket, Open, Special, One, Tab, ParaTab, F, Props, C, J, B, Z,
LeftHandakuonShift, Period, SemiColon, NewPara, Para, Delete, Next, R, T,

Y, H, Eight, N, M, Lock, Hiragana, Half, Equal, RightDakuonShift, Stop, Move,
Undo, Margins, English(S6), Katakana(SS), Copy, Find, Again, Help, Expand,
Center(97), Bold(99), Italic, Underlined, Superscript, Subscript, Smaller.
LeftDakuonShift(107), Defaults(1 09), Space, RightHandakuonShift};

KeyName: --Keys-- TYPE = MACHINE DEPENDENT{

LlO,

Keysetl(S), Keyset2, Keyset3, Keyset4, Keyset5, Point, Adjust, Menu, Five,
Four, Six, E, Seven, D. U, V, Zero, K. Dash, P, Slash, BackSlash, PASTE, BS,
Three, Two, W, Q, S, A, Nine, I, X, 0, L. Comma, Quote, RightBracket, STUFF,
COMMAND, One, COMPLETE, TAB, F, CONTROL, C, J, B, Z, LeftShift, Period,
SemiColon, Return, Arrow, DELETE, NEXT, R, T, G, Y, H, Eight, N, M, LOCK,
Space, LeftBracket, Equal, RightShift, USERABORT, MOVE, UNDO, DOlT, R9,

L7, L4, Ll, A9, Rl0, AS, COPY, FIND, AGAIN, HELP, EXPAND, R4, 02, 01,
MENU,

Tl, SCROLLBAR, JFIRST, JSELECT, RESERVED, CLlENT1, CLlENT2, T1 0, R3,
Key47,

Al0, ATTENTION, A 11, A 12};
KeyName: --LeveIlIlKeys-- TYPE = MACHINE DEPENDENT{

Red(13), Blue, Yellow, Five, Four, Six, E, Seven, 0, U, V, Zero. K, Dash. P,
Slash, Font, GloblRplce, BS, Three, Two, W, Q, S, A, Nine, I, X, 0, L, Comma,
Quote, RightBracket, Again, Special, One, TAB(50), F, Props, C, J, B, Z,
LeftShift, Period, SemiColon, Return, Para, Delete, Next, R, T, G, Y, H,
Eight, N, M, Lock, Space, Half, Equal, RightShift, R12, Move, R6, Carriage,
R9, LlO, L7, L4, Ll, A9, A8(S8), Copy, Find, Undo, Help, Expand, Indent(97),
Tl, Justify, Center, Bold, Italics. Underline, Subscript, T10, R3,
Smaller(109)};

KeyName: --LeveIlVKeys-- TYPE = MACHINE DEPENDENT{

Red(13), Blue, Five(16), Four, Six, E. Seven, 0, U, V, Zero, K, Dash, P,
Slash, Font, Same, BS, Three, Two, W, Q, S, A, Nine, I, X, 0, L, Comma, Quote,

c

C-67

c

C-68

Listing of Public Symbols

RightSracket, Open, Special, One, Tab, ParaTab, F, Props, C, J, S, Z,
LeftShift, Period, SemiColon, NewPara, Para, Delete, Next, R, T, G, Y, H,
Eight, N, M, Lock, Space, Half, Equal, RightShift, Stop, Move, Undo, Margins,
Copy(89), Find, Again, Help, Expand, Center(97), Bold(99), Italic, Underlined,
Superscript, Subscript, Smaller, Defaults(109)};

KeyStation: --KeyStations-- TYPE = [0 .. 111];
Kill: --MSegment-- PROCEDURE [segment: Handle];
KS 1: --KeyS-tations-- Bit = 8;
KS2: --KeyStations-- Bit = 9;
KS3: --KeyStations-- Bit = 10;
KS4: --KeyStations-- Bit = 11;
KS5: --KeyStations-- Bit = 12;
L10: --KeyStations-- Bit = 82;
L 11: --KeyStations-- Bit = 46;
L 12: --KeyStations-- Bit = 52;
L 1: --KeyStations-- Bit = 85;
L2: --KeyStations-- Bit = 91;
l3: --KeyStations-- Bit = 62;
l4: --KeyStations-- Bit = 84;
L5: --KeyStations-- Bit = 90;
l6: --KeyStations-- Bit = 89;
l7: --KeyStations-- Bit = 83;
L8: --KeyStations-- Bit = 30;
L9: --KeyStations-- Bit = 78;
LabelHandle: --FormSW-- TYPE = TagOnlyHandle;
labelltem: --FormSW-- PROCEDURE [

tag: LONG STRING +- NIL, readOnly: BOOLEAN +- FALSE, invisible: BOOLEAN +- FALSE,
drawBox: BOOLEAN +- FALSE, hasContext: BOOLEAN +- FALSE,
place: Window.Place +- nextPlace, Z: UNCOUNTED ZONE +- NIL]
RETURNS [label Handle];

largeAnonymous8ackingFile: --PiiotSwitches-- AnonymousBackingFileSize =
175C;

largeReturnSlot: --PrincOps-- CARDINAL = 31;
LargestNumber: --Real-- REAL;
LastAVHeapSlot: --PrincOps-- CARDINAL = 30;
lastBand: --RavenFace-- PROCEDURE [Index];
lastLine: --MsgSW-- PROCEDURE [sw: Window. Handle, ss: Strlng.SubString];
lastPageCount: --Environment-- PageCount = 77777777B;
lastPageCount: --File-- PageCount = 37777777B;
lastPageCount: --Floppy-- PageNumber = 37777777B;
lastPageCount: --PhysicaIVolume-- PageCount = 377777777768;
lastPageCount: --Volume-- PageCount = 40000000B;
lastPageNumber: --Environment-- PageNumber = 777777768;
lastPageNumber: --File-- PageNumber = 37777776B;
lastPageNumber: --P,hysicaIVolume-- PageNumber = 37777777776B;
lastPageNumber: --Volume-- PageNumber = 37777777B;
lastPageOffset: --Environment-- PageOffset = 777777768;
lastPosition: --NSFile-- READONLY Position;
lastPositionRepresentation: --NSFile-- ARRAY [0 .. 0] OF UNSPECIFIED;
lastServicesAType: --NSAssignedTypes-- AssignedType = 10377B;
lastServicesBType: --NSAssignedTypes-- AssignedType = 11777B;
lastStandardType: --NSAssignedTypes-- AssignedType = 7777B;
lastStarType: --NSAssignedTypes-· AssignedType = 10777B;
lastWS860Type: --NSAss;gnedTypes-- AssignedType = 12017B;
latchBitClearMask: --RS232C-- TYPE = DeviceStatus;

Mesa Programmer's Manual

Layout: --PhysicaIVolume-- TYPE = {
partial LogicalVolume, singleLogicalVolume, multipleLogicalVolumes,

empty};
lDIVMOD: --Inline-- PROCEDURE [numlow: WORD, numhigh: CARDINAL, den:

CARDINAL]
RETURNS [quotient: CARDINAL, remainder: CARDINAL];

LeftShift: --lLeveIlVKeys-- KeyName = LeftHandakuonShift;
Lengthen: --DebugUsefuIDefs-- PROCEDURE [ClientSource] RETURNS

[LongClientDest];
LengthRange: --CommOnlineDiagnostics-- TYPE = MACHINE DEPENDENT RECORD [

low(0:0 .. 15): [0 .. 999], high(l :0 .. 15): [0 .. 999]];
Level: --Log-- TYPE = State [error .. remark];
LF: --Ascii-- CHARACTER = 12C;
LFDisplayTest: --OnlineDiagnostics-- PROCEDURE [

screenHeight: CARDINAL [0 .. 77777B], screenWidth: CARDINAL [0 .. 77777B],
SetBackground: PROCEDURE [background: Background],
SetBorder: PROCEDURE [oddPairs: [0 .. 255], evenPairs: [0 .. 255]],
GetNextAction: PROCEDURE RETURNS [NextAction], ClearDisplay: PROCEDURE,
BlackenScreen: PROCEDURE [

x: CARDINAL, y: CARDINAL, width: CARDINAL, height: CARDINAL],
FillScreenWithObject: PROCEDURE [p: LONG POINTER TO ARRAY [0 .. 15] OF WORD]];

librarian: --EventTypes-- Supervisor. Event;
Life: --Space-- TYPE = {alive, dead};
LimitProcType: --TooIWindow-- TYPE = PROCEDURE [window: Handle, box: Box]

RETURNS [Box];
lineO: --FormSW-- INTEGER = -3;
line1: --FormSW--INTEGER = -4;
line2: --FormSW--INTEGER = -5;
line3: --FormSW--INTEGER = -6;
Iine4: --FormSW--INTEGER = -7;
lineS: --FormSW-- INTEGER = -8;
line6: --FormSW-- INTEGER = -9;
line7: --FormSW--INTEGER = -10;
line8: --FormSW-- INTEGER = -11;
line9: --FormSW--INTEGER = -12;
Line: --CmFile-- PROCEDURE [

fileName: LONG STRING, title: LONG STRING, name: LONG STRING]
RETURNS [LONG STRING];

Line: --Display-- PROCEDURE [
window: Handle, start: wlndow.Place, stop: Window.Place,
bounds: Window.BoxHandle E- NIL];

Line: -Format-- PROCEDURE [
proc: StringProc, S: LONG STRING, clientData: LONG POINTER E- NIL];

Line: -Put-- PROCEDURE [h: Window. Handle E- NIL, s: LONG STRING];
Line: --Token-- F,ilterProcType;
lineHeight: --FormSW-- PROCEDURE [sw: Window. Handle E- NIL] RETURNS [CARDINAL];
lineN: --Form~W-- PROCEDURE [n: CARDINAL] RETURNS [INTEGER];
LineOverflow: --TTY-- SIGNAL [s: LONG STRING] RETURNS [ns: LONG STRING];
LineOverflow: --TTYSW-- SIGNAL [s: LONG STRING] RETURNS [ns: LONG STRING];
LineSpeed: --RS232C-- TYPE = RS232CEnvironment.LineSpeed;
LineSpeed: --RS232CEnvironment-- TYPE = {

bps50,bps75,bpsll0,bps134p5,bps150,bps300,bps600,bps1200,bps2400,
bps3600,bps4800,bps7200,bps9600,bps19200,bps28800,bps38400,

bps48000,
bps56000,bps57600};

LineSpeed: --TTYPort-- TYPE = TTYPortEnVironment.LineSpeed;

c

C-69

c

C-70

Listing of Public Symbols

LineSpeed: --rrYPortEnv;ronment-- TYPE = {
bps50,bps7S,bpsll0,bps134pS,bps1S0,bps300,bps600,bps1200,bps1800,
bps2000, bps2400, bps3600, bps4800, bps7200, bps9600, bps 19200};

linesPerBand: --LsepFace-- CARDINAL = 16;
LineType: --RS232C-- TYPE = RS232CEnvironment.LineType;
LineType: --RS232CEnvironment-- TYPE = {

bitSynchronous, byteSynchronous, asynchronous, autoRecognition};
LinkageFault: --Runtime-- ERROR;
List: --NSFile-- PROCEDURE [

directory: Handle, proc: AttributesProc, selections: Selections,
scope: Scope +- [], session: Session +- nuIlSession);

Listen: --NetworkStream-- PROCEDURE [
IistenerH: ListenerHandle,
connectData: Environment.Block +- Environment.nuIlBlock,
listenTimeout: WaitTime +- infiniteWaitTime)
RETURNS [remote: System.NetworkAddress, bytes: CARDINAL];

ListenerHandle: --NetworkStream-- TYPE [2];
ListenError: --NetworkStream-- ERROR (reason: ListenErrorReason];
ListenErrorReason: --NetworkStream-- TYPE = {

iliegalAddress, illegal Handle, iliegalState, blockTooShort};
ListenTimeout: --NetworkStream-- SIGNAL;
ListProc: --FileTransfer-- TYPE = PROCEDURE [

conn: Connection, clientData: LONG POINTER, file: LONG STRING,
post: MessageProc, info: InfoProc] RETURNS [Confirmation];

Ln: --ReaIFns-- PROCEDURE [REAL] RETURNS [REAL];
load: --EventTypes-- Supervisor. Event;
Load: --Exec-- PROCEDURE [

write: Format.StringProc, name: LONG STRING, codeLinks: BOOLEAN +- FALSE]
RETURNS [handle: MLoader.Handle];

Load: -MLoader-- PROCEDURE [
file: MFile.Handle, options: Options +-defaultOptions) RETURNS [Handle];

LoadConfig: --Runtime-- PROCEDURE [
file: File.File, offset: File.PageCount, codeLinks: BOOLEAN +- FALSE]
RETURNS [PROGRAM];

LoadMCR: --FileSW-- Menu.MCRType;
LoadWindow: --FileWindow-- PROCEDURE [

fileName: LONG STRING, position: LONG CARDINAL +- 0, s: Stream. Handle +- NIL,
loadlfSame: BOOLEAN +- FALSE, sw: Window. Handle +- NIL];

Local: --NSName-- TYPE = String +- NSString.nuIlString;
local base: -PrincOps-- CARDINAL = 0;
Local Dest: -DebugUsefuiDefs-- TYPE = LONG POINTER;
LocalFrame: --BackstopNub-- TYPE [1];
LocalFrameBase: --PrincOps-- TYPE = POINTER TO LocalOverhead;
LocalFrameHandle: --PrincOps-- TYPE = POINTER TO LocalVariables;
Local Name:,--CH-- TYPE = NSName.Local;
LocalOverhead: --PrincOps-- TYPE = MACHINE DEPENDENT RECORD [

word(O:O .. lS): LocalWord,
returnlink(1: 0 .. 15): ShortControl Link,
globallink(2:0 .. 15): GlobalFrameHandle,
pc(3:0 .. 1 5): BytePC, -
local(4): LocaIVariables];

LocalSource: --DebugUsefuIDefs-- rVPE = :.ONG POINTER TO READONL Y UNSPECIFIED;
LocalSystemEJement: --Courier-- "ROCEDURE RETURNS [System Element];
10calSystemElement: --NSFile-- READONLY System Element;
LocalVariables: --PrincOps-- TYPE = ARRAY CARDINAL (0 .. 0) OF UNSPECIFIED;

Mesa Programmer's Manual

LocaIVFN: --FileTransfer-- PROCEDURE [conn: Connection, vfn: FileName.VFN]
RETURNS [BOOLEAN];

LocalWord: --PrincOps-- TYPE = MACHINE DEPENDENT RECORD [
available(O:0 .. 7): BYTE, fsi(0:8 .. 1 5): FSlndex];

10calWordOffset: --PrincOps-- CARDINAL = 4;
Lock: --NSFile-- TYPE = MACHINE DEPENDENT{none, share, exclusive};
Log: --MFi/e-- PROCEDURE [

name: LONG STRING, release: ReleaseData,
initialLength: InitialLength ~dontCare] RETURNS [Handle];

Log: --MStream-- PROCEDURE [name: LONG STRING, release: ReleaseData]
RETURNS [Handle];

Log: --NSVo/umeContro/-- TYPE = MACHINE DEPENDENT RECORD [
header(O:O .. l 59): Header, firstEntry(10:0 .. 143): Entry];

Log: --ReaIFns-- PROCEDURE (base: REAL, arg: REAL] RETURNS [REAL];
10gBitsPerByte: --Environment-- CARDINAL = 3;
logBitsPerChar: --Environment-- CARDINAL = 3;
10gBitsPerWord: --Environment-- CARDINAL = 4;
10gBytesPerPage: --Environment-- CARDINAL = 9;
10gBytesPerWord: --Environment-- CARDINAL = 1;
10gCap: --Log-- READONLY File.File;
10gCharsPerPage: --Environment-- CARDINAL = 9;
logCharsPerWord: --Environment-- CARDINAL = 1;
LogEntry: --Vo/umeConversion-- TYPE = MACHINE DEPENDENT RECORD [

0IdFileID(O:0 .. 79): OldFilelD, newFileID(5:0 .. 31): File.ID];
Log Error: --Backstop-- PROCEDURE;
Log Format: --Scavenger-- TYPE = MACHINE DEPENDENT RECORD [

header(0:0 .. 191): Header, files(12): ARRAY [0 .. 0) OF FileEntry];
LogFrame: --Backstop-- PROCEDURE [frame: Frame);
LogicalLength: --NSString-- PROCEDURE [s: String] RETURNS [CARDINAL];
LogicalVolumePageNumber: --Othel/oOps-- TYPE = LONG CARDINAL;
Login: --Exec-- PROCEDURE [h: Handle, name: LONG STRING, password: LONG STRING];
Logoff: --NSFile-- PROCEDURE [session: Session ~ nuIlSession];
Logon: --NSFile-- PROCEDURE [

name: String, password: String,
systemElement: SystemElement ~ nullSystemElement] RETURNS [Session];

LogonPrivileged: -NSSessionContro/-- PROCEDURE [
name: NSString.String, password: NSString.String] RETURNS [NSFile.Session];

LogonWithCredentials: --NSFile-- PROCEDURE [
credentials: Credentials, verifier: Verifier,
system Element: SystemElement ~ nullSystemElement) RETURNS [Session);

LogProcess: --Backstop-- PROCEDURE [process: Process];
LogSeal: --Scavenger-- CARDINAL = 130725B;
LogState: --Vo/umeConversion-- TYPE = {logComplete, mappingsMayBeLost};
10gWordsPerPage: --Environment-- CARDINAL = 8;
Long: --Environment-- TYPE = MACHINE DEPENDENT RECORD [

SELECT OVERLAID * FROM
Ie = > [1e(0:0 .. 31): LONG CARDINALr­
Ii = > [li(O:O .. 31): LONG INTEGER],
Ip = > [lp(0:0 .. 31): LONGPOINTERl.
lu = > [lu(0:0 .. 31): LONG UNSPECIFIED],
num = > [lowbits(0:0 .. 15): CARDINAL, highbits(l :0 .. 15): CARDINAL],
any = > [low(0:0 .. 15): UNSPECIFIED,high(1:0 .. 15): UNSPECIFIED],
ENDCASE);

LongCARDINAL: --Inline-· TYPE = LONG CARDINAL;
LongClientDest: --DebugUsefuIDefs-- TYPE = LONG POINTER;

c

C-71

c

C-72

Listing of Public Symbols

LongClientSource: --DebugUsefuIDefs-- TYPE = LONG POINTER TO READONL Y
UNSPECIFIED;

LongCOPY: --Inline-- PROCEDURE [
from: LONG POINTER, nwords: CARDINAL, to: LONG POINTER];

LongCopyREAD: --DebugUsefuIDefs-- PROCEDURE [
from: LongClientSource, nwords: CARDINAL, to: LocaIDest];

LongCOPYReverse: --Inline-· PROCEDURE [
from: LONG POINTER, nwords: CARDINAL, to: LONG POINTER];

LongCopyWRITE: --DebugUsefuIDefs-- PROCEDURE [
from: LocalSource, nwords: CARDINAL, to: LongClientDest];

LongDecimal: --Format-- PROCEDURE [
proc: StringProc, n: LONG INTEGER, clientData: LONG POINTER E- NIL];

LongDecimal: --Put-- PROCEDURE [h: Window. Handle E- NIL, n: LONG INTEGER];
LongDiv: --Inline-- PROCEDURE [num: LONG CARDINAL, den: CARDINAL]

RETURNS [CARDINAL1;
LongDivMod: --Inline-- PROCEDURE [num: LONG CARDINAL, den: CARDINAL1

RETURNS [quotient: CARDINAL, remainder: CARDINAL];
LongMult: --Inline-- PROCEDURE [CARDINAL, CARDINAL]

RETURNS [product: LONG CARDINAL];
LongNumber: --Environment-- TYPE = Long;
LongNumber: --Format-- PROCEDURE [

proc: StringProc, n: LONG UNSPECIFIED, format: NumberFormat,
clientData: LONG POINTER E- NIL];

LongNumber: --Inline-- TYPE = Envlronment.LongNumber;
LongNumber: --Put-- PROCEDURE [

h: Window.Handle E- NIL, n: LONG UNSPECIFIED, format: Format.NumberFormatl;
LongNumber: --Selection-- PROCEDURE [radix: CARDINAL E- 10]

RETURNS [LONG CARDINAL];
LongNumberHandle: --FormSW-- TYPE = LONG POINTER TO 10ngNumber

ItemObject;
LongNumberltem: --FormSW-- PROCEDURE [

tag: LONG STRING E- NIL, readOnly: BOOLEAN E- FALSE, invisible: BOOLEAN E- FALSE,
drawBox: BOOLEAN E- FALSE, hasContext: BOOLEAN E- FALSE,
place: Window.Place E- nextPlace, signed: BOOLEAN E- TRUE,
notNegative: BOOLEAN E- FALSE, radix: Radix E-decimal,
boxWidth: CARDINAL [0 .. 255] E- 64,
proc: LongNumberNotifyProcType E- NopLongNumberNotifyProc,
default: LONG UNSPECIFIED E- 17777777777B,
value: LONG POINTER TO LONG UNSPECIFIED, bias: INTEGER E- 0,
Z: UNCOUNTED ZONE E- NIL] RETURNS [LongNumberHandle);

LongNumberNotifyProcType: --FormSW-- TYPE = PROCEDURE [
sw: Window.Handle E- NIL, item: ItemHandle E- NIL, index: CARDINAL E­

null Index,
oldValue: LONG UNSPECIFIED E-l7777777777B];

LongOctal: --Format-- PROCEDURE [
proc: StringProc, n: LONG UNSPECIFIED, clientData: LONG POINTER E- NIL];

LongOctal: --Put-- PROCEDURE [h: Window.Handle E- NIL, n: LONG UNSPECIFIED];
LongPointerFromPage: --Environment-- PROCEDURE [page: PageNumber]

RETURNS [LONG POINTER];
LongPointerFromPage: --Space-- PROCEDURE [page: Environment.PageNumber]

RETURNS [LONG POINTER];
LongREAD: --DebugUsefuIDefs-- PROCEDURE [Ioc: longClientSource]

RETURNS [val : UNSPECIFIED];
LongString: --Format-- PROCEDURE [

proc: StriogProc, s; LONG STRING, clientData: LONG POINTER E- NIL];
LongString: --Put-- PROCEDURE [h: Window. Handle E- NIL, s: LONG STRING];

Mesa Programmer's Manual

longSubString: --Put-- PROCEDURE [h: Window. Handle +- NIL, ss: String.SubString];
longSubStringltem: --Format-- PROCEDURE [

. proc: StringProc, 5S: Strlng.SubString, clientData: LONG POINTER +- NIL];
longWRITE: --DebugUsefuIDefs-- PROCEDURE [

loc: LongClientDest, val: UNSPECIFIED];
lookUp: --FileTransfer-- PROCEDURE [conn: Connection, file: FtieName.VFN]

RETURNS [filelnfo: Filelnfol;
lookupAliasesOfName: --CH-- PROCEDURE [

cred: Authenticator.Credentials, ver: Authenticator.Verifier, name: Pattern,
eachAlias: NameStreamProc, distingName: Name] RETURNS [rc: ReturnCode];

lookupCIU: --CHLookup-- PROCEDURE [
name: NSName.Name, clientProc: PROCEDURE [full Name: NSName.Name, info:

CIUPt],
credentials: Authenticator.Credentials +- Authenticator.nuIICredentials,
veri fier: Authenticator. Veri fier +- Authenti cator. fi rstVeri fi er];

lookupCommand: --Exec-- PROCEDURE [command: LONG STRING)
RETURNS [

name: LONG STRING, proc: ExecProc, help: ExecProc, unload: ExecProc,
didExpand: BOOLEAN, clientData: LONG POINTER +- NIL];

lookupDistinguishedName: --CH-- PROCEDURE [
cred: Authenticator.Credentials, ver: Authenticator.Verifier, name: Pattern,
distingName: Name] RETURNS [rc: ReturnCode];

lookupDomainAccess: --MoreCH-- PROCEDURE [
cred: Authenticator:Credentials, ver: Authenticator.Verifier, domain: cH.Name,
acl: ACLFlavor, eachElement: cH.NameStreamProc) RETURNS [rc:

cH.ReturnCode];
lookupECS: --CHLookup-- PROCEDURE [

name: NSName.Name, clientProc: PROCEDURE [full Name: NSName.Name, info:
ECSPt],

credentials: Authentlcator.Credentials +- Authenticator.nuIiCredentials,
verifier: Authenticator. Verifier +- Authenticator. firstVerifier];

lookupFileserver: --CHLookup-- PROCEDURE [
name: NSName.Name,
clientProc: PROCEDURE [full Name: NSName.Name, info: FileserverPt],
credenti als: Authenticator. Credenti al s +- Authenticator. null Credenti al s,
verifier: Authenticator. Verifier +- Authenticator. fi rstVeri fierI;

LookupGroupProperty: --CH-- PROCEDURE [
cred: Authenticator.Credentials, ver: Authentlcator.Verifier, name: Pattern,
pn: PropertylD, eachElement: NameStreamProc, distingName: Name)
RETURNS [rc: ReturnCode);

LookupGWS: --CHLookup-- PROCEDURE [
name: NSName.Name, clientProc: PROCEDURE [full Name: NSName.Name, info:

GWSPt],
credentials: Authenticator.Credentials +-Authenticator.nuIiCredentials,
veri fi er: Authenticator. Verifier +- Authenticator.fi rstVeri fi er);

LookuplBMHost: --CHLookup-- PROCEDURE [
name: NSName.Name,
clientProc: PROCEDURE [full Name: NSName.Name, info: IBMHostPt],
credentials: Authenticator.Credentials +- Authenticator.nuIiCredentials,
verifier: Authenticator. Veri fier +- Authenti cator. fi rstVeri fi er);

LookuplRS: --CHLookup-- PROCEDURE [
name: NSName.Name, clientProc PROCEDURE [full Name: NSName.Name, info:

IRSPt],
credenti als: AuthentICator. Cred enti als +- Authenti cator. nu II Credential s,
verifier: Authenticator. Verifier +- Authenticator.firstVerifier];

c

C-73

c

C-74.

Listing of Public Symbols

LookuplTS: --CHLookup-- PROCEDURE [
name: NSName.Name, clientProc: PROCEDURE [fuIiName: NSName.Name, info:

ITSPt],
credentials: Authenticator.Credentials +-Authenticator.nuIiCredentials,
verifier: Authenticator. Verifier +- Authenticator. firstVerifier];

LookupMailserver: --CHLookup-- PROCEDURE [
name: NSName.Name,
clientProc: PROCEDURE [fuIiName: NSName.Name, info: MailserverPt1,
credentials: Authenticator.Credentials +- Authenticator. nullCredentials,
verifier: Authenticator. Verifier +- Authenticator. firstVerifier];

LookupOldlBM3270Host: --CHLookup-- PROCEDURE [
name: NSName.Name,
clientProc: PROCEDURE [full Name: NSName.Name, info: Old1BM3270HostPt],
credentials: Authenticator.Credentials +- Authenticator.nuIiCredentials,
verifier: Authenticator. Verifier +- Authenticator. firstVerifierJ;

LookupOrgAccess: --MoreCH-- PROCEDURE [
cred: Authenticator.Credentials, ver: Authenticator.Verifier, org: cH.Name,
ad: ACLFlavor, each Element: cH.NameStreamProc] RETURNS [rc:

CH.ReturnCode];
LookupPrintserver: --CHLookup-- PROCEDURE [

name: NSName.Name,
clientProc: PROCEDURE [full Name: NSName.Name, info: PrintserverPt],
credentials: Authenticator.Credentials +-Authenticator.nuIiCredentials,
verifier: Authenticator. Verifier +- Authenticator. firstVerifier];

LookupPropertyAccess: --MoreCH-- PROCEDURE [
cred: Authenticator.Credentials, ver: Authenticator.Verifier, name: cH.Name,
pn: cH.PropertyIO, acl: ACLFlavor, eachElement: cH.NameStreamProc,
distingName: cH.Name] RETURNS [rc: cH.ReturnCode];

LookupRemote: --CHLookup-- PROCEDURE [
name: NSName.Name,
clientProc: PROCEDURE [full Name: NSName.Name, info: RemotePt],
credentials: Authenticator.Credentials +- Authenticator.nuIiCredentials,
verifier: Authenticator.Verifier +-Authenticator.firstVerifier];

LookUpRootFile: --Volume-- PROCEDURE [type: File.Type, volume: 10 +- systemlO]
RETURNS [file: File.File];

LookupRS232CPort: --CHLookup-- PROCEDURE [
name: NSName.Name,
clientProc: PROCEDURE [full Name: NSName.Name, info: RS232CPortPt],
credentials: Authenticator.Credentials +- Authenticator.nuIlCredentials,
verifier: Authentlcator.Verifier +-Authenticator.firstVerifier];

LookupUser: --CHLookup-- PROCEDURE [
name: NSName.Name,
dientProc: PROCEDURE [fuIiName: NSName.Name, info: UserPt],
credentials: Authenticator.Credentials +-Authenticator.nuIiCredentials,
verifier: Authenticator. Verifier +- Authenticator. firstVerifier];

LookupValueProperty: --CH-- PROCEDURE [
cred: Authenticator.Credentials, ver: Authenticator.Verifier, name: Pattern,
pn: PropertylO, buffer: Buffer, distingName: Name] RETURNS [rc:

ReturnCode];
LookupWorkstation: --CHLookup-- PROCEDURE [

name: NSName.Name,
clientProc: PROCEDURE [fuIlName: NSName.Name, info: WorkstationPt},
credentials: Authentlcator.Credentials +- Authenticator.nuIiCredentials,
veri fier: AuthentICator. Veri fi er +- Authenti cator. fi rstVeri fier];

.LowByte: --Inline-- PROCEDURE [u: UNSPEaFIED1 RETURNS [UNSPECIFIED1;
LowerCase: --NSString-- PROCEDURE [c: Character1 RETURNS [Character];

Mesa Programmer's Manual

lowestVersion: --NSFile-- CARDINAL = 0;
LowHalf: --Inline-- PROCEDURE [U: LONG UNSPECIFIED] RETURNS [UNSPECIFIED];
LSAdjust: --OnlineDiagnostics-- PROCEDURE [

cancelSignal: SIGNAL, GetMesaChar: PROCEDURE RETURNS [CHARACTER],
PutCR: PROCEDURE,
PutMessage: PROCEDURE [message: LSMessage, char: CHARACTER ~ OC],
PutMesaChar: PROCEDURE [char: CHARACTER]];

LSMessage: --OnlineDiagnostics-- TYPE = {
kTermAdj, kTypeCharFill, kCTLC, kFillScreen, kTypeXHair, kEndAdj,

kTermTest,
kTestKey, kCTLStop, kLineFeed, kReturnKey, kLetter, kAndCTL, kEscape,

kSpBar,
kAndShift, kShColon, kShSemiColon, kTypeComma, kHyphen, kTypePeriod,

kVirgule,
kNumeral, kKey, kLearColon, kSemiColon, kShComma, kShHyphen,

kShPeriod,
kShVirgule, kAtSign, kLeftBracket, kBackSlash, kRightBracket, kCaret,

kBreak,
kShAt, kShLeftBracket, kShBackSlash, kShRightBracket, kShCaret, kShBreak,
kUnknown};

LSTest: --OnlineDiagnostics-- PROCEDURE [
cancel Signal : SIGNAL, GetMesaChar: PROCEDURE RETURNS [CHARACTER],
PutMessage: PROCEDURE [message: LSMessage, char: CHARACTER ~ OC]];

M 1: --KeyStations-- Bit = 13; ,
M2: --KeyStations-- Bit = 15;
M3: --KeyStations-- Bit = 14;
MailboxState: --RetrieveDefs-- PROCEDURE [handle: Handle]

RETURNS [state: MBXState];
mailCourierSocket: --CHPIDs-- cH.PropertylD = 35;
mailForwardSocket: --CHPIDs-- cH.PropertylD = 32;
mailPolISocket: --CHPIDs-- cH.PropertylD = 33;
mailPrimary: --CHPIDs-- cH.PropertylD = 30;
mailSecondary: --CHPIDs-- cH,PropertylD = 31;
Mailserver: --CHLookup-- TYPE = MACHINE DEPENDENT RECORD [

address(0:0 .. 95): System. NetworkAddress, location(6:0 .. 63): NSString.String];
MailserverDescribe: --CHLookup-- Courier. Description;
MailserverPt: --CHLookup-- TYPE = LONG POINTER TO Mailserver;
mailTelnetSocket: --CHPIDs-- cH.PropertylD = 34;
MainBodytndex: --PrincOps-- CARDINAL = 0;
mainBodylndex: --PrincOps-- CARDINAL = 0;
Make: --BTree- PROCEDURE [

file: MFile.Handle E- NIL, usage: Space. Usage ~ 0,
valueSize: ValueSize E- defaultValueSize, reset: BOOLEAN E- FALSE]
RETURNS [tree: Tree];

Make: --Menu-- PROCEDURE [
name: LONG STRING, strings: LONG DESCRIPTOR FOR ARRA Y CARDINAL OF LONG STRING,
mcrProc: MCRType, copyStrings: BOOLEAN ~TRUE, permanent: BOOLEAN E­

FALSE]
RETURNS [Handle];

MakeAbortedHeader: --ExpeditedCourier-- PROCEDURE [remoteSignaINumber:
CARDINAL]

RETURNS [h: Header];
MakeAtom: --Atom-- PROCEDURE [ref: LONG STRING] RETURNS [ATOM];
MakeBootable: --OthelloOps-- PROCEDURE [

file: Flle.Hle, type: BootFileType, firstPage:"File.PageNumber];

c

C-75

c

C-76

Listing of Public Symbols

MakeClientSW: --Tool-- PROCEDURE [
window: Window. Handle,
dientProc: PROCEDURE [sw: Window. Handle, dientOata: LONG POINTER].
dientOata: LONG POINTER, swType: SWType, h: INTEGER +- 0]
RETURNS [sw: Window. Handle);

makeCodeOnePageSwapU nits: --PiiotSwitchesExtras-- PilotSwitches. Pi I otOomai nC

=
371C;

MakeDefaultSWs: --Too/-- PROCEDURE [
window: Window. Handle, messageLines: CARDINAL +- 0,
formProc: Formsw.ClientltemsProcType +- NIL,
form Height: CARDINAL +- OefaultHeight, 10gName: LONG STRING +- NIL]
RETURNS [msgSW: Window. Handle, formSW: Window. Handle, 10gSW:

Window.Handle);
MakeEditable: --FileSW-- PROCEDURE [sw: Window. Handle] RETURNS [ok: BOOLEAN);
MakeFileList: --Scavenger-- PROCEDURE [

volume: volume.IO, 10gOestination: volume.IO] RETURNS [logFile: File.File];
MakeFileSW: --Too/-- PROCEDURE [

window: Window. Handle, name: LONG STRING, access: FileSw.Access +-append,
h: INTEGER +- OefaultHeight, allowTypeln: BOOLEAN +- TRUE,
resetLengthOnNewSession: BOOLEAN +- FALSE,
resetLengthOnActivate: BOOLEAN +- FALSE] RETURNS [sw: Window. Handle];

MakeFormSW: --Too/-- PROCEDURE [
window: Window. Handle, formProc: Formsw.ClientltemsProcType,
options: Formsw.Options +- [], h: INTEGER +- OefaultHeight,
zone: UNCOUNTED ZONE +- NIL) RETURNS [sw: Window.Handle];

MakeHeader: --Answer-- PROCEDURE [
getChar: PROCEDURE [CARDINAL] RETURNS [CHARACTER), getLength: CARDINAL,
putBlock: PROCEDURE [Environment.Block],
getPages: PROCEDURE [CARDINAL] RETURNS [LONG POINTER],
freePages: PROCEDURE [LONG POINTER], userName: LONG STRING,
user Registry: LONG STRING,
arpaGatewayHostNames: DESCRIPTOR FOR ARRAY CARDINAL qF LONG STRING,
cForCopies: BOOLEAN +- FALSE]
RETURNS [

answerError: BOOLEAN, mpCode: MailParse.ErrorCode, charPosition:
CARDINAL];

Makelmage: --Floppy-- PROCEDURE [
floppyOrive: CARDINAL +- 0, imageFile: File.File,
firstlmagePage: File.PageNumber];

Makeltem: --Menu-- PROCEDURE [keyword: LONG STRING, mcrProc: MCRType]
RETURNS [ltemObject];

MakeMDSNode: --Heap-- PROCEDURE [z: MOSZone +- systemMOSZone, n:
NWords]

RETURNS [p: POINTER];
MakeMsgSW: --Tool-- PROCEDURE [

window: Window. Handle, lines: CARDINAL +- 1, h: INTEGER +- OefaultHeight]
RETURNS [sw: Window. Handle];

MakeName: --NSName-- PROCEDURE [
z: UNCOUNTED ZONE, orgSize: CARDINAL +- maxOrgLength,
domainSize: CARDINAL +- maxOomainLength, 10calSize: CARDINAL +­

maxLocal Length]
RETURNS [Name];

MakeNameFields: --NSName-- PROCEDURE [
z: UNCOUNTED ZONE, destination: Name, orgSize: CARDINAL +- maxOrgLength,

Mesa Programmer's Manual

domainSize: CARDINAL t- maxDomainLength, localSize: CARDINAL t­
maxLocal Length];

MakeNegative: --Cursor-- PROCEDURE;
MakeNode: --Heap-- PROCEDURE [z: UNCOUNTED ZONE t- systemZone, n: NWords]

RETURNS [p: LONG POINTER];
MakeNode: --Zone-- PROCEDURE [

zH: Handle, n: BlockSize, alignment: Alignment t- a1]
RETURNS [node: Base RELATIVE POINTER, s: Status];

MakePermanent: --File-- PROCEDURE [file: File];
MakePositive: --Cursor-- PROCEDURE;
MakeReadOnly: --MSegment-- PROCEDURE [segment: Handle];
MakeReadOnly: --Space-- PROCEDURE [interval: Interval];
MakeRhs: --CH-- PROCEDURE [maxlength: CARDINAL, heap: UNCOUNTED ZONE]

RETURNS [rhs: Buffer];
MakeSize: --Too/Window-- PROCEDURE [window: Handle, size: Size];
MakeString: --NSString-- PROCEDURE [z: UNCOUNTED ZONE, bytes: CARDINAL]

RETURNS [String];
MakeStringSW: --Too/-- PROCEDURE [

window: Window. Handle, s: LONG POINTER TO LONG STRING t- NIL,
access: Textsw.Access t- append, h: INTEGER t- OefaultHeight,
expandable: BOOLEAN t- FALSE] RETURNS [sw: Window. Handle];

MakeSWsProc: --Too/-- TYPE = PROCEDURE [window: Window.Handle];
MakeTextSW: --Too/-- PROCEDURE [

NIL,
window: Window. Handle, source: TextSource.Handle, sink: TextSink.Handle t-

options: Textsw.Options t- TextSW.defaultOptions,
position: TextSource.Position t- 0, allowTypeln: BOOLEAN t- TRUE]
RETURNS [sw: Window.Handle);

MakeTTYSW: --Too/-- PROCEDURE [
window: Window. Handle, name: LONG STRING, h: INTEGER t- OefaultHeight,
resetLengthOnNewSession: BOOLEAN t- FALSE] RETURNS [sw: Window.Handle);

MakeUnbootable: --Othel/oOps-- PROCEDURE [
file: File.File, type: BootFileType, firstPage: File.PageNumber];

MakeWritable: --MSegment-- PROCEDURE [segment: Handle];
MakeWritable: --NSSegment- PROCEDURE [

interval: Space. Interval, file: NSFile.Handle, segment: 10 t- defaultlD,
session: Session t- nuIiSession];

MakeWritable: --Space-- PROCEDURE [interval: Interval];
Map: --NSSegment-- PROCEDURE [

origin: Origin, access: NSFile.Access t- NSFile.readAccess,
usage: Space. Usage t-O, life: space.Life t-alive,
swapUnits: Space.SwapUnitOption t-Space.defaultSwapUnitOption,
session: Session nuliSession] RETURNS [mapUnit: Space. Interval);

Map: --Space-- PROCEDURE [
window: Window, usage: Usage t- unknownUsage, class: Class t- file,
access: Access t- readWrite, life: Life t- alive,
swapUnits: SwapUnitOption t- defaultSwapUnitOption]
RETURNS [mapUnit: Interval];

MapAt: --NSSegment-- PROCEDURE [
at: Space. Interval, origin: Origin, access: NSFile.Access t- NSFile.readAccess,
usage: Space. Usage t- O,life: Space. Life t-alive,
swapUnits: Space.SwapUnitOption t- Space.defaultSwapU nitOption,
session: Session t- nuliSession] RETURNS [mapUnit: Space.lnterval];

MapAt: --Space-- PROCEDURE [
.at: Interval, window: Window, usage: Usage t- unknownUsage,
class: Class t- file, access: Access t- readWrite, life: Life t- alive,

c

C-77

c

C-78

Listing of Public Symbols

swapU nits: SwapU nitOption ~ defaultSwapU nitOption]
RETURNS [mapUnit: Interval];

Markltem: --FormSW-- PROCEDURE [
sw: Window,Handle, index: CARDINAL, action: TextData,MarkingAction,
mode: TextData.SelectionMode);

MarkPageBad: --PhysicaIVolume-- PROCEDURE [pvIO: 10, badPage: PageNumber];
MarkProcType: --Caret-- TYPE = PROCEDURE [data: ClientOata, action: Action};
Mask: --Expand-- TYPE = RECORD (

star: BOOLEAN,
atSign: BOOLEAN,
quote: BOOLEAN,
upArrow: UpArrowAction,
localOirectory: LONG STRING);

MatchPattern: --Exec-- PROCEDURE [string: LONG STRING, pattern: LONG STRING]
RETURNS [matched: BOOLEAN];

MaxBands: --RavenFace-- CARDINAL = 8;
maxBlockLength: --PacketExchange-- READONLY CARDINAL;
maxBufferSize: --CH-- CARDINAL = 10000B;
maxCAROINAL: --Environment-- CARDINAL = 177777B;
maxCharacterslnLabel: --Floppy-- CARDINAL = 40;
maxConnectLength: --BodyOefs-- CARDINAL = 64;
maxCourierDeserializeBufferLength: --CHLookup-- CARDINAL = 35;
maxData: --CommOnlineOiagnostics-- CARDINAL = 1000;
maxDomainLength: --NSName-- CARDINAL = 20;
maxDomainNameLength: --CH-- CARDINAL = 20;
maxDomainNameLength: --NSName-- CARDINAL = 20;
maxEntrieslnRootDirectory: --Volume-- READONL Y CARDINAL;
MaxFrameSize: --PrincOps-- CARDINAL = 7774B;
maxFrameSize: --PrincOps-- CARDINAL = 7774B;
maxFuliNameLength: --NSName-- CARDINAL = 86;
maxINTEGER: --Environment-- INTEGER = 77777B;
maxlengthComment: --CHLookup-- CARDINAL = 100;
maxlengthDescription: --CHLookup-- CARDINAL = 100;
maxlengthLocation: --CHLookup-- CARDINAL = 100;
maxlengthPassword: --CHLookup-- CARDINAL = 40;
maxlengthProduct:--CHLookup-- CARDINAL = 40;
maxlengthTraining: --CHLookup-- CARDINAL = 40;
maxLocalLength: --NSName-- CARDINAL = 40;
maxLocalNameLength: --CH-- CARDINAL = 40;
maxLocalNameLength: --NSName-- CARDINAL = 40;
maxLONGCARDINAL: --Environment-- LONG CARDINAL = 37777777777B;
maxLONGINTEGER: --Environment-- LONG INTEGER = 17777777777B;
maxNameLength: --BTree-- CARDINAL = 100;
maxNameLength: --MFiJe-- CARDINAL = 100;
maxNameLength: --PhysicaIVolume-- CARDINAL = 40;
maxNameLength: --Volume-- CARDINAL = 40;
MaxNLinks: --PrincOps-- CARDINAL = 255;
maxNLinks: --PrincOps-- CARDINAL = 255;
maxNumberOfSegments: --NSSegment-- READONL Y CARDINAL;
maxOrgLength: --NSName-- CARDINAL = 20;
maxOrgNameLength: --CH-- CARDINAL = 20;
maxOrgNameLength: --NSName-- CARDINAL = 20;
maxPageslnMDS: --Environment-- CARDINAL = 256;
maxPageslnVM: --Environment-- PageCount = 77777777B;
maxPagesPerFile: --File-- LONG CARDINAL = 377777778;
maxPagesPerVolume: --Vo/ume-- LONG CARDINAL = 400000008;

Mesa Programmer's Manual

maxParamslnStack: --PrincOps-- CARDINAL = 12;
MaxParamslnStack: --PrincOps-- CARDINAL = 12;
maxPkt: --ProtocoICertification-- CARDINAL = 576;
maxRemarkLength: --BodyDefs-- CARDINAL = 64;
maxRNamelength: --BodyDefs-- CARDINAL = 64;
MaxSinglePrecision: --Real-- CARDINAL = 9;
MaxSmallFramelndex: --PrincOps-- CARDINAL = 17;
maxSmallFramelndex: --PrincOps-- CARDINAL = 17;
maxStringlength: --NSFile-- CARDINAL = 100;
maxStringlength: --Selection-- CARDINAL = 200;
maxSubvolumesOnPhysicalVolume: --PhysicaIVolume-- READONLY CARDINAL;
maxWell KnownSocket: --NSConstants-- System.SocketNumber;
MBXState: --RetrieveDefs-- TYPE = {

unknown, bad Name, badPwd, cantAuth, userOK, all Down, someEmpty,
all Empty,

notEmpty};
MCRForKeyword: --Menu-- PROCEDURE [

sw: Window. Handle, menu Name: LONG STRING, keyword: LONG STRING]
RETURNS [mer: MCRType, menu: Handle, index: CARDINAL];

MCRType: --Menu-- TYPE = PROCEDURE [
window: Window. Handle +- NIL, menu: Handle +- NIL, index: CARDINAL +-

177777B];
MDS: --Space-- PROCEDURE RETURNS [Interval);
IVlDSHandle: --Heap-- TYPE = MDSZone;
MeasureBlock: --Display-- PROCEDURE [

window: Handle, block: Environment.Block, lineLength: INTEGER +- infinity,
place: Window. Place, font: WindowFont.Handle +- NIL)
RETURNS [newPlace: Window. Place, positions: CARDINAL, why: BreakReason];

Media: --NSPrint-- TYPE = LONG DESCRIPTOR FOR ARRAY CARDINAL OF Medium;
Medium: --NSPrint-- TYPE = MACHINE DEPENDENT RECORD [

var(0:0 .. 63}: SELECT type(O:O .. l 5): MediumType FROM
paper = > [paper(l :0 .. 47): Paper], ENDCASE];

mediumAnonymousBackingFile: --PiiotSwitches-- AnonymousBackingFileSize =
174C;
Mediumlndex: --NSPrint-- TYPE = CARDINAL [0 .. 0];
MediumType: --NSPrint-- TYPE = MACHINE DEPENDENT{paper};
MediumType: --ProtocoICertification-- TYPE = MACHINE DEPENDENT{

ether, unspecified(15)};
members: --CHPIDs-- cH.PropertylD = 3;
MembershipProc: --NSSessionControl-- TYPE = PROCEDURE [

key: NSString.String, type: NSFile.AccessEntryType, session: NSFile.Session]
RETURNS [status: MembershipStatus];

MembershipStatus: --NSSessionContro/-- TYPE = {
member, notAMember, cannotDetermine};

MenuProcType: --FormSW-- TYPE = PROCEDURE [sw: Window. Handle, index:
CARDINAL)

RETURNS [hints: Hints, freeHintsProc: FreeH.intsProcType, replace: BOOLEAN];
MergeAttributeLists: --NSFile-- PROCEDURE [

listA: Attributelist, IistB: Attributelist,
suppressDuplicates: BOOLEAN +- FALSE) RETURNS [mergedlist: AttributeList];

MesaDEFileType: --FileTypes-- TYPE = CARDINAL [22100B .. 22177B];
MesaFileType: --FileTypes-- TYPE = CARDINAL [256 .. 511];
MesaString: --NSString-- TYPE = LONG STRING;
MesaUsage: --SpaceUsage-- TYPE = Space .Usage[128 .. 255];

c

C-79

c

COso

Listing of Public Symbols

MessageProc: --FileTransfer-- TYPE = PROCEDURE [
cJientData: LONG POINTER, level: Severity, s 1: LONG STRING ~ NIL,
s2: LONG STRING ~ NIL, s3: LONG STRING ~ NIL, s4: LONG STRING ~ NIL];

MicrocodelnstaliFailure: --FormatPilotDisk-- SIGNAL [m: FailureType];
Milliseconds: --Process-- TYPE = CARDINAL;
MinHeight: --FormSW-- PROCEDURE [items; Item Descriptor, type: Type]

RETURNS [CARDINAL];
minimumNodeSize: --Heap-- READONLY NWords;
minimumNodeSize: --Zone-- READONLY BlockSize;
minINTEGER: --Environment-- INTEGER = -32768;
minlength: --MailParse- CARDINAL = 40;
minlONGINTEGER: --Environment-- LONG INTEGER = -2147483648;
minPagesPerVolume: --Volume-- READONLY PageCount;
minPkt: --ProtocoICertification-- CARDINAL = 30;
Minuslnfinity: --Real-- REAL;
MinusLandBitmapUnder: --Window-- TYPE [6];
MinusLandCookieCutter: --Window-- TYPE [2];
MinusZero: --Real-- REAL;
MissingPages: --File-- ERROR [

file: File, firstMissing: PageNumber, countMissing: PageCount];
ModemChange: --CommOnlineDiagnostics-- TYPE = PROCEDURE [

modemSignal: ModemSignal, state: BOOLEAN];
ModemSignal: --CommOnlineDiagnostics-- TYPE = MACHINE DEPENDENT{

dataSetReady, clearToSend, carrierOetect, ringlndicator, ringHeard};
modifiedBy: --NSAssignedTypes-- AttributeType = 7;
modifiedOn: --NSAssignedTypes-- AttributeType = 8;
ModifyBoolean: --FormSW-- PROCEDURE [

sw: Window.Handle, index: CARDINAL, mark: BOOLEAN, notify: BOOLEAN];
ModifyCommand: --FormSW-- PROCEDURE [

sw: Window. Handle, index: CARDINAL, mark: BOOLEAN, notify: BOOLEAN];
ModifyEditable: --FormSW-- PROCEDURE [

sw: Window.Handle, index: CARDINAL, position: CARDINAL, length: CARDINAL,
new: LONG STRING ~ NIL, keep-Trash: BOOLEAN ~ FALSE];

ModifyEnumerated: --FormSW-- PROCEDURE [
SW: Window. Handle, index: CARDINAL, mark: BOOLEAN, notify: BOOLEAN,
newValue: UNSPECIFIED];

mouse: --UserTermina/-- READONLY LONG POINTER TO READONLY Coordinate;
MouseTransformerProc: --Window-- TYPE = PROCEDURE [Handle, Place]

RETURNS [Handle, Place];
Move: --NSFile-- PROCEDURE [

file: Handle, destination: Handle,
attributes: AttributeList ~ nullAttributeList,
session: Session ~ nuIlSession];

Move: --NSSegment-- PROCEDURE [
file: NSFile.Handle, oldSegment: 10, newSegment: 10,
session: Session ~ nuIlSession];

MoveByName: --NSFile-- PROCEDURE [
directory: Handle, path: String, destination: Handle,
attributes: AttributeList ~ nullAttributeList,
session: Session ~ nul/Session];

MoveChild: --NSFile-- PROCEDURE [
directory: Handle, id: 10, destination: Handle,
attributes: AttributeList ~ nullAttributeList,
session: Session ~ nul/Session];

MovelntoWindow: --Cursor-- PROCEDURE [
window: Window. Handle, place: Window.Place];

Mesa Programmer's Manual

MsecToTicks: --Process-- PROCEDURE [msec: Milliseconds] RETURNS [ticks: Ticks];
multi L 1: --ProtocoICertification-- Stage;
MultipleFrames: --DebugUsefuIDefs-- ERROR [list: FrameDesc];
MultiplylnfinityNaN: --Real-- LONG CARDINAL = 4;
myAddress: --NSAddr-- READONLY Address;
myAddressBuffer: --NSAddr-- READONLY cH.Buffer;
myHost: --NSAddr-- READONLY System.HostNumber;
myNSAddr: --NSAddr-- READONLY NSAddr;
myNSAddrBuffer: --NSAddr-- READONLY cH.Buffer;
Name: --Authenticator-- TYPE = NSName.Name;
Name: --CH-- TYPE = NSName.Name;
Name: --DebugUsefuIDefs-- PROCEDURE [name: LONG STRING. gf: GFHandle];
name: --NSAssignedTypes-- AttributeType = 9;
Name: --NSName-- TYPE = LONG POINTER TO NameRecord;
NameFieldsFromString: --NSName-- PROCEDURE [

z: UNCOUNTED ZONE, s: String, destination: Name, clientDefaults: Name Eo­

NIL];
NameForError: --MFile-- SIGNAL RETURNS [errorName: LONG STRING];
NameFromString: --NSName-- PROCEDURE [

z: UNCOUNTED ZONE, s: String, clientDefaults: Name Eo- NIL] RETURNS [Name];
Namelnfo: --MaiIParse-- TYPE = RECORD [nesting: BracketType, type: NameType];
NameList: --MaiIParse-- PROCEDURE [

h: Handle, process: ProcessProc, write: WriteProc Eo- NIL];
NamePattern: --CH-- TYPE = ThreePartName;
NameRecord: --CH-- TYPE = NSName.NameRecord;
NameRecord: --NSName-- TYPE = RECORD [

org: Organization, domain: Domain, local: Local];
NameStreamProc: --CH-- TYPE = PROCEDURE [currentName: Element];
NameTooSmall: --NSName-- SIGNAL [

oldName: Name, orgLenNeeded: CARDINAL, domainLenNeeded: CARDINAL,
10calLenNeeded: CARDINAL] RETURNS [newName: Name];

NameType: --CH-- TYPE = MACHINE DEPENDENT{notFound, found, dead,
(177777B)};

NameType: --MailParse-- TYPE = {normal, file, publicDL};
NarrowFault: --Runtime-- ERROR;
NeededHeight: --FormSW-- PROCEDURE [Window. Handle]

RETURNS [min: CARDINAL, current: CARDINAL];
NeedsScavenging: --PhysicaIVo/ume-- ERROR;
NeedsScavenging: --Volume-- ERROR [volume: 10];
NetAccess: --RS232C-- TYPE = RS232CEnvironment.NetAccess;
NetAccess: --RS232CEnvironment-- TYPE = {directeonn, dialeonn};
NetFormat: --Format-- TYPE = {octal, hex, productSoftware};
NetFormat: --Put-- TYPE = Format.NetFormat;
netManagementSocket: --NSConstants-- System.SocketNumber;
network: --CHPIDs-- cH.PropertylD = 52;
NetworkAddress: --AddressTranslation-- TYPE = System. NetworkAddress;
NetworkAddress: --Format-- PROCEDURE [.

proc: StringProc, networkAddress: System. NetworkAddress, format:
NetFormat,

clientData: LONG POINTER Eo- NIL];
NetworkAddress: --Put-- PROCEDURE [

h: Window.Handle Eo- NIL, address: System.NetworkAddress,
format: NetFormat E- octal];

NetworkNonExistent: --Router-- ERROR;
NetworkNumber: --Forma.t-- PROCEDURE [

proc: StringProc, networkNumber: System. NetworkNumber, format:

c

C-Sl

c

C-82

Listing of Public Symbols

NetFormat,
clientData: LONG POINTER Eo- NIL];

NetworkNumber: --Put-- PROCEDURE [
h: Window.Handle Eo- NIL, networkNumber: System.NetworkNumber,
format: NetFormat]; -

networkServers: --CHPIDs-- cH.PropertylD = 53;
newClearinghouseSocket: --NSConstants-- System.SocketNumber;
NewConfig: --Runtime-- PROCEDURE [

file: File.File, offset: File.PageCount, codeLinks: BOOLEAN Eo- FALSE];
newline: --FormSW-- Window.Place;
Newline: --TTY-- PROCEDURE [h: Handle] RETURNS [yes: BOOLEAN];
Newline: --TTYSW-- PROCEDURE [sw: Window.Handle1 RETURNS [BOOLEAN];
NewRadiusNotifyProc: --ExpeditedCourier-- TYPE = PROCEDURE [newRingRadius:

Hop]
RETURNS [continue: BOOLEAN];

newSearchPath: --EventTypes-- Supervisor. Event;
newSession: --EventTypes-- Supervisor. Event;
NewUser: --RetrieveDefs-- PROCEDURE [

handle: Handle, user: BodyDefs.RName, password: LONG STRING];
NextAction: --OnlineDiagnostics-- TYPE = {nextPattern, invertPattern, quit};
Nextltem: --CmFile-- PROCEDURE [h: Handle]

RETURNS [name: LONG STRING, value: LONG STRING];
nextLine: --FormSW-- INTEGER = -2;
nextPlace: --FormSW-- Window.Place;
NextServer: --RetrieveDefs-- PROCEDURE [handle: Handle]

RETURNS [noMore: BOOLEAN, state: ServerState, procs: AccessProcs];
NextValue: --CmFi/e-- PROCEDURE [h: Handle, table: StringLookUp.TableDesc]

RETURNS [index: CARDINAL];
ni I: --Zone-- Base RELATIVE POINTER;
noAccess: --NSFile-- Access;
NoBackingFile: --TTY-- ERROR;
noChange: --Profile-- LONG STRING;
noControlSelections: --NSFile-- ControlSelections;
Node: --MDSStorage-- PROCEDURE [nwords: CARDINAL] RETURNS [p: POINTER];
Node: --Storage-- PROCEDURE [nwords: CARDINAL] RETURNS [p: LONG POINTER];
NoDefaultlnstance: --TTY-- ERROR;
NodeSize: --Zone-- PROCEDURE [p: LONG POINTER) RETURNS [n: BlockSize];
noEthernet: --PilotSwitches-- PilotDomainA = 76C;
noEthernetOne: --Pi/otSwitches-- PilotDomainA = 74C;
NoExceptions: --Real-- ExceptionFlags;
noExtendedSefections: --NSFi/e-- ExtendedSelections;
nol nterpretedSelections: --NSFile-- I nterpretedSelecti ons;
noMatch: --CmFile-- CARDINAL = 1777778;
noneDeleted: --Scavenger-- BootFileArray;
NonTrappingNaN: --Real-- REAL;
Nop: --FloppyChannel-- PROCEDURE [handle: Handle] RETURNS [status: Status];
NopCaretProc: --Userlnput-- CaretProcType;
nopCmd 1: --BandBLT-- CARDINAL = 14;
nopCmd2: --BandBLT-- CARDINAL = 15;
NopDestroyProc: --Context-- DestroyProcType;
NopEnumeratedNotifyProc: --FormSW-- Enumerated NotifyProcType;
NopFreeHintsProc: --FormSW-- FreeHintsProcType;
NopLongNumberNotifyProc: --FormSW-- LongNumberNotifyProcType;
NopMarkerProc: --Caret-- MarkProcType;
NopNotifyProc: --FormSW-- NotifyProcType; ,
NopNumberNoti fyProc: --FormSW-- NumberNotifyProcType;

Mesa Programmer's Manual

NopReadOnlyProc: --FormSW-- ReadOnlyProcType;
noProblems: --PhysicaIVolume-- ScavengerStatus;
NopStringProc: --Userlnput-- StringProcType;
noRetries: --FormatPilotDisk-- RetryLimit = 0;
NormalizeVFN: --FileName-- PROCEDURE [vfn: VFN);
normal ReturnHeader: --ExpeditedCourier-- Header;
NoRS232CHardware: --RS232C-- ERROR;
noSelections: --NSFile-- READONL Y Selections;
noStartCommunication: --Pi/otSwitches-- PiiotDomainA = 75C;
noSuchCharacter: --Userlnput-- CHARACTER = 377C;
NoSuchProcedureNumber: --Courier-- ERROR;
NoTableEntryForNet: --Router-- ERROR;
NotAFault: --Backstop-- ERROR;
NotAPilotDisk: --FormatPiiotDisk-- ERROR;
NoteArrayDescriptor: --Courier-- TYPE:: PROCEDURE [

site: LONG POINTER, elementSize: CARDINAL, upperBound: CARDINAL];
NoteBlock: --Courier-- TYPE:: PROCEDURE [block: Envlronment.Block);
NoteChoice: --Courier-- TYPE = PROCEDURE [

site: LONG POINTER, size: CARDINAL,
variant: LONG DESCRIPTOR FOR ARRAY CARDINAL OF CARDINAL,
tag: LONG POINTER E- NIL);

NoteData: --TooIDriver-- NoteDataProcType;
NoteDataProcType: --TooIDriver-- TYPE:: PROCEDURE [

toollD: TooIID, data: LONG POINTER];
NoteDeadSpace: --Courier-- TYPE = PROCEDURE [

site: LONG POINTER, size: CARDINAL];
NoteDisjointData: --Courier-- TYPE:: PROCEDURE [

site: LONG POINTER TO LONG POINTER, description: Description];
NotelongC.~rdinal: --Courier-- TYPE:: PROCEDURE [

site: LONG POINTER TO LONG CARDINAL];
Notelonglnteger: --Courier-- TYPE :: PROCEDURE [

site: LONG POINTER TO LONG INTEGER];
NoteParameters: --Courier-- T,YPE :: PROCEDURE [

site: LONG POINTER, description: Description];
NotErrorEntry: --BackstopNub-- ERROR;
Notes: --Courier-- TYPE :: POINTER TO READONL Y NotesObject;
Notes: --Date-- TYPE :: {

normal, noZone, zoneGuessed, noTime, timeAndZoneGuessed};
NoteSize: --Courier-- TYPE = PROCEDURE [size: CARDINAL]

RETURNS [location: LONG POINTER];
NotesObject: --Courier-- TYPE :: RECORD [

zone: UNCOUNTED lONE,
operation: {fetch, store, free},
noteSize: NoteSize,
notelongCardinal: NotelongCardinal,
notelonglnteger: Notelonglnteger,
noteParameters: NoteParameters,
noteChoice: NoteChoice,
noteDeadSpace: NoteDeadSpace,
noteString: NoteString,
noteSpace: NoteSpace,
noteArrayDescri ptor: NoteArrayDescri ptor,
noteDisjointData: NoteDisjointData,
noteBlock: NoteBlock];

NoteSpace: --Courier-- TYPE:: PROCEDURE [site: LONG POINTER, size: CARDINAL];
NoteString: --Courier-- TYPE:: PROCEDURE [site: LONG POINTER TO LONG STRING);

c

C-83

c

C-84

Listing of Public Symbols

NoteSWs: --TooIDriver-- NoteSWsProcType;
NoteSWsProcType: --TooIDriver-- TYPE = PROCEDURE [

tool: LONG STRING, subwindows: AddressDescriptor];
NotFound: --DebugUsefu/Defs-- ERROR [s: LONG STRING];
NotifyProc: --MFile-- TYPE = PROCEDURE [

name: LONG STRING, file: Handle, ctientlnstanceData: LONG POINTER]
RETURNS [removeNotifyProc: BOOLEAN ~ FALSE];

NotifyProcType: --FormSW-- TYPE = ProcType;
NotloggingError: --Backstop-- ERROR;
NotOnline: --Volume-- ERROR [volume: 10];
NotOpen: --Volume-- ERROR [volume: 10];
NoTTYPortHardware: --TTYPort-- ERROR;
notUsable: --CH-- Property 1 0 = 37777777777B;
notUsable: --CHPIDs-- cH.PropertylD = 37777777777B;
NSAddr: --NSAddr-- TYPE = LONG POINTER TO NSAddrObject;
nSAddress: --CHPIDs-- cH.PropertylD = 4;
NSAddrObject: --NSAddr-- TYPE = MACHINE DEPENDENT RECORD [

host(0:0 .. 47): System.HostNumber,
socket(3:0 .. 15): System.SocketNumber,
nets(4:0 .. 47): LONG DESCRIPTOR FOR ARRAY CARDINAL OF System.NetworkNumber];

NSAddrToRhs: --NSAddr-- PROCEDURE [nsAddr: NSAddrj RETURNS [rhs: cH.Bufferj;
nsProtocol: --RS232CCorrespondents-­

RS232CEnvironment.AutoRecognitionOutcome;
nsSystem Element: --RS232CCorrespondents-- RS232CEnvironment. Correspondent;
nsSystem ElementBSC: --RS232CCorrespondents--

RS232CEnvironment.Correspondent;
NUL: --Ascii-- CHARACTER = OC;
null: --DeviceTypes-- Device.Type;
nullAttributelist: --NSFile-- AttributeList;
nuliBadPage: --Physica/Vo/ume-- PageNumber = 37777777777B;
nuliBlock: --Environment-- Block;
null BootFi lePoi nter: --Floppy-- BootFi I ePoi nter;
nullBox: --Too/Window-- Box;
null Box: --Window-- Box;
nullChannelHandle: --TTYPort-- Channel Handle;
nuliChecksum: --Checksum-- CARDINAL = 177777B;
null Credentials: --Authenticator-- Credentials;
null Credentials: --NSName-- Credentials;
nuliDevicelndex: --Physica/Vo/ume-- CARDINAL = 1777778;
null Drive: --F/oppyChanne/-- Drive = 177777B;
null EnumeratedValue: --FormSW-- UNSPECIFIED = 177777B;
null ExchangeHandle: --PacketExchange-- READONL Y ExchangeHandle;
null File: --File-- File;
nullFilelD: --Floppy-- FilelD;
null Fi Iter: --NSFi/e-- Fi Iter;
nullFrame: --Backstop-- READONLY Frame;
nuliGlobalFrame: -PrincOps-- GlobalFrameHandle;
NullGlobalFrame: --PrincOps-- GlobalFrameHandle;
null Handle: -NSFile-- Handle;
null Handle: --TTY-- Handle;
null Handle: --Zone-- Handle;
nullHashedPassword: --NSName-- HashedPassword = 0;
nulllD: --File-- 10;
nulllD: --NSFile--ID;
nulllO: --NSSegment--IO = 177777B;
nulllO: --PhysicaIVolume-- 10;

Mesa Programmer's Manual

nulllD: --Volume--ID;
nulllDRepresentation: --NSFile-- ARRAY [0 .. 4] OF UNSPECIFIED;
null Index: --Floppy--CARDINAL = 1777778;
null Index: --FormSW-- CARDINAL = 1777778;
null Index: --Log--Index = 0;
nullinterval: --Space--Interval;
null Items: --FormSW-- Item Descri ptor;
nuliLineNumber: --RS232C-- CARDINAL = 1777778;
nuliLineNumber: --RS232CEnvironment-- CARDINAL = 1777778;
nuliLink: --PrincOps-- ControlLink;
NuliLink: --PrincOps-- Control Link;
NullLocalFrame: --PrincOps-- LocalFrameHandle;
nullLocalFrame: --PrincOps-- LocalFrameHandle;
nuliOldFilelD: --VolumeConversion-- OldFilelD;
nuliOrdering: --NSFile-- extended Ordering;
null Parameters: --Courier-- Parameters;
nuilPeriodicNotify: --Userlnput-- PeriodicNotifyHandle;
null Process: --Backstop-- READONLY Process;
nuliProgram: --Runtime-- PROGRAM;
NullProgram: --Runtime-- PROGRAM;
nullSegment: --Zone-- SegmentHandle;
nuilSession: --NSFile-- Session;
nuilSession: --NSSegment-- Session;
nuliString: --NSFile-- String;
nuliString: --NSString-- String;
nullSubtreeSizeLimit: --NSFile-- LONG CARDINAL = 37777777777B;
nullSubVolume: --OthelloOps-- SubVolume;
nuliSystemElement: --NSFile-- System Element;
nuliSystemElementRepresentation: --NSFile-- ARRAY [0 .. 5] OF UNSPECIFIED;
nullTime: --NSFile-- Time;
nullType: --Device-- Type;
nullVerifier: --NSName-- Verifier;
nullVolume: --NSFile-- Volume;
nuliVolumeHandle: --Floppy-- READONLY VolumeHandle;
Number: --Dialup-- TYPE = RECORD [

number: PACKED SEQUENCE n: CARDINAL OF Envlronment.Byte];
Number: --Format-- PROCEDURE [

proc: StringProc, n: UNSPECIFIED, format: NumberFormat,
clientData: LONG POINTER +- NIL];

Number: --Put-- PROCEDURE [
h: Window.Handle +- NIL, n: UNSPECIFIED, format: Format.NumberFormat];

Number: --Selection-- PROCEDURE [radix: CARDINAL +- 10] RETURNS [CARDINAL];
NumberFormat: --Format-- TYPE = RECORD [

base: [2 .. 36] +- 12,
zerofi II: BOOLEAN +- FALSE,
unsigned: BOOLEAN +- TRUE,
columns: [0 .. 255] +- 0];

NumberFormat: --TTY-- TYPE = Format.NumberFormat;
NumberHandle: --FormSW-- TYPE = LONG POINTER TO number ItemObject;
Numberftem: --FormSW-- PROCEDURE [

tag: LONG STRING +- NIL, readOnly: BOOLEAN +- FALSE, invisible: BOOLEAN +- FALSE,
drawBox: BOOLEAN +- FALSE, hasContext: BOOLEAN +- FALSE,
place: Window.Place +- nextPlace, signed: BOOLEAN +-TRUE,
notNegative: BOOLEAN +- FALSE, radix: Radix +- decimal,
boxWidth: CARDINAL [0 .. 127] +- 64, .
proc: NumberNotifyProcType +- NopNumberNotifyProc,

c

C-85

c

C-86

Listing of Public Symbols

default: UNSPECIFIED ~ 777778, value: LONG POINTER, bias: INTEGER ~ 0,
z: UNCOUNTED ZONE ~ NIL] RETURNS [NumberHandle];

NumberNotifyProcType: --FormSW-- TYPE = PROCEDURE [
sw: Window. Handle ~ NIL, item: ItemHandle ~ NIL, index: CARDINAL ~

nulllndex,
oldValue: UNSPECIFIED ~ 777778];

numberOfChildren: --NSAssignedTypes--AttributeType = 10;
NumberOfSegments: --NSSegment-- PROCEDURE [

file: NSFile.Handle, session: Session ~ nuliSession] RETURNS [CARDINAL];
NumberType: --Real-- TYPE = MACHINE DEPENDENT{normal, zero, infinity, nan};
NWords: --Heap-- TYPE = [0 .. 777758];
Object: --Courier-- TYPE = RECORD [

remote: System Element,
program Number: LONG CARDINAL,
versionNumber: CARDINAL,
zone: UNCOUNTED ZONE,
sH: Stream. Handle,
classOfService: NetworkStream.ClassOfService];

Object: --Cursor-- TYPE = RECORD [info: Info, array: userTermmaI.CursorArray];
Object: --DebugUsefuIDefs-- TYPE;
Object: --Event-- TYPE;
Object: :-Exec-- TYPE;
Object: --Mai/Parse-- TYPE;
Object: --Menu-- TYPE = RECORD [

permanent: BOOLEAN,
nlnstances: CARDINAL [0 .. 777778],
name: LONG STRING,
items: Items];

Object: --MFi/e-- TYPE;
Object: --MLoader-- TYPE;
Object: --MSegment-- TYPE;
Object: --Window-- TYPE [19];
Object: --WindowFont-- TYPE = RECORD [

height: [O .. 7777B1 ~ NULL,
kerned: BOOLEAN ~ FALSE,
width: PACKED ARRAY CHARACTER [OC .. 377C] OF [0 .. 2551 ~ALL[Ol,
raster: CARDINAL ~ NULL,
maxWidth: CARDINAL ~ NULL,
min: CHARACTER ~ NULL,
max: CHARACTER ~ NULL,
address: LONG POINTER,
bitmap: LONG POINTER TO ARRAY [0 .. 0) OF WORD ~ NULL,
xlnSegment: LONG POINTER TO ARRAY CHARACTER [OC .. OC) OF CARDINAL ~ NULL];

ObscuredBySibling: --Window-- PROCEDURE [Handle] RETURNS [BOOLEAN];
Octal: --Format-- PROCEDURE [

proc: StringProc, n: UNSPECIFIED, clientData: LONG POINTER ~ NIL];
Octal: --Put-- PROCEDURE [h: Window. Handle ~ NIL, n: UNSPECIFIED];
Octal Format: --Format-- NumberFormat;
Offline: --LsepFace-- PROCEDURE;

Mesa Programmer's Manual

Offline: --PhysicaIVolume-- PROCEDURE [pvIO: 10];
OldControlierRecord: --CHLookup-- TYPE = MACHINE DEPENDENT RECORD [

controllerAddress(0:0 .. 15): CARDINAL,
portsOnController(1 :0 .. 15): CARDINAL,
linkType(2:0 .. 15): ControlierLinkType,
path(3:0 .. 63): NSStnng.String];

oldestTime: --BodyDefs-- Timestamp;
OldFilelO: --VolumeConversion-- TYPE = System.UniversaIlO;
OldlBM3270Host: --CHLookup-- TYPE = MACHINE DEPENDENT RECORD [

description(0:0 .. 63): NSStnng.String,
controllers(4:0 .. 47): LONG DESCRIPTOR FOR ARRAY CARDINAL OF

OldControll erRecord];
OldlBM3270HostDescribe: --CHLookup-- Courler.Oescri ption;
Old1BM3270HostPt: --CHLookup-- TYPE = LONG POINTER TO OldlBM3270Host;
one Hour: --Authenticator-- Seconds = 7020B;
Online: --LsepFace-- PROCEDURE;
onlyEnumerateCurrentType: --Volume-- TypeSet;
OnOff: --TooIWindow-- TYPE = {on, off};
Open: --CmFile-- PROCEDURE [fileName: LONG STRING] RETURNS [h: Handle];
Open: --Floppy-- PROCEDURE [drive: CARDINAL Eo- 0] RETURNS [volume: VolumeHandle];
Open: --Log-- PROCEDURE [file: File.File, firstPageNumber: File.PageNumber Eo- 1];
Open: --NSFile-- PROCEDURE [

attributes: AttributeList, directory: Handle Eo- null Handle,
controls: Controls Eo- [], session: Session Eo- nuliSession]
RETURNS [file: Handle];

Open: -NSVolumeContro/-- PROCEDURE [volume: Volume.IO];
Open: --Volume-- PROCEDURE [volume: 10];
OpenByName: --NSFi/e-- PROCEDURE [

directory: Handle, path: String, controls: Controls Eo- [],

session: Session Eo- nuliSession] RETURNS [Handle];
OpenByReference: --NSFile-- PROCEDURE [

reference: Reference, controls: Controls Eo- [], session: Session Eo- nuliSession]
RETURNS [file: Handle];

OpenChild: --NSFile-- PROCEDURE [
directory: Handle, id: 10, controls: Controls Eo- [],

session: Session Eo- nullSession] RETURNS [Handle];
OpenSink: --NSDataStream-- PROCEDURE [ticket: Ticket, cH: Courier. Handle]

RETURNS [SinkStream];
OpenSource: --NSDataStream-- PROCEDURE [ticket: Ticket, cH: Courier. Handle]

RETURNS [SourceStream);
OperateOnSink: --NSDataStream-- PROCEDURE [

sink: Sink, operation: PROCEDURE [SinkStream));
OperateOnSource: --NSDataStream- PROCEDURE [

source: Source, operation: PROCEDURE [SourceStream));
Operation: --CHLookup-- TYPE = {get, put, free};
OperationClass: --RS232C-- TYPE = {input, output, other, all};
OperationType: --ProtocoICertification-- TYPE = {request, reply, reject, end};
Options: --FileSW-- TYPE = Textsw.Options;
Options: --FormSW-- TYPE = RECORD [

type: Type Eo- fixed,
boldTags: BOOLEAN Eo- TRUE,
autoScroll: BOOLEAN Eo- TRUE,
scrollVertical: BOOLEAN Eo- TRUE];

Options: --MLoader-- TYPE = RECORD [codeLinks: BOOLEAN];
Options: --ScratchSW-- TYPE = Textsw.Options;
OpTrapTable: --PrincOps-- TYPE = POINTER TO ARRAY BYTE OF Control Link;

c

C-87

c

C-88

Listing of Public Symbols

ordering: --NSAssignedTypes-- AttributeType = 11;
Ordering: --NSFi/e-- TYPE = MACHINE DEPENDENT RECORD [

var(0:0 .. 79): SELECT type(0:0 .. 15): OrderingType FROM
key = > [

key(l :0 .. 15): AttributeType,
ascending(3:0 .. 15): BOOLEAN ~ TRUE,
dummyl(2:0 .. 15): CARDINAL ~ 0,
dummy2(4:0 .. 15): CARDINAL~O],

extended = > [
key(l :0 .. 31): ExtendedAttributeType,
ascending(3:0 .. 15): BOOLEAN ~ TRUE,
interpretation(4:0 .. 15): Interpretation ~ none],

ENDCASE];
OrderingType: --NSFile-- TYPE = MACHINE DEPENDENT{key, extended};
organization: --EventTypes-- Supervisor. Event;
Organization: --NSName-- TYPE = String ~ NSString.nuttString;
OrgName: --CH-- TYPE = NSName.Organization;
Origin: --NSSegment-- TYPE = RECORD [

file: NSFile.Handle,
base: PageNumber,
count: PageCount,
segment: 10 ~ defaultID];

Original: --DebugUsefuIDefs-- PROCEDURE [new: GFHandle] RETURNS [old: GFHandle];
OrphanHandle: --Scavenger-- TYPE [2];
OtherCtiProblem: --AddressTranslation-- ERROR [reason: Reason];
OtherEvents: --EventTypes-- TYPE = [700 .. 7991;
Outcome: --Dialup-- TYPE = {

success, failure, aborted, formatError, transmission Error, dataLineOccupied,
dialerNotPresent, dialingTimeout, transferTimeout};

Outcome: --Exec-- TYPE = MACHINE DEPENDENT{
normal, warning, error, abort, spare1, spare2, spare3, last(177777B)};

OutOflnstances: --TTY-- ERROR;
OutputProc: --Exec-- PROCEDURE [h: Handle] RETURNS [proc: Format.StringProc];
outsideXeroxFirstSocket: ':'-NSConstants-- System.SocketNumber;
outsideXeroxLastSocket: -NSConstants-- System.SocketNumber;
Overflow: --Log-- TYPE = MACHINE DEPENDENT{reset, disable, wrap};
OverLapOption: --ByteBlt-- TYPE = {ripple, move}; .
owner: -NSAssignedTypes-- AttributeType = 10377B;
OwnerChecking: --Heap-- PROCEDURE [z: UNCOUNTED ZONE] RETURNS [BOOLEAN];
OwnerCheckingMDS: --Heap-- PROCEDURE [z: MDSZone] RETURNS [BOOLEAN];
Packed: --Date-- TYPE = Time.Packed;
PackedTime: --BodyDefs·· TYPE = LONG CARDINAL;
PackedToString: --Date- PROCEDURE [Packed1 RETURNS [LONG STRING];
PackFilename: --FileName-- PROCEDURE [

vfn: VFN, h: BOOLEAN ~ FALSE, d: BOOLEAN ~ FALSE, n: BOOLEAN ~ FALSE,
v: BOOLEAN ~ FALSE] RETURNS [s: LONG STRING];

PageCount: --Environment-- TYPE = LONG CARDINAL;
PageCount: --File-- TYPE = LONG CARDINAL;
PageCount: --Floppy-- TYPE = PageNumber;
PageCount: --NSSegment-- TYPE = LONG CARDINAL;
PageCount: --PhysicaIVolume-- TYPE = LONG CARDINAL;
PageCount: --Space-- TYPE = Envtronment.PageCount;
PageCount: --Volume-- TYPE = LONG CARDINAL;
PageFromLongPointer: --Environment-- PROCEDURE [pointer: LONG POINTER]

RETURNS [Page Number];

Mesa Programmer's Manual

PageFromLongPointer: --Space-- PROCEDURE [pointer: LONG POINTER]
RETURNS [Environment.PageNumber];

PageNumber: --BandBLT-- TYPE = CARDINAL;
PageNumber: --Environment-- TYPE = LONG CARDINAL;
PageNumber: --File-- TYPE = LONG CARDINAL;
PageNumber: --Floppy-- TYPE = LONG CARDINAL;
PageNumber: --NSSegment-- TYPE = LONG CARDINAL;
PageNumber: --PageScavenger-- TYPE = LONG CARDINAL;
PageNumber: --PhysicaIVolume-- TYPE = LONG CARDINAL;
PageNumber: --Space-- TYPE = EnVironment.PageNumber;
PageNumber: --Volume-- TYPE = LONG CARDINAL;
PageOffset: --Environment-- TYPE = PageNumber;
PageOffset: --Space-- TYPE = Environment.PageOffset;
Pages: --MDSStorage-- PROCEDURE [npages: CARDINAL] RETURNS [base: POINTER];

c

Pages: --MSegment-- PROCEDURE [segment: Handle] RETURNS [Environment.PageCount];
Pages: --Storage-- PROCEDURE [npages: CARDINAL] RETURNS [base: LONG POINTER];
PagesForlmage: --Floppy-- PROCEDURE [floppyDrive: CARDINAL +- 0]

RETURNS [File.PageCount];
PagesForWords: --MDSStorage-- PROCEDURE [nWords: CARDINAL] RETURNS [CARDINAL];
PagesForWords: --MSegment-- PROCEDURE [nWords: CARDINAL] RETURNS [CARDINAL];
PagesForWords: --Storage-- PROCEDURE [nWords: CARDINAL] RETURNS [CARDINAL];
PagesFromWords: --Space-- PROCEDURE [wordCount: LONG CARDINAL]

RETURNS [pageCount: Envlronment.PageCount];
PagesToPrint: --NSPrint-- TYPE = MACHINE DEPENDENT RECORD [

beginningPageNumber(0:0 .. 15): CARDINAL, endingPageNumber(l :0 .. 15):
CARDINAL];

paintFlags: --Display-- BitBltFlags;
paintGrayFlags: --Display-- BitBltFlags;
PairToReal: --Real-- PROCEDURE [fr: LONG INTEGER, exp1 0: INTEGER]

RETURNS [REAL];
Paper: --NSPrint-- TYPE = MACHINE DEPENDENT RECORD [

var(O:O .. 47): SELECT type(O:O .. l 5): PaperType FROM
unknown = > NULL,
knownSize = > [knownSize(l :0 .. 15): PaperSize],
otherSize = > [otherSize(l:0 .. 31): PaperDimensions],
ENDCASE];

PaperDimensions: --NSPrint-- TYPE = MACHINE DEPENDENT RECORD [
length(O:O .. 15): CARDINAL, width(l :0 .. 15): CARDINAL];

Paperlndex: --NSPrint-- TYPE = CARDINAL [0 .. 2];
PaperSize: --NSPrint-- TYPE = MACHINE DEPENDENT{

dontUse, usletter, usLegal, aO, a1, a2, a3, a4, a5, a6, a7, as, a9, isoBO,
isoB 1, isoB2, isoB3, isoB4, isoB5, isoB6, isoB7, isoBS, isoB9, isoB 1 0, jisBO,
jisB 1, jisB2, jisB3, jisB4, jisB5, jisB6, jisB7, jisBS, jisB9, jisB 1 OJ;

PaperSource: --LsepFace-- TYPE = MACHINE DEPENDENT{auto, manual};
PaperSource: --RavenFace-- TYPE = MACHINE DEPENDENT{bottom, top};
PaperStacking: --RavenFace-- TYPE = MACHINE DEPENDENT{aligned, offset};
PaperType: --NSPrint-- TYPE = MACHINE DEPENDENT{unknown, knownSize, otherSize};
Parameter: --RS232C-- TYPE = RECORD [

SELECT type: ParameterType FROM
charLength = > [charLength: CharLength],
correspondent = > [correspondent: Correspondent],
dataTerminalReady = > [dataTerminaIReady: BOOLEAN],
echoing = > [echoing: BOOLEAN],
flowControl = > [flowControl· FlowControl],
frameTimeout = > [frameTimeout: CARDINAL],
latchBitClear = > [latchBitClearMask: LatchBitClearMask],

C-89

c

C-90

Listing of Public Symbols

lineSpeed = > [lineSpeed: LineSpeed],
parity = > [parity: Parity]'
requestToSend = > [requestToSend: BOOLEAN],
stopBits = > [stopBits: StopBits],
syncChar = > [syncChar: SyncChar];
syncCount = > [syncCount: SyncCount],
ENDCASE];

Parameter: --TTYPort-- TYPE = RECORD [
. SELECT parameter: * FROM

breakDetectedClear = > [breakDetectedCleiu: BOOLEAN],
characterLength = > [characterLength: CharacterLengthl,
clearToSend = > [ciearToSend: BOOLEAN],
dataSetReady = > [dataSetReady: BOOLEAN],
lineSpeed = > [IineSpeed: LineSpeed],
parity = > [parity: Parity]'
stopBits = > [stopBits: StopBits],
ENDCASE];

ParameterGrouping: --CH-- TYPE = MACHINE DEPENDENT{first(l), second, (177777B)};
Parameters: --Courier-- TYPE = RECORD [

location: LONG POINTER, description: Description];
ParameterType: --RS232C-- TYPE = {

charLength, correspondent, dataTerminalReady, echoing, flowControl,
frameTimeout, latchBitClear, lineSpeed, parity, requestToSend, stopBits,
syncChar, syncCount};

parentlD: --NSAssignedTypes-- AttributeType = 12;
Parity: --RS232C-- TYPE = RS232CEnvironment.Parity;
Parity: --RS232CEnvironment-- TYPE = {none, odd, even, one, zero};
Parity: --TTYPort-- TYPE = TTYPortEnVironment Parity;
Parity: --TTYPortEnvironment-- TYPE = {none, odd, even};
Password: --BodyDefs-- TYPE = ARRAY [0 .. 3] OF CARDINAL;
password: --CHPIDs-- cH.PropertylD = 6;
PasswordStringToKey: --Authenticator-- PROCEDURE [

flavor: Flavor ~ superWeak, password: NSString.String]
RETURNS [password Key: Key];

pathname: --NSAssignedTypes-- AttributeType = 21;
Pattern: --CH-- TYPE = LONG POINTER TO NamePattern;
Pattern Type: -CommOnlineDiagnostics-- TYPE = MACHINE DEPENDENT{

zero, ones, oneZeroes, constant, bytelncr};
pause: --Dialup-- Environment.Byte = 255;
Pause: --LsepFace-- PROCEDURE;
Pause: --Process-- PROCEDURE [ticks: Ticks];
pauseStage: --ProtocoICertification-- Stage;
PC: --BackstopNub-- TYPE [1];
pcCI ientType: --ProtocoICertification-- PacketExchange. ExchangeCi ientType =

protocol Certifi cati on;
pcControlSocket: --ProtocoICertification-- System.SocketNumber;
pcControlType: --ProtocoICertification-- NSTypes.PacketType = pccPacket;
pcOffset: --PrincOps-- CARDINAL = 1;
pcRoutingSocket: --ProtocoICertification-- System.SocketNumber;
pcTestSocket: --ProtocoICertification-- System. SocketN um ber;
Percent: --NSVo/umeControl-- TYPE = [0 .. 100];
Percent: --Scrollbar-- TYPE = [0 .. 100];
PerformanceToolFileType: --FileTypes-- TYPE = CARDINAL [22200B .. 22277B];
PerformanceToolFileType: --Performance TooIFileTypes-- TYPE =

FileTypes.PerformanceTooIFileType;
PeriodicNotifyHandle: --Userlnput-- TYPE [1];

Mesa Programmer's Manual

PeriodicProcType: --Userlnput-- TYPE = PROCEDURE [
window: Window. Handle, place: Window. Place];

pexReplier: --Protoco/Certification-- Stage;
pex Repl i erThru put: --ProtocoICertification-- Stage;
pexRequestor: --ProtocoICertification-- Stage;
pexRequestorThruput: --ProtocoICertification-- Stage;
Physical Medium: --Router-- TYPE = {ethernet, ethernetOne, phonenet, clusternet};
Physical Record: --RS232C-- TYPE = RS232CEnvironment.PhysicaIRecord;
Physical Record: --RS232CEnvironment-- TYPE = RECORD [

header: EnVIronment. Block,
body: EnVIronment. Block,
trailer: EnVIronment. Block];

PhysicalRecordHandle: --RS232C-- TYPE = RS232CEnvironment.PhysicaIRecordHandle;
PhysicalRecordHandle: --RS232CEnvironment-- TYPE = POINTER TO PhysicalRecord;
PilotDisk: --Device-- TYPE = CARDINAL [64 .. 1023];
PilotDomainA: --PilotSwitches-- TYPE = Switch Name [Oe .. l00e];
PilotDomainB: --PilotSwitches-- TYPE = Switch Name [133C .. 140e];
PiiotDomaine: --PilotSwitches- TYPE = SwitchName [173e .. 377C];
PilotFileType: --FileTypes-- TYPE = CARDINAL [0 .. 2551;
PilotKernelUsage: --SpaceUsage-- TYPE = Space .Usage[0 .. 63];
pixelsPerlnch: --UserTerminal-- READONLY CARDINAL;
place: --Profile-- READONL Y Place;
Place: --Profi/e-- TYPE = MACHINE DEPENDENT{

unknown, tajo, copilot, last(177777B)};
Place: --Window-- TYPE = UserTerminal.Coordinate;
PleaseReleaseProc: --MFile-- TYPE = PROCEDURE [

file: Handle, instanceData: LONG POINTER] RETURNS [ReleaseChoice];
PleaseReleaseProc: --MSegment-- TYPE = PROCEDURE [

segment: Handle, instanceData: LONG POINTER] RETURNS [MFile.ReleaseChoice];
PleaseReleaseProc: --MStream-- TYPE = PROCEDURE [

stream: Handle, instanceData: LONG POINTER] RETURNS [MFile.ReleaseChoice1;
Pluslnfinity: --Real-- REAL;
PlusZero: --Real-- REAL;
Point: --Disp/ay-- PROCEDURE [window: Handle, point: Window. Place];
Pointer: --Space-- PROCEDURE [pointer: LONG POINTER1 RETURNS [POINTER];
PointerFault: --Runtime-- SIGNAL;
PointerFromPage: --Space-- PROCEDURE [page: Environment.PageNumber]

RETURNS [POINTER];

c

PopAlternatelnputStreams: --TTY-- PROCEDURE [h: Handle, howMany: CARDINAL +- 1];
PopAlternatelnputStreams: --TTYSW·- PROCEDURE [

SW: Window.Handle, howMany: CARDINAL +-1];
Port: --GSort-- TYPE = MACHINE DEPENDENT RECORD [

in(0:0 .. 31): LONG UNSPECIFIED,
out(2:0 .. 31): PROCEDURE [

GetProcType, PutProcType, CompareProcType, CARDINAL, CARDINAL, CARDINAL]];
Port: --PrincOps-- TYPE = MACHINE DEPENDENT RECORD [

SELECT OVERLAID * FROM
representation = > [

in(0:0 .. 31): LONG UNSPECIFIED, out(2:0 .. 31): LONG UNSPECIFIED],
links = > [

frame(0:0 .. 15): LocalFrameHandle,
fill(l :0 .. 15): WORD,
dest(2:0 .. 31): ControlLink],

ENDCASE];
PortClientType: --CHLookup-- TYPE = MACHINE DEPENDENT{

unassigned, outOfService, its, irs, gws, ibm3270Host, ttyEmulation};

C-91

c

C-92

Listing of Public Symbols

PortDialerType: --CHLookup-- TYPE = MACHINE DEPENDENT{
none, vadic, hayes, ventel};

PortEchoingLocation: --CHtookup-- TYPE = MACHINE DEPENDENT{
applica~ion, ciu, terminal};

PortFault: --Runtime-- ERROR;
PortHandle: --PrincOps-- TYPE = POINTER TO Port;
PortRange: --CHLookup-- TYPE = CARDINAL [0 .. 7];
PortSyncType: --CHLookup-- TYPE = MACHINE DEPENDENT{

asynchronous, synchronous, bitSynchronous, byteSynchronous, any};
Position: --FileWindow-- PROCEDURE [SW: Window. Handle. position: LONG CARDINAL1;
position: --NSAssignedTypes--AttributeType = 13;
Position: --NSFile-- TYPE = Words;
Position: --Stream-- TYPE = LONG CARDINAL;
Post: --MsgSW-- PROCEDURE [

SW: Window. Handle, string: LONG STRING, severity: Severity +- info,
prefix: BOOLEAN +- TRUE, endOfMsg: BOOLEAN +- TRUE];

PostAndLog: --MsgSW-- PROCEDURE [
SW: Window. Handle, string: LONG STRING. severity: Severity +- info.
prefix: BOOLEAN +- TRUE, endOfMsg: BOOLEAN +- TRUE, logSW: Window. Handle +-

NIL];
Power: --ReaIFns-- PROCEDURE [base: REAL. exponent: REAL] RETURNS [REAL];
powerOff: --Event-- READONL Y Supervisor.SubsystemHandle;
powerOff: --EventTypes-- Supervisor. Event;
PrefixHandle: --PrincOps-- TYPE = LONG BASE POINTER TO CodeSegment;
PrefixHeader: --PrincOps-- TYPE = MACHINE DEPENDENT RECORD [

globaIFsi(0:0 .. 7): BYTE.
nlinks(0:8 .. 15): [0 .. 255],
stops(l :0 .. 0): BOOLEAN,
available(l: 1 .. 15): NAT,
mainBodyPC(2:0 .. 15): BytePC,
catchCode(3:0 .. 15): BytePC];

PrependCommands: --Exec-- PROCEDURE [h: Handle, command: LONG STRING];
primaryCredentials: --Event-- READONLY Supervisor.SubsystemHandle;
primaryCredentials: --EventTypes-- Supervisor. Event;
Print: --NSPrint-- PROCEDURE [

master: NSDataStream.Source, printAttributes: PrintAttributes,
printOptions: PrintOptions, system Element: SystemElement]
RETURNS [printRequestID: RequestID];

PrintAttribute: --NSPrint-- TYPE = MACHINE DEPENDENT RECORD [
var(0:0 .. 79): SELECT type(0:0 .. 15): PrintAttributeType FROM

printObjectName = > [printObjectName(l :0 .. 63): String +- [NIL, 0, 0]],
printObjectCreateDate = > [printObjectCreateDate(l :0 .. 31): Time +-0],
senderName = > [senderName(l :0 .. 63): String +- [NIL, 0, 0]],
ENDCASE];

PrintAttributes: --NSPrint-- TYPE = LONG DESCRIPTOR FOR ARRAY CARDINAL OF
PrintAttribute;

PrintAttributeslndex: --NSPrint-- TYPE = CARDINAL [0 .. 2];
PrintAttributeType: --NSPrint-- TYPE = MACHINE DEPENDENT{

printObjectName, printObjectCreateDate, senderName};
PrintCHReturnCode: -AddressTranslation-- PROCEDURE [

rc: cH.ReturnCode, proc: Format.StringProc];
Printer: --DebugUsefuIDefs-- TYPE = PROCEDURE [Handle] RETURNS [BOOLEAN];
Printer: --NSPrint-- TYPE = MACHINE DEPENDENT{

available, busy, disabled, needsAttention, needsKeyOperator};
PrinterProperties: --NSPrint-- TYPE = LONG DESCRIPTOR FOR ARRAY CARDINAL OF

Pri nterProperty;

Mesa Programmer's Manual

PrinterPropertieslndex: --NSPrint-- TYPE = CARDINAL [0 .. 2];
PrinterProperty: --NSPrint-- TYPE = MACHINE DEPENDENT RECORD [

var(0:0 .. 63): SELECT type(0:0 .. 15): PrinterPropertyType FROM

media = > [media(1 :0 .. 47): Media],
staple = > [staple(1 :0 .. 15): BOOLEAN],

twoSided = > [twoSided(l :0 .. 15): BOOLEAN],

ENDCASE];

PrinterPropertyType: --NSPrint-- TYPE = MACHINE DEPENDENT{

media, staple, twoSided};
PrinterStatus: --LsepFace-- TYPE = MACHINE DEPENDENT{

(69),

noStatus, oneMegaHz(16), halfMegaHz, (32), (33), (34), (35), (36), (37), (38),
(39), (40), (41), (42), (43), (44), (45), (46), (47), (48), (49), (50), (51),
(52), (53), (54), (55), (56), (57), (58), (59), (60), (61), keyPause,
keyHomeFeed, warming, standBy, feederFault, nolnkDonor, registrationJam,

(70), (71), interlockOpen, (73), feeding, readyToFeed, (76), parityError,
iliegalCharacter, iliegalSequence, (80), noPaper, pageSync, pageTailSync,

c

(84), goingOffLine, offline, online, (88), feedingOut, (90), pause(95), (96),
paperA4, paperB4, paperB5, paperUnknown(103), (104), (124), statusError(126),
statusOverRun};

Pri nterStatus: --NSPrint-- TYPE = LONG DESCRIPTOR FOR ARRAY CARDINAL OF

Pri nterStatusComponent;
PrinterStatus: --RavenFace-- TYPE = MACHINE DEPENDENT{

noStatus,keyO(48),key1,key2,key3,key4,key5,key6,key7,key8,key9,
keyClear, keyTest, keyOnLine, keyOffLine, (62), (63), warming, standBy,
feederFault, registrationJam(68), fuserJam, noExit, interlockOpen(72),
fuserCold, feeding, readyToFeed, displayAcknowledge, parityError,
iliegalCharacter, iliegalSequence, (80), noPaper, pageSync, pageAtOutputTray,
tonerLow, goingOffLine, offline, online, outputTrayFull, aboutToDozeOff,
(124), statusError(126), statusOverRun};

PrinterStatusComponent: --NSPrint-- TYPE = MACHINE DEPENDENT RECORD [

var(0:0 .. 63): SELECT type(O:O .. l 5): PrinterStatusType FROM

spooler = > [spooler(l :0 .. 15): Spooler],
formatter = > [formatter(l :0 .. 15): Formatter],
pri nter = > [pri nter(1 : 0 .. 15): Pri nter],
media = > [media(l :0 .. 47): Media],
ENDCASE];

PrinterStatuslndex: --NSPrint-- TYPE = CARDINAL [0 .. 3];
PrinterStatusType: --NSPrint-- TYPE = MACHINE DEPENDENT{

spooler, formatter, printer, media};
PrintLexicon: -LexiconDefs-- PROCEDURE [TTY. Handle];
PrintOption: --NSPrint-- TYPE = MACHINE DEPENDENT RECORD [

var(0:0 .. 79): SELECT type(O:O .. 1 5): PrintOptionType FROM

printObjectSize = > [printObjectSize(l :0 .. 31): LONG CARDINAL +- 0],
recipientName = > [recipientName(l :0 .. 63): String +- [NIL, 0, 0]],
message = > [message(l :0 .. 63): String +- [NIL, 0, 0]],
copyCount = > [copyCount(l :0 .. 15): CARDINAL +-1],
pagesToPrint = > [pagesToPrint(1:0 .. 31): PagesToPrint+-[l, LAST[CARDINAL]]],

mediumHint = > [
mediumHint(l :0 .. 63):·Medium +- [paper[[knownSize[usLetter]]]]],

priorityHint = > [priorityHint(l :0 .. 15): PriorityHint E- normal],
releaseKey = > [releaseKey(l :0 .. 15): CARDINAL +-177777B],
staple = > [staple(l :0 .. 15): BOOLEAN +- FALSE],

twoSided = > [twoSided(l :0 .. 15): BOOLEAN +- FALSE],

ENDCASE];

C-93

c

C-94

Listing of Pu bUe Symbols

PrintOptions: --NSPrint-- TYPE = LONG DESCRIPTOR FOR ARRAY CARDINAL OF
PrintOption;

PrintOptionslndex: --NSPrint-- TYPE = CARDINAL [0 .. 9];
PrintOptionType: --NSPrint-- TYPE = MACHINE DEPENDENT{

printObjectSize, recipientName, message, copyCount, pagesToPrint,
mediumHint,

priorityHint, releaseKey, staple, twoSided};
Printserver: --CHLookup-- TYPE = MACHINE DEPENDENT RECORD [

address(0:0 .. 9S): System.NetworkAddress, location(6:·0 .. 63): NSString.String];
Pri ntserverDescri be: --CHLookup-- Courier. Descri pti on;
PrintserverPt: --CHLookup-- TYPE = LONG POINTER TO Printserver;
Priority: --Process-- TYPE = [0 .. 7];
priorityBackground: --Process-- READONLY Priority;
priorityForeground: --Process-- READONLY Priority;
PriorityHint: --NSPrint-- TYPE = MACHINE DEPENDENT{low, normal, high};
priorityNormal: --Process-- READONL Y Priority;
Probe: --NSFile-- PROCEDURE [session: Session] RETURNS [probeWithin: CARDINAL];
Problem: --NSVolumeControl-- TYPE = MACHINE DEPENDENT RECORD [

trouble(0:0 .. 127): SELECT problemType(O:O .. l 5): ProblemType FROM
changedToDirectory = > NULL,
duplicatePage = > NULL,
fileDeleted = > NULL,
leaderExtensionDeleted = > NULL,
leaderExtensionMissing = > NULL,
leaderExtensionReinserted = > NULL,
leaderExtensionWrongType = > NULL,
leaderExtensionZeroLength = > NULL,
newRootCreated = > NULL,
orphanDirectoryCreated = > NULL,
orphanPage = > NULL,
variableAttributesBad = > NULL,
zeroLength = > NULL,
duplicateSegmentlD = > [

old(l :0 .. 15): NSSegment.ID, changedTo(2:0 .. 1 5): NSSegment.ID],
illegalSegmentlD = > [

old(l :0 .. 1 5): NSSegment.ID, changedTo(2:0 .. 1 5): NSSegment.ID],
illegalAttributeValue = > [old(l :0 .. 111): NSFlle.Attribute],
illegalAttributeValueForNonDirectory = > [old(l :0 .. 111): NSFile.Attribute],
invalidAttributeValue = > [type(l :0 .. 15): NSFile.AttributeType],
stringTooLong = > [type(l :0 .. 15): NSFile.AttributeType],
100pinHierarchy = > [oldParent(l :0 .. 79): NSFlle.ID],
orphanFile => [oldParent(l :0 .. 79): NSFile.ID],
missingPages = > [

first(l :0 .. 31): File.PageNumber, count(3:0 .. 31): File.PageCount],
unreadablePages = > [

first(l :0 .. 31): File.PageNumber, count(3:0 .. 31): File.PageCount],
orphanLeaderExtension = > [id(l :0 .. 79): NSFile.ID],
orphanSegment = > [id(l :0 .. 79): NSFile.ID, segment(6:0 .. 15): NSSegment.ID],
segmentDeleted = > [segment(l :0 .. 1 5): NSSegment.ID],
segmentMissing = > [segment(l :0 .. 15): NSSegment.ID],
segmentReinserted = > [segment(l :0 .. 15): NSSegment.ID],
segmentWrongType = > [segment(l :0 .. 15): NSSegment.ID],
segmentZeroLength = > [segment(l :0 .. 15): NSSegment.ID],
tooManySegments = > [oldCount(l :0 .. 15): CARDINAL],
wrongNumberOfChildren = > [

old(l :0 .. 15): CARDINAL, changedTo(2:0 .. 15): CARDINAL],

Mesa Programmer's Manual

wrongSegmentlD = > [
inEntry(l :0 .. 15): NSSegment.ID, inFile(2:0 .. 15): NSSegment.ID],

wrongSizelnBytes = > [
old(l :0 .. 31): LONG CARDINAL, changedTo(3:0 .. 31): LONG CARDINAL],

wrongSizelnPages = > [
old(l :0,.31): LONG CARDINAL, changedTo(3:0 .. 31): LONG CARDINAL],

ENDCASE];
Problem: --Scavenger-- TYPE = MACHINE DEPENDENT RECORD [

trouble(0:0 .. 79): SelECT entryType(0:0 .. 15): EntryType FROM
unreadable = > [

first(l :0 .. 31): File.PageNumber, count(3:0 .. 31): File.PageCount],
missing = > [

first(l :0 .. 31): File.PageNumber, count(3:0 .. 31): File.PageCount],
duplicate = > [id(l :0 .. 31): OrphanHandle],
orphan = > [id(l :0 .. 31): OrphanHandle],
ENDCASE];

ProblemArray: --NSVolumeContro/-- TYPE = ARRAY [0 .. 0) OF Problem;
ProblemPointer: --NSVolumeContro/-- TYPE = LONG POINTER TO Problem;
Problem Type: --NSVolumeContro/-- TYPE = MACHINE DEPENDENT{

c

changedToDirectory, duplicatePage, duplicateSegmentlD, fileDeleted,
illegalAttributeValue, illegalAttributeValueForNonDirectory, illegalSegmentlD,
invalidAttributeValue, leaderExtensionDeleted, leaderExtensionMissing,
I eaderExtension Rei nserted, I eaderExtensi on WrongType,
I eaderExtensi on Zero Length, I ooplnH ierarchy, m issi ngPages, orphan Fi Ie,
orphanLeaderExtension, orphan Page, orphanSegment, segmentDeleted,
segmentMissing, segmentReinserted, segmentWrongType, segmentZeroLength,
stringTooLong, tooManySegments, unreadablePages, variableAttributesBad,
wrongNumberOfChildren, wrongSegmentlD, wrongSizelnBytes,

wrongSi zel nPages,
zero Length, newRootCreated, orphanDirectoryCreated, (256)};

ProcDesc: --PrincOps-- TYPE = procedure Control Link;
Proceed: --Backstop-- PROCEDURE [boot: Volume.ID];
Process: --Backstop-- TYPE [1];
ProcessCommandLine: --Exec-- PROCEDURE [

cmd: LONG STRING, write: Format.StringProc, checkAbort: CheckAbortProc]
RETURNS [outcome: Outcome];

ProcessProc: --MaiIParse-- TYPE = PROCEDURE [
h: Handle, local: LONG STRING, registry: LONG STRING, domain: LONG STRING,
info: Namelnfo] RETURNS [write: BOOLEAN ~ TRUE];

ProcType: --FormSW- TYPE = PROCEDURE [
sw: Window.Handle ~ NIL, item: ItemHandle ~ NIL, index: CARDINAL ~ nullindex];

ProductDomain: --PilotSwitches-- TYPE = Switch Name [141C .. 172C];
PropagationOate: --MFileProperty-- MFile.Property;
Properties: --CH-- TYPE = LONG DESCRIPTOR FOR ARRAY CARDINAL OF Propertyl 0;
PropertiesAliocator: --CH-- TYPE = PROCEDURE [count: CARDINAL]

RETURNS [Properties];
Property: --MFile-- TYPE = RECORD [property: CARDINAL];
PropertyArray: --LibrarianUtility-- TYPE = LONG DESCRIPTOR FOR ARRAY CARDINAL OF

PropertyDescri ption;
PropertyDescription: --LibrarianUtility-- TYPE = RECORD [

pn: libranan.PropertyNumber, tag: LONG STRING, use: BOOLEAN];
PropertyError: --MFile-- ERROR [code: PropertyErrorCode];
PropertyErrorCode: --MFile-- TYPE = {

noSuchProperty, noRoomlnPropertyList, insufficientSpaceForProperty,
wtongSize};

PropertylD: --CH-- TYPE = LONG CARDINAL;

C-95

c

C-96

Listing of Public Symbols

PropertylD: --CHPIDs-- TYPE = cH.PropertyID;
protocolCertificationControl: --NSConstants-- System.SocketNumber;
protocol Certification Test: --NSConstants-- System. SocketN umber;
Protocol Level : --Protoco/Certification-- TYPE = CARDINAL [0 .. 15];
ProtocolName: --Protoco/Certification-- TYPE = MACHINE DEPENDEi\JT{

echo, routing, error, spp, pex, unspecified(lS)};
Prune: --Heap--·PROCEDURE [z: UNCOUNTED ZONE];
Prune: --MDSStorage-- PROCEDURE RETURNS [BOOLEAN];
Prune: --Storage-- PROCEDURE RETURNS [BOOLEAN);
PruneMDS: --Heap-- PROCEDURE [z: MDSZone];
PSBlndex: --BackstopNub-- TYPE [1];
pupAddressTranslation: --NSConstants-- System.SocketNumber;
PushAlternatelnputStream: --TTY-- PROCEDURE [h: Handle, stream: Stream.Handle];
PushAlternatelnputStreams: --TTYSW-- PROCEDURE [

sw: Window. Handle, stream: Stream.Handle];
Put: --PieceSource-- PROCEDURE [source: TextSource.Handle, name: LONG STRING]

RETURNS [new: TextSource.Handle];
Put: --RS232C-- PROCEDURE [channel: Channel Handle, rec: PhysicalRecordHandle)

RETURNS [CompletionHandle];
Put: --TTYPort-- PROCEDURE [channel: Channel Handle, data: CHARACTER]

RETURNS [status: TransferStatus];
PutBackChar: --TTY-- PROCEDURE [h: Handle, c: CHARACTER];
PutBackChar: --TTYSW-- PROCEDURE [SW: Window. Handle, char: CHARACTER];
PutBlank: --TTY-- PROCEDURE [h: Handle, n: CARDINAL +-1];
PutBlanks: --TTY-- PROCEDURE [h: Handle, n: CARDINAL +-1];
PutBlock: --Log-- PROCEDURE [

level: Level, pointer: LONG POINTER, size: CARDINAL,
forceOut: BOOLEAN +- FALSE];

PutBlock: --Stream-- PROCEDURE [
sH: Handle, block: Block, endRecord: BOOLEAN +- FALSE];

PutBlock: --TTY-- PROCEDURE [h: Handle, block: Environment.Block];
PutByte: --Stream-- PROCEDURE [sH: Handle, byte: Byte];
PutByteProcedure: --Stream-- TYPE = PROCEDURE [sH: Handle, byte: Byte];
PutChar: --Exec-- PROCEDURE [h: Handle, c: CHARACTER];
PutChar: --Stream-- PROCEDURE [sH: Handle, char: CHARACTER];
PutChar: --TTY-- PROCEDURE [h: Handle, c: CHARACTER];
PutCommand: --RavenFace-- PROCEDURE [CARDINAL [0 .. 127]];
PutCR: --TTY-- PROCEDURE [h: Handle];
PutDate: --TTY-- PROCEDURE [

h: Handle, gmt: Time.Packed, format: DateFormat +- noSeconds,
zone: Time.TimeZoneStandard +-ANSI];

PutDecimal: --TTY-- PROCEDURE [h: Handle, n: INTEGER];
PutEditableFile: --Fi/eSW-- PROCEDURE [SW: Window. Handle, name: LONG STRING]

RETURNS [ok: BOOLEAN];
PutLine: --TTY-- PROCEDURE [h: Handle,s: LONG STRING];
PutLongDecimal: --TTY-- PROCEDURE [h: Handle, n: LONG INTEGER];
PutLongNumber: --TTY-- PROCEDURE [

h: Handle, n: LONG UNSPECIFIED, format: NumberFormat];
PutLongOctal: --TTY-- PROCEDURE [h: Handle, n: LONG UNSPECIFIED];
PutLongString: --TTY-- PROCEDURE [h: Handle, s: LONG STRING];
PutLongSubString: --TTY-- PROCEDURE [h: Handle, ss: String.SubString];
PutMessageProc: --OnlineDiagnostics-- TYPE = PROCEDURE [msg: FloppyMessage];
PutNumber: --TTY-- PROCEDURE [h: Handle, n: UNSPECIFIED, format: NumberFormat];
PutOctal: --TTY-- PROCEDURE [h: Handle, n: UNSPECIFIED];
PutProcedure: --Stream-- TYPE = PROCEDURE [

sH: Handle, block: Block, endRecord: BOOLEAN];

Mesa Programmer's Manual

PutProcType: --GSort-- TYPE = PROCEDURE [p: LONG POINTER, len: CARDINAL];
PutSnapShotToFile: --LibrarianUtility-- PROCEDURE [

fileName: LONG STRING, snap: Llbrarian.SnapShotHandle];
PutString: --Log-- PROCEDURE [

level: Level, string: LONG STRING, forceOut: BOOLEAN E-FALSE];
PutString: --Stream-- PROCEDURE [

sH: Handle, string: LONG STRING, end Record: BOOLEAN E- FALSE];
PutString: --TTY-- PROCEDURE [h: Handle, s: LONG STRING];
PutSubString: --TTY-- PROCEDURE [h: Handle, ss: String.SubString];
PutText: --TTY-- PROCEDURE [h: Handle, s: LONG STRING];
PutWord: --Log-- PROCEDURE [

level: Level, data: UNSPECIFIED, forceOut: BOOLEAN E- FALSE];
PutWord: --Stream-- PROCEDURE [sH: Handle, word: Word);
PutWordProcedure: --Stream-- TYPE = PROCEDURE [sH: Handle, word: Word];
q2000: -DeviceTypes-- Device.Type;
q2010: --DeviceTypes-- Device.Type;
Q2010pagesPerCylinder: --FormatPiiotDisk-- CARDINAL = 32;
q2020: --DeviceTypes-- Device.Type;
Q2020pagesPerCylinder: --FormatPilotDisk-- CARDINAL = 64;
q2030: --DeviceTypes-- Device.Type;
Q2030pagesPerCylinder: --FormatPilotDisk-- CARDINAL = 96;
q2040: --DeviceTypes-- DevlCe.Type;
Q2040pagesPerCylinder: --FormatPilotDisk-- CARDINAL = 128;
q2080: --DeviceTypes-- DevICe.Type;
Q2080pagesPerCylinder: --FormatPilotDiskExtras-- CARDINAL = 112;
Qualification: --Profile-- TYPE = {registry, clearinghouse, none};
Qualify: --Profile-- PROCEDURE [

token: String, newToken: String, qualification: Qualification];
Quiesce: --TTYPort-- PROCEDURE [channel: ChanneIHandle];
Rl0: --KeyStations-- Bit = 87;
Rl1: --KeyStations-- Bit = 47;
R12: --KeyStations-- Bit = 77;
Rl: --KeyStations-- Bit = 63;
R2: --KeyStations-- Bit = 92;
R3: --KeyStations-- Bit = 106;
R4: --KeyStations-- Bit = 94;
R5: --KeyStations-- Bit = 80;
R6: --KeyStations-- Bit = 79;
R7: --KeyStations-- Bit = 93;
R8: -KeyStations-- Bit = 29;
R9: --KeyStations-- Bit = 81;
Radix: --FormSW-- TYPE = {decimal, octal};
Random: --SpyClient-- PROCEDURE RETURNS [CARDINAL];
RandomDelay: --SpyClient-- PROCEDURE;
rcvLO: --ProtocoICertification-- Stage;
rcvL 1: --ProtocoICertification-- Stage;
Read: --Floppy-- PROCEDURE [

file: FileHandle, first: PageNumber, count: PageCount, vm: LONG POINTER];
readAccess: --NSFile-- Access;
ReadBadPage: --Scavenger-- PROCEDURE [

file: File.File, page: File.PageNumber, destination: Space.PageNumberj
RETURNS [read Errors: BOOLEAN];

readBy: --NSAssignedTypes-- AttributeType = 14;
ReadlD: --FloppyChannel-- PROCEDURE [

handle: Handle, address: DiskAddress, buffer: LONG POINTER]
RETURNS [status: Status];

c

C-97

c

C-9S

Listing of Public Symbols

ReadLineOrToken: --CmFile-- PROCEDURE [
h: Token.Handle, buffer: LONG STRING, terminator: CHARACTER];

ReadNextStream: -~FileTransfer-- PROCEDURE [Stream.Handle]
RETURNS [Stream. Handle);

readOn: --NSAssignedTypes-- AttributeType = 15;
ReadOnly: --BTree-- ERROR [tree: Tree);
ReadOnly: --MFile-- PROCEDURE [

name: LONG STRING, release: ReleaseOata, mightWrite: BOOLEAN Eo- FALSE]
RETURNS [Handle];

ReadOnfy: --MStream-- PROCEDURE [name: LONG STRING, release: ReleaseOataj
RETURNS [Handle];

ReadOnly: --Vo/ume-- ERROR [volume: 10);
ReadOnlyProcType: --FormSW-- TYPE = ProcType;
ReadOrphanPage: --Scavenger-- PROCEDURE [

volume: Volume.IO, id: OrphanHandle, destination: Space.PageNumber)
RETURNS [

file: File.File, type: File.Type, pageNumber: File.PageNumber,
read Errors: BOOLEAN1;

ReadReal: --Real-- PROCEDURE [
get: PROCEDURE RETURNS [CHARACTER).
putback: PROCEDURE [CHARACTER] Eo- OefaultPutback) RETURNS [REAL];

ReadSectors: --FloppyChannel-- PROCEDURE [
handle: Handle, address: OiskAddress, buffer: LONG POINTER,
count: CARDINAL Eo- 1, i ncrementOataPtr: BOOLEAN Eo- TRUE]
RETURNS [status: Status, countOone: CARDINAL];

ReadStream: --FileTransfer-- PROCEDURE [
conn: Connection, files: FileName.VFN, veto: VetoProc Eo- NIL,
showOates: BOOLEAN Eo- FALSE, type: StreamType Eo- remote]
RETURNS [Stream. Handle];

ReadValue: --DebugUsefuIDefs-- PROCEDURE [Handle];
ReadWrite: --MFile-- PROCEDURE [

name: LONG STRING, release: ReleaseOata, type: Type,
initialLength: Initial Length Eo-dontCare] RETURNS [Handle];

ReadWrite: --MStream-- PROCEDURE [
name: LONG STRING, release: ReleaseOata, type: MFile.Type] RETURNS [Handle];

RealControl: --Real-- PROGRAM;
RealError: --Real-- ERROR;
RealException: --Real-- SIGNAL [

flags: Exception Flags, vp: LONG POINTER TO Extended]
RETURNS [LONG POINTER ro Extended];

RealToPair: --Real-- PROCEDURE [
r: REAL, precision: CARDINAL Eo- OefaultSinglePrecision]
RETURNS [type: NumberType, fr: LONG INTEGER, exp10: INTEGER];

Reason: --AddressTrans/ation-- TYPE = {
noUsefulProperties, ambiguousSeparators, tooManySeparators};

Reason: --NSSessionContro/-- TYPE = {logoff, timeout, abort};
Recalibrate: --FloppyChannel-- PROCEDURE [handle: Handle]

RETURNS [status: Status];
RecordTooLong: --GSort-- ERROR;
Recreate: --Zone-- PROCEDURE [storage: LONG POINTER, zoneBase: Basel

RETURNS [zH: Handle, rootNode: Base RELATIVE POINTER, s: Status];
rectangleCmd: --BandBLT-- CARDINAL = 10;
Redisplayltem: --FormSW-- PROCEDURE [

SW: Window. Handle, index: CARDINAL, sameSize: BOOLEAN1;
Reference: --NSFile-- TYPE = LONG POINTER TO ReferenceRecord;

Mesa Programmer's Manual

ReferenceRecord: --NSFile-- TYPE = RECORD [
filelD: 10,
system Element: System Element +- nuliSystemElement,
volumelD: Volume +- nuIIVolume];

Register: --NSDataStream-- PROCEDURE [
stream: Handle, forUseAt: Courrer.SystemElement, cH: Courier. Handle,
uselmmediateTicket: BOOLEAN +- TRUE] RETURNS [Ticket];

RegisterBaseOirectoryProc: --NSVolumeControl-- PROCEDURE [
baseDi rectoryProc: BaseDi rectoryProc];

RegisterCheckCredentialsProc: --NSSessionControl-- PROCEDURE [
checkCredentialsProc: CheckCredentialsProc];

RegisterGetCredentialsProc: --NSSessionControl-- PROCEDURE [
getCredentialsProc: GetCredentialsProc];

RegisterMembershipProc: --NSSessionControl-- PROCEDURE [
membershipProc: MembershipProc];

RegisterPage: --LsepFace-- PROCEDURE [paperSource: PaperSource +- manual];
registry: --EventTypes-- Supervisor. Event;
RejectRequest: --PacketExchange-- PROCEDURE [

h: ExchangeHandle, rH: RequestHandle];
Relation: --NSString-- TYPE = {less, equal, greater};
Release: --Context-- PROCEDURE [type: Type, window: Window. Handle];
Release: --MFile-- PROCEDURE [file: Handle];
ReleaseChoice: --MFile-- TYPE = {later, no, goAhead, allowRename};
ReleaseData: -MFi/e-- TYPE = RECORD [

proc: PleaseReleaseProc +- NIL, clientlnstanceData: LONG POINTER +- NIL];
ReleaseData: --MSegment-- TYPE = RECORD [

proc: PleaseReleaseProc +- NIL, clientlnstanceData: LONG POINTER +- NIL];
ReleaseData: --MStream-- TYPE = RECORD [

proc: PleaseReleaseProc +- NIL, clientlnstanceData: LONG POINTER +- NIL];
ReleaseOataStream: --Courier-- PROCEDURE [cH: Handle];
ReleaseTTY: --Exec-- PROCEDURE [tty: TTY. Handle];
Relock: --NSSessionControl-- PROCEDURE [session: NSFile.Session, id: ServiceID];
Remark: --BodyDefs-- TYPE = LONG STRING;
Remote: --CHLookup-- TYPE = MACHINE DEPENDENT RECORD [

region(O:O .. 63): NSName.Organization, domain(4:0 .. 63): NSName.Domain];
remoteDebug: --PiiotSwitches-- PilotDomainA = 65C;
RemoteDirectoryDescribe: --CHLookup-- Courier.Description;
RemoteErrorSignalled: --Courier-- ERROR [

errorNumber: CARDINAL, arguments: Arguments];
RemoteName: --MFileProperty-- MFile.Property;
RemotePt: --CHLookup-- TYPE = LONG POINTER TO Remote;
Remove: --BTree-- PROCEDURE [tree: Tree, name: LONG STRING, value: Value]

RETURNS [ok: BOOLEAN];
RemoveCharacter: --TTY-- PROCEDURE [h: Handle, n: CARDINAL +-1];
RemoveCharacter: --TTYSW-- PROCEDURE [sw: Window. Handle, n: CARDINAL +-1];
RemoveCharacters: --TTY-- PROCEDURE [h: Handle, n: CARDINAL +-1];
RemoveCharacters: --TTYSW-- PROCEDURE [sw: Window.Handle, n: CARDINAL +- 1];
RemoveCommand: --Exec-- PROCEDURE [h: Handle, name: LONG STRING];
RemovedStatus: --Exec-- TYPE = {ok, noCommand, noProgram};
RemoveFromTree: --Window-- PROCEDURE [Handle];
RemoveN~tifyProc: --MFile-- PROCEDURE [

proc: NotifyProc, filter: Filter, clientlnstanceData: LONG POINTER];
RemovePrinter: --DebugUsefuIDefs-- PROCEDURE [type: LONG STRING, proc: Printer];
RemoveProperties: --MFile-- PROCEDURE [file: Handle];
RemoveProperty: --MFile-- PROCEDURE [file: Handle, property: Property];
RemoveRootFile: --Volume-- PROCEDURE [type: File.Type, volume: 10 +-systemID];

c

C-99

c

C-lOO

Listing of Public Symbols

RemoveSegment: --Zone-- PROCEDURE [zH: Handle, sH: SegmentHandle]
RETURNS [storage: LONG POINTER, S: Status];

Rename: --DiskSource-- PROCEDURE [
source: TextSource.Handle. newName: LONG STRING, access: TextSource.Access]
RETURNS [TextSource.Handle];

Rename: --FileTransfer-- PROCEDURE [
conn: Connection, old: FileName.VFN, new: FileName.VFN];

Rename: --MFile-- PROCEDURE [file: Handle, newName: LONG STRING];
RenameCommand: --Exec-- PROCEDURE [old: LONG STRING, new: LONG STRING]

RETURNS [ok: BOOLEAN];
RepairStatus: --PhysicaIVolume-- TYPE = {okay, damaged, repaired};
RepairType: --PhysicaIVolume-- TYPE = {checkOnly, safeRepair, riskyRep.air};
RepairType: --Scavenger-- TYPE = MACHINE DEPENDENT{

checkOnly, safeRepair, riskyRepair};
Repeat: --LsepFace-- PROCEDURE;
Replace: --MDSStorage- PROCEDURE [to: POINTER TO STRING, from: LONG STRING];
Replace: --NSFile-- PROCEDURE [

file: Handle, source: Source, attributes: AttributeList +- nullAttributeList,
session: Session +- nuIiSession];

Replace: --Storage-- PROCEDURE [
to: LONG POINTER TO LONG STRING, from: LONG STRING];

ReplaceBadPage: --Scavenger-- PROCEDURE [
file: File.File, page: File.PageNumber, source: Space.PageNumber]
RETURNS [writeErrors: BOOLEAN];

ReplaceBadSector: --Floppy-- PROCEDURE [file: FileHandle, page: PageNumber]
RETURNS [read Error: BOOLEAN];

ReplaceByName: --NSFile-- PROCEDURE [
directory: Handle, path: String, source: Source,
attri butes: AttributeList +- nullAttributeList,
session: Session +- nuliSession);

ReplaceChild: --NSFile-- PROCEDURE [
directory: Handle, id: 10, source: Source,
attri butes: A ttri buteLi st +- null A ttri bute Li st,
session: Session +- nuIiSession);

replaceFlags: --Display-- BitBltFlags;
replaceGrayFlags: --Display-- BitBltFlags;
ReplacementlDFoliows: --LibrarianUtility-- INTEGER = -3;
RequestHandle: --PacketExchange-- TYPE = LONG POINTER TO READONLY RequestObject;
RequestlD: --NSPrint-- TYPE = System.UniversaIID;
RequestObject: --PacketExchange-- TYPE = RECORD [

nBytes: CARDINAL,
requestType: ExchangeClientType,
requestorsExchangelD: ExchangelD,
requestorsAddress: System.NetworkAddress];

RequestStatus: --NSPrint-- TYPE = LONG DESCRIPTOR FOR ARRAY CARDINAL OF
RequestStatusComponent;

RequestStatusComponent: --NSPrint-- TYPE = MACHINE DEPENDENT RECORD [
var(0:0 .. 79): SELEcTtype(0:0 .. 15): RequestStatusType FR~M

status = > [status(l :0 .. 15): Status],
statusMessage = > [statusMessage(l :0 .. 63): String],
ENDCASE];

RequestStatuslndex: --NSPrint-- TYPE = CARDINAL [0 .. 1];
RequestStatusType: --NSPrint-- TYPE = MACHINE DEPENDENT{status, statusMessage};
Reserved: --VolumeConversion-- TYPE [249];
reservedA: --PiiotSwitches-- PilotDomainA = 40C;
reservedB: --PiiotSwitches-- PilotDomainA = 42C;

Mesa Programmer's Manual

reservedC: --PiiotSwitches-- PilotDomainA = 47C;
reservedD: --PiiotSwitches-- PilotDomainA = 53C;
reservedE: --PilotSwitches-- PilotDomainA = 55C;
reservedF: --PiiotSwitches-- PilotDomainA = 57C;
reservedG: --PiiotSwitches-- Pi 10tDomai nB = 134C;
reservedH: -PilotSwitches-- PiiotDomainC = 176C;
reservedl: --PilotSwitches-- PilotDomainC = 177C;
ReserveType: --RS232C-- TYPE = RS232CEnvlronment.ReserveType;
ReserveType: --RS232CEnvironment-- TYPE = {

preemptNever, preemptAlways, preemptlnactive};
reset: --EventTypes-- Supervisor. Event;
Reset: --Log-- PROCEDURE;
Reset: -LogFile- PROCEDURE [

file: File.File, firstPageNumber: File.PageNumber E-l];
Reset: --MSegment-- PROCEDURE [

segment: Handle, file: MFile.Handle E-dontChangeFile,
release: ReleaseData E- dontChangeReleaseData,
fileBase: File.PageNumber E- dontChangeFileBase,
pages: Environment.PageCount E- dontChangePages,
swaplnfo: SwapUnitOption E- defaultSwapUnitOption,
usage: Space. Usage E- dontChangeUsage];

Reset: --PieceSource-- PROCEDURE [source: TextSource.Handle]
RETURNS [original: TextSource.Handle];

ResetBands: --RavenFace-- PROCEDURE
RETURNS [firstBand: Index, firstBandAddress: BandPointer];

ResetEditableFile: --FileSW-- PROCEDURE [sw: Window. Handle];
ResetOnMatch: --Caret-- PROCEDURE [data: ClientData];
resetStage: --Protoco/Certification-- Stage;
ResetUserAbort: --TrY-- PROCEDURE [h: Handle];
ResetUserAbort: --Userlnput-- PROCEDURE [Window. Handle];
ResetVFN: --FileName-- PROCEDURE [

vfn: VFN, h: BOOLEAN E- FALSE, d: BOOLEAN E- FALSE, n: BOOLEAN E- FALSE,
v: BOOLEAN E- FALSE];

resolution: --LsepFace-- CARDINAL;
resolution: --RavenFace-- READONLY resolutionPair;
resolutionPair: --RavenFace-- TYPE = ARRAY {fast, slow} OF CARDINAL;
ResolveBlock: --Display-- PROCEDURE [

window: Handle, block: Environment.Block,
offsets: LONG POINTER TO ARRAY CARDINAL [0 .. 0) OF CARDINAL,
font: WindowFont.Handle E- NIL]
RETURNS [positions: CARDINAL, why: BreakReason);

ResponseProc: --ExpeditedCourier- TYPE = PROCEDURE [
hopsToResponder: Hop, elapseTime: ElapseTime, header: Header,
serialized Response: Environment.BIOCk] RETURNS [continue: BOOLEAN];

Restart: --LogFi/e-- TYPE = MACHINE DEPENDENT RECORD [
message(O:0 .. 15): UNSPECIFIED, time(l :0 .. 31): System.GreenwichMeanTime];

Restart: --RS232C-- PROCEDURE [channel: Channel Handle, class: OperationClass];
Result: --CH-- TYPE = MACHINE DEPENDENT RECORD [

flavor(0:0 .. 15): Authenticator.Flavor, status(l :0 .. 15): Authenticator.Status];
Results: --Courier-- TYPE = PROCEDURE [

resultsRecord: Parameters E- nul I Parameters,
requestDataStream: BOOLEAN E-FALSE] RETURNS [sH: Stream.Handle];

Resume: --LsepFace-- PROCEDURE;
resumeDebuggee: --EventTypes-- Supervisor. Event;
resumeSession: --EventTypes-- SupervIsor. Event;'

c

C-lOl

c

C-I02

Listing of Public Symbols

Retrieve: --NSFile-- PROCEDURE [
file: Handle, sink: Sink, session: Session f- nuIiSession];

RetrieveByName: --NSFile-- PROCEDURE [
directory: Handle, path: String, sink: Sink, session: Session f- nultSession1;

RetrieveChild: --NSFile-- PROCEDURE [
directory: Handle, id: 10, sink: Sink, session: Session f- nuIISession];

RetryCount: --Dialup-- TYPE = RS232CEnvironment. RetryCount;
RetryCount: --RS232CEnvironment-- TYPE = [0 .. 7];
retryLimit: --FormatPiiotDisk-· RetryLimit = 253;
RetryLimit: --FormatPiiotDisk-- TYPE = [0 .. 253];
ReturnCode: --CH-- TYPE = MACHINE DEPENDENT RECORD [

code(0:0 .. 15): Code,
type(1 :0;.1 5): NameType,
which(2:0 .. 15): ParameterGrouping];

returnOffset: --PrincOps-- CARDINAL = 3;
ReturnToNotifier: --Userlnput-- ERROR [string: LONG STRING];
ReturnWait: --Space-- TYPE = {return, wait};
RewritePage: --Scavenger-- PROCEDURE [

file: File.File, page: File.PageNumber, source: Space.PageNumber]
RETURNS [writeErrors: BOOLEAN];

RgflagsPtr: --Fonts-- TYPE = LONG POINTER TO PACKED ARRAY CHARACTER OF Flags;
RhsToAddress: --NSAddr-- PROCEDURE [rhs: cH.Buffer]

RETURNS [succeeded: BOOLEAN, address: Address];
RhsToNSAddr: --NSAddr-- PROCEDURE [rhs: cH.Buffer, nsAddr: NSAddr]

RETURNS [succeeded: BOOLEAN];
RightShift: --JLeveIlVKeys-- KeyName = RightOakuonShift;
RingBound: --ExpeditedCourier-- TYPE = RECORD [low: Hop, high: Hop] f- [

FIRST[Hop], LAST[Hop]];
RName: --BodyDefs-- TYPE = LONG STRING;
RNameSize: --BodyDefs-- PROCEDURE [name: RName] RETURNS [CARDINAL];
Root: --ReaIFns-- PROCEDURE [index: REAL, arg: REAL] RETURNS [REAL];
Root: --Window-- PROCEDURE RETURNS [Handle];
RootDirectoryError: --Volume-- ERROR [type: RootOirectoryErrorType];
RootOirectoryErrorType: --Volume-- TYPE = {

directoryFull, duplicateRootFile, invalidRootFileType, rootFileUnknown};
rootWindow: --Window-- READONLY Handle;
RoundC: --Real-- PROCEDURE [REAL] RETURNS [CARDINAL];
Roundl: --Real-- PROCEDURE [REAL] RETURNS [INTEGER];
RoundLl: --Real-- PROCEDURE [REAL] RETURNS [LONG INTEGER];
RoutersFunction: --Router-- TYPE = {vanillaRouting, interNetworkRouting};
routinglnformationSocket: --NSConstants-- System.SocketNumber;
routingServer: --Protoco/Certification-- Stage;
routingUser: --Protoco/Certification-- Stage;
RS232CDiagError: --CommOnlineDiagnostics-- ERROR [reason: RS232CErrorReason];
RS232CDiagStopping: --RemoteCommDiags-- ERROR [

reason: CommOnlineDiagnostlcs.StopReason];
RS232CErrorReason: --CommOnlineDiagnostics-- TYPE = MACHINE DEPENDENT{

aborted, noHardware, noSuchLine, channellnUse, unimplemented Feature,
invalidParameter,otherError};

RS232CLoopback: --CommOnlineDiagnostics-- PROCEDURE [
rs232cParams: RS232CParams, setDiagnosticLine: SetDiagnosticLine f- NIL,
writeMsg: WriteMsg f- NIL, modemChange: ModemChange f- NIL,
host: System. NetworkAddress f-System.nuIiNetworkAddress];

RS232Cloopback: --RemoteCommDiags-- PROCEDURE [
host: System. NetworkAddress, testCount: CARDINAL, lineSpeed: RS232c.LineSpeed,
correspondent: RS232c.Correspondent, lineNumber: CARDINAL,

Mesa Programmer's Manual

parity: RS232c.Parity, charLength: RS232c.CharLength,
pattern: CommOnlineDlagnostics.PatternType, constant: CARDINAL Eo- 0,
counters: LONG POINTER TO CommOnlineDiagnostics.COuntType,
data Lengths: CommOnhneDlagnostics.LengthRange,
setOiagnosticLine: PROCEDURE [lineNumber: CARDINAL] RETURNS [BOOLEAN],
writeMsg: PROCEDURE [msg: CommOnlineDiagnostics.RS232CTestMessage] Eo- NIL,
ModemChange: PROCEDURE [

modemSignal: CommOnlmeDlagnostics.ModemSignal, state: BOOLEAN] Eo- NIL];
RS232CParams: --CommOn/ineDiagnostics-- TYPE = MACHINE DEPENDENT RECORD [

testCount(O:O .. l 5): CARDINAL Eo- 1777778,
safetyTOlnMsecs(1: 0 .. 31): LONG CARDINAL Eo- 1651408,
lineSpeed(3:0 .. 1 5): RS232c.LineSpeed,
correspondent(4:0 .. 1 5): RS232c.Correspondent,
lineType(S:0 .. 15): RS232c.LineType,
lineNumber(6:0 .. 1 5): CARDINAL,
parity(7:0 .. 1 5): RS232c.Parity,
charLength(8:0 .. 15): RS232c.CharLength,
pattern(9:0 .. 15): PatternType,
constant(l 0:0 .. 1 5): CARDINAL Eo- 0,
dataLengths(11 :0 .. 31): LengthRange];

RS232CPort: --CHLookup-- TYPE = MACHINE DEPENDENT RECORD [
descri ption(O: 0 .. 63): NSString.String,
owningCIU(4:0 .. 63): NSString.String,
owningECS(8:0 .. 63): NSString.String,
owningClient(12:0 .. 63): NSString.String,
owningClientType(16:0 .. 1 5): PortClientType,
preemptionAllowed(17:0 .. 1 5): BOOLEAN,
lineNumber(18:0 .. 1 5): CARDINAL,
dialerNumber(19:0 .. 1 5): CARDINAL,
portNumber(20:0 .. 15): CARDINAL,
syncType(21 :0 .. 15): PortSyncType,
duplexity(22:0 .. 15): RS232CEnvironment.Ouplexity,
dialingHardware(23:0 .. 15): PortOialerType,
charLength(24:0 .. 15): RS232CEnvironment.CharLength,
echoing(2S:0 .. 15): PortEchoingLocation,
flowControl (26: O .. 47): RS232CEnvironment. FlowControl,
I ineSpeed(29: 0 .. 15): RS232CEnvironment. Li neSpeed,
parity(30:0 .. 15): RS232CEnvironment.Parity,
stop8its(31 : 0 .. 15): RS232CEnvironment. StopBits,
portActsAsOCE(32:0 .. 15): BOOLEAN,
timeStamp(33:0 .. 31): System.GreenwichMeanTime];

RS232CPortOescri be: --CHLookup-- Courier. Oescri ption;
RS232CPortPt: --CHLookup-- TYPE = LONG POINTER TO RS232CPort;
RS232CTestMessage: --CommOnlineDiagnostics-- TYPE = MACHINE DEPENDENT{

recvOk, recvErrors, deviceError, data Lost, xmitErrors, bad Seq, missing,
send Ok, send Errors};

Rubout: --TTY-- SIGNAL;
Rubout: --TTYSW-- SIGNAL;
ruletteCmd: --BandBLT-- CARDINAL = 13;
Run: --Exec-- PROCEDURE [

h: Token.Handle, write: Format.StringProc,
checkAbort: PROCEDURE RETURNS [abort: BOOLEAN], codeLinks: BOOLEAN Eo- FALSE];

Run: --MLoader-- PROCEDURE [
file: MFile.Handle, options: Options Eo-defaultOptions] RETURNS [Handle];

Run: --PilotClient-- PROCEDURE;

c

C-I03

c

C-I04

Listing of Public Symbols

RunConfig: -Runtime-- PROCEDURE [
file: File.File, offset: File.PageCount, codeLinks: BOOLEAN E- FALSE];

sa 1 000: --Device Types-- Device. Type;
sa 1 004: --Device Types-- Device. Type;
SA 1004pagesPerCylinder: --FormatPilotDisk-- CARDINAL = 64;
sa4000: --DeviceTypes-- Device.Type;
SA4000FirstPageForPilot: --FormatPiiotDisk-- PROCEDURE [c: SA4000Model44Count]

RETURNS [DiskPageNumber];
SA4000Model44Count: --FormatPilotDisk-- TYPE = [0 .. 4];
SA4000startOfModel44s: --FormatPiiotDisk-- OiskPageNumber = 224;
sa4008: -DeviceTypes-- Device.Type;
SA4008pagesPerCylinder: --FormatPilotDisk-- CARDINAL = 224;
sa800: --DeviceTypes-- Device.Type;
SameFile: --MFile-- PROCEDURE [file1: Handle, file2: Handle] RETURNS [BOOLEAN];
sameLine: --FormSW-- INTEGER = -1;
saveOisplayPageslndexA: --PiiotSwitchesExtraExtras--

PilotSwitches.PilotOomainC = 366C;
saveDisplayPageslndexB: --PiiotSwitchesExtraExtras-­

PilotSwitches.PilotOomainC = 367C;
. SBSOFileType: --FileTypes-- TYPE = CARDINAL [896 .. 959];
Scan: --FormatPilotDisk-- PROCEDURE [

h: PhysicaIVolume.Handle, firstPage: OiskPageNumber, count: LONG CARDINAL,
retries: Retrylimit E- 10];

ScanError: --AddressTranslation-- ERROR [position: CARDINAL];
ScanForCharacter: --NSString-- PROCEDURE (

c: Character, s: String, start: CARDINAL E- 0] RETURNS [CARDINAL];
ScanSwitches: --HeraldWindow-- PROCEDURE [

s: LONG STRING, defaultSwitches: System.Switches E- System.defaultSwitches]
RETURNS [switches: System.Switches];

ScanWordsPerLine: --LsepFace-- TYPE = (1 .. 253];
Scavenge: --Floppy-- PROCEDURE [volume: VolumeHandle]

RETURNS [numberOfBadSectors: PageCount];
Scavenge: --NSVolumeControl-- PROCEDURE [

volume: Volume.IO, options: ScavengerOptions, logVolume: Volume.IO]
RETURNS [IogFile: File.ID];

Scavenge: -PageScavenger-- PROCEDURE [
device: Oevicelndex, diskPage: PageNumber, overwrite: BOOLEAN]
RETURNS [

action: Action, contentsReliable: BOOLEAN, diskStatus: OiskStatus,
file: File.IO, filePage: File.PageNumber, type: File.Type];

Scavenge: --PhysicaIVolume-- PROCEDURE [
instance: Handle, repair: RepairType, okayToConvert: BOOLEAN]
RETURNS [status: ScavengerStatus);

Scavenge: --Scavenger-- PROCEDURE [
volume: Volume.IO, logOestination: Volume.IO, repair: RepairType,
okayToConvert: BOOLEAN] RETURNS [logFile: File.File];

ScavengerOptions: --NSVolumeControl-- TYPE = RECORD [
rootType: NSFlle.Type,
index: IndexAttributes.
orphanOirectoryName: NSStnng.String,
orphanOi rectoryType; NSFlle. Type 1;

ScavengerStatus: --PhysicaIVolume-- TYPE = RECORD (
badPageList: OamageStatus.
bootFile: OamageStatus,
germ: OamageStatus.
softMicrocode· OamageStatus,

Mesa Programmer's Manual

hardMicrocode: DamageStatus,
internalStructures: RepairStatus);

Scope: --NSFile-- TYPE = RECORD [
count: CARDINAL ~ 1777778,
direction: Direction ~ forward,
filter: Filter ~ null Filter,
ordering: Ordering ~ nuIlOrdering);

ScopedSerializelntoRhs: --CH-- PROCEDURE [
parms: Courier. Parameters, callback: PROCEDURE [8uffer]];

ScopeType: --NSFile-- TYPE = MACHINE DEPENDENT{
count, direction, filter, ordering};

ScratchMap: --Space-- PROCEDURE [
count: Environment.PageCount, usage: Usage ~ unknown Usage)
RETURNS [pointer: LONG POINTER);

screen Height: --UserTerminal-- READONL Y CARDINAL [0 .. 777778];
screenWidth: --UserTermina/-- READONL Y CARDINAL [0 .. 777778];
Scroll: --UserTerminaIExtras-- PROCEDURE [

line: Environment.BitAddress, lineCount: CARDINAL, increment: INTEGER];
ScrolibarProcType: --Scrollbar-- TYPE = PROCEDURE [window: Window.Handle)

RETURNS [box: Window.Box, offset: Percent, portion: Percent];
scrollinglnhibitsCursor: --UserTerminaIExtras-- READONLY BOOLEAN;
ScroliProcType: --Scrollbar-- TYPE = PROCEDURE [

window: Window. Handle, direction: Direction, percent: Percent];
scrollXQuantum: --UserTerminaIExtras-- READONL Y CARDINAL;
scrollYQuantum: --UserTermina/Extras-- READONLY CARDINAL;
SDDivMod: --Inline-- PROCEDURE [num: LONG INTEGER, den: LONG INTEGER]

RETURNS [quotient: LONG INTEGER, remainder: LONG INTEGER];
Seal: --VolumeConversion-- CARDINAL = 272728;
SearchPath: --MFile-- TYPE = LONG POINTER TO SearchPathObject;
searchPathNotUsed: --MFile-- CARDINAL = 177777B;
SearchPathObject: --MFi/e-- TYPE = RECORD [

length: CARDINAL, directories: SEQUENCE I: CARDINAL OF LONG STRING);
Seconds: --Authenticator-- TYPE = LONG CARDINAL;
Seconds: --Process- TYPE = CARDINAL;
SecondsToTicks: --Process- PROCEDURE [seconds: Seconds] RETURNS [ticks: Ticks];
Sectorlength: --OnlineDiagnostics-- TYPE = {one28, two56, five12, one024};
SegmentHandle: --Zone-- TYPE (1);
Selections: --NSFile-- TYPE = RECORD [

interpreted: InterpretedSelections ~ nolnterpretedSelections,
extended: ExtendedSelections ~ noExtendedSelections);

SelectNearestAddr: --NSAddr-- PROCEDURE [nsAddr: NSAddr]
RETURNS rna: System.NetworkAddress);

SelectNearestAddress: --NSAddr-- PROCEDURE [address: Address]
RETURNS rna: System.NetworkAddress);

Self Destruct: --Runtime-- PROCEDURE;
Send: --SendDefs-- PROCEDURE [handle: Handle];
SendAttention: --Stream-- PROCEDURE [sH: Handle, byte: Byte);
SendAttentionProcedure: --Stream-- TYPE = PROCEDURE [sH: Handle, byte: Byte];
SendBreak: --RS232C-- PROCEDURE [channel: Channel Handle];
SendBreak: --TTYPort-- PROCEDURE [channel: Channel Handle];
SendBreaklllegal: --RS232C-- ERROR;
SendFailed: --SendDefs-- ERROR [notDelivered: BOOLEAN];
SendFromClient: --SendDefs-- PROCEDURE [

handle: Handle, fromNet: [0 .. 255], from Host: [0 .. 255],
senderKey: BodyDefs.Password, sender: BodyDefs.RName,
returnTo: BodyDefs.RName, validate: BOOLEAN] RETURNS [StartSendlnfol;

c

C·I05

c

C-lD6

Listing of Public Symbols

SendNow: --Stream-- PROCEDURE (sH: Handle, endRecord: BOOLEAN ~TRUE];
SendNowProcedure: --Stream-- TYPE = PROCEDURE [sH: Handle, endRecord: BOOLEAN];
Send Reply: --PacketExchange-- PROCEDURE [

h: ExchangeHandle, rH: RequestHandle, replyBlk: Environment.Block,
replyType: ExchangeClientType ~ unspecified];

SendRequest: --PacketExchange-- PROCEDURE (
h: ExchangeHandle, remote: System.NetworkAddress,
requestBlk: Environment.Block, replyBlk: Environment.Block,
requestType: ExchangeClientType ~ unspecified]
RETURNS [nBytes: CARDINAL, replyType: ExchangeClientType];

separator: --CH-- CHARACTER = 72C;
separator: -NSName-- CHARACTER = 72C;
separatorCharacter: --NSName-- NSString.Character;
Serialize: --NSFile- PROCEDURE [

file: Handle, sink: Sink, session: Session ~ nuIiSession];
SerializeHeader: --ExpeditedCourier-- PROCEDURE [

rmsH: Stream. Handle, header: Header];
SerializelntoRhs: --CH-- PROCEDURE (

parms: Courier. Parameters, heap: UNCOUNTED ZONE] RETURNS [rhs: Buffer];
SerializeParameters: --Courier-- PROCEDURE [

parameters: Parameters, sH: Stream.Handle];
ServerName: --RetrieveDefs-- PROCEDURE (

handle: Handle, serverName: BodyDefs.RName];
ServerOff: --CommOnlineDiagnostics-- PROCEDURE;
ServerOn: --CommOnlineDiagnostics-- PROCEDURE;
ServerState: --RetrieveDefs-- TYPE = {unknown, empty, notEmpty};
ServerType: --FileTransfer-- TYPE = MACHINE DEPENDENT{

unknown, local, ifs, tenex, ns, null(7)};
ServerType: --RetrieveDefs-- TYPE = {MTP, GV};
Service: --ExpeditedCourier-- TYPE = RECORD [

programNumber: LONG CARDINAL,
versionRange: Courier. Version Range,
bindRequestProcedure: CARDINAL,
dispatcher: DispatcherProc];

ServiceData: --NSSessionControl-- TYPE = LONG UNSPECIFIED;
ServicelD: --NSSessionControl-- TYPE [1];
ServiceProblem: --NSFile-- TYPE = MACHINE DEPENDENT{

cannotAuthenticate, serviceFul\, serviceUnavailable, sessionlnUse};
services: --CHPIDs-- cH.PropertylD = 51;
Services: --ExpeditedCourier-- TYPE = LONG DESCRIPTOR FOR ARRAY CARDINAL OF

Service;
ServicesFileType: --FileTypes-- TYPE = CARDINAL [22000B .. 22077B];
ServicesUsage: --SpaceUsage-- TYPE = Space .Usage[256 .. 383];
Session: --NSFi/e-- TYPE [2];
Session: --NSSegment-- TYPE = NSFile.Session;
SessionAttributes: --NSSessionControl-- TYPE = RECORD [

name: NSStnng.String,
password: NSString.String,
systemElement: NSFtle.SystemElement,
createTime: System.GreenwichMeanTime,
lastActiveTime: System.GreenwichMeanTime,
privileged: BOOLEAN];

SessionProblem: --NSFile-- TYPE = MACHINE DEPENDENT{sessionlnvalid};
SessionRestrictions: --NSSessionControl-- TYPE = RECORD [

sessionsAllowed: BOOLEAN,

Mesa Programmer's Manual

maxSessionsAllowed: CARDINAL,
inactivityTimeout: CARDINAL];

SessionRestrictionSelections: --NSSessionControl-- TYPE = PACKED ARRAY
Session RestrictionType OF BooleanFalseOefault;

SessionRestrictionType: --NSSessionControl-- TYPE = { ,
sessionsAllowed, maxSessi onsAllowed, i nacti vityTi meout};

Set: --BlockSource-- PROCEDURE [source: Handle, block: Block];
Set: --Caret-- PROC,EDURE [data: ClientOata, marker: MarkProcType];
Set: --Context-- PROCEDURE [type: Type, data: Data, window: Window. Handle];
Set: --Cursor-- PROCEDURE [Defined];
Set: --Selection-- PROCEDURE [

pointer: LONG POINTER, conversion: ConvertProcType, actOn: ActOnProcType];
SetAccess: --MFile- PROCEDURE [file: Handle, access: Access];
SetAccess: --MStream-- PROCEDURE [stream: Handle, access: MFile.Access];
SetAccess: --Space-- PROCEDURE [interval: Interval, access: Access];
SetAttention: --Userlnput-- PROCEDURE [

window: Window. Handle, attention: AttentionProcType];
SetBackground: --UserTerminal-- PROCEDURE [new: Background]

RETURNS [old: Background];
SetBackingSize: --TTY-- PROCEDURE [h: Handle, size: LONG CARDINAL];
SetBackingSize: --TTYSW-- PROCEDURE [sw: Window. Handle, size: LONG CARDINAL];
SetBalanceBeamChoice: --Profile-- PROCEDURE [BalanceBeamChoice];
SetBitmapUnder: --Window-- PROCEDURE [

window: Handle, pointer: LONG POINTER Eo- NIL,
underChanged: UnderChangedProc Eo- NIL,
mouse Transformer: MouseTransformerProc Eo- NIL] RETURNS [LONG POINTER];

SetBootFiles: --Floppy-- PROCEDURE [

c

volume: VolumeHandle, pilotMicrocode: BootFilePointer Eo- nullBootFilePointer,
diagnosticMicrocode: BootFilePointer Eo- null BootFilePoi nter,
germ: BootFilePointer Eo- null BootFi lePoi nter,
pilotBootFile: BootFilePointer Eo- nuIlBootFilePointer];

SetBorder: --UserTerminal-- PROCEDURE [oddPairs: [0 .. 255], evenPairs: [0 .. 255]];
SetChecking: -Heap-- PROCEDURE [z: UNCOUNTED ZONE, checking: BOOLEAN];
SetChecking: --Zone-- PROCEDURE [zH: Handle, checking: BOOLEAN]

RETURNS [s: Status];
SetCheckingMDS: --Heap-- PROCEDURE [z: MDSZone, checking: BOOLEAN];
SetChild: --Window-- PROCEDURE [window: Handle, newChild: Handle]

RETURNS [oldChild: Handle];
SetClearingRequired: --Window-- PROCEDURE [window: Handle, required: BOOLEAN]

RETURNS [old: BOOLEAN];
SetClientSystemElement: --NSSessionContro/-- PROCEDURE [

session: NSFile.Session, systemElement: NSFile.SystemElement];
SetCiockRate: --LsepFace-- PROCEDURE [rate: VideoClockRate];
SetContext: --FloppyChanne/-- PROCEDURE [handle: Handle, context: Context]

RETURNS [ok: BOOLEAN];
SetCurrent: --FormSW-- PROCEDURE [sw: Window. Handle, index: CARDINAL];
SetCursor: --HeraldWindow-- PROCEDURE [slot: Slot, cursor: Cursor. Defined];
SetCursorPattern: --UserTerminal-- PROCEDURE [cursorPattern: CursorArray];
SetCursorPosition: --UserTerminal-- PROCEDURE [newCursorPosition: Coordinate];
SetCursorState: --HeraldWindow-- PROCEDURE [slot: Slot, state: CursorState];
SetDebugger: --Othel/oOps-- PROCEDURE [

debuggeeFile: File.File, debuggeeFirstPage: File.PageNumber,
debugger: Volume.IO, debuggerType: Device.Type, debuggerOrdinal: CARDINAL]
RETURNS [SetOebuggerSuccess];

C·I07

c

C-I08

Listing of Public Symbols

SetDebuggerSuccess: --Othel/oOps-- TYPE = {
success, nuJlBootFile, cantWriteBootFile, notlnitialBootFile,
cantFindStartListHeader, startlistHeaderHasBadVersion, other, noDebugger};

SetDebugging: --Profile-- PROCEDURE [BOOLEAN];
SetDefault: --WindowFont-- PROCEDURE [font: Handle];
SetDefaultDomain: --Profile-- PROCEDURE {domain: String];
SetDefaultName: --NSVolumeContro/-- PROCEDURE (name: NSString.String);
SetDefaultOrganization: --Profile-- PROCEDURE (organization: String);
SetDefaultOutputSink: --Format-- PROCEDURE [

new: StringProc, dientData: LONG POINTER ~ NIL]
RETURNS [old: StringProc, oldClientData: LONG POINTER);

SetDefaultRegistry: --Profile-- PROCEDURE [registry: String];
SetDefaultServerType: --FileTransfer-- PROCEDURE [

conn: Connection, type: ServerType];
SetDefaultSession: --NSFile-- PROCEDURE [session: Session];
SetDefaultTimeout: --NSVolumeContro/-- PROCEDURE [timeout: NSFile.Timeout];
SetDefaultVolume: --NSVolumeContro/-- PROCEDURE (volume: Volume.ID];
SetDeleteProtect: --MFile-- PROCEDURE [file: Handle, deleteProtected: BOOLEAN];
SetDesiredProperties: --FileTransfer-- PROCEDURE [

conn: Connection, props: DesiredProperties];
SetDiagnosticLine: --CommOnlineDiagnostics-- TYPE = PROCEDURE [

IineNumber: CARDINAL) RETURNS [lineSet: BOOLEAN];
SetDisplayProc: --Window-- PROCEDURE [Handle, PROCEDURE [Handle]]

RETURNS [PROCEDURE [Handle]];
SetEcho: --TTY-- PROCEDURE [h: Handle, new: EchoClass] RETURNS [old: EchoClass];
SetEcho: --TTYSW-- PROCEDURE [sw: Window. Handle, new: TTY.EchoClass)

RETURNS [old: TTY.EchoClass);
SetExpirationDate: --Othel/oOps-- PROCEDURE [

file: File.File, firstPage: File.PageNumber,
expirationDate: System.GreenwichMeanTime) RETURNS [SetExpirationDateSuccess);

SetExpirationDateSuccess: --Othel/oOps-- TYPE = SetDebuggerSuccess
[success .. other1;

SetExtension: --FileWindow-- PROCEDURE [ext: LONG STRING];
SetFile: --FileSW-- PROCEDURE [

sw: Window.Handle, name: LONG STRING, s: Stream.Handle ~ NIL,
position: TextSource.Position ~ 0];

SetFileServerProtocol: --Profile-- PROCEDURE [FileServerProtocol];
SetFont: --Menu-- PROCEDURE [font: WindowFont.Handle];
SetGetSwitchesSuccess: --Othel/oOps-- TYPE = SetDebuggerSuccess

[success .. other];
Setlndex: --MemoryStream-- PROCEDURE [

sH: Stream.Handle, position: Stream.Position];
setlnkCmd: --BandBLT-- CARDINAL = 12;
SetlnputFocus: --Userlnput-- PROCEDURE [

w: Window. Handle, notify: PROCEDURE [Window. Handle, LONG POINTER],
takeslnput: BOOLEAN, data: LONG POINTER ~ NIL];

SetlnputOptions: --Stream-- PROCEDURE IsH: Handle, options: InputOptions];
Setlnsertion: --Selection-- PROCEDURE [

pointer: LONG POINTER, conversion: ConvertProcType,
clear: ClearTrashBinProcType);

SetlnterruptMasks: --LsepFace·- PROCEDURE [
control: WORD, status: WORD, data: WORD);

SetlnterruptMasks: --RavenFace-- PROCEDURE [
control: WORD, status: WORD, data: WORD];.

SetLength: --MFile-- PROCEDURE [file: Handle, length: ByteCount);
SetLength: --MStream-- PROCEDURE [stream: Handle, fileLength: MFile.ByteCount);

Mesa Programmer's Manual

setLevelCmd: --BandBLT-- CARDINAL = 11;
SetLibrarian: --Profile-- PROCEDURE [

name: String Eo- noChange,prefix: String Eo- noChange,
suffix: String Eo- noChange];

SetLineType: --RS232C-- PROCEDURE [channel: ChannelHandle, IineType: LineType);
SetLogReadLength: --MStream-- PROCEDURE [

stream: Handle, position: MFile.ByteCount];
SetMaxDiskLength: --DiskSource-- PROCEDURE, [

source: TextSource.Handle, maxLength: LONG CARDINAL];
SetMinimumWindows: --FileWindow-- PROCEDURE [keep: CARDINAL];
SetModifyNotificationProc: --FormSW-- PROCEDURE [

sw: Window. Handle, proc: ProcType Eo- NIL];
SetMousePosition: --UserTerminal-- PROCEDURE [newMousePosition: Coordinate];
SetMTPRetrieveDefault: --RetrieveDefs-- PROCEDURE [

host: LONG STRING, reg: LONG STRING];
SetNetworklD: --Router-- PROCEDURE [

physicalOrder: CARDINAL, medium: PhysicalMedium,

c

newNetlD: System.NetworkNumber] RETURNS [oldNetID: System.NetworkNumber];
SetNotifier: --Scrol/bar-- PROCEDURE [

window: Window. Handle, type: Type, notify: ScroliProcType]
RETURNS [ScroIIProcType];

SetOptions: --FormSW-- PROCEDURE [SW: Window. Handle, options: Options];
SetOverflow: --Log-- PROCEDURE [option: Overflow];
SetPageOffsets: --RavenFace-- PROCEDURE [

IinesFromLeft: CARDINAL, wordTabFromBottom: CARDINAL];
SetParameter: --RS232C-- PROCEDURE [

channel: Channel Handle, parameter: Parameter];
SetParameter: --TTYPort-- PROCEDURE [

channel: Channel Handle, parameter: Parameter];
SetParent: --Window- PROCEDURE [window: Handle, newParent: Handle]

RETURNS [oldParent: Handle];
SetPhysicalVolumeBootFile: --Othel/oOps-- PROCEDURE [

file: File.File, type: BootFileType, firstPage: File.PageNumber];
SetPNR: --Menu-- PROCEDURE [Window. Handle];
SetPosition: --Stream-- PROCEDURE IsH: Handle, position: Position];
SetPositionProcedure: --Stream-- TYPE = PROCEDURE [

sH: Handle, position: Position];
SetPrimaryCredentials: --FileTransfer-- PROCEDURE [

conn: Connection, user: LONG STRING, password: LONG STRING];
SetPriority: --Process-- PROCEDURE [priority: Priority];
SetProcessorTime: --Othel/oOps-- PROCEDURE [time: System.GreenwichMeanTime];
SetProcs: --FileTransfer-- PROCEDURE [

conn: Connection, clientData: LONG POINTER, messages: MessageProc Eo- NIL,
login: ClientProc Eo- NIL, noteProgress: ClientProc Eo- NIL,
checkAbort: CheckAbortProc Eo- NIL];

SetProperties: --MFile-- PROCEDURE [
file: Handle, create: Time.Packed Eo- System.gmtEpoch,
write: Time.Packed Eo- System.gmtEpoch, read: Time.Packed Eo- System.gmtEpoch,
length: ByteCount, type: Type, deleteProtected: BOOLEAN Eo- FALSE,
writeProtected: BOOLEAN Eo- FALSE, readProtected: BOOLEAN Eo- FALSE];

SetProperty: --MFile-- PROCEDURE [
file: Handle, property: Property, block: Environment.Block];

SetProtection: --MFile-- PROCEDURE [
file: Handle, deleteProtected: BOOLEAN Eo- FALSE,
write Protected : BOOLEAN Eo- FALSE, read Protected : BOOLEAN Eo- FALSE];

SetReadProtect: --MFile-- PROCEDURE [file: Handle, readProtected: BOOLEAN];

(' 109

c

C-IIO

Listing of Public Symbols

SetReleaseData: --MFile-- PROCEDURE [file: Handle, release: ReleaseOata);
SetReleaseData: --MSegment-- PROCEDURE [segment: Handle, release: ReleaseOata);
SetReleaseData~ --MStream-- PROCEDURE [stream: Handle, release: ReleaseOata];
SetRemoteName: --FileName-- PROCEDURE [

file: MFile.Handle, remoteName: LONG STRING];
SetRestart: --Log-- PROCEDURE [message: UNSPECIFIED];
SetRootFile: --Floppy-- PROCEDURE [file: FileHandle];
SetRootNode: --Zone-- PROCEDURE [zH: Handle, node: Base RELATIVE POINTER);
SetScanLineLength: --LsepFace-- PROCEDURE [scanLineWords: ScanWordsPerLine];
SetScanLineLength: --RavenFace-- PROCEDURE [activeWordsEachScanline: [1 .. 256]];
SetSearchPath: --MFile-- PROCEDURE [Search Path]

RETURNS [succeeded: BOOLEAN +- TRUE];
SetSecondaryCredentials: --FileTransfer-- PROCEDURE [

conn: Connection, connectName: LONG STRING, connectPassword: LONG STRING];
SetSelection: -FormSW-- PROCEDURE [

sw: Window.Handle, index: CARDINAL, first: CARDINAL, last: CARDINAL];
SetServiceData: --NSSessionContro/-- PROCEDURE [

session: NSFile.Session, id: ServicelO, data: ServiceOata,
handler: TerminationHandler];

SetSeverity: --MsgSW-- PROCEDURE [sw: Window. Handle, severity: Severity];
SetSibling: --Window-- PROCEDURE [window: Handle, newSibling: Handle]

RETURNS [oldSibling: Handle];
SetSize: --File-- PROCEDURE [file: File, size: PageCount];
SetSize: --FileWindow-- PROCEDURE [sw: Window.Handle, box: Window. Box];
SetSizelnBytes: --NSSegment-- PROCEDURE [

file: NSFile.Handle, bytes: ByteCount, segment: 10 +- defaultlO,
session: Session +- nuIlSession];

SetSizelnPages: --NSSegment-- PROCEDURE [
file: NSFile.Handle, pages: PageCount, segment: 10 +-defaultIO,
session: Session +- nuIlSession];

SetSourceMenu: --FileWindow-- PROCEDURE [menu: Menu.Handle];
SetSST: --Stream-- PROCEDURE [sH: Handle, sst: SubSequenceType];
SetSSTProcedure: --Stream-- TYPE = PROCEDURE [sH: Handle, sst: SubSequenceType];
SetState: --Log-- PROCEDURE [state: State];
SetState: --UserTerminal-- PROCEDURE [new: State] RETURNS [old: State];
SetStickyFlags: --Real-- PROCEDURE [new: ExceptionFlags +- NoExceptions]

RETURNS [old: ExceptionFlags];
SetStreamTimeout: --NSDataStream-- PROCEDURE [

stream: Handle, waitTimelnSeconds: LONG CARDINAL];
SetStringln: --Userlnput-- PROCEDURE [

window: Window. Handle, proc: StringProcType] RETURNS [old: StringProcType];
SetStringOut: --Userlnput-- PROCEDURE [

window: Window.Handle, proc: StringProcType] RETURNS [old: StringProcType];
SetSwapCtrlAndCommand: --Profile-- PROCEDURE [BOOLEAN];
SetSwitches: --HeraldWindow-- PROCEDURE [new: System.S,witches];
SetSwitches: --Othel/oOps-- PROCEDURE [

file: File.File, firstPage: File.PageNumber, switches: System.Switches]
RETURNS [SetGetSwitchesSuccess];

SetTabs: --AsciiSink-- PROCEDURE [
sink: TextSink.Handle, tabStops: TabStops +- NIL];

SetTagPlaces: --FormSW-- PROCEDURE [
items: ItemOescriptor,
tabStops: LONG DESCRIPTOR FOR ARRAY CARDINAL OF CARDINAL, bitTabs: BOOLEAN];

SetTimeout: --Process-- PROCEDURE [
condition: LONG POINTER TO CONDITION, ticks: Ticks];

Mesa Programmer's Manual

SetTimeoutProcedure: --Stream-- TYPE = PROCEDURE [
sH: Handle, waitTime: Milliseconds];

SetTimes: --MFile-- PROCEDURE [
file: Handle, create: Time.Packed E- System.gmtEpoch,

c

read: Time.Packed E-System.gmtEpoch, write: Time.Packed E-System.gmtEpoch];
SetTrashBin: --Selection-- PROCEDURE [

pointer: LONG POINTER, conversion: ConvertProcType,
clear: ClearTrashBinProcType];

SetType: --MFile-- PROCEDURE [file: Handle, type: Type];
SetTypeln: --FormSW-- PROCEDURE [

sw: Window. Handle, index: CARDINAL, position: CARDINAL];
SetTypescriptSize: --FileSW-- PROCEDURE [

sw: Window.Handle, size: LONG CARDINAL];
SetUser: --Profile-- PROCEDURE [

name: String E- noChange, password: String E- noChange];
SetUserAbort: --Userlnput-- PROCEDURE [Window. Handle];
SetVolumeBootFile: --OthelloOps-- PROCEDURE [

file: File.File, type: BootFileType, firstPage: File.PageNumber];
SetWaitTime: --NetworkStream-- PROCEDURE [sH: Stream.Handle, time: WaitTime];
SetWaitTimes: --PacketExchange-- PROCEDURE [

h: ExchangeHandle, waitTime: WaitTime, retransmissionlnterval: WaitTime];
SetWriteProtect: --MFile-- PROCEDURE [file: Handle, writeProtected: BOOLEAN];
Severity: --FileTransfer-- TYPE = {verbose, terse, warning, fatal};
Severity: --MsgSW-- TYPE = {info, warning, fatal};
ShareBlock: --MStream-- PROCEDURE [

stream: Handle, start: MFile.ByteCount, length: CARDINAL]
RETURNS [block: Environment.Block];

Shift: -Display-- PROCEDURE [
window: Handle, box: Window. Box, newPlace: Window.Place];

ShortBlock: --Stream-- ERROR;
ShortControlLink: --PrincOps-- TYPE = MACHINE DEPENDENT RECORD [

SELECT OVERLAID Control Li nkTag FROM
frame = > [frame(0:0 .. 15): LocalFrameHandle],
procedure = > NULL,
indirect = > [

SELECT OVERLAID * FROM
port = > [port(0:O .. 15): PortHandle],
link = > [link(0:0 .. 15): POINTER TO Control Link],
ENDCASE],

rep = > [
fillO(O:O .. 13): [O .. 37777B],
indirect(O: 14 .. 14): BOOLEAN,
proc(O: 15 .. 15): BOOLEAN],

ENDCASE];
ShortCopyREAD: --DebugUsefuIDefs-- PROCEDURE [

from: ClientSource, nwords: CARDINAL, to: LocalDestl;
ShortCopyWRITE: --DebugUsefuIDefs-- PROCEDURE [

from: LocalSource, nwords: CARDINAL, to: ClientDest];
ShortREAD: --DebugUsefuIDefs-- PROCEDURE [Ioc: ClientSource]

RETURNS [val: UNSPECIFIED];
ShortWRITE: --DebugUsefulOefs-- PROCEDURE [Ioc: ClientDest, val: UNSPECIFIED];
Sides: --Floppy-- TYPE = {one, two, default};
siemens9750: --RS232CCorrespondents-- RS232CEnvironment.Correspondent;
Signal: --BackstopNub-- TYPE [2];
Si gnal Msg: --BackstopNub-- TYPE [1];

C-lll

c

C-112

Listing 01 Public Symbols

SignalRemoteError: --Courier-- ERROR [
errorNumber: CARDINAL, arguments: Parameters Eo- nuIlParameters];

SimpleCredentials: --NSName-- TYPE = NameRecord;
SimpleDestroyProc: --Context-- DestroyProcType;
SimpleVerifier: --NSName-- TYPE = HashedPassword;
Sin: --ReaIFns-- PROCEDURE [radians: REAL) RETURNS [sin: REAL];
SinDeg: --ReaIFns-- PROCEDURE [degrees: REAL] RETURNS [sin: REAL];
SingleDouble: --OnlineDiagnostics-- TYPE = {single, double};
SingleLineBand: --LsepFace-- TYPE = LONG POINTER;
Sink: --NSDataStream-- TYPE = RECORD [

SELECT type: * FROM
proc = > [proc: PROCEDURE [SourceStream]],
stream = > [stream: SinkStream],
none = > NULL,
ENDCASE);

Sink: --NSFile-- TYPE = NSDataStream.Sink;
SinkStream: --NSDataStream-- TYPE = RECORD [Handle];
sizelnBytes: --NSAssignedTypes-- AttributeType = 16;
sizelnPages: --NSAss;gnedTypes-- AttributeType = 26;
SizeOfSerializedData: --NSName-- PROCEDURE [parameters: Courier. Parameters)

RETURNS [sizelnWords: CARDINAL);
SkipBand: --LsepFace-- PROCEDURE;
SkipToNext: --FormSW-- PROCEDURE [sw: Window.Handle);
Sleep: --FormSW-- PROCEDURE [Window. Handle);
Slide: --Window-- PROCEDURE [window: Handle, newPlace: Place);
SlideAndSize: --Window-- PROCEDURE [.

window: Handle, newBox: Box, gravity: Gravity Eo- nw);
SlideAndSizeAndStack: --Window-- PROCEDURE [

window: Handle, newBox: Box, newSibling: Handle, newParent: Handle Eo- NIL,
gravity: Gravity Eo- nw);

SlideAndStack: --Window-- PROCEDURE [
window: Handle, newPlace: Place, newSibling: Handle, newParent: Handle Eo-

NIL);
Slideiconically: --Window-- PROCEDURE [window: Handle, newPlace: Place];
Slot: --HeraldWindow-- TYPE = LONG POINTER TO SlotObject;
SlotObject: --HeraldWindow-- TYPE;
smallAnonymousBacki ngFi Ie: --Pi/otSwitches-- AnonymousBacki ngFi leSi ze = 173C;·
SmallestNormalizedNumber: --Real-- REAL;
SocketNumber: --Format-- PROCEDURE [

proc: StringProc, socketNumber: System.SocketNumber, format: NetFormat,
clientData: LONG POINTER Eo- NIL);

SocketNumber: --Put-- PROCEDURE [
h: Window. Handle Eo- NIL, socketNumber: System.SocketNumber, format:

NetFormat];
SolicitClock: --LsepFace-- PROCEDURE;
SolicitPaperSource: --LsepFace-- PROCEDURE [paperSource: PaperSource];
SolicitStatus: --LsepFace-- PROCEDURE;
SolicitStatus: --RavenFace-- PROCEDURE;
Sort: --GSort-- PROCEDURE [

get: GetProcType, put: PutProcType, compare: CompareProcType,
expectedltemSize: CARDINAL Eo- 30, maxltemSize: CARDINAL Eo- 1000,
pageslnHeap: CARDINAL Eo- 100];

SortltemPort: --GSort-- TYPE = PORT [len: CARDINAL] RETURNS [p: LONG POINTER];
SortStarter: --GSort-- TYPE = PORT [

nextltem: LONG POINTER TO SortltemPort, put: PutProcType,
compare: CompareProcType, expectedltemSize: CARDINAL Eo- 30,

Mesa Programmer's Manual

maxltemSize: CARDINAL +-1000, pageslnHeap: CARDINAL +-100]
RETURNS [p: LONG POINTER];

SortStopper: --GSort-- TYPE = PORT [len: CARDINAL +- 0];
Source: --NSDataStream-- TYPE = RECORD [

SELECT type: * FROM
proc = > [proc: PROCEDURE [SinkStream]],
stream = > [stream: SourceStream],
none = > NULL,
ENDCASE];

Source: --NSFile-- TYPE = NSDataStream.Source;
Source: --Selection-- TYPE = LONG POINTER TO SourceObject;
SourceEditProc: --FormSW-- FilterProcType;
SourceHandle: --FormSW-- TYPE = LONG POINTER TO source ItemObject;
Sourceltem: --FormSW-- PROCEDURE [

tag: LONG STRING +- NIL, readOnly: BOOLEAN +- FALSE, invisible: BOOLEAN +- FALSE,
drawBox: BOOLEAN +- FALSE, hasContext: BOOLEAN +- FALSE,
inHeap: BOOLEAN +- FALSE, place: Window. Place +- nextPlace,
boxWidth: CARDINAL +- defaultBoxWidth,
filterProc: FilterProcType +- SourceEditProc,
menuProc: MenuProcType +- VanillaMenuProc, source: TextSource.Handle,
z: UNCOUNTED ZONE +- NIL] RETURNS [SourceHandle];

SourceObject: --Se/ection-- TYPE = RECORD [
data: LONG POINTER, proc: SourceProc, destroy: DestroyProc];

SourceProc: --Se/ection-- TYPE = PROCEDURE [
data: ClientData, string: LONG STRING];

SourceStream: --NSDataStream-- TYPE = RECORD [Handle];
SP: --Ascii-- CHARACTER = 40C;
SpaceProblem: --NSFile-- TYPE = MACHINE DEPENDENT{

allocation Exceeded, attributeAreaFull, mediumFull};
spare1: --Event-- READONLY Supervisor.SubsystemHandle;
spare1: --EventTypes-- Supervisor. Event;
spare2: --Event-- READONLY Supervisor.SubsystemHandle;
spare2: --EventTypes-- Supervisor. Event;
spare3: --Event-- READONL Y Supervisor.SubsystemHandle;
spare3: --EventTypes-- Supervisor. Event;
spare4: --Event-- READONL Y Supervisor. Subsystem Handle;
spare4: -EventTypes-- Supervisor. Event;
spareS: --Event-- READONLY Supervisor.SubsystemHandle;
spareS: --EventTypes-- Supervisor. Event;
SpareEvents: --EventTypes-- TYPE = [1000 .. 177776B];
SplitNode: --Zone-- PROCEDURE [zH: Handle, p: LONG POINTER, n: Bl9ckSize]

RETURNS [s: Status];
Spooler: --NSPrint-- TYPE = MACHINE DEPENDENT{available, busy, disabled, full};
sppAttn: --ProtocoICertification-- Stage;
sppConnect: --Protoco/Certification-- Stage; ,
sppDuplex: --ProtocoICertification-- Stage;
sppListen: --ProtocoICertification-- Stage;
sppMulti: --ProtocoICertification-- Stage;
sppOutOfSeq: --ProtocoICertification-- Stage;
sppProbing: --ProtocoICertification-- Stage;
sppRetrans: --Protoco/Certification-- Stage;
sppSink: --ProtocoICertification-- Stage;
sppSource: --ProtocoICertification-- Stage;
sppSst: --ProtocoICertification-- Stage;
sppThruput: --Protoco/Certification-- Stage;
SqRt: --ReaIFns-- PROCEDURE [REAL] RETURNS [REAL];

c

C·1l3

c

C-114

Listing of Public Symbols

SrcDesc: --BitB/t-- TYPE = MACHINE DEPENDENT RECORD [
SELECT OVERLAID 'It FROM
gray = > [gray(O:O .. 15): GrayParm],
srcBpl = > [srcBpl(0:0 .. 15): INTEGER],
ENDCASE];

SrcFunc: --BitB/t-- TYPE = {null, complement};
SSTChange: --Stream-- SIGNAL [sst: SubSequence Type, nextlndex: CARDINAL];
Stack: --Window-- PROCEDURE [

window: Handle, newSibling: Handle, newParent: Handle Eo- NIL];
stackDepth: --PrincOps-- CARDINAL = 14;
stackSize: --BackstopNub-- CARDINAL = 14;
Stage: --Protoco/Certification-- TYPE = MACHINE DEPENDENT RECORD [

mediumType(0:0 .. 7): MediumType,
protocoILevel(0:8 .. 15): Protocol Level,
protocol Name(1 : 0 .. 7): Protocol Name,
stageNumber(l :8 .. 15): StageNumber1;

END.
StageNumber: --ProtocolCertification-- TYPE = CARDINAL [0 .. 15];
Start: --Exec-- PROCEDURE [handle: MLoader.Handle];
Start: --MLoader-- PROCEDURE [Handle};
Start: --NSSessionControl-- PROCEDURE;
Start: --NSVolumeControl-- PROCEDURE;
Start: --RS232CContro/-- PROCEDURE;
StartCounting: --SpyClient-- PROCEDURE;
StartEchoUser: --CommOnlineDiagnostics-- PROCEDURE [

targetSystemElement: System. NetworkAddress, echoParams: EchoParams,
eventReporter: EventReporter Eo- NI,.,
host: System. NetworkAddress Eo-System.nuIiNetworkAddress];

StartEchoUser: --RemoteCommDiags-- PROCEDURE [
host: System. NetworkAddress, targetSystem Element: System. NetworkAddress,
echoParams: Com mOnlineDiagnostics. EchoParams,
event Reporter: CommOnlineDiagnostics.EventReporter Eo- NIL]
RETURNS [echoUser: CommOnlineDiagnostics. EchoUserHandle];

Started: --DebugUsefu/Defs-- PROCEDURE [GFHandle] RETURNS [BOOLEAN];
startEnumeration: --Router-- READONLY System. NetworkNumber;
StartFault: --Runtime-- ERROR [dest: PROGRAM];
Startlmage: --LsepFace-- PROCEDURE;
Startlmage: --RavenFace-- PROCEDURE [firstBand: Index];
StartlndexGreaterThanStoplndexPlusOne: --ByteB/t-- ERROR;
StartingProcess: --Event-- PROCEDURE rid: LONG STRING] RETURNS [Handle];
Startltem: --SendDefs-- PROCEDURE [handle: Handle, type: BodyDefs.ltemType];
StartSend: --SendDefs-- PROCEDURE [

handle: Handle, senderPwd: LONG STRING, sender: BodyDefs.RName,
return To: BodyDefs.RName Eo- NIL, validate: BOOLEAN] RETURNS [StartSendlnfoj;

StartSendlnfo: -SendDefs-- TYPE = {
ok, badPwd, badSender, bad ReturnTo, all Down};

StartStop: --Userlnput-- TYPE = {start, stop};
StartText: --SendDefs-- PROCEDURE [handle: Handle};
StarUsage: --SpaceUsage-- TYPE = Space .Usage[384 .. 511];
State: --Log-- TYPE = MACHINE DEPENDENT{off, error, warning, remark};
State: --UserTermina/-- TYPE = {on, off, disconnected};
StateVector: --PrincOps-- TYPE = MACHINE DEPENDENT RECORD [

stk(0:0 .. 223): ARRAY [0 .. 13} OF UNSPECIFIED,
instbyte(14:0 .. 7): BYTE,
stkptr(14:8 .. 15}: BYTE,

Mesa Programmer's Manual

data(lS:0 .. 47): SELECT OVERLAID '" FROM
dst = > NULL,
fault = > [

frame(lS:0 .. lS): LocalFrameHandle,
faultData(16:0 .. 31): SELECT OVERLAID * FROM

allocFault = > [fsi(16:0 .. 1S): FrameSizelndex],
memFault = > [memPointer(16:0 .. 31): LONG POINTER],
otherFault = > [dataArray(16): ARRAY [0 .. 0) OF UNSPECIFIED],
ENDCASE],

ENDCASE];
Statslndices: --CommOnlineDiagnostics-- TYPE = {

echoServerPkts, EchoServerBytes, packetsRecv, wordsRecv, packetsMissed,
badRecvStatus, okButDribble, badCrc, badAlignmentButOkCrc,

crcAndBadAI i gnment,
packetTooLong, overrun, idlelnput, packetsSent, wordsSent, badSendStatus,
tooManyCollisions, lateCollisions, underrun, stuckOutput, collO, coli 1 , co112,
coll3, coll4, coilS, coll6, coll7, coliS, coll9, coli 10, colll1, co1l12,
coli 13, coli 14, call 1 5, spare};

Status: --Authenticator-- TYPE = MACHINE DEPENDENT{
OK, invalidVerifier, expiredVerifier, reusedVerifier, invalid Credentials,
expiredCredentials, (177777B)};

Status: --FloppyChannel-- TYPE = MACHINE DEPENDENT RECORD [
diskChanged(O:O .. O): BOOLEAN,
tbdl(0:1..1): BOOLEAN,
twoSided(0:2 .. 2): BOOLEAN,
tbd2(0:3 .. 3): BOOLEAN,
error(0:4 .. 4): BOOLEAN,
inProgress(0:S .. 5): BOOLEAN,
recalibrateError(0:6 .. 6): BOOLEAN,
sectorTooLarge(0:7 .. 7): BOOLEAN,
notReady(O:S .. S): BOOLEAN,
writeProtect(0:9 .. 9): BOOLEAN,
deleted Data(O: 10 .. 10): BOOLEAN,
recordNotFound(O: 11.. 11): BOOLEAN,
crcError(O: 12 .. 12): BOOLEAN,
trackOO(O: 13 .. 13): BOOLEAN,
hardwareError(O: 14 .. 14): BOOLEAN,
goodCompletion(O: 1 5 .. 15): BOOLEAN];

Status: --NSPrint-- TYPE = MACHINE DEPENDENT{
pending, inProgress, completed, completedWithWarnings, unknown, rejected,
aborted, canceled, held};

Status: -Volume-- TYPE = {
unknown, partiallyOnLine, closedAndlnconsistent, closedAndConsistent,
openRead,openReadWrite};

Status: -Zone-- TYPE = {
okay, noRoomlnZone, nonEmptySegment, storageOutOfRange, zoneTooSmall,
segmentTooSmall, invalid Node, invalidZone, invalidSegment, nodeLoop,
wrongSeal, wrongVersion};

StatusWait: --RS232C-- PROCEDURE [channel: Channel Handle, stat: DeviceStatus]
RETURNS (newstat: DeviceStatus];

StatusWait: --TTYPort-- PROCEDURE [channel: Channel Handle, stat: DeviceStatusl
RETURNS (newstat: DeviceStatusl;

stdDandelionMemorySize: --PilotSwitches-- PilotDomainA = 71 C;
Stop: --RS232CControl-- PROCEDURE [suspendActiveChannels: BOOLEAN];
StopBits: --RS232C-- TYPE = RS232CEnvtronment.StopBits;
StopBits: --RS232CEnvironment-- TYPE = (1 .. 2];

c

C-ilS

c

C-116

Listing of Public Symbols

StopBits: •• TTYPort·- TYPE = TTYPortEnvironment.StopBits;
StopBits: ·-TTYPortEnvironment·- TYPE = {none, one, oneAndHalf, two};
StopCounting: --SpyClient-- PROCEDURE;
Stoplmage: --LsepFace-- PROCEDURE;
Store: --Cursor-- PROCEDURE [Handle];
store: --EventTypes-- Supervisor. Event;
Store: --NSFile-- PROCEDURE [

directory: Handle, source: Source,
attributes: AttributeList +- nullAttributeList, controls: Controls +- [],
session: Session +- nullSession] RETURNS [file: Handle];

StoreCursor: --HeraldWindow-- PROCEDURE [
slot: Slot, cursor: LONG POINTER TO userTermmaI.CursorArray];

StoreStream: --FileTransfer-- PROCEDURE [
conn: Connection, remote: FlleName.VFN, veto: VetoProc +- NIL,
showDates: BOOLEAN +- FALSE, stream: Stream. Handle, creation: Time.Packed,
bytes: LONG CARDINAL, fileType: FileType];

StreamType: --FileTransfer-- TYPE = {remote, local, temporary};
String: --MDSStorage-- PROCEDURE [nchars: CARDINAL] RETURNS [s: STRING];
String: --NSFile-- TYPE = NSString.Stri ng;
String: --NSName-- TYPE = NSString.String;
String: --NSPrint-- TYPE = NSStnng.String;
String: --NSString-- TYPE = RECORD [

bytes: LONG POINTER TO PACKED ARRAY CARDINAL OF Environment.Byte,
length: CARDINAL +-0,
maxlength: CARDINAL +-.0];

String: --Profile-- TYPE = LONG STRING;
String: --Storage-- PROCEDURE [nchars: CARDINAL] RETURNS [s: LONG STRING];
StringBody: --NSVolumeControl-- TYPE = MACHINE DEPENDENT RECORD [

length(0:0 .. 15): CARDINAL, bytes(1): PACKED ARRAY [0 .. 0) OF Environment.Byte];
StringBoundsFault: --NSString-- SIGNAL [old: String, increaseBy: CARDINAL]

RETURNS [new: String];
StringBoundsFault: --String-- SIGNAL [s: LONG STRING] RETURNS [ns: LONG STRING];
StringEditProc: --FormSW-- FilterProcType;
Stri ngExpToDeci mal : --DebugUsefulDefs-- PROCEDURE [LONG STRING]

RETURNS [INTEGER];
StringExpToLDecimal: --DebugUsefulDefs-- PROCEDURE [LONG STRING]

RETURNS [LONG INTEGER];
StringExpToLNum: --DebugUsefulDefs-- PROCEDURE [

exp: LONG STRING, radix: CARDINAL] RETURNS [LONG UNSPECIFIED];
StringExpToLOctal: --DebugUsefulDefs-- PROCEDURE [LONG STRING]

RETURNS [LONG CARDINAL];
StringExpToNum: --DebugUsefulDefs-- PROCEDURE [

exp: LONG STRING, radix: CARDINAL] RETURNS [UNSPECIFIED];
StringExpToOctal: --DebugUsefuIDefs-- PROCEDURE [LONG STRING]

RETURNS [CARDINAL];
StringFeedback: --FormSW-- TYPE = {normal, password};
StringForErrorCode: --MailParse-- PROCEDURE [code: ErrorCode, s: LONG STRING];
StringFromMesaString: --NSString-- PROCEDURE [s: MesaString] RETURNS [String];
StringHandle: --FormSW-- TYPE = LONG POINTER TO string ItemObject;
Stringltem: --FormSW-- PROCEDURE [

tag: LONG STRING +- NIL, readOnly: BOOLEAN +- FALSE, invisible: BOOLEAN +- FALSE,
drawBox: BOOLEAN +- FALSE, hasContext: BOOLEAN +- FALSE,
inHeap: BOOLEAN +- FALSE, place: Window.Place +- nextPlace,
feedback: StringFeedback +- normal, boxWidth: CARDINAL +-defaultBoxWidth,
filterProc: FilterProcType +- StringEditProc,
menuProc: MenuProcType +- VanillaMenuProc, string: LONG POINTER TO LONG

Mesa Programmer's Manual

STRING,
z: UNCOUNTED ZONE +- NIL] RETURNS [StringHandle];

StringLength: --MDSStorage--PRoCEDURE [s: LONG STRING] RETURNS [CARDINAL];
StringLength: --Storage-- PROCEDURE [s: LONG STRING] RETURNS [CARDINAL];
StringLength: --String-- PROCEDURE [s: LONG STRING] RETURNS [CARDINAL];
StringOut: --Userlnput-- PROCEDURE [window: Window. Handle, string: LONG STRING];
StringProc: --Format-- TYPE = PROCEDURE [

s: LONG STRING, clientData: LONG POINTER +- NIL];
StringProcType: --Userlnput-- TYPE = PROCEDURE [

window: Window.Handle, string: LONG STRING];
StringToDecimal: --ExtendedString-- PROCEDURE [

field: LONG POINTER, size: CARDINAL, string: LONG STRING];
StringToDecimal: --NSString-- PROCEDURE [s: String] RETURNS [INTEGER];
StringToDecimal: --String-- PROCEDURE [s: LONG STRING] RETURNS [INTEGER];
StringToHostNumber: --AddressTranslation-- PROCEDURE [LONG STRING]

RETURNS [System. HostNumber];
StringToLongNumber: --NSString-- PROCEDURE [s: String, radix: CARDINAL +- 10]

RETURNS [LONG UNSPECIFIED];
StringToLongNumber: --String-- PROCEDURE [s: LONG STRING, radix: CARDINAL +-10]

RETURNS [LONG UNSPECIFIED];
StringToNetworkAddress: --AddressTranslation-- PROCEDURE [

s: LONG STRING, defaultCHPID: cH.PropertylD +- 0,
distingName: NSName.Name +- NIL]
RETURNS [addr: NetworkAddress, chUsed: BOOLEAN, usedCHPID: cH.PropertyID];

StringToNetworkNumber: --AddressTranslation-- PROCEDURE [LONG STRING]
RETURNS [System. NetworkNumber];

StringToNumber: --ExtendedString-- PROCEDURE [
field: LONG POINTER, size: CARDINAL, base: CARDINAL, string: LONG STRING];

StringToNumber: --NSString-- PROCEDURE [s: String, radix: CARDINAL +- 10]
RETURNS [UNSPECIFIED];

StringToNumber: --String-- PROCEDURE [s: LONG STRING, radix: CARDINAL +- 10]
RETURNS [UNSPECIFIED];

StringToOctal: --ExtendedString-- PROCEDURE [
field: LONG POINTER, size: CARDINAL, string: LONG STRING];

StringToOctal: --NSString-- PROCEDURE [s: String] RETURNS [UNSPECIFIED];
StringToOctal: --String-- PROCEDURE [s: LONG STRING] RETURNS [UNSPECIFIED];
StringToPacked: --Date-- PROCEDURE [

s: LONG STRING, zoneFormat: Time.TimeZoneStandard +-ANSI]
RETURNS [dt: Packed, notes: Notes, length: NATURAL];

StringToReal: --Real-- PROCEDURE [LONG STRING] RETURNS [REAL];
Stuff Character: --Userlnput-- PROCEDURE [window: Window. Handle, char: CHARACTER]

RETURNS [BOOLEAN];
StuffCurrentSelection: --Userlnput-- PROCEDURE [window: Window. Handle]

RETURNS [BOOLEAN];
Stuff String: --Userlnput-- PRo.CEDURE [

window: Window. Handle, string: LONG STRING] RETURNS [BOOLEAN];
StuffTrashBin: --Userlnput-- PROCEDURE [window: Window. Handle]

RETURNS [BOOLEAN];
SubdivideName: --NSName-- PROCEDURE [

s: String, callBack: PROCEDURE [Name], clientDefaults: Name +- NIL];
SubSequenceType: --Stream-- TYPE = [0 .. 255);
SubString: --Format-- PROCEDURE [

proc: StringProc, ss: String.SubString, clientData: LONG POINTER +- NIL];
SubString: --NSString-- TYPE = LONG POINTER TO SubStringDescriptor;
SubString: -Put-- PROCEDURE [h: Window.Handle +- NIL, ss: String.SubString];
SubString: --String-- TYPE = LONG POINTER TO SubStringDescriptor;

c

C-117

c Listing of Public Symbols

SubStringDescriptor: --NSString-- TYPE = RECORD [
base: String, offset: CARDINAL, length: CARDINAL];

SubString Descriptor: --String-- TYPE = RECORD [
base: LONG STRING, offset: CARDINAL, length: CARDINAL);

Subsystem Handle: --Supervisor-- TYPE [1];
subtreeSize: --NSAssignedTypes-- AttributeType = 27;
subtreeSizelimit: --NSAssignedTypes-- AttributeType = 28;
SubVolume: --Othel/oOps-- TYPE = RECORD [

IvID: Volume.ID,
subVolumeSize: VOlume.PageCount,
fi rstl VPageN umber: logi cal Vol umePageN urn ber,
firstPVPageNumber: PhyslCaIVolume.PageNumber];

SubVolumeUnknown: --Othel/oOps-- ERROR [sv: SubVolume];
Suspend: --RS232C-- PROCEDURE [channel: Channel Handle, class: OperationClass];
Suspend Reason: --NetworkStream-- TYPE = {

notSuspended, transmissionTimeout, noRouteToDestination,
remoteServiceDisappeared};

SVPointer: --PrincOps-- TYPE = POINTER TO StateVector;
Swap: --Cursor-- PROCEDURE [old: Handle, new: Handle];
swapCancel'ed: --EventTypes-- Supervisor. Event;
swapCtrlAndCommand: --Profile-- READONL Y BOOLEAN;
SwapNames: --MFile-- PROCEDURE [f1: Handle, f2: Handle];
swapping: --Event-- READONLY supervisor.SubsystemHandle;
SwapReason: -:BackstopNub-- TYPE [1];
SwapUnitOption: --MSegment-- TYPE = Space.SwapUnitOption;
SwapUnitOption: --Space-- TYPE = RECORD [

body: SELECT swapUnitType: SwapUnitType FROM
unitary = > NULL,
uniform = > [size: SwapUnitSize E-defaultSwapUnitSizel,
irregular = > [sizes: LONG DESCRIPTOR FOR ARRAY [0 .. 0) OF SwapUnitSize),
ENDCASE];

SwapUnitSize: --MSegment-- TYPE = Space.SwapUnitSize;
SwapUnitSize: --Space-- TYPE = CARDINAL;
SwapUnitType: --MSegment-- TYPE = Space.SwapUnitType;
SwapUnitType: --Space-- TYPE = {unitary, uniform, irregular};
SwapValue: --BTree-- PROCEDURE [

tree: Tree, name: LONG STRING, oldValue: Value, newValue: Value]
RETURNS [ok: BOOLEAN];

switches: --HeraldWindow-- READONL Y System.Switches;
SwitchName: --PilotSwitches-- TYPE = CHARACTER;
SyncChar: --RS232C-- TYPE = RS232CEnvironment.SyncChar;
SyncChar: --RS232CEnvironment-- TYPE = Environment.Byte;
SyncCount: --RS232C-- TYPE = RS232CEnvironment.SyncCount;
SyncCount: --RS232CEnvironment-- TYPE = [0 .. 7];
system6: --RS232CCorrespondents-- RS232CEnvironment. Correspond ent;
SystemElement: --Courier-- TYPE = System.NetworkAddress;
systemElement: --NSAssignedTypes-- AttributeType = 29;
SystemElement: --NSFile-- TYPE = System.NetworkAddress;
SystemElement: --NSPrint-- TYPE = System.NetworkAddress;
SystemElementlsLocal: --NSSessionContro/-- PROCEDURE [

systemElement: NSFile.SystemElement] RETURNS [BOOLEAN];
systemFont: --EventTypes-- Supervisor. Event;
SystemlD: --Volume-- PROCEDURE RETURNS [10];
systemlD: --Volume-- READONLY 10;
systemMDSZone: --Heap-- READONLY MDSZone;
systemVolume: --NSVolumeControl-- READONLY Volume.ID;

Mesa Programmer's Manual

system Zone: --Heap-- READONL Y UNCOUNTED ZONE;
T10: --KeyStations-- Bit = 105;
T1: --KeyStations-- Bit = 98;
T2: --KeyStations-- Bit = 97;
t300: --DeviceTypes-- Devlce.Type;
t300pagesPerCylinder: --FormatPilotDisk-- CARDINAL = 570;
T3: --KeyStations-- Bit = 99;
T4: --KeyStations-- Bit = 100;
T5: --KeyStations-- Bit = 101;
T6: --KeyStations-- Bit = 102;
T7: --KeyStations-- Bit = 103;
t80: --DeviceTypes-- Device.Type;
t80pagesPerCylinder: --FormatPilotDisk-- CARDINAL = 150;
T8: --KeyStations-- Bit = 104;
T9: --KeyStations-- Bit = 109;
TAB: --Ascii-- CHARACTER = 11 C;
Table: --StringLookUp-- TYPE = ARRAY CARDINAL OF LONG STRING;
TableDesc: --StringLookUp-- TYPE = LONG DESCRIPTOR FOR Table;
TableError: --CmFile-- SIGNAL [h: Handle, name: LONG STRING];
TabStops: --AsciiSink-- TYPE = LONG DESCRIPTOR FOR ARRAY CARDINAL OF CARDINAL;
TagOnlyHandle: --FormSW-- TYPE = LONG POINTER TO tagOnly ItemObject;
TagOnlyltem: --FormSW-- PROCEDURE [

tag: LONG STRING +- NIL, readOnly: BOOLEAN Eo- FALSE, invisible: BOOLEAN +- FALSE,
drawBox: BOOLEAN +- FALSE, hasContext: BOOLEAN +- FALSE,
place: Window. Place +- nextPlace, otherltem: CARDINAL +- nul I Index,
Z: UNCOUNTED ZONE +- NIL] RETURNS [TagOnlyHandle];

TajoDefaultEvents: --EventTypes-- TYPE = [300 .. 399];
taj oDefaults: --Event -- READON L Y Supervisor. Su bsystem Hand Ie;
Tan: --ReaIFns-- PROCEDURE [radians: REAL] RETURNS [tan: REAL];
TanDeg: --ReaIFns-- PROCEDURE [degrees: REAL] RETURNS [tan: REAL];
Target: --Selection-- TYPE = MACHINE DEPENDENT{

window, subwindow, string, source, length, position, pieceList, long Integer,
interpressMaster, potentialinterpressMaster, token, firstFree, last(255)};

tBackstopDebuggee: --CommonSoftwareFile Types-- File. Type;
tBackstopDebugger: --CommonSoftwareFile Types-- File. Type;
tBackstopLog: --CommonSoftwareFile Types-- File. Type;
tBen: --PerformanceTooIFileTypes-- File.Type;
tCarryVolumeDirectory: --CommonSoftwareFile Types-- File. Type;
tCleari ngHouseBackupFile: --CommonSoftwareFile Types-- File. Type;
tDirectory: --CommonSoftwareFileTypes-- File.Type;
tDirectory: --NSAssignedTypes-- FileType = 1;
teleDebugSocket: --NSConstants-- System.SocketNumber;
tell Fi I eSystemSwappi ngl n: --EventTypes-- Supervisor. Event;
tell Fi leSystemSwappi ngOut: --EventTypes-- Supervisor. Event;
tEmpty: --NSAssignedTypes-- FileType = 4;
TerminationHandler: --NSSessionControl-- TYPE = PROCEDURE [

session: NSFile.Session, id: ServicelD, data: ServiceData, reason: Reason];
TestFileType: --File Types-- TYPE = CARDINAL [768 .. 895];
Text: --DebugUsefuIDefs-- Format.StringProc;
Text: --Display-- PROCEDURE [

window: Handle, string: LONG STRING, place: Window.Place,
font: WindowFont.Handle +- NIL, lineLength: INTEGER +- infinity,
flags: BitBltFlags +- textFlags, bounds: Window.BoxHandle +- NIL]
RETURNS [newPlace: Window. Place];

Text: --Format-- PROCEDURE [
proc: StringProc, s: LONG STRING, clientData: LONG POINTER Eo- NIL];

c

C-119

c

C-120

Listing of Public Symbols

Text: -Put-- PROCEDURE [h: Window.Handle +- NIL, s: LONG STRING];
textFlags: --Display-- BitBltFlags;
Textlnline: --Display-- PROCEDURE [

window: Handle, string: LONG STRING, place: Window.Place,
font: WindowFont.Handle +- NIL, lineLength: INTEGER +- infinity,
flags: BitBltFlags +- textFlags, bounds: Window.BoxHandle +- NIL1
RETURNS [Window.Place];

tFileList: --CommonSoftwareFile Types-- File. Type;
ThreePartName: --CH-- TYPE = NSName.NameRecord;
Ticket: --NSDataStream-- TYPE [11];
Ticks: --Process-- TYPE = CARDINAL;
TicksToMsec: --Process-- PROCEDURE [ticks: Ticks] RETURNS [msec: Milliseconds];
Time: --NSFile-- TYPE = System.GreenwichMeanTime;
Time: --NSPrint-- TYPE = LONG CARDINAL;
Timeout: --NSFile-- TYPE = Process.Seconds;
Timeout: --PacketExchange-- SIGNAL;
TimeOut: --Stream-- SIGNAL [nextlndex: CARDINAL];
TimeServerError: --OthelloOps-- ERROR [error: TimeServerErrorType];
TimeServerErrorType: --OthelloOps-- TYPE = {

noCommunicationFacilities, noResponse};
timeServerSocket: --NSConstants-- System.SocketNumber;
Timestamp: --BodyDefs-- TYPE = MACHINE DEPENDENT RECORD [

net(O:O .. 7): [0 .. 255], host(0:8 .. 15): [0 .. ;255], time(1 :0 .. 31): PackedTime];
tinyDandelionMemorySize: --PiiotSwitches-- PilotDomainA = 63C;
TIPCSourceDate: --MFileProperfy-- MFile.Property;
TitleMatch: --CmFile-- PROCEDURE [buffer: LONG STRING, title: LONG STRING]

RETURNS [matches: BOOLEAN];
ToggleFlag: --FormSW-- PROCEDURE [

sw: Window. Handle, index: CARDINAL, flag: Flag];
ToggleVisibility: --FormSW-- PROCEDURE [sw: Window. Handle, index: CARDINAL];
toolWindow: --Event-- READONLY Supervisor.SubsystemHandle;
ToolWindowEvents: --EventTypes-- TYPE = [600 .. 699];
TooManyProcesses: --Process-- ERROR;
Trajectory: --Display-- PROCEDURE [

window: Handle, box: Window.Box +- Window.nuIiBox, proc: TrajectoryProc,
source: LONG POINTER +- NIL, bpi: CARDINAL +- 16, height: CARDINAL +- 16,
flags: BitBltFlags +- bitFlags, missesChildren: BOOLEAN +- FALSE,
brick: Brick +- Nil];

TrajectoryProc: --Display-- TYPE = PROCEDURE [Handle]
RETURNS [Window.Box, INTEGER];

TransferProblem: --NSFile-- TYPE = MACHINE DEPENDENT{
aborted, checksum Incorrect, formatlncorrect, no Rendezvous, wrongDirection};

TransferProblem: --NSPrint-- TYPE = MACHINE DEPENDENT{
aborted, formatlncorrect(2), no Rendezvous, wrongDirection};

TransferStatus: --RS232C-- TYPE = {
success, dataLost, deviceError, frameTimeout, checksum Error, parityError,
asynchFramingError, invalidChar, invalidFrame, aborted, disaster};

TransferWait: --RS232C-- PROCEDURE [
channel: Channel Handle, event: CompletionHandle]
RETURNS [byteCount: CARDINAL, status: TransferStatus];

TransmitNow: --RS232C-- PROCEDURE [
channel: Channel Handle, event: CompletionHandle]
RETURNS [byteCount: CARDINAL, status: Tr.ansferStatus];

trapLink: --PrincOps-- Control Link;
TrapLink: --PrincOps-- Control Link;
TrapNonTrappingNaN: --Real--lONG CARDINAL = 1;

Mesa Programmer's Manual

TrappingNaN: --Real-- REAL;
TrapTrappingNaN: --Real-- LONG CARDINAL = 2;
Tree: --BTree-- TYPE = LONG POINTER TO TreeObject;
TreeObject: --BTree-- TYPE;

c

TrimBoxStickouts: --Window-- PROCEDURE [window: Handle, box: Box] RETURNS [Box];
TrinityFileEntry: --ScavengerExtras-- TYPE = MACHINE DEPENDENT RECORD [

file(0:0 .. 79): System.UniversaIIO,
numberOfProblems(5:0 .. 1 5): CARDINAL,
problems(6): ARRAY [0 .. 0) OF Scavenger.Problem];

TrinityHeader: --ScavengerExtras-- TYPE = MACHINE DEPENDENT RECORD [
volume(0:0 .. 79): Volume.IO,
date(5:0 .. 31): System.GreenwichMeanTime,
incomplete(7:0 .. 14): BOOLEAN,
repaired(7: 15 .. 15): BOOLEAN,
numberOfFiles(8:0 .. 31): LONG CARDINAL];

TruncateString: --NSString-- PROCEDURE [s: String, bytes: CARDINAL]
RETURNS [String];

tScavengerLog: --Scavenger-- READONL Y File. Type;
tScavengerLogOtherVolume: --Scavenger-- READONLY File.Type;
tSerialized: --NS"AssignedTypes-- FileType = 3;
tText: --NSAssignedTypes-- FileType = 2;
ttyHost: --RS232CCorrespondents-- RS232CEnvironment.Correspondent;
tUnassigned: --CommonSoftwareFileTypes-- File.Type;
tUnassigned: --FileTypes-- File.Type;
tUnspecified: --NSAssignedTypes-- FileType = 0;
tUntypedFile: --FileTypes-- File.Type;
tVolumeConversionLog: --Vo/umeConversion-- READONLY File.Type;
tWi liard: --Performance Too/File Types-- File. Type;
Type: --Context-- TYPE = MACHINE DEPENDENT{

all, first, lastAliocated(37737B), last(37777B)};
Type: --Cursor-- TYPE = MACHINE DEPENDENT{

activate, blank, bullseye, confirm, crossHairsCircle, ftp, ftpBoxes,
hourGlass, lib, menu, mouseRed, mouseYellow, mouseBlue, mtp, pointOown,
pointLeft, pointRight, pointUp, questionMark, retry, scrollOown, scroll Left,
scroll LeftRight, scroll Right, scroll Up, scroliUpOown, textPointer, type Key,
groundedText,last(255)};

Type: --Device-- TYPE = PRIVATE RECORD [CARDINAL];
Type: --File-- TYPE = RECORD [CARDINAL];
Type: --FormSW-- TYPE = {fixed, relative};
Type: --Heap-- TYPE = {normal, uniform, mds};
Type: --LogFile-- TYPE = MACHINE DEPENDENT{null, block, string, (63)};
Type: --MFile- TYPE = MACHINE DEPENDENT{

unknown, text, binary, directory, null(255)};
type: --NSAssignedTypes-- AttributeType = 17;
Type: -NSFile-- TYPE = LONG CARDINAL;
Type: --Scrollbar-- TYPE = {horizontal, vertical};
Type: --Volume-- TYPE = MACHINE DEPENDENT{

normal, debugger, debuggerOebugger, nonPilot};
TypeSet: --Volume-- TYPE = PACKED ARRAY Type OF BooleanOefaultFalse;
ubBootServeeSocket: --NSConstants-- System.SocketNumber;
u bBootServerSocket: --NSConstants-- System. SocketN umber;
ublPCSocket: --NSConstants-- System.SocketNumber;
UDDivMod: --In/ine-- PROCEDURE [num: LONG CARDINAL, den: LONG CARDINAL]

RETURNS [quotient: LONG CARDINAL, remainder: LONG CARDINAL];
UnboundLink: --PrincOps-- ControlLink;
unboundLink: --PrincOps-- ControlLink;

C-121

c

C-122

Listing of Public Symbols

UnboundProcedure: --Runtime-- SIGNAL [dest: ControILink];
UndefinedProblem: --NSFile-- TYPE = CARDINAL;
UndefinedProblem: --NSPrint-- TYPE = CARDINAL;
UnderChangedProc: --Window-- TYPE = PROCEDURE [Handle, Box];
UnexportExpeditedPrograms: --ExpeditedCourier-- PROCEDURE [

h: ExpeditedServiceHandie];
UnexportRemoteProgram: --Courier-- PROCEDURE [

programNumber: LONG CARDINAL, versionRange: VersionRange];
UnifyAccesslists: --NSFile-- PROCEDURE (

directory: Handle, session: Session ~ nuIiSession);
UnimplementedFeature: --RS232C-- ERROR;
Uninstantiate: --Menu-- PROCEDURE [menu: Handle, window: Window. Handle];
Unintelligible: --Date-- ERROR (vicinity: NATURAL];
UniqueAction: --Caret-- PROCEDURE RETURNS [Action];
UniqueAction: --Selection-- PROCEDURE RETURNS [Action];
uniqueConnlO: --NetworkStream-- READONLY ConnectionlO;
uniqueNetworkAddr: -NetworkStream-- READONLY System. NetworkAddress;
uniqueSoeketlO: --NSConstants-- System.SoeketNumber;
UniqueTarget: --Se/ection-- PROCEDURE RETURNS [Target];
UniqueType: --Context-- PROCEDURE RETURNS [type: Type];
UniqueType: --Cursor-- PROCEDURE RETURNS [Type];
UniversallO: -System-- TYPE [5];
Unknown: --Fi/e-- ERROR [file: File];
Unknown: --Volume-- ERROR [volume: 10];
unknownChecksum: --NSFi/e-- CARDINAL = 177777B;
UnknownCommandFile: --Expand-- SIGNAL [name: LONG STRING] RETURNS [LONG STRING);
unknownConnlO: --NetworkStream-- READONLY ConnectionlO;
unknownSocketlD: --NSConstants-- System.SoeketNumber;
unknownUsage: --Space-- Usage = 0;
unlimitedSize: --Heap-- Environment.PageCount = 77777777B;
Unload: --Exec-- PROCEDURE [handle: MLoader.Handle];
Unload: --MLoader-- PROCEDURE [Handle];
UnloadCommand: --Exec-- PROCEDURE [h: Handle, name: LONG STRING)

RETURNS [RemovedStatus];
Unlock: --NSSessionControl-- PROCEDURE [session: NSFile.Session, id: ServiceID);
Unmap: --Space-- PROCEDURE [

pointer: LONG POINTER, returnWait: ReturnWait ~ wait]
RETURNS [ni I: LONG POINTER];

UnmapAt: --Space-- PROCEDURE [
pointer: LONG POINTER, returnWait: ReturnWait ~ wait]
RETURNS [interval: Interval];

UnNew: --Runtime-- PROCEDURE [frame: PROGRAM];
UnNewConfig: --Runtime-- PROCEDURE [link: ControILink];
UnpackFilename: --FileName-- PROCEDURE [s: LONG STRING, vfn: VFN];
unspecified: --CH-- PropertylO = 0;
UpArrowAction: --Expand-- TYPE = {skip, remove, none};
UpperCase: --NSString-- PROCEDURE [e: Character] RETURNS [Character];
UpperCase: --String-- PROCEDURE [e: CHARACTER] RETURNS [CHARACTER];
Usage: --Space-- TYPE = [0 .. 3777B];
uselargeHeap: --PiiotSwitchesExtras- PilotSwitches.PilotOomainB = 135C;
User: --CHLookup-- TYPE = MACHINE DEPENDENT RECORD [

lastNamelndex(0:O .. 15): CARDINAL,
pas5word(1 :0 .. 63): NSString.String,
systemAdministrator(5:0 .. 15): BOOLEAN,
fileserver(6:0 .. 31): NSName.Name,
mailserver(8:0 .. 31): NSName.Name,

Mesa Programmer's Manual

description(1 0:0 .. 63): NSString.String,
product(14:0 .. 63): NSString.String,
training(18:0 .. 63): NSString.String,
help(22:0 .. 15): BOOLEAN];

UserAbort: --Userlnput-- PROCEDURE [Window. Handle] RETURNS [BOOLEAN];
UserAborted: --DebugUsefuIDefs-- SIGNAL;
UserDescribe: --CHLookup-- Couner.Description;
UserDotCmLine: --CmFiJe-- PROCEDURE [title: LONG STRING, name: LONG STRING]

RETURNS [s: LONG STRING];
UserDotCmOpen: --CmFile-· PROCEDURE RETURNS [h: Handle];
UserlsMember: --NSSessionControl-- PROCEDURE [

key: NSStnng.String, type: NSFile.AccessEntryType, session: NSFile.Session,
tryHard: BOOLEAN] RETURNS [status: MembershipStatus];

UserPt: --CHLookup-- TYPE = LONG POINTER TO User;
useSpecialMemory: --PiiotSwitchesExtras-- PilotSwitches.PilotDomainC = 372C;
useSpecialMemorylfNoDisplay: --PiiotSwitchesExtras--

PilotSwitches.PilotDomainC = 373C;
useStdHeap: --PiiotSwitchesExtras-- PilotSwitches.PilotDomainA = 45C;
useTinyHeap: --PilotSwitchesExtras-- PilotSwitches.PilotDomainB = 133C;
UsingGenerator: --StringLookUp-- PROCEDURE [

key: LONG STRING, generator: GeneratorProcType, caseFold: BOOLEAN E- TRUE,
noAbbreviation: BOOLEAN E- FALSE, bufferBytes: CARDINAL E- 500]
RETURNS [index: CARDINAL];

UsingGeneratorWithBuffer: --StringLookUp-- PROCEDURE [
key: LONG STRING, generator: GeneratorProcType, caseFold: BOOLEAN E- TRUE,
noAbbreviation: BOOLEAN E- FALSE, buffer: LONG STRING]
RETURNS [index: CARDINAL];

Usual Exceptions: --Real-- ExceptionFlags;
Valid: --DebugUsefuIDefs-- PROCEDURE [GFHandle] RETURNS [BOOLEAN];
ValidAsMesaString: --NSString-- PROCEDURE [s: String] RETURNS [BOOLEAN];
Validate: --Window-- PROCEDURE [window: Handle];
ValidateFrame: --Runtime-- PROCEDURE [frame: UNSPECIFIED];
ValidateGlobalFrame: --Runtime-- PROCEDURE [frame: GenericProgram];
ValidateProcess: --Process-- PROCEDURE [process: UNSPECIFIED];
ValidateTree: --Window- PROCEDURE [window: Handle E- rootWindow];
ValidFilename: --MFile-- PROCEDURE [name: LONG STRING] RETURNS [ok: BOOLEAN];
ValidProperties: --FileTransfer-- TYPE = {

host, directory, body, version, author, size, type, old File, read Protect};
Value: --BTree-- TYPE = LONG DESCRIPTOR FOR ARRAY CARDINAL OF CARDINAL;
ValueSize: --BTree-- TYPE = [1..31);
ValueTooSmall: --BTree-- ERROR [tree: Tree];
VaniliaMenuProc: --FormSW-- MenuProcType;
Verifier: --Authenticator-- TYPE = NSName. Verifier;
Verifier: -NSFile-- TYPE = NSName.Verifier;
Verifi,er: --NSName-- TYPE [2];
VersatecFileType: --FileTypes-- TYPE = CARDINAL [23400B .. 23477B];
VersatecUsage: --SpaceUsageExtras-- TYPE = Space .Usage[512 .. 639];
version: --NSAssignedTypes-- AttributeType = 18;
VersionMismatch: --Backstop-- SIGNAL;
VersionMismatch: --Courier-- ERROR [versionRange: VersionRange];
VersionMismatch: --MLoader-- SIGNAL [module: LONG STRING];
VersionMismatch: --Runtime-- SIGNAL [module: LONG STRING];
VersionRange: --Courier-- TYPE = RECORD [low: CARDINAL, high: CARDINAL];
VetoEvents: --EventTypes-- TYPE = [100 .. 199];

c

C·123

c

C-124

Listing of Public Symbols

VetoProc: --FileTransfer-- TYPE = PROCEDURE [
conn: Connection, clientOata: LONG POINTER, post: MessageProc, info: InfoProc,
showingOates: BOOLEAN1 RETURNS [confirm: Confirmation, showOates: BOOLEAN1;

VFN: --FileName-- TYPE = Virtual Filename;
VideoClockRate: --LsepFace-- TYPE = MACHINE' DEPENDENT{clock 1 MHz, clockSOOKHz};
Virtual Filename: --FileName-- TYPE = LONG POINTER TO VirtualFilenameObject;
VirtualFilenameObject: --FileName-- TYPE = RECORD [

host: LONG STRING,
di rectory: LONG STRING,
name: LONG STRING,
version: LONG STRING1;

virtual Memory: --Space-- READONLY Interval;
VoidPhysicalVolumeBootFile: --Othel/oOps-- PROCEDURE [

pvlO: PhysicaIVolume.IO, type: BootFiJeType1;
VoidVolumeBootFile: --OthelloOps-- PROCEDURE [

IvIO: Volume.IO, type: BootFileType];
Volume: --NSFile-- TYPE = System.VolumeIO;
volumeClosed: --EventTypes-- Supervisor. Event;
VolumeHandle: --Floppy-- TYPE [2];
volumelO: --NSAssignedTypes-- AttributeType = 22;
VolumelO: --System-- TYPE = RECORD [UniversaIlO];
VolumeNotClosed: --Othel/oOps-- ERROR;
VolumeNotOpen: --BTree-- ERROR [volume: Volume.IO];
volumeOpened: --EventTypes-- Supervisor. Event;
VolumeType: --PhysicaIVolume-- TYPE = {

notPilot, probablyNotPilot, probablyPilot, isPilot};
voyeurSocket: --NSConstants-- System.SocketNumber;
WaitAttentionProcedure: --Stream-- TYPE = PROCEDURE [sH: Handle] RETURNS [Byte];
WaitForAttention: --Stream-- PROCEDURE [sH: Handle1 RETURNS [Byte];
WaitForConfirmation: --Userlnput-- PROCEDURE

RETURNS [place: Window.Place, okay: BOOLEAN1;
WaitForMail: --RetrieveDefs-- PROCEDURE [handle: Handle];
WaitForRequest: --PacketExchange- PROCEDURE [

h: ExchangeHandle, requestBlk: Environment.Block,
requiredRequestType: ExchangeClientType ~ unspecified]
RETURNS [rH: RequestHandle];

WaitForScanLine: --UserTerminal-- PROCEDURE [scanline: INTEGER];
WaitNoButtons: --Userlnput-- PROCEDURE;
WaitTime: --NetworkStream- TYPE = LONG CARDINAL;
WaitTime: --PacketExchange-- TYPE = LONG CARDINAL;
Wakeup: --FormSW-- PROCEDURE [Window. Handle];
WakeUp: -RavenFace-- PROCEDURE;
WellFormed: --NSString-- PROCEDURE [s: String1 RETURNS [BOOLEAN1;
WestEast: --System-- TYPE = MACHINE DEPENDENT{west, east};
White: --Display-- PROCEDURE [window: Handle, box: Window.Box1;
wildCard: --CH-- CHARACTER = 52C;
wildCard: --NSName-- CHARACTER = 52C;
wildCardCharacter: --NSName-- NSString.Character;
window: --DebugUsefuIDefs-- READONLY Wlndow.Handle;
window: --HeraldWindow-- READONLY Window. Handle;
Window: --Space-- TYPE = RECORD [

file: File.File, base: File.PageNumber, count: Environment.PageCount];
WindowForFile: --FileWindow-- PROCEDURE [fileName: LONG STRING]

RETURNS [Window. Handle];
WindowNowDelinked: --Serol/bar-- PROCEDURE [window: Window.Handle];
WindowNowEnlinked: --Scrol/bar-- PROCEDURE [window: Window.Handle1;

Mesa Programmer's Manual

Word: --Environment-- TYPE = [0 .. 177777B];
Word: --Stream-- TYPE = Envlronment.Word;
WordBoolean: --FormSW-- TYPE = RECORD [

SELECT OVERLAID * FROM fl = > [b: BOOLEAN], f2 = > [w: WORD], ENDCASE];
Words: --MDSStorage-- PROCEDURE [nwords: CARDINAL] RETURNS [base: POINTER];
Words: --NSFile-- TYPE = LONG DESCRIPTOR FOR ARRAY CARDINAL OF UNSPECIFIED;

c

Words: --Storage-- PROCEDURE [nwords: CARDINAL] RETURNS [base: LONG POINTER];
WordsForBitmapUnder: --Window-- PROCEDURE [window: Handle] RETURNS [CARDINAL];
WordsForString: --NSString-- PROCEDURE [bytes: CARDINAL] RETURNS [CARDINAL];
WordsForString: --String-- PROCEDURE [nchars: CARDINAL] RETURNS [CARDINAL];
WordslnPacket: --CommOnlineDiagnostics-- TYPE = MACHINE DEPENDENT{

aliOs, all1s, incrWords, aliConstant, dontCare};
wordsPerPage: --Environment-- CARDINAL = 256;
wordsPerPage: --Space-- CARDINAL = 256;
Workstation: --CHLookup-- TYPE = MACHINE DEPENDENT RECORD [

address(0:0 .. 95): System.NetworkAddress, location(6:0 .. 63): NSString.String];
WorkstationDescri be: --CHLookup-- Courier. Descri ption;
WorkstationPt: --CHLookup-- TYPE = LONG POINTER TO Workstation;
wpp: --MSegment-- CARDINAL = 256;
Write: --Floppy-- PROCEDURE [

file: FileHandle, first: PageNumber, count: PageCount, vm: LONG POINTER];
WriteOeletedSectors: --FloppyChannel-- PROCEDURE [

handle: Handle, address: DiskAddress, buffer: LONG POINTER,
count: CARDINAL"- 1, incrementDataPtr: BOOLEAN ..- TRUE]
RETURNS [status: Status, countDone: CARDINAL];

WriteMsg: --CommOnlineDiagnostics-- TYPE = PROCEDURE [msg: RS232CTestMessage];
WriteOnly: --MFile-- PROCEDURE [

name: LONG STRING, release: ReleaseData, type: Type,
initial Length: Initial Length ..-dontCare] RETURNS [Handle];

WriteOnly: --MStream- PROCEDURE [
name: LONG STRING, release: ReleaseData, type: MFlle.Type] RETURNS [Handle];

WriteProc: --MailParse-- TYPE = PROCEDURE [string: LONG STRING];
WriteProtected: --DebugUsefuIDefs-- ERROR [page: Environment.PageNumber);
WriteReal: --Real-- PROCEDURE [

cp: PROCEDURE [CHARACTER], r: REAL,
precision: CARDINAL"- DefaultSinglePrecision, forceE: BOOLEAN"- FALSE];

WriteSectors: --FloppyChannel-- PROCEDURE [
handle: Handle, address: DiskAddress, buffer: LONG POINTER,
count: CARDINAL ..-1, incrementDataPtr: BOOLEAN ..-TRUE]
RETURNS [status: Status, countDone: CARDINAL];

WriteStream: --FileTransfer-- PROCEDURE [
conn: Connection, file: FileName.VFN, veto: VetoProc ..- NIL,
showDates: BOOLEAN ..- FALSE, creation: Time.Packed, type: Stream Type ..- remote]
RETURNS [Stream.Handle];

x860ToFileServer: --NSConstants-- System.SocketNumber;
xerox800: --RS232CCorrespondents-- RS232CEnvironment. Correspondent;
xerox850: --RS232CCorrespondents-- RS232CEnvironment.COrrespondent;
xerox860: --RS232CCorrespondents-- RS232CEnvironment.COrrespondent;
xmtLO: --ProtocoICertification-- Stage;
xmtL 1: --Protoco/Certification-- Stage;
xorBoxFlags: --Disp/ay-- BitBltFlags;
xorFlags: --Disp/ay-- BitBltFlags;
xorGrayFlags: --Disp/ay-- BitBltFlags;
YesOrNo: --OnlineDiagnostics-- TYPE = {yes, no};
Yield: --Process-- PROCEDURE;
ZeroOivisor: --Runtime-- SIGNAL;

C·125

c

C-126

Listing of Public Symbols

zeroMaxLengthNames: --CH-- READONL Y Name;
zeroScratchMem: --PilotSwitches-- PilotDomainA = 64C;
ZoneTooSmall: --MDSStorage-- ERROR [p: POINTER];

ZoneTooSmall: --Storage-- ERROR [p: LONG POINTER];

Index

ABORT, 44-1, 44-5
abort

tool, 44-5
type-in, 43-4
world swap, 42-6

aborting a program, 5-1,5-2,5-3,5-7
aborting an Executive command, 5-2, 5-3,

5-7
aborting search path change, 42-2
active, 1-5
address fault, 50-5
AddressTranslation, 1-2
AddressTranslation, 1-1

examples, 1-5
parsing rules, 1-4

adjusting window, 27-4
ANO,IV-2
Append file processing, V
Append files, V-I
AsciiSink,32-1
Atom, 2-1
attention procedure, 44-4
automatic tool invocation, 10-1
backing store, 50-1
bad phosphor list, IH-2
balance beam choice, 8-1
batch command line, 5-1
batch commands, 5-1, 5-2, 5-4, 5-5, 5-7
batch Executive, 5-1

command line input, 5-4
commands, 5-1, 5-2, 5-4, 5-5, 5-6, 5-7
input, 9-8
interactive input, 5-4, 5-5
output, 5-5, 5-6
processing, 10-1

batch input, 5-4, 5-7
batch program, 5-1, 5-2

batch style invocation, 1-5
batch tool

example, 5-7
binary tree, 53-1
bitmap display, 57-2
bitmap unders, IH-1
bitmapUnder, 24-2, 24-4, 24-5, 24-8

setting, 24-6
blinking caret, 17-2,38-1
block source, 36-1
boot

aborting, 41-2
Herald Window, 42-2
physical volume, 42-3

booting, 7-1, 7-3, 42-2, 42-3
cancelled,42-3
from file, 7-2, 7-3
switches, 7-1, 7-4

broadcast host number, 1-3
BTree.53-1
BTree file, 53-1
built-in Executive. 5-1
byte stream. 51-1
call-back procedures. V-I
cancel booting, 42-3
caret, 17-2, 25-1

blinking. 44-1
Caret, 25-1
change Search Path. 42-2
changing tool state, 20-2. 20-3. 20-6
character painting, 31-1
character translation, 44-1. 44-2
child windows, IH-2
circular files, 34-2
clearinghouse, 1-3,8-2,8-4

domain, 1-3
name lookup. 1-2
organization. 1-3

1

2

Index

clearinghouse name
format, 1-3

client, 1-2
client-dermed

subwindow type, 20-1, 20-5
client-supplied print procedure, 56-3
clipping window, 21-3, 57-1
closing a volume

MVolume, 52-1
CmFile 3-1

example, 3-1
command

abbreviation, 55-1, 55-3
file, 10-1
look up, 55-1
sequence, 10-1
table, 55-1
table, generated, 55-1

command line
input, 9-8
processing, 9-8

command line expansion, 5-5, 6-1
command line input, 5-4, 5-7
command line processing, 5-1, 5-2, 5-3, 5-4,

5-6,5-7
common prefix, 55-2
common string prefix, 55-2
compare procedure, 54-1
Concurrency problems, V-6
confirmation, 5-3
connect name, 5-4, 46-9
connect password, 5-4, 46-9

monitoring changes, 41-2
connection, 46-1, 46-5, 46-6
Connection object, 1-4
Context, 22-1
CoPilot

going to, 41-2, 41-4, 42-6
return to client, 41-2, 41-4, 42-2,

42-6
swap-in reason, 42-6
swap-out reason, 42-6

copying files, 46-1, 46-5, 46-9
coroutine sort package, 54-2
creating a stream, 51-2, 51-3, 51-4
creating a tool, 20-2
current message, 14-2
current selection, 29-1, 29-2, 29-3, 44-5

manager, 29-1
output to window, 19-2

cursor, 43-2, 43-6
Cursor, 26-1
cursor

feedback, 7-1
manipulation, 26-1
setting, 44-1

system-manufactured, 26-1
user-manufactured,26-1

data segment, 50-4, 50-7
data sharing, 22-4
date

conversion to string, 4-1
Date, 4-1
debuggee

examining, 56-4
debugger

file subwindow, 56-2
going to, 41-2, 41-4, 42-5, 42-6
procedural access, 56-1
return to client, 41-2, 41-4, 42-2,

42-6
special purpose, 56-1
swap-in reason, 42-6
swap-out reason, 42-6
window, 56-2

debugging, 8-2
variable, 41-3, 42-4

debugging tools, 56-1
debugging utilities, 56-1
DebugUsefulDefs, 56-1
default output sink, 19-1
delay, 57-2
deleted text, 17-2
deleting files, 46-6
discontinuous text source, 40-5
disk file

editing, 11-3
saving edits, 11-3
storing edits, 11-3
subwindow, 11-1

disk source, 34-1
DiskSource, 34·1
Display, 23-1
Display

implementation, 23-1
display

rectangles, 21-4
region, 17-1
state, 57-2
text, 39-1, 39-2, 40-1
tool window, 21-1, 21-7

display procedure, 111-1
distinguished name, 1-2
domain

default, 41-3, 42-4
echoing characters

teletype subwindow, 18-3
editable window, 12-1
editing

facilities, 39-1, 40-1
teletype subwindow, 18-3

ENABLE,IV-2

Mesa Programmer's Manual

enabling conditions, IV-2
enumerating files, 46-1, 46-6, 46-8, 46-10
error message, 14-1
Event, 41-1

example, 41-3
event notification, 41-1, 42-1

event definitions, 41-1
Events, IV-l
EventTypes,41-1 42-1

example, 41-3
examining debugee, 56-4
example

batch tool, 5-7
command line expansion, 6-2
command line parsing, 9-8
coroutine sort, 54-4
enumerating files, 46-10
enumerating streams, 46-10
event mechanism, 41-3
ExecProc, 5-7
executing in the notifier, 44-6
file name pieces, 45-3, 46-10
file segments, 50-7
parsing items with switches, 9-8
periodic notifier, 44-6
reading from command file, 6-2
sort, 54-4
stack printer, 56-7
string lookup, 55-3
ToolDriver, 10-3
User.cm parsing, 3-1
world swap, 41-4

ExampleTooI, 20-1
Exec, 5·1

example, 5-7
Exec.MatchPattern, 5·5
Executive, 5-1

command line input, 5-1, 5-4, 5-7, 9-8
commands, 5-1, 5-2, 5-4, 5-5, 5-6,5-7
feedback, 5-4
interactive input, 5-4, 5-5
online help for registered commands,

5-3
output, 5-5, 5-6
renaming commands, 5-3
TIP table, 43-3

Executive command line, 5-1
Executive commands, 5-1
Expand,6·1
expansion of wild cards, 6-1
feedback, 14-1

cursor, 7-1, 7-4
message, 7-2

feedback from the Executive, 5-4
file

booting from, 7-2, 7-3

buffers, 51-4
change length, 51-4, 51-5
cm,3-1
copy, 51-2
delete local, 46-6
delete remote, 46-6
editing, 11-3
enumeration, 46-1, 46-6, 46-8, 46-10
load, 49-1, 49-2
local, 45-1, 46-1, 46-7
log, 51-2, 51-4
map into memory, 50-1
modify, 50-1
name, 9-4
ownership, 50-7
read, 50-1, 50-7
readProtect, 46-2
remote, 45-1, 46-1, 46-7,46-9
rename local, 46-8
rename remote, 46-8
run, 49-2
saving edits, 11-3
sharing, 51-4
size, 46-2
start, 49-1, 49-2
storing edits, 11-3
stream and segment on, 51-3
subwindow, 11-1
times, 46-2
type, 46-2
unload,49-2
version, 46-2, 46-7
write, 50-7

File access, V-I
File management overview, V-I
File managers, V-5
file name, 45-1, 45-2, 45-3, 46-2, 46-5,

46-7
file server, 46-3, 46-7, 46-8
file server protocol change, 42-4
file stream, 46-1, 46-7, 46-8, 46-9,

46-10
file subwindow, 11-1,20-4

creation, 11-2
destruction, 11-2
editing, 11-3
enumeration, 11-2
loading, 11-2
saving edits, 11-3
storing edits, 11-3

file window
create, 42-3
destroy, 42-4
edit, 42-4
empty, 15-1
load, 42-5

3

4

Index

notification, 41-2, 42-3, 42~4, 42-S, 42-6
reset, 42-S
store, 42-6
TIP table, 43-3

File windows, V-S
FileName, 45-1

example, 4S-3
fileServerProtocol

default, 41-3
File5W, 11-1.20-4,
FileTransfer,I-4
FileTransfer,46-1

example, 46-10
FileWindow, 41-2, 12·1
Find command, 17-3
flushing input, 43-4
font

storage management, 30-1
font conversion for window display, 31-1
form sub window , 13-1, 20-4

boolean item, 13·1, 13-2, 13-14
command item, 13-1, 13-3, 13-1S
current selection, 13-17, 13-21
discarding display state information,

13-22
displaying items, 13-16, 13-23
editing, 13-4,13-8,13-19,13-22
enumerated item, 13-1, 13-4, 13-13
forcing word alignment, 13-3, 13-12
format, 13-7, 13-9,13-12, 13-13, 13-1S,

13-18,13-19,13-21
invoking a command, 13-10
item, 13-1, 13-7, 13-16
modifying a boolean item, 13-8
numeric item, 13-1,13-8, 13-9, 13-19,

13-21
place, 13-7
recreating display state information,

13-23
selecting a menu option, 13-8
size and positioning of, 13-14
storage management, 13-S, 13-14, 13-17
string item, 13-1,13-10, 13-23
tag item, 13-1, 13-7, 13-18, 13-23
TIP table, 43-3
type-in point, 13-17, 13-22

Format, 19-1
Form5W, 20-4, 13-1
free page count, 7-1
GPM,43-11
GPM Macro Package, IV-5
graphics

window, 23-1
growing window, 27-4
G5ort,54-1
GSortImpl. bcd, 54-1

heralds
appending current version, S8-1

HeraldWindow, 7-1
host number

broadcast, 1-3
format, 1-3
parsing, 1-3
self, 1-3

hot bit, 26-1
IFS,46-3
inactive,I-S
indirect type-in, 44-3
indirect type-out, 44-3
initial tool state, 20-2
initial tool window box, 20-2
initial window box, 20-2
input

redirecting, 44-3
input focus, 43-2, 43-6, 44-1, 44-3, 44-4
input token

alphabetic, 9-3
alphanumeric, 9-3
boolean, 9-3
bracketed, 9-3
break character, 9-2
built-in, 9-1
client-defined, 9-1, 9-4
file name, 9-4
input source, 9-1, 9-2
line,9-S
numeric, 9-3, 9-S, 9-6, 9-7
quoted, 9-2, 9-5, 9-7
string input source, 9-7
switches, 9-7
white space, 9-S, 9-8

insertion, 29-1
manager, 29-5
recovering, 29-S

insertion point, 25-1, 38-1
instance data, 22-1
instantiate

menu, 27-3, 27-4
inter-tool communication, 29-1
interactive tool, 20-1
interactive user interface, 18-1,20-1
interfaces, 1-1
interpreter

invoking, S6-6
Interrupt Level, 1-3
invalid areas, III-2
invalid boxes

discovery, 24-8
invalid regions

discovery, 24-8
enumeration, 24-4

invalid table, 43-3

Mesa Programmer's Manual

invalid window boxes, 24-5
invalid window regions, 24-5
invoking interprete:o, 56-6
invoking scrolling, 28-1
J.First, 17-5
J .Insert, 17-5
J.Last, 17-5
J.Select, 17-5
key names, 43-9
key transition, 44-1
keyboard mapping, 44-1
keystrokes, 44-1
last message, 14-2
left hand side, 43-5
librarian, 8-3

default server, 41-3, 42-5
line-oriented input, 18-3
load programs, 5-1, 5-5, 49-1, 49-2
local file, 45-1, 46-1
log file, 51-2, 51-4

backing up in, 51-2
name, 20-6
sub window , 20-4

logical volume boot, 42-2
login, 5-5, 42-5, 46-9
login name, 8-3, 8-5
long selection conversion, 29-2
macro, 43-11
manager

current selection, 29-1, 29-5
insertion, 29-1, 29-5
trash bin, 29-1, 29-5

marking insertion point, 38-1
match process, 43-6, 43-10
Matcher, 43-6, 1-3, IV-l
MAXC, 46-3
ME,I-3
measure

text, 39-1, 39-3
menu

current, 27-2
Menu,27-1
menu

instantiate, 27-3, 27-4
standard text, 17-1
text, 17-1
uninstantiate, 27-3, 27-5

menu command routine, 27-2
message, 7-2

user, 14-1
message subwindow, 20-4
MFileProperty,48-1
MLoader, 49-1
module name determination, 56-5

mouse
events, 43-2
movement, 43-8

moving files, 46-1, 46-5, 46-9
MSegment, 50-1

example, 50-7
MsgSW, 20-4,14·1
MStream, 51-1
multiple clicks, 38-2, 43-2
Multiple processes, 1-3
MVolume, 52-1
name

look up, 55-1, 55·2, 55-3
table, 55-1
user, 8·3, 8-5

netNumber, 1-3
network address, 1-1

examples, 1-4
format, 1-2, 1-3
parsing, 1-2

network number
parsing, 1-3

new search path, 42-5
NIL,19-1
Notification, V-I
notification

directory created, 42-4
directory deleted, 42-4
file window, 42-3, 42-4
tool window, 42-3

Notifier, 1-2, 1-3
notifier, 43-6

periodic, 44-1, 44-2, 44-3
return to, 44-2

NotifyProc,IV-2
NSFiling, 46-3
opaque, 43-4
opaque table, IV-5
organization, 1-3

default, 41-3, 42-5
output to windows, 19-1
packages

sort, 54-1
painting

rectangles, 21-4
tool window, 21-1, 21-7

parsing, 9-1
alphabetic, 9-3
alphanumeric, 9-3
boolean, 9-3
bracketed, 9-3
break character, 9-2
client-defined tokens, 9-4
file name, 9-4
input source, 9-1
line, 9-5

5

6

Index

numeric, 9-3, 9-5, 9-6, 9-7
quoted, 9-7
quoted tokens, 9-5
string input source. 9-7
switches, 9-7
white space, 9-5, 9-8

password, 8-3, 8-5
pattern matching, 5-5
pause, 57-2
Periodic Notifier, 1-3
periodic notifier, 44-1, 44-2, 44-3

example, 44-6
Philosophy and conventions, 1-1
physical volume boot

aborting, 41-2
piece source, 35-1
piece table, 35-1
PieceSource,35·1
Pilot

loader facility, 49-1
Pilot Programmer's Manual, 50-1
Pilot transducer, 51-1
positionable byte stream, 51-1
positioning text, 17-6
powering down, 41-2, 42-5
powerOff, 41-2,42-5
Pri "ter, 56-1, 56-3
printer

example, 56-7
printing in windows, 19-1
Processing Level, 1-3
Profile, 8-1,42-4,
program

load, 49-1, 49-2
run, 49-2
start, 49-1, 49-2
unload, 49-2

program analysis, VII-1
Program invocation, 1-5
Put, 19·1
read

text, 40-3
rectangle painting, 21-4
redirecting input and output, 44-3
registering Executive commands, 5-1, 5-2,

5-3,5-6
registry, 8-2, 8-4

default, 41-3, 42-5
releasing a stream, 51-1
remote file, 45-1, 46-1
replace

text, 40-3
resolve

text, 39-1, 39-3
Resource management, 1-4
resume session, 42-3

returning, 42-2
right hand side, 43-5
root TIP table, 43-3
root window, 21-3,111-2
running in the Executive, 5-1,5-2,5-3
running programs, 5-1, 5-6, 49-2 .
save state, 22-1
scanning, 9-1

alphabetic, 9-3
alphanumeric, 9-3
boolean, 9-3
bracketed, 9-3
break character, 9-2
client-defined tokens, 9-4
file name, 9-4
input source, 9-1
line, 9-5
numeric, 9-3, 9-5, 9-6, 9-7
quoted,9-7
quoted tokens, 9-5
string input source, 9-7
switches, 9-7
text, 40-3
white space, 9-5, 9-8

scratch source, 15-1,36-1
ScratchSource, 15-1,36·1
scratchSW, 15·1
scrollbar, 17-1,28-1
Scroll bar , 28·1
scrollbar

horizontal, 28-2
vertical, 17-2, 28-2

scrolling, 28-1
direction, 28-1
text, 17-1
thumbing, 28-1

search path change
abort, 42-2
veto, 42-2

searching, VI-1
segment, 50·1

create, 50-4
data, 50-4
delete, 50-5
file, 50-1, 50-4
file ownership, 50-7
force out, 50-5
kill,50-6
release, 50-5
virtual memory address, 50-3
virtual memory page number, 50-4

selection, 17-7,39-1,40-1,43-2
actions on, 29-2, 29-4
client-defined actions, 29-5
client-defmed conversions, 29-5
conversion, 29-1, 29-3

Mesa Programmer's Manual

conversion oflong, 29-2
Selection, 29-1
selection

long, 29-2, 29-4
manager, 29-1, 29-5
source, 29-1,29-2
source mechanism, 29-2
text, 17-1
underlined, 38-2
value, 29-1, 29-3, 29-5

selection appearance, 38-2
selection entity, 38-2
session

resume, 42-3
severity

message, 14-2, 14-3
sibling windows, 111-2
sink

default output, 19-1
sinks, 111-3
socketNumber, 1-3
sort package, 54-1

coroutine example, 54-4
example, 54-3

sorting, VI-l
source

block,36-1
disk,34-1
piece, 35-1
scratch, 36-1
string, 37-1
text, 34-1, 35-1, 36-1, 37-1

source-independent text display, 17-1
sources, 111-3
Space, 50-1
special purpose debugger, 56-1
Split, 17-1, 17-7
stack printer example, 56-7
standard menu

text, 17-1
starting programs, 5-6,49-1,49-2
StimLev, 43-6, 1-3, IV-l
Stimulus Level, 1-3
stimulus level, 43-6
stopping tools, 5-2, 5-3, 5-7, 41-4
stream, 51-1

change length, 51-4, 51-5
copy, 51-2
create, 51-2, 51-3, 51-4
local, 46-7, 46-8
operations, 51-5
release, 51-1
remote, 46-7, 46-8

string
common prefix, 55-2
conversion to date, 4-1

display, 16-1
is a prefix of, 55-2
source, 37-1
subwindow, 16-1,20-5

StringLookUp

DEFINITIONS, 55-1
example, 3-1, 55-3

StringOut, 19-1
StringSource, 37-1
StringSW, 16-1,20-4
subwindow, 21-3

changing position, 28-2
changing size, 28-2
client-defined type, 20-1, 20-5
creation, 18-2, 21-4
disk file backed, 11-1
display region, 17-1
file backed, 11-1
removing, 20-3
scratch,15-1
teletype, 18-1
types, 24-1

Supervisor, 41-1, 41-3, 42-1
supervisor, IV-l
swap?in reason, 41-4
swap?out reason, 41-4
swapping, 41-1, 41-2, 41-4, 42-2, 42-6
switches

booting, 7-1, 7-4
symbiote menu, 20-2
system font

default, 42-6
system heap, 1-4
systemFont

default, 41-3
table look up, 55-1, 55-2, 55-3
table of commands, 55-1
tag item, 13-11
tailorable user interface, 43-1
Tajo, 1-2

user interface, 20-1
utilities, 57-1

TajoMisc, 57-1
teletype subwindow, 18-1

echoing characters, 18-3
type-in, 18-3

temporary file, 50-4
TENEX, 46-3
terminal interaction

line-oriented, 18-3
terminal state, 57-2
text

caret, 25-1

7

8

Index

deletion, most recent, 29-1
display, 39-1, 39-2,40-1
insertion, most recent, 29-1
insertion point, 25-1
measure, 39-1, 39-3
read, 40-3
replace, 40-3
resolve, 39-1, 39-3
scan, 40-3
selection, 17-1
source, 36-1,37-1
source, implementing, 40-3
source, semantics, 40-3

text file
editing, 11-3
saving edits, 11-3
storing edits, 11-3

Text Ops menu, 17-1,17-5,17-8
Find,17-3
J.First, 17-5
J .Insert, 17-5
J.Last, 17-5
J.Select, 17-5
Position, 17-6
Split, 17-7
Wrap, 17-8

text sink, 32-1
text source, 34-1, 35-1
text subwindow, 15-1, 17-1,20-5

TIP table, 43-3
text subwindow display region, 17-1
TextData, 38-1
TextSink, 32-1, 39-1
TextSource, 34-1, 35-1, 36-1, 37-1, 40-1
TextSW, 17-1,20-5
tiny, 1-5
tiny name, 20-2
tiny place, 20-2
TIP, 43-1

client, 43-3
Matcher, 43-6

TIP table, 43-6
compiled, 43-4
creation, 43-3
destruction, 43-3
global, 43-2, 43-6
invalid, 43-3
opaque, 43-4
statement, 43-1,43-5

TIP tables, IV-l
TIP tree, IV-5
TIPC, 43-4
Token, 9-1

example, 3-1, 9-8
tokens

expansion from command line, 6-1

tool
aborting, 44-5
activation, 21-3
active, 21-2
attaching subwindow, 28-3
box, 21-1
building a tool, 13-1
changing state, 20-2, 20-3, 20-6
clipping subwindow, 21-3
creation, 20-2, 21-3
deactivation, 21-4

Tool, 20-1
tool

destruction, 21-4
display, 21-7
displaying current version, 58-1
file subwindow, 20-4
form subwindow, 20-4
inactive, 21-2
invocation, automatic, 10-1
location adjustment, 21-6
log file subwindow, 20-4
message subwindow, 20-4
name setting, 21-7
painting, 21-7
removing subwindow, 20-3, 28-3
size adjustment, 21-6
state, 21-2
state change, 21-2
stopping, 5-2, 5-3, 5-7, 41-4
string subwindow, 20-5
subwindow, 21-3
subwindow creation, 21-4
switching subwindows, 20-6
text sub window , 20-5
tiny, 21-2
tiny name, 20-2
TTY subwindow, 20-5
User.cm section, 20-2
window management, 21-1
window package, 21-1

tool window
activate, 42-3
activation, 21-3
active, 21-2
attaching subwindow, 28-3
box, 21-1
clipping, 21-3
create, 42-3
creation, 21-3
deactivate, 42-3
deactivation, 21-4
destruction, 21-4
display, 21-1,21-7
inactive, 21-2
location adjustment, 21-1, 21-6

Mesa Programmer's Manual

management, 21-1
movement control, 21-2
name setting, 21-7
normal size, 21-2
notification, 42-3
package, 21-1
painting, 21-1, 21-7
p.lacement, 21-2
rectangle painting, 21-4
removing subwindow, 28-3
root, 21-3
size, 21-2
size adjustment, 21-1, 21-6
state, 21-2
state change, 21-2
subwindow, 21-3
subwindow creation, 21-4
tiny, 21-2
tiny size, 21-2
types, 21-3
zoomed size, 21-2

ToolDriver, 10-1
example, 10-3

ToolFont, 30-1
Tools philosophy, 1-2
ToolWindow, 21-1
transition

key, 44-1
transition procedure, 20-2, 20-3, 20-6
trash bin, 17-2,29-1

manager, 29-5
recovering, 29-5
stuffing, 44-5

tree
binary, 53-1

TRIGGER,IV-2
TTY subwindow, 20-5

TIP table, 43-3
TTYSW, 18-1,20-5
turning off machine, 41-2, 42-5
type-in, 44-1

editing, 18-3
indirect, 44-3

type-out
indirect, 44-3

unformat
host number, 1-3
network address, 1-2
network number, 1-3

uninstantiate
menu, 27-3,27-5

unique identifier, 2-1
unique log file name, 20-6
unloading programs, 5-2, 5-3, 5-6, 5-7,

49-2
user, 1-2

action, 43-1, 43-5
feedback, 7-1

User Action Queue, 43-6
user action queue, IV-l
user commands, 27-1
user confirmation, 5-3
user message, 14-1
user name, 5-4, 5-5, 8-3, 8-5, 46-9

monitoring changes, 41-2, 42-5
user password, 5-4, 5-5, 46-9

monitoring changes, 41-2, 42-5
user profile, 8-1
User.cm, 9-8, 55-1

cm section, 20-2
initial tool state, 20-2
initial tool window box, 20-2
parse contents of, 3-1
processing, 3-1
section, 20-2
section per tool, 20-2
tool symbiote menu, 20-2
tool tiny place, 20-2

Userlnput, 44-1
UserTerminal, 57-2
utilities, 57-1

debugging, 56-1
Version, 58-1
version number, 58-1
vertical scrollbar, 17-2
viewing text, 17-1
virtual memory

address, 50-3
page number, 50-4

volume
closed, 42-6
closing, 42-2
open, 42-6
opening, 42-3

wait, 57-2
warning message, 14-1
WHILE,IV-2
white space characters, 9-8
wild card character, 6-1
wildcard characters

in file names, 46-5, 46-6, 46-8,A6-10
window

activation, 21-3
active, 21-2
bitmap under, 24-2, 24-5, 24-6, 24-8
bitmapUnder, 24-4
box, 21-1,24-1, 24-5,24-6
change child's position, 24-7
change child's tree location, 24-8
clearing, 24-1
clipping, 21-3
cookieCutter, 24-5

9

10

Index

creation, 21-3
deactivation, 21-4

Window, 24·1
window

destruction, 21-4
dimensions, 24-1
display, 21-1, 21-7, 23-1
editable, 12-1,15-1
entering, 44-1
enumeration, 24-4
file, 12-1
graphics, 23-1
gravity, 24-1
inactive, 21-2

.. initialization, 24-5
insertion, 24-5
invalid regions, 24-4, 24-5, 24-8
location adjustment, 21-1, 21-6
management, 21-1, 24-1
manager menu, 57-1
movement control, 21-2
name setting, 21-7
normal size, 21-2
output procedure, 19-1
package, 21-1
painting, 21-1, 21-7
placement, 21-2, 24-4
position, 24-7
rectangle painting, 21-4
root, 21-3, 24-2, 24-6
size, 21-2
size adjustment, 21-1, 21-6
split,17-1
state, 21-2
state change, 21-2
subwindow, 21-3
subwindow creation, 21-4
tiny, 21-2
tiny size, 21-2
tree, 24-4, 24-5, 24-6, 24-8
types, 21-3
zoomed size, 21-2

window coordinates, 24-3
window management, 24-1
window package, 24-1, 111-1
WindowFont, 31-1
windows, 111-1
world swap, 41-1, 41-2, 41-4, 42-2, 42-5

42-6
wrap, 17-1, 17-8

OFFICE SYSTEMS DIVISION

Reader's Feedback
Xerox's Technical Publications Departments want to provide documents that meet
the needs of all our product users. Y Qur comments help us correct and improve our
publications. Please take a few minutes to respond. If you have comments on the
product this document describes, contact your Xerox representative.

1. Did you find any errors in this publication? What were they? On which pages?

2. Were there any areas that were hard to understand because of descriptions or
wording? What were they? Where?

3. Did this publication give you all the information you needed? If not, what was
missing?

4. Was this manual at the right level for your needs? If not, what other types of
publications do you need?

5. What one thing could we do to improve this manual for you?

NAME __________________________________ DATE _______ __

TITLE, ________ COMPANY _______________ __

ADDRESS ______________________ ____

CITY ________________ STATE ___________________ ZIP ______ _

XDE3.0·4001

	0_001
	0_002
	0_003
	0_004
	0_005
	0_006
	0_007
	0_008
	0_009
	0_010
	0_011
	0_012
	0_013
	0_014
	0_015
	0_016
	0_017
	0_018
	1_001_General_Environment
	1_002
	1_003
	1_004
	1_005
	1_006
	1_007
	1_008
	1_01-01_AddressTranslation
	1_01-02
	1_01-03
	1_01-04
	1_01-05
	1_01-06
	1_02-01_Atom
	1_02-02
	1_03-01_CmFIle
	1_03-02
	1_03-03
	1_03-04
	1_03-05
	1_03-06
	1_04-01_Date
	1_04-02
	1_05-01_Exec
	1_05-02
	1_05-03
	1_05-04
	1_05-05
	1_05-06
	1_05-07
	1_05-08
	1_06-01_Expand
	1_06-02
	1_06-03
	1_06-04
	1_07-01_HeraldWindow
	1_07-02
	1_07-03
	1_07-04
	1_08-01_Profile
	1_08-02
	1_08-03
	1_08-04
	1_08-05
	1_08-06
	1_09-01_Token
	1_09-02
	1_09-03
	1_09-04
	1_09-05
	1_09-06
	1_09-07
	1_09-08
	1_09-09
	1_09-10
	1_10-01_ToolDriver
	1_10-02
	1_10-03
	1_10-04
	2_001_Tool_Building
	2_002
	2_11-01_FileSW
	2_11-02
	2_11-03
	2_11-04
	2_12-01_FileWindow
	2_12-02
	2_12-03
	2_12-04
	2_13-01_FormSW
	2_13-02
	2_13-03
	2_13-04
	2_13-05
	2_13-06
	2_13-07
	2_13-08
	2_13-09
	2_13-10
	2_13-11
	2_13-12
	2_13-13
	2_13-14
	2_13-15
	2_13-16
	2_13-17
	2_13-18
	2_13-19
	2_13-20
	2_13-21
	2_13-22
	2_13-23
	2_13-24
	2_14-01_MsgSW
	2_14-02
	2_14-03
	2_14-04
	2_15-01_ScratchSW
	2_15-02
	2_16-01_StringSW
	2_16-02
	2_17-01_TextSW
	2_17-02
	2_17-03
	2_17-04
	2_17-05
	2_17-06
	2_17-07
	2_17-08
	2_18-01_TTYSW
	2_18-02
	2_18-03
	2_18-04
	2_19-01_Put
	2_19-02
	2_19-03
	2_19-04
	2_20-01_Tool
	2_20-02
	2_20-03
	2_20-04
	2_20-05
	2_20-06
	2_21-01_ToolWindow
	2_21-02
	2_21-03
	2_21-04
	2_21-05
	2_21-06
	2_21-07
	2_21-08
	3_001_Window_and_Subwindow_Building
	3_002
	3_003
	3_004
	3_22-01_Context
	3_22-02
	3_22-03
	3_22-04
	3_23-01_Display
	3_23-02
	3_23-03
	3_23-04
	3_23-05
	3_23-06
	3_24-01_Window
	3_24-02
	3_24-03
	3_24-04
	3_24-05
	3_24-06
	3_24-07
	3_24-08
	3_25-01_Caret
	3_25-02
	3_26-01_Cursor
	3_26-02
	3_26-03
	3_26-04
	3_27-01_Menu
	3_27-02
	3_27-03
	3_27-04
	3_27-05
	3_27-06
	3_28-01_Scrollbar
	3_28-02
	3_28-03
	3_28-04
	3_29-01_Selection
	3_29-02
	3_29-03
	3_29-04
	3_29-05
	3_29-06
	3_30-01_ToolFont
	3_30-02
	3_31-01_WindowFont
	3_31-02
	3_31-03
	3_31-04
	3_32-01_AsciiSink
	3_32-02
	3_33-01_BlockSource
	3_33-02
	3_34-01_DiskSource
	3_34-02
	3_35-01_PieceSource
	3_35-02
	3_36-01_ScratchSource
	3_36-02
	3_37-01_StringSource
	3_37-02
	3_38-01_TextData
	3_38-02
	3_39-01_TextSink
	3_39-02
	3_39-03
	3_39-04
	3_40-01_TextSource
	3_40-02
	3_40-03
	3_40-04
	3_40-05
	3_40-06
	4_001_User_Inputs_and_Events
	4_002
	4_003
	4_004
	4_005
	4_006
	4_007
	4_008
	4_009
	4_010
	4_41-01_Event
	4_41-02
	4_41-03
	4_41-04
	4_41-05
	4_41-06
	4_42-01_EventTypes
	4_42-02
	4_42-03
	4_42-04
	4_42-05
	4_42-06
	4_43-01_TIP
	4_43-02
	4_43-03
	4_43-04
	4_43-05
	4_43-06
	4_43-07
	4_43-08
	4_43-09
	4_43-10
	4_43-11
	4_43-12
	4_44-01_UserInput
	4_44-02
	4_44-03
	4_44-04
	4_44-05
	4_44-06
	5_001_File_Management
	5_002
	5_003
	5_004
	5_005
	5_006
	5_007
	5_008
	5_009
	5_010
	5_45-01_FileName
	5_45-02
	5_45-03
	5_45-04
	5_46-01_FileTransfer
	5_46-02
	5_46-03
	5_46-04
	5_46-05
	5_46-06
	5_46-07
	5_46-08
	5_46-09
	5_46-10
	5_47-01_MFile
	5_47-02
	5_47-03
	5_47-04
	5_47-05
	5_47-06
	5_47-07
	5_47-08
	5_47-09
	5_47-10
	5_47-11
	5_47-12
	5_47-13
	5_47-14
	5_47-15
	5_47-16
	5_47-17
	5_47-18
	5_47-19
	5_47-20
	5_47-21
	5_47-22
	5_47-23
	5_47-24
	5_48-01_MFileProperty
	5_48-02
	5_49-01_MLoader
	5_49-02
	5_50-01_MSegment
	5_50-02
	5_50-03
	5_50-04
	5_50-05
	5_50-06
	5_50-07
	5_50-08
	5_51-01_MStream
	5_51-02
	5_51-03
	5_51-04
	5_51-05
	5_51-06
	5_52-01_MVolume
	5_52-02
	6_001_Sorting_and_Searching
	6_002
	6_53-01_BTree
	6_53-02
	6_53-03
	6_53-04
	6_54-01_GSort
	6_54-02
	6_54-03
	6_54-04
	6_54-05
	6_54-06
	6_55-01_StringLookUp
	6_55-02
	6_55-03
	6_55-04
	7_001_Program_Analysis
	7_002
	7_56-01_DebugUsefulDefs
	7_56-02
	7_56-03
	7_56-04
	7_56-05
	7_56-06
	7_56-07
	7_56-08
	8_001_Miscellaneous
	8_002
	8_57-01_TajoMisc
	8_57-02
	8_58-01_Version
	8_58-02
	A_01
	A_02
	A_03
	A_04
	A_05
	A_06
	A_07
	A_08
	A_09
	A_10
	A_11
	A_12
	A_13
	A_14
	B_01
	B_02
	C-001
	C-002
	C-003
	C-004
	C-005
	C-006
	C-007
	C-008
	C-009
	C-010
	C-011
	C-012
	C-013
	C-014
	C-015
	C-016
	C-017
	C-018
	C-019
	C-020
	C-021
	C-022
	C-023
	C-024
	C-025
	C-026
	C-027
	C-028
	C-029
	C-030
	C-031
	C-032
	C-033
	C-034
	C-035
	C-036
	C-037
	C-038
	C-039
	C-040
	C-041
	C-042
	C-043
	C-044
	C-045
	C-046
	C-047
	C-048
	C-049
	C-050
	C-051
	C-052
	C-053
	C-054
	C-055
	C-056
	C-057
	C-058
	C-059
	C-060
	C-061
	C-062
	C-063
	C-064
	C-065
	C-066
	C-067
	C-068
	C-069
	C-070
	C-071
	C-072
	C-073
	C-074
	C-075
	C-076
	C-077
	C-078
	C-079
	C-080
	C-081
	C-082
	C-083
	C-084
	C-085
	C-086
	C-087
	C-088
	C-089
	C-090
	C-091
	C-092
	C-093
	C-094
	C-095
	C-096
	C-097
	C-098
	C-099
	C-100
	C-101
	C-102
	C-103
	C-104
	C-105
	C-106
	C-107
	C-108
	C-109
	C-110
	C-111
	C-112
	C-113
	C-114
	C-115
	C-116
	C-117
	C-118
	C-119
	C-120
	C-121
	C-122
	C-123
	C-124
	C-125
	C-126
	I_01
	I_02
	I_03
	I_04
	I_05
	I_06
	I_07
	I_08
	I_09
	I_10
	replyA

