ORI RN R

Xerox Development Environment

‘MesaProgrammer’s Manual

- XDE3.0-4001 -
Version3.0
November1984

Office Systems Division
Xerox Corporation

3450 Hillview Avenue

Palo Alto, California 94304

Xerox Devélopment Environment

Notice

This manual is the current release of the Xerox Development Environment (XDE) and may be revised by Xerox
without notice. No representations or warranties of any kind are made relative to this manual and use thereof,
including implied warranties of merchantability and fitness for a particular purpose' or that any utilization
thereof will be free from the proprietary rights of a third party. Xerox does not assume any responsibility or
liability for any errors or inaccuracies that may be contained in the manual or have any liabilities or obligations
for any damages, including but not limited to special, indirect or consequential damages, arising out of or in
connection with the use of this manual or products or programs developed from its use. No part of this manual,
either in whole or part, may be reproduced or transmitted mechanically or electronically without the written
permission of Xerox Corporation.

Copyright © 1984 by Xerox Corporation.
All Rights Reserved.

Preface

This document is one of a series of manuals written to aid in programming and operating
the Xerox Development Environment (XDE). '

Comments and suggestions on this document and its use are encouraged. The form at the
back of this document has been prepared for this purpose. Please send your comments to-

Xerox Corporation

Office Systems Division

XDE Technical Documentation, M/S 37-18
3450 Hillview Avenue

Palo Alto, California 94304

i

Preface

iv

Table of contents

I General environment

I.1
1.2

L3

1.1
1.2
1.3
14
1.5

2.1
2.2
2.3
2.4

Files

Philosophy and contents .
2.1 Users and Clients. .
1.2.2 Tools Philosophy.
1.2.3 Notifier.

124 Multiple processes, multiple instances .

1.2.5 Resource management.
1.2.6 Tool state conventions .
1.2.7 Program invocations.
1.2.8 Stopping tools .
Interface abstracts

AddressTranslation

Types e
Constants and data objects
Signals and errors
Procedures

Examples

Atom

Types e
Constants and data objects
Signals and errors
Procedures

I-1

I-2
I-2
I-2
I-3
I-4
I-5

I-6
I-6

1-1
1-1
1-1
1-2
1-3

2-1
2-1
2-1

Table‘of contents

vi

3.1

3.2
3.3

3.4
3.5

4.1
4.2
4.3
4.4

5.1
5.2
5.3
5.4
5.5

6.1
6.2
6.3
6.4

7.1
7.2
7.3
7.4

8.1
8.2
8.3
8.4

CmFile

Types .
Constants and data objects
Signals and errors

Procedures
Examples.

Date

Types .
Constants and data objects
Signals and errors
Procedures

Exec

Types

Constants and data objects
Signals and errors
Procedures

Examples.

Expand

Types ce
Constants and data objects
Signals and errors
Procedures

HeraldWindow

Types

Constants and data objects
Signals and errors
Procedures

Profile

Types e e
Constants and data objects
Signals and errors
Procedures

3-1
3-1
3-1
3-2

4-1
4-1
4-1
4-1

5-1
5-2
5-2

5-7

61

6-2
6-2
6-2

T-1
7-1
7-2
7-2

8-1
8-2
8-3

Mesa Programmer’s Manual

II

9 Token

9.1 Types

9.2 Constants and data objects
9.3 Signals and errors

9.4 Procedures

9.5 Discussion and Examples .
10 ToolDriver

10.1 Types .
10.2 Constants and data objects
10.3 Signals and errors

10.4 Procedures

10.5 Example .

Tool building

1.1 Interface Abstracts.

11 FileSW

11.1 Types

11.2 Constants and data objects
11.3 Signals and errors

11.4 Procedures

12 FileWindow

12.1 Types e
12.2 Constants and data objects
12.3 Signals and errors

12.4 Procedures

13 FormSW

13.1 Types e
13.2 Constants and data objects
13.3 Signals and errors

13.4 Procedures

9-1
9-2
9-3

9-8

10-1
10-2
10-2
10-2
10-3

II-1

11-1
11-1
11-1
11-1

12-1
12-1
12-1
12-1

13-1
13-12
13-13
13-14

vii

Table of contents

viii

14

14.1
14.2
14.3
14.4

15

15.1
15.2
15.3
15.4

16

16.1
16.2
16.3
16.4

17

17.1
17.2
17.3
17.4

18

18.1
18.2
18.3
18.4
18.5

19

19.1
19.2
19.3
19.4

MsgSW‘

Type
Constants and data objects
Signals and errors

Procedures

ScratchSW

Types
Constants and data objects
Signals and errors

Procedures

StringSW

Types

Constants and data objects
Signals and errors
Procedures

TextSW

Types

Constants and data objects
Signals and errors
Procedures

TTYSW

Types ..
Constants and data objects

Signals and errors

Procedures e
Procedures mapped to calls on TTY

Put

Types

Constants and data objects
Signals and errors
Procedures

14-1
14-1
14-1
14-2

15-1
15-1
15-1
15-12

16-1
16-1
16-1
16-1

17-1
17-2
17-2
17-2

18-1
18-1
18-1
18-2
18-3

19-1
19-1
19-1
19-1

Mesa Programmer’s Manual

II1

20

20.1
20.2
20.3
20.4

21

21.1
21.2
21.3
21.4

Window and subwindow building

1.1

1.2
III.3

22

22.1
22.2
22.3
22.4

23

23.1
23.2
23.3
23.4

24

24.1
24.2
24.3
24.4

Tool

Types o
Constants and data objects
Signals and errors

Procedures

ToolWindow

Types .
Constants and data objects
Signals and errors
Procedures

The Window package
I11.1.1 Windows

Sources and sinks
Interface abstracts

I11.3.1 Windows

I11.3.2 Subwindows

I11.3.3 Sources and sinks .

Context

Types .
Constants and data objects
Signals and errors
Procedures

Display

Types ce .
Constants and data objects
Signals and errors
Procedures

Window

Types e
Constants and data objects
Signals and errors
Procedures

20-1
20-1
20-1
20-2

21-1
21-3
21-3
21-3

II-1
ITI-2
III-3
II1-3
I11-3
II1-3
II1-4

22-1
22-2
22-2
22-2

23-1
23-2
23-2
23-3

24-1
24-2
24-2
24-3

ix

Table of contents

25

25.1
25.2
25.3
25.4

26

26.1
26.2
26.3
26.4

27

27.1
27.2
27.3
27.4
27.5

28

28.1
28.2
28.3
28.4
28.5

29

29.1
29.2
29.3
29.4

30

30.1
30.2
30.3
30.4

Caret

Types
Constants and data objects
Signals and errors

Procedures

Cursor

Types
Constants and data objects
Signals and errors

Procedures

Menu

Types

Constants and data objects
Signals and errors
Procedures

Examples .

Scrollbar

Types e
Constants and data objects
Signals and errors
Procedures

Discussion

Selection

Types

Constants and data objects
Signals and errors
Procedures

ToolFont

Types .
Constants and data objects
Signals and errors
Procedures

25-1
25-2
25-2
25-2

26-1
26-1
26-2
26-2

27-1
27-2
27-2
27-3
27-5

28-1
28-2
28-2
28-2
28-3

29-1
29-4
29-4
29-4

30-1
30-1
30-1
30-1

Mesa Programmer’s Manual

31

31.1
31.2
31.3
31.4

32

32.1
32.2
32.3
32.4

33

33.1
33.2
33.3
33.4

34

34.1
34.2
34.3
34.4

35

35.1
35.2
35.3
35.4

36

36.1
36.2
36.3
36.4

WindowFont

Types
Constants and data objects
Signals and errors

Procedures

AsciiSink

Types .
Constants and data objects
Signals and errors

Procedures

BlockSource

Types

Constants and data objects
Signals and errors
Procedures

DiskSource

Types e
Constants and data objects
Signals and errors
Procedures

PieceSource

Types ..
Constants and data objects
Signals and errors
Procedures

ScratchSource

Types

Constants and data objects
Signals and errors
Procedures

31-1
31-2
31-2
31-2

32-1
32-1
32-1
32-1

33-1
33-1
33-1
33-1

34-1
34-1
34-1
34-1

35-1
35-1
35-1
35-1

36-1
36-1
36-1
36-1

X1

Table of contents

37 StringSource

37.1 Types e
37.2 Constants and data objects
37.3 Signals and errors

37.4 Procedures

38 TextData

38.1 Types S
38.2 Constants and data objects
38.3 Signals and errors

38.4 Procedures

39 TextSink

39.1 Types .
39.2 Constants and data objects
39.3 Signals and errors

39.4 Procedures

40 TextSource

40.1 Types P
40.2 Constants and data objects
40.3 Signals and errors

404 Procedures

40.5 Discussion

IV Userinput and events

vl Events.

V.2 TIP tables. e e
IV.21 Example of a NotifyProc
IV.2.2 TIP table semantics
Iv.23 TIP table syntax
V.24 How to create a TIP table

Iv.3 Advanced topics
Iv.31 The GPM macro package
1v.3.2 Another TIP example

IvV.4 Interface abstracts

xii

37-1
37-1
37-1
37-1

38-1
38-2
38-2
38-2

39-1
39-4
39-4
39-4

40-1
40-4
40-4
40-4
40-5

IV-1
Iv-1
Iv-2
Iv-2
V-2
Iv-3
Iv-4
IvV-5
IV-5
IvV-6

Mesa Programmer’s Manual

41 Event

41.1 Types C L 41-1
41.2 Constants and data objects 41-2
41.3 Signalsanderrors 41-3
41.4 Procedures0 41-3
41.5 Examples. 413

42 EventTypes

42.1 Types C e e 42-1
42.2 Constants and data objects 42-2
42.3 Signalsanderrors 42-6

424 Procedures 426
425 Examples. 426

43 TIP

43.1 Types e e e e e e 43-1
43.2 Constants and dataobjects 43-2
43.3 Signalsanderrors 43-3
43.4 Procedures L. 43-3
43.5 Discussion 43-5
43.5.1 Overview 43-5
43.5.2 Using TIPtables 43-6
43.5.3 Syntaxof TIPtables 43-6
43.5.4 Semanticsof TIPtables 43-7
43.5.5 GPM: macropackage 4311

44 UserlInput

441 Types C e e e e e e 44-1
44.2 Constants and dataobjects 44-2
43.3 Signalsanderrors 44-2
44 .4 Procedures L. 44-2
44.5 Examples. 0L 44-6

File management

V.1 Overview Va

V.2 Fileaccess V-2
V.3 Notification V-3
V.4 Appendfiles L0 V-4
V.5 Examples e V-5

xiii

Table of contents

xiv

V.6
V.7

45

45.1
45.2
45.3
45.4
45.5

46

46.1
46.2
46.3
46.4
46.5

47

471
47.2

.47.3

47.4
47.5

48

48.1
48.2
47.3
484

V.5.1 File windows

V.5.2 File managers

V.5.3 Append file processing

Concurrency Problems in Writing Call-Back Procedures..

Interface Abstracts

FileName

Types L.
Constants and data objects
Signals and errors
Procedures

Examples.

FileTransfer

Types e
Constants and data objects
Signals and errors
Procedures

Examples.

MFile

Types L
Constants and data objects
Signals and errors

Procedures

Discussion and examples .
47.5.1 Release procedures.
47.5.2 Notification

MPFileProperty

Types .
Constants and data objects
Signals and errors
Procedures

V-5
V-5
V-6
V-6
V-9

45-1
45-1
45-1
45-2
45-3

46-1
46-4
46-4
46-5
46-10

47-2
47-6
47-6
47-9
47-20
47-20
47-22

48-1
48-1
48-1
48-1

Mesa Programmer’s Manual

VI

49

49.1
49.2
49.3
49.4

50

50.1
50.2
50.3
50.4
50.5

51

51.1
51.2
51.3
51.4
51.5

52

52.1
52.2
52.3
52.4

MLoader

Types
Constants and data objects
Signals and crrors

Procedures

MSegment

Types .
Constants and data objects
Signals and errors
Procedures

Examples .

MStream

Types S
Constants and data objects
Signals and errors
Procedures

Stream-specific operations

MVolume

Types ,
Constants and data objects
Signals and errors
Procedures

Sorting and searching

VI.1

53

53.1
53.2
53.3
53.4

Interface abstracts.

BTree

Types .
Constants and data objects
Signals and errors

Procedures

49-1
49-1
49-1
49-2

50-1
50-2
50-2
50-3
50-7

51-1
51-1
51-2
51-2
51-5

52-1

521

52-1
52-1

VI-1

53-1
53-1
53-1
53-2

). 4%

Table of contents

VII

54

54.1
54.2
54.3
54.4
54.5

55

55.1
55.2
55.3
55.4
55.5

GSort

Types

Constants and data objects
Signals and errors
Procedures

Examples

StringLook Up

Types .
Constants and data objects
Signals and errors
Procedures

Examples.

Program analysis

VIIL1

56

56.1
56.2
56.3
56.4
56.5

Interface abstracts

DebugUseful Defs

Types

Constants and data objects
Signals and errors
Procedures

Sample Printer

VIII Miscellaneous

VIIL.1

57

57.1
57.2
57.3
57.4

58

58.1
58.2
58.3

xvi

Interface abstracts

TajoMisc

Types .
Constants and data objects
Signals and errors
Procedures

Version

Types .
Constants and data objects

Signals and errors

54-1
54-3
54-3
54-3
54-3

55-1
55-1
55-2
55-2
55-3

VII-1

56-1
56-2
56-2
56-3
56-7

VIII-1

57-1
57-1
57-1
57-1

58-1
58-1
58-1

Mesa Programmer’s Manual

58.4 Procedures
Appendices
A Example Tool
Al Creation and startup of ExampleTool
A2 Tool states and storage sanagement
A3 Data
A4 Subwindows .
A5 Form subwindows
A5.1 Command items
A5.2 String items
A53 Enumerated items .
Ab54 Number items .
A55 Boolean items .
A6 Menus
A7 The ExampleTool program
B References .
C Listing of Public Symbols .
Index
Illustrations

Example 13.1: ExampleTool

Example 43.1: Dependency Structure of Global Tables

Example V.1: Procedures for Acquiring and Releasing Files

Example V.2: PleaseReleaseProc Declarations.

Example V.3: SetAccess Declarations .

Example V.4: NotifyProc Declarations.
Example V.5: Example PleaseReleaseProc.

Example V.6: Race Condition if File System Permitted Release to Execute

Example V.7: Client-Caused Deadlock in PleaseReleaseProc .
Example A.1: ExampleTool

58-1

A-1
A-2
A-2
A-3
A-3
A-4
A-5

A-6
A-6
A-6
A-7

B-1

13-2
43-3
V-2

V-3
V-4
V-8
V-8
V-9

xvii

Table of contents

xviii

General environment

I.1

Files

The Xerox Development Environment provides interfaces for building tools and whole
systems from start to finish. Interfaces suitable for use by programmers at differing levels
of ability and familiarity with XDE are available for many tasks.

The interfaces in this section are all basic and should be studied both for content and to get
a feel for the XDE paradigm of "tools and interfaces.” The simplest interfaces are Atom
and Date, followed by Token, Executive, Expand, HeraldWindow, and Profile interfaces.
The most important interfaces in this group are AddressTranslation, along with CmFile
and the ToolDriver.

In general, a programmer new to the Xerox Development Environment can get started
building tools by looking at the interfaces in this and the next (Tool building) sections and
then studying the Example Tool in Appendix A for specifics. The interfaces discussed later
in this manual can be added to the programmer’s repertoire as needed.

Most facilities described in this manual are implemented by boot files. Some of the
facilities are provided by packages that can be loaded in the boot files.

This manual does not explicitly mention the location of files. This information is in the
documentation issued with each release of Mesa.

[.2 Philosophy and conventions

The development environment assumes that programs that run in it are friendly and are
not trying to circumvent or sabotage the system. The system does not enforce many of the
conventions described here, but it assumes that tool writers will adhere to them
voluntarily. As with rules of etiquette, if these conventions are not followed,
communication and sharing can break down: the development environment may degrade
or break down altogether.

I-1

General environment

[.2.1 Users and clients

Throughout, this manual refers to users and to clients. These terms are not
interchangeable, but refer to very different things.

A user is human being sitting at a workstation, typing keys, pressing buttons, and moving
the mouse. User actions are not predictable or controllable by programs. Users never
invoke program interfaces; they interact with facilities of the development environment
in ways described in the XDE User's Guide.

A client is a program that invokes the facilities of the development environment. The
client may act as a result of some user action, but the client’s behavior is the result of a
program and under the control of its implementor.

Tajo refers to the piece of the development environment that implements the user
interface facilities.

[.2.2 Tools philosophy

The most important principle in the development environment is that users should have
complete control over their environment. In particular, clients should not pre-empt users.
A user should never be forced by a client into a situation where the only thing that can be
done is to interact with one tool. Furthermore, the client should avoid falling into a
particular "mode" when interacting with the user. The tool should avoid imposing
unnecessary restrictions on the permitted sequencing of user actions.

This goal of user control has important implications for tool design. A client should never
seize control of the processor while getting user input. This tends to happen when the
client wants to use the "get a command from the user and execute it" mode of operation.
Instead, a tool should arrange for Tajo to notify it when the user wishes to communicate
some event to the tool. This is known as the "don't call us, we'll call you" principle.

The user owns the window layout on the screen. Although the client can rearrange the
windows, this is discouraged. Users have particular and differing tastes in the way they
wish to lay out windows on the display; it is not the client's role to override the user's
decisions. In particular, clients should avoid making windows jump up and down to
capture the user's attention. If the user has put a window off to the side, he does not want
to be bothered by it.

The facilities provided by the development environment are designed to facilitate this
same program writing style. In particular, the Tool interface makes it easy for a
programmer to write a program that interacts with the user in this way. The development
environment manages the details of user interaction so that tools are presented with a
sequence of discrete commands or actions. Programmers should study the Example Tool in
Appendix A for an example of how to use these facilities.

I.2.3 Notifier

Tajo sends most user input actions to the window that has set itself to be the focus for user
input; the rest of the actions are directed to the window containing the cursor. (See the TIP
interface for details on how the decision is made where to send these actions.) A process in
Tajo notes all user input actions and determines which window should receive each. A

Mesa Programmer’s Manual I

client is concerned only with the actions that are directed to its window; it need not
concern itself with determing which actions are intended for it.

Two processes are involved in user input management. One is a high-priority process that
queues user actions as they happen. The first process is called the Interrupt Level, the
Stimulus Level, or the StimLev. The other is a normal-priority process that processes the
user actions. This second process is called the Notifier, Processing Level, or the Matcher.

The Notifier informs a tool of a user action directed to it by calling a tool-supplied
NotifyProc procedure. The standard tool facilities provide appropriate NotifyProcs so that
tool writers need not worry about providing their own. Ambitious tool writers can, of
course provide their own; see the TIP and Userinput interfaces. Tool writers creating their
own subwindow types will probably have to do this.

[t is important to realize that most tools operate from the Notifier process. The Notifier
waits until a NotifyProc finishes for one user action before processing the next user action.
The procedures associated with form subwindow commands, for instance, are executed in
the Notifier process.

One implication of this use of the Notifier process is that a NotifyProc that requires a lot of
computing or communicating will delay the processing of all other user actions until it
completes. As a result, it is considered very impolite to “steal the Notifier” for any great
length of time, thus preventing the user from using other tools. It is the Tajo philosophy
that tools should never pre-empt the machine. Tool writers should FORK any command
that will take more than three to five seconds to complete. Of course, the tool writer must
take great care when stepping into this world of parallel processing. See the Example Tool
in Appendix A for one method of protecting the tool when FORKing.

Another implication of this use of the Notifier process is that the Notifier can be used to
obtain mutual exclusion for processing user actions. This is desirable when a client wants
to make a "background" request, one that will only receive machine resources if the
Notifier is otherwise unoccupied. It is also desirable when a client wants to stop as much
activity as possible, such as when a world swap is about to take place (see the section on
Stopping tools).

Some facilities require that their procedures be invoked "from the Notifier.” To allow non-
Notifier processes to invoke these functions, Tajo provides a mechanism called a Periodic
Notifier. The blinking caret in Tajo uses a Periodic Notifier. The Userinput interface
describes Periodic Notifiers.

I.2.4 Multiple processes, multiple instances

Tajo supports many programs running simultaneously. The designer of a package should
bear in mind that his package may be invoked by several different asynchronous clients.
One implication of this constraint is that a package should be monitored.

The simplest design is to have a single entry procedure that all clients must call. While
one client is using the package, all other clients will block on the monitor lock. Of course,
no state should be maintained internally between successive calls to the package, since
there is no guarantee that the same client is calling each time.

I-3

General environment

This simple approach has the disadvantage that clients are stopped for what may be a long
time, with no option of taking alternate action. The restriction can be eased by having the
entry procedure check a "busy" bit in the package. If the package is busy, the procedure
can return this result to the client. The client can then decide whether to give up, try
something else, or try again. This flexibility is less likely to tie up a tool for a long period,
and the user can use the tool for other purposes.

If the package is providing a collection of procedures and cannot conform to the constraint
that it provide its services in a single procedure, the package and its clients must pass
state back and forth in the form of an object. For instance, the FileTransfer package
implements a Connection object that holds information about a client's remote connection.
The package can either use a single monitor on its code to protect the object or provide a
monitor as part of each object. If it does the latter, several clients can be executing safely
at the same time.

Some packages require that a client provide procedures te be called by the package. The
designer of such a package should have these client-provided procedure take an extra
parameter, a long pointer to client-instance data. When the client provides the package
with the procedures, it also provides the instance data to pass to the procedures when they
are called. This instance data can then be used by the client to distinguish between several
different instances of itself that are sharing the same code.

As an example, the FTP program uses the FileTransfer facility to move files. For each file to
be transferred, FileTransfer calls a procedure provided by FTP that decides whether the
transfer should take place. This procedure uses the value of some switches to make this
decision. FTP cannot keep these switches in global variables, since there may be several
clients using its facilities at the same time. Instead, FTP passes the switch values to
FileTransfer as its instance data, and FileTransfer passes the switches back to FTP's
procedure when it is called.

1.2.5 Resource management

Programs in the development environment must explicitly manage resources. For
example, memory is explicitly allocated and deallocated by programs; there is no garbage
collector to reclaim unused memory. All programs share the same pool of resources, and
there is no scheduler watching for programs using more than their share of execution
time, memory, or any other resource.

Programs must manage resources carefully. If a program does not return a resource when
it is done with it, that resource will never become available to any other program and the
performance of the environment will degrade. The most common resource, and one of the
more difficult to manage, is memory.

When interfaces exchange resources, clients must be very careful about who is responsible
for the resource. The program responsible for deallocating a resource is the owner of that
resource. One example of a resource is a file handle. If a program passes a file handle to
another program, both programs must agree about who owns that file handle. Did the
caller transfer ownership by passing the file handle or is it retaining ownership and only
letting the called procedure use the file handle? If the two programs disagree, the file will
be released either twice or not at all. All interfaces involving resources must state
explicitly whether ownership is transferred. To ease the problem of memory management
when the ownership of memory can change, a common heap, called the system heap, is

Mesa Programmer’s Manual I

used in Tajo. [f a piece of memory can have its ownership transferred, it is either allocated
from the system heap or a deallocation procedure must be provided for it. The Storage
interface is useful for allocating and deallocating objects from the system heap.

The most common resource appearing in interfaces is a STRING or LONG STRING. There must
be agreement about which program is responsible for deallocating the string body.
Typically, a string passed as an input parameter does not carry ownership with it;
implementors of such procedures should not deallocate or change the string. If the
implementor must modify the string or use it after the procedure returns, it should first be
copied. Tool writers should be particularly careful when a procedure returns a string to
note whether ownership has come with it.

[.2.6 Tool state conventions

Tools can be in one of three states, active, tiny, or inactive. If a tool is active, the user has
access to its full functionality and interface. If a tool is tiny, its window is displayed as a
small icon, but its functions are still available. (Of course, the user may not be able to
invoke them directly because the window is small.) If a tool is inactive, the tool window
does not appear on the display and the tool is not functional. The tool appears on a menu of
inactive tools.

A user makes a tool active when he wishes to use it. He makes a tool tiny when he expects
to use it in the near future, but needs its space on the display for some other use. A user
makes a tool inactive if he does not expect to use it at least for a while. An inactive tool
might never be reactivated by the user.

Tool writers are responsible for supporting these definitions of tool state. Tajo provides the
window management for these transitions, deallocating its resources as a tool is
deactivated, and reallocating them when it is activated again. However, the tool writer
must manage the resources the tool uses by providing a transition procedure that is called
as the tool changes from one state to another. When a tool becomes tiny, its state is close to
that of an active tool. However, it should not consume resources only needed for the
display of the window, since the window is represented by an icon. When a tool becomes
inactive, it should release all of its resources (free all streams, turn off all communications
packages, deallocate all storage from the system heap, and so forth).

1.2.7 Program invocation

The development environment provides two styles of tool invocation, an interactive style
and a batch style. The interactive style is supported by the tool window paradigm: users
communicate with tools via a window and interact frequently with the program. A tool
writer typically provides an interactive interface by creating a form subwindow with
command items for each procedure. The batch style is supported by the Executive: users
invoke programs via a command line and have very little interaction with the program
while it is running. A tool writer typically provides a batch interface by writing one or
more Exec.ExecProcs that can be called from the Executive.

It is usually desirable to be able to access the facilities of a package in either style as well

as to access them from other programs. By taking care in the package design, a tool writer
can make supporting these different invocation methods straightforward.

I-5

General environment

L3

1-6

The tool writer should provide an interface that defines the function provided by his
package. This functional interface can be called directly from programs, making it
possible for client programs to use the package directly. The tool writer can then write two
interface packages that invoke the functions of the package through the functional
interface. One interface package implements an ExecProc; the other implements a tool
window.

A few requirements must be satisfied by the functional interface to make it possible to
write both interface packages. The functional interface should make no assumptions
about where its input comes from or where its output goes. If the package must interact
with the user, it requires interface packages for the interaction. It must not assume that it
has a window it can communicate through. Also, the package should not assume it knows
the location of input parameters. All input should be passed to the package explicitly by
the interface packages, even if the input is just in the form of a command line that must be
parsed. An output procedure should be provided by the caller.

1.2.8 Stopping tools

The development environment consists of cooperating processes. There are no facilities for
cleanly terminating an arbitrary collection of processes. It is assumed that tool writers
will be good citizens and design their tools to stop voluntarily when asked to stop.

A tool should stop if the user aborts it. The Userlnput interface contains procedures that
check whether a user has aborted a tool with the ABORT key in the tool's window. A tool
should check for a user abort at frequent intervals and be prepared both to stop executing
and to clean up after itself. Because the tool controls when it checks, it can check at points
in its execution when its state is easy to clean up. Packages that can be called from several
programs should take a procedure parameter that can be called to see whether the user
has aborted.

There is another reason that a tool might be asked to stop: when it is running in CoPilot
and CoPilot is about to return to the debuggee. CoPilot must take a snapshot of the state of
the world; it requires that all processes stop so that the snapshot it takes corresponds to
the state of the world when it does the core swap. CoPilot guarantees that the Notifier is
not running, so tools that execute in the Notifier are automatically stopped. However,
other programs must watch for the Supervisor event Event.aboutToSwap. If a program is
notified about the swap while it has a process running, it must either stop the process or
abort the world swap by raising the signal supervisor.EnumerationAborted from within its
agent procedure.

Interface abstracts

AddressTranslation translates between various elements in the internal form of network
addresses and Ascii strings. Address translation is involved in any tool built for network
activities.

Atom provides the mechanism for making TIP Atoms.

CmpFile provides a simple set of procedures for processing "User . cm" format files. User .cm
contains information for tailoring the environment to a user's taste.

Mesa Programmer’s Manual I

Date converts dates and their string representations.

Exec supports program loading and running in the batch Executive. It includes operations
for command line access and manipulation.

Expand provides facilities for the Executive-style expansion of lines containing expansion
characters.

HeraldWindow implements routines for providing feedback to the user and for booting
files and volumes.

Profile provides an interface to commonly accessed user and system data such as
passwords, domains, and names.

Token provides a general text scanning facility, including several standard scanning
procedures such as those for parsing numbers and booleans. It also permits clients to
define their own entities.

ToolDriver allows a tool to inform the ToolDriver package of its existence and of the
existence of its subwindows. The ToolDriver package can thus use a tool’s functions on
behalf of a user communicating with the package via a script file.

General environment

I-8

AddressTranslation

The AddressTranslation interface translates strings into the internal representation of
network addresses. If a string cannot be translated locally, the Clearinghouse service will
be consulted. Use the Format interface to convert network addresses from internal
representation to text.

1.1 Types

AddressTranslation.NetworkAddress: TYPE = System.NetworkAddress;

1.2 Constants and data objects

None.

1.3 Signals and errors

AddressTranslation.Error: ERROR [errorRecord: AddressTranslation.ErrorRecord];
AddressTranslation.ErrorRecord: TYPE = RECORD [
SELECT errorType: AddressTranslation.ErrorType FROM
scanError = > [position: CARDINAL],
badSyntax = > [field: AddressTranslation.Field],
chLookupProblem = > [rc: cH.ReturnCode],
otherCHProblem = > [reason: AddressTranslation.Reason],
ENDCASE];
AddressTranslation.Field: TYPE = {net, host, socket, ambiguous};
AddressTranslation.ErrorType: TYPE = {
scanError, badSyntax, chLookupProblem, otherCHProblem};

scanError is raised if the input string contains illegal
characters; position is the position of the offending
character.

badSyntax is raised if the string to be parsed does not have the

proper syntax; field identifies the incorrect field.

11

]. AddressTranslation

chLookupProblem

otherCHProblem

AddressTranslation.Reason: TYPE = {

is raised if a Clearinghouse service could not find the
name; rc gives details of the failure.

is raised if a name or value was not parseable by the
Clearinghouse code or if the Clearinghouse service
could not provide the address; reason gives more
information on the failure.

noUsefulProperties, ambiguousSeparators, tooManySeparators, authentication,
invalidName, invalidPassword, couldntDetermineAddress, spare1, spare2, spare3};

noUsefulProperties

ambiguousSeparators
tooManySeparators
authentication
invalidName
invalidPassword

couldntDetermineAddress

1.4 Procedures

the name was found, but did not have any of the
desired properties associated with it (i.e., it did not
have a network address).

the input string contained both ": and '@ separators.
the input string had more than two separators.

a problem occurred with the authentication servers.
the user was logged in with an invalid name.

the user was logged in with an invalid password.

the string given to AddressTranslation was not found
in the Clearinghouse service.

AddressTranslation.StringToNetworkAddress: PROCEDURE [
$: LONG STRING, id: Auth.ldentityHandle ni,

distingName: LONG STRING «— NiL]

RETURNS [

addr: AddressTranslation.NetworkAddress, chUsed: BOOLEAN];

The StringToNetworkAddress procedure parses s and returns a network address. When
contacting the Clearinghouse service, AddressTranslation will look for a network address;
id is the Auth identity that is used to contact the Clearinghouse service. If defaulted to NiL,
one will be created from the Profile Tool. distingName, if not NiL, will be filled in with the
actual distinguished name used in the Clearinghouse lookup; that is, the name obtained
after dereferencing all aliases. chUsed will be TRUE if the Clearinghouse swas contacted.
This procedure can raise the error Error.

Mesa Programmer’s Manual 1

AddressTranslation.StringToHostNumber: PROCEDURE [
LONG STRING] RETURNS [System.HostNumber];

The StringToHostNumber procedure parses the LONG STRING and returns a
system.HostNumber. This procedure only translates numeric strings; the Clearinghouse
service will not be contacted. This procedure can raise the error Error.

AddressTranslation.StringToNetworkNumber: PROCEDURE |
LONG STRING] RETURNS [System.NetworkNumber];

The StringToNetworkNumber procedure parses the LONG STRING and returns a
system.NetworkNumber. This procedure only translates numeric strings; the
Clearinghouse service will not be contacted. This procedure can raise the error Error.

AddressTranslation.PrintError: PROCEDURE [
error: AddressTranslation.ErrorRecord, proc: Format.StringProc, clientData: LONG POINTER
NIL];

The PrintError procedure prints an error message to the proc provided by the client.
clientData will be passed to the client's proc.

1.5 Examples

The standard format for network addresses is hostNumber or
netNumber .hostNumber .socketNumber. For compatibility, '# may be used to delimit the parts of
an address, but '. is preferred.

hostNumber can have four forms:

® An octal number optionally followed by a ‘B or 'b
° A Clearinghouse name
(] The special string "*"

° The special string "ME"

Clearinghouse names are strings of the form local:domain:organization. The local
part of the name must start with an alphabetic character; the lengths of the parts of a
name may not exceed CH.maxLocalNamelength, cH.maxDomainNamelength, and
cH.maxOrgNamelength characters, respectively. Clearinghouse names are looked up in
the Clearinghouse database using types from the unordered set {workstation, fileserver,
printserver, mailserver, router, nsAddress, its, gws, ciu, ecs} until a match is found. The
special string * gets the broadcast host number. The special string ME will not call
Clearinghouse functions, but will get the host number of the machine that it is running
on. For compatibility, '@ may be used to separate the partsof a Clearinghouse name, but ': is preferred.

netNumber and socketNumber, if used, can only be a octal number optionally followed by
a 'B or 'b. Both netNumber and socketNumber can be defaulted. netNumber defaults to
the caller’s local network number; socketNumber defaults to system.nullSocket.

1-3

AddressTranslation

1-4

The translation routine will translate any string that is well formed and unambiguous.
Examples:

74B.25200000016.2

Lassen

Lassen:0SBU North:Xerox

25200000016

74 . Lassen

*

74.%,

.Lassen.2B

.25200000016b.2

74 .2 is ambiguous because it could mean net . host or host . socket.

If the domain or organization fields are omitted, the default values are obtained from the
Profile interface.

AddressTranslation has been extended to handle more types of numeric input. The three
fields of a network address (net, host, and socket) may be specified in any of your favorite
numeric bases including octal, decimal, hex, and even the baroque “product format.”

Parsing rules are as follows:

] The possible bases are defined by the following ordered enumeration: {octal,
decimal, hex, clearinghouse}.

® The character '- is ignored when determining the base, and ignored again when
determining the value of a numeric specificaton.

° All fields are assumed to be octal. The assumption holds as long as no characters are
encountered outside the range ['0 . . ‘7]. The last character of the field may be a ‘B or
'b, which affirms the octal assertion.

° If a character in the range ['8 . . ‘9] is encountered, the assumed base is assigned the
mAx[decimal, current base]. The last character of the field may be a ‘D or ‘d, which
affirms the decimal assertion.

] If a character in the range ['A . . ‘F] is encountered, the assumed base is assigned the
Max[hex, current base]. The last character of the field may be an ‘H or 'h, which
affirms the hex assertion.

) If the first character of a field is an alpha, the field is assumed to be a Clearinghouse
name. This leads to the rule that hex specifications must begin with a number.

Mesa Programmer’s Manual

Examples:

14InchesBaby is a clearinghouse specification.

BEADFACE is a clearinghouse specification.

OBEADFACE is a hex numeric specification.

1-5

AddressTranslation

1-6

Atom

The Atom interface provides the definitions and procedures to create and manipulate
atoms (unique objects; in this case text strings, something like Lisp Atoms).

2.1 Types
Atom.ATOM: TYPE = LONG STRING ¢ NIL;
An Atom.ATOM is a LONG POINTER TO StringBody that is guaranteed to be equal to any other
ATOM with an equal StringBody. That is, string.EqualStrings[atom1, atom2, FaLsE] if atom1
= atom2.
Atom.AList: TYPE = LONG POINTER TO DPCell « NiL;
This type is not used by the Atom implementation.
Atom.DPCell: TYPe = RECORD [first: LONG STRING, rest: AList];
This type is not used by the Atom implementation.
2.2 Constants and data objects
None.
2.3 Signals and errors
None.
2.4 Procedures
Atom.MakeAtom: PROCEDURE [ref: LONG STRING] RETURNS [Atom.ATOM];
MakeAtom returns the AToMmcorresponding to ref, creating one if necessary.

Atom.GetPName: PROCEDURE [atom: Atom.ATOM] RETURNS [pName: LONG STRING];

GetPName returns the STRING corresponding to atom, returning NiL if atom is unknown
(not an ATOM).

21

Atom

2-2

CmPFile

3.1 Types

This interface provides a simple set of procedures for processing User . cm format files. See
also the Token interface, since it is assumed that clients will use Token to parse the
contents of Cm files.

A Cm file is a sequence of sections. A section is a title line followed by zero or more name-
value pairs. A section may not have embedded blank lines because a blank line is considered to terminate a
section. The title line begins with a [and the section title is defined to terminate with the
first succeeding]. The section title may be optionally preceded by a logical volume name
and a colon, with no embedded spaces. An example of this would be [Tajo:System]. If the section
title is preceded by a logical volume name, the lines in that section will be recognized only
on the named volume and will override specific lines in sections by the same name with no
volume qualification. Each name-value pair is on a separate line; the name must be
followed by :. Both the name and the value can be preceded by white space. The value field
is terminated by the first carriage return. A comment line is a line beginning with--; it
may appear anywhere within a section.

CmFile.Handle: TYPE = Token.Handle;

A cmrile.Handle can be used with any of the routines in the Token interface for parsing.
Many of the procedures in this interface take a Handle parameter and provide standard
routines for parsing Cm files.

3.2 Constants and data objects

CmFile.noMatch: CARDINAL = StringLookUp.noMatch;

3.3 Signals and errors

CmFile.Error: SIGNAL [code: CmFile.ErrorCodel;

CmFile.ErrorCode: Type = {fileNotFound, invalidHandle, other};

3-1

CmFile
fileNotFound the file to be processed could not be acquired for reading.
invalidHandle a Cmfile procedure has been called with a Token.Handle that was not

created by Cmfile.
CmFile.TableError: siGNAL [h: CmFile. Handle, name: LONG STRING];

Within the procedure NextValue, a name was encountered in the CmSection that was not
in the table of names expected. h is the handle that was used in the Cm file parsing, and
name is the unrecognized name. If this signal is resumed, the name/value pair is ignored
and processing continues. h is positioned to the beginning of the value field of the item.
The client may read from h up through but not past the closing carriage return while in
the catch frame without interfering with further processing.

3.4 Procedures

CmFile.Close: PROCEDURE [h: cmFile.Handle] RETURNS [nil: cmrFile.Handle];

The Close procedure frees the Handle and returns NiL. If an illegal cmfile.Handle is
supplied, cmrile.ErrorfinvalidHandle] is raised.

CmFile.Finditem :PROCEDURE [h:CmFile.Handle, title, name: LONG STRING] RETURNS [found:
BOOLEAN];

Findltem searches for the entry name in section title in the file on which the Handle h was
opened. If the search is successful, Finditem returns TRUE. Otherwise, it returns FALSE. If
the search is successful, the Handle h will be positioned to the beginning of the value for
name. Procedures in the Token interface can then be used to parse the value field; e.g.,
Token.Boolean can be used to parse a boolean value. If an illegal ¢mFile.Handle is supplied,
cmFile.Error{invalidHandle] is raised.

CmFile.FindSection: PROCEDURE [
h: ¢cmfile.Handle, title: LONG STRING] RETURNS [Opened: BOOLEAN];

The FindSection procedure searches for the section named title in the file on which the
Handle was opened. If it finds the section, it returns TRUE and positions the Handle to parse
that section. If an illegal cmrile.Handle is supplied, Cmrile.Error[invalidHandle] is raised.

CmFile.FreeString:PROCEDURE [LONG STRING] RETURNS [nil:LONG STRING];
FreeString deallocates strings returned from other procedures in CmFile. It returns NiL.

CmfFile.Line: PROCEDURE [
fileName, title, name: LONG STRING] RETURNS [LONG STRING];

The Line procedure returns the value for name from section title in the file on which the
handle h was opened. It returns NiL if the file, section, or the named entry cannot be found.
It is the caller's responsibility to deallocate the LONG STRING returned from Line using
FreeString. If the file named fileName is not found or cannot be acquired for reading,
cmFile.Error(fileNotFound] is raised.

Mesa Programmer’s Manual 3

CmFile.Nextltem: PROCEDURE [h: cmFile.Handle] RETURNS [name, value: LONG STRING];

The Nextltem procedure is used for enumerating the entries in a section. To start the
enumeration, position the Handle by calling FindSection. When name is NiL, the end of the
section has been encountered. name is the name partion of an item; that is, the part
preceding the colon. value is the rest of the line with leading white space suppressed. It is
the caller's responsibility to deallocate the LONG STRINGs returned from Nextltem using
CmFile.FreeString.

CmFile.NextValue: PROCEDURE [h: cmFile.Handle, table: stringLookup.TableDesc] RETURNS
[index: CARDINAL];

The NextValue procedure is used for enumerating the entries in a section. To start the
enumeration, position the Handle by calling FindSection. The name of the next item in the
section is looked up in table, and the index of the item is returned. Standard Token
procedures can then be used to parse the value of the entry. When index is Cmrile.noMatch,
the end of the section has been encountered. If an item that is not in the table is found, the
resumable SIGNAL CmFile.TableError is raised. If TableError is resumed, the value is skipped
and the scan continues.

CmFile.Open: PROCEDURE [fileName: LONG STRING] RETURNS [h: CmFile.Handle];

The Open procedure returns a Cmrile.Handle on the file fileName. This handle is then used
by other Cmfile or Token routines for processing the file. If the file does not exist or cannot be
acquired for reading, CmrFile.Error[fileNotFound] is raised. If cmrile.Error(fileNotFound] is
resumed, NiL is returned.

CmFile.ReadLineOrToken: PROCEDURE [
h: Token.Handle, buffer: LONG STRING, terminator: CHARACTER];

ReadLineOrToken reads from h until terminator is found, unless either end-of-line or end-
of-stream is encountered. The resulting line or token is returned via buffer and the break
character is retained in the Token.Object pointed to by h. If buffer is too short,
ReadLineOrToken quits and the break character is the character that was being processed
when the buffer overflowed.

Cmrile.TitleMatch: PROCEDURE [
buffer, title: LONG STRING] RETURNS [matches: BOOLEAN];

TitleMatch returns TRUE if and only if the contents of buffer is in the right format to be the
start of the section specified by title. For example, if buffer were [Id] and title were Id,
TitleMatch would return TRUE.

CmfFile.UserDotCmLine: PROCEDURE [title, name: LONG STRING] RETURNS [LONG STRING];

The UserDotCmLine procedure performs a Line operation on the file named User.cm.

CmFile.UserDotCmOpen: PROCEDURE RETURNS [h: CmFile.Handle];

The UserDotCmOpen procedure performs an Open on the file named User.cm.

3-3

3

CmFile

3.5 Example

The following examples are based on the User .cm processing done by the Print program.
[t uses facilities of both the CmFile, StringLookUp, and the Token interfaces. The type field
in the User.cm section corresponds to an enumerated type. The Interpress file
corresponds to a name (string) that may be a quoted string containing spaces.
SetupOptions returns the values found in the User.cm or the default values of the items
if they are not present in the User . cm. The first example is more straightforward than the
second, but it involves more string copying.

SetupOptions: PROCEDURE RETURNS [
type: printOps.FileFormat « OldPress, interpressPrinter LONG STRING « NiL] =
BEGIN
Option: TYPE = MACHINE DEPENDENT{
preferredFormat(0), interpress(1), noMatch(StringLookUp.noMatch)};
DefinedOption: TYyre = Option [preferredFormat..interpress];
optionTable: ARRAY DefinedOption OF LONG STRING & [
preferredFormat: “PreferredFormat”L, interpress: "Interpress”L];
userCm: Cmfile.Handle &« NiL;
i: Option;
entry, value: LONG STRING & NiL;
thisOption: Option;
userCm « CmFile.UserDotCmOpen([! CmFile.Error = > CONTINUE];
IF userCm # NIL AND CmFile.FindSection[userCm, "HardCopy"L] THEN
DO ENABLE UNWIND = > {
entry « CmfFile.FreeString[entry]; value « cmrile.FreeString[value]};
[entry, value] « CmFile.Nextitem[userCm];
IFentry = NILTHEN EXIT;
thisOption & stringLookUp.InTable[
key: entry, table: pescripTOr[BASE[OptionTable], LencTH[OptionTable]]];
SELECT thisOption FROM
preferredFormat = >
BEGIN
parseHandle: Token.Handle & Token.StringToHandle[value]; -
parseValue:LONG STRING « Token.Item[parseHandle];
IF String.EquivalentStrings[parseValue, "Interpress”L] THEN
type « Interpress;
[] & Token.FreeTokenString[parseValue];
[] « Token.FreeStringHandle[parseHandle];
END;
interpress = >
BEGIN
parseHandle: Token.Handle & Token.StringToHandle[value];
InterpressPrinter « Token.FreeTokenString[InterpressPrinter];
InterpressPrinter « Token.MaybeQuoted|
h: parseHandle, data: N, filter: Token.NonWhiteSpace,
isQuote: Token.Quote, skip: whiteSpace,
-- allocate minimum space for the string, since we will use it directly
temporary: FALSE];
[] & Token.FreeStringHandle[parseHandle];
END;

Mesa Programmer’s Manual 3

ENDCASE;
entry « cmfile.FreeString[entry]; value « cmFile.FreeString[value];
ENDLOOP;
IF userCm # NiL THEN [] « CmFile.Close[userCm];
END;

SetupOptions: PROCEDURE RETURNS [
type: printOps.FileFormat « OldPress, interpressPrinter: LONG STRING « NiL] =
BEGIN
Option: TYPE = MACHINE DEPENDENT{
preferredFormat(0), interpress(1), noMatch(StringLookUp.noMatch)};
DefinedOption: TYPe = Option [preferredFormat..interpress];
optionTable: ARRAY DefinedOption OF LONG STRING « [
preferredFormat: "PreferredFormat”L, interpress: "Interpress”“L];
userCm: CmFile.Handle « niL; i: Option;
-- the following declaration exists to make the LOOPHOLE in MyNextValue safe.
-- If CmFile.NextValue changes type, the compiler will flag the following as an error.
CheckType: PROCEDURE [h: CmFile.Handle, table: StringLookUp.TableDesc]
RETURNS [index: CARDINAL] = CmFile.NextValue;
--loophole CheckType into the type expected by StringlLookUp
MyNextValue: PROCEDURE [
th: cmrile.Handle,
table: LONG DESCRIPTOR FOR ARRAY DefinedOption OF LONG STRING]
RETURNS [index: Option] = LooprHOLE[CheckType];
userCm & Cmfrile.UserDotCmOpen[! CmFile.Error = > CONTINUE];
IF userCm # NIL AND CmFile.FindSection[userCm, “"HardCopy"L] THEN
Do
SELECT
(i &« MyNextValue[h: userCm, table: pescripTorR[optionTable]
! cmrile.TableError = > RESUME]) FROM
noMatch = > exiT;
preferredFormat = >
BEGIN
value: LONG STRING = Token.Item[userCm];
IF String.EquivalentStrings[value, "Interpress"”L] THEN
type « interpress;
[1 & Token.FreeTokenString[value];
END;
interpress = >
BEGIN
value: LONG STRING = Token.MaybeQuoted[
h: userCm, data: NiL, filter: Token.NonWhiteSpace,
isQuote: Token.Quote, skip: whiteSpace,
-- allocate minimum space for the string, since we will use it as the value
temporary: FALSE];
InterpressPrinter « value;
END;
ENDCASE;
ENDLOOP;
IF userCm # NiL THEN [] & CmFile.Close[userCm];
END;

3-5

CmFile

3-6

Date

4.1 Types

The Date interface provides for a conversion between dates and their string
representations. (Also see Time in the Pilot Programmer’s Manual).

Date.Packed: TYPE = Time.Packed;
Packed is copied from the Time interface.
Date.Notes: TyPe = {normal, noZone, zoneGuessed, noTime, timeAndZoneGuessed};

Notes is used as one of the return values from the call on StringToPacked. normal means
the value returned is unambiguous; noZone means that a time-of-day was present, but
without a time zone indication. (The local time zone as provided by
system.LocalTimeParameters is assumed.) zoneGuessed is returned instead of noZone if
local time parameters are not available, and the time zone is assumed to be Pacific Time
(standard or daylight time is determined by the date). noTime and timeAndZoneGuessed
are equivalent to noZone and zoneGuessed, respectively, where the time is assumed to be
00:00:00 (local midnight).

4.2 Constants and data objects

None.

4.3 Signals and errors

Date.Unintelligible: ERROR [vicinity: NATURAL];

If StringToPacked cannot reasonably interpret its input as a date, Unintelligible is raised;
vicinity gives the approximate index in the input string where the parser gave up.

4.4 Procedures

Date.PackedToLongString: PROCEDURE [Date.Packed] RETURNS [LONG STRING];

4-1

Date

4-2

The PackedToLongString procedure converts the date to a LONG STRING that is allocated
from the system heap. The format is identical to that obtained by a call on Time. Append.

Date.PackedToString: PROCEDURE [Date.Packed] RETURNS [STRING];

The PackedToString procedure converts the date to a STRING that is allocated from the
system MDS heap.

Date.StringToPacked: PROCEDURE [LONG STRING]
RETURNS [dt:Date.Packed, notes:Date.NoOtes, length:NATURAL];

The StringToPacked procedure parses the string and returns a GMT time according to the
Pilot standard. The date is generally assumed to precede the time, although if the time
precedes the date it will usually be properly recognized. The date syntax is a somewhat
less restrictive version of RFC733; full RFC733 is recognized, plus forms like “month day,
year,” “mm/dd/yy,” and variations with Roman numerals used for the month. The form
“year month day” is also accepted if the year is a full 4-digit quantity. Forms with “-”
instead of significant space are also acceptable, as well as forms in which a delimiter
(space or "-”) can be elided without confusion. The time is generally assumed to be in
RFC733 format, optionally including a time zone specification. In addition, "am” or “pm”
may optionally appear following the time (but preceding the time zone, if any). notes is
interpreted as described above. length indicates the number of characters consumed by
the parser, that is, it is the index of the first character of the argument that was not
examined by the parser. This procedure can raise the error pate.Unintelligible.

Exec

5.1 Types

The Exec interface supports program loading and running as well as command line access
and manipulation. The paradigm for programs running from the Executive is that they
will register with the Executive one or more command names and a corresponding
procedure to be called for each command.

exec.CheckAbortProc: TYPe = PROCEDURE [h: Handle] RETURNS [abort: BOOLEAN];

A CheckAbortProc procedure is used to check if a subsystem has been aborted by the user.
CheckAbortProc procedures are used by Run and ProcessCommandLine.

Exec.ExecProc:TYPE = PROCEDURE [h: Handle, clientData: LONG POINTER €— NiL]
RETURNS[outcome: Outcome < normal];

An ExecProc procedure is the type of procedure a subsystem registers with the Executive
so that its facilities can be invoked. The Executive calls the procedure with a Handle that
can be used for input and output, as well as a LONG POINTER, clientData, which can be used
for optional instance data. The subsystem returns an outcome that the Executive uses to
decide whether to continue with the current command line. If the result is normal, the
Executive continues; if it is any other value, the Executive skips the remainder of the
current command line and prompts the user for more commands.

Exec.GetCharProc: TYPE = PROCEDURE [h: Handle,] RETURNS [char: CHARACTER];

GetCharProc is the type declaration for the Executive procedure that returns the next
character on the command line (see Exec.GetChar).

Exec.Handle: TYPE = LONG POINTER TO Exec.Object;

When the Executive calls one of its registered procedures, it passes it a Handle that the
subsystem can use to obtain the Executive’s facilities.

Exec

Exec.Object: TYPE = ...;

Exec.Outcome: TYPE = MACHINE DEPENDENT{
normal(0), warning, error, abort, spare1, spare2, spare3, last(LAST[CARDINAL])}:

Outcome is returned by an ExecProc to indicate the status of the operation.

normal the procedure was completed successfully.

warning the procedure wishes to warn you about suspicious results.
error the procedure was not able to be completed successfully.
abort the procedure was aborted by the user.

All outcomes except normal cause the Executive to abort the rest of the current command
line.

Exec. RemovedStatus: TYPe = {0k, noCommand, noProgram};

RemovedStatus is used by the Unload command to indicate its success.

ok the program associated with the command was successfully unloaded.
noCommand acommand of the requested name was not found.

noProgram the requested command was found, but the program that implements the
command could not be located.

5.2 Constants and data objects

None.

5.3 Signals and errors

None.

5.4 Procedures

Exec.AboOrt: PROCEDURE RETURNS [error: ERROR];
The Abort procedure returns the error that subsystems should raise to abort processing.

exec.AddCommand: PROCEDURE |
name: LONG STRING, proc: Exec.ExecProc, help, unload: exec.ExecProc « NiL];
unload: ExecProc « DefaultUnloadProc, clientData: LONG POINTER « NIL];

The Executive maintains a list of commands that are invoked by typing their name into
the Executive window. Each command has an associated procedure that implements its
functions, as well as a help procedure, a cleanup procedure, and optional client-instance
data. The AddCommand procedure adds name to the Executive’s list of commands and
associates proc with it as the procedure to call when the command is invoked. Even

Mesa Programmer’s Manual 5

though by convention all command names in the Executive terminate with .~, these
characters are not automatically appended to name, but instead are the client’s
responsibility. [f there is already a command by the same name, AddCommand overrides
the old entry.

In addition to the name parameter, AddCommand takes three other parameters, help,
unload, and clientData. The help procedure is run whenever you ask for help on the
corresponding registered command. The unload procedure is called when you wish to
remove a command from the command list and unload its corresponding procedure.
Unloading an Executive command consists of two steps: first, all commands added by the
module being unloaded must be removed from the Executive’s list of commands; and
second, one of the procedures associated with any command added by the module that
implements the subsystem must be unloaded. It is sufficient to unload only one procedure
in the implementing module because unloading any procedure causes the entire module to
be unloaded. The first step, that of removing commands from the command list, is done in
the unload procedure. That is, the eclient’s unload procedure must initiate a
RemoveCommand on itself and all other commands registered by that module, as well as
perform any other cleanup necessary before being unloaded. UnloadCommand will call
unload and then automatically perform the second step, which is to actually unload an
associated procedure (there are restrictions on the client unload procedure; see
UnloadCommand and RemoveCommand for details). Usually, the command being
unloaded is the only one registered by its containing module, and there are no other
cleanup functions to perform. In this case, the client need not have its own unload
procedure but instead may use DefaultUnloadProc, since DefaultUnloadProc removes the
command for the subsystem it is associated with and then unloads the corresponding
procedure (see DefaultUnloadProc).

Exec.AliasCommand:PROCEDURE[old, new: LONG STRING] RETURNS[ok: BOOLEAN];

AliasCommand allows youto associate the same procedure with more than one command,
after the original command has already been registered. old is the name of the command
originally added with AddCommand, and new is the name of the command to associate
with the same procedure as old. Any number of commands can be aliases of an original
command, and any number of aliases can have aliases also.

Exec.AppendCommands: PROCEDURE [h: Exec.Handle, command: LONG STRING];

The AppendCommands procedure appends the parameter command to the current
command line. The effect is as if you had typed the contents of command after the current
command line. Note that it is processed before any commands that have been typed ahead
to the Executive.

exec.CheckForAbort: CheckAbortProc;
The CheckForAbort procedure indicates whether the subsystem should abort.
exec.Confirm: PROCEDURE [h: Exec.Handle] RETURNS [yes: /BOOLEAN];

The Confirm procedure asks you for confirmation.

Exec

exec.DefaultUnloadProc: ExecProc;

DefaultUnloadProc is a default value for the unload procedure; it is specified at the time a
command is registered with the Executive (see AddCommand). It can be used in cases
when the subsystem registers only one command, itself, and no other cleanup is to be done
upon being unloaded.

exec.EndOfCommandLline: PROCEDURE [h: Exec.Handle] RETURNS [BOOLEAN];

The EndOfCommandLine procedure indicates whether there are any more characters for
this subsystem on the command line.

Exec.EnumerateCommands: PROCEDURE [
userProc: PROCEDURE |
name: LONG STRING, proc, help, unload: exec.ExecProc,
clientData: LONG POINTER]RETURNS [stop: BOOLEAN]];

The EnumerateCommands procedure enumerates the commands currently registered
with the Executive. It calls the procedure userProc on the data for each command. name
belongs to the Executive and should not be deallocated by the client. If stop is TRuUE, the
enumeration will halt.

exec.FeedbackProc: PROCEDURE [h: Exec.Handle] RETURNS [proc: Format.StringProc];

FeedbackProc provides a way for clients to differentiate between feedback, which reports
the current status during processing, and output, which can be thought of as the results of
executing the command.

Exec.FreeTokenString: PROCEDURE [S: LONG STRING] RETURNS [NIL: LONG STRING];

The FreeTokenString procedure frees strings that were obtained via Exec.GetToken. It
returns NiL.

Exec.GetChar: GetCharProc;

The GetChar procedure returns the next character from the command line. Note that the
portion of the command line seen by a subsystem starts immediately after the name of the
command. When the command line is exhausted, GetChar will return Ascii.NUL. (See also
EndOfCommandLine).

Exec.GetNameandPassword: PROCEDURE |
h: Handle name, password: LONG STRING, prompt: LONG STRING ¢ NIL];

The GetNameandPassword procedure prompts you for a name and password. If the
prompt parameter is Nit, the name prompt is "User: ". If the prompt parameter is not NiL, it
will be used as the name prompt.

Exec.GetToken: PROCEDURE [h: Exec.Handle] RETURNS [token, switches: LONG STRING];

The GetToken procedure obtains the next token and its switches from the command line;
leading white space is skipped. A token is defined to be the contents of a quoted string
(e.g., "This is a token") or the smallest sequence of characters containing no white-space
characters (SP, TAB, or CR) and no slash character (/). If the character immediately

Mesa Programmer’s Manual 5

following the token is a slash, all characters up to the next white-space character or slash
character are read as switches. Note that the token string or switches string may be NiL.
The strings returned from this procedure should be freed by the client using
FreeTokenString.

Exec.GetTTY: PROCEDURE [h: Exec.Handle] RETURNS [tty: TTY.Handle];

The functions provided by the Executive for interacting with the user (as opposed to
interacting with the command line) are quite limited (Confirm and
GetNameandPassword). Subsystems that require more extensive interaction with the
user can obtain a TTY.Handle from the Executive with GetTTY. The procedures in Pilot's
TTY interface can then be used with this Handle for interaction with the user. ReleaseTTY
is used to free the TTY.Handle when the subsystem is finished with it. In general, a
subsystem interacting heavily with users should create its own tool window instead of
interacting ina TTY style.

Exec.Load: PROCEDURE [
write: Format.StringProc, name: LONG STRING, codeLinks: BOOLEAN & FALSE,
RETURNS [handle: MLoader.Handle];

The Load procedure loads a program specified by name. write is used by the Load
procedure for all its output to the user. codelinks indicates whether code links should be
used in loading. The handle returned by Load can be passed to the Start procedure to start
the program.

Exec.Login: PROCEDURE [h: Exec.Handle, name, password: LONG STRING];
The Login procedure is equivalent to calling GetNameandPassword with a prompt of NiL.

Exec.LookUpCommand: PROCEDURE [cOmmand: LONG STRING] RETURNS [
name: LONG STRING, proc, help, unload: Exec.ExecProc, didExpand: BOOLEAN],
clientData: LONG POINTER];

The LookUpCommand procedure permits a client to look up a specific command. The
didExpand result of LookupCommand indicates whether the command parameter was an
exact match of name or whether it was a unique prefix of name and had to be expanded to
match. name is owned by the Executive, and should neither be changed nor deallocated.

Exec.MatchPattern: PROCEDURE [string, pattern: LONG STRING]
RETURNS [matched: BOOLEAN]

The MatchPattern procedure is provided for clients that need to match names against
patterns containing * and #. * matches zero or more characters and # matches exactly one
character.

Exec.OutputProc: PROCEDURE [h: Exec.Handle] RETURNS [proc: Format.StringProc]
The OutputProc procedure returns a Format.StringProc that can be used with the Format

interface for output. This procedure directs output to the Executive that called the
ExecProc.

Exec

Exec.PrependCommands: PROCEDURE [h: Exec.Handle, command: LONG STRING]

The PrependCommands procedure inserts the parameter command in the front of the
command line. [t will be executed as soon as the current command completes.

exec.ProcessCommandLine: PROCEDURE [
cmd: LONG STRING, write: Format.StringProc,
checkAbort: exec.CheckAbortProc] RETURNS[Outcome: Outcome];

It is possible for a program to invoke the Executive facilities without having an
Exec.Handle; that is, without being in the process of executing an exec.ExecProc. (If it does
have an Exec.Handle, it can invoke the facilities via PrependCommands or
AppendCommands by calling ProcessCommandLine.) The subsystem must not only
provide the command line to be executed but must also provide the output and checkAbort
procedures that would normally be supplied by an Executive window.

Exec.PutChar: PROCEDURE [h: Exec.Handle, ¢: CHARACTER]
The PutChar procedure outputs a single character to the Executive.
Exec.ReleaseTTY: PROCEDURE [tty: TTY.Handle]

The ReleaseTTY procedure is used to free the TTv.Handle obtained via GetTTY when the
subsystem is finished with it. If tty was not created by GetTTY, the procedure does
nothing.

exec.RemoveCommand: PROCEDURE [h: Exec.Handle, name: LONG STRING] ;

The RemoveCommand procedure removes a command from the list of commands
registered with the Executive; it is used in conjunction with unloading a subsystem (see
UnloadCommand and AddCommand). To successfully unload a particular subsystem, all
commands registered by the module that implements the subsystem must be removed
using RemoveCommand.

Exec.RenameCommand: PROCEDURE [
old, new: LONG STRING] RETURNS[OKk: BOOLEAN];

The RenameCommand provides a way for you to change the name of a command
registered with the Executive.

gxec.Run: PROCEDURE |
h: Token.Handle, write: Format.StringProc,
checkAbort: PROCEDURE RETURNS[abort: BOOLEAN], codeLinks: BOOLEAN « FALSE];

The Run procedure reads a command line by asking the Token facility for the next line in
h. Run then runs the programs listed on the command line. write is the output procedure
to be used to report to the client. codelinks indicates whether codeLinks should be used in
loading.

Exec.Start: PROCEDURE [handle: MLoader.Handle];

The Start procedure starts a program that has been loaded by Load.

Mesa Programmer’s Manual 5

exec.Unload: PROCEDURE [handle: MiLoader.Handle];
The Unload procedure unloads a program that has been loaded by Load.

exec.UnloadCommand: PROCEDURE [
h: Handle, name: LONG STRING] RETURNS[RemovedStatus];

UnloadCommand invokes the unload procedure associated name. [f name has been
changed using RenameCommand or AliasCommand, UnloadCommand finds the correct
unload procedure, regardless of whether name represents the original command or an
aliased/renamed command. Because of the way the Executive is monitored, the client’s
unload procedure may not contain calls to AddCommand, AliasCommand,
EnumerateCommands, LookupCommand, or RenameCommand. (See also
AddCommand.)

5.5 Examples

The following example registers the procedure Dolt under the command name
MyCommand. The procedure takes a sequence of tokens with switches from the command
line and processes them. [t checks at regular intervals to see if you have aborted it. Write
is used within the procedure for output. Dolt is an entry procedure that protects any global
data it might use from being accessed by several concurrent calls on Dolt.

Dolt: ENTRY Exec.ExecProc =
BEGIN
name, switches: LONG STRING « NIL;
Write: Format.StringProc = exec.OutputProclh];
outcome: Exec.Outcome « normal;
DO
ENABLE UNWind = > {
name « Exec.FreeTokenString[name];
switches « exec.FreeTokenString[switches]};
IF Exec.CheckForAbort[h] THEN {outcome « abort; ExiIT};
[name, switches] « exec.GetToken[h];
IF name = NiL AND switches = NIL THEN EXIT;
--- perform function --
name « exec.FreeTokenString[name];
switches « exec.FreeTokenString[switches];
ENDLOOP;
RETURN[outcome];
END;

Exec.AddCommand["MyCommand"L, Dolt];

5-7

Exec

5-8

The following is an example of how to define an unload procedure. The DefaultUnloadProc
is not sufficient in this case: first, there is global cleanup to perform; second, the program
registers more than one command with the Executive.

Test: PROGRAM =
BEGIN
message: LONG STRING;
Test1: exec.ExecProc
BEGIN

END;

Test2: exec.ExecProc
BEGIN

END;

Test: exec.ExecProc =
BEGIN

cee

END;

MyUnload: exec.ExecProc =
BEGIN
Heap.systemZone.fFREE[@messagel;
-- Order of command removal doesn’t matter
exec.RemoveCommand[h, “Test1”L];
exec.RemoveCommand(h, “Test2"L];
exec.RemoveCommandlh, “Test"L];
END;

message « string.CopyToNewString["Output message: “L, Heap.systemZone];
exec AddCommand[name: “Test1”“L, proc: Test1, unload: MyUnload];

exec AddCommand([name: “Test2"”L, proc: Test2, unload: MyUnload];
execAddCommand[name: “Test"L, proc: Test, unload: MyUnload];

END;

Expand

6.1 Types

The Expand interface provides facilities for the Executive-style expansion of lines
containing *, @, T or '. Expansion is done within a local directory, if one is specified;
otherwise, it is done within the current search path. The expansion characters to be used
are specified in a mask and have the following meanings:

star matches zero or more characters.

atSign the following token is a file name and should be replaced by the contents of
that file.

upArrow ignore the up arrow character and the one immediately following it.

quote do not treat the next character as an expansion character.

Expand.AbortProcType: TYPE = PROCEDURE RETURNS [BOOLEAN];

To permit a client to abort the expansion, a procedure of type AbortProcType must be
provided to the Expand package. [t is called at intervals during an expansion.

Expand.ExpandQ: Tyee [1];
This is a private type, included for use by the Executive.

Expand.Mask: TYPE = RECORD [
star, atSign, quote: BOOLEAN,
upArrow: expand.UpArrowAction],
localDirectory: LONG STRING];

If star, atSign, or quote are TRUE, the procedures expand according to the description
above. If localDirectory is specified, expansion is done only within that directory. If an
incomplete directory name is provided (that is, if localDirectory does not begin with ’ <), it
is assumed to be directly beneath the volume root directory.

6-1

Expand

Expand.UpArrowAction: TYpPe = {skip, remove, none};

skip skips the up arrow and succeeding character but leaves them in the expanded
string.

remove skips the up arrow and succeeding character and removes them from the
expanded string.

none treats the up arrow as a regular character.

6.2 Constants and data objects

Expand.defaultMask: Expand.Mask = |
star: TRUE, atSign: TRUE, quote: TRUE, UpArrow: remove,
localDirectory: NiL];

6.3 Signals and errors

expand.UnknownCommandFile: SIGNAL [name: LONG STRING] RETURNS [LONG STRING];

A call to Expand.ExpandString raises the signal UnknownCommandFile if an @ is
encountered and the corresponding command file cannot be found. name is the name of
the missing file; the client can catch this signal and resume with a string containing the
contents of the missing command file. See the example below.

6.4 Procedures

expand.ExpandQueues: PROCEDURE [t0Q, fromQ: Expand.ExpandQ, all: BOOLEAN « FALSE,
isAborted: expand.AbortProcType & NiL, mask: Expand.Mask « Expand.defaultMask];

The ExpandQueues procedure is a private procedure for use by the Executive.

Expand.ExpandString: PROCEDURE [cmdLine: LONG STRING,
isAborted: expand.AbortProcType « NiL, mask: Mask « expand.defaultMask] RETURNS
[LONG STRING];

The ExpandString procedure expands the command line according to its mask and return
the expanded line. The string it returns is allocated from the system heap; it is the client's
responsibility to free it. If cmdLine is NiL, then no actions are performed. If an unknown
command file is encountered, the signal UnknownCommandFile is raised.

Expand.ExpandToTokens: PROCEDURE [cmdLine: LONG STRING, proc: PROCEDURE [LONG STRING] :
RETURNS [BOOLEAN],
isAborted: expand.AbortProcType « NiL, mask: Mask « expand.defaultMask];

The ExpandToTokens procedure expands cmdline according to its mask, parses it into
Token.ltems, and calls the client's procedure proc once on each token until the command
line is exhausted or proc returns TRUE. The client need not be concerned with allocation
and deallocation of the Token.ltems created by this procedure. If cmdLine is NiL, no actions
are performed.

Mesa Programmer’s Manual 6

6.5 Example

The following is an example of a tool that runs in the Executive. [t attempts to expand
commandlLline; if it encounters an unknown file, you are prompted to type the contents of
the file. The contents of the file are then returned to the Expand package, which continues
processing commandLine.

DIRECTORY

Example: PROGRAM IMPORTS ... =
BEGIN

MainBody: exec.ExecProc = BEGIN

GetCommandFileFromUser: PROCEDURE [h: Exec.Handle, name: LONG STRING]
RETURNS [result: LONG STRING] =
BEGIN
tty: TTY.Handle e« Exec.GetTTY [h];
result « Storage.String[100];
TTY.PUtCR[ttyl;
TTY.PutString[tty, "File name “""L];
TTY.PutString[tty, name];
TTY.PutString|
tty, """ unknown. Type what it would contain.”L];
TTY.PUtCR[ttyl];
TTY.GetLine[tty, result];
Exec.ReleaseTTY[tty];
END;

expand.ExpandString[commandLine, abortProc, mask !
expand.UnknownCommandFile = >
REsuMe[GetCommandFileFromUser[h, name]];
END;
- mainline

exec. AddCommand["Example.~", MainBody];

END.

Expand

6-4

HeraldWindow

7.1 Types

The HeraldWindow interface provides two functions to the client: feedback and booting. It
also allows the client to access some of the global state maintained by the tool that
implements the HeraldWindow interface.

HeraldWindow.ConfirmProcType: TYPE = PROCEDURE [
post: Format.StringProc, cleanup: BOOLEAN « TRUE] RETURNS [Okay: BOOLEAN];

Feedback and confirmation of booting are provided through a Format.StringProc and
ConfirmProcType. If cleanup is TRUE, the Supervisor notifies subsystems of the event.

Heraldwindow.CursorState: Type = {invert, negative, positive};
HeraldWindow.S|Ot: TYPE = LONG POINTER TO HeraldWindow.SlotObject;
Heraldwindow.SlotObject: TYPE = .. .;

Multiple cursor-sized feedback regions are supported in the HeraldWindow.

7.2 Constants and data objects

HeraldWindow.displayedPages: READONLY LONG CARDINAL;

While the Herald Window is not inactive, displayedPages contains the number of free
pages on the system volume.

Heraldwindow.switches: READONLY System.Switches;

switches contains the current booting switches, to be used as the default switches by
booting commands unless explicitly overwritten.

HeraldWindow.window: READONLY Window.Handle;

window is the handle for the HeraldWindow's window.

7

HeraldWindow

7.3 Signals and errors

HeraldWindow.InvalidSwitches: SIGNAL;

invalidSwitches is raised by ScanSwitches if the \ character has been used with an invalid
following character. [t can be resumed to ignore the illegal characters.

7.4 Procedures

7-2

HeraldwWindow.AlwaysConfirm: Heraldwindow.ConfirmProcType;

The AlwaysConfirm procedure does not wait for confirmation but simply notifies
subsystems that booting is about to take place (the parameter cleanup is defaulted to
TRUE).

Heraldwindow.AppendBrokenMessage: PROCEDURE [
msg1, msg2, msg3: LONG STRING « NIL, newline, clearOld: BOOLEAN « TRUE];

The AppendBrokenMessage procedure provides a mechanism for client programs to
provide textual feedback in a standard location to the user. The HeraldWindow has room
for two lines of text; old messages are automatically erased after 30 seconds and new ones
are placed in a queue. If newlLine is TRUE, this message starts a new line on the display. [f
clearOld is TRUE, all old messages are deleted. AppendBrokenMessage permits the display
of messages that are a combination of several strings. (See also AppendMessage.)

Heraldwindow.AppendLogicalVolumeName: PROCEDURE [
$: LONG STRING, id: Volume.ID ¢ volume.systemiD];

The AppendLogicalVolumeName procedure appends the name of the logical volume id
onto the client-owned string s. If's is not large enough, String.StringBoundsFault is raised.

Heraldwindow.AppendMessage: PROCEDURE [
msg: LONG STRING « NIL, newLine, clearOld: BOOLEAN « TRUE];

The AppendMessage procedure is just like AppendBrokenMessage except that it accepts
only a single string parameter.

HeraldWindow.AppendPhysicalVolumeName: PROCEDURE [s: LONG STRING];

The AppendLogicalVolumeName procedure appends the name of the physical volume
onto the client-owned string s. If s is not large enough, String.StringBoundsFault is raised.

HeraldWindow.AppendSwitches: PROCEDURE [s: LONG STRING];

The AppendSwitches procedure appends the current booting switches to the client-owned
string s. If s is not large enough, String.StringBoundsFault is raised.

HeraldWindow.BootFromFile: PROCEDURE [
name: LONG STRING, bootSwitches: system.Switches « switches,

Mesa Programmer’s Manual 7

postProc: Format.StringProc « DefaultPost,
confirmProc: Heraldwindow.ConfirmProcType « Heraldwindow.DefaultConfirm];

The BootFromFile procedure boots a file in the local directory (appending the extension
".boot" if necessary). bootSwitches are the Pilot switches to be used when booting. The
procedure scans the string name for any switches. These optional switches appear after
the file name, separated from it by a slash (/). They obey escape procedures described in
the discussion of ScanSwitches and are used in preference to the bootSwitches parameter.
confirmProc is called to confirm that the boot should really be performed. This procedure
should always be called from within the Notifier process. The file will be locked for read
access if confirmProc returns FALSE.

HeraldWindow.BootFromVolumelD: PROCEDURE |
id: volume.lD, bootSwitches: System.Switches « switches,
pOstProc: Format.StringProc « Heraldwindow.DefaultPost,
confirmProc: HeraldwWindow.ConfirmProcType ¢« HeraldwWindow.DefaultConfirm];

The BootFromVolumelD procedure boots the logical volume specified by id. bootSwitches
are the Pilot switches to be used when booting. confirmProc is called to confirm that the
boot should really be performed. This procedure should always be called from within the
Notifier process.

HeraldWindow.BootFromVolumeName: PROCEDURE [
name: LONG STRING, bootSwitches: System.Switches « switches,
postProc: Format.StringProc ¢« HeraldWindow.DefaultPost,
confirmProc: Heraldwindow.ConfirmProcType ¢ Heraldwindow.DefaultConfirm];

The BootFromVolumeName procedure boots the logical volume specified by name.
bootSwitches are the Pilot switches to be used when booting. The procedure scans the
string name for any switches. These optional switches appear after the file name,
separated from it by a slash (/). They obey escape procedures described in the discussion of
ScanSwitches and are used in preference to the bootSwitches parameter. confirmProc is
called to confirm that the boot should really be performed. This procedure should always
be called from within the Notifier process. If name does not match a logical volume name,
the system volume is booted with no switches.

Heraldwindow.DefaultConfirm: Heraldwindow.ConfirmProcType;

The DefaultConfirm procedure waits for you to confirm the boot by waiting for
confirmation with POINT or denial with EXTEND, while displaying a mouseRed cursor (see
the Cursor interface). If you confirm the boot, the Supervisor notifies subsystems of the
event (cleanup is TRUE).

HeraldWindow.DefaultPost: Format.StringProc;

The DefaultPost procedure sends output to whichever window is taking indirect type-out.
If there is no such window, the output is discarded.

HeraldWindow.FreeCursorSlot: PROCEDURE [
slot: HeraldWindow.SlOt] RETURNS [nil: HeraldWindow.Slot]

The FreeCursorSiot procedure frees one of the cursor slots allocated by the HeraldWindow.

-3

HeraldWindow

-4

HeraldWindow.GetCursorSlot: PROCEDURE RETURNS [slOt: HeraldWindow.Slot]

The GetCursorSlot procedure allocates a cursor slot in thé HeraldWindow. If it cannot find
a slot, NIL is returned.

Heraldwindow.ScanSwitches: PROCEDURE [s: LONG STRING, defaultSwitches: system.Switches «
system.defaultSwitches] RETURNS [switches: System.Switches]

The ScanSwitches procedure returns the defaultSwitches, modified by the switches in the
strings. The scanner recognizes the following syntax: The characters ~ and - change the
sense of the following switch. Each character of the string is the character representation
of the switch. ScanSwitches supports a slightly expanded version of the Mesa compiler
escape convention, with \ as the escape character:

Code [nterpretation

\n, \N,\r, \R Ascii.CR

\t, \T Ascii. TAB

\b, \B Ascii.BS

\f, \F Ascii.FF

\lL\L Ascii.LF -- note that\nisLFin C.

\ddd dddcC -- where d is an octal digit, ddd < 3778
\ \

\ "

\~ ~ -- not recognized by the Compiler
\- - -- not recognized by the Compiler

Any other character following \ causes the signal InvalidSwitches to be raised. This signal
can be resumed to ignore the switch character.

HeraldWindow.SetCursor: PROCEDURE [slOt: HeraldWindow.SlOt, cursor: Cursor.Defined];

The SetCursor procedure displays a cursor at a previously acquired cursor slot. The cursor
is one of those that are predefined by the Cursor interface.

HeraldwWindow.SetCursorState: PROCEDURE [
slot: Heraldwindow.Slot, state: Heraldwindow.CursorState];

The SetCursorState procedure modifies (e.g., inverts) the display state of the indicated
cursor.

HeraldWindow.SetSwitches: PROCEDURE [new: System.Switches];
The SetSwitches procedure changes the switches used during booting.

Heraldwindow.StoreCursor: PROCEDURE [
slot: Heraldwindow.SIOt, cursor: LONG POINTER TO UserTerminal.CursorArrayl;

The StoreCursor procedure displays a cursor at a previously acquired cursor slot.

Profile

8.1 Types

Profile provides an interface to a number of commonly accessed user and system data
items. All these items are read-only. Changes to the variables defined below are
monitored by the Pilot Supervisor notification facility. See Events and EventTypes for
more discussion of the Supervisor.

This interface supports non-product protocols for Pup-based file servers and Grapevine

registries. Support for these protocols will be removed in a future release. Clients are
encouraged to remove dependencies on these protocols.

profile.BalanceBeamChoice: TYPe = {never, notForCharacter, always};

BalanceBeamChoice determines where the insertion point is placed when a selection
is made.

never the insertion point is always at the end of the selection.

notForCharacter the insertion point is always at the end of a character selection

but uses a balance beam algorithm for word or line selections.

always the balance beam algorithm is always used.

profile.FileServerProtocol: Tyre = {(PUP, ns};

FileServerProtocol determines the type of protocol used to communicate with file
servers. Support for the Pup file server protocol will be removed
in a future release.

PuUP communicates with Pup-based servers

ns communicates with the product-based Network Services.

8-1

Profile

Profile.Place: TYPE = MACHINE DEPENDENT {
unknown(0), tajo, copilot, last(LAST[CARDINAL])};

Place distinguishes between Tajo, CoPilot, or some other boot file. Clients may depend on
particular facilities in Tajo or CoPilot.

profile.Qualification: TYpe = (registry, clearinghouse, none};

Qualification is a parameter to Profile.Qualify. An unqualified token is qualified by
appending the qualifing name(s) to the token, separated by the necessary punctuation.
Note: registry qualification appends a ".” followed by the registry; e.g., Jones.PA. clearinghouse qualification

appends the domain and organization using ™:” as the punctuation; e.g., Jones:OSBU North:Xerox.
Profile.String: TYPE = LONG STRING;

String is the type of all string variables. It will be changed to LONG POINTER TO READONLY
StringBody when other definitions can be changed as well.

8.2 Constants and data objects

8-2

profile.balanceBeamChoice: READONLY BalanceBeamChoice;

balanceBeamcChoice is the current setting of the balance beam algorithm. Changes to this
variable notify the subsystem Event.tajoDefaults and the event EventTypes.debugging.

Profile.debugging: READONLY BOOLEAN;

Used internally by Tajo to decide whether to attempt error recovery or call the debugger. If
debugging is TRUE, the debugger will be called. If Tajo invokes the debugger, it may not be
possible to continue the session. Changes to this variable are monitored by subsystem
Event.tajoDefaults and the event EventTypes.debugging.

Profile.defaultFileServerProtocol: READONLY FileServerProtocol;

defaultFileServerProtocol is the default file server protocol. Changes to this variable
notify the subsystem event.tajoDefaults and the event EventTypes.FileServerProtocol.

profile.initialToolStateDefault: READONLY ToolWindow.State;

This is the state in which a tool is created if it does not override the default provided in the
Tool.Create call.

Profile.noChange: LONG STRING = LOOPHOLE[LAST[LONG CARDINAL]];

This is the default string value used in Profile procedures to indicate that a string variable
should not be changed.

Profile.place: READONLY Profile.Place;

This is the type of boot file running (e.g , Tajo or CoPilot).

Mesa Programmer’s Manual 8

profile.swapCtriAndCommand: READONLY BOOLEAN;

swapCtrlAndCommand is TRUE if the mapping of the CONTROL key and COMMAND key should
be swapped.

8.3 Signals and errors

None.

8.4 Procedures
Profile.GetDefaultDomain: PROCEDURE [PROCEDURE [String]];

The GetDefaultDomain procedure calls the procedure parameter with the default
Clearinghouse domain. The call is made from with the Profile machinery’s monitor lock.

Profile.GetDefaultOrganization: PROCEDURE [PROCEDURE [String]];

The GetDefaultOrganization procedure calls the procedure parameter with the default
Clearinghouse organization. The call is made from within the Profile machinery’s monitor
lock.

profile.GetDefaultRegistry: PROCEDURE [PROCEDURE [String]l;

The GetDefaultRegistry procedure calls the procedure parameter with the default Grapevine
registry. The call is made from within the Profile machinery’s monitor lock. Support for Grapevine will be

removed in a future release.

Profile.GetID: PROCEDURE [
flavor, Auth.Flavor « simple, proc: PROCEDURE [id: Auth.ldentityHandle]];

The GetlD procedure calls the procedure parameter with the user identity corresponding
to the current user name and password and having the specified authentication flavor. id
is not authenticated. The call is made from within the Profile machinery’s monitor lock.

profile.GetLibrarian: PROCEDURE [PROCEDURE [String]l;

The GetLibrarian procedure calls the procedure parameter with the name of the default
librarian server used in librarian transactions. The call is made from within the Profile
machinery’s monitor lock.

Profile.GetLibrarianNames: PROCEDURE [PROCEDURE [prefix, suffix: String]l;

The GetLibrarianNames procedure calls the procedure parameter with the default name
prefix and suffix to be used when nameing libjects. The call is made from within the
Profile machinery’s monitor lock.

Profile.GetUser: PROCEDURE [
proc: PROCEDURE [name, password: String], qualification: Qualification « none];

The GetUser procedure calls the procedure parameter with the user name and password.
The call is made from within the Profile machinery’s monitor lock. If the current user

8-3

!

Profile

8-4

name is already qualified with an appropriate qualification, it is not changed. Otherwise,
any qualification is stripped from the token. Note: If qualification is registry, the Grapevine registry
is used to quality the name. If qualification is clearinghouse, the Clearinghouse domain and
organization are used to qualify the name.

Profile.Qualify: PROCEDURE [
token, newToken: LONG STRING, qualification: profile.Qualification];

The Qualify procedure produces the requested qualification for a token. If the token is
already qualified with an appropriate qualification, it is not changed. Otherwise, any
qualification is stripped from the token. Note: If qualification is registry, the Grapevine registry is
used to qualify the token. If qualification is clearinghouse, the Clearinghouse domain and
organization are used to qualify the token. newToken contains the qualified token. This
procedure may raise String.StringBoundsFault if newToken is not long enough.

pProfile.SetBalanceBeamChoice: PROCEDURE [BalanceBeamChoice];
The SetBalanceBeamcChoice procedure changes the variable profile.balanceBeamChoice.
Profile.SetDebugging: PROCEDURE [BOOLEAN];

The SetDebugging procedure changes the variable Pprofile.debugging. This procedure
notifies the subsystem Event.tajoDefaults with the event EventTypes.debugging.

Profile.SetDefaultDomain: PROCEDURE [domain: String];

The SetDefaultDomain procedure changes the default Clearinghouse domain. The
parameter string is copied. This procedure notifies the subsystem event.tajoDefaults with
the event EventTypes.domain.

profile.SetDefaultOrganization: PROCEDURE [organization: String];

The SetDefaultOrganization procedure changes the default Clearinghouse organizataion.
The parameter string is copied. This procedure notifies the subsystem Event.tajoDefaults
with the event EventTypes.organization.

profile.SetDefaultRegistry: PROCEDURE [registry: LONG STRING];

The SetDefaultRegistry procedure changes the default Grapevine registry. The parameter string is copied.
This procedure notifies the subsystem Event.tajoDefaults with the event EventTypes.registry.

pProfile.SetFileServerProtocol: PROCEDURE [FileServerProtocoll;

The SetFileServerProtocol procedure changes the variable
profile.defaultFileServerProtocol. This procedure notifies the subsystem event.tajoDefaults
with the event EventTypes.fileServerProtocol.

>

Mesa Programmer’s Manual 8

profile.SetLibrarian: PROCEDURE
name, prefix, suffix: LONG STRING « Profile.noChange];

The SetlLibrarian procedure changes the default librarian name prefix, the default
librarian name suffix and the default librarian server name. Parameters that are
defaulted are not changed. The parameter strings are copied. This procedure notifies the
subsystem Event.tajoDefaults with the event EventTypes.librarian.
profile.SetSwapCtriAndCommand: PROCEDURE [BOOLEAN];

The SetSwapCtrlAndCommand procedure sets the variable profile.swapCtrlAndCommand.
Profile.SetUser: PROCEDURE [name, password: String-« profile.noChange);

The SetUser procedure changes the user name and password. Parameters that are

defaulted are not changed. The parameter strings are copied. This procedure notifies the
subsystem Event.primaryCredentials with the event EventTypes.primaryCredentials.

8-5

Profile

8-6

Token

9.1 Types

The Token interface provides general scanning and simple parsing facilities for any source
of characters. The interface supports client-defined filters; some standard token filters are
also provided.

Token.FilterProcType: TYPE = PROCEDURE [
C: CHARACTER, data: Token.FilterState] RETURNS [inClass: BOOLEAN];

A FilterProcType is the mechanism by which a client defines a class of tokens. Procedures
that use filters call them once for each candidate character. Instance data permits the
client to maintain the state of the parse. If a client tries to access instance data but none
was passed in, the signal NilData should be raised. The FilterProcType returns a boolean
indicating whether the character is part of the token.

Token.FilterState: TYPE = LONG POINTER TO StandardFilterState;

A FilterState is a LONG POINTER to client instance data that is passed to a client's
FilterProcType procedure. A client may LOOPHOLE the FilterState to a more convenient type.
The system-provided filters that require a non-NiL FilterState (such as Delimited) use the
first two words of data.

Token.GetCharProcType: TYPE = PROCEDURE [
h: Token.Handle] RETURNS [c: CHARACTER];

A GetCharProcType provides a stream of characters to be parsed. When a
GetCharProcType procedure returns Ascii.NUL, the Token package assumes that the source
has been exhausted. The Handle is passed into the GetCharProcType so that a client can
hide instance data in its object. Although there is not an instance data field in Object, the
client could LOOPHOLE a pointer to a larger record that contained its data.

Token.Handle: TYPE = LONG POINTER TO Token.Object;

Token.NetFormat: TYPE = Format.NetFormat;

Token

Token.Object: TYPE = MACHINE DEPENDENT RECORD [
getChar(0): Token.GetCharProcType, break(1): CHARACTER « Ascii. NUL];

The Object encapsulates the source of characters to be parsed. The Token package uses the
getChar field of the Handle to obtain the stream of characters. [t assumes that the source
has been exhausted when getChar returns Ascii.NUL. Token uses the break field to record
the final character that it reads. [t records the final character because there is no way to
put back a character into the character source. It must read one character beyond the
token it is parsing to ensure that it has reached the end. If it simply returned the token,
this character would be lost. Since the Token package stores the last character in the
Object, that character is available to the client. The client can ignore it, inspect it to
decide what to parse next, or put it back into the character source. Note that when a client
attempts to parse past the end of the input, the break character contains Ascii.NUL.

Token.QuoteProcType: TYPE = PROCEDURE [
C: CHARACTER] RETURNS [closing: CHARACTER];

The QuoteProcType is used to recognize quoted tokens. If ¢ is a quote character recognized
by the QuoteProcType, closing is the matching character that closes the quotation. If
closing is Token.nonQuote, ¢ was not a quote character.

Token.SkipMode: TYPE = {none, whiteSpace, nonToken};

The SkipMode controls what characters a procedure will skip before collecting a token.

none no characters should be skipped and the token should start with the
next character.

whiteSpace white-space characters (space, carriage return, and tab) should be
skipped before collecting the token.

nonToken any characters that are not legal token characters should be skipped
before collecting the token.

Token.StandardFilterState: TYPE = ARRAY [0..2) OF UNSPECIFIED;

The StandardFilterState is client data that is passed to a client's FilterProcType procedure.
A client that uses instance data can use a StandardFilterState for storing two words of
state data.

9.2 Constants and data objects

9-2

Token.nonQuote: CHARACTER = ... ;

The nonQuote character is returned from a QuoteProcType to indicate that the character
passed to it is not a quote character.

Mesa Programmer’s Manual 9

9.3 Signals and errors
Token.NilData: SIGNAL;

Procedures that take a FilterProcType argument also take an argument that is a pointer
to client instance data. If the client has no need for instance data, it can pass a NIL as the
instance data pointer. If a FilterProcType attempts to access the client instance data, but
the client passed in NIL instead of a pointer to instance data, the signal NilData should be
raised. Implementors of FilterProcTypes are strongly encouraged to check for NiL and raise
this condition if they use client instance data.

Token.SyntaxError: SIGNAL [s: LONG STRING];

The resumable SIGNAL SyntaxError can be raised if incorrect syntax is encountered by
Boolean, Decimal, HostNumber, LongNumber, LongDecimal, NetworkAddress,
NetworkNumber, Octal, or SocketNumber. In each case, resuming the signal causes the
procedure to return a default value (described in the discussion of the various procedures).

Token.UnterminatedQuote:SiGNAL

The resumeable siGNAL UnterminatedQuote is raised from MaybeQuoted if the getChar
procedure of the Handle returns Ascii.NUL before the terminating quote character has been
read. If the signal is resumed, MaybeQuoted will return as if it had read a closing-quote
character.

9.4 Procedures
Token.Alphabetic: Token.FilterProcType;

Alphabetic can be used to collect tokens composed of alphabetic characters; that is, the
characters 'a through 'z and ‘A through 'Z. This procedure requires no client data (data
may be NiL).

Token.AlphaNumeric: Token.FilterProcType;

AlphaNumeric can be used to collect tokens composed of alphanumeric characters; that is,
the characters 'a through 'z, 'A through ‘'Z, and '0 through ‘9. This procedure requires no
client data (data may be NiL).

Token.Boolean: PROCEDURE [
h: Token.Handle, signalOnError: BOOLEAN ¢« TRUE] RETURNS [true: BOOLEAN];

The Boolean procedure parses the next characters of the source as a boolean constant.
Valid Boolean values are “TRUE” or “FALSE,” but unlike the Mesa language, case does
not matter (“true” and “false” are also acceptable). In case of a syntax error, the signal
SyntaxError is optionally raised. If signalOnError is FALSE, or SyntaxError is resumed, then
FALSE is returned for a syntax error. This procedure skips leading white space.

Token

Token.Brackets: Token.QuoteProcType;

Brackets recognizes the following sets of matching open/close-quote pairs: (),[], {}, and <
>.

Token.Decimal: PROCEDURE [
h: Token.Handle, signalOnError: BOOLEAN « TRUE] RETURNS [i: INTEGER];

The Decimal procedure parses the next characters of the source as a decimal constant.
Decimals have the format as specified in the Mesa Language Manual. In case of a syntax
error, the signal SyntaxError is optionally raised. If signalOnError is FALSE or SyntaxError
is resumed, then zero is returned for a syntax error. This procedure skips leading white
space.

Token.Delimited: Token.FilterProcType;

When Delimited is passed to a procedure such as Filtered, the value of skip passed along
with it must be nonToken. It skips leading white space, then defines the first character of
the token to be both the opening-quote character and the closing-quote character,
returning all characters occurring between the first and second appearance of that
character. As an example, Delimited would return the token "XXX" from either of the
following input strings: " YXXXY" and "/XXX/". Delimited requires a non-nNiL data.

Token.FileName: Token.FilterProcType;

The FileName FilterProcType can be used to collect tokens composed of file name
characters; that is, '[, '], '<, '>, ™, ', %, "#, -, ", '$, '+, or AlphaNumeric characters. Note
that the filter does not guarantee that the token forms a valid file name, only that the
token contains only these characters. This procedure requires no client data (data may be
NIL).

Token.Filtered: PROCEDURE [
h: Token.Handle, data: Token.FilterState, filter: Token.FilterProcType, skip:
Token.SkipMode « whiteSpace, temporary: BOOLEAN & TRUE]
RETURNS [value: LONG STRING];

The Filtered procedure collects the token string defined by the client's filter. If the client-
instance data parameter data is not NiL, the first two words of data are set to zero before
any calls are made to filter. filter is called with data once on each character until it returns
FALSE. The string returned, which may be NiL, must be freed by calling FreeTokenString.
Leading characters are skipped according to the value of skip. If temporary is TRUE, it is
assumed that the string will be freed shortly and no effort is made to use the minimum
storage for it. If temporary is FALSE, the minimum amount of storage is used. filter may
raise NilData.

Token.FreeStringHandle: PROCEDURE [h: Token.Handle] RETURNS [nil: Token.Handle];

The FreeStringHandle procedure destroys a Token.Handle created by StringToHandle. It
does not destroy the underlying string. It returns NiL.

Token.FreeTokenString: PROCEDURE [s: LONG STRING] RETURNS [nil: LONG STRING & NIL];

Mesa Programmer’s Manual 9

The FreeTokenString procedure frees a string allocated by Token. It returns NiL. All such
strings are allocated from the svstem heap.

Token.HostNumber: PROCEDURE [
h: Token.Handle, format: NetFormat « octal, signalOnError: BOOLEAN ¢ TRUE]
RETURNS [host: System.HostNumber];

The HostNumber procedure parses the next characters of the source as a host number in
format format. See the Format interface for a description of host numbers. In case of a
syntax error, the signal SyntaxError is optionally raised. If signalOnError is FALSE, or
SyntaxError is resumed, then System.nullHostNumber is returned for a syntax error. This
procedure skips leading white space.

Token.ltem: PROCEDURE [
h: Token.Handle, temporary: BOOLEAN « TRUE] RETURNS [value: LONG STRING];

The Item procedure returns the next token delimited by white space. Leading white space
is skipped and the characters are collected until another white-space character is
encountered. The string returned must be freed by calling FreeTokenString. If temporary
is TRUE, it is assumed that the string will be freed shortly and no effort is made to use the
minimum storage for it. If temporary is FALSE, only as much storage is used for the string
as needed.

Token.Line: Token.FilterProcType;

The Line FilterProcType can be used to collect a line. It collects characters until it
encounters a carriage return. This procedure requires no client data (data may be NiL).

Token.LongNumber: PROCEDURE [
h: Token.Handle, radix: CARDINAL, signalOnError: BOOLEAN «— TRUE]
RETURNS [u: LONG UNSPECIFIED];

The LongNumber procedure parses the next characters of the source as a long number in
radix radix. Numbers have the format specified in the Mesa Language Manual. In case of
a syntax error, the signal SyntaxError is optionally raised. If signalOnError is FALSE or
SyntaxError is resumed, then zero is returned for a syntax error. This procedure skips
leading white space.

Token.LongDecimal: PROCEDURE [
h: Token.Handle, signalOnError: BOOLEAN & TRUE] RETURNS [i: LONG INTEGER];

LongDecimal is just like LongNumber, but with a radix of 10.

Token.LongOctal: PROCEDURE [
h: Token.Handle, signalOnError: BOOLEAN ¢ TRUE] RETURNS [c: LONG CARDINAL];

LongOctal isjust like LongNumber, but with a radix of 8.

Token.MaybeQuoted: PROCEDURE [
h: Token.Handle, data: Token.FilterState, filter: Token.FilterProcType «
Token.NonWhiteSpace, isQuote: Token.QuoteprocType « Token.Quote, skip:
Token.SkipMode « whiteSpace, temporary: BOOLEAN « TRUE];

Token

9-6

The MaybeQuoted procedure permits the client to scan for one of two kinds of token. The
first candidate character is passed to isQuote, which either returns Token.nonQuote or the
closing-quote character. If a closing-quote character other than Token.nonQuote is
returned, characters are collected in the token until the closing quote is encountered. If
the input is exhausted before the closing quote is encountered, the signal
UnterminatedQuote is raised. If it is resumed, MayBeQuoted returns the token collected
up to that point. The closing-quote character may be included in the token by including
two instances of the character in the input; that is, if MaybeQuoted encounters two
closing-quote characters in a row, it will insert one closing-quote character in the token
rather than terminating the token on the first closing quote. The outer quote characters
are not part of the token and are discarded. If Token.nonQuote is returned from the
isQuote procedure, the filter is used to collect characters the same way as in Filtered: filter
is called with the client-instance data parameter data once on each character until it
returns FALSE. [n either case (quoted or filtered), the break character returned in the
Handle will be the character following the token.

Leading characters are skipped according to the value of skip.

If temporary is TRUE, it is assumed that the string will be freed shortly and no effort is
made to use the minimum storage for it. [f temporary is FALSE, only as much storage is used
for the string as is needed. The string returned must be freed by calling FreeTokenString.

Token.NetworkAddress: PROCEDURE [
h: Token.Handle, format: NetFormat &« octal, signalOnError: BOOLEAN & TRUE]
RETURNS [address: system.NetworkAddress];

The NetworkAddress procedure parses the next characters of the source as a network
address in format format. (See the Format interface for a description of network
addresses.) In case of a syntax error, the signal SyntaxError is optionally raised. If
signalOnError is FALSE or SyntaxError is resumed, then System.nullNetworkAddress is
returned for a syntax error. This procedure skips leading white space.

Token.NetworkNumber: PROCEDURE [
h: Token.Handle, format: NetFormat « octal, signalOnError: BOOLEAN ¢ TRUE]
RETURNS [networkNumber: system.NetworkNumber];

The NetworkNumber procedure parses the next characters of the source as a network
number in format format. (See the Format interface for a description of network numbers.)
In case of a syntax error, the signal SyntaxError is optionally raised. If signalOnError is
FALSE or SyntaxError is resumed, then System.nullNetworkNumber is returned for a syntax
error. This procedure skips leading white space.

Token.NonWhiteSpace: FilterProcType;

The NonWhiteSpace FilterProc defines all characters that are not white space; that is,
WhiteSpace[char] = ~NonWhiteSpace{char]. This procedure requires no client data (data
may be NIL).

Token.Number: PROCEDURE [
h: Token.Handle, radix: CARDINAL, signalOnError: BOOLEAN ¢ TRUE]
RETURNS [u: UNSPECIFIED];

Mesa Programmer’s Manual 9

The Number procedure parses the next characters of the source as a number in radix
radix. Numbers have the format specified in the Mesa Language Manual. In case of a
syntax error, the signal SyntaxError is optionally raised. If signalOnError is FALSE or
SyntaxError is resumed, then zero is returned for a syntax error. This procedure skips
leading white space.

Token.Numeric: Token.FilterProcType;

The Numeric FilterProcType can be used to collect a composed of digits; that is, the
characters '0 through '9. This procedure requires no client data (data may be NiL).

Token.Octal: PROCEDURE [
h: Token.Handle, signalOnError: BOOLEAN ¢ TRUE] RETURNS [C: CARDINAL];

Octal is just like Number, but with radix = 8.
Token.Quote: Token.QuoteProcType;

The Quote QuoteProcType recognizes the single quote and double quote as quotation
characters and looks for another instance of the open-quote character to close the
quotation.

Token.Skip: PROCEDURE [
h: Token.Handle, data: Token.FilterState, filter: Token.FilterProcType,
skiplnClass: BOOLEAN « TRUE];

The Skip procedure is used to skip over characters. A filter is provided to define the class of
characters, and the boolean skipinClass indicates whether the characters to be skipped are
those accepted or rejected by the filter. If the client-instance data parameter data is not
NiL, the first two words of data are set to zero before any calls are made to filter. If data is
NiL and filter references data, the signal NilData should be raised.

Token.SocketNumber: PROCEDURE [
h: Token.Handle, format: NetFormat « octal, signalOnError: BOOLEAN « TRUE]
RETURNS [socketNumber: system.SocketNumber]; :

The SocketNumber procedure parses the next characters of the source as a socket number
in format format. (See the Format interface for a description of socket numbers.) In case of
a syntax error, the signal SyntaxError is optionally raised. If signalOnError is FALSE, or
SyntaxError is resumed, then System.nullSocketNumber is returned for a syntax error. This
procedure skips leading white space.

Token.StringToHandle: PROCEDURE [s: LONG STRING, offset: CARDINAL « 0]
RETURNS [h: Token.Handle];

The StringToHandle procedure creates a Token.Handle whose source is a string. offset is
the index into the string that marks the beginning of the characters to be parsed. The
string is not copied, so clients are responsible for synchronizing access to the string with

the Token package.

Token.Switches: Token.FilterProcType;

9-7

Token

The Switches FilterProcType can be used to collect switch characters. It accepts the
characters '~, '-, and AlphaNumeric characters. This procedure requires no client data
(data may be NIL).

Token.WhiteSpace: Token.FilterProcType;

The WhiteSpace FilterProcType defines the white-space characters. This filter is used by
Token for skipping white space. This procedure requires no client data (data may be nNiv).

Token.WindowBox: PROCEDURE [h: Token.Hand!e] RETURNS [wWindow.BOX];

The WindowBox procedure parses the next data in the Handle as a window box and
returns the corresponding window.Box. The syntax of the entry for a window boxes is as
follows:

WindowBox: [x: number, y: number, w: number, h: number]

White space is ignored and the keywords x, y ,w and h may appear in any order or case. It is
not necessary to have all four values present. If a value is to be omitted, its keyword must
also be omitted. The result is initialized to Window.NullBox, so omitted values remain
unchanged from this initialization. The values for the numbers refer to absolute screen
coordinates and should obey the syntax for Token.Decimal. If an invalid Token.Handle is
supplied, the results are undefined.

9.5 Discussion and examples

9-8

An example of the Token interface in parsing User .cm entries can be found at the end of
the CmFile chapter.

The following example demonstrates how the Token interface could be used to parse
command line input into “tokens," optionally followed by switches. In this context, tokens
and switches are defined to be any sequence of non-white-space characters not including
the slash character (/).

GetToken: PROCEDURE [h: Exec.Handle] RETURNS [token, switches: LONG STRING] =
BEGIN
get: PROCEDURE [Token.Handle] RETURNS [¢: CHARACTER] = {
RETURN[Exec.GetChar[h]]};
getToken: Token.Object « [getChar: get, break: Ascii.NUL];

tokenfFilter: Token.FilterProcType = {
RETURN[SELECT TRUE FROM
Token.WhiteSpace[c, data], ¢ = Ascii.NUL = > FALSE,
¢ ="'/ = > FALSE,
ENDCASE = > TRUE]};
token & Token.Filtered[@getToken, NiL, tokenFilter];
switches « IF getToken.break = '/ THEN
Token.Filtered[@getToken, NiL, tokenFilter]
ELSE NIL;
END;

Mesa Programmer’s Manual 9

We can extend this example so that the token is defined to be either a sequence of non-
white-space characters or a sequence of characters (possibly containing white-space
characters) between double quotes.

GetToken: PROCEDURE [h: Exec.Handle] RETURNS [token, switches: LONG STRING] =
BEGIN
get: PROCEDURE [Token.Handle] RETURNS [c: CHARACTER] = {
RETURN[Exec.GetChar[h]]};
getToken: Token.Object « [getChar: get, break: Ascii.NUL];
isQuote: Token.QuoteProcType = {
RETURN(IF ¢ = '" THEN ¢ ELSE Token.nonQuote]};
tokenFilter: Token.FilterProcType & {
RETURN[SELECT TRUE FROM
Token.WhiteSpace[c, data], ¢ = Ascii.NUL = > FALSE,
¢ = '/ = > FALSE,
ENDCASE = > TRUE]};
token « Token.MaybeQuoted[@getToken, NIL, tokenFilter, isQuote];
switches « IF getToken.break = '/ THEN
Token.Filtered[@getToken, NiL, tokenFilter]
ELSE NIL;
END;

9-9

Token

9-10

10

ToolDriver

10.1 Types

The ToolDriver interface allows a tool to inform the ToolDriver package of its existence
and of the existence of its subwindows. The ToolDriver package can thus use the tool’s
functions on behalf of a user communicating with the package via a script file. Every tool
that provides some generally useful function should use the ToolDriver facilities.
Although the ToolDriver is an add-on package (not built into the regular Tajo), the
interface routines are available in Tajo even without the ToolDriver so that the tool being
sTARTed need not concern itself with unbound procedures. For details on running the
ToolDriver itself, see the XDE User's Guide.

ToolDriver.Address: TYPE = RECORD [name: LONG STRING, SW: Window.Handle];

Address is an element of the array passed to NoteSWs to describe the relationship between
a subwindow of a tool and its name.

ToolDriver.AddressDescriptor: TYPE =
LONG DESCRIPTOR FOR ARRAY OF ToolDriver Address;

AddressDescriptor is the array passed to NoteSWs describing the subwindows of a tool.

ToolDriver.FindDataProcType: TYPE = PROCEDURE [
tooliD: ToolDriver.TOOIID] RETURNS [LONG POINTER];

The FindDataProcType procedure is obsolete.

ToolDriver.NoteDataProcType: TYPE = PROCEDURE [
toolID: ToolDriver.TOOIID, data: LONG POINTER];

The NoteDataProcType procedure is obsolete.

ToolDriver.NOte SWsProcType: TYPE = PROCEDURE [
tool: LONG STRING, subwindows: ToolDriver. AddressDescriptor];

NoteSWsProcType is the type of the NoteSWs procedure.

10-1

10

ToolDriver

ToolDriver.RemoveDataProcType: TYPE = PROCEDURE [t00OlID: ToolDriver.TOOIID];
The RemoveDataProcType type is obsolete.

ToolDriver.RemoveSWsProcType: TYPE = PROCEDURE [t00l: LONG STRING];
RemoveSWsProcType is the type of the RemoveSWs procedure.
ToolDriver.TOOID: TYPE = CARDINAL [0..1024);

ToollD is private and should not be used.

10.2 Constants and data objects

None.

10.3 Signals and errors

None.

10.4 Procedures

10-2

ToolDriver.FindData: ToolDriver.FindDataProcType;

The FindData procedure is obsolete and not implemented.

ToolDriver.NoteData: ToolDriver.NOteDataProcType;

The NoteData procedure is obsolete and not implemented.

ToolDriver.NOteSWSs: ToolDriver.NoteSWsProcType;

The NoteSWs procedure is used by a tool to announce its existence. tool is whatever name
the tool wishes to go by for purposes of the ToolDriver. It need not be the same as the name
displayed in the herald of the tool's window; in general, it will be different because the
ToolDriver restricts the tool to contain only alphanumerics. subwindows is a list of
subwindows that the tool wishes to make available to the ToolDriver. The name for each
of these must also contain only alphanumerics. Tools that register with the ToolDriver
interface should have unique names in each of the menus used by the tool so as not to be
ambiguous to the ToolDriver package.

ToolDriver.RemoveData: ToolDriver.RemoveDataProcType;

The RemoveData procedure is obsolete and not implemented.

ToolDriver.RemoveSWSs: ToolDriver.RemoveSWsProcType;

The RemoveSWs procedure should be called when a tool goes inactive, unless it is
prepared to be called by the ToolDriver while inactive.

Mesa Programmer’s Manual 10

ToolDriver.SetDataProcs: PROCEDURE [
findData: ToolDriver.FindDataProcType, noteData: ToolDriver.NoteDataProcType,
removeData: ToolDriver.RemoveDataProcType];

The SetDataProcs procedure is obsolete and not implemented.

ToolDriver.SetSWsProcs: PROCEDURE [
noteSWsProc: ToolDriver.NOteSWsProcType,
removeSWsProc: ToolDriver.RemoveSWsProcType];

The SetSWsProcs procedure is obsolete and not implemented.

10.5 Example

The following example registers a tool and its subwindows when the subwindows are
created, which happens whenever a tool becomes active.

MakeSWSs: Tool.MakeSWsProc =
BEGIN
addresses: ARRAY [0..3) OF ToolDriver.Address;

msgSW « Tool.MakeMsgSWI ...];
formSW & Tool.MakeFormSWI[...];
fileSW « Tool.MakeFileSW(...];

address « [

[name: “"MsgSW"L, sw: msgSW];

[name: "FormSW"L, sw: formSW];

[name: "FlleSW"L, sw: fileSWI];
ToolDriver.NOteSWs(tool: "Sample”L, subwindows: DescripTOR[addresses]];
END;

10-3

10 ToolDriver

10-4

II

Tool building

These interfaces support most tool builders, who need only prepackaged parts. The
subwindow types given here can easily be combined into tools. The Example Tool,
discussed in Appendix A, shows how to put these pieces together and how to use them with
other interfaces such as file management interfaces (see the File Management section).

If you require significantly more or different functionality for a new tool, use the
interfaces described in the next major section of this document (Window and Subwindow
Building). It is not recommended, however, that you use the lower-level interfaces unless
you have tool-building experience. Those interfaces require much greater attention to
detail to apply them properly, especially when integrating them into the system.

II.1 Interface abstracts

FileSW provides the definitions and procedures for creating text subwindows whose
backing storage is a disk file, plus procedures that are specific to file subwindows.

FormSW implements a form subwindow, which is a. mechanism for invoking commands
and specifying command parameters. This type of subwindow is standard for invoking

tools.

MsgSW implements message subwindows, which provide a simple way of posting
messages to the user.

ScratchSW creates a subwindow backed by a scratch source; that is, by a piece of virtual
memory.

StringSW provides the definitions and procedures for creating and manipulating text
subwindows whose backing store is a LONG STRING.

TextSW defines extensive facilities for viewing text independent of its source.
TTYSW implements a TTY subwindow, which emulates a teletype.

Put provides procedures for converting data types to formatted text and outputting that
text to windows.

[1-1

I1

Tool Building

II-2

Tool provides facilities for building an interactive tool. It is designed to make the writing
of tools with a standard user interface as easy as possible, by allowing the client to avoid
many of Tajo’s low-level facilities at the cost of some loss in flexibility.

ToolWindow provides facilities for constructing subwindows in a tool window. Many
standard subwindow types are provided by the development environment; normally only
clients that wish to make complex tools need this interface.

11

FileSW

The FileSW interface provides the definitions and procedures for creating text subwindows
whose backing storage is a disk file. It also provides procedures that are specific to file-
type subwindows. All non-file subwindow-specific manipulations are contained in the
interface TextSW.

11.1 Types
FileSW.Access: TYPE = TextSource.ACCESS;
Filesw.EnumerateProcType: TYPE = PROCEDURE(
sw: window.Handle, name: LONG STRING, access: FileSW.Access]

RETURNS [done: BOOLEAN];

Filesw.Options: TYPE = Textsw.Options;

11.2 Constants and data objects
Filesw.defaultOptions: Filesw.Options = |

access: read, menu: TRUE, split: TRUE, wrap: TRUE, scrollbar: TRUE,
- flushTop: FaLsE, flushBottom: FALSE);

11.3 Signals and errors
Filesw.Error: siGNAL [code: Filesw.ErrorCode];

Filesw.ErrorCode: TYPE = {
notAFileSW, isAFileSW, notEditable, isEditable, accessDenied, other};

11.4 Procedures

Filesw.Create: PROCEDURE [
sw: Window.Handle, name: LONG STRING,
options: Filesw.Options « filesw.defaultOptions,

11-1

11

FileSW

11-2

s: stream.Handle &« NiL, position: TextSource.Position « 0,
allowTypeln: BOOLEAN « TRUE, resetLengthOnNewSession: BOOLEAN & FALSE];

The Create procedure creates a disk source and then creates a text subwindow using that
disk source. The name Create is something of a misnomer, since the subwindow must
already have been created by a call on Toolwindow.Create or Toolwindow.CreateSubwindow;
the call on Create is actually a differentiation process. [f' s is NiL, a stream is automatically
opened on the file name. If s is not NiL, name must be the name of the file to which s is
attached. Note that if s is not NiL, the file subwindow owns the stream and will destroy it
when the window is Destroyed. The text is positioned so that the character specified by
position is displayed on the first line of sw. If options.access is read and the file can't be
found, TextSource.Error{fileNameError] is raised. The parameter allowTypeln controls
whether the window permits user type-in. The parameter resetLengthOnNewSession,
which controls whether the file length is reset to zero on a new session, is probably of
interest only to the implementation of CoPilot or tools that run in CoPilot. Subwindows
created by Filesw.Create should always be destroyed by Frilesw.Destroy, not by
Textsw.Destroy.

Filesw.Destroy: PROCEDURE [sw: Window.Handle];

The Destroy procedure destroys a file subwindow created by Filesw.Create and deletes the
stream backing the window.

FileSw.Enumerate: PROCEDURE [proc: Filesw.EnumerateProcType];

The Enumerate procedure enumerates all the current file subwindows, including file
subwindows that are not in the window tree and file subwindows that are part of inactive
tools.

Filesw.GetFile: PROCEDURE {
sw: Window.Handle] RETURNS [name: LONG STRING, s: Stream.Handle];

The GetFile procedure returns the file name and stream that are currently attached to a
file subwindow. The string returned by GetFile is owned by Tajo and must not be freed by
the client.

Filesw.IsEditable: PROCEDURE [sw: window.Handle] RETURNS [yes: BOOLEAN];

The IsEditable procedure returns TRUE if and only if a window is currently editable.
FileSw.Isit: PROCEDURE [sw: Window.Handle] RETURNS [yes: BOOLEAN];

The Islt procedure returns TRUE if and only if a window is a file subwindow.
Filesw.LoadMCR: Menu.MCRType;

The LoadMCR procedure is a menu command routine that does the standard load

operation using the current selection as the file-name argument. Clients that construct
their own menus may call it.

Mesa Programmer’s Manual 1 1

filesw.MakeEditable: PROCEDURE [sw: Window.Handle] RETURNS [ok: BOOLEAN];

The MakeEditable procedure makes a file subwindow editable. It returns an indication of
success.

FileSw.PutEditableFile: PROCEDURE [
sw: Window.Handle, name: LONG STRING] RETURNS [0k: BOOLEAN];

The PutEditableFile procedure stores the edited file on the new file name. If name = NiL,
the old version of the file is saved as "currentName$" and the edited file is output to
currentName. [t returns an indication of success.

Filesw.ResetEditableFile: PROCEDURE [sw: Window.Handle];

The ResetEditablefile procedure resets an edited file to its original state. The file
subwindow is not editable after the call.

FileSw.SetFile: PROCEDURE [
sw: Window.Handle, name: LONG STRING, s: Stream.Handle « NiL,
position: TextSource.Position « 0];

The SetFile procedure loads a new file into a file subwindow. Note that if s is not NiL, the
file subwindow owns the stream s and will destroy it when the window is Destroyed.

11-3

FileSW

11

11-4

12

FileWindow

The FileWindow interface provides facilities for manipulating file windows. It also
maintains a mapping between file windows and the files that are loaded into them. A file
window is a tool containing a text subwindow for manipulating and displaying text. All of
the FileWindow procedures that have window.Handle parameters or results deal with the
text subwindow in the FileWindow. Some procedures also accept the tool window or even
the clipping window for the FileWindow. The text subwindow is either an editable or non-
editable file subwindow (see FileSW), or a scratch subwindow (see ScratchSW).

12.1 Types
Filewindow.ContinueStop: TYPe = {continue, stop}:

Filewindow.EnumerateProcType: TYPE = PROC [
sw: window.Handle] RETURNS [continue: Filewindow.ContinueStop];

12.2 Constants and data objects
Filewindow.defaultOptions: Textsw.Options = [

access: read, menu: TRUE, split: TRUE, wrap: TRUE, scrollbar: TRUE,
flushTop: FALSE, flushBottom: FALSE];

12.3 Signals and errors

None.

12.4 Procedures

FileWindow.Create: PROC |
box: window.Box, options: Textsw.Options « Filewindow.defaultOptions,
initialState: Toolwindow.State « active]
RETURNS [sw: window.Handle];

121

12

FileWindow

12-2

Create creates an empty file window. [t takes the dimensions of the desired window and a
set of options for the state of the window. Create returns the text subwindow for the file
window. The options parameter is ignored.

FileWindow.CreateMCR: Menu.MCRType;

CreateMCR is the FileWindow package’s implementation of the Create menu operation. It
is defined in the FileWindow interface so that clients can create their own menus with this
procedure implementing one of the operations.

Filewindow.Destroy: PROC [sw: window.Handle];

Destroy destroys a file window. The parameter may be either the tool window, the clipping
window, or the text subwindow for a file window.

Filewindow.DestroyMCR: Menu.MCRType;

DestroyMCR implements the Destroy menu operation. If it would reduce the number of
file windows below the minimum, the display blinks. Otherwise, the user is asked to
confirm destruction of the window by clicking the POINT mouse button. DestroyMCR is
defined in the FileWindow interface so that clients can create their own menus with this
procedure implementing one of the operations.

Filewindow.Enumerate: PROC [proc: FileWindow.EnumerateProcType];

Enumerate calls proc with the text subwindow for each file window until proc returns
stop or all file windows have been enumerated.

Filewindow.FileinWindow: proC [
sw: window.Handle)] RETURNS [fileName: LONG STRING, s: Stream.Handle];

The FileiInWindow procedure returns the file name and stream that back the window. The
sw parameter is expected to be the text subwindow for the file window, or niL. If it is NIL, a
file window is selected using the same heuristics as WindowForFile and the results for
that window are returned. If WindowForFile fails, [NiL, NiL] is returned. The results do not
belong to the user and should be treated as read-only. They are potentially dangling
references, since the file in the window may change. If needed, the string should be copied
immediately. Even this is not 100% safe.

Filewindow.GetInfo: PROC RETURNS [
ext: LONG STRING, fileMenu, sourceMenu: menu.Handle,
minimumWindows: CARDINAL];

The Getinfo procedure returns the global data maintained by the FileWindow package.
This data is set by SetExtension, SetSourceMenu, and SetMinimumWindows.

FileWindow.!slt: PROC [sw: Window.Handle] RETURNS [BOOLEAN];

Islt returns TRUE if the window is a file window and FALSE otherwise. The parameter may be
either the tool window, the clipping window, or the text subwindow for a file window.

Mesa Programmer’s Manual 12

Filewindow.LoadWindow: PrOC [
fileName: LONG STRING, pOsition: LONG CARDINAL « 0, s: Stream.Handle « NIL,
loadIFSame: BOOLEAN « FALSE, sw: Window.Handle « NiL];

LoadWindow loads a file into a file window. s must be an Mstream.Handle. If s is not NiL, it
is assumed to be a stream on file fileName and is used as the backing stream. The file is
positioned in the window at position; that is, the top line in the window contains the
character in that position. loadIFSame controls whether to reload the requested file if it is
already loaded in the window. If sw is not NiL, it is the text subwindow of a file window in
which to load the file. If it is NiL, the file window package searches for a suitable window to
load the file into, using the same heuristics as WindowForFile. If sw is NiL and
WindowfForFile fails, then either an unnamed ERROR or an address fault results.

FileWindow.POsition: PROC [sw: window.Handle, position: LONG CARDINAL];

Position sets the position of the file in the window so that the top line in the window
contains the character at that position. If the position is out of range for the file, no action
is taken. The sw parameter is expected to be the text subwindow for the file window, or NIL.

FileWindow.SetExtension: PROC [ext: LONG STRING];

In loading a window, the FileWindow package first attempts to find a file with the
specified name. If that fails, it tries three different extensions, in turn, to the name in an
attempt to find a file to load. These extensions are “.mesa” (initially), “.config”, and “.cm”.
The first extension can be modified by a client using SetExtension. SetExtension will copy
the contents of ext.

Filewindow.SetMinimumWindows: PROC [keep: CARDINAL];

SetMinimumWindows permits the client to set the minimum number of file windows that
must exist at all times. Destroy operations that would take the number of windows below
this minimum will fail to destroy any window.

Filewindow.SetSize: PROC [sw: window.Handle, box: window.Box];

SetSize changes the size of the file window. The parameter may be either the tool window,
the clipping window, or the text subwindow for a file window.

FileWindow.SetSourceMenu: PROC [menu: Menu.Handle];
SetSourceMenu associates a menu with all file windows.

Filewindow.WindowforFile: proc [fileName: LONG STRING] RETURNS [window.Handle];

WindowfForFile searches for a file window into which the file can be loaded. It returns the
first non-editable file window containing a file whose full name or simple name matches
fileName. If a non-editable file window already contains the file, that window is returned.
If no such window is found, the file window package searches all file windows that are
either non-editable windows or nearly empty scratch subwindows. In order of preference,

12-3

12

FileWindow

12-4

WindowfForFile tries to find either an empty active, a full active, an empty tiny, or a full
tiny file window. If it cannot find a suitable file window, it returns NiL.

13

FormSW

The FormSW interface is used in building tools that interact with the user via the window
user interface. A form subwindow is a mechanism for invoking commands and specifying
the command parameters. A form subwindow consists of form items, which are
rectangular regions in the subwindow, similar to ruled-off areas on a preprinted form.

A form item can be one of the following types. Command items correspond to the
operations a tool can perform. A command item appears in the form subwindow as a
keyword followed by an "!". String items are strings filled in by the user that serve as
parameters to command items. A ": " is appended to string item keywords. Enumerated
items are lists of string items.

These items may be displayed in two ways: "keyword: {a, b, c,...}"' or "keyword: {a}." In both
cases, choosing is done via menu prompts. Menu prompts are always available for
enumerated items and sometimes for string items. When you press the menu button over
the keyword for an enumerated field, a menu of allowed values is displayed. Choosing one
of the values from the menu sets the enumerated item to that value. Similarly, when you
press the menu button over the keyword for a string item, a menu of character strings is
displayed. Choosing one of the items (strings) from the menu appends the menu string at
the current position of the type-in point. Enumerated items may also be chosen by
bringing up a menu and selecting the desired item with the mouse. In the first example
above, the current value becomes highlighted. In the other example, only the current
value is displayed.

Boolean items are form items that can have one of two values, either TRUE or FALSE. The
boolean state of the item is indicated by highlighting. Highlighted means TRUE. Numeric
items are like string items, except that only strings representing numbers are permitted.
A "= "1is appended to numeric item keywords. Tag items are used to clarify an otherwise
complicated form subwindow by separating the items along logical divisions and labeling
them as such. The labels, which are tag items, do not correspond to any user-input actions,
but instead serve to annotate the form.

The ItemObject is the fundamental data structure of the form subwindow interface; TYpes
and PROCEDUREs in FOrmSW provide mechanisms for defining and manipulating them.
Readers not familiar with the form subwindow interface are advised first to carefully

13-1

13

FormSW

12.1 Types

13-2

study ExampleTool.bcd, found in Appendix A, and then to examine Formsw.ltemObject
before learning about other TypPes and PROCEDUREs in this interface.

The client constructs a form subwindow by specifying an array of form-item handles. Each
handle points to an item; each item is a variant record containing a pointer to the tool's
internal data that will be displayed and altered. The elements of the item handle array
point to objects that contain information about how and where the corresponding form
item should be displayed in the form subwindow. An item object may also contain
notification procedures that are called by the form subwindow interface to inform the
client of events affecting that item.

; 0
%Command! Vanilla:

gPassw0td: Cardinal = 0

EReadOnly: Read Only String

boolean(trueFalse): {FRUE.FALSE} boo 3
ienumerated(one): {A} enumerated(all) {x, ¥ 2z}

: 0

Figure 13.1: Example Tool

The client's items are displayed in a subwindow; the user can alter them at any time
unless explicitly prohibited by the client. The form subwindow interface supplies
procedures to display, select, or alter any of these items.

Clients of this interface should keep in mind that forms cannot be arbitrarily large because of sizable storage
requirements. The fixed overhead in heap usage per form item is 23 words (broken down as follows: 4 words for
the item record, 2 words for the handle, 8 words for the item's TextSource plus 1 word for heap overhead, and 9
words for the item's TextDisplay Object). The variable overhead is due to the STRINGs associated with an item
(the tag, for example), line tables associated with multi-line items, and the variant part of the item record.

It is important to distinguish between the user actions of choice and selection: the user is
said to select an item (or part of an item) if that action changes the current selection;
otherwise the user is said to make a choice of (or in) the item. It is not always possible to
distinguish between the two cases by simply looking at the display-marking actions.

Formsw.BooleanHandle: TYPE = LONG POINTER TO boolean Formsw.ltemObject;

See the description of ItemObject for the definitions of the common fields of the ItemObject
record. There is no special trailer appended to the tag for boolean parameter items . When

Mesa Programmer’s Manual 13

the user chooses a boolean parameter item, the tag is inverted on the display, the sense of
the BOOLEAN pointed to by switch is inverted, and then the supplied client proc is invoked.
(See also NopNotifyProc and BooleanChoices.)

switch is a LONG POINTER TO BOOLEAN provided so that the client can access the BOOLEAN
without necessarily accessing the ItemObject. The BOOLEAN must occupy its own
word in memory. This can be achieved by allocating the BOOLEAN in the client's
global frame (but not in a RECORD in the global frame unless it is a MACHINE
DEPENDENT RECORD and the BOOLEAN is specified to occupy a word) or by using the
overlaid variant Formsw.WordBaoolean. Using the overlaid variant is clumsy and
should be avoided.

proc is called every time the user changes the boolean.

Formsw.ClientltemsProcType: TYPE = PROCEDURE [
sw: window.Handle] RETURNS [items: Formsw.itemDescriptor, freeDesc: BOOLEAN];

The ClientltemsProcType procedure is called when the form subwindow package needs to
create the form subwindow, usually when the enclosing tool window is created or made
active. The procedure returns the ltemDescriptor that describes the contents of the form
subwindow. If freeDesc is TRUE, then the ItemDescriptor has been allocated from the
system heap and the form subwindow package frees it when the subwindow is destroyed
(usually when the enclosing tool window is deactivated). If freeDesc is FALSE, the
ItemDescriptor is not deallocated, and the management of its storage is the client's
responsibility.

Formsw.CommandHandle: TYPE = LONG POINTER TO command Formsw.IltemObject;

See the description of ItemObject for the definitions of the common fields of the ItemObject
record. For command parameter items the character "!" is appended to the tag to remind
the user that this is a command item. User choice of this type of parameter item causes
invocation of the supplied client proc to be invoked like menu-command choice. (See also
NopNotifyProc.)

FormSw.Enumerated: TYPE = RECORD [string: LONG STRING, value: UNSPECIFIED];
This type is used to specify the representation of an element of an enumerated item in an
enumerated itemObject. The element displayed as string has the value value associated

with it. (See also EnumeratedHandle and EnumeratedDescriptor.)

Formsw.EnumeratedDescriptor: TYPE =
LONG DESCRIPTOR FOR ARRAY OF Formsw.Enumerated;

An EnumeratedDescriptor lists the possible values of an enumerated item. (See also
EnumeratedHandle and EnumeratedDescriptor.)

Formsw.EnumeratedFeedback: Type = {all, one};

This type specifies whether to display all or one of the enumerated ItemObjects. (See also
EnumeratedHandle.) Examples of the two forms of feedback are:

13-3

13

FormSW

13-4

all The item displays as "tag: {a, b, ¢}". Choosing an item within the curly brackets
video-inverts that item.

one The item displays as "tag: {a}". Depressing the menu mouse button displays the set of
strings available for choice. Choosing an item causes it to be displayed.

Formsw.EnumeratedHandle: TYPE = LONG POINTER TO enumerated Formsw.ItemObject;

See the description of ItemObject for the definitions of the common fields of the ItemObject
record. For enumerated parameter items the special trailer ": {"" is appended to the tag. [n
addition, a "}" is appended at the end of the item's display representation. When the user
modifies this type of parameter item, the display is updated according to the value of
feedback, the UNSPECIFIED pointed to by value is updated to match the display, and then the
supplied client proc is invoked. (See also NopEnumeratedNotifyProc, BooleanChoices.
and nullEnumeratedValue.)

choices For both forms of feedback, all or one, the items available for choice are
those STRINGs supplied by the client in the choices. When the string from
one of the choices is chosen, the corresponding value from the Enumerated
is stored into ItemObject.valuet. Depressing the menu mouse button
displays the set of strings available for choice.

value This field is a POINTER TO UNSPECIFIED so that the client need not have access
to the ItemObject in order to have access to the UNSPECIFIED. This introduces
the same word-alignment problems that occur with the boolean
ItemObject's switch, and the same solutions and caveats apply here. value
points to an UNSPECIFIED so that its possible values can be from any type
(usually an enumeration).

proc This field is a PROCEDURE that is called whenever the user changes value.
(See also NopEnumeratedNotifyProc.)

copyChoices This field indicates whether the client's choices were copied into the
system heap and can be freed to the system heap automatically by
FormSW.

Formsw.EnumeratedNotifyProcType: TYPE = PROCEDURE [
sw: window.Handle « niL, item: Formsw.itemHandle « NiL,
index: CARDINAL « Formsw.nullindex, oldValue:
UNSPECIFIED « FormSw.nullEnumeratedValuel;

A EnumeratedNotifyProcType is called whenever the user changes the corresponding
enumerated item in a form subwindow. sw is the subwindow containing the item. item is
the ItemHandle of the enumerated item. index is the index of the item in the
ItemDescriptor for the subwindow. oldValue is the value of the enumerated item before
the user changed it. (See also EnumeratedHandle.)

Mesa Programmer’s Manual 13

formSw.FilterProcType: TYPE = PROCEDURE[
sw: window.Handle, item: Formsw.ltemHandle, insert: CARDINAL,
string: LONG STRING];

A FilterProcType is called to permit a client to perform editing operations on a string
ItemObject. sw is the subwindow containing the item. item is the ItemHandle of the
enumerated item. string, which may be NiL, contains the characters to edit into the
backing-store string at position insert. The zero position is defined to be the left of the first
character of the string. (See also StringHandle.)

FormswW.Flag: TYPE = {clientOwnsitem, drawBox, hasContext, invisible, readOnly};

Flag defines the types of state bits maintained for a form subwindow item. (See also
ItemFlags.) :

Formsw.FreeHintsProcType: TYPE = PROCEDURE[FormSw.Hints];

A FreeHintsProcType is called to free the Hints in a string ItemObject, allowing the Hints
to be somewhere other than in the client's global frame.

FormSW.Hints: TYPE = LONG DESCRIPTOR FOR ARRAY OF LONG STRING;

Hints is a set of strings that is available to the user in a menu to suggest possible strings
for use when editing a string ItemObject. (See also StringHandle.)

Formsw.ItemFlags: TYPE = RECORD [
readOnly: BOOLEAN & FALSE,
invisible: BOOLEAN &« FALSE,
drawBoOx: BOOLEAN & FALSE,
hasContext: BOOLEAN & FALSE,
clientOwnsltem: BOOLEAN « FALSE,
modified: BOOLEAN « FALSE];

ItemFlags is a RECORD of state bits for an item in a form subwindow. The meaning of the
flags is as follows:

readOnly If this flag is TRUE, the user cannot modify this parameter. If any
modification is attempted, the readOnlyNotifyProc for this subwindow
is called.

invisible If this flag is TRUE, the item is not displayed in the subwindow, and it is

treated by form subwindows exactly as if it were not present, except
that it is occupying an index slot.

drawBox If this flag is TRUE, the item is displayed enclosed within a box that is
one bit thick.
hasContext If this flag is TRUE, a client context two words long is associated with

the item. This context serves the same function as a client context
associated with a subwindow. However, unlike Context, FormSW
returns a pointer to the client data words, not the value of the data
words. (See also ContextFromltem.)

13-5

13

FormSW

13-6

clientOwnsltem If this flag is TRUE, the form subwindow will not try to de-allocate the
item if the subwindow is destroyed. This flag is usually FALSE, meaning
that the client does not need to be concerned with storage allocation
and de-allocation. Instead, the form subwindow "owns" the storage and
is responsible for maintaining it.

modified The modified flag is set when an item on the form subwindow has been
modified. See the fFormsw.SetModifyNotification procedure for setting a
notificiation procedure on this flag.

Formsw.ltemHandle: TYPE = LONG POINTER TO Formsw.IitemObject;

Formsw.ItemObject: TYPE = RECORD [
tag: LONG STRING,
place: window.Place,
flags: Formsw.ltemFlags,
body: SELECT type: Formsw.ltemType FROM
boolean = > [
switch: LONG POINTER TO BOOLEAN,
proc: Formsw.NotifyProcType],
command = > [proc: Formsw.ProcType],
enumerated = > |
feedback: Formsw.EnumeratedFeedback,
copyChoices: BOOLEAN,
value: LONG POINTER TO UNSPECIFIED,
proc: Formsw.EnumeratedNotifyProcType,
choices: Formsw.EnumeratedDescriptor],
longNumber = > [
signed, notNegative: BOOLEAN,
radix: Formsw.Radix,
boxWidth: carDINAL [0..256),
proc: Formsw.LongNumberNotifyProcType,
default: LONG UNSPECIFIED,
value: LONG POINTER TO LONG UNSPECIFIED,
string: LONG STRING, bias: INTEGER],
number = > [
signed, notNegative: BOOLEAN,
radix: Formsw.Radix,
boxWidth: carDINAL [0..128),
proc: Formsw.NumberNotifyProcType,
default: UNSPECIFIED,
value: LONG POINTER TO UNSPECIFIED,
string: LONG STRING, bias: INTEGER],
source = > [
source: TextSource.Handle,
boxWidth: CARDINAL,
filterProc: Formsw.FilterProcType,
menuProc: Formsw.MenuProcType],
string = > |
feedback: Formsw.StringFeedback,
inHeap: BOOLEAN,
string: LONG POINTER TO LONG STRING,

Mesa Programmer’s Manual 13

boxWidth: carDINAL,

filterProc: Formsw.FilterProcType,

menuProc: Formsw.MenuProcType],
tagOnly = > [sw: Window:Handle, otherltem: CARDINAL],
ENDCASE];

The ItemObject is complex so that it can provide sufficient flexibility for the tool writer
who wants fine control over displaying and altering items. Most clients should not
explicitly construct an I[temObject, but should instead use the procedures that allocate an
ItemObject and take advantage of default values. In FormSW procedure types, the
argument is called item if it is an ItemHandle and items if it is an ItemDescriptor. Note that
DESCRIPTOR FOR ARRAY is implicitly a DESCRIPTOR FOR ARRAY [0..0). Trying to index an ItemDescriptor by
an enumerated type results in a compilation error. Instead of indexing by an enumerated type, the procedure

FindIndex should be used to get the desired index.

Only the common fields of the ItemObject are described here. For a description of the fields
of each variant part, see the descriptions of the corresponding handles (BooleanHandle,
CommandHandle, EnumeratedHandle, LabelHandle, LongNumberHandle,
NumberHandle, SourceHandle, StringHandle, and TagOnlyHandle).

tag is a client-supplied string that is displayed immediately preceding the data
associated with the parameter (e.g., "tag: string"). It may be NiL, in which case any
trailer characters that are usually displayed after the tag will be suppressed (e.g.,

", oo)

place is used only if the type field of the subwindow option has the value fixed;
otherwise it is ignored. place is the x,y position (subwindow relative) where the tag
and data are to be displayed. The array of item pointers is required to have the
places in ascending (English-reading) order; i.e., left to right, top to bottom. If the
position is negative, it is treated as a relative offset, where the magnitude of x
specifies the number of bits to leave between the end of the preceding item and the
start of the tag for this item. The use of a negative x following a string or number
item that uses defaultBoxWidth results in the ERROR ItemError{illegalCoordinate,
i], where i is the index of the offending item. Negative y positions are also
interpreted specially. They are line positions; i.e., they specify position as a
multiple of the line height for the subwindow. The constants line0 through line9
can be used as y values to specify that the item should be on the zero through ninth
lines in the subwindow. (See also the procedure LineHeight, LineN, SetTagPlaces
and the constants newLine, nextLine, nextPlace, and samelLine.)

flags is a RECORD of state bits for the item. (See ItemFlags for the meaning of the flags.)

Formsw.IltemType: TYPE = {
boolean, command, enumerated, longNumber, number, source, string, tagOnly};

ItemType defines the different types of form subwindow items supported by FormSW.
Formsw.LabelHandle: TYPE = Formsw.TagOnlyHandle;
One use of a tagOnly item type is to act as a label for some part of the form. For example, a

form might consist of two parts, one for specifying input parameters and the other for
output parameters. The client could distinguish the individual items by prefixing their

13-7

13

FormSW

13-8

tags with "Input-" or "Output-", or two sets of items could have the same tags but be
preceded by a labeling line consisting of an item whose tag was "Input parameters” or
"Output parameters." (See also TagOnlyHandle.)

sSwW This is the form subwindow that contains the item. It is automatically set by
Create; clients should ignore it.

otherltem This is the index of the other item for which this item is acting as a tag. For
labels, otherltem should be nullindex.

Formsw.LongNumberHandle: TYpe =
LONG POINTER TO longNumber Formsw.ItemObject;

The number and longNumber item types are for specifying numeric form items and are
very similar, with only a few exceptions. See the description of ItemObject for the
definitions of the common fields of the ItemObject record. The longNumber parameter
item differs in the following ways: boxWidth must be larger; value points to a LONG
UNSPECIFIED instead of an UNSPECIFIED; default is a LONG UNSPECIFIED instead of an UNSPECIFIED;
and proc takes a LONG UNSPECIFIED instead of an UNSPECIFIED for the old value. Refer to
Formsw.NumberHandle for an explanation of the fields in the longNumber variant. (See
also NopLongNumberNotifyProc.)

Formsw.LongNumberNotifyProcType: TYPE = PROCEDURE [
sw: Window.Handle « NiL, item: Formsw.ltemHandle e niL,
index: CARDINAL « Formsw.nullindex, oldValue: LONG UNSPECIFIED « LAST[INTEGER]];

A LongNumberNotifyProcType is called each time the user edits a longNumber
ItemObject. sw is the subwindow containing the item. item is the ItemHandle of the
longNumber item. index is the index of the item in the ItemDescriptor for the subwindow.
oldValue is the value of the longNumber item before it was changed by the user. (See also
LongNumberHandle.)

FormSw.MenuProcType: TYPE = PROCEDURE [sw: Window.Handle, index: CARDINAL]
RETURNS [hints: Formsw.Hints, freeHintsProc: Formsw.FreeHintsProcType,
replace: BOOLEAN];

A MenuProcType procedure is associated with a string ItemObject. It is called whenever
the user selects the string item with the menu button. This gives the client the
opportunity to supply a list of strings to be displayed in a menu. sw is the subwindow
containing the item. item is the ItemHandle of the string item. The MenuProcType
procedure returns the information needed for the menu. If replace is FALSE, the menu item
will be inserted into the item's string when the user chooses it, just as if the user had typed
the menu string. If Base(hints] = NIL, no prompt menu will be available.freeHintsProc is
called to free the hints, allowing the hints to be somewhere other than in the client's global
frame. (See also InHeapFreeHintsProc, NopFreeHintsProc, VanillaMenuProc and
StringHandle.)

FormsW.NotifyProcType: TYPE = Formsw.ProcType;

Mesa Programmer’s Manual 13

A NotifyProcType procedure is called whenever a client changes a boolean item. sw is the
subwindow containing the item. item is the ItemHandle of the boolean item. index is the
index of the item in the ItemDescriptor for the subwindow.

FormSw.NumberHandle: TYPE = LONG POINTER TO number Formsw.ItemObiject;

See the description of ItemObject for the definitions of the common fields of the ItemObject
record. For number (and longNumber) parameter items the special trailer "= " is
appended to the tag. The user can select and edit a number (or longNumber) item just like
a string item, and the client can also exercise control over its alteration and display.

signed FormSW needs to know whether to treat the value as a signed number (i.e.,
INTEGER). [t is treated as a CARDINAL if signed is FALSE.

notNegative The user is permitted to enter negative values if notNegative is FALSE.

radix If the user does not provide a specific radix (‘D for decimal or 'B for octal)
when he enters or modifies the item, then the radix is assumed to be 10 if
radix is decimal, 8 if radix is octal.

boxWidth This is added to the tag's width (including the supplied trailer) to
determine the width of the box in which the number is displayed. If the
special value defaultBoxWidth is used, then the box will extend to the
right edge of the subwindow or to the next item, whichever is closer.

proc The client's proc is called after each user edit to the item. (See also
NumberNotifyProc and NopNumberNotifyProc).

default The user might not want to enter any value for the item. In this case, the
value is forced to default.

value is a LONG POINTER TO UNSPECIFIED so that the client need not have access to the
ItemObject in order to have access to the UNSPECIFIED. FOrmSW assumes that
the UNSPECIFIED occupies a full word; hence it should not be declared by the
client to be a subrange of CARDINAL or INTEGER. value points to an UNSPECIFIED
so that it can be either a CARDINAL or an INTEGER.

string is the string representation of valuet. string is always convertible to
value 1 unless it is empty, in which case value 1 will be default.

bias is the difference between the displayed number and value 1. (Displayed
number + bias = value 1 .)

Formsw.Options: TYPE = RECORD |
type: Formsw.Type « fixed,
boldTags: BOOLEAN « TRUE,
autoScroll: BOOLEAN ¢ TRUE,
scrollVertical: BOOLEAN « TRUE];

Options are associated with a form subwindow to control certain formatting aspects of the
window.

13-9

13

13-10

FormSW

type If type is fixed, then the client specifies the layout of items in the
window; that is, the place field of each ItemObject specifies the location of
the item in the window. If type is relative, then the place field of the
ItemObjects is ignored and FormSW decides where to locate each item in
the window.

boldTags If boldTags is TRUE, then all tags aredisplayed in a bold font. If boldTags
is FALSE, all tags are displayed normally.

autoScroll If autoScroll is TRUE, then when editing an item would cause it to

disappear from the bottom of the window, the window is automatically
scrolled so that the item remains visible. If autoScroll is FaLSE, no such
autormatic scrolling is done.

scrollVertical If scrollVertical is TRUE, then the user is permitted to scroll the
subwindow. If scrollVertical is FALSE, the user is not permitted to scroll it.

FormSW.ProcType: TYPE = PROCEDURE [

sw: wWindow.Handle &« NiL, item: Formsw.ltemHandle « NiL,

index: CARDINAL « Formsw.nullindex];
A ProcType procedure is called whenever a client issues a command. sw is the subwindow
containing the item. item is the ItemHandle of the command item. index is the index of the
item in the ItemDescriptor for the subwindow.
Formsw.Radix: TYpe = {decimal, octal};
In number ItemObjects and longNumber ItemObjects, if the user does not provide a
specific radix ('D for decimal or 'B for octal) when he enters or modifies the item, then the
radix is assumed to be 10 if radix is decimal, 8 if radix is octal.
FormSW.ReadOnlyProcType: TYPE = FormSW.ProcType;
A ReadOnlyProcType procedure is called whenever a client tries to edit a read-only item.
sw is the subwindow containing the item. item is the itemHandle of the item. index is the
index of the item in the ItemDescriptor for the subwindow.
FormSw.SourceHandle: TYPE = LONG POINTER TO source Formsw.ltemObject;
Not implemented.
Formsw.StringFeedback: TYPe = {normal, password};
This type controls the style of feedback for string ItemObjects.
normal the characters themselves are to be displayed.
password a "*" is displayed in place of each character.

FormSw.StringHandle: TYPE = LONG POINTER TO string Formsw.ItemObject;

See the description of ItemObject for the definitions of the common fields of the ItemObject

W,

record. For string parameter items, the characters ": " are appended to the tag to indicatie

Mesa Programmer’s Manual 13

that this is a string item. String items give the tool writer explicit control over the
alteration of the supplied string and how it is to be displayed. The tool-supplied procedures
are called whenever characters are to be added to the string.

inHeap If this BOOLEAN is TRUE, the Tajo StringEditProc dynamically allocates and de-
allocates the backing string from the system heap.

string This is a LONG POINTER TO LONG STRING that contains the characters entered by
the user. The level of indirection is provided so that the original string may be
replaced.

feedback The characters of string are displayed on the screen as text unless feedback is
password, in which case a "*" is printed in place of each character of string.

boxWidth This is added to the tag's width (including the supplied trailer) to determine
the width of the box in which the LONG STRING is displayed. If the special value
defaultBoxWidth is used, then the box extends to the right edge of the
subwindow or to the next item, whichever is closer.

filterProc The client's filterProc is called whenever the user inputs characters to a
selected string item. string, which may be NiL, contains the characters to edit
into the backing-store string at position insert. The backing-store
modification is performed by calling StringEditProc. By interposing a
filterProc between the user and StringEditProc, FormSW can optimize the
display updating and maintain the consistency of selection and insert. (See
also StringEditProc.)

- menuProc The client's menuProc is called whenever the user selects the string item with
the menu button. This gives the client the opportunity to supply a list of
strings to be displayed in a menu. (See also MenuProcType and
VanillaMenuProc.)

Formsw.TagOnlyHandle: TYPE = LONG POINTER TO tagOnly Formsw.ltemObject;

See the description of ItemObject for the definitions of the common fields of the ItemObject
record. One use of a tagOnly ItemObject is to substitute for the tag of a string item. This is
useful when the client wishes to present the illusion that the tag for an item is not on the
same line as the item's body. (See also LabelHandle.)

sw This is the form subwindow that contains the item. It is automatically set by
Create; clients should ignore it.

otherltem This is the index of the other item for which this item is acting as a tag. For a
TagOnlyHandle, it must be the index of a string item (otherwise the ERROR
ltemError[notStringOtherltem, i] will be generated by Create, where i is the
index of the tagOnly item).

To allow a tagOnly to act as a substitute tag, no special trailer is appended to the tag.
When a tagOnly item is used as a substitute tag, all of the user actions directed at its tag
are redirected by FOormSW to the otheritem. Because of this redirection, the notification
procedures of the target string item are called with arguments identical to those provided
by FormSW when the string item's tag is operated on by the user.

13-11

13

FormSW

Formsw.Type: Type = {fixed, relative}.

Type indicates whether the client controls the formatting of a form subwindow or whether
FormSW automatically formats the window.

fixed The client specifies the location of each item in the form subwindow by
specifying the place field of the itemObjects.

relative FormSW arranges the items in the window automatically.

FormSW.WordBoolean: TYPE = RECORD [SELECT OVERLAID * FROM
f1 = > [b: BOOLEAN],
f2 = > [w: woRD],
ENDCASE];

WordBoolean is an overlaid variant record provided for forcing a boolean to occupy its
own word in memory. This is a requirement of any boolean to be used with a boolean
ItemObject.

13.2 Constants and data objects

13-12

Formsw.defaultBoxWidth: CARDINAL = O;

defaultBoxWidth indicates that the display box of an item should extend to the right edge
of a subwindow or to the next item, whichever is closer.

Formsw.lineDiff: PRIVATE INTEGER = -1;

FormSw.line0: INTEGER = -3;

FormSw.line1: INTEGER = Formsw.line0 + Formsw.lineDiff;
Formsw.line2: INTEGER = Formsw.line1 + Formsw.lineDiff;
Formsw.line3: INTEGER = Formsw.line2 + Formsw.lineDiff;
FormSw.line4: INTEGER = Formsw.line3 + Formsw.lineDiff;
FormSw.line5: INTEGER = Formsw.line4 + Formsw.lineDiff;
FormSW.line6: INTEGER = FormSw.line5 + Formsw.lineDiff;
FormSW.line7: INTEGER = Formsw.line6 + Formsw.lineDiff;
FormSW.line8: INTEGER = FormSw.line7 + Formsw.lineDiff;
FormSW.line9: INTEGER = Formsw.line8 + Formsw.lineDiff;
Formsw.newLline: window.Place = [0, FormSw.nextLine];

newline specifies that this item should start on the next line down from the preceding
item. It works even if there is no preceding item.

Mesa Programmer’s Manual 13

Formsw.nextLine: INTEGER = -2;

nextLine specifies that the y position for an item should be the next line after the y
position of the preceding item.

Formsw.nextPlace: window.Place = [-10, Formsw.samelLine];

nextPlace specifies that this item should be on the same line as the preceding one, and
should start a little past where the previous one left off. This is subject to all of the caveats
mentioned for negative x's in the discussion of places.

Formsw.nullEnumeratedValue: UNSPECIFIED = LAST[CARDINAL);

An enumerated value can never have an unknown value (unless the client is not playing
by the rules). The value given to an enumerated value when no value is chosen is
nullEnumeratedValue. If an enumerated value has nullEnumeratedValue, the display of

the item has nothing between the braces (for one feedback) or nothing selected (for all
feedback). (See also EnumeratedHandle.)

Formsw.nulllindex: CARDINAL = LAST[CARDINAL];

nullindex is used as an index in SetSelection or SetTypeln when the client wants nothing
selected or wants no insert point.

Formsw.nullltems: Formsw.IltemDescriptor = DESCRIPTOR[LONG[NIL], 0];
FormSw.sameline: INTEGER = -1;
sameline specifies that the y position for this item should be the same as the y position for

the preceding item. If this is the first item, the ErRROR ItemError[illegalCoordinate, ----]
results.

13.3 Signals and errors
FormSW.Error: SIGNAL [code: Formsw.ErrorCode];
Formsw.ErrorCode: TYPe = {alreadyAFormSW, notAFormSW, other};

alreadyAFormSW a client has passed a form subwindow to the Create procedure.

notAFormSW a client has passed a subwindow that is not a form subwindow to the
Destroy procedure.
other should never be raised.

Formsw.ltemError: SIGNAL [code: Formsw.ltemErrorCode, index: CARDINAL];

The index argument to ItemError is the index of the item that FormSW was processing
when it discovered the error condition. ‘

Formsw.ItemErrorCode: TYPe = {
illegalCoordinate, notStringOtheritem, nilBackingStore, other};

13-13

13

FormSW

illegalCoordinate the client has made a error in specifying the layout of items in the
form subwindow, such as not presenting the items in ascending
order. Either an index has been skipped or the items are not
ordered left to right, top to bottom. Another layout error is
specifying a relative position for the first visible item in the
subwindow, either using sameline or a relative (negative) x value.
Another layout error is specifying a relative (negative) x value for
the item after an item that uses defaultBoxWidth.

notStringOtherltem is raised if a tagOnly item refers to an item that is not a string
item.

nilBackingStore is raised if NiL has been passed as the pointer to the backing object
for a boolean, enumerated, longNumber, number, or string item.

other should never be raised.

13.4 Procedures

13-14

FormSw.Adjust: Toolwindow.AdjustProcType;

The Adjust procedure adjusts a subwindow if it is necessary to move the subwindow within
the parent window or to change its size.

Formsw.AllocateltemDescriptor: PROCEDURE [
nitems: CARDINAL, Z:UNCOUNTED ZONES ¢—NIL]
RETURNS [Formsw.ItemDescriptor];

The AllocateltemDescriptor procedure allocates an ItemDescriptor for the nltem number
of items from z. z is defaulted to the system heap.

FormSw.BooleanChoices: PROCEDURE RETURNS [Formsw.EnumeratedDescriptor];

The procedure BooleanChoices permits a tool to display a BOOLEAN choice without using
the boolean ItemObject's display conventions. It provides the EnumeratedDescriptor to be
used in an enumerated ItemObject to display the enumerated values TRUE and FALSE.

FormSw.Booleanitem: PROCEDURE [
tag: LONG STRING &« NIL,
readOnly, invisible, drawBox, hasContext: BOOLEAN ¢« FALSE,
place: window.Place « Formsw.nextPlace,
proc: Formsw.NotifyProcType « Formsw.NopNotifyProc,
switch: LONG POINTER TO BOOLEAN,
2: UNCOUNTED ZONES €—NiL]
RETURNS [FormSw.BooleanHandle];

The procedure Booleanitem allocates a record of type boolean ItemObject from z. z is
defaulted to the system heap. Such an item has a FALSE clientOwnsltem. It occupies a node
large enough only for a boolean ItemObiject, not for any ItemObject. For a discussion of
the parameters, see BooleanHandle.

Mesa Programmer’s Manual 13

Formsw.Commanditem: PROCEDURE [
tag: LONG STRING ¢ NIL,
readOnly, invisible, drawBox, hasContext: BOOLEAN « FALSE,
place: window.Place « Formsw.nextPlace, proc: Formsw.ProcType,
Z: UNCOUNTED ZONES «—NiL]
RETURNS [Formsw.CommandHandle];

The procedure Commanditem allocates a record of type command ItemObject from z. z is
defaulted to the system heap. Such an item has a FALSE clientOwnsitem. [t occupies a node
large enough only for a command ItemObject, not for any ItemObject. For a discussion of
the parameters, see CommandHandle.

Formsw.ContextFromltem: PROCEDURE [Formsw.ItemHandle] RETURNS [LONG POINTER];

The procedure ContextFromitem returns a pointer to the client data associated with an
item.

Formsw.Create: PROCEDURE |
sw: window.Handle, clientitemsProc: Formsw.ClientitemsProcType,
readOnlyNotifyProc: Formsw.ReadOnlyProcType « Formsw.lgnoreReadOnlyProc,
options: Formsw.Options «[],
initialState: Toolwindow.State « active};
zone: UNCOUNTED ZONE « Heap.systemZone];

The procedure Create creates a form subwindow. It can raise the errors
Error[alreadyAFormSW], and ItemError[..., nilBackingStore, illegalCoordinate,
notStringOtheritem, ...].

SW is the subwindow that is transformed into a form subwindow. If the
subwindow is already a form subwindow, the ERROR
Error[alreadyAFormSW] results.

clientitemsProc is called to get the items. If the ItemDescriptor was manufactured
from the system heap, which can be done by calling
AllocateltemDescriptor, then the client can have FormSW free it
by returning a TRUE freeDesc.

readOnlyNotifyProc is called whenever the user attempts to modify an item with a TRUE
readOnly flag. (See also IgnoreReadOnlyProc and
NopReadOnlyProc).

options If a type = relative, then where and how the items and their
associated data are displayed is automatically determined by the
form subwindow.. If the client specifies a type of fixed, it must
designate a subwindow place for each item to be displayed. It is the
client's responsibility to avoid overlapping or overwriting items
and their data. If scrollVertical is TRUE, a vertical scrollbar is
provided. [Note: In the relative case the parameter items are simply displayed
one per line. This implies that the height of a subwindow that would contain all of
your parameters is = n*LineHeight[].]

13-15

13 FormSW
initialState determines whether the form subwindow is awake when created. If
initialState is not active, then the form subwindow is asleep. If
initialState is active, then the clientitemsProc is called while still
in Create.
zone A heap can be passed to the Create procedure, from which storage

13-16

will be allocated. The default heap is the system heap.
Formsw.Destroy: PROCEDURE [Window.Handle];

The Destroy procedure transforms a form subwindow back into an undifferentiated
subwindow. If it is not currently a form subwindow, the ERROR Error[notAFormSW] results.
(See also Isit.)

Formsw.Display: PROCEDURE [w: window.Handle, yOffset: carDINAL « 0];

The Display procedure allows a tool to redisplay the contents of the subwindow. Note that
Display allows the tool to scroll, or unscroll, the items before the redisplay via the yOffset,
which specifies the number of bits to offset the items upward.

Formsw.Displayltem: PROCEDURE [sw: window.Handle, index: CARDINAL];

The Displayltem procedure is provided to allow a tool to redisplay the contents of an
individual item. Redisplaying a single item may cause other items to also be redisplayed.
Displayltem must be called immediately if the client changes any of the flags that affect
the way the item is displayed or if the client changes the backing store for the item. Such
changes are not safe in an arbitrary pre-emption environment, as there is a potential race condition. (See also

ModifyEditable and ToggleVisibility.)

FormSW.Enumerateditem: PROCEDURE [
tag: LONG STRING € NIL,
readOnly, invisible, drawBox, hasContext: BOOLEAN « FALSE,
place: window.Place « Formsw.nextPlace,
feedback: Formsw.EnumeratedFeedback « one,
proc: Formsw.EnumeratedNotifyProcType ¢ Formsw.NopEnumeratedNotifyProc,
copyChoices: BOOLEAN & TRUE, choices: Formsw.EnumeratedDescriptor,
value: LONG POINTER TO UNSPECIFIED,
Z: UNCOUNTED ZONES ¢ NIL]
RETURNS [Formsw.EnumeratedHandle];

The procedure Enumerateditem allocates a record of type enumerated ItemObject from z.
z is defaulted to the system heap. Such an item has a FALSE clientOwnsitem. It occupies a
node large enough only for an enumerated ItemObject, not for any ItemObject. The
parameters are used to initialize the ItemObject. For a discussion of their meaning, see
EnumeratedHandle.

FormSW.Findindex: PROCEDURE [sw: window.Handle, item: Formsw.ltemHandle] RETURNS
[cARDINAL]; ’

FormSW assumes that there is a unique mapping between an item and an index into the
ItemDescriptor for each subwindow. Given an item, the procedure Findindex finds its
index. (See also Finditem.)

Mesa Programmer’s Manual 13

FormSW.Finditem: PROCEDURE [
sw: Window.Handle, index: CARDINAL] RETURNS [Formsw.ltemHandle];

FormSW assumes that there is a unique mapping between an item and an index into the
ItemDescriptor for each subwindow. Given an index into an ItemDescriptor, the procedure
Finditem finds its item. If index is too large (that is, does not correspond to an item in the
subwindow's itemDescriptor), Findltem returns NiL. (See also Findindex.)

Formsw.FreeAllltems: PROCEDURE [sw: window.Handle];

The procedure FreeAllltems deallocates all the items in a form subwindow. (See Freeltem
for the semantics of deallocating an item.) Items are freed from the UNCOUNTED zZONE passed
to the Create procedure.

FormSW.Freeltem: PROCEDURE [
item: Formsw.ltemHandle, z: UNCOUNTED ZONE ¢« NIL] RETURNS [Formsw.ItemHandle];

The procedure Freeltem deallocates from z an item allocated by FormSW by one of the
procedures Booleanitem, Commanditem, Enumerateditem, Labelltem, LongNumberitem,
Numberltem, Stringitem, or TagOnlyltem. z is defaulted to the system heap.

If item.clientOwnsltem is TRUE, then for each item type, the following actions are taken:
enumerated If copyChoices is TRUE, the choices are freed.

longNumber, number The ItemObject.string is freed.

string IfinHeap is TRUE, the ItemObject.string is freed.

All other types Nothing is freed.

The client must be very careful when using this procedure. It may deallocate the item that
contains either the selection or insertion, in which case the client must guarantee there
will be no references to either. It is considerably safer to deallocate all of the items at once.
(See FreeAlllitems.)

Formsw.GetSelection: PROCEDURE [
window.Handle] RETURNS [index: CARDINAL, first, last: CARDINAL];

The GetSelection procedure allows a tool to get the currently selected item. index is the
index of the form item containing the current selection. If nullindex is returned, then
there is no current selection. The current selection is described using the character
positions first and last. These positions are relative to a zero origin, which is to the left of
the first character of the tag (or main body of the item, if there is no tag). The interval is
half open (i.e., first = last = 0 is an empty selection, and first = 0, last = 1 is a selection
containing the first character in the item).

FormSw.GetTypeln: PROCEDURE [
window.Handle] RETURNS [index: CARDINAL, position: CARDINAL];

The GetTypeln procedure allows a tool to get the item containing the insert point. position
indicates the number of characters to the left of the insertion point. This position is
relative to a zero origin, which is to the left of the first character of the tag (or main body of

13-17

13

FormSW

13-18

the item, if there is no tag). index is the index of the form item containing the insertion
point. If nullindex is returned, then there is no insertion point.

Formsw.lgnoreReadOnlyProc: FormSW.ReadOnlyProcType;
The IgnoreReadOnlyProc procedure blinks the display when called.

Formsw.IndexFromEnumeratedValue: PROCEDURE [
Formsw.EnumeratedHandle] RETURNS [CARDINAL];

The IndexFromEnumeratedValue procedure returns the index into choices of the current
value of enumerated ItemObject.

FormSw.InHeapFreeHintsProc: Formsvi).FreeHintsProcType;

The InHeapFreeHintsProc procedure is a FreeHintsProcType that assumes the hints are
from the system heap and returns them there. If the hints are not from the system heap,
then the client should supply its own FreeHintsProc.

FormSW.IsIt: PROCEDURE [sw: window.Handle] RETURNS [yes: BOOLEAN];
The Islt procedure returns TRUE if sw is a form subwindow and FALSE otherwise.

FormSw.Isiteminverted: PROCEDURE [
sw: Window.Handle, index: CARDINAL] RETURNS [yes: BOOLEAN];

This procedure is not currently implemented.

FormSw.Labelltem: PROCEDURE [
tag: LONG STRING & NiL,
readOnly, invisible, drawBox, hasContext: BOOLEAN & FALSE,
place: window.Place « Formsw.nextPlace,
Z: UNCOUNTED ZONE ¢ NiL]
RETURNS [Formsw.LabelHandle];

The procedure Labelitem allocates a record of type tagOnly ItemObject from z. z is
defaulted to the system heap with has a FALSE clientOwnsitem. It occupies a node large
enough only for a boolean ItemObject, not for any ItemObject. For a discussion of the
parameters, see LabelHandle.

Formsw.LineHeight: PROCEDURE [sw: Window.Handle « NIL] RETURNS [CARDINAL];

The height of a line can be determined by calling LineHeight, which accounts for all fudge
factors added to the fontHeight. The parameter sw is ignored.

FormSW.LineN: PROCEDURE [n: CARDINAL) RETURNS [INTEGER];
The procedure LineN takes a line number and returns the appropriate negative y for use as

a place parameter. This is helpful for calculating where the next item should be positioned
in the form subwindow.

Mesa Programmer’s Manual 1 3

Formsw.LongNumberitem: PROCEDURE [
tag: LONG STRING € NIL,
readOnly, invisible, drawBox, hasContext: BOOLEAN « FALSE,
place: window.Place « Formsw.nextPlace,
signed: BOOLEAN « TRUE, notNegative: BOOLEAN & FALSE,
radix: Formsw.Radix « decimal, boxWidth: carDINAL [0..256) « 64,
proc: Formsw.LongNumberNotifyProcType «
Formsw.NopLongNumberNotifyProc,
default: LONG UNSPECIFIED ¢« LAST[LONG INTEGER],
value: LONG POINTER TO LONG UNSPECIFIED,
bias: INTEGER «0, Z: UNCOUNTED ZONE « NiL]
RETURNS [Formsw.LongNumberHandle];

The procedure LongNumberitem allocates a record of type longNumber ItemObject from
z. z is defaulted to the system heap. clientOwnsitem is defaulted to FALSE. It occupies a
node large enough only for a longNumber ItemObject. (For a discussion of the parameters,
see LongNumberHandle.) bias is the difference between what value points to and what is
displayed. (Displayed number + bias = value 1 .)

Formsw.Markitem: PROCEDURE [
sw: window.Handle, index: CARDINAL, action: TextData.MarkingAction,
mode: TextData.SelectionMode];

This procedure is not currently implemented.

FormSw.MinHeight: PROCEDURE [
items: Formsw.ItemDescriptor, type: Formsw.Type] RETURNS [CARDINAL];

The procedure MinHeight returns the minimum height a form subwindow would need to
display items. The form subwindow that displays items need not exist when this procedure
is called. (See also NeededHeight).

Formsw.ModifyBoolean: PROCEDURE [
sw: window.Handle, index: CARDINAL, mark: BOOLEAN, notify: BOOLEAN];

This procedure is not currently implemented.

Formsw.ModifyCommand: PROCEDURE [
sw: window.Handle, index: CARDINAL, mark: 80OLEAN, notify: BOOLEAN];

This procedure is not currently implemented.

Formsw.ModifyEditable: PROCEDURE [
sw: Window.Handle, index: CARDINAL, position, length: CARDINAL,
new: LONG STRING « NiL, keepTrash: BOOLEAN « FALSE];

The best way to modify the backing store of an editable item (i.e., one of type string,
number, or longNumber) is to call ModifyEditable, which changes the backing store and
the display as little and as quickly as possible. position is the left end of the text in the
item's body that is to be changed. The zero position is to the left of the first character of the
main body of the item. If new is NiL, then the modification is a deletion; otherwise, if
length is 0, it is an insertion. If length is non-zero, the modification is a replacement. In all

13-19

13

FormSW

13-20

cases, the removed characters are discarded unless keepTrash is TRUE, in which case they
become the current contents of the global trash bin. (See the Selection interface for a
discussion of the trash bin.) The item to be modified cannot be readOnly.

Formsw.ModifyEnumerated: PROCEDURE |
sw: window.Handle, index: CARDINAL, mark: BOOLEAN, notify: BOOLEAN, newValue:
UNSPECIFIED];

This procedure is not currently implemented.

Formsw.NeededHeight: PROCEDURE [
Wwindow.Handle] RETURNS [min, current: CARDINAL];

A tool often needs to know how high a form subwindow should be to display all items.
There are two heights of interest: the minimum height for the subwindow is the height if
none of the textual item types (i.e., longNumber, number, string, source) overflow a single
line; the current height is the true height of the subwindow, accounting for overflowing
items. These are returned by NeededHeight as min and current, respectively.
NeededHeight requires that the form subwindow already exist. (See also MinHeight.)
Formsw.NopEnumeratedNotifyProc: Formsw.EnumeratedNotifyProcType;

NopNotifyProc is a EnumeratedNotifyProcType that does nothing when called.

Formsw.NopFreeHintéProc: Formsw.FreeHintsProcType;

NopFreeHintsProc is a FreeHintsProcType that does nothing when called. It is appropriate
if the hints are in the client's global frame.

FormSw.NopLongNumberNotifyProc: Formsw.LongNumberNotifyProcType;

NoplLongNumberNotifyProc is a LongNumberNotifyProcType that does nothing when
called.

rormSwW.NopNotifyProc: Formsw.NotifyProcType;
NopNotifyProc is a NotifyProcType that does nothing when called.
formsw.NopNumberNotifyProc: Formsw.NumberNotifyProcType;
NopNumberNotifyProc is a NumberNotifyProcType that does nothing when called.
FormSw.NopReadOnlyProc: Formsw.ReadOnlyProcType;
NopReadOnlyProc is a ReadOnlyProcType that does nothing when called.
FormSw.Numberltem: PROCEDURE [

tag:-LONG STRING ¢ NIL,

readOnly, invisible, drawBox, hasContext: BOOLEAN « FALSE,

place: window.Place « Formsw.nextPlace, signed: BOOLEAN « TRUE,

notNegative: BOOLEAN « FALSE, radix: Formsw.Radix « decimal,

boxWidth: cArRDINAL [0..128) « 64,
proc: Formsw.NumberNotifyProcType « Formsw.NopNumberNotifyProc,

Mesa Programmer’s Manual 13

default: UNSPECIFIED « LAST[INTEGER], value: LONG POINTER TO UNSPECIFIED,
bias : INTEGER « 0, z: UNCOUNTED ZONE ¢« NiL]
RETURNS [Formsw.NumberHandle];

The procedure Numberitem allocates a record of type number ItemObject from 2. z is
defaulted to the system heap. clientOwnsltem is set to FALSE. It occupies a node large
enough only for a number ItemObject. (For a discussion of the parameters, see
NumberHandle.) bias is the difference between what value points to and what is
displayed. (Displayed number + bias = value 1 .)

FormSw.Redisplayltem: PROCEDURE |
sw: Window.Handle, index: CARDINAL, sSameSize: BOOLEAN];

This procedure is not currently implemented.
Formsw.SetCurrent: PROCEDURE [sw: Window.Handle, index: CARDINAL];

The SetCurrent procedure is equivalent to SetSelection, with first and last selecting the
non-tag and trailer portion of the item. It also places the insert point at the item's end.

Formsw.SetModifyNotificationProc: PROCEDURE [
sw: window.Handle, proc: FormSw.ProcType];

The SetModifyNotificationProc allows the client to have a procedure that is called when
the form subwindow has been modified. The procedure Proc should reset the modified bit
by calling Formsw.ToggleFlag [modified].

FormSw.SetOptions: PROCEDURE [sw: Window.Handle, options: Formsw.Options];
The procedure SetOptions changes the current Options for the subwindow sw.

Formsw.SetSelection: PROCEDURE [
sw: Window.Handle, index: CARDINAL, first, last: CARDINAL];

The procedure SetSelection allows a tool to set the current selection to one of the items in
the form subwindow. (See the Selection interface for a discussion of the current selection.)
This procedure should be used judiciously to avoid pre-empting the user. index is the index
of the form item containing the current selection. nullindex is used as an index when the
client wants "nothing” selected. The new selection is delimited by the character positions
first and last. These positions are relative to a zero origin, which is to the left of the first
character of the tag (or main body of the item, if there is no tag). The interval is half open,
(i.e., first = last = 0 is an empty selection, and first = 0, last = 1 is a selection containing
the first character in the item). '

FormSw.SetTagPlaces: PROCEDURE [
items: Formsw.ItemDescriptor,
tabStops: LONG DESCRIPTOR FOR ARRAY OF CARDINAL, bitTabs: BOOLEAN];

It is often desirable for items on different lines to have the same horizontal positions. The
SetTagPlaces procedure simplifies this task . The tabStops are in raster points if bitTabs is
TRUE; otherwise, they are multiplied by the width of the digit 0. A positive x is used as a
zero-origin index into the tabStops array. If the place is nextPlace, it means “move to the

13-21

13

FormSW

13-22

next tab stop”. Negative x's are ignored. This routine is a pre-processor that changes the
items' places; it should be called before giving the items to the FormSW package.

FormSw.SetTypeln: PROCEDURE [
sw: Window.Handle, index: CARDINAL, position: CARDINAL];

The procedure SetTypeln allows a tool to set the insert point of the window to a location in
an item. (See the Selection interface for a discussion of the insert point.) It should be used
judiciously to avoid pre-empting the user. index is the index of the form item containing
the insertion point. nullindex is used as an index when the client wants no insert point.
position indicates the number of characters to the left of the new insertion point. The zero
position is to the left of the first.character of the tag (or main body of the item, if there is no
tag).

FormSW.SkipTONext: PROCEDURE [sw: window.Handle];

SkipToNext implements the Next function. If a client notification procedure wants to
implement a synonym for the Next function, it should call SkipToNext.

FormSw.Sleep: PROCEDURE [window.Handle];

If a tool window is being made tiny, its subwindows do not need to keep state information
for display. A form subwindow can be told to discard such state data by calling Sleep. This is
done automatically if using the Tool interface. (See also Wakeup.)

Formsw.SourceEditProc: Formsw.FilterProcType;
This procedure is not currently implemented.

FormSW.Sourceltem: PROCEDURE [
tag: LONG STRING < NIL,
readOnly, invisible, drawBox, hasContext, inHeap: BOOLEAN & FALSE,
place: window.Place « Formsw.nextPlace,
boxWidth: CARDINAL « Formsw.defaultBoxWidth,
filterProc: Formsw.FilterProcType « Formsw.SourceEditProc,
menuProc: Formsw.MenuProcType « Formsw.VanillaMenuProc,
source: TextSource.Handle, z: UNCOUNTED ZONE &~ NiL]
RETURNS [Formsw.SourceHandle];

This procedure is not currently implemented.
FormSw.StringEditProc: Formsw.FilterProcType;

The StringEditProc procedure is the standard editing procedure provided by Tajo for

_ editing string ItemObject.

FormSW.Stringltem: PROCEDURE |
tag: LONG STRING & NIL,
readOnly, invisible, drawBox, hasContext, inHeap: BOOLEAN « FALSE,
place: window.Place « Formsw.nextPlace,
feedback: Formsw.StringFeedback « normal,
boxWidth: CARDINAL « Formsw.defaultBoxWidth,
filterProc: Formsw.FilterProcType « Formsw.StringEditProc,

Mesa Programmer’s Manual 1 3

menuProc: Formsw.MenuProcType « Formsw.VanillaMenuProc,
string: LONG POINTER TO LONG STRING, Z: UNCOUNTED ZONE ¢ Nit]
RETURNS [Formsw.StringHandle];

The procedure Stringltem allocates a record of type string ItemObject from z. z is defaulted
to the system heap. Such an item has a FALSE clientOwnslitem. It occupies a node large
enough only for a string ItemObject, not for any ItemObject. (For a discussion of the
parameters, see StringHandle.)

Formsw.TagOnlyltem: PROCEDURE [
tag: LONG STRING « NiL,
readOnly, invisible, drawBox, hasContext: BOOLEAN & FALSE,
place: window.Place & Formsw.nextPlace,
otheritem: CARDINAL « Formsw.nullindex, z: UNCOUNTED ZONE « NiL]
RETURNS [Formsw.TagOnlyHandle];

The procedure TagOnlyltem allocates a record of type tagOnly ItemObject from z. z is
defaulted to the system heap. Such an item has a FALSE clientOwnsltem. [t occupies a node
large enough only for a tagOnly itemObject, not for any ItemObject. (For a discussion of
the parameters, see TagOnlyHandle.)

Formsw.ToggleFlag: PROCEDURE [
sw: Window.Handle, index: CARDINAL,
flag: Formsw.Flag];

The procedure ToggleFlag toggles the flag of index’s item.
Formsw.ToggleVisibility: PROCEDURE [sw: Window.Handle, index: CARDINAL];

The ToggleVisibility procedure changes the visibility of an item from visible to invisible.
It minimizes the necessary repainting when the item’s visibility is changed. In addition,
the procedure deals properly with making the item invisible when it contains the current
selection or insertion point. (See the Selection interface for a discussion of the current
selection and insertion point.) sw is the form subwindow containing the item, and index is
the index of the item in the subwindow's ItemDescriptor.

Formsw.VanillaMenuProc: Formsw.MenuProcType;

The VanillaMenuProc procedure is a MenuProcType for which Base(hints] = NiL, implying
that no prompt menu will be available to the user.

FormSW.Wakeup: PROCEDURE [Window.Handle];

If the tool window is being made tiny, its subwindows do not need to keep state
information for display. A form subwindow can be told to recreate the display state (when
the window becomes big) by calling Wakeup. This is done automatically if using the Tool interface.
(See also Sleep.)

13-23

13 FormSW

13-24

14

MsgSW

14.1 Types

The MsgSW interface implements message subwindows. Message subwindows provide a
simple way of posting messages to the user. Typical tools have a message subwindow as
their first subwindow. See ExampleTool.mesa in Appendix A. A Message subwindow is
built on a String subwindow (see StringSW).

Msgsw.Severity: TYPE = {info, warning, fatal};

Every message subwindow has a Severity associated with it, which is the Severity of the
latest message sent to it by Msgsw.Post or Msgsw.PostAndLog if prefix is TRUE. Messages of
severity warning are prefaced by "Warning: ", and messages of severity fatal are prefaced
by "Fatal Error: ".

14.2 Constants and data objects

msgsw.defaultOptions: Textsw.Options = [
access: append, menu: TRUE, split: TRUE, wrap: TRUE, scrollbar: TRUE,
flushTop: FaLsE, flushBottom: FALSE];

defaultOptions are the default window options used in creating a message subwindow.

14.3 Signals and errors

MsgSW.Error: SIGNAL [code: Msgsw.ErrorCode];
Msgsw.ErrorCode: TYre = {appendOnly, notAMsgSW, other};
appendOnly is raised by msgsw.Create if options.access is not append.

notAMsgSW is raised when a client performs a MsgSW operation on a window that is not a
message subwindow.

14 1

14

MsgSW

14.4 Procedures

14-2

Msgsw.AppendString: Userinput.StringProcType;

The AppendString procedure appends the parameter string onto the latest message. This
is the procedure used for userinput.StringOut. The Severity associated with sw is set to
info. This procedure can raise Error[notAMsgSW].

Msgsw.Clear: PROCEDURE [sw: Window.Handle];

The Clear procedure erases the contents of the message subwindow. The Severity
associated with sw is set to info. This procedure can raise Error[notAMsgSW].

Msgsw.Create: PROCEDURE [
sw: window.Handle, lines: CARDINAL « 1,
options: Textsw.Options « Mmsgsw.defaultOptions];

The Create procedure creates a message subwindow from an ordinary subwindow. The
lines parameter specifies the minimum number of lines that the subwindow will keep in
its backing store before discarding the oldest line. The subwindow height controls how
many lines will be visible. If the number of lines visible to the user is greater than lines,
then all the visible lines are kept in the backing store. When the options.access parameter
is anything but append, an Error is raised with a code of appendOnly. Subwindows
created by Msgsw.Create should be destroyed by msgsw.Destroy, not by Textsw.Destroy.

Msgsw.Destroy: PROCEDURE [sw: window.Handle];

The Destroy procedure destroys the backing store and transforms the message subwindow
into an ordinary subwindow. This procedure can raise Error[notAMsgSW].

Msgsw.GetSeverity: PROCEDURE [w: window.Handle] RETURNS [severity: Msgsw.Severity];
The GetSeverity procedure returns the severity associated with the message subwindow
sw. This is either the severity of the last message sent to the subwindow or the severity set
by SetSeverity, whichever happened last. This procedure can raise Error[notAMsgSW].
Msgsw.Islt: PROCEDURE [sw: window.Handle] RETURNS [yes: BOOLEAN];
The Islt procedure returns TRUE if and only if sw is a message subwindow.
Msgsw.LastLine: PROCEDURE [sw: window.Handle, ss: string.SubString];
The LastLine procedure fills in the parameter ss with the base, offset, and length of the
current message. The client may want to copy ss and the string ss.base, because this
information may change. This procedure can raise Error[notAMsgSW].
MsgSW.POst: PROCEDURE [

sw: Window.Handle, string: LONG STRING, severity: Msgsw.Severity « info,

prefix: BOOLEAN & TRUE, endOfMsg: BOOLEAN & TRUE];
The Post procedure appends string onto the latest message. The severity of the message is

severity. If the prefix parameter is TRUE and the message is starting a new line, a short
string that depends on severity (info: ", warning: "Warning: " or fatal: "Fatal Error: ")

Mesa Programmer’s Manual 14

starts the line before the client message. The endOfMsg parameter set to TRUE delimits
the message without having to put an Ascii.CR in string. (See also PostAndLog.) This
procedure can raise Error[notAMsgSW].

MsgSw.PostAndLog: PROCEDURE [
sw: Window.Handle, string: LONG STRING, severity: Msgsw.Severity « info,
prefix: BOOLEAN « TRUE, endOfMsg: BOOLEAN « TRUE, logSW: window.Handle « NiL];

The PostAndLog procedure acts like msgsw.Post. In addition, the logSW parameter
enables the same message appearing in the message subwindow to be directed to another
subwindow for logging. If the value is NIL, the output is directed to the default Put window
and the tool's name is prefixed to the message. (See also Post.) This procedure can raise
Error[notAMsgSW].

Msgsw.SetSeverity: PROCEDURE [
sw: window.Handle, severity: Msgsw.Severity « info];

The SetSeverity procedure sets the severity associated with the message subwindow sw.
This procedure can raise Error[notAMsgSW].

14-3

14

MsgSW

144

15

ScratchSW

The ScratchSW interface creates a subwindow that is backed by a scratch source; that is,
by a piece of virtual memory. It should be used when an editable window not backed by a
file is desired. An example of the use of ScratchSW is for the implementation of an empty
file window. (See also ScratchSource.)

15.1 Types

ScratchSw.Options: TYPE = Textsw.Options;

15.2 Constants and data objects

Scratchsw.defaultOptions: scratchsw.Options = [
access: edit, menu: TRUE, split: TRUE, wrap: TRUE, scrollbar: TRUE,
flushTop: FaLsE, flushBottom: FALSE];

15.3 Signals and errors

None.

15.4 Procedures

Scratchsw.Create: PROCEDURE [
sw: wWindow.Handle, block: environment.Block ¢ Environment.nullBlock,
extraRoom: CARDINAL « 0, expandable: BOOLEAN « TRUE,
options: Scratchsw.Options « Scratchsw.defaultOptions];

The Create procedure creates a scratch subwindow. sw is the ordinary window from which
the scratch subwindow is created. If sw is NiL, the signal windowisNil is generated from
the Context interface; it is not caught by Scratchsw. block is the initialized storage that is
. used to back the subwindow. extraRoom is the amount of storage beyond the end of block
that the scratch subwindow can use. If expandable is FALSE and the scratch subwindow
runs out of room in the block, editing operations have no effect. If expandable is TRUE, the
scratch subwindow allocates another larger block when it runs out of room, copies the old
block into it, and deallocates the old block (see ScratchSource). In this case, the block must
have been allocated from MSegment.GetPages, and the block is dealloctated byScratchsw

15-1

15

ScratchSW

15-2

when the subwindow is destroyed. options indicates the initial value of the subwindow's
Options. Subwindows created by Scratchsw.Create should be destroyed by
Scratchsw.Destroy, not by Textsw.Destroy, since Textsw.Destroy is called from within
Scratchsw.Destroy.

Scratchsw.Destroy: PROCEDURE [sw: window.Handle];

The Destroy procedure destroys a scratch subwindow that was created by ScratchsSw.Create,
turning it back into an ordinary subwindow. If sw is NiL, then no errors or signals are
generated and no actions are performed.

Scratchsw.Info: PROCEDURE [sw: Window.Handle]
RETURNS [block: environment.Block, extraRoom: CARDINAL,
expandable: BOOLEAN, options: Scratchsw.Options};

The Info procedure returns the block backing the scratch subwindow, how much extra

room there is after the block, whether the block is expandable, and the current value of the
subwindow options. If sw is NI, then the returned values are:

[block: Environment.nullBlock, extraRoom: 0,
expandable: FALSE, options: scratchsw.defaultOptions].

ScratchSW.Islt: PROCEDURE [sw: window.Handle] RETURNS [yes: BOOLEAN];

The Islt procedure returns TRUE if the Handle is a scratch subwindow and FALSE otherwise.
If sw is NiL, then ScratchSw.Islt returns FALSE.

16

StringSW

The StringSW interface provides the definitions and procedures to create and manipulate
text subwindows whose backing store is a LONG STRING. (See TextSW for more information.)

16.1 Types

StringSW.Options: TYPE = Textsw.Options;

16.2 Constants and data objects

stringsw.defaultOptions: scratchsw.Options = [
access: edit, menu: TRUE, split: TRUE, wrap: TRUE, scrollbar: TRUE,
flushTop: FaLSE, flushBottom: FALSE];

defaultOptions are the default window options used in creating a string subwindow.

16.3 Signals and errors
stringswW.DoesNOtExist: SIGNAL;

The signal DoesNotExist is never raised. It is deleted when the interface is next changed.

16.4 Procedures

Stringsw.Create: PROCEDURE [
sw: Window.Handle, s: LONG POINTER TO LONG STRING ¢ NIL,
options: stringsw.Options « stringsw.defaultOptions,
expandable: BOOLEAN « TRUE];

The Create procedure creates a string subwindow. expandable indicates whether the
string is automatically expandable by the string window implementation. If s is NiL,
expandable is forced to be TRUE. If s is NIiL and expandable is TRUE or s is NI, the
subwindow will allocate and manage a heap string for the backing store. Expandable
strings must be allocated from the system heap. If expandable is FALSE and s is not NiL, the
client is responsible for the storage management of the string. If expandable is FALSE and

16-1

16

StringSW

16-2

the string source runs out of room in the string, String.StringBoundsFault[ps] is raised.
Subwindows created by Stringsw.Create should be destroyed using Stringsw.Destroy, not
Textsw.Destroy, because stringsw.Destroy calls Textsw.Destroy.

StringSW.Destroy: PROCEDURE [sw: window.Handle];

The Destroy procedure destroys a string subwindow created by Stringsw.Create, turning it
back into an ordinary subwindow.

StringSW.GetString: PROCEDURE [w: Window.Handle] RETURNS [S: LONG POINTER TO LONG STRING];
The GetString procedure returns the current backing string for a string subwindow.

StringSw.Info: PROCEDURE [sw: window.Handle] RETURNS [
S: LONG POINTER TO LONG STRING, options: Stringsw.Options, expandable: BOOLEAN];

The Info procedure returns the current backing string for a string subwindow, whether
the string is expandable, and the current value of the subwindow options.

StringSW.Islt: PROCEDURE [sw: window.Handle] RETURNS [yes: BOOLEAN];

The Islt procedure returns TRUE if the Handle is a string subwindow and FALSE otherwise.

17

TextSW

17.1 Types

The TextSW interface defines a comprehensive set of facilities for viewing text
independent of the source. It takes a client-created subwindow and text source, creates the
necessary data structures, and then provides appropriate procedures for viewing,
scrolling, and text selection. Throughout this chapter, a display region is either a
subwindow or one of its splits. Splits are horizontal subregions created by means of the
SplitMCR.

TextSW.Access: TYPE = TextSource.Access; -- {read, append, edit}
Textsw.Bounds: TYPE = RECORD [from, t0: TextSource.POsition, delta: LONG INTEGER];
Textsw.InvalidRegions: TYPE = LONG POINTER TO Textsw.InvalidList;

Textsw.InvalidList: TYPE = RECORD [
length: CARDINAL,
seq: SEQUENCE maxLength: CARDINAL OF Textsw.Bounds];

A Ttextsw.nvalidRegions is returned by the client procedure passed to
Textsw.ModifySource. It describes the regions in the source that have been modified so
that TextSW can update its display region accordingly. Textsw.Bounds describes a single
region where the source was modified. from and to are the positions in the source where
modifications were made, resulting in a change in length of delta in the source.

Textsw.OnOff: TYpPe = {on, off};

Textsw.Options: TYPE = RECORD [

access: TextSW.Access, menu: BOOLEAN, split: BOOLEAN, wrap: BOOLEAN,

scrollbar: sooLEAN, flushTop: BOOLEAN, flushBottom: BOOLEAN];
menu indicates whether to instantiate the standard text operations menu with the
subwindow at create time. split indicates whether to allow the subwindow to be divided
into an arbitrary number of splits or horizontal subregions. wrap indicates whether a line
too long to fit across the subwindow should be broken at a word boundary and continued
on the next line or be clipped at the subwindow boundary. scrollbar indicates whether the

17-1

17

TextSW

subwindow should have a vertical scrollbar. flushTop indicates whether the standard
border should be supplied at the top of the subwindow. flushBottom indicates whether the
standard border should be supplied at the bottom of the subwindow.

Textsw.SplitinfoProcType: TYPE = PROCEDURE [
first, last: TextSource.Position, nLines: CARDINAL] RETURNS [BOOLEAN];

17.2 Constants and data objects

Textsw.defaultOptions: Textsw.Options = [
access: read, menu: TRUE, split: TRUE, wrap: TRUE, scrollbar: TRUE,
flushTop: FALSE, flushBottom: FALSE];

17.3 Signals and errors

Textsw.DoesNoOtExist: SIGNAL;

17.4 Procedures

17-2

TextsW.Adjust: Toolwindow.AdjustProcType;
The Adjust procedure is called when a text subwindow is moved or sized.
TextsW.BlinkingCaret: PROCEDURE [sw: window.Handle, state: Textsw.OnOff];

The BlinkingCaret procedure enables or disables the blinking caret for an append or edit
text subwindow.

Textsw.Create:PROCEDURE [
sw: Window.Handle, source: Textsource.Handle, sink: Textsink.Handle « Nit,
options: Textsw.Options « Textsw.defaultOptions, position: TextSource.Position 0,
allowTypeln: BOOLEAN « TRUE, resetLengthOnNewSession: BOOLEAN «—FALSE];

The Create procedure creates a text subwindow from an ordinary subwindow. position
indicates the initial character position in source that should be displayed at the top of the
subwindow. If sink is NiL, an ASCHl sink is used as a sink.

Textsw.DeleteText: PROCEDURE [
sw: Window.Handle, pos: TextSource.POsition, count: LONG CARDINAL,
keepTrash: BOOLEAN & TRUE];

The DeleteText procedure allows the client to alter the contents of the text source
currently being displayed in the text subwindow by deleting count positions starting at
pos. keepTrash determines whether the deleted text is placed in the trashbin. (See the
Selection interface for documentation of the trashbin.) The text subwindow and source
must have either edit or append access to use this operation correctly .

Textsw.Destroy: PROCEDURE [sw: window.Handle];

The Destroy procedure destroys a text subwindow, freeing all data structures. However,
the client-supplied source is not destroyed. Attempting to destroy a non-text subwindow

Mesa Programmer’s Manual 1 7

results in no action. This procedure should not be used to destroy “differentiated”
subwindows (subwindows created by interfaces such as FileSW or StringSW) because
auxiliary data structures may not be recorded in the subwindow’s context object and hence
would be lost. An example of such a data structure is the backing string for a StringSW
when it is allocated by Tajo rather than by the client. Such subwindows should be
destroyed by calling the appropriate routine in the interface for that subwindow type.

TextsW.DOEditAction:PROCEDURE [
sw: Window.Handle, action: TextSource.EditAction] RETURNS [delta: LONG INTEGER];

The DoEditAction procedure deletes characters in the source according to action. The
characters are deleted starting at and preceding the current insertion point. delta is
always non-negative.

Textsw.EnumerateSecondarySelections: PROCEDURE [
sw: window.Handle, proc: PROCEDURE [TextData.Selection] RETURNS [BOOLEAN]];

The EnumerateSecondarySelections procedure enumerates the secondary selections of a
text subwindow, calling proc for each one. These will have been defined by previous
SecondarySelectionFromPosition and SetSecondarySelection calls.

TextsW.EnumerateSplits: PROCEDURE [
sw: window.Handle, proc: Textsw.SplitinfoProcTypel;

The EnumerateSplits procedure enumerates the splits of a text subwindow. Note that a
text subwindow always has at least one split.

TextsW.FindMCR: Menu.MCRType;

The FindMCR procedure implements the Find command of the TextOps menu. It uses the
current selection as the text to find. If the current selection is contained in this display
region, it searches from that position; otherwise, it uses the current top of the region. This
procedure allows clients to construct their own menus.

TextsW.ForceOutput: PROCEDURE [sw: wWindow.Handle];

All output to text subwindows is buffered for efficiency. The ForceOutput procedure
ensures that all pending output has made it to the source.

TextSW.GetEOF: PROCEDURE [sw: Window.Handle] RETURNS [TextSource.Position];

The GetEOF procedure obtains the “end-of-file” position of a text subwindow.
Textsw.Getlnsertion: PROCEDURE [sw: Window.Handle] RETURNS [TextSource.Position];
The Getlnsertion procedure obtains the insertion position of a text subwindow.

TextSW.GetOptions: PROCEDURE [
sw: window.Handle] RETURNS [options: Textsw.Options];

The GetOptions procedure returns the current options setting for a text subwindow.

17-3

17

TextSW

17-4

TextSW.GetPosition: PROCEDURE |
sw: Window.Handle, line: CARDINAL] RETURNS [TextSource.Position];

The GetPosition procedure determines the position of the first character on line.

Textsw.GetSelection: PROCEDURE [
sw: Window.Handle] RETURNS [left, right: TextSource.Position);

The GetSelection procedure obtains the selection position of a text subwindow.

TextSW.GetSource: PROCEDURE [
sw: window.Handle] RETURNS [source: TextSource.Handle];

The GetSource procedure returns the text source backing a text subwindow.

Textsw.InsertBlock: PROCEDURE [
sw: window.Handle, block: Environment.Block,
pos: TextSource.POsition & TextSource.nullPosition];

The InsertBlock procedure allows the client to alter the contents of the text source
currently being displayed in the text subwindow by inserting the block block at position
pos. If pos is nullPosition, the block is inserted at the current insertion position. The text
subwindow and source must have either edit or append access to correctly use this
operation.

Textsw.InsertChar: PROCEDURE [
sw: wWindow.Handle, char: CHARACTER,
pos: TextSource.POsition e TextSource.nullPosition];

The InsertChar procedure allows the client to alter the contents of the text source currently
being displayed in the text subwindow by inserting the character char at position pos. If
pos is nullPosition, the character is inserted at the current insertion position. The text
subwindow and source must have either edit or append access to correctly use this
operation.

Textsw.InsertString: PROCEDURE [
sw: Window.Handle, s: LONG STRING,
pOs: TextSource.POSsition e TextSource.nullPosition];

The InsertString procedure allows the client to alter the contents of the text source
currently being displayed in the text subwindow by inserting the string s at position pos.
If pos is nullPosition, the string is inserted at the current insertion position. The text
subwindow and source must have either edit or append access to correctly use this
operation.

Textsw.InsertSubString: PROCEDURE [
sw: Window.Handle, ss: String.SubString,
POs: TextSource.POsition « TextSource.nullPosition];

The InsertSubString procedure allows the client to alter the contents of the text source
currently being displayed in the text subwindow by inserting the substring ss at position
pos. If pos is nullPosition, the substring is inserted at the current insertion position. The

Mesa Programmer’s Manual 17

text subwindow and source must have either edit or append access to correctly use this
operation.

TextSw.IsIt: PROCEDURE [sw: window.Handle] RETURNS [yes: BOOLEAN];
The Islt procedure returns TRUE if the window is a text subwindow, and FALSE otherwise.
TextsW.JumpEndMCR: Menu.MCRType;

The JumpEndMCR procedure implements the J.End function of the TextOps menu. It
positions the display region with the last line of the source at the top.

Textsw.JumplnsertionMCR: Menu.MCRType;

The JumplinsertionMCR procedure implements the J.Insert function of the TextOps menu.
It positions the display region with the line containing the insertion position at the top.

Textsw.JumpSelectionMCR: Menu.MCRType;

The JumpSelectionMCR procedure implements the J.Select function of the TextOps menu.
If the subwindow contains the current selection, it positions the display region with the
line containing the current selection at the top.

Textsw.JumpTopMCR: Menu.MCRType;

The JumpTopMCR procedure implements the J.First function of the TextOps menu. It
positions the display region with the first line of the source at the top.

Textsw.ModifySource:PROCEDURE [
sw: window.Handle,
proc: PROCEDURE [window.Handle, TextSource.Handle, LONG POINTER]
RETURNS [invalidRegions: Textsw.InvalidRegions],
data: LONG POINTER];

The ModifySource procedure is provided for clients who wish to batch several changes to a
text subwindow’s source. MadifySource acquires the TextSW monitor and then calls proc
with sw, its source, and whatever data was passed in to make these changes. proc is
expected to return a description of the regions in the source that were modified in
invalidRegions. The text subwindow updates its display region according to this
information.

Textsw.PositionFromPlace: PROCEDURE |
sw: window.Handle, place: window.Place] RETURNS [position: TextSource.POsition];

The PositionFromPlace procedure enables clients to resolve window coordinates to the
nearest text source position. It always returns a valid position.

Textsw.PositionisVisible: PROCEDURE [
sw: window.Handle, position: TextSource.POsition] RETURNS [BOOLEAN];

The PositionlsVisible procedure returns TRUE if position position of the source is currently
being displayed. It does not take other windows overlapping sw into account.

17

TextSW

17-6

Textsw.PositionMCR: Menu.MCRType;

The PositionMCR procedure implements the Position function of the TextOps menu. It
interprets the current selection as a number and positions the display region that contains
the cursor with the line containing the current selection at the top.

Textsw.PositionToLine: PROCEDURE [sw: window.Handle, position: TextSource.Position];

The PositionToLine procedure positions the top of a text subwindow to the first line after
the specified position. However, if the position corresponds to the first character of a line,
that line is displayed. (Compare this procedure with SetPosition.)

TextsW.RemoveAllSecondarySelections: PROCEDURE [sw: window.Handle];

The RemoveAllSecondarySelections procedure removes each secondary selection in a text
subwindow.

TextsW.RemoveSecondarySelection: PROCEDURE [
sw: window.Handle, s: TextData.Selection];

The RemoveSecondarySelection procedure removes a specified secondary selection.

TextsW.ReplaceText: PROCEDURE [
sw: Window.Handle, pos: TextSource.POsition, count: LONG CARDINAL,
block: Environment.Block, keepTrash: BOOLEAN « TRUE];

The ReplaceText procedure allows the client to alter the contents of the text source
currently being displayed in sw by replacing the count characters beginning at pos with
block. keepTrash determines whether the deleted text is placed in the trashbin. (See the
Selection interface for documentation on the trashbin.) The text subwindow and source
must have edit access to use this operation correctly .

Textsw.SecondarySelectionFromPosition: PROCEDURE [
sw: Window.Handle, position: TextSource.Position] RETURNS [s: TextData.Selection];

The SecondarySelectionFromPosition procedure returns the secondary selection in the
window at position position. If there is no secondary selection there, NiL is returned.

TextSW.SetEOF: PROCEDURE [sw: Window.Handle, eof: TextSource.Position];

The SetEOF procedure alters the “end-of-file” position of the source in the subwindow.
Textsw.SetInsertion: PROCEDURE [sw: Window.Handle, position: TextSource.Position];

The Setinsertion procedure alters the insertion position of the source in the subwindow.
TextsW.SetOptions: PROCEDURE [sw: window.Handle, options: Textsw.Options];

The SetOptions procedure sets the current options for a text subwindow.

TextSW.SetPosition: PROCEDURE [sw: Window.Handle, position: TextSource.Position];

Mesa Programmer’s Manual 17

The SetPosition procedure positions the top of a text subwindow to the line containing the
character at the specified position. (Compare this procedure with PositionToline.) If the
position is not visible because of a long wrapped line, the subwindow may scroll a line at a
time until it is visible.

Textsw.SetSecondarySelection: PROCEDURE [
sw: window.Handle, left, right: TextSource.POsition, mode: TextData.SelectionMode]
RETURNS [s: TextData.Selection];

The SetSecondarySelection procedure defines a secondary selection starting at left and
ending at right. The secondary selection is highlighted according to mode.

Textsw.SetSelection: PROCEDURE [
sw: Window.Handle, left, right: TextSource.Position];

The SetSelection procedure alters the selection position of the subwindow.

TextSW.SetSource: PROCEDURE [
sw: window.Handle, source: TextSource.Handle, position: TextSource.Position « 0,
reset: BOOLEAN « TRUE];

The SetSource procedure changes the text source for a text subwindow. reset indicates
whether the current display/source correspondence is valid or should be rebuilt.

Textsw.Sleep: PROCEDURE [sw: Window.Handle];

The Sleep procedure requests that the text subwindow package minimize its resource
requirements by destroying all state related to text display.

Textsw.SplitMCR: Menu.MCRType;

The SplitMCR procedure implements the Split function of the TextOps menu. It splits the
display region in two.

TextSw.SplitView: PROCEDURE [
sw: Window.Handle, key: Textsw.KeyName, y: INTEGER];

The SplitView procedure splits a text subwindow y pixels down from the top of sw. key is
an ignored obsolete parameter. This procedure, used internally in building the menu and
split view facilities, is potentially useful for constructing client menu routines.

Textsw.Update: PROCEDURE [
sw: Window.Handle, from, to: TextSource.Position, charsDeleted: BOOLEAN « TRUE];

The Update procedure is called when the display/source correspondence is invalid. The
characters between from and to are redisplayed to reflect any changes in the source. If any
characters were deleted, charsDeleted must be set TRUE because more computation may be
required to reestablish the display/source correspondence. This operation, as well as the
next two update procedures, are intended for more experienced TextSW users who wish to
create their own editors. : ‘

17-7

17

TextSW

17-8

Textsw.UpdateRange: PROCEDURE |
sw: wWindow.Handle, from, to: TextSource.PoOsition, delta: LONG INTEGER,
charsDeleted: BOOLEAN « TRUE];

The UpdateRange procedure is called to reestablish the display/source correspondence
after changes have been made to the source. The modifications were between from and to,
and resulted in a change delta in the total number of characters. If any characters were
deleted, charsDeleted must be set TRUE because more computation may be required to
reestablish the display/source correspondence.

Textsw.UpdateToEnd: PROCEDURE [
sw: Window.Handle, from: TextSource.Position, charsDeleted: BOOLEAN « TRUE];

The UpdateToEnd procedure is called when the display/source correspondance is invalid.
The characters after from will be redisplayed to reflect any changes in the source. If any
characters were deleted, charsDeleted must be set TRUE because more computation may be
required to reestablish the display/source correspondence.

Textsw.Wakeup: PROCEDURE [sw: window.Handle];

The Wakeup procedure requests that the text subwindow package recompute all its
display state that it discarded when Sleep was called.

Textsw.WrapMCR: Menu.MCRType;

The WrapMCR procedure implements the Wrap function of the TextOps menu. It toggles
the wrap BOOLEAN in the text subwindow options record.

18

TTYSW

The TTYSW interface allows for traditional teletype interaction. Other Tajo user-
interaction facilities are based on the notification concept. Because many programs are
already written using a teletype-like control structure, the teletype subwindow is
available to clients for upward compatibility.

TTYSWs are built on the TTY abstraction that is available as a common software interface.
See the TTY section of the Pilot Programmer’s Manual for details on some of the following.

18.1 Types

None.

18.2 Constants and data objects
TTYsw.defaultOptions: Textsw.Options = [

access: append, menu: TRUE, split: TRUE, wrap: TRUE, scrollbar: TRUE,
flushTop: FaLsE, flushBottom: FALSE];

18.3 Signals and errors
TTYSsw.Error: siGNAL [code: TTYSw.ErrorCode];
TTYsw.ErrorCode: TyPe = {notATTYSW, badTTYHandle, other};
notATTYSW a passed-in subwindow is not a TTY subwindow.
badTTYHandle anobsolete error code, never used.

other an obsolete error code, never used.

18-1

18

TTYSW

TTYSw.LineOverflow: SIGNAL [s: LONG STRING] RETURNS [NS: LONG STRING];
TTYSW.Rubout: siGNAL;
The procedures below that read strings from the user are implemented by calls on similar

functions from the TTv interface. If any of those routines raise LineOverflow or Rubout,
that signal is mapped into the corresponding one from the TTYsw interface.

18.4 Procedures

18-2

TTYsw.AppendChar: PROCEDURE [sw: Window.Handle, char: CHARACTER];

The AppendChar procedure can be used for output to a teletype subwindow. (See also
AppendString and the Put interface.) This procedure can raise TTYSw.Error[notATTYSW].

TTYSW.AppendString: Userinput.StringProcType;

The AppendString procedure can be used to produce formatted output to a teletype
subwindow. (See also the Put interface.) This procedure can raise
TTYSW.Error[notATTYSW].

TTYsw.Create: PROCEDURE [
sw: Window.Handle, backupFile: LONG STRING, s: Stream.Handle « NiL,
newFile: BOOLEAN « TRUE, options: Textsw.Options « 1TYsw.defaultOptions,
resetLengthOnNewSession: BOOLEAN « FALSE];

The Create procedure creates a teletype subwindow from an ordinary subwindow. The
backupFile parameter specifies the name of the file on which the teletype subwindow
writes. However, if s is not NIL, s is assumed to be the stream handle on the file. When
newfFile is TRUE, the length of the file is set to zero at create time; otherwise, the existing
length is used. When the teletype subwindow is created, the client must FORK a process (the
input process) that plans to do input (i.e., a procedure called directly from the Notifier
cannot do input from a TTY subwindow). This process should be able to handle the signals
LineOverflow and Rubout and the errors Error, ABORTED, and string.InvalidNumber.

TTYsw.Destroy: PROCEDURE [sw: window.Handle];

The Destroy procedure destroys teletype subwindow attributes of the subwindow.
However, before this procedure is called the input process should be aborted. (See also
DestroyFromBackgroundProcess.)

TTYsw.DestroyFromBackgroundProcess: PROCEDURE [sw: Window.Handle];

The DestroyFromBackgroundProcess procedure destroys the teletype subwindow from

within the input process. The client should call this procedure as it returns from the Input
process. (See also Destroy.)

Mesa Programmer’s Manual 18

TTYSW.EndOf: PROCEDURE [sw: window.Handle] RETURNS [yes: BOOLEAN];

If characters have been typed in but not yet seen by the client program, TTYsw.EndOf
returns FALSE, otherwise it returns TRUE. This is equivalent to testing that the number
returned from CharsAvailable is 0.

TTYsSW.GetTTYHandle: PROCEDURE [sw: window.Handle] RETURNS [tty: TTY.Handle];

The GetTTYHandle procedure returns the TTy.Handle associated with sw. If there is no
corresponding TTv.Handle, TTy.nullHandle is returned.

TTYSW.IsIt: PROCEDURE [sw: window.Handle] RETURNS [yes: BOOLEAN];

The Islt procedure returns TRUE if the subwindow is a teletype subwindow and FALSE
otherwise.

18.5 Procedures mapped to calls on TTY

The rest of the procedures in this interface are implemented by converting the subwindow
passed into them into a TTy.Handle and calling the corresponding routine from the TTY
interface. Any of them may raise TTYsw.Error[notATTYSW]. TTv.Rubout and
TTY.LineOverflow are mapped into the corresponding signals from the TTYsw interface. The
type of each of the following procedures can be determined by replacing the “h:
TTv.Handle” argument with “sw: window.Handle”. The one exception is that the second
argument of TTYsw.PutBackChar is “char: CHARACTER” and the second argument of
TTY.PutBackChar is “c: CHARACTER”. All of these procedures will be withdrawn in a future
release. You are advised to convert your calls to be directly on the TTY interface.

BackingStream
CharsAvailable
GetChar
GetDecimal
GetEcho
GetEditedString
Getld

Getline
GetLongDecimal
GetLongNumber
GetLongOctal
GetNumber
GetOctal
GetPassword
GetString
Newline
PopAlternatelnputStreams
PushAlternatelnputStreams
PutBackChar
RemoveCharacter
RemoveCharacters
SetBackingSize
SetEcho

18-3

18 TTYSW

18-4

19

Put

The Put interface provides output procedures for windows. All the procedures in the Put
interface take a window.Handle, a piece of data to be formatted and, where appropriate, a
format specification. See the documentation on the Format interface for comments about
the actual output format of these procedures.

19.1 Types

put.NetFormat: TYPE = Format.NetFormat;

19.2 Constants and data objects

None.

19.3 Signals and errors

None.

19.4 Procedures
In all the following procedures, the output is directed to the Userinput.StringOut procedure
associated with the window.Handle. If the window.Handle is NiL, the output is directed to the
default output sink.
put.Blank, put.Blanks: PROCEDURE [h: window.Handle « NiL, n: CARDINAL « 1];
The Blank procedure invokes Format.Blank.
put.Block: PROCEDURE [h: window.Handle « NiL, block: Environment.Block];
The Block procedure invokes Format.Block.

put.Char: PROCEDURE [h: Window.Handle « NiL, char: CHARACTER];

The Char procedure invokes Format.Char.

19-1

19 Put

put.CR: PROCEDURE [h: window.Handle « NiL];
The CR procedure invokes Format.CR.
put.CurrentSelection: PROCEDURE [h: window.Handle « NiL];
The CurrentSelection procedure passes the string that is the current selection to the
output procedure of the Userinput.StringOut procedure associated with the window.Handle.
If the window.Handle is NiL, the output is directed to the default output sink.
put.Date: PROCEDURE
h: window.Handle « Nit, pt: Time.Packed,
format: Format.DateFormat « noSeconds];
The Date procedure invokes Format.Date.
put.Decimal: PROCEDURE [h: Window.Handle « NiL, n: INTEGER];

The Decimal procedure invokes Format.Decimal.

put. HostNumber: PROCEDURE [
h: window.Handle & niL, host: System.HostNumber, format: Format.NetFormat « octal];

The HostNumber procedure invokes Format. HostNumber.

put.Line: PROCEDURE [h: window.Handle « NIL, $: LONG STRING];

The Line procedure invokes Format.Line.

put.LongDecimal: PROCEDURE [h: window.Handle « NIL, n: LONG INTEGER];
The LongDecimal procedure invokes Format.LongDecimal.

put.LongNumber: PROCEDURE [
h: window.Handle « NIL, n: LONG UNSPECIFIED, format: Format.NumberFormatj;

The LongNumber procedure invokes Format.LongNumber.

put.LongOctal: PROCEDURE [h: window.Handle « NiL, n: LONG UNSPECIFIED];

The LongOctal procedure invokes Format.LongOctal.

Put.LongString: PROCEDURE [h: window.Handle « NiL, s: LONG STRING];

The LongString procedure invokes Format.LongString.

put.LongSubString: PROCEDURE [h: window.Handle « NiL, ss: String.SubString];

The LongSubString procedure invokes Format.LongSubString.

19-2

Mesa Programmer’s Manual 19

put.NetworkAddress: PROCEDURE |
h: window.Handle « niL, address: system.NetworkAddress,
format: Format.NetFormat « octal];

The NetworkAddress procedure invokes Format. NetworkAddress.
put.NetworkNumber: PROCEDURE [
h: window.Handle « niL, networkNumber: system.NetworkNumber,
format: Format.NetFormat];

The NetworkNumber procedure invokes Format.NetworkNumber.

put.Number: PROCEDURE [
h: window.Handle « NiL, n: UNSPECIFIED, format: Format.NumberFormat];

The Number procedure invokes Format.Number.
put.Octal: PROCEDURE [h: wWindow.Handle « NiL, n: UNSPECIFIED];
. The Octal procedure invokes Format.Octal.
put.SocketNumber: PROCEDURE [
h: window.Handle « niL, socketNumber: system.SocketNumber,
format: Format.NetFormat];
The SocketNumber procedure invokes Format.SocketNumber.
Put.SubString: PROCEDURE [h: window.Handle « NI, s: String.SubString];
The SubString procedure invokes Format.SubString.

put.Text: PROCEDURE [h: window.Handle « NiL, S: LONG STRING];

The Text procedure invokes Format.Text. [Text is not String because it causes a name conflict with the

interface named String.]

19-3

19 Put

19-4

20

Tool

20.1 Types

The Tool interface permits tool writers to use the Tajo user interface mechanism without
worrying about the details of invocation. It reduces to a minimum the knowledge the
client needs of Tajo’s more basic levels. Refer to the ExampleTool in Appendix A for a tool
that uses the Tool interface.

Tool.MakeSWsProc: TYPE = PROCEDURE [window: window.Handle];

At various points, depending on the initial state of the tool and user actions, Tajo calls on
the MakeSWsProc procedure supplied to Create to let the client create subwindows and
menus.

Tool.State: TYPE = {inactive, tiny, active, default};

Tool.SWProc: TYPE = PROCEDURE [sw: window.Handle];

Tool.SWType: TYPE = MACHINE DEPENDENT{vanilla(0), predefined(3768), last(3778)};

The Tool interface manages client-defined subwindow types just as it manages the
predefined subwindow types: Form, File, Message, String, and TTY. If a client wants to

register a subwindow type that would use the SimpleAdjustProc, the NopSleepProc, and
the NopWakeupPraoc, it can instead use a Tool.SWType of vanilla.

20.2 Constants and data objects

Tool.DefaultHeight: INTEGER = Toolwindow.nullBox.dims.h;

20.3 Signals and errors

Tool.Error: SIGNAL [code: Tool.ErrorCodel;

Tool.ErrorCode: TYPE = {
notATool, unknownSWType, swNotFound, invalidWindow, invalidParameters,
other};

20-1

20

Tool

invalidWindow can be raised by any procedure that takes a window.Handle
argument, if the associated window is not a valid tool window.

notATool can be raised by any procedure that takes a window.Handle

argument, if the associated window was not created by Tool.Create.

unknownSWType can be raised by any procedure that takes a Tool. SWType argument.

20.4 Procedures

20-2

Tool. AddThisSW: PROCEDURE [
window: window.Handle, sw: window.Handle,
swType: Tool.SWType « predefined, nextSW: window.Handle « NiL,
h: INTEGER « Tool.DefaultHeight];

The AddThisSW procedure allows clients that use methods other than Tool procedures to
create subwindows for communicating these methods to the Tool interface. The Tool
interface inserts sw above the nextSW subwindow, and the bottom subwindow is grown or
shrunk to accommodate the new subwindow. [Warning: Usually the Create call hasn't returned
when the MakeSWsProc procedure is called. The Window.Handle variable into which the client assigns the
value returned from Create is uninitialized. Thus, the client should not reference this variablq in its
MakeSWSsProc procedure. Instead, the client should use the window parameter passed to the
MakeSWSsProc procedure.]

Tool.Create: PROCEDURE [
name: LONG STRING, makeSWsProc: Tool.MakeSWSsProc,
initialState: Tool.State « default,
clientTransition: Toolwindow.TransitionProcType « NiL,
movableBoundaries: BOOLEAN & TRUE,
initialBox: window.BOx ¢ Toolwindow.nullBox,
cmSection, tinyName1, tinyName2: LONG STRING « NIL,
named: BOOLEAN « TRUE]
RETURNS [window: window.Handle];

The Create procedure creates a tool. The name parameter is the string that appears in a
tool's name stripe if the named parameter is TRUE; the string used in the inactive menu is
derived from this string. The parameters tiny1 and tiny2 specify both parts of the tiny
name used when the tool is made tiny. If these parameters are NiL, the tiny name is derived
from the name parameter. cmSection specifies the name of the section in the User.Cm
that contains the symbiote menu, initial state, tiny place, and initial window box. When
the initialState is default, the tool assumes a predetermined state, depending on how it is
created. The tool is initialized to be active when loaded while the user is in Tajo, because
the user will probably want to use it right away. If the clientTransition procedure is not NiL,
it is called before the tool is about to change state (e.g., before calling MakeSWsProc, see
below) and before anything is done to the data managed by the Tool interface. The one
exception to this ordering rule is that Formsw.FreeAllitems is called for each FormSW in the
tool when the tool is going inactive before the client’s transition procedure is called. It is
common for a client's transition procedure to deallocate a record containing data that the
Formsw.FreeAllltems procedure references. Thus, the data must be referenced before it goes
away. [If the client doesn't like being called in this order, it could set its own procedure to be the window-
transition procedure that could call Tool.Transition. This could be important if the client has a process that is
updating things in a form subwindow.] When the movableBoundaries parameter is TRUE, the user

Mesa Programmer’s Manual 20

may select the boundary line between subwindows and reposition it. The initialBox
parameter can be used to specify the tool box (bitmap relative). A value of
Toolwindow.nullBox lets Tajo assign the box from the next available box slot.

Tool.DeleteThisSW: PROCEDURE [sw: Window.Handle];

The DeleteThisSW procedure removes the subwindow sw from its tool window and
distributes the window space among the remaining subwindows of the tool. The
subwindow will not be deleted if it is the only subwindow in the tool. Clients should first
free all menus and FormSW items specific to sw. Menus should be destroyed by
Menu.Uninstantiate followed by Menu.Destroy. FormSW items should be destroyed by
formSw.FreeAllltems. The space that was taken by sw will be given to the bottom
subwindow of the tool.

Tool.Destroy: PROCEDURE [window: Window.Handle];

The Destroy procedure is used to destroy a tool window created by the Tool interface. It
may also be used for removing a subwindow of the tool. This procedure also calls the
client-transition procedure supplied to Tool.Create with a new Tool.State of inactive before
the tool is destroyed. If window is a subwindow, its associated data structures are cleaned
up as follows: normally, the client should destroy anything that it creates, such as any
private data, before a tool goes inactive. The tool mechanism relieves the client from
having to destroy subwindows and menus that were created in a standard way. In
particular, menus should be created by a call to Menu.Make; Formsw.ltemDescriptors
should be created by a call to Formsw.AllocateltemDescriptor; Formsw.ltemObjects should
be created by calls to Formsw.*Item procedures.

Tool.DestroySW: PROCEDURE [window: window.Handle];
The DestroySW procedure is not currently implemented.

Tool.Info: PROCEDURE [window: Window.Handle] RETURNS [
name, cmSection: LONG STRING, makeSWSsProc: Tool. MakeSWsProc,
clientTransition: ToolWindow.TransitionProcType,
movableBoundaries: BOOLEAN];

The Info procedure returns the values of certain parameters supplied to Tool.Create. The
client should not modify name or cmSection, as these values may become dangling
references when the tool is destroyed.

Tool.lslt: PROCEDURE [window: window.Handle] RETURNS [BOOLEAN];
The Islt procedure returns TRUE if window was created by Tool.Create and FALSE otherwise.

Tool.MakeClientSW: PROCEDURE [
window: window.Handle, clientProc: PROCEDURE [sw: Window.Handle,
clientData: LONG POINTER], clientData: LONG POINTER,
swType: Tool.SWType, h: INTEGER « Tool.DefaultHeight]
RETURNS [sw:Window.Handle];

The MakeClientSW procedure allows clients to create their own subwindow types. The
clientProc is the client’s procedure that will create the subwindow. The client passes
clientData to the Tool interface, which in turn is passed to the clientProc procedure. The

20-3

20

Tool

20-4

swType is obtained from Tool.RegisterSWType. The h parameter is the new subwindow’s
initial height.

Tool.MakeDefaultSWs: PROCEDURE [
window: window.Handle, messagelLines: CARDINAL « 0,
formProc: Formsw.ClientltemsProcType « NiL,
formHeight: CARDINAL & Tool.DefaultHeight, logName: LONG STRING ¢ NiL]
RETURNS [msgSW, formSW, logSW: window.Handle];

The MakeDefaultSWs procedure creates a message subwindow, a form subwindow, and a
log file subwindow as subwindows of window. If messagelines is 0, there will be no
message subwindow. If formProc is NiL, there will be no form subwindow. If logName is niL,
there will be no file subwindow.

Tool.MakeFileSW: PROCEDURE [
window: window.Handle, name: LONG STRING, access: FileSw.Access « append,
h: INTEGER & Tool.DefaultHeight, allowTypeln: BOOLEAN « TRUE,
resetLengthOnNewSession: BOOLEAN & FALSE,
resetLengthOnActivate: BOOLEAN « FALSE]
RETURNS [sw: window.Handle];

The MakeFileSW procedure is usually called from a MakeSWsProc to create a file
subwindow. (See the FileSW interface for details on file subwindows.) This procedure may
raise TextSource.Error[fileNameError] if access is read and the file is not found, or if the file
cannot be acquired. The BOOLEAN parameter allowTypeln specifies whether the log accepts
type-in. The BOOLEAN parameter resetLengthOnNewSession specifies whether the length
of the file is set to zero at the start of a new debugging session. resetLengthOnActivate
specifies whether the length of the file is set to zero when the tool is activated.

Tool.MakeFormSW: PROCEDURE [
window: window.Handle, formProc: fFormsw.ClientitemsProcType,
options: Formsw.Options « [], h: INTEGER « Tool.DefaultHeight,
zone: UNCOUNTED ZONE & NiL]
RETURNS [sw: window.Handle];

The MakeFormSW procedure is usually called from a MakeSWsProc to create a form
subwindow. (See the FormSW interface for details on form subwindows.) To take
advantage of automatic tool deallocation, Formsw.ltemDescriptors should be created by a
call to Formsw.AllocateltemDescriptor and Formsw.ltemObijects should be created by calls
to Formsw.*Item procedures. The zone parameter is passed to FormSW when the FormSw
items are allocated.

Tool.MakeMsgSW: PROCEDURE [
window: window.Handle, lines: CARDINAL « 1, h: INTEGER « Tool.DefaultHeight] RETURNS
[sw: window.Handle];

- The MakeMsgSW procedure is usually called from a MakeSWsProc to create a message

subwindow. (See the MsgSW interface for details on message subwindows.)

Mesa Programmer’s Manual 20

Tool.MakeStringSW: PROCEDURE [
window: window.Handle, s: LONG POINTER TO LONG STRING & NIL,
access: TextsW.Access « append, h: INTEGER « Tool.DefaultHeight,
expandable: BOOLEAN « FALSE]
RETURNS [sw: window.Handle];

The MakeStringSW procedure is usually called from a MakeSWSsProc to create a string
subwindow. (See the StringSW interface for details on string subwindows.)

Tool.MakeTextSW: PROCEDURE [
window: window.Handle, source: TextSource.Handle, sink: Textsink.Handle « nit,
options: Textsw.Options « Textsw.defaultOptions,
position: TextSource.Position « 0, allowTypeln: BOOLEAN & TRUE]
RETURNS [sw: Window.Handle];

The MakeTextSW procedure is usually called from a MakeSWSsProc to create a text
subwindow. (See the TextSW interface for details on text subwindows.)

Tool.MakeTTYSW: PROCEDURE |
window: window.Handle, name: LONG STRING, h: INTEGER « Tool.DefaultHeight,
resetLengthOnNewSession: BOOLEAN & FALSE]
RETURNS [sw: window.Handle];

The MakeTTYSW procedure is usually called from a MakeSWsProc to create a TTY
subwindow. (See the TTYSW interface for details on TTY subwindows.)

Tool.NopSleepProc: Tool.SWProc;

The NopSleepProc procedure is provided for those who wish to register a new Tool.SWType,
it does nothing when called.

Tool.NopWakeupProc: Tool.SWProc;

The NopWakeupProc procedure is provided for those who wish to register a new
Tool.SWType; it does nothing when called.

Tool.RegisterSWType: PROCEDURE |
adjust: Toolwindow.AdjustProcType « Tool.SimpleAdjustProc,
sleep: Toolwindow.SWProc « Tool.NopSleepProc,
wakeup: Toolwindow.SWProc « Tool.NopWakeupProc]
RETURNS [uniqueSWType: Tool.SWType];

The RegisterSWType procedure registers a client-defined subwindow type with the Tool
interface. The adjust procedure is called whenever the user moves the subwindow or
changes the subwindow size. The sleep procedure is called whenever the window in which
the subwindow lives becomes tiny. The subwindow is then expected to throw away any
data that it uses only to display its contents. The wakeup procedure undoes what sleep did
when the tool becomes active again. If a client wants to register a subwindow type that
would use the SimpleAdjustProc, the NopSleepProc, and the NopWakeupProc, it can
instead use a Tool.SWType of vanilla.

20-5

20

Tool

20-6

Tool.SimpleAdjustProc: Toolwindow.AdjustProcType;

The SimpleAdjustProc is a null procedure. If no Toolwindow.AdjustProcType is passed to
RegisterSWType, the SimpleAdjustProc is used.

Tool.SwapSWSs: PROCEDURE [
window, oldSW, newSW: window.Handle, newType: Tool.SWType « predefined]
RETURNS [0ldType: Tool.SWType];

The SwapSWs procedure switches one subwindow for another subwindow in a tool.
window is the tool window. oldSW identifies the currently displayed subwindow that will
be replaced by newSW. newSW cannot currently be part of the tree that makes up the
hierarchy of displayed windows. When this procedure has returned, oldSW has been
removed from this tree. Error[code: swNotFound] may be raised from this procedure. The
original newSW must be created with procedures other then the ones provided in the Tool
interface; for example, you might call Toolwindow.CreateSubwindow followed by
Formsw.Create. In addition, the call to Toolwindow.CreateSubwindow should supply NiL as
the parent argument.

Tool.Transition: Toolwindow.TransitionProcType;

The Transition procedure is called whenever the tool changes state. In turn, it calls the
client transition procedure supplied to Tool.Create. If the new Tool.State of the tool is
inactive, the Formsw.ltems are freed before the client transition procedure is called. The
client transition procedure is called before the Tool interface takes any other action.

Tool.UnusedLogName: PROCEDURE [unused, root: LONG STRING];

The UnusedLogName procedure guarantees unique log file names among file and TTY
subwindows by enumerating all the current file and TTY subwindows and checking that
each name is not currently in use. If a name is in use, a derived name is generated and
checked until a unique name is generated. Note that the development environment file
system does not permit multiple writeable handles on a file, so this procedure should be
called if there might be multiple instances of the tool. A unique name is generated by
setting the length of unused to 0, appending the root, and appending a number.

21

ToolWindow

21.1 Types

The facilities of ToolWindow enhance those provided by the Window interface.
Specifically, they provide functions that implement Tajo’s window illusion for tools.

Toolwindow.AdjustProcType: TYPE = PROC [
window: Toolwindow.Handle, box: Toolwindow.Box, when: Toolwindow.When];

Because users can change the location and size of windows on the display, Tajo provides
the individual tools with a mechanism for knowing when one of their windows has been
adjusted. Before the system adjusts a window’s location or size, it calls the tool’s limit
procedure (see LimitProcType). It then uses the box returned by the limit procedure to call
the tool’s adjust procedure. The adjust procedure is called both before and after the actual
adjustment is made; the when parameter is used by the AdjustProcType to indicate the
difference.

ToolWindow.BOX: TYPE = Window.BOX;

ToolWindow.BOXProcType: TYPE = PROCRETURNS [box: Toolwindow.Box];

A BoxProcType is the type of the parameters passed to SetBoxAllocator.
Toolwindow.DisplayProcType: TYPE = PROC [window: Toolwindow.Handle];

A DisplayProcType is called whenever the contents of the window need to be refreshed on
the display; for example, when a window previously on top of a given window is moved out
of the way. For all Tajo-supplied subwindow types, display procedures are automatically

supplied at create time.

Toolwindow.EnumerateProcType: TYPE = PROC [‘
window: Toolwindow.Handle] RETURNS [done: BOOLEAN];

Toolwindow.EnumerateSWProcType: TYPE = PROC [
window, sw: Toolwindow.Handle] RETURNS [dOne: BOOLEAN];

21-1

21

ToolWindow

21-2

ToolWindow.Handle: TYPE = window.Handle;

ToolWindow.LimitProcType: TYPE = PROCEDURE [
window: Toolwindow.Handle, box: Toolwindow.Box] RETURNS [ToolWindow.BOX];

Although the user moves windows around on the display, Tajo allows the individual tools
to exercise veto or modification rights over moves. This is particularly useful for allowing
a tool to prohibit, for example, its window becoming smaller than some certain size or
moving completely off the visible display region. When the system adjusts the window’s
location or size, it first calls the limit procedure with the requested box and then passes
the returned box to the tool’s adjust procedure.

Toolwindow.OnOff: TYre = {on, off};

OnOff is the type used to set and unset the tool name stripe.

ToolWindow.Place: TYPE = window.Place;

Place is the type of the top left corner of a box.

Toolwindow.Size: TYPE = {tiny, normal, zoomed}:

A tool always has one of three Sizes.

tiny displays as a small rectangular box that contains a name for the tool.

zoomed displays as a normal tool, but fills the whole screen.

Toolwindow.State: TYPE = {inactive, tiny, active};

A tool is always in one of three States.

inactive indicates that the user is not interested in any of the functions the tool
implements, and all resources it utilizes should be freed. When a tool is inactive,
a menu entry whose text is derived from its name is placed on the Inactive
menu.

tiny the user is not interested what the tool normally displays; therefore resources
associated with the display state should be freed.

Toolwindow.TransitionProcType: TYPE = PROC [
window: old, new: Toolwindow.State];

A tool’s TransitionProcType is called to notify a tool whenever a user action causes Tajo to
change the tool’s state (see Toolwindow.State above). TransitionProcs are often used to free
some of a tool’s resources when its state changes.

Toolwindow.When: TYPe = {before, after};

Toolwindow.WindowType: TYPE = {root, tool, clipping, sub, other};

Whereas the Window interface allows arbitrary window tree structures to be created,
ToolWindow restricts the types of window trees that can be created and imposes specific

Mesa Programmer’s Manual 2 1

semantics on those trees. A ToolWindow tree consists of a root level, a tool window level, a
clipping window level, and (optionally) subwindow levels.

root window is the underlying bitmap.
tool window is referred to in this document as a tool window.

clipping window is associated with each tool window, where the clipping window is the
child of the tool window. Clipping windows prevent subwindows from obscuring
their parents; they should be of no concern to clients.

sub windows are subwindows of tool windows,

other windows are all lower levels.

21.2 Constants and data objects

ToolWindow.nullBox: Toolwindow.Box = [[0, 0], [0, 0]];

21.3 Signals and errors

None.

21.4 Procedures
Toolwindow.Activate: PrROC [window: Toolwindow.Handle];

Activate activates a tool; that is, changes its state to active. The tool’s transition
procedure is called to allow it to respond to the change in state.

Toolwindow.Create: PROC [
name: LONG STRING, adjust: Toolwindow.AdjustProcType,
transition: Toolwindow.TransitionProcType,
box: ToolWindow.B0OX € ToolWindow.nullBox,
limit: Toolwindow.LimitProcType « Toolwindow.StandardLimitProc,
initialState: Toolwindow.State « active, named: BOOLEAN & TRUE,
gravity: Window.Gravity « nw]
RETURNS [Toolwindow.Handle];

Create creates an empty tool window with the indicated box. If box is nullBox, Tajo uses
the normal box allocator to assign a box to the tool. If named is TRUE, the window will have
a black band across the top that displays name. initialState is the State with which the
window is created. (See AdjustProcType, TransitionProcType, and LimitProcType above
for explanations of the meaning of these parameters.) gravity is the window.Gravity that
Tajo should use when changing the size of the tool window.

ToolWindow.CreateSubwindow: PrROC [
parent: Toolwindow.Handle, display: Toolwindow.DisplayProcType « NiL,
box: ToolWindow.BOX ¢« ToolWindow.nullBox, gravity: Window.Gravity ¢« nw]
RETURNS [ToolWindow.Handle];

21-3

21

ToolWindow

21-4

Subwindows are normally created by the client to simplify window manipulations. A
subwindow is a box (a rectangle defined by an x, y and a width and height) within the the
parent tool’s clipping window (i.e., within that box occupied by the tool, but not including
its borders or name stripe). The subwindow is clipped at its parent’s clipping window so
that it does not obscure the parent. However, a subwindow can extend “outside” the
parent’s window (it is legal for a subwindow’s box to have a negative x, or a height greater
than that of the window); only those bits within the parent’s clipping window are
displayed.

CreateSubwindow creates a new subwindow object with the indicated box within its
window and links it into the parent window’s chain of subwindows. The display procedure
is called whenever the content of the window needs to be refreshed onto the bitmap
display. For all Tajo-supplied subwindow types, display procedures are automatically
supplied at create time. (See also EnlinkSubwindow and DelinkSubwindow.)
Toolwindow.Deactivate: PROC [window: Toolwindow.Handle] ReTURNS [aborted: BOOLEAN];

Deactivate changes a tool’s state to inactive. The window’s transition procedure is called to
respond to the state change. Deactivate notifies subsystems that depend on
event.toolWindow first. If the event is aborted, the tool is not deactivated, and Deactivate
returns FALSE.

Toolwindow.DelinkSubwindow: proC [child: ToolWindow.Handle];

DelinkSubwindow removes the subwindow and its children from the window structure.
This procedure is not normally called by Tajo clients.

Toolwindow.Destroy: PROC [window: Toolwindow.Handle];
Destroy destroys both tool windows and subwindows.
ToolWindow.DrawNameFrame: Toolwindow.DisplayProcType;

DrawNameFrame draws the tool’s name frame, which is the stripe containing the tool
name at the top of the window.

Toolwindow.DrawRectangle: proc |
window: Toolwindow.Handle, box: Toolwindow.Box, width: CARDINAL « 1];

DrawRectangle paints the outline of a rectangular box with dimensions box. width is the
width (in pixels) of the rectangle’s border.

Toolwindow.EnlinkSubwindow: proc [parent, child, youngerSibling: Toolwindow.Handle];
EnlinkSubwindow links the subwindow into parent’s subwindow chain in the indicated
position. This procedure is not normally used by Tajo clients, as subwindows are linked
upon creation. ’

ToolWindow.EnumeratelnactiveWindows : PROC [proc: Toolwindow.EnumerateProcType];

EnumeratelnactiveWindows enumerates the tool windows on the Inactive menu.

Mesa Programmer’s Manual 2 1

ToolWindow.EnumerateSWs: PrROC [
window: window.Handle, proc: Toolwindow.EnumerateSWProcType];

EnumerateSWs enumerates all the subwindows within a tool window.

Toolwindow.GetAdjustProc: PROC [
window: Toolwindow.Handle] RETURNS [Toolwindow.AdjustProcType];

GetAdjustProc returns the AdjustProcType associated with a tool window.
ToolWindow.GetBox: PROC [window: Toolwindow.Handle] RETURNS [Toolwindow.Box];
GetBox returns the tool window's box.

Toolwindow.GetClippedDims: PROC [window: Toolwindow.Handle] RETURNS [window.Dims];

GetClippedDims returns the dimensions of the window for the tool in its active state. The
tool need not be active when this procedure is called.

Toolwindow.GetGravity: PROC [
window: Toolwindow.Handle] RETURNS [gravity: Window.Gravity];

GetGravity returns the gravity used to change the tool window’s size.

Toolwindow.GetlnactiveName: ProC [
window: ToolWindow.Handle] RETURNS [name: LONG STRING];

GetlnactiveName returns the name that the tool will be given when it becomes inactive
(see SetName). This is the name that is entered in the inactive menu when the tool is
deactivated. It is the client’s responsibility to free the string returned by this procedure to

the system heap.

Toolwindow.GetLimitProc: PrOC [
window: Toolwindow.Handle] RETURNS [Toolwindow.LimitProcType];

GetLimitProc returns the LimitProcType associated with the tool window.
Toolwindow.GetName: PROC [window: Toolwindow.Handle] RETURNS [name: LONG STRING];

GetName returns the name of the tool. The client must free the string returned by this
procedure to the system heap.

Toolwindow.GetNameStripe: PROC [
window: Toolwindow.Handle] RETURNS [ToolWindow.OnOff];

GetNameStripe returns the state of the name stripe, on or off.
ToolWindow.GetState: PROC [window: Toolwindow.Handle] RETURNS [state: Toolwindow.State];

GetState returns the state of a tool window.

21-5

21

ToolWindow

21-6

ToolWindow.GetTinyName: pPrOC [
window: Toolwindow.Hand!e] RETURNS [name, name2: LONG STRING];

GetTinyName copies the tiny name of the window into two strings allocated from the
system heap. It is the client’s responsibility to free these strings.

Toolwindow.GetTinyPlace: PrROC [
window: Toolwindow.Handle] RETURNS [place: Toolwindow.Place];

GetTinyPlace returns the place of the tool window when it is in its tiny state. The tool need
not be tiny at the time this procedure is called.

Toolwindow.GetTransitionProc: PROC [
window: Tooiwindow.Handle] RETURNS [Toolwindow.TransitionProcType];

GetTransitionProc returns the TransitionProcType associated with the tool window.
Toolwindow.Hide: PROC [window: Toolwindow.Handle];

Hide removes window from the group of windows displayed on the bitmap. This
procedure is not normally called by Tajo clients.

Toolwindow.IsPlacelnWindow: proC [
place: Toolwindow.Place, window: ToolWindow.Handle] RETURNS [BOOLEAN];

IsPlacelnWindow returns TRUE if place is within window; otherwise it returns FALSE.
Toolwindow.MakeSize: PROC [window: Toolwindow.Handle, size: Toolwindow.Size];
MakeSize changes the size of a tool window.
Toolwindow.SetAdjustProc: PrROC [

window: Toolwindow.Handle, proc: Toolwindow.AdjustProcType]

RETURNS [0ld:Toolwindow.AdjustProcType];
SetAdjustProc makes proc the AdjustProc for a tool window and returns the old one.
ToolWindow.SetBox: PROC [window: Toolwindow.Handle, box: Toolwindow.Box];
SetBox changes the size and position of a tool window.

Toolwindow.SetBoxAllocator: PrROC [normal, tiny: Toolwindow.BoxProcType];

SetBoxAllocator registers procedures that determine where to display the tool upon
creation.

Toolwindow.SetGravity: PROC [window: ToolWindow.Handle,gravity: window.Gravity];

SetGravity sets the gravity of a tool window.

Mesa Programmer’s Manual 2 1

Toolwindow.SetLimitProc: PrOC |
window: ToolWindow.Handle, proc: ToolWindow.LimitProc]
RETURNS [0ld: Toolwindow.LimitProcType];

SetLimitProc associates proc with the tool window and returns the old LimitProc.
Toolwindow.SetName: PROC {[window: Toolwindow.Handle, name: LONG STRING];

SetName procedure changes the text of the menu entry placed on the Inactive menu when
the tool is inactive.

ToolWindow.SetNameStripe: PROC [window: Toolwindow.Handle, onOff: Toolwindow.OnOff];
SetNameStripe sets the state of the name stripe on or off.

Toolwindow.SetTinyName: prOC [
window: Toolwindow.Handle, name: LONG STRING, name2: LONG STRING « NIL];

SetTinyName changes the text that is displayed when the window is tiny. name is the first
line of text and name2 is the second.

ToolWindow.SetTinyPlace: PROC [window: Toolwindow.Handle, place: Toolwindow.Place];
SetTinyPlace dictates where the tool will be positioned when it is tiny.
ToolWindow.SetTransitionProc: PROC [

window: Toolwindow.Handle, proc: Toolwindow.TransitionProcType]

RETURNS [ToolWindow.TransitionProcType];

SetTransitionProc associates proc with the tool window and returns the old
TransitionProc.

Toolwindow.Show: PROC [window: Toolwindow.Handle];

Show causes window and its subtree of windows to be displayed. It should be called after
a tool window is set up.

ToolWindow.StandardLimitProc: Toolwindow.LimitProcType;
StandardLimitProc performs the normal Tajo window-limiting operations. These prevent
a window from being moved off the bitmap and prevent a tool from being made smaller

than a tiny window.

Toolwindow.Type: PROC [
window: Toolwindow.Handle] RETURNS [type: Toolwindow.WindowType];

The Type procedure tells you the type of the window.

ToolWindow.WindowForSubwindow: proc [
SW: Toolwindow.Handle] RETURNS [window: Toolwindow.Handle];

WindowForSubwindow returns the tool window of a subwindow.

21-7

21

ToolWindow

21-8

IT1

Window and subwindow building

Windows and subwindows are the most basic building blocks for tools in the XDE system.
The interfaces described in this section are lower level than those described in the
previous section (Tool building). In particular, those interfaces were built using these
interfaces.

III.1 The window package

The window package provides procedures that enable the client to display data by
whitening and blackening the bits in the window. These include procedures for painting
characters and strings and blackening, whitening, or graying boxes. The window package
also provides procedures for copying arrays of bits and brush-and-trajectory painting,
which allows graphics curves to be easily drawn. (See the Display interface.)

A window is conceptually an instance of an abstract window object. The window package
obtains storage for window objects from Tajo. Contact the Tajo implementors if you must
allocate your own window objects.

Each window object contains a client-supplied display procedure, which, on demand, will
repaint all or part of the window. This procedure is invoked by the window package, for
instance, when a window that was obscured by an overlapping window suddenly becomes
more visible. However, clients should not call their display procedure directly. Instead,
they should update their data, call InvalidateBox to mark part or all of the window
invalid, and then call Validate to indicate to the window package that any invalid areas
should be validated by calling the window’s display procedure.

The window package allows clients to supply bitmap unders. These are blocks of memory
used to maintain the bits that would appear in the bitmap where a window is if the
window and the windows covering it did not exist. The window package can then fix up the
bitmap without calling the display procedure of all the windows (partially) hidden by this
one when it is removed from the tree. Menus can thus appear and disappear quickly.

[I-1

III Window and subwindow building

The window package that implements the Window interface is passive, responding only to
calls from the client’s program. [t creates no processes and allocates almost no storage.

I[I.1.1 Windows

Windows overlap other windows and may be manipulated even when they are under other
windows. Windows are contained within their parent’s rectangular regions: if they would
stick out of their parent, their display is trimmed at their parent’s edge.

For instance, the Window interface defines the window management package that is used
by Tajo. The Window interface manipulates a tree of windows. There is one root window
(at level “zero”) that is always equated to the visible bitmap and that supplies the
background gray. Any window may have child windows contained within it. Child
windows obscure their parent; that is, they are above their parent in the apparent stack of
windows visible on the screen. Sibling windows may overlap: the eldest sibling--the one
that appears first in the list--is the sibling on top of the stack. The Window interface
contains routines for creating and destroying windows, for arranging them, and for
displaying data within them.

Windows occupy (possibly overlapping) rectangular regions of the display. A window’s
location and size are defined in terms of its parent’s location. The root window is always at
bitmap location [0,0] even though its box.place may not be [0,0]. The box.place of
rootWindow is the screen place of the bitmap origin.routines.

Arbitrary scrolling can be implemented quite simply by imbedding a window (the one that
paints the data to be scrolled) within another window (the “frame”) and then just altering
the position (y coordinate for vertical scrolling) of the former within the latter; routines
are provided that will perform the appropriate BITBLTs to minimize the area to be painted.

Within a window as shown on the bitmap, sections of bits may become incorrect because of
external circumstances--for example, because a window that was hiding them was just
deleted. The window package accumulates these invalid areas and then calls the client’s
display procedure to adjust them.

Normally, when the client is called to paint the invalid area(s), there are no bits in the
area that are black but should be white (the window package has possibly cleared the area
to ensure this) so the repaint procedure can use “or” functions. If the client knows that its
repaint procedure always sets all the bits in the area(s), it indicates this in the window
object, which may save the window package from performing unnecessary clearings.

When a window is being validated, a bad phosphor list is set up for it just before its display
procedure is called. This list consists of the visible portions of the window’s invalid areas.
When there is a bad phosphor list for a window, any painting done to that window will be
clipped to the list. This lets the client avoid calls to EnumerateinvalidBoxes to find exactly
which regions need repainting. So, for example, if the window provides a gray background
in a particular area, the display procedure may call Display.Gray for the entire region that
the gray background should appear in. This guarantees that valid areas of the window
will not be overwritten. window.FreeBadPhosphorList causes this bad phosphor list to be
ignored.

II1-2

Mesa Programmer’s Manual III

[I[.2 Sources and sinks

Sources and sinks are interfaces for data input and output. For instance, a source need not
be dealt with as a particular structure, such as a disk file or a teletype, but can be thought
of as a source of input (such as the backing store for screen display). Similarly, a sink can
be thought of as a generic place to send output.

There are only two pre-defined sinks in XDE, AsciiSink and TextSink; most kinds of data
can be put into those categories. AsciiSink is a special case of TextSink. There are several
different sources, however. The interface TextData consists of data types shared by sources
and sinks.

Advanced programmers may want to create sources and sinks to use as backing storage

and output for their own text subwindows. For example, a source that maintains text
attributes along with the text is required to display text in various fonts.

II11.3 Interface abstracts

I11.3.1 Windows

Context allows clients to associate data with windows. It is used by clients that implement
their own window types.

Display provides facilities for display in windows.

I11.3.2 Subwindows

Caret allows clients to implement and manage a blinking caret that marks the insertion
point in editable windows.

Cursor manipulates the appearance of the cursor that represents the mouse position on the
screen. :

Menu provides the menu facility used by many tools for simple command invocation. It
gives a client control over which menus the user sees and what actions an individual menu
item performs.

Scrollbar provides a mechanism for specifying and invoking secroll actions, maintaining a
consistent user interface for them.

Selection allows clients to manipulate the current selection; that is, the text or graphics
designated by the user and highlighted on the screen.

ToolFont provides Tajo's interface to the WindowFont facilities, including font storage
management.

" WindowFont converts .strike fonts into a representation more convenient for the
Window package to display characters.

III-3

111

Window and subwindow building

III-4

111.3.3 Sources and sinks

AsciiSink implements a text sink that outputs Ascii text. (Text sinks are defined by the
interface TextSink.)

BlockSource creates a text source backed by a block of Ascii characters.
DiskSource creates a text source backed by a stream or a file in the local file system.
PieceSource creates 4 text source backed by a piece table maintained on a text source.

ScratchSource creates a text source backed by a block of virtual memory containing Ascii
characters.

StringSource creates a text source backed by a LONG STRING containing Ascii text.

TextData provides the definitions of data types that a few procedures in TextSW and
FormSW need. It is not of interest to most clients.

TextSink defines a sink for text that is displayed in a window. Text sinks help isolate Tajo's
uniform text display, selection, and editing facilities from the representation of text. It is
intended for clients that have other than Ascii representation of information. The
standard interface AsciiSink is provided for normal clients and is used as the default.

TextSource defines a source for text that is displayed in a window. Sources help isolate
Tajo's uniform text display, selection, and editing facilities from the representation of text.
It is intended for clients that wish to maintain their own data structures to be displayed in
a window.

22

Context

22.1 Types

When a tool performs various functions, it may wish to save and retrieve state from one
notification to the next. This is an immediate consequence of the notification scheme, for a
tool cannot keep its state in the program counter without stealing the processor after
responding to an event. Thus a tool must explicitly store its state in data. Because most
notification calls to a tool provide a window or subwindow handle, it is natural to associate
these contexts with windows. The context mechanism is an alternative to the tool’s having
to build its own associative memory for retrieving its context, given a window handle.

Context.Type: TYPE = MACHINE DEPENDENT{
all(o), first(1), lastAllocated(377378), last(377778)};

Type is unique for each client of the context mechanism. An argument of this type is
passed to most of the procedures in this interface so that the correct client data can be
identified.

Context.Data: TYPE = LONG POINTER TO UNSPECIFIED;

Data, the value that a client may associate with each window, is typically a pointer to a
record containing the client's state for some window.

Context.CreateProcType: TYPE =
PROCEDURE RETURNS [Context.Data, Context.DestroyProcType];

CreateProcType is used by FindOrCreate. The procedure passed in as an argument to
FindOrCreate is called to create a context only if a context of the appropriate type cannot
be found.

Context.DestroyProcType: TYPE = PROCEDURE [Context.Data, window.Handle];

A DestroyProcType is passed to Create so that the client can be notified when the context
should be destroyed. It may be the result of the window being destroyed.

22-1

22

Context

22.2 Constants and data objects

None.

22.3 Signals and errors

Context.Error: ERROR [code: Context.ErrorCode};
Error is the only error raised by any of the Context procedures.
Context.ErrorCode: TYpPe = {duplicateType, windowlisNIL, tooManyTypes, other};

duplicateType s raised by Create if there is already a context of the given type on the
window passed as an argument.

windowilsNIL is raised if the client has passed in a NIL window.

tooManyTypes is raised if UniqueType has been called too many times.

22.4 Procedures

22-2

Context.Acquire: PROCEDURE [type: Context.Type, window: Window.Handle]
RETURNS [Context.Dataj;

The procedure Acquire retrieves the data field from the specified window. NiL is returned if
no such context exists on the window. It also locks the context object so that no other calls
on Acquire or Destroy with the same type and window will complete until the context is
freed by a call on Release.

Context.Create: PROCEDURE [
type: Context.Type, data: Context.Data, proc: Context.DestroyProcType,
window: window.Handle];

The procedure Create creates a new context of type type that contains data. The context is
associated with the indicated window; it is said to "hang" on the window. If window
already possesses a context of the specified type, the ERROR Error[duplicateType] is raised.
If the window is NiL, the ERROR Error{windowisNIL] is raised. The proc is supplied so that
when the window is destroyed, all the context data can be destroyed (deallocated) in an
orderly way.

Context.Destroy: PROCEDURE [type: Context.Type, window: window.Handle};

The procedure Destroy destroys a context of a specific type on window. If the context
exists on the window, it calls the DestroyProcType for the context being destroyed.

Context.DestroyAll: PROCEDURE [window : Window.Handle];
The procedure DestroyAll destroys all the contexts on window. DestroyAll can be very

dangerous because Tajo keeps its window-specific data in contexts on the window. DestroyAll should not be used

except in special circumstances. It is called by the routines that destroy windows.

Mesa Programmer’s Manual

Context.Find: PROCEDURE [type: Context.Type, window: Window.Handle]
RETURNS [Context.Datal;

The procedure Find retrieves the data field from the specified context for window. NIL is
returned if no such context exists on the window.

Context.FindOrCreate: PROCEDURE [
type: Context.Type, window: window.Handle, createProc: Context.CreateProcType]
RETURNS [Context.Datal;

The procedure FindOrCreate resolves the outcome of the race that occurs when creating
new contexts in a multi-process environment. If a context of type type exists on window,
it returns the context's data; otherwise, it creates a context of type by calling createProc
and then return data. [f the window is NiL, the ERROR Error[windowlsNIL] is raised.

Context.NopDestroyProc: Context.DestroyProcType;

The procedure NopDestroyProc does nothing. It is provided as a convenience to clients
that do not want to create their own “do-nothing” DestroyProcType to pass to Create.

Context.Release: PROCEDURE [type: Context.Type, window: window.Handle];

The procedure Release releases the lock on the specified context object for window that
was locked by the call on Acquire. If the specified context cannot be found or if it is not
locked, Release is a no-op.

Context.Set: PROCEDURE [
type: Context.Type, data: Context.Data, window: window.Handlej;

The procedure Set changes the actual data pointer of a context. Subsequent Finds return
the new data. The client can change the data pointed to by the data field of a context at
any time. Race conditions could occur if multiple processes are doing Finds for the same
context and modifying the data. It is the client's responsibility to MONITOR the data in such
cases. If the window is NiL, the ERROR Error[windowlsNIL] is raised.

Context.SimpleDestroyProc: Context.DestroyProcType;

The procedure SimpleDestroyProc merely calls the system heap deallocator on the data
field. It is provided for clients whose context data is a simple heap node in the system zone.

Context.UniqueType: PROCEDURE RETURNS [type: Context.Typel;
The procedure UniqueType is called if a client needs a unique Type not already in use

either by Tajo or by another client. If no more unique types are available, the ERROR
Error[tooManyTypes] is raised.

22.5 Discussion

Acquire and Release can be used in much the same way as a Mesa MONITOR. It is important
that the client call Release for every context that has been obtained by Acquire; this is not
done automatically. The cost of doing an Acquire is barely more than entering

22-3

22

22

Context

22-4

monNiTor and doing a Find. Using this technique allows the client to monitor its data rather
than its code.

CIf it is necessary for several tools to share global data, it is possible to place a context on

Window.rootWindow that is never destroyed, even when the bitmap is turned off. To share
a Context.Type without having to EXPORT a variable, you can use one in the range
(lastAllocated..last]. Contact the support organization to have one allocated to vou.

23

Display

23.1 Types

The Display interface provides routines for painting into windows on the user’s screen.
(See Window for details of the Tajo window package.) Unless stated otherwise, all
procedures that paint to the screen clip to the window’s bad phosphor list. (This list is
explained in the Window chapter.)

Some procedures in this interface are not available in the released boot file. Displaylmpl
must be loaded before these procedures can be called.

Display.BreakReason: Tyre = {normal, margin, stop};

BreakReason is returned by Block, MeasureBlock, and ResolveBlock to indicate why these
procedures terminated.

normal all data is displayed.
margin the next character overlaps the margin.
stop the next character has no representation in the font.

Display.Brick: TYPE = LONG DESCRIPTOR FOR ARRAY OF CARDINAL;

Bricks are used by Gray and Trajectory to describe a gray pattern with which to tile a
window. The maximum size of a Brick is 16 words; each word is one row of the pattern.

Display.TrajectoryProc: TYPE = PROC [Window.HandIe] RETURNS [Window.BOX, INTEGER];
TrajectoryProc is the type of the procedure that is passed to Trajectory. When called, the

procedure should return a small area within the window where painting should occur.
Think of it as a “brush stroke.”

23-1

23 Display

23.2 Constants and data objects
Display.fiftyPercent: Brick
This is a 50% gray pattern.
Display.infinity: INTEGER = INTEGER.LAST;

infinity is used as an argument to the Block and Text routines. It indicates that the
operation should terminate at the right edge of the window.

Display.paintGrayFlags, bitFlags: sitBit.BitBItFlags = [
direction: forward, disjoint: TRUE, disjointitems: TRUE, gray: TRUE,
srcFunc: null, dstFunc: or, reserved: 0];

Display.replaceGrayFlags, boxFlags: sitsit.BitBItFlags = [
direction: forward, disjoint: TRUE, disjointitems: TRUE, gray: TRUE,
srcFunc: null, dstFunc: null, reserved: 0];

Display.xorGrayFlags, xorBoxFlags: sitsit.BitBItFlags = [
direction: forward, disjoint: TRUEg, disjointitems: TRUE, gray: TRUE,
srcFunc: null, dstFunc: xor, reserved: 0];

Display.replaceFlags: sitsit.BitBitFlags = [
direction: forward, disjoint: TRUE, disjointitems: TRUE, gray: FALSE,
srcFunc: null, dstFunc: null, reserved: 0];

Display.textFlags, paintFlags: sitsit.BitBItFlags = [
direction: forward, disjoint: TRUE, disjointitems: FALSE, gray: FALSE,
srcFunc: null, dstFunc: or, reserved: 0];

Display.xorFlags: sitsit.BitBltFlags = [
direction: forward, disjoint: TRUE, disjointltems: FALSE, gray: FALSE,
srcFunc: null, dstFunc: xor, reserved: 0];

BitBIt.BitBItFlags are passed into several display procedures; they control what actually
happens on the display. These flags are provided for some of the most common cases; they
include painting, replacing, and xoORing of text, bits, and gray patterns. Use
Display.paintGrayFlags to paint black, bisplay.replaceGrayFlags to paint white, and
Display.xorGrayFlags to invert. These flags are documented further in the Mesa Processor
Principles of Operation.

23.3 Signals and errors

None.

23-2

Mesa Programmer’s Manual 23

23.4 Procedures

Display.Arc: PROC [,
window: window.Handle, place: Window.Place, radius: INTEGER,
startSector, stopSector: CARDINAL, start, stop: window.Place,
bounds: window.BoxHandle «NiL];

Arc displays a portion of a circular arc centered at place of radius in window. The arc goes
from start in the startSector to stop in the stopSector. Sectors are simply octants
numbered from 1 to 8, starting with 1 at NNE going clockwise. The arc is clipped to the
window.Box described by bounds; a bounds of niL clips the arc at window’s bounding box.
This procedure is not available in the released boot file. Displaylmpl must be loaded before it can be called.

Display.BitAddressFromPlace: PrOC [
base: BitBit.BitAddress, x, y: NATURAL, raster: CARDINAL]
RETURNS [BitBit.BitAddress];

BitAddressFromPlace returns the 8itsit.BitAddress of the (x, y) coordinates in the bitmap
described by base. raster is the number of bits per line in the bitmap. This procedure is
provided as a utility to calculate the address parameter to Display.Bitmap.

Display.Bitmap: PrOC [
window: window.Handle, box: window.Box, address: sitsit.BitAddress,
bitmapBitWidth: cARDINAL, flags: 8itBIt.BitBItFlags « Display.paintFlags];

Bitmap paints the bitmap described by address and bitmapBitWidth into box in window,
using flags to control the interaction with bits already displayed in the window.
box.dims.w should be less than or equal to bitmapBitWidth. This procedure may also be
used instead of Display.Gray to display a gray pattern that is not aligned relative to the
window origin.

Display.Black: PrOC [window: window.Handle, box: window.Box];
Black makes the region of window described by box black.

Display.Block: PrOC [
window: window.Handle, block: environment.Block,
lineLength: INTEGER & Display.infinity, place: window.Place,
font: WindowFont.Handle « NiL, flags: BitBlt.BitBItFlags « Display.textFlags,
bounds: window.BoxHandle « NiL]
RETURNS [newPlace: window.Place, positions: CARDINAL, why: Display.BreakReason];

Block is used to display a block of characters in a window. block describes the block of
characters to be displayed. The characters are painted into window starting at place. The
total width of the characters painted will not exceed lineLength. If lineLength is
Display.infinity, characters will be painted up to (but not past) the right edge of the window.
Painting will also stop if block is consumed or a character is encountered that is not
represented in font. font is the character font to be used; if font is NiL, the default font will
be used. (See windowFont.SetDefault.) flags is used to affect how the bits are painted into
the window. bounds is an optional box to which the text should be clipped. newPlace is

23-3

23

Display

23-4

where the next character would have been painted. positions is the number of characters
painted. why is the reason painting was stopped.

Display.Character: pPrOC [
window: window.Handle, char: CHARACTER, place: Window.Place,
font: windowFont.Handle « Nit, flags: Bitsit.BitBItFlags « Display.textFlags,
bounds: window.BoxHandle « NiL]
RETURNS [window.Place];

Character displays a single character. If the character has no representation in font, the
special undefined character in the font will be displayed. bounds is an optional box to
which the character should be clipped. The returned window.Place is where the next
character should be displayed.

Display.Circle: proc [
window: window.Handle, place: window.Place, radius: INTEGER,
bounds: window.BoxHandle «NiL];

Circle displays a circle centered at place of radius in window. The circle is clipped to the
window.Box described by bounds; a bounds of NiL clips the circle to window’s bounding
box. This procedure is not available in the released boot file. Displaylmpl must be loaded before it can be called.

Display.Conic: PROC [
window: window.Handle, a, b, ¢, d, e, errorTerm: LONG INTEGER,
start, stop, errorRef: window.Place,
sharpCornered, unboundedStart, unboundedStop: BOOLEAN,
bounds: window.BoxHandle «nNiL];

Conic displays the portion of the curve of the equationax2 + by2 + cxy +dx + ey + f= 0
in window from start to stop. Instead of passing in the last coefficient, f, this procedure
takes the errorTerm resulting from substituting start into the equation. If the conic
contains points whose radius of curvature is less than or equal two pixels, it must be
displayed using multiple calls with sharpCornered boolean TRUE; otherwise
sharpCornered should be FALSE. These “sharp-cornered” conics must be broken up into
segments where the corners become a new segment’s start and stop points. For example, a
very long skinny ellipse must be displayed in two pieces. errorRef and the booleans
unboundedStart and unboundedStop are ignored. The curve is clipped to the window.Box
described by bounds; a bounds of NiL clips to the window’s bounding box. This procedure is not
available in the released boot file. Displaylmpl must be loaded before it can be called.

Display.Ellipse: PrOC
window: window.Handle, center: window.Place, xRadius, yRadius: INTEGER,
bounds: window.BoxHandle « NIL];

Ellipse only displays ellipses with axes parallel to the x-y coordinate system centered at
center with an x radius of xRadius and a y radius of yRadius in window. The ellipse is
clipped to the window.Box described by bounds; a bounds of NiL clips the ellipse te
window’s bounding box. Other types of ellipses must be displayed with the pisplay.Conic
procedure. This procedure is not available in the released boot file. Displayimpl must be loaded before it can be
called.

Mesa Programmer’s Manual 23

Display.Gray: PROC [
window: window.Handle, box: window.Box, gray: Brick « pisplay.fiftyPercent,
dstFunc: BitBit. DstFunc « null];

Gray paints the the gray pattern described by gray into the box region of window. dstFunc
affects how the bits are painted into the window. The gray pattern is aligned relative to
the window origin.

Display.Invert: PrROC [window: window.Handle, box: window.Box];
Invert inverts the box region of window.

Display.Line: PrROC[
window: window.Handle, start, stop: window.Place,
bounds: window. BoxHandle « NiL];

Line displays a single pixel-wide line from start to stop in window. The line is clipped to
the window.Box described by bounds; a bounds of NiL clips the line to window’s bounding
box. This procedure is not available in the released boot file. Displaylmpl must be loaded before it can be called.

Display.MeasureBlock: proc[
window: window.Handle, block: environment.Block,
lineLength: INTEGER & Display.infinity, place: window.Place,
font: windowFont.Handle «NiL]
RETURNS [newPlace: window.Place, positions: CARDINAL, why: Display.BreakReason];

MeasureBlock is used to measure the length of a block of text if it were painted to the
screen. The arguments and return values are the same as described by Dispiay.Block.

Display.Point: PROC [window: window.Handle, point: window.Place];
Point turns a single pixel black at point in window, if it is visible.

Display.ResolveBlock: proc [
window: window.Handle, block: Environment.Block,
offsets: LONG POINTER TO ARRAY CARDINAL [0. . 0) OF CARDINAL,
font: windowFont.Handle « niL]
RETURNS [positions: CARDINAL, why: Display.BreakReason];

ResolveBlock is used to determine the locations of characters in a block of text. The offset
of the left edge of each character in block is stored into offsets. It is the client’s
responsibility to ensure that this array is long enough to hold the offsets of all the
characters in block. This procedure terminates either because it has reached the end of
block (why = normal) or it has reached a character that has no representation in font
(why = stop). In either case, positions is the number of characters processed.

Display.Shift: PrOC [
window: window.Handle, box: window.Box, newPlace: window.Place];

Shift does a bitblt-style move of part of the window contents. box describes the region of
window to be moved to newPlace. This call may produce invalid areas within the window
(bits that should be moved into visible areas of the window but are not available because
they have either been clipped or obscured). To avoid difficulties with the client’s display

23-5

23

Display

23-6

procedure, it is not called; this call simply leaves the window marked invalid. It is the
client’s responsibility to call window.Validate or window.ValidateTree as soon as it has
corrected its data structures to reflect the call. Shift does not invalidate the areas where
the box has been moved “from.” If they should be repainted, invalidating them is the
client’s responsibility. Shift does not clip the actual region painted to window’s bad
phosphor list (see the Window chapter for an explanation of the bad phosphor list.)

Display.Text: PROC [
window: window.Handle, string: LONG STRING, place: window.Place,
font: windowfont.Handle « NiL, lineLength: INTEGER & Display.infinity,
flags: BitBlt.BitBItFlags « Display.textFlags, bounds: window.BoxHandle & NiL]
RETURNS [newPlace: Window.Place];

Text uses a single call on Display.Block to paint characters from string at place in window.
The value returned is the window-relative place where the next character should go. Note
that the string is painted only up to the first character that is not represented in font.

Display.Textinline: proc [

window: window.Handle, string: LONG STRING, place: window.Place,

font: windowFont.Handle « NiL, lineLength: INTEGER « infinity,

flags: sitsit.BitBItFlags ¢ Display.textFlags, bounds: window.BoxHandle e niL]

RETURNS [window.Place] = INLINE {

RETURN[Display.Block]
window, [LOOPHOLE[@string. text], 0, string.length], lineLength, place,
font, flags, bounds].newPlace]};

Textinline is an INLINE version of Display.Text provided for clients who are willing to trade
some code space in their own module to avoid an extra procedure call at run time.

Display.Trajectory: PROC [
window: window.Handle, box: window.Box ¢« window.nullBox,
proc: Display.TrajectoryProc, source: LONG POINTER & NiL, bpl: CARDINAL « 16,
height: CARDINAL &« 16, flags: BitBIt.BitBItFlags « Display.bitFlags,
missesChildren: BOOLEAN «FALSE, brick: Display.Brick « NIL];

Trajectory is designed to avoid much of the overhead of successive calls to the normal
display routines. window is the window of interest. box is the window region where
painting might occur; the client promises it will not try to paint outside this area. proc is
the client procedure that, when called, repeatedly returns a window-relative box in which
painting should occur (think of it as a brush stroke) and the x-offset into the client’s source
data. To end the trajectory, proc should return window.nullBox. The client may wish to
alter the brush shape along the trajectory by defining the source bitmap as a wide one
with several different brush shapes in it and then returning the x-offset into the source
bitmap with the brush-box. flags is used to describe the type of painting that should be
performed on each small area. The use of this argument is similar to Display.Bitmap. brick
is a gray brick to be used if flags.gray is TRUE. (This is described in more detail for
Display.Gray.) missesChildren is unused.

Display.White: PROCEDURE [window: window.Handle, box: window.Box];

White makes the region of window described by box white.

24

Window

24.1 Types

The Window interface defines the window management package that Tajo uses. These
procedures are mostly of interest to clients who are implementing their own subwindow
types. (See Display for routines that paint into windows.)

Window.BOX: TYPE = RECORD [place: window.Place, dims: window.Dims];

Box describes a window-relative region. place describes the top left corner of the region.
[place.x + dims.w, place.y + dims.h] describes the bottom right corner of the region. This
point is actually outside the region described by the Box.

window.BoxHandle: TYPE = LONG POINTER TO Box;

window.Clarity: TYpe = {isClear, isDirty};

Clarity is used by a client of InvalidateBox to indicate whether an invalid region is known
to be white.

isClear window package believes that the region is all white and performs no
clearing.
isDirty window package believes that the region is not all white and clears it.

Window.Dims: TYPE = RECORD [w, h: INTEGER];

Dims is the size of a window. w is the the number of pixels in the window’s width. h is the
the number of pixels in the window’s height.

window.Gravity: TYPE = {nil, nw, n, ne, e, se, s, sw, w, ¢, xxx};
Gravity indicates what to do with the current contents of a window when it changes size.

nil the contents stay in the same place on the bitmap.

24-1

24 Window

nw, n, ne, e, se, s, SW, w the contents stay attached to the indicated compass point,
which is either a corner or the middle of a side (e.g., for nw
the contents stay in the upper-left corner).

C , the contents stay in the middle (i.e., trimming occurs
equally at all edges).

XXX no attempt is made to save the contents: the window is
repainted.

window.Handle: TYPE = LONG POINTER TO Window.Object;
Handle represents a window.
window.MinusLandBitmapUnder: TyPe = [4] ;

MinusLandBitmapUnder is provided for clients who need to allocate their own window
objects.

window.MouseTransformerProc: TYPE = PROC [Window.Handle, window.Place]
RETURNS [Window.Handle, window.Place];

MouseTransformerProc is not supported in this release.

window.Object: TyPe = [18]

Window.Place: TYPE = UserTerminal.Coordinate;

Place is a window-relative coordinate.

window.UnderChangedProc: TYPE = PROCEDURE [window.Handle, window.Box];

UnderChangedProc is not supported in this release.

24.2 Constants and data objects

window.nullBox: window.Box = [[0,0], [0,0]];
nullBox is a zero-sized Box at the upper-left corner of a window.
Window.rootWindow: READONLY Window.Handle;

rootWindow is the exported root of the window tree. It represents the entire display.

24.3 Signals and errors

24-2

window.Error: ERROR [code: window.ErrorCode];

Error is the only error raised by any of the Window procedures.

Mesa Programmer’s Manual 24

window.ErrorCode: Type = {illegalBitmap, illegalFloat, windowNotChildOfParent,
whosslidingRoot, noSuchSibling, noUnderVariant,windowinTree,
sizingWithBitmapUnder, illegalStack};

illegalBitmap This error is never raised.
illegalFloat The client passed illegal parameters to Float.
windowNotChildOfParent The window passed as a parameter is not in the list of its

parent’s children. This error can be raised by any
procedure that deals with a window; that is, by most of the
procedures in the Window interface.

whosSlidingRoot The client has attempted to move the root window.
noSuchSibling The client has requested a change to the window tree,
asking that a window’s new sibling be a window that is not

a child of its new parent.

noUnderVariant A client has attempted to manipulate the bitmapUnder
data of a window for which underVariant is FALSE.

windowlInTree An attempt was made to use one of the “Set” procedures on
a window that is currently a descendant of rootWindow.
In most cases, you should wuse one of the

SlideAndSizeAndStack procedures instead.

sizingWithBitmapUnder A client has tried to change the size of a window that
currently has a bitmap under,

illegalStack The client is attempting to move a window between

parents, one of which is in the window tree and the other is
not.

24.4 Procedures

window.BitmapPlace: ProC [
window: window.Handle, place: window.Place «[0,0]] RETURNS [window.Place];

BitmapPlace returns the bitmap-relative coordinates of place in window.

window.BitmapPlaceToWindowAndPlace: proc [bitmapPlace: window.Place]
RETURNS [window: window.Handle, place: window.Place];

Given a bitmap-relative place, bitmapPlace, BitmapPlaceToWindowAndPlace returns the
most deeply nested window containing bitmapPlace and the window-relative coordinates
of bitmapPlace.

Window.BoxesAreDisjoint: PROC [a, b: window.BOX] RETURNS [BOOLEAN];

BoxesAreDisjoint returns TRUE if and only if a and b do not intersect.

24-3

24

Window

24-4

window.EnumeratelnvalidBoxes: PrOC [
window: window.Handle, proc: PROC [window.Handle, window.Box]};

EnumeratelnvalidBoxes procedure calls proc for each of the invalid boxes of window; it
should only be called from within window’s display procedure. window is passed through
to proc as its first parameter. The second parameter to proc describes the region that is
invalid. The invalid areas are clean unless the client has set clearingNotRequired for
window; that is, there are no pixels in them that are currently black but should be white.

window.EnumerateTree: PROC [
root: window.Handle, proc: PrROC [window: window.Handle]];

EnumerateTree calls proc for each window that is a descendant of root. root need not itself
be a descendant of window.rootWindow. The order of enumeration is not specified.

window.Float: PrROC [window, temp: window.Handle,

proc: PROC [window: window.Handle]

RETURNS [place: window.Place, done: BOOLEAN]];

Float changes window’s position and adjusts the display. It requires that window be a
bitmap-under window. It also requires that the user supply for scratch storage a temp
window with a bitmap under, exactly the same size as window but not in the window tree.
Float repeatedly calls proc and does a continuous move to the new place as long as done is
FALSE. The window is forced to the top of the sibling stack before the move begins. A new
place that would require moving the window so it is not completely visible is a client error.
ValidateTree is called to pick up the bits that must be on the bitmap when the window is
moved away. This procedure can raise the error Error[illegalFloat].
window.FreeBadPhosphorList : PROC [window: window.Handle];

FreeBadPhosphorlist forces the window package to ignore window’s bad phosphor list
when painting to it.

Window.GetBitmapUnder: PROC [window: Window.Handle] RETURNS [LONG POINTER];
GetBitmapUnder returns a long pointer to the bitmap-under data for window. window
must be a bitmap-under variant or Error[noUnderVariant] will be raised. If there is no
current bitmap-under pointer, this procedure returns NiL.

Window.GetBox: PROC [Window.Handle] RETURNS [Window.BoOx];

GetBox returns the current Box for a window.

Window.GetChild: PROC [Window.Handle] RETURNS [window.Handle];

GetChild returns the window’s topmost (eldest) child.

Window.GetClearingRequired: PROC [window.Handle] RETURNS [BOOLEAN];

GetClearingRequired returns the current value of the clearing-required flag for a window.

Mesa Programmer’s Manual 24

Window.GetDisplayProc: PROC [window.Handle] RETURNS [PROC [Window.Handle]];
GetDisplayProc returns the window’s display procedure.

window.GetParent: PROC [window.Handle] RETURNS {Window.Handle];

GetParent returns the the window’s current parent.

Window.GetSibling: PROC [window.Handle] RETURNS [window.Handle];

GetSibling returns the window’s topmost (eldest) sibling.

window.InitializeWindow: PrOC [
window: window.Handle, display: PROC [window.Handle], box: window.Box,
parent: window.Handle « window.rootWindow, sibling, child: window.Handle &« nit,
clearingRequired: BOOLEAN « TRUE, under: BOOLEAN « FALSE];

InitializeWindow sets the values of the listed fields in the window object. This procedure
should be called before InsertintoTree. (Most Tajo clients should not need this procedure.)

window.InsertintoTree: PROC [window: window.Handle];

InsertIntoTree adds the client-supplied window.Object to the window tree. The caller must
have set the following fields of the window object by calling InitializeWindow or one of the
“Set” procedures: parent, sibling, child, display, under. sibling should be NiL if this window
is to be the last child of its parent. The root window must have been defined before this
procedure is called. The client can force all the just-inserted windows to be painted by
calling ValidateTree and passing a window that contains all of the inserted windows. If an
inserted window has a bitmap under and the new window is partially obscured (if all the bits needed for the
bitmap under are not available), then ValidateTree is called on the parent of the inserted window to obtain those
bits. This procedure can raise Error[noSuchSibling]. (Most Tajo clients should not need this
procedure.)

Window.IntersectBoxes; PROC [b1,b2: window.Box] RETURNS [box: Window.Box];

IntersectBoxes returns a Box that is the intersection of b1 and b2. If their intersection is
empty, Window.nullBox is returned.

window.InvalidateBox: PROC [
window: window.Handle, box: window.Box, clarity: window.Clarity « isDirty];

InvalidateBox adds the region described by box to the list of invalid regions of window.
clarity controls whether the window package should clear the region,; if clarity is isClean,
the region is not cleared. InvalidateBox does not update the display; the client should call
Validate on window to cause the window package to update the display. The client should
not call its display procedure directly when its window needs repainting. Instead, it should
update its data to reflect the newly desired content and call InvalidateBox. A call on
InvalidateBox followed by a call on Validate may result in no call to the display procedure if, for instance, the

invalidated areas stick out of the parent.

24-5

24

Window

24-6

Window.lsBitmapUnderVariant:PRoclwmdow.Handle]RETURNs [BOOLEAN];

IsBitmapUnderVariant returns the value of the under parameter as of the last call on
InitializeWindow for the window. If InitializeWindow has not been called, this procedure
returns FALSE.

window.lsDescendantOfRoot: PROC [window.Handle] RETURNS [BOOLEAN];

IsDescendantOfRoot determines if the window is currently a part of the tree rooted at
Window.rootWindow.

window.IsPlacelnBox: PROC [place: window.Place, box: window.Box] RETURNS [BOOLEAN];

IsPlacelnBox is a utility that determines whether place is inside box. Points on box’s
border are considered to be inside.

window.ObscuredBySibling: PROC [window.Handle] RETURNS [BOOLEAN];

ObscuredBySibling returns TRUE if and only if the box of an older sibling (one closer to the
top of the sibling stack) intersects window’s box.

window.RemoveFromTree: PROC [window.Handle];

RemoveFromTree removes the argument window and its children from the visible window
tree. (Most Tajo clients should never have to call this procedure.)

window.ROOt: PROC RETURNS [Window.Handle];
Root returns window.rootWindow.

window.SetBitmapUnder: PROC [
window: window.Handle, pointer: LONG POINTER &« NiL,
underChanged: window.UnderChangedProc « Nit,
mouseTransformer: window.MouseTransformerProc « NiL]
RETURNS [LONG POINTER];

SetBitmapUnder allows the client to specify a bitmap under for the window, allowing the
window package to maintain the pixels that would appear on the display if the window did
not exist. The window package can thus quickly adjust the display when the window is
removed from the tree without having to call the display procedure of all the (partially)
hidden windows. A client clears the data by passing in Nit for pointer. The old value of the
data pointer is returned, and the client can free it at that time. The allocation of an
appropriate amount of space is the caller’s responsibility (see
window.WordsForBitmapUnder.) The underChanged and mouseTransformer parameters
are ignored in the current release. While the bitmap under is in effect, the window’s size
cannot be changed. This procedure can raise Error[noUnderVariant].

window.SetChild: Proc [window, newChild: window.Handle]
RETURNS [oldChild: window.Handle];

Mesa Programmer’s Manual 24

SetChild allows you to change the value of window’s eldest child. This procedure should
not be called for a window that is part of the visible window tree: window.Error[inTree] will
be raised in this case. Use window.Stack instead.

window.SetClearingRequired: PROC [window: window.Handle, required: BOOLEAN]
RETURNS [old: BOOLEAN];

SetClearingRequired changes the value of the clearing required field in window. It
returns the old value of this field. '

window.SetDisplayProc: PROC [window.Handle, PrRoc [window.Handle]]
RETURNS [PROC [window.Handle}];

SetDisplayProc sets the window display procedure. It returns the old display procedure.

window.SetParent: Proc [window, newParent: window.Handle]
RETURNS [oldParent: Window.Handle];

SetParent allows you to change the value of window’s parent. This procedure should not
be called for a window that is part of the visible window tree: window.Error[inTree] will be
raised in this case. Use window.Stack instead.

window.SetSibling: PrROC [window, newSibling: window.Handle]
RETURNS [oldSibling: window.Handle];

SetSibling allows you to change the value of window’s eldest sibling. This procedure
should not be called for a window that is part of the visible window tree:
window.Error[inTree] will be raised in this case. Use window.Stack instead.

window.Slide: PrROC [window: window.Handle, newPlace: window.Place];

Slide changes window’s place within its parent. This procedure can be used for any child
movement. It can raise Error[whosSlidingRoot]. Tajo clients do not usually call this
procedure directly.

window.SlideAndSize: prOC [
window: window.Handle, newBox: window.Box, gravity: window.Gravity < nwl};

SlideAndSize changes both the place and the dims of window’s box relative to window’s
parent. (See Window.Gravity for the use of gravity in changing the size of a window.) The
window package tries to minimize the amount of repainting necessary. This procedure can
raise Error[sizingWithBitmapUnder] and Error[whosSlidingRoot]. Tajo clients do not
usually call this procedure directly.

window.SlideAndSizeAndStack: proc [
window: window.Handle, newBox: window.Box, newSibling: window.Handle,
newParent: window.Handle « NiL, gravity: window.Gravity « nw];

SlideAndSizeAndStack performs the SlideAndSize and Stack functions; that is, it changes
" both window’s box and window’s location in the window tree. This procedure can raise
Error[sizingWithBitmapUnder], ErrorfillegalStack], and Error[whosSlidingRoot]. Tajo
clients do not usually call this procedure directly.

24-7

24

Window

24-8

window.SlideAndStack: proC [
window: window.Handle, newPlace: window.Place, newSibling: window.Handle,
newParent: window.Handle « NiL];

SlideAndStack performs the Slide and Stack functions; that is, it changes both window’s
place and window’s location in the window tree. This procedure can raise
Error[illegalStack], and Error[whosSlidingRoot]. Tajo clients do not usually call this
procedure directly.

window.Slidelconically: pProc [window: window.Handle, newPlace: window.Place];
Slidelconically is not currently implemented.

Window.Stack: Proc[
window, newSibling: window.Handle, newParent: window.Handle « NiL];

Stack changes window’s location in the window tree. If newParent is not NiL, then window
is moved to be a child of newParent. The sibling list containing window is modified so
that window is now immediately above newsSibling in the stack. Supplying
newSibling=nNiL puts window on the bottom of the sibling stack. Unless window is
already on top, supplying newSibling = window.GetParent.GetChild puts window on the
top of the stack. If window is on top, the previous expression is a client error that is not
guarded against. This procedure can raise Error[illegalStack]. Tajo clients do not usually
call this procedure directly.

Window.TrimBoxStickouts: PrROC [
window: window.Handle, box: window.Box] RETURNS [window.BOXx];

TrimBoxStickouts returns a box that is the result of excluding any portion of box that
sticks out of window or its ancestors.

window.Validate: proC [window: window.Handle];
Validate calls window’s display procedure if window has any visible invalid regions.
window.ValidateTree: PrROC [window: window.Handle « window.rootWindow];

ValidateTree calls the display procedure for each window in the tree rooted at window
that has any visible invalid regions.

window.WordsForBitmapUnder: PrRoc [window: window.Handle] RETURNS [CARDINAL];

The WordsForBitmapUnder procedure returns the number of words of storage needed for a
bitmapUnder for a window the size of window.GetBox.dims.

25

Caret

25.1 Types

The Caret interface provides a way for clients to manage a blinking caret that marks the
insertion point. It is intended for clients implementing their own subwindow types. The
procedures in this interface create a caret, clear it, cause it to blink, and start or stop it
from blinking, regardless of which client is the current manager. A client can also
implement a set of actions to perform when another client forces it to relinquish control of
the caret.

This interface does not determine where a caret should be displayed, nor can it paint the
caret on the screen. The client must maintain the information necessary for positioning
and displaying the caret. Whenever an action is to be performed on the caret, client
procedures should not only implement the definition of the various caret actions but also
position and display it.

Caret.Action: TYPE = MACHINE DEPENDENT {
clear(0), mark(1), invert(2), start(3), stop(a), reset(s), firstFree(s), last(255)};

action defines the operations that can be performed on a caret.
clear removes the caret.

mark creates the caret and sets it to the on (positive) polarity.
invert sets it to off (negative) polarity.

start starts the caret blinking between the 0;1 and off polarities.
stop stops it from blinking.

reset causes the current owner to relinquish control of the caret.

firstFree is used internally by UniqueAction and should not be used by Tajo clients.

25-1

25

Caret

caret.ClientData: TYPE = LONG POINTER;
caret.MarkProcType: TYPE = PROCEDURE [data: Caret.ClientData, action: caret.Action];

A MarkProcType procedure is provided by the manager of a caret to execute actions on a
caret.

25.2 Constants and data objects

None.

25.3 Signals and errors

None.

25.4 Procedures

25-2

Caret.ActOn: PROCEDURE [Caret.Action];

The ActOn procedure allows clients to act on the current caret without regard to the
current owner.

caret.NopMarkerProc: caret. MarkProcType;

The NopMarkerProc procedure is used by a client that does not want to display anything
on the screen when it is the manager of the caret. It is passed as the marker parameter to
the Set procedure.

caret.ResetOnMatch: PROCEDURE [data: caret.ClientDatal;

The ResetOnMatch procedure allows a client to relinquish control of the blinking caret if
it is currently the owner. If data is NIL, no actions are performed. Simply doing a Caret.Set with
data set to NIL and a marker that is the NopMarkerProc does not accomplish the same effect because of race
conditions in an arbitrary pre-emption environment.

Caret.Set: PROCEDURE [data: caret.ClientData, marker: Caret.MarkProcType];

The Set procedure allows a client to become the manager of the caret. data is passed back
to marker whenever it is called. If a client does not want to mark the display when it is the
manager of the caret, it can use NopMarkerProc as its marker. If data is NiL, then the
caret’s current manager is forced to relinquish control. No client manages the caret until
the next Set operation is performed with a non-nil data value.

Caret.UniqueAction: PROCEDURE RETURNS [Caret.Action];

The UniqueAction procedure allows clients to define private actions. Implementors of
caret-marking procedures should thus ignore actions they do not implement.

26

Cursor

26.1 Types

The Cursor interface provides a procedural interface to the hardware mechanism that
implements the cursor on the screen. To prevent chaos, all tools must manipulate the
cursor through this interface.

Cursor.Defined: TYPE = Cursor.Type [activate..groundedText];

There is a distinction between user and system-manufactured cursors. To keep things
straight, clients may access system cursors only by their type. The range Defined contains
the system-manufactured cursors.

Cursor.Handle: TYPE = POINTER TO Cursor.Object;
Cursor.InfO: TYPE = RECORD [type: Cursor.Type, hotX: [0..16), hotY: [0..16)];
Cursor.Object: TYPE = RECORD [info: Cursor.Info, array: userTerminal.CursorArray];

The cursor facilities define an Object that contains a cursor type, a specification of which
bit in the cursor is to be considered "hot", and a 16-by-16 array of bits that is the bitmap for
the cursor (i.e., the array of bits that are or'ed into the display). When the cursor is on the
screen, the "hot" bit is the place to which the cursor points.

Cursor.Type: TYPE = MACHINE DEPENDENT{
activate(0), blank(1), bullseye(2), confirm(3), crossHairsCircle(a), ftp(s), ftpBoxes(s),
hourGlass(7), lib(s), menu(9), mouseRed(10), mouseYellow(11), mouseBlue(12), mtp(13),
pointDown(1a), pointLeft(15), pointRight(16),pointUp(17), questionMark(18), retry(19),
scrollDown(20), scrollLeft(21), scrollLeftRight(22), scrollRight(23), scrollUp(24),
scrollUpDown(25), textPointer(26), typeKey(27), groundedText(28), last(3778)};

26.2 Constants and data objects

The cursors in the subrange Type[activate..groundedText] are built in (system supplied).
Some special notes on what some of the built-in cursors look like follow:

261

26

Cursor

activate used by the Librarian interface to indicate that a libject is being
activated. LLIB is in the upper half, ACT in the lower.

ftp used to indicate a file transfer in progress. FTP is along the diagonal
from the upper left to the lower right; triangles are in in the lower-left
and upper-right corners.

ftpBoxes also used to indicate a file transfer in progress. Black quadrants are in
the upper left and lower right, white quadrants elsewhere.

lib used to indicate a Librarian transaction in progress. LIB is along the
diagonal from the upper left to the lower right; triangles are in the lower-
left and upper-right corners.

mouseRed a three-button mouse with the left button highlighted.

mouseYellow athree-button mouse with the center button highlighted.
mouseBlue a three-button mouse with the right button highlighted.
textPointer an arrow pointing up and to the left.

groundedText a textPointer with a small bar though the tail.

26.3 Signals and errors

None.

26.4 Procedures

26-2

Cursor.Fetch: PROCEDURE [Cursor.Handle];

The Fetch procedure copies the current cursor object into the cursor object pointed to by
Handle.

Cursor.FetchFromType: PROCEDURE [cursor: Cursor.Handle, type: Cursor.Defined];

The FetchFromType procedure copies the cursor object corresponding to type into the
cursor object pointed to by Handle.

Cursor.Getinfo: PROCEDURE RETURNS [Cursor.Info];
The Getinfo procedure allows clients to find out about the current cursor.
Cursor.Invert: PROCEDURE RETURNS [BOOLEAN];

The Invert procedure makes each white bit in the current cursor black, and vice versa. It
returns TRUE if the new state of the cursor is positive.

Mesa Programmer’s Manual 26

cursor.MakeNegative: PROCEDURE;
The MakeNegative procedure is equivalent to MakePositive followed by Invert.
Cursor.MakePositive: PROCEDURE;

The MakePositive procedure restores the current cursor's polarity to be as if a Set or Store
had just been done.

Cursor.MovelntoWindow: PROCEDURE |
window: window.Handle, place: window.Place};

The MoveintoWindow procedure causes the cursor to appear at place in window.
Cursor.Set: PROCEDURE [Cursor.Defined];

The Set procedure sets the displayed cursor to be one of the system-defined cursors.
Cursor.Store: PROCEDURE [Cursor.Handle];

The Store procedure sets the displayed cursor to be a client-defined cursor.

Cursor.Swap: PROCEDURE [old, new: Cursor.Handle];

The Swap procedure places the old cursor object in to old T and Stores the new cursor.
Cursor.UniqueType: PROCEDURE RETURNS [Cursor. Type];

The UniqueType procedure lets clients assign a unique type to their defined cursors. It

returns a Cursor.Type that is different from all predefined types as well as different from
any that has previously been returned by UniqueType.

26-3

26 Cursor

26-4

27

Menu

27.1 Types

The Menu interface gives a tool writer control over which menus the user sees and what
actions an individual menu item performs. The General Tools section of the XDE User's
Guide describes how menus appear to the user and how to interact with them.

Menu.EnumerateFor: Type = {all, inSW, availableinSW};

EnumerateFor is used to control which menus will be passed back to you by Enumerate.
all all menus instantiated with a window should be enumerated.

inSW only menus instantiated with a subwindow are enumerated.

availableInSW all menus that the user could display for a subwindow are enumerated
(including the system menus and menus instantiated on the Tool
window).

Menu.EnumerateProcType: TYPE =
PROCEDURE [window: window.Handle, menu: Menu.Handle]
RETURNS [stOop: BOOLEAN];

This procedure type is used with the Enumerate procedure. window is the window to
which menu is attached, and menu is one of the menus that are being enumerated. If stop
is TRUE, the enumeration is terminated.

Menu.Handle: TYPE = LONG POINTER TO Menu.Object;

Most procedures in the Menu interface take a Handle as an argument.

Menu.ltemHandle: TYPE = LONG POINTER TO Menu.ltemObject;

ItemHandle is not used by the Menu package but is provided as a convenience to the client.

Menu.ltemObject: TYPE = RECORD [
keyword: LONG STRING, mcrProc: Menu.MCRType];

27-1

27

Menu

Each menu item has a keyword (a string of characters) and a Menu Command Routine
(MCR) associated with it.

Menu.ltems: TYPE = LONG DESCRIPTOR FOR ARRAY OF Menu.ltemObject;

A variable of type Items is a parameter to the Create operation. This variable is stored in
Object; the data referenced by Items (the keywords and procedures) must not be
deallocated until the menu is destroyed.

Menu.MCRType: TYPE = PROCEDURE [
window: wWindow.Handle e« nNiL, menu: Menu.Handle «nit,
index: CARDINAL «— LAST[CARDINAL]];

A Menu Command Routine (MCR) is a procedure that is called when the user invokes the
associated menu item. index allows the procedure to determine which menu item was
selected. Clients have often found that using one MCR per menu is useful because only one large catch phrase

need be written to handle common exception cases.

Menu.Object: TYPE = RECORD [
permanent: BOOLEAN,
ninstances: CARDINAL [0..77777B],
name: LONG STRING,
items: Menu.ltems];

The Object contains the normally invariant data associated with a menu. An unlimited
number of menus may be associated (instantiated) with the Tool window or any
subwindow. The menu mechanism maintains a ring of menu instances (pointers to
associated menus) for each subwindow (if there is at least one associated menu). One of
these associated menus is taken to be the "current” menu for that subwindow. Some
menus (at least the system global ones) want to be available from virtually every
subwindow. This could be accomplished by creating an Object for each use, but the
primary memory cost-of multiple copies of an Object is large. In addition, you may want to
dynamically alter the items contained in menus (such as lists of available fonts). As a
result, a level of indirection is used. Thus, Tajo never copies a client's Object; instead it
always keeps a pointer to that Object. It is the client's responsibility to guarantee that the
Object is valid as long as Tajo has a pointer to it. The client should only Make or Create a
menu once, but you may Instantiate that menu over as many windows as you like. Objects
are created and destroyed by the menu implementation.

27.2 Constants and data objects

None.

27.3 Signals and errors

27-2

Menu.Error: eRROR [code: Menu.ErrorCode];

Menu.ErrorCode: TYPe = {
isinstantiated, alreadylnstantiated, notinstantiated, contextNotAvailable,
isPermanent, other};

Mesa Programmer’s Manual 27

isinstantiated a client is attempting to destroy a menu that is currently
instantiated by the user.

alreadylinstantiated a client is attempting to instantiate a menu that is already
instantiated.

notinstantiated a client is attempting to un-instantiate a menu that is not
instantiated.

contextNotAvailable Tajo has detected an internal inconsistency in its data structures.

isPermanent a client is attempting to destroy a permanent menu.

27.4 Procedures

Menu.Create: PROCEDURE [
items: Menu.ltems, name: LONG STRING, permanent: BOOLEAN ¢ FALSE]
RETURNS [Menu.Handle];

The Create procedure allows a tool to create a menu. It returns a pointer to a menu Object
named name, which is made up of items. The permanent flag indicates whether the
created object can subsequently be destroyed. Ownership of items is passed to the menu
mechanism. name is copied and you retain ownership of the original string, which may be
a local STRING.

Menu.Destroy: PROCEDURE [Menu.Handle];

The Destroy procedure allows a tool to destroy a menu. It deallocates storage for the
Object pointed to by Handle. It first verifies that the Object has an instantiation count =
0; if not, the ERROR Error[isinstantiated] is generated. See Instantiate and Uninstantiate. If
the menu is permanent, the ERROR Error[isPermanent] is generated.

Menu.Enumerate: PROCEDURE |
window: window.Handle, which: menu.EnumerateFor,
proc: Menu.EnumerateProcType);

The Enumerate procedure enumerates the menus instantiated with a window. The which
argument specifies which menus that proc will be called with during the enumeration. If
which is all, window is expected to be a Tool window and all the menus instantiated with
window are enumerated. If which is inSW, window is expected to be a subwindow and all
the menus instantiated with the subwindow are enumerated. If which is availableinSW,
window is expected to be a subwindow and all the menus that you could display are
enumerated (this includes the system menus and menus instantiated on the Tool window).
If TRUE is returned from proc, the enumeration is terminated.

Menu.Free: PROCEDURE [menu: Menu.Handle, freeStrings: BOOLEAN ¢« TRUE];
The Free procedure frees a menu, optionally freeing the copied strings. Free is the

complement of Make. After freeing the items that were created in the call to Make,
Destroy is called.

27-3

27

Menu

27-4

Menu.Freeltem: PROCEDURE [Menu.ltemObject];

The Freeltem procedure frees a menu item.

Menu.GetFont: PROCEDURE RETURNS [font: windowFont.Handle];

The GetFont procedure allows a tool to get a handle for the font used for menus.
Menu.lnstantiate: PROCEDURE [menu: Menu.Handle, window: window.Handle];

The menus chosen for display depend on the window that the cursor is over. This allows
the displayed menu stack to vary, depending on the window layout. The Instantiate
procedure associates the menu with the passed window so it will be displayed when the
cursor is over that window. [t also increments a use count in menu. If this is the first menu
to be instantiated in window, the window manager menu is also instantiated. If menu is
NiL,only the system global window manager menu is instantiated. If menu is already
instantiated, the ERROR Error[alreadylinstantiated] is generated. Uninstantiate is the
complement of Instantiate.

Menu.Invoke: PROCEDURE [window: window.Handle, place: window.Place];

Invoke displays the menu stack that is available at that place in the window. This is
normally called from a TIp.NotifyProc (see the TIP chapter).

Menu.Make: PROCEDURE [
name: LONG STRING, strings: LONG DESCRIPTOR FOR ARRAY OF LONG STRING,
mcrProc: Menu.MCRType, copyStrings: BOOLEAN ¢ TRUE,
permanent: BOOLEAN ¢« FALSE]
RETURNS [Menu.Handle];

The Make procedure makes a menu named name that has the elements contained in
strings. When one of the strings is selected, the mcrProc is called, indicating the index of
the string in the array. The permanent flag indicates whether the created object can
subsequently be destroyed. The copyStrings flag indicates whether strings should be
copied into the system heap. Free is the complement of Make. Make is usually followed by
Instantiate.

Menu.Makeltem: PROCEDURE [keyword: LONG STRING, mcrProc: Menu.MCRType] RETURNS
[Menu.ltemObject];

The Makeltem procedure makes a menu item. keyword is copied and may be a local
STRING.

Menu.MCRForKeyword: PROCEDURE [
sw: Window.Handle, menuName, keyword: LONG STRING]
RETURNS [mcr: Menu.MCRType, menu: Menu.Handle, index: CARDINAL];

The MCRForKeyword procedure allows the client to get the arguments necessary to
invoke a menu item knowing only the subwindow, menu name, and item name. If the

menu item is not found, the ERROR Error[notinstantiated] is generated.

Menu.SetFont: PROCEDURE [font: windowFont.Handle];

Mesa Programmer’s Manual 27

The SetFont procedure allows a tool 1o set the font used for all menus.
Menu.SetPNR: PROCEDURE [window: window.Handle];

If a window is not managed by Tajo (if it is a client-defined window type), the client may
set the standard menu PNR by calling the SetPNR procedure. If a window is managed by
Tajo, the standard menu PNR is already set up. (See also PNR.)

Menu.Uninstantiate: PROCEDURE [menu: Menu.Handle, window: window.Handle];

The menus chosen for display depend on the window that the cursor is over. This allows
the displayed menu stack to vary, depending on the window layout. The Uninstantiate
procedure removes menu from the window so it will not be displayed when the cursor is
over this window. It also decrements its use count. Eventual deallocation of the menu
must be performed by the client. If this menu is not instantiated with this window, then
the ERROR Error[notinstantiated] is generated. It is also possible that the ERROR
Error[contextNotAvailable] will be generated, indicating that Tajo has detected an
internal inconsistency in its data structures.

27.5 Examples

For an example of how to use menus, see ExampleTool in Appendix A.

27-5

27

Menu

27-6

28

Scrollbar

28.1 Types

The Scrollbar interface provides a consistent user interface and mechanism for specifying
and invoking scroll actions. It does not scroll (move bits on the screen).

scrolibar.Direction: TYPe = {forward, backward, relative};
A Direction is used to specify the type of scrolling requested.

forward scrolls the window so that data near the bottom (right) of the window is
moved toward the top (left).

backward scrolls the window so that data near the top (left) of the window is moved
toward the bottom (right).

relative indicates that the window should display the data at a relative location in the
underlying source.

Scrollbar.Percent: TYpe = [0..100];

Percent controls the amount of information scrolled or the location in the file to be
displayed. (See ScrollProcType for the interaction between the interpretation of Direction
and Percent) It is possible to overflow when multiplying a Percent with a
window.box.dims.w while converting between percentage locations and coordinates.

Scrolibar.ScrollbarProcType: TYPE = PROCEDURE [window: window.Handle]
RETURNS [box: window.Box, offset, portion: Scrollbar.Percent];

A ScrollbarProcType procedure gets the scrollbar data from the client to display it. box is
the region of window occupied by the scrollbar; offset is the relative position in the file
occupied by the first character in the window and portion is the percentage of the file
displayed (the percentage of the file represented by the offset of the last character in the
window minus the offset of the first character of the window).

28-1

28

Scrollbar

Scrollbar.ScrollProcType: TYPE = PROCEDURE [
window: window.Handle, direction: Scrollbar.Direction,
percent: Scrolibar.Percent];

A ScrollProcType procedure communicates to the client a user's scroll request. window is
the window in which the scrollbar was created, and direction is the direction of scrolling
desired. If direction is relative, percent specifies the location in the file to display; for
example, 0 is the beginning, 100 is the end, and 50 is the middle. If direction is not
relative, percent is the amount of the window to be scrolled; for example, 0 means “don't
scroll at all,” 100 means “scroll one window contents,” 50 means “scroll so that half of the
current window contents is still displayed.”

Scrolibar.Type: TYPE = {horizontal, vertical};

Type indicates whether the scrollbar controls the up-down movement of data (vertical) or
the left-right movement (horizontal).

28.2 Constants and data objects

None.

28.3 Signals and errors

Scrollbar.Error: ERROR [code: Scrollbar.ErrorCode];
Scrolibar.ErrorCode: Tyre = {alreadyExists, doesNotExist, other};

aireadyExists the client is attempting to add to a window a scrollbar of a type that
already exists on that window.

doesNotExist = is raised by GetNotifier and SetNotifier if no scrollbar exists on the
window in question.

other is not used.

28.4 Procedures

28-2

Scrollbar.Adjust: PROCEDURE [window: window.Handle, box: window.BOX] RETURNS [
clientBox: Window.Box,
verticalWindow: Window.Handle, verticalBox: Window.Box,
horizontalWindow: Window.Handle, horizontalBox: Window.Box];

Adjust is used by the client whenever it changes the size or position of a subwindow that
has scrollbars. The client calculates the box to contain both the subwindow and its
scrollbar windows. clientBox describes the area that the subwindow (minus the scrollbars)
should actually occupy. verticalWindow is the window used to display the vertical
scrollbar, and verticalBox is the region that verticalWindow should occupy.
horizontalWindow and horizontalBox are similar. verticalWindow or horizontalWindow
is NiL if that type of scrollbar does not exist for the subwindow. (If the subwindow has no
scrollbars, then both verticalWindow and horizontalWindow are NiL and clientBox equals

Mesa Programmer’s Manual 28

box.) The client must use this information for the actual window.SlideAndSize for its
subwindow and each of the scrollbar windows.

Scrollbar.Create: PROCEDURE [
window: window.Handle, type: scrollbar. Type, scroll: scrollbar.ScrollProcType, scrollbar:
Scrolibar.ScrollbarProcType, notify: Scrollbar.ScrollProcType « NiL];

Create creates a scrollbar in the subwindow window for vertical or horizontal scroll
functions. scroll is called to request a scrolling action. scrollbar is called to obtain
information about the scrollbar and its window. notify is called every time a scrolling
action occurs; it permits the client to monitor scrolling actions. If Create is called for a
subwindow that already has a scrollbar of that type, the error Error[alreadyExists] is
generated.

Scrollbar.Destroy: PROCEDURE [window: window.Handle, type: Scrollbar. Type];

Destroy deletes a scrollbar. If Destroy is called for a subwindow that has no scrollbar of
that type, no operation is performed.

Scrollbar.GetNatifier: PROCEDURE [window: window.Handle, type: scrollbar.Type]
RETURNS [Scrollbar.ScrollProcType];

GetNotifier is called to find out what notify procedure has been associated with window
and type.

Scrollbar.HasScrollbar: PROCEDURE [
window: window.Handle, type: Scrollbar. Type] RETURNS [BOOLEAN];

HasScrollbar returns a TRUE if and only if window has a scrollbar of type type.
Scrollbar.SetNotifier: PROCEDURE [
window: window.Handle, type: scrollbar.Type, notify: scrolibar.ScrollProcType]

RETURNS [Scrollbar.ScrollProcType];

SetNotifier is called to change the notify procedure associated with window and type. It
returns the old notify procedure.

Scrolibar. WindowNowDelinked: PROCEDURE [window: window.Handle];

WindowNowDelinked is used by the client when it removes a subwindow from a tool
without destroying the scrollbar property associated with that window.

Scrollbar. WindowNowEnlinked: PROCEDURE [window: window.Handle];

WindowNoweEnlinked gets the scrollbar windows attached to the tool window when the
client has inserted its window back as a son of the tool window.

28.5 Discussion

Clients of the Tool interface should not have to call Adjust, WindowNowDelinked, or
WindowNoweEnlinked.

28-3

28 Scrollbar

28-4

29

Selection

29.1 Types

The Selection interface is the mechanism that communicates the current selection among
various tools. It is the responsibility of a client of this interface to provide for actual
selection of text or graphics within its window(s). The client window containing the
current selection is referred to as the manager of the current selection. The Selection
interface also defines two abstractions known as the ¢rashbin and the insertion. The trash
bin saves the most recent text cuts for subsequent pastes. The insertion saves the most
recent text inserted into a text subwindow. (Note that text inserted elsewhere, such as
form subwindows, is not saved.)

Two classes of clients use the Selection interface. Most commonly, tools that wish to
obtain the value of the current selectioncall Convert (or maybe (Long)Number, which in
turn calls Convert). These tools need not be concerned with the details of how selection
happens. There is one slightly tricky concept for such tools to understand--if they want the
selection as a STRING, they should also be prepared to get the selection as a Source in case it
is longer than Selection.maxStringLength.

The other class is those clients who wish to manage the current selection. In this case, the
tool calls Selection.Set and provides procedures that may be called to convert the selection or
perform various actions on it. The tool remains in control of the current selection until
some other tool calls Selection.Set.

Selection.Action: TYPE = MACHINE DEPENDENT {
clear(0), mark(1), unmark(2), delete(3), clearifHasinsert(a), firstFree(5), last(255)};

clear "unselects" and dehighlights the current selection.

mark highlights the current selection.

unmark dehighlights the current selection.

delete deletes the contents of the current selection. The manager of the

current selection may decide against actually deleting it.

29-1

29

Selection

29-2

clearlfHaslnsert same as clear, but only if the insertion point is in the selection.
firstFree is used internally by UniqueAction and should not be used by clients.

Selection.ActOnProcType: TYPE = PROCEDURE [
data: selection.ClientData, action: Selection.Action];

ActOnProcType procedures are provided by the manager of the selection to handle actions.
Selection.ClearTrashBinProcType: TYPE = PROCEDURE [data: Selection.ClientDatal;

ClearTrashBinProcType procedures are provided by the manager of the trashbin or the
insertion.

selection.ClientData: TYPE = LONG POINTER;

Selection.ConvertProcType: TYPE = PROCEDURE [
data: Selection.ClientData, target: Selection.Target] RETURNS [LONG POINTER];

ConvertProcType procedures are provided by the manager of the selection, trashbin, or
insertion to implement Convert.

Selection.DestroyProc: TYPE = PROCEDURE [source: Selection.Source];

DestroyProc procedures are provided for clean-up when a manager ceases to be the
manager of the selection, trashbin, or insertion (when Selection.Set is called again).

Selection.Source: TYPE = LONG POINTER TO Selection.SourceObject;

Selection.SourceObject: TYPE = RECORD [
data: LONG POINTER TO UNSPECIFIED, proc: Selection.SourceProc,
destroy: Selection.DestroyProc];

The Source mechanism processes textual selections that are longer than a few hundred
characters. It works as follows: The client asks for the current selection to be converted as
a Source by calling Convert with a Selection.Target of source. The manager of the current
selection creates an instance of the Source data structure and returns a pointer to it to the
client. The client then makes repeated calls on proc, supplying a string of arbitrary size.
The manager of the current selection fills the string with text and returns. The manager
does not need to fill the string completely, but it must return some data with each call, as
end-of-selection is indicated by returning an empty string. When the client receives a zero-
length string, it must call the destroy procedure supplied in the SourceObject; otherwise,
the space allocated for the source is lost.

Selection.SourceProc: TYPE = PROCEDURE [
data: Selection.ClientData, string: LONG STRING];

SourceProc procedures are contained in Selection.SourceObjects, and are called by client
procedures to have string filled with characters from the selection. The data that is passed
to the SourceProc should be the data field of the SourceObject that contains the
SourceProc. The selection source need not completely fill string, but must return at least
one character unless the source is exhausted.

Mesa Programmer’s Manual 29

Selection.Target: TYPE = MACHINE DEPENDENT{
window(0), subwindow(1), string(2), source(3), length(a), position(s), pieceList(6),
longinteger(7), interpressMaster(s), potentialinterpressMaster(9), token(10),
firstFree(11), last(255)};

Target describes the type of data to which a selection may be converted (see Convert).
Tools that manage the current selection (by calling Selection.Set) may choose not to
implement conversion to some (or all) of these types:

window returns a Window.Handle to the window containing the
selection.
subwindow returns a Window.Handle to the subwindow containing

the selection.

string returns a LONG STRING allocated from the system heap
that contains a copy of the selection. If the current
selection is too large, the manager of the selection may
return NIL when asked to convert to a string. The client
program should then ask for the selection as a source.

source returns a Selection.Source on the selection.

length returns a LONG POINTER TO LONG CARDINAL containing the
length of the selection in characters.

position returns a LONG POINTER TO LONG CARDINAL containing the
position in the source.

pieceList returns a list of pieces, understood by the internals of
PieceSource.

longinteger returns LONG POINTER TO LONG INTEGER containing the
result of converting the contents of the selection to a
number.

interpressMaster converts the contents of the selection into an Interpress
master.

potentialinterpressMaster returns NiL if the manager is not willing to produce an
Interpress master, or a non-NiL pointer (to an otherwise
uninteresting small quantity) if it is willing. Even
though the quantity is uninteresting, the client must
free it to the system heap, or storage will be lost
(Convert uniformly returns a legitimate pointer to
storage that the client should free.)

token returns a LONG STRING allocated from the system heap
that contains the first token of the current selection.
What constitutes a token is not defined by the
Selection interface; all that is necessary is that the
manager and a client agreed to a definition .

29-3

29

Selection

firstFree is used internally by UniqueTarget and should not be
) used by clients.

Only the following targets are supported by the standard Tajo selection manager: length,
source, string (only if the length is less than Selection.maxStringlength characters),
subwindow, window.

29.2 Constants and data objects

Selection.maxStringLength: CARDINAL = 200;

maxStringlength is the largest string that can be produced by Convert.

29.3 Signals and errors

None.

29.4 Procedures

29-4

Selection.ActOn: PROCEDURE [Selection.Action];

The ActOn procedure communicates a request for an action to the manager of the current
selection. (See also UniqueAction.)

Selection.Clear: PROCEDURE;

The Clear procedure requests that the current selection be cleared. It is equivalent to
calling Selection.ActOn[clear].

selection.ClearinsertionOnMatch: PROCEDURE [pointer: LONG POINTER];

It is sometimes difficult to determine if you are the manager of the current insertion. The
ClearinsertionOnMatch procedure will clear the current selection if and only if the client
is the current owner. A client is the current owner if pointer is equal to the latest pointer
that was passed into Setinsertion.

Selection.ClearOnMatch: PROCEDURE [pointer: LONG POINTER];

It is sometimes difficult to determine if you are the manager of the current selection. The
ClearOnMatch procedure will clear the current selection if and only if the client is the
current owner. A client is the current owner if pointer is equal to the latest pointer that
was passed into Set.

Selection.Convert: PROCEDURE [Selection. Target] RETURNS [LONG POINTER];

The Convert procedure will perform the requested conversion and return a LONG POINTER to
the data. The data returned for many types of items is allocated out of the system heap.
The storage ownership is passed to the recipient, which must deallocate it. (See Target for
the effect of different conversion targets.) NIL is returned if the manager of the current
selection does not implement the desired conversion. (See also SourceObject.)

Mesa Programmer’s Manual 29

Selection.Convertinsertion: PROCEDURE [Selection.Target] RETURNS [LONG POINTER];
The Convertinsertion procedure converts the contents of the insertion like Convert.
Selection.ConvertTrashBin: PROCEDURE [Selection.Target] RETURNS [LONG POINTER];
The ConvertTrashBin procedure converts the contents of the trash bin like Convert.
Selection.LongNumber: PROCEDURE [radix: CARDINAL ¢« 10] RETURNS [LONG CARDINAL];
The LongNumber procedure will perform the requested conversion to a number. If the
current selection is not acceptable to the Mesa runtime, then String.InvalidNumber will be
raised by the runtime and allowed to propagate through these procedures.
Selection.Number: PROCEDURE [radix: CARDINAL < 10] RETURNS [CARDINAL];
The Number procedure will perform the requested conversion to a number. If the current
selection is not acceptable to the Mesa runtime as a number, then String.InvalidNumber
will be raised by the runtime and allowed to propagate through these procedures
Selection.Set: PROCEDURE [

pointer: LONG POINTER, conversion: Selection.ConvertProcType,

actOn: selection.ActOnProcType];
The Set procedure allows a client to become the manager of the current selection by
supplying the Selection interface with a pair of procedures. The ActOnProcType is called
to modify the current selection. The ConvertProcType is called to get the value of the
current selection. The value of pointer passed to Set will be used as the data argument in
calls to conversion or actOn.
Selection.Setlnsertion: PROCEDURE [

pointer: LONG POINTER, conversion: Selection.ConvertProcType,

clear: selection.ClearTrashBinProcType];
The Setinsertion procedure allows a client to become the owner of the insertion.
Selection.SetTrashBin: PROCEDURE |

pointer: LONG POINTER, conversion: Selection.ConvertProcType,

clear: selection.ClearTrashBinProcType];
The SetTrashBin procedure allows a client to become the owner of the trashbin.

Selection.UniqueAction: PROCEDURE RETURNS [Selection.Action];

The UniqueAction procedure allows a client to define its own private operations on the
selection. It returns a new Action in [firstFree..last].

Selection.UniqueTarget: PROCEDURE RETURNS [Selection.Target];

The UniqueTarget procedure allows a client to define its own private conversion type. It
returns a new Target in [firstFree..last].

29-5

29 Selection

29-6

30

ToolFont

30.1 Types

The ToolFont interface provides Tajo's interface to the WindowFont facilities. These
routines provide font storage management. (See also WindowFont.)

None.

30.2 Constants and data objects

None.

30.3 Signals and errors

None.

30.4 Procedures

ToolFont.Create: PROCEDURE [MFile.Handle] RETURNS [WindowFont.Handle];

The Create procedure allocates a font object and initializes it. Do not call Create if
MFile.Handle is NIL; it causes an error in MSegment.

ToolFont.Destroy: PROCEDURE [WindowFont.Handle];

The Destroy procedure destoys the data segment and font object. Do not call Destroy with
a NIL WindowFont.Handle; it causes an address fault. ’

ToolFont.StringWidth: PROCEDURE [
string: LONG STRING, font: windowFont.Handle & NiL] RETURNS [[0..LAST[INTEGER]]];

The StringWidth procedure computes the width of string in font font. If font is NIL, the
default font is used (see windowFont.SetDefault). If the width of string in the given font is
wider than can be represented in an INTEGER, the return value will be meaningless. This
routine maps non-printing characters (such as control characters.) into a font-specific
default character. If string is NiL, an address fault results.

30-1

30

ToolFont

30-2

31

WindowFont

31.1 Types

The WindowFont interface converts .strike fonts into a representation that makes it
more convenient for Tajo’s window package to display characters.

WindowFont.Handle: TYPE = LONG POINTER TO WindowFont.Object;

The text-painting procedures of the Display interface take as an argument a Handle on an
object from WindowFont. Most of the fields of a Handle are private to the implementation.

WindowFont.Object: TYPE = RECORD [
height: [0..7777B] « NuLL,
kerned: BOOLEAN « FALSE,
width: PACKED ARRAY CHARACTER [0C..377C] OF [0..255] « AaLL[O],
raster: CARDINAL ¢ NULL,
maxWidth: CARDINAL & NULL,
min, max: CHARACTER & NULL,
address: LONG POINTER,
bitmap: LONG POINTER TO ARRAY [0..0) OF WORD ¢~ NULL,
xinSegment: LONG POINTER TO ARRAY CHARACTER [0C..0C) OF
CARDINAL & NULL];

The bits within the font object that define the character pictures are private to the
implementation. The public interfaces only allow the client to determine the sizes of the

characters in screen dots.

Each of the measurement values in Object is in units of bits.

height is the font height.

kerned must be FALSE, because fonts are not supported by the window package.
width contains the width of each character.

raster is the width of the bitmap.

311

31

WindowFont

maxwidth is the width of the widest character in the font.

min, max are the lowest and highest characters that exist in the font, respectively.
address is the address in memory of the first word of the . strike font.

bitmap is the address of the first word of the actual data for the character pictures.

xinSegment contains the number of bits from the beginning of bitmap to the left edge of
the character, for each character in the font.

31.2 Constants and data objects

windowFont.defaultFont: READONLY windowFont.Handle;

31.3 Signals and errors

WwindowFont.Error: ERROR [code: WindowFont.ErrorCode];

windowFont.ErrorCode: Tvpe = {illegalFormat};

31.4 Procedures

31-2

windowFont.CharlsDefined: proc [
char: CHARACTER, font: windowFont.Handle « windowFont.defaultFont]
RETURNS [BOOLEAN];

CharlsDefined returns TRUE if a picture exists for char, FALSE otherwise. If font is NiL, the
defaultFont is used.

windowFont.CharWidth: proc | ‘
char: CHARACTER, font: windowFont.Handle « windowFont.defaultFont]
RETURNS [NATURAL];

CharWidth allows the client to determine the width of a character in screen dots. A font
argument of NiL for these routines means use the defaultFont.

WindowFont.FontHeight: PrOC [
font: windowfont.Handle « windowFont.defaultFont] RETURNS [NATURAL];

FontHeight allows the client to determine the height of the characters in a font in screen
dots. A font argument of NIL for these routines means use the defaultFont.

WindowFont.Initialize: PrROC [font: windowFont.Handle];

The Initialize procedure creates an internal font of the client's choice. font points to a font
record that is at least Object.sizé words long. The client is responsible for setting
font.address before calling Initialize. This address must point to the first word in memory
of a .strike font. This implies, of course, that font cannot be NiL. Tajo clients do not
usually call this procedure. (See TajoFont.Create for a more convenient way of initializing
fonts.)

31

Mesa Programmer’s Manual

windowFont.SetDefault: Proc [font: windowFont.Handle];

The SetDefault procedure sets the defaultFont to be font. Using defaultFont before this
procedure has been called is a client error. Tajo clients do not usually call this procedure.

31-3

31

WindowFont

31-4

32

AsciiSink

This interface implements a text sink that outputs Ascii text. (See TextSink for a
description of text sinks.)

32.1 Types
AsciiSink.TabStops: TYPE = LONG DESCRIPTOR FOR ARRAY OF CARDINAL;

TabStops describes the tab settings for text output through an AsciiSink. Each element of
the array specifies the number of pixels from the left margin for that tab stop.

32.2 Constants and data objects

None.

32.3 Signals and errors

None.

32.4 Procedures
AsciiSink.Create: PrROC [font: windowFont.Handle] RETURNS [TextSink.Handle];
Create takes a font to be used for output and returns a TextSink.Handle.
AsciiSink.GetTabs: PROC [sink: Textsink.Handle] RETURNS [AsciiSink. TabStops];

GetTabs returns the current tab stops for sink. A returned value of NIL. means that the
default tab stops (one every eight spaces) are in effect.

Asciisink.Info: PROC [sink: Textsink.Handle] RETURNS [font: windowFont.Handle];

Info returns the font with which the sink was created.

321

32

AsciiSink

32-2

AsciiSink.Islt: PROC [sink: Textsink.Handle] RETURNS [BOOLEAN];
Islt returns TRUE if this sink is an AsciiSink (created by Asciisink.Create) and FALSE otherwise.
AsciiSink.SetTabs: pProC [sink: Textsink.Handle, tabStops: Asciisink.TabStops « NiL];

SetTabs sets the tab stops for sink. If tabStops is defaulted, the default tab stops (one
every eight spaces) are set.

33

BlockSource

This interface creates a text source (see TextSource) that is backed by an Environment.Block
of Ascii characters. It is the same as a scratch source (see ScratchSource) with an access of
read-only.

33.1 Types
BlockSource.Block: TYPE = Environment.Block;

BlockSource.Handle: TYPE = TextSource.Handle;

33.2 Constants and Data Objects

None.

33.3 Signals and Errors

None are defined by this interface; however, TextSource.Error can be raised by the procedure
Info.

33.4 Procedures

BlockSource.Create: PROCEDURE |
block: BlockSource.Block] RETURNS [source: BlockSource.Handle];

The Create procedure creates a block source. The characters in the block must not change
as long as the source is using that block.

BlockSource.lnfo: PROCEDURE [
source: BlockSource.Handle] RETURNS [block: BlockSource.Block];

Info returns the block backing the block source. source cannot be NiL. This procedure raises
TextSource.Error[other] if source is not a pointer to a block source.

33-1

33

BlockSource

33-2

BlockSource.lslt: PROCEDURE [source: BlockSource.Handle] RETURNS [yes: BOOLEAN];
Isit returns TRUE if the Handle is a block source and FALSE otherwise. source cannot be NiL.
BlockSource.Set: PROCEDURE [source: BlockSource.Handle, block: BlockSource.Block];

Set changes the block backing the block sources; the old block is not deallocated. source
cannot be NiL.

34

DiskSource

The DiskSource interface creates a text source (see the TextSource chapter) that is backed
by a stream or a file in the local file system.

34.1 Types

None.

34.2 Constants and data objects

None.

34.3 Signals and error§

None.

34.4 Procedures

DiskSource.Create: PROCEDURE [
name: LONG STRING, access: TextSource.Access, s: Stream.Handle « niL]
RETURNS [source: TextSource.Handle];

The Create procedure creates a disk source. If s is not NiL, it is used as the stream backing
the source. If s is NIL, a stream is opened on the file name. access may be either read or
append. This procedure may raise TextSource.Error|..., accessError, fileNameError, ...].

DiskSource.Info: PROCEDURE [source: TextSource.Handle]
RETURNS [name: LONG STRING, s: Stream.Handle, access: TextSource.Access];

The Info procedure returns the name of the file backing the disk source, the stream
backing the source, and the access on the source.

DiskSource.Islt: PROCEDURE [source: TextSource.Handle] RETURNS [BOOLEAN];

The Islt procedure returns TRUE if the Handle is a disk source and FALSE otherwise.

34-1

34

DiskSource

34-2

DiskSource.Rename: PROCEDURE [
source: TextSource.Handle, newName: LONG STRING, access: TextSource.Access]
RETURNS [TextSource.Handle];

The Rename procedure renames a currently existing disk source. The current disk source
is destroyed and a disk source for the new file, with the specified access, is created. This
procedure may raise TextSource.Error[..., accessError, fileNameError, ...]. source cannot be
NIL.

DiskSource.SetMaxDiskLength: PROCEDURE [
source: TextSource.Handle, maxLength: LONG CARDINAL];

The SetMaxDiskLength procedure provides a way to implement circular files, which are
particularly useful for logs. When the source reaches maxLength characters in length, it
starts over at the beginning of the stream, rather than extending the file. source cannot be
NiL.

P

35

PieceSaource

The PieceSource interface creates a text source (see TextSource) that is backed by a piece
table maintained on a text source.

35.1 Types

None.

35.2 Constants and data objects

None.

35.3 Signals and errors

None.

35.4 Procedures

pieceSource.Create: PROCEDURE [original, scratch: TextSource.Handle]
RETURNS [source: TextSource.Handle];

The Create procedure creates a piece source. original is the text source on which the piece
table is made. The piece source takes over ownership of this text source. scratch is a text

source with append access that the piece table code uses for maintaining the interim state.

PieceSource.INfo: PROCEDURE [source: TextSource.Handle]
RETURNS [original, scratch: TextSource.Handle];

The Info procedure returns the original and scratch text sources with which the piece
source was created. source cannot be Nit.

PieceSource.IsIt: PROCEDURE [source: TextSource.Handle] RETURNS [yes: BOOLEAN];

The Islt procedure returns TRUE if the Handle is a piece source and FALSE otherwise.

35-1

35

PieceSource

35-2

PieceSource.Put: PROCEDURE [source: TextSource.Handle, name: LONG STRING] RETURNS [new:
TextSource.Handle];

The Put procedure converts the piece table into a stream and stores it into the file named
name. It returns a disk source with read access on the file after storing the contents of the
piece table. source cannot be NiL. Any of the errors from MFile. WriteOnly may be raised.

PieceSource.Reset: PROCEDURE [source: TextSource.Handle]
RETURNS [original: TextSource.Handle];

The Reset procedure causes the piece source to discard all modifications made to the piece
table and return the original source passed to the PieceSource.Create procedure. The text
source scratch is destroyed in the process. source cannot be NiL.

36

ScratchSource

36.1 Types

The ScratchSource interface creates a text source (see TextSource for more information)
that is backed by a block of virtual memory containing Ascii characters.

None.

36.2 Constants and data objects

None.

36.3 Signals and errors

None.

36.4 Procedures

ScratchSource.Create: PROCEDURE [
block: Environment.Block e Environment.nullBlock, extraRoom: CARDINAL « 0, access:
TextSource.Access « edit, expandable: BOOLEAN ¢« TRUE]
RETURNS [source: TextSource.Handle];

The Create procedure creates a scratch source. block is storage that is used to back the
source. A block of nullBlock means the source allocates the block using
MSegment.GetPages. For any other block passed in, the source has as initial data any
characters contained in the block. extraRoom is the amount of storage beyond the end of
block that may be used by the source. If expandable is FALSE and the source runs out of
room in the block while performing a replace operation, that operation returns a no-
change value (see TextSource). If expandable is TRUE, the source takes over ownership of
thre block passed in; the block must be allocated using MSegment.GetPages so that the
source may replace it with another larger block if necessary. In this case, the block is
deallocated when the source is destroyed. access is the access desired on this source. A
scratch source whose access is read and whose block is not null is the same as a block
source (see BlockSource).

36-1

36

ScratchSource

36-2

ScratchSource.Info: PROCEDURE [source: TextSource.Handle]
RETURNS [block: Environment.Block, extraRoom: CARDINAL,
access: TextSource.Access, expandable: BOOLEAN];

The info procedure returns the block backing the scratch source, the amount of extra room
left after the block, whether the block is expandable, and the access on the source. source
cannot be NIL. TextSource.Error[other] is raised if source does not point to a scratch source.

ScratchSource.lsIt: PROCEDURE [source: TextSource.Handle] RETURNS [yes: BOOLEAN];

The Islt procedure returns TRUE if the Handle is a scratch source and FALSE otherwise.

37

StringSource

The StringSource interface creates a text source (see TextSource) that is backed by a
string containing Ascii text.

37.1 Types

None.

37.2 Constants and data objects
stringSource.cannotExpand: CARDINAL = ...;

cannotExpand is used by the procedure InsertString to indicate that a string is non-
expandable. It will be deleted from the interface when it is next changed, because
InsertString will also be deleted.

37.3 Signals and errors

None.

37.4 Procedures

stringSource.Create: PROCEDURE [
PS: LONG POINTER TO LONG STRING, expandable: BOOLEAN]
RETURNS [source: TextSource.Handlel;

The Create procedure creates a string source with edit access. ps is a pointer to the string
backing the source. If ps is NiL, TextSource.Error[invalidParameters] is raised. If expandable
is FALSE and the string source runs out of room in the string (such as during a call to
source.replaceText), String.StringBoundsFault[ps] is raised. If expandable is TRUE and the
string source runs out of room in the string, it allocates a new string, copies the old string,
and deallocates it. If expandable is TRUE, the string must have been allocated from the
system heap; the string is deallocted when the source is destroyed using its ActOn
procedure.

37-1

37

StringSource

37-2

Note: The current implementation of string sources requires a contiguous block of memory large enough to
completely contain the backing string. More important, when the string is expanded, a new larger string is

allocated and copied, which requires 2*n + delta characters of memory in the system heap.

stringSource.DeleteSubString: PROCEDURE [
ss: String.SubString, keepTrash: BOOLEAN] RETURNS [trash: LONG STRING);

The DeleteSubString procedure is no longer implemented. It will be deleted from the
interface when the interfaces are next changed.

stringSource.lnfo: PROCEDURE [source: TextSource.Handle]
RETURNS [ps: LONG POINTER TO LONG STRING, expandable: BOOLEAN];

The Info procedure returns the string backing the string source and whether the string is
expandable. source cannot be NiL. If source is not a string source, it returns NiL, FALSE.

stringSource.InsertString: PROCEDURE [
string: LONG POINTER TO LONG STRING, position: CARDINAL, toAdd: string.SubString, extra:
CARDINAL];

The InsertString procedure is no longer implemented. It will be deleted from the interface
when the interfaces are next changed.

stringSource.IsIt: PROCEDURE [source: TextSource.Handle] RETURNS [yes: BOOLEAN];

Isit returns TRUE if the Handle is a string source and FALSE otherwise.

38

TextData

38.1 Types

The TextData interface is not of interest to most clients. It defines data types that a few
procedures in TextSW and FormSW need. The TextDisplay interface depends heavily on
the following definitions.

TextData.Insertion: TYPE = LONG POINTER TO TextData.InsertionObject;
TextData.InsertionMode: Type = {triangle, box};
TextData.lnsertionObject: TYPE = RECORD |

position: TextData.Pasition,

place: window.Place,

mode: TextData.lnsertionMode,
marked: BOOLEAN];

Insertion points for editable text are typically marked by a blinking caret. The
TextDisplay routines take a pointer to the insertion object so that they can maintain the
necessary values. When an insertion point is displayed, it is usually a blinking triangle;
however, the convention is that append-only editing is indicated by a blinking rectangular
box.

TextData.MarkingAction: TYPE = MACHINE DEPENDENT{ clear(0), mark(1), invert(2), (3)};

The client may ask the display routines to change the marking of a displayed insertion
point.

clear causes the insertion point to no longer be visible.
mark forces the insertion point to be visible.

invert toggles the visibility of the insertion point.
TextData.Position: TYPE = TextSource.PoOsition;

Text is addressed by Position, which is a LONG CARDINAL.

38-1

38

TextData

TextData.Selection: TYPE = LONG POINTER TO TextData.SelectionObject;

TextData.SelectionEntity: TYPE = MACHINE DEPENDENT {
text(0), word(1), element(2), line(3), paragraph(s), document(n)}:

TextData.SelectionMode: TYPE = MACHINE DEPENDENT {
video(0), grayBox(1), underline(2), clearText(3), strikeOut(s), splat(e), (15)}:

The SelectionMode is how the selection will be displayed to the user.

video
grayBox
underline
clearText
strikeOQut

splat

video-inverts the selection.

displays the selection on a light gray background.

underlines the selection.

selections are not indicated to the user.

draws a one-bit-wide line through all characters of the selection.

raises ERROR.

TextData.SelectionObject: TYPE = RECORD [
left, right: TextData.Position, entity: TextData.SelectionEntity,
mode: TextData.SelectionMode, marked: BOOLEAN];

Text selections are also maintained by the TextDisplay routines and may be set by client
code. A selection consists of the marking mode and the current entity. The entity is
maintained with the selection so that multiple clicks can grow the selection to the next
higher value.

TextData.SelectionType: TYPE = {select, extend};

SelectionType is used by the display routines to either make a new selection or adjust the

old.

38.2 Constants and data objects

None.

38.3 Signals and errors

None.

38.4 Procedures

38-2

None.

39

TextSink

39.1 Types

TextSource and TextSink isolate Tajo's uniform text display, selection, and editing
facilities from the representation of text. The TextSink interface defines a sink for text that
is displayed in a window. It defines the standard set of operations that display text,
measure displayed text, and resolve display positions to character positions. For each
representation of text, there should be at least one sink and one source. The default
sources and sinks display Ascii characters. Specific implementations may use additional
operations for setting or altering the state of a text sink. (See also the interface AsciiSink.)

A client who wishes to implement its own sink must implement the sink’s operations with
the semantics defined below. The text display code in Tajo invokes these operations,

behind which hide the representation of the text. Although text is addressed by
Environment.Block, only the sink and its corresponding source look inside the block.

TextSink.Action: TYPE = {destroy, sleep, wakeup}:
An Action is the parameter to the ActOnProc that tells the sink to change state.

destroy the sink should destroy itself, freeing all storage and releasing all resources
associated with the text sink instance.

sleep the source should release whatever resources it can without losing information,;
it is a hint that the text sink will not be used for a while.

wakeup the sink is going to be used and should resume its normal state, undoing
whatever was done for sleep.

Note: sleep and wakeup are only hints for storage and resource management; implementors must be able to

handle all operations on sleeping text sources.
TextSink.ActionResult: TYpe = {0k, bad}:

An ActionResult is the result of ActOnProc. [Note: only a result of ok is expected.]

39-1

39

TextSink

39-2

TextSink.ActOnProc: TYPE = PROCEDURE [
sink: TextSink.Handle, action: TextSink.Action] RETURNS [TextSink.ActionResult];

The sink's ActOnProc is invoked to change a sink's state.
Textsink.BreakReason: TYpe = {eol, consumed, margin};

A DisplayBlockProc, MeasureBlockProc, or ResolveBlockProc can stop displaying,
measuring, or resolving for one of several reasons, any of which may mean that the
procedure has not finished the task.

eol it encountered the end of a line in the text it is operating on.
margin it encountered the edge of the area in which it can operate on.
consumed it finished operating on the requested text.

TextSink.DisplayBlockProc: TYPE = PROCEDURE [
sink: Textsink.Handle, block: Textsink.TextBlock, lineLength, offset: INTEGER, window:
window.Handle, place: window.Place, bbop: window.BBoperation,
bbso: window.BBsourcetype]
RETURNS [
newPlace: window.Place, positions: CARDINAL, why: TextSink.BreakReason];

The sink's DisplayBlockProc displays text in a window. block is the text to be displayed.
lineLength is the farthest that the displayed text can extend. offset is the offset from the
edge of the window to the beginning of the region where the text is displayed; it is used in
calculating the position of tabs. window is the Window in which the text is to be
displayed, and place is the location where the displayed text should start. bbop and bbso,
used in painting the text, are described as part of Window. The DisplayBlockProc returns
why, a BreakReason. In addition to the reason for stopping, the routine returns the
number of positions it displayed and the position in the window where the next text will be
displayed. The environment.Block referenced by block should be updated.

TextSink.FontinfoProc: TYPE = PROCEDURE [
sink: Textsink.Handle] ReTURNS [lineHeight, minWidth, maxWidth: CARDINAL];

The sink's FontinfoProc returns information about the font being used by the sink.
lineHeight is the height of a line of text, and minWidth and maxWidth bound the width of
characters.

TextSink.Handle: TYPE = LONG POINTER TO TextSink.Procedures;

A Handle is an object-oriented pointer to a pointer to a record of procedures that defines
the operations on a text sink.

Mesa Programmer’s Manual 39

TextSink.MeasureBlockProc: TYPE = PROCEDURE [
sink: Textsink.Handle, block: Textsink.TextBlock, lineLength, offset: INTEGER, place:
window.Place, placelsLeft: BOOLEAN & TRUE]
RETURNS |
newPlace: window.Place, positions: CARDINAL, why: TextSink.BreakReason];

The sink's MeasureBlockProc measures text in a window. It behaves very much like the
DisplayBlockProc, except that the characters are not actually painted in the window.
Because no painting is done, neither the window nor the painting parameters are passed.
The parameter placelsLeft indicates the direction of the measuring. If placelsLeft is TRUE,
the window position is the leftmost edge of the text, and measuring should be done from
left to right. If it is FALSE, the position is the rightmost edge of the text, and measuring
should be done from right to left. The results returned from the MeasureBlockProc should
be the same as those from the DisplayBlockProc, if placelsLeft is TRUE and the other
parameters are the same.

TextSink.PositionsinBlockProc: TYPE = PROCEDURE [
sink: Textsink.Handle, block: Textsink.TextBlock] RETURNS [CARDINAL];

The sink's PositionsinBlockProc determines the number of positions the block represents,
which is not necessarily the number of bytes in the block. The sink parameter is included
to pass the instance data.

TextSink.Procedures: TYPE = LONG POINTER TO TextSink.ProceduresObject;

TextSink.ProceduresObject: TYPE = RECORD [
actOn: TextSink.ActOnProc,
displayBlock: Textsink.DisplayBlockProc,
fontinfo: Textsink.FontinfoProc,
measureBlock: Textsink.MeasureBlockProc,
positionsinBlock: Textsink.PositionsinBlockProc,
resolveBlock: Textsink.ResolveBlockProc];

TextSink.ResolveBlockProc: TYPE = PROCEDURE [
sink: Textsink.Handle, block: Textsink.TextBlock, startX, xToFind, offset: INTEGER,
halfCharResolve: BOOLEAN]
RETURNS [newX: INTEGER, positions: CARDINAL, why: TextSink.BreakReason]

The sink's ResolveBlockProc locates the position corresponding to a place in the window.
block is the TextBlock in which to search. startX is the place on the line that corresponds to
the first character of block. xToFind is the place on the line where the corresponding
character position is desired. These parameters are integers instead of window.Places
because the MeasureBlockProc assumes that the places are on the same line. offset is the
offset from the edge of the window to the edge of the text display area, as in the
DisplayBlockProc and MeasureBlockProc. halfCharResolve indicates what to do if xToFind
corresponds to the rightmost part of a position. If halfCharResolve is TRUE, the position
returned is the next position (round up); if it is FALSE, the position is the one containing the
place (truncate). The ResolveBlockProc should return a place (newX), the distance that
place is from startX, the number of character positions scanned, and the reason why it
stopped resolving (why). If newX = xToFind, the procedure was successful. If newX is
different from xToFind, ResolveBlockPlace is called again to find the desired place.

39-3

39 TextSink

TextSink.TextBlock: TYPE = POINTER TO Environment.Block;

A text sink represents its information as a TextBlock.

39.2 Constants and data objects

None.

39.3 Signals and errors
TextSink.Error: ERROR [code: ErrorCode];
TextSink.ErrorCode: Tyre = {invalidSink, isBad, invalidParameters, other};
invalidSink the sink is invalid.
isBad the sink no longer works.

invalidParameters the parameters were not sensible.

39.4 Procedures

None.

39-4

40

TextSource

40.1 Types

TextSource and TextSink isolate Tajo’s uniform text display, selection, and editing
facilities from the representation of text. The TextSource interface defines a source of text
that may be displayed in a window. It defines the standard set of operations that access a
text source. A text source implementation is responsible for implementing text source
operations on its underlying representation of the text. For each representation of text,
there should be at least one sink and one source. Default sources and sinks display Ascii
characters. Specific implementations may use additional operations for setting or altering
the state of a text source. (See also BlockSource, DiskSource, PieceSource, ScratchSource,
and StringSource.)

TextSource. Access: TVP? = {read, append, edit};

Access is provided for source implementations.

TextSource.Action: TYPE = {destroy, mark, sleep, truncate, wakeup};

An Action is the parameter to the ActOnProc that tells the source to change state.

destroy the source should destroy itself, freeing all storage and releasing all resources
associated with the text source instance.

mark it should mark the logical end of the data.

sleep it should release whatever resources it.can without losing information. (This is
a hint that the text source will not be used for a while.)

truncate it should truncate its data to its current length. (This has a noticable effect only
for sources that have some representation in a file system.)

wakeup the source is going to be used and should resume its normal state, undoing
whatever was done for sleep.

40-1

40

TextSource

40-2

Note: sleep and wakeup are only hints for storage and resource management. Implementors must be able to

handle all operations on sleeping text sources.
TextSource. ActONProc: TYPE = PROC [source: TextSource.Handle, action: TextSource.Action];
The source’s ActOnProc changes a source's state.
TextSource.Class: TYPE = {none, eol, alpha, space, other};
Class divides characters into classes; it is a parameter of the ReadTextProc.
TextSource.Direction: TYpe = {left, right};
Direction indicates the direction of a scan.
TextSource.DOEditActionProc: TYPE = PROC |
source: TextSource.Handle, action: TextSource.EditAction, editPos: TextSource.Position]

RETURNS [delta: LONGINTEGER];

The source’s DoEditActionProc moves within the source. The result delta is the number of
positions that the source backed up. Ascii sources may use AsciiDoEditAction.

TextSource.EditAction: TYPe = {none, backSpace, backWord, backLine};

EditAction enumerates the possible edit actions for DoEditActionProc. none means “no
action should be taken.” backSpace means “back up one position from editPos.” backWord
means “back up until the source is positioned at the beginning of the next alphanumeric
character.” backLine means “back up until the source is positioned just to the right of the
last end-of-line.”

TextSource.GetlengthProc: TYPE = PROCEDURE {
source: TextSource.Handle] RETURNS [TextSource.POsition];

The source’s GetLengthProc obtains the number of Positions in a source. This operation is
used extensively, and it should be implemented efficiently.

TextSource.Handle: TYPE = LONG POINTER TO TextSource.Procedures;

A Handle is an object-oriented pointer to a pointer to a record of procedures that defines
the operations on a text source.

TextSource.POsition: TYPE = LONG CARDINAL;
TextSource procedures operate in terms of Positions, which are displayable units.
TextSource.Procedures: TYPE = LONG POINTER TO TextSource.ProceduresObiject;
TextSource.ProceduresObject: TYPE = RECORD [

actOn: ActOnProc, doEditAction: DoEditActionProc, getLength: GetLengthProc,

readText: ReadTextProc, replaceText: ReplaceTextProc,
scanText: ScanTextProc, setLength: SetLengthProc];

Mesa Programmer’s Manual 40

TextSource.ReadTextProc: TYPE = PROCEDURE [
source: TextSource.Handle, position: TextSource.Position, maxLength: carDINAL,
class: TextSource.Class]
RETURNS [block: environment.Block, next: TextSource.POsition];

The source’s ReadTextProc obtains a block of text. The block should contain text in
position position and contain at most maxLength characters. class is used as a hint to
limit the amount of characters read. If class is not none, the block may be terminated after
a character of that class is read. (See the Discussion section for a discussion of limitations.)

TextSource.ReplaceTextProc: TYPE = PROCEDURE [
source: TextSource.Handle, block: Environment.Block, from, to: TextSource.POsition,
deleteToTrashbin: BOOLEAN « TRUE]
RETURNS [new: TextSource.POsition, delta: LONG INTEGER];

The source’s ReplaceTextProc replaces part of the source with a block of text. The source
positions to be replaced are those between positions from and to. The text to insert in that
place is in block. If deleteToTrashbin is TRUE, the data removed from the source should be
placed in the trash bin, where it can be recovered. The procedure should return new, the
position at the start of the inserted text, and delta, the change in the source’s size resulting
from this operation.

TextSource.ScanType: TYPE = {
alpha, invisible, line, nonAlpha, word, leftMark, rightMark, spare};

ScanType, a parameter to ScanTextProc, defines the type of character that will terminate
the scan.

TextSource.ScanTextProc: TYPE = PROCEDURE [
source: TextSource.Handle, start: TextSource.Position, type: TextSource.ScanType,
direction: TextSource.Direction]
RETURNS [position: TextSource.PoOsition];

The source’s ScanTextProc scans a source, starting at the specified position and going in
the specified direction until a character of the requested type is found. The position of the
matching character should be returned; if no character of the requested class can be found,
nullPosition should be returned.

TextSource.SetLengthProc: TYPE = PROCEDURE [
source: TextSource.Handle, position: TextSource.Position]
RETURNS [TextSource.Position];

The source’s SetLengthProc sets the number of positions in a source. position is the length
to be set; the return value is the actual number of positions the source was set to.
Attempting to lengthen most sources with this operation is undefined and will produce
unexpected results.

TextSource.State: TYPE = {asleep, awake, bad};

State is provided for source implementations.

40-3

40

TextSource

40.2 Constants and data objects

TextSource.cannotExpand: CARDINAL = LAST[CARDINAL];

cannotExpand may be used as a parameter to AsciilnsertBlock to indicate that the string
may not be expanded.

TextSource.nullPosition: TextSource.POsition = LAST[LONG CARDINAL];

nullPosition is returned by a ScanTextProc if no character of the requested class can he
found.

40.3 Signals and errors

TextSource.Error: ERROR [code: TextSource.ErrorCode];

TextSource.ErrorCode: TYPE = {
fileNameError, accessError, isBad, invalidParameters, other};

fileNameError either the file doesn’t exist or bad file name syntax was used.

accessError in operation that violates the created access option was attempted.

isBad the source no longer exists. This occurs on core swaps when the file
is deleted.

invalidParameters the parameters were not sensible.
TextSource.SearchFailed: ERROR;

SearchFailed is raised by AsciiTextSearch if there is no match.

40.4 Procedures

40-4

TextSource.AsciiAppend: PROCEDURE [
string: LONG STRING, source: TextSource.Handle, start: TextSource.Position,
n: CARDINAL];

The AsciiAppend procedure appends n characters onto string from sourc<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>