
SUMMARY OF SMALLTALK MESSAGE FORMS AND INTENTIONS

Alan C. Kay
Xerox Palo Alto Research Center

August 1974

·Of the three parts from which SMALLTALK communications are bullt--a
message fc:>rm, its intent. nnd the actual method used to carry out the lntent-­
oniy the first two ma shown In this note. The methods have been1 completely
suppressed irrcgnrdlcss of how simple they might have been to say.

SMALLTALK Is based .on a simple yet comprehensive model of the
universe: them are only objects which contain locat memory (or state)~ the
objects communicate by sending nnd receiving messages (which are also
objects): the objects arc defined by a class description which is a collection of
properties common to each member of the clc:iss and Is specified by giving
recognizers and rcplles to only those messages to which an object In the class Is
wll!ing to respond.

fill NOR DETAILS

a. To foad your disk pack.I If the switch on the left and the light on the
tight don 1t say "lond 0 , then push the switch to 11 load 11 and wait for the light, (A
previous user will leave a note on the Keyboard if this is not OK.) Pull the door
open and remove the disk if there. Slide your disk in, close the door and push
switch to 11 run". In about 20 seconds, the "run" light should come on ·and your
pack Is loadc~ ·

b. · To start SMALLTALK/NG; Look for a little switch on the
Keyboard~ .• either behind near the caule or on the right underside. Push it. The
screen should go blank and tlicn nsk for your nnme. Type it and push "doit"
<line feed>; a prompt cru will be displtlyed and you are ready to go.

c. The font editor allows us to have considerable flexibility In choosing
(conic representations for symbols. Unfortunotcly, ·the plastic tops of the keys
do not change so readily. Here arc the current correspondences betw.een
S.MALLT ALK symbols and keys.

Alan c. Kay Page 2

er II

• . ' 1J

ft I, !) ?, I <linefeed>,

. ... ? , a $

MODEL OF A SMALLT llLK CLASS DESCRIPTION

names in the local dictionary of the class

a smalltalk
object which
makes a

bu i 1 t in
recognize when a
newrnember of the
class is to be
created

isnew :;>(

recognize a message
recognize a message
recognize a message
recognize a message
recognize a

names of properties of
each member of the class

&•

~({use some method to
\-:y· 1 (use some method to
J ... :;:. (use some method to

·.=, (use method to some
::.,~ (use some method to

Message recognizers for every
communication to a member of
the class

properties
of the class
as a whole

anatomy
psychology

)

. --~
return a meaning)!1
return a meaning)d
return a meaning)l
return .)' a meaning;
return a meaning)~

Alan C. Kay Page 3

In the description which follows, 'ODO', ' ' .. .', nre not currently part of
SMALL TALK but arc used to stnnd for arbitrary SMALLTALK objects such as '3',
'x', • .. •, '(a b c)', and so forth.

MESSAGE FORMS

cooo ... >

J.; j aoa

(jj? •••

~ ...•

n ...
·, .. ·=-COCO>

INTENTIONS

(,), may be used to group SMALLTALK objects.

Send NJthe message aoa ..•
(messages can be t;;rminat\!cl·,-by •. ')

Consider the next thing literally--acts like • ... ' In
English

Look to see If next thing Is literally In the message.
If not, return false.

Receive the va_lue of the next expression In the message.

Receive. the next thing in the message literally.

Return the value of the next thing to the sender.

If the value of ... is not false, then
evaluate ODD and /c(lve next higher level, Otherwise
continue to the right.

Objects will return themselves to the sender If no explicit fr ... Is given.

to riame x y: printname

lsnew =>OJ •••)

<s 1s ~l<S 1 ~ c ... > ·
<S name => (•••)
[i.0 f.alse

<s print ~ (•••)

<s ... =- rn ... >

<s evnl :) (••.)

<s chars :> (...)

<s = => rn ... >

Receive text of the new name fnto 'printname'.
Return n unique reference to this object.
A name sta.rts with a letter and consists of any number
of f urtheF letters and digits.

Answer Is 'name'
Answer is 'true'.
Answer is 'false'

The text in 'printname' Is sent to the display

look up this name in nearest dictionary and
enter the v·aluc fl

lookup this name in nearest dictionary and
evaluate tho value

Return the text in printname

..
If this name Is not the same as Jj,return false:

Alan C. Kay Page 4

to number x y: val nprlnt

isnew :) rn ...)
'nprlnt' is common to all numbers and helps print them.

Receive textual form of the number which Is made into
an internal form that is understood by the Al TO
and entered into 'vol'. A number starts with a
digit and consists of zero or more further digits.

:::>(<S ? :> (•••) Answer is 'number•
-<:$ n.umber:::> (•••)Answer is 'true'
[J.fl false} Answer is 'false'

<S is

<S print => (•••)

<S + =- rn ... >

<S - => rn ... >

<S Jiii :::> OJ ...) -

<S I => OJ ...)

<S rem :> rn ...)
<S < :> (fl •••)

<S > =- rn ... >

<S = => on

The internal form 111 'val' is made back into text
and sent to tho display.

Return the sum of the number nnd fl

Return the difference of the number and H

Return the product of the number and fJ

Return the quotient of the number and ti.

Return the remainder of the number and 1:}

Return false if the number Is not less
than tl. otherwise return the number

Return false if the number is not fess
than !); otherwise, return the number

Return false if the number is not equal to
!}; otherwise, return the number

--------------------------------------~--------------------------------------
Number has quite a few more mcssngcs (sec SYSOEFS).

Afan C. Kay

to turtle z: x y dir pen ink

tsnew ::) (. ••)

<$ is :>[\$? ::. (•••)
·.<$ turtle ::> (•••)

u.n false

<$ print => (•••)

<$ go :> rn ...)

<$ right :> OJ •••)

.<S goto =>rn }} •••)

<$ penup ::> (•••)

<S pendn :> (•••)

<$ home :> (•••)

creates a new turtle

Answer is 'turtle'
Answer is 'true'
Answer Is 'f alsc'

Prints the current turtle state as text

from the current position,
traces P .distnnce in current direction

chnnges the current direction by !J ·
degrees ··

from the current position, traces to
x .y position: fHJ. Returns distance,

picks the "pen". up.· No Ink will flow

puts the "pen down. Ink will flow

take the turtle "home"; currently x y
position 256 256.

<$ ink ::> (<$ white :)(. ••)On the CSL graphics color
<S b1ack ::>(.~.)display, ink can be any of

256 colors.

<$ up,:> (•••) sets direction to 0,

Currently there is alrendy a turtle instance at the
conversationnl level which does not require a
name, so "go 100," etc., will work directly.
"Er-asc" will crllse the turtle area only. ·

to repeat
f}... Evaluates D over and over.

to done
<S with ~ OJ •••) Terminates the ncnrcst "repent" returning value jJ

Terminates the nearest 11 repeat 11 returning nothing

to again
Starts the nearest "repeat" ogaln.

Page 5

AJan C. Kay

to do N
.U l}... Repents D over t1ncl over 11 number of times.

1N 1 contains current loop count.
'done' and 'ngain' work.

to for vari'1blc start stop step exp
G"' varinblc .. D. rccf'ivc a rwmf'.! to vnry
6.7 start .. (~ .. *(11)1) get start number (1 if not mentioned)
er· stop .. (9 to ::) (jl)start) get stop

tt.7 step ... (<:$ by ::> (fl)1)
<::$ do.

number (samC' <ls start if not mentioned)
get step number (1 if not mentioned)
'do' is optioncil

EJ..=- exp .. JJ, •••

to vector

fsnew :::> (D •••).

<.$ fs :::>(<$? ::> (•••)
<$ vector ::>

_ D ; (l false

..Sprint ::> (...)
<$ length => (...)
<$ eval :::> (. ••)

get expression to be Iterated and iterate it.
'done• and 'ngain' work.

Creates a new vector, H In length

Answer Is 'vector'
(. ••)Answer is 'true'

Answer is 'fnlsc'

Prints out current conh?xts of the vector
Answer Is the number of clements in this vector
Answer Is the SM/\LL TALK evaluation of
the contents of this vector.

u.'T lower bound ... f,.

<Q] ::> <S+- :> <$ nil ~ rn ...) .

Page 6

<$ to =-rG.'?· upper bound--ll. f' -
_ . _ ~: vector2 ... D.<S [1i.1'"1bnd2 .. J:l.to.t:Fubnd2 .. jj.<S]

<S find ::) <$ first =-1<$ non ::) rn ...)
fl ...

Qlast ::. ~ non ::) rn ...)
ft •.•

(~~,, (p •••)

Alnn C. Kay

to string

isncw ::> rn ...) Creates o new string, 11 chornctcrs long

<$ Is :>(~ ? ::) (...) Answer Is 'string'
<$vector ::> (. ••)Answer is 'true'
D • (I false Answer is 'false'

<$ print ::> (...) Prints the current content of the string

<$ [:::> (ti.'::- lowerbouncJ ... fj
(

~ to => t:}· upper boundo-fl, I
<:..~] :::> <$.. :::.. Q nil ::> ()1 •••) t u.~· vector2 ... fl,1[li.~··lbnd2 ...)J.to.0'ubnd2 ... 1J.<$]

... I
~ find =>''<$ first 4~ non => (lL ..)

. {··
<$ last ::> l<S non ::> rn ...)

fl ..•

(~~=> rn ... >

<$ length :::> (...) Answer is current length (in characters)
of this string

<$ eval ::> (••• }

<$ = => (.t} ...)

<$ + =- rn ... >

~ file :::>· (. ••)

SMALL TALK will cvnluntc the contents of this
string as thouuh it were typed in at the Keyboard

returns false if the string mid fl do
not contoin the same chnracter sequence

Mnkes a new string consisting of this one
nnd f; nppendcd.

Fills string from the keyboard until a
! is pushed,

Page 1

Alan C. Kay

UTILITIES

to mx (••.)

to my {. ••)

to button n

» ...

to in x w y h

· ·to core (..•)

to kbck (•••)

to kbd (•••)

.
to read (...)

to sp (.••)

~o er (..•) ·

to show def
!J •••

to edit def

}) • (~ title ::> (...)

returns the current x location of the mouse

returns the current y location of the mouse

0 means no buttons on
1 check first button'. , - 13 _

1
, .

1 2 check secondbut~on - -, 6-. 5 - · 7

4 checl< third button

Pago 8

Returns true if mouse is in the box; otherwise false.

tells you how much room Is left. Anything larger
thnn 500 is good,

keyboard check. If o charnctcr has been typed and Is
waiting 'kbck' will be true, otherwise false.

wAits until a charncter lrns been typed and then returns
the character .

shows a .prompt CJU. lets you type until a dolt en
and returns with a vector made up from what you typed.

prints a space

prints a carriage return

prints out the. class definition In a pretty format

sturts edit with title line of the definition

starts edit with body of definition

a level of the definition will be displnycd
(sub lists nrc represented by O); nlso a menu of
commc:\nds which include

Alan C. Kay Pngc 9

Command 'Bugs' Exple1nation

Add
Insert
Replace
Delete
Move
Up
Push
Enter
Leave·
Exit

to addto def newuef
ff }j •••

Appends what you type to the end
Insert$ Wh<Jt you type in front
Rcplnccs what you type between bugs
Deletes IH!twerrn the tvJO bugs
Move whnt is between the two bugs in front of final bug
Rniscs a sub li:;t one tcvPI
Pushes whnt is between the two bugs down one level
Enters a sub li:>t
Leaves a sublist
Exits from the editor

adds more message handlers to a class definition
addto numb.en{' (<$ mox ::> (1:.?· x .. fl.

x <SELF ::> (c;J SELF) (t x))

to obset ... I : vec size end

lsnew => (fl ...) creates a new obset fl long.

<$is ::> (<\/ ? :::> (...) Answer is 'object'
<$ obsct ::> (... } Answer is 'true'
D • (t false l\nswer is 'false'

<$ print => (...)

. <> ... ::.. rn ... >
<$ delete ::) rn ...)
<$ map => (fl ...)

The contents of this obset are printed out •

puts ii Into the obset
removes 11 if it is there

tokes the. message and runs it 'length'
number of times. A typical way to use it for an obset 'st'
might be, st map t?-'{vcc [i] hasmouse)
This would cnusc every object in the obset 'st' to be
asked the question basmousc

An obset Which exists In the system when you start up, Is 'defs' which, every
time you use to, is sent the nnme of the new class definition.

Al.an C. Kay

THE MIGHTY DISPFl7Afl/1E

This closs definition has been done and redone (uy Dinna Merry) many times In
an attempt to build a very 9~ncr.:illy useful set of objects which will box text In
rectangles, justify at word boundaries, find pointed at characters and words,
and so on. Not every feature Is presented here. Dinna and SYSDEFS can tell
you the rest.

There are two L>oxcs: a 'window' and a 'frnme'. The text (which Is held In 'buf')
will be automatrc.olly boxed within the frnmc bounclnrics. What you see on the
screen is governed by the window boundaries: if they are equal to or larger
than the frame you will sec everything; otherwise, only that part of the frame
which Is in the window will be seen.

•re_pJy' will contain useful things which Diana has discovered such as:·

reply= o
1
2

11

12

13

some of the window is vlsibte and some of the frame
window is not on clisplily. x> CiOu and/or y> 808
frame Is compl€'lely out of the window
frnmc height hns been nutomatically Increased to accommodate
the text in 'blif'
means that window bottom hns been overflowed and that scrolflng
has hnppenecl
means both 11 and 12

to dispframe input: winx winwd winy winwd frmx frmht buf
reply editor : •••

lsnew => Urn fl D H···> The first four numbers set

<S .__ => Uf .•.)

4 show => (•••)

<S clear ::> (•••)

4 felear => (•••)

<S scroll :::. (.••)

<$ mfindc => rn }} .. ~)

both the window nnd frame boxes to the same site.
The final pnrt of the message is the string which goes
Into 'l>uf'.

lf ft Is a character or a string
It will be nutomaticolly appended to 'bu.f'

Show ctcars the intersection of window
and frame and displays •l)uf' boxed In the frame

· clears the intcrscctior't of window and
frame and clcors 'buf'.

just dears the intersection of window and
frnmc. leaves buf alone.

scrolls 1 time. The old.first fine Is Jost.

... mouse find character ...
JJ and fl nre x an~I. y

Alan C. Kay

<$ mfindt :> (fl}} ...)

q frame :::. (. ..)

q knows ::. (cv)

FILES AND FILING

Page 11

locnlions (ustrnlly ~1ot ten from the mouse). If these
coincide with n vi:-;iblc ch<ir;ictcr in this frnme
the index of th<1t ch;1r;:icter in 'buf' will be n~turned.
-1 means you me in the frnmc but after nil the
charncters. -2 rnenns you <ire not in the frame at all.

••. mouc.e find token ..•
Works just like 'mfindc' except
words nrc lookccl for.

drnws a box nround the frame.

cnlls SMALLTALK from inside the frame.

Another area which is handled very comprehensively by this system. Class 'file'
will hardly be presented here. Instead the four or five things which will cover
most needs nrc shown. ·Steve Weyer {Ind SYSOEfS can tell you more.

to fllout

(~ pretty ::;. (••.))

.!} •••

(<;$ add => c ..))

!J •••

to fflln

rn ... >

to type

H •••

to dlr (•••)

If pretty is there
file lool<s nicer but filout takes longer •

a string for a file nnrne,

If odd is there, definitions will be added.
to end of file. Otherwise, the old stuff In the file will be
clobbered.

If this is present, It Is a vector of names of class defini­
tions. Otherwise, all the names in defs will be read out.

The file nnmed by the string message will be read Into
SMALL TALK just as though you typed it.

A string for file rrnme. Types n file (on the
screen) from one which wns previously filed out.

prints out the SMALL TALK pnrt of your file directory.
dpO list will show the complete directory

