
The Clearinghouse: A Decentralized Agent
for Locating Named Objects in a

Distributed Environment

by Derek C. Oppen and Yogen K. Dalal

The Clearinghouse: A Decentralized Agent for
Locating Named Objects in a Distributed
Envi ronment

by Derek C. Oppen and Yogen K. Dalal

OPD·T8103 October, 1981

Abstract: We consider the problem of naming and locating objects in a distributed

environment, and describe the clearinghouse-a decentralized agent for supporting network

visible objects. Binding is an important architectural component of a distributed system, and

the clearinghouse serves the role of "glue" that binds together the many loosely-coupled,

network·visible objects.

CR Categories: 3.74, 3.81.

Key words and phrases: Clearinghouse, names, locations, binding, network·visible objects,

internetwork, distributed database.

© Copyright 1981 by Xerox Corporation.

XEROX

OFFICE PRODUCTS DIVISION
SYSTEMS DEVELOPMENT DEPARTMENT
3333 Coyote Hill Road / Palo Alto / California 94304

THE CLEARINGHOUSE

Table of Contents

Preface

1. Introduction

2. The Telephone Clearinghouse

3. Naming Distributed Objects

4. Clearinghouse: Naming Convention

5. User Names

6. Clearinghouse: Mappings

7. Clearinghouse: Client's Perspective

8. Clearinghouse: Client Interface

9. Clearinghouse: Structure

10. Clearinghouse: Distributed Lookup Algorithm

11. Clearinghouse: Update Algorithm

12. Clearinghouse: Security

13. Clearinghouse: Administration

14. Summary and Conclusions

Acknowledgements

References

Appendix 1. Network Addresses and Address Verification

Appendix 2. Another Structure for Clearinghouse Servers

iii

v

1

5

8

14

16

18

21

24

30

34

37

40

45

51

52"

53

55

56

iv THE CLEARI~GHOCSE

THE CLEARI~GHOUSE v

Preface

We consider the problem of naming and locating objects in a distributed environment, and describe
the clearinghouse-a decentralized agent for supponing the naming and locating of distributed
objects.

Objects may be individuals, such as individual machines, workstations, file servers, or people. A
typical use of the clearinghouse is to locale individuals. The clearinghouse provides two ways for
locating individual objects: by name and by genre. To provide the first, the clearinghouse maintains
a database mapping names into locations, and supports at least the following primitive operations
using or modifying this database: (1) locating named objects, (2) creating, deleting and changing the
locations of objects, (3) creating, deleting and changing the names of objects. and (4) passing the
name of an object from one user to another so that others can access the object. To provide the
second, the clearinghouse maintains a database mapping generic names (such as "Printers") into
objects in the genre.

Objects may also be groups of other objects, as in distribution lists or access control lists. The
clearinghouse maintains a database mapping names of groups into the sets of names of objects
constituting each group, and provides primitives for (1) enumerating names in groups, (2) testing
membership in groups, (3) creating, deleting and changing the names of groups, (4) adding and
deleting members from groups, and (5) passing the name of a group from one user to another so
that others can access the group. The clearinghouse also maintains a database mapping generic
names (such as "distribution lists") into groups in the genre.

The objects "known tt to the clearinghouse are therefore of many different types, and include
workstations, servers (file servers, print servers, mail servers, clearinghouse servers), human users, and
groups of these. All objects known to the clearinghouse are named using the same naming
convention. The clearinghouse fields requests for information about objects in a uniform fashion,
regardless of their type.

The mappings supponed by the clearinghouse are richer than those described above. A name is
bound to a set of properties of various types. We can, for instance, associate with the name of a user
the location of his local workstation (so that others can send messages to his terminal, say), his local
file server (so that he can store and retrieve files), his local mail server (so that he can receive mail),
his local printer (so that he can print files), and non·location information such as password and
comments. The clearinghouse also suppons aliases of names.

The clearinghouse (and its associated database) is decentralized and replicated. That is, instead of
one global clearinghouse server, there are many local clearinghouse servers scattered throughout the
internetwork (perhaps, but not necessarily, one per local network), each storing a copy of a ponion
of the global database. The totality of services supplied by these clearinghouse servers we call "the
clearinghouse." Decentralization and replication increase efficiency (it is usually faster to access a
clearinghouse server that is physically nearby), security (each organization can control access to its
clearinghouse servers), and reliability (if one clearinghouse server is down, perhaps another can
respond to a request).

vi THE CLEARI~GHOtJSE

Updates to the \'arious copies of a mapping may occur asynchronously and be interleaved with
requests for bindings of names to properties; updates to the various copies are not treated as
indivisible transactions. Any resulting inconsistency between the various copies is only transient: the
clearinghouse automatically arbitrates between conflicting updates to restore consistency,

A client of the clearinghouse may refer by name to, and query the clearinghouse about, any named
object in the distributed environment (subject to access control) regardless of the location of the
object, the location of the client or th.e present distributed configuration of the clearinghouse. No
assumptions are made about the physical proximity of clients of the clearinghouse to the objects
whose names they present to the clearinghouse. A request to the clearinghouse to bind a name to its
set of properties may originate anywhere in the internetwork and be directed to any clearinghouse
server. If that clearinghouse server does not have the binding in its local database. it communicates
with other clearinghouse servers to get the information. A client of the clearinghouse need not
concern itself with the question of which clearinghouse server actually contains the binding-the
clearinghouse automatically finds the mapping if it exists.

The clearinghouse described in this paper is the binding agent in Xerox Network Systems (including
the Xerox 8010 Star information system), and is one of the key components of the underlying
distributed systems architecture.

In Sections 1 and 2 we introduce the subject of this paper and many of the concepts. In Sections 3,
4, and 5 we discuss names, present a uniform naming convention for objects in an intern~twork, and
describe one particular application of this convention: naming users. In Section 6 we describe the
mappings stored by the clearinghouse. In Section 7 we describe the clearinghouse from the client'S
perspective, and discuss various binding strategies (when the client should bind, or have the
clearinghouse bind, a name). In Section 8 we describe the client-clearinghouse interface: whar
operations are provided to access and manipulate the data stored in the clearinghouse. In Section 9
we discuss the internal structure of the clearinghouse. In Section 10 we describe the algorithm used
to find a mapping, the communication between the various clearinghouse servers in response to
client requests for database lookups. In Section 11 we describe the distributed update algorithm used
to update the clearinghouse database and maintain its consistency. In Section 12 we discuss
clearinghouse security. In Section 13 we discuss the decentralized administration of the
clearinghouse. In Appendix 1 we discuss in some detail the question of address validation. In
Appendix 2 we discuss an alternative internal structure for the clearinghouse.

THE CLEARI~GHOCSE 1

1. Introduction

Let us introduce the subject matter of this paper by considering the role of the information
operator, the "White Pages" and the "Yellow Pages" in the telephone system.

Consider how we telephone a friend. There are two steps we take. First we find the person's
telephone number, and then we dial the number. The fact that we consider these to be "steps"
rather than "problems" is eloquent testimony to the success of the telephone system. But how do
the two steps compare? The second-ma~ing the connection once we have the telephone
number-is certainly the more mechanical and more predictable, from the user's point of view. and
the more automated. from the telephone system's point of view. The first step-finding someone's
telephone number given his or her name-is less automatic. less straightforward. and less reliable. If
'ke alrcadyknow the number or can ask somebody for it.. then this is a trivial step. Otherwise, we
have to use the telephone system's information system, which we call the telephone clearinghouse. If
the person lives locally, we telephone information ("4i1") or look up the telephone number in the
White Pages. (The White Pages map names, optionally associated with addresses, into telephone
numbers.) If the person's telephone is non-local. we telephone information for the appropriate city
("555-1212"). Once we have accessed the appropriate infonnation operator, we begin our dialogue
in search of the telephone number. We present the last name to the operator. If the name is
"Oppen" or "Dalal," the operator may immediately give us the telephone number. If the name is
"Smith," he or she probably responds, "Can you give me a first name or address?" If we know
them, we supply them. If we are lucky, we get the telephone number. Otherwise, we are given a set
of telephone numbers, all satisfying the data given the telephone clearinghouse. In any case, we
always have to treat whatever information we get from the telephone clearinghouse with a certain
amount of suspicion. and treat it as a "hint" We have to accept the possibility that we have been
given an incorrect number, perhaps because the person we wish to call has just moved. We are
conditioned to this and automatically begin calls with "Is this ... 7" to validate the hint

In other words, although making the connection once we have the correct telephone number offers
few surprises, finding the telephone number may be a time-consuming and frustrating task. The
electrical and mechanical aspects of the telephone system have become so sophisticated that we can
easily telephone almost anywhere in the world. The telephone clearinghouse remains unpredictable,
and may require considerable interaction between us, as clients, and the information operator. As a
result we all maintain our own personal database of telephone numbers (generally a combination of
memory, little black books, and pieces of scrap paper) and rely on the telephone system's database
only when necessary.

The telephone clearinghouse provides' another service: the Yellow Pages. The Yellow Pages map
generic names of services (such as "Automobile Dealers") into the names, addresses and telephone
numbers of providers of these services. The propenies of the information given by the Yellow Pages
are the same as the propenies described above for the White Pages.

In brief, there are three ways for objects in the telephone system to be found: by name, by number,
or by subject. The telephone system prefers to use numbers, but its clients prefer names and generic
names. The telephone clearinghouse provides a means for mapping between these various ways of

2 THE CLEARI~GHOCSE

referring to objects in the telephone wor1d.

Let us move from the telephone system to distributed systems and. in particular, to interconnections
of local networks of computers. An example might be the distributed "office of the future"
consisting of several thousand workstations. assoned file servers, -mail servers. communications
servers. print servers, and so on, spread over several interconnected networks. Sitting at OUf local
terminal or workstation, we want to send a file to our local printer or to someone else's workstation.
Or we want to mail a message to someone elsewhere in the internetwork. The two steps we have to
take remain the same: finding out where the printer or workstation or mail server is (that is, what
its network address is), and then using this network address to access it.

As with the telephone system, the second step is fast becoming the step to be taken for granted. The
design and implementation of internetworks of computers have become increasingly sophisticated.
and their performance increasingly reliable. Although the content of this paper does not depend on
any panicular networking configuration, we will use as an example throughout this paper the
Ethernet and its associated Pup-based or Xerox Network Systems-based internetwork routing
machinery ([Metcalfe and Boggs 1976, Boggs et al. 1980, Ethernet 1980, Dalal and Printis 1981,
Dalal 1981]). The internetwork knows how to use a network address to route a packet to the
appropriate machine in the internetwork. So the second step-accessing an object once we know its

network address-has well-known solutions. It is the first step-finding the location of a distributed
object given its name-that we consider here.

An obvious question to ask at this point is: do we need names at all? Why not just refer to an
object by its location? Why not just directly use the network address of our local file server or mail
server or printer? The reasons are much like those for using names in the telephone system or in a
file system. The first is that locations are unappealingly unintuitive; we do not want to refer to our
local printer by its network address 5# 346#6745 any more than we want to refer to a colleague as
415-494-4763 or to a file by its disk address. The second is that distributed objects change locations
much more frequently than they change names. We want a level of indirection between us and the
object we wish to access, and that level of indirection is given by a name. (See also [Shoch 1978]
and [Abraham and Dalal 1980].)

When a network object is referred to by name, the name must be bound to the address of the
object. The binding technique used greatly influences the ability of the system to react to changes in
the environment. If client software binds names to addresses statically (for instance, if software
supporting printing has the addresses of the print servers stored in it), the software must be updated
if the environment changes (for instance, if new print servers are added or old servers are moved or
removed). If client software binds names to addresses early (at the moment of system initialization)
or late (at the moment the software wants to access the service), the system reacts much more
gracefully to changes in the environment (they are not necessarily even noticed by the client). There
are several possible approaches to binding (and we will discuss them later) but, regardless of the
approach, clients need a clearinghouse, like the telephone clearinghouse, which maintains mappings
from names into addresses and from which clients can request bindings for names.

The problems we address in this paper are therefore the related problems of how to name objects in
a distributed computer environment,how to find objects given their names, and how to find objects

THE CLEARI~GHOCSE 3

given their generic names. In other words. how to create an environment similar to the telephone
system's with its notions of names, telephone numbers, White Pages and Yellow Pages.

We also consider the administration, rather than just the use, of the internetwork and its
clearinghouse. A configuration of several thousand users and their associated workstations. printers,
file servers, mail servers, etc.. requires considerable management. Administrative tasks include
bringing up new networks; adding. changing and deleting services (such as mail services. file
services. and even clearinghouse services): adding and deleting users; maintaining users' passwords.
the addresses of their chosen local printer. mail and file servers. and so on; and maintaining access
lists and other security features of the network. Since our clearinghouse is the main repository of
infonnation on users. workstations, and the other components of the internetwork. the clearinghouse
provides facilities to aid system administrators in the administration of the distributed environment in
which it resides. In addition. the clearinghouse "scales upwards" gracefully. and takes in its stride the
addition of new networks. the addition of new clearinghouse servers, the interconnection of
previously-disjoint networks. and so on.

Our clearinghouse naturally differs from the telephone clearinghouse, not least because of differences
in the domains of discourse. The clients of the telephone clearinghouse are people. and the objects
known to the telephone clearinghouse are also people (or rather their telephones). The telephone
clearinghouse relies on human judgment and human interaction. The clients of our clearinghouse are
machines, not people, and so all aspects of client-clearinghouse interaction must be fully automated
and predictable.

We faced many questions in designing our clearinghouse; the following are a few of them:

Naming Convention. How shall we name the objects known to the clearinghouse? Should names be
hierarchical (as in the Dewey Decimal System), or non-hierarchical (as in the social security
numbering system)? Should names be unambiguous like social security numbers (no two people
have the same social security number), or ambiguous like surnames (many people can have the
same surname)? More generally, what sort of mapping should hold between names and the objects
being named: should the mapping be one-to-one (each object has exactly one name and no two
objects have the same name; names are unique and unambiguous), many-to-one (no two objects
have the same name, but each object can have more than one name; names are non-unique but
unambiguous), one-to-many (each object has exactly one name, but many objects may have the
same name; names are unique but ambiguous), or many-to-many (names are non-unique and
ambiguous)?

Design of the Clearingholls.e. How shall we configure the clearinghouse? Is there just one
clearinghouse with one monolithic database? Or is there one monolithic database decentralized
among many local clearinghouses? If the latter, is the database strictly partitioned among local
clearinghouses or can their databases overlap or be replicated? If the latter, are the different copies
of the database always consistent? These options all assume that there is just one database, however
decentralized. An alternative is that the database is relativized: there are many' mappings from
names, not just one. This leads to the question of the correctness of information given out by the
clearinghouse. If the clearinghouse maps a name into a network address, is that address to be

4 THE CLEARINGHOUSE

treated as correct or as merely a "hint"?

l\1anagement of the Clearinghouse. How is the clearinghouse managed? Are names allocated by the
clearinghouse? If so. is there a central naming authority which allocates names for the whole
internetwork, or is the naming authority decentralized? If not, who allocates a name: the object
being named, anyone else who wants the object to be named, or perhaps both? Does the
clearinghouse support nicknames, abbreviations and aliases? Who has updating authority over the
database: the clearin~house, its clients, Of both?

Access Control. Who may obtain infonnation from the clearinghouse? If the internetwork spans
numerous companies. may any client obtain information from any clearinghouse?

In the preface we hinted at some of the design decisions we took, but before describing the options
in more detail and our reasons for choosing the ones we did, let us look further at a familiar
example of a clearinghouse-that maintained by the telephone system.

THE CLEARI~GHOCSE 5

2. The Telephone Clearinghouse

The telephone system provides an excellent introduction to the problem of designing a
clearinghouse for computer networks. We therefore consider the telephone model in some detail,
emphasizing - design decisions we refer to later in describing the design of our internetwork
clearinghouse. Let us call the whole system provided by the telephone companies for mapping
names into telephone numbers the telephone clearinghouse. and consider some of its more obvious
properties in terms of the four basic operations specified in the preface. We consider only the White
Pages component of the telephone clearinghouse; the Yellow Pages are similar.

2.l. Locating Named Objects

In the telephone system, mapping names into telephone numbers is relatively straightforward. at
least from the user's point of view. If the person's telephone is local. we look up the telephone
number in the telephone book or ask the information operator (by dialing 411) for the number. If
the person's telephone is non-local, we telephone the information operator for the appropriate city
to find the telephone number.

The database used by the telephone clearinghouse-the "telephone book" (whether printed or
online)-is highly decentralized. The decentralization is based on physical locality: each telephone
book covers a specific part of the country. It is up to the client of the telephone clearinghouse to
know in which telephone book to look or to have the information operator look. (The alternative is
exhaustive search.)

This decentralization is partly motivated by size; there are just too many telephones for there to be
a common database. It is also motivated by the fact that people's names are ambiguous. Many
people may share the same name, and corresponding to one name may be many telephone numbers
(even ignoring the case of one person having more than one telephone). Decentralizing the
telephone clearinghouse is one way to provide additional information to disambiguate a reference to
a person-there may be many John Smiths in the country but hopefully not all are living in the
same city as the John Smith whose telephone number I want. However, even by partitioning the
database by city and by using· other information such as street address, the telephone clearinghouse
still may be confronted with a name for which it has several telephone numbers. When this happens
it becomes the client's responsibility to disambiguate the reference, perhaps by trying each telephone
number until he finds the one he wants. The essential point to note, however, is that the telephone
clearinghouse cannot assume that names are unambiguous, and leaves it to the client to resolve
ambiguities.

2.2. Creating, Deleting and Changing Locations

Locations may change because a person moves (his name remains the same but the mapping from
his name to his telephone number has changed), adds telephone service or cancels telephone service.

Responsibility for initialing updates rests W'ith the users of the telephone system. However, the
actual updating of the database is done by the telephone company. Users of the telephone

6 THE CLEARI~GHOCSE

clearinghollse have rcad-lmly access to the clearinghouse's database. Further. requests for updates
may be made only by the prodder of the resource (the person who pays for the telephone whose
location is being updated) and not by other users of the telephone clearinghouse.

Allocation of telephone numbers ~s the responsibility of the telephone company: the telephone
company provides a naming authority to allocate telephone numbers. Users may request a particular
number but the telephone company has the final say. There are two reasons for this. First. the
telephone company has to guarantee the unambiguity of the number. Second, the telephone number
has to conform to the addressing and routing conventions. of the telephone system.

The updating process deserves scrutiny because it helps determine the accuracy of the information
given out by the telephone clearinghouse. The information is not necessarily "correct." Offline
tc:~phone directories ("telephone books") are updated only periodically and so do not contain
updates· more recent than their date of publication. Even the online telephone directory used by
information operators may give information which turns out to be erroneous when used. One reason
for this is that asking the operator for a telephone number and using that telephone number to

make a call are not treated by me telephone system as an indivisible op~ration: the directory may
, be updated between the two events. Another reason is that physically changing a telephone number
and updating the database are asynchronous operations. The telephone clearinghouse system is
highly paral1el with considerable asynchrony.

The panitioning of the telephone clearinghouse's database is not strict. The database is a replicated
database. Copies of a directory may appear in different versions, and telephone directories for
different cities may overlap in the telephone numbers they cover. Since the updating process is
asynchronous. the ~atabase used by the telephone company may not be internally consistent.

The effect. of this-information given out by the telephone. clearinghouse does not nec~ssarily reflect
all existing updates-is that· the information provided by the telephone clearinghouse can only be
used as a hint. The user must accept the possibility that he is dialing a wrong number, and validate
the hint by checking in some way that he has reached the right person. However, the telephone
company does provide some mechanisms for helping a user who is relying on an out-of-date
directory. memory, or little black book. For instance, if a person moves to another city, his old
telephone number is not reassigned to another user for some time, and during that period callers of
his old number are either referred to his new number, or are less infonnatively told that they have
reached an out-of-service number.

2.3. Creating, Deleting and Changing Names

Generally, names are added and deleted when service is added or cancelled; names are rarely
changed.

What we said above about updating locations generally applies as well to updating names, with one
exception. The choice of name appearing in the telephone clearinghouse database rests with the
holder of the telephone being named, and only the holder can request an update. (thaI{ is, you are
pennitted to choose under what name you will appear in the telephone directory, even if the name

THE CLEARI~GHOCSE 7

is ambiguous.) This raises an interesting issue. that of nicknames. abbreviations and aliases. The
above does not mean that 1, as a user of the telephone system, cannot choose my own name for you
(a nickname), but only that the telephone company will not maintain the mapping of my name for
you into your telephone number-it will only maintain the mapping of your name for yourself into
your telephone number. I may have my own "little black book" containing my own relativized
version of the telephone clearinghouse, but the telephone company does not try to maintain its
accuracy. Similarly, the telephone clearinghouse does not necessarily respond to abbreviations of
names. And, finally, the clearinghouse will handle aliases (names I give myself other than my "real"
name) only if they are entered in its database. That is, the telephone clearinghouse allows names to
be non-unique: a person may have more than one name.

We can summarize some of the differences between telephone numbers (addresses), names,
nicknames, aliases and abbreviations-whether they are ambiguous, whether they are chosen by the
telephone system or by the owner of the telephone or by others, and whether they are maintained
through changes by the telephone system.

Ambiguous? Chosen by Maintained by System?

Address No System Yes

Name Yes Owner Yes

Alias Yes Owner Yes

Nickname Yes Others No

Abbrel'iation Yes Anyone No

2.4. Passing Names and Locations

Giving someone else a telephone number (fully expanded to include country and area code) cannot
raise problems because telephone numbers are unambiguous. (Of course, the telephone number may
be incorrect by the time that person uses it.)

Giving a name to someone else is trickier since names are ambiguous. For instance, because the
clearinghouse database is decentralized, giving a name to an information operator in one pan of the
country may elicit a different response from giving it to one in another pan of the country. In the
telephone clearinghouse, names are context-dependent You can ensure that the person to whom
you are giving a name will get exactly the same response only if you specify the appropriate
clearinghouse as well.

8 THE CLEARI;\GHOCSE

3. Naming Distributed Objects

With this background, we return to the problem of designing a distributed system clearinghouse. A
central question in designing such a clearinghouse is how to name the objects known to the
clearinghouse.

3.1. Naming Com'entions

A naming convention describes how clients of the naming convention refer to the objects named
using the convention. The set of clients may overlap with the set of named objects; for instance.
people are both clients of, and objects named using the common firstname-middlename-surname
naming convention.

Our basic model for describing naming conventions is a directed graph with vertices and edges.
Vertices and edges may be labelled. If vertex u has edge labelled i leading from it, then ubi denotes
the vertex at the end of the edge. (For this to be well-defined. edges leading from any vertex must
be unambiguously labelled.) If u{i}/liJ .. .{iJ = v. then ij)i? ...)ik denotes the (possibly non-unique)
path from u to v.

We assume that each named object and each client is represented by exactly one vertex in the
graph. With these assumptions. we need not distinguish in the rest of this section between vertices
in the name graph, named objects, and clients of the naming system, and· ol!r problem becomes:
what is the name of one vertex (a named object) relative to another (a client)? There are two
fundamental naming· conventions, each of which we now describe~

3.2. Absolute Naming

Under· the absolute naming convention, the graph consists of labelled vertices but no edges. Each
vertex has a unique and unambiguous label. The distinguished name of a vertex is its label. Each
vertex therefore has an unambiguous distinguished name; the name is the same regardless of the
client.

(An equivalent model is the following. The graph has only unlabelled vertices. There is a
distinguished vertex called the directory or root vertex. There is exactly one edge from the directory
vertex to each other vertex in the graph: each such edge is uniquely and unambiguously labelled.
There are no other edges in the graph. The name of a vertex is the label of the edge leading from
the directory vertex to this vertex.)

This is a somewhat precise if rather pedantic definition of what is usually meant by "choosing
names from a flat name space." One obvious example of names using absolute naming conventions
are Social Security numbers. In the Pilot environment ([Redell et al. 1980]), it is possible for each
object to have a unique and unambiguous name consisting of a unique and unambiguous processor
number (hardwired into the processor at the factory) concatenated to the time of day; this name is
called the object's universal identifier ([Dalal and Printis 1981)).

THE CLEARI~GHOt;SE 9

3.3. Relative Naming

Under the relative naming convention. the graph has unlabelled vertices but labelled edges. There is
either zero or one uniquely-labelled edge from any vertex to any other. If there is an edge labelled i

from u to v, then the distinguished name of v relative to u is i. Here, u is-the client and v the named
object. Note that names are ambiguous-a relative name is unambiguous only if qualified by some
source vertex, the client vertex.

Without additional disambiguating information, people's names are relative. One person's use of the
name "John Smith" may well differ from another's.

3.4. Comparison of the Absolute and Relathe Naming Com'entions

There are advantages and disadvantages to each naming convention corresponding to the various
tasks of the clearinghouse mentioned in the Preface.

Locating Named Objects. One of the main roles of the clearinghouse is to maintain the mapping
LookUp from names into objects. If i is the name of an object, then LookUp(i) is that object. (The
actual form of the righthand side of the mapping will be described in Section 6.) Under the relative
naming convention, LookUp is relative to each client vertex. That is, if the name of an object v
relative to u is i, then LookUp/i) is v. Under the absolute naming convention, LookUp is relative to
the whole graph. That is, if the name of an object v is i, then LookUp(i) is v; we do not have to
qualify LookUp with the source vertex. Thus, the database required by the absolute convention may
be smaller (since the number of names is exactly the number of vertices) than under the relative
convention (where the number of names is on the order of the square of the number of vertices).
However, since the relative convention does not require that every vertex be able to directly name
every other vertex (there need not be an edge from every venex to every other), the domain of each
LookUp under the relative convention will typically be much smaller than the domain for LookUp
under the absolute convention.

The relative convention encourages decentralization, since the mapping from names to objects is
relative to each vertex. The absolute convention encourages centralization. since there is only one
mapping for the whole system. Thus the relative convention allows more efficient implementation of
the LookUp function. Of course, one can use efficient methods such as binary search or hashing
with either convention, but these make use only of syntactic information in names, not semantic
information.

Changing Locations or Names. The main considerations here are the size and degree of
centralization of the databases. Consider, for instance, the allocation of names. The absolute naming
convention requires a centralized naming authority, allocating names for the whole graph. The
relative naming convention permits decentralized naming authorities, one for each vertex. The local
data base handled by the naming authority under the relative convention will typically be much
smaller than the global data base handled by the naming authority under the absolute convention.

10 THE CLEARI~GHOUSE

Passing Names and Locations. A major advantage of the absolute naming convention is that there is
a common way for clients to refer to named objects. It is possible for any client to hand any other
client the name of any object in the environment and be guaranteed that the name will mean the
same thing to the second client (that is, refer to the same object). This is not the case with the
relative addressing convention; if u and v are venices, uri} need not equal v[i]. Under the relative
naming convention, the first client must give the second client the name of the object relative to the
second client. In practice, this means that the first client has to understand how the second client
names objects. This suggests excessive fiecentralization; it requires too much coordination when
objects are to be shared or passed.

3.5. Hierarchical Naming

~either the absolute nor the relative naming convention is obviously superior to the other; both
have advantages and disadvantages. One might imagine combining the two notions, but we can do
even better bf adding another layer of structure to the basic naming model.

We partition the graph into subgraphs, consisting of subsets of the set of vertices. We assume that
each vertex is in exactly one subgraph. The distinguished name of a vertex is
vertexname@subgraphname where subgraphname is the name. of its containing subgraph and
vertex name is the name of the vertex in that subgraph. This definition is only well-defined if names
are unambiguous within a subgraph; the absolute naming convention must be used within a
subgraph. That is, within any subgraph,no two vertices can have the same name. Two different
vertices may have names A@B and A@C however; names need be unambiguous only within a
subgraph.

The mapping LookUp implemented by the clearinghouse becomes a mapping from Vertexnames x
Subgraphnames into objects. If B is the name of a subgraph and A is the name of vertex u within
that subgraph, then LookUp(A@B) = u.

The name of a vertex consists of both its name within a subgraph and the name of the subgraph.
We have already pointed out that the absolute naming convention must be used for naming vertices
within any subgraph. How shall we name subgraphs? They may be named using either the relative
or the absolute naming convention. All the remarks made previously about absolute and relative
naming conventions hold.

If the absolute naming convention is used, each distinct subgraph has an unambiguous distinguished
name. Since the absolute naming convention is also used for naming vertices within each subgraph,
it follows. that vertices have unambiguous distinguished names. That is, no two vertices have the
same name A@B. Telephone numbers such as 494-4763 fit into this two-level absolute naming
hierarchy. The local exchange is uniquely and unambiguously determined (within each area code)
by the exchange number 494; within exchange 494, exactly one telephone has number 4763.

If the relative naming convention is used, each distinct subgraph has an unambiguous distinguished
name relative to each other subgraph. And, since we are using the absolute naming convention
within subgraphs, it follows that each vertex has an unambiguous distinguished name relative to

THE CLEARI~GHOCSE 11

each source. An example of this is the interface between the Xerox mail transport mechanism
[BirrelL Levin. Needham and Schroeder 1981] and the Arpanet mail transport system. A name may
be Oppen.PA within Xerox but Oppen@AfAxe outside-the subgraph name has changed.

In either case. the advantages of using a hierarchy is clear: it admits the advantages of absolute
naming without barring decentralization. A partitioned name helps suggest the search path to the
object being named and encourages a decentralized naming authority.

There is no need to stop at just one level of hierarchy. One can imagine a hierarchy of graphs with
corresponding names of the fonn i]@i2@::.:..@iJ(Examples include telephone numbers fully
expanded to include country and area codes (a four-level hierarchy), or network addresses (a three
level hierarchy of network number, host number. socket number), or book naming conventions such
as the Dewey Decimal System.

We see now that the usual distinction made between "flat" and "hierarchical" is somewhat
misleading. The distinctions should be "flat" or "absolute" versus "relative" and "hierarchical"
versus "non-hierarchical."

3.6. Abbreviations

. The notion of abbreviation arises naturally with hierarchical naming. Within subgraph B. the name
A@B can be abbreviated to A without ambiguity. given the convention that abbreviations are
expanded to include the name of the graph in which the client vertex exists. Abbreviation is a
relative notion. (See. for example, [Daley and Neumann 1965] for another approach to
abbreviations.)

3.7. Combining Networks

One major advantage of the hierarchical superstructure that we have not considered before, and
which is independent of the absolute versus relative naming question, concerns combining networks.
One feature that any clearinghouse should be able to handle gracefully is joining its database with
the database of another clearinghouse, an event that happens when their respective networks are
joined. For instance. consider the telephone model. When the various local telephone systems in
North America combined, they did so by adding a superstructure above their existing numbering
system, consisting of area codes. Area codes are the names of graphs encompassing various
collections of local exchanges. When direct dialing between countries was introduced, yet another
layer was added: country codes.

Adding new layers to names is one obvious way to combine networks. The major advantage is that
if a name is unambiguous within one network then it is still unambiguous with its network name as :
prefix, even if the name also appears in some other network (because the latter name is prefixed by
the name of that network). The major disadvantage is that the software or hardware has to be
modified to admit the new level of naming. The latter problem is compounded if abbreviations are
allowed.

12 THE CLEARINGHOUSE

The alternative to adding a new layer is expanding the existing topmost layer. For instance, the
North American area code numbering system is sufficiently flexible that another area code can be
added if necessary . The advantage of this is that less change is required to existing software and
hardware. The disadvantage, if absolute naming is wanted, is that there has to be a centralized
naming authority to ensure that the new area code is unambiguous.

3.8. Levels of Hierarchy

If one chooses to Use a hierarchical naming convention, an obvious question is the following: sho1,lld
we agree on a constant number of levels (such as two levels in the Arpanet mailing system or four
in the telephone system) or an arbitrary number of levels? If a name is a sequence of the form
iJ@i2@ ... @ik, should k be constant or arbitrary? There are pros and cons to either scheme. The
advantage of the arbitrary scheme is that the naming system may evolve (acquire new levels as a
result of combining networks) very easily. That is, if we have a network now with names of the
form A@B, and combine this network (let us call it network C) with another network, then we can
just change all our names to names of the fonn A@B@C without changing any of the algorithms
manipulating names. Allowing arbitrary numbers of levels clearly has an advantage. It also has
several non-trivial disadvantages. First, all software must be able to handle an arbitrary number of
levels, so software manipulating names will tend to be more complIcated than in the constant level.
scheme. Second, abbreviations become very difficult: does A@B mean exactly that (an object with a
two-level name) or is it an abbreviation for some name A@B@C! The disadvantage with the
constant scheme is that one has to choose a number, and if we later add new levels, we have to do
considerably more work.

3.9. Aliases

Our basic model allows each vertex to have exactly one name under the absolute naming
convention, and exactly one name relative to any other vertex under the relative naming convention.
An obvious extension to this model is to allow aliases or alternative names for vertices. To do this,
we define an equivalence relation on names; if two names are in the same equivalence class, they
are names of the same vertex. Under the relative naming· convention,there is one equivalence
relation defined on names for each client vertex in the graph. Under the absolute naming
convention, there is only one equivalence relation for the whole graph. Each equivalence class has a
root or distinguished member, and this we designate the distinguished name of the vertex.

The notion of aliasing is easily confused with the notion of relative naming, since each introduces
multiple names for objects. The difference lies in the distinction between ambiguity and non
uniqueness. Under the relative naming convention, a name can be ambiguous in that it can be the
name of more than one node (relative to different source nodes). Under the absolute naming
convention, names are unambiguous. In either case, without aliasing, names are unique: if a vertex
knows another vertex by name, it knows that vertex by exactly one name. With aliasing, names are
non-unique; one vertex may know another by several names. Another way of expressing the
difference is to consider the mapping from names to vertices. Without aliasing, the mapping is
either one-to-one (under the absolute naming convention: each object has exactly one name and no
two objects have the same name) or one-to-many (under the relative naming convention: each

THE CLEARINGHOCSE 13

object has exactly one name relative to any other. but many vertices may have the same name).
With aliasing. the mappings become many-to-one or many-to-many. The distinction is subtle. The
following table illustrates the various combinations that are possible, in tenns of ambiguity and
uniqueness:

Absolute Naming
Convention

Relative Naming
Convelttion

\Vithout Aliasing
Unambiguous, unique
One-to-one

Ambiguous, unique
One-to-many

\\'ith Aliasing
Unambiguous. non-unique
Many-to-one

Ambiguous. nQIl-unique
Many-to-many

14 THE CLEARINGHOUSE

4. Clearinghouse: Naming Convention

We now describe the naming system supponed by our clearinghouse. Recall first that we have a
very general notion of the objects being named:· an object is anything that has a name known to the
clearinghouse and the vague propeny of If network visibility." We shall give some· concrete examples
in the following sections.

Objects are named in a uniform fashion. We use the same naming convention for every object,
regardless of whether it is a user, a workstation, a server; a distribution list or whatever.

A name is a non-null character string of the form <substringj>@<substringy@<substring?, where
substringj denotes the iocainame, substring] the domain. and substring3 the organization. Thus names
are of the form L@D@O where L is the localname, Dthe domain and 0 the organization. None of
the substrings may contain occurrences of "@." or "." (the reasons for the latter exclusion will be
given later). The clearinghouse does not attach any meaning to the substrings constituting a name.

Each object has a distinguished name. Distinguished names are absolute; no two objects may have
the same distinguished name~ In addition to its distinguished name, an object may have one or
more aliases. Aliases are also absolute; no two objects may have the same alias. A name is either a
distinguished name or an alias, but not both.

We have thus divided the world of objects into organizations. and subdivided organizations into
domains: a three-level hierarchy. An object is in organization 0 if it has a name of the form
<anything>@<anything>@O. An object is in domain D in organization. 0 or in D@O if it has a
name of the form <anything)@D@O.

This division into organizations and, within them, domains is a logical rather than physical 4ivision.
An organization will typically be a corporate entity such as Xerox Corporation. The names of all
objects within Xerox will be of the form <anything)@<anything>@Xerox. Xerox will choose domain
names to reflect administrative, geographical, functional or other divisions. Very large corporations
may choose to use. several organization names if their name space is very, very large. In any case,
the fact that two addressable objects have names in the same domain or organization does not imply
in any way that they are physically close.

Two names are equal if they are identical strings, ignoring case.

4.1. Rationale

We use a uniform naming convention for all objects, regardless of their type. Our approach
therefore differs from most systems where different naming conventions are used to name objects of
different types: where people, distribution lists. machines, and so on are all named in different
fashions. Our approach is much .. friendlier" to the user since he has· to remember only one
convention. A disadvanta~ is that we cannot tell the type of an object merely by looking at the
name. We consider this disadvantage unimportant; the type of the object is easily o,btained by
checking what its name is mapped into.

THE CLEARI~GHOlJSE 15

Objects known to the clearinghouse have absolute distinguished names and aliases. Thus we favour
an absolute naming convention over a relative naming convention. Most systems (including most
mail transport systems) have opted for a relative naming convention. However, the advantages of an
absolute convention (where a name always denotes the same object regardless of where the name is
used) are so clear that we are willing to put up with the burden of some centralization. By choosing
the naming convention. carefully, we can reduce the pain of this centralization to an acceptable level.

Names are hierarchical. We rejected a non-hierarchical system because, among their other
advantages, hierarchical names can be used to help suggest. the search path to the mapping.

We have chosen a three-level naming hi~rarchy, consisting of organizations, within them domains,
and within them loealnames. We did not choose the arbitrary level scheme because of the greater
complexity of the software required to handle names, because we do not think that networks will be
combined very often, and because (as with area codes) we will make the name space for
organizations large enough so that combinations can generally be made within the three-level
hierarchy by adding new organization~. We choose three levels rather than, say, two or four, for
pragmatic reasons. A mail system such as the Xerox Laurel-Grapevine system [Birrell, Levin,
Needham and Schroeder 1981] works well with only a two-level hierarchy, combining networks
across the company's divisional boundaries. We add the third level primarily to facilitate combining
networks across company lines. However, the clearinghouse does not give any particular meaning to
the partitions; this is why we chose the relatively innocuous names "organization" and "domain."
We leave the partitioning of names within an organization to the clearinghouse administrators
within the organization (see Section 13); giving them the freedom to partition their name space in
the way most convenient to them is clearly desirable.

The usefulness of aliases will be made clear in the next section. Our clearinghouse maintains' aliases
(that is, modifies them appropriately when updates occur); this is explained later.

The clearinghouse does not support abbreviations. An abbreviated name is a relative, as opposed to
absolute, name (for example, A abbreviates both A@B@C and A@B@D) and the clearinghouse
concerns itself only with absolute names. Typically, client software will allow its users to abbreviate
names, and will add appropriate defaults before presenting them to the clearinghouse.

16 THE CLEARI~GHOUSE

5. User Names

One important class of "objects" known to the clearinghouse is the set of users. For instance. as we
shall see, the clearinghouse may be used to map a user's name into the network address of the mail
server where his incoming mail resides. To deliver a piece of mail to a user. an electronic mail
system first asks the clearinghouse where the mail. server for that user is and then routes the piece
of mail to that server.

A major design decision is how users are to be named. We describe our approach (to be used in the
Xerox Network Systems product line) to naming users as this will provide further motivation for
our naming convention. The following is not part of the design of our clearinghouse, but illustrates
one of its important uses.

A User Name is a string of the fonn <firsll1ame> <blanks> <middlename> <blankS>
<laslname>@<domain>@<organization>. Here, <firstname>, <middlename> and <Iaslname> are strings
separated by blanks (they may themselves contain blanks, as in the last name de Gaulle).
<firslname>, <middlename> and <laslname> are the first name, middle name and last name of the
user . being named. The following are examples of user names:

Derek Charles Oppen@SDD@Xerox
Yogen Kantilal Dalal@SDD@Xerox

The basic scheme. therefore, is that a legal name consists of the user's three-part localname, domain
and organiZation. No particular semantics are given to domains and organizations; in the above
example, the organization name is the name of the company, and the domain name is the name of
a logical unit of the company. The reason for making the user name the complete three-part name
(rather than just the last name) is to discourage clashes of names and encourage unambiguity. The
chance of there being two people with the name Derek Charles Oppen in domain SDD in
organization Xerox is hopefully rather remote, and certainly more remote than their being two
people with last name Oppen.

Our convention for naming users differs from those used in most computer environments in
requiring that names be absolute and in using full names to reduce the chance of ambiguity. We
have discussed the issue of absolute versus relative naming conventions already, but the second
topic deserves attention because it shows the advantages of having a consistent approach to aliases.

The most common way of choosing unambiguous user names in computer environments is to use
last names prefixed with however many letters are needed to exclude ambiguity. Thus, if there are
two Oppen's, one might be DOppen and the other HOppen. This scheme we find unsatisfactory. It is
difficult for users (who have to remember to map their name for the person into the system's name
for the person) and difficult for system administrators (who have to manage this rather artificial
scheme). Further. it requires users to occasionally change their system names: if a system name is
presently DOppen and another D. Oppen becomes a user, the system name must be changed to
avoid ambiguity.

THE CLEARI~GHOVSE 17

Another scheme is to name users Oppen-1. Oppen-2 This avoids the problem of names becoming
ambiguous. but again is difficult to use and manage.

Our convention is not cumbersome to the user, in theory at least, since we use the same firstname
middlename-Iastname convention people are used to already. However. since users would find it
very cumbersome to type in full names, various aliases for user names are stored in the
clearinghouse. For instance, associated with the user name Derek Charles Oppen might be the aliases
Derek Oppen. D Oppen and Oppen. Associated with the name Robert Allen Mitchell might be aliases
such as the above, together with Bob Alitchell, etc. Since our naming convention requires that
aliases be absolute, it follows that no two users can have the same alias. For instance, if there are
two Smiths in SDD at Xerox, the alias Smith cannot be used. More infonnation must be provided
with the name, such as initials or first name.

The advantage of using aliases is that it makes the naming convention friendly to the user. The
disadvantage is that storage is required to maintain them. Another approach, using pattern
matching, is described in Section 8.

The clearinghouse does not explicitly suppon abbreviations but client software (such as the mail
system) may choose to support them, allowing the user to address a message to Oppen, say, instead
of Oppen@SDD@Xerox. The client software adds appropriate defaults to construct the full name.

5.1. Birthmarks

Even with our convention of using a user's full name, there is a possibility that there will be two
users with exactly the same name in a domain. Our approach is to disallow this, and let the two
users (or a system administrator) choose unambiguous names for each. Another approach is to add
as a suffix to each full name a "birthmark." A <birthmark> is any string which, together with the
user name, the domain name and the organization name, unambiguously identifies the user. The
birthmark may be a universal identifier (perhaps the concatenation of the processor number of the
workstation on which the name is being added together with the time of day). It might be the social
security number of the individual (perhaps not a good idea on privacy grounds). It might be just a
positive integer; the naming authority for each domain is responsible for handing out integers. In
any case, the combination of the full name and the birthmark must be unambiguous so that no two
users can have the same legal name. Again, aliases are used so that users do not need to provide a
birthmark unless necessary.

18 THE CLEARI~GHOljSE

6. Clearinghouse: ·Mappings

Now that we know how to name the objects known to the clearinghouse, we treat the question of
what names . are mapped into.

The cleannghouse maps each name into a set of properties to be associated with that name. A
property is an ordered tuple consisting of aPropertyName, a ProperlyType and a PropertyValue. The
clearinghouse maintains mappings of the fonn:

name -+ I<PropertyName/. PropertyTypep PropertyVa!ue/> •
.... ,
<P-"opertyName~ PropertyT}pe~ PropertyValue,?}.

More precisely, to admit aliasing. the clearinghouse mllps equivalence classes, rather than names.
into sets of properties. Each equivalence class consists of a distinguished name and its aliases.
However, unless necessary, we will not bother distinguishing between a name and the equivalence
class it· is in, and so will continue to refer to the clearinghouse mappings as mappings from names
to properties.

The value of k is not fixed for any given name. A name may have associated with it any number of
properties.

A PropertyName identifies a particular property associated with a given name. There may be only
one property with a given property name associated with any name; that is; PropertyNamej ;c
PropertyNamej if i ;c j. (In the examples given in this paper we will use strings for property names;
in· practice we use integers.) To promote consistency in the use of property names. each property
name is registered with the clearinghouse (as discussed in Section 13).

A PropertyValue is a datum of type PropertyType. There are only two types of property values. The
first, of type individual or 0, is "uninterpreted block of data." The clearinghouse attaches no
meaning to the contents of this datum, but treats it as just a sequence of bits. The second, of type
group or i, is "set of names," where a name is any name as defined in Section 4. A name may
appear only once in the set, but the set may contain any number of different names (including
aliases and names of other groups). The names "individual" and "group" reflect the semantics
attached by the clearinghouse, whether the property is an individual datum or a group of data; they
do not suggest that the object with these properties is an "individual" or a "group."

6.1. Examples

Mapping a name into a network address is an example of a type individual mapping, as in the
following:

Daisy@SDD@Xerox -+ {<"Printer", O. network address o/the printer named Daisy~}.

or

Oppen@SDD@Xerox-+ {<"Workstation", O. network address ofworkstatiorV}.

THE CLEARI~GHOCSE 19

Since the value associated with an individual property is uninterpreted, it need not be a network
-address. It might be a name, a comment, or anything else. For example:

Tundra@SDD@Xerox -+ {

("File Server", 0, [network address of the file sen'er named Tundra,
descriptive comment)>}.

A distribution list in electronic mail is an example of a mapping of type group, as in:

ClearinghouseAuthors@SDD@Xerox -+ {

("Distribution List", 1, {"Dalal@SDD@Xerox", "Oppen@SDD@Xerox"}>j.

In each of the above examples, only one property was associated with a name. The following are
more realistic examples. where many properties are associated with a name:

Oppen@SDD@Xerox -+ {

("User",O, descriptive comment>,
("Password", 0, password to be usedfor user authentication>,
("File Server Name", 0, name offile server containing user'sfiles>,
("Afail Server Name", 0, name o/mail server where user's mail is stored>,
("Printer Names". 1, set o/names of local printers any o/which may be used>).

In this example, the clearinghouse is used to store the user's "profile." Associated with the user's
name is the loca~ion of his local file server (so that he can store and retrieve files), his local mail
server (so that he can receive mail), his local printer (so that he can print files), and so on. Note
that we choese to map the user's name into the name of his local file server (and mail server and
printer) rather than directly into its network address. The reason for this extra level of indirection is
that the name of the file server will perhaps never change but its location certainly will occasionally
change, and we do not want a change in a server's location to require a major update of the
clearinghouse's database.

Alternatively, a user's profile may be stored as:

Yagen K. Dalal@SDD@Xerox-+ {
("User Profile", 0, [descriptive comment,

6.2. Rationale

password to be used/or user authentication,
name affile server containing user'sfiles,
name a/mail server where user's mail is slored.
set ofnames of local printers any a/which may be used]>)

In the Preface, we separated objects into two broad categories: individual objects such as
workstations, servers or people whose names are mapped into addresses, and groups whose names
are mapped into sets of names. As the above shows, the mappings supported by the clearinghouse
are more general.

20 THE CLEARI~GHOl!SE

We differentiate between data of type individual and data of type group, but allow many pieces of
data of differing types to be associated with each name. The example given above showing the
mapping for a user name shows why. Unlike the simpler telephone model where a single mapping
from a user name into a telephone number suffices, we want to map a user's name into a richer
collection of infonnation. This applies even to non-user individuals. We may want to associate with
a printer's name not only its location (so that files to be printed can be sent to it), but also
infonnation describing what fonts the printer suppons, if it prints in color, and so on.

The main reason for having "set of names" as a distinct data type is to allow different clients to
update the same set simultaneously. For instance, if the set represents an electronic mail distribution
list, we want to allow two users to asynchronously add themselves to this list. This is discussed
funher in Section 8 when we describe the operations supponed on elements of a set and in Section
11 when we describe how the clearinghouse automatically arbitrates between conflicting.
asynchronous update requests.

THE CLEARI~GHOt..:SE 21

7. Clearinghouse: Client's Perspective

We now know how objects are named in the clearinghouse, and what names may be mapped into.
Before describing the functions the clearinghouse provides its clients. let us first describe how the
clients are to perceive the clearinghouse, repeating many of the points made in the Preface, and the
question of when clients should bind names to properties.

Recall first that the clients of the clearinghouse are pieces of software and hardware making use of
the clearinghouse client interface. The fact that_people are not .clients of the clearinghouse (except
very indirectly by means of a software interface) immediately introduce~ an important difference
between our clearinghouse and the telephone system's. The telephone system relies on human
judgement and human interaction. The clients of our clearinghou~e are machines, not people, and
so all aspects of client-clearinghouse interaction. including fault-tolerance, must be fully automated.

The clearinghouse (and its associated database) is dec.entralized and replicated. That is. instead of
one global clearinghouse, there are many clearinghouse servers scattered throughout the internetwork
(perhaps, but not necessarily, one per local network). each storing a copy of a portion of the global
database. Decentralization and replication increase efficiency (it is faster to access a clearinghouse
server physically nearby), security (each organization can control access to its own clearinghouse
servers) and reliability (if one clearinghouse server is down, perhaps another can respond to a
request). However. we do assume that there is one global database (conceptually, that is; physically
the database is decentralized), Each clearinghouse server contains a portion of this database. We
make no assumptions about how much of the database any particular clearinghouse server stores.
The union of ~11 the local databases stored by the clearinghouse servers is assumed to be the global
database.

A client of the clearinghouse may refer by name to, and query the clearinghouse about, any named
object in the distributed environment (subject to access control) regardless of the location of the
object, the location of the client or the present distributed configuration of the clearinghouse. We
make no assumptions about the physical proximity of clients of the clearinghouse to the objects
whose names they present to the clearinghouse. A request to the clearinghouse to bind a name to its
properties may originate anywhere in the internetwork. This makes the internal structure of our
clearinghouse considerably more intricate than that of the telephone clearinghouse (where clients
have to know which local telephone directory to access), but makes it much easier to use.

In order to provide a uniform way for clients to access the clearinghouse. we assume that all clients
contain a (generally very small) clearinghouse component, which we call a stub clearinghouse. Stub
clearinghouses usually contain little in their databases except pointers to clearinghouse servers, but
they provide a uniform way for clients to access the clearinghouse.

A client requests a binding from its stub clearinghouse. The stub communicates with clearinghouse
servers to get the information. A client of the clearinghouse need not concern itself with the
question of which clearinghouse server actually contains the binding-the clearinghouse
automatically finds the mapping if it exists. This differs from many models of distributed
environments where one is restricted to local queries or references, and where clearinghouses (or

22 THE CLEARINGHOUSE

their equivalents) know about objects of specific types only.

Updates to the various copies of a mapping may occur asynchronously and be interleaved with
requests for bindings of. names to properties. Therefore, clearinghouse server databases may
occasionally have incorrect information or be mutually inconsistent. (In this respect. we follow the
telephone system's model and not the various models for distributed databases in which there is a
notion of "indivisible transaction:' We find the latter too complicated fot our needs.) Therefore, as
in the telephone system, bindings given by clearinghouse servers should be considered by clients to
be hints. If a client requests the address of a printer, it may wish to check with the server at that
address to make sure it is in fact a printer. If not, it must be prepared to find the printer by other
means (perhaps the printer will respond to a local broadcast of its name), wait for the clearinghouse
to receive the update, or reject the printing request. If the information given out by the
clearinghouse is incorrect. it cannot. of course, guarantee that the error in -its database will be
corrected. It can only hope that whoever has invalidated the information will send (or preferably
already has sent) the appropriate update. However,. the clearinghouse does guarantee that any
inconsistencies between copies of the same portion of the database will be resolved, that any such
inconsistency is transient. This guarantee holds even in the case of conflicting updates to the same
piece of information; the clearinghouse arbitrates between conflicting updates in a uniform fashion.
The updating mechanism is described in Section 11.

Assuming this model of goodwill on the part of its clients-that they will quickly update any
clearinghouse entry they have caused to become invalid-and assumirig an automatic arbitration
mechanism for quickly resolving in a predictable fashion any transient inconsistencies between
clearinghouse servers, clients can assume that any information stored by the clearinghouse is either
correct or, if not, will soon be corrected. Clients therefQre may assume that the clearinghouse either
contains the truth about any entry, or soon will contain it. It is very important that clients can trust
the clearinghouse in this way, because the clearinghouse is often the only source of information
available to the client on the locations of servers, on user profiles, and so on.

The fact that the information returned by the clearinghouse is treated by the clients as both the
truth (the information is available only from the clearinghouse and so had better be correct) and a
hint (the information may be temporarily incorrect) is not self-contradictory. It merely reflects the
difference between the long-tenn and short-term properties of clearinghouse information.

7.1. Binding Strategies

An important consideration to be taken by the client (or, rather, the author of the software
comprising the client) is that of when to ask the clearinghouse for a binding. The binding technique
used greatly influences the ability of the system to react to changes in the environment.

There are three possibilities: static binding, in which names are bound at the time of system
generation; early binding, in which names are bound, say, at the time the system is initialized; and
late binding, in which names are bound at the time their bindings are to be used. (The boundaries
between the three possibilities are somewhat ill-defined; there is a continuum of choices.)

THE CLEARINGHOCSE 23

The main tradeoff to be taken into consideration in choosing a binding strategy is pelionnallce
versus flexibility.

The later a system binds names, the more gracefully it can react to changes in the environment. If
client software binds names statically. the software must be updated whenever the environment
changes. For instance, if software supponing printing directly stores the addresses of the print
servers (that is; uses a static binding strategy), it must be updated whenever new print servers are
added or existing servers are moved or removed. If the software uses a late binding strategy. it will
automatically obtain the most up-to-date bindings known to the clearinghouse.

On the other hand. binding requires the resolution of one or more indirect references, and this takes
time. Static or early binding increases runtime efficiency since. with either, names are already bound
at runtime. Funher. late binding requires interaction with the clearinghouse at runtime. Although
we have designed the clearinghouse to be very reliable, the possibility exists that a client may
occasionally be unable to find any clearinghouse server up and able to resolve a reference.

There are therefore advantages and disadvantages to any binding strategy. A useful compromise
I

combines early and late binding, giving the perfonnance and reliability of the former and the
flexibility of the latter. The client uses early binding wherever possible, and uses late binding only if
any of these (early) bindings becomes invalid. Thus, software supponing printing stores the
addresses of print servers at initialization, and updates these addresses only if they become invalid.
Of course, the client must be able to recognize if a stored address is invalid (just as it must accept
the possibility that the infonnation received from the clearinghouse is temporarily invalid). We
discuss hint validation further in Appendix 1.

7.2. Names versus Generic Names

Allied to the question of when to bind is the question of how many levels of indirection a client
should use in referring to an object, in panicular the question of whether to use names or generic
names. For instance, should printing software know the names of printers at SDD (such as
Daisy@SDD@Xerox) or should it use a generic name (such as Printers@SDD@Xerox which
perhaps maps into the names of printers at SDD)? If the client stores actual names, it must accept
the possibility that the name is invalid at runtime or that it is missing a new name-even if the
client uses a late binding strategy. The advantage of using generic names (and binding them at
runtime) is that the client reacts very gracefully to the addition or deletion of objects. The
disadvantage is the introduction of yet another level of indirection.

In the next section, we describe an operation for looking up objects by genre. Our generic lookup
differs from the Yellow Pages in that it does not require any explicit mappings from generic names
into sets of names.

24 THE CLEARI~GHOCSE

8. Clearinghouse: Client Interface

The clearinghouse provides ~ basic set of operations, some of which are exponed operations which
may be called by clients of the clearinghouse by m~ans of the stub clearinghouse resident in the
client and some of which are internal operations used by clearinghouse components to
communicate with each other. In this section we describe the exponed operations. We describe only
the most commonly-used operations and do not. for. instance. describe the operations required to
add new domains and organizations, to change access control lists, etc.

In the following, a name may be either a distinguished name or an, alias. With the exception of
some operations which allow "wildcard" characters or which take domain or organization names as
arguments, all names presented to the clearinghouse must be full names, of the fonn
localname@domain@organizalion.

The operations abon if there are access control violations, but we defer discussion of access control
until Section 12.

Notes on the operations are given at the end of this section.

8.1. Names

AddName(1IIl.me) adds the mapping name -+ f}, the mapping into the empty set It abons if a
mapping for name already exists.

DeleteName(1IIl.me) deletes the mapping name -+ {l, and name and' all equivalent names
(distinguished name andlor aliases) are released. It aborts if a mapping for name does not exist, or
if name is not mapped into the empty set.

CkangeName(1lIlIne l' 1IIl.me,) changes the distinguished name of an object with . name name] to
name2• If name] is the distinguished name, it is released. If name] is an alias. the corresponding
distinguished name is released. ChangeName abons if name2 is already a distinguished name or an
alias.

AddAlUzs(new1IIl.me, oldname) adds newname as an alias of oldnanze (oldname may be either an alias
or a distinguished name.). More precisely, AddAlias adds newname to the equivalence -class of
oldname. AddAlias aborts if oldname is not known to the clearinghouse or if newname is already a
distinguished name or an alias.

DeleteAlills(1IIl.me) deletes name from the equivalence class it has been in. DeleteAlias aborts if name
is not an alias of some distinguished name.

LookupDistinguishedName(1IIl.me) returns the distinguished name equivalent to name. (If name is
already a distinguished name, LookupDistinguishedName returns name.)

LookupAliIlses(name) returns all the aliases for name, where name may be a distinguished name or
itself an alias.

THE CLEARI!':GHOCSE 25

8.2. Indh'iduals

Lookuplndividual(name, propertyname) finds the mapping name ~ (.... <proper(vname. O.
propertyvalue), ... }, if it exists, and returns properlyvalue. It aborts if there is no such .mapping (and
indicates the reason: whether there is no such name, no property with identifier propertyname, or if
the property identified by propertyname is not an individual).

AddlndividUlll(name, propertyname, propertyvalue) adds the tuple <propertyname, 0, propertyvalue) to
the set of properties associated with name, if a mapping for .name already exists. Add! ndividual
aborts if-no mapping for name already exists or if a mapping name ~ {. .. , <propertyname, ... >, ... }
already exists.

DeletelndividUlll(name, propertylUlme) deletes the tuple (propertyname, 0, propert)'value) from the
mapping for name. Deletelndividuaf aborts if no mapping !lame ~ (.... <propertyname, O.
propertyvalue). ...} exists.

Changelndividual(lUlme, propertyname, propenyvalue) finds the mapping name ~ (. .. ,
<propertyname, 0, oldp roperty va lu e), ... J, if it exists, and replaces the existing oldpropertyvalue with
propertyvalue. It aborts if no mapping name ~ { .. , (propertyname. O. oldp ropertyvalu e) J already
exists.

S.3. Groups

Lookup Group (lUlme, propertyname) finds the mapping name ~ {. .. , (propertyname. I.
propertyvalue), ... J, if it exists, and returns propertyvalue. It aborts if there is no such mapping (and
indicates the reason: whether there is no such name, no property with identifier propertyname, or if
the property identified by propertyname is not a group).

AddGroup(name, propertyname, propertyvalue) adds the tuple (propertyname, I. propertyva]ue> to the
mapping for name if a mapping for name already exists. AddGroup aborts if no mapping for name
already exists or if a mapping name ~ (... <propertyname, ...), .. .} already exists.

DeleteGroup(name, propertyname) deletes the tuple (propertyname, 1, propertyva]ue> from the
mapping for name. DeleteGroup aborts if no mapping name ~ (. .. , <propertyname, 1, propertyvalue),
... } exists.

ChangeGroup(name, propertyname, propertyvalue) finds the mapping name ~ { .. , (propertyname, 1,
oldpropertyvalue>, ... J, if it exists. and replaces the existing <propertyname, I, oldpropertyvalue> with
(propertyname, 1. propertyvalue>. It aborts if no mapping name ~ { ... , <propertyname, I,
oldpropertyvalue>, ... } already exists.

SA. Group Elements

IsMemher(element, name, propertyname) finds the mapping name ~ {. .. , (propertyname, I,
propertyvalue> J, if it exists, and determines if element is a member of the group propertyvalue. It

26 THE CLEARINGHOCSE

aborts if tfiere is no such mapping.

IsMemberClosure(element, name, propertyname) finds the mapping name -. { <propertyname. 1.
propertyvalue>, ... }, if it exists, and determines if element is a member of the group propertyva!ue. If
so, it returns with success. If not, it calls Is.MemberC!osure(element. name, propertyname} fOT each
element x in the set propertyvalue with an associated property named propertyname.
IsAlemberClosure aborts if there is no mapping name -. {. .. , <propertyname, 1, propertyvalue> }.

AddMember(element, name, propertyname) finds the mapping name -. { .. , <propertyname, 1,
propertyvalue>, ... }, if it exists, and adds element to the group propertyvalue. It aborts if the mapping
name -+ (.. , <propertyname, 1, propertyvalue>, ... J does not exist or if element is already a member
of propertyvalue.

DeleteMember(element, name, propertylUlme) finds the mapping name -. { ... , <properlyname, 1,
propertyva!ue), ... }, if it exists, and deletes element from the group propertyvalue. It aborts if the
mapping flame -. { ... , <propertyname, 1. properryvalue>, .. .} does not exist or if element is not a
member of propertyvalue.

AddSelf(element, lUlme, propertyname) aborts if the originator of the request does not have name
element, and otherwise is equivalent to AddM ember(element. name, propertyname). (See Section 8.8
below.)

DeleteSelf(element, name, propertyname) aborts if the originator of the request does not have name
element, . and otherwise is equivalent to DeleleA! ember(elemenl, name, propertyname).

8.5. Generic Names

LookupGenerie(name, propertyname), where name is of the form loealname@domain@organizalion,
returns the set of object names which map into properties of the form name -. f. .. , <propertyname,
propertytype, propertyvalue), ... }. The set may of course be empty. The loealname component of
name may optionally contain one or more wildcard characters "*". Each wildcard character may
match zero or more characters. Thus, name matches an entry in the database if the entry is equal
(ignoring case) to name with each occurrence of "*" replaced by any string of characters. If
loealname is the single character "*", then LookupGenerie returns the set of all object names which
map into properties of the form name -. { .. , (propertyname. propertytype. propertyvalue>, ...) in the
domain domain@organization. If name contains no occurrence of "*", then LookupGeneric returns
either the empty set or the singleton set {name}.

8.6. Enumeration

EnumerateObjects(name). where name is a domain name domain@organization, enumerates all
names known to the clearinghouse, in this domain.

EnumerateDollUlins(name), where name is an organization name, enumerates all names of domains
in this organization.

THE CLEARI~GHOt:SE 27

EnumerateOrganizationsO enumerates all names of organizations.

EnumeratePropeI1ies(name) returns the set {(propertynamel' propertytypel' propertyvalue/>, ... ,
(propertYI101I1ek, properl),i)pek. properlyvaluek>} that name maps into.

8.7. Notes on these Operations

Strictly speaking, the clearinghouse requires only a very few commands, for reading, adding, and
deleting entries. We provide many different operations, in particular, different commands for
different types (for instance, different commands to add an individual and to add a group) and for
different levels of granularity (for instance, different commands for adding groups and adding
elements to a group). We give different operations for different types to provide a pri~itive type
checking facility. V\~e give different operations for different levels of granularity for three reasons.
First. it minimizes the data that must be transmitted by the clearinghouse or the client when reading
or updating an entry. Second, it allows different clients to change different parts of the same entry
at the same time. For instance, two clients may add different elements to the same group
simultaneously using the Add.M ember command: if each were required to update the whole entry,
their two updates would conflict (this is described further in Section 11). Third, as we shall see in
Section 12, we make use of the different operations. for different levels of granularity in our access
control facility. Finally. we provide separate operations for changing an entry or sub-entry although
these operations are functionally equivalent to deleting the original entry and adding the changed
entry. However. changing an entry constitutes on~, indivisible transaction~ deleting and adding an
entry constitute two transactions separated by a period during which another client may try to read

,the incorrectly-empty entry.

Names are explicitly, rather than implicitly, registered and deleted. Typically, systems administrators
for a particular domain. will add and delete names, but may allow users to modify some of the
properties associated with names.

Is1l4emberClosure is the closure of IsM ember. An example of its use is in the use of membership
lists. An example of a membership list might be:

Clearinghouselnterest@SDD@Xerox -+ {

("Descriptive Comment". O. "List afthose interested in the Clearinghouse DeSign">.
("Distribution List". 1, ("ClearinghouseDesigners@SDD@Xerox".

"ClearinghouseSupport@SDD@Xerox''j)}

ClearinghouseDesigners@SDD@Xerox -+ {

("Distribution List", 1. {"Dalal@'SDD@Xerox", "Oppen@'SDD@Xerox"j>}

ClearinghouseSupport@SDD@Xerox -+ {

("Distribution List", 1. {"Clearinghauselmplementers@SDD@Xerox",
"ClearinghouseAfaintainers@SDD@Xerox''}>j,

\vhere C learinghouselmplementers and ClearinghauseAf ainlainers map into further distribution lists.
To check if Dalal@SDD@Xerox is on me Clearinghouselnterest distribution list. we call

28 THE CLEARINGHOVSE

!sAlemberClosure("Dalal@SDD@Xerox", "Clearinghouse!nterest@SDD@Xerox". "Distribution
List"} which automatically checks the "Distribution List" group associated with
Clearinghouse!merest. Since Dalal is not an entry, !sMemberClosure then checks any subsets of this
entry, any of their subsets, and so on. !sMemberClosure allows circularities (a list may contain
another which in tum contains the first).

AddSe/f and DeleteSe/fprovide additional access control to AddA-fember and DeleteAlember, and are
discussed further in Section 12. They are used, for instance, in electronic mail to allow users to add
and delete themselves from distribution lists.

LookupGeneric provides a primitive "Yellow Pages" facility. As we shall see in Section 13 on
clearinghouse administration, propeny names are centrally allocated to provide consistency across
domain boundaries. For instance. the propeny name "Printer" is reserved as the name of the
network address of printers. (Recall our previous example showing the entry for the printer Daisy:
Daisy@SDD@Xerox -. {("Printer", O. network address of the printer named Daisy>).} To find the
printers in SDD@Xerox, a client calls LookupGeneric("*@SDD@Xerox". "Printer"}. This "Yellow
Pages" facility is fairly simple but considerably less expensive than, for instance, a relational
database. LookupGeneric suffices for the purposes we envision. For example, when a new user is
being registered, part of the registration dialogue involves choosing his preferred local printer,
preferred mail server, etc. The LookupGeneric operation allows the user (or system administrator) to
enumerate all printers or all mail servers. and choose among them. Typically, the mapping for each
printer or mail server will also contain descriptive comments (describing in what room the server is
located, if it prints in color, etc.) which helps him in makin~ the appropriate choices.

The LookupGeneric. EnumerateDomains and EnumerateOrganizations operations also provide a
"directory" service to users. For instance, the Xerox 8010 Star workstations provide a directory
service by means of which a user can list network-based resources. The directory gives the user a
window into the clearinghouse database, and is implemented by means of generic lookup.

As we will see in Section 13 on clearinghouse administration, we standardize the use of property
names. Thus all clients of the clearinghouse agree on the use of each generic name, in much the
same way that the telephone system uses (roughly) the same generic names (such as "Automobile
Repair") in all the Yellow Pages it publishes. The advantage of this is that client software can
request a service in a standardized fashion, and need not be tailored to a particular environment
with a particular set of names for servers supplying this service.

For instance, each user workstation generally has a piece of software that replies to the user
command "Help!" This software accesses some server to obtain the information needed to help the
user. (The software could store all this information itself, but· it is more reasonable to store it in a
central location, both to reduce the size of the workstation storag.e and to make updating the
information easier.) Suppose the generic name "Help Service" is agreed upon as the standard
property name for such a service. To find the addresses of the servers providing help to users in
SDD@Xerox, the workstation software calls LookupGeneric("*@SDD@Xerox", "Help Service'').
The workstation then calls Lookup! ndividual to find the addresses. This piece of code can be used
by any workstation, regardless of its location.

THE CLEARINGHOL'SE 29

The "wildcard" feature of LookupGeneric allows clients to find valid names where they have only
partial information on or can only guess the name. It is particularly useful in electronic mail and in
other uses of user names. Recall our discussion in Section 5 on the use of aliases to make the
naming convention as friendly as possible. The problem with using aliases is the tradeoff between
the number of aliases stored (to make sure that any reasonable alias works) and the time and space
required to find and store these aliases. It is unlikely that we can afford to store all plausible aliases.
Further, we want to be able to respond gracefully to a user's use of an ambiguous name. For
instance, we want to do more than just reject a piece of mail addressed to "Smith" if there is more
than one Smith'.

If Lookuplndividual("Smith", "Alail Server'~ fails, because "Smidt" is ambiguous.. the electronic
mail system may choose to call LookupGeneric("*Smith*". "SDD@Xerox", "Mail Server") to find
the set of user names matching this name. It presents this set to the sender of the mail and allows
him to choose which unambiguous name is appropriate. A simple algorithm to use in general might
be to take any string provided by the user, surround the string with *s, delete any periods, and
replace any occurrence of <blank> by *<blank>. Thus Yogen K. Dalal becomes *Yogen* K* Dalal*,
which matches Y ogen Kantilal Dalal, as desired.

30 THE CLEARINGHOCSE

9. Clearinghouse: Structure

We now describe how the clearinghouse is structured internally. This description will be augmented
in Section 12 when we discuss access control.

9.1. Clearinghouse Servers

The database of mappings is decentralized. Copies of portions of the database are contained in
clearinghouse servers which are servers (or perhaps services on servers) spread throughout the
internetwork. We refer to the union of all these clearinghouse servers as "the clearinghouse." Each
clearinghouse server is a named object in the internetwork, and so has a distinguished name and
possibly aliases as well.

As stated in Section 7, we assume that every client of the clearinghouse contains a clearinghouse
component, called a stub clearinghouse. Stub clearinghouses provide a unifonn way for clients to

access the clearinghouse. Stubs provide at least the operations described in Section 8. Stub
clearinghouses do not have names (although they will typically be on machines containing named
objects). Stubs are required to store the address of at least one clearinghouse server, or at least to be
able to find one, perhaps by local or directed broadcast ([Boggs 1981)).

9.2. Domain and Organization Clearinghouses

Each clearinghouse server may contain any ponion of the global database (subject, as we shall see,
to access control). However, this decentralization is not totally arbitrary. Some clearinghouse servers
accept responsibility for maintaining specific portions of the global database.

Corresponding to each domain D in each organization 0 are one or more clearinghouse servers
each containing a copy of all mappings for every name of the fonn <anything)@D@O, that is, the
mappings fdr all objects in domain D@O. Each such clearinghouse server is called a domain
clearinghouse for D@O. (Each clearinghouse server that is a domain clearinghouse for D@O may
contain other portions of the database other than just the database for this domain, and each of the
domain clearinghouses for D@O may differ on what other portions of the global database, if any,
they contain.) There is at least one domain clearinghouse for each domain in the distributed
environment. Domain clearinghouses are addressable objects in the internetwork and hence have
names. Each domain clearinghouse for each domain in organization 0 has a name of the fonn
<anything)@O@ClearinghouseServers which maps into the network address of the server, under
property name Clearinghouse Location. (ClearinghouseServers is a reserved organization name.)
Thus, if L@O@ClearinghouseServers is the name of a domain clearinghouse for D@O, then there
is a mapping of the form L@O@ClearinghouseServers -+ f. ... <"Clearinghouse Location". 0,
network address>. .. .}.

For each domain D@O, we require that D@O@ClearinghouseServers map into the set of names of
domain clearinghouses for D@O, under propeny name A/embers. For example, if the domain
clearinghouses for domain D@O have names L j@O@ClearinghouseServers,
L2@O@ClearinghouseServers, ... , Lk@O@ClearinghouseServers, then there is a mapping of the

THE CLEARI~GHOUSE 31

form D@O@ClearinghouseServers -+ f.... ("AI embers'~ 1. {L /@O@ClearinghouseServers.
L2@O@ClearinghouseServers, Lk@O@ClearinghouseServersj>. ...j. For each i and j.
L,@O@ClearinghouseServers is a sibling of Lj@O@ClearinghouseServers for domain D@O. Thus.
we have given a name to the set of sibling domain clearinghouses for each domain in organization
O.

Note that the names of all domain clearinghouses, and all sets of sibling domain clearinghouses, for
domains in organization 0 are themselves names in the reserved domain O@ClearinghouseServers.
We will call each domain clearinghouse for this reserved domain,an organization clearinghouse for 0
since it contains the name and address of every domain clearinghouse in the organization. In
particular, if L /@O@ClearinghouseServers, L2@0@ClearinghouseServers, ... ,
Lk@O@ClearinghouseServers are the domain clearinghouses for any domain D@O, then each
organization clearinghouse for 0 contains the mappings D@O@ClearinghouseServers -+ {

("A/embers", 1. {L/gD@ClearinghouseServers, L2@D@'ClearinghouseServers, "',
Lk@O@ClearinghouseServersj>, ... j, L/@O@Clear/nghouseServers -+ { ..• , ("Clearinghouse
Location", 0, network address>, ... j, "', Lk@O@ClearinghouseServers -+ { ... , ("Clearinghouse
Location': 0, network addresS> j.

Since O@ClearinghouseServers is a domain, there is at least one domain clearinghouse for
O@ClearinghouseServers and hence at least one organization clearinghouse for O. Each such
clearinghouse has a name of the form (anything)@ClearinghouseServers@ClearinghouseServers
which maps into the network address of the server, under propeny name Clearinghouse Location.
Thus, if L@ClearinghouseServers@ClearinghouseServers is the name of a domain clearinghouse for
O@ClearinghouseServers (that is, an organization clearinghouse for 0), then there is a mapping of
the form L@ClearinghouseServers@ClearinghouseServers -+ {. ••• ("Clearinghouse Location". 0,
network address>. ...j. For each organization 0, we require that
O@ClearinghouseServers@ClearinghouseServers map into the set of names of organization
clearinghouses for 0, under property name Members. For example, if the organization
clearinghouses for 0 have names LJ@ClearinghouseServers@ClearinghouseServers,
L 2@ClearinghouseServers@ClearinghouseServers, ""
Lk@ClearinghouseServers@ClearinghouseServers, then there is a mapping of the form
O@ClearinghouseServers@ClearinghouseServers -+ {.... ("Members", 1,
{L l@ClearinghouseServers@ClearinghouseServers, L2@ClearinghouseServers@ClearinghouseServers,
... , Lk@ClearinghouseServers@ClearinghouseServersj>, ... j. Each
L,@ClearinghouseServers@ClearinghouseServers is called a sibling of
Lj@ClearinghouseServers@ClearinghouseServers for organization O. Thus, we have given names to
the set of sibling organization clearinghouses for each organization O.

Note that each organization clearinghouse for 0 points directly to every domain clearinghouse for
any domain in 0, and hence indirectly to every object with a name in O.

The clearinghouse reserves the organization name ClearinghouseServers, and within it the domain
name ClearinghouseServers, in order to name clearinghouse servers. The clearinghouse also reserves
the propeny name Clearinghouse Location, and uses the property name Members.

32 THE CLEARI~GHOUSE

Note the distinction between clearinghouse servers on the one hand and domain and organization
clearinghouses on the other. The fonner are physical· entities that run code, contain databases and
are physical1y resident on network servers. The latter are logical entities, and are a convenience for
referring to the clearinghouse servers which contain specific portions· of the global database. A
particular clearinghouse server may be a domain clearinghouse for zero or more domains, and an
organization clearinghouse for one or more organizations.

9.3. Interconnections between Clearinghouse Components

As we have just seen, organization clearinghouses point ,t downwards" to domain clearinghouses,
which point "downwards" to objects. Further interconnection structure is required so that stub
clearinghouses can access clearinghouse servers, and clearinghouse servers can .access each other.
(The communication flow between clearinghouse components is described in Sections 10, 11 and
13.)

First, each clearinghouse server is required to be an organization clearinghouse for the reserved
organization ClearinghouseServers, and hence each clearinghouse server points "upwards" to every
organization clearinghouse. Thus, for each organization 0, each clearinghouse server contains a copy
of the mappings O@ClearinghouseServers@ClearinghouseServers ... {. ..• - (,'Members", 1.
{L j@ClearinghouseServers@ClearinghouseSen1ers, L2@ClearinghouseServers@ClearinghouseSen1ers,

L k@ClearinghouseSen1ers@CleatinghouseServersJ>, ... J,
Lj@ClearinghouseServers@ClearinghouseServers --. {. .. , ("Clearinghouse Location", O. network
address>, ... J, ... , Lk@ClearinghouseServers@ClearinghouseServers ~ f. .. , ("Clearinghouse
Location", 0, network address>, ... J. In this way, each c1earin~ouse server knows the name and
address of every organi~tion clearinghouse.

Finally, stub clearinghouses contain the address of at least one clearinghouse server or at least can
always find a cTearinghouse server, perhaps by local or directed broadcast. If they store an address,
it is typically, but not necessarily, the address of the closest clearinghouse server. We do not require
a clearinghouse server to keep track of which stub clearinghouses point to it, so these stubs will not
be told if the server changes location, and must rely instead on other facilities, such as local or
·directed broadcast, to find a clearinghouse server if the stored address becomes invalid. The reasons
we do not require stubs to follow the same style of interconnection as clearinghouse. servers is that
the set of stubs may be exceedingly large; these stubs may be in machines which are powered off as
often as they are powered on (or are "offline"), making it difficult to update them in reasonable
time anyway; and we do not expect clearinghouse servers to be added, deleted or moved very often.
Storing the address of a server in a stub versus relying on local broadcast has the same
perfonnance-flexibility tradeoff discussed in Section 7.1 on binding strategies.

9.4. Interconnections between Organization Clearinghouses

We have described how organizations are logically connected by the clearinghouse structure.
Clearinghouse information may flow freely between all the domain and organization clearinghouses.
That is, each domain and organization clearinghouse may. request and store a copy of any mapping
held by any other domain and organization clearinghouse (subject to access control). This model of

THE CLEARINGHOUSE 33

trust among clearinghouse servers is appropriate within an organization (corresponding to a
corporate entity or sub-entity) and between organizations which trust each other and wish to share
information freely. (In Section 12.3 we discuss "ann's length" security between organizations.)

Trust is an equivalence relation. An organization trusts itself. If one organization trusts another, then
the trust is reciprocated. If one organization trusts another which in turn trusts a third, then the first
also trusts the third. (That trust is symmetric is required so that trusted clearinghouses can hear of
updates. Making trust an equivalence relation makes implementation of access control easier.)

It is possible for a clearinghouse server that is a domain clearinghouse for a domain in one
organization also to be a domain clearinghouse for a domain in another organization. For example,
a clearinghouse server may be a domain clearinghouse for one or more domains in the organization
VersaTec, and domain clearinghouse for one or more domains in the organization Xerox. It then has,
by the above, at least two names (one of them its distinguished name). If the server is physically
resident in Versatec, its names might be Registry@Versatec@ClearinghouseServers and
SDDRegistryAtVersatec@Xerox@ClearinghouseServers, with the fonner its distinguished name.

9.5. Summary

Each clearinghouse server contains mappings for a subset of the set of names. If it is a domain
clearinghouse for domain D in organization 0, it contains mappings for all names of the form
(anything>@D@O. If it is an organization clearinghouse for organization 0, it contains mappings
for all names of the fonn (anything>@O@ClearinghouseSenJers (names associated with domains in
O). Each clearinghouse server contains the mappings for all names of the form
(anything>@ClearinghouseServers@ClearinghouseServers (names associated with organizations); that
is, the database associated with ~e reserved domain ClearinghouseServers@ClearinghouseServers is
replicated in every clearinghouse server. Stubs point to any clearinghouse server.

For every domain D in an organization 0, D@O@ClearinghouseServers names the set of names of
sibling domain clearinghouse servers for D@O. For every organization 0,
O@ClearinghouseServers@ClearinghouseServers names the set of names of sibling organization
clearinghouse servers for O. (We make no use of the name
ClearinghouseServers@ClearinghouseServers@ClearinghouseServers, which contains the set of names
of all clearinghouse servers.)

This clearinghouse structure allows a relatively simple algorithm for managing the decentralized
clearinghouse (see Section 13). However, it does require that copies of the mappings for all names
of the form (anything>@ClearinghouseServers@ClearinghouseSen1ers be stored in all clearinghouse
servers. In Appendix 2 we describe an alternative structure that localizes information about
clearinghouse servers, but which requires a more complicated algorithm for adding or moving
clearinghouse servers.

34 THE CLEARI~GHOCSE

10. Clearinghouse: Distributed Lookup Algorithm

We now briefly describe how clearinghouse components communicate with each other in response
to a call to Lookupl ndividual or LookupGroup.

Suppose that a stub clearinghouse receives the query Lookuplndividual("A@B@C", propertyname).
The stub clearinghouse follows the following geperal protocol.

The stub clearinghouse contacts a clearinghouse server and passes it the query. (Recall that each
stub clearinghouse stores the address' of at least one clearinghouse server or can find one through
local or directed broadcast.)

If the clearinghouse server that receives the stub's query is a domain clearinghouse for B@C, it can
immediately return the answer to the stub who in turn returns it to the client.

Otherwise, the clearinghouse server returns the names and addresses of the organization
clearinghouses for C. which it is guaranteed to have. The stub contacts any of these clearinghouse
servers. If this clearinghouse server happens also to be a domain clearinghouse for B@C, it can
immediately return the answer to the stub who in turn returns it to the client.

Otherwise the clearinghouse server returns the names and addresses of the domain clearinghouses
for B@C. which it is guaranteed to have. The stub contacts any of these, since any of them is
guaranteed to have the answer.

The domain clearinghouse for B@C that returns the answer to the query does so after
authenticating the requestor and ascenaining that the re<:!uestor has appropriate access rights.

In the worst case, a query conceptually moves "upwards" from a stub clearinghouse to a domain
clearinghouse to an organization clearinghouse, and then "downwards" to one of that organization's
domain clearinghouse, The number of clearinghouse servers that a stub has to contact will never
exceed three: the clearinghouse server whose address it knows, an organization clearinghouse for the
organization containing the name in the query, and a domain clearinghouse in that organization.

However, before sending the query "upwards," each clearinghouse component optionally first sees if
it can shortcut the process -by sending the query "sideways," cutting out a level of the hierarchy.
(This is similar to the shoncuts used in the routing structure of the telephone system.) These
"sideways" pointers are cached pointers, maintained for efficiency. For instance, consider domain
clearinghouses for PARC and for SDD, two logical domains within organization Xerox. Depending
on the traffic, it may be appropriate for the PARC clearinghouse to keep a direct pointer to the
SDD clearinghouse, and vice versa. This speeds queries that would otherwise go through the Xerox
organization clearinghouse. To increase the speed of response even funher, each clearinghouse
server could be a domain clearinghouse for both domains. Alternatively, if the number of domains
in Xerox is relatively small, it may be appropriate to make each clearinghouse server in Xerox an
organization clearinghouse for Xerox. In this way, each clearinghouse server in Xerox always points
to -every other clearinghouse server in Xerox.

THE CLEARINGHOUSE 35

Local queries (that is, queries about names "logically near" the stub clearinghouse) will typically be
answered more quickly than non-local queries. That is appropriate. The caching mechanism (for
storing of "sideways" pointers) can be used to fine-tune clearinghouse servers to respond faster to
non-local but frequent queries.

To make the lookup process clearer. let us present it as a quasi-algorithm. To simplify the following,
we assume that there is in fact a mapping A@B@C -+ { ..• , (propertyname, 0, propertyvalue> • ..•)
and that the originator of the request has the appropriate access right to receive it A clearinghouse
component can (1) Find the mapping for a name in its own database. or (2) Contact a clearinghouse
server, or (3) Return the mapping for A@B@C. a failure message or the name and address of
another clearinghouse server.

Lookupl ndivUJUIll("A@B@C", property1lllme):

1. Stub:
1.1. Contact any clearinghouse server (Go to 2).

2. Some clearinghouse server".
2.1. If this server is a domain clearinghouse for B@C, Retumpropertyvalue to the stub. which in turn

returns it to the client
2.2. Find the names and addresses of domain clearinghouses for B@C. That is. Find

B@C@ClearinghouseServers -+ f. .. , ("A[embers': 1, {LJ@C@ClearinghouseServers, ...•
Lk@C@ClearinghouseServers}>, ... }. Ifsuccessful, Find Lr@C@ClearinghouseServers -+ {. •. ,

("Clearinghouse Location", 0, networkaddress>, ...) for all i from 1 to k. If successful, Return
those names and addresses found to the stub. which in turn Contacts one of the servers (Go To
4).

2.3. Find the names and addresses of organization clearinghouses for C. That is. Find
C@ClearinghouseServers@ClearinghouseServers -+ f. .. , ("Members': 1,
{L j@ClearinghouseServers@ClearinghouseServers •
Lk@ClearinghouseServers@ClearinghouseServers}>. ... }. Find
L1@ClearinghouseServers@ClearinghouseServers -+ f. .. , ("Clearinghouse Location", O.
networkaddress>. ...) for all i from 1 to k. This operation is guaranteed to be successful. Return
the names and addresses found to the stub. which in tum contacts one of the servers (Go To 3).

3. Organization clearinghouse for organization C:
3.1. If this server is a domain clearinghouse for B@C, Return propertyvalue to the stub, which in turn

returns it to client
3. 2. Find the names and addresses of domain clearinghouses for B@C. as in step 2.2. This operation is

guaranteed to be successful. Return the names and addresses found to the stub. which in tum
Contacts one of the servers (Go To 4.).

4. DomDin clearinghouse fot domain B@C:
4.1. Find A@B@C and Return propertyvalue to the stub, which in turn returns it to client

The algorithm is the most-general. worst-case algorithm. Step 2.2 may be deleted if clearinghouse
servers do no caching of "sideways" pointers. If A@B@C is an alias for D@E@F, the domain

36 THE CLEARINGHOUSE

clearinghouse for B@C resolves this indirection without involving the stub. Similarly, if the name of
a clearinghouse server (in steps 2.2, 2.3 or 3.2) is an alias, the indirection is resolved before
returning the names and addresses to the stub.

10.1. Caching

We allow clearinghouse components to "cache" entries for efficiency. Let us consider briefly when it
is appropriate to do so~

As we have seen, it may be useful to cache the address of a clearinghouse server, if the· path to that
server is often taken and if caching its address reduces the time required to find· its address. The
latter depends partially on whether it is cheaper to look up a name in a database than it is to
communicate with another clearinghouse server, and panially on the probability of finding the entry
cached.

There are several ways for a clearinghouse server to decide which addresses to cache. It may rely on
the stubs to tell it the addresses of those clearinghouse servers they access most often. Alternatively,
it may keep track of the queries it receives from stubs, and find and store the addresses of those
clearinghouse servers able to answer the most common requests. For instance, if a clearinghouse
server receives many queries of the fonn <anything)@B@C, it may profitably cache the names and
addresses of domain clearinghouses for B@C.

Cached entries are not maintained by the clearinghouse. Therefore, iIi the case of clearinghouse
server addresses, there is a possibility, if. a clearinghouse server caches the address of another
clearinghouse server and gives it to a stub, that the address will be invalid by the time it is used.
This is not a serious problem; if it occurs, the stub tells the server to delete the cached entry and
use the general algorithm described above instead.

In general, it is not appropriate for a stub or clearinghouse server to cache anything other than
clearinghouse servef'addresses since it has to ensure that the client can easily tell if the cached entry
is invalid.

THE CLEARINGHOlJSE 37

11. Clearinghouse: Update Algorithm

The distributed update algorithm we use to alter the clearinghouse database is closely related to the
distributed update algorithm used by Grapevine's registration service [Birrell, Levin, Needham, and
Schroeder 1981].

The basic model is quite simple. Assume that a client wishes to update the clearinghouse database,
for instance by a call to AddAfember("ClearinghouseReviewers@SDD@Xerox",
"Clearinghouselnteresl@SDD@Xerox", "DistribUlionList'~. The request is submitted via the stub
resident in the client. The stub contacts any domain clearinghouse containing the mapping to be
updated (in our example, any domain clearinghouse for SDD@Xerox) using LookUp to find its
address. The domain clearinghouse authenticates the requestor and checks to see if the request is a
valid one. If not, it refuses the update request. Otherwise, it updates its own database and
acknowledges that it has done so. The interaction with the client is now complete. The domain
clearinghouse then propagates the update to its siblings if the database for this domain is replicated
in more than one server (see Section 11.3).

The propagation of updates is not treated as an indivisible transaction. Therefore, sibling
clearinghouse servers may have databases that are temporarily inconsistent; one server may have
updated its database before another has received or acted on an update request. This has
ramifications, which we now discuss.

11.1. Choosing among Conflicting Updates

The possibility exists that two clients may submit conflicting update requests to two sibling servers
at roughly the same time. For instance, one may ask one server to change a mapping at roughly the
same time the other asks another to change it differently. Each server may execute the update and
send an acknowledgement to the client, not knowing that the other server is doing the same thing
with a conflicting update on behalf of another client. It is only when each server propagates to its
siblings the update request that the inconsistency is noticed. We do not mind that the two servers'
databases are temporarily inconsistent, but we do want the inconsistencies to be resolved. Therefore,
the clearinghouse automatically arbitrates between conflicting updates, as follows. Each server which
receives an update request from a client timestamps the request before propagating it to its siblings.
Upon receiving an update request, whether directly from a client or from a sibling, a server stores it
together with its timestamp. When the server receives a new update request, it compares its
timestamp with those of the requests it has already acted upon. If the new request is subsumed by a
previously-received request, it is thrown away. Otherwise, it is carried out. (We define
"subsumption" in the obvious way. A request to delete a set subsumes any request to alter its
contents, a request to change an element of a group subsumes any older request to change the
element, and so on.)

An important consideration is the level of granularity of an update. Recall that we specifically
introduced "group of names" as a distinct data type, and operations to add and delete elements of
groups. A primary reason for introducing operations at the level of "element of group" was to make
the handling of distribution lists as easy as possible. For instance, two users may update a

38 THE CLEARINGHOUSE

distribution list (perhaps by adding themselves using AddSelj) at roughly the same time, without
having to know that the other is presently updating the same list and without the distributed update
algorithm's overriding one update in favor of another (unless they conflict).

Since all update requests are timestamped in a consistent fashion, all sibling servers will agree oil
their databases as soon as all update requests have been received by all of them. However, there is a
slight possibility that an update request directed to a particular server will never reach its
destination, so we need one additional mechanism. Every so often, perhaps once a day or once a
week, all the sibling clearinghouses for a given portion of the database compare their databases and
use the saved update requests with their timestamps to resolve any confliets. In this way, we
maintain consistency (at least among those servers that are up).

The above mechanisms do not ensure that "the most recent update" always wins, because the
timestamps are generated by different servers, and their internal clocks may disagree. The
disagreement will generally be slight-there are techniques for servers to synchronize their clocks
([Boggs 1981])-but the possibility cenainly exists that "the most recent update" does not win. All
that is guaranteed is that sibling clearinghouses will eventually agree on their databases as a result of
a series of update requests. This suffices. Conflicting updates presented simultaneously is an
indication of a problem in coordination outside the clearinghouse.

Thus, the most recent update generally wins. This may not always be appropriate. For instance, if
two system administrators register the same name at roughly the same time, presumably the first
one to register the name should win. However, we prefer to use one consistent arbitration
mechanism, and leave it to the system administrators to improve their coordination.

Storing update requests, including deletion requests, with their timestamps is necessary for
consistent arbitration. We naturally want to throw them away as soon as possible. A server can
throwaway a stored request if the request has been subsumed by a later request (for instance, it can
throwaway a request to alter an; entry if another, later request is received to delete or further alter
the entry). It can also throwaway a stored request if it and all its siblings have agreed that their
databases are consistent

There remains the possibility that a sibling will be down or inaccessible for an inconsiderate amount
of time. We let update requests have only a finite lifespan, of perhaps a week. No request with an
expired timestamp will be honored by any server. Further, no server need store update requests
with expired timestamps. As a result, if a server resumes service after more than a week of
inactivity, it should re-initialize itself.

11.2. Out-or-order Update Requests

We have thus far ignored an important problem-the problem of updates arriving- out of order. A
clearinghouse server may receive an l:lpdate request which is i~consistent with its existing database:
for instance, a request to delete an item that does not exist If the request is a direct request from a
client, the server refuses _the request as described in Section 8. However, if the request is a request
propagated by a sibling clearinghouse, the correct response is not so clear. One possibility is to

THE CLEARI~GHOUSE 39

ignore the request. and rely on the once-a-d~y or once-a-week comparison of databases to resolve
the issue. Another possibility is to complain to the originating server and ask it to justify its request.
We take a third approach, as follows.

Each server trusts any of its siblings to validate any request relative to its own database before
propagating the request. Each request therefore "makes sense to at least one sibling. If a server
receives a request from a sibling that is inconsistent with its database, it assumes that its sibling is
correct, and that the inconsistency is due to one or more lost or late update requests. It therefore
carries out the request and updates its database in the appropriate fashion. For instance, if it
receives a request to delete a nonexistent entry, it does nothing. If it receives a request to alter a
nonexjstent entry, it treats the request as a request to add the entry as given. If it receives a request
to add an already-existing entry, it treats the request as a request to change the existing entry. When
the missing requests finally arrive. they will be ignored since they have- been subsumed; their
timestamps are outdated.

11.3. Updating Sibling Clearinghouses

An organization clearinghouse knows the names and addresses of all its siblings, while a domain
clearinghouse can find the names and addresses of its siblings from any of its organization
clearinghouses.

Large distributed systems typically have an electronic mail delivery facility that can be used to
propagate update requests among clearinghouse servers. Mail delivery systems allow a message to be
sent even though the intended recipient of the message is not ready to receive it; the message is
stored in a mail server until the recipient is ready. There is therefore a possible possible time-lag
between the sending and the receipt of a message. Since our clearinghouse design does not require
that updating be an indivisible process, this does not worry us. Using a mail system to propagate
update messages has many advantages (see [Birrell, Levin, Needham, and Schroeder 1981]); one of
them is that they automatically queue up undeliverable messages and try again later.

Clearinghouse servers, therefore, send their siblings timestamped update messages telling them of
changes to the databases. We associate with the name of every clearinghouse server the property
("M ai/box Location", 0, networkaddresS>. Clearinghouse servers must periodically poll their
mailboxes for update messages.

40 THE CLEARI~GHOLSE

12. Clearinghouse: Security

We restrict ourselves to a brief discussion of three issues. The first two concern protecting the
clearinghouse from unauthorized access or modification, and involve authentication (checking that
you are who you say you are) and access control (checking that you have the right to do what you
want to do). The third concerns inter-organization security: how two mutually-suspicious
organizations can allow their respective clearinghouse servers to interact and still keep them at anns'
length. We do not discuss how the network ensures (or does not ensure) secure transmission of data.

12.1. Authentication

When a request is sent by a client to a clearinghouse server to read from or write onto a portion of
the clearinghouse database. the request is accompanied by the distinguished name of the' client and
its password. (This is typically the name and password of the human user logged in at the
workstation originating the request). If the request is an internal one, from one clearinghouse server
to another, the requestor is the name of the originating clearinghouse server and its password. (The
clearinghouse thus makes sure that internally-generated updates come on~y from "trusted"
clearinghouse servers.) The clearinghouse maintains a database mapping names of clients and other
-clearinghouse servers into their valid passwords, and compares the name-password pair appearing in
any request against that stored in its database.

The clearinghouse a\1thentication mechanism is available as a service to clients to authenticate their
clients if they so desire. We do not describe authentication or the operations exported by the
clearinghouse to support client authentication further.

12.2. Access Control

Once a client has been authenticated, it is granted certain privileges. Access control is provided at
the domain level and at the propeny level. Access control is not provided at the mapping (set of
properties) level nor at the level of element of a group.

Associated with each domain and each property is an access control list, which is a set of the form
{(set 0/ names]. set 0/ operations]>, ... , (set 0/ nameslr set a/operations!?). Each tuple consists of a
set of names and the set of operations each client in the set may call.

The algorithm for finding a name in an access control list uses IsM emberClosure, so names of
groups may appear in the set of names. The property name used by IsMemberClosure is Members.
The wildcard character "*,, (an asterisk) may be used in the Iocalname, domain name or
organization name components of a name in an access control list; it matches any string of
characters (ignoring case). The algorithm for finding a name (or asterisk matching a name) in an
access control list successively checks each set of names· until it finds one· which lets the user do the
requested operation.

Certain operations that modify the clearinghouse database are protected only at the domain level.
These are operations that are typically executed only by domain system administrators and other

THE CLEARINGHOUSE 41

clearinghouse servers.· (We assume that there is system administration software that is a client of the
clearinghouse and provides a friendly user interface to a system administrator.) The operations are:

1. Add a new name (AddName)
2. Delete a name (DeleteName)
3. Change a name (C hangeN am e)
4. Add an alias for a name (AildAlias)
5. Delete an alias for a name (DeleteAlias)
6. Add an individual or group (Addl ndividual, AddGroup)
7. Delete an individual or group (DeletelndividuaL DeleteGroup)
8. Enumerate all properties for a name (EnumerateProperties)
9. Enumerate all names in a domain (EnumerateObjects)

Other clients may perform the following operation:

1. LookupD istinguishedName
2. LookupAliases
3. EnumerateDomains
4. EnumerateOrganization

For example. the access control list for the domain SDD@Xeroxmight be:

{< {DomainSystemAdministrators@SDD@Xerox, *@Xerox@ClearinghouseServers},
{AddName, DeleteName, ChangeName, AddAlias, DeleteAlias, AddlndividuaL
AddGroup, Deletel ndividuaL DeleteGroup, EnumerateProperties, E numerateO bjects} >.

<{*@*@Xerox}, {LookupDistinguishedName, £ookupAliases, EnumerateDomains,
EnumerateOrganization} >}.

In this example, only a domain system administrator in SDD@Xerox (that is, someone whose name
is in the Members group associated with name SystemAdministrators@SDD@Xerox) or a domain
clearinghouse in the organization Xerox may modify the domain database or enumerate all objects.
but anyone in the organization Xerox may enumerate other kinds of names.

The remaining operations are protected at the property level. The options for access control depend
on whether the property being protected is of type individual or of type group.

The. operations that a client other than a domain system administrator may execute on a property of
type individual are Lookuplndividual and ChangelndividuaL For example, the access control list for
the address of a print server might be:

{< {DomainSystemAdministrators@SDD@Xerox, PrintServer Administrators@SDD@Xerox},
{Lookup IndividuaL C hangel ndividual} >,

<{*@SDD@Xerox}, {Lookuplndividual}>}.

In this example, only a domain system administrator or a print server administrator (that is,
someone whose name is in the Members group associated with name PrintServer Administrators) may

42 THE CLEARINGHOUSE

change the address of the print server, but anyone in SDD may obtain the address.

The operations that may be executed by clients to read or modify a property of type group are as
follows:

1. LookupGroup
2. C hang-eGroup
3. IsAlember
4. IsM emberClosure
5. AddMember
6. DeleteM ember
7. AddSe/f
8. DeleteSe/f

For example, suppose we have a distribution list whose "owner" (the person in charge of the
distribution list) is RedelI@SDD@Xerox. The access control list .for this distribution . list might be as
follows:

{<{Redell@SDD@Xerox}, {LookupGroup, ReplaceGroup, IsMember, IsMemberClosure,
Add},! ember, DeleteM ember, AddS elf, DeleteSelf} >,

<{*@*@*}, {LookupGroup, IsMember, IsMemberClosure, AddSe/f, DeleteSelf}>j.

With this access control list, anyone may add or delete himself or herself from the distribution list,
but only Redell may add or delete users other than himself. If only Redell may add people to the
distribution list, the access control list might be as follows:

{<{RedelI@SDD@Xerox}, {LookupGroup, ReplaceGroup, IsMember, IsMemberClosure,
Add~/ember, DeleteMember, AddSelf, DeleteSelf}>,

<{*@*@*}, {LookupGroup, IsMember, IsMemberClosure, DeleteSel.D>}.

The access control list for the name associated with the set of sibling organization clearinghouses in
clearinghouse servers in the organization Xerox (that is, names of the form
<anything>@ClearinghouseServers@ClearinghouseServers with property name Members), might be as
follows:

{< {OrganizationSystemAdministrators@*@X erox}, {Lookup Group, ReplaceGroup, IsM ember,
IsMemberClosure, AddMember, DeleteMember}>,

<{*@*@ClearinghouseServers}, {LookupGroup, IsMember, IsMemberClosure, AddMember,
DeleteMember, AddSe/f, DeleteSelf}>

<{*@*@*}, {LookupGroup, IsMembe,r, IsMemberClosure}>}.

With this access control list, anyone may find the names and addresses associated with organization
clearinghouse servers, any clearinghouse server may add or remove itself or any other member from
the group, and organization system administrators may add or delete a member from the group.
Similarly, the access control list for the name associated with the set of sibling domain
clearinghouses in organization clearinghouses in the organization Xerox (that is, names of the form

THE CLEARINGHOUSE 43

<anything>@Xerox@ClearinghouseSen'ers with property name }.tlembers), might be as follows:

{< {OrganizationSyslemAdministralors@*@X erox}. {LookupGroup. ReplaceGroup, IsM ember,
IsAlemberClosure. AddAfember. DeleteMember}>.

<{Xerox@ClearinghouseServers@ClearinghouseServers}. {LookupGroup. IsMember.
IsAlemberClosure, AddAIember, Deletelt,fember}>

<{*@Xerox@ClearinghouseServers}, {LookupGroup. IsAlembel', IsMemberClosure, AddSe/f,
DeleteS elf} >

<{*@*@*}, {Lookup Group, IsMember, IsMemberClosure}>}.

Finally, if a client calls LookupGeneric, it receives back the group of names for which mappings of
the form { ... , <propertyname. propertytype, propertyva!ue>, ... } exist, but only those for which it has
Lookuplndividual or LookupGroup rights.

Access control lists themselves must have access contf<?l. The name and password of a super system
administrator is associated with access control lists for this purpose. We do not describe the
operations exported by the clearinghouse to support the maintenance of access control lists further.

12.3. Arm's Length Security

We have described in Section-9 how two organization clearinghouses access each other, assuming
the two organizations trust each other. Their organization clearinghouses contain direct pointers to
each other and information flows freely between the two organizations. A clearinghouse component
in one can request, obtain (assuming it has the appropriate access rights) and store a copy of any
mapping stored by the other.

If two organizations do not wish to trust each other but do wish to join their networks (for instance,
to exchange electronic mail, to propagate non-proprietary information, to submit orders for
products, etc.), they need a way to keep their clearinghouse databases at ann's length.

One element of security is described above. Each clearinghouse server refuses to give out
information (or accept requests for updates) unless the requestor is authenticated and has the
appropriate access rights. Unfortunately, it is difficult to be sure that the name and password
supplied in a request to a clearinghouse has not been forged or that the requestor is a bonafide
clearinghouse component. The following provides a primitive facility for helping avoid the problem
of "forged IDs" by providing a level of indirection between the clearinghouses of the two
organizations.

An, organization suspicious of a second includes a clearinghouse sentry as a component in the
internetwork router joining the two intemetworks, that is, as a component in the internetwork router
server at its end of the link. The organization gives out the address of the sentry, rather than the
addresses of any of its clearinghouse servers, to the other organization. The other organization
therefore has only an indirect pointer to its clearinghouse; all requests must pass through this
clearinghouse sentry. The clearinghouse sentry acts as a filter, and may accept or reject the request

. If it accepts the request as bonafide, it repackages it, using itself as the requestor, and passes it on to

44 THE CLEARI~GHOCSE

the appropriate clearinghouse server. using the algorithm described in Section 10. Any clearinghouse
server receiving a request from a clearinghouse sentry knows the originator of the request is a
suspicious organization, and treats· the request accordingly. In panicular, it may reply "No
comment. " Whatever the clearinghouse server decides to do, it sends its reply Jack to the
c1earinghouse sentry. The clearinghouse sentry repackages the reply and sends it on to the requestor
in the other organization.

We modify the Lookup algorithm given in Section 10 to admit clearinghouse..sentries and extend
the use of the reserved organization ClearinghouseServers. In particular, an organization stores the
set of names of sibling clearinghouse sentries for another organization C and their address under the
name C@ClearinghouseSentries@ClearinghouseServers. We modify the algorithm so that if an
organization clearinghouse fails to find the address of a foreign organization's clearinghouse, it then
checks to see if there is a clearinghouse sentry for that organization. If so, the stub contacts it,
treating it exactly like an organization clearinghouse. In particular, Step 2.3 in the algorithm given in
Section 10 will fail, and will be extended by:

2.4. Find C@ClearinghouseSentries@ClearinghouseServers -+ f. ... ("Members". 1.
{L /@ClearinghouseSentries@ClearinghouseServers, ...•
L k@ClearinghouseSentries@ClearinghouseSeners> • ... }. If successful, Find
L,@ClearinghouseSentries@ClearinghouseServers -+ f. ... <"Clearinghouse Sentry Location". 0,
networkaddresS> • ... } for all i from 1 to k. If successful, Return the names and addresses of the
sentry to the stub, which in tum Contacts one of the server (Go to 4).

2.5. Return (unsuccessfully) to the stub, which in tum returns unsuccessfully to the client.

The above mechanisms are still inadequate if one organization already knows the network address
of the other's clearinghouse server. In such cases, a security filter must be built at the internetwork
level. That is, the internetwork router~onnecting two organizations pennits . entry of only those
packets from suspect internetworks that are addressed to acceptable destinations. Alternatively, the
clearinghouse server checks the return address included with the request to see if it is from an
acceptable source. Both schemes, unfortllnately. have many operational problems. The subject of
internetwork security is still an open research problem, although the use of public-key encryption
algorithms has promise ([Needham and Schroeder 1978]).

In many situations the interaction between two mutually-suspicious organizations will be
constrained, and access control may be provided directly at the application level without directly
involving the clearinghouse for the two organizations. For example, if two mutually-suspicious
organizations Xerox and SomeCompany wish to exchange electronic mail, they use a mail server to
connect their internetworks. When a piece of mail is sent from Dalal@SDD@Xerox to
Jones@Research@SomeCompany, a mail server in Xerox . uses the generic name
MailServerForSomeCompany@SDD@Xerox to find the network address of a generic mail drop for
outgoing mail to SomeCompany. (SomeCompany does not mind if the network aadress of this
maildrop is known to the world.) This is similar to the usual way mail flows in the postal system.

THE CLEARINGHOlJSE 45

13. Clearinghouse: Administration

We now consider the administration of the clearinghouse. An internetwork configuration of several
thousand users and their associated workstations, printers. file servers. mail servers, etc.. requires
considerable management. Administrative tasks include managing the name and property name
space; bringing up new networks; deciding how to split an organization into domains (reflecting
administrative, geographical, functional or other divisional lines); deciding which objects (users,
services, etc.) belong to which domains; adding, changing and deleting services (such as mail
services, file services, and even clearinghouse services); adding and deleting users; maintaining users'
passwords, the addresses of their chosen local printers, mail and file servers, and so on; and
maintaining access lists and other security features of the network. We have aesigned the
clearinghouse so that management can be decentralized as much as possible.

We treat the following issues: management of names, adding a new user, adding a new non
clearinghouse server (perhaps a print server or a file server), and adding a new clearinghouse server.
These constitute a representative subset of the tasks of the system administrator. The following are
suggested scenarios for clearinghouse administration; they. will typically be tailored to the needs of
any particular organization.

13.1. Managing the Name Space

The allocation of names is managed by a naming authority which is responsible for making sure that
different objects have different names. There are naming· authorities for object names, domain
names, organization names and property names.

Object names Object names are proposed by system administrators and validated by domain
clearinghouses. For example, a domain system administrator for domain B@C proposes a name
A@B@C and adds it to the database (indirectly using AddName). A domain clearinghouse for that
domain checks that the requestor is a registered system administrator for domain B@C and that the
name is not already in use. If the clearinghouse succeeds in validating the requestor and the request,
it adds the mapping A@B@C ~ {}, thus registering the name. Thereafter, the name remains
registered until a system administrator deletes it (indirectly, using DeleteName). Management of
object names is thus decentralized to the domain level.

Domain names Each organization chooses one or more people to be organization system
administrators. They are responsible for choosing domain names within the organization. They check
to see if a domain name is already in use (by querying the clearinghouse), but the clearinghouse
provides no special primitives for directly registering domain names. Domain names become
registered indirectly when the name of the first domain clearinghouse for a domain is registered.
Domains will be added relatively infrequently.

Organization names The organizations which choose .to make use of our naming convention will
agree on a central naming authority to validate new organization names (in much the same way the
various telephone companies agree on the allocation of area code numbers). The only conflicts likely
to occur will be among regional companies with the same name. They will have to agree on

46 THE CLEARIKGHOUSE

organization names to avoid ambiguity. Given goodwill on the part of the companies involVed, the
central naming authority need be nothing more than someone keeping track of organization names.
The central naming authority checks to see if an organization name is already in use (by querying
the clearinghouse), but the clearinghouse provides no special primitives for directly registering
organization names. Organization names become registered indirectly when the name of the first
organization clearinghouse for an organization is registered. Organizations will be added
infrequently.

Note that if two organizations call themselves by the same, organ!zation name, they will not
necessarily run into any problems as long as the networks on which their clearinghouse servers
reside are never interconnected. However, if their networks are joined, they may contain conflicting
mappings for the same name. The clearinghouse updating algorithm will- automatically arbitrate in
favor of the most recent mapping, which is hardly appropriate. So it is clearly essential for
organizations to choose different names if they plan on ever joining their networks to other
networks.

Property names Since property names must also be unambiguous, we need a naming authority for
property names. We could follow the same model as we have above, and decentralize this naming
authority as much as possible. However, as one of our goals is to design the clearinghouse so that
networks can be joined smoothly, we prefer to have one centralized naming authority for property
names responsible for validating property names throughout the world. In this way, everyone will
agree on the property names for mailboxes, etc. The use of such a naming authority is voluntary;
organizations may choose to let their domain system administrators choose property names as they
wish. The clearinghouse does not enforce property name coordination among organizations, but it is
clearly in their interests to do so if they plan on joining their respective networks.

13.2. Adding a New User

The system administrator first registers the user's full name by adding it to the database (that is,
software calls AddName on behalf of the system administrator). (In the unlikely event that the name
is already in use, the system administrator asks the user to choose another closely-related name.)
The system administrator, in collaboration with the user, next adds appropriate aliases for the user's
full name and deletes any existing aliases that are now likely to cause confusion. The system
administrator, in collaboration with the new user, then registers, in the user's profile, his or her
password, his or her privileges, the names of his or her preferred mail servers, file servers, etc.
(These are, of course, only representative of the tasks needed to add a new user.)

13.3. Adding a New Server

Suppose we wish to add a new non-clearinghouse server (perhaps a file server or a print server) to
an existing logical network which has a clearinghouse server installed.

We assume that the server has been installed, that it knows its network address (perhaps because it
has been told its network address by the system administrator, or has acquired it from its operating
system), that it has a stub clearinghouse, and that the stub either knows the address of a

THE CLEARINGHOUSE 47

clearinghouse server or can find one, perhaps by local or directed broadcast

The system administrator carries on the following dialogue. The system administrator tells the server
its distinguished name, and instructs the stub to register the server with the appropriate domain
clearinghouse server. Registration involves storing at least the name of the server, its password and
its network address. (That is, software makes the appropriate calls to functions such as AddName
and Addl ndividual on behalf of the system administrator.)

13.4. Adding a New-Clearinghouse Server

We may wish to add a new clearinghouse server (or a "service" on an existing server) to serve as an
organizational and! or domain clearinghouse for a new organizational installation or to serve as a
sibling (replicated server) for one or more existing domains or organizations.

We assume that the server has been installed, that it initially has nothing registered in it, and that it
knows its network address (perhaps because it has been told its address by the system administrator,
or has acquired it from its operating system).

If the new clearinghouse server is in a network containing other clearinghouse servers, then the new
clearinghouse server is told the address of an existing server. This address may be obtained through
local or directed broadcast (in much the same way that a stub discovers the network address of a
clearinghouse server), or the system administrator may supply it. The new server stores this address
and uses it in much the same way a stub clearinghouse uses the address of a clearinghouse server:
as a means of making a connection with the clearinghouse system.

The next step is to give the clearinghouse server a name. If the clearinghouse server is to be in a
new organization, the new organization name is first registered with the central naming authority, as
described above. If the server is to be in a new domain, the domain name is similarly registered
with the organization naming authority.

The system administrator then gives the clearinghouse a name. In order to give a name to the
clearinghouse server the system administrator decides what portion of the clearinghouse database
this clearinghouse server is to contain. Suppose that it is to be an organization clearinghouse for the
existing organization Xerox and domain clearinghouse for the new domain ASD@Xerox.

The system administrator picks NewServ.er@ClearinghouseServers@ClearinghouseServers and
NewServer@Xerox@ClearinghouseServers for the organization and domain clearinghouse names,
and registers the names, network addresses, passwords, and so on with the clearinghouse. (Software
makes appropriate calls to AddName and Addlndividual for each name on behalf of the system
administrator.)

The system administrator then tells each clearinghouse server in the system to add the name
NewServer@ClearinghouseServers@ClearinghouseServers to its group
Xerox@ClearinghouseServers@ClearinghouseServers (the set of names of organization clearinghouses
for Xerox). That is, software on the system administrator's behalf tells each server to execute

48 THE CLEARINGHOUSE

AddAl ember("N ewServer@ClearinghouseServers@ClearinghouseServers".
"Xerox@ClearinghouseServers@ClearinghouseSerl'ers". "Members") on their own database. The

. system administrator next tells each organization clearinghouse server in Xerox to add to its
database the existence of the new domain, by adding the property <"Members". 1.
{NewServer@Xerox@ClearinghouseServers}> to the name ASD@Xerox@ClearinghouseServers. That
is, software on behalf of the system administrator tells each organization clearinghouse server in
Xerox to execute AddName("ASD@Xerox@ClearinghouseServers) followed by
AddGroup("ASD@Xerox@ClearinghouseServers", "M embers",
"NewServer@Xefox@ClearinghouseServers'') on their own database. They already have the server's
address. The updating. algorithm automatically will check to make sure that the new name has not
already been registered. The new dOJ!lain ASD@Xerox has been registered with the clearinghouse
indirectly. The new server is now known to all appropriate clearinghouse servers that should know
about it, and will receive any updates requested from this moment on. The system administrator
now instructs the server to obtain a copy of the database for the organization Xerox and the domain
SDD@Xerox. Some care must be taken to ensure that the new server receives any updates presently
being propagated (each server receiving an update request makes sure that· it is being sent to the
most up-to-date list it knows).

To make the process of adding a new clearinghouse server clearer, let us present it as a quasi
algorithm. To simplify the following, we assume that there is no conflict in naming, and that the
originator of the request has the appropriate access right to make additions. A clearinghouse
component can (1) Find the mapping for a name in its own database, or (2) Contact a clearinghouse
server, or (3) Add a name or the mapping for a name in its own database, or (4) Alai! an update
message to another clearinghouse server, or (5) Read an update message from another clearinghouse
and modify its database.

Creating a domain Clearinghouse for a new donuzin B@C.

1. New clearinghouse server.
1.1. The system administrator gives the domain clearinghouse the name

NewServer@C@ClearinghouseServers.
1.2. Contact any organization clearinghouse server for C (Go to 2).

2. Organization clearinghouse for C:
2.1. Add the name NewServer@C@ClearinghouseServersto the database. (Recall that an organization

clearinghouse for C contain mappings for (anything>@C@ClearinghouseServers).
2.2. Add the property <Clearinghouse Location, 0, network addresS> to the name

N ewServer@C@ClearinghouseServers.
2.3. Add the name B@C@ClearinghouseServerstothe database.
2.4. Add the property <Members, 1, {NewServer@C@ClearinghouseServers}>tothe name

B@C@ClearinghouseServers.
2.5. Find the names and addresses of sibling organization clearinghouse for C. That is, Find

C@ClearinghouseServers@ClearinghouseSen'ers -+ f. .. , ("A/embers': 1,
{L l@ClearinghouseServers@ClearinghouseServers, ... ,
Lk@ClearinghouseServers@ClearinghouseServers}> • ... }. Find

THE CLEARINGHOUSE

Lj@ClearinghouseServers@ClearinghouseServers -+ { ... , ("Clearinghouse Localion", 0,
networkaddress>, ...) for all i from 1 to k. This operation is guaranteed to be successful. AI ail
each server, which is an organization clearinghouse for C, an update message containing the
actions specified in steps 2.1, 2.2, 2.3, and 2.4.

3. Sibling organization clearinghouse for C:
3.1. Read update message to Add the names and propenies as in steps 2.1, 2.2, 2.3, and 2.4.
3.2. Go 103.1.

Crellting a sibling domain clellringhouse for an existing domain B@C.

49

The same set of actions are performed as described above except that Step 2.3 is omitted and 2.4 is
modified to add N ewServer@C@ClearinghouseServers as a new member to the group
B@C@ClearinghouseServers.

Crellting an organization clellringhouse for a new organization C.

1. New clearing~ouse server.
1.1. The system administrator gives the organization clearinghouse the name

N ewServer@ClearinghouseServers@ClearinghouseServers.
1.2. Contact any clearinghouse server/Go to 2).

2. Some clearinghouse server.
2.1. Add the name NewServer@ClearinghouseServers@ClearinghouseServersto the database. (Recall

that all clearinghouse servers contain mappings for
(anything>@ClearinghouseServers@ClearinghouseServers).

2.2. Add the property <Clearinghouse Location, 0, network address> to the name
NewServer@Clean'nghouseServers@ClearinghouseServers.

2.3. Add the name C@ClearinghouseServers@ClearinghouseServersto the database.
2.4. Add the property <Members, 1, {NewServer@ClearinghouseServers@ClearinghouseServers}>to

the name C@ClearinghouseServers@ClearinghouseServers.
2.5. Find the name and address of one organization clearinghouses for each organization. That is, Find

(anything>@ClearinghouseServers@ClearinghouseServers -+ {. .. , <"M embers", 1,
{L j@ClearinghouseServers@ClearinghouseServers, ... ,
Lk@ClearinghouseServers@ClearinghouseServers}>, ... }. Find
Lj@ClearinghouseServers@ClearinghouseServers -+ { ... , ("Clearinghouse Location", 0,
networkaddress>, ... J for any i from 1 to k. This operation is guaranteed to be successful. Mail
the servers, which is an organization clearinghouse, an update message containing the actions
specified in steps 2.1, 2.2, 2.3, and 2.4, and ask the server to propagate the update to its siblings
and domain clearinghouses.

3. Organization clearinghouse for organization F, say:
3.1. Read update message to Add the names and properties as in steps 2.1, 2.2, 2.3, and 2.4. Ifmessage

does not require propagation of updates Go to 3.1.

50 THE CLEARIl'iGHOUSE

3.2. Find the names and addresses of sibling organization clearinghouse for F. That is. Find
F@ClearinghouseSerl'ers@ClearinghouseServers -+ f. ... ("Members': I,.
{L j@ClearinghouseServers@ClearinghouseServers, ... ,
Lk@ClearinghouseServers@ClearinghouseServers}>, ... }. Find
L,@ClearinghouseServers@ClearinghouseServers -+ f. ... ("Clearinghou$e Location", 0,
networkaddresS>, ...) for all i from / to k. AI ail each server, which is an organization
clearinghouse for F, an update message containing the actions specified in steps 2.1, 2.2, 2.3,
and 2.4.

3.3. Findthe names and addresses of all domain clearinghouses in.the organization F. That is, Find
(anything>@F@ClearinghouseServers -+ f. ... ("Members". I. {Lj@F@ClearinghouseServers,
...• Lk@F@ClearinghouseServers}> • ... }. Ifsuccessful, Find L,@F@ClearinghouseServers-+
f. .. , ("Clearinghouse Location", O. networkaddress>, ...) for all i from I to k. Mail each server,
which is a domain clearinghouse for F, an update message containing the actions specified in in
steps 2.1, 2.2, 2.3, and 2.4.

3.4. Go to 3.1.

4. Donudn clearinghouse, say for E@P.
4.1. Read update message to Add the names and propenies as in steps 2.1,2.2,2.3, and 2.4.
4.2. Go to 4.1.

Cretlting a sibling organization clearinghouse for an existing organization C

The same set of actions are performed as described above except that Step 2.3 is omitted and 2.4 is
modified to add NewServer@ClearinghouseServers@CleatinghouseServers as a new member to the
group C@ClearinghouseServers@ClearinghouseServers. Note that in step 2.5, the clearinghouse
server will send an update message to anyone organization clearinghouse for C,· thereby
propagating the update to all clearinghouse servers in C.

13.5. System Administratio.n Facilities

To aid the system administrator manage the clearinghouse and the distributed system it suppo~ a
sophisticated system administration service provides a user interface that allows the system
administrator to manipulate the clearinghouse (and other services). This service provides facilities to
manage distribution lists and access control lists, partition the c1~ghouse database over a number
of servers, and so on.

THE CLEARI~GHOUSE 51

14. Summary and Conclusions

A powerful binding mechanism that brings together the various network-visible objects of a
distributed system is an essential component of any large network-based system. The clearinghouse
provides such a mechanism.

Since we do not know how distributed systems will evolve, we have designed the clearinghouse to
be as open-ended as possible. We did not design the clearinghouse to be a general-purpose,
relational, distributed database nor a distributed file system, although the functions it provides are
superficially similar. It is not clear that network binding agents, relational databases, and me systems
should be thought of as manifestations of the same basic object; their implementations may well
requir= different properties. In any case, we certainly did not try to solve the "general database
problem," but rather attempted to design a system which is implementable now within the existing
technology yet which can evolve as distributed systems evolve.

A future paper will describe the network protocols (both connection-oriented and datagram-based)
used in implementing the clearinghouse.

52 THE CLEARI~GHOUSE

Acknowledgments

Many people have examined the requirements and structure of clearinghouse-like systems; . and we
have profited from the earlier efforts by Steven Abraham, Doug Brotz, Will Crowther, Bob
Metcalfe, Hal Murray, and John Shoch. The organization of the clearinghouse, and, in particular,
the lookup and updating algorithms, have been very heavily influenced by the work of the
Grapevine project; we thank Andrew Birrell, Roy Levin, and Michael Schroeder for many
stimulating discussions. The primary client for the clearinghouse is the Xerox Network Systems
product line, and we are indebted to Marney Beard, Charles Irby, and Ralph Kimball for their
considerable input on what the Star project needed from the clearinghouse. David Redell, who is
responsible for Star's underlying electronic mail system, was a constant source of inspiration and
convinced us to use the naming convention for clearinghouse servers that is described in Section 9
over the one described in Appendix 2. Jim White carefully criticized numerous earlier versions of
this document; we are grateful to him. Larry Garlick, Lance Kayashima, and Bob Lyon
implemented the clearinghouse, and Mike Trigoboff implemented the Star Directory Icon; we thank
them for turning the clearinghouse design into reality.

THE CLEARINGHOCSE 53

References

[Abraham and Dalal 1980]
S. M. Abraham and Y. K. Dalal, "Techniques for Decentralized Management of Distributed
Systems," 20th IEEE Computer Society International Conference (Compcon), February 1980, pp.
430-436.

[Birrell. Levin, Needham, and Schroeder 1981]
A. D. Birrell, R. Levin, R. M. Needham and M. D. Schroeder, "Grapevine: an Exercise in
Distributed Computing," submitted for publication.

[Boggs 1981]
D. R. Boggs, "Internet Broadcasting," Ph.D. Thesis, Stanford University, 1981, in preparation,
(will be available from Xerox Palo Alto Research Center).

[Boggs, et al. 1980]
D. R. Boggs, 1. F. Shoch, E. A. Taft, and R. M. Metcalfe, "PUP: An internetwork architecture,"
IEEE Transactions on Communications, com-28:4, April 1980, pp. 612-624.

[Dalal 1981]
Y. K. Dalal, "The Information Outlet: A new tool for office organization," Proceedings of the
Online Conference on Local Networks & Distributed Office Systems, London, 11-13 May, 1981,
pp. 11-19. Also Xerox Office Products Division, Palo Alto, OPD-T8104, October 1981.

[Dalal and Printis 1981]
Y. K. Dalal and R. S. Printis, "48-bit Absolute Internet and Ethernet Host Numbers," to be
published in Proceedings of the 7th Data Communications Conference, October 1981. Also Xerox
Office Products Division, Palo Alto, OPD-T8101, July 1981.

[Daley and Neumann 1965]
R. C. Daley and P. G. Neumann, "A general-purpose file system for secondary storage," Proc.
Fall Joint Computer Con/., 1965, AFIPS Press, pp. 213-228.

[Dawes et al 1981]
N. Dawes, S. Harris, M. Magoon, S. Maveety, D. Petty, "The Design and Service Impact of
COCOS-An Electronic Office System," Proc. IFIP International Symposium on Computer
Message Systems.

[Ethernet 1980]
The Ethernet, A Local Area Network: Data Link Layer and Physical Link Layer Specifications,
Version 1.0, September 30, 1980.

[Galler and Fischer 1964]
B. A. Galler and M. 1. Fischer, "An Improved Equivalence Algorithm," CACM, 7:5, pp. 301-
303.

[Levin and Schroeder 1979]
R. Levin and M. D. Schroeder, "Transpon of Electronic Messages Through a Network," Xerox
PARC Technical Report CSL-79-4, April 1979.

[M etcalfe and Boggs 1976]
R. M. Metcalfe and· D. R. Boggs, "Ethernet: Distributed packet switching for local computer
networks," CACM, 19:7, July 1976, pp. 395-404.

54 THE CLEARINGHOUSE

[Needham and Schroeder 1979]
R. M. Needham and M. D. Schroeder, "Using Encryption for Authentication in Large Networks
of Computer," CACM, 21:12, December 1978, pp. 993-999.

[pickens. Feinler, and Mathis 1979]
1. R. Pickens, E. 1. Feinler, and l. E. Mathis, "The NICName Server-A Datagram Based
Information Utility," Proceedings 4th Berkeley Workshop on Distributed Data Management and
Computer Networks, August 1979.

[Redell, et al. 1980]
D. D. Redell, Y. K. Dalal, T. -R. Horsley, H. C. Lauer, W. C. Lynch; P. R. Mclones, H. G.
Murray, and S. C. Purcell, "Pilot: An Operating System for a Personal Computer," CACM, 23:2,
February 1980, pp. 81-91.

[Shoch 1978]
1. F. Shoch, "Internetwork Naming Addressing and Routing," 17th IEEE Computer Society
International Conference (Compcon), September 1978.

[farjan 1975]
R. E. Tarjan, "Efficiency of a Good but not Linear Set Union Algorithm," JCSS, "9:3, pp. 355-
365

ffhomas 1976]
R. H. Thomas, "A Solution to the Update Problem for Multiple Copy Data Bases which use
Distributed Control," Bolt, Beranek and Newman technical report No. 3340.

THE CLEARINGHOUSE 55

Appendix 1: Network Addresses and Address Verification

The first use of our clearinghouse will be as the primary binding agent for the Xerox Network
Systems product line, including the Xerox 8010 Star information system. We discuss in this
appendix some of the issues concerning addresses in the Ethernet environment We assume for
concreteness that the internetwork is a collection of EthelJlets and private and public data networkS,
with associated Xerox Network Systems-based internetwork routing machinery ([Boggs; et al. 1980,
Dalal 1981)). A network address is a triple consisting of a network number, a host number, and a
socket number. The internetwork links machines.

There is no clear correspondence between machines and the addressable objects known to the
clearinghouse. One machine on an internetwork may contain many named objects; for instance, a
machine may support a file service and a printer service (a server may contain many services). These
different objects resident on the same machine may use the same network address even though they
are separate objects logically and have different names. This introduces no problems since the
clearinghouse does not check for uniqueness of addresses associated with names. Alternatively,
different objects physically resident on one machine may have different network addresses, since a
machine may have many different socket numbers. To allow both possibilities. we map the names
of addressable objects into network addresses without worrying about the configurations of the
machines in which they are resident

However, it may be that one machine has more than one network address, since it may be
physically part of more than one network. Therefore, the name of an addressable object such as
printer or file server may be mapped into a set of network addresses, rather than a single address.
However, these addresses may differ only in their network numbers: objects may be physically
resident in one machine only.

Since the addresses given out by the clearinghouse may be transiently incorrect, clients need a way
to check the accuracy of the network addresses given out by the clearinghouse. One way is to insist
that each addressable object have a uniqueid, an absolute name which might, for example, consist of
a unique processor number (hardwired into the processor at the factory) concatenated to the time of
day. The uniqueid is used to check the accuracy of the network addresses supplied by the
clearinghouse. This uniqueid is stored with the network addresses in the clearinghouse. When a
client receives a set of addresses from the clearinghouse which are allegedly the addresses of some
object, it checks with the object to make sure the uniqueid supplied by the clearinghouse agrees
with the uniqueid stored by the object.

In summary, in the Xerox internetwork environment, the address of an object is stored as a tuple.
consisting of a set of network addresses and a uniqueid. The different network addresses can differ
only in their network number. Thus, the name of an addressable object may be mapped into its
addresses as follows: L@D@R -+ {. .. , ("Address". 0, ({networkaddress j • networkaddress2' ...•
networkaddresskJ. uniqueid». . .. J.

S6 THE CLEARINGHOVSE

Appendix 2: Another Structure for Clearinghouse Servers

We describe another structure for naming and locating clearinghouse servers. With this structure,
one searches for a name by traversing the clearinghouse tree first bottom-up, and then top-down, as
opposed to· the system described in Sections 9 through 13, which always searches the tree top-down.

A2.1. Domain and Organization Clearinghouses

Corresponding to each domain D in each organization 0 are. one or more clearinghouse servers
each containing a copy of all mappings for every name of the form (anything>@D@O, that is, the
mappings for all objects in domain D in O. Each such clearinghouse server is called a domain
clearinghouse for D in O. (Each clearinghouse server that is a domain clearinghouse for D in 0 may
contain other portions of the database other than just the database for this domain, and each of the
domain clearinghouses for D in 0 may differ on what other portions of the global database, if any,
they contain.) There is at least one domain clearinghouse for each domain in the distributed
environment. Domain clearinghouses are addressable objects in the internetwork and hence have
names L1@D1@01' L2@D2@02' ... , Lk@Dk@Ok' say. The set of names of the domain
clearinghouses for D in 0 has name Clearinghouses@D@O, and various clearinghouse servers will
be required to contain the mapping Clearinghouses@D@O ... f.... ("Clearinghouse Names", 1.
{L]@D]@01' L2@D2@02' ... , Lk@Dk@Ok}>' ... J.

Corresponding to each organization 0 are one or more clearinghouse servers each containing a copy
of all mappings for every name of the form Clearinghouses@(anything>@O, that is, the mappings
for all domain clearinghouses in organization 0. Each such clearinghouse server is called an
organization clearinghouse for O. Further, for each such mapping Clearinghouses@(anything>@O

... {. .•• ("Clearinghouse Names". 1~ {LI@D1@O], L2@D2@02' "', Lk@Dk@Ok}>' ... J, each
organization clearinghouse for 0 contains the mapping L1@D1@Oj ... {. .. , ("Clearinghouse
Location", O. network addresS>, ...) for every i from 1 to k. (They are not required to contain any
other mappings for any of the domains D1@Oi' although they may do so.) Each organization
clearinghouse f9r 0 therefore knows the name and the address of every domain clearinghouse in 0,
and hence ,points directly or indirectly to every object in organization O. There is at least one
organization clearinghouse for each organization in the distributed environment. Organization
clearinghouses are addressable objects in the internetwork and have names i]@DI@OI'
L2@D2@02' "', Lk@Dk@0k' say. The set of names of the organization clearinghouses for 0 has
name Clearinghouses@Clearinghouses@O, and various clearinghouse servers will be required to
contain the mapping Clearinghouses@Clearinghouses@O ... {. .. , ("Clearinghouse Names", 1.
{L]@DI@0l' L2@D2@02' ... , Lk@Dk@Ok}>' ... }.

The clearinghouse reserves the localname Clearinghouses in every domain, the domain name
Clearinghouses in every organization, and the property names Clearinghouse Location and
Clearinghouse Names. Further, by convention, the organization clearinghouses for 0 are also the
domain clearinghouses for the domain Clearinghouses@O, for every organization O. This avoids
introducing an ambiguity in·the use of the name Clearinghouses@Clearinghouses@O. Each domain
Clearinghouses@O is reserved for the use of the clearinghouse, and contains no names other than
Clearinghouses@Clearinghouses@O.

THE CLEARING HOUSE 57

We do not require domain or organization clearinghouses to be in the domains or organizations
whose databases they house. For instance, a clearinghouse server with name
ClearinghouseServer@SDD@Xerox may be a domain clearinghouse for domain PARC@Xerox even
though it is logically "in" another domain SDD.

A2.2. Interconnections between Clearinghouse Components

As we have just seen, organization clearinghouses point downwards to domain clearinghouses, which
point downwards to objects. Considerably more interconnection structure is required so that stub
clearinghouses can access clearinghouse servers, and clearinghouse servers can access each other,
both to receive and to exchange infonnation.

Domain clearinghouses point upwards to their containing organization clearinghouses, as follows.
Each domain clearinghouse for organization 0 is required to contain the mapping
Clearinghouses@Clearinghouses@O {. ..• ("Clearinghouse Names". 1. {L}@D}@O]. L2@D2@01'
"', Lk@Dk@OkJ>, ... }, say, and the mappings L,@D,@Oj {. ... ("Clearinghouse Location", 0,
networkaddress>, ...) for every i from I to k. In this way, domain clearinghouses know the names
and addresses of their containing organization clearinghouses. Domain clearinghouses have to be
able to access their containing organization clearinghouses since only the latter need contain the
addresses of all domain clearinghouses in the organization, and the addresses of other organization
clearinghouses.

Domain clearinghouses also point to their siblings, the other clearinghouse servers which are domain
clearinghouses for their domain. That is, a domain clearinghouse for domain D@O contains the
mapping Clearinghouses@D@O {. .. , ("Clearinghouse Names", 1, {L}@D}@O}, L 2@D2@01' ... ,
Lk@Dk@Ok)>' ... }, and the mappings L,@D,@Oj -+ {. ... ("Clearinghouse Location", 0, network
address>, ...) for every i from 1 to k. (It contains the mapping for Clearinghouses@D@O anyway
since that name is in domain D@O.) Thus it points to all the other clearinghouse servers which are
domain clearinghouses for D@o-its siblings. This infonnation is redundant (it could be obtained
from the containing organization clearinghouse) but makes updating domain clearinghouses
somewhat faster.

Similarly, organization clearinghouses point to their siblings, the other clearinghouse servers which
are organization clearinghouses for their organization. In particular, each organization clearinghouse
for organization ° contains the mapping Clearinghouses@Clearinghouses@O {. ...
("Clearinghouse Names". 1. {L}@D}@Ol' L2@D2@02' ... , Lk@Dk@OkJ> J, and the mappings
L1@D,@Oi {. .. , ("Clearinghouse Location", 0, network address> • ...) for every i from 1 to k.
Thus it points to all the other clearinghouse servers which are organization clearinghouses for O.
Again, it is redundant for an organization clearinghouse to point to all its siblings, since any of its
contained domain clearinghouses point to them, but again it makes updating organization
clearinghouses faster.

Finally, stub clearinghouses contain the address of at least one clearinghouse server or at least can
always find a clearinghouse server, perhaps by local or directed broadcast. If they store an address,
it is typically, but not necessarily, the address of the closest clearinghouse server.

58 THE CLEARIXGHOUSE

Recall again that a clearinghouse s~rver may contain any ponion of the whole database (subject to
access control). Thus it may be a domain clearinghouse for one or more domains. andlor an~
organization clearinghouse for one or more organizations. On the other hand. as we have pointed
out. it is not necessary for a clearinghouse component to contain a sizable database.

A2.3. Interconnections between Organization Clearinghouses

We have described how the clearinghouse is structured within an organization. Clearinghouse
infonnation may flow freely among all the domain and organization clearinghouses· within a
particular organization. That is, each domain and organization clearinghouse may request and store
a copy of any mapping held by any other domain and organization clearinghouse within that
organization. Since an .. organization" is presumed to l?e a corporate entity or sub·entity, this model
of trust among clearinghouse . servers is appropriate within an organization.

If-the intemetworks of two companies are joined, th.eymay wish to keep their respective domain
and organization clearinghouses at "arm's length." How they do this is described in Section 12.
Here we restrict ourselves to describing how organizations, which trust each other and wish to share
infonnation freely, are logically connected· by the clearinghouse mechanism .

. Each organization clearinghouse contains the mapping Clearinghouses@Clearinghouses@O {. ..•
<'"'Clearinghouse Names", /, {Lj@Dj@Oj. L2@D2@O], ... , Lk@Dk@Ok}>' . .•. } for each
organization 0 it trusts. Furthennore, for each such name L ,@D 1@01') it contains the mapping
LI@D,@Oi f. .. , <"Clearinghouse Location", O. networkaddress), ... }. Each organization
clearinghouse therefore knows the name and the address of every organization clearinghouse of
every . organization it . trusts.

A2A. Summary

Each clearinghouse server contains mappings for a subset of the set of names. If it is a domain
clearinghouse for domain D in 0, it contains mappings for all names in that domain. If it is a
organization clearinghouse for organization 0, it contains mappings for the names of all domain
clearinghouses in that organization. Each organization clearinghouse also contains mappings for the
names of, all organization clearinghouses of those organizations with which it is friendly. Each
domain and organization clearinghouse points to its sibling clearinghouses. Domain clearinghouses
point to their containing organization clearinghouses, and stubs point to any clearinghouse. server.

'I

I

