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Introduction 

Suppose that pat is a string of length patlen and we wish to find the 

position, i, of the leftmost character in the first occurrence of pat in some 

string string: 

pat: 
string: 
i: 

AT-THAT 
WHICH-FINALLY-IIALTS.--AT-TIIAT-POINT 

t 

The obvious search algorithm considers each character position of string 

and determines whether the successive patlen characters of string starting 

at that position match the successive patlen characters of pat. Knuth, 

Morris, and Pratt [4] have observed that this algorithm is quadratic. That 

is, in the worst case, the number of comparisons is on the order of 

i*patlen1. 

Knuth, Morris, and Pratt have described a linear search algorithm which 

preprocesses pat in time linear in patlen and then searches string in time 

linear in i+patlen. In particular, their algorithm inspects each of the first 

i+patlen-l characters of string precisely once. 

We now present a search algorithm which is usually· "sublinear": it may 

not inspect each of the first i+patlen-l characters of string. By "usually 

sublinear" we mean that the expected value of the nUlllber of inspected 

characters In string is c*(i+patlen), where c < 1 and gets smaller as 

patlen increases. There are patterns and strings for which worse behavior 

IThe quadratic nature of this algorithm appears when initial substrings of 
pat occur often in string. Because this is a relatively rare phenomenon in 
string searches over English text, this simple algorithm is practically linear 
in i+patlen and therefore acceptable for most applications. 
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is exhibited. However, Knuth, in [5], has shown that the algorithm is 

linear even in the worst case. 

The actual number of characters inspected depends on statistical properties 

of the characters in pat and string. However, since the number of 

characters inspected, on the average, decreases as patlen increases, our 

algori thm actually speeds up on longer patterns. 

Furthermore, the algorithm is su blinear in another sense: it has been 

implemented so that on the average it requires the execution of fewer than 

i+patlen machine instructions per search. 

The organization of this paper is as follows: In the, next two sections we 

give an informal description of the algorithm and show an example of how 

it works. We then define the algorithm precisely and discuss its efficient 

implementation. After this discussion we present the results of a thorough 

test of a particular machine code implementation of our algorithm. We 

compare these results to similar results for the Knuth, Morris, and Pratt 

algorithm and the simple search algorithm. Following this empirical 

evidence is a theoretical analysis which accurately predicts the performance 

measured. Next we describe some situations in which it may not be 

advantageous to use our algorithm. We conclude with a discussion of the 

history of our algori thm. 

An InforInal Description 

The basic idea behind the algorithm is that more information is gained by 

matching the pattern from the right than from the left. Imagine that pat 

is placed on top of the lefthand end of string so that the first characters 
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of the two strings are aligned. Consider what we learn if we fetch the 

patlen th character, char, of string. This is the character which is aligned 

with the last character of pat. 

Observation 1: If char is known not to occur in pat, then we know we 

need not consider the possibility of an occurrence of pat starting at string 

positions 1, 2, ... or patlen: Such an occurrence would require that char 

be a character of pat. 

Observation 2: More generally, if the last (rightmost) occurrence of char 

in pat is delta! characters from the right end of pat, then we know we 

can slide pat down delta! positions without checking for matches. The 

reason is that if we were to move pat by less than delta!, the occurrence 

of char in string would be aligned with some character it could not 

possibly match: Such a match would require an occurrence 'of char in pat 

to the right of the rightmost. 

Therefore, unless char matches the last character of pat we can move past 

delta! characters of string without looking at the characters skipped. 

delta! is a function of the character char obtained from string. If char 

does not occur in pat, delta! is patlen. If char does occur in pat, delta! 

is the difference between patlen and the position of the rightmost 

occurrence of char in pat. 

Now suppose that char matches the last character of pat. Then we must 

determine whether the previous character in string matches the 2nd from 

the last character in pat. If so, we continue backing up until we have 

matched all of pat (and thus have succeeded in finding a match), or else 

we come to a mismatch at some new char after matching the last m 

charac ters of pat. 
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In this latter case, we wish to shift pat down to consider the next 

plausi ble juxtaposition. Of course, we would like to shit tit as far down as 

possible. 

Observation 3-a: We can use the same reasoning describ~d above -- based 

on the mismatched character, char, and deltal -- to slide pat down k so 

as to align the two known occurrences of char. Then we will want to 

inspect the character of string aligned with the last character of pat. 

Thus, we will actually shift our attention down string by k+m. The 

distance, k, we should slide pat depends on where char occurs in pat. If 

the rightmost occurrence of char in pat IS to the right of the mismatched 

character (Le., within that part of pat we have already passed) we would 

have to move pat backwards to align the two known occurrences of char. 

We would not want to do this! In this case we say that deltal is worthless 

and slide pat forward by k = 1 (which is always sound). This shifts our 

attention down string by l+m. If the rightmost occurrence of char in pat 

is to the left of the mismatch, we can slide forward by k = deltal (char )-m 

to align the two occurrences of char. This shifts our attention down 

string by deltal(char)-m+m = deltal(char). 

However, it is possible that we can do better than this. 

Observation 3-b: We know that the next m characters of string match 

the final m characters of pat. Let this substring of pat be sub pat. We 

also know that this occurrence of sub pat in string is preceded by a 

character (char) which is different from the character preceding the 

terminal occurrence of subpat in pat. Roughly speaking, we can generalize 

the kind of reasoning used above and can slide pat down by some amount 
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so that the discovered occurrence of subpat in string is aligned with the 

rightmost occurrence of subpat in pat which is not preceded by the 

character preceding its terminal occurrence in pat. We will call such a 

reoccurrence of subpat in pat a "plausible reoccurrence". The reason we 

said "roughly speaking" above is that we must allow for the rightmost 

plausible reoccurrence of subpat to "fall off" the left end of pat. This is 

made precise later. 

Therefore, according to Observation 3-b, if we have matched the last m 

characters of pat before finding a mismatch, we can move pat down by k 

characters, where k is based on the position, in pat, of the rightmost 

plausible reoccurrence of the terminal substring of pat having m 

characters. After sliding down by k we will want to inspect the character 

of string aligned with the last character of pat. Thus, we will actually 

shift our attention down string by k+m characters. We will call this 

distance delta2' and we will define delta2 as a function of the position, j, 

in pat, at which the mismatch ·occurred. k is just the distance between the 

terminal occurrence of subpat and its rightmost plausible reoccurrence and 

is always greater than or equal to 1. m is just patlen-j. 

In the case where we have matched the final m characters of pat before 

failing, we clearly wish to shift our attention down string by l+m or 

deltal(char) or delta2(j), according to whichever allows the largest shift. 

From the definition of delta2 as k+m where k is always greater than or 

equal to 1, it is clear that delta2 is at least as large as l+m. Therefore, 

we can shift our attention down string by the maximum of just the two 

deltas. This rule also applies when m=Q (i.e., when we have not yet 
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matched any characters of pat) because in that case j=patlen and 

An Example 

In the following example we use an "t" under string to indicate the 

current char. When this "pointer" is pushed to the right, imagine that it 

drags the right end of pat with it (Le., imagine pat. has a hook on its 

right end). When the pointer is moved to the left, keep pat fixed with 

respect to string. 

pat: 
string: 

AT-THAT 
WHICH-FINALLY-HALTS.--AT-THAT-POfNT 

t 

Since 'F' is known not to occur in pat, we can appeal to Observation 1 

and move the pointer (and thus pat) down by 7: 

pat: 
string: 

AT-THAT 
WHICII-FINALLY-HALTS.--AT-THAT-POINT 

t 

Appealing to Observation 2, we can move the pointer down 4 to align the 

two hyphens: 

pat: 
string: 

AT-THAT 
WHICH-FINALLY-HALTS.--AT-THAT-POINT 

t 

Now char matches its opposite in pat. Therefore we step left by one: 

pat: 
string: 

AT-THAT 
WIIICII-FINALLY-IIALTS.--AT-TIIAT-POINT 

t 
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Appealing to Observation 3-a, we can move the pointer to the right by 7 

positions because ILl does not occur in pat1. Note that this only moves pat 

to the righ t by 6. 

pat: 
string: 

AT-THAT 
WHICH-FINALLY-HALTS.--AT-THAT-POINT 

t 

Again char matches the last character of pat. Stepping to the left we see 

that the previous character in string also matches its opposite in pat. 

Stepping to the left a second time produces: 

pat: 
string: 

AT-THAT 
WIIICH-FINALLY-HALTS.--AT-THAT-POINT 

t 

Noting that we have a mismatch, we appeal to Observation 3-b. The 

delta2 move is best since it allows us to push the pointer to the right by 

7, so as to align the discovered substring "AT" with the beginning of pat1. 

pat: 
string: 

AT-THAT 
WlflCH-FINALLY-HALTS.--AT-THAT-POINT 

t 

This time we discover that each character of pat matches the corresponding 

character in string so we have found the pattern. Note that we made only 

14 references to string. Seven of these were required to confirm the final 

1 Note that delt.a2 would allow us to move the pointer to the right only 4 
posi tions, in order to align the discovered substring "T" in string with its 
second from last occurrence at the beginning of the word "THAT" in pat. 

IThe deltal move only allows the pointer to be pushed to the right by 4 
to align the hyphens. 
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match. The other seven allowed us to move past the first 22 characters of 

string. 

The Algorithm 

We will now specify the algorithm. The notation pat(j) refers to the jth 

character in pat (counting from 1 on the left). 

We assume the existence of two tables, deltal and delta2' The first has 

as many entries as there are characters in the alphabet. The entry for 

some character char will be denoted by deltal(char). The second table 

has as many entries as there are character positions in the pattern. The 

jth entry will be denoted by delta2(j). Both tables contain non-negative 

integers. 

The tables are initialized by preprocessing pat and their entries correspond 

to the values deltal and delta2 referred to earlier. We will specify their 

precise contents after it is clear how they are to be used. 

Our search algorithm may be specified as follows: 

top: 

loop: 

stringlen f- length of string. 
i f- patlen. 
if i > stringlen then return false. 
j f- patlen. 
if j=O then return i+1. 
if string(i) = pat(j) 

then 
f f- f-1. 
1 f- 1-1. 
goto loop. 
close; 

i f- i + max(deltal(string(i)),delta2(j)). 
goto top. 

If the above algorithm returns false then pat does not occur in string. If 
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the algorithm returns a number, then it is the position of the left end of 

the first occurrence of pat in string. 

The deltal table has an entry for each character, char, in the alphabet. 

The definition of delta 1 is: 

delta1(char) = 
if char does not occur in pat, then patlen; 
else patlen-j, where j is the maximum integer 
such that pat(j) = char. 

The delta2 table has one entry for each of the integers from 1 to patlen. 

Roughly speaking, delta2(j) is (1) the distance we can slide pat down so as 

to align the discovered occurrence (in string) of the last patlen-j 

characters of pat with its rightmost plausible reoccurrence, plus (2) the 

addi tional distance we must slide the "pointer" down so as to restart the 

process at the right end of pat. To define delta2 pr~cisely we must define 

the rightmost plausible reoccurrence of a terminal substring of pat. To 

this end let us make the following conventions: Let $ be a character that 

does not occur in pat and let us say that if i is less than 1 then pat(i) is 

$. Let us also say that two sequences of characters, [ci ... c n] and [d l 

d n ], unify if for all i from 1 to n either ci = di or ci = $ or di = $. 

Finally, we define the position of the rightmost plausible reoccurrence of 

the terminal substring which starts at position j+l, rpr(j), for j from I to 

patlen, to be the greatest k less than or equal to patlen such that 

[pat(j+l) pat(patlen)] and [patek) ... pat(k+patlen-j-l)] unify and 

either k < 1 or patCk-l) ;:;; pat(j)1. (That is, the position of the 
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rightmost plausible reoccurrence of the substring, subpat, which starts at 

j+ 1, is the rightmost place where subpat occurs in pat and is not preceded 

by the character, pat(j), which precedes its terminal occurrence -- with 

sui table allowances for either the reoccurrence or the preceding character to 

fall beyond the left end of pat. Note that rpr(j) may be negative because 

of these allowances.) 

Thus, the distance we must slide pat to align the discovered substring 

which starts at j+l with its rightmost plausible reoccurrence is j+l-rpr(j). 

The distance we must move to get back to the end of pat is just patlen-j. 

delta2(j) is just the sum of these two. Thus we define delta2 as follows: 

patlen+ l-rpr(j). 

To make this definition clear, consider the following two examples: 

j: 1 2 3 4 5 6 7 8 9 
pat: A B C X X X A B C 
delta2(j): 14 13 12 11 10 9 11 10 1 

j: 1 2 3 4 5 6 7 8 9 
pat: A B Y X C D E y X 
delta2(j): 17 16 15 14 13 12 7 10 1 

Implementation Considerations 

The most frequently executed part of the algorithm is the code that 

embodies Observations 1 and 2. The following version of our algorithm is 

equivalent to the original version provided that deltaO is a table containing 

1 Note that when j=patlen, the two sequences [pat(patlen+ 1) 
pat(patlen)] and [pat(k) ... patek-I)] are empty and therefore unify. 
Thus, rpr(patlen) is simply the greatest k less than or equal to patlen 
such that k~l or pat(k-l):;t:pat(patlen). 
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the same entries as deltal except that deltaO(pat(patlen)) is set to an 

integer, large, which is greater than stringlen+patlen (while 

deltal(patCpatlen)) is always 0). 

fast: 

undo: 

slow: 

stringlen +- length of string. 
i +- patlen. 
i +- i + deltaq( string(i)). 
if i ::; string en then goto fast. 
if i < large then return false. 
i f- (T-Iarge)-1. 
j +- patlen-1. 
if j =0 then return i + 1. 
if string(i) = patCj) 

then 
! +- t-l. 
1 +- 1-1. 

goto slow. 
close; 

i ~ i + max(deltal(string(i)),delta2(j)). 
goto fast. 

Of course, we do not actually have two versions of del tal. Instead we use 

only del tao and in place of deltal in the max expression we merely use 

the deltaO entry unless it is large (in which case we use 0). 

Note that the fast loop just scans down string effectively looking for the 

last character, pat(patlen), in pat, skipping according to deltal' (delta2 

can be ignored in this case since no terminal substring has yet been 

matched, i.e., delta2(patlen) IS always less than or equal to the 

corresponding deltal.) Control leaves this loop only when i exceeds 

stringlen. The test at undo decides whether this situation arose because 

all of string has been scanned or because pat(patlen) was hit (which 

caused i to be incremented by large). If the first case obtains, pat does 

not occur in string and the algorithm returns false. If the second case 

obtains then i is restored (by subtracting large) and we enter the slow 

loop which backs up checking for matches. When a mismatch is found we 
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skip ahead by the maximum of the original delta! and delta2 and reenter 

the fast loop. We estimate that 80 percent of the time spent in searching 

is spent in the fast loop. 

The fast loop can be coded in 4 machine instructions: 

fast: 

undo: 

char +- string(i). 
i +- i + deltaO{ char). 
skip the next instruction if i > stringlen. 
goto fast. 

We have implemented this algorithm in PDP-lO assembly language. In our 

implementation we have reduced the number of instructions in the fast 

loop to 3 by translating i down by stringlen; we can then test i against 0 

and conditionally jump to fast in one instruction. 

On a byte addressable machine it is easy to implement "char +- string(i)" 

and "i +- i + deltaO{ char)" in one instruction each. Since our 

implementation was in PDP-tO assembly language we had to employ byte 

pointers to access characters in string. The PDP-lO instruction set 

provides an instruction for incrementing a byte pointer by one but not by 

other amounts. Our code therefore employs an array of 200 indexing byte 

pointers which we use to access characters in string in one indexed 

instruction (after computing the index) at the cost of a small (5 

instruction) overhead every 200 characters. It should be noted that this 

trick only makes up for the lack of direct byte addressing; one can expect 

our algorithm to run somewhat faster on a byte addressable machine . 

. . Empirical Evidence 

We have exhaustively tested the above PDP-lO implementation on random 
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test data. To gather the test patterns we wrote a program which randomly 

selects a substring of a given length from a source string. We used this 

program to select 300 patterns of length patlen, for each patlen from 1 to 

14. We then used our algorithm to search for each of the test patterns in 

its source string, starting each search in a random position somewhere in 

the first half of the source stri.ng. All of the characters for both the 

patterns and the strings were in primary memory (rather than a secondary 

storage medium such as a disk). 

We measured the cost of each search in two ways: the number of references 

made to string, and the total number of machine instructions that actually 

got executed (ignoring the preprocessing to set up the two tables). 

By dividing the number of references to string by the number of 

characters, i-I, passed before the pattern was found (or string was 

exhausted) we obtained the number of references to string per character 

passed. This measure is independent of the particular implementation of 

the algorithm. By dividing the number of instructions executed by i-I we 

obtained the average number of instructions spent on each character passed. 

This measure depends upon the implementation, but we feel that it is 

meaningful since the implementation is a straightforward encoding of the 

algorithm a~ described in the last sect-ion. 

We then averaged these measures across all 300 samples for each pattern 

length. 

Because the performance of the algorithm depends upon the statistical 

properties of pat and string (and hence upon the properties of the source 

string from which the test patterns were obtained) we performed this 
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experiment for three different kinds of source strings, each of length 10000. 

The first source string consisted of a random sequence of D's and 1 'so The 

second source string was a piece of English text obtained from an online 

manual. The third source string was a random sequence of characters from 

a 100 character alphabet. 

In Figure 1, the average number of references to string per character in 

string passed is plotted against the pattern length for each of three source 

strings. 

Note that the number of references to string per character passed is less 

than 1. For example, for an English pattern of length 5 the algorithm 

typically inspects 0.24 characters for every character passed. That is, for 

every reference to string the algorithm passes about 4 characters, or, 

equivalently, the algorithm inspects only about a quarter of the characters 

it passes when searching for a pattern of length 5 in an English text 

string. Furthermore, the number of references per character drops as the 

patterns get longer. This evidence supports the conclusion that the 

algorithm is "sublinear" in the number of references to string. 

For comparison, it should be noted that the Knuth, Morris, and Pratt 

algori thm references string precisely 1 time per character passed. The 

simple search algorithm references string about 1.1 times per character 

passed (determined empirically with the English sample above). 

In Figure 2 the average number of instructions executed per character 

passed is plotted against the pattern length. 

The most obvious feature to note is that the search speeds up as the 
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patterns get longer. That is, the total number of instructions executed in 

order to pass over a character decreases as the length of the pattern 

increases. 

Figure 2 also exhibits a second interesting feature of our implementation of 

the algori thm: for sufficiently large alphabets and sufficiently long 

patterns the algorithm executes fewer than 1 instruction per character 

passed. For example, in the English sample, less than 1 instruction per 

character is executed for patterns of length 5 or more. Thus, this 

implementation is "sublinear" in the sense that it executes fewer than 

i+patlen instructions before finding the pattern at i. 

This means that no algorithm which references each character it passes 

could possibly be faster than ours in these cases (assuming it takes at least 

one instruction to reference each character). 

The best alternative algorithm for finding a single substring is that of 

Knuth, Morris, and Pratt. If that algorithm is implemented in the 

extraordinarily efficient way described in [4] (pg. 11-12) and [2] (Item 

179)1 then the cost of looking at a character can be expected to be at least 

3-p instructions, where p is the probability that a character just fetched 

from string is equal to a given character of pat. Hence, a horizontal line 

at 3-p instructions/character represents the best (and, practically, the 

worst) the Knuth, Morris, and Pratt algorithm can achieve. 

1This implementation automatically compiles pat into a machine code 
program which implicitly has the skip table built in and which is executed 
to perform the search itself. In [2] they compile code which uses the PDP-
10 capability of fetching a character and incrementing a byte address in 
one instruction. This compiled code executes at least 2 or 3 instructions 
per character fetched from string, depending on the outcome of a 
comparison of the character to one from pat. 
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The simple string searching algorithm (when coded with a 3-instruction fast 

loopl) executes about 3.3 instructions per character (determined empirically 

on the English sample above). 

As noted above, the preprocessing time for our algorithm (and for Knuth, 

Morris, and Pratt) has been ignored. The cost of this preprocessing can be 

made linear in patlen (this is discussed further in the next section) and is 

trivial compared to a reasonably long search. We made no attempt to code 

this preprocessing efficiently. However the average cost (in our 

implementation) ranges from 160 instructions (for strings of length 1) to 

about 500 instructions (for strings of length 14). It should be explained 

that our code uses a block transfer instruction to clear the 128-word delta1 

table at the beginning of the preprocessing, and we have counted this single 

instruction as though it were 128 instructions. This accounts for the 

unexpectedly large instruction count for preprocessing a one character 

pattern. 

Theoretical Analysis 

The preprocessing for delta1 requires an array the size of the alphabet. 

Our implementation first initializes all entries of this array to patlen and 

then sets up delta1 in a linear scan through the pattern. Thus, our 

preprocessing for delta1 is linear in patlen plus the size of the alphabet. 

IThis loop avoids checking whether string is exhausted by assuming that 
the first character of pat occurs at the end of string. This can ,be 
arranged ahead of time. The loop actually uses the same three instruction 
codes used by the above referenced implementation of the Knuth, Morris, 
and Pratt algorithm. 
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At a slight loss of efficiency in the search speed one could eliminate the 

initialization of the delta! array by storing with each entry a key 

indicating the number of times the algorithm has previously been called. 

This approach still requires initializing the array the first time the 

algori thm is used. 

To implement our algorithm for extremely large alphabets, one might 

implement the deltal table as a hash array. In the worst case, then, 

accessing delta! during the search itself could require order patlen 

instructions, significantly impairing the speed of the algorithm. As noted 

below, Knuth has shown that the execution time of the algorithm is linear 

in i+patlen, even if delta! is ignored. However, this would drastically 

degrade the performance of the algorithm on the average. 

In [5] Knuth exhibits an algorithm for setting up delta2 in time linear in 

patlen. 

From the preceding empirical· evidence the reader can conclude that the 

algorithm is quite good in the average case. However, the question of its 

behavior in the worst case is non-trivial. Knuth has recently shed some 

light on this question. In [5] he proves that the execution of the 

algorithm (after preprocessing) is linear in i+patlen, assuming the 

availabili ty of array space linear in patlen plus the size of the alphabet. 

In particular, he shows that in order to discover that pat does not occur in 

the first i characters of string, at most 6*i characters from string are 

matched with characters in pat. He goes on to say that the constant 6 is 

probably much too large, and invites the reader to improve the theorem. 

His proof reveals that the linearity of the algorithm is entirely due to 

delta2' 
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We now will analyze the average behavior of the algorithm by presenting a 

probabilistic model of its performance. As will become clear, the results of 

this analysis will support the empirical conclusions that the algorithm is 

usually "sublinear" both in the number of references to string and the 

number of instructions executed (for our implementation). 

The analysis below is based on the following simplifying assumption: Each 

character of pat and string is an independent random variable. The 

probability that a character from pat or string is equal to a given 

character of the alphabet is p. 

Imagine that we have just moved pat down string to a new position and 

that this position does not yield a match. We want to know the expected 

value of the ratio between the cost of discovering the mismatch and the 

distance we get to slide pat down upon finding the mismatch. If we define 

the cost to be the total number of references made to string before 

discovering the mismatch we can obtain the expected value of the average 

number of references to string per character passed. If we define the cost 

to be the total number of machine instructions executed in discovering the 

mismatch we can obtain the expected value of the number of instructions 

executed per character passed. 

In the following we will say that "only the last m characters of pat match" 

to mean "the last m characters of pat match the corresponding m 

characters in string but the m+ 1st character from the right end of pat 

fails to match the corresponding character in string". 

The expected value of the ratio of cost to characters passed is given by: 
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where eost(rn) is the cost associated with discovering that only the last m 

characters of pat match; prob(ln) is the probability that only the last m 

characters of pat match; and skip(rn,k) is the probability that, supposing 

only the last m characters of pat match, we will get to slide pat down by 

k. 

Under our assumptions, the probability that only the last m characters of 

pat match is: 

prob(m) = 

(The denominator is due to the assumption that a mismatch exists.) 

The probability that we will get to slide pat down by k is determined by 

analyzing how i is incremented. However note that even though we 

increment i by the maximum, max, of the two deltas this will actually 

only slide pat down by max-m, since the increment of i also includes the 

m necessary to shift our attention back to the end of pat. Thus, when we 

analyze the contributions of the two deltas we will speak of the amount by 

which they allow us to slide pat down, rather than the amount by which 

we increment i. Finally, recall that if the mismatched character, char, 

occurs in the already matched final m characters of pat, then delta1 is 

worthless and we will always slide by delta2. 

The probability that delta! is worthless is just (l-(l-p)m). Let us call 

this probdeltal worthless(m). 
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The conditions under which delta1 will naturally let us slide forward by k 

can be broken down into four cases as follows: (1) delta1 will let us slide 

down by 1 if char is the In+2nd character from the righthand end of pat 

(or else there are no more characters in pat) and char does not occur to 

the right of that position (which has probability (1-p)m*(if m+1=patlen 

then 1 else p)). (2) delta1 allows us to slide down k, where 1 < k < 
patlen-m, pi-ovided the rightmost occurrence of char in pat is m+k 

characters from the right end of pat (which has probability p*(l_p)k+m-l). 

(3) When patlen-m ) 1, delta} allows us to slide past patlen-m characters 

if char does not occur in pat at all (which has probability (l_p)patlen-l 

given that we know char is not the m+lst character from the right end of 

pat). Finally, (4) deltal never allows a slide longer than patlen-m (since 

the maximum value of deltal is patlen). 

Thus we can define the probability, probdeltal(ln,k), that, when only the 

last m characters of pat match, delta1 will allow us to move down by k as 

follows: 

probdeltal(m,k) = if k=l 
then 

(l-p)m*(if m+l=patlen then 1 else p); 

elseif l<k<patlen-m then p*(l_p)k+m-l. 

elseif k=patlen-m then (l_p)patlen-l; 

else (i.e. k>patlen-m) O. 

(It should be noted that we will not put these formulas into closed form, 

but will simply evaluate them to verify the validity of our empirical 

evidence.) 
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We will now perform a similar analysis for delta2. delta2 lets us slide 

down by k if (1) doing so sets up an alignment of the discovered 

occurrence of the last m characters of pat in string with a plausible 

reoccurrence of those m characters elsewhere in pat, and (2) no smaller 

move will set up such an alignment. The probability, probpr(m,k), that 

the terminal substring of pat 6f length m has a plausible reoccurrence k 

characters to the left of its first character is: 

probpr[m,k] = if In+k ( patlen 

then (1-p)*pm 

else ppatlen-k 

Of course, k is just the distance delta2 would let us slide, provided there 

is no earlier reoccurrence. We can therefore define the probability, 

probdelta2(m,k), that, when only the last m characters of pat match, 
\ 

delta2 will allow us to move down by k recursively as follows: 

k-1 
probdelta2(Jn,k) = probpr(m,k)(1-~ probdelta2(m,n)), 

n=1 

We will slide down by the maximum allowed by the two deltas (taking 

adequate account of the possibility that delta! is worthless). If the values 

of the deltas were independent, the probability that we would actually slide 

down by k would just be the sum of the products of the probabili ties that 

one of the deltas allows a move of k while the other allows a move of less 

than or equal to k. 

However, the two moves are not entirely independent. In particular, 

consider the possibility that delta1 is worthless. Then the char just 

fetched occurs in the last m characters of pat and does not match the 
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m+lst. But if delta2 gives a slide of 1 it means that sliding these m 

characters to the left by 1 produces a match. This implies that all of the 

last m characters of pat are equal to the character m+ 1 from the right. 

But this character is known not to be char. Thus, char cannot occur in 

the last m characters of pat, violating the hypothesis that deltal was 

worthless. Therefore, if delta1 is worthless, the probability that delta2 

specifies a skip of 1 is 0 and the probability that it specifies one of the 

larger skips is correspondingly increased. 

This interaction between the two deltas is also felt (to a lesser extent) for 

the next m possible delta2's but we will ignore these (and in so doing 

accept that our analysis may predict slightly worse results than might be 

expected since we will be allowing some short delta2 moves when longer 

ones would actually occur). 

The probability that delta2 will allow us to slide down by k when only 

the last m characters of pat match, assuming that deltal is worthless, is: 

probdelta2'(m,k) = if k=1 

then 0 

else 
k-1 

probpr(m,k)( 1-~ probdelta2 '(m,n)). 
n=2 

Finally, we can define skip(ln,k), the probability that we will slide down 

by k if only the last m characters of pat match: 



sldp(m,k) = if k=l 
then probdeltal(m,1)*probdelta2(m,1) 

else 

probdeltalworthless(m)*probdelta2'(m,k) 

+ 
k-l 
~ probdeltal (m,lt)*probdelta2(m,n) 
n=l 

+ 
k-l 
~ probdeltal (m,n)*probdelta2(In,k) 
n=l 

+ 

probdeltal (m,k)*probdelta2(rn,k). 
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Now let us consider the two alternative cost functions. In order to analyze 

the number of references to string per character passed over, eost(In) 

should just be m+l, the number of references necessary to confirm that 

only the last m characters of pat match. 

In order to analyze the number of instructions executed per character 

passed over, eost(rn) should be the total number of instructions executed in 

discovering that only the last m characters of pat match. By inspection of 

our PDP-IO code: 

eost(rn) = if rn=O then 3 else 12+6rn. 

We have computed the expected value of the ratio of cost per character 

skipped using the above formulas (and both definitions of cost). We did 

so for pattern lengths running from 1 to 14 (as in our empirical evidence) 

and for the values of p appropriate for the three source strings used: For 

a random binary string p is 0.5, for an arbitrary English string it is 

(approximately) 0.09, and for a random string over a 100 character alphabet 
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it is 0.01. The value of p for English was determined using a standard 

frequency count for the alphabetic characters [3] and empirically 

determining the frequency of space, carriage return, and line feed to be 

0.23, 0.03, and 0.03 respectively!. 

In Figure 3 we have plotted the theoretical ratio of references to string 

per character passed over against the pattern length. 

The most important fact to observe in Figure 3 is that the algorithm can 

be expected to make fewer than i+patlen references to string before finding 

the pattern at location i. For example, for English text strings of length 5 

or greater, the algorithm may be expected to make less than Ci+5)/4 

references to string. The comparable figure for the Knuth, Morris, and 

Pratt algorithm is of course precisely i. The figure for the intuitive search 

algorithm is always greater than or equal to i. 

The reason the number of references per character passed decreases more 

slowly as patlen increases is that for longer patterns the probability is 

higher that the character just fetched occurs somewhere in the pattern, 

therefore shortening the distanc~ the pattern can be moved forward. 

In Figure 4 we have plotted the theoretical ratio of the number of 

instructions executed per character passed versus the pattern length. 

Again we find that our implementation of the algorithm can be expected 

lWe have determined empirically that the algorithm's performance on truly 
random strings where p=0.09 is virtually identical to its performance on 
English strings. In particular, the reference count and instruction count 
curves generated by such random strings are almost coincidental with the 
English curves in Figures 1 and 2. 
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(for sufficiently large alphabets) to execute fewer than i+patlen 

instructions before finding the pattern at location i. That is, our 

implementation is usually "sublinear" even in the number of instructions 

executed. The comparable figure for the Knuth, Morris, and Pratt 

algorithm is at best (3-p)*(i+patlen-l)1. For the simple search algorithm 

the expected value of the number of instructions executed per character 

passed is (approximately) 3.28 (for p=O.09). 

It is difficult to fully appreciate the role played by delta2. For example, 

if the alphabet is large and patterns are short then computing and trying 

to use delta2 probably does not payoff much (because the chances are 

high that a given character in string does not occur anywhere in pat and 

one will almost always stay in the fast loop ignoring delta2)2. Conversely, 

delta2 becomes very important when the alphabet is small and the patterns 

are long (for now execution will frequently leave the fast loop, delta! will 

in general be small because many of the characters in the alphabet will 

occur in pat, and only the terminal substring observations could cause large 

shifts). Despite the fact that it is difficult to appreciate the role of 

delta2 it should be noted that the linearity result for the worst case 

behavior of the algorithm is due entirely to the presence of delta2' 

lAlthough the Knuth, Morris, and Pratt algorithm will fetch each of the 
first i+patlen-l characters of string precisely once, sometimes a character 
is involved in several tests against characters in pat. The number of such 
tests (each involving 3 instructions) is bounded by log<t>(patlen), where <I> 
is the golden ratio. 

2However, if the algorithm is implemented without delta2 recall that, in 
exi ting the slow loop, one must now take the Inax of deltal and patlen­
j+l to allow for the possibility that deltal is worthless. 
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If we compare the empirical evidence (Figures 1 and 2) with the theoretical 

evidence (Figures 3 and 4, respectively) we will note that the model is 

completely accurate for English and the 100 character alphabet. The model 

predicts much better behavior than we actually experience in the binary 

case. Our only explanation is that since delta2 predominates in the binary 

alphabet, and since it sets up alignments of the pattern and the string, 

the algorithm backs up over longer terminal substrings of the pattern 

before finding mismatches. Our analysis ignores this phenomenon. 

However, in summary, the theoretical analysis supports the conclusion that 

on the average the algori thm is sublinear in the number of references to 

string, and, for sufficiently large alphabets and patterns, sublinear in the 

number of instructions executed (in our implementation). 

Caveat Programmer 

It should be observed that the preceding analysis has assumed that string 

is entirely in primary memory and that we can obtain the ith character in 

it in one instruction after computing its byte address. However, if string 

is actually on secondary storage then the characters in it must be read in1. 

This transfer will entail some time delay equivalent to the execution of, 

lWe have implemented a version of our algorithm for searching through 
disk files. It is available as the subroutine FFILEPOS in the latest release 
of INTERLISP-IO. This function uses the TENEX page mapping capability 
to id.entify one file page at a time with a buffer area in virtual memory. 
In addi tion to being faster than reading the page by conventional methods, 
this means the operating system's nleinory management takes care of 
references to pages which happen to still be in memory, etc. The algorithm 
is as much as 50 times faster than the standard INTERLISP-IO FILEPOS 
function (d.epending on the length of the pattern). 
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say, w instructions per character brought in, and (because of the nature 

computer i/o) all of the first i+patlen-l characters will eventually be 

brought in whether we actually reference all of them or not. (A 

representative figure for w for paged transfers from a fast disk is 5 

instructions/character.) Thus, there may be a hidden cost· ofw instructions 

per character passed over. 

Now according to the statistics presented above one might expect our 

algori thm to be approximately 3 times faster than the Knuth, Morris, and 

Pratt algorithm (for, say, English strings of length 6), since that algori thm 

executes about 3 instructions to our 1. However, if the cpu is idle for the 

w instructions necessary to read each character the actual ratios are closer 

to w+3 instructions to w+ 1 instructions. (Thus, for paged disk transfers 

our algorithm can only be expected to be roughly 4/3 faster (i.e. 5+3 

instructions to 5+1 instructions) if we assume that we are idle during i/o.) 

Thus, for large values of w the difference between the various algori thms 

diminishes if the cpu is idle during i/o. 

Of course, in general, programmers (or operating systems) try to avoid the 

si tuation in which the cpu is idle while awaiting an i/o transfer by 

overlapping i/o with some other computation. In this situation, the chances 

are that our algorithm will be i/o bound (we will search a page faster than 

it can be brought in), and inde'ed, so will that of Knuth, Morris, and Pratt 

if w > 3. Our algorithm will require that fewer cpu cycles be devoted to 

the search itself, so that if there are other jobs to perform, there is still 

an overall advantage in using the algorithm. 

There are several situations in which it may not be advisable to use our 
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If the expected penetration, i, at which the pattern is found is 

preprocessing time is significant and one might therefore 

consider using the obvious intuitive algorithm. 

As previously noted, our algorithm can be most efficiently implemented on 

a byte-addressable machine. On a machine that does not allow byte 

addresses to be incremented and decremented directly, two possible sources 

of inefficiency must be addressed: The algorithm typically skips through 

string in steps larger than 1, and the algorithm may back up through 

string. Unless these processes are coded efficiently it is probably not 

worthwhile to use our algori thm. 

Furthermore, it should be noted that, because the algorithm can back up 

through string, it is possible to cross a page boundary more than once. 

We have not found this to be a serious source of inefficiency. However, it 

does require a certain amount of code to handle the necessary buffering (if 

paged i/o is being handled directly as in our FFILEPOS). One beauty of 

the Knuth, Morris, and Pratt algorithm is that it avoids this problem 

al together. 

A final situation in which it is unadvisable to use our algorithm is if the 

string matching problem to be solved is actually more complicated than 

merely finding the first occurrence of a single substring. For example, if 

the problem is to find the first of several possible substrings, or to 

identify a location in string defined by a regular expression it is much 

more advantageous to use an algorithm such as that of Aho and Corasick 

[1]. 

It may of course be possible to design an algorithm that searches for 
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multiple patterns or instances of regular expressions using the idea of 

starting the match at the right end of the pattern. However, we have not 

designed such an algori thm. 

Historical Remarks 

Our earliest formulation of the algorithm involved only delta1 and 

implemented Observations 1, 2, and 3-a. We were aware that we could do 

something along the lines of delta2 and Observation 3-b, but did not 

precisely formulate it. Instead, in April, 1974, we coded the delta! version 

of the algorithm in INTERLISP, merely to test its speed. We considered 

coding the algorithm in PDP-10 assembly language but abandoned the idea 

as impractical because of the cost of incrementing byte pointers by 

arbitrary amounts. 

We have since learned that R. W. Gosper, of Stanford University, 

simultaneously and independently discovered the delta! version of the 

algori thm (private communication). 

In April, 1975, we started thinking about the implementation again and 

discovered a way to increment byte pointers by indexing through a table. 

We then formulated a version of del ta2 and coded the algorithm more or 

less as it is presented here. This original definition of delta2 differed 

from the current one in the following respect: If only the last m characters 

of pat (call this substring subpat) were matched, delta2 specified a slide 

to the second from the rightmost occurrence of sub pat in pat (allowing 

this occurrence to "fall off" the left end of pat) but without any special 

consideration of the character preceding this occurrence. 
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The average behavior of that version of the algorithm was virtually 

indistinguishable from that presented in this paper for large alphabets, but 

was somewhat worse for small alphabets. However, its worst case behavior 

was quadratic (i.e., required on the order of i*patlen comparisons). For 

example, consider searching for a pattern of the form CA(BA)r in a string of 

the form ((XX)r(AA)(BA)r)* (e.g. r = 2, pat = "CABABA", and string = 

"XXXXAABABAXXXXAABABA ... It). The original definition of delta2 allowed only 

a slide of 2 if the last ItBA" of pat were matched before the next 'A' fails to 

match. Of course, in this situation this only sets up another mismatch at 

the same character in string, but the algorithm had to reinspect the 

previously inspected characters to discover it. The total number of 

references to string In passing i characters in this situation was 

(r+1)*(r+2)*i/( 4r+2), where r = (patlen-2)/2. 

references was on the order of i *patlen. 

Thus, the number of 

However, on the average the algorithm was blindingly fast. To our 

surprise, it was several times faster than the string searching algorithm in 

the Tenex TEeO text editor. This algorithm is reputed to be quite an 

efficient implementation of the simple search algorithm because it searches 

for the first character of pat one full-word at a time (rather than one byte 

at a time). 

In the summer of 1975, we wrote a brief paper on the algorithm and 

distributed it on request. 

In December, 1975, Ben Kuipers, of the M.LT. Artificial Intelligence 

Laboratory, read the paper and brought to our attention the improvement 

to delta2 concerning the character preceding the terminal substring and its 
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reoccurrence (private communication). Almost simultaneously, Donald 

Knuth, of Stanford University, suggested the same improvement and 

observed that the improved algorithm could certainly make no more than 

order (i+patlen)*log(patlen) references to string (private communication). 

We mentioned this improvement in the next revision of the paper and 

suggested an additional improvement, namely the replacement of both 

delta1 and delta2 by a single two dimensional table. Given the 

mismatched char from string and the position j in pat at which the 

mismatch occurred, this table indicated the distance to the last occurrence 

(if any) of the substring [char,pat(j+1), ... pat(patlen)] in pat. The 

revised paper concluded with the question of whether this improvement or a 

similar one produced an algorithm which. was at worst linear and on the 

average "sublinear". 

In January, 1976, Knuth, [5], proved that the simpler improvement in fact 

produces linear behavior, even in the worst case. We therefore revised the 

paper again and gave delta2 its current definition. 

In April, 1976, R. W. Floyd, of Stanford University, discovered a serious 

statistical fallacy in the first version of our formula giving the expected 

value of the ratio of cost to characters passed. He provided us (private 

communication) with the current version of this formula. 

Thomas Standish, of the University of California at Irvine, has suggested 

(private communication) that the implementation of the algorithm can be 

improved by fetching larger bytes in the fast loop (i.e., bytes containing 

several characters) and using a hash array to encode the extended delta1 

table. Provided the difficulties at the boundaries of the pattern are 
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handled efficiently this could improve the behavior of the algorithm 

enormously since it exponentially increases the effective size of the 

alphabet and reduces the frequency of common characters. 
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