

A FAST STRING SEARCHING ALGORITHM
BY ROBERT S. BOYER* AND J STROTHER MOORE**

CSL-76-1 JULY, 1976

An Algori thm is presented that searches for the location, i, of the first occurrence

of a character string, pat, in another string, string. During the search operation,

the characters of pat are matched starting wi t.h the last character of pat. The

informa t i on gained by starti ng t he rna teh a t the end of the pa tterll often a llows the

algorithm to proceed in largt~ jumps through the text being searched. Thus, the

algori thm has the ullusual property that, in most cases, not all of the first i

characters of string are inspected. The number of characters actually inspected

(on the average) decreases as a function of the length of pat. For a random

English pattern of length 5, the algori thm wi 11 typically inspect if 4 characters of

string before finding a match at i. Furthermore, the algorithm has been

implemented so that (on the average) fewer than i+patlen machine instructions

are executed. These conclusions are supported with empirical evidence and a

theoretical analysis of the average behavior of the algori thm. The worst case

behavior of the algori thm is linear in i+patlen, assumi ng the availabili ty of array

space for tables linear in patlen plus the size of the alphabet.

KEY wonns

bihliographic search, computational complexity, information retrieval, linear time

bound, pa ttern matching, text-edi ting

cn CATEGORIES

3.74, 4.40, 5.25

*Computer Science Group, Stanford Hesearch Institute, Menlo Park, Ca. 94025.
This work was partially supported by ONU Contract N00014-75-C-OBIB.

**Formerly at the Computer Science Laboratory, Xerox Palo Alto Research Center,
Palo Alto, Ca 94304, currently at Computer Science Group, Stanford Research
Institute, Menlo Park, Ca 94025.\

Introduction

Suppose that pat is a string of length patlen and we wish to find the

position, i, of the leftmost character in the first occurrence of pat in some

string string:

pat:
string:
i:

AT-THAT
WHICH-FINALLY-IIALTS.--AT-TIIAT-POINT

t

The obvious search algorithm considers each character position of string

and determines whether the successive patlen characters of string starting

at that position match the successive patlen characters of pat. Knuth,

Morris, and Pratt [4] have observed that this algorithm is quadratic. That

is, in the worst case, the number of comparisons is on the order of

i*patlen1.

Knuth, Morris, and Pratt have described a linear search algorithm which

preprocesses pat in time linear in patlen and then searches string in time

linear in i+patlen. In particular, their algorithm inspects each of the first

i+patlen-l characters of string precisely once.

We now present a search algorithm which is usually· "sublinear": it may

not inspect each of the first i+patlen-l characters of string. By "usually

sublinear" we mean that the expected value of the nUlllber of inspected

characters In string is c*(i+patlen), where c < 1 and gets smaller as

patlen increases. There are patterns and strings for which worse behavior

IThe quadratic nature of this algorithm appears when initial substrings of
pat occur often in string. Because this is a relatively rare phenomenon in
string searches over English text, this simple algorithm is practically linear
in i+patlen and therefore acceptable for most applications.

2

is exhibited. However, Knuth, in [5], has shown that the algorithm is

linear even in the worst case.

The actual number of characters inspected depends on statistical properties

of the characters in pat and string. However, since the number of

characters inspected, on the average, decreases as patlen increases, our

algori thm actually speeds up on longer patterns.

Furthermore, the algorithm is su blinear in another sense: it has been

implemented so that on the average it requires the execution of fewer than

i+patlen machine instructions per search.

The organization of this paper is as follows: In the, next two sections we

give an informal description of the algorithm and show an example of how

it works. We then define the algorithm precisely and discuss its efficient

implementation. After this discussion we present the results of a thorough

test of a particular machine code implementation of our algorithm. We

compare these results to similar results for the Knuth, Morris, and Pratt

algorithm and the simple search algorithm. Following this empirical

evidence is a theoretical analysis which accurately predicts the performance

measured. Next we describe some situations in which it may not be

advantageous to use our algorithm. We conclude with a discussion of the

history of our algori thm.

An InforInal Description

The basic idea behind the algorithm is that more information is gained by

matching the pattern from the right than from the left. Imagine that pat

is placed on top of the lefthand end of string so that the first characters

3

of the two strings are aligned. Consider what we learn if we fetch the

patlen th character, char, of string. This is the character which is aligned

with the last character of pat.

Observation 1: If char is known not to occur in pat, then we know we

need not consider the possibility of an occurrence of pat starting at string

positions 1, 2, ... or patlen: Such an occurrence would require that char

be a character of pat.

Observation 2: More generally, if the last (rightmost) occurrence of char

in pat is delta! characters from the right end of pat, then we know we

can slide pat down delta! positions without checking for matches. The

reason is that if we were to move pat by less than delta!, the occurrence

of char in string would be aligned with some character it could not

possibly match: Such a match would require an occurrence 'of char in pat

to the right of the rightmost.

Therefore, unless char matches the last character of pat we can move past

delta! characters of string without looking at the characters skipped.

delta! is a function of the character char obtained from string. If char

does not occur in pat, delta! is patlen. If char does occur in pat, delta!

is the difference between patlen and the position of the rightmost

occurrence of char in pat.

Now suppose that char matches the last character of pat. Then we must

determine whether the previous character in string matches the 2nd from

the last character in pat. If so, we continue backing up until we have

matched all of pat (and thus have succeeded in finding a match), or else

we come to a mismatch at some new char after matching the last m

charac ters of pat.

4

In this latter case, we wish to shift pat down to consider the next

plausi ble juxtaposition. Of course, we would like to shit tit as far down as

possible.

Observation 3-a: We can use the same reasoning describ~d above -- based

on the mismatched character, char, and deltal -- to slide pat down k so

as to align the two known occurrences of char. Then we will want to

inspect the character of string aligned with the last character of pat.

Thus, we will actually shift our attention down string by k+m. The

distance, k, we should slide pat depends on where char occurs in pat. If

the rightmost occurrence of char in pat IS to the right of the mismatched

character (Le., within that part of pat we have already passed) we would

have to move pat backwards to align the two known occurrences of char.

We would not want to do this! In this case we say that deltal is worthless

and slide pat forward by k = 1 (which is always sound). This shifts our

attention down string by l+m. If the rightmost occurrence of char in pat

is to the left of the mismatch, we can slide forward by k = deltal (char)-m

to align the two occurrences of char. This shifts our attention down

string by deltal(char)-m+m = deltal(char).

However, it is possible that we can do better than this.

Observation 3-b: We know that the next m characters of string match

the final m characters of pat. Let this substring of pat be sub pat. We

also know that this occurrence of sub pat in string is preceded by a

character (char) which is different from the character preceding the

terminal occurrence of subpat in pat. Roughly speaking, we can generalize

the kind of reasoning used above and can slide pat down by some amount

5

so that the discovered occurrence of subpat in string is aligned with the

rightmost occurrence of subpat in pat which is not preceded by the

character preceding its terminal occurrence in pat. We will call such a

reoccurrence of subpat in pat a "plausible reoccurrence". The reason we

said "roughly speaking" above is that we must allow for the rightmost

plausible reoccurrence of subpat to "fall off" the left end of pat. This is

made precise later.

Therefore, according to Observation 3-b, if we have matched the last m

characters of pat before finding a mismatch, we can move pat down by k

characters, where k is based on the position, in pat, of the rightmost

plausible reoccurrence of the terminal substring of pat having m

characters. After sliding down by k we will want to inspect the character

of string aligned with the last character of pat. Thus, we will actually

shift our attention down string by k+m characters. We will call this

distance delta2' and we will define delta2 as a function of the position, j,

in pat, at which the mismatch ·occurred. k is just the distance between the

terminal occurrence of subpat and its rightmost plausible reoccurrence and

is always greater than or equal to 1. m is just patlen-j.

In the case where we have matched the final m characters of pat before

failing, we clearly wish to shift our attention down string by l+m or

deltal(char) or delta2(j), according to whichever allows the largest shift.

From the definition of delta2 as k+m where k is always greater than or

equal to 1, it is clear that delta2 is at least as large as l+m. Therefore,

we can shift our attention down string by the maximum of just the two

deltas. This rule also applies when m=Q (i.e., when we have not yet

6

matched any characters of pat) because in that case j=patlen and

An Example

In the following example we use an "t" under string to indicate the

current char. When this "pointer" is pushed to the right, imagine that it

drags the right end of pat with it (Le., imagine pat. has a hook on its

right end). When the pointer is moved to the left, keep pat fixed with

respect to string.

pat:
string:

AT-THAT
WHICH-FINALLY-HALTS.--AT-THAT-POfNT

t

Since 'F' is known not to occur in pat, we can appeal to Observation 1

and move the pointer (and thus pat) down by 7:

pat:
string:

AT-THAT
WHICII-FINALLY-HALTS.--AT-THAT-POINT

t

Appealing to Observation 2, we can move the pointer down 4 to align the

two hyphens:

pat:
string:

AT-THAT
WHICH-FINALLY-HALTS.--AT-THAT-POINT

t

Now char matches its opposite in pat. Therefore we step left by one:

pat:
string:

AT-THAT
WIIICII-FINALLY-IIALTS.--AT-TIIAT-POINT

t

7

Appealing to Observation 3-a, we can move the pointer to the right by 7

positions because ILl does not occur in pat1. Note that this only moves pat

to the righ t by 6.

pat:
string:

AT-THAT
WHICH-FINALLY-HALTS.--AT-THAT-POINT

t

Again char matches the last character of pat. Stepping to the left we see

that the previous character in string also matches its opposite in pat.

Stepping to the left a second time produces:

pat:
string:

AT-THAT
WIIICH-FINALLY-HALTS.--AT-THAT-POINT

t

Noting that we have a mismatch, we appeal to Observation 3-b. The

delta2 move is best since it allows us to push the pointer to the right by

7, so as to align the discovered substring "AT" with the beginning of pat1.

pat:
string:

AT-THAT
WlflCH-FINALLY-HALTS.--AT-THAT-POINT

t

This time we discover that each character of pat matches the corresponding

character in string so we have found the pattern. Note that we made only

14 references to string. Seven of these were required to confirm the final

1 Note that delt.a2 would allow us to move the pointer to the right only 4
posi tions, in order to align the discovered substring "T" in string with its
second from last occurrence at the beginning of the word "THAT" in pat.

IThe deltal move only allows the pointer to be pushed to the right by 4
to align the hyphens.

8

match. The other seven allowed us to move past the first 22 characters of

string.

The Algorithm

We will now specify the algorithm. The notation pat(j) refers to the jth

character in pat (counting from 1 on the left).

We assume the existence of two tables, deltal and delta2' The first has

as many entries as there are characters in the alphabet. The entry for

some character char will be denoted by deltal(char). The second table

has as many entries as there are character positions in the pattern. The

jth entry will be denoted by delta2(j). Both tables contain non-negative

integers.

The tables are initialized by preprocessing pat and their entries correspond

to the values deltal and delta2 referred to earlier. We will specify their

precise contents after it is clear how they are to be used.

Our search algorithm may be specified as follows:

top:

loop:

stringlen f- length of string.
i f- patlen.
if i > stringlen then return false.
j f- patlen.
if j=O then return i+1.
if string(i) = pat(j)

then
f f- f-1.
1 f- 1-1.
goto loop.
close;

i f- i + max(deltal(string(i)),delta2(j)).
goto top.

If the above algorithm returns false then pat does not occur in string. If

9

the algorithm returns a number, then it is the position of the left end of

the first occurrence of pat in string.

The deltal table has an entry for each character, char, in the alphabet.

The definition of delta 1 is:

delta1(char) =
if char does not occur in pat, then patlen;
else patlen-j, where j is the maximum integer
such that pat(j) = char.

The delta2 table has one entry for each of the integers from 1 to patlen.

Roughly speaking, delta2(j) is (1) the distance we can slide pat down so as

to align the discovered occurrence (in string) of the last patlen-j

characters of pat with its rightmost plausible reoccurrence, plus (2) the

addi tional distance we must slide the "pointer" down so as to restart the

process at the right end of pat. To define delta2 pr~cisely we must define

the rightmost plausible reoccurrence of a terminal substring of pat. To

this end let us make the following conventions: Let $ be a character that

does not occur in pat and let us say that if i is less than 1 then pat(i) is

$. Let us also say that two sequences of characters, [ci ... c n] and [d l

d n], unify if for all i from 1 to n either ci = di or ci = $ or di = $.

Finally, we define the position of the rightmost plausible reoccurrence of

the terminal substring which starts at position j+l, rpr(j), for j from I to

patlen, to be the greatest k less than or equal to patlen such that

[pat(j+l) pat(patlen)] and [patek) ... pat(k+patlen-j-l)] unify and

either k < 1 or patCk-l) ;:;; pat(j)1. (That is, the position of the

10

rightmost plausible reoccurrence of the substring, subpat, which starts at

j+ 1, is the rightmost place where subpat occurs in pat and is not preceded

by the character, pat(j), which precedes its terminal occurrence -- with

sui table allowances for either the reoccurrence or the preceding character to

fall beyond the left end of pat. Note that rpr(j) may be negative because

of these allowances.)

Thus, the distance we must slide pat to align the discovered substring

which starts at j+l with its rightmost plausible reoccurrence is j+l-rpr(j).

The distance we must move to get back to the end of pat is just patlen-j.

delta2(j) is just the sum of these two. Thus we define delta2 as follows:

patlen+ l-rpr(j).

To make this definition clear, consider the following two examples:

j: 1 2 3 4 5 6 7 8 9
pat: A B C X X X A B C
delta2(j): 14 13 12 11 10 9 11 10 1

j: 1 2 3 4 5 6 7 8 9
pat: A B Y X C D E y X
delta2(j): 17 16 15 14 13 12 7 10 1

Implementation Considerations

The most frequently executed part of the algorithm is the code that

embodies Observations 1 and 2. The following version of our algorithm is

equivalent to the original version provided that deltaO is a table containing

1 Note that when j=patlen, the two sequences [pat(patlen+ 1)
pat(patlen)] and [pat(k) ... patek-I)] are empty and therefore unify.
Thus, rpr(patlen) is simply the greatest k less than or equal to patlen
such that k~l or pat(k-l):;t:pat(patlen).

11

the same entries as deltal except that deltaO(pat(patlen)) is set to an

integer, large, which is greater than stringlen+patlen (while

deltal(patCpatlen)) is always 0).

fast:

undo:

slow:

stringlen +- length of string.
i +- patlen.
i +- i + deltaq(string(i)).
if i ::; string en then goto fast.
if i < large then return false.
i f- (T-Iarge)-1.
j +- patlen-1.
if j =0 then return i + 1.
if string(i) = patCj)

then
! +- t-l.
1 +- 1-1.

goto slow.
close;

i ~ i + max(deltal(string(i)),delta2(j)).
goto fast.

Of course, we do not actually have two versions of del tal. Instead we use

only del tao and in place of deltal in the max expression we merely use

the deltaO entry unless it is large (in which case we use 0).

Note that the fast loop just scans down string effectively looking for the

last character, pat(patlen), in pat, skipping according to deltal' (delta2

can be ignored in this case since no terminal substring has yet been

matched, i.e., delta2(patlen) IS always less than or equal to the

corresponding deltal.) Control leaves this loop only when i exceeds

stringlen. The test at undo decides whether this situation arose because

all of string has been scanned or because pat(patlen) was hit (which

caused i to be incremented by large). If the first case obtains, pat does

not occur in string and the algorithm returns false. If the second case

obtains then i is restored (by subtracting large) and we enter the slow

loop which backs up checking for matches. When a mismatch is found we

12

skip ahead by the maximum of the original delta! and delta2 and reenter

the fast loop. We estimate that 80 percent of the time spent in searching

is spent in the fast loop.

The fast loop can be coded in 4 machine instructions:

fast:

undo:

char +- string(i).
i +- i + deltaO{ char).
skip the next instruction if i > stringlen.
goto fast.

We have implemented this algorithm in PDP-lO assembly language. In our

implementation we have reduced the number of instructions in the fast

loop to 3 by translating i down by stringlen; we can then test i against 0

and conditionally jump to fast in one instruction.

On a byte addressable machine it is easy to implement "char +- string(i)"

and "i +- i + deltaO{ char)" in one instruction each. Since our

implementation was in PDP-tO assembly language we had to employ byte

pointers to access characters in string. The PDP-lO instruction set

provides an instruction for incrementing a byte pointer by one but not by

other amounts. Our code therefore employs an array of 200 indexing byte

pointers which we use to access characters in string in one indexed

instruction (after computing the index) at the cost of a small (5

instruction) overhead every 200 characters. It should be noted that this

trick only makes up for the lack of direct byte addressing; one can expect

our algorithm to run somewhat faster on a byte addressable machine .

. . Empirical Evidence

We have exhaustively tested the above PDP-lO implementation on random

13

test data. To gather the test patterns we wrote a program which randomly

selects a substring of a given length from a source string. We used this

program to select 300 patterns of length patlen, for each patlen from 1 to

14. We then used our algorithm to search for each of the test patterns in

its source string, starting each search in a random position somewhere in

the first half of the source stri.ng. All of the characters for both the

patterns and the strings were in primary memory (rather than a secondary

storage medium such as a disk).

We measured the cost of each search in two ways: the number of references

made to string, and the total number of machine instructions that actually

got executed (ignoring the preprocessing to set up the two tables).

By dividing the number of references to string by the number of

characters, i-I, passed before the pattern was found (or string was

exhausted) we obtained the number of references to string per character

passed. This measure is independent of the particular implementation of

the algorithm. By dividing the number of instructions executed by i-I we

obtained the average number of instructions spent on each character passed.

This measure depends upon the implementation, but we feel that it is

meaningful since the implementation is a straightforward encoding of the

algorithm a~ described in the last sect-ion.

We then averaged these measures across all 300 samples for each pattern

length.

Because the performance of the algorithm depends upon the statistical

properties of pat and string (and hence upon the properties of the source

string from which the test patterns were obtained) we performed this

14

experiment for three different kinds of source strings, each of length 10000.

The first source string consisted of a random sequence of D's and 1 'so The

second source string was a piece of English text obtained from an online

manual. The third source string was a random sequence of characters from

a 100 character alphabet.

In Figure 1, the average number of references to string per character in

string passed is plotted against the pattern length for each of three source

strings.

Note that the number of references to string per character passed is less

than 1. For example, for an English pattern of length 5 the algorithm

typically inspects 0.24 characters for every character passed. That is, for

every reference to string the algorithm passes about 4 characters, or,

equivalently, the algorithm inspects only about a quarter of the characters

it passes when searching for a pattern of length 5 in an English text

string. Furthermore, the number of references per character drops as the

patterns get longer. This evidence supports the conclusion that the

algorithm is "sublinear" in the number of references to string.

For comparison, it should be noted that the Knuth, Morris, and Pratt

algori thm references string precisely 1 time per character passed. The

simple search algorithm references string about 1.1 times per character

passed (determined empirically with the English sample above).

In Figure 2 the average number of instructions executed per character

passed is plotted against the pattern length.

The most obvious feature to note is that the search speeds up as the

15

patterns get longer. That is, the total number of instructions executed in

order to pass over a character decreases as the length of the pattern

increases.

Figure 2 also exhibits a second interesting feature of our implementation of

the algori thm: for sufficiently large alphabets and sufficiently long

patterns the algorithm executes fewer than 1 instruction per character

passed. For example, in the English sample, less than 1 instruction per

character is executed for patterns of length 5 or more. Thus, this

implementation is "sublinear" in the sense that it executes fewer than

i+patlen instructions before finding the pattern at i.

This means that no algorithm which references each character it passes

could possibly be faster than ours in these cases (assuming it takes at least

one instruction to reference each character).

The best alternative algorithm for finding a single substring is that of

Knuth, Morris, and Pratt. If that algorithm is implemented in the

extraordinarily efficient way described in [4] (pg. 11-12) and [2] (Item

179)1 then the cost of looking at a character can be expected to be at least

3-p instructions, where p is the probability that a character just fetched

from string is equal to a given character of pat. Hence, a horizontal line

at 3-p instructions/character represents the best (and, practically, the

worst) the Knuth, Morris, and Pratt algorithm can achieve.

1This implementation automatically compiles pat into a machine code
program which implicitly has the skip table built in and which is executed
to perform the search itself. In [2] they compile code which uses the PDP-
10 capability of fetching a character and incrementing a byte address in
one instruction. This compiled code executes at least 2 or 3 instructions
per character fetched from string, depending on the outcome of a
comparison of the character to one from pat.

16

The simple string searching algorithm (when coded with a 3-instruction fast

loopl) executes about 3.3 instructions per character (determined empirically

on the English sample above).

As noted above, the preprocessing time for our algorithm (and for Knuth,

Morris, and Pratt) has been ignored. The cost of this preprocessing can be

made linear in patlen (this is discussed further in the next section) and is

trivial compared to a reasonably long search. We made no attempt to code

this preprocessing efficiently. However the average cost (in our

implementation) ranges from 160 instructions (for strings of length 1) to

about 500 instructions (for strings of length 14). It should be explained

that our code uses a block transfer instruction to clear the 128-word delta1

table at the beginning of the preprocessing, and we have counted this single

instruction as though it were 128 instructions. This accounts for the

unexpectedly large instruction count for preprocessing a one character

pattern.

Theoretical Analysis

The preprocessing for delta1 requires an array the size of the alphabet.

Our implementation first initializes all entries of this array to patlen and

then sets up delta1 in a linear scan through the pattern. Thus, our

preprocessing for delta1 is linear in patlen plus the size of the alphabet.

IThis loop avoids checking whether string is exhausted by assuming that
the first character of pat occurs at the end of string. This can ,be
arranged ahead of time. The loop actually uses the same three instruction
codes used by the above referenced implementation of the Knuth, Morris,
and Pratt algorithm.

17

At a slight loss of efficiency in the search speed one could eliminate the

initialization of the delta! array by storing with each entry a key

indicating the number of times the algorithm has previously been called.

This approach still requires initializing the array the first time the

algori thm is used.

To implement our algorithm for extremely large alphabets, one might

implement the deltal table as a hash array. In the worst case, then,

accessing delta! during the search itself could require order patlen

instructions, significantly impairing the speed of the algorithm. As noted

below, Knuth has shown that the execution time of the algorithm is linear

in i+patlen, even if delta! is ignored. However, this would drastically

degrade the performance of the algorithm on the average.

In [5] Knuth exhibits an algorithm for setting up delta2 in time linear in

patlen.

From the preceding empirical· evidence the reader can conclude that the

algorithm is quite good in the average case. However, the question of its

behavior in the worst case is non-trivial. Knuth has recently shed some

light on this question. In [5] he proves that the execution of the

algorithm (after preprocessing) is linear in i+patlen, assuming the

availabili ty of array space linear in patlen plus the size of the alphabet.

In particular, he shows that in order to discover that pat does not occur in

the first i characters of string, at most 6*i characters from string are

matched with characters in pat. He goes on to say that the constant 6 is

probably much too large, and invites the reader to improve the theorem.

His proof reveals that the linearity of the algorithm is entirely due to

delta2'

18

We now will analyze the average behavior of the algorithm by presenting a

probabilistic model of its performance. As will become clear, the results of

this analysis will support the empirical conclusions that the algorithm is

usually "sublinear" both in the number of references to string and the

number of instructions executed (for our implementation).

The analysis below is based on the following simplifying assumption: Each

character of pat and string is an independent random variable. The

probability that a character from pat or string is equal to a given

character of the alphabet is p.

Imagine that we have just moved pat down string to a new position and

that this position does not yield a match. We want to know the expected

value of the ratio between the cost of discovering the mismatch and the

distance we get to slide pat down upon finding the mismatch. If we define

the cost to be the total number of references made to string before

discovering the mismatch we can obtain the expected value of the average

number of references to string per character passed. If we define the cost

to be the total number of machine instructions executed in discovering the

mismatch we can obtain the expected value of the number of instructions

executed per character passed.

In the following we will say that "only the last m characters of pat match"

to mean "the last m characters of pat match the corresponding m

characters in string but the m+ 1st character from the right end of pat

fails to match the corresponding character in string".

The expected value of the ratio of cost to characters passed is given by:

patlen-l
L east(rn)
m=O
patlen-t
2: prab(rn)
m=O

* prob(rn)

patlen
* (L skip(nl,k)*k)

k=1

19

where eost(rn) is the cost associated with discovering that only the last m

characters of pat match; prob(ln) is the probability that only the last m

characters of pat match; and skip(rn,k) is the probability that, supposing

only the last m characters of pat match, we will get to slide pat down by

k.

Under our assumptions, the probability that only the last m characters of

pat match is:

prob(m) =

(The denominator is due to the assumption that a mismatch exists.)

The probability that we will get to slide pat down by k is determined by

analyzing how i is incremented. However note that even though we

increment i by the maximum, max, of the two deltas this will actually

only slide pat down by max-m, since the increment of i also includes the

m necessary to shift our attention back to the end of pat. Thus, when we

analyze the contributions of the two deltas we will speak of the amount by

which they allow us to slide pat down, rather than the amount by which

we increment i. Finally, recall that if the mismatched character, char,

occurs in the already matched final m characters of pat, then delta1 is

worthless and we will always slide by delta2.

The probability that delta! is worthless is just (l-(l-p)m). Let us call

this probdeltal worthless(m).

20

The conditions under which delta1 will naturally let us slide forward by k

can be broken down into four cases as follows: (1) delta1 will let us slide

down by 1 if char is the In+2nd character from the righthand end of pat

(or else there are no more characters in pat) and char does not occur to

the right of that position (which has probability (1-p)m*(if m+1=patlen

then 1 else p)). (2) delta1 allows us to slide down k, where 1 < k <
patlen-m, pi-ovided the rightmost occurrence of char in pat is m+k

characters from the right end of pat (which has probability p*(l_p)k+m-l).

(3) When patlen-m) 1, delta} allows us to slide past patlen-m characters

if char does not occur in pat at all (which has probability (l_p)patlen-l

given that we know char is not the m+lst character from the right end of

pat). Finally, (4) deltal never allows a slide longer than patlen-m (since

the maximum value of deltal is patlen).

Thus we can define the probability, probdeltal(ln,k), that, when only the

last m characters of pat match, delta1 will allow us to move down by k as

follows:

probdeltal(m,k) = if k=l
then

(l-p)m*(if m+l=patlen then 1 else p);

elseif l<k<patlen-m then p*(l_p)k+m-l.

elseif k=patlen-m then (l_p)patlen-l;

else (i.e. k>patlen-m) O.

(It should be noted that we will not put these formulas into closed form,

but will simply evaluate them to verify the validity of our empirical

evidence.)

21

We will now perform a similar analysis for delta2. delta2 lets us slide

down by k if (1) doing so sets up an alignment of the discovered

occurrence of the last m characters of pat in string with a plausible

reoccurrence of those m characters elsewhere in pat, and (2) no smaller

move will set up such an alignment. The probability, probpr(m,k), that

the terminal substring of pat 6f length m has a plausible reoccurrence k

characters to the left of its first character is:

probpr[m,k] = if In+k (patlen

then (1-p)*pm

else ppatlen-k

Of course, k is just the distance delta2 would let us slide, provided there

is no earlier reoccurrence. We can therefore define the probability,

probdelta2(m,k), that, when only the last m characters of pat match,
\

delta2 will allow us to move down by k recursively as follows:

k-1
probdelta2(Jn,k) = probpr(m,k)(1-~ probdelta2(m,n)),

n=1

We will slide down by the maximum allowed by the two deltas (taking

adequate account of the possibility that delta! is worthless). If the values

of the deltas were independent, the probability that we would actually slide

down by k would just be the sum of the products of the probabili ties that

one of the deltas allows a move of k while the other allows a move of less

than or equal to k.

However, the two moves are not entirely independent. In particular,

consider the possibility that delta1 is worthless. Then the char just

fetched occurs in the last m characters of pat and does not match the

22

m+lst. But if delta2 gives a slide of 1 it means that sliding these m

characters to the left by 1 produces a match. This implies that all of the

last m characters of pat are equal to the character m+ 1 from the right.

But this character is known not to be char. Thus, char cannot occur in

the last m characters of pat, violating the hypothesis that deltal was

worthless. Therefore, if delta1 is worthless, the probability that delta2

specifies a skip of 1 is 0 and the probability that it specifies one of the

larger skips is correspondingly increased.

This interaction between the two deltas is also felt (to a lesser extent) for

the next m possible delta2's but we will ignore these (and in so doing

accept that our analysis may predict slightly worse results than might be

expected since we will be allowing some short delta2 moves when longer

ones would actually occur).

The probability that delta2 will allow us to slide down by k when only

the last m characters of pat match, assuming that deltal is worthless, is:

probdelta2'(m,k) = if k=1

then 0

else
k-1

probpr(m,k)(1-~ probdelta2 '(m,n)).
n=2

Finally, we can define skip(ln,k), the probability that we will slide down

by k if only the last m characters of pat match:

sldp(m,k) = if k=l
then probdeltal(m,1)*probdelta2(m,1)

else

probdeltalworthless(m)*probdelta2'(m,k)

+
k-l
~ probdeltal (m,lt)*probdelta2(m,n)
n=l

+
k-l
~ probdeltal (m,n)*probdelta2(In,k)
n=l

+

probdeltal (m,k)*probdelta2(rn,k).

23

Now let us consider the two alternative cost functions. In order to analyze

the number of references to string per character passed over, eost(In)

should just be m+l, the number of references necessary to confirm that

only the last m characters of pat match.

In order to analyze the number of instructions executed per character

passed over, eost(rn) should be the total number of instructions executed in

discovering that only the last m characters of pat match. By inspection of

our PDP-IO code:

eost(rn) = if rn=O then 3 else 12+6rn.

We have computed the expected value of the ratio of cost per character

skipped using the above formulas (and both definitions of cost). We did

so for pattern lengths running from 1 to 14 (as in our empirical evidence)

and for the values of p appropriate for the three source strings used: For

a random binary string p is 0.5, for an arbitrary English string it is

(approximately) 0.09, and for a random string over a 100 character alphabet

24

it is 0.01. The value of p for English was determined using a standard

frequency count for the alphabetic characters [3] and empirically

determining the frequency of space, carriage return, and line feed to be

0.23, 0.03, and 0.03 respectively!.

In Figure 3 we have plotted the theoretical ratio of references to string

per character passed over against the pattern length.

The most important fact to observe in Figure 3 is that the algorithm can

be expected to make fewer than i+patlen references to string before finding

the pattern at location i. For example, for English text strings of length 5

or greater, the algorithm may be expected to make less than Ci+5)/4

references to string. The comparable figure for the Knuth, Morris, and

Pratt algorithm is of course precisely i. The figure for the intuitive search

algorithm is always greater than or equal to i.

The reason the number of references per character passed decreases more

slowly as patlen increases is that for longer patterns the probability is

higher that the character just fetched occurs somewhere in the pattern,

therefore shortening the distanc~ the pattern can be moved forward.

In Figure 4 we have plotted the theoretical ratio of the number of

instructions executed per character passed versus the pattern length.

Again we find that our implementation of the algorithm can be expected

lWe have determined empirically that the algorithm's performance on truly
random strings where p=0.09 is virtually identical to its performance on
English strings. In particular, the reference count and instruction count
curves generated by such random strings are almost coincidental with the
English curves in Figures 1 and 2.

25

(for sufficiently large alphabets) to execute fewer than i+patlen

instructions before finding the pattern at location i. That is, our

implementation is usually "sublinear" even in the number of instructions

executed. The comparable figure for the Knuth, Morris, and Pratt

algorithm is at best (3-p)*(i+patlen-l)1. For the simple search algorithm

the expected value of the number of instructions executed per character

passed is (approximately) 3.28 (for p=O.09).

It is difficult to fully appreciate the role played by delta2. For example,

if the alphabet is large and patterns are short then computing and trying

to use delta2 probably does not payoff much (because the chances are

high that a given character in string does not occur anywhere in pat and

one will almost always stay in the fast loop ignoring delta2)2. Conversely,

delta2 becomes very important when the alphabet is small and the patterns

are long (for now execution will frequently leave the fast loop, delta! will

in general be small because many of the characters in the alphabet will

occur in pat, and only the terminal substring observations could cause large

shifts). Despite the fact that it is difficult to appreciate the role of

delta2 it should be noted that the linearity result for the worst case

behavior of the algorithm is due entirely to the presence of delta2'

lAlthough the Knuth, Morris, and Pratt algorithm will fetch each of the
first i+patlen-l characters of string precisely once, sometimes a character
is involved in several tests against characters in pat. The number of such
tests (each involving 3 instructions) is bounded by log<t>(patlen), where <I>
is the golden ratio.

2However, if the algorithm is implemented without delta2 recall that, in
exi ting the slow loop, one must now take the Inax of deltal and patlen­
j+l to allow for the possibility that deltal is worthless.

26

If we compare the empirical evidence (Figures 1 and 2) with the theoretical

evidence (Figures 3 and 4, respectively) we will note that the model is

completely accurate for English and the 100 character alphabet. The model

predicts much better behavior than we actually experience in the binary

case. Our only explanation is that since delta2 predominates in the binary

alphabet, and since it sets up alignments of the pattern and the string,

the algorithm backs up over longer terminal substrings of the pattern

before finding mismatches. Our analysis ignores this phenomenon.

However, in summary, the theoretical analysis supports the conclusion that

on the average the algori thm is sublinear in the number of references to

string, and, for sufficiently large alphabets and patterns, sublinear in the

number of instructions executed (in our implementation).

Caveat Programmer

It should be observed that the preceding analysis has assumed that string

is entirely in primary memory and that we can obtain the ith character in

it in one instruction after computing its byte address. However, if string

is actually on secondary storage then the characters in it must be read in1.

This transfer will entail some time delay equivalent to the execution of,

lWe have implemented a version of our algorithm for searching through
disk files. It is available as the subroutine FFILEPOS in the latest release
of INTERLISP-IO. This function uses the TENEX page mapping capability
to id.entify one file page at a time with a buffer area in virtual memory.
In addi tion to being faster than reading the page by conventional methods,
this means the operating system's nleinory management takes care of
references to pages which happen to still be in memory, etc. The algorithm
is as much as 50 times faster than the standard INTERLISP-IO FILEPOS
function (d.epending on the length of the pattern).

27

say, w instructions per character brought in, and (because of the nature

computer i/o) all of the first i+patlen-l characters will eventually be

brought in whether we actually reference all of them or not. (A

representative figure for w for paged transfers from a fast disk is 5

instructions/character.) Thus, there may be a hidden cost· ofw instructions

per character passed over.

Now according to the statistics presented above one might expect our

algori thm to be approximately 3 times faster than the Knuth, Morris, and

Pratt algorithm (for, say, English strings of length 6), since that algori thm

executes about 3 instructions to our 1. However, if the cpu is idle for the

w instructions necessary to read each character the actual ratios are closer

to w+3 instructions to w+ 1 instructions. (Thus, for paged disk transfers

our algorithm can only be expected to be roughly 4/3 faster (i.e. 5+3

instructions to 5+1 instructions) if we assume that we are idle during i/o.)

Thus, for large values of w the difference between the various algori thms

diminishes if the cpu is idle during i/o.

Of course, in general, programmers (or operating systems) try to avoid the

si tuation in which the cpu is idle while awaiting an i/o transfer by

overlapping i/o with some other computation. In this situation, the chances

are that our algorithm will be i/o bound (we will search a page faster than

it can be brought in), and inde'ed, so will that of Knuth, Morris, and Pratt

if w > 3. Our algorithm will require that fewer cpu cycles be devoted to

the search itself, so that if there are other jobs to perform, there is still

an overall advantage in using the algorithm.

There are several situations in which it may not be advisable to use our

algorithm.

small, the

28

If the expected penetration, i, at which the pattern is found is

preprocessing time is significant and one might therefore

consider using the obvious intuitive algorithm.

As previously noted, our algorithm can be most efficiently implemented on

a byte-addressable machine. On a machine that does not allow byte

addresses to be incremented and decremented directly, two possible sources

of inefficiency must be addressed: The algorithm typically skips through

string in steps larger than 1, and the algorithm may back up through

string. Unless these processes are coded efficiently it is probably not

worthwhile to use our algori thm.

Furthermore, it should be noted that, because the algorithm can back up

through string, it is possible to cross a page boundary more than once.

We have not found this to be a serious source of inefficiency. However, it

does require a certain amount of code to handle the necessary buffering (if

paged i/o is being handled directly as in our FFILEPOS). One beauty of

the Knuth, Morris, and Pratt algorithm is that it avoids this problem

al together.

A final situation in which it is unadvisable to use our algorithm is if the

string matching problem to be solved is actually more complicated than

merely finding the first occurrence of a single substring. For example, if

the problem is to find the first of several possible substrings, or to

identify a location in string defined by a regular expression it is much

more advantageous to use an algorithm such as that of Aho and Corasick

[1].

It may of course be possible to design an algorithm that searches for

29

multiple patterns or instances of regular expressions using the idea of

starting the match at the right end of the pattern. However, we have not

designed such an algori thm.

Historical Remarks

Our earliest formulation of the algorithm involved only delta1 and

implemented Observations 1, 2, and 3-a. We were aware that we could do

something along the lines of delta2 and Observation 3-b, but did not

precisely formulate it. Instead, in April, 1974, we coded the delta! version

of the algorithm in INTERLISP, merely to test its speed. We considered

coding the algorithm in PDP-10 assembly language but abandoned the idea

as impractical because of the cost of incrementing byte pointers by

arbitrary amounts.

We have since learned that R. W. Gosper, of Stanford University,

simultaneously and independently discovered the delta! version of the

algori thm (private communication).

In April, 1975, we started thinking about the implementation again and

discovered a way to increment byte pointers by indexing through a table.

We then formulated a version of del ta2 and coded the algorithm more or

less as it is presented here. This original definition of delta2 differed

from the current one in the following respect: If only the last m characters

of pat (call this substring subpat) were matched, delta2 specified a slide

to the second from the rightmost occurrence of sub pat in pat (allowing

this occurrence to "fall off" the left end of pat) but without any special

consideration of the character preceding this occurrence.

30

The average behavior of that version of the algorithm was virtually

indistinguishable from that presented in this paper for large alphabets, but

was somewhat worse for small alphabets. However, its worst case behavior

was quadratic (i.e., required on the order of i*patlen comparisons). For

example, consider searching for a pattern of the form CA(BA)r in a string of

the form ((XX)r(AA)(BA)r)* (e.g. r = 2, pat = "CABABA", and string =

"XXXXAABABAXXXXAABABA ... It). The original definition of delta2 allowed only

a slide of 2 if the last ItBA" of pat were matched before the next 'A' fails to

match. Of course, in this situation this only sets up another mismatch at

the same character in string, but the algorithm had to reinspect the

previously inspected characters to discover it. The total number of

references to string In passing i characters in this situation was

(r+1)*(r+2)*i/(4r+2), where r = (patlen-2)/2.

references was on the order of i *patlen.

Thus, the number of

However, on the average the algorithm was blindingly fast. To our

surprise, it was several times faster than the string searching algorithm in

the Tenex TEeO text editor. This algorithm is reputed to be quite an

efficient implementation of the simple search algorithm because it searches

for the first character of pat one full-word at a time (rather than one byte

at a time).

In the summer of 1975, we wrote a brief paper on the algorithm and

distributed it on request.

In December, 1975, Ben Kuipers, of the M.LT. Artificial Intelligence

Laboratory, read the paper and brought to our attention the improvement

to delta2 concerning the character preceding the terminal substring and its

31

reoccurrence (private communication). Almost simultaneously, Donald

Knuth, of Stanford University, suggested the same improvement and

observed that the improved algorithm could certainly make no more than

order (i+patlen)*log(patlen) references to string (private communication).

We mentioned this improvement in the next revision of the paper and

suggested an additional improvement, namely the replacement of both

delta1 and delta2 by a single two dimensional table. Given the

mismatched char from string and the position j in pat at which the

mismatch occurred, this table indicated the distance to the last occurrence

(if any) of the substring [char,pat(j+1), ... pat(patlen)] in pat. The

revised paper concluded with the question of whether this improvement or a

similar one produced an algorithm which. was at worst linear and on the

average "sublinear".

In January, 1976, Knuth, [5], proved that the simpler improvement in fact

produces linear behavior, even in the worst case. We therefore revised the

paper again and gave delta2 its current definition.

In April, 1976, R. W. Floyd, of Stanford University, discovered a serious

statistical fallacy in the first version of our formula giving the expected

value of the ratio of cost to characters passed. He provided us (private

communication) with the current version of this formula.

Thomas Standish, of the University of California at Irvine, has suggested

(private communication) that the implementation of the algorithm can be

improved by fetching larger bytes in the fast loop (i.e., bytes containing

several characters) and using a hash array to encode the extended delta1

table. Provided the difficulties at the boundaries of the pattern are

32

handled efficiently this could improve the behavior of the algorithm

enormously since it exponentially increases the effective size of the

alphabet and reduces the frequency of common characters.

Acknowledgments

We would like to thank B. Kuipers, of the M.LT. Artificial Intelligence

Laboratory, for his suggestion concerning delta2 and D. Knuth, of Stanford

University, for his analysis of the improved algorithm. We are grateful to

the anonymous reviewer for the CACM who suggested the inclusion of

evidence comparing our algorithm with that of Knuth, Morris, and Pratt,

and for the warnings contained in Caveat Programrner. B. Mont-Reynaud,

of the Stanford Research Institute, and L. Guibas of Xerox Palo Alto

Research Center, proof read drafts of this paper and suggested several

clarifications. We would also like to thank E. Taft and E. Fiala of Xerox

Palo Alto Research Center for their advice regarding machine coding the

algorithm.

References

[1] Aho, A. V., and Corasick, M. J. Fast pattern matching: an .aid to
bibliographic search. C. ACM 18 (June, 1975).

[2] Beeler, M., Gospel', R. W., and Schroeppel, R. "HAKMEM,", M.LT.
Artificial Intelligence Laboratory Memo No. 239 (February 29, 1972).

[3] Dewey, G., Relativ -Frequency of English Speech Sounds, Harvard
University Press, Cambridge (1923) pg. 185.

[4] Knuth, D. E., Morris, J. H., and Pratt, V. R. Fast pattern nlatching in
strings. TR CS-74-440, Stanford University, Stanford, California, 1974.

[5] Knuth, D. E., Morris, J. H., and Pratt, V. R. Fast pattern matching in
strings. (to appear in the SIAM Journal of Computation).

33

1.0 r---~~~----~--~----~---r--~~--~---'----~---r----r----r--~

o
w

0.9

0.8

~ 0.7
<C
Cl.

a:
w
o
<C
~ 0.6
:I:
o a
z
a:
t; 0.5
z
a
w o
w
Cl.

~ 0.4

en
a:
w
o
<C
~ 0.3
:I:
o

0.2

0.1

EMPIRICAL COST

BINARY ALPHABET

CENTENARY ALPHABET

o ~ __ ~ __ ~ ____ ~ __ ~ ____ ~ __ ~ ____ ~ __ ~ __ ~ ____ ~ __ ~ ____ ~ __ ~ __ ~
o 2 4 6 8 10 12 14

LENGTH OF PATTERN
SA-4079-1

FIGURE 1

34

1.0 r---~--~--------~--------~--------r-------~--------~--____ --,

0.9 THEORETICAL COST

0.8

0
w
U)

0.7 til «
Q.

0:
w
I-
0 «
0: 0.6 «
:::J:
0 -C)
z
a:
I-
(I) 0.5
z
0
w
I-
0
W
0..
til 0.4
Z

CI)

a:
w
I-
0 «
c: 0.3 «
:J:
0

0.2

0.1

0.01~------~------~~-----4------~--____ ~ ____ ~ ____ ~'
o 2 4 6 8 10 12 14

LENGTH OF PATTERN

SA-4079-5

FIGURE 3

35

7 r---~--~----~--~----~---r----~--~--~----~--~----~--~--__
EMPIRICAL COST

6

5
0
w
CJ)
CJ)

<t:
d-

o:
w
I- 4 u
<t:
ex:

3.56 <t
J:
U en
z

3 0
~ u
:::>
ex:
I-
CJ)

z
2

_:'=-::':: __ :~ __ ~L ___ ~"~ __ -:..~" ___ -JJ. 0.473
0.266

o ~ __ ~ __ ~~ __ ~ __ ~ ____ ~ __ ~ ____ ~ __ ~ __ ~ ____ ~ __ ~ ____ ~ __ ~ __ __
o 2 4 6 8 10 12 14

LENGTH OF PATTERN

SA-4079-2

FIGURE 2

6

5
c
1!1
en
en
<
C-

o:
~4
(.)

<
0: -«
:r
(.)

Cii
~3
i=
(.)

:::>
a:
I-
,,?
Z
-2

1

36

THEORETICAL COST

_. ~--'---"""--''''-'-iI--aL...-'''''~''''''''''O.52
----*-~~~~-.--~--~--~--~O.~

oL--L--1--l--1-~--~~L-~--L-~--~~--~~14
4 6 8 o 2

LENGTH OF PATTERN

FIGURE 4

