
An Overview of the Mesa Processor Architecture

Richard K. Johnsson
John D. Wick

Xerox Office Products Division
3333 Coyote Hill Road

Palo Alto. California 94304

Introduction

This paper provides an overview of the architecture of the
Mesa processor. an architecture which was designed to
support the Mesa programming system [4]. Mesa is a high
level systems programming language and associated tools
designed to support the development of large information
processing applications (on the order of one million source
lines). Since the start of development in 1971. the
processor architecture. the programming language, and the
operating system have been designed as a unit, so that
proper tradeoffs among these components could be made.
The three main goals of the architecture were:

- To enable the efficient implementation of a
modular, high level programming language such as
Mesa. The emphasis here is not on simplicity of the
compiler, but on efficiency of the generated object
code and on a good match between the semantics of
the language and the capabilities of the processor.

- To provide a very compact representation of
programs and data so that large, complex systems
can run efficiently in machines with relatively small
amounts of primary memory.

- To separate the architecture from any particular
implementation of the processor, and thus
accommod~te new implementations whenever it is
technically or economically advantageous, without
materially affecting either system or application
software.

We will present a general introduction to the processor
and its memory and control structure; we then consider an

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission or the Association for Computing Machinery. To copy
otherwise, or to republish, requires a ree and I or specifIC permission.

© 1982 ACM 0-89791-066-4 82/03/0020 $00.75

20

example of how the Mesa instruction set enables
significant reductions in code size over more traditional
architectures. We will also discuss in considerable detail
the control transfer mechanism used to implement
procedure calls and context switches among concurrent
processes. A brief description of the process facilities is
also included.

General Oveniew

All Mesa processors have the following characteristics
which distinguish them from other computers:

High Level Language

The Mesa architecture is designed to efficiently execute
high level languages in the style of Algol, Mesa, and
Pascal. Constructs in the programming languages such as
modules, procedures and processes all have concrete
representations in the processor and main memory, and
the instruction set includes opcodes that efficiently
implement those language constructs (e.g. procedure call
and return) using these structures. The processor does not
"directly execute" any particular high level programming
language.

Compacl Program Representation

The Mesa instruction set is designed primarily for a
compact, dense representation of programs. Instructions
are variable length with the most frequently used
operations and operands encoded in a single byte opcode;
less frequently used combinations are encoded in two
bytes, and so on. The instructions themselves are chosen
based on their frequency of use. This design leads to an
asymmetrical instruction set For example, there are
twenty-four different instructions that can be used to load
local variables from memory, but only twenty-one that
store into such variables; this occurs because typical
programs perform many more loads than stores. The
average instruction length (static) is 1.45 bytes.

Compact Data Representation

The instruction set includes a wide variety of instructions
for accessing partial and multi word fields of the memory's
basic unit, the sixteen bit word. Except for system data
structures defined by the architecture, there are no
alignment restrictions on the allocation of variables, and
data structures are generally assumed to be tightly packed
in memory.

Evaluation Stack

The Mesa processor is a stack machine; it has no general
purpose registers. The evaluation stack is used as the
destination for load instructions, the source for store
instructions, and as both the source and destination for
arithmetic instructions: it is also used for passing
parameters to procedures. The primary motivation for the
stack architecture is not to simplify code generation, but to
achicve compact program representation. Since the stack is
assumed as the source and/or destination of one or more
operands, specifying operand location requires no bits in
the instruction. Another motivation for the stack is to
minimize the register saving and restoring required in the
procedure calling mechanism.

Control Transfers

The architecture is designed to support modular
programming, and therefore suitably optimizes transfers of
control between modules. The Mesa processor implements
all control transfers with a single primitive called XFER,

which is a generalization of the notion of a procedure or
subroutine call. All of the standard procedure calling
conventions (call by value, call by reference (result), etc.)
and all tra~fers of control between contexts (procedure
call and return, nested procedure calls, coroutine transfers,
traps, and process switches) are implemented using the
XFER primItive. To support· arbitrary control transfer
disciplines, activation records (called frames) are allocated
by XFER from a heap rather than a stack; this allows the
heap to be shared by multiple processes.

Process Mechanism

The architecture is designed for applications that expect a
large amount of concurrent activity. The Mesa processor
provides for the simultaneous execution of up to one
thousand asynchronous preemptable processes on a single
processor. The process mechanism implements monitors
and condition variables to control the synchronization and
mutual exclusion of processes and the sharing of resources
among them. Scheduling is event driven, rather than time
sliced. Interrupts, timeouts, and communication with 110
devices also utilize the process mechanism.

21

Virtual Memory

The Mesa processor provides a single large, uniformly
addressed virtual memory, shared by all processes. The
memory is addressed linearly as an array of 232 sixteen-bit
words, and, for mapping purposes, is further organized as
an array of 224 pages of 256 words each; it has no other
programmer visible substructure. Each page can be
individually write-protected, and the processor records the
fact that a page has been written into or referenced.

Protection

The architecture is designed for the execution of
cooperating, not competing, processes. There is no
protection mechanism (other than the write-protected
page) to limit the sharing of resources among processes.
There is no "supervisor mode," nor are there any
"privileged" instructions.

Virtual Memory Organization

Virtual addresses are mapped into real addresses by the
processor. The mapping mechanism can be modeled as an
array of real page numbers indexed by virtual page
numbers. The array can have holes so that an associative
or hashed implementation of the map is allowed; the
actual implementation is not specified by the architecture
and differs among the various implementations of the
Mesa processor.

Instructions are provided to enable a program (usually the
operating system) to examine and modify the virtual-to­
real mapping. The processor maintains "write-protected,"
"dirty," and "referenced" flags for each mapped virtual
page which can also be examined and modified by the
program.

The address translation process is identical for all memory
accesses, whether they originate from the processor or
from I/O devices. There is no way to bypass the mapping
and directly reference a main memory location using a real
address. Any reference to a virtual page which has no
associated real page (page fault), or an attempt to store into
a write-protected page (writeprotect faUlt) will cause the
processor to initiate a process switch (as described below).
The abstraction of faults is that they occur between
instructions so that the processor state at the time of the
fault is well defined. In order to honor this abstraction.
each instruction must avoid all changes to processor state
registers (including the evaluation stack) and main
memory until the possibility of faults has passed, or such
changes must be undone in the event of a fault.

Virtual memory is addressed by either long (two word)
pointers containing a full virtual address or by short (one

Code Segment

Entry

L-_____ --I232.1

Figure 1. Virtual Memory Structure

word) pointers containing an offset from an implicit 64K
word aligned base address. There are several uses of short
pointers defined by the architecture:

- The first 64K words of virtual memory are reserved
for booting data and communication with I/O
devices. Virtual addresses known to be in this range
are passed to 110 devices as short pointers with an
implicit base of zero.

- The second 64K of virtual memory contains data
structures relating to processes. Pointers to data
structures in this area are stored as short pointers
with an implicit base of 64K.

22

- Any other 64K region of virtual memory can be a
main data space (MDS). Each process executes
within some MDS in which its module and
procedure variables are stored; these variables can
be referenced by short pointers using as an implicit
base the value stored in the processor's MDS

register.

Code may be placed anywhere in virtual memory.
although in general it is not located within any of the three
regions mentioned above. A code segment contains read
only instructions and constants for the procedures that
comprise a Mesa module; it is never modified during
normal execution and is usually write-protected. A code

Curent

Local Frame

Caller's

Local Frame

Global Frame
r----'
I Links I

Variables

Procedure

Variables

Read Only

Data

return link

Saved PC

Figure 2. Local and Global Frames and Code Segments

segment is relocatable without modification; no
information in a code segment depends on its location in
virtual memory.

'The data associated with a Mesa program is allocated in a
main data space in the form of local and global frames. A
global frame contains the data common to all procedures
in the module, i.e. declared outside the scope of any
procedure. The global frame is allocated when a module is
loaded, and freed when the module is destroyed. A local
frame contains data declared within a procedure; it is
allocated when the procedure is called and freed when it
returns.

Any region of the virtual memory, including any main
data space, can contain additional dynamically allocated
user data; it is managed by the programmer and
referenced indirectly using long or short pointers. An MDS

also contains a few system data structures used in the
implementation of control transfers (discussed below). The
overall structure of virtual memory is shown in Figure 1.

Besides enabling standard high level language features
such as recursive procedures, multiple module instances,
coroutines, and multiple processes, the representation of a
program as local data, global data, and code segment tends
to increase locality of reference; this is important in a
paged virtual memory environment

Contexts

In addition to a program's variables, there is a small
amount of linkage and control information in each frame.
A local frame contains a short pointer to the associated
global frame and a short pointer to the local frame of its

23

caller (the return link). A local frame also holds the code
segment relative program counter for a procedure whose
execution has been suspended (by preemption or by a call
to another procedure). Each global frame contains a long
pointer to the code segment of the module. A global frame
optionally is preceded by an area called the link space,
where links to procedures and variables in other modules
are stored. This structure is shown in Figure 2.

To speed access to code and data, the processor contains
registers which hold the local and global frame addresses
(LF and GF), and the code base and program counter (CB

and pc) for the currently executing procedure; these are
collectively called a context When a procedure is
suspended, the single sixteen bit value which is the MDS

relative pointer to its local frame is sufficient to reestablish
this complete context by fetching GF and pc from the
local frame and CB from the global frame. The
management of these registers during context switches is
discussed in the section on control transfers below.

The Mesa Instruction Set

As mentioned above, a primary goal of the Mesa
architecture is compact representation of programs. The
general idea is to introduce special mechanisms into the
instruction set so that the most frequent operations can be
represented in a minimum number of bytes. See [5] for a
description of how the instruction set is tuned to
accomplish this goal. Below we enumerate a representative
sample of the instruction set

Many functions are implemented with a family of
instructions with the most common forms being a single

byte. In the descriptions of instructions below, operand
bytes in the code stream are represented by a and f3; af3
represents two bytes that are taken together a~ a sixteen bit
quantity. The suffix n on an opcode mnemonic represents
a group of instructions with n standing for small integers,
e.g. Lin represents LlO, Ll1, Ll2, etc. A trailing B in an
opcode indicates a following operand byte (a); W
indicates a word (af3); P indicates that the operand byte is
a pair of four bit quantities, a.left and a.right.

Opera/ions' on /he stack. These instructions obtain
arguments from and return results to the evaluation stack.
Although elements in the stack are sixteen bits, some
instructions treat two elements as single thilty-two bit
quantities. Numbers are represented in two's complement

DIS Discard the top element of the stack
(decrement the stack pointer).

REC Recover the previous top of stack
(increment the stack pointer).

EXCH

DEXCH

DUP

DDUP

DBL

Exchange tile top two elements of the
stack.

Exchange fue top two doubleword
elements of fue stack.

Duplicate fue top element of fue stack.

Duplicate the top doubleword element of
fue stack.

Double the top of stack (multiply by 2).

unary operations: NEG, INC, DEC, etc.

logical operations: lOR, AND, XOR.

arithmetic: ADD, SUB, MUL.

doubleword arithmetic: DADO, DSUB.

Divide and other infrequent operations are relegated to a
multibyte escape opcade fuat extends the instruction set
beyond 256 instructions.

Simple Load and Store instructions. These instructions
move data between fue evaluation stack and local or global
variables.

LIn Load Immediate n.

LIB a Load Immediate Byte.

L1waf3 Load Immediate Word.

LLn Load Local n; load the word at offset n
from LF.

LLB a Load Local Byte; load the word at offset a
from LF.

SLn Store Local n.

SLB a Store Local Byte.

24

PLn

LGn

LGB a

SGB a

LLKB a

Put Local n; equivaknt to SLn REC, i.e.
store and leave the value on the stack.

Load Global n; load the word at offset n
from GF.

Load Global B'yte; load the word at offset
a from GF.

Store Global Byte.

Load Link; load a word at offset a in fue
link space.

There are also versions of these instructions fuat load
doubleword quantities. Note that there are no three-byte
versions of these loads and stores and no one-byte Store
Global instructions. These do not occur frequently enough
to warrant inclusion in the instruction set.

Jumps. All jump distances are measured in bytes relative tCl
fue beginning of the jump instruction; they are specified as
signed eight or sixteen bit numbers.

In short positive jumps.

JB a jump -128 to + 127 bytes.

JWaf3 long positive or negative jumps.

JLB a compare (unsigned) top two elements of
stack and jump if less; also JLEB, JEB,
JGB, JGEB and unsigned versions.

JEBB a f3 if top of stack is equal to to a, jump
distance.~n f3; also JNBB.

JZB a

JEP a

JIB af3

jump if top of stack is zero; also JNZB.

if top of stack is equal to a.left, jump
distance in a.right; also JNEP.

at offset af3 in fue code segment find a
table of eight bit distances to be indexed
by fue top of stack; also JIW with a table
of sixteen bit distances.

Read and Write through pointers. These instructions read
and write data through pointers on fue stack or stored in
local variables.

Rn Read furough pointer on stack plus small
offset.

RB a Read through pointer on stack plus offset
a.

WB a Write through pointer on stack plus offset
a.

RLIP a

WLlPa

Read Local Indirect; use pointer in local
variable a.left; add offset a.right.

Write Local Indirect.

RnF ex

RF ex fJ

WF ex fJ

RKIB ex

Read Field using pointer on the stack plus
n; ex contains starting bit and bit count as
four bit quantities.

Read Field using pointer on the stack plus
ex; fJ contains starting bit and bit count as
four bit quantities.

Write Field.

Read Link Indirect; use the word at offset
ex in the link space as a pointer.

There are also versions of these instructions that take long
pointers and versions that read or write doubleword
quantities.

Control Transfers. These instructions handle procedure call
and return. Local calls (in the same module) specify the
entry point number of the destination procedure; external
calls (to another module) specify an index of a contro/link
in the module's link space (see the section on Control
Transfers).

LFCn

LFCB ex

EFCn

EFCB ex

SFC

RET

BRK

Local Function Call using entry point n.

Local Function Call using entry point 0:.

External Function Call using control link
n.

External Function Call Byte using control
link ex.

Stack Function Call: use control link from
the stack.

Return. XFER using the return link in the
local frame as the destination; free the
frame.

Breakpoint; a distinguished one-byte
instruction that causes a trap.

Miscellaneous. These instructions are used to generate and
manipulate pointer values.

LAn Local Address n; put the address of local
variable n on the stack.

LAB 0: Local Address Byte; put the address of
local variable 0: on the stack.

LAW o:fJ Local Address Word; put the address of
local variable o:fJ on the stack.

GAn Global Address n; put the address of
global variable n on the stack.

GAB 0: Global Address Byte; put the address of
global variable 0: on the stack.

GAWexfJ Global Address Word; put the address of
global variable o:fJ on the stack.

25

LP Lengthen Pointer; convert the short
pointer on the stack to a long pointer by
adding MDS; includes a check for invalid
pointers.

An example. Consider the program fragment below. The
statement c +- a[p.f + i] means "call procedure a, passing
the sum of i and field f of the record pointed to by local
variable p; store the result in global variable c." The
statement RETURN [a[i].c] means "return as the value of
the procedure a field c of the ith record of global array
a."

Prog: PROGRAM =
BEGIN

c: CHARACTER;
a: ARRA Y INTEGER OF RECORD [

b: BOOLEAN,
c: CHARACTER,
s: INTEGER[O .. 12S),
W: CARDINAL];

P: PROCEDURE =
BEGIN
i: INTEGER = 2;
p: POINTER TO RECORD [••• , f: INTEGER];
... ,
c +- a[p.f + i];
. .. ,
END;

a: PROCEDURE [i: INTEGER]
RETURNS [CHARACTER] =

BEGIN
RETURN [a[i].c];
END;

END.

Below we have shown the code generated for this program
fragment in a generalized Mesa instruction set, and then in
the current optimized version of the instruction set.

Source

p_f

i
p_f + i
a[..]
n+-

a:

:(:J.c
RETURN

Mesa/Gen

LL p
R f
LI
ADD
LFC q
SG n

11 Code Bytes
6 Instructions

SL
REC
DBL
GAB a
ADD
RF 0,(1,S)
RET

11 Code Bytes
7 Instructions

Mesa/Ogt

RLiP (p, f)

Lli
ADD
LFCq
SG n

7 Code Bytes
5 Instructions

PLi

DBL
GAa
ADD
ROF (1,S)
RET

7 Code Bytes
6 Instructions

Although this is admittedly a contrived example. it cannot
be called pathological. and it does iIIustrate quite well
several of the ways the Mesa instruction set achieves code
size reduction. In particular:

- Use of the evaluation Slack. The stack is the implicit
destination or source for load and store operations;
instructions can be smaller because they need not
specify all operand locations. Since the stack is also
used to pass parameters. no extra instructions are

, needed to set up for the procedure call. Most
statements and expressions are quite simple so that
the added generality of a general register
architecture is a liability rather than an asset

- Control transfer primitive. By using a single.
standard calling convention with built-in storage
allocation. almost all of the overhead associated
with a call is eliminated. There is minimal register
saving and restoring.

- Common operations are single instructions.
Operations that occur frequently are encoded in
single instructions. Reading a word from a record
given a pointer to the record in a local variable is a
good example (RLI P). There are similar
instructions for storing values through pointers.
There are instructions that deal with partial word
quantities or that include runtime as well as
compile time offsets. Procedure calls are also given
single instructions.

- Frequently referenced variables are stored together.
Most operands are addressed with small offsets
from local or global frame pointers or from variable
pointers stored in the local or global frame. Using
small offsets means that instructions can be smaller
because fewer bits are needed to record the offset
The compiler assists by assigning variable locations
based on static frequency so that the smallest offsets
occur most often.

These last two points are the guiding principles of the
Mesa instruction set If an operation. even a complex one
involving indirection and indexing. occurs frequently in
"real" programs. then it should be a single instruction or
family of instructions. For instruction families with
compile time constant operands such as offsets. assigning
operand values by frequency increases the payoff of
merging small operand values into the opcode or packing
multiple values into a single operand byte. There are a
small number of cases in which an infrequently used
function is provided as an"instruction because it is required
for technical reasons or for efficiency (e.g. disable
interrupts or block transfer).

26

Control Transfers

The Mesa architecture supports several types of transfers
of control, including procedure call and return. nested
procedure calls, coroutine transfers. traps and process
switches. using a single primitive called XFER [1]. In its
simplest form. XFER is supplied with a destination control
link in the form of a pointer to a local frame; x FER then
establishes the context associated with that frame by
loading the processor state registers: the PC and global
frame pointer GF are obtained from the local frame. and
the code base CB is obtained from the global frame. Most
control transfer instructions perform some initial setup
before invoking the XFER primitive; some specify action to
be taken after the XFER. If after the XFER we add code to
free the source frame. we have the mechanism for
performing a procedure return .. On the other hand. if we
add code before the XFER to save the current context (only
the PC). we have the basic mechanism to implement a
coroutine transfer between any two existing contexts.

A process switch is little more than a coroutine transfer.
except that it may be preemptive. in which case the
evaluation stack must be saved and restored on each side
of the XFER. In the Mesa architecture. we have also added
the ability to change the main data space on a process
switch (see the next section).

The procedure call is the most interesting form of control
transfer in any architecture; it is complicated by the fact
that the destination context does not yet exist, and must be
created out of whole cloth. We represent the context of a
not-yet-executing procedure by a control link called a
procedure descriptor. It must contain enough information
to derive all of the following:

The global frame pointer of the module containing
the procedure.

The address of the code segment of the module.

The starting PC of the procedure within the code
segment, and

The size of the frame to allocate for the procedure's
local variables.

Note that in the case of a local call within the current
module. only" the last two items are needed; the first two
remain unchanged.

It is desirable to pack all of this information into a single
word, and at the same time make room for a tag bit to
distinguish between local frames and procedure
descriptors. so the two can be used interchangeably. Then.
at the Mesa source level. a program need not concern itself
with whether it is calling a procedure or a coroutine.

Procedure Descriptor

gli epl II

GFT Code Segment

I +~ Code Base

I CB ~
-32 Entry

~ Vector 4 1
pc

T lsi -

I
Code bytes

Global Frame Ipc ~ m Ilags
J

code

~ base

fGF ~

AV

Local Frame I
I lsi

return link Frame Heap

global link

pc ~ I I-
fLF]-----.. tr I-J

I I tI
1

Figure 3. Procedure Calls

The obvious representation of a procedure descriptor
would include the global frame address (sixteen bits), the
code segment address (thirty-two bits), the starting PC

(sixteen bits), and the local frame size (sixteen bits), for a
total of eighty bits. We use a combination of indirection,
auxiliary tables. and imposed restrictions to reduce this to
the required fifteen bits, leaving one bit for the
frame/procedure tag (refer to Figure 3).

We eliminate the code segment address by noticing that it
is available in the global frame of the destination module,
at the cost of a double word fetch.

We replace the PC and frame size by a small (five bit)
entry point index into a table at the beginning of each code
segment containing these values for each procedure. This
costs another double word fetch, and limits the number of

27

procedures per module to a maximum of thirty-two. (By
an encoding trick, we will increase this to 128 later.)

We replace the global frame pointer by a ten bit index into
an MDs-unique structure called the global frame table
(GFT); it contains a global frame pointer for each module
in the main data space. This costs one additional memory
reference per XFER and limits the number of modules in
an MDS to 1024 and the number of procedures in an MDS
to 32,768.

We obtain our tag bit by aligning local frames to at least
even addresses; the low order bit of all procedure
descriptors is one.

To increase the maximum number of procedures per
module, we first free up two bits in each entry of the
global frame table by aligning all global frames on quad

word boundaries. We use these two bits to indicate that
the entry point index should be increased by 0, 32, 64, or
96 before it is used to index the code segment entry vector.
Of course, this requires multiple entries in the global
frame table for modules with more than thirty-two
procedures.

SO, XFER'S job in the case of a procedure call is
conceptually the same as a simple frame transfer, except
that it must pick apart the procedure descriptor and
reference all the auxiliary data structures created above. It
also' needs a mechanism for allocating a new local frame,
given its size.

As mentioned above, local frames are allocated from a
heap rather than a stack, so that a pool of available frames
can be shared among several processes executing in the
same MOS. We organize this pool as an array of lists of
frames of the most frequently used sizes; each list contains
frames of only one size. Rather than actual frame sizes, the
code segment entry vector contains frame size indexes into
this array, called the allocation vector, or AV (see Figure
3).

Assuming that a frame is present on the appropriate list, it
costs three memory references to remove the frame from
the list and update the list head. This scheme requires that
the frame's frame size index be kept in its overhead words,
so that it can be returned to the proper list; it therefore
requires four memory references to free a frame. Again we
take advantage of the fact that frames are aligned to make
use of the low order bits of the list pointers as a tag to
indicate an empty list There is also a facility for chaining a
list to a larger frame size list

In the (rare) event that no frame of the required size (or
larger) is available, a trap to software is generated; it may
resume the operation after supplying more frame storage.
Of course, the frequency of traps depends on the initial
allocation of frames of each size, as well as the calling
patterns of the application; this is determined by the
obvious static and dynamic analysis of frame usage.

Calling a nested procedure involves additional complexity
because the new context must be able to access the local
variables of the lexically enclosing procedure. The
semantics of procedure variables in the Mesa language
dictate that the caller of a nested procedure cannot be
aware of its context or depth of nesting; all of the
complexity must be handled by the called procedure. The
implementation of this is beyond the scope of this paper.

Concurrent Processes

The Mesa architecture implements concurrent processes as
defined by the Mesa programming language for
controlling the execution of multiple processes and
guaranteeing mutual exclusion [2].

28

The process implementation is based on queues of small
objects called Process State Blocks (P,SBS), each
representing a single process. When a process is not
mnning, its PSB records the st.1te associated with the
process, inclMing the process's MOS and the local frame it
was last executing. If the process was preempted, its
evaluation stack is also saved in an auxiliary data structure;
the evaluation stack is known to be empty when a process
stops running voluntarily (by waiting on a condition or
blocking on a monitor). The PSB also records the process's
priority and a few flag bits.

When a process is running, its state is contained in the
evaluation stack and in the processor registers that hold
pointers to the current local and global frames, code
segment and MOS. An MOS may be shared by more than
one process or may be restricted to a single process. All of
these processor registers are modified when a process
switch takes place.

Each PSB is a member of exactly one process queue.
There is one queue for each monitor lock, condition
variable, and fault handler in the system. A process that is
not blocked on a monitor, waiting on a condition variable,
or faulted (e.g. suspended by a page fault) is on the ready
queue and is available for execution by the processor. The
process at the head of the ready queue is the one currently
being executed.

The primary effect of the process instructions is to move
PSBS back and forth between the ready queue and a
monitor or condition queue. A process moves from the
ready to a monitor queue when it attempts to enter a
locked monitor; it moves from the monitor queue to the
ready queue when the monitor is unlocked (by some other
process). Similarly, a process moves from the ready queue
to a condition queue when it waits on a condition variable,
and it moves back to the ready queue when the condition
variable is notified, or when the process has timed out
The instruction set includes both notify and broadcast
instructions, the latter having the effect of moving all
processes waiting on a condition variable to the ready
queue.

Each time a process is requeued, the scheduler is invoked;
it saves the state of the cllrrent process in the process's
PSB, loads the state of the highest priority ready process,
and continues execution. To simplify the task of choosing
the highest priority task from a queue, all queues are kept
sorted by priority.

In addition to normal interaction with monitors and
condition variables, certain other conditions result in
process switches. Faults (e.g. page faults or write-protect
faults) cause the current process to be moved to a fault
queue (specific to the type of fault); a condition variable
associated with the fault is then notified. An interrupt

(from an lID device) causes one of a set of preassigned
condition variables to be notified. Finally, a timeout causes
a waiting process to be moved to the ready queue, even
though the condition variable on which it was waiting has
not been notified by another process.

Conclusions

The Mesa architecture accomplishes its goals of supporting
the Mesa programming system and allowing significant
code size reduction. Key to this success is that the
architecture has evolved in conjunction with the language
and the operating system, and that the hardware
architecture has been driven by the software architecture,
rather than the other way around.

The Mesa architecture has been implemented on several
machines ranging from the Alto [6] to the Dorado [3], and
is the basis of the Xerox 8000 series products and the
Xerox 5700 electronic printing system. The ability to
transport almost all Mesa software (i.e. all except unusual
110 device drivers) among these machines while retaining
the advantages of the semantic match between the
language and the architecture has been invaluable. The
code size reduction over conventional architectures (which
averages about a factor of two) has allowed considerable
shoehorning of software function into relatively small
machines.

Acknowledgments

The first version of the Mesa architecture was designed
and implemented by the Computer Science Laboratory of
the Xerox Palo Alto Research Center. Butler Lampson was
responsible for much of the overall design and many of
the encoding tricks. Subsequent development and
maintenance have been done by the Systems Development
Department of the Office Products Division. Chuck
Geschke, Richard Johnsson, Butler Lampson, Roy Levin,
Jim Mitchell, Dave Redell, Jim Sandman, Ed
Satterthwaite, Dick Sweet, Chuck Thacker, and John Wick
have all made major technical contributions.

29

References

[1] Lampson, 8., Mitchell, J., and Satterthwaite, E. On the
transfer of control between contexts. Lecture Notes in
Computer Science /9, (1974).

[2] Lampson, 8. W. and Redell, D. D. Experience with
processes and monitors in Mesa. Comm ACM 23, 2
(Feb. 1980), 105-117.

[3] Lampson, B. W. el. al. The Dorado: A high­
performance personal computer-three papers. Tech.
Rep. CSL 81-1, Xerox Palo Alto Res. Ctr., 1981.

[4] Mitchell, J. G., Maybury, W., and Sweet, R. Mesa
Language Manual. Tech. Rep. CSL 79-3, Xerox Palo
Alto Res. Ctr., 1979.

[5] Sweet, R. E. and Sandman, J. G. Empirical Analysis of
the Mesa Instruction Set, ACM Symposium on
Architectural Support for Programming Languages &
Operating Systems, March 1982.

[6] Thacker, C.P. et. af. Alto: a personal computer, in
Computer Structures: Readings and Examples. Second
edition, Sieworek, Bell, and Newell, Eds., McGraw­
Hill, 1981. Also available as Tech. Rep. CSL 81-1,
Xerox Palo Alto Res. Ctr., 1981.

