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Introduction 

This paper provides an overview of the architecture of the 
Mesa processor. an architecture which was designed to 
support the Mesa programming system [4]. Mesa is a high 
level systems programming language and associated tools 
designed to support the development of large information 
processing applications (on the order of one million source 
lines). Since the start of development in 1971. the 
processor architecture. the programming language, and the 
operating system have been designed as a unit, so that 
proper tradeoffs among these components could be made. 
The three main goals of the architecture were: 

- To enable the efficient implementation of a 
modular, high level programming language such as 
Mesa. The emphasis here is not on simplicity of the 
compiler, but on efficiency of the generated object 
code and on a good match between the semantics of 
the language and the capabilities of the processor. 

- To provide a very compact representation of 
programs and data so that large, complex systems 
can run efficiently in machines with relatively small 
amounts of primary memory. 

- To separate the architecture from any particular 
implementation of the processor, and thus 
accommod~te new implementations whenever it is 
technically or economically advantageous, without 
materially affecting either system or application 
software. 

We will present a general introduction to the processor 
and its memory and control structure; we then consider an 

Permission to copy without fee all or part of this material is granted 
provided that the copies are not made or distributed for direct 
commercial advantage, the ACM copyright notice and the title of the 
publication and its date appear, and notice is given that copying is by 
permission or the Association for Computing Machinery. To copy 
otherwise, or to republish, requires a ree and I or specifIC permission. 

© 1982 ACM 0-89791-066-4 82/03/0020 $00.75 

20 

example of how the Mesa instruction set enables 
significant reductions in code size over more traditional 
architectures. We will also discuss in considerable detail 
the control transfer mechanism used to implement 
procedure calls and context switches among concurrent 
processes. A brief description of the process facilities is 
also included. 

General Oveniew 

All Mesa processors have the following characteristics 
which distinguish them from other computers: 

High Level Language 

The Mesa architecture is designed to efficiently execute 
high level languages in the style of Algol, Mesa, and 
Pascal. Constructs in the programming languages such as 
modules, procedures and processes all have concrete 
representations in the processor and main memory, and 
the instruction set includes opcodes that efficiently 
implement those language constructs (e.g. procedure call 
and return) using these structures. The processor does not 
"directly execute" any particular high level programming 
language. 

Compacl Program Representation 

The Mesa instruction set is designed primarily for a 
compact, dense representation of programs. Instructions 
are variable length with the most frequently used 
operations and operands encoded in a single byte opcode; 
less frequently used combinations are encoded in two 
bytes, and so on. The instructions themselves are chosen 
based on their frequency of use. This design leads to an 
asymmetrical instruction set For example, there are 
twenty-four different instructions that can be used to load 
local variables from memory, but only twenty-one that 
store into such variables; this occurs because typical 
programs perform many more loads than stores. The 
average instruction length (static) is 1.45 bytes. 



Compact Data Representation 

The instruction set includes a wide variety of instructions 
for accessing partial and multi word fields of the memory's 
basic unit, the sixteen bit word. Except for system data 
structures defined by the architecture, there are no 
alignment restrictions on the allocation of variables, and 
data structures are generally assumed to be tightly packed 
in memory. 

Evaluation Stack 

The Mesa processor is a stack machine; it has no general 
purpose registers. The evaluation stack is used as the 
destination for load instructions, the source for store 
instructions, and as both the source and destination for 
arithmetic instructions: it is also used for passing 
parameters to procedures. The primary motivation for the 
stack architecture is not to simplify code generation, but to 
achicve compact program representation. Since the stack is 
assumed as the source and/or destination of one or more 
operands, specifying operand location requires no bits in 
the instruction. Another motivation for the stack is to 
minimize the register saving and restoring required in the 
procedure calling mechanism. 

Control Transfers 

The architecture is designed to support modular 
programming, and therefore suitably optimizes transfers of 
control between modules. The Mesa processor implements 
all control transfers with a single primitive called XFER, 

which is a generalization of the notion of a procedure or 
subroutine call. All of the standard procedure calling 
conventions (call by value, call by reference (result), etc.) 
and all tra~fers of control between contexts (procedure 
call and return, nested procedure calls, coroutine transfers, 
traps, and process switches) are implemented using the 
XFER primItive. To support· arbitrary control transfer 
disciplines, activation records (called frames) are allocated 
by XFER from a heap rather than a stack; this allows the 
heap to be shared by multiple processes. 

Process Mechanism 

The architecture is designed for applications that expect a 
large amount of concurrent activity. The Mesa processor 
provides for the simultaneous execution of up to one 
thousand asynchronous preemptable processes on a single 
processor. The process mechanism implements monitors 
and condition variables to control the synchronization and 
mutual exclusion of processes and the sharing of resources 
among them. Scheduling is event driven, rather than time 
sliced. Interrupts, timeouts, and communication with 110 
devices also utilize the process mechanism. 
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Virtual Memory 

The Mesa processor provides a single large, uniformly 
addressed virtual memory, shared by all processes. The 
memory is addressed linearly as an array of 232 sixteen-bit 
words, and, for mapping purposes, is further organized as 
an array of 224 pages of 256 words each; it has no other 
programmer visible substructure. Each page can be 
individually write-protected, and the processor records the 
fact that a page has been written into or referenced. 

Protection 

The architecture is designed for the execution of 
cooperating, not competing, processes. There is no 
protection mechanism (other than the write-protected 
page) to limit the sharing of resources among processes. 
There is no "supervisor mode," nor are there any 
"privileged" instructions. 

Virtual Memory Organization 

Virtual addresses are mapped into real addresses by the 
processor. The mapping mechanism can be modeled as an 
array of real page numbers indexed by virtual page 
numbers. The array can have holes so that an associative 
or hashed implementation of the map is allowed; the 
actual implementation is not specified by the architecture 
and differs among the various implementations of the 
Mesa processor. 

Instructions are provided to enable a program (usually the 
operating system) to examine and modify the virtual-to­
real mapping. The processor maintains "write-protected," 
"dirty," and "referenced" flags for each mapped virtual 
page which can also be examined and modified by the 
program. 

The address translation process is identical for all memory 
accesses, whether they originate from the processor or 
from I/O devices. There is no way to bypass the mapping 
and directly reference a main memory location using a real 
address. Any reference to a virtual page which has no 
associated real page (page fault), or an attempt to store into 
a write-protected page (writeprotect faUlt) will cause the 
processor to initiate a process switch (as described below). 
The abstraction of faults is that they occur between 
instructions so that the processor state at the time of the 
fault is well defined. In order to honor this abstraction. 
each instruction must avoid all changes to processor state 
registers (including the evaluation stack) and main 
memory until the possibility of faults has passed, or such 
changes must be undone in the event of a fault. 

Virtual memory is addressed by either long (two word) 
pointers containing a full virtual address or by short (one 
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Figure 1. Virtual Memory Structure 

word) pointers containing an offset from an implicit 64K 
word aligned base address. There are several uses of short 
pointers defined by the architecture: 

- The first 64K words of virtual memory are reserved 
for booting data and communication with I/O 
devices. Virtual addresses known to be in this range 
are passed to 110 devices as short pointers with an 
implicit base of zero. 

- The second 64K of virtual memory contains data 
structures relating to processes. Pointers to data 
structures in this area are stored as short pointers 
with an implicit base of 64K. 
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- Any other 64K region of virtual memory can be a 
main data space (MDS). Each process executes 
within some MDS in which its module and 
procedure variables are stored; these variables can 
be referenced by short pointers using as an implicit 
base the value stored in the processor's MDS 

register. 

Code may be placed anywhere in virtual memory. 
although in general it is not located within any of the three 
regions mentioned above. A code segment contains read 
only instructions and constants for the procedures that 
comprise a Mesa module; it is never modified during 
normal execution and is usually write-protected. A code 
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Figure 2. Local and Global Frames and Code Segments 

segment is relocatable without modification; no 
information in a code segment depends on its location in 
virtual memory. 

'The data associated with a Mesa program is allocated in a 
main data space in the form of local and global frames. A 
global frame contains the data common to all procedures 
in the module, i.e. declared outside the scope of any 
procedure. The global frame is allocated when a module is 
loaded, and freed when the module is destroyed. A local 
frame contains data declared within a procedure; it is 
allocated when the procedure is called and freed when it 
returns. 

Any region of the virtual memory, including any main 
data space, can contain additional dynamically allocated 
user data; it is managed by the programmer and 
referenced indirectly using long or short pointers. An MDS 

also contains a few system data structures used in the 
implementation of control transfers (discussed below). The 
overall structure of virtual memory is shown in Figure 1. 

Besides enabling standard high level language features 
such as recursive procedures, multiple module instances, 
coroutines, and multiple processes, the representation of a 
program as local data, global data, and code segment tends 
to increase locality of reference; this is important in a 
paged virtual memory environment 

Contexts 

In addition to a program's variables, there is a small 
amount of linkage and control information in each frame. 
A local frame contains a short pointer to the associated 
global frame and a short pointer to the local frame of its 
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caller (the return link). A local frame also holds the code 
segment relative program counter for a procedure whose 
execution has been suspended (by preemption or by a call 
to another procedure). Each global frame contains a long 
pointer to the code segment of the module. A global frame 
optionally is preceded by an area called the link space, 
where links to procedures and variables in other modules 
are stored. This structure is shown in Figure 2. 

To speed access to code and data, the processor contains 
registers which hold the local and global frame addresses 
(LF and GF), and the code base and program counter (CB 

and pc) for the currently executing procedure; these are 
collectively called a context When a procedure is 
suspended, the single sixteen bit value which is the MDS 

relative pointer to its local frame is sufficient to reestablish 
this complete context by fetching GF and pc from the 
local frame and CB from the global frame. The 
management of these registers during context switches is 
discussed in the section on control transfers below. 

The Mesa Instruction Set 

As mentioned above, a primary goal of the Mesa 
architecture is compact representation of programs. The 
general idea is to introduce special mechanisms into the 
instruction set so that the most frequent operations can be 
represented in a minimum number of bytes. See [5] for a 
description of how the instruction set is tuned to 
accomplish this goal. Below we enumerate a representative 
sample of the instruction set 

Many functions are implemented with a family of 
instructions with the most common forms being a single 



byte. In the descriptions of instructions below, operand 
bytes in the code stream are represented by a and f3; af3 
represents two bytes that are taken together a~ a sixteen bit 
quantity. The suffix n on an opcode mnemonic represents 
a group of instructions with n standing for small integers, 
e.g. Lin represents LlO, Ll1, Ll2, etc. A trailing B in an 
opcode indicates a following operand byte (a); W 
indicates a word (af3); P indicates that the operand byte is 
a pair of four bit quantities, a.left and a.right. 

Opera/ions' on /he stack. These instructions obtain 
arguments from and return results to the evaluation stack. 
Although elements in the stack are sixteen bits, some 
instructions treat two elements as single thilty-two bit 
quantities. Numbers are represented in two's complement 

DIS Discard the top element of the stack 
(decrement the stack pointer). 

REC Recover the previous top of stack 
(increment the stack pointer). 

EXCH 

DEXCH 

DUP 

DDUP 

DBL 

Exchange tile top two elements of the 
stack. 

Exchange fue top two doubleword 
elements of fue stack. 

Duplicate fue top element of fue stack. 

Duplicate the top doubleword element of 
fue stack. 

Double the top of stack (multiply by 2). 

unary operations: NEG, INC, DEC, etc. 

logical operations: lOR, AND, XOR. 

arithmetic: ADD, SUB, MUL. 

doubleword arithmetic: DADO, DSUB. 

Divide and other infrequent operations are relegated to a 
multibyte escape opcade fuat extends the instruction set 
beyond 256 instructions. 

Simple Load and Store instructions. These instructions 
move data between fue evaluation stack and local or global 
variables. 

LIn Load Immediate n. 

LIB a Load Immediate Byte. 

L1waf3 Load Immediate Word. 

LLn Load Local n; load the word at offset n 
from LF. 

LLB a Load Local Byte; load the word at offset a 
from LF. 

SLn Store Local n. 

SLB a Store Local Byte. 
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PLn 

LGn 

LGB a 

SGB a 

LLKB a 

Put Local n; equivaknt to SLn REC, i.e. 
store and leave the value on the stack. 

Load Global n; load the word at offset n 
from GF. 

Load Global B'yte; load the word at offset 
a from GF. 

Store Global Byte. 

Load Link; load a word at offset a in fue 
link space. 

There are also versions of these instructions fuat load 
doubleword quantities. Note that there are no three-byte 
versions of these loads and stores and no one-byte Store 
Global instructions. These do not occur frequently enough 
to warrant inclusion in the instruction set. 

Jumps. All jump distances are measured in bytes relative tCl 
fue beginning of the jump instruction; they are specified as 
signed eight or sixteen bit numbers. 

In short positive jumps. 

JB a jump -128 to + 127 bytes. 

JWaf3 long positive or negative jumps. 

JLB a compare (unsigned) top two elements of 
stack and jump if less; also JLEB, JEB, 
JGB, JGEB and unsigned versions. 

JEBB a f3 if top of stack is equal to to a, jump 
distance.~n f3; also JNBB. 

JZB a 

JEP a 

JIB af3 

jump if top of stack is zero; also JNZB. 

if top of stack is equal to a.left, jump 
distance in a.right; also JNEP. 

at offset af3 in fue code segment find a 
table of eight bit distances to be indexed 
by fue top of stack; also JIW with a table 
of sixteen bit distances. 

Read and Write through pointers. These instructions read 
and write data through pointers on fue stack or stored in 
local variables. 

Rn Read furough pointer on stack plus small 
offset. 

RB a Read through pointer on stack plus offset 
a. 

WB a Write through pointer on stack plus offset 
a. 

RLIP a 

WLlPa 

Read Local Indirect; use pointer in local 
variable a.left; add offset a.right. 

Write Local Indirect. 



RnF ex 

RF ex fJ 

WF ex fJ 

RKIB ex 

Read Field using pointer on the stack plus 
n; ex contains starting bit and bit count as 
four bit quantities. 

Read Field using pointer on the stack plus 
ex; fJ contains starting bit and bit count as 
four bit quantities. 

Write Field. 

Read Link Indirect; use the word at offset 
ex in the link space as a pointer. 

There are also versions of these instructions that take long 
pointers and versions that read or write doubleword 
quantities. 

Control Transfers. These instructions handle procedure call 
and return. Local calls (in the same module) specify the 
entry point number of the destination procedure; external 
calls (to another module) specify an index of a contro/link 
in the module's link space (see the section on Control 
Transfers). 

LFCn 

LFCB ex 

EFCn 

EFCB ex 

SFC 

RET 

BRK 

Local Function Call using entry point n. 

Local Function Call using entry point 0:. 

External Function Call using control link 
n. 

External Function Call Byte using control 
link ex. 

Stack Function Call: use control link from 
the stack. 

Return. XFER using the return link in the 
local frame as the destination; free the 
frame. 

Breakpoint; a distinguished one-byte 
instruction that causes a trap. 

Miscellaneous. These instructions are used to generate and 
manipulate pointer values. 

LAn Local Address n; put the address of local 
variable n on the stack. 

LAB 0: Local Address Byte; put the address of 
local variable 0: on the stack. 

LAW o:fJ Local Address Word; put the address of 
local variable o:fJ on the stack. 

GAn Global Address n; put the address of 
global variable n on the stack. 

GAB 0: Global Address Byte; put the address of 
global variable 0: on the stack. 

GAWexfJ Global Address Word; put the address of 
global variable o:fJ on the stack. 
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LP Lengthen Pointer; convert the short 
pointer on the stack to a long pointer by 
adding MDS; includes a check for invalid 
pointers. 

An example. Consider the program fragment below. The 
statement c +- a[p.f + i] means "call procedure a, passing 
the sum of i and field f of the record pointed to by local 
variable p; store the result in global variable c." The 
statement RETURN [a[i].c] means "return as the value of 
the procedure a field c of the ith record of global array 
a." 

Prog: PROGRAM = 
BEGIN 

c: CHARACTER; 
a: ARRA Y INTEGER OF RECORD [ 

b: BOOLEAN, 
c: CHARACTER, 
s: INTEGER[O .. 12S), 
W: CARDINAL]; 

P: PROCEDURE = 
BEGIN 
i: INTEGER = 2; 
p: POINTER TO RECORD [ ••• , f: INTEGER]; 
... , 
c +- a[p.f + i]; 
. .. , 
END; 

a: PROCEDURE [i: INTEGER] 
RETURNS [CHARACTER] = 

BEGIN 
RETURN [a[i].c]; 
END; 

END. 

Below we have shown the code generated for this program 
fragment in a generalized Mesa instruction set, and then in 
the current optimized version of the instruction set. 

Source 

p_f 

i 
p_f + i 
a[ .. ] 
n+-

a: 

:(:J.c 
RETURN 

Mesa/Gen 

LL p 
R f 
LI 
ADD 
LFC q 
SG n 

11 Code Bytes 
6 Instructions 

SL 
REC 
DBL 
GAB a 
ADD 
RF 0,(1,S) 
RET 

11 Code Bytes 
7 Instructions 

Mesa/Ogt 

RLiP (p, f) 

Lli 
ADD 
LFCq 
SG n 

7 Code Bytes 
5 Instructions 

PLi 

DBL 
GAa 
ADD 
ROF (1,S) 
RET 

7 Code Bytes 
6 Instructions 



Although this is admittedly a contrived example. it cannot 
be called pathological. and it does iIIustrate quite well 
several of the ways the Mesa instruction set achieves code 
size reduction. In particular: 

- Use of the evaluation Slack. The stack is the implicit 
destination or source for load and store operations; 
instructions can be smaller because they need not 
specify all operand locations. Since the stack is also 
used to pass parameters. no extra instructions are 

, needed to set up for the procedure call. Most 
statements and expressions are quite simple so that 
the added generality of a general register 
architecture is a liability rather than an asset 

- Control transfer primitive. By using a single. 
standard calling convention with built-in storage 
allocation. almost all of the overhead associated 
with a call is eliminated. There is minimal register 
saving and restoring. 

- Common operations are single instructions. 
Operations that occur frequently are encoded in 
single instructions. Reading a word from a record 
given a pointer to the record in a local variable is a 
good example (RLI P). There are similar 
instructions for storing values through pointers. 
There are instructions that deal with partial word 
quantities or that include runtime as well as 
compile time offsets. Procedure calls are also given 
single instructions. 

- Frequently referenced variables are stored together. 
Most operands are addressed with small offsets 
from local or global frame pointers or from variable 
pointers stored in the local or global frame. Using 
small offsets means that instructions can be smaller 
because fewer bits are needed to record the offset 
The compiler assists by assigning variable locations 
based on static frequency so that the smallest offsets 
occur most often. 

These last two points are the guiding principles of the 
Mesa instruction set If an operation. even a complex one 
involving indirection and indexing. occurs frequently in 
"real" programs. then it should be a single instruction or 
family of instructions. For instruction families with 
compile time constant operands such as offsets. assigning 
operand values by frequency increases the payoff of 
merging small operand values into the opcode or packing 
multiple values into a single operand byte. There are a 
small number of cases in which an infrequently used 
function is provided as an"instruction because it is required 
for technical reasons or for efficiency (e.g. disable 
interrupts or block transfer). 
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Control Transfers 

The Mesa architecture supports several types of transfers 
of control, including procedure call and return. nested 
procedure calls, coroutine transfers. traps and process 
switches. using a single primitive called XFER [1]. In its 
simplest form. XFER is supplied with a destination control 
link in the form of a pointer to a local frame; x FER then 
establishes the context associated with that frame by 
loading the processor state registers: the PC and global 
frame pointer GF are obtained from the local frame. and 
the code base CB is obtained from the global frame. Most 
control transfer instructions perform some initial setup 
before invoking the XFER primitive; some specify action to 
be taken after the XFER. If after the XFER we add code to 
free the source frame. we have the mechanism for 
performing a procedure return .. On the other hand. if we 
add code before the XFER to save the current context (only 
the PC). we have the basic mechanism to implement a 
coroutine transfer between any two existing contexts. 

A process switch is little more than a coroutine transfer. 
except that it may be preemptive. in which case the 
evaluation stack must be saved and restored on each side 
of the XFER. In the Mesa architecture. we have also added 
the ability to change the main data space on a process 
switch (see the next section). 

The procedure call is the most interesting form of control 
transfer in any architecture; it is complicated by the fact 
that the destination context does not yet exist, and must be 
created out of whole cloth. We represent the context of a 
not-yet-executing procedure by a control link called a 
procedure descriptor. It must contain enough information 
to derive all of the following: 

The global frame pointer of the module containing 
the procedure. 

The address of the code segment of the module. 

The starting PC of the procedure within the code 
segment, and 

The size of the frame to allocate for the procedure's 
local variables. 

Note that in the case of a local call within the current 
module. only" the last two items are needed; the first two 
remain unchanged. 

It is desirable to pack all of this information into a single 
word, and at the same time make room for a tag bit to 
distinguish between local frames and procedure 
descriptors. so the two can be used interchangeably. Then. 
at the Mesa source level. a program need not concern itself 
with whether it is calling a procedure or a coroutine. 
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Figure 3. Procedure Calls 

The obvious representation of a procedure descriptor 
would include the global frame address (sixteen bits), the 
code segment address (thirty-two bits), the starting PC 

(sixteen bits), and the local frame size (sixteen bits), for a 
total of eighty bits. We use a combination of indirection, 
auxiliary tables. and imposed restrictions to reduce this to 
the required fifteen bits, leaving one bit for the 
frame/procedure tag (refer to Figure 3). 

We eliminate the code segment address by noticing that it 
is available in the global frame of the destination module, 
at the cost of a double word fetch. 

We replace the PC and frame size by a small (five bit) 
entry point index into a table at the beginning of each code 
segment containing these values for each procedure. This 
costs another double word fetch, and limits the number of 
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procedures per module to a maximum of thirty-two. (By 
an encoding trick, we will increase this to 128 later.) 

We replace the global frame pointer by a ten bit index into 
an MDs-unique structure called the global frame table 
(GFT); it contains a global frame pointer for each module 
in the main data space. This costs one additional memory 
reference per XFER and limits the number of modules in 
an MDS to 1024 and the number of procedures in an MDS 
to 32,768. 

We obtain our tag bit by aligning local frames to at least 
even addresses; the low order bit of all procedure 
descriptors is one. 

To increase the maximum number of procedures per 
module, we first free up two bits in each entry of the 
global frame table by aligning all global frames on quad 



word boundaries. We use these two bits to indicate that 
the entry point index should be increased by 0, 32, 64, or 
96 before it is used to index the code segment entry vector. 
Of course, this requires multiple entries in the global 
frame table for modules with more than thirty-two 
procedures. 

SO, XFER'S job in the case of a procedure call is 
conceptually the same as a simple frame transfer, except 
that it must pick apart the procedure descriptor and 
reference all the auxiliary data structures created above. It 
also' needs a mechanism for allocating a new local frame, 
given its size. 

As mentioned above, local frames are allocated from a 
heap rather than a stack, so that a pool of available frames 
can be shared among several processes executing in the 
same MOS. We organize this pool as an array of lists of 
frames of the most frequently used sizes; each list contains 
frames of only one size. Rather than actual frame sizes, the 
code segment entry vector contains frame size indexes into 
this array, called the allocation vector, or AV (see Figure 
3). 

Assuming that a frame is present on the appropriate list, it 
costs three memory references to remove the frame from 
the list and update the list head. This scheme requires that 
the frame's frame size index be kept in its overhead words, 
so that it can be returned to the proper list; it therefore 
requires four memory references to free a frame. Again we 
take advantage of the fact that frames are aligned to make 
use of the low order bits of the list pointers as a tag to 
indicate an empty list There is also a facility for chaining a 
list to a larger frame size list 

In the (rare) event that no frame of the required size (or 
larger) is available, a trap to software is generated; it may 
resume the operation after supplying more frame storage. 
Of course, the frequency of traps depends on the initial 
allocation of frames of each size, as well as the calling 
patterns of the application; this is determined by the 
obvious static and dynamic analysis of frame usage. 

Calling a nested procedure involves additional complexity 
because the new context must be able to access the local 
variables of the lexically enclosing procedure. The 
semantics of procedure variables in the Mesa language 
dictate that the caller of a nested procedure cannot be 
aware of its context or depth of nesting; all of the 
complexity must be handled by the called procedure. The 
implementation of this is beyond the scope of this paper. 

Concurrent Processes 

The Mesa architecture implements concurrent processes as 
defined by the Mesa programming language for 
controlling the execution of multiple processes and 
guaranteeing mutual exclusion [2]. 
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The process implementation is based on queues of small 
objects called Process State Blocks (P,SBS), each 
representing a single process. When a process is not 
mnning, its PSB records the st.1te associated with the 
process, inclMing the process's MOS and the local frame it 
was last executing. If the process was preempted, its 
evaluation stack is also saved in an auxiliary data structure; 
the evaluation stack is known to be empty when a process 
stops running voluntarily (by waiting on a condition or 
blocking on a monitor). The PSB also records the process's 
priority and a few flag bits. 

When a process is running, its state is contained in the 
evaluation stack and in the processor registers that hold 
pointers to the current local and global frames, code 
segment and MOS. An MOS may be shared by more than 
one process or may be restricted to a single process. All of 
these processor registers are modified when a process 
switch takes place. 

Each PSB is a member of exactly one process queue. 
There is one queue for each monitor lock, condition 
variable, and fault handler in the system. A process that is 
not blocked on a monitor, waiting on a condition variable, 
or faulted (e.g. suspended by a page fault) is on the ready 
queue and is available for execution by the processor. The 
process at the head of the ready queue is the one currently 
being executed. 

The primary effect of the process instructions is to move 
PSBS back and forth between the ready queue and a 
monitor or condition queue. A process moves from the 
ready to a monitor queue when it attempts to enter a 
locked monitor; it moves from the monitor queue to the 
ready queue when the monitor is unlocked (by some other 
process). Similarly, a process moves from the ready queue 
to a condition queue when it waits on a condition variable, 
and it moves back to the ready queue when the condition 
variable is notified, or when the process has timed out 
The instruction set includes both notify and broadcast 
instructions, the latter having the effect of moving all 
processes waiting on a condition variable to the ready 
queue. 

Each time a process is requeued, the scheduler is invoked; 
it saves the state of the cllrrent process in the process's 
PSB, loads the state of the highest priority ready process, 
and continues execution. To simplify the task of choosing 
the highest priority task from a queue, all queues are kept 
sorted by priority. 

In addition to normal interaction with monitors and 
condition variables, certain other conditions result in 
process switches. Faults (e.g. page faults or write-protect 
faults) cause the current process to be moved to a fault 
queue (specific to the type of fault); a condition variable 
associated with the fault is then notified. An interrupt 



(from an lID device) causes one of a set of preassigned 
condition variables to be notified. Finally, a timeout causes 
a waiting process to be moved to the ready queue, even 
though the condition variable on which it was waiting has 
not been notified by another process. 

Conclusions 

The Mesa architecture accomplishes its goals of supporting 
the Mesa programming system and allowing significant 
code size reduction. Key to this success is that the 
architecture has evolved in conjunction with the language 
and the operating system, and that the hardware 
architecture has been driven by the software architecture, 
rather than the other way around. 

The Mesa architecture has been implemented on several 
machines ranging from the Alto [6] to the Dorado [3], and 
is the basis of the Xerox 8000 series products and the 
Xerox 5700 electronic printing system. The ability to 
transport almost all Mesa software (i.e. all except unusual 
110 device drivers) among these machines while retaining 
the advantages of the semantic match between the 
language and the architecture has been invaluable. The 
code size reduction over conventional architectures (which 
averages about a factor of two) has allowed considerable 
shoehorning of software function into relatively small 
machines. 
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