
To

From

I-Ial J-lazar

P. l-Ieinrich, \V. Shultz "1' ~~

D·,'..,
\.ii,""'"

Decernbe!: 17;, 187·J

Lcc<.Iti::m A3-17/Ext. 1571

Subject Selection' of a System
Progrrunming Language for

Organization ITGIPD SRAP - \VS27

~/J Ci~1-~1 OIS
I ~L 4 ':. ... 1-.-1/\.

Introduction

Although there is nO,t much question that 1ve need a higher level Systems
.Programming Language for OIS softy/are development, let us restate the
chief reasons for this need:

1. It permits more modular, machine independent impler:nenta-.
tion of soft\vare systems.

2. It reduces development and maintenal1:ce costs for large
soft\vare projects (as opposed to assembly language develop- .

. ment techniques).

3~ It makes it easier for a total system (both hard\vare and
sofhvare) to gro\v and evolve over time.

Given,. then, that "\ve 'want to use a higher leve~ language for development
of OIS soft\vare, \ve have several choices:

1." Vie can invent a new'language.

2. We can adopt an industry· standard.

3. \Ve can adopt or 'adapt an existing Xerox languag.e.

\Ve rejected alternative #1- -the -;vorld does not need another systems
language.· \Ve really can't select alternative #2--there really is no
industry standard for systems \vork, although Algol and PLll deriyatives
are both common and successful. \Ve choose instead alternative #3.. Of
the possible Xerox progran11uing languages, only three seem to· be
appropriate candidates for OIS softvv'are development. These are:

1. SPL. - Struch,lred Programming Language' developed by
DSD in El Segundo.

Hal Lazar -2- Decernber 17~ ,1974'

2., BCPL - Basic CPL, used at PARe for Nqva and some Alto'
,york.

3. 1\1PL - lVIodular ProgrammingLanguage~ developed a~ PARCo
(also called IVlesa).

We rejected BCPL as, being too basic and too pri.rnitive. , {Fo:r; ex~mple~
, ithas no data structure except l6-bit integers. }, 'This left only SPL and:
MFL.

For the pas't several months, as time permitted." JilnFrandeen and-the'
, authors have looked into the relative advantages of SPL' and MPL. ' \Ve
have'traveled to PARC~ and Jim Mitchell has spent time \vith us in

.El Segundo. " \Ve have looked into SPL\vork here in El Segu,ndo. ,\Ve have
"also come to understand the nee'ds and system architecture' oiOIS better'
,than before.. From this study' \ve have c,ome to a conclusion ,regarding
: OIS sofbvare development .. ' As ,noted belo\y-, there \vould becompany-v/ide
~dvantages at standardizing on a single Systems. Programming Language'
tor all Xerox'softw'are developnlent (for computers and 'copiers), but \Ve

mak~ no. recommendation in. this regard. ,We do discuss the implications
of this la.ter, ho\vever. " - '

Conclusion

ille have concluded· that the best language for dey-eloping all OIS soft,y~reis
'MPL--the'lVIodular Programming Language developed at PARC. A ,detailed'
analysis of the reasons for this decision are presented belovr. Also" it ' '
preliminary action plan to implement this decis~on is presented- later in"
this paper." -, - .. '. " , '" - ' '" , '

A d'etailed co~p~ri~on of SPLand MPL is give~ belo1v., In fact" SPL' '
'lv-QuId be a very adequate-language for OIS sofhvare development, but
l':1PL is a better language, m our opinion. This made the evaluation
more difficult. 'But \ve \vere. fortunate that Xerox had bNO languages that
\vere \vorthy of consideration, since this helps insure that the one OIS
langUage can benefit from the experience of both.

\Ve no\v recommend that other people in the company \vho are interested .
:in Systemsp.rogrmnmirig Langu~ges look at MPL and at the iinplicalions
of standardization.

-----.~ :. ~~ :'::11"

" 1
\. "

~ .-.-.- -. ":~:.-;::"::.'::---

(~~:;:;.ti:y '<..1' J:,:;ttu:-e
:~,:~~,-,I-:;;:...:z:.: .. -,.
)'\(f~':r\.!~\t.c fo:' OIS ~y~itf:l:1
GClrt,,·;.li~ (h ... ,dopm~nt

~--

('(l~\P,ltjtJn~ty with OtS
Pr"t::cs~or Al'chitccturc

. r--'
Ff.';\turcs prf!scnt but not
r.,:«u i.red r,)r OiS ---

. Eil$Y to Jearn n!.ld to program

En:.y to baUd and debug complex
systems

Compiler opel'ati'nf: cfficiently
on c]'·\.'C!opll:cnt llluchi:1e
(Sigal:!)

Pl.'ocuc£.·s efficient object
code (for OIS) .
'Permits s.rn~bolic. p:ld:cd data
strl!ctur~s

Penult c,,:p1icit contJ'ol of
re:~jstcrs· ;:mtl Lasic hart.!wOlt~e.
in!>tructiom'

Optiollal lim its nncl trace. Ctlcbu~)

Ponnlt modular p:'"or.:rOlm
constMlction :lnd debugging , . .

Permit open Olnd closed
subl.robram usc

f'crmit user control of
synchronou:-l errOr processing

Permit user control ot
nsynchronous cvents (for 1/0 end
Dction or inter-task communicu-
tion}

j\J~chine indcpenc..!i!nce

"

Structured procramming rnndc
eash:r

I/O facilities (for user)

:

St'U-documenting

.?' :. Dcsi .. nblc::c!v:lnc~u (catu:'e:l
. (~cc nttadlcu mt."mo by
J. Fr::mdcen)

Basic c-xtcnsibilily of compiler
and J:Ul;;l\ag~

,

I

.

.-

II - ,)-

Y~5

/~ucquate

!)PL

Flo3.tir.~ point (not yet
implernc:ntctl)

Very l:ood

narcly :l.(leqtl~le
(w('ak clebuggin{! in
current version)

n~a:>on:.tble (not
ereOlt• but could be
improved)

Too carly to dctcrmim.·

Yes

BY:l:';;C:ll!Jly
ll~''''d p!""o{'"c,Jll~es :

:,0: no

lc!:t (Oldcquate)

Yea (by \!!>e oC
'~co:Jlpile ti.mc··
vuriOllJ!cs}

:;':ol yet. Plans .to
ndd with 0:\ slOltcmcnt

~ot yct. ~light be nlJle
to' :lcd with part of
O~ featu .. c.

Compiler not complctc-
ly independent; 0l1so,
I/O calls arc strictly
dependent on C P- V;
source I;ollitl be i(user
is carerul

.l\c!cqu::lte: good block
structured Ianp1J.gc

,At source le .. 'cl. but
Eo!:" Cp"V-typc I/O
only

Good

None

Co:npi!t.:c- code is vcry
l'Tlarg in;).l. Little
e:\.7cri~nce on la.nguage
itself,

-

I ;\1 PI_

I Yes

LX(:clJl:nt (Cki':nlcd t,,)
lJa~c n:;:i::;tc.-r ~mlf
I'c~'ut':;h'c u~e)

~onf!

I
I \'ery ~ood

J:xl'<:lh·nt (el'lta t}Vill~:
,lila l~n'~l:n.!tc. .. t· ('jICC:~~-
ing l'ow!,ined wi'tft
comp!ete debug ~y:)t(:m)

EXPl:C:lcti to IJt: rC .. ~L$Ol1-

:llJlp.. Ola), he !-ilow
due to lu(:k of hOlse
rcgisll'l',s)

Too ei.dy t() dctt:rnaint.:

Ycs

By in-lim~ :l~~a'n~lJly
level t·oll!.!

Yes,

Yes (In-Her, ht,,';lU.sC

of dOlt;. typin.! :.ml
t'lJe'-'bli~)

~o (on!y c1osc.'d)

l'sc or SIC;~Al. fc:;tturc

VOt'iation of SJG~J'L
fCOllurc-

EOl:->ier to be rn m'hi:tc
ir:c.lepcndp.nt sinc'C' data
typin~ ~pccHics \'a!t!~

r:tngc r.ot lJit rallf!c

I Hetter. sEnee .norc
C!i::>ciplincd d:lta typins:!

ny u:-;c of special
built-in ?:-occdures

-

lletter, OlgOlin due to
data ~yping

Co-rot:~ir.e and
1"ccur~io:l

Co:n?i!er codin~
p:-act~cc~ arc excellent
L::t:1!,rua;e i:J v~ry
g~ner:ll.

17 ... ~

.. =-::_-------.,-'

~)
... ;...~
\ .. :j-.~ .
:~. .::,i

.~:::

!.:.. .. :~

IIal Lazar -4-_ December 1-7~ 1974

- Other C-qnsiderations

Language Iv1atltrity: \Ve are concerned about 1anb'l.lage maturity (or actual
use) because this determines its cl1:rrent stability_ and quality. No language
is bornperfect-~it must gro\v and develop ~d mature _over a period of time •

. -SPL, is derived from PL/l ,vith many changes., -mostly specified by - _
Mike I(uppin, 'with inputs from others (including Evergreen Associates).

-The_ first version is_ just no\v bein-g completed. Thus" there is little real
experience ,vith using SPL for systems -\vork.- The only significant program
to_date ,vritten in SPL is the- compiler itself., -, and it is not -a very good
implementation.

- . -

MPL version A\vas derived from QSPL (on the 940., by Lainp~qn and De.Utsch)~
all SPL at Bee (by L-anipson and l\1itchell» . BLISS (Cal.-'negie-Mellon) and -
"'L~O (SRI). lVIPh version B (the current version) \vas derived-from MPL-A:
as modified by ideas from EeL (at -Harvard., by \Vegbreit)" Simula~7"
Pascal,) a;nd minor Ll1fluence from BCPL .. - It has -been used for several
months by many people atPARC,and ,vill be used by several other projects·
at PARe ID_1975. Therefore., althoughnotasclear.a derivation fro:rp. as -major I

-a language as PL/l" it is felt that the language is \vell-tested by a group of. ___ --.
very sophisticated system prograt--nmers- and is therefore currently more --

. -mature than SPL. .

TL-rneliness: -Basically" ,vili thelangU_age b~ r-eady ,vhen ,~~ need. it for
-OIS~ \Ve\vill not begin coding for ~IS' bperat_ing soft\varebefore early-
-1976 .. although ,ve need to know_\'!hat the language isit';"-19-75 to permit
-sofb.vare specifications to be developed and -to permit -hardware/ sofnvare ._
optimization to begin •. Also., OIS softvrare_ development tools· can be start~d
by mid-1975" if funds pennit.

SPLv.dll be ava~able ina form usable .for this 1vork by 4Q75.· -Some
features not in the current language (such as the ON statement) need to be

- _adc1~d~_ and the support system needs to-be built up -extensively. -A higher
efficiency production version _~vould probably not be available before 4Q76 •.

IVIPL vrill be usable at PARe in early 1975, and -could be conyerted to
Sigma 7 by 4Q75 for development \vork.. A higher efficiency product~on _.
version could probably be ready _on Sigma by2Q:76. ,'_. - ---

Support Soft\vare: The -co~pilcris only one elexnent of a large soft\vare.
development system.. vVithout a good total" system" the compiler is not
very valuable • -

- .

.'0,; ._

·SPL essentially has no support system of its Ol,yn. It uses the CP- ,\T loader.,
debugger, source editor" file editor" and file management. Thi~ results
in.rather poor symbolic debugging and updating.

IVIPL has a complete support system" \vritten in TvlPL" includ:ing:

o A loader (link editor)
o A file editor
o A source editor
o A debugger

l'/IPLuses the lVIAXC file management services for basic file support" but.
could be converted to CP-V.

Under CP-V" either MPL or SPL programs could be" created and debugged
interactively. "

. . .

Person.l1.e~ \Ve assume the responsibility for the final development of
the OIS System Progranlming Language \vould rest ill El Segundo under
the OIS budget center. There are three people on th'e current SPL project
in DSD. There is one person in OIS development (Jim Frandeen) \vho
could \vork on either SPL or MPL. There are about three people at J>AR.C
on lVIPL dev..eIopment" but they could do little more than consult vJithus
in 1975.

Documentation: . A compiler is no good 1vithout adequate documentation.

SPL \viII have a preliminary reference lrlanual out in January., 19.75.
There is ~o user guide or specific ·support documentati.on.

1\'IPL has very brief language and support sofb,yare reference documentation
available no\v. Vie \vould have to ,york 'with the people at PARe to help
increase the availability. of user doc~lmentation in early 1975. ..

Cost: A precise co~tL'1.g has not be·en performed., due to the uncertainties'
in OIS requirements a.l1d the schedules and manpo\ver involved. An action
item belo\v calls for a lnore detailed pl?-n- in this regard. Ho\yever~ our
estimates are that there is no significant difference in the final cost to
OIS, for these t\VO alternatives. That is" although SPL is already on
Sigma 7 under CP- V> it definitely :requires some extensions, some more
support sofhvare~ and significant performa.llce re\vork:. MPL is a good
implementatio'~" but must be converted fronl IVI.t\XC to Signia. 7. Both

. require a ne'\v object code generation module, to prepC1re output for DIS
hardvra;r.e. ::-.;--;. . -. ".--::" .. ::-~--:- : -:-:::-7"""~::"::

.. :.: -::.: ...
0.. , ~~ .. : .. '". ..

:i
; .

.,0: :

. -_ 0.-. -: 4.~._.

-q-,

IV,(PL Development, for DIS

The required modifications to l'vIPS for. 01S fall into t\VO categories~
conversion to Signla!CP-V and enhancement for 01S. (The conversion
toSigma!CP-V is to permit development \vor~ unde~ ~p'-y.)

Conversion;' "

1. The I/O interfac'B".pe·Lweeti·-lvIPL- ana"iIl~operating system' must'.
: be converted to,.cP~:l,c,e;.~~.i;c .. ~··0~11~~. ", .'~.;. ,:,.' ~

: '2. The object code generation phase must be changed ,to produce'
_ Sigma-object code and special provision mustbe mad.e for.
",4ynamic reference to. variable data. ~:~. . .

3. An option to allow static procedures (no recursion) should be
implemented to permit more efficie~t code to be generated
for. Sigma •

. Enhancement:

,1. "An' obj ect code generation phas.e \vill, be '\vritten· for theC~IS
-' p~ocessor. . This ,vill'be an interactive process "\vhich

involves testing thao1)jecLc.ode;., ,reaejiI:£.!1g the instruction
set" -Cha.llging the compiler and microcode,' then testing again.

2. ' Automatic instrum enta tio:n . f'or program· perform anc e . analysis ~

"

3. . Development of other language related developmerit tools
such as progrG:l;m anc31yzerAhat checks for adherence to
standards; also simulators and utilitie~.

4.' In,,~estigation of other 'enhancement? in. the area of Qrs' .
contr.ol program/IVIPL interface.,(for I/O and interrupts).

~. .

, ·'·"MPS takes ~dvantage of the base register architecture of IV[AXC and ALTO'
to allocate and access dynamically local variables. "The absence of base

. registers on Sigma \viII require an object code nlodification to L~dex
registers before they 'are 'used to reference local dynamic variables. ' ' .

. ' .'.

._'i' -
I :r

Action Plan

An OIS/l\'IPL development team of t\VO to three people must be identified
and brought. together by the middle of January. Initially, the tea.m v.till

. spend time at Pi\RC familiarizing themselves \vith IVIPL and support
sofhvare, and \vith other related materials •

. Th~ Sigma conversion effort should begin no later than lVIarch 1" 1975.
Thereafter, the first order of business for the temn is a development
plan for the enhancement of 1\1PL for DIS. This development plan '\vill
detail features, schedule and mnnpo\ver required •. By that time, OIS
architecture vrill be ·firm and control sofhvare \vill be better understood.

1 r:

It is e;.pected that theOIS/IVIPL team '.vil1 help the ~VIPL staff at PARe
produce user-level reference documentation during the first half of 1975 •.

A ·preliminary schedule goal is to have lVIPL operating on Sigma under
CP-V by 4Q75 for the development of other OIS development softvlare~

As part of the support plan" an alternative to the Sigma development vlork
should be eXplor·ed;. namely, to investigate using l\IPL on l\LTO for some
early development and learning. (The PAR·C lVIPL staff is currently
converting l\1PL to ALTO.) .

.
Open Issues

There are several issues w'hich remain open follo\ving our recommendation
of 1\1PL for OIS develop~erit.

o OIS IIard"\vare Architecture

Although a preliminary version is proposed., th~ hard\vare
architecture is not yet fixed. A radical change in hard\vare
design could impact the re'comnlendation ··we h~ve made. . To
a great extent, the har~hvare design being proposed by the
architecture team has been influenced by and oriented tovrard
the MPL language, because of the i!lteraction between Alto
and l\1PL at PARC. The intention ,vas and is to produce an
optimal har.dware/ sofhvare product.

o Computer Division Higher Level ·Language

Can the computer Division uselVLPL? ShouJd SPL development
~.. be halted and joint developnlent of l'v1.PL started? \\'hat n8\V .- .

or revised computer products require, or can US?'. a.higher ___ . ___ .. _ ..
.. .-.,. -_ .. -.. -.-.-.--.:~

-"'/ ::".~ :.:-. .., .t ::.:: ' -.. <~:~. ::
'.. '".. : .. :

... - : .. :~.! ~ t3 "
~ ,

".,. : :1 ,.
~!

e. " .. _: _~'': .": " ... "_. ~ :: __ ".:-::-... : __ :::.:.::-:":"-:-_ .. ___ •

19

-8- Deccrnber 17 ~ 1 [

l~~ellangt1age? This question is significant ·because if joint
development does not occur .. additional funds ,vill have to be
generated in OIS to staff MPL. development.. -

o Standard~zation vs. the To',ver of Babel·

Can and should other products· or programs such as DPS,· .
PEqOS, RASCAL3 etc." use IVIPL? For PECOS III the .. -
ans\ver is ce~tainly yes.. All OIS products must use a common
language. It is p.ighly desirable to have a . companY-'lIVide . - _. _ .

. sta..l1dardhigher~le-~tel language· system-~ -. It avoi·ds :duplication,
. incr~ases the .pool of trained personhel, and focuses .our
efforts Lrt one direction, and it helps permit us to builq

. unified systems out of modulaX'~. stand alone products.

Attaclu"llent: mem.o by J. Frandeen on OIS/MPL

c: OIS Architecture Board
B. Beeson.
K.. Campbell
J .. Elkind
S. _ E.1ee
\v. I('lein
A. Kopito
B. Lampson
A.Lipton _
C. IVlartin-

. J. Mitchell·
R. Sp~rad ..
E. Vance

F{(..liil Jin Fr~nc1ccn

·
.~.... .

location

:", I) , ,~_,:' :. ~~ :'-

A 1-G 3/ B'x t . 1 5 It 1

. Subi~~t Rcentrancv, Recursion a!1c1
Coroutincs for OIS

Org:lnjla~ion DevelopJ:1.cnt Prograr:uning
CS-71l-7111

CO:lsic1crntion of Hcsa as the languuge used to' il':1plement' OIS
has ,led to discussion o~ the following languag~ features:
corOUtlnes, recursio~, and' reentrant procedures. Since
these features arc ilnplcP.1entcc1 in i·lesa hut not is SPL,' i_t is"
important to un<lerstilnd r10T;1 thc~/' arc used and \,,rhether or not
we need them for DIS.

REEN~Hj\L'jT PROCEDURES

A procedure
activation of

is said to be, reentrant if more than
the pr6cedure can exist at any one tim~.

one

Reentrancy is usually associated \-,ith P.1ultipf.ograrnPling and
task switching. Hultiprogranming is the usc of an operating
system to execute a number of tasks concurrently. A task is'
an activation of a progran. A progra~ is a collection of
one or more 'procedures. It is, important to distinguish
between a ~roccdure and a task. A procedure is,a module of
'executable code. A task is an activation of ~,procedure,
iricluding its context and local vari~)lcs. If a procedure
is reentrant, it can b8 shared by several tasJ:s. Consider
the follo;·.,ing r.1ultiprogramming cxc:!mplc .. ' The systcn I/O
supervisor is executing for task A. 'The I/O sup~rvlsor is
building an I/O contiol block for 'this task~ Task"A"is
interruptea because task B, ,-lhich has a ~ligher 'priority,
becomes ready to run. ,Task B invokes the I/O supcrvisor r
and it begins 'building an I/O control block for task B~
Note that .Ich.e I/O supervisor never finished building the °1 / 0
control bloc~ for task A; it Gust be ahle to cQntinue ~fuer6
it left off llhen task 1\ is reactivated. !-lith this C!xatlple,
we can understand,the requirements of a reentrant procedure:

1. The code ~ust not modify itself.

2. Varia!Jlcs' that arc loc(Jl to the procedure T:1tlst he
unique for cadl activation of the procedure
otherwise, a second activation of the ,procedure
,·:oulc1 destroy variables, from the previous
'activation.

C~j_"', .;- 7··j i 1
Pa.ge 2

For. the OIS sy st·em,
·to· be reentrant.

it \1ill be necessarv for so~e ,nrocedurcs
Without r8entr;nt procedures, ··a

of environment is not possible. There
net.hods for implement.ing reentrant

I , · " mu 1;·~progra~IHl.ng -cype
are two possible

__ l?~o'?e~lures. ,

In the first r~etho:1, reentrClncy· is handled by the code of
the procedure \'l!lenever the procedure is activated. In I,Ie-sa,

,~laen a· procedure is . activated., the initiulizati0n code of
. the procedur~ call$. a. system routine to allocate a frame and _
th~.n. ~et:s a base. re·gister to point to the frame.· ·:··-i\··.·frame·is ...
a record ~'1~t contains the context of the procedure the
.returl?-ad4rcss, par~ri1et:erspassed to it, a place to ·save the
re'j.istera if ,the procedure :Ls interrupted, and all lo·cal
variables .. · Tl1~code addresses all local variables as ·.an":
offset from the·· beginning of the f:!:,Clme pointed td· by· the

··base r~gister. In the exaMple above, the· Iff) supervisor .
., .. lould begin huildinC] .:=ta'1 I/O control block in the ·frame of'
tasl':. A._ .. !~lhen interrupted aDd reentered t· ·a· ne~·T· fram~ ·"lo·uld
be al-located., the· base registor \votild he s·et to poiritto the

.. fra~c of tusl; .a, and the I/O supervisor "loulc1 begin bllilding·
·a different I/O control bloc};: f.or task B. Later, 'Hhcn task
A is reactivated, the base register is. restored to point to
the . frame of t?-sk 1'-r a..'1d the code continues execu:'tion ,·;herc·
it.leftoff.

In the second raethod r reentranc:y' nust:··be handled by the
operating system. E;.-:ccutable code and localvariahl~s arc
pl~ccd in separate pages of memory_ . If a procec1ure is to be
reentered., . the operating system -must first . save the . local
.st·orago· of . the active task. T!1is can be cone by" s't·,apping
out local storage or l in a virtual ~achine such as the Sigma
7·, by ·changing the r.1emory nap. In . SPL,code and. local
storage are placed in separate co~trol se~tions. so that

. reentrancy could be irflpler:lented by the operating system.

It .. : seems.:· more desirahle to have reentrancYhandlcd
autona£ic~lly·bythe code of.the re~ntrant procedure .. :Pirst·:·

'. of :all, ·the· language ·0111 be ~orcmachine independent·if.
·rcentrartcy ·is handled by the' lang'.1age. If ~eentrancy is·
l:Iandied bythc operating -systen, "-'Ie must cl.cpendon a. virtual
lH2':.C:li:1c l and this "Jill 1;1ake it very 'difficult to adapt the

·l·;:-n ''''''''1''~~ ·to (:);';::J:n"'~nt T,,,,,ch';noc:o T' -iC":' noo!- ' ~1t:'\t' clear ,,-.yf,;:'!t-" .. t:_.1~ c..:..~e "'~.I...I- _I,.;.. ,(.. ~J"'._ ~. _,1: _.).l L- \.... • .LJ.~

the archi tq.cture of the OIS Dachinc V1"5.11- ;)8.· Even if ':-:0

choose (): virtual r~ac~linc for OIS I \·;8 hope thf.\tD~e lanquas~
\,16 ·C11005C for OIS \-?ill. be used for other aP91ications
t~:n;otiil10U t. ~~c:ro;-(on a variety of E~ClChin0S4! Se,condly I if-

1 :") : '; : '"
c:; .',

.)

....J

local storage is allocated by the procedure," ~'1is storage
uses core suacc anI" ~·!hilc" the nroccc1urc is active. For
static procedures'£, local st~rage r.1ust be perGan8ntly
allocated. For s~all machines, the savings in core st6rage
provided by dynanic local storage can be considerable.

RECURSIOII

An active procedure" that can he reactivated from within
i tscl f or frora ui t.hi;,::,~""I;;,"""c:-.r~:.::./~~'lC;-:C-· ·"~~~v~(;.·d"u"-1:.'t! is said t<;:>." be "
recursive; such reactivation i~ 'call~d r~cursion. This

· characteristic is extremely inportant because some kinds of
bl "·.J...h·}· ~.r: 1 '1"'" d.J...h pro, _ems reqnJ.rc t.,. 1.5 ~J_na oJ.. ca.pa~)J. 1. ty, an 0 ers are

.sta"ted Ft05t ea:;ily "hy using recursion. To clarify ~:ihat is
n1eant by :r::ecurs.ion, the· classic example of the factorial is
most easily understood: .

FACTORIAL: PROCEDUHE (N) i

:' IF 1-1 = 1, THEN AUS~'lI:!R = 1 i

END FA~TORIALi . .

"In this case, the Fl':.CTORIl{b Ixc·O"ceaure" is repeatedly called
from within itself to find the value of Nf

necursive ·routines are especially useful in parsing. "Por
example, consider" a simple gra~~ar:

varia~le ::=.~BlcIDIE

expression ::= <variablo/ I <variablo/ + <expressi0t}>

statement ::= <variablo/ = <expressi0o/

10 D.c;.:; :: :.: .::.; .:~
C ~: •• .i/!~ :. __ -:: ; ;.':

".,': .. , ... --.
• ·" .. 1--

.;

The. syn.:,ol '1: ':=' can be~ read as
v~rt.ical bar repre5ents t or I •

according to this graI:1mar arc;

B ::: C

A.- B + C' + E

'is d~finec1
Examples of

as f • The
statements

.. '

. No,,-:, sllpl'O$e 't:le ~'lant to "lrite a routine. that ... _~·!i~l .. "~te.st.-... ,,tq.
se'c if a ch~ractc:t".string is 'a' val:Ld··'e}:pr~ssion. Since the
definition of an expression is recursivc / t.1).e most natural
llay to' design t.'e routine is to lna}~e it recursive •. Hhen. the
routin.e .' is scanning "B+C+E' .. it . gets to .. -'ll+ J . and.,tl-t~n it
,"ants· t.okno.;; if the rest of the string is an cxpressJ.on, so

_it calls itself. '.

Othe·J: problems cannot be easily 'solved '\"it..~out:· recursio!1·.::'··
. The classic example is the asynchronous error routine \-;hich
'is called wh~never an I/O error is detected •. Suppose a-tape
read error occur.sdur.ing processing, and the - error routine
is .activated. Tile error routine. '-lishcs to send a Message to'
the opc.~;ator and 1'lait for a reply, but an I/O error occurs.
during. this ,: interaction. Different $ystems.· handle this
prohlcnl \-lith varyi:ng degrees of sophistication •. ·

Tho error
. ~outine is

di's'tlS trous •

routine is reactivated, but sinc3 t~e
not recllrsi ve ~ the resul ts . are .

. .
o .' 'rhe error routine checKs 'to see if it is bein~J

reactivated, and if so, it causes the.progran to
abort. A •

o .. The operating' system forbids tJ:le program to
execute' I/O. operations in the error . routine.

Of course, if the error routine is a recursive procedure.,
there is- really no problem.

> • •

'As . mig!lt . ·:b·e···· expected/'-" recurs'ion is related to reentrancy ~
j.~-::1.y proceclurc that is recursive must be. reentrant.
Reentrant procedures. arc not al\·rays recursive, dei?cndin9 on'

. the iRplcr.l(~ntation~ llo\ .. 7evcr I if a language is bcJ.ng
desig:1cc1 to handlerccntrancYr it is not 'difficult'to
provid.c~ recursion C.lS Hell.. r··icsa· handles recursion and

. -"'.

C ':--"/ i;~. -/ 'I -j -;
~" '. ~.',
~. "., '. I _.

rccntrancy autonatically for all procedures. Since we will
need rcentrani procedures for DIS, we should provide'
recursion as well.

Efficic~cy of Recursive and Reentrant Code

Recursive and reentrant proqedurcs are desirable features,
hut these facilities are not free. ?he use:!:" navs for t."~P1
'\-lith increased overhead call/return overhead a!1d local
storage access overhead. Each time a recursive/reentrant
procedure is invoked, a great'deal of overhead ,is required,
-to allocate a franc and initialize the storage, in - the frar:1c.
SimilCJ.rly, \:hen the procedure terminates I the frarce space

, reus t be freed.

Besides call/retur~ overhead, additional overhead;~ay be,
necessary in order to access variables in local storage. ,·In
a ~ccursive/reentrant procedure, local variables reside in-a
dynanic frane pointed to by a register.. The 'conpiler
generates - code that addresses each _ variable as a
displacement D fron t:he beginning of the frru"11e, plus the
contents of a base register B. Every local storage aCCCS$
must specify a tT,'lo-pwrt address -- a displaccnent D and a;-'
base register_ B. On base register machines such as the. 360 1

this "Jorks 'out vcr,,' 'Hell because most instructions that
access meno~7 'have a three-part: ar1dress' -- a dispia"cer.1ent Dr
a-base register B, and an index register I. ,

On the 32-bit Sigma r.tachines, 'r.1CIT1ory access instruct·ions
have a ,t\'-lo-part addres,s -- a 17-bit· displacement D (a t"ord
address) and ari index register I. It is possible~ of
course, to access variables in a fra~e by using L~e Signa
index register as a base register. This \'lorl:s, perrectl:{
well for accessing a fullword variable:

LWrR D,B

This instruction loads into register R the fulll'lorc1
spccif ied by the tHo-part address field D rB. The hard"lare
co~:putes the address by adc1i.ng the displacer:1cnt D to Lhe
ba.se address contained in ~egi[;ter B. The problem. occurs
\'lhcn the access 'requires. indexing. - Sl.!?t?osc you "rant to
Clccess t~c' ith occurrence of the v~riable, b.nd index
register I contains the index. You would like fo write
SO;i!e thing like:

J;. ;..; I.-'..!;:: I: -::;·i n i.- Lch
19 n :;.; (: I·' J ,::~ 1~) 7 I~
CS-7 t~~- oj" -ill
l' ~l~: (~ G

On' a.base register nachine, this is exactly what you. would
do, and tn8 instruction ·\-lould fit in one 32-bit '·lord. The
hardware co~putcs the address of the word to be acc~ssed by
adding the 'contents of base register D and indc~: register.I

.. to. the (:isplacement D. On Signa hard'\·!arc , this sa~e m0nory
accqss \'iould r.cqui1:.~c three \"lords: . . .

Lv1,e I

Alv, C D·'

The first t\-lO in$tructionscompute a neH b~se register C. by
adding the contents of the base register B. and ·th~· index
register. Thi~ is in effect· simulating ,·!hat base regi~ter
roachinos such as the 360 do aut·onatically._

'£he lang·ua~re "le choose for OISmust be impler.tented to run· on
the Sigma 7 un~cr cp·_\". This ,-,ill p.ermi t developm~nt ~'lor}-:
on OIS to hegin bofore OIS hardT"lare has heen designed. The

'. compiler can. subsequently be adapted to generate object code
. for theOIS .·machine. In addition to use for OIS , it is
hoped that-the langua.ge chosen for OIS ·can be.used for other
application;> throughout Xerox.

The requirements for': r¢cursion, . reentrancy _ '. CLl1d

im9J,.cmentation on the Sigma .7 seen to be contradictory. no
f.1attcr 'Hhat language t'le choose t recursion a.nd reentrancy
~an!1ot be' implenentec1 efficiently on' t.he Sigma 7 because the
hardware does not provide base registers and instructions to
facilitat~ the call/return sequence. ?~1is problen can 'be
resolved r.8.ther easily ·if recursion and reentrancy are.'
optional features of the language. Not. all procedure~ need
to be recursive and reentrant. For static routines ,t.~e.
conpilcr ~;lould -simply. allocate frame· spac'e "lith the o!:Jjcct
code, making ail variables directly addre$sable. This is
,·,hat SPLcoes for all· .procedures co • . ' •.

," . .

TJ1ere is no question "tlhether or not nesa· can be adapted to-
run on the Si9na 7. The question is lCl10\·rcfficient '~lil1 it

. b2.?H. T;le ?·lcs2.. language proviC:.cs recursion and reehtrancy
au tona ti ca1:1y for all TOU tine s • . h'ou 1<1 !·les a cor::.pi la t.ions·
tal:e an inordinrlte anount of time? Hould all r·:esa programs.
run ineffi·ciently on Sigma harCHare? .

Page 7

~'le could' study these questions at great length, hnt this
would still not solve the probleM of additional overhead
\·,hen recur.sion and rcentrancy' arc not really needed.. A
simple solution to this problem would be to add .a facility.
to l'~csa that T:;ould permit routines to be declared static •.

1 · .L • ~'. ~y l' h . . Imp etlG:ltl.!1g stal..1C proccaurcs ~n .~esa HOU_Q ~ e eas~cr tnat
illl?ler:1,::!nting recursion and reentrcu)cy in ·SPL."

CO ROU'}? IllES

~orouti~e~. provide a very u~eful control structure.
Coroutines are closely related to subroutines. The main.
prograr.l, and· a s~broutinc operate in a r.1aster/slaye'

'relationship -- the main progr2.r.1 calls the subroutine, the
'subroutin2 . begins execution at its' beginning " ,D;lns to
cor.lpletio:n I and returns ,to the main' program. The' l:!ain
program then continues to execute at the instruction
follol;':ing the subrou-tine cal1:.

In con:trust t~ this master/slave relationship bet't'}een the
'main program and a subroutine r t!1.e relationship bett1ccn
coroutines iscor.1pletely sY!:1!:1etrical., Corautines call each',
other', ~na. it is, i!npossible to tell Hhich is the subrelutine
of the other~ A aood exanole of a'coroutine structure would
h,e t~·;o chC!ss' playing progr;'ms. .r·le ~·:i.2.1~-~~ C'-111 on~ progr2.ffi
Black ~nd one pr9grarn White and ~nd activate one prograa
.(say 'iV'hi te) first. l'lhi te computes its move u!l.d calls Black.
When Blac;~ is actlvated, it computes its move and ca.lls
White. Each time a coroutine is activated, it continues· at
the place where it last terminated. Coroutines are 'used
most naturally for input/output routines. Por exaBple,.
consiqer the folloHin,] coroutine \'7ritten in Nesa.

nc;.:t·chCl,r: COROUTINE RETUPJlS [CHARt"\CTER) -
. .

-- this routine returns the next input character •
. .

after ~very card ·i"4. returns' a blan}~ as the. ne;.:t chara,c.te.r

BEGIN

input card is character arr

i: .IH7EGERi i indexes next char.actor

DO -- 00· fQrever'

. reaaca'x'd [card};

FOR i = 1 TO 80 DO

RETURN [card [iJ)i

END

RETURi~ [SP] i

. Ei\lD
.. '

END ..

fill .c~rd buffer .

return n~xt·. character'
..

--co.nt:inu(}· lo,?p next activutj.:

.return hlank at end of· card

rep~.at: DO loop

1'C'~::

..
' .. '

Page 9

This' rout.inc acts very' much like a subroutine... The
·state4:1cnt

c <l- nextchar [J;

\"ould activate· the coroutine nextchar and. assign t.~e ne):t
character to c. Internally, th~rc arc some important
differences between a coroutine and a suhroutine.

1. Like a SUbLUU1:ine, local storage', is·. allocated the
I~rst time ··c;, -·:('~::",,:;~,;,·-":..·i::.:(;.· ····L~··:~~-tivated •. ' HO~·leve:r. t
this Joct11 storaae is not freed by the P.ETUP,N

~ -
statenent. In the chess exar',ple, this Houlcl be
liJ;.c upsetting. the bo~rc1 after cver'.!. move.. . The
coroutine uants to ren~r:lher ~:,hat it .Has doing ·thc
next. time it is entered.

2. Nhen a subroutine is called, it al".vays· starts at
the· hegirlning. Hhen a coroutine is called I i.Jc
al\'lays continues at the point Hhere it last
terIi1inated.

On the Rc~d for necursion and Coroutines

Hecursion arid Coroutines are tHO features provided by Besa
that . SPL does . not .suPpcx·t.·· ·l':~"t;;~'qUG;:;"i:.i:cin is "do t.'le really
need these fea·tures in the language \'le choose for CIS?" ..
The anS\'ler is prQ~ably II no I \Ie 'don J t really need th~m -
these features arc fairly ne"l in the progrru'"":1ming ~·!orld, and
"~Ie can continue to· do things' the ·1:lay He have al",ays done
ther.1". HOT.-lever, t!leSC arc very useful tools 1 and' i.1any
problc@s are. most naturally solved by using co:r.outines and
recursion. ?hcse tools do not fall into the category of "a
better mousetrap". l\. tool of the better mousetrap variety
is the· literal. The literal constant. ·is certainly. a·
convenience ·because the Iirogranu--:ler doesn t t nCJ.ve to think of
a name for the const~nt.anc1 declare it soncHhere ·in the
progra~; he can keep his mind on the~roble~ and let.t~e
cO~:1p.iler Horry about .such routine matt·crs.. Th.e : literal
p~ov~des a marc cqnvenicnt way to do somGthing~ Recursion
Clnc1 coroutines (h.oH8ver I r·eall~{ provide. n2"l. Hays to think
a.bout proble:r:1 solvin~J.. tIith regard to prograrrning tools· and
thin}:ing hClJ)its (t.:1G .follo~·.Yi~lS quote from DyJ:stra IS lJ?:tc
I!umble Progr~u';ir~er" is vcry rele:vunt.

..

)'\"'-:":"'~~ ·!r~..,.: ~"""J'C11 J, l, ... _ .,.)'... " • ..4' _ ~ _

't .;.~ j .. ~ ".- '., ~.~ L': ::~.: _t· 1 t.J ':'l ! 1
C ~~ ; -; :~; ~ "/ 1 1 ·1

'II observe a cultural tradition, ,·}hich in all
-probability has its roots in the Renaissance, to ·regard
the h~nan rni~d as the suprc~e and automonous master of
its Clrt.ifaccs. But if I start to analvze the thin1::ina - ~

· habits of nys~lf qna. ny felloH humun beings, I co~e,
"lhcth(!r I like it or not I to. a completely. different
conclusion J viz. that the·tools "le arc tryinq t.o use
and the language we are using to "exprqss or record our

· thoughts arc the major' factors' deterr:lining t'lhat ~·;e can
think. or ex-orcss at all! The analysis of the influence'
tha.t·pt;ogra~ming languages have on the. th'inking ~abits
'of their·u,sers, and th.e· recognition that,' by .nO~·T,
hrainno'\'le:r is bvfar our scarcest resource t these

· together, give· ... us a collection of 'yardsticks for
'comparing the .relative merits of various 'J?r~grarmning
languages. u

Th:e language 'Ne select for OIS must provide reentrfu;.t
procedur.cs. Nithout reentrant procedures, a

. rnultiprog~am.-rn.i.ng type of environwent is not possible.' If
the langu.:lgc handles reentrancy, then it should-be able to·
provide' recursion . at little extra qos·t. . The. language ,·:e
choose for OIS must l)e implemented on Sigma 7 under CP-V.
This t·rill permit development "lork on 'OIS to bt~gin. before the
hardt-r.a.re has heen developed, and it ,·,ill permit the language
to be"· used for other applications· througbout ,Xerox. BinGe
r~entrancy ;and recursion cannot be efficiently i~plernented,
'on Sigma ha.rd~·7are, recursion and reentorancy must be optional
features of the language. The' corn:;?iler· "1;tll produce st.atic
procedures when these features are not needed.

Re.cursion and coroutirtes are' very potrerful' tools t.~at
provide new'ways to think about pro~lem solving. If we are
considering a language that "7ill be used into the 1980s 1 the
language'should include these features ..

Jrl":1 Fr~r:dcen
OIS Project

.. C: L.",C6zza, S' •. Klce, A. Kopito; C. Hartin, J •. :-lcndelson,·.·\\7; Shultz

Inter-Office ~Icmorandum

To . Hal Lazar

F r on J err y , Elk i n d, But 1 e r Lam p son,
Jim ~n t c h ell

Subject Comments 0"11 the Selection of
~I e s·a for t 11 e a IS
System Programming Language

Date 2 January 1975

Lecation Palo Alto

Organization CSL

, - _ •. _" - ..

In a memo written December 17. 1974 Peter Heinrich and Ke~dell Shultz
recommended that ~esa (~PL) be adopted as the System Programming Language
for OIS. and they proposed a plan to transfer'the system from PARe to OIS

. De,,·elopme'nt. In the following we comment on the recommendat'ion and discuss
alternative paths for implementing it.

1. We concur with the recommendati6n to adopt'Mesa

Ie concur and endorse fhe fundamental recommendation that Mesa be adopte~ as
the DIS implementat~on language. GIS needs a high level language for
implementation. It appears to us that Mesa is ~ore complete and more
powerful than the other alternatives. Its use by both OIS and PARe would
facilitate exchange and communication of software among these tw6
communi~ies. Ke are prepared to assist where we sensibly can in helping to
transfer knowledge about the system to the DIS group so that they can use
our impleme.ntation of the system or develop their own. whichever seems most
appropriate.

2. The technical evaluation of Mesa is essentially correct

The technical evaluation of Mesa contained in the memo is essentially
co~rect, but there are a few instances where the capabilities of Mesa were
overstated and a few where they were understated. Jim ~itchell has already
spoken to Kendell about these, and,there should be some additional
conversation bet~een them on this subject. The principal overstatements
were the suggestion that Mesa has a file editor and·a source editor
integrated into the Mesa system. We have been using the standard MAXC and
Alto editors, but they are not written in Mesa. The principal
understatements are that Mesa does not have an automatic instrumentation
system (it does) and an implication that there will be an opportunity for
signicant enhancement of the instruction set being developed for the Mesa
Alto implementation. The current effort to design an instruction set for
Alto will produce code that is reasonably close to the minimum size as
determined by entropy measures. We believe that it will be hard to improve
on it and that the principal task of the "object code generation phase"
(page 6) should be to adapt this instruction set to the DIS processor.

3. Comments on ,the Action Plan

We are concerned about parts of the proposed action p~an for implementing
Mesa on the Sigma under CP-V.

First, the MAXC version of Mesa is not the' appropriate take-off point for.
such an implementation. The Alto version is the one to .start with. We are
now concent.rating on the Alto version, making co.nsiderable improvements in
it, and are not intending to upgrade the Maxc version to maintain

·comp~~ibility between it and thd Alto one.

Seccl:-~,j. it is Clb'.'iously essential ·for. OIS10 ha\'e [1 \lesa.system on which to
d(;. t.~~iT·de\·(:roprrient. 'There are three ways in \, .. hich this can reasonably be
clone:

1. Obtain Altos and run the version of Mes~ being
dsveloped at PARCo

2. Implement an inte~peter on the Sigma thai will be
able to execute the Alto version of ~esa.

3. implement a version of ~e~a on the Sigma in the
mll!mer described in the memo.

·The· last of these alterriatives is by far the hardest to accomplish. will
take much longer to complete, and is the most risky. It would cause
cpIltinuing compatibility problems between the PARe and DIS versions of the
system. which would represent a considerable hazard especially during the
period when the system is still in active evolution. We would argue
strongly for. either of the first two alterna~ives.

Third is the problem of' compatibility. Obviously, PARe and the DIS Group
must have complete and independent control over the versions of ~esa th~t
each is .using. However, there is much to be gained by keeping these two
ve~sious as compatible as possible for as long as we can. This is
esoe~ial1y important in the near term when the system~ will be actively
e\·;Jl\·ing. \\'e have had cOIlsi.derable success with two large systelns •.
I~t~flisp nnd Tenex, in maintaining compatibility among a number.of very
i n ct 6 P e I1 ele i1 t or g ani z a t ion s . Its h 0 u 1 d . c e r t a i n 1 y b e po s sib let 0 d () a s we 11
wi~h Mesa and the PARe and OIS organizations~ The key toachi~ving
cDmp~tibility is to detine a standard interrace, that is, ~ specification
fgr a Mesa Virtual ~achine that all implementations must satisfy. The
v1ttual machine should be defined at as Iowa level as possible.· If we
a.(\oDt· this approach, then we can be reasonably. confident that Mes'a programs
wil~ fun correctly p~ovided that they donlt use facilities not in the'
virtual machine. Input/output almost certainly will have to be handled in a
~achine-specific manner at least to some extent, but this seems
unavoidable. A Mesa Virtual Machine has not yet been specified ?nd needs to
be.

Finally, we concur in the suggestion that two or three OIS programmers spend
s6~e time at PARC to learn about the system. The right nu~ber seems to be
two programmers. The time period should be about six months. We believe
that the best and fastesf way of learning is for them to spend this time as
pdrt nf the Alto ~esa project team, working on documeniation. converting
parts of the system from MAXC to Alto, and criticizing and contributing to
the Virtual Machine definition. Our resources at PARC are few, and it is
important that we find a way of transferririg the knowledge about the system
without interfering greatly with the very crucial work of moving Mesa to
Alto. The only way we can see to do this is by having these DIS team
members participate in that transfer.

c: OIS Architecture Board
B Beeson C Geshke
K Campbell E Satterthwaite
S Klee P Deutsch
\II Klein B Wegbreit
A Kopito J Morris
A Lipton C Simonyi
C. Martin W Teitelman
~ Spinrad J Moore
:t:: Vance D Bobrow
O· P.ake C Thacker
11 rIa 11
W Erlg1 i sh
R Taylor

	1-01_19741217
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	2-01_19741219
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	3-01_19750102
	3-02

