
Inter-Office Memorandum

To Mesa Users Date May 31, 1978

From Barbara Koalkin Location Palo Alto

Subject Mesa 4.0 Debugger Update Organization SDD/SD

XEROX

Filed on: [IRIS]<MESA>DOC>DEBUGGER40.BRAVO

This release of the Mesa debugger introduces many changes of interest and importance to all
Mesa programmers. The purpose of this memo is to make you aware of the changes that
have taken place. More complete explanations may be found in the Mesa Debugger
Documentation.

Interpreter

The major addition to the Mesa 4.0 debugger is an interpreter that handles a subset of the
Mesa language; it is useful for common operations such as assignments, dereferencing,
indexing, field access, addressing, and simple type conversion. It is a powerful extension to
the current debugger command language, as it allows you to more closely specify your
variables while debugging, thus giving you more complete information with fewer
keystrokes. A subset of the Mesa language has been specified as being acceptable to the
interpreter (a copy of the grammar is attached to this memo).

Statement Syntax

Typing space (sp) to the command processor enables interpreting mode. At this point the
debugger is ready to interpret any expression that is valid in the (debugger) grammar.

Multiple statements are separated by semicolons; the last statement on a line should be
followed by a carriage return (CR). If the statement is a simple expression (ie., not an
assignment), the result is displayed after evaluation.

For example, to perform an assignment and print the result in one command, you would
type foo +- expj foo.

Loopholes

A more concise LOOPHOLE notation has been introduced to make it easy to display arbitrary
data in any format. The character "%" is used to denote LOOPHolE[exp, type], with the
expression on the left of the %, and the type on the right.

For example, the expression foo % short red Foo means LOOPHOLE the type of the variable
foo to be a short red Foo and display its value.

·Mesa 4.0 Debugger Update 2

Subscripting

There are two types of interval notation acceptable to the interpreter. The notation [a ..
b] means start at index a and end at index b. The notation [a ! b] means start at index a
and end at index (a+b-l).

For example, the expressions MEMORY[4 .. 7] and MEMORY[4 ! 4] both display the octal
contents of memory locations 4 through 7. Note that the interval notation is only valid for
display purposes, and therefore is not allowed as a LeftSide or embedded inside other
expressions.

Module Qualification

To improve the performance of the interpreter, the $ notation has been introduced to
distinguish between module and record qualification. The character $ indicates that the
name on the left is a module, in which to look up the identifier or TYPE on the right. If a
module cannot be found, it uses the name as a file (usually a definitions file). A valid octal
frame address is also accepted as the left argument of $.

For example, FSP$TheHeap means look in the module FSP to find the value of the variable
TheHeap. In dealing with variant records, be sure to specify the variant part of the record
before the record name itself (ie., foo % short red FooDefs$Foo, not foo % FooDefs$short
red Foo).

Type Expressipns

The notation "@ type" is used to construct a POINTER TO type. This notation is used for
constructing types in LOOPHOLES (ie., @foo will give you the type POINTER TO foo).

Examples

Some of the old commands may now be simplified as follows:

Interpret Array [array,index,n] becomes array[index ! n]
Interpret Call [proc] becomes proc[param1, ... , paramN]
Interpret Dereference [ptr] becomes ptrt
Interpret Expression [exp] becomes exp
Interpret Pointer [address, type] becomes address%@typet
Interpret SIze [var] becomes SlzE[type]
Interpret STring [string,index,n] becomes string[index! n]
Interpret @ [var] becomes @var
Display Variable [var] becomes var
Octal Read [address,n] becomes MEMORv[address! n]
Octal Write [address, rhs] becomes MEMORy[address] +- rhs.

Here are some sample expressions which combine several of the rules into useful
com bi nations:

If you were interested in seeing which procedure was associated with the third keyword of
the menu belonging to a particular window called my Window, you would type:

myWindow.menu.array[3].proc

'Mesa 4.0 Debugger Update

which might give you the following output:

CreateWindow (PROCEDURE in WEWindows).

If you wanted to look at one of your procedure descriptors, you might type: .

4601 B%@procedure ControlDefs$ControlLinkt

which might produce the following output:

ControILink[procedure[gfi: 23B, ep: 0, tag: procedure]].

3

The basic arithmetic operations are provided by the interpreter (with the same precedence
rules as followed by the Mesa compiler).

3+4 MOD 2; (3+4) MOD 2

would produce the following output:

3
1.

Radix conversion between octal and decimal can be forced using the loophole construct; for
example, exp%cARDINAL will force octal output and exp%INTEGER will force decimal.

A typical sequence of expressions one might use to initialize a record containing an array of
Foos and display some of them would be:

rec.array +- DESCRIPTOR[FSP$AllocateHeapNode[n ·SIZE[FooDefs$Foo]], n];
InitArray[rec.array]; rec.array[first .. last].

Process Commands

The debugger has added a set of commands for use with the new process capabilities of the
language and the system. Display of the new data types is as follows: condition variables
and monitor locks are displayed in octal; a process is displayed as PROCESS [octal number].
In all of the process commands, the message "I is an inval id ProcessHandle" or "I
not a process" appears if the process is invalid.

Set Process Context process

sets the current process context to be process and sets the corresponding frame context for
symbol lookup to be the frame associated with process. Upon entering the debugger for the
first time, the process context is set to the currently running process. Note that either a
variable of type PROCESS (returned as the result of a FORK) or an octal ProcessHandle is
acceptable as input to this command. . Note also that when you set the octal context or
module context, the process context is set to NIL; however, it is restored when you reset the
context.

Display Process process

is a specialized version of Display Variable that displays interesting things about a
process. This command shows you the ProcessHandle and the frame associated with process,
and whether the process is waiting on a monitor or a condition variable (wa it i ng Ml or
waiting CV). Then you are prompted with a n)" and enter process subcommand mode. A
response of N displays the next process in the array of psbs; R displays the root frame of the

) Mesa 4.0 Debugger Update 4

process; S displays the source text; P displays the priority of the process; and Q or DEL
terminates the display and returns you to the command processor. A variable of type
PROCESS (returned as the result of a FORK) or an octal ProcessHandle is acceptable as input to
this command (note that process is an interpreted expression).

Di spl ay Queue id

displays all the processes waiting on the queue associated with id. For each process, you
enter subcommand mode. The semantics of the subcommands remain the same as in
Display Process, with the exception of N, which in this case follows the link in the
process. This command is prepared to accept either a condition variable, a monitor lock, a
monitored record, a monitored program, or an octal pointer (as in a pointer to the
ReadyList). Note that id is an interpreted expression; if id is simply an octal number, you
are asked whether it is a condition variable in order for the debugger to know where to find
the head of the queue (Le., Display Queue: 175034B, condition variable? [Y or N]).

List Processes [confirm]

lists all processes by telling you the ProcessHandle and its frame. If you wish to see more
information about a particular process use the Display Process command.

Conditional Breakpoints, Multiple Proceeds, and new Breakpoint Syntax

The Mesa 4.0 debugger has extended the former set of breakpoint commands to include the
capability to set conditional breakpoints.

The syntax for all of the Mesa 3.0 breakpoint commands remains basically the same with the
following extension: if you type a sp after the procedure or module name you receive a
prompt for the condition; if you type a CR it terminates the command input (in the case of
entry/exit breaks) or just prompts for the source (in the case of text breaks), ie.,

Break Procedure: proc(sp), condition: x < 2 (CRl. source: IF a = b (CR)
Break Procedure: proc(CR), source: IF a = b (CR).

The three valid formats for a conditional expression are:

variable relation variable - eg., stop when x < y

variable relation number - eg., stop when x >= 10

number - eg., stop the 5th time you reach this breakpoint

These commands accept relations belonging to the set: {<, >, =, #, <=, >=}, corresponding to: •
less than, greater than, equal, not equal, less than or equal, greater than or equal.

This gives us the ability to do multiple proceeds with the same syntax as simple conditional
breakpoints.

Since the variables are interpreted expressions, they are looked up in the current context.
However, if you are in a module context and wish to specify a local variable of the
procedure you are setting the breakp.oint in, you may do this by saying:

Mesa 4.0 Debugger Update 5

proc. var - ie., use the local variable var defined in proc

You may change the condition on a particular breakpoint or change a breakpoint from a
conditional to a non-conditional one or vice-versa simply by setting the breakpoint again
using the new condition.

There has also been a simplification to the breakpoint syntax as follows:

All commands to set breakpoints begin with the key letter B,
eg., Break Procedure instead of SEt Procedure Break

All commands to set tracepoints begin with the key letter T,
eg., Trace Procedure instead of SEt Procedure Trace

The keyword Program has been replaced by the word Modul a,
eg., CLear Modul e Braak instead of CLear Program Braak

All of the breakpoint commands now accept a valid GlobalFrameHandle as input when
prompted for a module name.

New Commands / Changes to Existing Commands

Kill session [confirm]

ends your debugging session, cleans up the state as much as possible, and returns to the Alto
Executive. Use this command instead of shift-Swat or the boot button to leave the debugger.

ATtach Symbo 1 s [globalframe, filename]

attaches the globalframe to filename. This is useful for allowing you to bring in additional
symbols for debugging purposes not initially anticipated.

ATtach Image [filename]

specifies the filename to use as an image file when the debugger has been bootloaded. It is
useful when the user core image has been clobbered. The default extension for filename is
".image".

Display Stack subcommands

The 0 i s play S tack command now makes a distinction between displaying module (global)
and procedure (local) contexts. The valid subcommands for local contexts remain as -in
Mesa 3.0: n,p,v,r,s,q; with the addition of the subcommand >j, n(10) which means jump
down the stack n levels. Note that if n is greater than the number of levels it can advance,
the debugger tells you how far it was able to go. Most of these subcommands, apply to
Display Stack on a global context with the exception of j and n. If the debugger cannot
find a symboJtable for some frame on the call stack, you get the message "No symbols for
nnnnnnB" and enter restricted Display Stack subcommand mode in which only the
subcommands j, n, and q are allowed. Note that a local context is displayed as the
procedure name with its local frame, followed by the module name and its global frame; a
global context is displayed as. the module name and its global frame. For example,

Mesa 4.0 Debugger Update

>Display Stack -- on a global frame
StreamsA, G: 172674B >?--Options are: p,q,r,s,v.
>Display Stack -- on a local frame
TArrays, L: 165064B (in TArrays, G:166514B)

>? --Options are: p, v, r, s, q, j, n.

6

Notice that the convention, proc, L:nnnnnnB (in module, G: nnnnnnB). applies
throughout debugger output, wherever procedures and modules are displayed.

CUrrent context

The notion of the current context has been extended to include the current ProcessHandle as
well as the name and corresponding global frame address of the current module and the
current configuration.

Old commands that are gone

Join Ports and Interpret SIze have been taken out of the debugger's command language
since their functions have been taken over by the debugger interpreter; Dis play B; n d 1 n 9
path has been removed since the concept of a binding path has gone away.

Additional Capabilities

More breakpoints - local procedures

Due to a change in the lookup algorithm for procedures, it is now possible to set
breakpoints/tracepoints on a local (nested) procedure without being in the context of its
enclosing procedure. However. in order to display a local procedure you must still be in its
enclosing context.

Validity checking

The debugger makes a considerable effort to check if the user core image has been smashed
in any way. When it determines that something is wrong, rather than printing out incorrect
information it sets the context to NIL and disables all of the commands that rely on getting
information either from symbol tables or from the loadstate. The user gets a message that
says "Current context invalid." or "Command not allowed." whenever this situation
occurs. At this time you might want to attach an image file or some symbols (see the
ATtach comands) to find out what is wrong.

Installing

To install the debugger with a command line to the Alto Executive, use the "I" switch; use
the flL" switch to load programs with code links (to save space). For example, typing
XDebug Wi ndExl i installs the debugger with the window manager (WINOEX.BCO); typing
XDebug Wi ndExl il installs WINDEX with code links.

Missing definition files

Instead of simply refusing to give you any information about your variables when you are
missing a definitions file or have the wrong version of a file. the debugger prints a "?" to
give you an indication that something is missing.

Mesa 4.0 Debugger Update 7

Invalid values.

The debugger will print "? [val u e J" when displaying enumerated types that appear to be
wrong (ie., out of range).

Comments in the typescript file

A comment command has been added to the debugger command language. Use " __ " to
ignore type-in until a carriage return (CR). This is useful for saving your own notes along
with your typescript file as well as type-in to be used for window selections.

Current Date' and Time

The current date and time is inserted at the beginning of your typescript file along with the
date and time that your version of the Mesa 4.0 debugger was created.

Default command

Typing the escape character (ESC) to the command processor of the debugger, uses the last
command as the next valid command (Le., you receive the prompts for the parameters (if
any) for the previously executed command).

Confirming 'commands

When a command requires a [confirm] (CR), the debugger goes into wait-for-DEL mode if
an invalid character is typed.

Extended Features

See the Debugger - Extended Features memo for further details on the following.

FTP in the debugger

The tFTP command (control-F) is used to provide file transfer capabilities from within
the debugger using the standard FTP package. Any comments and/or problems regarding
FTP itself should be addressed to the Communications Group. If FTP has not been loaded,
trying to use any of the FTP commands will give you the message "_- FTP not installed".

UserProcs

The tUserProc command (control-U) allows you to load your own debugging package
into the debugger. If you have only one user proc loaded when you type control-U, it will
be invoked automatically. If you have several user procs loaded, typing "?" will give you a
list of the command names for the user procs that you have loaded. If it can't find any
procedures that have been loaded, you will just get the message, " 1 No user procs are
currently loaded".

Window manager

The new ·window manager WindEx has several commands which allow you to set breakpoints
and tracepoints by selecting text locations. Confirmation is given by moving the selection to
the place at which the breakpoint is actually set.

-Mesa 4.0 Debugger Update 8

Internal Changes

Debugger Nub

The Mesa 4.0 debugger has been able to realize a significant space reduction by removing its
own internal debugging facilities and replacing them with a nub. Typing to to the
command processor brings you into the debugger nub with a "I I" prompt. The following
limited set of commands are available in the nub: Install, Bitmap, New, Start, Proceed,
and Quit. Bitmap[n(10)] reallocates the bitmap to n pages (the default size is about 50
pages). The nub also provides a minimal signal catcher and interrupt handler as well as
primitive debugging facilities. It is possible to install a different version of the debugger to
use for debugging the debugger itself (see a member of the Mesa Group if you are interested
in knowing more about how this works).

Savings in space

The global frame size of the Mesa 4.0 debugger has been reduced by over 50% from the
previous release. This has created space for the interpreter and for a larger bitmap. Some
of the savings is due to the split of the internal and external debugger. Another reason is
due to the way in which the debugger handles strings. By putting the command strings,
command prompts, signal and error messages, and debugger FTP commands into a separate
file (and running this file through the string compactor), the string segment can be swapped
in only when needed. Additional space was saved by making many of the remaining strings
into local strings so that they do not take up space in. the global frame.

Documentation

More complete documentation on the Mesa 4.0 Debugger may be found in the Mesa
Debugger Documentation. Bug fixes may be found in the closed change requests maintained
by (SDSupport).

Debugger Summary
Version 4.0

AScii read [address, n]

ATtach Image [filename]

Symbols [globalframe, filename]

Break Entry [proc, condition]

Module [module, condition, source]

Procedure [proc, condition, source]

Xit [proc, condition]

CAse off [confirm]
on [confirm]

CLear All Breaks [confirm]
Entry traces [module]

Traces [confirm]
Xit traces [module]

Break [proc, source]

Entry Break [proc]

Trace [proc]

Module Break [module, source]

Trace [module, source]

Trace [proc, source]

Xit Break [proc]

Trace [proc]

COre map [confirm]
CUrrent context
Display Configuration

Eval-stack
Frame [address]

GlobalFrameTable
Module [module]

Process [process] - n,p,q,r,s
Queue rid]

Stack - j,n,p,v,r,s,q
Variable rid]

Find variable rid]

Interpret Array [array, index, n]

Call [proc]

De-reference [ptr]

Expression [exp]

Pointer [address, type]

String [string, Index, n]

@ [var]

Kill session [confirm]
List Breaks [confirm]

Configurations [confirm]
Processes [confirm]
Traces [confirm]

Octal Clear break [globalframe, bytepc]

Read [address, n]

Set break [globalframe, bytepc]

Write [address, rhs]

Proceed [confirm]
Quit [confirm]
Reset context [confirm]
SEt Configuration [contlg]

Module context [module]

Octal context [address]

Process context [process]

Root configuration [contlg]

STart [address]

Trace All Entries [module]

Xits [module]

Entry [proc,condltion]

Module [module, condition, source]

Procedure [proc, condition, source]

Xit [proc, condition]

Userscreen [confirm]
Worry off [confirm]

on [confirm]
- - [comment]

StmtList

AddingOp

BuiltinCall

Expression

ExpressionList

Factor

Interval

LeftSide

Literal

MultiplyingOp

Primary

Product

Qualifier

Stmt

Sum

TypeConstructor

Typeldentifier

TypeSpecification

Debugger Interpreter Grammar
Version 4.0

::= Stmt I StmtListj Stmt

.. - + I -

.. - LENGTH [LeftSide] I BASE [LeftSide] I
DESCRIPTOR [Expression] I
DESCRIPTOR [Expression , Expression]
SIZE [TypeSpecification]

::= Sum

::= Expression I ExpressionList, Expression I
:: = - Primary I Primary

:: = Expression.. Expression I Expression I Expression

.. - identifier I Literal I MEMORY [Expression] I
LeftSide Qualifier I (Expression) Qualifier I
identifier $ identifier I numeric Literal $ identifier

.. - numericLiteral I
stringLiteral I -- all defined outside the grammar
characterLiteral

.. - '" I / I MOD

::= LeftSide I (Expression) I @ LeftSide I BuiltinCall

.. - Factor I Product MultiplyingOp Factor

. identifier I l' I % I % TypeSpecification I [ExpressionList]

::= Expression I LeftSide i- Expression I MEMORY [Interval] I
LeftSide [Interval] I (Expression) [Interval]

::= Product I Sum AddingOp Product

:: = @ TypeSpecification

.. - INTEGER I BOOLEAN I CARDINAL I
CHARACTER I STRING I UNSPECIFIED I
identifier I identifier $ identifier I
identifier Typeldentifier

::= Typeldentifier I TypeConstructor

Windex Summary

Version 4.0

WHAT WINDEX MOUSE BUTTONS DO:

RED
YELLOW
BLUE
YELLOW IBLlJE

MENU COMMANDS:

Create [window]
Destroy [window]
Move [window]
Grow [window]
Load [selection, window]
Stuff It [seleotlon, window]

Scroll Bar

Scroll Up
Thumb
ScroliDown
NormalizeSelectlon

WHAT MENU MOUSE BUTTONS DO:

Text Area

Select/Extend characters
Select/Extend words
Menu Commands

Find [selection, window]
Set Brk [selection]
Clr Brk (selection]
Set Trc [selection]
Set Pos' [index, window]
Keys OnlOff

RED
BLUE

"Do it" - in this windowl at this spot
Reset to previous state

WHAT KEYSET BUTTONS DO:

BS DEL

DURING TYPE IN:

ESC

Backspace character
Backspace word

CR STUFF IT

BS
CONTROL-W
FL4 Stuff current selection into default window

Close connection [confirm]
DElete filename [filename]

Fetch Command Summary

DUmp from remote file [dumpfile]
Free pages
List remote file designator (filellst]
LOad from remote file (dumpfile]
Open connection [host,' directory]
Quit [confirm]
Retrieve filename (filename]
Store filename [filename]

