
XEROX

'B' Xerox
Private

~~ Data

Xerox System Integration
Guide

Introduction to Interpress

Robert F. Sproull
Brian K. Reid

XSIG 038306
June 1983

NOTICE: FOR INTERNAL XEROX USE ONLY

This document contains Xerox Private Data, which is proprietary and
confidential information of Xerox Corporation. Any reproduction, in
whole or in part, or disclosure, uses, or distribution outside of Xerox, in
whole or in part, is prohibited. £l~xempt from declassification.

Xerox Corporation
EI Segundo, California 90245

Notice

This Xerox System Integration Guide is an introduction to the concepts and facilities of the
Interpress Electronic Printing Standard. which defines the digital representation of material
that is to be transmitted to and printed on an electronic printer.

1. The contents of this document are not to be disclosed or transferred to third parties
without the written approval of Xerox Corporation.

2. This- guide includes subject matter relating to patent(s) of Xerox Corporation. No license
under such patent(s) is granted by implication, estoppel, or otherwise, as a result of pubUm
cation of this specification.

3. This guide is furnished for informational purposes only. Xerox does not warrant or
represent that the Interpress Electronic Printing Standard or any products made in confor­
mance with it will work in the intended manner or be compatible with other products in a
network system. Xerox does not assume any responsibility or liability for any errors or
inaccuracies that this document may contain, nor have any liabilities or obligations for any
damages, including but not limited to special, indirect, or consequential damages, arising
out of or in connection with the use of this document in any way.

4. No representations or warranties are made that the Interpress Electronic Printing Standard.
or anything made in accordance with it, is or will be free of any proprietary rights of third
parties.

XEROX® is a trademark of XEROX CORPORATION.

~.~ Xerox tiO.te Private
"""0""" Data

Preface

This publication is one of a family of documents that collectively describe the standards under­
lying Xerox printing systems.

The Interpress standard defines the digital representation of printed material for exchange be­
tween a creator and a printer. A document represented in Interpress can be transmitted to a
raster printer or other display device for printing. it can be transmitted across a communication
network as a means·· of exchanging graphic information, or it can be stored as an archival
master copy of the material. A. document in Interpress is not limited to any particular printing
device; it can be printed on an5' sufficiently powerful printer that is equipped with Interpress
print software.

This publication provides an introduction to the Interpress standard and gives a number of
examples. The first chapter is a survey of the concepts and facilities of Interpress. The
remainder of the publication is directed to the system designer and programmer who are
designing software to create Interpress masters. This publication is intended to be read in
conjunction with the reference document for the standard, lnterpress Electronic Printing
Standard. XSIS 048306.

Comments and suggestions on this document and its use are encouraged. Please address com­
munications to:

~y~ Xerox
~~~ Private 
."O~ Data 

Xerox Corporation 
Printing Systems Divison 
Printing Systems Administration Office 
701 South Aviation Blvd. 
EI Segundo, California 90245 

111 



tV 



Table of contents 

Introduction 

1 Introduction 1 
1.1 Why an interchange standard? 2 
1.2 The nature of the Interpress standard . 3 
1.3 Overview of the Interpress standard 7 
1.4 How Interpress masters are printed 10 
1.5 Manipulating Interpress masters . 11 
1.6 Summary table . 14 
1.7 Guide to Interpress documentation 15 

Simple masters 

2 Base language I 17 
2.1 Types in the Interpress base language. 19 
2.2 Literals 20 
2.3 Interpretation rules . 21 
2.4 Constructor operators 23 
2.5 Storage mechanisms. 24 
2.6 Summary 26 

3 Examples of simple masters 27 
3.1 A one-page line drawing. 27 
3.2 Simple text . 29 
3.3 An encoded example 34 
3.4 Multi-font text 35 
3.5 Text and graphics 36 
3.6 Multi-page documents 37 
3.7 A "line-printer listing" 38 
3.8 Summary 39 

~9" Xerox '8' Private Data 



Table of Contents 

4 Structure of the master. 
4.1 The preamble 
4.2 Examples 
4.3 Page ordering 

5 Coordinate systems 
5.1 Defining a coordinate system 
5.2 Multiple coordinate systems . 
5.3 Coordinate systems in Interpress . 
5.4 Summary 

6 Transformations I 
6.1 What is a transformation? 
6.2 Constructing transformations 
6.3 U sing transformations 
6.4 Summary 

7 Creating masters: procedural interfaces 
7.1 Literal interface . 
7.2 Operator interface 
7.3 Recommendation 

8 Software tools for Interpress 
8.1 Encoded-to-written converter 
8.2 Written-to-encoded converter 
8.3 A check interpreter 
8.4 A graphics package . 
8.5 Recommendation 

Advanced masters 

9 Fonts 
9.1 Font names . 
9.2 Character sets 
9.3 Character operators . 
9.4 Font metrics 
9.5 Communicating metrics to the creator 
9.6 Font libraries and printer font storage 
9.7 Summary 

10 Typography 
10.1 Typographic facilities in Interpress 
10.2 Absolute and relative positioning. 
10.3 Measuring text . 
10.4 POSitioning characters 
10.5 Justifying text 
10.6 Other typographical effects 
10.7 Summary 

VI 

41 
41 
42 
43 

45 
45 
46 
47 
50 

51 
51 
52 
57 
63 

65 
65 
69 
73 

75 
75 
76 
76 
77 
77 

79 
80 
81 
84 
87 
88 
90 
93 

95 
95 
96 
99 

· 100 
· 107 
· 109 
· 116 

~y~ Xerox 
~O~ Private """0'" Data 



Introduction to Interpress 

11 Referencing the environment 
11.1 Hierarchical names . 
11.2 External references to files 
11.3 Device independence 

12 Base language II . 
12.1 Constructing and calling composed operators . 
12.2 Control operators 
12.3 Summary 

13 Transformations II 
13.1 Primitive transfonnations 
13.2 The matrix representation oftransfonnations . 
13.3 The Interpress-to-device transfonnation 
13.4 Other translation transfonnations 
13.5 Net transfonnations . 
13.6 Summary 

14 Instancing 
14.1 Defining symbols 
14.2 Making instances 
14.3 Character operators and instances 
14.4 Example: character instancing 
14.5 Example: writing text at an angle. 
14.6 Summary 

15 Graphics 
15.1 Strokes 
15.2 Filled outlines 
15.3 Scanned images . 
15.4 Coordinate transfonnations for masks 
15.5 Color 
15.6 Priority 
15.7 Summary 

16 Utility programs 
16.1 Notation and assumptions 
16.2 Selecting pages . 
16.3 Selecting pages from two masters . 
16.4 Merging two pages into one . 
16.5 Applying a geometric transformation. 
16.6 Merging and positioning . 
16.7 Imposition . 
16.8 Embedding infonnation in masters 
16.9 Routing sheets 
16.10 Closure 

~y ... Xerox 
~O~ Private "'0'" Data 

· 117 
· 117 
· 119 
· 120 

· 123 
· 123 
· 131 
· 133 

· 135 
· 135 
· 137 
· 142 
· 144 
· 144 
· 145 

· 147 
· 147 
· 148 
· 150 
· 151 
· 154 
· 154 

· 155 
· 155 
· 158 
· 162 
· 167 
· 168 
· 169 
· 171 

· 173 
· 173 
· 174 
· 174 
· 176 
· 177 
· 179 
· 180 
· 181 
· 182 
· 183 

vii 



Table of Contents 

17 Hints for the creator. 
17.1 Do's and dont's . 
17.2 Good Interpress style 
17.3 Miscellaneous techniques 

Printing a document 

18 Printing instructions . 
18.1 Standard instructions 
18.2 Encoding instructions 
18.3 Standard practice 

19 Printer capabilities 
19.1 Subsets 
19.2 What a printer should tell you 

20 Performance . 
20.1 Interpretation and printing 
20.2 Efficient masters 

21 What can go wrong 
21.1 Errors 
21.2 Examples of errors 

Systems 

22 Interpress systems 
22.1 Interpress as a common output fonnat 
22.2 Heterogeneous printing environments 
22.3 Interpress applications 

The design of Interpress 

23 The design of Interpress . 
23.1 Background. 
23.2 The design of Interpress . 
23.3 Relationship to other standards 
23.4 Full Interpress 
23.5 Designers 

Appendices 

A References 

Index 

viii 

· 185 
· 185 
· 187 
· 188 

· 193 
· 193 
· 195 
· 196 

· 197 
· 198 
.200 

· 203 
· 203 
.204 

.207 

.207 

.209 

· 211 
· 211 
· 214 
· 215 

· 221 
· 221 
· 223 
· 228 
· 231 
· 232 

· 233 

· 237 

~9~ Xerox 
~Q~ Private 
"""'0:"" Data 



1 

Introdu ctio n 

The Interpress .Electronic Printing Standard is a standard for connecting raster printers to digi­
tal computers. A raster printer is an electronic device that prints on paper by making a fine 
systematic scan of the print area. in a manner very similar to the way a television makes a sys­
tematic scan of its picture tube. Many raster printers use a laser to perfonn the actual printing, 
and for this reason they are sometimes called laser printers. 

Computer programs generate representations of documents in Interpress that are sent to 
printers, where the representation is processed to produce printed output. Interpress documents 
can also be stored in files for later demand printing, transmitted to other sites as a means of 
communicating complete documents. or printed on different printers at the same site when dif­
ferent printing qualities or speeds are required. 

The Interpress standard can be used to accomplish a wide range of digitally-controlled print­
ing: 

• Computer listings. Interpress can be used to represent high-volume program listings, 
tabular outpu~ and other data traditionally printed on a line printer. 

• Word processing. Interpress can be used to represent the hardcopy output from word­
processing equipment in the form of letters, reports, and other modest-sized documents. 
These documents require a certain amount of formatting versatility, multiple fonts. and so 
forth. 

• Graphic output. Interpress can be used to describe the graphical images normally printed 
on plotters, such as the output from computer-aided design programs or illustrator 
programs. The design for a printed circuit board or an integrated circuit mask can be 
represented in Interpress for transmittal to a machine capable of actually making the board 
or the chip. 

• Publishing. Interpress can be used as a means of assembling together all of the text and 
graphics needed for publication-quality text. This document was assembled using such a 
technique. An Interpress master copy of a book can be used to generate plates for a print­
ing press or to produce single copies as needed. 

• Presentations. Interpress can be used to represent the images to be projected on a screen 
during an oral presentation. 

~9 .. Xerox 
~Q~ Private "0. Data --

I 



1 Introduction 

-----...... -Int~r~ ~=l I 
representation 

Printer I Work station I 

I Work station I 

Figure 1.1. Interpress representation used for printing 

Interpress 

representation ~~ L.:..J 
Interpress 

representation 

Figure 1.2. Interpress representation used for archiving 

Office building in one city 

I Work station I 

Printer 

Office building in another city 

I Work station I 

Figure 1.3. Interpress representation used for remote printing 

Although Interpress is designed principally for print graphics and computer-aided document 
preparation, it is equally useful for specifying such diverse images as those for 35-millimeter 
slides, integrated-circuit masks. television stills, or frames in an interactive graphic help system. 
Almost any two-dimensional image can be specified by Interpress. 

1.1 Why an interchange standard? 

2 

Interpress is an interchange standard. a means by which information in a standard fonnat may 
be exchanged between a wide variety of computers and printers. Figures 1.1 through 1.3 indi­
cate some of the intended applications of the Interpress standard. In the simplest case, the 

Xerox 
Private 
Data 



Introduction to Interpress 1 

transmittal of a document between the workstation that generates it and the printer that prints 
it is achieved by representing the document in Interpress. Documents so represented can be 
stored away in files for future reference or printing; they can also be transmitted to other sites 
as a means of communicating the document to a remote reader. 

By standardizing the interface between the creator of a document and the printer of a docu­
ment, Interpress avoids a proliferation of special-purpose software. In the absence of an inter­
change standar~ every workstation would be required to contain software for driving a wide 
range of printers-any printer that a customer wishes to attach to the workstation, either 
directly or indirectly through a communications network. By standardizing the representation 
of documents to be printe~ Interpress allows each workstation to have only a single interface, 
to Interpress. The documents generated by the workstation can still be printed on a variety of 
printers, but each printer is now responsible for interpreting a single Interpress interchange 
standard. 

The definition of the Interpress interchange standard need not be concerned with the 
properties of the communications and storage .faCilities that are used to connect the document 
source to the printer. These facilities are said to be transparent to Interpress, i.e., they simply 
transmit or store the data without examining it or modifying it in any way. Any transparent 
communications or file system will do. As a consequence, Interpress specifies only format of 
the interchange data and not the hardware interfaces used to transmit or store it. 

1.2 The nature of the Interpress standard 

All computer -printers are linked to the computers that control them with some sort of inter­
face, which exchanges more information than just the data to be printed. For example, at the 
beginning of each line, a line printer honors carriage-control codes, which specify vertical spac­
ing. In the past, these interfaces corresponded closely to the capabilities of the printer: if a 
printer could print characters of different sizes, then the interface offered a command to 
change size; if a printer could print superscripts, then it offered a way of specifying super­
scripts. The data flowing on the computer-to-printer interface consisted of device controls, 
including a command to control every option of the printing device. 

Computer-driven raster printers are capable of printing any imaginable combination of text, 
graphics, and pictures-in fact, anything that can be printed with a traditional printing press 
can be printed with a good enough raster printer. It is therefore no longer reasonable to design 
an interface as a set of commands that correspond to the capabilities of some particular printer. 
A raster printer can print anything at all simply by arranging an appropriate pattern of black 
and white dots on the image, and it is the expressive power of the interface rather than the 
capabilities of the printer that will limit the range of images that can be printed. Since the 
nature of the interface is not dictated by the properties of the printing machine, it is now pos­
sible to have a universal interface, an interchange standard, in which any document at all can 
be represented, and that can control any raster printer. Interpress is such a standard. 

A wide variety of designs could be used for interchange standards, since the properties of the 
printing machine no longer impose on the interface format The following sections explain the 
way Interpress approaches the interchange problem. 

~91/1!. Xerox 
I!Q~ Private "'0" Data 

3 



1 

4 

Introduction 

1.2.1 Interpress is not pictorial 

One possible way to define a digital printing standard might be to mimic the interface to a 
traditional printing press by presenting the printer with a facsimile picture of what its output is 
to be. The computer program would prepare data directly in raster format and the raster 
printer would print it verbatim. There are several disadvantages to this scheme, however: 

• Raster data takes up an enormous amount of storage space-often hundreds of millions of 
bits to represent the image on a single page. A raster representation of a four-color 
halftone page from a high-quality retail catalog typically takes 160 million bits to store. 
This kind of storage inefficiency slows down transmission and increases storage costs. An 
Interpress document should be as compact as possible. 

• Raster data is dependent on the resolution of the printing device-the number of dots to 
the inch. If the resolution of the raster printer is not the same as the resolution intended 
by the programmer, then the printed image will have the wrong size or shape. An 
Interpress document should print equally well on a wide range of printers, regardless of 
their resolution or scanning convention . 

pictorial 

geometric 

texrual 

•• •• •• ••• •••• •• •• •• •• •• •• •• • •• •• •• •• • • •••••••• •••••••• •• •• •• • •• •• • •• •• • •• •• •• ••••• • ••••• ••••• • ••••• 

"The 65th character in the font 
named Times Roman 10" 

Figure 1.4. Three ways of printing the letter" A" on a page 

~9" Xerox 
~QI" Private 
"'[j~ Data 



Introduction to Interpress 1 

• It is not possible to do a good job of transforming raster images-rotating them, shrinking 
them to fit into a particular space or to accommodate a different printer resolution, and so 
forth. Yet these transformations are vital to an artist or editor assembling high-quality 
published material. 

• If the printed page is to contain text, the computer program that generates it must have 
access to all of the raster pictures of all of the letters in all of the fonts that it will be 
using. This adds a huge burden in complexity and storage to the generating program. The 
task of creating an Interpress document should be as simple as possible. 

To help compare the approaches, consider Figure 1.4, which illustrates several different ways 
that a print representation could produce the same pattern on a page. The first row depicts a 
facsimile representation, which takes about 1500 bits to store at typical raster printer resolution. 
The second row shows a geometric representation, which takes about 500 bits to store the vec­
tors in the outline. The third row shows a textual representation that instructs the printer to 
extract a character from a particular font; this method requires about 10 bits to represent a 
character. The third approach is the one preferred in Interpress.-

For all of these reasons and more, Interpress is not a pictorial-standard-it does not specify an 
image of the printed page-but is instead a set of instructions to the print software to generate 
that image. 

1.2.2 Interpress is not static 

The appearance of a paper original is limited only by the skill of the artist, who is free to use 
any combination of colors, shapes, sizes, typefaces, and textures that he can draw on the paper 
or glue to it The appearance of the copies made from that original will be determined by the 
quality of the printing press. Printing processes that range from inexpensive black-ink offset 
printing to seven-color sheet-fed gravure printing can be used to reproduce the same original, 
and the quality of the resulting copy will vary accordingly. 

The appearance of material printed by a raster printer is limited by the skill of the artist and 
by the quality of the printer, in precisely the same way that material from a printing press is 
limited by those factors. But since there is no paper original that the artist can use to draw and 
paste and color in an arbitrary way, the appearance is also limited by the ability of the artist to 
communicate to the computer just what it is that he wants the printer to print. 

A standard for print graphics must not have built-in limitations on its expressive power. There 
must be no pictorial or textual combination that cannot be specified with it. Otherwise, it will 
eventually become obsolete. To help avoid limiting the power of Interpress, a master is 
represented as a program, written in the Interpress programming language, that is executed by 
the printing machine to produce the finished document Although most Interpress masters will 
consist entirely of simple imperative statements, such as "place the letter b here," the full 
power of a programming language is available for complex applications. Programming may be 
used if the master must adapt to various properties of a printing device, such as whether it can 
print in color or only black-and-white. Programming is also used by utility programs to change 
Interpress masters in complex ways. 

~y .. Xerox 
~Q~ Private 
"'O'fi Data 

5 



·1 

6 

Introduction 

1.2.3 Interpress is not device-specific 

Interpress permits documents to be represented in a way that is independent of any particular 
printing device. That means that as long as the printer is sufficiently powerful. the Interpress 
representation of a document does not depend on the details of the printer. Whether the 
printer is color or black-and-white. high or low resolution. continuous-tone or black-only, an 
attempt to print an Interpress document on that printer should yield a usable result. The goal 
device independence is responsible for the complexity of the Interpress standard. 

Although Interpress is designed for raster printers and other highly capable devices. it may also 
be used with other less capable printing devices, including impact printers. When dealing with 
less capable "low-endu devices, there are two entirely different interpretations of the notion of 
device independence. The first kind of device independence views the digital representation of 
the document as an ideal: a specification of what the document would look like if it were 
printed on a perfect printer. A low-end printer must do the best it can to imitate the ideal. 
The second kind of device ~ndependence views the digital representation of the document 
more loosely-as a collection of material that is to be formatted and presented to the reader 
according to the best abilities of the device. In this second model, .the printer's job is to make 
the best presentation of the material, regardless of how much that deviates from the way it 
would look on an ideal printer. 

Each kind of device independence is· appropriate in different circumstances. When the low­
quality printing device is being used as a proof printer for a high-quality printing device, then 
the first kind of device independence is called for. When the low-quality printing device is 
being used as a finished-copy printer in its own right-when the material printed on the low­
quality printer is the material that will actually go to press-then the second kind of device 
independence is called for. 

Interpress addresses both kinds of device independence. It provides the first kind of device 
independence by treating the encoded document as the specification of an ideal appearance, 
which the printer then mimics as closely as possible. An important consideration in the design 
of Interpress is the choice of image-generation functions that allow printers to exert their best 
efforts to approximate the ideal appearance, and to cope gracefully with masters that contain 
image-generation functions beyond the capability of the printer. Certain low-end printing 
devices are not able to print any Interpress masters satisfactorily; these are devices that severely 
restrict the allowed positions of characters on the page. Most word-processing printers can 
print satisfactorily a document specified in Interpress that contains only text in a single font. 
Some printing devices, such as optical photocomposers, can do a good job of printing 
Interpress masters that call only for text characters, but they must leave blank space where 
graphics and facsimile images would appear. Finally, some equipment can print arbitrary 
Interpress masters with very high quality. 

Interpress can also be used to obtain the second kind of device independence. In this case, the 
software that generates the document obtains detailed information about the capabilities of the 
printer that will print it, and formats the material so that it will appear pleasing on that par­
ticular device. In this case, it is not the device-independence features of Interpress that are 
important, but rather its function as a universal interchange format for controlling printers. 

~ .. ~ Xerox 
I!Q;!II Private 
~f.j~ Data 



Introduction to Interpress 1 

1.2.4 Interpress is not a text formatter 

An Interpress printer makes no formatting decisions. The information conveyed to a printer by 
Interpress instructs the printer exactly where on the page to locate each character, line, image, 
or other graphical object. An Interpress printer is not intended to decide how long a line of 
text will be, to break long lines into multiple lines if necessary, or to decide how many lines 
will fit on a page. These formatting calculations, if they are necessary at all, are performed by 
the software that converts a document into Interpress format rather than by the printer. During 
this conversion process, which is sometimes called composition, the software decides where on 
the page every object is to lie and then uses Interpress to convey this information to the 
printer. 

1.3 Overview of the Interpress standard 

The representation of a document in the Interpress standard is called a master, a term chosen 
by analogy with conventional printing reproduction techniques. Any computer program that 
generates an Interpress master is called a creator,· any program that interprets a master to make 
an image is called a printer. 

The master can be viewed as a set of commands to instruct the printer how to construct the 
image of each page of the document. The function of the printer is much like that of a 
draftsman: it -is presented with detailed instructions for constructing an image, not with the 
image itself. 

The master is actually a program coded in the Interpress programming language and 
represented digitally as a sequence of bytes. The procedural nature of the master is entirely 
invisible to someone who is using an application program that generates Interpress output-a 
user is free to think of an Interpress master as a data file that, when sent to an Interpress 
printer, will produce printed output. However, a programmer who needs to write a creator 
program must be aware of Interpress' procedural nature. Each Interpress printer is an inter­
preter for the Interpress programming language; it interprets the operands and operators in an 
Interpress master to produce actual printed output. The printer is said to interpret the master 
or, equivalently, to execute it. 

The Interpress language definition is divided into two parts. One part is the description of the 
imaging operators in Interpress-the operators that build up an image by placing characters, 
drawing lines, inserting halftones or facsimile images, and so forth. The other part is the 
description of the base language, which is a set of rules for recording invocations of imaging 
operators in a master. Although the imaging operators are the heart of Interpress, the base lan­
guage is described first so that it can be used in the descriptions and examples of the imaging 
operators. 

1.3.1 The base language 

Like all programming languages, Interpress has both syntax and semantics. The semantics of 
the Interpress language are the rules for how the various operators behave when they are 
executed by the printer, and the syntax of the language is the set of rules for how the calls to 
those operators are coded in a master. Because Interpress masters are intended to be created 
and interpreted by programs and not by people, the syntax need not be elegant or even very 

~" .. Xerox 
II!Q~ Private 
"'[j~ Data 

7 



1 

8 

1 1 ADD 

Introduction 

readable, and in fact the syntax of an Interpress master is designed to make it easy for 
programs to produce and easy for programs to interpret 

Interpress is a stack-oriented language, and we can most conveniently view its operators in a 
postfix notation. Postfix is a notation like that used on some hand-held calculators, in which 
the operands are pushed onto a stack and then the operator is executed, whereupon it removes 
its operands from the stack and replaces them with its result(s). The major syntactic difference 
between an infix notation and a postfix notation is that postfix operators follow their argu­
ments while infix operators usually appear between their arguments and use parentheses to 
indicate the order of operations. For example, the computation represented by the infix 
notation 1 + 1 might appear in postfix as 

Changing the name of the operator "+" to ADD is unimportant; what is important is reorder­
ing the notation so that the operator appears last; hence "post" fix. By way of a second 
example, the computation (4*14 )+6 might be represented in postfix as 

4 14 MUL 6 ADD 

To understand this second example, we must know that the multiplication operator MUL 
requires two operands (the 4 and the 14), and returns one operand (their product), and that 
the addition ·operator ADD also requires· two operands (the product and the constant 6). 

Some operators return no results at all on the stack. These operators are usually executed 
because they have an important side effect, an. effect not on the stack but on some other piece 
of the interpreter. For example, the program 

-12843 12 FSET 

sets the value of the 12th frame variable to -12843, but leaves no result on the stack (frame 
variables are explained later). By far the most interesting operators that are executed for side 
effect are the imaging operators that are used to build up an image to be printed. 

1.3.2 Imaging operators 

An Interpress printer interprets, or executes, a master in order to print the document it 
represents. During that execution, the printed document is built up one page at a time, and 
each page is printed before the next one is begun. The printer maintains a page image inside 
it, which is a pictorial representation of what the page would look like if it were printed at that 
moment. The imaging operators make changes to the page image. 

A complex image is built up by starting with a blank page image and making a sequence of 
changes to it. Each individual change is a simple one, usually adding a single graphical object 
to the image. Images can be built up by placing on the page text characters obtained from font 
libraries, possibly scaling or rotating them before placement Images can be built up by draw­
ing lines, which can range from horizontal and vertical lines to complex polygons. Closed areas 
defined by polygons can be filled with ink. Facsimile pictures, including halftones. can be 
placed on the page. Images are built up using arbitrary combinations of these graphical primi­
tives. 

~ ... Xerox 
e.JQ~ Private 
if[j~ Data 



Introduction to Interpress 1 

The task of maintaining and altering the page image is undertaken by the imager. Thus the 
functions of the printer divide neatly into two parts: a base language interpreter, and the 
imager. As the master is executed by the interpreter, calls are made to imaging operators in the 
imager, which result in building up the page image. Operands for imaging operators are passed 
in the stack, just like operands to arithmetic operators. In addition, imaging operators refer to 
information held in some imager variables. These variables are conceptually like additional 
arguments to imager operators, but are kept separate to reduce the number of arguments to 
frequently-used operators. Information that changes only occasionally is kept in imager vari­
ables. while information that is likely to be different for each calion an imaging operator is 
provided as a stack operand to the operator. 

An important imager variable is a current transformation, denoted by the symbol T. The cur­
rent transformation is a linear transformation, a sort of mathematical lens. that is applied to all 
operators that specify a position on the page. If the current transformation is set to something 
that magnifies by a factor of 2, then all distances and character sizes will be automatically 
doubled. If the current transformation is set to something that leaves the size alone but rotates 
90 degrees to the right, then all images generated will be rotated 90 degrees to the right. The 
versatility of Interpress is due in large part to the use of transformations-they provide a 
uniform way to achieve a wide range of effects, such as obtaining characters of different sizes 
and orientations, reducing or rotating an entire page image, combining separately prepared 
illustrations and text into a single master, and so on. 

One of the most commonly used imaging operators is the one that "shows" a string of text on 
the page. This operator depends on some setup for selecting a typeface, a transformation that 
will determine the text size and rotation, and a starting position for the text string. The follow­
ing program fragment will print on the page the string "Interpress": 

0.07366 0.23876 SETXY 
<Interpress) SHOW 

The first line shows one of the setup operations, namely setting a starting position for the text 
string. The second line places on the stack a representation of the character string "Interpress" 
and calls the imaging operator SHOW to place the characters on the page image. 

1.3.3 Encoding 

An Interpress master is encoded as a sequence of digital values (bytes) that can be transmitted 
to a printer. Most computer programs are represented as a sequence of text characters, which 
are then encoded into digital values using a character set, a correspondence between each 
character and a digital value. For a number of reasons, this approach is not used in Interpress. 
One important reason is that text representations are not sufficiently compact when a great 
deal of numeric data must be encoded, as for example in a facsimile image. A second reason is 
that the process of decoding the program from the text (usually called lexical analysis) is cum­
bersome and slow. And finally, since Interpress programs need to be read only by computer 
programs and not by people, the text form offers little advantage. 

The Interpress encoding specifies rules for representing each literal of an Interpress master by 
one or more 8-bit bytes. A literal is an instance of a particular type of object that occurs in the 
program. For example, ADD and MUL are primitive operator literals: "147" and "-12483" are 
number literals. Encoding rules specify how each literal will be represented. For example, the 

~y .. Xerox 
II!Q~ P riv ate 
.,O~ Data 

9 



1 Introduction 

FSEf literal is represented by a single 8-bit byte whose decimal value is 149. The MUL literal. 
which is used less often, is encoded as a two-byte sequence: 160. then 210. The encoding rules 
are designed so that the Interpress interpreter in a printer can quickly decipher the sequence of 
bytes in the master and recover the literals. 

Examples of Interpress masters, such as those that appear throughout this document, are 
presented using a textual notation, more in keeping with conventional programming languages. 
While examples might be more accurately presented as a sequence of encoded 8-bit values, 
they would be very difficult for people to read. The difference between our textual notation 
and the Interpress encoding is somewhat akin to the difference between an textual assembly 
language and its corresponding binary encoding of computer instructions and data. More 
details on the presentation of examples will be introduced as they are needed. 

1.4 How Interpress masters are printed 

10 

Each printer that prints Interpress masters is an interpreter that executes the Interpress lan-. 
guage contained in a master. That execution produces the desired printed output Most, but 
not all, of the information required to print a master is ·provided in the master itself. Two 
kinds of information supplement that which is provided in the master: data from an environ­
ment maintained by the printer and printing instructions that specify details of the printing 
request. 

1.4.1 The environment 

The environment is a library of data that a printer may refer to when printing a document. 
The principal use of the environment is for character fonts: most masters will request charac­
ters to be placed on the page image. but will not wish to specify in detail the exact shape of a 
character. In these cases, the master specifies the size, position, and rotation of each character, 
but relies on a font defined in the environment to specify the shape. 

Each Interpress printer may have an environment that differs from environments on other 
printers. There are a number of ways in which environments may differ. First, the collection of 
fonts contained in a printer's environment may differ from that of another printer. Second, it 
is possible that two printers both have a font named "Times Roman," but the fonts differ sig­
nificantly. This situation already arises frequently in phototypesetters, where one manufac­
turer's "Times Roman" differs from another's. And finally, even if fonts are carefully named so 
that each design has a unique name, printers may have different versions of a font-one may 
incorporate slight adjustments in order to improve its appearance on the printing device. 

The environment obviously raises some problems for device independence. If the environments 
on two printers differ, the same master may produce different images on the two devices. This 
problem will be muted in practice by conventions that will tend to make environments similar 
or identical. For example, printers from the same product line and installed in the same 
organization will usually have identical environments; the printer manufacturer will provide 
some fonts as a standard part of the product, and the organization may have an additional font 
containing special symbols and logotypes installed on all its printers. In this way, masters 
created and printed within the organization will print correctly. If a master is transmitted to an 
organization that has configured its environments differently, it may be printed differently. 
Unfortunately, it is simply not practical to standardize environments so as to guarantee 
absolute device independence. 

~9", Xerox 
II!Q~ Private 
.."U~ Data 



Introduction to Interpress 1 

1.4.2 Printing instructions 

When a master is presented to a printer for printing, it is usually accompanied by some print­
ing instructions. Examples of instructions are the number of copies to be made. the name of 
the person who requested that the document be printed and to whom it is to be delivered, the 
kind of finishing required (e.g., stapling, binding, collating), the kind of paper or stock on 
which to print, the identity of an account to be charged, and perhaps special security measures 
to prevent others from seeing the document. Interpress defines a mechanism for specifying 
printing instructions in the master as well as in a printing request. 

1.4.3 Subsets 

Because the Interpress standard is so general, there will certainly be cases where it is necessary 
for a printer to ignore some parts of a master. For example, a raster printer with very simple 
software might honor only horizontal and vertical lines while ignoring lines at any other angle. 
To provide a certain amount of regularity for printers that must implement only subsets of 
Interpress. the notion of subset is defined. All Interpress printers must support the text 
lnterpress subset, which includes text, horizontal and. vertical lines, and black ink. Other sub­
sets support arbitrary graphics, scanned images, shades of gray, and colors. 

1.5 Manipulating Interpress masters 

Paper masters can be cut- and pasted, photographed and scaled, and manipulated in other 
ways. The programmability built into lnterpress allows a master to be created that will 
automatically adapt itself to varying circumstances by testing its environment and creating dif­
ferent images accordingly. Nevertheless, there are many sorts of manipulations that either can­
not be anticipated at the time the master is created or are too complicated to build into the 
master at creation time. These operations are performed by means of what are called master 
manipulations, and are carried out by one or more utility programs. 

The Interpress language is carefully designed to make master manipulations tractable without 
requiring the utility program to understand the details of the master that it is manipulating. 
Le.. the manipulation is purely syntactic. The simplest utility program need only be able to 
locate the major components of a master and copy them bodily. More complicated 
manipulation may involve rearrangement of pieces of various masters, possibly separating one 
master into several or merging several masters into one. Some manipulations may require the 
utility program to look inside the components of a master and change what it finds there. 

Here are three examples of lnterpress master manipulations, listed in increasing order of their 
complexity. The first example requires only physical replication of parts of an existing 
Interpress master; the second example requires intelligent substitution of one master into an 
appropriate spot in another. The third example requires that a geometric transformation inside 
the master be modified and that pairs of adjacent pages be combined. 

As our first example, let us suppose that we have an Interpress master that represents an 11-
page document. A new document is to be created, containing pages 1, 2, and 4 from the 
original. As shown in Figure 1.5, the original master is passed through a utility program that 
creates a new master by copying the parts of the original master that define pages 1, 2, and 4. 

~w .. Xerox 
~Q~ Private 
.."",0 .... Data 

11 



1 

12 

Introduction 

Original Interpress master 

New Interpress master 

Figure 1.5. Selecting pages from an Interpress master 

-§ 
scanned 
facsimile 

Individual masters for 
the components of a document 

Interpress master 
for a complete 

document 

Figure 1.6. Merging separately-created pieces into one master 

~, Xerox 
Private 

~~ Data 



Introduction to Interpress 1 

As a second example, suppose that a document like this Interpress introduction you are read­
ing is being produced, containing both text and figures. The authors of this hypothetical docu­
ment choose to use separate programs to create the pictures and the text, and in fact one of 
the pictures is a digitized photograph. Figure 1.6 shows the manipulation that is used to merge 
the complete set of files together into a single document. 

As a third and final example of manipulating Interpress masters. suppose that you have a 
master for a document intended to be printed on 81h x 11 paper, such as this Introduction. 
Suppose further that you need to print that same document in what is sometimes called a 
"two-up signature" format, in which two pages' worth of text are printed on each side of each 
piece of paper, shrunk down to about half of their former size and rotated 90 degrees to the 
left. This manipulation can be done by changing the geometric transformation associated with 
each page in the Interpress master to cause a rotation by 90 degrees and a size reduction by a 
factor of 0.65 to be applied to the page. The various page definitions are then rearranged and 
combined so that when the sheets are printed, folded up the middle, and stapled. the pages 
will come out in the right sequence. This operation is shown in Figure 1.7. Note that an edge 
of each signature page is unused because of the paper shape and that the order of the pages 
has changed to compensate for the signature binding. More complex master manipulations of 
this sort can be used to assemble images for 16-page signatures such as those commonly used 
in the printing industry. 

Original Interpress master 

New Interpress master 

Ordinary 8.5 x 11 page images 

front 

1111 11111 lilt 

1111111111111/ 

back 

: '1111 ~ 1111 

: r 111111111 

Two-up signature page images 

Figure 1.7. Preparing two-up signature pages 

~.~ Xerox 
~Q!t Private 
ifO~ Data 

13 



1 Introduction 

Some manipulations of Interpress masters are so frequent and simple that they can be per­
formed "on the fly" by certain printers. For example, a high-speed printer can print selected 
pages from a master, making a selection of pages according to printing instructions supplied in 
the printing request. 

Manipulating a master with a utility program is not the same as editing the document with a 
document-preparation system. Master manipulations are not intended for fixing typographical 
errors or inserting new text, because these changes will require formatting decisions, and could 
lead to repaginating the entire document That is the job of a text formatter, not of an 
Interpress utility. 

1.6 Summary table 

14 

Interpress Goals 
• Standard representation of information to be imaged on a raster printer 
• Independent of printer properties 

Resolution 
Coordinate system orientation and units of measurement 
Special capabilities such as color, scanned images, graphics 

• Applications 
Computer printing 
Word processing 
Graphical and image output 
Publishing 
Engineering drawings 
Video displays ... and more 

• Non-pictorial representation 
Reduces storage requirements 
A voids resolution dependence 
Provides transformation capability 

• Represented as statements in a language 
• Mechanisms to control printing, accounting, and distribution functions 

Number of copies to print 
Copies may differ slightly, e.g., for addressees 
Print one side, both sides 
Finishing information, e.g., stapling 
Break page shows document name, requestor, etc. 

Interpress Non-Goals 
• Not a composition system 

Documents must be pre-composed 
Will not change line-ending, page-ending, or other formatting decisions 

• Not a document representation 
Not intended for general-purpose editing 
Used as an "output" format only 

• Not intended to be created by humans 
Intended to be computer-generated as output of an editing or composition system 

Xerox 
Private 
Data 



Introduction to Interpress 1 

1.7 Guide to Interpress documentation 

Several forms of documentation about Interpress are available. Each serves a different purpose. 

The Interpress Electronic Pnnting Standard [26]t hereafter called "the Standard." is the 
reference document for the current version of the Interpress standard. It is written with 
precision and accuracy in mind and as a result is not easy to read. The Standard is the 
authoritative definition of Interpress; other documents are secondary. If errors in the definition 
of Interpress are discovered. they will be repaired by new editions of the Standard. 

The Interpress Reader's Guide [27] is a companion to the reference document. It provides com­
mentary on various aspects of that document 

The Introduction to Interpresst the document you are reading, is a tutorial that presents all but 
the most advanced concepts of Interpress. It is designed to be read sequentially and has 
numerous examples of correct Interpress masters. When this Introduction to I nterpress refers to 
itself, it will be called "the Introduction." 

1.7.1 Guide to this document 

A basic understanding of Interpress can be obtained by reading Sections 2 - 8 of this docu­
ment Sections 9 -17 treat more complex aspects of Interpress. Section 17 is a collection of 
hints and suggestions for constructing Interpress masters. Sections 18 - 21 deal with printing 
Interpress masters. Section 22 describes how Interpress can be used as part of larger document­
handling systems. Finally, Section 23 presents some of the rationale behind the design of 
Interpress. 

A reader who desires only a general understanding of Interpress is encouraged to read Sections 
1-8 and as much of the remainder of this document as possible. Section 22 is also recom­
mended. 

A reader who intends to write a program to create Interpress masters is counseled to read this 
entire Introduction to Interpress along with the Standard. The Introduction is not self-con­
tained; frequent reference to the Standard will be required. 

The Introduction contains cross references both to itself and to the Standard. References to 
other sections of the Introduction are mentioned using the spelled-out word "Section," for 
example "see Section 3.1." References to the Standard are mentioned with the section sign "§," 
as for example "see § 2.5." The Standard contains a very helpful glossary. which is not 
reprinted in this document 

Fine-print passages such as this one appear occasionally. They usually contain detailed discussion of topics that are 
not central to understanding Interpress. It is probably best to ignore them on a first reading. 

Throughout this Introduction, Interpress is described in a simplified, often incomplete way. 
This style is essential to an introduction, where complexity must be avoided to ease compre­
hension. The reader is warned that this strategy will oversimplify Interpress. The Standard is 
the only complete documentation for Interpress. 

~9~ Xerox 
I!Q[4 Private 
.,O~ Data 

15 



1 Introduction 

~9~ Xerox '8' Private Data 
16 



2 

Base language I 

The Interpress standard consists primarily of a set of imaging operators embedded in a 
programming language called the Interpress base language. The imaging operators can be 
regarded as built-in functions and the base language as the computational framework that 
invokes them. 

The base language is a programming language in which programs will not be .written by 
people, but will be created by other programs. In that regard. it is more like an instruction set 
than a programming language. Furthermore, programs in the base language will be executed 
by the support computers attached to printers, which may not always be fast or powerful. The 
base language is therefore somewhat primitive by the standards of modem programming lan­
guages. 

The base language is thus best understood as a machine language for a particular stack­
oriented postfix machine that supports a number of imaging operations in addition to its run­
of-the-mill instruction set. In the absence of a computer custom-tailored to this machine lan­
guage, the Interpress machine is simulated by an interpreter running on an ordinary computer. 
We say that this interpreter is an implementation of the Interpress virtual machine. which is to 
say that the interpreter can be used to execute Interpress masters by simulation. 

The Interpress base language, as a machine language for the Interpress virtual machine, shares 
with other machine languages three properties that make it different from ordinary program­
ming languages: 

• The language has minimal syntax. 

• An Interpress program does not use identifiers for naming variables, procedures. and the 
like. (The language does support identifiers, but they are used for referencing objects out­
side the Interpress program, in the environment) 

• An Interpress program need not be compiled or pre-scanned in order to be executed; it 
can be interpretively executed one literal at a time. 

The Interpress base language is conceptually similar to the Forth language that is popular 
among microcomputer users. Its execution is very straightforward: when the interpreter 
encounters an operand, it pushes it onto the runtime stack. When the interpreter encounters an 
operator, it executes it. Most operators pop some number of operands from the stack. compute 
with them in some way. and then push some number of results back onto the stack. rr=====::::;, 

Xerox 
Private 
Data 

17 



2 

18 

Base language I 

Base 
Language 
Interpreter 

Imager 

---------------
Page 
Image 

[QJ I SETFONT 110.07366 110.23876 II SETXY I [i] I FGET 

~--t The 

~--t stack 

Master being processed 

The frame 

4-Storage for interpreter state 

Imager variables 

Figure 2.1. Structure of an Interpress printer 

An important consideration in the design of the base language is that it must be interpreted 
identically on a range of printing equipment. Each Interpress printer will have a small com­
puter attached, whose job is to interpret Interpress masters. Since different printing equipment 
may use computers with different properties, it is important that the Interpress base language 
specify interpretation rules in a way that does not depend on the computer's properties. These 
requirements are the source of some of the complexity in the Standard. 

This section introduces a few of the constructs of the base language. More of the base lan­
guage is covered in Section 12. The base language is described in detail in § 2. Figure 2.1 
shows a rough diagram of the major components of the base language's computation environ~ 
ment 

Xerox 
Private 
Data 



Introduction to Interpress 2 

2.1 Types in the Interpress base language 

While the Interpress base language is similar to that of a pocket calculator in that a stack and 
operator postfix interpretation scheme is used, Interpress manipulates values of several dif­
ferent types, while a calculator manipulates only numbers. Interpress allows about a. dozen dif­
ferent types of values to appear on the stack and to participate in interpretation. For the 
moment, only a few will concern us. 

The first three types are similar to types found in conventional programming languages: 

• Number. A number is a computer representation of a rational number; it is like a floating­
point number in conventional programming languages. While the discrete and finite nature 
of digital computers does not allow all rational numbers to be represented (§ 2.2.1. § 5.2), 
Interpress guarantees that a good deal of precision is maintained. 

An Integer is a non-negative integral Number. Integers do not constitute a distinct type. 
but rather are a subset of Numbers. 

The Standard makes a distinction between Integer (capitalized) and integer (not capitalized). The capitalized 
form is given a formal definition in Interpress: Integers are greater than or equal to zero. The low-case in­
teger, on the other hand, is simply an integral Number, which may be negative. This distinction is historical. 
and somewhat unfortunate. 

• Vector. A vector is a sequence of values; each value in the sequence is called an element of 
the vector. An element in a vector is named by its index, an Integer. An Interpress vector 
is like a. cross between the arrays and records that are present in a conventional language 
such as Pascal. Like Pascal's arrays, Interpress Vectors have elements that are named by 
numeric indices; like Pascal's records. Interpress Vectors may have elements of different 
types. 

• Primitive Operator. A primitive operator is a function built into the Interpress virtual 
machine, just as the "+" and "*,, operators are built into most programming languages. It 
is by executing operators that work gets done. There are two kinds of primitive operators: 
base-language operators and imaging operators. Among the base-language operators are 
conventional functions such as ADD and MUL. The imaging operators are those that are 
concerned with changing the page image to create an output image; for example, the imag­
ing operator SHOW places characters on the page image. 

The following types in Interpress do not appear in most programming languages: 

• Identifier. An Identifier is a name, represented as a sequence of lower-case letters, digits, 
and the minus sign" - ", which must begin with a letter. While most programming lan­
guages use identifiers, usually identifiers are not values that can participate in computation; 
by contrast, Interpress passes identifiers as operands to certain operators. Identifiers are not 
used very frequently in Interpress masters, but almost every master has some. 

• Body. A Body is a sequence of literals. Since we haven't yet defined a literal, it's a bit dif­
ficult to envision a body. For those familiar with Algol-like languages such as Pascal, a 
body is like a sequence of statements contained in a BEGIN-END block. The notion of 
bodies should become clear in Section 3. 

A great many Interpress masters can be created using only these five types. Details of the 
domains of these types are given in § 2. 

~y~ Xerox 
IIJJ~~ P riv ate 
"'0'1 Data 

19 



2 

2.2 Literals 

Base language I 

Literals are the primitives from which a master is made: a master is a sequence of literals of 
various types. Number, Operator, Identifier, and Body literals may all appear in Interpress 
masters. The term literal conveys the notion that a value of that type is literally present in the 
master, as distinct from a computed value that may exist only on the stack during interpreta­
tion. 

In order to represent literals in the master, they are encoded into a sequence of 8-bit bytes. It is 
also useful to have a written fonn of each literal, so that examples of Interpress masters can be 
exhibited in this and other documents without requiring the reader to decode the long 
sequences of numeric values that result from the encoding rules. Encodings are explained in 
Section 1.3.3 and § 2.5. 

2.2.1 Written form 

20 

Conventions for writing a literal value are associated with each type that can have a literal in 
the master: 

• Number. Number literals are written using the conventional decimal notation as a string of 
decimal digits, with an optional leading minus sign "-", and optionally containing a 
decimal point. Thus - 2, 1734, 205781302216. 14.5. and - 3.2 are all Numbers. 

In the Standard a number may also be written as a quotient of two integers. separated by the hI" charac­
ter. Thus -1113 and 10/ - 3 are Numbers. Moreover, the literals 31110. 93/30 and 3.1 have the same 
value. This quotient form will be used rarely in this document 

The decimal fraction notation is used only in the written form. So-called floating-point numbers do not 
appear in a master encoding. Instead, each decimal fraction is converted to the quotient form. which 
requires only integer representations. For example. 1.25 can be converted to U5/100 and 1.1 to 11/10. 

• Primitive operator. A primitive operator literal is written by giving its name as a word in 
upper-case letters and digits, such as MUL, ADD, POP, COPY. A glance at § B.2 will reveal all 
the Interpress primitive operators. Beware that words that look like operators but begin 
with "*,, represent operators that have no literal representation; these symbols are used to 
represent operators internal to the printer but inaccessible to the master. These are 
included in the Standard because they are useful in explaining the semantics of other 
operators. 

• Identifier. An identifier literal is written as a word that has at least one lower-case letter in 
it; it may also contain digits and the minus sign "-". Th us Helvetica. version - 2. and Xerox 
are all identifiers. 

• Body. A body literal is a sequence of literals, and is written by enclosing the written form 
of the sequence inside brackets { }. For example, { 1 13.4 MUL } is a body literal. A body 
is not a vector; a body is like a piece of a program, while a vector is a subscriptable collec­
tion of data. A body contains only literals. while a vector contains only values. The pur­
pose of a body is to be executed at some point during the printing of a master. It cor­
responds somewhat to the familiar BEGIN/END blocks in other programming languages. 

The list above is actually a complete list of all the literals that can appear in an Interpress 
master. There are additional data types in Interpress, such as Vector, but these have no literal 
fonns. Instead, these types are constructed using primitive operators. a process explained fur­
ther in Section 2.4. 

~9~ Xerox 
~Q;~ Private "'0" Data 



Introduction to Interpress 2 

Comments may be interspersed among literals in the written form. Any text between pairs of 
double-minus-signs is a comment. Thus --this is a comment-- is a comment. Comments are used 
extensively in this document to help explain the contents of a master. Often a line of an 
example will begin with a comment that identifies the line number, e.g., --14-- so that the 
accompanying text can refer to it. 

When the literals of a master are written in an example, they are usually formatted so that 
they can be easily read; this formatting is irrelevant to the contents of the master being 
illustrated. New-line characters, tabs, and spaces may all appear between literals, so that 
Interpress masters in the written form can be prettyprinted or formatted in any style that will 
enhance their readability. 

Several software tools, de~ribed in Section 8, produce or interpret the written form. 

2.2.2 Encoded form 

While most programming languages encode programs as a string of text characters, Interpress 
uses a more compact binary encoding. Just as there are rules for writing each literal in an 
example, there are rules for encoding each literal as a sequence of 8-bit bytes. It is this 
sequence that is a real Interpress master: it may be stored, transmitted to a printer, and so 
forth. 

You do not need a detailed understanding of the encoding rules in order to understand the 
rest of Interpress. All of our discussion and examples will deal with the written form of literals, 
with the understanding that these same literals can be encoded using the Interpress encoding 
and thereby become a real master. 

If you're curious about the encoding rules, glance at § 2.5 and at the example in Section 3.3, 
which shows an absurdly simple master in its written and encoded forms. Note that the 
software aids described in Section 8 include a written-to-encoded converter and an encoded-to­
written converter. The written-to-encoded conversion is analogous to the assembly process in a 
traditional assembler language, and the encoded-to-written conversion is like the disassembly 
process performed by machine-code-Ievel debuggers. 

2.3 Interpretation rules 

The execution of an Interpress body progresses sequentially, processing one literal at a time. 
The processing of each literal in the body depends on the literal's type. When a literal of type 
Number, Identifier, or Body is encountered, the value corresponding to the literal is placed on 
the stack. (Don't worry for now about body values on the stack-that rare case will be 
explained when it crops up in an example in Section 12.) When a primitive operator literal is 
encountered, it is executed. What happens depends upon the definition of the primitive 
operator. As you can imagine, the actions of the primitive operators are the heart of Interpress. 

We're now ready to explain a real example. This isn't a complete master, but it is a legal 
Interpress body. 

~.~ Xerox 
~Q~ Private 
."O~ Data 

21 



2 

22 

Base language I 

--Example 2.1--
--0-- { --a bracket that begins the body l1teral--
--1-- 73 --a Number literal, which is also an Integer--
--2-- 13.5 --a Number l1teral--
--3-- -1.5 --a Number literal--
--4-- ADD --a primitive operator literal--
--5-- 0 --a Number literal, which ;s also an Integer--
--6-- 1 --a Number literal, which is also an Integer--
--7-- MAKEVECLU --a primitive operator literal--
--8-- } --the bracket that ends the body literal--

To make it easy to refer to the literals in this body, each literal is placed on a separate line. 
Since this is the first example of the Interpress interpretation process, we shall present a step­
by-step history of the interpretation. In the table below, each line corresponds to the process­
ing of a single literal in the body. The table shows the line number, the literal processed, and 
the contents of the stack after the literal has been processed. The stack is represented as a list 
of values inside special brackets < >. The value at the top of the stack is the rightmost value in 
the list The stack is initially empty. 

Line 
1 
2 
3 
4 
5 
6 
7 

Literal 
73 
13.5 
-1.5 
ADD 

o 
1 
MAKEVECLU 

Stack after processing literal 
<73> 
<73> <13.5> 
<73> <13.5> < -1.5> 
<73> <12> 
<73> <12> <0> 
<73> <12> <0> <1> 
<vector of2 elements; element 0 is 73, element 1 is 12> 

It is clear from this example that a detailed description of each primitive operator is required 
in order to predict how an Interpress body will be interpreted. The Standard provides such 
descriptions. The description of ADD, for example, is (from § 2.4.9): 

<a: Number> <b: Number> ADD -. <c: Number> 
where c = a+b. 

The first line of the description shows how the ADD operator affects the stack. The items to the 
left of "ADD" show a picture of the stack before the ADD operator is executed: a Number will 
be on the top of the stack; it will henceforth be named b. Another Number will be next from 
the top, henceforth named a. The ADD operator will pop both of these elements from the stack 
at the beginning of its execution. To the right of the -. symbol is a picture of the stack after 
the ADD operator finishes execution: a Number named c will be pushed on the stack. The 
remainder of the deSCription. starting with the where clause, describes how the result, c, is 
detennined from the arguments a and b. In Example 2.1, above. a will have the value 13.5, and 
b the value - 1.5, so c will be 12. The names a, b. and c do not appear in a master or on the 
stack, but are used as part of operator descriptions solely to identify arguments and results. 

To continue with Example 2.1. the MAKEVECLU operator constructs a vector from an arbitrary 
number of arguments taken from the stack (from § 2.4.3): 

<Xl: Any>,,~<xn: Any> <I: Integer> <u: Integer> MAKEVECLU -. <v: Vector> 
where v is a vector with lower bound / and upper bound u. Let n = u -/ + 1. After u 
and / are popped off the stack, n additional values are popped; call them xn' ... , xl' 

where xn is the first value popped and Xl is the last value popped. The elements of v 
will have the values Xl' ... , Xn; i.e., the element with index / is Xl' the element with 
index /+ 1 is X2, and so on up to the element with index u, which is xn' 

r.============:::l 
~w ... Xerox 
~Q~ Private 
""'U" Data 



Introduction to Interpress 2 

The MAKEVECLU primitive operator constructs a vector, using information on the stack to 
specify the lower and upper bounds of the vector and to specify the value of every element in 
the vector. In Example 2.1, the top element of the stack is 1, a Number but also an Integer. So 
the value of u used in the execution of MAKEVECLU in the example will be 1. Similarly, the 
value of I will be O. The resulting vector will therefore have lower bound 0 and upper bound 1 
and will contain two elements. The values of the two elements Xi are taken from the stack as 
well. The value of the element whose index is 0 will be 73 and the value of the element whose 
index is 1 will be 12. Notice that the definition of MAKEVECLU allows an element to be of type 
Any, i.e., almost any type that can appear on the stack. This means that different elements of 
the vector can be of different types. 

Example 2.1 is really quite clumsy and should be simplified. The ADD operator is doing un­
necessary work: since both its arguments are literals, the result could just as easily be com­
puted by the creator before the master is constructed. Also, § 2.4.3 shows that the MAKEVEC 

operator is more convenient than MAKEVECLU when the lower bound I is zero: rather than I 
and 14 MAKEVEC requires only the total size of the Vector. So we obtain the equivalent body: 

--Example 2.2: same effect as Example 2.1--
--0-- { 73 12 2 MAKEVEC } 

2.4 Constructor operators 

Several types in Interpress have no literal representation in a master. Instead. Interpress 
provides constructor operators that create a value of a certain type from values of more primi­
tive types. Although most of the Interpress types that must be constructed have not yet been 
introduced. we have seen that vectors have no literals and must therefore be constructed. As 
illustrated in the preceding section. the operators MAKEVEC and MAKEVECLU are used to build 
vectors from their elements. 

Vectors are constructed so frequently in Interpress that special provisions are made for invok­
ing the constructor operators. In examples, we write [ xO' xl' ... xk- 1 ] as shorthand for Xo Xl • 

. . xk- 1 k MAKEVEC, which constructs a vector of k elements. This notation can be used to 
restate Example 2.2. which now becomes: 

--Example 2.3: same effect as Examples 2.1. 2.2--
--0-- { [ 73. 12 ] } 

.. ~~ 

In another form of shorthand, we write <sequence of characters> to construct a vector containing 
the "character codes" of the sequence of characters. The notation <sequence of k characters> 
stands for no n1 ... nk- l k MAKEVEC, where ni is an Integer whose value is the code for the ith 
character of the sequence of characters. The mapping from characters to codes depends on con­
siderations that will be explained later. As an example, if we use the ISO 646 [10] character 
code mapping (very similar to ASCII [l]), the written form <XeroX> is equivalent to [ 88, 101, 
114, Ill, 120 ]. or. to reduce the example to literals, 88 101 114 111 120 5 MAKEVEC. 

The rules for encoding Interpress masters into a sequence of 8-bit bytes provide two compact 
ways to represent constructions of vectors of Integers (§ 2.5.3, sequenceLargeVector and 
sequenceStrlng). From a formal point of view, these are shorthand notations that stand for the 
longer form using MAKEVEC . 

Xerox 
Private 
Data 

23 



2 Base language I 

Interpress also provides an operator for extracting an element from a previously-constructed 
vector (§ 2.4.3): 

<v: Vector> <j: Integer> GET .... <x: Any> 
where x is the value of the element of v named by j, an Integer such that 15J<u. 
where I is the lower bound of v and u is the upper bound. 

There is no operator for "storing" values into particular elements of a Vector. Once a vector 
has been constructed using MAKEVEC or MAKEVECLU, its values cannot be changed. As a con­
sequence, vectors are good for representing relatively static data structures, but are not suited 
to dynamic changes. 

2.5 Storage mechanisms 

24 

Interpress provides several different kinds of memories that an Interpress master can use to 
store values. Collectively the storage areas represent the state of the interpreter. A programc 

ming language like Pascal provides different kinds of storage, which are defined by their 
names, e.g. local variables, records, static variables, and so forth. The mechanisms of the Pascal 
storage schemes are similar to the mechanisms of Interpress storage schemes, but the Interpress 
schemes are named in terms of their implementation (e.g., the stack) rather than in terms of 
their intended semantics (e.g., local variables). 

The three storage mechanisms in Interpress are the stack, the·· frame, and the imager variables. 
They are described in tum in the following subsections. 

The careful reader will remember that the Interpress base language includes the type Vector, 
and may wonder why the Vector does not show up in our list of storage mechanisms. The 
reason is that a Vector is just a value, a thing to be stored. It does indeed happen to contain 
storage of its own, in which further values have been arranged, but the Vector itself must be 
stored somewhere. and the only possible places (besides another Vector, which doesn't help) 
are the stack, the frame, or one of the imager variables. Recall that a Vector is read-only once 
it is created, so it cannot be used for general-purpose read/write storage. 

2.5.1 The stack 

The stack plays a central role in Interpress: all primitive operators use the stack to obtain their 
arguments and to return their results. We've already seen that the interpretation rules provide 
an automatic mechanism for placing Number, Identifier, and Body literals from the master on 
the stack, where they become arguments to primitive operators. To compute with any value, it 
must first be placed in the stack. 

There are a number of operators that alter the stack contents in various ways, explained in 
detail in § 2.4.6. For example, POP discards the top element of the stack, EXCH will exchange 
the two topmost elements of the stack. and <n COpy> will copy the top n elements of the stack 
onto the stack. Since stack operators are used routinely in examples in the Introduction, you 
should glance at § 2.4.6 to become familiar with them. 

Xerox 
Private 
Data 



Introduction to Interpress 2 

2.5.2 The frame 

The frame provides a means for storing local variables. Whenever a body is executed, it has 
access to a collection of values saved in the frame. While the stack provides a similar storage 
function, access to the values in the stack is generally restricted to only the top few elements. 
By contrast, all elements of the frame are accessible with equal ease. Although at any moment 
in the execution of a master there is exactly one frame accessible-hence we speak of "the 
frame" rather than "a frame"-there is in fact a protocol for pushing and popping frames 
when certain kinds of operators are executed. This complication is not important for most 
applications, and its further discussion is delayed until Section 12. 

The frame has room for 50 distinct elements, identified by Integer indices from 0 to 49 
inclusive. Actually, the Standard states that the frame has topFrameSize elements and requires 
that topFrameSize must be at least 50, so some printers may allow more than 50 elements. 
When the interpretation of a master begins, every frame element is set to zero. You may think 
of the frame as providing 50 local variables named frame-O through frame-49. in much the 
same way that the Basic language provides 26 variables named A through Z. They are perfectly 
ordinary variables, but you get no choice in their names. 

Two primitive operators are provided for accessing the frame. The FGEf operator copies the 
value of a frame element onto the stack and the FSET operator copies a value from the stack 
into a frame element. Descriptions of these operators are given in § 2.4.4, but are reproduced 
here because later examples. will· make . considerable use of frames: 

<j: Integer> FGET -+ <x: Any> 
where the -value of j must be in the range O~< topFrameSize, and x is the current 
value of the frame element with index j. 

<x: Any> <j: Integer> FSET -+ <> 
where the value of j must be in the range O~<topFrameSize. and the value of the 
frame element with index j becomes x. 

The FGET and FSET operators behave just like the RCL and STO (recall and store) keys on a 
Hewlett-Packard calculator, except that the Interpress FSET operator causes its operand to be 
popped from the stack, while the STO key leaves the calculator's stack intact. The following 
example illustrates the use of the frame to save a rather lengthy vector that will be used more 
than once in the master, thereby reducing the size of the master's encoding: 

--Example 2.4--
--0-- { 
--1-- <The Importance of Being Earnest> --construct a vector for a page heading--
--2-- 7 FSET --save the vector in the frame element with index 7--

--other computations would generally be included here--
--3-- 7 FGET SHOW --retrieve the heading vector and pass it as argument to SHOW--

--other computations would generally be included here--
--4-- 7 FGET SHOW --retrieve the heading vector and pass it as argument to SHOW again--
--5-- } 

This example shows that the creator of an Interpress program must do the bookkeeping to 
know which value in the frame holds which variable of interest, Le., whether it is the 7th vari­
able in the frame or the 12th that contains a needed value. 

The frame is not an Interpress Vector. While elements of the frame can be changed at any 
time, elements of an Interpress Vector cannot be changed once the vector is constructed. Thus 
the frame behaves like an array in a conventional programming language. 

~9~ Xerox 
~Q!4 Private 
"'/.j~ Data 

25 



2 Base language I 

Frames are actually somewhat more complex than this description indicates. The description 
here remains accurate until composed operators are introduced in Section 12. 

2.5.3 Imager variables 

2.6 Summary 

26 

A collection of imager variables. sometimes simply called variables, is used to provide those 
arguments to imaging operators that are too awkward to manipulate with the stack. In effect, 
the imager variables hold the state of the imaging operators. 

There are 23 imager variables. identified by Integer indices in the range 0 to 22 inclusive. We 
will defer describing the precise role of each variable. The IGET operator copies the value of an 
imager variable onto the stack. and the ISET operator copies a value from the stack into an 
imager variable (from § 4.2): 

<j: Integer> IGET -+ <x: Any> 
where j must be in the range 0~<22 and x is the current value of the imager variable 
whose index is j. 

<x: Any> <j: Integer> ISET -+ < > 
where j must be in the range 0:9<22, and the value of the imager variable with index 
j becomes x. 

It is obvious from this description that the frame and the imager variables are accessed 
similarly. There are important differences; however. While no primitive operator besides FSET 

will change a frame element, many of the imager operators change imager variables during 
their execution. While there is only a single set of imager variables. we shall see in a more 
detailed description of the base language that several different frames may exist during the 
execution of a master (Section 12). And finally, while the initial values of all frame elements 
are zero, the initial values of imager variables are chosen to be convenient 

This section has presented the most common parts of the Interpress base language. sufficient to 
construct a wide variety of masters. The important elements introduced are: 

1. Types: Number (Integer is a subtype). Vector. Primitive Operator, Identifier. Body. 

2. Literals: written forms for Number. Primitive Operator, Identifier, Body. 

3. Constructors: for Vectors. 

4. Interpretation rules: A master is interpreted by a stack machine that processes literals from 
a body sequentially. It stacks a Number, Identifier, or Body literal; it executes a Primitive 
Operator literal. 

5. Frames: FSET and FGET access at least 50 frame elements. 

6. Imager variables: ISET and IGET access 23 imager variables that play special roles in the 
execution of imaging operators. 

The remaining constructs of the base language, namely composed operators. control operators, 
and marks, are described in Section 12. 

~9~ Xerox 
~Q~ Private 
ifU~ Data 



3 

Examples of simple masters 

Before continuing with more detailed descriptions of the Interpress standar<L it is time for 
some concrete examples of its use. All of these examples are relatively short-in fact, much 
shorter than most Interpress masters that are likely to be created by an application program. 

All of these examples are written forms of complete, legal Interpress masters. Because 
Interpress is a programming language, there are many different ways to represent the same 
document in it The selection of one such representation over another is primarily a matter of 
style, and there are fairly consistent notions of what constitutes good Interpress style. Because 
these are introductory examples, not all of them are examples of good Interpress style. As the 
sections unfold, so will our mastery of style. 

3.1 A one-page line drawing 

This frrst example produces an image containing four straight lines arranged to show the four 
sides of a box 1 inch high and 6lh inches wide. The bottom of the box is 9 inches from the 
bottom of the page and the left edge of the box is 1 inch from the left edge of the page. 
Assuming that the dimensions of the page are 81;2 by 11 inches. the image produced will look 
like the one shown in Figure 3.1. 

--Example 3.1: a simple rectangular box--
--0-- BEGIN { } --part of the "skeleton", ignore for now--
--1-- { --the beginning of a body that generates the page--
~-2-- 0.001 15 1SET --set imager variable 15 (strokeWidth) to 0.001 --
--3-- 0.0254 0.2286 0.0254 0.254 MASKVECTOR 
--4-- 0.1905 0.2286 0.1905 0.254 MASKVECTOR 
--5-- 0.0254 0.2286 0.1905 0.2286 MASKVECTOR 
--6-- 0.0254 0.254 0.1905 0.254 MASKVECTOR 
--7--} --end of the page body--
--8-- END --end of the master (more of the "skeleton")--

This example illustrates the overall structure of an Interpress master. Lines 0 and 8 contain 
literals that are part of the skeleton, a structure that is described in Section 4. In the example. 
the simplest possible skeleton is shown, configured for a master that contains only a single 
page to be printed. Embedded inside the skeleton is a page body (lines 1-7), which is inter­
preted by the Interpress printer in order to generate the page's image. 

~9~ Xerox 
~Q~ Private 
"LJ'* Data 

27 



3 

28 

Examples of simple masters 

--Example 3.1: a simple rectangular box (REPRINTED FOR REFERENCE)--
--0-- BEGIN { } --part of the "skeleton", ignore for now--
--1-- { --the beginning of a body that generates the page--
--2-- 0.001 15 15ET --set imager variable 15 (strokeWidth) to 0.001 --
--3-- 0.0254 0.2286 0.0254 0.254 MASKVECTOR 
--4-- 0.1905 0.2286 0.1905 0.254 MASKVECTOR 
--5-- 0.0254 0.2286 0.1905 0.2286 MASKVECTOR 
--6-- 0.0254 0.254 0.1905 0.254 MASKVECTOR 
--7--} --end of the page body--
--8-- END --end of the master (more of the "skeleton")--

In this master, distances are measured in meters. Positions on the page are measured in meters 
from the lower left-hand comer of the page; x values increase to the right and y values 
increase toward the top of the page. We shall see shortly that other conventions for measuring 
positions and distances can be established by invoking certain imaging operators. But if no spe~ 
cial steps are taken, distances are measured in meters. as in this example. 

Each of the four lines that form the box is drawn separately. The line at the left edge of the 
box is drawn by executing the literals on line 3. The first two numbers are the x and y coor­
dinates of the line's starting point, expressed in meters (x= 1 inch, y=9 inches). The second 
two numbers are the coordinates of the ending point of the line (x= 1 inch~ y= 10 inches). We 
won't describe the MASKVECfOR operator in detail until later; for the time being, if you want 
to draw a line from (~, Yl) to (~, Y2)' use the sequence of literals: Xl Yl x2 Y2 MASKVECfOR. 

Literals on lines 4. 5, and 6 draw the right edge, bottom edge, and top edge of the box respec­
tively. 

Figure 3.1. Page produced by Example 3.1 

Line 2 sets an imager variable named strokeWldth. This variable is examined by the imaging 
operator MASKVECfOR to determine how wide to make the line. The example uses a stroke 
width of 1 millimeter (0.001 meter), although any other width could equally well be chosen. 
It's easy to have lines of different widths on the same image simply by insuring that 
stroke Width is set to the desired value when MASKVECfOR is called. 

This example also shows that the graphical information can be placed in the page body in any 
order. It is not necessary to place first those objects that will be at the top of the page, or at 
the left of the page, or whatever. While some printing hardware may require information to be 

~YII!. Xerox 
~Q~ Private 
""'U'" Data 



Introduction to Interpress 3 

presented to it in a particular order, the information in the master can be in an arbitrary order. 
One of the jobs of Interpress printer software is to do any reordering that is required to drive 
a particular printing device. 

You can extrapolate from this example to see how to produce an arbitrary line drawing, simply 
by including in the page body for each line to be drawn a set of literals similar to those on 
line 3. Lines can be arbitrarily short or long, at arbitrary angles. Moreover, the stroke Width can 
be changed at any time to produce lines of different widths. It's all very straightforward. 

It is instructive to observe the role of the base language in this example: it is small. The base 
language provides a means to specify literals and to pass them in the stack as arguments to 
imaging operators. In fact. this example uses only Number literals and imaging operators (ISET 

and MASKVECfOR). We also observe that the stack is used only to pass arguments to operators, 
and not for permanent storage. In fact. the stack is empty at the beginning of each line of the 
example. 

Already in this example we begin to see the device-independent nature of Interpress. The coor­
dinate system is based on the metric standard so as to be independent of any printer's resolu­
tion. It is also clear that the master is used to describe the appearance of an abstract image 
rather than to give "commands" to a printing device. 

Of course, not all printers will be able to do an equally good job of making an arbitrary line 
drawing. Some printers. may ignore any lines that are not horizontal or vertical; the box in the 
example will print in any case because it uses only horizontal and vertical lines, but an 
arbitrary line drawing may be adversely affected. Printers may also differ in their ability to 
make a line exactly 1 millimeter wide. Some printers may make the line 0.95 millimeters wide, 
some 1.13 millimeters wide, while some may be able to achieve the 1 millimeter objective 
almost exactly. 

3.2 Simple text 

The most common use of printers is certainly the printing of text. Indeed, many computer out­
put devices sold as "printers" can do nothing else. Interpress has enormous flexibility and 
generality for handling text: it can print in Chinese; it can print small letters inside large let­
ters; it can print 'letters in the shape of a spiral or of a mouse's tail. For this reason, its 
mechanisms for specifying simple text might seem somewhat baroque by comparison with 
those of other printers. Nevertheless, there are very simple Interpress masters that print very 
simple text pages. 

Since Interpress printers can print in many different type fonts, a master must specify the font 
that is to be used. Since Interpress printers can print those type fonts in many different sizes, a 
master must specify the size of the letters in that font. Since Interpress can place letters 
anywhere at all on the page, and is not subject to any notion of "character column," a master 
must specify exactly where the letters will go. With these three pieces of information in hane! 
the master in the next example should not seem at all complex. 

The Interpress master in Example 3.2 places the single word "Interpress" on one page. The 
word begins at a point 2.9 inches from the left of the page and 9.4 inches from the bottom of 
the page. The characters are in IS-point type. Figure 3.2 shows a small-scale image of the page. 

~9~ Xerox 
II!Q~ Private 
fitlO. Data 

29 



3 

30 

Examples of simple masters 

--Example 3.2: one word of text--
--0-- BEGIN { } --part of the "skeleton", ignore for now--
--1-- { --the beginning of page body--

--2--
--3--
--4--
--5--
--6--
--7--

--the next line defines a font and saves it in frame element 0--
[ xerox. xc82-0-0. 
a SET FONT 

times] FINOFONT 0.00635 SCALE MOOIFYFONT a FSET 

0.07366 0.23876 SETXY 
<Interpress> SHOW 
} 
END 

--sets the "current font"--
--sets the "current position"--
--place "Interpress" at current position in current font--
--end of the page body--
--end of the master (more of the "skeleton")--

Interpress 

Figure 3.2. Page image produced by Example 3.2 

Like Example 3.1, this example prints a single page; the page body that's embedded in the 
skeleton appears on lines 1-6. Lines 2 and 3 are concerned with establishing a character font 
and with setting up an imager variable that describes the "current font"; these activities will be 
discussed immediately below. Line 4 sets the "current position" to x= 2.9 inches, y= 4 inches. 
but of course these distances must be expressed in meters. Line 5 actually does the work: it 
"shows" the 10 characters I-n-t-e-r-p-r-e-s-s using the current font. starting at the current posi­
tion. As in Example 3.1. the stack is empty at the beginning of each line. 

The current position (x and y) is held in two of the imager variables (indices 0 and 1). The cur­
rent position works like a cursor, identifying at all times a point on the image. The imaging 
operator SETXY (line 4) causes the value of these two imager variables to change; notice that 
unlike the example in the previous section, where we used the ISET operator to change imager 
variable 15 explicitly, the SETXY operator causes an implicit change to the state of the imager. 
Because of the ability of Interpress to handle scaling and rotation, the SETXY operator does not 
simply copy its arguments into the corresponding imager variables, but applies a geometric 
transformation to them first. For the time being, we'll assume that the current position is 
measured in meters and defer a discussion of transformations until Section 6. 

Several imaging operators, notably SHOW, use the current position to indicate where to place 
something on the page image. When SHOW is called, it places an image of the first character, 
"I", at the current position. Then SHOW moves the current position to the right to account for 
the width of the character just shown. Then the process is repeated for the second and all sub­
sequent characters in the character string passed as an argument to SHOW. When SHOW is 
finished, the current position ends up just to the right of the final "s". As each character is 

~911!. Xerox 
~Q~ Private 
"""LJp Data 



Introduction to Interpress 3 

shown, the current position moves to the right so as to be positioned where the immediately 
adjacent character should appear. 

3.2.1 Setting up a font 

Interpress has a comprehensive and consequently complex set of facilities for handling fonts. 
Because Interpress is designed to deal with high-quality typeset documents, the font machinery 
must be sufficiently general to deal with all of the typesetter's needs and to accommodate 
characters from many different printed languages. While the details of the font mechanisms 
must be deferred until later, enough of the basic ideas are revealed here so that lines 2 and 3 
in Example 3.2 can be understood. 

For each kind of character that can be placed in the page image, an Interpress printer defines 
a character operator. It is like a primitive operator in that it is by executing the character 
operator that something happens-in this case, a character is placed on the page image. But it 
is unlike a primitive operator in that there are no literals in the master that invoke a character 
operator directly. Part of the purpose of SHOW is to invoke appropriate character operators. 

When a character operator is executed, it does two things: 

1. It places on the page image an image of its character. The character is placed at the cur­
rent position. 

2. It moves the current position to the spot where the next character in a string of characters 
should appear. 

Character operators are grouped together into collections called fonts. A font is a complete set 
of character operators, designed so that the various characters in the font appear pleasing when 
printed together in words and lines: their shapes have stylistic consistency and are easy to 
read; their sizes are consistent; the width of each character (the amount of movement of the 
current position) is chosen so that all possible juxtapositions of characters look pleasing; and so 
on. In the printing industry. a font is given a name, such as "Times Italic" or "Helvetica 
Light" or "Bodoni Condensed Bold." There are thousands of fonts in existence and more are 
being designed all the time. 

In Interpress, a font is represented as a vector of character operators. The index of an operator 
in this vector is sometimes called its "character code." Interpress places absolutely no restric­
tions on the choice of character codes. As we shall see, it's up to the master's creator to 
arrange to invoke the proper character operators. 

An Interpress printer is expected to maintain a library of fonts. A master can copy a font from 
the library onto the stack so that the master can make use of the character operators it defines. 
The FINDFONT operator is responsible for finding a font in the library and placing it on the 
stack (§ 4.9.1). The "name" of the font is passed to FINDFONT as a vector of identifiers. In 
Example 3.2, the font requested is named [ xerox. xc82-0-0, times J. Assume for the moment that 
the printer has such a font in its library; we'll leave until later a discussion of all the things 
that could go wrong with a master's interpretation. such as a missing font. To recap, executing 
the following code leaves a vector of character operators on the stack: 

[ xerox, xc82-0-0, times] FINDFONT 

~,,~ Xerox 
I!Q~ Private 
"'f.j~ Data 

31 



3 

32 

Examples of simple masters 

The fonts saved in a printer's library all have a standard size: they are 1 unit high. That means 
that each operator is defined so that if lines of text are spaced 1 unit apart, the text will be 
readable. The characters in the font are thus slightly less than 1 unit high. If one of these 
character operators were to be executed in the page body of Example 3.2, the character would 
be almost a meter high! That's because the conventions in the page body are that distances are 
measured in meters. so a distance of 1 unit will mean a distance of 1 meter. This is clearly not 
what we want. 

To obtain characters of the proper size, we make use of Interpress' ability to perfonn linear 
transformations. While the transfonnation features of Interpress are quite intricate, we shall use 
only a simple case in this example: we want to scale each character as it is placed on the page 
image. To obtain 18-point text, each character needs to be scaled so its height (originally 1 
unit) becomes 18 points. (Throughout this document, we will define a point to be 1/72 inch or 
0.00035278 meter. Some standards hold that there are 72.3 points to the inch. Since Interpress 
requires that all measurements ultimately be expressed in meters, the choice of scaling, and 
hence also of the size of a point, is up to the master.) To obtain an 18-point size, each charac­
ter needs to be scaled by a factor of 18*0.00035278 =0.00635. The scaling is accomplished by 
constructing a vector of new operators, where each new operator is a scaled version of the 
character operator extracted by FINDFONT. The MODIFYFONT operator, defined in § 4.9.2. will 
construct the new vector: 

< v: Vector> <m: Transfonnation> MODIFYFONT -+ < w: Vector> 
where v is a vector of operators. usually a result of FINDFONT. The result w is obtained 
from v by replacing each operator of v by an operator that applies the linear transfor­
mation m as its image is created. (This statement is somewhat loose: a more precise 
statement is given in § 4.9.2, but depends on a detailed understanding of transfonna­
tions and composed operators.) 

A Transfonnation is an Interpress type, but because there are no literals of type 
Transformation, values of that type must be constructed by primitive operators. The primitive 
operator SCALE does just what we want here (from § 4.4.3): 

<s: Number> SCALE -+ <m: Transfonnation> 
where the transformation m will scale x and y coordinates by a factor s. 

So in line 2, the call to MODIFYFONT builds a vector of operators that represent an 18-point 
font named [ xerox, xe82-0-0. times J. This vector is left on the stack. 

The last thing that line 2 does is to save the vector of operators in the frame element with 
index O. This saves the font for future reference. If we were to use several different fonts in a 
document, each would be saved in a different frame element 

All of the activities of line 2 are thus setup-they find and modify a font and save it in a con­
venient well-known place for future use. 

Line 3 establishes as the "current font" the font that has been saved in frame element O. The 
current font is kept in imager variable 12, named show Vee. To set this variable, we could 
execute: 

o FGET 12 ISET 

~"II!. X e ro x 
II!Q~ Private 
."O~ Data 



Introduction to Interpress 3 

However, since the sequence n FGET 12 ISET is used quite frequently, the primitive operator 
SETFONT is defined so that the sequence n SETFONT can be used instead. 

While the discussion of this section seems complex, most uses of fonts can be accomplished 
with a simple template. Line 2 can be taken as a template for setting up a font: finding a font 
of a given name, scaling each character in the font, and saving the font in a frame element. 
Thus the template is: 

name FINDFONT size SCALE MODIFYFONT framelndex FSET 

where name is the name of the font, a vector of identifiers, such as [ xerox, xc82-0-0, times ]; size 
is the height of the font measured in meters (recall that the "heightH is actually the minimum 
distance between lines of text that allows comfortable reading, sometimes called the body size 
of the characters); and framelndex is the numeric index of the frame element in which to save 
the font. Note that this template only saves the font in the frame; it does not set the imager 
variable showVec to that font. 

Once fonts have been set up with this template, we can set the current font to the one we 
desire with: 

framelndex SETFONT 

This second template actually sets . the imager variable showVec so that the font will be invoked 
with SHOW. 

3.2.2 Character sets 

The font machinery in Interpress makes no assumptions about the character set of the font, 
that is. the correspondence between character codes and graphic images. A character with code 
14 is printed by executing the operator whose index in a font vector is 14. The SHOW operator 
simply extracts a character code from its argument vector and uses the numeric code to index 
the current font, a vector of character operators. 

For example, a font might be designed so that the operator with index 1 generates an "A", the 
operator with index 2 a "B", and so on. If such a font were made the current font, the 
sequence [ 1, 2, 3 ] SHOW would print the string "ABC". However, another font might be 
designed so that the operator with index 65 generates an "A", the operator with index 66 a 
"B", and so on. When this font is the current font. the sequence [ 65, 66, 67 ] SHOW will be 
used to generate the string "ABC". 

In our examples, we'll assume that all fonts are designed with the same conventions and that 
the encoding of literals written as (ABC) is consistent with these conventions. So (ABC) 
would encode as [ 1, 2, 3 ] if the first set of conventions is used, and as [ 65, 66, 67 ] if the 
second set is used. 

We discuss the issue of character sets and fonts in more detail in Section 9. 

~9" Xerox 
I!Q~ Private 
"'LJ~ Data 

33 



3 Examples of simple masters 

3.3 An encoded example 

34 

Example 3.3 shows the encoded form of Example 3.2. If you've read § 2.5 and want to check 
your understanding of it. here's your chance. The written form of Example 3.2 is reprinted 
frrst, for ready reference. 

--Example 3.2: very simple master in written form--
--0-- BEGIN { } 
--1-- { 
--2-- [ xerox, xc82-0-0, times] FINDFONT 0.00635 SCALE MODIFYFONT 0 FSET 
--3-- 0 SETFONT 
--4-- 0.07366 0.23876 SETXY 
--5-- <Interpress> SHOW 
--6-- } 
--7-- END 

The encoding is illustrated below. Since the encoding is a binary form. we can't really show it 
on the page. Instead, the decimal value of each 8c bit byte is shown. The example uses the com­
ment conventions of the other examples. 

very simple master in encoded form----Example 3.3: 
73 110 116 101 
160 102 

114 112 114 101 115 115 120 88 101 114 111 120 47 50 46 48 32 --header-­

160 106 
160 107 
160 106 
197 5 120 101 114 111 120 
197 8 120 99 56 50 45 48 45 48 
197 5 116 105 109 101 115 
15 163 
161 27 
160 147 
196 6 0 2 123 1 134 160 
160 164 
160 148 
15 160 
149 
15 160 
160 151 
196 6 0 28 198 1 134 160 
196 6 0 93 68 1 134 160 

--BEGIN (Long Op 102)--
--{ (Long Op 106)--
--} (Long Op 107)--
--{ (Long Op 106)--
--sequenceIdentifier 'xerox'--
--sequenceldentifier 'xc82-0-0'--
·--sequenceIdentifier 'times'-­
--Short Number 3--
--Long Op 283. MAKEVEC--
--Long Op 147, FINDFONT--
--sequenceRational n=635. d=100000--
--Long Op 164. SCALE--
--Long Op 148, MODIFYFONT--
--Short Number 0--
--Short Op 21, FSET--
--Short Number 0--
--Long Op 151. SETFONT--
--sequenceRational n=7366, d=100000--
--sequenceRational n=23876. d=100000--
--Short Op 10. SETXY--138 

193 
150 

10 73 110 116 101 114 112 114 101 115 115 --sequenceString 'Interpress'--
--Short Op 22, SHOW--

160 107 --} (Long Op 107)--
160 103 --END (Long Op 103)--

The entire master is encoded in 112 bytes, of which 21 are in the header. 

~" ... Xerox 
II!Q~ Private 
ifO~ Data 



Introduction to Interpress 3 

3.4 Multi-font text 

Example 3.4 shows how to obtain text in several different fonts on one page. Two instances of 
the font setup template are used to obtain different fonts and SETFONT is then used to switch 
between them. Notice that the two fonts are saved in distinct frame elements. 

--Example 3.4: text in more than one font--
0-- BEGIN { } --part of the "skeleton", ignore for now--
1-- { --beginning of page body--

2--

3--
4--
5--
6--
7--
8--
9--

--10--
--11--
--12--
--13--
--14--

--font 0 is 10-point (.00362778 m) Times Roman--
[ xerox, xc82-0~O, times] FINDFONT 0.00362778 SCALE MOOIFYFONT 0 FSET 

[ xerox, xc82-0-0, 
0.0608 0.264 SETXY 
o SETFONT 
(The > SHOW 

--font 1 is 10-point (.00362778 m) Times Italic-­
timesitalic ] FINDFONT 0.00362778 SCALE MODIFYFONT 1 FSET 

--sets the current position to x=2 inches, y=10 inch--
--use Times Roman 10 point--

1 SETFONT --use Times Italic 10 point--
(Interpress Electronic Printing Standard> SHOW 
o SETFONT --back to Times Roman 10 point--
<is a standard for interfacing raster) SHOW 
0.0608 0.2491389 SETXY --set current position to x=2 inch, y=(10 in)-(13 points)-­
<printers to digital computers. A raster printer is an electronic device) SHOW 
} --end of the page body--
END --end of the master (more of the · .... skeleton" )--

This example prints two lines of text, which will appear as shown in Figure 3.3. The scale fac­
tor of Figure 3.3 is 60%. The figure is actually set in 6-point type and the 81;2 inch paper width 
is scaled to 5.1 inches. 

The lnterpress Electronic Prlnltng StaN/Qrd is a standard for interfacing raster 
printe11l to digital computers. A raster printer is an electronic device 

Figure 3.3. Page image produced by Example 3.4 

~.~ Xerox 
I!Q~ Private "'0. Data 

35 



3 Examples of simple masters 

3.5 Text and graphics 

36 

Examples 3.1 and 3.2 can be combined to produce a page that has the word "Interpress" 
placed within a box. The following master uses a page body that is formed by appending the 
page bodies of the first two examples. Figure 3.4 shows a small-scale model of the page that 
will be produced by this example. 

--Example 3.5: a page with both text and graphics--
0-- BEGIN { } --part of the "skeleton", ignore for now--
1-- { --beginning of page body--
2-- 0.001 15 ISET --set imager variable 15 (strokeWidth) to 0.001 
3-- 0.0254 0.2286 0.0254 0.254 MASKVECTOR 

0.1905 0.254 MASKVECTOR 
0.1905 0.2286 MASKVECTOR 
0.1905 0.254 MASKVECTOR 

4-- 0.1905 0.2286 
5-- 0.0254 0.2286 
6-- 0.0254 0.254 

7--
8--
9--

--10--
--11--
--12--

--the next line defines a font and saves it in frame element 0-­
[ xerox, xc82-0-0, times] FINDFONT 0.00635 SCALE MODIFYFONT 0 FSET 
o SETFONT --sets the "current font"--
0.07366 0.23876 SETXY --sets the "current position"--
(Interpress> SHOW --place "Interpress" at current position in current font--
} --end of the page body--
END --end of the master (more of the "skeleton")--

Interpress 

Figure 3.4. Composite page image produced by Example 3.5 

As we remarked before. the order of the graphical elements within the page body is unimpor­
tant. It is important, however, that relevant imager variables contain the right values when an 
imaging operator is executed. In the example, the variable stroke Width (index 15) is used by 
MASKVECfOR and SHOW uses both the current position (indices 0 and 1, set by SETXY) and the 
current font (index 12, show Vee. set by SETFONT). 

~w ... Xerox 
~Q~ Private 
~/.j~ Data 



Introduction to Interpress 3 

3.6 Multi-page documents 

Suppose that instead of combining Examples 3.1 and 3.2 on one page, we wanted to make a 2-
page document such that the first page looks like Example 3.1 and the second like Example 
3.2. That's simple too-we put two page bodies in the master, one after another. The image 
built by the first page body will appear on the top page of the two-page stack produced by the 
printer. as shown in Figure 3.5. 

--Example 3.6: a document with more than one page--
0-- BEGIN { } --part of the "skeleton", ignore for now--
1-- { --beginning of the first page body--
2-- 0.001 16 1SET --set imager variable 15 (strokeWidth) to 0.001 
3-- 0.0254 0.2286 0.0254 0.254 MASKVECTOR 
4-- 0.1906 0.2286 0.1905 0.254 MASKVECTOR 
5-- 0.0254 0.2286 0.1905 0.2286 MASKVECTOR 
6-- 0.0254 0.264 0.1905 0.254 MASKVECTOR 
7-- } --end of first the page body--
8-- { --beginning of the second page body--

--the next line defines a font and saves 1t in frame element 0-­
9-­

--10-­
:--11-­
--12--
--13--
--14--

[ xerox, xc82-0-0, 
o SET FONT 

times] F1NDFONT 0.00636 SCALE MODt~YFONT 0 FSET 

0.07366 0.23876 SETXY 
<Interpress) SHOW 
} 
END 

--sets the "current font"--
--sets the "current position"--
--place "1nterpress" at current position in current font--
--end of the second page body--
--end of the master (more of the "skeleton")--

Interpress 

-

Figure 3.5. Page images produced by Example 3.6 

A document with an arbitrary number of pages can be constructed simply by placing as many 
page bodies as needed in the skeleton. 

~9~ Xerox 
IIjQ;~ Private "'0" Data 

37 



3 Examples of simple masters 

3.7 A "line-printer listing" 

38 

A very common kind of computer output is the "listing" of a file of text. The following 
example shows how this might be done with Interpress. and Figure 3.6 shows the top few lines 
of the first two pages of the output that would be produced by this master. The figure is 60% 
of real size. 

--Example 3.7: simulating a line printer 1isting--
0-- BEGIN { } --part of the "skeleton", ignore for now--
1-- { --beginning of the first page body: font 0 is 10-point 'lPTA'--
2-- [xerox, xc82-0-0. 1pta ] FINDFONT 0.00352778 SCALE MODIFYFONT 0 FSET 
3-- 0 SET FONT --sets the current font--
4-- 0.0254 0.2667 SETXY --heading at x=1 inch, y=10.5 inch--
5-- <listing of GPO.PAS at 14:32 on 31 January 1982 Page 1> SHOW 
6-- 0.0254 0.254 SETXY --top line of listing at x=l inch. y=10 inch--
7-- <1 (* GP.PAS -- Simple PASCAL graphics package. *» SHOW 
8-- 0.0254 0.2497667 SETXY --next line is 12 points below first 1ine--
9-- <2 const EnterGraphicsMode=29; leaveGraphicsMode=31;> SHOW 

--10-- 0.0254 0.2455333 SETXY --each line is 12 points below previous--
--11-- <3 var x1ast,ylast: integer; v: InquiryResponse;> SHOW 
--12-- 0.0254 0.2413000 SETXY 
--13-- <4> SHOW 
--14-- 0.0254 0.2370667 SETXY 
--15-- <5 procedure TransmitCoords(x,y: real):> SHOW 

--more lines of text for the first page would be added here--
--16-- } --end of the first page body--
--17-- { --beginning of the second page body--
--18-- [ xerox. xc82-0-0. 1pta ] FINOFONT 0.00362778 SCALE MOOIFYFONT 0 FSET 
--19--
--20--
--21--
--22--
--23--

--24--

--25--

o SETFONT --sets the current font--
0.0254 0.2667 SETXY --heading at x=1 inch, y-l0.5 inch--
<Listing of GPO.PAS at 14:32 on 31 January 1982 Page 2> SHOW 
0.0254 0.254 SETXY --top line of listing at x=l inch. y=IO inch-­
<51 procedure DrawText(s: string):> SHOW 
--more lines of text for the second page would be added here--
} --end of the second page body--
--more page bodies for more pages would be added here--
END --end of the master (more of the "ske1eton")--

Listing of GPO.PAS at 14:32 on 31 January 1982 

51 procedure DrawText(s: string): 

Listing of GPO.PAS at 14:32 on 31 January 1982 

1 (- GP.PAS -- Simple PASCAL graphics package. -) 
2 const EnterGraph1csMode=29; LeaveGraphicsMode-31; 
3 var xlast.ylast: integer: v: Inqu1ryAesponse; 
4 
5 procedure Transm1tCoords(x.y: real); 

Figure 3.6. Page images produced by Example 3.7 

Page 2 

Page 1 

If!-~~ 

Xerox 
Private 
Data 



3.8 Summary 

Introduction to Interpress 3 

This example illustrates an important point: the contents of the frame are not saved from one 
page to the next. At the beginning of each page, the frame is reset to an initial value. In the 
example above, therefore, the font to be used is looked up anew on each page. We'll see in 
Section 4 that duplicate lookups can be avoided by placing appropriate information in the 
master. 

This example also shows that it is quite easy to prepare a master that will produce a "listing" 
of a text file that requires no special formatting. The listing program reads the text file and 
writes the encoded master in a single pass over the text As each new line of text begins, an 
appropriate SETXY call is 'placed in the master, or a new page body is started if the text has 
reached the bottom of the page. Then the character codes from the text file are copied into the 
master, encoded as a string. (The codes can be copied provided the character set assumed in 
the text file is the same as the character set of the chosen font Otherwise, character code 
values may have to be changed as the string is placed in the master to conform to the font's 
conventions.) After each string, a call to SHOW is placed in the master. It's quite a simple job. 
so the creator program can be very fast 

Even for the simple case of a listing, Interpress requires that the creator control formatting by 
preparing a master that positions every line of text Recall that Interpress makes no formatting 
or typographical decisions, even in this rather simple case. Interpress printers have no facilities 
for "automatically" formatting or paginating a text file-these are controlled by the creator. 

There are other listing formats that we might desire to use, such as rotating text 90 degrees so 
that it reads the long way on an 8112 by 11 inch page. Interpress can achieve this too, but the 
easy way to do it relies on transformations. which are treated later on in Section 6. 

Most of the important parts of Interpress have been illustrated in this section. Based on the 
examples, you should be able to envision how to prepare a master to print almost any page, 
such as this one. Of course, preparing the master by hand would be impractically tedious, but 
a computer program could certainly do the job. 

Although the masters in this section will print correctly on an Interpress printer. they depart 
from "good Interpress style" in three ways: 

• Each page of a multi-page document duplicates font definitions. Judicious use of the 
preamble, explained in Section 4, avoids this. 

• The proper use of transformations. explained in Sections 5 and 6, will allow masters to be 
expressed in units of measurement that are more convenient than meters. The masters will 
also be a bit more compact than the ones illustrated here. 

• Every master should contain a few printing instructions. These are covered in Section 18. 

~y .. Xerox 
Ii!Q;!II Private "0. Data 

39 



3 

40 

Examples of simple masters 

~y~ Xerox 
~Q~ Private 
"""UP Data 



4 

Structure of the master 

In Section 2 we explained the fundamentals of the Interpress base language and in Section 3 
we showed several examples of masters. As you can see from looking at those examples, the 
overall structure of a master is not very complicated, but a master does have structure. 
Specifically, a master consists of a preamble followed by page image bodies. (We often use the 
shorter term page body interchangeably with page image body.) There are two primary rules 
governing the assembly of a master from these parts: 

1. The preamble is a body that is ·executed before any· page bodies are executed. When the 
preamble finishes executing, the value of the frame is saved as the initial frame. Fonts are 
usually set up in the preamble and stored in the frame. 

2. Each page body is executed independently of all other page bodies. The value of the initial 
frame is used to initialize the frame before each page body is executed. In this way, values 
computed in the preamble are made available to all pages. However, modifications to the 
frame that are made while executing a page body cannot be detected by any other page 
body. 

These points are elaborated in the remainder of this section and an example of the use of the 
preamble is given. The Standard treats these issues in § 3. 

4.1 The preamble 

An Interpress master consists of an arbitrary number of bodies, linked together in a skeleton. 
The skeleton may take the following form: 

BEGIN { --preamble-- } { --page body 1-- } { --page body 2-- } -- ... -- { --page body n--} END 

The examples in Section 3 use an empty body for the preamble and one or two page bodies. 
In this section, we'll explain the use of the preamble and repeat Example 3.4 using a preamble. 
Additional forms that the skeleton may take are deferred until Section 18. 

The preamble is executed before any of the page bodies and may save computed results in the 
frame. When execution of the preamble is finished, the contents of the frame are saved in 
what is called the page initial frame. Thereafter, before one of the page bodies is executed.. its 
frame is initialized to the contents of the page initial frame. In this way, the contents of the 

~ ... Xerox 
~Q~ Private 
"""Up Data 

41 



4 Structure of the master 

frame at the beginning of each body are exactly equal to the contents of the frame at the end 
of the preamble. 

This mechanism has two important implications. The first, and most obvious. is that the 
preamble can be used to establish values of some global variables whose values are saved in 
the frame so that they may be accessed by each page body. This feature is especially helpful 
for setting up fonts: the preamble contains code to find all fonts with FINDFONT. to size them 
with MODIFYFONT, and to save them in the frame. while calls to SETFONT in each page body 
are used to set the current font (the imager variable) from a frame element 

A second implication of the rule for interpreting the skeleton is that page bodies are completely 
independent of one another. A page is free to modify the frame. but these modifications cannot 
be detected by any other page body, because the frame's contents are set to the page initial 
frame as the interpretation of each page body is begun. Not only is the frame reset at the 
beginning of each page body. but the stack is emptied (more precisely "made to look empty"; 
the exact truth is given in § 3.1), and the imager variables are reset to the default values in 
effect when the interpretation of the master is begun. So the only way to save preamble results 
is in the frame. Even if each page body uses the same values for certain imager variables (e.g., 
current font, stroke width), these must be set explicitly at the beginning of each page body. 

The interpretation rule thus insists that page bodies have no side effects except to create a page 
image. These rules may seem arbitrary; Section. 12 explains the reasons behind them. 

4.2 Examples 

42 

In practice, the preamble is used primarily to define fonts and composed operators. Since we 
won't talk about composed operators until Section 12, the examples in this section will use the 
preamble for font definitions. Examples 3.2, 3.4, 3.5, 3.6, and 3.7 could all be modified to 
move the font definition templates into the preamble, thus eliminating duplicates in each page 
body. In addition to shortening the masters, this strategy will reduce the computing the printer 
must do to interpret the master. Reducing the number of invocations of the FINDFONT 

operator is important, because this operator may have to search a data base at length to find 
the font requested. 

The example below shows how Example 3.4 would be modified to use the preamble: 

--Example 4.1, equivalent to 3.4--
0-- BEGIN 
1-- { --beginning of the preamble--

2--

3--
4--
5--
6--
7--
8--

-- 9--
--10--
--11--
--12--
--13--
--14--
--15--
--16--

[ xerox, xc82-0-0, 

[ xerox, xc82-0-0, 
} 
{ 
0.0608 0.254 SETXY 
o SET FONT 
<The > SHOW 

--font 0 is 10-point (.00352778 m) Times Roman--
times] FINDFONT 0.00352778 SCALE MODIFYFONT 0 FSET 

--font 1 is lO-point (.00352778 m) Times Italic--
timesita11c ] FINDFONT 0.00352778 SCALE MODIFYFONT 1 FSET 

--end of the preamble--
--beginning of page body--
--sets the current position to x=2 inch, y=10 inch--
--use Times Roman 10 point--

1 SETFONT --use Times Italic 10 point--
<Interpress Electronic Printing Standard) SHOW 
o SET FONT --back to Times Roman 10 point--
<is a standard for interfacing raster) SHOW 
0.0508 0.2491389 SETXY --set current position to x=2 inch, y=(10 in)-(13 points)-­
<printers to digital computers. A raster printer is an electronic device> SHOW 
} --end of the page body--
END --end of the master--

~9~ Xerox 
I!~[III Private 
."O~ Oata 



Introduction to Interpress 4 

Moving font definitions into the preamble in this example saves nothing, because the original 
master contains no duplicate calls to FINDFONT. However, the "line printer listing" in Example 
3.7 would call FINOFONT 100 times for a 100-page listing, while FINDFONT would be called 
only once if the call were moved into the preamble. 

4.3 Page ordering 

Interpress establishes a relationship between the order of page bodies in the master and the 
order of the stack of printed· pages. The convention is the intuitive one: the fIrst page body 
produces the image that will be "on top" of the stack of images; it's the one that can be seen 
without opening the stack of images. 

This convention may seem so obvious that it's not worth discussing. But the situation can get 
complicated. For example, suppose a printer is capable of printing on both sides of 81,.1 by 11 
inch pages-what happens then? The first page body will produce the image that is on top of 
the stack; the second page body will produce the image on the other side of that piece of 
paper; the third page body will produce the top-facing image on the second piece of paper, 
and so on. If the printer assembles images onto pages in more complex ways, the idea is to 
honor the intent of the simple case: page 1 is seen first, page 2 next, and so on. 

Bound for Western languages 
Page stack from printer / -----

first page body 

" Bound for Eastern languages 

last page body 

Figure 4.1. Binding determines book orientation 

Some Eastern languages, such as Chinese or Farsi, are intended to be read in a manner that a 
Western reader often thinks of as being "backwards" or "back-to-front." In fact. the Eastern 
style of assembling a document differs from the Western style only in the direction that each 
page is to be turned when the reader is done with it, and the page orders are exactly the same. 
Eastern style documents are usually bound on the right, and Western style documents are 
usually bound on the left, but in both cases the pages in a stack are read top-to-bottom. Figure 
4.1 shows this situation pictorially. 

r;:::::===:::::;, 
~w~ Xerox 
I}iO~ Private """'0'" Data 

43 



4 

44 

Structure of the master 

If the Interpress printer also does the binding, the situation can get more complicated. Printers designed principally 
for Western languages will bind only "on the left." To obtain an Eastern-like binding on such a printer, the pages 
are printed in the same order, but each one must be printed upside down. That is, the image on each page must 
be rotated 180 degrees. Techniques for preparing a master that rotates every page are given in Sections 6 and 16. 

It is important to observe that the page-ordering convention is stated in tenns of the stack of 
output, not in tenns of the order in which the printer creates the images. Some printers make 
the last page first and grow the stack from the bottom up. Others print in the reverse order, 
first page first If several copies of a document are being made, some printers will print one 
copy first, then the second copy, and so on, so that the pages are collated in the stack. Other 
printers may have mechanical sorters attached and may operate faster by making all copies of 
one page, then all copies of the next page. and so on. Some printers that print on both sides of 
the page make all front-facing images first. corresponding to bodies 1, 3, 5, etc., and then all 
back-facing pages, corresponding to page bodies 2, 4, 5, etc. It ,is precisely because the order of 
printing depends on details of the printing device that the execution of a page body is not 
allowed to have side effects: if page bodies were to have side effects, the order of their 
execution would be critical. Moreover, printing selected pages from a master would be 
cumbersome if page bodies had side effects. 

One last note about the order of printing pages. When we speak of "page I" in Interpress, we 
refer to the page printed by executing the first page body in the master. This page mayor may 
not have the number "1" printed on it It could have no visible number, it could be numbered 
""I", or"it could be numbered "iii" or "53". Any visible page number is generated by invoking 
imager operators in the page body· itself, and· is thus controlled by the creator; Interpress never 
puts any image whatsoever on a page "automatically." 

~.II!. Xerox 
.g[4 Private 
ifLJ~ Data 



5 

Coordinate systems 

The simplest way of thinking about an Interpress master is that it describes an image by giving 
the precise position of every graphical object on the page. The measurement of position on the 
page is thus fundamental to Interpress. Whenever one measures the position of anything, it is 
always measured in some coordinate system. Everyone is familiar with the standard cartesian 
coordinate system: x to the right of the origin, and y above the origin. The basic Interpress 
coordinate· system· is just that, with the .origin at the lower left. comer of the page and x and y 
measured in meters. 

Frequently it is convenient to use a distance unit other than meters, often it is convenient to 
use some origin besides the lower left comer of the page, and sometimes it is necessary to 
change the direction of x or y. Interpress therefore supports different kinds of coordinate sys­
tems and provides a way to switch back and forth from one to another. Indeed, many of the 
most powerful features of Interpress can be exploited only by the use and understanding of 
alternate coordinate systems. 

5.1 Derming a coordinate system 

A cartesian coordinate system is defined by an origin and two perpendicular axes beginning at 
the origin. used as measuring sticks. Such a coordinate system is shown in Figure 5.1. 

~.II!. Xerox 
IjiOif Private 
"""{jy, Data 

5 

4 

3 

2 

1 

y 
~ 

o ~ x 
origin :Jt 0 1 2 3 4 5 

Figure 5.L Cartesian coordinate system C. 

45 



5 Coordinate systems 

It is usually helpful to refer to a coordinate system by a single symbol, such as C, which 
denotes the origin and axes together. In all of the coordinate systems we will use in this docu­
ment, the axes are denoted by the symbols x and y. The unit of measurement, that is, the spac­
ing of markings on the axes, is entirely arbitrary; for the time being, however, we will assume 
that both axes of a coordinate system have the same unit of measurement 

The location of a point is measured with respect to a coordinate system, as illustrated in Figure 
5.2. The location of a point is measured as the distance from the coordinate system's origin to 
the point, resolved along directions parallel to the axes and measured in units defmed by the 
axes. Thus we obtain two numbers, the x coordinate and the y coordinate; usually we write the 
coordinates of the point in parentheses, as (x, y). The coordinates of the point P in Figure 5.2 
are (4,2). 

y 

C A. 
5 

4 

3 

2 

1 

p 
- - - - T 

I 

o -t--....--,-...-..,......,....-:> x 
o 1 2 3 4 5 

Figure 5.2. Measuring a point P with respect to C. 

Since the coordinates of a point are always measured with respect to some coordinate system, 
we often use the name of the coordinate system as a subscript to the measured value, e.g., 
(xcYc) or simply P co Note that the coordinates of a point with respect to a coordinate system 
are unique; that is, given numbers for x and y, the origin and the axes, one and only one point 
is located. 

5.2 Multiple coordinate systems 

46 

The same point can be measured with respect to many different coordinate systems, resulting 
in different coordinate values. In Figure 5.3, two coordinate systems A. and B are shown. each 
of which can be used to measure the coordinates of point P. We find that the coordinates of P 
measured with respect to A, P A' are (4, 2), while the coordinates measured with respect to D, 

P B' are (15, 9). 

Since our objective in establishing coordinate systems is to describe the locations of points in 
an image by giving their coordinates, it may seem unnecessary to introduce the notion of mul­
tiple coordinate systems: why not establish a single standard coordinate system. and insist that 
all measurements be recorded with respect to that system? While this approach is sufficient, it 
is neither convenient nor compact. Interpress provides multiple coordinate systems so that the 
creator may deal in coordinate measurements that are convenient under the circumstances at 
hand. Multiple coordinate systems are also valuable in keeping the size of a master small, espeo 

cially when printing characters. 

~.~ Xer.ox 
I!~!t P riv ate 
ifO'f' Data 



Introduction to Interpress 5 

The measurements of a point's coordinates with respect· to different coordinate systems are not 
independent-they are in fact closely related. For example, the coordinates of the B and C sys­
tems illustrated in Figure 5.3 are related by a simple formula: 

XB = 2xA + 7 
YB = 2YA + 5 

B 
15 

10 

5 

0 

y 
A 

0 

A 
5 

4 

3 

2 

1 

0 

5 

y 
A 

:>Ox 
0 1 2 3 4 5 

:>Ox 
10 15 

Figure 5.3. Two coordinate systems measuring one point. 

Given coordinates measured in system A~ these equations allow us to compute the coordinates 
of the same point measured in system B. Note that these conversion equations work equally 
well on any point The equations thus express succinctly the relationship between the two coor­
dinate systems A and B in a way that is independent of the points being measured. 

The conversion of coordinates from one system to another is called a coordinate transformation. 
A common notation emphasizes the two coordinate systems involved: TAB represents a transfor­
mation that converts coordinates measured in system A to coordinates measured in system B, 
and can be read as "transformation from system A to system B." While the equations given 
above are an example of a transformation, transformations are usually more complex and are 
expressed in a somewhat different form. We discuss transformations in Sections 6 and 13. 

We can now glimpse the utility of transformations in Interpress. Suppose that the creator 
prefers to measure coordinates using system A, but that Interpress insists that coordinates be 
available in a different system B. For example, a creator might prefer to measure distances in 
printer's points from the upper left comer of the page, while Interpress internally measures dis­
tances in meters from the lower left corner of the page. Interpress pennits the creator to 
prepare a master that expresses coordinates in system A and supplies a transformation TAB that 
Interpress will apply when it is necessary to obtain measurements in system B. 

5.3 Coordinate systems in Interpress 

Although an Interpress master can be created to use any coordinate system, the definitions of 
the Interpress imaging operators rely on several specific coordinate systems. This section 
explains the reasons behind those coordinate systems and the conventions that they use. 

~9" Xerox 
I}iQ~ Private 
"""UP 0 a t a 

47 



5 

48 

Coordinate systems 

5.3.1 The Interpress Coordinate System (lCS) 

The principal coordinate system used by Interpress is a device-independent system that 
describes locations on the page. This coordinate system is called the I nterpress coordinate sys­
tem, or ICS, sometimes denoted by the symbol I: it is illustrated in Figure 5.4. The origin of 
the system is at the lower-left comer of the page, the x axis points to the right, and the yaxis 
points upward. The units of distance along the axes are meters. The directions left, right, 
lower, and upward are defined when the page is held in the normal viewing orientatio~ 
described in § 4.3.1. Most often, the· normal viewing orientation has the longer dimension of 
the page oriented vertically, as shown in Figure 5.4. 

y 
J~ 

0.2794 meter 
......... 

~ 

I 

..... ,. x 
(0,0) 0.2159 meter 

Figure 5.4. Interpress coordinate system. 

9 by U inch page 

8.S by 11 inch page 

etc. 

The Interpress coordinate system is the coordinate system used to express locations on the 
page. You will recall that all of the examples in Section 3 specify coordinates in this way. We 
shall see in Section 6 that coordinate transformations may be specified so that the creator can 
express coordinates in a more convenient system and so that the printer can transform these 
coordinates into the les. But ultimately, every coordinate is converted to the leS-this is the 
standard system Interpress uses internally for locating points on the page. 

5.3.2 The Device Coordinate System (DCS) 

The Standard describes at length the device coordinate system, or DCS, sometimes denoted by 
the symbol D. This coordinate system is similar to the leS, except that the units of measure­
ment correspond to the resolution of the printing device. Of course every Interpress printer 
must convert leS coordinates into nes coordinates in order to prepare a proper image for the 
printing device. 

Almost all creators can ignore the device coordinate system and use only the I nterpress coor­
dinate system In effect, a creator can imagine a fictitious printing device that measures all loca­
tions on the page in terms of the leS; the lnterpress printer software takes care of achieving 
this fiction. 

~WII!. Xerox 
I!;Q~ Private 
""'lJ'" Data 



Introduction to Interpress 5 

The Standard takes care to describe' the device coordinate system and operations on device 
coordinates in order to control precisely the effect of roundoff errors in coordinate computa­
tions. While such precise specification is required for Interpress to be a standarcL most creators 
need not be concerned with the details. Only when extreme precision is required in an image 
must the properties of the DeS be understood fully. 

5.3.3 The Character Coordinate System 

The shape of each character, in Interpress' font library is defined in a character coordinate sys­
tem, shown in Figure 5.5. The origin of this system lies on the character's baseline, an imagi­
nary horizontal line that lies just below characters such as "A" or "f'. The origin is positioned 
at the left of the character, so that the character lies completely or nearly completely to the 
right of the origin. Detailed decisions about locating the origin of the character coordinate sys­
tem are up to the typeface designer and may be different for foreign alphabets (see § 4.9). 

The unit of measurement in the character coordinate system is the "point size" or "body sizen 

of the character. A distance of 1 unit is the nominal (smallest) distance between lines of type 
of this size. This convention is chosen to match that of the printing industry: 12-point type, for 
example, is designed so that successive lines may be spaced 12 points (12/72 inch) apart. In the 
character coordinate system, then, lines of type are 1 unit apart. 

AU:.of,the other"geometric properties of a character are expressed in the character coordinate 
system. For example, the height and width of each ,character, as determined by the typeface 
designer. are measured in the character coordinate system. If a creator needs to know these 
dimensions. they are available in the form of character metric in/ormation, described in Section 
9.4 and § 4.9.3. 

y 

1.0 ...- baseline of text line above 

c 

1--_~ __ ..... _~..=/_(W1_.d-..::'widthY) 
(0.0) origin x 

Figure 5.5. Character coordinate system. 

When an image of a character is to be placed on a page, we use a transformation to specify 
the relationship between the character coordinate system and the Interpress coordinate system. 
This transformation, Tel' converts coordinates of the character's definition in the font library, 
expressed in the character coordinate system (C), into coordinates expressed in the Interpress 
coordinate system (I). The transformation specifies the size, rotation, and position of the 

~w .. Xerox 
tiQ~ Private 
""'O'p Data 

49 



5 Coordinate systems 

character on the page. For each separate occurrence of the character on the page. a different 
transformation will be required. We'll see in the Section 6 exactly how the transformations are 
specified and applied. 

5.3.4 Other coordinate systems 

5.4 Summary 

50 

Because Interpress allows the master to contain transformation specifications. the master may 
define coordinate systems of its own. for its own convenience. The number and uses of these 
coordinate systems are limitless~ They are collectively known as master coordinate systems, 
because they are coordinate systems whose conventions are determined by the master rather 
than by the Interpress standard. 

While it is not required, a master usually sets up what we shall call a page coordinate system 
which the master then uses to specify locations on the page. This system usually has the same 
origin and coordinate directions as the Interpress coordinate system, but uses a unit of distance 
measurement that is more convenient than the meter. For example: 

• Some applications have a natural unit of measurement For example, a typographic system 
might prefer the printer's point as the unit of measurement. Or, if this unit is not small 
enough to ensure sufficient accuracy, a unit of 1/10 point might be used. Of course, the 
creator program could convert namral units into standard ones, such as meters, but the 
conversion is a nuisance. 

• The' master' may choose a coordinate system so that all coordinates can be represented as 
integers~ leading to a more compact master. The Interpress encoding rules provide a much 
more compact encoding for an integer than for an arbitrary Number with a fractional part. 
Moreover, integers in the range -4000 to 28767 inclusive have a particularly compact 
Short Number encoding that requires only two bytes. 

Two choices for the page coordinate system suggest themselves: 

1. The unit of measurement is 1/10 point, equivalent to 1/720 inch. For an 8112 X 11 inch 
page, coordinates will lie in the range OSx<6120 and 0<y<7920. A number within this 
range can be specified with the Short Number encoding, leading to a compact master. 

2. The unit of measurement is 10-5 meter, a unit sometimes called the mica. For an 8th X 
11 inch page, coordinates will lie in the range O<x<21590 and 0<y<27940. Because the 
mica is smaller than 1/10 point, the mica system has somewhat more precision. 

If a master uses either of these systems, or any other page coordinate system that differs from 
the Interpress coordinate system, the master will need to specify a transformation that converts 
from the system it uses into the Interpress coordinate system. 

This section has described Interpress' use of coordinate systems. Some of these systems are 
standardized by Interpress. such as the Interpress coordinate system (leS) and the character 
coordinate system. Others. not standardized, can be established by the master, using operators 
of the Interpress language. A discussion of coordinate systems is not complete without 
describing mechanisms for transforming coordinates measured in one system to coordinates 
measured in another system. The following section describes transformation mechanisms and 
presents several examples of their use. 

!49~ Xerox 
.~!11 Private "0. Data 



6 

Transformations I 

A coordinate transformation is used to convert coordinates measured in one coordinate system 
into coordinates measured in another system. Interpress uses transformations extensively to 
help position objects on the page. This section provides an introduction to transformations. 

There are two major parts to the story of transformations: how they are constructed and how 
they are used. While a transformation is a type in the Interpress language, transformations can­
not be included . in,· masters. as literals, but must-instead be constructed by calling one of a num­
ber of imaging' operators. that build transformations. 

During the execution of a master there is always a current transformation. which is applied to 
all coordinates specified in the master. A master that measures coordinates in inches must 
create a transformation that converts inches to meters and then incorporate it into the current 
transformation. In Section 6.3 we explain the concept of combining transformations and 
explain that a master never actually replaces the current transformation. but merely adds to it. 

Throughout this section and the rest of this document, we shall use a common notation for 
transformations. The symbol 1: without subscript, refers to the current transformation, which is 
held as the value of imager variable 4. Other transformations use the symbol T with subscripts, 
as in Tab. The subscripts denote the coordinate systems involvecL Le., the transformation Tab 
converts coordinates measured in system a into coordinates measured in system b. 

6.1 What is a transformation? 

Mathematically, a transformation is a function that inputs an (x, y) pair in one coordinate sys­
tem and outputs the equivalent values in another coordinate system. In Interpress, a 
Transformation is a data type, just as Vector and Number are types. But unlike those data 
types, a Transformation is intended to be used as a function and not as a datum. In use, a 
Transformation accepts coordinate pairs and delivers transformed coordinate pairs. 

Since the output of a transformation (a coordinate pair) is the same kind of data as the input 
to a transformation (a coordinate pair), it is possible to make compound transformations the 
same way that we make compound lenses. A microscope, for example, may achieve a 600-
power magnification with a 60-power objective lens and a IO-power eyepiece; we look through 
both of them at the same time. In a camera, we can add a 2X tele-extender to a 300-mm lens 

~91!!. Xerox 
fiO~ Private 
""""UP Data 

51 



6 Transformations I 

and achieve the equivalent of a 6OO-mm lens. An optician, while fitting you for eyeglasses, can 
put a 2-diopter lens, a O.l-diopter lens, and a 9O-degree astigmatism corrector all in a line in 
front of your eye to achieve the equivalent of an eyeglass lens that has 2.1 diopters of correc­
tion and a 90-degree astigmatism axis. 

While you may not be intimately familiar with all these various uses of optics, the point is that 
a wide variety of effective lenses can be made by combining component lenses and using them 
together as a single instrument. Transformations work in pretty much the same way: with a 
small number of building-block· transformations called primitive trans/onnations, we can build 
anything we want 

6.2 Constructing transformations 

52 

There are two ways to construct transformations. First, there are several operators that will con­
struct primitive trans/onnations. based on arguments passed to these operators. The operators 
leave the resulting transfonnation on the stack. A primitive transformation may specify a scal­
ing, a translation, or a rotation. Some transformations cannot be expressed as a primitive trans­
formation, but can be expressed in a second way: a transformation can be created by combin­
ing two existing transformations. An arbitrary transformation can be constructed by combining 
primitive transformations in various ways. 

6.2.1. Primitive transformations 

There are three kinds of primitive transformations: scaling; translation, and rotation. Each trans­
formation is constructed with one of the operators: SCALE, TRANSLATE, and ROTATE (§ 4.4.3). 

A scaling transformation is ouilt with the SCALE operator, which takes a single argument: 

<s: Number> SCALE ~ <Tft: Transformation> 
where Tft is a transformation that will convert coordinates measured in the f system 
into those measured in the t system. The two systems have the same origin and axes 
pointing in the same directions, but the units of distance measurement are different: 1 
unit in the f system corresponds to s units in the t system. 

o 5 10 

Figure 6.1. Primitive scaling transfonnation. 

Figure 6.1 illustrates two coordinate systems related by a scaling transformation with s= 2. The 
illustration is a bit awkward because the axes of the two systems lie over one another. In this 
case, we adopt the convention of placing labels for the units of one coordinate system on one 
side of the axis line and labels for the other system on the other side. 

~ ... Xerox 
li~iII Private "0. Data 



Introduction to Interpress 6 

A translation transfonnation describes the relation between two coordinate systems that differ 
only in the position of the origin: 

<tx: Number> <ty: Number> TRANSLATE -+ <Tft: Transfonnation> 
where Tft is a transformation that converts coordinates measured in the f system into 
those measured in the t system. The two systems have axes pointed the same direction 
and measured in the same units, but have different origins. The origin in the f system 
corresponds to the point (tx' t) in the t system. 

Figure 6.2 illustrates two coordinate· systems related by a translation with tx =3, ty =2. 

y 
A 

0 1 

5 

4 

3 

2 

1 

0 

2 

0 1 

3 4 

::>x 
2 3 4 5 

::>x 
5 6 7 8 9 

Figure 6.2. Primitive translation transfonnation. 

Finally, a rotation transfonnation relates two coordinate systems that differ only by a rotation 
of axes about the origin: 

<a: Number> ROTATE -+ <Tft: Transfonnation> 
where Tft is a transfonnation that converts coordinates measured in the f system into 
those measured in the t system. The two systems have the same origin and units of 
measurement, but have axes rotated by an angle a, measured in degrees. The angle is 
measured clockwise from an axis of the f system to the corresponding axis of the t sys­
tem. 

Figure 6.3 illustrates two coordinate systems related by a rotation with a = 30 degrees. 

y 

x 

x 
o 1 2 3 4 5 

Figure 6.3. Primitive rotation transformation. 

~w~ Xerox 
I)iQ~ Private 
"""0'" Data 

53 



6 

54 

Transformations I 

6.2.2 Combining transformations 

Complex transformations are built up by combining, or concatenating, simpler transformations. 
Suppose we have a transformation Tab that converts coordinates from system a to system b, and 
a second transformation T be that converts from system b to system c. If we wanted to convert a 
coordinate measured in system a to a measurement in system' c, it might appear that we must 
first apply Tab and then apply T be to the results. However, it turns out that the two transforma­
tions can be concatenated into a single transformation T ac that accomplishes just this effect. 
The concatenation is performed-by' the CONCAT operator (§ 4.4.3): 

< Tab: Transformation> < T be: Transformation> CONCAT ~ < T ac: Transformation> 
where T ac is a transformation that has the same effect as first applying Tab and then 
applying T be' 

We shall see below that masters use CONCAT a great deal, both implicitly and explicitly, to 
combine transformations. 

When transformations are concatenated, sequence is important Applying Tab and then T be will 
not, in general, yield the same result as applying T be and then Tab" In mathematical terms, we 
say that the operation of concatenating transformations is not commutative. Intuitively. the 
reason for this is that rotational transformations always pivot around the origin of the coor­
dinate . system and not. the center of the .object being rotated, so that if we translate an object 
before- we-rotate it, the- rotation will swing it around like' a weight at the end of a string rather 
than just spinning it in place. We discuss this issue some more, with a bit of mathematical 
rigor, in Section 13. 

Since the order of concatenation is important, we will always write concatenations in such a 
way that they may be easily read from left to right That is, < Tab T be CONCAT> can be thought 
of as first applying transformation Tab and then applying T be" 

Sometimes a string of concatenated transformations can get quite long. Suppose we want to 
achieve the effect of applying Tab' then T be' then T elf then T de' a sequence which we might 
write directly as Tab T be Ted T de" These can all be concatenated together by < Tab T be T cd T de CON~ 
CAT CONCAT CONCAT> " There is no need to place all the CONCAT operators at the end; we 
could just as well write < Tab T be CONCAT T cd CONCAT T de CONCAT>" 

It often happens that the current transformation is to be modified by concatenating to it a 
transformation that will be performed first. That is, if T is the current transformation, we want 
to replace it with a transformation Tn T" While we could write <Tn 4 IGET CONCAT 4 ISET> , 
since the current transformation is the value of imager variable number 4. the operator 
CONCAIT (note two T'S) is available to do this job (§ 4.4.5): 

< Tn: Transformation> CONCA IT ...... < > 
where T is set to < Tn T CONCA T>. 

It is useful if you think of the current transformation defining a "current coordinate system." 
At the beginning of a page body, the current coordinate system will always be the Interpress 
coordinate system, L Coordinates in the master that are subjected to the current transformation 
will thus be expressed in system L If the current transformation is modified within the page 
body, a new coordinate system is defined. and coordinates will be interpreted in the new sys-

~y .. Xerox 
II]Q~ P riv ate -'0. Data 



Introduction to Interpress 6 

tem. For example, suppose you have constructed a transformation Tpl that converts coordinates 
from system P to system L If the current transformation is altered by executing <Tp1 CON­

CA IT> , the current coordinate system becomes P, so coordinates in the master must be 
. expressed in that system. 

6.2.3 Examples 

Now that we've developed mechanisms to build up an arbitrary transformation from primitive 
building-block transformations. it's time to verify our understanding with some examples. 

First, let's consider the example shown in Figure 5.3, which is repeated in Figure 6.4 below. 
We wish to formulate a transformation TAB that will convert coordinates measured in the A sys­
tem into coordinates measured in the B system. This transformation cannot be expressed as a 
primitive transformation, because both origins and scales differ. Thus both a scaling and a 
translation will be required. 

y y 

B A. DA. A 
15 

10 

5 ;:>x 

0 ;:>x 
0 5 10 15 

Figure 6.4. Using system D to help transform from A to B 

Let us define another coordinate system D, which has the origin and axis directions of system 
A but the scale of system B. This system is shown in Figure 6.4, but is hard to see because its 
axes fall over those of system A. Now we see that systems A and D are related by a primitive 
scaling transformation and systems D and B are related by a primitive translation. By inspec­
tion, we determine: TAD = <2 SCALE> and TDB = <7 5 TRANSLATE>. The complete transfor­
mation TAB' which has the effect of applying TAD and then T DB, is thus obtained by <2 SCALE 

7 5 TRANSLATE CONCA T>. Note that this is not the same transformation if we perform the 
primitive transformations in the opposite order, Le., <7 5 TRANSLATE 2 SCALE CONCA T> . 

A second example is illustrated in Figure 6.5. The overall objective is to convert from system C 
to system I: systems S and P are used for other purposes. The transformations involved can be 
determined by inspecting the illustration: Tcs = <353 SCALE>. Tsp= <700 400 TRANSLATE>. 

and Tpl = <0.00001 SCALE>. Thus the complete transformation TCI' should we need to express 
it as a single transformation, is <353 SCALE 700 400 TRANSLATE 0.00001 SCALE CONCAT CON­

CAT>. There is no reason to save the CONCAT operators for last: we could just as well write 
<353 SCALE 700 400 TRANSLATE CONCAT 0.00001 SCALE CONCAT>. 

~w~ Xerox 
tiQ~ Private 
...",0 .... Data 

55 



6 

56 

Transformations I 

I p 

0.005 500 

o 

500 

S 
353 

200 

0.005 

o 200 

1000 

0.01 

Figure 6.5. Coordinate systems for printing a character. 

This example illustrates precisely how characters defined in the character coordinate system C 
are transformed into the Interpress coordinate system L While systems S and P have no formal 
names in Interpress, we shall name them the scaled character coordinate system and the page 
coordinate system. While Interpress does not insist that these systems be used in the way 
illustrated by Figure 6.5, "good Interpress style" suggests their use. 

The page coordinate system is chosen by the creator as a convenient one for expressing loca­
tions on the page; the choice was discussed in Section 5.3.4. In the example in Figure 6.5, the 
page coordinate system is expressed in units of micas, 10-5 meter. The master establishes the 
page coordinate system by invoking the CONCA IT operator at the beginning of each page body 
to modify the current transformation. This coordinate system will stay in effect throughout the 
page, unless of course the master invokes operators that change the current transformation 
again. Section 6.3.1, below, shows an example of how this is done. 

The scaled character coordinate system S has the same scale and orientation as the page coor­
dinate system; in this way, a character expressed in the S system is located with respect to the 
page system by a primitive translation transformation Tsr This translation transformation is 
provided by the SHOW operator, which uses the current position to determine where the origin 
of the scaled coordinate system should be placed. The formal definition of SHOW (§ 4.4.6) 
describes how Tsp is formed and concatenated with T so that the current coordinate system 
becomes S. 

The transformation Tcs is the transformation given as an argument to MODIFYFONT. The 
MODIFYFONT operator creates a set of character operators that will first concatenate T cs onto T 

so that the current coordinate system becomes C. Now a standard character definition in the 
font library, which is expressed using coordinates measured in system C, can be used to 
describe the shape of the character. 

All the information governing a particular occurrence of a character in an image is contained 
in the transformations: Tcs and TpI determine the size of the character, and Tsp and TpI deter­
mine its location. 

Table 6.1 reviews the state of the current transformation as the process of printing a character 
unfolds. 

~.I/IJJ. Xerox 
1Ii~!II P riv ate 
'fIIot; Data 



Introduction to Interpress 6 

Table 6.1 Transformations involved in printing a character 

Current 
Current coordinate 

transformation system Operation performed 

TID I At beginning ofa page body, the printer sets the current 
transformation to' convert from Interpress coordinates 
(ICS) to device coordinates (DCS). 

< T PI CONCA IT> is performed by the master as its first action in 
the page body. 

Tp/T/D P The "page coordinate system" is established. 

<Tsp CONCAIT> is performed as part of the SHOW operator, 
using the current position as an argument (actually 
TRANS does the work-§ 4.4.5). 

TSpI'PITID S The "scaled character coordinate system" is established. 

< T cs CONCA IT> is performed by the character operator created 
by MODIFYFONT. 

TcsTspTp/TID C The standard character coordinate system. 

It appears from this sequence that the current transformation is altered properly to print the 
character in Figure 6.5, but that it remains set for the C system for that particular character. In 
fact, when the SHOW operator finishes execution, it restores T to the value it had when SHOW 
was entered. In this way, the page coordinate system is once again the current coordinate sys­
tem. The only side effect of SHOW, in addition to placing character images on the page, is to 
alter the current position to account for the width of the characters imaged. 

It is worth emphasizing that the ultimate size and rotation of a character is determined both by 
the current transformation in effect when SHOW is called and by the transformation given to 
MODIFYFONT to establish the font. 

6.3 Using transformations 

The facility with coordinate systems and transformations that we have developed in the last 
few sections now allows us to apply "good Interpress style" to the examples given in Section 3. 

6.3.1 Simple page coordinate system 

By using the notion of a page coordinate system, a master will become more compact because 
numbers can be encoded with sufficient precision as 2-byte Short Numbers (§ 2.5.1) rather 

~9~ Xerox 
I}i04' Private 
"""Oy, Data 

57 



6 

58 

Transformations I 

than as rationals, the equivalent of floating-point numbers. All that is required to establish a 
page coordinate system is to place first in each page body, a piece of Interpress program that 
constructs an appropriate T PI transformation and concatenates it onto T. 

Example 3.1 is given below, modified to use a page coordinate system that uses units of 10-5 

meter (micas) rather than the meter units of the Interpress coordinate system. While Example 
3.1 requires 146 bytes to encode, Example 6.1 requires only 90. The savings will be even 
greater in more complex masters, which are common. 

--Example 6.1. Produces the same image as Example 3.1--
--0-- BEGIN { } --empty preamble--
--1-- { --the beginning of a body that generates the page--

--set the page coordinate system by concatenating onto T--
--2-- --TPI • <0.00001 SCALE)--
--3--

0.00001 SCALE CONCATT 
100 16 ISET --set imager variable 16 (strokeWidth) to 100 micas --

--4--
--6--
--6--
--7--
--8--
--9--

2640 22860 2640 
19060 22860 19060 
2640 22860 19060 
2640 26400 19050 

} 
END 

26400 MASKVECTOR 
26400 MASKVECTOR 
22860 MASKVECTOR 
26400 MASKVECTOR 

--end of the page body--
--end of the master--

Example 3.2 is given below. again using a page coordinate system in units of 10-5 meter. Note 
that in line 3, the transformation passed to MODIFYFONT has been changed so that T cs will 
scale the character so that the unit distance in the standard character coordinate system will 
correspond to 635- units in the scaled character coordinate system; these units correspond to 
the'page coordinate system (635XI0-5 meter = 18 points). 

--Example 6.2. Produces the same image as Example 3.2--
--0-- BEGIN { } --empty preamble--
--1-- { --beginning of the page body--

--set the page coordinate system by concatenating onto T--
--2-- 0.00001 SCALE CONCATT --TPI • <0.00001 SCALE)--

--define a font and save it in frame element 0--
--3-- [ xerox, xc82-0-0. times] FINDFONT 636 SCALE MODIFYFONT 0 FSET --TCS = (636 SCALE)--
--4-- o SETFONT --set the "current font"--
--6-- 1366 23816 SETXY --set the "current position"-­

--TSP = <1366 23876 TRANSLATE)--
--6-- (Interpress) SHOW 

} 
--place "Interpress" at current position in current font--

--1-- --end of the page body--
--8-- END --end of the master--

The next example shows Example 4.1 (derived from Example 3.4) reworked to use a page coor­
dinate system expressed in points (0.00035278 meter). Note that the calls to MODIFYFONT in 
the preamble have been changed so that the scaling transformation will convert from the stan­
dard character coordinate system to the units of the page coordinate system (points). 

--Example 6.3. Produces the same image as Examples 4.1 and 3.4--
0-- BEGIN 
1-- { --beginning of the preamble-­

--font 0 is 10-point Times Roman--
2-- [xerox, xc82-0-0, times ] FINDFONT 10 SCALE MODIFYFONT 0 FSET 

--font 1 is 10-point Times Italic--
3-- [xerox, xc82-0-0. timesitalic ] FINDFONT 10 SCALE MODIFYFONT 1 FSET 
4-- } --end of the preambl e--
5-- { --beginning of page body--
6-- 0.00036218 SCALE CONCATT --set the page coordinate system by concatenating onto T--
1-- 144 120 SETXY --set the current position to x=2 inch, y=10- inch--
8-- 0 SETFONT --use Times Roman 10 point--
g-- <The > SHOW 

--10-- 1 SETFONT --use Times Italic 10 point--
--11-- (Interpress Electronic Printing Standard) SHOW 
--12-- 0 SETFONT --back to Times Roman 10 point--

~9~ Xerox 
I!g!l Private 
"OW Data 



--13--
--14--
--15--
--16--
--17--

Introduction to Interpress 6 

<is a standard for interfacing raster> SHOW 
144 707 SETXY --set current position to x-2 inch, y=(10 in)-(13 points)--
<printers to digital computers. A raster printer is an electronic device> SHOW 
} --end of the page body--
END --end of the master--

As a final example, let's redo Example 3.7 to use a page coordinate system based on units of 
1/10 point (0.000035278 meter) and to place the font definition in the preamble so that it is 
not duplicated in each page body. 

--Example 6.4. Produces the same image as Example 3.7--
0-- BEGIN 
1-- { --beginning of the preamble--

2--
3--
4--
5--
6--
7--
8--
9--

--10--
--11--
--12--
--13--
--14--
--15--
-"-16--
--17--
--18--

--19--
--20--
--21--
--22--
--23--
--24--
--25--
--26--

--27--

--28--

--font 0 is 10-point 'LPTA'--
[ xerox, xc82-0-0. lpta ] FINDFONT 100 SCALE MODIFYFONT 0 FSET 
} --end of the preamble--
{ --beginning of the first page body--
0.000036278 SCALE CONCATT --set the page coordinate system by concatenating onto T--
o SET FONT --sets the current font--
720 7660 SETXY --heading at x-I inch, y-l0.5 inch--
<Listing of GPO.PAS at 14:32 on 31 January 1982 Page 1> SHOW 
720 7200 SETXY --top line of listing at x-1 inch, y-10 inch--
<1 (* GP.PAS -- Simple PASCAL graphics package. *» SHOW 
720 7080 SETXY --next line is 12 points below first 11ne--
<2 const EnterGraphicsMode-29; LeaveGraphicsMode-31:> SHOW 
720 6960 SETXY --each line is 12 points below previous--
<3 var x1ast,y1ast: integer: v: InquiryResponse:> SHOW 
720 6840 SETXY 
<4> SHOW 
720 6720 SETXY 
<6 'procedure TransmitCoords(x.y: real);> SHOW 
--more lines ijf'text-for the first page,wou1d be added here--
} --end of the firstpaga body--
{ --beginning of the second page body--
0.000036278 SCALE CONCATT --set the page coordinate system by concatenating onto T--
o SET FONT --sets the current font--
720 7660 SETXY --heading at x=1 inch, y=10.5 inch--
(Listing of GPO.PAS at 14:32 on 31 January 1982 Page 2> SHOW 
720 7200 SETXY --top line of listing at x=1 inch, y=10 inch--
(51 procedure DrawText(s: string);) SHOW 
--more lines of text for the second page would be added here--
} --end of the second page body--
--more page bodies for more pages would be added here--
END --end of the master--

Note that the page coordinate system must be established for each page body. This action is 
required because the imager variables, including the current transformation T. are reset at the 
beginning of each page body to the default values in effect when the interpretation of the 
master is begun. In this respect. the current transformation is like the current font-both CON­

CArr and SETFONT must be called within each page body to set the imager variables 
appropriately. (See Section 12 for more discussion of why this is so.) 

A slight improvement in Example 6.4 could be achieved by computing the transformation TpI 

in the preamble and saving it in a frame element, similar to the way a font is saved: 

--2.5-- 0.000035278 SCALE 1 FSET --compute transformation and save in frame element 1--

Within each page body, the page coordinate system can be established by concatenating this 
transformation onto T. The following line would replace lines 5 and 21 in Example 6.4: 

1 FGET CONCATT --set the page coordinate system by concatenating onto T--

~9~ Xerox 
.Q~ Private 
""[j~ Data 

59 



6 

60 

Transformations I 

6.3.2 Landscape page coordinate system 

All of the examples so far have placed text on the page without rotation-that is, the baseline 
of the text is aligned with the x axis of the Interpress coordinate system. By using appropriate 
transfonnations, text with arbitrary rotations may be placed on the page. 

The most frequent use for rotated images is when the entire page is to be rotated, sometimes 
called a turned page or a landscape page. Figure 6.6 shows such a page, in which text starts at 
the bottom and runs up the page. 

y 
.oH 

I 

0.2794 meter 

(0,0) y 

~ 8.5 by 11 inch page 

""". 

A X 

.. ... x 
0.2159 meter 

Figure 6.6. Coordinate system for landscape printing. 

The easiest way to prepare a master for a landscape page is to fonnulate a page coordinate sys­
tem in which the x axis is aligned with the character baseline. Such a coordinate system P is 
illustrated in Figure 6.6: the origin is at the lower right comer of the page, the y axis points to 
the left, and the x axis points up the page. If we rotate the page 90 degrees clockwise, we see 
that these conventions correspond exactly to the Interpress coordinate system on an unrotated 
page. Of course, the page coordinate system we use can establish a convenient unit of measure­
ment as well as the proper origin and axis directions. 

The important point about establishing a landscape page coordinate system is that the systems 
used in the imaging of characters (systems S and C described above) are expressed relative to 
the page coordinate system. So simply rotating the page coordinate system will rotate all 
infonnation on the page. 

Let us now work out how to express Tpp the transfonnation from the page coordinate system 
illustrated in Figure 6.6 to the Interpress coordinate system. It helps if we envision two other 
coordinate systems, A and B, as illustrated in Figure 6.7. 

~YII!. Xerox 
1Ij~~ Private 
"[j~ Data 



Introduction to Interpress 6 

I A B x. 
p 

.. x ! ! 

Figure 6.7. Steps in deriving the landscape transformation. 

System A is simply a rotated version of the Interpress coordinate system, so TAl = <90 
ROTATE>. The rule for obtaining the angle says that we measure the angle clockwise from an 
axis of the A system to the corresponding axis of the I system. 

System B is system A translated so its origin will be at the bottom right corner of the page. 
Thus TBA = <0 -0.2159 TRANSLATE>, where the width of the page is 8.5 inches, or 0.2159 
meters. Note that the translation is along the y axis. 

Finally, system P is system B scaled so that units of measurement are convenient In this 
example, we'll assume that units of 1/10 point (OJX)0035278 meter) are to be used. Hence T PB 

= < 0.000035278 SCALE>. 

The .complete transformation TpI is obtained by concatenating. TpB' TBA, and TA.p in that order. 
Thus to place on the stack the transformation Tpl' we could execute: 

0.000036278 SCALE 0 -0.2159 TRANSLATE CONCAT 90 ROTATE CONCAT 

To establish the page coordinate system P as the current coordinate system, we would prepare 
the transformation T PI and then execute CONCA TI, provided the coordinate system previously 
in effect was the Interpress coordinate system, I. 

Example 6.5 illustrates how a landscape listing can be produced. The content of the listing is 
the same as in Examples 6.4 and 3.7, but the text will now be read along the long axis of the 
paper. Note that the coordinates of the starting of text lines have been changed to reflect the 
fact that the y axis of the page coordinate system has a useful range of 8.5 rather than 11 
inches. Note too that since the page-to-Interpress transformation is a complex one, it is com­
puted once in the preamble and concatenated onto T in each page body. 

--Example 6,5.--
0-- BEGIN 
1-- { --beginning of the preamble--

--font 0 is 10-point 'LPTA'--
[ xerox, xc82-0-0, 1pta ] FINOFONT 100 SCALE MODIFYFONT 0 FSET 2--

3--
4--
5--
6--
7--
8--
9--

--following line computes page-to-Interpress transformation-­

--10--
--11--
--12--

0.000035278 SCALE 
} 

o -0.2169 TRANSLATE CONCAT 90 ROTATE CON CAT 1 FSET 

{ 
1 FGET CONCATT 
o SETFONT 

--end of the preamble--
--beginning of the first page body--
--set the page coordinate system by concatenating onto T--
--sets the current font--
--heading at x=l inch, y=8 inch--

at 14:32 on 31 January 1982 Page 1> SHOW 
720 5760 SETXY 
<Listing of GPO.PAS 
720 5400 SETXY --top line of listing at x=l inch, y=7.6 inch-­

Simple PASCAL graphics package. *» SHOW <1 (* GP.PAS --
720 6280 SETXY --next line 1s 12 points below first line--

~9~ Xerox 
~Q~ Private """[j" Data 

61 



6 

62 

Transformations I 

--13-- <2 const EnterGraphicsMode-29; LeaveGraphicsMode=31;) SHOW 
--14-- 720 5160 SETXY --each line is 12 points below previous--
--16-- <3 var x1ast,y1ast: integer; v: InquiryResponse;) SHOW 
--16-- 720 5040 SETXY 
--17-- <4) SHOW 
--18-- 720 4920 SETXY 
--19-- <6 procedure TransmitCoords(x,y: real):) SHOW 

--more lines of text for the first page would be added here--
--20-- } --end of the first page body--
--21-- { --beginning of the second page body--
--22-- I FGET CONCATT --set the page coordinate system by concatenating onto T--
--23-- o SETFONT --sets the current font--
--24-- 720 5760 SETXY --heading at x-l inch, y=8 inch--
--26-- <Listing of GPO.PAS at 14:32 on 31 January 1982 Page 2) SHOW 
--26-- 720 5400 SETXY --top line of listing at x-I inch. y=7.5 inch--
--27-- <51 procedure OrawText(s: string);) SHOW 

--more lines of text for the second page would be added here--
--28-- } --end of the second page body--

--more page bod1es for more pages would be added here--
--29-- END --end of the master--

6.3.3 Multiple page coordinate systems 

The current transformation can be manipulated to establish a convenient coordinate system at 
any point during the preparation of a page. Because the current transformation, T, is an imager 
variable, it may be saved, modified, and restored at will. 

For example. suppose that-you want to make a landscape listing of some text, but that the 
heading is to read ~properly when the paper is held in the normal viewing orientation. The 
page coordinate system 'used in Example 6.5 is' appropriate for the text, while the page coor­
dinate system used in Example 6.4 is appropriate for the heading. The following sketch of a 
master shows how the current transfonnation can be manipulated for this purpose: 

--Example 606.--
0-- BEGIN 
1-- { --beginning of the preamb1e--

2--

3--

4--
5--
6--
7--
8--
9--

--10--
--11--
--12--
--13--
--14--
--15--
--16--
--17--
--18--
--19--

--20--

--21--

--font 0 is 10-point 'LPTA'--
[ xerox, xc82-0-0, 1pta ] FINDFONT 100 SCALE MODIFYFONT 0 FSET 

--compute landscape page-to-Interpress transformation--
0.000035278 SCALE 0 -0.2159 TRANSLATE CONCAT 90 ROTATE CONCAT 1 FSET 

--compute portrait page-to-Interpress transformation--
0.00003527B SCALE 2 FSET 
} --end of the preamble--
{ --beginning of the first page body--
o SETFONT --set the current font--
4 IGET 3 FSET --obtain current transformation and save it in frame--
2 FGET CONCATT --set the portrait page coordinate system--
720 7560 SETXY --heading at x-I inch, y-l0.5 inch--
<Listing of GPO.PAS at 14:32 on 31 January 1982 Page 1) SHOW 
3 FGET 4 ISET --restore current transformation (see line 8)--
1 FGET CONCATT --set the landscape page coordinate system--
720 5760 SETXY --top line of listing at x=l inch. y=8 inch--
<1 (* GP.PAS -- Simple PASCAL graphics package. *» SHOW 
720 5640 SETXY --next line is 12 points below first 1ine--
<2 const EnterGraphicsMode=29; LeaveGraphicsMode=31;) SHOW 
720 5520 SETXY --each line is 12 points below previous--
<3 var x1ast,y1ast: integer; v: InquiryResponse;> SHOW 
--more lines of text for the first page would be added here--
} --end of the first page body--
--more page bodies for more pages would be added here--
END --end of the master--

The portrait-oriented coordinate system is set on line 9, using a scaling transformation set up 
on line 4. The landscape-oriented coordinate system is set on line 13. by concatenating onto 

~.~ Xerox 
I!Q!I Private 
iI[j~ Oata 



6.4 Summary 

Introduction to Interpress 6 

the current transformation a combined transformation set up on line 3. Note that the initial 
value of the current transformation is saved on line 8. This transformation, which establishes 
the Interpress coordinate system, is restored on line 12. This is necessary because the transfor­
mation that establishes the landscape page coordinate system on line 13 is defined relative to 
the ICS. 

Although text is printed using two different orientations in this example, only a single font is 
prepared (line 2). The different orientations are achieved by using two different page coor­
dinate systems. The call to SHOW on line 11 will print text horizontally because the current 
transformation in effect on line 11 has its x axis aligned horizontally, the transformations 
applied by SHOW leave the orientation of the axes unchanged, and the character operators in 
the font have the x axis aligned with the baseline of the character; hence the text will be 
horizontal. The other calls to SHOW, on lines 15; 17, and 19, print text rotated to run up the 
page. The reason is that the current transformation in effect for these calls has its x axis 
running up the page. Again, the transformations applied by SHOW leave the orientation of the 
axes unchanged, so the character operators will print characters with their x axis running up 
the page. 

Multiple page coordinate systems are useful in many other situations besides the one illustrated 
above. A two-column format. for example, may be achieved by using one page coordinate sys­
tem for one column and a second for the second column. 

This section has presented the main features of the coordinate transformation machinery in 
Interpress. We have shown how transformations are used to: 

• Establish a page coordinate system that has an orientation and unit of measurement that 
are convenient for the page being printed. Moreover, by manipulating the current transfor­
mation, the master can use several different page coordinate systems on a single page. 

• Establish the size of characters. Although every character is defined in a standard character 
coordinate system in an Interpress printer's library, many different sizes can be obtained 
by specifying an appropriate transformation to MODIFYFONT. 

These are the principal uses of transformations in Interpress. When transformations are studied 
in more detail in Section 13, we shall discover additional uses for transformations. We should 
also at this point update Figure 2.1 into Figure 6.8, to include the current transformation T. 

~y~ Xerox 
tiQ~ Private 
""'I.J" Data 

63 



6 

64 

Transformations I 

Base 
Language 
Interpreter 

Imager 

[QJ I SETFONT 110.07366 110.23876 II SETXY lEI I FGET 

1----1 The 

stack 

Master being processed 

The frame 

4-Storage for interpreter state 

I Imager variables 
/ 

~--'r-----' _ _____ _ -

---

Page 
Image 

Current transfonnation 

Figure 6.8. Structure of an Interpress printer, II 

~9" Xerox 
I!,Q~ Private 
"""[j~ Data 



7 

Creating masters: procedural interfaces 

An application program that creates Interpress masters uses some form of procedural interface, 
a set of procedures called by the application program to generate the encoding. This section 
provides some suggestions about the design of that procedural interface. The approach sug­
gested in this section is not part of the Interpress standard-how the application program is 
written is of no concern to the printer. 

There are .. two·kinds.ofprocedural interfaces· that you·can build: 

1. Literal interfaces, which provide a procedure. for each kind of literal (or token) that can 
appear in the master. 

2. Operator interfaces, which provide a procedure for each primitive operator. 

This section is intended to be read by programmers who are designing programs that will 
make Interpress masters. Moreover, the reader should understand the Xerox encoding of 
Interpress, described in § 2.5, before reading this section further. This section makes numerous 
references to § 2.5. 

7 .. 1 Literal interface 

A literal interface provides a procedure that corresponds to each Interpress type that has 
literals. The procedure appends to the encoding a literal of the corresponding type. The appli­
cation program creates a master by calling these procedures to append each literal to the 
encoded master in the same order as the literals appear in the written form. (There is one 
exception to the ordering conventions, explained below in Section 7.1.1.) 

The following set of procedures is sufficient for encoding all the masters in this Introduction: 

/ nittalizeM aster; 
FinaiizeM aster,' 

AppendOp(n: Integer);. 
AppendNumber(r. real); 
Append/ nteger( n: Integer); 
Appendldentljler(s: string); 
AppendString (s: string); 

-~ open an output file and put out the header --
-~ close the output file --

-- output a primitive operator or symbol -~ 

-- output a Number --
-~ output an Integer --
-- output an Identifier --
-- used to encode (string) --

r;:::::====:;, 
~w~ Xerox 
I)iQ~ Private 
"""lJ"" 0 at a 

65 



7 

66 

Creating masters: procedural interfaces 

Before discussing the implementation of these procedures, we shall present an example of an 
encoding using this literal interface. Consider Example 3.2, which is reprinted here for 
reference: 

--Example 3.2. A simple master to be generated by the literal interface--
--0-- BEGIN { } 
--1-- { 
--2-- [ xerox, xc82-0-0, times] FINDFONT 0.00636 SCALE MODIFYFONT a FSET 
--3-- 0 SETFONT 
--4-- 0.07366 0.23876 SETXY 
--5-- <Interpress> SHOW 
--6-- } 
--7-- END 

The following Pascal-like program uses the literal interface to generate the master. A const 
declaration makes the arguments to AppendOp mnemonic rather than numeric. 

constMAKEVEC=283; FlNDFONT=147; SCALE = 164; MODIFYFONT=148; 
FSEf=21: SEfFONT= 151; SErXY=10; SHOW = 22; 
BEGINMASTER= 102; ENDMASTER= 103; BEGINBODY= 106; ENDBODY= 107; 

fnitlaJlzeMaster; -- put out master header-­
AppendOp (BEGINMASTER); 
AppendOp (BEGINBODY); AppendOp (ENDBODY); _c null preamble ~c 
AppendOp (BEGINBODY); -- begin page body --
-- set up font --
AppendIdenttjler("xerox"); AppendIdentljler("xc82c O-O"); Append/denttjlel'("timesn

); 

AppendNumbel'(3); AppendOp (MAKEVEC); 
AppendOp (FlNDFONT); 
AppendNumbel'(O.OO635); AppendOp (SCALE); 
AppendOp (MODIFYFONT); 
AppendNumbel'(O); AppendOp (FSEf); 
-- now set current font --
AppendNumber(O); AppendOp (SEfFONT); 
-- set current position --
AppendNumber(O.07366); AppendNumber (0.23876); AppendOp (SErXY); 
_c put out some text --
AppentLStrlng(nInterpress"); AppendOp (SHOW); 
AppendOp (ENDBODY); -- end page body --
AppendOp(ENDMASTER); -- end of master --
FlnaJlzeMaster: 

7.1.1 Warning about body literals 

In all of the examples we have seen so far, the order of literals in the encoded master is the 
same as the order of literals in the written fonn. However. there is a set of cases in which this is 
not true. Any operator that takes a body as an argument a so-called "body operator," has a dif­
ferent encoding rule: the primitive operator literal encoding is placed immediately before the 
encoding of the body that is the argument. For example, the primitive operator CORRECf takes 
a single body as argument (§ 4.10): 

<b: Body> CORRECf ..... <> 

~YIJJ. Xerox tiO" Private ""'0'" Data 



Introduction to Interpress 7 

If the written form: 

{ (Interpress> SHOW } CORRECT 

were to be encoded, the encoding for CORRECf would come first, followed by the beginGbody 
token, followed by literals in the body, followed by the end-body token. Thus the following 
calls would be made using the literal interface: 

. AppendOp (CORREcr); 
AppendOp (BEGINBODY); -- begin argument body -­
AppendString (nInterpressn); AppendOp (SHOW); 
AppendOp (ENDBODY); -- end argument body --

Of course, the literal interface could buffer the encoding of a body that is not part of the skeleton and wait for 
the trailing body operator before writing out the encoding. When the operator is given. the interface would write it 
to the encoding. followed by the literals in the body that have been buffered. Note. however. that this process 
must be recursive. i.e.. it is possible to have body operators inside the body that is an argument to a body 
operator. 

7.1.2 Implementing the literal interface 

The implementation of the literal interface procedures depends on a detailed understanding of 
the encoding, given in § 2.5. The AppendOp and Appendlnteger procedures are defined in that sec­
tion. The-discussion· below . supplements the discussion in that section. 

Number . . The procedure to encode a ·Number must choose an appropriate encoding 
mechanism, depending on the value of the number being encoded: 

procedure AppendNumber{r. real); 
var d: Integer; 
begin 
_s Ifr is integral, use Appendlntegerprocedure. defined in § 2.5.2-­
if r=trunc(r) and r<maxlntegerthen Appendlnteger{trunc(r» else 

end 

begin 
-- Must use a rational encoding. --
GO Choose a value for d. See discussion below. -­
d: = trunc(min (max(l, 1000000/ r),1000oo0»; 
-- AppendRational is defined in § 2.5.2 -­
AppendRattonal( round( r*d),d) 
end 

To encode a non-integral number as a rational, a suitable denominator must be chosen. The 
procedure shown above chooses a denominator so that the rational approximation will be 
accurate to within one part in a million and so that the largest number used in the rational 
approximation is 1000000, unless of course r is greater than 1000000. The number 1000000 is 
chosen somewhat arbitrarily; another would do. 

The best way to choose a denominator is to use information about the format of floating-point 
arithmetic in the creator's computer. A real is usually implemented in a computer as a rational 
approximation in which the denominator is a power of 2, so that a real can be encoded exactly 

~9~ Xerox 
Ij;Q~ Private 
""'[jy, Data 

67 



7 

68 

Creating masters: procedural interfaces 

by using a denominator that is a power of 2. For example, suppose that a floating-point num­
ber is represented by two quantities e and , such that the number is r= IX 2e, where i is an 
integer in the range - 224 < 1< - 223 -lor 223 S is 224 -lor is exactly 0 and e is an integer in 
the range -l00Se<l00. By rewriting the number in the form r= t/(2-e), we find that a 
choice for the denominator is d= 2-e, unless e>O, in which case we'll have to choose d= 1. Of 
course, we compute the numerator as n = rd. All that is required for this scheme is to be able 
to extract the value of e from a floating-point number. 

If the details of the format of floating-point numbers are not known, we can indirectly com­
pute the value that the denominator d must have. The following code will do just that on most 
computers, assuming max VaI is the maximum value of the denominator you wish to use in a 
rational approximation: 

d:= 1; 
while (abs("-d) < max Val) and (d<maxVal) and ("-d ~ trunc("-d» do d: = d"'2; 

Primitive Operator. A procedure AppendOp(n: integer) is given in § 25.2 that will encode a 
primitive operator. Your program will be more readable if you use identifiers to stand for 
operators9 as in the example above. Consult § B.3 for mnemonic codes for encoding primitive 
operators. 

In addition to primitive operators, there are five special non-primitives that are encoded as 
Ops: BEGIN; END, PAGEINSTRUCI10NS,{, and }. These too maybe given mnemonic identifiers. 
as in the example above. 

Identifier. The following procedure appends an identifier to the master being created: 

procedure Appendldenttjler(s: string); 
var i: integer; 
begin 
AppendSequenceDescrlptor (sequenceldentljler, s./ength); 
for i :.= 1 to s./ength do AppendByte(s.characters [I]) 
end 

This procedure assumes a programming-language type string, which Pascal does not have. It's 
obvious what the procedure is intended to do, however. 

Body. It would be awkward to design a procedure to encode a body, because we would have to 
design a way to represent an arbitrary body in a data structure of our programming language 
so that it could be passed as an argument to the procedure. Instead, the application program 
can call AppendOp (BEGINBODY), then call various procedures in the literal interface in order to 
encode each literal in the body, and finally call AppendOp (ENDBODY). 

Strings and Vectors. It is helpful to have procedures for converting vectors and strings in the 
programming language into the compact Interpress encodings for vectors and strings. While 
these procedures are not strictly necessary, since calls on MAKEVEC would do the job. the com­
pact encodings they achieve are attractive. For example, we might use the following two 
procedures, described in § 2.5.3: 

procedure AppendStrlng(s: string); 
procedure AppendlntegerVector(v: vector; numElements: integer); 

~Wl/J!. Xerox 
IiQ~ Private 
ilO~ Data 



Introduction to Interpress 7 

En'Or checking. It is wise to outfit the procedures in the literal interface with some simple 
error-checking measures. In particular, AppendOp can check to be sure that Bodies are properly 
nested simply by counting the number of { and } symbols: the master is in error if the num­
ber of } symbols ever exceeds the number of { symbols or if the counts of the two symbols 
are not equal when the END symbol is output Similar checking could be applied to BEGIN and 
END; in fact, it might be prudent to have InitiallzeMaster output the BEGIN and FinalizeMaster 
output the END, simply to avoid mistakes. 

Summary. The virtue of the literal interface is that it can be used to encode an arbitrary 
Interpress master. However, it has some -disadvantages: 

• The program that generates the master is hard to read. 

• It is easy to make trivial mistakes in the program, such as providing the wrong number of 
arguments to an operator. 

These properties should be evident from the example above. The operator interface, described 
in the next section, remedies these problems. 

7.2 Operator interface 

An operator interface defines a separate. encoding procedure for each important Interpress 
primitive operator~ The:encoding procedure-takes the same arguments as the- Interpress primi­
tive operator. This' interface is- somewhat easier to use than --a literal interface, because the 
application-program is easier to read and because trivial mistakes are easier to avoid. 

The easiest way to build an operator interface is on top of a literal interface. That is. 
procedures in the operator interface call procedures in the literal interface. For example, we 
might define: 

procedure SetXY(x,y: real); 
begin 
AppendNumber(x); AppendNumber(y); AppendOp(SETXY) 
end; 

procedure Draw Line (xl.yl.x2,y2: real); 
begin 
AppendNumber(xl); AppendNumber(yl); 
AppendNumber(x2); AppendNumber(y2); 
AppendOp(MASKVECTOR) 
end; 

Using the first procedure, line 4 in Example 3.2 could be encoded with the call SetXY(0.07366, 
0.23876). The application programmer will find this much more natural than the corresponding 
calls to the literal interface. 

For primitive operators that take computed arguments or that return results on the stack, 
operator interface procedures can be built that omit computed results. Consider, for example, 
FGET: although it leaves a result on the stack, it takes an argument that is usually not a com­
puted result So it would be nice to have a procedure that handles the (usually) constant argu­
ment, just to avoid the tedium of using the literal interface. The procedures below show some 
examples: 

~w,.. Xerox 
~Q~ Private 
"';l.Jr Data 

69 



7 

70 

Creating masters: procedural interfaces 

procedure FGet(n: integer); 
begin Appendlnteger(n); AppendOp(FGEf) end; 

procedure FSet(n: integer); 
begin Appendlnteger(n); AppendOp(FSET) end; 

procedure Rotate(a: real); 
begin AppendNumber(a); AppendOp(ROTATE) end; 

procedure Translate(x,y: real); 
begin AppendNumber(x); AppendNumber(y); AppendOp(TRANSLA TEl end; 

procedure Concat: 
begin AppendOp( CONCAT) end; 

procedure ConcatT,' 
begin AppendOp( CONCA TI) end; 

Although the procedures for constructing transfonnations provide some help with the argu­
ments to primitive transfonnations, the concatenation of transformations on the stack must still 
be dealt with- much as in the literal interface. For example, line 3 of Example 6.6 could be 
encoded with: 

Scaie(0.OOOO35278); Translate(O~ -:-0.2159); Concat: Rotate(90); Concat; FSet(l); 

The operator interface may also include procedures that handle frequently-used templates. 
Since the font setup template is used frequently, we might defme a procedure that will 
generate the proper encoding: 

procedure SetupFont(fontNumber: integer; name: string; scale: real); 

This procedure could arrange to parse the font name, breaking it up into identifiers, e.g., the 
name "xerox/xc82-0-0/times" would be parsed into three identifiers and encodecL 

7.2.1 An example using the operator interface 

The same example used in Section 7.1 can be expressed with the following simpler program. 
which uses an operator interface: 

BeginMaster; -- open file, put out master header and BEGIN-­
BeginPreamble; 
EndPreamble; -- null preamble -­
BeginPage; --start a page--

SetupFont(O, "xerox/xc82-0-0/times", 0.00635); --font template-c 

SetFont (0); 
SetXY(0.07366.0.23876); 
Show ("Interpress"); 

EndPage: --end a page--
EndMaster; -- put out END and close file --

~y~ Xerox 
tiQ~ Private 
"""'0'" Data 



Introduction to Interpress 7 

This example shows how separate procedures have been defined for BeginMaster, EndMaster, 
BeginPreamble, EndPreamble. BeginPage. and EndPage. This measure not only makes the program 
more readable but allows the interface to perform some error-checking, e.g., to check that 
Beg/nPage is not called inside a page body. 

7.2.2 A suggested operator interface 

While designing an operator interface is not difficult, it is often nice to have a place to start. 
Below is a list of suggested procedures and the literals they generate. 

Operators with no arguments. Each primitive operator that takes no arguments has a procedure 
of the same name that simply outputs the appropriate primitive operator encoding, e.g., Nop 
will output <NOP>. Operators of this type are: NOP, MOVE, TRANS, and STARTUNDERLlNE. 

Procedures of this type offer no more power than the literal interface. 

Operators with literal arguments. Operators that are used frequently with literal arguments are 
those that fit the operator interface best Below is a list of possible procedures and the 
sequences they generate. 

FGet(n) 
Mark(n) 
UnMark(n) 
lGet(n) 
Translate( x,. y) 
Rotate(a) 
Scale(s) 
Scale2 (sx,. sy) 
SetXY(x, y) 
SetXYRel(x, y) 
SetXRel(x) 
SetYRel(x) 
MalceGray(f) 

SetGray(f) 

MoveTo(x, y) 
MaskVector(xl. yl. x2, y2) 
MaskRectangle(x,. y, w, h) 
MaskUnderltne(dy, h) 
MaskTrapezoidX(xl. yl, x2, x3. y3. x4) 
MaskTrapezoidY(xl, yl. y2. x3, y3, y4) 
SetFont(n) 
SetCo"ectMeasure(x. y) 
SetCo"ectTolerance(x. y) 
Space(x) 

<n FOEf> 

<n MARK> 

if n=O then <UNMARKO> else <n UNMARK> 

<n IOEl"> 

<x y TRANSLATE> 

<a ROTATE> 

<s SCALE> 

<sx sy SCALE2> 

<x y SEfXY> 

< x y SErXYREL> 

<x SEI'XREL> 

<x SETYREL> 

<I MAKEORA Y> 

</SETORAY> 

<x y MOVETO> 

< xl yl x2 y2 MASKVECfOR> 

<x y w h MASKRECfANOLE> 

<dy h MASKUNDERLINE> 

<xl yl x2 x3 y3 x4 MASKTRAPEZOIDX> 

<xl yl y2 x3 y3 y4 MASKTRAPEZOIDY> 

<n SETFONT> 

<x y SETCORRECfMEASURE> 

<x y SETCORRECITOLERANCE> 

<x SPACE> 

Operators with some arguments computed in the master and some literal arguments. These 
procedures take some literal arguments. but assume that other calls to the procedural or literal 
interface have invoked primitives to compute the other arguments. Below is a list of one pos­
sible set of procedures: 

~9~ Xerox '8' Private Data 
71 



7 

72 

Creating masters: procedural interfaces 

Get(n) 
MakeVecLUa u) 
MakeVec(n) 
GetProp( Id) 
FSet(n) 
Copy(n) 
Roll(depth, moveFirst) 
ISet(n) 
MakeSampledB/ack( transparent) 
LlneTo(x, y) 
LineToX(x) 
LineToY(y) 
MakeOutllne(n) 

<n GET> 

<I u MAKEVECLU> 

<n MAKEVEC> 

<ld GEI'PROP> 

<n FSET> 

<n COpy> 

<depth moveFirst ROLL> 

<n ISET> 

< transparent MAKESAMPLEDBLACK> 

<x y LINETO> 

<x LINETOX> 

<y LINETOY> 

<n MAKEOUTLINE> 

Operator interface procedures in this class are often quite easy to use. For example, the trajec­
tory procedures LlneTo. LlneToX. and LineToY can be used with MoveTo and MakeOutline or 
MaskStroke. A call to MoveTo starts a trajectory, calls to LineTo, LineToX, and LineToY continue 
the trajectory, and a call to MakeOutline or MaskStroke uses the trajectory in some way. 

Operators with all arguments computed in the master. For those primitive operators all of whose 
arguments are typically computed. the operator interface includes a procedure of the same 
name that outputs the-appropriate primitive operator encoding, e.g., Exch will output <EXCH>. 
These operators are: SHAPE. POP, DUP; .•. EXCH, COUNT, DO, OOSA VE, 00 SA VEALL, CONCA T, 

CONCATI, GETCP, MASKFlLL. MASKSTROKE, MASKPIXEL, MODIFYFONT, and all the test and 
arithmetic· operators. Procedures of this type offer no more power than the literal interface. 

Body operators. The following operators are body operators (Section 7.1.1): CORRECf. 

MAKESIMPLECO, IF, IFELSE. IFCOPY. Since literals for these operators must precede the body 
that is their argument. corresponding procedures in the operator interface take no arguments. 
However, it might be helpful to have Begin- End- pairs for each operator to improve error­
checking, e.g., BeginCo"ect, EndCo"ect. 

Templates. The following list shows some templates that might be useful to provide in the 
operator interface. The list is by no means complete; you may fmd it helpful to add new 
templates as the need arises. The notation [name] stands for a vector of identifiers that results 
from parsing a hierarchical name. 

BeglnPreamble, BeginPage, BeginBody 
EndPreamble, EndPage, EndBody 
Show(s) 
Fill(n) 

{ 
} 
«s> SHOW> 

--note n trajectories must be on stack-­
<n MAKEOUTLINE MASKFlLL> 

M akePlxelArray( xPixels, yPixels. vector, decompressionName) 

FindColor(name) 
Set Stroke Width (w) 
SetStrokeEnd(e) 

--note trans/ormation must be on stack­
<xPixels yPixels 1 1 1 6 1 ROLL 

vector [decompressionName] FINDDECOMPRESSOR DO 

MAKEPIXELARRA Y> 

<[name] FINDCOLOR> 

<w 15 ISET> 

<e 16 ISET> 

~9~ Xerox 
IJ]Q!4 Private 
"'[j~ Data 



Introduction to Interpress 

SetupFont(jontNumber, name.. scale) 

FindFont(name) 

<[name] FINDFONT scale SCALE MODIFYFONT 

fontNumber FSET> 
<[name] FINDFONT> 

7 

7.3 Recommendation 

It is usually worthwhile to build both literal and operator interfaces to encode Interpress 
masters. Since the operator interface is best built on top of the literal interface, the facilities of 
both can be made available to the application programmer with no extra effort. 

An operator interface is appealing, because the application programmer can think of generating 
the image directly. The flow of infonnation when generating and printing a master is: 

application -+operator calls-+tokens-+encoded master-+tokens-+imaging primitive calls-+image 

However. if the application program were using a graphics package to create an image on a 
device connected to the application computer, the flow of infonnation -would be: 

application-+operator calls-+imaging primitive calls-+image 

This is a pleasing way to think about the process. The application program is written the same 
way regardless ·of whether· an· image is being made. directly or an Interpress master is being: 
prepared 

~9" Xerox 
I!.. "Q'lf Private """0'" Data 

73 



7 

74 

Creating masters: procedural interfaces 

~y~ Xerox 
I!;Q.!I Private 
"";[jy, Data 



8 

Software tools for Interpress 

If you set out to write computer programs that generate Interpress masters~ it's helpful to have 
some software tools to help track down troubles in the masters. In this section, we suggest 
some useful tools that can be built without much effort. 

8.1· Encoded-to·written converter 

The most basic tool is~a; program that reads an encoded Interpress master-and prints out a writ- . 
ten form of that master.>It is a form of-file-dumping program .. This tool is of enormous impor­
tance in tracking down problems in masters. If a master fails to print on an Interpress printer., 
a "print out" of the master in a readable fonn is likely to reveal the problem. The encoded-to­
written converter is also very useful when an Interpress master is obtained from some other 
organization and fails to print on your printer. The written fonn can reveal what fonts are 
required and other demands that the master makes of the printer. 

The details of the presentation of the written form. are less important than the legibility of the 
result The written form used in the examples in this document and in the Standard is recom­
mended. 

The description of the written form in Section 2.2.1 overlooks some details that are important in converting all of 
the information in a master into written form: 

• The notation ·*text·" should be used to print the text enclosed in a sequenceComment token. The --text-­
notation should be reserved for comments in the written form only. 

• The notation + + text + + should be used to print the text enclosed in a sequenceinsertFile token. 

• The first character of each identifier should be converted to lower case to avoid confusion between identifiers 
and primitive operator names, which are written in upper case. 

• If the <string> shorthand notation is used. an escape convention will be required in order to print the charac­
ter ")" if it appears in a string, or any non-printing character code. The recommended convention is to print 
# number# for an element of the string whose value is number. Thus. for example. ">" would appear as 
#62# if the character set being used is ISO 646. Of course, because # is used as an escape character, it too 
must be printed numerically. 

It is important that this tool be able to produce readable output for any master. regardless of 
how ill-formed it is. It is therefore crucial that the encoded-to-written converter never abandon 
the decoding process because of what it thinks are errors. This tool should do nothing more 
than print the contents of a master in a readable format. Another diagnostic tool. the check 

r;::::======in::t::;eI,.-oreter described in Section 8.3, can be used to find errors in the master. 

~911!. X e fOX 
II]~!I Private 
'iII[j~ Data 

75 



8 Software tools for Interpress 

It is probably worthwhile to add a few conveniences to the encoded-to-written converter. The 
program might allow skipping selected page bodies as it converts to the written form, so that if 
there is a problem with some particular page of a master, only that page needs to be listed. 

8.2 Written-to-encoded converter 

A second tool that converts from the written form to the encoded form is also helpful. It 
serves two principal functions. First, it allows you to type into a text editor an arbitrary 
Interpress master in order to try out some of the examples in this document or to experiment 
with various Interpress features. Second, if you use it in conjunction with the encoded-to-writ­
ten converter, you can repair bugs in masters by converting them into the written form, alter­
ing the text with a text editor, and then converting back to the encoded form. This feature is 
helpful when debugging new creation software and when dealing with an odd-ball master that 
may have originated outside your environment 

An important property of the two converter programs is that they be exact inverses of one 
another. If an encoded master is converted to written form and then (without changes) con­
verted back to encoded form, the result should be identical to the original master. This 
property is essential to avoid loss of numeric precision in the conversions and to ensure that 
when the written form is edited, the encoded master obtained by converting it will differ from 
the original only due to the edit 

The written form may' have to be designed carefully to meet the somewhat conflicting objec­
tives of legibility and invertibility. For example9 a rational number encoded as n/ d must be 
represented in the· written form as n/d to' insure . that a conversion back to the encoded form 
will use the same denominator as the original master. However, the decimal fraction form of 
this number should probably appear as a comment immediately following the rational form so 
that the written form can be read easily, e.g., 17/11 ·-1.545-·. 

The written-to-encoded tool must be careful to treat body operators properly (see Section 
7.1.1). In the written form used in this document, a body argument precedes its body operator, 
but in the encoded form, a body operator precedes its body argument. If a similar written for­
mat is chosen, both converter tools will need to reverse the order of body argument and body 
operator. Alternatively, you might choose a written form in which literals appear in precisely 
the same order as in the encoded form. 

8.3 A check interpreter 

76 

If you're doing a lot of Interpress programming, it may be worthwhile to build a check inter­
preter, a program that interprets an Interpress master and scrupulously checks all the rules of 
the Interpress language. It should check that all arguments to operators are of the correct type. 
It should also verify that no limits are exceeded; in fact, it might keep track of the largest 
amount used of all the limited resources (e.g., largest body, highest frame index used, largest 
vector, largest Integer, and so on). 

The check interpreter could be an Interpress printer with comprehensive error-detection and 
diagnostic features in the interpreter software. The output of this printer could be the diagnos­
tic information in addition to (or instead of, if the master is full of errors) the regular printed 
output. Alternatively, the check interpreter could be an interactive program that lets you con-

~.~ Xerox 
~Qi9 Private 
""'lJ'" 0 a t a 



Introduction to Interpress 8 

trol the execution of the master, setting breakpoints and single stepping if needed, and letting 
you probe the contents of the stack, the frame, and the imager variables as needed. An interac­
tive check interpreter could also show the page image on a display, adding each new com­
ponent of the image as it is produced. 

8.4 A graphics package 

Another piece of diagnostic software that helps check out creator software is a graphics 
package that has the same interface as the operator interface described in Section 1.2. The 
graphics package, rather than building an Interpress master, will create a display of the page as 
it would have been printed. Moreover, the display can be created as each operator-interface 
procedure is called, so that the, programmer can debug his or her application program interac­
tively. 

It is essential that the graphics package have the same interface as the operator interface. A 
programmer who uses the graphics package for debugging can then be assured that the 
program will work the same way when actually creating a master. Of course, it would be pos­
sible to combine the graphics package and the operator interface to Interpress, so that a run­
time switch would determine whether a master or a display was to be generated. 

A graphics package that mimics the operator interface for the operators we have introduced so far is described by 
Warnock· and Wyatt [24]. Operators that take bodies as arguments, however, will cause problems, because the 
graphics package' will" have to save the' contents of such bodies: The most frequently' used operator of this sort is 
CORRECT; described in" Section 10 and § 4.10. 

8.5 Recommendation 

The two converter programs are simple to program and extremely valuable. The graphics 
package and check interpreter, on the other hand, are major undertakings, justifiable only if 
you're doing a lot of Interpress work. Perhaps someone will offer a checking service: you send 
an Interpress master via computer network to the service and receive in return a diagnostic list­
ing of the check interpreter's results. 

~911!. Xerox 
tiQ~ Private ""'0"'" 0 at a 

77 



8 Software tools for Interpress 

78 

~9" Xerox Ij;Oif Private 
""f.j'fll' Data 



9 

Fonts 

Although Interpress can be used to specify almost any image at all on a printed page, images 
containing letters, numbers, and other text characters are common enough that Interpress has a 
special mechanism for dealing with them. The mechanism is patterned after the mechanism of 
movable type that has been in use for centuries, and much of the vocabulary necessary to 
understand it and use it comes from typesetting. 

To draw a' character ,on a page"we need to add to the page an image: of the character, drawn 
in a certain way, in a,' certain size and rotation~A characters ',shape is, called a letterform. and 
placing an· instance of-a character on a-page· is, called imaging a'letter/orm. Most of the earliest 
models of phototypesetting machines work by having actual mechanical letterforms. 
photographic negatives, that are imaged by shining a bright light through them onto 
photographic paper, one letter at a time. Interpress does not use photographic negatives or 
mechanicalletterforms, of course, but you can think about the mechanisms in the same way. 

Interpress accommodates letterfonn definitions of many different sorts, and can take advantage 
of the high-quality typefaces designed for photocomposition and printing. 

A font is a collection of letterfonns designed to be used together. When a master is prepared, 
the creator needs to know a good deal about these fonts in order to fonnat the document 
properly. To decide how many characters will fit on a line, the creator must know the "width" 
of each character. i.e., the amount by which the current position is moved when the character 
image is placed on the page. Likewise, to justify a line of text between margins, the creator 
must know character widths. 

In order to allow a creator to predict the appearance of characters it places on the page. 
Interpress fonts adhere to rigid conventions governing: 

• The precise actions that are taken when an individual character is placed on the page by 
SHOW. 

• Reporting to the creator ~arious metric information concerning the font and each character 
in it, such as the character's width. 

However, Interpress' treatment of fonts is deliberately flexible in two important areas: 

~.~ Xerox tiOi9 Private """0" Data 
79 



9 Fonts 

• The conventions used to name a font 

• The choice of a character set for a font, that is, the correspondence between character 
codes and shapes. 

In the areas of character sets and font names, the Interpress standard is designed to accom­
modate a wide range of current practice in the computing and printing industries, rather than 
to impose new standards. Both of these areas are characterized by long and interesting histories 
that have led to diverse practices. Rather than choosing a particular practice and standardizing 
it within Interpress, Interpress allows arbitrary character sets to be used and provides a 
framework in which almost arbitrary font names can be used. 

For a discussion of the historical and technical issues surrounding fonts, we recommend the 
Updike book [23]. For a representative sample of type faces, the International Typeface 
Corporation's font catalog [12] is superlative. 

9.1 Font names 

80 

Interpress names a font with a vector of identifiers, for example [ltc. ascii, times]. Names of 
arbitrary complexity are handled by extending the vector to contain any number of identifiers. 
The name may capture any or all aspects of a font, such as its style, the name of its designer, 
or a··version number. Font names used in the printing industry can be mapped quite easily 
into. this=framework. Thus "Bodoni-- Bold Condensed" might become [itc. ascii, bodonl, bold. 
condensed]~ and similarly~Caslon Demi-bold might become [itc. ascii, cas/on. demibold]. 

In the above examples. the identifiers ttc and ascii precede the identifiers for what might con­
ventionally be considered the font name. These identifiers are examples of hierarchical naming 
conventions, and are the only aspect of font names that Interpress insists on. Interpress insists 
on hierarchical names so that different Interpress users and applications can devise font names 
that are unique, that is, that do not conflict with anyone else's invented names. The way that 
hierarchical names are organized is described in Section 11. Once past the first few identifiers 
that satisfy hierarchical name requirements, however, you are free to organize font names in 
whatever fashion you wish. Naturally the font naming scheme must allow masters to refer to 
fonts by name and Interpress printers to find and use the fonts. 

A font name does not contain information about the geometric properties of a font, such as its 
size and orientation. These are controlled not by the name but by the geometric transforma­
tions specified to MODIFYFONT and the current transformation in effect when SHOW is called. 
However, the highest quality typographic practice requires that letterforms of different sizes 
have different shapes-letterforms are not simply magnified or reduced. In these cases, the dif­
ferent type designs are given different names. For example, one common technique is to 
define three different letterform designs, one for very small type such as used in footnotes. one 
for common "body" text, and one for headline or "display" type. These properties could be 
part of the font name. as in [ ttc. asciI, cas/on. demibo/d. display J. It's important to realize, 
however. that the optimum letterform design is related to the viewing angle it subtends at the 
eye, not to its physical size. Body characters on a billboard may be 50 cm. high. while the 
body characters on this page are only 0.35 cm. high. These two uses of body characters will 
use the same letterform design, but will have different geometric transformations applied. 

~ ... Xerox 
Ii~~ Private 
iIIU" Data 



Introduction to Interpress 9 

9.1.1 Xerox font names 

Fonts whose hierarchical names begin with [ xerox, • • • ] are subject to a naming standard 
being developed by Xerox. At the time of this writing, these standards are not complete. 
However, the example masters in this Introduction all use the following convention: 

1. The first identifier is Xerox. 

2. The second identifier specifies the character set used by the font (see Section 9.2). The 
Xerox Character Code and Rendering Code Standards [25, 29] are denoted by xc82-0-0. 

3. The third identifier is the "typographical name" of the font, encoded in a single identifier. 
Examples are tlme~ times/tal Ie, and timesbold 

Application program wants to print "CAB" 

V Character set decision made here. during the encoding process 

5 34 3 MAKEVEC SHOW < Encoded master being processed 

1 o 
character operators 

/1 third operator; prints here as "A" 

1 
char 5 

char 3 I--"':"'-~+--------::'" fourth operator: prints here as "B" 

char 4 

inside master. character 
codes are just integers. 
and have no special meaning. 

7 
8 

character 
operator 
vector 

~ 
fifth operator: prints here as "C" 

application pro~ must know 
how the font will print 
and use that infonnation 
in the encoding process 

Figure 9.1. Steps in imaging a character on the page 

9.2 Character sets 

The term character set refers to the correspondence between a digital character code and its 
printed, or graphic, form. The notion of character set is clearly vital to Interpress, which must 
make graphic images on a page according to digitally-encoded instructions. Many different 
character sets are used today, and some have been standardized (e.g., ASCII, ISO 646, 
EBCDIc~some of these standards are described in Section 23.3.1. But each of these standards 
is unacceptable for some applications, and none has become dominant As a result, Interpress 

~9~ Xerox 
~~iI Private 
i/lU" Data 

81 



9 

82 

Fonts 

is carefully designed not to depend in any way on the choice of character set for a font. The 
SHOW operator is given as an operand a vector of character codes, which it uses to index into a 
vector of character operators to find a character operator, which actually places an image on 
the page. Figure 9.1 shows this operation pictorially. 

An Interpress printer treats all characters in this way, with no knowledge of what a character 
code signifies. It is the master that controls both the choice of character codes passed to SHOW 

and the choice of the vector of character operators to use; thus the character set is of no conse­
quence to an Interpress interpreter and printer. 

9.2.1 A character set analogy: daisy-wheel typewriters 

An analogy may help to clarify the nature of a character set; please refer to Figures 9.2 and 
9.3. Consider a typewriter that uses the "daisy wheel" printing technology. Let's ignore the 
labels printed on the typewriter keys, and instead print on each key a number from 1 to 96 
that corresponqs_ to a position on the wheel. The typewriter mechanism responds to a keystroke 
on key n by rotating the wheel to position n and striking the wheel sharply so as to imprint 
whatever character shape has been cast into the wheel at that position. The typewriter is thus 
completely insensitive to the identity of the characters in the images it makes. Instea~ the user 
controls the character selection because he controls both the keys struck and the selection of 
the wheel to use. This situation corresponds exactly to the situation in Interpress; the identity 
of the character images is controlled entirely by the master and not by the Interpress inter­
preter or imager. The character codes in the operand passed to SHOW correspond to key num­
bers and the font established by SETFONT corresponds to a wheel selection. 

The analogy helps illustrate another aspect of character sets as well. In the daisy-wheel 
typewriter, keys are labeled with characters (e.g., A, B, C) because most, but far from all, daisy 
wheels use the same character set. So a wheel for roman type and one for italic type will use 
the same character set-this avoids confusion and is of great convenience to the user because it 
allows keys to be labeled in a meaningful way. But some wheels contain many special symbols 
that do not correspond to the key labels. In this case, a plastic chart overlaid on the keyboard 
tells which key to strike in order to obtain each special character. This chart is somewhat like a 
character set, in that it defines the correspondence between character codes (typewriter keys) 
and printed symbols. However, it is not completely analogous to a character set, because it is a 
mapping between the special key meanings and the regular key meanings, rather than a map­
ping between the special key meanings and print wheel positions. 

It is extremely important to understand that I nterpress imposes no standard character set when 
printing images of characters. If the master selects a font designed to use the ASCII character 
set, calls to SHOW must have operands containing ASCII character codes. If the same master 
later selects a font designed to use the EBCDIC character set, subsequent calls to SHOW must 
provide EBCDIC character codes. Still other fonts may use no standardized character set, but 
simply choose character codes at will like the daisy-wheel for special characters. Fonts of 
arbitrary character set can be used within the same master just as daisy-wheels of arbitrary 
character set can be used to type on the same page. 

~.~ Xerox 
Ij~~ Private 
iIIO~ Data 



,~, .Il 

Introduction to Interpress 

Xerox 
Private 
Data 

standard text 
in (unencoded) 

text to be imaged 

special text 
in (unencoded) 

character images on paper 

O.~/' (0 Standard daisy wheel .... (Character set matches 
standard encoding) 

1i(;J·~. Special daisy wheel 
\ • ,: (Character set matches 
.... ' Special encoding) 

~ 
character images on paper 

Figure 9 .2. A daisy"wheei printer that assumes no character set 

standard text 
in (unencoded) 

text to be imaged 

special text 
in (unencoded) 

character images on paper 

IiGo • ~!'standard daisy wheel 
\ • ,: (Character set matches 
.... ' keyboard encoding) 

IiG·-t... Special daisy wheel 
\ • - (Character set does not 
_~ 'i,.tr:h keyboard encoding) 

character images on paper 

Figure 9.3. A daisy-wheel printer that assumes a character set 

9 

83 



9 Fonts 

9.2.2 Character sets and the Interpress encoding 

Although the Interpress language does not have a standard character set, the encoding of 
Interpress does make use of a standard character set in two cases. The encoding of identifiers 
and of the header uses the ISO 646 character set to obtain a numeric code for the characters 
and symbols that appear in these two objects. But this use of a standard character set has noth­
ing to do with character sets of fonts or with making images of characters; it merely provides a 
standard way of interpreting font names and a readable transcription of the header. 

9.23 Determining the character set of a font 

The creator must know the character set of the fonts it uses. In most cases., a given creator is 
designed to work with only one character set and selects fonts that are known to observe the 
necessary character set conventions. 

Font names_ ~an be devised so as to communicate font properties to the creator. In particular, a 
printer might use a convention that incorporates the name of the character set into the hierar­
chical font name. For example, Xerox's computer printing products might adopt the conven­
tion that one level of the name hierarchy is devoted to character set identification. Thus fonts 
with names of the form [ xerox, asci' .• 0 ] use an ASCII character set, those of the form [ xerox, 
ebcd~ . •.• ] use the EBCDIC character set, those of the form [ xerox, xc82-o-0. . . . ] Xerox 
Character Codes, and so on. 

9.3 Character operators 

84 

Each character in a font is represented by a character operator. which is responsible for making 
an image of the character on the page whenever it is executed. A printer's font library will con­
tain definitions for character operators for the characters of each font. As we shall see in 
Section 14, it is possible for a master to define character operators itself, useful for special 
characters that are not available in the font library. 

A character operator must do three things: 

1. Generate an image of the character. Interpress' graphical operators are used for this pur­
pose. Recall that the character's shape is specified in the character coordinate system 
(Section 5.3.3), in which the unit of distance measurement is the "point size" or "body 
size" of the character and the x axis lies along the character's baseline. The placement, size, 
and orientation of a character placed on the page is controlled by the transformation 
applied to the geometry in the operator when it is called by SHOW. 

2. Change the current position so as to prepare for imaging the next character in a sequence. 
This is accomplished by moving the current position so as to correspond to the point 
(widthX. widthY) of the character. 

3. Adjust spacing a small amount. Small adjustments to character spacing may be required in 
order to compensate for small differences between character widths used in the printer and 
those assumed by the creator. This topic is covered in detail in § 4.9. § 4.10, and Section 
10.4.3. 

~WII!. Xerox 
II]g~ Private 
.. O~ Data 



Introduction to Interpress 9 

9.3.1 Graphic characters 

The three activities that must be performed by a character operator are illustrated by a charac­
ter operator for the character "+": 

--Example 9.1: sample definition of a character operator--
--0-- { --the character operator is defined by the following body literal--
--1-- 0.1 16 15ET --set strokeWidth to 0.1 units--
--2-- 0 16 15ET --set strokeEnd to 0 (square) --
--3-- 0.25 0.35 0.66 0.36 MA5KVECTOR --horizontal bar of '+'--
--4-- 0.46 0.15 0.46 0.56 MA5KVECTOR --vertical bar of '+'--
--6-- 0.9 0 5ETXYREL --set current position to (0.9.0)--
--6-- CORRECTMA5K --call an operator to correct spacing--
--7-- } MAKE51MPLECO --the bracket that ends the body l1teral--

1.0 

+ 
o 1.0 

Figure 9.4. The character" + " in" its coordinate system. 

Figure 9.4 shows the character defined by this operator. Lines 0 and 7 are used to define a 
composed operator. an operation that will not be described until Section 12. It suffices for the 
moment to explain that the body (lines 1 through 6) will be executed whenever this character 
operator is invoked. The three duties of the character operator show clearly in the body: 

1. Generating the image of the character. The first four lines (1-4) are concerned with gener­
ating the image of the "+". The example uses strokes for this purpose, as illustrated in 
Section 3.1, although most character operators will use more sophisticated graphics primi­
tives in order to obtain more legible character shapes. The graphical primitives are 
described in Section 15 or § 4.8.2. 

2. Moving the current position. Line 5 calls the operator SETXYREL to alter the current posi­
tion. Of course, when the character operator is invoked, the current position is at the 
origin of the character coordinate system. Line 5 will change the current position to the 
point (0.9, 0) in the character coordinate system. This point has been determined by the 
font designer to be the place where the origin of the next character in a sequence should 
lie. 

3. Adjusting the spacing. Line 6 calls the operator CORRECfMASK to provide an opportunity 
for spacing correction. This operator may change the current position by a small amount., 
as described later (also see § 4.10). If the creator and the printer are in exact agreement 
about font widths (e.g.. no font approximations have been made), CORRECfMASK will not 
change the current position at all. 

This example illustrates clearly what a character operator does. It also shows what the font 
designer must do: he must devise a set of calls to Interpress graphical operators in order to 
create an image of the character; and he must decide where the next character in a text 
sequence should be placed, i.e., he must determine the width of the character. 

~.~ Xerox "04' Private """0'" Data 
8S 



9 

86 

Fonts 

A printer's font library contains a great many character operator definitions like the one above. 
While they may be represented in some form besides that of an Interpress body for efficiency 
reasons, they achieve the same effect The printer's font library is thus a convenience but not a 
necessity: a master could provide a definition for every character operator it uses, but the 
master would grow in size and the interpretation of the master by the printer would doubtless 
slow down. 

9.3.2 Spaces 

Some "space" characters have no graphic imagey but have a non-zero width. These space 
characters fit into the character operator paradigm exactly-except that no graphic image is 
produced. The following example illustrates how a space character operator might be defined: 

--Example 9.2: a character operator for the "space" character--
--0-- { --no graphics--
--1-- 0.26 0 SETXYREL --set current pOSition to (0.25.0)--
--2-- 0.26 0 CORRECTSPACE --call an operator to correct spacing--
--3-- } MAKESIMPLECO 

In this example, the character operator simply changes the current position in order to place 
the next character in sequence at the proper spot. Note that this space character invokes the 
CORRECfSPACE operator to perform spacing correction, while the operator in Example 9.1 
invokes CORRECTMASK. The reasons for this· distinction· are explained later, in Section 10.4.3. 

9.3.3 Amplifying characters 

Interpress allows a character operator to use an alternate spacing computation, one that scales a 
character's width by the value of an imager variable named amplify Space. Characters that use 
this kind of spacing calculation are termed amplifying characters. The most common use is to 
place in a font a single amplifying space character, which is used to achieve simple kinds of 
text justification, explained in Section 10. An example of a character operator for an amplify­
ing space is: 

--Example 9.3--
--0-- { --no graphics--
--1-- 0.25 18 IGET MUL 0 SETXYREL --change currant position by (0.26*amplifySpace,0)--
--2-- 0.26 18 IGET MUL 0 CORRECTS PACE --call an operator to correct spac; ng--
--3-- } MAKESIMPLECO 

Note that the operator invokes other operators to obtain the value of amplifySpace (imager vari­
able 18) and to perform the multiplication. While this computation looks somewhat like a 
geometric transformation, it is best viewed instead as if amp/ifySpace were a global variable that 
acts like a parameter to the character operator. 

9.3.4 What character operators cannot do 

Restrictions on Interpress character operators prevent a one-to-one mapping between some 
existing character sets and Interpress characters. The principal limitation is that a character 
operator is allowed to change the current position in one of only two ways: the current posi­
tion is advanced either by the character width or by the amplified character width. 

There are two practices in some existing character sets that cannot be achieved with Interpress 
characters: 

~.~ Xerox 
I]g~ Private 
if/j~ Data 



Introduction to Interpress 9 

1. Formatting characters. Many character sets contain formatting characters other than spaces 
that are used to control the format of presentation of text. Examples from ASCII are 
carriage-return, tab, form-feed, and vertical-tab. An Interpress character operator cannot 
achieve the effect of these characters. The reason is that the current position cannot be 
reset to a particular value (carriage-return) or to one of a number of fixed values (tab, 
vertical-tab). These formatting· operations are achieved in Interpress with positioning com­
mands such as SETXY rather than by interpreting character codes. 

2. "Automatic" ligatures. High-quality typography often makes use of ligatures, which are spe­
cial graphic forms designed to show sequences of characters in a row. For example, two 
"f" characters in a row may appear as a ligature "ff" rather than as two separate characters 
"ff'. You may have to look closely to see the difference in text, but it should be more 
visible in these enlarged characters: 

Letter pairs: fffi Ligatures: fffi 
In Interpress, each such ligature must have a separate character operator in the font; a liga­
ture cannot be obtained "automatically" by showing the two characters in sequence. So the 
master, rather than invoking [ 102, 102 ] SHOW to obtain two separate "f' characters, might 
invoke [ 136 ] SHOW to obtain the ligature-the ligature is simply another character in the 
font. Automatic ligatures cannot be achieved by Interpress operators because of the restric­
tions on the width calculation: the width of a character cannot depend on the identity of 
the preceding character, as it would have to for automatic ligatures. This is not a serious 
restriction, because the creator is perfectly capable of recognizing character pairs as it out­
puts them and performing the appropriate substitution. Moreover, this strategy adheres to 
an important design goal of Interpress: all decisions about presentation and formatting 
should be made by the creator, not the printer. 

9.4 Font metrics 

Although a creator does not need to know all details of a character operator in order to create 
a master, a certain amount of metric information is necessary, e.g., the character's width and 
whether it uses the amplifying width calculation. Interpress defines a set of metric properties 
for each character and some metric properties that apply to an entire font 

The full set of character metrics is explained in § 4.9.3. The most important character metrics, 
which Interpress records about every character, are: 

widthX, widthY: Number. These two numbers give the width of the character. If widthX is not 
specified, it is assumed to have value zero. If widthY is not specified, it is assumed to have 
value zero. 

amplified: Integer. This metric tells whether the character is amplifying. If amplified= 0, the cal­
culation that changes the current position is < widthX width Y SETXYREL>; if amplified = 1, the 
calculation is < widthX amplifySpace IGET MUL widthY amplifySpace IGET MUL SETXYREL>. If 
the amplified metric is not specified, it is assumed to have value zero. 

Character metrics may also contain information about ligatures in the font. For example, in the 
character metric information for "f" there is a ligature table that says that if this character 
("f') is followed by one specific character ("f"), a ligature for the two-character sequence is 
available as character code 136, or if followed by another specific character ("I"), another liga­
ture is available. 

~w .. Xerox 
I]QiII Private "'0. Data 

87 



9 Fonts 

All of the information about a font in a printer's library is captured in a Vector called a 
FontDescription. The elements are (§ 4.9.1): 

operators: A Vector of composed operators: these are the character operators themselves. 
Examples 9.1 through 9.3 give an indication of what a character operator is like. The index 
of an operator in the operators Vector is called the character index. or sometimes the charac­
ter code. 

characterM etrics: A Vector of metric information for each character that appears in operators. 
The most important metrics are width}{, width Y. and amplified. The format of a 
CharacterMetrics vector is described in § 4.9.3. 

metrics: A Vector that gives metric information for the entire font. The contents of this vector 
are optional, and are described in § 4.9.3. 

name: A Vector of Identifiers. This vector gives the full name of the font. This name can be 
passed to FINDFONT to extract this font from the printer's library. 

Most of this information is not directly accessible to a master as it is being interpreted. The 
operators vector is obtained by FINDFONT, but no other elements of a FontDescription can be 
examined within the master. However, the other information in a FontDescription is made 
available to creators by a mechanism described in the next section. 

9.5 Communicating metrics to the creator 

88 

In order to prepare a master, a creator must be able to obtain metric information for the fonts 
it will use in the master. This is accomplished by providing the creator with metric information 
for all the fonts that a printer has in its library. For each font. the creator is provided with the 
FontDescription vector described in the preceding section, which includes font-wide metrics as 
well as individual character metrics (the character Metrics vector). Most important, this vector con­
tains the name of the font, which can be used in a call to FINDFONT to obtain the font 

Metric information is encoded using property vectors, which are designed so that certain metric 
properties can be given and others can be omitted. A property vector is a Vector constructed 
using a convention that elements are paired together: the first element in each pair is a 
property name, usually an Identifier; and the second element in the pair is a value correspond­
ing to the named property. For example, the property vector [widthX, 21, widthY, 14] records 
that the widthX property has the value 21 and the widthY property value 14. 

Font metric information, represented as property vectors, is presented to the creator in the 
form of a metric master. This is an Interpress master that has a preamble but no page bodies. 
The execution of the preamble of the metric master will leave on the stack one or more 
FontDescription property vectors, one corresponding to each font in the printer's library. 
Usually, these vectors contain only the character Metrics. metrics, and name properties. In order to 
simplify interpretation of the metric master, there are restrictions on the set of Interpress primi­
tive operators it may contain (§ 4.9.3). 

A portion of a metric master is shown below. It describes a font library containing two fonts. 
[xerox, ascii. times] and [xerox. ascii. timesitalic]. The first font has character indices from 32 to 
126 inclusive; the second from 32 to 136. The second font shows how ligatures for the charac­
ter "f' might be recorded. In order to understand this master thoroughly, you will need to 
read §§4.9.1-4.9.3. The master is presented in abridged form, for the sake of clarity. 

~.IJ!. Xerox 
IJ;Q~ Private 
"'flO'" Data 



Introduction to Interpress 9 

--Example 9.4. A metric master --
0-- BEGIN { --start of preamble-­

1--
2--

3--
4--
5--

6--

7--

8--

9-­
--10--
--11--

--12--
--13--
--14--
--15--

--16--
--17--
--18--
--19--
--20--
--21--

--22--
--23--
--24--
--25--
--26--
--27--

--construct first "font" vector--
characterMetrics --property name for "characterMetrics" vector--
--construct the "characterMetrics" vector--

--construct the character metric information for char 32--
32 --property name is character index--
widthX 0.34 widthY 0 amplified 1 --widthX=0.34, widthY=O, amplified=l--

6 MAKEVEC --actually make the 6-element vector value for char 32--
--construct the character metric information for char 33--
33 widthX 0.24 2 MAKEVEC --widthY=O, amplified=O because omitted-­
--construct the character metric information for char 34--
34 widthX 0.28 2 MAKEVEC 

.. and so on, for characters 35 through 126--
190 MAKEVEC --make "characterMetrics" property vector--

--since each character uses 2 element, the total size--
--of the vector is 190=(126-32+1)*2--

name --property name for hierarchical name vector--
xerox ascii times 3 MAKEVEC --make a "name" vector--

4 MAKEVEC --make FontDescription vector for [ xerox, ascii, times ]--

--construct second "font" vector--
characterMetrics -- property name--

32 widthX 0.36 amplified 1 4 MAKEVEC --character metrics for char 32--
33 widthX 0.26 2 MAKEVEC --character metrics for char 33--
34 widthX 0.30 2 MAKEVEC --character metrics for char 34--
-- ... more character metrics for chars 35 to 101--
102 widthX 0.30 --character code 102 ('f') to show ligature--

ligatures --property name for ligatures vector--
102 136 2 MAKEVEC --'ff' ligature is code 136--
108 137 2 MAKEVEC --'f1' ligature is code 135--

2 MAKEVEC --"ligatures" vector--
4 MAKEVEC --character metrics for char 102--

. . more character metrics for chars 103 to 135--
136 widthX 0.58 2 MAKEVEC--character metrics for char 136--
210 MAKEVEC --"characterMetrics"--

name --property name for hierarchical name vector--
xerox ascii timesita1ic 3 MAKEVEC --"name"--

4 MAKEVEC --FontDescription for [ xerox, ascii, timesita1ic ]--
} END --end of preamble and metric master--

It is common in typography to define fonts with widths expressed in units of set, equal to 1118 em, i.e., 1/18 of 
the body size of the type. Sometimes units of set are defined as 1/54 of the body size. In either case, the metrics 
master can express these widths exactly, without roundoff error, using the sequenceRationaJ encoding form, e.g., l3/54 
or 11118. 

The metric master, unlike most Interpress masters, is used to convey information from the 
printer to the creator (Figure 9.5a). Interpress does not define how metric masters are created 
or how a creator obtains access to one. The idea is that each printer should be able to produce 
a metric master that describes its font library and to record it on transportable media or to 
transmit it to the computer where the creator executes. There it will presumably be stored as a 
file that the creator can access repeatedly (Figure 9.5b). The metric master is encoded using 
the same encoding rules used to make ordinary masters. While such an encoding is standard 
and easy to describe, it may not be particularly convenient. If it is deemed unsuitable for a 
creator to contain software capable of interpreting the Interpress operators in a metric master, 
then a simple conversion program can perform this evaluation once and write the font informa­
tion into a file in a private format; the creator can then read this file to find its font metrics. 
This scheme is pictured in Figure 9.5c. Interpress does not define metric representations other 
than the metric master, nor does it prohibit them. 

~Yl!! Xerox 
Ij~~ Private 
fII/j~ Data 

89 



9 Fonts 

... 

__________ ~l~-o-rm-.-nary--m-~--te-~----·~l __________ ~ Creator Printer 
-II 

. metric m~ter 

Figure 9.Sa. Direct communication of metric masters. 

Io...-_c_,,_e_a_to_r_~~""f--__ -:nary mast~ r_---·-II ... __ p_n_.n_te_r_~ 
::'!f!~ 8 

Figure 9.Sb. Indirect communication of metric masters. 

orm m~te~ 

Creator Printer 

Converted 
file font 

infonnation 
vecto~ 

Conversion 
Program 

Figure 9.Sc. Converting a metric master into another form 

9.6 Font libraries and printer font storage 

90 

It is impractical for every printer to contain every font, but it is overly restrictive to require a 
creator to limit his font usage to ensure that every printer will have a reasonable chance of 
being able to print a document. This section describes a few conventions for font libraries and 
for action to be taken in case a printer does not contain the desired font. 

9.6.1 Font selection by the creator 

When a master is prepared, some knowledge of font names and properties is required by the 
creator. As we saw in Section 9.S, the creator can obtain in a metric master a list of all font 
names available on a printer or set of printers. While this list provides the names, it provides 
no additional information about a font that will help select among several available. 

If a creator is producing a document entirely in one font, as for example a line printer listing 
of a program, then it can have the name of a font built in to it or can accept a font name as 
part of the command from the user that invokes the program. Since no font switching will be 
done during the course of the document, there is no need for more complex font selection 

.. w~ Xerox 
~Oitl Private 
"""'0"'" Data 



Introduction to Interpress 9 

infonnation. Usually a document of this kind is set in a fixed-pitch fon~ and there tend not to 
be very many such fonts available on a given printer. 

In general a creator will need auxiliary information to help it select a font. Although there are 
many different kinds of programs that create masters in multiple fonts, a document preparation 
system is a nice example of a program that does so. Document preparation systems must be 
able to use a mix of body fonts, heading fonts, footnotes, italics, boldface, special-symbol fonts, 
and more. In each case, the user of the document preparation system somehow tells the system 
that he would like a font change and the document preparation system duly inserts appropriate 
font selection and font change code into the master being created. The creator must have some 
way of mapping the user's font-change requests into actual fonts that are known to be avail­
able on a printer. 

In general, a creator will need to have access to infonnation outside the scope of Interpress to 
help it select a font That infonnation can take the form of font profiles, font directories, docu­
ment design specifications, or tables of various sorts. These things are part of the creator 
software and not part of Interpress software; they constitute part of the programming work 
that is necessary to make a document preparation system create Interpress masters. 

For example, the document editor used to prepare this report labels text with named styles. 
and the editor allows its user to identify the name of the font that is to be used to show text in 
each style. This paragraph is in a style called "nonnal paragraph" and the subsection heading 
that follows it is in a style called "subsection heading." The mapping between these style 
names (which we specified when we composed the document) and actual font names is con­
tained in a "style profile" file. Other creators may obtain font names from configuration files or 
property sheets or document specification files, which are text files that specify values for a num­
ber of parameters governing document printing, including font names. The details of how to 
store, represen~ and access this auxiliary font information are entirely up to the creator, but in 
every case the infonnation must describe the fonts to be used in an Interpress master. 

9.6.2 Font approximation 

A master extracts fonts from a printer's font library using the' FINDFONT operator. Nonnally, 
the font requested by the master is available in the printer's library. But what happens if the 
font named in the call to FIND FONT is not available in the library? In this case, a printer 
doesn't just give up or summarily reject the master, but instead searches its font library looking 
for an approximate font to use as a substitute for the one it does not have. It is then able to 
print the document represented by the master, although the appearance of the product will not 
match precisely the images specified by the master. 

The way in which an approximate font is located is not defined by Interpress. The intention is 
that a printer will retain, as an adjunct to its font library, some infonnation that helps it to 
approximate font requests. It migh~ for example, keep for each font in the library a list of the 
fonts it approximates. Or the printer may have algorithms that it uses to find the approximate 
font, such as rules for examining the identifiers in the name of the requested font and match­
ing them to names available in the font library. For example, if a font name includes an iden­
tifier that indicates a font's character set (see Section 9.2.3), the printer will limit its search for 
an approximate font to those fonts with the same character-set identifier. 

~w .. Xerox 
I!QiI Private 
ifO¥ Data 

91 



9 

92 

Fonts 

When a printer doesn't have a font and is forced to choose an approximate substitute. it issues 
an "appearance warning" to alert the user to the fact that the appearance of the printed docu­
ment is not precisely as specified in the master. Interpress does not specify how this warning is 
communicated to the user: it might be printed on a break page or cover sheet that precedes 
each printing job. or it might be typed out on a terminal attached to the printer. or an 
electronic message might be sent to the user over a communications system. 

In practice. font approximation will seldom occur. This is because most masters will be con­
structed by creators that have access to a list of fonts available on the printer that will be used 
to print the master. The need for approximation arises if a master is prepared for one printer 
and then transmitted to another printer. one that has a different font library. Similarly, if in 
the course of maintenance and upgrades an obsolete font is removed from a printer's library, 
there may still be masters created and stored some time ago that request the font If one of 
these masters is sent to the printer. an approximate font will have to be found, though often 
the approximation is to use the newer version of the missing font. 

9.6.3 Font tuning 

A printer may use an approximate font in order to increase image quality. This seemingly 
paradoxical situation arises when the printer's font has been "tuned" for the best possible 
appearance or legibility on that particular device [16]. While Interpress allows a single character 
operator to be scaled to arbitrary sizes, converting a standard definition into an array of dots to 
expose on a raster printer may introduce jagged edges. stroke-weight irregularities. and other 
artifacts that reduce the legibility of the font. To avoid these effects, a printer may retain 
separate character definitions for each size, with each definition carefully tuned to cater to the 
printer's imaging properties. ' 

Font tuning may also alter very slightly the widths of characters so that each width is an 
integral number of dots on the printing device. Again. this modification is sometimes necessary 
to guarantee pleasant and legible juxtapositions of letterforms. While it might seem that even 
small deviations from the character widths anticipated by the creator would spoil the 
appearance of text, we'll see that the CORRECf operator, described in Section 10.4, can be used 
to compensate for any ill effects of font tuning. 

9.6.4 Standardizing font libraries 

It is clear that Interpress will work most smoothly if all printers have identical font libraries. 
As the differences between font libraries increase, the device independence of Interpress 
masters will decrease. Unfortunately. it is impractical to require that all font libraries be identi­
cal so that maximum device independence is achieved. 

A practical solution to this problem is to strive to make the font libraries of all printers in one 
area be identical. Most masters are created, printed immediately, and discarded; moreover, 
when the master is created, the properties of the printer that will be used are known. A few 
masters are stored for printing later, but this later printing is usually done by one of a small 
number of printers: we can arrange that these printers all have identical font libraries. So if a 
particular organization, such as a hospital or a library, has a number of printers with identical 
font libraries, masters can be created and printed within the organization without difficulty. 

!49~ Xerox 
I!~[III P riv ate 
"'OY Data 



9.7 Summary 

Introduction to Interpress 9 

Problems will increase when a document is transmitted "far" from its creation site in order to 
be printed. A printer at the Bank of America might have a very different set of fonts than one 
at the New York Times. The geographical distance between these two printers is unimportant. 
it is the fact that they are operated by two organizations with very different requirements that 
leads to the large "distance" between their font libraries. While the font approximation 
mechanism will permit any master to be printed, the approximation may yield a barely usable 
result. 

An ideal solution to this problem would be to have a small number of truly standard fonts that 
some standards organization would define. These standard fonts would be available under stan­
dard names in Interpress, e.g., [ ans' times] and would adhere to standard character code sets 
and metrics. Then if every Interpress printer were to provide these standard fonts, a master 
could be guaranteed to print properly anywhere as long as it uses only the standard fonts. 
Even if only one or two fonts were standardized. the standard would be of enormous value. 
While such a standard does not now exist, Interpress' font mechanism will cheerfully accom­
modate any standard that is developed. 

This section has collected a number of details about Interpress' font machinery. The main 
points are: 

• Interpress allows fonts with arbitrary character sets to be used and intermixed freely in a 
master. There is no such thing as a standard Ulnterpress character set. to 

• Interpress allows virtually arbitrary font names by naming fonts with vectors of identifiers. 
Subject only to some restrictions that guarantee unique names (hierarchical names. 
explained in Section 11 and § 3.2.2), a font name may have an arbitrary number of iden­
tifiers that have arbitrary meanings. 

• Characters are not a distinct type in Interpress. Rather, a character is defined by a 
sequence of standard Interpress operators. Not only does this make clear exactly what a 
character operator does. but it allows a master to define its own character operators to 
supplement or supplant those extracted from the printer's library. 

• A character operator performs three functions: it makes a graphic image of the character, 
it alters the current position so as to prepare for the next character in sequence, and it 
invokes spacing corrections if necessary. The movement of the character position is 
restricted to one of two forms: movement by a fixed width or by a scaled width (amplified 
characters). 

• The size, rotation, and position of character images are determined by the geometric trans­
formations in force when the character operator is invoked. The size and rotation are 
usually controlled by both the transformation passed to MODIFYFONT and the current 
transformation at the time SHOW is called. Position is controlled by the current position 
when SHOW is called. 

• Metric information, such as character widths. is provided to the creator by a metric master. 
The creator will usually reformat this information into a form more convenient for its use. 

A good understanding of Interpress character operators and fonts is required before any com­
plex typography is attempted. In the next section, we describe how the most common 
typographical effects may be achieved with Interpress. 

~w~ Xerox 
lj~iI Private 
"{j~ Data 

93 



9 Fonts 

94 

~.~ Xerox 
tiQ~ Private ""'0.... Data 



10 

Typography 

Typography is the fine art of designing and placing letterforms to create a legible and pleasing 
effect. While many forms of computer output are so crude that worrying about typographic 
quality is futile, Interpress is able to describe documents of extremely high resolution and 
quality, and thus is able to represent documents with very fine typography. 

This section is a catalog of "how to do it" recipes, that is, how various typographical effects 
can best be achieved in Interpress. It does not attempt to instruct the reader in the principles 
of good typography; such a task is far too ambitious for this report, and is moreover done bet­
ter by others. The beginner is urged to consult Designing with Type [4] for a collection of prac­
tical hints for simple typography. For a thoughtful explanation of the visual and psychological 
principles behind typographic rules, see First Principles of Typography [13]. 

Interpress has been designed specifically to accommodate high-quality typography. Probably 
the single most important principle behind the design of Interpress is that the printer makes no 
typographical decisions; all decisions are made by the creator. Thus, for example, Interpress con­
tains no notion of a "subscript," because if a master were to specify that a text string is a sub­
script, the printer would have to decide what type size to use and exactly where the subscript 
should appear, Le., how far below the normal baseline the subscript's baseline should be. 
Instead, the creator places in the master instructions that control the precise size and placement 
of all text, whether sub/superscripts or normal text. 

Interpress contains no automatic features or typesetting mechanisms and embodies no par­
ticular principles of typography within itself. It is instead a vehicle by which creators can 
represent the typographic decisions that they have made. Interpress can therefore represent 
documents that have been formatted according to many different sets of typographical rules or 
styles. As a corollary to this principle, there is nothing in Interpress that guarantees good typog­
raphy; rather, there are mechanisms that permit and encourage it. 

10.1 Typographic facilities in Interpress 

Before exploring the various ways to achieve high-quality typography in Interpress, let us 
review the relevant facilities of Interpress. These are the facilities that are normally used to 
produce typeset text: 

~.11!.. Xerox 
e.1Q~ Private "'0. Data 

95 



10 Typography 

• Letter/orm definitions, expressed as character operators. These definitions might be 
extracted from a printer's font library or might be defined in the master itself. There are 
no restrictions imposed by Interpress on the shape of a letterform. 

• Positioning operators, which are used to control the position of letters with respect to some 
coordinate system, and thus ultimately with respect to the page. 

• Geometric transformations that can scale, rotate, and translate a letterform so that it can ap­
pear in an arbitrary size, rotation, and position on the page. Scaling and rotation are 
handled by both MODIFYFONT and the page coordinate system, while translation is 
handled by SETXY and SHOW. 

• Additional graphical operators to define rules, underlines, strikethroughs, and the like. 
MASKVECfOR is an example of such an operator. 

While this set of facilities is small, it is complete. This small set of primitives can be complete 
because Interpress places so few restrictions on how they can be used, either individually or in 
combination. There are no limits, for example, on the number of characters in a "line" of text; 
characters can appear at arbitrary positions; characters can be spaced closely or far apart, or 
may overlap; if necessary, a small letter can be placed inside a large one. It should be evident, 
in fact, that these primitives can specify a master in which any letterform is placed anywhere 
on the page, in any size, and rotated at any angle. 

While a master can represent a document with high typographic quality, not all printers will be 
able to achieve such top-quality results. Some printers do not have sufficient resolution; some 
might use a coarse printing method that has specks or other forms of noise in the image; some 
printers place limits on the maximum complexity of a page or on the sizes of characters that 
can be printed. It is important to understand that these are limitations o~ a printer, not of 
I nterpress-it is possible to build a printer that will print an arbitrary Interpress master per­
fectly. This section explains how to build Interpress masters that will print with a satisfactory 
appearance on less-than-perfect printers. as well as how to build Interpress masters that take 
advantage of the subtlety available only on the highest-quality printers. 

10.2 Absolute and relative positioning 

96 

To set type, we must position characters on the page. A creator in possession of full knowledge 
of the font metrics of a printer could set type in Interpress by specifying exactly the x and y 
position of each character on the page, specifying character positions with the SETXY operator 
and printing characters with the SHOW operator. 

All positioning is relative to some origin, as shown in Figure 10.1. If a character is positioned 
with respect to the origin of the page coordinate system, then we usually call that absolute posi­
tioning. If a character is positioned with respect to the origin of the previous character. then we 
usually call that relative positioning. 

As an example of absolute positioning, let's repeat the substance of Example 3.2. but use a 
page coordinate system with 1/10 point units. In this example we will define a number of 
fonts in the preamble. which we will use in subsequent examples in this chapter. Throughout 
this chapter. we will assume the use of a page coordinate system in which the x axis direction 
points along the text baseline. in the direction in which characters are to be typeset. We will 
also assume that all characters run left-to-right, (Le., have widthX>O and widthY= 0). In this 
first example, each character in the string "Interpress" is individually positioned. 

~91JJ Xerox 
Ii~Q!II Private 
ifO¥ Data 



Introduction to Interpress 

Abe d E Characters positioned relative to page origin 
(absolute positioning) 

Origin of page coordinate system 

~E Characters positioned relative to previous character 
(relative positioning) 

Figure 10.1. Absolute and relative character positioning. 

10 

The method of setting type shown below in Example 10.1 clearly shows Interpress' flexibility: 
each character can be positioned individually by the creator, without regard to any character 
width information used by the printer. A creator with full knowledge of the font metrics can 
position each character carefully and precisely to obtain the most pleasing effect. There are two 
drawbacks to this technique. First, it's not particularly device-independent, that is, the text will 
not look good if even a slight font approximation is made. The reason is that the spacing be­
tween characters is controlled by the master rather than by the character operators themselves 
(this is illustrated in Figure 10.2, line 4). Second, it leads to quite lengthy masters, which will 
consume too much storage space and slow down the computations performed by a printer 
printing the master. 

--Example 10.1: Absolute character positioning (same image as Example 3.2)--
0-- BEGIN { --begin preamble--

1--

2--

3--

4--

5--
6--
7--
8--
9--

--10--
--11--
--12--
--13--
--14--
--15--
--16--
--17--
--18--
--19--
--20--
--21--

--define font 0 to be 10-point times-­
[ xerox, xc82-0-0, times] FINDFONT 100 SCALE MODIFYFONT 0 FSET 

--define font 1 to be 10-point times italic-­
[ xerox, xc82-0-0, timesitalic ] FINDFONT 100 SCALE MODIFYFONT 1 FSET 

--define font 2 to be 12-point times--
[ xerox, xc82-0-0, times] FINDFONT 120 SCALE MODIFYFONT 2 FSET 

--define font 3 to be 8-point times--
[ xerox, xc82-0-0, times] FINDFONT 80 SCALE MODIFYFONT 3 FSET 

--define font 4 to be 18-point times--
[ 
} 
{ 

xerox, xc82-0-0, times] FINDFONT 180 SCALE MODIFYFONT 4 FSET 

0.000035278 SCALE CONCATT 
4 SET FONT 
2088 6768 SETXY 
2155 6768 SETXY 
2257 6768 SETXY 
2313 6768 SETXY 
2398 6768 SETXY 
2465 6768 SETXY 
2567 6768 SETXY 
2634 6768 SETXY 
2719 6768 SETXY 
2786 6768 SETXY 
} 
END 

<I> 
<n> 
<t> 
<e> 
<r> 
<p> 
<r> 
<e> 
<s> 
<s> 

SHOW 
SHOW 
SHOW 
SHOW 
SHOW 
SHOW 
SHOW 
SHOW 
SHOW 
SHOW 

--end preamble--
--the beginning of page body--
--set page coordinate system to 1/10 point units--
--sets the "current font" to 18-point times--
--prints 'I' at x=2.900 inches, y=9.4 inches--
--prints 'n' at x=2.993 inches, y=9.4 inches--
--prints 't' at x=3.135 inches. y=9.4 inches--
--prints 'e' at x=3.212 inches, y=9.4 inches--
--prints 'r' at x=3.331 inches, y=9.4 inches--
--prints 'po at x=3.424 inches. y=9.4 inches--
--prints 'r' at x=3.565 inches. y=9.4 inches--
--prints 'e' at x=3.658 inches. y=9.4 inches--
--prints's' at x=3.776 inches. y=9.4 inches--
--prints's' at x=3.869 inches. y=9.4 inches--
--end of the page body--
--end of the master--

~.~ Xerox 
I]~~ Private 
~I.J. Data 

97 



10 

98 

Typography 

Interpress Electronic Printing Standard 
Interpress Electronic Printing Standard 
Interpress Electronic Printing Standard 
I nterprEfBEIa:tronic Printing Stcndard 

Figure 10.2. Font approximation 

All four lines are meant to use 18 point Times Roman. The top two lines use relative position­
ing; the bottom two use absolute positioning. The first and third lines are printed using the 
exact font The second and fourth lines show what happens if Times Roman is not available 
and Helvetica must be used instead. Note that the second line is too long and that the fourth 
line contains erratic spacing and character collisions. 

Let us tum now to relative character positioning. The examples of typesetting in earlier sec­
tions have all relied on the character operators to achieve proper character-to-character spac­
ing; SETXY is used only to position the first character in a line of text. In the example below, 
the entire string "Interpress" is printed with one call to SHOW. The position of the origin of 
the first character, "I", will be at x=2.9 inches, y=9.4 inches, the position set by the call to 
SETXY. The character operator for "I" will modify the current position to account for the width 
of the "I". The next character, "n", will be positioned so that its origin is at the modified cur­
rent position. The character operator for "n" moves the current posit~on still further, and so 
on. The effect is the same as that of Example 10.1, but the spacing is performed by the charac­
ter operators rather than by explicit calls to SETXY. Besides yielding a more compact master, 
this technique does better in the presence of font approximation (see Figure 10.2, line 2): the 
intercharacter spacing will be correct for the font that is actually chosen, rather than for the 
font that the master requested. 

--Example 10.2: implicit r~lative character spacing (same image as Example 3.2)--
--Lines 0 to 6 same as Example 10.1--
-- 7-- { --the beginning of page body--
-- 8-- 0.000036278 SCALE CONCATT --set page coordinate system to 1/10 point units--
-- 9-- 4 SETFONT --sets current font to 18-point times--
--10-- 2088 6768 SETXY --sets current position to x=2.9 inches, y=9.4 inches--
--11-- (Interpress> SHOW --prints 'Interpress'--
--12-- } --end of the page body--
--13-- END --end of the master--

This example still has a minor deficiency with respect to device independence. While the place­
ment of the beginning of the "Interpress" string will always be at x= 2.9 inches, y= 9.4 inches, 
the intercharacter spacings will be those of the font actually used, so the end of the string 
might not appear in the right place, and the word will not be centered. We'll see in Section 
10.6.9 how to fix this problem so that strings of text can be centered even in the presence of 
font approximation. 

~w .. Xerox 
II]Q~ Private 
"I.J~ Data 



Introduction to Interpress 10 

10.3 Measuring text 

One of the most common calculations that a creator must make is to determine the length of a 
text string, Le., the space that will be required to print it. Typographers refer to this distance as 
the measure of the text. The measure of a string is usually just the sum of the widths of the 
characters in the string, including the spaces. (Section 10.6.3, "Kerning," describes a situation 
in which the measure of a string is not the same as the sum of the character widths.) This 
measure calculation is used to decide where to break up a sequence of words into lines of a 
certain length, to decide where to position a string so that it will be centered, and so on. 

The measure of a string can be computed in many different units. It is usually most con­
venient for the creator to compute the measure in the page coordinate system, which is the 
same system that will be used to position the string once its measure is known. The measure is 
thus the sum of the character widths as measured in the page coordinate system. 

Since font metric information provides widths in the character coordinate system, we must con­
vert from the character coordinate system to the page coordinate system when computing 
widths. This transformation is precisely the transformation that is provided to MODIFYFONT 
when a font is prepared, but we're interested only in the scaling component of the transforma­
tion. Let's define the scale of a font to be the SCALE portion of the transformation (or the 
product of the SCALE arguments if there is more than one). Thus the scale of font 0 in 
Example 10.1 is 100, the scale of font 2 is 120. and so on. 

We can use the following Measure algorithm to compute the measure m in the page coordinate 
system of a string s. This algorithm assumes that all of the characters in s are horizontal, Le., 
their widthY components are zero. The function length(s) is the number of characters in the 
string s, and s[i] denotes the tth character of the string s: 

procedure Measure(s; string): real; 
var m: real; i: integer; 
begin 
m:= 0; 
for i : = 1 to length(s) do 

m : = m + {widthX ofs[i]from metric master )*(scale ofs [i] ); 
Measure: = m 
end 

This algorithm properly computes a string's measure even when characters from different fonts 
in different sizes are mixed in a string, as long as all of the characters are left-to-right (Le., 
they have a widthY value of 0). Although only implied in the algorithm above. procedure 
Measure uses the widthX and scale information from the appropriate font for each character. 

If you are familiar with the basic principles of floating-point arithmetic, you will realize that 
the computation of m in this algorithm will be subject to truncation error because relatively 
small numbers (character widths) are being added to relatively large numbers (the cumulative 
line measure). We cannot avoid this computational error, but in the next section we show how 
to take steps to ensure that it does not interfere with the appearance of the printed image. 

~y ... Xerox 
IJjQiI Private 
itO'* Data 

99 



10 Typography 

In following sections, some of the examples use measure computations. To help you work 
through the examples. we have included some metric information from two real fonts. Table 
10.1 shows metric information for some characters from hypothetical xerox xc82-0-0 times and 
xerox xe82-0-0 timesita/ie fonts. As an example of the use of this table, consider computing the 
measure of the string "Interpress" as printed in Example 10.2. Since the scale of all the 
characters is 180, in this case we can sum the widthX values for the 10 characters in 
"Interpress" from Table 10.1, obtaining 4.254, and then multiply that sum by 180 to obtain 
765.72, the measure of the string. 

10.4 Positioning characters 

100 

The SHOW operator places character images into the page image at the current position, which 
is part of the imager state. The current position can be changed by executing an operator that 
provides new coordinates, which can be either absolute or relative. An absolute coordinate loca­
tion is one that is specified with respect to a fixed origin; a relative coordinate location is one 
that is specified with respect to the current position. Good Interpress style requires that charac­
ter positions be specified using a mixture of these two methods. Before explaining when to use 
which method, lefs review the two methods. 

The current position is set with absolute coordinates by the operator SETXY (§ 4.5): 

<x: Number> <y: Number> SETXY ...... <> 
where the current position is set to (x, y) after the coordinates have been transformed 
by the current transformation. Usually the coordinates passed to SETXY are in the page 
coordinate system, as illustrated in Example 10.2. Using SETXY. the current position 
can be set to an arbitrary location on the page. 

The current position can also be set by giving relative coordinates with SETXYREL: 

<x: Number> <y: Number> SETXYREL ...... <> 
where the distance vector (x, y) is transformed by the current transformation and then 
added to the current position. Thus, the coordinates represent a relative displacement to 
the current position. Character operators use SETXYREL to move the current position to 
account for the character's width (see Examples 9.1 through 9.3). 

It is important to understand that the x and y arguments to SETXY and SETXYREL will be trans­
formed by the current transformation. Thus the coordinate system of the arguments to these 
operators is determined by the current transformation. The arguments to SETXY used in line 10 
of Example 10.2 are evaluated in the page coordinate system. However, the arguments to SET­
XYREL in Examples 9.1 through 9.3 are evaluated in the character coordinate system. In both 
cases, these coordinate systems are established by the current transformation in effect when the 
SETXY and SETXYREL operators are called. If the current transformation involves only con­
catenations of SCALE and TRANSLATE transformations, the x coordinate passed to SETXY and 
SETXYREL will correspond to horizontal position or motion on the page (when held in the nor­
mal viewing orientation). However, if rotations are involved in the current transformation, the 
axis directions of arguments to the current-position operators will generally not correspond to 
the axis directions of the Interpress coordinate system. 

~91!!. Xerox 
~~~ Private .,OY Data 


Introduction to Interpress 10

Table 10.1 Width table for times and times italic

Character times times italic Character times times italic
amplified widthX widthX amplified widthX widthX

a 0 0.469 0.500 A 0 0.749 0.719
b 0 0.564 0.500 B 0 0.656 0.689
c 0 0.439 0.439 C 0 0.719 0.719
d 0 0.564 0.500 D 0 0.814 0.781
e 0 0.469 0.439 E 0 0.656 0.689
f 0 0.344 0.314 F 0 0.656 0.625
g 0 0.500 0.500 G 0 0.844 0.719
h 0 0.564 0.535 H 0 0.816 0.844

0 0.281 0.281 I 0 0.375 0.439
j 0 0.281 0.281 J 0 0.439 0.439
k 0 0.531 0.564 K 0 0.818 0.750
1 0 0.281 0.281 L 0 0.656 0.689
m 0 0.844 0.788 M 0 0.969 0.965
n 0 0.563 0.540 N 0 0.824 0.781
0 0 0.531 0.500 0 0 0.781 0.781
p 0 0.564 0.500 P 0 0.594 0.656
q 0 0.564 0.500 Q 0 0.781 0.781
r 0 0.375 0.375 R 0 0.751 0.719
s 0 0.375 0.375 S 0 0.564 0.625
t 0 0.314 0.318 T 0 0.656 0.656
u 0 0.564 0.535 U 0 0.813 0.781
v 0 0.500 0.439 V 0 0.719 0.719
w 0 0.719 0.656 W 0 1.000 1.000
x 0 0.500 0.564 X 0 0.751 0.719
y 0 0.500 0.469 Y 0 0.749 0.719
z 0 0.437 0.439 Z 0 0.656 0.719
0 0 0.500 0.500
1 0 0.500 0.500
2 0 0.500 0.500
3 0 0.500 0.500
4 0 0.500 0.500
5 0 0.500 0.500
6 0 0.500 0.500
7 0 0.500 0.500 All characters have widthY=O.
8 0 0.500 0.500
9 0 0.500 0.500
. (period) 0 0.248 0.250
• (comma) 0 0.250 0.250

(space) 1 0.250 0.250

Warning: This table is provided only for working examples in this Introduction. Do not
assume that a Xerox Interpress printer will have these fonts or these widths.

~y~ Xerox '8' Private Data
101

10

1f\A

Typography

2. If the master has used relative positioning within the line (provided automatically by
character operators), then intercharacter spacings will be correct but the total length of the
line will not be right. This is illustrated in Figure 10.2, line 2.

If the creator seldom cared about the total length of the line, we could advise the creator to
use relative positioning for maximum device independence. Unfortunately, when a creator jus­
tifies text lines, it cares both about intercharacter spacing, for maximum legibility, and about
total line length, so that left and right edges of lines align. So the problem occurs sufficiently
often to cause concern.

A hybrid technique that will preserve both character spacing and absolute positions is to use
relative positioning to position characters with respect to one another, then periodically to
resynchronize them with some absolute guideline. This technique is used by many high-quality
electric clocks in large institutions, for example: the clock motor provides a reasonably accurate
relative time, but once an hour the clock is resynchronized to a global time base that is broad­
cast from an expensive central source.

Interpress provides this kind of absolute synchronization of relative distances by means of the
CORRECf operator. The CORRECf operator takes as its argument an Interpress body that prints
a line of text, and takes from an imager variable the proper measure for that line. It will then
adjust the positions of characters within the line (if necessary) to insure that the line fits
exactly in the specified measure. Thus, when a creator cares where lines end as well as where
they begin, CORRECf should be used so that the master will print reasonably even in the
presence of font approximations. As you might expect, the inner workings of the CORRECf

operator are more complex than those of SHOW; you should avoid using it in cases where it is
not necessary, such as for making listings of computer files or for right-ragged text.

When CORRECf prints a line, it may need to contract or expand the spacing b~tween charac­
ters within the line. In order to retain the text's legibility even in the presence of substantial
mismatches between the font assumed by the creator and the one actually chosen by the
printer, CORRECf distinguishes between two kinds of spacing:

1. CORRECfSPACE. The white space between words is called "CORRECfSPACE space." This
space can safely be expanded a good deal without making the line too
hard to read. However, it cannot be shrunk too much, or word spacings will not be evi­
dent CORRECf will shrink this space only by the fraction co"ectShrink (an imager variable)
before it takes other measures. That is, a distance s will never be shrunk to less than
s·co"ectShn·n~

2. CORRECfMASK. The spacing between two graphic shapes that represent characters is called
"CORRECIMASK space." If a line must be shortened and the maximum shrinkage of the
CORRECfSPACE space is insufficient to achieve the desired measure, characters will be
moved closer together. This is clearly not good. but there is no other choice when a poor
font approximation has been made.

The CORRECf operator can move characters around a little to correct the measure. This is one
of the reasons why it's a good idea to use only relative positioning within a text line: if a
character moves due to correction, you want the other things related to it (e.g., underlines, sub­
scripts, superscripts, and accents) to move with it. You even want the word to its right to move
with it.

~w~ Xerox
I]~Q~ Private
iIIO. Data

Introduction to Interpress 10

While CORRECT can be used in many ways, here is a template that will work in almost all
cases for printing a line of text. The CORRECT operator takes a single body as its argument.

--Example 10.3. CORRECT template. Assume inside a page body.--
--0-- tolerance 0 SETCORRECTTOLERANCE --unless al ready done on this page--
--1-- co"ectShrinkValue 20 ISET --unless already done on this page or--

--2--
--3--
--4--
--5--
--6--

measure 0 SETCORRECTMEASURE
xy SETXY
{
--insert here calls to SHOW.
} CORRECT

--you like the default--
--unless it's already set to the right value--
--set starting position for text line--
--start CORRECT body--

SETFONT, SPACE, SETXYREL, SETXREL, SETYREL. etc.-­
--end CORRECT body and call CORRECT--

CoRRECT is the first Interpress operator we have used in this document that takes a body as its argument "Body
operators" of this sort are encoded somewhat differently than other operators-see § 2.5.2.

The first three lines (0 - 2) of the example above set various parameters. These lines can be
omitted if the parameter has already been set to an appropriate value within the page body.
The tolerance parameter instructs CORRECT how accurate the line measures must be. If the
tolerance is large, CORRECT will not do as much work. For example. if the printer makes no
font approximations, the text line should have almost exactly the right measure, but small
roundoff errors can prevent it being exact. But if the line's measure is within the specified
tolerance, CORRECT will not need to take any corrective action and the interpretation of the
master will be correspondingly faster. If, for example, a measure error of 0.5 points can be
tolerated, the master should set the tolerance accordingly «5 0 SETCORRECITOLERANCE> in
the page coordinate system of Example 10.1 in which units are 1/10 point). The default value
of tolerance, established at the beginning of each page body. is O.

The co"ectShrink parameter limits the amount by which CORRECTSPACE space will be shrunk in
order to shrink an entire line. Its default value, established at the beginning of each page body.
is lh (§ 4.2), so that a space will never become smaller than half its original size. There is no
need to change this default if this value is acceptable.

The third parameter, the line's measure, might need to be changed more often, since different
text lines on the page may have different measures. But sometimes the previous measure value
can be used; for example, all the lines in this paragraph except the last one have the same
measure.

In some cases, it is more convenient for the creator to set the measure after generating the Interpress commands to
show the line of text. As a consequence, CORRECT allows the measure to be set within the CORRECT body. This cor­
responds to moving line 2 in Example 10.3 to between lines 5 and 6.

The body argument to CORRECT actually invokes Interpress operators that will print the text
line. While there are no restrictions on the operators contained in this body, some guidelines
should be observed to maximize the usefulness of CORRECT:

• Use only relative positioning (SETXYREL, SETXREL, SETYREL, SPACE). Use SPACE if the rela­
tive motion is generating "white space" that is to be treated as CORRECTSPACE space, such
as space between words on a line. Use the other relative positioning operators if the spac­
ing is not to be altered by CORRECT.

• Don't use simple relative motions to move backwards over characters already typeset
within the line. If you need to use overstriking, or both super and subscripts on the same
symbol. then somewhat more complex mechanisms are required (they are described later
in this section).

~WIl1. Xerox
~Qit Private
itO. Data

105

10

106

Typography

• Any imager variables and frame elements changed within the CORRECT body (except the
current position and the CORRECT line measure) will revert to their old values after
CORRECT finishes. This behavior is characteristic of invoking bodies with DOSA VE, which is
used by CORRECT, and is explained in Section 12.

• The body passed to CORRECT will be interpreted either once or twice, depending on
whether or not the measure comes out right the first time. Don't try to put things in the
body that depend on the number of times it will be executed.

It's now time to give a concrete example using the CORRECf template:

--Example 10.4: an example of the use of CORRECT--
--Lines 0 to 6 same as Example 10.1--

7-- { --the beginning of page body--
-- 8-- 0.000035278 SCALE CONCATT --set page coordinate system to 1/10 point units--
-- 9-- 5 0 SETCORRECTTOLERANCE --set tolerance to 0.5 points--

--10--
--11--
--12--
--13--
--14--
--15--
--16--
--17--
--18--
--19--

--leave co"ectShrink set to its default value of 1/2--
--set measure to 3.17 inches--2283 0 SETCORRECTMEASURE

720 6480 SETXY --set starting pOSition for line. x=l inch, y=9 inches--
{ --start CORRECT body--
o SET FONT --sets current font to 10-point times--

operator in > SHOW --print text--<An example of the CORRECT
1 SET FONT --change font to 10-point times italic--
<Interpress.> SHOW
} CORRECT --invoke CORRECT--
} --end of the page body--
END --end of the master--

In this example, the measure is computed to be the width of the line:

An example of the CORRECT operator in Interpress.

using the widths obtained from Table 10.1 and the Measure algorithm. If you want to check
your work, here's a breakdown of the width calculation: .

Measure(' An') 131.2
Measure('example') 359.6

Measure('or) 87.5
Measure('the') 134.7

Measure('CORRECT') 503.3
Measure('operator') 362.8

Measure('in ') 84.4
Measure(' Interpress. ') 444.5

7 Spaces@25 each 175.0
Total measure: 2283.0

CORRECf is not intended to be used to achieve proper justification, but rather to force a line
of text to be its intended length even in the presence of font approximation. The key here is
that "intended length" is the length of the line computed assuming perfect font matches. If
you want to justify a line of text, use the techniques explained in the next section.

This section and the examples present only simple uses of CORRECT. A detailed description of the operation of COR­

RECT is presented in § 4.10.

~y~ Xerox
Ii~Q~ Private
."O~ Data

Introduction to Interpress 10

Table 10.1 Width table for times and times italic

10

102

Typography

There are some variants of SETXYREL that are commonly used for typographical purposes:

<x: Number> SETXREL -+ <>
where the effect is equivalent to <x 0 SETXYREL>, i.e., the current position is displaced
in the x direction but not in the y direction. The calls to SETXYREL in Examples 9.1
through 9.3 could be replaced with corresponding calls to SETXREL.

<y: Number> SEfYREL -+ <>
where the effect is equivalent to <0 y SETXYREL>, i.e., the current position is displaced
in the y direction but not in the x direction.

< x: Number> SPACE -+ < >
where the effect on the current position is the same as <x 0 SETXYREL> , but the
current position rnight be corrected slightly if necessary to account for font
approximation.

As we'll see below, SPACE is most often used for inter-word spaces in justified text.

10.4.1 When to use absolute and relative positioning

While there are no hard and fast rules about the use of positioning operators. good Interpress
style leads to the following guidelines:

• Use relative positioning when the relationship between two adjacent objects is important.
Characters within a word. or words within a line should be positioned relative to each
other. This is why all character operators use relative positioning.

• Use absolute positioning to locate unrelated or loosely-related objects on the page. Thus
the beginning of an entire line of text or an entry in a _column of a table should be posi­
tioned with absolute positioning.

• Never allow more than about 250 relative positioning operators between absolute position­
ing operators. (Remember that each invocation of a character operator calls a relative
positioning operator once.) The reason is that small numerical errors usually accompany
each relative addition to the current position. If too many of these errors accumulate. the
positioning error will be noticeable. Precision rules that printers must obey (§ 5.2) yield
unnoticeable errors as long as fewer than 250 relative motions are used.

Relative positioning of adjacent objects makes an Interpress master more device-independent,
that is, more immune to ill effects of font approximation. Thus Example 10.1, which uses
absolute positioning of characters, will print badly if a poor font approximation is made,
because characters will collide or overlap if the widths of the actual character operators used
are greater than those assumed when the master was created. Example 10.2, which prints the
same text, is more immune to font approximation.

By contrast, absolute positioning should be used to achieve "global" or long-distance position­
ing relationships. For example, if several lines of text are to align at the left (so-called left
flush), it is best to set the starting position of each line with an absolute position. as in
Example 3.7. While one could imagine replacing line 6 of that example with an appropriate
call to SETXYREL, the resulting position might not align with the first text line if the character
widths of the font actually used by SHOW in line 5 were not the same as the ones assumed
when calculating the arguments to SETXYREL.

~9 .. Xerox
il]QiII Private
~[j~ Data

Introduction to Interpress 10

When you are deciding whether to use absolute or relative positioning, ask yourself the ques­
tion "If the printer doesn't have the font requested and uses an approximate font in which
characters have different widths than those of the requested font, what will happen to the
printed result?" Usually you will be able to decide how you want the image to degrade when
font approximations occur.

10.4.2 Precision in character widths

It is important to use sufficient precision in calculating the measure of text lines (c.f. the
Measure routine in Section 10.3). At a viewing distance of about 12 inches, the eye can detect a
1/400 inch positioning difference between two objects sufficiently close together. For example,
you should be able to see that one of the vertical bars in Figure 10.3 is positioned to the right
of the others.

Figure 10.3. A slight positioning difference

The bar in the middle row is positioned about 1/350th of an inch to the right of the other bars.
While you may feel that this example is contrived to make a tiny positioning error noticeable,
visible errors arise more frequently than you might expect. Although absolute positioning
avoids such errors easily, avoiding positioning errors with relative positioning requires precise
calculation.

When the measure of a line is computed, many character widths are summed, so that small
errors will accumulate. If the cumulative error is more than 1/400 inch, it might produce a
visible misalignment. The Interpress precision rules suggest that up to 250 character widths can
be safely summed. To meet these criteria, you should be sure that the absolute error in each
character width is less than (1/2)X(1/400)X(1/250) = 11200,000 inch. For 10-point characters.
that means keeping character widths using a representation that is precise to about one part in
30,000 (10/72*(1/30,000)~ 1/200,000). For larger characters, more precision would nonnally be
required, but it is probably safe to argue that when larger characters are positioned, far fewer
than 250 roundoff errors will accumulate before a line break or other absolute positioning
occurs. These precision requirements can be met by most computer floating-point representa­
tions, including the IEEE standard [3, 30].

10.4.3 Spacing correction

The discussion above has slighted an important issue, namely that you might be concerned
about proper intercharacter spacing and also about the total length of a line when font
approximations are made. As always, if no font approximations occur, the creator knows
exactly the intercharacter spacings that the printer will use and can therefore anticipate exactly
where the line will end by summing the widths of all the characters. But if a font approx­
imation occurs. one of two things happens:

1. If the master has used absolute positioning of characters, then the total length of the line
will be right. but the intercharacter spacings will not be appropriate for the font actually
used. This is illustrated in Figure 10.2. line 4.

~9. Xerox
IliQit P riv ate
ifLJ~ Data

103

10

104

Typography

2. If the master has used relative positioning within the line (provided automatically by
character operators), then intercharacter spacings will be correct but the total length of the
line will not be right. This is illustrated in Figure 10.2, line 2.

If the creator seldom cared about the total length of the line, we could advise the creator to
use relative positioning for maximum device independence. Unfortunately, when a creator jus­
tifies text lines, it cares both about intercharacter spacing, for maximum legibility, and about
total line length, so that left and right edges of lines align. So the problem occurs sufficiently
often to cause concern.

A hybrid technique that will preserve both character spacing and absolute positions is to use
relative positioning to position characters with respect to one another, then periodically to
resynchronize them with some absolute guideline. This technique is used by many high-quality
electric clocks in large institutions, for example: the clock motor provides a reasonably accurate
relative time, but once an hour the clock is resynchronized to a global time base that is broad­
cast from an expensive central source.

Interpress provides this kind of absolute synchronization of relative distances by means of the
CORRECf operator. The CORRECf operator takes as its argument an Interpress body that prints
a line of text, and takes from an imager variable the proper measure for that line. It will then
adjust the positions of characters within the line (if necessary) to insure that the line fits
exactly in the specified measure. Thus, when a creator cares where lines end as well as where
they begin, CORRECf should be used so that the master will print reasonably even in the
presence of font approximations. As you might expect, the inner workings of the CORRECf

operator are more complex than those of SHOW; you should avoid using it in cases where it is
not necessary, such as for making listings of computer files or for right-ragged text.

When CORRECf prints a line, it may need to contract or expand the spacing b~tween charac­
ters within the line. In order to retain the text's legibility even in the presence of substantial
mismatches between the font assumed by the creator and the one actually chosen by the
printer, CORRECf distinguishes between two kinds of spacing:

1. CORRECfSPACE. The white space between words is called "CORRECfSPACE space." This
space can safely be expanded a good deal without making the line too
hard to read. However, it cannot be shrunk too much, or word spacings will not be evi­
dent. CORRECf will shrink this space only by the fraction correctShrink (an imager variable)
before it takes other measures. That is, a distance s will never be shrunk to less than
s·co"ectShrink.

2. CORRECfMASK. The spacing between two graphic shapes that represent characters is called
"CORRECfMASK space." If a line must be shortened and the maximum shrinkage of the
CORRECfSPACE space is insufficient to achieve the desired measure, characters will be
moved closer together. This is clearly not good, but there is no other choice when a poor
font approximation has been made.

The CORRECf operator can move characters around a little to correct the measure. This is one
of the reasons why it's a good idea to use only relative positioning within a text line: if a
character moves due to correction, you want the other things related to it (e.g., underlines, sub­
scripts, superscripts, and accents) to move with it. You even want the word to its right to move
with it.

~YII!. Xerox
I]~Q[4 Private
if{j~ Data

Introduction to Interpress 10

While CORRECT can be used in many ways, here is a template that will work in almost all
cases for printing a line of text. The CORRECf operator takes a single body as its argument.

--Example 10.3. CORRECT template. Assume inside a page body.--
--0-- rokrance 0 SETCORRECTTOlERANCE --unless already done on this page--
--1-- co"ectShrinkVa[ue 20 ISET --unless already done on this page or--

--2--
--3--
--4--
--5--
--6--

measure 0 SETCORRECTMEASURE
xy SETXY
{
--insert here calls to SHOW,
} CORRECT

--you like the default--
--unless it's already set to the right value--
--set starting pos1t10n for text line--
--start CORRECT body--

SETFONT, SPACE, SETXYREl, SETXREl, SETYREl, etc.-­
--end CORRECT body and call CORRECT--

CoRRECT is the first Interpress operator we have used in this document that takes a body as its argument "Body
operators" of this sort are encoded somewhat differently than other operators-see § 2.5.2.

The first three lines (0- 2) of the example above set various parameters. These lines can be
omitted if the parameter has already been set to an appropriate value within the page body.
The tolerance parameter instructs CORRECT how accurate the line measures must be. If the
tolerance is large, CORRECT will not do as much work. For example, if the printer makes no
font approximations, the text line should have almost exactly the right measure, but small
roundoff errors can prevent it being exact. But if the line's measure is within the specified
tolerance, CORRECT will not need to take any corrective action and the interpretation of the
master will be correspondingly faster. If, for example, a measure error of 0.5 points can be
tolerated, the master should set the tolerance accordingly «5 0 SETCORRECITOLERANCE> in
the page coordinate system of Example 10.1 in which units are 1/10 point). The default value
of tolerance, established at the beginning of each page body, is O.

The co"ectShrink parameter limits the amount by which CORRECTSPACE space will be shrunk in
order to shrink an entire line. Its default value, established at the beginning of each page body.
is 1h (§ 4.2), so that a space will never become smaller than half its original size. There is no
need to change this default if this value is acceptable.

The third parameter, the line's measure, might need to be changed more often, since different
text lines. on the page may have different measures. But sometimes the previous measure value
can be used; for example, all the lines in this paragraph except the last one have the same
measure.

In some cases, it is more convenient for the creator to set the measure after generating the Interpress commands to
show the line of text. As a consequence, CORRECT allows the measure to be set within the CORRECT body. This cor­
responds to moving line 2 in Example 10.3 to between lines 5 and 6.

The body argument to CORRECf actually invokes Interpress operators that will print the text
line. While there are no restrictions on the operators contained in this body, some guidelines
should be observed to maximize the usefulness of CORRECT:

• Use only relative positioning (SETXYREL, SETXREL, SETYREL, SPACE). Use SPACE if the rela­
tive motion is generating "white space" that is to be treated as CORRECfSPACE space, such
as space between words on a line. Use the other relative positioning operators if the spac­
ing is not to be altered by CORRECf.

• Don't use simple relative motions to move backwards over characters already typeset
within the line. If you need to use overstriking, or both super and subscripts on the same
symbol. then somewhat more complex mechanisms are required (they are described later
in this section).

~.~ Xerox
~n!ll Private "'0. Data

105

10

106

Typography

• Any imager variables and frame elements changed within the CORRECf body (except the
current position and the CORRECf line measure) will revert to their old values after
CORRECf finishes. This behavior is characteristic of invoking bodies with OOSA VE, which is
used by CORRECf, and is explained in Section 12.

• The body passed to CORRECf will be interpreted either once or twice. depending on
whether or not the measure comes out right the first time. Don't try to put things in the
body that depend on the number of times it will be executed

It's now time to give a concrete example using the CORRECf template:

--Example 10.4: an example of the use of CORRECT--
--Lines 0 to 6 same as Example 10.1--

7-- { --the beginning of page body--
-- 8-- 0.000035278 SCALE CONCATT --set page coordinate system to 1/10 point units--
-- 9-- 5 0 SETCORRECTTOLERANCE --set tolerance to 0.5 pOints--

--10--
--11--
--12--
--13--
--14--
--15--
--16--
--17--
--18--
--19--

--1 eave co"ecrShrink set to its defaul t value of 1/2--
--set measure to 3.17 inches--2283 0 SETCORRECTMEASURE

720 6480 SETXY --set starting position for line, x=l inch. y=9 inches--
{ --start CORRECT body--
o SET FONT --sets current font to 10-point times--

operator in > SHOW --print text--<An example of the CORRECT
1 SET FONT --change font to 10-point times italic--
<Interpress.> SHOW
} CORRECT --invoke CORRECT--
} --end of the page body--
END --end of the master--

In this example, the measure is computed to be the width of the line:

An example of the CORRECT operator in Interpress.

using the widths obtained from Table 10.1 and the Measure algorithm. If you want to check
your work, here's a breakdown of the width calculation: '

Measure(' An') 131.2
Measure('example') 359.6

Measure('of) 87.5
Measure('the') 134.7

Measure('CORRECf') 503.3
Measure('operator') 362.8

Measure('in ') 84.4
Measure('Interpress. ') 444.5

7 Spaces@25 each 175.0
Total measure: 2283.0

CORRECf is not intended to be used to achieve proper justification, but rather to force a line
of text to be its intended length even in the presence of font approximation. The key here is
that "intended length" is the length of the line computed assuming perfect font matches. If
you want to justify a line of text, use the techniques explained in the next section.

This section and the examples present only simple uses of CORRECT. A detailed description of the operation of COR­
RECT is presented in § 4.10.

~w. Xerox
1i~!I Private
ifO. Data

Introduction to Interpress 10

10.5 Justifying text

There are a number of techniques that can be used to typeset justified lines of text in
Interpress. In all cases, the creator is concerned both with intercharacter spacing and with total
line measure, so the CORRECf operator should be used to force the justified appearance even
when font approximations must be made.

The first part of any justification mechanism determines where to break a line, either at a
space between words or at a hyphen inserted in a word. The details of this decision depend a
great deal on the typographical rules and styles that the creator wants to uphold. A basic com­
putation necessary to all rules is the determination of the measure of a word, Le., the linear
space that a word will occupy when printed in its prescribed font. This calculation is per­
formed by the Measure algorithm given in Section 10.3.

The second part of a justification algorithm consists of computing the spacings between words
so that the entire line will have the right measure. Again, typographical styles differ. Simple
justification algorithms will make all inter-word spaces equal, while more complex algorithms
might vary the widths slightly in order to avoid unpleasant visual effects like rivers in blocks of
justified text.

10.5.1 Justifying with the SPACE operator

The most general way to typeset justified text in Interpress is to use relative positioning of the
current position to specify the desired inter-word spacings. The SPACE operator is used for this
purpose, since it both achieves relative motion and interacts properly with CORRECf (see
Section 10.4.3).

--Example 10.5: use of the SPACE operator in justification--
--Lines 0 to 6 same as Example 10.1--

7-- {
-- 8-- 0.000035278 SCALE CONCATT
-- 9-- 5 0 SETCORRECTTOLERANCE

--10--
--11--
--12--
--13--
--14--
--15--
--16--
--17--
--18--
--19--
--20--
--21--
--22--
--23--
--24--
--25--

2520 0 SETCORRECTMEASURE
720 6480 SETXY
{
o SET FONT
<An> SHOW 59 SPACE
<example> SHOW 59 SPACE
<of> SHOW 59 SPACE
<the> SHOW 59 SPACE
<CORRECT> SHOW 59 SPACE
<operator> SHOW 59 SPACE
<in> SHOW 58 SPACE
1 SET FONT
<Interpress.> SHOW
} CORRECT
}
END

--the beginning of page body--
--set page coordinate system to 1/10 point units--
--set tolerance to 0.5 points--
--leave co"ectShrink set to its default value of 1/2--
--set measure to 3.5 inches--
--set starting position for line, x=l inch. y=9 inches--
--start CORRECT body--
--sets current font to 10-point times--
--first word and trailing space--

--change font to 10-point times italic--

--invoke CORRECT--
--end of the page body--
--end of the master--

Example 10.5 shows a master that prints the same text as in Example 10.4. Suppose that the
line of text is supposed to occupy 21 picas. which is 3.5 inches, or 2520 distance units in the
page coordinate system that we are using (1/10 points). We use the Measure algorithm to
determine that the total width of the words in the text, not counting spaces, is 2108 units in
the page coordinate system. Thus 2520 - 2108, or 412 units must be spread among the 7 inter­
word spaces. If each space is 58.86 units wide, the 7 spaces will total 412.02 units, which is so

~9 .. Xerox
I]nil P riv ate "'0. Data

107

10

108

Typography

close that the difference will not be apparent on the page. Alternatively, 6 of the 7 spaces can
be made 59 units wide, and the remaining one 58 units wide, for a total of exactly 412 units.
The second approach is used in the example. since it requires only integers to appear in the
master.

Note, in this example, that the measure specified to CORRECT (line 10) has been changed to
reflect the length of the properly justified line. Observe that two separate mechanisms are at
work here. The SPACE operators achieve justification. The CORRECf operator insures that the
line length will be correct even if a font approximation is made.

It is clear that this technique allows considerable flexibility in the allocation of space between
words, e.g., interword spaces need not be equal. The only drawback of this scheme is that the
master gets rather bulky because each word is passed to SHOW individually. A more compact
but less flexible technique is described in the next section.

10.5.2 Justifying with amplified spaces

Example 10.5 could be shortened considerably if the master were able to instruct Interpress to
alter the width of the "space" character while the line of text is printed. If the space character
were altered to have a width of 58.86 units, just for this line, then words and spaces alike
could be passed to SHOW and the line would come out justified.

Interpress achieves this effect by using amplifying spaces. An amplifying space is a character
operator that makes no mark upon the page and that has a varying width, depending on the
value of some variable. This is easy to do in Interpress because every character is an operator.
and if we choose to make the space operator a bit more complex than the rest, that complexity
is completely taken in stride by the SHOW operator. Recall from Section 9.3.3 that amplifying
characters multiply their widthX and widthY values by the imager variable amplifySpace to deter­
mine the relative positioning to perform. So by using amplifying spaces for inter-word spaces
and by setting amplify Space correctly, the inter-word spaces can be set so that the line is jus­
tified.

In order to determine the value of amplifySpace that must be used to justify a line of text, it is
necessary to measure the text in such a way that the widths of amplified and normal characters
are kept separate. The computation might be expressed as follows (s [I] is the zth character of
the string s, and length (s) is the number of characters in the string s):

var m,ma: real; i: integer;
begin
m : = 0; ma : = 0;
for i : = 1 to length{s) do

if (s [I] is amplified. as determined from the metric master) then
rna : = ma + (widthX of s [i] from metric master)*(scale of s [I])

else
m : = m + (widthX ofs[/]from metric master)*(scale ofs[/));

This modification sums in m the width of the normal characters and in ma the width of the
amplified characters. The total measure of the string, when printed by Interpress, will thus be
totalM easure= m + ma-amplifySpace.

~9 .. Xerox
~Q~ Private "'0'* Data

Introduction to Interpress 10

If we know what the total width of the line, totalMeasure. is supposed to be, we can easily solve
this equation for the setting of amplifySpace that should be put in the master. In our example
above, totalMeasure=2520, and the values of m and ma for the entire line of text are m=2108,
ma= 175 (note from Table 10.1 that the normal "space" character is amplifying). Thus we com­
pute that amplifySpace= 2.3543, or, if you prefer, the rational fraction 412/175.

We can now rework Example 10.5 to use amplified spaces:

--Example 10.6: Justification using amplified spaces--
--Lines 0 to 6 same as Example 10.1--

7-- { --the beginning of page body--
-- 8-- 0.000036278 SCALE CONCATT --set page coordinate system to 1/10 point units--
-- 9-- 6 0 SETCORRECTTOLERANCE --set tolerance to 0.6 points--

--10--
--11--
--12--
--13--
--14--
--16--
--16--
--17--
--18--
--19--
--20--

2620 0 SETCORRECTMEASURE
720 6480 SETXY
{
2.3643 18 ISET
o SET FONT
<An example of the CORRECT
1 SET FONT
<Interpress.> SHOW
} CORRECT
}
END

--leave co"ecrShrink set to its default value of 1/2--
--set measure to 3.6 inches--
--set starting position for line, x=l inch, y=9 inches--
--start CORRECT body--
- - set amplifySpace--
--sets current font to 10-point times--

operator in > SHOW --print text--
--change font to 10-point times ita1ic--

--invoke CORRECT--
--end of the page body--
--end of the master--

Note that the setting of amplifySpace will not persist beyond the execution of the CORRECf

operator on line 18, because as we remarked earlier, non-persistent imager variables changed
inside the body argument of CORRECf revert to their former values when CORRECf terminates.

Justification with amplified spaces is recommended in all but the highest quality typographic
applications. As demonstrated in Example 10.6, justification can be achieved without
appreciably lengthening the master or slowing its interpretation. Amplified spaces can be used
together with the SPACE operator, explained in Section 10.5.1, to achieve more complex effects.
A particularly important combination is to use amplified spaces for inter-word space, but to
use the SPACE operator for inter-sentence space.

10.6 Other typographical effects

This section provides some hints and examples for achieving various different typographical
effects in Interpress. This list is not exhaustive, but should provide some insights into how to
achieve additional effects.

10.6.1 Flush left, ragged right

Flush left. right-ragged text is handled very simply in Interpress. The starting position of each line
is specified with SETXY, followed by commands to show the line. It is usually not necessary to use
CORRECf for right-ragged text. However, if the right edge must not move too far in the presence of
font approximations, CORRECf could be required. For example, if ragged text is set inside a box.
with rules around it, CORRECf can insure that text will never cross the rules. Also, the last line of a
justified paragraph may need to use CORRECf to be sure that, in the presence of font approxima­
tions, the right edge of the text does not extend beyond the right edge of the justified lines.

~w~ Xerox
t]g!ll P riv ate "0" Data

109

10

110

Typography

10.6.2 Flush right, ragged left

If lines of type are to align at their right sides, CORRECf must be used to be sure that font
approximations do not cause the line length to vary. The starting position of the line is specified

with SETXY and the line's total length (distance from starting position to right alignment point) is
specified as the measure to CORRECf.

If a line of text has no spaces in it. a space will need to be inserted at the left of the line in order for
this technique to work.

10.6.3 Kerning

Often the most pleasing spacing of a pair of characters is not the width associated with the first
character. For example, if the two characters A and V are printed using normal spacing (I.e .•
A's width), they will appear to be too far apart because the right side of the A and the left
side of the V are parallel. Kerning is a technique for altering intercharacter spacing of pairs of
characters to achieve a better appearance, illustrated in Figure 10.4. The figure uses capital let­
ters because kerning is much more visible in capital letters; lowercase letters may be kerned as
well.

FAR AWAY ~ Text set with standard letter spacing

FAR AW4Y Text set with kemed letter spacing

Figure 10.4. Kerning

Kerning can be specified explicitly in the master using relative positioning. In this case,
SETXREL is appropriate. To print the sequence "A V", we might use the'sequence «A) SHOW

- 2 SETXREL <V> SHOW>. The call to SETXREL will move the current position to the left
slightly so that the V is closer to the A than it would be otherwise. Don't forget that kerning
adjustments will alter the measure of a line; this must be taken into account by the Measure
algorithm.

The size of the kerning adjustment must be determined by the creator. Suggested kerning data
might be available from the printer as part of the font metrics (§ 4.9.3) or might be derived by
the creator from other information about the fonts it uses.

It is important to use relative positioning to achieve kerning so that the master does not
depend on highly accurate correspondence between character widths known to the creator and
those that will be used by the printer. If CORRECf alters slightly the position of the "A", the
position of the "V" will move as well. (Note that we use SETXREL for kerning, rather than
SPACE, because we don't want CORRECf to alter this relative motion at all.)

If kerning is used extensively, the Interpress master can become quite bulky because of the
numerous calls to SHOW and SETXREL. The bulk can be reduced by encoding character indices
and kern offsets alternately in a single vector and using the SHOWANDXREL operator (see
§ 4.4.6). The example above could be encoded as <[65, 126. 86 1 SHOWANDXREL>.

~WIJJ Xerox
I]n~ Private "0-' Data

Introduction to Interpress 10

The Interpress conventions for character operators do not do kerning automatically for several
reasons: current typographic practices discourage kerning except for occasional display type
and very high quality text; the amount of kerning adjustment is not always a unique property
of a font, but will differ for different applications; and if character pairs of different sizes or
from different fonts are to be kerned, the number of different kerning adjustments that must
be stored is too large to require all Interpress imagers to save.

10.6.4 Letterspacing

In some cases, especially in headlines or "display type," spacing between characters must be in­
creased beyond the normal width spacing. This is called letlerspacing, illustrated in Figure 10.5.

letterspacing not applied
letterspacing applied

Figure 10.5: Letterspacing

Letterspacing can also be used to avoid "collisions" between characters: e.g., f) rather than j).
Letterspacing is a form of kerning, except that the spacing corrections tend to be positive
rather than negative and are uniformly applied to all spaces between letters in a word. All of
the remarks devoted to kerning in the previous section apply to letterspacing.

10.6.5 Accents and diacritical marks

The handling of accents and diacritical marks is controlled by designers of character sets and
fonts. Three methods are common:

• The character set contains a separate entry for each combination of character and mark.
Thus e would be represented as a single character in the character set

• The character set contains separate characters for each accent and diacritical mark, whose
widths are zero. The accents are designed and positioned so as to have the correct relation­
ship to a character placed next after the accent: to generate e the master would call ('e>
SHOW. This technique is useful for modest-quality fonts, such as those available on
automatic typewriters, in which positioning accuracy is sufficiently poor that the detailed
location of the accent mark over the character does not matter much.

• The font has separate accent characters, as in the second case, but the master must specify
the correct positioning of the accent.

The first two techniques can be used without any special treatment of the accents or characters.
For the last technique, the accent or diacritical mark can be positioned with relative adjust­
ments to the current position, but usually care must be taken that including the accent does
not disrupt the spacing of characters in a word. That is, if a relative motion is used to position
the accent properly, a compensating inverse relative motion is used to return the current posi­
tion to its previous position. For example, to show the text "Bezier" and to position the acute
accent carefully, we might use:

~9~ Xerox
~~Q!II Private
ifO" Data

111

10

112

Typography

--Example 10.7: positioning an accent character with SETXYREL--
--0-- <B) SHOW
--1-- 2 3 SETXYREL --adjust position for accent--
--2-- <') SHOW --print accent, which has widthX-O--
--3-- -2 -3 SETXYREL --return to position after line 0, assuming accent widths=O--
--4-- <ezier> SHOW

An alternative way to proceed is to save the current position on the Interpress operand stack
and then restore it:

--Example 10.8: positioning an accent character with SETXYREL and 16ET/ISET--
--0-- SHOW
--1-- 0 16ET 1 16ET --save current position on the stack--
--2-- 2 3 SETXYREL --adjust position for accent--
--3-- <'> SHOW --print accent--
--4-- 1 ISET 0 1SET --restore current position--
--5-- <ezier> SHOW

As is the case for kerning, the amount by which an accent is offset must be detennined from
exogenous infonnation about the font.

There is actually a fourth method for dealing with accents, namely to use ligatures. For example, in ISO 6937, the
single graphic character a is specified by two character codes in sequence: first, one for ", and then one for a. The·
graphic symbol that is printed. a, is not just an a overprinted with a .. , but a graphic designed for just this situa­
tion. This approach allows other accented characters, such as ii or 0 to be represented without requiring an explo­
sion of character codes in the character set This situation is analogous to conventional ligatures. e.g., f and i, in
which the two characters can be printed sequentially for modest-quality applications, or a signle specially-designed
ligature letterform can be used instead. Interpress will not substitute ligatures for two-character sequences automati­
cally. but instead requires the creator to do this job (Section 9.3.4). For diacritical marks as well as for conven­
tional ligatures. the metric master can provide the creator with the necessary ligature information (Section 9.4).

10.6.6 Underlines

While high-quality typography frowns on underlines in favor of italics, underlines are often
used in word-processing applications and other low-quality documents. In Interpress, an under­
line is actually a stroke drawn under some text. However, two Interpress operators help to
position the underline properly (§ 4.8.2):

<> STARTUNDERLINE -+ <>
where the current position is remembered in the imager variable underlineStart. The
STARTUNDERLINE operator is used to record where an underline is to start.

<dy: Number> <h: Number> MASKUNDERLINE -+ <>
where an underline in the x direction is drawn from the position recorded by STARTUN­

DERLINE to the current position. The thickness of the underline is set by the parameter
h and the top of the line will be displaced dy units below the current position.

The following master is like Example 10.7, but the word CORRECf will be underlined with a 1-
point rule (h = 10), displaced 2 points below the baseline (dy= 20):

--Example 10.9: underlining--
--Lines 0 to 6 same as Example 10.1--

7-- {
-- 8-- 0.000035278 SCALE CONCATl
-- 9-- 5 0 SETCORRECTTOLERANCE

--10--
--11--
--12--
--13--

2520 0 SETCORRECTMEASURE
720 6480 SETXY
{
2.3543 18 ISET

--the beginning of page body--
--set page coordinate system to 1/10 point units--
--set tolerance to 0.5 points--
--leave co"ecrShrink set to its default value of 112--
--set measure to 3.5 inches--
--set starting position for line, x=l inch, y=9 inches--
--start CORRECT body--
--set ampllfySpace--

~w .. Xerox
IiQ!II Private
ifOY Data

--14--
--15--
--16--
--17--
--18--
--19--
--20--
--21--
--22--
--23--
--24--

Introduction to Interpress

o SET FONT
<An example of the > SHOW
STARTUNDERL1NE
<CORRECT> SHOW
20 10 MASKUNDERL1NE
< operator in > SHOW
1 SET FONT
<1nterpress.) SHOW
} CORRECT
}
END

10

--sets current font to 10-point times--

--record starting position for underline--
--print text to be underlined--
--underline--
--print text--
--change font to 10-point times italic--

--invoke CORRECT--
--end of the page body--
--end of the master--

Note that MASKUNDERLINE generates only a single stroke. If several lines of text are to be
underlined, each one will require a STARTUNDERLINE, MASKUNDERLINE pair.

If instead of underlining, we wanted to place a rule through the middle of the word (a so­
called "strikethrough," which looks like this: CORRBCT). we could use a negative value for dy
so that the rule would be placed above the baseline.

The underline operators are designed to place the underline relative to the position of the text
when it is actually printed: if CORRECT makes small changes to the position of text characters,
the underline will move as well, so as to retain its position relative to the characters.

10.6.7 Disabling spacing correction

In some cases, it is necessary to disable the effects of spacing correction in part, but not all. of
a line of a text. If spacing correction is not required anywhere in a line, such as in computer
listings, right ragged text, or the last line of a justified paragraph, the CORRECT operator should
not be used at all. However. if the line as a whole should have correct measure, but local
regions of the line must not participate in the correction calculations, correction must be dis­
abled locally.

In order to disable correction. it suffices to set the imager variable correctPass to zero. To
enable correction again. correctPass should be restored to its former value. So we might use a
sequence like:

--Example 10.10: temporary disabling of spacing correction--
set up CORRECT parameters and set current position--

--0-- { --begin CORRECT body--
-- ... various printing that is subject to correction--

--1-- 19 1GET --save co"ecrPass on the stack--
--2-- 0 19 15ET --set co"ecrPass to zero to disable correction--

-- ... various printing that will not be subject to correction--
--3-- 19 15ET --restore co"ecrPass to its former value--

-- ... various printing that is subject to correction--
--4-- } CORRECT

As a general rule, correction should be disabled and restored whenever the current position is
saved and restored. Example 10.8 saves and restores the current position and should probably
also disable and restore the correction information. However, accent character operators are
usually designed so as not to allow spacing correction of any sort, so in that example it is not
necessary to disable correction. We'll see another use for this disabling correction when a
symbol has both a superscript and a subscript.

~.~ Xerox
IiQiIII Private
if[j~ Data

113

10

114

Typography

10.6.8 Superscripts and subscripts

Superscripts and subscripts are placed with relative positioning commands that shift the
baseline to a new location and shift it back again when the script is finished. To display the
string "01". for example, we would use SEfYREL to move the current position down for the
origin of the subscript and then back up to continue with the rest of the string. Using the con­
ventions for fonts and the page coordinate system established in Example 10.1, we might
proceed as follows:

--Example 10.11: a subscript--
--0-- 0 SET FONT --10-point times--
--1-- <0> SHOW --show symbol--
--2-- -40 SETYREL --move baseline down 4 points--
--3-- 3 SETFONT --8-point times--
--4-- <I) SHOW --subscript--
--5.-- 40 SETYREL --restore baseline--

--probably change font back to 10-point times--

This code sequence could appear in a CORRECf body or it could appear by itself. Superscripts
are handled by using a positive displacement in line 2.

If a symbol has both subscripts and superscripts, the solution is a little more complicated. We'll
need to remember the current position after the symbol has been printed and restore it for the
second subscript Thus the procedure might be described as: (1) SHOW the symbol; (2) save the
current position; (3) use SETYREL to establish the baseline for one of the scripts; (4) SHOW the
script; (5) restore the current position; (6) use SETYREL to establish the baseline for the other
script; (7) SHOW the script; (8) use SEfYREL to return the baseline to its original position. This
procedure is illustrated in Example 10.12, which adds a superscript "12.3" to our earlier
example:

--Example 10.12: subscripts
--0-- 0 SET FONT
--1-- <0> SHOW
--2-- 0 IGET 1 IGET
--3-- -40 SETYREL
--4-- 3 SET FONT
--5-- <I) SHOW
--6-- 1 ISET 0 ISET
--7-- 45 SETYREL
--8-- <12.3> SHOW
--9-- -45 SETYREL

and superscripts on the same character-~
10-point times-­

--(1) show symbol--
--(2) save current position on the stack--
--(3) move baseline down 4 points for subscript--

8-point times-­
--(4) show subscript--
--(5) restore current positlon--
--(6) move baseline up 4.5 points for superscript--
--(7) show superscript--
--(8) restore baseline--

The procedure outlined above works fine in the absence of correction, as when printing .. dis­
play math." However, when a symbol with both subscript and superscript appears within a jus­
tified line that is adjusted with CORRECf, a slightly different procedure is required. Correction
is turned off in the shortest script so as not to mislead CORRECf into thinking the line length
can be changed by altering spacing within this script; the line length won't change because
we'll restore the current position that we saved, which will cancel any alterations CORRECf

might have made. Thus the recommended procedure becomes: (1) SHOW the symbol; (2) save
the current position and turn off correction; (3) use SETYREL to establish the baseline for the
script with the shortest measure; (4) SHOW the shortest script; (5) restore the current position
and correction information; (6) use SETYREL to establish the baseline for the longest script; (7)
SHOW the longest script; (8) use SETYREL to return the baseline to its original position.
Example 10.13 shows the modifications to Example 10.12 necessary in the presence of correc­
tion:

~w~ Xerox
~Q~ Private
ifOY Data

Introduction to Interpress

--Example 10.13: subscripts
0-- 0 SET FONT
1-- <0> SHOW
2-- 19 IGET
3-- 0 19 ISET
4-- 0 IGET 1 IGET

and superscripts, adapted to CORRECT operator--
10-point times-­

--(1) show symbol--
--(2) save correction state on the stack--
--(2) turn off correction--
--(2) save current position on the stack--

10

5-- -40 SETYREL --(3) move baseline down 4 points for short script (subscript)--
6-- 3 SET FONT 8-point times--
7-- <1> SHOW --(4) show shortest script (subscript)--
8-- 1 ISET 0 ISET --(5) restore current position--
9-- 19 ISET --(5) restore correction state--

--10-- 45 SETYREL --(6) move baseline up 4.5 points for long script (superscript)--
--11-- <12.3> SHOW --(7) show longest script (superscript)--
--12-- -45 SETYREL --(8) restore base1ine--

--Example
0--
1--
2--
3--
4--
5--
6--
7--
8--
9--

--10--
--11--
--12--

Another approach would be to tum off correction for both scripts:

10.14: subscripts
o SET FONT
<0> SHOW
19 IGET
o 19 15ET
o IGET 1 IGET
-40 SETYREL
3 SETFONT
<1> SHOW
1 ISET 0 ISET
45 SETYREL
<12.3> SHOW
-45 SETYREL
19 ISET

and superscripts with correction disab1ed--
10-point times-­

--(1) show symbol--
--(x) save correction state on the stack--
--(x) turn off correction--
--(2) save current position on the stack--
--(3) move baseline down 4 points for short script (subscr1pt)--

8-point times--
--(4) show shortest script (subscript)--
--(5) restore current position--
--(6) move baseline up 4.5 points for long script (superscr1pt)--
--(7) show longest script (superscript)--
--(8) restore baseline--
--(x) restore correction state--

10.6.9 Centering

Text can be centered by computing its measure and positioning it accordingly with SETXY.
However, if substantial font approximations are made, the text might no longer appear to be
centered. This problem can be solved by using CORRECT, preceding and following the string
with generous and equal SPACE, but turning correction off inside the text to be centered. In
this way, CORRECT will adjust the SPACE equally so that the text remains centered.

For example, suppose the measure of a string, including its spaces, is 1488 units in the page
coordinate system, and that it is to be centered about the point x= 3240, y= 7200. We'll put
1000 units of SPACE on each end of the string, as follows:

--Example 10.15: centering a string 1n the presence of font approximations--
--Lines 0 to 6 same as Example 10.1--

7-- {
-- 8-- 0.000035278 SCALE CONCATT
-- 9-- 5 0 SETCORRECTTOLERANCE

--10--
--11--
--12--
--13--
--14--
--13--
--16--
--17--
--18--
--19--
--20--
--21--

3488 0 SETCORRECTMEASURE
1496 7200 SETXY
{
1000 SPACE
19 IGET 0 19 ISET
o SET FONT
<Introduction to Interpress>
19 ISET
1000 SPACE
} CORRECT
}
END

~w~ Xerox
II]~QiI Private
"'/j~ Data

--the beginning of page body--
--set page coordinate system to 1/10 point units--
--set tolerance to 0.5 points--
--leave co"ecrShrink set to its default value of 1/2--
--set measure to 1000+1488+1000=3488--
--set starting position x=3240-(3488/2). y=7200--
--start CORRECT body--
--first adjustable space--
--turn off correction--
--sets current font to 10-point times--

SHOW
--restore correction--
--second adjustable space--
--invoke CORRECT--
--end of the page body--
--end of the master--

115

10 Typography

10.6.10 Hung text

Sometimes careful thought is required to decide how to use CORRECf. Consider, for example.
the following paragraph, with text hung off to the left:

1. The first thing the settlers did was to clear the land of trees
and rocks so they could plant crops. This was an arduous
task. for they had no . . .

The text on the first line should use CORRECf, since it must remain justified. However, the
hung text ("1.") should not be part of the same correction body, or else correction could move
the initial "T" and destroy its alignment with the lines below. The proper way to think of this
case is as two blocks of text: the hung text. which is left flush, and the paragraph, which is jus­
tified. The hung text is typeset with techniques appropriate for left flush text, namely absolute
positioning of the starting point of the text, but no CORRECf. The paragraph is typeset just like
other justified paragraphs, using CORRECf.

10.7 Summary

116

This section has presented a number of techniques for achieving high-quality typography in
I nterpress. The basic facilities of Interpress are quite simple: a master can place a character of
arbitrary size and rotation at an arbitrary position on the page. A creator thus has typographic
flexibility and complete control.

The situation becomes more complex if we desire to prepare masters that will print acceptably
even when a printer must approximate the fonts requested by the master. The principal tools
used to retain legibility in these cases are:

• Relative positioning, so that if a character's width differs when printed. other objects re­
lated to the character (such as subscripts, underlines, accents, and the succeeding characters
on a line) will move to accept the new width. This technique preserves local relationships
among objects.

• The CORRECf operator, which enforces a global relationship, namely the measure of a line
of text. The operator alters local relationships, but tries to make most of its modifications
in inter-word "white space" so as to preserve legibility.

~y~ Xerox
Ij~~ Private
iIIO. Data

11

Referencing the environment

Although it is possible for an Interpress master to be completely self-contained, most masters
make references to important data that lie outside the master itself. These data are contained in
an environment furnished by the printer. While the most important objects furnished by the
environment are fonts and their corresponding metrics. the environment may also contain
decompression operators that are used in conjunction with scanned images, descriptors for
colored ink, and a variety of predefined images such as logos or signatures. It is by inserting
into an Interpress master files from the environment that Interpress can print forms of all
kinds, such as letterheads, invoice blanks, and so forth. In this way, a master need specify only
the filled-in entries on a form and not the form itself.

This section describes conventions for referring to and using the printer's environment. There
are two separate mechanisms in Interpress:

• a naming system used to extract fonts, decompression operators, and colors from the
environment,

• an encoding mechanism called sequencelnsertFile that is used to insert files from the environ­
ment into a master.

11.1 Hierarchical names

Fonts, decompression operators, and colors are named using a compound name, a Vector of
Identifiers. We have already seen (Section 3.2.1) how such names are passed to FINDFONT to
obtain a font from the environment, e.g., <[xerox, xc82-0-0, times] FINDFONT>. Similar com­
pound names are used to obtain decompression operators and colors from the environment,
topics that we shall not discuss further until Section 15.

The intent of the Interpress naming system is that compound names will be organized in a
hierarchical fashion, much like the hierarchical file-naming system of many operating systems
(e.g., UNIX t). Interpress does not enforce a hierarchical naming rule, but things will work a lot
more smoothly if hierarchical names are used. Moreover, using hierarchical names in no way
limits the variety of names that can be used.

t UNIX is a trademark of Bell Laboratories.

~9 .. Xerox
~~QiII Private
.. O~ Data·

117

11

118

Referencing the environment

In a compound name such as [a, b. c). each identifier represents a new level in a name hierar­
chy. The first identifier, a, is in what is called the lnterpress universal registry. The names in
the universal registry are assigned by Xerox in order to be sure that they are unique (see § C).
One of the first names assigned was xerox. All data that Xerox contributes to an Interpress
printer's environment use compound names that begin with the identifier xerox. e.g .•
[xerox, xc82-0-0, times].

Other organizations may also have names assigned in the universal registry. The Bank of
America, for example, might be assigned the name banko/america. Data that the Bank of
America records in a printer's environment would be named by hierarchical names beginning
[banko/america, ...]. It's clear that uniqueness of names in the universal registry guarantees that
no requests for Bank of America data in a printer's environment will be confused with requests
for Xerox data, or with data named by any other client.

When a registry issues a name to a group, it delegates to that group the responsibility for
naming at the next level of the hierarchy. For example, the Bank of America will maintain its
own registry for names at the second level of the hierarchy; the name at the first level is
always banko/america. This corporate naming body might assign the following names:

banko/america standard
banko/america commercial
banko/america investments
banko/america branchbanking

for data standard to all Bank of America installations
for the commercial banking division
for the investments division
for branch banking division

This, of course, simply establishes four new registries for yet another level of names. The
process can continue to as many levels in the hierarchy as necessary. Xerox uses levels in its
hierarchical names to standardize font names (Section 9.1.1).

The hierarchical name system allows names to be created without any central control. Once
Xerox has assigned the name banko/america in the universal registry, it need have no control
whatsoever over further levels in the hierarchy that use names beginning [banko/america, ... l.
Once the corporate registry of Bank of America has assigned names beginning [banko/america,
commercial . . . 1 to the commercial banking division, it need not be further concerned with how
that division assigns subsequent names. And so on, as deep as necessary.

You might wonder why all this effort is necessary, since an Interpress printer is likely to be
owned and operated by a single entity, which could just use local names such as "letterhead."
But what happens if a master created by a subsidiary of the company is sent by a computer
network to this printer, and refers to "letterhead" as well? The letterhead of the local company,
not of the subsidiary, will be printed-the wrong result. If hierarchical names are used instead,
the local printer will have [ussteeL letterhead] while the master that arrives will request
[ussteeL americanbridge. letterhead]. In this example, it may happen that the local printer does not
have in its environment the letterhead of the subsidiary company, and an error will result. But
this behavior is usually preferable to printing the letter on the wrong letterhead!

Because of their virtually limitless ability to expand, hierarchical names can contain a great
deal of information. They can easily contain all the information in conventional computer file
names, such as user name, directory name, file name, extension, version number, and so on.
While not all of these fields make much sense in the Interpress environment, the notion of a
version number (or, more precisely, a version identifier) is extremely useful for fonts and
forms. Thus, for example, a letterhead form might be named [ussteeL letterhead. rev]].

~911!. Xe rox
tiQ~ Private
"""0'" Data

Introduction to Interpress 11

11.2 External references to fIles

An Interpress master can ask the printer to copy data from another file into the master as it is
being executed. The request is carried in the encoded master as a sequencelnsertFile encoding­
notation (§ 2.5.3). Note that this is not an Interpress operator, but rather a feature of the encod­
ing. The idea is that the decoder at the printer, when it encounters a sequencelnsertFile in the
master, simply redirects its input by ceasing to parse the master and parsing the requested file
instead.

The sequencelnsertFile encoding-notation takes as its argument a sequence of bytes that is inter­
preted by the printer as a file name. Interpress imposes no standards on character sets or
naming conventions for these fue names; the printer may interpret the bytes in an
implementation-dependent manner. In this section, we'll assume these names use the ISO 646
character set. Moreover, we'll adopt a convention for showing sequencelnsertFile in the written
form of a master, namely "+ + filename + +".

Let's give an example of the way a form might be included in a master. The following master
describes a letter that includes the letterhead as a form:

--Example 11.1--
0-- BEGIN { --beginning of the preamble--

1--

2--
3--
4--
5--
6--
7--
8-­
g--

--10--
--11--

--12--
--13--

--font 0 is 10~point Times--
[xerox,

[xerox,
}
{

xc82-0-0, times] FINDFONT 10 SCALE MODIFYFONT 0 FSET
--font 1 is 10-point Times Italic-­

xc82-0-0, timesitalic] FINDFONT 10 SCALE MODIFYFONT 1 FSET
--end of the preamble--

++ xerox standard letterhead
0.00035278 SCALE CONCATT
o SET FONT
108 576 SETXY
(Mr. John Q. Public> SHOW
108 564 SETXY
(1456 Ocean Blvd.> SHOW

}
END

. . and the rest of the

--beginning of page body--
++ --include form --
--units of 1 point in the page coordinate system--
--use Times 10 point--
--set the current position to x=1.5 inch, y=8 inch--

letter --
--end of the page body--
--end of the master--

Because Interpress places no restrictions on the format of file names used by sequencel nsertFile.
a printer can adopt file naming conventions that achieve a number of effects:

• File names can be hierarchically structured. using punctuation characters to separate iden­
tifiers at different levels of the hierarchy. The name in Example 1l.1 is a hierarchical name
with identifiers separated by spaces. This naming scheme will allow all the advantages of
hierarchical names to accrue to form names as well.

• File names can refer to files that are not actually resident at the printer, but that can be
obtained by the printer either by executing some program or by accessing the file through
a computer network. If this idea is used in conjunction with hierarchical names, the name
network might be used at certain levels in the hierarchy to obtain access to the network.
e.g.. us steel network hostname user name filename.

• File names might contain additional information that helps extract only certain parts of a
file. For example, if a file is an Interpress master. the preamble and each page body might
be separately accessible. The keyword "select-master-part =" might be used to precede a
list of numbers indicating which parts to extract, where 0 indicates the preamble, 1 stands
for the first page body, and so on. So a file name might be

~.~ Xerox
I]~~ Private
ifl.J~ Data "--

119

11 Referencing the environment

us steel standard capitalrequisition/orm select-master-part = 0,1

which would extract the preamble and first page body and insert them in the requesting
master.

• Broadly construed, the sequencelnsertFile mechanism is an opportunity to include arbitrary
printer-dependent instructions in a master. For example. a file name do: use purple paper
might be interpreted by the printer as a printing instruction. While this is not the intent of
sequencelnsertFile, since other mechanisms are provided for communicating printing instruc­
tions, Interpress does not prevent this or other unorthodox uses.

Which (if any) of these effects are supported will depend on the implementation of the printer.

11.2.1 The contents of inserted files

It should be clear from Example 1l.1 that some strict conventions must be observed by forms
and masters to avoid chaos when a master such as this is printed. The problem is that the file
requested on line 5 could include an 'arbitrary sequence of Interpress operators, which could
alter the current transformation, change elements of the frame, and so on. The master that asks
to insert the file almost certainly depends on some or all of these objects remaining
urunodified by the inserted file. In the example above, the letterhead form is clearly not
intended to modify the current transformation or frame elements 0 and 1, which contain fonts.
We'll see in Section 12 various ways that a master can protect itself against any modifications
made by the inserted file.

While most forms must not modify objects available to the master, others might be designed
specifically to provide certain objects to the master that requests them. For example, some
forms might by convention establish in frame element 13 the font that should be used to fill in
entries in the form. Or the form might establish a particular coordinate system. Still other
forms might expect arguments on the stack. For example, a letterhead that prints the sender's
telephone number might expect on the stack a Vector suitable for passing to SHOW to print the
telephone number (e.g., «412) 555-0803». The letterhead form chooses the position and font
for the number, but the master requesting the letterhead provides the number itself.

11.3 Device independence

120

Any references to the printer's envirorunent limit the device independence of the master
because the master may be submitted to a printer that does not have the necessary data in its
envirorunent. A master that strives for device independence will limit its requests of the
envirorunent to the bare essentials. While it is possible to construct masters that make no
requests of the environment whatsoever. these masters may be bulky and awkward; for
example, any fonts they use must be defined completely in the master.

In practice, a certain amount of judgement must be used in deciding how to structure a
printer's envirorunent and what parts of the envirorunent a master should depend on. While it
is difficult to state any general rules that will fit all applications precisely, here are some
examples of the reasoning behind various approaches:

• Transient masters can be arbitrarily device-dependent, and may therefore contain arbitrary
references to the envirorunent These are masters that will not be stored permanently and
are destined for a single printer or for a set of printers with identical environments. Almost
all masters generated for "computer printing" purposes are of this sort.

~y~ Xerox
Ii]:Q!II Private
"'LJ~ Data

Introduction to Interpress 11

• Masters that are expected to be spread around an organization can use any features of the
environment that are, by management mechanisms, held constant throughout that organiza­
tion. Thus a memorandum expected to stay within the commercial banking division may
use a form named banko/america commercial mem%rm, while a memorandum expected to be
spread throughout the entire corporation ought to use a form guaranteed to be in the
environment of every printer in the corporation, e.g., banko/america mem%rm.

• Masters that are to receive wide distribution are likely to print with less difficulty if
references to the environment are minimized. A void using a memorandum form in the
environment, for example, by including in the master Interpress code to construct the
memorandum form from more primitive objects. Then if the master is printed on a printer
that lacks the form but has the fonts necessary to print the form, it will print properly.

*,W~ Xerox
IiQ~ Private
'flO. Data

121

11 Referencing the environment

122

~w~ Xerox '8' Private Data

12

Base language II

The Interpress language allows a master to define composed operators, which are analogous to
the procedures found in conventional programming languages. The use of composed operators
within masters is similar to that of procedures in computer programs: computations that are
repeated often can be defined once in a composed operator and invoked as many times as
necessary by calling the operator. The name "composed" comes from the mathematical concept
of function composition Fo G and not the typesetter's meaning of "composed." The term com­
posed operators distinguishes these operators from primitive operators, which are built into
Interpress.

This section describes how composed operators are constructed and gives several examples of
their use. We have already seen some examples of composed operators: each character in a
font is represented as a composed operator, which, when executed, makes an image of the
character on the page.

12.1 Constructing and calling composed operators

One way in which composed operators in Interpress differ from the procedures of Pascal is
that while a Pascal procedure is declared at compilation time, in the same way that an integer
or array would be declared, an Interpress composed operator is an object created at runtime by
the execution of a special primitive operator. A composed operator is thus just another data
type, and objects of type Operator can be left in the stack or stored into the frame just like
other values.

A composed operator is constructed using the MAKESIMPLECO operator, which takes a single
argument, the body of literals that comprise the composed operator. The result of executing
MAKESIMPLECO is a value of type Operator left on the stack (§ 2.4.5):

<b: Body> MAKESIMPLECO -+ <0: Operator>
where 0 is a composed operator which has body b and initial frame equal to the value
of the frame when the MAKESIMPLECO is executed. Note that bodies and operators are
distinct types; MAKESIMPLECO constructs an operator from a body and an initial frame.

The operator that results from a call to MAKESIMPLECO must be saved somewhere so that it
can be invoked later. The most common practice is to save the operator in a frame element for
use later on.

~ •• Xerox
t]~iI Private
"'LJ~ Data

123

12

124

Base language II

Once constructed, a composed operator can be called with the DO, DOSA VE, or OOSA VEALL

operators. The differences between these operators concern the saving and restoring of imager
variables. as explained below in Section 12.1.3. For the time being, we'll use DO to call
operators (§ 2.4.5):

<0: Operator> DO -+ Q-the effect on the stack depends on 0-­
where the operator 0 is executed.

Now that we've described operators for defining and calling composed operators. it's time for
an example. Example 12.1 constructs and calls a composed operator that draws a square box.
one unit on a side.

--Example 12.1: defining and calling a composed operator--
--0-- { --a bracket that begins the body literal--
--1-- 0 0 1 0 MASKVECTOR --this composed operator will draw a box--
--2-- 1 0 1 1 MASKVECTOR
--3-- 1 1 0 1 MASKVECTOR
--4-- 0 1 0 0 MASKVECTOR
--5-- } MAKESIMPLECO --close body literal and make composed operator--
--6-- 12 FSET --save composed operator in frame element 12--

--7-- 12 FGET DO --call the compose~ operator--

Lines 0-6 define a composed operator and save it in frame element 12. Line 7 shows the
form that a call might take: the composed operator is fetched and then invoked with DO. Calls.
of course, can be made wherever and as often as desired. Note that since the composed
operator does not change the value of stroke Width or strokeEnd, the portion of the master that
performs the call is free to change these values between calls.

To help see the similarities between composed operators and procedures of conventional
programming languages, here's the Pascal analog of Example 12.1:

procedure Box; --a procedure definition-­
begin
MaskVector(O, O, 1,0);
MaskVector(I, 0, 1. 1);
MaskVector(l, 1,0, 1);
MaskVector(O, 1, 0, 0);
end:

Box; --a call- Q

Despite this similarity between composed operators and Pascal procedures, there are important
differences. We've already mentioned that a composed operator is constructed by executing the
MAKESIMPLECO operator. while a procedure in a programming language becomes available
through a declaration: nothing need be executed to define a procedure.

A second difference between Interpress and a conventional programming language concerns
naming. In an ordinary programming language, there is a mechanism to connect object
references to the appropriate object definition by means of identifiers. For example, if you
write a Pascal procedure named Divide and then elsewhere in the program write Divide(a,b), the
Pascal system will recognize that Divide(a,b) is a reference to that procedure and will execute
the Divide(a,b) statement by executing the body of the Divide procedure. This linking up of
identifiers is so smooth and so universal that programmers are often stymied when they first

~9/JJ!.. Xerox IJiQitI P riv ate
...,,0 Data

Introduction to Interpress 12

encounter a machine language in which they must manually link up object references to the
appropriate definitions.

The Interpress base language, like other machine languages, does not provide this automatic
name binding or the storage management that it implies. An Interpress program must manage
its objects so that they can be referred to by location and not by name. For example, Pascal
permits a programmer to define a local variable named xyz that will be allocated space on the
runtime stack. The Pascal compiler will automatically allocate the correct amount of stack
space and will automatically translate a source-code reference to xyz into something like "the
third variable in the local-variables portion of the stack." The Interpress interpreter performs
no such name binding or space management, so the Interpress programmer must refer to
storage by position and not by name. Since Interpress masters are never created by hand, but
rather are created by a creation program, only the writers of the master creation program need
be aware of these issues.

Another common issue in programming languages is the scope of identifiers in general, and of
procedure names in particular. In Interpress, since a composed operator is a value like any
other data value, there are no scope rules. Instead, the rules governing the storage of data
values apply. For example, a composed operator defined inside the page body for page 1 can­
not be used on page 2, simply because there is no way that data values computed on page 1
can be made available to page 2. (Recall from Section 4.1 that prior to interpreting each page
body the stack is cleared and the frame is set to a copy of the frame that resulted from the
execution of the preamble.)

12.1.1 Passing arguments to a composed operator

A master can pass arguments to a composed operator by placing them on the stack before call­
ing the composed operator. The composed operator can obtain the arguments by manipulating
the stack in any way. It can also return on the stack an arbitrary number of results, which the
caller can retrieve. These are the same conventions used by primitive operators in Interpress.

By way of example, let's define a composed operator that we shall name BuildTransform
which takes scaling, rotation, and translation parameters and returns a single transformation
that accomplishes all three, in the order scale, rotate, translate:

<scale: Number> <rotation: Number> <tx: Number> <ty: Number> BuildTransfonn -+

< t: Transformation>
where t=<scale SCALE rotation ROTATE tx ty TRANSLATE CONCAT CONCAT>.

The composed operator could be defined as follows:

--Example 12.2, define BuildTransj'orm{scale,rotation.tx.ty) as a composed operator--
0-- { --a bracket that begins the body literal--
I- - TRANSLATE - - s tac k is scale, rotation. T.translate--
2-- EXCH ROTATE EXCH --stack is scale, T.rotate, T.translate--
3-- 3 1 ROLL --stack is T.rotate, T.translate, scale--
4-- SCALE --stack is T.rotate, T.translate, T.scale--
5-- 3 2 ROLL --stack is T.scale. T.rotate. T.translate--
6-- CONCAT CONCAT --stack is T.result--
7-- } MAKESIMPLECO --close body literal and make composed operator--
8-- 34 FSET --save composed operator in frame element 34--

9-­
--10--

0.0254 90 4.25 5.5 34 FGET DO --call BulldTransj'orm{0.0254, 90, 4.25, 5.5)--
CONCATT --and concatenate it onto the current transformation--

~w~ Xerox
II]~. P riv ate
if[j~ Data

125

12

126

Base language II

12.1.2 The composed operator's frame

When an Interpress composed operator is invoked, it is given access to a frame that is a copy
of its creator's frame (not its caller's frame!). It is free to modify that frame using FSET. When
a composed operator finishes executing and returns to its caller, its frame is discarded. This
means that it is not possible for a composed operator to make any permanent changes to frame
da~ i.e., changes cannot outlive the execution of the composed operator. A composed
operator cannot change the frame of either its caller or its creator, because during its execution
the FSET operator will always store into the composed operator's frame copy, and there is no
other way to change a frame value.

The initial contents of a composed operator's frame are obtained from a copy of the current
frame at the time MAKESIMPLECO was executed to create the composed operator. Thus the
definition and execution of a composed operator causes the frame to be copied twice. The first
copy is made when MAKESIMPLECO is executed and becomes part of the representation of the
composed operator. The second copy is made during the execution of DO, which copies the
copy made by MAKESIMPLECO into a scratCh frame so that the composed operator is free to
modify it during its execution. When the. ~xecution of a composed operator terminates. its
frame is simply destroyed. The next time DO is called on that composed operator, a fresh copy
is made.

These two points are extremely important, for they determine many of the conventions for
using composed operators. To repeat:

• When a composed operator is executed. a fresh frame is constructed. The initial contents
of this frame are set to the values that were in the frame when MAKESIMPLECO was
executed to create the composed operator.

• When a composed operator finishes execution, the values in its frame are discarded.

These two rules are quite pervasive in Interpress. For example, CORRECT executes its body
argument by turning it into a composed operator and calling it. As a result, changes to the
frame made inside the body argument of CORRECT will not persist after CORRECT exits.

Because the changes made to a frame during execution of a composed operator are not per­
manent, the operator can use frame elements to store local variables and be guaranteed that
this activity will not disrupt the caller. By way of example, consider the following definition of
a composed operator Box (width, height):

--Example 12.3. define Box{width, height) as a composed operator--
--0-- {
--1-- 0 FSET - -f ramer 0] = height
--2-- 1 FSET - -f ramer 1] = width
--3-- 0 0 1 FGET 0 MASKVECTOR --MaskVector(O,O,wwm.o)--
--4-- 1 FGET 0 1 FGET 0 FGET MASKVECTOR --MaskVector(width. O. width. height)--
--5-- 1 FGET 0 FGET 0 0 FGET MASKVECTOR --MaskVector(width. height. O. height)--
--6-- 0 0 FGET 0 0 MASKVECTOR --MaskVector(O. height. 0.0)--
--7-- } MAKESIMPlECO --close body literal and make composed operator--
--8-- 32 FSET --save composed operator in frame element 32--

--9-- 13 42 32 FGET DO --call Box(13. 42)--

Because changes to the frame' during the execution of a composed operator do not persist,
frame elements 0 and 1 will have the same values after the call on line 9 that they had before
the call. Actually, this operator makes such simple use of its arguments that saving them in the

~.II!. X e ro x fiQif P riv ate
.... LJ'Y' Data

Introduction to Interpress 12

frame is not really necessary. However, more complex composed operators would have a dif­
ficult time relying on the stack alone for arguments and local variables.

Global variables can be passed into a composed operator in a limited way through the initial
frame values. For example, if a composed operator is defined after fonts have been obtained
and saved in frame elements, the composed operator will have access to those fonts as well.
Consider the following master, which uses a composed operator to print the page number at
the top of each page:

--Example 12.4. Similar to Example 6.4--
0-- BEGIN
1-- { --beginning of the preamb1e--

2--

3--

4--
6--
6--
7--
8--
9--

--10--
--11--
--12--
--13--
--14--
--16--
--16--
--17--
--18--
--19--
--20--
--21--
--22--
--23--
--24--

--25--
--26--
--27--
--28--
--29--
--30--
--31--

--32--

--33--

--font 0 is 10-point 'LPTA'--
[xerox, xc82-0-0, 1pta] FINDFONT 100 SCALE MODIFYFONT 0 FSET

--font 1 is 10-point 'LPTAbo1d'--
[xerox, xc82-0-0, 1ptabo1d] FINDFONT 100 SCALE MODIFYFONT 1 FSET

--define a composed operator for heading: Page«pagenum»--
{ --composed operator frame=globa1 frame--
I SETFONT --set font 1--
720 7560 SETXY --heading at x=l inch, y=10.5 inch--
<Listing of GPO.PAS at 14:32 on 31 January 1982 Page> SHOW
SHOW --show page number, the argument on the stack--
} MAKESIMPLECO 2 FSET --make composed operator and save as frame[2]--
} --end of the preamble--
{ --beginning of the first page body--
0.000035278 SCALE CONCATT --set the page coordinate system by concatenating onto T--
<1> 2 FGET DO --call Page«1» to print heading--
o SETFONT --sets the current font--
720 7200 SETXY --top line of listing at x=l inch, y=10 inch--
<1 (* GP.PAS -- Simple PASCAL graphics package. *» SHOW
720 7080 SETXY --next line is 12 points below first 1ine--
<2 const EnterGraphicsMode=29; LeaveGraphicsMode=31;> SHOW
720 6960 SETXY --each line is 12 points below previous--
<3 var x1ast,ylast: integer; v: InquiryResponse;> SHOW
720 6840 SETXY
<4> SHOW
720 6720 SETXY
<6 procedure TransmitCoords(x,y: real);> SHOW
--more lines of text for the first page would be added here--
} --end of the first page body--
{ --beginning of the second page body--
0.000036278 SCALE CONCATT --set the page coordinate system by concatenating onto T--
<2> 2 FGET DO --call Page«2» to print heading--
o SET FONT --sets the current font--
720 7200 SETXY --top line of listing at x=l inch, y=10 inch--
<51 procedure DrawText(s: string);> SHOW
--more lines of text for the second page would be added here--
} --end of the second page body--
--more page bodies for more pages would be added here--
END --end of the master--

The composed operator Page(numberString) is defined in lines 4 - 9. Note that the < 1 SETFONT>

in line 5 will reference /rame[l], thus obtaining the font defined in line 3. The reason is that
the initial frame for Page will be the value of the frame as of line 9, when the MAKESIMPLECO

operator is executed. At this point, /rame[O] and /rame[l] have been set up with fonts, on lines
2 and 3. Calls to the Page operator are found on lines 13 and 28.

If the Page operator were created before the fonts were defined (Le., if lines 2 and 3 were
placed after line 9), the master would not print correctly. The reason is that each time Page is
invoked, its frame would be set to the frame as of line 9, which would contain all zeroes. As a
consequence, the < 1 SETFONT> in line 5 would set the current font to the scalar value 0, which
causes an error because the current font cannot be a scalar.

~.~ Xerox
I]~~ Private
"LJ~ Data

127

12

128

Base language II

12.1.3 Protecting imager variables from a composed operator

Often the caller of a composed operator wants to guarantee that the operator changes only the
output of the Interpress master (the page image) and not other pieces of state such as frame
elements, stack entries, or imager variables. We have already seen that the caller's frame
elements are immune in all cases to tampering by a composed operator. The imager variables
can be protected as well, depending on the type of call that is used to invoke the composed
operator: DO, DOSA VE. or DOSA VEALL. This protection actually takes the form of a save and
restore: the composed operator is free to change the imager variables, but they will be restored
by DOSA VE or OOSA VEALL to their previous values before control is returned to the body
executing the DOSA VE or DOSA VEALL.

DO. If a composed operator is invoked with DO, protection of imager variables is not
guaranteed. All changes to imager variables effected by the composed operator will persist
after the operator exits.

DOS AVE. If a composed operator is invoked with DOSA VE, only changes made by the composed
operator to persistent imager variables will persist after the operator exits. The persistent
imager variables are the current position and the line measure used by CORRECT (see
§ 4.2). The other imager variables, such as the current transformation, the current font, and
the width of strokes. will be protected.

DOSA VEALL. If a composed operator is invoked with DOSA VEALL, no changes made by the com­
posed operator to imager variables will persist after the operator exits. Thus DOSA VEALL
offers complete protection of imager variables.

The DOSA VE operator is particularly useful in imaging applications, because while it protects
most of the imager variables, it allows the current position to be changed by an operator.
Character operators, for example, are invoked with DOSA VE as part of SHOW'S function
(§ 4.4.6). This technique protects the current transformation, which is modified as the character
operator is invoked to apply the transformations Tsp and Tes (Section 6.2.3), but will be res­
tored after the character operator exits. By contrast, the changes made by the character
operator to the current position will persist after the operator exits. A character operator
invoked in this way is allowed to have the side effects of printing output and of setting a vari­
able to indicate where the next character should be placed, but is prevented from having any
other side effects.

In some cases, a master will want to execute a sequence of literals with imager variable protec­
tion, but without suffering the overhead of making a composed operator out of them. To get
this effect, the master can use the OOSA VESIMPLEBODY operator, defined as equivalent to
<MAKESIMPLECO DOSAVE> (§ 2.4.5). For example, consider the Box (Width, height) operator
defined in Example 12.3. We can place boxes at different positions on the image by altering
the current transformation with a translation transformation, but we don't want the alteration
to be permanent. A call on Box might therefore look like:

--Example 12.5: Example of the use of DOSAVESIMPLEBODY --
--1-- { --start body for DOSAVESIMPlEBODY
--2-- 121 467 TRANSLATE CONCATT --alter transformation--
--3-- 13 42 32 FGET DO --call Box(13. 42), operator in jTame[32]--
--4-- } DOSAVESIMPlEBODY --execute lines 2 & 3 but protect transformation--

Another example is drawn from Sections 10.6.7ff. in which the current position and/or the cor­
rection state must be saved and restored. While the examples we presented there explicitly

~y~ Xerox
Ii~r. Private
'ftILJ~ Data

Introduction to Interpress 12

saved and restored these variables using the stack, DOSA VE and DOSA VEALL could also have
been used. Example 10.13 can be restated as follows:

--Example 12.6: Rework of Example 10.13 using OOSAVEALL--
0-- 0 SETFONT 10-point times--
1-- <0> SHOW --(1) show symbol--
2-- 3 SET FONT 8-point times--
3-- { --(2) use OOSAVEALL to save correction state & current position--
4-- 0 19 ISET --(2) turn off correction--
5-- -40 SETYREL --(3) move baseline down 4 pOints for short script (subscript)--
6-- <1> SHOW --(4) show shortest script (subscript)--
7-- } MAKESIMPLECO OOSAVEALL --(5) restore correction state & current pos1tion--
8-- 45 SETYREL --(6) move baseline up 4.5 points for long script (superscript)--
9-- <12.3> SHOW --(7) show longest script (superscript)--

--10-- -45 SETYREL --(8) restore base1ine--

Note that we've moved the < 3 SETFONT> to line 2, outside the body invoked with DOSA VEALL,

so that its effect will persist after the call and be available for the SHOW on line 9.

While these examples of protecting parts of a master from making state changes are not par­
ticularly compelling because explicit saving and restoring is simple, sometimes we cannot
anticipate the parts of the state that must be saved and restored. For example, DOSA VEALL can
be used to protect a master against changes made by a file inserted with sequencelnsertFile. Line
5 of Example 1l.1 could be restated to protect the master as follows:

--5-- { ++ xerox standard letterhead ++ } MAKESIMPLECO OOSAVEALL

We'll see in Section 16 some additional applications of DOSAVE and DOSAVEALL.

12.1.4 Protecting the stack

While many composed operators use the stack for accepting arguments and returning results.
the caller might sometimes wish to insure that the called operator neither pops more argu­
ments from the stack than it should nor places more results on the stack than it should. This is
especially important if the composed operator being called is defined outside the master. for
example, in a file acquired with sequencelnsertFile. In this case, the caller might wish to guard
against disagreements about the number of arguments and results that could cause a fatal error
in the interpretation of the master.

The MARK, UNMARK. and UNMARKO operators, described in § 2.4.6, are used to protect the
stack. While we won't repeat here definitions of the operators, we'll present a template that can
be used to protect the stack:

--Example 12.7. template for stack protection with MARK--
--1-- --put n arguments on the stack--
--2-- n MARK --place a mark on the stack just beyond the arguments--
--3-- --call the composed operator using some form of 00--
--4-- m UNMARK --check to be sure exactly m results are returned--

If m = 0, line 4 can be changed to read simply UNMARKO.

When a master calls composed operators that are constructed within the same master, protect­
ing the stack with marks is not necessary, since the numbers of arguments and results are
presumably chosen to agree with the conventions of the operator's definition.

~w .. Xerox
IiQ~ Private
"'[j~ Data

129

12

130

Base language II

12.1.5 Recommended practice

Although composed operators can be used in many different ways, the following practices will
usually suffice:

• In the preamble. define all fonts first. then define composed operators. This technique
allows composed operators to obtain fonts from their frames.

• Composed operators refer to the frame to obtain fonts. All other arguments are passed to
the composed operator on the stack; of course, the arguments may be stored in the com­
posed operator's frame during its execution.

• If a composed operator needs to call another composed operator, there are two pos­
sibilities. If the caller was defined after the called operator, then the called operator's
definition will be available in the caller's frame. In this case, the caller can simply use
FGEf to obtain the called composed operator. If the caller was defined before the called
operator, the called operator must be passed on the stack as an argument to the caller, and
of course the caller must know to find the operator on the stack.

As an alternative to storing composed operators in the frame, the entire collection of operators may be stored
in a vector. Then, by convention, the vector is passed as the first argument to every composed operator, so
that all operators have access to all operators. This technique also allows an operator to call itself recursively.

12.1.6 Uses of composed operators

Composed operators have many applications. Examples are:

• Defining in the preamble a composed operator that is used on each page. Such an
operator might be concerned with making images, such as headings. letterheads, or forms.
Or it might simply do some calculation, such as setting the initial values of the imager vari­
ables on each page.

• Defining a composed operator to make some piece of imagery that will be repeated, pos­
sibly in different sizes, orientations, or positions, on one or more pages. Operators of this
sort are sometimes called symbols, and the images created by calls on them instances.
Character operators are used in this way. Instances are described in greater detail in
Section 14.

• Simplifying the saving and restoring of frame elements or imager variables around a body
by constructing a composed operator and using DOSA VE or DOSA VEALL to invok.e it. The
DOSAVESIMPLEBODY operator is especially convenient for this application.

Composed operators are used implicitly in Interpress in several areas:

• A page body is turned into a composed operator that is then called with DOSA VEALL when
the printer needs to create an image of the page (§ 3.1). Because DOSA VEALL is used, a
page body cannot make changes to the frame or imager variables that can be detected in­
side another page body.

• The CORRECf operator and other body operators such as IF, IFELSE. and IFCOPY use the
body argument to construct a composed operator that is then called, with some form of DO.

The conditional operators, IF, lFELSE. and IFCOPY. are described in the next section.

~w~ Xerox
IiQ~ Private
"O~ Data

Introduction to Interpress 12

12.2 Control operators

Interpress provides some operators that affect the flow of control as a master is interpreted.
They are intended for use in conjunction with test and arithmetic operators (§§ 2.4.8 and 2.4.9).

<i: Integer> <b: Body> IF ~ --the effect on the stack depends on i and b --
where the effect is b MAKESIMPLECO DO if i:¢:O, and nothing otherwise. Note that
neither i nor b will be on the stack when the body is executed.

This operator allows a body to be executed conditionally. For example, suppose we want to
define a composed operator that places a heading on the page, but places the heading at two
different places depending on whether the page number is odd or even. The following com­
posed operator H eading(pageNumberString, pageNumber) will do this:

--Example 12.8. Definition of Heading(pageNumberString,pageNumber)--
1-- {
2-- 720 7200 SETXY --set position for even pages (upper 1eft)--
3-- 2 MOD 1 EO --compute (pageNumber mod 2)=1 and leave on stack--
4-- { --begin conditional body--
5-- 5040 7200 SETXY --set position for odd pages (upper right)--
6-- } IF - -execute 1 i ne 5 if pageNumber is odd--
7-- (Page > SHOW --now put out heading--
8-- SHOW - - and pageNumberString--
9--) MAKESIMPLECO 13 FSET --construct composed operator and save it--

--a sample ca11--
--10-- (104) 104 13 FGET DO --Heading«104>. 104)--

It is important to realize that the body that is conditionally executed is first converted into a
composed operator and therefore will be executed using a copy of the frame. Changes made to
the frame will not be saved after the body is executed. However, it's still possible to set a
frame element conditionally by using the stack to record effects of the conditional evaluation.
For example, suppose we want to compute

"if frame [2]:¢:O then frame [3] : = frame[2]"

This can be achieved as follows:

--Example 12.9: Conditional copy
--1-- 3 FGET
--2-- 2 FGET 0 EO NOT
--3-- {
--4-- POP
--5-- 2 FGET
--6-- } IF
--7-- 3 FSET

of a frame element using IF-­
--get)Tame[3] on the stack--
--compute)Tame[2] ne 0--
--start conditional body--
--remove old frame[3] from the stack--
--put ~me[2] on the stack--
--execute lines 4 and 5 if)Tame[2] ne
--and save result in Jrame[3]--

0--

Although IF is actually sufficient for all conditional needs. the IFELSE operator makes if .. then
.. else .0 constructs easier:

<i: Integer> <b: Body> IFELSE ~ --the effect on the stack depends on i and b --
where the effect is i b IF i 0 EQ; i.e., it is the same as the effect of IF, followed by
pushing 1 if i=O and 0 otherwise. Note that i is not on the stack when the body is
executed.

The effect of "if i then B1 else B2" is obtained with <i B1 IFELSE B2 IF>. The effect of "if ~
then B1 else if i2 then B2 else B3" is obtained with < ~ B1 IFELSE { ;. B2 IFELSE B3 IF } IF>.

~.~ Xerox
1i~!II Private
itO. Data

131

12

132

Base language II

12.2.1 The IFCOPY operator

It is often valuable to print from a single master several copies that differ in minor details; for
example, each copy might be addressed to a different recipient on the first page. It is impor­
tant to ensure that these variations do not require the entire master to be reprocessed for each
copy. The IFCOPY operator serves this purpose.

<testCopy: Operator> <b: Body> IFCOPY -+ <>
where the body b is either executed or not, depending on the outcome of calling the
testCopy operator. First, testCopy is called with two arguments: the copy number (an
Integer) and a copy name (an Identifier, obtained from the printing instructions,
described in § 3.3), and must return a single Integer. The body b is executed unless
testCopy returns O.

The execution of testCopy and b are both done with DOSA VEALL to ensure that there are no
side effects. Also, neither testCopy nor b can take any additional arguments off the stack. Thus
the net result is that testCopy decides whether or not to print the output produced by b. A dif­
ferent decision can be made for each copy, but either nothing or the same output is produced
each time.

As an example of the use of IFCOPY. the page body below prints a different "To: .. field on
copies 1 through 4 of the document. The example assumes that the preamble has set up
appropriate fonts:

--Example 12.10: USing IFCOPY to make variant image copies-­
--beginning of a page body--0-- {

1-- 0.000035278 SCALE
2-- 0 SET FONT

CONCATT --set the page coordinate system by concatenating onto T-­
--sets the current font--

3-- 720 7200 SETXY --position recipient field at x=1 inch, y=10 inch--
4-- (To: > SHOW --print 'To: '--
5-- { --begin a t~ICopy operator body--
6-- POP --discard copyName--
7-- 1 EQ --compute copyNumber=1--
8-- } MAKESIMPLECO --make lines 6 & 7 into an operator--
9-- { --begin the body argument to IFCOPY--

--10-- <Robin Richards> SHOW --copy 1 will read 'To: Robin Richards'--
--11-- } IFCOPY --invoke IFCOPY--

--12--
--13--

--14--
--15--

--16--
--17--

--18--

--copies 2 through 4 are similar-­
{ POP 2 EQ } MAKESIMPLECO
{ <John Calhoun> SHOW} IFCOPY

{ POP 3 EQ } MAKESIMPLECO
{ (Rachel MacInnes> SHOW} IFCOPY

{ POP 4 EQ } MAKESIMPLECO
{ (Company archives> SHOW} IFCOPY

--remainder of page body--
} --end of page body--

If a fifth copy of this document is printed. the "To: .. herald will be printed, but none of the
IFCOPY bodies will be printed. Note that the copyName argument to the testCopy operators is dis­
carded. The copyName argument is provided so that a printer can "name" each copy rather
than number it, but for the purposes of this example, the copy number is sufficient.

You might feel that the example above is repetitious, and that we could save space in the
master by constructing a composed operator IjCopyThenShow that would take two arguments. a
copy number and a string to print on that copy. If such an operator were defined in the
preamble and saved in frame element 14, the page body above could be rer,d::u::c::e:::d:::t=o::: ===;-,

~.~ Xerox
~O_ Private

"""0" Data

Introduction to Interpress 12

--Example 12.11: A composed operator to use IFCOPY--
--0-- { --beginning of a page body--
--1-- 0.000036278 SCALE CONCATT --set the page coordinate system by concatenating onto T--
--2-- 0 SET FONT --sets the current font--
--3-- 720 7200 SETXY --position recipient field at x=1 inch, y=10 inch--
--4-- <To: > SHOW --print 'To: '--
--6-- 1 <Robin Richards> 14 FGET DO
--6-- 2 <John Calhoun> 14 FGET DO
--7-- 3 <Rachel MacInnes> 14 FGET DO
--8-- 4 <Company archives> 14 FGET DO

--remainder of page body--
--9-- } --end of page body--

The definition of an appropriate IjCopyThenShow operator is:

--Example 12.12: definition of IjLopyThenShow(copyNumber, string)--
--0-- {
--1-- 0 FSET --save string in frame element 0--
--2-- 1 FSET --save copy number in frame element 1--
--3-- { POP 1 FGET EQ } MAKESIMPLECO --the testCopy operator--
--4-- { 0 FGET SHOW } --the body b--
--5-- IFCOPY
--6-- } MAKESIMPLECO 14 FSET --define composed operator and save 1n frame[14]--

12.3 Summary

This section has dealt with composed operators and the closely related topic of control
operators. Several important points about composed operators are worth remembering:

• Each time a composed operator is executed, a fresh frame is constructed. The initial con­
tents of this frame are set to the values in the frame when MAKESIMPLECO was executed to
construct the composed operator. Changes made to the frame during execution of a com­
posed operator are discarded when it exits.

• The imager variables can be protected from changes by a composed operator depending
on the form of 00 used to call the composed operator:

00. No protection.

OOSA VE. All variables protected except the current position and the line measure used by
CORRECf.

OOSA VEALL. All imager variables protected.

It is also important to remember that the encoding (§ 2.5) treats the encoding of an operator
that takes a body as argument differently than the encoding of other operator invocations: the
token that specifies the operator must immediately precede the encoding of the body that is its
last argument. This applies to many of the operators described in this section: MAKESIMPLECO.

OOSA VESIMPLEBODY, IF, IFELSE, and IFCOPY.

It is time to update Figure 6.8 into Figure 12.1, to include composed operators and their
frames.

~911!. Xerox
1j~!II Private
itfl.J~ Data

133

12

134

Base language II

Base
Language

Interpreter

Imager

Page
Image

[QJ I SETFONT I I 0.07366 I I 0.23876 I I SETXY I [U I FGET

1------1 The

stack

-----.---

Current transformation

Master being processed

-

Composed operator
I I I I

Composed operator's frame

Composed operator
I I I I

Composed operator's frame

I Imager variables
/

Figure 12.1. Structure of an Interpress printer. III

~9" Xerox
IJiQ~ Private
""'OP 0 at a

13

Transformations II

Geometric transfonnations are at the heart of Interpress imaging operations. We have seen
how the choice of master coordinate systems and the size and rotation of characters can be
controlled by transfonnations. So far, the transfonnation facilities of Interpress have been
presented as a set of operators for building primitive transfonnations (SCALE, ROTATE, TRANS­

LATE) and two operators for combining transfonnations (CONCAT, CONCATT).

Underlying the transfonnation operators is a simple mathematical representation for all kinds
of transfonnations and corresponding rules for transfonning a point and for combining trans­
fonnations. For some people, the mathematical fonn is simpler to understand than the prim­
itive transfonnation and combining operators. Moreover, when difficult transfonnation
problems arise, understanding the mathematical underpinnings of transfonnations can help
resolve the problems.

This section explains a mathematical representation of transfonnations and gives examples of
its use. Most printers and many creator programs may choose to represent transfonnations in
the manner described here.

13.1 Primitive transformations

In Section 5.2 we observed that a transfonnation Tft used to convert from coordinates
measured in system f to those measured in system t could be expressed as a linear equation. A
particular transfonnation was illustrated that had the relation:

Xl = 2xf + 7
Yt = 2Yf + 5

All of the primitive transfonnations have simple relationships of this sort. The list below shows
the equations corresponding to each primitive transfonnation:

~w~ Xerox
lJj~iI Private
ifO¥ Data

< t t TRANSLATE> x y

X t = xf +tx

Yt = Yf +ty

135

13

136

Transformations II

<S SCALE>

xt = SXf
Yt = SJ'f

<Sx Sy SCALE2>

x t = sxxf

Yt = SyYf

<a ROTATE>

xt = co~a) Xf - sin(a) Yf

Yt = sin(a) Xf +co~a) Yf

While these equations seem simple enough, let's see what happens when we begin combining
transformations. Consider the second example shown in Section 6.2.3. where:

TCS = <353 SCALE>

Tsp = <700 400 TRANSLATE>

TpI = <0.00001 SCALE>

Converting these transformations into the form shown above. using subscripts on x and Y to
indicate the coordinate system in which they are measured, we obtain:

Xs = 353 Xc
Ys = 353 Yc
xp = Xs +700
Yp = Ys +400
XI = 0.00001 xp

YI = 0.00001 Yp

We want to determine a transformation that will convert (xc. Yc) into (xl' Y/) by first applying
T CS' then T SP' and finally T pr In Section 6. we learned that such a transformation can be con­
structed in Interpress by TCI = <Tcs Tsp Tpl CONCAT CONCAT>. Using the equation form. the
combined transformation can be determined by substituting the first two equations into the
second two, and the second two into the third two. to obtain:

X I = 0.00353 Xc + 0.007
Yl = 0.00353 Yc +0.004

We can see that this result is reasonable. For example, the origin (0, 0) of the C coordinate sys­
tem becomes (0.007.0.004) in the I system. which can be seen from Figure 6.5 to be correct

The method of eliminating intermediate coordinate systems by substituting equations will thus
lead to compact expressions for a complex transformation. In fact. it turns out that any trans­
formation Tft can always be expressed by two equations of the form:

X t = a xf +b Yf +c
Yt = d xf + e Yf + f

~.~ Xerox
IiQiII Private
'10. Data

Introduction to Interpress 13

where a. b. c. d. e. and f are constants detennined by the transfonnations involved. It is clear
that each of the primitive transfonnations can be expressed in this fonn; it is less clear but
nonetheless easily established that an arbitrary combination of the primitive transfonnations
results in equations of this fonn.

It is fortunate that two linear equations will suffice to represent an arbitrarily complex com­
bination of transfonnations. This property is what pennits Interpress to allow arbitrarily
complex transfonnations in the master and still insure good perfonnance in the application of
transfonnations. At most four multiplications and four additions are required to transfonn a
point in one coordinate system into a point in any other.

While the representation is compact, the rules for combining transfonnations are not obvious.
A matrix notation, explained below, makes the rules more evident.

13.2 The matrix representation of transformations

The most convenient representation of an arbitrary transfonnation is a 3X3 matrix. Matrices
and operations on them are mathematical tools that help deal with linear systems, and indeed
the transfonnation equations we need to represent are linear. We shall represent the general
transfonnation with a matrix of the fonn:

T= a
b

c

d
e
f

o
o
1

We shall represent a point P whose coordinates are (x, y) as the single-row matrix [x Y 1].

The transfonnation of a point Pf measured in the from coordinate system to a point Pt
measured in the to coordinate system is expressed as the matrix equation Pt = P

f
Tft. This

operation is a matrix multiplication, which may be visualized by writing out the symbols:

a

b

c

d
e

f

o
o
1

The multiplication requires fonning the inner product of the single row of P
f

with each of the
columns of Tft, in order. Thus, x t is the inner product of [xf Yf 1] and [abc j. and Yt is the
inner product of [xf Yf 1] and [d e f). The inner product, in tum, is defined as the sum of
the products of corresponding tenns. Thus the inner product of [x

f
Yf 1] and [abc] is

axf + bYf+ c. Note that this inner product is precisely the fonn we showed for Xl in Section 13.1.

A mnemonic technique may help you to remember how matrix multiplication is done. Take the row-matrix for PI
and turn it on end, first element topmost Now list it separately next to each column of the transfonnation matrix,
to obtain:

Now multiply these· pairs together (all nine of them) and sum each column. The resulting three-element row is the
matrix product

~w~ Xerox
Ii~Q!I P riv ate
iIIO~ Data

137

13

138

Transformations II

13.2.1 Matrix representation of primitive transformations

Using the form outlined above. it is easy to express each of the primitive transformations as a
3X3 matrix. The matrices are:

< I I TRANSLATE> x y

<s SCALE>

<Sx Sy SCALE2>

<a ROTATE>

T=

T=

T=

T=

1
0

Ix

S
0
0

Sx
0
0

COS (a)
-sin{a)
0

0 0
1 0
Iy 1

0 0
S 0
0 1

0 0
S 0
Y

0 1

sin (a) 0
cos (a) 0
0 1

You may wish to verify that these matrix forms represent the same calculations as the equa­
tions in Section 13.1 and that they conform to the intuitive meaning of the transformations
they represent

It is worth noting that the upper left 2X2 matrix elements determine scaling and rotation com­
ponents of transformations; the first two elements of the last row determine the translation;
and the third column is always 0, 0, 1. These properties. it turns out, will remain invariant
even as primitive transformations are combined.

13.2.2 Combining transformations

We can now describe the combination. or concatenation, of transformations that is performed
by CONCAT. Suppose that we have a transformation Tab that transforms from the a system to
the b system. Le., Pb = PaT ab' and a second transformation that transforms from the b system
to the c system, i.e., Pc = PbT be" By substituting the computation of Pb given by the first
equation into the second, we obtain Pc = (PaT ~T be. Because matrix multiplication is
associative. we are allowed to rearrange the parentheses to obtain Pc = PiT abT,). The
quantity {T abT tJ is another form of matrix multiplication, this time multiplying two 3X3
matrices together. But we observe an interesting and important result: the final equation is in
the same form as the original, that is. Pc = PaT DC' where T DC = {T abT tJ. Thus T DC is a new 3X3
matrix that expresses the combined transformation obtained by first applying Tab and then T be.

The technique for multiplying two 3X3 matrices is similar to the technique for multiplying a
single row matrix by a 3X3 matrix: each row of the product matrix is obtained by taking the
corresponding row of the first matrix and multiplying it by the second matrix using the rule
we described above. Thus the following algorithm will compute the matrix C= AB:

~w .. Xerox
lj~iII Private
ifLJ~ Data

Introduction to Interpress

procedure MatrixMultiply(A. B. C: array [1..3, 1..3] of real);
var row. col. i: integer;
begin
for row: = 1 to 3 do

end

for col: = 1 to 3 do
begin
C[row. col] : = 0;
for i : = 1 to 3 do C[row. con: = C[row. con + A[row. i]* B[, con
end

13

Note the accumulation of the inner product in the inner-most loop. Also note that each entry
in the matrix is denoted by its row and column number, where rows are numbered from 1 at
the top to 3 at the bottom and columns from 1 at the left to 3 at the right.

There are three important points to make concerning the concatenation of transformations:

• While matrix multiplication is associative, it is not commutative. That is, the order in
which matrices are multiplied is important. By the same token, the order in which transfor­
mations are applied is important.

• Arbitrary combinations of primitive transformations always result in the third column of
the matrix being 0, 0, 1. The simple form of the third column permits savings in computa­
tions.

• Each time two matrices are multiplied, small numeric errors may occur. For example, the
concatenation of 45 transformations of <1 ROTATE> will almost certainly not equal
precisely the single transformation <45 ROTATE>. However, some matrix multiplications
need introduce no errors at all, e.g., <90 ROTATE>, whose coefficients are either 0, 1, or
-1, wnl not introduce errors into a multiplication. To insure the best precision, masters
should avoid concatenating more than 8 transformations together (§ 5.2).

13.2.3 Examples of matrix representations and operations

To return to the example we explored in Section 13.1. let's compute the matrix that expresses
the combined transformation TCI = <Tcs Tsp TpI CONCAT CONCAT>. First, let's write the
matrices for the individual primitive transformations:

~9. Xerox
I!;Q-' Private
"""LJ'p Data

TCS = <353 SCALE>

TSp = <700 400 TRANSLATE>

TpI = <0.00001 SCALE>

353
0
0

1
0
700

0.00001
0
0

0 0
353 0
0 1

0 0
1 0
400 1

0 0
0.00001 0
0 1

139

13

140

Transformations II

Let's start concatenating these transformations together. The transformation Tcp = '<Tcs Tsp

CONCAT> is obtained by multiplying the matrix representation of Tcs by that of Tsp:

The next step is to compute TcpTpI:

353
o
700

TCI = <Tcs Tsp CONCAT TpI CONCAT>

0.00353
o
0.007

o
353
400

o
0.00353
0.004

o
o
1

o
o
1

This result agrees with the result we obtained in Section 13.1 using equations rather than
matrices. Given a value for T cr let's try transforming some points according to that transforma­
tion. Consider the point Pc with xc=O, Yc=O, which is represented as ordinary coordinates
(0,0) or as the row matrix [0 0 1]. So PI = PcTcr which we compute to be [0.007 0.004 1].
Thus x l =0.007 and yl =O.004, exactly the same results as we obtained with the equation
method.

If the order of matrix multiplication is changed. the result will change. For example, you might
try computing T PITspT cs and comparing the result with the one above.

13.2.4 Concatenating transformations onto the current transformation

There is an important aspect to the order in which transformations are applied that arises when
we concatenate transformations onto T, the current transformation. As we've remarked before,
the current transformation establishes a current coordinate system. Suppose we name that sySw
tern A, and we name the current transformation that establishes it TA• Suppose further that we
want to alter the current transformation so that it establishes system C. What's needed is a
transformation TCA that we can concatenate onto TA. If we were to execute <TCA CONcAn>.

the current transformation would be changed to TCATA= Tc just what we want

It often happens, however, that the incremental transformation TCA is not available as a single
transformation, but only as the combination of two separate primitive transformations. T CB and
TBA· Because TCA = TCBTBA, we could compute TCA with <TCB TBA CONCAT> and then con­
catenate the result onto T. So the entire computation could be expressed as <TCB TBA CONCAT

CONCATT>. This will set T to TCBTBATA= Tc-

Alternatively, suppose we were to concatenate TCB and TBA onto T individually. First, we
execute <TBA CONCATT>. so that T is set to TBATA. Then we execute <TCB CONCATT>. so that
T is set to TCBTBATA= Tc' the same result as before. The entire computation is therefore <TBA

CONCA TT T CB CONCA TT>.

While these two computations are equivalent and equally commendable. there is an important
intuitive difference: the transformations are used in the opposite order in the two schemes.

~y ... Xerox
~n~ Private
'fII[j~ Data

Introduction to Interpress 13

Using CONCA TI, one envisions building up a transformation from right to left. because CON­

CA TI pre-multiplies the current transformation by the argument to CONCA TI:

<TBA CONCAri>

< T CB CONCATI>

TCBTBATA

By contrast, CONCAT builds transformations left-to-right:

< T BA CONCA T>

<CONCATI>

The important point is that the various incremental transformations are concatenated together
in such a way that when the resulting transformation is pre-multiplied by a point in the
appropriate coordinate system, the right effect occurs. It's helpful to write transfonnations out
as a string, e.g.,

to be sure transformations are being concatenated in the proper order. The subscript notation
adds clarity here. A point is subscripted with the name of the coordinate system in which it is
measured; a transfonnation is subscripted with two names-it converts coordinates from the
system of the first name to the system of the second name. If this convention is used, then sub­
scripts of adjacent points and transformations in a sequence should agree. In the example
above, the subscript C on Pc matches the C on the TCB to the right; the Bon TCB matches the
B on TBA to the right; and so on. Transfonnations with a single subscript, such as T A, denote
the current transformation used to establish the coordinate system of the same name, such as
A.

13.2.5 Other matrix operations

Matrix multiplication is the only operation necessary to support the geometric transfonnations
we have described so far. There are. however, a few additional concepts that are used in the
Standard. They are usually not required to implement a creator program.

Identity. The multiplicative identity matrix, denoted I, has 1's as its diagonal elements and
zeroes everywhere else. The identity has the property that for any matrix A, AI = I A = A. Note
that <1 SCALE>, <0 ROTATE>, and <0 0 TRANSLATE> all create the identity matrix.

Inverse. The multiplicative inverse of a matrix A is denoted by A-I. It has the property that
A(A- I)= (A-1)A = l. Not all matrices have an inverse, e.g., the matrix created by <0 SCALE>

has no inverse.

In some cases, inverses can be computed easily. For example, the inverse of <s SCALE> is <lis
SCALE>; the inverse of <a ROTATE> is < -a ROTATE>; and the inverse of <x y TRANSLATE> is

~w~ Xerox
Ii~te Private
flfO-' Data

141

13 Transformations II

< - x - y TRANSLATE>. Moreover, we observe that the inverse of a product of two matrices.
(AB)-l is the product of the inverses in reverse order: (B-1)(A- 1).

Proof: (AB)-l(AB)=I, by definition of the inverse. Postmultiplying both sides by B-1, we obtain
(AB)-lABB- 1=IB-1, which simplifies to (AB)-lA=B- 1. Postmultiplying by A-I, we obtain
(AB)-lAA -1=(B- 1)(A-1), which simplifies to (AB)-1=(B- 1)(A- 1).

These rules allow us to compute many matrix inverses. If we know the sequence of primitive
transformations combined to make the transformation, we invert each primitive transformation
according to the rule and invert the product by reversing the order of matrix multiplication. If
we are presented with an arbitrary matrix, however, computing an accurate inverse matrix can
be a tricky problem.

Transpose. The transpose of a matrix is formed by interchanging its columns with its rows.
That is, each element of the matrix, arc' becomes element acr of the transpose. Thus, for
example, the transpose of a single-row matrix is a single-column matrix.

Additional details on matrix arithmetic can be found in many books on computational linear
algebra. such as _Forsythe and Moler [6]. Applications to analytic geometry are described in
Newman and Sproull and the references it cites [15].

13.2.6 A dual matrix representation

This section is for those whose mathematics schooling has used a different matrix notation for
expressing transformations.

The matrix representation presented above is not the only one that can be used to represent
the computations required for geometric transformations. Many mathematical treatments of the
problem use an approach that is the dual of the one above. By dual we mean that the
approach above maps directly into the other approach, and for each representation and
operation in one scheme there is an exact equivalent in the other scheme. The differences.
then, become ones of notational convenience and not of computational power.

The dual notation is:

• Each matrix is represented by the transpose of the ones above. Thus points are represented
by single-column matrices and transformations by 3X3 matrices, but with elements
transposed.

• The order of matrix multiplication is reversed. Thus we speak of transforming a point by
the calculation TP. If transformation Tl is to be applied first, and then transformation T2,

we must compute (T2T1)P.

This last example illustrates why we prefer the notation described above: when transformations
are to be performed in the order T1, T2, and so on, they are written in that same order:
p(T1 T2 • ••). This avoids much confusion.

13.3 The Interpress-to-device transformation

142

The combination of an arbitrary sequence of transformations into a single matrix is so con­
venient that Interpress allows the printer to include its device-dependent transformation as part

t4W., Xerox
IjQ!I Private
ifOY Data

Introduction to Interpress 13

of the current transfonnation. This transformation, denoted by TID' converts coordinates in the
Interpress coordinate system (ICS) into a device coordinate system (DeS) suited to the printer
(§ 4.3.5). Of course, when a master is created, the value of TID cannot be anticipated because
the master may subsequently be printed on a wide variety of printers with different device
coordinate systems.

When execution of a page body is begun, the imager sets the current transfonnation to TID

(§§ 4.2 and 4.4.5), Thus, coordinates in the master that are expressed in the Interpress coor­
dinate system will be converted by the current transformation into the device's coordinate sys­
tem.

When the master alters the current transformation, T, it does so by concatenating a new trans­
formation onto the existing current transformation. For example, the transfonnation TpI =
<0.00001 SCALE> is concatenated onto T just after the beginning of the page body in Example
6.2, which is reproduced here for reference:

--Example 6.2. Produces the same image as Example 3.2--
--0-- BEGIN { } --empty preamble--
--1-- { --beginning of the page body--

--2--

--3--
--4--
--5--

--6--
--7--
--8--

--set the page coordinate system by concatenating onto T--
0.00001 SCALE CONCATT --TPI = <0.00001 SCALE)--

--define a font and save it in frame element 0--
[xerox, xc82-0-0, times] FINDFONT 635 SCALE MODIFYFONT 0 FSET --TCS • <635 SCALE)--
o SETFONT --sets the "current font"--
7366 23876 SETXY --sets the "current position"-­

<Interpress) SHOW
}
END

--TSP = <7366 23876 TRANSLATE)--
--place "Interpress" at current position in current font--
--end of the page body--
--end of the master--

Before the concatenation on line 2, T = TIU This transformation can be viewed as establishing
the Interpress coordinate system. After the concatenation on line 2, T = T PITID' This transfor­
mation can be viewed as establishing the P coordinate system: coordinates are conceptually
converted first by TpI from the P system to the I (lnterpress) system, and then by TID to the
device's system. Note that the concatenation operation has preserved the Interpress-to-device
transformation TID as part of the combined transformation. Using this kind of concatenation,
then, allows the master to derive arbitrary coordinate systems starting from the standard
Interpress coordinate system as a reference, but also allows the combined transformation to
convert coordinates all the way into the device-dependent coordinate system of the printer.

Interpress does not prevent a master from preparing any transformation it wishes and establish­
ing it as the current transformation. For example, <0 SCALE 4 ISET> will set the current trans­
formation to a particularly useless value. Arbitrary manipulations of the current transformation
can make a master device-dependent in the extreme, and are discouraged. The proper practice
to insure that the master will print on any device is to use CONCATI to concatenate incremen­
tal transformations onto the current transformation, which correctly includes the effect of TID'

Because Interpress expects the current transformation to convert coordinates all the way to the
device coordinate system, several important imager variables are expressed in this coordinate
system. The current position and the line measure and tolerance used by CORRECT' are
expressed in the DCS. The operators provided for setting these variables (SETXY. SETXYREL.

SETXREL. SETYREL, SETCORREClMEASURE, and SETCORRECTIOLERANCE) all transform their
'arguments using the current transformation before setting the actual imager variables. If a

~w~ Xerox
linil Private
ifO'* Data

143

13 Transformations II

master changes these variables by other means, it must be sure to account for the current trans­
formation. or at least for the device-dependent transformation TIU Again, it is safest to use the
operators provided.

13.4 Other translation transformations

Interpress provides two special operators. MOVE and TRANS. which work together with the cur­
rent position to modify the current transformation (§ 4.4.5). MOVE concatenates onto T a trans­
lation transformation so that the point (0. 0) will henceforth be mapped to the current position.
TRANS does almost the same thing: after the modification to T. the point (0, 0) will be mapped
to a point as near to the current position as the printing device can address. TRANS thus moves
to the nearest integral point in the device coordinate system.

The objective of these operators is to allow the current position to be used to determine the
origin of a symbol to be printed. As we have remarked earlier, character operators set the cur­
rent position -to indicate where the next character in a sequence should be placed. MOVE or
TRANS can then be used to modify the current transformation so that the next character
operator is executed in a coordinate system that maps the character's origin to the current posi­
tion. The SHOW operator (§ 4.4.6) uses the TRANS operator to prepare such a transfonnation. A
detailed example of the effect of TRANS can be found in Section 14.4.

13.5 Net transformations

144

Although Interpress allows characters to be transformed in arbitrary ways as they are placed on
the printed image, some printers may not be able to honor this generality. Interpress provides
a mechanism for a printer to report to a creator a list of character-to-page transformations that
it can handle easily: these are the easy net transformations (§ 4.9.3). For example, if a printer
can print only 10 and 12 point characters, oriented with a horizontal baseline, it will include in
the metric master a list of two easy net transformations associated with this font.

If a creator can make assumptions about which printer will be used to print the document
being created. it may wish to limit its character transformations to those in the easy list.
Alternatively. the creator may prefer to specify the precise transformations it desires and have
the printer make appropriate font approximations and adjustments. In this way. the master
adheres more closely to the objective of specifying what the ideal image should look like and
assumes the printer will exert its best efforts to produce the ideal image. In any case, the list of
easy net transformations is a hint: the creator can honor it or ignore it

Interpress uses the term net transformation to describe the transformation from a standard coor­
dinate system to the Interpress coordinate system. The two standard coordinate systems of
interest are the character coordinate system and the pixelarray coordinate system (see Section
15.3). A net transformation captures the size and orientation of an object on the final image;
any translation component is ignored. Thus. for example, a net transformation of <0.0042333
SCALE> describes a 12-point font designed to be read in the normal viewing orientation. This
net transformation expresses how the point (0, 1) in the character coordinate system, which is
the "body size" of the character, is transformed into the Interpress coordinate system. Scaling
by a factor of 0.0042333 will make the body size 0.004233 meters. or 12 points. Similarly,
<0.00352778 SCALE> describes a 10-point font

~WI1!. Xerox
I]Q!I Private
ilO. Data

Introduction to Interpress 13

The total transfonnation applied to a character operator is usually the concatenation of many
separate transfonnations. In Example 6.2, reproduced above, the text "Interpress" is subjected
to the following transfonnations:

T cs = < 635 SCALE>, specified to MODIFYFONT in line 3
Tsp = <7366 23876 TRANSLATE>, perfonned by SHOW on line 6
TpI = <0.00001 SCALE>, the page transfonnation on line 2
TID' the device-dependent transfonnation

The second and fourth of these transfonnations are not included in the net transfonnation: the
second because the net transfonnation is concerned only with scaling and rotation, and not
translation; the fourth because the net transfonnation records the transfonnation from the
character coordinate system, C, to the Interpress coordinate system, I, and does not include
TID' SO the net transfonnation is <635 SCALE 0.00001 SCALE CONCAT>. Relying either on intui­
tion or on the matrix representation presented in Section 13.2, we see that this transfonnation
can be simplified to <0.00635 SCALE>. SO if we wanted to be sure a printer could show such a
font, we'd look for this transfonnation in the list of easy net transfonnations.

Net transfonnations may also include the effects of rotation. For example, the transfonnation
<0.0035278 SCALE 90 ROTATE CONCAT> describes a 10-point character that runs "up" the page.
Example 6.5 uses a font whose net transfonnation is equal to this one.

When the list of easy net transfonnations is examined, it's helpful to convert each to a matrix
representation and to compare this matrix with the matrix that represents the net transfonna­
tion the creator would like to use. This is an easy way to detect that <0.00635 SCALE 90
ROTATE CONCAT> and < - 270 ROTATE 0.00635 SCALE CONCAT> are equivalent.

13.6 Summary .

This section has presented many of the details of the coordinate transfonnation machinery in
Interpress. The key points are:

• Transfonnations are easily represented as 3X3 matrices. Transfonning a point and con­
catenating transfonnations are both expressed as matrix multiplications. The matrix nota­
tion gives precision both to transfonnations themselves and to the combination operations.

• The current transfonnation always includes the effect of a device-dependent transfonnation
TID' which converts coordinates from the Interpress coordinate system into the device's
coordinate system. Masters must ensure that the current transfonnation always retains the
effect of TID' for example by always concatenating transformations onto the current trans­
fonnation and never setting the current transfonnation directly. If the master is written
properly, it will be perfectly device-independent in spite of the fact that a device-depen­
dent transfonnation will always be part of the current transformation.

• Matrix notations provide a convenient way for the creator to test whether a net transfonna­
tion it desires to apply to a character operator is supported by the printer, Le., whether the
transfonnation is in the printer's list of easy net transfonnations.

~9~ Xerox
lI!~iI Private
ifot; Data

145

13 Transformations II

146

~w ... Xerox tioat Private "'0"'" Data

14

Instancing

The concepts of symbol and instance are provided in Interpress by composed operators and
transformations. A graphical symbol can be defined as a composed operator. When an
instance, or copy, of the symbol is to be printed, the current transformation will be applied to
all coordinates as the symbol calls imager operators. The properties of the current transforma­
tion will thus determine the position, size,' and rotation of the instance on the printed page.

The principal use of symbols and instances in Interpress is for printing characters. Each charac­
ter is defined by a composed operator, called a character operator. These operators are
invoked, usually by SHOW, with a current transformation that achieves the proper size, orienta­
tion, and position of the character.

Instancing can also be used for other purposes. Graphical objects that are repeated often on a
page or throughout a document may be treated as instances. A symbol is defined as a com­
posed operator and called with an appropriate current transformation in order to generate each
instance. Since SHOW may not be the best operator to effect these calls, other primitives are
available as well.

14.1 Defming symbols

A symbol is simply a composed operator that calls imager operators to construct a graphical
symbol. The symbol expresses coordinates in a coordinate system of its own choice, sometimes
called the symbol coordinate system Figure 14.1 shows a stick figure and an associated coor­
dinate system. Example 14.1 shows how this symbol could be defined as a composed operator.
To Interpress, this symbol is simply a composed operator. Its effective use as a symbol depends
on the ways in which the master calls the composed operator.

--Example 14.1--
--0-- {
--1-- 0.2 15 I5ET
--2-- 2 16 I5ET
--3-- -2 0 0 4 MASKVECTOR
--4-- 2 0 0 4 MASKVECTOR
--5-- 0 4 0 8 MASKVECTOR
--6-- -2 4 0 6 MASKVECTOR
--7-- 2 4 0 6 MASKVECTOR
--8-- -1 9 1 9 MASKVECTOR
--9-- } MAKESIMPlECO 13 FSET

~w .. Xerox
Ii~~ Private
'flO. Data

--a symbol is a composed operator--
--set strokeWidth to 0.1 units--
--set strokeEnd to 2 (round) --
--left leg--
--right leg--
--torso--
--left arm--
--right arm--
--head--
--make composed operator and save it in frame[13]--

147

14 Instancing

8-

6-

4-

2-

O------~~~------

-2 0 2

Figure 14.1. A symbol defined in its coordinate system.

14.2 Making instances

148

In order to place an instance of a symbol on the page, we will need to use a transformation to
control the size, rotation, and location of the instance. This transformation is responsible for
mapping from the symbol coordinate system to the current coordinate system, the one
established by T. As we observed in Section 6.2, it's common to establish a page coordinate sys­
telTI that has a convenient origin and units of measurement. The examples in this section will
assume a page coordinate system as in Example 6.1, which uses units of 10-5 meter.

When we establish the symbol-to-page transformation, it is usually helpful to break the trans­
fonnation down into two components: (1) a translation, which is used to determine where the
origin of the symbol coordinate system will be on the page coordinate system, and (2) a scaling
andl or rotation transformation that determines the size and rotation of the instance with
respect to its origin.

Suppose, for example, that we want instances of the stick figure in Example 14.1 to be 10 cm.
high from toe to head. Since 10 cm. is 10000 units in the page coordinate system, and since
the head-to-toe distance is 9 units in the symbol coordinate system, the scale to convert from
symbol to page coordinates will be 10000/9.

The following master prints two instances of the symbol, with the same sizes, with origins at
x== 5 cm., y= 8 cm., and at x= 15 cm., y= 8 cm.:

Figure 14.2. Two instances of a symbol.

~Wlll. Xerox
Ii~. Private
iIIO~ Data

Introduction to Interpress 14

--Example 14.2--
0-- BEGIN { --begin preamb1e--
1-- { --a symbol is a composed operator--
2-- 0.2 15 ISET --set strokeWidth to 0.1 units--
3-- 2 16 ISET --set strokeEnd to 2 (round) --
4-- -2 0 0 4 MASKVECTOR --left 1eg--
5-- 2 0 0 4 MASKVECTOR --right 1eg--
6-- 0 4 0 8 MASKVECTOR --torso--
7-- -2 4 0 6 MASKVECTOR --left arm--
8-- 2 4 0 6 MASKVECTOR --right arm--
9-- -1 9 1 9 MASKVECTOR --head--

--10-- } MAKESIMPLECO 13 FSET --make composed operator and save it in frame[13]--
--11-- } --end preamb1e--

--12-- { 0.00001 SCALE CONCATT --page coordinate system in units of 0.00001 meter--
--13-- {
--14-- {
--15-- }

10000/9 SCALE 5000 8000 TRANSLATE CONCAT CONCATT 13 FGET DO } DOSAVESIMPLEBODY
10000/9 SCALE 15000 8000 TRANSLATE CONCAT CONCATT 13 FGET DO } DOSAVESIMPLEBODY

--end of page body--
--16-- END

Line 13 alters the current transfonnation so that coordinates in the symbol will be subjected
iirst to a scaling transfonnation, then a translation, and finally. to the page transfonnation.
Line 13 could equally well be written as < { 10000/9 SCALE 5000 8000 TRANSLATE CONCA IT

CONCA IT 13 FGET DO } >, but could not be written as < { 10000/9 SCALE CONCA IT 5000 8000
TRANSLATE CONCA IT 13 FGET DO } > because this would change the order of application of
transfonnations. However, the following variant would do:

--Example 14.3, replacement for line 13 in Example 14.2--
--13-- {5000 8000 TRANSLATE CONCATT 10000/9 SCALE CONCATT 13 FGET DO } DOSAVESIMPLEBODY

You should see clearly how this is equivalent to the original line 13. Understanding the order
of application of transfonnations, and how transfonnations are concatenated onto T, is
extremely important.

Note the use of DOSAVESIMPLEBODY to save and restore the current transfonnation. At the
beginning of line 13, the current transfonnation establishes the page coordinate system.
Because of the saving and restoring, this same system will also be in effect after line 13 is
executed. If the transfonnation were not restored, the CONCA IT operation on line 13 would
have a pennanent effect on the current transfonnation, leaving it in the symbol coordinate
system associated with the first instance of the stick figure.

An alternative way to call an instance is to use the current position and MOVE or TRANS to
accomplish the translation transfonnation. Example 14.3 could be modified to read:

--Example 14.4, replacement for line 13 in Example 14.2--
--13-- {5000 8000 SETXY MOVE 10000/9 SCALE CONCATT 13 FGET DO } DOSAVESIMPLEBODY

Or, after one minor change, to read:

--Example 14.5, replacement for line 13 in Example 14.2--
--13a-- 6000 8000 SETXY
--13b-- {MOVE 10000/9 SCALE CONCATT 13 FGET DO } DOSAVESIMPLEBODY

If we're going to make lots of instances of the symbol with the same size and orientation, this
fonn has a nice property: line 13b will be the same for each instance because it contains no
positioning infonnation. This suggests defining a composed operator to achieve the effect of
line 13b. Example 14.6 restates the master in Example 14.2 to use this idea:

~.~ Xerox
IJ1Q~ Private
.LJ~ Data

149

14 Instancing

--Example 14.6, same image as Example 14.2--
0-- BEGIN { --begin preamb1e--
1-- { --a symbol is a composed operator--
2-- 0.2 15 ISET --set strokeWidth to 0.1 units--
3-- 2 16 ISET --set strokeEnd to 2 (round) --
4-- -2 0 0 4 MASKVECTOR --left 1eg--
5-- 2 0 0 4 MASKVECTOR --right 1eg--
6-- 0 4 0 8 MASKVECTOR --torso--
7-- -2 4 0 6 MASKVECTOR --left arm--
8-- 2 4 0 6 MASKVECTOR --right arm--
9-- -1 9 1 9 MASKVECTOR --head--

--10-- } MAKESIMPLECO 13 FSET --make composed operator and save it in jTame[13]--
--11-- { --another composed operator--
--12-- MOVE 10000/9 SCALE CONCATT 13 FGET DO
--13-- } MAKESIMPLECO 14 FSET --make composed operator and save it in jTame[14]--
--14-- } --end preamb1e--

--15-- {0.00001 SCALE CONCATT --page coordinate system in units of 0.00001 meter--
--16-- 5000 8000 SETXY --set current position to x=5 cm, y=8 cm--
--17-- 14 FGET DOSAVE --print first instance--
--18-- 15000 8000 SETXY
--19-- 14 FGET DOSAVE --print second instance--
--20-- } --end of page body--
--21-- END

This example looks a lot like the way character operators work! The composed operator con­
sttucted in lines 1 to 10 corresponds to a character operator, defined in the character coor­
dinate system. The composed operator constructed in lines 11 to 13 corresponds roughly to the
operator created by MODIFYFONT, which controls the scale and rotation of the instance. The
invocation of the operator by first setting the current position to the desired origin of the
instance and then calling an appropriate operator (lines 16 and 17) corresponds roughly to the
way SETXY and SHOW are used for characters.

The basic Interpress facilities of composed operators and transformations allow a great deal of
flexibility in defining and using symbols, including applications we have not illustrated.
Symbols may of course be rotated as well as scaled. Symbols can call other symbols, nesting to
an arbitrary depth.

14.3 Character operators and instances

150

Character Qperators are examples of symbols; in addition to producing an image, these symbols
also alter the current position and provide for spacing correction. Example 9.1 presented an
example of a symbol for the character '+' which we reproduce here:

--Example 9.1--
--0-- {
--1-- 0.1 15 ISET
--2-- 0 16 ISET
--3-- 0.25 0.35 0.65
--4-- 0.45 0.15 0.45
--5-- 0.9 0 SETXYREL
--6-- CORRECTMASK
--7-- } MAKESIMPLECO

--the character operator ;s defined by the following body 1itera1--
--set strokeWidth to 0.1 units--
--set strokeEnd to 0 (square) --

0.35 MASKVECTOR --horizontal bar of '+'--
0.55 MASKVECTOR --vertical bar of '+'-­

--set current position to (0.9,0)--
--call an operator to correct spacing--
--the bracket that ends the body 1itera1--

The symbol is defined with respect to its own coordinate system (see Figure 5.5). The origin.
scale, and directions of coordinate axes are chosen to conform to conventions obeyed by all
character operators. FINDFONT will extract from a font library a vector of character operators
such as this one.

~w .. Xerox
Ii~~ Private
iIILJ~ Data

Introduction to Interpress 14

When MODIFYFONT is applied to a vector of character operators, it creates a new set of
operators that first concatenate a transformation onto T and then call the character operator.
For example, if < v 635 SCALE MODIFYFONT> were called on a font vector v that included the
character operator for' +' given above, the new vector would have, as an operator correspond­
ing to '+', the following:

--Example 14.7--
--0-- { 635 SCALE CONCATT eo DO } MAKESIMPlECO

This operator references co, the original character operator. In fact, the entire text of Example
9.1 given above could simply be substituted where co appears in Example 14.7 to obtain the
composed operator that MODIFYFONT creates. Note the similarities between this operator and
lines 11-13 of Example 14.6.

Instances of characters are usually created with SHOW. Before SHOW is called, however, the cur­
rent position is set to the spot where the origin of the first character should lie. For each
character in the vector passed as an argument to SHOW, SHOW executes:

--Example 14.8--
--0-- { TRANS meo DO } DOSAVESIMPlEBODY

The operator meo is a modified character operator, such as shown in Example 14.7, extracted
from the showVee vector of operators.

14.4 Example: character instancing

This section presents an extended example of a master that prints several characters from a
font that it defines. The details of coordinate arithmetic, manipulation of the current transfor­
mation, and current position changes are shown.

Our font will have three characters: '+', '-', and 'space,' with indices (or character codes, if
you prefer) 0, 1, and 2 respectively.

--Example 14.9--
0-- BEGIN { --begin preamble--

1--
2--
3--
4--
6--
6--
7--
8--

9--
--10--
--11--
--12--
--13--
--14--
--16--

--16--

{ --start character operator for '+', index 0--
0.1 15 ISET
o 16 ISET

--set strokeWidth to 0.1 units--
--set strokeEnd to 0 (square) --

0.26 0.36 0.66
0.46 0.16 0.46
0.9 0 SETXYREl
CORRECTMASK

0.36 MASKVECTOR --horizontal bar of '+'--
0.66 MASKVECTOR --vertical bar of '+'-­

--set current position to (0.9,0)--

} MAKESIMPlECO

{
0.1 16 ISET
o 16 ISET
0.2 0.36 0.6 0.36
0.8 0 SETXYREl
CORRECTMASK
} MAKESIMPlECO

--call an operator to correct spacing--
--create operator--

--start character operator for '-'. index
--set strokeWidth to 0.1 units--
--set strokeEnd to 0 (square) --

MASKVECTOR --horizontal bar of '-'-­
--set current position to (0.8,0)--
--call an operator to correct spacing--
--create operator--

1--

{ --start character operator for' I. amplifying, index 2--
--17-- 0.26 18 IGET MUl 0 SETXYREl --set current position to (0.26*amplifySpace,O)--
--18-- 0.26 18 IGET MUl 0 CORRECTSPACE --call an operator to correct spacing--
--19-- } MAKESIMPlECO --create operator--

--20-- 3 MAKEVEC --create font vector, similar to that returned by FINDFONT--

~w .. Xerox
IiQiII Private
iIIO~ Data

151

14

152

--21--
--22--

--23--
--24--
--25--
--26--
--27--
--28--

Instancing

635 SCALE MODIFYFONT 0 FSET --make' 18 point' font. save in Jrame[O]--
} --end of preamble--

{ 0.00001 SCALE CONCATT
o SET FONT
5000 8000 SETXY
[0, 2. 1. 2, 0] SHOW
}
END

--use page coordinate system with units of 0.00001 meter--
--set current font--
--set current position--
--print '+ - +'--
--end of page body--
--end of master--

Lines 1 through 20 create on the stack a vector of character operators, analogous to a vector of
character operators that would be extracted from the font library by FINDFONT, Line 21
establishes font 0 using the remainder of the font-preparation template introduced in Section
3.2.1. Recall that MODIFYFONT defines a new operator corresponding to each character so as to
include the effect of the scaling transformation. For example, the operator stored at index 1 in
the vector is:

--Example 14.10--
--0-- { 635 SCALE CONCATT --apply scaling transformation--
--1-- {-
--2-- 0.1 15 ISET
--3-- 0 16 ISET
--4-- 0.2 0.35 0.6 0.35
--5-- 0.8 0 SETXYREL
--6-- CORRECTMASK
--7-- } MAKESIMPLECO
--8-- DO } MAKESIMPLECO

--start character operator for '-'--
--set strokeWidth to 0.1 units--
--set strokeEnd to 0 (square) --

MASKVECTOR --horizontal bar of '-'-­
--set current position to (0.8,O)--
--call an operator to correct spacing--
--create character operator--
--create modified character operator--

When the page body begins execution on line 23, the current transformation T is set to the
Interpress-to-device transformation TID' For our example, we'll assume a device coordinate sys­
tem with a resolution of 384 pixels/inch whose origin and coordinate axes are aligned with
those of the Interpress coordinate system. Thus TID = < 15118.11 SCALE>, which has the follow­
ing matrix representation:

T= 15118.11
o
o

o
15118.11
o

o
o
1

Line 23 concatenates onto T a scaling transformation, so T becomes:

T= 0.1511811
o
o

o
0.1511811
o

o
o
1

Line 24 simply sets the imager variable showVec to contain the font we'll use. Line 25 sets the
current position, which involves transforming the point [5000 8000 1] by the current transfor­
mation matrix T. given above; thus the current position is set to device coordinates
DCScpx=755.9055 and DCScpy= 1209.4488.

On line 26, SHOW swings into action. For the first element in its vector argument, it will
execute <{TRANS mco DO} DOSAVESIMPLEBODY>, where mco is the operator in the vector
stored in showVec with index O. First, DOSA VESIMPLEBODY saves all the non-persistent imager
variables, including the current transformation we have just illustrated. Then TRANS is called.
which rounds the current position to the nearest device coordinate and concatenates an
appropriate transformation onto T so that the origin will thereafter be translated to that spot. T
becomes:

~WIiJ Xerox
t!~~ Private
iIIO. Data

Introduction to Interpress

T= 0.1511811
o
756

o
0.1511811
1209

o
o
1

14

Now the modified character operator is called. The first thing it does (see line 0 of Example
14.10) is concatenate <635 SCALE> onto T, so T becomes:

T= 96
o
756

o
96
1209

o
o
1

Now the character operator is executed-in this case, it's the operator for '+' given on lines
1-8 of Example 14.9. The horizontal bar of the character is drawn from (0.25, 0.35) to (0.65,
0.35) in the character coordinate system. These endpoints are transformed by T to obtain
device coordinates (780, 1242.6) and (818.4, 1242.6), and a stroke whose width is specified by
the imager variable stroke Width is drawn on the output device between these endpoints. The
vertical bar is handled similarly. Thus the graphics for the character have been drawn on the
page image.

Next we encounter line 6, which executes <0.9 0 SETXYREL>. This function transforms its argu­
ments using T, but by forming the vector [0.9 0 0] rather than the vector [0.9 0 1] to be
multiplied by T. The reason is that we want relative coordinate results, not absolute results. We
obtain from this multiplication x=86.4, y=O. These numbers are now added to the current
position, in order to achieve the effect of a relative displacement to the current position. The
current position becomes DCScpx=842.3055 and DCScpy= 1209.4488. The call to CORRECf­

MASK does nothing since we're not using CORRECf in this example. So the character operator
exits, the modified character operator then exits, and the DOSA VESIMPLEBODY being executed
by SHOW is fmished. At this point, the imager variables that were saved are restored, and once
again the current transformation becomes:

T= 0.1511811
o
o

o
0.1511811
o

o
o
1

However, the current position has been permanently changed from DCScpx=755.9055 and
DCScpy= 1209.4488 to DCScpx=842.3055 and DCScpy= 1209.4488. This is where the origin of
the next character will be placed.

We won't continue the example, but if you want to continue working it yourself and check
your work, you may want to verify that the following strokes are drawn, expressed in device
coordinates:

~9~ Xerox
Ij~~ Private
~[j~ Data

(780, 1242.6) to (818.4, 1242.6)
(799.2, 1223.4) to (799.2, 1261.8)
(885.2, 1242.6) to (923.6. 1242.6)
(991, 1242.6) to (1029.4, 1242.6)
(1010.2, 1223.4) to (1010.2, 1261.8)

--horizontal bar of +, illustrated above--
--vertical bar of + --
--horizontal bar of - --
--horizontal bar of second + --
--vertical bar of second + --

153

14 Instancing

After the five-character string has been printed. the current position ends up at
DCScpx= 1053.5055 and DCScpy= 1209.4488.

The point of this example is to illustrate exactly how instancing occurs. It also shows that
character operators and SHOW are simply special cases of a general instancing facility.

This example seems to imply that Interpress- will require great quantities of effort just to print
simple strings of text. On the contrary, properly designed printer software can avoid the
majority of the operations listed above. Note that within a single SHOW command the current
transformation matrix changes very little. Even more importantly. a printer will pre-compute
how to print each character of a particular size, and so will need only to translate the precom­
puted form. a very simple calculation. The example shown above. however. illustrates the effect
that an Interpress printer is required to create.

There is a subtle interplay between TRANS and the current position. TRANS will round the cur­
rent position when determining a character's translation so that all character instances are
simple integral translations on the device's coordinate grid. This step is taken to insure that
each instance of a character will appear exactly like all other instances. The small movements
introduced by the rounding do not, however. accumulate as errors in the current position
because the current position is updated using relative positioning commands that are added to
the current position and thereby ignore the rounded translation component of the current trans­
fonnation.

14.5 Example: writing text at an angle

The transformation that places an instance can be used to achieve many geometric effects. For
example. it is easy to write lines of text at any angle simply by altering the current transforma­
tion suitably before calling the character operators.

The following master shows an example. The font modifications and the page coordinate sys­
tem are both chosen for a normal page (c.f. Example 10.1).

--Example 14.11--
--0-- BEGIN { --begin preamble--

--1--
--2--
--3--
--4--
--5--
--6--
--7--
--8--
--9--

--define font 0 to be 10-point times--
[xerox,
}

xc82-0-0, times] FINDFONT 100 SCALE MODIFYFONT 0 FSET

{
0.000035278 SCALE CONCATT
o SET FONT
2160 2880 SETXY

--end preamble--
--the beginning of page body--
--set page coordinate system to 1/10 pOint units--
--sets the "current font" to 10-point times--
--set current position to x=3 inches, y=4 inches--

{ 45 ROTATE CONCATT
}

(Interpress) SHOW } DOSAVESIMPLEBODY
--end of the page body--

END --end of the master--

The character string printed on line 7 will begin at the point x = 3 inches. y = 4 inches and will
run up and to the right at a 45 degree angle from the horizontal.

14.6 Summary

154

The facilities in Interpress for defining composed operators and applying geometric transforma­
tions can be used to make instances of graphical symbols on the page image. A special case of
instancing is used routinely by the Interpress operator SHOW to place character instances on the
page. More general instancing can be invoked explicitly by the master.

~.~ Xerox
IiQ~ Private
ifl.J~ Data

15.1 Strokes

15

Graphics

This section explains the Interpress imaging operators for producing graphical images.
Interpress provides facilities for generating filled geometric shapes and scanned imagery in
addition to the stroke-generation operators already illustrated. Interpress also provides the
ability to produce images that are colored or gray.

The notion of a mask is central to the graphical primitives. A mask can be visualized as a
geometric shape that is laid over the page image in order to determine where to apply colored
ink to the image. The mask determines exactly where the image will be changed, and the ink,
or color, determines how it will be changed. The mask is analogous to an opening in a silk­
screen or to the raised area in a woodblock used for printing: it specifies the shape and posi­
tion of a figure. The color of the figure is determined independently by the ink pressed
through the silk screen or applied to the woodblock.

Interpress provides operators for specifying masks and an imager variable that specifies the
color of ink to use when a mask is used to change the page image. It is by calling a mask
operator that a change is actually made to the page image. All mask operators have the word
MASK as part of their name. Each mask operator lays down on the page only a single graphical
primitive. Complex pages are generated by calling mask operators many times, each time
adding a stroke. filled object. or scanned image to the page.

Some Interpress printers may not implement all of the facilities described in this section.
Different Interpress subsets (Section 19.1 and § 5.1) provide different facilities.

A stroke is a mask of uniform width used to show a "line" or "rule" on the page. Strokes are
used in Interpress to create "line drawings." The term stroke is used rather than line or rule
because line can be confused with lines of text and rule is viewed by some people to be
restricted to horizontal and vertical strokes. Almost all of the illustrations in this Introduction
are made using only strokes and text.

In its simplest case, a stroke is drawn in a straight line to connect two endpoints. as shown in
Figure 15.1. The width of the stroke is specified by an imager variable stroke Width, which the
master may set to any desired value. As we'll see a bit later, the treatment of the stroke
endpoints is determined by the value of the imager variable strokeEnd.

r.:====::::::;i
~W~ Xerox
Iinr4 Private
ifO¥ Data

155

15

156

Graphics

(x2, y2)

Figure 15.1. A stroke.

A stroke is derived from a trajectory. A trajectory is a sequence of points connected by straight
line segments. In the case shown in Figure 15.1, the trajectory connects only two points, (xl' Yl)

and (x2' Y2)' A trajectory Js an Interpress type that is constructed using the operators MOVETO,

LINETO, LINETOX, and LINETOY. The trajectory shown in Figure 15.1 would be constructed by
the sequence <xl Yl MOVETO x2 Y2 LINETO>, or equivalently, <x2 Y2 MOVETO 1 Yl LINETO>.

The trajectory-construction operators are described in § 4.8.1. A trajectory is started by calling
MOVETO, which takes as arguments the coordinates of the starting point and places on the
stack a trajectory value; this represents a trajectory that contains only the starting point. The
trajectory on the stack can be extended by calling LINETO. LINETOX, or LINETOY. The LINETO

operator takes as arguments the trajectory to be extended and the x and Y coordinates of the
point to be added to the trajectory. The LINETOX and LINETOY operators are special cases of
LINETO that can be used when only the x or y coordinate respectively of the next point in the
trajectory differs from the previous point in the trajectory. Thus a horizontal stroke can be con­
structed with <Xl Yl MOVETO ~ LINETOX> since Y2=Yr

Once a trajectory has been constructed, the MASKSTROKE operator is used to create a mask
from the trajectory description and actually alter the page image. MASKSTROKE takes as its
only argument the trajectory that will form the center-line of the mask. It is the execution of
MASKSTROKE that broadens the trajectory to the width specified by stroke Width and fits

. endpoints specified by stroke End. After the stroke is formed from these three ingredients (trajec­
tory, width, endpoints), it is transformed by the current transformation T.

The fact that the mask is first formed and then transformed is important only if the current transformation applies
a different scaling to x than it does to y, or involves some other kind of skew transformation. Consider by way of
example the stroke illustrated in Figure 15.1, which is shown in the current coordinate system, i.e., the one in
which the mask is formed from the trajectory, width. and endpoint specifications. If this figure is transformed by a
transformation that magnifies all x coordinates by a factor of two while leaving the y coordinates unchanged, the
resulting image will not be a rectangular mask. Instead. it will be a parallelogram. This is usually not the effect
you want, but there's nothing wrong with using it if you really want it! The same observations apply to the other
mask operators as well, all of which apply the current transformation to geometry specified in their arguments.

The convenience operator MASKVECTOR may be used to generate masks for two-point straight­
line trajectories. That is, <Xl Yl X2 Y2 MASKVECTOR> is equivalent to <Xl Yl MOVETO X2 Y2
LINETO MASKSTROKE>. The MASKVECfOR form is a little shorter and simpler than the
MASKSTROKE form.

MASKSTROKE will fit a trajectory with one of three kinds of endpoints, illustrated in Figure
15.2. The square endpoint. selected by setting strokeEnd to O. squares off the end of the trajec-

~w~ Xerox
~Qi9 Private
"""I.j'" Data

Introduction to Interpress 15

tory after extending it a distance of half its width along the direction in which the trajectory is
pointed at the endpoint. The butt endpoint, selected by setting strokeEnd to 1, simply squares
off the trajectory without extending it. Finally, the round endpoint, selected by setting stroke End
to 2, places a semicircular cap whose diameter is the same as the stroke width and whose
center is located at the trajectory endpoint.

trajectory

round

(a)

butt

square

(g)

Line end detail Mid-stroke mitering End-stroke joining

Figure 15.2. Stroke endpoint options (from the Standard)

A trajectory passed to MASKSTROKE may have '!Il arbitrary number of points in it, not just two
as shown in Figure 15.1. Regardless of the treatment of the stroke endpoints, all joints between
internal segments of the trajectory are mitered by extending the sides of the adjacent straight
strokes until they meet This configuration is illustrated in the middle column in Figure 15.2.

As an example of the use of mitering, let's consider drawing the box shown in Figure 3.1. In
Example 3.1, this box was drawn using four separate strokes, one for each side of the box.
Because strokeEnd is set to 0, its initial value established when the page body begins execution,
square ends are fitted on each stroke. Thus they will join nicely, as illustrated schematically in
Figure 15.3. For this application. a joint made with strokeEnd set to 1, butt, is probably not

~WI/IJ. Xerox
II]~~ Private
i10~ Data

157

15 Graphics

desirable (see Figure IS.2f). Exactly the same box can be drawn using a single stroke and rely­
ing on mitering to produce three of the four comers. This is illustrated in Example 15.1.

Figure 15.3. A box drawn with four strokes

--Example 15.1, same image as Example 3.1--
--0-- BEGIN { }
--1-- { -- assume s~okeEnd=O --
--2-- 0.001 15 ISET --set imager variable 15 (strokeWidth) to 0.001 --
--3-- 0.0254 0.2286 MOVETO 0.254 LINETOY 0.1905 LINETOX
--4-- 0.2286 LINETOY 0.0254 LINETOX MASKSTROKE
--5-- }
--6-- END

If you don't want segments of a trajectory to be mitered, but instead want rounded joints. you
must make each segment a separate stroke. fitted with round endpoints, as in Figure IS.2c.

It is not wrong to call MASKSTROKE with a trajectory that contains only a single point, the start pOint. If strokeEnd
is 0 or 1 (square or bUtt) no image will be generated and an appearance error will result, since there is insufficient
infonnation to detennine the trajectory direction and hence the way to square off the end However, if strokeEnd
has the value 2. round. a disk of diameter stroke Width will be drawn.

Although Interpress contains no operations for creating curved strokes, curves can be
approximated by connecting together a number of short strokes. This approximation is
performed by the creator, which puts in the master the calls to generate the appropriate
trajectories and strokes. The creator must decide how fine an approximation to use; the
decision will depend on a number of factors such as the radius of curvature of the curve. the
anticipated viewing distance. and the width of the stroke.

15.2 Filled outlines

158

Whereas strokes generate masks by broadening from a trajectory center-line, filled outlines
generate masks by filling in the region "inside" a closed trajectory. This sort of mask, which is
passed as an argument to MASKFILL in order to modify the page image, is used for a wide
variety of shapes. For example, filled masks are useful for describing character shapes, which
aren't easily modeled with strokes of uniform width.

To make a mask .for such a shape. we must first construct an outline. an Interpress type con­
structed with the MAKEOUTLINE operator. An outline is formed from one or more closed tra­
jectories; a closed trajectory is one that closes upon itself by joining the last point on the tra­
jectory to the first point. The definition of MAKEOUTLINE is (§ 4.8.1):

~y .. Xerox
IjQ~ Private
ifO~ Data

Introduction to Interpress

<11: Trajectory> <t2: Trajectory> ... <tn: Trajectory> <n: Integer> MAKEOUTLINE
.... < 0: Outline>

15

where the trajectories tl' 12, •.. tn together form an outline. Each trajectory will be
closed if necessary by linking its last point to its first point.

y

1

1.5 x

Figure 15.4. A filled outline

Let's consider the example of a solid arrowhead, shown in Figure 15.4. It has a triangular out­
line that links the points (0, -1), (0, 1) and (1.5, 0). The example uses only a single trajectory,
so we can construct the outline of the arrowhead with the sequence <0 -1 MOVETO 1 LINETOY
1.5 0 LINETO 0 -1 LINETO 1 MAKEOUTLINE>. Equivalently, we could rely on MAKEOUILINE to
close the trajectory and use <0 -1 MOVETO 1 LINETOY 1.5 0 LINETO 1 MAKEOUTLINE>. Also,
in this case, it makes no difference whether the triangular shape is traced in a clockwise or
counterclockwise order when the trajectory and outline are formed.

Once the outline is prepared, it can be used as a mask by passing it as the only argument to
MASKFILL. This operator will first transform the outline according to the current transforma­
tion and then alter the portion of the page image covered by the mask. If the current transfor­
mation specifies rotation or scaling, the outline will be rotated or scaled accordingly. Example
15.2, below, places an arrowhead such as the one shown in Figure 15.4 pointing upward in the
middle of a page. The example uses the instancing techniques explained in Section 14 to trans­
form the coordinate system of Figure 15.4 into the page coordinate system.

--Example 16.2--
--0-- BEGIN { }
--1-- {
--2-- 0.0264 SCALE CONCATT --set page coordinate system to inches--
--3-- {
--4-- 90 ROTATE 4.26 6 TRANSLATE CONCAT CONCATT
--6-- 0 -1 MOVETO 1 LINETOY 1.6 0 LINETO 1 MAKEOUTLINE MASKFILL
--6-- } OOSAVESIMPLEBODY
--7-- }
--8-- END

~w .. Xerox
Ij~!t Private
"O~ Data

159

15

160

Graphics

15.2.1 Holes in objects

A filled outline may contain "holes" if the outline is represented properly using several closed
trajectories. The basic idea is to use one closed trajectory to specify the outer boundary of the
object and a separate closed trajectory to trace out the boundary of each hole in the object.
Interpress requires that trajectories that represent hole boundaries be traced in the opposite
direction from trajectories that represent the outer boundaries of the object.

Figure 15.5 shows an object with a rectangular outer boundary and a triangular hole boundary.
Figures I5.5a and 15.5b use arrows to show that the trajectories are traced in opposite orders.
Outlines formed according to these two figures will form rectangular objects with triangular
holes.

... ...

(a) (b) ...

....

.. 6.'~ R

Q

Figure 15.5. Trajectory directions and winding numbers.

If MASKFILL is called with an outline such as the one shown in Figure IS.Sc. the result will be
a rectangular object with no hole. To understand why this is so, we must explain the rule
Interpress uses to decide whether a point is "inside" an outline and hence should be part of
the mask. The rule is: a point is inside an outline if and only if its winding number is non-zero.
Informally, the winding number counts the number of times the outline surrounds the point
More precisely, the winding number can be computed as follows:

1. Set the winding number of the point to O.

2. For each closed trajectory in the outline that is wound around the point, Le., that encloses
it:

2a. If the trajectory is wound anti-clockwise around the point, add one to the
winding number.

2b. If the trajectory is wound clockwise around the point, subtract one from the
winding number.

It is clear from this definition that the direction in which a trajectory traces an outline is impor­
tant in deciding which points will be "inside" the outline.

With this definition of winding number. the treatment of objects in Figure 15.5 can be explained easily. Consider
points P, Q. and R shown in Figure 15.5c. Point R has a winding number of 0 because neither closed. trajectory
surrounds it Hence R is not inside the outline. Point Q has winding number 1 because the rectangular trajectory is
wound anti-clockwise around it but the triangular trajectory is not wound around it at all. 'Thus point Q is inside
the outline. because it has non-zero winding number. Point P has winding number 2 because both the rectangular
and triangular trajectories are wound anti-clockwise about f. Hence it too lies inside the outline. If we imagine
points p. Q. and R being located analogously on Figures 15.5a and 15.5b as well. we can compute the winding
numbers in these cases too:

~w .. Xerox
IjQiIII Private "'0'* Data

Introduction to Interpress 15

Case Point Winding number Winding number Total Comment
of rectangle of triangle

a P +1 -1 0 not inside
Q +1 0 +1 inside
R 0 0 0 not inside

b p -1 +1 0 not inside
Q -1 0 -1 inside
R 0 0 0 not inside

c p +1 +1 +2 inside
Q +1 0 +1 inside
R 0 0 0 not inside

The winding-number rule used by Interpress is not the only acceptable rule for determining whether a point lies
inside an outline. Others are: positive winding number. winding number equal to I, and odd winding number. If
an application uses one of these other rules. the creator will have to convert to the Interpress convention as the
master is made.

Perhaps the best concrete example of a filled outline is provided by a character operator.
Figure 15.6 illustrates a design for an upper case A. Example 15.3 shows a composed operator
that will show the character. using one trajectory to represent the outside boundary and one to
reqpresent the hole.

~WI1!. Xerox
IiQ~ Private
ifLJ~ Data

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1
(widthX. widthy)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Figure 15.6. An example of a character mask outline

161

15 Graphics

--Example 15.3. "A" constructed
0-- {
1-- 0 0 MOVETO
2-- 0.120 LINETOX
3-- 0.197 0.172 LINETO
4-- 0.491 LINETOX
5-- 0.568 0 LINETO
6-- 0.688 LINETOX
7-- 0.344 0.764 LINETO
8-- 0 0 LINETO
9-- 0.245 0.277 MOVETO

--10-- 0.344 0.497 LINETO
--11-- 0.443 0.277 LINETO
--12-- 2 MAKEOUTLINE MASKFILL
--13-- 0.778 SETXREL
--14-- CORRECTMASK
--15-- } MAKESIMPLECO

with a mask having a hol~--

--start first trajectory. outer boundary--

--start second trajectory. hole boundary--
--note traversal direction--

--2 trajectories in the outline--
--space over by width--
--allow mask spacing correction--

The same shape is specified in Example 15.4 using two masks, one for the left and right arms
of the A and one for the horizontal cross bar.

--Example 15.4. "A" constructed with two masks--
0-- {
1-- 0 0 MOVETO
2-- 0.120 LINETOX
3-- 0.344 0.497 LINETO
4-- 0.568 0 LINETO
5-- 0.688 LINETOX
6-- 0.344 0.764 LINETO
7-- 1 MAKEOUTLINE MASKFILL --upside down V --
8-- 0.15 0.172 0.4 0.105 MASKRECTANGLE --horizontal bar--
9-- 0.778 SETXREL

--10-- CORRECTMASK
--11-- } MAKESIMPLECO

Example 15.4 uses MASKRECfANGLE, which makes a rectangular mask (§ 4.8.2). Its arguments
are the x and y coordinates of the lower-left comer of the rectangle, and the width and height.
MASKRECfANGLE is called a convenience operator because the same effect can be achieved
without its use, but the convenience operator provides a more compact notation.

As we remarked when describing strokes. curved objects must be approximated using outlines
consisting of short straight line segments. This is in no way a serious limitation. because the
line segments can be arbitrarily short.

15.2.2 Simple outlines

Rectangular and trapezoidal filled outlines occur sufficiently often that Interpress provides spe­
cial operators to specify them. A solid rectangular mask is generated by <x y w h MASKREC­

TANGLE>, where (x. y) are the coordinates of the lower left-hand comer of the rectangle, w is
the width, and h is the height (§ 4.8.2). Bear in mind that these coordinates will be transformed
by the current transformation, thus perhaps rotating or scaling the rectangle-in general, it will
appear on the page as a parallelogram. Filled trapezoids may be specified with the
MASKTRAPEZOIDX and MASKTRAPEZOIDY operators (§ 4.8.2).

15.3 Scanned images

162

An Interpress maliter can describe a mask by providing a raster-scanned image of the mask.
Scanned data must be used to represent objects that have no simple geometric form that can

~9" Xerox I!Q!I Private
itlO¥ Data

Introduction to Interpress 15

be handled with strokes or outlines. A common use of raster-scanned data occurs when an
image has been scanned by a document scanner or facsimile input station and must be
represented in an Interpress master. A raster-scanned image may also be created by ha/floning
software in the creator; halftoning converts a continuous-tone photographic image into a pat­
tern of black and white dots that approximates the appearance of the photographic original.
Unlike the original, the dot pattern can be printed on a printer that can place only black ink
(no gray) on white paper.

The raster data that determines a mask is provided in the form of a two-dimensional array of
sample values; a sample value of 1 indicates where the mask is to appear and a sample value
of 0 indicates where the mask should not appear. The transformation machinery in Interpress
is used to map the two-dimensional array onto the page.

153.1 Defining a pixel array

To represent a sampled image, Interpress defines a special type, a pixel array. As for trajec­
tories and outlines, there is an operator for constructing a pixel array (MAKEPIXELARRA Y) and
one that uses a pixel array. as a mask (MASKPIXEL). The MAKEPIXELARRA Y function is quite
simple, but appears somewhat complicated because of the provision of transformations. The
operator is defined as (§ 4.6):

<xPixels: Integer> <yPixels: Integer> <ql: Integer> <q2: Integer> <q3: Integer>
<m: Transformation> <samples: Vector> MAKEPIXELARRA Y <pa: PixelArray>

where ql = q2 = q3 = 1. The pixel array pa is created from samples after transformation by
m.

The construction of the pixel array pa created by MAKEPIXELARRA Y is best explained in two
steps.

1. The first step in the construction of a pixel array places the sample values in a rectangular
region of the pixel array coordinate system. The samples are used to define a region of width
xPixels and height yPixels, with the lower left corner at the origin. Figure 15.7 shows a pixel
array coordinate system with xPixels= 5 and yPixels= 8. The coordinate system may be viewed
as a grid in which samples are placed; the size of each grid square is one unit

~w~ Xerox
I!~!I P riv ate
ifLJ~ Data

y

8
0 1 1 0 1

1 0 0 1 0

1 0 0 1 0

0 1 1 0 0

1 0 0 0 0

0 1 1 1 0

1 0 0 0 1

1 1 1 1 0 o
o 5

Figure 15.7. A pixel array.

x

163

15

164

--Example
--0--
--I--
--2--
--3--
--4--
--6--
--6--
--7--
--8--

Graphics

The samples vector is used to assign a sample value to each square, or pixel, in the grid of the
pixel array coordinate system. The first element in the samples vector becomes the value of the
pixel that touches the origin. The next element is assigned to the pixel immediately above the
first one, and so on until the first yPixels samples have been assigned. Then the next sample is
assigned to the pixel immediately to the right of the first one positioned, and subsequent
samples are assigned to pixels of increasing y coordinate. In this way, the samples vector is used
to assign a value to each of the xPixelsXyPixels pixels in the pixel array coordinate system,
sweeping out a series of vertical scan-lines at increasing x positions; each scan-line is scanned
from bottom to top. To test your understanding of this process, you may consult the following
example, which builds a pixel array that corresponds to Figure 15.7 (ignore the transformation
argument for now):

15.6. Build pixel
6 8
I 1 1
1 SCALE
[I, I, 0, 1. 0,

I, 0, 1. 0, I,
I, 0, 1. 0, 1.
1. 0, 1. O. 0,
0, 1. 0, 0, 0,

MAKEPIXELARRAY

array for

I, 1. 0,
0, 0, I,
0, 0, I,
I, I, O.
o. 0, 1]

Figure 15.7.-­
--xPixe1s, yPixe1s--
--q's, all =1--
--transformation. for now--
--first scan 1ine--

--40 elements in samples vector--

2. The second step in the construction of a pixel array applies a coordinate transformation to
the pixel array coordinate system. In away, this step is similar to the way MODIFYFONT applies
a transformation to characters defined in the character coordinate system. In both cases, the
transformation is used to convert the standard coordinate system (character or pixel array) into
one that is more convenient to use in the master, usually the page coordinate system.

15.3.2 Using a pixel array as a mask

A pixel array is used as a mask by invoking the MASKPIXEL operator. The region defined by
each pixel with a sample value of 1 will be part of the mask; pixels with sample values of 0
will not be part of the mask. MASKPIXEL uses the current transformation and the transforma­
tion m that is part of the pixel array to determine the size, rotation, and position of the mask
on the page. The coordinates of a pixel defined in the pixel array coordinate system (Figure
15.7) are transformed first by m and then by the current transformation to obtain the position
of the pixel on the page.

The following example shows a complete master that will place an image of the pixel array
shown in Figure 15.7 on the page. Each pixel will be 1/10 mm square on the page and the
lower left comer of the rectangular pixel array will be positioned at x= 10 em, y= 13 cm. You
should observe that the final image will resemble a lower-case "g."

--Example 15.6. Master that places a pixel array on the page--
0-- BEGIN { }
1-- {O.OOOOI SCALE CONCATT --page coordinate system in units of 0.00001 meter--
2-- 5 8 --xPixe1s, yPixe1s--
3-- 1 1 1 --q's, all =1--
4-- 10 SCALE 10000 13000 TRANSLATE CONCAT --transformation--
5-- [1, I, 0, I, 0, 1. I, 0, --first scan 1ine--
6-- I, 0, I, 0, I, O. O. 1.
7-- I, 0, I, O. 1. 0, 0, 1.
8-- I, 0, I, 0, O. 1, I, 0,
Q-- O. 1. O. 0, O. 0, 0, 1] --40 elements in samples vector--

--10-- MAKEPIXELARRAY MASKPIXEL
--11-- }
--12-- END

~.IIJ Xerox
IiQr.i Private
ifO~ Data

Introduction to Interpress 15

There are, of course, a great many other ways to achieve the same effect. For example, we
could leave the transformation m at < 1 SCALE> and instead concatentate onto T the appropriate
scaling and translation transformation before calling MASKPIXEL. The changes to Example 15.6
for this variant are: insert after line 1 the sequence < 10 SCALE 10000 13000 TRANSLATE CON­
CAT CONCA IT> and replace line 4 with < 1 SCALE>. What is important is the combined trans­
formation, < m T CONCA T>.

Although Interpress masters may specify arbitrary transformations of a pixel array, a printer
may not be able to honor all transformations. Some printers will accept only transformations
that result in the pixel array being scanned out with scanning directions and resolutions that
match those of the printer hardware. More sophisticated printers will tolerate integral scaling,
90-degree rotations, arbitrary scaling, or arbitrary transformations.

The mechanism used to describe a printer's transformation capabilities is the easy net
transformation. discussed in Section 13.5: the printer lists the easy net transformations that it
can apply to pixel arrays. This information is part of a description of a printer's capabilities,
but is not available in a standard, computer-readable form. Example 15.6 uses a net
transformation of <10 SCALE 0.00001 SCALE CONCAT>, which is equivalent to <0.0001 SCALE>.

15.3.3 Compressing the sample vector

It is clear from the preceding examples that serious use of pixel arrays will lead to extremely
large sample vectors. If an 81hX11 inch page is scanned by a document scanner at 300
pixels/inch, the samples vector will contain 8,415,000 values! A master that encodes such a vec­
tor as a sequenceLargeVector will be enormous-it must contain at least 8,415.000 bytes.
Interpress provides mechanisms to pack or compress such vectors in order to reduce the size of
their representation in the master.

The idea is that an Interpress printer will provide decompression operators that take as input a
vector of compressed data recorded in the master and produce as output a samples vector.
These operators have the form:

<v: Vector> decompressOperator --+ <samples: Vector>
where v is a vector that contains a compressed or packed representation of pixel array
samples, as well as any other information that decompressOperator may need to unpack
or decompress the data.

Interpress does not define these operators as primitive operators because it is impractical to
standardize all compression schemes to a sufficien~ degree. However, a printer will store in its
environment a collection of decompression operators that the master can obtain and use. The
FINDDECOMPRESSOR operator locates an operator in much the same way FINDFONT locates a
font:

<v: Vector> FINDDECOMPRESSOR -+ <0: Operator>
where v is a Vector of Identifiers that names the operator to be retrieved from the
environment.

The usual way in which these facilities are used is combined with the construction of a pixel
array:

~w~ Xerox
Ij~~ Private
iff.j~ Data

165

15

166

--0--
--1--
--2--

Graphics

xPixels yPixels 1 11m
[--vector of compressed data--] [--name--] FINDDECOMPRESSOR DO
MAKEPIXELARRAY

To illustrate a concrete case, suppose that the environment contains an operator that will
unpack each integer in a vector into 8 one-bit samples starting with the low-order bit of the
integer, e.g., 76 is unpacked into O. 0, 1, 1, 0, 0, 1, O. This operator will allow us to express the
pixel array in Example IS.S as follows:

--Example 15.7, equivalent to Example 15.5-­
--xPixels, yPixels----0-- 5 ,B

--1-- 1 1 1 --q's, all =1--
--2-- 1 SCALE --transformation--
--3-- [107, 149, 149, 101, 130] [unpackB] FINDDECOMPRESSOR DO
--4-- MAKEPIXELARRAY

The first vector on line 3 can be encoded using a sequenceLargeVector with one byte per ele­
ment (b= 1) so that every bit in the encoding is meaningful (§ 2.S.3). While this example is not
particularly compelling because the pixel array contains only 40 pixels, packing an array
reduces the size of its representation by a factor of 8.

Data-compression operators are used in much the same way unpacking operators are, but their
internal operation is much more complex ,than simply unpacking bits. Compression schemes
can achieve another factor of 2 to 10 in storage efficiency beyond packing, depending on the
kind of scheme used and the contents of the image. Part of the information that must accom­
pany an Interpress printer is a precise description of the unpacking and decompression
operators in its environment.

The Xerox decompreSSion and unpacking operators are part of a separate standard. unavailable at the time of this
writing.

Interpress printers will take special steps to be sure that decompression operators are executed
efficiently. Generally, they will not actually build a vector of samples on the stack, but instead
will simply mark 'the original compressed vector as requiring a certain kind of decompression
before it can be used. The decompression will be performed as the image is generated, often
by using special-purpose hardware. Thus while the notation of Interpress composed operators
is used to describe decompression operators, do not assume that their execution will be
unusably slow or that great quantities of storage will be required for the resulting sample
vector.

15.3.4 Different scanning orders

While it might seem from reading Section IS.3.1 that Interpress pixel arrays must always be
scanned with vertical scan-lines moving to the right, such is not the case. The transformation
associated with a pixel array by MAKEPIXELARRA Y can be used to unscramble any scanning
order. For example, suppose scan-lines run vertically, as described above, but run from top to
bottom rather than bottom to top. Setting m to < 1 -1 SCALE2> will transform the pixel array
coordinate system so that, when printed on the page, the scan-lines will indeed run from top to
bottom. Unfortunately, this transformation will cause the lower left comer of the rectangle con­
taining the scanned data to be at (0, - YPixels) rather than (0, 0). But this too can be remedied
by setting m to < 1 -1 SCALE2 0 yPixels TRANSLATE CONCA T> .

~.~ Xerox
li~iI Private
'ftIO~ Data

Introduction to Interpress 15

There are, in fact, eight possible scanning orders, and we can derive for each scanning order a
transformation to use for m that will transform the pixel array coordinate system in such a way
that the result is a rectangular region with lower left corner at (O, 0) and upper right corner at
some value (xmax. ymax). To develop all eight transformations, we need a way to describe a
scanning order. Two pieces of information are required: the direction in which successive scan­
lines are laid down (left-to-right in the standard case described above) and the direction in
which successive pixels within a scan line are laid down (bottom-to-top in the case described
above). The eight possibilities and corresponding transformations are shown in Table 15.1.

Table 15.1 Transformations for different scanning orders

Scan Pixel xmax ymax Transformation m
dir. dir.

l-r b-t xPixels yPixels < 1 SCALE> (standard order)
l-r t-b xPixels . yPixels < 1 - 1 SCALE2 0 yPixels TRANSLATE CONCA T>

r-l b-t xPixels yPixels < - 1 1 SCALE2 xPixels 0 TRANSLATE CONCA T>

r-l t-b xPlxels yPixels < -1 -1 SCALE2 xPlxels yPixels TRANSLATE CONCA T>

b-t l-r yPixels xPixels < - 90 ROTATE 1 -1 SCALE2 CONCAT>

b-t r-l yPixels xPixels <90 ROTATE yPixels 0 TRANSLATE CONCAT>

t-b l-r yPixels xPlxels < - 90 ROTATE 0 xPixels TRANSLATE CONCA T>

t-b r-l yPixels xPixels <90 ROTATE 1 -1 SCALE2 YPixels xPixelsTRANSLATE
CONCAT CONCAT>

Note that when thinking about scanning order, it's easier to think of xPixels as the number of
scan-lines and yPixels as the number of pixels in each scan-line. This interpretation is indepen­
dent of which axis you think of as x and which y.

Section 4.6 of the Standard describes a convention that can be used for the transformation m,
namely that after transformation, the pixel array should lie in a rectangular region with the
origin at lower left corner when the image appears upright, and the upper right corner of the
rectangle at (xmax. ymax) , for xmax>O and ymax>O. This is the convention observed in the
table.

15.4 Coordinate transformations for masks

The mask operators transform their geometric arguments by the current transformation to
determine the position and shape of masks on the page image. Some operators. such as
MASKSTROKE, perform geometric computations based on their arguments in order to determine
the mask geometry; these computations are performed before the coordinate transformation is
done. Thus, for example, MASKSTROKE computes the geometric shape of the stroke from its
endpoint coordinates and fits square or round ends on the stroke before the coordinate trans­
formation.

If the current transformation specifies non-uniform scaling, such as different scale factors in
the x and y directions, the image of a mask on the page may seem to be "distorted," that is, its

~w .. Xerox
Ii~~ Private
ifO" Data

167

15 Graphics

may call mask operators to place objects on the page and be assured that objects laid down
later will have higher priority than objects laid down earlier. In other words, the order of ex­
ecution of MASK operators detennines the priority.

Using this technique, we can see how Figure 15.8 might have been generated. First,
prioritylmportant is set to 1; then the color is set to gray; then MASKFILL is called to generate
the parallelogram; then the color is set to black; then MASKVECfOR is called twice to generate
the two black strokes; finally, prioritylmportant can be set back to O. Because the black strokes
are laid down after the parallelogram, they have higher priority. It's a good idea to leave
prioritylmportant set to 0 whenever possible, since the imager must usually work harder to
preserve priority than to ignore it.

Let's consider another example, the box shown in Figure 3.1 that. is generated by Example 3.1.
We can create this box another way, using priority. We first create a solid rectangular mask
using black ink. Then we set the ink to "white" and create a second solid rectangular mask
that is slightly smaller than the first one, so as to leave a solid outline 1 mm wide. This tech G

nique is illustrated in the following master:

--Example 15.8, equivalent to Example 3.1. Uses priority and white ink--
--0-- BEGIN { }
--1-- {
--2-- {
--3-- 1 5 ISET --set prioritylmponant--
--4-- 0.0249 0.2281 0.1661 0.0264 MASKRECTANGLE
--5-- 0 SETGRAY
--6-- 0.0259 0.2291 0.1641 0.0244 MASKRECTANGLE
--7-- } DOSAVESIMPLEBODY -- restore color and prioritylmportant--
--8-- }
--9-- END

This technique is not generally recommended, since it's almost certainly slower to create two
large filled rectangles than four strokes, as in Example 3.1. A more interesting and appropriate
use of "white" ink prints the lettering in Figure 15.2a.

When priority is used, it's important to be sure that all objects whose priority is important are
generated when prioritylmportant has a non-zero value. A change to the page image induced by
a mask operator is said to be ordered if the mask operator is executed when prioritylmportant is
not zero, and unordered if it is zero. Interpress preserves the priority order of all ordered
masks, but may alter the priority among unordered masks or between any unordered mask and
an ordered mask. To illustrate the use of this rule, consider Example 3.5, which extended
Example 3.1 to print the word "Interpress" in the middle of the box. Were we using the tech­
nique in Example 15.8 to generate the box, the analog of Example 3.5 would be:

--Example 15.9, equivalent to Example 3.5--
0-- BEGIN { [xerox, xc82-0-0, times] FINOFONT 0.00635 SCALE MODIFYFONT 0 FSET }
1-- {
2-- {
3-- 1 5 ISET --set prioritylmponant--
4-- 0.0249 0.2281 0.1661 0.0264 MASKRECTANGLE
5-- 0 SETGRAY
6-- 0.0259 0.2291 0.1641 0.0244 MASKRECTANGLE
7-- 1 SETGRAY

-- 8-- 0 SETFONT 0.07366 0.23876 SETXY (Interpress> SHOW
-- 9-- } DOSAVESIMPLEBODY --restore color and prioritylmportant--
--10-- }
--11-- END

~w~ Xerox
Ii~~ Private
iI{jY Data

Introduction to Interpress 15

Note that the text must take priority over the "white" filled outline. If lines 7 and 8 were
moved to just before line 5, the text would have lower priority than the white rectangle and
would not appear. If lines 7 and 8 were moved to after line 9 or before line 2, the calls to
mask operators that generate the string would occur when prioritylmportant is O. As a
consequence, the text would be unordered with respect to the filled outlines. In this case, the
imager might not produce the correct image.

15.7 Summary

Interpress provides a small but complete set of facilities for producing graphical images:

• Strokes, for drawing "lines" of various widths with square or rounded ends.

• Filled outlines for making solid figures of various sorts, such as characters, bar charts, and
pie charts.

• Scanned images. for reproducing images scanned on a raster input scanner or for present­
ing halftoIied renditions of photographic images.

• Colors, including shades of gray and any other colors that the printer can achieve.

• Priority, to resolve the ambiguity when objects of different colors overlap.

All of the illustrations in this Introduction are produced using these functions.

~9" Xerox
lj~iI Private
"f.j~ Data

171

15 Graphics

172

~.1Il. Xerox '8' Private
I

Data
I

Introduction to Interpress 15

There are, in fact, eight possible scanning orders, and we can derive for each scanning order a
transformation to use for m that will transform the pixel array coordinate system in such a way
that the result is a rectangular region with lower left comer at (0, O) and upper right comer at
some value (xmax. ymax). To develop all eight transformations, we need a way to describe a
scanning order. Two pieces of information are required: the direction in which successive scan­
lines are laid down (left-to-right in the standard case described above) and the direction in
which successive pixels within a scan line are laid down (bottom-to-top in the case described
above). The eight possibilities and corresponding transformations are shown in Table 15.1.

Table 15.1 Transformations for different scanning orders

Scan Pixel xmax ymax Transformation m
dire dire

l-r b-t xPixels yPixels <1 SCALE> (standard order)
l-r t-b xPixels . YPixels <1 -1 SCALE2 0 yPixels TRANSLATE CONCAT>

r-l b-t xPixels yPixels < - 1 1 SCALE2 xPixels 0 TRANSLATE CONCA T>

r-l t-b xPixels yPixels < - 1 -1 SCALE2 xPixels yPixels TRANSLATE CONCA T>

b-t l-r yPixels xPixels < -90 ROTATE 1 -1 SCALE2 CONCAT>

b-t r-l YPixels xPixels <90 ROTATEyPixelsO TRANSLATE CONCAT>

t-b l-r yPixels xPixels < - 90 ROTATE 0 xPixelsTRANSLATE CONCAT>

t-b r-l yPixels xPixels <90 ROTATE 1 -1 SCALE2 yPixels xPixelsTRANSLATE
CONCAT CONCAT>

Note that when thinking about scanning order, it's easier to think of xPixels as the number of
scan-lines and yPixels as the number of pixels in each scan-line. This interpretation is indepen­
dent of which axis you think of as x and which y.

Section 4.6 of the Standard describes a convention that can be used for the transformation m,
namely that after transformation, the pixel array should lie in a rectangular region with the
origin at lower left comer when the image appears upright, and the upper right comer of the
rectangle at (xmax. ymax) , for xmax>O and ymax>O. This is the convention observed in the
table.

15.4 Coordinate transformations for masks

The mask operators transform their geometric arguments by the current transformation to
determine the position and shape of masks on the page image. Some operators, such as
MASKSTROKE, perform geometric computations based on their arguments in order to determine
the mask geometry; these computations are performed before the coordinate transformation is
done. Thus, for example, MASKSTROKE computes the geometric shape of the stroke from its
endpoint coordinates and fits square or round ends on the stroke before the coordinate trans­
formation.

If the current transformation specifies non-uniform scaling, such as different scale factors in
the x and y directions, the image of a mask on the page may seem to be "distorted," that is. its

~y .. Xerox
1Ij~!II Private
ilOY Data

167

15

15.5 Color

168

Graphics

shape will not be the same on the page as in the master coordinate system. For example, a rec­
tangle may become a skew parallelogram or a circular outline may become ellipsoidal. The
ellipse results because the non-uniform scaling grows one axis of the circle more than the
other. While there is nothing wrong with non-uniform scaling transformations, their use can be
confusing. For example, a stroke with a "square" end will not be rectangular. For this reason,
non-uniform scaling is not recommended.

Interpress can describe colored images. When a mask operator is called, the setting of the
current color determines the color that will be used to print the graphical object defined by the
mask. Interpress colors include all shades of gray, including white, as well as a wider gamut of
colors on those printers that have inks or toners other than black.

Interpress sets the current color to any shade of gray with the SETGRA Y operator (§ 4.7):

<f: Number> SETGRA Y < >
where the current color is set to a shade of gray. The Number f, 0<1<1. specifies the
fraction of incident light that will be absorbed by the ink that is deposited on the
page. The current color is held in the imager variable color. index 13.

Thus black ink is specified with < 1 SETGRA Y>, which is the default established at the begin­
ning of execution of each page body. Executing <0.5 SETGRAY> obtains an intermediate shade
of gray. The setting <0 SETGRAY> specifies white. (It may seem senseless to use white color on
white paper, but we~ll see below in Section 15.6 how white color can be useful.)

A second way to set the color is provided by the FINDCOLOR operator, useful for those printers
that can obtain colors other than grays. FINDCOLOR takes as its argument the name of a color,
which is used to find an appropriate Color in the printer's environment:

<v: Vector> FINDCOLOR <col: Color>
where v is a Vector of Identifiers that names a color. The color returned may be used
to set the color variable. For example. <[xerox. highlight] FINDCOLOR color ISET> might
set the current color to a "highlight" color.

Some printers may have no colors available to FINDCOLOR, others may supply a single
highlight color. Full-color printers may offer a wide range of colors, obtained using naming
system that might include such names as "blue-green" or "light brown."

Interpress also provides a third way to set color by using a pixel array to define a black-and-white pattern
throughout the page. The interested reader is urged to consult § 4.7 for a detailed description of these facilities: we
shall not cover them here.

Figure 15.8 shows an example of color in use. The parallelogram labeled "Color" is created by
setting the color with <0.5 SETGRA Y> and then using a filled outline mask to define the paral~
lelogram's shape. The "b" on the page image in that figure is printed using the same color set­
ting and a filled outline mask that defines the character's shape.

~w .. Xerox
IiQ!I Private
'lOY Data

15.6 Priority

Introduction to Interpress

Color Mask

Previous
page
image

Page image

Figure 15.8. Interpress imaging model (from the Standard).

15

When more than one color is used on a page and masks of two different colors overlap, there
is a possible ambiguity about which mask or color will be visible. This problem is illustrated
well by Figure 15.8: two horizontal black strokes appear to pass in front of the "color" paral­
lelogram at the' left of the figure. Here two black objects overlap a gray one. Which objects
should be visible? Should the black lines appear to pass in front of the parallelogram or
behind? The decision, of course, is up to the artist who prepares the illustration. But how is
the decision reflected in the Interpress master?

Interpress uses the notion of priority to resolve the ambiguity. Each object may be assumed to
have a numeric priority; when two objects overlap, the object with greatest priority is visible.
Much of the time. however, priority is unimportant. If only a single color is used on a page or
if no two objects overlap one another, it doesn't matter which objects have high priority.
Interpress ignores priority problems unless explicitly told otherwise, since so many images will
use only one color-black.

When the relative priority of objects is important, the master must set the imager variable
priorltylmportant (index 5) to a non-zero value. Whenever prioritylmportant is not zero, the master

~w. Xerox
1i~!II Private
ifLJ~ Data

169

15

170

Graphics

may call mask operators to place objects on the page and be assured that objects laid down
later will have higher priority than objects laid down earlier. In other words, the order of ex­
ecution of MASK operators determines the priority.

Using this technique, we can see how Figure 15.8 might have been generated. First,
prioritylmportant is Set to 1; then the color is set to gray; then MASKFILL is called to generate
the parallelogram; then the color is set to black; then MASKVECfOR is called twice to generate
the two black strokes; finally. prioritylmportant can be set back to O. Because the black strokes
are laid down after the parallelogram, they have higher priority. It's a good idea to leave
prioritylmportant set to 0 whenever possible, since the imager must usually work harder to
preserve priority than to ignore it.

Let's consider another example. the box shown in Figure 3.1 that. is generated by Example 3.1.
We can create this box another way. using priority. We first create a solid rectangular mask
using black ink. Then we set the ink to "white" and create a second solid rectangular mask
that is slightly smaller than the first one, so as to leave a solid outline 1 mm wide. This tech­
nique is illustrated in the following master:

--Example 15.8. equivalent to Example 3.1. Uses priority and white ink--
--0-- BEGIN { }
--1-- {
--2-- {
--3-- 1 5 ISET --set prioritylmportant--
--4-- 0.0249 0.2281 0.1661 0.0264 MASKRECTANGLE
--5-- 0 SETGRAY
--6-- 0.0259 0.2291 0.1641 0.0244 MASKRECTANGLE
--7-- } DOSAVESIMPLEBODY --restore color and prioritylmportartt--
--8-- }
--9-- END

This technique is not generally recommended, since it's almost certainly slower to create two
large filled rectangles than four strokes. as in Example 3.1. A more interesting and appropriate
use of "white" ink prints the lettering in Figure 15.2a.

When priority is used. it's important to be sure that all objects whose priority is important are
generated when prioritylmportant has a non-zero value. A change to the page image induced by
a mask operator is said to be ordered if the mask operator is executed when priorltylmportant is
not zero. and unordered if it is zero. Interpress preserves the priority order of all ordered
masks, but may alter the priority among unordered masks or between any unordered mask and
an ordered mask. To illustrate the use of this rule, consider Example 3.5. which extended
Example 3.1 to print the word "Interpress" in the middle of the box. Were we using the tech­
nique in Example 15.8 to generate the box, the analog of Example 3.5 would be:

--Example 15.9, equivalent to Example 3.5--
0-- BEGIN { [xerox. xc82-0-0, times] FINDFONT 0.00635 SCALE MODIFYFONT 0 FSET }
1-- {
2-- {
3-- 1 5 ISET --set prioritylmportartt--
4-- 0.0249 0.2281 0.1661 0.0264 MASKRECTANGLE
5-- 0 SETGRAY
6-- 0.0259 0.2291 0.1641 0.0244 MASKRECTANGLE
7-- 1 SETGRAY
8-- 0 SETFONT 0.07366 0.23876 SETXY (Interpress) SHOW
9-- } DOSAVESIMPLEBODY --restore color and prioritylmportant--

--10-- }
--11-- END

~9~ Xerox
Ii~Q!I P riv ate
'fIIO. Data

16

Utility programs

Most users- of Interpress will want to use several utility programs as well as Interpress printers.
Utility programs take as input one or more Interpress masters and create a new master, usually
by rearranging or combining the input masters in some way. For example, a utility program
could extract certain pages from a master, or combine pages from two masters, and so on.
Utility operations are often cascaded several times to produce a finished document. These func­
tions have important uses in environments where several Interpress-creating programs may con­
tribute bits and pieces to a single document.

At first glance, it might appear that Interpress masters are going to be difficult to work
on-after all, they may comprise full programming generality, and it's notoriously difficult to
write programs that understand and rearrange other programs. However, Interpress has been
designed so that many utility functions can be implemented without requiring sophisticated
software. Some utilities need only to decipher a master's skeleton in order to identify the
preamble and each page body. Others require some form of pseudo-interpretation of the
master to detect certain things, such as which frame elements are set in the preamble.

This section explains how a number of utility functions can be carried out on Interpress
masters. While the list of functions covered is not exhaustive, the techniques used to achieve
them should be suggestive of approaches to other problems as well.

16.1 Notation and assumptions

Since this section makes frequent reference to parts of masters, it's helpful to have a notation
that denotes easily the different pans of a master's skeleton. The notation = M.n = will be
taken to stand for the sequence of literals in the nth part of master M. = M.O = are the literals
in the preamble; = M.l = those in the first page body, and so on. These literal sequences do
not include the braces surrounding them, { }, to indicate the beginning and end of the body.
Thus a complete three-page master A would be written as:

BEGIN {=A.O=} {=A.l=} {=A.2=} {=A.3=} END

It is a relatively straightforward operation to scan a master and find the parts of its skeleton.
Each token in the encoding must be examined to see if it is "{", "}", "BEGIN", or "END"; the
length of each token must also be determined in order to decide how many bytes of data to

~.~ Xerox
.~~ Private
'fIf1.J~ Data

173

16 Utillity programs

skip before looking for the next token. The result of this scanning process is an indication of
the position in the file of the beginning and end of each part of the master. This information
is used when parts of the master are copied into the output master or rearranged in various
ways.

16.2 Selecting pages

Perhaps the simplest utility function is one that extracts from an input master a selected set of
pages and creates an output master containing only those pages. The output master simply con­
tains the preamble from the input master, A, and each page body that is desired. If pages ~ j,

and k are extracted, the output master will be:

BEGIN {=A.O=} {=A.i=} {=AJ=} {=A.k=} END

This utility is so simple and so fast that Interpress printers provide page selection as a standard
printing service (see Section 18). Nevertheless, it's useful to have a utility program that will do
this job as well. in order to save communication or storage capacity.

16.3 Selecting pages from two masters

174

An output master may be created by extracting some pages from master A and some pages
from master B and combining them in. the output master. The principle behind this technique
is that it is always possible to copy a preamble into each page body that uses it. Thus a master
that contains page 1 from A. page 1 from B. and page 8 from A can be formed as follows:

BEGIN {} {=A.O= =A.l=} {=B.O= =B.l=} {=A.O= =A.8=} END

This technique simply inserts the appropriate preamble before each page body. The disad­
vantage of this technique is that an Interpress printer will have to execute the preamble (A.O or
B.O) once for each page body. which defeats the purpose of the preamble. An alternative
method might be to form:

BEGIN {=A.O=} {=A.l=} {ZeroFrame =B.O= =B.l=} {=A.8=} END

Each page from B that is included in the output master will contain both Us preamble and the
necessary page body. The notation ZeroFrame stands for an Interpress program fragment that is
inserted to zero every frame element, since a preamble is allowed to assume that all frame ele­
ments are initially zero. It could be defined as:

--ZeroFrame macro: zero all elements of the frame--
--0-- 0 0 FSET 0 1 FSET 0 2 FSET . . . 0 49 FSET

Since A and B play a symmetric role in this operation. one could equally well generate the
master:

BEGIN {= B.O =} {ZeroFrame = A.O = = A.l =} {= B.l =} {ZeroFrame = A.O = = A.8 =} END

The choice of the two forms should probably be based on how many pages of the output
come from each input master. If the output contains a single page from B and 90 pages from
A. the first form will be more compact and will be processed more efficiently by printers
because most of the pages use the information computed by the = A.O = preamble.

~91J!. X e ro x
IJ]Q~ Private "'0" Data

Introduction to Interpress 16

16.3.1 Combining two preambles

A master that combines pages from two masters could be described more efficiently if the
preambles from both input masters could be combined into a single preamble suitable for the
output master. This section shows several ways to go about it.

The basic idea is to evaluate a preamble and then to package into a single vector all its frame
elements, the only permanent results a preamble is allowed to have. The packaging is achieved
with an Interpress code fragment we shall name SaveFrame, which leaves on the stack the
packaged vector. The operation StoreFrame actually stores this vector in a frame element. Then
at the beginning of a page body a RestoreFrame operation unpackages the vector into the
various frame elements, so that the frame will have exactly the same values in its elements that
were computed by the preamble. Several optimizations of these steps are explored after we
explain the general case.

First, we define four macro-like sequences that manipulate the frame in various ways:

--StartPreamble macro: used at beginning of an original preamble--
-- 0-- { --simply start a body--

--EndPreambk macro: package all frame elements into a vector on the stack--
1-- 0 FGET 1 FGET 2 FGET . . . 49 FGET
2-- 50 MAKEVEC

-- 3-- } MAKESIMPLECO OOSAVEALL --execute the original preamble, restore frame and imager vars--
-- 4-- 0 MARK --protect vector on stack--

--Sro~Frame(n) macro: store packaged frame vector into frame element n--
-- 5-- UNMARKO --remove mark--
-- 6-- n FSET

--RestoreFrame(n) macro: unpackage frame vector stored in frame element n--
7-- n FGET

-- 8-- OUP 0 GET 0 FSET
-- 9-- OUP 1 GET 1 FSET

--10--
--11--

OUP 49 GET 49 FSET
POP

N ow we can demonstrate how to combine two preambles into one. As an example, consider
the problem posed in Section 16.3, to make a master that contains page 1 from A, page 1 from
B, and page 8 from A. Example 16.1 shows a master that combines the preambles:

--Example 16.1--
0-- 8EGIN {

-- First process A's preamble -­
1--
2--
3--

StartPreamble
-A.O=
EndPreamble

--A's preamble--

-- Then process 8's preamble -­
4--
5--
6--

StartPreamble
=8.0=
EndPreamble

--8's preamble--

-- Now save packaged
S toreFrame(1)
StoreFrame(0)

frames in frame --
7--
8--
9--

--10--
--11--
--12--
--13--

}
{ RestoreFrame(0) =A. 1 = }
{ RestoreFrame(1) =8. 1 = }
{ RestoreFrame(0) =A. 8= }
END

•• ~ Xerox
I]~Q~ Private
~/j,* Data

--8's packaged frame--
--A's packaged frame--
--end new preamble--
--a page from A--
--a page from 8--
--a page from A--

175

16 Utility programs

Lines 1-3 execute A's preamble, package the resulting frame, and save it on the stack. The
EndPreamble macro guarantees that any changes made to imager variables by A's preamble will
not be seen by D's preamble, because DOSA VEALL restores them. Likewise, it insures that all
frame elements are initially zero, since Interpress requires that they be zero when a preamble is
executed. Lines 4-6 repeat the same process for D's preamble. Lines 7 and 8 now store these
packaged frames into the frame, so that the packages will be available to the individual page
bodies. Lines 10-12 show how page bodies are written: at the beginning of each page body.
the corresponding frame package is unpackaged and stored in the frame.

An obvious optimization to this procedure is to detect when a preamble does not set all 50
frame elements, and change the EndPreamble and RestoreFrame operations to package and
unpackage only those frame elements actually used by the preamble. To determine which
frame elements are used, the utility program must be able to simulate the execution of the
preamble.

In particularly simple cases, even greater optimizations are possible. If it should happen to tum
out that no frame element is used by both preambles, that the first preamble never sets an
imager variable, and that the second preamble never examines the contents of any frame
element, the preambles can simply be joined:

BEGIN {=A.O= =B.O=} {=A.1=} {=B.1=} {=A.8=} END

Or it may turn out that the preamble needed most frequently has a spare frame element in it
that can be used to store the packaged form of the other preamble, thus allowing the Inost fre­
quently used preamble to remain unpackaged. Example 16.2 shows how Example 16.1 could
be modified if A is to be used most frequently and has frame element 43 available.

--Example 16.2--
0-- BEGIN {

1--
2--
3--

4--

5--
6--
7--
8--
9--

--10--

-- First process B's preamble -­
StartPreamble
=B.O=
EndPreamble
-- Then process A's
=A.O=
-- Now save packaged
StoreFrame{ 43)
}

--B's preamble--
--package B's frame into a vector on stack--

preamble --
--A's preamble-­

frame in frame --
--B's packaged frame--

{ =A.1= } --a page from A-­
{ RestoreFrame(43) =B.1= } --a page from B-­
{ =A.8= } --a page from A-­
END

16.4 Merging two pages into one

17k

Suppose that two one-page input masters A and B already have information positioned
properly on both pages, but that the two pages should in fact be printed as one, essentially
merging the information from both onto one page. For example, A might be the output of a
text-processing system, and B the output of an illustration-making system; assume that the text
system leaves room for the illustration and that the illustration system positions the illustration
properly. If the preambles are not combined, we can achieve the merged output as follows:

~YIJJJ Xerox
liQ!II Private
""O~ Data

Introduction to Interpress

--Example 16.3--
--0-- BEGIN
--1-- { =A.O= }
--2-- {
--3-- { ZeroFrame =B. 0=
--4-- =A.l=
--6-- }
--6-- END

--A's preamble is output preamble--
--page body--

=B.l= } MAKESIMPLECO DOSAVEALL --print B's page-­
--and then print A's page--
--end page body--

16

This example shows how naSA VEALL is used to insure that the state of imager variables at the
beginning of line 4 will be the same as at the beginning of line 3. For example, this makes
sure that if = B.O = and/or = B.l = change the current transformation, it will be restored to its
original value before = A.I = is executed. There are other possible arrangements that will have
the same effect, such as:

--Example 16.4--
--0-- BEGIN
--1-- { =A.O= } --A's preamble is output preamble--
--2-- { --page body--
--3-- { =A.l= } MAKESIMPLECO DOSAVEALL --print A's page--
--4-- ZeroFrame =B.O= =B.l= --and then print B's page--
--5-- } --end page body--
--6-- END

As before, the roles of A and B can be interchanged in either of these examples.

The techniques described in Section 16.3.1 for merging preambles can also be used in
programs that merge pages.

16.4.1 Priority

If either of the masters sets prioritylmportant, the process of merging information may be more
complicated. If the images created by the two masters do not overlap on the page, then there
will be no problem. If there is overlap, however, someone must determine which master is to
have priority. Then the merged master can be constructed by turning on prioritylmportant and
placing first the original page body that should have low priority:

--Example 16.5--
--0-- BEGIN
--1-- { =A.O= } --A's preamble is output preamble--
--2-- { --page body--
--3-- 1 5 ISET --set prioritylmportant--
--4-- { =A.l= } MAKESIMPLECO DOSAVEALL --print A's page, low priority--
--5-- ZeroFrame =B.O= =B.l= --and then print B's page, high priority--
--6-- } --end page body--
--7-- END

This problem will probably not arise frequently, since priority is infrequently used, and since it
will be rare that masters to be merged will overlap on the page in such a way that it's impor­
tant to establish relative priority.

16.5 Applying a geometric transformation

A common utility function is to change the geometry of one or more pages by applying a
transformation. We can insert a program fragment at the beginning of a page body to modify
the current transformation to change the geometry of the page.

~9~ Xerox
II]:QiII P riv ate
"irIILJ~ Data

177

16

17~

Utility programs

For example, suppose we have a master that is formatted for printing on one side of each
sheet of paper but we want to print it on both sides of the paper and to reposition each page
away from the binding edge so that holes can be punched in the paper. So images on odd
pages, beginning with page 1, must be moved slightly to the right, and those on even pages
slightly to the left Let's assume these displacements are to be 1 cm. The following master will
achieve this result:

--Example 16.6--
--0-- BEGIN
--1-- { =A.O= } --keep preamble--
--2-- {0.01 o TRANSLATE CONCATT =A.1= } --translate odd page right--
--3-- { -0.01 o TRANSLATE CONCATT =A.2= } --translate even page left--
--4-- {0.01 o TRANSLATE CONCATT =A.3= } --translate odd page right--
--5-- { -0.01 o TRANSLATE CONCATT =A.4= } --translate even page left--

.. --more pages--
--6-- END

This example illustrates the power of the current transformation. Since all of the geometry in
each page body is transformed by the current transformation, the geometry of the entire page
can be modified simply by altering the current transformation appropriately.

Note that in general the creator of a master must know whether it will be printed on both sides of the paper and
will format it accordingly. For example, page numbers would normally alternate from right to left comers and line
measures would be reduced to provide the same visible margins in spite of the binding.

r ,

1
r- ,

4

L ..I

L .J

A E

Figure 16.1. Original page and desired result

The same technique can be used to scale anellor rotate the image. For example, suppose we
start with a page that contains an image 71hXI0 inches centered in an 81hXll inch page and
we wish to "turn" it so that it can be viewed from the right side, so that there will still be 112
inch margins, and so that the original shape factor is retained (Figure 16.1).

We observe that for Ih inch margins, the "height" of the new image will be 71h inches. so the
original image must be scaled by 71h/l0=0.75 to obtain the new image. The coordinate trans­
formations are worked out by observing Figure 16.2. We have:

TAB = <-0.0127 -0.0127 TRANSLATE>

TBe = <0.75 SCALE>

TeD = <90 ROTATE>

TDE = <0.2032 0.0682625 TRANSLATE>

TAE = <TAD THe TeD TDE CONCAT CONCAT CONCAT>

~ ... Xerox
IiQiI Private
itO" Data

Introduction to Interpress 16

,

1
~ ,

i
r -

•
I • L

B C D

Figure 16.2. Intermediate transformations.

The master becomes:

--Example 16.7--
0--
1--
2--
3--
4--
6--
6--
7--
8--
9--

--10--

BJ~IN
{ =A.O= } --keep preamble--
{ --start page body--
-0;0127 -0.0127 TRANSLATE
0.76 SCALE
90 ROTATE
0.2032 0.0682626 TRANSLATE
CON CAT CONCAT CONCAT CONCATT
=A.1= } --A's original page body--
} --end of page body--
END

This is not the only way to achieve this transformation. It turns out that it can be done with
only three primitive transformations. What are they?

16.5.1 Suitable transformations

While it is easy to apply arbitrary geometric transformations to entire pages, some caution is
required. Since a printer may restrict the sizes and rotations of text characters it can show or of
pixel arrays it can image, arbitrary transformations may yield unprintable masters. The restric­
tions a printer imposes are described by the easy net transformations for a font (see Section
13.5 and § 4.9.3) and the easy net transformations for pixel arrays. A common convention for
printers configured to print computer output is to allow 60% scale factors when text is rotated
90 degrees so that "two up" pages can be printed (see Section 16.7). Of course, arbitrary trans­
lation transformations are always acceptable to a printer.

16.6 Merging and positioning

The transformation techniques illustrated in the previous section (16.5) can be used in conjunc­
tion with other utilities. For example, a text document can have an illustration merged in, after
appropriate sizing and positioning. This utility uses a combination of the transformation tech­
niques shown in Section 16.5 and the merging schemes of Section 16.4.

Suppose that a text document is represented by master A and a one-page master B contains an
illustration for page 2 of A. The transformation T pas represents the sizing and positioning
required of B to fit appropriately on A's page 2. The overall structure of the merged master is
similar to that of Example 16.3. We have:

~ ... Xerox
.tQ~ Private
.LJ~ Data

179

16 Utility programs

--Example 16.8.--
0-- BEGIN
1-- {=A.O=} --keep A's preamble--
2-- {=A.1=} --A's page 1--
3-- { --start page body for page 2--
4-- { ZeroFrame =B. 0= --B's preamble--
5-- Tpos --put here code to create transformation--
6-- CONCATT
7-- =B.1= --B's original page body--
8-- } MAKESIMPLECO DOSAVEALL
9-- =A.2= --print A's page--

--10-- } --end of page body--
--11-- {=A.3=} --rest of A's pages--
--12-- END

A particularly interesting case of merging an illustration arises in teacher's editions of
textbooks. Sometimes each page of the teacher's edition contains, in an upper comer, a small
image of a page from the textbook, a couple of inches on a side. This effect can be achieved
easily with Interpress: to create the teacher's edition master, appropriately scaled and translated
copies of page bodies from the textbook master are merged into each page of the teacher's edi­
tion.

The comments in Section 16.3.1 about merging preambles and in Section 16.4.1 about priority
also apply to the cases discussed in this section.

16.7 Imposition

lOf'l

Transformation and merging techniques may be combined to perform imposition. a term used
in the printing inqustry to denote the arrangement of several page images on a single piece of
paper so that the . folding and trimming of the paper results in a book with the proper page
order. Often 16 or 32 page images are imposed on a single large sheet. With small paper sizes,
two or four-page images are all that will fit.

By way of illustration, let us consider "two-up signature" format, in which two pages' worth of
text are printed on each side of each piece of paper, shrunk down to about half their former
size and rotated 90 degrees (see Figure l.7). A utility to create such a master uses both trans­
formation and merging techniques.

The example below shows how a master A might be rearranged to appear in two-up form. The
transformations T top and Tbottom are the transformations used to position the top image and the
bottom image respectively on the output page.

--Example 16.9.--
0-- BEGIN
1-- {=A.O=}
2-- {
3-- { Tbottom CONCATT
4-- Ttop CONCATT
5-- }
6-- {
7-- { Tbottom CONCATT
8-- Ttop CONCATT
9-- }

..
--10-- END

--keep A's preamble--
--begin page body--

=A.1= } MAKESIMPlECO DOSAVEALL
=A.2=

--end page body--
--begin page body--

=A.3= } MAKESIMPLECO DOSAVEALL
=A.4=

--end page body--
--more page bodies as required--

We can easily derive examples of T top and Tbottom' If the original 81hX11 inch page is to be
scaled without changing the relative sizes of margins, the scale factor will be 51h/8th. because

~YII!. Xerox
~Q" Private """'lJ'p Data

Introduction to Interpress 16

the horizontal dimension of the original page will have to fit it 11/2=5 112 inches. Both images
must be rotated 90 degrees. The origin for the "top" image will lie at x= 11X(5 1h/8lh) inches
= 0.18079 meter, y= 5112 inches = 0.1397 meter. The origin for the "bottom" image will lie at
the same x, but y= O. So we have:

Ttop = <11/17 SCALE 90 ROTATE 0.18079 0.1397 TRANSLATE CONCAT CONCAT>

Tbottom = <11/17 SCALE 90 ROTATE 0.18079 0 TRANSLATE CONCAT CONCAT>

< >
A.I A.2

< :.-

A.16 A. 15

out I out2

Figure 16.3. Two pages from a signature.

There are many variations on this theme. The transformations might be chosen differently so
that extra "gutter space" is left between the two pages. The transformations on even and odd
resulting pages might be different. as in Example 16.6, so that when the document is printed
on both sides of the page the front and backside images would align. The page order might
also be chosen so that the final pages could be saddle-stapled to yield a document that reads
properly. For example, if A were a 16-page document, the first output page would have A.I on
top and A.16 on the bottom; the second output page, to be printed on the back of the first,
would have page A.2 on top and page A.15 on the bottom, and so forth. Moreover, for this
kind of binding to work, odd pages will have to use transformations that rotate pages in the
opposite direction (see Figure 16.3).

16.8 Embedding information in masters

One problem faced by document-assembly utilities is obtaining the information necessary to

control the merging of masters. This problem is best illustrated with a simple example:
merging a single illustration into a document such as this one. The problem is, how does the
utility program know what to merge onto which page and where it should lie? Clearly, this
information must be derived and communicated to the utility program.

Placement information can be derived in several ways. The easiest way is to assume that one of
the masters, say the one that contains the document's text, will be the controlling master. The
composition system that creates the master figures out how big the illustration is to be-more
on this below-and allocates sufficient space on an appropriate page. As a result of this layout

~WII!.. Xerox
1j~[II Private
"'[j~ Data

181

16 Utility programs

decision, the composition system must tell the merge utility to "place 'figure12-2' on page 14 at
(0.103, 0.0467),"where 'figure12-2' is the name of a one-page master that contains the
illustration and the coordinates identify the location of the bottom center of the illustration, in
meters. If the illustration were to be scaled or rotated, other information must be provided as
well.

There are several possibilities for communicating these merging instructions to the utility
program. They could be placed in a separate file, which the utility reads along with the master.
Alternatively, they can be embedded within the master itself as comments in the encoding.
That is, the instructions may be placed within sequenceComment tokens (§ 2.5.2). These com­
ments will be ignored by an Interpress printer. but can be parsed and interpreted by a merge
utility. Of course, it will be necessary to specify the syntax and semantics of merge instructions
and to guard against comments included for other reasons interfering with merge instructions.

Another possibility is to place instructions at the end of an Interpress master, after the final
END token. Like instructions embedded within comments, an Interpress printer will ignore ex­
tra information at the end of a master.

A few simple conventions will make it easy to locate the instructions at the end of the master. The last four bytes
of the file, for example, could be a "password" or unique code that indicates that merging instructions have been
appended to the file. None of these four bytes should have the value 103 decimal, since that value will always be
the last byte of an Interpress master (§§ 2.5.1 and 2.5.4}.Immediately preceding these four bytes might be four
bytes that are interpreted as an integer that gives the· number of bytes of merging instructions. This information
then allows the beginning of the merging instructions to be located. Moreover, many blocks of data of this sort,
each followed by a length and a password, can be appended to the master. By working backwards, finding first the
password and then the length of each block, a program can locate all of the appended information.

Embedded information can be used for many different purposes. For example, an illustration
system might embed information about the size of an illustration-the left., right, bottom. and
top coordinates of a box that completely surrounds the illustration-in the master it generates.
This information could be used by a layout system or text formatter to leave enough space for
the illustration and by the merge utility to prepare the coordinate transformation that will
place the illustration according to the merge instructions.

16.9 Routing sheets

lQ')

If several copies of a document are to be printed and routed to separate individuals, it may be
convenient to preface each copy with a cover sheet that identifies the recipient. If copies are to
be mailed, the cover sheet might be formatted so that it could be inserted into a window
envelope or so that the entire document could be folded, stapled, and mailed.

The technique for obtaining a cover sheet customized for each copy was illustrated in Section
12.2.1, using the, IFCOPY operator. The utility program we seek simply inserts before the first
page of the original master a new page that uses the IFCOPY operator to print customized rout­
ing sheets. The following example illustrates how this might be done:

~WIJJ. X e ro x
1i~[4 Private
itfO~ Data

Introduction to Interpress 16

--Example 16.10.--
0-- BEGIN
1-- {=A.O=} --keep A's preamble--
2-- { --page body for routing sheet--
3-- 0.000035278 SCALE CONCATT --units of 1/10 point--
4-- [xerox, ¥c82-0-0, times] FINDFONT 120 SCALE MODIFYFONT 0 FSET --get font--
5-- 0 SET FONT

6--
7--
8--
9--

--10--
--11--

--12--
--13--

--14--
--15--

--16--
--17--
--18--
--19--
--20--

{
2880 5040 SETXY
SHOW
2880 5220 SETXY
SHOW
} MAKESIMPLECO 1 FSET

--define composed operator for printing addresses--
--PrintAddress(name, ma i 1 stop)--

--print mail stop--

--print name--
--save composed operator in jTame[l]--
--now for calls for individual recipients--

{ POP 1 EO } MAKESIMPLECO
{ <John G. James> <A/21-13> 1 FGET DO } IFCOPY

{
{

POP 2 EO } MAKESIMPLECO
<Robin Carruthers> <Admin. 14> 1 FGET DO } IFCOPY

--as many as you want--
}
{ =A.1= }
{ =A.2= }
{ =A.3= }
END

-~end of page body for routing sheet--
--now copy in A's page bodies--

--as many page bodies as A has--

16.10 Closure

The device-independence of.a master can be increased by a utility program that "closes" it
Closing means reducing or eliminating the master's references to the environment. If a master
contains no references to the environment it will be insensitive to the configuration of font
libraries and forms on the printer.

The most important function a closure utility must perform is to copy into the output master
the contents of any sequencelnsertFile requests (Section 11.2). The utility will need to know the
syntax of file names used for sequencelnsertFile and will need to have access to the same files
that the printer can obtain.

A closure utility can also copy into the master the definitions of fonts that it uses, building
composed operators such as those illustrated in Section 14.4. To make the master, the utility
will need to have access to a library of font definitions. This step will result in a master that
makes no references to the environment, but will be quite bulky. Moreover, the device­
independence of the result may not increase, since some printers may be incapable of high
fidelity renderings of the graphics required for letterforms.

Document closure is most useful for archival storage. When a document is printed from an
archive, the environment and font library may have changed since the document was created.
By closing a document before archiving it we ensure that it will be printed in the environment
for which it was created.

~9~ Xerox
IiQi!I Private
iIIO. Data

183

16 Utility programs

~9 ... Xerox
~Q~ Private
"""fjy, Data

17

Hints for the creator

This section contains a number of suggestions for the design of programs that create Interpress
masters. These suggestions and hints do not introduce new aspects of Interpress, but rather
summarize observations made earlier.

17.1 Do's and dont's

Don't view Interpress as a general-purpose programming language. The programming-like
aspects of Interpress are provided so that arguments can be passed to operators and so that
composed operators can be formed, not so that long, complex computations can be under­
taken. Generally, the creator is better suited to computing than is the printer. Although some
printers will have ample computing power. most will be optimized for generating images, not
for general computation. Moreover, printers are likely to charge for computing time as well as
for paper and other consumables required to print a master.

Whenever possible, use the simplest Interpress form available to specify a page. This practice
will allow the master to be printed on the widest variety of printers and may cause it to be
printed more efficiently. Consult the discussion of subsets (§ 5.1.1 or Section 19) to determine
those features of Interpress that are most widely supported.

Set up a page coordinate system with a fine enough scale so that masters can use integers
rather than rationals in coordinates. (Section 6.2)

Use the preamble to extract values from the environment and save them in the initial frame.
References to the environment are likely to be much more expensive than references to the
frame, so they should be made infrequently. Also, the printer can optimize the job of obtain­
ing fonts from the environment if fonts are specified only in the preamble.

Use CORRECf freely to protect against changes in line length brought on by font approxima­
tion and tuning, but try to have access to the right character widths. Correction is relatively
expensive when the tolerance is exceeded, and moreover the corrective steps taken may spoil
the appearance of the image.

Don't use CORRECT when line length changes due to font approximation can be tolerated, as
in many computer-printing applications.

~w~ Xerox
IJ]~~ Private
ftlO. Data

185

17 Hints for the creator

Don't use CORRECf as the principal means to achieve line justification, but only to compensate
for font approximations in an already-justified line.

Use relative positioning (SETXYREL, SETXREL, SETYREL) when the relationship between two
adjacent objects is important. Characters within a word and words within a line should be posi­
tioned relative to each other.

Use absolute positioning (SETXY) to locate unrelated or loosely-related objects on the page.
Thus the overall position on the page of an entire line of text should be set with global
positioning, though the spacing within that line should be relative.

Don't use more that 250 relative positioning commands (SETXYREL, SETXREL, SETYREL) be­
tween absolute positionings (SETXY). Since each character operator calls a relative positioning
operator, this means that fewer than 250 characters should be SHOWn between absolute
positioning commands.

Be sure to use sufficient precision in calculating the measure of text lines (Section 10.4.2).

Don't let matrix concatentation nest too deeply, lest computation errors accumulate. A depth
of 8 is completely safe even for high precision.

Don't create an excessive number of composed operators. While they save space in the master,
they require space and computation time at the printer. A master is not intended to be a struc­
tured program.

If a value is needed in only one place, supply it as a literal in that place, rather than storing it
as an element in the frame. Even if it is used in several places, it is better to supply it each
time if it is a number; only larger values like vectors and transformations are worth saving.

Take advantage of the saving and restoring facilities of DOSA VE, DOSA VEALL. and
DOSA VESIMPLEBODY to save and restore imager variables. This is especially useful when
changes may be nested inside other changes, e.g., for the current transformation. priority­

Important, and co"ectPass. The correct procedure is to save the current setting. change the vari­
able appropriately. execute the code that requires the change, and restore the original setting.
This allows changes to nest nicely.

Don't set imager variables measured in device coordinates directly with ISET except when
saving and restoring them. Use the functions SETXY, SETXYREL, SETXREL, SETYREL. SETCOR­
RECITOLERANCE, and SETCORRECfMEASURE instead.

Don't modify the current transformation except with CONCA IT and saving/restoring operations.

Don't set priorltyimportant to a non-zero value unless necessary.

Don't use non-uniform scaling (SCALE2) unless you know what you're doing. While it may be
tempting in some applications to set up a page coordinate system that uses different units in x
and y, beware that all calls on character operators will propagate the effects of the different
units so that characters will appear elongated or heightened. This distortion can be compen­
sated by an appropriate non-uniform scaling transformation passed to MODIFYFONT when the
font is defined. Distortions to graphical strokes, rectangles. and pixel arrays, however, cannot
be compensated easily.

~Wl/Jt. X era x
I!nill P riv ate
iII[j~ Data

Introduction to Interpress 17

17.2 Good Interpress style

In order to present material in an easily-understood order, not all examples in this Introduction
use "good Interpress style." This section lists, for each example, suggestions for improving its
style. Stylistic suggestions fall into five categories:

P A page coordinate system should be used, so that coordinates in the page bodies can be
represented using integers (see Sections 5.3.4 and 6.3).

F Fonts should be set up in the preamble and saved in frame elements. Then SETFONT is
used in a page body to pass the font to the imager routines.

X SETXREL can be used rather than SETXYREL when y= O.

S Saving and restoring state can be achieved with DOSA VESIMPLEBODY. This suggestion is
accompanied by references to appropriate line numbers in the example, in parentheses.

Table 17.1 Stylistic flaws in examples

Example P F X S Comments

3.1 •
3.2 • •
3.4 • •
3.5 • •
3.6 • •
3.7 • •
4.1 •
6.2 •
6.6 (8,12)
9.1 •
9.2 •
9.3 •
10.1 Absolute character positioning should be avoided.
10.7 (1,3)
10.8 (1,4)
10.10 (1,3)
10.12 (2,6)
10.13 (2,4,8,9)
10.14 (2,4,8,12)
10.15 (14,17)
14.9 •
14.10 •
15.1 •
15.8 •
15.9 •

~ ... Xerox
I]~Q!I Private
"'LJ~ Data

lR7

17 Hints for the creator

17.3 Miscellaneous techniques

1 RR

This section presents a number of techniques that may be useful in preparing masters, but may
not be obvious from the preceding discussion of Interpress.

17.3.1 Adaptive transformations

It is possible to compose a nlaster without knowing the physical size of the medium on which
it will be printed. The idea is that at the beginning of each page body, some Interpress code
will interrogate imager variables to determine the size of the medium and set the current trans­
formation accordingly.

Let's illustrate this technique. Suppose that a page body is prepared assuming the origin (0, O)
will be in the lower left corner and the point (xmax, ymax) will be in the upper right corner.
The following mixture of Interpress and Pascal-like code alters the current transformation so
that the page's coordinate system will map into the Interpress coordinate system:

jieldYSize: = jleldYMax-jleldYMin;
jleldXSize: = jleldXMax- jleldXMin;
mediumAspect: = jleldYSizeljleldXSize;
pageAspect : = ymaxl xmax;
if mediumAspect > pageAspect then scale: = xmaxl jleldXSize

else scale: = ymaxlfieldYSize;
< - xmax/2 - ymax/2 TRANSLATE

scale SCALE

> . .
jleldXMin+ jleldXSize/2 fieldYMin+ jieidYSize/2 TRANSLATE

CONCAT CONCAT CONCA TT

This code interrogates imager variables to find out the dimensions of the field, the region of
the medium on which an image can be placed (§ 4.3.1). By comparing the aspect ratios of the
medium and of the page to be printed, it determines whether the width or the height will be
the controlling dimension that determines the overall scale factor. Then a transformation is con~
structed to center the page within the field. The transformation is formed in three steps: the
page body will be translated so that the origin becomes the center of the page, then the entire
page will be scaled, and finally translated so that the origin is placed at the center of the field.
This procedure could be translated into an Interpress composed operator and executed at the
beginning of each page body.

A variant of this procedure could rotate the page if necessary to obtain a favorable aspect ratio.

17.3.2 Obtaining a character's width in the master

Although the character metrics are not directly accessible to the master, it is possible to deter­
mine a character's width. Since a side effect of SHowing a character is to change the current
position, we can determine a character's width by examining the change. Moreover, we can
prevent the character from actually being printed by using the imager variable no/mage (§ 4.8).
The following example illustrates the idea:

t4YIIJ. X e ro x
IliQ~ Private
"'LJ~ Data

Introduction to Interpress 17

--Example 17.1. Assume SETFONT has set proper font.--
--0-- 2160 3400 SETXY --set current position to someplace reasonable~-
--1-- {
--2-- 1 14 ISET - - set no/mage= 1--
--3-- MOVE --change current transformation so origin at current position--
--4-- <c> SHOW --show the character--
--6-- GETCP --compute current position. in current coordinate system--
--6-- } DOSAVESIMPlEBODY --protect against permanent imager variable changes--
--7-- --stacK has <widthX. widthY> in current coordinate system--

This example will measure the character width in whatever units are used for the current coor­
dinate system.

17.3.3 Overriding character widths

Sometimes a master wishes to use the graphic images from a font but to override the widths
associated with each character. The following example shows how a single character might be
imaged:

--Example 17.2. Assume SET FONT has set proper font.--
--0-- {
--1-- <c> SHOW --show the character--
--2-- } MAKESIMPlECO OOSAVEAll --restore current position. CORRECT state
--3-- xWidrhyWidrhSETXYREl --put your widths here--
--4-- CORRECTMASK --call to CORRECT machinery--

Variants of this example would be required for space characters, since they must call COR­

RECfSPACE (Section 9.3.2). Note that the x and y arguments to SETXYREL are in the coordinate
system current when the code above is executed, not in the character coordinate system.

If character widths are to be routinely overridden, it is possible to define a new font by giving
a definition of each character operator as a composed operator that prints a character from
another font (the "real" one) and then sets the width appropriately. A character operator in
this font might look like:

--Example 17.3.--
--0-- {
--1-- {
--2-- 1 SETFONT --set the font to the "real" font--
--3-- [13] SHOW --show the character corresponding to this operator--
--4-- } MAKESIMPlECO OOSAVEAll --restore font. current position. CORRECT state
--6-- xWidthyWidthSETXYREl --put your widths here--
--6-- CORRECTMASK --call to CORRECT machinery--
--7-- } MAKESIMPlECO

If font 1 is defined with a transformation of < 1 SCALE>, then the widths on line 5 will be
given in the character coordinate system. An appropriate scaling transformation can be applied
to the font of which the composed operator in Example 17.3 is a part.

17.3.4 Obtaining more frame space

For particularly complicated masters there will not be enough space in the frame to hold all
the fonts required. In this case, the fonts can be packaged into a Vector, which is then stored
in a single frame element. The GET operator can then be used to obtain individual elements of
the vector. This idea is exemplified below:

!4.~ Xerox
l1~iI Private
iIILJ~ Data

189

17

lQ{)

Hints for the creator

--Example 17.4.--
0-- BEGIN { --begin preamb1e--
1--
2--
3--
4--
5--
6--
7--

8--

o FGET 1 FGET 2 FGET
50 MAKEVEC 0 FSET

}
{
14 SET FONT

o FGET 38 GET 12 ISET

--fill up frame elements 0-49 with fonts 0-49--
49 FGET --put all 50 fonts on the stack--

--make a 50-element vector and save in jTame[O]--
--fill up frame elements 1-49 with fonts 50-99--

--begin page body--
--set current font to font 63--

--set current font to font 38--

9-- }
--10-- END

17.3.5 Using local variables in the stack

Although the stack is normally used only to pass arguments to operators and not to store local
variables, the stack operators can be used so as to give frame-like access to the stack. In par­
ticular, we can define "stack-get" and "stack-set" operations, similar to FGET and FSET. These
operations are defined below not as operators or as composed operators, but rather as
sequences of Interpress program that can be inserted in a master to obtain the desired effect.
StackGet(j) retrieves the element j deep in the stack and places a copy on the top of the stack.
StackSet{v. j) sets the element j deep in the stack to v.

<Xi Any> ... <x1: Any> Stack Get -+ <Xi Any> ... <x1: Any> <xj : Any>
where the· element j deep in the stack is copied onto the top of the stack. This effect
can be achieved with the Interpress program <j 1 ROLL DUP j+ 1 j ROLL>.

<Xi Any> ... <x1: Any> <v: Any> StackSet -+ <v: Any> <xj _ 1: Any> ... <x1: Any>
where the element j deep in the stack (not counting v) is replaced by the value v. This
effect can be achieved with the Interpress program <j+ 1 j ROLL j 1 ROLL pop>.

17.3.6 Loops

Although the base language does not contain iteration constructs explicitly, recursive functions
may be used to obtain the effect of loops. For example, the definition of *EQN in § 2.4.8 can
be restated as:

--Example 17.5.--
0-- --return 1 if (abEO> --
1-- 2 COPY EO { POP POP 1 } IFELSE {
2-- --return 0 if not both vectors--
3-- 2 COPY TYPE 3 EO EXCH TYPE 3 EO NOT { POP POP 0 } IFELSE { 0
4-- -- define compare{a. b. i. op) = 1 if aand bhave same length and
5-- a[j+a.l]=b[j+b.l] for j=L .a.n-l --
6-- {O FSET 1 FSET 2 FSET 3 FSET -- frame[O]"'op. jTame[1]=i. frame[2]=b. jTame[3]=a --
7-- 3 FGET SHAPE 4 FSET 5 FSET -- frame[4]=a.n. jTame[5]=a.l--
8-- 2 FGET SHAPE 6 FSET 7 FSET -- frame[6]=a.n. jTame[7]=b.l --
9-- 4 FGET 6 FGET EO { 0 } IFELSE { -- return 0 if a.n=b.n--

--10-- 1 FGET 5 FGET GE { 1 } IFELSE { -- return 1 if f>a.n. i.e .• compares are done
--11-- 3 FGET 1 FGET 5 FGET ADD GET 3 FGET 1 FGET 7 FGET ADD GET
--12-- EO NOT { 0 } IFELSE { -- return 0 if a[i+a.l]=b[i+b.l] --
--13-- 3 FGET 2 FGET 1 FGET 1 ADD 0 FGET 0 FGET DO -- return compare{a.b.i+1.compare) --
--14-- } IF } IF } IF
--15-- } MAKESIMPLECO DUP DO
--16-- } IF } IF

This definition suggests how we could make a general iterator composed operator. We shall
define a routine iterate(a, b, op, iterate) which executes <i op DO> for a<i<b. Because iterate

~9 .. Xerox
i!QiI Private
'fifO. Data

Introduction to Interpress 17

must call itself, it must be passed itself as an argument (there's no way to place the composed
operator iterate in its own initial frame).

--Example 17.6.--
-- define iterate{a, b,op. iterate} = --

if a>b then return; op{a}; iterate{a+1, b, op, iterate}
0--
1--
2--
3--
4--
6--
6--
7--

{ 4 2 ROLL 2 COpy GT --stack is op,iterate,a,b,{a)b)
{ POP POP POP POP } IFELSE
{ EXCH 4 1 ROLL

2 COpy DO
4 3 ROLL 1 ADD EXCH
4 2 ROLL
DUP DO } IF

} MAKESIMPLfCO

17.3.7 Rounding to a device coordinate

--stack is iterate,b,a,op --
--call op{a)--
--stack is op,iterate.a+1,b --
--stack is a+1,b,op,iterate --
--call iterate{a+1,b,op,iterate)--

Although *DROUND (§ 4.3.5) cannot be called directly from the master, the same effect can be
obtained with the following code:

--Example 17.7.--
-- x y *DROUND => X Y --

--0-- { 1 ISfT 0 ISfT
--1-- TRANS
--2-- 0 0 SfTXY
--3-- 0 IGfT 1 IGET
--4-- } MAKESIMPLECO DOSAVEALL

~ ... Xerox
I]:Q~ Private "'0. Data

--save x,y in current position--
--translate origin to rounded current position--
--set current position to that origin--
--place X Y on stack--
--protect against all imager variable changes--

191

17 Hints for the creator

lQ")

~911!. Xerox tiQ.II P riv ate
"""LJY" Data

18

Printing instructions

When an Interpress master is presented to a printer, it is usually accompanied by some print­
ing instructions that tell the printer exactly what to do with the master. Examples of printing
instructions are the number of copies to print, what kind of paper to use, and what account to
charge. In most cases, these instructions are as vital to the printing of a document as the
Interpress master itself.

Printing instructions appear in two places. A collection of master instructions is encoded as part
of the master itself. Additional external instructions are sent to the printer as part of a printing
request The Interpress printer merges the two sets of instructions. fills in certain printer
defaults if necessary, and then obeys the instructions.

Interpress does not define how external instructions are communicated to a printer. Xerox
printers attached to the Ethernet will use a Printing Protocol to request printing services, to
transmit printing instructions, and to interrogate the progress of a printing request [28].

Some printing instructions are used to fill in a break page that the printer may provide as a
cover sheet for the document being printed and as a way of separating the output from succes­
sive printing jobs. The break page often shows the document name, creation date, printing
date, identity of the printer, name of the person who is to receive the document, optional com­
ments, messages describing errors encountered during printing, and so on. The layout of the
break page is controlled by the printer. Many devices have no way of physically separating out­
put from different masters, and it is therefore important to have an easily recognized break
page.

This section gives examples of the most common printing instructions that apply in an office
or computing environment. More complex needs require understanding the details of printing
instructions, covered fully in § 3.3.

18.1 Standard instructions

Interpress defines a set of standard printing instructions. Some of the instructions are
associated with the master itself, and not with the printing request. These are generally
prepared when the master is created, and include such things as the document name. the
creation date, the size and type of paper to use to print it, and so on. Others, such as the
number of copies to print, are usually part of the printing request.

r.:======;-J
~ ... Xerox
II]~!I Private
ifO. Data

193

18

194

Printing instructions

The list below is divided into master and external instructions, although Interpress does not dic­
tate which instructions may be provided with the master or with the request The details of the
interpretation of these instructions are given in § 3.3.3.

18.1.1 Master instructions

• Document name (docName). A text string identifying the document is a very helpful part of
the break. page. In computer printing applications, this name might be the filename under
which the document is stored in the computer's file system.

Note that a printing instruction must identify a font (or at least a character set) that can be
used to print the document name (breakPageFont); otherwise document names in EBCDIC
and ASCII will be confused. This same comment applies to other "text strings" in printing
instructions.

• Creator (docCreator). A text string that gives the name of the program or person who
created the master.

• Creation date (docCreationDate). A text string giving the date and time when the document
was created.

• Message (docComment). A text string to be printed on the break. page.

• Media sizes and types (media). This instruction indicates the size and type of media for
which the document has been formatted. Interpress allows different pages to assume the
presence of media of different sizes or types, but a printing instruction must instruct the
printer which medium should be used for which pages.

• Selection of media by page (mediaSelect). This instruction associates with each page a
medium to carry its image.

• Selective omission of pages when printing one-side only (onSimplex). The creator may indi­
cate blank pages that can be omitted when printing on one side only, but which must be
included if printing on both sides.

• Finishing (finishing). The master may have been constructed to be used in conjunction with
certain kinds of finishing, such as binding, hole-drilling, stapling, etc. This instruction is
often part of a printing request rather than a master.

• Duplex (plex). This instruction will tell the printer that the document has been formatted
for printing on both sides of the paper.

• Hold (docPassword). If the document has special protection associated with it, an instruction
may indicate a password that must be supplied at the printer site before the document will
be printed. The idea is that a person with appropriate privileges must be present at the
printer before printing will begin.

18.1.2 External instructions

• Printed for (jobRecipient). A text string that identifies the person who should receive the
printed document. The font assumed for the string is the same as for the document name.

• Printed by (jobSender). A text string that identifies the person who initiated the printing
request.

• Account (jobAccount). The name and perhaps password of an account that should be
charged for printing the document.

~9~ Xerox
Ii~. Private
iIID~ Data

Introduction to Interpress 18

• Copies (copySelect). The number of copies to print. To work in conjunction with the
IFCOPY operator, ranges of copy number are specified, e.g., 10-13, 15.

• Copy name (copyName). The creato.r may associate identifiers with different copies to be
printed. This name is available to the IFCOPY operator (Section 12.2.1 and § 2.4.7).

• Priority (jobPriority). This instruction controls the priority that the printing job will receive.

Some of the external instructions overlap with master instructions:

• Message (docComment).

• Media sizes and types (media). While the master might specify the media sizes, the request
might specify the media types, e.g., blue paper.

• Finishing {finishing}.

• Duplex (plex).

• Hold (jobPassword).

Some of the instructions may specify simple "utility" functions that a printer is willing to
handle. For example:

• Selected pages (pageSelect). This instruction gives a set of page ranges to be selected from
the master and printed.

• Image shift (x/mageShift). When a document is being printed on both sides of the paper.
it's often convenient to shift the image on odd pages to the right and on even pages to the
left so as to leave more room for drilled holes or binding. This printing instruction tells
the printer to apply such a shift and gives the desired shift amount.

18.2 Encoding instructions

Master instructions are inserted into the master in a body called the instructions body, which
precedes the master's BEGIN token. This body is executed to obtain one or more property vec­
tors that encode the master instructions; these are then merged with the external instructions.
Thus a master with instructions looks like:

{ instructions body } BEGIN {preamble} {page body} {page body} END

The creator may wish to divide the master instructions into two classes:

1. High priority instructions that should override any external instructions, e.g., the document
name, the creation date. the document password.

2. Low priority instructions that may be overridden by the external instructions, e.g., the size
and type of paper to use.

The conventional way to encode these instructions is to use the following template:

--0-- { --beginning of instructions body--
--1-- --construct a property vector for lowpriority instructions--
--2-- EXCH
--3-- --construct a property vector for high priority instructions--
--4-- } --end of instructions body--
--5-- BEGIN... --here is the rest of the master--

~9 .. Xerox
.~Q. Private
'fifO. Data

195

18 Printing instructions

If there are no low-priority instructions, lines 1 and 2 may be omitted. Interpress defines
defaults in such a way that low-priority instructions are not often needed.

The need for the EXCH on line 2 of the example arises because of the way Interpress executes the instructions
body. Before execution begins, the vector of external instructions is placed on the stack; the EXCH is exchanging
the low-priority instructions with the external instructions. Thus, when the instructions body finishes execution,
there are three vectors on the stack: the low-priority instructions. the external instructions, and the high-priority
instructions (on top of the stack). These instructions are all merged together, with those defined in vectors closer to
the top of the stack taking precedence over other definitions; hence the division into low and high priority instruc­
tions.

18.3 Standard practice

--0--

--1--
--2--
--3--
--4--
--6--
--4--
--6--

0--
1--
2--
3--
4--
6--
6--
7--
8--
9--

--10--
--11--

Creators should observe some standard conventions in order to insure orderly printing of the
masters they create. These conventions merely require a master to specify a small number of
printing instructions in every master.

A master should always give instructions for breakPageFont. docName, plex, and media. The last
two need not be given if the creator is willing to accept the defaults specified by Interpress (a
printer-dependent default for plex and 8th X 11 inch plain paper for the media). If the media
instruction is given, it is best if it is a low-priority instruction, so that an external instruction
can override it. A master may optionally specify any other master instructions given above in
Section 18.1.1.

Example 18.1 shows about the simplest master instructions. The default media is used.

{ --beginning of instructions body--
--no lowpriority instructions--
breakPageFont --property name--

xerox xc82-0-0 times 3 MAKEVEC --value=font name--
docName --property name--
(Introduction to Interpress) --value=string in breakPageFont--

4 MAKEVEC --construct a property vector for high priority i nst ruct ions--
} --end of instructions body--
BEGIN . . . --here is the rest of the master--

Example 18.2 is similar, but requests 8th X14 inch paper (remember that coordinates are
expressed in meters).

{
media

default 0.2169
2 MAKEVEC
EXCH
breakPageFont

xerox xc82-0-0
docName
<Introduction

4 MAKEVEC
}
BEGIN . .

--beginning of instructions body--
--property name--

0.3666 3 MAKEVEC 1 MAKEVEC --value=vector of MediumDescription-­
- - const ruct low priority ins t ruct i ons--
--as per template--
--property name--

times 3 MAKEVEC --value=font name--
--property name--

to Interpress) --value=string in breakPageFont--
--construct a property vector for high priority instruct ions--
--end of instructions body--
--here is the rest of the master--

~w~ Xerox
I!~Q!II Private "'0. Data

19

Printer capabilities

Not all Interpress printers are required to interpret all the facilities of Interpress. Some printers
may have image-producing hardware that cannot handle complex images; other printers may
have software that can handle only some parts of Interpress. While the Interpress standard can
encompass printers with few or many capabilities, a creator may choose to limit the Interpress
masters it generates so as to be able to print on as wide a variety of devices as possible.

Limitations on a printer's capabilities must be anticipated by the creator when the master is
generated. There are several dimensions along which a printer may be limited:

• The printer may interpret only a subset of the Interpress facilities, i.e., a subset of the
operators and data types defined by the standard. Interpress defines several useful subsets.

• The printer's environment contains only a limited collection of fonts, forms, and so on.
Moreover, the printer may not provide elaborate font-approximation facilities. A master
may limit its use of the environment, for example by restricting the fonts it uses to those
listed in the metric master as having easy net transformations.

• A printer may not be able to handle certain printing instructions (Section 18).

• A printer's hardware and software may impose limits on the total complexity of an image it
can print. A master can reflect these limits: for example, it might place no more than 300
characters on a line, or more than 5000 characters on a page.

Note that these are all limitations of a printer, not of Interpress. In this section, we shall con­
sider only the subset that defines a printer's capability and the problems of limiting image com­
plexity.

The capabilities of a printer must be communicated in some way to the creator. There are two
mechanisms to achieve this: descriptive documentation published by the printer manufacturer
or by the printer installer, and the metric master, which lists the fonts available in the printer's
environment. Future extensions to Interpress will include mechanisms for providing the creator
more information about a printer's capabilities.

~.I!JJ. Xerox
I]g[t Private
ifLJ~ Data

197

19 Printer capabilities

19.1 Subsets

198

Interpress defines subsets of the standard in order to describe a particular printer's capabilities
(§ 5.1). While the notion of predefined subsets cannot capture all of the subtle distinctions that
may crop up in printing hardware and software, they provide some general categories into
which Interpress printers fall.

All Interpress printers are required to implement the text subset, which is described in detail
in § 5.1.1. Text Interpress contains all data types and operators of the Interpress base language
except those involving control, testing, or arithmetic (e.g., IF, EQ, ADD). The text subset con­
tains all the text imaging operators and also the simplest graphical operators: only black ink,
no pixel arrays, horizontal and vertical strokes, simple outlines such as rectangles, translation,
rotation by multiples of 90 degrees. and scaling.

The text subset is the starting point for several possible enhancements, illustrated in Table 5.1
of the Standard For example, the base language can be enhanced to include the Computation
module, which contains the control, testing, and computation operators. The imaging operators
can be enhanced along several dimensions independently. For example. a pdnter that can
handle pixel arrays in addition to the text subset is said to possess the Binary enhancement. A
printer can be characterized by the list of enhancements it supports. If it supports only the text
subset, it provides no enhancements. A printer that supports the Computation and Binary
enhancements can be described as a printer whose subset is "Text with Computation and
Binary."

19.1.1 Limits

One of the dimensions of Interpress subsets is limits. The limits of a printer define the mini­
mum sizes and precisions of various important objects that the master uses. The limits for the
Text subset are given in Table 19.1. Note that these are minimum limits-a printer may exceed
these, for example, it might use maxlnteger=232 -1.

Table 19.1 Limits

Name Where defined Minimum limit

maxlnteger § 2.2.1 224-1
maxldLength § 2.2.2 100 characters
maxBodyLength § 2.2.5 10000 literals
maxStackLength § 2.3.1 1000 values
maxVecSize § 2.2.4 1000 elements
topFrameSize § 3.1 50 elements

19.1.2 Other resource limitations

When the definitions of Interpress subsets are too coarse to describe precisely the capabilities
of a printer, additional descriptive prose must be added to the formal subset definition.

~.~ Xerox
II]Q~ Private
"'O¥ Data

Introduction to Interpress 19

However, in no case mayan Interpress implementation fall short of the functions and limits of
the text subset.

Some of this additional infol1l1ation arises because the subsets are too coarse. For example, a
printer might offer more than 50 elements in its top frame, reasoning that more frame ele­
ments are needed to hold fonts for complex printing jobs. In this case, the printer's capabilities
might be phrased as "Text with topFrameSize limit of 100."

Other examples of the coarse nature of subsets are drawn from imaging operators. If a printer
offers the Text subset, but is also willing to draw diagonal (45 degree) lines, this additional,
function must be specified explicitly. Some printers may be able to handle only certain kinds
of pixel arrays, those which are transfol1l1ed with a particular easy net transfonnation (§ 5.1.2
and Section 13.5). The description of the printer's capabilities will need to list the easy net
transformations it can handle.

Perhaps the most common sort of additional information concerns resource limitations that go
beyond those in Table 19.1. For example, a printer may limit the maximum size of an
Interpress encoding because the disk storage available to it for buffering the master is limited.
Or a printer might limit the maximum number of pages in a master or in a printing job in
order to cope with various operational problems, such as clogging the printing queue with long
jobs.

Generally, a printer's capabilities will be described crudely by a subset description, but addi­
tional detail will be furnished as prose.

19.1.3 Image complexity

Perhaps the most difficult problem in describing a printer's capabilities is that of overall image
complexity. Can the printer produce an image of 50,000 "AU characters? Of 1,000 strokes? Can
it print more strokes if the strokes are only horizontal and vertical and not diagonal? What if
100 characters are all overprinted directly on top of one another? These are questions that have
no simple answers because the answers depend on details of printing hardware. In many cases,
it is impossible to express the capacity of the printer with a formula that will be of use to the
creator.

Some so-called unlimited printers can handle imagery of arbitrary complexity. These printers
operate by storing a raster representation of the page image to be printed. An Interpress inter­
preter clears out the raster at the beginning of each page, after which each imaging operator
makes the appropriate changes to this raster. The interpreter takes as much time as necessary
to make all the required changes to the page image; complex pages require more time than
simple pages. When the interpreter finishes the page, the stored raster is read out and sent to
the printer hardware. This technique requires sufficient storage to save an entire page image
and requires that the rate at which data are read from storage exceeds the data rate of the
printing hardware. Printers of this design have the nice property that they will print arbitrary
pages; simple pages are generated quickly and more complex pages more slowly.

High-speed printers avoid storing the raster image of the entire page by generating it "on-the­
fly" as the printing hardware consumes it. While this technique has impressive perfol1l1ance
advantages, it limits image complexity and leads to limited printers. If the printing hardware is
consuming raster data at a fixed rate, a complex image may require more time to generate the

~9~ Xerox
1i~!I Private
ifO. Data

199

19 Printer capabilities

raster than is available. The printer grinds merrily onward, but the generation of the image
data has fallen behind. Once the data-generation and printing processes lose· synchronization
like this, the rest of the image may be spoiled. The printed page is a mess!

Some printing hardware makes unlimited complexity easier to handle by allowing the printing
to stop if the data-generation process has been slowed down by complexity. As you might
imagine, however, starting and stopping a printing engine frequently is a difficult mechanical
engineering task. Most high-speed printers won't allow it.

19.2 What a printer should tell you

'){\{\

A creator needs to know certain information about a printer in order to prepare masters for it
effectively. The metric master contains some of this information: a list of fonts stored in a
printer's environment and the metrics associated with them. However, additional information is
sometimes required.

Printer information comes from two sources. Some of the information is determined by the
printer hardware and software. and so is specified by the printer manufacturer. Other informa­
tion may be specific to a particular printer installation, and so must be determined by the
organization responsible for installing and operating the printer.

This section attempts to summarize the printer information that should be supplied by the
manufacturer and by the installer.

19.2.1 Manufacturer's information

The following information is generally supplied by the manufacturer of an Interpress printer:

• Subset. What is the subset of the Interpress language that the printer can accept? Besides
subset names, this information should include any prose required to specify the capabilities
of the printer. For example, if only certain pixel arrays can be handled, acceptable easy net
transformations should be listeGi. If the printer restricts resources not listed in the limits
table (Table 19.1), these should be clearly identified. Any special performance hints. espe­
cially any that are counter to intuition. should be explained.

• Image complexity. Is the printer limited or unlimited? If it is limited, some attempt should
be made to characterize the maximum page complexity that can be handled.

• Image fidelity. How precisely can the printer render the image specified in the Interpress
master? In most cases, the resolution of the printing hardware will determine the answer to
this question.

• Font approximations. How are font approximations made? JOe approximation rule used by
the printer software should be described. In some cases, printers might adopt conventions
about the interpretation of hierarchical font names, which should be described.

• SequenceInsertFile. What are the syntax and semantics of sequencelnsertFile?

• Printing instructions. What printing instructions are available? Are there any installation­
dependent printing instructions?

• Transport media and communications. How does the creator communicate with the printer?
This includes information about transmitting masters to the printer, determining the status

~.~ Xerox
II!Q!I P riv ate "0. Data

Introduction to Interpress 19

of a print request, and obtaining the metric master. It is especially important to describe
the kinds of errors that can occur and how they are reported.

• Environment. What are the fixed elements of the printer's environment? Decompression
operators are usually "built in" to the printing hardware, even though they are expressed
as an environment object in Interpress. The function of these operators must be described
precisely so that creators can compress pixel data accordingly. What colors are available?
Some printers may also have a few fonts pelll1anently resident in the environment, which
should be described.

Still more printer infolll1ation will be provided by the manufacturer, such as how to operate it,
how to install fOlll1s on it, how to update fonts, and so on. This infolll1ation is vital to the
operator of the printer, but is not required by the creator software.

19.2.2 Installation information

Each printer installation may be configured differently. If printers have different fonts, the
creator is infolll1ed via the metric master. However, other differences are important to the
creator as well:

• Environment. What fOlll1s are available on the printer to be used with sequencelnsertFile?
What are the hierarchical naming conventions used in the organization, and are there any
guidelines about generating masters so as to achieve maximum device-independence on all
the printers in the organization?

• Printing instructions. An installation may restrict some of the printer's capabilities. For
example, it may stock only certain paper sizes, it may not allow stapling, or it may use spe­
cial cost-accounting practices.

• Operational restrictions. For various reasons, the operator of a printer may restrict its use
in certain ways. The maximum number of pages in a print job might be restricted, or
restricted during certain peak hours in order to keep the printer queue flowing smoothly.
A creator might be able to work around a length restriction, so will need to know about it

Installation infolll1ation could be included in a profile file that the creator reads when generat­
ing a master or when transmitting a master to a printer. In this way, an installation could
change this infolll1ation without having to reprogram Interpress creators.

~.11! Xerox
I!~~ Private
ifO~ Data

201

19 Printer capabilities

,)0,).

~w~ Xerox
~Qi9 Private ""0'" Data

20

Performance

Perfonnance of printing systems is often very important Large computer-printing installations
have many high-speed printers, each printing one or two pages a second, working three shifts
to print enonnous volumes of reports, invoices, shipping fonns, and so on. While the images
on these pages may not be very complex, they must be printed quickly.

Interpress masters can describe simple documents of this sort, but can also define very complex
high-quality images found in books, magazines, and journals. Preparing these more complex
images for printing is a bigger job than making the computer-printing images and can be
expected to require more computing resources.

Interpress accommodates these two perfonnance extremes. For simple images, a master can be
interpreted and printed quickly. If complex image-generation facilities of Interpress are used,
interpretation and printing may slow down. For high-perfonnance applications, a master
should restrict its use of Interpress operators to those that are designed to be handled effi­
ciently.

This section explains some of the considerations behind the perfonnance of Interpress printers
and how to create masters that will print efficiently.

20.1 Interpretation and printing

Most Interpress printers will use a two-step process to print a master. First, the master will be
interpreted and some fonn of device-dependent intennediate representation of each page will
be built The time required for this step will vary depending on the complexity of the master
and a great many other factors. In the second step, the intennediate fonn will be used to drive
the printing device to image the document. For printing devices that operate at fixed rates,
e.g., two pages per second, the time required to carry out the second step is proportional only
to the number of pages printed and not to their complexity.

Some printers will perfonn these two steps serially, that is. the printer will either'be interpret­
ing or imaging. More capable printers will be able to overlap these two processes so that while
one document is being imaged, another document is being interpreted. Some printers will in­
terpret and image entire documents, while less capable printers may interpret and· image on a
page-by-page basis.

~w~ Xerox
~~~ Private 
ifl.J~ Data 

203 



20 Performance 

If several identical copies of a document are being printed, the master needs to be interpreted 
only once to create an intermediate representation that will be used repeatedly to make the 
necessary images. If copies differ due to the use of the IFCOPY operator, those pages that call 
IFCOPY may need to be interpreted once for each copy being printed in order to obtain the 
proper image for each copy. 

20.2 Efficient masters 

J04 

There are three principal ingredients to determining the efficiency of interpretation of an 
Interpress master. First, the kind of imaging operators used is important. Second, a set of 
reasonably intuitive observations about how the master is written apply. And third, as in any 
programming environment, some algorithms are more efficient than others. In addition to the 
considerations discussed here, Section 17.1 provides a number of hints that lead to efficient 
masters. 

20.2.1 Imaging operator efficiency 

Interpress masters that build only simple images will be interpreted more efficiently than those 
that use complex facilities. Interpress imaging functions can be broken into three rough classes: 

1. Formatted multi-font text (Examples 3.2, 3.5, 3.7) 
• text positioned with SETXY and printed with SHOW 
• only easy character transformations (Section 13.5) are used 
• narrow horizontal and vertical strokes, or "rules" 

2. Line drawings. Class 1 plus: 
• arbitrary strokes 

3. Complex images. Class 2 plus: 
• filled outlines 
• pixel arrays 
• colors other than black 
• priority 
• complex instancing 
• arbitrary character sizes and rotations 

These classes are only suggestive: some printers may provide special features that make certain 
functions in Classes 2 or 3 just as efficient as those in Class 1. For example, a printer might 
support a certain kind of pixel array just as efficiently as text characters. 

20.2.2 Interpretation efficiency 

Programmers learn over time which programming constructs are efficient and which are slow. 
For example, Pascal programmers are often admonished: "Don't pass arrays by value unless 
you must, because the entire array is copied on each call." Some of these lessons are quite 
intuitive, such as that comparing two pointers for equality is faster than comparing two records 
for equality. Others may have no intuitive basis, but simply reflect implementation perfor­
mance of the language's compiler or of the computer on which it runs. 

~w~ Xerox 
1i~!I Private 
.[j~ Data 



Introduction to Interpress 20 

The Interpress language has the same properties. Intuition and the descriptions in the Standard 
are generally helpful guides to the resulting interpretation speed. Perhaps the most important 
thing to remember is that interpretation speed depends in large measure on the number of 
tokens that must be interpreted. Thus, for example, using a sequence String token to encode a 
vector of character codes will be far more efficient than the equivalent form that stacks each 
element of the vector and constructs a vector with MAKEVEC. 

Performance is increased if the number of calls on primitive operators is decreased. Thus it is 
far more efficient to print a twenty-word line of text using a single call to SHOW than to use 
twenty calls. to SHOW, one for each word. 

Interpress encounters some overhead in calling composed operators, just as conventional 
programming languages often have Significant procedure-call overheads. Thus composed 
operators are helpful in saving space in the master, and necessary in some contexts (e.g., 
IFCOPY'S testCopy argument), but generally reduce interpretation speed. 

20.2.3 Algorithm efficiency 

Some algorithms are inherently more efficient than others. This observation applies to image­
generation algorithms just as forcefully as it does to sorting algorithms. Although Interpress 
provides a number of ways of specifying identical images, the performance of the methods 
usually differs. A simple technique that costs dearly in performance and doesn't achieve much 
image-generation is writing Hwhite" to obscure parts of an image that need never have been 
generated. Example 15.8, which uses this technique, is likely to be much slower than its equiv­
alent that uses strokes, Example 3.1. While you might choose to view the difference in perfor­
mance as a difference between the speed of Interpress operators, it is also a difference in basic 
image-generation algorithms. 

20.2.4 Performance constraints 

Some printers may choose to define constraints on Interpress masters so that they will execute 
efficiently. Such a printer must still implement all of the Interpress standard for a particular 
subset. but it need not implement all features equally efficiently. For example, a performance 
constraint might dictate that certain master coordinate systems will require less computation 
than others, perhaps because the coordinates correspond exactly to device-dependent 
coordinates. However, such a printer must still allow arbitrary master coordinate systems, 
subject only to the restrictions imposed by Interpress's subsets (§ 5.1.1). 

~9~ Xerox 
IiQ~ P riv ate 
ifO. Data 

205 



20 Performance 

~w~ Xerox 
I}£Q~ Private """0" Data 



21.1 Errors 

21 

What can go wrong 

When an Interpress master is printed, there are a number of things that can go wrong. There 
are two broad classes of problems: operational problems related to the particular printing 
request made, and problems with the Interpress master itself. 

There are a number of operational problems that may crop up, such as a broken printer, a 
paper. jam, incorrect routing of the printed document, and so on. The printer may reject a job 
because its supply of the right kind of paper is exhausted, because a data error is detected 
during the transmission of the master to the printer, or because the requestor has exceeded his 
alotted printing funds. Some of these operational problems are transitory. such as when the 
printer's job queue becomes full. In this case, the requestor can try again later. 

Once past operational impediments, problems may arise because of the construction of the 
master. Interpress printers are designed so as to minimize the disastrous effects of errors in a 
master: in most cases, the interpretation of a master can continue without spoiling more than 
the one page where an error occurred. Some errors, however, such as those detected when the 
preamble is executed, may prevent printing any part of the document. 

Printing errors are divided into two categories: appearance errors and master errors. 
Appearance errors are those that affect only the appearance of a page; in effect, these are 
errors detected by the imager. Master errors signal problems that arise as the master is decoded 
and interpreted; these errors are detected by the interpreter. 

Errors are further divided to yield four categories: 

• Appearance warning. An appearance warning signals that the image created by the printer 
will differ in a small way from the ideal image specified in the Interpress master. but the 
perceived content of the image will not be changed. For example, a font approximation 
generates an appearance warning. 

• Appearance error. An appearance error indicates that the imager had to make an 
approximation to the ideal image represented in the master in such a way that the 
resulting image will not appear to be correct. For example, if an imager cannot print a 
pixel array mask that is specified in the master, an appearance error will result. 

~w~ Xerox 
I]Q~ Private 
ifO~ Data 

207 



21 

208 

What can go wrong 

• Master warning. A master warning indicates that the interpreter has encountered an error 
whose severity is not likely to prevent the interpreter from continuing. For example, arith­
metic overflow or division by zero cause master warnings. 

• Master error. These errors signal problems so severe that the interpreter cannot continue to 
execute the master normally. For example, stack underflow and calling FGET with an out­
of-range argument generate master errors. The interpreter takes explicit error-recovery 
measures to try to continue printing. 

21.1.1 Error logging 

An Interpress printer should provide diagnostic information about each error it encounters. 
This information can often be printed on the break page, but may be presented in other wayS 
as well. An error indication should include, at a minimum: 

• the page number; 

• the class of the error (appearance warning, appearance error, master warning, or master 
error); 

• some indication of the nature of the error. 

Printers should take care to be sure that the error listing is meaningful. Suppose, for example, 
that the master makes 503 calls to the SETGRA Y operator and that 304 of them cause 
appearance errors because they specify a color other than black, which is the only color the 
printer can handle. Printing 304 error messages is not a good idea. Most users would be con­
tent with a single error message that indicated that the printer cannot handle gray, perhaps 
with a list of pages that will not be correctly printed. By contrast, each font approximation that 
is made should be clearly indicated in the error listing, giving the name of the requested font 
and the name of the one actually used. 

A printer may provide more comprehensive diagnostic information for the benefit of a 
programmer who needs to track down the cause of the error. The information might include 
such things as the location in the master where the error occurred, the contents of the stack at 
the time, the name of the primitive operator that caused the error, etc. Since most users will 
not want such detailed infonnation, the printer might provide it only if requested by a printing 
instruction. 

21.1.2 Error recovery 

In addition to logging an error, the printer must recover and continue interpreting the master 
if possible. In the case of appearance warnings, appearance errors, and master warnings, the 
interpreter can continue normally. In the case of master errors, the interpreter needs to take 
drastic action before resuming interpretation. 

The MARK mechanism, explained briefly in Section 12.1.4 and fully in §§ 2.2.3, 2.4.1, and 2.4.6, 
is used to indicate points in the master where interpretation can resume normally after a 
serious error. The details of this mechanism are explained in § 2.4.1. Each page body is 
executed with mark protection, so that if a master error occurs within a page body. the 
remainder of the page body is not interpreted, but interpretation of the next page body can 
proceed without difficulty. Note that even if a page body is not interpreted completely, a page 
will be printed that contains any output that was successfully generated before the error 

~w~ Xerox 
~O~ Private 
"""0 .... Oata 



Introduction to Interpress 21 

occurred. If a master error occurs while interpreting the preamble, the printer might not be 
able to generate any output besides a break page that indicates the error. 

21.2 Examples of errors 

General discussions of errors are useful and reassuring, but fail to give a feeling for all of the 
kinds of things that can go wrong. This section attempts to give a list of the most common 
types of errors. Each error is annotated with a code that indicates whether it is an operational 
error (0), an appearance warning (Aw), an appearance error (Ae), a master warning (Mw), or a 
master error (Me). Some printers may not classify these errors in the ways indicated by the 
codes. 

21.2.1 Starting a printing jo b 

• The printer's job queue is full (0). 

• The printer encounters a data error while reading the master from the medium that was 
used to transmit it to the printer (0). 

• The printer is not working (0). 

• The printer is lacking necessary supplies, such as paper or staples (0). 

• Insufficient funds are available.in the account to be charged for the printing job (0). 

• The printing job cannot be handled because of operational restrictions, such as limits on 
the maximum number of pages printed in a job (0). 

• An error occurs when the printer tries to interpret the printing instructions that accompany 
the master (Me). 

2102.2 Printer capabilities 

• The printer's interpreter is of the wrong subset, as indicated by invoking a primitive 
operator that is not implemented (Mw or Me). 

• One of the printer's limits is exceeded, such as the maximum stack depth (Me). 

• Some printer resource, not given explicitly as a limit, is exhausted (Me). For example, 
storage for composed operators and vectors might be exhausted. 

• A printing instruction requests a capability that the printer does not have, such as stapling 
(0). 

• The master requests a capability that the imager does not have, such as gray scale, or scal­
ing a pixel array or a character using a transformation that is not among the easy net trans­
formations of the printer (Ae). 

• The printer is limited, and one or more of the pages specified in the master are so complex 
that the imaging-generation hardware cannot keep up with the printer mechanics (Ae). 

2102.3 Problems with the master 

Master errors and warnings: 

• 

~9~ Xerox 
li~iII P riv ate 
"l.J~ Data 

The Interpress master is not well-formed (Me). That is, the header, BEGIN, END, and well­
formed page oodies cannot be found. 

209 



21 

210 

What can go wrong 

• The Interpress master is not encoded properly (Me). For example, a primitive operator 
code or a sequence type may be out of range, or the rules about encoding body operators 
have not been followed. 

• A reference to the environment generated by sequencelnsertFile or FINDDECOMPRESSOR can­
not be honored (Mw). 

• One of the arguments passed to a primitive operator is not of the correct type or in the 
correct range (Me). For example, <1 SHOW> and < -1 IGET> will generate master errors. 

• The master "program" does not terminate (Me). Printers will usually take some steps to 
detect whether a master is looping, such as establishing a maximum interpretation time or 
detecting the absence of calls to imager operators that actually generate output. 

• A computational error occurs (Mw). Division by zero and GEfCP applied to poorly-condi-
tioned transformations are examples. 

Appearance errors and warnings: 

• A font approximation is made (Aw). 

• The master has been created in such a way that the image is greatly distorted in the 
presence of font approximations. This causes no error beyond the appearance warning that 
accompanies a font approximation. 

• A font that is requested can be neither-matched nor -approximated (Ae). 

• Part of the image lies off the page (Ae). 

While these lists of errors may seem imposing, in practice many of the errors occur very infre­
quently. Not counting operational problems. the only errors that are likely to occur frequently 
are appearance warnings resulting from font approximations, and even these can be mostly 
avoided by keeping adequate font libraries with printers. 

~w~ Xerox 
e-!~~ Private 
"'[j~ Data 



22 

Interpress systems 

Interpress masters can play the central role in many kinds of computerized systems for the han­
dling of documents, pictures, or graphical information. While this report and the Interpress 
Standard both emphasize the application of Interpress to printing documents that are created 
by data- or word-processing software running on large computers or individual workstations. 
Interpress can be profitably used in many other ways. 

This section deals with the application of. Interpress to a wide. variety of printing and image­
preparation tasks. There are three principal parts to the discussion: 

• Interpress is a common format for expressing the output of diverse image-preparation sys­
tems. 

• Interpress allows heterogeneous printing environments to be constructed that serve a 
variety of printing needs. 

• Interpress can be applied to a number of new or unconventional applications. 

22.1 Interpress as a common output format 

Interpress can be used as a common format to assemble parts of a document that are created 
with different composition or illustration systems. We have seen in Section 1.5 and Section 16 
how Interpress masters can be manipulated in order to combine pages from several masters or 
to merge onto a single page information from several masters. These techniques allow many 
different creators to cooperate in the generation of a single document. 

Usually Interpress is but one of several data formats that are essential to an application. 
Consider, for example, a document-editing or composition system that provides a way for an 
operator to edit a document interactively. A version of the document is displayed on the screen 
to provide the operator with visual feedback on the current format of the document Between 
editing sessions, the system saves a digital document representation on some permanent medium 
such as a floppy disk. It is this representation that records the current state of the document 
and that the operator "calls up" when further editing is necessary. That document representa­
tion is not an Interpress master. Normally, it records the content of the document, with only 
minimal record of the form of the document. While various formatting commands might be em­
bedded within the text, these commands are not like the graphical constructs of Interpress. 

~w~ Xerox 
Ii:a~ Private 
""f.j~ Data 

211 



22 

212 

Interpress systems 

Thus. a command can say "start a new paragraph" but give no details of where on the page 
the paragraph should be placed. or how much to indent the paragraph. or how much space to 
leave between it and the previous paragraph. When the operator wishes to create a hard copy' 
of the document, he invokes a program to convert the document representation into an 
Interpress master. The program might be called a fonnatter or composition system or document 
compiler or simply a translator. It uses the document's content and its format information to 
determine the physical form that the document should take; this physical form is then 
represented as an Interpress master. In some systems. the operator is unaware of the process 
that translates a document into Interpress form: he simply issues a "print" command, and goes 
to fetch a cup of coffee while the various conversion programs do their work. 

This example illustrates that while Interpress masters provide the key interface between an 
image-creation process and an image-rendering process, applications usually require other data 
representations as well. Thus Interpress serves as a common format for all images destined to 
be printed, but the images are usually constructed by computer programs from other. non~ 
Interpress. representations. 

Figure 22.1 illustrates some of the different ways that material can be prepared as Interpress 
masters and then combined into one final document: 

• Composition systems. A digital representation of the document is prepared with the aid of 
an interactive text editor or word-processor. The representation often includes embedded 
codes to control composition. When a hard copy is needed. the composition program 
generates an Interpress master from the document representation. Some composition sys­
tems are able to show on a display a close approximation of the final page. with text in the 
proper position and presented with fonts that are roughly equivalent to those that a printer 
will use. These are sometimes called "integrated composition systems." in which the distinc­
tion between the editor and the formatter is hidden from the user. 

• CompOSition systems driven from data bases. Often documents are prepared directly from 
databases. such as price lists, stock quotations, airline timetables. or financial sheets. In one 
application. the entire body of laws for a state are organized into a database that can ~e 
used both for preparing hard copy and for interactive search and retrieval. Several diction-' 
ary and encyclopedia publishers maintain a similar database: it can be queried or updated. 
but it can also be used as input to a composition system that will typeset the reference 
book. 

• Illustration system. An interactive program can be used to prepare line-art illustrations in 
much the same way a text editor is used to prepare text 

• Office Information System. Advanced systems such as the Xerox Star [18, 19, 21] integrate 
composition, record-keeping. and illustration into it single workstation. The user sees a col­
lection of facilities. carefully designed to be operated easily and to work together. Although 
these integrated systems are already equipped to handle many applications together, their 
use of Interpress as an output medium makes them able to participate in a more diverse 
system. 

• Document scanner. Photographs, drawings, or other documents can be scanned to obtain a 
digital facsimile record. A scanning system can provide a display to view the scanned result 
and interactive commands to size. crop, enhance, and position the image. The result is 
expressed in an Interpress master using pixel arrays. 

~9~ Xerox 
II]~Q~ Private 
ftlU~ D,ata 



Introduction to Interpress 

Interpress 
masters 

Composi- = 
---I tion .---....... r ~ 

system - _~ 

Database __ -II Fonnatter I-I-~ 

~ Illustrator I t--- L ~ 

~Document 
scanner 

~--------------------------. 

Spool file I p!~1 t-- r ~ _-:...S_POO_I_er ..:---.... B 

I Turnkey 
system 

Figure 22.1. Interpress as a common output fonnat. 

Utility 

program 

22 

Interpress 
master 

Final 

document 

• Data-processing programs. Most data-processing programs print some fonn of output, 
either a summary history of the program's execution and resource utilization or a larger 
"listing" that is one of the program's principal results. While these listings are often 
represented in a fonnat designed originally for a line printer. a second program can con­
vert these into Interpress masters. 

• "Turnkey systems." A great many other systems fit into the same general model: they 
prepare descriptions of images that can be expressed in Interpress. For example, a 
computer-aided design system that builds and analyzes a model of an electronic circuit will 
have a command to make a logic drawing of the design. Typing this command will cause 
the program to prepare an Interpress master that can be printed. 

Each of the systems in Figure 22.1 uses Interpress principally as a hardcopy output fonnat: an 
Interpress master is prepared in order to control some kind of printing device. 

~w .. Xerox 
I]~Q~ Private 
ifLJ~ Data 

113 



22 Interpress systems 

The figure shows another function, however: all of the systems are contributing to a single 
document Each one creates one or more Interpress masters, which utility programs merge 
appropriately into a single document. Because Interpress masters can be merged in this way, a 
wide variety of systems can be used in the preparation of a single document. The systems need 
not be located together, nor manufactured by the same company, nor even operated by the 
same organization. Old equipment can be retired and new equipment added to the system. 
without introducing compatibility problems. All that is required is that the systems that con­
tribute to the final document generate Interpress masters as output 

The Interpress master is the only common element necessary in this diverse set of document­
preparation tools. This is a relatively weak requirement, which thus allows each participating 
system to be customized to its particular task. While it might be possible to integrate into a 

, single system all the functions illustrated in Figure 22.1, the integration task would be difficult, 
and the system might be inflexible and hard to change. 

In more traditional manual document preparation systems, paper or fihn are used to integrate 
images from several sources into one document. Each image-generation scheme. whether a 
typesetting machine or an artist with a brush. generates the common format of cuttable paper. 
The document assembly is then performed with knife and glue, yielding after suitable copying 
another piece of paper. which can be used as a final copy or used as input to yet another 
preparation process. By analogy, in a document preparation and publishing endeavor, 
Interpress serves as electronic paper. 

22.2 Heterogeneous printing environments 

214 

Just as many different kinds of equipment can participate in the preparation of Interpress 
masters. many kinds of printing equipment can print masters. Different equipment may have 
different capabilities or speeds, or may be located in different places. If several printers are 
connected together with a computer communication network, they constitute a heterogeneous 
printing environment in which Interpress masters may be transmitted to and printed on any 
printer. Such a network is depicted in Figure 22.2. 

The selection of a printer may depend on a number of factors, such as whether the printer is 
fast or slow. whether printing is expensive or cheap, how close the printer is to the place where 
the output is needed, what sizes or kinds of media are available on the printer, whether the 
equipment is operating or down for maintenance, whether the printer is capable of color or 
black and white, whether the printer is idle or backlogged, whether the printer's environment 
has the necessary fonts, and so on. A master might be sent to more than one printer in order 
to distribute copies to several geographic sites or to increase the printing rate of a large job by 
harnessing several printers at once. 

While a heterogeneous printing environment offers a great many advantages, the geographic 
distribution of printers is probably the most noteworthy. Each floor of a large building or each 
branch office of a company might have a printer or printers handy to the people who work 
there. Printers might also be distributed by function, e.g., each of the several engineering 
services offices in a large company might have a printer to print engineering drawings 
prepared on computer-aided design equipment. A heterogeneous environment might be 
operated as a service business, with printers spread about many cities and courier service to 
deliver printed output. Such an environment might be connected to one or more public com­
munication networks that clients could use to send masters to the printers. 

AWII!, Xerox 
II]Q!I P riv ate 
ifO~ Data 



Introduction to Interpress 

Remote office with word processing 

Ethernet 

-- - - - - - - - - --, 
, Reproduction Center , 

I ~ I 

, ' l __________ J 

-- - - - - - - - - --, 
, Printer , 

: ~ T I 
, ~ I 

l --------------------, -----------

22 

Corporate office 

Ethernet 

I 0 , Workstation 

1001 Computer data processing 

IBI File server 

rn Communications interface 

D Local printer 

~ High speed printer 

o Phototypesetter 

Figure 22.2. Heterogeneous printing environment. 

22.3 Interpress applications 

While the principal applications of Interpress have already been discussed, this section ex­
amines a few in more detail and shows how a standard electronic representation of a printable 
document can lead to new applications. 

22.3.1 Digital interface to printing 

Just as Interpress is invaluable for the creation and editing of documents-the so-called pre­
press operations-it is also very useful to an organization whose business is printing. An 
Interpress master and its printing instructions together constitute a complete digital specifica­
tion of a print job. The scale of this job could range from a single copy of a one-page black-

~w .. Xerox 
Ii~QiII Private 
if{j~ Data 

215 



22 

216 

Interpress systems 

and-white memo to several million copies of a bound full-color catalog. In both of these 
extreme cases, all of the information necessary to specify the job is recorded digitally: the 
master describes the printed images and the printing instructions provide the additional 
information such as how many copies to print. 

Such a digital interface to printing allows the design and creation activities to be separated 
from the printing steps without danger of imperfect communication between the designer and 
the printer. The creation of Interpress masters can be undertaken by authors, illustrators, book 
designers, and publishers. Proof copies can be obtained by sending the master to a low-speed 
raster printing device accessible to the people creating the document. When the document is in 
final form, the master can be sent by a computer communication network to a printing plant, 
where the large-scale printing job is done. 

The printer can treat the Interpress master in many different ways. If the job is a small one, 
the master can be sent to an Interpress laser printer that prints the job directly. Because laser 
printers are not practical for large jobs, the printer might prefer first to prepare images of each 
page on photographic film that can then be used to expose offset printing plates or to engrave 
gravure press cylinders. To prepare the film, the printer uses an "Interpress film printer." 
which is similar to a phototypesetter, but uses Interpress masters as its controlling input. With 
modem technology for exposing offset plates or engraving gravure cylinders directly from a 
digitized raster image, the Interpress film printer could prepare the printing plates directly. 

Interpress 
masters 

B 

~ 
Laser printer 

Phototypesetter 

D'm 
Direct engraver 

Plate 

D 

Gravure 

cylinder 

o 
Figure 22.3. Some of the printing options. 

Offset press 

8 8 " 
Gravure press 

88" 
While Interpress masters fonn the basis for a fully digital interface between a client and a 
printing plant, Interpress is also useful within the printing operation. The pre-press operations 
often performed by a printer are really the later stages of the document creation process: 
typesetting, layout, stripping in illustrations, etc. The systems illustrated in Figure 22.1 that 
perform these functions for document authors can be operated by a printer as well. 

~w .. Xerox 
Ii~Q!I Private 
'fIIO. Data 



Introduction to Interpress 22 

A printer can also use Interpress to help balance the load among a set of presses or Interpress 
printers. A central dispatcher can hold masters for all pending printing jobs and schedule them 
onto printing equipment according to the resources needed for the job (number of copies. type 
of binding. paper requirements. etc.) and the capabilities and availability of printing equip­
ment By using computer network communications, a printer with several plants could transmit 
masters to plants with idle capacity. Likewise, in the event of press breakdown, a master could 
be sent to another plant. 

Interpress can revolutionize the nature of the communication between a printer and his 
customers. A customer desiring to purchase printing services from a printer can transmit his 
print job to the printer electronically, by copying the Interpress master and printing 
instructions over a network. A printer can give price quotations from examination of the 
printing instructions and a brief summary of the master, such as the number of pages and the 
level of Interpress that it requires. For. customers whose technology or temperament guides 
them to want paper intermediate copies, a printer can offer digitally vended prepress service, 
such as typesetting of Interpress masters, with the result mailed to the customer or delivered 
like a pizza. 

22.3.2 Demand printing 

Interpress masters are an ideal document representation for demand printing applications. A 
large file system holds· many Interpress masters, each one describing a printable document. A 
simple interactive management program is used to instruct the system to transmit a master to a 
printer so that one or more copies can be· made. The system keeps track of which documents 
are printed by whom in order to bill customers and to pay royalties to authors of masters held 
in the file system. 

By its very nature, demand printing allows documents to be printed only when they are 
needed, thus saving the cost of pre-printed but unused copies. Forms and form letters are ideal 
demand printing applications, since the forms can be updated without having to destroy a 
large inventory of pre-printed copies. 

A demand-printing system is even more interesting when the file storage and printers are 
geographically separate and are connected by a computer communications network, as 
illustrated in Section 22.2. A customer could issue a command at a printer that indicates which 
document he would like to print. The printer would interrogate a file-storage system via the 
network; the master would be transmitted to the printer over the network, and finally the 
printer would make the requested copy. There is no technical reason why such an arrangement 
could not accommodate a large number of file-storage systems. An organization wishing to sell 
documents would place Interpress masters for them in a file store and connect the store to the 
appropriate computer network via some accounting software. 

22.3.3 Information distribution 

Interpress can be used to distribute hardcopy information electronically in a heterogeneous 
printing environment simply by sending masters to printers at appropriate sites. For example, 
large companies distribute daily news announcements to all their branches; research depart­
ments of stock brokerage houses distribute market news to account executives; national 
newspapers distribute made-up page masters to local printing plants; universities with remote 

~91JJ Xerox 
~Q" Private "0" Data 

217 



22 

218 

Interpress systems 

television instruction distribute copies of assignments and lecture notes to far-flung studen'ts; 
the Internal Revenue Service distributes tax form masters to computerized tax p rep arers. A 
network of printers that all obey the Interpress standard can easily perform such distribution. 

223.4 Graphical information in query systems 

Online database systems are an increasingly important part of modem business. We depend on 
databases of medical or legal information, library contents, stock market quotations, news 
stories, and more. In Europe, various telecommunication services are testing online query sys­
tems as a substitute for the familiar telephone book. Though some of these databases, such' as 
the international news wires. have developed schemes such as "wirephoto" for including pic­
tures with the text. these schemes are slow and wasteful of storage, and are not appropriate for 
general-purpose retrieval systems. Many installations now use microform readers with attached 
photographic printers; if a browser needs a printed copy of a page image, he can cause the 
image to be photographed on the page printer, and take the page away with him. While effec~ 
tive} these page printers are slow and expensive. The telephone information systems do not 
provide enough graphics capabilities for a proper yellow pages. 

A database scheme based on Interpress would bring graphical information to online databases 
and reduce the price of local-origin copies such as those now done with microform page 
printers. Although the cost per page of microform representation is currently much lower than 
the cost per page of disk storage representation. archival read-only material suitable for 
microform storage can be stored in Interpress format on digital video disks, which are cheaper 
and more easily searched than microform. 

223.5 Computer-assisted instruction 

Computers are increasingly valuable as teaching devices; each student can progress at his own 
pace through a programmed instruction script. with the computer providing information, inter­
action, stimulus. and instantaneous correction. The vast majority of these CAl systems are en­
tirely textual, and those that do provide graphical instruction capabilities do so at great expense 
of preparation and storage, and no two schemes are quite compatible. 

By representing a CAl script as a series of Interpress page images embedded in the logical 
framework of the lessons, a script writer can create an illustrated lesson with no more work 
than it would take to prepare the same lesson in a more traditional textbook. The student 
might then have the option of printing a lesson and studying at home or displaying pages on 
an interactive terminal at school. 

22.3.6 Engineering data distribution 

Many high-technology component firms, such as those selling integrated circuits, spend a great 
deal of effort preparing and distributing "data handbooks." which are collections of product in­
fonnation sheets for these company's product lines. Each product information sheet typically 
contains some textual description of the capabilities of the product, but also diagrams, timing 
charts, performance graphs, and other pictorial information. Since these data handbooks be­
come rapidly obsolete as the product line changes, it would be beneficial to component vendor 
and design engineer alike if the data handbook could be stored online on the design engineer's 
computer, and updates tran.smitted electronically. ,By using Interpress to represent the page 

~.IJJ. Xerox 
IJ]~Q~ Private 
"I.J~ Data 



Introduction to Interpress 22 

images of the product information sheets, new sheets can be distributed rapidly and efficiently 
to interested engineers. Once the electronic data distribution network is in place, suppliers 
could include as part of their online product information sheets the component drawings used 
by electronic computer-aided design systems. 

22.3.7 Projection images 

Interpress can be used to represent the text and graphics that are projected on a screen as part 
of a technical or sales presentation. An Interpress master drives an imager that creates an 
image on a television display. which can be projected on a large screen. The speaker can con­
trol the rate at which pages are displayed and which page to display next. 

Interpress can also be used to transmit presentation material to remote imagers. In this respect, 
it serves a r01e similar to a "presentation standard" such as Videotex [17]. The images may be 
generated by an interactive program or may simply be retrieved from a database. 

Interpress can also be used to produce colored slides for a presentation. A business-graphics or 
illustration would prepare the appropriate Interpress master, which could be transmitted to a 
high-resolution film recorder equipped with Interpress software. Such a film recorder might be 
operated as a service accessed by the fully digital interface Interpress offers. 

22.3.8 Spooling and computer printing 

One of the intended uses ofInterpress is to provide computer printing services to batch or 
time-sharing computer systems. One or more Interpress printers are connected, perhaps using 
an Ethernet, to the computer. The application programs and operating system on the computer 
cooperate to prepare and send masters to the printer. 

The early days of data-processing gave rise to a technique called spooling for dealing with 
printer output. Spooling solves a problem that arose when operating systems began to allow 
more than one program to work concurrently, either by time-sharing the CPU or by the cor­
responding technique for batch programs, called multiprogramming. The problem is that 
although the computer has only a single line printer, two or more of the running programs 
might be creating line-printer output. Only one program gains access to the printer, thus delay­
ing the other one. An additional problem is that some programs do a great deal more comput­
ing than printing, so only one line a minute might be printed. The sad result is that several 
programs are delayed because only one can use the printer at a time and because the one 
that's printing is slow. 

Spooling decouples a program's execution from the actual printing process. The idea of spool­
ing is to write a program's output on a disk file, even though the program thinks it's being 
printed. Since it is assumed that there's always sufficient disk space to hold these spool files, 
several programs are allowed to execute concurrently. each one thinking it has access to "the 
printer." When a program instructs the operating system that it is finished with the printer, the 
operating system adds the spool file to a queue of files to be printed. This queue is examined 
by a program called "the spooler" that runs more or less all the time to drive the printing 
device at full speed, sending information from the spool files to the printer. 

The spooling technique can also be applied to driving Interpress printers. Some printers may 
have communications interfaces that allow only a single master to be received at a time. Other 

~9~ Xerox 
Ii~~ Private 
if[j~ Data 

219 



22 

220 

Interpress systems 

printers, especially inexpensive ones, may not be able to initiate printing activity until all com­
munication activities have completed. Both of these possibilities suggest that spooling can help 
improve the printer's performance because spooling allows only a single master to be trans­
mitted at a time even though several programs may be generating Interpress masters that are 
being recorded on spool files. Spooling also increases the transmission speed because the 
spooler can transmit files far faster than a typical composition system can create them. 

Spooling also solves another problem that arises when Interpress is fitted onto a computer sys­
tem. namely converting "text" files into Interpress masters. Most computer application­
programs that generate printed output do not prepare Interpress masters; instead. they write 
"text" to the spool file, often using some convention to convey formatting information, e.g., 
carnage-control characters, line-ending characters, line blocking, and so on. In most cases, it is 
not feasible to modify these programs to generate Interpress masters instead of line-printer for­
mats. However,' the spooler program can generate an Interpress master "on the fly" as it trans­
mits the spool file to the Interpress printer. As described in Section 9.6.1, the spooler can 
examine a user profile to select appropriate fonts and to obtain formatting instructions. 
Alternatively, this information can accompany each entry in the spooler's queue. 

Ideally, the spooler should allow both text files and Interpress masters to be entered in its 
queue. This facility caters both for unmodified programs that generate text, or "line printer" 
output, and for programs such as composition and graphics systems that generate Interpress 
masters. 

~9~ Xerox 
~Q. Private 
~[j~ Data 



23 

The design of Interpress 

This section explores some of the considerations behind the design of Interpress. Because the 
Interpress design takes a rather unconventional approach to the problem of controlling digital 
printing systems, it is important to understand some of the reasoning behind the design. This 
section sketches the background and design criteria for Interpress but does not attempt a 
detailed explanation of the reasons· for all aspects of the design. 

23.1 Background 

Interpress is the culmination of ten years of research by the Xerox Palo Alto Research Center 
(PARC) into digital printing technology. Research has been directed both at the problems of 
creating, exposing and printing raster images on xerographic printers and at the problem of 
designing the "print file fonnat," the infonnation that an application program sends to the 
printer. Interpress also builds on Xerox's experience in designing computer printing hardware 
such as the 9700, 8700, and 5700 computer printers. The summary we present here stresses 
work on the print file fonnats, not on the hardware and software technologies of digital print­
ing. 

23.1.1 A "listing" system 

An early experimental system connected to a facsimile printer produced "listings" of ASCII text 
files sent to it over a local network. The objective of the system was to print program listings 
for computer programmers and to print simple memoranda and text documents. Soon, 
however, there was pressure to take advantage of the raster-scanned nature of the printer to 
print more exotic documents. People designed several different fonts for the printer, the file 
fonnat was extended to include special control character sequences to select fonts, and the 
printing software was changed to store fonts on the system disk and to honor font-selection 
commands. Someone else wanted to print line drawings and pressured the system's maintainer 
into adding "vector" commands to the input file, again encoded using control character 
sequences. Several experiments were done to explore printing arbitrary raster patterns on the 
device. 

While this system served well for its original objective, it demonstrated a critical problem. As 
fonnatting ambitions rose, people started objecting to various decisions made within the print-

~.~ Xerox 
Ii~~ Private 
"LJ~ Data 

221 



23 

222 

The design of Interpress 

ing software. Examples of contentious decisions were: the number of lines on a page, the han­
dling of tab characters, the fonnat of a page heading and page number, the positioning of sub­
and super-scripts, and the calculation of inter-line spacing. Eventually. many of these decisions 
were controlled by an elaborate set of control character sequences embedded in the text file. 
The system's maintainer was constantly beset by requests for new features or control over inter­
nal fonnatting decisions. The clear lesson was: it's a mistake for printing software to make for­
matting decisions because different users and different applications have different needs. 

23.1.2 A device-dependent system 

The next experimental system was designed so that the printing software made no formatting 
decisions: the creator was required to send to the printer a file in a device-dependent form 
that could simply be sent to the image-generation hardware on the printer. This file contained 
data for each character of each font that was required, compressed in the fonn required by the 
printing hardware. All of the constraints of the printing hardware had to be known to the crea­
tion software and reflected in the file, e.g., the maximum size of font memory, the maximum 
number of image-generation commands on a page, and the specific order in which image­
generation commands had to be sorted. 

This strategy successfully excised fonnatting decisions from the printing system, but placed an 
intolerable burden on creators. The first problem was that each creator had to maintain a font 
library, since the printer did not These files took up an unreasonable amount of space on 
small workstation computers; there was considerable waste in the hundreds of copies of a font, 
one on each workstation's disk; and issuing new or updated font libraries was a significant 
problem. A second major problem was that each application program that created printed out­
put had to contain software that embodied a great many messy details of the printing 
hardware. When the hardware was changed or new constraints were imposed, the software had 
to change. But perhaps the most obvious difficulty was that new printer designs would not 
necessarily have the same properties as this one, and that new creator software would have to 
be written each time a new experimental printer was developed. 

23.1.3 Press 

In 1974, the experience collected from these initial experiments was used to design a device­
independent print file fonnat named Press. The principal objectives of this design were: 

• The printer should make no formatting decisions (lesson from the first system). 

• The printer should maintain a font library (lesson from the second system). 

• The print file transmitted to the printer should be device-independent (lesson from the 
second system). 

• The print file should accommodate both text and graphics. This need was becoming 
increasingly apparent as experimental document scanners and illustration systems were 
built 

Press is the direct predecessor of Interpress. Rather than explain the design of Press, it's easier 
to describe the differences between Press and Interpress: 

• A Press file is a data structure, not a program. A separate descriptor and data format are 
provided for each kind of data: a string of character codes to print, a rectangle, an object 
to be filled, etc. No provisions are made for symbols or instances. 

~WII!. Xerox 
IliQ~ Private 
.,O~ Data 



Introduction to Interpress 23 

• All coordinates are expressed in Press in a single coordinate system, which uses units of 
10-5 meters. Coordinates range between 0 and 32 cm. 

• Press has no facility corresponding to CORRECf. If font approximations are made, text may 
be displaced. 

• Press' graphics facilities include only filled objects and pixel arrays. The effect of strokes 
must be obtained by creating appropriate filled objects. 

• Press was designed so that a Press file could contain both printing infonnation and applica­
tion infonnation. The idea was that a Press file would be the only representation of a 
document, and that one could build interactive document editors that would edit a Press 
file directly. Such an editor would change both the document representation and the for­
matting infonnation in the file. 

Press proved to be extremely successful. It has been in constant use since 1974 and has been 
used to represent and print over 200.000 documents. The complexity of these documents has 
ranged from program listings to illustrated books. Software and hardware to print Press files 
have been implemented for over a dozen different printer designs. Numerous application and 
utility programs have been written that create Press files. To a very great extent, printer depen­
dencies have been eliminated from this software altogether. 

The lessons learned from Press are complex and not as easily summarized as those learned 
from· earlier systems. Perhaps the biggest failure of Press was that the objective of recording in 
one file both. a document representation and the print file did not work out-hard copies are 
produced sufficiently infrequently that the computing time and file storage required to keep 
the print infonnation and document representation in synchrony were not justified. The list 
above of differences between Press and Interpress suggests other areas where the Interpress 
design has improved upon Press. More details about the reasons behind these changes are 
presented in the next section. 

23.2 The design of Interpress 

This section sketches briefly the rationale behind the design of Interpress. Because the design 
is rather intricate, this section cannot explain all of the considerations that went into it 

23.2.1 The language 

Why is Interpress defined as a programming language in which calls are made to imaging 
operators that prepare an image? Why not instead simply define a data structure akin to a 
graphical display file? 

The first observation to make on this issue is that the distinction between a program and a 
data structure is not a sharp one. A display file, while viewed as a data structure by the appli­
cation program that creates it, is viewed as a program by a "display processor" that executes it 
in order to generate a display. The distinction comes down to one of the instruction set used: a 
graphical display file has instructions that correspond to graphical objects to be displayed; 
usually these instructions contain coordinate infonnation as literal data embedded within the 
instruction. By contrast, the Interpress instruction set more closely resembles that of a general­
purpose computer: it is defined without any particular reference to graphical objects. but 
creates images by calling appropriate procedures in a "graphics package, which in [nterpress is 
called the imager. 

~.~ Xerox 
I!Q~ Private 
rttl.J~ Data 

223 



23 

224 

The design of Interpress 

The approach of using a general-purpose language to control image-generation operators was 
chosen for several reasons: 

1. A language is a more powerful framework for addressing device independence than is a 
graphical data structure. While a data structure is interpreted by a fixed image-generation 
algorithm in the printer, a language allows a creator to send to the printer an algorithm for 
achieving a particular effect on the printer. This algorithm can examine the printer's 
environment and compute an appropriate image. This property was illustrated in Section 
17.3.1 by a master that builds a transformation so as to center the image on the output 
medium. To achieve carefully-controlled effects on a printer in a device-independent way, 
a creator can send an imaging algorithm encoded in an Interpress master. While a data 
structure can represent only one solution to an imaging problem, an algorithm can create 
an appropriate image, since it can sense important properties of the printer. 

2. The language solves a problem that Press revealed, namely that some applications require 
very high coordinate precision while others require only modest precision. To allow vari­
able precision with a data-structure approach such as in Press, we would have to define 
different instructions and instruction formats for coordinate data of different precision. The 
Interpress language solves this problem by making the precision of a literal a matter for 
the encoding of the command that stacks the literal value-the imaging operator itself is 
unaffected. 

One could argue that a similar technique could be applied to the data-structure approach by making all coor­
dinate data -self-describing. much the way Interpress token formats for encoding Numbers are labelled with 
their type. 

3. A language provides a way to construct an operand that has many different forms. The 
best example in Interpress is probably a transformation. Suppose that the Interpress font 
setup template: 

name FINDFONT size SCALE MODI FYFONT framelndex FSET 

was expressed instead in a data-structure form: 

DECLARE FONT JontNumber name transformation 

How are transformations of different types to be specified? Do we need many variants of 
DECLAREFONT, one corresponding to each distinct sequence of SCALE, ROTATE, and 
SCALE2 transformations, e.g.: 

DECLAREFONT-RS fontNumber name rotationAnglescaleFactor 

While there are other solutions to this problem, they all begin to take on the aura of a 
programming language. 

4. A language that includes procedure-call instructions is a natural way to provide graphical 
symbols (procedure definitions) and instances (procedure invocations). Indeed, the most 
elegant attempts to design graphical languages have recognized this advantage [14]. Again, 
symbols and instances can be provided by more limited facilities in a graphical data struc­
ture. These facilities usually insist that instances cannot take arguments; thus, for example, 
a symbol cannot be defined to display a page heading because the page number cannot be 
passed as an argument. Interpress's composed operators not only allow instances to take ar­
guments but can be used to carry out arbitrary computations. 

5. Some people argue that the distinction between the data-structure and programming lan­
guage approaches is that the programming approach provides a store operator that saves a 

~9 ... Xerox 
~Q~ Private """0" Oata 



Introduction to Interpress 23 

data value-FSET and ISET in Interpress. Even this distinction is not always clear. What is 
the difference between the Interpress font setup template and the data-structure form 
shown above? Both "store" a font description in a place that can be referenced later. A 
more interesting problem is posed by the imager variables. which represent, in effect, addi­
tional arguments to each imaging operator. These variables must be set, and often saved 
and restored. A general-purpose language provides a simple way to achieve these effects. 

Expressing Interpress masters in a simple programming language costs very little. Most masters 
will be only a few percent larger than an equivalent data structure would be. It is likely that 
interpreting the program form will be slightly faster than interpreting the data-structure form. 

While the Interpress base language bears a strong resemblance to a simple programming lan­
guage, its facilities for preventing side effects stand out. The variants of DO that save various 
pieces of imager state were incorporated to deal with a number of problems that crop up in 
the printing application: 

• Requiring the execution of each page body to be independent of any other so that the 
printer can execute page bodies in whatever order is necessary. 

• Calling a composed operator defined externally, in the environment, while protecting the 
state that the master counts on, such as the contents of the frame and the current transfor­
mation. 

• Preventing IFCOPY bodies from having side effects that alter the appearance of any part of 
the page not printed by operators contained within the IFCOPY body. 

The absence of global variables and the simple mechanism of saving and restoring certain 
imager variables with DOSA VB and DOSA VEALL achieve all of these objectives. 

23.2.2 Device independence 

Perhaps the principal goal of Interpress is that of device independence. The experience with 
Press demonstrated that device independence was possible. but also revealed some problems. 

The most important ingredient in achieving device independence is to express the desired 
result in sufficiently high-level terms that a printer can detennine how best to achieve the 
desired effect. The master expresses the objective from which the printer must be able to deter­
mine the best mechanism. The choice of imaging primitives is the central issue. For example, 
suppose Interpress had no notion of stroke. but relied instead on the master defining strokes as 
outlines to be filled in. A printer can easily scan-convert the outline, but the quantization 
errors that are unavoidable in scan-conversion may lead to width variations in strokes. Even 
though the strokes are defined in the master to have the same width. the printer doesn't know 
that it should use a scan-conversion scheme that makes small position errors rather than width 
errors. By contrast, if the master contains a stroke description, the printer knows that preserv­
ing uniform width is an important objective. 

Another important aspect of device-independence is the precision with which the Standard is 
specified. The detail in the reference document's definition of the Interpress language and 
arithmetic, . for example, is sometimes overbearing. This precision is necessary, however, to 
insure that a master will be interpreted by two printers in the same way. While many 
"standard" programming languages avoid tackling arithmetic precision altogether, Interpress 
must specify the amount of arithmetic precision that is guaranteed by all printers. 

~w~ Xerox 
II]~~ Private 
ifl.J~ Data 

225 



23 

226 

The design of Interpress 

The experience with Press uncovered a number of problems that a font library poses for 
device-independence. Press's use of a single 20-character font name showed the need for more 
flexible hierarchical names in Interpress. Also because of font naming conventions, Press had 
difficulty selecting good font approximations when it didn't find an exact match. Three other 
annoying problems uncovered by Press are solved by the CORRECf operator: 

• Whenever a new version of a font is released, character widths may change slightly. When 
printer is sent a master that was created using old character widths, the lengths of text 
lines change. In Interpress, the proper use of CORRECf adjusts lines to have the desired 
length even when character widths change. 

• When a font approximation is made, the widths of characters in the actual font differ from 
those in the desired font, and line lengths change. CORRECf helps preserve the appearance 
of a document in the presence of font approximation. Font approximation happens fairly 
frequently (a few percent of documents) for two reasons. First, if a' font is deleted from a 
printer's environment, a master created and stored before the font disappeared will require 
font approximation when it is printed. Second, in a networking environment with 
thousands of workstations and tens of printers, it is not unusual for a printer to receive a 
master that requests a font available on printers in one part of the environment but not 
available on the receiving printer. 

• When a master is printed on a low-resolution raster device such as a display, an especially 
difficult problem arises. The low resolution forces the printer to use device-dependent 
character definitions in order to achieve acceptably legible text. The low resolution of the 
device usually requires that character widths differ from the device-independent widths 
provided in metric masters and used as a basis for fonnatting masters (Section 9.6.3). 
Again, CORRECf helps deal with the problem by adjusting spacing to preserve line lengths 
when necessary. 

23~2~3 Graphical primitives 

The choice of graphical primitives in Interpress is detennined in part by the capabilities of 
raster-scanned imaging systems. in part by device-independence considerations, and in part by 
practical considerations such as the size of the master. 

While the natural fonn of image to present to a raster-scanned printer is a raster image, or 
pixel array, it is not reasonable to design a print-file fonnat around raster images for several 
reasons. This reasoning is explained in some detail in Section 1.2.1; it is summarized here. 
First, a high-resolution image requires a great many bits to represent, even when sophisticated 
compression algorithms are used. Second, every creator would be burdened with the task of 
preparing a raster image, including maintaining a font library and executing scan-conversion 
algorithms. While special-purpose hardware could speed up image-generation, it's not as 
practical to make this hardware available to every creator as it is to package it in every printer. 
Third, and perhaps most important. a raster image has poor device independence. To be 
device-independent, a printer must accept a raster image of arbitrary resolution and convert it 
into an image whose resolution is appropriate for the printer. This computation is not only 
lengthy but usually introduces errors that are visually annoying. 

All of these problems are solved by using a collection of "higher level" representations of 
graphical objects: strokes, filled objects, and characters. Pixel arrays are used as a last resort, 
when the image simply has no higher-level structure and can be represented only as a raster of 

~w~ Xerox 
IliQiII Private 
ifOY Data 



Introduction to Interpress 23 

image samples. The higher-level objects allow compact masters, place little or no image-genera­
tion burden on the creator, and give the printer considerable room to maneuver to achieve 
device independence-we showed earlier that although strokes could be represented as filled 
objects, better device-independence is obtained by making strokes distinct from filled objects. 

The printer also has considerable flexibilty in deciding how t-o form images of character shapes. 
Although the standard shows how characters may be defined as composed operators. they need 
not be defined that way. Here again, the master specifies the objective, namely to place an 
instance of a character according to a particular transformation. The printer knows the transfor­
mation and knows which character is called for. because it supplied a definition of the charac­
ter. These two pieces of information give the printer complete information about the objective 
the master is trying to achieve. The printer chooses an imaging mechanism based on this 
information. For example, if the transformation calls for a common size and rotation, the 
printer may retain in its library a raster representation of the character. perhaps tuned to 
improve its legibility on the printed page. On the other hand, if the transformation is non­
standard, the printer may retrieve an outline representation of the character from its library 
and apply the usual transformation and scan-conversion processes to make the desired image. 

Transformations are provided in Interpress to solve a number of problems. First, they are es­
sential for symbols and instances. which are very valuable image-generation tools. Second, they 
allow masters to specify images of arbitrary scale without necessarily requiring high precision. 
For. example, using an appropriate transformation. a master that describes a billboard advertise­
ment can use integers in the range 0 to 20,000 to denote positions measured to a millimeter 
over a range ·of 20 meters. If Interpress were to insist that all coordinates be given in units of 
10-5 meters, the. billboard would require numbers in the range 0 to 20.000,000, even though 
positioning precision of 10-5 meter is not required. Finally, it turns out that transformations 
do not slow down an Interpress printer because even a standard fixed coordinate system 
requires the printer to apply a transformation to convert to device coordinates. 

Perhaps the most controversial aspect of the graphical facilities is the imaging model. Why not 
make it more general, so that the master could create output images and modify them? For 
example, why not allow a region of the output image to be "inverted," interchanging black and 
white regions, so that black-on-white text becomes white-on-black text? Why not allow 
arbitrary reading and writing of the raster image that is being prepared as output, to provide 
functions like BitBlt [9, 15]? Why not implement more general image-processing primitives? 

One reason the imaging model is kept simple is to promote device-independence. The 
Standard allows printers to have very different representations for the page image, since no 
Interpress operators reference it directly or depend on the details of its representation. Color 
printers are especially likely to use different representations. 

The Interpress imaging model is also kept simple to achieve good performance. The model 
represents a compromise between a fully-general image-preparation facility and something that 
printing hardware can be expected to implement in real time. An important overall objective 
of Interpress is that computer-printing devices can priilt one or two pages per second without 
requiring unreasonably complex image-processing hardware. Of course, not all Interpress 
masters can be processed this fast: those that contain a great many objects to be scan-converted 
or pixel arrays defined with a resolution different from the printer will require substantial 
processing time. But Interpress must insure that common cases can be processed quickly, 
which leads to a simple imaging model. 

t4W .. Xerox 
Ii~Q~ Private "'0. Data 

227 



23 The design of Interpress 

23.3 Relationship to other standards 

228 

Interpress is unlike other standards that impinge on digital printing in that it tries to represent 
the ideal image to be printed. Because Interpress attempts to codify a rather diverse set of 
images, it is related to a wide variety of standardization efforts. This section explains briefly 
these relations. 

This discussion is worthwhile for two reasons. First, it is interesting to observe how the 
Interpress standard fits into other standards efforts. And second, it is important to understand 
whether a document represented using some other standard can be converted into an 
Interpress master and vice-versa. 

23.3.1 Character set standards 

There is a wide variety of character-set standards developed or under development The recent 
word-processing and communication explosions have contributed energy to the work. 

Interpress's notion of a character appearing on a page does not make reference to a character 
set standard. Rather, Interpress allows fonts to be given a name by the creator of an Interpress 
master; this name is interpreted by the printer to retrieve some information about how each 
character in the font should be printed. Although the collections of characters in fonts may cor­
respond to a character set standard. Interpress' does not require them to do so. Section 9.2 
explains these considerations fully. 

As character-set standards appear, Interpress can accommodate them. If both creators and 
printers agree to use a standard character set, the problems of interchanging Interpress masters 
between very different environments will be greatly simplified. It is premature, however, to 
recommend a particular character-set standard to serve in this way. Following are some 
activities underway: 

ISO 6937. The International Standards Organization has prepared an extension of ISO 646 
to include most characters required to print text in any language using a Latin alphabet. 
Unfortunately, it omits standard graphics required for high-quality printing, such as em 
dashes and en dashes, and fails to distinguish between hyphen and a "minus sign," a must 
for quality text. 

Videotex/teletex standards. World-wide standards for presentation of text and graphics on 
consumer televisions are being developed. The International Telecommunications Union 
has named all such standards "videotex." Character sets are being developed in conjunc­
tion with ISO 6937, but with extensions to non-Latin alphabets such as Cyrillic, Greek, 
Hebrew. and Arabic. 

ANPA. American Newspaper Publishers Association. This organization has embarked on 
the creation of a character set standard for use by U.S. newspapers. It is a small set, with 
many choices dictated by present newspaper requirements (e.g., bridge suit symbols). 

Xerox. Xerox has developed an extensive character-set standard for use with its office­
information systems [25, 29]. This set incorporates a number of other standards, such as 
ISO 6937 and standards for Greek, Cyrillic, and Japanese. The standard includes both 
character codes and rendering codes (e.g., for ligatures and other typographical artifacts). 

~y~ Xerox 
I!Q!II Private 
"'O~ Data 



Introduction to Interpress 23 

Because Interpress imposes no requirements on character sets, it is trivially compatible with 
most character set standards. As remarked in Section 9.3.4, standards that use sequences of two 
or more codes to identify a single character cannot be accommodated easily in the Interpress 
framework. Since an ordinary "text file" cannot be sent to an Interpress printer in any case, it's 
a trivial matter to perform whatever character-set translations are necessary as the Interpress 
master is being prepared. 

23.3.2 Page image formats 

While character sets specify how each character should appear (its graphic image), page image 
formats (PIF) seek to specify formatting-where each character should appear. Compared to 
Interpress's formatting precision. the current proposed PIF's are crude, using monospaced fonts 
and concepts such as line feed, carriage return, or backspace that are held over from 
mechanically~operated printing equipment. Standards currently under development are: 

ISO 6937. A portion of this document deals with "control functions for document inter­
change." 

ANSI draft proposed standard for text information in page image format. Similar to ISO 
6937. 

Any of these PIF's can be converted into an Interpress master, because Interpress is able to ex­
press all of the formatting functions these standards require. The reverse, however, is not true: 
because an Interpress master can specify the positioning and appearance of characters very 
precisely, in general an Interpress master cannot be converted into a PIF. 

23.3.3 Facsimile standards 

Interpress can interoperate easily with facsimile standards, because facsimile encodings are 
based on raster-scanned imagery, which Interpress can accommodate. A facsimile encoding 
generated by scanning a document can be converted into an Interpress master in which each 
page is represented as a pixel array mask. Moreover, it is possible to convert Interpress masters 
into facsimile form, since the process of printing an Interpress master creates a raster-scan 
image of each page that can be designed to conform to resolution and scan-order conventions 
-of any facsimile standard. 

Much of the effort in facsimile standardization concerns data compression. In In terpress, data 
compression is left as an encoding decision, and indeed, some encodings of Interpress scanned 
images might use precisely the same compression techniques currently used by facsimile stan­
dards. (For a description of current facsimile coding work, see Hunter and Robinson [8].) As 
with character sets, Interpress can accommodate one or more compression standards by 
including in its environment a decompression operator corresponding to each standard (see 
Section 15.3). 

23.3.4 Phototypesetter standards 

At present, there are no existing or proposed standards for controlling phototypesetters. The 
Graphic Communication Computer Association (GCCA) is preparing a proposal for generic 
coding of text, which is derived from IBM's GML (generalized markup language). This stan­
dard applies to embedding formatting commands in text to be presented as input to composi-

~9~ Xerox 
Ij~~ Private 
~LJ~ Data 

229 



23 

230 

The design of Interpress 

tion software, not to the resulting composed pages. Thus it has no bearing on Interpress, which 
represents already-composed pages. 

23.3.5 Computer graphics standards 

Several efforts are underway to standardize software graphics packages used to build interactive 
cOlllputer graphics applications. The most prominent examples of such standards are the ACM­
SIGGRAPH Core System [23, 7] and the GKS (Graphics Kernel System) [11]. These standards 
differ from Interpress in that they are subroutine packages to be used in a graphics application 
program and that they are designed to be interactive. 

Any image created by a graphics package that implements one of these standards can be 
represented as an Interpress master. The image-generation primitives in both graphics stan­
dards can be converted into the Interpress representations for strokes and characters. 
Extensions to the Core for handling filled objects on raster-scanned displays will map to 
similar features in Interpress. Thus, Interpress can be used as a hardcopy output format for a 
graphics package. 

In general, an Interpress master cannot be displayed using routines of these standards as the, in­
terface to an output device, because the graphics standards do not contain sufficiently versatile 
text- ana raster-oriented functions. However, the packages can produce approximate images of 
Interpress"masters that use only characters and thin strokes (lines). 

A standard for describing static graphic images, more akin to the goals of Interpress, is the 
Virtual Device Metafile (ANSI X3H33). The standard specifies a file format to describe images 
containing lines, text, polygons, and scanned images. While the standard is quite complete, it 
does not offer as precise control over the image as Interpress; the difference is especially evi­
dent in the handling of fonte;. 

23.3.6 Presentation standards 

The emergence of low-cost telecommunications and cable television has given rise to a number 
of standards designed to describe images that can be presented on home televisions equipped 
with a small amount of image-generation hardware. Numerous data-retrieval services can use 
these standards to display to a customer such things as advertisements, catalog entries, "yellow 
pages" information, and so forth. The impetus for presentation standards comes from advertis­
ing and marketing interests. 

These applications demand a standard image representation, because manufacturers are reluc­
tant to attempt mass production of the consumer electronics required unless there is a clear 
standard. A variety of standards are being developed in the U.S. and Europe, collectively 
known as "videotex" standards [17]. 

Several different standards efforts are underway: 

1. North American Presentation Level Protocol Syntax (NAPLPS). This standard, developed 
largely in Canada, is being proposed for the United States and Canada [2, 5]. 

2. CEPT, a European consortium, is developing standards that have evolved from Prestel, the 
system pioneered in the United Kingdom. Considerable effort is being taken to use charac­
ter sets that will apply throughout Europe. 

~9~ Xerox 
IIjQ~ P riv ate 
'itflO~ Data 



Introduction to Interpress 23 

An effort is underway to harmonize these two approaches. The principal difference between 
the two concerns the treatment of graphics: the CEPT effort uses a "mosaic" that approximates 
images using a special character set, while N APLPS specifies images geometrically. 

Neither, of these standards approaches the precision of image definition possible in Interpress. 
There is no control of font selection, only of character size. Moreover, text and graphics are 
written on two different "surfaces" that need not be registered very carefully. In short, the low­
resolution, low-quality objectives of these standards dominate. 

23.3.7 Data storage and transmission standards 

While Interpress masters can be stored on floppy disks and magnetic tapes and transmitted via 
telephone lines, local computer networks and satellite links, the Interpress standard has no 
appreciable interaction with standards for data storage and transmission. An Interpress master 
is embedded within these storage and transmission schemes as data. To be useful to Interpress, 
a storage or transmission medium must be able to handle reliably an arbitrarily long sequence 
of arbitrary 8-bit bytes. 

Many Xerox computer-printing products will connect to the Ethernet [20] and accept masters 
transmitted to the printer using Xerox standard Ethernet protocols. The Printing Protocol [28) 
is used to communicate printing requests to printers and obtain status in return. This protocol 
is defined in terms of lower-level Ethernet protocols. 

23.4 Full Interpress 

Interpress version 2.0 is a subset of a complete "Full Interpress" design. While release of the 
full design awaits more complete testing and evaluation, its principal features are listed here in 
part so that no one is tempted to "extend Interpress" in various ways. The full design includes, 
in addition to all features of Interpress 2.0: 

• Extensions to allow arbitrary colors defined in several color spaces. 

• Extending trajectories to allow arcs and curved segments. 

• Extensions to allow precise control over geometric scan-conversion rules when necessary. 

• Extending pixel arrays to allow pixel values to have at least 8-bit precision. Photographs 
can then be represented by the appropriate intensity samples and a printer can choose a 
suitable halftoning or other rendering technique for printing the image. Pixel arrays may 
also specify full-color images. 

• Extending the imaging model to clip all masks against a geometric clipping boundary. 

• Extensions to the base language to allow more kinds of permanent data storage in addition 
to frames. 

• Extensions to the metric master to report more information about the printer's capabilities 
and its environment 

The full Interpress design retains Interpress 2.0 as a strict subset. That is, an Interpress 2.0 
master will be correctly printed by a full Interpress printer. 

~y~ Xerox 
t]Q!II Private 
rttLJ~ Data 

231 



23 The design of Interpress 

23 .. 5 Designers 

232 

A great many people have contributed to the design of Interpress. This is an appropriate place 
to acknowledge their efforts. 

The Interpress standard was designed by Bob Sproull, Butler Lampson, and John Warnock. 
Important contributions were made by Bob Ayers, Y ogen Dalal, Chuck Geschke, Jim Horning, 
Dwight McBain, Jerry Mendelson. Lyle Ramshaw, Brian Reid, Mike Townsend, and Doug 
Wyatt. 

As remarked earlier, the design of Interpress is based on the experience of the Press design at 
the Xerox Palo Alto Research Center. Appreciation is also given to the many people who 
participated in the design, implementation. understanding, and evolution of Press. 

~Y/Jl!. Xerox 
IliQ!I Private 
ifO~ Data 



Appendix A 

References 

[1] American National Standards Institute. American National Standard Code for Information 
Interchange. ANSI X3.4-1977. 

United States version of ISO 646. (Section 2.4) 

[2] American National Standards Institute. Draft Proposed American National Standard for 
Videotex/Teletext Presentation Level Protocol Syntax. ANSI X3.110-198x. 

Current draft of "North American Presentation Level Protocol Syntax," NAPLPS. (Section 23.3.6) 

[3] Coonen, J.T. An implementation guide to a proposed standard for floating-point arith­
metic. Computer, 13(1):68, January 1980. 

A discussion of the proposed IEEE floating-point standard. A list of errata for this article appears in reference 
[30]. (Section 10.4.2) 

[4] Craig, James. Designing with Type, Watson-Guptill Publications, New York, 1980. 

An introduction to the art of typographic design. Many practical hints; many examples. (Section 10) 

[5] Fleming, J. and W. Frezza. NAPLPS: A New Standard for Text and Graphics. Byte. Part 1: 
8(2):203, February 1983. Part 2: 8(3): 152, March 1983. Part 3: 8(4):190, April 1983. Part 4: 
8(5):272, May 1983. 

A readable discussion of NAPl.PS and its implications. (Section 22.4) 

[6] Forsythe, G.E. and Moler, C.B. Computer Solution of Linear Algebraic Systems, Prentice­
Hall, Englewood Cliffs, N.J., 1967. 

Linear algebra useful in understanding and implementing transformations. (Section 13.2.5) 

[7] Graphics Standards: Special Issue. Computing Surveys. 10(4), December 1978. 

This issue contains several articles about the ACM Core graphics standard. (Section 23.3.5) 

[8] Hunter, R. and A.H. Robinson. International Digital Facsimile Coding Standards. Proc. 
IEEE. 68(7):854- 867, July 1980. 

A good survey of facsimile formats. (Section 23.3.3) 

[9] Ingalls, D.H.H. Smalltalk Graphics. Byte, 6(8):168, August 1981. 

Section 23.2.3 

[10] Internati<?nal Standards Organization. 7-Bit Coded Character Set for Information Processing 
Interchange. ISO 646-1973 (E). 

~w~ Xerox 
li~iI Private 
ifLJ~ Data 

233 



A 

234 

References 

This document defines a limited character set for information interchange. It is almost compatible with ASCII. 

The Interpress uses of ISO 646 are restricted to the subset that is compatible with ASCII. 

[11] International Standards Organization. Graphical Kernel System (GKS)-Functional 
Description. ISO/DP 7942. 

The current draft of the proposed OKS graphics package standard. (Section 23.3.5) 

[12] International Typeface Corporation. The ITC Typeface Collection, 1980. 

A superlative catalog of type faces from one of the best typeface companies. More than 500 different font 
samples. (Section 9) 

[13] Morison, Stanley. First Principles of Typography. 2nd edition. Cambridge University Press. 
1967. Volume I of the Cambridge Authors' and Printers' Guides. 

The principles behind the rules of typography. This book is a classic. (Section 10) 

[14] Newman, W.M. Display Procedures. Communications' of the ACM, 14(10):651. October 
1971. 

A method for using procedures to represent graphical symbols. (Section 23.2.1) 

[15] Newman, W.M. and Sproull. R.F. Principles of Interactive Computer Graphics. 2nd edition. 
McGraw-Hill. 1979. 

Introduction to computer graphics, geometric representations, transformations, and raster graphics. (Section 
13.2.5. 23.2.3) 

[16] Seybold Report. Aesthetics vs. Technology: typography for electronic printers and video 
displays. 11(11), February 8. 1982 and 11(12), February 22, 1982. 

An excellent article by Chuck Bigelow on letterform design and typography for raster devices. (Section 9.6.3) 

[17] Seybold Report. Viewdata and Teletext 10(6), November 24, 1980. Also Telidon and 
Videotex. 11(6) November 23, 1981. 

Reviews of teletext and videotex, chiefly from the publishing viewpoint. (Section 22.4, 23.3.6) 

[18] Seybold Report. Xerox's Star. 10(16), April 27, 1981. 

A review of the Star workstation; see also [19]. (Section 22.1) 

[19] Seybold Report on Word Processing. The Xerox Star: A Professional Workstation. 4(5), 
May 1981. 

A review of the Star workstation; see also [18]. (Section 22.1) 

[20] Shoch. J.F., Y.K. Dalal. D.O. Redell. and R.C. Crane. The Evolution of the Ethernet 
Local Computer Network. Computer. 15(8):10, August 1982. 

A summary of the Ethernet's operation. protocols, and development. Contains a good bibliography. (Section 
22.5. 23.3.7) 

[21] Smith, D.C .• C. Irby, R. Kimball. B. Verplank. and E. Harslem. Designing the Star User 
Interface. Byte. 7(4):242, April 1982. 

(Section 22.1) 

[22] Status Report of the Graphics Standards Planning Committee. Computer Graphics 
(quarterly journal of ACM-SIGGRAPH), 13(3). August 1979. 

A detailed description of the ACM Core graphics standard. (Section 23.3.5) 

[23] Updike. Daniel Berkeley. Printing Types: Their History. Forms. and Use-a Study in 
Survivals, 2nd edition (in two volumes), Harvard University Press, 1937. Reprinted in 
paperback by Dover Publications, 1980 (0-486-23928-4 and 0-486-23929-2). 

~9~ Xerox 
II!~Q!I Private 
iIIO~ Data 



Introduction to Interpress A 

A careful. readable, and exhaustive treatise on the history and use of type fonts. Although almost 50 years 
old, it is still the best single source for general infonnation about type faces. (Section 9) 

[24] Warnock, J. and D.K. Wyatt. A Device Independent Imaging Model for use with Raster 
Devices. Computer Graphics, 16:(3)313 - 319, July 1982. 

A raster graphics package with an imaging model an,d philosophy similar to those of Interpress. (Section 8.4) 

[25] Xerox Corporation. Character Code Standard. Xerox System Integration Standard. 
Stamford, Connecticut; 1982 October; XSIS 058303. 
Xerox standard for associating 16-bit numeric codes with character meanings, Also describes a byte-oriented 
encoding scheme for strings. (Section 9.1.1. 23.3.1) 

[26] Xerox Corporation. Interpress Electronic Printing Standard. Xerox System Integration 
Standard. Stamford, Connecticut; 1983 June; XSIS 048306. 

This is the reference document for the Interpress standard, version 2.0. It is written with precision and ac­
curacy in mind, and as a result is not always easy to read. This document is the authoritative definition of 
Interpress. (Section 1.7) 

[27] Xerox Corporation. Interpress 82 Reader's Guide. Xerox System Integration Guide. 
Stamford, Connecticut; 1982 May; XSIG 018205. 

A narrative companion to an earlier version of Interpress. Much, but not all, of the discussion applies to the 
current version [26], (Section 1.7) 

[28] Xerox Corporation. Printing Protocol. Xerox System Integration Standard. Stamford, 
Connecticut; 1982 October; XSIS 118210. 

Communications protocol for sending a printing request to a printer (Section 18, 23.3.7) 

[29] Xerox Corporation. Rendering Code Standard. Xerox System Integration Standard. 
Stamford, Connecticut; 1982 October; XSIS 068303. 

Xerox standard, companion to [25], that assigns numeric codes to different graphical renderings of characters. 
(Section 9.1.1. 23.3.1) 

[30] -. A Proposed Standard for Binary Floating-Point Arithmetic. Computer, 14(3):51, March 
1981. 

Xerox 
Private 
Data 

A draft of the reference document for the proposed IEEE standard. The same issue of Computer also contains 
other articles about the standard. (Section 10.4.2) 

235 



A References 

t4W~ Xerox '8' Private Data 
236 



Index 

Page numbers inside braces { } refer to pages in the 
reference document, lnterpress Electronic Printing 
Standard. 

{ 20 {5} 
{, literal interface 68 
[ ... ] 23 {7} 
name/name/. •. 70 {7} 
++ 75, 119 

21, 75 
--"'-- {62, 63, 65} 
/ 20 
< ... > 23, 75 {7} 
= 173 
* prefix 20 {4} 
** 75 
*ADDINSTRUCfIONDEFAULTS {23, 27. 28} 
*COMPUTECORRECfIONS {64, 65} 
*COPYNUMBERANDNAME {II. 24} 
*DROUND {40,43} 
*EQN {9, 12} 
*LASTFRAME {22,24} 
*MAKECOWITHFRAME {22.23,24} 
*MAKET {42} 
*MERGEPROP {9, 21. 23, 24, 

27} 
*OBTAINEXTERNALINSTRUCfIONS 

*RUNGET 

*RUNSIZE 

*SETMEDIUM 

ABS 

absolute positioning 

~WII!. Xerox 
~Qit Private 
..""jUy, Data 

{22.23} 
{23, 24. 31} 
{23,24,31} 
{22-24, 35, 37, 
38,43} 
{12} 
96-98,102, 
186 

accents III 
account 194 
ADD {7,12,32,44} 
amplified metric 87 {60} 
amplifying characters 86,108-109 

{57} 
amplifySpace variable 86, 108, {36, 57, 

59,60,62,64, 
66} 

AND {12} 
Any type {3} 
appearance error 158, 207 {72} 
appearance warning 92,207, {71} 
AppendByte {13-18} 
AppendJ dentifier 65,68 
AppendJnt {15-19} 
AppendJ nteger 65 {16} 
AppendLargeVector {18} 
AppendNumber 65,67 
AppendOp 65 {16, 17} 
AppentiRational 67 {16} 
AppendSequenceDescriptor {15-19} 
AppendString 65 {18} 
application program 65 
approximation. font 91. 200 
arguments 22, 125 {6, 7} 
arguments, to composed operators 

125 
arithmetic operators {12-13} 
ascent metric {55,60} 
AuthenticateFunction {28,29} 
axes, of coordinate system 45 
base language 7-8,17-26. 

123-134 
{2,25} 

237 



238 

Index 

base language, design 
base language, role 
BASE operators 
baseline 
BEGIN 

Binary enhancement 
binding documents 
Body operator 
body size 
Body type 

223-225 
29 
{25} 
49 {56} 
41 {13. 17. 19} 
{68,69} 
43 
66 {5} 
49 
19,20.123 
{5,6,8,17} 

Body, literal interface 68 
bounding box {60} 
break page 193 {28} 
breakPageFont printing instruction 

BreakPageString 
butt stroke end 

{28} 
{28} 
157 {51} 

Byteslnlnt {16, 18} 
calling composed operators 124 
CEILING {12} 
centered text 
center X metric 
center Y metric 
central authority 
character code 

115 
{60} 
{60} 
{26} 
23, 31. 33. 
80 - 84. 88 {28. 
57. 58} 

character code. standards 228 
character coordinate system 49. 144 
character index, see character code 
character metrics 49 {58-60, 83} 
character operator 31,84- 87. 

150-154 
{54-61} 

character operator, example 162 
character operator, limitations 86 - 87 
character positioning 96. 100 -106 
character set, see character code 
character shapes {54} 
character Metrics metric 88 {58, 59} 
character, at an angle 154 
character, detailed example of imaging 

closed trajectory 
closure. of master 
codes, see character codes 
Color type 

151-154 
158, 160 {49} 
183 

168-170 {33. 
47-48} 

color names 
color variable 

columns, of text 
combining transformations, 

see concatentation 
comment 

117 
168 {36. 
47-49} 
63 

21, 75 {17} 
communications, see transmission 
complexity. page 197, 199 
composed operator 123 -130, 186 

{4-6, 8,10, 
25} 

composed operator, practice 130 
composed operator, summary 133 
composition system 212 - 213 
compression, of scanned images 

165 - 166, 229 
Computation enhancement {68,69} 
computer graphics, standards 230 
CONCAT 54 {35, 42, 43. 

concatenation 

CO NCATT 

conditional execution 
constructors 
content, of document 
control operators 
converting masters 
context 
coordinate systems 

coordinate systems, master 
coordinate systems, notation 
coordinate transformations, 

see transformations 

46.47, 59} 
54, 138, 
140-141, 186 
{41} 
54. 140-141 
{43} 
131-133 
23 
211 
131-133 {II} 
75-76 
{4,6,10} 
45-50 
{36-40} 
50 
46 

copies, to print 195 
COpy {7.10} 
copy name 132, 195 
copy number 132 
copy, selected printing on 132 
copySelect printing instruction {31.32} 
Core graphics standard 230 
CORRECT 104 - 106, 185 

{5, 10.17.57. 
62-66} 

CORRECT, frame 126 

~y~ Xerox 
IiQ!iI Private 
ifO~ Data 



Introduction to Interpress 

co"ectcpx {63 - 66} 
co"ectcpy {63 - 66} 
co"ection metric {60} 
correction, disabling 113 
correction, see spacing correction 
CORRECI'MASK 85, 104 {57, 60, 

62-66} 
correctM askCount {63-66} 
co"ectMaskX {63-66} 
correctM askY {63-66} 
co"ectMX variable {36,63-66} 
co"ectMY variable {36,63-66} 
co"ectPass variable 113 {36, 63, 64, 

66} 
co"ectShrink variable 105 {36, 

62-66} 
CORRECTSPACE 86. 104 {57, 60, 

62-66} 
co"ectSpaceX {63-66} 
co"ectSpace Y {63-66} 
correctSumX {63-66} 
correctSum Y {63-66} 
co"ectTargetX {63-66} 
co"ectTarget Y {63-66} 
co"ectTX variable {36,63,65,66} 
co"ectTYvariable {36, 62, 63, 65, 

66} 
COUNf {8,11,23,24} 
cover sheet {28} 
creator 7 {I} 
creator, font selection 90 
creator, obtaining metrics 88-90 
creator, typography 95 
current color 168 
current coordinate system 54 
current font 32 
current font, see SETFONT and showVec 
current position 30, 84, 85. 100, 

143, 144 
{44-45.54} 

current state {6} 
current transformation 9,51. 54, 144 

{43} 
current transformation, saving and restoring 

62 
data-processing 213 
DCS. see device coordinate system 
DCScpx variable {36, 43, 44, 63. 

65} 

~w .. Xerox 
_Q~ Private 
.."",0 .... Data 

DCScpy variable 

decompression operators 

default 
demand printing 
descent metric 
designers, of Interpress 
device coordinate system 

{36, 43, 44, 63, 
65} 
165, 117 {19, 
46,47} 
{28-30} 
1,217 
{55,60} 
232 
48, 143 {36, 39, 
40} 

device coordinate system, limits 
{70} 

device coordinates, rounding 191 
device independence 6, 10,29,222, 

225-226 
device independence, of the environment 

diacritical marks 
distributing masters 
DIV 

DO 

120 
III 
217 
{13} 
124, 128 {4, 5, 
10 -12, 36, 43, 
44,47} 

doc ... printing instructions {28} 
document representation 3,211 
DOSA VE 124, 128 {2, 10, 

DOSAVEALL 

DOSA VESIMPLEBODY 

DUP 

duplex 
easy metric 
easy net transformation 

36,43,44,64} 
124,128, 
177-180 {2, 
10, 11, 22 - 24, 
36,43,64} 
128, 149 {5, 10, 
17,41,43.44, 
52, 63, 64} 
{9,10} 
194 {30, 35} 
{61,67,69} 
144-145. 179, 
197. 199 {46, 
59} 

easy net transformations, of pixel array 
165 

efficiency 203 
element, of vector 19 {4} 
embedding information in masters 

181 
encoded-to-written converter 75 
encoding 9, 20 - 22 

{13-20} 

239 



Index 

encoding, example 34 
encoding, of characters 84 
encoding, of instructions 195 
encoding-notations {13. 17 -19} 
encoding value {14. 16, 19. 

76-78} 
END 41 
EndPreamble 175 
endpoints, of strokes 157 {49} 
enhancement modules {67-69} 
environment 10, 117 -121, 

183. 197. 201, 
224 {25. 26. 67} 

environment. colors 168 
environment, decompression operators 

165 
environment, errors 210 
EQ {II, 12} 
error recovery 208 {4, 8} 
error, in master 207 - 210 {4, 8, 

71. 72} 
errors, roundoff 139.154 
EXCH flO, 12} 
execution, see interpreter 
extensions. to Interpress 231 
external files 119 
external instructions 193 {21, 27, 28} 
ExtractByte {15} 
facsimile 4,229 
FGET 25 {5, 6, 9. 12. 

22- 25.31, 32} 
field {37,38} 
fleldXMax variable {35,36,38} 
fieldXMin variable {35, 36, 38} 
fleldYMax variable {35. 36, 38} 
fieldYMin variable {35, 36. 38} 
file directory {26} 
filled outlines 158 
fiInl output 216 
FIN DCOLOR 168 {25, 47, 67, 

69} 
FINDDECOMPRESSOR 165 {19. 25, 47. 

67,69} 
FINDFONT 31, 33 {25. 28, 

58, 59,67} 
fine-print passages 15 
finishing printing instruction 194 {30} 
floating-point 19,20 
FLOOR {12, 13} 

240 

flush left 109 
font 10,29.31, 

79-93 {28, 57, 
58} 

font, see also showVec 
font, approximation 91,200,210 

{58,62} 
font, library 90-93,227 
font, name 31, 80- 81, 117 
font, setup 31,33 
font, template 33. 70 
font, tuning 92 
font, defined in master 151 
font, easy net transformation 144-145 
font, multi-font text example 35 
font, summary 93 
F ontDescription 88 {57, 58. 83} 
form, of document 211 
formatting 7,212 
formatting characters 87 
frame 24. 25. 39 {6, 8, 

9, II} 
frame, more space in 189 
frame, of composed operator 126 
FSET 25 {5, 6. 8, 9, 

12,22.24,31} 
Full enhancement {68,69} 
Full Interpress 231 
GE {12} 
GET 24 {8, 12, 24, 

27} 
GETCP {43,45.53} 
GETPROP {9,27} 
G KS graphics standard 230 
global variables 42, 127 
graphical primitives 155 
graphical primitives. design 226-227 
graphics 8,155-172 
Graphics module {68} 
graphics package 73. 77 
graphics, summary 171 
Gray enhancement {68,69} 
grid spacing {39} 
GT {5. 12} 
halftoning 163 
header, encoding {13} 
hierarchical name 80.117-118 

{26} 
holes, in objects 160 

~w .. Xerox 
~Q~ Private 
"""LJ'p Data 



Introduction to Interpress 

hung text 116 
ICS, see Interpress coordinate system 
Identifier type 
Identifier. literal interface 
identity transformation 
IF 

IFCOPY 

IFELSE 

IGET 

illustration system 
illustrations, merging 
IMAGE operators 
image, page 
imager variables 
imager variables, protection 
imaging model 
imaging model, design 
imaging operators 
imposition 
imager 
index, of vector 
initial frame 
Ink module 
inner product 
inserting from a file 
instances 

instructions body 
instructions, printing 

see printing instructions 
Integer type 
interchange format 
interface, to printer 
interface, to printing 
interfaces, for masters 
Interpress coordinate system 
interpretation rules 

interpreter, check 
interpreter, efficiency 
interpreter, of Interpress 
inverse transformation 
ISET 

job • •. printing instructions 
justified text 
kerning 

t4W/JJj Xerox 
~Qi9 Private "0" Data 

19, 20 {4, 8, 16} 
68 
141 
131 {S, 7. 9, 10, 
11, 12, 17} 
132, 183 {S, II, 
17,31. 32} 
131 {S, 11, 17} 
26 {3S, 43, 44} 
212 
176, 181 
{2S} 
8 
9,24,26 {6, 3S} 
128 
{33} 
227 
7-9 {2S. 33} 
11,180 
9 {33} 
19 {4} 
41 {S, 6, 8} 
{68} 
137 
{19} 
147 -lS4 {41, 
43} 
{21.27} 

19 {3} 
2,3 
3 
21S 
65-73 
48 {36, 38} 
21-23 {6, 8, 
10} 
76 
203-20S 
7,17,21-23 
141 
26 {35, 37,43. 
48,64} 
{29} 
107-109 
110 

kerns metric {60} 
landscape pages 60 
language, see base language 
Language module {68} 
large vectors, encoding {18} 
laser printers 1 
last point, of segment {49} 
leftExtent metric {SS,60} 
letterform 79 
letterspacing III 
library, font 90-93 
ligatures 87,112 
ligatures metric {60} 
limited printer 199 {70} 
limits 198 {3, 68, 70, 

71} 
limits, errors 209 
line drawing lSS-lS8 
line drawing, example master 27 
line print~r, listing 38 
line segment {49} 
LINETO lS6 {16, 49, SO, 

68,69} 
LINETOX lS6 {S, SO, S3} 
LINETOY lS6 {S, SO, S3} 
LINETOY IS6 
listing, line printer 38 
literal 9,20-21 {3} 
literal interface 6S-69 
loops 190 
lower bound, of vector {4} 
MAKEGRAY {36,47,48,69} 
MAKEOUTLINE IS8, lS9 {SO, 

68,69} 
MAKEPIXELARRA Y 163 {4S-47, 

69} 
MAKESAMPLEDBLACK {46-48,69} 
MAKESIMPLECO 123 {S, 10, 11, 

17,S9} 
MAKEVEC 23 {4, 7, 9,17, 

23. 24, S9} 
MAKEVECLU 22 {4, 8,9, S9} 
Mark type {4, 10} 
MARK 129, 208 {10, 

11, 23, 24, 63, 
64} 

mark recovery {4,8} 
mask lS5 {33, 34} 
mask operators {48-S3} 

241 



242 

Index 

maCik. transformations 
MASKFILL 

MASKPIXEL 

MASKRECf ANGLE 

MASKSTROKE 

167 
158.159 
{48-51, 68. 
69} 
164 {46. 53, 68, 
69} 
162 {52, 53} 
156 {49, 51, 52, 
68} 

MASKTRAPEZOIDX 162 {53. 69} 
MASKTRAPEZOIDY 162 {53. 69} 
MASKUNDERLINE 113 {53} 
MASKVECfOR 28, 156 {52, 68} 
master 7 {I} 
master, coordinate systems 50 {38} 
master, error 207 {8, 72} 
master, instructions 193 
master warning 208 {72} 
master, efficient 204 - 205 
master, metric 88-90 
master, structure 41- 44 
master, examples 27 - 39 
matrix, representing transformations 

137-138 
matrix. examples 139-140 
maxBodyLength {5,69} 
max/dLength {4, 69} 
max/nteger {3, 69} 
maxStackLength {6,69} 
maxVecSize {4. 8. 69} 
measure. for CORRECf 143 
measure, of text 99-101,105 
media printing instruction 194 {27. 30. 32} 
med~dectprintinginstruction 

, {31,32} 
medium {37} 
MediumDescription {30,83} 
Mediumlndex {30-32} 
mediumXSize variable {30. 35 - 39} 
mediumYSize variable {30. 35 - 39} 
merging masters 11.174-177 
metric master 88 - 90, 197 
metrics 87 - 88 

metrics, character 
metrics metric 
mica 
mitered stroke joints 
MOD 

{58-61,83} 
49 
88 {58, 61} 
50.56 {38} 
{51} 
{9,13,44} 

MODIFYFONT 

modules 
MOVE 

MOVETO 

MUL 

name, document 
names, in environment 
NAPLPS 

NEG 

net transformation 

network, computer 
no/mage variable 

non-persistent 
NOP 

32, 33 {58, 59} 
{67} 
144 {43} 
156 {49, 52, 53} 
{13} 
194 
117 {25, 26} 
230 
{12} 
144-145 {46, 
59} 
215.217 
{36.49, 
62-65} 
{35} 
{II} 

normal viewing orientation 48 
NOT {12} 
Number type 9, 19,20,67 {3, 

15,38} 
number, limits {70} 
office information system 212 - 213 
offset, in encoding {18, 44} 
Operator type 123 {4, 6, 10} 
operator interface 65, 69 - 73 
operator restrictions {25} 
operators metric 88 
optical center {60} 
OR {12} 
ordered masks 170 {35} 
origin, of character masks {54} 
origin, of coordinate system 45 
Outline type 158 {49} 
output transition function {6} 
page body, see page image body 
page coordinate system 50, 56 - 63, 185 
page image 8 {21, 33} 
page image body 27,41 
page image formats 229 
page instructions body {21} 
page ordering 43 
page merging 176-181 
page selection II, 174 
PAGEINSTRUCfIONS {13, 17, 19, 22. 

24} 
pageM ed~elect printing instruction 

{32} 
pageOnSimplex printing instruction 

{32} 

~ ... Xerox 
fiQ~ Private 
"""'LJy, Data 



Introduction to Interpress 

pages '{25} 
pageSelectprinting instruction {31,32} 
password, in printing instructions 

{28,29} 
performance, of Interpress 203-205 
persistent {10,35} 
phototypesetter, standards 229 
pictorial representation 4 
PixelArray type 163-165 

{45-47} 
pixel array, coordinate system 144, 163 
pixel array, easy net transformation 

144-145 
pixel array, limitations 165 
PixelArrays module {68,69} 
plex printing instruction {30} 
point 50 
point size 49 
Polygons enhancement {68,69} 
pop {6,9,10} 
positioning characters, 

see character positioning 
postfix 8 
pragmatics {67-72} 
preamble 41, 130, 185 

{21,25} 
preamble, combining 175-176 
preamble, example 42 
precision, coordinates {38} 
precision, in width calculation 103 
precision, numbers {68-71} 
presentation standards 230 
Press 222-223 
Primitive Operator 9, 19,20 {4, 8, 

16} 
Primitive Operator, example 22 
Primitive Operator, literal interface 

68 
primitive transformations 52-53 
primitive transformations, mathematics 

printer 
printer, capabilities 
printer, limitations 
printer, limited 
printer, protocol 
printer, providing metrics 
printer, unlimited 
printing environment 

~9~ Xerox 
I}iQ~ Private 
"'fI[j" Data 

135-137 
7 
197-201 
96 
199 
193 
88-90 
199 _ 
214-215 

printing instructions 10,11,120, 
193 - 197, 200 
{26-32,83} 

printing instructions, examples 
196 

printing sequence {25} 
printing, demand 1, 217 
printing, digital interface 215 
priority 169, 177 {34} 
prioritylmportan~ variable 169, 177, 186 

{36,49} 
procedural interfaces 65-73 
product, of matrices 137-139 
property name {9} 
property vector 88 {9} 
ragged text 109, 110 
raster printers 1,3 
rational {3, 16} 
registry, name 118 {26} 
relative positioning 96-98.102, 

186 
REM {13} 
representation, document 211 
resolution 4, 152 
RestoreFrame 175 
results {6, 7} 
rightExtent metric {55,60} 
ROLL {5.10} 
ROTATE 53, 136, 138 

{42, 46, 59, 68, 
69, 71} 

ROUND {13} 
round stroke end 157 {51} 
rounding 191 
rule 96,155 
samples, of pixel array 163 
SCALE 32,52,136,138 

{36, 42, 43, 46, 
47. 59,61,71} 

scale, of a font 99 
SCALE2 136, 138 {42, 

46, 59,71} 
scaling, non-uniform 167. 186 
scanned images 162-167 
scanner 212-213 
scanning directions 166 
scope, of values 125 
segment {49} 
seqType {15, 19} 

243 



Index 

sequenceComment {17,20} 
sequenceCompressedPixelVector {19,20} 
sequenceContinued {15,20} 
sequenceldentlj7er {16,20} 
sequence! nsertFile 117. 119. 129, 

183, 200 {19, 
20,25,46} 

sequence/ nteger {16,20} 
sequenceLarge Vector 23 {18. 20} 
sequencePackedPixelVector {19.20} 
sequenceRational {16,20} 
sequenceString 23 {17, 18.20, 

44} 
SETCORRECTIMEASURE 105 {64, 65} 
SETCORRECTTOLERANCE 105 {66} 
SETFONT 30.33 {59} 
SETGRAY 168 {48. 69} 
SETXREL 102 {44, 45. 66} 
SETXY 30,100 {44} 
SETXYREL 100, 153 {44. 

45, 57.60,64} 
SETYREL 102 {45} 
SHAPE {9,12,59} 
SHOW 30,31 {7, 17. 

41.43.44, 53, 
54, 59,64} 

SHOW, transformations 56 
SHOWANDXREL 110 {44} 
showVec variable 32 {36, 44, 59} 
side effects 42,225 {22} 
signature 11, 180 
simplex {30} 
skeleton 27, 37 {5. 21} 
slant metric {61,81} 
SPACE 102, 107 {64, 

66} 
spaceband {57} 
spaces, in text 86 
spacing correction 103 {54, 57, 

{62-66} 
spacing correction. disabling 113 
spooling 219 
square stroke end 157 {36. 51} 
stack 8. 19,24 {6. 7} 
stack operators 24 {10-11} 
stack. example 22 
stack. for local variables 190 
stack, protection 129 
Standard 15 

244 

standard instructions {28- 32} 
standards, interchange 3 
standards, related to Interpress 

start point, of segment 
StartPreamble 
STARTUNDERLINE 

state transition 
state, of interpreter 
storage, in Interpress 
storage, of documents 
StoreFrame 
strikethrough 
string 
string, encoding 
string, literal interface 
stroke End variable 

strokes 
stroke Width variable 

style, good Interpress 
SUB 

subscripts 
subscriptX metric 
subscript Y metric 
subset, errors 
subset, of Interpress 

superscripts 
superscriptX metric 
superscript Y metric 
symbol 
symbols, defintion 
syntax 
Tvariable 

TID 

T 
p 

T v 

teletext 
test operators 
text subset 
text, example master 
text, rotated 
tokens, in encoding 
tools, software 
topFrameSize 

228-231 
{49} 
175 
113 {53} 
{4,6} 
24 
24-26 
3 
175 
96.113 
23 
{17} 
68 
155 {36. 51, 52, 
68,69} 
155-158 
28. 155 {36. 51, 
52} 
187 
{12.31,44,53} 
114 
{60} 
{60} 
209 
II, 197 --199 
{67,68} 
114 
{60} 
{60} 
147-154 
130 
7 
9,51 {35, 36, 
43-45} 
57. 143 {39, 35} 

{41,43} 

{42,43} 

228 
{II} 
11,198 {67} 
29 
63 
{13} 
75-77 
25 {21, 23, 69} 

~.~ Xerox 
~Q~ Private 
"""lJ'p Data 



Introduction to Interpress 

Trajectory type 
TRANS 

transfonnation 

156, 158 {49} 
144, 154 {39, 
43,44, 53} 
47,49,51-64, 
135-145 
{40-43} 

transfonnation, adaptive 188 
transfonnation, applied to pages 

177 -181 
transfonnation, concatenation 54 
transfonnation, design 227 
transfonnation, detailed example 

151-154 
transfonnation, examples 55 - 63 
transfonnation, for fonts 32 
transfonnation, Interpress to device 

142-144 
transfonnation.limits {71} 
transfonnation, notation 47,51 
transfonnation, of a point 137 
transfonnation, of a relative motion 

transfonnation, summary 
transition function 
TRANSLATE 

transmission, of documents 
transmission, standards 
transparent color 
transpose 
trapezoids 
TRUNC 
tumedpages 
two-up masters 
type, data 
TYPE 

typesetting 
typography 
underflow 
underlineOjfset metric 
underlines 
underlineStart variable 
underlineThickness metric 
universal names 
universal property vector 
universal registry 
unlimited printer 
UNMARK 

153 
145 
{5,6,8} 
53, 135, 138 
{35, 42, 43, 46, 
71} 
1,3,200 
231 
{47,48} 
142 
162 
{12, 13} 
60 
11, 180 
19,20 {3, 7} 
{12, 15, 74} 
79,95-116 
95-116 
{8} 
{61} 
96, 112 
{36,53} 
{61} 
{26} 
{9} 
118 {26} 
199 
129 {4, 8, 10, 
11,64} 

~WIJ!. Xerox 
~O.ll Private """0" Data 

UNMARKO 129 {8, 11, 23, 
24,63} 

unordered masks 170 {35} 
unpacking data 165 
unlimited printer {70} 
upper bound, of vector {4} 
utility programs 11,173-183 
values, data {3} 
variables, see imager variables 
Vector type 19,22 {4, 8} 
vector, literal interface 68 
vector, rules 24 
version number 118 
videotex 219,228,230 
viewing size {58} 
WEAKIl\1AGE operators {25} 
width, of character 79,84,87, 153, 

width, overriding 
width, table 
widthX metric 

width Y metric 

winding number 
written fonn 

188 
189 
101 
84, 87 {55. 57. 
59,60} 
84, 87 {55, 57, 
59,60} 
160-161 {51} 
20 

written-to-encoded converter 76 
Xerox Character Code 81, 228 
Xerox Rendering Code 81, 228 
xH eight metric { 61} 
xlmageShift printing instruction 

{22, 24, 30, 35, 
36} 

ZeroFrame 174 

245 




