
MASTERSCOPE

Volume 1 ,Number 1 February 1985

EDITORS' ~I.ESSAGE

Welcome to the inaugural issue of Masterscope, the newsletter for the Xerox Interlisp Users' Group.
The objective of this newsletter is to provide a forum for you, our users, to discuss problems,
solutions, and the projects that you are involved in.

This is your newsletter. The content will depend almost totally on articles and information supplied by
the users of Interlisp-D. Masterscope will also contain announcements of, and reports about, national
and local Users' Group meetings. We envision that Masterscope will become an externally
(non-Xerox) supported and published newsletter, with Xerox acting in an advisory capacity. However,
during the startup period, the Xerox AIS BU will act as editor and will cover the expense of
reproduction and distribution.

We are actively soliciting submissions for future issues. Submit articles and other items for
publication, as well as requests to be added to the mailing list, as follows:

INTERLISP ARTICLES:

AINewslettert .pasa@Xerox

OR: US Mail

AINEWSLETTER
ms 1232
Xerox Special Information Systems
250 North Halstead Street
Pasadena, California 91109

LOOPS ARTICLES:

Hausladen. P A@ Xerox

OR: US Mail

Mary A. Hausladen
Xerox AI Systems
3333 Coyote Hill Road
Palo Alto, California 94304

The deadline for submission for the next issue of Masterscope is April 1. We welcome any
contributions, especially short descriptions of your projects or packages you may want to provide to
the community. It would make our lives much easier if your submissions were in TEdit format, from
the Harmony release or later. We do reserve the right to make editoral changes for the purposes of
improved clarity and presentation.

We are all looking forward to an active users' group.

The Editors

2

INTERLISP-O

Articles

GRAPHCALLS: a new Lispusers package
by

Christopher Lane
Stanford University

GRAPHCALLS is an extended graphical interface to the Interlisp CALLS function. It is to CALLS what
BROWSER is to SHOW PATHS in MASTERSCOPE. It allows fast graphing of the calling hierarchy
of both interpreted and compiled code, which allows examination of both user and system functions.
In addition, the functions do not have to be analyzed by MASTERSCOPE first.

Buttoning a function on the graph will bring up a menu of operation that can be performed with
respect to the function, such as editing, inspecting and further graphing. Functions which call no
other functions or are undefined are printed in a bold version of the graph's font indicating that they
cannot be graphed further. It is also possible to exclude specific functions or classes of functions.
This is referred to as filtering. Interesting filters are WHEREIS, SYSLOADed files and EXPRP.
WHEREIS, limits the tree to functions the user has loaded and prunes out Interlisp functions.
SYSLOADed files and EXPRP limit the tree to interpreted functions. This is useful for graphing
functions in the development stage.

GRAPHCALLS uses LA YOUTGRAPH in GRAPHER and can be any format specification. In the forest
format, multiple instances of a function appear on the graph after every calling function, and a boxed
node indicates the function appears elsewhere on the graph; possibly graphed further. In the lattice
format, each function is placed on the graph only once and boxed nodes indicate recursive functions
calls.

GRAPHCALLS also does dynamic graphing. GRAPHCALLS advises all of the functions on the graph
(in the context of their parent) to invert their corresponding node on the graph (as well as delay some
to allow it to be seen) and/or follow each function name by a count of the number of times it has been
executed. In invert mode, a node remains inverted as long as control is inside its corresponding
function. It returns to normal when the function is exited. The lattice format is best when using the
invert feature. Closing the graph window UNADVISEs the functions on the graph.

You can, at some risk, interactively BREAK and EDIT a function on the graph while the code is
executing. Also, creating subgraphs of advised graphs will show the generated advice functions not
the original functions called, as will creating new graphs of functions in advised graphs. You can
create advised graphs of functions already graphed normally on the screen.

GRAPHCALLS is being distributed by Xerox.

Bugs, Workarounds And Helpful Hints

• Global, Special, and Local Variable Declaration Use

Interlisp provides facilities for declaring the type of references that will be made to variables.
Variables may be declared to be global, special or local by using the declarations SPECVARS,
LOCAL VARS, and GLOBAL VARS.

SPECVARS vs LOCALVARS is a distinction that applies to the binding of a variable, e.g., in an
argument list for a PROG, LET or LAMBDA. It says whether the variable is visible to free variable

3

iookup. The default is that all variables are visible. e.g.! are SPECVARS. (Now, why are the "special"
variables the default ones? Well! because that's how Lisp 1.5 named it.)

On the other hand. GLOBALVARS affects the compilation of a reference to a free variable. Normaliy,
if you just refer to variable "FOOMUMBLE" in a program that doesn't bind FOOMUMBLE, the
instruction that references FOOMUMBLE will look up the stack looking for some binding of
FOOMUMBLE (e.g., as a SPECV AR), and, when it gets all the way to the top, will stop and use the
GLOBAL VALUE. If you declare a variable a GLOBALVAR, you are asserting that it is never bound.
and thus all that lookup is unnecessary.

There's not much advantage in Interlisp~D to declaring things LOCALVARS instead of SPECVARS l

although there were in Interlisp·10. There;s a lot of advantage in declaring things as GLOBALVARS
if they really are~

From within a function, access to the variables of the argument list or internal PROG or LAMBDA
variables takes the same amount of time, whether or not the variable is declared LOCALVAR or
SPECVAR.

For example, in

(LAMBDA (X Y Z)
(PROG (A B C)

... computation involvin X Y Z ABC ... J
The time to access X Y Z or ABC is the same whether they are declared LOCA LV A RS or
SPECVARS: access uses the IVAR instruction for arguments and the PVAR instruction for prog
variables, independent of the declarations. IV A Rand PV A R each take 1.644 microseconds on an
1108.

The only minor help from declaring variables as LOCALV ARS comes from the following factors:

a) if variables are declared LOCALVARS, then the free variable lookup for other variables
doesn't have to examine their binding.

b) likewise, at least for internal PROG variables, declaring the variables LOCALVARS
means that the compiler doesn't need to save and the loader doesn't need to load the
name of the variable. It makes the compiled code a litt~e smaller, a little faster to load, and
uses fewer symbols.

c) in some situations, the compiler can optimize away a variable that is declared a
LOCALV AR where it can't optimize it away if it is a SPECVAR.

These three advantages are relatively small: we've not seen any program where they make more than
a 10·20% difference in space or speed.

On the other hand, we have seen programs where supplying a GLOBALVARS declaration has made
it run 10 times faster. The best thing, of course, is to avoid global variables, since they often represent
bad programming practice.

• MASTERSCOPE CALLS Semantics

When using the MASTERSCOPE relation CALLS one will see the expression (RETFROM 'MUMBLE)
as a call to MUMBLE. This is because the verb CALL searches for all occurances where the given
expression is used as a function name. Consequently (FUNCTION MUMBLE) also will be a call to the

4

function MUMBLE. If you want only the usual notion of a function call you shouJd use the
MASTERSCOPE phrase CALL DIRECTLY.

• FI LECOMS Execution and Compiled Files

When a compiled file is created, all of the compiled function definitions are collected and placed at the
beginning of the file. In certain cases the file package commands to make a file may mix function
definitions and other commands in a ordered way such as:

[(P (PRINTOUT T "Defining X"»
(FNS X)]

In this case when the source file with the above commands is loaded Defining X will be printed first,
then the function X will be defined. However, when the compiled file is loaded, X will be defined
before the message is printed.

In order to always print the message first the file package form DECLA RE: must be used with the tag
FIRST. Thus:

[(DECLARE: FIRST (P (PRINTOUT T "Defining XU»)
(FNS X)]

will always print the message before the function definition.

• ZEROP Function

The function ZEROP checks to see if its argument is EO to the integer O. Thus the following are
equivalent:

(ZEROP n) and (EO n 0)

Note that if n is a floating point number, ZEROP will return NIL instead of T in all cases (even if the n is
0). The solution for this problem is to use (EQP n 0) instead of (ZEROP n).

[NOTE: In the coming Intermetzo release of Interlisp-D the semantics of ZEROP will be changed so
that (ZEROP n) gives the same result as (EQP nO)]

• Generic vs. Specific Numeric Functions

In Interlisp there is no speed advantage in using specific numeric functions over generic numeric
functions. Thus, in writing code there is no advantage to using IPLUS or FPLUS over just plain PLUS
in execution speed. This is because the microcode checks all of the cases involved in parallel.

• Numeric Operation Overflow and Division by Zero

When Interlisp-D first comes up, the user is not protected from numeric operation overflow (one case
of which is division by zero). Thus:

(QUOTIENT 5 0)
(QUOTIENT 5.S 0)
(QUOTIENT SE·10 5E40)

= => 0
= = > 3.402823E38
= => 0

When floating point numbers underflow they go to O. When floating point numbers overflow they go
to MAX.FLOAT. When integers overflow they go to O. No errors are generated.

By calling the function OVERFLOW, the error condition handling of the system can be modified.
Executing (OVERFLOW T) will tum on error checking in all of the above cases. While it is not

5

documented in the interlisp Reference Manual. OVERFLOW works Tor both integer and fioating
operations.

• CAR and CDR of non-lists

The value of the litatom CAR/CDRERR controls what action lisp takes when CAR or CDR attempt to
operate on non-list objects.

(Also~ (SETQ CAR/CDRERR 'CDR) will catch infinite FMEMB loops ... there are a few places in the
window break package that break when it is set to anything other than NIL, however.)

• Fonts and Special Characters

Fonts generally provide printed representations for characters up to about 1778. It is possible to
create representations for characters up to 2778. These characters may be then used just as one
uses any of the normal character set. Tools for creation of your own font are found in the Lispusers
package EDITFONT.

Once defined, these characters may be accessed from the keyboard in a number of ways. Executing
(MET ASHI FT T) turns the STOP key (bottom blank key on machines other than the 1108) into a
META key. Hoiding this key down adds 2008 to any key struck whiie it is down. A second option is to
modify the keyaction table by calling the function KEY ACTION. Using KEYACTION you can get any
key on the keyboard to generate any character code. (see Interlisp Reference Manual page 18.8).
Another possibility is to use the TEDIT abbreviation facility to insert your special characters (see
Interlisp Reference Manual, page 20.31).

LOOPS

Articles

LOOPS Use At Ohio State

The AI Group at Ohio State University (OSU) is currently making heavy use of LOOPS in a number of
projects. From the top level, there are two important reasons we have found LOOPS to be most useful
in our system building efforts. .

First, the object oriented programming style that LOOPS supports is a very good match to the
theoretical paradigm being followed at Ohio State. We tend to factor the world into active agents that
are then allowed to interact with one another in well constrained ways. Of course, this is only the
barest starting point in our efforts, but that starting point leads to natural implementation expression in
the object-oriented style.

Second, and more importantly, the programming environment supported in INTERLISP/LOOPS, with
its heavy emphasis on graphic support, allows for effective management of our "world of objects".

Described below are several of OSUI AI's current interests. For general information about our group
activities contact Prof. B. Chandrasekaran 614/422-0923 or CHANDRASEKARAN@RUTGERS. For
further information about how our group is making use of LOOPS, Mr. Jon Sticklen 614/422-1413 or
STICKLEN@RUTGERS)should be contacted.

E,

CSRL: A Language tor Designing Diagnostic Expert Systems

by
Tom Bylander. B. Chandrasekaran,

Sanjay Mittal. and Jack W. Smith
Ohio State University

Through our exploration of the medical domain, we have noted on many occasions the need to have
expressive high level languages which will support the Ohio State University (OSU) paradigm. To that
end we have developed one high levellanguagelenvironment that supports our view of the diagnostic
enterprise. CSRL, as described below, is to the OSU paradigm for diagnostic problem solving what the
EMYCIN language is for the MYCIN problem solving systems.

Many kinds of problem solving for expert systems have been proposed within the AI community.
Whatever the approach, there is a need to acquire the knowledge in a given domain and implement it
in the spirit of the problem solving paradigm. Reducing the time to implement a system usually
involves the creation of a high level language which reflects the intended method of problem solving.
For example, EMYCIN was created for building systems based on MYCIN-like problem solving. Such
languages are also intended to speed up the knowledge acquisition process by allowing domain
experts to input knowledge in a form close to their conceptual level. Another goal is to make it easier
to enforce consistency between the expert's knowledge and its implementation.

CSRL (Conceptual Structures Representation Language) is a language for implementing expert
diagnostic systems that are based on approach to diagnostic problem solving which has been
developed by our AI group. In this approach, diagnostic reasonmg is one of severai generic tasks,
each of which calls for a particular organizational and problem solving structure. This approach is an
outgrowth of our group's experience with MDX, a medical diagnostic program, and with applying
MDX-like problem solving to other medical and non-medical domains.

A diagnostic structure is composed of a collection of specialists, each of which corresponds to a
potential hypothesis about the current case. They are organized as a classification or diagnostic
hierarchy, e.g., a classification of diseases. A top-down strategy called establish-refine is used in
which, either a specialist establishes and then refines itself, or the speCialist rejects itself, pruning the
hierarchy that it heads.

CSRL facilitates the development of diagnostic systems by supporting constructs which represent
diagnostic knowledge at appropriate levels of abstraction. Message procedures describe the
specialist's behavior in response to messages from other specialists. Knowledge groups determine
how data relate to features of the hypothesis. Rule-like knowledge is contained within knowledge
groups.

We have used CSRL in the implementation of two expert systems, both of which are discussed later in
this report. Auto-Mech is an expert system which diagnoses fuel problems in automobile engines. It
consists of 34 specialists in a hierarchy which varies from 4 to 6 levels deep. Red is an expert system
whose domain is red blood cell antibody identification. CSRL is used to implement specialists
corresponding to each antibody that Red knows about (around 30 of the most common ones) and to
each antibody subtype.

'MIMn'F"D""''¥'' .'#'F"
: ~ Soecial ist

VacuumHoses
.... COMMENT**

(decla. .. e (superspecia 1 ist Vacuum))
{kgs (pnysical Table

(match (AskYNU?
i "Are there any cracked, punctured or loose vacuum hoses")

(AskYNU?
I "Can you hear hissing while the engine is runnlng")
, (AskYNU?

"Are the vacuum hoses old")
with
(if T ? ?

then 3
elseif F ?

then -3
elseif U T ?

men 2
eiseif U F T

then 1
elseif U F F

men -2
elseif U U T

men 1
elseif U U F

then -1
elseif U U U

men 0))))
(messa.ges (Establish (SetConfidence self physical))))

/-, CSRL system consists of definition of specialists.
An example of which is illustrated above.

Each construct in the specialist definition is
implemented by a LOOPS class, which is expected
to adhere to a specific protocol. The class
hierarchy of constructs is illustrated at right.

The tip level classes (on the right) are expected to
respond to a Parse message and either a
Preprocess or a Run message. Intermediate
classes such as ExpWith 1 Exp contain generalized
Parse methods, while others such as Expression
contam a Decipher method, which is able to
disambiguate between different types of
expressions. The Construct class contains general
routines for breaking up s-expressions into their
constituents according to a pattern specified by a
subclass! as well as the "engine" which drives the
parsing process.

,tXH

,<{:;g~~ lS~'
~ ~etCon~ 1 dencE-

St.atement =---ror

r \~~'-~~~~
! ">:- React i vate

:1 \"Reset
I: \ If
: I Me~s.age ~ LoopsSuperDec 1

" " Dec larat 10" blndlng[lec"
,! ,,,' --..: Subspec 1 a 11 stsDec 1

j
' " superspeClel ls~[lec'
) " f,L lspExpreSSlon
/1' "Quote
I ;' 1!Sort
U. I 1+-'

Ii / ft;Lus Il ~EIIPty~

I
~·· /E';PWlthiEXP ~~~~~:?

t,::s:::- T 1 pSpec 1 a 11 st?

/
~True~

~ '\-\. NotExp

'I \'ConfldenceValue
I 'Unknown?

''"''""otv/,''ress'on,~ {~m~
\\ "\ EXP~'lth2Exos Mellber?
\~ '~Dlvlde "~ De1et.e

" '\. EqExp
\, Subtract

T1mes

~\ \ ",mh",L ,.t~;~~::,
\
',', ~AtLeast
~\ AtomicExpression

1
1'\ Insert
il • Messages
I~\\ ,DeCll!!rations \ KGDefs

\
\ Stl!!tellents

I PluralConstruct ~Mat.chTests
I~\ ~ Expressions

, ,",,'Ru1eKSDef
\. 'SuggestionKGDef
Special1st.Def

\ ~
NUlieriCl!!lTest
EqTest

"
~at.Chiest.~~~~~:~t

AndTest
AtollicTest

TableKGMl!!tchForli
TableKGDef
RuleKGlllatchForli
RuleKGRule
KSDef
SuggestionKGRule

8

The CSRL programmer can examine his system using a specially built browser to display, edit. and
run the system, The browser is a subclass of the ClassBrowser class.

~DirtlnFuel
/ BadFue 1 Water I nFue 1

LowOctane
A ir Intake -=:::::::::::: T~er~os tat ic.A ire leaner

'A1rF,lter
vacuu.~CarburetorGaSket

't'acuUlIHoses
MixtureAdjUstment~Richne~SAdjUst.ent

~ Idl.AdJusto.nt
M'''.i''!!1-- F ue 1 S y st em

.<: Acce leratorPultlp
Carburetor ,ValveOpen

Print
Mixture carbReservo'r~valveClosed

PPTabie ~ChokeMechanism
Choke VacuumUnloader Doc ChokeSensors c.::e: Eng i ne~, lockSensor

Wherels
Unread

CoolantSensor

Diagnose FuelL ines--==::::::BrokenFuelL ines
~ PluggedFuelL ines

Delivery ~ CloggedFuelFilter
~FaultYFUelPUmp

TankEllpty

The hierarchy displays the specialist·subspecialist relationships in the system. In this illustration, the
Auto·Mech specialist has been left·buttoned. bringing up a menu of commands. The Diagnose
command is used to run the hierarchy trom this point on a selected case.

The result ot running a case IS available on another browser which dispiays tne confidence vaiues of
each specialist that was run. The range of confidence values is from ·3 (the hypothesis was rejected)
to + 3 (the hypothesis was established).

The menu for the nodes in this browser allows the implementor to flash the corresponding node in the
main browser (the Wherels command), and also to bring up an explanation window for this node's
confidence values.

VacuumCase1 values

-=-umm-r"1 ,-, __ -osclllation 3
c:onfidenceValue 3~";; ~ y ,)-=:::~i."N.

---....... spec 1 a 1 Cases ~1
~--~code
Explanation of rough 3 lexplain

Iflasrl s ecialist ((AskYNU? lI[1oes t.he car run rough")
is Ti

((Ask~/NU'? IIDoes t.he problem occur- on loading")
is T)

9

This is an explanation of Vacuum1s confidence value in the current case. It shows how the confidence
value was derived from other chunks of knowledge which we call knowledge groups. A knowledge
group may combine the values of other knowledge groups, or may derive a value from a list of
pattern-action rules. The specialist illustrated earlier has a single knowledge group of the latter type.
Buttoning a node (" rough 3" in the above example), and selecting the explain command will print an
expianation of the how the value was derived. In this case, the value of the rough knowledge group is
3 because the car runs rough, and the problem occurs on loading.

*[Sanjay Mittal is currently at Knowledge Systems Area, PARC.]

LOOPS at Battelle, Columbus

The KBS (Knowledge Based Systems) group at Battelle has found the LOOPS/INTERLISP
environment to be highly supportive of fast prototype development and incrementa! refinement of a
knowledge based system. A Natural Language front end to a DBMS and an expert system for
interpreting radiographs of welds are two of the several application projects being developed at
Battelle in Columbus, Ohio.

Battelle is in close collaboration with the Ai group at Ohio State Universtiy and has found the
taxonomy of Problem Solving types to be a useful principle in matching techniques to tasks
[B.Chandrasekaran, "Expert Systems: Matching Techniques to tasks", NYU symposium 1982]. Below
we describe an expert system built using CSRL, a high level language developed at OSU for
classificatory problem solving. For more information on how the LOOPS environment is used at
Battelle, contact Dr. Jim Brink at 614/424-4087.

WELDEX: An expert system for interpreting radiographs of welds

by
D.O. Sharma, Sriram tvtahalingam

AI Group
Ohio State University

We have developed a prototype system for using expert system technology for Non-Destructive
testing of welded joints. Briefly, the image appearing on a radiograph is the projection of the
macrostructure of the radiographed piece and of the defects present in the welded section. Features
extracted from the image is used as data for WELD EX. Using knowledge of the welding process, the
geometry of the welded piece and the radiograph technique used, WELDEX classifies (or interprets)
these features as being indicative of specific defects.

On the following page is a feature classification hierarchy. The tip nodes represent the specific kinds
of defects WELDEX can deal with. The organization of knowledge and the problem solving strategy
follow the MDX paradigm of classificatory problem solving. Each node has knowledge about how well
it fits the description of the problem, as well as control knowledge about what nodes to consider next.

10

Radiograph-Interpreter

ScatteredDefects

~
scatteredPorOSity
I nterpassColdlap

SideDefects lackOfS1deWallFusion
ExternalUndercut
Mis.etch

~
Tun9stenInclU
ClusterPorosity

/

SPot-like-Defects RootPassPorosity
ScatteredSlaolnclu
8urnThru

CenterDefects, IsolatedExcessPenetr
" ~InCO.Pletepenetration
~ InternalUndercut

line-like-Defects ElongatedSlaglines
InternalConcavity
ExcessivePenetration

This system is now being expanded in terms of knowledge and also being refined in terms of industry
specific standards to decide the suitability of welded pieces for their intended application.

Finally! as it currently stands, a human user has to extract features and answer questions asked by the
system. We are also designing a knowledge based vision system to extract the features and interface
with VJELDEX.

Programming tutors with LOOPS

by
Mary Ann Quayle

University of Pittsburgh
Learning Research and Develoment Center

At LRDe we have been using primarily the object-oriented part of LOOPS for implementation of tutors.
We presently use LOOPS for our Electricity Tutor, a tutor for learning Ohm's Law, and our Subtraction
Tutor, a tutor to address children's subtraction bugs. The programming tutor we refer to as Bridge, is
presently in the design stage set for implementation in LOOPS. LOOPS provided a framework for
organizing the programming tutor user interface. It is basically a data driven implementation, but is
very straight forward and allows alot of specifications to be met without special casing.

As part of our research responsibilities, we provide workshops, a primer, and some LOOPS exercises
to sites supported by our project. Our purpose is to give enough "information to get started with the
system. The intention is that once users have enough expertise to do the basics, they can move to
more advanced programming by reading the manual and working with the machine. Participants
seem more at ease if they already know some dialect of Lisp, not necessarily Interlisp.

We find ourselves eagerly waiting for incorporation of LOOPS Objects in Interlisp-D, better
masterscope facilities for files of LOOPS objects and methods, a better rule system, and better system
handling of LOOPS methods and their associated functions.

11

ANNOUNCEMENTS
For those with access to the ARPA network there are two users' distribution lists fOi Interlisp
programmers: info-1100@sumex-aim for generai information! and bug-1100@sumex-aim for
discussion of bugs by users.

For Xerox software support! messages can be sent to 1100Support.pasa@Xerox. Our toll free
numbers are:

800/228-5325 -- continental US! including Hawaii and Alaska
Qnn /Q')A_~AAQ __ u,i+hin (,~lif"l'ni~
VVVI V,,--r-V-r-TV -- "WIiLlilll,-,U,IIiV'lliI"""

For those at universities participating in the Xerox University Grants program, Interlisp-D is an
additional environment that is available for a moderate software license fee along with the Xerox
Development Environment (XDE).

Harmony, the new release, will be arriving soon (if it hasn't already). Harmony has over 600 bug fixes
resulting in increased reliability. The most substantial changes are in NS filing, NS printing, TEDIT and
the procedure for processing Fonts.

Xerox Artificial Intelligence Sysems Business Unit offers InterliSp, Loops and Expert Systems classes
and one and two day seminars and workshops. Call the Training Coordinator on extension 2676 at
the above toll free numbers for more information.

QUESTIONS
The Xerox AIS BU development staff is very interested in obtaining written feedback on your requests
for new features or wish list items for forthcoming releases, and complaints and comments about the
software system. Also, general questions with answers that will be of interest to a general audience
will be printed in this section. Comments on the organization and content of the newsletter are
welcome.

	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11

