
AN 



Venue An Introduction to Medley 

Release 2.0 
February, 1992 



Address comments to: 
Venue 
User Documentation 
1549 Industrial Road 
San Carlos, CA 94070 
415-508-9672 

An Introduction to Medley 

Release 2.0 

February 1992 

Copyright 01992 by Venue. 

All rights reserved. 

Medley is a trademark of Venue. 

Xerox4D is a registered trademark and InterPress is a trademark of 
Xerox Corporation. 

UNIX4D is a registered trademark of UNIX System Laboratories. 

PostScript is a registered trademark of Adobe Systems Inc. . 

Copyright protection includes material generated from the software 
programs displayed on the screen, such as icons, scr.een display 
looks, and the like. 

The information in this document is subject to change without 
notice and should not be construed as a commitment by Venue. 
While every effort has been made to ensure the accuracy ofilis 
document, Venue assumes no responsibility for any errors that may 
appear. 

Text was written and produced with Venue text formatting tools; 
Xerox printers were used to produce text masters. The typeface is 
Classic. 



TABLE of CONTENTS 

Preface .................................................................................................................................................... vii 

1. Brief Glossary ......................................................................................................................... 1-1 

2. Typing and Typing Shortcuts 
Programmer's Assistant. ............................................................................................................ 2-1 

If You Make a Mistake .............................................................................................................. 2-3 

3. Using Menus 
Making a Selection from a Menu .............................................................................................. 3-1 

Explanations of Menu Items ..................................................................................................... 3-2 

Submenus ................................................................................................................................. 3-2 

Summary ................................................................................................................................... 3-3 

4. How to Use Files 
Types of Files .......................................................................................................................... 4-1 " 

Directories ................................................................................................................................. 4-1 

Directory Options ...................................................................................................................... 4-2 

Subdirectories ........................................................................................................................... 4-2 

To See What Files Are Loaded ........................................ , ........................................................ 4-3 . 

Simple Commands for Manipulating Files ................................................................................. 4-3 

Connecting to a Directory .......................................................................................................... 4-4 

File Version Numbers ................................................................................................................ 4-4 

5. File Browser 
Calling the FileBrowser ............................................................................................................. 5-1 

FileBrowser Commands ........................................................................................................... 5-3 

6. Those Wondertul Windows! 
Windows Provided by Medley ....................................... ; ........................................................... ~1 

Creating a Window .................................................................................................................. 6-2 

Right Button Default Window Menu '" ....................................................................................... 6-2 

Explanation of Each Menu Item ................................................................................................ 6-3 

Scrollable Windows .................................................................................................................. 6-4 

Other Window Functions ............................................................................. '" ........................... 6-5 

PROMPTPRINT ............................................................................................................... 6-5 

WHICHW .......................................................................................................................... 6-6 

An Introduction to Medley, Release 2.0 iii 



TABLE OF CONTENTS 

7. Editing and Saving 
Defining Functions ..................................................................................................................... 7-1 

Simple Editing in the Executive Window ..............................•..................................•......•...•...... 7-2 

Using the List Structure Editor ................................................................................................... 7-3 

Commenting Functions .............................................................................................................. 7-4 

File Functions and Variables: How to See and Save Them ...................................................... 7-5 

File Variables ............................................................................................................................. 7-5 

Saving Interlisp-D on Files ......................................................................................................... 7-5 

8. Your Init File 
Using the USERGREETFILES Variable ................................................................................... 8-1 

Making an Init File ..................................................................................................................... 8-1 

9. Medley Forgiveness: DWIM ............................................................................................. 9-1 

10. Break Package 
Break Windows ....................................................................................................................... 10-1 

Break Package Examples ....................................................................................................... 10-1 

Ways to Stop Execution from the Keyboard (Breaking Usp) .................................................. 10-3 

Break Menu ............................................................................................................................ 10-3-

Returning to Top Level ........................................................................................................... 10-4 

11. What To Do If ........................................................................................................................ 11-1 

12 .. Window and Regions 
Windows 12-1 

CREATEW ..................................................................................................................... 12-1 

W1NDOWPROP ............................................................................................................. 12-2 

Getting Windows to Do Things ....................................................................................... 12-3 

BUTTONEVENTFN ........................................................................................................ 12-5 

Looking at a WKldow's Properties .................................................................................. 12-5 

Regions ............ ~ ...................................................................................................................... 12-5 

13. What Are Menus? 
Displaying Menus .................................................................................................................... 13-1 

Getting Menus to Do Stuff ............................................................ : ......................................... 13-2 

WHENHELDFN and WHENSELECTEDFN Fields of a Menu ................................................ 13-3 

Looking at a Menu's Fields ...................................................................................................... 13-5 

'14. Bitmaps ...................................................................................................................................... 14-1 

iv An Introduction to Medley, Release 2.0 



TABLE OF CONTENTS 

15. Displaystreams 
Drawing on a Displaystream ................................................................................................... 15-1 

DRAWUNE ..................................................................................................................... 15-1 

DRAWTO ........................................................................................................................ 15-2 

DRAWCIRCLE ............................................................................................................... 15-3 

FILLCIRCLE .................................................................................................................... 15-1 

Locating and Changing Your Position in a Displaystream ...................................................... 15-4 

DSPXPOSITION ............................................................................................................. 15-5 

DSPYPOSITION ............................................................................................................ 15-5 

MOVETO ........................................................................................................................ 15-5 

16. Fonts 
What Makes Up a Font Name? .............................................................................................. 16-1 

Fontdescriptors and FONTCREATE ...................................................................................... 16-2 

Display Fonts ........................................................................................................................... 16-2 

InterPress Fonts ...................................................................................................................... 16-3 

Functions for Using Fonts ........................................................................................ ~ ............... 16-4 

FONTPROP - Looking at Font Properties ...... , ................................................................ 16-4 

STRINGWIDTH .............................................................................................................. 16-5 

DSPFONT- Changing the Font in One Window ............................................................ 16-5 

Personalizing Your Font Profile ............................................................................................... 16-6 

17. The Inspector 
Calling the Inspector ............................................................................................................... 17-1 

Using the Inspector ................................................................................................................. 17-2 

Inspector Example .................................................................................................................. 17-2 

18. Masterscope 
SHOW DATA Command and GRAPHER ............................................................................... 18-2 

19. Where Does All the Time Go? SPY 
How to Use Spy with the SPY Window ................................................................................... 19-1 

How to Use SPY from the Lisp Top Level .............................................................................. 19-2 

Interpreting SPY's Results ...................................................................................................... 19-2 

20. Free Menus 
Example Free Menu .............................................................................................................. 20-1 

Parts of a Free Menu Item ......................................................................... , ............................ 20-2 

Types of Free Menu Items ...................................................................................................... 20-3 

An Introduction to Medley, Release 2.0 v 



TABLE OF CONTENTS 

21. The Grapher 
Say it with Graphs .. , '" ............................................................................................................. 21-1 

Add a Node ..................................................................................................................... 21-3 

Add a Link ..............................•.•...•..................•.................••..........................••..•............. 21-4 

Delete a Link ..........................................................•.......................................•.•..........•... 21-4 

Delete a Node ................................................................................................................. 21-4 

Move a Node ...................................•..........•.................•....•..................•.................•........ 21-5 

Making a Graph from a Ust ........................•..........................................................•.•.............. 21-5 

Incorporating Grapher into Your Program ................................•..................•......... ~ ... : ............ 21-5 

More of Grapher ...•..............................................•.................................................•................ 21-5 

22. Resource Management 
Naming Variables and· Records .......•.............•.....•..........•...........•...................•.....•.•............... 22-1 

Some Space and Time Considerations .............................•.............•.....................•.......•........ 22-2 

Global Variables ............................................................................................................. 22-3 

Circular Lists .................................................................................................................. 22-3 

When You Run Out of Space .......................................................................................... 22-4 

23. Simple Interactions with the Cursor, a Bitmap, and a Window 
GETMOUSEST ATE Example Function .................................................................................. 23-1 

Advising GETMOUSESTATE ................................................................................................. 23-2 

Changing the Cursor ............................................................................................................... 23-2 

Functions for Tracing the Cursor ............................................................................................ 23-2 

Running the Functions ............................................................................................................ 23-6 

24. Glossary of Global System Variables 
Directories ............................................................................................................................... 24-1 

Flags ....................................................................................................................................... 24-2 

History Lists ............................................................................................................................ 24-3 

System Menus ........................................................................................................................ 24-3 

Windows .................................................................................................................................. 24-4 

Miscellaneous ........................................................................................................................ 24-4 

25. Other Useful References ............................................................................................... 25.1 

Index ................................................................................................................................................ INDEX-1 

vi An Introduction to Medley, Release 2.0 



PREFACE 

It was dawn and the local told him it was down the road a piece, left at the first fishing 
bridge in the country, right at the appletree stump, and onto the dirt road just before the 
hill. At midnight he knew he was lost. -Anonymous 

Welcome to the Medley Lisp Development Environment, a collection of powerful tools for 
assisting you in programming in Lisp, developing sophisticated user interfaces, and 
creating prototypes of your ideas in a quick and easy manner . Unfortunately, along with 
the power comes mind-numbing complexity. The Medley documentation set describes all 
the tools in detail, but it would be unreasonable for us to expect a new user to wade 
through all of it, so this primer is intended as an introduction, to give you a taste of some 
of the features. 

We developed this primer to provide a starting point for new Medley users, to enhance 
your excitement and challenge you with the potential before you. We're going to make 
some assumptions about you. For starters, we're going to assume that you're sitting at a 
workstation that can run Medley. All of the examples in the book figure that you're 
going to want to try things out. We're also going to assume that you've had some exposure 
to Lisp. 

LISP 
Medley actually consists of two complete Lisp implementations, Common Lisp and 
Interlisp. Most of the examples in this primer are done in Interlisp. However, thanks to 
the package system, you can call back and forth between the. two languages by simply 
including a package delimiter in front of a symbol name (see figure 6-3). 

Throughout we make reference to the lnterlisp-D Reference Manual (lRM) by· section and 
page number. The material in the primer is just an introduction. When you need more 
depth, use the detailed treatment provided in the manual. 

Acknowledgements 
The early inspiration and model for this primer came from the Intelligent Tutoring 
Systems group and the Learning Research and Development Center at the University of 
Pittsburgh. We gratefully acknowledge their pioneering contribution to more effective 
artificial intelligence. 

This primer was originally developed by Computer Possibilities, a company committed to 
making Al technology available. Primary development and writing was done by Cynthia 
Cosic, with technical writing support provided by Sam Zordich. It has been re-done by 
Venue staff to reflect changes in the environment since the .original publication. 

At Xerox Artificial Intelligence Systems, John Vittal managed and directed the project. 
Substantial assistance was provided by many members of the AlS staff who provided both 
editorial and systems support. 

An Introduction to Medley, Release 2.0 vii 



PREFACE 

[This page intentionally left blank] 

viii An Introduction to Medley, Release 2.0 



1. BRIEF GLOSSARY 

The following definitions will acquaint you with general terms used throughout this primer. You will 
probably want to read through them now, and use this chapter as a reference while you read through 
the rest of the primer. 

advising 

argument 

atom 

Background Menu 

binding 

bitmap 

BREAK 

Break Window 

browse 

button 

A Medley facility for specifying function modifications without 
necessarily knowing how a particuJar function works or even what it 
does. Even system functions can be changed with advising. 

A piece of information given to a Lisp function so that it can execute 
successfully. When a function is explained in the primer, the arguments 
that it requires will also be given. Arguments are also called 
parameters. 

The smallest structure in Lisp; like a variable in other programming 
languages, but can also have a property list and a function definition. 

The menu that appears when the mouse is not in any window and the 
right mouse button is pressed. 

The value of a variable. It could be either a local or a global variable. 
Seembound 

A rectanguJar array of "pixels," each of which is on or off representing 
one point in the bitmap image. . 

An Lisp function that causes a function to stop executing, open a Break 
window, and allows you to find out what is happening while the 
function is halted. 

A window that opens when an em)r is encountered while running your 
program (i.e., when your program has broken). There are tools to help 
you debug your program from this window. This is explained further in 
Chapter 14. 

To examine a data structure by use of a display that allows you to 
"move" around within the data structure. 

(1) (n.) A lcey on a mouse. 

(2) (v.t.) To press one of the mouse keys when making a selection. 

CAR A function that returns the head or first element of a list. See CDR. 

caret The small blinking arrowhead that marks where text will appear when 
it is typed in from the keyboard 

CDR A function that returns the tail (that is, everything but the first element) 
of a list. See CAR. 

CLlSP A mechanism for augmenting the standard Lisp syntax. One such 
augmentation included in Interlisp is the iterative statement. See 
Chapter 9. 

cr Press your Return key. 

datatype (1) The kind of a datum. In Inrerlisp, there are many system-<iefined 
datatypes, e.g., Floating-Point, Integer, Atom, etc. 

An Introduction to Medley, Release 2.0 1-1 



1. BRIEF GLOSSARY 

(2) A datatype can also be user-defined. In this case, it is like a record 
made up from system types and other user-defined datatypes. 

DWIM "Do-what-I-mean." Many eIIOrS made, by Medley users could be 
corrected without any infonnation about the purpose of the program or 
expressioo in question (e.g., misspellings, certain kinds of parenthesis 
eIIOrS). The DWIM facility is called automatically whenever an error 
occurs in the evaluation of an Interlispexpression. If DWIM is able to 
make a correction, the computation continues as though no error had 
occurred; otherwise, the standard error mechanism is invoked. 

error Occasionally, while a program is running, an error may occur which 
will stop the computation. Interlisp provides extensive facilities for 
detecting and handling error conditions, to enable the testing, 
debugging, and revising of imperfect programs. 

evaluate or EVAL To find the value of a form. For example, if the variable x is bound to 
5, we get 5 by evaluating X. Evaluation of a Lisp function involves 
evaluating the argwnents and then applying the function. 

Executive Window This is your main window, where you will run functions and develop 
your programs. This is the window that the caret is in when you turn on 
your machine and load Medley. 

file package A set of functions and conventions that facilitate the bookkeeping 
involved with working in a large system consisting of many source 
code files and their compiled counterparts. Essentially, the file package 
keeps track of where things are and what things have changed. It also 
keeps track of which files have been modified and need to be updated 
and recompiled. 

form Another way of saying s-expression. A Lisp expression that can be 
evaluated. 

function A piece of Lisp code that executes and returns a value. 

history The programmer's assistant is built around a memory structure called 
the history lisL The history functions (e.g. FIX, UNDO, REDO) are part 
of this assistant These operations allow you to conveniently rework 
previously specified operations. 

History List As you type on the screen, you will notice a number followed by a 
slash, followed by another number. The first number is the exec 
number, the second is the event number. Each number, and the 
information on that line, is stored sequentially as the History List Using 
the History List, you can easily reexecute lines typed earlier in a work 
session. See Chapter 2. 

icon A pictorial representation, usually of a shrunken window. 

inspector An interactive display program fOJ; examining and changing the parts of 
a data structure. Medley has inspectors for lists and other data types. 

iterative statement (also called i.s.) A statement in Interlisp that repetitively executes a 
body of code For example, (for x from I to 5 do (PRINT 
x) ) is an i.s. 

iterative variable (also called Lv.) Usually, an iterative statement is controlled by the 
value that the i. v. takes 00. In the iterative statement example above, x 
is the iterative variable because its value is being changed by each 

1-2 An Introduction to Medley, Release 2.0 



Lisp 

list 

Masterscope 

menu 

mouse 

Mouse Cursor 

Mouse Cursor Icons 

o 

NIL 

pixel 

An Introduction to Medley, Release 2.0 

1. BRIEF GLOSSARY 

cycle through the loop. All iterative variables are local to the iterative 
statement where they are defined. 

Family of languages invented for "list processing." These languages 
have in common a set of basic primitives for creating and manipulating 
symbol structures. Interlisp-D is an implementation of the Lisp 
language together with an environment (set of tools) for programming, 
and a set of packages that extend the functionality of the system. 

A collection of atoms and lists; a list is denoted by smf01Dlding its 
contents with a pair of parentheses . 

. A program analysis tool. When told to analyze a program, Masterscope 
creates a database of information about the program. In particular, 
Masterscope knows which functions call other functions and which 
functions use which variables. Masterscope can then answer questions 
about the program and display the information with a browser. 

A way of graphically presenting you with a set of options. There are 
two kinds of menus: pop-up menus are created when needed and 
disappear after an item has been selected; permanent menus remain on 
the screen after use until dehberately closed. 

The mouse is the box attached to your keyboard. It controls the 
movement of the cursor on your screen. As you become familiar with 
the mouse, you will find it much quicker to use the mouse than the 
keyboard. 

The small arrow on the screen that points to the northwest. 

Four types of mouse cursor icons are shown below. 

Wait. The processor is busy. 

The Mouse Confum Cursor. It appears when you have to confinn that 
the choice you just made was correct. If it was, press the left button. If 
the choice was not correct. press the right button to abort. 

This means "sweep out" the shape of the window. To do this, move the 
mouse to a position where you want a comer. Press the left mouse 
button, and hold it down. Move the mouse diagonally to sketch a 
rectangle. When the rectangle is the desired size and shape, release the 
left button. 

This is the "move window" prompt. Move the mouse so that the large 
"ghost" rectangle is in the position where you want the window. When 
you click the left mouse button. the window will appear at this new 
location. 

NI L is the Lisp symbol for the empty list It can also be represented by 
a left parenthesis followed by a right parenthesis ( ). It is the only 
expression in Lisp that is both an atom and a list. 

Pixel stands for "picture element. n The computer monitor screen is 
made up of a rectangular array of pixels. Each pixel corresponds to one 
bit. When a bit is turned on (Le .• set to 1). the pixel on the screen 
represented by this bit is black. 

1-3 



1. BRIEF GLOSSARY 

1-4 

pretty printing 

Programmer's 
Assistant 

Prompt Window 

property list 

record 

Right Button Default 
Window Menu 

Pretty printing refers to the way Lisp functions are printed with special 
indentation. to make them easier to read. Functions are pretty printed in 
the structure editor, SEdit (see Chapter 7). You can pretty print 
uncompiled functions by calling the function pp with the function you 
would like to see as an argument. i.e. (pP function-name). Note that 
the function must be defined in memory before invoking PP or PP will 
not work. For an example of this, see Figure 1-5. 

,geo. pp pp 
FNS de(1n11:10n (0 .. PP: 
(DEFINEQ 

(PP 
[NLA.aDA x (* --) 

) 

'07" 

(1IEClAIIE (LOCALYARS • 1) 
(_APC (NLA_BDA.ARes X) 

(FUNCTION (LA_BOA (HAlE) 
(fer TYPE in (TYPESOF NA_E NIL • (FIELDS) 

• CURRENT) . 
do (OL:FORIAT "TER.INAL-IO" '-A def1nit.ion fo .. 

-S: -:. TYPE HA.E) 
(SHOWDEF NAIfE TYPE]) 

Figure 1.5. Example of Pretty Printing Function PP 

The programmer's assistant accesses the History Ust to allow you to . 
FIX, UNDO, and/or REDO your previous expressions typed to the 
executive window (see Chapter 2). 

The narrow black window at the top of the screen. It displays system 
prompts, or prompts you have developed (see Figure 1.6). 

Figure 1.6. Prompt Wmdow 

A list of the form ( <property-name!> <property-valuel> 
<property-name2> <property-value2> .... ) associated with an atom. It 
accessed by the functions GETPROP and PUTPROP. 

A record is a data structure that consists of named "fields". Accessing 
elements of a record can be separated from the details of how the data 
structure is actually stored. This eliminates many programming details. 
A record definition establishes a record template, descnbing the form 
of a record. A record instance is an actual record storing data according 
to a particular record template. (See datatype, second definition.) 

This is the menu that appears when the mouse is in a window, and the 
right mouse button is pressed. It looks like the menu in Figure 1.7. If 
this menu does not appear when you press the right button of the mouse 

An Introduction to Medley, Release 2.0 



s-expression 

stack 

sysout 

TRACE 

unbound 

window 

An Introduction to Medley, Release 2.0 

1. BRIEF GLOSSARY 

and the mouse is in the window, move the mouse so that it is pointing 
to the title bar of the window, and press the right button. 

Close 
Snap 
Paint 
Clear 
Bury 

Redisplay 
Hardcopy.

Move 
Shape 
Shrink 

Keyboard. 

Figure 1.7. Right Button Default Window Menu 

Short for "symbolic expression". In Lisp, this refers to any well-fonned 
collection of left parentheses, atoms, and right parentheses. 

A pushdown list Whenever a function is entered, infonnation about 
that specific function call is pushed onto (i.e., added to the front of) the 
stack. This infonnation includes the variable names and their values 
associated with the function call. When the function is exitted, that data 
is popped off the stack. 

A file containing a whole Lisp environment: namely, everything you 
defined or loaded into the environment, the windows that appeared on 
the screen, the amount of memory used, and so on. Everything is stored 
in the sysout file exactly as it was when the function SYSOUT was 
called. 

A function that creates a trace of the execution of another function. 
Each time the traced function is called, it prints out the values of the 
arguments it was called with, and prints out the value it returns upon 
completion. 

Without value; an atom is unbound if a value has never been assigned 
to it 

A rectangular area of the screen that acts as the main display area for 
some Lisp process, 

1-5 



1. BRIEF GLOSSARY 

[This page intentionally left blank] 

An Introduction to Medley, Release 2.0 



2. TYPING & TYPING SHORTCUTS 

Once you have logged in to Medley, you are in Lisp. The functions you type into the Executive 
Window will now execute, that is, perfonn the designated task. Lisp is case-sensitive; it often 
matters whether text is typed in upper or lowercase letters. Use the Shift-Lock, or Caps, key on your 
keyboard to ensure that everything typed is in capital letters. 

You must type all Lisp functions in parentheses. The Lisp interpreter will read from the left 
parenthesis to the closing right parenthesis to determine both the function you want to execute and 
the arguments to that function. Executing this function is called "evaluation." When the function is 
evaluated. it returns a value, which is then printed in the Executive Window. This entire process is 
called the read-eval-print loop, and is how most Lisp interpreters, including the one for Lisp, IUD. 

The prompt is a number followed by a right angle bracket (see Figure 2-1). This number is the 
function's position on the History List-a list that stores your inteIaCtions with the Lisp Exec. Type 
(+ 3 4), and notice the History List assigns to the function (the number immediately to the left of 
the bIacket). Lisp reads in the function and its arguments, evaluates the function, and then prints the 
number 7. 

A note on keyboards is necessary at this time. All keyboards are not the same, so some compromises 
have been made on the location of a few keys to make Medley as useful as possible. One of the most 
often used keys is the Backspace key. This is the key that erases the single character directly to the 
left of the cursor. On some machines this key is labeled "Delete". In this book , and all other Medley 
documentation, reference to the "Backspace key" can be read as the "Delete key", as appropriate for 
yOUI' keyboard. 

Programmer's Assistant 
In addition to the read-eval-print loop, there is also a "programmer's assistant." It is the 
programmer's assistant that prints the number as part of the prompt in the executive window, and 
uses these numbers to reference the function calls typed after them. 

When you issue commands to the programmer's assistant, yOu will not use parentheses as you do 
with ordinary function calls. You simply type the command, and some specification that indicates 
which item on the history list the command refers to. Some programmer's assistant commands are 
FIX, REDO, and UNDO. They are explained in detail below. 

Programmer's assistant commands are useful only at the Lisp top level, that is, when you are typing 
into the Executive Window. They do not work in user-defined functions. 

As an example use of the programmer's assistant, use REDO to redo your function call (+ 3 4). 

Type REDO at the prompt (programmer's assistant commands can be typed in either upper or 
lowercase) , then specify the previous expression in one of the following ways: 

• When you originally typed in the function you now want to refer to, there was a History List 
number to the left of the arrow in the prompt. Type this number after the programmer's assistant 
command. This is the method illustrated in Figure 2-1. 

An Introduction to Medley, Release 2.0 2-1 



2. TYPING & TYPING SHORTCUTS 

2·2 

E ec ,'. 1= L t 

4(0) (+ 3 4) 
7 
401 > REDO 400 
7 
402) 

Figure 2-1. Using a Programmer's Assistant Command to REDO a Function 

• A negative number will specify the function call typed in that number of prompts ago. In this 
example, you would type in -I, the position immediately before the current position. This is 
shown in Figure 2-2. 

403) (+ 3 4) 
7 
404}REDO -1 
7 
4OS) 

Figure 2-2. Using a Negative Number after the Programmer's Assistant Command 

• You can also specify the function for the programmer's assistant with one of the itemstbat was in 
that function call The programmer's assistant will search backwards in the History List, and use 
the first function it finds that includes that item. For example, type RZDO + to have the function. 
( + 3 4) re-evaluated. 

• If you type a programmer's assistant command without specifying a function (i.e., simply typing 
the command, followed by cr), the programmer's assistant executes the command using the 
function entered at the previous prompt. 

Figure 2-3 shows a few more examples of how to use the programmer's assistant. 

An Introduction to Medley, Release 2.0 



2. TYPING & TYPING SHORTCUTS 

422) (+ 5 4) 
9 
423) REDO 
9 
424)?? -2 

422) (+ 5 4) 
9 

425) (SETQ 8 'BOY) 
BOV 
428)8 
BOV 
427) USE ABB FDA 8 IN 425 
BOV 
428)88 
BOV 
429)flX 425 
429) (SETQ 8 'BOV2) 
BOV2 
430) V 
Y is an unbound yariable. 

431)8 
BOV2 
432)88 
BOV 
433) 

, 

Figure 2-3. Some Applications of the Programmer's Assistant 

If You Make a Mistake 

Editing in the Executive Window is explained in detail in Chapter 7. In the following section, only a 
few of the most useful commands are repeated. 

To move the caret to a new pJace in the command'being typed. point the mouse cursor at the 
applOpriate position. Then press the left mouse button. 

To move the caret back to the end of the command being typed. press Control-X (hold the Control 
key down, and type X). 

To delete: 

Character behind the caret 

Word behind the caret 

Any part of the command 

Entire command 

Press the Backspace key 

Press Control-W (hold the Control key down and type W) 

Move the caret to the appropriate place in the command. Hold 
the right mouse button down and move the the mouse cursor 
over the text. All of the blackened text between the caret and 
mouse cursor is deleted when you release the right mouse 
button. 

Press Control-U (hold the Control key down and type tJ) 

Deletions can be undone. Just press the UNDO key. 

An Introduction to Medley, Release 2.0 2-3 



2. TYPING & TYPING SHORTCUTS 

To add more text to the line, move the caret to the appIopriate position and start to type. Whatever 
you type will appear at the careL • 

2-4 An Introduction to Medley, Release 2.0 



3. USING MENUS 

The purpose of this chapter is to show you how to use menus. Many things can be done 
more easily using menus, and there are many different menus provided in the Medley 
environment. Some are "pop-up" menus that are only available until a selection is made, 
then disappear until they are needed again. An example of one of these is the 
Background Menu that appears when the mouse is not in any window and the right 
mouse button is pressed. A background menu is shown in Figure 3-1. Your background 
menu may have different items on it. 

Idle > 
SaveVM 

Snap 
Hardcopy > 

EXEC > 
psw 

Figure 3-1. Background Menu 

Another common pop-up menu is the right button default window menu. This menu is 
explained more in Chapter 6. 

Other menus are more permanent, such as the menu that is always available for use 
with the Filebrowser. This menu is shown in Figure 3-2., and the specifics of its use with 
the filebrowser are explained in Chapter 5. 

F8 ':ornrn'3nci: 
Delete > 

Undelete > 
Copy 

Rename 
Hardcopy > 

See > 
Edit > 

Load > 
Compile > 
Expunge 

Recompute> 
Sort 

Figure 3-2. Filebrowser Menu 

Making a Selection from a Menu 

To make a selection from a menu, point with the mouse cursor to the item you would like 
to select. If one of the mouse buttons is already pressed, the menu item should be 
highlighted in reverse video. Ifit is a permanent menu, you must press the left mouse 
button to highlight the item. When you release the button, the item will be selected. 
Figure 3-3 shows a menu with the item "Undo" chosen. 

An Introduction to Medley, Release 2.0 3-1 



3. USING MENUS 

m&a, 
Quit 

Figure 3-3. Menu with the Item "Undo" Chosen 

Explanation of Menu . Items 

Many menu items have explanations associated with them. If you are not sure what the 
consequences of choosing a particular menu item will be, highlight the menu item but do 
not release the left mouse button. If the menu item has an explanation associated with it, 
the explanation will be printed in the prompt window. Figure 3-4 shows the explanation 
associated with the item "Snap" from the background menu. 

NotICarda 
TEdit 

Skstcl'l • ....................... 
FlleBrowael' 
Hardeoc., • 

Idle J 

Set Poetaeript Pel'Vnetel"S 
Set Default Dlaplay Font ~ 

Set Default Printer .. 

Low Le"el Toola 
I.ogout • 

Dlrectcry Connector ~ 
Cloeke .. 

Neat leona ~ 
Mell • 

Figure 3-4. Explanation Associated with Selected Menu Item 

Submenus 

3-2 

Some menu items have submenus associated with them. This means that, for these 
items, you can make even more precise choices if you would like to. 

As shown in Figure 3-5, a submenu can be indicated by a gray arrow to the right of the 
menu item. To see the submenu, highlight the menu item and move the mouse cursor to 
the right to follow the arrow. Choosing an item from a submenu is done the same way 
you make a choice from the menu. Any submenus that might be associated with the 
itents in the submenu are indicated in the same way as the submenus associated with the 
items in the main menu. 

An Introduction to Medley, Release 2.0 



3. USING MENUS 

Summary 

Figure 3-5. Edit Submenu Displayed with Right Arrow 

In summary, here are a few rules of thumb to remember about the interactions of the 
mouse and system menus: 

• Press the left mouse button to select a menu item 

• Press the middle mouse button to get more options on a submenu 

• Press the right mouse button to see the default right button window menu, and the 
background menu 

An Introduction to Medley, Release 2.0 3-3 



3. USING MENUS 

[This page intentionally left blank] 

3-4 An Introduction to Medley, Release 2.0 



4. HOW TO USE FILES 

Types of Files 
A program file, or Lisp file, contains a series of expressions that can be read and evaluated by the 
Lisp interpreter. These expressions can include function or macro definitions, variables and their 
values, properties of variables, and so on. How to save Interlisp expressions on these files is 
explained in Chapter 7. Loading a file is explained in the Simple Commands for Manipulating Files 
section below. 

Not all files. however, have Lisp expressions stored on them. For example, TEdit files store text; 
sketches are stored on files made with the package Sketch , or can be incorporated into TEdit files. 
These files are not loaded directly into the environment, but are accessed with the package used to 
create them, such as TEdit or Sketch. 

When you name a file, there are conventions that you should follow. These conventions allow you to 
tell the type of file by the extension to its name. 

If a me contains: 

Lisp expressions 

Compiled Code 

A Sketch 

Text 

Directories 

Then: 

It should either have no extension or it should have the extension 
• LISP. For example, a file calledMYCODE. LISP should 
contain Lisp expreSsions. 

It should have the extension. LCOM or . DFASL. For example, 
a file called MYCODE • DFASL should contain compiled code. 

Its extension should be • SKETCH. For example, a file called 
MOUNTAINS. SKETCH should contain a Sketch. 

It should have the extension • TED IT. For example, a file called 
REPORT. TEDIT should contain text that can be edited with the 
editor TEDIT. 

This section focuses on how you can find files, and how you can easily manipulate files. The 
commands are demonstrated using an Interlisp Executive Window. To use them in a Xerox Common 
Lisp Executive Window (the default Exec), type ll.: immediately in front of the command. To see all 
the files listed on a device, use the function DIR. For example, to see what fdes are stored in your 
current directorY, type: 

(DIR *.*) or (IL:DIR *.*) 

Partial directorY listings can be gotten by specifying a file name, rather than just a device name. The 
wildcard character * can be used to match any number of unknown characters. For example. the 
command (DIR D*) will list the names of all files that begin with the letter D. An example using 
the wildcard is shown in Figure 4-1. 

An Introduction to Medley, Release 2.0 4-1 



4. HOW TO USE FILES 

128+ (DIR (DK}/USERS/PORTERITMPID*) 

{DSK}< users> porter> t.p> 
DRAFT. TED IT; 1 
DRAf'T2 . TED IT ; 1 
127+ 

Figme 4-1. Using DIR with a Wildcard 

Directory Options 
Various words can appear as extra mguments to the DIR command. These words give you extra 
information about the files. 

SIZE displays the size of each file in the directory. For example, type: 

(DIR {DSK} SIZE) 

DATE displays the creation date of each file in the directory. An example of this is shown in Figure 
4-2. 

12T+ (OIl {DSK}IUSERS/PORTERITMP/D* DATE) 

CREATIONDATE 

{DSK}<users>porter>tmp> 
DRAFT.TEDIT;1 28-Jan-92 11:26:21 
DRAFT2.TEDIT;1 28-Jan-92 11:26:22 
128+ 

Figure 4-2. Example Using DATE 

DEL deletes all the files found by the directory command (WARNING: there is no escape when this 
command is invoked, it deletes all the files without asking for confinnation!) 

Subdirectories 

4-2 

Sudirectories are very helpful for organizing files. A set of files that have a single pmpose (for 
example, all the external docmnentation files for a system) can be grouped together into a 
subdirectory. 

To associate a subdirectory with a filename, simply include the desired subdirectory as part of the 
name of the file. Subdirectories are specified after the device name and before the simple filename. 
The first subdirectory should be between less-than and greater-than signs (angle bIackets) < >, with 
nested subdirectory names only followed by a greater than sign >. For example: 

{DSK}<Directory>SubDirectory>SubSubDirectory> •.• >filename 

or use the UNIX convention: 

{DSK}/Directory/Subdirectory/Subsubdirectory/filename 

An Introduction to Medley, Release 2.0 



4. HOW TO USE FILES 

To See What Files Are Loaded 
If you type FILELST<CR>, the names of all the files you loaded will be displayed. 

Type SYSFILES<CR> to see what files are loaded to create the sysout. If the Exec window turns 
black and output ceases, just press the Space Bar twice and output will continue. 

Simple Commands for Manipulating Files 
When using these fimctions, always be sure to specify the full filename, including subfile directories 
if appropriate. 

To have the contents of a file displayed in a window: 

(SEE 'filename) 

To copy a file (see Figure 4-3): 

(COPYFILE 'oldfilename' newjilename) 

Exec (lrnERLlSP) 

13e+ (COPVFILE 'T AGREFS. TEDIT 'PRIMERREFS.TEDIT) 
{DSK}<users>sybalsky>PRIMERREFS,TEDITj1 
1:37+-

Figure4-3. Example Use of COPY FILE 

To delete a file (see Figure 4-4): 

(DELFILE 'filename) 

1 :37+- (DELFILE 'T AGREFS. TEDIT) 
{OSK}<users>sybalsky>tagrefs,teditj1 
, :38+-

Figure 4-4. Example Use of DELFILE 

To rename a file: 

(RENAMEFILE 'oldfilename 'newfilename) 

Files that contain Lisp expressions can be loaded into the environment. That means that the 
infonnation on them is read. evaluated, and incorporated into the Medley environment To load a 
file, type: 

(LOAD 'filename) 

An Introduction to Medley, Release 2.0 4-3 



4. HOW TO USE FILES 

Connecting to a Directory 
Often, each person or project has a subdirectory where files are stored. If this is your situation, you 
will want any files you create to be put into this directory automatically. This means you should 
"connect" to the <tirectory. 

CONN is the Medley command that connects you to a directory. For example, CONN in Figure 4-5 
connects you to the subsubdirectory PORTER, in the subdirectory USERS, on the device DSK. This 
information-the device and the directory names down to the subdirectory to which you want to be 
connected-is called the "path" to that subdirectory. CONN expects the path to a directory as an 
argumenL 

1 ~ CONN {dsk J/users/porter I 
{DSK}<users)porter) 
'40+-

Figure 4-5. CONNecting to Subdirectory USERS SUbsubdirectory PORTER 

Once you are connected to a directory, the command DirR will assume you want to see the files in 
that directory, or any of its subdirectories. 

Other commands that require a filename as an argument (e.g., SEE, above) will assume that the file is 
in the connected directory if there is no path specified with the filename. This will often save you 
typing. 

File Version Numbers 

4-4 

When stored, each filename is followed by a semicolon and a number, as shown in this example: 

MYFILE.TEDIT;1 

The number is the version number of the file. This is the system's way of protecting your files from 
being overwritten. Each time the file is written, a new file is created with a version number one 
greater than the lasL This new file will have everything from your previous file, plus all of your 
changes. 

In most cases, you can exclude the version number when referencing the file. When the version is 
not specified. and there is more than one version of the file on that particular directory, the system 
generally uses your most recent version. An exception is the function DELFI LE, which deletes the 
oldest version (the one with the lowest version number) if none is specified. 

An Introduction to Medley, Release 2.0 



5. FILEBROWSER 

The FileBrowser is a Lisp Library Package that works with files stored on disk and floppy 
devices, and can be used as a file directory editor. If it is not loaded into your sysout, you 
need to load it first by typing: 

(LOAD 'PILEBROWSER.LCOM) 

Calling the FileBrowser 

Calling the FileBrowser with a directory calls up the files stored in that directory: 

(FB '<usr>local>lde» 

Another way to call a FileBrowser is to choose ''FileBrowser'' from the background menu. 
You will be prompted for a description of the files to be included (see Figure 5-1). Type an 
asterisk (*), then press Return to see all the files in the connected directory. 

Figure 5-1. Prompt for Files to Include in FileBroWser 

These show a directory of the device in a window you can leave on the screen at all times. 
The parts of the FileBrowser window are shown below. 

An Introduction to Medley, Release 2.0 5-1 



5. ALEBROWSER 

5-2 

Prompt Window ~ 

File group Clescription: 

Command Menu 

Delete 
Undelete 

Copy 
Rena.me 

Hardcopy 
See 
Edit 

Load 
Compile 
Ex un e 

File List 

Figure 5-2. Parts of a FileBrowser Window 

To use the FileBrowser, choose a file by pointing to the file with the mouse CUrsor and 
pressing the left or middle mouse button. A small dark arrow appears to the left of the 
file name. Choose a command from the menu at the right. In Figure 5-3, the files 
OCRl. TED IT: 1, OCR1D • TEDIT: 1, and OCRll. TEDIT: 1 have been selected. 

The left mouse button allows you to choose only one file at a time. Even if you choose 
other files, only the last file you selected with the left mouse button will remain marked 
as chosen. When you use the middle mouse button to select a flle, the file is added to 
those already chosen. 

To unpick an already chosen file, hold the Control key down while pressing the middle 
mouse button. 

;1 
•• uII.n:l.:I.. TEDIT;1 

OCH12.TEDIT;1 
OOH1!.TEDIT:1 
DOH14.TEDIT;1 
OOH2. TEDIT; 1 
DOH!. TEDIT ; 1 
OCH4.TEDITj1 
OOHS.TEDIT;2 
OCH5 1 

Figure 5-3. Files Chosen 

An Introduction to Medley, Release 2.0 



5. FILEBROWSER 

File Browser Commands 

Delete In the FileBrowser, this command marks a file, or fIles, for deletion (see 
Figure 5-4). These files are marked by a black line crossing through 
them. You may select and mark any number of files for deletion. Dele te 
does not actually remove these files from the device. The Expunge 
command actually wipes out the fIles marked for deletion. 

OCH12. TEO IT ; 1 
00H13. TECIT j 1 
OCH14. TEOIT j 1 
OCH2.TEOITj1 
00H3 . TEO IT j 1 
OCH4. TEOIT j 1 
00H5.TECITj2 
OCH5.TECITj1 

Figure 5-4. Files Marked for Deletion 

Undelete Undoes the delete command for one or more files. Undelete erases the 
black line through a file marked for deletion. 

Copy This command copies the chosen file. The destination filename should be 
typed at a prompt that appears in the window above the FileBrowser. 
Wildcards do not work for this prompt. You must type the whole 
unquoted filename. Ifmore than one file is chosen to be copied, you will 
be prompted for a directory name. The files will be copied into the 
directory you give, but with the same filenames as the ones they have in 
their original location. 

Rename This command works much like the Copy command, but does not leave 
the original file. The chosen file will be renamed to the destination 
filename. You will be prompted, in the prompt window, for the 
destination filename. Give the complete unquoted filename. Ifmore 
than one file is chosen to be renamed, you will be prompted for a directory 
name. The files will be moved into the directory you give. 

Hardcopy If you do not have a printer, using this command causes an error. 
Otherwise, it gives a hardcopy of the file. 

See Shows you a file in a window. To use this command, choose a single 
filename, then the See command. You are prompted for a window. Each 
time the See command is chosen, a new window is opened to display the 
file. 

Ed it Calls the editor with the file as input. If the file is an executable one (Le., 
Lisp code as opposed to a text file), only the FILECOMS list is edited. The 
FILECOMS list is the list of variables, lists, and functions that are 
contained on that file. FileBrowser loads it and then allows you to edit 
the FILECOMS. 

Load Choose a file with the left mouse button, or a group of files with the 
middle mouse button. Once the filenames have been highlighted with 
the black arrow, choose the Load command to load them all into Medley. 

An Introduction to Medley, Release 2.0 5-3 



5. FlLEBROWSER 

. Comp i le This command calls the file compiler with the chosen filename(s) as 
arguments. The compiler compiles a file found on a storage device 
( {DSE.} ), not the functions def"med in the Medley sysout. If any functions 
on a loaded file have been changed, run the function (MAlCEFILE 
I filename) to write the current version before compiling it. Files do not 
have to be loaded to use the Compile command. 

Expunge This command completely removes all the files marked for deletion from 
the directory. This allows you to remove unwanted files from your 
storage device. 

Recompu te Choose this command when you know that the directory has been 
changed and should be reread (e.g., after creating new versions of a file). 

5-4 An Introduction to Medley, Release 2~O 



6. THOSE WONDERFUL WINDOWS! 

A window is a designated area on the screen. Every rectangular box on the screen is a 
window. While Medley supplies many of the windows (such as the Executive Window), 
you may also create your own. Among other things, you will type, draw pictures, and save 
portions of your screen with windows. 

Windows Provided by Medley 

Two important windows are available as soon as you enter the Medley environment. One 
is the Xerox Common Lisp Executive Window, the main window where you will run your 
functions. It is the window that the caret is in when you turn on your machine and load 
Medley. Once you have loaded Medley, you may use the right button background menu 
to open an Interlisp Executive window to avoid prepending IL: to most of the commands. 
Both types are shown in Figure 6-1. 

2/341> 

E -:ec ,lr'lTEp.LI'3P;' 

340+ 

Figure 6-1. Medley Executive Windows 

The other window that is open when you enter Medley is the "Prompt Window". It is the 
long thin black window at the top of the screen. It displays system prompts, or prompts 
you have associated with your programs. (See Figure 6-2.) 

Figure 6-2. Prompt Window 

Other programs, such as the editors, also use windows. These windows appear when the 
program starts to run, and close (no longer appear on the screen) when the program is 
done running. 

An Introduction to Medley, Release 2.0 6-1 



6. THOSE WONDERFUL WINDOWS! 

Creating a Window 
To create a new window, if you are in an Interlisp Executive window type: (CRBA'.l'BW); if 
you are in a Xerox Common Lisp Executive window type (IL:CRD!'BIf). The mouse 
cursor will change, and have a small square attached to it. (See Figure 6-3.) 

I 
NIL 
332+ (CREATEW) 

2/336) (IL:CREATEW) {WINOOW}#365,133064 
333+ #(IL:WINOOW @ 366,16064> 

2/337) 

--
r- r 

~e 6-3, Creating a Window with (CRBAftIf) in Each Type Executive Window 

There may be a prompt in the prompt window to specify a region for a window. Press·and 
hold the left mouse button. Move the mouse around, and notice that it sweeps out a 
rectangle. When the rectangle is the size that you'd like your window to be, release the 
left mouse button. More specific information about the creation of windows, such as 
giving them titles and specifying their size and position on the screen when they are 
created, is given in the WIHDOWPROP section of Chapter 12. 

Right Button Default Window Menu 

6-2 

Position the cursor inside the window you just created, and press and hold the right 
mouse button. A menu of commands should appear (do not release the right button!),like 
the one in Figure 6-4. To execute one of the commands on this menu, choose the item. 

Close 
Snap 
Paint 
Clear 
Bury 

Redisplay 
Hardcopy. 

Move 
Shape 
Shrink 

Figure 6-4 Right Button Default Window Menu 

As an example, select "Move" from this menu. The mouse cursor will become a ghost 
window (just an outline of a window, the same size as the one you are moving), with a 
square attached to one corner, like the one shown in Figure 6-5. 

An Introduction to Medley, Release 2.0 



6. THOSE WONDERFUL WINDOWS! 

Figure 6-5 Moving a Window 

Move the mouse around. The ghost window will follow. Click the left mouse button to 
place tho window in a new location. 

Choose "Shape", and notice that you are prompted to sweep out another window. Your 
original window will have the shape of the window you sketch out. 

Explanation of Each Menu Item 

The meaning of each right button default window menu item is explained below: 

Close 

Snap 

Paint 

Clear 

Bury 

Redisplay 

Hardcopy 

Move 

Shape 

Shrink 

Expand 

Removes the window from the screen 

Copies a portion of the screen into a new window 

Allows drawing in a window 

Clears the window by erasing everything within the window boundaries 

Puts the window beneath all other windows that overlap it 

Redisplays the window contents 

Sends the contents ofthe window to a printer or toa rue 

Allows the window to be moved to a new spot on the screen 

Repositions and/or reshapes the window 

Reduces the window to an icon of the appropriate shape for that window 
type (see Figure 6-6). 

{DSK} 
100 <users> '-.", porter> 
~ tmp>003-

TOC.TEDlTj 
3 

Figure 6-6 Example of a TEdit IC,on 

Changes an icon back to its original window. Position the mouse cursor 
on the icon, depress the right button, and select Expand. Or, just button 
the icon with the middle mouse button. 

These right-button default window menu selections are available in most windows, 
including the Executive Window. When the right button has other functions in a window 

An Introduction to Medley, Release 2.0 6-3 



6. THOSE WONDERFUL WINDOWS! 

(as in an editor window), the right button default window menu should be accessible by 
pressing the right button in the black border at the top of the window. 

Scrollable Windows 

6-4 

Some windows in Medley are "scrollable". This means that you can move the contents of 
the window up and down, or side to side, to see anything that doesn't fit in the Window. 

Slide the mouse cursor over the left or bottom border of a window. If the window is 
scrollable, a "scroll bar" will appear. The mouse cursor will change to a double headed 
arrow. (See Figure 6-7.) 

Figure 6-7. Scroll Bar of Scroll able Window 

The scroll bar represents the full contents of the window. The example scroll bar is 
completely white because the window has nothing in it. When a part of the scroll bar is 
shaded, the amount shaded represents the amount of the window's contents currently 
shown. If everything is showing, the scroll bar will be fully shaded. (See Figure 6-8.) The 
position of the shading is also important. It represents the relationship of the section 
currently displayed to the the full contents of the window. For example, if the shaded 
section is at the bottom of the scroll bar, you are looking at the end of the file. . 

The amount of shading in 
the scroll bar represents 
the amount of the file 
shown in the window. Most 
of the file is visible. 
Secause the shading is at 
the top of the scroll bar, 
you know you are looking 
at the top of the file. 

Figure 6-8 Top of File When Shading at Top ofSeroll Bar 

When the scroll bar is visible, you can control the section of the window's contents 
displayed: 

• To move the contents higher in the window (seroll the contents up in the window), 
press the left button of the mouse, the mouse cursor changes to look like this: 

An tntroduction to Medley, Release 2.0 



6. THOSE WONDERFUL WINDOWS! 

t 
Figure 6-9. Upward Scrolling Cursor 

The contents of the window will scroll up, making the line that the cursor is beside the 
topmost line in the window. 

• To move the contents lower in the window (scroll the contents "down" in the window), 
press the right button of the mouse, and the mouse cursor changes to look like this: 

+ 
FIgure 6-10. DoWnward Scrolling Cursor 

The contents of the window scroll down, moving the line that is the topmost line in the 
window next to the cursor. 

• To show a specific section of the window's contents, remember that the scroll bar 
represents the full contents of the window. Move the mouse cursor to the relative 
position of the section you want to see (e.g., to the top of the scroll bar if you want to see 
the top of the window's contents). Press the middle button of the mouse. The mouse 
cursor will look like this: 

Figure 6-11 Proportional Scrolling Cursor 

When you release the middle mouse button, the window's contents at that relative 
position will be displayed. 

The position of the mouse in the scroll bar defines how much of the window will be 
scrolled. If it is near the top, then only a little will be scrolled. !fit is near the bottom, 
most ofthe window will be scrolled. 

Other Window Functions 

PROMPTPRINT 

Prints an expression to the black prompt window. 

For example, type 

(PRClCP'rPRIKT -'fBIS WILL BB PRIBTBD IB 'rBB PROIIPT WIImOW-) 

The message will appear in the prompt window. (See Figure 6-12.) 

E, ec ',!HTERL !'::;P:' 

'39i- (PROMPTPRINT "THIS WILL BE PRINTED IN 
THE PROMPT WINDOW") 
NIL 
'40i-

An Introduction to Medley, Release 2.0 6-5 



6. THOSE WONDERFUL WINDOWS! 

6-6 

Figure 6-12 PROMP'l'PRIlfTing 

WHICHW 

Returns as a value the name of the window that the mouse cursor is in. 

(WBICBW) can be used as an argument to any function expecting a window, or to reclaim 
a window that has no name (that is not attached to some particular part of the program.). 

An Introduction to Medley, Release 2.0 



7. EDITING AND SAVING 

This chapter explains bow to define functions, how to edit them, and how to save your work. 

Defining Functions 

DEFUN can be used to define new functions in a Xerox Common Lisp Executive window (in an 
Interlisp Executive window use (CL: DEFUN). The syntax for it is: 

(DEFUN (£unctionname (parameter-list) body-of-function) 

New functions can be created with DEFUN by typing directly into the Executive Window. Once 
defmed, a function is a part of the Medley environment For example, the function 
EXAMPLE-ADDER is defined in Figure 7-1. 

3;23) (defun example-adder (a. b c) "exa.mple function- (print 
"The sum of the three numbers is ") (. abc» 
EXAMPLE-ADDER 
3;31) 

Figure 7-1. Defining the Function EXAMPLE-ADDER 

Now that the fimction is defined, it can be called from the Executive Window: 

3/33) 

3/33) (example-adder 1 2 3) 

"The sum of the three nUBbers ;s • 
6 
3/34) 
3/34) 
3/34) 

Figure 7-2 .. After EXAMPLE-ADDER is defined, it can be executed 

The fimction returns 6, after printing out the message. 

Functions can also be defined using the editor SEdit described below. To do this, simply type 

(ED' function-name 'FUNCTIONS) 

You will be told that no definition exists for the function. and a menu will pop up asking you what 
type of function you would like to create: 

An Introduction to Medley, Release 2.0 7-1 



7. EDITING AND SAVING 

Exec:::: C<C,L:I 
NIL 
3/$9> (ed ~oo 'functions) 
FOe has no FUNCTIONS definition. 
Select a definer to use for a dummy definition. 

·::::.ele.-t:d (ieflnet'fot'.j clUrntTI ..... clefn: 
DEF INE·MOD IFY ·MACRO 
DEFMACRO 
DEFINLINE 
DEFUN 
DEFDEFINER 
Don1: make a dumm defn 

Figure 7·3 Selecting a Function Template 

Selecting the appropriate type will pop up an editor window with a function template. The use of the 
editor is explained in the Using the List Structure Editor section below. 

Simple Editing in the Executive Window 

7-2 

First, type in an example function to edit 

(DEFUN MY-FIRST-FUNCTION (A ~) 
(IF (> A B) 

, (THE FIRST IS GREATER) 
'(THE SECOND IS GREATER»» 

To run the function, type: 

(MY-FIRST-FUNCTION 3 5) 

Now, let's alter this. Type: 

FIX <the history list number of the function definition> 

Note that your original function is redisplayed, and ready to edit (SeeFigure 7-4.) 

MV-FIRST-FUNCTION 
447) (MY-FIRST-FUNCTION 3 5) 
(THE SECOND IS GREATER) 
448)FIX 446 
448> (DEFUN MY-FlRST-FUNCTION (A B) 

(IF (> A B) 
'(THE FIRST IS GREATER) 
'(THE SECOND IS BIGGER») 

New FUNCTIONS definition for NY-FIRST-FUNCTION 

MV-FIRST-FUNCTION 
449> 

Figure 7-4. Using FIX to Edit a Fundion 

Move the text cursor to the appropriate place in the function by positioning the mouse cursor and 
pressing the left mouse button. 

An Introduction to Medley, Release 2.0 



7. EDITING AND SAVING 

Delete text by moving the caret to the beginning of the section to be deleted. Hold the right mouse 
button down and move the mouse cursor over the text. All of the highlighted text between the caret 
and mouse cursor is deleted when you release the right mouse button. 

IT you make a mistake, deletions can be undone. Press the UNDO key on the keypad to the left of 
the keyboard. 

Now change the second GREATER to BIGGER: 

1. Position the mouse cursor on the G of GREATER. and click the left mouse button. The text cursor 
is now where the mouse cursor is. 

2. Next, press the right mouse button and hold it down. Notice that if you move the mouse cursor 
around, it will blacken the characters from the text cursor to the mouse cursor. Move the mouse 
so that the word "GREATER" is highlighted. 

3. Release the right mouse button and GREATER is deleted. 

4. Without moving the cursor, type in BIGGER. 

5. There are two ways to end the editing session and run the function. One is to type Control-X. 
(Hold the Control key down, and type X.) Another is to move the text cursor to the end of the 
line and cr. In both cases, the function has been edited! 

Try the new version of the function by typing: 

(MY-FIRST-FUNCTION 8 9) 

and get the new result. or you can type: 

REDO <the history list number of the first function call> 

Using the List Structure Editor 

If the function you want to edit is not readily available (i.e. the function is not in the Executive 
Window, and you can't remember the history list number, or you simply have a lot of editing), use 
the List Structme Editor, often called SEdil This editor is invoked with a call to ED: 

(ED 'MY-FIRST-FUNCTION 'FUNCTIONS) 

Your function will be displayed in an edit window, as in Figure 7-5. 

If there is no edit window on the screen, you will be prompted to create a window. As before, hold 
the left mouse button down, move the mouse until it forms a rectangle of an acceptable size and 
shape, then release the button. Your function definition will automatically appear in this edit window. 

SEdit r·· ... 1'( -F IRST-FUNCTIOf'J P3C~~8,;)e: XCL-USER 

(DEFUN MV-FIRST-FUNCTION (A S) 
(IF (> A S) 

An Introduction to Medley, Release 2.0 

'(THE FIRST IS GREATER) 
'(THE SECOND IS BISSER») 

Figure 7-5. An S-Edit Window 

7-3 



7. EDITING AND SAVING 

Many changes are easily done with the structure editor. Notice that by pressing the left mouse button 
you can place the caret in position, and by pressing the middle mouse button you can select atoms or 
s-expressions. Repeated pressing of the middle button selects bigger pieces of text. 

To add an expression that does not appear in the edit window place the caret at the insertion point and 
type it in. For example, to replace the first GREATER with LARGER, place the caret to the right of 
GREATER, as shown in Figure 7-6. 

(~ MV-FIRST-FUNCTION (A 8) 
(IF (> A 8) 

'(THE FIRST IS SREATE~ 
'(THE SECOND IS 8IGGER») 

Figure 7-6. Caret Placement Prior to Changing GREATER to LARGER 

Now press the Backspace key seven times, and type in LARGER. The window now looks like this: 

SE.::iit r·· ... l·,·-FIF:ST-FUt~CTIC'N F'<3c.I'a'::'1e: YCL-U5ER 

(DEFUN IiIV-FIRST-fUNCTION(A 8) 
(IF (> A eo) 

'(THE FIRST IS LARGER) 
'(THE SECOND IS 8IGGER») 

Figure 7-7. GREATER Changed to LARGER 

Now exit the edit session by typing Control-X, and the function will be redefmed. 

Commenting Functions 

7-4 

Text can be marked as a comment by typing a semi-colon before the text of the comment. 

; This is the form of a comment 

Inside an editor window, the comment will be printed in a different font and may be moved to the far 
right of the code. SEdit is familiar with the Common Lisp convention of single comments being on 
the far right, double comments being justified with the function level, and triple comments being on 
the far left, as is shown in Figure 7-8. 

An Introduction to Medley, Release 2.0 



7. EDITING AND SAVING 

{D~ MV-FIRST-FUNCTION (A B) 
;; print outthe aIOpropriate text 
(IF (> A B) ; checkforA > B 

'(THE FIRST IS LARGER) 
'(THE SECOND IS BIGGER» 

;;; Now we're done 
) 

Figure 7-8. Placement of Comments 

There are other editor commands which can be very useful. To learn about them. read Appendix B of 
the Release Notes. 

File Functions and Variables: How to See and Save Them 
With Medley. all work is done inside the Lisp environmenL There is 110 operating system or 
command level other than the Executive Window. All fmlctions and data struCtureS are defined and 
edited using normal Lisp commands. This section describes tools in the Medley environment that will 
keep track of any changes that you make in the environment that you have not yet saved on files. 
such as defining new functions, changing the values of variables. or adding new variables. And it 
then has you save the changes in a file you specify. All of these functions are in the INTERLI SP 

(IL:) package. 

File Variables 

Certain system-defined global variables are used by the file package to keep ttack of the environment 
as it stands. You can get system information by checking the values of these variables. Two 
important variables are: 

• FILELS T evaluates to a list of all the files you have loaded into the Medley environmenL 

• jilenameCOMS (Each file loaded into the Lisp environment has associated with it a global variable. 
whose name is formed by appending COMS to the filename.) This variable evaluates to a list of all 
the functions. variables. bitmapS. windows. and so on. that are stored on that particular file. 

For example. if you type: 

MYFILECOMS 

the system will respond with something like: 

«FNS YOUR-FIRST-FUNCTION 
VARS) ) 

Saving Interlisp on Files 
The functions (FILES?) and (MAKEFILE 'filename) are useful when it is time to save function. 
variables. windows. bitmaps. records and whatever else to files. 

(FILES?) displays a list of variables that have values and are not already a part of any file. 
and then the functions that are not already part of any tile. 

An Introduction to Medley. Release 2.0 7-5 



7. EDITING AND SAVING 

7-6 

Type: 

(Fl:loES?) 

the system will respond with something like: 

the variables: MY. VARIABLE CURRENT. TURTLE .•• to be 
dumped 

the functions: RIGHT LEFT FORWARD BACKWARD 
CLEAR-SCREEN ••• to be dumped 

want to say where the above go? 

If you type Y (the system will echo with "yes"), the system will prompt with each 
~tem. There are three options: 

1. To save the item, type the filename (unquoted) of the file where the item 
should be placed. (1bis can be a brand new file or an existing file.) 

2. To skip the item, without removing it from consideration the next time 
(FILES?) is called, type cr. This will allow you to postpone the decision 
about where to save the item. 

3. If the item should not be saved at all, type ]. Nowhere will appear after the 
item. 

Part of an example interaction is shown in the following figure: 

S7+ (FILES?) 
To be dumped: 
NEWFILE ... changes to VARS: NEWFILECOMS 

FNS: TEST 
plus the Common Lisp structures: MyStruct 
plus the functions: Function 

want to say where the above go ? yes 
(Common Lisp structures) 
MyStruct Nowhere 
(functions) 
Function File name: NFILE 
create new file NFILE ? yes 
To be compiled: FOREISN-FUNCTIONS, FOO 
To be listed: PAINTW, FOREIGN-FUNCTIONS, FOO, COURIERSERYE 
58+ 

Figure 7-9. Part of an interaction using the function (FI LES ?) 

(FILES?) assembles the items by adding them to the apPlOpIiate file's COMS 
variable (see the File Variables section above). (FILES?) does NOT write the file 
to secondary storage (disks or floppies). It only updates the global variables 
discussed in the FJ.le Variables section above. 

(MAKEFILE 'filename) 

actually writes the file to secondary storage. 

Type: 

. An Introduction to Medley, Release 2.0 



7. EDITING AND SAVING 

(!mDF:tLE ' II!' . F:tLE. NAME) 

and the system will create the file. The function returns the full name of the file 
created. (i.e. {DSK}MY .FILE.NAME.; 1). 

Files written to {DSK) are pennanent files. They can be removed only by the user 
deleting them or by refonnatting the disk. 

Other file manipulation functions can be found in Chapter 4. 

An Introduction to Medley, Release 2.0 7-7 



7. EDITING AND SAVING 

[This page intentionally left blank] 

7-8 An Introduction to Medley, Release 2.0 



8. YOUR INIT FILE 

Lisp has a number of global variables that control the environment. Global variables 
make it easy to customize the environment to fit your needs. One way to do this is to 
develop an INIT file, a file that is loaded when you start a fresh sysout. You can use it to 
set variables, load files, define functions, and do other things to make Medley's 
environment suit you. 

Using the USERGREETFILES Variable 

Your IHIT file may be called IHIT, INIT. LISP, INIT. USER, or whatever the convention 
is at your site. There is no default name preferred by the system; it just looks for the files 
listed in the variable USERGREETFILES (see below). Check to see what the preference is 
at your site. Put this file in your directory. Your directory name should be the same as 
your login name. The INIT file is loaded by the function GREET. GREET is normally run 
when Medley is started. If this is not the case at your site, or you want to use the machine 
and Medley has already been started, you can run the function GREET yourself. If your 
user name were, for example, TURING, then you would type: 

(GREET 'TURING) 

This does a number of things, including undoing any previous greeting operation, loading 
the site init file, and loading your init file. Where GREET looks for your !NIT file depends 
on the value of the variable USERGREETF I LES. The value of this variable is set when the 
system's SYSOUT file is made, so check its value at your site! For example, its value could 
be: 

eo+ USERGAEETFILES 
«{DSK}INIT %. COM) 
({DSK}INIT- USER %. COM) 
({DSK}INIT- USER) 
({DSK}INIT) ) 

Figure 8-1. Possible Value of USER GREET FILES 

In each place you see USER, the argument passed to GREET is substituted into the path. 
This is your login name if you are just starting Medley. For example, the frrst value in the 
list would have the system check to see whether there was a 
{OSK}<USERS>TURING>INIT. LISP file. No error is generated if you do not have an 
INIT file, and none of the files in USERGREETFILES are found. 

Making an Init File 

As described in the File Variables section of Chapter 7, each program file has a global 
variable associated with it, whose name is formed by appending COMS to the end of the 
root fIlename. For any of the standard INIT file names, the variable IHITCOMS is used. 
To set up an init file, begin by editing this variable. Type: 

(OV IHITCOMS) 

An SEdit window will appear. This window is the same as the one called with the 
function OF, and described in the Using the List Structure Editor section in Chapter 7. 

An Introduction to Medley, Release 2.0 8-1 



8. YOUR INIT FILE 

8·2 

The CaMS variable is a list oflists. The flI'St atom in each internal list specifies for the fIle 
package what types ofitems are in the list, and what it is to do with them. This section 
will deal with three types oflists: VARS, FILES, and P. Please read about others in 
Chapter 17 of the IRM. 

Notice that inside the vars list, there is yet another list. The first item in the list is the 
name of the variable. It is bound to the value of the second item. There are many other 
variables that you can set by adding them to the V ARS list. Some of these variables are 
described in Chapter 24, and many others can be found in the IRM. 

Jfyou want to automatically load files, that can be done in your init me also. For 
example, if you always want to load the Library me SPY. LCOM, you can load it by editing 
the IN I TCOMS variable to list the appropriate file in the list starting with FILES: 

(FILES SPY) 

Figure 8·2. INITCOMS Changed to Load SPY. LCOM File 

Other mes can also be added by simply adding their names to this FILES list. 

Another list that can appear in a CaMS list begins with P. This list contains Lisp 
expressions that are evaluated when the file is loaded. Do not put DEFINEQ expressions 
in this list. Define the function in the environment, and then save it on the file in the 
usual way (see Chapter 7). 

One type of expression you might want to see here, however, is a FONTCREATE function 
(see Chapter 16). For example, of you want to use a Helvetica 12 BOLD font, and there is 
not a fontdescriptor for it normally in your environment, the appropriate call to 
FONTCREATE should be in the "p" list. The INITCOMS would look like this: 

(FILES Spy) 
{P (FONTCREATE 'HELVETICA 12 'BOLD» 

Figure 8-3. IN I TCOMS Edited tc? Include a call to FONTCREATE 

To quit, exit from SEdit in the usual way. When you run the function MAKEFILES (see 
Chapter 7), be sure that you are connected to the directory (see Chapter 4) where the 
INIT file should appear. Now when GREET is run, your !nit file will be loaded. 

An Introduction to Medley, Release 2.0 



9. MEDLEY FORGIVENESS: DWIM 

DWIM (Do What I Mean) is an Interlisp utility that makes life easier. 

DWIM tries to match unrecognized variable and function names to known ones. This allows Lisp to 

interpret minor typing errors or misspellings in a function, without causing a break. Line 152 of 
Figme 9-1 illustrates how the misspelled BANNANNA was replaced by BANANA before the expression 
was evaluated. 

E'· ec .;Ir'lTEF:LI'3P:. 

151+ (DEFINEQ (PEEL (BANANA) (COR BANNANNA») 
(PEEL) 
152+ {PEEL '(A B D» 
BANNANNA {in PEEL} -> BANANA? Yes 
(B D) 
153+ 

Figure 9-1. Examples of DWIM Feawres 

Sometimes DWIM may alter an expression you dido't want it to. nus may occur if, for example, a 
hyphenated function name (e.g., (MY-FUNCTION» is misused. If the system does not recognize the 
function name, it may think you are trying to subtract "FUNCTION" from "MY". DWIM also takes the 
liberty of updating the function, so it will have to be fixed. However. this is as much a blessing as a 
curse, since it points out the misused expression! 

An Introduction to Medley, Release 2.0 9-1 



9. MEDLEY FORGIVENESS: DWIM 

[This page intentionally left blank] 

9-2 An Introduction to Medley, Release 2.0 



10. BREAK PACKAGE 

The Break Package is a part of Inter lisp that makes debugging your programs much 
easier. 

Break Windows 

A break is a function either called by the programmer or by the system when an error has 
occurred. A separate window opens for each break. A break window works much like the 
Executive Window, except for extra menus unique to it. Inside a break window, you can 
examine variables, look at the call stack at the time of the break, or call the editor. Each 
successive break opens a new window, where you can execute functions without 
disturbing the original system stack. These windows disappear when you resolve the 
break and return to a higher level. 

Break Package Example 

This example illustrates the basic break package functions. A more complete explanation 
of the breaking functions, and the break package will follow. 

The correct definition of FACTORIAL is: 

(defun factorial (x) 
(if (zerop x) 

1 
(* x {factorial (1- x»») 

To demonstrate the break package, we have edited in an error: DUMMY in the IF statement 
is an unbound atom, it lacks a value. 

(defun factorial (x) 
(if (zerop x) 

dummy 
(* x (factorial (1- x»») 

The evaluated function 

(FACTORIAL 4) 

should return 24, but the above function has an error. DUMMY is an unbound atom, so Lisp 
will ''break". A break window appears (Figure 10-1), that has all the functionality of 
typing Lisp expressions into the Executive Window (the top level), in addition to the 
break menu functions. Each consecutive break will move another level "down". 

An Introductic:>n to Medley, Release 2.0 10-1 



1 O. BRE~KPACKAGE 

10-2 

UNE:':'UNC', ........ to.R l.to.E:LE 
In EIJAL: 
DUMMY is an unbound variab1e. 

3/82(deDug) 

Figure 10-1. Break Window 

Move the mouse cursor into the break window and hold down the middle mouse button. 
The Break Menu will appear. Choose BT. Another menu, called the stack menu, will 
appear beside the break window. Choosing stack items from this menu will display 
another window. This window displays the function's local variable bindings, or values 
(see Figure 10-2). This new window, titled FACTORIAL Frame, is an inspector window 
(see Inspector Chapter 17). 

FACTORIAL 
"X" 0 

Ut·JE:OUt·1D, .... /.:c. F: l.to.E:LE 

3/84(deDug) 

""' .... I "I""~' .." c'" "'. I 
(IF (ZEROP ~) DUMMY ... ) 
~iCtiCi:t$IU~::::::::::::::::::::::::::::::::::::::: 
(FACTORlPi. (1- ~» 
(* ~ (FACTORlPi. i)) 
ell: I interpret-IF I 
(IF (ZEROP~) DUMMY ... ) 
FACTORlPi. 
(FACTORlPi. (1- ~» 
(* 1/ (F.or:mRTAI it)) 

Figure 10-2. Back Trace of the System Stack 

From the break window, you can call the editor for the function FACTORIAL by 
middle-buttoning on the word FACTORIAL and selecting DisplayEdit from the menu that 
pops up. 

Replace the unbound atom DUMMY with 1. Exit the editor. 

The function is fixed, and you can restart it from the last call on the stack. (It does not 
have to be started again from the Top Level.) To begin again from the last call on the 
stack, choose the last (top) FACTORIAL call in the B'1' menu. Select REVER'1' from the 
middle button break window, or type it into the window. The break window will close, 
and a new one will appear with the message: Breakpoint at FAC'1'OlUAL 

To start execution with this last call to FACTORIAL, choose OE from the middle button 
break menu. The break window will disappear, and the correct answer, 24, will be 
returned to the top level. 

An . Introduction to Medley. Release 2.0 



10. BREAKPACKAGE 

Ways to Stop Execution from the Keyboard (Breaking Lisp) 

There are ways you can stop execution from the keyboard. They differ in terms of how 
much of the current operating state is saved: 

Control-G 

Control-B 

Break Menu 

Provides you with a menu of processes to interrupt. Your process will 
usually be "EXEC". Choose it to break your process. A break window will 
then appear. 

Causes your function to break, saves the stack, then displays a break 
window with all the usual break functions. For information on other 
interrupt characters, see Chapter 30 in the IRM. 

Move the mouse cursor into the break window. Hold the middle button down, and a new 
menu will pop up, like the one in Figure 10-3. 

EVAL 
EDIT 
REVERT 
l' 
PROCEED 
OK 
BT 
BT! 
?= 

Figure 10-3. Middle Button Menu in Break window 

Five of the selections are particularly important when just starting to use Medley: 

BT Back Trace displays the stack in a menu beside the break window. Back Trace 
is a very powerful debugging tool. Each function call is placed on the stack and 
removed when the execution of that function is complete. Choosing an item on 
the stack will open another window displaying that item's local variables and 
their bindings. This is an inspector window that offers all the power of the 
inspector. (For details, see the section on the Inspector, Chapter 17.) 

? = Before you use this menu option, display the stack by choosing BT from this 
menu, and choose a function from it. Now, choose ?=. It will display the current 
values of the arguments to the function that has been chosen from the stack. 

t Move back to the previous break window, or if there is no other break window, 
back to the top level. 

REVERT Move the point of execution back to a specified function call before the error. 
The function to revert back to is, by default, the last function call before the 
break. If, however. a different function call is chosen on the BT menu, REVERT 
will go back to the start of this function and open a new break window. The 
items on the stack above the new starting place will no longer exist. This is 
used in the tutorial example (see the Break Package Example section above). 

OK Continue execution from the point of the break. This is useful if you have a 
simple error, i.e., an unbound variable or a nonnumeric argument to an 

An Introduction to Medley. Release 2.0 10-3 



10. BREAKPACKAGE 

arithmetic fuDction. Reset the variable in the break window, then select OK. 
(see the Break Package Example section above). 

In addition to being available on the middle button menu of the break window, all of 
these fuDctions can be typed directly into the window. Only BT behaves differently when 
typed. It types the stack into the trace window instead of opening a new window.) 

Returning to Top Level 

10-4 

Typing Control·D will immediately take you to the top level from any break window. The 
functions called before the break will stop, but any side effects of the function that 
occurred before the break remain'. For example, if a function set a global variable before 
it broke, the variable will still be set after typing Control·D. 

An Introduction to Medley. Release 2.0 



11. WHAT TO DO IF • •• 

The purpose of this chapter is to explain what to do with some of the problems commonly 
experienced by Medley users. 

Executive Window turns black 

An example is shown in Figure 11-l. 

Press any key to umreeze the window and continue. This pause happens when the 
command you just typed causes enough information to be printed to fill the window. It 
gives you a chance to read that one window of text before moving on. . 

Figure 11-1. Blackened Executive Window 

You closed the Executive Window 

Open another from the Background Menu. 

CUrsor disappears 

Type (CURSOR '1') in the Executive Window. The cursor will reappear. 

Second window appears 

This probably happens because you made a typing mistake, as in Figure 11-2. 

In OL.OFAUL. T1: 
TO.ORRWO ;s 4n undefined func1;;on • 

. Figure 11-2. Second Window Appears (Break Window) After Typing Error Made 

Type a Control-D by simultaneously pressing the Control key and the "D", This aborts 
the error condition, returning control to the Executive Wind:0w. 

You keep getting beeped at 

Usually the beeping means that Medley wants input from you. Look for the flashing 
caret. It will usually be preceeded by some kind of prompt, indicating what you should 
type. 

An Introduction to Medley, Release 2.0 11-1 



". WHAT TO DO IF ... 

, '·2 

You cannot delete the first letter 

of the filename you are typing to (FILES?). Type Control-E (error) You will get a 
linefeed and ---printed to the window. Now type the correct filename. 

Your function is just sitting there 

It is not returning a value, and you think that your program may be in an infinite loop or 
is having some other major problem. You can see what process is currently running by 
typing Control-T, or you could interrupt the process by typing Control-E. 

A Break Window appears 

If the Break Window looks something like that shown in Figure 11-3, you are trying to 
save a file, but there is not enough space on the hard disk. 

In \EIIALFORM: 
File system resources exceeded: {DSK}-/results 

Figure 11-3. Break Window Caused by Insufficient Space in Save File 

Exit from the Break Window by typing an up arrow t followed by a Return. Delete old 
versions offiles, and any other files you do not need. Then try again to save the file. 

You have run out of space 

Generally, a Break Window has appeared. The GAIHSPACE function allows you to delete 
non-essential data structures. To use it, type: 

(GAI.SPACE) 

into the Executive Window. Answer H to all questions except the following: 

• Delete edit history 

• Delete history list 

• Delete values of old variables 

• Delete your MASTERS COPE database 

• Delete information for undoing your greeting. 

Save your work and reload Lisp as soon as possible. 

A redefined message appears 

The message (Some. Crucial. Function. Or. Variable rede fined) appears in the 
Executive Window (see Figure 11-4). The function, variable, or other property has been 
"smashed" (i.e., its original definition has been changed). If this is not what you wanted, 
type URDO immediately! 

An introduction to Med'" Release 2.0 



11. WHAT TO DO IF ... 

UNBOUND ATOM 

124+ (DEF1NEQ (CAR (A) (SomeOtherFn A») 
New fns definieion for CAR. 
(CAR) 
1:25+ UNDO 
OEFINEQ undone. 
128+ 

Figure 11-4. CAR redefined! 

If this occurs, you probably just typed something wrong. or you passed an argument that 
should have been quoted to a function. 

UNDEFINED CAR OF FORM 

First, look at what caused the error. If the CAR of the form is a list, then you typed 
something wrong. If it is an atom, then perhaps that atom does not have a function 
associated with it. If it is a CLISP word like if or for, then DWIK may have been turned 
off (see Chapter 9). Type (DIfIJI IC) to reenable DNIK. 

You have traced APPLY 

and your screen is spewing out information about everything going on in the 
environment. Type Control E, and type (URBRBAI: I APPLY) before returning to the 
Executive. 

An Introduction to Medley, Release 2.0 11-3 



11. 'NHAT TO DO IF ... 

[This page intentionally left blank] 

114 An Introduction to Mer" Release 2.0 



12. WINDOWS AND REGIONS 

Windows 

Windows have two basic parts: an area on the screen containing a collection of pixels, and 
a property list. The window properties determine how the window looks, the menus that 
can be accessed from it, what should happen when the mouse is inside the window and a 
mouse button is pressed, and so on. 

CREATEW 

Some of the window's properties can be specified when a window is created with the 
function CREATEW. In particular, it is easy to specify the size and position of the window, 
its title, and the width of its borders. 

( CREATEW region title borderwidth) 

Region is a record (named REGION, with the fields left, bot tom, width, and height) or 
a list. A region describes a rectangular area on the screen, the window's dimensions and 
position. The fields left and bot tom refer to the position of the bottom left corner of the 
region on the screen. Wid th and he igh t refer to the width and height of the region. The 
usable space inside the window will be smaller than the width and height, because some 
of the window's region is consumed by the title bar, and some is taken by the borders. 

Title is a string that will be placed in the title bar of the window. 

Borderwidth is the width of the border around the exterior of the window, in number of 
pixels. 

For example, typing: 

or 

(SETQ MY. WINDOW (CREATEW 
(CREATEREGION 100 150 300 200) 
"THIS IS MY OWN WINDOW") 

(SETQ MY. WINDOW {CREATEW 
(CREATEW '(100 150 300 200) 

"THIS IS MY OWN WINDOW"} 

produces a window with a default borderwidth of two pizels. Note that you did not need to 
specify all the window's properties (see Figure 12-1). 

An Introduction to Medley, Release 2.0 12-1 



12. WINDOWS AND REGIONS 

12-2 

E·ec ,\tlTERLI:::F", 
NIL 
97+ FIX 95 
97+ (SETQ MY.WlNDOW {CREATEW (CREATEREGION 100 150 300 200) 

·'THIS IS MY OWN WINDOW!"» 
{WINOOW}#S4S, 151554 
ea+ 

Figui-e 12-1. Creating a Window 

In fact, if ( CREATEW) is called without specifying a region, you will be prompted to sweep 
out a re~on for the window (see Chapter 10) 

WINDOWPROP 

The function to access or add to any property of a window's property list is WINDOWPROP. 

(WINDOWPROP window property < value> ) 

When you use WINDOWPROP with only two arguments-window and property-it returns 
the value of the window's property. When you use WINDOWPROP with all three 
arguments-window, property and value-it sets the value the window's property to the 
value you inserted for the third argument. 

For example, consider the window, MY WINDOW, created using (CREATEW). TITLE and 
REG ION are both properties. Type 

(WINDOWPROP MY.WINDOW 'TITLE) 

and the value of MY • W1NOOW's TITLE property is returned, "THIS lS MY OWN WINDOW". 
To change the title, use the WINDOWPROP function, and give it the window, the property 
title, and the new title of the window. 

(WINDOWPROP MY.WINDOW 'TITLE "MY FIRST WINDOW") 

automatically changes the title and automatically updates the window. Now the window 
looks like Figure 12-2. 

An Introduction to Medley, Release 2.0 



12. WINDOWS AND REGIONS 

97" (SETQ MY.WINDOW (CREATEW (CREATEREGION 100 150 300 200) 
"THIS IS MY OWN WINDOW!"» 

{WINDOW}#343,151554 
9S" (WINDOWPROP MY.WINDOW 'TITLE "MY FIRST WINDOW") 
"THIS IS MY OWN WINDOW!" 
99" 

r',l', FIF:ST ',/,/I,'ID<:",,',/ 

Figure 12-2. TITLE is a Window Property 

Altering the region of the window, MY • WINDOW, is also be done with WINDOWPROP, in the 
same way you changed the title. (Changing either of the fll'st two numbers of a region 
changes the position of the window on the screen. Changing either of the last two 
numbers changes the dimensions of the window itself.) 

Getting Windows to Do Things 

Four basic window properties will be discussed here: CURSORINFN, CURSOROUTFN, 
CURSORMOVEDFN,andBUTTONEVENTFN. 

A function can be stored as the value of the CURSORINFN property of a window. It is called 
when the mouse CllI'sor is moved into that window. 

Look at the following example: 

1. First, create a window called MY. WINDOW. Type: 

(SETQ MY.WINDQW 
(CREATEW 

(CREATEREGION 200 200 200 200) 
"THIS WINDOW WILL SCREAM!"» 

This creates a window tiltled THIS WINDOW WI LL SCREAM!. 

2. Now define the function SCREAMER. It will be stored on the property CURSORINFN. 
(Notice that this function has one argument, WINDOWNAME. All functions called from 
the property CURSORINFN are passed the window it was called from. So the value of 
MY. WINDOW is bound to WINDOWNAME. When it is called, SCREAMER simply rings bells. 

An Introduction to Medley, Release 2.0 12-3 



12. WINDOWS AND REGIONS 

12-4 

(DEFINEQ (SCREAMER (WINDOWNAME) 
(RINGBELLS) 
(PROMPTPRINT "YAY - IT WORKS!") 
(RINGBELLS») 

3. Now, alter your window's CURSORINFN property, so that the system calls the function 
SCREAMER at the appropriate time. Type: 

(WINDOWPROP MY. WINDOW I CURSORINFN 
(FUNCTION SCREAMER» 

4. After this, when you move the mouse cursor into MY • WINDOW, the CURSORINFN 
property's function is called, and it rings bells twice. 

CURSORINFN is one of the many window properties that come with each window - just as 
REGION and TITLE did. Other properties include: 

CURSOROUTFN The function that is the value of this property is executed when the. 
cursor is moved out of a window. 

CURSORMOVEDFN The function that is the value of this property is executed when the 
cursor is moved while it is inside the window. 

BUTTONEVENTFN The function that is the value of this property is executed when 
either the left or middle mouse buttons are pressed (or released). 

Figure 12-3 shows MY • WINDOW's properties. Notice that the CURSORINFN has the 
function SCREAMER stored in it. The properties were shoWn in this window using the 
function INSPECT. INSPECT is covered in Chapter 17. 

DSP 
NEXTW 
SAVE 
REG 
BUTTONEVENTFN 
RIGHTBUTTONFN 
CURSORINFN 
CURSOROUTFN 
CURSORMOVEDFN 
REPAINTFN 
RESHAPEFN 
EXTENT 
USERDATA 
VERTS CROLL REG 
HORIZSCROLLREG 
SCROLLFN 
VERTSCROLLWINDOW 
HORIZSCROLLWINDOW 
CLOSEFN 
MOVEFN 
WTITLE 
NEWREGIONFN 
WBORDER 
PROCESS 
WINDOWENTRYFN 
SCREEN 

#<Output Display Stream/372,110700) 
{WINDOW}#372,47150 
{BITMAP}#65,140030 
(200 200 200 200) 
TOTOPW 
NIL 
SCREAMER 
NIL 
NIL 
NIL 
NIL 
NIL 
NIL 
NIL 
NIL 
NIL 
NIL 
NIL 
NIL 
NIL 
"THIS WINDOW WILL SCREAM!" 
NIL 
4 
NIL 
GIVE.TTY.PROCESS 
{SCREEN}#65,156740 

Figure 12-3. Inspecting MY • WINDOW for Mouse-Related Window Properties 

An Introduction to Medley, Release 2.0 



12. WINDOWS AND REGIONS 

You can defme functions for the values of the properties CURSOROUTFN and 
CURSORMOVEDFN in much the same way as you did for CURSORINFN. The function that is 
the value of the property BUTTONEVENTFN, however, can be specialized to respond in 
different ways, depending on which mouse button is pressed. This is explained in the next 
section. 

BUTTONEVENTFN 

BUTTONEVENTFN is another property of a window. The function that is stored as the value 
of this property is called when the mouse is inside the window, and a mouse button is 
pressed. As an example of how to use it, type: 

(WINDOWPROP MY.WINDOW 'BUTTONEVENTFN 
(FUNCTION SCREAMER» 

When the mouse cursor is moved into the window, bells will ring because of the 
CURSORINFN, but it will also ring bells when either the left or middle mouse button is 
pressed. Notice that the right mouse button functions as it usually does, with the window 
manipulation menu. If only the left button should invoke the function SCREAMER, then 
the function can be written to do just this, using the function MOUSESTATE, and a form 
that only MOUSESTATE understands, ONLY. For example: 

(DEFINEQ 
(SCREAMER2 (WINDOWNAME) 

(IF (MOUSESTATE (ONLY LEFT» 
THEN (RINGBELLS»» 

In addition to (ONLY LEFT), MOUSESTATE can also be passed (ONLY MIDDLE), (ONLY 
RIGHT) or combinations of these (e.g. (OR (ONLY LEFT) (ONLY MIDDLE»). You do not 
need to use ONLY with MOUSESTATE for every application. ONLY means that that button is 
pressed and 'no other. 

If you do write a function using (ONLY RIGHT), be sure that your function also checks 
the position of the mouse cursor. Even if you want your function to be executed when the 
mouse cursor is inside the window and the right button is pressed, there is a convention 
that the function DOWINDOWCOM should be executed when the mouse cursor is in the title 
bar or the border of the window and .the right mouse button is pressed. Please program 
your windows using this tradition! For more information, please see Chapter 28 in the 
IRM. 

Looking at a Window's Properties 

Regions 

INSPECT is a function that displays a list of the properties of a window, and their values. 
Figure 12-3 shows the INSPECT function run with MY • WINDOW. Note the properties 
introduced in CREATEW: WBORDER is the window's border, REG is the region, and WTITLE 
is the window's title. 

A region is a record, with the fields LEFT, BOTTOM, WIDTH, and HEIGHT. LEFT and 
BOTTOM refer to where the bottom left hand corner of the rectangular region is positioned 
on the screen. WIDTH and HEI GHT refer to the width and height of the region. 

An Introduction to Medley, ReleaSe 2.0 12-5 



12. WINDOWS AND REGIONS 

12-6 

CREATEREGION creates a REGION. Type: 

{SETQ MY.REGION (CREATEREGION 15 100 200 450» 

to create a record of type REGION that denotes a rectangle 200 pixels high, and 450 pixels 
wide, whose bottom left corner is at position (15,100). This record instance can be passed 
to any function that requires a region as an argument, such as CREATEW, above. 

An Introduction to Medley, Release 2.0 



13. WHAT ARE MENUS? 

While Medley provides a nmnber of menus of its own (see Chapter 3), this section addresses the 
menus you wish to create. You willieam how to create a menu, display a menu, and define functions 
that make your menu useful. Menus are instances of records (see Chapter 22). There are Z7 fields that 
determine the composition of every menu. Because Medley provides default values for most of these 
descriptive fields, you need to familiarize yourself with only a few that we describe in this section. 

Two of these fields, the TITLE of your menu, and the ITEMS you wish it to contain, can be typed 
into the executive window as shown below: 

2.11154+ (SETQ MY.MENU (OlEATE MENJ 
TITLE .. -PLEASE CHOOSE 0ftE OF THE 

ITEMS" 
ITEMS .. '(QUIT NEXT-QUESTIJN 

NEXT-TOPIC SEE -TOPICS») 
{MENU}#374,123464 
2.115S+ 

Figure 13-1. Creating a menu 

Note that creating a menu does not display iL MY. MENU is set to an instance of a menu record that 
specifies how the menu will look, but the menu is not displayed. 

Displaying Menus 

Typing either the MENU or ADDMENU functions will display your menu on the screen. MENU 
implements pop-up menus, like the Background Menu or the Window Menu. ADDMENU puts menus 
into a semi-permanent window on the screen, and lets you select items from iL 

(MENU menu position) pops up a menu at a particular position on the screen. 

Type: 

(MENU .MY • MENU NIL) 

to position the menu at the end of the mouse ctn'SOr. Note that the position argument is NI L. In order 
to go on, you must either choose an item, or move outside the menu window and press a mouse 
button. When you do either, the menu will disappear. If you choose an item, then want to choose 
another, the menu must be redisplayed. 

(ADDMENU menu window position) positions a permanent menu on the screen, or in an existing 
window. 

Type: 

(ADDMENU MY • MENU) 

to display the menu as shown in Figure 13-2. This menu will remain active. (will stay on the screen) 
without stopping all the other processes. Because ADDMENU can display a menu without stopping all 
other processes, it is very popular in users programs. 

If window is specified, the menu is displayed in that window. If window is not specified, a window 
the correct size for the menu is created, and the menu is displayed in iL 

An Introduction to Medley, Release 2.0 13-1 



13. WHAT ARE MENUS? 

If position is not specified, the menu appears at the current position of the mouse cursor. 

QUIT 
NEXT-QUESTION 
NEXT-TOPIC 
SEE-TOPICS 

Figure 13-2. Simple Menu Displayed with ADDMENU 

Getting Menus to Do Stuff 

13-2 

One way to make a menu do things is to specify more about the menu items. Instead of items simply 
being the strings or atoms that will appear in the menu, items can be lists, each Jist with three 
elements (see Figure 13-3). The first element of each list is what will appear in the menu; the second 
expression is what is evaluated, and the results of the evaluation retmned, when the item is selected; 
and the third expression is the expression that should be printed in the Prompt window when a mouse 
button is held down while the mouse is pointing to that menu item. This thiId item should be thought 
of as help text for the user. If the third element of the Jist is NIL, the system responds with Will 
select this item neD you release the button. 

104E- (SETQ MY.MEMJ2 (CREATE MENU :nTLE .. "PLEASE CHOOSE ONE 
OF THE ITEMS- ITEMS .. 

QUESnON ••• ·) 

LEARNED ..... ) 

'«QlBT (PRINT ""STOPPED-) 
""CHOOSE THIS TO STOP·) 

(NEXT-QUESTION (PRINT ""HERE IS THE NEXT 

"CHOOSE THIS TO SEE NEXT QUESTION") 
(NEXT-TOPIC (PRINT ""HERE IS THE NEXT TOPIC ••• n) 

·CHOOSE THIS TO SEE NEXT TOPIC·) 
(SEE-TOPICS (PRINT -1lESE HAVE NOT BEEN 

"CHOOSE THIS TO SEE UNLEARNED 
TOPICS-»» 
{MENU}#S66,17464 
105+ (ADDMENU ..... .MENUZ) 
{WINDOW}#966,162S4 
108+ 

QUIT 
NEXT.QUESTION 
NEXT·TOPIC 
SEE·TOPICS 

Figure 13-3. Creating a Menu to do Things, then Displayin~ it With the FtDlction ADDMENU 

Now when an item is selected from MY • MENU2, something will happen. When a mouse button is 
held down, the expression typed as the third element in the item's specification will be printed in the 
Prompt Wmdow. (See Figure 13-4.) 

QUIT 

NEXT·TOPIC 
SEE·TOPICS 

An Introduction to Medley. Release 2.0 



13. WHATAREMENUS? 

Figure 13-4. MOWle Button Held Down While Mouse Cursor Selects NEXT. QUESTION 

When the mouse button is released (i.e., the item is selected) the expression that was typed as the 
second element of the item's specification will be ron. (See F"tgure 13-5.) 

QUIT 
NEXT·QUESTION 
NEXT.TOPIC 
SEE·TOPICS 

UHERE IS THE NEXT QUESTION ... • 

Figure 13-5. NEXT-QUESTION Selected 

WHENHELDFN and WHENSELECTEDFN Fields of a Menu 

Another way to get a menu to do things is to define functions, and make them the values of the 
menu's WHENHELDFN and WHENSELECTEDFN fields. As the value of the WHENHELDFN field of a 
menu. the function you define will be executed when you press and hold a mouse button inside the 
menu. As the value of the WHENSELECTEDFN field of a menu. the function you define will be 
executed when you choose a menu item. This example bas the same functionality as the previous 
example, where each menu item was entered as a list of three items. 

As an example, type in these two functions so that they can be executed when the menu is created 
and displayed: 

(DEFINEQ (MY' .MENU3. WHENHELD (ITEM. SELECTED MENU. FROM 
BUTTON • PRESSED) 
(SELECTQ ITEM. SELECTED 

(QUIT (PROMPTPRINT "CHOOSE THIS TO STOP") 
(NEXT-QUESTION (PROMPTPRINT "CHOOSE THIS TO BE ASKED THE 

NEXT QUESTION"» 
(NEXT-TOPIC (PROMPTPRINT "CHOOSE THIS TO MOVE ON TO THE 

NEXT SUBJECT"» 
(SEE-TOPICS (PROMPTPRINT "CHOOSE THIS TO SEE THE TOPICS 

NOT YET LEARNED"» 
(ERROR (PROMPTPRINT "NO MATCH FOUND"») ) ) ) 

(DEFINEQ (MY'~MENU3.WHENSELECTED (ITEM. SELECTED MENU.FROM 
BUTTON. PRESSED) 
(SELECTQ ITEM. SELECTED 

(QUIT (PRINT "STOPPED") 
(NEXT-QUESTION (PRINT "HERE IS THE NEXT QUESTION"» 
(NEXT-TOPIC (PRINT "HERE IS THE NEXT SUBJECT"» 
(SEE-TOPICS (PRINT "THE FOLLOWING HAVE NOT BEEN 

LEARNED ••• "» 
(ERROR (PROMPTPRINT "NO MATCH FOUND"»»» 

Now, to create the menu. type: 

(SETQ MY .MENU3 (CREATE MENU 
TITLE +- "PLEASE CHOOSE ONE OF THE ITEMS tt 
ITEMS +- ' (QUIT NEXT-QUESTION NEXT-TOPIC SEE-TOPICS) 
WHENHELDFN +- (FUNCTION MY .MENU3. WHENHELD) 

An Introduction to Medley, Release 2.0 13-3 



13. WHAT ARE MENUS? 

13-4 

WHENSELECTEDFN ~ (FUNCTION MY.MENU3.WHENSELECTED») 

To see your menu work. type 

(ADDMENU MY. MENU3) 

Now. due to executing the WHENHELDFN function, holding down any mouse button while pointing 
to a menu item will display an explanation of the item in the prompt window. The screen will once 
again look like Figure 13-4 when the mouse button is held when the mouse cursor is pointing to the 
item NEXT-QUESTION. 

Now, due to executing the WHENSELECTEDFN fimction, releasing the mouse button to select an item 
will cause the proper actions for that item to be taken. The screen will once again look like Figure 
13-5 when the item NEXT-QUESTION is selected. The crucial thing to note is that the functions you 
defined for WHENHELDFN and WHENSELECTEDFN are automatically given the following 
arguments: 

1. The item that was selected, ITEM. SELECTED 

2. The menu it was selected from. MENU • FROM 

3. The mouse button that was pressed BUTTON. PRESSED 

These functions, MY • MENU3 • WHENHELD and MY • MENU3 • WHENSELECTED. were quoted using 
FUNCTION instead of QUOTE both for program readability and SO that the compiler can produce 
faster code when the program is compiled.. It is good style to quote functions in Lisp by using the 
function FUNCTION instead of QUOTE. 

An Introduction to Medley, Release 2.0 



13. WHAT ARE MENUS? 

Looking at a Menu's Fields 

INSPECT is a function that displays a list of the fields of a menu, and their values. Figure 13-6 
shows the various fields of MY .MENU3 when the function (INSPECT MY .MENU3) was called. 
Notice the values that were assigned by the examples, and all the defaults. 

181 + (INSPECT MY .MENU3) 
{WINDOW}#357 73064 

IllIZI 
ITEIIIWIDTH 
ITEIIIHEISHT 
IMAGEWIOTH 
IMASEHEI9HT 
MENURESIONLEFT 
MENURESION80TTO~ 
IMAGE 
SAVE I IIIASE 
ITEMS 
MENUROWS 
MENUCOLUMNS 
MENUSRIO 
CENTERFLB 
CHANSEOFFSETFLB 
MENUFONT 
TITLE 
MENUOFFSET 
WHENSELECTEOFN 
blENU80ROERSIZE 
blENUOUTLINESIZE 
WHENHELOFN 
blENUPOSITION 
WHENUNHELDFN 
MENUUSEROATA 
blENUTITLEFONT 
SU8ITEIiIFN 
MENUFEEOBACKFLG 
SHADEDITEIiIS 

236 
12 
238 
62 
-1 
-1 
{WINOOW}#376,26008 
NIL 
(QUIT NEXT-QUESTION NEXT-TOPIC SEE-
4 
1 
(8 0 236 12) 
NIL 
NIL 
{FONTDESCRIPTOR}#74,70204 
uPLEASE CHOOSE ONE OF THE ITEMS" 
(0 . 0) 
MV.MENU3.WHENSELECTEO 
o 
1 
IIIV.IIIENU3.WHENHELO 
NIL 
CLRPROMPT 
NIL 
NIL 
NIL 
NIL 
NIL 

Figure 13-6. MY. MENU3 Fields 

An Introduction to Medley, Release 2.0 13-5 



13. WHAT ARE MENUS? 

[This page intentionally left blank] 

13-6 An Introduction to Medley, Release 2.0 



14. BITMAPS 

A bitmap is a rectangular army of dots. The dots are called "pixels" (for picture elements). Each dot, 
or pixel. is represented by a single biL When a pixel or bit is turned on (Le. that bit set to I), a black 
dot is inserted into a bitmap. If you have a bitmap of a floppy on yom screen (Figure 14-1), then all 
of the bits in the area that make up the floppy are turned on, and the surrounding bits are turned off. 

I I d 
(j) 

0 

Figure 14-1. Bitmap of a Floppy· 

BITMAPCREATE creates a bitmap, even though it can't be seen. 

(BITMAPCREATE width height) 

If width and height are not supplied, the system will prompt you for them. 

EDI TBM edits the bitmap. The syntax of the function is: 

(EDITBM bilmap1UZ11le) 

Try the following to produce results like those in Figure 14-4: 

(SETQ MY.BITMAP (BITMAPCREATE 60 40» 
(EDITBM MY • BITMAP) 

To draw - In the bitmap, move the mouse cursor into the gridded section of the bitmap editor, and 
press and hold the left mouse button. Move the mouse around to turn on the bits represented by the 
spaces in the grid. Notice that each space in the grid represents one pixel on the bitmap 

To erase - Move the mouse cursor into the gridded section of the bitmap editor, and press and hold 
the center mouse button. Move the mouse around to tum off the bits represented by the filled spaces 
in the gridded section of the bitmap editor. 

To work on a different section - Point with the mouse cursor to the picture of the actual bitmap (the 
upper left comer of the bitmap editor). Press and hold the left mouse button. A menu with the single 
item, Move will appear. (See Figure 14-2.) Choose this item. 

An Introduction to Medley, Release 2.0 14-1 



14~ BITMAPS 

14-2 

••••••••••••••• ••••••••••••••• ••••••••••••••• ••••••••••••••• ••••••••••••••• ••••••••••••••• ••••••••••••••• ••••••••••••••• 
Figure 14-2. Menu with Single Item (Move) 

You will be asked to position a ghost window over the bitmap. This ghost window represents the 
portion of the bitmap that you are currently editing. Place it over the section of the bitmap that you 
wish to edit and click the left mouse button (see Figure 14-3). 

I I 
@ 
r; 
\ ' 

••••••••••••••• ••••••••••••• ••• 
Figure 14-3. Ghost Window Awaiting Positioning 

To.end the session - bring the mouse cursor into the upper-right portion of the window (the grey 
area) and press the center button. Select OK from the menu to save your artwork. 

An Introduction to Medley, Release 2.0 



14. BITMAPS 

NIL 
180+ (SETQ MY.BlTMAP (BITMAPCREATE 60 40» 
{8ITMAP}#65,1S5242 
, S1 ~ (EDITBM MY.BITMAP) 

Figure 14-4. Editing a Bitmap 

BITBLT is the primitive function for moving bits (or pixels) from one bitmap to another. It extracts 
bits from the source bitmap, and combines them in appropriate ways with those of the destination 
bitmap. The syntax of the function is: 

(BITBLT sourcebitmap sourceleft sourcebottom destinationbitmap destinationleft 
destinationbottom width height sourcetype operation texture clippingregion) 

Here's how it's done -using MY . BITMAP as the sourcebitmap and MY . W1NDOW as the 
destinationbitmap. 

(SETQ MY.WINDOW (CREATEW» 

(BITBLT MY.BITMAP NIL NIL 
MY.WINDOW NIL NIL NIL NIL 'INPUT 'REPLACE) 

Note that the destination bitmap can be, and usually is, a window. Actually, it is the bitmap of a 
window, but the system handles that detail for you. Because of the NILS (meaning "use the default"), 
MY. BITMAP will be BITBLT'd into the lower right comer of MY. W1NDOW (see Figure 14-5). 

An Introduction to Medley, Release 2.0 14-3 



14. BITMAPS 

14-4 

Exec .: II·JTEF:Ll5P:o 
NIL 
193~ (SETQ MY.WINDOW (CREATEW» 
{WINDOW}#372,114404 
194~ (BITBL T MY.BITMAP NIL NL 

NIL 
195~ 

MY.WlNDOW NIL NIL NIL NIL 'INPUT 'REPLACE) 

Figure 14-5. BITBLTing a Biunap onto a Window 

Here is what each of the BI TBLT arguments to the ftmction mean: 

sourcebitmap 

sourceleft 

sourcebottom 

destinationbitmap 

destinationleft 

The biunap to be moved into the destinationbitmap 

A number, starting at 0 for the left edge of the sourcebi tmap, 
that tells BITBLT where to start moving pixels from the 
sourcebi tmap. For example, if the lefunost 10 pixels of 
sourcebi tmap were not to be moved, sourceleft should be 
10. The default value is O. 

A number, starting at 0 for the bottom edge of the 
sourcebi tmap, that tells BITBLT where to start moving pixels 
from the sourcebi tmap. For example, if the bottom 10 rows of 
pixels of sourcebitmap were not to be moved, sourcebottom 
should be 10 The default value is O. 

The biunap that will receive the sourcebi tmap. This is often a 
window (actually the biunap of a window, but Interlisp takes care of 
that for you). 

A number, starting at 0 for the left edge of the 
destinati onbi tmap, that tells BITBLT where to start placing 
pixels from the sourcebi tmap. For example, to place the 
sourcebi tmap 10 pixels in from the left. destinati onleft 
should be 10. The default value is O. 

An Introduction to Medley, Release 2.0 



destinationbottom 

width 

height 

sourcetype 

operation 

texture 

clippingregi on 

14. BITMAPS 

A number, starting at 0 for the bottom edge of the 
destinationbi tmap, that tells BITELT where to start placing 
pixels from the sourcebi tmap. For example, to place the 
sourcebi tmap 10 pixels up from the bottom, 
destinationbottomshould be 10. The default value is O. 

How many pixels in each row of sourcebi tmap should be 
moved. The samc amount of space is used in 
destinationbi tmap to receive the sourcebi tmap. If this 
argument is NI L, it defaults to the number of pixels from 
sourceleft to the end of the row of sourcebi tmap. 

How many rows of pixels of s ourcebi tmap should be moved. 
The same amount of space is used in destinati onbi tmap to 
receive the sourcebi tmap. If this argument is NIL, it defaults to 
the number of rows from sourcebottomto the top of the 
sourcebi tmap. 

Refers to one of three ways to convert the sourcebi tmap for 
writing. For now, just use ' INPUT. 

Refers to how the sourcebi tmap gets EITBLT'd on to the 
destinationbit1l!ap. ' REPLACE will BLT the exact 
sourcebi tmap. Other operations allow you to AND, OR or XOR 

the bits from the sourcebi tmap onto the bits on the 
destinationbitmap. 

Just use NIL for now. 

Just use NIL for now. 

For more information on these operations, see Chapter 27 in the IRM. 

An Introduction to Medley, Release 2.0 14-5 



14. BITMAPS 

[This page intentionally left blank] 

14-6 An Introduction to Medley, Release 2.0 



15. DISPLA YSTREAMS 

A displaystream is a generalized "place to display". It determines exactly what is displayed where. 
One example of a displaysueam is a window. Windows are the only displaystreams that will be used 
in this chapter. If you want to draw on a biunap that is not a window, other than with BITBLT, or 
want to use other types of displaystreams, please refer to Chapter 27 in the IRM. 

This chapter explains functions for drawing on displaystreams: DRAWLINE, DRAWTO, 

DRAWCIRCLE., and FILLCIRCLE. In addition, functions for locating and changing your current 
position in the displaystream are covered: DSPXPOSITION, DSPYPOSITION, and MOVETO. 

Drawing on a Displaystream 

The examples below show you how the functions for drawing on a displaystream work. First, create a 
window. Windows are displaystteams, and the one you create is used for the examples in this 
chapter. Type: 

(SETQ EXAMPLE.WINDOW (CREATEW» 

DRAWLINE 

DRAWLINE draws a line in a displaystream. For example, type: 

(DRAWLINE 10 15 100 150 5 'INVERT EXAMPLE.WINDOW) 

The results should look like Figure 15-1: 

Figure 15-1. Line Drawn onto the EXAMPLE. WINDOW Displaystream 

The syntax of DRAWLINE is 

(DRAWLINE:x1 y1 :x2 y2 width operation stream color dashing) 

The coordinates of the left bottom corner of the displaystream are 0 O. 

xl and y 1 x and y coordinates of the beginning of the line 

x2 and y 2 ending coordinates of the line 

An Introduction to Medley, Release 2.0 15-1 



15. DISPLAYSTREAMS 

width 

operation 

stream 

color 

dashing 

DRAWTO 

width of the line, in pixels 

way the line is to be drawn. INVERT causes the line to invert the bits that are 
already in the displaystreaJn. Drawing a line the second time using INVERT erases 
the line. For other operations, see Chapter 27 in theiRM. 

displaystreaJn. In this case, you used a window. 

color specification used for image streams that support color. 

a list of positive integers that determines the dashing characteristics of the line. 
The first integer indicates the number of points the line is "on", the second integer 
the number of points the line is "off', the third integer indicates how long it will be 
"on" again, etc. The sequence is repeated from the beginning when the list is 
exhausted. 

DRAWTO draws a line that begins at your current position in the displaystream. For example, type: 

(DRAWTO 120 135 5 'INVERT EXAMPLE. WINDOW) 

The results should look like Figure 15-2: 

Figure 15-2. Another Line drawn onto the EXAMPLE. WINDOW Displaystream 

The syntax of DRAWTO is 

(DRAWTO x y width operation stream color dashing) 

The line begins at the current position in the displaystream. 

x x coordinate of the end of the line 

y y coordinate of the end of the line 

wi dth width of the line 

operati on way the line is to be drawn. INVERT causes the line to invert the bits that aro 
already in tho displaystream. Drawing a line the second time using INVERT erases 
the line. For other operations, see Chapter 27 in the IRM 

st ream displayStreonl. In this case. you used a window. 

15-2 An Introduction to Medley, Release 2.0 



15. DISPLAYSTREAMS 

color 

dashing 

DRAWCIRCLE 

color specification used for image streams that support color. 

a list of positive integers that detennines the dashing characteristics of the line. 
The first integer indicates the number of points the line is "on", the second integer 
the number of points the line is "off', the third integer indicates how long it will be 
"on" again, etc. The sequence is repeated from the beginning when the list is 
exhausted. 

DRAWCIRCLE draws a circle on a displaysn-eam. To use it, type: 

(DRAWCIRCLE 150 100 30 ' (VERTICAL 5) NIL EXAMPLE. WINDOW) 

Now your window, EXAMPLE. WINDOW. should look like Figme 15-3: 

o 
Figure 15-3. Circle Drawn onto the EXAMPLE. WINDOW Displaystream 

The syntax of DRAWCIRCLE is 

(DRAWCIRCLE centerx centery radius brush dashing stream) 

centerx 

centery 

radius 

brush 

dashing 

stream 

x coordinate of the center of the circle 

y coordinate of the center of the circle 

radius of the circle in pixels 

list of brush options. The first item of the list is the shape of the brush. Some of 
your options include ROUND, SQUARE, and VERTICAL. The second item of the 
list is the width of the brush in pixels. 

list of positive integers. The brush is "on" for the number of units indicated by the 
first element of the list, "off' for the number of units indicated by the second 
element of the list. The third element specifies how long it will be on again, and so 
forth. The sequence is repeated until the circle has been drawn. 

displaystream. In this case, you used a window. 

An Introduction to Medley, Release 2.0 15-3 



15. DISPLA VSTREAMS 

FI LLCI RCLE 

FILLCIRCLE draws a filled circle on a displaystream. To use it, type: 

(FILLCIRCLE 200 150 10 GRAYSHADE EXAMPLE. WINDOW) 

EXAMPLE. WINDOW now looks like Figure 15-4: 

• o 
Figure 15-4. A Filled Circle Drawn Onto the Displaystream 

The syntax of FILLCIRCLE is: 

(FILLCIRCLE centerx centery radius texture stream) 

centerx 

centery 

radius 

texture 

stream 

x coordinate of the center of the circle 

y coordinate of the center of the ci rcle 

radius of the circle in pixels 

shade that will be used to fill in the circle. Interlisp provides you with three shades: 
WHITESHADE, BLACKSHADE, and GRAYSHADE. You can also create your own 
shades. For more information on how to do this, see Chapter 27 in the IRM. 

displaystream. In this case, you used a window 

There are many Qther functions for drawing on a displaystteam. Please refer to Chapter 27 in the 
IRM. 

Text can also be placed into displaystreams. To do this, use printing functions such as PRIN1 and 
PRIN2, but supply the name of the displaystream as the "file" to print to. To place the text in the 
proper position in the displaystream, see the section below. 

Locating and Changing Your Position in a Displaystream 

15-4 

There are functions provided to locate, and to change your current position in a displaystream. This 
can help you place text, and other images where you want them in a displaystream. This primer will 
only discuss three of these. There are others, and they can be found in the Chapter 27 of the IRM. 

An Introduction to Medley, Release 2.0 



15. DISPLAYSTREAMS 

DSPXPOSITION 

DSPXPOSITION is a function that will either change the current x position in a displaystream, or 
simply repon it. To have the function report the cmrent x position in EXAMPLE. WINDOW, type: 

(DSPXPOSITION NIL EXAMPLE. WINDOW) 

DSPXPOSITION expects two arguments. The fIrSt is the new x position. If this argument is NIL, the 
current position is not changed, merely reported. The second argument is the displaystteam. 

DSPYPOSITION 

DSPYFOSITION is an analogous function, but it changes or reports the current y position in a 
displaystream. As with DSPXPOS I TION, if the first argument is a number, the current y position 
will be changed to that position. If it is NI L, the cmrent position is simply reported. To have the 
function repon the current y position in EXAMPLE. WINDOW, type: 

(DSPYPOSITION NIL EXAMPLE. WINDOW) 

MOVETO 

The function MOVETO always changes your position in the displaystream. It expects three arguments: 

(MOVETO x y stream) 

x 

y 

stream 

new x position in the display stream 

new y position in the display stream 

displaystream. The examples so far have used a window 

An Introduction to Medley, Release 2.0 15-5 



15. DISPLAYSTREAMS 

[This page intentionally left blank] 

15-6 An Introduction to Medley, Release 2.0 
I 



16. FONTS 

This chapter explains fonts and fontdescriptors, what they are and how to use them, so 
that you can use functions requiring fontdescriptors 

You have already been exposed to many fonts in Medley. For example, when you use the 
structure editor, SEdit (see the Using the List Structure Editor section of Chapter 7), you 
noticed that the comments were printed in a smaller font than the code, and that CLlSP 
words were printed in a darker font than the other words in the function. These are only 
some of the fonts that are available in Medley. 

In addition to the fonts that appear on your screen, Medley uses fonts for printers that are 
different than the ones used for the screen. The fonts used to print to the screen are called 
DISPLAYFONTS. The fonts used for printing are called INTERPRESSFONTS, or 
PRESS FONTS , depending on the type of printer. 

What Makes Up a Font Name? 

Fonts are described by family, weight, slope, width, and size. This section discusses each 
of these, and describes how they affect the font you see on the screen. 

Family is one way that fonts can differ. Here are some examples of how "family" affects 
the look of a font: 

CLASSIC 

MODERN 

TITAN 

This family makes the word "Able" look like this: Able 

This family makes the word "Able" look like this: Able 

This family makes the word "Able" look like this: Able 

Weight also determines the look of a font. Once again, "Able" will be used as an example, 
this time only with the Classic family. A font's weight can be: 

BOLD And look like this: Able 

MEDIUM 
or REGULAR And look like this: Able 

The slope of a font is italic or regular. Using the Classic family font again, in a regular 
weight, the slope affects the font like this: 

ITALIC 

REGULAR 

Looks like this: Able 

Looks like this: Able 

The width of a font is called its "expansion". It can be COMPRESSED, REGULAR, or 
EXPANDED. 

Together, the weight, slope, and expansion of a font specifies the font's "face". 
Specifically, the face of a font is a three element list: 

(weight slope expansion) 

To make it easier to type, when a function requires a font face as an argument, it can be 
abbreviated with a three-character atom. The first specifies the weight, the second the 
slope, and the third character the expansion. For example, some common font faces are 
abbreviated: 

An Introduction to Medley, Release 2.0 '6-' 



16. FONTS 

MRR 

MIR 

BRR 

BIR 

This is the usual face, MEDIUM, REGULAR, REGULAR 

Makes an italic font. It stands for: MEDIUM, I'l'ALIC, REGULAR 

Makes a bold font. The abbreviation means: BOLD, REGULAR, REGULAR 

Means that the font should be both bold and italic. B I R stands for BOLD, 
I'l'ALIC,REGULAR 

The above examples are used so oflen, that there are also more mnemonic abbreviations 
for them. They can also be used to specify a font face for a function that requires a face as 
an argument. They are: 

S'l'ANDARD This is the usual face: MEDIUM, REGULAR, REGULAR; it was abbreviated 
above,MRR 

I'l'ALIC This was abbreviated above as MIR, and specifies an italic font 

BOLD Makes a bold font; it was abbreviated above, BRR 

BOLDI'l'ALIC Makes a font both bold and italic: BOLD, I'l'ALIC, REGULAR; it was 
abbreviated above, BIR 

A font also has a size. It is a positive integer that specifies the height of the font in 
printer's points. about 1/72 of an inch per point. The size of the font used in this chapter is 
10. For comparison, here is an example ofa 'l'I'l'AN, MRR, size 12 font: Able. 

Fontdescriptors and FONTCREA TE· 

For Medley to use a font, it must have a fontdescriptor. A fontdescriptor is a data type in 
Interlisp that that holds all the information needed in order to use a particular font. 
When you print out a fontdescriptor, it looks like this: 

{FOH'l'DESCRIP'l'OR}i74,45540 

Fontdescriptors are created by the function ·FOH'l'CREA'l'E. For example, 

(FON'l'CREA'l'E 'HELVE'l'ICA 12 'BOLD) 

creates a fontdescriptor that, when used by other functions, prints in HELVE'l'ICA BOLD 
size 12. Interlisp functions that work with fonts expect a fontdescriptor produced with 
the FOH'l'CREA'l'E function. 

The syntax of FOH'l'CREA'l'E is: 

( FON'l'CREA'l'E family size face) 

Remember from the previous section, face is either a three element list (weight slope 
expansion), a three character atom abbreviation, e.g. MRR, or one of the mnemonic 
abbreviations, e.g. S'l'ANDARD. 

IfFOH'l'CREA'l'E is asked to create a fontdescriptor that already exists, the existing 
fontdescriptor is simply returned. 

Display Fonts 

16-2 

Display fonts require files that contain the bitmaps used to print each character on the 
screen. All of these files have the extension. DISPLAYFON'l'. The file name itself 
describes the font style and size that uses its bitmaps. For example: 

An Introduction to Medley, Release 2.0 



16. FONTS 

MODERN12.DISPLAYFONT 

contains bitmaps for the font family MODERN in size 12 points. 

The directory where you put your. DISPLAYFONT files should be one of the values of the 
DISPLAYFONTDlRECTORIES variable. Its value is a list of directories to search for the 
bitmap files for display fonts. When looking for a • DISPLAYFONT file, the system checks 
the FONT directory on the hard disk, then the current connected directory. 

Figure 16-1 shows an example value ofDISPLAYFONTDlRECTORIES: 

InterPress Fonts 

E:,ec ill·JTEF:LISP, 

, S34c DISPLAYFONTDIRECTORIES 
("{dsk}/userS!sybalsky/sdl" "{dsk}/usr/local/lde/Li 
spcore>XeroxPrivate>Fonts)" 

"{Pallas:mv:envos}<Fonts>display>presentation>" 

"{Pallas:mv:envos}<Fonts>display>publishing>" 

"{Pallas:mv:envos}<Fonts>display>printwheel>" 

"{Pallas:mv:envos}<Fonts>display>miscellaneous>" 
"{Pallas:mv:envos}<Fonts)display)JIS1)" 
"{Pallas:mv:envos}<Fonts)display>JISZ)" 
"{Pallas:mv:envos}<Fonts>display>CHINESE)") 

Figure 16-1. Value for the Atom DISFLAYFONTDlRECTORIES 

InterPress is the format that is used by Xerox laser printers. These printers normally 
have a resolution that is much higher than that of the screen: 300 points per inch. 

To format files appropriately for output on such a printer, Interlisp must know the actual 
size for each character that is to be printed. This is done through the use of width files 
that contain font width information for fonts in InterPress format. For InterPress fonts, 
you should make the location of these files one of the values of the variable 
INTERPRESSFONTDI RECTORI ES. Its value is a list of directories to search for the font 
widths files for InterPress fonts. Figure 16-2 is an example value of 
INTERPRESSFONTDlRECTORIES: 

An Introduction to Medley, Release 2.0 16-3 



16. FONTS 

Evec (INTERLISP) 

164" INTERPRESSFONTDIRECTORIES 
("{dsk}/users!sybalsky/sd/" "{dsk}/usr/local/1de/Li 
spcore)XeroxPrivate>Fonts)" 

"{Pal1as:mv:envos}<Fonts)interpress>presenta 
tion>" 

"{Pallas:mv:envos}<Fonts)interpress>publishing>" 

"{Pallas:mv:envos}<Fonts>interpress>printwheel)" 
"{Pallas:mv:envos}<Fonts)interpress)miscel1a 

neous)" 
"{Pal1as:mv:envos}<Fonts)interpress>JIS1)" 
"{Pal1as:mv:envos}<Fonts>interpress>JIS2)" 

"{Pal1as:mv:envos}<Fonts)interpress)CHINESE>" 
) 

165" 

Figure 16-2. Value for Atom INTERPRESSFONTDIRECTORIES 

Functions for Using Fonts 

16-4 

FONTPROP looking at Font Properties 

It is possible to see the properties of a fontdescriptor. This is done with the function 
FONTPROP. For the following examples, the fontdescriptor used will be the one returned 
by the function (DEFAULTFONT 'DISPLAY). In other words, the fontdescriptor 
examined will be the default display font for the system. 

There are many properties of a font that might be useful to you. Some of these are: 

FAMILY 

SIZE 

ASCENT 

To see the family of a font descriptor, type: 

(FONTPROP (DEFAULTFONT 'DISPLAY) 'FAMILY) 

As above, this is a positive integer that determines the height of the font 
in printer's points. As an example, the SIZE of the current default font is: 

129" (FONTPROP (OEf AUL TFONT 'DISPLAY) 'SIZE) 
10 
130" 

Figure 16-3. Value of Font Property SIZE of Default Font 

The value of this property is a positive integer, the maximum height of 
any character in the specified font from the baseline (bottom). The top of 
the tallest character in the font, then, will be at (BASELINE + ASCENT 
- 1). For example, the ASCENT of the default font is: 

An Introduction to Medley, Release 2.0 



16. FONTS 

DESCENT 

HEIGHT 

FACE 

E ec "T'JTERLlSF' , 

, 28+ (FONTPROP (DEFAUL TFONT 'DISPLAY) 'ASCENT) 
9 
'29+ 

Figure 16-4. Value Font Property ASCENT of Default Font 

The DESCENT is an integer that specifies the maximum number of points 
that a character in the font descends below the baseline (e.g., letters such 
as "p" and "g" have tails that descend below the baseline.). The bottom of 
the lowest character in the font will be at (BASELINE - DESCENT). To 
see the DESCENT of the default font, type: 

(FONTPROP (DEFAULTFONT 'DISPLAY) 'DESCENT) 

HEIGHT is equal to (DESCENT - ASCENT). 

The value of this property is a list of the form (weight slope expansion). 
These are the weight, slope, and expansion described above. You can see 
each one separately, also. Use the property that you are interested in, 
WEIGHT, SLOPE, or EXPANS ION"instead of FACE as the second argument 
to FONTPROP. 

For other font properties, see Chapter 27 of the IRM. 

STRINGWIDTH 

It is often useful to see how much space is required to print an expression in a particular 
font. The function STRINGWIDTH does this. For example, type: 

(STRINGWIDTB "Hi there!" (FONTCREATE 'GACHA 10 'STANDARD» 

The number returned is how many left to right pixels would be needed if the string were 
printed in this font. (Note that this doesn't just work for pixels on the screen, but for all 
kinds of streams. For more information about streams, see Chapter 15.) Compare the 
number returned from the example call with the number returned when you change 
GACHA to TIMESROMAN. 

DSPFONT - Changing the Font in One Window 

The function DSPFONT. changes the font in a single window. As an example of its use, first 
create a window to write in. Type: 

(SETQ MY.FONT.WINDOW (CREATEW)) 

and sweep out the window. To print something in the default font, type: 

(PRINT 'HELLO MY.FONT.WINDOW) 

Your window, MY • FONT. WINDOW, will look something like Figure 16-5: 

An Introducti.on to Medley, Release 2.0 16-5 



16. FONTS 

HELLO 

Figure 16-5. HELLO, Printed with the Default Font in MY. FONT .·WINDOW 

Now change the font in the window. Type: 

(DSPFONT (FONTCREATE 'HELVETICA 12 'BOLD) MY.FONT.WINDOW) 

The arguments to FONTCREATE can be changed to create any desired font. Now retype the 
PRINT statement, and your window will look something like Figure 16-6: 

1ee~ (DSPFONT (FDNTCREATE 'HELVETICA 12 'BOLD) 
MY.FONT .WINDOW) 
{FONTDESCRIPTOR}#74,114678 
,e7" 
(PIINT 'HELLO MV.FONT .WNJOW) 
HELLO 
1ee~ 

HELLO 
I£l.LO 

FIgure 16-6. Font in MY. FONT. WINDOW Changed 

Notice the font has been changed. 

Personalizing Your Font Profile 

16·6 

Medley keeps a list of default font specifications. This list is used to set the font in all 
windows where the font is not specifically set by the user (see the DSPFONT section 
above). The value of the atom FONTPROFILE is this list (see Figure 16-7). 

A FONTPROFILE is a list of font descriptions that certain system functions access when 
printing output. It contains specifications for big fonts (used when pretty printing a 
function to type the function name), small fonts (used for printing comments in the 
editor), and various other fonts. 

An Introduction to Medley, Release 2.0 



'6. FONTS 

,78+ RWTPROFLE 
«IFILE BROWSER PROMPT I 10 

(HELVETICA 8 (MEDIUM REGULAR REGULAR 

(IFILE BROWSER FONTI 9 
») 

(SACHA 18 (IIIEDIUM RESULAR RESULAR») 
(PRONP~~ WINDOW a (GACHA 18 

(DEFAULTFONT 1 (GACHA 18) 
(SACHA 8) 
(TERMINAL B» 

(MEDIUN REGULAR 
RESULAR») 

(ITALICFONT 1 (HELVETICA 18 MIR) 
(SACHA 8 MIR) 
(MODERN B IIIIR» 

(80LDFONT 2 (HELVETICA 10 BRR) 
(HELVETICA a BRR) 
(MODERN B BRR» 

(LITTLEFONT S (HELVETICA B) 
(HELVETICA 6 NIR) 
(MODERN B IIIIR» 

(TINYFONT 6 (SACHA 8) 
(SACHA 6) 
(TERMINAL 6» 

(8ISFONT 4 (HELVETICA 12 8RR) 
NIL 
(MODERN 18 8RR» 

(IIIENUFONT 5 (HELVETICA 18» 
(CO.IIIENTFONT 6 (HELVETICA 18) 

(HELVETICA B) 
(MODERN B» 

(TEXTFONT 7 (TIMESROMAN 1e) 
NIL 
(CLASSIC 18») 

Figure 16-7. Value of the Atom FONTPROFILE 

The list is in the form of an association list. The font class names (e.g., DEFAULTFOHT, or 
BOLDFOHT) are the keywords of the association list. When a number follows the keyword, 
it is the font number for that font class. 

The lists following the font class name or number are the font specifications, in a form 
that the function FOHTCREATE can use. The first font specification list after a keyword is 
the specification for printing to windows. The list ( GACBA 10) in the figure above is an 
example of the default specification for the printing to windows. The last two font 
specification lists are for Press and InterPress file printing, respectively. For more 
information, see Chapter 27 in the IRM. 

Now, to change your default font settings, change the value of the variable 
FOHTPROFI LE. Medley has a list of profiles stored as the value of the atom FOHTDIiFS. 
Choose the profile to use, then install it as the default FOHTPROFILE .. 

Evaluate the atom FOHTDEFS and notice that each profile list begins with a keyword (see 
Figure 16-8). This keyword corresponds to the size of the fonts included. BIG, SMALL, and 
STANDARD are some of the keywords for profiles on this list-SMALL and STANDARD 
appear in Figure 16-8. 

An Introduction to Medley, Release 2.0 16-7 



16. FONTS 

16-8 

, 67" FDNTDEFS 
[[HUGE (FONTPROFILE (DEFAULTFONT 1 (MODERN 24) 

NIL 
(TERMINAL e)) 

(BOLDFONT 2 (MODERN 24 BRR) 
NIL 
(MODERN 8 BRR)) 

(LITTLEFONT 3 (MODERN 18 MRR) 
NIL 
(MODERN 8 MIR)) . 

(BIGFONT 4 (MODERN 36 BRR) 
NIL 
(MODERN 10 BRR)) 

t __ •• ___ •• _ _ , ........ ,..,.. ..... ,..,.\ 

Figure 16-8. Part of V alue of the Atom FONTDEFS 

To install a new profile from this list, follow the following example, but insert any 
keyword for BIG. 

To use the profile with the keyword BIG instead of the standard one, evaluate the 
following expression: 

(FONTSET 'BIG» 

N ow the fonts are permanently replaced. (That is, until another profile is installed.) 

An introduction to Medley, Release 2.0 



17. THE INSPECTOR 

The Inspector is a window-oriented tool designed to examine data structures. Because 
Medley is such a powerful programming environment, many types of data structures 
would be difficult to see in any other way. 

Calling the Inspector 

Take as an example an object defmed through a sequence of pointers (i.e., a bitmap on the 
property list of a window on the property list of an atom in a program.) 

To inspect an object named NAME, type: 

(INSPECT 'NAME) 

If NAME has many possible interpretations, an option menu will appear. For example, in 
Interlisp, a litatom can refer to both an atom and a function. For example, if NAME was a 
record, had a function definition, and had properties on its property list, then the menu 
would appear as in Figure 17-1. 

PFIOPS 
FIELOS 

FNS 
FlECOFlOS 

VAFlS 

Figure 17-1. Option Window for Inspection of NAME 

If NAME were a list, then the option menu shown in Figure 17.2 would appear. The options 
include: 

• Calling the display editor on the list 

• Calling the 'ITY editor (see Chapter 6) 

• Seeing the list's elements in a display window. If you choose this option, each element 
in the list will appear in the right column of the Inspector window. The left column of 
the Inspector window will be made up of numbers (see Figure 17-3). 

• Inspecting the list as a record type (this last option would produce a menu of known 
record types). If you choose a record type, the items in the list will appear in the right 
column of the Inspector window. The left column of the Inspector window will be 
made up of the field names of the record. 

DisplayEdit 
TtyEdit 
Inspect 

As a record 

Figure 17-2. Option Window for Inspection of List 

An Introduction to Medley, Release 2.0 17-1 



17. THE INSPECTOR 

Using the Inspector 

If you choose to display your data structure in an edit window, simply edit the structure 
and exit in the normal manner when done. If you choose to display the data structure in 
an inspect window, then follow these instructions: 

• To select an item, point the mouse cursor at it and press the left mouse button. 

• Items in the right column of an Inspector window can themselves be inspected. To do 
this, choose the item, and press the center mouse button. 

• Items in the right column of an Inspector window can be changed. To do this, choose 
the corresponding item in the left column, and press the center mouse button. You 
will be prompted for the new value, and the item will be changed. The sequence of 
steps is shown in Figure 17-3. 

The item in the left column is selected, and the middle mouse button pressed. Select the 
SET option from the menu that pops up. 

You will then be prompted for the new value. Type it in. 

The item in the right column is updated to the value of what you typed in. 

1 INSPECT-mE-TOOi 
2 INSPECT-ME-T002 
I INSPECT-mE-TOOS 

Eva'> 'CHANGED-VALUE 

1 INSPECT-mE-TOOi 
2 INSPECT-ME-T002 
I 

1 INSPECT-ME-TOOi 
2 INSPECT-ME-T002 
I CHANGED-VALUE 

Figure 17-3. Steps Involved in Changing Value in Right Column of Inspector Window 

Inspector Example 

17-2 

This example will use ideas discussed in Chapter 21. An example, ANIMALGRAPH, is 
created in that section. You do not need to know the details of how it was created, but the 
structure is examined in this chapter. 

If you type 

(INSPECT ANIMAL. GRAPH) 

and then choose the Inspect option from the menu, a display appears as shown in Figure 
17-4. AN IMAL • GRAPH is being inspected as a list. Note the numbers in the left column of 
the Inspector window. 

An Introduction to Medley, Release .2.0 



17. THE INSPECTOR 

, F I - H -, . E, 1:-: [ ., - :: - T ,. -, T r , 'L r J 1'- -

1 ((FISH & NIL NIL --) {BIRD & NIL NIL 
2 T 
3 NIL 
4 NIL 
5 NIL 
6 NIL 
7 NIL 
8 NIL 
9 NIL 
10 NIL 
11 NIL 
12 NIL 

Figure 17-4. Inspector Window For ANIMAL. GRAPH Inspected as List 

If you choose the "As A Record" option, and choose "GRAPH" from the menu that appears, 
the inspector window looks like Figure 17-5. Note the field names in the left column of 
the inspector window. 

, "', - H -. " E, IF: [,., ".' - T, , ,T I J I r J I L '" - : ,~,- t ,:.r 

GRAPH. PROPS 
GRAPH.CHANSELABELFN 
GRAPH.INVERTLABELFN 
GRAPH.INVERTBORDERFN 
GRAPH.FONTCHANSEFN 
GRAPH.DELETELINKFN 
GRAPH.ADDLINKFN 
GRAPH.CELETENODEFN 
GRAPH.ADDNODEFN 
SRAPH •• OVENODEFN 
DIRECTEDFLS 
SIDESFLB 
GRAPHNODES 

NIL 
NIL 
NIL 
NIL 
NIL 
NIL 
NIL 
NIL 
NIL 
NIL 
NIL 
T 
({FISH & NIL NIL --) (BIRD & NIL NIL 

Figure 17-5. Inspector Window for ANIMAL. GRAPH, Inspected as Instance of GRAPH 
Record 

The remaining examples will use AN IMAL. GRAPH inspected as a list. When the first item 
in the Inspector window is chosen with the left mouse button, the Inspector window looks 
like Figure 17-6. 

I I 1;:- I = H -. I I F, I!: [ ~ - I I ~ .... T. 'I I T r j I L r 1_ -

1 ITr-j-< t~IL iJIL - I 1JiF[ ',:~Il t.: 
2 T 
3 NIL 
4 NIL 
5 NIL 
6 NIL 
7 NIL 
8 NIL 
9 NIL 
18 NIL 
11 NIL 
12 NIL 

Figure 17-6. Inspector Window for ANIMAL. GRAPH With First Element Selected 

When you use the middle mouse button to inspect the selected list element, the display 
looks like Figure 17-7. 

An Introduction to Medley, Release 2.0 17-3 



17. THE INSPECTOR 

17-4 

1 
2 T 
3 
4 

'r:-:i~ .. r.I1 tiIl - , ,·r::F[ .. '.Il 'oil 

5 1 (FISH (182 . 48) NIL NIL NIL --) 
6 2 (BIRD (102 . 32) NIL NIL NIL --) 
7 S (CAT (186 . 24) NIL NIL NIL --) 
8 4 (DOS (178 . 10) NIL NIL NIL --) 
9 5 «MAMMAL DOS CAT) (109 . 16) NIL NI 
10 6 ({ANIMAL & BIRD FISH) (22 . 32) NI 
11 ~~------------------------~--~ 12 

Figure 17-7. Inspector Window for ANIMAL. GRAPE and for First Element of 
·ANIMAL. GRAPH 

How you can see that six items make up the list, and you can further choose to inspect one 
of these items. Notice that this is also inspected as a list. As usual, it could also have been 
inspected as a record. 

Select item 5 - MAMMAL DOG CAT - with the left mouse button. Press the middle mouse 
button. Choose "Inspect" to inspect your choice as a list. The Inspector now displays the 
values of the structure that makes up MAMMAL DOG CAT. (See Figure 17-8.) 

Ilr 1.~~r.·1r.' ... L ['I-'-~ -.'::'TI111-'~ ..... 1-. 

1 (MAMMAL DOG CAT) 
2 (189. 16) 
3 NIL 
4 NIL 
5 NIL 
6 45 
7 16 
a (DOS CAT) 
9 «ANIMAL & BIRD FISH» 
10 {FONTCLASS}#74,61752 
11 MAMMAL 
12 NIL 

Figure 17-8. Inspector Window for Element 5 From Figure 17-7 That Begins 
«MAMMAL DOG CAT). 

An Introduction to Medley, Release 2.0 



18.' MASTERSCOPE 

Masterscope is a tool that allows you to quickly examine the SlIUCttJre of complex programs. As your 
programs enlarge, you may forget what variables are global, what functions call other functions, and 
so fonh. Masterscope keeps track of this for you. 

To use Masterscope, first load MASTERSCOPE. DFASL and EXPORTS. ALL. 

Suppose that JVTO is the name of a file that contains many of the functions involved in a complex 
system and that LINTRANS is the file containing the remaining functions. The first step is to ask 
Masterscope to analyze these files. These files must be loaded. All Masterscope queries and 
commands begin with a period followed by a space, as in 

. ANALYZE FNS ON MSCOPEDEMO 

The ANALY ZE process takes a while, so the system prints a period on the screen for each function it 
has analyzed. (See Figure 18-1) 

2/108> • ANAL VZE FNS ON MSCOPEDEMO 

21107) 

Figure 18-1. Executive Window After Analyzing Files 

If you are not quite sure what functions were just analyzed, type the file's COMS variable (see the File 
Variables section in Chapter 7) into the Executive Window. The names of the functions stored on the 
file will be a part of the value of this variable. 

A variety of commands are now possible. all referring to individual functions within the analyzed 
files. Substantial variation in exact wording is pennitted. Some commands are: 

• SHOW PATHS FROM ANY TO ANY 

• EDIT WHERE ANY CALLS/unction.name 
EDIT WHERE ANY USES variablename 
WHO CALLS WHOM 

WHO CALLS junctionname 
BY WHOM IS /unctWn.name CALLED 

WHO USES variablename AS FIELD 

Note that the function is being called to invoke each command. Refer td the IRM for commands not 
listed here. 

Figure 18-2 shows the Executive Window after the commands. WHO CALLS GetCTType and . 
WHO DOES ReadBeginEnd CALL. 

E-· ec::: (INTEF:LlSP) 

2/107) • WHO CALLS OetCTTYPe 
(ReadBeginEnd ParseList) 
2/1 os> • WHO DOES Rea.dBeginEnd CALL 
(ConcatList ParseList SetCTType PrintError apply) 
2/109) 

Figure 18-2. Sample Masterscope Output 

An Introduction to Medley, Release 2.0 18-1 



18. MASTERSCOPE 

SHOW DATA Command and GRAPHER 

18-2 

When the library package GRAPHER is loaded (to load this package, type (FILES LOAD 

GRAPHER) ), Masterscope's SHOWPATHS command is modified. The command will be changed to 
generate a tree structure showing how the program's functions interact instead of a tabular printout 
into the Executive window. For example, typing: 

• SHOW PATHS FROM ProcessEND 

produced the display shown in Figure 18-3. 

Figure 18-3. SHOW PATHS Display Example 

All the functions in the display are part of this analyzed file or a previously analyzed file. Boxed 
functions indicate that the function name has been duplicated in another place on the display. 

Selecting any function name on the display will pretty print the function in a window (see Figure 
18-4). 

ProcessEIIl 

Bro',,,,,:,:: er print OLlt '· ... , ... inclov·,·· 

(GetMyProp 
[LAMBDA (PropName) ; Edited 20.Feb·92 22:14 by 

; welch 
(GetAncestorProp PropName (CAR TOIstack]) 

Figure 18-4. Browser Printout Example 

Selecting it again with the left mouse button will produce a description of the function's role in the 
overall system (see Figure 18-5). 

An Introduction to Medley, Release 2.0 



(GetiMyProp PropName) 
calls: SetAncestorProp 
called by: ProcessEND, 

SetSeginTagString 
uses free: TOIstack 

Figure 18-5. Browser Description Example 

An Introduction to Medley, Release 2.0 

18. MASTERSCOPE 

18-3 



18. MASTERSCOPE 

[This page intentionally left blank] 

18-4 An Introduction to Medley, Release 2.0 



19. WHERE DOES ALL THE TIME GO? SPY 

Spy is a Lisp library package that shows you where you spend your time when you run 
your system. It is easy to learn, and very useful when trying to make programs run 
faster. 

How to Use Spy with the SPY Window 

The function SPY. BUTTON brings up a small window which you will be prompted to 
position. Using the mouse buttons in this window controls the action of the Spy program. 
When you are not using SPY, the window appears as in Figure 19-1. 

Figure 19-1. Spy Window When Spy is Not Being Used 

To use SPY, click either the left or middle mouse button with the mouse cursor in the Spy 
window. The window will appear as in Figure 19-2, and means that Spy is accumulating 
data about your program. 

Spy on 

Figure 19-2. Spy Window When Spy is Being Used 

To turn off Spy after the program has run, again click a mouse button in the Spy window. 
The eye closes, and you are asked to position another window. This window contains 
Spy's results. An example of the resulting window is shown in Figure 19-3. 

An Introduction to Medley. Release 2.0 19·1 



19. WHERE OOES ALL THE TIME GO? Spy 

m---I2S \/l'l)(JSE, PROICES~SI--"'16 

Figure 19.3. Window Produced After RUIllling Spy 

This window is scrollable horizontally and vertically. This is useful, since the whole tree 
does not fit in the window. 

How to Use Spy from the Lisp Top Level 

Spy can also be run while a specific function or system is being used. To do this" type the 
function WITH. SPY: ' 

(WITH.SPY form) 

The expression used for form should be the call to begin rnnning the function or system 
that Spy is to watch. If you watch the Spy window, the eye will blink! To see your results, 
run the function SPY. TREE. To do this, type: 

(SPY.TREE) 

The results of the last running of Spy will be displayed. If you do this, and SPY. TREE 
returns (no Spy samples have been gathered), your function ran too fast for Spy to follow. 

Interpreting SPY's Results 

19-2 

Each node in the tree is a box that contains, first, the percentage of time spent running 
that particular function, and second, the function name. There are two modes that can be 
used to display this tree. 

The default mode is cumulative. In this mode, each percentage is the amount of time that' 
function spent on top of the stack, plus the amount of time spent by the functions it calls. 
The second mode is individual. To change the mode to individual, point to the title bar of 
the window, 'and press the middle mouse button. Choose Individual from the menu 
that appears. In this mode, the percentage shown is the amount of time the function spent 
on the top of the stack. 

To look at a single branch of the tree, point with the mouse cursor at one of the nodes of 
the tree, and press the right mouse button. From the menu that appears, choose the 
option SubTree. Another Spy window will appear, withjust this branch of the tree in it. 

An Introduction to Medley, Release 2.0 



19. WHERE DOES ALL THE TIME GO? Spy 

Another way to focus within the tree is to remove branches from the tree. To do this, point 
to the node at the top of the branch you would like to delete. Press the middle mouse 
button, and choose Delete from the menu that appears. 

There are also different amounts of "merging" offunctions that can be done in the 
window. A function can be called by another function more than once. The amount of 
merging determines where the subfunction, and the functions that it calls, appear in the 
tree, and how often. (For a detailed explanation of merging, see the Lisp Library 
Packages Manual.) 

An Introduction to Medley. Release 2.0 19-3 



20. FREE MENUS 

Free Menu is a package that is even more flexible than the regular menu package. It allows you to 
create menus with different types of items in them, and format them as you would like. Free menus 
are particularly useful when you want a "fill in the form" type interaction with the user. 

Each menu item is described with a list of properties and values. The following example will give 
you an idea of the structure of the description list, and some of your options. The most commonly 
used properties, and each type of menu item will be described in the Parts of a Free Menu Item and 
Types of Free Menu Items sections below. 

Example Free Menu 

Free menus can be created and formatted automatically! It is done with the function FREEMENU. 

This function takes fom arguments: a description of the menu, a title, a background shade, and a 
border width. The description is a list of lists; each intema1list describes one row of the free menu. A 
free menu row can have more than one item in it, so there are really lists of lists of lists! As in the 
following example: 

(SETQ Examp~eMenu 
(FREEMENU 

I «(LABEL Tit~esDoNothing) 
(TYPE 3STATE LABEL Examp~e3State» 

«TYPE EDITSTART LABEL PressToStartEditing 
LINKS (EDIT EDITITEM» 

(TYPE EDIT ID EDITITEM LABEL ""») 
"Examp~e Does Nothing"») 

(OPENW Examp~eMenu) 

The first row has two items in it, a TITLE and a 3STATE item. The second row also has two items. 
The second, the EDIT item, is invisible, because its label is 1111 empty string. The caret will appear for 
editing, however, if the EDITSTART item is chosen. WINDOWPROPS can appear as part of the 
description of the menu, because a menu is, after all, just a special window. You can specify not only 
the title with WINDOWPROP S, but also the position of the free menu, using the "left" and "bottom" 
properties, and the width of the border in pixels, with the "border" property. Evaluating this 
expression will return a window. You can see the menu by using the function OPENW. The following 
example illusttates this: 

2/HIO) (SETQ ExampleMenu (FREEMENU "(((LABEL rlUesDoNothing) 
(TYPE 3STATE LABEL Example3State» 

((TYPE EtlTSTART LABB.. 
PressToSurtEditing LINKS (EDIT EDlTITEM» 

(TYPE EDIT 11 ED III EM LABEL ••• ») 
""Example Does Nothing-» 

{WINDOW}#377 J 72888 
2/1.,,) (DPENW ExampleMenu) 
{WINDOW}#377 J 72808 
2/182) 

An Introduction to Medley, Release 2.0 

TitlesDoNothing Example3State 
PressToStartEditing 

Figure 20-1. Example Free Menu 

20-1 



20. FREE MENUS 

The next example shows you what the menu looks like after the EDITSTART item, 
P ressToStartEdi ting. bas been chosen. 

TitlesDoNothing Example3State 

Figure 20-2. Free menu after EDITSTART Item Chosen 

The following example shows the menu with the 3STATE item in its T state, with the item 
highlighted. (In the previous bitmaps. it was in its neutral state.) 

TitlesDoNothing 
P~essToStartEditing 

Figure 20-3. Free menu with 3STATE Item in its T State 

Finally, Figure 20-4 shows the 3STATE item in its NIL state. with a diagonal line through the item 

TitlesDoNothing f,Aa·p1898ca~ 
PressToStartEditing 

Figure 20-4 Free menu with the 3STATE item in its NIL State 

If you would like to specify the layout of the menu yourself. you can do that too. See the Free Menu 
documentation in the Lisp Release Notes, Medley Release, AppendixD for more information. 

Parts of a Free Menu Item 

20-2 

There are nine different types of items that you can use in a free menu. No matter what type. the 
menu item is easily described by a list of properties and values. Some of the properties you will use 
most often are listed below: 

LABEL 

TYPE 

MESSAGE 

ID 

LINKS 

SELECTEDFN 

Required for every type of menu item. It is the atom. siring. or bitmap that 
appears as a menu selection. 

One of eight types of menu items. Each of these are described below. 

The message that will appear in the prompt window if a mouse button is held 
down over the item. 

An item' s unique identifier. An ID is needed for certain types of menu items. 

Used to list a series of choices for an NWAY item, and to list the ID' s of the 
editable items for an EDITSTART item. 

The name of the function to be called if the item is chosen. 

An Introduction to Medley, Release 2.0 



20. FREE MENUS 

Types of Free Menu Items 

Each type of menu item is descnbed in the following list, including an example description list for 
each one. 

MOMENTARY 

TOGGLE 

3STATE 

STATE 

DISPLAY 

NWAY 

EDITSTART 

This is the familiar sort of menu item. When it is selected, the function stored 
with it is called. A description for the function that creates and formats the menu 
looks like this: 

(TYPE MOMENTARY 
LABEL Blink-N-Ring 
MESSAGE "Blinks the screen and rings bells" 
SELECTEDFN RINGBELLS) 

This menu item has two states, T and NIL. The default state is NIL, but 
choosing the item toggles its state. The following is an example description list, 
without code for the SELECTEDFN function, for this type of item: 

(TYPE TOGGLE 
LABEL DwimDisable 
SELECTEDFN ChangeDwimState) 

This type of menu item has three states, NEUTRAL, T, and NI L. NEUTRAL is 
the default state. T is shown by highlighting the item, and NIL is shown with 
diagonal lines. The following is an example description list, without code for the 
SELECTEDFN function, for this type of item: 

(TYPE 3STATE 
LABEL CorrectProgramAllOrNoSpelling 
SELECTEDFN ToggleSpellingCorrection) 

This type of menu item has allows general multiple state items, and the 
CHANGESTATE item property determines how the item changes state. The 
following is an example description list: 

(TYPE STATE 
LABEL "Choose Me" MENUITEMS (Item1 Item2» 

This menu item appears on the menu as dummy text It does nothing when 
chosen. An example of its description: 

(TYPE DISPLAY LABEL "Choices:") 

A group of items, only one of which can be chosen at a time. The items in the 
NWAY group should all have a COLLECT I ON field, and the COLLECT I ON'S 
should be the same. For example, to set up a menu that would allow the user to 
choose between Helvetica, Gacha, Modern, and Classic fonts, the descriptions 
might look like this (once again, without the code for the SELECTEDFN): 

(TYPE NWAY COLLECTION FONTCHOICE 
LABEL Helvetica 
SELECTEDFN ChangeFont) 

(TYPE NWAY COLLECTION FONTCHOICE 
LABEL Gacha 
SELECTEDFN ChangeFont) 

(TYPE NWAY COLLECTION FONTCHOICE) 
LABEL Modern 
SELECTEDFN ChangeFont) 

(TYPE NWAY COLLECTION FONTCHOICE 
LABEL Classic 
SELECTEDFN Changefont) 

When this type of menu item is chosen, it activates another type of item, an 
EDIT item. The EDIT item or items associated with an EDITSTART item have 

An Introduction to Medley, Release 2.0 20-3 



20. FREE MENUS 

EDIT 

NUMBER 

20-4 

their 1D's listed on the EDITSTART'S LINKS property. An example 
description list is: 

(TYPE EDITSTART LABEL "Fn to add?" LINKS (EDIT Fn)) 

This type of menu item can actually be edited by you. It is often associated with 
an EDITSTART item (see above), but the caret that promptS for input will also 
appear if the item itself is chosen. An ED IT item follows the same editing 
conventions as editing in an Executive Window: 

Add characters by typing them at the careL 

Move the caret by pointing the mouse cursor at the new position, and clicking 
the left button. 

Delete characters from the caret to the mouse cursor by pressing the right 
buttOn of the mouse. Delete a character behind the caret by pressing the 
Backspace key. 

Stop editing by typing a caniage return, a Control-X, or by choosing another 
item from the menu. 

An example description list for this type of item is: 

(TYPE EDIT ID Fn LABEL .... ) 

NUMBER items are ED I T items that are restricted to numerals. 

An Introduction to Medley, Release 2.0 



20. FREE MENUS 

[This page intentionally left blank] 

An Introduction to Medley, Release 2.0 20-5 



21. THE GRAPHER 

Say it with Graphs 

Grapher is a collection of functions for creating and displaying graphs, networks of nodes 
and links. Grapher also allows you to associate program behavior with mouse selection of 
graph nodes. To load this package, type 

(FILESLOAD GRAPHER) 

Figure 21-1 shows a simple graph. 

E "ec ,'lr·lTEF:L ISF' ' 

142+ (SHOWGRAPH ANIMAL.GRAPH "ANIMAL GRAPH") 
{WINOOW}#S67,17000 
143+ 

Figure 21-1. Simple Graph 

In Figure 21-1 there are six nodes (ANIMAL, MAMMAL, DOG, CAT, FISH, and BIRD) 
connected by five links. A GRAPH is a record containing several fields. Perhaps the most 
important field is GRAPBNODES-which is itself a list of GRAPBNODE records. Figure 21-2 
illustrates these data structures. The window on top contains the fields from the simple 
graph. The window on the bottom is an inspection of the node, DOG. 

An Introduction to Medley, Release 2.0 21-1 



21. THE GRAPHER 

21-2 

(iF I:::H .~. --;. (E; II=:D 3. --:. '.'::.':::' T ;0. --:0 --! T ~.J IL r·J IL --:0 In 3pector 
GRAPH.PROPS 
GRAPH.CHANGELABELFN 
GRAPH.INVERTLABELFN 
GRAPH.INVERTBORDERFN 
GRAPH. FONTCHANGEFN 
GRAPH.DELETELINKFN 
GRAPH.ADDLINKFN 
GRAPH.DELETENODEFN 
GRAPH.ADDNODEFN 
GRAPH.MOVENOOEFN 
DIRECTEDFLG 
SIDESFLG 

NIL 
NIL 
NIL 
NIL 
NIL 
NIL 
NIL 
NIL 
NIL 
NIL 
NIL 
T 

GRAPHNODES «FISH & NIL NIL --) (BIRD & NIL NIL 

(e"::":; (17::;. 10:ot'JIL [-JIL --:, In:.pector 
NODEBORDER NIL 
NODE LABEL DOG 
NODEFONT (HELVETICA 10 (MEDIUM REGULAR REGUL~ 
FROMNDDES «MAMMAL DOG CAT» 
TONODES NIL 
NODEHEIGHT 14 
NODEWIDTH 31 
NODELABELSHADE NIL 
NODELABELBITMAP NIL 
NODEPOSITION (176. 10) 
NODEID DOG 

Figure 21-2. Inspecting a Graph and a Node 

The GRAPBNODE data structure is described by its text (NODEID), what goes into it 
(FROMNODES), what leaves it (TONODES), and other fields that specify its looks. The basic 
model of graph building is to create a bunch of nodes, then layout the nodes into a graph, 
and fmally display the resultant graph. This can be done in a number of ways. One is to 
use the function NODECREATE to create the nodes, LAYOUTGRAPB to layout the nodes, and 
SHOWGRAPH to display the graph. The primer shows you two simpler ways, but please see 
the Library Packages Manual for more information about these other functions. The 
primer's fll'st method is to use SHOWGRAPB to display a graph with no nodes or links, then 
interactively add them. The second is to use the function LAYOUTSEXPR, which does the 
appropriate NODE CREATES and a LAYOUTGRAPB, with a list. 

The function SBOWGRAPB displays graphs and allows you to edit them. The syntax of 
SHOWGRAPH is 

(SHOWGRAPH graph window leftbuttonfn middlebuttonfn 
topjustifyflg alloweditflg copybuttoneventfn ) 

Obviously the graph structure is very complex. Here's the easiest way to create a graph. 

(SETQ MY.GRAPH NIL) 
(SBOWGRAPH MY.GRAPH "My Graph" NIL NIL NIL T) 

An Introduction to Medley. Release 2.0 



21. THE GRAPHER 

E F',~ 'lflTEF,LI=i=, 

(SETQ MY.GRAPH NIL) 
NIL 
184+ 

184+ (SHOWGRAPH MY .GRAPH ''My Graph" Nil Nil NIL 
T) 
{WINDOW}#S76,2554 
185+ 
185+ 

Figure 21-3. My Graph 

You will be prompted to create a small window as in Figure 21-3. This graph has the title 
My Graph. Hold down the right mouse button in the window. A menu of graph editing 
operations will appear as in Figure 21-4. 

Move Node. 
Add Node 

••••• Delete Node 
Add Link 

Delete Link 
Change label 
label smaller 
label larger 

"'-----l (.) Directed 
(.) Sides 
(.) 80rder 
(.) Shade 

STOP 

Figure 21-4. Menu of Graph Editing Operations 

Here's how to use this menu. The commands in this menu are easy to learn. Experiment 
with them! 

Add a Node 
Start by selecting Add Node. Grapher will prompt you for the name of the node (see 
Figure 21-5.) and then its position. 

Figure 21-5. Grapher Prompts for Name of Node to Add After Add Node is Chosen From 
Graph Editing Menu. 

Position the node by moving the mouse cursor to the desired location and clicking a 
mouse button. Figure 21-6 shows the graph with two nodes added using this menu. 

An Introduction to Medley, Release 2.0 21-3 



21. THE GRAPHER 

21-4 

If i rst-node! 

Isecond-node! 

Figure 21-6. Two Nodes Added to MY GRAPH Using Qraph Editing Menu 

Add a Link 
Select Add L ink from the Graph Editing Menu. The Prompt window will prompt you to 
select the two nodes to be linked. (See Figure 21-7.) Do this, and the link will be added. 

:"'" c· ,!;:t", - c : 
= .. ~(l" ,- =~~'l1--;~'~--:--I:;----::-l~t~\,-- ~F~'-;';--r --:-;-~-~~j~Z-T--'~r :"Jt: 
== -,t'-

Figure 21-7. Prompt Window Requesting Selection of Two Nodes to Link, and Result 

Delete a Link 
Select Delete Link from the Graph Editing Menu. The Prompt Window will prompt 
you to select the two nodes that should no longer be linked. (See Figure 21-8.) Do this, and 
the link will be deleted. 

= ~ ~ t • • d 

~i+ "'It-.: 111 ~ :e ,.:",'1; ... ·t.· r-I.'f' rl.I'-=:, .... rr:fr "It:' II. ~1:li-: 
=-= - .~ - -

!first-node! 

I second-node! 

Figure 21-8. Prompt Window Requesting Selection of Link to Delete, and Result 

Delete a Node 
Select Dele te Node from the Graph Editing Menu. The Prompt window will prompt you 
to select the node to be deleted. (See Figure 21-9.) Do this, and the node will be deleted. 

Pt'Drn :It " ... ' ... Incio·· ... · ... 
Select node to be deleted. 

gur • • • I ~ •• p 

An Introduction to Medley. Release 2.0 



2' . THE GRAPHER 

Move a Node 
Select De le te N ode from the Graph Editng Menu. Choose a node by pointing to it with 
the mouse cursor, and pressing and holding the left mouse button. When you move the 
mouse cursor, the node will be dragged along. When the node is at the new position, 
release the mouse button to deposit the node. 

Making a Graph from a List 

Typically, a graph is used to display one of your program's data structures. Here is how 
that is done. 

LAYOUTSEXPR takes a list and returns a GRAPH record. The syntax of the function is 

(LAYOUTSEXPR sexpr format boxing font motherd personald famlyd) 

For example: 

(SETQ ANIMAL. TREE '(ANIMAL (MAMMAL DOG CAT) BIRD FISH» 
(SETQ ANlMAL.GRAPH 

(LAYOUTSEXPR ANIMAL. TREE "HORIZONTAL» 
(SHOWGRAPH ANIMAL. GRAPH "My Graph" NIL NIL NIL '1') 

This is how Figure 21.1 was produced. 

Incorporating Grapher into Your Program 

The Grapher is designed to be built into other programs. It can call functions when, for 
example, a mouse button is clicked on a node. The function SHOWGRAPH does this: 

(SHOWGRAPH graph window leftbuttonfn middlebuttonfn 
topjustifyflg alloweditflg copybuttoneventfn) 

For example, the third argument to SHOWGRAPH, leftbuttonfn, is a function that is called 
when the left mouse button is pressed in the graph window. Try this: 

(DEFINEQ (MY.LEFT.BUTTON.FUNCTION 
(THE.GRAPBNODE THE. GRAPH. WINDOW) 

(INSPECT TBE.GRAPBNODE») 

(SHOWGRAPH FAMILY.GRAPH "Inspectable family" 
(FUNCTION MY.LEFT.BUTTON.FUNCTION) 

NIL NIL '1') 

In the example above, MY. LEFT. BUTTON. FUNCTION simply calls the inspector. The 
function should be written assuming it will be passed a graphnode and the window that 
holds the graph. Try adding a function of your own. 

More of Grapher 

Some other Library packages make use of the Grapher. (Grapher needs to be loaded with 
the packages to use these functions.) 

An Introducti<?n to Medley. Release 2.0 



21. THE GRAPHER 

21-6 

• MASTERSCOPE: The Browser package modifies the Masterscope command,. SHOW 
PA'l'BS, so that its output is displayed as a graph (using Grapher) instead of simply 
printed. 

• GRAPH ZOOM: allows a graph to be redisplayed larger or smaller automatically. 

An Introduction to Medley, Release 2.0 



22. RESOURCE MANAGEMENT 

Naming Variables and Records 

You will find times when one environment simultaneously hosts a number of different 
programs. Running a demo of several programs, or reloading the entire Medley 
environment from floppies when it contains several different programs, are two examples 
that could, if you aren't careful, provide a few problems. Here are a few tips on how to 
prevent problems: 

• If you change the value of a system variable, MEHUHELDWAIT for example, or connect to 
a directory other than {DSlt}<LISPFILES>, write a function to reset the variable or 
directory to its original value. Run this function when you are finished working. This 
is especially important if you change any of the system menus. 

• Do not redefine Medley functions or CLISP words. Remember, if you reset an atom's 
value or function definition at the top level (in the Executive Window), the message 
(Some.Crucia.I.Function.Or. Variable redefined), appears. If this is not what you 
wanted, type UlIDO immediately! 

If, however, you reset the value or function definition of an atom inside your program, 
a warning message will not be printed. 

• Make the atom names in your programs as unique as possible. To do this without 
filling your progr&.m with unreadable names that no one, including you, can 
remember, prefix your variable names with the initials of your program. Even then, 
check to see that they are not already being used with the function BOUHDP. For 
example, type: 

(BOUHDP 'BackgroundMenu) 

This atom is bound to the menu that appears when you press the left mouse button 
when the mouse cursor is not in any window. BOUHDP returns T. BOUNDP returns NIL 
ifits argument does not currently have a value. 

• Make your function names as unique as possible. Once again, prefixing function 
names with the initials of your program can be helpful in making them unique, but 
even so, check to see that they are not already being used. GETD is the Interlisp 
function that returns the function definition of an atom, ifit has one. If an atom has no 
function defmition, GETD returns NIL. For example, type: 

(GETD 'CAR) 

A non-NIL value is returned. The atom CAR already has a function definition. 

• Use complete record field names in record FETCHes and REPLACEs when your code is 
not compiled. A complete record field name is a list consisting of the record declaration 
name and the field name. Consider the following example: 

(RECORD NAME (FIRST LAST» 
(SETQ MyRame (create Rame FIRST_'John LAST_'Smith» 
(FETCH (RAME FIRST) OF MyName) 

• Avoid reusing names that are field names of Lisp system records. A few examples of 
system records follow. Do not reuse these names. 

(RECORD REGIOR (LEFT BOTTOM WIDTH HEIGHT» 
(RECORD POSITION (XCOORD YCOORD» 
(RECORD lMAGEOBJ (- BITMAP -») 

An introduction to Medley, Release 2.0 22-1 



22. RESOURCE MANAGEMENT 

• When you select a record name and field names for a new record, check to see whether 
those names have already been used. 

Call the function RECLOOK, with your record name as an argument, in the Executi~~ 
Window (see Figure 22-1). If your record name is already a record, the record definition 
will be returned; otherwise the function will return NIL. 

E ,=,c::, If lTEF:L 1'3P • 
NIL 
2/'70) (RECLOOK 'POSITION) 
(RECORD POSITION (XCOORD . YCOORD) 

[TYPE? (AND (LISTP DATUM) . 
(NUMBERP (CAR DATUM» 
(NUMBERP (CDR DATUM] 

(SYSTEM» 
21171) (RECLOOK 'NewPOS) 
NIL 
2/'72> 

Figure 22-1. Response to RECLOOK 

Call the function FIELDLOOK with your new field name (see Figure 22-2). If your field 
name is already a field name in another record, the record definition will be returned; 
otherwise the function will return HI L. 

NIL 
2/'72) (FIELDLOOK 'XCOORO) 
«RECORD POSITION (XCOORD . YCOORD) 

[TYPE? (AND (LISTP DATUM) 
(NUMBERP (CAR DATUM» 
(NUMBERP (COR DATUM] 

(SYSTEM») 
2/'73) (fELOLOOK ')CPos) 
NIL 
2/'74) 

Figure 22-2. Response to FIELDLOOK 

Some Space and Time Considerations 

22-2 

In order for your program to run at maximum speed, you must efficiently use the space 
available on the system. The following section points out areas that you may not know 
are wasting valuable space, and tips on how to prevent this waste. 

Often programs are written so that new data structures are created each time the 
program is run. This is wasteful Write your programs so that they only create new 
variables and other data structures conditionally. If a structure has already been created, 
use it instead of creating a new one. 

Some time and space can be saved by changing your RECORD and'l'YPERECORD 
declarations to DA'l'A'l'YPE. DA'l'A'l'YPE is used the same way as the functions RECORD and 
TYPERECORD. In addition, the same FETCS and REPLACE commands can be used with the 
data structure DATATYPE creates. The difference is that the data structure DATATYPE 
creates cannot be treated as a list the way RECORDs and 'l'YPERECORDs can. 

An Introduction to Medley, Release 2.0 



22. RESOURCE MANAGEMENT 

Global Variables 

Once defmed, global variables remain until Lisp is reloaded. A void using global variables 
if at all possible! One specific problem arises when programs use the function GElfSYM. In 
program development, many atoms are created that may no longer be useful. Hints: 

• Use 
(DELDEF atomname 'PROP) 

to delete property lists, and 

(DELDEF atomname 'VARS) 

to have the atom act like it is not defined. 

These not only remove the definition from memory, but also change the appropriate 
f i 1 eCOMS that the deleted object was associated with so that the file package will not 
attempt to save the object (function, variable, record definition, and so forth) the next 
time the file is made. Just doing something like 

(SETQ (argatomname) 'NOBIND) 

looks like it will have the same effect as the second DELDEF above, but the SETQ does 
not update the flle package. 

• If you are generating atom names with GENSYM, try to keep a list of the atom names 
that are no longer needed. Reuse these atom names, before generating new ones. There 
is a (fairly large) maximum to the number of atoms you can have, but things slow 
down considerably when you create lots of atoms. 

• When possible, use a data structure such as a list or an array, instead of many 
individual atoms. Such a structure has only one pointer to it. Once this pointer is 
removed, the whole structure will be garbage-collected and space will be reclaimed. 

Circular Usts 

If your program is creating circular lists, a lot of space may be wasted. (Many crosslinked 
data structures end up having circularities.) Hints when using circular lists: 

• Write a function to remove pointers that make lists circular when you are through 
with the circular list. 

• If you are working with circular lists of windows, bind your main window to a unique 
global variable. Write window creation conditionally so that if the binding of that 
variable is already a window, use it, and only create a new window if that variable is 
unbound or lUL. 

Here is an example that illustrates the problem. When several auxiliary windows are 
built, pointers to these windows are usually kept on the main window's property list. 
Each auxiliary window also typically keeps a pointer to the main window on its property 
list. If the top level function creates windows rather than reusing existing ones, there 
will be many lists of useless windows cluttering the work space. Or, if such a main 
window is closed and will not be used again, you will have to break the links by deleting 
the relevant properties from the main window and all of the auxiliary windows first. This 
is usually done by putting a special CLOSEPN on the main window and all of its auxiliary 
windows. 

An Introduction to Medley, Release 2.0 22-3 



22. RESOURCE MANAGEMENT 

22-4 

When You Run Out of Space 

Typically, if you generate a lot of structures that won't get garbage collected, you will 
eventually run out of space. The solution is to track down the code for the structures and 
change it so it is more space efficient. 

Use the Lisp Library Package GCBAX. DCeM to track down pointers to data structures. 
The basic idea is that GCBAX will return the number of references to a particular data 
structure. 

A special function exists that allows you to get a little extra space so that you can try to 
save your work when you get toward the edge (usually noted by a message indicating 
that you should save your work and load a new Medley environment). The GAINSPACE 
function allows you to delete non-essential data structures. To use it, type: 

(GAINSPACE) 

Answer N to all questions except the followi ng. 

• Delete edit history 

• Delete history list. 

• Delete values of old variables. 

• Delete your MASTERS COPE database 

• Delete information for undoing your greeting. 

Save your work and reload Lisp as soon as possible. 

An Introduction to Medley, Release 2.0 



23. SIMPLE INTERACTIONS WITH THE CURSOR, A 
BITMAP, AND A WINDOW 

The purpose of this chapter is to show you how to build a moderately tricky interactive 
interface with the various Medley display facilities. In particular how to move a large 
bitmap (larger than 16 x 16 pixels) around inside a window. To do this, you will change 
the CURSORIRFN and CURSOROUTFR properties of the window. If you would also like to 
then set the bitmap in place in the window, you must reset the BUTTOREVERTFR. 

GETMOUSESTATE Example Function 

One function that you will use to "trace the cursor" (have a bitmap follow the cursor 
around in a window) is GETMOUSESTATE. This function imds the current state of the 
mouse, and resets global system variables, such as LASTMOUSEX and LASTMOUSEY . 

As an example of how this function works, create a window by typing 

(SETQ EXAMPLE.WIRDOW (CREATEW» 

and sweeping out a window. Now, type in the function 
.. 
(DEFIREQ (PRINTCOORDS (W) 

(PROMPTPRIRT "(a LASTMOUSEX ", "LASTMOUSEY ")U) 
(GETMOUSESTATE») 

This function calls GETMOUSESTATE and then prints the new values of LASTMOUSEX and 
LASTMOUSEY in the promptwindow. To use it, type 

. (WIRDOWPROP EXAMPLE.WIRDOW 'CURSORMOVEDFR 'PRIRTCOORDS) 

The window property CURSORMOVEDFN, used in this example, will evaluate the function 
PRIRTCOORDS each time the cursor is moved when it is inside the window. The position 
coordinates of the mouse cursor will appear in the prompt window. (See Figure 23-1.) 

E o:-c 0: It JTEF:L I :=C.P., 

NIL . 
147+ (WINDOWPROP EXAMPLE.WINDOW 'CURSORMOVEDFN 
'PRINTCOORDS) 
NIL 
14e+ 

(16::, 4:::1:>' '., ...... 

[

Pt"on"., .Jt "."~'."inCl~-" __ -=::::~" 

Figure 23·1. Clll'rent Position Coordinates of Mouse Cursor in Prompt Window 

An Introduction to Medley, Release 2.0 23·1 



23. SIMPLE INTERACTIONS WITH CURSOR, BITMAP, AND WINDOW 

Advising GETMOUSESTATE 

For the bitmap to follow the moving mouse cursor, the function GE'l'MOUSESTATE is 
ADVISEd. When you advise a function, you can add new commands to the function 
without knowing how it is actually implemented. The syntax for advise is 

(ADVISE in when where what) 

in is the name of the function to be augmented. 

when specifies whether the change should be made BEFORE, AFTER, or AROUND the body 
of the function and is optional. 

where specifies where in the list of advice the new advice is to be placed, e.g., FIRST, 
LAST, BOTTOM, ERD, or some other user-defined place. Where is an optional argument. 

what specifies the additional code. 

In the example, the additional code, what, moves the bitmap to the position of the mouse 
cursor. The function GE'l'MOUSESTATE will be ADVISEd when the mouse moves into the 
window. This will cause the bitmap to follow the mouse cursor. ADVISE will be undone 
when the mouse leaves the window or when a mouse button is pushed. The ADVI SEing 
willbedoneandundonebychan~ngtheCURSORINFN,CURSOROUTFN,and 
BUTTOHEVENTFN for the window. 

Changing the Cursor 

One last part of the example, to ~ve the impression that a bitmap is dragged around a 
window, the ori~l cursor should disappear. Try typing: 

(CURSOR (CURSORCREATE (BITMAPCREATE 1 1) 1 1) 

This causes the original cursor to disappear. It reappears when you type 

(CURSOR '1') 

When the cursor is invisible, and the bitmap moves as the cursor moves, the illusion is 
given that the bitmap is dragged around the window. 

Functions for Tracing the Cursor 

23-2 

To actually have a bitmap trace (follow) the cursor, the environment must be set up so 
that when the cursor enters the tracing re~on the trace is turned on, and when the cursor 
leaves the tracing re~on the trace is turned off. The function Es tabl i shIT r ace/Da ta 
willdo this. Type it in as it appears (include comments that will help you remember what 
the function does). 

(DEFIHEQ (Establish/Tr~ce/Data 
[LAMBDA (wnd tracebitmap cursor/rightoffset cursor/heightoffset 

GCGAGP) 

(* * "This function is called to establish the data to trace 
the desired bitmap. 'wnd' is the window in which the tracing 
is to take place, 'tracebitmap' is the tracing bitmap, 
'cursor/rightoffset' and'cursor/heightoffset' are integers 
which detemine the hotspot of the tracing bitmap. 
As 'cursor/heightoffset' and 'cursor/rightoffset' increase 

An Introduction to Medley, Release 2.0 



23. SIMPLE INTERACTIONS WITH CURSOR, BITMAP. AND WINDOW 

the cursor hotspot moves up and to the right. 
If GCGAGP is non-NIL, GCGAG will be disabled.") 

(PROG NIL 

{if {OR (NULL wnd) 
(NULL tracebitmap» 

then {PLAYTUNE (LIST (CONS 1000 4000») 
(RETURN) ) 

(if GCGAGP 
then (GCGAG» 

(* * "Create a blank cursor.") 

(SETQ *BLANECURSOR*(BITMAPCREATE 16 16» 
(SETQ *BLANETRACECURSOR*(CURSORCREATE *BLANKCURSOR*» 

(* * "Set the CURSOR IN and OUT FRS for wnd to the 
following:") 

(WINDOWPROP wnd (QUOTE CURSORINFN) 
(FUNCTION SETUP/TRACE» 

(WINDOWPROP wnd (QUOTE CURSOROUTFN) 
(FUNCTION UNTRACE/CURSOR» 

(* * "To allow the bitmap to be set down in the window by 
pressing a mouse button, include this line. 
Otherwise, it is not needed") 

(WINDOWPROP wnd (QUOTE BUTTONEVENTFN). 
(FUNCTION PLACE/BITMAP/IN/WINDOW» 

(* * "Set up Global Variables for the tracing operation") 

(SETQ *TRACEBITMAP* tracebitmap) 
(SETQ *RIGHTTRACE/OFFSET*(OR cursor/rightoffset 0» 
(SETQ *HEIGBTTRACE/OFFSET*(OR cursor/heightoffset 0» 
(SETQ *OLDBITMAPPOSITION*(BITMAPCREATE (BITMAPWIDTH 

tracebitmap) 
(BITMAPHEIGHT 

tracebitmap») 
(SETQ *TRACEWINDOW* wnd]» 

When the function Establish/Trace/Data is called, the functions SETUP/TRACE and 
UNTRACE/CURSOR will be installed as the values of the window's WINDOWPROPS, and will 
be used to turn the trace on and off. Those functions should be typed in. 

(DEFINEQ (SETUP/TRACE 
[LAMBDA (wnd) 

(* * "This function is wnd's CURSORINFN. 
It simply resets the last trace position and the current 
tracing region. It also readvises GETMOUSESTATE to perform 
the trace function after each call.") 

(if *TRACEBITMAP* 
then (SETQ *LAST-TRACE-XPOS* -2000) 

(SETQ *LAST-TRACE-YPOS* -2000) 
(SETQ *WNDREGION* (WINDOWPROP wnd (QUOTE REGION») 
(WINDOWPROP wnd (QUOTE TRACING) 

T) 

(* * "Make the cursor disappear") 

An Introduction to Medley. Release 2.0 23-3 



23. SIMPLE INTERACTIONS wtTH CURSOR .. BITMAP, AND WINDOW 

23-4 

(CURSOR *BLANKTRACECURSOR*) 
(ADVISE (QUOTE GETMOUSESTATE) 

(OUOTE AFTER) 
NIL 
(QUOTE (TRACE/CURSOR)) 

(DEFINEQ (UJifTRACE/CURSOR 
[LAMBDA (wnd) 

(* * "This function is wnd's CURSOROUTFN. The function first 
checks if the cursor is currently being traced; if so, it 
replaces the tracing bitmap with what is under it and then 
turns tracing off by unadvising GETMOUSESTATE and setting the 
TRACING window property of *TRACEWINDOW* to NIL.") 

(if (WINDOWPROP *TRACEWINDOW*(QUOTE TRACING» 
then (BITBLT *OLDBITMAPPOSITION* 0 0 (SCREENBITMAP) 

(IPLUS (CAR *WNDREGION*) *LAST-TRACE-XPOS*,) 
(IPLUS (CADR *WHDREGION*}*LAST-TRACE-YPOS*)} 

(WINDOWPROP *TRACEWINDOW*(QUOTE TRACING) 
NIL) } 

(* * "Replace the original cursor shape") 

(CURSOR T) 

(* * "Unadvise GETMOUSESTATE") 

(UNADVISE (QUOTE GETMOUSESTATE])} 

The function SETUP/TRACE has a helper function that you must also type in. It is 
TRACE/CURSOR: 

(DEFINEQ (TRACE/CURSOR 
[LAMBDA NIL 

(* * "This function does the actual BITBLTing of the tracing 
bitmap. This function is called after a GETMOUSESTATE, while 
tracing.") 

(PROG «xpos (IDIFFERENCE (LASTMOUSEX *TRACEWINDOW*) 
*RIGHTTRACE/OFFSET*}} 

(ypos (IDIFFERENCE (LASTMOUSEY *TRACEWINDOW*) 
*HEIGHTTRACE/OFFSET*}» 

(* * "If there is an error in the function, press the right 
button to unadvise the function. This will keep the machine 
from locking up.") 

(if (LASTMOUSESTATE RIGHT) 
then (UNADVISE (QUOTE GETMOUSESTATE») 

(if (AND (NEQ xpos *LAST-TRACE-XPOS*) 
(NEQ ypos *LAST-TRACE-YPOS*» 

then 

(* * "Restore what was under the old position of the trace 
bitmap") 

(BITBLT *OLDBITMAPPOSITION* 0 0 (SCREENBITMAP) 
(IPLUS (CAR *WNDREGION* )*LAST-TRACE-XPOS*) 
(IPLUS (CADR *WHDREGION*}*LAST-TRACE-YPOS*» 

(* * "Save what will be under the position of the new trace 
bitmap") 

(BITBLT (SCREENBITMAP) 
(IPLUS (CAR *WNDREGION*) 

xpos} 

An Introduction to Medley. Release 2.0 



23. SIMPLE INTERACTIONS WITH CURSOR. BITMAP, AND WINDOW 

(IPLUS (CADR *WNDREGION*) 
ypos}*OLDBITMAPPOSITION* 0 O} 

(* * "BITBLT the trace bitmap onto the new position of the 
mouse") 

(BITBLT *TRACEBITMAP* 0 0 (SCREENBITMAP) 
(IPLUS (CAR *WNDREGION*) 

xpos) 
(IPLUS (CADR *WNDREGION*) 

ypos) 
NIL NIL (QUOTE INPUT) 
(QUOTE PAINT» 

(* * "Save the current position as the last trace position.") 

(SETQ *LAST-TRACE-XPOS* xpos) 
(SETQ *LAST-TRACE-YPOS* ypos]» 

The helper function for UNTRACE/CURSOR, called UNDO/TRlaCE/DATA, must also be added 
to the environment: 

(DEFINEQ (UNDO/TRACE/DATA 
[LAMBDA NIL 

off 
(* * "The purpose of this function is to turn tracing 

and to free up the global variables used to trace the 
bitmap so that they can be garbage collected.") 

(* * "Check if the cursor is currently being traced. 
It so, turn it off.") 

(UNTRACE/CURSOR) 
(WINDOWPROP *TRACEWINDOW*(QUOTE CURSORINFN) 

NIL) 
(WINDOWPROP *TRACEWINDOW*(QUOTE CURSOROUTFN) 

NIL) 
(SETQ *TRACEBITMAP* NIL) 
(SETQ *RIGHTTRACE/OFFSET* NIL) 
(SETQ *HEIGHTTRACE/OFFSET* NIL) 
(SETQ *OLDBITMAPPOSITIOH* NIL) 
(SETQ *TRACEWINDOW* NIL) 

(* * "Turn GCGAG on") 

(GCGAG T]}) 

Finally, if you included the WINDOWPROP to allow the user to place the bitmap in the 
window by pressing a mouse button, you must also type this function: 

(DEFINEQ (PLACE/BITMAP/IN/WINDOW 
[LAMBDA (wnd) 

(UNADVISE (GETMOUSESTATE» 
(BITBLT *TRACEBITMAP* 0 0 (SCREEHBITMAP) 

(IPLUS (CAR *WNDREGION*) 
*LAST-TRACE-XPOS*) 

(IPLUS (CADR *WNDREGION*) 
*LAST-TRACE-YPOS*) 

NIL NIL (QUOTE INPUT) 
(QUOTE PAINT])) 

An Introduction to Medley, Release 2.0 23-5 



23. SIMPLE INTERACTIONS WITH CURSOR, BITMAP, AND WINDOW 

That's all the functions! 

Running the Functions 

23-6 

To run the functions you just typed in, frrst set a variable to a window by typing: 

(SETQ EXAMPLE.WINDOW (CREATEW» 

and sweeping out a new window. Now, set a variable to a bitmap, by typing: 

(SETQ EXAMPLE.BTM (EDITBM» 

Now, type: 

(Establish/Trace/Data EXAMPLE.WINDOW EXAMPLE.BTM» 

When you move the cursor into the window, the cursor will drag the bitmap. 

(If you want to be able to make menu selections while tracing the cursor, make sure that 
the hotspot of the cursor is set to the extreme right of the bitmap. Otherwise, the menu 
will·be destroyed by the BITBLTs of the trace functions.) 

To stop tracing, do one of the following: 

• Move the mouse cursor out of the window 

• Press the right mouse button 

• Call the function UNTRACE/CURSOR 

An Introduction to Medley, Release '2.0 



24. GLOSSARY OF GLOBAL SYSTEM VARIABLES 

As you can tell by now, there are many system variables in Medley that are useful to know. The 
following sections gather many of the important variables together into groups relating to directory 
searching, system flags, history lists, system menus, windows, and, of course, the catcball 
miscellaneous category. 

Directories 

DISPLAYFONTDlRECTORIES 

Its value is a list of directories to search for the biunap files for display fonts. Usually, it 
contains the names of the file directories where you copied the bitmap files (see Chapter 16). 

You can also ask Medley to search yom current connected directory by putting the atom 
NI L in the list. 

Here is an example value of DISPLAYFONTDlRECTORIES. 

Exec (INTERLlSP) 

485+ DlSPLAVFONTDIRECTORIES 
(P{dsk}/users/turpin/sd/" U{dsk}/usr/local/lde/Lispcore 
>XeroxPrivate>Fonts> " "{Pallas:mv:envos}<Fonts>display) 
presentation>" "{Pal1as:mv:envos}<Fonts>display>publish 
in9>" "{Pallas:mv:envos}<Fonts>display>printwheel>" n{p 
al1as:mv:envos}<Fonts>display>miscellaneous>" "{Pallas: 
mv:envos}<Fonts>display>JIS1>" "{Pal1as:mv:envos}<Fonts 
)display>JIS2>" "{Pal1as:mv:envos}<Fonts)display>CHINES 
E>· ) 
486+ 

Figure24-l. Value for the Atom DISPLAYFONTDlRECTORIES 

INTERPRESSFONTDlRECTORIES 

Is set to a list of directories to search for the font width files for Inter Press fonts. 

DIRECTORIES 

This variable is bound to a list of the directories you will be using (see Figure 24-2). The 
system uses this variable when it is ttying to find a file to load. It checks each directory in 
the list, until the file is found. NIL in the list means to check the current connected 
directory. 

LISPUSERSDlRECTORIES 

Its value is a list of directories to search for h1>rary package files. 

An Introduction to Medley, Release 2.0 24-1 



24. GLOSSARY OF GLOBAL SYSTEM VARIABLES 

Flags 

24-2 

Exec nr'JTEF:LlSP) 
NIL 
487+ DIRECTORIES 
("{dsk}/users/turpin/" "{pele:}<1ispcore>sources>" Pipe 
le:}Clispcore>library>" "{pele:}<lispcore>internal>libr 
ary>" "{pele:}Clispusers>lispcore>" "{pele:}Clispusers) 
medley>" "{POGO:}<ROOMS>MEDLEV>USERS>" "{dsk}/usrtloca1 
I lde 11 ispcore/sourcesl" "{dsk}/usrl1 oca 1 I1de 11 ispcore 11 
ibrary/" "{dSk}/usr/localI1de/lispcore/internal/1ibrary 
I" "{Pele:mv:envos}<LispLibrary>MEDLEY>" "{Pele:mv:envo 
s}Clisp>MEDLEY>Library)" "{Pele:mv:envos}<Lisp>MEDLEY>I 
nternal>Library>" "{Pele:mv:envos}<LispUsers>MEDLEY>" • 
{Pele:mv:envos}<Lisp>MEDLEY>LispUsers)" "{Pele:mv:envos 
}<Lisp>MEDLEY)Sources>") 
488+ 

Figure 24-2, List of Directories in the Cmrent Connected Directory 

DWIMIFYCOMPFLG 

This flag, if set to T, will cause all expressions to be completely dwimified before the 
expression is compiled (see Chapter 9). In this state, when the system does not recognize 
the function of a keyword. it will compare the word to a system maintained list to determine 
whether the word is a macro, CLI SP word. or misspelled user-defined variable. 

An example of dwimifying before compilation is to convert an IF call to a CONDo 
Undwimified expressions can cause inaccurate compilation. This flag is set by the system to 
NIL. Normally, you want this set to T. For more information on DWIM, refer to the IRM. 

SYSPRETTYFLAG 

When set to T, all lists returned to the executive window are pretty printed. This flag is 
originally set by the system to NIL. 

CLISPIFTRANFLG 

When set to T, keeps the IF expression, rather than the COND translation in your code. 

PRETTYTABFLG 

When set to T, the pretty printer puts out a tab character rather than several spaces to try to 
align code. If NIL, it uses space characters. 

FONTCHANGEFLG 

If NI L, when pretty printing no font changes will happen (e.g., a smaller font for comments, 
bold for CLISP words, and so forth). The default is the atom ALL, so different fonts are 
used where appropriate. 

AUTOBACKTRACEFLG 

There are many possible values for this variable. They affect when the back trace window 
appears with the break window, and how much detail is included in it . The values of this 
variable include: 

An Introduction to Medley, Release 2.0 



24. GLOSSARY OF GLOBAL SYSTYEM VARIABLES 

• NIL, its initial value. The back tIaCe window is not brought up when an error is 
generated, until you open it yourself. 

• T, which means that the back trace BT window is opened for error breaks 

• BT! brings up a back trace window, BT!, with more detail 

• ALWAYS brings up a backttace BT window for both error breaks and breaks caused by 
calling the function BREAK 

• ALWAYS! brings up a backttace window, BT!, with more detail, for both error breaks 
and breaks caused by calling the function BREAK 

NOSPELLFLG 

History Lists 

Is initially bound to NIL, so that DWIM tries to correct all spelling errors, whether they are in 
a form you just typed in or within a function being run. If the variable is T, then no spelling 
correction is perfOl1Ded. This variable is automatically reset to T when you are compiling a 
file. If it has some other non-NIL value, then spelling correction is only performed on 
type-in. 

LISPXHISTORY 

Originally set ,to the list (NIL 0 30 100), with the following mgument interpretation. 
NIL is the list (implemented as a circular queue) to which the top level commands append. 
o is the current prompt number. 30 is the maximum length of the history list 100 is the 
highest number used as a prompt This is a system maintained list used by the 
programmer's assistant commands REDO, UNDO, FIX, and ?? to retrieve past function 
calls. 

To delete the history list, reset the variable LISPXHISTORY to its original value of (NIL 
o 30 100). 

Setting this variable to NIL disables all the programmer's assistant features. 

EDITHISTORY 

System Menus 

This is also set to (NIL 0 30 100), and has the same description as LISPXHISTORY. 
This list allows you to UNDO edits. You reset this the same way as LISPXHISTORY. 

System menus are all bound to global variables and are easy to modify. If the menu name is set to 
NIL, the menu will be reaeated using an items list bound to a global variable. 

To change a system menu, edit the items list bound to the appropriate global variable (system menus 
use this items list with the default WHENSELECTEDFN), then set the value of the name to NIL. The 
next time you need the menu, it will be created from the items list you just edited. The names of 
system menus and the items lists are: 

BACKGROUNDMENU 

An Introduction to Medley, Release 2.0 24-3 



24. GLOSSARY OF GLOBAL SYSTEM VARIABLES 

Windows 

This is the variable bound to the men displayed when you press the right button in the 
background area of the screen. 

BACKGROUNDMENOCOMMANDS 

This list is used for tile list of ITEMS for the background menu when it is created. 

WINDOWMENU 

This is the variable bound to the default window menu displayed when the right mouse 
button is pressed inside of a window. 

WINDOWMENUCOMMANDS 

This is the list of ITEMS for the WINDOWMENU. 

BREAKMENU 

The menu displayed when the middle mouse button is pressed in a break window. 

BREAKMENUCOMMANDS 

The list of ITEMS for the BREAKMENU. 

PROMJ?TWINDOW 

T 

Global name of the prompt window. 

Although the value T has several meanings (such as universal TRUE), it also stands for the 
standard output stream. As this is usually the executive window. it may be used as the name 
for the TIY Window at the top level Mouse processes have their own TIY Windows .. A 
reference to the window T in a mouse driven function (e.g., a WHENSELECTEFN, Chapter 
12) will open a window titled 1TY Window for Mouse. 

Miscellaneous 

24-4 

CLEANUPOPTION 

This is a list of options that you set to automate clean-up after a work session. Example 
options are listing files, or recompilation. You will want to keep this set to NI L until you 
become comfortable with the machine. 

FILELST 

The list of all the files you loaded. 

SYSFILES 

The list of all the files you loaded for the SYSOUT file. 

INITIALS 

An Introduction to Medley, Release 2.0 



24. GLOSSARY OF GLOBAL SYSTYEM VARIABLES 

An atom you can bind to your name. If bound. the editor will add your name. in addition to 
the date, in the editor comment at the beginning of each function. 

FIRSTNAME 

If this variable is set, the system will use it to greet you personally when you log on to your 
machine. 

INITIALSLST 

A list of elements of the form (USERNAME • INITIALS) or (USERNAME FIRSTNAME 

INITIALS). This list is used by the function GREET to set your INITIALS, and your 
FIRSTNAME when you log in. 

*CAREFULCOLUMNS 

An integer. For efficiency, PRETTYPRINT estimates the number of characters in an atom, 
instead of computing it Unfonunately, for very long atom names, errors can occur. 
*CAREFULCOLUMNS is the number of columns from the right within which 
PRETTYPRINT should compute the number of characters in each atom. Initially this is set 
to zero. PRETTYPRINT never computes the number of characters in an atom. If you set it 
to 20 or 30, when PRETTYPRINT comes within 20 or 30 columns of the right of the 
window, it will begin computing exactly how many characters are in each atom. This will 
prevent errors. 

DWIMWAIT 

Bound to the number of seconds DWIM should wait before it uses the default response, 
FIXSPELLDEFAULT, to answer its question. 

FIXSPELLDEFAULT 

Bound to either Y or N. Its value is used as the default answer to questions asked by DWIM 

that you don't answer in DWIMWAIT seconds. It is initially bound to Y, but is rebound to N 

when dwimifying. 

\TimeZoneComp 

This is the global variable set to the absolute value of the time offset from Greenwich. For 
EST, \TimeZoneComp should be set to 5. 

An Introduction to Medley, Release 2.0 24-5 



24. GLOSSARY OF GLOBAL SYSTEM VARIABLES 

[This page intentionally left blank] 

24-6 An Introduction to Medley, Release 2.0 



25. OTHER USEFUL REFERENCES 

Here are some references to works that will be useful to you in addition to this primer. Some of these 
you have already been referred to, such as: 

o The Interlisp-D Reference Manual (IRM) 

o The Library Packages Manual 

• The User's Guide to SKETCH 

In addition, you can learn more about Lisp with the books: 

o Interlisp..D: The 1IInguago IUII1 in wage by Steven H. Kaisler. This book was published in 1986 
by John Wiley and Sons, NY. 

o Essential USP by John Anderson, Albert Corbett, and Brian Reiser. This book was published in 
1986 by Addison Wesley Publishing Company, Reading, MA. It was infonned by research on 
how beginners learn LISP. 

o The Little Lisper by Daniel P. Friedman and Matthias Felleisen. The second edition of this book 
was published in 1986 by SRA Associates, Chicago. This book is a deceptively simple 
introduction to recmsive programming and the flexible data structures provided by LISP. 

• USP by Patrick Winston and Berthold Hom. The second edition of this book was published in 
1985 by the Addison Wesley Publishing Company, Reading, MA. 

o USP: A Gentle lntroductilm to Symbolie Computation by David S. Touretzky. This book was 
published in 1984 by the Harper and Row Publishing Company, NY. 

Finally, there are three articles about the Interlisp Programming environment 

o Power Tools For Programmers byBea.u Sheil. h appeared in Dlllamation in February, 1983, Pages 
131 - 144. 

o The Interlisp Programming Environment by Warren Teitelman and Larry Masinter. It appeared in 
April, 1981, in IEEE Computer, Volume 14: 1, Pages 25 - 34. 

• Programming In an Interactive Environment, the USP Experience by Erik Sandewall. It appeared 
in March, 1978, in theACM Computing Surveys, Volume 10:1, pages 3S - 71. 

Each of these articles was reprinted in the book /nterm:ti'" Programming Environments by David 
R. Barstow, Howard E. Shrobe, and Erik Sandewail This book was published in 1984 by McGraw 
Hill, NY. The first article can be fOlDld on pages 19 - 30, the second on pages 83 - 96, and the third 
on pages 31 - 80. 

An Introduction to Medley, Release 2.0 25-1 



25. OTHER USEFUL REFERENCES 

[This page intentionally left blank] 

25-2 An Introduction to Medley, Release 2.0 



A 
ADDNENU (Function) 13-1 
AUTOBACKTRACEFlG (Flag) 24-2 

B 
Background Menu 3-1 
BITBl T (Function) 14-3 
Bitmap 14-1 

drawing 14-1 
ending a session 14-2 
erasing 14-1 
working in different section 14-1 

BITMAPCREATE (Function) 14-1 
Break Menu 10-3 
Break Package 10-1 

example 10-1 

C 
Case sensitivity 2-1 
Circular lists 22-3 
CllSPIFTRANFlG (Flag) 24-2 
Compile (Command) 5-4 
COMS (Variable) 8-2 
Control-B 10-3 
Control-D 10-4; 11-1 
Control-E 11-2 
Control-G 10-3 
Control-T 11-2 
Control-X 7-4 
Copy (Command) 5-3 
COPYFllE (Function) 4-3 
CREATEW (Function) 12-1 
Cursor 

changing 23-2 
setting the hotspot 23-6 
tracing 23-2 

CURSORMOVEDFN (Property) 23-1 

D 
DEFUN (Function) 7-1 
Delete (Command) 5-3 
DElFILE (Function) 4-3 
.DFASL (File Name Extension) 4-1 
Directories 4-1 
DIRECTORIES (Variable) 24-1 
Directory 

connecting to 4-4 
Display fonts 16-2 
DISPLA YFONTDIRECTORIES (Variable) 16-3; 24-1 
Displaystream 15-1 
DRAWCIRCLE (Function) 15-3 
DRAWLINE (Function) 15-1 
DRAWTO (Function) 15-2 
DSPFONT (Function) 16-5 
DSPXPOSmON (Function) 15-5 
DSPYPOSmON (Function) 15-5 
DWIMIFYCOMPFLG (Flag) 24-2 
DWIM 9-1 

E 
Edit (Command) 5-3 
EDITBM (Function) 14-1 
EDITHISTORY (Variable) 24-3 
EXAMPLE-ADDER (Function) 7-1 
Executive Window 6-1 
Expunge (Command) 5-4 

F 
FIELDlOOK (Function) 22-2 
File Variables 7-5 
FileBrowser 5-1 

calling '5-1 
commands 5-3 

Filebrowser Menu 3-1 
Files 

commands to manipulate 4-3 
loaded 4-3 
naming conventions 4-1 
program 4-1 
TEdit 4-1 
types of 4-1 
version numbers 4-4 

FllLClRCLE (Function) 15-4 
FIX (Command) 2-1 
FONTCHANGEFLG (Flag) 24-2 
FONTCREATE (Function) 16-2; 8-2 
Fontdescriptors 16-2 
FONTPROP (Function) 16-4 
Fonts 16-1 

changing in one window 16-5 
display 16-2 
expansion 16-1 
family 16-1 
properties 

ASCENT 16-4 
DESCENT 16-5 
FACE 16-5 
FAMILY 16-4 
HEIGHT 16-5 
SIZE 16-4 

slope 16-1 
weight 16-1 

Free Menu 20-1 
FREEMENU 20-1 
Functions 

defining 7-1 

G 
GAINSPACE (Function) 22-4 
GCHAX.DCOM (Package) 22-4 
GENSYM (Function) 22-3 
GETMOUSESTATE (Function) 23-1 
Global variables 22-3 
Grapher 

adding links 21-4 
adding nodes 21-3 
deleting links 21-4 

INDEX 



INDEX 

deleting nodes 21-4 
displaying program data structure 21-5 
incorporating into programs 21-5 
moving nodes 21-5 

GREET (Function) 8-1 

H 
Hardcopy (Command) 5-3 

I 
INITfile 8-1 

making. 8-1 
INITCOMS (Variable) 8-2 
INSPECT (Function) 13-5 
Inspector 17-1 

calling 17-' 
using 17-2 

Jnterface 
bu i1ding 23-1 

INTERPRESSFONTDIRECTORIES (Variable) 16-3; 
24-1 

L 
LASTMOUSEX (Variable) 23-1 
LASTMOUSEY (Variable) 23-1 
LAYOUTGRAPH (Function) 21-2 
LAYOUTSEXPR (Function) 21-2 
.LCOM (File Name Extension) 4-1 
.LISP (File Name Extension) 4-1 
LlSPUSERSDIRECTORIES (Variable) 24-1 
LISPXHISTORY (Variable) 24-3 
List Structure Editor 7-3 
Load (Command) 5-3 
LOAD (Function) 4-3 

M 
Masterscope 18-1 
MASTERSCOPE.DFASL 18-1 
MENU (Function) '3-' 
MENUHELDWAIT (Variable) 22-1 
Menus 3-1 

displaying 13-1 
_ items, explanation of 3-2 
making it useful , 3-2 
selecting from 3-1 
submenus 3-2 

MOVETO (Function) 15-5 

N 
NODECREATES (Function) 2'-2 
NOSPELLFLG (Flag) 24-3 

P 
PRETTYT ABFLG (Flag) 24-2 
PRINTCOORDS (Function) 23-1 
Program file 4-1 
Programmer's assistant 2-1 
Prompt Window 6-1 
PROMPTPRINT (Function) 6-5 

R 
Read-eval-print loop 2-' 
RECLOOK (Function) 22-2 
Recompute (Command) 5-4 
Records 

naming 22-' 

REDO (Command) 2-1 
Regions 12-5 
Rename (Command) 5-3 
RENAMEFILE (Function) 4-3 

S 
See (Command) 5-3 
SEE (Function) 4-3 
SETUPITRACE (Function) 23-3 
SHOWGRAPH (Function) 21-2 
SHOWPATHS (Command) 18-2 
.sKETCH (File Name Extension) 4-1 
Space 

running out of 22-4 
saving 22-2 

SPY 19-1 
how to use 19-2 
interpreting results 19-2 

SPY Window 19-1 
SPY.BUTrON (Function) 19-1 
SPY.TREE (Function) 19-2 
STRINGWIDTH (Function) 16-5 
Submenus 3-2 
Sudirectories 4-2 
SYSPRETTYFLAG (Flag) 24-2 
System menus 24-3 

T 

Background Menu 24-3 
Break Menu 24-4 
Window Men u 24-4 

.TEDIT (File Name Extension) 4-1 
TEd it files 4-1 
Time 

saving 22-2 

U 
Undelete (Command) 5-3 
UNDO (Command) 2-1 
UNTRACE/CURSOR (Function) 23-3 
USERGREETFILES -(Variable) 8-1 

V 
Variables 

global 22-3 
naming 22-1 

Version Numbers 4-4 

W 
WHEN HELD (Function) 13-3 
WHENSELECTED (Function) 13-3 
WHICHW (Function) 6-6 -
Windows 12-1; 6-1 

break 10-1 
Executive Window 6-1 
Prompt Window 6-1 
properties, looking at 12-5 
right button default menu 6-2 
scrollable 6-4 

WITH.SPY (Function) 19-2 
WINDOWPROP (Function) 12-2 

. 
• DFASL (File Name Extension) 4-1 
.LCOM (File Name Extension) 4-1 
.LISP (File Name Extension) 4-1 
.SKETCH (File Name Extension) 4-1 


	000
	001
	002
	003
	004
	005
	006
	007
	008
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	02-01
	02-02
	02-03
	02-04
	03-01
	03-02
	03-03
	03-04
	04-01
	04-02
	04-03
	04-04
	05-01
	05-02
	05-03
	05-04
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	08-01
	08-02
	09-01
	09-02
	10-01
	10-02
	10-03
	10-04
	11-01
	11-02
	11-03
	11-04
	12-01
	12-02
	12-03
	12-04
	12-05
	12-06
	13-01
	13-02
	13-03
	13-04
	13-05
	13-06
	14-01
	14-02
	14-03
	14-04
	14-05
	14-06
	15-01
	15-02
	15-03
	15-04
	15-05
	15-06
	16-01
	16-02
	16-03
	16-04
	16-05
	16-06
	16-07
	16-08
	17-01
	17-02
	17-03
	17-04
	18-01
	18-02
	18-03
	18-04
	19-01
	19-02
	19-03
	20-01
	20-02
	20-03
	20-04
	20-05
	21-01
	21-02
	21-03
	21-04
	21-05
	21-06
	22-01
	22-02
	22-03
	22-04
	23-01
	23-02
	23-03
	23-04
	23-05
	23-06
	24-01
	24-02
	24-03
	24-04
	24-05
	24-06
	25-01
	25-02
	I-01
	I-02

