XEROX Interlisp-D Reference Manual
Volume I: Language

3101272
October, 1985

Copyright (c) 1985 Xerox Corporation
All rights reserved.

Portions from "Interlisp Reference Manual" Copyright (c) 1983
Xerox Corporation, and "Interlisp Reference Manual" Copyright
(c) 1974, 1975, 1978 Bolt, Beranek & Newman and Xerox
Corporation.

This publication may not be reproduced or transmitted in any
form by any means, electronic, microfilm, xerography, or
otherwise, or incorporated into any information retrieval system,
without the written permission of Xerox Corporation.

1. Introduction

TABLE OF CONTENTS

1.1

1.1. Interlisp as a Programming Language 1.1
1.2. Interlisp as an Interactive Environment 1.3
1.3. Interlisp Philosophy 1.5
1.4. How to Use this Manual 1.7
1.5. References 1.8
2. Litatoms 2.1
2.1. Using Litatoms as Variables 2.2
2.2, Function Definition Cells 25
2.3. Property Lists 2.5
2.4, Print Names 2.7
2.5. Characters and Character Codes 2.12
3. Lists 3.1
3.1. Creating Lists 34
3.2, Building Lists From Left to Right 3.6
3.3. Copying Lists 38
3.4, Extracting Tails of Lists 3.9
3.5. Counting List Cells 3.10
3.6. Logical Operations 3.1
3.7. Searching Lists 3.12
3.8. Substitution Functions 313
3.9. Association Lists and Property Lists 3.15
3.10. Sorting Lists 3.17
3.11. Other List Functions 3.19
4. Strings 4.1
5. Arrays 5.1
6. Hash Arrays 6.1
6.1. Hash Overflow 6.3

TABLE OF CONTENTS

TOC t

MASTER TABLE OF CONTENTS

6.2, User-Specified Hashing Functions 6.4
7. Numbers and Arithmetic Functions 7.1
7.1. Generic Arithmetic 7.3
7.2. Integer Arithmetic 7.4
7.3. Logical Arithmetic Functions 7.8
7.4. Floating Point Arithmetic 7.11
7.5. Other Arithmetic Functions 7.13
8. Record Package 8.1
8.1. FETCH and REPLACE 8.2
8.2. CREATE 8.3
8.3. TYPE? 8.5
8.4. WITH 8.5
8.5. Record Declarations 8.6
8.5.1. Record Types 8.7

8.5.2. Optional Record Specifications 8.14

8.6. Defining New Record Types 8.15
8.7. Record Manipulation Functions 8.16
8.8. Changetran 8.17
8.9. Built-In and User Data Types 8.20
9. Conditionals and Iterative Statements 9.1
9.1. Data Type Predicates 9.1
9.2. Equality Predicates 9.2
9.3. Logical Predicates 9.3
9.4. The COND Conditional Function 9.4
9.5. ThelF Statement 9.5
9.6. Selection Functions 9.6
9.7. PROG and Assaociated Control Functions 9.7
9.8. Thelterative Statement 9.9
9.8.1. ls.types 9.10

9.8.2. Iteration Variable l.s.oprs 9.12

9.8.3. Condition L.s.oprs 9.15

9.8.4. Otherl.s.oprs 9.16

9.8.5. Miscellaneous Hints on 1.5.0prs 9.17

9.8.6. Errorsinlterative Statements 9.19

TOC.2

MASTER TABLE OF CONTENTS

MASTER TABLE OF CONTENTS .

9.8.7. Defining New lterative Statement Operators 9.20

10. Function Definition, Manipulation, and Evaluation 10.1

10.1. Function Types 10.2

10.1.1. Lambda-Spread Functions 103

10.1.2. Nlambda-Spread Functions 10.4

10.1.3. Lambda-Nospread Functions 10.5

10.1.4. Nlambda-Nospread Functions 10.6

10.1.5. Compiled Functions 10.6

10.1.6. Function Type Functions 10.6

10.2. Defining Functions 10.9

10.3. Function Evaluation 10.11
10.4. Iterating and Mapping Functions 10.14 ~

10.5. Functional Arguments 10.18

10.6. Macros 10.21
10.6.1. DEFMACRO 10.24

10.6.2. interpreting Macros 10.28

11. Variable Bindings and the Interlisp Stack 1.1

11.1. The Spaghetti Stack 11.2

11.2. Stack Functions 11.4

11.2.1. Searching the Stack 11.5

11.2.2. Variable Bindings in Stack Frames 11.6

11.2.3. Evaluating Expressions in Stack Frames 1.7

11.2.4. Altering Flow of Control 11.8

11.2.5. Releasing and Reusing Stack Pointers 1.9

11.2.6. Backtrace Functions 11.11

11.2.7. Other Stack Functions 11.13

11.3. The Stack and the Interpreter 11.14
11.4. Generators 11.16 -

11.5. Coroutines 11.18

11.6. Possibilities Lists 11.20

12. Miscellaneous 12.1

12.1. Greeting and Initialization Files 121

12.2. |dle Mode 12.4
12.3. Saving Virtual Memory State 12.6

MASTER TABLE OF CONTENTS

TOC.3

MASTER TABLE OF CONTENTS

12.4. System Version information 12.11
12.5. Date And Time Functions 12.13
12.6. Timers and Duration Functions 12.16
12.7. Resources 12.19
12.7.1. A Simple Example 12.20

12.7.2. Trade-offs in More Complicated Cases 12.22

12.7.3. Macros for Accessing Resources 12.23

12.7.4. Saving Resourcesin a File 12.23

12.8. Pattern Matching 12.24
12.8.1. Pattern Elements 12.25

12.8.2. Element Patterns 12.25

12.8.3. Segment Patterns 12.27

12.8.4. Assignments 12.28

12.8.5. Place-Markers 12.29

12.8.6. Replacements 12.29

12.8.7. Reconstruction 12.30

12.8.8. Examples 12.31

13. Interlisp Executive 13.1
13.1. Input Formats 13.3
13.2. Programmer's Assistant Commands 135
13.2.1. Event Specification 13.6

13.2.2. Commands 13.8

13.2.3. P.A. Commands Applied to P.A. Commands 13.20

13.3. Changing The Programmer’s Assistant ' 13.21
13.4. Undoing 13.26
13.4.1. Undoing Out of Order 13.27

13.4.2. SAVESET 13.28

13.4.3. UNDONLSETQ and RESETUNDO 13.29

13.5. Format and Use of the History List 13.31
13.6. Programmer's Assistant Functions 13.35
13.7. The Editor and the Programmer's Assistant 13.43
14. Errors and Breaks 14.1
4 14.1. Breaks 14.1
14.2. Break Windows 14.3

TOC.4

MASTER TABLE OF CONTENTS

MASTER TABLE OF CONTENTS

14.3. Break Commands 14.5
14.4. Controlling When to Break 1413
14.5. Break Window Variables 14.14
14.6. Creating Breaks with BREAK1 14.16
14.7. Signalling Errors 14.19
14.8. Catching Errors 14.21
14.9. Changing and Restoring System State 14.24
14.10. Error List 14.27
15. Breaking, Tracing, and Advising ' 15.1
15.1. Breaking Functions and Debugging 15.1
15.2. Advising 15.9
15.2.1. Implementation of Advising 15.10

15.2.2. Advise Functions 15.10

16. List Structure Editor 16.1
16.1. DEdit 16.1
16.1.1. Calling DEdit 16.2

16.1.2. Selecting Objects and Lists 16.4

16.1.3. Typing Characters to DEdit 16.5

16.1.4. Copy-Selection 16.5

16.1.5. DEdit Commands 16.6

16.1.6. Multiple Commands 16.10

16.1.7. DEditldioms 16.10

16.1.8. DEditParameters 16.12

16.2. Local Attention-Changing Commands 16.13
16.3. Commands That Search 16.18
16.3.1. Search Algorithm 16.20

16.3.2. Search Commands 16.21

16.3.3. Location Specification 16.23

16.4. Commands That Save and Restore the Edit Chain 16.27
16.5. Commands That Modify Structure 16.29
16.5.1. Implementation 16.30

16.5.2. The A, B, and : Commands 16.31

16.5.3. Form Oriented Editing and the Role of UP 16.34

16.5.4. Extract and Embed 16.35

MASTER TABLE OF CONTENTS

TOC.S

MASTER TABLE OF CONTENTS

16.5.5. The MOVE Command 16.37

16.5.6. Commands That Move Parentheses 16.40

16.5.7. TO and THRU 16.42

16.5.8. The R Command 16.45

16.6. Commands That Print 16.47
16.7. Commands for Leaving the Editor 16.49
16.8. Nested Calls to Editor 16.51
16.9. Manipulating the Characters of an Atom or String 16.52
16.10. Manipulating Predicates and Conditional Expressions 16.53
16.11. History commands in the editor 16.54
16.12. Miscellaneous Commands 16.55
16.13. Commands That Evaluate 16.57
16.14. Commands That Test 16.60
16.15. Edit Macros 16.62
16.16. Undo 16.64
16.17. EDITDEFAULT 16.66
16.18. Editor Functions 16.68
16.19. Time Stamps 16.76
17. File Package 17.1
17.1. LoadingFiles 17.5
17.2. Storing Files 17.10
17.3. Remaking a Symbolic File 17.15
17.4. LoadingFiles in a Distributed Environment 17.16
17.5. Marking Changes 17.17
17.6. Noticing Files 17.19
17.7. Distributing Change Information 17.21
17.8. File Package Types 17.21
17.8.1. Functions for Manipulating Typed Definitions 17.24

17.8.2. Defining New File Package Types 17.29

17.9. File Package Commands 17.32
17.9.1. Functions and Macros 17.34

17.9.2. Variables 17.35

17.9.3. Litatom Properties 17.37

17.9.4. Miscellaneous File Package Commands 17.38

TOC.6

MASTER TABLE OF CONTENTS

MASTER TABLE OF CONTENTS

17.9.5. DECLARE: 17.40

17.9.6. Exporting Definitions 17.42

17.9.7. FileVars 17.44

17.9.8. Defining New File Package Commands 17.45

17.10. Functions for Manipulating File Command Lists 17.48
17.11. Symbolic File Format 17.50
17.11.1. Copyright Notices 17.52

17.11.2. Functions Used Within Source Files 17.54

17.11.3. File Maps 17.55

18. Compiler 18.1
18.1. Compiler Printout 18.3
18.2. Global Variables 18.4
18.3. Local Variables and Special Variables 18.5
18.4. Constants 18.7
18.5. Compiling Function Calls 18.8
18.6. FUNCTION and Functional Arguments 18.10
18.7. Open Functions 18.11
18.8. COMPILETYPELST 18.11
18.9. Compiling CLISP 18.11
18.10. Compiler Functions 18.13
18.11. Block Compiling 18.17
18.11.1. Block Declarations 18.17

18.11.2. Block Compiling Functions 18.20

18.12. Compiler Error Messages 18.22
19. Masterscope 19.1
19.1. Command Language 19.3
19.1.1. Commands 19.4

19.1.2. Relations 19.7

19.1.3. Set Specifications 19.10

19.1.4. Set Determiners 19.13

19.1.5. Set Types 19.13

19.1.6. Conjunctions of Sets 19.14

19.2. SHOW PATHS 19.15
19.3. Error Messages 19.17

MASTER TABLE OF CONTENTS

TOC.7

MASTER TABLE OF CONTENTS

19.4. Macro Expansion 19.17
19.5. Affecting Masterscope Analysis 19.18
19.6. Data Base Updating 19.22
19.7. Masterscope Entries 19.22
19.8. Noticing Changes that Require Recompiling 19.25
19.9. Implementation Notes 19.25
20. DWIM 20.1
20.1. Spelling Correction Protocol 20.4
20.2. Parentheses Errors Protocol 20.5
20.3. Undefined Function T Errors 20.6
20.4. DWIM Operation 20.7
" 20.4.1. DWIM Correction: Unbound Atoms 20.8
20.4.2. Undefined CAR of Form 209

20.4.3. Undefined Function in APPLY 20.10

20.5. DWIMUSERFORMS 20.11
20.6. DWIM Functions and Variables 20.13
20.7. Spelling Correction 20.15
20.7.1. Synonyms 20.16

20.7.2. Spelling Lists 20.16

20.7.3. Generators for Spelling Correction 20.19

20.7.4. Spelling Corrector Algorithm 20.19

20.7.5. Spelling Corrector Functions and Variables 20.21

21. CLISP 21.1
21.1. CLISP Interaction with User 21.6
21.2. CLISP Character Operators 21.7
21.3. Declarations 21.12
21.4. CLISP Operation 21.14
21.5. CLISP Translations 2117
21.6. DWIMIFY 21.18
21.7. CLISPIFY 21.22
21.8. Miscellaneous Functions and Variables 21.25
21.9. CLISP Internal Conventions 21.27
22. Performance Issues 22.1
22.1. Storage Allocation and Garbage Collection 221

TOC8

MASTER TABLE OF CONTENTS

MASTER TABLE OF CONTENTS

22.2. Variable Bindings 225
22.3. Performance Measuring 22.7
22.3.1. BREAKDOWN 229

22.4. GAINSPACE 2211
22.5. Using Data Types Instead of Records 22.13
22.6. Using Incomplete File Names 22.13
22.7. Using "Fast” and "Destructive” Functions 22.14
23. Processes 23.1
23.1. Creating and Destroying Processes 23.2
23.2. Process Control Constructs 235
23.3. Events 23.7
23.4. Monitors 238
23.5. Global Resources 23.10
23.6. Typein and the TTY Process 23.11
23.6.1. Switching the TTY Process 23.12

23.6.2. Handling of Interrupts 23.14

23.7. Keeping the Mouse Alive 23.15
23.8. Process Status Window 23.16
23.9. Non-Process Compatibility 23.17
24. Streams and Files 24.1
24.1. Opening and Closing File Streams 24.2
24.2. File Names 245
24.3. Incomplete File Names 249
24.4, Version Recognition 24.11
24.5. Using File Names Instead of Streams 24.13
24.5.1. File Name Efficiency Considerations 24.14

24.5.2. Obsolete File Opening Functions 24.14

24.5.3. Converting Old Programs 24.15

24.6. Using Files with Processes 2416
24.7. File Attributes 2417
24.8. Closing and Reopening Files 24.20
24.9. Local Hard Disk Device 24.21
24.10. Floppy Disk Device 24.24
24.11. 1/0 Operations to and from Strings 24.28

MASTER TABLE OF CONTENTS

TOC 9

MASTER TABLE OF CONTENTS

24.12. Temporary Files and the CORE Device 24.29
24.13. NULL Device 2430
24.15. Deleting, Copying, and Renaming Files 24.31
24.16. Searching File Directories 24.31
24.17. Listing File Directories 2433
24.18. File Servers 24.36
24.18.1. Pup File Server Protocols 24.36

24.18.2. Xerox NS File Server Protocols 24.37

24.18.3. Operating System Designations 24.38

24.18.4. Logginglin 24.39

24.18.5. Abnormal Conditions 24.41

25. Input/Qutput Functions ' 25.1
25.1. Specifying Streams for Input/Output Functions 251
25.2. Input Functions 25.2
25.3. Output Functions 25.7
25.3.1. PRINTLEVEL 2511

25.3.2. Printing numbers 25.13

25.3.3. User Defined Printing 25.16

25.3.4. Printing Unusual Data Structures 25.17

25.4. Random Access File Operations 25.18
25.5. Input/Output Operations with Characters and Bytes 25.22
25.6. PRINTOUT 25.23
25.6.1. Horizontal Spacing Commands 25.25

25.6.2. Vertical Spacing Commands 25.26

25.6.3. Special Formatting Controls 25.27

25.6.4. Printing Specifications 25.27

25.6.4.1. Paragraph Format 25.28

25.6.4.2. Right-Flushing 25.29

25.6.4.3. Centering 25.29

25.6.4.4. Numbering 25.29

25.6.5. Escaping to Lisp 25.30

25.6.6. User-Defined Commands 25.31

25.6.7. Special Printing Functions 25.32

25.7. READFILE and WRITEFILE 25.33

TOC.10 MASTER TABLE OF CONTENTS

MASTER TABLE OF CONTENTS

25.8. Read Tables 25.33
25.8.1. Read Table Functions 25.34
25.8.2. Syntax Classes 25.35
25.8.3. Read Macros 25.39
26. User Input/Output Packages 26.1
26.1. Inspector 26.1
26.1.1. Calling the Inspector 26.2
26.1.2. Multiple Ways of Inspecting 26.2
26.1.3. Inspect Windows 26.3
26.1.4. Inspect Window Commands 26.4
26.1.5. Interaction With Break Windows 26.5

26.1.6. Controlling the Amount Displayed During Inspection

26.5

26.1.7. Inspect Macros 26.6
26.1.8. INSPECTWs 26.6
26.2. PROMPTFORWORD 26.9
26.3. ASKUSER 26.12
26.3.1. Format of KEYLST 26.13
26.3.2. Options 26.15
26.3.3. Operation 26.17
26.3.4. Completing a Key 26.18
26.3.5. Special Keys 26.19
26.3.6. Startup Protocol and Typeahead 26.20
26.4. TTYIN Display Typein Editor 26.22
26.4.1. Entering Input With TTYIN 26.22
26.4.2. Mouse Commands [Interlisp-D Only] 26.24
26.4.3. Display Editing Commands 26.25
26.4.4. Using TTYIN for Lisp Input 26.28
26.4.5. Useful Macros 26.29
26.4.6. Programming With TTYIN 26.29
26.4.7. Using TTYIN as a General Editor 26.32
26.4.8. 7= Handler 26.33
26.4.9. Read Macros 26.34
26.4.10. Assorted Flags 26.36

MASTER TABLE OF CONTENTS

TOC 11

MASTER TABLE OF CONTENTS

26.4.11. Special Responses 26.38

26.4.12. Display Types . 26.38

26.5. Prettyprint 26.39
26.5.1. Comment Feature 26.42

26.5.2. CommentPointers 26.44

26.5.3. Converting Comments to Lower Case 26.46

26.5.4. Special Prettyprint Controls 26.47

27. Graphics Output Operations 271
27.1. Primitive Graphics Concepts 27.1
27.1.1. Positions 271

27.1.2. Regions 27.1

27.1.3. Bitmaps 27.3

27.1.4. Textures 27.6

27.2. OpeningImage Streams 27.8
27.3. Accessing Image Stream Fields 27.10
27.4. Current Position of an Image Stream 27.13
27.5. Moving Bits Between Bitmaps With BITBLT 27.14
27.6. Drawing Lines 27.17
27.7. Drawing Curves 27.18
27.8. Miscellaneous Drawing and Printing Operations 27.20
27.9. Drawing and Shading Grids 27.22
27.10. Display Streams 27.23
27.12. Fonts 27.25
27.13. Font Files and Font Directories 27.31
27.15. Font Profiles 27.32
27.16. Image Objects 27.35
27.16.1. IMAGEFNS Methods 27.36

27.16.2. Registering Image Objects . 27.39

27.16.3. Reading and Writing Image Objects on Files 27.40

27.16.4. Copying Image Objects Between Windows 27.41

27.17. Implementation of Image Streams 27.42
28. Windows and Menus 28.1
28.1. Using The Window System 28.2
28.2. Changing Window Command Menus 28.7

TOC.12

MASTER TABLE OF CONTENTS

MASTER TABLE OF CONTENTS

28.3. Interactive Display Functions 289
28.4. Windows 28.12
28.4.1. Window Properties 28.13
28.4.2. Creating Windows 28.13
28.4.3. Opening and Closing Windows 28.15
28.4.4. Redisplaying Windows 28.16
28.4.5. Reshaping Windows 28.16
28.4.6. Moving Windows 28.19
28.4.7. Exposing and Burying Windows 28.20
28.4.8. Shrinking Windows Into Icons 28.21
28.4.9. Coordinate Systems, Extents, And Scrolling 28.23
28.4.10. Mouse Activity in Windows 28.27
28.4.11. Terminal I/0 and Page Holding 28.29
28.4.12. The TTY Process and the Caret 28.30
28.4.13. Miscellaneous Window Functions 2831
28.4.14. Miscellaneous Window Properties 28.33
28.4.15. Example: A Scrollable Window 28.34
28.5. Menus 28.37
28.5.1. Menu Fields 28.38
28.5.2. Miscellaneous Menu Functions 28.42
28.5.3. Examples of Menu Use 28.43
28.6. Attached Windows 28.45
28.6.1. Attaching Menus To Windows 28.48
-28.6.2. Attached Prompt Windows 28.50
28.6.3. Window Operations And Attached Windows 28.50
28.6.4. Window Properties Of Attached Windows 28.53
29. Hardcopy Facilities 29.1
29.1. Low-level Hardcopy Variables 29.5
30. Terminal Input/Output 30.1
30.1. Interrupt Characters 30.1
30.2. Terminal Tables 30.4
30.2.1. Terminal Syntax Classes 30.5
30.2.2. Terminal Control Functions 30.6
30.2.3. Line-Buffering 30.9

MASTER TABLE OF CONTENTS

TOC.13.

MASTER TABLE OF CONTENTS

30.3. Dribble Files 30.12
30.4. Cursor and Mouse 30.13
30.4.1. Changing the Cursor Image 30.13

30.4.2. FlashingBars on the Cursor 30.16

30.4.3. Cursor Position 30.17

30.4.4. Mouse Button Testing 30.17

30.4.5. Low Level Mouse Functions 30.18

30.5. Keyboard Interpretation 30.19
30.6. Display Screen 30.22
30.7. Miscellaneous Terminal I/0 30.24
31. Ethernet 31.1
31.1. Ethernet Protocols 31.1
31.1.1. Protocol Layering 311

31.1.2. Level Zero Protocols 31.2

31.1.3. Level One Protocols 31.3

31.1.4. Higher Level Protocols 31.4

31.1.5. Connecting Networks: Routers and Gateways 31.4

31.1.6. Addressing Conflicts with Level Zero Mediums 31.5

31.1.7. References 315

31.2. Higher-level PUP Protocol Functions 316
31.3. Higher-level NS Protocol Functions 31.7
31.3.1. Name and Address Conventions 31.7

31.3.2. Clearinghouse Functions 319

31.3.3. NS Printing 31.12

31.3.4. SPP Stream Interface 3112

31.3.5. Courier Remote Procedure Call Protocol 3115

31.3.5.1. Defining Courier Programs 31.15

31.3.5.2. Courier Type Definitions 31.17

31.3.5.2.1. Pre-defined Types 31.17

31.3.5.2.2. Constructed Types 31.18

31.3.5.2.3. User Extensions to the Type Language 31.19

31.3.5.3. Performing Courier Transactions 31.20

31.3.5.3.1. Expedited Procedure Call 31.22

31.3.5.3.2. Expanding Ring Broadcast 31.23

TOC.14

MASTER TABLE OF CONTENTS

MASTER TABLE OF CONTENTS

31.3.5.3.3. Using Bulk Data Transfer 31.24
31.3.5.3.4. Courier Subfunctions for Data Transfer 31.25
31.4. Level One Ether Packet Format 31.26
31.5. PUP Level One Functions 31.28
31.5.1. Creating and Managing Pups 31.28
31.5.2. Sockets 31.28
31.5.3. Sending and Receiving Pups 31.29
31.5.4. Pup Routing Information 31.30
31.5.5. Miscellaneous PUP Utilities 31.31
31.5.6. PUP Debugging Aids 31.32
31.6. NS Level One Functions 31.36
31.6.1. Creating and Managing XIPs 31.36
31.6.2. NS Sockets 31.37
31.6.3. Sending and Receiving XIPs 31.37
31.6.4. NS Debugging Aids 31.38
31.7. Support for Other Level One Protocols 31.38
31.8. The SYSQUEUE mechanism 31.41

MASTER TABLE OF CONTENTS TOC .15

MASTER TABLE OF CONTENTS

[This page intentionally left blank]

TOC.16 MASTER TABLE OF CONTENTS

MASTER TABLE OF CONTENTS

1. Introduction 1.1
1.1. Interlisp as a Programming Language 1.1
1.2. Interlisp as an Interactive Environment 1.3
1.3. Interlisp Philosophy 1.5
1.4. How to Use this Manual 1.7
1.5. References 1.8
2. Litatoms 2.1
2.1. Using Litatoms as Variables 2.2
2.2. Function Definition Cells 2.5
2.3. Property Lists 25
2.4. PrintNames 2.7
2.5. Characters and Character Codes 2.12
3. Lists 3.1
3.1. Creating Lists 3.4
3.2. Building Lists From Left to Right 3.6
3.3. Copying Lists 38
3.4. Extracting Tails of Lists 39
3.5. Counting List Cells 3.10
3.6. Logical Operations 3.1
3.7. Searching Lists 3.12
3.8. Substitution Functions 3.13
3.9. Association Lists and Property Lists 3.15
3.10. Sorting Lists 3.17
3.11. Other List Functions 3.19
4. Strings 4.1
5. Arrays 5.1
6. Hash Arrays 6.1
6.1. Hash Overflow 6.3

MASTER TABLE OF CONTENTS TOCAH

TABLE OF CONTENTS

6.2. User-Specified Hashing Functions 6.4
7. Numbers and Arithmetic Functions 7.1
7.1. Generic Al;ithmetic 7.3
7.2. Integer Arithmetic 7.4
7.3. Logical Arithmetic Functions 7.8
7.4. Floating Point Arithmetic 7.1
7.5. Other Arithmetic Functions 7.13
8. Record Package 8.1
8.1. FETCH and REPLACE 8.2
8.2. CREATE 8.3
8.3. TYPE? 8.5
8.4. WITH 8.5
8.5. Record Declarations 8.6
8.5.1. Record Types 87
8.5.2. Optional Record Specifications 8.14
8.6. Defining New Record Types 8.15
8.7. Record Manipulation Functions 8.16
8.8. Changetran 817
8.9. Built-in and User Data Types 8.20
9. Conditionals and Iterative Statements 9.1
9.1. Data Type Predicates 9.1
9.2. Equality Predicates 9.2
9.3. Logical Predicates 9.3
9.4. The COND Conditional Function 9.4
9.5. ThelF Statement 95
9.6. Selection Functions 9.6
9.7. PROG and Associated Control Functions 9.7
9.8. The lterative Statement 9.9
9.8.1. l.s.types 9.10
9.8.2. Iteration Variablel.s.oprs 9.12
9.8.3. Conditioni.s.oprs 9.15
9.8.4. Otherl.s.oprs 9.16
9.8.5. Miscellaneous Hints on1.5.0prs 9.17
9.8.6. Errorsinlterative Statements 9.19

TOC.2

TABLEOF CONTENTS

TABLEOF CONTENTS

~N

9.8.7. Defining New lterative Statement Operators 9.20

10. Function Definition, Manipulation, and Evaluation 10.1
' 10.1. Function Types 10.2
10.1.1. Lambda-Spread Functions 10.3

10.1.2. Nlambda-Spread Functions 10.4

10.1.3. Lambda-Nospread Functions 10.5

10.1.4. Nlambda-Nospread Functions 10.6

10.1.5. Compiled Functions 10.6

10.1.6. Function Type Functions 10.6

10.2. Defining Functions 10.9

10.3. Function Evaluation 10.11

10.4. Iterating and Mapping Functions 10.14

10.5. Functional Arguments 10.18

10.6. Macros 10.21

10.6.1. DEFMACRO ' 10.24

10.6.2. Interpreting Macros 10.28

11. Variable Bindings and the Interlisp Stack 1.1
11.1. The Spaghetti Stack 11.2

11.2. Stack Functions 11.4

11.2.1. Searching the Stack 11.5

11.2.2. Variable Bindings in Stack Frames 11.6

11.2.3.. Evaluating Expressions in Stack Frames 1.7

11.2.4. Altering Flow of Control 11.8

11.2.5. Releasing and Reusing Stack Pointers 1.9

11.2.6. Backtrace Functions 1.1

11.2.7. Other Stack Functions 1113

11.3. The Stack and the Interpreter 11.14

11.4. Generators 11.16

11.5. Coroutines 11.18

11.6. Possibilities Lists 11.20

12. Miscellaneous 12.1
12.1. Greeting and Initialization Files 12.1

12.2. |dle Mode 12.4

12.3. Saving Virtual Memory State 12.6

TABLE OF CONTENTS TOC.3

TABLE OF CONTENTS

12.4. System Version Information 12.11
12.5. Date And Time Functions 12.13
12.6. Timers and Duration Functions . 12.16
12.7. Resources 12.19
12.7.1. ASimple Example 12.20

12.7.2. Trade-offs in More Complicated Cases 12.22

12.7.3. Macros for Accessing Resources 12.23

12.7.4. Saving Resourcesin a File 12.23

12.8. Pattern Matching 12.24
12.8.1. Pattern Elements 12.25

12.8.2. Element Patterns 12.25

12.8.3. Segment Patterns 12.27

12.8.4. Assignments 12.28

12.8.5. Place-Markers 12.29

12.8.6. Replacements 12.29

12.8.7. Reconstruction 12.30

12.8.8. Examples 12.31

TOC.A TABLE OF CONTENTS

BACKGROUND AND
ACKNOWLEDGEMENTS

1 A Brief History of Interlisp

Interlisp began with an implementation of the Lisp
programming language for the PDP-1 at Bolt, Beranek and
Newman in 1966. It was followed in 1967 by 940 Lisp for the .
SDS-940 computer, which was the first Lisp system to use
software paging techniques and a large virtual memory in
conjunction with a list-processing system [Bobrow & Murphy, -
1967]. DWIM, the Do-What-I-Mean error correction facility, was .
introduced into this system in 1968 by Warren Teitelman
[Teitelman, 1969].

In 1970 BBN-Lisp, an upward compatible Lisp system for the
PDP-10, was implemented under the Tenex operating system
[Teitelman, et al., 1972]. With the hardware paging and 256K of
virtual memory provided by Tenex, it was practical to provide
more extensive and sophisticated user support facilities, and a
library of such facilities began to evolve. In 1972, the name of
the system was changed to Interlisp, and its development
became a joint effort of the Xerox Palo Alto Research Center and
Bolt, Beranek and Newman. The next few years saw a period of
rapid growth and development of the language, the system and
the user support facilities, including the record package, the file
package, and Masterscope.

In 1974, an implementation of Interlisp was begun for the Xerox .
Alto, an experimental microprogrammed personal computer
[Thacker et al., 1979]. AltoLisp [Deutsch, 1973] introduced the
idea of providing a specialized, microcoded instruction set that -
modelled the basic operations of Lisp more closely than a
general-purpose instruction set could -- and as such was the first .
true "Lisp machine"”. AltoLisp also served as a departure point -
for Interlisp-D, the implementation of Interlisp for the Xerox
1100 Series of personal computers, which was begun in 1979
[Sheil & Masinter, 1983].

In 1976, partially as a result of the AltoLisp effort, a specification
for the Interlisp “virtual machine" was published {Moore, 1976]. .
This attempted to specify a small set of "primitive" operations

BACKGROUND AND ACKNOWLEDGEMENTS

ABRIEFHISTORY OF INTERLISP’

which would support all of the higher level user facilities, which
were nearly all written in Lisp. Although incompiete and written
at a level which preserved too many of the details of the Tenex
operating system, this document proved to be a watershed in the
development of Interlisp, since it gave a clear definition of a
(relatively) small kernel whose implementation would suffice to
port Interlisp to a new environment. This was decisive in
enabling many subsequentimplementations.

Most recently, the implementation of Interlisp on personal
workstations has extended Interlisp in major ways. Most striking
has been the incorporation of interactive graphics and local area
network facilities. Not only have these extensions expanded the
range of applications for which Interlisp is being used, but the
personal machine capabilities have had a major impact on the
Interlisp programming system itself. Whereas the original
Interlisp user interface assumed a very limited (teletype) channel
to the user, the use of interactive graphics and the "mouse”
pointing device has radically expanded the bandwidth of
communication between the user and the machine. This has
enabled completely new styles of interaction with the user (e.g.,
the use of multiple windows to provide several different
interaction channels with the user) and these have provided
both new programming tools and new ways of viewing and
using the existing ones. In addition, the increased use of local
area networks (such as the Ethernet) has expanded the horizon
of the Interlisp user beyond the local machine to a whole
community of machines, processes and services. Large portions
of this manual are devoted to documenting the enhanced
environment that has resulted from these developments.

2. Interlisp Implementations

Development of Interlisp for the PDP-10 was, until
approximately 1978, funded by the Advanced Research Projects
Administration of the Department of Defence (DARPA).
Subsequent developments, which have emphasized the personal
workstation facilities, have been sponsored by the Xerox
Corporation, with contributions from members of the Interlisp
user community.

Although there are a variety of implementations of interlisp in
use, this manual is a reference manual for the interlisp-D
implementation. Notes may occasionally be included on other
implementations, but there is no guarantee that this
information is complete for implementations other than
Interlisp-D. For some implementations, there is a “Users Guide"
which documents features which are completely unique to that

BACKGROUND AND ACKNOWLEDGEMENTS

INTERLISP IMPLEMENTATIONS

machine; for example, how to turn on the system, logging on,
and unique facilities which link Interlisp to the host environment
or operating system.

3 Acknowledgements

The Interlisp system is the work of many people -- after nearly
twenty years, too many even to list, much less detail their
contributions. Nevertheless, some individuals cannot go
unacknowledged:

Warren Teitelman, more than anyone else, made Interlisp
"happen”. Warren designed and implemented large parts of
several generations of Interlisp, including the initial versions of
most of the user facilities, coordinated the system development
and assembled and edited the first four editions of the Intertisp.
reference manual.

Larry Masinter is a principal architect of the current interlisp
system, has contributed extensively to several implementations,
and has designed and developed major extensions to both the
Interlisp language and the programming environment.

Dan Bobrow was a principal designer of interlisp's predecessors,
has contributed to the implementation of several generations of
Interlisp, and (in collaboration with others) made major
advances in the underlying architecture, including the spaghetti
stack, the transaction garbage collector, and the block compiler.

Ron Kaplan has decisively shaped many of the programming
language extensions and user facilities of Interlisp, has played a
key role in two implementations and has contributed extensively
to the design and content of the Interlisp reference manual.

Peter Deutsch designed the Altolisp |mplemematnowcf°hfteﬂ1sp
which developed several key designr msnghts ‘on ‘which _the
current generation of personal machine implementations
depends.

No matter where one ends this list, one is tempted to continue.
Many others who contributed to particular implementations or
revisions are acknowledged in the documentation for those
systems. Following that tradition, this manual, which primarily
documents the Interlisp-D implementation, acknowledges, in
addition to those listed above, the work of:

Bill van Melle, who designed and implemented most of the local
area network facilities, the process mechanism, and much of the
run time support system.

Richard Burton, who designed and imblemented a great deal of
the interactive display facilities.

BACKGROUND AND ACKNOWLEDGEMENTS

“ACKNOWLEDGEMENTS:» -

and the contributions of Alan Bell, Don Charnley, Mitch
Lichtenberg, Steve Purcell, Eric Schoen, Beau Sheil, John Sybalsky,
and the many others who have helped and contributed to the
development of Interlisp-D.

Like interlisp itself, the Interlisp Reference Manual is the work of
many people, some of whom are acknowledged above. This
edition was substantially rewritten, designed, edited and
produced by Michael Sannella of Xerox Artificiat Intelligence
Systems. It is @ major revision of the previous edition --- it has
been completely reorganized, updated in most sections, and
extended with a large amount of new material.

Interlisp is not designed by a formal committee. It grows and
changes in response to the needs of those who use it.
Contributions and discussion from the user community remain,
as they always have been, warmly welcome.

4 References

[Bobrow & Murphy, 1967] Bobrow, D.G., and Murphy, D.L., "The Structure of a LISP System
Using Two Level Storage" --- Communications of the ACM, Vol.
10, 3, (March, 1967).

[Deutsch, 1973] Deutsch, L.P., "A Lisp machine with very compact programs" ---
Proceedings of the Third International Joint Conference on
Artificial Intelligence, Stanford, (1973).

[Moore, 1976] Moore, J.5.,, "The Interlisp Virtual Machine Specification” ---
Xerox PARC, CSL-76-5, (1976).

[Sheil & Masinter, 1983] Sheil, B., and Masinter, L.M. (eds.), "Papers on Interlisp-D" ---
Xerox PARC, CiS-5 (Revised), (1983).

[Teitelman, 1969] Teitelman, W., “Toward a Programming Laboratory" ---
Proceedings of the International Joint Conference on Artificial
Intelligence, Washington, (1969).

[Teitelman, et al., 1972] Teitelman, W., Bobrow, D.G., Hartley, A.K. Murphy, D.L,,
BBN-LISP TENEX Reference Manual --- Bolt Beranek and
Newman, (July 1971, first revision February 1972, second revision
August 1972).

[Thacker, et al., 1979] Thacker, C., Lampson, B., and Sproull, R.,, "Alto: A personal
computer" --- Xerox PARC,CSL-79-11, (August, 1979).

v BACKGROUND AND ACKNOWLEDGEMENTS

TABLE OF CONTENTS

1. Introduction 11
1.1. Interlisp as a Programming Language 1.1
1.2. Interlisp as an Interactive Environment 1.3
1.3. Interlisp Philosophy 1.5
1.4. How to Use this Manual 1.7
1.5. References 1.8

TABLE OF CONTENTS TOCA

TABLE OF CONTENTS

[This page intentionally left blank]

TOC.2 TABLE OF CONTENTS

1. INTRODUCTION

Interlisp is a programming system. A programming system
consists of a programming language, a large number of
predefined programs (or functions, to use the Lisp terminology)
that can be used either as direct user commands or as
subroutines in user programs, and an environment that supports
the programmer by providing a variety of specialized
programming tools. The language and predefined functions of
Interlisp are rich, but similar to those of other modern
programming languages. The Interlisp programming
environment, on the other hand, is very distinctive. Its most
salient characteristic is an integrated set of programming tools
which know enough about Interlisp programming so that they
can act as semi-autonomous, intelligent "“assistants” to the
programmer. In addition, the environment provides a
completely self-contained world for creating, debugging and
maintaining Interlisp programs.

This manual describes all three components of the Interlisp
system. There are discussions about the content and structure of
the language, about the pieces of the system that can be
incorporated into user programs, and about the environment.
The line between user code and the environment is thin and
changing. Maost users extend the environment with some special
features of their own. Because Interlisp is so easily extended, the
system has grown over time to incorporate many different ideas
about effective and useful ways to program. This gradual
accumulation over many years has resulted in a rich and diverse
system. Thatis the reason this manual is so large.

Whereas the rest of this manual describes the individual pieces of
the Interlisp system, this chapter attempts to describe the whole
system---language, environment, tools, and the otherwise
unstated philosophies that tie it all together. It is intended to
give a global view of Interlisp to readers approaching it for the
first time.

1.1 Interlisp as a Programming Language

This manual does not contain an introduction to programmingin
Lisp. In this section, we simply highlight a few key points about
Lisp on which much of the later material depends.

INTRODUCTION 11

INTERLISP AS A PROGRAMMING LANGUAGE

The Lisp family of languages shares a common structure in which
large programs (or functions) are built up by composing the
results of smaller ones. Although Interlisp, like most modern
Lisps, allows programming in almost any style one can imagine,
the natural style of Lisp is functional and recursive, in that each
function computes its result by selecting from or building upon
the values given to it and then passing that result back to its
caller (rather than by producing "side-effects” on externat data
structures, for example). A great many applications can be
written in Lisp in this purely functional style, which is
encouraged by the simplicity with which Lisp functions can be
composed together.

Lisp is also a list-manipulation language. The essential primitive
data objects of any Lisp are "atoms" (symbols or identifiers) and
"lists" (sequences of atoms or lists), rather than the “characters”
or "numbers” of more conventional programming languages
(although these are also present in all modern Lisps). Each Lisp
dialect has a set of operations that act on atoms and lists, and
these operations comprise the core of the language.

Invisible in the programs, but essential to the Lisp style of
programming, is an automatic memory management system (an
"allocator” and a "garbage collector”). Allocation of new
storage occurs automatically whenever a new data object is
created. Conversely, that storage is automatically reclaimed for
reuse when no other object makes reference to it. Automatic
allocation and deallocation of memory is essential for rapid,
large scale program development because it frees the
programmer from the task of maintaining the details of memory
administration, which change. constantly during rapid program
evolution.

A key property of Lisp is that it can represent Lisp function
definitions as pieces of Lisp list data. Each subfunction “call” (or
function application) is written as a list in which the function is
written first, followed by its arguments. Thus, (PLUS 1 2) is a list
structure representation of the expression 1 + 2. Each program
can be written as a list of such function applications. This
representation of program as data allows one to apply the same
operations to programs that one uses to manipulate data, which
makes it very straightforward to write Lisp programs which look
at and change other Lisp programs. This, in turn, makes it easy to
develop programming tools and translators, which was essential
in enabling the development of the Interlisp-environment.

One result of this ability to have one program examine anotheris
that one can extend the Lisp programming language itseif. |If
some desired programming idiom is not supported, it can be
added simply by defining a function that translates the desired
expression into simpler Lisp. Interlisp provides extensive facilities
for users to make this type of language extension. Using this

INTRODUCTION

INTERLISP AS A PROGRAMMING LANGUAGE

ability to extend itself, Interlisp has incorporated many of the
constructs that have been developed in other modern
programming languages (e.g. if-then-else, do loops, etc.).

1.2 Interlisp as an Interactive Environment

Interlisp programs should not be thought of as autonomous,
external files of source code. All Interlisp programming takes
place within the Interlisp environment, which is a completely
self-sufficient environment for developing and using Interlisp
programs. Not only does the environment contain the obvious
programming facilities (e.g.,, program editors, compilers,
debuggers, etc.), but it also contains a variety of tools which
assist the user by "keeping track” of what happens, so the user
doesn't have to. For example, the Interlisp file package notices
when programs or data have been changed, so that the system
will know what needs to be saved at the end of the session. The
"residential" style, where one stays within the environment
throughout the development, from initial program definition
through final debugging, is essential for these tools to operate.
Furthermore, this same environment is available to support the
final production version, some parts providing run time support
and other parts being ignored until the need arises for further
debugging or development.

For terminal interaction with the user, Interlisp provides a top
level "Read-Eval-Print" executive, which reads whatever the user
types in, evaluates it, and prints the result. (This interaction is
also recorded by the programmer's assistant, described below, so
the user can ask to do an action again, or even to undo the
effects of a previous action) Although each interactive
executive defines a few specialized commands, most of the
interaction will consist of simple evaluations of ordinary Lisp
expressions. Thus, instead of specialized terminal commands for
operations like manipulating the user's files, actions like this are
carried out simply by typing the same expressions that one
would use to accomplish them inside a Lisp program. This
creates a very rich, simple and uniform set of interactive
commands, since any Lisp expression can be typed at a command
executive and evaluated immediately.

In- normal use, one writes a program (or rather, "defines a
function") simply by typing in an expression that invokes the
“function defining” function (DEFINEQ), giving it the name of
the function being defined and its new definition. The newly
defined function can be executed immediately, simply by using it
in a Lisp expression. Although most Interlisp code is normally run
compiled (for reasons of efficiency), the initial versions of most

INTRODUCTION

INTERLISP AS AN INTERACTIVE ENVIRONMENT

List structure editor

Pretty-printer

Break Package

DWIM

Programmer’s Assistant

Masterscope

Record/Datatype Package

File Package

Performance Analysis

programs, and all of the user's terminal interactions, will be run
interpreted. Eventually, as a function gets larger or is used in
many places, it becomes more effective to compile it. Usually, by
that stage, the function has been stored on a file and the whole
file (which may contain many functions) is compiled at once.
DEFINEQ, the compiler (COMPILE), and the interpreter (EVAL),
are all themselves Lisp functions that use the ability to treat
other Lisp expressions and programs as data.

In addition to these basic programming tools, Interlisp also
provides a wide variety of programming support mechanisms:

Since Interlisp programs are represented as list structure, Interlisp
provides an editor which allows one to change the list structure
of a function's definition directly. See page 16.1

The pretty ‘printer is a function that prints Lisp function
definitions so that their syntactic structure is displayed by the
indentation and fonts used. See page 26.40.

When errors occur, the break package is called, allowing the user
to examine and modify the context at the point of the error.
Often, this enables execution to continue without starting over -
from the beginning. Within a break, the full power of Interlisp is
available to the user. Thus, the broken function can be edited,
data structures can be inspected and changed, other
computations carried out, and so on. All of this accurs in the
context of the suspended computation, which will remain
available to be resumed. See page 14.1.

The "Do What | Mean" package automatically fixes the user's
misspellings and errors in typing. See page 20.1.

Interlisp keeps track of the user's actions during a session and
allows each one to be replayed, undone, or altered. See page
13.1.

Masterscope is a program analysis and management too! which
can analyze users' functions and build (and automatically
maintain) a data base of the results. This allows the user to ask
questions like "WHO CALLS ARCTAN" or "WHO USES COEF1
FREELY" or to request systematic changes like "EDIT WHERE ANY
(function) FETCHES ANY FIELD OF (the data structure) FOO". See
page 19.1.

Interlisp allows a programmer to define new data structures.
This enables one to separate the issues of data access from the
details of how the data is actually stored. See page 8.1.

Files in Interlisp are managed by the system, removing the
problem of ensuring timely file updates from the user. The file
package can be modified and extended to accomodate new
types of data. See page 17.1.

These tools ailow statistics on program operation to be collected
and analyzed. See page 22.1.

INTRODUCTION

INTERLISP AS AN INTERACTIVE ENVIRONMENT

Multiple Processes

Windows

Inspector

These facilities are tightly integrated, so they know about and
use each other, just as they can be used by user programs. For
example, Masterscope uses the structural editor to make
systematic changes. By combining the program analysis features
of Masterscope with the features of the structural editor, large
scale system changes can be made with a single command. For
example, when the lowest-level interface of the Interlisp-D 110
system was changed to a new format, the entire edit was made
by a single call to Masterscope of the form EDIT WHERE ANY
CALLS '(BIN BOUT ..). [Burton et al, 1980] This caused
Masterscope to invoke the editor at each point in the system
where any of the functions in the list '(BIN BOUT ...) were called.
This ensured that no functions used in input or output were
overlooked during the modification.

The personal machine implementations of Interlisp, such as
Interlisp-D, provide some additional facilities, and interactive
graphic interfaces to some of the older Interlisp programming
tools:

Multiple and independent processes simplify problems which
require logically separate pieces of code to operate in parallel.
See page 23.1.

The ability to have multiple, independent windows on the
display allows many different processes or activities to be active
onthe screen at once. See page 28.2.

The inspector is a display tool for examining compliex data
structures encountered during debugging. See page 26.1.

Interlisp-D has embedded within it an entire operating system
written in Interlisp. For the most part, that is of no concern to
the user (although it is nice to know that one can write programs
of this complexity and performance within Interlisp!). However,
some of the facilities provided by this low level code allow the
use of Interlisp for applications that would previousiy have been
forced into a relatively impoverished system programming
environment. In particular, Interlisp-D provides complete
facilities for experimenting with distributed machines and
services on a local area network, plus access to all the services
that such networks provide (e.g., mail, printing, filing, etc.).

1.3 Interlisp Philosophy

The extensive environmental support that the Interlisp system
provides has developed over the years in order to support a
particular style of programming <called ‘“exploratory
programming” [Sheil, 1983]. For many complex programming
problems, the task of program creation is not simply one of

INTRODUCTION

1.5

INTERLISP PHILOSOPHY

writing a program to fulfill pre-identified specifications. Instead,
it is a matter of exploring the problem (trying out various
solutions expressed as partial programs) until one finds a good
solution (or sometimes, any solution at ail!). Such programs are
by their very nature evolutionary; they are transformed over
time from one realization into another in response to a growing
understanding of the problem. This point of view has tead to an
emphasis on having the tools available to analyze, alter, and test
programs easily. One important aspect of this is that the tools be
designed to work together in an integrated fashion, so that
knowledge about the user's programs, once gained, is available
throughout the environment.

The development of programming tools to support exploratory
programming is itself an exploration. No one knows all the tools
that will eventually be found useful, and not all programmers
want all of the tools to behave the same way. Inresponse to this
diversity, Interlisp has been shaped, by its implementors and by
its users, to be easily extensible in several different ways. First,
there are many places in the system where its behavior can be
adjusted by the user. One way that this can be done is by
changing the value of various "flags" or variables whose values
are examined by system code to enable or suppress certain
behavior. The other is where the user can provide functions or
other behavioral specifications of what is to happen in certain
contexts. For example, the format used for each type of list
structure when it is printed by the pretty-printer is determined
by specifications that are found on the list
PRETTYPRINTMACROS. Thus, this format can be changed for a
given type simply by putting a printing specification for it on
that list.

Another way in which users can effect Interlisp’s behavior is by
redefining or changing system functions. The "Advise"
capability, for instance, permits the user to modify the operation
of virtually any function in the system by wrapping user code
"around"” the selected function. (This same philosophy extends
to the break package and tracing, so almost any function in the
system can be broken or traced.) Experimentation is thus
encouraged and actively facilitated, which allows the user to find
useful pieces of the Interlisp system which can be configured to
assist with application development. Since the entire system is
implemented in Interlisp, there are extremely few piaces where
the system's behavior depends on anything that the user cannot
modify (such as a low level system implementation language).

While these techniques provide a fair amount of tailorability, the
price paid is that Interlisp presents an overall appearance of
complexity. There are many flags, parameters and controls that
affect the behavior one sees. Because of this complexity,
Interlisp tends to be more comfortable for experts, rather than
casual users. Beginning users of Interlisp should depend on the

INTRODUCTION

INTERLISP PHILOSOPHY

default settings of parameters until they learn what dimensions
of flexibility are available. At that point, they can begin to
“tune" the system to their preferences.

Appropriately enough, even Interlisp's underlying philosophy
was itself discovered during Interlisp’'s development, rather than
laid out beforehand. The Interlisp environment and its
interactive style were first analyzed in Sandewall's excellent
paper [Sandewall, 1978]. The notion of “exploratory
programming"” and the genesis of the Interlisp programming
tools in terms of the characteristic demands of this style of
programming was developed in [Sheil, 1983]. The evolution and
structure of the Interlisp programming environment are
discussed in greater depth in [Teitelman & Masinter, 1981].

1.4 How to Use this Manual

Lisp object notation:

Case issignificant:

This document is a reference manual, not a primer. We have
tried to provide a manual that is complete, and that allows users
to find particular items as easily as possible. Sometimes, these
goals have been achieved at the expense of simplicity. For
example, many functions have a number of arguments that are
rarely used. In the interest of providing a complete reference,
these arguments are fully explained, even though they would
normally be defaulted. There is a lot of information in this
manual that is only of interest to experts.

Users should not try to read straight through this manual, like a
novel. In general, the chapters are organized with overview
explanations and the most useful functions at the beginning of
the chapter, and implementation details towards the end. If you
are interested in becoming acquainted with Interlisp using this
manual, the best way would be to skim through the whole book,
reading the beginning of each chapter.

A few comments about the notational conventions used in this
manual:

All Interlisp objects in this manual are printed in the same font:
Functions (AND, PLUS, DEFINEQ, LOAD); Variables
(MAX.INTEGER, FILELST, DFNFLG); and arbitrary Interlisp
expressions: (PLUS 2 3), (PROG ((A 1)) ...), etc.

An important piece of information, often missed by newcomers
to Interlisp, is that upper and lower case is significant. The
variable FOO is not the same as the variable foo or the variable
Foo. By convention, most Interlisp system functions and
variables are all uppercase, but users are free to use upper and
lower case for their own functions and variables as they wish.

INTRODUCTION

HOW TO USE THIS MANUAL

(FOO BARBAZ —)

One exception to the case-significance rule is provided by the
Interlisp CLISP facility, which allows iterative statement operators
and record operations to be typed in either all uppercase or all
lowercase letters: (for X from 1 to 5 ...) is the same as (FOR X
FROM 1 TO 5 ...). The few situations where this is the case are
explicitty mentioned in the manual. Generally, one should
assume that case is significant.

This manual contains a large number of descriptions of
functions, variables, commands, etc, which are printed in the
following standard format:

[Function]

This is a description for the function named FOO. FOO has two
arguments, BAR and BAZ. Some system functions have extra
optional arguments that are not documented and should not be
used. These extra arguments are indicated by "—"

The descriptor [Function] indicates that this is a function, rather
than a [Variable], [Macro], etc. For function definitions only, this
can also indicate the "function type"” (see page 10.2): [NLambda
Function], [NoSpread Function], or [NLambda NoSpread
Function], which describes whether the function takes a fixed or
variable number of arguments, and whether the arguments are
evaluated or not. [Function] indicates a lambda spread function
(the most common function type).

1.5 References

[Burton, et al., 1980]

[Sandewall, 1978]

[Sheil, 1983]

[Sheil & Masinter, 1983]

[Teitelman & Masinter, 1981]

Burton, R. R, L. M. Masinter, A. Bell, D. G. Bobrow, W. S.
Haugeland, R.M. Kaplan and B.A. Sheil, "Interlisp-D: Overview
and Status" --- in [Sheil & Masinter, 1983].

Sandewall, Erik, "Programming in the Interactive Environmnet:
The LISP Experience” --- ACM Computing Surveys, vol 10, no 1, pp
35-72, (March 1978).

Sheil, B.A,, "Environments for Exploratory Programming" ---
Datamation, (February, 1983) --- also in [Sheil & Masinter, 1983].

Sheil, B.A. and L. M. Masinter, "Papers on Interlisp-D", Xerox
PARC Technical Report CIS-5 (Revised), (January, 1983).

Teitelman, W. and L. M. Masinter, "The Interlisp Programming
Environment"” --- Computer, vol 14, no 4, pp 25-34, (April 1981)
--- also in [Sheil & Masinter, 1983].

1.8

INTRODUCTION

TABLE OF CONTENTS

2. Litatoms 2.1
2.1. Using Litatoms as Variables 22
2.2. Function Definition Cells 25
2.3. Property Lists 25
2.4. Print Names 2.7
2.5. Characters and Character Codes 212

TABLE OFCONTENTS TOC.1

TABLE OF CONTENTS

[This page intentionally left blank]

TOC.2 TABLE OF CONTENTS

2. LITATOMS

A "litatom" (for "literal atom") is an object which conceptually
consists of a print name, a value, a function definition, and a
property list. In some Lisp dialects, litatoms are also known as
"symboils."

A litatom is read as any string of non-delimiting characters that
cannot be interpreted as a number. The syntatic characters that
delimit litatoms are called separator or break characters (see
page 25.33) and normally are space, end-of-line, line-feed, ((left
paren),) (right paren), " (double quote), [(left bracket), and]
(right bracket). However, any character may be included in a
litatom by preceding it with the character %. Here are some
examples of litatoms:

A wxyz 23SKIDDOO %] 3.1415+ 17

Long% Litatom% With% Embedded % Spaces

(LITATOM X) [Function]
Returns T if X is a litatom, NIL otherwise. Note that a number is
not alitatom.

(LITATOMNIL) =T.
(ATOM X) [Function]

Returns T if X is an atom (i.e. a litatom or a number); NIL
otherwise.

Warning: (ATOM X) is NIL if X is an array, string, etc. In many
dialects of Lisp, the function ATOM is defined equivalent to the
Interlisp function NLISTP.

(ATOMNIL) = T.

Litatoms are printed by PRINT and PRIN2 as a sequence of
characters with %'s inserted before all delimiting characters (so
that the litatom will read back in properly). Litatoms are printed
by PRIN1 as a sequence of characters without these extra %'s.
For example, the litatom consisting of the five characters A, B, C,
(, and D will be printed as ABC%(D by PRINT and ABC(D by PRIN1.

Litatoms can also be constructed by PACK, PACK*, SUBATOM,
MKATOM, and GENSYM (which uses MKATOM).

LITATOMS

2.1

LITATOMS

Litatoms are unique. In other words, if two litatoms print the
same, they will always be EQ. Note that this is not true for
strings, large integers, floating point numbers, and lists; they all
can print the same without being EQ. Thus if PACK or MKATOM
is given a list of characters corresponding to a litatom that
already exists, they return a pointer to that litatom, and do not
make a new litatom. Similarly, if the read program is given as
input a sequence of characters for which a litatom already exists,
it returns a pointer to that litatom. Note: Interlisp is different
from other Lisp dialects which allow "uninterned” litatoms.

Note: Litatoms are limited to 255 characters in Interlisp-D; 127
characters in Interlisp-10. Attempting to create a larger litatom
either via PACK or by typing one in (or reading from a file) will
cause an error, ATOM TOO LONG.

2.1

Using Litatoms as Variables

Litatoms are commonly used as variables. Each litatom has a
"top level" variable binding, which can be an arbitrary Interlisp
object. Litatoms may also be given special variabie bindings
within PROGs or function calls, which only exist for the duration
of the function. When a litatom is evaluated, the "current"
variable binding is returned. This is the most recent special
variable binding, or the top level binding if the litatom has not
been rebound. SETQ is used to change the current binding. For
more information on variable bindings in Interlisp, see page
11.1.

Note: The compiler (page 18.1) treats variables somewhat
differently than the interpreter, and the user has to be aware of
these differences when writing functions that will be compiled.
For example, variable references in compiled code are not
checked for NOBIND, so compiled code will not generate
unbound atom errors. In general, it is better to debug
interpreted code, before compiling it for speed. The compiler
offers some facilities to increase the efficiency of variable use in
compiled functions. Global variables (page 18.4) can be defined
so that the entire stack is not searched at each variable reference.
Local variables (page 18.5) allow compiled functions to access
variable bindings which are not on the stack, which reduces
variable conflicts, and also makes variable lookup faster.

By convention, a litatom whose top level binding is to the
litatom NOBIND is considered to have no top level binding. If a
litatom has no local variable bindings, and its top level value is
NOBIND, attempting to evaluate it will cause an unbound atom
error.

2.2

LITATOMS

USING LITATOMS AS VARIABLES !

(BOUNDP VAR)

The two litatoms T and NIL always evaluate to themselves.
Attempting to change the binding of T or NIL with the functions :
below will generate the error ATTEMPT TO SET T or ATTEMPTTO
SET NIL.

The following functions (except BOUNDP) will also generate the .
error ARG NOTLITATOM,, if not given a litatom.

[Function] :

(SET VAR VALUE)

Returns T if VAR has a special variable binding (even if bound to °
NOBIND), or if VAR has a top level value other than NOBIND; °
otherwise NIL. In other words, if X is a litatom, (EVAL X) will -
cause an UNBOUND ATOM error if and only if (BOUNDP X)
returns NIL.

[Function]

(SETQ VAR VALUE)

Sets the "current" variable binding of VAR to VALUE, and returns -
VALUE.

Note that SET is a normal lambda spread function, so both VAR |
and VALUE are evaluated before it is called. Thus, if the value of
X is B, and the value of Y is C, then (SET X Y) would result in B .
being setto C, and C being returned as the value of SET.

[NLambda NoSpread Function] °

(SETQQ VAR VALUE)

Nlambda version of SET; VAR is not evaluated, VALUE is. Thus if °
the value of X is B and the value of Y is C, (SETQ X Y) would result |
in X (not B) being set toC, and C being returned.

Note: Since SETQ is an nlambda, neither argument is evaluated -
during the calling process. However, SETQ itself calls EVAL on its
second argument. As a result, typing (SETQ VAR FORM) and
SETQ(VAR FORM) to the Interlisp executive is equivalent: in
both cases VAR is not evaluated, and FORM is.

[NLambda Function]

Like SETQ except that neither argument is evaluated, e.g.,
(SETQQ X (A B C)) sets X to (A B C).

(PSETQ VAR VALUE ... VARp VALUEY)) [Macro]

Does a multiple SETQ of VAR; (unevaluated) to the value of -
VALUE, VAR) to the value of VALUE), etc. All of the VALUE;
terms are evaluated before any of the assignments. Therefore,
(PSETQ A B B A) can be used to swap the values of the variables A
and B.

LITATOMS

2.3

USING LITATOMS AS VARIABLES

(GETTOPVAL VAR)

[Function]

(SETTOPVAL VAR VALUE)

Returns the top level value of VAR (even if NOBIND), regardless
of any intervening local bindings.

[Function]

(GETATOMVAL VAR)

Sets the top level value of VAR to VALUE, regardless of any
intervening bindings, and returns VALUE.

A major difference between various Interlisp implementations is
the way that variable bindings are implemented. Interlisp-10
and Interlisp-Jerico use what is called "shallow" binding.
Interlisp-D and Interlisp-VAX use what is cailed "deep” binding.

In a deep binding system, a variable is bound by saving on the
stack the variable's new value. When a variable is accessed, its
value is found by searching the stack for the most recent binding.
If the variable is not found on the stack, the top level binding is
retrieved from a "value cell" associated with the variable.

In a "shallow" binding system, a variable is bound by saving on
the stack the variable name and the variable's old value and
putting the new value in the variable's value cell. When a
variable is accessed, its value is always found in its value cell.

GETTOPVAL and SETTOPVAL are less efficient in a shallow
binding system, because they have to search the stack for
rebindings; it is more economical to simply rebind variables. Ina
deep binding system, GETTOPVAL and SETTOPVAL are very
efficient since they do not have to search the stack, but can
simply access the value cell directly.

GETATOMVAL and SETATOMVAL can be used to access a
variable's value cell, in either a shallow or deep binding system.

[Function]

(SETATOMVAL VAR VALUE)

Returns the value in the value cell of VAR. In a shallow binding
system, this is the same as (EVAL ATM), or simply VAR. in a deep
binding system, this is the same as (GETTOPVAL VAR).

[Function]

Sets the value cell of VAR to VALUE. In a shallow binding system,
this is the same as SET; in a deep binding system, this is the same
as SETTOPVAL.

2.4

LITATOMS

FUNCTION DEFINITION CELLS :

2.2

Function Definition Cells

Each litatom has a function definition cell, which is accessed
when a litatom is used as a function. The mechanism for
accessing and setting the function definition cell of a litatom is
described on page 10.9.

2.3

Property Lists

(GETPROP ATM PROP)

Each litatom has an associated property list, which allows a set of
named objects to be associated with the litatom. A property list
associates a name, known as a "property name" or "property", -
with an abitrary object, the "property value" or simply "value".
Sometimes the phrase “to store on the property X" is used,
meaning to place the indicated information on a property list
under the property name X.

Property names are usually litatoms or numbers, although no
checks are made. However, the standard property list functions
all use EQ to search for property names, so they may not work
with non-atomic property names. Note that the same object can
be used as both a property name and a property value.

Note: Many litatoms in the system already have property lists,
with properties used by the compiler, the break package, DWIM,
etc. Be careful not to clobber such system properties. The
variable SYSPROPS is a list of property names used by the system.

The functions below are used to manipulate the propert lists of
litatoms. Except when indicated, they generate the error ARG
NOTLITATOM, if given an object thatis not a litatom.

[Function]

(PUTPROP ATM PROP VAL)

Returns the property value for PROP from the property list of
ATM. Returns NIL if ATM is not a litatom, or PROP is not found.
Note that GETPROP also returns NIL if there is an occurrence of
PROP but the corresponding property value is NIL; this can be a
source of program errors.

Note: GETPROP used to be called GETP.

[Function]

Puts the property PROP with value VAL on the property list of
ATM. VAL replaces any previous value for the property PROP on
this property list. Returns VAL.

LITATOMS

2.5

PROPERTY LISTS

(ADDPROP ATM PROP NEW FLG) [Function]
: Adds the value NEW to the list which is the value of property
PROP on the property list of ATM. If FLG is T, NEW is CONSed
onto the front of the property value of PROP, otherwise it is
NCONCed on the end (using NCONC1). If ATM does not have a
property PROP, or the value is not a list, then the effect is the
same as (PUTPROP ATM PROP (LIST NEW)). ADDPROP returns the
(new) property value. Example:

« (PUTPROP 'POCKET ‘CONTENTS NIL)

NIL

« (ADDPROP 'POCKET 'CONTENTS 'COMB)
(coma)

« (ADDPROP 'POCKET 'CONTENTS "WALLET)
(COMB WALLET) ’

(REMPROP ATM PROP) [Function]
Removes all occurrences of the property PROP (and its value)
from the property list of ATM. Returns PROP if any were found,
otherwise NiL.

(REMPROPLIST ATM PROPS) [Function]
Removes all occurrences of all properties on the list PROPS (and

their corresponding property values) from the property list of
ATM. Returns NIL.

(CHANGEPROP X PROP1 PROP2) [Function]
Changes the property name of property PROP1 to PROP2 on the
property list of X, (but does not affect the value of the property).
Returns X, unless PROP1 is not found, in which case it returns NIL.

(PROPNAMES ATM) ’ [Function]
Returns a list of the property names on the property listof ATM.

(DEFLIST L PROP) [Function]
Used to put values under the same property name on the
property lists of several litatoms. L is a list of two-element lists.
The first element of each is a litatom, and the second element is
the property value for the property PROP. Returns NIL. For
example,

(DEFLIST '((FOO MA) (BAR CA) (BAZRI)) 'STATE)

puts MA on FOO's STATE property, CA on BAR's STATE property,
and Rl on BAZ's STATE property.

Property lists are conventionally implemented as lists of the form

(NAME | VALUE ; NAME VALUE; ...)

2.6 LITATOMS

PROPERTY LISTS ©

(GETPROPLIST ATM)

although the user can store anything as the property list of a -
litatom. However, the functions which manipulate property lists .
observe this convention by searching down the property lists two .
CDRs at a time. Most of these functions also generate an error, .
ARG NOT LITATOM, if given an argument which is not a litatom, :
so they cannot be used directly on lists. (LISTPUT, LISTPUT1, °
LISTGET, and LISTGET1 are functions similar to PUTPROP and .
GETPROP that work directly on lists. See page 3.16.) The
property lists of litatoms can be directly accessed with the
following functions:

{Function]

(SETPROPLIST ATM LST)

Returns the property list of ATM.

[Function]

(GETLIS X PROPS)

If ATM is a litatom, sets the property list of ATM to be LST, and
returns LST as its value.

[Function]

Searches the property list of X, and returns the property list as of -
the first property on PROPS that it finds. For example,

« (GETPROPLIST 'X)

(PROP1 APROP3BA ()

« (GETLIS 'X '(PROP2 PROP3))
(PROP3BACQ)

Returns NIL if no element on PROPS is found. X can also be a list
itself, in which case it is searched as described above. If Xisnota
litatom or a list, returns NIL. '

2.4 PrintNames

Each litatom has a print name, a string of characters that -
uniquely identifies that litatom. The term "print name"” has
been extended, however, to refer to the characters that are
output when any object is printed. In Interlisp, all objects have
print names, although only litatoms and strings have their print °
name explicitly stored. This section describes a set of functions
which can be used to access and manipulate the print names of
any object, though they are primarily used with the print names
of litatoms.

The print name of an object is those characters that are output
when the object is printed using PRIN1, e.g., the print name of
the litatom ABC%(D consists of the five characters ABC(D. The

LITATOMS

2.7

PRINT NAMES

(MKATOM X)

print name of the list (A B C) consists of the seven characters (A B
C) (two of the characters are spaces).

Sometimes we will have occasion to refer to a "PRIN2-name."
The PRIN2-name of an object is those characters output when
the object is printed using PRIN2. Thus the PRIN2-name of the
litatom ABC%(D is .the six characters ABC%(D. Note that the
PRIN2-name depends on what readtable is being used (see page
25.33), since this determines where %'s will be inserted. Many of
the functions below allow either print names or PRIN2-names to
be used, as specified by FLG and RDTBL arguments. If FLG is NIL,
print names are used. Otherwise, PRIN2-names are used,
computed with respect to the readtable RDTBL (or the current
readtable, if RDTBL = NIL). '

Note: The print name of an integer depends on the setting of
RADIX (page 25.13). The functions described in this section
(UNPACK, NCHARS, etc.) define the print name of an integer as
though the radix was 10, so that (PACK (UNPACK °'X9)) will
always be X9 (and not X11, if RADIX is set to 8). However,
integers will still be printed by PRIN1 using the current radix. The
user can force these functions to use print names in the current
radix by changing the setting of the variable PRXFLG (page
25.14).

[Function]

(SUBATOM X N M)

Creates and returns an atom whose print name is the same as
that of the string X or, if X isn't a string, the same as that of
(MKSTRING X). Examples:

(MKATOM'(ABCQC)) => %(A%.B% C%)
(MKATOM "1.5") a> 15

Note that the last example returns a number, not a litatom. Itis a
deeply-ingrained feature of Interlisp that no litatom can have
the print hame of a number.

[Function]

(PACK X)

Equivalent to (MKATOM (SUBSTRING X N M)), but does not
make a string pointer (see page 4.3). Returns an atom made
from the Nth through Mth characters of the print name of X. If N
or M are negative, they specify positions counting backwards
from the end of the print name. Examples:

(SUBATOM "FOO1.5BAR" 46) => 1.5
(SUBATOM'(ABC)2-2) => A% B%C

[Function]

If X is a list of atoms, PACK returns a single atom whose print
name is the concatenation of the print names of the atoms in X.

2.8

LITATOMS

PRINT NAMES

(PACK* X1 X5... XN)

If the concatenated print name is the same as that of a number,
PACK will return that number. For example,

(PACK '(A BC DEF G)) = > ABCDEFG
(PACK '(13.4)) => 13.4
(PACK'(1E-2)) => .01

Although X is usually a list of atoms, it can be a list of arbitrary °
Interlisp objects. The value of PACK is still a single atom whose
print name is the concatenation of the print names of all the .
elements of X, e.g.,

(PACK '((A B) "CD")) => %(A% B%)CD
If X is not alist or NIL, PACK generates an error, ILLEGAL ARG.

[NoSpread Function]

Nospread version of PACK that takes an arbitrary number of
arguments, instead of alist. Examples:,

(PACK*'A 'BC'DEF'G) = > ABCDEFG
(PACK*13.4) => 13.4

(UNPACK X FLG RDTBL) [Function] -
Returns the print name of X as a list of single-characters atoms,
e.g.,
(UNPACK 'ABC5D) => (ABC5D)
(UNPACK "ABC(D") = > (ABC %(D)
If FLG=T, the PRIN2-name of X is used (computed with respect to
RDTBL), e.q.,
(UNPACK "ABC(D"T) => (%" ABC%(D %")
(UNPACK 'ABC%(D"T) => (ABC %% %(D)
Note: (UNPACK X) performs N CONSes, where N is the number of -
charactersin the print name of X.

(DUNPACK X SCRATCHLIST FLG RDTBL) [Function]
A destructive version of UNPACK that does not perform any -
CONSes but instead reuses the list SCRATCHLIST. |f the print
name is too long to fit in SCRATCHLIST, DUNPACK will extend it. -
If SCRATCHLIST is not a list, DUNPACK returns (UNPACK X FLG
RDTBL).

(NCHARS X FLG RDTBL) [Function]

Returns the number of characters in the print name of X. If .
FLG =T, the PRIN2-name is used. For example,

(NCHARS ‘ABC) => 3

LITATOMS

2.9

PRINT NAMES

(NTHCHAR X N FLG RDTBL)

(NCHARS "ABC"T) => 5

Note: NCHARS works most efficiently on litatoms and strings,
but can be given any object.

[Function]

(L-CASE X FLG)

Returns the Nth character of the print name of X as an atom. N
can be negative, in which case it counts from the end of the print
name, e.g., -1 refers to the last character, -2 next to last, etc. If N
is greater than the number of characters in the print name, or
less than minus that number, or 0, NTHCHAR returns NIL.
Examples:

(NTHCHAR'ABC2) => B
(NTHCHAR15.62) => 5
(NTHCHAR'ABC%(D -3T) => %%
(NTHCHAR"ABC"2) => B
(NTHCHAR "ABC" 2T) => A

Note: NTHCHAR and NCHARS work much faster on objects that
actually have an internal representation of their print name, i.e.,
litatoms and strings, than they do on numbers and lists, as they
do not have tosimulate printing.

[Function]

Returns a lower case version of X. If FLG is T, the first letter is
capitalized. If Xis a string, the value of L-CASE is also a string. If
X is a list, L-CASE returns a new list in which L-CASE is computed
for each corresponding element and non-NiL tail of the original
list. Examples:

(L-CASE 'FOQ) = > foo
(L-CASE'FOOT) = > Foo
(L-CASE "FILE NOT FOUND" T) = > "File not found"

(L-CASE '(JANUARY FEBRUARY (MARCH "APRIL")) T)
= > '(January February (March "April"))

(U-CASE X) [Function]
Similar to L-CASE, except returns the upper case version of X.

(U-CASEP X) [Function]
Returns Tif X contains no lower case letters; NIL otherwise.

(GENSYM PREFIX — — — —) [Function]

Returns a litatom of the form Xnnnn, where X =PREFIX (or A if
PREFIX is NIL) and nnnn is an integer. Thus, the first one

LITATOMS

PRINT NAMES

GENNUM

generated is A0001, the second A0002, etc. The integer suffix is
always at least four characters long, but it can grow beyond that.
For example, the next litatom produced after A9999 would be
A10000. GENSYM provides a way of generating litatoms for
various uses within the system.

[Variable]

(MAPATOMS FN)

The value of GENNUM, initially 0, determines the next GENSYM,
e.g., if GENNUM is set to 23, (GENSYM) = A0024.

The term “gensym" is used to indicate a litatom that was
produced by the function GENSYM. Litatoms generated by
GENSYM are the same as any other litatoms: they have property -
lists, and can be given function definitions. Note that the
litatoms are not guaranteed to be new. For example, if the user
has previously created A0012, either by typing it in, or via PACK
or GENSYM itself, then if GENNUM is set to 11, the next litatom
returned by GENSYM will be the A0012 already in existence.

[Function]

Applies FN (a function or lambda expression) to every litatom in
the system. Returns NIL

For example,

(MAPATOMS (FUNCTION (LAMBDA(X)
(if (GETD X) then (PRINT X)]

will print every litatom with a function definition.

Note: In some implementations of Interlisp, unused litatoms
may be garbage collected, which can effect the action of
MAPATOMS.

(APROPOS STRING ALLFLG QUIETFLG OUTPUT) [Function]

APROPOS scans all litatoms in the system for those which have
STRING as a substring and prints them on the terminal along
with a line for each relevant item defined for each selected atom.
Relevant items are (1) function definitions, for which only the
arglist is printed, (2) dynamic variable values, and (3) non-null
property lists. PRINTLEVEL (page 25.11) is set to (3 . 5) when
APROPOS is printing.

If ALLFLG is NIL, then atoms with no relevant items and
“internal” atoms are omitted ("internal” currently means those
litatoms whose print name begins with a \ or those litatoms
produced by GENSYM). If ALLFLG is a function (i.e., (FNTYP
ALLFLG) is non-NIL), then it is used as a predicate on atoms
selected by the substring match, with value NIL meaning to omit
the atom. If ALLFLG is any other non-NIL value, then no atoms
are omitted.

LITATOMS

2.1

PRINT NAMES

If QUIETFLG is non-NIL, then no printing at all is done, but
instead alist of the selected atoms is returned.

If QUTPUT is non-NIL, the printing will be directed to OUTPUT
(which should be a stream open for output) instead of to the
terminal stream.

2.5 Characters and Character Codes

Characters may be represented in two ways: as single-character
atoms, or as integer character codes. In many situations, it is
more efficient to use character codes, so Interlisp provides
parallel functions for both representations.

Interlisp-D uses the 16-bit NS character set, described in the
document Character Code Standard [Xerox System Integration
Standards, XSIS 058404, April 1984]. Legal character codes range
from 0 to 65535. The NS (Network Systems) character encoding
encompasses a much wider set of available characters than the
8-bit character standards (such as ASCIl), including characters
comprising many foreign alphabets and special symbols. For
instance, interlisp-D supports the display and printing of the
following:

Le systeme d'information Xerox 11xx est remarquablement
polyglotte.

Das Xerox 11xx Kommunikationssystem bietet merkwurdige
multilinguale Nutzmoglichkeiten.

M e Jlw] & VYvwithRwv: M E [v]

These characters can be used in strings, litatom print names,
symbolic files, or anywhere else 8-bit characters could be used.
All of the standard string and print name functions (RPLSTRING,
GNC, NCHARS, STRPOS, etc) accept litatoms and strings
containing NS characters. For example:

«(STRPOS "char" "this is an 8-bit character string")

18

«(STRPOS "char" "celui-ci comporte des charactéres NS")
23)

In almost all cases, a program does not have to distinguish
between NS characters or 8-bit characters. The exception to this
rule is the handling of input/output operations (see page 25.22).

The function CHARCODE (page 2.13) provides a simple way to
create individual NS characters codes. The VirtualKeyboards
library package provides a set of virtual keyboards that allow
keyboard or mouse entry of NS characters.

LITATOMS

CHARACTERS AND CHARACTER CODES

(PACKC X)

[Function]

(CHCON X FLG RDTBL)

Similar to PACK except X is a list of character codes. For example,
(PACKC'(707979)) => FOO

[Function]

Like UNPACK, except returns the print name of X as a list of
character codes. If FLG=T, the PRIN2-name is used. For example,

(CHCON 'FOO) => (7079 79)

(DCHCON X SCRATCHLIST FLG RDTBL) ' [Function]

Similar to DUNPACK.

(NTHCHARCODE X N FLG RDTBL) [Function]

(CHCON1 X)

Similar to NTHCHAR, except returns the character code of the
Nth character of the print name of X. If N is negative, it is
interpreted as a count backwards from the end of X. If the
absolute value of Nis greater than the number of charactersin X,
or 0, then the value of NTHCHARCODE is NIL.

If FLG is T, then the PRIN2-name of X is used, computed with ~
respect to the readtable RDTBL

[Function]

(CHARACTERN)

Returns the character code of the first character of the print .
name of X; equal to(NTHCHARCODE X 1).

[Function]

(FCHARACTER N)

N is a character code. Returns the atom having the
corresponding single character as its print name.

(CHARACTER 70) => F

[Function]

(CHARCODE CHAR)

Fast version of CHARACTER that compiles open.

The foilowing function makes it possible to gain the efficiency
that comes from dealing with character codes without losing the
symbolic advantages of character atoms:

[NLambda Function]

Returns the character code specified by CHAR (unevaluated). If
CHAR is a one-character atom or string, the corresponding
character code is simply returned. Thus, (CHARCODE A) is 65,
(CHARCODE 0) is 48. If CHAR is a multi-character litatom or
string, it specifies a character code as described below. If CHAR is
NIL, CHARCODE simply returns NIL. Finally, if CHAR is a list

LITATOMS

2.13

CHARACTERS AND CHARACTER CODES

CR, SPACE, etc.

CHARSET,CHARNUM
CHARSET-CHARNUM

T CHARSPEC (control chars)

#CHARSPEC (meta chars)

structure, the value is a copy of CHAR with all the leaves replaced
by the corresponding character codes. For instance, (CHARCODE
(A(BCQ)) => (65(6667)).

If a character is specified by a multi-character litatom or string,
CHARCODE interprets it as follows:

The variable CHARACTERNAMES contains an association list
mapping special litatoms to character codes. Among the
characters defined this way are CR (13), LF (10), SPACE or SP (32),
ESCAPE or ESC (27), BELL (7), BS (8), TAB (9), NULL (0), and DEL
(127). The litatom EOL maps into the appropriate End-Of-Line
character code in the different Interlisp implementations (31 in
Interlisp-10, 13 in Interlisp-D, 10 in Interlisp-VAX). Examples:

(CHARCODE SPACE) => 32
(CHARCODE CR) => 13

if the character specification is a litatom or string of the form
CHARSET,CHARNUM or CHARSET-CHARNUM, the character code
for the character number CHARNUM in the character set
CHARSET is returned.

The 16-bit NS character encoding is divided into a large number
of "character sets.” Each 16-bit character can be decoded into a
character set (an integer from 0 to 254 inclusive) and a character
number (also an integer from 0 to 254 inclusive). CHARSET is
either an octal number, or a litatom in the association list
CHARACTERSETNAMES (which defines the character sets for
GREEK, CYRILLIC, etc.).

CHARNUM is either an octal number, a single-character litatom,
or a litatom from the association list CHARACTERNAMES. Note
that if CHARNUM is a single-digit number, it is interpreted as the
character "2", rather than as the octal number 2. Examples:

(CHARCODE 12,6) = > 2566
(CHARCODE 12,SPACE) = > 2592
(CHARCODE GREEK,A) => 9793

If the character specification is a litatom or string of one of the
forms above, preceeded by the character 1", this indicates a
"control character,” derived from the normal character code by
clearing the seventh bit of the character code (normally set).
Examples:

(CHARCODE 1 A) => 1
(CHARCODE 1 GREEK,A) => 9729

If the character specification is a litatom or string of one of the
forms above, preceeded by the character "#", this indicates a
“"meta character," derived from the normal character code by

LITATOMS

CHARACTERS AND CHARACTER CODES .

setting the eighth bit of the character code (normally cleared).
T and # can both be set at once. Examples:

(CHARCODE #A) => 193
(CHARCODE # 1 GREEK,A) = > 9857

A CHARCODE form can be used wherever a structure of character
codes would be appropriate. For example:

(FMEMB (NTHCHARCODE X 1) (CHARCODE (CR LF SPACE T A)))
(EQ (READCCODE FOO) (CHARCODE GREEK,A))

There is a macro for CHARCODE which causes the character-code
structure to be constructed at compile-time. Thus, the compiled
code for these examples is exactly as efficient as the less
readable:

(FMEMB (NTHCHARCODE X 1) (QUOTE(13 1032 1)))
(EQ (READCCODE FO0) 9793)

(SELCHARQ E CLAUSE ... CLAUSE N DEFAULT) [Macro]

Similar to SELECTQ (page 9.6), except that the selection keys are
determined by applying CHARCODE (instead of QUOTE) to the
key-expressions. |f the value of £ is a character code or NIL and it
is EQ or MEMB to the result of applying CHARCODE to the first
element of a dause, the remaining forms of that clause are
evaluated. Otherwise, the default is evaluated.

Thus

(SELCHARQ (BIN FOO)
((SPACE TAB) (FUM))
((1 D NIL) (BAR))
(a(BAZ))

(z1P))

is exactly equivalent to

(SELECTQ (BIN FOO)
((329) (FuMm))
((4 NIL) (BARY))
(97 (BAZ))
(z1P))

Furthermore, SELCHARQ has a macro definition such that it
always compiles as an equivalent SELECTQ.

LITATOMS

CHARACTERS AND CHARACTER CODES

[This page intentionally left blank]

2.16 LITATOMS

TABLE OF CONTENTS

3. Lists 3.1

3.1. Creating Lists 34
3.2. Building Lists From Left to Right 36
3.3. Copying Lists 38
3.4. Extracting Tails of Lists 39
3.5. Counting List Cells 3.10
3.6. Logical Operations 3.1
3.7. Searching Lists 3.12
3.8. Substitution Functions 3.13
3.9. Association Lists and Property Lists 3.15
3.10. Sorting Lists 3.17
3.11. Other List Functions 3.19

TABLE OF CONTENTS TOC.

TABLE OF CONTENTS

[This page intentionally left blank]

TOC.2 TABLE OF CONTENTS

(CONS X Y)

3. LISTS

One of the most useful datatypes in Interlisp is the list cell, a data
structure which contains pointers to two other objects, known as -
the CAR and the CDR of the list cell (after the accessing
functions). Very complicated structures can be built out of list
cells, including lattices and trees, but list cells are most frequently
used for representing simple linear lists of objects.

The following functions are used to manipulate list cells:

[Function]

(LISTP X)

CONS is the primary list construction function. It creates and
returns a new list cell containing pointers to X and Y. If Yis a list,
this returns a list with X added at the beginning of Y.

[Function]

(NLISTP X)

Returns X if X is a list cell, e.g., something created by CONS; NIL
otherwise.

(LISTP NIL) = NIL.

[Function]

(CAR X)

(NOT (LISTP X)). Returns Tif X is not a list cell, NIL otherwise.
(NLISTPNIL) = T.

[Function]

(CDR X)

Returns the first element of the list X. CAR of NIL is always NIL.
For all other nonlists (e.g., litatoms, numbers, strings, arrays), the
value returned is controlled by CAR/CDRERR (below).

[Function]

CAR/CDRERR

Returns all but the first element of the list X. CDR of NIL is always
NIL. The value of CDR for other nonlists is controlled by
CAR/CDRERR (below).

[Variable]

The variable CAR/CDRERR controls the behavior of CAR and CDR
when they are passed non-lists (other than NIL).

If CAR/CDRERR = NIL (the current default), then CAR or CDR of a
non-list (other than NIL) return the string "{car of non-list}" or

LISTS

3

LISTS

(RPLACD X Y)

"{cdr of non-list}". If CAR/CDRERR =T, then CAR and CDR of a
non-list (other than NIL) causes an error.

If CAR/CDRERR = ONCE, then CAR or CDR of a string causes an
error, but CAR or CDR of anything else returns the string " {car of
non-list}” or "{cdr of non-list}" as above. This catches loops
which repeatedly take CAR or CDR of an object, but it allows
one-time errors to pass undetected.

I1f CAR/CDRERR = CDR, then CAR of a non-list returns "{car of
non-list}" as above, but CDR of a non-list causes an error. This
setting is based on the observation that nearly all infinite loops
involving non-lists occur from taking CDRs, but a fair amount of
careless code takes CAR of something it has not tested to be a list

Often, combinations of the CAR and CDR functions are used to
extract various components of complex list structures. Functions
of the form C...R may be used for some of these combinations:

(CAAR X) = = > (CAR(CAR X))
(CADR X) = = > (CAR(CDR X))
(CODDDR X) = = > (CDR (CDR (CDR (CDR X))))

All 30 combinations of nested CARs and CDRs up to 4 deep are
included in the system.

[Function]

(RPLACA X Y)

Replaces the CDR of the list cell X with Y. This physically changes
the internal structure of X, as opposed to CONS, which creates a
new list cell. It is possible to construct a circular list by using
RPLACD to place a pointer to the beginning of a list in a spot at
the end of the list.

The value of RPLACD is X. An attempt to RPLACD NIL will cause
an error, ATTEMPT TO RPLAC NIL (except for (RPLACD NIL NIL)).
An attempt to RPLACD any other non-list will cause an error,
ARG NOT LIST.

[Function]

(RPLNODE X A D)

Similar to RPLACD, but replaces the CAR of X with Y. The value
of RPLACA is X. An attempt to RPLACA NIL will cause an error,
ATTEMPT TO RPLAC NIL, (except for (RPLACA NIL NIL)). An
attempt to RPLACA any other non-list will cause an error, ARG
NOT LIST.

[Function]

Performs (RPLACA X A), (RPLACD X D), and returns X.

3.2

LISTS

LISTS

(RPLNODE2 X Y) [Function]
Performs (RPLACA X (CAR Y)), (RPLACD X (CDR Y)) and returns X.
(FRPLACD X Y) [Function]
(FRPLACA X Y) [Function]
(FRPLNODE X A D) [Function]
(FRPLNODE2 X Y) [Function]

Faster versions of RPLACD, etc.

Usually, single list cells are not manipulated in isolation, but in
structures known as "lists". By convention, a list is represented
by a list cell whose CAR is the first element of the list, and whose
CDR is the rest of the list (usually another list cell or the "empty
list,” NIL). List elements may be any Interlisp objects, including
other lists.

The input syntax for a list is a sequence of Interlisp data objects
(litatoms, numbers, other lists, etc.) enclosed in parentheses or
brackets. Note that () is read as the litatom NIL. A right bracket
can be used to match all left parenthesis back to the last left
bracket, or terminate the lists, e.g. (A (B (C].

If there are two or more elements in a list, the final element can
be preceded by a period delimited on both sides, indicating that
CDR of the final list cell in the list is to be the element
immediately following the period, e.g. (A . B) or (A B C . D),
otherwise CDR of the last list cell in a list will be NIL. Note that a
list does not have to end in NIL. Itissimply a structure composed
of one or more list cells. The input sequence (A B C . NIL) is
equivalent to (A B C), and (A B . (C D)) is equivalent to (A B C D).
Note however that (A B . C D) will create a list containing the five
litatoms A, B, %., C, and D.

Lists are printed by printing a left parenthesis, and then printing
the first element of the list, then printing a space, then printing
the second element, etc. until the final list cell is reached. The
individual elements of a list are printed by PRIN1 if the list is
being printed by PRIN1, and by PRIN2 if the list is being printed
by PRINT or PRIN2. Lists are considered to terminate when CDR
of some node is not a list. If CDR of this terminal node is NIL (the
usual case), CAR of the terminal node is printed followed by a
right parenthesis. If CDR of the terminal node is not NiIL, CAR of
the terminal node is printed, followed by a space, a period,
another space, CDR of the terminal node, and then the right
parenthesis. Note that alistinput as (A B C. NIL) will print as (A B
C), and a list input as (A B . (C D)) will print as (A B C D). Note also

LISTS

33

LISTS

that PRINTLEVEL affects the printing of lists (page 25.11), and
that carriage returns may be inserted where dictated by
LINELENGTH (page 25.11).

Note: One must be careful when testing the equality of list
structures. EQ will be true only when the two lists are the exact
same list. For example,

«—(SETQA'(12))
(12)

«—(SETQB A)
(12)

«—(EQAB)

T
«—(SETQC'(12))
(12)

—(EQACQ)

NIL
«—(EQUALACQ)
T

in the example above, the values of A and B are the exact same
list, so they are EQ. However, the value of Cis a totally different
list, although it happens to have the same elements. EQUAL
should be used to compare the elements of two lists. In general,
one should notice whether list manipulation functions use EQ or
EQUAL for comparing lists. Thisis a frequent source of errors.

Interlisp provides an extensive set of list manipulation functions,
described in the following sections.

3.1 Creating Lists

(MKLIST X)

{Function]

(LISTX¢ X3 ... Xp)

“"Make List." If X is a list or NIL, returns X; Otherwise, returns
(LIST X).

{NoSpread Function]

(LIST* X1X5... XN)

Returns a list of its arguments, e.g.
(LIST'A'B'(CD)) => (AB(CD))

[NoSpread Function]

Returns a list of its arguments, using the last argument for the
tail of the list. This is like an iterated CONS: (LIST*FABC) = =
(CONS A (CONS B C)). For example,

(LIST*'A'B'C) => (AB.Q)

3.4

LISTS

CREATING LISTS

(APPEND X; X5 ... Xp)

(LIST*'A'B'(CD)) => (ABCD)

[NoSpread Function]

(NCONC X1X5.. XN)

Copies the top level of the list X7 and appends this to a copy of
the top level of the list X, appended to ... appended to Xy, e.g.,

(APPEND '(AB)(CDE)'(FG)) => (ABCDEFG)

Note that only the first N-1 lists are copied. However N=1 is |
treated specially; (APPEND X) copies the top level of a single list.
To copy a list to all levels, use COPY.

The following examples illustrate the treatment of non-lists:
(APPEND'(ABC)'D) => (ABC.D)

(APPEN(-J ‘A'(BCD)) => (BCD)

(APPEND (ABC.D)'(EFG)) => (ABCEFQG)

(APPEND (ABC.D)) => (ABC.D)

[NoSpread Function]

(NCONC1 LST X)

Returns the same value as APPEND, but actually modifies the list
structure of X7 ... X ;.

Note that NCONC cannot change NIL to a list:

«—(SETQ FOO NiIL)

NIL
«—{NCONCFOO'(ABCQ))
(ABC)

«F0O

NIL

Although the value of the NCONC is (A B C), FOO has not been
changed. The "problem" is that while it is possible to alter list
structure with RPLACA and RPLACD, there is no way to change
the non-list NIL to a list.

[Function]

(ATTACH X L)

(NCONC LST(LIST X))

{[Function] -

“Attaches" X to the front of L by doing a RPLACA and RPLACD.
The value is EQUAL to (CONS X L), but EQto L, which it physically
changes (except if L is NIL). (ATTACH X NIL) is the same as (CONS
X NIL). Otherwise, if L is not a list, an error is generated, ARG
NOT LIST.

LISTS

35

BUILDING LISTS FROM LEFT TORIGHT

3.2

Building Lists From Left to Right

(TCONCPTR X)

[Function]

(LCONC PTR X)

TCONC is similar to NCONC1; it is useful for building a list by
adding elements one at a time at the end. Unlike NCONC1,
TCONC does not have to search to the end of the list each time it
is called. Instead, it keeps a pointer to the end of the list being
assembled, and updates this pointer after each call. This can be
considerably faster for long lists. The costis an extra list cell, PTR.
(CAR PTR) is the list being assembled, (CDR PTR) is (LAST (CAR
PTR)). TCONC returns PTR, with its CAR and CDR appropriately
modified.

PTR can be initialized in two ways. If PTR is NIL, TCONC will
create and return a PTR. In this case, the program must set some
variable to the value of the first call to TCONC. After that, it is
unnecessary to reset the variable, since TCONC physically
changes its value. Example:

—(SETQ FOO (TCONCNIL 1))

(mn

«(for | from2to5do (TCONCFOOI))
NIL

«FOO

((12345)5)

If PTR is initially (NIL), the value of TCONC is the same as for
PTR=NIL. but TCONC changes PTR. This method allows the
program to initialize the TCONC variable before adding any
elements to the list. Example:

«(SETQ FOO (CONS))

(NIL)

«(for | from 1 to 5do (TCONCFOQO1))
NIL

«—FO0

((12345)5)

[Function]

Where TCONC s used to add elements at the end of a list, LCONC
is used for building a list by adding lists at the end, i.e., it is
similar to NCONCinstead of NCONC1. Example:

«(SETQ FOO (CONS))
(NIL)
«—(LCONCF00'(12))
((12)2)
«(LCONCF00'(345))
((12345)5)
«(LCONCFOO NiL)
((12345)5)

36

LISTS

BUILDING LISTS FROM LEFTTORIGHT !

LCONC uses the same pointer conventions as TCONC for
eliminating searching to the end of the list, so that the same -
pointer can be given to TCONC and LCONC interchangeably.
Therefore, continuing from above,

«(TCONC FOO NiL)
((12.345NIL) NIL)
«(TCONCFOO'(345))
((12345NIL(345))(345))

The functions DOCOLLECT and ENDCOLLECT also permit building
up lists from left-to-right like TCONC, but without the overhead
of an extra list cell. The list being maintained is kept as a circular °
list. DOCOLLECT adds items; ENDCOLLECT replaces the tail with .
its second argument, and returns the full list.

(DOCOLLECT ITEM LST) [Function]
"Adds" ITEM to the end of LST. Returns the new circular list. .
Note that LST is modified, but it is not EQ to the new list. The |
new list should be stored and used as LST to the next call to .
DOCOLLECT.

(ENDCOLLECT LSTTAIL) [Function]

Takes LST, a list returned by DOCOLLECT, and returns it as a
non-circular list, adding TAIL as the terminating CDR.

Here is an example using DOCOLLECT and ENDCOLLECT. HPRINT .
is used to print the results because they are circular lists. Notice °
that FOO has to be set to the value of DOCOLLECT as each .
elementis added.

«—(SETQ FOO NiL]

NIL

«(HPRINT (SETQ FOO (DOCOLLECT 1 FOO]
1.1

—(HPRINT (SETQ FOO (DOCOLLECT 2 FOO]
1@21.01)

«—(HPRINT (SETQ FOO (DOCOLLECT 3 FOO]
1312.(1)

«(HPRINT (SETQ FOO (DOCOLLECT 4 FOO]
1(4123.(1}

«(SETQ FOO (ENDCOLLECT FOO 5]
(1234.5)

The following two functions are useful writing programs that
wish to reuse a scratch list to collect together some result (Both
of these compile open):

LISTS

3.7

BUILDING LISTS FROM LEFT TORIGHT

(SCRATCHLIST LST Xy X5 ... Xp) [NLambda NoSpread Function]

SCRATCHLIST sets up a context in which the value of LST is used
as a "scratch” list. The expressions X7, X, ... X are evaluated in
turn. During the course of evaluation, any value passed to
ADDTOSCRATCHLIST will be saved, reusing CONS celis from the
value of LST. If the value of LST is not long enough, new CONS
cells will be added onto its end. If the value of LST is NIL, the
entire value of SCRATCHLIST will be "new" (i.e. no CONS cells
will be reused).

(ADDTOSCRATCHLIST VALUE) [Function]

For use under calls to SCRATCHLIST. VALUE is added on to the
end of the value being collected by SCRATCHLIST. When
SCRATCHLIST returns, its value is a list containing all of the things
that ADDTOSCRATCHLIST has added.

3.3 Copying Lists

(cory Xx)

[Function]

(COPYALL X)

Creates and returns a copy of the list X. All levels of X are copied
down to non-lists, so that if X contains arrays and strings, the
copy of X will contain the same arrays and strings, not copies.
COPY is recursive in the CAR direction only, so very long lists can
be copied.

Note: To copy just the top level of X, do (APPEND X).

[Function]

(HCOPYALL X)

Like COPY except copies down to atoms. Arrays, hash-arrays,
strings, user data types, etc., are all copied. Analagous to
EQUALALL (page 9.3). Note that this will not work if given a data
structure with circular pointers; in this case, use HCOPYALL.

[Function]

Similar to COPYALL, except that it will work even if the data
structure contains circular pointers.

38

LISTS

EXTRACTING TAILS OF LISTS

3.4 Extracting Tails of Lists

(TAILP X Y) [Function]
Returns X, if X is a tail of the list Y; otherwise NIL. X is a tail of Y
ifitis EQto0or more CDRs of Y.
Note: If XisEQto 1 or more CDRs of Y, Xis called a "proper tail."
(NTH X N) [Function]
Returns the tail of X beginning with the Nth element. Returns
NIL if X has fewer than N elements. Examples:
(NTH'(ABCD)1) => (ABCD)
(NTH'(ABCD)3) => (CD)
(NTH'(ABCD)9) =>.NIL
(NTH'(A.B)2) => B
For consistency, if N=0, NTH returns (CONS NIL X):
(NTH'(AB)0) = > (NILAB)
(FNTH X N) [Function]
Faster version of NTH that terminates on a null-check.
(LAST X) [Function]
Returns the last list cell in the list X. Returns NIL if X is not a list.
Examples:
{(LAST'(ABC)) => (C)
(LAST'(AB.C)) => (B.Q)
(LAST'A) => NIL
(FLAST X) [Function]
Faster version of LAST that terminates on a null-check.
(NLEFT L NTAIL) [Function]

NLEFT returns the tail of L that contains N more elements than
TAIL. If L does not contain N more elements than TA/L, NLEFT
returns NIL. If TA/L is NIL or not a tail of L, NLEFT returns the last
N list cells in L. NLEFT can be used to work backwards through a
list. Example:

«(SETQFOO'(ABCDE))
(ABCDE)

«(NLEFTFOO 2)

(DE)

«(NLEFT FOO 1 (CDDR FOO))
(BCDE)

LISTS

39

EXTRACTING TAILS OF LISTS

(LASTN L N)

«(NLEFT FOO 3 (CDDR FOO))
NIL

[Function]

Returns (CONS X Y), where Y is the last N elements of L, and X is
the initial segment, e.g.,

(LASTN'(ABCDE)2) => ((ABC)DE)
(LASTN'(AB)2) => (NILAB)

Returns NIL if Lis not a list containing at least N elements.

3.5 Counting List Cells

(LENGTH X)

[Function]

(FLENGTH X)

Returns the length of the list X, where "length" is defined as the
number of CDRs required to reach a non-list. Examples: '

(LENGTH'(ABC)) => 3
(LENGTH'(ABC.D)) => 3
(LENGTH'A) => 0

[Function]

(EQLENGTH X N)

Faster version of LENGTH that terminates on a null-check.

[Function]

(COUNT X)

Equivalent to (EQUAL (LENGTH X) N), but more efficient, because
EQLENGTH stops as soon as it knows that X is longer than N.
Note that EQLENGTH is safe to use on (possibly) circular lists,
sinceitis "bounded” by N.

[Function]

Returns the number of list cells in the list X. Thus, COUNT is like a
LENGTH that goes to all levels. COUNT of a non-list is 0.
Examples:

(COUNT'(A)) => 1
(COUNT'(A.B)) => 1
(COUNT'(A(B)C)) => 4

In this last example, the value is 4 because the list (A X C) uses 3
list cells for any object X, and (B) uses another list cell.

3.10

LISTS

COUNTING LISTCELLS ~

{(COUNTDOWN X N) [Function]
Counts the number of list cells in X, decrementing N for each
one. Stops and returns N when it finishes counting, or when N
reaches 0. COUNTDOWN can be used on circular structures since
itis "bounded" by N. Examples:
{COUNTDOWN ‘(A) 100) => 99
(COUNTDOWN '(A.B) 100) => 99
(COUNTDOWN ‘(A (B) C) 100) = > 96
(COUNTDOWN (DOCOLLECT 1 NIL)100) => O

(EQUALN X Y DEPTH) [Function]

Similar to EQUAL, for use with (possibly) circular structures.
Whenever the depth of CAR recursion plus the depth of CDR
recursion exceeds DEPTH, EQUALN does not search further along
that chain, and returns the litatom ?. If recursion never exceeds
DEPTH, EQUALN returns T if the expressions X and Y are EQUAL;
otherwise NIL.

(EQUALN'(((A) B)'(((z) B) 2) = > ?
(EQUALN'(((A) B)'(((z)) B) 3) => NIL
(EQUALN'(((A)) B)(((A) B)3) => T

3.6 Logical Operations

(LDIFFERENCE X Y)

[Function] .

“List Difference.” Returns a list of those elements in X that are
not members of Y (using EQUAL to compare elements).

Note: If X and Y share no elements, LDIFFERENCE returns a copy -
of X.

(INTERSECTION X Y) [Function]
Returns a list whose elements are members of both lists X and Y .
(using EQUAL to compare elements).
Note that (INTERSECTION X X) gives a list of all members of X
without any duplications.

(UNION X Y) [Function]

Returns a (new) list consisting of all elements included on either _
of the two original lists (using EQUAL to compare elements). Itis
more efficient to make X be the shorter list.

LISTS

LOGICAL OPERATIONS

(LDIFF LST TAIL ADD)

The value of UNION is Y with ail elements of X not in Y CONSed
on the front of it. Therefore, if an element appears twice inY, it
will appear twice in (UNION X Y). Since (UNION '(A) '(A A)) = (A
A), while (UNION ‘(A A) '(A)) = (A), UNION is non-commutative.

[Function]

TAIL must be a tail of LST, i.e., EQ to the result of applying some
number of CDRs to LST. (LDIFF LST TAIL) returns a list of all
elementsin LST up to TAIL.

if ADD is not NIL, the value of LDIFF is effectively (NCONC ADD
(LDIFF LST TAIL)), i.e., the list difference is added at the end of
ADD.

If TAIL is not a tail of LST, LDIFF generates an error, LDIFF: NOT A
TAIL. LDIFF terminates on a null-check, so it will go into an
infinite loop if LST is a circular list and TAIL is not a tail.

Example:

—(SETQFOO'(ABCDEF))
(ABCDEF)

«—(CDDR FOO)

(CDEF)

«—(LDIFF FOO (CDDR FOO))
(A B)

«—(LDIFF FOO (CDDR FOO) '(1 2))
(12A8B)

—{LDIFFFOO '(CDEF))
LDIFF: not a tail

(CDEF)

Note that the value of LDIFF is always new list structure unless
TAIL = NIL, in which case the value is LST itself.

3.7 Searching Lists
(MEMB X Y) [Function]

Determines if X is a member of the list Y. If there is an element of
Y EQ to X, returns the tail of Y starting with that element.
Otherwise, returns NIL. Examples:
(MEMB'A'(A(W)CD)) => (A(W)CD)
(MEMB 'C'(A(W)CD)) => (CD)
(MEMB 'W'(A(W)CD)) => NIL
(MEMB ‘(W) ‘(A(W)CD)) => NIL

312 LISTS

SEARCHING LISTS .

(FMEMB X Y) [Function]
Faster version of MEMB that terminates on a null-check.

(MEMBER X Y) [Function]
ldentical to MEMB except that it uses EQUAL instead of EQ to .
check membership of Xin Y. Examples:

(MEMBER'C'(A(W)CD)) => (CD)
(MEMBER'W'(A(W)CD)) => NIL
(MEMBER (W) '(A(W)CD)) => ((W)CD)
(EQMEMB X Y) [Function]

Returns T if either X is EQ to Y, or else Y is a list and X is an
FMEMB of Y.

3.8 Substitution Functions

(SUBST NEW OLD EXPR)

[Function]

(DSUBST NEW OLD EXPR)

Returns the result of substituting NEW for all occurrences of OLD
in the expression EXPR. Substitution occurs whenever OLD is
EQUAL to CAR of some subexpression of EXPR, or when OLD is .
atomic and EQ to a non-NIL CDR of some subexpression of EXPR.
For example:

(SUBST'A'B'(CB(X.B))) => (CA(X.A))

(SUBST'A'(BC)'((BC)D B Q)
=> (ADBC) not (AD.A)

SUBST returns a copy of EXPR with the appropriate changes.
Furthermore, if NEW s a list, itis copied at each substitution.

[Function]

(LSUBST NEW OLD EXPR)

Similar to SUBST, except it does not copy EXPR, but changes the
list structure EXPR itself. Like SUBST, DSUBST substitutes with a
copy of NEW. More efficient than SUBST.

[Function]

Like SUBST except NEW is substituted as a segment of the list
EXPR rather than as an element. For instance,

(LSUBST'(AB)'Y'(XYZ) => (XAB2Z)

Note that if NEW is not a list, LSUBST returns a copy of EXPR with
all OLD's deleted:

(LSUBSTNIL'Y' (XY Z)) => (X2)

LISTS

SUBSTITUTION FUNCTIONS

(SUBLIS ALST EXPR FLG) [Function]

ALST s a list of pairs:

((OLD1 . NEW1) (OLDZ . NEWZ) (OLDN . NEWN))

Each OLD; is an atom. SUBLIS returns the result of substituting
each NEW; for the corresponding OLD;in EXPR, e.g.,
(SUBLIS'((A. X)(C.Y))'(ABCD)) => (XBYD)

If FLG = NIL, new structure is created only if needed, so if there
are no substitutions, the value is EQ to EXPR. If FLG =T, the value
is always a copy of EXPR.

(DSUBLIS ALST EXPR FLG) [Function]
Similar to SUBLIS, except it changes the list structure EXPR itself
instead of copying it.

(SUBPAIR OLD NEW EXPRFLG) [Function]

Similar to SUBLIS, except that elements of NEW are substituted
for corresponding atoms of OLD in EXPR, e.g.,

(SUBPAIR'(AC)'(XY)'(ABCD)) => (XBYD)

As with SUBLIS, new structure is created only if needed, or if
FLG=T,e.qg. if FLG=NIL and there are no substitutions, the value
is EQ to EXPR.

If OLD ends in an atom other than NIL, the rest of the elements
on NEW are substituted for that atom. For example, if OLD =(A B
.CQ)and NEW=(UV XY 2Z), Uissubstituted for A, VforB8,and (XY
Z) for C. Similarly, if OLD itself is an atom (other than NiL), the
entire list NEW is substituted for it. Examples:

(SUBPAIR'(AB.C)'(WXYZ)'(CABBY)) => ((YZ)WXXY)

Note that SUBST, DSUBST, and LSUBST all substitute copies of
the appropriate expression, whereas SUBLIS, and DSUBLIS, and
SUBPAIR substitute the identical structure (unless FLG=T). For
example:

«(SETQFOO ‘(A B))
(AB)

. «(SETQBAR'(X Y 2))

(Xv2)

« (DSUBLIS (LIST(CONS "X FOO)) BAR)
((AB)Y2)

« (DSUBLIS (LIST(CONS 'Y FOO)) BART)
((AB)(AB)2)

«(EQ(CARBAR) FOO)

T

«(EQ (CADR BAR) FOO)

NIL

3.14

LISTS

ASSOCIATION LISTS AND PROPERTY LISTS

3.9

Association Lists and Property Lists

(ASSOCKEY ALST)

A commonly-used data structure is one that associates an
arbitrary set of property names (NAME1, NAME2, etc.), with a set
of property values (VALUE1, VALUEZ2, etc.). Two list structures
commonly used to store such associations are called "property -
lists" and "association lists." Alistin "association list" formatisa
list where each element is a dotted pair whose CAR is a property
name, and whose CDR is the value:

((NAMET . VALUET) (NAME2 . VALUE2) ..))

A list in "property list" format is a list where the first, third, etc.
elements are the property names, and the second, forth, etc.
elements are the associated values:

(NAME1T VALUET NAME2 VALUE2 ...)

The functions below provide facilities for searching and
changing lists in property list or association list format.

Note: Property lists are contained within many Interlisp-D
system datatypes. There are special functions that can be used to
set and retrieve values from the property lists of litatoms (see
page 2.5), from properties of windows (see page 28.13), etc.

Note: = Another data structure that offers some of the
advantages of association lists and property lists is the hash array
data type (see page 6.1).

[Function]

(FASSOCKEY ALST)

ALST is a list of lists. ASSOC returns the first sublist of ALST
whose CAR is EQ to KEY. If such alistis not found, ASSOC returns
NIL. Example:

(ASSOC'B'((A.1)(B.2)(C.3))) => (B.2)

[Function]

(SASSOCKEY ALST)

Faster version of ASSOC that terminates on a null-check.

[Function]

(PUTASSOC KEY VAL ALST)

Same as ASSOC but uses EQUAL instead of EQ when searching
for KEY.

[Function]

Searches ALST for a sublist CAR of which is EQ to KEY. if one is
found, the CDR is replaced (using RPLACD) with VAL. If no such
sublist is found, (CONS KEY VAL) is added at the end of ALST.
Returns VAL. If ALST is not a list, generates an error, ARG NOT _
LIST.

LISTS

ASSOCIATION LISTS AND PROPERTY LISTS

Note that the argument order for ASSOC, PUTASSOC, etc. is
different from that of LISTGET, LISTPUT, etc.

(LISTGET LST PROP) [Function]
Searches LST two elements at a time, by CDDR, looking for an
element EQ to PROP. If one is found, returns the next element of
LST, otherwise NIL. Returns NIL if LSTis not a list. Example:
(LISTGET'(A1B2C3)'B) => 2
(LISTGET'(A1B2C3)'W) => NIL

(LISTPUT LST PROP VAL) [Function]

(LISTGET1 LST PROP)

Searches LST two elements at a time, by CDDR, looking for an
element EQ to PROP. If PROPis found, replaces the next element
of LST with VAL. Otherwise, PROP and VAL are added to the end
of LST. If LSTis a list with an odd number of elements, or ends in
a non-list other than NIL, PROP and VAL are added at its
beginning. Returns VAL. If LST is not a list, generates an error,
ARG NOT LIST.

[Function]

(LISTPUT1 LST PROP VAL)

Like LISTGET, but searches LST one CDR at a time, i.e., looks at
each element. Returns the next element after PROP. Examples:

(LISTGET1'(A1B2C3)'B) => 2
(LISTGET1'(A1B2C3)'1) => B
(LISTGET1'(A1B2C3)'W) a> NIL
Note: LISTGET1 used to be cailed GET.

[Function]

Like LISTPUT, except searches LST one CDR at a time. Returns the
modified LST. Example:

«—(SETQFQO0'(A18B2))
(A1B2)

«(LISTPUT1 FOO 'B 3)
(A1B3)

«—(LISTPUT1 FOO 'C4)
(A1B3C4)
«—(LISTPUT1 FOO 1'W)
(A1w3cCa)

«FOO

(A1W3Ca)

Note that if LST is not a list, no error is generated. However,
since a non-list cannot be changed into a list, LST is not modified.
In this case, the value of LISTPUT1 should be saved. Example:

«(SETQ FOO NiL)

LISTS

ASSOCIATION LISTS AND PROPERTY LISTS .

NIL

«—(LISTPUT1 FOO 'A 5)
(A5)

«F00

NIL

3.10 Sorting Lists

(SORT DATA COMPAREFN)

[Function]

(MERGE A B COMPAREFN)

DATA is a list of items to be sorted using COMPAREFN, a
predicate function of two arguments which can compare any
two items on DATA and return T if the first one belongs before
the second. If COMPAREFN is NIL, ALPHORDER is used; thus
(SORT DATA) will alphabetize a list. If COMPAREFN is T, CAR's of ~
items that are lists are given to ALPHORDER, otherwise the items
themselves; thus (SORT A-LIST T) will alphabetize an assoc list by
the CAR of each item. (SORT X 'ILESSP) will sort alist of integers.

The value of SORT is the sorted list. The sort is destructive and
uses no extra storage. The value returned is EQ to DATA but
elements have been switched around. Interrupting with control
D, E, or B may cause loss of data, but control H may be used at
any time, and SORT will break at a clean state from which 1 or
control characters are safe. The algorithm used by SORT is such
that the maximum number of compares is N*logoN, where N is

(LENGTH DATA).

Note: if (COMPAREFN A B) = (COMPAREFN B A), then the
ordering of A and B may or may not be preserved.

For example, if (FOO . FIE) appears before (FOO . FUM) in X,
(SORT X T) may or may not reverse the order of these two :

elements. Of course, the user can always specify a more precise
COMPAREFN.

[Function]

A and B are lists which have previously been sorted using SORT
and COMPAREFN. Value is a destructive merging of the two lists.
It does not matter which list is longer. After merging both A and
B are equal to the merged list. (In fact, (CDR A) is EQ to (CDR B)).
MERGE may be aborted after control-H.

(ALPHORDER A B CASEARRAY) [Function]

A predicate function of two arguments, for alphabetizing.
Returns a non-NIL value if its arguments are in lexicographic
order, i.e., if B does not belong before A. Numbers come before

LISTS

3.7

SORTING LISTS

literal atoms, and are ordered by magnitude (using GREATERP).
Literal atoms and strings are ordered by comparing the character
codes in their print names. Thus (ALPHORDER 23 123) is T,
whereas (ALPHORDER 'A23 ‘A123) is NIL, because the character
code for the digit 2 is greater than the code for 1.

Atoms and strings are ordered before all other data types. If
neither A nor B are atoms or strings, the value of ALPHORDER is
T,i.e.,inorder.

If CASEARRAY is non-NIL, it is a casearray (page 25.21 that the
characters of A and B are translated through before being
compared. Note that numbers are not passed through
CASEARRAY.

Note: If either A or B is a number, the value returned in the
“true” caseis T. Otherwise, ALPHORDER returns either EQUAL or
LESSP to discriminate the cases of A and B being equal or
unequal strings/atoms.

Note: ALPHORDER does no UNPACKs, CHCONs, CONSes or
NTHCHARs. It is several times faster for alphabetizing than
anything that can be written using these other functions.

(UALPHORDER A 8) [Function]
Defined as (ALPHORDER A B UPPERCASEARRAY).
UPPERCASEARRAY (page 25.22) is a casearray that maps every
lowercase character into the corresponding uppercase character.
(MERGEINSERT NEW LST ONEFLG) [Function]

LSTis NIL or a list of partially sorted items. MERGEINSERT tries to
find the "best” place to (destructively) insert NEW, e.qg.,

(MERGEINSERT 'FIE2 '(FOO FOO1 FIE FUM))
a > (FOO FOO1 FIE FIE2 FUM)

Returns LST. MERGEINSERT is undoable.

If ONEFLG=T and NEW s already a member of LST,
MERGEINSERT does nothing and returns LST.

.

MERGEINSERT is used by ADDTOFILE (page 17.48) to insert the
name of a new functioninto a list of functions. The algorithm is
essentially to look for the item with the longest common leading
sequence of characters with respect to NEW, and then merge
NEW in starting at that point.

3.18

LISTS

OTHER LIST FUNCTIONS

3.11 Other List Functions

(REMOVE X L) [Function]
Removes all top-level occurrences of X from list L, returning a
copy of L with all elements EQUAL to X removed. Exampie:
(REMOVE'A'(ABC(A)A)) => (BC(A))
(REMOVE'(A)'(ABC(A)A)) => (ABCA)

(DREMOVE X L) [Function]
Similar to REMOVE, but uses EQ instead of EQUAL, and actually
modifies the list L when removing X, and thus does not use any
additional storage. More efficient than REMOVE.

Note that DREMOVE cannot change a list to NIL:

«—(SETQ FOO '(A))

(A)

—(DREMOVE 'A FOO)

NIL

«FOO

(A)

The DREMOVE above returns NIL, and does not perform any
CONSes, but the value of FOO is still (A), because there is no way
to change alist to a non-list. See NCONC.

(REVERSE L) [Function]
Reverses (and copies) the top level of a list, e.g.,
(REVERSE'(AB(CD))) => ((CD)BA)

If Lis not a list, REVERSE just returns L.
(DREVERSE L) [Function]

(COMPARELISTS X Y)

Value is the same as that of REVERSE, but DREVERSE destroys the
original list L and thus does not use any additional storage. More
efficient than REVERSE.

[Function]

Compares the list structures X and Y and prints a description of
any differences to the terminal. If X and Y are EQUAL lists,
COMPARELISTS simply prints out SAME. Returns NIL.

COMPARELISTS prints a terse description of the differences
between the two list structures, highlighting the items that have
changed. This printout is not a complete and perfect
comparison. If X and Y are radically different list structures, the
printout will not be very useful. COMPARELISTS is meant to be

LISTS

OTHER LIST FUNCTIONS

(NEGATE X)

used as a tool to help users isolate differences between similar
structures.

When a single element has been changed for another,
COMPARELISTS prints out items such as (A -> B), for example:

«—(COMPARELISTS '(ABCD) '(XBED))
(A->X)(C->E)
NIL

When there are more complex differences between the two lists,
COMPARELISTS prints X and Y, highlighting differences and
abbreviating similar elements as much as possible. "&" is used to
signal a single element that is present in the same place in the
two lists; "--" signals an arbitrary number of elements in one list
but not in the other; "-2-," “-3-," etc signal a sequence of two,
three, etc. elements that are the same in both lists. Examples:

(COMPARELISTS '(A B CD) (A D))
(ABC-)
(AD)

—{(COMPARELISTS '(ABCDEF G H) '(ABCD X))

(A-3-EF-)

(A-3-X)

«(COMPARELISTS '(AB C(D EF (G) H)1) (A B (G) C(DEF H)1))

(A& &(D-2-(G)&)&)
(A&(G)&(D-2- &)&)

[Function]

For a form X, returns a form which computes the negation of X .
For example:

(NEGATE '(MEMBER X Y)) => (NOT(MEMBER X Y))
(NEGATE'(EQ X Y)) => (NEQXY)

(NEGATE '(AND X (NLISTP X))) => (OR(NULL X) (LISTP X))
(NEGATENIL) =>T

3.20

LISTS

TABLE OF CONTENTS

4. Strings 41

TABLEOF CONTENTS TOC.1

TABLE OF CONTENTS

[This page intentionally left blank]

TOC.2 TABLE OF CONTENTS

(STRINGP X)

4. STRINGS

A string is an object which represents a sequence of characters.
Interlisp provides functions for creating strings, concatenating
strings, and creating sub-strings of a string.

The input syntax for a string is a dounle quote ("), followed by a
sequence of any characters except double quote and %,
terminated by a double quote. The % and double quote
characters may be included in a string by preceding them with
the character %.

Strings are printed by PRINT and PRIN2 with initial and final
double quotes, and %s inserted where necessary for it to read
back in properly. Strings are printed by PRIN1 without the |
delimiting double quotes and extra %s.

A "null string" containing no characters is input as "". The null
string is printed by PRINT and PRIN2 as "". (PRIN1 "") doesn’t
print anything.

Internally a string is stored in two parts; a “string pointer” and
the sequence of characters. Several string pointers may -
reference the same character sequence, so a substring can be
made by creating a new string pointer, without copying any
characters. Functions that refer to "strings" actually manipulate
string pointers. Some functions take an “old string" argument,
and re-use the string pointer.

{Function]

(STREQUAL X Y)

Returns X if Xis a string, NIL otherwise.

[Function]

Returns T if X and Y are both strings and they contain the same
sequence of characters, otherwise NIL. EQUAL uses STREQUAL.
Note that strings may be STREQUAL without being EQ. For
instance,

(STREQUAL "ABC" "ABC") => T
(EQ "ABC" "ABC") => NIL

STREQUAL returns T if X and Y are the same string pointer, or
two different string pointers which point to the same character
sequence, or two string pointers which point to different
character sequences which contain the same characters. Only in
the first case would X and Y be EQ.

STRINGS

41

STRINGS

(STRING-EQUAL X Y)

[Function]

Returns T if X and Y are either strings or litatoms, and they
contain the same sequence of characters, ignoring case. For
instance,

(STRING-EQUAL "FOO" "Foo") => T
(STRING-EQUAL "FOO" 'Foo) => T

This is useful for comparing things that might want to be
considered "equal" even though they're not both litatoms in a
consistent case, such as file names and user names.

(ALLOCSTRING N INITCHAR OLD FATFLG) [Function]

(MKSTRING X FLG RDTBL)

Creates a string of length N characters of INITCHAR (which can
be either a character code or something coercible to a character).
If INITCHAR is NIL, it defaults to character code 0. if OLD is
supplied, it must be a string pointer, which is modified and
returned.

If FATFLG is non-NIL, the string is allocated using full 16-bit NS
characters (see page 2.12) instead of 8-bit characters. This can
speed up some string operations if NS characters are later
inserted into the string. This has no other effect on the
operation of the string functions.

[Function]

(NCHARS X FLG RDTBL)

If X is a string, returns X. Otherwise, creates and returns a string
containing the print name of X. Exampies:

(MKSTRING "ABC") => "ABC"
(MKSTRING'(ABC)) => "(ABQ)"
(MKSTRING NIL) = > "NIL"

Note that the last example returns the string "NIL", not the atom
NIL.

If FLG is T, then the PRIN2-name of X is used, computed with
respect to the readtable RDTBL. For example,

(MKSTRING "ABC" T) => "%"ABC%""

[Function]

Returns the number of characters in the print name of X. If
FLG =T, the PRIN2-name is used. For example,

(NCHARS '‘ABC) => 3
(NCHARS "ABC"T) => 5

Note: NCHARS works most efficiently on litatoms and strings,
but can be given any object.

4.2

STRINGS

STRINGS

(SUBSTRING X N M OLDPTR) [Function]

Returns the substring of X consisting of the Nth through Mth .
characters of X. If M is NIL, the substring contains the Nth
character thru the end of X. N and M can be negative numbers,
which are interpreted as counts back from the end of the string, -
as with NTHCHAR (page 2.10). SUBSTRING returns NIL if the
substring is not well defined, e.g., N or M specify character
positions outside of X, or N corresponds to a character in X to the
right of the character indicated by M). Examples:

(SUBSTRING "ABCDEFG" 46) => "DEF"
(SUBSTRING "ABCDEFG"33) => "C"

(SUBSTRING "ABCDEFG" 3 NIL) = > "CDEFG"
(SUBSTRING "ABCDEFG" 4-2) => "DEF"
(SUBSTRING "ABCDEFG"64) => NIL

(SUBSTRING "ABCDEFG" 49) => NIL

If Xis not a string, itis converted to one. For example,
(SUBSTRING'(ABC)46) => "BC"

SUBSTRING does not actually copy any characters, but simply
creates a new string pointer to the charactersin X. {f OLDPTRis a
string pointer, it is modified and returned.

(GNC X) [Function]
“Get Next Character." Returns the next character of the string X
(as an atom); also removes the character from the string, by
changing the string pointer. Returns NIL if X is the null string. If
X isn't a string, a string is made. Used for sequential access to
characters of a string. Example:
«—(SETQ FOO "ABCDEFG")
“ABCDEFG"
«—{GNCFOO)
A
«—(GNC FOO)
B
«FOO
“CDEFG"
Note that if A is a substring of B, (GNC A) does not remove the
character from B.

(GLC X) [Function]

“Get Last Character." Returns the last character of the string X _
(as an atom); also removes the character from the string. Similar
to GNC. Example:

«(SETQ FOO "ABCDEFG")
"ABCDEFG"

STRINGS

43

STRINGS

(CONCAT X7 X3 ... Xp)

«—(GLCFOO)
G
«(GLCFOO)
F

«FOO0
"ABCDE"

[NoSpread Function]

(CONCATLIST L)

Returns a new string which is the concatenation of (copies of) its
arguments. Any arguments which are not strings are
transformed to strings. Examples:

(CONCAT "ABC" 'DEF "GHI") => "ABCDEFGHI"
(CONCAT'(ABC)"ABC") a> "(ABC)ABC"
(CONCAT) returns the null string, "".

[Function]

(RPLSTRING X N Y)

L is a list of strings and/or other objects. The objects are
transformed to strings if they aren't strings. Returns a new string
which is the concatenation of the strings. Example:

(CONCATLIST (A B(C D) "EF")) => "AB(CD)EF"

[Function]

Replaces the characters of string X beginning at character
position N with string Y. X and Y are converted to strings if they
aren't already. N may be positive or negative, as with
SUBSTRING. Characters are smashed into (converted) X. Returns
the string X. Exampiles:

(RPLSTRING “"ABCDEF" -3 "END") => "ABCEND"
(RPLSTRING "ABCDEFGHIJK" 4'(ABC)) => "ABC(AB Q)K"

Generates an error if there is not enough room in X for Y, i.e,, the
new string would be longer than the original. If Y was not a
string, X will already have been modified since RPLSTRING does
not know whether Y will “fit" without actually attempting the
transfer.

Warning: In some implementations of Interlisp, if X is a
substring of Z, Z will also be modified by the action of RPLSTRING
or RPLCHARCODE. However, this is not guaranteed to be true in’
all cases, so programmers should not rely on RPLSTRING or
RPLCHARCODE altering the characters of any string other than
the one directly passed as argument to those functions.

4.4

STRINGS

STRINGS

(RPLCHARCOODE X N CHAR)

[Function]

Replaces the Nth character of the string X with the character
code CHAR. N may be positive or negative. Returns the new X.
Similar to RPLSTRING. Example:

(RPLCHARCODE "ABCDE" 3 (CHARCODEF)) = > "ABFDE"

(STRPQS PAT STRING START SKIP ANCHOR TAIL CASEARRAY BACKWARDSFLG) [Function]

STRPOS is a function for searching one string looking for
another. PAT and STRING are both strings (or else they are
converted automatically). STRPOS searches STRING beginning at
character number START, (or 1 if START is NIL) and looks for a
sequence of characters equal to PAT. If a match is found, the
character position of the first matching character in STRING is
returned, otherwise NIL. Examples:

(STRPOS "ABC" "XYZABCDEF") = > 4
(STRPOS "ABC" "XYZABCDEF"5) = > NiL
(STRPOS "ABC" "XYZABCDEFABC" 5) = > 10

SKIP can be used to specify a character in PAT that matches any
character in STRING. Examples:

(STRPOS "A&C&" "XYZABCDEF" NIL'&) => 4
(STRPOS "DEF&" "XYZABCDEF" NIL'&) = > NIL

If ANCHOR is T, STRPOS compares PAT with the characters
beginning at position START (or 1 if START is NIL). If that
comparison fails, STRPOS returns NIL without searching any
further down STRING. Thus it can be used to compare one string
with some portion of another string. Examples:

(STRPOS "ABC" "XYZABCDEF" NILNILT) = > NiL
(STRPOS "ABC" "XYZABCDEF" 4NILT) => 4

If TAIL is T, the value returned by STRPOS if successful is not the
starting position of the sequence of characters corresponding to
PAT, but the position of the first character after that, i.e., the
starting position plus (NCHARS PAT). Examples:

(STRPOS “"ABC" "XYZABCDEFABC" NILNILNILT) => 7
(STRPOS "A" "A" NILNILNILT) => 2

If TAIL =NIL, STRPOS returns NIL, or a character position within
STRING which can be passed to SUBSTRING. In particular,
(STRPOS "" "") => NIL However, if TAIL=T, STRPOS may
return a character position outside of STRING. For instance, note
that the second exampie above returns 2, even though "A" has
only one character.

If CASEARRAY is non-NIL, this should be a casearray like that
given to FILEPOS (page 25.20). The casearray is used to map the
string characters before comparing them to the search string.

STRINGS

STRINGS

iIf BACKWARDSFLG is non-NIL, the search is done backwards from
the end of the string.

(STRPOSL A STRING START NEG BACKWARDSFLG) [Function]
STRING is a string (or eise it is converted automatically to a
string), A is a list of characters or character codes. STRPOSL
searches STRING beginning at character number START (or else 1
if START =NIL) for one of the characters in A. If one is found,
STRPOSL returns as its value the corresponding character
position, otherwise NIL. Example:

(STRPOSL'(ABC) "XYZBCD") => 4
If NEG =T, STRPOSL searches for a character not on A. Example:
(STRPOSL'(ABC) "ABCDEF" NILT) => 4

If any element of A is a number, it is assumed to be a character
code. Otherwise, it is converted to a character code via CHCON1.
Therefore, it is more efficient to call STRPOSL with A a list of
character codes.

If A is a bit table, it is used to specify the characters (see
MAKEBITTABLE below)

If BACKWARDSFLG is non-NIL, the search is done backwards from
the end of the string.

STRPOSL uses a "bit table" data structure to search efficiently. If
A is not a bit table, it is converted to a bit table using
MAKEBITTABLE. If STRPOSL is to be called frequently with the
same list of characters, a considerable savings can be achieved by

~ converting the list to a bit table once, and then passing the bit
table to STRPOSL as its first argument.

(MAKEBITTABLE L NEG A) {Function]
Returns a bit table suitable for use by STRPOSL. L is a list of
characters or character codes, NEG is the same as described for
STRPOSL. If Ais a bit table, MAKEBITTABLE modifies and returns
it. Otherwise, it will create a new bit table.

Note: if NEG =T, STRPOSL must call MAKEBITTABLE whether A is
a list or a bit table. To obtain bit table efficiency with NEG =T,
MAKEBITTABLE should be called with NEG =T, and the resulting
"inverted" bit table should be given to STRPOSL with NEG = NIL.

46 STRINGS

TABLE OF CONTENTS

5. Arrays 5.1

TABLE OF CONTENTS TOCA

TABLE OF CONTENTS

[This page intentionally left blank]

TOC.2 TABLEOF CONTENTS

5. « ARRAYS

An array in interlisp is an object representing a one-dimensional
vector of objects. Arrays are generally created by the function
ARRAY.

(ARRAY SIZE TYPE INIT ORIG —) [Function]

Creates and returns a new array capable of containing SIZE
objects of type TYPE. If TYPE is NIL, the array can contain any
arbitrary Lisp datum. In general, TYPE may be any of the various
field specifications which are legal in DATATYPE declarations .
(see page 8.9): POINTER, FIXP, FLOATP, (BITS N), etc. The
implementation will, if necessary, choose an "enclosing” type if
the given one is not supported; for example, an array of (BITS 3)
may be represented by an array of (BITS 8).

INIT is the initial value in each element of the new array. If not
specified, the array elements will be initialized with 0 (for
number arrays) or NIL (all other types).

Arrays can have either 0-origin or 1-origin indexing, as specified
by the ORIG argument; if ORIG is not specified, the defaultis 1.

Note: Arrays of type FLOATP are stored unboxed. This increases
the space and time efficiency of FLOATP arrays. Users who want
to use boxed floating point numbers should use an array of type
POINTER instead of FLOATP.

(ARRAYP X) [Function]
Returns X if X is an array, NIL otherwise.
Note: Insome implementations of Interlisp (but not Interlisp-D),
ARRAYP may alsoreturn X if itis of type CCODEP or HARRAYP.

(ELT ARRAY N) [Function]
Returns the Nth element of the array ARRAY.
Generates the error ARG NOT ARRAY if ARRAY is not an array.
Generates the error ILLEGAL ARG if N is out of bounds.

(SETA ARRAY N V) [Function]

Sets the Nth element of the array ARRAY to VAL, and returns .
VAL.

Generates the error ARG NOT ARRAY if ARRAY is not an array.
Generates the error ILLEGAL ARG if N is out of bounds. Can

ARRAYS

5.1

ARRAYS

(ARRAYTYP ARRAY)

generate the error NON-NUMERIC ARG if ARRAY is an array
whose ARRAYTYP is FIXP or FLOATP and VAL is non-numeric.

[Function]

(ARRAYSIZE ARRAY)

Returns the type of the elements in the array ARRAY, a value
corresponding to the second argument to ARRAY.

Note: If ARRAY coerced the array type as described above,
ARRAYTYP will return the new type. For example, (ARRAYTYP
{(ARRAY 10 '(BITS 3))) will return BYTE in Interlisp-D, and FIXP in
Interlisp-10.

[Function]

(ARRAYORIG ARRAY)

Returns the size of array ARRAY. Generates the error, ARG NOT
ARRAY, if ARRAY isnot an array.

[Function]

(COPYARRAY ARRAY)

Returns the origin of array ARRAY, which may be 0 or 1.
Generates an error, ARG NOT ARRAY, if ARRAY is not an.array.

[Function]

Returns a new array of the same size and type as ARRAY, and
with the same contents as ARRAY. Generates an ARG NOT
ARRAY error, if ARRAY isnot an array.

5.2

ARRAYS

TABLE OF CONTENTS

6. Hash Arrays \ 6.1
6.1. Hash Overflow 6.3
6.2. User-Specified Hashing Functions 6.4

TABLE OF CONTENTS TOC.1

TABLE OF CONTENTS

[This page intentionally left blank]

TOC.2 TABLE OF CONTENTS

6. HASH ARRAYS

Hash arrays provide a mechanism for associating arbitrary lisp
objects ("hash keys") with other objects ("hash values™), such
that the hash value associated with a particular hash key can be
quickly obtained. A set of associations could be represented as a
list or array of pairs, but these schemes are very inefficient when
the number of associations is large. There are functions for
creating hash arrays, putting a hash key/value pair in a hash
array, and quickly retrieving the hash value associated with a
given hash key.

By default, the hash array functions use EQ for comparing hash
keys. This means that if non-atoms are used as hash keys, the
exact same object (not a copy) must be used to retrieve the hash
value. However, the user can override this default for any hash
array by specifying the functions used to compare hash keys and
to "hash" a hash key to a number. This can be used, for example,
to create hash arrays where EQUAL but non-EQ strings will hash
to the same value. Specifying alternative hashing algorithms is
described below (page 6.4).

In the description of the functions below, the argument HARRAY
should be a value of the function HASHARRAY, which is used to
create hash arrays. For convenience in interactive program
development, it may also be NIL, in which case a hash array
provided by the system, SYSHASHARRAY, is used; the user must
watch out for confusions if this form is used to associate more
than one kind of value with the same key.

Note: For backwards compatibility, the hash array functions will
accept a list whose CAR is a hash array, and whose CDR is the
"overflow method" for the hash array (see below). However,
hash array functions are guaranteed to perform with maximum
efficiency only if a direct value of HASHARRAY is given.

(HASHARRAY MINKEYS OVERFLOW HASHBITSFN EQUIVFN) [Function]

Creates a hash array containing at least MINKEYS hash keys, with
overflow method OVERFLOW. See discussion of overflow
behavior below (page 6.3).

If HASHBITSFN and EQUIVFN are non-NIL, they specify the
hashing function and comparison function used to interpret
hash keys. This is described in the section on user-specified
hashing functions below (page 6.4). If HASHBITSFN and

HASH ARRAYS

6.1

HASH ARRAYS

(HARRAY MINKEYS)

EQUIVFN are NIL, the default is to hash £EQ hash keys to the same
value.

[Function]

(HARRAYP X)

Provided for backward compatibility, this is equivalent to
(HASHARRAY MINKEYS 'ERROR).

[Function]

Returns X ifitis a hash array object; otherwise NIL.

Note that HARRAYP returns NiL if X is a list whose CAR is an
HARRAYP, even though this is accepted by the hash array
functions.

(HARRAYPROP HARRAY PROP NEWVALUE) [NoSpread Function]

(HARRAYSIZE HARRAY)

Returns the property PROP of HARRAY; PROP can have the
system-defined values SIZE (returns the maximum occupancy of
HARRAY), NUMKEYS (number of occupied slots), OVERFLOW
(overflow method), HASHBITSFN (hashing function) and
EQUIVFN (comparison function). Except for SIZE and NUMKEYS,
a new value may be specified as NEWVALUE.

By using other values for PROP, the user may also set and get
arbitrary property values, to associate additional information
with a hash array.

Note: The HASHBITSFN or EQUIVFN properties can only be
changed if the hash array is empty.

[Function]

(CLRHASH HARRAY)

Equivalent to (HARRAYPROP HARRAY ‘SIZE); returns the number
of slotsin HARRAY.

[Function]

Clears all hash keys/values from HARRAY. Returns HARRAY.

(PUTHASH KEY VAL HARRAY) [Function]

(GETHASH KEY HARRAY)

Associates the hash value VAL with the hash key KEY in HARRAY.
Replaces the previous hash vaiue, if any. If VAL is NiL, any old
association is removed (hence a hash value of NIL is not allowed).
If HARRAY is full when PUTHASH is called with a key not already
in the hash array, the function HASHOVERFLOW is called, and
the PUTHASH is applied to the value returned (see below).
Returns VAL.

[Function]

Returns the hash value associated with the hash key KEY in
HARRAY. Returns NIL, if KEY is not found.

6.2

HASH ARRAYS

HASH ARRAYS

(REHASH OLDHARRAY NEWHARRAY) [Function]
Hashes all hash keys and values in OLDHARRAY into
NEWHARRAY. The two hash arrays do not have to be (and
usually aren't) the same size. Returns NEWHARRAY.

(MAPHASH HARRAY MAPHFN) [Function]
MAPHFN is a function of two arguments. For each hash key in
HARRAY, MAPHFN will be applied to (1) the hash value, and (2)
the hash key. For example,

[MAPHASH A
(FUNCTION (LAMBDA (VAL KEY)
(if (LISTP KEY) then (PRINT VAL)]

will print the hash value “for all hash keys that are lists.
MAPHASH returns HARRAY.

(DMPHASH HARRAY 1 HARRAY 3 ... HARRAY p) [NLambda NoSpread Function]

Prints on the primary output file LOADable forms which will .
restore the hash-arrays contained as the values of the atoms
HARRAY1, HARRAY,, .. HARRAYyN. Example: (DMPHASH
SYSHASHARRAY) will dump the system hash-array.

Note: all EQ identities except atoms and smali integers are lost by
dumping and loading because READ will create new structure
for each item. Thus if two lists contain an EQ substructure, when
they are dumped and loaded back in, the corresponding
substructures while EQUAL are no longer EQ. The .
HORRIBLEVARS file package command (page 17.36) provides a
way of dumping hash tables such that these identities are |
preserved.

6.1 Hash Overflow

When a hash array becomes full, attempting to add another hash
key will cause the function HASHOVERFLOW to be called. This .
will either automatically enlarge the hash array, or cause the .
error HASH TABLE FULL. How hash overflow is handled is |
determined by the value of the OVERFLOW property of the hash -
array (which can be accessed by HARRAYPROP). The possibilities
for the overflow method are:

the litatom ERROR The error HASH ARRAY FULL is generated when the hash array
overflows. This is the default overflow behavior for hash arrays
returned by HARRAY.

NIL The array is automatically enlarged by 1.5. This is the default .
overflow behavior for hash arrays returned by HASHARRAY.

HASH ARRAYS 6.3

HASH OVERFLOW

a positive integer N

a floating point number F

a function or lambda expression FN

The array is enlarged to include N more slots than it currently
has.

The array is changed to include F times the number of current
slots.

Upon hash overflow, FN is called with the hash array as its
argument. If FN returns a number, that will become the size of
the array. Otherwise, the new size defaults to 1.5 times its
previous size. FN could be used to print a message, or perform
some monitor function.

Note: For backwards compatibility, the hash array functions
accept a list whose CAR is the hash array, and whose CDR is the
overflow method. In this case, the overflow method specified in
the list overrides the overflow method set in the hash array.
Note that hash array functions are guaranteed to perform with
maximum efficiency only if a direct value of HASHARRAY s
given.

6.2 User-Specified Hashing Functions

In general terms, when a key is looked up in a hash array, it is
converted to an integer, which is used to index into a linear
array. If the key is not the same as the one found at that index,
other indices are tried until it the desired key is found. The value
stored with that key is then returned (from GETHASH) or
replaced (from PUTHASH).

The important features of this algorithm, for purposes of
customizing hash arrays, are (1) the "hashing function™ used to
convert a key to an integer; and (2) the comparison function
used to compare the key found in the array with the key being
looked up. In order for hash arrays to work correctly, any two
objects which are equal according to the comparison function
must "hash" to equal integers.

By default, the Interlisp hash array functions use a hashing
function that computes an integer from the internal address of a
key, and use EQ for comparing keys. This means that if
non-atoms are used as hash keys, the exact same object (not a
copy) must be used to retrieve the hash value.

There are some applications for which the EQ constraint is too
restrictive. For example, it may be useful to use strings as hash
keys, without the restriction that EQUAL but not EQ strings are
considered to be different hash keys.

The user can override this default behavior for any hash array by
specifying the functions used to compare keys and to "hash" a

6.4

HASH ARRAYS

USER-SPECIFIED HASHING FUNCTIONS

(STRINGHASHBITS STRING)

key to a number. This can be done by giving the HASHBITSFN
and EQUIVFN arguments to HASHARRAY (page 6.1).

The EQUIVFN argument is a function of two arguments that
returns non-NIL when its arguments are considered equal. The
HASHBITSFN argument is a function of one argument that -
produces a positive small integer (in the range [0..2 7 16-1]) with
the property that objects that are considered equal by the
EQUIVFN produce the same hash bits.

For an existing hash array, the function HARRAYPROP (page 6.2)
can be used to examine the hashing and equivalence functions as

" the HASHBITSFN and EQUIVFN hash array properties. These

properties are read-only for non-empty hash arrays, as it. makes
no sense to change the equivalence relationship once some keys
have been hashed.

The following function is useful for creating hash arrays that
take strings as hash keys:

[Function]

Hashes the string STRING into an integer that can be used as a
HASHBITSFN for a hash array. Strings which are STREQUAL hash
to the same integer.

Example:

(HASHARRAY MINKEYS OVERFLOW 'STRINGHASHBITS
'STREQUAL)

creates a hash array where you can use strings as hash keys.

HASH ARRAYS

USER-SPECIFIED HASHING FUNCTIONS

[This page intentionally left blank]

6.6 HASH ARRAYS

TABLE OF CONTENTS

7. Numbers and Arithmetic Functions

71

7.1. Generic Arithmetic

7.3

7.2. Integer Arithmetic

7.4

7.3. Logical Arithmetic Functions

7.8

7.4. Floating Point Arithmetic

7.11

7.5. Other Arithmetic Functions

7.13

TABLE OF CONTENTS

TOC

TABLE OF CONTENTS

[This page intentionally left blank]

TOC.2 TABLE OF CONTENTS

(SMALLP X)

7. NUMBERS AND ARITHMETIC |
FUNCTIONS | ’

Numerical atoms, or simply numbers, do not have value cells,
function definition cells, property lists, or explicit print names.
There are four different types of numbers in Interlisp: small
integers, large integers, bignums (arbitrary-size integers), and :
floating point numbers. Small integers are those integers that
can be directly stored within a pointer value
(implementation-dependent). Large integers and floating point °
numbers are full-word quantities that are stored by "boxing" the
number (see below). Bignums are "boxed" as a series of words.

Large integers and floating point numbers can be any full word
quantity. In order to distinguish between those full word
quantities that represent large integers or floating point °
numbers, and other Interlisp pointers, these numbers are
"boxed": When a large integer or floating point number is
created (via an arithmetic operation or by READ), Interlisp gets a
new word from "number storage" and puts the large integer or
floating point number into that word. Interlisp then passes -
around the pointer to that word, i.e., the "boxed number", -
rather than the actual quantity itself. Then when a numeric :
function needs the actual numeric quantity, it performs the extra
level of addressing to obtain the "value" of the number. This
latter process is called "unboxing". Note that unboxing does not
use any storage, but that each boxing operation uses one new -
word of number storage. Thus, if a computation creates many -
large integers or floating point numbers, i.e., does lots of boxes,
it may cause a garbage collection of large integer space, or of :
floating point number space.

Note: Different implementations of Interlisp may use different .
boxing strategies. Thus, while lots of arithmetic operations may -
lead to garbage collections, this is not necessarily always the
case.

The following functions can be used to distinguish the different
types of numbers:

[Function]

Returns X, if X is a small integer; NIL otherwise. Does not
generate an error if Xisnot a number.

NUMBERS AND ARITHMETIC FUNCTIONS

7.1

NUMBERS AND ARITHMETIC FUNCTIONS

(FIXP X)

[Function]

(FLOATP X)

Returns X, if Xis an integer; NIL otherwise. Note that FIXP is true
for small integers, large integers, and bignums. Does not
generate an error if X isnot a number.

[Function]

(NUMBERP X)

Returns X if X is a floating point number; NIL otherwise. Does
not give an errorif Xis nota number.

[Function]

(EQP X'Y)

Returns X, if X is a number of any type (FIXP or FLOATP); NIL
otherwise. Does not generate an error if Xisnota number.

Note that if (NUMBERP X) is true, then either (FIXP X) or (FLOATP
X)is true.

Each small integer has a unique representation, so EQ may be
used to check equality. Note that EQ should not be used for
large integers, bignums, or floating point numbers, EQP, IEQP, or
EQUAL must be used instead.

[Function]

(OVERFLOW FLG)

Returns T, if X and Y are EQ, or equal numbers; NIL otherwise.
Note that EQ may be used if X and Y are known to be small
integers. EQP does not convert X and Y to integers, e.g., (EQP
2000 2000.3) = > NIL, but it can be used to compare an integer
and a floating point number, e.g., (EQP 2000 2000.0) => T.
EQP does nat generate an error if X or Y are not numbers.

Note: EQP can also be used.to compare stack pointers (page
11.4) and compiled code objects (page 10.10).

The action taken on division by zero and floating point overflow
is determined with the following function:

[Function]

Sets a flag that determines the system response to arithmetic
overflow (for floating point arithmetic) and division by zero;
returns the previous setting.

For integer arithmetic: If FLG=T, an error occurs on division by
zero. If FLG=NIL or 0, integer division by zero returns zero.
Integer overflow cannot occur, because small integers are
converted to bignums (page 7.1).

For floating point arithmetic: f FLG=T, an error occurs on
floating overflow or floating division by zero. If FLG=NIL or 0,
the largest (or smallest) floating point number is returned as the

7.2

NUMBERS AND ARITHMETIC FUNCTIONS

NUMBERS AND ARITHMETIC FUNCTIONS *

result of the overflowed computation or floating division by
zero.

The default value for OVERFLOW is T, meaning to cause an error
on division by zero or floating overflow.

7.1 Generic Arithmetic

(PLUS X X... XN)

The functions in this section are “generic" arithmetic functions.
If any of the arguments are floating point numbers (page 7.11),
they act exactly like floating point functions, and float all
arguments, and return a floating point number as their value.
Otherwise, they act like the integer functions (page 7.4). If given

a non-numeric argument, they generate an error,
NON-NUMERIC ARG.

[NoSpread Function]

(MINUS X)

X1+X2+...+XN.

[Function]

(DIFFERENCE X Y)

[Function]

(TIMES X{ X3 ... Xp)

[NoSpread Function]

(QUOTIENT X Y)

X1* X" . * Xy

[Function]

(REMAINDER X Y)

If X and Y are both integers, returns the integer division of X and
Y. Otherwise, converts both X and Y to floating point numbers,
and does a floating point division.

The results of division by zero and floating point overflow is
determined by the function OVERFLOW (page 7.2).

[Function]

(GREATERP X Y)

if X and Y are both integers, returns (IREMAINDER X Y),
otherwise (FREMAINDER X Y).

[Function]

T,if X > Y, NIL otherwise.

NUMBERS AND ARITHMETIC FUNCTIONS

7.3

GENERIC ARITHMETIC

(LESSP X Y) [Function]
Tif X < Y, NIL otherwise.

(GEQ X Y) [Function]
T,if X > = Y, NIL otherwise.

(LEQ X Y) {Function]
T,if X < = Y, NIL otherwise.

(ZEROP X) [Function]
(EQP X 0).

(MINUSP X) [Function]

(MIN X{ X5 ... Xp)

T, if X is negative; NIL otherwise. Works for both integers and
floating point numbers.

[NoSpread Function]

(MAX X1 X7 ... XN)

Returns the minimum of X1, X3, ..., Xp. (MIN) returns the value
of MAX.INTEGER (page 7.5).

[NoSpread Function]

(ABS X)

Returns the maximum of Xy, X5, ..., Xp. (MAX) returns the value
of MIN.INTEGER (page 7.5).

[Function}

X if X > 0, otherwise -X. ABS uses GREATERP and MINUS (not
IGREATERP and IMINUS). i

7.2 Integer Arithmetic

123Q
lo123

|b10101

The input syntax for an integer is an optional sign (+ or -)
followed by a sequence of decimal digits, and terminated by a
delimiting character. Integers entered with this syntax are
interpreted as decimal integers. Integers in other radices can be
entered as follows:

If an integer is followed by the letter Q, or proceeded by a

vertical bar and the letter "0", the digits are interpreted an octal
(base 8) integer.

If aninteger is proceeded by a vertical bar and the letter "b", the
digits are interpreted as a binary (base 2) integer.

7.4

NUMBERS AND ARITHMETIC FUNCTIONS

INTEGER ARITHMET!C

Ix1A90

|5r1243

if an integer is proceeded by a vertical bar and the letter "x", the .
digits are interpreted as a hexadecimal (base 16) integer. The .
upper-case letters A though F are used as the digits after 9.

If an integer is proceeded by a vertical bar, a positive decimal
integer BASE, and the letter "r", the digits are interpreted as an .
integer in the base BASE. For example, |8r123 = 123Q, and
[16r12A3 = |x12A3. When inputting a number in a radix above
ten, the upper-case letters A through Z can be used as the digits :
after 9 (but there is no digit above Z, so it is not possible to type
all base-99 digits).

Note that 77Q and 63 both correspond to the same integers, and -
in fact are indistinguishable internally since no record is kept of
the syntax used to create an integer. The function RADIX (page
25.13), sets the radix used to printintegers.

Integers are created by PACK and MKATOM when given a
sequence of characters observing the above syntax, e.g. (PACK
‘12Q)) => 10. Integers are also created as a result of
arithmetic operations.

The range of integers of various types is -
implementation-dependent. This information is accessable to
the user through the following variables:

MIN.SMALLP [Variable]

MAX.SMALLP [Variable]
The smallest/largest possible small integer.

MIN.FIXP [Variable]

MAX.FIXP [Variable]
The smallest/largest possible large integer.

MIN.INTEGER [Variable]

MAX.INTEGER [Variable]

The smallest/largest possible integers. For some algorithms, it is
useful to have an integer that is larger than any other integer.
Therefore, the values of MAX.INTEGER and MIN.INTEGER are
two special bignums; the value of MAX.INTEGER is GREATERP
than any other integer, and the value of MIN.INTEGER is LESSP
than any other integer. Trying to do arithmetic using these
special bignums, other than comparison, will cause an error.

All of the functions described below work on integers. Unless .
specified otherwise, if given a floating point number, they first

NUMBERS AND ARITHMETIC FUNCTIONS

75

INTEGER ARITHMETIC

(IPLUS X1 X5 ... Xp)

convert the number to an integer by truncating the fractional
bits, e.g., (IPLUS 2.3 3.8)=5; if given a non-numeric argument,
they generate an error, NON-NUMERIC ARG.

[NoSpread Function]

Returns the sum Xy + X3 + ... + Xp. (IPLUS) = 0.

(IMINUS X) [Function]
-X

(IDIFFERENCE X Y) [Function]
X-Y

(ADD1 X) [Function]
X + 1

(suB1 x) [Function]
X-1

(ITIMES X1Xy... XN)

[NoSpread Function]

(IQUOTIENT X Y)

Returns the product X7 * X5 * ... * Xp. (ITIMES) =1.

[Function]

(IREMAINDER X Y)

X/ Ytruncated. Examples:
(IQUOTIENT32) => 1
(IQUOTIENT-32) => -1

If Yis zero, the result is determined by the function OVERFLOW
(page 7.2).

[Function]

(IMOD X N)

Returns the remainder when Xisdivided by Y. Example:
(IREMAINDER32) => 1

[Function]

(IGREATERP X Y)

Computes the integer modulus; this differs from IREMAINDER in
that the result is always a non-negative integer in the range
[0.N).

[Function]

T,if X > Y: NIL otherwise.

76

NUMBERS AND ARITHMETIC FUNCTIONS

INTEGER ARITHMETIC

(ILESSP X Y) [Function]
T, if X < Y; NIL otherwise.

(IGEQ X Y) [Function]
T,if X > = Y; NIL otherwise.

(ILEQ X Y) [Function]

(IMIN X1 X5 ... Xp)

T,if X < = Y; NIL otherwise.

[NoSpread Function] -

(IMAX X7 X5 ... Xp)

Returns the minimum of X1, X, ..., Xp. (IMIN) returns the largest
possible large integer, the value of MAX.INTEGER.

[NoSpread Function]

(IEQP X Y)

Returns the maximum of Xy, X, ..., Xp. (IMAX) returns the
smallest possible large integer, the value of MIN.INTEGER.

[Function]

(FIXN)

Returns T if X and Y are EQ or equal integers; NIL otherwise.
Note that EQ may be used if X and Y are known to be small
integers. IEQP converts X and Y to integers, e.g., (IEQP 2000
2000.3) = > T. Causes NON-NUMERIC ARG error if either Xor Y
are not numbers.

[Function]

(FIXR N)

If Nis aninteger, returns N. Otherwise, converts N to an integer
by truncating fractional bits For example, (FIX 2.3) = > 2, (FIX
1.7) =2> -1.

Note: Since FIX is also a programmer's assistant command (page
13.12), typing FIX directly to Interlisp will not cause the function
FIX to be called.

[Function]

(GCD NT N2)

If Nis aninteger, returns N. Otherwise, converts N to an integer -
by rounding. For example, (FIXR2.3) => 2 (FIXR-1.7) => -2,
(FIXR 3.5) => 4).

[Function]

Returns the greatest common divisor of N7 and N2, e.g., (GCD 72
64)=8.

NUMBERS AND ARITHMETIC FUNCTIONS

7.7

LOGICAL ARITHMETIC FUNCTIONS

7.3 Logical Arithmetic Functions

(LOGAND X1 Xy... XN)

[NoSpread Function]

(LOGOR X1X5... XN)

Returns the logical AND of all its arguments, as an integer.
Example:

(LOGAND756) => 4

[NoSpread Function]

(LOGXOR X1X3.. XN)

Returns the logical OR of all its arguments, as an integer.
Example:

(LOGOR139) => 11

[NoSpread Function]

(LSH X N)

Returns the logical exclusive OR of its arguments, as an integer.
Example:

(LOGXOR115) => 14
(LOGXOR1159) = (LOGXOR149) => 7

[Function]

(RSH X N)

(arithmetic) "Left Shift." Returns X shifted left N places, with the
sign bit unaffected. X can be positive or negative. If N is
negative, X is shifted right -N places.

[Function]

(LLSH X N)

(arithmetic) "Right Shift." Returns X shifted right N places, with
the sign bit unaffected, and copies of the sign bit shifted into the
leftmost bit. X can be positive or negative. If Nis negative, X is
shifted left -N places.

Warning: Be careful if using RSH to simulate division; RSHing a
negative number is not generally equivalent to dividing by a
power of two.

[Function]

(LRSH X N)

[Function]

“Lagical Left Shift" and "Logical Right Shift". The difference
between a logical and arithmetic right shift lies in the treatment
of the sign bit. Logical shifting treats it just like any other bit;
arithmetic shifting will not change it, and will "propagate”
rightward when actually shifting rightwards. Note that shifting
(arithmetic) a negative number "all the way" to the right yields
-1,not 0.

78

NUMBERS AND ARITHMETIC FUNCTIONS

LOGICAL ARITHMETIC FUNCTIONS

Note: LLSH and LRSH are currently implemented using
mod-2 1 32 arithmetic. Passing a bignum to either of these will
cause an error. LRSH of negative numbers will shift in Os in the
high bits.

(INTEGERLENGTH X) [Function]
Returns the number of bits needed to represent X (coerced toan -
integer). This is equivalent to: 1 +floor{log2[{abs[Xx]]].
(INTEGERLENGTH 0) = 0.

(POWEROFTWOP X) [Function]
Returns non-NIL if X (coerced to aninteger) is a power of two.

(EVENP X Y) [NoSpread Function]
If Y is not given, equivalent to (ZEROP (IMOD X 2)); otherwise
equivalent to (ZEROP (IMOD X Y)).

(ODDP N MODULUS) [NoSpread Function]
Equivalent to (NOT (EVENP N MODULUS)). MODULUS defaults to
2.

(LOGNOTN) [Macro]

(BITTEST N MASK)

Logical negation of the bits in N. Equivalent to (LOGXOR N -1)

[Macro]

(BITCLEAR N MASK)

Returns T if any of the bits in MASK are on in the number N.
Equivalent to (NOT (ZEROP (LOGAND N MASK)))

[Macro]

(BITSET N MASK)

Turns off bits from MASK in N. Equivalent to (LOGAND N
(LOGNOT MASK))

[Macro]

(MASK.1'S POSITION SIZE)

Turns on the bits from MASK in N. Equivalent to (LOGOR N
MASK)

[Macro]

(MASK.0'S POSITION SIZE)

Returns a bit-mask with S/ZE one-bits starting with the bit at
POSITION. Equivalent to(LLSH (SUB1 (EXPT 2 S/ZE)) POSITION)

[Macro]

Returns a bit-mask with all one bits, except for SIZE bits starting
at POSITION. Equivalent to (LOGNOT (MASK.1'S POSITION SIZE))

NUMBERS AND ARITHMETIC FUNCTIONS

7.9

LOGICAL ARITHMETIC FUNCTIONS

(LOADBYTE N POS SIZE)

[Function]

Extracts SIZE bits from N, starting at position POS. Equivalent to
(LOGAND (RSH N POS) (MASK.1'S 0 SIZE))

(DEPOSITBYTE N POS SIZE VAL) [Function]

(ROT X N FIELDSIZE)

Insert SIZE bits of VAL at position POS into N, returning the
result. Equivalent to

(LOGOR (BITCLEAR N (MASK.1'S POS SIZE))

(LSH (LOGAND VAL (MASK.1'S 0 SIZE))
POS))

[Function]

(BYTE SIZE POSITION)

"Rotate bits in field". It performs a bitwise left-rotation of the
integer X, by N places, within a field of FIELDSIZE bits wide. Bits
being shifted out of the position selected by (EXPT 2 (SUB1
FIELDSIZE)) will flow into the "units” position.

The notions of position and size can be combined to make up a
"byte specifier”, which is constructed by the macro BYTE [note
reversal of arguments as compare with above functions]:

[Macro]

(BYTESIZE BYTESPEC)

Constructs and returns a "byte specifier” containing SIZE and
POSITION.

[Macro]

(BYTEPOSITION BYTESPEC)

Returns the S/IZE componant of the "byte specifier” BYTESPEC.

[Macro]

Returns the POSITION componant of the "byte specifier”
BYTESPEC.)

(LDB BYTESPEC VAL) [Macro]
Equivalent to
(LOADBYTE VAL
(BYTEPOSITION BYTESPEC)
(BYTESIZE BYTESPEQ))
(DPB N BYTESPEC VAL) (Macro]

Equivalent to

(DEPOSITBYTE VAL
(BYTEPOSITION BYTESPEC)
(BYTESIZE BYTESPEC)

N)

7.10

NUMBERS AND ARITHMETIC FUNCTIONS

FLOATING POINT ARITHMETIC

7.4 Floating Point Arithmetic

MIN.FLOAT

A floating point number is input as a signed integer, followed by
a decimal point, followed by another sequence of digits called
the fraction, followed by an exponent (represented by E
followed by a signed integer) and terminated by a delimiter.

Both signs are optional, and either the fraction following the
decimal point, or the integer preceding the decimal point may
be omitted. One or the other of the decimal point or exponent
may also be omitted, but at least one of them must be present to
distinguish a floating point number from an integer. For
example, the following will be recognized as floating point
numbers:

5. 5.00 5.01 3
5E2 5.1E2 5E-3 -5.2E+6

Floating point numbers are printed using the format control
specified by the function FLTFMT (page 25.13). FLTFMT is
initialized to T, or free format. For example, the above floating
point numbers woulid be printed free format as:

50 5.0 5.01 .3
500.0 510.0 .005 -5.2E6

Floating point numbers are created by the read program when a
“." or an E appears in a number, e.g., 1000 is an integer, 1000. a
floating point number, as are 1E3 and 1.E3. Note that 1000D,
1000F, and 1E3D are perfectly legal literal atoms. Floating point
numbers are also created by PACK and MKATOM, and as a result

of arithmetic operations.

PRINTNUM (page 25.15) permits greater controls on the printed
appearance of floating point numbers, allowing such things as
left-justification, suppression of trailing decimals, etc.

The floating point number range is stored in the following
variables:

[Variable]

MAX.FLOAT

The smallest possible flbating point number.

[Variable]

The largest possible floating point number.

All of the functions described below work on floating point -
numbers. Unless specified otherwise, if given an integer, they
first convert the number to a floating point number, e.g., (FPLUS
123) <=> (FPLUS 1.02.3) => 3.3; if given a non-numeric
argument, they generate an error, NON-NUMERIC ARG.

NUMBERS AND ARITHMETIC FUNCTIONS

FLOATING POINT ARITHMETIC

(FPLUS X1 X3 ... Xp)

[NoSpread Function]

(FMINUS X)

Xy +Xy+ ..+ Xy

[Function]

(FDIFFERENCE X Y)

[Function]

(FTIMES X7 X5... Xp)

[NoSpread Function]

(FQUOTIENT X Y)

Xp " Xp* .. * XN

[Function]

(FREMAINDER X Y)

X/lY.

The results of division by zero and floating point overflow is
determined by the function OVERFLOW (page 7.2).

[Function]

Returns the remainder when X is divided by Y. Equivalent to:
(FDIFFERENCE X (FTIMES Y (FIX (FQUOTIENT X Y))))
Example:

(FREMAINDER 7.52.3) => 0.6

(FGREATERP X Y) [Function]
T,if X > Y, NIL otherwise.

(FLESSP X Y) (Function]
T,if X < Y, NIL otherwise.

(FEQP X Y) [Function]

(FMIN X1 X2 XN)

Returns T if N and M are equal floating point numbers; NIL
otherwise. FEQP converts N and M to floating point
numbers.Causes NON-NUMERIC ARG error if either N or M are
not numbers.

[NoSpread Function]

Returns the minimum of Xy, X5, ..., X (FMIN) returns the largest
possible floating point number, the value of MAX.FLOAT.

NUMBERS AND ARITHMETIC FUNCTIONS

FLOATING POINT ARITHMETIC .

(FMAX X1X5... XN)

[NoSpread Function]

Returns the maximum of Xy, X5, ..., Xp. (FMAX) returns the

smallest possible floating point number, the value of
MIN.FLOAT.

(FLOAT X) [Function]
Converts X to a floating point number. Example:

(FLOATO0) => 0.0
7.5 Other Arithmetic Functions

(EXPTAN) [Function]
Returns ATN. If A is an integer and N is a positive integer,
returns an integer, e.g, (EXPT 3 4) => 81, otherwise returns a
floating point number. If Ais negative and N fractional, an error
is generated, ILLEGAL EXPONENTIATION. If N is floating and
either too large or too small, an error is generated, VALUE OUT
OF RANGE EXPT.

(SQRTA) [Function]
Returns the square root of N as a floating point number. N may
be fixed or floating point. Generates an errorif N is negative.

(LOG X) [Function]
Returns the natural logarithm of X as a floating point number. X
can be integer or floating point.

(ANTILOG X) (Function]

(SIN X RADIANSFLQG)

Returns the floating point number whose logarithm is X. X can
be integer or floating point. Example:

(ANTILOG 1) = e = > 2.71828...

[Function]

(COS X RADIANSFLG)

Returns the sine of X as a floating point number. X isin degrees
unless RADIANSFLG=T.

[Function]

(TAN X RADIANSFLG)

Similar to SIN.

[Function]

Similar to SIN.

NUMBERS AND ARITHMETIC FUNCTIONS

OTHER ARITHMETIC FUNCTIONS

(ARCSIN X RADIANSFLG)

[Function]

(ARCCOS X RADIANSFLG)

X is a number between -1 and 1 (or an error is generated). The
value of ARCSIN is a floating point number, and is in degrees
untess RADIANSFLG=T. In other words, if (ARCSIN X
RADIANSFLG) = Z then (SIN Z RADIANSFLG) = X. The range of the
value of ARCSIN is -90 to +90 for degrees, -"P17/2 to "P17/2 for
radians.

[Function]

(ARCTAN X RADIANSFLG)

Similar to ARCSIN. Rangeis0to 180,0to "PI".

[Function]

Similar to ARCSIN. Rangeis0to180,0to "PI".

(ARCTAN2 Y X RADIANSFLG) [Function]

(RAND LOWER UPPER)

Computes (ARCTAN (FQUOTIENT Y X) RADIANSFLG), and returns
a corresponding value in the range -180 to 180 (or -"PI™ to “Pt7),
i.e. the result is in the proper quadrant as determined by the
signs of Xand Y.

[Function]

(RANDSET X)

Returns a pseudo-random number between LOWER and UPPER
inclusive, i.e., RAND can be used to generate a sequence of
random numbers. If both limits are integers, the value of RAND
is an integer, otherwise it is a floating point number. The
algorithm is completely deterministic, i.e., given the same initial
state, RAND produces the same sequence of values. The internal
state of RAND is initialized using the function RANDSET
described below.

[Function]

Returns the internal state of RAND. If X=NIL, just returns the
current state. If X=T, RAND is initialized using the clocks, and
RANDSET returns the new state. Otherwise, X is interpreted as a
previous internal state, i.e., a value of RANDSET, and is used to
reset RAND. For example,

« (SETQ OLDSTATE (RANDSET))

«(for X from 1 to 10 do (PRIN1 (RAND 1 10)))
2847592748NIL
« (RANDSET OLDSTATE)

« (for X from 1 to 10 do (PRIN1 (RAND 1 10)))
2847592748NIL

NUMBERS AND ARITHMETIC FUNCTIONS

TABLE OF CONTENTS

8. Record Package 8.1
8.1. FETCH and REPLACE 8.2
8.2. CREATE 8.3
8.3. TYPE? 8.5
8.4. WITH 8.5
8.5. Record Declarations 8.6

8.5.1. Record Types 8.7
8.5.2. Optional Record Specifications 8.14
8.6. Defining New Record Types 8.15
8.7. Record Manipulation Functions 8.16
8.8. Changetran 8.17
8.9. Built-In and User Data Types 8.20

L

TABLE OF CONTENTS

TOC.1

TABLE OF CONTENTS

[This page intentionally left blank]

TOC.2 TABLE OF CONTENTS

8. RECORD PACKAGE

The advantages of "data abstraction” have long been known:
more readable code, fewer bugs, the ability to change the data
structure without having to make major modifications to the
program, etc. The record package encourages and facilitates this
good programming practice by providing a uniform syntax for
creating, accessing and storing data into many different types of
data structures (arrays, list structures, association lists, etc.) as
well as removing from the user the task of writing the various
manipulation routines. The user declares (once) the data
structures used by his programs, and thereafter indicates the
manipulations of the data in a data-structure-independent
manner. Using the declarations, the record package
automatically computes the corresponding Interlisp expressions
necessary to accomplish the indicated access/storage operations.
If the data structure is changed by modifying the declarations,
the programs automatically adjust to the new conventions.

The user describes the format of a data structure (record) by
making a “record declaration” (see page 8.6). The record
declaration is a description of the record, associating names with
its various parts, or "fields". For example, the record declaration
(RECORD MSG (FROM TO . TEXT)) describes a data structure
called MSG, which contains three fields: FROM, TO, and TEXT.
The user can reference these fields by name, to retrieve their
values or to store new values into them, by using the FETCH and
REPLACE operators (page 8.2). The CREATE operator {(page 8.3)
is used for creating new instances of a record, and TYPE? (page
8.5) is used for testing whether an object is an instance of a
particular record. (note: all record operators can be in either
upper or lower case.)

Records may be implemented in a variety of different ways, as
determined by the first element (“record type") of the record
declaration. RECORD (used to specify elements and tails of a list
structure) is just one of several record types currently
implemented. The user can specify a property list format by
using the record type PROPRECORD, or that fields are to be
associated with parts of a data structure via a specified hash
array by using the record type HASHLINK, or that an entirely new
data type be allocated (as described on page 8.20) by using the
record-type DATATYPE.

The record package is implemented through the DWIM/CLISP
facilities, so it contains features such as spelling correction on

RECORD PACKAGE

8.1

RECORD PACKAGE

field names, record types, etc. Record operations are translated
using all CLISP declarations in effect (standard/fast/undoable); it
is also possible to declare local record declarations that override
glohal ones (see page 21.12).

The file package includes a RECORDS file package command for
dumping record declarations (page 17.38), and FILES? and
CLEANUP will inform the user about records that need to be
dumped.

8.1

FETCH and REPLACE

The fields of a record are accessed and changed with the FETCH
and REPLACE operators. If the record MSG has the record
declaration (RECORD MSG (FROM TO . TEXT)), and X is a MSG
data structure, (fetch FROM of X) will return the value of the
FROM field of X, and (replace FROM of X with Y) will replace this
field with the value of Y. In general, the value of a REPLACE
operation is the same as the value stored into the field.

Note that the form (fetch FROM of X) implicitly states that X is an
instance of the record MSG, or at least it should to be treated as
such for this particular operation. In other words, the
interpretation of (fetch FROM of X) never depends on the value
of X. Therefore, if X is not a MSG record, this may produce
incorrect results. The TYPE? record operation (page 8.5) may be
used to test the types of objects.

If there is another record declaration, (RECORD REPLY (TEXT .
RESPONSE)), then (fetch TEXT of X) is ambiguous, because X
could be either a MSG or a REPLY record. In this case, an error
will occur, AMBIGUOUS RECORD FIELD. To clarify this, FETCH
and REPLACE can take a list for their "field" argument: (fetch
(MSG TEXT) of X) will fetch the TEXT field of an MSG record.
Note that if a field has an identical interpretation in two
declarations, e.g. if the field TEXT occurred in the same location
within the declarations of MSG and REPLY, then (fetch TEXT of
X) would not be considered ambiguous.

An exception to this rule is that "user"” record declarations take
precedence over "system" record declarations, in cases where an
unqualified field name would be considered ambiguous. System
records are declared by including (SYSTEM) in the record
declaration (see page 8.15). All of the records defined in the
standard Interlisp-D system are defined as system records.

Another complication can occur if the fields of a record are
themselves records. The fields of a record can be further broken
down into sub-fields by a "subdeclaration” within the record
declaration (see page 8.14). For example,

8.2

RECORD PACKAGE

FETCH AND REPLACE

(RECORD NODE (POSITION . LABEL) (RECORD POSITION (XLOC.
YLOCQ)))

permits the user to access the POSITION field with (fetch
POSITION of X), orits subfield XLOC with (fetch XLOC of X).

The user may also elaborate a field by declaring that field name
in a separate record declaration (as opposed to an embedded
subdeclaration). For instance, the TEXT field in the MSG and
REPLY records above may be subdivided with the seperate record
declaration (RECORD TEXT (HEADER . TXT)). Fields of subfields
(to any level of nested subfields) are accessed by specifying the
“data path" as a list of record/field names, where there is some
path from each record-to the next in the list. For instance, (fetch
(MSG TEXT HEADER) of X) indicates that X is to be treated as a
MSG record, its TEXT field should be accessed, and its HEADER
field should be accessed. Only as much of the data path as is
necessary to disambiguate it needs to be specified. In this case,
(fetch (MSG HEADER) of X) is sufficient. The record package
interprets a data path by performing a tree search among all
current record declarations for a path from each name to the
next, considering first local declarations (page 21.13) and then
global ones. The central point of separate declarations is that
the (sub)record is not tied to another record (as with embedded
dedlarations), and therefore can be used in many different
contexts. If a data-path rather than a single field is ambiguous,
(e.g., if there were yet another declaration (RECORD TO (NAME .
HEADER)) and the user specified (fetch (MSG HEADER) of X)), the
error AMBIGUOUS DATA PATH is generated.

FETCH and REPLACE forms are translated using the CLISP
declarations in effect (see page 21.12). FFETCH and FREPLACE
are versions which insure fast CLISP declarations will be in effect,

/REPLACE insures undoable declarations.

8.2 CREATE

Record operations can be applied to arbitrary structures, i.e., the
user can explicitely creating a data structure (using CONS, etc),
and then manipulate it with FETCH and REPLACE. However, to
be consistant with the idea of data abstraction, new data should
be created using the same declarations that define its data paths.
This can be done with an expression of the form:

(create'RECORD-NAME . ASSIGNMENTS)

A CREATE expression translates into an appropriate interlisp
form using CONS, LIST, PUTHASH, ARRAY, etc,, that creates the
new datum with the various fields initialized to the appropriate

RECORD PACKAGE

83

CREATE

FIELD-NAME « FORM
USING FORM

COPYING FORM

REUSING FORM

SMASHING FORM

values. ASSIGNMENTS is optional and may contain expressions of
the following form:

Specifies initial value for FIELD-NAME.

Specifies that for all fields not explicitly given a value, the value
of the corresponding field in FORM is to be used.

Similar to USING except the corresponding values are copied
(with COPYALL).

Similar to USING, except that wherever possible, the
corresponding structure in FORM is used.

A new instance of the record is not created at all; rather, the
value of FORM is used and smashed.

The record package goes to great pains to insure that the order
of evaluation in the translation is the same as that given in the
original CREATE expression if the side effects of one expression
might affect the evaluation of another. For example, given the
declaration (RECORD CONS (CAR . CDR)), the expression (create
CONS CDR&X CARe&Y) will translate to (CONS Y X), but (create
CONS CDR«—(FOO) CAR«(FIE)) will translate to (LAMBDA ($%1)
(CONS (PROGN (SETQ $$1 (FOO)) (FIE)) $$1))) because FOO might
set some variables used by FIE.

Note that (create RECORD REUSING FORM ...) does not itself do
any destructive operations on the value of FORM. The
distinction between USING and REUSING is that (create RECORD
reusing FORM ...) will incorporate as much as possible of the old
data structure into the new one being created, while (create
RECORD using FORM ..) will create a completely new data
structure, with only the contents of the fields re-used. For
example, REUSING a PROPRECORD just CONSes the new
property names and values onto the list, while USING copies the
top level of the list. Another exampie of this distinction occurs
when a field is elaborated by a subdeciaration (page 8.14):
USING will create a new instance of the sub-record, while
REUSING will use the old contents of the field (uniess some field
of the subdeclaration is assigned in the CREATE expression.)

if the value of a field is neither explicitly specified, nor implicitly
specified via USING, COPYING or REUSING, the default value in
the declaration is used, if any, otherwise NIL. (Note: For
BETWEEN fields in DATATYPE records, Ny is used; for other
non-pointer fields zero is used.) For example, following
(RECORD A (B CD) D «3),

(create A B&T)
= => (LISTTNIL3)

(create A B«T using X)
= = > (LISTT(CADR X) (CADDR X))

(create A B«T copying X))

8.4

RECORD PACKAGE

CREATE

"~ ==> [LISTT(COPYALL (CADR X)) (COPYALL (CADDR X]

(create A B«T reusing X)
= =2 > (CONS T(CDR X))

8.3 TYPE?

The record package allows the user to test if a given datum
"looks like" an instance of a record. This can be done via an
expression of the form

(type? RECORD-NAME FORM)

TYPE? is mainly intended for records with a record type of
DATATYPE or TYPERECORD. For DATATYPEs, the TYPE? check is _
exact; i.e. the TYPE? expression will return non-NIL only if the
value of FORM is an instance of the record named by
RECORD-NAME. For TYPERECORDs, the TYPE? expression will
check that the value 'of FORM is a list beginning with
RECORD-NAME. For ARRAYRECORD:s, it checks that the value is
an array of the correct size. For PROPRECORDs and
ASSOCRECORDs, a TYPE? expression will make sure that the
value of FORM is a property/association list with property names
among the field-names of the declaration.

There is no built-in type test for records of type ACCESSFNS,
HASHLINK or RECORD. Type tests can be defined for these kinds
of records, or redefined for the other kinds, by including an
expression of the form (TYPE? COM) in the record declaration
(see page 8.14). Attempting to execute a TYPE? expression for a
record that has no type test causes an error, TYPE? NOT
IMPLEMENTED FOR THIS RECORD.

8.4 WITH

Often one wants to write a complex expression that manipulates
several fields of a single record. The WITH construct can make it
easier to write such expressions by allowing one to refer to the
fields of a record as if they were variables within a lexical scope:

(with RECORD-NAME RECORD-INSTANCE FORM ... FORMp))

RECORD-NAME is the name of a record, and RECORD-INSTANCE
is an expression which evaluates to an instance of that record.
The expressions FORM; ... FORM) are evaluated so that

references to variables which are field-names of RECORD-NAME

RECORD PACKAGE

8.5

WITH

are implemented via FETCH and SETQs of those variables are
implemented via REPLACE.

For example, given

(RECORD RECN (FLD1 FLD2))
(SETQ INST (create RECN FLD1 « 10 FLD2 « 20))

Then the construct
(with RECN INST (SETQ FLD2 (PLUS FLD1 FLD2]
is equivalent to

(replace FLD2 of INST with (PLUS (fetch FLD1 of INST) (fetch FLD2
of INST]

Warning: WITH is implemented by doing simple substitutions in
the body of the forms, without regard for how the record fields
are used. This means, for example, if the record FOO is defined
by (RECORD FOO (POINTER1 POINTER2)), then the form

{(with FOO X (SELECTQ Y (POINTER1 POINTER1) NIL)
will be transtated as
(SELECTQ Y ((CAR X) (CAR X)) NIL]

The user should be careful that record field names are not used
except as variables in the WITH form:s.

8.5

Record Declarations

A record is defined by evaluating a record declaration, which is
an expression of the form:

(RECORD-TYPE RECORD-NAME RECORD-FIELDS . RECORD-TAIL)

RECORD-TYPE specifies the "type" of data being described by
the record declaration, and thereby implicitly specifies how the
corresponding access/storage operations are performed. The
different record types are described below.

RECORD-NAME is a litatom used to identify the record
declaration for creating instances of the record via CREATE,
testing via TYPE?, and dumping to files via the RECORDS file
package command (page 17.38). DATATYPE and TYPERECORD
declarations also use RECORD-NAME to identify the data
structure (as described below).

RECORD-FIELDS describes the structure of the record. Its exact
interpretation varies with RECORD-TYPE. For most record types
it defines the names of the fields within the record that can be
accessed with FETCH and REPLACE.

8.6

RECORD PACKAGE

RECORD DECLARATIONS

8.5.1 Record Types

RECORD-TAIL is an optional list that can be used to specify
default values for record fields, special CREATE and TYPE? forms,
and subdeclarations (described below).

Normally, record declaration forms are typed in to the top-level
executive or read from a file, and they define the structure of the
record globally. Local record declarations within the context of a
function are defined by including a record declaration form in
the CLISP declaration for the function, rather than evaluating
the expression itself (see page 21.13).

Note: Although record declarations are evaluatable forms, and
thus can be included in functions, changing a record declaration
dynamically (at run-time) is not recommended. When a FETCH or
REPLACE operation is interpreted, and the record declaration has
changed, the form has to be re-translated. If a function
containing FETCH or REPLACE operations has been compiled, it
may be necessary to re-compile. For applications which need to
change record declarations dynamically, users should consider
using more flexible data structures, such as association lists or
property lists.

RECORD

Records can be used to describe a large variety of data objects,
that are manipulated in different ways. The RECORD-TYPE field
of the record declaration specifies how the data object is
created, and how the various record fields are accessed.
Depending on the record type, the record fields may be stored in
a list, or in an array, or on the property list of a litatom. The
following record types are defined:

[Recotd Type]

TYPERECORD

The RECORD record type is used to describe list structures.
RECORD-FIELDS is interpreted as a list structure whose non-NIL
literal atoms are taken as field-names to be associated with the
corresponding elements and tails of a list structure. For example,
with the record decdlaration (RECORD MSG (FROM TO . TEXT)),
(fetch FROM of X) translates as (CAR X).

"NIL can be used as a place marker to fill an unnamed field, e g.,

(A NIL B) describes a three element list, with B corresponding to
the third element. A number may be used to indicate a sequence
of NiLs, e.g. (A 4 B) is interpreted as (A NIL NiL NIL NiL B).

[Record Type]

The TYPERECORD record type is similar to RECORD, except that
the record name is added to the front of the list structure to
signify what “type" of record it is. This type field is used by the

RECORD PACKAGE

8.7

RECORD DECLARATIONS

ASSOCRECORD

record package in the translation of TYPE? expressions. CREATE
will insert an extra field containing RECORD-NAME at the
beginning of the structure, and the translation of the access and
storage functions will take this extra field into account. For
example, for (TYPERECORD MSG (FROM TO . TEXT)), (fetch
FROM of X) translates as (CADR X), not (CAR X).

[Record Type]

PROPRECORD

The ASSOCRECORD record type is used to describe list structures
where the fields are stored in association list format:

((FIELDNAME . VALUE 1) (FIELDNAME 3 . VALUE) ...)

RECORD-FIELDS is a list of literal atoms, interpreted as the
permissable list of field names in the association list. Accessing is
performed with ASSOC (or FASSOC, depending on current CLISP
declarations, see page 21.12), storing with PUTASSOC.

[Record Typel

ARRAYRECORD

The PROPRECORD record type is used to describe list structures
where the fields are stored in property list format:

(FIELDNAME 1 VALUE FIELDNAME VALUE) ...)
RECORD-FIELDS is a list of literal atoms, interpreted as the

permissable list of field names in the property list. Accessing is
performed with LISTGET, storing with LISTPUT.

Both ASSOCRECORD and PROPRECORD are useful for defining
data structures in which it is often the case that many of the
fields are NIL. A CREATE expression for these record types only
stores those fields which are non-NIL. Note, however, that with
the record declaration (PROPRECORD FIE (H | J)) the expression
(create FIE) would still construct (H NIL), since a later operation of
(replace J of X with Y) could not possibly change the instance of
the record if it were NIL.

[Record Typel

The ARRAYRECORD record type is used to describe arrays.
RECORD-FIELDS is interpreted as a list of field names that are
associated with the corresponding elements of an array. NIL can
be used as a place marker for an unnamed field (element).
Positive integers can be used as abbreviation for the
corresponding number of NiLs. For example, (ARRAYRECORD
(ORG DEST NIL ID 3 TEXT)) describes an eight element array, with
ORG corresponding to the first element, ID to the fourth, and
TEXT to the eighth.

8.8

RECORD PACKAGE

RECORD DECLARATIONS -

HASHLINK

Note that ARRAYRECORD only creates arrays of pointers. Other
kinds of arrays must be implemented by the user with the .
ACCESSFNS record type (page 8.12).

[Record Type]

ATOMRECORD

The HASHLINK record type can be used with any type of data
object: it specifies that the value of a single field can be accessed
by hashing the data object in a given hash array. Since the .
HASHLINK record type describes an accessing method, rather
than a data structure, the CREATE expression is meaningless for
HASHLINK records.

RECORD-FIELDS is either an atom FIELD-NAME, or a list -

(FIELD-NAME HARRAYNAME HARRAYSIZE). HARRAYNAME is a

variable whose value is the hash array to be used; if not given,
SYSHASHARRAY is used. If the value of the variable
HARRAYNAME is not a hash array (at the time of the record
declaration), it will be set to a new hash array with a size of -
HARRAYSIZE. HARRAYSIZE defaults to 100.

The HASHLINK record type is useful as a subdeclaration to other
records to add additional fields to already existing data
structures (see page 8.14). For example, suppose that FOO is a
record declared with (RECORD FOO (A B C)). To add an aditional
field BAR, without modifying the already existing data strutures,
redeclare FOO with:

(RECORD FOO (A B C) (HASHLINK FOO (BAR BARHARRAY)))

Now, (fetch BAR of X) will translate into (GETHASH X
BARHARRAY), hashing off the existing list X.

[Record Type]

DATATYPE

The ATOMRECORD record type is used to describe property lists
of litatoms. RECORD-FIELDS is a list of property names.
Accessing is performed with GETPROP, storing with PUTPROP.
The CREATE expression is not initially defined for ATOMRECORD
records.

[Record Type]

POINTER

The DATATYPE record typeis used to define a new user data type
with type name RECORD-NAME (by calling DECLAREDATATYPE,
page 8.21). Unlike other record types, the records of a
DATATYPE declaration are represented with a completely new
Interlisp type, and not in terms of other existing types.

RECORD-FIELDS is interpreted as a list of field specifications,
where each specification is either a list (FIELDNAME FIELDTYPE),
or an atom FIELDNAME. if FIELDTYPE is omitted, it defaults to
POINTER. Possible values for FIELDTYPE are:

Field contains a pointer to any arbitrary Interlisp object.

RECORD PACKAGE

8.9

RECORD DECLARATIONS

INTEGER
FIXP

FLOATING
FLOATP

SIGNEDWORD
FLAG

BITS N

BYTE

WORD
XPOINTER

Field contains a signed integer. Note that an INTEGER field is not
capable of holding everything that satisfies FIXP, such as
bignums (page 7.1).

Field contains a floating point number.

Field contains a 16-bit signed integer.

Field is a one bit field that "contains” T or NiL.
Field contains an N-bit unsigned integer.
Equivalent to BITS 8.

Equivalent to BITS 16.

Field contains a pointer like POINTER, except that the field is not
reference counted by the Interlisp-D garbage collector.
XPOINTER fields are useful for implementing back-pointers in
structures that would be circular and not otherwise collected by
the reference-counting garbage collector.

Warning: XPOINTER fields should be used with great care. Itis
possible to damage the integrity of the storage allocation system
by using pointers to objects that have been garbage collected.
Code that uses XPOINTER fields should be sure that the objects
pointed to have not been garbage collected. This can be done in
two ways: The first is to maintain the object in a global
structure, so that it is never garbage collected until explicitly
deleted from the structure, at which point the program must
invalidate all the XPOINTER fields of other objects pointing at it.
The second is to declare the object as a DATATYPE beginning
with a POINTER field that the program maintains as a pointer to
an object of another type (e.g., the object containing the
XPOINTER pointing back at it), and test that field for
reasonableness whenever using the contents of the XPOINTER
field.

For example, the declaration

(DATATYPE FOO
((FLG BITS 12)
TEXT
HEAD
(DATE BITS 18)
(PRIO FLOATP)
(READ? FLAG)))

would define a data type FOO with two pointer fields, a floating
point number, and fields for a 12 and 18 bit unsigned integers,
and a flag (one bit). Fields are allocated in such a way as to
optimize the storage used and not necessarily in the order
specified. Generally, a DATATYPE record is much more storage

8.10

RECORD PACKAGE

RECORD DECLARATIONS

BLOCKRECORD

compact than the corresponding RECORD structure would be; in
addition, access is faster.

Since the user data type must be set up at run-time, the
RECORDS file package command will dump a
DECLAREDATATYPE expression as well as the DATATYPE
declaration itself. If the record declaration is otherwise not
needed at runtime, it can be kept out of the compiled file by
using a (DECLARE: DONTCOPY --) expression (see page 17.40),
but it is still necessary to ensure that the datatype is properly
initialized. For this, one can use the INITRECORDS file package
command (page 17.38), which will dump only the
DECLAREDATATYPE expression.

Note: When defining a new data type, it is sometimes useful to
call the function DEFPRINT (page 25.16) to specify how instances
of the new data type should be printed. This can be specified in
the record declaration by including an INIT record specification
(page 8.14), e.g. (DATATYPE QV.TYPE .. (INIT (DEFPRINT
'QV.TYPE (FUNCTION PRINT.QV.TYPE)))).

Note: DATATYPE declarations cannot be used within local record
declarations (page 21.13).

[Record Type]

The BLOCKRECORD record type is used in low-level system
programming to “overlay” an organized structure over an
arbitrary piece of "unboxed" storage. RECORD-FIELDS is
interpreted exactly as with a DATATYPE declaration, except that
fields are not automatically rearranged to maximize storage
efficiency. Like an ACCESSFNS record, a BLOCKRECORD does not .
have concrete instances; it merely provides a way of interpreting
some existing block of storage. Thus, one cannot create an
instance of a BLOCKRECORD (unless the declaration includes an
explicit CREATE expression), nor is there a default type?
expression for a BLOCKRECORD.

Warning: The programmer should exercise caution in using
BLOCKRECORD declarations, as they enable one to write
expressions that fetch and store arbitrary data in arbitrary
locations, thereby evading the normal type system. Except in
very specialized situations, a BLOCKRECORD should never
contain POINTER or XPOINTER fields, nor be used to overlay an
area of storage that contains pointers. Such use could
compromise the garbage collector and storage allocation system.
The programmer is responsible for ensuring that all FETCH and .
REPLACE expressions are performed only on suitable objects, as
no type testing is performed.

A typical use for the BLOCKRECORD type in user code is to
overlay a non-pointer portion of an existing DATATYPE. For this
use, the LOCF macro is useful. (LOCF (fetch FIELD of DATUM))

RECORD PACKAGE

8.1

RECORD DECLARATIONS

ACCESSFNS

can be used to refer to the storage that begins at the first word
that contains FIELD of DATUM. For example, to define a new
kind of Ethernet packet (page 31.26), one could overlay the
“body" portion of the ETHERPACKET datatype declaration as
follows:

(ACCESSFNS MYPACKET
((MYBASE (LOCF (fetch (ETHERPACKET EPBODY) of DATUM))))
(BLOCKRECORD MYBASE
((MYTYPE WORD)
(MYLENGTH WORD)
(MYSTATUS BYTE)
(MYERRORCODE BYTE)
(MYDATA INTEGER)))
(TYPE? (type? ETHERPACKET DATUM}))

With this declaration in effect, the expression (fetch MYLENGTH
of PACKET) would retrieve the second 16-bit field beyond the
offset inside PACKET where the EPBODY field starts. For more
examples, see the EtherRecords library package.

[Record Type]

The ACCESSFNS record type is used to define data structures with
user-defined access functions. For each field name, the user
specifies how it is to be accessed and set. This allows the use of
the record package with arbitrary data structures, with complex
access methods.

RECORD-FIELDS is interpreted as a list of elements of the form
(FIELD-NAME ACCESSDEF SETDEF). ACCESSDEF should be a
function of one argument, the datum, and will be used for
accessing the value of the field. SETDEF should be a function of
two arguments, the datum and the new value, and will be used
for storing a new value in a field. SETDEF may be omitted, in
which case, no storing operations are allowed.

ACCESSDEF and/or SETDEF may also be a form written in terms of
variables DATUM and (in SETDEF) NEWVALUE. For exampie,
given the declaration

[ACCESSFNS FOO
((FIRSTCHAR (NTHCHAR DATUM 1)
(RPLSTRING DATUM 1 NEWVALUE))
(RESTCHARS (SUBSTRING DATUM 2]

(replace (FOO FIRSTCHAR) of X with Y) would translate to
(RPLSTRING X 1 Y). Since no SETDEF is given for the RESTCHARS
field, attempting to perform (replace (FOO RESTCHARS) of X
with Y) would generate an error, REPLACE UNDEFINED FOR
FIELD. Note that ACCESSFNS do not have a CREATE definition.
However, the user may supply one in the defaults or
subdeclarations of the declaration, as described below.

8.12

RECORD PACKAGE

RECORD DECLARATIONS

Attempting to CREATE an ACCESSFNS record without specifying
a create definition will cause an error CREATE NOT DEFINED FOR
THIS RECORD.

ACCESSDEF and SETDEF can also be a property list which specify
FAST, STANDARD and UNDOABLE versions of the ACCESSFNS
forms, e.g.

[ACCESSFNS LITATOM
((DEF (STANDARD GETD FAST FGETD)
(STANDARD PUTD UNDOABLE /PUTD]

means if FAST declaration is in effect, use FGETD for fetching, if
UNDOABLE, use /PUTD for saving (see CLISP declarations, page
21.12).

Note: SETDEF forms should be written so that they return the
new value, to be consistant with REPLACE operations for other
record types. The REPLACE record operator does not enforce
this, though.

The ACCESSFNS facility allows the use of data structures not
specified by one of the built-in record types. For example, one
possible representation of a data structure is to store the fieldsin
parallel arrays, especially if the number of instances required is
known, and they do not need to be garbage collected Thus, to
implement a data structure called LINK with two fields FROM
and TO, one would have two arrays FROMARRAY and TOARRAY.
The representation of an "instance" of the record would be an
integer which is used to index into the arrays. This can be
accomplished with the declaration:

[ACCESSFNS LINK
((FROM (ELT FROMARRAY DATUM)
(SETA FROMARRAY DATUM NEWVALUE))
(TO (ELT TOARRAY DATUM)
(SETA TOARRAY DATUM NEWVALUE)))
(CREATE (PROG1 (SETQ LINKCNT (ADD1 LINKCNT))
(SETA FROMARRAY LINKCNT FROM)
(SETA TOARRAY LINKCNT TO)))
(INIT (PROGN
(SETQ FROMARRAY (ARRAY 100))
(SETQ TOARRAY (ARRAY 100))
(SETQ LINKCNT 0)]

To create a new LINK, a counter is incremented and the new
elements stored. (Note: The CREATE form given the declaration
probably should include a test for overflow.)

RECORD PACKAGE

RECORD DECLARATIONS

8.5.2 Optional Record Specifications

FIELD-NAME ¢« FORM

(CREATE FORM)

(INIT FORM)

(TYPE? FORM)

(SUBRECORD NAME . DEFAULTS)

a subdeclaration

After the RECORD-FIELDS item in a record declaration expression
there can be an arbitrary number of additional expressions in
RECORD-TAIL. These expressions can be used to specify default
values for record fields, special CREATE and TYPE? forms, and
subdeclarations. The following expressions are permitted:

Allows the user to specify within the record declaration the
default value to be stored in FIELD-NAME by a CREATE (if no
value is given within the CREATE expression itseif). Note that
FORM is evaluated at CREATE time, not when the declaration is
made.

Defines the manner in which CREATE of this record should be
performed. This provides a way of specifying how ACCESSFNS
should be created or overriding the usual definition of CREATE.
If FORM contains the field-names of the declaration as variables,
the forms given in the CREATE operation will be substituted in.
If the word DATUM appears in the create form, the original
CREATE definition is inserted. This effectively allows the user to
"advise" the create.

Note: (CREATE FORM) may also be specified as "RECORD-NAME
« FORM" .

Specifies that FORM should be evaluated when the record is
declared. FORM will also be dumped by the INITRECORDS file
package command (page 17.38).

For example, see the exampie of an ACCESSFNS record
dedaration above. In this example, FROMARRAY and TOARRAY
are initialized with an INIT form.

Defines the manner in which TYPE? expressions are to be
translated. FORM may either be an expression in terms of
DATUM or a function of one argument.

NAME must be a field that appears in the current declaration
and the name of another record. This says that, for the purposes
of translating CREATE expressions, substitute the top-level
declaration of NAME for the SUBRECORD form, adding on any
defaults specified.

For example: Given (RECORD B (E F G)), (RECORD A (B C D)
(SUBRECORD B)) would be treated like (RECORD A (B C D)
(RECORD B (E F G))) for the purposes of translating CREATE
expressions.

If a record declaration expression occurs among the record
specifications of another record declaration, it is known as a
"subdeclaration.” Subdeclarations are used to declare that fields
of a record are to be interpreted as another type of record, or
that the record data object is to be interpreted in more than one
way.

RECORD PACKAGE

RECORD DECLARATIONS

(SYNONYM FIELD (SYNq ... SYNyp)))

'

(SYSTEM)

The RECORD-NAME of a subdeclaration must be either the
RECORD-NAMIE of its immediately superior declaration or one of
the superior’'s field-names. Instead of identifying the declaration
as with top level declarations, the record-name of a
subdeclaration identifies the parent field or record that is being
described by the subdeclaration. Subdeclarations can be nested
to an arbitrary depth.

Giving a subdeclaration (RECORD NAME; NAME)) is a simple
way of defining a synonym for the field NAME .

It is possible- for a given field to have more than one
subdeclaration. For example, in

(RECORD FOO (A B) (RECORD A (C D)) (RECORD A (QR)))

(Q R) and (C D) are "overlayed," i.e. (fetch Q of X) and (fetch C of
X) would be equivalent. In such cases, the first subdeclaration is
the one used by CREATE.

FIELD must be a field that appears in the current declaration.
This defines SYNy ... SYNy all as synonyms of FIELD. If there is
only one synonym, this can be written as (SYNONYM FIELD SYN).

If (SYSTEM) is included in a record declaration, this indicates that
the record is a "system" record rather than a "user" record. The
only distinction between the two types of records is that "user”
record declarations take precedence over "system" record
declarations, in cases where an unqualified field name would be
considered ambiguous. All of the records defined in the
standard Interlisp-D system are defined as system records.

8.6 Defining New Record Types

In addition to the built-in record types, users can declare their
own record types by performing the following steps:

(1) Add the new record-type to the value of
CLISPRECORDTYPES,;.

(2) Perform (MOVD 'RECORD RECORD-TYPE), i.e. give the
record-type the same definition as that of the function RECORD;

(3) Put the name of a function which will return the transfation
on the property list of RECORD-TYPE, as the value of the
property USERRECORDTYPE. Whenever a record declaration of
type RECORD-TYPE is encountered, this function will be passed
the record dedlaration as its argument, and should return a new
record declaration which the record package will then use in its
place.

RECORD PACKAGE

8.15

RECORD MANIPULATION FUNCTIONS

8.7 Record Manipulation Functions

(EDITREC NAME COM ¢ ... COMp)) [NLambda NoSpread Function]

EDITREC calls the editor on a copy of all declarations in which
NAME is the record name or a field name. On exit, it redeclares
those that have changed and undectares any that have been
deleted. If NAME is NIL, all declarations are edited.

COM ... COMp, are (optional) edit commands.

When the user redeclares a global record, the translations of all
expressions involving that record or any of its fields are
automaticaily deleted from CLISPARRAY, and thus will be
recomputed using the new information. [f the user changes a
local record declaration (page 21.13), or changes some other
CLISP declaration (page 21.12), e.g., STANDARD to FAST, and
wishes the new information to affect record expressions already
translated, he must make sure the corresponding translations are
removed, usually either by CLISPIFYing or using the DW edit
macro.

(RECLOOK RECNAME — — — —) [Function]

(FIELDLOOK FIELDNAME)

Returns the entire declaration for the record named RECNAME;
NIL if there is no record declaration with name RECNAME. Note
that the record package maintains internal state about current
record declarations, so performing destructive operations (e.g.
NCONC) on the value of RECLOOK may leave the record package
in an inconsistent state. To change a record declaration, use
EDITREC.

[Function]

Returns the list of declarations in which FIELDNAME is the name
of a field.

(RECORDFIELDNAMES RECORDNAME —) [Function]

Returns the list of fields declared in record RECORDNAME.
RECORDNAME may either be a name or an entire declaration.

(RECORDACCESS FIELD DATUM DEC TYPE NEWVALUE) [Function]

TYPE is one of FETCH, REPLACE, FFETCH, FREPLACE, /REPLACE or
their lowercase equivalents. TYPE =NIL means FETCH. If TYPE
corresponds to a fetch operation, i.e. is FETCH, or FFETCH,
RECORDACCESS performs (TYPE FIELD of DATUM). |If TYPE
corresponds to a replace, RECORDACCESS performs (TYPE FIELD
of DATUM with NEWVALUE). DECis an optional declaration; if
given, FIELD is interpreted as a field name of that declaration.

RECORD PACKAGE

RECORD MANIPULATION FUNCTIONS

Note that RECORDACCESS is relatively inefficient, although it is
better than constructing the equivalent form and performing an
EVAL.

(RECORDACCESSFORM FIELD DATUM TYPE NEWVALUE) [Function]

Returns the form that would be compiled as a result of a record
access. TYPE is one of FETCH, REPLACE, FFETCH, FREPLACE,
/REPLACE or their lowercase equivalents. TYPE=NIL means
FETCH.

8.8 Changetran

A very common programming construction consists of assigning
a new value tosome datum thatis a function of the current value
of that datum. Some examples of such read-modify-write
sequences include:

Incrementing a counter:

(SETQ X (IPLUS X 1))

Pushing anitem on the front of a list:
(SETQ X (CONS Y X))

Popping anitem off a list:

(PROG1 (CAR X) (SETQ X (CDR X)))

It is easier to express such computations when the datum in
question is a simple variable as above than when itis an element
of some larger data structure. For example, if the datum to be
modified was (CAR X), the above examples would be:

(CAR (RPLACA X (IPLUS (CAR X) 1))
(CAR (RPLACA X (CONS Y (CAR X)))
(PROG1 (CAAR X) (RPLACA X (CDAR X)))

and if the datum was an element in‘an array, (ELT A N), the
examples would be:

(SETA AN (IPLUS (ELT AN) 1)))
(SETA A N (CONS Y (ELT A N))))
(PROG1 (CAR(ELT A N)) (SETA A N (CDR (ELT A N))))

The difficulty in expressing (and reading) modification idioms is
in part due to the well-known asymmetry of setting versus
accessing operations on structures: RPLACA is used to set what
CAR would return, SETA corresponds to ELT, and so on.

The "Changetran" facility is designed to provide a more -
satisfactory notation in which to express certain common (but

RECORD PACKAGE

CHANGETRAN

user-extensible) structure modification operations. Changetran
defines a set of CLISP words that encode the kind of medification
that is to take place, e.g. pushing on a list, adding to a number,
etc. More important, the expression that indicates the datum
whose value is to be modified needs to be stated only once.
Thus, the "change word"” ADD is used to increase the value of a
datum by the sum of a set of numbers. Its arguments are an
expression denoting the datum, and a set of items to be added
to its current value. The datum expression must be a variable or
an accessing expression (envolving FETCH, CAR, LAST, ELT, etc)
that can be translated to the appropriate setting expression.

For exam ple, (ADD (CADDR X) (FOO)) is equivalent to:

(CAR (RPLACA (CDDR X)
(PLUS (FOO) (CADDR X)))

if the datum expression is a complicated form involving
subsidiary function calls, such as (ELT (FOO X) (FIE Y))),
Changetran goes to some lengths to make sure that those
subsidiary functions are evaluated only once (it binds local
variables to save the resuits), even though they logically appear
in both the setting and accessing parts of the translation. Thus,
in thinking about both efficiency and possible side effects, the
user can rely on the fact that the forms will be evaluated only as
often as they appear in the expression.

For ADD and all other changewords, the lower-case version (add,
etc.) may also be specified. Like other CLISP words, change words
are translated using all CLISP declarations in effect (see page
21.12).

The following is a list of those change words recognized by
Changetran. Except for POP, the value of all built-in
changeword forms is defined to be the new value of the datum.

(ADD DATUM ITEM ¢ ITEM ...) [Change Word]

Adds the specified items to the current value of the datum, stores
the result back in the datum location. The translation will use
IPLUS, PLUS, or FPLUS according to the CLISP declarations in
effect (see page 21.12).

(PUSH DATUM ITEM 1 ITEM} ...) [Change Word]

(PUSHNEW DATUM ITEM)

CONSes the items onto the front of the current value of the
datum, and stores the result back in the datum location. For
example, (PUSH X A B) would translate as (SETQ X (CONS A
(CONS B X))).

[Change Word]

Like PUSH (with only one item) except that the item is not added
ifitis already FMEMB of the datum's value.

8.18

RECORD PACKAGE

CHANGETRAN

Note that, whereas (CAR (PUSH X 'FOOQ)) will always be FOO,
(CAR (PUSHNEW X 'FOO)) might be something else if FOO
already existed in the middle of the list.

(PUSHLIST DATUM ITEM{ ITEM ...) [Change Word]

(POP DATUM)

Similar to PUSH, except that the items are APPENDed in front of
the current value of the datum. For example, (PUSHLIST X A B)
would transiate as (SETQ X (APPEND A B X)).

[Change Word]

(SWAP DATUM 1 DATUM))

Returns CAR of the current value of the datum after storing its
CDR into the datum. The current value is computed only once
even though it is referenced twice. Note that this is the only
built-in changeword for which the value of the form is not the
new value of the datum.

[Change Word]

(CHANGE DATUM FORM)

Sets DATUM to DATUM); and.vice versa.

([Change Word]

This is the most flexible of all change words, since it enables the
user to provide an arbitrary form describing what the new value
should be, but it still highlights the fact that structure
modification is to occur, and still enables the datum expression
to appear only once. CHANGE sets DATUM to the value of
FORM?*, where FORM* is constructed from FORM by substituting
the datum expression for every occurrence of the litatom .
DATUM. For example, (CHANGE (CAR X) (ITIMES DATUM 5))

translates as (CAR (RPLACA X (ITIMES (CAR X) 5))).

CHANGE is useful for expressing modifications that are not
built-in and are not sufficiently common to justify defining a -
user-changeword. As for other changeword expressions, the
user need not repeat the datum-expression and need not worry
about multiple evaluation of the accessing form.

It is possible for the user to define new change words. To define -
a change word, say sub, that subtracts items from the current .
value of the datum, the user must put the property CLISPWORD,
value (CHANGETRAN . sub) on both the upper and lower-case -
versions of sub:

(PUTPROP ‘SUB 'CLISPWORD '(CHANGETRAN . sub))
(PUTPROP ‘sub 'CLISPWORD '(CHANGETRAN . sub))

Then, the user must put (on the Jower-case version of sub only)
the property CHANGEWORD, with value FN. FNis a function that
will be applied to a single argument, the whole sub form, and -
must return a form that Changetran can transiate into an

RECORD PACKAGE

CHANGETRAN

appropriate expression. This form should be a list structure with
the atom DATUM used whenever the user wants an accessing
expression for the current value of the datum to appear. The
form (DATUMe FORM) (note that DATUMe- is a single atom)
should occur once in the expression; this specifies that an

~appropriate storing expression into the datum should occur at

that point. For example, sub could be defined with:

(PUTPROP 'sub ‘CHANGEWORD
‘(LAMBDA (FORM)
(LIST'DATUM«
(LIST 'IDIFFERENCE
'DATUM
(CONS 'IPLUS (CDDR FORM))))))

If the expression (sub (CAR X) A B) were encountered, the
arguments to SUB would first be dwimified, and then the
CHANGEWORD function would be passed the list (sub (CAR X) A
B), and return (DATUMe (IDIFFERENCE DATUM (iPLUS A B))),
which Changetran would convert to (CAR (RPLACA X
(IDIFFERENCE (CAR X) (IPLUS A B)))).

Note: The sub changeword as defined above will always use
IDIFFERENCE and IPLUS; add uses the correct addition operation
depending on the current CLISP declarations (see page 21.12).

8.9 Buiit-In and User Data Types

Interlisp is a system for the manipulation of various kinds of
data; it provides a large set of built-in data types, which may be
used to represent a variety of abstract objects, and the user can
also define additional "user data types" which can be
manipulated exactly like built-in data types.

Each data type in Interlisp has an associated "type name,” a
litatom. Some of the type names of buiit-in data types are:
LITATOM, LISTP, STRINGP, ARRAYP, STACKP, SMALLP, FiXP, and
FLOATP. For user data types, the type name is specified when the
data typeis created.

(DATATYPES —) [Function]
Returns a list of all type names currently defined.

(USERDATATYPES) [Function]
Returns list of names of currently declared user data types.

(TYPENAME DATUM) [Function]

Returns the type name for the data type of DATUM.

8.20

RECORD PACKAGE

BUILT-IN AND USER DATA TYPES

(TYPENAMEP DATUM TYPE) I [Function]

Returns T if DATUM is an object with type name equal to TYPE,
otherwise NIL.

Note: TYPENAME and TYPENAMEP distinguish the logical data
types ARRAYP, CCODEP and HARRAYP, even though they may be
implemented as ARRAYPs in some Interlisp implementations.

In addition to built-in data-types such as atoms, lists, arrays, etc.,
Interlisp provides a way of defining completely new classes of
objects, with a fixed number of fields determined by the
definition of the data type. In order to define a new class of
objects, the user must supply a name for the new data type and
specifications for each of its fields. Each field may contain either .
a pointer (i.e., any arbitrary Interlisp datum), an integer, a
floating point number, or an N-bit integer.

Note: The most convenient way to define new user data types is
via DATATYPE record declarations (page 8.9) which call the
following functions.

(DECLAREDATATYPE TYPENAME FIELDSPECS — —) [Function]

Defines a new user data type, with the name TYPENAME.
FIELDSPECS is a list of “field specifications." Each field
specification may be one of the following:

POINTER Field may contain any Interlisp datum.
FIXP Field contains an integer.
FLOATP Field contains a floating point number.
(BITS N) Field contains a non-negative integer less than 2N,
BYTE Equivalent to (BITS 8).
WORD Equivalent to(BITS 16).
SIGNEDWORD Field contains a 16 bit signed integer.
DECLAREDATATYPE returns a list of "field descriptors,” one for
each element of FIELDSPECS. A field descriptor contains
information about where within the datum the field is actually
stored.
If FIELDSPECS is NIL, TYPENAME is "undeclared." |f TYPENAME is
already declared as a data type, it is undeclared, and then .
re-declared with the new FIELDSPECS. Aninstance of a data type
that has been undeclared has a type name of **DEALLOC**.
(FETCHFIELD DESCRIPTOR DATUM) [Function]

Returns the contents of the field described by DESCRIPTOR from
DATUM. DESCRIPTOR must be a “field descriptor™ as returned
by DECLAREDATATYPE or GETDESCRIPTORS. If DATUM is not an

RECORD PACKAGE

8.21

BUILT-IN AND USER DATA TYPES

instance of the datatype of which DESCRIPTOR is a descriptor,
causes error DATUM OF INCORRECT TYPE.

(REPLACEFIELD DESCRIPTOR DATUM NEWVALUE) [Function]

(NCREATE TYPE OLDOB)J)

Store NEWVALUE into the field of DATUM described by
DESCRIPTOR. DESCRIPTOR must be a field descriptor as returned
by DECLAREDATATYPE. If DATUM is not an instance of the
datatype of which DESCRIPTOR is a descriptor, causes error
DATUM OF INCORRECT TYPE. Value is NEWVALUE.

[Function]

Creates and returns a new instance of datatype TYPE.

iIf OLDOBJ is also a datum of datatype TYPE, the fields of the new
object are initialized to the values of the corresponding fields in
OLDOB.J.

NCREATE will not work for built-in datatypes, such as ARRAYP,
STRINGP, etc. If TYPE is not the type name of a previously
declared user data type, generates an error, ILLEGAL DATA TYPE.

(GETFIELDSPECS TYPENAME) [Function]

Returns a list which is EQUAL to the FIELDSPECS argument given
to DECLAREDATATYPE for TYPENAME; if TYPENAME is not a
currently declared data-type, returns NiL.

(GETDESCRIPTORS TYPENAME) (Function]

Returns a list of field descriptors, EQUAL to the value of
DECLAREDATATYPE for TYPENAME. -If TYPENAME is not an
atom, (TYPENAME TYPENAME) is used.

Note that the user can define how user data types are to be
printed via DEFPRINT (page 25.16), how they are to be evaluated
by the interpreter via DEFEVAL (page 10.13), and how they are to
be compiled by the compiler via COMPILETYPELST (page 18.11).

8.22

RECORD PACKAGE

TABLE OF CONTENTS

9. Conditionals and Iterative Statements 9.1
9.1. Data Type Predicates 9.1
9.2. Equality Predicates 9.2
9.3. Logical Predicates 9.3
9.4. The COND Conditional Function 9.4
9.5. ThelF Statement 9.5
9.6. Selection Functions 9.6
9.7. PROG and Associated Control Functions 9.7
9.8. The Iterative Statement 99

9.8.1. l.s.types 9.10
9.8.2. Iteration Variable l.s.oprs 9.12
9.8.3. Conditionl.s.oprs 9.15
I 9.8.4. Other l.s.oprs 9.16
9.8.5. Miscellaneous Hints on1.5.0prs 917
9.8.6. Errorsinlterative Statements 9.19
9.8.7. Defining New lterative Statement Operators 9.20

TABLE OF CONTENTS TOC1

TABLE OF CONTENTS

[This page intentionally left blank]

TOC.2 TABLE OF CONTENTS

9. CONDITIONALS AND ITERATIVE
STATEMENTS

In order to do any but the simplest computations, it is necessary
to test values and execute expressions conditionally, and to
execute a series of expressions. Interlisp supplies a large number
of predicates, conditional functions, and control functions. Also,
there is a complex "iterative statement” facility which allows the
user to easily create complex loops and iterative constructs (page
9.9).

9.1 DataType Predicates

Interlisp provides separate functions for testing whether objects
are of certain commonly-used types:

(LITATOM X) [Function]
Returns Tif X is a litatom (see page 2.1) NIL otherwise. Note that
anumberis not alitatom.

{(SMALLP X) [Function]
Returns X if X is a small integer; NIL otherwise. (Note that the
range of small integers is implementation-dependent. See page
7.1)

(FIXP X) (Function]
Returns X if Xis a small orlarge integer; NiIL otherwise.

(FLOATP X) [Function]
Returns X if X is a floating point number; NIL otherwise.

(NUMBERP X) [Function]
Returns X if X is a number of any type (FIXP or FLOATP), NIL
otherwise. ‘

(ATOM X) [Function]

Returns T if X is an atom (i.e. a litatom or a number); NIL
otherwise.

CONDITIONALS AND ITERATIVE STATEMENTS

9.1

DATA TYPE PREDICATES

Warning: (ATOM X) is NIL if X is an array, string, etc. In many
dialects of Lisp, the function ATOM is defined equivalent to the
Interlisp function NLISTP.

(LISTP X) [Function]
Returns X if X is a list cell, e.g., something created by CONS; NIL
otherwise.

(NLISTP X) [Function]
(NOT (LISTP X)). Returns Tif Xis not alist cell, NIL otherwise.

(STRINGP X) [Function]
Returns Xif Xis a string, NIL otherwise.

(ARRAYP X) [Function]
Returns X if X is an array, NIL otherwise.

Note: Insome implementations of Interlisp (but not Interlisp-D),
ARRAYP may alsoreturn X if it is of type CCODEP or HARRAYP.
(HARRAYP X) [Function]

Returns Xifitis a hash array object; otherwise NIL.

Note that HARRAYP returns NIL if X is a list whose CAR is an
HARRAYP, even though this is accepted by the hash array
functions.

Note: The empty list, () or NIL, is considered to be a litatom,
rather than a list. Therefore, (LITATOM NIL) = (ATOMNIL) = T
and (LISTP NIL) = NIL. Care should be taken when using these
functions if the object may be the empty list NIL.

9.2° Equality Predicates

A common operation when dealing with data objects is to test
whether two objects are equal. In some cases, such as when
comparing two small integers, equality can be easily determined.
However, sometimes there is more than one type of equality. For
instance, given two lists, one can ask whether they are exactly
the same object, or whether they are two distinct lists which
contain the same elements. Confusion between these two types
of equality is often the source of program errors. Interlisp
supplies an extensive set of functions for testing equality:

9.2

CONDITIONALS AND ITERATIVE STATEMENTS

EQUALITY PREDICATES

(EQ X Y)

[Function]

(NEQ X'Y)

Returns T if X and Y are identical pointers; NIL otherwise. EQ
should not be used to compare two numbers, unless they are
small integers; use EQP instead.

{Function]

(NULL X)

(NOT(EQXY))

[Function]

(NOT X)

[Function]

(EQP X Y)

(EQ X NIiL)

[Function]

(EQUALXY)

Returns T if X and Y are EQ, or if X and Y are numbers and are
equal in value; NIL otherwise. For more discussion of EQP and
other number functions, see page 7.1.

Note: EQP also can be used to compare stack pointers (page
11.4) and compiled code (page 10.10).

[Function]

(EQUALALL X Y)

EQUAL returns T if X and Y are (1) EQ; or (2) EQP, i.e., numbers
with equal value; or (3) STREQUAL, i.e., strings containing the
same sequence of characters; or (4) lists and CAR of Xis EQUAL to
CARof Y, and CDR of X isEQUAL toCDR of Y. EQUAL returns NIL _
otherwise. Note that EQUAL can be significantly slower than EQ.

A loose description of EQUAL might be to say that X and Y are
EQUAL if they print out the same way.

[Function]

Like EQUAL, except it descends into the contents of arrays, hash
arrays, user data types, etc. Two non-EQ arrays may be
EQUALALL if their respective componants are EQUALALL.

9.3 Logical Predicates

(AND X1X5... XN)

{NLambda NoSpread Function]

Takes an indefinite number of arguments (including zero), that
are evaluated in order. If any argument evaluates to NiL, AND
immediately returns NIL (without evaluating the remaining
arguments). If all of the arguments evaluate to non-NIL, the
value of the last argumentisreturned. (AND) => T.

CONDITIONALS AND ITERATIVE STATEMENTS

9.3

LOGICAL PREDICATES

(OR X7 X3 ... Xp)

[NLambda NoSpread Function]

Takes an indefinite number of arguments (including zero), that
are evaluated in order. If any argument is non-NIL, the value of
that argument is returned by OR (without evaluating the
remaining arguments). If all of the arguments evaluate to NIL,
NIL is returned. (OR) = > NIL.

AND and OR can be used as simple logical connectives, but note
that they may not evaluate all of their arguments. This makes a
difference if the evaluation of some of the arguments causes
side-effects. Another result of this implementation of AND and
OR is that they can be used as simple conditional statements. For
example: (AND (LISTP X) (CDR X)) returns the value of (CDR X) if
X is a list cell, otherwise it returns NIL without evaluating (CDR
X). In general, this use of AND and OR should be avoided in
favor of more explicit conditional statements in order to make
programs more readable.

9.4 The COND Conditional Function

(COND CLAUSE ; CLAUSE; ... CLAUSE)

[NLambda NoSpread Function]

The conditional function of Interlisp, COND, takes an indefinite
number of arguments, called clauses. Each CLAUSE; is a list of the
form (P; Cj1 ... Cjn), where P; is the predicate, and Cjp ... Gy are
the consequents. The operation of COND can be paraphrased as:

IF Py THEN Cqq ... Cyp ELSEIF Py THEN Cpq ... Cop ELSEIF P3 ...

The dauses are considered in sequence as follows: the predicate
Py of the clause CLAUSE| is evaluated. If the value of Py is "true”

(non-NIL), the consequents C;j ... Cjp are evaluated in order, and
the value of the COND is the value of Cjp, the last expression in
the clause. If Py is "false" (EQ to NIL), then the remainder of
CLAUSE; is ignored, and the next clause, CLAUSE; ., is
considered. If no P;is true for any clause, the value of the COND
is NiL.

Note: If a cdlause has no consequents, and has the form (P;), then
if Pjevaluates to non-NIL, it is returned as the value of the COND.
Itis only evaluated once.

Example:

« (DEFINEQ (DOUBLE (X)
(COND ((NUMBERP X) (PLUS X X))

9.4

CONDITIONALS AND ITERATIVE STATEMENTS

THE COND CONDITIONAL FUNCTION

((STRINGP X) (CONCAT X X))
((ATOM X) (PACK* X X))
(T (PRINT "unknown") X)
((HORRIBLE-ERROR))]

(DOUBLE)

« (DOUBLE 5)

10

«— (DOUBLE "FOQ")

“FOOFOO"

«— (DOUBLE 'BAR)

BARBAR

«— (DOUBLE'(ABC))

"unknown"

(ABC)

A few points about this example: Notice that5is both a number
and an atom, but it is "caught" by the NUMBERP clause before
the ATOM clause. Also notice the predicate T, which is always
true. Thisis the normal way to indicate a COND clause which will .
always be executed (if none of the preceeding clauses are true).
(HORRIBLE-ERROR) will never be executed.

9.5 ThelF Statement

The IF statement provides a way of way of specifying conditional
expressions that is much easier and readable than using the
COND function directly (page 9.4). CLISP translates expressions
employing IF, THEN, ELSEIF, or ELSE (or their lowercase versions)
into equivalent COND expressions. In general, statements of the
form:

(if AAA then BB8 elseif CCCthen DDD else EEE)
are translated to:

(COND (AAA 88B)
(cccopbbD) -
(T EEE))

The segment between IF or ELSEIF and the next THEN
corresponds to the predicate of a COND clause, and the segment
between THEN and the next ELSE or ELSEIF as the consequent(s).
ELSE is the same as ELSEIF T THEN. These words are spelling
corrected using the spelling list CLISPIFWORDSPLST. Lower case
versions (if, then, elseif, else) may also be used.

If there is nothing following a THEN, or THEN is omitted entirely,
then the resulting COND clause has a predicate but no
consequent. For example, (if X then elseif ...) and (if X elseif ...)

CONDITIONALS AND ITERATIVE STATEMENTS

9.5

THE IFSTATEMENT

both translate to (COND (X) ...), which means that if X is not NIL,
itis returned as the value of the COND.

Note that only one expression is allowed as the predicate, but
multiple expressions are allowed as the consequents after THEN
or ELSE. Multipie consequent expressions are implicitely
wrapped in a PROGN, and the value of the last one is returned as
the value of the consequent. For example:

(if X then (PRINT "FOO™") (PRINT "BAR") elseif Y then (PRINT
.'BAZ..))

CLISP considers IF, THEN, ELSE, and ELSEIF to have lower
precedence than all infixand prefix operators, as well as Interlisp
forms, so it is sometimes possible to omit parentheses around
predicate or consequent forms. For example, (if FOO X Y then ...)
is equivalent to (if (FOO X Y) then ...), and (if X then FOO X Y else
...) as equivalent to (if X then (FOO X Y) else ...). Essentially, CLISP
determines whether the segment between THEN and the next
ELSE or ELSEIF corresponds to one form or several and acts
accordingly, occasionally interacting with the user to resolve
ambiguous cases. Note thatif FOO is bound as a variable, (if FOO
then ..) is translated as (COND (FOO ..)), so if a call to the
function FOOQ is desired, use (if (FOO) then ...).

9.6 Selection Functions

(SELECTQ X CLAUSE ; CLAUSE ... CLAUSE DEFAULT) [NLambda NoSpread Function]

Selects a form or sequence of forms based on the value of X.
Each clause CLAUSE; is a list of the form (S; Cj1 ... Cjp) where S; is
the selection key. The operation of SELECTQ can be paraphrased
as:

IFX = S THENCy¢...CypyELSEIF X = S THEN ... ELSE DEFAULT.

If Sjis an atom, the value of X is tested to see if it is EQ to §;
(which is not evaluated). If so, the expressions Cjy ... Cjp are

evaluated in sequence, and the value of the SELECTQ is the value
of the last expression evaluated, i.e., Cjp.

If S; is a list, the value of X is compared with each element (not
evaluated) of 5, and if Xis EQ to any one of them, then Cj; ... Cjpy
are evaluated as above.

If CLAUSE; is not selected in one of the two ways described,
CLAUSE; , 1 is tested, etc, until all the clauses have been tested.

If none is selected, DEFAULT is evaluated, and its value is
returned as the value of the SELECTQ. DEFAULT must be present.

96

CONDITIONALS AND ITERATIVE STATEMENTS

SELECTION FUNCTIONS

An example of the form of a SELECTQ is:

[SELECTQ MONTH
(FEBRUARY (if (LEAPYEARP) then 29 else 28))
((APRIL JUNE SEPTEMBER NOVEMBER) 30)
31]

if the value of MONTH is the litatom FEBRUARY, the SELECTQ
returns .28 or 29 (depending on (LEAPYEARP)); otherwise if
MONTH is APRIL, JUNE, SEPTEMBER, or NOVEMBER, the SELECTQ
returns 30; otherwiseitreturns 31.

SELECTQ compiles open, and is therefore very fast; however, it
will not work if the value of Xis a list, a large integer, or floating
point number, since SELECTQ uses EQ for all comparisons.

Note: SELCHARQ (page 2.15) is a version of SELECTQ that
recognizes CHARCODE litatoms.

(SELECTC X CLAUSE 1 CLAUSE ... CLAUSE DEFAULT) [NLambda NoSpread Function]

“SELECTQ-on-Constant.” Similar to SELECTQ except that the
selection keys are evaluated, and the result used as a
SELECTQ-style selection key.

SELECTC is compiled as a SELECTQ, with the selection keys
evaluated at compile-time. Therefore, the selection keys act like
compile-time constants (see page 18.7). For example:

[SELECTC NUM
((for X from 1 to 9 collect (TIMES X X)) "SQUARE")
l'HlP"]

compiles as:

[SELECTQ NUM
((14916 253649 6481) "SQUARE")
ClH'P"]

9.7 PROG and Associated Control Functions

(PROG1 X1 X ... Xp)

[NLambda NoSpread Function]

(PROG2 X1 X5 ... Xp)

Evaluates its arguments in order, and returns the value of its first
argument Xy. For example, (PROG1 X (SETQ X Y)) sets X to Y, _

and returns X's original value.

[NoSpread Function] .

Similar to PROG1. Evaluates its arguments in order, and returns .
the value of its second argument Xj.

CONDITIONALS AND ITERATIVE STATEMENTS

9.7

PROG AND ASSOCIATED CONTROL FUNCTIONS

(PROGN X1 X5 ... Xp) [NLambda NoSpread Function]

PROGN evaluates each of its arguments in order, and returns the
value of its last argument. PROGN is used to specify more than
one computation where the syntax allows only one, eg,
(SELECTQ ... (PROGN ...)) allows evaluation of several expressions
as the defauit condition for a SELECTQ.

(PROG VARLSTE 1 E ... Ep) [NLambda NoSpread Function]

This function allows the user to write an ALGOL-like program
containing Interlisp expressions (forms) to be executed. The first
argument, VARLST, is a list of local variables (must be NiL if no
variables are used). Each atom in VARLST is treated as the name
of a local variable and bound to NIL. VARLST can also contain
lists of the form (LITATOM FORM). In this case, LITATOM is the
name of the variable and is bound to the value of FORM. The
evaluation takes place before any of the bindings are performed,
e.g., (PROG ((X Y) (Y X)) ...) will bind local variable X to the value
of Y (evaluated outside the PROG) and local variable Y to the
value of X (outside the PROG). An attempt to use anything other
than a litatom as a PROG variable will cause an error, ARG NOT
LITATOM. An attempt to use NiL or T as a PROG variable will
cause an error, ATTEMPT TO BIND NIL ORT.

The rest of the PROG is a sequence of non-atomic statements
(forms) and litatoms (labels). The forms are evaluated
sequentially; the labels serve only as markers. The two special
functions GO and RETURN aiter this flow of controi as described
below. The value of the PROG is usually specified by the function
RETURN. If no RETURN is executed before the PROG "falls off
the end,” the value of the PROG is NIL.

(GO V) {NLambda NoSpread Function]
GO is used to cause a transfer in a PROG. (GO L) will cause the
PROG to evaluate forms starting at the label L (GO does not
evaluate its argument). A GO can be used at any level in a PROG.
if the label is not found, GO will search higher progs within the
same function, e.g., (PROG ... A ... (PROG ... (GO A))). If the label is
not found in the function in which the PROG appears, an error is
generated, UNDEFINED OR ILLEGAL GO.

(RETURN X) [Function]
A RETURN is the normal exit for a PROG. Its argument is
evaluated and is immediately returned the value of the PROG in
which it appears.

Note: If a GO or RETURN is executed in an interpreted function
which is not a PROG, the GO or RETURN will be executed in the
last interpreted PROG entered if any, otherwise cause an error.

9.8 CONDITIONALS AND ITERATIVE STATEMENTS

PROG AND ASSOCIATED CONTROL FUNCTIONS

(LET VARLSTE 1 E; ... Ep)

GO or RETURN inside of a compiled function thatis not a PROG is
not allowed, and will cause an error at compile time.

As a corollary, GO or RETURN in a functioral argument, e.g., to
SORT, will not work compiled. Also, since NLSETQ's and
ERSETQ's compile as separate functions, a GO or RETURN cannot
be used inside of a compiled NLSETQ or ERSETQ if the
corresponding PROG is outside, i.e., above, the NLSETQ or
ERSETQ.

[Macro]

(LET* VARLST E{ E; ... Ep)

LET is essentially a PROG that can't contain GO's or RETURN's, .
and whose last form is the returned value.

[Macro]

(PROG* VARLSTE1 E>...Ep)

{Macro]

LET* and PROG* differ from LET and PROG only in that the
binding of the bound variables is done "sequentially." Thus

(LET* ((A (LIST5))
(B(LISTA A))
(EQA(CADRB)))

would evaluate to T; whereas the same form with LET might
even find A an unbound variable when evaluating (LIST A A).

9.8 The lterative Statement

The iterative statement (i.s.) in its various forms permits the user .
to specify complicated iterative statements in a straightforward -
and visible manner. Rather than the user having to perform the
mental transformations to an equivalent Interlisp form using
PROG, MAPC, MAPCAR, etc., the system does it for him. The goal -
was to provide a robust and tolerant facility which could "make
sense" out of a wide class of iterative statements. Accordingly,
the user should not feel obliged to read and understand in detail
the description of each operator given below in order to use .
iterative statements.

An iterative statement is a form consisting of a number of special
words (known as i.s. operators or i.s.oprs), followed by operands.
Many i.s.oprs (FOR, DO, WHILE, etc.) are similar to iterative :
statements in other programming languages; other is.oprs
(COLLECT, JOIN, IN, etc.) specify useful operations in a Lisp
environment. Lower case versions of i.s.oprs (do, collect, etc.)

CONDITIONALS AND ITERATIVE STATEMENTS

99

THE ITERATIVE STATEMENT

9.8.1

l.s.types

can also be used. Here are some examples of iterative
statements:

« (for X from 1 to 5 do (PRINT 'FOO))

FOO

FOO

FOO

FOO

FOO

NIL

« (for X from 2 t0 10 by 2 ¢ollect (TIMES X X))
{416 36 64 100)

« (for Xin'(A B 1C#6.5NIL (45)) count (NUMBERP X))
2

jterative statements are implemented through CLISP, which
translates the form into the appropriate PROG, MAPCAR, etc.
Iterative statement forms are transiated using all CLISP
declarations in effect (standard/fast/undoable/ etc.); see page
21.12. Misspelledi.s.oprs are recognized and corrected using the
spelling list CLISPFORWORDSPLST. The order of appearance of
operators is never important; CLISP scans the entire statement
before it begins to construct the equivalent Interlisp form. New
i.s.oprs can be defined as described on page 9.20.

If the user defines a function by the same name as an i.s.opr
(WHILE, TO, etc.), the i.s.opr will no longer have the CLISP
interpretation when it appears as CAR of a form, although it will
continue to be treated as ani.s.oprif it appearsin the interior of
an iterative statement. To alert the user, a warning message is
printed, e.g., (WHILE DEFINED, THEREFORE DISABLED IN CLISP).

DO FORM

The following i.s.oprs are examples of a certain kind of iterative
statement operator called ani.s.type. The is.type specifies what
is to be done at each iteration. its operand is called the "body"
of the iterative statement. Each iterative statement must have
one and only one i.s.type. ’

[I.S. Operator]

COLLECT FORM

Specifies what is to be done at each iteration. DO with no other
operator specifies an infinite loop. If some explicit or implicit
terminating condition is specified, the value of the i.s. is NIL.
Translates to MAPC or MAP whenever possible.

{t.S. Operator]

Specifies that the value of FORM at each iteration is to be
collected in a list, which is returned as the value of the i.s. when it

9.10

CONDITIONALS AND ITERATIVE STATEMENTS

THEITERATIVE STATEMENT

JOIN FORM

terminates. Translates to MAPCAR, MAPLIST or SUBSET
whenever possible.

When COLLECT translates to a PROG (e.g., if UNTIL, WHILE, etc.
appear in the i.s.), the transtation employs an open TCONC using
two pointers similar to that used by the compiler for compiling
MAPCAR. To disable this translation, perform (CLDISABLE
'FCOLLECT) (see page 21.26).

[1.S. Operator]

SUM FORM

Similar to COLLECT, except that the values of FORM at each
iteration are NCONCed. Translates to MAPCONC or MAPCON
whenever possible. /NCONC, /MAPCONC, and /MAPCON are used
when the CLISP declaration UNDOABLE is in effect.

{I.5. Operator]

COUNT FORM

Specifies that the values of FORM at each iteration be added
together and returned as the value of thei.s., e.g., (fort from 1 to
5 sum (TIMES 1 1)) returns 1 +4 +9+ 16 + 25 = 55. IPLUS, FPLUS,
or PLUS will be used in the translation depending on the CLISP
declarations in effect.

[1.S. Operator]

ALWAYS FORM

Counts the number of times that FORM is true, and returns that
count as its value.

{1.S. Operator]

+ NEVER FORM

Returns T if the value of FORM is non-NIL for all iterations.
(Note: returns NIL as soon as the value of FORM is NIL).

[1.S. Operator]

THEREIS FORM

Similar to ALWAYS, except returns T if the value of FORM is
never true. (Note: returns NIL as soon as the value of FORM is
non-NIL).

The following i.s.types explicitly refer to the iteration variable
(i.v.) of the iterative statement, which is a variable set at each
iteration. This is explained below under FOR.

[1.5. Operator]

Returns the first value of the i.v. for which FORM is non-NIL, e.g.,
(for X in Y thereis (NUMBERP X)) returns the first number in Y.
(Note: returns the value of the i.v. as soon as the value of FORM
is non-NIL).

CONDITIONALS AND ITERATIVE STATEMENTS

911

THE ITERATIVE STATEMENT

LARGEST FORM

(LS. Operator]

SMALLEST FORM

{1.S. Operator]

9.8.2 Iteration Variable |.s.oprs

Returns the value of the i.v. that provides the largest/smallest
value of FORM. $3EXTREME is always bound to the current
greatest/smallest value, $3VAL to the value of thei.v. from which
it came.

FOR VAR [I.S. Operator]
Specifies the iteration variable (i.v.) which is used in conjunction
with [N, ON, FROM, TO, and BY. The variable is rebound within
thei.s., so the value of the variable outside the is. is not effected.
Example:

«(SETQ X 55)

55

« (for X from 1 to 5 collect (TIMES X X))
(14916 25)

«X

55

FOR VARS [1.S. Operator]
VARS a list of variables, e.g., (for (X Y Z) in ...). The first variable is
thei.v., the rest are dummy variables. See BIND below.

FOR OLD VAR [1.S. Operator]
Similar to FOR, except that VAR is not rebound within theis., so
the value of the i.v. outside of the i.s. is changed. Example:

« (SETQ X 55)

55

« (for old X from 1 to 5 collect (TIMES X X))

(14916 25)

« X

6
BIND VAR [I.S. Operator]
BIND VARS [I.S. Operator]

Used to specify dummy variables, which are bound locally within
thei.s.

Note: FOR, FOR OLD, and BIND variables can be initialized by
using the form VAR«FORM:

9.12

CONDITIONALS AND ITERATIVE STATEMENTS

THE ITERATIVE STATEMENT .

IN FORM

(for old (Xe~FORM) bind (Y&FORM) ...)

{I.S. Operator]

ON FORM

Specifies that the i.s. is to iterate down a list with the i.v. being
reset to the corresponding element at each iteration. For
example, (for X in Y do ...) corresponds to (MAPC Y (FUNCTION
(LAMBDA (X) ...))). If no i.v. has been specified, a dummy is
supplied, e.g., (in Y collect CADR) is equivalent to (MAPCAR Y
(FUNCTION CADR)).

[I.S. Operator]

IN OLD VAR

" Same as IN except that the i.v. isreset to the corresponding tail at

each iteration. Thus IN corresponds to MAPC, MAPCAR, and
MAPCONC, while ON corresponds to MAP, MAPLIST, and
MAPCON.

Note: for both IN and ON, FORM is evaluated before the main
part of the i.s. is entered, i.e. outside of the scope of any of the
bound variables of the i.s. For example, (for X bind (Y&<'(1 2 3))
in Y ...} will map down the list which is the value of Y evaluated
outside of thei.s., not(12 3).

[I.S. Operator]

IN OLD (VAR«FORM)

Specifies that the i.s. is to iterate down VAR, with VAR itself
being reset to the corresponding tail at each iteration, e.g., after
(for X in old L do ... until ...) finishes, L will be some tail of its
original value.

[1.5. Operator]

ON OLD VAR

Same as IN OLD VAR, except VAR is first set to value of FORM.

[1.S. Operator]

ON OLD (VAR«FORM)

Same as IN OLD VAR except thei.v. is reset to the current value of
VAR at each iteration, instead of to (CAR VAR).

[I.S. Operator]

INSIDE FORM

Same as ON OLD VAR, except VAR is first set to value of FORM.

(1.5. Operator]

Similar to IN, except treats first non-list, non-NIL tail as the last
element of the iteration, e.g., INSIDE ‘(A B C D . E) iterates five
times with the i.v. set to E on the last iteration. INSIDE 'A is
equivalent to INSIDE '(A), which will iterate once.

CONDITIONALS AND ITERATIVE STATEMENTS

9.13

THE ITERATIVE STATEMENT

FROM FORM

[I.S. Operator]

TO FORM

Used to specify an initial value for a numerical i.v. The i.v. is
automatically incremented by 1 after each iteration (unless BY is
specified). If no i.v. has been specified, a dummy i.v. is supplied
and initialized, e.g., (from 2 to 5 collect SQRT) returns (1.414
1.732 2.0 2.236).

[I.S. Operator]

BY FORM (with IN/ON)

Used to specify the final value for a numerical i.v. If FROM is not
specified, thei.v.isinitialized to 1. If noi.v. has been specified, a
dummy i.v.is supplied and initialized. If BY is not specified, the
i.v.is automatically incremented by 1 after each iteration. When
the i.v. is definitely being incremented, i.e., either BY is not
specified, or its operand is a positive number, the i.s. terminates
when the i.v. exceeds the value of FORM. Similarly, when the i.v.
is definitely being decremented the i.s. terminates when the i.v.
becomes less than the value of FORM (see description of BY).

Note: FORM is evaluated only once, when the i.s. is first entered,
and its value bound to a temporary variable against which the
i.v.is checked each interation. If the user wishes to specify ani.s.
in which the value of the boundary condition is recomputed each
iteration, he should use WHILE or UNTIL instead of TO.

Note: When both the operands to TO and FROM are numbers,
and TO's operand is less than FROM's operand, the i.v. is
decremented by 1 after each iteration. In this case, the is.
terminates when the i.v. becomes /ess than the value of FORM.
For example, (from 10 to 1 do PRINT) prints the numbers from 10
downto 1.

(I.S. Operator]

BY FORM (without IN/ON)

If IN or ON have been specified, the value of FORM determines
the tail for the next iteration, which in turn determines the value
for the i.v. as described earlier, i.e., the new i.v. is CAR of the tail
for IN, the tail itself for ON. In conjunction with IN, the user can
refer to the current tail within FORM by using the i.v. or the
operand for IN/ON, e.g., (for Zin L by (CDDR 2) ...) or (for Zin L by
(CDDR L) ...). At translation time, the name of the internal
variable which holds the value of the current tail is substituted
for the i.v. throughout FORM. For example, (for X in Y by (CDR
(MEMB 'FOO (CDR X))) collect X) specifies that after each
iteration, CDR of the current tail is to be searched for the atom
FOO, and (CDR of) this latter tail to be used for the nextiteration.

{l.S. Operator]

if IN or ON have not been used, BY specifies how the i.v. itself is
reset at each iteration. If FROM or TO have been specified, the

9.14

CONDITIONALS AND ITERATIVE STATEMENTS

THE ITERATIVE STATEMENT

AS VAR

i.v. is known to be numerical, so the new i.v. is computed by
adding the value of FORM (which is reevaluated each iteration)
to the current value of the i.v., e.g., (for N from 1 to 10 by 2
collect N) makes a list of the first five odd numbers.

If FORM is a positive number (FORM itself, not its value, which in
general CLISP would have no way of knowing in advance), theis.
terminates when the value of the i.v. exceeds the value of TO's
operand. If FORM is a negative number, the i.s. terminates when
the value of the i.v. becomes less than TO's operand, e.g., (for |
from N to M by -2 until (LESSP | M) ..). Otherwise, the
terminating condition for each iteration depends on the value of
FORM for that iteration: if FORM <0, the test is whether the i.v.
is less than TO's operand, if FORM>0 the test js‘whether the i.v.
exceeds TO's operand, otherwise if FORM =0, the i.s. terminates
unconditionally.

If FROM or TO have not been specified and FORM is not a
number, the i.v. is simply reset to the value of FORM after each
iteration, e.g., (forl from N by M ...} is equivalent to (for l«N by
(PLUS I M) ...).

{I.S. Operator]

OUTOF FORM

Used to specify an iterative statement involving more than one
iterative variable, e.g., (for Xin Y as U in V do ...) corresponds to
MAP2C (page 10.16). The i.s. terminates when any of the
terminating conditions are met, e.g., (for X in Y as ! from 1 to 10
collect X) makes a list of the first ten elements of Y, or however
many elements there are on Y if less than 10.

The operand to AS, VAR, specifies the new i.v. For the remainder
of thei.s., or until another AS is encountered, all operators refer
to the new i.v. For example, (for!from 1 to N1 as J from 1 to N2
by 2 as K from N3 to 1 by +1 ...) terminates when | exceeds N1, or J
exceeds N2, or K becomes less than 1. After each iteration, | is
incremented by 1,Jby 2, and Kby -1.

(I.S. Operator]

9.8.3 Condition l.s.oprs

For use with generators (page 11.16). On each iteration, the i.v.
is set to successive values returned by the generator. The is.
terminates when the generator runs out.

WHEN FORM

{l.S. Operator]

Provides a way of excepting certain iterations. For example, (for
XinY collect X when (NUMBERP X)) coliects only the elements of
Y that are numbers.

CONDITIONALS AND ITERATIVE STATEMENTS

THE ITERATIVE STATEMENT

UNLESS FORM [1.S. Operator]
Same as WHEN except for the difference in sign, i.e., WHEN Z is
the same as UNLESS (NOT 2).

WHILE FCRM [I.S. Operator]
Provides a way of terminating the i.s. WHILE FORM evaluates
FORM before each iteration, and if the value is NIL, exits.

UNTIL FORM [1.S. Operator]

UNTIL N (N a number)

Same as WHILE except for difference in sign, i.e., WHILE X is
equivalent to UNTIL (NOT X).

{I.S. Operator]

REPEATWHILE FORM

Equivalent to UNTIL/LV. > A

[I.S. Operator]

REPEATUNTIL FORM

Same as WHILE except the test is performed after the evalution
of the body, but before the i.v. is reset for the next iteration.

[1.5. Operator]

Same as UNTIL, except the test is performed after the evaluation
of the body.

REPEATUNTIL N (N a number) [1.S. Operator]

9.8.4 Otherl.s.oprs

Equivalent to REPEATUNTIL I.V. > N.

FIRST FORM

[1.S. Operator]

FINALLY FORM

FORM is evaluated once before the first iteration, e.g., (for X Y Z
in L first (FOO Y Z) ...), and FOO could be used to initialize Y and
Z

[1.S. Operator]

EACHTIME FORM

FORM is evaluated after the i.s. terminates. For example, (for X
in L bind Y0 do (if (ATOM X) then (SETQ Y (PLUS Y 1))) finally
(RETURN Y)) will return the number of atomsin L.

[1.5. Operator]

FORM is evaluated at the beginning of each iteration before,
and regardless of, any testing. For example, consider,

(forl from1toN
do(...(FOO1I)..)

9.16

CONDITIONALS AND ITERATIVE STATEMENTS

THE ITERATIVE STATEMENT

unless (... (FOO1)...)
until (...(FOO1) ...))

The user might want to set a temporary variable to the value of
(FOO1)in order to avoid computing it three times each iteration.
However, without knowing the translation, he would not know
whether to put the assignmentin the operand to DO, UNLESS, or
UNTIL, i.e., which one would be executed first. He can avoid this
problem by simply writing EACHTIME (SETQ J (FOO 1)).

DECLARE: DECL [t.5. Operator]
Inserts the form (DECLARE DECL) immediately following the
PROG variable list in the translation, or, in the case that the
translation is a mapping function rather than a PROG,
immediately following the argument list of the lambda
expression in the translation. This can be used to declare
variables bound in the iterative statement to be compiled as
local or special variables (see page 18.5). For example (for Xin Y
declare: (LOCALVARS X) ...). Several DECLARE:s can apppear in
the same i.s.; the declarations are inserted in the order they
appear.

DECLARE DECL [I.S. Operator]
Same as DECLARE:.

Note that since DECLARE is also the name of a function, DECLARE
cannot be used as an i.s. operator when it appears as CAR of a
form, i.e. as the first i.s. operator in an iterative statement.
However, declare (lower-case version) can be the first i.s.
operator. .

ORIGINAL I.5.OPR OPERAND [I.S. Operator]
1.S.OPR will be translated wusing its original, built-in
interpretation, independent of any user defined i.s. operators.
See page 9.20.

There are also a number of i.s.oprs that make it easier to create
iterative statements that use the clock, looping for a given
period of time. See timers, page 12.16.

9.8.5 Miscellaneous Hints on 1.5.0prs

] Lowercase versions of all i.s. operators are equivalent to the
uppercase, e.g.,(for Xin Y ...) isequivalent to(FORXIN Y ...).

® Eachi.s. operator is of lower precedence than all Interlisp forms,
so parentheses around the operands can be omitted, and will be
supplied where necessary, e.g., BIND (X Y Z) can be written BIND

CONDITIONALS AND ITERATIVE STATEMENTS 9.17

THE ITERATIVE STATEMENT

XY Z, OLD (X&FORM) as OLD Xe«FORM, WHEN (NUMBERP X) as
WHEN NUMBERP X, etc.

RETURN or GO may be used in any operand. (In this case, the
translation of the iterative statement will always be in the form
of a PROG, never a mapping function.) RETURN means return
from the i.s. (with the indicated value), not from the function in
which the i.s appears. GO refers to a label elsewhere in the
function in which the i.s. appears, except for the labels $3LP,
$SITERATE, and $30UT which are reserved, as described below.

In the case of FIRST, FINALLY, EACHTIME, DECLARE: or one of the
i.s.types, e.g., DO, COLLECT, SUM, etc., the operand can consist
of more than one form, e.g., COLLECT (PRINT (CAR X)) (CDR X}, in
which case a PROGN is supplied

Each operand can be the name of a function, in which case it is
applied to the (last) i.v., e.g., (for X in Y do PRINT when
NUMBERP) is the same as (for X in Y do (PRINT X) when
(NUMBERP X)). Note that the i.v. need not be explicitly specified,
e.g., (in Y do PRINT when NUMBERP) will work.

For is.types, e.g., DO, COLLECT, JOIN, the function is always
applied to the first i.v.in the i.s., whether explicity named or not.
For example, (in Y as | from 1 to 10 do PRINT) prints elements on
Y, not integers between 1 and 10.

Note that this feature does not make much sense for FOR, OLD,
BIND, IN, or ON, since they "operate"” before the loop starts,
when thei.v. may not even be bound.

In the case of BY in conjunction with IN, the function is applied
to the current tail e.g., (for X in Y by CDDR ...) is the same as (for
XinY by (CDDR X)...).

While the exact form of the translation of an iterative statement
depends on which operators are present, a PROG will always be
used whenever the i.s. specifies dummy variables, i.e., if a BIND
operator appears, or there is more than one variable specified by
a FOR operator, or a GO, RETURN, or a reference to the variable
$$VAL appears in any of the operands. When a PROG is used, the
form of the translation is:

(PROG VARIABLES
{initialize}
$3LP {eachtime}
{test}
{body}
$SITERATE
{aftertest}
{update}
(GO $3LP)
$$0OUT {finalize}
(RETURN $$VAL))

9.18

CONDITIONALS AND ITERATIVE STATEMENTS

THE ITERATIVE STATEMENT .

9.8.6 Errorsin Iterative Statements

where {test} corresponds to that portion of the loop that tests
for termination and also for those iterations for which {body} is
not going to be executed, (as indicated by a WHEN or UNLESS);
{body} corresponds to the operand of the is.type, e.g.,, DO,
COLLECT, etc.; {aftertest} corresponds to those tests for -
termination specified by REPEATWHILE or REPEATUNTIL; and
{update} corresponds to that part that resets the tail, increments
the counter, etc. in preparation for the next iteration. .
(initialize}, {finalize}, and {eachtime} correspond to the .
operands of FIRST, FINALLY, and EACHTIME, if any.

Note that since {body} always appears at the top level of the
PROG, the user can insert labels in {body}, and GO to them from
within {body} or from other i.s. operands, e.g., (for X in Y first
(GO A) do (FOO) A (FIE)). However, since {body} is dwimified as
a list of forms, the label(s) should be added to the dummy
variables for the iterative statement in order to prevent their
being dwimified and possibly "corrected"”, e.g., (for Xin Y bind A .
first (GO A) do (FOO) A (FIE)). The user can also GO to $5LP,
$SITERATE, or $3OUT, or explicitly set $SVAL.

An error will be generated and an appropriate diagnostic
printed if any of the following conditions hold:

(1) Operator with null operand, i.e., two adjacent operators, as
in(for Xin Y untildo ...)

(2) Operand consisting of more than one form (except as
operand to FIRST, FINALLY, or one of the is.types), e.g., (for X in
Y (PRINT X) collect ...).

(3) IN, ON, FROM, TO, or BY appear twice insameii.s.

(4) BothIN and ON used onsamei.v.

(5) FROM or TO used with IN or ON onsameii.v.

(6) More thanonei.s.type, e.g.,a DO and a SUM.

In3,4,0r5,an erroris not generated if an intervening AS occurs.
If an error occurs, thei.s. is left unchanged.

If no DO, COLLECT, JOIN or any of the other is.types are
specified, CLISP will first attempt to find an operand consisting of
more than one form, e.g., (for Xin Y (PRINT X) when ATOM X ...),
and in this case will insert a DO after the first form. (In this case,
condition 2 is not considered to be met, and an error is not
generated.) If CLISP cannot find such an operand, and no WHILE |
or UNTIL appears in the i.s., a warning message is printed: NO
DO, COLLECT, OR JOIN: followed by thei.s.

CONDITIONALS AND ITERATIVE STATEMENTS

THEITERATIVE STATEMENT

Similarly, if no terminating condition is detected, i.e., no iN, ON,
WHILE, UNTIL, TO, or a RETURN or GO, a warning message is
printed: POSSIBLE NON-TERMINATING ITERATIVE STATEMENT:
followed by the iterative statement. However, since the user
may be planning to terminate the i.s. via an error, control-E, or a
RETFROM from a lower function, the i.s. is still translated. Note:
The error message is not printed if the value of CLISPL.S.GAG is T
(initially NIL).

9.8.7 Defining New Iterative Statement Operators

The following function is available for defining new or
redefining existing iterative statement operators:

(1.5.0PR NAME FORM OTHERS EVALFLG) [Function]

COLLECT

SUM

NAME is the name of thé newis.opr. If FORM s a list, NAME will
be a new i.s.type (see page 9.10), and FORM its body.

OTHERS is an (optional) list of additional i.s. operators and
operands which will be added to the i.s. at the place where
NAME appears. If FORM is NIL, NAME is a new i.s.opr defined
entirely by OTHERS.

In both FORM and OTHERS, the atom $3VAL can be used to
reference the value to be returned by the i.s., L.V. to reference
the current i.v.,, and BODY to reference NAME's operand. In
other words, the current i.v. will be substituted for all instances
of I.V. and NAME's operand will be substituted for all instances
of BODY throughout FORM and OTHERS.

If EVALFLG is T, FORM and OTHERS are evaluated at translation
time, and their values used as described above. A dummy
variable for use in transiation that dees not clash with a dummy
variable already used by some other i.s. operators can be
obtained by calling (GETDUMMYVAR). (GETDUMMYVAR T) will
return a dummy variable and also insure that it is bound as a
PROG variable in the translation.

If NAME was previously an i.s.opr and is being redefined, the
message (NAME REDEFINED) will be printed (unless DFNFLG =T),
and all expressions using the i.s.opr NAME that have been
translated will have their translations discarded.

The following are some examples of how I.5.0PR could be called
to define some existing i.s.oprs, and create some new ones:

(1.S.OPR 'COLLECT
'(SETQ $3VAL (NCONC1 $$VAL BODY)))

9.20

CONDITIONALS AND ITERATIVE STATEMENTS

THE ITERATIVE STATEMENT

NEVER

THEREIS

RCOLLECT

TCOLLECT

PRODUCT

UPTO

TO

(1.5.0PR'SUM
"($$VAL<$SVAL + BODY)
"(FIRST $$VAL«0))

Note: $$VAL +BODY is used instead of (IPLUS $$VAL BODY) so
that the choice of function used in the translation, i.e., IPLUS,
FPLUS, or PLUS, will be determined by the declarations then in
effect.

(1.5.0PR 'NEVER
'(if BODY then $$VAL&NIL (GO $$0UT)))

Note: (if BODY then (RETURN NIL)) would exit from the is.
immediately and therefore not execute the operations specified
via a FINALLY (if any).

(1.S.OPR ‘THEREIS
‘(if BODY then $$VAL&IL.V. (GO $30UT)))

To define RCOLLECT, a version of COLLECT which uses CONS
instead of NCONC1 and then reverses the list of values:

(1.S.OPR 'RCOLLECT
($3VAL(CONS BODY $$VAL))
(FINALLY (RETURN (DREVERSE $$VAL)))]

To define TCOLLECT, a version of COLLECT which uses TCONC:

(i.5.OPR 'TCOLLECT
'(TCONC $$VAL BODY)
*(FIRST $$VAL«(CONS) FINALLY (RETURN (CAR $3VAL)))]

(1.5.OPR 'PRODUCT
"($$VAL—$$VAL*BODY)
"(FIRST $$VAL1)]

Todefine UPTO, a version of TO whose operand is evaluated only
once:

(1.5.0PR 'UPTO
NIL
'(BIND $$FOO«BODY TO $$F00)]

To redefine TO so that instead of recomputing FORM each
iteration, a variable is bound to the value of FORM, and then
that variable is used:

(1.5.0PR'TO
NIL
‘(BIND $$END FIRST $SEND«BODY ORIGINAL TO $$END)]

Note the use of ORIGINAL to redefine TO in terms of its original
definition. ORIGINAL is intended for use in redefining built-in
operators, since their definitions are not accessible, and hence

CONDITIONALS AND ITERATIVE STATEMENTS

THE ITERATIVE STATEMENT

not directly modifiable. Thus if the operator had been defined
by the user via I.5.0PR, ORIGINAL would not obtain its original
definition. Inthis case, one presumably would simply modify the
i.s.opr definition.

I.5.0OPR can also be used to define synonyms for already defined
i.s. operators by calling 1.5.0PR with FORM an atom, e.g., (1.S.OPR
‘WHERE "WHEN) makes WHERE be the same as WHEN. Similarly,
following (1.5.0PR 'ISTHERE 'THEREIS), one can write (ISTHERE
ATOM IN Y), and following (I1.S.OPR 'FIND 'FOR) and (1.5.0PR
'SUCHTHAT 'THEREIS), one can write (find X in Y suchthat X
member Z). In the current system, WHERE is synonymous with
WHEN, SUCHTHAT and ISTHERE with THEREIS, FIND with FOR,
and THRU with TO.

I1f FORM is the atom MODIFIER, then NAME is defined as an
i.s.opr which can immediately follow another i.s. operator (i.e.,
an error will not be generated, as described previously). NAME
will not terminate the scope of the previous operator, and will
be stripped off when DWIMIFY is called onits operand. OLD isan
example of a MODIFIER type of operator. The MODIFIER feature
allows the user to define i.s. operators simiiar to OLD, for use in
conjunction with some other user defined i.s.opr which will
produce the appropriate translation.

The file package command 1.S.0PRS (page 17.39) will dump the
definition of i.s.oprs. (1.5.0PRS PRODUCT UPTO) as a file package
command will print suitable expressions so that these iterative
statement.operators will be (re)defined when the file is loaded.

9.22

CONDITIONALS AND ITERATIVE STATEMENTS

TABLE OF CONTENTS

10. Function Definition, Manipulation, and Evaluation 10.1
10.1. Function Types _ 10.2
10.1.1. Lambda-Spread Functions 10.3

10.1.2. Nlambda-Spread Functions 10.4

10.1.3. Lambda-Nospread Functions 10.5

10.1.4. Nlambda-Nospread Functions 10.6

10.1.5. Compiled Functions 10.6

10.1.6. Function Type Functions 10.6

10.2. Defining Functions 10.9
10.3. Function Evaluation 10.11
10.4. Iterating and Mapping Functions 10.14
10.5. Functional Arguments 10.18
10.6. Macros 10.21
10.6.1. DEFMACRO 10.24

10.6.2. Interpreting Macros 10.28

TABLE OF CONTENTS TOC 1

TABLE OF CONTENTS

[This page intentionally left blank]

TOC.2 TABLE OF CONTENTS

10. FUNCTION DEFINITION,
MANIPULATION, AND EVALUATION

The Interlisp programming system is designed to help the user
define and debug functions. Developing an applications
program in Interlisp involves defining a number of functions in
terms of the system primitives and other user-defined functions.
Once defined, the user's functions may be referenced exactly like
Interlisp primitive functions, so the programming process can be
viewed as extending the Interlisp language to include the
required functionality.

Functions are defined with a list expressions known as an "expr
definition.” An expr definition specifies if the function has a
fixed or variable number of arguments, whether these
arguments are evaluated or not, the function argument names,
and a series of forms which define the behavior of the function.
For example:

(LAMBDA (X Y) (PRINT X) (PRINT Y))

A function defined with this expr definition would have two
evaluated arguments, X and Y, and it would execute (PRINT X)
and (PRINT Y) when evaluated. Other types of expr definitions
are described below.

A function is defined by putting an expr definition in the
function definition cell of a litatom. There are a number of
functions for accessing and setting function definition cells, but
one usually defines a function with DEFINEQ (page 10.9). For
example:

« (DEFINEQ (FOO (LAMBDA (X Y) (PRINT X) (PRINT Y))))
(FOO)

The expression above will define the function FOO to have the
expr definition (LAMBDA (X Y) (PRINT X) (PRINT Y)). After being
defined, this function may be evaluated just like any system
function:

« (FOO 3 (IPLUS 3 4))
3

7

7

«—

All function definition cells do not contain expr definitions. The
compiler (page 18.1) translates expr definitions into compiled
code objects, which execute much faster. Interlisp provides a

FUNCTION DEFINITION, MANIPULATION, AND EVALUATION 101

FUNCTION DEFINITION, MANIPULATION, AND EVALUATION

number of “function type functions” which determine how a
given function is defined, the number and names of function
arguments, etc. See page 10.7.

Usually, functions are evaluated automatically when they appear
within another function or when typed into Interlisp. However,
sometimes it is useful to envoke the Interlisp interpreter
explicitly to apply a given "functional argument” to some data.
There are a number of functions which will apply a given
function repeatedly. For example, MAPCAR will apply a function
(or an expr definition) to all of the elements of a list, and return
the values returned by the function:

« (MAPCAR ‘(123 45) (LAMBDA (X) (ITIMES X X))
(14916 2:5)

When using functional arguments, there are a number of
problems which can arise, related with accessing free variables
from within a function argument. Many times these problems
can be solved using the function FUNCTION to create a FUNARG
object (see page 10.18).

The macro facility provides another way of specifying the
behavior of a function (see page 10.21). Macros are very useful
when developing code which should run very quickly, which
should be compiled differently than it is interpreted, or which
should run differently in different implementations of interlisp.

10.1 Function Types

Interlisp functions are defined using list expressions called “expr
definitions." An expr definition is a list of the form
(LAMBDA-WORD ARG-LIST FORM{ ... FORMp)). LAMBDA-WORD
determines whether the arguments to this function will be
evaluated or not, ARG-LIST determines the number and names of
arguments, and FORM; ... FORMy, are a series of forms to be
evaluated after the arguments are bound to the local variables in
ARG-LIST.

If LAMBDA-WORD is the litatom LAMBDA, then the arguments
to the function are evaluated. If LAMBDA-WORD is the litatom
NLAMBDA, then the arguments to the function are not
evaluated. Functions which evaluate or don't evaluate their
arguments are therefore known as "lambda" or "nlambda”
functions, respectively.

If ARG-LIST is NIL or a list of litatoms, this indicates a function
with a fixed number of arguments. Each litatom is the name of
an argument for the function defined by this expression. The
process of binding these litatoms to the individual arguments is

10.2

FUNCTION DEFINITION, MANIPULATION, AND EVALUATION

FUNCTION TYPES

10.1.1 Lambda-Spread Functions

called "spreading" the arguments, and the function is called a
“spread" function. If the argument listis any litatom other than
NIL, this indicates a function with a variable number of
arguments, known as a "nospread" function.

If ARG-LIST is anything other than a litatom or a list of litatoms,
such as (LAMBDA "FOO" ..), attempting to use this expr
definition will generate an ARG NOT LITATOM error. In
addition, if NIL or T is used as an argument name, the error
ATTEMPT TO BIND NIL OR Tis generated.

These two parameters (lambda/nlambda and spread/nospread)
may be specified independently, so there are four main function
types, known as lambda-spread, nlambda-spread,
lambda-nospread, and nlambda-nospread functions. Each one
has a different form, and is used for a different purpose. These
four function types are described more fully below.

Note: For lambda-spread, lambda-nospread, or nlambda-spread
functions, there is an upper limit to the number of arguments
that a function can have, based on the number of arguments
that can be stored on the stack on any one function call:
Currently, the limit is 80 arguments. If a function is called with
more than that many arguments, the error TOO MANY
ARGUMENTS occurs. However, nlambda-nospread functions can
be called with an arbitrary number of arguments, since the
arguments are not individually saved on the stack (see page
10.6).

Lambda-spread functions take a fixed number of evaluated
arguments. This is the most common function type. A
lambda-spread expr definition has the form:

(LAMBDA (ARG ... ARGpy) FORMy ... FORMp)

The argument list (ARG ... ARGy,) is a list of litatoms that gives
the number and names of the formal arguments to the function.
If the argument list is () or NIL, this indicates that the function
takes no arguments. When a lambda-spread function is applied
to some arguments, the arguments are evaluated, and bound to
the local variables ARGy ... ARGpy. Then, FORMy ... FORMy, are
evaluated in order, and the value of the function is the value of
FORMY,.

« (DEFINEQ (FOO (LAMBDA (X Y) (LIST X Y))))
(FOO)

« (FOO 99 (PLUS 3 4))

(99 7)

FUNCTION DEFINITION, MANIPULATION, AND EVALUATION 10.3

FUNCTION TYPES

10.1.2 Nlambda-Spread Functions

In the above example, the function FOO defined by (LAMBDA (X
Y) (LIST X Y)) is applied to the arguments 99 and (PLUS 3 4), these
arguments are evaluated (giving 99 and 7), the local variable X is
bound to 99 and Y to 7, (LIST X Y) is evaluated, returning (99 7),
and this is returned as the value of the function.

A standard feature of the Interlisp system is that no error occurs
if a spread function is called with too many or too few
arguments. If a functionis called with too many arguments, the
extra arguments are evaluated but ignored. If a function is .
called with too few arguments, the unsupplied ones will be
delivered as NIL. In fact, a spread function cannot distinguish
between being given NIL as an argument, and not being given
that argument, e.g., (FOO) and (FOO NIL) are exactly the same
for spread functions. If it is necessary to distinguish between
these two cases, use an nlambda function and explicitly evaluate
the arguments with the EVAL function (page 10.12).

Nlambda-spread functions take a fixed number of unevaluated
arguments. Annlambda-spread expr definition has the form:

(NLAMBDA (ARG ... ARGpy) FORM ... FORMp))

Nlambda-spread functions are evaiuated similarly to
lambda-spread functions, except that the arguments are not
evaluated before being bound to the variables ARG ... ARGy

«-(DEFINEQ (FOO (NLAMBDA (X Y) (LIST X Y))))
(FOO)

«-(FOO 99 (PLUS 3 4))

(99 (PLUS 3 4))

In the above example, the function FOO defined by (NLAMBDA
(X Y) (LIST X Y)) is applied to the arguments 99 and (PLUS 3 4),
these arguments are bound unevaluated to X and Y, (LIST X Y) is
evaluated, returning (99 (PLUS 3 4)), and this is returned as the
value of the function.

Note: Functions can be defined so that all of their arguments are
evaluated (lambda functions) or none are evaiuated (nlambda
functions). If it is desirable to write a function which only
evaluates some of its arguments (e.g. SETQ), the function should
be defined as an nlambda, with some arguments explicitly
evaluated using the function EVAL (page 10.12). If this is done,
the user should put the litatom EVAL on the property list of the
function under the property INFO. This informs various system
packages such as DWIM, CLISP, and Masterscope that this
function in fact does evaluate its.arguments, even though it is an
nlambda.

10.4

FUNCTION DEFINITION, MANIPULATION, AND EVALUATION

FUNCTION TYPES

10.1.3 Lambda-Nospread Functions

Warning: A frequent problem that occurs when evaluating
arguments to nlambda functions with EVAL (page 10.12) is that
the form being evaluated may reference variables that are not
accessable within the nlambda function. This is usually not a
problem when interpreting code, but when the code is compiled,
the values of "local” variables may not be accessable on the stack
(see page 18.5). The system nlambda functions that evaluate
their arguments (such as SETQ) are expanded in-line by the
compiler, so this is not a problem. Using the macro facility (page
10.21) is recommended in cases where it is necessary to evaluate
some arguments to an nlambda function.

(ARG VAR M)

Lambda-nospread functions take a variable number of evaluated
arguments. A lambda-nospread expr definition has the form:

(LAMBDA VAR FORM 1 ... FORMy))

VAR may be any litatom, except NIL and T. When a
lambda-nospread function is applied to some arguments, each of
these arguments is evaluated and the values stored on the stack.
VAR is then bound to the number of arguments which have been
evaluated. For example, if FOO is defined by (LAMBDA X ..)),
when (FOO A B Q) is evaluated, A, B, and C are evaluated and X is
bound to 3. VAR should neverbe reset.

The following functions are used for accessing the arguments of
lambda-nospread functions:

[NLambda Function]

(SETARG VAR M X)

Returns the Mth argument for the lambda-nospread function
whose argument list is VAR. VAR is the name of the atomic
argument list to a lambda-nospread function, and is not
evaluated; M is the number of the desired argument, and is
evaluated. The value of ARG is undefined for M less than or
equal to 0 or greater than the value of VAR.

[NLambda Function]

Sets the Mth argument for the lambda-nospread function whose
argument list is VAR to X. VAR is not evaluated; M and X are
evaluated. M should be between 1 and the value of VAR.

In the example below, the function FOO is defined to collect and
return a list of all of the evaluated arguments it is given (the
value of the for statement).

« (DEFINEQ (FOO
- (LAMBDA X
(for ARGNUM from 1 to X collect (ARG X ARGNUM)]

FUNCTION DEFINITION, MANIPULATION, AND EVALUATION 10.5

FUNCTION TYPES

(FOO)

«-(FOO 99 (PLUS 3 4))

(997)

«-(FOO 99 (PLUS 3 4) (TIMES 3 4))
(99712)

10.1.4 Nlambda-Nospread Functions

10.1.5 Compiled Functions

Nlambda-nospread functions take a variable number of
unevaluated arguments. An nlambda-nospread expr definition
has the form:

(NLAMBDA VAR FORM ... FORMp))

VAR may be any litatom, except NIL and T. Though similar in
form to lambda-nospread expr definitions, an
nlambda-nospread is evaluated quite differently. When an
nlambda-nospread function is applied to some arguments, VAR
is simply bound to a list of the unevaluated arguments. The user
may pick apart this list, and evaluate different arguments.

In the example below, FOOQ is defined to return the reverse of the
list of arguments it is given (unevaluated):

«- (DEFINEQ (FOO (NLAMBDA X (REVERSE X))))
(FOO)

«-(FOO 99 (PLUS 3 4))

((PLUS 3 4) 99)

«-(FOO 99 (PLUS 3-4) (TIMES 3 4))

((TIMES 3 4) (PLUS 3 4) 99)

Note: The warning about evaluating arguments to nlambda
functions (page 10.5) also applies to nlambda-nospread function.

10.1.6 Function Type Functions

Functions defined by expr definitions can be compiled by the
Interlisp compiler (page 18.1). The compiler produces compiled
code objects (of data type CCODEP) which execute more quickly
than the corresponding expr definition code. Functions defined
by compiled code objects may have the same four types as expr
definitions (lambda/nolambda, spread/nospread). Functions
created by the compiler are referred to as compiled functions.

There are a variety of functions used for examining the type,
argument list, etc. of functions. These functions may be given
either a litatom, in which case they obtain the function

10.6

FUNCTION DEFINITION, MANIPULATION, AND EVALUATION

FUNCTION TYPES

definition from the litatom's definition cell, or a function
definition itself.

(FNTYP FN) [Function]
Returns NIL if FN is not a function definition or the name of a
defined function. Otherwise FNTYP returns one of the following
litatoms, depending on the type of function definition:

EXPR Lambda-spread expr definition.
CEXPR Lambda-spread compiled definition.
FEXPR Nlambda-spread expr definition.
CFEXPR Nlambda-spread compiled definition.
EXPR* Lambda-nospread expr definition.
CEXPR* Lambda-nospread compiled definition.
FEXPR* Nlambda-nospread expr definition.
CFEXPR* Nlambda-nospread compiled definition.
FUNARG FNTYP returns the litatom FUNARG if FN is a FUNARG expression.
See page 10.18.
EXPR, FEXPR, EXPR*, and FEXPR* indicate that FN is defined by
an expr definition. CEXPR, CFEXPR, CEXPR*, and CFEXPR*
indicate that FN is defined by a compiled definition, as indicated
by the prefix C. The suffix * indicates that FN has an indefinite
number of arguments, i.e., is a nospread functions. The prefix F
indicates unevaluated arguments. Thus, for example, a CFEXPR*
is a compiled nospread-nlambda function.

(EXPRP FN) [Function]
Returns Tif (FNTYP FN) is either EXPR, FEXPR, EXPR*, or FEXPR*;
NIL otherwise. However, (EXPRP FN) is also true if FN is (has) a list
definition, even if it does not begin with LAMBDA or NLAMBDA.
In other words, EXPRP is not quite as selective as FNTYP.

(CCODEP FN) [Function]
Returns T if (FNTYP FN) is either CEXPR, CFEXPR, CEXPR*, or
CFEXPR*; NIL otherwise.

(ARGTYPE FN) [Function]
FNis the name of a function or its definition. ARGTYPE returns 0,
1,2,0r 3, or NIL if FN is not a function. The interpretation of this
value is:

0 Lambda-spread function (EXPR, CEXPR)
1 Nlambda-spread function (FEXPR, CFEXPR)
2 Lambda-nospread function (EXPR*, CEXPR*)

FUNCTION DEFINITION, MANIPULATION, AND EVALUATION 10.7

FUNCTION TYPES

(NARGS FN)

3

Nlambda-nospread function (FEXPR*, CFEXPR*)
i.e., ARGTYPE corresponds to the rows of FNTYP's.

[Function]

(ARGLIST FN)

Returns the number of arguments of FN, or NIL if FN is not a
function. If FNis a nospread function, the value of NARGS is 1.

[Function]

Returns the "argument list" for FN. Note that the "argument
list" is a litatom for nospread functions. Since NIL is a possible
value for ARGLIST, an error is generated, ARGS NOT AVAILABLE,
if FNis not a function.

If FN is a compiled function, the argument list is constructed, i.e.,
each call to ARGLIST requires making a new list. For functions
defined by expr definitions, lists beginning with LAMBDA or
NLAMBDA, the argument list is simply CADR of GETD. If FN has
an expr definition, and CAR of the definition is not LAMBDA or
NLAMBDA, ARGLIST will check to see if CAR of the definitioniis a
member of LAMBDASPLST (page 20.14). If it is, ARGLIST
presumes this is a function object the user is defining via
DWIMUSERFORMS (page 20.11), and simply returns CADR of the
definition as its argument list. Otherwise ARGLIST generates an
error as described above.

(SMARTARGLIST FN EXPLAINFLG TAIL) [Function]

A "smart" version of ARGLIST that tries various strategies to get
the arglist of FN.

First, SMARTARGLIST checks the property list of FN under the
property ARGNAMES. For spread functions, the argument list
itself is stored. For nospread functions, the form is (NIL ARGLIST
. ARGLISTz), where ARGLIST is the value SMARTARGLIST should
return when EXPLAINFLG=T, and ARGLIST, the value when
EXPLAINFLG = NIL. For example, (GETPROP 'DEFINEQ
'ARGNAMES) = (NIL (X1 XI ... XN) . X). This allows the user to
specify special argument lists.

Second, if FN is not defined as a function, SMARTARGLIST
attempts spelling correction on FN by calling FNCHECK (page
20.23), passing TAIL to be used for the call to FIXSPELL. |If
unsuccessful, an error will be generated, FN NOT A FUNCTION.

Third, if FN is known to the file package (page 17.1) but not
loaded in, SMARTARGLIST will obtain the arglist information
from the file.

Otherwise, SMARTARGLIST simply returns (ARGLIST FN).

SMARTARGLIST is used by BREAK (page 15.5) and ADVISE (page
15.11) with EXPLAINFLG = NIL for constructing equivalent expr

10.8

FUNCTION DEFINITION, MANIPULATION, AND EVALUATION

FUNCTION TYPES

-definitions, and by the TTYIN in-line command ? = (page 26.33),

with EXPLAINFLG =T.

10.2 Defining Functions

(DEFINEQ X1X5.. XN)

Function definitions are stored in a “function definition ceil"
associated with each litatom. This cell is directly accessible via
the two functions PUTD and GETD (page 10.11), but it is usually
easier to define functions with DEFINEQ:

[NLambda NoSpread Function]

(DEFINE X —)

DEFINEQ is the function normally used for defining functions. It
takes an indefinite number of arguments which are not
evaluated. Each X; must be a list defining one function, of the
form (NAME DEFINITION). For example:

(DEFINEQ (DOUBLE (LAMBDA (X) (IPLUS X X))})
The above expression will define the function DOUBLE with the

expr definition (LAMBDA (X) (IPLUS X X)). X; may also have the

form (NAME ARGS . DEF-BODY), in which case an appropriate
lambda expr definition will be constructed. Therefore, the
above expression is exactly the same as:

(DEFINEQ (DOUBLE (X) (IPLUS X X)))

Note that this alternate form can only be used for Lambda
functions. The first form must be used to define an nlambda
function.

DEFINEQ returns a list of the names of the functions defined.

[Function]

Lambda-spread version of DEFINEQ. Each element of the list X is
itself a list either of the form (NAME DEFINITION) or (NAME
ARGS . DEF-BODY). DEFINE will generate an error, INCORRECT
DEFINING FORM, on encountering an atom where a defining list
is expected.

Note: DEFINE and DEFINEQ will operate correctly if the function
is already defined and BROKEN, ADVISED, or BROKEN-IN.

For expressions involving type-in only, if the time stamp facility is
enabled (page 16.76), both DEFINE and DEFINEQ will stamp the
definition with the user's initials and date.

FUNCTION DEFINITION, MANIPULATION, AND EVALUATION . 10.9

DEFINING FUNCTIONS

-UNSAFE.TO.MODIFY.FNS

[Variable]

DFNFLG

Value is a list of functions that should not be redefined, because
doing so may cause unusual bugs (or crash the system!). If the
user tries to modify a function on this list (using DEFINEQ, TRACE,
etc), the system will print "Warning: XXX may be safe to modify
-- continue?” If the users types "Yes", the function is modified,
otherwise an error occurs. This provides a measure of safety for
novices who may accidently redefine important system
functions. Users can add their own functions onto this list.

Note: By convention, all functions starting with the character
backslash ("\") are system internal functions, which should never -
be redefined or modified by the user. Backslash functions are
not on UNSAFE.TO.MODIFY.FNS, so trying to redefine them will
not cause a warning.

[Variable]

(GETD FN)

DFNFLG is a global variable that effects the operation of
DEFINEQ and DEFINE. If DFNFLG =NIL, an attempt to redefine a
function FN will cause DEFINE to print the message (FN
REDEFINED) and to save the oid definition of FN using SAVEDEF
(page 17.27) before redefining it (except if the old and new
definitions are EQUAL, inwhich case the effect is simply a no-op).
If DFNFLG =T, the function is simply redefined. If DFNFLG = PROP
or ALLPROP, the new definition is stored on the property list
under the property EXPR. ALLPROP also affects the operation of
RPAQQ and RPAQ (page 17.54). DFNFLG is initially NIL.

DFNFLG is reset by LOAD (page 17.6) to enable various ways of
handling the defining of functions and setting of variables when
loading a file. For most applications, the user will not reset
DFNFLG directly.

Note: The compiler does NOT respect the value of DFNFLG when
it redefines functions to their compiled definitions (see page
18.1). Therefore, if you set DFNFLG to PROP to completely avoid
inadvertantly redefining something in your running system, you
must use compile mode F, not ST.

Note: The functions SAVEDEF and UNSAVEDEF (page 17.27) can
be useful for "saving" and restoring function definitions from
property lists.

[Function]

Returns the function definition of FN. Returns NiL if FN is not a
litatom, or has no definition.

GETD of a compiled function constructs a pointer to the
definition, with the result that two successive calls do not

10.10

FUNCTION DEFINITION, MANIPULATION, AND EVALUATION

DEFINING FUNCTIONS

(PUTD FN DEF —)

necessarily produce EQ results. EQP or EQUAL must be used to
compare compiled definitions.

[Function]

Puts DEF into FN's function cell, and returns DEF. Generates an
error, ARG NOT LITATOM, if FN is not a litatom. Generates an
error, ILLEGAL ARG, if DEF is a string, number, or a litatom other
than NIL.

—) [Function]

(MOVD FROM TO COPYFLG

Moves the definition of FROM to TO, i.e., redefines TO. If
COPYFLG=T, a COPY of the definition of FROM is used.
COPYFLG =T is only meaningful for expr definitions, although
MOVD works for compiled functions as well. MOVD returns TO.

COPYDEF (page 17.27) is a higher-level function that only moves
expr definitions, but works also for variables, records, etc.

(MOVD? FROM TO COPYFLG —) , [Function]

If TO is not defined, same as (MOVD FROM TO COPYFLG).
Otherwise, does nothing and returns NIL.

10.3 Function Evaluation

(APPLY FN ARGLIST —)

Usually, function application is done automaticaily by the
Interlisp interpreter. If a form is typed into Interlisp whose CAR is
a function, this function is applied to the arguments in the CDR
of the form. These arguments are evaluated or not, and bound
to the function parameters, as determined by the type of the
function, and the body of the function is evaluated. This
sequence is repeated as each form in the body of the function is
evaluated.

There are some situations where it is necessary to explicitly call
the evaluator, and Interlisp supplies a number of functions that
will do this. These functions take "functional arguments", which
may either be litatoms with function definitions, or expr
definition forms such as (LAMBDA (X) ...), or FUNARG expressions
(see page 10.18).

[Function]

Applies the function FN to the arguments in the list ARGLIST, and
returns its value. APPLY is a lambda function, so its arguments
are evaluated, but the individual elements of ARGLIST are not
evaluated. Therefore, lambda and nlambda functions are
treated the same by APPLY—lambda functions take their

FUNCTION DEFINITION, MANIPULATION, AND EVALUATION 10.11

FUNCTION EVALUATION

arguments from ARGLIST without evaluating them. For
example: '

«{APPLY "APPEND '((PLUS 1 2 3) (4 56)))
(PLUS123456)

Note that FN may explicitly evaluate one or more of its
arguments itself. For example, the system function SETQ is an
nlambda function that explicitly evaluates its second argument.
Therefore, (APPLY 'SETQ ‘(FOO (ADD1 3))) will set FOO to 4,
instead of setting it to the expression (ADD1 3).

APPLY can be used for manipulating expr definitions, for
example:

«{APPLY '(LAMBDA (X Y) (ITIMES X Y)) ‘(3 4))
12

(APPLY* FN ARG ARG ... ARGY)) [NoSpread Function]

Nospread version of APPLY. Applies the function FN to the
arguments ARG 1 ARG ... ARGp. For example,

«{APPLY* 'APPEND '(PLUS 12 3) ‘(45 6))
(PLUS123456)

(EVAL X —) {Function]
EVAL evaluates the expression X and returns this value, i.e., EVAL
provides a way of calling the Interlisp interpreter. Note that
EVAL is itself a lambda function, so its argument is first
evaluated, e.g.,

«(SETQ FOO '(ADD1 3))
(ADD1 3)
«(EVAL FOO)
4
«(EVAL 'FOO)
(ADD1 3)
(QUOTE X) [NLambda NoSpread Function]

QUOTE prevents its arguments from being evaluated. Its value is
Xitself, e.g., (QUOTE FOO) is FOO.

Interlisp functions can either evaluate or not evaluate their
arguments. QUOTE can be used in those cases where it is
desirable to specify arguments unevaluated.

Note: The charactersingle-quote (') is defined with a read macro
so it returns the next expression, wrapped in a call to QUOTE
(page 25.42). For example, 'FOO reads as (QUOTE FOO). This is
the form used for examples in this manual.

Since giving QUOTE more than one argument is almost always a
parentheses error, and one that would otherwise go undetected,

10.12

FUNCTION DEFINITION, MANIPULATION, AND EVALUATION

FUNCTION EVALUATION

(KWOTE X)

QUOTE ‘itself generates -an error in this case, PARENTHESIS
ERROR.

[Function]

(NLAMBDA.ARGS X)

Value is an expression which when evaiuated yields X. If X is NIL
or a number, this is X itself. Otherwise, (LIST (QUOTE QUOTE) X).
For example,

(KWOTES) => 5
(KWOTE (CONS 'A 'B)) = > (QUOTE (A . B))

[Function]

(EVALA X A)

This function interprets its argument as a list of unevaluated
Nlambda arguments. If any of the elements in this list are of the
form (QUOTE ...), the enclosing QUOTE is stripped off. Actually,
NLAMBDA.ARGS stops processing the list after the first
non-quoted argument. Therefore, whereas (NLAMBDA.ARGS
'((QUOTE FOO) BAR)) -> (FOO BAR), (NLAMBDA.ARGS '(FOO
(QUOTE BAR))) - > (FOO (QUOTE BAR)).

NLAMBDA.ARGS is called by a number of nlambda functions in
the system, to interpret their arguments. For instance, the
function BREAK cails NLAMBDA.ARGS so that (BREAK 'FOO) will
break the function FOO, rather than the function QUOTE.

[Function]

(DEFEVAL TYPE FN)

Simulates association list variable lookup. Xis a form, Ais alist of
the form:

((NAME . VALy) (NAME) . VAL)) ... (NAMEy . VALp))

The variable names and values in A are "spread” on the stack,
and then X is evaluated. Therefore, any variables appearing free
in X, that also appears as CAR of an element of A will be given
the value in the CDR of that element.

[Function]

Specifies how a datum of a particular type is to be evaluated.
Intended primarily for user defined data types, but works for all
data types except lists, literal atoms, and numbers. TYPE is a type
name. FN is a function object, i.e. name of a function or a
lambda expression. Whenever the interpreter encounters a
datum of the indicated type, FN is applied to the datum and its
value returned as the result of the evaluation. DEFEVAL returns
the previous evaling function for this type. If FN = NIL, DEFEVAL
returns the current evaling function without changing it. |If
FN =T, the evaling function is set back to the system default
(which for all data types except lists is to return the datum itself).

FUNCTION DEFINITION, MANIPULATION, AND EVALUATION 10.13

FUNCTION EVALUATION

Note: COMPILETYPELST (page 18.11) permits the user to specify
how a datum of a particular type is to be compiled.

(EVALHOOK FORM EVALHOOKFN) [Function]
EVALHOOK evaluates the expression FORM, and returns its
value. While evaluating FORM, the function EVAL behaves in a
special way. Whenever a list other than FORM itself is to be
evaluated, whether implicitly or via an explicit call to EVAL,
EVALHOOKFN is invoked (it should be a function), with the form
to be evaluated as its argument. EVALHOOKFN is then
responsible for evaluating the form; whatever is returned is
assumed to be the result of evaluating the form. During the
execution of EVALHOOKFN, this special evaluation is turned off.
(Note that EVALHOOK does not effect the evaluations of
variables, only of lists).

Here is an example of a simple tracing routine that uses the
EVALHOOK feature:

«(DEFINEQ (PRINTHOOK (FORM)

(printout T "eval: " FORMT)

{(EVALHOOK FORM (FUNCTION PRINTHOOK]
(PRINTHOOK)

Using PRINTHOOK, one might see the followinginteraction:

«(EVALHOOK "(LIST (CONS 1 2) (CONS 3 4)) 'PRINTHOOK)
eval: (CONS12)

eval: (CONS 3 4)

((1.2)(3.4)

10.4 Iterating and Mapping Functions

The functions below are used to evaluate a form or apply a
function repeatedly. RPT, RPTQ, and FRPTQ evaluate an
expression a specified number of times. MAP, MAPCAR,
MAPLIST, etc. apply a given function repeatedly to different
elements of a list, possibly constructing another list.

These functions allow efficient iterative computations, but they
are difficult to use. For programming iterative computations, it
is usually better to use the CLISP Iterative Statement facility
(page 9.9), which provides a more general and complete facility
for expressing iterative statements. Whenever possible, CLISP
translates iterative statements into expressions using the
functions below, so there is no efficiency loss.

10.14 FUNCTION DEFINITION, MANIPULATION, AND EVALUATION

ITERATING AND MAPPING FUNCTIONS

(RPT N FORM) [Function]
Evaluates the expression FORM, N times. Returns the value of
the last evaluation. If N less than or equal to 0, FORM is not
evaluated, and RPT returns NIL.

Before each evaluation, the local variable RPTN is bound to the
number of evaluations yet to take place. This variable can be
referenced within FORM. For example, (RPT 10 ‘(PRINT RPTN))
will print the numbers 10,9, ... 1, and return 1.

(RPTQ N FORM 1 FORM ... FORMp) [NLambda NoSpread Function]
Nlambda-nospread version of RPT: N is evaluated, FORM; are
not. Returns the value of the last evaluation of FORM .

(FRPTQ N FORM 1 FORM) ... FORMp) [NLambda NoSpread Function]
Faster version of RPTQ. Does not bind RPTN.

(MAP MAPX MAPFN1 MAPFN2) [Function]
If MAPFN2 is NIL, MAP applies the function MAPFN1 to successive
tails of the list MAPX. That is, first it computes (MAPFN1 MAPX),
and then (MAPFN1 (CDR MAPX)), etc., until MAPX becomes a
non-list. If MAPFN2 is provided, (MAPFN2 MAPX) is used instead
of (CDR MAPX) for the next call for MAPFN1, e.g., if MAPFN2
were CDDR, alternate elements of the list would be skipped.
MAP returns NIL.

(MAPC MAPX MAPFN1 MAPFNZ2) [Function]
Identical to MAP, except that (MAPFN1 (CAR MAPX)) is
computed at each iteration instead of (MAPFN1 MAPX), i.e,
MAPC works on elements, MAP on tails. MAPC returns NIL.

(MAPLIST MAPX MAPFN1 MAPFN2) [Function]

Successively computes the same values that MAP would
compute, and returns a list consisting of those values.

(MAPCAR MAPX MAPFN1 MAPFN2) [Function]
Computes the same values that MAPC would compute, and
returns a list consisting of those values, e.g., (MAPCAR X 'FNTYP)
is a list of FNTYPs for each element on X.

(MAPCON MAPX MAPFN1 MAPFN2) [Function]
Computes the same values as MAP and MAPLIST but NCONGCs
these values to form alist which it returns.

FUNCTION DEFINITION, MANIPULATION, AND EVALUATION 10.15

ITERATING AND MAPPING FUNCTIONS

{MAPCONC MAPX MAPFN1 MAPFNZ2) [Function]
Computes the same values as MAPC and MAPCAR, but NCONCs
the values to form a list which it returns.

Note that MAPCAR creates a new list which is a mapping of the
old list in that each element of the new list is the result of
applying a function to the corresponding element on the
original list. MAPCONC is used when there are a variable
number of elements (including none) to be inserted at each
iteration. Examples:

(MAPCONC ‘(A B CNIL D NiL)
'(LAMBDA (Y) (if (NULL Y) then NiIL else (LIST Y))))
> (ABCD)

This MAPCONC returns a list consisting of MAPX with all NiLs
removed.

(MAPCONC'((AB)C(DEF)(G)H1)
'(LAMBDA (Y) (if (LISTP Y) then Y else NIL)))
=> (ABDEFQ)

This MAPCONC returns a linear list consisting of all the lists on
MAPX.

Since MAPCONC uses NCONC to string the corresponding lists
together, in this example the original list will be altered to be ((A
BDEFG)C(DEFG)(G)HI). Ifthisis an undesirable side effect,
the functional argument to MAPCONC should return instead a
top level copy of the lists, i.e. (LAMBDA (Y) (if (LISTP Y) then
(APPEND Y) else NIL))).

(MAP2C MAPX MAPY MAPFN1 MAPFN2) [Function]
Identical to MAPC except MAPFN1 is a function of two
arguments, and (MAPFN1 (CAR MAPX) (CAR MAPY)) is computed
at each iteration. Terminates when either MAPX or MAPY is a
non-list.

MAPFN2 is still a function of one argument, and is applied twice
on each iteration; (MAPFN2 MAPX) gives the new MAPX,
(MAPFN2 MAPY) the new MAPY. CDR is used if MAPFN2 is not
supplied,i.e., is NIL.

(MAP2CAR MAPX MAPY MAPFN1 MAPFN2) [Function]
Identical to MAPCAR except MAPFNT is a function of two
arguments and (MAPFN1 (CAR MAPX) (CAR MAPY)) is used to
assemble the new list. Terminates when either MAPX or MAPY is
a non-list.

10.16 FUNCTION DEFINITION, MANIPULATION, AND EVALUATION

ITERATING AND MAPPING FUNCTIONS

(SUBSET MAPX MAPFN1 MAPFN2) [Function]

Applies MAPFN1 to elements of MAPX and returns a list of those
elements for which this applicationis non-NiL, e.g.,

(SUBSET '(A B 3 C4) 'NUMBERP) = (3 4).
MAPFN2 plays the same role as with MAP, MAPC, et al.

(EVERY EVERYX EVERYFN1 EVERYFN2) [Function]

Returns T if the result of applying EVERYFN1 to each element in
EVERYX is true, otherwise NIL. For example, (EVERY (X Y 2)
'ATOM) 2> T.

EVERY operates by evaluating (EVERYFN1 (CAR EVERYX)
EVERYX). The second argument is passed to EVERYFN1 so that it
can look at the next element on EVERYX if necessary. If
EVERYFN1 yields NIL, EVERY immediately returns NIL. Otherwise,
EVERY computes (EVERYFN2 EVERYX), or (CDR EVERYX) if
EVERYFN2 =NIL, and uses this as the "new" EVERYX, and the
process continues. For example, (EVERY X 'ATOM 'CDDR) is true
if every other element of X is atomic.

(SOME SOMEX SOMEFN1 SOMEFN2) [Function]
Returns the tail of SOMEX beginning with the first element that
satisfies SOMEFN1, i.e., for which SOMEFN1 applied to that
element is true. Value is NIL if no such element exists. (SOME X
'(LAMBDA (2) (EQUAL Z Y))) is equivalent to (MEMBER Y X).
SOME operates analogously to EVERY. At each stage, (SOMEFN1
(CAR SOMEX) SOMEX) is computed, and if this is not NIL, SOMEX
is returned as the value of SOME. Otherwise, (SOMEFN2 SOMEX)
is computed, or (CDR SOMEX) if SOMEFN2 = NIL, and used for the
next SOMEX.

(NOTANY SOMEX SOMEFN1 SOMEFN2) [Function]
(NOT (SOME SOMEX SOMEFN1 SOMEFNZ2))

(NOTEVERY EVERYX EVERYFN1 EVERYFN2) [Function]
(NOT(EVERY EVERYX EVERYFN1 EVERYFN2))

(MAPRINT LST FILE LEFT RIGHT SEP PFN LISPXPRINTFLG) [Function]
A general printing function. For each element of the list LST,
applies PFN to the element, and FILE. If PFN is NIL, PRIN1 is used.
Between each application, MAPRINT performs PRIN1 of SEP (or "
" if SEP=NIL). If LEFTis given, itis printed (using PRIN1) initially;
if RIGHT is givenit is printed (using PRIN1) at the end.

For example, (MAPRINT X NIL '%('%)) is equivalent to PRIN1 for
lists. To print a list with commas between each element and a
final "." one could use (MAPRINT X TNIL '%. '%,).

FUNCTION DEFINITION, MANIPULATION, AND EVALUATION 10.17

ITERATING AND MAPPING FUNCTIONS

If LISPXPRINTFLG =T, LISPXPRIN1 (page 13.25) is used instead of
PRIN1.

10.5 Functional Arguments

The functions that call the Interlisp-D evaluator take "functional
arguments”, which may either be litatoms with function
definitions, or expr definition forms such as (LAMBDA (X) ...), or
FUNARG expressions (below).

The following functions are useful when one wants to supply a
functional argument which will always return NIL, T, or 0. Note
that the arguments Xy ... Xy to these functions are evaluated,
though they are not used.

(NILL X4 ... Xp) [NoSpread Function]
Returns NIL.

(TRUE Xy ... Xp) [NoSpread Function]
Returns T.

(ZERO X1 ... Xpy) [NoSpread Function]
Returns 0.

(FUNCTION FN ENV)

When using expr definitions as functional arguments, they
should be enclosed within the function FUNCTION rather than
QUOTE, so that they will be compiled as separate functions.
FUNCTION can also be used to create FUNARG expressions, which
can be used to solve some problems with referencing free
variables, or to create functional arguments which carry "state"
along with them.

[NLambda Function]

If ENV =NIL, FUNCTION is the same as QUOTE, except that it is
treated differently when compiled. Consider the function
definition:
(DEFINEQ (FOO(LST)

(FIE LST (FUNCTION (LAMBDA (Z) (ITIMES Z Z))]

FOO calls the function FIE with the value of LST and the expr
definition (LAMBDA (Z) (LIST (CAR 2))).

If FOO is run interpreted, it doesn't make any difference whether
FUNCTION or QUOTE is used. However, when FOO is compiled, if
FUNCTION is used the compiler will define and compile the expr

10.18

FUNCTION DEFINITION, MANIPULATION, AND EVALUATION

FUNCTIONAL ARGUMENTS

definition as an auxiliary function (See page 18.10). The
compiled expr definition will run considerably faster, which can
make a big difference if it is applied repeatedly.

Note: Compiling FUNCTION will not create an auxiliary function
if it is a functional argument to a function that compiles open,
such as most of the mapping functions (MAPCAR, MAPLIST, etc.).

If ENV is not NIL, it can be a list of variables that are (presumably)
used freely by FN. In this case, the value of FUNCTION is an
expression of the form (FUNARG FN POS), where POS is a stack
pointer to a frame that contains the variable bindings for those
variables on ENV. ENV can also be a stack pointer itself, in which
case the value of FUNCTION is (FUNARG FN ENV). Finally, ENV
can be an atom, in which case it is evaluated, and the value
interpreted as described above.

As explained above, one of the possible values that FUNCTION
can return is the form (FUNARG FN POS), where FN is a function
and POS is a stack pointer. FUNARG is not a function itself. Like
LAMBDA and NLAMBDA, it has meaning and is specially
recognized by Interlisp only in the context of applying a function
to arguments. In other words, the expression (FUNARG FN POS) is
used exactly like a function. When a FUNARG expression is
applied or is CAR of a form being EVAL'ed, the APPLY or EVAL
takes place in the access environment specified by ENV (see page
11.1). Consider the following example:

« (DEFINEQ (DO.TWICE (FN VAL)
(APPLY* FN (APPLY* FN VAL))))

(DO.TWICE)

« (DO.TWICE [FUNCTION (LAMBDA (X) (IPLUS X X))]
5)

20

«(SETQ VAL 1)

1

« (DO.TWICE [FUNCTION (LAMBDA (X) (IPLUS X VAL))]
5)

15

« (DO.TWICE [FUNCTION (LAMBDA (X) (IPLUS X VAL)) (VAL)]
5)

7

DO.TWICE is defined to apply a function FN to a value VAL, and
apply FN again to the value returned; in other words it
calculates (FN (FN VAL)). Given the expr definition (LAMBDA (X)
(IPLUS X X)), which doubles a given value, it correctly calculates
(FN (FN 5)) = (FN 10) = 20. However, when given (LAMBDA (X)
(IPLUS X VAL)), which should add the value of the global variable
VAL to the argument X, it does something unexpected, returning
15, ratherthan 5+1+1 = 7. The problem is that when the expr

FUNCTION DEFINITION, MANIPULATION, AND EVALUATION 10.19

FUNCTIONAL ARGUMENTS

definition is evaluated, it is evaluated in the context of
DO.TWICE, where VAL is bound to the second argument of
DO.TWICE, namely 5. In this case, one solution is to use the ENV
argument to FUNCTION to construct a FUNARG expression which
contains the value of VAL at the time that the FUNCTION is
executed. Now, when (LAMBDA (X) (IPLUS X VAL)) is evaluated,
it is evaluated in an environment where the global vaiue of VAL
is accessable. Admittedly, this is a somewhat contrived example
(it would be easy enough to change the argument names to
DO.TWICE so there would be no conflict), but this situation arises
occasionally with large systems of programs that construct
functions, and pass them around.

Note: System ‘functions with functional arguments (APPLY,
MAPCAR, etc.) are compiled so that their arguments are local,
and not accessable (see page 18.5). This reduces problems with
conflicts with free variables used in functional arguments.

FUNARG expressions can be used for more than just
circumventing the clashing of variables. For example, a FUNARG
expression can be returned as the value of a computation, and
then used "higher up". Furthermore, if the function in a
FUNARG expression sets any of the variables contained in the
frame, only the frame would be changed. For example, consider
the following function:

«(DEFINEQ (MAKECOUNTER (CNT)
(FUNCTION [LAMBDA NIL
(PROG1 CNT (SETQ CNT (ADD1 CNT]
(CNT)

The function MAKECOUNTER returns a FUNARG that increments
and returns the previous value of the counter CNT. However, this
is done within the environment of the call to MAKECOUNTER
where FUNCTION was executed, which the FUNARG expression
“carries around" with it, even after MAKECOUNTER has finished
executing. Note that each call to MAKECOUNTER creates a
FUNARG expression with a new, independent environment, so
that multiple counters can be generated and used:

«-(SETQ C1 (MAKECOUNTER 1))

(FUNARG (LAMBDA NIL (PROG1 CNT (SETQ CNT (ADD1 CNT))))
#1,13724/*FUNARG)

«(APPLY C1)

1

« (APPLY C1)

2

«(SETQ C2 (MAKECOUNTER 17))

(FUNARG (LAMBDA NIL (PROG1 CNT (SETQ CNT (ADD1 CNT))))
#1,13736/*FUNARG)

«-(APPLY C2)

17

10.20

FUNCTION DEFINITION, MANIPULATION, AND EVALUATION

FUNCTIONAL ARGUMENTS

« (APPLY C2)
18

« (APPLY C1)
3

« (APPLY C2)
19

By creating a FUNARG expression with FUNCTION, a program can
create a function object which has updateable binding(s)
associated with the object which last between calls to it, but are
only accessible through that instance of the function. For
example, using the FUNARG device, a program could maintain
two different instances of the same random number generator
in different states, and run them independently.

10.6 Macros

Macros provide an alternative way of specifying the action of a
function. Whereas function definitions are evaluated with a
“function call", which involves binding variables and other
housekeeping tasks, macros are evaluated by translating one
interlisp form into another, which is then evaluated.

A litatom may have both a function definition and a macro
definition. When a form is evaluated by the interpreter, if the
CAR has a function definition, it is used (with a function call),
otherwise if it has a macro definition, then that is used.
However, when a form is compiled, the CAR is checked for a
macro definition first, and only if there isn't one is the function
definition compiled. This allows functions that behave
differently when compiled and interpreted. For example, it is
possible to define a function that, when interpreted, has a
function definition that is slow and has a lot of error checks, for
use when debugging a system. This function could also have a
macro definition that defines a fast version of the function,
which is used when the debugged system is compiled.

Macro definitions are represented by lists that are stored on the
property list of a litatom. Macros are often used for functions
that should be compiled differently in different Interlisp
implementations, and the exact property name a macro
definition is stored under determines whether it should be used
in a particular implementation. The global variable
MACROPROPS contains a list of all possible macro property
names which should be saved by the MACROS file package
command. Typical macro property names are DMACRO for
Interlisp-D, 1O0MACRO for Interlisp-10, VAXMACRO for
Interlisp-VAX, JMACRO for Interlisp-Jerico, and MACRO for

FUNCTION DEFINITION, MANIPULATION, AND EVALUATION 10.21

MACROS

(LAMBDA ...)
(NLAMBDA ...

(NIL EXPRESSION)
(LIST EXPRESSION)

(OPENLAMBDA ARGS BODY)

“implementation independent” macros. The global variable
COMPILERMACROPROPS is a list of macro property names.
Interlisp determines whether a litatom has a macro definition by
checking these property names, in order, and using the first
non-NIL property value as the macro definition. In Interlisp-D
this list contains DMACRO and MACRO in that order so that
DMACROs will override the implementation-independent
MACRO properties. In general, use a DMACRO property for
macros that are to be used only in Interlisp-D, use T0MACRO for
macros that are to be used only in Interlisp-10, and use MACRO
for macros that are to affect both systems.

Macro definitions can take the following forms:

A function can be made to compile open by giving it a macro
definition of the form (LAMBDA ..) or (NLAMBDA ..), eg.,
(LAMBDA (X) (COND ((GREATERP X 0) X) (T (MINUS X)))) for ABS.
The effect is as if the macro definition were written in place of
the function wherever it appears in a function being compiled,
i.e., it compiles as a lambda or nlambda expression. This saves
the time necessary to call the function at the price of more
compiled code generated in-line. -

"Substitution” macro. Each argument in the form being
evaluated or compiled is substituted for the corresponding atom
in LIST, and the result of the substitution is used instead of the
form. For example, if the macro definition of ADD1 is {(X) (IPLUS
X 1)), then, (ADD1 (CAR Y)) is compiled as (IPLUS (CAR Y) 1).

Note that ABS could be defined by the substitution macro ((X)
(COND ((GREATERP X 0) X) (T (MINUS X)))). In this case, however,
(ABS (FOO X)) would compile as

(COND ((GREATERP (FOO X) 0)
(FOO X))
(T (MINUS (FOO X))))

and (FOO X) would be evaluated two times. (Code to evaluate
(FOO X) would be generated three times.)

This is a cross between substitution and LAMBDA macros. When
the compiler processes an OPENLAMBDA, it attempts to
substitute the actual arguments for the formals wherever this
preserves the frequency and order of evaluation that would have
resulted from a LAMBDA expression, and produces a LAMBDA
binding only for those that require it.

Note: OPENLAMBDA assumes that it can substitute literally the
actual arguments for the formal arguments in the body of the
macro if the actual is side-effect free or a constant. Thus, you
should be careful to use names in ARGS which don't occur in

10.22

FUNCTION DEFINITION, MANIPULATION, AND EVALUATION

MACROS

BODY (except as variable references). For example, if FOO has a
macro definition of

(OPENLAMBDA (ENV) (FETCH (MY-RECORD-TYPE ENV) OF BAR))
then (FOO NIL) will expand to
(FETCH (MY-RECORD-TYPE NIL) OF BAR)

T When a macro definition is the atom T, it means that the
compiler should ignore the macro, and compile the function
definition; this is a simple way of turning off other macros. For
example, the user may have a function that runs in both
Interlisp-D and Interlisp-10, but has a macro definition that
should only be used when compiling in Interlisp-10. If the
MACRO property has the macro specification, a DMACRO of T
will cause it to be ignored by the Interlisp-D compiler. Note that
this DMACRO would not be necessary if the macro were specified
by a 10MACRO instead of a MACRO.

(= . OTHER-FUNCTION) A simple way to tell the compiler to compile one function exactly
as it would compile another. For example, when compiling in
Interlisp-D, FRPLACAS are treated as RPLACAs. This is achieved by
having FRPLACA have a DMACRO of (= . RPLACA).

(LITATOM EXPRESSION) If a macro definition begins with a litatom other than those
given above, this allows computation of the Interlisp expression
to be evaluated or compiled in place of the form. LITATOM is
bound to the CDR of the calling form, EXPRESSION is evaluated,
and the result of this evaluation is evaluated or compiled in place
of the form. For example, LIST could be compiled using the
computed macro:

[X (LIST'CONS
(CAR X)
(AND (CDR X)
(CONS ‘LIST
(CDR X]

This would cause (LIST X Y Z) to compile as (CONS X (CONS Y
(CONS Z NIL))). Note the recursion in the macro expansion.

If the result of the evaluation is the litatom IGNOREMACRO, the
macro isignored and the compilation of the expression proceeds
as if there were no macro definition. If the litatom in question is
normally treated specially by the compiler (CAR, CDR, COND,
AND, etc.), and also has a macro, if the macro expansion returns
IGNOREMACRO, the litatom will still be treated specially.

In Interlisp-10, if the result of the evaluation is the atom
INSTRUCTIONS, no code will be generated by the compiler. It is
then assumed the evaluation was done for effect and the
necessary code, if any, has been added. This is a way of giving
direct instructions to the compiler if you understand it.

FUNCTION DEFINITION, MANIPULATION, AND EVALUATION 10.23

MACROS

Note: It is often useful, when constructing complex macro
expressions, to use the BQUOTE facility (see page 25.42).

The following function is quite useful for debugging macro
definitions:

(EXPANDMACRO EXP QUIETFLG — —) [Function]

10.6.1 DEFMACRO

Takes a form whose CAR has a macro definition and expands the
form as it would be compiled. The result is prettyprinted, unless
QUIETFLG =T, in which case the result is simply returned.

Macros defined with the function DEFMACRO are much like
"computed” macros (page 10.23), in that they are defined with a
form that is evaluated, and the result of the evaluation is used
(evaluated or compiled) in place of the macro call. However,
DEFMACRO macros support complex argument lists with
optional arguments, defauit values, and keyword arguments. In
addition, argument list destructuring is supported.

(DEFMACRO NAME ARGS FORM) [NLambda NoSpread Function]

Defines NAME as a macro with the arguments ARGS and the
definition form FORM (NAME, ARGS, and FORM are
unevaluated). If an expression starting with NAME is evaluated
or compiled, arguments are bound according to ARGS, FORM is
evaluated, and the value of FORM is evaluated or compiled
instead. The interpretation of ARGS is described below.

Note: Unlike the function DEFMACRO in Common Lisp, this
function currently does not remove any function definition for
NAME.

ARGS is a list that defines how the argument list passed to the
macro NAME is interpreted. Specifically, ARGS defines a set of
variables that are set to various arguments in the macro call
(unevaluated), that FORM can reference to construct the macro
form.

In the simplest case, ARGS is a simple list of variable names that
are set to the corresponding elements of the macro call
(unevaluated). For example, given:

(DEFMACRO FOO (A B) (LIST 'PLUS A B B))

The macro call (FOO X (BAR Y Z)) will expand to (PLUS X (BAR Y
Z) (BARY 2)).

The list ARGS can include any of a number of special
"&-keywords" (beginning with the character “&") that are used

10.24

FUNCTION DEFINITION, MANIPULATION, AND EVALUATION

MACROS

to set variables to particular items from the macro call form, as
follows:

&OPTIONAL Used to define optional arguments, possibly with default values.
Each element on ARGS after &OPTIONAL until the next
&-keyword or the end of the list defines an optional argument,
which can either be a litatom or a list, interpreted as follows:

VAR

If an optional argument is specified as a litatom, that variable is
set to the corresponding element of the macro «call
(unevaluated).

(VAR DEFAULT)

If an optional argument is specified as a two element list, VAR is
the variable to be set, and DEFAULT is a form that is evaluated
and used as the default if there is no corresponding element in
the macro call.

(VAR DEFAULT VARSETP)

if an optional argument is specified as a three element list, VAR
and DEFAULT are the variable to be set and the default form,
and VARSETP is a variable that is set to T if the optional
argument is given in the macro call, NIL otherwise. This can be
used to determine whether the argument was not given, or
whether it was specified with the default value.

For example, after
(DEFMACRO FOO (&OPTIONAL A (B 5) (C 6 CSET)) FORM)

expanding the macro call (FOO) would cause FORM to be
evaluated with A set to NIL, B set to 5, Cset to 6, and CSET set to
NIL. (FOO 4 5 6) would be the same, except that A would be set
to 4 and CSETwould besettoT.

&REST .

&BODY Used to get alist of all additional arguments from the macro call.
Either &REST or &BODY should be followed by a single litatom,
which is set to a list of all arguments to the macro after the
position of the &keyword. For example, given

(DEFMACRO FOO (A B &REST C) FORM)

expanding the macro call (FOO 1 2 3 4 5) would cause FORM to
be evaluated with Asetto1,Bsetto 2, and Csetto(3 45).

Note: If the macro cailing form contains keyword arguments
(see &KEY below) these are included in the &REST list.

&KEY Used to define keyword arguments, that are specified in the
macro call by including a "keyword" (a litatom starting with the

character ":") followed by a value.

Each element on ARGS after &KEY untii the next &-keyword or
the end of the list defines a keyword argument, which can either
be a litatom or a list, interpreted as follows:

FUNCTION DEFINITION, MANIPULATION, AND EVALUATION 10.25

MACROS

&ALLOW-OTHER-KEYS

&AUX

VAR
(VAR)
((KEYWORD VAR))

If a keyword argument is specified by a single litatom VAR, or a
one-element list containing VAR, it is set to the value of a
keyword argument, where the keyword used is created by
adding the character “:" to the front of VAR. If a keyword
argument is specified by a single-element list containing a
two-element list, KEYWORD is interpreted as the keyword
(which should start with the letter ":"), and VAR is the variable
to set.

(VAR DEFAULT)

((KEYWORD VAR) DEFAULT)

(VAR DEFAULT VARSETP)
((KEYWORD VAR) DEFAULT VARSETP)

If a keyword argument is specified by a two or three-element list,
the first element of the list specifies the keyword and variable to
set as above. Similar to &OPTIONAL (above), the second element
DEFAULT is a form that is evaluated and used as the defauit if
there is no corresponding element in the macro call, and the
third element VARSETP s a variable that is set to T if the optional
argument is givenin the macro call, NIL otherwise.

For example, the form
(DEFMACRO FOO (&KEY A (B 5 BSET) ((:BAR C) 6 CSET)) FORM)

Defines a macro with keys :A, :B (defaulting to 5), and :BAR.
Expanding the macro call (FOO :BAR 2 :A 1) would cause FORM
to be evaluated with Asetto1,Bsetto 5, BSET set to NIL, Cset to
2,and CSET settoT.

It is an error for any keywords to be suplied in a macro call that
are not defined as keywords in the macro argument list, unless
either the &-keyword &ALLOW-OTHER-KEYS appears in ARGS, or
the keyword :ALLOW-OTHER-KEYS (with a non-NIL vaiue)
appears in the macro call.

Used to bind and initialize auxiliary varables, using a syntax
similar to PROG (page 9.8). Any elements after &AUX should be
either litatoms or lists, interpreted as follows:

VAR

Single litatoms are interpreted as auxiliary variables that are
initially bound to NIL.

(VAR EXP)

If an auxiliary variable is specified as a two element list, VAR is a
variable initially bound to the result of evaluating the form EXP.

For example, given

10.26

FUNCTION DEFINITION, MANIPULATION, AND EVALUATION

MACROS

(DEFMACRO FOO (A B &AUX C(D 5)) FORM)
C will be bound to NIL and D to 5 when FORM is evaluated.

&WHOLE Used to gét the whole macro calling form. Should be the first
element of ARGS, and should be followed by a single litatom,
which is set to the entire macro calling form. Other &-keywords
or arguments can follow. For example, given

(DEFMACRO FOO (&WHOLE X A B) FORM)

Expanding the macro call (FOO 1 2) would cause FORM to be
evaluated with Xsetto (FOO 12), Asetto1,and Bset to 2.

DEFMACRO macros also support argument list "destructuring,” a
facility for accessing the structure of individual arguments to a
macro. Any place in an argument list where a litatom is
expected, an argument list (in the form described above) can
appear instead. Such an embedded argument list is used to
match the corresponding parts of that particular argument,
which should be alist structure in the same form. in the simplest
case, where the embedded argument list does not include
&-keywords, this provides a simple way of picking apart list
structures passed as arguments to a macro. For example, given

(DEFMACRO FOO (A (B (C . D)) E) FORM)

Expanding the macro call (FOO 1 (2 (3 4 5)) 6) wouid cause FORM
to be evaluated with with Asetto 1, B setto 2, Csetto 3, Dsetto
(4 5), and Eset to 6. Note that the embedded argument list (B (C
. D)) has an embedded argument list (C. D). Also notice thatifan
argument list ends in a dotted pair, that the final litatom
matches the rest of the arguments in the macro call.

An embedded argument list can also include &-keywords, for
interpreting parts of embedded list structures as if they appeared
in a top-level macro call. For example, given

(DEFMACRO FOO (A (B &OPTIONAL (C 6)) D) FORM)

Expanding the macro call (FOO 1 (2) 3) would cause FORM to be
evaluated with with A set to 1, B set to 2, C set to 6 (because of
the default value),and D set to 3.

Warning: Embedded argument lists can only appear in positions
in an argument list where a list is otherwise not accepted. In the
above example, it would not be possible to specify an embedded
argument list after the &OPTIONAL keyword, because it would
be interpreted as an optional argument specification (with
variable name, default value, set variable). However, it would be
possible to specify an embedded argument list as the first
element of an optional argument specification list, as so:

(DEFMACRO FOO (A (B &OPTIONAL ((X(Y) 2) (1 (2) 3))) D) FORM)

In this case, X, Y, and Z default to 1, 2, and 3, respectively. Note
that the “default" value has to be an appropriate list structure.
Also, in this case either the whole structure (X (Y) Z) can be

FUNCTION DEFINITION, MANIPULATION, AND EVALUATION 10.27

MACROS

10.6.2 Interpreting Macros

supplied, or it can be defaulted (i.e. is not possible to specify X
while letting Y default).

When the interpreter encounters a form CAR of which is an
undefined function, it tries interpreting it as a macro. If CAR of
the form has a macro definition, the macro is expanded, and the
result of this expansion is evaluated in place of the original form.
CLISPTRAN (page 21.25) is used to save the result of this
expansion so that the expansion only has to be done once. On
subsequent occasions, the translation (expansion) is retrieved
from CLISPARRAY the same as for other CLISP constructs.

Note: Because of the way that the evaluator processes macros, if
you have a macro on FOQ, then typing (FOO 'A 'B) will work, but
FOO(A B) will not work.

Sometimes, macros contain calls to functions that assume that
the macro is being compiled. The variabie
SHOULDCOMPILEMACROATOMS is a list of functions that should
be compiled to work correctly (initially (OPCODES) in Interlisp-D,
(ASSEMBLE LOC) in Interlisp-10). UNSAFEMACROATOMS is a list
of functions which effect the operation of the compiler, so such
macro forms shouldn't even be expanded except by the compiler
(initially NIL in Interlisp-D, (C2EXP STORIN CEXP COMP) in
Interlisp-10). If the interpreter encounters a macro containing
calls to functions on these two lists, instead of the macro being
expanded, a dummy function is created with the form as its
definition, and the dummy function is then compiled. A form
consisting of a call to this dummy function with no arguments is
then evaluated in place of the original form, and CLISPTRAN is
used to save the translation as described above. There are some
situations for which this procedure is not amenable, e.g. a GO
inside the form which is being compiled will cause the compiler
to give an UNDEFINED TAG error message because it is not
compiling the entire function, just a part of it.

10.28

FUNCTION DEFINITION, MANIPULATION, AND EVALUATION

TABLE OF CONTENTS

11. Variable Bindings and the Interlisp Stack 1.1
11.1. The Spaghetti Stack ' 11.2
11.2. Stack Functions 11.4

11.2.1. Searching the Stack 11.5
11.2.2. Variable Bindings in Stack Frames 11.6
11.2.3. Evaluating Expressions in Stack Frames 11.7
11.2.4. Altering Flow of Control 11.8
11.2.5. Releasing and Reusing Stack Pointers 119
11.2.6. Backtrace Functions 1.1
11.2.7. Other Stack Functions 11.13
11.3. The Stack and the Interpreter 11.14
11.4. Generators 11.16
11.5. Coroutines _ 11.18
11.6. Possibilities Lists 11.20

TABLE OF CONTENTS TOC 1

TABLE OF CONTENTS

[This page intentionally left blank]

TOC.2 TABLE OF CONTENTS

-(1)

(2)

(3)

(4)

11. VARIABLE BINDINGS AND THE
INTERLISP STACK

A number of schemes have been used in different
implementations of Lisp for storing the values of variables.
These include:

Storing values on an association list paired with the variable
names.

Storing values on the property list of the atom which is the name
of the variable.

Storing values in a special value cell associated with the atom
name, putting old values on the function call stack, and restoring
these values when exiting from a function.

Storing values on on the function call stack.

Interlisp-10 uses the third scheme, so called “shallow binding".
When a function is entered, the value of each variable bound by
the function (function argument) is stored in a value cell
associated with that variable name. The value that was in the
value cell is stored in a block of storage called the basic frame for
this function call. In addition, on exit from the function each
variable must be individually unbound; that is, the old value
saved in the basic frame must be restored to the value cell. Thus
there is a higher cost for binding and unbinding a variable than
in the fourth scheme, "deep binding". However, to find the
current value of any variable, it is only necessary to access the
variable's value cell, thus making variable reference considerably
cheaper under shallow binding than under deep binding,
especially for free variables. However, the shallow binding
scheme used does require an additional overhead in switching
contexts when doing "spaghetti stack™ operations.

Interlisp-D uses the forth scheme, "deep binding." Every time a
function is entered, a basic frame containing the new variables is
put on top of the stack. Therefore, any variable reference
requires searching the stack for the first instance of that variable,
which makes free variable use somewhat more expensive than in
a shallow binding scheme. On the other hand, spaghetti stack
operations are considerably faster. Some other tricks involving
copying freely-referenced variables to higher frames on the stack
are also used to speed up the search.

The basic frames are allocated on a stack; for most user purposes,
these frames should be thought of as containing the variable

VARIABLE BINDINGS AND THE INTERLISP STACK

VARIABLE BINDINGS AND THE INTERLISP STACK

names associated with the function call, and the current values
for that frame. The descriptions of the stack functions in below
are presented from this viewpoint. Both interpreted and
compiled functions store both the names and values of variables
so that interpreted and compiled functions are compatible and
can be freely intermixed, i.e., free variables can be used with no
SPECVAR declarations necessary. However, it is possible to
suppress storing of names in compiled functions, either for
efficiency or to avoid a clash, via a LOCALVAR decdlaration (see
page 18.5). The names are also very useful in debugging, for
they make possible a compiete symbolic backtrace in case of
error.

In addition to the binding information, additional information is
associated with each function call: access information indicating
the path to search the basic frames for variable bindings, control
information, and temporary results are also stored on the stack
in a block cailed the frame extension. The interpreter also stores
information about partially evaluated expressions as described
onpage 11.14.

11.1 The Spaghetti Stack

The Bobrow/Wegbreit paper, "A Model and Stack
implementation for Muitiple Environments" (Communications
of the ACM, Vol. 16, 10, October 1973.), describes an access and
control mechanism more general than a simple linear stack. The
access and control mechanism used by Interlisp is a slightly
modified version of the one proposed by Bobrow and Wegbreit.
This mechanism is called the “spaghetti stack."

The spaghetti system presents the access and control stack as a
data structure composed of "frames." The functions described
below operate on this structure. These primitives allow user
functions to manipulate the stack in a machine independent
way. Backtracking, coroutines, and more sophisticated control
schemes can be easily implemented with these primitives.

The evaluation of a function requires the allocation of storage to
hold the values of its local variables during the computation. In
addition to variable bindings, an activation of a function
requires a return link (indicating where control is to go after the
completion of the computation) and room for temporaries
needed during the computation. In the spaghetti system, one
“stack” is used for storing all this information, but it is best to
view this stack as a tree of linked objects called frame extensions
(orsimply frames).

VARIABLE BINDINGS AND THE INTERLISP STACK

THE SPAGHETTI STACK

A frame extension is a variable sized block of storage containing
a frame name, a pointer to some variable bindings (the BLINK),
and two pointers to other frame extensions (the ALINK and
CLINK). In addition to these components, a frame extension
contains other information (such as temporaries and reference
counts) that does not interest us here.

The block of storage holding the variable bindings is called a
basic frame. A basic frame is essentially an array of pairs, each of
which contains a variable name and its value. The reason frame
extensions point to basic frames (rather than just having them
"built in") is so that two frame extensions can share a common
basic frame. This allows two processes to communicate via
shared variable bindings.

The chain of frame extensions which can be reached via the
successive ALINKs from a given frame is called the "access chain™
of the frame. The first frame in the access chain is the starting
frame. The chain through successive CLINKs is called the "control
chain",

A frame extension completely specifies the variable bindings and
control information necessary for the evaluation of a function.
Whenever a function (or in fact, any form which generally binds
local variables) is evaluated, it is associated with some frame
extension.

In the beginning there is precisely one frame extension in
existence. This is the frame in which the top-level call to the
interpreter is being run. This frame is called the "top-level”
frame.

Since precisely one function is being executed at any instant,
exactly one frame is distinguished as having the "control
bubble" init. This frame is called the active frame. Initially, the
top-level frame is the active frame. If the computation in the
active frame invokes another function, a new basic frame and
frame extension are built. The frame name of this basic frame
will be the name of the function being called. The ALINK, BLINK,
and CLINK of the new frame all depend on precisely how the
function is invoked. The new function is then run in this new
frame by passing control to that frame, i.e., it is made the active
frame.

Once the active computation has been completed, control
normally returns to the frame pointed to by the CLINK of the
active frame. That is, the frame in the CLINK becomes the active
frame.

In most cases, the storage associated with the basic frame and
frame extension just abandoned can be reclaimed. However, itis
possibie to obtain a pointer to a frame extension and to “hold
on"” to this frame even after it has been exited. This pointer can

VARIABLE BINDINGS AND THE INTERLISP STACK

THE SPAGHETTI STACK

be used later to run another computation in that environment,
or even "continue" the exited computation.

A separate data type, called a stack pointer, is used for this
purpose. A stack pointer is just a cell that literally points to a
frame extension. Stack pointers print as #ADR/FRAMENAME,
e.g., #1,13636/COND. Stack pointers are returned by many of
the stack manipulating functions described below. Except for
certain abbreviations (such as "the frame with such-and-such a
name"), stack pointers are the only way the user can reference a
frame extension. As long as the user has a stack pointer which
references a frame extension, that frame extension (and all those
that can be reached from it) will not be garbage collected.

Note that two stack pointers referencing the same frame
extension are not necessarily EQ, i.e., (EQ (STKPOS ‘'FOO)
(STKPOS 'FO0)) = NIiL. However, EQP can be used to test if two
different stack pointers reference the same frame extension
(page 9.3).

It is possible to evaluate a form with respect to an access chain
other than the current one by using a stack pointer to refer to
the head of the access chain desired. Note, however, that this
can be very expensive when using a shallow binding scheme such
as that in Interlisp-10. When evaluating the form, since all
references to variables under the shallow binding scheme go
through the variable's value cell, the values in the value cells
must be adjusted to reflect the values appropriate to the desired
access chain. This is done by changing all the bindings on the
current access chain (all the name-value pairs) so that they
contain the value current at the time of the call. Then along the
new access path, all bindings are made to contain the previous
value of the variable, and the current value is placed in the value
cell. For that part of the access path which is shared by the oid
and new chain, no work has to be done. The context switching
time, i.e. the overhead in switching from the current, active,
access chain to another one, is directly proportional to the size of
the two branches that are not shared between the access
contexts. This cost should be remembered in using generators
and coroutines (page 11.16).

11.2 Stack Functions

In the descriptions of the stack functions below, when we refer
to an argument as a stack descriptor, we mean that it is one of
the following:

VARIABLE BINDINGS AND THE INTERLISP STACK

STACK FUNCTIONS

A stack pointer

NIL

T
A litatom

A list of litatoms

Anumber N

11.2.1 Searching the Stack

A stack pointer is an object that points to a frame on the stack.
Stack pointers are returned by many of the stack manipulating
functions described below.

Specifies the active frame; thatis, the frame of the stack function
itself.

Specifies the top-level frame.

Specifies the first frame (along the control chain from the active
frame) that has the frame name LITATOM. Equivalent to
(STKPOS LITATOM -1).

Specifies the first frame (along the control chain from the active
frame) whose frame name isincluded in the list.

Specifies the Nth frame back from the active frame. If N is
negative, the control chain is followed, otherwise the access
chainis followed. Equivalent to (STKNTH N)

In the stack functions described below, the following errors can
occur: The error ILLEGAL STACK ARG occurs when a stack
descriptor is expected and the supplied argument is either not a
legal stack descriptor (i.e., not a stack pointer, litatom, or
number), or is a litatom or number for which there is no
corresponding stack frame, e.g., (STKNTH -1 'FOO) where there
is no frame named FOO in the active control chain or (STKNTH
-10 ‘EVALQT). The error STACK POINTER HAS BEEN RELEASED
occurs whenever a released stack pointer is supplied as a stack
descriptor argument for any purpose other than as a stack
pointer to re-use.

Note: The creation of a single stack pointer can result in the
retention of a large amount of stack space. Therefore, one
should try to release stack pointers when they are no longer
needed (see page 11.9).

(STKPOS FRAMENAME N POS OLDPOS) [Function]

Returns a stack pointer to the Nth frame with frame name
FRAMENAME. The search begins with (and includes) the frame
specified by the stack descriptor POS. The search proceeds along
the control chain from POS if N is negative, or along the access
chain if Nis positive. If Nis NIL, -1 is used. Returns a stack pointer
to the frame if such a frame exists, otherwise returns NIL. If
OLDPOS is supplied and is a stack pointer, it is reused. If OLDPOS
is supplied and is a stack pointer and STKPOS returns NIL,
OLDPOS isreleased. If OLDPOS is not a stack pointer itisignored.

Note: (STKPOS 'STKPOS) causes an error, ILLEGAL STACK ARG; it
is not permissible to create a stack pointer to the active frame.

VARIABLE BINDINGS AND THE INTERLISP STACK

STACK FUNCTIONS

(STKNTH N POS OLDPOS)

[Function]

(STKNAME POS)

Returns a stack pointer to the Nth frame back from the frame
specified by the stack descriptor POS. 1f Nis negative, the control
chain from POS is followed. If N is positive the access chain is
followed. If N equals 0, STKNTH returns a stack pointer to POS
(this provides a way to copy a stack pointer). Returns NIL if there
are fewer than N frames in the appropriate chain. If OLDPOS is
supplied and is a stack pointer, it is reused. If OLDPOS is not a
stack pointeritisignored.

Note: (STKNTH 0) causes an error, ILLEGAL STACK ARG; it is not
possible to create a stack pointer to the active frame.

[Function]

(SETSTKNAME POS NAME)

Returns the frame name of the frame specified by the stack
descriptor POS.

[Function]

(STKNTHNAME N POS)

Changes the frame name of the frame specified by POS to be
NAME. Returns NAME.

[Function]

Returns the frame name of the Nth frame back from POS.
Equivalent to (STKNAME (STKNTH N POS)) but avoids creation of
a stack pointer.

In summary, STKPOS converts function names to stack pointers,
STKNTH converts numbers to stack pointers, STKNAME converts
stack pointers to function names, and STKNTHNAME converts
numbers to function names.

11.2.2 Variable Bindings in Stack Frames

(STKSCAN VAR IPOS OPOS)

The following functions are used for accessing and changing
bindings. Some of functions take an argument, N, which
specifies a particular binding in the basic frame. If N is a literal
atom, it is assumed to be the name of a variable bound in the
basic frame. If Nis a number, it is assumed to reference the Nth
binding in the basic frame. The first binding is 1. If the basic
frame contains no binding with the given name or if the number
is too large or too small, the error ILLEGAL ARG occurs.

[Function]

Searches beginning at /POS for a frame in which a variable
named VAR is bound. The search follows the access chain.
Returns a stack pointer to the frame if found, otherwise returns
NIL. If OPOS is a stack pointer it is reused, otherwise itisignored.

VARIABLE BINDINGS AND THE INTERLISP STACK

STACK FUNCTIONS

(FRAMESCAN ATOM POS)

[Function]

(STKARG N POS —)

Returns the relative position of the binding of ATOM in the basic
frame of POS. Returns NIL if ATOM is not found.

[Function]

Returns the value of the binding specified by N in the basic frame
of the frame specified by the stack descriptor POS. N can be a
literal atom or number.

(STKARGNAME N POS) [Function]
Returns the name of the binding specified by N, in the basic
frame of the frame specified by the stack descriptor POS. N can
be aliteral atom or number.

(SETSTKARG N POS VAL) [Function]
Sets the value of the binding specified by N in the basic frame of
the frame specified by the stack descriptor POS. N can be a literal
atom or a number. Returns VAL.

(SETSTKARGNAME N POS NAME) [Function]

(STKNARGS POS —)

Sets the variable name to NAME of the binding specified by N in
the basic frame of the frame specified by the stack descriptor
POS. Ncanbe aliteral atom or a number. Returns NAME.

[Function]

(VARIABLES POS)

Returns the number of arguments bound in the basic frame of
the frame specified by the stack descriptor POS.

[Function]

(STKARGS POS —)

Returns a list of the variables bound at POS.

[Function]

Returns a list of the values of the variables bound at POS.

11.2.3 Evaluating Expressions in Stack Frames

The following functions are used to evaluate an expression in a
different environment:

(ENVEVAL FORM APOS CPOS AFLG CFLG) [Function]

Evaluates FORM in the environment specified by APOS and CPOS.
That is, @ new active frame is created with the frame specified by
the stack descriptor APOS as its ALINK, and the frame specified
by the stack descriptor CPOS as its CLINK. Then FORM is
evaluated. If AFLG is not NIL, and APOS is a stack pointer, then

VARIABLE BINDINGS AND THE INTERLISP STACK

STACK FUNCTIONS

APOS will be released. Similarly, if CFLG is not NIL, and CPOS is a
stack pointer, then CPOS will be released.

(ENVAPPLY FN ARGS APOS CPOS AFLG CFLG) [Function]
APPLYs FN to ARGS in the environment specified by APOS and
CPOS. AFLG and CFLG have the same interpretation as with
ENVEVAL.

(EVALV VAR POS RELFLG) [Function]
Evaluates VAR, where VAR is assumed to be a litatom, in the
access environment specifed by the stack descriptor POS. If VAR
is unbound, EVALV returns NOBIND and does not generate an
error. |f RELFLG is non-NIL and POS is a stack pointer, it will be
released after the variable is looked up. While EVALV could be
defined as (ENVEVAL VAR POS NIL RELFLG) it is in fact somewhat
faster.

(STKEVAL POS FORM FLG —) [Function]
Evaluates FORM in the access environment of the frame specified
by the stack descriptor POS. If FLG is not NIL and POS is a stack
pointer, releases POS. The definition of STKEVAL is (ENVEVAL
FORM POS NIL FLG).

(STKAPPLY POS FN ARGS FLG) [Function]
Similar to STKEVAL but applies FN to ARGS.

11.2.4 Altering Flow of Control

The following functions are used to alter the normal flow of
control, possibly jumping to a different frame on the stack.
RETEVAL and RETAPPLY allow evaluating an expression in the
specified environment first.

(RETFROM POS VAL FLG) [Function]
Return from the frame specified by the stack descriptor POS, with
the value VAL. If FLG is not NIL, and POS is a stack pointer, then
POS is released. An attempt to RETFROM the top level (e.g.,
(RETFROM T)) causes an error, ILLEGAL STACK ARG. RETFROM
can be written in terms of ENVEVAL as follows:

(RETFROM
(LAMBDA (POS VALFLG)
(ENVEVAL (LIST'QUOTE VAL)
NIL
(if (STKNTH -1 POS (if FLG then POS))
else (ERRORX (LIST 19 POS)))

11.8 VARIABLE BINDINGS AND THE INTERLISP STACK

STACK FUNCTIONS’

NIL
)

(RETTO POS VAL FLG) [Function]
Like RETFROM, except returns to the frame specified by POS.

(RETEVAL POS FORM FLG —) [Function]
Evaluates FORM in the access environment of the frame specified
by the stack descriptor POS, and then returns from POS with that
value. If FLG is not NIL and POS is a stack pointer, then POS is
released. The definition of RETEVAL is equivalent to (ENVEVAL
FORM POS (STKNTH -1 POS) FLG T), except that RETEVAL does
not create a stack pointer.

(RETAPPLY POS FN ARGS FLG) [Function]
Similar to RETEVAL except applies FN to ARGS.

11.2.5 Releasing and Reusing Stack Pointers

The following functions and variables are used for manipulating
stack pointers:

(STACKP X) ' [Function]
Returns X if X is a stack pointer, otherwise returns NIL.

(RELSTK POS) [Function]
Release the stack pointer POS (see below). If POS is not a stack
pointer, does nothing. Returns POS.

(RELSTKP X) [Function]
Returns Tis X is a released stack pointer, NIL otherwise.

(CLEARSTK FLG) fFunction]
if FLG is NIL, releases all active stack pointers, and returns NIL. If
FLGis T, returns a list of all the active (unreleased) stack pointers.

CLEARSTKLST [Variable]
A variable used by the top-level executive. Every time the
top-level executive is re-entered (e.g., following errors, or
control-D), CLEARSTKLST is checked. If its value is T, all active
stack pointers are released using CLEARSTK. If its value is a list,
then all stack pointers on that list are released. If its value is NIL,
nothingis released. CLEARSTKLST is initially T.

VARIABLE BINDINGS AND THE INTERLISP STACK 1.9

STACK FUNCTIONS

NOCLEARSTKLST

[Variable]

A variable used by the top-level executive. If CLEARSTKLST is T
(see above) all active stack pointers except those on
NOCLEARSTKLST are released. NOCLEARSTKLST is initially NIL.

Note: If one wishes to use multiple environments that survive
through control-D, either CLEARSTKLST should be set to NIL, or
else those stack pointers to be retained should be explicitly
added to NOCLEARSTKLST.

The creation of a single stack pointer can result in the retention
of a large amount of stack space. Furthermore, this space will
not be freed until the next garbage collection, even if the stack
pointer is no longer being used, unless the stack pointer is
explicitly released or reused. If there is sufficient amount of stack
space tied up in this fashion, a STACK OVERFLOW condition can
occur, even in the simplest of computations. For this reason, the
user should consider releasing a stack pointer when the
environment referenced by the stack pointer is no longer
needed.

The effects of releasing a stack pointer are:

(1) The link between the stack pointer and the stack is broken by
setting the contents of the stack pointer to the "released mark"
(currently unboxed 0). A released stack pointer prints as
#ADRI#0.

(2) If this stack pointer was the last remaining reference to a
frame extension; that is, if no other stack pointer references the
frame extension and the extension is not contained in the active
control or access chain, then the extension may be reclaimed,
and is reclaimed immediately. The process repeats for the access
and control chains of the reclaimed extension so that all stack
space that was reachable only from the released stack pointer is
reclaimed.

A stack pointer may be released using the function RELSTK, but
there are some cases for which RELSTK is not sufficient. For
example, if a function contains a call to RETFROM in which a
stack pointer was used to specify where to return to, it would not
be possible to simultaneously release the stack pointer. (A
RELSTK appearingin the function following the call to RETFROM
would not be executed!) To permit release of a stack pointer in
this situation, the stack functions that relinquish control have
optional flag arguments to denote whether or not a stack
pointer is to be released (AFLG and CFLG). Note that in this case
releasing the stack pointer will not cause the stack space to be
reclaimed immediately because the frame referenced by the
stack pointer will have become part of the active environment.

Another way of avoiding creating new stack pointers is to reuse
stack pointers that are no longer needed. The stack functions

11.10

VARIABLE BINDINGS AND THE INTERLISP STACK

STACK FUNCTIONS

11.2.6 Backtrace Functions

that create stack pointers (STKPOS, STKNTH, and STKSCAN) have
an optional argument which is a stack pointer to reuse. When a
stack pointer is reused, two things happen. First the stack
pointer is released (see above). Then the pointer to the new
frame extension is deposited in the stack pointer. The old stack
pointer (with its new contents) is the value of the function. Note
that the reused stack pointer will be released even if the function
does not find the specified frame.

Note that even if stack pointers are explicitly being released,
creation of many stack pointers can cause a garbage collection of
stack pointer space. Thus, if the user's application requires
creating many stack pointers, he definitely should take
advantage of reusing stack pointers.

The following functions perform a "backtrace," printing
information about every frame on the stack. Arguments allow
only backtracing a selected range of the stack, skipping selected
frames, and printing different amounts of information about
each frame.

(BACKTRACE /POS EPOS FLAGS FILE PRINTFN) [Function]

&

Performs a backtrace beginning at the frame specified by the
stack descriptor IPOS, and ending with the frame specified by the
stack descriptor EPOS. FLAGS is a number in which the options of
the BACKTRACE are encoded. If a bit is set, the corresponding
informationisincluded in the backtrace.

bit 0 - print arguments of non-SUBRs.

bit 1 - print temporaries of the interpreter.

bit 2 - print SUBR arguments and local variables.

bit 3 - omit printing of UNTRACE: and function names.
bit 4 - follow access chain instead of control chain.

bit 5 - print temporaries, i.e. the blips (see page 11.14).

For example: If FLAGS=47Q, everything is printed. If
FLAGS = 21Q, follows the access chain, prints arguments.

FILE is the file that the backtraceis printed to. FILE must be open.
PRINTFN is used when printing the values of variables,
temporaries, blips, etc. PRINTFN = NIL defaults to PRINT.

(BAKTRACE /POS EPOS SKIPFNS FLAGS FILE) [Function]

Prints a backtrace from /POS to EPOS onto FILE. FLAGS specifies
the options of the backtrace, e.g., do/don't print arguments,

VARIABLE BINDINGS AND THE INTERLISP STACK

1.1

STACK FUNCTIONS

BAKTRACELST

do/don't print temporaries of the interpreter, etc,, and is the
same as for BACKTRACE.

SKIPFNS is a list of functions. As BAKTRACE scans down the stack,
the stack name of each frame is passed to each function in
SKIPFNS, and if any of them return non-NIL, POS is skipped
(including all variables).

BAKTRACE collapses the sequence of several function calls
corresponding to a call to a system package into a single
“function” using BAKTRACELST as described below. For
example, any call to the editor is printed as **EDITOR**, a break
is printed as **BREAK**, etc.

BAKTRACE is used by the BT, BTV, BTV +, BTV*, and BTV! break
commands, with FLAGS=0, 1, 5, 7, and 47Q respectively.

Note: BAKTRACE calls BACKTRACE .with a PRINTFN of
SHOWPRINT (page 25.10), so that if SYSPRETTYFLG=T, the
values will be prettyprinted.

[Variablel

Used for teiling BAKTRACE (therefore, the BT, BTV, etc.
commands) to abbreviate various sequences of function calls on
the stack by a single key, e.g. **BREAK™**, **EDITOR**, etc.

The operation of BAKTRACE and format of BAKTRACELST is
described so that the user can add his own entries to
BAKTRACELST. Each entry on BAKTRACELST is a list of the form
(FRAMENAME KEY . PATTERN) or (FRAMENAME (KEY,
PATTERN7) ... (KEYp . PATTERNY))), where a pattern is a list of
elements that are either atoms, which match a single frame, or
lists, which are interpreted as a list of alternative patterns, e.g.
(PROGN **BREAK** EVAL ((ERRORSET BREAK1A BREAK1)
(BREAK1)))

BAKTRACE operates by scanning up the stack and, at each point,
comparing the current frame name, with the frame names on
BAKTRACELST, i.e. it does an ASSOC. If the frame name does
appear, BAKTRACE attempts to match the stack as of that point
with (one of) the patterns. If the match is successful, BAKTRACE
prints the corresponding key, and continues with where the
match left off. If the frame name does not appear, or the match
fails, BAKTRACE simply prints the frame name and continues
with the next higher frame (unless the SKIPFNS applied to the
frame name are non-NIL as described above).

Matching is performed by comparing atoms in the pattern with
the current frame name, and matching lists as patterns, i.e.
sequences of function calls, always working up the stack. For
example, either of the sequence of function calls "... BREAK1
BREAK1A ERRORSET EVAL PROGN .." or ".. BREAK1 EVAL

11.12

VARIABLE BINDINGS AND THE INTERLISP STACK

STACK FUNCTIONS

PROGN ..." would match with the sample entry given above,
causing **BREAK™** to be printed.

Special features:

® Thelitatom & can be used to match any frame.

® The pattern can be used to match nothing. - is useful for
specifying an optional match, e.g. the example above could also
have been written as (PROGN **BREAK** EVAL ((ERRORSET
BREAK1A) -) BREAK1).

® [tis not necessary to provide in the pattern for matching dummy
frames, i.e. frames for which DUMMYFRAMEP (see page 11.13)is
true, e.g. in Interlisp-10, *PROG*LAM, *ENV*, NOLINKDEF1, etc.
When working on a match, the matcher automatically skips over
these frames when they do not match.

® If a match succeeds and the KEY is NIL, nothing is printed. For
example, (*PROG*LAM NIL EVALA *ENV). This sequence will
occur following an error which then causes a break if some of the
function's arguments are LOCALVARS.

11.2.7 Other Stack Functions

(DUMMYFRAMEP POS) [Function]
Returns T if the user never wrote a call to the function at POS,
e.g.in Interlisp-10, DUMMYFRAMEP is T for *PROG*LAM, *ENV*,
and FOOBLOCK frames (see block compiler, page 18.17).

REALFRAMEP and REALSTKNTH can be used to write functions
which manipulate the stack and work on either interpreted or
compiled code:

(REALFRAMEP POS INTERPFLG) [Function]
Returns POS if POS is a "real” frame, i.e. if POS is not a dummy
frame and POS is a frame that does not disappear when
compiled (such as COND); otherwise NIL. |f INTERPFLG =T,
returns POS if POS is not a dummy frame. For example, if
(STKNAME POS)=COND, (REALFRAMEP POS) is NIL, but
(REALFRAMEP POS T) is POS.

(REALSTKNTH N POS INTERPFLG OLDPOS) [Function]

Returns a stack pointer to the Nth (or -Nth) frames for which
(REALFRAMEP POS INTERPFLG) is POS.

(MAPDL MAPDLFN MAPDLPOS) [Function]

Starts at MAPDLPOS and applies the function MAPDLFN to two
arguments (the frame name and a stack pointer to the frame),

VARIABLE BINDINGS AND THE INTERLISP STACK 11.13

STACK FUNCTIONS

for each frame until the top of the stack is reached. Returns NIL.
For example,

[MAPDL (FUNCTION (LAMBDA (X POS)
(if IGREATERP (STKNARGS POS) 2)
then (PRINT X))

will print all functions of more than two arguments.

(SEARCHPDL SRCHFN SRCHPQS) [Function]

Similar to MAPDL, except searches the stack starting at position
SRCHPOS until it finds a frame for which SRCHFN, a function of
two arguments applied to the name of the frame and the frame
itself, is not NIL. Returns (NAME . FRAME) if such a frame is
found, otherwise NiL.

11.3 The Stack and the Interpreter

in addition to the names and values of arguments for functions,
information regarding partially-evaluated expressions is kept on
the push-down list. For example, consider the following
definition of the function FACT (intentionally faulty):

(FACT
[LAMBDA (N)
(conD
((ZEROP N)
L)
(T (ITIMES N (FACT (SUB1 NJ)

In evaluating the form (FACT 1), as soon as FACT is entered, the
interpreter begins evaluating the implicit PROGN following the
LAMBDA. The first function entered in this process is COND.
COND begins to process its list of clauses. After calling ZEROP
and getting a NIL value, COND proceeds to the next clause and
evaluates T. Since Tis true, the evaluat{on of the implicit PROGN
that is the consequent of the T clause is begun. This requires
calling the function ITIMES. However before ITIMES can be
called, its arguments must be evaluated. The first argument is
evaluated by retrieving the current binding of N from its value
cell; the second involves a recursive call to FACT, and another
implicit PROGN, etc.

Note that at each stage of this process, some portion of an
expression has been evaluated, and another is awaiting
evaluation. The output below (from Interlisp-10) illustrates this
by showing the state of the push-down list at the point in the
computation of (FACT 1) when the unbound atom L is reached.

«FACT(1)

11.14

VARIABLE BINDINGS AND THE INTERLISP STACK

THE STACK AND THE INTERPRETER

u.b.a.L {in FACT} in ((ZEROP N) L)
(L broken)
BTV!

TAIL (L)

*ARG1 (((ZEROP N) L) (T (ITIMES N (FACT (SUB1 N)))))
COND

FORM™ (COND ((ZEROP N) L) (T (ITIMES N (FACT (SUB1 N)))))
TAIL ((COND ((ZEROP N) L) (T (ITIMES N (FACT (SUB1 N))))))

NO
FACT

FORM™ (FACT (SUB1 N))

EN ITIMES

TAIL ((FACT (SUB1 N)))
ARGVAL 1

FORM™ (ITIMES N (FACT (SUB1 N)))
TAIL (ITIMES N (FACT (SUB1 N))))

*ARG1 (((ZEROP N) L) (T (ITIMES N (FACT (SUB1 N)))))
COND

FORM™ (COND ((ZEROP N) L) (T (ITIMES N (FACT (SUB1 N)))))
TAIL ((COND ((ZEROP N) L) (T (ITIMES N (FACT (SUB1 N))))))

N1
FACT

**TOP* *

Internal calls to EVAL, e.g., from COND and the interpreter, are
marked on the push-down list by a special mark or blip which the
backtrace prints as *FORM*. The genealogy of *FORM™'s is thus
a history of the computation. Other temporary information
stored on the stack by the interpreter includes the tail of a
partially evaluated implicit PROGN (e.g., a cond clause or lambda
expression) and the tail of a partially evaluated form (i.e., those
arguments not yet evaluated), both indicated on the backtrace
by *TAIL*, the values of arguments that have already been
evaluated, indicated by *ARGVAL*, and the names of functions
waiting to be called, indicated by *FN*. *ARG1, ..., *ARGn are
used by the backtrace to indicate the (unnamed) arguments to
SUBRs.

Note that a function is not actually entered and does not appear
on the stack, until its arguments have been evaluated (except for
nlambda functions, of course). Also note that the *ARG1,

VARIABLE BINDINGS AND THE INTERLISP STACK

11.15

THE STACK AND THE INTERPRETER

FORM™, *TAIL*, etc. "bindings" comprise the actual working
storage. In other words, in the above example, if a (lower)
function changed the value of the *ARG1 binding, the COND
would continue interpreting the new binding as a list of COND
clauses. Similarly, if the *ARGVAL* binding were changed, the
new value would be given to ITIMES as its first argument after its
second argument had been evaluated, and ITIMES was actually
called.

Note that *FORM™, *TAIL*, *ARGVAL*, etc, do not actually
appear as variables on the stack, i.e., evaluating *FORM™* or
calling STKSCAN to search for it will not work. However, the
functions BLIPVAL, SETBLIPVAL, and BLIPSCAN described below
are available for accessing these internal blips. These functions
currently know about four different types of blips:

FN The name of a function about to be called.
ARGVAL Anargument for a function about to be called.
FORM A form in the process of evaluation.
TAIL The tail of a COND clause, implicit PROGN, PROG, etc.

(BLIPVAL BLIPTYP IPOS FLG) [Function]
Returns the value of the specified blip of type BLIPTYP. if FLGis a
number N, finds the Nth blip of the desired type, searching the
control chain beginning at the frame specified by the stack
descriptor IPOS. If FLG is NIL, 1 is used. If FLG is T, returns the
number of blips of the specified type at IPOS.

(SETBLIPVAL BLIPTYP IPOS N VAL) [Function]
Sets the value of the specified blip of type BLIPTYP. Searches for
the Nth blip of the desired type, beginning with the frame
specified by the stack descriptor IPOS, and following the control
chain.

(BLIPSCAN BLIPTYP IPOS) [Function]
Returns a stack pointer to the frame in which a blip of type
BLIPTYP is located. Search begins at the frame specified by the
stack descriptor /POS and follows the control chain.

11.4 Generators

A generatoris like a subroutine except that it retains information
about previous times it has been called. Some of this state may
be data (for example, the seed in a random number generator),
and some may be in program state (as in a recursive generator

11.16 VARIABLE BINDINGS AND THE INTERLISP STACK

GENERATORS

which finds all the atoms in a list structure). For example, if
LISTGEN is defined by:

(DEFINEQ (LISTGEN (L)
(if L then (PRODUCE (CAR L))
(LISTGEN (CDR L))))

we can use the function GENERATOR (described below) to create
a generator that uses LISTGEN to produce the elements of a list
one at atime, e.g.,

(SETQ GR (GENERATOR (LISTGEN ‘(A B C))))
creates a generator, which can be called by
(GENERATE GR)

to produce as values on successive calls, A, B, C. When GENERATE

(not GENERATOR) is called the first time, it simply starts

evaluating (LISTGEN '(A B C)). PRODUCE gets cailed from

LISTGEN, and pops back up to GENERATE with the indicated
value after saving the state. When GENERATE gets called again,

it continues from where the last PRODUCE left off. This process

continues until finally LISTGEN completes and returns a value (it

doesn't matter what it is). GENERATE then returns GR itself as its

value, so that the program that called GENERATE can tell that it

is finished, i.e., there are no more values to be generated.

(GENERATOR FORM COMVAR) [NLambda Function]

An nlambda function that creates a generator which uses FORM
to compute values. GENERATOR returns a generator handle
which is represented by a dotted pair of stack pointers.

COMVAR is optional. If its value (EVAL of) is a generator handle,
the list structure and stack pointers will be reused. Otherwise, a
new generator handle will be constructed.

GENERATOR compiles open.

(PRODUCE VAL) [Function]
Used from within a generator to return VAL as the value of the
corresponding call to GENERATE.

(GENERATE HANDLE VAL) [Function]

Restarts the generator represented by HANDLE. VAL is returned
as the value of the PRODUCE which last suspended the operation
of the generator. When the generator runs out of values,
GENERATE returns HANDLE itself.

Examples:

VARIABLE BINDINGS AND THE INTERLISP STACK

1.7

GENERATORS

The following function will go down recursively through a list
structure and produce the atoms in the list structure one at a
time.

(DEFINEQ (LEAVESG (L)
(if (ATOM L)
then (PRODUCE L)
else (LEAVESG (CARL))
(if (CDRL)
then (LEAVESG (CDR L)]

The following function prints each of these atoms as it appears.
itillustrates how a loop can be set up to use a generator.

(DEFINEQ (PLEAVESG1 (L)
(PROG (X LHANDLE)
(SETQ LHANDLE (GENERATOR (LEAVESG L)))
LP (SETQ X (GENERATE LHANDLE))
(if (EQ X LHANDLE)
then (RETURN NIL))

(PRINT X)
(GO LP))]

Note that the loop terminates when the value of the generator is
EQ to the dotted pair which is the value produced by the call to
GENERATOR. A CLISP iterative operator, OUTOF, is provided
which makes it much easier to write the loop in PLEAVESG1.
OUTOF (or outof) can precede a form which is to be used as a
generator. On each iteration, the iteration variable will be set to
successive values returned by the generator; the loop will be
terminated automatically when the generator runs out.
Therefore, the following is equivalent to the above program
PLEAVESG1:

{DEFINEQ (PLEAVESG2 (L)
(for X outof (LEAVESG L) do (PRINT x))]

Here is another example; the following form will print the first N
atoms.

(for X outof (MAPATOMS (FUNCTION PRODUCE))
as | from 1 to Ndo (PRINT X))

11.5 Coroutines

This package provides facilities for the creation and use of fully
general coroutine structures. It uses a stack pointer to preserve
the state of a coroutine, and allows arbitrary switching between
N different coroutines, rather than just a call to a generator and
return. This package is slightly more efficient than the generator

11.18

VARIABLE BINDINGS AND THE INTERLISP STACK

COROUTINES

package described above, and allows more flexibility on
specification of what to do when a coroutine terminates.

(COROUTINE CALLPTR COROUTPTR COROUTFORM ENDFORM) | [NLambda Function]

This nlambda function is used to create a coroutine and initialize
the linkage. CALLPTR and COROUTPTR are the names of two
variables, which will be set to appropriate stack pointers. If the
values of CALLPTR or COROUTPTR are already stack pointers, the
stack pointers will be reused. COROUTFORM is the form which is
evaluated to start the coroutine; ENDFORM is a form to be
evaluated if COROUTFORM actually returns when it runs out of
values.

COROUTINE compiles open.

(RESUME FROMPTR TOPTR VAL) [Function]

Used to transfer control from one coroutine to another.
FROMPTR should be the stack pointer for the current coroutine,
which will be smashed to preserve the current state. TOPTR
should be the stack pointer which has preserved the state of the
coroutine to be transferred to, and VAL is the value that is to be
returned to the latter coroutine as the value of the RESUME
which suspended the operation of that coroutine.

For example, the following is the way one might write the
LEAVES program using the coroutine package:

(DEFINEQ (LEAVESC (L COROUTPTR CALLPTR)
(if (ATOM L)
then (RESUME COROUTPTR CALLPTR L)
else (LEAVESC(CAR L) COROUTPTR CALLPTR)
(if (CDR L) then (LEAVESC(CDR L) COROUTPTR CALLPTR))))]

A function PLEAVESC which uses LEAVESC can be defined as
follows:

(DEFINEQ (PLEAVESC(L)
(bind PLHANDLE LHANDLE
first (COROUTINE PLHANDLE LHANDLE
(LEAVESCL LHANDLE PLHANDLE)
(RETFROM 'PLEAVESC))
do (PRINT (RESUME PLHANDLE LHANDLE))))]

By RESUMEing LEAVESC repeatedly, this function will print all
the leaves of list L and then return out of PLEAVESC via the
RETFROM. The RETFROM is necessary to break out of the
non-terminating do-loop. This was done to illustrate the
additional flexibility allowed through the use of ENDFORM.

We use two coroutines working on two trees in the example
EQLEAVES, defined below. EQLEAVES tests to see whether two

VARIABLE BINDINGS AND THE INTERLISP STACK

11.19

COROQUTINES

trees have the same leaf set in the same order, e.g., (EQLEAVES
'(ABC)'(AB(C)))istrue.

(DEFINEQ (EQLEAVES (L1 L2)
(bind LHANDLE1 LHANDLE2 PE EL1 EL2
first (COROUTINE PE LHANDLE1 (LEAVESCL1 LHANDLE1 PE)
‘NO-MORE)
(COROUTINE PE LHANDLE2 (LEAVESC L2 LHANDLE?2 PE)
'NO-MORE)
do (SETQ EL1 (RESUME PE LHANDLE1))
(SETQ EL2 (RESUME PE LHANDLE2))
(if (NEQ EL1 EL2)
then (RETURN NiL))
repeatuntil (EQ EL1 'NO-MORE)
finally (RETURN T)))]

11.6 Possibilities Lists

(POSSIBILITIES FORM)

A possibilities list is the interface between a generator and a
consumer. The possibilities list is initialized by a call to
POSSIBILITIES, and elements are obtained from it by using
TRYNEXT. By using the spaghetti stack to maintain separate
environments, this package allows a regime in which a generator
can put a few items in a possibilities list, suspend itself until they
have been consumed, and be subsequently aroused and
generate some more.

-

[NLambda Function]

(NOTE VAL LSTFLG)

This nlambda function is used for the initial creation of a
possibilities list. FORM will be evaluated to create the list. It
should use the functions NOTE and AU-REVOIR described below
to generate possibilities. Normally, one would set some variable
to the possibilities list which is returned, so it can be used later,
e.q.:

(SETQ PLIST (POSSIBILITIES (GENERFN V1 V2))).

POSSIBILITIES compiles open.

[Function]

Used within a generator to put items on the possibilities list
being generated. If LSTFLG is equal to NIL, VAL is treated as a
single item. If LSTFLG is non-NIL, then the list VAL is NCONCed on
the end of the possibilities list. Note that it is perfectly
reasonable to create a possibilities list using a second generator,
and NOTE that list as possibilities for the current generator with

11.20

VARIABLE BINDINGS AND THE INTERLISP STACK

POSSIBILITIES LISTS

LSTFLG equal to T. The lower generator will be resumed at the
appropriate point.

(AU-REVOIR VAL) [NoSpread Function]
Puts VAL on the possibilities list if it is given, and then suspends
the generator and returns to the consumer in such a fashion that
control will return to the generator at the AU-REVOIR if the
consumer exhausts the possibilities list.

Note: NIL is not put on the possibilities list unless it is explicitly
given as an argument to AU-REVOIR, i.e., (AU-REVOIR) and
(AU-REVOIR NIL) are not the same. AU-REVOIR and ADIEU are
lambda nospreads to enable them to distinguish these two cases.

(ADIEU VAL) [NoSpread Function]
Like AU-REVOIR except releases the generator instead of
suspendingit.

(TRYNEXT PLST ENDFORM VAL) [NLambda Function]
This nlambda function allows a consumer to use a possibilities
list. It removes the first item from the possibilities list named by
PLST (i.e. PLST must be an atom whose value is a possiblities list),
and returns that item, provided it is not a generator handle. If a
generator handle is encountered, the generator is reawakened.
When it returns a possibilities list, this list is added to the front of
the current list. When a call to TRYNEXT causes a generator to be
awakened, VAL is returned as the value of the AU-REVOIR which
put that generator to sleep. If PLST is empty, it evaluates
ENDFORM in the caller's environment.

TRYNEXT compiles open.

(CLEANPOSLST PLST) [Function]
This function is provided to release any stack pointers which may
be leftin the PLST which was not used to exhaustion.

For example, FIB is a generator for fibonnaci numbers. It starts)
out by NOTEing its two arguments, then suspends itself.
Thereafter, on being re-awakened, it will NOTE two more terms
in the series and suspends again. PRINTFIB uses FIB to print the
first N fibonacci numbers.

(DEFINEQ (FiB (F1 F2)
(do (NOTEF1)
(NOTE F2)
(SETQ F1 (IPLUS F1 F2))
(SETQ F2 (IPLUS F1 F2))
(AU-REVOIR)]

VARIABLE BINDINGS AND THE INTERLISP STACK 11.21

POSSIBILITIES LISTS

Note that this AU-REVOIR just suspends the generator and adds
nothing to the possibilities list except the generator.

(DEFINEQ (PRINTFIB (N)
(PROG ((FL (POSSIBILITIES (FIB 0 1))))
(RPTQ N (PRINT (TRYNEXT FL)))
(CLEANPOSLST FL)]

Note that FIB itself will never terminate.

11.22 VARIABLE BINDINGS AND THE INTERLISP STACK

TABLE OF CONTENTS

12. Miscellaneous . 12.1
12.1. Greeting and Initialization Files 121
12.2. IdleMode 12.4
12.3. Saving Virtual Memory State 12.6
12.4. System Version Information 12.1
12.5. Date And Time Functions 12.13
12.6. Timers and Duration Functions 12.16
12.7. Resources 12.19

12.7.1. A Simple Example 12.20
12.7.2. Trade-offs in More Complicated Cases 12.22
12.7.3. Macros for Accessing Resources 12.23
12.7.4. Saving Resourcesina File 12.23
12.8. Pattern Matching 12.24
12.8.1. Pattern Elements 12.25
12.8.2. Element Patterns 12.25
12.8.3. Segment Patterns 12.27
12.8.4. Assignments 12.28
12.8.5. Place-Markers 12.29
12.8.6. Replacements 12.29
12.8.7. Reconstruction 12.30
12.8.8. Examples 12.31

TABLE OF CONTENTS TOC.1

TABLE OF CONTENTS

[This page intentionally left blank]

TOC.2 TABLE OF CONTENTS

12. MISCELLANEOUS

12.1 Greeting and Initialization Files

(1)

(2)
(3

(@)

Many of the features of Interlisp are controlled by variables that
the user can adjust to his or her own tastes. In addition, the user
can modify the action of system functions in ways not specifically
provided for by using ADVISE (page 15.11). In order to
encourage customizing the Interlisp environment, Interlisp
includes a facility for automatically loading initialization files (or
"init files") when an interlisp system is first started. Each user can
have a separate "user init file" that customizes the Interlisp
environment to his/her tastes. In addition, there can be a “site
init file" that applies to all users at a given physical site, setting
system variables that are the same for all users such as the name
of the nearest printer, etc.

The process of loading init files, also known as "greeting",,
occurs when an Interlisp system created by MAKESYS (page 12.9)
is started for the first time. The user can also explicitly invoke the
greeting operation at any time via the function GREET (below).
The process of greetingincludes the following steps:

Any previous greeting operation is undone. The side effects of
the greeting operation are stored on a global variable as well as
on the history list, thus enabling the previous greeting to be
undone even if it has dropped off of the bottom of the history
list.

All of the items on the list PREGREETFORMS are evaluated.

The site init file is loaded. GREET looks for a file by the name
{DSK}INIT.LISP. If thisis found, itis loaded. Ifitis not found, the
system prints "Please enter name of system init file (e.g.
{server} <directory >INIT.extension):" and waits for the user to
type a file name, followed by a carriage return. If the user just
types a carriage return without typing a file name, nosite init file
is loaded. Note: The site init file is loaded with LDFLG set to
SYSLOAD, so that no file package information is saved, and
nothing is printed out.

The user init file is loaded. The user init file is found by using the
variable USERGREETFILES (described below), which is normally
set in the site init file. The user init file is loaded with normal file

MISCELLANEOUS

GREETING AND INITIALIZATION FILES

(5)
(6)

(GREET NAME —)

package settings, but under errorset protection and with
PRETTYHEADER set to NIL to suppress the "FILE CREATED"
message.

All of the items on the list POSTGREETFORMS are evaluated.

A greeting is printed such as "Hello, XXX.", where XXX is the
value of the variable FIRSTNAME (if non-NIL). The variable
GREETDATES (below) can be set to modify this greeting for
particular dates.

[Function]

(GREETFILENAME USER)

Performs the greeting for the user whose username is NAME (if
NAME = NIL, uses the login name). When Interlisp first starts up,
it performs (GREET).

[Function]

USERGREETFILES

if USER is T, GREETFILENAME returns the file name of the site init
file, asking the user if it doesn't exist. QOtherwise, USER is
interpreted to be a user's system name, and GREETFILENAME
returns the file name for the user init file (if it exists).

[Variable]

GREETDATES

USERGREETFILES specifies a series of file names to try as the user
init file. The value of USERGREETFILES is a list, where each
element is a list of litatoms. For each item in USERGREETFILES,
the user name is substituted for the litatom USER and the value.
of COMPILE.EXT (page 18.13) is substituted for the litatom COM,
and the litatoms are packed into a single file name. The first such
file thatis found is the user init file.

For example, suppose that the value of USERGREETFILES was

(({ERIS} < USER >LISP>INIT. COM)
({ERIS} < USER >LISP>INIT)
({ERIS} < USER >INIT. COM)
({ERIS} < USER >INIT))

If the user name was JONES, and the value of COMPILE.EXT was
DCOM, then this would search for the files
{ERIS} <JONES>LISP>INIT.DCOM, {ERIS}<JONES>LISP>INIT,
{ERIS} <JONES >INIT.DCOM, and {ERIS} <JONES>INIT.

Note: The file name "specifications" in USERGREETFILES should
be fully qualified, including all host and directory information.
The directory search path (the value of DIRECTORIES, page 24.31)
is not used to find the user greet files.

[Variable]

The value of GREETDATES can be used to specify special greeting
messages for various dates. GREETDATES is a list of elements of

MISCELLANEOQUS

GREETING AND INITIALIZATION FILES

Directories

Fonts and Printing

Network Systems

Interlisp-D Executive

Copyright Notices

Printing Functions

the form (DATESTRING . STRING), e.g. ("25-DEC” . "Merry
Christmas”). The user can add entries to this list in his/her
INIT.LISP file by using a ADDVARS file package command like
(ADDVARS (GREETDATES ("8-FEB" . "Happy Birthday"))). On the
specified date, the GREET will use the indicated salutation.

Note: Users should try to make sure that their init file is
"undoable”. If they use the file package command "P" (page
17.40) to put expressions on the file to be evaluated, they should
use the "undoable" version, e.g. /SETSYNTAX rather than
SETSYNTAX, etc (see page 13.26). This is so another user can
come up, do'a (GREET) and have the first user's initialization
undone.

It is impossible to give a complete list of all of the variables and
functions that users may want to set in their init files. The
default values for system variables are chosen in the hope that
they will be correct for the majority of users, so many users get
along with very small init files. The following describes some of
the variables that users may want to reset in theirinit files:

The variables DIRECTORIES and LISPUSERSDIRECTORIES (page
24.31) contain lists of directories used when searching for files.
LOGINHOST/DIR (page 24.11) determines the default directory
used when calling CONN with no argument.

The variables DISPLAYFONTDIRECTORIES,
DISPLAYFONTEXTENSIONS, INTERPRESSFONTDIRECTORIES, and
PRESSFONTWIDTHSFILES (page 27.31) must be set before fonts
can be automatically loaded from files. DEFAULTPRINTINGHOST
(page 29.4) should be set before attempting to generate
hardcopy to a printer.

CH.DEFAULT.ORGANIZATION and CH.DEFAULT.DOMAIN (page

31.8) should be set to the default NS organization and domain,

when using NS network communications. |f CH.NET.HINT (page
31.9) is set, it can reduce the amount of time spent searching for
a clearinghouse.

The variable PROMPT#FLG (page 13.22) determines whether an
“event number" is printed at the beginning of every input line.
The function CHANGESLICE (page 13.21) can be used to change
the number of events that are remembered on the history list.

COPYRIGHTFLG, COPYRIGHTOWNERS, and
DEFAULTCOPYRIGHTOWNER (page 17.53) control the inclusion
of copyright notices on source files.

COMMENTFLG (page 26.43) determines how program
comments are printed. FIRSTCOL, PRETTYFLG, and
CLISPIFYPRETTYFLG (page 26.47) are among the many variables
controlling how functions are pretty printed.

MISCELLANEOUS

12.3

GREETING AND INITIALIZATION FILES

List Structure Editor

The variable INITIALSLST (page 16.76) is used when
“time-stamps” are inserted in a function when it is edited.
EDITCHARACTERS (page 16.76) is used to set the read macros
used in the teletype editor.

12.2

Idle Mode

IDLE.PROFILE

The Interlisp-D environment runs on small single-user computers,
usually located in users' offices. Often, users leave their
computers up and running for days, which can cause several
problems. First, the phosphor in the video display screen can be
perminantly marked if the same pattern is