
This document is for Xerox internal use only

The Dorado Kernel Diagnostics
by Gene McDaniel

December 26, 1978 1:55 PM

Kernel is an ordered set of microcoded diagnostics for the Dorado processor, ifu, and
memory system. This document has two parts. The first describes the working context and
assumptions of these diagnostics, and the second provides a guide to the specific tests. The
guides characterize each test by its title, the function it tests and the strategy employed to
test the function. There are comments on the possible implications of an error indication,
and a description of register usage.

XEROX
PALO ALTO RESEARCH CENTER
3333 Coyote Hill Road I Palo Alto I California

This document is for Xerox internal use only

2

94304

The Dorado Kernel Diagnostics

Gene McDaniel

October 3, 1978 10:23 PM

INTRODUCTION

There are several layers to the microcoded Dorado Diagnostics, each layer tests a different portion
of the machine, and all the diagnostics presume the existence of an external machine that runs the
Dorado version of the Midas hardware debugger. The diagnostic file named "Kernel" tests the two
processor boards and the diagnostic file named "Control" tests the two control boards. The Kernel
and Control programs both presume that the two control boards work reasonably well. The phrase
"Kernel Diagnostics" denotes both ·the control and the processor diagnostics; they exercise all the
functionality of the Dorado processor that is not associated with the 1FU, Memory, or with 10
devices. .

This document describes what Kernel does and how it goes about doing it. Each series of tests is
documented here. The documentation describes the name of the test, the function tested, the
strategy applied to test the function, and some implications of an error failure. This document is
not a substitute for actual microcode; it is a supplement that will help the
diagnostics user to understand and manipulate the diagnostics. A microcode
listing must be at hand when using these diagnostics. The rest of this introduction
concerns its~lf with the general context and assumptions of the Kernel diagnostics. The subsequent
sections contain the documentation for each functional test

What Kernel Does

Kernel makes two assumptions at the beginning of its execution: the control boards work most of
the time and that Midas has loaded RM with predetermined values. Given this assumption known
values are moved from RM to T and back. The user is expected to single step (and
check) this code the first time through. This is the only time the user is expected to single
step the diagnostics (though the user may want to singlestep a piece of code that is known to fail so
that intermediate steps can be observed by using Midas). Kernel can not and does not assume that
the A and B multiplexors, the Asel and Bsel logic, or the Load Control functions of the processor
wqrk. The user will single step this code from Midas in order to watch the known values move from
RM into T and then back into RM. This exercise is also performed with selected B mux constants.
After the user single steps the initial portion of the diagnostic, Kernel can perform the rest of its
diagnostics function without operator intervention.

The kernel diagnostics usually operate with RBASE = 17B, the "defaultRegion". Initially Midas
loads RBASE and the diagnostics carefully reload RBASE with that value if they change it for any
reason.

How Kernel Tests the Processor

Kernel begins by assuming that there are known values in RM that can be used to test the alu=O
fast branch fhnction of the processor. Once it is certain that a test for = 0 can be made, the known
values in RM can be manipulated in predictable ways to test more functions. After a function or
register has been tested, the diagnostics may presume to use that function or register in the process
of testing a different part of the machine. Thus Kernel gradually increases the portion of the
machine it has checked out and the portion of the machine that it uses to do the rest of the
checking. The known values in RM are shown below.

RM name Value
RO 0

R1
RM1
RHIGH1
R01
RIO

1
-1
100000
52525 (alternating 01)
125252 (alternating 10)

The diagnostics test a function by simulating it: the known RM values, selected B mux constants
and the already tested functions of the processor are used to predict the result of some function.
Then the actual function is exercised. There are two scratch registers known as RSCR and RSCR2
that hold temporary values and predicted results. Usually the xor of the predicted and actual value
is placed in T. In this case where T is non-zero, there is an error and the one bits in T indicate the
wrong bit values. ALL errors cause a subroutine call to the ERR code where a breakpoint has been
assembled. If a breakpoint occurs at ERR, OLINK contains the address of the call to the error
code. Usually there is a label close the point of the call, and that label can be used to determine
which test has failed.

Naming Conventions

Special naming conventions are followed to make the Kernel code readable, maintajnable and
usable. Labels carry information about 'what test they are attached to. Long tests are sprinkled with
labels that begin with the test name end with a number or a letter to indicate where in the test the
label is located. Loops are suffixed with the letter L and loop exits are suffixed with XITL In the
microcode listing, upper and lower case is used to make the concatenations that construct label
names more obvious. Unfortunately, Midas prints upper case labels only. Some examples follow:

aluEQOFF
aluEQORT
NotA
QRWL
Rlsh5
RTlcy2
RFLMASK
cntFcnIL

test ALU = 0 fast branch using Bmux constants (from FF)
as above, except data from RM and T
test the alu function NOT A
top of the read/write loop that tests Q
test left shift of RM by 5 bits
test left cycle of RM"T by two bits
test left mask after RF f-

inner loop label for CNT=O&+l test

In addition to the register and label names there are name conventions for bit constants. For each
bit in a 16 bit word there is an assembler constant for the bit and for the complement of the bit:

Name Value

BO 100000B
Bl 40000B
B2 20000B

Bl5 1B

NBO 77777B
NBl 137777B
NB2 167777B

NBlS 177776B

There are several other important conventions associated with constants: names with the suffix "C"
are FF B-mux constants, names with a hardware register name and period as a prefix refer to
constants associated with that register, and names with the suffix "shift" may be used in shifter
instructions to right justify the specified field.

2

maxCountC a bmux ff constant
mcr.noWake a bmux constant that selects the noWake bit in Mcr
pipe2.nFaultsShift a value that may be used in a shifter instruction (eg., "t +- shiftLmask,
rsh t[pipe2.nFaultsShift]; ")

When Kernel indicates an error condition, use Midas to determine the source of the call. The
information displayed by Midas will usually be a "virtual" 1M location (a label can be obtained by
applying the middle mouse button to the value in OLINK). The .DLS listing (produced by MicroD,
it is a listing that shows where the Dorado instructions were placed) and the source listing can be
used to determine which portion of the diagnostics failed.

Macro Conventions

To make the code easier to read, a number of macros have been created. With a few exceptions
they are fast branch macros. A typical example is, "SKP1F[ALU = 0]" which takes the place of
"DBLBRANCH[.+2, .+1, ALU=0r'. An important exception is the ERROR macro. This macro
cause~ a call to the ERR (global) location of the Kernel code; consequently OLINK points to the
call~ng instruction.

Macro Name

NOOP
SKIP
SKP1F[COND]
SKPUNLESS[COND]
ERROR

Common Kernel Macros

Effect

BRANCH[.+l]
BRANCH[. + 2]
DBLBRANCH[.+ 2,. + 1, COND]
DBLBRANCH[.+1,.+2, COND]
BRANCH[ERR]

note: "COND" is any fast branch conditional, like R EVEN, ALU >=0, etc.

Operating Procedures for the Diagnostics

Files

The names of the two files necessary and sufficient to invoke the kernel diagnostics from Midas are
[maxc]<dl>kerne1.mb and [maxc]<d1>kerne1.midas. The alto executive command, "midas
kernel" will cause midas to initialize the display and to load the kernel processor diagnostics. The
Midas command "BEGIN;G" causes the diagnostics to run. The diagnostics run until an error
occurs or until they are aborted by a command from Midas.

The file [maxc]<dlsources>kerneISources.dm contains the source files necessary to reconstruct the
kernel diagnostics. Included in that file are command files to generate a new kernel from the
sources and a command file to update the relevant Maxc directories. Kernel diagnostics are
currently implemented in five microcode source files and one "preamble" definitions file. The
sources are named kernel.mc, kernell.mc, ... , kerneI4.mc. The "kernel" file is a driver file that
causes kernell through kernel4 to be assembled.

The Dorado debugging disk contains sufficient files to execute the procedures described below. The
file [maxc]<dl>d1DebugDisk.cm can be fetched onto an Alto disk -- a mostly empty disk -- and
run to construct a debugging disk; it will have sufficient files to write new diagnostics, modify
current diagnostics and run Midas.

3

Simple Procedures

In the following procedures cr denotes a carriage return typed to the Alto executive, the indented
command denotes characters typed to Midas, and the text that follows is a comment.

Quick checkout
midas checkout cr This is typed to the Alto executive and causes Midas to execute a series
of commands that will checkout the Dorado. When it is done, basic features of the machine have
been tested.

Extended kernel checkout
midas kernel cr

BEGIN;G This starts up the kernel diagnostics. They run in an inifinite loop, so
any termination of the diagnostic other than operator termination constitutes a bug.

Extended control checkout
midas controll cr

BEGIN;G This starts up the control diagnostic. It runs in an infinite loop, so any
termination of the diagnostic other than operator termination constitutes a bug.

Changing the Diagnostic Environment

There is a Dorado facility that simulates hold and a facility that simulates task switching. The
diagnostics are prepared to utilize these features to check out processor performance in the presence
of hold and/or task switching. Furthermore, the software will, upon command, cause the diagnostics
to run at different task levels. As described in the Midas documentation, the user may invoke
microcode subroutines from Midas by typing "subroutineNameO". One parameter may be passed
automatically in t by placing its value inside the parentheses. Valuable facilities available "at the
Midas level" are described below:

Task Simulation

The subroutine "xorTaskSimO" toggles the value of flags.taskSim. The postamble checks
this bit at the end of each iteration, and, if it is set, causes the task simulator to run (task
17). The code that implements this facility chooses a different value for .the task simulator
at the end of each iteration.

Hold Simulation

The subroutine, "xorHoldSimO" toggles the value of flags.holdSim. As with task timulation,
postamble checks the value of this bit at the end of each iteration and chooses a new value
for the hold simulator if hold simulation is enabled.

Task Circulation

The subroutine, "xorTaskCircO" toggles the value of flags.testTasks. Postamble treats it
similarily to hold and task simulation. If task simulation is enabled, task circulation occurs
only within tasks 0 - 16. If task simulation is disabled, task 17 gets included in task
circulation.

4

Sample Problems

The following list of edge pins should be shorted to ground. Each one of these shorts will introduce
a different bug in the processor, and that bug will be detected by the kernel diagnostics. Beginning
users can take this opportunity to use the diagnostics/midas ensemble to find "known" bugs and get
a feeling for how some of the regular hardware debugging will proceed. Realize that shorted edge
pins are not the most common form of error; this is strictly an introductory exercise. The pieces of
the machine that are affected are described in the appendix to this document.

pin 35 on left side
pin 166 on left side
pin 134 on left side
pin 146 on left side
pin 162 on left side

"The rest of this document contains an overview of each test These overviews describe the "name"
of the test (the entry point label) and provide other useful information about the test. The term
"exhaustive test" is used to indicate that all possible values are used to check a register or function.
This implies a microcode loop of some sort The term "loop variable" usually refers to the RM
location that holds the changing test value. For example, an exhaustive test of Q reading and
writing Q would require loading and checking it for all possible 16 bit values. This is exactly what
the test that checks Q does. "

Remember, this documentation is not a substitute for a microcode listing.

5

Kernel 1: Begin aluEQOFF aIu=ORT aiuLTORT rEVEN rGEO xorNoBypass xorBypass Apinsl 1
ApIusB Aminusl aMinusB carryNo carryYes carryOps freezeBCtest

October 26, 1977 1:03 PM

Title: Begin
Functions Tested: load control, asel, bsel, "A" and "B" straight through the alu
Strategy: Operator checking with single steping. At this point Kernel assumes
nothing other than certain values are located in RM. The operator must verify that it is possible to
move data from RM to T and back before Kernel can test fast branches.
Comments: There are no automatic error indications.

Title: aluEQOFF

Functions Tested: ALU =0 fast branch, data from B mux constants

Strategy: All 16 possible single one bit values are passed through the alu and
tested for zero. E.g., the values 1, 2, 4, 10, etc are tested for equals zero. The bypass logic is
avoided.

Comments: An error in this test indicates that one of the bit positions is invisible to
the = 0 logic of the processor. T contains the value on which the "= 0" test was performed.
Examine the code preceeding the ERROR call to determine whiCh value failed.

Title: alu=ORT
Functions Tested: ALU =0 fast braI).ch, data from RM and T
Strategy: Known values in RM are moved into T and a check for zero is made.
Then that value is moved back into RM and a check for zero is made. The bypass logic is avoided.
Comments: As with aluEQOFF., an error, indicates that the = 0 fast branch logic is
not working properly. T contains the value on which the "=0" test was performed.

Title: aluLTORT
Functlons Tested: ALU (0 fast branch, data from RM and T
Strategy: Known values in RM are moved into T and a check for less than zero
is made. Then that value is moved back into RM and a check for less than zero is made. The
bypass logic is avoided.
Comments: An error indicates that the (0 fast branch logic is not working
properly. T contains the value on which the "(0" test was performed.

Title:
Functions Tested:
Strategy:

rEven
RM EVEN fast branch, data from RM and T
Kernel moves known values from RM into T and checks to see if the

bypass logic is avoided. values were even. The
Comments: An error indicates that the "R EVEN" fast branch logic is not working
properly. T contains the value on which the "R EVEN" test was performed.

Title:
Functions Tested:
Strategy:
values were greater than

rOBO
RM > = 0 fast branch, data from RM and T
Kernel moves known values from RM into T and checks to see if the
or equal to zero. The bypass logic is avoided.

Kernel 1: Begin aluEQOFF alu=ORT aluLTORT rEV EN rGEO xorNoBypass xorBypass Aplus1 2
AplusB Aminusl aMinusB carryNo carryYes carryOps freezeBCtest

Comments: An error indicates that the "R)=0" fast branch logic is not working
properly. T contains the value on which the "R) = 0" test was perfonned.

Title: xorNoBypass
Functions Tested: xor (#)
Strategy: Kernel successively tests each bit by xoring the bit with itself. RSCR
and T are loaded with the current bit and then T is loaded with T xor RSCR. The result should be
zero. Noops are used to avoid the bypass logic.
Comments: An error indicates that the = 0 fast branch logic took a false path
(result non zero) after xoring a bit with itself. Examine the code preceeding the error call to
detennine which bit was used. The non-zero bits in T are in error.

Title: xorBypass
Functions Tested: xor (#), bypass logic
Strategy: Kernel successively tests each bit by xoring the bit with itself. RSCR
and T are loaded with the current bit and then T is loaded with T xor RSCR in a fashion that uses
the bypass logic. The result should be zero.
Comments: An error indicates that the = 0 fast branch .logic took a false path
(result non zero) after xoring a bit with itself. Examine the code preceeding the error call to
detennine which bit was. used. The non-zero bits in T are in error.

Title: .
Functions Tested:

Aplus1
A + 1

Strategy:
incremented by
Comments:

Selected, known values in RM, and selected B mux constants are
one, and the result is checked for accuracy.

Title:
Functions Tested:

The non-zero bits in T are in error.

AplusB
A + B

Strategy:
together, and
Comments:

Selected, known values in RM, and selected B mux constants are added
the result is checked for accuracy.

The non-zero bits in T are in error.

Title: Aminus1
Functions Tested: A -1
Strategy: This is an exhaustive test of A-I that checks all possible 16 bit values:
there is a loop that subtracts one from the current loop variable and then increments that value.
The new value should be equal to the original loop variable. Note that this test presumes A + 1
works.
Comments: The non-zero bits in T are in error, and the original value is in RSCR.
The bits in T represent (original value) xor ((original value -1) +1).

Title:
Functions Tested:

aMinusB
A - B

Strategy:
from each other
Comments:

Selected values in RM and selected B mux constants are subtracted
and the result is compared with the predicted result.

The non-zero bits in T are in error.

Kernel 1: Begin aluEQOFF alu=ORT aluLTORT rEVEN rGEO xorNoBypass xorBypass Aplusl 3
AplusB Aminusl aMinusB carryNo carryYes carryOps frcezeBCtcst

Title: carryNo
Functions Tested: ALU CARRY fast branch
Strategy: Selected values in RM and selected B mux constants are used as
operands in arithmetic operations. None of the operations should generate a carry.
Comments: An error indicates a false carry condition. Note that T contains the
result of an arithmetic operation rather than the xor of a predicted and actual result.

Title:
Functions Tested:
Strategy:
operands in arithmetic
Comments:
result of an arithmetic

carryYes
ALU CARRY fast branch
Selected values in RM and selected B mux constants are used as

operations. All of the operations should generate a carry.
An error indicates a missing carry condition. Note that T contains the

operation rather than the xor of a predicted and actual result.

Title: carryOps
Functions Tested: ALU CARRY fast branch
Strategy: Selected values in RM and selected B mux constants are used as
operands in arithmetic operations. Successive operations and skips are performed. This is a more
complicated version of the carryNo and carryYes tests. Carry mayor may not be generated in a
particular test. This test interleaves carry generation and testing so that the instruction that has a fast
branch clause that tests a preeceding operation also has an arithmetic operation that will be tested
with a fast branch clause in the following instruction.
Comments: An error indicates an incorrect carry condition. The code must be
examined for the particulars; especially note that T contains the result of the next arithmetic
operation that would have been checked.

Title: freezeBCtest
Functions Tested: FREEZEBC function
Strategy: Selected fast branch conditions are generated and the FREEZEBC
function is used to freeze all the conditions across numerous instructions where each condition is
tested. Tests are made to check that FREEZEBC happens soon enough and that it releases
appropriately.
Comments: An error indicates an incorrect fast branch condition. The code must be
examined for the particulars.

Kernel 2: cntRW cntFFrw cntFcD NotAtest NotBtest AandBtest AorBtest LINKRW caUTest 1
QtestRW STKPtestRW STKBOUNDRW RSTKTESTO

October 26, 1977 1:20 PM

Title: cntRW
Functions Tested: CNT+-, +-CNT, data source from B mux
Strategy: Test loading CNT from B mux and reading CNT onto the B mux in a
loop that generates all possible 8 bit values. Cnt is loaded with the loop variable and then read
again. The value read is added to 177400B to construct a "real" negative number (cnt is loaded with
a full 16 bit negative number; of course, only the low 8 bits will be used). That value, the
constructed negative value, is compared against the loop variable.
Comments: An error indicates that the value read from CNT was not the same as
the value loaded. The one bits in T are in error, and RSCR contains the value used to load CNT.

Title: cntFFrw
Functions Tested: CNT+-, +-CNT, data source from· FF
Strategy: Load CNT with selected small constants (FF). The value is read back
(177400B is added to the value read back to make it a 16 bit negative number) and checked for
correctness.
Comments: An error indicates that the value read from CNT was not the same as
the value loaded. The one bits in T are in error.

Title: cntFcn
Functions Tested: CNT+-, CNT=O&+l fast branch
Strategy: This is an exhaustive test of the CNT fast branch facility. There is an
outer loop (cntFcnOL) that loads CNT with all possible 8 bit values. The inner loop (cntFcnIL)
decrements both CNT (by using the fast branch) and a parallel counter for error checking. The
inner loop exit happens when CNT=O.
Comments: An error in the inner loop indicates that the parallel counter is >= O.
This means that the fast branch exit that should have happened did not occur. An error in the outer
loop indicates that the fast branch exit did occur and it should not have occured. RSCR holds the
parallel counter and RSCR2 holds the loop variable.

Title: NotAtest
Functions Tested: NOT A
Strategy: This test checks the NOT A alu function of the processor. Selected
values are put on the A mux and complemented. The predicted value is xor'd with the actual value
and placed in T.
Comments: The one bits in T are in error.

Title: NotBtest
Functions Tested: NOT B
Strategy: This test checks the NOT B alu function of the processor. Selected
values are put on the B mux and complemented. The predicted value is xor'd with the actual value
and placed in T.
Comments: The one bits in T are in error.

Kernel 2: cntRW cntFFrw cntFcn NotAtest NotBtest AandBtest AorBtest LINKRW callTest 2
QtcstRW STKPtestRW STKBOUNDRW RSTKTESTO

Title: AandBtest
Functions Tested: A AND B
Strategy: This test checks the A AND B alu function of the processor. Selected
values are ANDed together. The predicted value is xor'd with the actual value and placed in T. This
test assumes that the sources for the A and B muxes don't.matter. E.g., T +- (B+-T) AND (A+-RM)
is identical to T +- (A +-T) AND (B+-RM).
Comments: The one .bits in T are in error.

Title: AorBtest
Functions Tested: A OR B
Strategy: This test checks the A OR B alu function of the processor. Selected
values are ORed together. The predicted value is xor'd with the actual value and placed in T. This
test assumes that the sources for the A and B muxes don't matter. E.g., T +- (B+-T) OR (A +- RM) is
identical to T +- (A+-T) OR (B+-RM).
Comments: The one bits in T are in error.

Title:
Functions Tested:
Strategy:
is LINKL, and the
Comments:

LINKRW
LINK +-, NOTLINK
This is an exhaustive test of loading and reading LINK. The loop label

value stored into LINK is in RSCR.
The one bits in T are in error.

Title: callTest
Functions Tested: CALL
Strategy: This is a minimal check of the microcode subroutine facility. Registers
are set up and a call is made to a local subroutine. The register values are checked, and some
registers are changed. Immediately after return from the local subroutine a call is made on a global
subroutine. The same sort of register checking occurs. Note that there is no direct way of checking
whether the subroutine calls cause wild control transfers.
Comments: The one bits in T are in error.

Title: QtestRW
Functions Tested: Q+-, +-Q
Strategy: This is an exhaustive test of reading and writing Q. The microcode
loop QRWL loads and checks Q for all possible 16 bit values: the predicted value, which is kept in
RSCR, is xor'd with the actual value, and the xor is placed in T.
Comments: The one bits in T are in error.

Title: STKPtestRW
Functions Tested: STKP+-, TIOA&STKP
Strategy: This is an exhaustive test of reading and writing STKP. The microcode
loop STKPL loads and checks STKP for all possible 6 bit values: the predicted value, which is kept
in RSCR, is xor'd with the actual value and placed in T.
Comments: The one bits in T are in error.

Kernel 2: cntRW cntFFrw cntFcn NotAtest NotBtest AandBtest AorBtest LINKRW callTest 3
QtestRW STKPtestRW STKBOUNDRW RSTKTESTO

Title: STKBOUNDRW
Functions Tested: STKBOUND+-, TIOA&STKP
Strategy: This is an exhaustive test of reading and writing STKBOUND. The
microcode loop STKBOUNDL loads and checks STKBOUND for all possible 4 bit values: the
predicted value is xor'd with the actual value and placed in T.
Comments: The one bits in T are in error. RSCR contains the predicted value, and
RSCR2 contains a 4 bit mask that is used to isolate stkbound from the values returned by
TIOA&STKP.

Title: RSTKTESTO
Functions Tested: rstk destination function
Strategy: This is an exhaustive test of the FF that enables the processor to read
one RM location and write another. The code is "expanded in line", ie, there are no loops. Each
label denotes the destination address that is being changed in the FF field of the test. Consider
RSTKTEST2: This section tests loading the RM address RBase,,2 from the other RM addresses
(RBase"O, RBase"l, RBase,,3, ... , RBase,,7). First a check is made to see if the new value of the
destination RM is different from its original value. Then a check is made to see if the current value
of the destination RM is the same as the value with which it was loaded
Comments: Caution: the one bits of T are not always in error. The first test for
each rstk location perfonns T # Q only; there is NO assignment into T. The second test assigns
into T.

Kernel 3: SHCtestRW Rlsh Tlsh Rrsh Trsh TRicyTest RTlcyTest RFWFtest aluRSH aluRCY 1
aiuARSH aiuLSH aluLCY aiuSHTEST

October 19, 1977 1:54 PM

Title: SHCtestRW
Functions Tested: SHC .. , "SHe
Strategy: This is an exhaustive test for reading and writing SHC by generating
all possible 16 bit values.
Comments: An error indicates that the value read from SHC was not the same as
the value loaded. The one bits in T are in error, and RSCR contains the value used to load SHC.

Title: Rlsh
Functions Tested: SHIFTRMASK, LSH R[i] where O(=i(=IS
Strategy: This is an exhaustive test for left shifting RM values. The value 1 is
left shifted for all values in [0 .. 15] and the result is checked for accuracy.
Comments: An error indicates that some left shift failed. Check the code to see
which shift failed. The one bits in T are in error.

Title:
Functions Tested:
Strategy:
shifted for all values in
Comments:

Tlsh
SHIFTRMASK, LSH T[i] where O(= i(= 15
This is an exhaustive test for left shifting T values. The value 1 is left

[0 .. 15] and the result is checked for accuracy.
An error indicates that some left shift failed. Check the code to see

which shift failed. The one bits in T are in error.

Title: Rrsh
Functions Tested: SHIFTLMASK, RSH R[i] where O(=i(=IS
Strategy: This is an exhaustive test for right shifting RM values. The value
100000 (which is kept in Q) is right shifted for all values in [0 .. 15] and the result is checked for
accuracy.
Comments: An error indicates that some right shift failed. Check the code to see
which shift failed. The one bits in T are in error.

Title: Trsh
Functions Tested: SHIFTLMASK, RSH T[i] where O(=i(= 15
Strategy: This is an exhaustive test for right shifting T values. The value 100000
(which is kept in RHIGHl) is right shifted for all values in [0 .. 15] and the result is checked for
accuracy.
Comments: An error indicates that some right shift failed. Check the code to see
which shift failed. The one bits in T are in error.

Title: TR1cyTest
Functions Tested: T R LCY[i] where O(=i(=IS
Strategy: This is an exhaustive test for left cycling the quantity in T"RM. There
are two phases in this test for each left cycle count; the first phase left cycles the quantity 0,,1 (all
zeros except for one "1") and the second phase left cycles the quantity 177777,,177776 (all ones
except for one "0"). Note that the RM location ROI is renamed RM2 and it is loaded with the
value 177776 (-2). This register and its value is used throughout the test. Note also that NBi where i
IN[O .. IS] stands for logical complement of Bi. E.g., NBO = => NOT(BO) = => NOT(100000)
= => 77777.

Kernel 3: SHCtestRW Rlsh Tlsh Rrsh Trsh TRlcyTest RTlcyTest RFWFtest aluRSH aluRCY 2
aluARSH aluLSH aiuLCY aluSHTEST

Comments: An error indicates that some left cycle failed. Check the code to see
which cycle failed. RSCR2 holds the predicted result, and the one bits in T are in error.

Title: RTlcyTest
Functions Tested: R T LCY[i] where O<=i<=15
Strategy: This is an exhaustive test for right cycling the quantity in RM"T. There
are two phases in this test for each right cycle count; the first phase right cycles the quantity 0,,1
(all zeros except for one "I") and the second phase right cycles the quantity 177777,,177776 (all
ones except for one "0"). Note that the RM location ROl is renamed RM2 and it is loaded with the
value 177776 (-2). This register and its value is used throughout the test. Note also that NBi where i
IN[0 .. 15] stands for logical complement of Bi. E.g., NBO = => NOT(BO) = => NOT(100000)
= => 77777.
Comments: An error indicates that some right cycle failed. Check the code to see
which cycle failed. RSCR2 holds the predicted result, and the one bits in T are in error.

Title: RFWFtest
Functions Tested: RF+-, WF+-, +-SHC
Strategy:
paths. A very simplified

This is an exhaustive test for loading SHC via the RF+- and WF+
mesa version is shown below:

FOR Q IN [O . .377B] DO
RF+-Q;
lastSHC+-SHC;
CheckShcValue[lastSHC, Q, performedRF];
WF+-Q;
lastSHC+-SHC;
CheckShcValue[lastSHC, Q, performedWF];
ENDLOOP;

The things to note about this are that
1) R01 is renamed R4BITMSK (and loaded with 17B),

° 2) Q is used as the loop index register,
3) RSCR is renamed LASTSHC and holds the value of SHC after the RF+- or WF+

instruction (since we use and therefore clobber SHC in the process of checking for correctness).

The tests are performed in line -- there is no "CheckShcValue" subroutine. °A portion of the
hardware manual appendix, which is duplicated below, is most useful when looking at the code that
implements this test °

How SHC is loaded

I shift count Rmask I Lmask

RF +- I 32-pos
WF +- I B[3]"pos

o
pos

Note:
pos = BMux[8:11]
size = BMux[12:1S]

shift count = SHC[3:7]
RMask = SHC[8:11]
Lmask = SHC[12:1S]

16-size
16-pos-size

(when SHC+- B happens)
(when SHC+- B happens)

Kernel 3: SHCtestRW Rlsh Tlsh Rrsh Trsh TRlcyTest RTlcyTest RFWFtest aluRSH aluRCY 3
aluARSH aluLSH aluLCY aluSHTEST

Comments: An error indicates that some RFt- or WFt- did not load SHC correctly.
The labels near the ERROR indicate the problem; for example, a failure after RFLMask indicates
that the LMask field of SHC was wrong after the RFt-Q instruction. Check the code to see which
shift failed. RSCR2 holds the predicted result, and the one bits in T are in error, and Q contains
the value used in the RF +- or WF +- instruction.

Title: aluRSH
Functions Tested: RSH 1
Strategy: This test examines selected cases for right shifting the ALU output by
one. Note that this shift does not use the hardware shifter -- it is controlled by selective loading of
H3.
Comments: An error indicates that some right shift failed. In particular, there is a
problem in the path between the alu output, the multiplexor that controls loading H3 and T. Check
the code to see which shift failed. The one bits in T are in error.

Title: aluRCY
Functions Tested: RCY 1
Strategy: This test examines selected cases for right cycling the ALU output by
one. Note that this cycle does not use the hardware shifter -- it is controlled by selective loading of
H3.
Comments: An error indicates that some right cycle failed. In particular, there is a
problem in the path between the alu output, the multiplexor that controls loading H3 and T. Check
the code to see which cycle failed. The one bits in T are in error.

Title: aluARSH
Functions Tested: ARSH 1
Strategy: This test examines selected cases for arithmetic right shifting the ALU
output by one. Note that this shift does not use the hardware shifter -- it is controlled by selective
loading of H3.
Comments: An error indicates that some arithmetic (sign preserving) right shift
failed. In particular, there is a problem in the path between the· alu output, the multiplexor that
controls loading H3 and T. Check the code to see which shift failed. The one bits in T are in error.

Title: aluLSH
Functions Tested: LSH 1
Strategy: This test examines selected cases for left shifting the ALU output by
one. Note that this shift does not use the hardware shifter -- it is controlled by selective loading of
H3.
Comments: An error indicates that some shift failed. In particular, there is a
problem in the path between the alu output, the multiplexor that controls loading H3 and T. Check
the code to see which shift failed. The one bits in T are in error.

Title: aluLCY
Functions Tested: LCY 1
Strategy: This test examines selected cases for left cycling the ALU output by
one. Note that this shift does not use the hardware shifter -- it is controlled by selective loading of
H3.
Comments: An error indicates that some cycle failed. In particular, there is a
problem in the path between the alu output, the multiplexor that controls loading H3 and T. Check
the code to see which cycle failed. The one bits in T are in error.

Kernel 3: SHCtestRW Rish Tish Rrsh Trsh TRlcyTest RTlcyTest RFWFtest aluRSH aluRCY 4
aluARSH aluLSH aluLCY aluSHTEST

Title: aluSHTEST
Functions Tested: RSH1, RCY I, ARSH I, LSH I, RSH I, LCY 1
Strategy: This is an exhaustive test for checking the ALU ouput shift and cycle
functions. There is an outer loop that generates all possible 16 bit values. Each of the above
functions is tested for all possible values.
Comments: An error indicates that some shift or cycle failed. In particular, there is
a problem in the path between the alu output, the multiplexor that controls loading H3 and T.
Check the code to see which operation failed. The one bits in T are in error, and Q contains the
value that was shifted or cycled by one.

Kernel 4: stkpPush stkpM2 carry20Test xorCarryTest savedCarry multiplyTest divideTest 1
CdivideTest slowBr

October 20, 1977 5:11 PM

Title: stkpPush
Functions Tested: stack&+ 1 ~, stkp ~stkp-1, ~stack, stkp ~stkp + 1
Strategy: This is an exhaustive test of the stack push and pop operations. The
basic approach is to use a loop to push known values onto the stack. Each time an item is pushed
onto the stack, the value of stkp is checked, the item is poped off to see if that works and then the
item is pushed again so that it is possible to proceed to the next loop iteration. Q holds the value
being pushed onto the stack. The test is arranged so that the Qth location in the stack is loaded
with Q. I.e., if Q=5, then the value at stkp=5 should be 5. Note that the act of pushing something
onto the stack changes the value of stkp; consequently the test subtracts one from the value of stkp
before checking it against Q.
Comments: The one bits in T are in error. Each error condition is commented in
the code. There are extensive comments in the code that discuss the loop control algorithm.

Title: stkpM2
Functions Tested: stack&-2
Strategy: , This is an exhaustive test of the stack -2 function. IT DEPENDS
UPON stkpPUSH!!! This test presumes that the stack has been backgrounded with the values 0 .. 76
in the same locations. I.e., if stkp =44, the value at the top of the 'stack is 44 and stack&-2 will
position stkp to point to the value 42 as well as change the value of stkp to 42. The two cases that
must be tested are when the stkp begins with an even number and when it begins with an odd
number. The test proceeds as follows:

Initialization (set stkp, init Q to 74 or 73, init CNT, etc)
Inner Loop

Read and check stkp
Read and pop the stack -- check the the expected value was read.
Check for underflow '

Outer loop
Set stkp to 73 and proceed OR exit if we have already done this.

Comments: The one bits in T are in error. Each error condition is commented in
the code. There are extensive comments in the code that discuss the loop control algorithm.

Title: carry20Test
Functions Tested: CARRY20
Strategy: This is a selective test of the CARR Y20 function. This function causes
a 1 to be or'd into the carry-out bit that is used as input to bit 11 in the alu (remember the alu is
bit sliced using 10181s). Given that there is not already a carry, this function has the effect of
adding 20b to the value in the alu; when the alu operation causes a carry into bit 11 ihis function
has no effect.
Comments: The one bits in T are in error.

Title: xorCarryTest
Functions Tested: XORCARRY
Strategy: This is a selective test of the XORCARRY function. This function
causes the carry-in bit for bit 15 of the alu to be xor'd. Normally this bit is 0, and when it is one
the alu arithmetic functions will see a carry into bit 15. For example, to accomplish twos
complement arithmetic, the ALUFM is programmed to provide a "one" for this bit during A-B. By
performing xorcarry at the same time as doing A -B the result will be one less than expected, ie, it
will effect ones complement arithmetic.
Comments: The one bits in T are in error.

Kernel 4: stkpPush stkpM2 carry20Test xorCarryTest savedCarry multiplyTest divideTest 2
CdivideTest slowBr

Title: savedCarry
Functions Tested: USEDSAVEDCARRY
Strategy: This is a selective test of the useSavedCarry function. This function
causes the alu carry bit from the last instruction to be used as the carry-in bit to bit 15 during the
current instruction. In absences of this function and others like it, the caryy-in bit for bit 15 is
provided by the alufm and is usually zero. This is the bit complemented by the xorcarry function.
Comments: The one bits in T are in error.

Title:
Functions Tested:

multiplyTest
MULTIPLY

Strategy:
effects:

This is a selective test of the multiply function. Multiply has three

1. It causes alu output to be right shifted 1, with CARRY replacing bit O.
2. It causes Q to be loaded with the quantity alu[15]"QI2 (Le., it uses the bit shifted out
the alu for QIO] and right shifts the rest of Q).
3. It causes Q[14] to be OR'd into TNIA[10] as a slow branch.

Note there are eight combinations of Q[14], carry, and alu[15]. All eight situations are tested (tests
"A thru H"). In addition, two tests are performed by loading Q with alternating 01 and 10 to make
sure that the shifts yvork properly.

MULCHECK is a subroutine that performs the multiply,
T ... T + (rscr), multiply, .

and sets rscr2 to 0 if Q[14] branch did NOT happen, and sets it to one if the branch did happen.
Comments: The one bits in T are in error except in the case where there was an
incorrect Q[14] branch. '

Title: divideTest
Functions Tested: DIVIDE
Strategy: This is a selective test of the divide function. Divide has two effects:

1. It causes alu output to be left shifted 1, with Q[O] replacing bit 15.
2. It causes Q to be loaded with the quantity (QI2)"carry (Le., it left shifts Q by one and
replaces old Q[15] with the carry from the alu operation).

Note there are four combinations of Q[O] and carry. All these combinations are tested by the code.
There is one test with Q loaded with alternating 01 to check the shifting logic.
Comments: The one bits in T are in error.

Title: CdivideTest
Functions Tested: CDIVIDE
Strategy: This is a selective test of the Cdivide function. Cdivide is similar to
Divide except the alu carry bit is complemented before it is loaded into Q. The are four
combinations of Q[O] and carry are tested by the code. There is one test that checks the shifting
logic by loading Q with alternating 01 before doing the Cdivide and then checks the shifted bits for
correctness.
Comments: The one bits in T are in error.

Title:
Functions Tested:
Strategy:
holds the value that
Comments:

slowBr
BDISPATCH
This is an exhaustive test of the eight way slow dispatch function. Q

is or'd onto the Bmux.
The one bits in T are in error -- look at RSCR to determine which

branch was really taken.

Kernel 4: stkpPush stkpM2 carry20Test xorCarryTest savedCarry multiplyTest divideTest 3
CdivideTcst slowBr

MernA: Introduction, Operating Procedures, C board, X board, D board, and S board diagnostics 1

December 26, 1978 1:29 PM

Introduction

MernA contains diagnostics for each memory board in the Dorado. The code is organized by board
type and the user can specify that specific diagnostics should or should not run by calling
subroutines provided in MernA. MernA will run in an infinite loop until an error occurs. The
descriptions below detail the diagnostics. There is no "A" board in the Dorado; MernA is just a
name that indicates that All the memory system gets tested by the diagnostic. The pieces of MernA
that test each board are described below. Each piece has a name like MemC or MemX. Those
names correspond to the C and X boards in the memory system.

Operating Procedures For MernA

Gating Files and Starting Up

Load the dump file [ivy]<dl>memA.dm to obtain the newest version of MernA. The alto
executive command,

midas MernA cr
causes midas to run and to load the diagnostics into the Dorado. "BEOIN;O" causes the diagnostics
to run until an error occurs. The user may enable or disable specific board tests by calling the
Midas subroutines named below (type "subroutineNameO"). The default causes all the tests to run.
There are routil).es that enable the diagnostics for each board, that disable the diagnostics for each
board, that enable only a particular board's diagnostics, that disable all the diagnostics and that
enable all the diagnostics:

addCboardTest
addXboardTest
addDboardTest
addSboardTest
addAllTests

removeCboardTest
removeXboardTest
removeDboardTest
removeSboardTest
removeAllTests.

Soma conventions

onlyCboardTest
only XboardTest
only DboardTest
onlySboardTest

Each test checks to see if "its bit" is true before it runs (remember there are numerous tests per
board). The bits are kept in the word "memFlags" that is displayed on the screen. The "addBoard"
subroutines work by ORing it bit mask into the current value of memFlags and the "removeBoard"
subroutines work by ANDing a bit mask into the current value. The user may enable or disable
selective diagnostics by setting the value of memFlags explicitly. The bit correspondances appear in
the source file "memDefs.mc" and later in this document.

The source code includes a version of the diagnostic that is written in Mesa. This version of the
diagnostic provides a "top level" view of how the diagnostic works. The especially peculiar details of
the Mesa code usually correspond directly to the way the microcode is implemented. Symbols
completely upper case are either Mesa reserved words (like WHILE, ENDLOOP, etc.) or
indications of specific Dorado hardware operations (like PIPE2[], DUMMYREF t-, FETCH t-, etc.).

sCbaos, a multi-tasking, random memory reference test that is one of the Sboard diagnostics is
different from the other diagnostics because the user must enable task simulation (with
"xorTaskSimO") for the test to execute.

MernA: Introduction, Operating Procedures, C board, X board, D board, and S board diagnostics 2

Changing the Test Environment

Error Correction

The left half of the memFlags word contains control information for the diagnostics. One such bit,
memState.useTestSyn. determines whether the diagnostics load the testSyndrome register with a zero
or 200, the value that enables error correction. There are two subroutines that provide user access to
this bit:

ECon
ECoff

Turns on memState.useTestSyn
Turns off memState.useTestSyn.

Changing memState.useTestSyn does not automatically cause error correction to turn on or off. The
S board diagnostics examine that bit before setting testSyndrome during S board initialization,
which occurs every time through the main test loop.

Using Only One Column in the Cache

The storage diagnostics have the capacity to set MCR such that the same cache column always will
be chosen for. the victim in the event of a cache miss. This causes the cache to behave as if it has
only 'one column. The contents of the rm register, sMCRvictim, control this facility. If the value of
sMCRvictim is greater than 3, the diagnostics set MCR with zero, the default state (it implies full
use of the cache). If sMCRvictim is IN [0 . .3]. it defines the column of the cache that becomes the
permanent victim.

The bit memState.usingOneColumn indicates that the storage diagnostic is using only one column in
the cache.

Testing the fast 10 system with the fast 10 test jig

There is a special board that may be used to test the fast io portion of the memory system. Since
the board is optional and won't be present on all Dorados, as a default the diagnostics don't attempt
to execute the fastio test. There are two subroutines that may be called from Midas to control
running the fastio test: "FIOtestOnO" and "FIOtestOffO".

After a Breakpoint at an Error

When an error occurs the user will want more information displayed on the screen. "Middle
button" OLINK to determine the label associated with the error. This label should indicate which
board diagnostic failed (the first letter of the name usually is the initial of the board). There are
Midas command files that cause relevant information to appear for each test type:

showC, showX, showD, and showS.

For example. if an error occured at catCoIFindDL+6, the user should type, "showC" and then
execute the "read-cmmds" menu item to cause Midas to show relevant registers and other data.
Another example is XrwPipe3Er that indicates a failure in the map and the user should use
"showX". Note that the cache data (D-board) tests use the two letter prefix, "cd". Please bring
ambiguous labels to my attention. -- gene.

memC: singleStep cPipeVA cBR cacheAddr cacheCompr cFlagsTest cacheAddrTest

December 26, 1978 1:06 PM

Title: singleStep
Functions Tested: decoding for all non-emulator memory references
Strategy: Operator checking with single steping. The operator begins by typing
"singleStep;O" to Midas. Then the code at singleStep sets mcr.disCF and mcr.disBR, turns on
tasking, sets tpc[l] appropriately and then notifies task one. Task 1 runs and immideately hits a
breakpoint. Now the operator may single step thru all the non-emulator memory references.
Comments: There are no automatic error indications. This sequence of instructions
ends in a branch to the top (it is an infinite loop) EXCEPT that a test is made to check the value of
T. The singleStep initialization code sets T to zero; if the code at the end of the singlestep sequence
finds a non zero value in T, it blocks task 1. This code is useful for debugging new memC boards.

Title: . emulMem
Functions Tested: decoding for all emulator-only memory references
Strategy: Operator checking with single steping. The code performs "map +-"

and cache "Flush" references.
Comments: There are no automatic error indications. This code sequence is an
infinite loop with no exit control.

Title: cPipeVa
Functions Tested: read and write the Pipe VA bits
Strategy: Set mcr.disBr, mcr.disCF, and mcr.noRef; then enter a loop that
performs dummyRefs to write into the pipe, and read the pipe to see that the proper values were
read back. The test uses a cycled one pattern to check each bit in the pipe.
Comments: An error at cPipeVAerr indicates that the test read something different
from what it wrote. T contains the bad bits and rscr contains the value written into the pipe.

MemFlags.cPipeVa controls this test.

Title: cBRrwTest
Functions Tested: read and write the base registers
Strategy: For each base register test each bit position by using a cycled one
pattern. The test sets mcr.disCF and mcr.noRef, and uses the subroutine setMbase to set the base
registers. The current base register is set by the setBR subroutine and dummyRef is used to read
the va from pipeO and pipe1.
Comments: In both error conditions described below, Q contains the number of
the base register failed when the error occurs. An error at cBrLow16er implies a failure in the low
16 bits of the current base register. The bad bits are in T and the expected bit pattern is in rscr2.

An error at cBrHi8er implies a failure in the high 8 bits of the current base register. The bad bits
are in T and the expected bit pattern is in rscr.

MemFlags.cBR controls this test.

Title: cacheAddr
Functions Tested: read and write the cache A-memory
Strategy: For each pattern write the entire cache address memory with known
values. Then for each row and for each column, write the memory again and check to see that the
correct entry appeared in the pipe. Load MCR with dpipeVA +-Vic, mcr.FDmiss, mcr.useMcrV,
mcr.disCF and mcr.disHold. During the checking pass the target column is loaded with a different
pattern than was originally written in the A-memory. UseMcrV selects the column, FDmiss forces a
miss and dPipeVa causes the victim's A-memory to appear in the pipe.

1

memC: singleStep cPipe VA cBR cacheAddr cacheCompr cFlagsTest cacheAddrTest

Comments: This test uses the getPattern / nextPattern subroutines. An error at
caBadHi15 indicates the pattern read from the pipe (high IS bits of the va) was not the pattern
expected. T contains the bad bits, rscr contains the high IS bits from the pipe and rscr2 contains
the expected pattern, va contains Mar value the test used, and Q contains the current cache row
being tested.

CaBadRow indicates the row bits in pipel were not what was expected. The test keeps the value of
the current row in q. The subroutine chkPipeRow performs the actual test, and returns an Alu
result that gets checked for correctness. This error suggests a fundamental problem with the C
board -- a different va was read from the pipe than what the program referenced.

MemFlags.cAmem controls this test.

Title: cacheCompr
Functions Tested: cache comparators
Strategy: Test the cache comparators with data from all the base registers. The
outermost loop is the base register loop, next is the pattern loop and after that come the cache row
and column loops that actually implement the testing. For each base register, pattern and row the
following occurs:

.The entire row is backgrounded with the complement of the current pattern (use
mcrJdMiss, mcr.noRef and invoke the subroutine, "mcrForCol"). In the test loop
mcr.fdMiss, mcr.noRef are used with mcrForCol to force the current pattern into the
current column. The test sets mcr.disCF, mcr.noRef and Mcr.disHold, sets the current base
register to the value of the current pattern and then performs a store reference. This
reference causes the selected column to be written with the current pattern (the other
columns have been backgrounded with a different pattern). Now the test performs a
reference with the current pattern, which should match the current column entry in the
cache. The test invokes chkPipe5col to determine if the expected column was chosen by the
cache.

Comments: An error at ccBadCol indicates the cache chose a different column
from the one expected. T contains the bad bits, rscr contains the value of pipeS and col contains
the value of the expected column. Q contains the cache row currently being tested and va contains
the current Mar offset.

MemFlags.cComprs controls this test.

Title: cFlagsTest
Functions Tested: read and write the cache flags like a memory
Strategy: For each column and row entry in the cache, test all the possible single
bit cache flag values (cycled one bit pattern). The following, enigmatic method for reading and
writing the cache flags reflects the fact that the flags weren't designed to be read or written like a
memory. Write the cache flags as follows:

Turn on mcr.fdMiss and mcr.disHold in MCR. Use mcr.useMcrV to select the current
column. For this explanation, PRESUME the cflags value has been left shifted by four to
align it with the proper position in the cache.

Let va = vaForRow[row] - flagsValue and write the low 16 bits of the current base register
with va. Now perform the following reference:

dummyRef +- flagsValue;
CFLAGS +- flagsValue; * this write the flags

To read the cache flags perform the following:

Note that the current contents of the A-memory must be known and there must not be two
hits in the cache when the reference occurs.

2

memC: singleStep cPipeVA cBR cacheAddr cacheCompr cFlagsTest cacheAddrTest

Disable hold and use mcr.UseMcrV to force a different column for the victim. Perform the
reference,

dummyRef ... va;
pipeS ... PIPES[]; * read the flags

where the PIPES[] occurs in the instruction following the dummyRef, and va[O:14] are
known to be in the A -memory of the cache. Check that col = the column that should have
matched and not the column that was chosen as victim! Remember the flags value was
returned in the PIPES[] reference.

Comments: In both en'ors below, Q contains the cache row currently being tested
and va contains the current Mar offset. An error at cfBadCol indicates the column of the victim
was not the column that should have been chosen (there should have been a hit). The bad bits are
in T and the value of PIPES[] is in rscr.

An error at cffiadFlags indicates the flag bits that the test !]ad did not match the bits the test
wrote. The bad bits are in T and the expected bits are in flagsV. Rscr contains PIPES[].

M~mFlags.cFlags controls this test.

Title: cacheAddrTest
Functions Tested: test the cache addressing mechanism
Strategy:
that hold cache address

This test checks that the addressing mechanism (as opposed to the bits
values) works. The algorithm works as follows:

Zero the A -memory and the cache flags.

Ascend thm the A -memory and the cache flags. Check that the current value is zero and
then set both to all ones. If the current value is not zero, an earlier store clobbered this
entry. In this case, perform the "findUP" test.

Zero the A -memory and the cache flags.

Descend thm the A-memory and cache flags: check that the current value is zero and then
set both to all ones. If the current value is not zero, an earlier store clobbered this entry. In
this case perform the "find DOWN" test.

If there were no problems the addressing mechanism works.

FindUP: zero the A-memory and the cache flags.

Ascend thm the A -memory and cache flags: before setting the current location to
all ones, check that the earlier, clobbered location is still zero. If it is not zero, the
previous store clobbered that location.

FindDOWN: same as FindUP excep descend thm the A-memory and cache flags.
Comments: An error at catUpCFerr indicates that the cache flags were improperly
written. The old, clobbered cache address is packed in "va": The three least significant bits contain
the column number of the error address, and the remainging bits contain the row number. Hence, if
va = 132, the clobbered address is row 13, column 2. Q contains the current row index and col
contains the current column index. Note that the previous reference was the one that clobbered the
cache entry. Consequently the offending address is "the current address minus one". A column
value of zero implies the third column of the preceeding row is the offending address.

An elTor at catUpAddrErr indicates the wrong A-memory was chosen. The same register
conventions hold.

An error at catDownCFerr or catDownAddrErr is similar except the offending is "the current
address plus one".

There are numerous subroutines that support this test. SetCAAF sets the current cache A -memory
and cache Flags to all ones. ReadCurrentCflags and readCurrentCAmem return the contents of the
flags and A-memory, respectively, for the current address. ReadOldCflags and readOldCAmem
perform the same function as the preceeding two except that the address is composed from the

3

memC: singleStep cPipe V A cBR cacheAddr cacheCompr cFlagsTest cacheAddrTest

packed address contained in va (the old row, old column).

MemFlags.cAddr controls this test

4

memX: mapRWtest mapRWtest2

March 20, 1978 1:07 PM

Title: mapRWtest
Functions Tested: read and write the map
Strategy: Read and write all the bits in the map. To avoid refresh problems this
test touches each row of the map at least once every two milliseconds -- this test can be run with
refresh disabled. The test uses the. following loop structure:

The outer loop is the pattern loop, followed by a loop that sets va[O:l]. The next loop is the
column loop, followed by the row loop where the test performs its testing. By keeping the
column loop outside the row loop, the test touches all the rows of the map once before it
switches columns. This enables the test to meet the refresh requirements.

The test writes the current pattern into the current column for every row, then it checks the current
column for every row to make sure the returned value is correct

Comments: An error at XrwPipe3Er indicates that the test read a different value
from the map than it wrote. The bad bits are in T and the expected value is in Mpat. The value
from the read map operation is in rscr.

An error at XrwPipe4Er indicates that the va[O:l] bits read from the pipe4 operation did not
correspond to what the test wrote. T contains the bad bits, rscr2 contains the value returned from
pipe4 with the pipe4.vaOl field right justified. Mva01 contains the current test value for va[O:l].

MemFlags.mR W controls this test.

Title: mapAddrTest
Functions Tested: map addressing mechanism
Strategy: This test follows the same pattern as the addressing tests for the C, D
and S boards follow:
(Ascent Test) Zero the memory, then ascend the memory as follows:

I} If the current location is non-zero, there was an addressing error (a previous store to an
"earlier" location clobbered the current location). Invoke the ascent error routine which
finds exactly which store caused this error.
2} Otherwise, set the current location to all ones.
3} Increment the current address: if all addresses have been tested, proceed to the descent
addressing test, otherwise proceed to step 1..

(Descent test) Zero the memory, then proceed as in the ascent test, except we descend through the
memory (decrement) rather than ascend (increment).
(Ascent error routine) Denote the "error address" as the clobbered address discovered in the ascent
test. The ascent error routine procededs by zeroing memory then ascending the memory as follows:

I} If the error address is non zero, the last store which the ascent error routine made
clobbered that location (storing into the "current address-I" clobbered the "error address"
that was detected by the ascent test
2) Otherwise, set the current location to all ones.
3} Increment the current address; if all addresses have been tested, there must have been
an intermittent error, otherwise proceed to step 1.

The descent error routine is similar to the ascent error routine in the same way.
Comments: An error at xUpErrl indicates that the xZeroMap routine failed to zero
the first entry in the map. This is an extra check to simplify error interpretation when there are
fundamental problems with the map. An error at xErrUp2 indicates that the previous store
(MpageX-I) clobbered the error location (kept in stack). An error at xErrUpIntermittent indicates
that the ascent test found that the map entry at stack was clobbered and the ascent error routine
was unable to recreate the problem.

An error at xDownErr2 indicates the previous store (MpageX-I) clobbered the error location (kept
in stack). An error at xErrDownIntermittent indicates that the descent test found that the map
entry at stack was clobbered and the descent error routine was unable to recreate the problem.

1

rnernX: rnapRWtest mapRWtest2

MemFlags.mAddr controls this test.

Title: mapRWtest2
Functions Tested: timing characteristics for the map row
Strategy: This time-consuming test requires the operator patch-out a jump at the
beginning of the test to the end of the test. The basic idea is to write a map entry and then wait a
long time and see if the data is still valid. This test is useful for determining how long the map
memory chips hold their data. Refreshing should be disabled when this test runs. The test should
not encounter an error.

The outelmost loop controls the number of cycles the test waits after writing a map entry.
The pattern loop, va[O:l] loop, row loop and then column loop follow. Note that the test
writes a single map entry, waits the current amount of time and then checks the entry. The
test takes about 20 minutes to run. The subroutine, "testMap " , performs the actual testing.

Comments: An error at xTestMapErr3 indicates that the pattern written into the
map was not the same pattern read back. Mrow contains the map row, and Meol contains the map
column. Q contains the nuinber of cycles testMap waited after writing the map, Mpat contains the
pattern expected, T contains the bad bits, and rser contains the value read from pipe3.

An error at xTestMapErr4 indicates that the va[O:l] field of the map was incorrect. T contains the
bad bits, rscr2 contains the value of va[O:l] (right justified) as read from pipe4, and Mva01
contains the current value for va[O:l].

2

memD: cDataTestl cdaTest cdHoldTest

March 20, 1978 11:15 AM

Title: cDataTestl
Functions Tested: Read and write the bits of the cache data memory
Strategy: This test writes and reads the cache data memory. The outer loop is the
pattern loop (cycled Is followed by va). Within the pattern loop, the test writes the entire cache and
then reads the entire cache, checking for an error.
Comments: An error at cdlrerrl indicates that two reads of the cache data don't
match: the test performed a regular and immediate read of MD. CData contains the value returned
from a regular read and T contains the value returned from MOL Va contains the virtual address
that the test checked.

An error at cdlRerr2 indicates that the data returned by the memory system did not match the data
written into the cache. T contains the bad bits, CData contains the pattern written into the cache
and rscr contains the value returned by the memory system.

MemFlags.dR W controls this test.

Title: cdaTest
Functions Tested: tests the cache data addressing
Strategy: The algorithmic description of cacheAddrTest for MemC applies to this
test.
Comments: CdaUpErr indicates that there was an addressing error. Va minus one
is the address that clobbered the contents of the address at r1.

An error at cdaUpNoFind indicates there was a transient error that caused the the address in r1 to
be clobbered. The test was unable to replicate the addressing problem.

An error at cdaDownError indicates that there was an addressing error such that va plus one is the
address that clobbered the address in r1.

An error at cdaDownNoFind indicates there was a transient error that caused the the address in r1
to be clobbered. The test was unable to replicate the addressing problem.

MemFlags.dAddr controls this test.

Title: cdHoldTest
Functions Tested: Check that the memory holds the processor when appropriate.
Strategy: Fetch a value we know under different timing circumstances to make
sure the memory system returns the value properly. These test try to retrieve a known value with
zero, one or two noops between fetch+- and +-md. The test checks both md and mdi. The test turns
off wake-ups.
Comments: An error at cdHoldErrO, cdHoldErrl, or cdHoldErr2 indicates that the
+- MD test received a value different from the one it expected. T contains the bad bits, rscr contains
the expected value and r1 contains the address.

An error at cdHoldMdiErrO, cdHoldMdiErrl, or cdHoldMdiErr2 indicates that the +- MD test
received a value different from the one it expected. T contains the bad bits, rscr contains the
expected value and r1 contains the address.

MemFlags.dHold controls this test.

1

memS: sDtest sAddrTest sChaos fioTest

October 3, 1978 10:24 AM

Title: sDtest
Functions Tested: read and write memory storage boards
Strategy: Read and write all the bits all the bits on the storage boards, and read
the pipe to check the error correction bits. The basic idea is to write all the words in the memory
with the current pattern and then to read all the words in the memory and to check that the data
read is the same as the data written.
There are three classes of patterns:

Cycled one bit
Virtual address as data
Random numbers

The diagnostic checks all the words in a munch before it reads the pipe to see if there's been a
failure in the error correction bits or if there's been a successfully corrected failure.

Comments: An error at sVaRerr indicates that the pattern read from the memory is
not the same as the pattern written. T contains the bad bits, sva contains the virtual address that
failed, rscr contains the current pattern and rscr2 contains the value returned by the memory
system.

This test presumes the cache works since no effort is made to guarantee that the bits checked come
from the storage board rather than being left over in the cache (writing the entire memory should
flush the cache many times).

Data errors caught by the code that reads the pipe require the user to use Midas to fully understand
what has occured. The "showS" command file places the Midas pseudo registers PFAULT 20, PVA
20, PERRS 20, PREF 20, and PMAP 20 on the screen (see Midas documentation). These registers
represent the "current" pipe values. Unless the operator has specifically intervened, PROCSRN will
be zero and the registers described above will display information relevant to the emulator.
Applying the "middle button" to the values in those registers will provide important information
relating to the failure. The diagnostic has some idea what has occured and errors occur at different
labels depending upon what the diagnostic thinks happened.

An error at sVaChkBitErr indicates the diagnostic believes there was a failure in the check bits in a
quadword for the current munch. sVaDblErr is the location that indicates the diagnostic believes
there was a double error, and sVaSingleErr indicates there was a single error that was undetected by
the preceeding data check (this occurs when the error corrector has been enab.1ed). sVaUnknown
represents the detection of a problem too complicated for the diagnostics to comment upon.

MemFlags.sRW controls this test.

Title: sAddrTest
Functions Tested: check storage addressing

Strategy: The algorithmic description of cacheAddrTest for MemC applies to this
test.
Comments: An error at sAddrUpFindL + 11 indicates that an addressing error was
found. The bad value is in rscr2, and the address of the clobbered location is in rscr"t. The
address that caused the clobber to occur is in sVaHiX"sVa.

An error at sAddrDownFindL + 12 has the same implication and register conventions as the
preceeding error labe1.

MemFlags.sAddr controls this test.

1

memS: sDtest sAddrTest sCbaos fioTest

Title: sChaos
Functions Tested: multi tasking, random references

Strategy: This test backgrounds two rows of the cache with munches that are
chosen at random. The dirty bit for each munch is also selected at random. The default task and the
task simulator execute one of four possible unique tests based upon random selection. Each test
contains a reference (fetch or store) followed by a delay (chosen at random), followed by another
reference. Chaos backgrounds memory with its own address (mem[sva] ~ sva), and all stores
performed by the tests follow that pattern. An error occurs when selected registers don't have the
same contents or when the contents of a memory location don't correspond to the contents of the
corresponding RM location.

Comments: Chaos, unlike the other storage board diagnostics requires more than just
its "memFlags" bit to be set: Chaos requires that task simulation be enabled before it runs. Enable
task simulation (use xorTaskSim) to run Chaos as an S board diagnostic.

Each task performs two references separated by a delay. Regardless of which test chaos selected,
certain pairs of registers should contain the same values, and storage should contain the same values
for those addresses. If this is not true there has been a hardware failure. The following should be
true:

mem[rmOO] = rmOO = rm01
mem[rm02] = rm02 = rm03
mem[rm10] = rm10 = rm11
mem[rm12] = rm12 = rm13

The RM name provides some information about the use of the RM location. For example, rm10 is
the first rm location used by the simulator task, and rm02 is the third RM location used by the
default task. The pattern of usage is always the same.

If the pattern is a fetch:

FETCH ~ rm?O
(delay)
rm?1 ~ MD;
or,
FETCH ~ rm?2
rm?3 ~ MD

If the reference is a store:

STORE ~ rm?O, MD ~ rm?O
or,
STORE ~ rm?2, MD ~ rmd?2

What To Do If An Error Occurs

Type "showChaos" and select the "read-cmrnds" menu item. This command file causes Midas to
display all the "RMxx" registers and two IM locations, cbaosOStageit and chaosSimStageit. Middle
button the value fields of these two 1M locations to determine which two tests chaos invoked to
cause the cunent error. Examine the code listings.

The tests are named in a consistent fashion:

cbaosTsk<i>Tst<j> denotes the task and test number. If I is zero, the test was run by the
default task, otherwise it should be one and it denotes the simulator task. J denotes the test number
within the task. Tests are numbered on the basis of the two reference patterns:

2

memS: sDtest sAddrTest sChaos fioTest

test 0
test 1
test 2
test 3

fetch-delay-fetch
fetch-delay-store
store-delay-fetch
store-delay-store

The implementation actually uses a two bit field to generate the test number where zero names a
fetch reference and one names a store reference.

MemFlags.sChaos controls this test

Title: fioTest
Functions Tested: fast IO portion of Storage system

Strategy: Use the fast io jig to simulate a fast 10 device. This test requires the
presence of the optional io test jig; consequently, the default condition in the diagnostics is that the
fioTest does not execute. The subroutines "FIOtestOnO" and "FIOtestOffO" will enable and
disable this test.

The code checks that the subtask mechanisms in the processor and memory system work properly,
then it checks that storage transports work properly. Remember that subtask[O:l] gets or'd into both
(RBASE.3, rstk.l) and (memBase[2:3]). The diagnostic uses two control loops, one for the task and
another for the sub task. The emulator level code sets tpc for the current 'test' task and notifies that
task. The rest of the test then executes as the current, non-emulator task; it sets the fio jig to the
current task and subtask value, performs various tests and blocks when it is done. Then control
returns to the emulator which processes the next sub task or task as required. The diagnostics
initialize BR[i] to contain i*lOOOB (eg., BR[3] = 3000B) so that references made through the various
membases can be checked.
Comments: The diagnostic sets rbase and membase to zero when it operates under
the influence of the flo jig. Thus a reference to rmxO may reference the r-register at 0, 4, lOb or
14b depending upon the sub task value in the flo jig. An address denoted sub task relative i refers to
the i-th location as seen by the subtask. The diagnostic computes the effective address of sub task
relative locations when it checks the results of some operation that was performed while "under the
influence". Diagnostic checking occurs while the flo jig is disabled.

An error at fioSTiErr (for i = 0,1,2,3) indicates that the diagnostic expected to reference the
sub task relative, zero-th RM location for the current, i-th subtask, and it failed. The diagnostic
works by setting RBASE to zero and then performing tIt +- rmxO" where the low three address bits
of rmxO are zero. T contains the value read from Rm. The first 20B locations in RM are
backgrounded with their address (ie., RM[O] = 0, RM[l] = I, etc), so the value read should
indicate which rm locaction was sourced. An error at fioSTiErr2 indicates that sub task i expected to
clobber a specific rm location; it failed. In particular, the diagnostic performed, "rrnxO +- 77B" and
the value in subtask relative rrnxO was not 77B. Note that the current value of the subtask
determines which RM location should have been clobbered. AtestTaskX, and AsubTaskX are the
RM locations that contain the current task and sub task being tested.

fioSerrl indicates that the sequence,
IOfetch to 0;
10fetch +- 20B;
IOstore to 0;
IOstore to 20B;

somehow clobbered one of the first subtask relative 32 words in storage. The initialization for
storage is mem[i] +- i. At tllis error location, T contains the effective address being checked, sva
contains the sub task relative address, and rser contains the data fetched from memory. Remember
that current value of AsubTaskX determines which subtask was active and that determines which
base register was used.

3

memS: sDtest sAddrTest sChaos fioTest

The two labels fioSerr2a and fioSerr2b suggest that the IOfetches performed by the diagnostic did
not fetch a dirty munch in the cache.
The diagnostic perfonned the following sequence,

mem[O] ... NOT(mem[O])
mem[20] ... NOT(mem[20])
IOfetch ... 0;
IOfetch ... 20;
IOstore ... 0;
IOstore ... 20

T contains the address that failed, rscr contains the value fetched, and rscr2 contains the expected
value.

An error at fioSerr3 indicates that an IOstore failed to overwrite a dirty munch in the cache. T
contains the address with the "old" and incorrect value, rscr contains the bad value (T contains the
expected value as well as address).

MemState.FIOtest controls this test. Note this is MemState, not MemFlags. MemState is the upper
half of the MemFlags word.

4

Preamble: bit definitions, loop macros, skip macros, RM declarations, subroutine entry and exit 1
macros, miscellaneous macros

March 2, 1978 8:05 AM

Introduction

Preamble is a microcode file inserted at the beginning of ~11 diagnostics. It provides macro and
constant definitions that are used throughout all the diagnostics. It also predefines a few RM
locations. In general preamble provides constants for each bit position in a 16-bit word, loop and
skip macros, and subroutine entry and exit macros. These and others are described below.

RM definitions: defaultRegion, randomRM, nn2ForKerneiReturn

Kernel's main RM region is called defaultRegion. Preamble declares the following register name
and value pairs in defaultRegion:

RO
R1
RM1
ROl
RIO
RHIGHI
RSCR
RSCR2

o
1
177777
52525
125252
100000
o
O.

Note that the various pieces of diagnostic code can and do declare different regions and sometimes
redefine the name of one of the RM locations in defaultRegion.

The region named randomRM provides constants for the random number generator that is a part of
the postamble package. The region nn2ForKernelRtn, which appears in preamble as well, declares
two more registers for the random number generator. The rest of its storage is devoted to saving
return link values.

Micro, the assembler for Dorado microcode, requires that register names be declared before they
are used in the program. Since there are macros in preamble that use the "random number" RM
names, the regions declaring those names are declared in preamble. Preamble declares
defaultRegion to make it available to all microprograms.

Constants and Parameters

A parameter is a name that has a numerical value. Assembler details of no interest here force the
programmer to distinguish between parameters and B-mux constants. Consequently there is a
collection of parameter and constant (B-mux) declarations in preamble. They define all the bits (bO,
bl, etc), the compliment of all the bit positions (nbO, nbl, etc), and a collection of useful constants:

CMl
CM2
C77400
C377

177777 (minus 1)
-2
777400
377

Preamble: bit definitions, loop macros, skip macros, RM declarations, subroutine entry and exit 2
macros, miscellaneous macros

Loop, Skip, and other Branch Macros

In the following descriptions, "cond" refers to a fast branch condition like "alu=O" or "r odd".

noop
skip
error
skiperr

branch[.+ 1]
branch[. + 2] .
branch[err]
branch[. + 2]
branch[err]

skpiflcond]
skpunless[cond]

branch[. + 2, condition] used after a test of some sort
dblbranch[. + 1, . + 2, cond] where "cond" is a fast branch condition.

This means IF cond THEN goto . + 1 ELSE goto . + 2.

loopuntil[cond, label] This is just a branch condition. Diagnostics use this sort of macro to
emphasize the presence of a loop: IF cond THEN goto .+ 1, ELSE goto labe1.
loopwhile[cond, label] IF cond THEN goto label ELSE goto .+1.

Subroutine Entry and Exit Macros

saveReturn[rmLocation] . place the return link in T and store the link into rmLocation. The
macro goes through T first because that makes it possible to store the link value into a different

. rbase region from the current one. The assembler is left in "top level" .

t ... not(notLink);
top levelD:
rmLocation ... t;

~ saveReturnAndT[rmLocationForRtn, rmLocForT] First this macro stores the value of T into
rmLocForT, then it saves the return link as saveReturn saves it. The assembler is left in "top level".

rmLocForT ... t;
t ... not(notLink);
top levelD;
rmLocation ... t;

returnUsing[rmLoc] This macro fetches the value of rmLoc, store~ it into link and returns.
Note that the macro presumes rmLoc is located in a different rbase from the current one.
Consequently it first sets rbase to the rbase of rmLoc, loads link, and then returns while setting the
value of rbase to defaultRegion. The assembler is left in subroutine mode.

subroutine[];
RBASE ... rbase[rmLoc];
link ... rrnLoc;
return, RBASE ... rbase[defaultRegion];

returnAndBranch[rmLoc, registerName] This variant on returnUsing performs the assignment
"registerName ... registerName" in the return instruction. This enables the caller of the subroutine
to perfrom a fast branch test at the point of return. RegisterName must be defined in the default
region. The assembler is left in subroutine mode.

Preamble: bit definitions, loop macros, skip macros, RM declarations, subroutine entry and exit 3
macros, miscellaneous macros

subroutineD;
RBASE ... rbase[rmLoc];
link ... rmLoc;
RBASE ... rbase[defaultRegion];
return, registerName ... registerName;

Miscellaneous Macros

zeroHold[registerName] This macro zeros registerName and then sets the "hold register" three
times. Hold implements task simulation and hold simulation. Because of problems associated with
task switching its necessary to set hold three times before the programmer can be certain it is zero.

getRandomD This macro returns a random number in T and leaves the assembler in
the defaultRegion. The interface to the random number generator is rather peculiar, and this macro
makes the calling conventions invisible.

Postamble: Hold and Task Simulator Controls, Task Circulation, Loop Counter, readByte3, 1
getIMRH, gctlMLH, chcckFlags, chcckTaskNum, notifyTask, setHold, displayOff

January 11, 1978 6:19 AM

Introduction

Postamble is a microcode file that is inserted at the end of all diagnostics. It provides the main,
"outer" loop mechanism for all diagnostics along with several other functions. It also provides a
small number of common subroutines for all diagnostics. Postamble controls the use of the hold and
task simulators in the Dorado processor. The hold simulator causes periodic HOLDs and the task
simulator periodically awakens a task determined by jumpers on the backplane. If the operator
enables hold and task simulation, postamble causes the values used in those simulators to change
each time the diagnostics complete a pass. Postamble implements task circulation, the situation
whereby the diagnostics run as task 0, then as task 1, etc.

The operator controls the simulator and the task circulation by modifying the data word "flags" that
is kept in 1M. Postamble uses flags as a bit mask to control the simulators and task circulation.

Flags Value Operation

1 use task simulator
2 use hold simulator
4 circulate tasks

The value 7 will cause postamble to use both simulators and to circulate tasks.

Label: rmCheck
Action: guarantee "known" rm values are correct
Strategy: This code assures that the known rm values have are still valid before
the next pass is made. Either a hardware bug or a software bug could cause the value of one of the
known rm registers to be wrong.
Comments: This test occurs upon intering postamble.

Label: chkTaskSim
Action: generate next task simulator value.
Strategy: This code generates the next value for the task simulator. It generates
zero if task simulating is turned off.
Comments: Calls the subroutine checkFlags and readByte3. This code always
updates taskFreq, the 1M location that holds (right justified) the value placed into the task
simulator.

Label: chkHoldSim
Action: generate next hold simulator value.
Strategy: This code generates the next value for the hold simulator. It generates

simulating is turned off. zero if hold
Comments:
updates holdFreq,
simulator.

Calls the subroutine checkFlags and readByte3. This code always
the 1M location that holds (right justified) the value placed into the hold

Postamble: Hold and Task Simulator Controls, Task Circulation, Loop Counter, readByte3, 2
getIMRH, getIMLH, checkFlags, checkTaskNum, notifyTask, setH old, displayOff

Label: simControl
Action: construct task and hold simulator value.
Strategy:
that it does not load
Comments:

This code generates the next value for the hold/task simulator. Note
the simulator.

the 1M location that
Calls the sup routine readByte3. This code always updates holdValue,

holds the value actually placed into the hold/task simulator.

Label: simInit, simSet, simBlock
Action: load task and hold simulator.
Strategy: This code runs at the highest priority task and actually loads the
simulator. Postamble initializes this code at the simlnit entry where the current value for the
simulator is placed into T. SimSet is the location where the postamble actually loads the simulator
and simBlock is the location where it blocks waiting for the next simulated task awakening to occur.
Comments: This code is not task 0 code, and it initializes itself by using the current
value of Q for the next value for the hold/task simulator. The value is kept in T during normal
operation.

Label: taskCirculate
Action: cause different tasks to execute the diagnostics.
Strategy: If tas~ circulating is enabled, this code causes the diagnostics to run at
the next task level. Task levels are chosen in tum, ie., task-O runs the diagnostics once, then task-l
runs them, etc. Note that there is a conflict with the task simulator. If the simulator is active, the
diagnostics should not execute at the same task level that the simulator awakens since the code at
that task . level is responsible for restarting the task simulator. TaskCirculate assumes that the task
simulator a,yakens task-IS! When simulating is true, task circulation stops after task-14 and then
starts again at zero. When simulating is false, it stops after task-IS and starts again at zero.
Comments: This code calls checkFlags, checkTaskNum, and notifyTask.

Label:
Action:
Uses Registers:
Strategy:
location at "t" .
Comments:

Label:
Action:
Uses Registers:
Strategy:
1M pointed to by T at
Comments:

Label:
Action:
Uses Registers:
Strategy:
1M pointed to by T at
Comments:

readByte3
subroutine: t=IM addr; return byte 3 of 1M
rscr, t
This subroutine reads the last byte (byte3, least significant byte) of 1M

This code disables hold simulation while it runs.

getlMRH
subroutine: t=IM addr, return right half of 1M
rscr, rscr2, t
This subroutine reads and returns in t the contents of the right half of
time of entry.
This code disables hold simulation while it runs.

getlMLH
subroutine: t=IM addr, return left half of 1M
rscr, rscr2, t
This subroutine reads and returns in t the contents of the left half of

time of entry.
This code disables hold simulation while it runs.

Postamblc: Hold and Task Simulator Controls, Task Circulation, Loop Counter, readByte3, 3
gctlMRH, getIMLH, chcckFlags, checkTaskNum, notifyTask, setH old, displuyOff

Label: checkFlags
Action: subroutine: t=flag bit mask, return w/ fast br condition, t = flags that
are on and in the mask.
Uses Registers: rscr, rscr2, t
Strategy: This code reads the flags word and masks its contents with the contents
of t. This is done so that the returnee can do a fastbranch skip to see if any of the flags in the mask
were on. T contains the flags that were in both the mask and the flags word. Eg.:

t +- flags.taskSim;
call[checkFlags];
skpif{alu#O];
branch[notSimulating];

Cominents: This code disables hold simulation while it runs.

Label: checkTaskNum
Uses Registers: rscr, rscr2, t, r1
Action: subroutine: t=expected val for current task, return t= real value of
current task, returnee can do fast branch for equality
Strategy: This code returns in T the task number of the task that postamble
believes is currently executing. The expected task number is compared with the real task number so
the returnee can do a fastbranch skip to see if they are the same: E.g.:

t +- 3c;
cal1[checkTaskNum];
skpif{alu#O];
branch[notInTask3];

Comments: This subroutine calls readByte3.

Label:
Action:
Uses Registers:
Strategy:
Comments:

notifyTask
subroutine: notify the task indicated by T
rscr
Use a bigBdispatch to notify the task indicated by the contents of T.
Return link kept in rscr.

Label: setHold
Action: subroutine: set the task/hold simulator registers w/ value of T
Uses Registers: q, t, setHoldRtn
Strategy: This subroutine causes the task at simTaskLevelC (a constant defined
in postamble, it should be the task number of the task awakened by the task simulator) to initialize
the task/hold simulator registers.
Comments: This code enables and disables the task/hold simulator.

Label: displayOff
Action: subroutine: Turns off interim display
Uses Registers: t
Strategy: This code turns off the interim display. It is for interactive use with
midas while doing hardware or microcode debugging, The code sets a breakpoint at its exit so that
the user can "call" the subroutine from midas to turn off the display.
Comments: "Midas subroutine".

Alphabetically Ordered Summary of Diagnostic Facilities Available from Midas

April 13, 1978 7:45 PM

Introduction

Any microcode subroutine may be called from Midas or used in patches to a diagnostic. This is an
alphabetically ordered list of subroutines that have proven to be useful in various circumstances.
They assume that RBASE = defaultRegion. Unless otherwise specified, single parameters are
passed in T and single results are returned in T.

addAlITestsO

add?BoardTestO
memory board.

cacheAforVa(va)

This enables all the memory diagnostics.

(Replace ? by C, X, S, or D) This enables the set of tests associated with the appropriate

Returns the midas style cache address that corresponds to va.

chkRunSimulatorsO Checks the values of flags.taskSim, flags.holdSim, flags.taskCirculation, flags. Conditional, and
f1ags.conditionOK. This routine turns on hold simulation or task simulation if the proper bits are enabled. It does the
same for task circulation. If flags.Conditional is true, none of the simulators will run unless flags.conditionOK is true also.

c1earCacheFlagsO Sets all the cache flags to vacant

cRowForVa(va) Returns the cache row index for va.

dirtyWriteLoop This midas oriented code is seful during S-board checkout Begin execution at
"dirtyWriteLoop". After a breakpoint occurs, the map has been initialized. At that point the user must initialize sva to
the address of interest The code sets the cache A memory for the appropriate row to four different values that are
sva + 1000, + 2000, etc. The code sets Cflags to vacant Then a store followed by a long wait occurs. At the end of
the wait, the test loops to the point where it sets the cache A memory.

disableConditionalTaskO Clear flags.conditionOK, set flags. conditional and cause the conditional tasks to stop
running.

displayOrro Turns off the interim display.

doScheckOut This midas oriented code is useful during S-board checkout. After initialization it enters an
infinite loop that reads and checks two storage locations. The code has a patch location (scodF) that may been changed
to force an infinite loop of write/read transports. There are numerous registers whose initial values may be manipulated
to obtain the desired behavior.

ECoffO Clear memState.useTestsyn. This causes the storage diagnostics to run without error
correction.

EConO Set memState.useTestSyn. This causes the storage diagnostics to run with error correction
enabled.

enableConditionalTaskO Sets flags. conditional and flags.conditionOK. Routine also causes the appropriate tasks to
run if they are enabled.

iDboardO Initializes the Dboard for the memD diagnostics.

iSboardO Initializes the storage boards. This presets the map, clears the cache flags and sets
testSyndrome according to memState.useTestSyn.

longWait(nCycles) Returns after waiting nCycles.

I? (Replace? by 1 through 5.) Code patch locations allocated in mernA. The length of the
location is denoted by the numerical suffIx. The last location contains a branch to the top (eg., 14 + 3 contains
"branch[14]"). The other locations contain noops.

notifyTask(taski~um) Notify task "taskNum".

only?BoardTestO (Replace ? by C, X, S, or D) This disables all memory diagnostics and then enables only
the set of tests associated with the appropriate memory board.

patch? . (Replace? by 1 through 5.) Code patch locations allocated in postamble. The length of the
location is denoted by the numerical suffIx. The last location contains a branch to the top (eg., patch4+3 contains
"branch[patch4]"). The other locations contain noops.

presetCache(hi8, low16, CFLAGS) Sets each cache A entry with hi8"low16 and sets the cache flags to CFLAGS. Note
that the low 9 bits of low16 will be ignored. Think of this routine as taking a 24-bit virtual address and writing the
appropriate cache entry w/ that address and with CFLAGS. Parameter Conventions:

1

Alphabetically Ordered Summary of Diagnostic Facilities Available from Midas

T = hi 8
rscr = low 16
rscr2 = CFLAGS

presetMapO Resets the map, then initializes it so that virtual addresses correspond to real addresses (ie.,
virtual page 0 maps to real page 0, etc).

resetHoldO Sets the hold simulator to the value in holdValueLoc in 1M.

removeAllTestsO

remove?BoardTestO
memory board.

resetMapO

se~ase(brlndex)

This disables all memory board diagnostics.

(Replace ? by C, X, S, or D) This disables the set of tests associated with the appropriate

Kick-starts the map automata and initializes the tag bits.

Sets current memBase to brlndex. This routine clobbers and then restores the value in rOo

setTestSyn(val) Sets testSyndrome to val.

sGetConfig() Initializes the registers used by various loop. control mechanisms that need to know how
much memory is available. This routine tells the diagnostics what the memory configuration looks like.

sMCRvictim This Rm location causes the storage diagnostics to run with MCR set up to restrict all
victimes to a particular column. This makes the cache one column wide. If sMcrVictim > 3 the default of allowing
the entire cache is used.

testMap(column, row, pattern, cycles, callResetMapFlag) This routine writes a pattern into the map at column.row.
waits nCycles and then read the map to see if the pattern is still in the map. If callResetMapFlag is true (#0) then the
map is reset just before writing the pattern into the map. Parameter conventions:

Mcol = column
Mrow = row
Mpat = pattern
rscr = nCycies
rscr2 = callResetMapFlag

testTaskSim(taskSimVal) Midas subroutine for testing the task simulator. Causes the hold register to be loaded with
taskSimVal and then enters an infinite loop examining t. If t is non zero the simulator task has clobbered the current
task's T. If a breakpoint occurs anywhere else, there has been a wild transfer of control.

vacateCacheRow(va) Set CFLAGS to vacant in the cache row that corresponds to va.

vaForRow(cacheRowIndex) Returns a virtual address that will hit the cache row, chacheRowIndex.

xBoardLoop This routine is a midas oriented piece of code that enters an infinite loop that writes the
map twice, then reads it twice. Mwait contains the length of time the code waits after manipulating the map.
M~pAddr1. and MapAddr2 contain the two addresses read and written. MwriteVal contains the value written into
the map. This code is used during initial X-board checkout

xorHoldSimO Toggles the value of flags.holdSim. the bit that enables the use of the hold simulator.

xorTaskSimO Toggles the value of flags.taskSim, the bit that enables the use of the task simulator.

xortaskCircO
diagnostics (causes

zeroMemoryO

Toggles the value of flags.taskCirculation. the bit that enables task circulation in the
the diagnostics to run at each task level).

Zero the entire memory.

2

APPENDIX 1: Sample Problems

pin 35 on left side

This pin should interfere with Amux select. The initial single stepping portion of the
diagnostics will fail.

pin 166 on left side .

The left mask of the shifter will fail.

pin 134 on left side

The right mask of the shifter will fail.

pin 146 on left side

The least significant byte of the alu will always be #0.

pin 162 on left side

The function that replaces the ALU carry with the saved carry will fail.

