
The CIS Processor Principles of Operation
REVIEW DRAFT - COMMENTS PLEASE

April 9, 1977
Version 2.0

This document describes the interior architecture of the OIS System EI.ement Digital
Processor. It includes a description of the virtual storage system, the instruction set,
and the input-output facilities.

XEROX
INFOHMATION TECHNOLOGY GROUP
SYSTE,MS DEVELOPMENT DIVISION
3406 Hillview Ave. / PRlo Alto / California 94304

Table of Contents

Introduction t;,,·.\A

Information formatJ;yntactic convent~ons
Number system
Special Characters
Terms

Virtual Storage
Introduction
Mesa's Use of the Virtual Memory System
Address Translation
Requests
Operations on the Map
Mapping Examples

Pointer Formats

Central Processor
Data Structures and Associated Registers

Code Segments

Global Frames

Local Frames

System Dispatch

Global Frame Table

Allocation Vector

The Processor Stack

The Machine State

Instruction Format and Classes
Load/Store Instructions
Load/Store Global Word
Load/Store Local Word
Load Immediate
Load/Store Global Doubleword
Load/Store Local Doubleword
Read/Write Word
Read/Write Doubleword
Read/Write Indexed
Read/Write Indirect
Read/Write String
Read/Write Field

2
2

2
2

4
4
5
6
6
7
8

9

9

10
10
10
10
10
11

12

14
15
16
17
18

18
19

21
23
24

26
27

XEROX
PRIVATE
DATA

Data Modification Instructions
Jump Instructions
Unconditional Jumps

Conditional Jumps
Jump Indexed Byte/Word
FOR Loop Control Instructions

Miscellaneous Instructions
Bit Boundary Block Transfer
Display Bitmap Format

Font Format
BitBLT

BitBL T Examples
Extensions to BitBL T

Control Transfers
Control Links
Procedure Descriptors
Stored Program Counters
Frame Allocation
XFER
Control Transfer Instructions

Local Function Calls
Global Function Calls

Stack Function Call
Kernel Function Call
Return
Port Out

Port In

Traps
Types of Trap
Trap Processing
Breakpoints

Process Switching
Process States
Registers
Scheduler
Interruptible Instructions

Errors amI Error Hamlling
Types of Errors
Error Logging
Software Notification of Errors
Restart Register

30
36
36
36
41
42
43
48
48
48
49
50
50

51
51
52
52
55
57
58
58
59
60
60
60
61

62
63
64

65
66
66
68

69
69
70
71

XEROX
PRIVATE
DATA

Input-Output
Introduction
Common 1/0 Handling
Controllers and Devices

1/0 Addresses, Priorities, and the 110 Page
Input/Output Instructions
Process Wakeups
Channel 1/0 Operation
Control Information
Initiation
Data Transfer
Termination and Process Wakeups
Status Information

Dedicated Addresses and Functions
1/0 Page Block 0
1/0 Page Block 15
Block 0 1/0 Registers
Block 15 1/0 Registers
Block 1 through 14 110 Registers

110 Controller Configuration

Appendix A: Opcode Summary, Processor Constants

Figures

72
72
72
73
74
74
75
75
75
75
76
76
77
77
77
78
79
79
79

1

Introduction

This document describes the interior architecture of the OIS System Element
Digital Processor. It includes a description of the virtual storage system, the
instruction set, and the input-output facilities.

It is required that all System Element Digital Processors implemented for OIS be
compatible with this architecture. This will allow common software systems to be
constructed which will operate on all members of the family, as well as providing
for a common input-output interface. It will also allow reimplementation of the
processor to occur when it is economically advantageous.

This document does not specify an implementation for any instance of the OIS
processor; It does specify those principles which must be adhered to to
guarantee software compatibility at the instruction set level, and input-output
compatibility at the level of the devices.

This document will be modified from time to time, as implementation of the initial
instances of the OIS processor family occurs, and the Mesa language
implementation is refined. We expect to stabilize both the architecture and this
document in early 1977, so that final product development may proceed without
significant impact from them.

'XEROX
PRIVATE
DATA

2

Information Forms and Syntactic Conventions

Throughout this document, a number of conventions are used, which are described
in this section.

Number system

Numeric quantities are expressed in decimal unless otherwise specified. The
suffix B is used to indicate octal.

* is used to indicate multiplication, •• is used to indicate exponentiation:

5D3 = 5000 " 5'10"3
385 = 3000008 = 3·8"5

For large multiples of a power of 2, K is used to designate 2·"10, and M is used to
designated 2· *20:

32K = 32°2 •• 10 = 2··15 " 32768,
1 M = 1°200 20 = 2 00 20 " 1048576

Special Characters

<x> means "contents of x".

Square brackets [] are used to indicate indexing or to delimit the arguments of a
function:

x[3] " <x+3> means the contents of Ication x+3, Le. the third element of the vector x
hf[2] means the value returned by the function hf with argument 2.

Double commas are used to indicate the concatenation of two fields. If x is a 3-bit
field and y is a 5-bit field, then x"y is an eight-bit field with x in its high order bits.

Terms

a word is a sixteen bit quantity. Bit 0 is the most significant bit, bit 15 is the least
significant bit. When diagrammed, bit 0 is on the left.

A doubleword is a thirty-two bit quantity, with bits numbered from 0 to 31. In main
storage, the least significant bits (16-31) of a doubleword are stored in location n,
the most significant bits (0-15) are stored in location n+ 1. When a doubleword
appears on the evaluation stack, the most significant bits are on the top of the
stack, the least significant bits are in the second position.

A byte is an eight bit quantity. Bit 0 is th~ most significant bit, bit 7 is the least
significant bit. When diagrammed, bit 0 i5 on the left.

A field is a contiguous group .of bits within a word or larger field. The bits are
numbered from the left starting at O. For example, the field consisting of the least
significant byte of x is indicated with x[8:15]. If the field is named, the contruct
p.f, where p is the address of the word containing the field and f is the field name,
is sometimes used to represent the value of the field.

XEROX
PRIVATE
DATA

u1 ~ C l

3

A pOinter is the address (or displacement from a designated base address) of the
first location of a contiguous region of virtual memory. There are a number of
different formats for pOinters which are described below.

A page is a contiguous block of 256 16-bit words. the first word of which begins
at an address which equals 0 mod 256.

A Procedure is a body of code which performs a single function.

A Code Segment is a collection of procedures which are compiled together.

A Process is a group of operations and the data on which they operate which can
(at least conceptually) execute in parallel with other processes. A process is
defined by the contents of memory and by a state block which is loaded into the
processor registers when the process is run. All processes supported by the OIS
processor share a common virtual address space.

A Main Data Space (MOS) is a contiguous region of virtual memory associated
with one or more processes. It has a maximum size of 64K words, and wili be
described in detail in subsequent sections.· By hardware convention it always
begins on a page boundary, hence its address is always 0 mod 256. MOS will be
used as the abbreviation for Main Data Space, mds as the designator of the
register which points to MOS. and mds pointer as defined below.

XEROX
PRIVATE
DATA

4

Virtual Storage,

Introduction

All implementations of the OIS Processor will provide a virtual memory system
(VMS) which supports a linear virtual address space of 2··24 sixteen-bit words.
This will allow the development of complex software systems which are, to a large
extent, configuration-independent.

The virtual memory system has several purposes:

It provides address translation between virtual addresses generated by a
program and real memory addresses used by the memory hardware.

It provides dynamic relocation of information so that objects need not
occupy fixed locations in main storage throughout their existence, but may
be moved between secondary storage and any unoccupied area of main
storage as required.

It provides protection for areas of the address space. Although many of
the protection mechanisms normally provided by hardware are provided in
the OIS environment by the Mesa compiler's type checking machinery,
some degree of protection in the hardware is desirable, primarily to detect
errors rather than to defend against hostile action.

There are four primary components of the virtual memory system: First, there
must be hardware and/or firmware to do the address translation. Second, there
must be storage for the translation information. Third, there must be a secondary
storage device which holds the majority of the information contained in the virtual
space. Finally, there is a body of software, usually associated with the operating
system, which is responsible for transferring information between main and
secondary storage.

Mesa's Use of the'Virtual Memory System

The OIS processor instruction set has been designed for efficient execution of the
Mesa language, which will be used for all OIS programming. A primary Mesa
design goal was to provide a space-efficient representation for code. As a result,
a large fraction of the memory reference instructions make use of implicit or
explicit base registers which point to frequently referenced structures. Thus, the
amount of address information required in an instruction is small. In addition,
several commonly referenced structures are constrained to begin on (256 word)
page boundaries in memory, and can thus be represented by sixteen-bit pointers
rather than full addresses.

Although the instruction set makes use of a number of formats for addresses, all
are short forms of a full 24-bit virtual address. There is no method spe~ified to
bypass the address translation process and directly reference a real main storage
location.

5

Address Translation

The address translation process is identical for all memory references, i.e. for
instructions, operands, and 1/0 operations.

The CPU generates a 24-bit virtual address, usually by adding one or more offsets
to an implicit or explicit base register. The generation of this effective virtual
address is described later in this document for each instruction.

The 24-bit address is then passed to the address translation hardware, which will
attempt to translate it into a real storage address. If the translation is successful,
and if no access protection checks are violated, the reference is made and
execution continues. If a protection violation occurs, the memory management
software will be notified via a trap, and the offending instruction will not be
ex-ecuted.

Since all operations are implemented such that they can be restarted if a memory
fault occurs, the memory manager can Simply bring the required information into
main storage and restart the offending instruction. The interface between the
translation hardware/firmware and the memory management software is thus
reduced to two traps, Page Fault and Write Protect, and the Mesa instructions
required to manipulate the map.

All implementations of the processor must provide a virtual address space of not
less than 22 bits, and there must be a mechanism (described later) to report the
maximum size of the virtual space in a particular model to the software, as well as
a provIsion for causing a PageFault trap on any attempt to reference locations
outside the virtual space provided.

Translation between virtual addresses generated by the processor or I/O system
and real addresses used by the memory is done by a map implemented in
hardware. The map accepts a 24-bit virtual address from the requester, and
delivers a real address to the storage modules. The real address is from 18 to 20
bits, depending on the amount of real storage provided in the particular model.
Mapping takes place in one page (256 word) quanta, i.e. the least significant eight
bits of the virtual address bypass the mapping hardware.

In addition to the information necessary for address translation, the map also
contains three bits. Dirty, Write Protected, and Referenced, which provide the
memory management software with information about each page. The Dirty bit is
set by the mapping hardware when a store is done to a non-write protected page.
The Write Protect bit prohibits stores into a particular page, and reports an error if
a store is attempted. The Referenced bit is set when any access is made to a
page.

XEROX
PRIVATE
DATA

L

6

Requests

The memory system is capable of accepting four types of requests: I/O fetches,
I/O stores, Processor fetches, and Processor stores. Error conditions arising from
these requests are reported to the requester in one of two ways. If the request
came from an I/O device controller, the controller is notified that an error
occurred, and the reference is not done. ,;t~e controller will take whatever action
is required (usually halting the data tra~f), and will report the error to the
processor in its next status report. Jf/the error arose as a result of a Mesa
instruction or operand reference ~~a' trap will be generated. The trap parameter
for all memory-related traps is the 16-bit virtual page number.

When a request is received by the memory system, the address is range checked
(in configurations providing less than 24 bits of virtual space), then sent to the
map. The following table shows the possible outcomes for a request based on its
type and the original state of the flag bits.

Map flag bits: Request Type I Result (W,D,Ref):

(W,D,Ref) Processor Processor 110 1/0
Fetch Store Felch Store

000 001 011 00 1 o 1 1
001 001 o 1 00 1 0 1 1
010 011 o 1 011 0 1 1
011 011 011 011 0 1 1
100 101 1 0 0 (1) 101 1 0 0 (2)
101 101 1 0 1 (1) 101 0 1 (2)
1 1 X (3) 1 1 X (4) 1 1 X (4) 1 1 X (5) 1 X (5)

(1) Inhibit the store. Cause the WriteProtect trap.
(2) Inhibit the store. Return violation to the 110 controller, which reports it in its status.
(3) This state means vacant. i,e. the requested virtual page is not in real memory.
(4) Page is not In real memory, cause PageFaurt trap.
(5) Page is not in real memory. Return violation to 1/0 controller, which reports iI in its status.

Operations on the Map

The processor will provide two operations for dealing with the map (as Mesa
instructions). In what follows, v is a 16-bit virtual page number, r is a 12-bit real
page number, and f is the 3-bit flag value:

'V').
Associate[r.v.f] Makes a correspondence in the map between real page r and virtual page
v, and sets the flag bits in the map entry to f,

SetFlags(v.f) Sets the flag bits associated with the map entry for virtual page v to t, and
returns the old value 01 the flags. If the entry for v is not in the map or is not currently
associaled with a real page. the operat.on returns vacant (old flags = 6). The operation
consisting of reading the old flags and setting the new value must be indivisible.

The software mLlst not attempt to map two different pages in the virtual space into
the same real page {restriction imposed by associative implementations}.

/"r,~ XEROX
t~~Q~<J PRIVATE
'VljV DATA

7

Mapping Examples

To bring virtual page v into main storage, the software will do:

Obtain a free real page, say page r. .

Associate[m,r,O] -- Map r into a virtual page m known only to the memory manager. This
'hides' the page from all software other than the memory manager during the time the page
is being read in from the disk.

Read the page from the disk into m.

Associate[m,r,vacant] -- Remove the page from m.

Associate[v.r,new flags] --Make the page available to the requester.

To remove a virtual page v from real page r, the software will do:

OldFlags ... SetFlags[v,r,WriteProtected]

if OldFlags.dirty then WritePage[...] -- If the page was dirty, write it to the disk. Since the
page is now write protected, no stores into the page are possible during the write.

SetFlags[v,vacant] -- Release the page

The software will require one or more auxiliary tables which contain information
about the allocation and state of virtual and real storage. These structures need
not be known to the hardware in any manner.

. XEROX
PRIVATE
DATA

8

Pointer Formats

All addresses generated by the processor are 24-bit virtual addresses. These
addresses are stored in a variety of ways, and specific terms are used to describe
each format. This section describes the various pointer formats and the terms
used for them. This information is also shown schematically in figure 1.

A 24-bit pointer is a doubleword which contains the 24-bit virtual address
in bits 8-31. Bits 0-7 are zero.

A page pointer is the most significant sixteen bits of a 24-bit. virtual
address. Page pointers are stored in a single word.

The OIS processor supports a number of processes, each of which has
associated with it a Main Data Space. The MOS is a 64K word (maximum)
region of the virtual space which is pointed to by the register md.s. Note
that although each process has only one MOS, a number of processes may
share a particular MOS. Since an MOS is constrained to begin on a page
boundary by hardware convention, mds contains a page painter. Since
many operations make use of 16-bit displacements which are added to mds
to form a full 24-bit virtual address, we will make use of the term mds
pointer to d!escribe such a displacement. There is nothing unique about an
mds pointer - the term is used solely for brevity to indicate. that the pointer
is a 16-bit displacement relative to the page pointer content of mds.

A 32-bit pointer is a doubleword containing a page pointer in bits 0-15, and
a word displacement relative to the start of the page in bits 16-31.

The term long pointer is used when an operation will accept either a 24-bit
or a 32-bit pointer. To allow the pointer type to be determined from its
value, the convention is used that no object which may be described by a
32-bit pointer will be placed in the first 64K of the virtual space. Thus, if
bits 0-7 of a long painter are zero, the pointer is a 24-bit pointer,
otherwise it is a 32-bit pointer.

XEROX:]
PRIVATE
DATA

9

Centra) Processor

Data Structures and Associated Registers

The Mesa languagle makes use of a number of structures with defined formats
which are known both to the control transfer instructions (hardware) and to the
compiler. The location of a number'of these structures relative to the beginning of
MDS or relative to the beginning of virtual memory are given by constants whose
values are giv~n in Appendix A (in most cases, the precise values of these
constants have not been determined at present. Where this is the case,
approximate values are given and the approximation is indicated). These
structures are shown in figure 2, and include:

Code Segments (C Register)

A code segment contains the instructions for a group of procedures which were
compiled as a unit (a module), plus an entry vector which contains the information
necessary to find the code associated with each procedure in the module and to
allocate a local frame of the appropriate size for the procedure. The register C
contains a 24-bit pointer to the base of the' currently active code segment.

In most cases, the information required to find the code associated with a
procedure (the entry vector item) occupies a single word in the entry vector:

bit 0: 0
bits 1 :4: Frame size index
bits 5:15: C~relative byte pointer 10 the code for this entry

In this case, the frame size index must be such that it can be represented in four
bits, the code must lie within 2048 bytes of the base of the code segment, and the
pro~dure must not have any defaulted parameters. If this is not the case, the
entry vector item has a different format:

bit 0: 1
bits 1: 15: C~relative word pointer to the code for lhis entry

For this format, the code must lie within 32K words of the base of the code
segment, and the code must start on an even byte. The remaining information
required to run the code is contained in the word which precedes the code itself:

bits 0:3: Information for defaulting parameters (meChanism unspecified as yell·
bits 4:15: Frame size index. This number is either the frame size index or the size of the
frame (in words) if fsi>MaxAllocSlot~1 (see "Frame Allocation")

Since the code painter (the initial PC) is a byte pointer, and is held in a 16-bit
word the maximum size of a code segment is 2·"16 :: 65536 bytes or 32768
words. Further, since the code segment ·is pointed to by a 24-bit pointer it is
generally (by software convention) disjoint from all Main Data Spaces. The
maximum size of a frame is limited by this mechanism to 4096 words.

By software convention, code segments are read-only, and are modified only by
the Mesa debugger's breakpoint machinery.

XEROX
PRIVATE
DATA

10

Global frames (G Register)

A global frame is a designated area in MDS. It contains a 24-bit pointer to a code
segment, and contains all global variables and external linkage information required
by an instance of that code segment. The register G contains an mds pointer to
the currently active global frame.

Global frames are created each time that an instance of a module is required. This
may occur dynamically at runtime, but usually will be done only when a number of
modules are bound into a functional configuration. There may thus be more than
one global frame per code segment.

Local Frames (L Register)

A local frame is a designated area in MDS. It contains all the local state for a
procedure. It is created when a procedure is called, and destroyed (usually) when
the procedure returns control to its caller. The register L contains an mds pointer
to the currently active local frame. The local frame contains all the information
required to continue execution of a procedure whose execution was suspended
(when, for example, it calls another procedure).

System Dispatch (sd)

The system dispatch table occupies the same designated area in every MDS. The
constant sd specifies the offset (in all main data spaces) of the system dispatch
table. The system dispatch table contains control links for commonly used runtime
procedures, and is used only by the KFCB instruction and by traps.

Global Frame Table (gft)

The global frame table occupies the same designated area in every MDS. The
constant gft specifies the offset (in all main data spaces) of the global frame table.
Each entry in the global frame table is an mds pointer to a global frame (G). The
global frame table is accessed by using the GFT index portion of a standard
procedure descriptor (see "Control Links").

Allocation Vector (av)

The allocation vector occupies the same .designated area in every MDS. The
constant av specifies the offset (in all main data spaces) of the allocation vector.
The allocation vector is used primarily for dynamic allocation of local frames. A
pool of frames of the most frequently used sizes is maintained by the software.
This pool is accessed via the allocation vector av, each entry of which is the head
of a list of frames of a fixed size. The frame size index in the entry vector of a
code segment provides an index into the allocation vector which is used to locate
a frame of the required size when a procedure is entered. The frar:ne itself
contains this index as well, so that it can be retllrned to the appropriate list when
the procedure returns. There is a mechanism for indirection which allows the last
frame in a list to point to the list for some larger frame" size (see "Frame
Allocation"). An attempt to allocate a frame" from a totally empty list results in a
trap.

11

The Processor Stack

Many of the roles normally filled by central registers or accumulators in some
machines are filled in the OIS processor by the processor stack. This stack is an
array of sixteen-bit registers accessed indirectly via a pOinter register stkp.

The precise number of registers in the stack has not yet been detemined. In this
document, the parameter stkmax is used to designate this value.

The registers comprising the stack are designated stk[1] through stk[stkmax].
The instruction set makes use of two prmitive operations, push and pop, which
write and read 16-bit words to the stack register addressed by stkp. In the
instruction descriptions which follow, push[x] means:

stkp +- stkp+ 1
stk[stkp] t- x

Pop[x] means:

x .. stk[stkp]
stkp ... stkp-1

The stack pointer points to the highest numbered occupied stack location (the 'top
of stack'). The stack is empty if stkp=O, full if stkp = stkmax+1. Although the Mesa
compiler normally keeps track of the depth of the stack and will not compile
operations which underflow or overflow it, a trap is provided by the hardware to
detect an attempt to cause underflow (pop when stkp=O) or overflow (push when
stkp=stkmax+ 1). If this is attempted, the trap StackError is generated, and the
stack pOinter is not modified.

In addition to the push and pop operations, some instructions need to be able to
modify the stack poi1nter without affecting the values on the stack, others need to
be able to address locations in the stack relative to the stack pOinter {note that
implementation constraints are likely to preclude the latter capability. The
capability is a logical requirement, and need not be implemented in precisely this
way}.

The stack is used for expression evaluation and for passing arguments to
procedures. The load instructions push words from memory onto the stack, the
store instructions pop the stack into memory. The conditional jump instructions
pop the top one or two items from stack, test them in various ways, and branch
based on the result of the test. The arithmetic operations pop their operands from
the stack, calculate a result, and push it onto the stack.

Some operations leave infrequently used results 'above the stack', i.e. in stack
locations beyond the one pointed to by ·stkp. A Mesa instruction (Push) is
provided to recover these quantities, if required. by incrementing stkp. Another
instruction (Pop) is provided. to discard the top element of the stack by
decrementing stkp.

~..r~ XEROX

lL!8='"~=~=' ==~R=A ~=v A=A=TE==:!J

12

The Machine State

The OIS processor supports a total of sixteen hardware-scheduled Mesa
processes. The structure of the process switching system which controls the
selection of the currently active process is desribed in a later section of this
document. Each of these hardware-scheduled processes has a main data space
of up to 64K words which contains. the local storage for the process, as well as
the tables described earlier. The state for a hardware-scheduled process is
accessed via an entry in the 16 word Process State Vector. The process state
vector must begin on a page boundary. The constant psv is a page pointer to the
process state vector. Each entry in the psv is the (16-bit) psv-relative
displacement of a state block containing the state of the process. Each of the
state blocks contains the following quantities, which are sufficient to completely
specify the process:

stkp: The evaluation stack pointer (right justified in the word)

stk[1]. stk[2] •...• stk[stkmax): The stack itself

dest: A control link (usually a local frame pointer). which is used by the processor to
obtain all the portions of the process state which are kept in machine registers while the
process is running. The quantities which are located, either directly or indirectly. from dest
are:

G: Pointer to the current global frame (an mds pointer)

c: Pointer to the current code segment (a 24-bit pointer)

pc: The program counter (a byte displacement relative to C)

L: A pointer to the current local frame (an mds pointer)

The precise manner in which these quantities are located from dest is described
under "Process Switching",

mds: A page pointer to the main data space of the process

XEROX
PRIVATE
DATA

Instruction Formats and Classes

The Mesa instruction set is divided into four principal classes:

Loads and stores
Data modification instructions
Jumps
Control transfers

. .

13

Instructions are from one to three bytes in length; the opcode is always the first
byte. The second and third bytes, if used, are designated a and f1 respectively. In
situations in which both a and f1 are used as a 16-bit quantity, the designation afJ
is used.

Currently, the instruction set contains more than 256 opcodes. The intent is to
reserve a single opcode for an OPERATE instruction, and encode a number of
infrequently used opcodes into the a byte of this instruction. This will yield a
total of 511 opcodes, not all of which will be used. If the processor attempts to
execute an unimplemented opcode, the trap Un!mplementedlnstruction is generated.

In the description of the instructions, the format used is:

Instruction Name
Mnemonic (length in bytes):

description of the instruction's effects.

L.G,and C refer to the values of the L,G, and C registers.

The octal opcodes of all instructions are summarized in Appendix A.

The pseudo-language used to describe the effects of instructions is provided for
precision, and is not intended to suggest actual implementation, although the
sequence in which the atomic operations which comprise instructions are
executed is often important. A number of temporary values (e.g. temp,pointer,data)
are used in the descriptions.

14

Load/Store Instructions

These instructions transfer data between the evaluation stack and one or more
locations in main storage. Instructions are provided for accessing partial words,
full words, and doublewords.

The final effective address of all load/store instructions is a 24-bit virtual
address. It is the responsibility of the virtual storage system to translate this
virtual address into a real address, verify that the location referenced is present in
main storage, and apply the appropriate protection checks. These translation
operations are not described in detail in the descriptions of the instructions.

Many of the instructions are optimized to access the main data space using a
16-bit mds pointer rather than a full 24-bit address. This is indicated explicitly in
the instruction descriptions by including mds in the effective address calculation.
When used in this way, mds is to be interpreted as a 24-bit value consisting of the
page pointer followed by eight zeroes.

When an instruction makes use of a doubleword pointer, the value is treated as a
long pointer, i.e. either of the formats for specifying a 24-bit address in a
doubleword may be used. It is the responsibility of the hardy-.'are to interpret this
pOinter properly, as described under "Pointer Formats". In the instruction
descriptions, long pointers are designated "I pointer" (= Ipointerh"lpointerl).

/'~":, XEROX .. ~ '.'~ ' .
t:.'>O<'J PRIVATE
~LjV DATA

15

Load/Store Global Word

The load global instructions read a word from the global frame and push it onto the
stack. The compiler sorts the references to global variables in a module by
frequency, and assigns the eight most frequently referenced variables to the first
eight globals in the frame. These variables are accessed using single byte
instructions. The remaining globals are referenced using a two-byte instruction in
which 0 indicates the offset into the frame, or with a single byte instruction which
uses the top element of the stack as the offset. Note that the first global variable
is in G[globalbase] (globalbase is a small constant, see Appendix A), and the
single byte loads include this offset. The instructions which use 0 as the
displacement do so relative to G.

Load Global n, n=0-7
LGn (1):

push[(mds+G+n+globalbase >]

Load Global Byte
LGB (2):

pUSh[(mds+G+o>]

The store global instructions store the top element of the stack into the global
frame. They take the displacement from the opcode, or from o.

Store Global n, n=0-3
SGn (1):

pop[mds+G+n+globalbase]

Store Global Byte
SGB (2):

pop[mds+G+o]

XEROX
PRIVATE
DATA

16

Load/Store Local Word

The Load Local instructions read a word from the local frame and push it onto the
stack. The compiler sorts the references to local variables in a procedure by
frequency, and assigns the eight most frequently referenced variables to the first
eight locals in the frame. These variables are accessed using single byte
instructions. The remaining locals are referenced using a two-byte instruction in
which a indicates the offset into the frame. Note that the first local variable is in
L[localbase] (locallbase is a small constant, see Appendix A), and the single byte
loads include this offset. The instructions which use a as the displacement do so
relative to L.

Load Local n, n:O-7
LLn (1):

push[<mds+L+n+localbase)]

Load Local Byte
LLB (2):

push[<mds+L+a)]

Load Local 0 and 0
LLOO (1):

push[(mds+L+localbase+O)]
push[O]

Load Local 1 and 0
LL 10 (1):

push[<mds+L+localbase+ 1 >]
push[O]

The Store Local instructions store the top element of the stack into the local
frame. They take the' displacement from the opcode or from a.

Store Local n, n=O-7
SLn (1):

pope mds+L+n+localbase]

Store Local Byte
SLB (2):

pop[mds+L+a]

XEROX
PRIVATE
DATA

17

This instruction is identical to the Store Local instructions except that the stack
pointer is not decremented, leaving the stored value on top of the stack.

Put Local n, n:O-3
PLn (1):

pop[mds+L+n+localbase]
stkp .. stkp + 1

Load Immediate

These instructions push constants onto the stack.

load Immediate n, n:O-10
Lin (1):

push[n]

load Immediate Negative One
LIN 1 (1):

push[-1]

load Immediate Byte
LIB (2):

push[a]

load Immediate Word
LlW (3):

puSh[a{J]

XEROX
PRIVATE
DATA

Load/Store Global Doubleword

Load Double Global Byte
LOGB (2):

puSh[<mds+G+a>]

push[<mds+G+a+l >]

Store Double Global Byte
SOGB (2):

pop[mds+G+a+ 1]
pop[mds+G+a]

Load/Store Local Doubleword

Load Double Local a
LOLO (1):

push[<mds+L+localbase+O>]
push[< mds+L+localbase+ 1>]

Load Double Local Byte
LOLB (2):

push[< mds+L+a>]

push[<mds+L+ ex+ 1>]

Load Double Local Swapped a
LOLSO (1):

push[<mds+L+localbase+l >]
push[<mds+L+localbase+O)]

Store Double Local 0
SOLO (1):

pope mds+L+localbase+ 1]

pope mds+L+localbase+O]

Store Double Local Byte
SOLS (2):

pope mds +L + ex + 1]

pop[mds+L+ ex]

18

XEROX
PRIVATE
DATA

19

Read/Write Word

These instructions use the top element of the stack as a pointer, add to it a
displacement from the opcode or a, and do a push or pop.

Read n, n=O-4
Rn (1):

pop[pointer]
puSh[<mdsi-n+pointer>]

Read Byte
RB (2):

pop[pointer]
push[<mds+a+pointer>]

Read Byte and Load Local 0
RBLLO (2):

pop[pointer]
push[<mds+pointer+a]
push[<mds+L+localbase+O>]

Write n, n=O-2
Wn (1):

pop[pointer]
pop[mds+n+pointer]

Write Byte
WB (2):

pop[pointer]
pop[mdsHHpointer]

The following two instructions are similar to Wn and WB, except that the order of
their operands on the stack is reversed so that the pointer may be recovered with
a Push instruction: .

Write Swapped a
WSO (1):

pop[data]
pop[poinler]
<mds+pointer> +- data

~;;::/ ... :, XEROX
r ~:Z'~(t<tJ PRIV ATE
<i./:3V DATA

Write Swapped Byte
WSB (2):

pop[data]
pop[pointer]
<mds+pointer+a) +- data

20

The following two instructions are similar to Wn and WB, except that the order of
their operands on the stack is reversed and the painter is left on the stack for a
subsequent instruction:

Put Swapped 0
PSO (1):

pop[data]
pop [pointer]
<mds+pointer) +- data
stkp +- stkp + 1

Put Swapped Byte
PSB (2):

pop[data]
pop[pointer]
<mds+pointer+a> +- data
stkp +- stkp + 1

The following instructions interpret the top two elements of the stack as a long
pointer, add a to it, and do a push or pop.

Read Byte Long
RBL (2):

pop[lpointerh]
pop[lpointerl]
push[< a+lpointer>]

Write Byte Long
WBL (2):

pOp[lpointerh]
poprlpointerl]
pope a + Ipointer]

21

Read/Write Doubleword

These instructions take a pointer from the stack and do a doubleword push or
pop_ The byte versions use a as a displacement relative to the pointer:

Read Double a
RDO (1):

pop[pointer]
push[<mds+pointer>]
push[<mds+pointer+ 1>]

Read Double Byte
RDB (2):

pop [pointer]
push[< mds+pointer+a>]

push[<mds+pointer+a+1 >]

Write Double 0
WDO (1):

pop[pointer]
pop[mds+pointer+1]
pop[mds+pointer]

Write Double Byte
WDB (2):

pop[pointer]
pop[mds+pointer+a+ 1]

P op[mds+po inter + a]

PSDO and PSDB take their operands from the stack in reverse order and leave the
pointer on the stack for a subsequent instruction:

Put Swapped Double 0
PSDO (1):

pop[data1]
pop[data2]
pop[pointer]
<mds+pointer+1> .. daia1
<mds+pointer> .. data2
stkp .. stkp + 1

XEROX
PRIVATE
DATA

Put Swapped Double Byte
PSDB (2):

pop[data1]
pop[data2)
pop[pointer]
<mds+pointer+a+l> +- datal

<mds+pointer+a> +- data2
stkp +- stkp + 1

22

WSDO and WSDB take their operands from the stack in reverse order, so that the
pointer may be recovered by a Push instruction:

Write Swapped Double 0
WSDO (1):

pop[data1]
pop[data2]
pop [pointer]
<mds+pointer+l> +- datal
<mds+pointer> .. data2

Write Swapped Double Byte
WSDB (2):

pop[data1]
pop[data2]
pop[pointer]
<rnds+pointer+a+ 1> .. datal
<mds+pointer+a> +- data2

The following instructions interpret the top two elements of the stack as a long
painter, and do a doubleword read or write.

Read Double Byte Long
RDBL (2):

POp[tpoinlerh]
pop[lpointerl]
push[< Ipointer+(~ >]

push[<lpointer+(H1 >]

Write Double Byte Long
WDBL (2):

pOp[lpointerh]
pop[lpointerl]
pop[lpoillter + a+ 1]

pop[lpoillter+a]

XEROX
PRIVATE
DATA

23

Read/Write Indexed

These instructions consider a as a pair of numbers encoded in four bit fields. The
displacement in the first field and the item from the top of stack are added to the
local selected by the second field and a push is performed at that location.

Read Indexed by Local Pair
RXLP (2):

pop[index]
pointer'" (mds+l+localbase+a[O:3]>

push[<mds+pOinter+index+a[4:7»]

Write Indexed by Local Pair
WXLP (2):

pop[index]
pointer'" <mds+l+localbase+a[O:3]>

pop[mds+pointer+index+a[4:7]]

Read Indexed by Local Pair Long
RXLPL (2):

pop[index]
Ipointer! ... < mds+l+localbase+a[O:3]>

fpointerh ... <mds+l+!ocalbase+a[o:3]+1 >

push[< Ipointer+index+a[4:7] >]

Write Indexed by Local Pair Long
WXLPL (2):

pop[index]
Ipointerl .. (mds+l+localbase+a[o:3]>

fpointerh ... <mds+L+locafbase+a[o:3]+1>

pop[lpointer+index+a[4:7]]

XEROX
PRIVATE
DATA

24

Read/Write Indirect
()

These instructions add a displacement from the opcode to. 8'; local variable, and do
a push or pop to that location.

Read Indirect Local n, n= 0-3
RILn (1):

push[< mds + < mds+l +Iocalbase > +n>)

This instruction is similar to RILn, except that the pointer is in the local specified in
the first 4 bits of a, and the offset is taken from second four bit field of a.

Read Indirect Local Pair
RILP (2):

push[<mds+<mds+l+localbase+a[O:3]>+a[4:7]>]

Writing version of RILP.

Write Indirect Local Pair
WILP (2):

popE <mds+l+localbase+a[O:3] >+a[4:7]]

This instruction is similar to RILP, except that the pointer is taken from the global
frame.

Read Indirect Global Pair
RIGP (2):

push[<mds+<mds+G+globalbase+a[O:3]>+a[4:7]>]

Read Indirect Local Pair Long
RILPL (2):

Ipointer! ... <mds+l+localbase+a[O:3]>

Ipointerh +- <mds+l+localbase+a[o:31+ 1>

push[<Ipointer+a[4:7]>]

Read Indirect Global Pair Long
RIGPL (2):

Ipointerl ~ <mds+G+globalbase+cx[O:3]>

Ipointcrh ... <mds+G+glob~!base+a[O:3]+ 1 >
push[(Ipointer+a[4:7»]

Write Indirect Local Pair Long
WILPL (2):

Ipointerl .. <mds+L+localbase+a[O:3]>

Ipointerh .. <mds+L+localbase+a[O:3]+1 >
pop[lpointer+a[4:7]]

Write Indirect Global Pair Long
WIGPL (2): .

Ipointerl .. <mds+G+globalbase+a[O:3]>

Ipointerh .. <rnds+G+globalbase"'a[O:3]+1 >
pop[lpointer+a[4:7]]

These instructions optimize double indirection.

Read Indirect Indirect Local 0 Pair
RIILP (2):

pointer .. <mds+L+localbase>
push[<mds+<mds+pointer+a[O:3]) +a[4:7]>]

Read Indirect Indirect Pair
RIIP (2);

pop[pointer]
push[<mds+<mds-rpointer+a[o:3] >+a[4:7]>]

25

26

Read/Write String

These operations take a byte index into a string from the top element of the· stack,
a pointer to the string from the second element, and read or write a single
character (byte) from the string. There· are also versions which use the second
and third elements of the stack as a long painter. A Mesa string has the format
shown in figure 3 (the instructions do not make use of the first two words of the
string).

Read String
RSTR(1):

pop[indexJ
pop[pointerJ
if index odd do --odd index means right byte

push[(mds+pointer+2+indexl2) and 377BJ
else do

push[«mds+pointer+2+index/2) and 1774008) rshift 8J

Read String Long
RSTRL (1):

pop[indexJ
pop[lpointerh]
pop[lpointerl]
if index odd do --odd index means right byte

push[<lpointer+2+index/2) and 377B]
else do

push[«lpointer+2+index/2) and 1774008) rshift 8]

Write String
WSTR (1):

pop[index]
pop[pointer]
pop[data]
if index odd do

<mds+pointer+2+index/2)<-(mds+pointer+2+index/2)

else do
and 177400B) or (data and 377B) --odd index means right byte

<mds+pointer+2+index!2)<-<mds+pointer+2+index/2) and 377B) or (data and
177 400B) --even index means left byte

Write String Long
WSTRL (1):

pop[index]
pop[lpointerhJ
pop[lpointerl]
pop[data]
if index odd do

< IpOinter+2+index/2)<- < Ipointe r+2+index!2)
and 177400B) or (data and 3778): --odd index means right byte

else do .
(lpointer+2+index!2)" < Ipointar+2+index12)
and 3778) or (data and 1774008) --even index means left byte

27

Read/Write Field

These instructions use the top element of the stack plus a as a displacement, and
push or pop the field described by fj. There are also versions which use the top
two elements of the stack as a long pointer.

A field descriptor is an eight-bit byte. The left four bits give the position of the
field in a word. the right four bits indicate its size. If pos"size is a field descriptor,
the first bit of the field it describes is bit (16-pos-size), the last bit is (15-pos),
i.e. pos indicates the amount by which a word must be right-shifted to extract the
field, and size indicates the width of the mask which must be applied to the word.
Operations which read a field leave it right justified on the stack; Operations which
write a field store the rightmost size bits in the correct position in the word, and
leave the remaining bits unchanged.

Read Field
RF (3):

pop[pointer]
temp .. (mds+pointer+a)

mask" 2"fj[4:7]-1
push[(temp rshift fj[O:3]) and mask]

Read Field Long
RFL (3):

pop[lpointerh]
pop[lpointerl]
temp .. (Ipointer+a)

mask" 2"fj[4:7]-1
push[(temp rshift fj[O:3]) and mask]

This instruction is similar to RF, except that the pointer is in local zero, and the
field size and field position are taken from two four bit fields of a.

Read Indirect Local a Field
RILF (2):

pointer .. (mds+L+localbase)
temp .. (mds+pointer>
mask .. 2' 'a[4:7]-1

push[(ternp rshift a[O:3]) and mask]

This instruction is a combination of RILP and RF.

Read Indirect Local Pair Field
RILPF (3):

pointer .. (mds+L+localbase+a[0:3]>

temp" (mds+pointer+o:[4:7]>

mask" 2"fjr4:7]-1
push[(temp rshift fj[0:3.l) and mask]

XEROX
PRIVATE
DATA

Write Field
WF (3):

pop[pointer]
pop[data]
temp .. (mds+pointer+a)

mask" (2",8[4:7]-1) Ishift ,8[0:3]
data .. data Ishift ,8[0:3]
(mds+pointer+a) .. (temp and not mask) or (data and mask)

Write Field Long
WFL (3):

pop[lpointerh]
pop[lpointerl]
pop[data]
temp .. <Ipointer+a)

mask .. (2"P[4:7]-1) Ishift P[0:3]
data .. data Ishift ,8[0:3]
<Ipointer+a> .. (temp and not mask) or (data and mask)

28

The Write Swapped Field instruction is similar'to WF, except that the operands are
reversed on the stack so that the pointer may be recovered by a Push instruction:

Write Swapped Field
WSF (3):

pop[data]
pop[pointer]
temp .. <mds+pointer+a)

mask .. (2",8[4:7]-1) Ishift ,8[0:3]
data .. data Ishift ,8[0:3]
<mds+pointer+a> .. (temp and not mask) or (data and mask)

The Put Swapped Field instruction is similar to WF, except that the operands are
reversed on the stack and the pointer is left on the stack for a subsequent
instruction:

Put Swapped Field
PSF (3):

pop[data]
pop[poinler]
temp .. <mds+pointer+a>

mask ... (2",8[4:7]-1) Ishift ,8[0:3]
data ... data Ishift ,8[0:3]
<mds+pointer+a> .. (temp and not mask) or (data and mask)
stkp .. stkp + 1

Read Field 0
RFO (2):

pope pointer]
temp· .. <mds+pointer)
mask'" 2"a[4:7]-1
push[(temp rshift a[O:3]) and mask]

XEROX
PRIVATE
DATA

29

The Read Bit instructions are similar to RF, except that the size portion of the field
descriptor is implicitly 1. and the offset and field position are taken from two four
bit fields of a. The pointer may be either on the stack or in local O.

Read Indirect Local 0 Bit
RILBIT (2):

pOinter ... <mds+L+localbase>
temp ... <mds+pOinter+(X[O:3]>

push[(temp rshift a[4:7]) and 1]

Read Bit
RBIT (2):

pop[pointer]
temp ... <mds+pointer+a[O:3]>

push[(temp rshift a[4:7]) and 1]

~t~':"':;. XEROX
t~S7?} PRIVATE
-<.jLiV OAT A

30

Data Modification Instructions

These instructions pop their operands from the stack, perform an operation, and push
the result.

Add
ADD (1):

pop[x]

pop[y]

push[x+y]

The top two elements of the stack taken as two's complement numbers are
added. The result is pushed onto the stack.

Subtract
SUB (1):

pop[x]

pop[y]
push[y-x]

The top element of the stack is subtracted from second element using two's
complement arithmetic. The result is pushed onto the stack.

Double Add
DADD (1):

pop[x]

pop[y]

Pop[l]
pop[u]

push[u+y] (cl<-carry)
push[t+x+c 1] (c2<-carry)

push[c2]

stkp" stkp-l

The two doublewords on the stack are added and pushed. The carry resulting from the
32-bit addition is left above the top of the stack (in bit 15), so that it may be recovered
by a Push instruction if required.

XEROX
PRIVATE
DATA

Double Subtract
DSUB (1):

pop[x]

pop[y]

pop[t]

pop[u]

push[u-y] (c1 +-carry)

push[t-x-c1] (c2+-carry)
push[C2] -

stkp+- stkp-1

31

The doubleword on the top of the stack is subtracted from the doubleword in the
second stack position, and the result is pushed. The carry resulting from the 32-bit
subtraction is left above the top of the stack (in bit 15), so that it may be recovered by
a Push instruction if required.

Multiply
MUL (1):

pop[x]

pop[y]

push[(x'y)[16:31]]

push[(x·y}[O:15]]
stkp .. stkp-1

The top two elements of the stack are multiplied, and the result, which is a 32-bit
quantity, is pushed onto the stack with the most significant 16 bits in the top element,
and the least significant 16 bits in the second element. The stack pointer is then
decremented, so that the least si gnificant 16 bits occupy the top of stack. In most
cases a 16-bit product will be desired, which is the result. If a full 32-bit product is
needed, a Push instruction may be used to recover the most significant bits. The
operands and the result are treated as two's complement numbers, and the sign of the
result is calculated according to the rules of algebra.

Unsigned Multiply
UMUL (1):

pop[x]

pop[y]

push[(x·y)[16:31]]
push[(x·y)[O:15]]

stkp .. stkp-1

The top two elements of the stack are multiplied. and the result. which is a 32-bit
quantity, is pushed onto the stack with the most significant 16 bits in the top element,
and the least significant 16 bits in the second element. The stack pOinter is then
decremented, so that the least significant 16 bits occupy the top of stack. In most
cases a 16-bit product will be desired, which is the result. If a full 32-bit product is
needed, a Push instruction may be used to recover the most significant bits. The
operands and the result are treated as unsigned numbers.

XEROX
PRIVATE
DATA

Double
DBL (1):

pop[x]

push[x Ishift 1]

The top element of the stack is left shifted by 1.

Divide
DIV (1):

pop[x]

pop[y]

quot"rem ... y/x

push[quot]

push[rem]

stkp"stkp-1

32

The top element of the stack is used as a 16-bit signed divisor, the second
element is taken as a 16 bit signed dividend. The division 'is performed, and the
16-bit quotient is pushed onto the stack. The remainder is left above the top of
stack. Divisor and dividend are treated as two's complement numbers, and the
signs of the quotient and remainder are calculated according to the following rules:

ldiYlc1eJJQQivisor QyotLent Remairuler
positive positive positive positive
positive negative negative positive
negative positive negative negative
negative negative positive negative

The division is not performed and the trap ZeroDivisor is generated if the divisor is zero.

Long Divide
LDIV (1):

pop[x]

pop[y]

pop[z]

quot"rem ... y .. z/x·

push[quot]
push[rem]
stkp ... stkp-1

The top element of the stack is used as a 16-bit signed divisor, the second and third
elements are used as a 32-bit signed dividend (with the least signific2nt bits in the third
element). The division is performed, and tile i6-bit quotient is pushed onto the stack.
The remainder is left above the top of stack. Divisor and dividend are treated as two's
complement numbers, and the signs of the quotient and remainder are calculated
according to the rule for DIV.

33

If the magnitude of the most significant half of the dividend is greater than that of the
divisor, the trap DivideCheck is generated, indicating that the quotient will not fit into a
single word. If the divisor is zero, the trap ZeroDivisor is generated. If either t~ap
occurs, the division is not performed.

Unsigned Divide
UDIV (1):

pop[x]
pop[y]
pop[z]
quot..rem .. y.,z/x

push[quot]
push[rem]
stkp"stkp-1

The top element of the stack is used as a 16-bit unsigned divisor, the second and third
elements are used as a 32-bit unsigned dividend (with the least significant bits in the
third element). The division is performed, and the 16-bit quotient is pushed onto the
stack. The remainder is left above the top of stack. Divisor and dividend are treated as
unsigned numbers.

If the magnitude of the most significant half of the dividend is greater than that of the
divisor, the trap DivideCheck is generated, indicating that the quotient will not fit into a
single word. If the divisor is zero, the trap ZeroDivisor is generated. If either trap
occurs, the division is not performed.

The following instruction negates (2's complement) the value on top of stack.

Negate
NEG (1):

pop[x]
push[-x]

The following instruction adds 1 to the value on top of the stack.

Increment
INC (1):

pop[x]
push[x+1]

The following instruction adds 2 to the value on top of the stack.

ADD 2
ADD2 (1):

pop[lemp]
push[temp+2]

The following instruction subtracts one from the value on top of the stack.

DECrement
DEC (1):

pop[temp]
push[temp-1)

34

The following instruction adds sign-extended a to the value on top of the stack.

ADD Sign-extended Byte
ADDSB (2):

pop[temp]
push[temp + (if a[O] = 1 then a + 1774008 else a)]

The following instruction calculates and pushes the bitwise logical and of the top two
elements of the stack.
And
AND (1):

pop [x]

pop[y]

push[x and y]

The following instruction calculates and pushes the bitwise logical or of the top two
elements of the stack.
Or
OR (1):

pop[x]

pop[y]

pUSh[x or y]

The following instruction calculates and pushes the bitwise exclusive or of the top two
elements of the stack.

Exclusive OR
XOR (1):

pop[x]

pop[y]

push[x xor y]

35

The following instructions compute the maximum or minimum of the top two elements of
the stack, respectively.

signed MAXimum
MAX (1):

pop[temp1]
pop[temp2]
IF temp1 > temp2 THEN push[temp1] ELSE push[temp2]

signed MINimum
MIN {1}:

pop[temp1]
pop[temp2]
IF temp1 < temp2 THEN push[temp1] ELSE push[temp2]

Unsigned MAXimum
UMAX (1):

pop[temp1]
pop[temp2]
IF temp1 > lemp2 THEN push[lemp1] ELSE push[temp2]

Unsigned MINimum
UMIN (1):

pop[temp1]
pop[temp2]
IF temp1 < temp2 THEN push[temp1] ELSE push[temp2]

36

Jump Instructions

All Jump instructions are PC relative. The program counter is a 16-bit byte
displacement relative to the code segment base. The even byte is in bits 0-7 of a
word, the odd byte is in bits 8-15 of a word. During the execution of an
instruction, the PC points to the instruction, so that if a trap occurs, the pc does
not have to be backed up before it is stored. The effect of this is that the PC is
incremented, then an instruction byte is accessed.

Unconditional Jumps

These instructions obtain a displacement from the opcode, a, or ap, and add it to
the PC value.

Jump +n, n=2-g
In (1):

Jump Byte
JB (2):

PC<-PC+a (a is sign extended, providing a range

of -128 to +127 bytes relative to the J8)

Jump Word
JW (3):

pc<-pc+ap

Conditional Jumps

These instructions compare the top element of the stack with the second element,
and branch to a location determined by the opcode or IX if the comparison is true.
The operators assume two's complement operands, and the comparisons are
signed.

Jump Equal +n, n=2-9
JEQn (1):

pop[y]

pop[x]

if x=y then PC+-PC+n

XEROX
PRIVATE
DATA

37

Jump Equal Byte
JEQB (2):

pop[y)
pop [x]
if x=y then PC"PC+a

Jump Not Equal +n, n=2-9
JNEn (1):

pop[y]
pop[x]
if x#y then PC"PC+n

Jump Not Equal Byte
JNEB (2):

pop[y]
pop[x]
if x#y then PC"PC+a

Jump Less Byte
JLB (2):

pop[y]
pop [x]
if x(y then PC"pc+a

Jump Greater Equal Byte
JGEB (2):

pop[y]
pop [x]
if x>=y then PC"PC+a

Jump Greater Byte
JGB (2):

pop[y]
pop[x]
If x>y then PC"PC+a

Jump Less Equal Byte
JLEB (2):

pop[y]
pop[x]
if x=(y then PC"PCHX

~,":7"". XEROX
~'lf~j PRIVATE
~ \')' DATA

L. •.

38

These instructions compare the top element of the stack with the second element,
and branch to a location determined by the a jf the comparison is true. The
comparisons are unsigned.

Jump Unsigned Less Byte
JULB (2):

pop[y]
pop[x]
if x<y then PC+-PC+a

Jump Unsigned Greater Equal Byte
JUGEB (2):

pop[y]
pop[x]
if x)=y then PC+-PC+a

Jump Unsigned Greater Byte
JUGB (2):

pop[y]
pop[x]
if x)y then PC+-PC+a

Jump Unsigned Less Equal Byte
JULEB (2):

pop[y]
pop[x]
if x=<y then PC+-PC+a

The following instructions compare the top of stack with zero, and branch to the
location given by a if the comparison is true.

Jump Zero Byte
JZB (2):

pop[x]
if x=o then pC+-PC+a

Jump Not Zero Byte
JNZB (2):

pop[x]
if x#o then PC+-PC+a

XEROX
PRIVATE
DATA

39

The following instructions compare the top of stack with NIL (177777B), and
branch to the location given by a if the comparison is true.

Jump Nil Byte
JNB (2):

pop[x]
if x=-1 then PC~PC+a

Jump Not Nil Byte
JNNB (2):

pop[x]
if x#-1 then PC~PC+a

The following instructions compare the top of stack with a, and branch to the
location given by fJ if the comparison is true.

Jump EQual Byte Byte
JEQBB (3):

pop[x]
if x=a then PC~PC+fJ

Jump Not Equal Byte Byte
JNEBB (3):

pop[x]
if x#a then PC~PC+fJ

The following instructions compare the top of stack with the first four bits of a, and
branch to the location given by the second four bits if the comparison is true.

Jump Greater Pair
JGP (2):

pop[x]
if x>a[O:3] then PC~PC+a[4:7] +2

Jump Less Pair
JLP (2):

pop[x]
if x< a[O:3] then PC"PC+a[4:7] +2

The following instructions combine tile effects of RBITF and JZ.

Jump Bit EOual Pair Byte
JFEQB (3):

pop[pointer]
temp ... (mds+pointer+a[O:3]>

temp ~ (temp rsl1ift a[4:7]) and 1

if temp = 0 then PC<-PC+fJ

XEROX
PRIVATE
DATA

Jump Bit Not Equal Pair Byte
JFNEB (3):

pop[pointer]
temp +- <mds+pOinter+(x[O:3]>
temp +- (temp rshift a[4:7]) and 1

if temp # 0 then PC+-PC+/J

40

XEROX
PRIVATE
DATA

41

Jump Indexed Byte/Word

These instructions provide a space and time-efficient method of doing the
dispatch needed by a case statement when the density of cases is high.

The top element of the stack defines the upper limit of a range of values, the
second element contains a value to be tested. If the value is in the range (Le.
stk[stkp-1]<stk[stkp] unsigned), it is used to index a table of PC displacements
in the code segment, and a PC relative jump is done using this displacement. The
JIB instruction uses a table of byte displacements, JIW uses a table of word
displacements.

Jump Indexed Byte
JIB (3):

pop[y]
pop[x]
if x < y then do

disp .. <C+a{3+x/2> --get the table entry from the code segment

if x and 1 = 0 then disp .. disp rshift 8 --select the appropriate byte

else disp .. disp and 3778

PC<-PC+disp

Jump Indexed Word
JIW (3):

pop[y]
pop[x]
if x < y then do

disp .. <C+a/1+x> --get the table entry from the code segment

PC"PC+disp

XEROX
PRIVATE
DATA

42

FOR Loop Control Instructions

The following instructions are used for the inner-most FOR loop. They use a 2-word
block to hold the PC and end-condition. STFOR initializes the block and ENDFOR uses
it to test for termination. The 2 and 3 byte variations of STFOR exist so the compiler
can simply test to see if it is compiling the innermost loop rather than waiting to see if
the scope of the loop is sufficiently small to allow use of the 2 byte variant. Local zero
is always the loop control variable.

STart FOR loop Byte
STFORB (2):

(mds+L+localbase+8> 4- PC+2
pop[mds+L+localbase+93 end condition
pop [temp]
<mds+L+localbase> 4- temp-1
PC"PC + a

STart FOR loop Word
STFORW (3):

<mds+L+localbase+8> 4- PC+3
pop[mds+L+localbase+9'1 end condition
pop[temp]
<mds+L+localbase> ... temp-1
PC"PC + afJ

signed END FOR loop
ENDFOR (1):

temp ... <mds+L+localbase>
temp ... temp+ 1
if temp < <mds+L+localbase+9> then

begin (mds+L+localbase> .. temp; PC .. (mds+L+localbase+8>; end

Unsigned END FOR loop
UENDFOR (1):

temp .. <mds+L+localbase>
temp .. temp+1
if temp < <mds+L+localbase+9> then

begin <mds+L+localbase> .. temp; PC .. <mos+L+localbase+8>; end

XEROX
PRIVATE
DATA

43

Miscellaneous Instructions

The PUSH instruction allows an item which was previously popped to be recovered:

Push
PUSH (1):

stkp 4- stkp+ 1

The POP instruction discards the top value on the stack:

Pop
POP (1):

stkp 4- stkp-1

The EXCH instruction exchanges the top two items on the stack:

Exchange
EXCH (1):

pop[x]

pop[y]
push[x]

push[y]

The DUP instruction duplicates the item on the top of the stack:

Duplicate
DUP (1):

pop[x]

push[x]
puSh[x]

The following instructions add G and L respectively to a.

Global Address Byte
GADRB (2):

push[G+a]

Local Address Byte
LADRB (2):

push[l+a]

XEROX
PRIVATE
DATA

44

The following instruction is provided to support the Mesa signalling machinery. It
is a 2-byte instruction, but the value of a is ignored by the hardware:

Catch
CATCH (2):

noop

Allocate
ALLOC (1):

pop[temp]

push[alloc[temp]]

This instruction takes a frame size index (see "Frame Allocation") and returns a
pOinter to a frame of the requested size from the heap in the main data space.

Free
FREE (1):

pop[temp]

freeframe[temp]

This instruction takes a pointer to a frame and returns the frame to the list given by
<temp-1> (see "Frame Allocation")

Shift
SHIFT (1):

pop[count]

pop[data]

If count < a then

push[data rshift count]

else do

push[data Ishift count]

The first element of the stack contains a shift count, the second element contains
the data to be shifted. A positive count implies a left shift. Bits which shift off the
end of the word are lost, and zeroes are shifted into the word as necessary.

45

The BL T instruction takes a destination address, word count, and source address
from the top three elements of the stack. It copies the source block to the
destination block. Low addresses are transferred first. and no check is made for
overlap of the source and destination blocks. If a process switch or trap occurs
during a BL T, the stored PC paints to the BL T instruction, so that it will resume
correctly.

Block Transfer
BLT (1):

while stack[stkp-1] > 0 do
(mds+stack[stkp]> .. (mds+stack[stkp-2]> --destination .. source
stack[stkp] .. stack[stkp]+l --increment destination
stack[stkp-2] .. stack[stkp-2]+1 --increment source
stack[stkp-1] .. stack[stkp-1]-1 --decrement count
(test for process switch)

stkp .. stkp-3

The BL TR instruction has the same effect as the BL T instruction but the operands
are reversed on the stack.

BLock Transfer Reversed
BLTR (1):

while stack[stkp-1] > 0 do
<mds+stack[stkp-2]> .. (mds+stack[stkp]> --destmation .. source
stack[stkp-2) .- stack[stkp-2]+1 --increment destination
stack[stkp] .. stack[stkp]+1 --increment source
stack[stkp-1] ... stack[stkp-1]-1 --decrement count
(test for process switch)

stkp ... stkp-3

Block Transfer Long

This instruction is similar to BLT, except that the first and third elements on the
stack are long pointers.

Block Transfer Long
BLTL(1):

while stack[stkp-2] > 0 do
(stack[stkp]..stack[stkp-l) > ... (stack[stkp-3) .. stack[stkp-4] > --destination
'-source

stack[stkp) .. stack[stkp-l) .. (stack[stkp) .. stack[stkp-l])+1 --increment
destination (doubleword Increment)

stack[stkp-3) .. stack[stkp-4) .. (stack[stkp-3] .. stack[stkp-4])+ 1 --increment
source (double word increment)

stack[stkp-2] .. stack[stkp-2]-1 /-decrement count
(test for process. switch)

stkp .. stkp-5

XEROX
PRIVATE
DATA

46

The RR and WR instructions allow access to the static registers of the processor.
The register to be accessed is determined by a:

a: register:

1 glt
2 WW
3 AP
4 RP
5 CPN
6 woe
7 mds
8 Restart

Write Register
WR (2):

pop[reg[a]]

Read Register
RR (2):

push[reg[a]]

meaning:

Global Frame Table
Wakeups Waiting
Active Processes
Ready Processes
Current Process Number
Wake ups Disabled Counter
Main Data Space
Reason for System Restart

The ROR and RAND instructions are provided to eliminate race conditions in the
software when changing the contents of the registers associated with the process
switching system. These instructions must be atomic, i.e. no change can occur to
the register between the time it is read and written.

Register OR
ROR (2):

pop[temp] .
push[reg[a]]
reg[a] +- reg[a] or temp

Register AND
RAND (2):

pop[tcmp]
push[reg[a]]
reg[a] ... rcg[a] and temp

The following instructions manipulate the m,¥tp. See "Operations on the Map"

Associate
ASSOC (1):

poprtempr] -- bits 0-2 contain I (i.e. W.D.Ref). Bits 4-15 contain a real page number

pop[tempv] -- a 16-bit virtual page number
AssiGn rca I page r to virtual page v in the map. Set the flag bits in the map entry to I.

XEROX
PRIVATE
DATA

SetFlags
SETF (1):

popr vp] --a virtual page number

pop[tempf] --flag bits in tempf[O:2]

47

tempr .. Map entry for virtual page vp. If there is no such entry. tempr[O:2] ... 6 (vacant) and

tempr[4:15] .. O. If the entry exists. bits 0:2 are the flags, bits 4:15 are the real page number.

If a non-vacant map entry exists for virtual page vp. set its flag bits from tempf[O:2]

push[tempr] --return old flags and real page number

Operations which might modify the map entry must be disallowed between the time. the entry is

read and the time it is subsequently updated (the operation must be atomic).

XEROX
PRIVATE
DATA

48

Bit Boundary Block Transfer

The BitBL T (Bit Boundary Block Transfer) instruction has two primary uses: The
first is to move regions of storage containing a rectangular area of a display bitmap
from one location in memory to another. This corresponds to moving a portion of
an image on a display screen. The second principal application is character scan
conversion, in which a region of a font (a data structure containing the bitmap
representation for characters) is transferred to a particular location in a region of
storage containing a display bitmap. The instruction has a number of other
potential applications, but these two are expected to dominate.

Display Bitmap Format

The format of a display bitmap in storage is shown in figure 4a. By convention, the
origin is at the upper left corner of the screen. The x coordinate increases to the
right, y increases downward (this corresponds to the direction of scan in the
display). The bitmap is composed of w pixels horizontally, h pixels vertically.
Each pixel is represented by a single bit in storage. Although w need not be a
multiple of 16, each scan line must start on a word boundary (the final 16-(w mod
16) bits of the last word of a scan line are not used). If the bitmap starts at
location a, and the number of words per scan line is k, the second scan line starts
at location a+k, the third at location a+2*k, etc. If x,y is the coordinate of a pixel,
the address of the pixel is a+k*y+x/16, and its bit number is x mod 16. This
assumes square pixels, i.e. equal vertical and horizontal resolution. If the display
controller supports variable resolution, adjustment is necessary. Also, the display
will usually be interlaced (all even scan lines displayed first, then all odd scan
lines). It is the responsibility of the display controller to deal with this - the bitmap
does not represent the interlace in any way.

Font Format

Figure 4b shows the bitmap representation for a single character. There are
several methods available for packing the required information into a font; One
representation is shown in figure 4c. In addition to the packed bit image, the font
includes information which allows the software to find the bitmap for a particular
character given its ASCII code, and determine the height, width and baseline of the
character. Exact details of the font format are unimportant for the present
discussion, and will be omitted.

XEROX]
PRIVATE
DATA

49

BitBLT

An item is a contiguous string of bits of width w. The BitBL T instruction fetches an
item from a source address sallsb (a bit address consisting of a source word
address and a bit number), then stores it at a destination address da"db (a bit
address). The instruction also allows specification of a function to be performed
on the source and destination data before storing. Possibilities are {this list is not
exhaustive}:

f Operation
0 dest ... source
1 dest .. dest ar source
2 dest .. dest and source
3 dest .. dest xar source
4 dest .. dest and nat source

After each item is transferred, the source and destination addresses are
incremented by two quantities sai and dai, which are the (signed) bit offsets for
accessing the next source and destination items. The instruction also requires
specification of the total number of items to be transferred.

To deal with the situation in which the source and destination blocks overlap, we
adopt the convention that if the item width is negative, sa"sb is the bit address of
the bit following the last bit of the item, and the items are transferred from high
addresses to low addresses (see Figure 4d).

BitBLT takes its arguments from the stack, and the Mesa compiler must ensure that
the stack is empty except for these arguments at the time the instruction is
executed, The arguments and their positions on the stack are:

stack[stkp]:
stack[stkp-1]:
stack[stkp-2]:
stack[stkp-3).
stack[stkp-4]:
stack[stkp-5]:
stack[stkp-6]:
stack[stkp-7]:
stack[stkp-S]:

nitems (16 bit unsigned item count)
bits 0:3 = sb, bits 8:15 sa[O:7]
sa[8:23]
bits 0.3 = db, bits 8: 15 '" da[0:7]
da[8:23]
sai (16 bit 2's complement)
dai (16 bit 2's complement)
bits 0:3 '" function, bits 4: 15 '" item width in bits (2's complement)

intermediate state (must be initialized to 0 by the program)

After transferring each item, the instruction updates the parameters on the stack:

nitems ... nitems-1·
sa .. sa+sai
da .. da+dai

The word containing intermediate state is provided to allow a process switch or
page fault to occur during the transfer of a'multiword item. This word will contain
the number of bits processed for the current item if the instruction is interrupted,
and will allow the instruction to continue from its point of interruption when control
returns.

50

BitBL T Examples

To copy the rectangular area A in figure 4a to the origin of the screen, the
parameters for BitBL Tare:

sa: a+6'k+3, sb = 12
da : a, db = 0
sai = dai = 16*k
nitems = 4, width : 75

To scan convert the character in figure 4a at the display origin, the parameters are:

sa = start address in font, sb = 0
da = a, db=O
sai = 6, dai = 16'k
nitems = 8, width = 6

Extensions to BitBL T

Since the BitBLT instruction has significant setup overhead if the number of words
transferred is small, we may wish to provide additional instructions which set up its
arguments given some amount of higher level information (e.g. an ASCII character
and a pointer to a font), in a manner analogous to the way the XFER primitive is
used. Neither the necessity for these instructions nor their format has been
determined.

'-..

XEROX
PRIVATE
DATA

51

Control Transfers

Control Links

Most of the control transfer instructions take as an argument a 16 bit Control
Link. The least significant two bits of the control link determine its type:

Bits 14: 15 Meaning
o The control link is a frame pointer (an mds pointer). This convention forces

frames to lie on 4-word boundaries.
1,3 Bits 0:15 are a Procedure Descriptor (see below).
2 The control link is an indirect pointer (an mds pointer)

Objects must be allocated in storage such that indirect and frame pointers
automatically have the correct F field, i.e. frames must be at addresses which are
o mod 4, indirect words must be at addresses which are 2 mod 4. This convention
is enforced by the software.

Procedure Descriptors

A procedure descriptor is used in many control transfer operations to obtain the
global frame pointer G, the code segment pointer C, and the PC value for a
procedure. It consists of two fields:

Bits 0:10 Global Frame Table Index (gfti)
Bits 11:14 entry number (en)

The GFT index is used to retrieve the global frame pointer from the Global Frame
Table in the main data space. Since the global frame must be located on a
four-word boundary, the least significant two bits of the GFT entry are not used to
point to the Global Frame. Instead they are used in conjunction with the entry
number to obtain an index into the entry vector of the code segment associated
with the glooal frame. This allows code segments to contain up to 64 procedures.
The entry vector contains the starting PC value for the procedure (in C-relative
form), and the frame size index for the frame required by the procedure.

Precisely:

G .. <mds+gft+gfti>[O:13]'4 -- global frame pointer (an mds pointer)
C ... <mds+G+4> .. <mds+G+3> -- 24-l?it code pointer
evx .. <mds+gft+gfti>[14:15]"16 + en +2 -- entry vector Index
The PC value depends on whether the short or long form of an entry vector item is used:
evi .. <tC+evx> --the entry vector item
if evi <0 then do

IPC .. evo[1:15]"2 --program counter
fsi (- <tC·HPC/2-1>[4:15] --frame size index or frame size

else do
tPC .. eVi[5: 15]
fsi .. evi[l:4]

XEROX
PRIVATE
DATA

52

Stored Program Counters

All control transfer instructions except RET and LSTF begin by storing the PC at
L[1] in the local frame. The PC is the byte offset relative to the code segment
base C of the instruction which is to· be executed when the local frame is
resumed. This convention limits the size of a code segment to 32K words.

Frame Allocation

Some of the control transfer instructions and the ALLOC instruction allocate and
free frames from the heap accessed via the allocation vector avo These
instructions make use (conceptually) of two primitive operations. alloc[fsi], and
freeframe[frame]. The former takes a frame size index and returns a frame of the
requested size (or larger if indirection occurs) from the heap in the main data
space. If alloc cannot satisfy the request, it causes a trap. Freeframe takes a
frame pointer and returns the frame to the appropriate list in avo The structure of
av and the heap is shown in figure 2b.

The allocation vector begins at location av in all MDS's. It contains a vector of
pointers to the various frame sizes made available by the software. Since by
convention frames begin on four word boundaries the last two bits of these
pointers are not needed for painting to a frame. Instead, they are used as a flag
according to the following conventions:

Flag Meaning:

0: This is a normal frame pointer.
1: The list for this size frame is empty.
2: This entry is an indirect pointer in the form of an av-relative displacement of the frame
size which shOUld be used instead of this size. (This is customarily placed in the last
entry of a list of a given size if it is desired to lise a larger frame size should this frame
size list be exhausted.)
3: Pointer to a normal frame. and decrement Wakeup Disable Counter when encountered.

Bits 0:13 of an allocation vector entry are the fp field; fp*4 usually points to the
frame which will next be allocated when an allocation request for a frame of the
appropriate sile is received. The frames for each size are arranged in a linked
list. (Note that the pointers are· to what is apparently the second word of the
frame in figure 2b. Since these pointers become the frame pointers, the frame
which is used by the firmware and software actually begins at this location. The
word which contains the frame size index actually precedes the frame, hence may
be thought of as being in location -1 relative to the beginning of the frame. This
word must be preserved by the software so that it is available for use by the
freeframe primitive. Hence, although it is not strictly speaking part of the frame, it
must be preserved as long as the frame exists.) When cln allocation occurs fp*4
is returned to the requester, and the contents of the word to which it pointed
(including the flag bits) are brought into the allocation vector. Thus, frames are
allocated from. and ultimately returned to, the head of the linked list, and tile
allocation vector entry usually points to the next frame to be allocated. The last
frame in a list either contains an end of list flag (f = 1) or an indirect flag' (f = 2).
When this frame is finally painted to by the allocation vector and an allocation
occurs for this frame size. it is allocated, and its pointer is stored in the allocation
vector. Should another request for a frame of this size be 'received before a
freeframe operation occurs for a frame of this size, this flag will tllen take effect. If
it is an indirect flag (f CI 2) fp is used as a frame size index to access another

,("'V::i"'. XEROX
t~:¢"i~~ PRIVATE
·~jL.S'/ DATA

d

53

(presumably larger) frame size for allocation. If it is an end of list flag (f = 1) a trap
occurs.

The intention is that av will contain a limited number of frame sizes which will be
sufficient for the majority of requests. To support (infrequent) requests for frames
which are larger than the size normally accommodated by av, it is possible for the
fsi to contain the frame size directly. If fsi is greater than MaxAllocSlot-1 (a
constant whose value has not yet been determined), an attempt is made to allocate
the frame from av[MaxAllocSlot]. This av slot is usually empty, and the allocation
attempt will cause the trap AlloeationListEmpty[fs;; FrameSizelndex]. The
allocation trap handler (software) will note that the request is for a 'large frame',
acquire storage for the frame, and add it to the list av[MaxAllocSlot]. The trap
handler will then return, restarting the instruction which did the original alloe, which
will now succeed. To ensure that av[MaxAllocSlot] remains empty, the software
will arrange large frames such that they are freed onto the list , ,
av[LargeReturnSlotJ. (LargeReturnSlot is another as-yet-undetE;rmined t :~y :k.,
parameter). This slot is never used for allocation, and it is the responsibility of the' V:';i, ','
software to deal with the frames which are freed onto this list.

Since a number of processes may share the same main data space (and thus share
the same av and heap), it is necessary to disable wakeups when an allocation trap
occurs to ensure that the trap handler will not be preempted before it has made
more frame space available. Wakeups must be disabled between the time the
al/oe fails and the time its subsequent reexecution succeeds (after the trap handler
has provided more frame space). The mechanism specified here accomplishes
this goal without complicating the trap mechanism, i.e. the allocation trap handler
does not need to be aware of the previous state of the process switching system
(wakeups enabled or disabled). It is possible for nested allocation traps to occur
to a reasonable level, providing that the trap handler sets up another frame of a
size suitable for itself before taking any action which might cause another
allocation trap.

Wakeups are disabled when the (hardware) counter woe is nonzero (WOe
contains a count of the number of reasons wakeups are disabled). When the alloc
primitive cannot satisfy a request, it increments woe and causes a trap in the
normal manner. When the trap handler supplies more frame storage, it arranges av
so that a subsequent attempt to allocate a frame of the size indicated by fsi will
yield a frame pointer with a flag field of 3 (rather than 0, which is the normal case
-- refer to figure 2). Whenever alloe encounters a type 3 flag. it returns the frame
to the requester, but also decrements woe, which will reenable wake ups if they
were originally enabled (and the trap was not nested).

In detail, the al/oe and free frame primitives do:

alloc:
ofsi .. fsi --save original fsi for possible trap
if fsi > MaxAllocSlot-1 ihen .fsi .. Maxi\llocSlot --request is for a 'large' frame
frame .. (ll1ds+av+f~'H> --tha head of the list
while framer 14:15] = 2 do frame .. (mds+av+frmne/4> --indirection
if framer 14: 15] = 1 then do

if WDC = 255 then trap[WakelJpError] --counter would overflow
WDC"WDC+ 1 --disable wakcups
trap[AlJocationUsIEmpfy.ofsi] --olsi IS the tr~1P parameter

XEROX
PRIVATE
DATA

I"' ~." 'h\'.';_,

I ~

54

else do --flag- = 0 or 3

(mds+av+fsi> +- (mds:,"(frame and 1777748» --note that if the reference to the
frame causes a page fault, the store _ into av will not occur, and the ins!ru~tion
which inCludes the alloc will be restarted after the fault is fixed.

free frame:

if frarne[14:15] = 3 then

if WOC :: 0 then Jrap(WakeupError] --counter would underflow
WOC +- WOC-1 --reenable wakeups

return (frame and 1777748)

fsi +- (mds+frame-1 > --fsi is stored one location before the frame
(mds+frame> /- <mds+av+fsi> --add the frame to the head of the list
<mds+av+fsi> /- frame

55

XFER

Most of the control transfer instructions, the trap mechanism, and the processing
switching facility make use of the primi.tive operation:

XFER[dest: control link, source: control link,xtype: xfertype. TrapParameter: integer)
where:
xfertype: TYPE = {freetype, nofreetype. traptype. pswitchtype)

The differences between instructions have to do with the way in which the source
and destination links are generated, whether or not the local frame is to be freed,
the handling of the source and destination links, and whether the trap parameter
(which is required only if xtYP&=traptype) is stored into the local frame.

The idea of XFER is that the basic primitive may be used to construct a variety of
control disciplines which can work together, since they all use the same primitive
operation and data structures.

In detail, the XFER primitive does:

(In what follows, tX is used to designate a temporary value for register X, used in
situations in which X cannot yet be modified due to the possibility of a trap) -

XFER:
tdest +- dest
while dest[14:15]=2 do dest +- <mds+dest> --destination link is indirect
if dest[15] = 1 then do --destination link is a procedure descriptor

gfti +- dest[O:10] -- extract the two fields of the procedure descriptor
en +- dest[11:14]
tG +- <mds+gft+gfti>[0:13]*4 -- obtain global frame pointer
tC +- (mds+tG+4),.(mds+tG+3> -- obtain 24-bit code pointer

if tC is odd then trap[CodeMappedOut.tdest] --code segments normally start on an
even word boundary. This trap implies that the code is not in the virtual space,
and is not related to the VMS's page fault traps.

evx +- (mds+gft+gfti)[14:15]*16+en+2 -- obtain entry vector index
evi +- (tC+evx> --the .entry vector item _ " .
if evi <0 then do I,i,' (; ,-

tPC +- evi[1: 15]*2 --program counter (byte displacement from tC)
fsi +- (tC+tPC/2-1>[4:15] --frame size index or frame size

else do
tPC +- evi[5:15]
fsi. +- elti[1:4]

tL +- alloc[fsi] --memory references beyond this point cannot page fault. since
alloc references the first location of the frame. and the first four iocations of the
frame Will not cross a page boundary (since frames are placed on four word
boundaries by the system softwarQ)
<mds+tL> +- tG --initialize new frame's static link
(mds+tL+2> ,. source --store return link

else do --destination link is a frame pointer

if dest[O:13]=O then trap[NuIlDestinationUnk.tdest]
tL +- dest
tG +- <mds-HL> --the first location in the frame
tPC +- <mds+tL+1> --the second location in the frame
tC ... <mds+tG+4> .. <mds+tG+3> --24-bit code painter

~V"I" :XEROX
t::0;'~ PRIVATE
..... :J[jv- DATA

CONT:

56

if tC is odd then trap[CodeMappedOut,tdest] --code segments normally start .on an
even word boundary. This trap implies that the code is not in the virtual space,
and is not related to the VMS's page fault traps.

tesl for a breakpoint return (see "Breakpoints")
SELECT xlype FROM

=freelype ::)BEGIN; freeframe[L]; slack[stkp+ 1] <- source; slack[stkp+2] +-Idest; END;
=nofreetype ,,)BEGIN; stack[stkp+ 1]+-source; stack[stkp+2]+-tdest; END;
=traptype =)L[3]"'TrapParameter;

ENDCASE;
L--tL --update processor registers
G ... tG
PC<-tPC
C ... tC

In the normal case, the source and original destination links are left above the top
of the stack so that the context which is getting control can use them if it wants
to.

XEROX
PRIVATE
DATA

57

Control Transfer Instructions

The L1NKB instruction is executed on entry to nested procedures to establish the
back link to the enclosing context. It recovers the destination link of the -last
XFER, subtracts a, and stores the result in local O.

Link Byte
L1NKB (2):

(mds+L+localbase) <- stack[stkp+2] - a

The following instruction is used to create local procedure descriptors and signal
descriptors. It constructs a 16-bit descriptor from the global frame index of the current
frame and a. G[GFTloffset] contains the GFT index of the current global frame in
procedure descriptor form, i.e., with GFTI in bits 0:10.

Descriptor
DESCB (2):

push[< mds+G+GFTloffset) + a]

The following instructions create procedure descriptors and signal descriptors. They
construct a 16-bit descriptor from the global frame index of the frame on top of the
stack and a.

Descriptor Stack
DESCBS (2):

pop[poinler]
push[<mds+poinler+GFTloffsel) + a]

Call Descriptor Stack
FDESCBS (2):

L[1]<-PC+2
pop[poinler]
XFER[<mds+pointer+GFTloffset) + a, L, nofreetype]

58

Local Function Calls

These instructions are used to call a procedure in the current code segment. The
local function call' instructions are optimizations of the XFER mechanism made
possible by the fact that a code segment is compiled as a single entity. The
compiler can thus build the information necessary to find the procedure to be
called into the code itself, rather than having to wait until the context is bound, as
is the normal case. n is the entry number:

Local Function Call 0, 0=1-8
LFCn (1):

LFC:
L[1] .. PC+ 1 --store the PC

evi .. <C+n+2) --the entry vector item
if evi (0 then do

else do

IPC .. evi[1:15]·2 --program counter (byte displacement from C)
fsi .. <tC+IPC/2-1>[4:15] --frame size index or frame size

tPC .. evi[5:15]
fsi .. evi[1:4]

tL +- alloc(fsi] --get a frame. No page faults call occur beyond this point.
<mds+tL> .. G --save stalic link in the new frame
<mds+tL+2> .. L --save return link in the new frame
L .. tL
PC +- IPC

Local Function Call Byte
LFCB (2):

L[1} +- PC+2 --store the PC
n .. a
go 10 LFC

Global Function Calls

These instructions access a control link in the global frame, and do an XFER using
it:

Global Function Call nJ n=0-15
GFCn (1):

L[1] .. PC+ 1 --Store the PC
XFER[<mds+G+22+1l).L.nofreelype] --The (22+n)th global contains the destination link. the
source Ifnk IS the frame pointer

Global Function Call Byte
GFCB (2):

L[1] .. PC+2 --Store the PC
XFER[< mds+G+a) .l.nofreetype} --the a-th global contains the destination link. the source

link is the frame pointer

Stack Function Call

This instruction XFERs via the control link on the top of the stack.

Stack Function Call
SFC (1):

L[1] ... PC+ 1 --Store the PC
pop[temp]
XFER[temp,L,nofreetype]

59

,.-,t'" , XEROX
, •• ~ .5'

t::.:~<?~~ PRIV A TE
't"iljv DATA

Kernel Function Call

This instruction XFERs to the function whose control link is in the a-th position of
the system dispatch table. The system dispatch table sd (which starts in the same
location in all main data spaces) contains contains control links for these kernel
procedures. The offsets in sd of control links for commonly used Mesa runtime
procedures are known to the compiler, which allows it to build non-local linkage
information into the code.

Kernel Function Call Byte
KFCB (2):

Return

L[1] to PC+2 --Store the PC.
XFER[(mds+sd+a>.L.nofreetype]

These instructions are used to return from a procedure.

Return
RET (1):

XFER[(mds+L+2>.O.freetype]

The following instructions return -1 and 0 respectively.

RETurn NIL
RETNIL (1):

push[-1]
XFER[(mds+L+2>.O.freetype]

RETurn Zero
RETZ (1):

push[O]
XFER[<mds+L+2>.O.freetype]

Port Out

This instruction is used to transfer control through a Port, which is a two word area
in the main data space. PORTO instructions are always immediately followed
statically by PORTI instructions, as shown in figure 5. Ports are lIsed to provide,
among other things. a coroutine control discipline. Port calls are compatible with
procedure calls, in that control can leave a context using the port discipline and
enter a context which uses a procedure discipline and vice versa; the various
cases are shown in figures 5a-5c. There are two PORTO instructions, with
different opcodes but identical effects. The purpose of this is to allow the
software to determine the intended usage of the PORTO when a control fault
occurs.

60

XEROX
PRIVATE
DATA

The instruction does:

Port Out
PORTO (1):
PORTOS (1):

Port In

L[l] .. PC+1 --Store the PC
pop[temp] --get pointer to port
(mds+temp> +- L --set the inport to point to the current context.
XFER[<mds-+temp+ 1) .temp.nofreetype]

This instruction saves the return link (which was left above the stack by the
PORTO) in the outport, and clears the inport:

Port In
PORTI (1):

<mds+stack[stkp+2]> +- 0 --clear the inport .
If stack[stkp+l] # 0 then <mds+stack[stkp+2]+1> +- stack[slkp+1] --save the source link
in the outport unless the XFER was a procedure return

61

"".V""""!. XEROX
(~\Q: <"'j PRIVATE
«;JL\~' DATA

Traps
("

Traps indicate the occu~nce of infrequent exceptional conditions encountered in
the course of instructio"(, access or execution. Unlike process wakeups, traps
notify the software of internal conditions which require special action, rather than
external conditions. In some cases, the trap indicates that an error which
precludes continued execution has occurred (e.g. Unimplementedlnstruction). In
other cases, the trap will cause the system software to take some action and
continue the normal execution sequence. To avoid complexity in the software, we
have adopted the view that when a trap occurs, the machine state will be brought
(as nearly as possible) to the value it had at the start of the instruction which
caused the trap. In particular, the stack will have its initial values, except in the
case of an interruptible instruction such as BLT, which may have made
considerable progress and then trapped. These instructions will stop in such a
way that they can be restarted, in a manner identical to the situation on a process
switch. When a page fault occurs on a single word store or the first word of a
doubleword store, main storage will be unaffected. If a page fault occurs on the
second word of a doubleword store, the first word may have been placed in
memory (the result of this case is unpredictable).

Types of Trap

The following list is a summary of the traps which may be generated by the
processor. The number preceding the trap name is the trapnumber, which is used
as an index into the System Dispatch table to select the proper procedure to
handle the trap. The quantity in parentheses, if present, is the trap parameter,
which provides the handler with additional information concerning the trap. The
possible traps are:

o Breakpoint
1 WnteProtect (virtual page number being accessed)
2 PageFault (virtual page number being accessed)
3 AllocationListEmpty (frame size index)
4 NullDestinatlOnLink (original destination link)
5 Unimplemented Instruction
6 StackError
7 WakeupError
8 ZeroDiyisor
9 DivideCheck
10 B/ockError
11 CodeMappedOut (original destination link)
12 HardwareError'1
13-23 Reserved for Expansion

62

Trap Processing

When a trap occurs, the action invoked is very similar to the XFER operation, with
the following differences:

The trap mechanism stores the trap parameter into the fourth word (L[3]) of the handler's
frame, rather than passing it on the stack as do normal XFERs. This is done because some
instructions leave information above the stack and therefore the entire stack must be
preserved when a trap occurs. Note that this convention implies that the control link in sd
cannot be a pointer to a global frame, since this word is used to hold the code pOinter C in
this case.

The precise actions which must be taken by the processor to cause a trap are:

Instructions which do a pop followed by a push must abort the push. Le. the stack must be
restored to Its condition at the start of the trapped instruction.

Restore the stackpointer to the value it had at the start of the instruction.

if PC # 0 then L[1] .. PC --The stored PC points to the instruction which was in execution
when the trap condition was detected. or to the instructior) which was about to be executed
if the trap occurred as a result of an instruction fetch. Normally, PC can never be zero
during normal instruction execution. However if a trap occurs during a process switch, the
processor may not have acquired a valid local frame. and storing the PC in this case would
not make sense. This situation is discussed more fully under "Process Switching".

XFER[dest,L,traptype,trap parameter]

Since .the processor will roll instructions back, either to their starting pOint or to a
well-defined intermediate state, all traps appear to occur between instructions. If
a given instruction causes more than one type of trap, the traps will occur
sequentially, and the processor will attempt to restart the instruction when the
handler for each type of trap returns. Because instructions are restarted, rather
then being continued from the point at which a trap condition is detected, there is
no necessity to consider the effects of multiple traps on a single instruction, nor
does the trap handler need to concern itself with the continuation of particular
instructions.

The first instruction executed by the trap handler will be a Dumpstack, which will
save the trapped instruction's stack in the local frame of the "'handler:

Dumpstack
DSTK (2):"

pstate ... mds+LHX
(pstate) ... stkp --store the stack and stkp into the local frame
for i 1 to stkmax do (pstate+i) ... stk[i].
Stkp ... 0 --reset the stackpointer

63

XEROX
PRIVATE
DATA

When the handler is ready to continue execution of the interrupted program, there
are two types of Loadstate instructions available for this purpose, one which frees
the handler's frame, and one which does not:

Load State
LST (2):

L[1] +- PC+2 --Store the PC
pslate .. mds+L+a --pointer to the state in the local frame
stkp +- <pstale)
for i '" 1 to stkmax do stk[i] .. (pstate+i)
x +-<pstate+stkmax+ 1) --a control link
y"<pstate+stkmax+2) --also a control link
XFER[x,y,nofreetype]

Load State and Free
LSTF (2):

pstale .. mds+L+a
slkp .. <pslate) --pointer to the slate in the local frame
for i = 1 to stkmax do Slk[i] .. <pslate+i)
x+-(pstate+slkmax+1) --a control link
y+-(pstate+stkmax+2) --also a control link
XFER[x,y,freelype]

Breakpoints

The single byte Break instruction provides a unique trap when it is encountered in
the instruction stream:

Break
BRK (1):

trap[Breakpoint]

The Mesa debugger (software) sets a breakpoint by replacing an instruction with a
BRK instruction. When the processor attempts to execute this instruction, a trap
results.

When the debugger continues execution from a breakpoint, it does so with an
LSTF or LST instruction. The PC of the broken context will pOint to the BRK
instruction. Before resuming this context, the debugger will store the bytecode to
be executed (the bytecode which was replaced by the BRK) in the most
significant byte of the saved stackpointer (a normally unused field). It is the
responsibility of the LSfF or LST instruction whIch resumes the brol\en context to
inspect this byte and cause it to be executed in place of the BRK instruction if it is
nonzero.

64

Process Switching

The processor is capable of switching control among sixteen Mesa processes.
Priority scheduling of these processes _ is done by the hardware. It is expected
that the processes scheduled by the hardware will be used for device handlers
which require low latency, and that one of the levels will be used to implement a
more general software scheduler for a larger number of processes.

Process States

Each of the sixteen processes which are scheduled by the hardware is described
by an entry in the Process State Vector (see Figure 2a). Each psv entry is a
pointer to the state information required by the processor when it runs the process.

A process from which no work is required is blocked. A blocked process does
not compete for the use of the processor. When an external event occurs which
requires service from a process, it requests a wakeup. If the process is active, i.e.
permitted to run, the wakeup causes it to become ready. The sixteen processes
supported by the hardware have fixed priorities; The highest priority ready
process will acquire the processor, its state will. be loaded into the machine
registers from the information in psv, and it will run. When.it finishes its work, it
will block itself, which will relinquish the processor to a lower priority process
providing that no new wakeups have been requested for the process since it last
became ready.

External events which may cause wakeups include signals from device controllers
implemented in hardware or microcode, and instructions explicitly executed by a
program. The precise electrical and timing requirements for signalling an external
wakeup must be a part of the functional specification of a particular processor
model. The instruction ROR is provided to allow a program to generate a wakeup.
This instruction may be used to or a bit mask into WW, and is provided so that this
operation can be done atomically, i.e. with the assurance that no other activity may
affect the WW register from the time this instruction initiates until it completes.

While a process has control of the processor, it may be preempted by a higher
priority process. Preemption does not affect the state of the process, but only
suspends it until it again has highest priority.

To avoid losing wakeups, a wakeup-waiting flag is associated with each process.
When a blocked, active process receives a wakeup, it becomes ready, and its
wakeup-waiting flag remains cleared. If a ready process receives a wakeup, the
wakeup-waiting flag is set. When the process subsequently attempts to block
itself, the wakeup-waiting flag will be cleared and the process will remain ready.
This mechanism is provided by a scheduler implemented in hardware or microcode .

.
The eight-bit counter WOC is provided to'- disable process switching. If WDC#O,
process switching is disabled. Instructions are provided to increment and
decrement WOC, and it is automatically incremented and decremente9 by the
frame allocation mechanism (see "Frame Allocation"). The instructions which
manipulate WOC are:

65

Increment Wakeup Disable Counter
IWOC (1);

if WOC = 255 then trap[WakeupError]
WOC f- WOC+1

Decrement Wakeup Disable Counter
DWOC (1):

if WOC = 0 then trap[WakeupError]
WOC .. WOC-1

WOC is initialized to 1 by system reset (wakeups are disabled). An attempt to
decrement it beyond zero or increment it beyond 255 will fail and cause the trap
WakeupError.

Registers

The scheduler uses three sixteen bit registers:

RP: Contains bits corresponding to processes which are ready.

AP: Contains bits for processes which are active, Le. permitted to run.
Processes which have zeros in AP never run.

WW: Bits in this register are set by device controllers or by the processor
to request wakeups.

The most significant bit (bit 0) of these registers corresponds to the lowest
priority process (number 0); the least significant bit (bit 15) corresponds to the
highest priority process (number 15).

In addition, there is a four bit register CPN which holds the number of the process
which is currently running on the processor, and the eight-bit counter WOC which
contains a count of the number of reasons wakeups are disabled.

Scheduler

In the description which follows, HPMASI<[n] = 2"(15-n)-1, i.e. a mask with ones in bit
positions corresponding to processes of higher priority than process n, and
BITNUM[x] is the bit number (0-15) of the leading one bit in x.

When an external agent (Le. a device controller, or other process) wish"es to
awaken a process, it ORs one or more bits into WW. At the beginning of every
Mesa instruction, WW and AP and HPM,t\SI<[CPN] is tested, and if it is nonzero and (Le.
if a process switch is to occur), control is diverted to tile sCheduler.

The hardware sclleduler will not be activated unless a wakeup occurs for an active
process of higher priority than the one which is running, or a BLOCK instruction is
executed. In the latter case, if' no wakeups are pending in WW and no process is
ready, control will remain in the scheduler and no process will be run. If a wakeup
is received for a process of lower priority than the running process, it will be
saved in WW until the running process blocks.

66

XEROX
PRIVATE
DATA

The scheduler does:

Schedule:

temp ... WW and AP and not RP --processes which are about to become ready •..

RP to RP or temp --do so ...

WW .. WW and not temp --and their wakeup is cleared

Go to Schedule if RP=O --Nothing to do, wait for a wakeup

temp to BITNUM[RP and AP] --The number of the highest priority ready active process

Continue running the current process if temp = CP --this can occur only if control entered
the scheduler from the BLOCK instruction and there was a wakeup waiting for the process.

L[1] to PC --store the PC in the local frame of the process being preempted

psvp = psv·256 + <psv·256 + CPN) --painter to the state block for the process being
preempted
<psvp) .. stkp --dump the state of the current process
for i = 1 to stkmax do <psvp+i> ... stk[i]
<psvp+stkmax+1) .. L --store the local frame pointer
<psvp+stkmax+2) .. mds

PC .. 0 --clear the PC so that if a trap occurs before control gets to the new process, the
trap machinery will not store the PC

CPN to temp

psvp = pS',,·256 + <psv'256 + CPN) --pointer to the state block for the new process
stkp .. <psvp) --load the state of the new process
for i = 1 to stkmax do stk[i] .. <psvp+i)
L .. <psvp+stkmax+1) --load the destination link. Usually, this will be a frame pointer, but
it may be an arbitrary control link. The destination link is placed in L so that if a trap occurs
before the new process has acquired a legitimate frame and PC, the trap handier will return
properly.

mds .. <psvp+stkmax+2)

XFER[L,O,pswilchtype]

When a process has completed its work, it executes a Block instruction, which
does:

Block
BLOCK (1):

if WDC It 0 then trt:p[810ckError] - -i! is an error to execute a BLOCK while wakeups are
disabled
RP .. RP and not 2"(15-CPN)
go to Schedule

If no new wakeups have come in since the last wakeup was recognized, the
process will be suspended.

67

XEROX
PRIVATE
DATA

Interruptible Instructions

Most instructions are uninterruptible, with process switching occurring between
instructions. Some instructions (e.g. BLT) which are potentially time consuming,
must be capable of being interrupted. These instructions must be implemented
such that their intermediate state is indistinguishable from their initial state. When
an interruption occurs during an interruptible instruction, the PC is adjusted to
point to the interrupted instruction. When the process containing the interruptible
instruction is re~tarted, the instruction will resume from the point at which it was
suspended.

68

'XEROX
PRIVATE
DATA

Errors and Error Handling

This section describes the facilities which must be provided in the processor for
logging and reporting hardware-related errors detected by the processor and the
memory system (device or controller detected errors are not described in this
section). Although this specification does not enumerate all possible errors (since
this will depend on the implementation), it does provide a reporting standard to
which all portions of the system capable of detecting errors are expected to
conform.

Types of Errors

Hardware errors are divided into three categories depending on their severity:

Type 1: Soft errors which do not result in loss of data. These errors are logged, but no
further action is taken. Means are provided to disable the processing of type 1 errors so
that a permanent error will not consume excessive time due to the logging and 'reporting
activity.

Type 2: Hard errors which result in data loss, but from which the software may be able to
recover. These errors are logged, and the source of the error is notified, so that recovery
may be attempted.

Type 3: Hard errors from which no recovery is possible. These errors cause an immediate
system restart. A type 2 error which occurs during the logging of another type 2 error is a
type 3 error, as are type 2 errors which encounter a full logging buffer while attempting to
record the state of the error.

The presently identified errors are:

Error

Main storage single bit error
Main storage double bit error
1/0 bus parity error
Control store parity error
Internal bus parity error

Error Logging

Type

2
2
3
3

Type 1 and type 2 errors are logged in two ring buffers which are located in the
first 641< of the virtual space. The software will set up these buffers at
initialization time. The (fixed) locations Type1ErrorBuffer and Type2ErrorBuffer
will contain pointers to two ring buffer descriptors, each of which contain four
16-bit pointers:

first: pOinter to the first location in the buffer
last: pointer to the last location in the buffer+1
in: locntion into which the next log entry will be written
out: location from which the next log entry will be read

A buffer is empty if in::out. Error log entries are of vari8ble length, and may wrap
around the end of the buffer. The least significant byte of the first word of a log
entry will contain the length of the entry in words, but all other information in a log
entry, including an indication of the error type, is error-specific, and must be
specified in detail for each type of error a particular implementation can detect.

If the hardware attempts to log a type 1 error and there is insuffici8n~p4l.C'" in thr>

69

.. :-,~"i. XEROX
(f-~B\1 PRIVATE " .. "J , __ "! IJI DATA

buffer, the entry is discarded and no further action is taken. If the hardware
attempts to log a type 2 error and there is no room in the buffer, a type 3 error is
generated and the system is restarted.

Software Notification of Errors

The software is not notified of the occurrence of type 1 errors, but is expected to
poll the error buffer at appropriate intervals and empty the buffer if any errors are
present.

The software is notified of type 2 errors in one of two ways. If the error arose as
a result of the execution of Mesa code, the error is logged and the parameterless
trap HardwareError is generated. The trap handler may inspect the log entry and
take whatever action it deems necessary. If an error ·is detected by the system
but arose as a result of an I/O operation which does not involve the processor, it
is logged and the controller which caused the error is notified. The controller is
expected to take the appropriate action. Usually this will involve halting any data
transfer in progress, but in all cases, the controller will report the error in its next
status report to the processor. Errors which arise solely as a result of I/O activity
and which are detected by the controllers are also sent to the processor as status
information (and are not logged).

70

XEROX
PRIVATE
DATA

Restart Register

The system may be restarted (bootstrapped) for a number of reasons:

The power has been turned on and has stabilized
The user has pressed the 'start' button
The software has initiated a restart
The watchdog timer has expired
A type 3 error has occurred

To allow the software (and perhaps the firmware) to take the appropriate action
after a restart, a machine register (Restart) is provided to save the reason for the
restart across the bootstrap activity. Bits in this register are set by hardware (or
firmware) when various conditions which cause a restart are detected. The
specific standard bit assignments for this register are:

Bit Description

o Power-on Restart
1 Start Button Pressed
2 Watchdog Timer Expired
3 Software Restart
4 Type2 Error became Type3
5 Control Memory Parity Error (Type3 Error)
6 Internal Bus Parity Error (Type3 Error)

As a part of its initialization, the processor will check the status of the power
system, and set Power On and clear the other bits if this is the first restart after
power has stabilized. If power was stable across the restart, the register will
correctly reflect the reason for the restart.

The software which initializes the system is expected to read the contents of the
restart register, take whatever action is appropriate, and clear the register in
anticipation of the next restart.

71

XEROX
PRIVATE
DATA

Input-Output

Introduction

The input/output system provides facilities which accommodate a diverse set of
I/O devices with significant performance differences and complexities and a large
degree of configuration flexibility.

The input/output system is implementation-independent from the point of view of
the software. The intent is to achieve software compatibility across processor
configurations.

The performance differences and complexities of devices leads to deVice-specific
I/O facilities, primarily in the amount and kind of information being transmitted
between software and the I/O system. However, the facilities to effect the transfer
are not device-specific. The above does not preclude the possibility that similar
devices will be handled by the software in a similar fashion.

The portability of 110 handling software also depends on software which is
essentially timing independent and which can adjust itself to the various device
configurations.

Common I/O Handling

The facility consists of two types of I/O, Direct and Channel I/O.

In the case of 010 the input or output operation is simply the execution of an
INPUT or OUTPUT instruction involving the transfer of a word of data from the top
of stack to the controller or from the controller to the top of the stack.

The CIO operation is composed of a sequence of activities which are summarized
here and described in detail below:

Setting up control information (software)
Starting the operation (software)
Transferring data between the device and memory

(Hardware and/or firmware)
Initiating a wakeup upon completion (Hardware and/or

firmware)
Reading status (software)

The concept of an implementation independent I/O facility makes it necessary to
specify only those facilities which are accessible to the software while maintaining
implementation flexibility at the processor and controllers.

The facilities for implementing CIO are the INPUT and OUTPUT instructions, a
dedicated I/O address space of 256 locations, a dedicated page of virtual memory
(I/O page), and process wakeups which occur as a result of specific events
relative to the CIO operation.

Controllers and Devices

The software performs I/O operations through device controllers. Controllers
connect devices to the processor and memory.

72

<'I~.'" XEROX

t~d/J PRIVATE
o(jl..Sv DATA

The complexity of the controllers varies to support the needs of devices and
particular processor and memory implementations. Various processor
configurations may implement controllers for similar devices in different ways,
depending on the device, memory, and processor bandwidths.

1/0 Addresses, Priorities and the I/O· page

The 1/0 system contains up to 256 independently addressable I/O registers which
can be read and "loaded through INPUT and OUTPUT instructions at the Mesa level.
The I/O address is an eight-bit quantity. Bits 0-3 address a controller and bits 4-7
address one of 16 possible registers within that controller.

Controller address 0 has been assigned to the processor and any special device
controllers which are considered to be part of the processor. Controller address
15 has been assigned to an error handling function. The remaining 14 controller
addresses are available for device controllers.

The mechanism for reading and loading 110 registers through INPUT and OUTPUT
instructions can also be used by microprograms to read and load the registers.

The controller address assignment, except for addresses 0 and 15, is a function
of the priority relationship of the controllers in a given configuration. Address 15
has the highest priority and address 0 the lowest.

Virtual memory page 0 is permanently assigned to the I/O system and is allocated
to device controllers in the same manner as I/O addresses. These locations hold
control information prior to the start of an 1/0 operation and status which reflects
the result of the I/O operation at its completion. The table below shows the
relationship between I/O registers, priorities and locations in the 1/0 page.

73

XEROX
PRIVATE
DATA

The assignment 'of the 16 1/0 registers and 16 words of memory for a controller is
device-specific and is defined for each device controller separately.

1/0 Assignment
Address

0- 15 processor
16- 31 controller 1
32- 47 controller 2
48- 63 controller 3
64- 79 controller 4
80- 95 controller 5
96-111 controller 6

112-127 controller 7
128-143 controller 8
144-159 controller 9
160-175 controller 10
176-191 controller 11
192-207 controller 12
208-223 controller 13
224-239 controller 14
240-255 fault handling

function

Input/Output Instructions

1/0 Virtual
Memory Page
address

0- 15
16- 31
32- 47
48- 63
64- 79
80- 95
96-111

112-127
118-143
144-159
160-175
176-191
192-207
208-223
224-239
240-255

Priority

o (lowest)
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15 (highest)

The INPUT and OUTPUT instructions transfer a single word of data between an liD
register and the stack. The 1/0 register address is the top element of the stack.

INPUT(1):
pop[temp]
push[<I/O register temp)]

OUTPUT(1):
pop[temp]
pop [I/O register temp]

Process Wakcups

The processor must provide a means for controllers to generate process wakeup
requests for the sixteen Mesa processes scheduled by the processor.

A 16-bit mask loaded into a controller register via 8n OUTPUT instruction or stored
into one of the sixteen locations in the 1/0 page assigned to the controller
specifies the process(es) to which wal<eups are to be directed when specific
events such as 110 completion or device faults occur.

The mechanism for initiating the process wakeup is controller and p'rocessor
implementation dependent.

74

'XEROX
PRIVATE
DATA

Channt>1 I/O Operation

This section describes a typical Channel I/O (CIO) operation. The functional
specification of the controllers defines the number and use of I/O registers, I/O
page locations, and wakeups.

Control Information

The collection of I/O control information is stored in an 1/0 Control Block (IOCB).
The 10CB information must be established prior to the initiation of an 1/0 operation
and made available to the specific controller. The size and content of the 10CB is
device-specific and may include information such as

Pointer to next control block if chaining is implemented
I/O command (i.e.read, write)
Pointer to buffer
Size of buffer
Process wakeup mask for 1/0 completion and fault handling
Unit address for multi-unit device controllers
Data address

This information is made available to the controller by OUTPUT instructions which
directly load registers in the controller, or by storing the information into locations
in the 1/0 page known to the controller. At minimum, the software must provide a
pointer to the 10CB in a word in the 1/0 page prior to initiating the' 1/0 operation.

Initiation

The state and availability of a controller can be obtained by reading the controller
status word stored in an 1/0 register or in the 1/0 page. The initiation of an 1/0
operation is reflected in the controller status after some implementation-dependent
amount of time. Timing-independent software must avoid sensing the status
immediately after initiation.

I/O initiation can occur in two ways:

If the controller is idle after an 1/0 operation. the setting of a specific bit(s) in an 1/0
register with an OUTPUT instruction may start the 1/0 operation.

If the controller is never idle but performs some housekeeping at periodic intervals. then the
1/0 initiation may be accomplished by storing the 10CB painter into a specific word of the
I/O page. When the controller finds a non-zero value in that location. it will initiate the 1/0
operation. An example of such a controller is a disk controller which does some amount of
processing on every sector pulse. The controller updates the current sector address and
examines a specifiC location for an 1/0 initiation.

Data Transfer

The data transfer between the device and nlemory is controlled by the contents of
the 10CB.

The handling of fixed and variable length blocks, byte, word, and multi-word
boundary processing, detection of incorrect length and data chaining is
controller-specific. The 110 facility does not preclude the implementation of such
features.

75

/.'!r:;~ XEROX
~ ", 1 PRIVATE t~:FI/ 1
VL:;:.." DATA

During the data transfer, memory related faults may occur which must be handled
by the controller. The action taken by the controller depends on the nature of the
device. Immediate termination and the setting of the appropriate status bits
followed by a process wakeup is the· normal mode of fault handling as described
under "Error Handling". If data transfer must continue to prevent loss of media
position, for example on magnetic tapes, a suitable alternative fault handling
approach must be implemented.

Termination and Process Wakeups

Unless periodic software polling is preferred for some devices, normal and
abnormal termination of an I/O operation will be signalled via process wakeups
after the ending status is stored in the appropriate I/O registers or locations in the
I/O page.

The processes which shall receive wakeup requests upon termination are under
software control.

Status Information

Termination status must provide the software at the Mesa level with sufficient
information to identify the kind of termination (normal or abnormal), what software
recovery steps are necessary and what user intervention actions are required.

The status described above is summary status in support of software I/O handling.
Every controller must also maintain detailed diagnostic status which identifies the
specific failures which led to an abnormal termination. The software shall be able
to sense the fault status for error logging.

76

XEROX
PRIVATE
DATA

Dedicated Addresses and Functions

This section describes the assignment of block 0 and block 15 1/0 registers and
words in the I/O page and the associated functions. As indicated above, these
blocks are reserved for the processor and special device controllers which are
part of the processo~

1/0 page Block 0

The assignment of block 0 (words 0 through 15) of the 1/0 page is as follows:

Word Description

0-1 Time of Day
The processor maintains a 32-bit time value which is incremented at one millisecond
intervals.

2 MaxVM
3 MaxRM
These locations are loaded as part of initialization with the maximum size of the virtual and
real address spaces. The size is expressed in pages (0 indicates 2""16).

4-15 Unassigned

1/0 page Block 15

The assignment of block 15 (words 240 through 255) of the I/O page is as
follows:

Word
240-243

Description
110 Controller addresses

These locations contain a left-justified 56 bit value for establishing 1/0 controller
addresses during boot and 1/0 reset. Each set of four bits define the address for a
controller. Bits 0 through 3 define the address for the first controller, bits 4 through 7 for
the second etc.

244 Type1 Error Buffer Pointer - see "Error Logging"

245 Type2 Error Buffer Pointer - see "Error Logging"

246-255 Unassigned

77

XEROX
PRIVATE
DATA

Block 0 1/0 Registers

The assignment of 1/0 registers 0 through 15 is as follows:

110
Address

Description

0-1 Processor Identification Input Register
These registers contain a unique 32 bit processor identification number. The particular
implementation for attaching the identification numbers to the processor must be specified in
the design specification.

2 Character Printer Input Register
3 Character Printer Output Register
One input and one output register have been assigned to the character printer. The
software is expected to poll the input register at the appropriate intervals and determine
from the state information obtained from the input register when the next command may be
sent to the printer via the output register. The specific assignment of bits must be
described in the design specification based on the selected printer implementation.

4
5

RS 232 Input Register
RS 232 Output Register

One input and one output register have been assigned to the RS 232 commu'lication
interface. The specific bit assignment must be described in the design specification.

6-15 Unassigned

--

78

XEROX
PRIVATE
DATA

Block 15 1/0 Registers

The assignment of I/O addresses 240 through 255 is as follows:

1/0 Description
Address

240-253 Unassigned

254 Diagnostic Readout Register (output)
This register is available to the firmware and software to display error conditions detected
by diagnostics, during system bootstrapping. or when the control program is unable to
communicate to the user via other means. This register will drive a set of indicators.

255 System Control Register (output)
The system control output register is assigned to system control functions as specified
below:

Bit Description

0: 110 Reset. Setting this bit will cause a global 110 reset to all controllers. I/O
controller addresses are reestablished during. 1/0 reset from the 1/0 Page. words 240
through 243.

1; Restart Watchdog Timer. Setting this bit will restart the watchdog timer. The
software must restart the watchdog timer at appropriate intervals in order to avoid a
watchdog timer system restart.

2: Software Boot. Setting this bit will cause a software initiated system boot.

3: Disable processing of type 1 errors (this bit is set during initialization).

Block 1 through 14 1/0 Registers

The assignment and use of 1/0 registers within a block is controller-specific with
the exception of register 0 in every block. Register 0 contains the controller type
identification number as well as indicators of installed optional features.

The software shall be able to issue INPUT instructions to these 1/0 registers. i.e.
16.32,48 ... 208, and 224 and determine from the registers the number and type of
controllers connected to the processor.

I/O Controller Configuration

In addition to special device controllers which are considered to be part of the
processor, up to 14· 1/0 controllers may be connected to the processor 1/0 bus.

The processor 1/0 bus provides a common signal, timing and protocol interface to
which all controllers which are part of a specific processor implementation must
adhere. Based on this approach, a given controller may be connected to anyone
of the available controller positions.

Configuration flexibility is achieved through soft controller addressing (bits 0 - 3 of
the 1/0 address). Tentative controller addresses are established at system
initialization time for the purpose of locating potential load devices by reading
register 0 of every controller. The load sequence may then modify these
addresses once the physical arrangement of the controllers is known, and load the

79

software.

Once the software is loaded, the controller address assignment may be changed
by the software (via I/O reset) to order the priority of the I/O controllers
appropriately.

80

81

APPENDIX A
Mesa Instruction Set Summary

Numeric values for opcodes have not been assigned at this time.

Values of Processor Constants (*= value not determined - value given is approximate)

Name

av
MaxAllocSlot
LargeReturnSlot
sd
gft
stkmax
psv
localbase
globalbase

Value

0"
20"
Determined
22"
46*
8"

4"
10*

by software

XEROX
PRIVATE
DATA

24-bil pointer:

Page pointer:

MDS pointer:

+ mds (a page point erJ :

= 24 -bit pointer:

32-blt pointer:

Word dIsplacement

portion:

.. p~~Jc pomtor por lion

. = 24-b.1 po'"ter

II.
o MQln storage focal ion n+1 Mam storage location n

II. "II 0

II.
0

II. "II 0

II.
0

It " I",
0

k- Page poInter porlion >I~ Word dlspiacem"nt

o II "

Ii . DI
0

[Ii. []
0

Figuie 1: Pointer Formats

"II 31

I
31

,JI
31

Nole that mds and an associated

MDS pointer are a spedal case 01

a 32-blt pointer

31

,JI
31

,,]
31

-->I

"II 31

I
31

]
31

PrifJt:(J/JS l.s,1

1/5/77

nlds I I ?
av

I
~

FSIX

~
FS IV

~
MaxAllocSlo t

~

~

~

~

;

M;,}ln Oal;'} Sonee

•
•
IIM'n,·

•
•
•

Frame of size x:
FSIX

I

FrcJme 01 size X'

FSIX

I

F,ame of Size x·

I
FS'X
FSIY

Frame of sIZe v·
FS'Y

I

•
•

Frame of size v·
FSIV

f~:Jrql.· fra1nt'

L.lH c.'Ht'turnS!ol . .

I
1
I
1
0
I
1
1
0
I
1
3

0

0

1'1

0

11

II

~ flag bits = 1
means emply list

~ flagbi!s = 0
meanS normal frame

~ flag bils = 3
means normal frame and
decrement woe

~ Frame size index is
kepi in word -1 so
f,ame can be freed
10 Ihe proper 1051 In av

~ flag bils = 2
means Indirect
(lise FS,Y as fsi
when Ihis frame
gels 10 Ihe head
of the lisl)

Figure 2b: Allocation Vector and Frames

Pnllcol'!.?h.S,'
tl5111

• Tr"p Handlers only

mds

G

L

G+3
G+4

G+globalbase

G+22

>

L+localba5e

,J

Main Oala Soace

Global Frame:

I~

Code POinter -(24 b,ls)

Glob:.1 V"ro..,bl" 0
Global Varoable 1
Global Variable 2

•
•
•

Control Link
COrllle! Link
Cmllrol Link
COrllrol Link

•
•

•

Local Frame:

Gloh~1 Fli.lnlP. POUlter

S;IVCri PC
Rpturn L!I1k

I ri"l f· lr):II('lrJr1'

Lor .. 'I V~.n,1"fe 0
I OCiJl V~lFI,lbtc 1
Loe,II ViHI,lbl'J' 2

•
• . ..
•

•
•

'--

Figure 2c: Local c:nd Glob()1 Frames

Pr;(J(opt;2G sit
3/G.17

Pointer Current length (chars)

MaxImum length (chars)

Char 0 Char 1

Char 2

Maximum length/2 + 2 (words)

Figure 3: A Mesa String

y

Word:

Scan Line:

Scan Lin!!:

n-5
n-4
n-3
n-2
n-l

o
1
2
3
4
5
6
7
8
9
10
1
12
13
14
15

1

Fltst bit" 12 r- Last bit "6 (total width :

a 01+1 ,,+2, • .
".k
a+2k
a+:lk

I I I . I

•
•
•
•
•
•

Figure 4a: Display Format

Scan hne:

o
1
2
3
4
5
6
7

II :1

0=0

Figure 4b: A Character Bitmap

a+k-1

75 bits)

Rectangle A

o I 1 I 2 I

OD~MDDDDDD~O~DDDDm~ODoo~~~m~CCOOOOD~~DOOO~~OODO~
I 0 I 1 I 2 I ,3 I 4 I 5 I 6 I 7 I

Figure 4c: Character Representation in Storage

Address ;{

! ! ! I I I I

O§lOD~D

sa=x,sb~6

width=6

sa=x,bb= 12,
width = -6

Figure 4d: Interpretation of Negative Item Widths

Princops4a-d.s/'
/15.11

Context P

PC:

Pl: PORTO

P2: PORTI

Context P

Pori p Pori q
inport '"port

0 l-r1 0
q p

oulporl

(a) 0 has transferred to P via the PORTO at 01.

Control is in p. bul nol yel al P1

a is pend,ng on q.

Port p

oulporl

Pori q

:>

:> PC:

inporl ,nport

r-P2_-I ~<------C~~=::::lt=JE--Fd~:§:~=:::r-7

P1: PORTO

P2: PORn

Contexl P

PC: P2 <

Pl' PORTO

P2: PORTI

oulporl oulporl

(b) P has execuled thl! PORTO al Pl, and conlrol has passed 10 O.

o has nol yel execuled Ihe PORTI al 02.

P is pending on p.

Port p Port q
inporl inport

P 1< LJ 0
q p

oulporl oulport

(e) 0 ha:. executed Ihe POrlfl ai 02. saY,ng the I."k I,m '!lei.rccl Ionk)

Context 0

PC: 02

01: PORTO

02: PORTI

Conlext 0

PC:

01: PORTO

02: PORn

Conlext 0

PC:

01' PORTO

02: PORn

in q o"tporl. Any allcnJ;J1 10 transfer 10 0 through CJ will bult, s,nce q .nporl 0

P is pending on p,

Figure Sa: Port to Port Control Discipline

1/5/71

Context P

pc:

PI: PORTO

P2: PORTI

Conle~t P

PC: P2

PI: PORTO

P2: PORTI

Conlext P

pc:

PI: PORTO

P2: PORTI

Pori p
inport

1--"0;:;';;'---11 (0 is a procedure descriplor)

oulport

(a) Control is in P, before PI

Port p
inport

~(-t~~E3---_..Jr 0:

oulporl

Context 0 (a procedure)

RET

(b) P has execuled Ihe PORTO al Pl, and conlrol is in 0

The link saved in O's Irame is p (an indllccl Ionk)

P is pending on p

Pori p
inport

o
o

oulport

(c) Q has oxeculed Ihe RET, which does XFER(p,O]

P has execuled Ihe PORTI al P2, whIch has cleared p.inport.

Figure 5b: Port to Procedure Control Discipline

p"jlCvp:,5b,~,'

11Si77

P:

Pl:

P:

Pl:

P:

P1:

Conlexl P (il procedure)
pori q

inporl

SFC

RET

Conlext P

SFC

RET

a > pc:

oulpor! 00:

01:

02:

03:

(il) Conlrol is in P, about to execute the SFC at Pl.

The slack contains an indirect control link poinllng to q.

a is pending on q.

(a procedure)
Pori q

inport

<
a pc:
P

outport

(0) Conlrol has passed 10 0, and Ihe PORTI at 01 has been execuled.

q.oulporl conlains P (a frame pOlnler)

00:

01:

02:

03:

Conlcxt P (a procedure)
Port q

inport

src

RET

Q >
P

outporl

(c) 0 has execuled Ihe PORTO at 02, ~nd control has relu,,,,,d to P.

o is aU;)tn pcndlll9 On q.

Figure 5c: Procedure to Port Control Discipline

PC'

00:

01:

02'

03'

Conlext a:

01

PORTO

PORT)

PORTO

PORT)

Conlext a:

PORTO

PORTI

PORTO

PORTI

Context 0:

03

PORTO

PORTI

PORrO

PORTI

PI ;nc:ops5c. t>"

	001
	002
	003
	004
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60
	61
	62
	63
	64
	65
	66
	67
	68
	69
	70
	71
	72
	73
	74
	75
	76
	77
	78
	79
	80
	81
	82
	83
	84
	85
	86
	87
	88
	89

