
Cleared version of October 15,1979

ALTO OPERATING SYSTEM

REFERENCE MANUAL

Compiled on: October 15, 1979

Xerox Palo Alto Research Center
3333 Coyote Hill Road

Palo Alto, California 94304

© Xerox Corporation 1979

Alto Operating System

1. Introduction

Cleared version of October 15, 1979

September 9,1979

Alto Operating System Reference Manual

OS version 16/16

2

This manual describes the operating system for the Alto. The manual will be revised as the system
changes. Parts of the system which are likely to be changed are so indicated; users should try to isolate
their use of these facilities in routines which can easily be modified, or better yet, avoid them entirely, if
possible.

The system and its description can be separated into two parts:

a) User-callable procedures, which are of two kinds: standard procedures which are always
provided, and libra? procedures which must be loaded WIth the user's program if they are
desired. This manua describes only standard procedures; the library procedures are documented
in the "Alto Packages Manual."

b) Data structures, such as disk files and directories, which are used by the system but which arealso
accessible to user procedures and subsystems.

The system is currently written almost entirely in Bcp1. Its procedures are invoked with the standardBcpl
calling sequence, and it expects the subsystems it calls to be in the forinat produced by the Alto Bcpl
loader.

2. Hardware summary

This section provides an overview of the Alto Hardware. Briefly, every Alto has:

a) A memory of 64k words of 16 bits each. The cycle time is 850ns.

b) An emulator for a standard instruction set.

c) Secondary memory, which may consist of one or two Diablo 31 cartridge disk drives, or one
Diablo 44 cartridge disk drive. The properties of these disks are summarized in Table 2.2.

d) An 875line TV monitor on which a raster of square dots can be displayed, 606 dots wide and 808
dots high. The display is refrcshed from Alto memory under control of a list of display control
blocks. Each block describes what to display on a horizontal band of the screen by specifying:

the height of the band, which must be even;
the width, which must be a multiple of 32; the space remaining on the right is filled with

background;
The indentation, which must be a multiple of 16; the space thus reserved on the left is filled

with background;
the color of the background, black or white;
the address of the data (must be even), in which 0 bits specify background. Each bit controls

the color of one dot. The ordering is increasing word addresses and then bit numbers in
memory, top to bottom and then left to right on the screen; and a half-resolution flag
which makes each dot twice as wide and twice as high.

There is also a 16 x 16 cursor which can be positioned anywhere on the screen. If the entire

Alto Operating System

Cleared version of October 15, 1979

September 9, 1979 3

screen is filled at full resolution, the display takes about 60% of the machine cycles and 30704D
words of memory.

e) A 44-key keyboard, 5-finger keyset, and mouse

f) A Diablo printer interface

g) An Ethernet interface

h) Interfaces for analog-to-digital and digital-to-analog conversion, for TV camera input, and for a
RS-232b (teletype) connection

i) A real-time clock and an interval timer (see table 2.1 for brief descriptions)

3. User-callable procedures

This section describes the operating system facilities provided by procedures which can be called from user
programs using the standard Bcpl calling sequence. All of these procedures are a permanent part of the
operating system, automatically available to any user program.

Although this manual describes a rather extensive set of facilities, which together occupy close to 12K
words of memory, portions of the system can be deactivated (see Junta), thus freeing the memory theyuse.
When the user program finishes execulion, the deactivated portions can be retrieved from the disk and
reinitialized.

Default arguments: Many of the procedures given below have rather long argument lists, but have
convenient defaulting schemes. The documentation decorates argument lists with default values. An
argument followed by [expl will default if omitted or zero to the value exp; an argument followed by
[... expj will default if omitted to expo Although Ikpl allows you to omit procedure' arguments by using
"nil," the called procedure cannot detect its use; it therefore cannot be the basis for defaulting arguments.

3.1. Facilities

The facilities of the operating system fall into fairly neat categories; often this is because the operating
system has simply loaded a standard library subroutine as part of its environment. This manual otTers
summarized documentation for the functions in the various software "packages;" more documentation can
be found in the "Alto Software Packages Manual." (Note: Appendices to this manual include
documentation of the packages most relevant to the operating system.) In outline, the operating system
provides:

A "basic" resident that maintains a time-of-day clock, that processes parity error interrupts, and
that contains the resident required to interface to Swat, the debugger.

The Bcpl runtime support module, which provides several functions (such as a stack frame
allocator) that are necessary to permit Bcpl programs to run.

Disk drivers for transferring complete pages between memory and existing files on the disk. This
is the BfsBase p~ckage.

Disk drivers for creating new files, and for extending or shortening existing files. This is the
BfsWrite package. .

A simple storage allocator for managing "zones" of working storage. This is the Alloc package.

Disk "streams," which implement sequential byte or word I/O to the disk. This is the DiskStreams
package.

Alto Operating System

Cleared ,version of October 15, 1979

September 9,1979 4

Disk directory management, which provides facilities for searching directory files for entries that
associate a string name and a disk file.

A keyboard handler, which decodes keyboard interactions into a sequence of ASCII characters.

A displa,Y. driver, which maintains a "system display," and handles the printing of characters on the
display. fhis is the DspStream package.

Miscellaneous functions, including (1) the "call subsystem" function, which reads a file produced
by the Bcplloader into memory and executes it; (2) allocation functions that manage the space not
used by the operating system or the user code, providing a stack for the user program and fixed
size blocks that it may require; (3) the procedure for dc-activating various portions of the operating
system; and (4) additional utilities.

3.2. Loading and Initialization

The facilities of the operating system are made accessible to user programs via static variables that refer to
aystfm procedures or sygtem scalars. Because these objects are not defined in yo"""iiflIcpI program, you must

ec are the names to e extenlliI The Bcpl loader, Bldr, automatically reads the file Sys.Bk, which
describes how to arrange that your program's external references will match up with the operating system
objects (for details, see Bldr documentation in the Bcpl manual). This arrangement does not require re
loading programs when objects in the operating system move.

When a Bcpl program is read into the Alto memory, all of the system procedures described below willhave
been initialized. A region is reserved for allocating system objects (e.g., disk streams); currently, about6
disk streams or equivalent can be accomodated. If the space reserved is inadequate for your application,
the system zone can be replaced with one constructed by your program. In addition, most procedures that
create system objects have provision for an optional "zone" argument used for seizing space (see section
4.5).

3.3. Errors

Whenever the system detects an error for which the user program has not supplied its own error routine,
the call SysErr(p 1, errCode, p2, p3, ...) is executed. The errCode is a number that identifies the error; the
p's are parameters that add details.

Normally, SysErr calls Swat (the debugger), which will print out an intelligible error message retrieved
from the file Sys.Errors. The facilities of Swat (see "Alto Subsystems Manual") can then be used to
interrogate the program state more fully, and ultimately to continue or abort its execution. .

3.4. Streams

The purpose of-streams is to provide a standard interface between programs and their sources of sequential
inFut and sinks for sequential output. A set of standard operations, defined for all streams, is sufficient for
al ordinary input-output requirements. In addition, some streams may have special operations defined for
them. Programs which use any non-standard operations thereby forfeit complete compatibility.

Streams transmit information in atomic units called items. Usually an item is a byte or a word, and this is
the case for all the streams supplied by the operating system. Of course, a stream supplied to a program
must have the same ideas about the kind of items it handles as the program does, or con fusion will result.
Normally, streams whieh transmit text usc byte items, and those which transmit binary information usc
words. (The 16-bit quantity which Bcpt passes as an argument or receives as a result of a stream operation
could be a· pointer to some larger obJect' such as a stnng, although the operating system implements no
such streams. In this case, storage allocation conventions for the objects thus transmitted would have tobe
defined.)

Alto Operating System

Cleared version of October 15, 1979

September 9,1979 5

You are free to construct your own streams by setting up a suitable data structure (section 4.2) which
provides links to your own procedures which implement the standard operations.

The standard operations on streams are (S is the stream; "error" means that Errors(S, ec) is executed,
where ec is an error code):

Gets(S)

Puts(S, 1)

Resets(S)

Putbacks(S, I)

Endofs(S)

Closes(S)

Stateofs(S)

Errors(S, ec)

returns the next item. Some streams give an error if Endofs(S) is
true before the call, and others just wait for the next item.

writes I into the stream as the next item; error if the stream is
read-only, if there is no more space or if there is some hardware
problem.

restores the stream to some initial state, generally as close as
possible to the state it is in just after it is created.

modifies S so that the next Gets(S) will return I and leave S in
the state it was in before the Putbacks. Error if there is already a
putback in force on S. (No streams provided by the operating
system implement a Putbacks operation.)

true if there are no more items to be gotten from S. Notdefined
for output streams. .

destroys S in an orderly way, and frees the space allocated for it.
Note that this has nothing to do with deleting a disk file.

returns a word of state information which is dependent on the
type of stream. .

reports the occurrence of an error with error code ec on the
stream. When a system stream is created, Errors is initialized to
SysErr (see section 3.3), but the user can replace it with his own
error routine.

Streams are created differently depending on the device being accessed (disk, display, keyboard, or
memory). The procedures for creating streams are described below.

3.4.1. Disk streams

The system distinguishes four kinds of object which have something to do with storing data on the disk:

Disk Pack:

Disk file:

File directory:

A storage medium that is capable of storing data in various
pages. Most operating system functions default the choice of
disk to "sysDisk", a structure which describes drive 0 of a Diablo
model 31 cartridge.

A vector of bytes of data held on some disk, organized into PitIes
for some purposes. A file exists only on the disk (except at
parts of it may be in memory if an output stream is associated
with it) and is named by an 80-bit entIty called a file pointer
(FP). -

A disk file which contains a list of pairs <string name, FP).
Documentation on the format of the file can be found with the
BFS package documentation contained in an appendix to this
manual.

Alto Operating System

Cleared version of October 15, 1979

September 9,1979 6

Disk stream: Used by a program to transfer information to or from a disk file.
A stream exists only in memory and is named by a pointer to a
data structure.

The procedures that operate on disk streams are described in documentation for the "DiskStreams"
software package contamed in an appendix to this manual. Below is a summary list of the functions (in
addition to the generic functions described above):

CreateDiskStream(filePtr, type [ksTypeReadWrite], itemSize fwordIteml, Cleanup [Noop], errRtn
fSysErr], zone [sysZone], nif, disk (sysDiskJ) = a disk stream, or o If an error is encountered while mitializmg the stream. filePtr
is the sort of object stored in a file directory. Legal types are
ksTypeReadOnly, ksTypeRcadWrite, and ks'fypeWriteOnly.
Legal item sizes are wordltem and charItem.

CleanupDiskStream(s)

ReadBlock(s, address, count)

Flush any buffers to the disk.

actualCount. Read up to count words from the stream into
consecutive memory locations; ret\lrn the actual number of
words read. (Non-intuitive things happen at the end of a file
with an odd number of bytes -- read the documentation
carefully)

WriteBlock(s, address, count) Write count words from consecutive memory locations onto the
stream.

LnPageSize(s)

PositionPage(s, page)

PositionPtr(s, byteNo)

FileLength(s, filePos m
FilePos(s, filePos 0)

= log (base 2) of the page size, in words, of the files manipulated
by the stream.

Positions the file to byte 0 of the specified page (page 1 is the
first data page). .

Positions the file to the specified byte of the current page.

= Length. Returns number of bytes in file; positions stream to
the last byte.

= Pos. Returns the current byte position in the file.

SetFilePos(s, filePos) or SetFilePos(s, HighOrder, LowOrder) Sets the position of the file to the
. specified byte.

GetCurrentFa(s, fileAddress) Returns the current file address.

JumpToFa(s, fileAddress) Positions the file to the specified address (usually obtained from
GetCurrentFa).

GetComplcteFa(s, completeFileAddress)
. filePtr.

Returns a complete file address, including a

TruncateDiskStream(s)

ReadLeaderPage(s, address)

WriteLeaderPage(s, address)

Truncates the file to the current position.

Reads the 256-word leader page of the file into consecutive
locations starting at address.

Writes 256 words onto the leader page of the file.

The operating system also contains a package for dealing with files at a lower level, the "Bfs" (Basic file
system) package. .

Alto Operating System

Cleared ,version of October 15, 1979

September 9, 1979 7

Disk Errors: The system will repeat five times any disk operation which causes an error. On the last three
repetitions, it will do a restore operation on the disk first. If five repetitions do not result in an error-free
operation, a (hard) disk error occurs; it is reported by a call on Errors for the stream involved.

3.4.2. Display streams

Display streams are implemented with the "DspStream" package, described in separate documentation
contained in an appendix to this manual. Below is a list of the functions included (in addition to the
generic stream functions):

CreateDisplayStream(nLines, P Block, 1Block, Font [sysFont], wWidth [38], options
[DScompactleft+ DScompactrightJ, zone [sysZone)) = a display
stream. pBlock is the address of a region lBlock words long for
the display bitmap. nLines is the number of text lines in the
stream. This procedure does not commence displaying the
stream text -- see ShowDisplayStream.

ShowDisplayStream(s, how [DSbelow], otherStream fdsp)) This procedure controls the presentation
of the stream on the screen. If how is DSbe1ow, the stream will
be displayed immediately below otherStream; if DSabove,
immediately above; if DSalone, the stream will become the only
display stream displayed. If how is DSdelete, the stream s will
be removed from the display. For DSalone and DSdelete, the
third argument is needless.

GetFont(s)

SetFont(s, font)

ResetLine(s)

GetBitPos(s)

SetBitPos(s, pos)

GetLinePos(s)

SetLinePos(s, pos)

InvertLine(s, pos)

EraseBits(s, nBits, flag [0))

GetLmarg(s); SetLmarg(s)

GetRmarg(s); SetRmarg(s)

Returns current font.

Sets current font (use carefully -- see documentation).

Erases all information on the current line and resets the position
to the left margin.

Returns the horizontal position of the stream.

Sets the horizontal position on the current line (use carefully -
see documentation).

Returns the index of the line into which characters are presently
being put.

Sets the line number into which subsequent characters will be
put.

Inverts the black/white sense of the line given by pos.

Erase bits moving forward (nBits)O) or backward (nBits(O) from
the current position. Set to background if flag = 0; to the
complement of the background if flag = 1; invert present values
if flag = -l.

Get and set left margin for the current line.

Get and set right margin for the current line.

CharWidth(StreamOrFont, char) Get the width of the character, using the specified font or the
current font in the specified stream.

The "system display stream" is always open, and can be accessed by the system scalar "dsp."

Alto Operating System

3.4.3. Keyboard Streams

Cleared version of October 15, 1979

September 9,1979 8

There is a single keyboard stream in which characters are buffered. The stream is always open, and maybe
accessed through the system scalar "keys." The only non-null operations are Gets; Endofs, which is true if
no characters are waiting; and Resets, which clears the input buffer.

The keyboard handler periodically copies the mouse coordinates into the cursor coordinates, truncating at
the screen boundary. '1 his function is governed by the value of a cell referenced by @ IvCursorLink; if Itis
zero, the function is disabled.

Low-level keyboard functions. Although the standard keyboard handler contains no facilities for detecting
transltlOns ot key set or mouse keys, a user function may be provided that will be called 60 times a second
and can extract relevant information from a table passed to It. The call SetKeyboardProc(uKbProc, stack,
stackLength) will install uKbProc as the user procedure; stack is a vector that will be used for stack space
when uKbProc is run (YOU must provide enough!). SetKeyboardProcO will reset the keyboard handler,
and cease calling uKbProc. (Note: If the program has used the Junta procedure, the user keyboard
procedure must be deactivated durin~ a CounterJunta or finish unless all its state lies below
OsFinishSafeAdr.) If active, every 16 milliseconds, the keyboard handler will execute 1.1 KbProc(tab), where
tab points to a data structure defined by the KllTRANS structure (see the file SysDefs.d). The Transition
woro is non-zero if a key transition has been detected; GoingUp or GoingOown tell which sort of
transition has occurred; and Key Index gives the key number. KeyState is a 5-word table giving the stateof
the key,s after the transition has occurred: if a key with Keylndex = i is presently down, bit (i rem 16) of
word (i diVTIi) will be l. The entries CursorX and CursorY give the current location of the cursor.

The value returned by uKbProc determines subsequent processing. If true is returned, the operating
system treats the key transition (if any) according to nOlmal conventions. If false is returned, the operating
system assumes that 1.1 KbProc has perfOlmed whatever processing is intended, and the interrupt IS simply
dismissed.

Key Index values are tabulated below. Keys are normally given by their lower-case marking on the key
top; those with more than one character on their tops are specified by <name>. <x> are unused bits;
<IJlank-top> is the key to the right of the <bs> key; <blank-miodle> to the right of <return>; and <blank
bottom> to the right of <shift-right>.

Values Keys

0-15 5 4 6 e 7 d u v 0 k - P / \ <If> <bs>
16-31 32 w q s a 9 i x 0 I, '] <blank-middle> <blank-top>
32-45 1 <esc> <tab> f <ctr!> c j b z <shift-left> . ; <return> ... <X>
48-63 r t g y h 8 n m <lock> <space> [= (shift-right> <blank-bottom> <X> <X>
64-71 unused
72-76 Keyset keys in order, left = 72; right=76
77 RED (or left or top) mouse button
78 BLUE (or right or bottom) mouse button
79 YELLOW (or middle) mouse button

As an aid to interpreting Key Index values, the system scalar kbTransitionTable points to a table, indexed
by Keylndex, that gives a KBKEY structure for the key; ifit is zero, the operating system has no standard
interpretation of the key.

3.4.4. Fast Streams to Memory

The operating system also contains procedures that allow very efficient stream I/O to memory blocks.
These functions, described in the Streams package documentation, allow one for example to use much
more memory buffering for disk transfers than normally allocated by the disk stream mechanism.

Alto Operating System

3.5. Directory Access

Cleared version of October 15, 1979

September 9, 1979 9

Most user programs do not concern themselves with file pointers, but use system routines which go directly
from string names to streams. By a "file name" we mean a string which can be converted mto a file
identifier by looking it up in a directory. File names are arbitrary Bcpl strings which contain only upper
and lower case letters, digits, and characters in the string "+-.!$". File names are stored in directories as
they are typed, but no distinction is made between upper and lower case letters when they are looked up.
Dots (" .") are used to separate file names into t'kts. If there is more than one part, the last part is called
the extension, and is conventionally used much 1 e extensions in Tenex.

There is an optional version number facility. It is not available in the standard release of the operating
system (NewOs.boot), but is available in an unsupported alternate version (NewOsV.boot). If the version
number facility is enabled, the interpretation of exclamation mark (" !") is special; if a file name ends with
a ! followed only by digits, the digits specify the file version number.

A lookup name, presented to one of the directory functions given below, is usually a file name. However,
it may optionally specify the name of a directory in which to look for the file (or record the new file). The
lookup name is processed from left to right. If the character "<" appears at the head of the lookup name,
the system directory ("SysDir.") becomes the "current" directory; whenever ,the character ")" follows a
name, the name is looked up in the current directory and that file becomes the new current directory. Ifno
directory is specified in the lookup name, the "working directory" is assumed. Example: "<dir)fil." will
look up dir in the system directory SysDlr, and will then look up fil in dir. Any illegal characters in a
lookup name are replaced with "-" characters.

File Versions: The file system also supports multiple versions of the same file; this feature may be enabled
or disabled when the operating system is installed. The version number is recorded by appending an
exclamation mark and the decimal version number to the file name; file names without verSlOn numbers
appended act as if they are "version 0." The OpenFile function uses lookup names and version control
information to locate a desired file. If the lookup name contains a version number (e.g., "Sys.Errors!3."),
then no version defaulting is done--the lookup operates on precisely the me specified. (This processing IS
identical with versions enabled and disabled.)

If the lookup name does not specify a version number and file versions are enabled, then the
versionControl parameter specifics how defaulting is to be done (in the definitions, "oldest" refers to the
file with the "lowest" version number; "latest" refers to the me with the "highest" version number):

verLatest

verLatestCreate

verOldest

verNew

The latest version is used.

The latest version is used. If the file does not exist, it is created
with version number 0 (i.e., no number will be appended
explicitly to the file name): this is to prevent needless
accumulation of version numbers in system-related mes (.e.g,
.Run files).

The oldest version is used.

A new file will, always be created. A system parameter,
established when the system is installed, determines how many
old versions will be preserved. If that det~lUlt should be
overriden, just add the desired number of versions to verNew,
e.g. a versionControl value of verNew +4 will create a new file
and retain at most three older versions.

This version option may reuse disk pages allocated for the oldest
version of the file, but the serial number and file name will of
course be changed. If (newest-oldest) + 1 is greater than or equal
to the number of versions to keep, oldest is reused in this fashion
to become version newest+ 1. For example, if verNew is
specified, 2 versions arc to be kept, and foo!2 and foo13 exist,

Alto Operating System

verNewAlways

Cleared yersion of October 15, 1979

September 9,1979 10

verNew will create the file foo!4 by remaking the old file foo!2.
Note that this calculation does not verify that all versions
between oldest and newest actually exist.

If only one file matches the lookup name, and its version
number is 0, the file is simply overwritten (like verLatestCreate);
a new version is not created.

If no files of the given name exist, version number 0 of the file is
created (Le., no version number is explicitly attached to the file
name). The verNewAlways option (below) can be used if
version 1 should be created.

Similar to verNew, but if no earlier version of the file exists,
version 1 is created.

If versions are not enabled, then exact matches are performed on the entire file name. Thus, if the file
"Sys.Errors!2" is present on a disk with versions disabled, the lookup name "Sys.Errors" will not match
this file; the lookup name "Sys.Errors!2" will. The versionControl parameter is still relevant: if no file
matching the lookuf. name is found, verLatest and verOldest will not create a new file, whereas the other
versionControls wit . . .

The following function creates a disk stream (see above) in conjunction with the Alto directory structure:

OpenFile(1ookupname, ksType

Open FileFrom Fp(hintFp)

[ksTypeReadWrite], itemSize [wordItem], versionControl [if
ksType = ksTypeReadOnly then verLa test else if
ksType=ksTypeWriteOnly then verNew else verLatestCreate],
hintFp [OJ, errRtn [SysErrl, zone [sysZone], nil, disk [sysDisk],
Create Stream [CreateDiskStreamD = a disk stream, open on the
specified file, or 0 if the open is unsuccessful for some reason.
This routine parses the lookup name, searching directories as
needed. After applying version control (e.g., making a new
version), it calls CreateStream(filePointer, ksType, itemSize,
Noop, errRtn, zone, nil, disk), and returns the value of that caU.

If hintFp- is provided, it is assumed to be a file pointer (FP) that
"hints" at the correct identification of the file. Before searching a
directory, OpenFile will try using the hint to open the me,
quickly returning a stream if the hint is valid (though no name or
version checking is done). If the hint fails and lookupname is
non-zero, the name will be parsed and looked up in the normal
fashion. hintFp will be filled in with the correct file pointer.
Note: If you wish to use standard file-lookup procedures, but to
have the FP for the resulting file returned to you, zero the
hintFp vector before calling OpenFile. In this case, the value of
hintFp is not used in the lookup, but is filled in with the results.

= OpenFile(O, 0, 0, 0, hintFp)

Dc1eteFile(1ookupname, versionControl [verOldest], errRtn [SysErrl, zone [sysZone], nil, disk
[sysDisk]) = success. Deletes the file on the disk and removes
the corresponding entry from the directory specified in
lookup name. Returns "true" if a file was correctly found and
deleted, otherwise" false."

SetWorkingDir(name, fp, disk [sysDiskD Sets the "current" directory for further lookups on the
given disk. When the system is booted, the current directory is
set to "(SysDir."

Alto Operating System

Cleared version of October 15,1979

September 9,1979 11

3.5.1. Lower-level directory functions

Several functions are provided for those who wish to deal with directories and file names at a lowerlevel.
The format of an Alto file directory is documented in the Disks documentation; definitions appear in
AltoFileSys.d.

ParseFileName(destName, srcName, list, versionControl) = stream or O. Strips leading directory
information from srcName, puts the result in aestName,
appending a "." if necessary, and returns a stream open on the
dIrectory in which the file should be looked up. listlO = an
errorRoutine, list!1 = a zone, list!3 = a disk which will be
passed to OpenFile along with version Control when opening the
directory stream.

FindFdEntry(s, name, compareFn [0], dv 0, hd D, versionControl [verLatest], extraSpace [01) = a
word pomter mto the stream s of a directory entry, or -f if no
entry IS located. If compareFn is 0, normal comparison of file
names and version control is performed; the result is a directory
entry in dv, and a hole descriptor (hd) for a hole large enough to
include the name, a new verSIOn number, and extraSpace words.

Otherwise, compareFn is a user procedure that is invoked as
each file name is read from the directory: compareFn(name,
nameRead, dvRead). nameRead is the Rcpl name extracted from
the directory; dvRead is the dv extracted from the directory; and
name is simply the second argument passed to FindFdEntry
(which need not be a string). If cornp'arcFn returns false, the
directory scan halts; the value of FindFdEntry is the byte
position in the stream. If compareFn returns true, the search
proceeds.

Strategic note: If compareFn is TruePredicate, the directory is
simply scanned in order to locate a hole large enough for
extraSpace words. The result is saved in the hd hole descriptor,
which may be passed to MakeNewFdEntry.

In the standard release of the operating system (version
numbering absent), the directory stream is left positioned at the
matching directory entry if one was found and at the position
described by hd otherwise.

MakeNewFdEntry(s, name, dv, hd, extraStuft) makes a directory entry: dv is a pointer to a DV
structure for the first part of the entry; name is a BCfl string that
is recorded after the entry (this string must be a le~a internal file
name, with the dot"." appended), and extraStuff IS a pointer to a
vector of additional stuff that will be entered following the
name. The hd parameter is a pointer to a "hole descriptor" as
returned from findFdEntry.

DelcteFdEntry(s, pos)

Strip Version(string)

AppendVersion(string, version)

Deletes the directory entry at byte location pos of the directory
open on stream s.

= version number. This function strips a version number, if
any, from the end of the string argument, and returns the
number (0 if no version specified). If, after stripping, there is no
final"." on the string, one is appended.

Appends a version number and final"." to the string.

Alto Operating System

WriteDiskDescriptorO

ReadDiskDescriptorO

3.6. Memory management

Cleared version of October 15,1979

September 9,1979 12

If changes have occurred, the cOl?Y of the disk descriptor for
sysDisk that resides in memory IS written onto the disk file
"DiskDescriptor. "

This function restores the copy of the disk descriptor for sysDisk
that resides in memory from the disk file "DiskDescriptor."

Table 3.1 shows the layout of memory. Table 3.2 teUs how to obtain the current values of the symbolic
locations in Table 3.1. The free space (EndCode to StackEnd) can be manipulated as follows:

GetFixed(nwords)

FreeFixed(pointer)

FixedLeftO

SetEndCode(new Value)

·returns a pointer to a block of nwords words, or 0 if there isn't
enough room. It won't leave less than 100 words for the stack to
expand.

frees a block provided by GetFixed.

returns the size of the biggest block' which GetFixed would be
willing to return.

resets endCode explicitly. It is better to do this only when
endCode is being decreased.

The allocator is not very bright. FreeFixed decrements endCode if the block being returned is
immediately below the current endCode (it knows because GetFixed puts the length of the block in the
word preceding the first word of the block it returns; please do not rely on this, however, since there is no
guarantee that later allocators will usc the same scheme). Otherwise it puts the block on a free list. When
another FreeFixed is done, any blocks on the free list which are now just below endCode will also be freed.
However, the allocator makes no attempt to allocate blocks from the free list. .

3.7. The AlIoc allocator

The operating system includes a copy of the Alloc package; documentation is contained in an appendix to
this manual.

InitializeZone(start, length, OutOfSpaceRoutine [.. .sysErr], MalFormed Routine [... Sr,sErr]) = a
"zone." These zones are compatible with the "zone' arguments

. to operating system functions (e.g., sysZone). Allowing
MalFormedRoutine to default to SysErr causes a through check
of the zone data structures to be performed each time a block is
allocated or freed. To avoid this (considerdble) overhead, pass a
zero for the MalFormedRoutine. The default sysZone has a
MalformedRoutine of SysErr.

AddToZone(zone, block, .length) Adds block to the zone.

Allocate(zone, length, returnOnNoSpace [false], even [false]) = pointer to a block of length words
allocated from zone. If even is true, the pointer is guaranteed to

. be a even number.

Free(zone, ptr)

CheckZone(zone)

Returns the block pointed to by ptr to the zone.

Performs a consistency check on the zone data structure.

Alto Operating System

Cleared ,version of October 15, 1979

September 9, 1979 13

3.8. The Basic File System

A set of procedures for driving the disk hardware for Diablo Model 31 and 44 disk cartridges is inc1udedin
the operating system. These functions are documented in the "Disks" documentation, appended to this
manual.

3.9. Objects

It is often convenient to define an abstract object and its operations by a single entity in the Bcpllanguage.
As the largest entity Bcpl can deal with is a 16-bit number, we must use a pointer to a structure of some
kind that defines both the procedures and data associated with the object. Streams, Zones and Disks are
examples of such abstract objects. Such objects are typically defined by a structure such as:

structure ZN:
[
Allocate
Free
Base
Length
]

word IIOp
word IIOp
word IIVal

word II Val

where the Op's point to procedures and the Val's are data for the structure. A typical call on one of the
abstract procedures is thus (zone»ZN.Allocate)(zone, argl, arg2, arg3). The virtue of such an
arrangement is that any structure that simulates the effects of the procedures can pose as a Zone.

In order to encourage the use of such objects, the operating system has very effiden,t implementations for
this calling mechanism:

CallO(s, a, b, ...) Does (s!O)(s, a, b, ...)

Call1(s, a, b, ...) Does (s!1)(s, a, b, ...)

Call2, Ca1l3, ... , CalllS analogously.

Thus, the operating system defines Allocate = CallO, and Free = Calll, consistent with the Alloc package
described above. Note for assembly-language programmers: the CallX functions actually enter the proper
function at the second instruction, having already executed a STA 3 1,2 to save the return address.

3.10. Miscellaneous

This section describes a collection of miscellaneous useful routines:

Wss(S, string)

Ws(string)

WI(slring)

Wns(S, n, nc [0], r[-10])

Wos(S, n)

Wo(n)

writes the string on stream S.

writes the string on the system display stream, dsp.

Ws(string), followed by a carriage return.

writes a number n to stream S, converting using radix abs(r). At
least nc characters are delivered to the stream, using leading
spaces if necessary. The number is printed in signed notation if
r(O, in unsigned notation if r>o.

'writes an unsigned octal representation ofn on stream S.

writes an unsigned octal representation of n on the display
stream.

Alto Operating System

TruePredicateO

F alsePredicateO

NoopO

Dvec(caller, n VI, n V2, ...)

Cleared version of October 15, 1979

September 9, 1979

always returns -1.

always returns 0.

null operation; returns its first argument if any.

14

this routine allocates "dynamic" vectors in the current frame.
caller is the name of the procedure calling Dvec. The use of the
routine is best given wIth an example: the routine ShowOff
wants two vectors, VI and V2:

let ShowOff{Vllength, V2length) be

let VI = Vllength
let V2 = V2length
Dvec(ShowOff, Iv VI, Iv V2)
/ / now VI points to a block Vl1ength + 1 words long
/ / and V2 points to a block V2length + 1 words long
]

Warning: any addresses that point into the stack frame of
ShowOtf before it is moved by the Dvec call will not be correct
after the call. Thus, for example, a "let a = vec 10" before the
call will cause the address in a to be useless after the call.

DefaultArgs(lvNa, base, dvl, dv2,) Utility procedure to fill in default arguments. lvNa points to
the "numargs" variable in the procedure; abs(base) is the
number of initial arguments that are not to be defaulted; the dVi
are the default values (i<1l). If base(O, then an actual parameter

. of zero will cause the default to be installed; otherwise only
(trailing) omitted parameters are defaulted. Thus:

let Mine(how, siz, zone, errRtn; numargs n) be

befaultArgs(1v n, -1, 100, sysZone, SysErr)

MoveBlock(dest, src, count)

SetBlock(des!:. val, count)

Zero(dest, count)

BitBlt(bbt)

Usc(a, b)

Min(a, b), Max(a, b)

Umin(a, b), Umax(a, b)

will default arguments siz, zone, errRtn if missing or zero to 100,
sysZone and SysErr respectively. Note that Bcpl will allow you
to omit parameters in the middle of a parameter list by using
"nil," but DefaultArgs has no way ofknowing that you did this.

Uses BLT: for i = ° to count-1 do destli = src!i.

Uses BLKS: for i = ° to count-1 do destli = val.

Same as SetBlock(dest, 0, count).

Executes the BITBLT instruction with bbt in AC2.

Usc performs an unsigned compare of a and b and returns -1 if
a(b, ° ifa=b, 1 ifa>b.

Returns the minimum or maximum of two signed integers,
which must differ by less than 2t 15.

Returns the minimum or maximum of two unsigned integers.

Alto Operating System

DoubleAdd(a, b)

EnablelnterruptsO

DisablclnterruptsO

StartIO(acO)

IdleO

Timer(tv)

ReadCalendar(dv)

SetCalendar(dv)

EnumerateFp(proc)

CallSwat(sl, s2)

Cleared version of October 15, 1979

September 9,1979 15

The parameters a and b each point to 2-word double-precision
numbers. DoubleAdd does a'" a + b. Note that subtraction can
be achieved by adding the two's complement; the two's
complement is the one's complement (logical negation) plus 1.

Enables Alto interrupt system.

Disables interrupt system. Returns true ifinterrupts were on.

Executes the SIO emulator instruction with its argument in acO.
Thus StartIO(# 100000) will boot the Alto if it has an Ethernet
interface.

This procedure is called whenever the operating system is
waiting for something to happen (e.g., a keyboard character to be
struck, .or a disk transfer to complete). The static Ivldle points to
the operating-system copy of the procedure variable so that
programmers may install their own idle procedures by executing
"@lv[dle = Myldle". .

Reads the 32-bit millisecond timer into tvlO and tv!1. Returns
tv!l as its value.

Reads the current date-and-time (32 bits, with a grain of 1
second) into dv!O and dv!1. Returns dv as its value.
(Subroutines for converting date-and-time into more useful
formats for human consumption are available. See subroutine
package documentation, under Time.) ,

Sets the current date-and-time from dv!O and dv!1. (Normally it
should not be necessary to do this, as the time is set when the
operating system is booted and has an invalid time. Thereafter,
the timer facilities in the operating system maintain the current
time.)

For every file pointer saved by the system (e.g., fpComCm,
fpRemCm, etc.), call proc(fp).

This function invokes an explicit "call" on Swat. Either of the
arguments that appears to be a Bcpl string will be printed out by
Swat.

3.10.1. Routines for Manipulating Bcpl Frames

The following routines ease massaging Bcpl frames for various clever purposes such as coroutine linkages.
See section 4.7 for a description of the data structures involv.ed.

FrameSize(proc)

MyFrameO

CallersFrame(f) .

FramesCaller(f)

Returns the size of the frame required by p,roc.

Returns the address of the current frame.

Returns the address of the frame that "called" the frame f (if fis
omitted, the current frame is used).

Returns the address to which the caller of frame f sent control,
provided that he made the call with a nonnal instruction Gsrii,
Jsris). If error, returns O.

Alto Operating System

CallFrame(f, a, b)

GotoFrame(f, a, b)

CoCall(a, b)

CoReturn(a, b)

ReturnTo(1abel)

GotoLabel(f, label, v)

RetryCall(a, b)

ReturnFrom(fnOrFrame, v)

Cleared yersion of October 15, 1979

September 9, 1979 16

Sends control to frame f and links it back to this one (Le., when f
returns, the Call Frame call returns). a and b are optional
arguments.

Like CallFrame, but does not plant a return link.

CallFrame(CallersFrameO, a, b)

Like CoCall, but does not plant return link.

Returns to a given label in the frame of the caller.

Sends control to the specified label in the specified frame, and
passes v in ACO.

Repeats the call which appears to have given control to the caller
with a and b as the first 2 arguments, and the other arguments
unchanged. There are certain ways of calling functions which
cannot be retried properly. In rarticular, the address of the
procedure must be the value 0 a static or local variable; it
cannot be computed. Thus "a> >proc(s, b)" cannot be retried,
but "let pr=a»proc; pres, b)" can be retried.

Looks for a frame f which is either equal to fnOrFrame, or has
FramesCaller(f) equal to fnOrFrame. It then cuts back the stack
to f and simulates a return from f with v as the value. If error, it
returns O.

3.11. Subsystems and user programs

All subsystems and user programs are stored as "Run files", which normally have extension" .Run". Such
a file is senerated by BIdr and is given the name of the first binary file, unless some other name is specified
for it. 1 he format of an Alto run file is discussed in section 4.8 and in the Bcpl manual.

CallSubsys(S, pause [false], doReturn [false], userParams [0)) will read in a nm file and send control to its
starting address, where S is an open disk stream for the file, positioned at the beginning of the file. [fpause
is true, then CallSwat("Pause to Swat"); Ctrl-P starts the program. (do Return will never be implemented,
but would have allowed a return to the caller after the called subsystem "finished.") userParams is a
pointer to a vector (length up to lUserParams) of parameters which will be passed to the called subystem.
The parameters are formatted according to conventions given in SysDefs.D (structure UPE): each
parameter is preceded by a word that specifies its type and the length of the block of parameters; a zero
word terminates this list. When the Alto Executive invokes a program with CallSubsys, it passes in
userParams an entry with type globalSwitches which contains a list of ASCII values of global switches
supplied after the program name.

The open stream is used to load the program into Alto memory according to placement information
included in the file. The stream is then closed; no other open streams are affected.

The program is started by a call to its starting address, which will normally be the first procedure of the
first file given to BIdr. This procedure is passed three arguments. The first is the 32 word layout vector for
the program, described in the Bcpl manual. The second is a pointer to a vector of parameters provldeaby
the caller (the userParams argument to CallSubsys). The third is the "complete file address" (CFA) for a
particular point in the file that was used to load the program. If no overlays are recorded in the Run file,
this point is the end of file. If overlays arc contained in the file, the CF A points to the first word of the first
overlay section (this can be used as a hiilt in a call to OpenFile when loading overlays contained in the
same file).

Subsystems conventionally take their arguments from a file called Com.Cm, which contains a string which

Alto Operating System

Cleared version of October 15,1979

September 9,1979 17

normally is simply the contents of the command line which invoked the subsystem (see section 5). The
subroutme package OP contains a procedure to facilitate reading this string according to the conventions
by which it is normally formatted. This is not a standard routine but must be loaded with your program.
(For more information on OP, see the "Alto Software Packages Manual.")

3.12. Finish -- Terminating Execution

When a program terminates o:peration, it "finishes," returns to the operating system and ultimately tothe
Executive. A program may fimsh in several ways:

Bcpl return

Bcpl finish

Bcpl abort

Swat abort

OsFinish(fCode)

If the main procedure in the user program (the one invoked by
CallSubsys) ever returns, the program finishes. Equivalent to
OsFinish(fcO K).

If the "finish" construct is executed in a Bcpt program, it
terminates. Equivalent to OsFinish(fcOK).

If the "abort" construct is executed in a Bepl program, it
terminates. Equivalent to OsFinish(fcAbort).

If, during program execution, the "left shift" key and the "Swat
key" (lower-nghtmost key on the keyboard) are depressed
concurrently, the program is aborted. SImilarly, if the
(control)K ("kill") command is typed to Swat, the program is
aborted. Both are equivalent to OsFinish(fcAbort).

An explicit call to this function will also terminate execution.
The value of fCode is saved in'the static OsFinishCode, which
may be examined by the Executive and the next program that it
invokes. Values of fCode presently defined are: fcOK=O;
fcAbort= l.

When a program finishes, the value of the finish code is first recorded. Then, if the value of the static
UserFinishProc is non-zero, the call UserFinishProc(OsFinishCode) is performed before restoring the
operating system state. This facility is useful for performing various clean-ups. (Note: To set
UserFinishProc, it is necessary to execute @lvUserFinishProc = value.) In order to permit independent
software packages to provide for cleanups, the convention is that each initialization procedure saves the
present value of UserFinishProc and tlien replaces it with his procedure. This procedure will do the
cleanups, restore UserFinishProc, and return:

/ / Initialization procedure

static savedUFP
savedUFP = @lvUserFinishProc
@lvUserFinishProc = MyCleanUp

/ / The cleanup procedure
let MyClcanUp{code) be

[
... cleanups here
@lvUserFinishProc = savedUFP
1

Finally, control is returned to the operating system, which resets the interrupt system, updates the disk
allocation table, and invokes the executive anew.

Alto Operating System

3.13. Junta

Cleared version of October IS, 1979

September 9,1979 18

This section describes some procedures and conventions that can be used to permit excel?tionally large
programs to run on the Alto, and yet to return cleanly to the operating system. The basic idea is to leta
program deactivate various operating system facilities, and thereby recover the memory devoted to the
code and data used to implement the facilities. To this end, the system has been organized in a series of
"levels:"

levBasic

levBuffer

levFilePointers

levBcpl

levStatics

levBFSbase

levBFSwrite

levAlIoc

levStreams

levScan

lev Di rectory

lcvKeyboard

levDisp\ay

levMain

Basic resident, including parity interrupt processing, time-of-day
maintenance, the resident interface to the Swat debugger, and
the initial processing for OsFinish. Important system state is
saved here: EventVector, UserName, UserPassword,
OsFinishCode. (Approximate size: 1000 words. This portion of
the operating system is guaranteed not to extend below address
175000B.) .

The system keyboard buffer (see section 4.6). (Approximate size:
100 words)

File hints. This region contains "fi"te pointers" for frequently
referenced files. (Approximate size: 70 words)

Bcpl runtime routines. (Approximate size: 300 words)

Stora&e for most of the system statics. (Approximate size: 300
words)

Basic file system "base" functions, miscellaneous routines.
(Approximate size: 1500 words)

Basic file system "write" functions, the disk descriptor (used to
mark those pages on the disk which are already allocated),
interface to the time-of-day clock. (Approximate size: 1850
words)

The Alloc storage allocation package. (Approximate size: 660
words)

Disk stream procedures. (Approximate size: 2400 words)

Disk stream extension for overlapping disk transfers with
computation. (Approximate size: 400 words)

Directory management procedures. (Approximate size: 1400
words)

Standard keyboarli handler. (Approximate size: 500 words)

Display driver (although the storage for the display bitmap and
for the system font lie below). (Approximate size: 1600 words)

The "Main" operating system code, including utilities,
CallSubsys, and the Junta procedure. (Approximate size: 1000
words)

Below IevMain, where the stack starts, the system free-storage
pool is located. Here arc kept stream data structures, the system
font, and the- system display bitmap. (Approximate size: 6000
words)

Alto Operating System

Cleared .version of October 15, 1979

September 9,1979 19

This table oflevels corresponds to the order in which the objects are located in the Alto memory: levBasic
is at the very top; the bottom oflevMain is the highest location for the Bcpl stack.

The "Junta" function is responsible for de-activating these levels, thereby j)crmitting the space to be
reclaimed. When a program that has called Junta is ready to finish, it calls OsFinish in the normal way.
OsFinish performs the" counter-junta," reading in portions of the operating system from the boot file and
rebuilding the internal state of those levels that were previously de-activated, and then proceeds with the
finish, calling the Executive, etc.

During the counter-junta process (which takes about 112 second), the display and interrupt system can
continue to be active, :proVIded that the code and storage they use lIes below the address that IS the value of
OsFinishSafeAdr. ThIS permits a token display to remain; also a keyboard handler can continue to sense
key strokes and record characters in the system keyboard buffer.

Junta(1evName, Proc)

... finish ...

CounterJ unta(Proc)

This function, which may be called only once before a "finish"
or CounterJunta is done, dc-activates all levels below levName.
Thus levName specifics the name of the last level you wish to
retain. (Manifest constants for the level names are in SysDefs.d.)
It then sets the stack to a point just below the retained level, and
calls ProcO, which should not return.

The stack present at the time Junta is called is destroyed. The
recommenaed procedure for saving data across a call to Junta is
to locate the data below EndCode.

A Junta always destroys the system free-storage pool and does
not re-create It. Therefore, open streams, the system display and
system font are all destroyed.

It is the user's responsibility to take care not to call operating
system procedures that lie in the region dc-activated by the
Junta. If in doubt, consult the file Sys.Bk, which documents the
association between procedures and levels.

Any of the methods for terminating execution (section 3.12)
automatically restores the full operating system.

This function restores all de-activated sections of the operating
system, and then calls Proc. The pro~ram stack present when
CounterJunta was called is destroyed. This function is provided
for those programs that do not wish to return to the operating
system with a "finish," but may wish to do other processmg (e.g.,
Ca1ISubsys).

After calling Junta, many programmers will wish to restore some of the facilities that the Junta destroys,
such as a free storage zone, a display stream, etc. Below is an example of how to go about this. Notethat
some thought is required because the operating system keeps a separate COry of statics from those
referenced III your program. Thus when the OS defaults the third argument 0 CreateDisplayStream to
sysFont, it uses the as copy of sysFont, not the copy available to your program.

Junta(1evXXXXX, Proc)

letProcO be
[.

IIMake a new sysZone:
let v = vec 7035 I I You can make it any size
v = InitializeZone(v,7035)
@lvSysZone = v 1/ Patch the os's version of the static

Alto Operating System

Cleared version of October 15, 1979

September 9,1979 20

sysZone = v I I Patch my program's version of the static

liRe ad in the system font again:
let s = OpenFileFromFp(fpSysFont)
let I = FileLength(~12
let f = Allocate(sysZone,1)
Resets(s); ReadBlock(s, f, f); Closes(s)
sysFont = f + 2 I I Patch my program's version ofthe static

I I Note that because os's version is not patched,
I I I cannot call Ws or otherwise default dsp.

IIMake a display stream:
dsp = CreateOisplayStream(6, Allocate(sysZone, 4000), 4000, sysFont)
SliowOisplayStream(dsp,OSalone)

3.14. Events

The operating system reserves a small communication region in which programs may record various things.
The intended use for this region is the recording of events by one program that deserve attention by
another. The Executive cooperates in invoking programs to deal with events posted in the communication
region.

Events are recorded sequentially in a table pointed to by the static EventVector. The total length of the
table, available as EventVector!-l, must not be exceeded by any program generating events. Each event
entry (structure EVM; see SysOefs.d) contains a header that specifies the type and length of the entry
(length is in words and includes header size); following the header comes type-specific data (eventData).
A zero word terminates the event table.

At present, events are defined for:

eventBooted

eventAboutToDie

eventlnstall

eventRFC

eventCallSubsys

eventlnLd

The operating system has just been booted.

The operating system is about to be flushed, probably to run a
diagnostic.

The operating system is to be re-installed. (This event need only
be used by the Executive "Install" command.)

A Request For Connection packet arrived. The event data is:
Cunnection 10 (2 words), RFC Destination Port (3 words), RFC
Source Port (3 words) and Connection Port (3 words).

When the next "finish" occurs, the system will try to execute the
file whose name is given as a Rcpl string in the eventData block.
If the eventData block has length 0, the system will invoke the
copy of Ftp that is squirreled away inside Sys.Boot. Because a
"finish" is performed right after the system is bootstrapped, it is
possible to InLd Sys.Boot with a message that contains an
eventCallSubsys, and thereby to invoke an arbitrary program.
See the next section for a description ofInLd.

Whenever the next "finish" occurs, the system will call
InLd(eventData, eventData). This suggests that the first words
of event data should be an FPRD for a file you wish to InLd.

Alto Operating System

Cleared version of October 15, 1979

September 9, 1979 21

If a program that generates an event has destroyed the event communication region, it is still possible to
pass the event to the operating system. For example, if the memory diagnostic is running and an Ethernet
connection request arrives, the mechanism can be used to load the operating system and pass the
eventRFC message to it. The mechanism is described in the next section.

3.15. OutLd, InLd, BootFrom

Three functions are provided for dealing with "OutLd" files that record the entire state of the Alto
machine. When the operating system is loaded with the "boot" button, such a file restores the machine
state exactly as it was at the time of the Installation of the operating system. The Swat debugger also uses
these facilities, saving the entire machine state on the file "Swatee" when a break is encountered, and
restoring the Swat debugger state from the file "Swat."

In the discussion that follows, an FPRD structure is like a file pointer (FP), but the disk address is theReat
disk address of the first page of Data in the file. .

OutLd(FPRD, OutLdMessage) Saves the state of the machine on the file described by FPRD,
which must exist and be at least 255.data pages long. Note that
the state saved includes a PC inside OutLd. OutLd returns 0
after writing the file. Unless you know what you are doing,
interrupts should be off when calling OutLd (otherwise, OutLd
may save some parts of the machine state, such as the
ActiveInterrupts word, that was pertinent to an interrupt in
progress!).

InLd(FPRD,InLdMessage)

BootFrom(FPRD)

Programmers should be warned to think carefully about the state
that is being saved in an OutLd. For example, the operating
system normally saves in memory some state associated with the
default disk, sysDisk. If OutLd saves this state on a file, and the
program is later resumed with TnLd, the state will be incorrect.
To be safe, state should be written out befOl:e calling OutLd (Le.,
WriteDiskDescriptor()), and restored when OutLd returns (Le.,
ReadDiskDescriptor()).

Copies the InLdMessage (length lIn LdMessage) to a
momentarily safe place and restores the machine state from the
file described by FPRD, which must have been created by
OutLd. Because the PC was in OutLd, OutLd again "returns,"
but this time with the value 1, and the InLdMessage has been
copied into the OutLdMessage. Note: OutLd returns with
interrupts disabled in this case.

If the operating system boot file is InLd'ed, the message is
assumed to be a legal data structure for the EventVector, and is
copied there.

This function "b()ots" the Alto from the specified file. If it is
applied to a file written by OutLd, the state of the machine is
restored and OutLd "returns" 2 with interl'upts disabled. (Note:
The effect of this function differs from the effect of depressing
the "boot" button. Unlike the boot button, the function in no
way initializes the internal state of the Alto processor.)

Some programs (e.g., DMT) will need to know how to simulate InLd or BootFrom:

1. Turn off the display and disable interrupts.
2. Read the first data page of the boot file into memory locations 1, 2, ... #400. If you arc loading

the installed 0Feratlng system, the first data page of the boot file is at real disk address O.
3. Store the labe block for the page just read into locations # 402, # 403, ... # 411.

Alto Operating System

Cleared ,version of Octobcr 15, 1979

September 9,1979 22

4. (This step applics only if simulating InLd.) Now let msa= rv 2. This I>oints to a location where
a bricf messa~e can be stored. Set msalO = 1. Then for i = 0 to lInLdMessage-l do msal(i + 1)
= PrototypeEventVectorli.

5. Jump to location 3, never to return.

4. Data structures

This section describes the data structures used by the operating system that may be required by users.

4.1. Reserved Memory Locations

The Alto Hardware Manual describes addresses reserved for various purposes. The file A1toDefs.d
distributed with the as declares most of these as manifest constants.

4.2. Streams

The standard data structures for streams are given in the DiskStreams package file "Streams.d".
Documentation for the streams package includes a description.

4.3. Disk files

The structure of the Alto file system is described in documentation for the Alto file system (Disks). This
includes a description of files, disk formats, directory fOlmats, and the format of the disk descriptor. Bcpl
declarations for these objects may be found in the file AltoFileSys.d.

4.4. Display

The data structures used to drive the Alto display are described in the Alto Hardware Manual. The font
format for the Alto (.AL format) is also descritied there. Note that a font pointer such as the one passed to
CreateDisplayStream points to thc third word of an AL font.

4.5. Zones

A program that wishes to create an operating-system object and retain control over the allocation ofstoraae
to the object may pass a "zone" to the operating system function that needs space (e.g., CreateDiskStream).
A zone is simply a pointer "zone" to a structure ZN (see SysDcfs.d), with zone»ZN.Allocatccontaining
the address of the allocation procedure (called by (zone»ZN.Allocate)(zone, lengthRequested)) and
zone»ZN.Free containing the address of the frec procedure (called by (zone»ZN.Free)(zone, block)).
The zones created by the Alloc allocator package obey these conventions.

The zone provided by the operating system is saved in the static sysZone. The user may replace the system
zone by executing @lvSysZone = value. Subsequent free-storage requirements for the operating system
will be addressed to this zone. The system zone 1S restored when the user program terminates. Warning:
The operating system keeps various (and undocumented) information in the system zone, and is unwilling
to have the zone changed out from under it. The normal use of lvSysZone is to change the value of
sysZone immediately after a call to Junta (which clears away sysZone). If you wish to create disk streams
and preserve them across a call to Junta, ~ass your own zone as an argument to OpenFile.

Alto Operating System

Cleared version of October 15, 1979

September 9, 1979 23

4.6. Operating System Status Information

A good deal of information is retained in memory that describes the state of the Alto. Much of this
information is of relevance to programmers, and is contained in some static scalars:

OsVersion

OsVersionCompatible

UserName

UserPassword

SerialNumber

Alto Version

sysDisk

lvSysErr

Iv ParityS weep Count

IvParityPhantomEnable

The version number of the operating system. This number is
incremented with each new release of the operating system,
incorporating changes however minor.

The lowest operating system version number believed to be
compatible with the present system. .

This static points to a Bcpl-format string that is the user's last
name. It is initialized when the operating system is installed on
the disk. The maximum length {m words) that the UserName
may occupy is recorded in UscrNamc!-l.

This static points to a Bcpl-format string that is the user's
password, typed to the Executive Login command. The
maximum length (in words) that the UserPassword may occupy
is recorded in UserPassword!-l.

The serial number of the Alto you are on. This static has proved
troublesome, because it is easy to forget that this too will be
saved by OutLd, and can confuse Ethernet code when it
suddenly springs to life months later on a diffenet host halfway
around the world. Its use is discouraged.

This static contains the result of'executing the VERS instruction.
This static has proven troublesome for the same reasons as
SerialNumber. Its use is discouraged.

A pointer to the DSK structure, described in Disks.d, which
describes the "disk" to be used for standard operating system
use. This structure is actually of the format BFSDSK, and
contains a copy of the DiskDescriptor data structure. The static
diskKd .points to this structure alone (structure KD; see
AltoFileSys.d). The storage for sysDisk is in levBFSwrite; if you
Junta to lev BFSbase, you will need to manufacture a new
sysDisk structure, by loading and calling BFSlnit in your own
program.

This static points to the operating-system copy of the static that
contains the address of the error procedure. If you wish to
replace SysErr, it suffices to say @lvSysErr= Replacement.
Note that some procedures may have already copied the value of
SysErr (e.g., when a stream is created, the value of SysErr is
copied into the ST.error field in most cases).

This static contains the address of the highest memory location
examined when sweeping memory looking for parity errors. If
no parity checking is desired, set @lvParitySweepCount = O.

This static points to a flag that determines whether phantom
parity errors will invoke Swat (a phantom parity error results
from a parity interrupt that can find no bad locations in
memory). @lvParityPhantomEnable=O will disable phantom
reporting.

Alto Operating System

Cleared version of October 15, 1979

September 9, 1979 24

ErrorLogAddress

ClockSecond

File Hints

Keyboard Buffer

OsBuffer> >OsBU F .First
OsBuffer> >OsBUF.Last
OsBuffer> >OsB UF.In
OsBuffer> >OsBUF.Out

This static points to a network address of a spot where error
reports (for such things as parity errors) should be sent. The
structure is a "port," as defined in Pup documentation.

This static points to a double-precision integer that gives the
count of number of RCLK ticks (when RCLK is viewed as
returning a 32-bit number) in a second. This number is used for
keeping time, and is nominally 1680000. If timekeeping is
extremely critical, you may wish to calibrate your Alto and
change this number.

The operating system maintains file pointers for several
commonly-used files. Using these hints in conjunction with
Open File will substantially speed the process of opening
streams. The files and file pointers are:

SysDir
SysBoot
DiskDescriptor
User.Cm
Com.Cm
Rem.Cm
Executive.Run
SysFont.Al

~SYSDir
SysBoot

~DiSkDeSGriPtor
UserCm Icomcm
RemCm
Executive
SysFont

Although the system keyboard buffer is normally managed by
the keyboard handler provided in the system, some programs
may want to operate on it themselves. The most important
instance of this is when a program that has done a Junta is
finishing: if the program keeps its keyboard handler enabled,
any characters typed during the counter-junta can still be
recorded in the system buffer, and thus detected by the first
program to run (usually the Executive).

The static OsBuffer points to a structure OsBUF (see SysDefs.d)
that controls access to the buffer:

First address of the ring buffer
Last address of the ring buffer + 1
"Input" p,0inter (place to put next item)
"Output' pointer (place to take next item)

The following code can be executed with interrupts on or off to -
deal with the buffer:

GetItemO = valof IIReturns 0 if none there!

ffOsBuffer»OsBUF.Tn eq OsBuffer»OsBUF:Out thcn resultis 0
let newOut = OsBliffcr»OsBUF.Out+ 1
ifnewOut e~'psBuffer»OsBUF.Last then ncwOut = OsBuffer»OsBUF.First
let result = @(OsBuffer»OsBUF.Out)
OsBuffer»OsBUF.Out = newOut
resultis result
]

PutItem(i) = valof IIReturns 0 if buffer full already

{ct newTn = OsBuffcr»OsBUF.In + 1 .
ifncwln eq OsBuffer»OsBUF.Last then newln = OsBuffer»OsBUF.First
ifnewIn eq OsBuffer»OsBUF.Out then resultis 0

Alto Operating System

Cleared yersion of October 15, 1979

September 9,1979 25

@(OsBuffer»OsBUF.In) = i
Os13uffer»OsBUF.In = newIn
resultis -1
I

GetItemCountO = valof IIReturns count ofitems in buffer

let c = OsBuffer»OsBUF.In-OsBuffer»OsBUF.Out
if c Is 0 then c = c + OsBuffer> >OsBUF.Last-OsBuffer> >OsBUF.First
resultis c
I

ResetItemBufferO be IISet buffer to empty
[.
OsBuffer> >Os13UF. In = OsBuffer> >OsBUF.FlfSt
OsBuffer»OsBUF.Out = OsBuffer»OsBUF.First
I

#176777 This location, the last in memory, points to the beginning of the
area used to save statics for levBasic through levBcpl. The file
Sys.Bk documents offsets from this number where the various
statics will be found.

4.7. Swat

The operating system contains an interface to the Swat debugger (described in the "Alto Subsystems"
manual). This interface uses OutLd to save the state of the machine on the file "Swatee," and InLd to
restore the state of the machine from the file "Swat," which contains the saved state of the debugger itself.
The inverse process is used to proceed from an interrupt or breakpoint. Two aspects of the Swat interface
are of interest to programmers:

Iv AbortFlag

IvSwatContextProc

If @lvAbortFlag is zero, holding down the <left-shift> and <133>
keys will simulate the call OsFmish(fcAbort), thus terminating
execution of the running program. In critical sections, setting
@lvAbortFlag to a non-zero value will disable aborts. The
standard convention is to increment @lvAbortFlag when
entering such a section and to decrement it when exiting. This
pelmits separate software modules to use the feature
concurrently.

Although Swat saves and restores the state of the standard Alto
110 devices, it has no way to know about special devices
attached to the machine. The programmer may arrange that a
peice of code will be called whenever Swat is trying to turn off
1/0 rreparatory to calling OutLd, or trying to restart 110 after
anIn~d. rftheprogrammer does
@lvSwatContextProc= DLSProc, Swat will execute DLSProc(O)
when turning off I/O, and DLSProc(-1) when turning it on.
Since Swat can be invoked at any time, the Swat context
procedure must be written in machine language and must not
assume anxthing about the state of the machine or any data
structures {in particular the Bcpl stack may be in an inconsistant
state).

Alto Operating System

4.8. The Bcpl stack

Cleared version of October 15, 1979

September 9, 1979 26

The Bcpl compiler determines the format of a frame and the calling convention. The strategy foraUocating
stack frames, however, is determined by the operating system. We begin by describing the compiler
conventions, which are useful to know for writing machine-language routines.

A procedure call: p(a1, a2, ...), is implemented in the following way. The first two actual arguments are
put into ACO and AC1 (AC2 always contains the address of the current frame, except during a call or
return). If there are exactly three actual arguments, the third is put into F.extraArguments. If there are
more than three, the frame-relative address of a vector of their values is put there (except for the first two),
so that the value of the i-th argument (counting from 1) is frame»F.extraArguments!(frame+i). Oncethe
arguments are set up, code to transfer control is generated which puts the old PC into AC3 and sets thePC
to p. At this point, AC3!0 will be the number of actual arguments, and the PC should be set to AC3 + 1 to
return control to the point following the call.

A procedure declaration: let p(fl, £2, ...) be ... , declares p as a static whose value after loading will be the
address of the instruction to which control goes when p is called. The first four instructions of a procedure
have a standard form:

STA 3 1,2 ; AC2»F.savedPC .- AC3
lSR @GETFRAME
<number of words needed for this procedure's frame>
lSR @STOREARGS

The Bcpl runtime routine GETFRAME allocates storage for the new frame, NF, saves AC2 in
NF»F.callersFrame field, sets AC2 to NF, and stores the values of ACO and AC1 (the first two
arguments) at NF»F.formals to and 1. If there are exactly three actual arguments, it stores the third one
also, at NF»F.formals n. Then, if there are three or fewer actual arguments, it returns to L+ 3, otherwise
it returns to L+2 with the address of the vector of extra arguments in AC1; at this point a lSR
@STOREARGS will copy the rest of the arguments. In both cases, the number of actual arguments isin
ACO, and this is still true after a call of STOREARGS. A llcpl procedure returns, with the result, if any, in
ACO, by doing:

lMP@RETURN

to a runtime routine which simply does:

LDA 20,2
LDA 31,2
lMP 1,3

; AC2.-AC2»F.callersFrame
; PC.-AC2»F.savedPC+1

The information above is a (hopefully) complete description of the interface between a Bcpl routine and
the outside world (except for some additional runtime stuff which is supplied by the operating system).
Note that it is OK to use the caller's F.Temp and F.extraArguments in a machine-language routme which
doesn't get its own frame, and of course it is OK to save the PC in the caller's F.savedPC.

The operating system currently allocates stack space contiguously and grows the stack down. To allocate a
new frame 0(- size S, it simply computes NF=AC2-S-2 and checks to see whether NF > EndCode. Ifnot,
there is a fatal error (Swat breakpoint at finish + 1); if so, NF becomes the new frame. (Note: the "-2" in
the computation is an unfortunate historical artifact.)

4.9. Run files

The format of a file produced by Bldr to be executed by CallSubsys is described by the structure definition
SV in BCPLFiles.d. Consult the Bcpl manual (section on Loading) for interpretations of the various fields
and the handling of overlays.

Alto Operating System

5. The Executive

Cleared version of October 15, 1979

September 9, 1979 27

The Alto Executive is itself a subsystem and lives on the file Executive.Run; if you don't like it, you can
write your own. It is currently invoked from scratch after the operating system is booted, and whenever a
subsystem returns. The Executive is fully documented in the "Alto Subsystems" manual.

6. Operating Procedures

6.1. Installing the operating system

The "Install" command causes the operating system to execute special code which completely initializes
the system. The options of the install procedure are controlled by prompts. Installation is needed:

- When a new version of the 0j?erating system is distributed. _ New versions are called
"NewOS.boot" (or "NewOsV.boot , the variant that supports the file version numbering facility).
You should transfer NewOS.boot to your disk and install it by saying "Install NewOs.Boot". It
will ask you several questions which determine it configuration on your disk ("SysGen", if you
will parden the expression) and finally the Executive will be invoked. The newly configured OS
writes itself on the file Sys.boot, so you can delete NewOS.boot after installing.

- When you wish to ERASE a disk completely and re-initialize it. This option pauses to let you
insert the disk pack you want initialized. This "new disk" function is invoked by answering
affirmatively the question "Do you want to ERASE a disk before installin~?" after answering
affirmatively that you want the "Long installation dialogue". See also the NEWDISK section of
the Alto Subsystems Manual.

- When you wish to change the "owner name" or "disk name" parameters of the operating system.
The install procedure will prompt for these strings. It is also possible to specify a disk password
that will be checked whenever the operating system is booted.

- When you wish to enable the "multiple version" feature of the file system. (Because fewprograms
presently cope with all the subtleties of this feature, it is wise to leave it disabled.)

6.2. How to get out of trouble

It occasionally happens tl1at a disk will not boot, or something runs awry during the booting process. In
this case, the following steps should be considered:

1. Run the Scavenger. This can be done in two ways:

Place a good disk in the Alto, and invoke the Scavenger. When it asks if you wish to change
disks, respond affirmatively, put the damaged disk in the machine and proceed when the
drive becomes ready.

If you have network access to a "boot server", hold down the <BS) and (') keys and push the
boot buttqn. Continue to hold down <') until a tiny square appears in the middle of the
screen. You should now be talking to the Network Executive; type Scavenger<cr).

When the Scavenger finishes, the attempt'to invoke the Executive may fail because Scavenger was
invoked from another disk. Try booting. Ifunsuccessful, go on to step 2.

2. Use Ftp to get fresh copies ofSysFont.al and Executive.Run. Again, this can be done in two ways:

Alto Operating System

Cleared yersion of October 15,1979

September 9, 1979 28

Place a good disk in the machine and invoke Ftp. After it is initialized, change disks, wait for
the damaged one to become ready, and type the necessary Ftp commands to retrieve the files.

Invoke Ftp via the Network Executive as in step l.

Now try booting. Ifunsuccessful, go to step 3.

3. Install the OS. You guessed it; this can be done in two ways:

Place a good disk in the Alto and type "Install." When asked for your name, place the
damaged disk in the machine, wait for the drive to become ready, and proceed.

Invoke the "NewOS" via the Network Executive. You will be asked: "Do you want to
INSTALL this operating system?"

6.3. File Name Conventions

Various conventions have been established for Alto file names. The conventions are intended to be
helpful, not authorative.

1. All files relating to a subsystem "Whiz" should have file names of the form "Whiz.xxx", I.e. typing
"Whiz.*" to the Executive should list them all, delete them all, etc. Example: Bcp1.Run, Bcp1.Syms, etc.

2. File extensions are of preference chosen to be language extensions, i.e. they specify the language in
which they are written. The present set is:

Bcpl
Mu
Asm
Mesa
Help
Cm

Bcpl source code
Mlcro-code source
Assembler source code
Mesa source code
A help file for the system given in the name
A command file for the Alto Executive

3. File extensions are otherwise chosen to reflect the format of the file. The present set is:

Bravo
Run
Image
Al
Boot
Br
Syms
BCD
Dm

Ts

6.4. Miscellaneous infonnation

Text file with Bravo fonnat codes
Executable file produced by Bldr
Executable file produced by Mesa
Alto format font file
A file that can be booted
Bcpl relocatable binary file
BIdr symbol table output
Mesa object code
File produced by the Dump command,

read by the Load command
Text file containing a transcript

The key in the lower right corner of the keyboard on a Microswitch keyboard «blank-bottom» or in the
upper right on an ADL keyboard (FlU) is called the Swat key. If you press it, as well as the <ctr]> and
<left-shift> keys, the Swat debugger wit! be invoked. If Y9U do this by mistake, <ctr1>P will resume your
program without interfering with Its exectition, and <ctr1>K will abort your program.

You can force an abort at any time by depressing the Swat key together with the <left-shift> key.

Alto Operating System

Cleared version of October 15, 1979

September 9,1979 29

In order for the operating system to run properly, the following files should be on your disk (those marked
* are optional):

SysDir
DiskDescriptor
SysFont.Al
Executive.Run
Sys.Boot
Sys.Errors
Swat
Swatee

System directory.
Disk allocation table.
System display font.
Executive {command processor).
Boot-file containing the operating system.
* Error messages file.
* Debug~er program, created by running InstallSwat.
Debuggmg file essential to Swat. .

(Note: If you wish to change the font used by the operating system, it suffices to copy a new font to
SysFont.Al and boot the system.)

If you intend to write programs that use the operating system facilities, you will want some additional files:

Sys.Bk

SysDefs.d

Streams.d
AltoFileSys.d
Disks.d
AltoDefs.d
BcplFiles.d

Required by BIdr to load programs that reference operating
system functions. This file also shows which functions are
implemented in which levels and the names of source files for
the code.
Definitions of standard system objects. You will probably want
to "get" this file in Bcpl compilations that use operating system
functions extensively.
Data structure definitions relating to streams.
Data structure definitions relating to files.
* Data structure definitions relating to the "disk" object.
Definiq.qns of places and things peculiar to an Alto.
* DefimtlOns of the formats of Bcpl-related files.

Alto Operating System

Cleared version of October 15, 1979

September 9, 1979 30

Name

CYCLE
JSRII
JSRIS
CONVERT
DIR
ElR
BRI
RCLK

SIO
BLT

BLKS

SIT

JMPRAM
RDRAM

WRTRAM
DIRS
VERS

DREAD
DWRITE
DEXCH

MUL
DIV

BITBLT

Notes:

Opcode Address Function

60000 C
64400 D
65000 D
67000 D
61000
61001
61002
61003

61004
61005

61006

61007

61010
61011

61012
61013
61014

61015
61016
61017

61020
61021

61024

ACO+-ACO ley (ifC ne 0 then C else ACl); smashes ACI
AC3+-PC+l; PC+-rv (rv (PC + D)
AC3 +- PC + 1; PC+-rv (rv (AC2+ 1))
character scan converSIOn
disable interrupts
enable interrupts
PC +- interruptedPC; EIR
ACO+-16 msb of clock (from reaITimeClock); ACI +- 10 lsb of clock *
100 + 6 bits of garbage; resolution is 38.08 us.
start I/O .
Block transfer of -AC3 words; ACO = address of first source word-I;
ACI = address of last destination word; ACO and AC3 are updated
during the instructiOn. .
Block store of-AC3 words; ACO=data to be stored; ACI = address
oflast destination word; AC3 is updated during the instruction
start interval timer. For an interrupt when the time is
timerInterruptTime, ACO should be 1 when this instruction is
executed
Emulator microcode PC+- ACI in control RAM
ACO+-(if ACl[4] then RAM else ROM)!ACI (left half if ACl[5],
right half otherwise)
RAM!ACI +-(ACO,AC3)
* Disable interrupts and skip ifinterrurts were on
* ACO+-(CEngineeringNumber-l) 16 + BuildNumber)*256
+ Microcode Version
** ACO+-rv(AC3); ACI +-rv(AC3 xor 1) .
** rv(AC3)+-ACO; rv(AC3+ l)+-ACI
** t+-rv(AC3); rv(AC3)+-ACO; ACO+-t; t+-rv(AC3+ 1);
rv(AC3 + I)+- ACl; ACI +-t
Same as NOV A MUL: ACO,l +- AC2* ACI + ACO
Similar to NOV A DIV: ACI +- ACO,l! AC2; ACO has remainder.
DIV (unlike NOVA version) skips the next instruction ifno overflow
occurs.
* character scan conversion of bit-map manipulation

Address: C=bits 12-15; D=bits 8-15; -=no address
variables in function descriptions are machine registers or page 110catlons
* indicates available only in "new" microcode (SIO leaves ACO[O] = 0)
** indicates available only on Alto II

Table 2.1: New instructions in Alto emulator
(see Alto Hardware Manual for more details)

Alto Operating System

Device
Number of drives/Alto
Number of packs

Number of cylinders
Tracks/ cylinder/pack
Sectors/track
Words/sector

Data words/track
Sectors/pack

Rotation time
See~ time (approx.)

mm-avg-max
Average access
to 1 megabyte

Transfer rates:
peak-avg
peak-avg
~er sector
or full display

for big memory
whole drive

Cleared yersion of October 15, 1979

September 9, 1979

Diablo 31 Diablo 44
lor2 1
1 removable 1 removable

1 fixed

203 406
2 2
12 12
2 header same
8 label
256 data
3072 3072
4872 9744

40 25
15 + 8.6*sqrt(dt)
15-70-135

8 + 3*sqrt(dt)
8-30-68

80 32 (both packs)

1.6-1.22 2.5-1.9
10.2-13 6.7-8
3.3 2.1
.46 .27
1.03 .6
19.3 44 (both packs)

Table 2.2: Properties of Alto disks

31

ms
ms
ms
ms

MHz
us-word
ms
sec
sec
sec

Alto Operating System

LastMemLoc

StartSystem

StackBase

StackEnd

EndCode

StartCodeArea

400-777

300-377

20-277

0-17

Cleared version of October 15, 1979

September 9, 1979

Last memory location

Base of system

Root of stack; stack extends downward from here

Top of stack, which grows down

End of user program + 1

32

This space contains user code and statics, loaded as specified by the
arguments to BIdr. Default is to start at StartCodeArea and load
statics into the first 400 words, and code starting at
StartCodeArea+400. See Bepl manual.

Start of user program area

Page 1: machine-dependent stuff (see Alto Hardware Manual)

Bcpl runtime page 0

User page 0

Unused

Table 3.1: Memory layout (all numbers octal); see ~ection 3.6

LastMemLoc

StaekEnd

EndCode
StartCodeArea

The operating system described in this document runs on 64K
Altos; this location is 176777.
The address of the frame in which the current procedure is
executing is computed by the MyFrame procedure; alternatively,
compute Iv (first argument of current procedure) -4
Rv(335)
User code may start at any address> 777.

Table 3.2: Values of symbolic locations in Table 3.1
(all numbers octal)

Alto Operating System

Cleared version of October 15, 1979

September 9, 1979

Operating System Change History

This file contains an inverse chronological listing of changes to the Alto operating system.

33

The "normal way" to install a new operating system is to retrieve a copy of the files NewOS.Boot,
Sys.Syms, Sys.Errors and Sys.Bk that are being distributed. Say "Install NewOS.boot" to the Exec, answer
the configuration questions and then delete NewOs.Boot.

Version 17116 -- September 9, 1979

The most significant improvements are that the DSK object has been extended to permit disk-independent
operation at the DoDiskCommand/GetCb level; procedures have been added to scan a disk stream at full
dIsk speed; and the directory lookup procedures have been modified to take advantage of these facilities
and thereby improve perfonnance substantially. To make way for these improvements, all support for file
version numbers (a little-used feature) has been removed.

Incompatibilities are confined to those programs that create DSK objects, since several of the OS routines
now expect to be passed the extended versions. Programs that include the TFS must be reloaded with the
latest release of TFS; they will then run under OS 17 or as 16. Programs that include BFSfnit must be
reloaded with the as 17 version of BFSlnit; they will then not work under previous OS releases. Of the
standard Alto subsystems, FTP falls into the first category and Neptune in the second.

In the DSK object, the fields fpDiskDescriptor, driveNumber, retryCount, and totalErrors have moved,
and fpSysLog has been deleted; it is believed that no existing programs are affected by this.

Additions: [BFS] the DSK object is extended to include generic procedures InitializeDiskCBZ,
DoDiskCommand, GetDiskCb, and CloseDisk, and constants lengthCB and lengthCBZ. The CBZ
structure is now public, and is defined in Disks.d and documented in the "Disks and BFS" description.
InitializeDiskCBZ defaults its errorRtn argument. DoDiskCommand has an optional nextCb argument.
DefaultBf<;ErrorRtn and BfsNonEx are exported in Sys.bk, so user programs can load BFSlnit. The BFS
can now o1?erate in any of the file system partitions available on the large disks of DOl'ados and DOs. An
optional hmtLastPage argument to ActOnDiskPages, WriteDiskPages, and DeleteDiskPages has been
added. New procedures include Min, Max, Umin, Umax, and Ca11l0 through CaUl5.

[Disk streams] A DiskStreamsScan level has been added, containing the procedures InitScanStream,
GetScanStreamBuffer, and FinishScanStream; these support overlapped reads at full disk speed.

[Keyboard] Shift-LF generates Ascii 140B -- accent grave.

Deletions: The remaining vestiges of the Sys.Log code are gone. BFSSetStartingVDA removed -- use
ReleaseDiskPage(disk, AssignDlskPage(disk, desiredVDA-1)). All support for version numbers has been
removed from the standard release; an alternate release (NewOsV.boot) is available in which the version
number facility has been retained, but it· does not benefit from the improved directory lookup
performance, it is somewhat larger, and it may not be supported in the future.

Changes: lev Basic is now guarai1teed to be at 175000B or higher, for the benefit of Mesa and Smalltalk.
ReleaseDiskPage doesn't increment the page count if the page released is already free. The BFS now
retries data-late errors indefinitely. The BFS cleanup routme is now called with three arguments. The
DiskDescriptor file is nqw allocated next to SysDir rather than in the middle of the disk as it was in OS 16.
The old write date is not restored to a directory file (directory bit on in serial number) if the file is opened
for writing but never dirtied. A number of bugs in the disk streams code have been fixed that prevented
manipulation of files greater than 32767 pages long. Directory operations (OpenFile, DelcteFile, etc.) now
search the directory at essentially full disk speed. Booting has been speeded up somewhat. The OS uses
and maintains disk shape information as a DSHAPE file property in the leader page ofSysDir.

Version 16/16 -- February 19, 1979

Alto Operating System

Cleared yersion of October 15, 1979

September 9, 1979 34

This version contains many internal changes but few external ones. Even though it is technically
incompatible with previous releases (OS 16/16 rather than OS 16/5), most programs are not affected.
There are three major changes: 1) backward compatibility for the "old" OS has been removed, 2) the disk
bit table is now paged rather than occupying a fixed area in memory, and 3) the interface between Swat
and the OS changed - Swat.25 is required.

Additions: the BitBlt instruction is accessible from Bcpl and a structure definition for a BitBlt table was
added to AltoDefs.d. More of the page 1 and I/O area location names were added to AltoDefs.d. A new
declaration file, BcplFiles.d, was created and the Bcpl file format definitions were moved there from
SysDefs.d. The OS corrects parity in extended memory banks during booting. The "new" file date
standard is implemented. The DDMgr object operations were added to Calls.asm.

Deletions: the compatiblity package has been removed. All of the commonly used subsystems which
depended on it have been updated. They are: Asm, RamLoad, CleanDir, EDP, and Scavenger. If you
ke~p any of these on your disk, you should get new copies from the <Alto> directory. fpSysLog, fpSysTs,
fpWorkmgDir, faSysLog, and nameWorkingDir went away.

Reorganiztions: the BFS was extensively reorganized to bring it into sync with the TFS. The code for
creating a virgin file system and creating a DSK object has been disentangled from OS initialization. The
Bcpl frame-munging code was split out of BFSML.asm and put into a new file: BcplTricks.asm.
Initialization for the keyboard was moved from the OS initializtion modules into KeyStreamsB.bcpl,
making it self-contained. Parity Error handling, Calendar clock update, Swat interface, and InOutLd were
split into separate modules.

Changes: DisableInterrupts returns true if interrupts were on. The VERS and DCB structure were moved
into AltoDefs.d. The names of many OS modules changed. The long installation dialog permits more
precise control over the handling of memory errors. The erase disk dialog pennlts you to create an exlra
big directory. The interface to Swat has changed - Swat.25 is the new version.

Version 15/5 -- March 15, 1978

Fixed a bug in the file date code; introduced another bug in the same code.

Version 14/5 -- March 1, 1978

Additions: ReadCalendar and SetCalendar - analogus to DayTime and SetDaytime only they conform to
the new time standard. DayTime and SetDaytime will continue work correctly until April 30, 1978. Anew
declaration file, AltoDefs.d was created; some things were moved there from SysDefs.d. Definitions of the
format of .BB (overlay), and .Syms files were added to SysDefs.d. This OS has room for a 'big' bittable-a
special OS version is not required.

Deletions: The system log was de-implemented. LogOpen, LogClose, and MakeLogEntry are now Noops.
They will be removed when an incompatible OS is next released.

Reorganizations: Noop, TruePredicate and FalsePredicate were moved from StreamsML.asm to
BFSML.asm (up a few Junta levels). Fast streams were split out of disk streams: FastStreamsB.bcpl and
FastSteamsA.asm. Streams.bcpl was split into 3 files: DiskStreams.bcpl, DiskStreamsMain.bcpi, and
DiskStreamsAux.bcpl; StreamsML.asm disappeared.

Changes: A bug in ReturnFrom was fixed (this only matters if you use the microcode version of the frame
allocator). TmePredicate now returns -1 (it used to return 1). If the unrecoverable disk error routine inthe
BFS returns, the cleanup procedure is called and things plun~e on. OpenFile with a filename containing a
non-existant directory now returns 0 instead of calling Swat. The Diablo printer bits (0-7) are now ignored
by the keyboard interru'pt routine.

Version 13/5 -- May 16,1977

Additions: ParseFileName (a lower level directory function) was made available to users.

Changes: Minor, yea insignificant bugs fixed.

Alto Operating System

Version 12/5 -- March 20, 1977

Cleared version of October 15, 1979

September 9,1979 35

Additions: ClockSecond. Location 613b is now reserved to indicate to RAM microcode what sort of Alto
we are on: ° implies Alto I; -1 implies Alto II.

Changes: Time-keeping accuracy improved slightly. BFS is now reentrant--you may have several
independent disk activitlCs going concurrently (this will make CopyDisk more reliable).

Version 11/5 -- January 9, 1977

Additions: eventInLd and eventCallSubsys processing added. Also now possible to install the operating
system with logging disabled.

Changes: Booting process somewhat more robust. Several changes to improve diagnostic information
about parity errors provided by Swat. Improved password protection. Alto II fixes in parity and timer
routines.

Version 10/5 -- November 2, 1976

Changes: A nasty bug in the disk routines was uncovered and fixed. It was responsible for occasionally
garb aged files.

Version 9/5 -- September 25,1976

Additions: verNewAlways option to OpenFile; changeSerial entry on file leader pages.

Changes: Various bugs relating to keeping file version numbers were fixed.

Version 8/5 -- August 28,1976

Changes: Several bugs in parity error detection and reporting were removed.

Version 7/5 -- August 10,1976

Additions: The Idle procedure and corresponding static IvIdle; IvParityPhantomEnable global static; more
installation options.

Minor changes: Two bugs in PositionPage are fixed -- one permitted read-only files to be accidently
lengthened.

Version 6/5 -- July 8, 1976

Additions: (1) Several global statics have been added: AltoVersion (code for machine, build and
microcode versions), ErrorLogAddress (Ethernet address to report hardware errors), # 176777 points to
the global statics.

(2) The format ofSys.Boot has been altered slightly so that Altos may be booted over the Ethernet.

Version 5/5 -- Apri128, 1976

How to get it: Because version 5 introduces some incompatibilities, it is essential that several subsystems be
updated: (1) get a new Executive and Bravo 5.5 or later (these willlun under version 4 or version 5 of the
operating system); (2) get Sys.Bk, Sys.Syms, Sys.Boot (under another name, e.g. NewOs.Boot); (3) install
your new system; (4) get a new version of DDS, which depends on version 5 of the operating system; (5)
get a new Instal1Swat.Run and invoke it; (6) if you are a programmer, be sure to get new copies of all
definitions files (e.g. AltoFileSys.d).

Incompatibilities: (1) Most calling sequences and subroutine names for the "Bfs" routines have changed.
These changes were made in order to mtroduce the concept of a "disk" object, so that standard as stream

Alto Operating System

Cleared version of October 15, 1979

September 9, 1979 36

and directory functions could be applied to non-standard disks (e.g., the Trident T80). The static
IvDiskKd has been removed.

(2) The "disk address" returned as part of a CF A or FA is now a virtual disk address. The routine
RealDiskDA can be used to convert it to a physical disk address if desired.

Minor changes: (1) The handling of the UserFinishProc has changed. The recommended procedure for
such procedures is to simply return from a finish procedure, not to call OsFinish again.

(2) Several bugs in the streams package are fixed, e.g. ReadBlock applied to a file with 511 bytes in thelast
data page did not work correctly.

(3) The "new disk" refreshing procedure has been changed to use the new FTP; it is now mandatory that
this file be present on your disk when you attempt to make a brand new disk.

(4) It is now possible to change disk packs during the Install sequence; simply change packs when some
question is asked of you (exception: if you are creating a "new disk," do not change packs until told to do
so).

(5) The log functions have been made much more robust. It is now possible to delete Sys.Log and
continue operations.

(6) Numerous bugs in ReturnFrom and FramesCaller are fixed.

(7) The default number of file versions to keep is now stored in the DiskDescriptor.

(8) Wns has been changed to allow both signed and unsigned number conversion.

(9) The arguments to DeleteFile have changed slightly (only if you pass more than 2 arguments to it).

(10) The introduction of the "disk" object has added some statics: sysDisk, some functions: KsGetDisk,
LnPageSize, and optional "disk" arguments to disk stream opening functions.' .

Alto Operating System

Cleared yersion of October 15, 1979

September 9,1979

Operating System Software Packages

37

Several of the modules of the operating system are also available as software packages in case the
programmer wishes to include them in overlays, or modify them. etc. The sources are in
<AltoSource>OSSources.dm, and the binaries are in <Alto>OSBrs.dm. You are urged to get listings and
ponder them since proper use of these procedures in a foreign context may require some modifications,
and wilt certainly require some understanding. The BootBase package, in the BUlldBoot documentation in
the Subsystems manual, offers configurations of these packages that permit making most any subsystem
into a boot file without souce level changes.

Utilities. The file OsUtils.Bcpl contains several of the utility procedures located in levMain: Wss. Ws. WI,
Wns. Wos. Wo, GetFixed, FreeFixed. FixedLeft. SetEndCode. The procedure GetFixedInit must be
called to initialize the GetFixed/FreeFixed procedures.

Password. The file Password.Bcpl contains the Alto password routines. and can be used to do password
checking in subsystems.

Keyboard. The keyboard handler is available_ in KeyStreamsB.Bcpl and KeyStreamsA.Asm. The
procedure CreateKeyboardStream initializes the package, and returns a value (keys) that can be used asa
keyboard stream.

Display. The display handler is available in the file DspStreamsRBcpl and DspStreamsA.Asm.
Documentation is found later in this manual.

Directory. 1be file Dirs.Bcpl contains the directory manipulations described in section 3.5.

Fast Streams. The files FastStreamsB.bcpl and FastStreamsA.asm implement fast streams to memory.
Documentation is part of DiskStreams.

Disk Streams. The files DiskStreams.bcpl, DiskStreamsMain.bcpl. and DiskStreamsAux.bcpl contain
procedures for implementing disk streams. The fast file scanning facilities require the addItional file
DiskStreamsScan.bcpl. Documentation is found later in this manual.

Alloc. The file Alloc.Bcpl implements the allocator. See documentation later in this manual.

Basic File System. The files Bfslnit.bCI)l, BfsBase.Bcpl, BfsWrite.Bcpl, BfsCreate. BfsClose.bcpl,
BfsDDMgr.bcpl. BfsNewDisk.bcpl BfsFindHole.bcpl and BfsM1.Asm implement the basic file system
(documentation appears later in this manual). These also need Calendar.Asm. Dvec.Bcpl. Calls.Asm.
BcplTricks.asm and SysErr.bcpl in order to operate.

Disk Streams

Cleared version of October 15, 1979

September 9,1979

Disk Streams: A Byte-Oriented Disk Input/Output Package

38

The disk streams package provides facilities for doing efficient sequential input/ output to and from Alto
disk files. It also includes operations for doing random positioning with moderate efficiency, and for
Qerforming various housekeeping operations. An introduction to streams can be found in the Alto
Operating System Manual.

As part of these facilities, a "fast stream" capability permits very fast sequential byte access to objects
stored in memory. An extension to the disk streams package permits reading of a disk stream to be
overlapped with computation, thereby enabling the reading of files at full disk speed under favorable
conditIOns.

The source files for the disk streams package are kept with the Alto Operating System in OS.DM:

Streams.D: public declarations;
DiskStreams.decl: private declarations;
FastStreamsB.bcpl and FastStreamsA.asm: Memory streams;
DiskStreams.bcpl: create/destroy a stream;
DiskStreamsMain.Bcpl: the 'main line' code;
DiskStreamsAux.bcpl: auxiliary disk stream functions;
DiskStreamsScan.bcpl: fast file scanning;
DiskStreamsOEP.bcpl: overlay entry point declarations.

The DiskStreams code (not the FastStreams code) may be swapped. To this end, the functions are
distributed among three moderate-sized modules and intermodule referen~es are minimized.

Streams use the generic procedures of a "disk object" to do disk transfers. The stream routines default the
choice of disk to "SYSDISk," a disk object created by the Alto operating system to provide access to the
standard disk drive. However, you are free to open streams to other disks.

1. Data stmctures

The file Streams.D contains the public declarations of the disk streams package. Most users will not be
concerned with these structures t except occasionally with their size, so as to be able to allocate the right
amount of space for one of them), because the streams package provides procedures to perform all the
operations which are normally needed.

The ST structure is common to all streams in the Alto operating system. It includes the procedures which
implement the generic stream operations for this particular stream: Closes, Gets, Puts, Resets, Putbacks,
Errors, and Endofs. In addition, there is a type, which for disk streams is always stTypeDisk, and three
parameter words whose interpretation depends on the stream. The parameter words are not used by disk
streams.

Fast streams are a specialization of streams, designed to quickly get or put bytes or words until a count is
exhausted, and then call on a fix up routine which supplies a new count. Usually the count specifies the
number of items remaining in a buffer, and the fixup routine empties or refills the buffer, but no such
assumptions are made by fast streams. This facility is described in a later section; it is used by disk streams,
but is of no concern to a program which simply wants to use disk streams.

A file pointer contains all the information required to access an Alto disk file. Its structure is described in
detail in the Disks documentation. For a normal user of streams, a file pointer is simply a small structure
which must be supplied to the CreateDiskStrcam routine to specify the tile to which the stream should be
attached. File pointers are normally obtained from directories, but a user is free to store them wherever he
wishes.

Disk Streams

Cleared version of October IS, 1979

September 9,1979 39

A file address FA is a pointer to a specific byte in a file. It includes the address of the byte, divided intoa
page number (the page size depenos on the disk in use; normally pages contain 512 bytes) and a byte
number. It also includes a disk address, which is a hint as to the physIcal location of the specified page.
Stream routines which use file addresses check the hint; if it turns out to be correct, they proceed, and
otherwise they start at the beginning of the file and search for the desired page.

A complete file address CF A contains both a file pointer and a file address; it is a pointer to a specific byte
anywhere in the file system.

A file :position (FPOS) is a double-precision number which addresses a byte in a file. The first word is the
most-sIgnificant half. .

2. Properties of disk streams

All the stream procedures take as their first parameter a structure called a disk stream. A disk stream
provides access to a file stored on the Alto disk. Each stream is associated with. exactly one file, although it
IS possible to have several streams in existence at once which are associated with the same file. The file isa
peimanent object, which will remain on the disk until explicitly deleted. The stream is an ephemeral
object, which goes away when it is closed, or whenever the Alto's memory is erased.

A file consists of a leader page, a length L, and a sequence of L bytes of data; each byte contains 8 bits. A
strcam is always positioneo to some byte of the file, and the normal stream operations proceed sequentially
from the current position to later positions in the file. The first byte is numbered O. When the stream is
positioned at byte n, this will be the next byte transferred by a Gets or Puts. There are also operations
which reposition the stream. When data is written into the stream, the file is lengthened if necessary to
make room for it. The file is never shortened except by TruncateDiskStream (which may be called by
Closes; see below).

A stream can transact business a word at a time or a byte at a time, depending on how it is created .. In the
fOlmer case, if the length of the file is odd, the last word delivered will have garbage in its right byte.

You can replace the generic stream procedures if you wish (Gets, Puts, Closes, Resets, Errors, Endofs,
Stateofs). The one you are most likely to want to replace is the error procedure. It is initialized to SysErr.

3. Procedures

This section describes the calling sequences and behavior of all the user-callable procedures in the streams
package. If a parameter is followed by an expression in brackets, this means that the parameter will be
oefaulted to iliat expression if you supply O. If the last few parameters you are supplymg are defaulted,
you can just omit them. Empty brackets mean that the parameter may be omitted. The parameter sstands
for the disk stream the procedure works on. .

Warning: Because the stream procedures occasionally use the RetryCall function, a procedure address
cannot be computcd, but must be the value of a static (global) or local variable. ThuS" a> >proc(stream, b)"
is not permitted, but "let pr = a> >proc; pr(stream, b)" is fine.

3.1. Creating and destroying

CreateDiskStream(filePtr, type rksTypeReadWrite], itemSize [wordItem], Cleanup [Noop], errRtn
[SysErr], zone [sysZonel. nil, disk [sysDisk]) returns diskStream. A new disk stream is created and
returnco. It is associated with the file specified b¥ filcPtr on the given "disk," and positioned at item O. Its
type may be one of (see Streams. I) for definitions):

Disk Streams

ksTypeReadOnly
ksTypeWriteOnly
ksTypeReadWrite

Cleared yersion of October 15, 1979

September 9,1979

Its itemSize may be one of (see Streams.D for definitions):

charI tern
wordItem

40

If you supply a cleanup routine, it will be called with the stream as parameter just before the stream is
destroyed by a Close. If returnOnCheckError is true, the routine will return 0 if the file id of the leader
page at the address specified in the file pointer is different from the file id in the file pointer. You would
want this if you wanted to use the file pointer as a hint, perhaps to be backed up by a directory looku!? ifit
fails. In fact, the standard directory routine OpenFile does exactly that. If you supply a zone, it WIll be
used to allocate the space needed by the stream. This space comes in two parts: the stream itself, about60
words long, and the buffer, one page long.

Resets(s): flushes any buffers associated with the stream to the disk, and positions the stream to O.

Closes(s): closes the stream, flushing the buffer and updating various information in the leader page if
necessary. The last things it does are to call the cleanup routine passed to CreateDiskStream, and then to
free the space for the stream. If the stream is open for writing only and it is not pOSitioned at date byte 0,
the file length is truncated to the current position.

CleanupDiskStream(s): flushes any buffers associated with the stream to the disk.

3.2. Transferring Data

Gets(s): returns the next item (byte or word, depending on the item size), or causes an error if there are no
more items in the stream.

Puts(s, item): writes the next item into the stream. It causes an error if there is no more disk space, or if the
stream was created read-only.

ReadBlock(s, address, count) returns actualCount: reads count words from the stream into memory,
starting at the specified memory address. It returns the number of words actually read, which may beless
than count if there were not enough words in the file. It never causes an end-of-file error. It is possible to
use ReadBlock on a byte stream, but only if the stream is currently positioned at an even byte; otherwise
there will be an error.

WriteBlock(s, address, count): writes count words from memory into the stream, starting at the specified
memory address. The comment in ReadBlock about byte streams applies here also.

3.3. Reading state

Endofs(s): returns true if and only if there are no more items in the stream.

LnPageSize(s) returns the log (base 2) of the number of words in a page of the file.

FileLength(s, filePos f]) returns lengthL: positions the file to its last byte and returns the length in bytesin
filePos (FPOS), and the,length mod 2**16 as its value.

FilePos(s, filePos n) returns posL: returns the current byte position in filePos (FPOS), and the current
position mod 2**10 as its value. '

GetCurrentFa(s, fileAddress) stores the current position in the file address (FA), including the disk address
of the current page as a hint which can ,be used by JumpToFa.

Disk Streams

Cleared version of October 15, 1979

September 9, 1979 41

GetCompleteFa(s, completeFileAddress) stores both the file pointer and the current position in the
complete file address (CF A). This is enough information to create a stream (passing the file pointer to
CreateDiskStream) and then to return to the current position (passing the file address to JumpToFa).

KsBufferAddress(s) returns address: returns the address in memory of the buffer for the stream. This is
useful if you want to move the buffer; you can do so, and then reset the address with KsSetBufferAddress.

KsGetDisk(s) returns a pointer to the DSK object that describes the disk on which this stream is open(see
Disks documentation).

KsHintLastPageFa(s) returns a pointer to a hint for the end of the file opened by stream s.

ReadLeaderPage(s, Id) reads the 256 word leader page for the file on which s is open into the vector
pointed to by ld. fhe stream is left positioned at data byte O.

3.4. Setting state

TruncateDiskStream(s) truncates the stream at its current position. Afterwards, Endofs(s) will be true.

PositionPage(s, page, doExtend [trueD returns wantedToExtend: positions the stream to byte 0 of the
specified page. If doExtend is true, it will extend the file with zeros if necessary in order to make it long
enough to contain the specified page. If doExtend is false, it will not do this, but will return true if it was
unable to position the stream as requested because the file wasn't long enough. NOTE: This routine
interprets' page" in the units associated with the disk on which the stream is open. If you wish a device
independent positioning command, see SetFilePos.

PositionPtr(s, byteNo, doExtend [trueD returns wantedtoExtend: positions the stream to the specified byte
of the current page. DoExtend is interpreted exactly as for PositionPage ..

Juml?ToFa(s, fileAddress) positions the file to the specified address (FA). It tries to use the disk address
hint III the address, but falls back to PositionPage if tllat fails.

SetFilePos(s, filePos): positions tlle file to the byte specified by the double-precision number in filePos
(FPOS).

SetFilePos(s, filePosH, filePosL): positions the file to the byte specified by the filcPosH*2**16 + filePosL.

KsSetBufferAddress(s, address): sets the buffer address to the specified memory address. It is the caller's
responsibility to be sure that the buffer has the proper contents, and that it was allocated from the proper
zone, so that when it is freed using the zone which was used by CreateDiskStream the right thing will
happen.

ReleaseKs(s) will release all the storage used by the stream s, without referencing the disk at all. This isa
way of aborting a stream, often useful when recovering from an unrecoverable disk error.

WriteLeaderPage(s, ld) writes tlle 256-word vector pointed to by ld on the leader page of the file on which
s is open. The stream is left postioned at data byte O.

3.5. File Scanning

The disk stream procedures described above have the property that they perform disk operations
synchronously. When one of these procedures requires a disk transfer to be performed, it imtiates the
transfer and waits for it to complete. While certain procedmes (e.g., ReadBlock, Write Block, SetFilePos,
etc.) are capable of transferring many consecutive pages in a single disk operation, most stream routines are
limited to one page per disk revolution. This perfOlmance is an order of magnitude below tlle raw transfer
rate of the disk.

Disk Streams

Cleared version of October 15, 1979

September 9,1979 42

The procedures in the DiskStreamsScan module pennit reading (but not writing) of a file to proceed atup
to full disk speed, if the amount of computation to be perfonned per page is not too great (about 2
milliseconds). To make use of this facility, you must provide a certain amount of extra buffer space to be
managed by the disk streams package, and you must take care of sequencing through the data in each page
yourself rather than obtaining it one item at a time using Gets.

The flow of control is basically as follows. You create a disk stream in the nonnal fashion. When you want
to start scanning the file, you pass the stream to InitScanStream, along with one or more additional page
size buffers, and it returns a Scan Stream Descriptor (SSD). Now, every time you want to examine the
next page of the file, you call GetScanStreamBuffer, which returns a pointer to a buffer containing the
contents of that page. The contents of the buffer remain valid until the next call to GetScanStreamBuffer.
When you have scanned as much of the file as you care to, you call FinishScanStream, which destroys the
SSD and leaves the stream positioned at the beginning of the page most recently returned by
GetScanStreamBuffer. You should not execute any normal stream operations between the calls to
InitScanStream and FinishScanStream.

InitScanStream(s, buITable, nBufs) returns sst. Creates a Scan Stream Descriptor in preparation for
scanning the file corresponding to the stream s. buffable is an array of pointers to page-slze buffers, and
nBufs is the number of buffers (there must be at least one). That is, the buffers are located atbuffable!O,
buITable!l, ... , buffable!(nBufs-I). The SSD is allocated from the zone from which s was allocated.
InitScanStream does not actually initiate any disk activity.

GetScanStreamBuffer(ssd) returns a pointer to a buffer containing the next page of the file being scanned,
or zero if end-of-file has been reached. This procedure waits if necessary for the transfer of the next page
to complete, and before returning it initiates as many new disk transfers as it has buffers for. The first page
returned by GetScanStreamBuffer is the one at which the stream was positioned at the time
InitScanStream was called. The initial portion of the SSD is a public structure (defined in Streams.d)
containing the disk address, page number, and number of characters in the page most recently returned by
GetScanStreamBuffer; you may use this infonnation for whatever purposes you wish (e.g., in building upa
file map for subsequent efficient random access to the stream).

FinishScanStream(ssd) waits for disk activity to cease, updates the state in the corresponding stream, and
destroys the SSD. The stream is left ~positioned at. the beginning of the last page returned by
GetScanStreamBuffer, or at end-of-file if GetScanStreamBuffer most recently returned zero.

The package uses the stream buffer in addition to the buffers passed explicitly to InitScanStream. It is
possible to scan a file at full disk speed (assuming the file is consecutively allocated) with two buffers(Le.,
Just one additional buffer), so long as the interval between calls to GetScanStreamBuffer is no greater than
3.3 milliseconds (or about 2 milliseconds of computation on the caller's part). If more computation per
page is required, or the amount of computation per page is highly variable, then more buffers are required
to maintain maximum throughput.

4. Fast Streams

A fast stream structure must begin with the structure decIa"red as FS in Streams.D; following this you can
put anything you like. To initialize this structure, use

InitializeFstream(s, itemSize, PutOverflowRoutine, GetOverflowRoutine, GetControlCharRoutine
[Noop)). The s paramt~r points to storage for the stream structure, IFS words long. The itemSize is asfor
CreateDiskStream. The overflow routines are explained below. GetControICharRoutine(item, s) will be
called whenever a Gets for a charltem stream is about to return an item between 0 and # 37, and its value
is returned as the value of the Gets. The initialization provides Gets, Puts, and Endofs routines; the other
stream procedures are left as Errors.

SetupFstream(s, wordBase, currentPos, endPos) is used to set up a fast stream to transfer data to or froma
buffer in memory. Wordl3ase is the address of the buffer in memory, and currentPos and endPos are byte

Disk Streams

Cleared yersion of October 15, 1979

September 9, 1979 43

addresses in the buffer. CurrentPos is the address of the first byte to be transferred, and endPos is the
address of the first byte which should not be transferred. CurrentPos is rounded up to a word if the item
size is wordItem, and endPos is rounded up to a word.

When a Gets or Puts attempts to transfer the byte addressed by endPos, the corresponding overflow
routine is called, with the same parameters that were passed to the Gets or Puts. The overflow routine can
do one of two things:

do the work and return

fix things up so that the Gets or Puts can succeed, and then exit with RetryCal1(stream, item).

SetEof(s, newValue) sets the end-of-file flag in the stream. When this flag is set, the Gets routine is
replaced by a routine which gives an end-of-file error, and when it is cleared, the old Gets routine is
restored.

CurrentPos(s) returns the current position in the buffer, always measured in bytes.

ItemSize(s) returns the item size of the stream.

Dirty(s) returns true if the dirty flag is true. This flag is set to true whenever a Puts is done.

SetDirty(s, value) sets the dirty flag to the specified value (true or false).

5. Errors

Whenever an operation on a stream causes an error, the error procedure in the stream is called with two
parameters: the stream, and an error code. The error procedure is initialized to SysErr, but you can change
It to whatever you like. The error codes for errors generated by the disk stream package are:

1301 illegal item size to CreateDiskStream or
InitializeFstream

1302 end of file
1303 attempt to execute an undefined stream operation
1200 attempt to write a read-only stream
1201 attempt to do ReadBlock or WriteBlock on a stream not

positioned at a word.
1202 attempt to PositionPointer outside the

range [0 .. # 1000]
1203 attempt to do a disk operation on something

not a disk stream
1204 bug in disk streams package
1205 CreateDiskStream cannot allocate space for the stream

from the zone supplied

Display stream package

Cleared version of October 15, 1979

February 20, 1979

Display stream package

44

A library package is now available which provides display streams of great flexibility. Special features
include multiple fonts, repositioning to any bit position in the current line (or, under proper circumstances,
any line), selective erasing and polarity inversion, and better utilization of the available bItmap space.

The package consists of two files, DspStreamB.Bcpl and DspStreamA.Asm. In addition, files Streams.d
and AltoDefs.d provide useful parameter and structure declarations, in particular the parameters IDCB
and lOS mentioned below. The package does not require any routines other than those in the operating
system.

1. Creating a display stream

CreateDisplayStream(nLines, p-Block, 1Block Font [sysFont], wWidth [38], Options
[DScompactleft+ DScompactright], zone [sysZonej): creates a display stream. nLines is tfie maxImum
number of lines that will be displayed at once: It is completely independent of the amount of space
supplied for bitmap and DCBs. p Block is the beginning address of storage that can be used for the display
bitmap and control blocks; its length is lBlock. This block may be shortened slightly in order to align
things on even word boundaries. Font is a pointer to the third word of a font in AL format to use for the
stream. wWidth gives the width of the screen in Alto screen units, divided by 16; it must be an even
number. Zone is a free-space pool from which any additional space needed by the stream can be seized.
(For a description of zones, see the Alto OS manual.)

The minimum space for a display stream is lDCB*nLines+ fh*wWidth + 1, where fh is the height of the
standard system font, rounded up to an even number; the + 1 allows the display stream package to align
the space on an even word boundary. This, however, only provides enough bitmap for a single line. A
space a11ocation of IDCB*nLines+ fh*wWidth*nLines+l guarantees enough bitmap for a11 nLineslines.
The display stream package uses a11 the available space and tllen, if necessary, blanks lines starting from the
top to make room for new data.

Options, if supplied, controls the action of the stream under various exceptional conditions. The various
options have mnemonic names (defined in Streams.d) and may be added together. Here is the list of
options:

DScompactleft

DScompactright

DSstopright

DSstopbottom

DSnone

2. Displaying the strcam contents

a110ws the bitmap space required for a line to be reduced when
scrolling by eliminating multiples of 16 initial blank bit positions
and replacing them WIth the display controller'S "tab' feature.
However, a line in which this has occurred may not be
overwritten later (with SetLinePos, see below).

allows the bitmap space for a line to be reduced when scrolling
by eliminating multiples of 16 blank bit positions on the right.
Overwriting is allowed up to the beginning of the blank space,
i.e. you cannot make a lIne longer by overwriting if you select
this option.

causes characters to be discarded when a line becomes full,
rather than scrolling onto a new line.

causes characters to be discarded in preference to losing data
from the screen. This applies when either all nLines lines are
occupied, or when the allocatcd bitmap space becomes full.

none of the above (this option is necessary so that 0 defaults to
DScompactlcft + DScompactright).

Display stream package

Cleared version of October 15, 1979

Febmary 20, 1979 45

ShowDisplayStream(s, how fDSbelow], otherStream rdsp]): This procedure controls the I?resentation ofa
chain of display control blocks on the screen. If how id DSbc1ow, the stream wlll be displayed
immediately below otherStream; if DSabove, immediately above; if DSalone, it will be the only stream
di~played; if DSdelete, the stream s will be removed from the screen. The third argument is not needed for
DSalone or DSdelete.

If you wish to constmct your own "stream" for purposes of passing it to ShowDisplayStream, it is sufficient
that s»DSJdcb point to the first DCB of a list and that s»DS.ldcb point to the last DCB. These are the
only entries referenced by ShowDisplayStream (note that fdcb and ldcb are the first two words of a stream
structure).

3. Current-line operations

ResetLine(ds): erases the current line and resets the current position to the left margin.

GetFont(ds): returns the current font of ds.

SetFont(ds, pfont): changes the font of the display stream ds. Pfont is a pointer to word 2 of a font, which
is compatible with GetFont. Characters which have been written into the stre;;tm already are not affected;
future characters will be written in the new font. If the font is higher than the font initially specified,
writing characters may cause unexpected alteration of lines other than the line being written into. if
pFont!-2 is negative, then pFont!-l is a pointer to a font (word 3, remember) and subsequent characters
put to the stream will be shown in synthetic bold face by scan converting the character, moving over one
bit and scan converting it again.

GetBitPos(ds): returns the bit position in the current line. The bit position is normally initialized to 8.

SetBitPos(ds, pos): sets the bit position in the current line to pos and returns true, if pos is not too large;
otherwise, returns false. Pos must be less than 606 (the display width) minus the width of the widest
character in the current font. Resetting the bit position docs not affect the bitmap; characters displayed at
overlapping positions will be "or"ed in the obvious manner. .

EraseBits(ds, nbits, flag): changes bits in ds starting from the current position. Flag = 0, or flag omitted,
means set bits to 0 (same as background); flag = 1 means set bits to 1 (opposite from background); flag =-1
means invert bits from their current state. If nbits is positive, the affected bits are those in positions pos
through pos+ nbits-l, where pos is GetBitPos(ds); if nbits is negative, the affected positions are pos+ nbits
through pos-l. In either case, the final position of the stream is pos + nbits.

Here are two examfles of the use of EraseBits. If the last character written on ds was ch, EraseBits(ds,
-CharWidth(ds, ch) will erase it and back up the current position (see below for CharWidth). If a wordof
width ww has just been written on ds, EraseBits(ds, -ww, -1) will change it to white-on-black.

4. Inter-line operations

GetLinePos(ds): returns the line number of the current line; the top line is numbered O. Unlike the
present operating system display streams, which always write into the bottom line and scroll up, the display
streams provided by this package start with the top line and.only scroll when they reach the bottom.

SetLinePos(ds, pos): sets the cutrent line position in ds to pos. If the line has not yet been written into, or
.if it has zero width, or if it is indented as the result of compacting on the left, SetLinePos has no effect and
returns false; otherwise, SetLinePos returns true. Note that if you want to get back to where you were
before, you must remeIIlber where that was (using GetLinePos and GetBitPos).

InvertLine(ds, pos): Inverts the black/white sense of the line given by pos. Returns the old sense (0 is
black-on-white). .

ds»DS.cdcb: points to the DCB for the current line. You may (at your own risk) fiddle with this to
achieve various effects. .

5. Scrolling

Display stream package

Cleared yersion of October 15. 1979

February 20, 1979 46

The display stream package writes characters using a very fast assembly language routine until either the
current line is full or it encounters a control character. In either of these situations it calls a scrolling
procedure whose address is a component of the stream. The scrolling procedure is called with the same
arguments as PUTS, i.e. (ds, char), and is expected to do whatever is necessary. The standard procedure
takes the following action:

II Null (code 0) is ignored.
2 New line (code ISb) causes scrolling.
3 Tab (code llb) advances the bit position to the next multiple of 8 times the width of "blank"

(code 40b) in the current font: if this would exceed the right margin, just puts out a blank.
4) Other control characters (codes I-lOb, 12b-14b, 16b-37b) print WIth whatever symbol appears in

the font.
5) If a character will not fit on the current line, scrolling occurs and the character is printed at the

beginning of the new line (unless the DSstopright option was chosen, in which case the
character is simply discarded).

The scrolling procedure is also called with arguments (ds, -1) whenever a contemplated scrollingoperation
would cause information to disa~pear from the screen, either because nLines lines are already present or
because the bitmap space is full unless the DSstopbottom option was chosen, in which case the procedure
is not called and the action is t e same as if it had returned false). If the procedure returns true, the
scrolling operation proceeds normally. If the procedure returns false, the scrolling does not take place,and
the character which triggered the operation is discarded.

The user may supply a different scrolling procedure simply by filling it into the field ds»DS.scroll.

6. Miscellaneous

GetLmarg(ds): returns the left margin position of ds. The left margin is initialized to 8 (about 1110" from
the left edge of the screen).

SetLmarg(ds, pos): sets the left margin of ds to pos.

GetRmarg(ds): returns the right margin position of ds. The right margin is initialized to the right edge of
the screen: thIS is the value of the displaywidth parameter in DISP.D.

SetRmarg(ds, pos): sets the right margin of ds to pos.

CharWidth(StreamOrFont, char): returns the width of the character char in the stream StreamOrFont; if
StreamOrFont is not a stream, it is assumed to be a font pointer.

Alloc

Cleared version of October 15, 1979

February 19, 1979 7:23 PM

Alloc -- A Basic Storage Allocator

47

The Alloc package contains a small and efficient non-relocating storage allocator. It doesn't do much, but
what it does it does very well. Initially the user gives the allocator one (or several) blocks of storage by calls
on InitializeZone. The user can later add storage to a zone by calling AddToZone. The function Allocate
returns a pointer to a block allocated from a given zone. Calling Free returns a previously-allocated block
to a given zone.

Argument lists given below are decorated with default settings. An argument followed by [exp] will default
if omitted or zero to the value exp; an argument followed by [... exp] will default if omitted to expo

InitializeZone, AddToZone

The function zone = InitializeZone(Zone, Length, OutOfSpaceRoutine [... SysErr], MalFormedRoutine
[... SysErr]) initializes the block of storage beginnmg at address Zone and containing Length words to be a
free storage zone. OutOfSpaceRoutine is taken to be an error handling routine that will be called whenever
a requested allocation cannot be satisfied. MalFormedRoutine is an error printing routine that is called
whenever the Alloc package detects an error in the consistency of the zone data structure. InitializeZone
builds the zone data structure, and returns a pointer to a "zone," which is used for all subsequent calls to
Allocate and Free for the zone. .

The function AddToZone(Zone, Block, Length) adds the block of storage beginning at Block and
containing Length words to the zone pointed to by Zone.

Alloc restricts the maximum size of the blocks it will allocate and of the "Length" arguments for
InitializeZone and AddToZone to 32K-l.

Allocate, Free

The function Allocate(Zone, Length, returnOnNoSpace [... 0], Even [... 01) allocates a block of Length words
from Zone and returns a pointer to that block. If the allocation cannot be done, one of two cases pertains:
(1) returnOnNoSpace is non-zero or the OutOfSpaceRoutine provided for the zone is 0: Allocate returns
the value 0; if returnOnNoSpace is not -1, the size of the largest available block is stored in
@returnOnNoSpace;. (2) otherwise, the value returned to the caller is the result of
OutOfSpaceRoutine(Zone, ecOutOfSpace, Length).

If the optional parameter Even is true, the block allocated will be guaranteed to begin on an even word
boundary. This is useful when allocating display buffers.

The procedure Free(Zone, Block) gives a previously-allocated block of storage back to the zone pointed to
by Zone. Block must have been the value of a call on Allocate.

Check Zone

The Alloc package contains considerable facilities for debugging. Conditional compilation will enable
various levels of consistency checking; the remainder of this paragraph assumes that the checking is
enabled. Users should consult the source file (Alloc.Bcpt) for details concerning the conditional
compilation.

The procedure CheckZone(zone), which may be called conveniently from Swat, will perform a fairly
exhaustive consistency check of the zone (provided that conditional compilation has caused the code to be
present!).

In addition, certain checking will be performed on the various calls to the package, provided that the
MalFonnedRoutine parameter supplied for the zone is non-zero.

Alloc

Cleared version of October 15, 1979

February 19, 1979 7:23 PM 48

If an error is detected, the call MaIForrnedRoutine(zone, errCode) is executed. Values of the error code
are:

ecOutOfSpace
ecZoneAdditionError
ecBlockN otAllocated
eclllForrned

Free-Standing Zones

1801
1802
1803
1804

Not enough space to satisfy a request.
Too large or too small addItion to zone.
Free has been called with a bad block.
The consistency-checker has found some
error in the zone. Consult Alloc.Bcpl.

It is often desirable to use a single 16-bit quantity to describe an entire free-space pool, together with its
allocating and freeing procedures. For example, one can pass to the operating system such a quantity; the
system can thereafter acquire and release space without knowing the details of how the operations are
done. The zones constructed by Alloc have this property: .

zone»ZN.Allocate(zone, Length) will allocate a block
zone»ZN.Free(zone, Block) will free a block

By convention, these entries are at the beginning of a zone. Thus, all you need to know about the ZN data
structure is:

structure ZN[
Allocate word I I Allocation procedure
Free word IIFree procedure
... rest of zone ...
]

Example

The following terrible implementation of the factorial function illustrates the use of Alloc:

static [Spare
fuJarelsA vail
FactZone
]

let Factorial(n) = valof
r let FactZone V = vec 256
let MySpare =: vee 37
Spare = My-Spare
SparelsA vall = true

FactZone = InitializeZone(FactZoneV, 256, StkOvfl)

let FactVal = InnerFact(n)

resultis FactVal
]

and InnerFact(n) = valof
[structure STKENT:

[link word
value word
]

manifestJ empty = -1;
wor size = 16
]

Alloc

Cleared yersion of October 15, 1979

February 19, 1979 7:23 PM

let stack = empty

while n gr 1 do
[let stkent = Allocate(FactZone, size STKENT Iwordsize)
stkent»STKENT.1ink = stack
stkent»STKENT.value = n
stack = stkent
n = n-l
]

let value = 1

while stack ne empty do
r value = value*(stack»STKENT.value)
let stkent = stack
stack = stkent»STKENT.1ink
Free(FactZone, stkent)
]

resultis value
]

and StkOvf1(Zone, nil, Length) = valof
[unless Sp'areIsAvail do

[Ws("Aargh! Stack stuck!")
finish
]

AddToZone(FactZone, Spare, 37)
SpareIsA vail = false
resultis Allocate(FactZone, Length)
]

49

Disks & Bfs

Cleared version of October 15, 1979

September 13, 1979

Disks: The Alto File System

so

This document describes the disk formats used in the Alto File System. It also describes a "disk object," a
Bcpl software construct that is used to interface low-level disk drivers with packages that implement
higher-level objects, such as streams.

The primary focus of the description will be for the "standard" Alto disks: either (1) up to 2 DiabloModel
31 dIsk drives or (2) one Diablo Model 44 disk drive. The low-level drivers for these disks are called "Bfs"
(Basic File System). With minor modifications, the description below applies to the Trident Model T80
and T300 disk drives, when formatted for Alto file system conventions. The differences are flagged with
the string rrrident]. Low-level drivers for the Trident disks are called "Tfs."

1. Distribution

Relocatable binary files for the BFS are kept in <Alto>BFSBrs.dm. The sources, command files, and test
program (described later in this document) are kept in <AltoSource>BFSSources.dm Relocatable binary
files for the TFS are kept in <Alto>TFS.dm; sources are kept on <AltoSource>TFSSources.dm.

2. File and Disk Structure

This section describes the conventions of the Alto file system. The files AltoFileSys.D and Bfs.D contain
Bcpl structure declarations that correspond to this description ([Trident]: See also "Tfs.D").

The unit of transfer between disk and memory, and hence that of the file system, is the disk sector. Each
sector has three fields: a 2-word header, an 8-word label, and a 256-word data page. ([Tndent]:I1ie fields
are a 2-word header, a lO-word label, and a 1024-word data page.)

A sector is identified by a disk address; there are two kinds of disk addresses, real and virtual. The
hardware deals in real addresses, which have a somewhat arbitrary format. An unfortunate consequence is
that the real addresses for all the pa~es on a disk unit are sparse in the set of16 bit integers. To correct this
defect, virtual addresses have been mtroduced. They have the property that the pages of a disk unit which
holds n pages have virtual addresses 0 ... (n-l). Furthermore, the ordering of pages by virtual address is
such that successive pages in the virtual space are usually sequential on the disk. As a result, assis.ning a
sequence of pages to consecutive virtual addresses will ensure that they can be read in as fast as pOSSIble.

2.1. Legal Alto Files

An Alto file is a data structure that contains two sorts of information: some is mandatory, and is required
for all legal files; the remainder is "hints". Programs that operate on files should endeavor to keep the
hints accurate, but should never depend on the accuracy of a hint.

A legal Alto file consists of a sequence of pages held together by a doubly-linked list recorded in the label
fields. Each label contains the mandatory information:

The forward and backward links, recorded as real disk addresses.

A page number which gives the position of the page in the file; pages are numbered from O.

A count of the number of characters of data in the page (numchars). This may range from 0 (for a

Disks & Bfs

Cleared version of October 15,1979

September 13, 1979 51

completely empty page) to 512 (for a completely full page). ([Trident]: A full page contains 2048
characters.)

A real file id, which is a three-word unique identifier for the file. The user normally deals with virtual
file ids (see the discussion of file pointers, below), which are automatically converted into real file ids
when a label is needed.

Three bits in the file id deserve special mention:

Directory: This bit is on if the file is itself a directory file. This information is used by the disk
Scavenger when trying to re-build a damaged disk data structure.

Random: This bit is currently unused:

NoLog: This bit is no longer used, but many existing files are likely to have it set.

Leader Page: Page 0 of a file is called the leader Rage; it contains no file data, but only a collection offile
properties, all of which are hints. The structure LD in AltoFileSys.D declares the format of a leader page,
which contains the following standard items:

The file name, a hint so that the Scavenger can enter this file in a directory if it is not already in one.

The times for creation, last read and last write, interpreted as follows:

A file's creation date is a stamp generated when the information in the file is created. When a
file is copied (without modification), the creation date should be copied with it. When a file
is modified in any way (either in-place or as a result of being overwritten by newly-created
information), a new creation date should be generated.

A file's write date is updated whenever that file is physically written on a given file system.

A file's read date is updated whenever that file is physically read from within a given file
system.

A pointer to the directory in which the file is thought to be entered (zeroes imply the system
directory SysDir).

A "hint" describing the last page of the file.

A "consecutive" bit which is a hint that the pages of the file lie at consecutive virtual disk addresses.

The changeSerial field related to version numbering: whenever a new version of a file "foo" is
made, the changeSerial field of all other files "foo" (Le., older versions) is incremented. Thus, a
program that wishes to be sure that it is using the most recent version of a file can verify that
changeSerial=O. If a program keeps an FP as a hint for a file, and is concerned about the relative
position of that file in the list of version numbers, it can also keep and verify the changeS erial entry
of the file. Version numbers have been deimplemented.

These standard items use up about 40 words of the leader page. The remaining space is available for
storing other information in blocks which start with a one word header containing type and length fields.
A zero terminates the list. The structure FPROP in AltoFileSys.d defines the header format. The only
standard use of this faci~ity is to record the logical shape of the disk in the leader page ofSysDir.

Data: The first data byte of a file is the first byte of page l.

In a legal file with n pages, the label field of page i must contain:

A nex t link with the real disk address of page (i + 1), or 0 if i = n-l.

A previous link with the real disk address of page (i-I), or 0 ifi=O.

Disks & Bfs

Cleared yersion of October 15, 1979

September 13, 1979

A page number between 0 and (n-l), inclusive.

52

A numchars word = 512 if i<n-l, and (512 if i=n-l. The last page must not be completely full.
([Trident]: = 2048 ifi(n-l, and (2048 ifi = n-1.)

A real file id which is the same for every page in the file, and different from the real file id of any other
file on the disk.

A file is addressed by an object called a file pointer (FP), which is declared in AltoFileSys.D. A file pointer
contains a virtual file id, and also the virtual address of the leader page of the file. The low-level disk
routines constmct a real file id from the virtual one when they must deal with a disk label. Since it is
possible for the user to read a label from the disk and examine its contents, the drivers also provides a
routine which will convert the real file id in the label into a file pointer (of course, the leader address will
not be filled in).

Note: Real disk address 0 (equal virtual disk address 0) cannot be part of any legal Alto file because the
value 0 is reserved to terminate the forward and backward chains in sector labels. However, disk addressO
is used for "booting" the Alto: when the boot key is pressed when no keyboard keys are down, sector 0 is
read in as a bootstrap loader. The normal way to make a file the "boot file" is to first create a legal Alto file
with the bootstrap loader as the first data page (page 1), and then to copy this page (label and data) into
disk sector O. Thus the label in sector 0 points forward to the remainder of the boot file.

2.2. Legal Alto Disks

A legal disk is one on which every page is either part of a legal file, or free, or "permanently bad." A free
page has a file id of all ones, and the rest of its label is indeterminate. A permanently bad page has a fileid
with each of the three words set to -2, and the remainder of the label indeterminate.

2.3. Alto Directory Fi1e~

A directory is a file for associating string names and FP's. It has the directory bit set in its file id, and has
the following format (stmcture DV declared in AltoFileSys.D).

It is a sequence of entries. An entry contains a header and a body. The length field of the header tells how
many words there are in the entry, including the header. The interpretation of the body depends on the
type, recorded in the header.

dvTypeFree=O: free entry. The body is uninterpreted.

dvTypeFile = 1: file entry. The body consists of a file pointer, followed by a Bcpl string containing the
name of the file. The file name must contain only upper and lower case letters, digits, and characters
in the string "+-.!$". They must terminate with a period (".") and not be longer than max LengthFn
characters. If there are an odd number of bytes in the name, the "garbage byte" must be O. The
interpretation of exclamation mark (!) is special; if a file name ends with! followed only by digits (and
the mandatory". "), the digits specify a file version number.

The main directory is a file with its leader page stored in the disk page with virtual address 1. There isan
e11try for the main directory in the main directory, with the name SysDir. All other directories can be
reached by starting at the main directory.

2.4. Disk Descriptor

There is a- file called DiskDescriptor erttered in the main directory which contains a disk descriptor
structure which describes the disk and tells which pages are free. The disk descriptor has two parts: a 16
word header which describes the shape of the disk, and a bit table indexed by virtual disk address. The
declaration of the header structure is in AltoFilcSys.D.

Disks & Bfs

Cleared version of October 15, 1979

September 13, 1979 53

The "defaultVersionsKept" entry in the DiskDescriptor records the number of old versions of files that
should be retained by the system. If this entry is 0, no version accounting is done: new files simplyrepJace
old ones. Version numbers have been deimplemented.

The entry in the disk descriptor named "freePages" is used to maintain a count of free pages on the disk.
This is a hint about a hint: it is computed when a disk is opened by counting the bits in the bit tablet and
then incrementing and decrementing as pages are released and allocated. However the bit table is Itself
just a collection of hints, as explained below.

The bit table contains a "1" corre~onding to each virtual disk address that is believed to be occupied bya
file, and "0" for free addresses. These values are, however, only hints. Programs that assign new pages
should check to be sure that a page thought to be free is indeed so by reading the label and checking tosee
that it describes a free page. (The WnteDiskPages and CreateDiskFile procedures in the disk object
perform this checking for you.)

2.5. Oversights

If the Alto file system were to be designed again, several deficiencies could be corrected:

Directory entries and label entries should have the same concept of file identifier. Presently, wehave
filePointers and file Ids.

There is no reason why the last page of a file cannot contain 512 bytes.

It is unfortunate that the disk controller will not check an entry of 0 in a label, because these values
often arise (numChars of the last page, page number of the leader page). Another don't care value
should be chosen: not a legal disk address; with enough high order bIts so that it will checknumChars
and page number fields. . .

The value used to terminate the chain of disk addresses stored in the labels should not be a legal dlsk
address. (It should also not be zero, so that it may be checked.) If it is a legal address, and if you try to
run the dIsk at full speed using the trick of pointing page i's label at page i + 1's disk address in the
command block, the disk will try to read the page at the legal disk address represented by the chain
terminator. Only when this results in an error is end of file detected. A tenninator of zero has the
undesirable property that a seek to track 0 occurs whenever a chain runs into end-of-file.

3. The Disk Object

In order to facilitate the interface between various low-level disk drivers and higher-level software, we
define a "disk object." A small data structure defines a number of generic operations on a disk -- the
structure DSK is defined in "Disks.D." Each procedure takes the disk structure as its first argument:

ActOnDiskPages: Used to read and write the data fields of pages of an existing file.

WriteDiskPages: Used to read and write data fields of the pages of a file, and to extend the file if
needed.

DeleteDiskPages: Used to delete pages from the end of a file.

CreateDiskFile: Used to create a new disk file, and to build the leader page correctly.

AssignDiskPage: Used to find a free disk page and return its virtual disk address.

ReleaseDiskPage: Used to release a virtual disk address no longer needed.

VirtualDiskDA: Converts a real disk address into a virtual disk address.

Disks & Bfs

Cleared version of October 15. 1979

September 13. 1979

RealDiskDA: Converts a virtual disk address into a real disk address.

InitializeDiskCBZ: Initializes a Command Buffer Zone (CBZ) for managing disk transfers.

DoDiskCommand: Queues a Command Buffer (CB) to initiate a one-page transfer.

GetDiskCb: Obtains another CB. possibly waiting for an earlier transfer to complete.

CloseDisk: Destroys the disk object.

In addition, there are several standard data entries in the DSK object:

54

fuSysDir: Pointer to the FP for the directory on the disk. (This always has a constant format -- see
discussion above.) ,

fJ:>DiskDescriptor: Pointer to the FP for the file "DiskDescriptor" on the disk.

fJ:>WorkingDir: Pointer to the FP to use as the "working directory" on this disk. This is usually the
same as fpSysDir.

name WorkingDir: Pointer to a Bcpl string that contains the name of the working directory.

lnPageSize: This is the log (base 2) of the number of words in a data page on this disk.

driveN umber: This entry identifies the drive number that this DSK structure describes.

retryCount: This value gives the number of times the disk routines should retry an operation before
declaring it an error.

totalErrors: This value gives a cumulative count of the number of disk errors encountered.

diskKd: This entry points to a copy of the DiskDescriptor in memory. Because'the bit table can get
quite large, only the header needs to be in memory. This header can be used. for example, to compute
the capacity of the disk.

1engthCBZ, lengthCB: The fixed overhead for a CBZ and the number of additional words requiredper
Cn.

In addition to this standard information, a particular implementation of a disk class may include other
information in the structure.

4. Data Structures

The following data structures are part of the interface betwe,en the user and the disk class routines:

pageNumber: as defined in the previous section. The page number is represented b~ an integer.

DAs: a vector indexed by page number in which the ith entry contains the virtual disk address of page iof
the file, or one of two speclal values (which are declared as manifest constants in Disks.D):

eofDA: this page is beyond the current end of the file;
fillInDA: the address of this page is not known.

Note that a particular call on the file system will only reference certain elements of this vector, and the
others do not have to exist. 'rhus, reading page i will cause references only to DAsH and DAs!(i + 1). so the
user can have a two-word vector v to hold these quantities, and pass v-i to the file system as DAs.

Disks & Bfs

Cleared yersion of October 15, 1979

September 13, 1979 55

CAs: a vector indexed by/age number in which the ith entry contains the core address to or from which
page i should be transfere . The note for DAs applies here also.

fp (or filePtr): file pointer, described above. In most cases, the leader page address is not used.

action: a magic number which specifies what the disk should do. Possible values are declared as manifest
constants in Disks.D:

DCreadD:
DCreadLD:
DCreadHLD:
DCwriteD:
DCwriteLD:
DCwriteHLD:
DCseekOnly:
DCdoNothing:

check the header and label, read the data;
check the header, read the label and data;
read the header, label, and data;
check the header and label, write the data;
check the header, write the label and data;
write the header, label, and data;
just seek to the specified track

A particular implementation of the disk class may also make other operations available by defining
additional magic numbers.

5. Higher-level Subroutines

There are two high-level calls on the basic file system:

pageNumber = ActOnDiskPages(disk, CAs, DAs, filePtr, firstPage, lastPage, action, IvNumChars,
lastAction, fixedCA, cleanup Routine, IvErrorRoutine, returnOnCheckError, hintLastPage).

Parameters beyond "action" are optional and may be defaulted by omitting them or making them 0.

Here firstPage and lastPage are the page numbers of the first and last pages to be acted on (Le. read or
written, in normal use). This routine does the specified action on each page and returns the page number
of the last page successfully acted on. This may be less than lastPage if the file turns out to have fewer
pages. DAs!firstPage must contain a disk address, but any of DAs!(firstPage+ 1) U1rough
DAs!(lastPage+ 1) may be fillInDA, in which case it will be replaced with the actual disk address, as
determined from the chain when the labels are read. Note that the routine will fill in DAs!(lastPage+ 1),
so this word must exist.

The value of the numChars field in the label of the last page acted on will be left in rv IvNumChars. If
lastAction is supplied, it will be used as the action for lastPage instead of action. If CAs eq 0, fixedCA is
used as the core address for all the data transfers. [f cleanupRoutine is supplied, it is called after the
successful completion of each disk command, as described below under "Lower-level disk access". (Note:
providing a cleanup routine defeats the automatic filling in of disk addresses in DAs).

Disk transfers that generate errors are retried several times and then the error routine is called with
rv lvErrorRoutine(lvEfforRoutine, cb, errorCode)

In other words, IvErrorRoutine is the address of a word which contains the (address of the) routine to be
called when there is an error. The errorCode tells what kind of error it was; the standard error codes are
tabulated in a later section. The cb is the control block which caused the error; its format depends on the
particular implementation of the drivers (Bfs: the stmcture CB in Bfs.D).

The intended use oflvErrorRoutine is this. A disk stream contains a cell A, in a known place in the stream
structure, which contains the address of a routine which fields disk errors. The address of A is passed as
IvErrorRoutine. When the error routine is called, it gets the address of A as a parameter, and by
subtracting the known position of A in the disk stream structure, it can obtain the address of the stream
structure, and thus determine which stream caused the error.

Disks & Bfs

Cleared version of October 15, 1979

September 13, 1979 56

The default value of returnOnCheckError is false. If returnOnCheckError is true and an error is
encountered, ActOnDiskPages will not retry a check error and then report an error. Instead, it will return
-(# 100 + n, where i is the page number of the last page successfully transferred. This feature allows
ActOnDiskPages to be used when the user it not sure whether the disk address he has is correct. It is used
by the disk stream and directory routines which take hints; they try to read from the page addressed by the)
hint with returnOnCheckError true, and if they get a nonnal return they know that the hint was good. On
the other hand, if it was not good, they will get the abnonnal return just described, and can proceed to try
again in a more conservative way.

The hintLastPage argument, if supplied, indicates the page number of what the caller believes to be the last
page of the file (v.resumably ootained from the hint in the leader page). If the hint is correct,
ActOnDiskPages wIll ensure that the disk controller does not chain past the end of the file and seek to
cylinder zero (as described earlier under "Oversights"). If the hint is incorrect, the operation will still be
performed correctly, but perhaps with a loss in performance. Note that the label is not rewritten by
DCwriteD, so that the number of characters per page will not change. If you need to change the label, you
should use WriteDiskPages unless you know what you are doing. .

ActOnDiskPages can be used to both read and write a file as long as the length of the file does not have to
change. lfit does, you must use WriteDiskPages.

pageNumber = WriteDiskPages(disk, CAs, DAs, filePtr, firstPage,lastPage, lastAction,lvNumChars,
lastNumChars, fixedCA, nil, IvErrorRoutine, nil, hintLastPage).

Arguments beyond lastPage are optional and may be defaulted by omitting them or making them 0 (but
lastNumChars is not defaulted if it is 0). .

This routine writes the specified pages from CAs (or from fixedCA if CAs is 0, as for ActOnDiskPages). It
fills in DAs entries in the same way as ActOnDiskPages, and also allocates enough new Rages to complete
the specified write. The numChars field in the label of the last page will be set to lastNumChars (which
defaults to 512 rrridentJ: 2048). It is generally necessary that DAs!firstPage contain a disk address. The
only situation in which It is pennissible for DAs!firstPage to contain fillInDA is when firstPage is zero and
no pages of the file yet exist on the disk (Le., when creating page zero of a new file).

In most cases, DAs!(firstPage-1) should have the value which you want written into the backward chain
pointer for firstPage, since this value is needed whenever the label for firstPage needs to be rewritten. The
only case in which it doesn't need to be rewritten is when the page is already allocated, the next page isnot
being allocated, and the numChars field is not changing.

IflastPage already exists:

1) the old value of the numChars field of its label is left in rv IvNumChars ..

2) iflastAction is supplied, it is applied to lastPage instead ofDCwriteD. It defaults to DCwriteD.

WriteDiskPages handles one special case to help in "renaming" files, i.e. in changing the FP (usually the
serial number) of all the pages of a file. To do this, use ActOnDiskPages to read a number of pages of the
file into memory and to build a DAs array of valid disk addresses. Then a call to Write DiskPages with
lastAction= -1 will write labels and data for pages firstPage through IastPage (DAs!(firstPage-1) and
DAs!(lastPage+1) are of course used in this wnting process). The numChars field of the label on thelast
page is set to lastNumChars. To use this facility, the entire DAs array must be valid, i.e. no entries maybe
fillInDA.

In addition to these two routines, there are two others which provide more specialized services:

Disks & Bfs

Cleared version of October 15, 1979

September 13, 1979

CreateDiskFile(disk, name, filePtr, dirFilePtr, wordl [0], useOldFp [false], pageBuf{O])

57

Creates a new disk file and writes its leader page. It returns the serial number and leader disk address in
the FP structure filePtr. A newly created file has one data page (page 1) with numChars eq O.

The arguments beyond filePtr are optional, and have the following significance:

If dirFilePtr is supplied, it should be a file pointer to the directory which owns the file. This file
pointer is written mto the leader page, and is used by the disk Scavenger to put the file back into the
directory ifit becomes lost. It defaults to the root directory, SysDir.

The value of word1 is "or"ed into the filePtr»FP.seriaINumber.word1 portion of the file pointer.
This allows the directory and random, bits to be set in the file id.

If useOldFp is true, then filePtr already points to a legal file; the purpose of calling CreateDiskFile is
to re-write all the labels of the existing file with the new serial number, and to re-mitialize the leader
page. The data contents of the original file are lost. Note that this process effectively "deletes" thefile
oescribed by filePtr when CreateDiskFile is called, and makes a new file; the FP for the new file is
returned in filePtr.

If pageBuf is supplied, it is written on the leader page of the new file after setting the creation date and
directory FP hint (if supplied). IfpageBufis omitted, a minimal leader page is created.

DeleteDiskPages(disk, CA, firstDA, filePtr, firstPage, newFp, hintLastPage)

Arguments beyond firstPage are optional. Deletes the pages of a file, starting with the page whose number
is firstPage and whose disk address is firstDA. CA is a page-sized buffer which is clobbered by lheroutine.
hintLastPage is as described under ActOnDiskPages.

If newFp is supplied and nonzero, it (rather than freePageFp) is installed as the FP of the file, and the
pages are not deallocated. .

6. Allocating Disk Space

The disk class also contains routines for allocating space and for converting between virtual and real disk
addresses. In most cases, users need not call these routines directly as the four routines given above
(ActOnDiskPages, WriteDiskPages, DeleteDiskPages, CreateDiskFile) manage disk addresses and disk
space internally. '

AssignDiskPage(disk, virtualDA, nil) returns the virtual disk address of the first free page following
virtualDA, according to the bit table, and sets the corresponding bit. It does not do any checking that the
page is actually free (but WriteDiskPages does). If there are no free pages it returns -1. If it is called with
three arguments, it returns true if (virtualDA + 1) is available without assigning it.

If virtualDA is eofDA, AssignDiskPage makes a free-choiCe assignment. The disk object remembers the
virtual DA of the last page assigned and uses it as the first page to attempt to assign next time
Assie;nDiskPage is called with a virtualDA of eotDA. This means that you can force a file to be created
startmg at a particular virtual address by means of the following strategy:

ReleaseDiskPage(disk, Assign DiskPage(disk, desiredVDA -1»
CreateDiskFile(dlsk, ...) / / or whatever (e.g., OpenFile)

ReleaseDiskPage(disk, virtualDA) marks the page as free in the bit table. It does not write anything on the
disk (but De1eteDiskPages does).

VirtualDiskDA(disk, lvRealDA) returns the virtual disk address, given a real disk address in rvlvRealDA.

Disks & Bfs

Cleared yersion of October 15, 1979

September 13, 1979 58

(The address, IvRealDA, is passed because a real disk address may occupy more than 1 word.) This
procedure returns eofDA if tfie real disk address is zero (end-of-file), and fillInDA if the real disk address
does not correspond to a legal virtual disk address in this file system.

RealDiskDA(disk, virtualDA, IvReaIDA) computes the real disk address and stores it in rv IvReaIDA. The
function returns true if the virtual disk address is legal, Le. within the bounds of disk addresses for the
given" disk." Otherwise, it returns false.

7. Lower-level Disk Access

The transfer routines described previously have the property that all disk activity occurs during calls tothe
routines; the routines wait for the requested disk transfers to complete before returning. Consequently,
disk transfers cannot conveniently be overlapped with computation, and the number of pages transferred
consecutively at full disk speed is generally limited by the number of buffers that a caller is able to supply
in a single call.

It is also possible to use the disk routines at a lower level in order to overlap transfers with computation
and to transfer pages at the full speed of the disk (assuming the file is consecutively allocated on thedisk
and the amount of computation per page is kept relatively small). The necessary generic disk operations
and other information are available to permit callers to operate the low-level disk routines in a device
independent fashion for most applications.

This level makes used of a Command Block Zone (CBZ), part of whose structure is public and defined in
Disks.d, and the rest of which is private to the implementation. The general idea is that a cnz is set up
with empty disk command blocks in it. A free block is obtained from the cnz with GetDiskCb and sentto
the disk with DoDiskCommand. When it is sent to the disk, it is also put on the queue which GetDiskCb
uses, but GetDiskCb waits until the disk is done with the command before returning it, and also checks for
errors.

If you plan to use these routines; read the code for ActOnDiskPages to find out how they are intended to
be called. An example of use of these routines in a disk-independent fashion (Le., using only the public
definitions in Disks.d) may be found in the DiskStreamsScan module of the Operating System. Only in
unusual applications should it be necessary to make use of the implementation-dependent information in
Bfs.d or Tfs.d.

InitializeDiskCBZ(disk, cbz, firstPage, length, retry, IvErrorRoutine). CBZ is the address of a block of
length words which can be used to store CBs. It takes at least three CBs to nm the disk at full speed; the
disk object contains the values DSK.lengthCBZ (fixed overhead) and DSK.lengthCB (size of each
command block) which may be used to compute the required length (that is, length should be at least
lengthCBZ+3*lengthCB). FirstPage is used to initialize the currentPage field of the cbz. Retry is alabel
u~ed for an error return, as described below. IvErrorRoutine is an error routine for unrecoverable errors,
described below; it defaults to a routine that simply invokes SysErr. The arguments after firstPage can be
omitted if an existing CEZ is being reinitialized, and they will remain unchanged from the previous
initialization.

cb = GetDiskCb(disk, cbz, dontClear[false], returnIfNoCn[false]) returns the next CB for the CBZ. If the
next cn is empty (Le., it has never been passed to DoDiskCommand), GetDiskCb simply zeroes it and
returns it. However, if the next CB is still on the disk command queue, GetDiskCb waits until the disk has
finished with it. Before returning a cn, GetDiskCb checks for errors, and handles them as described
below. If there is no error, GetDiskCb updates the nextDA and currentNumChars cells in the cnz, then
calls cbz»CnZ.cleanupRoutine(disk, cb, cbz). Next, unless dontClear is true, the cn is zeroed. Finally,
the cn is returned as the value of GetDiskCb. If returnlfNoCB is true, GetDiskCb returns zero ifthere
are no CBs in the cnz or the next cn is still on the disk command queue.

If the next cn has suffered an error, then GetDiskCb instead takes the following actions. First it
increments cbz»CnZ.errorCount. Ift111s number is ge the value disk»DSK.retryCount, GetDiskCbcalls

Disks & Bfs

Cleared version of October 15, 1979

September 13, 1979 59

the error routine which was passed to InitializeDiskCBZ; the w~y this is done is explained in the
description of ActOnDiskPages above. (If the error routine returns, GetDiskCb will proceed as if an error
hadn't occurred.) Otherwise, after doing a restore on the disk if errorCount ge disk))DSK.retryCountl2, it
reinitializes the eBZ with firstPage equal to the page with the error, and returns to cbz»CBZ.retry(which
was initialized by InitializeDiskCBZ) mstead of returning normally. The idea is that the code followmgthe
retry label will retry all the incomplete commands, starting with the one whose page number is
cbZ) >CBZ.currentPage and whose disk address is cbz> >CBZ.errorDA.

DoDiskCommand(disk, cb, CA, DA, filePtr, pageNumber, action, nextCb) Constructs a disk command in
cb with data address CA, virtual disk address DA, serial and version number taken from the virtual fileid
in filePtr, page number taken from pageNumber, and disk command specified by action; The nextCb
argument IS optional; if supplied and nonzero, DoDiskCommand will "chain" the current CB's label
address to nextCb, in such a way that the DL.next word will fall into nextCb»CB.diskAddress.

DoDiskCommand expects the cb to be zeroed, except that the following fields may be preset; if they are
~ero the indicated default is supplied:

labelAddress
numChars

Iv cb> >CB.1abel
o

If DA eq fillInDA, the real disk address in the command is not set (the caller should have either set it
explicitly or passed the CB as the nextCb argument for a previous command). Actions are checked for
~~. ,

The public cells in the CBZ most likely to be of interest are the following:

client: information of the caller's choosing (e.g., a pointer to a related higher-level data structure such
as a stream.). .

cleanupRoutine: the cleanup routine called by GetDiskCb (defaulted to Noop by InitializeDiskCBZ).

currentPage: set to the firstPage argument of InitializeDiskCBZ and not touched by the other routines.
(Note, however, that GetDiskCb calls InitializeDiskCBZ when a retry is about to occur, so when
control arrives at the retry label, currentPage will be set to the page number of the command that
suffered the error.)

errorDA: set by GetDiskCb to the virtual disk address of the command that suffered an error.

nextDA: set by GetDiskCb to the virtual disk address of the page following the one whose CB isbeing
returned. (This information is obtained from the next pointer in the current page's label. Note that
errorDA and nextDA are actually the same cell, but they are used in non-conflicting circumstances.)

currentNumChars: set by GetDiskCb to the numChars of the page whose CB is being returned.

head: points to the first CB on GetDiskCb's queue; contains zero if the queue is empty.

8. Error Codes

The following errors are generated by the BFS. Similar errors are generated by other instances of a disk
object.

1101 unrecoverable disk error
1102 disk full
1103 bad disk action
1104 control block queues fouled up
1105 attempt to create a file without creation ability

Disks & Bfs

Cleared version of October 15, 1979

September 13, 1979

1106 can't create an essential file during NewDisk
1107 bit table problem durin~ NewDisk
1108 attempt to access nonexlstant bit table page

9. Implementation -- Bfs

60

The implementation expects a structure BFSDSK to be passed as the "disk" argument to the routines. The
initial portion of this structure is the standard DSK structure followed by a copy of the DiskDescriptor
header and finally some private instance data for the disk in use. (Note: The Alto operating system
maintains a static sysDisk that points to stich a structure for disk drive 0.)

Bfs ("Basic File System") is the name for a package of routines that implement the disk class for the
standard Alto disks (either Diablo Model 31 drives or a single Diablo Model 44 drive). The definitionsVn
addition to those in AltoFileSys.D and Disks.D) are contained in BfsD. The code comes in two "levels: • a
"base" for reading and writing existing files (implements ActOnDis.kPages, RealDiskDA and
VirtualDiskDA only); and a "write" level for creating, deleting, lengthening and shortening files
(implements WriteDlskPages, CreateDiskFile, DeleteDiskPages, AssignDiskPage, ReleaseDiskPage). The
source files BfsBase.Bcpl, Dvec.Bcpl and BfsM1.Asm comprise the base level; files BfsWrite.Bcpl
BfsCreate.bcpl, BfsClose.bcpl, and BfsDDMgr.bcpl implement the write level.

BfsMakeFpFromLabel(fp, la) constructs a virtual file id in the file pointer fp from the real file id in the
labella.

disk = BFSInit(diskZone, allocaterfalse], driveNumber[O], ddMgr[O], freshDisk[false],
tempZone[diskZone]) returns a disk object for dnveNumber or zero. The permanent data structures for
the disk are allocated from diskZone; temporary free storage needed during the initialization process is
allocated from temp Zone. If allocate is true, the machinery for allocating and deallocating disk space is
enabled. If it is enabled, a small DDMgr object and a 256 word buffer will be extracted from diskZonein
order to buffer the bit table. A single DDMgr, created by calling 'ddMgr = CreateDDMgr(zone)', can
manage both disks. If freshDisk is true, BFSlnit does not attempt to open and read the DlskDescriptor
file. This operation is essential for creating a virgin file system.

success = BFSNewDisk(zone, driveNum[O], nDisks[l], nTracks[physical size], dirLen[3000]) creates a
virgin Alto file system on the specified drive and returns true if successful. The zone must be capable of
supplying about 1000 words of storage. The logical size of the file system may be different from the
ph.ysical size of driveNum: it may span both disks (a 'double-disk file system'), or it may occupy fewer
tracks (a model 44 used as a model 31). The length in words ofSysDir, the master directory, is specifiedby
dirLen.

o = BFSClose(disk, dontFree[false]) destroys the disk object in an orderly way. If dontFree is true, the
ddMgr for the disk is not destroyed; presumably it is still in use by the other disk. (Note that this
procedure is the one invoked by the CloseDisk generic operation.)

BFSWriteDiskDescriptor(disk) insures that any important state saved in memory is correctly written onthe
dis~ .

virtualDA = BFSFindHole(disk, nPages) attempts to find a contiguous hole nPages long in disk. It
returns the virtual disk <;lddress of the first page ofa hole if successful, else -1.

BFSTryDisk(driveNumber, trackNumber) returns true if a seek command to the specified track on the
specified drive is successful. Seeks to track zero will fail if the drive is not on line. Seeks to track
BFS31NTracks+ 1 will fail if the drive is a model 31.

Disks & Bfs

10. Implementation -- Tfs

Cleared yersion of October 15, 1979

September 13, 1979 61

Operation and implementation of the Trident T80 disks is described in separate documentation under the
heading "TFS/TFU" in Alto Subsystems documentation.

11. BFSTest

BFSTest is used to test the Basic File System (BFS) and Disk Streams software packages. It creates,
deletes, reads, writes and positions files the same way that normal programs do, and checks the results
which normal programs do not do. These high-level operations cause patterns of disk commands which
are quite different from those generated by lower-level tests such as DiEx.

When started, BFSTest asks you which disks to test, whether to erase them first, and how many passes to
run. You can use a disk with other files on it, and BFSTest will not disturb them if you prohibit erasing.
The duration and throughness of a pass depends on the amount of free space on the disks.

BFSTest creates as many test files (named Test.OOl, Test.002, ...) as will fit on the disk, filling each file with
a carefully chosen test pattern. When it is done, it deletes all of the files. One 'pass' consists of stepping
through the test files, performing a randomly chosen operation on the file, and checking the results. It
looks for commands from the keyboard after each file. The current commands are:

Q Quit Delete all test files and stop.
S StopOnError Wait until a character is typed.

All test files are 100 pages long. Each page of a file has the page number in its first and last words and a
data pattern in the middle 254 words. The data pattern is constant throughout a file, consisting of a single
one-bit in a word of zeros or a single zero-bit in a word of ones. Files are read and written with ReadBlock
and Write Block using buffers whose lengths are not multiples of the page size. The operations are:

Write

Read

Delete

Copy

Position

Write the entire file with the data pattern.

Read the entire file checking the data pattern.

Delete the file, create it again and then write it.

Copy the file to some other randomly chosen file. If both disks are being tested,
one third of the time pick a destination file on the other disk.

Position to twenty randomly chosen pages in the file. Check that the first word
of the page is indeed the page number. One third of the time dirty the stream by
writing the page number In the last word of the page.

INDEX

176777

abort
ActOnDiskPages
AddToZone
Alloc
Allocate
Alto disks
AltoFileSys.D
Alto Version
AppendVersion
AssignDiskPage

Basic File System
Bcpl abort
Bcpl finish
Bcpl frames
Bcpl stack
Bfs
Bfs.D
BFSClose
BFSFindHole
BFSInit
BfsMakcFpFromLabel
BFSNewDisk
BFSTryDisk
BFSWriteDiskDcscriptor
BitBlt
Bldr
BootFrom

CallO
CaUersFrame
CallFrame
CallSubsys
Call Swat
CAs
charItem
CharWidth
CheckZone
CleanupDiskStream
ClockSecond
Closes
CoCa11
Com.Cm
complete file address
CoReturn
CounterJunta
Creatc Disk File
CreateDiskStream
CrcateDisplayStream
CurrentPos

DAs
DCB
DCdoNothing
DCreadD
DCrcadHLD
DCreadLD
DCscekOnly

Cleared version of October 15,1979

October 15, 1979

.................. 25

28
55
12,47
12,37,47
12,47
31
50
23
11
57

13,37,50
17
17
15
26
50
50
60
60
60
60
60
60
60
14
4
21

13
15
16
16
15
55
40
7,46
12,47
6,40
24
5,40
16
16,24
39
16
19
57
6,39
7,44
43

.................. 54
44
55
55
55
55
55

62

INDEX

DCwriteD
DCwriteHLD
DCwriteLD
Default arguments
DefaultArgs
DeleteDiskPages
DeleteF dEntry
DeleteFile
Directory
Directory Access
Directory Files
Dirty
DisableInterrupts
disk addresses
Disk Descriptor
Disk file
Disk files
disk name
disk object
Disk Pack
Disk stream
Disk streams
DiskDescriptor
Disks
Disks.D
Display
Display stream package
Display streams
DoDiskCommand
DoubleAdd
DScompactleft
DScompactright
DSnone
DSstopbottom
DSstopright
Dvec
dvTypeFile
dvTypeFree

EnableInterrupts
EndCode
Endofs
EnumerateFp
eofDA
EraseBits
ErrorLogAddress
Errors
Events
EventVector
EVM
Executive
Executive.Run

F alsePredicate
Fast Streams
file address
File directory
File Hints
File names
file pointer

Clearcd vcrsion of October 15, 1979

October 15, 1979

................ .; .

55
55
55
3,14
14
57
11
10
37
9
52
43
15
50
52
5
22
27
53
5
6
5,37
12,24,29
50
53
37
44
7
59
15
44
44
44
44
44
14
52
52

15
12,32
5,40
15
54
7,45
24
4,5
"20
20
20
27
24,29

14
8,37,38,42
39
5
24
9,28
15,38,52

63

INDEX

file pointers
file position
File System
file version number
FileLength
FilePos
fillInDA
FindFdEntry
Finish
finish + 1
FinishScanStream
FixedLeft
font
font format
FP

igf~2~criPtor
Executive
RemCm
SysBoot

reSYSDir
~ysFont

rpUserCm
FramesCaller
FrarneSize
Free
FreeFixed

GeillitPos
GetCompleteFa
GetCurrentFa
GetDiskCb
GetFixed
GetFont
GetLinePos
GctLmarg
GetRmarg
Gets
GetScanStreamBuffer
GotoFrame
GotoLabel

Idle
Initialization
InitializeDiskCBZ
InitializeFstream
J nitializeZone
InitScanStream
InLd
Install
InvertLine
ItemSize

JumpToFa
Junta

KBKEY
KBTRANS
kbTransitionTable
Keyboard

Cleared :version of October IS, 1979

October IS, 1979

51
39
50
9
6,40
6,40
54
11
17
26
42
12
29
22
52,55
24
24
24
24
24
24
24
24
15
15
12,47
12

7,45
6,41
6,40
58
12
7,45
7,45
7,46
7,46
5,40
42
16
16

15
4
58
42
12,47
42
21
27
7,45
43

6,41
18

.................. 8
8
8
37

64

INDEX

Keyboard Buffer
Keyboard Streams
keys
KsBuffer Address
KsGetDisk
KsHintLastPageFa
KsSetBuffcrAddress
ksTypeReadOnly
ksTypeReadWrite
ksType WriteOnly

LastMemLoc
leader page
Legal Alto Files
levAlloc
levBasic
levBcpI
levBFSbase
levBFSwrite
levBuffer
levDirectory
levDisplay
lev FilePomters
levKeyboard
levMain
levScan
levStatics
levStreams
LnPageSize
Loading
Iv AbortFIag
IvCursorLink
IvIdle
Iv ParityPhantomEnab Ie
IvParitySweepCount
IvSwatContextProc
IvSysErr
IvSysZone
IvUserFinishProc

MakeNewFdEntry
Max
Memory management
Min
MoveBlock
MyFrame

new disk
Noop

Objects
OpenFile
OpenFileFromFp
Operating Procedures
OsBuffer
OsFinish
OsVersion
Os Version Compatible
OutLd
owner name

Cleared version of October 15, 1979

October 15, 1979

..... 24
8
8
41
41
41
41
40
40
40

32
6,39,51
50
18
18
18
18
18
18
18
18
18
18
18
18
18
18
6,40
4
25
8
15
23
23
25
23
22
17

11
14
12
14
14
15

27
14

13
10,40
10
27
24
17
23
23
21
27

65

INDEX

pages
ParseFileName
Password
PositionPage
PositionPtr
Putbacks
Puts

ReadBlock
ReadCalendar
ReadDiskDescriptor
ReadLeaderPage
real disk address
RealDiskDA
ReleaseDiskPage
RelcaseKs
Rem.Cm
ResetLine
Resets
RctryCall
RetumFrom
RetumTo
Run files

Scrolling
SerialN umber
SetBitPos
SetBlock
SetCalendar
SetDirty
SetEndCode
SetF..A>f
SetFilePos
SetFont
SetKeyboardProc
SetLinePos
SetLmarg
SetRmarg
Setll.1> Fstream
SetW orkingDir
ShowDisplayStream
stack frames
StackEnd
StartCodeArea
StartIO
Stateofs
Streams
Strip Version
Swat
Swat abort
Swatee
Sys.Bk
Sys.Boot
Sys.Errors
SysBoot
SysDir
sysDisk
SysErr
SysFont.Al
sysZone

Cleared version of October 15,1979

October 15, 1979

5
11
37
6,41
6,41
5
5,40

· .. ' 6,40
· 15
· 12
· 6,41
· 57
· 58
· 57
· ' 41
· 24
· 7,45
· 5,40
· 16
· 16
· 16
· 16,26

· 45
· 23
· 7,45
· 14
· 15
· 43
· 12
· 43
· 6,41
· 7,45
· 8
· 7,45
· 46
· 46
· 42
· 10
· 7,45
· 26
· 12,32
· 32
· 15
· 5
· 4
· '11
· .. '. 4,17,21,28,29
· 17
· 29
· 4,29
· 29
· 4,29
· 24
· 24,29
· 5,23
· -.. 4
· 24,29
· 12,22

66

INDEX

Terminating Execution
Tfs
Timer
Transfer rates
Trident
TruePredicate
TruncateDiskStream

Umax
Umin
Usc
User.Cm
UserFinishProc
UserName
UserPassword
Utilities

verLatest
verLatestCreate
verNew
verNewAlways
verOldest
version number
virtual disk address
VirtualDiskDA

W1
Wns
Wo
wordItem
Wos
WriteBlock
W ritcDiskDescriptor
WritcDiskPages
W riteLeaderPage
Ws
Wss

Zero
zones

Cleared,version of October 15,1979

October 15, 1979

17
50
15
31
50
14
6,41

.................. 14
14
14
24
17
23
23
37

.................. 9
9
9
10
9
9
57
57

13
13
13
40
13
6,40
12
56
6,41
13
13

14
12,22,48

67

