
For Xerox Internal Use Only -- October 16, 1977 

ALTO SOFTWARE PACKAGES 

Conlpiled on: October 16, 1977 

Xerox Palo Alto Research Center 
3333 Coyote Hill Road 

Palo Alto, California 94304 



For Xerox. Internal Use Only -- October 16, 1977 

2 

This list is a directory of major Alto software packages. The files for these 
programs are available on the <ALTO> directory. The doculnentation for these 
packages is available on <ALTODOCS>. This document is filed as 
<ALrrODOCS> P ACKAGES.EARS. Some packages have closely-corresonding subsystems 
(e.g., TFS Trident disk software and 'l'FU utility); in this case, the bulk of the 
aocumcntation is located with in the Alto Subsystems Manual, and a cross-reference 
is included in this document. 

The items listed below may be flagged by a single character to indicate where the 
documentation may be found: 

* documentation for these items is contained within this manual; 
** these items are described further in a separate docunlent; 
II see the Alto Operating System manual for documentation. 

IIALLOC: A boundary-tag storage allocator. Documentation is in the Alto 
Operating Systenl 1'Ianual. (Ed McCreight) 

* ASIM: A procedure which simulates an Alto microprocessor equipped with a 
RAM. (Peter Deutsch) 

*BCPLRUNTIME: A replacement for the standard Bcpl runtime (in the OS), in 
whihcch nearly all of the operations have been microprogrammed. rrypical 
Bcpl programs run 25 to 30 percent faster. (Ed Taft) 

IIBFS: The "basic file system" subroutines. These do page-oriented 1/0 to disk 
files organized according to standard Alto conventions. Documentation is in 
the Alto Operating System Manual. (Butler Lampson) 

*BYTEBLT: transfers an arbitrary block of 8-bit bytes from one place in 
memory to another. (Ed Taft) 

*CMDSCAN: an interactive command 
interpretation procedures. (Ed Taft) 

scanner and collection of command 

*CONTEx'r: provides facilities for managing multiple ex.ecution contexts for Dcpl 
procedures. (Ed Taft) , 

DCBPRESS: This file provides one subroutine for nlaking a one-page Press file 
from an Alto screen bit-map. The calling sequence is: DCBPress("filename", 
pDCB, [width, height, left, top]), which writes a file of the given name using 
pDCB as a pointer to a display control block.. The last four parameters allow 
you to select a portion of the rectangle described by the DCB for printing. 
Width is the width (in bits) of the window you wish to see; height is the 
height in scan-lines; left is the offset from the left edge of the bit-map; 'top 
is the offset from the top of the bit-map. (Bob Sproull) 

*DIABLOPRINTER: Routines that implement streams on the Diablo printer. (Ed 
Taft) 

**DIALOG and DIRECTOR: a set of run-time subroutines for conducting a dialog 
between a human and a program, and a mechanism for con trolling the 
execution of a 'batch' of programs. Further documentation is on 
<al todocs > Dialog.ears. ( J ay Israel) 

*DPDIVIDE: Computes the quotient and remainder from the division of one 32-
bit 2's complement number by another. (Petor Deutsch) 

UDSTREAM: Provides a capability for display streams, nlultiple fonts, bit 



For Xerox Internal Use Only -- October 16, 1977 

3 

repositioning, selective erasing and polarity inversion. 
the Alto Operating System f-Ilanual. lPeter Deutsch) 

Documentation is in 

*EFTP package: A Pup-based file-transfer package using a simple (EFTP) 
communications protocol. (John Shoch) 

*ETHEUBOOT: A subroutine that will "boot" the Alto from one of several boot 
files supplied by Ethernet· gateways. (Ed Taft) 

*EVENTREPOR1': A subroutine that will log events using the Pup Event Report 
protocol. (Bob Sproull) . 

*FINDPKG: searches standard Alto files for certain simple kinds of patterns at 
very high speeds using special microcode. (Peter Deutsch) 

*FLOAT: Floating-point package for the Alto that uses no special microcode. 
(Bob Sproull) 

*FORMAT: Routines for doing formatted 1/0. (Ed McCreight) 

*FTPPACKAGE: File Transfer Protocol (FTP) routines. (David Boggs) 

*GETSE'rBITS: malws it easy to extract and replace strings of up to 16 bits in 
a vector of bits. (Peter Deutsch) 

*GP: General-purpose routines for parsing command lines and the like. (Butler 
Lalnpson) 

*INTERRUPT: permits Bcpl procedures to be called as a result of hardware 
interrupts on the Alto. (Ed Taft) 

*ISF: a package that provides pseudo-ranldom access to Alto files. (Peter 
Deutsch) 

*KBD: provides a basic keyboard input stream capability. (Peter Deutsch) 

*KPM: a simple efficient Knuth-Pratt-MOonis pattern match of a name against 
a template that may contain one or more wildcard characters. (Ed Taft) 

*LOADRAlVI: loads a 'Pack Ram Image' (see PackMu in the subsystems 
documentation) into the raIn, and optionally performs a 'silent boot' to start 
one or more tasks in the Ram. (Ed Taft) 

*IvlDI: Subroutine that looks up multiple files in one pass through the directory. 
(Peter Deutsch) 

*OVERLAYS: Subroutine package for handling Bcpl overlays conveniently. (Peter 
Deutsch) 

*PAPEUTAPE: A package which implements streams to a high paper tape reader 
and punch which can be attached to the Alto via the Diablo printer 
interface. (David Boggs) 

*PUPERPSERV: implements the Pup Event Report Protocol (ERP). (David 
Boggs) 

*PUP PACKAGE: implements communications by means of Pups and Pup-based 
protocols. (David Boggs and Ed Taft) 

*QUEUE: a sinlple set of queue primitives. (Ed Taft) 



For Xerox Internal Use Only -- October 16, 1977 

4 

*READMU: Subroutine for reading microcode files created by MU. (Chuck 
Thacker) 

*READU~ERCMITEM: reads items from user profile files. (Peter Deutsch) 

**READPACKEDRAM: Allows Alto programs which use the RAM to check the 
constant menlory and load the RAM as a part of their initialization. See Alto 
Subsystenls Manual. (Peter Deutsch) 

*RENAMEFILE: renames a file. (David Boggs) 

*RINGBUFFER: a set of procedUres for buffering data by nleans of circular 
buffers. (Ed Taft) 

*RWREG: Procedures for reading and writing the Alto microprocessor Rand S 
registers under program control. (Peter Deutsch) 

*SCANFILE: This package provides procedures for reading Alto files at full disk 
speed, and overlapping computation with the reading. (Peter Deutsch) 

*SCV: Scan-converts objects from a description of the boundaries of the object. 
(Bob Sproull) 

*SDIALOG: A package for managing simple interactive dialogs with a user. It 
helps prompting and response parsing. (Bruce Parsley) 

**SORTPICG: a package for sorting things of arbitrary sort--you provide a "get" 
routine, a "put" routine and a "comparison" routine. Documentation is found 
in the first page of the Bcpl sources. (Ed McCreight) 

*SPLINE: procedures for fitting cubic splines to sets of knots. (Patrick 
Baudelaire) 

IISTREAMS: The disk streams package provides facilities for doing efficient 
sequential input/output to and from Alto disk files. Documentation is in the 
Alto Operating Systeln lVIanual. 

*STRINGS: useful procedures for extracting, concatenating, and conlparing strings, 
plus string streams (Ed Taft) 

*'rEMPLATE: formats output to a streanl according to a template provided as a 
string. (Ed Taft) 

*TIME: Subroutines for converting tiIne-of-day readings to and from human
readable form. (Peter Deutsch) 

*TIMER: a set of procedures for setting, testing and blocking on timers. (Ed 
Taft) 

*TRACE: Routines for tracing BCPL procedures. (Peter Deutsch) 

*UTILSTR: A collection of utility and string-manipulation procedures. (Bruce 
Parsley) 

*VMEM: A software virtual mernory for the Alto. (Peter Deutsch) 



For Xerox· Internal Use Only -- October 16, 1977 

Alto processor simulator October 6, 1977 5 

Alto processor simulator 

The Asim library package very precisely simulates the Alto I or II 
processor, including the 2K ROM and extended memory ogtions. AU references to 
the various Alto memories ell registers, Inicroinstruction R :M/HAl\1, constants, main 
memory) occur through procedures, so the simulator may be run using the actual 
contents of the RAM or a core image thereof, the real contents of main rnenlory or 
a SWAT-like file image thereof, and so on. Memory timing is simulated properly, 
and a large nunlber of minor logical errors (such as mis-timing of memory references, 
assuming that L or T is safe over a TASK, or giving a branch modifier in the 
instruction after a TASK) are detected. 

1. Requirements 

Asim expects the user to provide the following 7 procedures (and declare 
them external~: 

ReadR j) - return the contents of the j'th R register. J may be 0 through 
37B or 41B trough 77B. 

WriteH(j, wd) - write the value wd into the j'th R register. 
ReadRAM(j) - read a word from the instruction memory as described in the 

Alto reference manual, to wit: bit 4 of j decides between ROr.,i (1) and RAM (0); bit 
5 of j decides between upper 16 bits (1) and lower (0); bits 6-15 of j give the 
address. If Asim is simulating an Alto (II) with the 2K ROI'A option, then when bit 
4 of j is set, bit 3 of j chooses between ItOMO (0) or ROM1 (1). Note that this is 
not supported by the actual Alto hardware. 

WriteHAM(j, wd) - write wd into the instruction memory. J is as for 
ReadRAM. Note that unlike the' hardware instruction, this procedure must be 
capable of writin~ into the upper and lower 16 bits independently.' 

ReadCON(j - return the j'th constant. J is between 0 and 377B. 
ReadMEM j) - return the contents of main Inemory location j. If Asim is 

simulating an A to (II) with extended memory, it will normally call ReadMEMfj, 
bank), where bank prOVIdes the 2 extra bits of memory address. ReadMEM will stul 
be called sometimes with only one argument for accessing 1/0 locations '(177000B and 
above), and it should check for j in this range before examining bank. Note also 
that, as for the real extended memory hardware, Asim uses the contents of 
(simulated) location 17774013 to determine the bank numbers for all memory accesses. 

WriteIviEM(j, wd) - write wd into main memory location j. With extended 
memory, Asim calls WriteMEM(j, wd, bank) -- note the order of the arguments. 
rrhe user program may usc any implementation it wishes for these operations. The 
only requirmnent is consistency, i.e. a Read operation must retrieve the datum given 
to the last Write operation for that cell. 

Either the READMU package, or the PACKMU subsystem ·and 
ReadPackedRAM package, described in separate writeups, may be useful for reading 
Inicrocode into memory for simulation. 

2. Use 

Asim is written in Bcpl and consists of a single file Asim.BR. It does not 
use any facilities of the Alto as. It provides two externally accessible procedures 
(InitAsim, Asim) and a large number of externally accessible statics. The procedures 
and accessible statics are declared external in the file Asim.D which the user should 
"get". 

InitAsim( altotype, extrarom, extendedmemory) initializes the simulator state 
completely -- declares the main memory interface to be quiescent, clears all internal 
registers to zero, and marks Land T as undefined. It does not affect any of the 



For Xerox Intcrnnl Use Only -- October 16, 1977 

Alto processor simulator Octo ber 6, 1977 6 

memories. Altotype (defaults to 0) specifies the Alto configurntion: 1 means Alto I, 
2 means Alto II, and 0 means that the microprogram is supposed to execute 
compatibly on both Alto I and Alto II. Extrarom ldefaults to false), if true, means 
that the Alto has the 2K ROlYl option. Extendedrnemory (defaults to false), if true, 
means that the Alto has the extended memory option. 

AsimO executes one micro-instruction. Asim returns 0 if the instruction 
completed successfully, otherwise a string which indicates the reason for the failure. 
In the latter case, no change has occurred in any progranlmer-visible state (R, RAM, 
main memory, L, T,' IR, carry flags, etc.), offering the possibility of repairing a 
problem and resuming execution. 

Asim maintains the state of the microprocessor in a set of Bcpl statics 
which are available to the user for inspection. These statics are supposed to capture 
the entire program-visible state of the microprocessor, plus a few useful quantities 
which are not normally visible from the outside between instructions. The caller of 
Asim is free (but not encouraged) to alter any of Asim's accessible statics between 
instructions -- there are no hidden interactions. 'rhe accessible statics are 
documen ted in Asinl.D. 

2.1. Errors 'detected 

The following is a (currently) complete list of the strings which Asim will 
return. 

L undefined 
T undefined 
Branch modifier followin~ TASK 
Delayed Fl following TASK 
TASK with memory running 
ALU output discarded 
DNS with BSflH.~ 
2 meluory ops 
Memory timing error 
Attempt to load R40 
Attempt to mask MD 
Bad ALUF 
MAR~ with R37 
STARTIO 
Bad Fl 
Bad F2 
Attempt to shift into 2nd R bank 
MDf- at wrong time 
f-TvID at wrong time 
Odd double fetch not compatible 

2.2. Limitations 

Asim only simulates single and double fetches and single stores to main 
memory, not the more exotic types of memory access. This is not an intrinsic 
limitation and could be fixed if there were enough demand for it. 

Asim only simulates the emulator task. 



For Xerox Internal Use Only -- October 16, 1977 

Alto processor simulator October 6, 1977 

The following is a listing of the current contents of Asim.D. 

II 
I I External definitions for Asim 
I I last edited October 6, 1977 10:25 AM 
II 

external 
[ 

] 

external 
[ 

] 

1/ entry points 
InitAsim I I (altotype [1], extrarom [false], extramemory [false]) 
Asim I I 0 -) O/errorstring 

1/ the microprocessor state 
@t II T 
@tu I I T undefined flag (true or false) 
@l II L 
@lu I I L undefined flag (true or false) 
@ir II IR 
@carry / I emulator carry (0 or 1) 
@bus I I temp. for bus data 
@alu I I temp. for ALU output 
@sh 1/ temp. for shifter output 
@skip / I SKIP (0 or 1) 
@alucy / I last AtU carry (0 or 1) 
@mar 1/ last lnenlory address 
@altbank / I true iff last MAR+- selected alternate bank 
@mstate /1 memory state 
@nmod 1/ modifiers for NEXrr 
@pc I / (microinstruction) PC 
@waitingll TASK, RDRAM, WRTRAM, SWMODE waiting or -1 
@ramadr I I RAM address 

7 



For Xerox Internal Use Only -- October 16, 1977 

Bcpl · Run time Package October 16, 1977 8 

Bcpl Runtime Package 

This packnge is a replacement for the standard Bcpl runtime (the one built into the 
Alto Operating System), in which nearly all of the operations have been 
microprogramlned. Typical Bcpl programs run 25 to 30 percent faster than with the 
standard routines, depending primarily on their frequency of procedure calls and their 
richness in complex structure references. Use of this package also permits one to 
Junta to levBasic if desired, for a savings of approximately 500 words of main 
memory. 

The microprogrammed runtime is entirely cOInpatible with the standard one. It does 
not require programs to be modified or recompiled, and it works correctly during 
calls to the Operatin~ System as well as to your own procedures. The simplest use 
of this package requlfes only that you load the necessary microcode into the Ram 
and call one initialization routine. 

The package also provides a convenient framework in which to define and 
microprogram additional emulator opcodes~ 

1. Standard Use 

The simplest case applies when you do not need to include any special microcode of 
your own. The file BcplRuntime.Dm is a dump-format file containing BcplRuntime.Br 
and BcpIRuntimeMc.llr. These modules should be loaded with your program, along 
with the LoadRam procedure, available separately as LoadRam.Br. 

Early during initialization, your program should cxecute the following: 

external [ LoadRam; InitBcplRuntime; Ramlmage ] 
if LoadRam(Ramlmage) eq 0 then InitBcpIRuntiIne() 

(LoadRam returns zero if it successfully loaded the Ram and a nonzero result 
otherwise, e.g., because no Ram board is installed.) 

Once this has been done, the space occupied by LoadRanl.Br and BcplRuntimeMc.Br 
may be reclaimed. BcplRuntime.Br must remain resident throughout execution of the 
program, but it occupies only about 150 words whereas the others consume nearly 
3000. 

InitBcplRuntime sets up a 'user finish procedure' (in the manner described in the 
O.S. manual, section 3.12), whose purpose is to restore the normal Bcpl runtime 
routines when the prog.ram 'finish'es for any reason. Operation of this mechanism is 
ordinarily invisible; however, there arc two situations in which the progranlmer must 
be aware of its workings. 

First, if you execute a Junta and later a CounterJunta, the CounterJunta will itself 
cause the standard Bcpl runtime to be restored. The later restoration performed by 
the BcplRuntime package will be redundant and will do no harm, but the standard 
(slower] Bcpl runtime will be in use once the CounterJunta has been executed. 

Second, if you Junta away the standard Bcpl runtime routines themselves, you must 
be careful to perform initialization in the correct order. In particular, 
InitBcplRuntime must be called before the Junta and before any other code that sets 



For Xerox Internal Use Only -- October 16, 1977 

Bcpl Runtime Paclmge October 16, 1977 9 

up user finish procedures. This ensures that at 'finish' time, the cleanup procedure 
in the BcplRuntime package will be the last user finish procedure executed, 
immediately before control returns to the operating system for the final time. If 
this convention is not followed, a subsequent call on the Bcpl runtiIne would end up 
diving into garbage (since InitBcplRuntime saves and restores only the runtime 
statics, not the code). 

2. Adding Your Own Microcode 

In order to implement additional emulator instructions or install microcode for special 
devices, it is necessary to understand the workings of the package in some detail. If 
you don't want to do those things, you need read no further. 

The source files arc contained in the dump-format file BcpIRuntimeSource.Dm. It 
includes, among other things, the following microcode source files: 

BcplRuntimeMc.Mu 

EmulatorDefs.Mu 

RamTrap.Mu 

GetFrame.Mu 

BcplUtil.Mu 

The top-level microcode source file, which 'includes' all the 
others. 

Standard label and R-register definitions useful in writing code 
to be run as part of the emulator task. 

Declarations and code for dispatching all opcodes that trap into 
the Ram. 

Microcode implementing the Bcpl runtime 'GetFrame' and 
'Return' operations. 

Microcode implementing all remaining Bcpl runtime operations. 

In addition to these files,· you need AltoConsts23.Mu (or whatever the current version 
is). Mu.Run, and PackMu.Run. The latest (October 11, 1977) version of Mu is 
required. . 

To add new opcodes, you will need to edit BcplRuntimeMc.Mu and Ramrrrap.lVlu 
(w'hich should be renamed to somethin~ else first). The changes to 
tlcplRuntimeMc.Mu are trivial: simply append include' statements for each of your 
own source files. 

Ramrrrap.Mu contains the following predefinition: 

!37,40, TrapDispatch", GetFrame, Return, BcplUtility; 

The labels in this predefinition correspond to the opcodes tl60000, 1160400, #61000, 
#61400, "', 1177400 (a total of 32). However, several of these cannot be used because 
their execution does not cause a trap into the Ram. These are 1160000, 1160100, 
/161000, 1164400, 1165000, #67000, and #77400. The GetFrame, Return, and BcplUtility 
instructions use /161400, #62000, and 1162400. All others are available for your own 
use simply by adding labels to the predefinition. 

When one of these labels is reached, the Alto is in a clean state (no TASK or 
melnory reference pending), the accumulators ACO through AC3 contain the values 
supplied by the emulated program, and IR (the DISP bus source) contains the low
order 8 bits of the opcode, which may be used for further dispate)l if desired. 

The routine should finish by executing the following sequence of operations: 



For Xero,c Internal Use Only -- October 16, 1977 

Bcpl Run time Package October 16) 1977 

TASK; 
somethinp; 
SWMODE; 
:START; 

10 

It is essential that the TASK be executed as late as possible before the branch to 
START. The worst-case path in the ROln microcode beginning at STAR1' consists of 
19 microinstruction cycles without a TASK. It has been determined empirically that 
as few as 3 microinstructions inserted between 'something' and 'TASK' in the above 
sequence causes Diablo Model 44 dislcs to get dat.a-Iate errors. (Alas, it is not 
possible to say 'SWMODE, TASK' in one microinstruction because they are both Fl's. 
In hindsight, it would have been nice if SWMODE had been implemented in such a 
way as to cause a TASK also.) 

BcplUtil.Mu contains three convenient exit points to which opcode emulation routines 
may branch. The code for these exit pOints is: 

StartO: PC~L; 
Start1: Lt-PC, SWMODE; 
Start2: PC~ L, :ST ART; 

One may branch to StartO having just executed 'L~ new PC, TASK;', to Startl haVing 
just executed 'TASK; something;', or to Start2 having just executed 'TASK; something; 
L~ new PC, SWMODE;'. . 

Standard R-registers available to the routine are listed in EmulatorDefs.Mu. These 
are SAD, XREG, XH, MTEMP) D\VAX, and IvIASK. All except MTEMP are used 
exclusively by the emulator task and may be clobbered arbitrarily (the standard Nova 
emulator in the Rom does not depend on them). lVrrEMP is usable by any task but 
is safe only until the next TASK. 

You may need to modify EmulatorDefs.Mu if your microcode defines labels in low, 
fixed locations (e.g., START or the task starting addresses). Note that 
EmulatorDefs.Mu defines all labels except TRAP1 in a way that does not consume 
space in the Ram. You may need to change one or more of these (e.g., srrARrr) to 
ordinary predefinitions if you intend to define them in the Ram. 

rrhe microcode is assembled and turned in to a .Br file by means of the commands: 

Mu BcplRuntimeMc.Mu 
PackMu BcplRuntimeMc.Mb BcplRuntimeMc.Br 

The Bcpl runtime microcode contained in the package occupies 337 (decimal) 
microinstruction words. 



ByteBlt 

For Xerox Internal Use Only -- October 16, 1977 

March 9, 1976 

ByteBlt -- Fast Byte Block Transfer 

11 

This package contains a single procedure, ByteBlt. which transfers an arbitrary block 
of 8-bit bytes from one place in rnenlory to another as quickly as is possible without 
special microcode. The procedure handles all cases of blocks starting or ending on 
even or odd byte boundaries and whose lengths are even or odd. The bulk of each 
transfer is done using the "blt" instruction if possible and using a fast inner loop (4 
instructions per byte) otherwise. 

ByteBlt is written in assembly langua~e. It is distributed as AltoByteBlt.br. which is 
assembled from AltoByteBlt.asln. It IS 107 (decimal) instructions long and calls no 
external procedures (aside from the BCPL runtime). A Nova-compatible version of 
this package is also available (though it works less efficiently due to lack of a "bit" 
instruction J. 

ByteBlt(DstAdr, DstByte, SrcAdr, SrcByte, ByteCount) 
Transfers the block of bytes described by the arguments. Bytes are packed two 

. per word, with the left byte considered to be the first. DstAdr and DstByte 
specify the destination address of the first byte, with DstAdr providing a base 
word address and DstByte specifying the offset of the first byte relative to that 
word (0 means the left byte in DstAdr, 1 means the right byte in DstAdr, 2 
means the left byte in DstAdr+l, etc). Similarly, SrcAdr and SrcByte specify the 
source address o·f the first byte. ByteCount is the number of bytes to be 
transferred (must be less than 21'15; zero is legal). 

No bytes outside of the specified destination block are affected; in particular, if 
the destination block begins on a right-hand byte or ends on a left-hand byte, 
the other byte in the same word is not clobbered. However, the source and 
destination blocks must not overlap. 

ByteBlt achieves its efficiency by checking for three special cases. If the block is 
very small (4 bytes or less), it is transferred by means of a relatively slow byte-at
a-time routine, since the overhead of setting up for the other, faster cases outweighs 
this inefficiency. (However, this case is still much faster than moving bytes using a 
BCPL "for" loop and structure references). 

If the source and destination blocks are in phase (i.e., they both start with the left 
byte or both with the right), then the entire block, possibly excepting the first and 
last bytes, is transferred by means of a single "bIt" instruction. Leftover bytes at 
either end are handled specially. 

If the source and destination blocks are out of phase, then the bytes are transferred 
by means of a 16-instruction inner loop which reads and writes data in III emory two 
full words at a time, swapping and masking bytes as required. 



For Xerox Internal Use Only -- October 16, 1977 

Comnwnd Scanner Package JUly 14, 1977 12 

Command Scanner Package 

This packa.ge consists of an interactive command sCanner and a collection of command 
interpretation procedures. Among the important features of this package are: 

1. The editing facilities are fairly sophisticated. One can provide defaults and 
modify the break and echo sets on a per-phrase basis. The user is 
permitted to ba.ckspace over phrases that have already been parsed. Phrases 
may be interspersed with "noise" text that is retained with the cOlnmand 
line while not logically a part of it. 

2. Error recovery and retry facilities are provided by means of some rather 
tricky BCPL control structure. 

3. The package is modular, and not all modules necessarily need be loaded. 
Also, specialized knowledge about the Alto display is confined to one module, 
which nlay be replaced by a different module that deals with other media 
such as hardcopy terminals or network streams. 

'The Command Scanner Package is intended for use in programs with relatively 
sophisticated needs, and is fairly large (just the basic command editor and Alto 
display handling modules together amount to about 1500 words of code). 
Programmers with simpler needs or tight memory constraints might be better off 
using Bruce Parsley'S Simple Dialoging Package. 

1. Organization 

The package is distributed as a dump-format file CmdScan.dm, which contains the 
following files: 

CnldScan.decI 

CmdScan.br 

CmdScanEdi t. br 

CmdScanDisplay.br 

CmdScanTty.br 

CmdScanAux.b~' 

Keyword.br 

Declarations that may be needed in order to use the 
package. 

The main control module. This must always be loaded. 

Editing operations invoked from the nlain control module. 
This also must always be loaded. 

Operations specific to the Alto environment (display and 
keyboard). This or some equivalent module must always 
be loadea. 

Equivalent operations oriented toward a minimal tenninal 
stream interface. 

Higher-level command interpretation procedures for dealing 
with such things as numbers, strings, filenanlCs, and 
keywords. This module is required only if its facilities 
are desired. 

Primitives to look up and enUlnerate keywords in a 
keyword table. Procedures in this lnodule are called from 
the CmdScanAux module. 



For Xerox. Internal Use Only -- October 16, 1977 

Command· Scanner Package 

Keywordlnit.br 

CmdScanOEP.br 

KeywordOEP.br 

July 14, 1977 13 

Procedures to construct and manipulate keyword tables. 
rfhis module may be discarded after all desired keyword 
tables have been created. 

Declarations of Overlay Entry Points (OEPs) in the 
CmdScan modules. rrhis module is needed only if the 
CmdScan lllodules arc loaded into overlays. 

OEP declarations for the Keyword modules. 

The CmdScanAux module requires that the Timer and Context packages also be 
loaded. If one is not using contexts, one may omit the Context package and instead 
define an external procedure BlockO that just returns immediately. 

2. Basic COlnlnand Scanner 

Command scanning is done within the confines of a Comnland State (cs) object, 
which accumulates the text of a comnland and maintains state from one pbrase to 
the next. A command consists of a sequence of phrases, possibly interspersed with 
"noise" text not part of any phrase. Each phrase consists of zero or more non
terminating characters followed by a terminating character. . 

Editing is done on a phrase-by-phrase basis. For each phrase, the GetPhrase 
procedure is called to input a new phrase from the keyboard lterminated by a break 
character) and append it to the command line. GetPhrase returns when the 
terminating character is typed. At this point, the caller may call Gets(cs) to read 
the characters of the phrase (using Endofs(cs) to test for end of phrase). 

While control is inside GetPhrase, if the user backspaces past the beginning of the 
current phrase, control is sent back to an earlier point of interpretation so as to 
reparse the previous phrase now being editted. There exists a facility for regaining 
control when this happens so as to release resources acquired during command 
interpretation. 

Between phrases, one may output "noise" text by means of Puts(cs). This text is 
displayed and maintained in the command line but does not participate in editing 
operations. That is, if one is positioned at the end of a "noise" string and 
backspaces one character, the entire "noise" string is erased along with the real 
command character preceding it. 

2.1. Getting Phrases 

The following procedures are defined in CmdScan.br and CmdScanEdit.br: 

InitCmd(maxChars, maxPhrases, WordBreak [DefBreak], PhraseTerminator [DefBreak], 
Echo [DcfEcho], keyS [keys], dspS [dspl, Erase [DefErase J, Error [DefError J, zone 
r sysZone]) = cs or 0 
Creates and returns a Command State (cs) structure capable of holding at most 
maxChars characters grouped into at most maxPhrases phrases. keyS and dspS 
are the keyboard and display streams for the command scanner. The structure 
is allocated from zone. The remaining arguments (all of which are procedures) 
control the conlmancl scanner in various \vays. These procedures are described 
below under "Edit Control Procedures". 

When InitCmd is called, it always returns a cs. However, if the command is 



For Xerox Internal Use Only -- October 16, 1977 

Conlnland Scanner Pa.ckage July 14, 1977 14 

deleted (by the user striking the Delete character) during later command typein, 
the cs is destroyed and IniiCmd returns again wlth zero as its result. This is 
discussed below under "Backing Up and Catch Phrases". 

Closes(cs) 
Destroys the Command State structure cs, returning it to the zone from which it 
waS allocated. 

GetPhrase(cs, WordBreak [default], PhraseTerminator [default], Echo [default], Help 
r], he)pArg [J) :: nurnChars 
neadies the next phrase to be interpreted, inputting one from the keyboard if 
necessary. Returns the number of characters in the phrase, not including the 
terminating character. 

The WordBreak, PhraseTerminator, and Echo procedures, if provided, override the 
ones declared to InitCmd for this phrase only. If Help is provided then upon 
typein of a question nlark the call Help(dspS, helpArg) is executed; this is 
expected to output a helpful message to the stream dspS, not preceded or 
followed by a carriage return. (Typically the message is just a string, which 
may most easily be output by providing a Help procedure of Wss and a helpArg 
of the string itself.) 

Gets( cs ) = char 
Returns the next character of the current phrase, i.e., the one most recently 
input by means of GetPhrase. If the phrase is exhausted (i.e., the next 
character would be the phrase terminator), Errors(cs, ecEndOfPhrase) is called. 

Endofs( cs) = truelfalse 
Returns true if the current phrase is exhausted. 

Puts( cs, char) 
Appends the "noise" character to the command line and outputs it to the 
command's display stream. Puts should be called only between phrases, i.e., after 
reading all characters of one phrase and before calling GetPhrase for the next. 

Resets(cs) 
Resets the command scanner to the beginning of the current phrase, such that 
the next call to GetPhrase will return the same phrase again. 

TerminatingChar(cs) = char 
Returns the character that terminated the current phrase. 

2.2. Default Phrases 

DefaultPhrase(cs, string, char [J) 
Sup{?lies a default value Lthe string) for the next phrase; that is, the next call 
to GetPhrase will cause tho text from that string to be returned. The string is 
appended to the c01nmand line and output to the command display stream. 'rhe 
string should not contain a terminating character. 

If char is supplied, it is used as the terminating character and the next call to 
GetPhrase will return without giving the user any opportunity to edit the 
phrase. If char is omitted, the next GetPhrase will wait for the user to either 
type a terrllin~ting character (in which case the default phrase will be returned) 
or provide a replacement phrase followed by a ter;minating character. 

BeginDefaultPhrase( cs) 
Begins a default phrase. All occurrences of Puts(cs, char) between calls to 



For Xerox Intern~l Use Only -- October 16, 1977 

COlnmand Scanner Package July 14, 1977 15 

BeginDefaultPhrase and EndDefaultPhrase are included in the default phrase 
rather than treated as "noise" characters. This permits default phrases to be 
generated by arbitrary stream output. 

EndDefaultPhrase(cs, char []) 
Ends a default phrase started by BeginDefaultPhrase. If char is supplied, it is 
used as the terminating character, as described above under DefaultPhrase. 
BeginDefaultPhrase and EndDefaultPhrase must be paired and there nlust be no 
calls to GetPhrase between them. 

2.3. Edit Control Procedures 

These procedures control the operation of the command scanner in various ways. The 
procedures arc passed as arguments to InitClnd, and some of them to GetPhrase. 
'fhe default procedures are all defined in CmdScanDisplay.br, but the programmer is 
free to substitute other oncs when appropriate. 

The file CmdScanTty.br is an alternate to CmdScanDisplay.br, but oriented toward a 
Ininimal terminal stream interface. 'rhe only operations required are Gets and Resets 
on the keyboard stream and Puts on the display stream. 

WordBreak(cs, char) = truelfalse 
Returns true if char is a Vlord break character and false otherwise. This 
controls the action of the control-W editing character and has no other effect. 
The default WordBrcak procedure returns true only for space, escape, and 
carriage return. 

PhraseTerminator(cs, char) = truelfalse 
Returns true if char is a phrase terminating character and false otherwise. This 
controls the definition of a phrase, which is zero or more non-tenninating 
characters followed by a terminating character. The default Phraserrerminator 
procedure returns true only for space, escape, and carriage return. 

Echo( cs, char) = truelfalse 
Returns true if char should be echoed when it is typed in and false otherwise. 
The default Echo procedure returns true if char is not a phrase terminator and 
false if it is (using whatever definition of phrase terminator is currently in 
effect). 

Erase( cs, firs t, last, con text) 
Erases characters cs»CS.buf»Buftfirst through cs»CS.buf»Buf1'last (inclusive) 
frDIn the output strCaIn in whatever manner is appropriate for the medium. 
This interval may include both real phrase consituent characters and "noise" 
characters. Characters that were not echoed (i.e., not actually sent to the 
output stream) have 11200 added to them and should be ignored. 

The context argument indicates the context in which the Erase procedure is 
being called; this may be useful in determining the correct action. 

eraseChar 

eraseWord 

eraseTermina tor 

A single character is being erased. (It is the 
character cs> >CS.buf> > Buf'tfirst; any other characters 
are "noise".) 

A word (or phrase) is being erased. 

The terminating character of the current phrase is 
being erased to permit additional editing on the 
phrase. 



For Xerox. Internal Use Only -- October 16, 1977 

Command Scanner Package July 14, 1977 16 

The default Erase procedure in the CmdScanDisplay module erases characters from 
the Alto display by Ineans of EraseBits. If it is necessary to erase past the left 
margin CLe., past a carriage return or a line wrap-around), the entire display 
window IS erased and the command line is regenerated, thereby losing any text 
displayed before the beginning of the current command line. (This is necessary 
because the Operating System's display streams package generally does not permit 
one to Inanipulate other than the current display line.) 

The default Erase procedure in the CmdScanTty module prints a backslash 
followed by the erased character in the eraseChar case and a left arrow in the 
erase \Vord case. 

Error( cs, ec) 
This is the stream error procedure for cs 
exceptional condi lions. The error codes (ec) 
of them indicate a specific error condition. 
certain action and are therefore generally 
routines. 

and is called under a variety of 
are defined in CmdScan.decl. Most 

However, a few simply request a 
useful in client command parsing 

ecCmdDelete 

ecCmdTooLong 

(called from GetPhrase) The Delete character has been 
typed. 1'he Error procedure should take appropriate action 
and should not return. The default Error procedure types 
"XXX" and forces a return from the call to InitCmd with 
value zero. 

The command line buffer is full and an atteInpt has been 
made to append another character to it. The maximum 
length is the maxChars argument to InitCnld. If the 
Error procedure returns the excess character is thrown 
away. The default Error procedure blinks the display, 
resets the keyboard, and returns. (The CmdScanTty 
module outputs a bell to the display stream.) 

ecTooManyPhrases AtteInpt to put more than maxPhrases phrases into the 
command line (maxPhrases is passed to InitCmd). This is 
an unrecoverab1e error, and the default Error procedure 
calls SysErr. 

ecEndOfPhrase 

ecKey Ambiguous 

ccBackupReplace 

ecBackupAppend 

ecCmdDestroy 

Attempt to read characters past the end of the current 
phrase (by Gets( cs )). If the Error procedure returns, the 
result value is returned by Gets. The default Error 
procedure calls SysErr. 

(called from GetKeyword, described later) An ambiguous 
keyword has been typed in. The default Error procedure 
blinks the display, resets the keyboard, and sends control 
back to an earlier point of interpretation so as to permit 
the user to type in more characters. 

This and the following error codes are not associated with 
specific errors but siInply request that a certain action be 
performed. This one requests that control he sent back 
to the beginning of the current phrase .to permit typein 
of a replacement phrase. 

Requests that control be sent back to the current phrase 
to permit the user to append to or edit it. 

Requests that control be sent back to the InitCmd that 



For Xerox Internal Use Only -- October 16, 1977 

Command Scanner Package 

other 

July 14, 1977 .17 

began this command, forcing it to return zero. This is 
the same as ecCmdDelete except that "XXX" is not typed. 

Any error code not listed above is assumed to be some 
sort of syntax error arising from a higher-level cOlnmand 
interpreter (such as the Oiles in the CmdScanAux modUle). 
'}'he default l!~rror procedure handles all of them in the 
same way: it displays a question mark, blinks the display, 
resets the keyboard, and sends control back to an earlier 
point of interpretation so as to permit the user to replace 
or modify the current phrase. 

The following additional Alto 
CmdScanDisplay. br: 

display-specific procedures are defined in 

CmdError( cs, string [J) 
If a string is supplied, outputs it to the command display stream. Then blinks 
the displa~ window and issues a Resets operation on the cOlnmand keyboard 
stream. lThis procedure is also defined in the CmdScanTty module, but it 
outputs a bell to the display stream rather than blinking it.) 

Invert Window( ds) 
Inverts the polarity of the display stream ds. That is, if it is now being 
displayed black on white, changes it to white on black or vice versa. 

2.4. Backing ~ and Catch Phrases 

When it becOlnes necessary to edit a phrase that has already been parsed (i.e., passed 
to the client program via GetPhrase and Gets), it is necessary to back up the 
interpretation of the command line to an earlier point so as to permit the modified 
phrase to be reparsed. This situation arises in several cases: the user backspaces 
past the beginning of the current phrase or deletes the entire conlmand, or a syntax 
error is detected and the current phrase or a previous phrase nlust be replaced or 
modified. 

Rather than requiring GetPhrase and every higher-level procedure that calls 
GetPhrase to provide a failure indication (which the caller lllust then test after 
every call), the Command Scanner Package makes use of some devious control 
transfer primitives to back up control to an earlier point of interpretation, usually 
without the client program's being aware of it. , 

In the simplest case, control is sent all the way back to the call to InitCmd that 
created the Command State (cs). InitCmd returns again with the same cs as before, 
and the entire command line is rcparsed by the client program. Each call to 
GetPhrase (up to the phrase that is being modified) returns a phrase saved away in 
the command state, just as if it had just been typed in. The effects of the 
conlmand scanner procedures during a reparse are indistinguishable from those during 
the initial parse. 

This control structure does have certain consequences that the programmer must be 
aware of. The first is that the context of the call to InitCnld must remain valid 
throughout the lifetime of the cs; that is, the procedure that called InitCmd must 
not return until the cs has been destroyed. 

Second, the interpretation of a given command line must have constant effects. 
That is, the result of reparsing the conlmand must be indistinguishable from the 
result of parsing it initially--there must be no incremental or time-dependent 
variations in interpretation. 



For Xerox Internal Use Only -- October 16, 1977 

Command Scanner Package July 14, 1977 18 

There are situations in which resources are allocated during the course of command 
interpretation, e.~., storage blocks or open files. In some cases, when control is sent 
to an earlier pOInt of interpretation, it is necessary to release such resources. The 
package provides a "catch phrase" mechanism by Ineans of which the program can 
regain control so as to perform such cleanup. (The name is borrowed from Mesa, 
but the facility is not really very much like the Mesa "signal" and "catch phrase" 
machinery.) 

The catch phrase mechanism is accessed through the following procedures: 

EnableCatcll( cs) = truelfalse -
When this call is encountered during normal interpretation, EnableCatch saves 
away the current fraIne and pc in storage associated with the next phrase (the 
phrase that will be read by the next can to GetPhrase). In this context, 
EnableCatch always returns false. 

While interpretation is being backed up, if a phrase is encountered for which an 
EnableCatch has been done, control is sent to that point; Le., EnableCatch 
returns, but with value true rather than false. 'rhe programmer should write a 
statemen t of the fonn: 

if EnableCatch(cs) then [ <catch phrase>; EndCatch(cs) ] 

where <catch phrase> is code that performs the necessary cleanup. 

EndCatch(cs) 
Should be included at the end of every catch phrase. If control is being 
returned to a point of interpretation at or after the current phrase, EndCatch 
simply returns, thereby starting the reparse of succeeding phrases. However, if 
control is being sent back to a phrase before the current one, EndParse resumes 
the reverse transfer of control. Hence catch phrases are executed in reverse 
order, and the backing up of interpretation terminates at the latest catch phrase 
preceding the first phrase that must be reparsed. 

Disa bleCa tcll ( cs ) 
Undoes the effect of a previous EnableCatch for the current phrase. 
issued before or after the GetPhrase that reads the current phrase. 
in situations where resources are allocated temporarily, across only 
GetPhrase. The typical context is something like: 

if EnableCatch(cs) then - [ <release resources>; EndCatch(cs) ] 
<allocate resources> 
GetPhrase( cs) 
<release resources> 
DisableCatch(cs) 

It may be 
It is useful 
one call to 

CmdErrorCode( cs) = ec 
If control is being backed up due to an error (including a command delete), this 
procedure returns the error code. If the user backspaced past the beginnIng of 
a phrase, zero is returned. This procedure returns a valid result only in the 
context of a catch phrase. 

As is the case for InitCmd, the context of every call to EnableCatch must remain 
valid during subsequent command interpretation. Effectively this means that calls to 
EnableCatch lnust be at the same or successively increasing depths of procedure calls. 

Also, only one catch phrase may be enabled per phrase· in the command line. The 
call to Enab.leCatch must precede the call to GetPhrase for the particular phrase, 
though it may either precede or follow a DefaultPhrase providing a default value for 



·For Xerox Internal Use Only -- October 16, 1977 

Cornnland Scanner Package July 14, 1977 19 

that phrase. This restriction makes inclusion of catch phrases within iterations 
sOIJlewhat tricky, though it is still possible. 

A backup of interpretation is normally initiated only from within the COInmand 
Scanner Package itself, or from within an Error procedure called due to a syntax 
error. However, one may explicitly back up control by means of one of the following 
procedures: 

BackupPhrase(cs, nPh rO], editControl [editReplace], char []) 
Sends control bacKward nPh phrases relative to the current phrase (the default, 
zero, IJleans restart interpretation of the current phrase). Note that 
BaekupPhrase never returns. editControl deterlnines the disposition of the 
current phrase, and may have one of the following values: 

editNew 

editAppend 

editReplace 

Discard the phrase and start over. 
meaningful in the context of 
ErasePhrase, described below.) 

(This option is not usually 
BackupPhrase, but is in 

Discard the phrase terminator and permit the user to append 
more characters to the phrase (or otherwise edit it). 

Discard the phrase terminator. If the first character typed by 
the user is a non-terminating, non-editing character, erase the 
entire phrase and start over (treating that character as the 
first character of the phrase); if it is an editing character, 
permit the user to edit the phrase as it stanus; if it is a 
terminator, attempt to parse the phrase again with that 
terminator. 

If char is provided, it is effectively inserted at the front of the command 
keyboard stream and is used the next time GetPhrase needs to input a character 
from the user. 

ErasePhrase( cs, nPh rOl, editControl [editReplace 1, char []) 
Same as BackupPfirase, but first erases aIr intervening phrases (both from the 
command line buffer and from the display). In this case, the editControl 
parameter applies to the target phrase rather than to the current phrase. The 
target phrase is erased only if editControl is editNew. 

3. Auxiliary Command Interpreters 

The procedures in the CmdScanAux module each read a phrase (by calling GetPhrase) 
and interpret it in some way. '¥bile they are useful in their own right, they also 
serve as a good model for additional command interpretation procedures. 

In general the procedures return only if successful and call Errors with an 
appropriate error code otherwise. As previously explained, the default handling for 
these errors consists of backing up control to the beginning of the current phrase 
and permitting the user to replace or modify the phrase. Also, these procedures 
interpret only the phrase itself, not the terminating character. It is the caller's 
reponsibility to check the terminator if required. 

GetNulnber(cs, radix [101) = number 
Returns the next phrase as a number in the specified radix. If an error occurs, 
Errors(cs, ec) is called with one of the following error codes: 

ecEmptyNumber The phrase is empty. 



For Xerox Intern~l Use Only -- October 16, 1977 

Command Scanner Package July 14, 1977 20 

ecN onN umericCbar The phrase contains a character that is not a digit 
in the specified radix. 

ecNum bcrOverflow The number overflows 16 bits. 

GetString(cs, PhraseTerminator [default~, Help [], helpArg [], Echo [default]) = string 
Returns the next phrase as a BCPL string. The optional argunlents, d' supplied, 
are passed to GetPhrasc. The string is allocated from the same zone used to 
create cs. 

GetFile( cs, kBType, itemSize, versionControl, hintFp, errRtn, zone, logInfo, disk) :: 
stream 
Calls OpenFile on the file whose name is the next phrase. All the arguments 
after cs are optional and are defaulted precisely as in OpenFile. If the file 
cannot be opened, calls Errors( cs, ecCan tOpenFile). 

Confirm( cs, string []) = trueJfalse 
Outputs the message '[Confirm]" preceded by the strin\? if supplied. Then 
inputs a confirmation character and returns true if it is 'Y" or carriage return 
and false if it is liN". Any other (non-editing) character causes Errors(cs, 
ecBadConfirmingChar) to be called. (Note that if Delete is typed, Confirm will 
not return but rather the entire command will be aborted.) 

GetKeyword(cs, kt, returnOnFail [false], PhraseTerminator [default]) = entry 
Looks up the nex.t phrase in the keyword table kt CdescribeCI later) and returns 
a pointer to the correspondin~ table entry. If the phrase is ambiguous, calls 
Errors( cs, ecKeyAlnbiguous). If the phrase is not found, normally calls Errors(cs, 
ecKeyNotFoundJ; however, if returnOnFail is true then returns zero in this casco 

If a unique initial substring match occurs and the terminating character has not 
been echoed, appends the remainder of the matching keyword to the command 
line and to the display as if it had been typed in. 

4. Keyword Package 

This portion of the Command Scanner Package implements operations on an object 
called a Keyword Table. It is independent of the rest of the package and does not 
Inake use of any of its facilities. However, the CmdScanAux module does require the 
Keyword Package or some other package implementing equivalent operations. 

'rhe Keyword Package consists of two principal modules. File Keywordlnit.br contains 
procedures to create and modify a keyword table, while Keyword.br contains 
procedures to look up keywords and to enumerate and destroy the table. The rcason 
for this division is to permit one to create all needed keyword tables at program 
initialization time and then to discard the code (which accounts for morc than half 
the total size of the package). 

This package requires the StringUtil module of the Strings package, Which in turn 
requires the ByteBlt package. 

All keyword table operations except CrcateKeywordTable are actually accessed through 
the Calls mechanism (CallO, CallI, etc.), so altcrnate implcmentations of the same 
interface are possible. In particular, the CmdScanAux module requires only that the 
LookupKeyword and EnumerateKeywordTable operations be provided. 

A keyword table is an ordered set of <key, entry> pairs. The keys are BCPL strings 



For Xerox Internal Use Only -- October -16,· 1977 

Command Scanner Package July 14, 1977 21 

and are maintained in alphabetical order for efficient lookup. The entries are fixed
length records whose interpretation is not defined by the package. While the lookup 
operation is efficient, the insert and delete operations are not, so this package is not 
suitable for maintaining large dictionaries or symbol tables. Its principal use is 
maintaining tables of keywords for applications such as cOlumand interpreters. 

Procedures contained in the Keywordlnit module are: 

CreateKeywordTable(maxEntries, lenEntry rlJ, zone [sysZoneJ) = kt 
Creates and returns a keyword table (let) capable of holding a maximum of 
maxEntries entries of lenEntry words each. The keyword table is allocated from 
the supplied zone and is initialized to empty. 

InsertKeyword(kt, key) = en try 
Inserts the supplied key (a BCPL string) into the keyword table kt and returns 
a pointer to the corresponding entry, which is initialized to all zeroes. The key 
string is copied; storage fOI' the copy is obtained from the zone passed to 
CreateKeywordTable. It is the caller's responsibility to appropriately initialize 
the contents of the entry. If the keyword table is full or a duplicate entry is 
inserted, SysErr is called. 

DeleteKeyword(kt, key) 
Deletes the specified key (and its corresponding entry) from the keyword table 
kt. It is the caller's responsibility to dispose of any allocated objects pointed to 
by the deleted entry. If the key is not present in the table, SysErr is called. 

Procedures contained in the Keyword module are: 

LookupKeY\vord(kt, key, IvTableKey rl) = entry 
Looks up . the supplied key in tne keyword table kt, returning a pointer to the 
corresponding entry if successful and zero if unsuccessful. For a successful 
lookup, the supplied key must either completely match a key in the table or be 
an initial substring of exactly one key. Upper- and lower-case letters are 
considered equivalent. 

If IvTableKey is supplied, a pointer to the full text of the matching keyword is 
stored in @lvTableKey if either a successful match or an ambiguous substring 
match occurs (zero is stored otherwise). In the case of an ambiguous substring 
match, the key stored is the first one that matches. This string is the one 
actually kept in the table (not a copy), so the caller must not rnodify it. 

EnumerateKeywordTable(kt, Proc, arg) 
Calls Proc(entry, kt, key, arg) for each entry in the keyword table kt. 
called procedure may modify the entry but must not insert or delete keys. 

The 

Destroy KeywordTable(kt) 
Destroys the keyword table kt, returning the table object and all keys to the 
zone from which they were allocated. It is the caller's responsibility to dispose 
of any allocated objects pointed to by entries in the table. 

Additionally, the following procedure (defined in Keyword.br) may be of interest: 

BinarySearch(key, tbl, lenTbl, Compare) = index 
Searches for key in the sorted table tbl, which has entries numbered zero to 
len'rbl-1 (inclusive). The comparison procedure Compare(key, tbl, i) is expected 
to compare key against entry i in the table and return a negative number if 
the key is "less than" the entry, zero if "equal", or a positive number if "greater 
than". All knowledge of the format of key and tbl is vested in the Compare 
procedure. 



For Xerox Internal Use Only -- October 16, 1977 

Command. Scanner Package July 14, 1977 22 

If the requested key is found, BinarySearch returns the index of the matching 
entry in the table. If the key is not found, -i-l (::: not i) is returned, where i 
is the index of the first entry greater than the requested one (i.e., the key 
before which the requested key should be inserted). 



Context Package 

For Xerox Internal Use Only -- October 16, 1977 

May 21, 1977 

Bcpl Context Package 

23 

A tiny software package is available that provides facilities for managing multiple 
execution contexts for Bcpl procedures. A "context", as used here, is a region in 
which some part of a BcpI stack is stored, including a "resume address" at which 
execution in the context can be resumed. Contexts may be strung together on 
"context lists." Such a list is "called" with CallContextList, which resumes the first 
context on the list until it "Block"s, then resumes the next context on the list, etc. 
Typically, each context that is resulned will execute a test to see if it really has 
work to do, and if not immediately Block again. Because running down the list 
resuming contexts is extremely rapid (the cost of switching between contQxts is only 
14 instructions), it is feasible to nlaintain rather large clouds of contexts in this 
way. 

The package also includes an optional, very rudimentary time-slicing scheduler whose 
purpose is to reduce the frequency (and hence the cost) of context switches among 
"active" contexts. 

The relevant files are contained in Context.dm. The basic context package consists 
of files Context.br, which contains about 50 instructions that must always be 
resident, and ContextInit.br, which contains initialization code that may be discarded 
after all con texts have been initialized. The optional time-sliCing scheduler extension 
consists of ContextSched.br (resident, about 30 instructions), and ContextSchlnit.br 
(initialization). The sources for these may be found in ContextSource.dm, which also 
includes a set of conlmand files and Contextex.Bcpl, the example program given at 
the end of this writeup. A Nova version of this package is available. ' 

1. Basic Con text Package 

ctx=InitializeContext(region, length, proc, extraSpace [01) 
This procedure initializes a context, using a blOCK of storage starting at address 
"region," of length "length" for the stack and sundry other information. The 
"proc" argument specifies a procedure to call the first time the context is 
resumed. The optional parameter "extraSpace" allows the context to contain 
other information of the user's choosing. 

The result of the procedure is a CTX structure: 
structure CTX: 

~ ext word I IPoin tel' to successor con text 
Stack word IICurrent stack pointer 
StackMin word IIStack limit 
user word extraSpace IIFor user's purposes 
stackArea word remaining liThe stack area 
] 

The caller is expected to build context lists by chaining through the Next 
entries. InitializeContext sets Next to zero. Note that this way of managing 
context lists is consistent with the conventions used in the Alto Queue package. 

The "caller's frame" pointer in the first frame of the context is initialized to 
zero. This enables programs that enumerate stacks (e.g., the Overlay package) to 
know when to stop. 



Con text Package 

For Xerox Internal Use Only -- October 16, 1977 

May 21, 1977 24 

. CallContextList(ctx) 
This functlOn resumes each context on the list headed by ctx linked through 
CTX.Next entries. Each context executes until it calls the procedure Block. 
When the list is exhausted (a Zero Next value terminates the list), 
CallContextList returns. CallContextList will never return if the list is linked 
into a ring. 

The first thue a context is encountered by CallContextList, the procedure given 
by the "proc" argument of InitializeContext is called, with the context itself as 
its argument. Any other parameters required to distinguish instances of contexts 
may be passed as an "extraSpace" block, which begins at ctx!3. -

Cal1ContextList is reentrant, and may be called from within an interrupt. 1'his 
pernlits one to have hierarchies of contexts (with preemptive priority) simply by 
running all contexts of a given priority at an appropriate interrupt level ~I.10te 
that the interrupt necessary to cause execution of such contexts Tl1ay be eIther 
hardware- or software-initiated). This is accomplished most conveniently by 
means of the Bcpl Interrupt Interface, described separately. Note that contexts 
running at different priority levels must protect COlnmon data bases and critical 
sections, whereas contexts at the same level are free from race conditions so 
long as they don't call Block from within critical sections. 

BlockO 
c;eases execution of the calling context. Execution resumes the next time the 
context is encountered on some list by CaUContextList. 

If Block is called outside of any context (that is, no call of CallContextList is 
currently in progress), it returns immediately. 

For debugging purposes, two statics defined in· Context.br are of interest: CtxRunning 
contains the address of the context currently running, and CtxCaller points to the 
frame for the current invocation of CallContextList. 

2. Time-Slicing Scheduler Extension 

While the cost of switching between contexts is very small, in a system with many 
contexts the effective cost of a call to Block may be quite large due to the sheer 
number of other contexts that are resumed before control returns from this call to 
Block. Typically, most contexts are "waiting" rather than "active"; i.e., they are 
calling Block from within a loop that is waiting for some "wakeup" condition to 
occur. On the other hand, there are often one or two "active" processes that are 
performing some useful, long-running computation. For proper operation of the 
context package, it is necessary that such processes give up control reasonably often. 
But it is clearly wasteful to do so too often. 

This extension to the basic context package introduces a new primitive called Yield, 
which is similar to Block except that it does not always actually give up control 
(i.e., sOInetimes it just returns immediately). Specifically, if the present context has 
been executing for less than one time slice, Yield returns immediately. In this 
implementation, the time slice is between 17 and 34 milliseconds. 

Thus, Block and Yield are both procedures for relinquishing control, but with slightly 
different interpretations. Block should be called from within wait loops, whereas 
Yield should be called from within code that is doing "useful" computation. In the 
latter case, if the present context's tilne slice has not expired, Yield returns 
immediately after executing only three instructions. 



Con text Package 

For Xero~ Internal Usc Only -- October 16, 1977 

May 21, 1977 25 

The time-slicing scheduler must be initialized by calling InitContextSchedO, whose 
code may subsequently be discarded. Yield behaves the same as Block until this 
initialization has been performed. 

3. Example 

The following trivial program initially establishes two contexts and chains them 
together into one list. One context (running CommandProc) simply blocks until 
something is typed on the Iteyboard, then treats the typein as a command. The 
second waits for an Ethernet message to arrive, and types out "rvressage arrived." 

When the letter "s" is typed to CommandProc, a new context is created to run 
TimerProc. Each instance of a 1'imerProc context has associated with it an 
identifying integer N (stored in the cxtraSpace word Ctx!3) which it prints out at 
in tervals of N seconds. . 

external [ InitializeContext; CallContextList; Block 
8erialNumber; \Vs; Wns; Gets; Endofs; keys; dsp 
InitializeZone; Allocate] 

manifest RrrC=#430 
manifest EPLoc:=1I600 
Ilwnifest EICLoc=#604 
manifest EIPLoc=li605 
manifest ESLoc=f1610 
manifest 810=1161004 

static [ CtxZn; CtxHead; NumTimeProcs=O ] 

let mainO be 

fet z=vec 10000; CtxZn=z / / 
lni tializeZone( CtxZn,l 0000) 
let sl=vec 20l) 
let s2:=vec 200 

Zone to allocate contexts from 

CtxHead=InitializeContext(sl, 200, CommandProc) 
let ncxt:lnitializeContext(s2, 200, EtherProc) 
@CtxHead=next 

Call Con textList(CtxHead) repeat 
] 

and CommandProcO be 

\v s("*n **") 
while Encfofs(keys) do BlockO / / Block until user types something 
let Char=Gets(keys) 
switchon Char into 

[ 
case $8: case $s: 

~s("*nStart another TimeProc") 
let region=Allocate(CtxZn,?OO) / / Create new context 



Context Package· 

For Xerox Internal Use Only -- October 16, 1977 

May 21, 1977 

let ctx=Ini tializeCon text( region,200,TimeProc, 1) 
N umrrimeProcs=N umTimeProcs+ 1 
ctx!3=NumTimeProcs I I Parameter for this instance 
ctx!O=CtxHead; CtxHead=ctx I I Link into context list 
end case 
] 

case $Q: Case $q: [Ws("Quit"); finish] 
default: Ws("?") 

] repeat 
] 

and 

and 

TimePl'oc(Ctx) be 

fet interval=Ctx!3 / I Get interval from context 
let f=@RTC+27*interval 
until (@RTC-f) gr 0 do 
Wns( dsp,intervalJ 

I I That many seconds from now 
Block() 
I / Type our in terval 

] repeat 

EtherProcO be 

~tartIO(3) 
@ESLoc=SerialNumber 
let buf=vec 50 
@EICLoc=50 
@EIPLoc=buf 
@EPLoc=O 

I IReset Ether 

StartIO(2) IIStart input 
until @EPLoc ne 0 do BlockO 
if (@EPLoc rshift 8) eq 0 then W s("Message 
] repeat 

arrived") 

and StartIO(c) be (table [ SIO; 111401 ])(c) 

4. Revision History 

26 

November 17, 1976: Calling BlockO when not in a context is now a no-op rather 
than giving rise to weird crashes; InitializeColltext sets the first frame's "caller's 
frame" pointer to zero. 

May 21, 1977: Time-slicing extension added; CallContextList speeded up. 



For Xerox Internal Use Only -- October 16, 1977 

Dia blo Prin ter Package December 11, 1976 27 

Diablo Printer Package 

This package. provides a standard stream interface to the Diablo Printer. 'fhe 
facilities provided are limited to simulation of a conventional Ascii terminal using a 
fixed-pitch font. The software is derived from a version of the Diablo primitives 
used in Bravo, courtesy of Greg Kusnick. 

The package consists of a single binary file, DiabloPrinter.br. 'The source for this, 
DiabloPrinter.bcpl, is included in DiabloPrinter.dm, which also contains a test program, 
DiabloType.bcpl, which types an arbitrary text file on the Diablo printer. 

Besides using standard operating system facilities, this package makes use of the 
Context and Timer packages. If one desires not to include the Context package, it 
suffices to define an external procedure BlockO that returns immediately. 

There is only one externally-callable procedure, which works as follows: 

CreateDiabloStream(charWidth [6J, charHeight [8], pageWidth [450J, pageHeight [528], 
leftMargin [01, zone [sysZoneJ) = dps 
Creates a DWDlo Printer Strealn (dps) using the supplied parameters, all of which 
are optional. "'Nidth and height arguments are in units of 1/60 and 1/48 inch 
respectively, and cannot be greater than 1023. charWidth and charHeight define 
the width and height of each character, including inter-character and inter-line 
spacing. The defaults are appropriate for standard typewheels such as Elite 12.· 
pageWidth and pageHeight define the printing area on each page. The defaults 
are appropriate for 7.5 inches wide (assuming half-inch margins) by 11 inches 
high (no margins). vVith the standard font size, this permits 75 characters per 
line and 66 lines per page. leftivlargin specifies the position of the logical left 
lnargin relative to the extreme left limit of the carriage (note that leftMargin is 
not included in pagcWidth). The zone argument specifies the zone to be used 
to allocate the stream structure. 

The following operations are defined on a Diablo Printer Stream: 

Puts(dps, char) 
Prints the specified character. All printing characters (Ascii codes 40-177) are 
typed with whatever is in the corresponding position on the typcwhecl, with the 
exception of "(-" which is printed by overstriking "_" and "<" (since typcwheels 
tend to have the underline character in this position). 

'fhe following non-printing characters (Ascii 0-37) are interpreted to provide the 
specified functions. All other non-printing characters are ignored. 

15 (return) 

11 (tab) 

10 (backspace) 

14 (form feed) 

Returns the carriage to the logical left margin and 
advances the paper to the next line. 

Positions the carriage to the next multiple of 8 character 
positions. 

Backs up the carriage by one character position (ignored 
if already at the logical left margin). 

Advances the paper to the beginning of the next page. 
(The beginnini? of the first page is defined by whel'e the 
paper was pOSItioned when CreateDiabloStream was called). 

If the right margin is exceeded, an automatic carriage return is executed. 



For Xerox Internal Use Only -- October 16, 1977 

DiabloPrin ter Package December 11, 1976· 28 

If a hardware problem is detected, Errors(dps, code) is called, where code is 
ecDiabloPrinterNotReadv if an operation dia not complete within a reasonable 
time (one second) anCI ecDiabloPrinterCheck if the printer reported a "check" 
error. The defauft Errors procedure is SysErr.. If the Errors procedure returns, 
the operation is retried. Note that the printer must be reset in order to 
proceed after a "check" error (see below). 

Stateofs(dps) = true or false 
Returns true if the hardware is reporting that it is ready to execute a new 
operation. Note that this is not a guarantee that an attempt to print a 
character will succeed, since printing a character generally involves several 
successive operations. 

Resets( dps) 
Resets the printer hardware and restores the carriage to the physical left margin. 
This operation must be performed to recover from a "check" error. 

Closes( dps) 
Destroys the stream. This includes returning the stream structure to the zone 
from which it was allocated. 



DPDIVIDE 

For Xero){ Internal Use Only -- October 16, 1977 

May 15, 1975 

32-by-32-bit division routine 

29 

There is now an assembly code routine available to compute the quotient and 
remainder from the division of one 32-bit 2's complement number by another. frhis 
is not a trivial operation (see Knuth. vol. 2, pp. 237 ff.). The cal1in~ sequence is 

flag = DPDIVIDE(numerator, denominator, quotient, remainder) 

where each of the four arguments is a pointer to a 2-word vector containing a 32-
bit numbe. r (high-order word first). If overflow would occur, which can happen only 
when the denominator is zero, DPDIVIDE returns true and does not affect the 
quotient or remainder vectors. If no overflow occurs, DPDIVIDE returns false and 
stores the appropriate results in the quotient and remainder vectors. The remainder 
always has the same sign as the denominator, and its magnitude lies in [0, 
abs(denominator)); the quotient is Qositive if the numerator and denominator have 
the same sign, negative (if not zero) if they have different signs. DPDIVIDE takes 
about 5 to 10 times as long as an ordinary 32-by-16-bit division: it does NOT use 
repeated subtraction and shifting. 



For Xerox Internal Usc Only -- October 16, 1977 

Pup EFTP Package August 9, 1976 30 

Pup EFTP Package 

The routines described here implemcnt the EFTP protocol, a simple ack-per-packet 
protocol built on level 1 of Pup. The EFTP protocol is used by the EFTP subsystem 
to send files anlong machines, by Bravo and Gears to send files to Ears for printing, 
and by gateways to send boot files and update internal data bases. It is a place
holder for the Reliable Packet Protocol which will be implemented in the next 
iteration of Pup. 

The EFTP protocol is documented in <pup>EFTPSpec.ears. The source file for these 
routines, pupEFrrp.bcpl, and its declaration file, PupEFTP.decl are contained in 
<altosource>EFTP.dm lalong with the sources for the EFTP subsystem). Get a copy 
of these two files and look at the code while reading the description that follows. 
This documentation assumes you are familiar with the Pup packagc, and its 
supporting environment. All timeouts are in units of 10 ms.; a timeout of -1 means 
infinity. 

1. 'fhe Routines 

Ini tEFTPPackage(zone) 
This procedure is currently a no-op, but may be used in the future, should it 
become necessary to initialize and allocate free storage within the package. 

OpenEFTPSoc(soc, IclPort [defaulted], frnPort [zerosl) 
Opens a Pup level 1 socket and creates an EFTPSoc. "soc" should point to a 
block of size lenEFTPSoc. 

CloseEFTPSoc( soc) 
Releases any PBls held in the EFTP part of soc, and then closes the Pup level 
1 socket. 

SendEFTPBlock(soc, addr, count, timeout) = byte count or error code 
Constructs an EFTP data packet £i'om the information in soc, copys count bytes 
beginning at addr into the data part of the Pup, and transmits it. This 
routine manages retransmissions, returning count if the packet is acknowled~ed 
within the timeout, or a negative error code if some abnormal conditIon 
occured. 

ReceiveEFTPBlock(soc, addf, timeout) = byte count or error code 
Copys the data from the next in-sequence data packet into memory beginning 
at addr and returns the number of bytes received (532 Inax), or a negative 
error code if some abnormal condition occured. If timeout is -1, 
Receive~~FTPBlock will wait indefinitely until the next packet is available, 
otherwise it will return an error if no packet becomes available within the 
timeout. If the next in-sequence packet is an EFTP End, this routine will 
perform the end sequence and return a byte count of zero. 

SendEFTPEnd(soc,timeout) = true/false 
Initiates an end sequence with the EFTP receiver, managing retransrrlissions, and 
returns true if the sequence is completed correctly within the timeout.. 

GetEFTP Abort( soc) = PBI 
Returns a pointer to the most recently received EFTPAbort, should the user 
want to look at it. If no abort has been recieved, zero is returned. 



For Xerox Internul Use Only -- October 16, 1977 

Pup· EFTP Package August 9, 1976 31 

SendEFTPAbort( soc. abortCode. abortString) 
Builds ana transmits an EFTP Abort packet with abortCode and abortString as 
data. 

2. Error Codes 

EFTPTimeout = -1 
The requested operation did not complete within the tiIneout specified in the 
call. Returned by SendEFTPBlock, ReceiveEFTPBlock. and SendEFTPEnd. 

EFTPAbortReceived = -2 
An EFTP Abort was received while performing the requested operation. 
GetEFTPAbort(soc) will return a pointer to the abort packet. Returned by 
SendEFTPBlock and ReceiveEFTPBlock. 

EFTPAbortSent = -3 
A serious protocol violation was noticed while performing the requested 
operation. 'rhere is no hope of continuing. An EFTP Abort was sent to the 
other end. Returned by SendEFTPBlock, ReceiveEFTPBlock, and SendEFTPEnd. 

EFTPResetReceived = -4 
While waiting for the next in-sequence data packet in an ongoing transfer. a 
data packet with sequence number zero was received from the other end. 
Returned by ReceiveEFTPBlock. 



Ether Boot 

For Xerox Internal Use Only -- October 16, 1977 

August 24, 1976 32 

Alto Ethernet Boot Package 

The EtherBoot package (file EtherBoot.br) consists of an Alto Ethernet boot loader 
and a small amount of additional code enabling a program to terminate execution of 
itself and boot-load a new program frOln the Ethernet. 

Ether Boot(bfn ) 
Copies a small (256 word) Ethernet boot loader into low memory and transfers 
control to it with 'bfn' (boot file number) as an argument. The loader bcgins 
broadcasting "Mayday" TIlCSsages with bfn as data, on the local Ethcrnet. A 
server that hears this nlessage and has a copy of the boot file matching bfn 
will connect to the Alto and send the file by means of the EF'rp protocol. 

'rhe boot loader contained in this package is identical to the one invoked when the 
Alto's boot button is pressed with the <bs> key and zero or more other keys down. 
1'he correspondence between hfn's, boot files, and key combinations is given below. 
However, note that calling EtherBoot differs from actually booting the Alto in one 
way: tasks are not reini tialized to run in the Rom, since no hardware reset is 
actually performed. 

Mayday servers will keep copies of some useful programs in boot format (see 
BuildBoot.tty for how to create a boatable file). An obvious application would be 
for the Executive to boot DMT from Ethernet when the disk is turned off. Boot 
files presently kept by Mayday servers are: 

bfn file equivalent boot key combination 
Alto-I Alto-II 

0 D1'IT.boot bs bs 
1 SYS.boot bs blank-top bs bw 
2 FTP.boot bs blank-middle bs fr4 
3 Scavenger.boot bs blank-top bs bw fr4 

blank-middle 
4 Copy Disk.boot bs ] bs ] 



Event Report 

For Xerox Internal Use Only -- October 16, 1977 

February 7, 1977 

Even t Report 

33 

The EventReport package provides a convenient interface to the Pup Event Report 
protocol (see relevant Pup documentation elsewhere for details). rrhis protocol is 
used for )ogging errors of various kinds (e.g., parity errors) and for keeping records 
of resource utilization (e.g., number of pages in a printer run). 

Even tReport( even tV, even t VLength[OJ, even tPort[Error LogAddress], retryCoun t[3J, 
timeOut[3*27J) 
This su broutJne reports an event recorded in the vector even tV. The remaining 
arguments (with defaults shown in brackets are): eventVLength, the number of 
words in the event recorded in eventV; eventPort, a pointer to a Port (Pup 
terminology and format) to which the event should be sent; retryCount, the 
number of tinles the transmission will be attempted; and timeOut, the time to 
await a response frorn each retry before giving up (in units of 1/27 second). 

EventReport returns "true" if the event was successfully logged, or "false" if it 
was unable to log the event (perhaps because the Alto has no Ethernet). 



For Xcro){. Internal Use Only -- October 16, 1977 

File searching paclmge June 17, 1977 34 

FindPkg - a fast file searching package 

This package uses the Alto nlicroinstruction RAM to search standard Alto files for 
certnin simple kinds of patterns at very high speed (it normally keeps up with the 
disk). It is written in BcpI and uses the ScanFile package for doing the actual disk 
transfers. 

To use the package. one first "compiles" the pattern into specialized microcode which 
is loaded in to the RAM, and then scans as many files as desired using this 
microcode. To com})ile the pattern, call 

FindCompilelpattern, chartab[, wild char, fuzz, outstream, storeproc, regtable J) 
where all the arguments beyond chartab are optional. The arguments have the 
following significance. 

Pattern is a Bcpl string, the pattern being searched for. The search ignores 
the high-order bit of characters in both the file and the pattern. In addition, 
the following 3 arguments affect how the pattern is interpreted. The 
maximum length of the pattern is the number of Rand S registers available 
(see below), rounded down to an even number if necessary. 

Char tab is a 200b-word array which specifies how characters in the file are to 
be interpreted. Chartab!j specifies how occurrences of the character whose code 
is j are to be treated. rrhe possible contents of each char tab entry are: 
classSkip, meaning ignore the character completely; classOther, meaning that 
the character is to be taken literally; or a code between 0 and 177b inclusive, 
Ineaning that the character is to be treated as though it were that character 
(which. in turn, must be of classOther in the tablej. For example, to cause 
lower case letters in the file to be treated as though they were the 
corresponding upper case letter, set chartab!$a = $A, etc. 

Wildchar is a character whose appearance in the pattern string means "match 
any character in the file". For exanlple, if the pattern string is "A?B" and 
wildchar is $?, any occurrence of A followed by any character followed by B 
in the file will be considered an occurrence of the pattern. If wildchar is not 
a character code. it is ignored. and all characters in the pattern are taken 
literally. Wildchar defaults to -1 (take the pattern literally). 

Fuzz is the number of mismatches between the pattern and the corresponding 
string in the file that will be tolerated. For example, if the pattern is ABCD, 
then with fuzz=O, only the string ABCD in the file (after interpretation 
through chartab) will match; with fuzz=1. the strings ABCX, ABXD, AZCD, or 
ZBCD would match. and so on. Note that fuzz only applies to replacement 
mismatches. not insertions (e.g. ABXCD). deletions (e.g. ABD), or transpositions 
(e.g. ABDC). Fuzz defaults to ° (exact match required). 

Outstream, if non-zero, is a character stream on which FindCompile will write 
a listing of the microcode it f?enerates. This is only useful for debugging. 
Outstream defaults to 0 (no listIng). 

Storeproc detennines what will be done with the microcode. Storeproc=false 
means discard it (although a listing will still be produced if outstream is non
zero). Storeproc=true means store it in the RAlVl for execution. Otherwise, 
FindCompile calls storeproc(location, insvec) for each instruction it generates, 
where insvec is a 2-word vector containIng the Inicroinstructioll. Storeproc 
defaults to true (store for execution). 

Regtable is a 4-word bit table that specifies what Rand S registers are 
available for use by the microcode. These registers must not be used by other 



For Xerox Internal Use Only -- October 16, 1977 

File searching package June 17, 1977 

tasks, or by the Nova instruction set, although they may be used by BitBlt or 
other Alto-specific instructions. Also, registers 14b through 1Gb are assunled 
usable, and should not appear in the bit table. Regtable defaults to a table 
that lets the microcode use register 17b and registers 41b through 76b, which 
will accommodate a 30-character pattern. 

35 

FindCompile nonnally returns zero. If it encounters any difficulties, it returns a 
string which describes the difficulty. rrhis string is meant to be printed for the 
user, not interpreted by the calling program. 

After calling FindCompile to load the RAM, one scans files as follows. First, call 
Scan File to initialize the scan (see the documentation for ScanFile for how to do 
this). Scan File returns an object called a sfd (Scan File descriptor). To start 
searching the file, call 

Findlnit( sfd, fa) 
where sfd is the value from ScanFile and fa is a file address (FA) structure into 
which FindPkg will store each time it finds a match. Then to tina each n1atch in 
turn, call 

FindNext() 
FindNext either finds the next match or scans to the end of the file. In the 
former case, it returns a non-negative nlunber that says how many characters of the 
pattern had been examined before it decided it had a match, and stores the disk 
address, page number, and character position at that time into the fa given to 
Findlnit. For example, if the pattern is "ABCD" and fuzz::1, then if the file contains 
ABXD, FindNext will stop after the D and return 4, while if it contains ABCX, it 
will stop after the C and return 3, since it knows it has a match at that point 
regardless of the next character. If FindNext runs off the end of the file, it 
returns ~n-1 where n is the nunlber of pages in the file. The calling program 
should then call ScanFinish(sfd) to clean up the Scan File data structures. 

FindPkg consists· of 3 files: 
FindNcxt.BR, containing the procedures Findlnit and FindNext; 
FindCOlnpile.BR, containing the procedure FindCompile; 
FindPkgDefs.D, a Bcpl source .file containing the definitions for the character 

classes. 



FLOAT 

For Xerox Internal Use Only -- October 16, 1977 

May 5, 1977 36 

FLOAT 

FLOAT is a floating-point package for the Alto, intended for use with BePL. (It 
uses standard Alto hlicrocode -- no special instructions arc needed.) rfhere are 32 
floating-point accumulators, numbered 0-31. These accumulators may be loaded, 
stored, operated on, and tested with the operations provided in this package. 
'Storing' an accumulator means converting it to a 2-word packed format (described 
below) and storing the packed form. -

In the discussion below, 'ARG' means: if the I6-bit value is less than the number of 
accumulators (32), then, use the contents of the accunlulator of that number. 
Otherwise, the H)-bit value is assumed to be a pointer to a packed floating-point 
number. . 

All of the functions listed below that do not have "==>" after thenl return their 
first argument as their value. 

1. Floating point routines 

FLD (acnum,al'g) 

FST (acnum, ptr-to-num) 

FTR (acnum) ==> integer 

FLDI (acnum,integer) 

FNEG (acnum) 

FAD (acnum,arg) 

FSB (acnum,arg) 

Load the specified accumulator from source specified 
by argo See above for a definition of 'arg'. 

Store the contents of the accumulator into a 2-
word packed floating point format. Error if 
exponen t is too large or small to fi t in to the 
packed represcn ta tiOll. 

Truncate the floating point number in the 
accumulator and return the integer value. FTR 
applied to an accumulator containing 1.5 is 1; to 
one containing -1.5 is -1. Error if number in ac 
cannot fit in an integer representation. 

Load-immediate of an accumulator with the integer 
contents (signed 2's cOlnplement). 

Negate the contents of the accurn.ulator. 

Add the number in the accumulator to the number 
specified by arg and leave the result in the 
accumulator. See above for a definition of 'arg'. 

Subtract the number specified by 'arg' from the 
number in the accumUlator, and leave the result in 
the accumulator. 

FML (acnulu,arg) [ also FMP ] Multiply the number specified by 'arg' by the 
number in the accumulator, and leave the result in 
the ac. 

FDV (acnum,arg) Divide the contents of the accumulator by the 
number specified by arg, and leave the result in 
the ac. Error if attempt to divide by zero. 



FLOAT 

For Xerox Internal Use Only --, October 16, 1977 

May 5, 1977 37 

FeM (acnum,arg) ==> integer Compare the number in the ac with the number 
specified by 'arg'. Return 

-1 IF ARGI < ARG2 
o IF ARGI = ARG2 
1 IF ARG! > ARG2 

FSN (acnum) =::> integer Return the sign of the floating point number. 
-1 if sign negative 
o if value is exactly 0 (quick test!) 
1 if sign positive and number non-zero 

FEXP( acnum,incremen t) 

FLDV (acnum,ptr-to-vec) 

Adds 'increment' to the exponent of the specified 
accumulator. The exponent is a binary power. 
Thus FTR(FEXP(FLDI(I,l)A)}=16. 

Read the 4-elemen t vector in to the in ternal 
representation of a floating point number. 

FSTV (acnum,ptr-to-vector) Write the accumulator into the 4-element vector in 
in ternal represen ta tion. 

2. Double precision fixed point 

There are also some functions for dealing with 2-word fixed point numbers. The 
functions are chosen to be helpful to DDA scan-converters and the like. 

FSTDP( ac,ptr-to-n urn) 

FLDDP( ac,p tr-to-n urn) 

DPAD(a,b) => ip 

DPSB(a,b) => ip 

DPSHR(a) => ip 

Truncates the contents of the floating point ac and 
stores it into the specified double-precision number. 
First word of the number is the integer part, 
second is fraction. Two's complement. Error if 
exponent too large. 

Loads floatin~ point ac from dp number. Same 
conventions for integer and fractional part as 
FSTDP. 

a and b are both pointers to dp numbers. The dp 
sum is formed, and stored in a. Result is the 
integer part of the number. 

Same as DPAD, but subtraction. 

Shift a double-precision number right one bit, and 
return the integer part. 

3. Format of a packed floating point number 

structure FP: [ 
sign bit 1 I II if negative. 
expon hit 8 Ilexcess 128 format (compleInented if number <0) 
mantissa 1 bit 7 IIHigh order 7 bits of mantissa 
mantissa2 bit 16 IILow order 16 bits of mantissa 

] 



FLOAT 

For Xerox. Internal Use Only ... - October 16, 1977 

May 5, 1977 38 

Note this format permits {lacked nunlbers to be tested for sign, to be compared (by 
comparing first words first), to be tested for zero (first word zero is sufficient), and 
(with some care) to be complemented. 

4. Saving and Restoring Work Area 

FLOAT has a compiled-in work area for storing contents of floating accumulators, 
etc. The static FPwork points to this area. The first word of the area (Le. 
FPwork!O) is its length and the second word is the number of floating point 
accumUlators provided in the area. The routines use whatever pointer is currently in 
FPwork for the storage area. Thus, the accumulators may be "saved" and "restored" 
simply by: 

let old=FPwork 
let new=vec enough; new!1=old!l / /Copy AC count 
FPwork=new 
... routines use "new" work area; will not affect "old" 
FPwork=old 

1'his mechanism also lets you set up your own area, with any number of 
accumUlators. The length of work area required is 4*(number of 
accumulators)+constant. (The constant may change when bugs are fixed in the 
floating point routines. As a result, you should calculate it from the compiled-in 
work area as follows: constantt-FPwork!O-4*FPwork!1.) It is not essential that the 
length word (FPworklO) be exact for the routines to work. 

5. Errors 

If you wish to capture errors, put the address of a BCPL subroutine in the static 
FPerrprint. The routine will be called with one parameter: 

o Exponent too large -- FTR 
1 Exponent too large -- FST 
2 Dividing by zero -- FDV 
3 Ac number out of range (any routine) 
4 Exponent too large -- FSTDP 

'The result of the error routine is returned as the result of the offending call to the 
floating point package. 



FORMAT 

Fo}' Xerox· IntcrnHI Use Only -- October 16, 1977 

March 31, 1975 

FORMAT -- An Output Formatting Package 

39 

The file FORMAT (SR for BCPL source, .BR for, relocatable binary) contains a set of 
subroutines which nnplement a reasonably nice set of output formatting primitives 
and a reasonably nice protocol for invoking them. A call of the form 

FORMAT(S, F, VI, V2, ... , Vn) 

will copy the BCPL string F into the BCPL string S, except that items in F 
delimited by angle brackets «» will be interpreted as format specifications. For 
those, the format specification and the next input variable Vi will determine what 
will be put into S. The current format specifications are: 

<S) The variable is a BCPL string and is to be copied into S. 
<UPS> The variable is an unpacked string (V!O is the number of characters 

and V!l through V!(V!O) are the characters) to be copied into S. 
<C> The variable contains a single ASCII character, right-justified. 
<D> The variable is numeric, and should be represented as signed decimal. 
<UD> .............. unsigned decimal. 
<B> .............. unsigned octal. 
<OCT) .............. unsigned octal. 
<SB> .............. signed octal. 
<SaCT> .............. signed octal. 
<BIN> .............. unsigned binary. 

In addition, the format specifiers take two optional numeric parameters (numbers 
represented using BCPL conventions) which give the' minimum length and fill 
character to be used in the conversion. For example, <OCT #20 $0> will produce an 
octal number at least 16 (and, in fact, at most 16) characters long, right-justified 
and padded to the left with zeros. 

FORMATN is exactly like FORMAT except that by a small subterfuge it supplies its 
own local string, whose address it returns. This string will not change from one call 
of FORMATN to the next, so that something like WS(FORMATN("It is <D>.", 1975)) 
will work perfectly. 

Finally, the package includes a concatenation routine. After a call of the form 

CONCATENATE(D, 81, 82, ... , 8n) 

D will be a BCPL string Yvhich is the concatenation of the BCPL strings 81, 82,' ... , 
Sn, in that order. 



Pup FTP :Package 

For Xerox Internal Use Only -- October 16, 1977 

July 18 1977 

Pup File Transfer Protocol Package 

40 

This package is a collection of modules implementing the Pup File Transfer Protocol. 
rrhe package is used by the FTP subsystem and the Interim File System and runs on 
Al tos and Novas. 

1. Overview 

This document is organized as a general overview followed by descriptions of each of 
the modules in the package. A history of revisions to the package is included at 
the end. 

Before beginning the main documentation, some general comments are in order. 

a. The File Transfer Protocol is (alas) complex; this package requires the Pup 
package and all of its supporting packages plus some other packages not specific 
to Pup. This documentation is less tutorial than normal Alto package 
descriptions so you should be prepared to consult its author. 

b. This document describes the external program interfaces for a particular 
implementation of the File Transfer Protocol, and does not deal with the 
internal implementation nor the reasons for design choices in the protocol or 
this implementation. Before considering the details of this package, you should 
read (Pup)FtpSpec.ears to get the flavor of how the File Transfer Protocol 
works. The <Pup) directory also contains descriptions of the lower level 
protocols on which FTP is based. Detailed knowledge of these protocols is not 
necessary to use this package, but you must be familiar with the operation of 
the Pup package. 

c. This package and the protocol are under active development so users should 
expect modifications and extensions. 

d. This package is designed to run on both Altos and Novas, under several 
operating systems and with several file systems. Functions are carefuly split 
into protocol-specific and environment-specific modules. This package provides 
the protocol modules; you must write the matching environment-specific 
modules. 

1.1. Organization 

The FTP package comes in four modules: Server, User, Utilities, and Property lists. 
The utility and property list modules are shared by the User and Server. 

The User and Server modules implement their respective halves of the protocol 
exchanges. 

rrhe Property List module generates and parses property lists, filesystem-independent 
descriptions of files. When passed between User and Server FTPs through the 
network byte stream, their fornl is defined by protocol as a parenthesized list. 
When passed between these protocol 1110dules and the user-supplied modules in a 
program, they take the form of a data structure defined by this package. 



Pup' FTP Package 

For Xerox Internal Use Only -- October 16, 1977 

July 18 1977 41 

The Utility module contains protocol routines shared by the User and Server modules 
and some efficient routines for transferring data between a network stream and a 
disk stream. 

1.2. File Conventions 

The FTP package is distributed as file FTPPackage.dm, and contains the following 
files: 

User 
FtpUsorProt.br 
Ft p U sor ProtFile. br 
Ft p U sor ProtMail. br 

Server 
Ft pServ ProtFile. br 
FtpServProtMail.br 

Property lists 
FtpPListProt.br 
FtpPList1.br 
FtpPListInit.br 

Utility 
FtpUtilB.br 
FtpUtilXfer.br 
FtpUtilDmpLd.br 
FtpUtilA.br 
FtpUtillnit.br 

Defini tions 
FtpProt.decl 

Command files 
CompileFtpPackage.cm 
DumpFtpPackage.cm 
Ft pPackage.cm 

User protocol common to file and mail 
User file commands 
User mail commands 

Server file conlmands 
Server mail commands 

Property list protocol 
Implements a 'standard' property list 
lni tializa tion 

Common protocol 
Unfonnatted data transfer 
Dump/Load data transfer 
Assembly-language utility code 
lni tializa tion 

Protocol parameters and structures 

Compiles all files 
A list of all binary files 
A list of all source files 

All of these modules are swappable, and are broken up into pieces no larger than 
1024 words. Modules whose names end in "init" are initialization code which should 
be executed once and thrown away. 

The source files are kept with the subsystem sources in FTP.dm and are formatted 
for printing in a small fixed-pitch font such as Gacha8 (use the command 'Gears/s 
@FtpPackage.cm@'). 

1.3. Other Packages 

FTP is a level 3 Pup protocol, and this package uses a number of other Alto 
software packa(?;es. As always, files whose names end in "init" may be discarded 
after initializatIOn (except ContextInit.br). 



Pup FTP Package 

For Xerox Internal Use Only -- October 16, 1977 

July 18' 1977 

Pup Package 
Pu pBSPBIock. br 
pupRrrp.br 
Puplb.br 
PupAIEthb.br 

Context Package 
Context.br 

Interrupt Package 
Interrupt.br 

Queue Package 
Al toQueue. br 

Timer Package 
Al toTimer. br 

Time Package 
CTime.l:ir 

ByteBLT Package 
Al toByteBL T. br 

CmdScan Package 
KeY1,Vord.br 

Strings Package 
String U til. br 

Template Package 
Template.br 

PupBSPStreams.br 
PupDummyGate.br 
PupAlla.br 
PupAIEtha.br 

Con textlni t. br 

InterruptInit.br 

Keywordlnit. br 

1.4. Principal Data Structures 

PupBSPProt.br PupBSPa.br 
PupRoute.br 
PuplInit.br 
PupAIEthInit.br 

42 

The following data structures are of interest to users, and together with the 
procedures described later. constitute the package interface. 

FPL 

FTPI 

FTPSFI 

FTPSMI 

FtpCtx 

File Property List, is this implementation's internal representation of the 
protocol-specified property list. An FPL structure will be referred to as a 
'pList' from here on. 

File Transfer Package Interface, contains pointers to the network byte 
stream, user disk stream, log stream, the file buffer, and various flags. 

FTP Server File Interface, is a vector of user-supplied procedures 
constituting the interface between the protocol and environment-specific 
modules in a file Server. 

FTP Server Mail Interface, same as an FTPSFI except for a mail server. 

FTP Context, is the process-global storage for a User or Server FTP 
process. It consists of an FTPI, and if the process is a Server, an FTPSFI 
or FTPSMI. This is a convenient place for the user-supplied lnodules to 
keep process-private data. You can do this by adding itenls to the FtpCtx 
definition and then recompiling everything. 

The entire FtpCtx need not be filled in all of the time. For each group of 
procedures, the items they require will be specified. A general description of the 
contents of the FTPI part of an FtpCtx is in order here. 

bspSoc 

bspStream 

a pointer to a BSP socket open to a remote FTP process. 

a pointer to the stream in the above BSP socket. Pup package 
experts will recognize that this is redundant, but it is often 
convenient and makes the code clearer. 



Pup FTP Package 

dspStream 

diskStream 

buffer 

bufferLength 

debugFlag 

connFlag 

serverFlag 

savedBSPErrors 

For Xerox Internal Use Only --" October 16, 1977 

July 18 1977 43 

a pointer to a stream to which this package will output 
generally useful information, including copious amounts of 
debugging information if debugFlag is true. The only operation 
that need be defined is 'Puts'. 

a pointer to a disk stream. It should always be opened in byte 
mode. 

a pointer to a block of memory which can be used for block 
transfer 1/0 operations. The bigger this is the faster things 
will go. 

the length in words of the above buffer 

a boolean. If true, the protocol exchanges for this context are 
output to dspStream as text, along with some other useful 
information. Use this! It will save you much head-scratching. 

a boolean. This should be true if bspSoc is. open. The package 
will cooperate in maintaining this flag, which is valuble when 
finishing. 

a boolean. l.'his flag is t.ested by procedures in the shared 
modules to determine whether the caller is a User or Server. 

the default BSP error procedure is saved here. This package 
handles certain errors itself. 

1.5. Programming Conventions 

This package can be used with the Bcpl Overlay package. File FtpOEPlnit.br 
contains a procedure which will help do this, but you should consult with the 
author. . 

This package does a lot of string manipulation, and uses the following conventions: 

a. All strings are allocated from 'sysZone'. 

b. Strings are represented in data structures (such as property lists) as 
addresses. Zero means no string is pres en t. 

All of the procedures in this package expect to execute in contexts (in the sense of 
the Context package), and expect CtxRunning (defined by the Context package) to 
point to an appropriately filled in FtpCtx. 

1.6. Timeouts 

If a Get or Put operation times out, the bspStream Get and Put routines are 
changed so that all subsequent operations fail immediately. This will cause the 
current command to fail quickly, so that its caller can take appropriate action. This 
package makes timeouts look the SaIne as if the stream closed, and treats them as 
unretryable. Two time outs are used by the package and kept in statics. 

getCmdTimeout 
This timeout is used in situations involvin~ human user interaction and should 
be fairly long. Its default value is defGetCmdTimeout, defined in FtpProt.decl. 

getPutTimeout 



Pup Frrp Package 

For Xerox Internal Use Only -- October 16, 1977 

July 18 1977 44 

This timeout is used when transferring data and should be fairly short. Its 
default value is defGetPutTimeout, defined in FtpProt.decl. 

2. Server 

The FTP Server module consists of two files: FtpServProtFile.br, a file server, and 
FtpServProtMail.br, a mail server. The internal organization of both files is the 
same; they just implement different sets of commands. Each file has one external 
procedure: 

FtpServProtFileO or FtpServProtMail() 
which carry out protocol commands received over bspStream by calling the user
supplied procedures in FTPSFI or F'fPSMI. When the BSP connection is closed 
by the remote FTP User process, these procedures return. 

This module uses the following fields in FtpCtx: dspStream, bspStream, bspSoc, and 
FTPSFI or FTPSMI. All of the primary command slots (Version, Store, Retrieve, 
Storel\1ail, etc.) must contain procedures. If you do not wish to implement a 
command, it suffices to point the command's slot at the following procedure: 

and NYI(nil) ::: valof 

~TPM( mar kN 0, 1 ,"Unimplemented Command") 
resultis false 
] 

in which case any subsidiary procedures for that command (such as StoreFile and 
Store Cleanup for the Store command) need not be filled in. FTPIvl is described in 
more detail below. For the remainder of this section, 'FtpServProt' refers to 
'FtpServProtFile' or 'FtpServProtlvlail'. 

2.1. Version Command 

By convention, Version is the first command exchanged over a newly opened FTP 
connection. The User sends its protocol version number and a string such as "!vlaxc 
Pup Ftp User 1.04 19-Mar-77". When FtpServProt receives this command, it l'eplys 
with its protocol version number and then calls 

(CtxRunning> > FtpCtx.Version)() 

which should generate some herald text: 

W ss(CtxRunning> > FtpCtx.bspStream, "Alto Pup FTP Server ") 

to which FtpServProt will append a string of the form "1.13 14-May-77". 

2.2. Retrieve Command 

When the remote FTP User process sends the command 'Retrieve' and a property "list 
describing the files it wants to retrieve, FtpServProt parses the property list and 
calls 

(CtxRunning> > FtpCtx.Retrieve)(remotePList,locaIPList) 



Pup FTP Package 

For XeroJ{ Internal Use Only -- October 16, 1977 

July 18 1977 45 

which should decide whether to accept the command. Retrieve's decision may involve 
checking passwords, looking up files, and other actions using the information in 
rernotePList plus other environment-specific information, such as whether the 
requester has the correct capabilities, etc. To refuse the request, Retrieve should call 

FTPIvl(markNo, code, string) 

and return false. To accept the command, it should return a new pList describing a 
file matching remotePList which Retrieve is willing to send. FtpServProt will return 
this pList as 'locaIPList' in the next call to Retrieve, so that it can be deallocted. 
On the first call, 10caiPList will be zero. Some FTP implemen tations require a 
minimum set of properties here, but the whole subject of who should specify what 
properties is rather involved and beyond the scope of this description. For more 
information, consult the Frfp specification. This package provides a fast procedure 
(in the Utility module) for deciding the 'type' of a file (tex.t or binary) which you 
may find useful. 

Property lists in retrieve requests may specify multiple files, so FtpSerVPl'ot will 
continue to call Retrieve until it returns false. On each call, remotePList will be 
the same original pList sent from the remote User, and localPList will be the last 
pList returned by Retrieve. If Retrieve supports multiple file requests then it must 
save some information so that the next time FtpServProt calls it, it can generate 
the next file. If Retrieve does not support multiple file requests then it should do 
its thing during the first call and remember that it is finished. The next time it 
is called it should return false having only deallocated 10calPList (it should not call 
FTPM). 

If Retrieve returns true, FtpServProt sends the returned property list back to the 
User to more fully describe the file. At this point the User may back out of the 
transfer, in which case the nex.t procedure will be skipped, and RetrieveCleanup will 
be called imnlediately. If the User indicates a willingness to proceed, FtpServProt 
then calls 

(CtxRunning> > FtpCtx.RetrieveFile)(pList) 

to transfer the file data. This package provides a procedure (in the Utility module) 
for transferring data from a disk Stream to a BSP Stream, but you are free write 
your own. When RetrieveFile has finished the transfer, it should return true if 
everything went OK. 

Next, FtpServProt calls 

(CtxRunning> > FtpCtx.RetrieveCleanup)(pList,ok) 

where 'ok' is false if RetrieveFile returned false or the User backed out of the 
command. Note that if Retrieve returned true, RetricveCleanup will always be called, 
but RetrieveFile may not. If Retrieve allocates any resources (such as opening a 
file) they should be deallocated here. 

Finally, FtpScrvProt calls Retrieve again, and the process repeats until Retrieve 
returns false. 

2.3. Store Command 

When the remote FTP Uscr process sends the command 'Store' followed by a property 
list describing the file, FtpServProt parses the property list and calls 

(CtxRunning> > FtpCtx.Store)(pList) 



Pup FTP Package 

For Xerox Internal Use Only -- October 16, 1977 

July 18 1977 46 

which should decide whether to accept the command. rfo accept, Store need only 
return true; no property list is sent back in this command. To refuse the command 
Store should call FTPM(lnarkNo, code, string) and return false, in which case the 
next procedure (StoreFile) is not called. 

If Store returns true, FtpServProt tells the User process to go ahead and send the 
file, and then calls, 

(CtxRunning» FtpCtx.StoreFile)(pList) 

to transfer the file data. This package provides a procedure (in the Utility module) 
for transferring data from a BSP Stream to a disk Stream, but you may write your 
own. When StoreFile has finished the transfer, it should return true if everything 
went OK. 

Finally, FtpServProt calls 

(CtxHunning» FtpCtx.StoreCleanup)(pList,ok) 

where 'ok' is true if $toreFile returned true and the User indicated that everything 
went ok. If 'ok' is false, StoreCleanup should delete the file, since it is almost 
certainly damaged. Note that if Store returned true, StoreCleanup will always be 
called, but StoreFile may not. If Store allocates any resources (such as opening a 
file) they should be deallocated here. ' 

2.4. Delete Command 

When the remote FTP User process sends the command 'Delete' followed by a 
property list describing the files which it wants to delete, FtpServProt parses the 
property list and calls 

(CtxRunning» FtpCtx.Delete)(remotePList,locaIPList) 

which should decide whether to accept the command. Don't delete anything yet! 
The User may still back out. 1'0 refuse the delete request, Delete should call 
FTPM(markNo, code. string) and return false. To accept the comlnand, it should 
return a new pList with every property it can find, so that the User can be sure of 
the identity of file to be deleted, and return true. FtpServProt will return this 
pList as 'locaIPList' in the next call to Delete, so that it can be deallocted. 

Property lists in delete requests may specify multiple files, so FtpServProt will 
continue to call Delete until it returns false. On each call, remotePList will be the 
same original pList sent from the remote User, and 10caiPList will be the last pList 
returned by Delete. If Delete supports multiple file requests then it Inust save some 
information so that the next time FtpServProt calls it, it can generate the pList for 
the next file. If Delete does not support multiple file requests then it, should do its 
thing during the first call and rmnember that it is finished. The next time it is 
called it should return false having only deallocated 10calPList (it should not call 
FTPM). 

If Delete returns a Plist, FtpServProt will send it back to the User and wait for 
confirmation. If the User still wants to delete the file, FtpServProt calls 

(CtxRunning> > FtpCtx.DeleteFile)(pList) 

which should delete the file. Finally, FtpServProtFile calls Delete again, and the 
process repeats until Delete returns false. 



Pup FTP. Package 

For Xerox Internal Use Only -- October 16, 1977 

July 18 1977 

2.5. Directory Command 

47 

When the remote FTP User process sends the command 'Directory' followed by a 
property list naming the files about which it wants information, FtpServProt parses 
the property lists and calls 

(CtxRunning> > FtpCtx.Directory)(pList) 

which should decide whether to accept the command. To refuse the request (because 
for example the requestor does not have the correct access capabilities) Directory 
should call FrrPlv1(nlarkNo, code, string) and return false. To accept the command it 
should return a pList describing a file. 

Property lists in directory requests may specify multiple files, so FtpServProt will 
continue to call Directory until it returns false. If Directory supports multiple file 
requests then it nlust save some information so that the next time li'tpServProt calls 
it, it can generate the pList for the next file. If Directory does not support 
multiple file l'equests then it should do its thing during the first call and remember 
that it is finished. The next time it is called it should return false having only 
deallocated localPList (it should not call FTPM). 

2.6. Rename Command 

'V11en the remote FTP User process sends the command 'Rename' followed by two 
property lists describing the old and new files, FtpServProt parses the property lists 
and calls 

(CtxRunning> > FtpCtx.Rename)(oldPList,newPList) 

which should decide whether to accept the command. The FTP protocol does not 
require that user access information be present in newPList, so access checking 
should be done on oldPlist only. To refuse the rename request, Rename should call 
FTPM(markNo, code, string) and return false. Otherwise it should rename the file 
returrllng true if successful. If the rename operation fails, Rename should call 
FTPM(markNo, code, string) and return false. 

File FtpServProtMail.br implements the server part of the Mail rrransfer Protocol. 
rrhis description ignores various critical sections and other vital considerations which 
must be handled by the user-supplied routines in order to provide a reliable mail 
service. For the semantics of the protocol see (Pup> MaiITransfer.ears. 

2.7. StoreMail Command 

When the remote FTP User process sends the command 'StoreMail' followed by a 
property list, FtpServProt parses the property list and calls 

(CtxRunning> > FtpCtx.StoreMail)(pList) 

which should decide whether to accept the command. To accept, StoreMail need only 
return true; no property list is sent back in this command. To refuse the command 
StoreMail should call FrrpivT( markNo, code, string) and return false, in which case the 
next procedure (StoreMailFile) is not called. 

If StoreMail returns true, FtpServProt tells the User process to go ahead and send 
the mail, and then calls 

(CtxRunning> > FtpCtx.StoreMailFile)(pList) 



Pup FTP Package 

For Xerox Internal Use Only -- October 16, 1977 

July 18 1977 48 

to transfer the file data. When StoreMailFile has finished the transfer, it should 
return true if everything went OK. 

Finally, FtpServProt calls 

(CtxRunning> > FtpCtx.StoreMailCleanup)(pList,ok) 

where 'ok' is true if StoreMailFile returned true and the User indicated that 
everything went ok. If 'ok' is false, StoreMailCleanup should delete the file, since it 
is almost certainly damaged. Note that if Storeivlail returned true, StoreMailCleanup 
will always be called, but StoreMailFile may not. If StoreMail allocates any resources 
(such as opening a file) they should be deallocated here. 

2.8. Retrieve~1ai1 Command 

When the remote FTP User process sends the command RetrieveMail followed by a 
property list, FtpServProt parses the property list and calls 

(CtxRunning> > FtpCtx.RetrieveMail)(pList) 

which should decide whether to accept the request. To refuse, Retrieve1tlail should 
call FTPM(markNo, code, string) and return false. To accept, it should return true; 
no property list is sen t back in this command. 

If Retrieve~lail returns true, FtpServProt then calls 

(CtxRunning> > FtpCtx.RetrieveMailFile)(pList) 

which should transfer the file. When RetrieveMailFile has finished. it should return 
true if everything went OK. 

Next. FtpServProt calls 

(CtxRunning> > FtpCtx.FlushMailBox)(pList) 

which should flush the contents of the mailbox. . If this operation fails, 
FlushMailBox should call FTPM(nlarkNo. code. string) and return false, otherwise it 
should return true. 

2.9. MoveMailToFile Commmand 

When the remote FTP User process sends the command MoveMailToFile followed by a 
property list, FtpServProt parses the property list and calls 

(CtxRunning> > FtpCtx.MoveMail'roFile)(pList) 

which should decide whether to accept the request. To refuse, MoveMailToFile 
should call FTPM(markNo, code, string) and return false. 'ro accept the request, it 
should perform the operation and return true. If the operation fails, 1tloveMailToFile 
should call FTprvI(markNo, code. string) and return false. 

3. User 

The FTP User module (files FtpUserProt.br, FtpUserProtFile.br, and 
FtpUserProtMail.br) implements the User protocol exchanges. 



Pup FTP Package 

For XeroJ( Internal Use Only -- October 16, 1977 

July 18 1977 .. ' 49 

Many of the procedures in this module report results by returning a word containing 
an FTP mark code in the right byte and a subcode in the left byte (referred to 
below as 'subcode"lnarlt.'). Marks and subcodes are the first two arguments to the 
FTPlvl procedure which is described in more detail in the Utility section. If the 
mark type is 'markNo', the subcode describes the reason why the Server refused; your 
modules may be able to fix the problem and retry the command. rfhe package will 
output to dspStreanl text accompanying No, Version, and Comment marks. 

3.1. Common User Protocol 

File FtpUserProt.bcpl contains routines shared by FtpUserProtFile.br and 
FtpUserProtMail.br. It uses the bspStream, bspSoc, and dspStream fields in its 
FtpCtx and contains the following external procedures: 

UserOpen(Version) = truelfalse 
UserOpen should be called after the ESP Connection is open. It sends a version 
command and aborts the connection returning false if the Server's protocol is 
incompatible. Otherwise it calls 

VersionO 

which should generate some herald text: 

Wss(CtxRunning»FtpCtx.bspStream, "Alto Pup Frrp User ") 

to which UserOpen will append a string of the form "1.13 15-rvlay-77", and then 
return true. rfllC herald string received from the Server is output to dspStremu. 

UserClose( abortIt [false]) 
UserClose closes the FTP connection, aborting it if 'abortIt' is true. 

UserFlushEOCO = truelfalse 
flushes bspStream up to the next command, and returns true if it is 
ElldOfCommand. If the stream closes or times out, it returns false. It calls 
UserProtocolError if it encounters anything except an EOC. 

UserGetYesNo(flushEOC) = subcode"mark 
flushes bspStream up to the next command, which must be 'Yes' or 'No', If 
flushEOC is true, it then calls UserFlushEOC and returns the Yes or No mark 
and accompanying subCode. If the stremn closes or times out, it returns false. 
UserGetYesNo calls UserProtocolError if it encounters anything except Yes or No 
followed by EOC. 

User ProtocolErrorO 
Wl'ites an error message to dspStream and then calls UserClose to abort the 
connection. 

3.2. User File Operations 

File FtpUserProtFile.br implements the User protocol for standard file operations. It 
uses the bspStreanl, bspSoc, and dspStream fields in its FtpCtx and contains the 
following external procedures: 

UserStore(pList, StoreFile) = subcode"mark 
Attempts to send tlie file described by 'pList' to the remote Server, calling the 
user-supplied procedure 'StoreFile' to transfer the data. It returns zero if 
something catastrophic happens (such as the Server aborts the connection), in 
which case retrying is probably futile. 



Pup FTP' Pacltage 

For Xerox Internal Usc Only -- October 16, 1977 

July 18 1977 50 

UserStore sends pList to the Servnr for approval. The Server can refuse the 
command at this point, in which case UserStore returns subcode"markNo. If the 
Server accepts the command, UserStore calls 

StoreFile(pList) 

which should transfer the file data. This package provides procedures for 
transferring data from a disk stream to a network stream, but you are free to 
write your own. StoreFile should return true if the transfer went successfully. 
If some environment-specific thing goes wrong (such as an unrecoverable disk 
error), StoreFile should call FTPM(nlarkNo, code, string, true) before returning 
false. UserStore then asks the Server if the transfer went successfully and 
returns subcode"mark. If mark is 'markYes', the file arrived at the Server 
safely. 

UserRetrieve(pList, Retrieve) :: subcode"mark 
Attempts to retrieve the file described by 'pList' from the remote Server, calling 
the user-supplied procedure 'RetrieveFile' to transfer the data. UserRetrieve 
returns zero if some catastrophic error occurs, markNo if the Server refuses the 
command, and mar kEndOfCommand if the everything goes OK. 

UserRetrieve sends pList to the Server and waits for approval. The Server can 
refuse the command at this point, in which case UserRetieve returns 
subcode"markNo. If the Server can handle property lists that specify multiple 
files, then the following steps are taken for each file: 

If the Server has no more files matching the original pList, UserRetrieve 
returns subcode"nlarkEndOfCommand (su bcode is undefined in this case). 
Otherwise the Server sends a fully-specified property list describing a fife 
which it is willing to send. UserRetrieve parses this into pList and calls 

Retrieve(pList) 

which should decide whether to accept the file. To skip the file, Retrieve 
should return false. UserHetrieve so informs the Server and then loops. 
To accept the file, Retrieve should return a procedure which UserRetrieve 
can call to transfer the data. Don't open the file yet, because the Server 
can still back out, in which case UserRetrieve skips the next step and just 
loops. If Retrieve returns true, UserRetrieve tells the Server to send the 
file and then calls 

RetrieveFile(pList) 

which should open the file, transfer the data, and close the file. This 
package contains procedures for transferring data from a network stream to 
a disk stream, but you are free to write your own. When RetrieveFile is 
done, it should return true if everything went OK. UserRetrieve then 
loops. 

User Delete(pList,Delete) = su bcode"mar k 
Requests the remote Server to delete the files described by 'pList', calling the 
user-supplied procedure- DeleteFile before allowing the server to actually delete 
anything. UserDclete returns zero if some catastrophic error occurs, InarkNo if 
the Server refuses the command, and markEndOfCOInmand if the everything goes 
OK. 

UserDelete sends pList to the Server and waits for approval. The Server can 
refuse the command at this point, in which case UserDelete returns 
subcode"markNo. If the Server can handle property lists that specify multiple 
files, then the following steps are taken for each file: 



Pup FTP Package 

For Xerox Internul Use Only -- October 16, 1977 

JUly 13 1977 51 

If the Server has no more files matching the original pList, UserDelete 
returns subcode"markEndOfCommand. Otherwise the Server sends a fully
specified property list describing a file which it is willing to delete. 
UserDelete parses this into pList and calls 

Delete(pList) 

which should return true to confirm deleting the file described by 'pList'. 
UserDelete passes this answer on to the Server and then loops. 

UserDirectory(pList, Directory) :: subcode"mark 
Requests the remote S'erver to describe in as much detail as it can files 
matching 'pList', and then calls the user-supplied procedure Directory when the 
answers come back. 

UserDirectory sends pList to the Server and waits for an answer. The Server 
can refuse the command at this point, in which case UserDirectory returns 
subcode"markNo. If the Server can handle property lists that specify multiple 
files, then the following steps are taken for each file: 

If the Server has no more files matching the original pList, UserDirectory. 
returns subcode"luarkEndOfComlnand. Otherwise the Server sends a 
property list which UserDirectory parses into pList and calls 

Directory(pList) 

and then loops. 

3.3. User Mail Operations 

File FtpUserProtMail.br implements the user part of the Mail Transfer Protocol. 
This description ignores various critical sections and other vital considerations which 
must be handled by the user-supplied routines in order to provide a reliable mail 
service. For the semantics of the protocol see <Pup>MailTransfer.ears. I 

UserStoreIVlai1(pList,StoreMail) . 
Attempts to send mail to themailboxdescribedby.pList. at the remote Server, 
calling the user-supplied procedure 'StoreMail' to transfer the data. It returns 
zero if something catastrophic happens (such as the Server aborts the 
connection), in which case retrying is probably futile. 

UserStoreMail sends pList to the Server for approval. The Server can refuse the 
command at this point, in which case UserStoreMail returns subcode"markNo. If 
the Server accepts the command, UserStoreMail calls 

StoreMail(pList) 

which should transfer the mail. StoreMail should return true if the transfer 
went successfully. If some environment-specific thin~ goes wrong (such as an 
unrecoverable disk error), StoreIvlail should call F'rPM rnarkNo, code, string, true) 
before returning false. UserStoreMail then asks the erver if the transfer went 
successfully and returns subcode"mark. If mark is 'markYes', the mail arrived at 
the Server safely. 

User RetrieveMail(p List,RetrieveMail) = su bCode "mark 
Attempts to retrieve the contents of themailboxdescribedby.pList. from the 
remote Server, calling the user-supplied procedure 'RetrieveMail' to transfer the 
data. UserRetrieveMail returns zero if some catastrophic error occurs, rnarkNo if 



Pup FTP 'Package 

For Xerox Internal Usc Only -- October 16, 1977 

JUly 18 1977 52 

the Server refuses the command, and markEndOfCommand if the everything goes 
OK. 

UserRetrievel'vlail sends pList to the Server and waits for approval. The Server 
can refuse the command at this point, in which case UscrRetieveMail returns 
subcode"markNo. Otherwise UserRetrieveMail calls 

RetrieveMail(pList) 

which should transfer the file data. When RetrieveMail 'is done, it should 
return true if everything went OK. 

UserMoveMailToFile(pList) = subCode"mark 
requests the server to move the contents of the mailbox described by 'pList'to 
the file also described by pList. UserMoveMailToFile returns zero if some 
catastrophic error occurs, markNo if the Server refuses the command and 
markYes if everything goes OK. 

4. Utility Routines 

The utility module (files FtpUtilB.br, FtpUtilA.br, FtpUtilXfer, FtpUtilDmpLd, and 
FtpUtilInit.br) contains protocol routines shared by the User and Server Inodules, and 
some routines for efficiently manipulating disk streams. 

InitFtpUti1() , 
builds some internal tables and streams, getting space from sysZone. You must 
call this procedure before starting a Server or issuing any User commands. 

FTPM(mark, subCode [OJ, string [1, eoc rfalseJ, parO, parI, par2, par3, par4] 
sends the FTP command 'mark' to tne remote Fl'P process, including sub Code' if 
the command requires one, and 'string' if one is present. Then, if 'eoc' is true, 
an EOe command is sent. 'String' is written to bspStream using the Template 
package, and may contain imbedded format information. 'ParO' through 'par4' are 
passed as arguments to the PutTemplate call. The subcode and string arguments 
further explain certain commands. For markNo, subCode is a machine-readable 
explanation of why a request was refused, and 'String' is human-readable text 
such as "UserName and Password required". Codes are tabulated in an appendix 
to (Pup>FtpSpec.ears. New codes may be registered on request. 

GetCommand(timeout [30000J) = subCode"mark 
flushes bspStream up to the next command and returns the mark and sub code 
(if any). Returns false if the stream closes or it hangs for 'timeout' miliseconds 
while waiting for a byte. Comment commands are ignored. GetCommand writes 
the strings accompanying Version, No, and Comment commands to dspStream. 

FileTypeO = TextlBinary 
Resets diskStream, scans it (using ReadBlock) looking for high order bits on J and 
then Resets it again. As soon as it encounters a byte with the high order bit 
on, it returns 'Binary', otherwise (having read the entire file) it returns 'Text'. 
'rhis routine uses the DiskStreamJ buffer, and bufferLength fierds in FtpCtx. 

The utility module makes three 'process-relative streams' for use by the rest of the 
package. The only operation defined is 'Puts'. 



Pup FTP Package 

For Xerox· Internal Use Only -- October 16, 1977 

July 18 1977 

1st writes to dspStream 
dIs writes to dspStream if debugFIag is true 
dbls writes to bspStream and if aebugFlag to dspStream 

53 

For example, Wss( dls,string) writes 'string' to the running process' dspStream if the 
process' debugFIag is set. 

4.1. Unformatted Data Transfer 

The external procedures below perform efficient operations on disk Streams and use 
the following fields in FtpCtx: bspSoc, bspStreaIn, dspStream, diskStream, buffer, and 
bufferLength. The following Alto operating system disk strearn procedures are used: 
SetFilePos, FilePos, FileLength, HeadBlock, WriteBlock, plus the generic stream 
operations: Gets, Puts, Resets, and Endofs. . 

DiskToNetO :: truelfalse 
Transfers bytes from diskStream to bspStrearn up to end-of-file, and returns true 
if everything went OK. Before starting the transfer, DiskToNet outputs 
" ... transferring ... " to dspStream, and before returning it outputs "xxx bytes ... ". 

NetToDisk() :: truelfalse 
Transfers bytes from bspStream to diskStream until it encounters another FTP 
command returning true if everything went smoothly. Before starting the 
transfer, NetToDisk outputs " ... transferring ... " to dspStremo, and before returning 
it outputs "xxx bytes ... ". 

4.2. Dump Format Data Transfer 

File FtpUserDmpLd.hr contains two procedures for transferring data between a disk 
and an FTP connection in dump format. They may be used as the inner loops of 
the user-supplied data transfer procedures passed to UserStore and UserRetrieve and 
will create and unbundle dump-format files on the fly. If you don't want to handle 
dump format, you don't need this file. Dump-file format is described in an appendix 
to the Alto Executive documentation. 

These procedures use the same fields in FtpCtx and the same Alto OS routines as 
the unformatted transfer routines. Buffer must be at least 130 words long. Making 
it longer does not speed up the transfer. 

DumpToNet(filename [J) = truelfalse 
Dumps 'filename' from diskStremn to bspStream converting it to dUlnp format, 
returning true if things go OK. DumpToNet outputs " ... xxx bytes" to dspStream 
before returning. To terminate a dUlnp file, call DumpToNet without a filename. 

LoadFromNet() = string or zero 
Loads files frOIn bspStream to diskStream (if it is non-zero), converting them 
frOIll dump format, returning a string when It encounters a name block and zero 
when it encounters an 'end block'. The caller should not modify the returned 
string. LoadFromNet outputs " ... skipped" or " ... xxx bytes" to dspStremn for each 
component file in the dump file. 



Pup FTP Package 

5. Property Lists 

For Xerox Internal Use Only -- October 16, 1977 

July 18 1977 54 

The property list module (files FtpPListProt.br, FtpPList1.br, and FtpPListInit.br) 
translates between this package's internal representation of a property list and the 
protocol-specified network representation. 

The FTP protocol specifies the syntax of a property list and the syntax of a set of 
properties sufficient for standard file operations, but states that property lists arc 
extensible. Therefore the property list module comes in two parts: a part that 
knows the syntax of property lists, and a part which knows the syntax of individual 
properties. To add new properties you need only modify the latter. 

The principal data structure in this module is the File Property List Keyword Table, 
or fplKT. This table, built by InitFtpPlist, contains (propertyName,propertyObjects) 
pairs. PropertyNames are strings such as "Byte-size". PropertyObjects know how to 
Scan (parse) properties into pLists, Generate properties from pLists, initialize 
propertIes from a pList full of default values, and Free properties stored in pLists. 

5.1. Property List Protocol 

File FtpPlistProt.br implements four operations on property lists. This is the module 
that knows the syntax of a property list, but not the syntax of individual properties. 
Procedures in this file use the bspStream, bspSoc, and dspStrcarn fields of the 
FtpCtx and contain the following external procedures: 

InitPList(defaultPList []) = pList 
Creates an empty pList, and initializes it to be a copy of 'defaultPList' if one 
was supplied. 

FreePList(pList) 
Destroys 'pList' and returns 0 to facilite writing pList = FreePList(pList). If 
pList is zero, FreePList returns zero without doing anything. 

ScanPListO = pListlfalse 
Expects to fina a property list in bspStream. ScanPList parses this property list 
and returns a pList if it had proper syntax. If the property list is malformed, 
ScanPList calls FTPM(markNo, code, string) and returns false. If the connection 
closes or ScanPList waits for more than 30 seconds while trying to read from 
bspStream, it returns false. 

GenPList(pList) 
Generates a property list in network format from 'pList' and sends it to 
bspStream. 

5.2. The 'Standard' Properties 

Files FtpPlistl.br and FtpPlistInit.br implement the standard properties. These files 
know the syntax of individual properties; they contain the operation procedures for 
the standard property objects. These files are used by the FTP subsystem and IFS 
and are sufficient for perfonning 'standard' file operations. If you wish to add 
properties, these are the modules which you must change. In addition to the 
property operations which arc rather specialized to their task, there are a few 
generally useful procedures which are made external: 

InitFtpPList() 
which makes the standard property objects and builds fplKT, getting space from 



PupFTP Packuge 

For Xerox Internul Use Only -- October 16, 1977 

July 18· 1977 55 

sysZone. This procedure must be called before calling any of the procedures in 
FtpPlist.br (which typically meuns before starting a server or calling any 
procedures in the User module). 

Nin(string,lvDest) = truelfalse 
Interprets 'string' as a decimal number and leaves the result in 'IvDest', ignoring 
leading blanks and ternlinating on cnd of string. A null string results in IvDest 
getting O. Returns false if the string contains any characters other than 0-9 
and <space). 

ParseDate(string,lvRes) ::: truelfalse 
Parses the string format date into an Alto format date which it puts into the 
two word vector at 'IvRes'. Returns true if it could parse the date. ParseDate 
expects the format of the string to bear some similarity to "day-month-year 
hour:min u tc:second". . 

WriteDT(stream,dt) 
converts 'dt' from 32 bit Alto date format to a string of the form "dd-mmm-yy 
hh:mm:ss" and writes it to 'stream'. 

6. Revision History 

March 30, 1977 

First release. 

May 15, 1977 

Added Directory and Rename commands. Server now handles property lists which 
specify multiple files. Added User and Server mail operations. 

June 8, 1977 

Overlay machinery was changed and some bugs were fixed. 
definitions changed, so recompilation of user programs is necessary. 

Some structure 

July 17, 1977 DiskToNet and NetToDisk moved out of FtpUtilb into a new file 
FtpUtilXfer. Property lists reorganized, causing changes to the calling interface in 
F'l'PSFI. Plist module now uses the Keyword routines in the CmdScan package. 
Recompilation of user programs is necessary. FtpUserDmpLd l'enamed FtpUtilDmpLd. 
Timeouts cleaned up. 



Get and set hits 

For Xerox Internal Use Only -- October 16, 1977 

June 1, 1977 

Get and set hi t fields 

56 

This packa~e makes it easy to extract and replace strings of up to 16 hits in a 
vector of oits. It has no virtues except convenience -- it is neither fast nor 
compact. 

GetBits(Base, BitDisp, Count) -) Value 
extracts Count bits starting at bit number BitDisp of the hit vector beginning at 
word address Base and returns them right-justified as Value. Bit numbering begins 
with the high-order bit of the first word and continues through the low-order, and 
then continues in the second word, etc. Here are two examples: GetBits(x, 16, 8) is 
equivalent to x!1 rshift 8; GetBits(x, 13, 1) is equivalent to lX!O rshift 2) & 1. 

SetBits(Base, BitDisp, Count, Value) 
replaces Count hits starting at bit numoer BitDisp relative to Base with the low
order Count hits of the value Value. (Extraneous high-order hits in Value will be 
ignored.) 

GetBits and SetBits perform no error checks -- if BitDisp is negative, or Count is 
negative or greater than 16, they will do the wrong thing. Count=O and Count=16 
are OK. 



For Xerox Internal Use Only -- October 16, 1977 

G P: parse command lines April 2, 1975 57 

GP: Routines for parsing command lines 

The routines described here are a convenient package for parsing command lines and 
doing a few related functions. They may be found in GP.C (source) and GP.BR 
(binary). The source needs OSSYMS to compile. No external routines are called except 
those supplied by the operating system. 

An "unpacked string" is a vector v such that v!1, v!2, ... , v!( v!O) contain the 
characters of the string, one per word, right justified. 

A "parameter" in a command line is a maximal sequence of characters not containing 
$*8 or $*N. All the characters before the first $1 are the "body"; the remaining 
characters, with any $1 characters ignored, are the "switches". Thus 

BCPL/F FOO.SR 

contains two parameters. The first has body "BCPL" and switches "F". The second has 
body "FOO.SRIt and no switches. 

8etupReadParam (stringVec, switchVec, stream, comSwitchVec) 

stringVec is a vector whose length in words should be greater than the 
number of characters in the longest body in the command line. A 0 
defaults it to a 256-word vector inacessible to the user; this may be 
useful if all the parameters of the command are files or numbers (see the 
discussion of ReudParam below). 

switchVec isa vector whose length in words should be greater than the 
largest number of switches on any unit in the command line. A 0 
defaults it to a 128-word vector inaccessible to the user. 

stream is an as character stream from which the command line will be 
read. It will not be RESET or CLOSED. A 0 defaults it to the disk file 
"COM.eM". ffhe stream is left in the external static ReadParamStreanl. 

comSwitclIVec is a vector whose length in words should be greater than 
the number of switches on the first unit in the command line. A 0 
defaults it to swi tell Vee. 

Missing parameters are defaulted. 

This routine initializes the parameter-I"eading machinery. It then does a ReadPal'am() 
which will pick off the first parameter (Le., the name of the program) and leave the 
name and switches as unpacked strings in stringVec and comSwitchVee. If either of 
these was defaulted to an inaccessible vector, the corresponding information is lost. 



For Xerox Internal Use Only -- October 16, 1977 

G P: parse. command lines April 2, 1975 . 58 

ReadParam (type, prompt, resultVec, switchVec, returnOnNull) 

type is an integer or Bcpl string representing the expected type of the 
parameter. If type < 256, it is interpreted as a character which must 
select a defined type frOIn the list described below. If type > 256 it is 
treated as a Bcpl string. If the string is one character long, it is 
interpreted as though that character had been used. If it is longer, the 
first two characters must select a defined type from the list below. 

prompt is a Bcpl string which is used to prompt the user for another try 
at the parameter if a syntax error is discovered. A 0 defaults it to "Try 
again: ". 

resultVec is a vector used to return the result for types which need more 
than one word to represent their result. A 0 defaults it to the stringVec 
passed to SetupReadParam. 

switc11Vec is a vector used to return the switches as an unpacked string. 
A 0 defaults it to the switc11Vec passed to SetupReadParam. 

returnOnNull is a boolean which decides what to do if the paranleter body 
is null. It defaults to false. . 

Missing parameters are defaulted. If type is missing, it is defaulted to O. 

One parameter is read from the stream passed to SetupReadParam. The switches are 
separated off and left in switch Vee. Any $1 characters among the switches are 
stripped off. If there are no switches, switchVec!O will be O. 

Then the body is handled in a way which depends on the type: 

0: It is returned in resultVec as an unpacked string. Result is resultVee. 

P: It is returned in resultVee as a packed (Bcpl) string. Result is resultVec. 

I or Ie: It is treated as the name of an input character file, to be opened 
with OPENAFILE(body, DISKROCH). If the open fails, prOInpt for another 
name. Result is the stream returned by OPENAFILE. In addition, the file 
name is returned in resul tYee as a Bcpl string. 

IW: Like I, but a word stream is created. 

o or OC: Like I, but GET AFILE(body, DISKWOCH) is called. 

OW: Like 0, but a word stream is created. 

F: Like I, but GETAFILE(body, DISKRW) is called. 

EF: Like I, but OPENAFILE(body, DISKRW) is called. 

B: An octal number is collected and returned. Numbers may start with II, 
which forces them octal, and may end with il, b, 0, or 0 (which forces 
them octal) or with D or d, which forces thenl decimal. Anything else is 
a syntax error and causes a prompt for another number. Result is the 
number. 



}4'or Xerox Internul Use Only -- October 16, 1977 

GP: parse' command lines April 2, 1975 59 

D: Like B, but for decimal number. 

Any undefined type results in a call on Swat. 

If the body is empty, ReadParam immediately prompts, without generating an error 
message from the null body, unless returnOnNull is true or prompt eq -1, in which 
case it returns -1 when it sees a null body. When prompting for new input, DEL 
cancels whatever has been typed and allows another try, and BS and control-A 
backspace one character. 

EvalParam (body, type, promp~, resultVec) 

body is an unpacked string 

the other arguments are like the corresponding ones for ReadParam. 
resultVec defaults to body. 

body and type may not be omitted. 

Works exactly like ReadParam, using body as the parameter body. Does nothing about 
switches. This routine is useful for programs whose interpretation of parameters 
depends on the switches attached to them. 

ReadString (result, breaks, inStream, editFlag, prompt) 

result is a vector in which the string read will be returned, unpacked. 
May not be defaulted. 

breaks is a Bcpl string containing the characters which will cause reading 
to terminate. Defaults to "*N". 

inStream is the stream to read from. Defaults to KEYS. 

editFlag says whether DEL, BS and control-A should be interpreted as 
editing characters. If it is false, they are not. Otherwise they are, and 
furthermore, editFlag is taken as the stream on which echoing of the 
input should be done. It defaults to false unless inStream is KEYS,' in 
which case it def a ul ts to DSP. 

prompt is echoed after a DEL. It defaults to "". 

Reads characters from inStream until one of the characters in breaks is encountered, 
leaving the characters read in result as an unpacked string. Returns the break 
character. Allows editing of the input as described under editFlag above. 



For Xerox Internul Use Only -- October 16, 1977 

GP: parse command lines April 2, 1975 60 

DefaultArgs (lvNu, first, dO, dl, ... ) 

This routine should be called only in the following context: 

and Foo (aO, aI, u2, a3; numargs na) be [ 

Default Al'gs (lv na, 1, "alpha", 12) 

IvNa is the Iv of the numargs formal (na in the example), which MUST 
have been present in the declaration of the routine or function which 
calls DefaultArgs. It must not be omitted. 

first is the nUluber of the first argument which may be defaulted, 
counting frOlll O. It defaults to O. If fewer than first arguments were 
supplied to the calling routine, Swat is called. If first is negative, its 
absolute value is used, and actual arguments from first on which are zero 
are replaced by the corresponding default values. 

dO, dl, etc. are the default values for arguments p!first, p!(first + 1), etc. 
There must not he more than 10 of them. 

Checks that at least first arguments were supplied to the caller, and calls Swat if 
not. Let ai be the last ar~ment supplied to the caller. Sets a(i + 1) :: d(i - first), 
a(i + 2) :: d(i - first + 1J. and so on for all the parameters in the caller's formal 
parameter list. If not enough as were supplied. the last one is used repeatedly. 

In the example above, a call of Foo(n) will result in 

aO = n 
al "alpha" 
a2 = 12 
a3 = 12 

after the call of DefaultArgs. 

AddItem (vek, value) 

vele is a vector whose current size is given by velclO. 

value is an uninterpreted 16-bit quantity. 

Increments veldO and stores value at the new veld ( veldO). 



For Xerox Internal Use Only -- October 16, 1977 

Bcpl Interrupt Interface May 21, 1977 61 

Bcpl Interrupt Interface 

A tiny software package is available that permits Bcpl procedures to be called as a 
result of hardware interrupts on the Alto. 'rhe relevant files are contained in 
Interrupt.DIu. 'rhere are two files, Interrupt.br. which contains code that must 
always be resident (75 instructions). and InterruptInit.br, which contains code that is 
required only during initialization of interrupt channels (namely FindlnterruptMask 
and Initializelnterrupt) and may be thrown away after initwlization is complete (200 
instructions). The sources are contained in InterruptSource.dm, which also includes 
various command files and InterruptEx.bcpl. the example progl'am given at the end of 
this writeup .. \ A Nova version of this package is available. 

The specificadon of an interrupt channel is uniformly accOIllplished with a "mask" 
that has a on~ bit for the (Alto) interrupt channel to usc. Thus mask=1 is the 
highest priority channel, mask=1140000 the lowest. (The Alto itself assigns no 
prIorities to channels, but conventions followed both in this package and in the 
operating system define the priorities as given here.) 

mask=Filldln terruptMask( trialMask) 
This function returns a mask for an ununsed interrupt channel of equal or lower 
priority than trialMask. It is wise always to use' this function to assign 
interrupt channels, as your channel assignments are then relatively decoupled 
from ones in software p'ilCkages you use or in the operating system. 

mask=Ini tializeIn terru pte region, length, mask, proc) 
This function initializes and arms the interrupt channel specified by "mask." The 
"region" parameter points to a block of storage that will be used as stack space 
for the procedure that is called whenever an interrupt goes off; "length" is the 
number of usable words in that block of storage. Final1y, "proc" is the address 
of the procedure to call on each interrupt. 

The "region" is sct up in the following way: the first 15 words hold code and 
context for saving and restoring state when interrupts occur, the last 4 words 
are a minimal stack frame from which "proc" is called, and the remaining words 
in between (a block of size "length"-19) arc available for stack frames needed by 
"proc" and any procedures called by "proc". 

The result of the call to Initializelnterrupt is the value of the "mask" argument 
so as to facilitate use of an actual parameter such as 
"FindlnterruptMask(triall'Aask)", where "triallVlask" is the mask of all channels 
whose priority is to be higher than the one being initialized. 

Destroy I n terru pte mask). 
Turns off any interrupt channels represented by one bits in "mask." The 
interrupt package keeps track of all interrupt channels that the user program 
has enabled. and sets UserFinishProc in the operating systenl to execute 
Destroylnterrupt(userInterruptsEnabled) whenever a finish or abort is done. This 
cleans up the interrupt system before returning to thc operating system (note 
that the previous value of UserFinishProc is properly saved and restored by this 
package). 

Causeln terrupt( mask) 
Initiates an interrupt request on any interrupt channels with one hits on in 
"mask". 

Disa bleIn terru ptsO; Ena bleln terru ptsO 



For Xero}{. Internal Usc Only -- October 16, 1977 

Bcpl Interrupt Interface May 21, 1977 62 

These procedures disable and enable the interrupt system. The Alto operating 
system provides procedures of the same name for the same purpose; the copies 
in the file Interrupt.ASlll are provided in case you Junta the operating system. 
Note that it is legal for interrupt routines to include calls to Disablelnterrupts 
and Enablelnterrupts (or to call procedures that do so), since the interrupt 
system is t.urned back on (with lower-priority channels masked out) before the 
user's Bcpl interrupt procedure is executed. 

Exmnple: 

The following somewhat senseless example illustrates the use of the interrupt 
package. It enables two interrupt channels; the high priority one is activitated 60 
times a second by vertical interval interrupts; the low priority one is activated every 
second by the high priority one. 

external r Ws; InitializeInterrupt; FindInterruptMask; CauseInterrupt ] 
sta tic [ fowChannel; tickCoun t ] 
manifest verticallllterval=#421 

let mainO be 

fet stackl=vec 40 
let stack2=vec 200 

/ / Initialize two interrupt channels , 
let high=Initializelnterrupt(stackl, 40, 

FindlnterruptMask(l), HighProc) 
10wChannel=Ini tializeI n terrupt(stack2, 20(), 

Findln terruptMask(high), Low Proc) 
tickCoun t=O 

/ / Arrange vertical interval to cause interrupts on channel "high" 
@verticalInterval=@verticalInterval % high 
while true do loop 
] 

and HighProcO be 

ff tickCount eq 0 then 

[ickCoun t=-60 
Causelri terrupt(lowChannel) 
] 

tickCoun t=tickCoun t+ 1 
] 

and LowProcO be 

\v s("Tick ") 
] 



· For Xerox Internal Use Only -- October 16, 1977· 

Pseudo· random access files November 9, 1976 63 

ISF - pseudo random file access package 

A package is now available which provides direct access to any page of an 
Alto disk file by maintaining a run-coded table in core of the disk addresses of the 
pages. Any number of files, stored on any of the disks which the Alto can 
accommodate, may be accessed siInultaneously. This package was designed for use 
with the virtual memory (VMEM) package, but is useful in its own right. The ISF 
package docs not call any other packages other than the Alto Operating System. 

1. Initialization 

InitFmap(1IAP, LMAP, FPL CHECKFLAG, INCRE 1\1 ENT, ZONE, DSK]) 

Initializes the page table for a file. MAP must point to a block of storage 
of length LMAP. FP is the file pointer (see the O.S. manual) for the file. 
InitFmap returns false if LMAP is not large enough to accOInmodate the page table 
structure, otherwise true. 

If the optional CHECKFLAG argument is sUPLllied and is true, then 
InitFmap will read the page table from page 1 of the file lif it exists) and check it 
for validity; also, each time IndexedPageIO extends the page table in core, it will 
write it back on page 1 of the file. This considerably speeds up subsequent uses of 
the file through ISF. If CHECKFLAG is omitted or false, no speCial meaning is 
attached to page 1 of the file. 

If the INCREIv1ENT argument is supplied, it determines the number of 
pages IndexedPageIO will "read ahead" in the file to augment the page table when 
this becomes necessary. INCREIVIENT defaults to 10. 

InitFmap and IndexedPageIO require a working buffer capable of holding 
one disk page; the optional ZONE argument to InitFmap specifies how they will 
acquire the space for this buffer. ZONE=-l (the default) causes theIn to allocate the 
buffer on the Bcpl stack. Otherwise, ZONE must be a standard allocation zone as 
described in the Alto O.S. manual. ZONE=O is equivalent to ZONE=sysZone. 

The optional DSK argument points to the DSK structure on which the file 
resides (see the "Disks and Bfs" section of the O.S. manual for details). DSK 
defaults to sysDisk, the disk on which files are normally stored. 

2. Data transfer 

IndexedPageIO(MAP, FIRSTREC, CORE, NUMRECS, WFLAGL LASTNC]) 

Transfers NUMRECS pages between the file and core, starting at page 
FIRSTREC in the file and core address CORE, using MAP to 0 btain the disk 
addresses, and extending MAP by scanning the file when necessary. \VFLAG=O means 
read into core, calling Swat if the requested pages do not exist; WFLAG=-l means 
write onto the file, extending the file if necessary; WFLAG=l means read into core, 
extending the file if necessary. If LASTNC is supplied with WFLAG=-l (write), 
LAsrrNC will be written into the numChars field of the last page transferred, and If 
it is less than 2 * the page size, the file will be truncated. IndexedPageIO returns 
the numChars field of the last page transferred. 

Note that the page size is determined by the DSK. structure supplied to 
InitFmap. rfhis means, for example, that NUMRECS=l will transfer 400b words on a 



For Xerox Internal Use Only -- October 16, 1977 

Pseudo random . access files November 9, 1976 64 

Diablo Model 31 or 44 disk (the usual Alto disk), but 2000b words on a Trident 
disk. 

WriteFmap(MAP) 

Writes the page table on page 1 of the file. As mentioned above, this 
happens automatically if the CHECKFLAG argument to InitFmap was true. 

3. Packaging 

The ISF package consists of two binary files: ISFINIT.BR which contains 
InitFmap, and ISF.BR which contains the other two procedures. ISFINrr.BR may be 
discarded after use. 



For Xerox Internal Use Only -- October 16, 1977 

Simple keyboard driver April 19, 1976 65 

KBD - a simple keyboard driver 

For programs which do not wish to use the keyboard driver provided by 
the Alto Operating System, a package is now available which providcs a basic 
keyboard input stream capability. In addition to a character stream for keyboard 
characters, this package also optionally places mouse button and keyset transitions in 
the stream, and also provides for calling a user-supplied function at interrupt time 
when any of a user-selected set of characters appears in the input stream. 

The KBD package is written entirely in Bcpl and uses only a few basic 
facilities of the O.S. (such as MoveBlock) and the Interrupt package. 

1. Initialization 

KBDinit(Zone [sysZone], extraSpace [OJ) -) keystreanl 

Initializes the keyboard handler. The necessary working space (about 150 
words, plus extraSpace if any) will be allocated from Zone. KBDinit uses the 
Interrupt package to allocate an interrupt level for sampling the keyboard, buttons, 
and keyset on every vertical field interrupt. The extraSpace argument specifies how 
much extra stack space to allocate for use by the interrupt routine beyond the 
amount actually needed by routines in the package: this extra space is only needed 
for trap or overflow procedures (see below). KBDinit returns the new keyboard 
streanl, so a typical use mi~ht be 

keys = KBDini t(Zone) 

The package assumes the static location OsBuffer points to a ring buffer 
structure as described in the O.S. map.ual. 

2. Stream operations 

Gets(keystream) -> char 

Returns the next character from the stream, waiting until a character is 
present if p.ecessary. 

Endofs(lceystream) -> empty 

Returns true if there are no characters in the stream's buffer. 

Resets(keystream) 

Clears the stream's buffer. 

Puts(keystream, char) -> notFull 

If the stream's buffer is not full, adds char at the end of the buffer just 
as if it had been typed, and returns true. If the buffer is full, does not add char, 
and returns false. 

3. Other facilities 

The KBD package provides a number of other facilities through statics 
defined in the package. Note that even the procedures mentioned below are defined 



For Xerox Internal Use Only -- October 16, 1977 

,Simple keyboard driver April 19, 1976 66 

in this way: for example, if you want to supply a trap procedure, you must do 
something like 

external [ kbdTra:QProc ] 
kbd'frapProc :: l\1yKbdTrapProc 

kbdBu t tonsOn 

This static is initially false. If set to true, mouse button and keyset 
transitions will be placed in the input stream (unless trapped: see below) just like 
typed characters. The encoding of these events is as follows: 

200b bott.om (right) mouse button DOWN 
201b middle mouse button DOWN 
202b top (left) mouse button DOWN 
203b rightmost keyset key DOWN 

207b leftmost keyset key DOWN 
210b bottom (right) Iuouse button UP 

217b leftmost keyset key UP 

kbdTrapTable 
kbdTrapProc(char) -) keeplt 

The static kbdTrapTable points to a table of 16 words (allocated from Zone 
by KBDinit) which is interpreted as a table of 256 bits, one for each possible 8-bit 
character. When the interrupt routine sees a character whose bit in kbdTrapTablc is 
set, instead of placing the character in the buffer it calls kbdTrapProc(char). If 
kbdTrapProc returns true, the character is placed in the buffer as usual; if 
kbdTrapProc returns false, the interrupt procedure assumes that kbdTrapProc has 
done all the necessary processing. This facility is intended for programs which want 
to detect interrupt characters even if characters arc queued ahead of them in the 
input buffer. kbdTrapProc is initialized to rrruePredicate, which causes all characters 
to be placed in the buffer regardless of the setting of kbdTrapTable. 

kbdOverflow Proce char) 

If the interrupt routine finds the ring buffer full, it calls 
kbdOverflowProc(char). kbdOverflowProc is initialized to Noop, which simply discards 
the character. 

4. Packaging 

The KBD package consists of two files, KBDINIT.BR and KBD.BR. 
KBDINIT.BR contains only the KBDinit procedure, and may be discarded after calling 
KBDinit. KBD.BR contains all the other facilities described in this memo. 



LoadRam 

For Xerox Internal Use Only -- October 16, 1977 

October 15, 1977 

LoadRam 

67 

The LoadRam procedure loads a 'packed Ram image' from main memory into the 
Ram, and optionally performs a 'silent boot' to force one or more tasks into the 
Ram. LoadRam is derived from the LoadPackedRA~1 procedure described under 
'Packed Ram Images' in the Alto Subsystems manual, and it uses packed Ram irnages 
produced by the PackMu program also described therein. 

1. Initialization 

LoadRam is called in the following manner: 

res = LoadRanl(Ramlmage, boot [false]) 

This procedure loads the Ram (if one eXists) with a packed Ram image pointed to 
by Ramlmage. If the boot ar~ment is true (default = false), the Alto is booted as 
well. LoadRam returns res<O If there is no Ram or if booting is impossible because 
there is no Ethernet interface. Res>O means that the constant memory in the Alto 
differs from the constants mentioned in Ramlmage (the value of res is the number 
of disagreements). Res=O indicates that all is well. Once LoadRanl has been called, 
the space occupied by LoadRam and the packed Ram image may be reclaimed. 

The format of the Ramlmage vector is as follows: 

RamImage!O: Boot locus vector 
Ramlmage!1 to !#377: Constants in locations 1 to 11377 
RamlmageW400 to !/12377: Instructions in locations 0 to tl1777 

A Ram image in this form is constructed by the PackMu program, which converts a 
,Iv1B-format file (produced by Mu) into a .BR file that may be loaded with your 
program. The word described in the PackMu documentation as being used for a 
version number is actually used to set the boot locus vector (if the boot argument 
is true). 

For example, the Trident controller microcode (TriConMc.Mu) is converted into a Ram 
image (TriCon1tlc.Br) in the following manner: 

Mu TriConMc.Mu 
PackMu TriConMc.Mb TriConMc.Br 77766 DiskRamImage 

The boot locus vector 77766 specifies that tasks 0, 3, and 17 (Emulator and two 
Trident disk tasks) be started in the Rmn and the rest in the Rom. . The optional 
paralueter DiskRamlmage specifies that the static pointing to the packed Ram image 
be named DiskRanllmage rather than the default Ramlmage. 

The 'silent boot' is achieved by arranging that the starting location of the emulator 
task in the Ram (location 0) contain the first instruction of the following sequence: 

LOCO: S'VMODE; 
:START; 

where START is defined to be location 20 (the beginning of the Nova emulator's 
main loop). rl'hese instructions must be contained in the packed Ram image. 'rhen, 



LoadRanl 

For Xerox Internal Use Only -- October 16, 1977 

October ·15, 1977 68 

when the machine is software-booted by LoadRam, the emulator task is started in 
the Ram (because of the setting of the boot locus vector). The two instructions 
above merely return control to the main Nova emulation loop in the Rom, thereby 
bypassing the usual disk boot load sequence. 

2. Cleanu12 

When exiting a program that has ulicro-tasks active in the Ram, it is considered 
polite to perform a 'silent boot' to force all tasks back into the Rom. If this is not 
done, subsequent use of the Ram by another program may cause some running task 
to run awry. 

To do this, simply set the boot locus vector to start only the emulator task in the 
Ram; then use StartIO to boot the machine. This is accomplished by the statements: 

SetBL V( II 177776) 
Start! OC # 100000) 

SetBL V is defined in the LoadRam module, and StartlO in the Operating System. 

If you throwaway LoadRam at initialization time, performing this cleanup presents a 
slight problem. One way to solve it is simply to issue the SetBLV call immediately 
after the LoadRam. The boot locus vector will remain set to this value until the 
StartlO is issued at cleanup time. The disadvantage of this method is that if the 
user attempts to boot the Alto manually during execution of the program, the first 
depression of the boot button will have no effect (a potential source of confusion). 

Alternatively, you may include in the microcode the following instruction, located at 
a fixed place l e.g., 22 J: 

LOC22: RMR(-ACO, :LOCO; 

rrhis code may be invoked at cleanup time by a JMPRAM instruction, as follows: 

(table [ 1161010; #1401 J)(#177776, #22) IIJMPRAM(22) sets BLV(-ACO 
StartIO( #100000) 



MDI 

For Xerox Internal Use Only -- October 16, 1977 

May 26, 1977 

MDI: Multiple Directory Lookups 

69 

This package allows a program to look up a group of file names in a directory in a 
single pass, and return the directory entries without actually opening the files. This 
may be useful for programs (such as BIdr) which wish to avoid time-consuming 
multiple scans of a directory. 

The code is written in Scpt It declares one entry procedure LookupEntries, and only 
uses standard procedures from the operating system. 

LookupEntries(S, NAMEVEC, PRVEC, CNT, FILESONLY,Buffer,BufferLength) 

S is a directory: it must be a disk stream. LookupEntries resets S and then reads 
through it. NAMEVEC is a vector of CNT strings, the file names. A zero entry in 
NAMEVEC is shnply skipped. PRVEC is a vector of lDV*CNrr words, where 
LookupEntries stores the directory preanlbles corresponding to NAMEVEC. If a given 
name is not found, its block in PRVEC will be zeros: since the first word of a 
directory entry can never be zero, one can test the first word of the PRVEC block 
to determine if a name was found. If FILESONLY is true, LookupEntries will only 
check directory entries that designate real files; if false, LookupEntries will check all 
entries (including links, or any other types that may be defined eventually). 

The optional arguments "Buffer" and "BufferLength" give a core buffer that can be 
used to buffer the disk stream more efficiently. If these arguments are absent, 
LookupEntries will obtain a small buffer fronl the stack. 

LookupEntries returns the number of names not found. Thus if all names were 
found, LookupEntries returns zero. 

LookupEntries will always find the "most recent" version of all files given in 
NAMEVEC. The first word of the preamble is smashed with the version nurnber of 
the file found (zero still implies the file was not found). 



For Xerox Internal Use Only -- October 16, 1977 

Bcpl overlay package ~fay 24, 1977 70 

Bcpl overlay package 

This package enables Bcpl programmers to split up their programs almost 
painlessly into a core-resident portion and any number of type B overlays (see the 
Bcpl documentation for the exact meaning of this term), any nunlber of wIuch may 
be in core at one time. In general no changes wnatever arc required to the 
programs themselves: all that need be changed is the loading process (Bldr command 
to the Executive). The package uses the Alto OS only at the Bfs level and below. 

Since this package is designed mostly for people with sophisticated needs, 
this documentation is somewhat less tutorial than usual for Alto Bcpl software 
packages. People intending to use the package should be prepared to consult its 
author. 

In the descriptions below, BcpI procedure descriptions are set off by ** so 
they will stand out better from the surrounding text. 

(5/18/77) 

This release adds "special entries" -- overlaid procedures accessed through an 
extra level of code so that the procedure static doesn't change (see below for 
details). 

(12/8/76) 

The only changes in this release are the addition of a new static 
(OverlayCoreOffset) and an increase in the amount of space required for the overlay 
descriptor table (odvec argument to OverlayScan). 

1. How to load your program 

Suppose your program comes in the following pieces: .BR files resl, res2, ... , 
resn are the permanently resident part; ovl-1, ... , ovl-m are the first overlay (order 
of overlays, or pieces within an overlay, is unimportant); ov2-l, etc. are the second 
overlay, and so on. The BIdr command should look roughly as follows: 

>Bldr/B resl ... resn xl/B DIP ovl-l ... OVI-Ill x2/B DIP ov2-l ... 
'rhe names xl, x2, etc. are purely arbitrary names: the presence of the IB is what 
informs Bldr that a new overlay is beginning. 

2. Initializing the overlay package 

Before you attempt to call any procedure in an overlay, you must initialize 
the overlay package. 1'he normal way to do this is to call 
** OverlayScan(fptr, odvee, odvsize[, fa, buf, bufsize, fixvee, fixsize, disk, epvec, 
epsize]) 
Arguments beyond the third are optional. The arguments have the following 
significance: 

Fptr is the FP for the .Run file which contains the overlays. The Alto OS 
passes a CFA to your entry procedure (see sec. 3.11 of the Alto OS manual), and 
this CF A contains as its FP the FP of this .Run file: this is the normal way to get 
hold of this FP. 

Odvec is a table area for the overlay package. OverlayS can initializes this 
area, and it must stay around and not rnove during the execution of the progranl. 
The space required is 5 words per overlay, plus 3 words per special entry (i.e. 
3*epsize), plus 25 words of fixcd overhead. 

Odvsize is the amount of space you have supplied for odvec. 



For Xerox Internal Use Only -- October 16, 1977 

Bcpl.· overlay package . May 24, 1977 71 

Fa, if present, is a FA at which OverlayScan should start scanning the .Run 
file. Normally this will be the FA from the CFA mentioned above. 

Buf, if prescnt, is a buffer which OverlayScan will use for reading in the 
.Run file. The bigger the buffer, the faster OverlayScan will be able to read 
through the file. 

Bufsize is the amount of space you have supplied for the buffer. 
Fixvec, if present, is a table area into which the overlay package will store 

information about the addresses of statics which refer to procedures in overlays. If 
you supply a fixvec and save somewhere the contents which OverlayScan writes into 
it, you will be able to bypass OverlayS can entirely on subsequent runs of the 
program (provided you know somehow that the .Run file hasn't changed or moved on 
the disk) and use the OvedayInit procedure instead, which doesn't scan the .Run file. 
The space required for fixvec is 1 word per overlay, plus 1 word per special entry, 
plus 1 word for each procedure in each overlay, plus 1 word of overhead. 

Fixsize is the amount of space you have supplied for fixvec. 
Disk is the DSK structure on which the .Run file is stored (see sec. 2 of the 

"Disks & Bfs" section of the Alto OS manual). It defaults to sysDisk, the disk on 
which the OS normally stores files. 

Epvec, if present, is a vector of addresses (lv's) of procedure statics. 
Normally, the static for a non-resident procedure contaIns a trap value when its 
overlay is not in core, or the entry address when the overlay is in core. This makes 
it impossible to copy the contents of the static freely into other statics or data 
structures. However, if the address of the static appears in epvec, the package 
creates a tiny piece of intermediate code in odvec and sets the procedure static to 
poin t permanently to this piece of code. For such procedures, you can {lass the 
contents of the static around at will after calling OverlayS can (or Overlaylnit). 

Epsize is the number of entries in epvec. 

OverlayScan returns -1 if odvsize was too small, or -2 if you supplied a 
fixvec argument and fixsize was too sInall. Otherwise, OverlayS can returns the 
number of words of fixvec actually used, or an arbitrary positive number if there 
was no fixvec argument. 

If you supplied a fixvec and saved the contents of both odvec and fixvec, 
then you can use the fOlloWint initialization call in the future: 
** OverJaylnit( odvec, fixvec . disk]) 
which siInply initializes all tenon-resident procedure statics to their appropriate 
values and sets up a few internal variables. In. this case disk defaults to the value 
of the disk parameter you gave to OverlayScan, or to the (current) sysDisk if that 
was defaulted. 

3. Operation of the package 

1'he overlay package makes no assumptions about how you wish to allocate 
core space for overlays. Consequently, you must supply (and declare external) a 
~rocedure with the following name and arguments: 
* UscrReadOvcrlay(od) -) base 

This procedure is called on an "overlay fault", which occurs whenever you attempt to 
call a procedure in an overlay that is not in core. Od is an "overlay descriptor" 
which you may pass to various procedures described just below. Your 
UserReadOverlay procedure is responsible for deciding what overlays or other 
information to discard from core if necessary, calling HeleaseOverlay if necessary to 
notify the package of overlays being discarded, reading in the new overlay using 
ReadOverlay, and finally returning base, the address at which you have read in the 
new overlay. 

UserReadOverlay should first call the procedure 
** LockPendingCodeO 
which scans the Bcpl stack and determines which overlays are currently in the 



For Xerox Internal Usc Only -- October 16, 1977 

Bcpl overlay package May 24, 1977' 72 

process of execution and hence are not eligible for being discarded. Then, in the 
course of deciding which overlay to discard, UserReadOverlay may call 
$* ReleaseOverlay( od, false) -> ok 
which returns true if it is OK to discard the overlay whose descriptor is od. To 
notify the package that an overlay is actually being discarded, call 
** ReleaseOverlay( od, true) 
In order to discover which overlays are present in core, UserReadOverlay may call 
** GeneratePresentOverlays(proc) 
which calls proc(od) for each overlay currently in core. 

UserReadOverlay may use the following procedures to discover various -useful 
paranleters of a given overlay: 
:i'* OverlayFirstPn(od) -> pn 
returns the page number in the .Run file at which a given overlay begins (the first 
argument to ReadOverlay, below). 
** OverluyNpages(od) -) npages 
returns the number of pages required for the overlay on the .Run file and in core 
,the third argument to HeadOverlay) . 
. * OverlayDiskAddr(od) -) da 
returns the disk address of the first page of the overlay. 
;t:* OverlayCoreAddr( od) - ) base 
returns the current core address of an overlay, or 0 if the overlay is not currently 
in core. 

When UserReadOverlay has finished making any necessary decisions, it 
should call 
** ReadOverlay(pn, base, npages) 
which actually calls the Bfs to read the overlay into core. 

'. 

The overlay package supplies three other procedures which likely to be of 
lesser interest: 
** Genera teOver lays(proc) 
calls proc(od) for every overlay regardless of whether it is in core or not. This may 
be useful during initialization when deciding how much space to allocate in core for 
reading in overlays. 
** FindOverlayFromPn(pn) -) od 
finds an od given the first page number in the .Run file, or calls Swat if pn is not 
such a page number. 
** DeclareOver lay Presen t( od, base) 
tells the package to believe that the given overlay is present in core at the given 
address. (The package au toma tically calls DeclareOver lay Presen t( od, 
UserReadOverlay(od)) in the course of processing an overlay fault.) 

The overlay package also supplies a static which is useful if you are using 
it in conjunction with the VMEM package. This static is called 

Over IayCoreOf f set 
and is the displacement within the overlay descriptor of the word which holds the 
core address of the overlay (returned by OverlayCoreAddr). This makes it possible to 
say things like LockCell( od+QverlayCoreOffset). 

4. Restrictions and caveats 

There are two known restrictions on use of this package. One is that a 
procedure in an overlay which is called from outside that overlay must not have 
more than 20 arguments. The other is a little subtler. Because the package 
operates by placing a trap value in the static cells of procedures in overlays not 
present in core, and re-executes the procedure call instruction after bringing in the 
overlay, the following kind of code will not work: 



For Xerox Internal Use Only -- October 16, 1977 

Bcpl over lay package May 24, 1977 73 

SavedProcAddr :: NonResidentProc 

SavcdProcAddr( args) 
because the package has no way of fixing up SavedProcAddr to point to the core 
address of the procedure. Because of the wuy the Bcpl compiler chooses to do 
things, the Same is unfortunately true of the following code sequence: 

SavedLvProcAddr :: Iv N onResidentProc 

(@SuvedLvProcAddr)(args) 
If you need to do this kind of thing (e.g. in a command processor which saves 
addresses of command procedures. some of which may be non-resident, in a data 
structure), you should use the epvec and epsize arguments to OverlayS can to declare 
which procedures need to be accessible this way. 

You may also run into trouble if you have a non-resident procedure which uses 
strings or tables: since these are stored in the code itself, non-resident procedures 
will have to copy such strings or tables into resident storage if they nlay be used 
when the procedure is not in core. 

5. Multiple contexts 

If you have multiple contexts (in the sense of the Bcpl Context package), 
it is all right for context switching to occur while control is inside the overlay 
package itself; in particular, since ReadOverlay calls the Bfs, it is all right for this 
call on the Bfs to call Block while waiting for the disk. However, the overlay 
package does assume it will not be pre-empted, i.e. it only allows for context 
switching during calls on the user-supplied procedure UserReadOverlay and during the 
Bfs call in ReadOverlay. 

If you have more than one context which uses overlays. then when an 
overlay fault occcurs you must call 
** LockPendingCodeO 
to lock any overlays on the current stack, and then 
** LockPendingCode( top frame ) 
with the topmost stack. frame of each context that might use overlays. 
LockPendingCode assumes that each stack is allocated downward in core: if you have 
a stack that violates this assumption, you must sequence through the stack yourself 
and call 
** LockPendingPc(pc) 
with each saved return address. 

6. Use of the package with Trident disks 

All page numbers (the page number in the fa argument to OverlayScan, the 
result of OverlayFirstPn, and the pn argument to ReadOverlay and 
FindOverlayFromPn) and all page counts (the result of OverlayNpages and the npages 
argument to ReadOverlay) refer to the sector size of the disk on which the overlay 
file is stored, i.e. 400b words for the Diablo disks but 2000b words for Tridents. 
This is consistent with the meaning of "page" for the Bfs and Tfs. 

Type B overlays are carefully arranged in .Run files so that they start at 
page boundaries. You cannot siTilply copy a .Run file to a Trident and have this 

. property be true with respect to the larger sectors size -- you must insert blank 
pages in the file as necessary. However, since OverlayScan doesn't look at any part 
of the file before the fa you give it, you don't need to copy the resident part of 



For Xerox Internal Use Only -- October 16, 1977 

Bcpl overlay package . May 24, 1977 74 

the .Run. rile, only the overlay part; then you can tell OverlayS can to start scanning 
at page 1 (the first data page). 

7. Files 

The overlay package consists of the following files: 
Overlayslnit.BR - the initialization procedures of section 2 above. 
Overlays.BR - the procedures of section 3 above. 
OverlaysVmem.BR - some routines for interfacing to the software virtual 

menlory package (VMEM), not described here. 
You may discard OverlaysInit after calling the initialization procedures. Needless to 
say, neither of these files may itself be loaded as part of an overlay. 



For Xerox Internal Use Only -- October 16, 1977 

·Paper Tape Package September 24, 1977 75 

Paper Tape Package 

No computer is complete without paper tape equipment. This package provides 
standard streaIU interfaces to a DG Nova High Speed Reader and Punch via the 
Diablo printer interface. The hardware only works on Alto Is, and only with the 
particular paper tape equipment we have at Pare. 

The package consists of a single binary file, Paper'rape.br. The source for- this, 
PaperTape.hcpl, is included in PaperTape.dm, which also contains a test program, 
PaperTape1'est.bcpl, which generates various test patterns for tuning the punch. 
Since the punch is mechanical, it must be oiled, and have its levers bent now and 
then or it stops working. 

Besides using standard operating system facilities, this package makes use of the 
Context and Tinler packages. If you don't want to include the Context package, 
define an external procedure BlockO that returns immediately. 

There is one externally-callable procedure for the punch stream, which works as 
follows: 

CreatePunchStream(zone [sysZone], leaderLength [50.J) = ptps 
Creates a Paper Tape Punch Stream (ptps) using the supplied parameters, both of 
which are optional. LeaderLength is the length in inches of leader/trailer (blank 
tape with only sprocket holes punched) that will be generated when the stream is 
created, closed or reset. The zone argument specifies the zone from which the 
stream structure will be allocated (about 15 words). CreatePunchStream turns on 
the punch, waits 2 seconds for the motor to come up to speed and then punches 
some leader. 

The following operations are defined on a Paper Tape Punch Stream: 

Puts(ptps, char) 
Punches the specified 8-bit character (ignoring bits 0-7). Puts does some rather 
critical timing while· punching the character, and so it turns off interrupts for 
about 4.5 ms. If the punch does not supply a sync signal within a reasonable 
time, Errors(ptps, ecPunchN otReady) is called. 

Resets(ptps) 
Punches some leader. The amount is 50 inches (the default), or the amount 
specified in the optional second argulllent to CreatePunchStream. 

Closes(ptps) 
Punches SOIne leader, waits 1 second, turns off the punch motor, and then 
destroys the stream. This includes returning the stream structure to the zone 
from which it was allocated. 

There is one externally-callable procedure for the reader stream, which works as 
follows: 

Crea teReaderStream( zone [sysZone 1) = ptrs 
Creates a Paper Tape Reader "Stream (ptrs). The zone argument specifies the zone 
from which the stream structure will be allocated (about 15 words). 
CreateHeaderStream releases the brake and capstan so that you can load the tape. 

The following operations are defined on a Paper Tape Reader Stream: 

Gets(ptps, stop [ false]) = char or -1 



For Xerox Inter'nul Use Only -- October 16, 1977 

Paper Tape Package September 24. 1977 76 

Reads the ne,ct 8-bit character from the tape, returning -1 if the tape runs out. 
Gets does some rather critical tiIning while reading the character, and so it turns 
off interrupts for a while. Unless stop is true, the capstan will be left engaged, 
and you must call gets before the next character arrives or it will be lost. 
Resetting the stream will also stop the tape. 

Resets(ptps) 
Stops the tape and then releases the brake. 

Closes(ptps) 
Stops the tape, releases the brake, and then destroys the stream. This includes 
returning the stream structure to the zone from which it was allocated. 

WARNING: until the paper tape reader stream is created, the reader is in rip-tape 
mode: capstan and brake are both engaged! 



For Xerox Internal Use Only -- October 16. 1977, 

Even t . Report Server March 27. 1977 77 

Pup Event Report Server 

This package (file PupERPServ.br) implenlents a Pup Event Report Server -- a 
process that listens for Event Report packots and writes them to a file. It will run 
on Altos and Novas, and uses the Pup package through level 1 (plus the packages 
that the Pup package uses, in particular the Context paclcage). The server runs as a 
context (in the sense of the Context package), and you can start up as many 
instances of the server as you wish. each listening on a different socket and writing 
to a different file. To instantiate a server call 

Crea teERPServer( zone, ctxQ. port, diskStream) 
which will create a server and queue it on 'ctxQ', getting space from 'zone' 
(approximately 1000 words). The server will listen on 'port' for event reports 
and append them to 'diskStream' (that is, it will positon diskStream to the end 
and then start writing event entries). 

Stopping a cloud of these servers is accomplished by two statics which the user must 
define: 

quitCount which is incremented for each server started 
quitFlag which all servers watch 

The idea is to initialize quitFlag to false and quitCount to zero. When finishing, 
set quitFlag to true and Block until quitCount goes to zero, then finish. 

The event file· is a sequence of entries with the following format: 
entry length 2 bytes - including these two 
event Pup source port 6 bytes 
event Pup ID 4 bytes 
event Pup contents remaining bytes 



Pup Package 

For Xcro~ Internal Use Only -- October 16, 1977 

July 11, 1977 

Pup Package 

78 

The Pup package consists of a large body of Alto software that implements 
communication by means of Pups (Parc Universal Packets) and Pup-based protocols. 
This software is broken into a number of independent modules implementing various 
"levels" of protocol in a hierarchical fashion. Each level depends on primitives 
defined at lower levels, and defines new prirtlitivcs (e.g, inter-network addressing, 
process-to-process. connections, byte streams) available to levels above it. A program 
making use of the Pup package need include only those components implementing 
primitives utilized by that program.· 

1. Overview 

This document is organized as a general overview followed by descriptions of each of 
the components of the package, with the lowest levels described first. A history of 
revisions to the package may be found at the end. 

Before beginning the real documentation, we should like to mention a number of 
points worth bearing in mind throughout, as well as various caveats and suggestions 
for use. 

a. This document concerns itself only with external program interfaces and not with 
protocol specifications, internal implementation, motivations for design choices, etc. 
'I'he Pup package implements the protocols described in the TIlemO "Pup Specifications" 
(Maxc file <Pup>Pup.Ears) and in other documents also to be found in the <Pup> 
airectory. Users interested in protocol information are referred to those documents. 
Knowledge of these protocols is not required vlhen writing progranls making use of 
the higher-level priluitives provided by the Pup packaf?e (specifically, connections and 
byte streams), but is essential when dealing directly WIth the lower-level primitives. 

b. Since both the software and the protocols are still . under active developmen t, 
users are requested to avoid making changes to the package, if at all possible. This 
is so that subsequent releases of the package Iuay be incorporated into existing 
programs with minimunl fuss. We have attempted to provide as general-purpose a 
package as is reasonable (consistent with clean programming practices and considering 
Alto memory limitations), so if you cmne up with an application that simply can't be 
accomodated without modifying the package, we would like to know about it. There 
are a small number of parameters that we have designated as "user-adjustable" and 
separated out into a special declaration file (PupParams.decl). The intention is that 
users be able to change these parameters and recompile the package; however, one 
should be aware that the software has not been tested with parameters set to values 
other than the ones in the released· version. 

c. One of the design goals has been to iInplement software that will also run on a 
Nova. All Alto-specific code has been carefully separated out into modules 
containing "AI" in their names (e.g., PupAIEth.bcpl for the Alto Ethernet driver). 
The Nova equivalents of the Alto-specific modules (released as a separate package) 
contain "Nv" in their names. Source files not containing "AI" or "Nv" in their 
names may be recOInpiled on the Nova (with BCPL or the Nova version of Altoasm) 
and run without change; either they are completely free of machine dependencies or 
(in a few cases) they enclose machine-dependent code in conditional compilation. 
t>eople writing general-purpose subsystmns making use of this package are encouraged 
to adop t the same approach. 



Pup Pack~ge 

For Xerox Internal Use Only -- October 16, 1977 

July 11, 1977 79 

d. The Pup package makes extensive use of primitives provided in four other 
packages, all of which have been released- recently. These are the Context, Interrupt, 
Queue, and Timer packages. The dependence on the Context package means that 
calling programs must operate in a manner compatible with contexts. In particular, 
the Pup package initiates a number of independent background processes that lnust 
be given an opportunity to run fairly frequently. Hence, the user's "main program" 
must run within a context, and wait loops and very long computations in the lnain 
program should be interspersed with calls to Block. For example, a call such as 
"Gets(keys)" (which causes busy-waiting inside the operating system) might be 
replaced by something like "GetKeysO", where the latter function is defined as: 

let GetKeysO = valof 

~hi1e Endofs(keys) do BlockO 
resultis Gets(keys) 
] 

Consult the the Context Package writeup for further infonuation. 

e. The Pup package operates only under the new operating system, versions 2/0 or 
higher. 

1.1. Organization 

The Pup software is divided into three major levels, corresponding to levels 0 
through 2 of the Pup protocol hierarchy. Software at a given level depends on 
primitives provided at all levels below it. 

At level 0 is the "transport mechanism" software necessary for an Alto to send and 
receive Pups on an Ethernet. This consists of a small Ethernet interrupt handler 
that appends received Pups to an input queue and transmits Pups taken fronl an 
output queue. It is the only portion of the Pup package specific to the Ethernet or 
to the Alto-Ethernet interface. 

Level 1 defines a number of important and generally useful primitives. A progt'am 
desiring to send and receive "raw Pups" (without sequencing, retransmissions, flow 
control, etc.) would interface to the Pup package at this level. rrhe level 1 module 
includes the following: 

a. Procedures for creating, maintaining, and destroying a "socket", a process's 
logical connection to the Pup inter-network. 

b. Procedures for managing "Packet Buffer Items" (PBls), each of which holds a 
Pup and some associated information while the Pup resides in Alto memory. 

c. A background process that distributes received Pups to the correct sockets. 
rrhis includes checking port address fields and optionally verifying the Pup 
checksum. 

d. Procedures for allocating PBls, building Pups, and queueing them for 
transmission. 

e. A background process that dynamically maintains a routing table for 
transmission of Pups to arbitrary inter-network addresses. 

f. Optional procedures pennitting the local host to be a gateway (not ordinarly 
used). 



Pup Package 

For Xerox Internal Use Only -- October 16, 1977 

July 11, 1977 80 

At level 2 are modules implcm.enting three higher-level protocols: the 
Rendezvous/Termination Protocol (Rrrp), the Byte Stream Protocol (BSP), and the 
Name Lookup Protocol. These are independent, parallel protocols, each. built on top 
of the primitives defined at level 1; however, the RTP and the BSP interact in a 
way such that, in this implementation, BSP depends on the existence of Rrrp. 

The RTP module contains procedures for opening and closing a "connection" with a 
foreign process. These have options permitting the local process to operate in the 
role of either "initiator" or "listener". 

The BSP module contains mechanisms for sending and receiving data by means of 
error-free, flow-controlled "byte streams" between a local and a foreign process. 
These are true "streams" in the sense defined by the Alto operating system. 
Additionally, Ineans are provided for sending and receiving Marks and Interrupts, 
which are special in-sequence and out-of-sequence signals defined by the Byte Stream 
Protocol. A separate, optional module permits sending and receiving blocks of data 
in memorr. an order of magnitude luore efficiently than by use of the basic "Puts" 
and "Gets I operations. 

The Name Lookup module contains a procedure for parsing an inter-network "name" 
(e.g., a host name) and converting it to an address. When necessary, it finds and 
interacts with some name lookup server on the directly connected network. 

1.2. File Conventions 

The Pup package is distributed as file PupPackage.dm, which contains the following 
binary files: 

Level 0 
PupAIEthh.br 
PupAIEtha.br 
PupAIEthlnit.br 

Level 1 
Pup1b.br 
PupAl1a.br 
PupRoute.br 
PupDunlmyGa teo br 
Pupllnit.br 

Level 2 
PupRTP.br 
PupBSPStreams.br 
PupBSPProt.br 
PupBSPa.br 
PupBSPBlockbr 
PupNameLookup.br 

Alto Ethernet driver (BCPL portion) 
Assembly code for Ethernet driver 
Alto Ethernet initialization 

Main level 1 code (BePL portion) 
Assenlbly-Ianguage code for level 1 
Routing table rnaintenance and access 
Dummy substitute for gateway code 
Level 1 ini tializa tion 

Rendezvous/Termination Protocol 
Byte Stream Protocol (BCPL portion) 
Addi tional BSP code 
Assembly-language code for BSP 
Fast BSP block transfer procedures 
N arne lookup module 

The files with "Init" in their names contain initialization code that need be executed 
only once and Inay then be thrown away. 

Additionally, the following "get" filcs are included. They contain declarations of all 
structures and other parameters likely to be of interest to calling programs (as well 
as some others of no interest to callers). We suggest that the user make listings of 
these files to accompany this documentation. 



Pup Package 

For Xerox Internal Use Only -- October 16, 1977 

July 11, 1977 

PupO.decl 
Pup1.decl 
PupRTP.decl 
PupBSP.decl 

Pup.decl 
Pu pParams.decl 
PupStats.decl 
PupAIE th.decl 

Level 0 definitions (network-independent) 
Level 1 definitions 
Definitions for RTP 
Definitions for nsp 
Does "get" of all the above 
User-adjustable parameters 
Statistics definitions 
Definitions specific to Alto Ethernet 

81 

A program that does a "get" of any of the first group of files must also "get" all 
files earlier on the list, and in the same order. rWe were not able to make this 
happen automatically because of a limit on the number of simultaneous open files at 
compilation time). The file Pup.decl is provided for the convenience of programs 
dealing with the package at the BSP level. A "get" of PupPurams.decl is included in 
PupO.decl, and PupAlEth.decl is not ordinarily of interest to outside programs. 

The following table shows, for each module (including external packages), what .br 
files constitute that module and what other nlodules are also required. 

Module N aroe 

BSP Block Transfer 

ByteBlt (external) 

BSP 

RTP 

Name Lookup 

Levell 

Level 0 

Con text ( external) 

Interrupt (external) 

Queue (external) 

Timer (external) 

Files 

PupESPBlock.br 

AltoByteBlt.br 

PupBSPStreams.br 
PupBSPProt.br 
PupBSPa.br 

PupRTP.br 

PupN ameLookup.br 

Puplb.br 
PupAlla.br 
PupRoute.br 
PupDummyGate.br 
PuplInit.br 

PupAIEthb.hr 
PupAIEtha.br 
PupAH~ thIni t. br 

Context.br 
ContextInit.br 

In terru pt. br 
InterruptInit.br 

AltoQueue.br 

AltoTimer.br 

Other Modules Required 

BSP 
ByteBlt 

RTP 

Levell 

Levell 

Level 0 
Timer 

Context 
Interrupt 
Queue 

For debugging purposes, a version of the package compiled with the "pupDebug" 
conditional enabled is distributed as PupDcbug.dm. It includes some additional 
consistency checking at the cost of space and time. 



Pup Package 

For Xerox Internal Usc Only -- October 16, 1977 

July 11, 1977 ·82 

The sources for the Pup package are contained in file PupSources.dm, and consist of 
the following files: 

PupAIEthb.bcpl 
Puplb.bcpl 
PupRou teo bcpl 
PupRTP.bcpl 
PupBSPStreams.bcpl 
PupBSPBlock. bcpl 
PupN amcLookup.bcpl 

PupAIEtha.asm 
PupAlla.asm 
PupDumrnyGate.bcpl 

PupBSPProt.bcpl 

PupAIEthlnit.bcpl 
Pup1Init.bcpl 

PupBSPa.asm 

Additionally, there are several command files: 

CompilePup.cm 
CompilePupDe bug.cm 
DumpPupPackage.cm 
DumpPupDebug.cm 
DumpPupSources.cm 
Pup.cm 

Compiles all the source files 
Compiles with "pupDebug" enabled 
Creates PupPackage.dm 
Creates PupDebug.drn 
Creates PupSources.dm 
A list of all the source files 

The source files are formatted for printing in a small fixed-pitch font such as 
Gacha8 (as used by the command "Gears/s"). 

1.3. Glossary of Data TWes 

N anw Defined in 

BSPSoc PupBSP.decl 

BSPStr PupBSP.decl 

HTP Pupl.decl 

NDB PupO.decl 

PBI PupO.decl 

PF PupO.decl 

Port PupO.decl 

PSIB Pup1.decl 

Pup PupO.decl 

Meaning 

BSP-Ievel Pup socket, consisting of an RTP socket 
(RTPSoc) followed by additional information about a byte 
stream. This includes byte IDs (sequence numbers), queues, 
and allocations for incoming and outgoing data and 
interrupts, and a ESP stream block (BSPStr). 

BSP stream (part of a BSPSoc), for interfacing the BSPSoc 
to the Alto operating system's stream mechanism. 

Hash Table Preamble, defining the publicly-accessible 
operations on a hash table object (specifically, the Pup 
routing table). 

Network Data Block, containing information specific to each 
network physically attached to the local host (the Alto has 
only one of these, namely etherNDB). 

Packet Buffer Item, which holds a Pup and various 
associated information. 

Packet Filter, controlling acceptance of incoming packets on 
a given network. 

An inter-network address, consisting of network, host, and 
socket numbers, as defined by protocol. 

Pup Socket Info Block, contains data used for setting 
initial default values when a PupSoc is created. 

An inter-network packet, as defined by protocol. 



Pup Pack~ge 

For Xerox Internal Use Only - .. October 16, 1977 

July 11, 1977 83 

PupSoc Pup1.decl Level 1 Pup socket, defining a process's logical connection 
to the inter-network. It contains default local and foreign 
port addresses, PBI allocation information, and an input 
queue header. 

RT Routing Table, containing information necessary to route 
outgoing Pups to destination hosts or to gateways. There 
is only one instance of an RT, called pupRT. The 
structure of an RT is not public, but procedures are 
provided for accessing and enumerating individual Routing 
Table Entries (RTEs), which are public structures. 

RTE Pup1.decl Routing 'fable Entry (routing information for one network). 

RTP-Ievel Pup socket, consisting of a level 1 socket 
(PupSoc) followed by additional information about a 
connection. This includes state, connection ID, timers, and 
a higher-level Pup-handling procedure. 

RTPSoc PupRTP.decl 

soc 

str 

An instance of a PupSoc, RTPSoc, or BSPSoc, depending on 
context. Note that a PupSoc may be the initial portion of 
an RTPSoc, which may in turn be the initial portion of a 
BSPSoc; hence, a given soc may be an instance of more 
than one of these structures. 

An instance of a stream (most likely, a BSPStr). 

2. Level 0 Interface 

The level 0 module (files PupAIEthb, PupAIEtha, and PupAIEthInit) serves only to 
interface the Alto Ethernet to the network-independent Pup revel 1 module. 
Assuming the level 1 code is being used, as is normally the case, external profP'ams 
will generally have no occasion to deal directly with the level 0 module. PrOVIsions 
are also made for sending and receiving non-Pup Ethernet packets, for use in 
unusual applications. 

This module requires the existence of the following external statics (all of which are 
defined in level 1): 

ndbQ A pointer to a two-word queue header (hereafter referred to as "a 
queue"; see Queue Package documentation) upon which the Ethernet 
NDB C etherNDB) may be queued by this module. In a machine with 
more than one network interface (e.g., a Nova), this queue would 
contain an NDB for each network. 

pbiFreeQ A queue from which free PBls may be obtained, for buffering received 
Pups. 

pbiIQ A queue to which PBls are appended when Pups are received. 

len Pup The maximum length of a Pup (in words). 

1'he externally-callable procedures in this module are the following: 

InitAltoEther( zone, ctxQ) 
Initializes the Alto Ethernet interface and associated data structures. "zone" is a 



Pup Package 

For Xerox Internal Use Only -- October 16, 1977 

July 11. 1977 84 

free-storage zone from which space may be obtained for permanent data 
structures (currently less than 100 words). "ctxQ" is a queue on which a 

I context created by this procedure may be queued. This procedure allocates an 
NDB and appends it to ndbQ; allocates an interrupt context (see Interrupt 
Package documentation) and sets it up to field Ethernet interrupts; and allocates 
and initiates an ordinary context (see Context Pacl{age doculnentation) which 
runs forever and whose job it is to restart the Ethernet interface if it is ever 
shut off due to running out of free PBls for input. InitAltoEther returns 
having done nothing if the Alto doesn't have an Ethernet interface installed 
(the level 1 initialization detects the condition of ndbQ being empty after all 
interface initialization procedures have been called). -

EncapsulateEtherPup(pbi,pdh) 
Encapsulates the Pup contained in "pbi" for transmission to physical destination 
host "pdh" on the directly-connected Ethernet. rrhe PBI should contain a 
completely well-formed Pup. EncapsulateEtherPup sets the Ethernet destination, 
source, and type fields in the encapsulation portion of the packet, and also sets 
the packetLength word in the PBI. SendEtherPup is the procedure called from 
level 1 via the encapsulatePup entry in the Ethernet NDB. 

SendEther Packet(p bi) 
Queues "pbi' for transmission on the directly-connected Ethernet, and initiates 
transmission if the interface is idle. 1'he PBI should contain a completely well
formed Ethernet packet (which need not be a Pup). the packetLength word in 
the PBI must con tain the physical length of the packet in words, and 
pbi»PBI.queue must contain a pointer to a queue to which the PBI will be 
appended after it has been transmitted. SendEtherPacket is the procedure called 
from level 1 via the levelOTransmit entry in the Ethernet NDB. 

SendEtherStats(pbi,ndb) = true or false 
If the debugging version of PupAIEth is loaded (pupDebug on), this procedure 
copies the statistics accumulated by the Ethernet interface (described by ndb) 
into pbi and returns true. If the module was not compiled with debugging on. 
SendEtherStats immediately returns false. 

When a packet is received from the Ethernet, the input interrupt routine first 
verifies that the hardware and nlicrocode status are correct, and discards the packet 
without error indication if not. It then tests the packet for acceptance by each 
Packet Filter (PF) on the Ethernet packet filter queue, as will be described shortly. 
If some PF accepts the packet, the PBI is then enqueued on the queue designated in 
the PF; otherwise it is discarded. A free PBI is then obtained fronl pbiFreeQ, and 
the receiver is restarted. (Actually, an attempt is made to restart the receiver before 
any other processing so as to minimize the interval during which a packet could be 
missed because the receiver isn't listening to the Ethernet.) 

When an output PBI is passed to SendEther Packet, it is queued on a local Ethernet 
output queue (eOQ). If the interface is currently idle, transmission is initiated 
immediately; otherwise, the PBI is simply left on the queue for action by the 
interrupt routine. When an output completion interrupt occurs (or a fatal error 
indication such as a "load overflow", or a 100 millisecond software timeout), the PBI 
is then enqueued on the queue specified in the PBI (typically pbiFreeQ or a level 1 
queue called pbiTQ). . 

Garden-variety errors (e.g., collisions, bad Ethernet CRCs, etc.) are handled 
automatically: input errors cause the received packet simply to be discarded, while 
output errors cause retransmission. "Impossible" errors (suggesting that the interface 
or the Alto is broken) result in a call to SysErr(@ePLoc,ecBadEtherStatus). 

In the debugging version of this module (pupDebug on), a number of Ethernet 



Pup Package 

For Xerox Internal Use Only -- October 16, 1977 

July 11, 1977: 85 

performance statistics are gathered. These are intended for experimental purposes 
and measurements. One should consult PupAIEthb.bcpl to see what is collected. 

Though the primary purpose of the Pup level 0 module is to send and receive Pups 
on a particular directly-connected network, means are also provided for sending and 
receiving arbitrary network-dependent packets (i.e., Ethernet packets in an Alto). 

Sending a non-Pup packet is straightforward: one simply calls SendEtherPacket after 
constructing the desired Ethernet packet in the PBI, as described above. 

Discrimination among received packets is accomplished by one or more objects called 
Packet Filters (PFs), which reside on a Packet Filter Queue (pfQ) whose head is in 
the NDB. Each PF contains a predicate and a pointer to a queue. When a packet 
is received, the predicate in each PF in turn is called with the PBI as an argument. 
If the predicate returns true, the PBI is enqueued on the queue pointed to by the 
PF; if it returns false, the next PF is tried. If no PF accepts the packet, the PBI 
is discarded. 

The pfQ initially contains a single PF that accepts Pups and appends them to pbiIQ 
(the level 1 Pup input queueJ. A program desiring to receive other kinds of 
Ethernet packets should construct its own PF and enqueue it on the Ethernet pfQ. 

3. Level 1 Interface 

The level 1 module (files Pup1b, PupAl1a, PupRoute, PupDummyGate, and Pup1Init) 
contains the mechanisms enabling a process to send and receive individual Pups to 
and from other processes at arbitrary inter-network addresses. Concepts such as 
"connection" and "stream", however, are not defined at this level, so it is the 
process's responsibility to perfornl initial connection, sequencing, retransmission, 
duplicate detection. etc., where required. 

A process deals with the level 1 module through a PupSoc, a level 1 socket structure 
(see Pup1.decl), which completely describes that process's interface to the inter
network at the first level of protocol. The information in the socket is as follows: 

iQ 

lclPort 

frnPort 

psib 

Input queue. PBIs received for the socket are appended to this 
queue. The two-word queue header is included in the socket 
structure itself, so to remove a packet from the iQ one would 
write "Dequeue(1v soc» PupSoc.iQ)". 

Local port address (a Port structure). This serves two purposes. 
First, the "socket number" in the port enables the level 1 Pup 
input handler to distribute each incoming Pup to the· correct 
PupSoc by conlparing pbi»PBLpup.dPort.socket (the Pup 
destination socket nUlnberJ with soc»PupSoc.lcIPort.socket of 
each active PupSoc until a match is found. Second, the source 
port fields of cach outgoing Pup generated by the process are 
defaulted (if zero) to the values given in the local port address. 

Foreign port address (a Port structure). This provides 
information for defaulting the destination port fields of outgoing 
Pups, in the same manner as described for lclPort. 

Pup Socket Info Block (PSIB), which contains the information 
described below. Since it is generally the same for all sockets, 
there is a "default PSIB" (dPSIB) whose contents are copied into 
the psib for each socket wIlen the socket is created. 



Pup Package 

maxTPBI 

numTPBI 

maxIPBI 

numlPBI 

maxOPBI 

numOPBI 

do Checksum 

For Xerox. Internal Use Only -- October 16, 1977 

July 11, 1977 86 

The maximum total number of PBls that may be assigned to 
the socket. Since free PBIs are taken from a common pool, 
some means is required for ensuring that no single socket can 
usurp more than a certain share of the total available PBIs 
(which, aside from reducing performance for other sockets, could 
lead to deadlocks in higher-level protocols if the free pool 
became ex.hausted). This is discussed further in the descriptions 
for the GetPBI and ReleasePBI procedures. 

The total number of additional PBls that may be assigned to 
the socket (Le., max.TPBI minus the number of PBls already 
assigned). 

The maximum number of PBls that may be assigned to the 
socket for input use. 

The number of additional PBls that nlay be assigned for input 
(Le., maxIPBI minus the number of PBls already. assigned for 
input). 

The maximum number of PBls that may be assigned to the 
socket for output use. 

The number of additional PBls that may be assigned for output 
(i.e., maxOPBI minus the number of PBls already assigned for 
output). 

If true, the Pup software checksum is checked by the level 1 
software in incoming Pups (before bein~ given to the process) 
and generated in outgoing Pups. The dmault value is true. 

The following statics are defined within the level 1 module and may be referenced 
externally (though only a few are likely to be of interest): 

ndbQ 

numNets 

pbiFreeQ 

pbiIQ 

pbiTQ 

Pointer to queue of NDBs for all the physically connected networks 
(see level 0 description). The first NDB on IldbQ is considered to be 
the "default" network, i.e., the one sent to if a process specifies a 
Pup destination network of zero. 

The number of directly connected networks (always 1 in an Alto). 

Pointer to queue of free PBls. 

Pointer to queue on which incoming Pups are placed by level 0 
interrupt routines. 

Pointer to queue on which outgoing Pups arc ordinarily placed after 
transmission. 

gatewaylQ Pointer to queue on which received Pups not addressed to this host 
are placed. Unless the Gateway package is loaded, gatewayIQ is 

socketQ 

pupRT 

dPSIB 

initialized to pbiFreeQ. 

Pointer to queue of all active PupSocs. 

Pointer to routing table (described later). 

Pointer to default socket info block, used to provide initial values in 
part of each PupSoc when it is created. 



Pup Package 

pupZone 

pupCtxQ 

For Xero){ IntQrnal·· Use Only -- October 16, 1977 

July 11,· 1977 87 

Default zone from which allocations will be made by the Pup package. 
rfhis is initialized to the "zone" argument to InitPupLevell. 

Default context queue onto which new contexts created by the Pup 
package will be appended. This is initialized to the "ctxQ" argulnent 
to InitPupLevell. 

maxPuoDataBytes The maximum number of data (content) bytes in a Pup. 
.. 'l'his is initialized to the "pupDataBytes" argument to InitPupLevell 

and remains constant thereafter. 

len Pup 

lenPBI 

The len:gth of the largest possible Pup, in words (derived from 
maxPupDataBytes ). 

The length of a PBI, in words (derived from lenPup). Note that all 
PBIs are of the same size and can each contain a Pup of maximum 
length. 

The level 1 module must be initialized by calling InitPupLevell, as follows: 

InitPupLevell(zone, ctxQ, numPBI, pupDataBytes [defuultPupDataBytes]) . 
Initializes all the level 1 software, and also calls the appropriate level 0 
initialization (InitAltoEther in the Alto verSion). "zone" is a free-storage zone 
from which permanent allocations may be done. "ctxQ" is a pointer to a queue 
of contexts to which the contexts created by this procedure may be appended. 
"numPBI" is the number of PBls to be allocated (from "zone") and appended to 
the pbiFreeQ. The optional argument "pupDataBytes" speciiies the maximum 
number of data (content) bytes to be permitted in any Pup; it must be even 
and by convention should not be greater than 532. A smaller maximurn Pup 
length is useful in some applications not requiring high throughput, since the 
PBls are thereby smaller and one can have more of them at the same cost in 
memory. The default value of this parameter is 532. 

InitPupLevell does the following: it creates the queues pbiIQ. pbiTQ, pbiFreeQ, 
socket~, and ndbQ; allocates "numPBI" PBls and appends them to pbiFreeQ; 
creates the routing table pupRT; creates the default Pup socket info block 
dPSIB; calls the level 0 initialization procedurc(s); creates the PupLevell and 
GatewayListener background contexts (to be described later); and broadcasts 
requests for gateway routing information. 'rhe total mnount of storage taken 
from "zone" (in words) is approximately numPBI*lenPBI + lenPSIB + lenPupSoc + 
300 + the anlount needed b¥ level 0 initialization. InitPupLevell also initializes 
the static pupZone to "zone I and pupCtxQ to "ctxQ", and sets up the constants 
maxPupDataBytes, len Pup, and lenPBI on the basis of "pupDataBytes". 

InitPupLevell does not call Block, so it is permissible to call it from 
initialization code that is not running as a context. 

The following procedures are provided for creating and destroying sockets: 

OpenLevellSocket(soc, lclPort [defaulted], frnPort rzeroesl) 
Creates a PupSoc. "soc" should pOInt to a block or size lenPupSoc. "lcIPort", if 
specified and· nonzero, points to a Port structure describing the desired local port 
address. "frnPort", if specified and nonzero, points to a Port structure describing 
the desired foreign port address. The "soc" is then appended to socketQ, thereby 
enabling reception of Pups directed to it. 

Each field in the local port address is subject ·to defaulting if either the 
"lcIPort" is unspecified or the field is zero, in the following manner. If the 
socket nunlber is unspecified, one is chosen at random (it is guaranteed unique). 



Pup Package 

For Xerox Internal Use Only -- October 16. 1977 

July 11, 1977 88 

If both the network and host numbers are unspecified, they are filled in with a 
reasonable local host address (perhaps based on the supplied "frnPort"). 
Ordinarily. one should allow the socket number to be defaulted unless one 
intends the process to reside at a "well-known socket" (as in a server), and one 
should always allow the network and host numbers to be defaulted. 

If "frnPort" is unspecified, the foreign port in the "soc" is set to zeroes. Then, 
if the foreign net\vork number is zero (generally for the purpose of designating 
the "directly connected" network), it is set to the connected network's actual 
number, if known. Note that tlie "lc1Port" and "frnPort" fields in the "soc" are 
copied from the corresponding arguments to OpenLevel1Socket; the argument 
ports are not modified and are not needed thereafter. 

CloseLevellSocket( soc) 
Causes "soc" to be removed from socketQ. This procedure blocks until all PBIs 
assigned to the socket have been recovered and released. If "soc" is not in fact 
on socketQ, this procedure calls SysErr(soc,ecNoSuchSocket). 

Control over assignment of PBIs to sockets is accomplished in a manner that is more 
complicated to describe than to implement. Associated with each socket are three 
numbers that determine the maximum number of PBls that may be assigned to a 
socket simultaneously. The "total" (soc»PupSoc.maxTPBI) is the maxirnum total 
number of PEls permitted, while the "input" and "output" values 
(soc> > PupSoc.maxIPBI. soc> > PupSoc.maxOPBI) determine (independent of the overall 
total) the maximum number of PEls that nlay be assigned for those respective 
purposes. The "total" maximum prevents a single socket from usurpin~ more than a 
fixed share of the total PBls in the system; within that, the "input and "output" 
limits, if properly set, prevent all of a socket's allocation from being devoted to 
packets going in one direction (with resultant potential deadlocks). The "total" 
allocation must be greater than either "input" or "output", but need not be equal to 
their SUIn, since in most applications one expects heavy demands on PBls in only a 
single direction. 

The actual number of PRls assigned to a socket at a given moment is reflected in 
three other cells in the socket: soc» PupSoc.numTPBI, soc» PupSoc.numIPBI, and 
soc»PupSoc.numOPBI. These are initialized to the corresponding "max" values, 
decremented whenever a PBI is assigned to the socket, and incremented when the 
PBI is released. '1'he code responsible for ullocatin[ and releasing PBls (the 
PupLevell background process for input PBls and the lietPBI procedure for output 
PBIs) do not permit any of these counts to go below zero; if allocating another PBI 
would cause a count to be decremented below zero, PupLevell will simpl:{ discard the 
Pup and release the PBI, and GetPBI will either block or fail (see below J. 

The allocations in the socket are also useful when destroying the socket. At the 
time CloseLevellSocket is called, there may be PBls assigned to the socket but that 
cannot be located at the moment because they reside on some other queue (such as 
the Ethernet output queue or the pbiTQ). CloseLevellSocket simply blocks until 
soc»PupSoc.numTPBI equals soc»PupSoc.maxTPBI, at which point it is known that 
all PBls have "returned" to the socket and been released. 

PBls may be added to the free pool simply by allocating blocks of size lenPBI and 
'~Enqueue"ing them on pbiFreeQ. One could also remove PBls from the system by 
"Dequeue"ing them frOill pbiFreeQ and freeing them, but of course one has no control 
over which PBIs are available for release. Note that such changes in the total 
number of PBIs are not automatically reflected in any socket allocations or in the 
default allocations contained in dPSIB. 

SetAllocation(soc, total, input, output) . 
Changes the number of PBls that may be assigned to the socket. "total", 



Pup Package 

For Xerox Internal Use Only -- October 16, 1977 

July 11, 1977 89 

"input", and "output" are the new rna~imum values. The "total" must be gr:eater 
than either the "input" or "output". SetAllocation need be called only if the 
desired allocations differ from the defaults in dPSIB. Alternatively, one may 
manually change the contents of dPSIB; note that the "num" and "max" values 
for a given allocation must be the sanle and that the "total" allocation must be 
greater than or equal to the "input" and "output" allocations. Changing dPSIB 
does not affect allocations in sockets that have already been opened. rrhe initial 
"total" allocation in dPSI13 is numPBI-numNets, where numPBI is the argunlent 
to InitPupLevell that determines the number of PBls initially created and 
numNets is the number of directly-connected networks (always one in an Alto). 
The initial "input" and "output" allocations are each one less than the "total". 

GetPBI(soc, returnOnFail [false]) = PBI 
Assigns a PBI from pbiFreeQ and charges it to the socket, for output use (that 
is, it decrements soc»PupSoc.numTPBI (totan and soc»PupSoc.numOPBI 
(output)). If the socket has exhausted its totar or output allocation or the 
pbiFreeQ is empty, then GetPBI blocks unless returnOnFail is true, in which case 
it returns zero. The PBI returned has its Pup header zeroed so that if the 
caller later transmits the Pup without Getting ·up source and destination port 
addresses, the addresses will be correctly defaulted from the socket. The PBI's 
"queue" pointer is set to pbiTQ, resulting in automatic release of the PBI after 
it is transmitted. The PBI's "socket" pointer is set to "soc", thereby recording 
the socket to which it has been assigned. 

ReleasePBI(pbi) . 
Releases the "pbi" and appropriately credits the allocations in the socket to 
which it was assigned. 

CompletePup(pbi, type [], length [11 
Causes pbi" to be completed and transmitted. "Completion" consists of the 
following operations: "type" and "length", if supplied, are stored in the Pup type 
and length fields; any zero fields in the Pup source or destination ports are 
defaulted to the values given in the owning socket's local and foreign port 
addresses, respectively; the transport control byte (used by gateways) is zeroed; 
then, if the socket's doChecksunl flag is on (the default unless changed 
explicitly), a software Pup checksum is computed and stored in the Pup. 'fhe 
caller is expected to have set up the Pup's ID, and contents (if any) and its 
type and length if not supplied in the call. Finally, the PBI IS routed to its 
destination and queued for transmission. 

After transmission, the PBI is appended to pbi»PBI.queue, which (unless changed 
explicitly by the caller) will be pbiTQ, resulting in automatic release of the PBI. 
If a different queue is specified for disposal of the PBI (as is done in the BSP 
package, for example), then the caller is responsible for keeping track of the 
PBI, and, in particular, for ensuring that all PBIs assigned to the socket have 
been released before destroying the socket. 

A special mechanism exists for broadcasting a Pup on all directly-connected 
networks. If the allNets hit is set in the PBI status word, then instead of 
routing the Pup to the destination stated in the Pup header, CompletePup sends 
the Pup out on each directly-connected network. For each network, the local 
host address on that network is substituted for the network and host numbers 
in the Pup source port, and the local network number is also substituted for the 
destination network field (the checksuIll is recomputed each time this is done). 
The "queue" word in the PBI must be pbiTQ (the default) for this feature to 
work properly. 

The aUN ets mechanism ordinarily causes a Pup to be sent on each directly
connected network, whether or not the network's identity is known. However, if 



Pup Package 

For Xerox Internal Use Only -- October 16, 1977 

July 11, 1977 90 

the bypassZeroNet bit is also set, the Pup will not be sent on networlcs whose 
identity is not known. 

Distribution of received Pups to the correct sockets is the responsibility of a 
background process called PupLevell. When a PBr appears on pbiI~ (where it was 
left by the level 0 input handler), PupLevell first performs some checks on the Pup 
destination address, and discards the PBI if it is not destined for a process in the 
local host (actually, it enqueues it on gatewaylQ. which, assuming the PupDummyGate 
module has been loaded, is the same as pbiFreeQ). It then searches the soclwtQ for 
a socket whose local socket number matches the Pup destination socket number. If 
no such socket is found, the PBI is passed to SocketNotFound(pbi), which -simply 
discards the packet (but could be made to do something else by clobbering the 
SocketNotFound procedure static with a different handling procedure). 

Assuming the destination socket is found, PupLevell then checks the Pup checksum 
(assuming the socket's doChecksum flag is on J, discarding the PBI if it is incorrect. 
~inal1y, the socket's "total" and "input" PBI allocations are checked. If either is 
exhausted, the PBI is discarded (causing an Error Pup to be returned to the Pup's 
source~; otherwise, the allocations are updated and the PBI is appended to the 
socket s iQ. 

PupLevell is also responsible for releasing PBls on the pbiTQ, which is the default 
queue to which outgoing packets are appended after transmission. 

Another process, GatewayListener, is responsible for dynamically maintaining the 
routing table pupR'r and updating it with information periodically received from 
gateways. -VVhile routing and routing table maintenance are operations performed 
automatically (by CompletePup and GatewayListener), the format of the routing table 
is of possible interest to callers in certain cases--for example, in deciding which of 
several possible remote servers is the best choice in terms of network topology (see 
the PupNameLookup module for an example of this). The following description is 
much more than most programmers will wish to know about. 

The RT is a hash table object consisting of routing table entries (RTEs) keyed by 
network number, each containing information about a specific network. If no RTE 
exists for a particular network, then we know nothing about that network and can't 
route Pups to it. For a given R'l'E, if the "hops" field is zero, the network is one 
to which the local host is directly connected; otherwise, the network may be reached 
via the gateway whose host number is given in the "host" field (the "hops" field 
indicates the number of gateways believed to lie along the route to the destination 
net). In either case, the "ndb" field Roints to the NDB for the immediate 
destination network (see "Pup Specifications"J. 

Entry zero in the routing table is special. It refers to a network known to be 
directly connected to the local host (but whose identity mayor may not be known, 
i.e., we mayor may not know its network nunlber). Pups handed to CompletePup 
for transmission to network zero will be sent over this network. This facility is 
essential during initialization, before any gateways have been located and the 
remainder of the RT filled out. It also permits communication between hosts on a 
network whose identity is unknown due to there being no connected gateways. 

The routing table as a whole is treated as an "object", with standard operations 
defined by a Hash Table Preamble (I-l'rp). The procedures described below are lnerely 
renamed versions of the Alto OS's CaUO, Calll, etc. The operations return pointers 
to RTEs, and the caller may operate on the individual RTE by means of ordinary 
structure references. The defined operations are: 

HLookup(rt, net, findFree [ ... false]) = RTE or 0 
Looks up "net" in the routing table "rt", returning a pointer to the RTE if it is 



Pup Package 

For Xero,c Internal Use Only -- October 16, 1977 

July 11, 1977 91 

found and zero if not. If "findFree" is true, then upon failure to find "net" it 
returns a pointer to a place where an RrrE for "net" may be inserted (zero in 
this case means that the RT is full). 

Hlnsert(rt, net) = RTE 
Inserts an RTE for "net" into "rt", setting the "net" field of the RTE and 
zeroing the rest of the entry. If an entry already exists for "net", it is 
overwritten. If no entry already exists, one is created, and if the table is full, 
SysErr is called. 

HDelete(rt, net) 
Deletes the RTE for "net" in "rt", if one exists. 

HEnumerate(rt, proc, arg) 
Enumerates all RTEs in "rt", calling proc(rte, arg) for each one. 

The following miscellaneous procedures are of possible interest to callers: 

PupError(pbi, errorType,· string) 
Causes an "Error" Pup to be returned to the sender of "pbi", containing the 
specified "errorType" and "string". The PBI is released in the process. Consult 
the "Pup Error Protocol" specification for UlOre information. PupError is called 
from several places inside PupLevel1 when incoming Pups are rejected for one 
reason or another. . 

ExchangePorts(p bi) 
Exchanges the Pup source and destination ports in "pbi". Useful when sending a 
packet back where it came from (possibly after modifying its contents). 

AppendStringToPup(pbi, firstByte, string) 
Appends the supplied "string" to the Pup in "pbi", starting at byte position 
pbD)PBl.pup.bytes'tfirstByte, then sets the Pup length to include the data so 
stored. Useful for generating Pups that end in (or consist entirely of) a string, 
such as Error, Abort, and Interrupt Pups. 

SetPupDPort( p bi,port) 
Copies tne specified "port" into the Pup destination port field of "pbi". 

SetPupSPort( p bi,port) 
Copies flie speCIfied "port" into the Pup source port field of '~pbi". 

SetPu pID(p bi,pupID) 
Copies the two words pointed to by "pupID" into the Pup ID field of "pbi". 

FlushQueue( queue) 
Dequeues ana releases all PEls presently on "queue". 

OnesComplementAdd(a, b) 
Returns the ones-complement sum of "a" and "b". 

OnesComplemen tSu btract( a, b) 
Returns the ones-complement difference between "a" and "b". 

LeftCycle( word. count) = result 
Returns the result of left-cycling "word" by "count" mod 16 bits. 

MultEq(adrl, adr2, nWords [ ... 2J) = true or false 
Compares the nWords words starting at adrl with the corresponding words 
starting at adr2, returning true iff they all match. 



Pup Package 

For XcroJ{ Internal Use Only -- October 16, 1977 

July 11, 1977 92 

Max(a, b); Minen, b) 
Return the arithmetic maximum or mInImum, respectively, of "alt and "b". These 
are treated as signed integers and must differ by less than 21' 15. 

DoubleIncrement(adr, offset) 
Adds the signed I6-oit integer "offset" to the 32-bit number pOinted to by 
"adr". Note that a negative "offset" will cause the 32-bit number to be 
decremen ted. 

DoubleDifference(adrl, adr2) = value 
Returns as a 16-bit signed integer the result of subtracting the 32-bit number 
pointed to by "adr2" from the one pointed to by ltadr1". If the two numbers 
differ by more than 21'15, the result is either 2tl5-1 or -21'15, depending on the 
sign of the 32-bit difference. 

DoubleSubtract(adrl, adr2) 
Subtracts the 32-bit number pointed to by "adr2" from the one pointed to by 
"adrl", and leaves the result in "adrl". 

HHash(logTableSize, key, IvProbe) = increment 
Computes a hash probe and increment (for double hashing) from a one-word 
"key" into a hash table of length 2,tlogTaoleSize. The initial probe is stored in 
@lvProbe and the increment is returned. "logTableSize" should not be greater 
than 8. 

4. Rendezvous/Termination Protocol Interface 

The RTP module (file PupRTP) contains primitives for establishing and breaking 
connections with foreign processes according to the Rendezvous/Termination Protocol. 

The local end of a connection is maintained within the confines of an RTPSoc, an 
RTP socket structure (defined in PupRTP.decl). This begins with a level 1 Pup 
socket (PupSoc), but includes the following additional information: 

ctx 

state 

connID 

rtpOtherPupProc 

rtpOtherTirner 

rtpOtherTirner Proc 

A pointer to the background context maintaining the 
connection. 

The state of the connection (see below). 

The connection ID (see "Pup Specifications"). 

A procedure called upon receipt of any Pup that is not 
part of the Hendezvous/Termination Protocol. 

A timer for use by higher levels of protocol. 

A procedure called when rtpOtherTimer expires. 

There is some other information (wasListening, rtpTimer) used by the RTP module 
but not of interest to external programs. 

At a given moment, an RTPSoc may be in one of a number of "states". 
explanation of the meanings of these states may be found in the 
Connection State Diagram" (file (Pup>States.Ears). 

A detailed 
memo "Pup 

stateClosed No connection exists: either none has ever been created or a 
previously existing connection has terminated. 



Pup Package 

stateRFCOut 

sta teListening 

stateOpen 

stateEndln 

stateEndOut 

stateDally 

stateAbort 

For Xerox Internal Use Only -- October 16, 1977 

JUly 11, 1977 93 

The local process has initiated a request for connection (RFC) to 
some foreign process. A reply is expected from the remote 
process. 

The local process is "listening" for an RFC from any foreign 
process. 

The connection is considered by both parties to have been 
established. "What the cooperating processes do with this 
connection is a matter of higher-level protocol (e.g., BSP). 

The foreign process has requested that the connection be 
terminated, and is awaiting a confirmation from the local 
process. 

The local process has requested that the connection be 
terminated, and is awaiting a confirmation from the foreign 
process. 

A transitory state having to do with the termination handshake 
(see "Pup Specifications"). 

The connection has been aborted abnormally by the foreign 
process. 

An RTPSoc is created by calling OpenRTPSocket, which performs various initialization, 
creates a background process to manage the connection, and interacts with some 
foreign process in one of three ways lsee below) to open a connection. Once the 
connection is open, the RTP background process monitors the socket for arrival of 
Pups requesting that the connection be closed or aborted, and updates the state of 
the socket appropriately. The local process may also request explicitly that the 
connection be terminated, by calling CloseRTPSocket. 

The procedures defined in the RTP module are the following: 

OpenRTPSocket(soc, ctxQ [pupCtxQl, openMode [modelnitAndWait], connID [random], 
otherProc fDefaultOtherPupProc], timeout [defaultTimeout], zone [pupZone]) 
= true or raIse 

Causes an RTP socket to be created and optional interactions with a foreign 
process to be initiated. "soc" is a block of len~th lenRTPSoc which must 
already have been initialized as a level 1 socket lPupSoc) by a prior call to 
OpenLevellSocket. Both the local and foreign port addresses (the "lclPort" and 
"frnPort" fields in the PupSoc) must be completely established, unless "openMode" 
is "listenAndWait" or "listenAndReturn", in which case only the local socket 
number (soc»PupSoc.lcIPort.socket) need be established. 

"ctxQ" is a context queue to which a context created by this procedure may be 
appended. It defaults to pupCtxQ (the "ctxQ" passed to InitPupLevell). 

lIopenMode" specifies the manner in which the connection is to be opened. If it 
is "modelnitAndWait", a request for connection to the foreign process is initiated, 
and OpenRTPSockct then blocks until either the answering RFC is received and 
the connection's state becomes open (in which case it returns true) or an error 
occurs (in which case the Rrr'PSoc is closed and OpenRrrPSocket returns false). 
If it is "modelnitAndReturn", the request is initiated in a silnilar manner, but 
then OpenHTPSocket returns true immediately and it is the caller's responsibility 
to monitor the subsequent state of the connection. 

If "opcnMode" is "modeListenAndWait", the socket is placed in a "listening" state. 



Pup Package 

For Xerox Internal Use Only -- October 16. 1977 

July 11, 1977 94 

When a request for connection is received from some foreign process, a reply is 
generated and the connection becomes open, and OpenRTPSocket returns true. If 
the mode is "modcListenAndRcturn", OpenRTPSocket returns true irnmediately and 
it is the caller's responsibility to monitor the subsequent state of the connection. 

If "openMode" is "modelmmediateOpen", the socket is immediately placed in the 
open state (it is assunled that the caller has already performed a rendezvous 
with the foreign process in some other manner) and OpenRTPSocket returns true. 

"connID" is a' pOinter to a two-word vector specifying the connection ID (see 
"Pup Specifications"). If not specified, a connection ID is chosen at random. 
"connID" need never be specified if "openMode" is one of the listening modes. 

"otherProc" is a procedure to be called when a non-R'rp Pup is received by the 
socket. This will be described in more detail later. If not specified, "otherFroc" 
defaults to DefaultOtherPupProc, a procedure that simply releases any PBI it is 
passed (one may change the default by clobbering the DefaultOtherPupProc static 
wi th something else). 

"timeout" specifies the maximum time OpenRTPSocket will wait (if "open!vlode" is 
"modeInitAnd~Tait" or "modeListenAndWait") before timing out and returning 
false. It (and all other "timeout" arguments in the Pup package) is in units of 
10 milliseconds, with a maximum legal value of 2t15 La little over 5 minutes), 
accordin9; to the conventions established in the Tinler' Package. If unspecified, 
"timeout' defaults to "defaultTimeout", a static defined this module. whose value 
in the released packa~e is 6000 (i.e., 60 seconds; this is set by the parameter 
"defaultDefaultTimeout in PupPararils.decl). 

"zone" is a free-storage zone from which a context block (of size rtpStackSize) 
may be allocated. If it is not specified, pupZone (the "zone" passed to 
InitPupLevell) is used. Note: OpenRTPSocket calls InitializeContext, so the 
ContextInit module must be resident (despite what the Context Package writeup 
says). 

CloseRTPSocket(soc, timeout [ ... defaultTimeout]) :: true or false 
Requests t'hat the connection rooted in the RrrpSoc "soc" be terminated. If 
"timeout" is nonzero, a normal termination is attempted if possible; if zero (or 
the attempted normal termination times out), the connection is aborted 
(terminated abnormally). When the connection has been closed, the context 
created by OpenRTPSocket is destroyed and returned to the zone from which it 
was allocated. CloseRTPSocket then returns true if the connection was 
terminated normally and false if abnormally. The level 1 PupSoc pointed to by 
"soc" still exists, and it is the caller's res~onsibility to dispose of it 
appropriately (generally by calling CloseLevellSocket J. 

The process created by OpenRTPSocket (called RTPSocketProcess) has several 
responsibilities. First, all Pups arriving on the socket's iQ are dequeued and 
inspected. Ones whose types are part of the Rendezvous/Termination protocol are 
processed internal1~. All .protocol interactions (including replies, retransmissions, and 
local state changes] are handled automatically. 

Received Pups that are not part of' the RTP are passed to the "rtpOtherPupProc" 
procedure, which is initialized to the "otherProc" argument in OpenRTPSocket. More 
specifically, the statement 

(soc»RTPSoc.rtpOtherPupProc)(pbi) 

is executed, and it is up to the called procedure to appropriately process and dispose 
of the PBI. Since this call is made within the context of the RTPSocketProcess, 



Pup Package 

For Xcro~ Internal Use Only -- October 16, 1977 

July 11, 1977 . 95 

which has only "rtpStackSize" (130 as released) words of stack space, the called 
procedure cannot make heavy demands on the stack without risk of stack overflow. 
One might increase rtpStackSize (a static defined in this module, whose initial value 
is given in PupParams.decl as "defaultRTPStackSize"), but the sufest course of action 
is for the called procedure simply to enqueue the PBI· on some queue loolwd at by 
another process with more stack space available to it. (One should note, however, 
that the "rtpOtherPupProc" procedure defined by the BSP module, to be described in 
the next section, manages to do all its work--a significant amount--without 
overflowing the RTP process's stack. The main potential pitfall is in calling system 
procedures such as Ws that require very large amounts of stack space in some cases.) 

"Abort" and "Error" Pups, while handled by RTPSocketProcess (for their effects on 
the socket's state), are also passed on to the "rtpOtherPupProc" procedure, for 
purposes such as displaying the Pup's text to the user. The RTP module 
distinguishes between "fatal" and "non-fatal" sub-types of Errors, treatin~ the former 
the same as an Abort (thereby placing the connection in the "Abort state) and 
ignoring the latter; both kinds, however, are passed to "rtpOtherPupProc". 

Additionally, the RTPSocketProcess checks for expiration of a timer called 
"rtpOtherTimcr" in the RTPSoe. If it expires, the procedure given in 
"rtpOtherTimerProc" is called, with the socket as its argument. This facility is used 
in the BSP module, which also requires the ability to do asynchronous processing. 
"rtpOtherTimerProc" is initialized to Noop when OpenRTPSocket is called. 

The following miscellaneous procedures defined in the RTP module are of possible 
in terest to callers: 

RTPFilter(pbi, checkFrnPort, checkID) = true or false 
Does selective filtering of "pbi against parameters in the socket to which the 
PBI is assigned, and returns true if the PBI is accepted and false if rejected. 
First, broadcast Pups (destination host zero) are always rejected. Then, if 
checkFrnPort is true, the source port address of the PBI is checked for equality 
with the foreign port address given in the socket. Finally, if checkID is true, 
the Pup ID in the PBI is checked for equality with the connection ID in the 
socket. 

CompleteRTPPup(pbi, type, length) 
Stores "type" and "length" in the respective fields of the Pup, copies the 
connection ID from the socket to the Pup, and finally calls CompletePup(pbi) to 
send it on its way. 

5. Byte Stream Protocol Interface 

The BSP module (files PupBSPStreams, PupBSPProt, and PupBSPa) contains 
procedures for sending and receiving error-free, flow-controlled byte streanlS to and 
from a foreign process, and for dealing with the other primitives defined by the BSP 
(namely Marks and Interrupts). 

A process's interface to the BSP module is by way of a BSPSoc, a BSP socket 
structure, which is a further extension of an RTPSoc (which, it will be recalled, is 
an extension of a PupSoc). 'rIle BSPSoc contains a large anlount of additional 
information, most of which fortunately is not of interest· to external programs. -The 
items that are of interest are the following: . 

_ bspStatus A word containing various status bits, including the 
following two: 



Pup Package 

markPending 

in terruptIn 

For Xerox Internal Use Only -- October 16, 1977 

July 11, 1977, 96 

A Mark has been encountered while reading the incoming 
byte stream. Further attelnpts at input (via Gets or 
BSPReadBlock) will fail until this bit is cleared (either 
explicitly or by calling BSPGetMark). 

An Interrupt has been received. If the caller depends on 
this bit for noticing the arrival of Interrupts, then it must 
clear the bit explicitl~ after doing so. Int.errupts arriving 
in close succession will not be distinguishable as separate 
events unless they are intercepted via the 
"bspOtherPupProc" mechanism, described later. 

bspOther PupProc A procedure called upon receipt of any Pup not part of 
the BSP (or RTP). 

bspStr A block containing a BSPStr, a BSP stream structure. 
This contains the dispatches for interfacing to the 
operating system's generic stream-handling procedures (Gets, 
Puts), plus some information specific to the BSP stream. 

A BSP stream is created by first opening a connection to a foreib'll process (by 
means of the RTP), then calling the following procedure: 

CreateBSPStream(soc) :: str' 
Creates and initializes a BSP socket, and returns a pointer to the stream block 
within it. "soc" must point to a region of length lenBSPSoc, and it must 
already support one end of an open RTP connection (by having been passed to 
OpenLevellSocket and then OpenRTPSocket). If the state of the connection is 
not stateOpen or stateEndln, CreateBSPStream returns zero. Otherwise, the 
stream is cornpletely initialized and the pointer to it is returned. See the 
sample program at the end of this document for an example of the proper 
sequence of operations for opening a BSP stream from scratch. 

All the generic stream procedures (Gets, Puts, etc.) must be passed "str" as an 
argument, as should the procedures 13SPReadBlock and BSPvVriteBlock. However, all 
other operations on the socket Cincluding specialized BSP functions such as 
BSPGetIVlark) must be" passed "soc. When necessary," "str" and "soc" may be 
computed from each other by the following statements: 

str = Iv soc» BSPSoc.bspStr 
soc = str-offset BSPSoc.bspStr/16 

The defined generic stream procedures are as follows. 'rhe descriptions of Gets and 
Puts assume that the default stream error-handling procedure (invoked by 
Errors(str,ec)) is in use; the real truth appears in the description of Errors. 

Gets(str, timeout [ ... -lJ) = byte or -1 
Attempts to return the next byte from the BSP stream "str"; returns -1 on any 
failure. A failure will result if the connection has become closed or a Mark has 
been encountered in the incoming stream. If "timeout" is -1 (the default), Gets 
waits indefinitely for data to arrive (or some failure condition to arise); it other 
than -I, it waits up to "timeout" (units of 10 milliseconds) and then gives the 
failure return. 

Puts(str, byte, timeout [ ... defaultTimeoutl) = true or false 
Attempts to output "byte" to the :SSP stream "str"; returns true on success and 
false on failure. A failure will result if the connection has become closed or 
the operation times out. The "timeout" is defined as for Gets, with -1 meaning 
wait indefinitely. Note that in general, outputting a byte to a BSP stream 



Pup Package' 

For Xerox Internal Use Only -- October 16, 1977 

July 11, 1977 97 

merely causes that byte to be appended to a partially-constructed Pup in 
lnemory; only when a Pup is filled up is any packet actually sent over the net. 
BSPForceOutput (described below) nlust be called to cause a partially-filled Pup 
to be closed out and transmitted immediately. 

Endofs(str) :: true or false 
Returns true if there is not presently any data to be read from the BSP stream 
"str" or a Mark has been encountered. Note that this definition of Endofs is 
analogous to that for "keys" as opposed to that for disk files; i.e., so long as 
the connection is still open) Endofse str) being true says only that there is not 
now any data to be read, not that there won't be data at some time in the 
future. 

Closes( str) = true or false 
Closes the BSP stream "str" and destroys the associated socket) as detailed in 
the description of CloseBSPSocket (below). 

Errors(str) ec) = value 
The stream error procedure (which is initialized to BSPErrors by 
CreateBSPStream) is called under various error conditions arising in Gets and 
Puts. The error code "ec" will be one of the following: 

ecBadStateForGets 

ecGetsTimeou t 

ecMarkEncoun tered 

ecBadSta teFor Puts 

ecPutsTimeout 

Gets has failed because the connection is no longer open. 

Gets has failed because no data became available for 
reading within the specified timeout. 

Gets has failed because it has encountered a ~lark in the 
stream. 

Puts has failed because the connection is no longer open. 

Puts has failed because it was not possible to output the 
byte within the specified timeout. 

In each case, the Gets or Puts returns the result of calling Errors with the 
corresponding error code. The default Errors procedure returns -1 when passed 
any of the Gets error codes and false when passed one of the Puts error codes, 
thereby obtaining the failure behavior presented earlier in the descriptions of 
Gets and Puts. 

'rhe remaining procedures operate on a "soc" (BSPSoc) rather than a "str") since they 
are peculiar to BSP. 

CloseBSPSocket(soc, timeout [ ... defaultTimeoutl) = true or false 
Closes the connection and destroys the IJSPSoc pointed to by "soc". First) if the 
connection is still in a reasonable state, any pending output is transmitted; 
CloseBSPSocket will wait up to "timeout" for successful acknowledgnlent of this 
data. Next, the connection is terminated by a call to CloseR'l'PSocket (the 
description of which includes the interpretation of "timeout"). Then all PBls 
still residing on the BSPSoc's various queues are released. Finally) the socket is 
destroyed by a call to CloseLevellSocket. The result returned is true· if the 
connection was closed normally, false if abnormally. 

BSPGetMark(soc) = byte 
Returns the value of 
the markPcnding flag 
Mark in the stream. 
Mark has not in fact 

the pending Mark byte in the incoming stream, and clears 
so as to permit future calls to Gets to read data past the 
This procedure will call SysErr(soc)ecBadBSPGetMark) if a 

been encountered. 



Pup Package 

For Xerox Internal Use Only -- October 16, 1977 

July 11, 1977 98 

BSPPutMark(soc, markByte, timeout [ ... defaultTimeoutJ) = true or false 
Inserts the specified "markByte" into the outgoing streaIn. Calling this procedure 
causes all data up to and including the Mark byte to actually be transmitted 
immediately. The interpretation of "timeout" and the result returned by the 
proceuure are the same as for Puts. . 

BSPForccOu tpu t( soc) 
Forces any partially-filled output Pup to be transmitted immediately. This 
procedure will never block. 

BSPPutInterrupt(soc, code, string, timeout [ ... defaultTimeoutJ) ::: true or false 
Generates a BSP Interrupt Pup (see "Pup SpecificatlOns") using the specified 
"code" for the Interrupt Code and string" for the Interrupt Text. 1'11e procedure 
returns true unless it failed to send the Interrupt due either to the connection 
no longer being open or to exhausting the specified "timeout". 

The BSP module accomplishes much of its work as a result of being given control by 
the socket's RTPSocketProcess context through two paths: the "rtpOtherPupProc" 
procedure, called when a non-RTP Pup is encountered, and the "rtpOtherTimerProc" 
procedure, called when the "rtpOtherTimer" expires. These three cells in the RTPSoc 
structure are renamed "bspPupProc", "bspTimer", and "bspTimerProc" within the BSP 
module. By this means, the management of both incoming and outgoing byte 
streams is accomplished automatically (including the generation of acknowledgments 
and retransmissions). 

Received Pups that are not part of either the RTP or the ESP are handed to the 
procedure given in the "bspOtherPupProc" cell in the socket. This is initialized to 
the previous contents of the socket's "rtpOtherPupProc" by CreateBSPStreanl (which 
then stores a pointer to the ESP module's own BSPPupProc into the latter cell). 
The earlier description of "rtpOtherPupProc" (in the section on the R'rp Inodule) 
applies to "bspOther PupProc". 

Received Interrupt packets are also passed to "bspOtherPupProc" after being processed 
by the ESP module. Note that an Interrupt passed in this manner has been verified 
to conform to protocol (this is the case also for Abort and Error packets passed up 
from the RTP module) and may therefore be "believed". Any other type of packet, 
on the other hand, has had no checking done on it beyond the level 1 interface 
(where the destination port and checksum were verified). 

A note on allocations: this BSP implementation probably will not work at all unless 
the socket's PBI allocations are at least 3, 2, and 2 for "total", "input", and "output" 
respectively. High throughput will be gained only by giving the socket somewhat 
larger allocations (say, 6 to 10 PBls) for the direction(sJ in which high throughput 
is desired. 

In a program with at most one active BSP connection, that socket should be 
allocated all of the PBls in the system except one per directly-connected network 
(there must always be one extra PBI available for receiving in COIning packets on each 
network); this is the default allocation established in dPSIB by InitPupLevell. In a 
program with several active connections, one should adjust individual socket 
allocations appropriately (though probably not simply by dividing the total PBls by 
the nUlnber of sockets, since doing so typically leads to underutilization of PBls): 
Assuming there are plenty of PBIs in the systeln, it is generally safe to overcommIt 
the system resources (relying on the statistical unlikelihood that all sockets will 
simultaneously tie up all the PBls to which they are individually entitled). One 
should be aware, however, that the higher-level protocols can get into deadlock 
conditions if the system pbiFreeQ becomes exhausted. For the same reason, a PBI 
passed to an external program via the "bspOtherPupProc" entry in the socket must 
be released as quickly as possible, since it is charged against the socket's allocation. 



Pup Package 

For Xerox Internal Use Only -- October 16, 1977 

July 11, 1977' 99 

The BSP module includes a static "bspVersion" whose value is (protocol version * 
1000) + package version. 

6. BSP Block Transfer Procedures 

The BSP stream mechanism just presented, while being a "fast stream" in the sense 
defined by the operating system. is still relatively slow and is therefore not well 
suited to transferring large voluules of data (such as file transfers between disk and 
net). A separate module (PupBSPBlock) is provided for Hccomplishing block transfers 
at least an order of magnltude faster than by iterated calls on Gets or Puts. 1'his 
module requires that tne AltoByteBlt module (released as a separate package) be 
loaded as well. 

Two procedures are defined in this module: 

BSPReadBlock(str, wordP, byteP. count, timeout r ... -l11 :: count 
Reads a maximum of "count" bytes from t11e B'SP stream "str", storing them in 
memory starting at byte position "byteP" relative to word address "wordP" (for 
example, byteP = 0 means the left byte of the word referenced by "wordP"). 
The transfer terminates under any of the conditions that would cause 
Gets(soc,tinleout) to return -1. The procedure returns the actual number of 
bytes transferred. 

BSPWriteBlock(str. wordP, byteP, count. timeout [ ... defaultTimeoutJ) = count 
Writes a maximum of "count" bytes to the BSP stream 'str", obtaining them 
from memory starting at byte position "byteP" relative to word address "wordP". 
The transfer terminates under any of the conditions that would cause 
Puts(soc,byte,timeout) to return false. The procedure returns the actual number 
of bytes transferred. 

7. Name Lookup Module 

This module (file PupNameLookup) contains a single procedure which will parse a 
string consisting of any legal inter-network name/address expression and return a 
Port structure containing that address (suitable for passing to OpenLevellSocket or 
plugging into the dPort field of a Pup). See the memo "Naming and Addressing 
Conventions for Pup" (file <Pup)PupName.Ears) for infornlation on legal expressions. 

GetPartner(name, stream [noneJ, port, sl [ ... none], s2 [ ... none]) = true or false 
Parses the BCPL string name" and stores the resultIng address value in the 
Port structure "port", returning true if successful and false otherwise. "stream", 
if nonzero, is used for publishing an error message if the conversion is 
unsuccessful. "sl" and "s2", if supplied, specify the high- and low-order parts of 
the default socket number, which is substituted into the "port" if the socket 
number is unspecified in the "name". 

If the "name" consists entirely of address constants (in the form 
"net#host#socket" or some subset thereof, where the components are octal 
numbers), then it is parsed locally. Otherwise, GetPartner attenlpts to establish 
contact with a NanlC Lookup server, to which it passes the "name" for 
evaluation. If the reply consists of several alternative addresses, the "best" one 
is chosen on the basis of information in the local routing table. Regardless of 
whether or not the string is an address constant, GetPartner will return false 



Pup Package 

For Xerox Internal Use Only -- October 16, 1977 

July 11, 1977 100 

(with the message "Can't get there from here") if no routing table entry exists 
for the resulting network and several gateway information probes discover no 
way of reaching that network. 

8. Example 

The following example program makes use of most of the facilities provided in the 
Pup package. It is basically a rock-bottom minimal user Telnet (like Chat) with no 
redeeming features whatsoever. 

The main procedure Pup Example performs initialization, which consists of creating a 
large zone, initializing the Pup package, creating a large displuy window, and creating 
and starting a context running the procedUre TopLevel. 

TopLevel first requests the user to type in a foreign port name, which it parses by 
callin&'. GetPartner (note that the socket number is defaulted to 1, the server Telnet 
socket). Then a socket is created and a connection is opened. Two new contexts 
are now created, running the procedures KeysToNet and Net'l'oDsp. TopLevel then 
blocks until either the connection is no longer open or the second blank key on the 
right of the keyboard is pressed, at which point it destroys the two contexts it 
created, closes the connection, and loops back to the beginning. 

'rhe KeysToNet procedure blocks waiting for keyboard input, then outputs the typed
in character to the ESP stream and calls BSPForceOutuut to force immediate 
transmission. If the Puts fails, KeysToNet simply blocks forever, in the expectation 
that Top Level will detect that the connection is no longer open and take appropriate 
action. 

The NetToDsp procedure. blocks waiting for input from the BSP streanl. When a 
normal character is received, it is output to the display. If Gets returns -1, then 
either a Mark is pending or the connection has ended; if the former, a message IS 
printed and BSPGetMark is called to clear the Mark pending status; if the latter, 
NetToDsp blocks indefinitely. 

/ / PupExamplc.bepl 

get "Pup.dec1" 

external 

~nitPuPLcvell; OpenLevellSoeket; CloseLevellSocket; SetAllocation 
OpenR'fPSocket; CreateBSPStream; GetPartner 
BSPForceOutput; BSPGetMark ' 
InitializeContext; CallContextList; Block; Enqueue; Un queue 
Ini tializeZone; Crea teDisplayS tream; Show DisplayS tream 
Gets; Puts; Closes; Endofs; Ws 
keys; dsp 
] . 
statIc [ ctxQ; myDsp; bspSoc; bspStr ] 

let PupExampleO be / / initialization 

fet myZone = vee 10000; InitializeZone(myZone,10000) 
let q = vec 1; ctxQ = q; ctxQ!O = 0 
Ini tPupLevell( myZone,ctxQ,20) 



Pup Package 

let v = vec 10000 

For Xerox Internal Use Only -- October 16, 1977 

July 11, 1977 

myDsp ::: CreateDisplayStream( 40,v,10000) 
ShowDispluyStrean1lmyDsp) 
let v = veC 3000 
Enq u eu e( ctxQ,InitializeCon text( v ,3000,TopLevel)) 
CallContextList(ctxQ!O) repeat 
] 

and TopLevelO be / / top-level process 

~s(II*nConnect to: ") 
let name::: vec 127; GetString(namc) 
if name> >String.length eq ° then finish 
let frnPort = vee IcnPort 
unless GetPartnerfname,dsp,frnPort,O,l) do loop 
let v = vec lenBS1)Soc; bspSoc ::: v 
OpenLevel1Socket(bspSoc,O,frnPort) 
unless OpenRTPSocket(bspSoc,ctxQ) do 

~ 
vVs("*nFailed to connect "); CloseLevel1Socket(bspSoc); loop] 

W s *nOpen!") 
bsp tr ::: CreateBSPStream(bspSoe) 
let keysToNetCtx, netToDspCtx = vee 1000, vec 1000 
Enq ueuee ctxQ,Ini tializeCon textQkeYSToN etCtx, 1 000 ,KeysToN et)) 
Enqueue( ctxQ,Ini tializoCon text n etToDspCtx, 1 OOO,N etToDsp )) 
Blockf) repeatuntil bspSoe»B 'PSoc.state ne stateOpen % 

@//177035 eq 1/177775 Iisecond blank key pressed 
U nqueue( etx~,keYSTON etCtx); U nqueue( ctxQ,netToDspCtx) 
Closes(bspStr 
Ws("*nClosed.") 
] repeat 

and KeysToN etC) be 
[ 
test Puts(bspStr,GetKeysO) 

ifso BSPForceOutput(ospSoe) 
ifnot BlockO repeat 

] repeat 

and N et'roDspO be 

fet char = GetsfbspStr) 
if char eq -1 then 

test bspSoe> > BSPSoc.markPending 
ifso 

~sf"*nI saw a Mark!") 
BSPGetMar k(bspSoc) 
loop 

ifnot BlockO repeat 
Puts(myDsp,char) 
] repeat 

and GetKeysO = val of 

~hile Endofs(keys) do BloekO 

101 



Pup Package 

resultis Gets(keys) 
] 

For Xerox Internal Use Only -- October 16, 1977 

July 11, 1977 

and GetString(string) be 

~or i = 1 to 255 do 

fet char = GetKeys(); Puts(dsp,char) 
test char eq $*n 

ifnot string> >String.char1'i = char 
ifso [ string»String.length :: i-I; return ] 

] ] 

9. Revision Historl 

March 25, 1976 

102 

Various minor bugs in both code and documentation 'were fixed. One serious error in 
the documentation was in the description of CreateBSPStream, where "lenBSPStr" 
should have been "lenBSPSoc". The level 1, RTP, and ESP modules each became 
slightly smaller. Various calls to CallSwat were changed to SysErr with registered 
error codes. 

Level 0: External change: file PupAlEth.bcpl replaced by PupAlEthb.bcpl and 
PupAlEtha.asm. Internal change: fast (--20-instruction) Ethernet receiver turnaround 
implemented. 

Level 1: External changes: statics pupZone and pupCtxQ added; procedures 
SetPupDPort, SetPupSPort, SetPupSPort, and FlushQueue added; RT structure 
definition changed; default pupErrSt is now a "nil" stream rather than "dsp". 

RTP: External changes:' defaultTimeout and rtpStackSize changed from manifests to 
statics (with default values defaultDefault1'imeout and defaultRTPStackSize); 
DefaultOttlerPupProc added. 

BSP: External change: static bspVersion added. Internal change: the transmission 
strategy was modified to elicit an acknowledg'ment before allocation is completely 
exhausted, hence reducing lost throughput due to round-trip delay. 

April 16, 1976 

The released package Pup.dnl was renamed PupPackage.dm, and a debugging version of 
the package released as PupDebug.dm. A number of bugs (particularly in level 1) 
were uncovered while bringing up the software on the Nova. 

Level 0: External change: lenPup and lenPBI changed from manifests to statics 
(defined in level 1) to permit changing PBI size without recompiling the package. 
Internal change: IdO-millisecond translnit timeout and discard added (eliminating 
deadlocks caused by things like disconnecting the Alto from the Ethernet). 

Level 1: External changes: gateway code split out into separate files PupGateway and 
PupDummyGate, one of which must be loaded (usually the latter); optional extra 
argument "pupDataBytes" added to InitPupLevel1; default allocations in dPSIB changed 
to permit a socket to assign all but one of the PBls in the system; 



Pup . Package 

For Xero,c Internal Use Only -- October 16, 1977 

July 11, 1977 103 

OpenLevellSocket defaults the foreign net in some circumstanccs. Internal change: if 
"pupDebug" is on, PupLevell checks for the pbiFrceQ being e,chausted for more than 
20 seconds and calls Swat (this usually indicates a deadlock). 

BSP: External change: PupBSPb.bcpl replaced by PupBSPStreams.bcpI and 
PupBSPProt.bcpl (necessitated by Nova BCPL's inability to compile PupBSPb in onc 
gulp). 

May 18, 1976 

Mostly bug fixes and performance improvements. Some structure definitions were 
changed, so recompilation of user programs is advised. 

Level 0: Internal changes: more assembly code included to reduce packet loss rate; 
performance statistics gathered if pupDebug on. 

Levell: External change: optional "type" and "length" argumen ts added to 
CompletePup. 

October 6, 1976 

Significant internal changes were made at levels 0 and 1, and several new 
capabilities were added. However, for the most part the changes are upward
compatible. Many structure declarations changed. so recompilation of progranls that 
"get" any Pup .decl files is required. 

Level 0: External chan~es: SendEtherPup removed; EncapsulateEtherPup and 
SendEtherPacket added; abilIty to send and receive non-Pups implemented. 

Levell: External changes: PupRoute file added; PupGateway module deleted fronl 
public Pup package release; routing table completely reorganized; new procedures 
HLookup, Hlnsert, HDelete, HEnumerate, HHash added; pupErrSt removed; mechanism 
added for broadcasting to all connected networks; procedures Doublelncrement, 
DoubleDifference, Double subtract included (formerly in BSP module). Internal 
change: GatewayListener dynamically maintains the best path to each network and 
purges RTEs of networks for which no routing information has been received 
recently. 

BSP: Internal change: adaptive retransmission timeout implemented to reduce packet 
loss rate when sending through slow networks or to slow destinations (e.g., Maxc). 

March 21, 1977 

Mostly bug fixes. Some structure definitions at level 0 were changed, so 
recOInpilation of user programs is advised. 

Level 0: SendStats operation added to the NDB object. 

JUly 11, 1977 

No external changes. The Ethernet driver was rewritten to eliminate several low
probability race conditions and improve performance slightly. The driver now uses 
the "input under output" feature unconditionally, so problems may be encountered on 
Al to-Is running old microcode. 



Queue Package 

For Xero){ Internal Use Only -- October 16, 1977 

May 17, 1976 

Queue Package 

104 

This package iInplClnents a simple set of queue primitives. They are written in 
assembly language, so they are small (the entire package is 69 instructions) and fast 
(see timings). 

All the procedures are contained in AltoQueue.br, which is assembled from 
AltoQueue.asm. A Nova version of this package is available. 

All queue primitives make use of two structures: the Queue header (hereafter 
abbreviated Q) and the Item. 

structure Q: [ 
Heaa word 
Tail word 
] 

/ / Pointer to first Item on Q 
/ / Pointer to last Item on Q 

structure I tern: [ 
Link word / / Link to next Item 
Remainder word whatever 
] 

An empty queue is denoted by Q.Head equal to zero and Q.Tail unspecified. The last 
Item on a queue has zero in its Link field. An Item either passed to or returned 
from the following procedures may have an arbitrary Link word. 'fhe Q and Item 
parameters in these procedures are of course pointers to the respective objects. 

Enqueue(Q,Item) 
Appends the Item to the Q, thereby making it be the tail item. Enqueue will 
call Swat if Item is zero (which is a common source of bugs). 

Dequeue(Q) = head Item or zero 
Removes and returns an Item from the head of the Q, or zero if the Q is 
empty. 

InsertBefore(Q,Successor,Item) = true or false 
Inserts the Itenl in a specific place on the Q, immediately before the specified 
Successor item. Returns true normally, false if Successor was not found on the 
Q. 

InsertAfter(Q,Predecessor,Item) = true 
Inserts the Item in a specific place on the Q, immediately after the specified 
Predecessor itmn. Returns true always (undefined things will happen if 
Predecessor is not actually on the Q). 

Unqueue(Q,Item) = true or false 
Removes a specific Item from the Q. Returns true normally, false if Iteln was 
not found on the Q. 

QueueLength(Q) = integer 
Returns the number of itenIs on the Q. 

" 
All the queue routines are completely race-free, and both interrupt and non-interrupt 
code may safely access the same Q simultaneously. However, calls to these 
procedures must be made with interrupts enabled, since they execute "dir" and "eir" 
internally for race avoidance. 



Queue Package 

For Xerox Internal Use Only -- October 16, 1977 

May 17, 1976 105 

Timings for these procedures are now given. These counts are simply the number of 
instructions executed, not including the instruction that called the procedure. The 
procedures InsertBefore, Unqueue, and QueueLength must search the queue from its 
head until they reach Successor, Item, or the end. of the queue respectively; the 
factor "n" in the timings is the number of items looked at. 

Enqueue 

Dequeue 

InsertBefore 
InsertAfter 

Unqueue 

QueueLength 

14 if Q previously empty 
13 otherwise 

10 if Q enlpty 
11 otherwise 

10+4n 
15 if Predecessor was previously the tail 

14 otherwise 
12+4n if Item was previously the tail 
11 +40 otherwise 

6+4n 



READMU 

For Xerox Iuternal Use Only -- October 16, 1977 

March 21, 1975 106 

READMU 

A library routine is now available for reading MU binary output. This routine may 
be useful for those interested in debugging, analyzing, or otherwise mtlnipulating Alto 
microcode. The package is called READMU; it is written in BCPL and the only file 
required to use it is READMU.BR. It declares one entry procedure, RcadMU, and one 
entry static, MuSeqNo. The arguments to HeadMU are lstream, writeram, writecon, 
definename) of which only stream is required. Their signiticance is as follows: 

stream must be a word-oriented input stream, the MU binary file. ReadMU only 
reads from this strearn. 

wdteram(addr, hipart, lopart) is called for every instruction in the file. If the 
writeram argument is missing or 0, instructions are discarded. 

writecon(addr, value) is called for every constant in the file. If writecon is 
missing or 0, constants are discarded.' 

definename(addr, string, memoryid) is called for every symbol definition in the 
file. memoryid is $R for R registers, $C for constants, or $1 for 
instructions. If definename is missing or 0, symbol definitions are ignored. 

MU outputs instructions in an unspecified order, but with each instruction it outputs 
a "sequence number" that reflects the order of appearance of the instructions in the 
source file. Read1vlU leaves this sequence number in the static MuSeqNo for uSe by 
the writeram procedure. 

ReadMU returns ° if everything went normally. If an error 
immediately (leaving the stream positioned just past the item 
returned is a string which identifies the type of error. 
following errors: 

Unexpected end of stream 
Bad memory II 
Data for undefined memory 
Bad width 
Bad memory name 
Invalid block type 

occurs, ReadMU returns 
in error) and the value 

ReadMU detects the 



ReadUserCm!tem 

For Xerox Internal Use Only -- October 16, 1977 

March 19, 1976 

ReadU serCmI tem 

107 

A package is now available for reading items from user profile files such as 
User.Cm. This package provides one procedure: 

Read U serCmI tem(stream, string) 
where stream must be a standard Alto stream which delivers characters from User.em 
(or any other file in the same format), and string m.ust be a pointer to a 128-word 
buffer area. ReadUserCmItem reads the next item from the stream and stores it in 
the buffer area in the form of a standard Bcpl string. ReadUserCmltem returns a 
value which identifies what type of itenl was read: 

$E ~end) End of stream. String is meaningless. 
$N name) rrhe item was of the form [string]. 
$S string) The item was of the form "string". 
$L label) The item was of the form string:. 
$P parameter) The item was a line not conforming to any of the above 

(terminated by <cr». 

For items of types $L and $P, ReadUserCmItem removes initial blanks and 
tabs if any. Blank lines are skipped. If an iteln 'II/ill not fit in a Bcpl string (Le. 
is longer than 255 characters), characters beyond the 255th are simply discarded. 

Here is an example file with the list of values and strings returned by 
Read U seremI tern. 

File: 
rBRAVO] 
LEAD: LIne lead 6, Paragraph lead :: 12 

rnns] 
Selspec: "D*" 

Values and 
$N 
$L 
$P 
$N 
$L 
$S 
$E 

strings returned by successive calls of ReadUserCmltem: 
BRAVO 
LEAD 
Line lead = 6, Paragraph lead = 12 
DDS 
Selspec 
D* 



RenameFile 

For Xero~ Internal Use Only -- October 16, 1977 

l\'Iay 12, 1977 i 

RenameFile 

108 

This package contains a single procedure, RenameFile, which changes the name of a 
file in an Alto file system. The procedure handles multiple directories and versions, 
changes the file's serial number to invalidate old hints, updates leader page 
information, logs its action in the system log, works with BFS or TFS, and generally 
tries to do the job as throughly as if it were part of the Alto OS directory module. 
RenameFile only works in Operating Slstem versions 13 or later (in earlier versions 
it returns false without doing anythingj. 

RenameFile(oldName, newName, versionControl [verLatest], errRtn [SysErr], zone 
rsysZone 1, logInfo [OJ. disk ~sysDisk1) = true or false 
beletes the directory entry oldName (after applying versionControl), changes the 
file serial number, and creates a directory entry 'newNanle', returning true if 
successful. 'OldName' must exist and 'newName' must not exist (unless versions 
are enabled in which case the next version of 'newName' is created). 
RenameFile will call errRtn(ecZoneTooSmall) if there is not enough space in 
zone to allocate a page-sized buffer. . 



For Xerox Internal Use Only -- October 16, 1977 

Ring Buffer Routines February 20, 1976- 109 

Ring Buffer Routines 

This package consists of a set of fairly fast assembly-language procedures for 
buffering data by means of circular buffers. The package comes in two versions: a 
"byte" version (RINGBYTES.ASM) that deals with bytes and packs them two per 
word, and a "word" version (RtNGWORDS.ASM) that deals with full words. The 
procedures _ in the two packages are called identically, so one may substitute the 
"word" version for the "byte" version to gain about a factor of two in speed at the 
cost of using buffer space only half as efficiently. Source and binary files fot the 
two versions are supplied in the file RINGBUFFER.DlVl. A N ova version of this 
package is available. 

A ring buffer is described by a Ring Buffer Descriptor (RBD), which is the address 
of a 4-word patch of memory provided by the user, initialized through a call to 
InitRingBuffer. and thereafter maintained by the routines in the package. The "byte" 
and "word" versions of the routines make different uses of the RBD, -but this is of 
no interest to callers. 

InitRingBuff er(RBD,Buff er ,Length) 
Initializes the RBD to describe a block of storage st.arting at "Buffer" and of 
length "Length" (in words). 

ResetRingBuff er(RBD) 
Renders the ring buffer described by RBD empty. 

RingBufferEmpty(RBD) = true or false 
Returns true if the buffer is empty. 

RingBufferFull(RBD) = true or false 
Returns true if the buffer is full. 

ReadRingBuffer(RBD) = Item (byte or word) 
Returns the next Item in the ring buffer if there is one, or -1 if there isn't. 
Obviously. if the "word" version of the package is being used and -1 is a 
possible Item, then the caller should check with RingBufferEmpty before calling 
ReadRingBuff er. 

WriteRingBuffer(RBD,Item) = true or false 
Attempts to put Item into the ring buffer and returns true if successful. The 
"byte" version of this procedure depends on the left half of Item being zero. 

When these routines are used to pass streams of data between interrupt-level and 
non-interrupt-Ievel code, the following precautions should be observed to avoid races: 

1. For a given RBD. neither ReadRingBuffer nor WriteRingBuffcr should be called 
both from interrupt level and frOIn non-interrupt level. However, ReadRingBuffer 
may be called from interrupt level and WriteRingBuffer from non-interrupt - level or 
vice versa. 

2. InitRingBuffer and ResetRingBuffer should not be called from interrupt level. 

3. Calls to all routines should be made with interrupts on, since some of them 
execute "dir" and "eir" internally. (This is not a problem if the BCPL Interrupt 
Package is being used.) 

The following information is provided for debugging purposes only, and one should 
not write code that depends on it. 



For Xerox Interno.l Use Only -- October 16, 1977 

Ring Buffer Routines Fe bruary 20, 1976 

The "byte" version of the package lays out the RBD in the following way: 

structure RBD: [ 
Begin word 
Length word 
Read word 
Write word 
] 

/ / Pointer to start of buffer 
/ / Buffer size in bytes 
/ / Current read index 
/ / Current wri te index 

110 

The buffer is treated as an array of bytes, packed left to right and indexed starting 
at zero. '1'he Read and Write indices refer to the last byte reud or written. 

The "word" version of the package uses the RBD in this way: 

structure RBD: [ 
Begin word 
End word 
Read word 
Write word 

/ / Pointer to start of buf fer 

] 

/ / Pointer past end of buffer 
/ / Current read pointer 
/ / Current write pain ter 

The End word points to the first word beyond the end of the bu.ffer; i.e. its value 
is Begin plus the length of the buffer. The Read and Write pointers point to the 
next word to be read or written. 

Rough timings for the important procedures are now given. '1'he counts are simply 
number of instructions executed, not including the instruction that called the 
procedure. 

RingBuff er Empty 
RingBufferFull 
ReadRingBuffer 

WriteRingBuffer 

"byte" 
9 

10 
20.5 normally 

9 if empty 
25 nonnally 

13 if full 

"word" 
9 

11 
12 normally 

9 if empty 
13 normally 

13 if full 



For Xerox Internal Use Only -- October 16, 1977 

Read/write registers October 20, 1976 111 

RWREG - procedures for reading and writing microprocessor memories 

Procedures are now available for reading and writing the Alto 
microprocessor memories (RIS, constan t, microinstruction) under program control. 
These procedures are of greatest use when debugging new microcode, but may also be 
useful in conjunction with language emulators such as Lisp and Mesa. 

For the purposes of this package, the R registers are numbered 0 through 
37b, and the S registers from 41h through 77b (register 40B is the ]VI register).-

ReadReg(regno) -> value 

Returns the contents of register regno. 

WriteReg(regno, value) 

Writes value into register regno. 

MakeXregDesc( regno, flag) -) dese 

Returns a "register transfer descriptor" which contains an encoding of the 
register number regno and the operation specified by flag (false means read, true 
means write). 

DoXreg(desc, value) -) value 

Performs the operation specified by the register transfer descriptor dese, 
returning the contents of the register. if a read, or writing value into the register if 
a write. 

The reason for MakeXregDesc and DoXreg is that "compiling" the descriptor 
in advance allows the actual transfer to be done more quickly. 

ReadConReg( conno) -) value 

Returns the contents of constant memory location conno. 

ReadlnsReg(loc, v2) 

V2 must be a pointer to a 2-word area. Reads the contents of 
microinstruction RAM location 10c into v2!0 and v2!1. Note that. ReadlnsReg is not 
capable of reading the microinstruction ROM, only the RAM. 

WritelnsReg(loc, v2) 

Writes v2!0 and v2!1 into microinstruction RAM location loco 

***** NOTE TO RAM PROGRAMMERS: RWREG uses RAM locations 1770 
through 1772. 



Scan File . 

For Xerox Internal Use Only -- October 16, 1977 

May 29, 1977 . 

ScanFile - a package for rapid sequential file scanning 

112 

This package enables a program to scan Alto files at full disk speed, including 
overlapping disk transfers with computation. The package is written entirely in Bcpl 
and uses only standard OS facilities. 

To initialize the package, call 
ScanFile(fp, bufferAddress, bufferSize[, fa, diskl) . 

where fp is a file pointer as described in the Alto Us manual and bufferAddress is 
the beginning of a block of bufferSize words. If fa is given, it must be a file 
address as described in the Alto OS manual, and scanning will begin with the file 
page specified by fa. The disk address in fa must be correct, not just a hint. If 
disk is given, it must point to a disk descriptor as described on p. 52 of the Alto 
OS manual; otherwise, ScanFile uses sysDisk, the standard system disk. 

ScanFile returns an instance pointer (ip) which points to a structure ScanFile sets 
up in the buffer area. The minimum size for the buffer area is available in a 
static called 

ScanFileFixedSize 
and each additional page (400b-word) buffer requires 

ScanFileB uff erSize 
words. 

To get the next page of the file, call 
ScanBuffer(ip, fa) 

where ip is the instance pointer returned by ScanFile and fa is a pointer to a file 
address structure as described in the Alto OS manual. If the end of the file has 
not been reached yet, ScanBuffer returns the address of a page buffer containing the 
next page of data, and fills in the fa with the page nunlber, disk address, and 
number of characters of data in the page. If the end of the file has been reached, 
ScanBuffer returns O. Note that the contents of a page buffer are only guaranteed 
valid until the next call on ScanBuffer. Note also that the first page delivered by 
ScanBuffer is the first page of data, not the leader page. 

When you are finished scanning a file, call 
ScanFinish(ip) 

where ip is the instance pointer. If you don't do this, the next use of the Bfs (e.g. 
by the OS) may throw you into Swat. 

It is possible, although not particularly recommended because of arm movement, to 
scan more than one file simultaneously with ScanFile. Of course, each file being 
scanned requires a separate call on ScanFile and its own buffer area. 

ScanFile currently only handles the standard Alto Diablo disks (model 31 or 44), not 
Tridents. If the need arises, ScanFile can be extended to handle rrridents fairly 
easily. 



sev 
For Xerox Internal Use Only -- October 16, 1977 

23 Ma.y 1975 

SCV: Scan Converter Package 

113 

sev is a package for scan-converting objects from a description of the boundaries of 
the object. The package computcs which bits of each scan-line fall under the object 
described; if these bits are displayed in black, the object will appear, colored black. 

The input to sev is an ordered sequence of edge descriptions; an edge may be either 
a straight line or a. spline curve. SCV scales the coordinates of the edge and 
computes the intersections of the edges with the coordinate grid. Finally, the 
intersections are sorted, first by scan-line number, and then by "run direction" within 
the scan -line. 

Thus the coordinate system is based on "scan-direction" and "run-direction" rather 
than on x and y. The coordinates of a point are (s,r) where s is the scan-line 
number, and r is nlcasured along the scan-line. For example, on the Alto, s might 
run from 0 to 807, a vertical measure; r might run from 0 to 605, a horizontal 
measure. 

Before passing to detailed explanations, consider the following example: 

SCVBCginO!. ect( false) 
SCVMoveTo 0,0) 
SCVDrawTo 10,O~ 
SCVDrawTo 5,10 
SCVEndObject( v 

... (details) 
SCVReadRuns( v ,buf, 1 00) 

>~,10) 
/ \ 

/ \ 
/ \ 

/--------\ 
(0,0) (10,0) 

This returns a list of intersections: (1,0) (1,2) (2,0) (2,4) (3'a (3,6) (4,0) (4,8) (5,0) 
(5,10) (6,0) (6,8) (7,0) (7,6) (8,0) (8,4) (9,0) (9,2) (10,0) (10,0 . If these intersections 
are paired into "runs," we can see which bits to turn on e.g. on scan-line 3, we 
turn on bits 0 (inclusive) through 6 (exclusive); more on this below). Thus we get 
(remenlber, scan-lines are vertical in the above example): 

* 
* 

*** 

lni tializa tion 

SCVInit(Getb,Putb,Error) 

*** 
***** 
***** 

******* 
******* 

********* 
********* 

This routine must be called before any objects are scan-converted. Getb is 
the address of a routine for obtaining blocks of storage; Putb is a routine to 
return these blocks to the pool; Error is an error routine. Templates for 
these subroutines are: 

let 
Get b(BlockSize) = valof r 

I/Cet a free storage block of length BlockSize. 
/ /Suppose Addr is the address of the first usable word. 
resul tis Addr 



scv 
For Xerox Internal Use Only -- October 16, 1977 

23 May 1975 

] and 
Putb( Addr) be [ 

/IReturns block acquired previously by Getb. 
] and 

Error(String) be r 
/IString IS a :eCPL string that describes the error. 
] 

114 

SCVMatrix( a,b,c,d) 

This routine sets the scaling matrix. In all functions that have sand r 
values as parameters, the following scaling takes place: 

S = a*s + c*r 
R = b*s + d*r 

and the values of Sand R are actually used. In all explanations below, if 
upper-case Sand R are used, they represent scaled versions of sand r. The 
argumen ts to SeVMa trix are either: 

a. O. The corresponding coefficient is zero. 

h. A pointer to a packed floating-point number. 

c. The number of a floating-point accumulator. (See "Restrictions," below.) 

Thus the identity transformation can be established with: FLDI(2,1); 
SCVMatrix(2,O,O,2). 

SeVTransformF( s,r,v) 

This routine scales sand r by the scaling matrix, and returns Floor(Round(S)) 
in v!O and Floor(Round(R)) in v!1. The full value of S is left in floating
point acculnulator 8; that of R in accumulator 9. 

Generating Object Descriptions 

The operations of generating object descriptions and of actually computing the 
intersections are separated in order to cater to certain applications. The object 
generation process is: (1) initialize by calling SeVBeginObject, (2) pass boundary 
descriptions to SCVMoveTo, SCVDrawTo or SeVDrawCurve, and (3) finish by calling 
SeVEndObject, which returns an object descriptor (structure SeV). 

SeVBeginObject(Care) 

Called to begin describing a new object. Care is true if "careful" scan 
conversion is required (see SCVEndObject). 

SCVMoveTo(s,r) -or- SCVMoveToF( s,r) 

Starts a new boundary, and sets the "current" point to (S,R). The arguments 
to SCVMoveTo are signed 16-bit integers; SCVTvioveToF is identical in function, 
but requires floating-point numbers (or accumulator numbers) as arguments. 

SCVDrawTo(s,r) -or- SCVDrawToF( s,r) 



SCV 

For Xerox Internal Use Only -- October 16, 1977 

23 May 1975 115 

Specifies that the next leg of the boundary is an edge from the "current" 
point to (S.R). The current point is set to (s.n). The arguments to 
SCVDrawTo are signed I6-bit integers; SCVDrawToIf is identical in function, 
but requires floating-point numbers (or accumulator nUlubers) as arguments. 

SCVDrawCurve( sa.ra,s b,rb,sc,rc) 

Specifies that the next leg of the boundary is a parametric cubic spline traced 
out by values of t from 0 tQ 1 in the equations ("current" point is (So,Ro)): 

Set) = So + Sa t + Sb t:G + Sc t~ Re t) = Ro + Ra t + Rb t 2 + Rc t 3 

The "current" point is set to (S(l),R(l)). Arguments are flouting-point 
numbers (or accumulator numbers). 

SCVEndObject( v) 

Finishes the object description, and returns useful data in v: 

v»SCV.Smin, v»SCV.Smax. Minimum and maximum values of S (inclusive) 
where the object lies. Signed 16-bit integers. 

v»SCV.Rmin, v»SCV.Rmax. Minimum and maximum values of R (inclusive). 
(If splines are used. these two numbers are accurate only if the Care argument 
to SCVBeginObject is "true".) Signed 16-bit integers. 

Generating Intersections 

Armed with an object description ("v" argument to SCVEndObject), intersections can 
be calculated with calls to SCVReadRuns. 

SCVReadRuns( v,Buffer,Bufsize) 

Calculates some intersections, and records them in a buffer (Buffer is the 
address of the first usable word of the buffer, Bufsize is the number of words 
in the buffer). Two values in the vector v govern the range of S values to 
consider: values from v»SCV.Sbegin and v»SCV.Send (inclusive) are considered. 
NB: This S range must proceed unhesitatingly from v»SCV.Smin to 
v> >SCV.Smax. as returned by SCVEndObject. 

The function returns, in v: 

v> >SCV.IntPtr. Pointer to the first intersection. 

v»SCV.IntCnt. NUlnber of intersections calculated. This is guaranteed to be 
even, so that an integral number of intersection pairs ("runs") are in the 
buffer. 

v»SCV.Send. Largest S value considered. If the buffer is too small to 
contain a11 intersections in the S range requested, the range is reduced until 
the intersections will fit. On return, v> >SCV.Sbegin and v> >SCV.Send represent 
the range actually calculated. 

The intersections returned by SCVReadRuns are sorted in the buffer by S and then 
by R. Each intersection requires two words: the first is the S value, the second the 
R value. 



sev 

For Xerox Internal Use Only -- October 16, 1977 

23 May 1975 116 

The following code demonstrates a probable use of SeVReadRuns: 

SCVB~ginObject(f?lse) 
... specdy boundanes ... 
let v=vec size sev 116 
SCVEndObject( v) 

let b=vec 200 
v»SeV.Sbegin=v»SCV.Smin I IFirst range 

. t»SeV.Send=v»SeV.Smax I I Assume entire range fits. 
SCVReadRuns(v,b,200) /ICalculate intersections. 
let n=v> >SCV.IntCnt 
if n eq 0 then break / I All done. 
let p=v> >SCV.IntPtr 
for i=l to n by 2 do /ILoop for each run. 

fet S=p!O I IS value 
for R::p!1 to p!3-1 do TurnOnBit(S,R) 
]=P+4 /INext intersection pair. 

v»SCV.Sbegin::v»SCV.Send+1 / /Prepare next S range. 
] repeat 

The loop on R values of the intersection pair stops just short of the second 
intersection. rrhat the R interval should be open can be denlonstrated with the 
following example: suppose that two edges intersect a particular scan-line at R=0.5 
and R=2.5. Clearly the "width" of the object on this scan-line is 2.5-0.5=2.0. SCV 
truncates the R values before sorting them, and so reports intersections at R=O and 
R=2, again a "width" of 2. 

Operation 

SCV code is contained in the files SCVMAIN.C and SeVSORT.e. The definitions for 
the sev structure are in SeV.DFS. The sev package requires the floating~point 
package FLOArr. rrhe program SCVTEST.C is an example of the use of sev. 

Strategies 

The orderly way in which SeVReadRuns proceeds from small values of S to large 
values can sometimes be linked to the order in which information is used, e.g. added 
to the screen. If several objects are to be added in one pass over the screen, sev 
can handle that as follows: 

a. Generate object descriptions for all objects, saving the "v" vectors for each 
one. 

b. Call SCVReadRuns for each object, dumping intersections into separate 
buffers. Use the intersection information to upda.te the screen. (Or, for' the 
energetic, merge the runs from the several objects!) 

c. Repeat step b until all objects are finished. 



sev 
For Xerox Internal Use Only -- October 16, 1977 

23 May 1975 117 

Note that objects may have several closed boundaries (a call to SCVMoveTo signals 
the beginning of a new boundary). trhe most COlnmon use of this feature is to 
specify the boundaries of "holes" in the object. 

Restrictions and Caveats 

1. After scaling, Sand R must both lie between -16000 and +16000. 

2. The SCV package uses many floating-paint accumulators. However, it guarantees 
never to clobber AC 0 to 7 inclusive. Similarly, the caller must guarantee: 

a. Not to clobber AC's 28-31 inclusive unless he is willing to re-establish the 
scaling matrix with a call to SCVMatrix. 

b. Not to clobber AC's 22-27 inclusive during object generation (i.e. between a 
call to SeVBeginObject and SCVEndObject). 

3. If you do not intend to use splines at all, the code in SCV!vfAIN.e can be 
shortened considerably. Remove all code between comments /IBEGIN $$$ and / lEND 
$$$. (Eventually, conditional conlpilation will be used.) 

4. Free storage use. For each edge, an 8 word block is acquired (24 if it is a 
spline); the blocks are released by SCVReadRuns when it is no longer needed. 



SDIALOG 

For Xerox Internal Use Only -- October 16, 1977 

March 4, 1977' 

SDialog -- Simple Dialoging Package 

118 

SDialog is a package of BCPL subroutines that will aid a program in carrying on a 
teletype style interaction with its users. Here is a list of its features: 

1) SDialog handles all the display and keyboard I/O, including such things as 
backspacing over a character. 

2) SDialog handles converting things between their representations as strings and 
tlleir in ternal form. 

3) There is help provided when the user types in an illegal or malformed 
response. 

4) There are provisions for defaulting the user responses. 

5) SDialog is small (it's probably fast too, but that doesn't matter). 

Before proceeding any further you should read the memo entitled "Users' Guide for 
'Simple Dialoging'" in <Parsley)SDlg.ears. The rest of this discussion will assume a 
familiarity with that memo. ' 

SDialog will handle dialog about several different kinds of things. Each of these 
things is assigned a "radix". Note that as is usual in BCPL, all "values" are always 
16 bits, but some of those values may really be pointers to (addresses of) multiword 
vectors. Here is a list of the legal radices (the declarations may be found in the 
file UtilStr.d): 

integers ()=2) -- Only radices of 2, 8, 10, and 16 will really work right. When 
integers of radix 2. 8, and 16 are shown to the user, they are always considered 
unsigned. 

radixString (0) -- a normal BCPL string 

radixFileName (-3) 

radixCharCode (-1 ) 

a BCPL string, but user responses are checked for legality 

the ASCII code of a character, i.e., 0 <= value <= #377 

radixSwitch (-2) -- the value is either TRUE or FALSE 

If you wish to do dialoging about something other than the above, then you should 
tell SDialog that you are dialoging about a radixString and then convert the users 
response to your internal form yourself. 

Here are some notational conventions for what 
brackets are optional. If an optional argument 
follows the slash is the default value for that 
there is no default value. Whatever follows 
value of the routine (if any). 

There is one basic procedure: 

follows: Arguments enclosed in square 
is followed by a slash. then whatever 
argument. If there is no slash, then 
"_)" is an indication of the return 

DIg (prompt, radix, [defaultValue, [pointer, [defaultExtensionJ ] J) 
-) value 

where prompt is a string, radix is one of the list' above, defaultValue and value are 



SDIALOG 

For Xerox Internal Use Only -- October 16, 1977 

March 4, 1977 119 

"values" of that radix, pointer is iust that, and defaultExtension is a string. pointer 
is where to put the (converted) response if a value to this radix is really a pointer, 
c.g., if radix is radixString. 

Since this routine would be somewhat awkward to use, there are several other 
routines that call it,. In general there are two routines per radix, one that takes a 
default value and another that doesn't. 

DlgNum (pronlpt, [radix/lOl) -> integer 
DDlgNum (prompt, defaultN'umber, [radix/lO]) -> integer 

DIgStr (prompt, resultString) 
DDlgStr (prompt, defaultStnng, resultString) 

DlgFileName (prompt, resultFileName, [defaultExtensionJ) 
- > resul tFlleN ame> >SL 

DDIgFileName (promI2.,t, defaultFileName, resultFileName, 
L def a ul tExtension J) 

DIgSw (prompt) -> Switch 
DDlgSw (prompt, defaultSwitch) -> Switch 

DIgChar (prompt) -> CharCode 
DDlgChar (prompt, defaultCharCode) -> CharCode 

DIgCA (prompt) 

DIgCA is what you should call when you want something confirmed, but don't want 
any "value". DlgCA merely waits for the user to type one character. If it's a 
positive response it returns. If it's negative it calls DlgErr (see below). 

No problems are occasioned by having defaultString and resultString be the same 
(this holds for file names too). In the dialoging about file names it's possible to 
specify a default extension for that file name with or without a default file name. 
The default extension will be added to the user response if and only if that 
response did not include a period. string»SL means the length of the string. 

Now will talk about dialoging errors. Whenever anybody discovers an error in a user 
response, he should call 

DlgErr ([msg1, [msg2, [errLoc, [errS tack] ] ] ]) 

where msgl and msg2 are strings (or 0), errLoc is the label where control is to go, 
and errStack is the value that should oe in the stack pointer (address of a frame) 
when control gets to errLoe. DlgErr tY'pes the messages to the user followed by a 
carriage return and does a GotoLabel lerrStk, errLoc, nil). Note that errLoc and 
errStack had better go together. 

Actually things are a bit better than this. There is a routine 

DlgInit ([ en'Loe, [inStream, [outStream] ]) 

that may be used to set errLoc and errS tack. errLoc is generally set explicitly using 
DIglnit and errStack is set to the frame of the caller of Dlglnit. The idea is that 
just before you're about to get a pararneter from the user that helshe might screw 
up on, call DIglnit with a label that is just before the call on so:me dialoging 
routine. Then if an error is discovered, call DlgErr with the appropriate error 
messa~e. The error message will appear and the user will get another chance to 
type In the parameter. There are examples of this sort of usage of Dlglnit and 



SDIALOG 

For Xerox Internal Use Only -- October 16, 1977 

March 4, 1977 120 

DIgErr in the source code files for the subsystenls leSEM and IcGerb. Here is an 
example: 

let inFileN arne = vee IFileN arne 
DIglnit (NoInFile) 

NolnFile: 
DIgFileName ("Input", inFileNanle, "icarus") 
let inS = OpenFile CinFiIeName, ksTypeReadOnly) 
if inS eg 0 do DIgErr (inFileName, " doesn't exist") 
if Gets linS) ne icarusPassWord do 

DlgErr (In FileName, " isn't an Icarus file -- wrong password") 

The reason why Dlglnit ought to be used (rather than DlgErr alone) is that SDiaIog 
itself sometimes calls DIgErr and errLoc and errStack should be correct before that 
happens. SDialog chccks user responses for such things as: no letters or illegal digits 
in integers, only legal characters in file names. If SDialog sees such an inappropriate 
response from the user, it calls DlgErr, so things ought to be set up so that the 
user gets to try again on his response, and that's what Dlglnit does for you. 

There are three "global" variables in SDialog that a user program nlay change: 
dlgDefaulted, dlgInS, and dlgOutS. The latter two are streams. They default to keys 
and dsp respectively. Feel free to set up your own display or file streams. Note 
that these globals get set every time Dlglnit is called. 

The global variable dlgDefaulted is a boolean. It says whether or not the user has 
asked to take the defaults for the rest of the dialog. Some strange programs may 
want to intervene in this. 

There are two more routines that are available (but probably no one will want to 
use them): 

DIgGetParameter (string, [defaultSwitch]) 
DlgBackaChar (char) 

DIgGetParameter does all the work of DIg after the prompt has been displayed and 
up to the conversion of the response, i.e., it displays the default response (if any) 
and receives the user's' response (with echoing). DlgBackaChar will backspace over 
and erase a character on the display. 

SDialog uses several routines fronl the package UtilStr, so normally SDialog and 
UtilStr should be loaded together. You Iuay want to combine and tailor the source 
code of these two packages for your own uses. Help is available from the 

, main tainer(s) of the packages. 



For Xero){ Internal Use Only -- October 16, 1977 

eu hic spline packages May 6, 1977 121 

Cubic spline packages: SPLINE 1 & SPLINE2 

The files SPLINE1.BCPL and SPLINE2.BCPL contain procedures for fitting cubic 
splines to sets of data pOints, called knots. The algorithms are documented in the 
report "Spline Curve Techniques" (by Baudelaire, Flegal, & Sproull), May 1977. 

The two packages contain a procedure of the SAME name, with an IDENTICAL 
calling sequence: 

success+-ParametricSpline(N, x, y, pIx, p2x, p3x, ply, p2y, p3y, type [0]) 

N n::INI is the number of knots. The si~ of N tells whether the knot 
coorCIinates are given in integer format (N is negative) or floating point 
format (N is positive). 

x, ~re two tables containing the coordinates of the knots. They are of length n 
(integer) or 2*n (floating point). 

pIx, p2x, p3x, ply, p2y, p3y are six tables of length 2*n in which the coefficients 
defining the parametric splines are returned (floating point). These 
coefficients are, respectively, the first, second and . third derivatives at each 
knot of the cubic splines x(t) and yet), t varying between 0 and 1. Notice 
that, although only the first n-1 values of these derivatives are necessary, the 
arrays should be of length 2*n. 

types either 0 (for natural end conditions, i.e. open ended curve) or 1 (for 
periodicity, i.e. cyclic curve). In the later case, it is mandatory that the fust 
and last knots be identical. The type defaults to O. 

The implementation of the parametric spline algorithm is different in the two 
packages: SPLINE1 ilnplements a unit step parametrization (algorithm 1.2.7), while 
SPLINE2 implements a chord length paranletrization (algorithm 1.2.5). 

In addition, SPLINE2 contains the procedure CubicSpline which computes a general 
non-parametric cubic spline (algorithm 1.2.5). The calling sequence is: 

success+-CubicSpline(N, x, y, ply, p2y, p3y, type [0]) 

with the same conventions as above. 

All the procedures need free storage, which they get from a zone you must provide 
by setting the static PSzone. 'rhe amount of storage needed is as follows: In the 
basic case (n positive, type=O): enough for 8 floating point registers (16), plus 4*n. If 
n is negative, the coordinates have to be converted to floating point format: so add 
4*n. If type is 1, add 6*n. 

The static PSerror points to an error procedure that simply traps to SWAT. The 
error routine is called by the statement: " ... rcsultis PSerror(errorNumber);" You may 
substitute your own error handling routine. errorNulnber=1 means I not enough 
storage." Other errors are probably fatal. 

The spline packages use the FLOAT package for all arithmetic calculations. The 
format of floating point nUlllbcrs is consistent with the conventions of that package. 



Strings Package 

For Xerox Internal Use Only -- October 16, 1977 

July 8; 1977 

Strings Package 

122 

This package provides a small set of useful string-manipulation primitives. There are 
two independent modules: a "streanls" module implementing standard stream 
operations reading and writing strings, and a "utility" module containing a small set 
of procedures for concatenating, extracting, and comparing strings. 

The utility operations parallel some of those provided in Bruce Parsley's UtilStr 
package. The principal departures from that package are: 

1. Procedures that create new strings get stora~e by allocating it from sysZone 
rather than requiring that the caller supply It. 

2. Operations on large strings are relatively efficient because the ByteBlt 
package is used. 

3. No format conversion operations are provided, since the availability of string 
streams makes it possible to use existing software that formats output to 
streams (e.g., the procedures in the operating system. or the 'l'emplate 
package). 

The .br files are packaged as Strings.dm, and the sources are contained in 
StringsSource.dm, which also includes various command files. 

1. String Streams 

The "streams" module (file StringStrealns.br) provides one external procedure for 
creating a string stream; all other access to the stream is via the standard stream 
operations. The package makes use of the operating systeln's "fast streams" 
mechanism, so it is relatively efficient when dealing with long strings. 

CreateStringStream(string, InaxLength [OJ, firstChar [lJ, zone [sysZonel) = ss 
Creates and returns a string stream reading or writing the specified BCPL string. 
If maxLength is zero (the default), assumes that an existing string has been 
supplied (presumably for reading); if nonzero, assumes only that a block of 
storage capable of holding a string of maxLength characters has been provided. 
firstChar is the index of the first character to be read or written (remember 
that the first character of a BCPL string is numbered 1, not 0). By appropriate 
setting of maxLength and firstChar one may read partial substrings or append to 
existing strings. rrhe stream structure is allocated from the specified zone. 

Gets( ss ), Pu ts( ss, c) 
Reads or writes the next character in the string. If the end of the string is 
exceeded (either its existing length or maxLength), Errors(ss, ecEof) is called 
(ecEof :: 1302). 

Endofs(ss) = true or false 
Returns true if the next Gets or Puts would call Errors. 

C~s~~~ . 
If any Puts operations have been executed, updates the string's length to be the 
current position (i.e., the index of the last character read or written). Then 
destroys the stream by returning it to the zone from which it was allocated. 



Strings Package 

For Xerox Internal Use Only -- October 16, 1977 

July 8, 1977 . 123 

An additional module StringOEP.br is provided. It declares the Overlay Entry Points 
(OEPs) for the StringStreams module, which need be done only if the module is 
loaded as part of an overlay. Consult the author for further information. 

2. String Utilities 

The "utilities" module (file StringUtil.br) requires that the ByteBlt package (file 
AltoByteBlt.br8 also be loaded. All strings created by these procedures are allocated 
frool a zone default sysZone), so the caller should return them by calling Free when 
done wi th them. 

ExtractSubstring(string, first [1], last [string»String.length], zone [sysZone]) :: 
newString 
Extracts the "first" through "last" characters of the supplied string and returns 
the result as a new string. The defaults are such that the entire source string 
is copied, thereby providing a convenient way to create copies of strings. 

ConcatenateStrings(sl, s2. free1 [falseJ, free2 [false], zone [sysZone]) = newString 
Returns the result of concatenatIng strings sl and s2. Then trees sl if freel is 
true and s2 if free2 is true. This facilitates writing embedded string expressions 
whose result is a single string. with all intermediate strings discarded. - (All 
strings must belong to the same zone.) 

CopyS tring( dest, source) 
Simply copies the source string into the block pointed to by dest, which had 
better be big enough. This procedure does not allocate new storage. 

Strin

8
COmpare(Sl, s2, firstl [11, last1 [sl»String.length]. first2 [1], last2 

s2> >String.length]) = resuTt 
ompares the first 1 through lastl characters of string sl with the first2 through 

last2 characters of s2. Returns a code describing the outcome: 

-2 sl is an initial substring of s2. 
-1 sl is "less than" s2 but not an initial substring. 
o sl is "equal to" s2. 
1 sl is "greater than" s2. 

Lower-case letters collate with their upper-case equivalents. The arguments 
beyond s2 are optional and default to the entire respective strings. 

3. Revision History 

May 24, 1977 

First release. 

July 8, 1977 

Optional zone argument added to ExtractSubstring and ConcatenateStrings. 



Template Package 

For Xerox: Internal Use Only -- October 16, 1977 

October 1, 1976 

Template Package 

·124 

The Template Packa~e contains a single procedure, PutTemplate, which formats output 
to a stream accordlng to a template provided as a string. This software serves 
essentially the same purpose as the existing Format Package, but is implemented 
much more efficiently (it contains one-third as much code, requires one-fifth as 
much stack space, and runs over ten times as fast as Format). rl1he major difference 
from Format is that Put'femplate outputs to a stream rather than to a string 
(though of course one could obtain the same effect by outputting to a string 
stream). The template syntax is also different, and PutTemplate omits a few 
miscellaneous capabilities such as hexadecimal output. A Nova version of this 
package is available. 

PutTemplate(stream, template, parI, par2, ''', parN) 
Writes the "template" (a BCPL string) to stream". Within the template may 
appear zero or more escape sequences of the form: 

$ modifiers command 

For each of these, the next parameter (starting at "parI") is substituted, with 
conversion as specified by the escape sequence. . 

An escape sequence consists of a dollar sign, followed by an optional modifier 
sequence, followed by a one- or two-letter command (upper and lower case are 
equivalent). There should not be any spaces or other extraneous characters 
within the escape se9...uence. A dollar sign may be included literally in the 
template by writing "$!l>". 

The defined esca:Qe sequences are as follows. 
modifier sequence (to be explained shortly). 

"fI" stands for the optional 

$S 

$US 

$C 

$IID 

$#0 

$IIB 

$P 

Treat the parameter as a BCPL string. 

Treat the parameter as an unpacked string. This is a vector 
consisting of a character count in the first word followed by that 
numbm' of characters right-justified in succeeding words. 

Treat the parameter as a single right-justified character. 

Output the parameter as a decimal integer. 

Output the parameter as an octal integer. 

Ou tpu t the parame ter as a· binary integer. 

Treat the parameter as a procedure, passing it the stream and 
the next parameter as arguments (hence a $P uses up two of 
Put'remplate's parameters). 

In the case of numeric output commands (namely $D, $0, and $B), a modifier 
sequence may be included between the dOllar sign and the command. These 
modifiers further control the interpretation and formatting of the output. 

One kind of modifier is a decimal number (of one or more digits). If present, 
it specifies the minimuIll field width to be used in outputting the number. If 
the number contains fewer digits than specified for the field width, then leading 



For Xerox. Internal Use Only -- October 16, 1977 

Template Package October 1, 1976 125 

fiIl characters (normally spaces; see below) are supplied. However, if the number 
contains more aigits than will fit in the field, the width specification is ignored 

. and as many digits as necessary are printed. The default field width is one. 

Other modifiers consist of single letters and are as follows: 

U Treat the parameter as an unsigned rather than a signed inte&er. 
(Generally one should invoke this modifier when outputtIng 
numbers in octal or binary.) 

E Treat the parameter as a double-precision (32-bit) integer 
(mnemonic "Extended"). In this case, the argument is a pointer 
to a two-word vector containing the integer to be printed, with 
the high-order 16 bits in the first word and the low-order 16 
hits in the second. Double-precision numbers may be treated as 
ei ther signed or unsigned. 

Fx Use the character "x" for leading fill, when necessary, rather than 
space. 

For example, the escape sequence "$12UEFOQ" will output an unsigned, double
precision octal number, right-justified in a 12-digit field, with leading zeroes 
printed as zeroes rather than spaces. 

PutTemplate will call SysErr if it encounters an escape sequence it doesn't 
understand or if there aren't enough parameters to fill all the escape sequences 
in the template. PutTelnplate can handle a nlaxinlum of 20 paranleters. 



TIME 

For Xerox Internal Use Only -- October 16, 1977 

April 25, 1975. 

Daytime and interval timing package 

126 

There now exist a pair of packages which provide the following useful facilities for 
Al to programs: 

The "timer" package, which provides (the illusion of) a continuously 
running timer with a grain of 1 millisecona and a width of 32 bits, thus 
a period of about a month, and (the illusion of) a time-of-day clock with 
a grain of 1 second and a width of 32 bits, origined at 1901 and good 
through about 2050. These routines are now available in the operating 
system itself. See the Operating System Reference Manual. 

The "daytime" package, which provides for converting time-of-day 
readings to and from human-readable form. 

'rhe chief value of the timer package is that it continues to function properly 
without losing time even if the Alto is booted, provided that page 1 is not clobbered 
and that the Alto does not remain non compos mentis for longer than the period of 
the hardware clock (about 20 minutes). Even in this case, timing will resume 
properly if one obtains the correct time of day from some other source and informs 
the timer package thereof; of course, the accuracy of timings spanning such an event 
is dependent on the accuracy of the new time. 

1. Daytime 

The daytime package is written in Bcpl. It is found in CTIME.BR. It defines 7 
procedures (UNPACKDT, PACKDT, WRITEUDT, CONVUDrr, FINDMONTH, 
r"IONTHNAME, WEEKDAY). It requires the timer package. rrhe procedures do the 
following: 

UNPACKDT(dv, uv) - dv!O and dv!1 contain a time-of-day. (If dv=O, 
uses the current time from DAYTIME.) Unpacks this into uv!O through 
uv!6 as follows: 

uv!O - actual year (e.g. 1974) 
uv!1 - month (January=O) 
uv!2 - day of month (first day=1) 
uv!3 - hour of day (midnight=O) 
uv!4 - minute 
uv!5 - second 
uv!6 true if daylight saving time in effect 

PACKDT(uv, dv, dstflag) - performs the inverse of UNPACKDT. 
Returns 0 if successful; otherwise, returns 1 +j, where uV!j was illegal (e.g. 
returns 2 if the month was invalid). If dstflag is not supplied or false, 
assumes uv is the result of converting a string, and uses daylight saving 
time if appropriate to the date in uv (ignoring uv!6); if dstflag is true, 
uses uv!6 to decide whether daylight saving time is in effect. 

WRITEUDT(strm, uv) - takes an unpacked time-of-day (inuv!O 
through uv!6) and writes it on the stream strm in the form 29-DEC-
74 18:39:47. If uv=O, uses the current time from DAYTIME. Does not 
perform any of the error checks of P ACKDT, so will produce garbage if 
given garbage. 



TIME .. 

For Xerox Internal Use Only - ... October 16, 1977 

April 25, 1975· 

CONVUDT(strg, uv) - performs the same conversion as WRITEUDT, 
but deposits the result In the string strg. Returns strg as its value. 

FINDMONTH(strg) - tries to interpret the string strg as the name 
of a month. If successful, returns the month number (0 through 11); if 
unsuccessful. returns -1. Strg must be at least 3 characters long, and 
must be the prefix of some month name, ignoring upper/lower case 
distinctions. 

MONTHNAME(mo) - returns a string which is the name of month 
mo (0 through 11), e.g. "December". The user should not write into this 
string. 

WEEKDAY( dv) - returns the day of the week of dv (Monday=O, 
Sunday=6). 

2. Timer 

127 

The timer package is written in assembly language. It is found in TIMER.BR. It 
defines 3 procedures (TIMER. SETDAyrrIME, DAYTIME) and does not require any 
external procedures. It does use 6 locations in page 1, currently 572 through 577, 
which are permanently reserved for it. The procedures perform the following 
functions. 

TIMER(tv) - reads the millisecond tiIner into tv!O and tv!1. Returns 
tv!1 as its value. This function is available as part of the Alto operating 
system. 

SETDAYTIME(dv) - declares the current time-of-day to be the time
of-day in dv!O and dv!1. (This value might have been constructed using 
the PACKDT procedure in the daytime package. It is not reasonable to 
compute time-of-day values by hand.) This function is available as part of 
the Alto operating system. 

DAYTIME(dv) - reads the current time-of-day into dv!O and dv!1. 
Returns dv as its value. This function is available as part of the Alto 
operating system. 

2.1. UPDATErrIMER 

The timer package uses an auxiliary procedure UPDATETIMERO, found in 
UPDATETI11ER.BR, to move timing information from the hardware clock into 
software variables. Since this procedure must be called at least once a second Con 
the average) for the timer package to function properly, the operating system calls 
UPDATETIMERO on every display field interrupt. The timer package also calls 
UPDATETIMER under some exceptional circumstances (turning the interrupt system 
off during the call), so UPDATETIMER Inust be loaded to use TIMER. User 
programs should not call UPDATETIMER at all. 

O.S. maintainers note: the page 1 pointers in UPDATETIMER.A must agree with 
those in TIMER.A, otherwise there will be chaos. 



Timer Package 

For Xero,," Internal Use Only -- October 16, 1977 

February· 26, 1976 

Timer Package 

128 

This package contains a small set of trivial procedures for setting, testing, and 
blocking on timers. It exists as a separate package so as to isolate its Alto
dependent implementation in one place (an exactly compatible version for the Nova 
is also available). For example, calls to this timer package are scattered throughout 
a rather large body of new Alto Pup software which is intended to run without 
change on the Nova as well. The package is written in assembly language and 
con tains only 33 words of code. 

A "Timer", as used in this package, is a single word whose address is passed to the 
procedures in this package and used as a temporary variable by those procedures. 
rrhe actual manner in which this word is used is not of interest to callers. 

The unit of time is 10 milliseconds (again, for compatibility with the Nova). Since 
the Alto clock used in this package lmemory location 11430) has an period of 39 
milliseconds, intervals passed to these procedures must be converted to Alto clock 
units. Fractions of an Alto tick are rounded up, with the effect that the actual 
elapsed time will be at least as great as that specified, possibly as much as 39 
milliseconds greater. These procedures are not intended for use in making precise 
measurements or maintaining clocks, but rather for controlling asynchronous 
operations such as Pup timeouts and retransmissions. 

lni tializeTimerO 
Initializes the timer package. It should be called once at the beginning of a 
program that uses the other routines in this package. In the Alto version, 
InitializeTimer is a complete no-op, and is included only for compatibility with 
the Nova version in which some initialization is actually required. 

SetTiIner(1vTimer ,Del ta) 
Sets the timer word pointed to by IvTimer so that it will expire at the current 
time plus Delta (in units of 10 milliseconds). Delta must be less than 2t15 (a 
Ii t tIe over 5 minutes). 

TimerHasExpired(lvTimer) = true or false 
Returns true if the timer pointed to by IvTimer has expired (Le .• the interval 
Delta specified in the last SetTimer has elapsed). 

Dismiss(Del ta) 
Blocks (i.e., suspends execution) until the interval Delta has elapsed (Delta is 
specified in units of 10 milliseconds and must be less than 2t15). Blocking is 
accomplished by calling the external procedure BlockO, which is defined in the 
BCPL Context Package and causes control to pass to other processes. If the 
Context Package is not being used, it suffices to define an external procedure 
BlockO which just returns immediately. The effect of Disnliss(Delta) is 
approximately equivalent to the following BCPL code, but implemented somewhat 
more efficiently: 

let Timer=nil 
SetTimer(lv Timer,Delta) 
until' TimerHasExpired(lv Timer) do BlockO 



For Xerox Internal Use Only -- October 16, 1977 

Bcpl Trace package July 18, 1977 129 

Bcpll Asm procedure tracing package 

This package 'makes it possible to trace Bcpl and Asm procedures on the Alto, similar 
to the TRACE facility available in Interlisp. The package normally uses Taft's 
Template (formatted output) package, but is usable without it. 

To start tracing calls and returns of procedure proc, call 
Trace(proc, str). 

where str, as descnbed below, specifies the format of the output which - Trace 
produces. To stop tracing proc, call 

UnTrace(proc ). 
If you want to trace a procedure but produce all the output yourself, you can call 

ProcTrace(proc, tproc) 
which turns on tracing of proc, but instead of using the second argument as an 
output template, causes tproc to be called just before proc is entered and just after 
proc returns. 'I'he call when proc is entered is of the form 

tproc(proc, Iv argO, n, 0) 
where n is the number of arguments and argO is the first argument; when proc 
returns, the call is 

tproc(proc, Iv argO, n, Iv val) 
where val is the value returned. (Note that tproc may alter the argtlments or the 
return value if it wishes.) Proc may be any Bcpl procedure (including the 
procedures in the Trace package or the PutTemplate procedure), or any assembly 
language procedure that begins with the same 4 instructions as a standard BCPL 
procedure, i.e. 

STA 3,1,2 
JSR @370 
frame size 
JSR @367 

All output produced by tracing goes to the stream 
TraceStream 

or to the system display stream dsp if TraceStream is zero. If you set the static 
TraceLines 

to a non-zero value, the tracing routines will pause after, every TraceLines lines of 
output, as follows: 

print 3 *'s, 
wait for a character to be typed, 
print 2 more *'s, 

and then proceed. Other output to the same stream (e.g. from the program being 
traced) will not be counted in the line count, since the tracing routines have no way 
to intercept it, but the package constructs a stream 

TraceOuts 
to which you can do Puts and which does the line counting. 

The output produced for a F],'race'd procedure consists essentially of the arguments 
when the procedure is entered, and the value when the procedure returns. Output is 
indented 2N lllod 16 spaces, where N is the depth of nesting in traced procedures, 
siInilar to the Interlisp convention. (The procedure 

TraceI nden t( stream) 
writes the appropriate number of spaces on a stream, e.g. TraceOuts.) The format of 
the output is determined by the str argument to Trace. There are 4 cases: 

1) Str=O, or str omitted, e.g. Trace(foo). In this case, the message on entry is 
Iocfoo: 
argl arg2 ... argn 

where locfoo I is the octal location of the first instruction of foo, and the arguments 
are printed in octal (by Wos). The return message is 



For Xero:l{ Internal Use Only -- October 16, 1977 

Bcpl Trace package July 18, 1977 130 

locfoo returns val 
where val is the value returned, also in octal. 

2) Str contains neither $; nor $:, e.g. Trace(foo, "Foo"). The messages are the same, 
except that the string Foo appears in place of the location locfoo. 

3) Str contains a $;, e.g. Trace(foo,· "foo: al=$D;foo = $0"). In this case, the portion 
or str before the $; is used as the template given to PutTemplate for printing the 
arguments, and the portion after the $; is used for printing the value. If there are 
more arguments than $ fields, the extra arguments are printed with Wos; if there 
are fewer, printing stops after the last $ field for which an argument was supplied. 
This produces pleasing output for procedures which take a variable number of 
arguments. 

4) Str contains no $;, but does contain a $:, e.g. Trace(foo, "FOO: A1:::$D")' This is 
equivalent to Trace(foo, "FOO: Al=$D;FOO returns $6UO"), i.e. the string up to the $: 
is taken as the procedure name and the word "returns" and an octal format are 
supplied. 

Of the 4 options, 1 and 2 do not require the presence of the Template package; 3 
and 4 do require Template if str contains any $ fields. In the latter case, if the 
Template package is not loaded, all values will be printed with Wos. Use of 
ProcTrace does not require the Template package, unless, of course, the user's own 
trace-print procedures use Template. . 

Note that Trace Can be called from Swat, but only with str omitted or zero. 
ProcTrace and UnTrace can be called freely from Swat. 



UTILSTR 

1. Introduction 

For Xerox Internal Use Only -- October 16, 1977 

March 4, 1977 

UtilStr -- Utility and String Package 

131 

UtiIStr is a collection of BCPL subroutines that do string manipulation, double 
precision arithmetic, and some other things. 

It should be noted that these routines don't have much to do with each other, so if 
you only want to use some of them, feel free to extract or copy from the source 
code. UtilStr uses definitions from the file UtilStr.d. If you use UtilStr in some 
program, you will probably want to do a "get" on this file. UtilStr only uses 
routines from the O.S. 

There are three sections to this document. The rest of this Introduction will give 
the various notational and naming conventions used in the other two. Section II, 
"Descriptions of Subroutines", gives the calling sequences and a brief description of 
each routine. Section III, "List of Subroutines", just lists all the calling sequences. 
It is meant to be used for quick reference purposes. 

Here are some notational conventions for what follows: Arguments enclosed in square 
brackets are optional. If an optional argument is followed by a slash, then whatever 
follows the slash is the default value for that argument. If there is no slash, then 
there is no default value. Whatever follows "_)" is an indication of the return 
value of the routine (if any). str»SL rneans the length of a string. 

Here is a list of conventions for argument names. In general, the "type" of an 
argument is indicated by its name. 

value -- a value is always associated with a radix which 
specifies the value's type 

radix -- one of the following constants 
(manifests are defined in the file UtilStr.d): 
2 -- binary integer 
8 -- octal integer 
10 -- decimal integer 
16 -- hexadecimal integer 
radixString (0) -- a BCPL string 
radixFileN arne ~-3) -- a BCPL string for a legal file name 
radixCharCode -1) -- an ASCII character code 
radixSwitch (-2 -- something that is either true or false 

num -- a signed integer 
str -- a BCPL string, e.g., let str = vec IString, "literal string" 
char -- an ASCII character code, i.e., 0 Ie char Ie 11377 
sw -- a switch, i.e., sw eq true % sw eq false 
index -- a character position in a string 
dbl -- a double precision integer, e.g., let dbl = vec 1 
MI, PI -- minus 1 and plus 1 respectively 



UTILSTR' 

For Xerox Internal Use Only -- October 16, 1977 

March· 4, 1977 

II. Descriptions of Subroutines 

/ / String manipulation 

ValueToString (value, destinationStr, [radix/10]) -) destinationStr 

132 

Convert value to a string according to the radix and put that string in 
destinationStr. 

StringToValue (sourceStr, [radix/10, [resultValue] J) -) value 

Convert sourceStr to a value according to the radix. Put the value into 
resultValue if and only if radix specifies a multiword type thing. 

CopyString (sourceStr, destinationStr) -) destinationStr 

Copy sourceStr into destinationStr. 

AppendChar (char, destinationStr) -) destinationStr 

Append char onto destinationStr. 

AppendString (sourceStr, destinationStr) -) destinationStr 

Append sourceStr onto destinationStr. 

AppendNum (value, destinationStr, [radix/10]) -) destinationStr 

Convert value into a string according to radix and append it onto 
destinationStr. 

MakeString (destinationStr, radix,value, [radix,value, ... ]) 
-) destinationStr 

Make up a string in destinationStr. Convert each of the values into a string 
according to its paired radix and concatenate the strings. 

ImbedChar (char, destin a tionStr, [index/ destina tionStr) )SL+ 1]) 
-) destinationStr 

Imbed (insert) char in destinationStr at the position specified by index. 

ExtractString (sStr, dStr, beginIndexMl, [endIndexPl/sStr»SL+l]) 
-) dStr 

Make a string in dStr from the characters in sStr from beginlndexMl to 
endlndexPl exclusive. 

SearchChar (searchStr, for Char, [beginIndexMl/O]) -) index/O 

Search searchStr for for Char beginning at character position beginlndexMl + l. 
If found, return the index, otherwise return O. 

SearchString (searchStr, forStr, [beginIndexMl/O, [capSw/false] ] 
-) indexlO 

Search searchStr for forStr beginning at character- position beginlndexM1 + l. 
If found, return the index, otherwise return O. If capSw, ignore capitalization. 

StringEqual (str1, str2, r capSw/false]) -) true/false 



UTILSTR 

For Xerox Internal Use Only :-- October 16, 1977 

March 4, 1977 

Decide whether or not strl eq str2. If capSw, ignore capitalization. 

/ / Miscellaneous 

Sc (numl, nurn2) -) -1/0/1 

133 

You may not know it, but (exp relation exp) doesn't work correctly if the two 
expressions differ by more that 2**15. This routine works correctly for all 
values of numl and num2. The results are the same as with Usc, i.e., -1 if 
numl Is num2, 0 if 'numl eq num2, and 1 if numl gr num2. 

Abs (num) -) nurn 

= (num Is 0 ? -num, num) 

Max (num1, num2) -) num 

= ( Sc (numl, num2) ge 0 ? numI, num2 ) 

Min (numl, num2) -) num 

= ( Sc (numl, num2) Ie 0 ? numl, num2 ) 

f'Ainr/Iax (minNum, num, maxNum) -) num 

= Min (maxNum, Max (minNum, num)) 

InBounds (minNum, num, maxNum) -) true/false 

= Sc (minNum, num) Ie 0 & Sc (num, maxNum) Ie 0 

IntDivide, (dividend, divisor) -) num 

= (dividend + divisor - I) / divisor 

ZoneLeft (zone) -) available memory size 

Return the size of the largest buffer left in zone. 

WriteForm (stream, radix,value, [radix,value, ... J) 
Convert each value to a string according to its paired radix and write it to 
stream. 

/ / DOli ble precision arithmetic 

DblMul (multiplicand I, multiplicand2, dblResult) -) dblResult!1 

dbIResult f- multiplicand I * multiplicand2 

DblDiv (dbIDividend, divisor, dblHesult) -) dblResult!l 

dblResult <- dblDividend / divisor 

DblAdd (dbIAddendl, dbiAddend2, dblResult) -) dblResult!1 

dblResult f- dblAddendl + dbiAddend2 

DblSub (dbiMinuend, dblSubtrahend, dblResult) -) dbiResult!1 



UTILSTR· 

For Xcro:{ Internal Use Only -- October 16, 1977 

March 4, 1977 

dblResult +- dblMinuend - dblSubtrahend 

DblSingAdd (dbIAddend, addend, dblResult) -) dblResult!1 

dblResult +- dblAddend + addend 

DblMulAdd (multiplicandl, multiplicand2, addend, dblResult) 
-) dblResult!l 

dblResult +- (multiplicand1 * rnultiplicand2) + addend 

DblMulDiv (multiplicand 1, multiplicand2, divisor, [dbIResult]) 
-) dblResultf1 

134 

dbl f- (multiplicand 1 * multiplicand2) / divisor; if numargs eq 4, dblResult +
dbl 



UTILSTR 

For Xerox Internal Use Only -- October 16, 1977 

March 4, 1977 

III. List of Subroutines 

/ / String manipulation 

ValueToString (value, destinationStr, [radix/10]) -) destinationStr 
StringToValue (sourceStr, [radix/10, fresultValUC] ]) -) value 
CopyString (sourceStr, destino.tionStr -) destinationStr 
AppendChar (char, destinationStr) -) destinationStr 
AppendString (sourceStr, destinationStr1 -) dcstinutionStr 
AppendNum (value, destinutionStr, rraaix/10]) -) destinationStr 
MakeString (aestinationStr, radix,vafue, [radix,value, ... J) 

-) destinationStr 
ImbedChar (char, destinationStr, [index/destinationStr»SL+l]) 

-) destinationStr 
ExtractString (sStr, dStr, beginlndexMl, [endlndexP1/sStr»SL+l]) 

-) destinatlOnStr 
Search Char (searchStr, forChar, [beginlndexMl/O]) -) index/O 
SearchString (searchStr, forStr, [bcginlndexMl/O, [capSw/false] ] 

-) index/O 
StringEqual (str1, str2, [capSw/false]) -) true/false 

/ / Miscellaneous 

Sc (numl, num2) -) -1/0/1 
Abs ~num) -) num 
Max numl, num2) -> num 
Min Huml, num2) -> num 
Minrv ax (minNum, num, maxNum) -) num 
InBounds bminNum, num, maxNum) -> true/false 

. IntDivide dividend, divisor) -) num 
ZoneLeft zone) -) available memory size 
WriteForm (stream, radix,value, [radix,value, ... J) 

/ / Double precision arithmetic 

DblMul (multiplicand1, multiplicand2, dblResult) -) dblResult!1 
DblDiv (dblDividend, divisor, dblRcsult 1 -) dbll{esult!1 . 
DblAdd {dbIAddendl, dblAddend2, dblResult) -) dblResult!1 
DblSub (dbIMinuend, dblSubtrahend, dblResult) -) dblResult!l 
DblSingAdd (dblAddend, addend, dblResult) -) dblResult!l 
DblIvlulAdd (multiplicand 1, multiplicand2, addend, dblResult) 

-) d blResul t! 1 
DblMulDiv (multiplicandl, multiplicand2, divisor, [dblResultJ) 

- ) d blResult! 1 

135 



For Xerox Internal Use Only -- October 16, 1977 

Virtual Memory package August 1, 1977 136· 

VMEM, a virtual memory package for the Alto 

***** Note: there has been a change in the division of VMEM procedures 
among the .BR files. See the last section of this writeup for details. ***** 

The VMEM package provides a virtual memory facility for Alto programs. 
The virtual address space is 21"24 words; the page size is 2t8 (256, 400b) words. 

The package USeS several data structures for which you (the user) must 
supply storage, as follows: . 

1) A hash map, whose size is 2P+1 words, where P is the largest number of 
256-word paging buffers you will ever have allocated at one time, rounded up to a 
power of 2 l e.g. if you have 20K for paging buffers, this is 80 buffers, so P::128). 

2) An optional logging area, located just below the hash map. If desired, 
VMEM will make an entry in this area each time you make a reference to a virtual 
address, and call a procedure when the area fills up. 

3) A buffer pointer table of 256 words. 
4) Paging buffers, as many as you want, located anywhere in core (not 

necessarily contiguous). Each group of buffers is truncated if necessary so that it 
starts at an address which is a multiple of the page size (400b) and is a multiple 
of the page size long. 

5) A locked cell list of 2N+2 words, where N is the largest number of cells 
you will ever want to use as locks (see below). 

VMEM is designed to use special microcode loaded into the Alto 
microinstruction RAM, although it will run properly without such microcode. 
Unfortunately, there is no straightforward procedure for getting the relevant 
microcode into the RAM and getting it properly hooked up to the Nova emulator, if 
it is to share the RAM with any other special microcode. People wishing to use the 
RAM with V~t1EM should be prepared to include the microcode source in their own 
microprograms. 

1. Initialization 

vmemRam8 
VmemSoft 

Before calling InitializeVmem, you must call one of these two procedures to 
tell VMEM whether or not you are using the RAM. After calling InitializeVmem, 
you may call either of these procedures at any time if you want. 

InitializeVrnem(HMAP, HMAPSIZE, BPTAB, LCL, LLCL, MSBASE, MSPROC[, 
NBPROC]) 

HMAP is the address of the hash map; HMAPSIZE is 2P (256 in the 
example of 80 buffers.) (VMEM will clear the hash map.) BPTAB is the address of 
the buffer pointer tabre. LCL is the address of the locked cell list, and LLCL is its 
length. MSBASE is the base of the logging area (below HMAP), or 0 if no log~ing 
is desired. J\1SPROC is the procedure to call when the logging area fills up lsee 
below). NBPROC is an optional procedure to call when VMEM cannot find enough 
unlocked buffers to handle a page fault or a SnarfBuffer call (see below): VMEM 
will call NBPROC and then try again, indefinitely. If NBPROC is not supplied, 
VMEIVl will call Swat instead. 

AddBuffers(FIRST, LAST) 



For Xerox Internal Use Only -- October 16, 1977 

Virtual Memory package August ·1, 1977 137 

In order for VMEM to function, you lnust give it space for page buffers 
with AddBuffers. FIRST and LASrr are the bounds of a core area to be used for 
this purpose. FIRST will be rounded up to the next multiple of the page size if 
necessary, and LAST+l rounded down; thus AddBuffers(7700b, l0077b) followed by 
AddBuffers(lOlOOb, 10377b) will NOT result in the space from 1000Qb through 
10377b being made into a page buffer. 

2. Mapping functions 

A 24-bit address: 

$-+-+-+-+-+-+-+-$-+-+-+-+-+-+-+-$-+-+-+-+-+-+-+-$ 
I high part I low part 
$-+-+-+-+-+-+-+-$-+-+-+-+-+-+-+-$-+-+-+-+-+-+-+-$ 
I virtual page part I word part 
$-+-+-+-+-+-+-+-$-+-+-+-+-+-+-+-$-+-+-+-+-+-+-+-$ 

"The virtual address (HI, LO)" means a virtual address whose high part is bits 8-15 
of HI (bits 0-7 being zero) and whose low part is LO. 

For implementation reasons, virtual pages -8 through -1 are not legal. If 
you try to read from page -1, you will get back unspecified data. If you try to 
read from pages -8 through -2, or write in any of these pages, VMEM will call 
Swat. 

All of the mapping functions described in this section are declared global 
(page zero), so you must declare them external with @-sign. 

VRR2(HI, LO) 

Returns a core address corresponding to the virtual address (HI, LO), having 
read the page into a buffer if necessary. 

VWR2(HI, LO) 

Same as VRR2, but assumes you are about to write into the page, so marles 
it as needing to be rewritten onto the disk. 

VRR1(LO) 

Same as VRR2(O, LO). If you only have a 21'16-word virtual space,. you 
can save a small amount of code by using VRR 1 instead of VRR2. 

VWRl(LO) 

Same as VWR2(O, LO). 

VRR(PTR) 

Same as VRR2(PTR!0, PTR!l). Useful if you are carrying around addresses 
in vectors, as Lisp does. 

VWR(PTR) 

Same as VWR2(PTR!O, PTR!l). 

VRRP(VP) 



For Xerox Internal Use Only -- October 16, 1977 

Virtual Memory package August 1, 1977 138 

Same as VRR2[VP RSHIFT 8, VP LSHIFT 8), i.e. converts a virtual address 
whose virtual page number is VP and whose word part is zero. Useful if you are 
only using the virtual memory package to manage buffers, and doing your own data 
scanning. 

VWRP(VP) 

Same as VWR2(VP RSHIFT 8, VP LSHIFT 8). 

3. Statistics 

MSPROC(ARG, NL VP]) [MSPROC from InitializeVmem] 

If N<O, ARG is a core page number (i.e. a core address divided by 400b), 
and the type of event depends on N as follows: 

N=-l: page ARG is being freed because it is needed for some other purpose 
than holding its current page of data. VP is the virtual address currently in the 
page. 

N=-2: page ARG, formerly not available to VME~l, has now become available 
(through Add Buffers or UnsnarfBuffer). . 

N=-3: page ARG, formerly available to VMEM, has now become unavailable 
(through SnarfBuffer). 

If N>=O, ARG is the MSBASE argument to InitializeVmem or InitSoftVmem, 
and N words (N/2 entries) starting at ARG contain 2-word entries representing calls 
on the address mapping {unctions. Each entry consists of a 24-bit virtual address 
with the top 8 bits unused: no distinction is currently made between reads and 
writes. If you are not using the RA!v1, VMEM will start reusing the area starting 
at MSBASE; however, if you are using the RAM:, VMEM cannot determine the correct 
value of N (and will call MSPROC with N=O), so MSPROC must return this value 
and reset the R or S register itself. 

4. Other facilities 

REHASHMAP(VP) 

Looks up the virtual address VP*400b in the hash map, returning 0 if 
present, or the address of an appropriate empty slot in the hash IHap if not present. 
Used by the page fault routine to reconstruct the hash map, but also useful for 
determining quickly whether a page is in core. 

VirtualPage(CP AGE) 

Returns the virtual page currently occupying core page CPAGE. Returns-2 
if CPAGE is currently empty. or -3 if CPAGE is unavailable to VMEM. If CPAGE 
is not in the range 0 to 377b inclusive, returns garbage. 

SnarfBuffer(BUFPTRL NBUFS, ALIGN]) 

BUFPTR must be the address of a buffer (i.e. a multiple of the page size) 
within the scope of some previous call to AddBuffers, or 0 meaning any buffer(s) 
will do and SnarfBuffer should find it (them). The effect of SnarfBuffer is to 
remove NBUFS (default is 1) buffers starting with that buffer fronl use by VMEM. 
A typical application of SnarfBuffer is to acquire space for display data or Ethernet 
buffers. 

If BUFPTR is non-zero and some buffer in the specified range is locked 



For Xerox: Internal Use Only -- October 16, 1977 

Virtual Memory package August 1, 1977 139 

(see below), SnarfBuffer returns 0; normally SnarfBuffer returns the address of the 
buffer. 

If you need a group of buffers aligned as described under PageGroupAlign 
below, you may also supply an ALIGN argument, which works the same way as the 
value returned by PageGroupAlign. 

U nsnarfBuff er(BUFPTR) 

Reverses the action of SnarfBuffer. If you acquired a range of buffers, you 
must return them one at a time with UnsnarfBuffer. 

LockCell(LVLOCK, PROC) 

Declares that the cell whose address is LVLOCK holds a core address which 
must remain valid across page faults, i.e. the buffer in which it lies must not be re
used. Note that the extra level of indirection means that your program can store 
into the lock cell freely. As a consequence, if you store sonle arbitrary bit pattern 
into a lock cell, it will function as a lock if it happens to constitute an address 
within some buffer. 

When the virtual memory system wants to change the contents of a buffer, 
it goes through the lock list and calls PROC(LVLOCJ(, NEWADDR, false) for each 
lock cell which contains a pointer into the buffer, where NEVvADDR is the proposed 
new core address for the page (if it is just being moved around in core, e.g. to make 
room for a page group) or 0 (if it is being written out). If any PROC returns 
false, the system will refrain from the proposed action. [f all PR6Cs return true, 
the system calls PROC(LVLOCK, NEVl ADDR, true) for each appropriate lock cell, and 
updates the contents at the lock cell (zeroing it if the page is being written out) in 
the process. Note that in the latter case, the lock cell will NOT be restored 
automatically if the page is read back in at some future time. 

The number of different lock cells is limited to the parameter LLCL 
supplied to InitializeVmem, divided by 2, minus 1. If the lock list is full, LockCell 
calls Swat. 

The system provides the procedures LockOnly, LockReloc, and LockZero, 
described below, simply because they are useful default actions: the user may provide 
an arbitrary procedure for PROC. 

LockOnly(LVLOCK, NE'VADDR, FLAG) 

If the PROC parameter of LockCell is LockOnly, the system will not move 
or write the page. 

LockReloc(LVLOCK, NEWADDR, FLAG) 

If the PROC parameter of LockCell is LockReloc, the system may move the 
page in core (updating the lock cells), but will not write it out. 

LockZero(LVLOCK, NEWADDR, FLAG) 

If the PROC parameter of LockCell is LockZero, the system may move or 
write the page whenever necessary, zeroing the lock cell in the latter case. 

UnlockCell(LVLOCK) 

Undoes the action of LockCell. Returns true if LVLOCK was actually in 
the lock cell list, or false if it was not. 



For Xerox Internal Use Only -- October 16, 1977 

Virtual Memory package August 1, 1977 140 

IsLocked(PTR, FLAG) 

If PTR is a pointer into a locked buffer, returns true, otherwise returns 
false. If FLAG=true, IsLocked returns true even if there are locked pointers into the 
same buffer as P1'R, provided that the relocation procedures are willing to have the 
buffer swapped out; if FLAG=false or FLAG is absent, IsLocked only returns true if 
there are no locked pointers to the buffer whatever. 

Note that if the page addressed by PTR itself is not locked, IsLocked will 
return false even if there exist locked pointers to other pages in a page group which 
PTR points in to. 

FlushBuffers() 

Rewrites all dirty pages from buffers onto the disk, including locked pages, 
and generally tidies things up in preparation for quitting. (It is OK to go on using 
the virtual memory after this, you just have to do another FlushBuffers before 
quitting eventually.) 

5. User routines 

The VMEM package does not assume any particular correspondence between 
virtual addresses and disk pages, or indeed that you are using the disk at all: for 
example, you can use the Ethernet for paging if this suits your fancy, or store the 
data in some compressed form on the disk. Consequently, you must supply a number 
of routines to establish the correspondence between virtual page addresses and stored 
data. 

Clean upLocks() 

This routine is called on every page fault, and at other times when VMEM 
needs to know that the contents of the lock cells are correct. Normally, 
CleanupLocks need not do anything; however, if you have pointers in microcode 
registers or other non-standard places which point into page buffers, CleanupLocks 
should copy them in to lock cells known to VMEM. 

PageType(VPAGE, WFLAG) 

This routine is called on a page fault to determine if a page has never 
been referenced, already exists, or is invalid. VPAGE is a virtual page number (the 
high 16 bits of a 24-bit address); WFLAG is true if the fault was from a write 
reference, false if from a read reference. PageType must return 1 if the page is an 
existing page, or -1 if a new page. If VPAGE is invalid, PageType can do whatever 
it wants, but it should not return. . 

PageGroupBase(VP AGE) 
PageGroupSize(VP AGE) 

These routines are for applications where it is necessary to cause a group 
of pages, rather than a single page, to always be transferred into and possibly out of 
core at the same time and to occupy consecutive page buffers. PageGroupBase must 
return the virtual page number of the first page in the group; PageGroupSize must 
return the size of the group. If you are not using page groups, Page Group Base 
should return its argument, and PageGroupSize should return 1. . 

VMEM distinguishes between read groups, in which individual pages may be 
rewritten if they become dirty, and write groups, in which the entire group must be 
rewritten if any page becomes dirty. For write groups, PageGroupSize must return 
the negative of the size of the group. 



For Xerox Internal Use Only -- October 16, 1977 

Virtual Memory package August 1, 1977 141 

PageGroupAlign(VP AGE) 

Occasionally it is necessary to align a page or group of pages so that some 
of the bits of the core address are zero; for example, if you want to get the effect 
of lOOOb-word pages, it is necessary to align each group so that the 400b-bit of its 
core address is zero. PagcGroupAlign should return a mask which specifies which of 
the high-order 8 bits of the core address must be zero; in the examJlle, 
PageGroupAlign should return 1. For pages which do not require alignment lthe 
usual case), PageGroupAlign should return O. 

DOPAGEIO(VPAGE, CORE, NPGS, WFLAG) 

This routine must transfer NPGS 256-word pages, starting at virtual page 
VP AGE and core address CORE, to or from the swapping medium, depending on 
WFLAG: false means read, true means write. 

6. Standard use 

The standard use of VMEM is to do SW~Ping on a standard disk file in 
which virtual page N corresponds to file page N+2 page 1 is reserved for use as an 
index, and page 0 is the leader page), using the IS I package (described elsewhere) to 
obtain rapid random access to the file. The following program fragment will 
accomplish this, assuming you are just using 400b-word pages in the most 
straightforward way. 

external 
[ 

] 

external 
[ 

] 

static 

~ 

/ / en tries for VMEM 
CleanupLocks 
Page11ype 
PageGroupSize 
PageGroupBase 
PageGroupAlign 
DOPAGEIO 

/ / links to ISF 
InitFmap 
IndexedPageIO 

MyFmap / / pointer to work area for ISF 

/ / To initialize ISF, set MyFnlap to point to a work area 
/ / of size MyFmapLength, and then call 
/ / InitFmap(MyFmap, MyFmapLength, FilePtr, true) 
/ / where FilePtr is a FP (see the O.S. manual) 
/ / for the paging file. A reasonable value for 
/ / MyFmapLength is 80 -- see the ISF writeup. 

let CleanupLocksO be [ ] 

let PageType( vp) = 1 

let PageGroupSize(vp) = 1 
let PageGroupBase( vp) = vp 



For Xerox Intel'!lal Use Only -- October 16, 1977 

Virtual 1-femory package August 1, 1977 142 

let PageGroupAlign( vp) = 0 

let DOPAGEIO(yp, core, np, wflag) be 
~ IndexedPageIO(Iv1yFmap, vp+2, core, np, (wflag? -1, 1)) 

7. Packaging 

The Vl\1EM package actually consist.s of several files: . 
VMEM.BR -- the code required to process page faults, plus LockCell and 

UnlockCell 
VMEMAUX.BR - all the other entries to VMEM, except InitializeVmem 
VMEMINI'l'.BR - InitializeVmem 
VMEMA.BH - a small anlOunt of assembly-language code 
VMEMSOFT.BR - a software version of the VMEM microcode 
VMEM.USE - -the program fragment listed above 
VMEM.MU - the VMEr .. 1 microcode. 

You must load VMEM, VMEMAUX, VMEMINI'f, and VMErviA with your program, and 
also VMEMSOFT if (as is normally necessary) you are not using the RAM. In 
addition, you must load the ISF package (files ISF.BR and ISFINIT.BR) if you are 
using Vl\1EM in the standard nlanner d.escribed above. Once you have called 
InitializeVmem, you may throwaway VMEJ'vlINIT; once you have done all your calls 
on Add Buffers, etc., you may throwaway V:ME:rvlAUX. -


