
For Xerox Internal Use Only -- March 17, 1977

ALTO OPERATING SYSTEM

REFERENCE MANUAL

Compiled on: March 17, 1977

Computer Sciences Laboratory
Xerox Palo Alto Research Center

3333 Coyote Hill Road
Palo Alto, California 94304

For Xerox Internal Use Only -- March 17, 1977

Alto Operating System March 17, 1977

Alto Operating System Reference Manual
Version 2

OS version 12/5

2

Note: This manual describes "the new Alto Operating System," which is thoroughly
different from any Alto operating system operating in 1975!

1. Introduction

This manual.· describes the operating system for the Alto. The manual
revised as the system changes. Parts of the system which are likely to be
are. so indicated; users should try to isolate their use of these facilities in
which can easily be modified, or better yet, avoid them entirely, if possible.

'L'he system and its description can be separated into two parts:

will be
changed
routines

a) User-callable procedures, which are of two kinds: standard procedures which
are always provided, and library procedures which must be loaded with the
user's program if they are desired. This manual describes only standard
procedures; the library procedures are documented in the "Alto Packages
Manual."

b) Data structures, such as disk files and directories, which are used by the
system but which are also accessible to user procedures and subsystems.

The system is currently written almost entirely in Bcpl. Its procedures are invoked
with the standard Bcpl calling sequence, and· it expects the subsystems it calls to be
in the format produced by the Alto Bcpl loader.

2. Hardware summary

This section provides an overview of the Alto Hardware. Briefly, every Alto has:

a) A memory of 64k words of 16 bits each, plus parity. The cycle time is
850ns.

b) An emulator for the Nova instruction set, except the input/output
instructions (which include MUL, DIV, HLT and the instructions which
control the interrupt system). The only other incompatibilities are:

1) Addresses are 16 bits, rather than 15, so that bit 0 of an index
register affects the addressing.

2) Indirect addresses· are also 16 bits, so that bit 0 is part of the
address, rather than speCifying another level of indirectio~.

3) Auto-increment and auto-decrement are not implemented.
There are some· new instructions which are listed in Table 2.1. The Alto
executes emulated instructions in about 1.5 times the time required by the
Nova 800: about 1.2 us for register instructions, 2 us for loads and stores.

c) Secondary memory, which may consist of one or two Diablo 31 cartridge disk

For Xerox Internal Use Only -- March 17, 1977

Alto Operating System . March 17, 1977 3

drives, or one Diablo 44 cartridge disk drive. The properties of these disks
are summarized in Table 2.2.

d) An 875 line TV monitor on which a raster of square dots can be displayed,
606 dots wide and 808 dots high. The display is refreshed from Alto
memory under control of a list of display control blocks. Each block
describes what to display on a horizontal band of the screen by specifying:

the height of the band, which must be· even;
the width, which must be a multiple of 32; the space remaining on the

right is filled with background;
The indentation, which must be a multiple of 16; the space thus reserved

on the left is filled with background;
the color of the background, black or white; \
the address of the data· (must be even), in which 0 bits specify

background. Each bit controls the color of one dot. The ordering is
increasing word addresses and then bit numbers in memory, top to
bottom and then left to right on' the screen; and a half-resolution flag
which makes each dot twice as wide and twice as high.

There is also a 16 x 16 cursor which can be positioned anywhere on the
screen. If the entire screen is filled at full resolution, the display takes
about 60% of the machine cycles. and 30704D words of memory.

e) A 44-key keyboard,5,..finger keyset, and mouse

f) A Diablo printer interface

g) An Ethernet interface

h) Interfaces for analog-to-digital and digital~to-analog conversion, for TV
camera input, and for a RS-232b (teletype) connection

i) A real-time clock and an interVal timer (see table 2.1 for brief descriptions)

3. User""callable procedures

This section describes the operating system facilities provided by procedures which
can be called from user programs using the standard Bcpl calling sequence. All of
these procedures are a permanent part of the operating system, automatically
available to any user program.

Although this manual describes a rather extensive set of facilities, which together
occupy close to 12K words of memory, portions of the system can be deactivated,
thus freeing the memory they. use. When the user program finishes execution, the
deactivated portions can be retrieved from the disk and reinitialized.

Default arguments: Many of the procedures given below have rather long argument
lists, but have convenient defaulting schemes. The documentation decorates argument
lists with default values. An argument followed by [exE] will default if omitted or
zero to the value exp; an argument followed by L ... exPJ will default if omitted to
expo Although Bcpl allows you to omit procedure arguments by using "nil," the called
procedure cannot detect its use; it therefore cannot be the basis for defaulting
arguments.

For Xerox Internal Use Only -- March 17, 1977

Alto Operating System March 17, 1977 4

3.1. Facilities

The facilities of the operating system fall into fairly neat categories; often this is
because the operating system has simply loaded a standard library subroutine as part
of its environment. This manual offers summarized documentation for the functions
in the various software "packages;" more documentation can be found in the "Alto
Software Packages Manual." (Note: Appendices to this manual include documentation
of the packages most relevant to the operating system.) In outline, the operating
system provides:

A "basic" resident that maintains a time-of-day clock, that processes parity
error interrupts, and that contains the resident required to interface to Swat,
the debugger.

The Bcpl runtime support module, which provides several functions (such as a
stack frame allocator) that are necessary to permit Bcpl programs to run.

Disk drivers for transferring complete pages between memory and existing files
on the disk. This is the BfsBase package. .

Disk drivers for creating new files, and for extending or shortening existing
files. This is the BfsWrite package.

A simple storage allocator that for managing "zones" of working storage. This'
is the Alloc package.

Disk "streams," which implement sequential byte or word I/O to the disk.
This is the Streams package.

Disk directory management, which provides facilities for searching directory
files for entries that associate a string name and a disk file.

A keyboard handler, which decodes keyboard interactions into a sequence of
ASCII characters.

A display driver, which maintains a "system display," and handles the printing
of characters on the display. This is the DStream package.

Miscellaneous functions, including (1) the "call subsystem" function, which
reads a file produced by the Bcpl loader into memory and executes it; (2)
allocation. functions that manage the space not used by the operating system
or the user code, providing a stack for the user program and fixed-size blocks
that it may require; (3) the procedure for de-activating various portions of the
operating system; and (4) additional utilities.

3.2. Loading and Initialization

The facilities of the operating system are made accessible to user programs via static
variables that. refer to s¥,st1r J2rocedures or syslem scalars. Because these oIl]eCts
are not defined in a user s cpl ~ program, he mus declare. the names to be external.
The Bcpl loader, Bldr, automatically reads the file Sys.Bk, which describes how to
arrange that the user's references will match up with the operating system objects
(for details, see BIdr documentation in the Bcpl manual). This arrangement does not
require re-loading programs when objects in the operating system move.

When a Bcpl program is read into the Alto' memory, all of the system procedures
described below will have been initialized. A region is reserved for allocating system
objects (e.g., disk streams); currently, about 6 disk streams or equivalent can be

For Xerox Internal Use Only -- March 17, 1977

Alto Operating System March 17, 1977 5

accomodated. If the space reserved is inadequate for your application, the system
zone can be replaced with one constructed by the user's program. In addition, most
procedures that create system objects have provision for an optional "zone" argument
used for seizing space (see section 4.5).

3.3. Errors

Whenever the system detects an error for which the user program has not supplied
its own error routine, the call SysErr(p1, errCode, p2, p3, ...) _ is executed. The
err Code is a number that identifies tne error; the p's are parameters that add
details.

Normally, SysErr calls Swat (the debugger), which will print out an intelligible error
message retrieved from the file Sys.Errors. The facilities of Swat lsee "Alto
Subsystems Manual") can then be used to interrogate the program state more fully,
and ultimately to continue the computation or to abort it.

3.4. Streams

The purpose of streams is to provide a standard interface bet"jeen programs and
their sources of sequential input and sinks for sequential output. A set of standard
operations, defined for all streams, is sufficient for all ordinary input-output
requirements. In addition, some streams may have special operations defined for
them. Programs which use any non-standard operations thereby forfeit complete
compatibility.

Streams transmit information in atomic units called items. Usually an item is a
byte or a word, and this is the case for all the streams supplied by the operating
system. Of course, a stream supplied to a program must have the same ideas about
the kind of items it handles . as the program does, or confusion will result.
Normally, streams which transmit text use byte items, and those which transmit
binary information use words. (The 16-bit quantity which Bcpl passes as an
argument or receives as a result of a stream operation could be a pointer to some
larger object such as a string, although the operating system implements no such
streams. In this case, storage allocation conventions for the objects thus transmitted
would have to be defined.) -

The user is free to construct his own streams by setting up a suitable data
structure (section 4.2) which provides links to his own procedures which implement
the standard operations. .

The standard operations on streams are (8 is the stream; "error" means that Errors(S,
ec) is executed, where ec is an error code):

Gets(S)

Puts(S, I)

Resets(S)

Putbacks(S, I)

returns the next item; error if Endofs(S) is true
before the call.

writes I into -the stream as the next item; error if
the stream is read-only, if there is no more space

- or if there is some hardware problem.

restores the stream to some initial state, generally
as close as possible to the state it is in just after
it is created.

modifies S so that the next Gets(S) will return I
and leave S in the state it was in before the

For Xerox Internal Use Only -- March 17, 1977

Alto Operating System March 17, 1977 6

Endofs(S)

Closes(S)

Stateofs(S)

Errors(S, ec)

Putbacks. Error if there is already a putback in
force on S.

true if there are no more items to be gotten from
S. Not defined for output streams.

destroys S in an _ orderly way, and frees the space
allocated for it. Note that this has nothing to do
with deleting a disk file.

returns a word of state information which is
dependen t on the type of stream.

reports the occurrence of an error with error code
ec on the stream. When a system stream is
created, Errors is initialized to _ SysErr (see section
3.3), but the' user can replace it with his own error
routine.

Streams are created differently depending on the device being accessed (disk, display,
keyboard, or memory). The procedures for creating streams are described below.

3.4.1. Disk streams

The system distinguishes four kinds of object which have something to do with
storing data on the disk:

Disk:

Disk -file:

File directory:

Disk stream:

A storage medium that is capable of storing data
in various pages. Most operating system functions
default the choice of disk to "sysDisk", a structure
which describes drive 0 of a Diablo model 31
cartridge.

A vector of bytes of data held on some disk,
organized into lliges for some purposes. A file
exists only on e disk (except that parts of it
may be in memory if an output stream is
associated with it) and is named by an SO-bit
entity called a file pointer (FP).

A disk file which contains a list of pairs <string
name, FP). Documentation on the format of the
file can be found with the BFS package
documentation - contained in an appendix to this
manual.

Used by a program to transfer information to or
from a disk file. A stream exists only in memory
and is named by a pointer to a data structure.

The procedures that operate on disk streams are described in documentation for the
"Streams" software package contained in an appendix to this manual. Below is a
summary list of the functions (in addition to the generic functions described above):

CreateDiskStream(filePtr, type [ksTypeReadWrite 1, itemSize [wordltem], Cleanu.{>
- [Noop], errRtn [Sys~rrl, zone [sysZone), 10gInfo [OJ,

disk [sysDisk J) = a disk stream, or 0 If an error -IS
- encountered w11ile initializing the stream. filePtr 'is

For Xerox internal Use Only -- March 17, 1977

Alto Operating System

CleanupDiskStream(s)

March 17, 1977 7

the sort of object stored in a file directory. Legal
types are ksTypeReadOnly, ksTypeReadWrite, and
ksTypeWriteOnly. Legal item sizes are wordItem
and charI tern.

Flush any buffers to the disk.

ReadBlock(s, address, count) = actualCount. Read up to count words from the
stream into consecutive memory locations; return
the actual number of words read.

WriteBlock(s, address, count) Write count words from consecutive memory
locations onto the stream.

LnPageSize(s)

PositionPage(s, page)

PositionPtr(s, byteN 0)

FileLength(s, filePos [J)

FilePos(s, filePos [J)

= log (base 2) of the page size, in words, of the
files manipulated by the stream.

Positions the file to byte 0 of the specified page
(page 1 is the first data page).

Positions the file to the specified byte of the
·current page.

= Length. Returns number of bytes in file;
positions stream to the last byte.

= Pos. Returns the current byte position in the
file.

SetFilePos(s, filePos) or SetFilePos(s, HighOrder, LowOrder) Sets the position of
the file to the specified byte.

GetCurrentFa(s, fileAddress) Returns the current file address.

JumpToFa(s, fileAddress) Positions the file to the specified address (usually
obtained from GetCurrentFa).

GetCompleteFa(s, completeFilEiAddress) Returns
. including a filePtr.

a complete file

Truncates the file to the current position.

address,

TruncateDiskStream(s)

ReadLeader Page(s, address) Reads the 256-word leader page of the file into
consecutive locations starting at address.

WriteLeaderPage(s, address) Writes 256 words onto the leader page of the file.

The operating system also contains a package for dealing with files at a lower level,
the "Bfs" (Basic file system) package.

Disk Errors: The system will repeat five times any disk operation which causes an
error. On the last three repetitions, it will do a restore operation on the disk first.
If five repetitions do not result in an error-free operation, a (hard) disk error occurs;
it is reported by a call on Errors for the stream involved.

Logging disk transactions: The operating sy~tem reports various lo~ging information
on the file Sys.Log. Normally, all file openings, creations and deletIOns ?ore recorded.
In order to speed up logging, the Sys.Log file is kept "open" all the time, and
relevant file· state is saved in memory.

For Xerox Internal Use Only -- March 17. 1977

Alto Operating System

LogOpen(zone)

MakeLogEn try(logType.

LogClose(zone)

3.4.2. Display streams

March 17. 1977 8

Opens the log file on sysDisk. and saves vital state
in the given zone. LogOpen(sysZone) is executed at
completion of each program execution. to make sure
the log is open when the next program is invoked.

filePtr. 10gInfo rO]. zone [sysZone]. disk [sysDiskl) This
function makes an entry of type 10gType in the file
Sys~Log (see definitions in' AltoFileSys.d and Disks
documen tation).

Closes the log file. which insures that no
information about the state of the log file is saved
in memory. LogClose(sysZone) is performed by the
finish operation.

Display streams are implemented with the "DStream" package. described in separate
documentation contained in an appendix to this manual. Below is a list of the
functions included (in addition to the generic stream functions): .

CreateDisplayStream(nLines. ~BlOCk. lBlock. Font [sysFontJ. wWidth [38J. oJ2tions
DScompactleft+ DScompactriglit J. zone [sysZone JJ = a
isplay stream. pBlock is the' address· of a region

lBlock words long for the display bitmap. nLines is
the number of text lines in the stream. This
procedure does not commence displaying the stream
text -- see ShowDisplayStreani.

ShowDisplayStream(s. how

GetFoIit(s)

SetFont(s. font)

ResetLine(s)

GetBitPos(s)

SetBitPos(s, pos)

GetLinePos(s)

SetLinePos(s, pos)

[DSbelow]. otherStream r dsp J) This procedure controls
the presentation of the stream on the screen. If
how is DSbelow. the stream will be displayed
immediately' below otherStream; if DSabove.
immediately above; if DSalone. the stream will
become the only . display stream displayed. If how
is DSdelete.. the stream s will be removed from the
display. For DSalone and DSdelete. the third
argument is needless.

Returns current font.

Sets current font
documentation).

(use carefully see

Erases all information on the current line and
resets the position to the left margin.

Returns the horizontal position of the stream.

Sets the horizontal position on the current line
. (use carefully -- see documentation).

Returns the index of the line into which characters
are presently being put.

Sets the line number into which subsequent
characters will be put.

For Xerox Internal Use Only -- March 17, 1977

Alto Operating System

InvertLine(s, pos)

March 17, 1977 9

Inv~rts the black/whitesense of the line given by
pos.

EraseBits(s, nBits, flag [0]) Erase bits moving forward (nBits>O) or backward
(nBits<O) from the current position. Set to
background if flag=O; to the complement of the
background if flag=l; invert present values if flag=-
1.

GetLmarg(s); SetLmarg(s)

GetRmarg(s); SetRmarg(s)

CharWidth(StreamOrFont,

Get and set left margin for the current line.

Get and set right margin for the current line.

char} Get the width of the character, using the
specified font or the current font in the specified
stream.

The "system display stream" is always open, and can be accessed by the system scalar
"dsp."

3.4.3. Keyboard Streams

There isa single keyboard stream in which characters are buffered.. The stream is
always open, and may be accessed through the system scalar "keys." The only non
null operations are Gets; Endofs, which is true if no characters are waiting; and
Resets, which clears the input buffer.

The keyboard handler periodically copies the mouse coordinates into the cursor
coordinates, truncating at the screen boundary. This function is governed by the
value of a cell referenced by @ IvCursorLink; if it is zero, the function is disabled.

Low-::level keyboard. functions .. Although the standard keyboard handler ~ontains no
tacIhues-for· detectmg . tranSItions of keyset or mouse keys, a user functlOn may be
provided that will be called 60 times a second and can extract ·relevant information
from a table passed to it. The call SetKeyboardProc(uKbProc, stack, stackLength)
will install uKbProc as the user procedure; stack is a vector that will be used for
stack space. when uKbProc is run lYoU must provide enough!). SetKeyboardProcO will
reset the. keyboard handler, and cease calling uKbProc. (Note: If the program has
used the Junta procedure, the user keyboard procedure must be deactivated durin~ a
CounterJunta or finish unless all its state lies below OsFinishSafeAdr.) If actIve,
every 16 milliseconds, the keyboard handler will execute uKbProc(tab), where tab
points to a data structure defined by the KBTRANS structure [see the file
SysDefs.d). The Transition word is non-zero if a key transition has been detected;
GoingUp or GoingDown tell which sort of transition has occurred; and Keylndex gives
the key number. KeyState is a 5-word table giving the state of the keys after the
transition has occurred: if a key. with Keylndex=i is presently down, bit (i rem 16)
of word (i div 16) will be 1. The entries CursorX and CursorY give the current
location ot the cursor. .

The value returned by uKbProc detei'mines subsequent processing. If true is
returned, the operating system treats the key transition (if any) according to normal
conventions. If false is returned, the operating system assumes that uKbProc has
performed whatever processing is intended, and the interrupt is simply dismissed.

KeyIndex values are tabulated below. Keys are normally given by their lower-case
marking on the key top; those with more· than one character on their tops are
specified by <name>. <X> are unused bits; <blank-top> is the key to the right of the
<bs> key; <blank-middle> to the right of <return>; and <blank-bottom> to the right
of <shift-right>. .

For Xerox Internal Use Only -- March 17, 1977

Alto Operating System March 17, 1977

Values

·0-15
16-31
32-45
48-63
64-71
72-76
77
78
79

Keys

5 4· 6 e -7 d u v ~O k ~ P / \ <If> <bs>
3 2 w q s a 9 i' x 0 1 , '] <bhmk-middle> <blank-top>
1 <esc> <tab> f <ctrI> c j b z <shift-left> . ; <return> +- <X>
l' t g Y h 8 n m <lock> (space> [= <shift-right> <blank-bottom> <X> <X>
unused
Keyset keys in order, left';72; right=76
RED (or left or top) mouse button
BLUE (or right or bottom) mouse button
YELLOW (or middle) mouse button

10

As an aid to interpreting Keylndex values, the system scalar kbTransitionTable points
to a table, indexed by Keylndex, that gives a KBKEY structure for the key; if it is
zero, the operating system has no standard interpretation of the key.

3.4.4. Fast Streams to Memory

The operating system also contains procedures that allow very efficient stream I/O to
memory blocks. These functions, described in the Streams package documentation,
allow one for example to use much more memory buffering for disk transfers than
normally allocated by the disk stream mechanism.

3.5. Directory Access

Most user programs do not concern themselves with file pointers, but use system
routines which go directly from string names to streams. By a "file name" we mean
a string which can be converted into a file identifier by looking it up in a
directory. File names are arbitrary Bcpl strings which contain only upper and lower
case letters, digits, and characters in the string "+-.!$". File names are stored in
directories as they are typed,but no distinction is made between upper and lower
case letters when they are looked up. Dots (".") are used to separate file names into
parts. If there is more than one part, the)ast part is called the extension, and is
conventionally used much like extensions in Tenex. The interpretation of exclamation
mark ("!") is special; if a file name ends with a ! followed only by digits, the digits
specify the file version number.

A lookup name, presented to one of the directory functions given below, is usually a
file name. --"HOwever, it may optionally s}?ecify the name of a directory in which to
look for the file (or record the new file). The lookup name is processed from left
to right. If the character "<" appears at the head of the lookup name, the system
directory ("SysDir."1 becomes the "current" directory; whenever the character ")"
follows a name, the name. is looked up in the current directory and that file
becomes the new current directory. If no directory is specified in the lookup name,
the "working directory" is assumed. Example: "<dir>fil." will look up dir in the
system directory SysDir,and will then look up fil in dir. Any illegal characters in a
lookup name are replaced with "_" characters.

File Versions: The file system also supports multiple versions of the same file; this
feature may be enabled or disabled when the operating system is installed. The
version number is recorded by appending an exclamation mark and the decimal
version number to the file name; file names without version numbers appended act
as if they are "version O."The OpenFile function uses lookup names and version
control information to locate a desired file .. If the lookup name containf! a version
number (e.g., "Sys.Errors!3."), then no version defaulting is done--the lookup operates
on precisely the file specifIed. (This processing is identical with versions enabled and
disabled.)

For Xerox Internal Use Only -- March 17, 1977

Alto Operating System March 17, 1977 11

If the lookup name does not specify a version number and file versions are enabled,
then the versionControl parameter specifies how defaulting is to be done ~in the
definitions, "oldest" refers to the file with the "lowest" version number; 'latest"
refers to the file with the "highest" version number):

verLatest

verLatestCreate

verOldest

verNew

verNewAlways

The latest version is used.

The latest version is used. If the. file does not
exist, it is created with version number 0 (i.e., no
number will be appended explicitly to the file
name): this is to prevent needless accumulation of
version numbers in system-related files (.e.g, .Run
files).

The oldest version is used.

A new file will always be created. A system
parameter, established when the system is installed,
determines how many old versions will be preserved.
If that default should be overriden, just add the
desired number of versions to verNew, e.g. a
version Control value of verNew+4 will create a new
file and retain at most three older versions.

This version option may reuse disk pages allocated
. for the oldest version of the file, but the serial
number and file name· will of course be changed.
If (newest-oldest)+l is greater than or equal to the
number of versions to keep, oldest is reused in this
fashion to become version newest+l. For example,
if verNew is specified, 2 versions are. to be kept,
and foo!2 and foo!3 exist, verNew will create the
file foo!4 by remaking the old file foo!2. Note that
this calculation does not verify that all versions
between oldest and newest actually exist.

If only one file matches the lookup name, and its
version number is 0, the file is simply overwritten
(like verLatestCreate); a new version is not created.

If no files of the given name exist, version number
o of the file is created (i.e., no version number is
explicitly attached to the file name). The
verNewAlways option (below) can be used if version
1 should be created.

Similar to verNew, but if no earlier version of the
file exists, version 1 is created.

If versions are not enabled, then exact matches are performed on the entire file
name. Thus, if the file "Sys.Errors!2" is present on a disk with versions disabled,
the lookup name "Sys.Errors" will not match this file; the lookup name "Sys.Errors!2"
will.

'L'he following function creates a disk stream (see above) in conjunction with the
Alto directory structure:

OpenFile(lookupname, ksType rksTypeReadWritel, itemSize rwordItemJ,
versionControl [if ks""Type=ksTypeRead()nly then

For Xerox Internal Use Only -- March 17, 1977

Alto Operating System March 17, 1977 12

verLatest else if ksType=ksTypeWriteOnly then
verNew else verLatestCreateJ. hintFp TOl errRtn
rSysErrJ. zone rsysZoneJ. 10gInfo [OJ, disk. IsysDisk],
t:reateStream [t:reateDiskStream]) = a disk stream,
open on the specified file, or 0 if the open is
unsuccessful for some reason. This routine parses
the lookup name. searching directories as needed.
After applying version control qe.g .• making anew
version), it calls CreateStream filePointer, ksType,
itemSize, Noop. errRtn, zone, ogInfo, disk), and
returns the value of that call. .

If hintFp is provided, it is assumed to be a file
pointer (FP) that "hints". at the correct
identification· of the file. Before searching a
directory, OpenFile will try using the hint to open
the file, quickly returning a stream if the hint is
valid (though no name or version checking is done).
If the hint fails and lookupname is non-zero, the
name will be parsed and looked up in the normal
fashion. hintFp will be filled in with the correct
file pointer. Note: If you wish to use standard file
lookup procedures, but to have the FP for the
resulting file returned to you, zero the hintFp
vector before calling OpenFile. . In this case, the
value Of hintFp is not used in the lookup, but is
filled in with the results.

OpenFileFromFp(hintFp)

DeleteFile(lookupname,

= OpenFile(O, 0, 0, 0, hintFp)

versionControl [verOldestJ, errRtn [S~sErrJ, zone
rsysZoneJ, logInfo [OJ, disk rsysDiskJ) = success.
ileletes the file on the disk. and removes the
corresponding entry from the directory specified in
lookupname. . Returns "true" if a file was correctly
found and deleted, otherwise "false."

SetWorkingDir(name, fp, disk [sysDiskJ) Sets the "current" directory for further
lookups on the given disk. When the system is
booted, the current directory is set to "<SysDir."

3.5.1. Lower-level directory functions

Several functions are. provided for those who wish to deal with directories and file
names at a lower level. The format of an· Alto file directory is documented in the
Disks documentation; definitions appear in AltoFileSys.d.

FindFdEntry(s, name; compareFn [OJ. dv [J, hd [J. version Control [verLatestJ,.
extraSpace [OJ) = a word pointer into the stream s
of a directory entry, or -1 if no entry is located. If
compareFn is 0, normal comparison of filenames
and version control is performed; the result is a
directory entry in dv. and a hole descriptor (hd)
for a hole large enough to include the name, a new
version number, and extraS pace words.

Otherwise. compareFn is a user procedure that· is
invoked as each file name is read from the

For Xerox Iucemal Use Only -- March 17, 1977

Alto Operating System

MakeNewFdEntry(s, name;

DeleteFdEntry(s, pos)

Strip Version(string)

March 17, 1977 13

directory: compareFn(name, nameRead, dvRead).
nameRead is the· Bcpl name extracted from the
directory; dvRead is the dv extracted from the
directory; and name is simply the second argument
pas,sed to FindFdEntry (which need not. be a
strmg). If compareFnreturns false, the dIrectory
scan halts; the value of FindFdEntry is the byte
position in the stream. If compareFn returns true,
the search proceeds.

Strategic note: If compareFn is TruePredicate, the
directory is simply scanned in order to locate a
hole large enough for extraSpace words. The result
is saved in the hd hole descriptor, which may be
passed to MakeNewFdEntry.

dv, hd, extraStuff) makes a directory entry: dv is a
pointer to a DV structure for the first part of the
entry; name is a Bcpl string that is recorded after
the entry (this strin~ must be a legal internal file
name, with the dot '." appended), and extraS tuff is
a. pointer to a vector of additional stuff that will
be entered following the name. The hd parameter.
is a pointer to a "hole descriptor" as returned from
FindFdEntry.

Deletes the directory entry at byte location pos of
the directory open on stream s.

= version number. This function strips a version
number, if any, from the end of the string
argument, and returns the number (0 if no version
specified). If, after stripping, there is no final "."
on the string, one is appended.

AppendVersion(string, versiong.ppends a version number and final "." to the
string.

WriteDiskDescriptorO

ReadDiskDescriptorO

3.6. Memory management

If changes have occurred, the copy of the disk
descriptor for sysDisk that resides in memory is
written onto the disk file "DiskDescriptor."

This function restores the copy of the disk
descriptor for sysDisk that resides in memory from
the disk file "DiskDescriptor."

Table 3.1 shows the layout of memory. Table 3.2 tells how to obtain the current
values of the symbolic locations in 'l'able 3.1. . The free space (EndCode to StackEnd)
can be manipulated as follows:

GetFixed(nwords)

FreeFixed(poin ter)

returns a pointer to a block of nwords words, or 0
if there isn't enough room. . It won't leave less
than 100 words for the stack· to expand.

frees a block provided by GetFixed.

For Xerox Internal Use Only -- March 17, 1977

Alto Operating System

FixedLeftO

SetEndCode(newValue)

March 17, 1977 14

returns the size of the biggest block which
GetFixed would be willing to return.

resets endCode explicitly. It is better to do this
only when endCode is being decreased.

The allocator is not very bright. FreeFixed decrements endCode if the block being
returned is immediately below the current endCode (it knows because GetFixed puts
the length of the block in the word preceding the first word of the block it returns;
please do not rely on this, however, since there is no guarantee t.hat later allocators
will use the same scheme). Otherwise it puts the block on a free list. When
another FreeFixed is done, any blocks on the free list which are now just below
end Code will also be freed. However, the allocator makes no attempt' to allocate
blocks from the free list.

3.7. The Alloc allocator

The operating system includes a copy of the Alloc package; documentation is
contained in an appendix to this manual.

lni tializeZone(start, length, OutOfSpaceRoutine . ~ ... SysErr], MalFormedRoutine
[... SysErrJ) = a "zone.' These zones are compatible
with the "zone" arguments to operating system
functions (e.g., sysZone).

AddToZone(zone, block, length) Adds block to the zone.

Allocatee zone, length,

Free(zone, ptr)

CheckZone(zone)

3.8. The Basic File System

returnOnNoSpace [false], even [false]) = pointer to a block
of length words allocated from zone. If even is
true, the pointer is guaranteed to be a even
number.

Returns the block pointed to by ptr to the zone.

Performs a consistency check on the zone data
structure.

A set of procedures for driving the disk hardware for Diablo Model 31 and 44 disk
cartridges is included in the operating system. These functions are documented in
the "Disks" documentation, appended to this manual.

3.9. Objects

It is often convenient to define an abstract object and its operations by a single
entity in the Bcpl language. As the largest entity Rcpl can deal with is a 16-bit
number, we must use a pointer to a structure of some kind that defines both the
procedures and data associated' with the object. Streams, Zones and Disks are
examples of such abstract objects. Such objects are typically defined. by a structure
such as:

structure ZN:

~llocate
Free
Base

word
word
word

IIOp
IIOp
IIVal

For Xerox Internal Use Only -- March 17, 1977

Alto Operating System . March 17, 1977 15

Length
] .

Ylord IIVal

where the Op's point to procedures and the Val's are data for the structure. A
typical call on one of the abstract procedures is thus (zone»ZN.Allocate)(zone, arg1,
arg2,arg3). The virtue of such an arrangement is that any structure that simulates
the effects of the procedures can pose as a Zone.

In order to encourage the use of such objects, the operating system has very
efficient implementations for this calling mechanism:

CallO(s, a, b, ...) Does (s!O)(s, a, b, ...)

Call1(s, a, b, ...) Does (s!1)(s, a, b, ...)

Ca1l2, Ca1l3, Ca1l4, Ca1l5, Ca1l6, Call7, Ca1l8, Ca1l9 analogously.

Thus, the operating system defines Allocate=CallO, and Free=Ca1l1, consistent with the
Alloc package described above. Note for assembly-language programmers: the CalIx
functions actually enter the proper function at the second instruction, having already
executed a STA 3,1,2 to save the return address.

3.10. Miscellaneous

This section describes a collection of miscellaneous useful routines:

W ss(S, string)

Ws(string)

Wl(string)

Wns(S, n, nc [0], if -10])

Wos(S, n)

Worn)

TruePredica te()

FalsePredicate()

Noop()

Dvec(caller, nVl, nV2, ...)

writes the string on stream S.

writes the string on the system display stream, dsp.

Ws(string), followed by a carriage return.

writes a number n to stream S, converting using
radix abs(r). At least nc characters are delivered
to the stream, using leading spaces if necessary.
The number is printed in signed notation if r<O, in
unsigned notation if r)O.

writes . an unsigned octal representation of n on
stream· S.

writes an unsigned octal representation of n on the
display stream.

always returns -l.

always returns O.

null operation; returns its first argument if any.

this routine allocates "dynamic" vectors in the
current frame. caller is the name of the procedure
calling Dvec. The use of the routine is best given
with an example: the routine ShowOff wants two
vectors, V1 and V2:

let ShowOff(Vllength,V2length) be
[

let V1=Vllength

For Xerox ,Internal Use Only -- March 17. 1977

Alto Operating System March 17. 1977 16

let V2= V2length
Dvec(ShowOff. Iv V1. Iv V2)
/ / now V1 points to a block Vllength+1 words long
/ / and V2 points to a block V2length+1 words long

]

DefaultArgs(lvNa. base.

Warning: any addresses that point into the stack
frame of ShowOff before it is moved by the Dvec
call will not be correct after the call. Thus. for
example. a "let a=vec 10" before the call will cause
the address in a to be useless after the call.

dv1. dv2) Utility procedure to fill in default
arguments. IvNa points to the "numargs" variable in
the procedure; abs(base) is the number of initial
arguments that are not to be defaulted; the dVi are
the default values (i<11). If base<O. then an
actual parameter of zero will cause the default to
be installed; otherwise only (trailing) omitted
parameters are defaulted. Thus:

let Mine(how. siz. zone. errRtn; numargs n) be
[

DefaultArgs(lv n. -1. 100. sysZone. SysErr)

]

will default arguments siz. zone. errRtn if missing
or zero to 100. sysZone and SysErr respectively.
Note that Bcpl will allow you to omit parameters
in the middle of a parameter list by using "nil."
but DefaultArgs has no way of knowing that you
did this.

MoveBlock(dest. src. count) Uses BLT: for i=O to count-1 do dest!i=src!i.

SetBlock(dest. val. count)

Zero(dest. count)

Usc(a. b)

DoubleAdd(a. b)

EnableIn terruptsO

DisableInterruptsO

StartIO(acO)

IdleO

Uses BLKS: for i=O to count-1 do dest!i=val.

Same as 8etBlock(dest. O. count).

Usc performs an unsigned compare of a and band
returns -1 if a<b.O if a=b. 1 if a>b.

The parameters a and b each point to 2-word
double-precision numbers. DoubleAdd does a+-a+b.
Note that subtraction can be achieved by adding
the two's complement; the two's complement is the
one's complement (logical negation) plus l.

Enables Alto interrupt system.

Disables interrupt system.

Executes the.· 8IO emulator instruction with its
argument in acO. Thus 8tartIO(#100000) will boot
the Alto if .it has an Ethernet interface ..

This procedure is called whenever the operating
system is waiting for something to happen (e.g .• a

:For' Xerox Internal Use Only March 17, 1977

Alto Operating System

Timer(tv)

DayTirile(dv)

SetDayTime(dv)

EnumerateFp(proc)

CallSwat(sl, s2)

March 17, 1977 17

keyboard character to be struck, or a, disk transfer
to complete). The static IvIdle points to the
operating-system copy of the procedure variable so
that programmers may install their own idle
procedures by executing "@lvIdle=Myldle".,

Reads the 32-bit millisecond timer into tv!O and
tv!1. Returns tv!l as its value.

Reads the current time-of-day, (32 bits, with a
grain of 1 second) into dv!O and dv!1. Returns dv
as its value. (Subroutines for converting time-of
day into more useful formats for human
consumption are available in CTime.c. See
subroutine package documentation, under Time.)

Sets the current time-of-day from dv!O and dv!l.
(Normally it should not be necessary to do this, as
the time is set when the operating system is
booted and has an. invalid time. Thereafter, the
timer facilities in the operating system maintain
the current time.)

For every file pointer saved by the system (e.g.,
fpComCm, fpRemCm, etc.), call proc(fp).

This function invokes an explicit "call" on Swat.
Either of the arguments that appeal's to be a Bcpl
string will be printed out by Swat.

3.10.1. Routines for Manipulating Bcpl Frames

The following routines ease massaging Bcpl frames for various clever purposes such as
coroutine linkages. See section 4.7 for a description of the data structures involved.

FrameSize(proc)

MyFrameO

CallersFrame(f)

FramesCaller(f)

CallFrame(f, a, b)

GotoFrame(f, a, b)

CoCall(a, b)

CoReturn(a, b)

ReturnTo(label)

Returns the size of the frame required by proc.

Returns the address of the current frame.

Returns the address of the frame that "called" the
frame f (if f is omitted, the current frame is
used). ,

Returns the address to which the caller of frame f
sent control, provided that he made the call with a
normal instruction (jsrii, jsris). If error, returns O.

Sends control to frame f and links it back to this
one (i.e., when f returns, the CallFrame call
returns). a and b are optional arguments.

Like CallFrame,/ but does not plant ,a return link.

CallFrame(CallersFrameO, a, b)

Like Co Call, but does not plant return link.

Returns to a given label in the frame of the caller.

For Xerox Internal Use Only -- March 17, 1977

Alto Operating System

GotoLabel(f, label, v)

RetryCall(a, b)

ReturnFrom(fnOrFrame, v)

March 17, 1977 18

Send/> control to the specified label in the specified
frame, and· passes v in ACO.

Repeats the call which appears to have given
control to the caller with a and b as the first 2
arguments, and the other arguments unchanged.
There are certain ways of calling functions which
cannot be retried properly. In particular, the
address of the procedure must be the value of a
static or local variable; it cannot be computed.
Thus "a»proc(s, b)" cannot be retried, but "let
pr=a»proc; pres, b)" can be retried.

Looks for a frame f which is either equal to
fnOrFrame, or has FramesCaller(f) equal to
fnOrFrame. It then cuts back the stack to f and
simulates a return from f with v as the value. If
error, it returns O.

3.11. Subsystems and user programs

All subsystems and user programs are stored as "Run files", which norm-ally have
extension ".Run". Such a file is generated by BIdr and is given the name of the
first binary file, unless some other name is specified for it. The format of an Alto
run file is discussed in section 4.8 and in the Bcpl manuaL

CallSubsys(S, pause [falseJ, doReturn [falseJ, userParams [OJ) will read in a run file
and send control to its starting address, where S is an open disk stream for the file,
positioned at the beginning of the file. If pause is true, the message "Pause to
Swat" is typed out just before the· program gets control; typing any key will proceed.
(doReturn may someday be implemented, and will allow a return to the caller after
the called subsystem "finishes.") userParams is a pointer to a vector . (length up to
lUserParams) of parameters which will be passed to the called subystem. The
parameters are formatted according to conventions given in SysDefs.D (structure UPE):
each parameter is preceded by a word that specifies its type and the length of the
block of parameters; a zero word terminates this list. When the Alto Executive
invokes a program with CallSubsys, it passes in userParams an entry with type
globalSwitches which contains a list of ASCII values of global switches supplied after
the program name.

The open. stream is used to load the program into Alto memory according to
placement information included in the file. The stream is then closed; no other open
streams are affected.

The program is started by a call to its starting address, which will normally be the
first function of the first file, given to BIdr .. This function is passed three
arguments. The first is the 32 word laytut vector for the program, described. in the
Bcpl manual. The second is a pointer 0 a vector of parameters provided by the
caller ~the userParams argument to CallSubsys). The third is the "complete file
address' (CFA) for a particular point in the file that was used to load the program.
If no overlays are recorded in the Run file, this point is the end of file. If
overlays are contained in the file, the CFA points to the first word of the first
overlay section (this can be used as a hint in a call to Open File when loading
overlays contained in the same file).

Subsystems conventionally take their arguments from a· file called Com.Cm, which
contains a string which normally is simply the contents of the command line which
invoked the subsystem (see section 5). Thesuhroutine package GP contains 'a

For Xerox Internal Use Only -- March 17, 1977

Alto Operating System March 17, 1977 19

procedure to facilitate reading this string according to the conventions by which it is
normally formatted. This is not a standard routine but must be loaded with }!our
program. (For more information on GP, see the "Alto Software Packages Manual.")

3.12. Finish -- Terminating Execution

When a program terminates operation, it "finishes," returns to the operating system
and ultimately to the Executive. A program may finish in several ways:

Bcpl return

Bcpl finish

Bcpl abort

Swat abort

OsFinish(fCode)

If the main function in the user program (the one
invoked by CallSubsys) ever returns, the program
finishes. Equivalent to OsFinish(fcOK). .

If the "finish"
program, it
OsFinish(fcOK).

construct is executed in a Bcpl
terminates. Equivalent to

If the "abort" construct is executed in a
program, it terminates. Equivalent
OsFinish(fcAbort) ..

Bcpl
to

If; during program execution, the "left shift" key.
and the "Swat key" (lower-rightmost key on the
keyboard) are depressed concurrently, the progI"am is
aborted. Similarly, if the <controI>K ("kill")
command is typed to Swat, the program is aborted'.
Both are equivalent to OsFinish(fcAbort).

An explicit call to this function will also terminate
execution. The value of fCode is saved in the static
OsFinishCode, which may be examined by the
Executive and the next program that it invokes.
Values of fCode presently defined are: fcOK=O;
fcAbort=1.

When a program finishes, the value of the finish code is first recorded. Then, if
the value of the static' UserFinishProc is non-zero, the call
UserFinishProc(OsFinishCode) is performed before restoring the operating system state.
This facility is useful for performing various clean-ups. (Note: To set
UserFinishProc, it is necessary to execute @lvUserFinishProc = value.) In order to
permit independent software packages to provide for cleanups, the convention is that
each initialization procedure saves the present value of UserFinishProc and then

. replaces it with his procedure. This procedure will do the cleanups, restore
UserFinishProc, and return:

I I Initialization
static savedUFP
savedUFP=@lvUserFinishProc
@lvUserFinishProc=MyCleanUp

liThe cleanup procedure
let MyClean U p(code) be

[
... cleanups here .
@lvUserFinishProc=savedUFP
]

For Xerox Internal Use Only -- March 17, 1977

Alto Operating System March 17, 1977 20

Finally, control is returned to the operating system, which resets the. interrupt
system, updates the disk allocation table, and invokes the executive anew.

3.13. Junta

This section describes some procedures and conventions that can be used to permit
exceptionally large programs to run on the Alto, and yet· to return cleanly to the
operating system. The basic idea is to let a program de-activate various operating
system facilities, and thereby recover the memory devoted to the code and data used
to implement the facilities. To this end, the system has been organized in a series
of "levels:"

levBasic

levBuffer

lev FilePoin ters

levBcpl

levStatics

levBFSbase

levBFSwrite

levAlloc

levStreams

levDirectory

levKeyboard

levDisplay

levMain

Basic resident, including parity interrupt processing,
time-of-day maintenance, the resident interface to
the Swat debugger, and the initial processing for
OsFinish. Important system state is saved here:
EventVector, UserName, UserPassword, OsFinishCode.
(Approximate size: 1000 words)

The system keyboard buffer (see section 4.6).
(Approximate size: 100 words)

File hints. This region contains "file pointers" for
frequently referenced files. (Approximate size: 70
words)

Bcpl runtime routines. (Approximate size: 300
words)

Storage for most of the
(Approximate size: 300 words)

system statics.

Basic file' system "base" functions, miscellaneous
routines. (Approximate size: 1300 words)

Basic file system "write" functions, the disk
descriptor (used to mark those pages on the disk
which are already allocated), interface to the time
of-day clock. (Approximate size: 1200 words)

The Alloc storage allocation package. (Approximate
size: 500 words)

Disk stream procedures. (Approximate size: 2700
words)

Directory management procedures. (Approximate size:
1800 words)

Standard keyboard handler. (Approximate size: 500
. words)

Display driver (although the storage for the display
bitmap and for the system font lie below).
(Approximate size: 1600 words)

The "Main" operating system code,
utilities, CallSubsys, and the Junta
(Approximate size: 1000 words)

including
procedure.

For Xerox Internal Use Only -- March 17, 1977

Alto Operating System

levCompat

March 17, 1977 21

Compatibility level containing code that aims to
implement compatibility with the old Alto operating
system. (Approximate size: 1000 words)

Below levCompat, where the stack starts, the
system free-storage pool is located. Here are kept
stream data structures, the system font, and the
system display bitmap. (Approximate size: 6000
words)

This table of levels corresponds to the order in which the objects are located in the
Alto memory: levBasic is at the very top; the bottom of levCompat is the highest
location for the Bcpl stack.

The "Junta" function is responsible for de-activating these levels, thereby permitting
the space to be reclaimed. When a program that has called Junta is ready to
finish, it calls Os Finish in the normal way.' Os Finish performs the "counter-junta,"
reading in portions of the operating system from the boot file and rebuilding the
internal state of those levels that were previously de-activated, and then proceeds
with the finish, calling the Executive, etc.

During the counter-junta process (which takes about 1/2 second), the display and
interrupt system can continue to be active, provided that the code and storage they
use lies below the address. that is the value of OsFinishSafeAdr. This permits a
token display to remain~ also a keyboard handler can continue to sense key sti"okes
and record characters in the system keyboard buffer.

Junta(levName, Proc)

... finish ...

CounterJunta(Proc)

This function, which may be called only once before
a "finish" or CounterJunta is done, de-activates all
levels below levName. Thus levName specifies the
name of the last level you wish to retain.
(Manifest constants for the level names are in
SysDefs.d.) It then sets the stack to a point just
below the retained level, and calls ProcD, which.
should not return. .

The stack present at the time Junta is called is
destroyed. The recommended procedure for saving
data across a' call to Junta is to locate the data
below EndCode.

A Junta always destroys the system free-storage
pool and does not re-create it. Therefore, open
streams, the system display and system font are all
destroyed. The log file is closed by a Junta .

. It is the user's responsibility to take care not to
call operating system procedures that lie in the
region de-activated by the Junta. If in doubt,
consult the file Sys.Bk, which documents the
association between procedures and levels.

Any of the methods for terminating execution
(section 3.12) automatically restores the full
operating system.

This function restores all de-activated sections of
the operating system, and then calls Proc. The
program stack present when CounterJunta was

'For Xerox internal Use Only -- March 17, 1977

Alto Operating System March 17, 1977 22

called is destroyed. This function is provided for
those programs that do not wish to return to the
operating system with a "finish," but may wish to
do other processing (e.g., CallSubsys).

After calling Junta, many programmers will wish to restore some of the facilities
that the Junta destroys, such as a free storage zone, a display stream, etc. Below is
an example of how to go about this. Note that some thought is required because
the operating system keeps a separate copy of statics from those referenced in your
program. Thus when the OS defaults the third argument of CreateDisplayStream to
sysFont, it uses the OS copy of sysFont, not the copy available to your program.

Junta(levXXXXX, Proe)

let ProcD be
[

IIMake a new sysZone:
let v=vee 7035 .
v=InitializeZone(v, 7035)
@lvSysZone=v
sysZone=v

I I You can make it any size

I I Patch the os's version of thestatie
1/ Patch my program's version of the static

IIRead in the system font again:
let s=OpenFileFromFp(fpSysFont)
let I:':FileLength(s)!2
let f =Allocate(sysZone, n
Resets(s); ReadBlock(s, f, 1); Closes(s)
sysFont=f+2 I I Patch my program's version of the static

II Note that because os's version is not patche
I I I cannot call Ws or otherwise default dsp

IIMake a display stream:
dsp=CreateDisplayStream(6, Allocate(sysZone, 4000), sysFont)
Show DisplayStream(dsp, DSalone)

3.14. Events

The operating system reserves a small communication region in which programs may
record various things. The intended use for this region is the recording of events
by one program that deserve attention by another. 'rhe Executive cooperates in
invoking programs to deal with events posted in the communication region.

Events are recorded sequentially in a table pointed to by the static EventVector.
The total length of the table, available as EventVector!-l, must not be exceeded b¥
any program generating events. Each event entry (structure EVM; see SysDefs.d)
contains a header that specifies the type and length ot the entry (length is in words
and includes header size); following the header comes. type-specific data (eventData).
A zero word terminates the event table.

At present, events are defined for:

even tBooted The operating system has just been booted.

For Xerox Internal Use Only -- March 17, 1977

Alto Operating System March 17, 1977 23

eventAboutToDie The operating system is about to be flushed,
probably to run a diagnostic.

eventInstall

eventRFC

The operating system is to be re-installed. (This
event need only be used by the Executive "Install"
command.)

An Ethernet request for coIl.nection has arrived
(data in the EVM specifies the sender).

eventCallSubsys 'When the next "finish" occurs, the system will try
to execute the file whose name is given as a Bcpl
string in the eventData block. If the eventData
block has length 0, the system will invoke the copy
of Ftp that is squirreled away inside Sys.Boot.
Because a "finish" is performed right after the
system is bootstrapped, it is possible to InLd
Sys.Boot with a message that contains an
eventCallSubsys, and thereby to invoke an arbitrary
program. See the next section for a description of
InLd.

eventInLd Whenever the next "finish" occurs, the system will
call InLd(eventData, eventData). This suggests that
the first words of event data should be an FPRD
for a file you wish to InLd.

If a program that generates an event has destroyed the event communication region,
it is still possible to pass the event to the operating system. For example, if the
memory diagnostic is running and an Ethernet connection request arrives, the
mechanism can be used to load the operating system and pass the eventRFC message
to it. The mechanism is described in the next section.

3.15. OutLd, InLd, BootFrom

Three functions are provided for dealing with "0utLd" files that record the entire
state of the Alto machine, with the exception of whether interrupts are enabled.
When the operating system is loaded with the "boot" button, such a file restores the
machine state exactly as it waS at the time of the Installation of the operating
system. Thtl Swat debugger also uses these facilities, saving the entire machine state
on the file "Swatee" when a break is encountered, and restoring the Swat debugger
state from the file "Swat."

In the discussion that follows, an FPRD structure is like a file pointer (FP), but the
disk address is the Real disk address of the first page of Data in the file.

OutLd(FPRD, OutLdMessage) Saves the state of the machine on the file
described by FPRD, which must exist and be at
least 255 data pages long. Note that the state
saved includes a PC inside OutLd. OutLd returns 0

'after writing the file. Unless you know what you
are doing, interrupts should be off when calling
OutLd (otherwise, OutLd may save some parts of
the machine state, such as the ActiveInterrupts
word, that was pertinent to an interrupt in
progress!).

Programmers should be warned to think carefully

For Xerox Internal Use Only -- March 17, 1977

Alto Operating System

InLd(FPRD, InLdMessage)

BootFrom(FPRD)

. March 17, 1977 24

abou.t the state that is being saved in an OutLd.
For example, the operating system normally saves in
memory some state associated with the default disk,
sysDisk. If OutLd saves this state on a file, and
the program is later resumed with InLd, the state
will be incorrect. To be safe, state should be
written out before calling OutLd (i.e.,
LogClose(sysZone); WriteDiskDescriptorO), and
restored when OutLd returns (Le., LogOpen(sysZone);
ReadDiskDescriptor()).

Copies the InLdMessage (length lInLdMessage J to a
momentarily safe place and restores the machine
state from the file described by FPRD, which must
have been created by OutLd. Because the PC was
in OutLd, OutLd again "returns," but this time
with the value I, and the InLdMessage has been
copied into the OutLdMessage. Note: OutLd returns
with interrupts· disabled in this case.

If the operating system boot file is InLd'ed, the
message is assumed to be a legal data structure for
the EventVector, and is copied there.

This function "boots" the Alto from the specified
file. If it is applied to a file written by OutLd,
the state of the machine is restored and OutLd
"returns" 2 with interrupts disabled. (Note: The
effect of this function differs from . the effect of
depressing the "boot" button. Unlike the boot
button, the function in no way initializes the
internal state of the Alto processor.)

Some programs (e.g., DMT) will need to know how to simulate InLd or BootFrom:

1. Turn off the display and disable interrupts.
2. Read the first data page of the boot file into memory locations I, 2,

... #400. If you are loading the installed operating system, the first data
page of the boot file is at virtual disk address O. .

3. Store the label block for the page just read into locations #402, 11403,
... #411.

4. (This step applies only if simulating InLd.) Now let msa=rv 2. This points
to a location where a brief message can be stored. Set msa!O=1. Then for
i=O to lInLdMessage-l do msa!(i+l) = PrototypeEventVector!i.

5. Jump to lOCation 3, never to return.

4. Data structures

This section describes the. data structures used by the operating system that may be
required by users.

4.1. Reserved Memory Locations

The memo "Reserved Alto Memory Locations" describes addresses reserved for various
purposes. See also Alto Hardware Manual.

For Xerox Internal Use Only -- March 17, 1977

Alto Operating System March 17, 1977 25

4.2. Streams

'l'he standard data structures for streams are given in the Streams package file
"Streams.d". Documentation for the streams package includes a description.

4.3. Disk files

The structure of the Alto file system is described in documentation for the Alto file
system (Disks). This includes a description of files, disk formats, directory formats,
and the format of the disk descriptor. Bcpl declarations for these objects may be
found in the file AltoFileSys.d.

4.4. Display

The. data structures used to drive the Alto display are described in the Alto
Hardware Manual. The font format for the Alto. (.AL format) is also described
there. Note: The format of the first two words of the font have changed since that
document was last updated:

structure AL [
height
proportional
baseline
maxWidth

]

word
bit
bit 7

bit 8

IIReight of chars in scan-lines
IITrue if proportional spacing used
I It! of scan-lines from top of char

IIWidth of widest char in font
to baseline

Note that a font pointer such as the one passed to CreateDisplayStream points to
the third word of an AL font' (Le., the " ... " entry above).

4.5. Zones

A program that wishes to create an operating-system object and retain control over
the allocation of storage to the object may pass a "zone" to the operating system
function that needs space (e.g., CreateDiskStream). A zone is simply a pointer "zone"
to a structure ZN (see SysDefs.d), with zone»ZN.Allocate containing the address of
the allocation procedure (called by (zone»ZN.Allocate)(zone, lengthRequested)) and
zone»ZN.Free containing the address of the free procedure (called by
(zone»ZN.Free)(zone, block)). The zones created by the Alloc allocator package obey
these conventions.

The zone provided by the operating system is saved in the static sysZone. The user
may replace the system zone by executing @lvSysZone = value. Subsequent free
storage requirements for the operating system will be addressed to this zone. The
system zone is restored when the user program terminates. Warning: The operating
system keeps various (and undocumented) information in the system zone, and is
unwilling to have the zone changed out from under it. The normal use of IvSysZone
is to change the value of sysZone immediately after a call to Junta (which clears
away sysZone). If you wish to create disk streams and preserve them across a call
to J un ta, pass your own zone as an argument to OpenFile.

4.6. Operating System Status Information

A good deal of information is retained in memory that describes the state of the
Alto. Much of this information is of relevance to programmers, and is contained in
some static scalars:

For Xerox Internal Use' Only -- March 17, 1977

Alto Operating System

OsVersion

Os Version Compatible

UserName

User Password

SerialNumber

AltoVersion

sysDisk

IvSysErr

Iv Pari tySweepCoun t

IvParityPhantomEnable

March 17, 1977 26

The version number of the operating system. This
number is incremented with each new release of
the operating system, incorporating changes however
minor.

The lowest operating system version number
believed to be compatible with the present system.

This static points to a Bcpl-format string that is
the user's last name. It is initialized when the
operating system is installed on the disk. The
maximum length (in words) that the UserName may
occupy is recorded iIi UserName!-I. .

This static points to a Bcpl-format strin~ that is
the user's password, typed to the Execut1ve Login
command. The maximum length (in words) that
the UserPassword may occupy 1S recorded in
User Password!-I.

The serial number of the Alto you are on.

This static contains the result of executing the
VERS instruction. Three fields of this value
describe the Alto engineering number, the Alto
"build" number arid the microcode version. Consult
the Alto Hardware Manual for details.

A pointer to the DSK structure, described in
Disks.d, which describes the "disk" to be used for
standard operating system use. This structure is
actually of the format BFSDSK, and contains a
copy of the DiskDescriptor data structure. The
static diskKd points to this structure alone
(structure KD; see AltoFileSys.d). The storage for
sysDisk is in levBFSwrite; 1f you Junta to
levBFSbase, you will need to manufacture a new
sysDisk structure.

This static points to the operating-system copy of
the static that contains the address of the error
procedure. If you wish to replace SysErr, it
suffices to say @lvSysErr=Replacement. Note that
some procedures may have already copied the value
of SysErr (e.g., when a stream is created, the value
of S,ysErr 1S copied into the ST.error field in most
cases).

This static contains the address of the highest
memory location examined when sweeping memory
lool;ing for parity. errors. If no parity checking is
'desHed, set @IvPantySweepCount = O.

This static points to a flag that determines
whether phantom parity errors will invoke Swat (a
phantom parity error results from a parity interrupt
that can find no bad locations in memory).
@lvParityPhantomEnable=O will disable phantom
reporting.

For Xerox Internal Use Only -- March 17, 1977

Alto Operating System

Error LogAddress

ClockSecond

File Hints

Keyboard Buffer

OsBuff er > >OsBUF .First
OsBuff er > >OsBUF .Last
OsBuff er > >OsBUF.In
OsBuffer> >OsBUF .Out

March 17, 1977 27

This. static points to a network.· address of a spot
where error reports (for such things as parity
errors) should be sent. The structure is a "port,"
as defined in Pup documentation.

This static points to a double-precision integer that
gives the count of number of RCLK ticks (when
RCLK is viewed as returning a 32-bitnumber) in a
second. This number is used for keeping time, and
is nominally 1680000. If timekeeping is extremely
critical, you may wish to calibrate your Alto and
change this number.

The operating system maintains file pointers for
several commonly-used files. Using these hints in
conjunction with OpenFile will substantially speed
the process of opening streams. The files and file
pointers are:

SysDir
SysBoot
DiskDescriptor
Sys.Log .
Sys.Ts
User.Cm
Com.Cm
Rem.Cm
Executive.Run
SysFont.AI

fpSysDir.
fpSysBoot
fpDiskDescriptor
fpSysLog
fpSysTs
fpUserCm
fpComCm
fpRemCm
fpExecutive
fpSysFont

Although the system keyboard buffer is normally
managed by the keyboard handler provided in the
system, some programs may want to operate on it
themselves. The most important instance of this is
when a program that has done a· Junta is finishing:
if the. program keeps its keyboard handler enabled,
any characters typed during the counter-junta can
still be recorded in the system buffer, and thus
detected by the first program to run (usually the
Executive).

The static OsBuffer points to a structure OsBUF
(see SysDefs.d) that controls access to the buffer:

First address of the ring buffer
Last address of the ring buffer+ 1
"Input" pointer (place to put next item)
"Output" pointer (place to take next item)

The following code can be executed with interrupts
on or off to deal with the buffer:

Getl temO = valof IIReturns 0 if none there!
[.

IfOsBuffer»OsBUF.In eq OsBuffer»OsBUF.Out then resultis 0
let newOut=OsBui'fer»OsBUF.Out+1
if newOut eq OsBuffer»OsBUF.Last then newOut=OsBuffer»OsBUF.First
let result=@(OsBui'fer»OsBUF.Out)
OsBuffer»OsBUF.Out=newOut
resultis result

For Xerox Internal Use Only -- March 17, 1977

Alto Operating System March 17, 1977 28

]

PutItem(i) == valof IIReturns 0 if buffer full already
[

]

let newIn=OsBuffer»OsBUF.ln+1
if newIn eq OsBuffer»OsBUF.Last then newIn=OsBuffer»OsBUF.First
if newIn eq OsBuffer»OsBUF.Out then resultis 0
@(OsBuffer»OsBUF.In)=i
OsBuff er > >OsBUF .In=newIn
resultis -1

GetItemCountO = valof IIReturns count of items in buffer
[.

]

let c=OsBuff er > >OsBUF.In -OsBuff er > >OsBUF.Out
if c Is 0 then c=c+OsBuffer»OsBUF.Last-OsBuffer»OsBUF.First
resultis c

ResetItemBufferO be IISet buffer to empty
[.

OsBuffer> >OsBUF .In=OsBuff er > >OsBUF.First
OsBuffer> >OsBUF.Out=OsBuffer> >OsBUF.First

]

#176777

4.7. Swat

This location, the
beginning of the
levBasic through
documents offsets
various statics will

last in memory, points to the
area used to save statics for

levBcpl. The file Sys.Bk
from this number where the

be found.

The operating system contains an interface. to the Swat debugger. This interface
uses OutLd to save the state of the machine on the file "Swatee," and InLd to
restore the state of the machine from the file "Swat," which contains the saved
state of the debugger itself. The inverse process is used to proceed from an
interrupt or breakpoint. Two aspects of the Swat interface are of interest to
programmers:

Iv AbortFlag

IvSwatContextProc

If @lvAbortFlag is zero, holding down the <left
shift> and <B3> keys will simulate the call
OsFinish(fcAbort), thus terminating execution of the
running program. In critical sections, setting
@lvAbortFlag to a non-zero value will disable
aborts. The standard convention is to increment
@lvAbortFlag when entering such a section and to
decrement it when exiting. This permits separate
software modules to use the feature concurrently.

Although Swat saves and restores the state of the
standard Alto 1/0 devices, it has no way to know
about special devices attached to the machine, The
programmer may arrange that a (machine.,.language)
procedure will be called whenever Swat is trying to
turn off I/O preparatory to calling OutLd, or trying
to restart I/O after an InLd. If the programmer
does @lvSwatContextProc=DLSProc, Swat will execute·

For Xerox Internal Use Only -- March 17, 1977

Alto Operating System March 17, 1977 29

DLSProc(O) when turning off 110, and DLSProc(-1)
when turning it on.

4.8. The Bcpl stack

The Bcpl compiler determines the format of a frame and the calling convention. The
strategy for allocating stack frames, however, is determined by the operating system.
We begin by describing the compiler conventions, which are useful to know for
writing machine-language routines. . .

A procedure call: p(a1, a2, ...), is implemented in the following way. The first two
actual arguments are put into ACO and AC1 (AC2 always contains the address of the
current frame, except during a call or return). If there are exactly three actual
arguments, the third is put into F.extraArguments. If there are more than three, the
frame-relative address of a vector of their values is put there (except for the first
two),. so that the value of the i-th argument (counting from 1) is
frame»F.extraArguments!(frame+i). Once the arguments are set up, code to transfer
control is generated whiCh puts the old PC into AC3 and sets the PC to p. At this
point, AC3fO will be the number of actual arguments, and the PC should be set to
AC3+ 1 to return control to the point following the call.

A procedure declaratio~: let p(fl, f2, ...) be ... , declares p as a static whose value
after loading will be the address of the instruction to which control goes when p is
called. The first four instructions of a procedure have a standard form:

STA 3 1,2 ; AC2»F.savedPCf-AC3
L: JSR @GETFRAME

number of words needed for this procedure's frame
JSR @STOREARGS

The Bcpl runtime routine GETFRAME allocates storage for the new frame, NF, saves
AC2 in NF»F.callersFrame field, sets AC2 to NF, and stores the values of ACO and
AC1 (the first two arguments) at NF»F.formals 1'0 and 1. If there are exactly
three actual arguments, it stores the third one also, at NF»F.formals 1'2. Then, if
there are three or fewer actual arguments, it returns to L+3, otherwise it returns to
L+2 with the address of the vector of extra arguments in AC1; at this point a JSR
@STOREARGS will copy the rest of the arguments. In both cases, the number of
actual arguments is in ACO, and this is still true after a call of STOREARGS. A
Bcpl procedure returns, with the result, if any, in ACO, by doing:

JMP @RETURN

to a runtime routine which simply does:

LDA 2 0,2
LDA 3 1,2
JMP 1,3

AC2f-AC2> > F.callersFrame
PCf-AC2> > F .sa vedPC+ 1

The information above is a (hopefully) complete description of the interface between
a Bcpl routine and the outside world (except for some additional runtime stuff which
is supplied by the operating system). Note that it is OK to use the caller's F.Temp
and F.extraArguments in a machine-language routine which doesn't get its own frame,
and of course it is OK· to save the PC in the caller's F.savedPC.

The operating system currently allocates stack space contiguously and grows the stack
down. To allocate a new frame of size S, it simply computes NF=AC2-S-2 and checks
to see whether NF > EndCode. If not, there is a fatal error (Swat breakpoint at
finish+1); if so, NF becomes the new frame. (Note: the "-2" in the computation is an
unfortunate historical artifact.)

For Xerox Internal Use Only -- March 17, 1977

Alto Operating System . March 17, 1977 30

4.9. Run files

The format of a file produced by BIdr to be executed by CallSubsys is described by
the structure definition SV in SysDefs.d. Consult the Bcpl manual (section on
Loading) for interpretations of the various fields and the handling of overlays.

5. The Executive

The Alto Executive is itself a subsystem and lives on .the file Executive.Run; if you
don't like it, you can write your own. It is currently invoked from scratch after the
operating 'system is booted, and whenever a subsystem returns. The Executive is
fully documented in the "Alto Subsystems Manual"; only a brief description is
presen ted here.

The Executive reads a command line from the keyboard, writes it (with some
interpretation) onto the file Com.Cm, terminated with a carriage return,and calls in
the file named by the first word on the line (up to blank, / or carriage return).
The interpretation is as follows:

a) If more than one display line is needed, a command line may be' continued
on the next display line by preceding the carriage return with a 1'. This l'
simply causes the carriage return to be ignored; it does not act as a
separator. A l' not followed by carriage return is treated as an ordinary
character. Line-feed characters are ignored. ..

b) If the sequence @filename@ appears, the contents of the specified file are
treated as though they had been typed in at that point, instead of the @
construction. This may be nested to any reasonable depth.

c) The backspace key, or a control-A, deletes the previous undeleted character;
a DEL deletes the whole line. A controt-R retypes the line. Two slashes
(1/) begin a comment, which· is terminated by the carriage return or semi
colon which terminates the command.

d) Commands can be separated by semi-colons. If there is more than one
command in a command line, everything following the first command is saved
(after the interpretation described above) on a file called Rem.Cm, which will
be examined the next time the Executive is run.

The Executive has some simple commands built into it, rather than accessed through
the subsystem machinery. These all have names of the form "xxx.-" to indicate that
the Executive is responsible for executing them. They are handled exactly· like other
commands, but are somewhat more efficient, and cannot be overridden by changing
the Run files with those names.

6. Operating Procedures

6.1. Installing the operating system

The "Install" command causes the operating. system to. execute special code which
completely initializes the system. The options of the install procedure are controlled
by prompts. Installation is needed:

For Xerox Internal Use Only -- March 17, 1977

Alto Operating System March 17, 1977 31

- When a new version of the operating s~stem is distributed. If you transfer
the new system boot file to your disk say as "NewOs.Boot"), you may then
give the Install command: "Install New s.Boot". Several questions will be
asked, and finally the Executive will be invoked.

- When you wish to ERASE a disk completely and re-initialize it. This option
pauses to let you insert the disk pack you want initialized. This "new disk"
function is invoked by answerin~ affirmatively the question "Do you want to
ERASE a disk before installing? See also the NEWDISK section of the Alto
Subsystems Manual.. .

- When you wish to change the "owner name" or "disk name" parameters of
the operating system. 'l'he install procedure will prompt for these strings. It
is also possible to specify a disk password that will be checked whenever the
operating system is booted.

- When you wish to enable the "multiple version" feature of the file system.
(Because few programs presently cope with all the subtleties of this feature,
it is wise to leave it disabled.) ..

When a new operating system is released, it is wise to copy it to your disk under a
new name (e.g. NewOs.Boot). Then the command "Bootfrom NewOs.Boot" will invoke
the new system without Installing (which would smash the present system). When.
you are finally convinced that the new system is worthy, give the command "Install
NewOs.Boot," and respond to the installation questions. After installation, you may
delete N ewOs.Boot; the installed system is always saved on Sys.Boot.

6.2. How to get out of trouble

It occasionally happens that a disk will not boot, or something runs awry during the
booting process. In this case, the following steps should be considered:

1. Run the Scavenger. Place a good disk in the Alto, and invoke the Scavenger.
When it asks if you wish to change disks, respond affirmatively, put the
damaged disk in the machine and proceed when the drive becomes ready.
When the Scavenger finishes, the attempt to invoke the Executive may fail
because Scavenger was invoked from another disk. Try booting. If
unsuccessful, go on to step 2.

2. Use Ftp to get fresh copies of SysFont.AI and Executive.Run. Again, place a
good disk in the machine and invoke Ftp. After it is initialized, change disks,
wait for the damaged one to become ready, and type the necessary Ftp
commands to retrieve the files. Now try booting. If unsuccessful, go to step
3.

3. Install. Place a good disk in the Alto and type "Install." When asked for
your name, place the damaged disk in the machine, wait for the drive to
become ready, and proceed.

6.3. File Name Conventions

Various conventions have been established for Alto file names. The conventions are
intended to be helpful, not authorative. . .

1. All files relating to a subsystem "Whiz;' should have file names of the form
"Whiz.xxx", i.e. typing "Whiz.*" to the Executive should list them all, delete them all,
etc. Example: Bcpl.Run, Bcpl.Syms, Bcpl.YG, etc.

For Xerox Internal Use Only -- March 17, 1977

Alto Operating System March 17, 1977 32

2. File extensions are of preference chosen to be langu~@. extensions, i.e. they specify
the language in which they are written. The presentSet is:

Bcpl
Mu
Asm
Help
em

Bcpl source code
Micro-code source
Assembler source code
A help file for the system given in the name
A command file for the Alto Executive

3. File· extensions are otherwise chosen to reflect the format. of the file. The
present set is:

Bravo
Run
Al
Boot
Br
Syms
Dm

Log
Ts

Text file with Bravo format codes
Executable file produced by Bldr
Alto format font file
A file that can be booted
Bcpl relocatable binary file
Bldr symbol table output
File produced by the Dump command,

read by the Load command
File in "log" format
Text file containing a transcript

6.4. Miscellaneous information

The key in the lower right corner of the keyboard «blank-bottom» is called the
Swat key. If you press it, as well as the <ctrl> and <left-shift> keys, the Swat
debugger will be invoked. If you do this by mistake, <ctrl> P will resume your
program without interfering with its execution, and <ctrl>K will abort your program.

You can force an .abort at any time by de.pressing the Swat key together with the
<left-shift> key.

In order for the operating system to run properly, the following files should be on
your disk (those marked * are optional):

SysDir
DiskDescriptor
SySFol1t.AI
Executive.Run
Sys.Boot
Sys.Errors
Swat
Swatee

System directory.
Disk allocation table.
System display font.
Executive lcommand processor).
Boot-file containing the operating system.
* Error messages file.
* Debugger program, created by running InstallSwat.
* Debugging file essential to Swat.

(Note: If you wish to change the font used by the operating system, it suffices to
copy a new font to SysFont.AI and. boot the system.)

If you intend to write programs that use the operating system facilities, you will
want some additional files: .

Sys.Bk

SysDefs.d

Required by· Bldr to load programs that reference
operating system functions. 'I'his file also shows
which functions are implemented in which levels
and the names of source files for the code.
Definitions of standard sr,stem objects. You will
probably want to "get I this file in Bcpl

For Xerox Internal Use Only -- March 17, 1977

Alto Operating System

Streams.d
Al toFileSys.d
Disks.d

. March 17, 1977 33

compilations that use operating system functions
extensively .

. Data structure definitions l'elatin~ to streams.
* Data structure. definitions relatmg to files.
* Data structure definitions relating to the "disk"
object;

7. Differences between new and old operating systems

This section tries to list two sorts of differences between the new and old systems:
those functions that have been replaced by slightly different ones, and
incompatibilities that may affect a small number of users.

Eventually, "compatibility" with the old operating system will be abolished entirely,
thus allowing the operating system to shrink slightly.

Conversions

Loading: If you use only the functions listed in this manual, it is not necessary
to load the file INITALTOIO;Br with your pro~am. It is likewise unnecessary
to call an initialization procedure at the begmning of your program (as was
the case with INITALTOIO} When loading programs for the new system, the
file Sys.Bk must be present on your disk, as BIdr reads it to generate the
correct linkage to operating system functions. The default starting location
for statics and code is #1000.

ComI!atible loading: You may load programs just a~ in the ol~ operating syste?l
(wIth INITALTOIO), but more space can be obtamed by loadmg them lower m
memory. However, you must not load below #1020. Thus Bldr/L/V 1020/V
400/W 1420/0 progl. prog2 INITALTOIO is acceptable. Programs loaded in this
fashion may also use the new functions documented in this manual.

READVEC, WRITEVEC: Use ReadBlock, WriteBlock. The third parameter is the
actual count (not count-I).

BMOVE, BSTORE: Use MoveBlock, SetBlock, Zero. Beware different calling
sequence (source and destination exchanged, count instead of count-I}

Creates: Use the individual functions for creating different kinds of streams.
For disk streams, CreateDiskStream is analogous.

SetEndCode(INITAI,.TOIO): This call, executed after calling INITALTOIO, had the
effect of reclaiming tfle space occupied by INITALTOIO. In the new system, if
INITALTOIO is not loaded, .there is no need to do this. Sys.Bk accomplishes
the linkage to the operating system functions without requiring space in your
program.

SYSTEMDIR: The system directory is no longer open all the time. The call
OpenFileFromFp(fpSysDir) will open the directory very quickly.

#1011: This location used to point to the system font. The recommended
method to get a pointer to the system font is GetFont(dsp).

Incompatibilities

Closes: In the old system, a bug made it possible to close a stream twice. That
is no longer possible.

For Xerox Internal Use Only -- March 17, 1977

Alto Operating System March 17, 1977 34

#1002: Special interpretations were assigned to this location in the old system
(bits on meant that Com.Cm or Rem.Cm had information in them). This is
no longer used; the Executive examines Rem.Cm each time it is invoked.

GetFrame: Several programs "patched" GetFrame to trap to Swat when stack
overflow occurred. rfhe new system calls Swat on stack overflow. If the old
patch method is used, GetFrame is clobbered and will not operate correctly.

#353: Several programs patched "finish" (pointed to by #353) in order to do
cleanups before returning to the operating system. The UserFinishProc facility
of the new operating system replaces this kluge.

PositionPtr: This function in the new system takes a second argument that is
the desired byte position, not desired position+2. (Note: If you load with
INITALTOIO, a compatibility function compensates for this difference. If
INITALTOIO is not loaded, PositionPtr will refer to the new variety.)

For Xerox Internal Use Only -- March 17, 1977

Alto Operating System March 17, 1977 35

Name

CYCLE

JSRII
JSRIS
CONVERT
DIR
EIR
BRI
RCLK

SIO
BLT

BLKS

.. SIT

JMPRAM
RDRAM

WRTRAM
DIRS
VERS

DREAD
DWRITE
DEXCH

MUL
DIY

BITBLT

Notes:

Opcode Address Function

60000 C

64400 D
65000 D
67000 D
61000
61001
61002
61003

61004
61005

61006

61007

61010
61011

61012
61013
61014

61015
61016
61017

61020
61021

ACO~ACO Icy (if C ne 0 then C else ACl); smashes
AC1
AC3~PC+l; PC~rv (rv (PC+D))
AC3~PC+l; PC~rv (rv (AC2+D))
character scan conversion
disable interrupts
enable interrupts
PC~interruptedPC; EIR
ACO~16 msb of clock (from reaITimeClock); ACl+- 10
Isb of clock * #100 + 6 bits of garbage; resolution is
38.08 us.
start I/O
Block transfer of -AC3 words; ACO=address of first
source word-I; AC1=address of last destination word;
ACO and AC3 are updated during"tlle instruction
Block store of -AC3 words; ACO=data to be stored;
ACl=address of last destination word; AC3 is updated
during the instructIon
start interval timer. For an interrupt when the time is
timei-InterruptTime, ACO should be 1 when this
instruction is executed
Emulator microcode PC~ACI in control RAM
ACO~(if AC1[41 then RAM else ROM)!AC1 (left half if
AC1f51, ri~ht Iialf otherwise)
RA11!AC1 ~l ACO,AC3)
* Disable interrupts and skip if interrupts were on
* ACO~((EngineeringNumber-1)*16 +BuildNumber)*256
+ Microcode Version
** ACO~rv(AC3); AC1~rv(AC3 xor 1)
** rv(AC3)~ACO; rv(AC3+1)~AC1
** t~rv[AC3); rv(AC3)~ACO; ACO~t; t~rv(AC3+1);
rv(AC3+1)-~AC1; AC1~t
Same as NOVA MUL: ACO,l~AC2*AC1+ACO
Similar· to NOVA DIV: AC1~ACO,l/AC2; ACO has
remainder. DIV (unlike NOVA version) skips the next
instruction if no overflow occurs.

61024 * character scan conversion of bit-map manipulation

Address: C=bits 12-15; D=bits 8-15; -=no address
variables in function descriptions are machine registers or page 1
locations
* indicates available only in "new" microcode (SIO leaves ACO[O]=O)
** indicates available only on Alto II

Table 2.1: New instructions in Alto emulator
(see Alto Hardware Manual for· more details)

For Xerox Internal Use Only -- March 17, 1977

Alto Operating System March 17, 1977 36

Device Diablo 31 Diablo 44
Number of drives/Alto 1 or 2 1
Number of packs 1 removable 1 removable

1 fixed

Number of cylinders 203 406
Tracks/ cylinder /pack 2 2
Sectors/track . 12 12
Words/sector 2 header same

8 label
256 data

Data words/track 3072 3072
Sectors/pack 4872 9744

Rotation time 40 25 ms
Seek~ime (approx.) 15+8.6*sqrt(dt) 8+3*sqrt(dt) ms

mm-avg-max 15-70-135 8~30-68 ms
Average access 80 32 (both packs) ms

to 1 megabyte

Transfer rates:
peak-avg 1.6-1.22 2.5-1.9 MHz
peak-avg 10.2-13 6.7-8 . us-word
per sector 3.3 2.1 ms
for full display ,46 .27 sec
for big memory 1.03 .6 sec
whole drive 19;3 44 (both packs) sec

Table 2.2: Properties of Alto disks

For Xerox Internal Use Only -- March 17, 1977

Alto Operating System March 17, 1977 37

LastMemLoc

StartSystem

StackBase

StackEnd

EndCode

StartCodeArea

400-777

300-377

20-277

0-17

Last memory location

Base of system

Root of stack; stack extends downward from here

Top of stack, which grows down

End of user program+l

This space contains user code and statics, loaded as
specified by the arguments to Bldr. Default is to
start (at StartCodeArea and load statics into the first
400 words, and code starting at StartCodeArea+400.
See Bcpl manual.

Start of user program area

Page 1: machine-dependent stuff (see Alto Hardware
Manual)

Bcpl runtime page 0

User page 0

Unused

Table 3.1: Memory layout (all numbers octal); see section 3.6

LastMemLoc

StackEnd

EndCode
StartCodeArea

The operating system described in this document runs
on 64K Altos; this location is 176777.
The address of the frame in which the current
procedure is executing is computed by the MyFrame
procedure; alternatively, compute Iv (first argument of
current procedure) -4
Rv(335)
User code may start at any address > 777.

Table 3.2: Values of symbolic locations in Table 3.1
(all numbers octal)

OS Changes

For Xerox Internal Use Only -- March 17, 1977

March 17, 1977

Operating System Change History

38

This file contains an inverse chronological listing of changes to the Alto operating
system.

The "normal way" to install a new operating system is to retrieve a copy of the files
Sys.Boot, Sys.Syrns, Sys.Errors and Sys.Bk that are being distributed. It is advisable
to retrieve Sys.Boot under another name, such as NewOs.Boot and to try it out by
saying "BootFrom NewOs.Boot" to the old system. If it seems to load properly, you
can then invoke "Install NewOs.Boot" to install the system. After 'installation,
N ewOs.Boot may be deleted.

Version 12/5 -- March 20, 1977

Additions: ClockSecond. Location 613b is now reserved to indicate to RAM microcode
what sort of Alto we are on: 0 implies Alto I; -1 implies Alto II.

Changes: Time-keeping accuracy improved slightly. BFS is now reentrant--you may
have several independent disk activities going concurrently (this will make CopyDisk
more reliable).

Version 11/5 -- Janual'Y 9, 1977

Additions: eventInLd and eventCallSubsys processing added. Also now possible to
install the opel'ating system with logging disabled .

. Changes: Booting process somewhat mme l'obust. Several changes to improve
diagnostic infol'mation about padty enol'S provided by Swat. Improved password
protection. Alto II fixes in padty and timer routines.

Version 10/5 -- November 2, 1976

Changes: A nasty bug in the disk routines was uncovered and fixed. It was
responsible for occasionally garbaged files.

Version 9/5 -- September 25, 1976

Additions: verNewAlways option to OpenFile; changeSerial entry on file leader pages.

Changes: Various bugs relating to keeping file version numbers were fixed.

Version 8/5 -- August 28, 1976

Changes: Several bugs in padty error detection and reporting were removed.

Version 7/5 -- August 10, 1976

Additions: The Idle procedure and corresponding static lvIdle; lvParityPhantomEnable
global static; more installation options.

Minor changes: Two bugs in PositionPage are fixed -- one permitted read-only files
to be accidently lengthened.

Version 6/5 -- July 8, 1976

Additions: (1) Several global statiCs have been added: AltoVersion (code for machine,

OS Changes

For Xerox Internal Use Only -- March 17, 1977

. March 17, 1977 39

build and microcode versions), ErrorLogAddress (Ethernet address to report hardware
errors), 11176777 points to the global statics.

(2) The format of Sys.Boot has been altered slightly so that Altos may be booted
over the Ethernet.

Version 5/5 -- April 28, 1976

How to get it: Because version 5 introduces some incompatibilities, it is essential
that several subsystems be updated: (1) get a new Executive and Bravo 5.5 or later
(these will run under version. 40r version 5 of the operating system); (2) get Sys.Bk,
Sys.Syms, Sys;Boot (under another name, e.g. NewOs.BootJ; (3) install your new
system; (4) get a new version of DDS, which depends on version 5 of the operating
system; (5) get a new InstallSwat.Run and invoke it; (6) if you are a programmer, be
sure to get new copies of all definitions files (e.g. Alto1!'ileSys.d).

Incompatibilities: (1) Most calling sequences' and subroutine names for the "Bfs"
routines have changed. These changes were made in order to introduce the concept
of a "disk" object, so that standard OS stream and directory functions could be
applied to non-standard disks (e.g., the Trident T80). The static IvDiskKd has been
removed.

(2) The "disk address" returned as part of a CFA or FA is now a virtual disk
address. The routine RealDiskDA can be used to convert it to a physical disk
address if desired.

Minor changes: (1) The handling of the UserFinishProc has changed. The
recommended proceaure for such procedures is to simply return from a finish
procedure, not to call OsFinish again.

(2) Several bugs in the streams packa~e are fixed, e.g. ReadBlock applied to a file
wlth 511 bytes in the last data page dId not work correctly.

(3) The "new disk" refreshing procedure has been changed to use the new FTP; it is
now mandatory that this file be present on your disk when you ·attempt to make a
brand new disk.

(4) It is now possible to change disk packs during the Install sequence; simply
change packs when some question is asked of you (exception: if you are creating a
"new disk," do not change packs until told to do so).

(5) The log· functions have ·been made much more robust. It is now possible to
aelete Sys.Log and continue operations.

(6) Numerous bugs inReturnFrom and FramesCaller are fixed.

(7) The default number of file versions to keep is now stored in the DiskDescriptor.

(8) Wns has been changed to allow both signed and unsigned number conversion.

(9) The arguments to DeleteFile have changed slightly (only if you pass more than 2
arguments to it).

(10) The introduction of the "disk"·· object has added some statics: sysDisk, some
functions: KsGetDisk, LnPageSize, and optional "disk" arguments to disk stream
opening functions.

OS Packages

'For Xerox Internal Use Only -- March 17, 1977

September 25, 1976

Operating System Software Packages

40

Several of the modules of the. operating system are also available as software
packages in case the programmer wishes to include them in overlays, or modify them,
etc. The files are contained in OS.DM, and are distributed as text files which must
be assembled or compiled. The reason for this procedure is that proper .use of these
proc~dures in a foreign context may require some modifications, and will certainly
reqUlre some understanding.

Utilities. The file OsUtils.Bcpl contains several of the utility procedures located in
levMain: Wss, Ws, WI, Wns, Wos, Wo, GetFixed, FreeFixed, FixedLeft, SetEndCode.
The procedure GetFixedlnit must be called to initialize the GetFixed/FreeFixed
procedures. .

Password. The. file· Password.Bcpl contains the Alto password routines, and can be
used to do password checking in subsystems.

Keyboard. The keyboard handler is available in Keyboard.Bcpland Kbhan.Asm. 'fhe
procedure CreateKeyboardStream initializes the package, and returns a value (keys)
that can be used as a keyboard stream. .

Display. The display handler is available in the file Dstream.Bcpl and Dhanx.Asm.
Documentation is found later in this manual.

Directory. The file Dirs.Bcpl contains the directory manipulations described in section
3.5.

Disk Streams. The files Streams.Bcpl, StreamsMl.Asm and Log.Bcpl contain procedures
for implementing disk streams. Documentation is found later in this manual.

Alloc. The file Alloc.Bcpl implements the allocator. See documentation later in this
manual.

Basic File System. The files BfsBase.Bcpl, BfsWrite.Bcpl and BfsMl.Asm implement
the basic file system (documentation appears later in this manual). These also need
ReadTimer.Asm, Level6.Asm, Dvec.Bcpl and Calls.Asm in order to operate.

Disk Streams

For Xerox Internal Use Only -- March 17, 1977

January 29, 1977

Disk Streams: A Byte-Oriented Disk Input/Output Package

41

The disk streams package provides facilities for doing efficient sequential
input/output to and from Alto disk files. It also includes operations for doing
random positioning with moderate efficiency, and for performing various housekeeping
operations. An introduction to streams can be found in the Alto Operating System
Manual.

As part of these facilities, a "fast stream" capability permits very fast sequential
byte access to objects stored in memory.

The file Streams.Dm contains the source files for the disk streams package:

Streams.D: public declarations;
Streams.Bcpl: all the Bcpl code;
StreamsMl.Asm: a small amount of assembly code.

Streams use the generic procedures of a "disk object" to do disk transfers. The
stream routines default the choice of disk to "sysDisk," a disk object created by the
Alto operating system to provide access to the standard disk drive. However, the
user is free to open streams to other disks.

1. Data structures

The file Streams.D contains the public declarations of the disk streams package.
Most users will not be concerned with these structures (except occasionally with
their size, so as to be able to allocate the right amount of space for one of them),
because the streams package provides procedures to perform all the operations which
are normally needed.

The ST structure is common to all streams in the Alto operating system. It
includes the procedures which implement the generic stream operations for this
particular stream: Closes, Gets, Puts, Resets, Putbacks; Errors, and Endofs. In
addition, there is a type, which for disk streams is always stTypeDisk, and three
parameter words whose interpretation depends on the stream. The parameter words
are not used by disk streams.

Fast streams are a specialization of streams, designed to quickly get or put bytes or
words until a count is exhausted, and then call on a fixup routine which supplies a
new count. Usually the count specifies the number of items remaining in a buffer,
and the fixup routine empties or refills the buffer, but no such assumptions are
made by fast streams. This facility is described in a later section; it is used by
disk streams, but is of no concern to a program which simply wants to use disk
streams.

A file pointer contains all the information required to access an Alto disk file. Its
structure is described in detail in the Disks documentation. For a normal user of
streams, a file pointer is simply a small structure which must be' supplied to the
CreateDiskStream routine to specify the file to which the stream should be attached.
File pointers are normally obtained from directories, but a user is free to store them
wherever he wishes.

A file address FA is a pointer to a specific byte in a file. It includes the address

Disk Streams

For Xerox Internal Use Only -- March 17, 1977

January 29. 1977 42

of the byte, divided into a page number (the page size depends on the disk in use;
normally pages contain 512 bytes) and a byte number.. It also includes a disk
address, which is a hint as to the physical location of the specified page. Stream
routines which use file addresses check the hint;, if it turns out to be correct, they
proceed, and otherwise they start at the beginning of the file and search for the
desired page.

A complete file' address CFA contains both a file pointer and a file address; it is a
pointer to a specific byte anywhere in the file system.

A file position (FPOS) is a double-precision number which addresses a byte in a file.
The first word is the most-significant half.

2. Properties of disk streams

All the stream procedures take as their first parameter a structure called a disk
stream. A disk stream provides access to a file stored on the Alto disk. Each
stream is associated with exactly one file, although it is possible to have several
streams in existence at once which are associated with the same file. The file is a
permanent object, which will remain on the disk until explicitly deleted. The stream
is an ep?emeral object, which goes away when it is closed, or whenever the Alto's
memory IS erased.

A file consists of a leader page, a length L, and a sequence of L bytes of data; each
byte contains 8 bits. A stream is always positioned to some byte of the file. and
the normal stream operations proceed sequentially from the current position to later
positions in the file. The first byte is numbered O. When the stream is positioned
at byte n, this will be the next byte transferred by a Gets or Puts. There are also
operations which reposition the stream; When data is written into the stream, the
file is lengthened if necessary to make room for it. The file is never shortened
except by TruncateDiskStream (which may be called by Closes; see below).

A stream can' transact business a word at a time or a byte at a time, depending on
how it is created. In the former case, if the length of the file is odd, the last
word delivered will have garbage in its right byte.

You can replace the generic stream procedures if you wish (Gets, Puts, Closes, Resets,
Errors, Endofs, Stateofs). The one you are most likely to want to replace is the
error procedure. It is initialized to SysErr. .sec(Procedures) This section describes
the calling sequeIices and behavior of all the user-:callable procedures in the streams
package. If a parameter is followed by an expression in brackets, this means that
the parameter will be defaulted to that expression if you supply O. If the last few
parameters you are supplying are defaulted, you can just omit them. Empty brackets
mean that the parameter may be omitted. The parameters stands for the disk
stream the procedure workS on.

Warning: Because the stream procedures occasionally use the RetryCall function, a
procedure address cannot be computed, but must be the value ofa static (global) or
local variable. Thus "a»proc(stream, b)" is not permitted, but "let pr=a»proc;
pr(stream, b)" is fine.

2.1. Creating' and destroying
- '

CreateDiskStream(filePtr, type [ksTypeReadWrite],
[Noop], errRtn [SysErr], zone' [sysZone], logInfo

itemSize [wordIteml Cleanup
[0], disk [sysDiskl) returns

Disk Streams

For Xerox Internal Use Only -- March 17, 1977

January 29, 1977 43

diskStream. A new disk stream is created and returned. It is associated with the
file specified by filePtr on the given "disk," and positioned at item O. Its type may
be one of (see Streams.D for definitions):

ksTypeReadOnly
ksType WriteOnly
ksTypeReadWrite

Its itemSize may be one of (see Streams.D for definitions):

charItem
wordItem

If you supply a cleanup routine, it will be called with. the stream as parameter just
beforelhe stream is destroyed by a Close. If returnOnCheckError is true, the

.. routine will return 0 if the file id of the leader page at the address specified in the
file pointer is different from the file id in the. file pointer. You would want this if
you wanted to use the. file pointer as a hint, perhaps to be backed up bya
directory lookup if it fails. In fact, the standard directory routine Open File does
exactly that. If you supply a zone, it will be used to allocate the space needed by
the stream. This space comes in two parts: the stream itself, about 60 words long,
and the buffer, one page long.

Resets(s): flushes any buffers associated with the stream to the disk, and positions
the stream to O.

Closes(s): closes the stream, flushing the buffer and updating various information in
the leader page if necessary. The last things it does are to call the cleanup routine
passed to CreateDiskStream, and then to free the space for the stream. If the
stream is open for writing only and it is not positioned at date byte 0, the file
length is truncated to the current position.

CleanupDiskStream(s): flushes . any buffers associated with the stream to the disk.

2.2. Transferring Data

Gets(s): returns the next item (byte or word, depending on the item size), or causes
an error if there are no more items in the stream.

Puts(s, ite~): writes th~ next item into the stream. It causes an error if there is
no more dlSft space, or· If the stream was created read-only.

ReadBlock(s, address, count) returns actualCount: reads count words from the stream
into memory, starting at the specified memory address. It returns the number . of
words actually read, which may be less than count if there were not enough words
in the file. It never causes an end-of-file error. It is possible to use ReadBlock on
a byte stream, but only if the stream is currently positioned at an even byte;
otherwise there will be an error.

WriteBlock(s, address, count): writes count words from memory into the stream,
starting at the specified memory address. The comment in ReadBlock about byte
streams applies here also.

2.3. Reading state

Endofs(s): returns true if and only if there are no more items in the stream.

LnPageSize(s) returns the log (base 2) of the number of words in a page of the file.

Disk Streams

For Xerox Internal Use' Only -- March 17. 1977

January 29. 1977 44

FileLength(s. filePos [J) returns lengthL: positions the file to its last byte and
returns the length in .bytes in filePos (FPOS). and the length mod 2**16 as its
value.

FilePos(s. filePos []) returns posL: returns the current byte position. in filePos
(FPOS). and the current position mod 2**16 as its value.

GetCurrentFa(s. fileAddress) stores the current position in the file address (FA).
including the disk address of the current page as a hint which can be used by
JumpToFa.

GetCompleteFa(s. completeFileAddress) stores both the file pointer and the current
position in the complete file address (CFA). This is enough information to create a
stream (passing the file pointer to CreateDiskStream) and then to return to the
current position (passing the file address to JumpToFa).

ReadLeaderPage(s. address) reads the leader page into memory starting at the
specified address. The stream is left positioned at data byteO.

KsBufferAddress(s) returns address: returns the address in memory of the buffer for
the stream. ThIS is useful if you want to move the buffer; you can do so. and then
reset the address with .KsSetBufferAddress. .

KsGetDisk(s) returns a pointer to the DSK object that describes the disk on which
this stream is open (see' Disks documentation).

KsHintLastPageFa(s) returns a pointer to a hint for the end of the file opened by
stream s.

2.4. Setting state

rrruncateDiskStream(s) truncates the stream. at its current position. Afterwards,
Endofs(s) will be true.

Posi tionPage(s. page. doExtend [true 1) returns wan tedToExtend: positions the stream
to byte 0 of the specified page. Ir doExtend is true. it will extend the file with
zeros if necessary in order to make it long enough to contain the specified page. If
doExtend is false, it will not do this, but will return true if it was unable to
position. the stream as requested because the file wasn't long enough. NOTE: This
routine intei'prets "page" in the units associated with the disk on which the stream
is open. If you wish a device-independent positioning command. see SetFilePos.

PositionPtr(s. byteNo. doExtend [true]) returns wantedtoExtend: positions the stream
to the specified byte of the current page. DoExtend is interpreted exactly as for
Posi tionPage.

JumpToFa(s, fileAddress) positions the file to the specified address (FA). It tries to
use the disk address hint in the address, but falls back to PositionPage if'that fails.

SetFilePos(s, filePos): positions the file to the byte specified by the double-precision
number in filePos (FPOS). .

SetFilePos(s, filePosH,filePosL): positions the file to the byte specified by the
filePosH*2' *16+filePosL.

WriteLeaderPage(s, address) write the leader page from memory starting at the
specified address. The stream is lef~ positioned at data byte O.

For Xerox Internal Use Only March 17, 1977

Disk Streams January 29, 1977 45

KsSetBufferAddress(s, address): sets .the buffer address to the specified memory
address. It is the user's responsibility to be sure that the buffer has the proper
contents, and that it was allocated from the proper zone, so that when it is freed
using the zone which was used by CreateDiskStream the right thing will happen.

ReleaseKs(s) will release all the storage used by the stream s, without referencing
the disk at all. This is.a way of aborting a stream, often useful when recovering
from an unrecoverable disk error.

3. Fast Streams

A fast stream structure must begin with the structure declared as FS· in Streams.D;
following this the user can put anything he likes. To initialize this structure, use

InitializeFstream(s,· itemSize, PutOverflowRoutine, GetOverflowRoutine,
GetControlCharRoutine [Noop 1). The s· paramter points to storage for the stream
structure, IFS. words long. 'rlie itemSize is as for CreateDiskStream. The overflow
routines are explained below. GetControICharRoutine(item, s) will be called whenever
a Gets for a charItem stream is about to return an Item between 0 and #37, and its
value is returned as the value of the Gets. The initialization provides Gets, Puts,
and Endofs routines; the other stream procedures are left as Errors.

SetupFstream(s, wordBase, currentPos, eridPos) is used to set up a fast stream to
transfer data to or from a buffer in memory. WordBase is the address of the
buffer in memory, and currlmtPos and endPos are byte addresses in the. buffer.
CurrentPos is the address of the first byte to be transferred, and endPos is the
address of the first byte which should not be transferred. CurrentPos is rounded up
to a word if the item size is wordItem, and endPos is rounded up to a word.

When a Gets or Puts attempts to transfer the byte addressed by endPos, the
corresponding overflow routine. is called, with the same parameters that were passed
to the Gets or Puts. The overflow routine can do one of two things:

do the work and return

fix thin~s up so that the Gets· or Puts
RetryCalllstream, item).

can succeed, and then exit with

SetEof(s, new"! alu~) sets the end-of -fil.e flag. in the stream. When this flag is set,
the Gets routme IS replaced by a routme WhICh gives an end-:of-fileerror, and when
it is cleared, the old Gets routine is restored.

CurrentPos(s) returns the current position in . the buffer, always measured in bytes.

ItemSize(s) returns the item size of the stream.

Dirty(s) returns true if the dirty flag is true. This flag is set to true whenever a
Puts is done. .

SetDirty(s, value) sets the dirty flag to the specified value (true or false).

4. Errors

Disk Streams

For Xerox Internal Use Only -- March 17, 1977

January 29, 1977 46

Whenever an operation on a stream causes an error, the error procedure in the
stream is called-with two parameters: the stream, and an error code. The error
procedure is initialized to SysErr, but the user can change it to whatever he likes.
The error codes for errors generated by the· disk stream package are:

1301

1302
1303
1200
1201

1202

1203

1204
1205

illegal item size to CreateDiskStream or
Ini tializeFstream

end of file
attempt to . execute an undefined stream operation
attempt to write a read-only stream
attempt to do ReadBlock or WriteBlock on a stream not
positioned at a word.

attempt to PositionPointer outside the
range [0 .. #10001
attempt to do a aisk operation on something
not a disk stream

bug in disk streams package
CreateDiskStream cannot allocate space for the stream
from the zone supplied

5. Logging File .Transactions

A .. smap package (Log.Bcpll is used in conj~nction with· the ~treams package to
mamtam the system log fIle (Sys.Log) accordmg to the conventIOns documented in
AltoFileSys.D. The log entry types at present are (see AltoFileSys.D for definitions):

typLogFree
typLogOpenFile
typLogDeleteFile
typLogCreateFile
typLogRenameFile

.. an empty entry

.. a file is being opened

.. a file is being deleted

.. a file is being created

.. a file is being renamed

MakeLogEntry(logType, filePtr, 10gInfo [0], zone [sysZone], disk [sysDisk1): makes an
entry of type 10gType in the log. file, unless the filePtr structure has tne nolog bit
on in the file serial number or the 10gInfo parameter is noLog or the log file is not
open. The FP field of the entry is filled in using the filePtr argument. If 10gInfo
is non-zero, it describes additional log information that should follow the FP in the
entry: 10gInfo!1 to 10gInfo!(1ogInfo!0) are the words that will be recorded.

LogOpen(zone): Opens the log file, and leaves behind enough information so that the
MakeLog'Entry calls will ·be rather efficient.

LogClosc(zone): Closes the log file, and guarantees that the state of the log file on
the disk is correct.

The CreateDiskStream function logs a typLogOpenFileevent. The Alto operating
system closes the log and re-opens it each time a program finishes execution.

Note: Because LogOpen saves log state in memory, it is wise to close the log before
saving memory state on the disk (e.g., in an OutLd) and to re-open it after
restoring.

For Xerox Internal Use Only -- March 17, 1977

Display stream package September 3, 1975 47

Display stream package

A library package is now available which provides display streams of great flexibility.
Special features include multiple fonts,repositionin&, to. any bit position in the
current line (or, under proper. circumstances, any line), selective erasing and polarity
inversion, and better utilization of the available bitmap space.

The package consists of two files, DStream.Bcpl and Dhanx.Asm. In addition, the file
Streams.d provides useful parameter and structure declarations, in particular the
parameters IDCB and IDS mentioned· below. The package does not require any
routines other than those in the operating system.

1. Creating a display stream

CreateDisplayStream(nLines, pBlock, lBlock, Font [sysFontl, wWidth [38], Options
[DScompactleft+DScompactright], zone [sysZoneJ): creates a display stream. nLines is
the maximum number of lines that will be displayed at once: it is completely
independent of the amount of space supplied for bitmap and DCBs. pBlock is the
beginning address of storage that can be used for the display bitmap and control
blocks; its length is lBlock. This block maybe shortened slightly in order to align
things on even word boundaries. Font is a pointer to the' third word of a font in
AL format to use for the stream. wWidth gives the width of the screen in Alto
screen units, divided by 16; it must be an even number. Zone is a free-space pool
from which any additional space needed by the stream can be seized. (For a
description of zones, see the Alto OS manual.)

The minimum space for a display stream is IDCB*nLines+fh*wWidth+l, where fh is
the height of the· standard system font, rounded up to an even number; the +1
allows the display stream package to align the space on an even word boundary.
This, however, only. provides enough bitmap for a single line. A space allocation of
lDCB*nLines+fh*wWidth*nLihes+l guarantees enough bitmap for all nLines lines. The
display stream package uses all the available space and then, if necessary, blanks
lines starting from the top to make room for new data.

Options, if supplied, controls the action of the stream under various exceptional
conditions. The various options have mnemonic names (defined in Streams.d) and
may be added together. Here is the list .of options:

DScompactleft

DScompactright

DSstopright

DSstopbottom

allows the bitmap space required for a line to be
reduced when scrolling by eliminating multiples of
16 initial blank bit positions and replacing them
with the display controller's "tab" feature.
However, a line in which this has occurred may hot
be overwritten later (with SetLinePos, see below).

allows the bitmap space for a line to be reduced
when scrolling by eliminating multiples of 16 blank
bit positions on the right. Overwriting is allowed

. up to the beginning of the blank space,. i.e. you
cannot make a line longer by ove.rwriting if you
select this option.

causes characters to. be discarded when a line
becomes full, rather than scrolling onto a new line.

causes characters to be discarded in. preference to

For Xerox Internal Use Only -- March 17, 1977

Display stream package

DSnone

September 3, 1975 48

losing data from the screen. This applies when
either all nLines lines are occupied, or when the
allocated bitmap space becomes full.

none of the above (this option is necessar:y so that
o defaults to DScompactleft+DScompactright).

2. Displaying the stream contents

ShowDisplayStream(s, how [DSbelow], otherStream [dspl): This procedure controls the
presentation of a chain of display control blocks on tfie screen. If how id DSbelow,
the stream will be displayed immediately below otherStream; if DSabove, immediately
above; if DSalone, it will be the only stream displayed; if DSdelete, the stream s will
be removed from the screen. The third argument is not needed for DSalone or
DSdelete.

If you wish to construct your own "stream" for purposes. of passing it to
ShowDisplayStream, it is sufficient that s»DS.fdcb point to the first DCB of a list
and that s»DS.ldcb point to the last DeB. These .are the only entries referenced by
ShowDisplay$tream (note that fdcb and ldcbare the first two words of a stream
structure).

3. Current-line operations

ResetLine(ds): erases the current line and resets the current position to the left
margin.

GetFont(ds): returns the current font of ds.

SetFbnt(ds, pfont): changes the font of the display stream ds. Pfont is a pointer to
word 2 of a font, which is compatible with GetFont. Characters which have been
written into the stream already are not affected; future characters will be written in
the new font. If the font is higher than the font initially specified, writing
characters may· cause unexpected alteration of lines other than the line being written
into. .

GetBitPos(ds): returns the bit position in the current line. The bit position is
normally initialized to 8. .

SetBitPos(ds, pas): sets the bit position in the current line to pos and returns true,
if pos is not too large; otherwise, returns false. Pos must be less than 606 (the
display width) minus the width of the widest character in the current font.
Resetting the. bit position does not affect the bitmap; characters displayed at
overlapping positions will be "or"ed in the obvious manner.

EraseBits(ds, nbits, flag): changes bits in· ds starting· from the current position.
Flag=O, or flag omitted, means set bits to 0 (same as background); flag=l means set
bits to 1 (opposite from background); flag=-l means invert bits from their current
state. If nbits is positive, the affected bits are those in positions pos through.
pos+nbits-1, where pos is GetBitPos(ds); if nbits is negative, the affected positions
are pos+nbits through pos..,l. In Clther case, the final position of the stl·eam is
pos+nbits.

Here are two examples of the use of EraseBits; If the last character written on ds
was .. ch, EraseBits(ds, -CharWi.dth8dS, ch)) will erase. it and back. up the cu~rent
posItIon (see below for CharWldth.If a word of WIdth ww has Just been WrItten
on ds, EraseBits(ds, --ww, -1) will change it to white-on-black.

4. Inter-line operations

For Xerox internal Use Only -- March 17, 1977

Display stream package September 3, 1975 49

GetLinePos(ds): returns the line number of the current line; the top line is numbered
O. Unlike the present operating system display streams, which always write into the
bottom line and scroll up, the display streams provided by this. package start with
the top line and only scroll when they reach the bottom.

SetLinePos(ds, pos): sets the current line position in ds to pos. If the line has not
yet been written into, or if it has zero width, or if it is indented as the result of
compacting on the left, SetLinePos has no effect and returns false; otherwise,
SetLinePos returns true. Note that if you want to get back to where you were
before, you must remember where that was (using GetLinePos and GetBitPos).

InvertLine(ds, pos): Inverts the black/white sense of the line given by pos. Returns
the old sense lO IS black-on-white).

ds»DS.cdcb: points to the DCB for the current line. You may (at your own risk)
fiddle with this to achieve various effects.

5. Scrolling

The display stream package writes characters using a very fast assembly language
routine until either the current line is full or it. encounters a control character. In
either of these situations it calls a scrolling procedure whose address is a component
of the stream. The scrolling procedure is called with the same arguments as PUTS,
i.e. (ds, char), and is expected to do whatever is necessary. The standard procedure
takes the following action:

1~ Null (code 0) is igllOred.
2 New lme (code l5b) causes scrolling.
3 Tab (code lIb) advances the bit position to the next multiple of 8 times

the width of "blank" (code 40b) in· the current font: if this would exceed
the right margin, just puts out a blank.

4) Other control characters (codes I-lOb, 12b-14b, 16b-37b) print with
whatever symbol appears in the font.

5) If a character will not fit on the current line, scrolling occurs and the
character is printed at the beginning of the new line (unless the
DSstopri~ht option was chosen, in which case the character is simply
discarded J. . .

The scrolling procedure is also called with arguments (ds, -1) whenever a
contemplated scrolling operation would cause information to disappear from the
screen, either because nLines lines. are already present or because the bitmap space is
full (unless the DSstopbottom option was chosen, in which case the procedure is not
called and the action is the same as if it had returned false). If the procedure
returns true, the scrolling operation proceeds normally. If the procedure returns
false, the scrolling does not take place. and the character which triggered the
operation is discarded.

The user may supply a different scrolling procedure simply by filling it into the
field ds> > DS.scroll.

6. Miscellaneous

GetLmarg(ds): returns the left margin position of ds. The left margin is initialized
to 8 (about 1110" from the left edge of the screen).

SetLmarg(ds, pos): sets the left margin of ds. to pos.

GetRmarg(ds): returns the right margin position of ds. The right" margin is
initialized to the right edge of the screen: this is the value of the displaywidth
parameter in DISP.D. .

For Xerox Internal Use Only -- March 17, 1977

Display stream package September 3, 1975 50

SetRmarg(ds, pas): sets the right margin of ds to pas.

CharWidth(StreamOrFont, char): returns the width of the character char in the
stream StreamOrFont; if StreamOrFont is not a stream, it is assumed to be a font
pointer.

Alloc

For Xerox Internal Use Only -- March 17, 1977

January 7, 1976

Alloc -- A Basic Storage Allocator

51

WARNING: The version of Alloc described here differs markedly from that of March
31, 1975. Beware calling sequence. changes!

The Alloc packa~e «ALTOSOURCE)Alloc.Bcpl for Bcpl source, <ALTO)Alloc.Br for
relocatable binary] contains a small and efficient non-relocating storage allocator. It

-_ doesn't do much, but what it does it does very well. Initially the user gives the
allocator one (or several) blocks of storage by calls on InitializeZone. The user can
later add storage to a zone by calling AddToZone. The function Allocate returns a
pointer to _ a block allocated from a given zone. Calling Free returns a previously
allocated block to a given zone.

Argument lists ~·ven below are decorated with default settings. An argument
followed by [exp will default if omitted or zero to the value exp; an argument
followed by [... exp will default if omitted to expo

InitializeZone; AddToZone

The _function InitializeZone(Zone,Length, OutOfSpaceRoutine [... SysErr],
MalFormedRoutine J ... SysErr]). = zone: initializes the block of storage begInning at
address Zone an contammg Length words to be a free storage zone.
OutOfSpaceRoutine is taken to be an error handling routine that will be called
whenever a requested allocation cannot be satisfied. MalFormedRoutine is an error
printing routine that is called whenever the Alloc package detects an error in the
consistency of the zone data structure. InitializeZone builds the zone data structure,
and returns a pointer to a "zone," which is used for all subsequent calls to Allocate
and Free for the zone.

The function AddToZone(Zone, Block, Length) adds the block of storage beginning at
Block and containing Length words to the zone pointed to by Zone.

Alloc restricts the maximum size of the blocks it will allocate and of the "Length"
arguments for InitializeZone and AddToZone to 32K-1.

Allocate, Free

The function Allocate(Zone, Length, returnOnNoSpace [.. 0], Even [... 01) allocates a
block of Length word.s from Zone and returns a 20mter to that olock. If the
allocation cannot be d~ne, one. of two cases pertB;ins: (1) returnOnN oSpace is non-zet:0
or the OutOfSpaceRout~ne provIded for the zone -IS 0: Allocate returns the value 0; -If
returnOnNoSpace is not -1, the size of the largest available block is stored in
@returnOnNoSpace; (2) otherwise, .the value returned to the caller is the result of
OutOfSpaceRoutine(Zone, ecOutOfSpace, Length).

If the optional parameter Even is true, the block allocated will be guaranteed to
begin on an even word boundary; This is useful when allocating display buffers.

The procedure Free(Zone, Block) gives a previously-allocated block of storage back to
the zone pointed to by Zone> Block must have been the value of a call on Allocate.

CheckZone

The Alloc package contains considerable facilities for debugging. _ Conditional
compilation will enable various levels of consistency checking; the remainder of this

Alloc

For Xerox Internal Use Only -- March 17, 1977

January 7, 1976 52

paragraph assumes that. the checking is enabled. Users should consult the source file
lAlloc.Bcpl) for details concerning the conditional compilation.

The procedure CheckZone(zone), which may be called conveniently from Swat, will
perform a fairly exhaustive consistency check of the zone (provided that conditional
compilation has caused the code to be present!).

In addition, certain checking will be performed on the various calls to the package,
provided that the MalFormedRoutine parameter supplied for the zone is non-zero.

If an error is detected, the call MaIFormedRoutine(zone, errCode) is executed. Values
of the error code are:

ecOutOfSpace
ecZoneAddi tionError
ecBlockN otAllocated
ecIllFormed

1801
1802
1803
1804

Not enough space to satisfy a request.
Too large or too small addition to zone.
Free has been called with a bad block.
The consistency-checker has found some
error in the zone. Consult Alloc.Bcpl.

Free-Standing Zones

It is often desirable to use a single 16-bit quantity to describe an entire free-space
pool, together with its allocating and freeing procedures. For example, one can pass
to the operating system such a quantity; the system can thereafter acquire and
release space without knowing the details of how the operations are done. The zones
constructed by Alloc have this property:

zone»ZN.Allocate(zone, Length) will allocate a block
zone»ZN.Free(zone, Block) will free a block

By convention, these entries are at the beginning of a zone. Thus, all you need to
know about the ZN data structure is:

structure ZN[
Allocate word
Free word
... rest of zone ...
J

Example

I I Allocation procedure
IIFree procedure

The following terrible implementation of the factorial fUIlction illustrates the use of
Alloc:

static [Spare
SparelsA vail
FactZone
J

let Factorial(n) = valof
r let FactZoneV= vec
ret MySpare = vec 37
Spare = MySpare

256

SparelsA vail = true

FactZone = InitializeZone(FactZoniN, 256, StkOvfl)

let FactVal = InnerFact(n)

Alloc

For Xerox Internal Use Only -- March 17, 1977

January 7, 1976

resultis Fact Val
]

and InnerFact(n) = valof
[structure STKENT:

[link word
value word
]

manifest [empty = -1;
wordsize = 16
]

let stack = empty

while n gr 1 do
[let stkent = Allocate(FactZone, size STKENT/wordsize)
stkent»STKENT.link = stack
stkent»STKENT.value = n
stack = stkent
n = n-l
.J

let value = 1

while stack ne empty do
r value = value*(stack»STKENT.value)
fet stkent = stacK
stack = stkent> >STKENT.link
Free(FactZone, stkent)
]

resultis value
]

and StkOvfl(Zone, nil, Length J. = valof
[unless ShareIsA vall do

Ws("Aargh! Stack stuck!")
inish

J
AddToZone(FactZone, Spare, 37)
SparelsAvall = false .
result is Allocate(FactZone. Length)
]

53

Disks & Bfs

For Xerox Internal Use Only -- March 17, 1977

January 29, 1977

Disks: Tb,e Alto File System

54

This document describes the disk formats used in the Alto File System. It also
describes a "disk object," a Bcpl software construct that is used to interface low-level
disk drivers with packages that implement higher-level objects, such as streams.

The primary focus of the description will be for the "standard" Alto disks: either (1)
up to 2 Diablo Model 31 disk drives or (2) one Diablo Model 44 disk drive. The
low-level drivers for these disks are called "Bfs" (Basic File System). With minor
modifications, the description below applies to the Trident Model T5() and T80 .disk
drives,. when formatted for Alto file system conventions. The differences are flagged
with the string [Trident]. Low-level drivers for the Trident disks are called "Tfs."

1. File and Disk Structure

This section describes the conventions of the Alto file system. The files
AltoFileSys.D and Bfs.n contain Bcpl structure declarations that correspond to this
description ([Trident]: See also "Tfs.D").

The unit of transfer between. disk and memory, and hence the also of the file
system, is the disk sector. Each sector has three fields: a 2.,.word header, an 8-word
label, and a 25o-W"0:f([(lata page. ([Trident]: The fields are a 2-word header, a 10-
word label,and a 1024-word data page.)

A sector is identified by a disk address; there are two kinds of disk addresses, real
and virtual. The hardware deals in real addresses, which have a somewhat arbitrary
format. An unfortunate consequence is that the real addresses for all the pages on
a disk unit are sparse in the set of 16 bit integers. To correct this defect, virtual
addresses have been introduced. They have the property that the pages of a disk
unit which holds n pages have virtual addresses 0 ... (n-l). Furthermore, the
ordering of pages by virtual address is such that successive pages in the virtual
space are usually sequential on the disk. AB a result, assigning a sequence of pages
to consecutive virtual addresses will ensure that they can be read in as fast as
possible.

1.1. Legal Alto Files

An Alto file is a data structure that contains two sorts of information: some is
mandatory, and is required for all legal files; the remainder is· "hints" of various
varieties. Programs that operate on files should endeavor to keep the hints accurate,
but should never depend on the accuracy of a hint.

A legal Alto file consists of a sequence of pages held together by a doubly-linked
list recorded in the label fields. Each label contains the mandatory information:

The forward and backward links, recorded as real disk addresses.

A page number which gives the position of the page in the file; pages are
numbered from O.

- .
A count of the number Of. characters O.f data in the .Rage (numchars).
range from 0 (for a completely empty page) to 512 lfor a completefy
([Trident]: A full page contains· 2048 characters.)

This may
full page).

Disks & Bfs

For Xerox In ternal Use Only -- March 17, 1977

January 29,1977 55

A real file id, which is a three-word unique identifier for the file. The user
normally deals- with virtual file ids (see the discussion of file pointers, below),
which are automatically converted into real file ids when a label is needed. .

Three bits in the file id deserve special mention:

Directory: . This bit is on if the file is itself a directory file. This information is
used by the disk Scavenger when trying to re-build a damaged disk data
structure.

Random: (This bit is currently unused.)

NoLog: This bit is on if transactions involving this file need not be logged in
the system log (Sys.Log). Frequently-used files of little consequence to file
management (e.g., Com.Cm, Rem.Cm) will normally have the bit on .

. .Leader Page: Page 0 of a file .. is called the leader page; it contains no file data, but
only a collection of file properties, all of which are hints. The structure LD in
AltoFileSys.D declares the format of a leader page; it contains the file name (n.b.,
this is only a 'hint so that a scavenging process that attempts to .rebuild the file
syste!Yl may enter this file in a. director~ if it is not ~lready i~ one 1;, the timt:s f,!l"
creatIOn, last read and last wnte; a pOInter to the dIrectory In wfuch the fIle IS
thought to be entered ,fzeroes imply thesys~em di!ectory Sy:sDir); .a "hint" describing.
the last page of the file; and the "consecutive" bIt whlCh IS a hInt that the pages
of the file lie at consecutive virtual disk addresses.' The changeSerial field is related
to version numbering: whenever a new version of a file "foo" is made, the
changeSerial field of all other files "foo" (Le., older. versions) is incremented. Thus, a
program that wishes to be sure that it is using the most recent version of a file
can verify that changeSerial=O. If a program keeps an FP as a hint for a file, .and
is concerned about the relative position of that file in the list of version numbers,
it can also keep and verify the changeSerial entry of the file.

Data: The first data byte of a file is the first byte of page 1.

In a legal file with n pages, the label field of page i must contain:

A next link with the real disk . address of page (i+1), or 0 if i=n-1.

A previous link with the real disk address of page (i-1), or 0 if i=O.

A page number between 0 and (n-1), inclusive.

A numchars word .. =512 if i(n-1, and (512 if i=n-1. The last page must not be
completely full. ([Trident]: =2048 if i(n-1, and (2048 if i=n-1.)

A real file id which is the same for every page in the file, and different from
the real file id of any other file on the disk.

A file is addressed by an object called a file pointer (FP), which is declared in
AltoFileSys.D. A file pointer contains a virtual file id, and also the virtual address
of the leader page of the file. The low-level disk routines construct a real file id
from the .. virtual one when they must deal with a disk label. Since it is possible
for the uscr to read a label from the disk and examine its contents, the drivers also
provides a routine which will c~nvert the r.eal f~le. id in the label into a file pointer
lof course, the leader address WIll not be fIlled In). .

Note: Real disk address 0 (equal virtual disk' address 0) cannot be part of any legal
Alto file because the value 0 is reserved to terminate the forward and backward
chains in sector labels. However; disk address 0 is used for "booting" the Alto: when

Disks & Bfs

For Xerox Internal Use Only -- March 17, 1977

January 29. 1977 56

the boot key is pressed when no keyboard keys are down. sector 0 is read in as a
bootstrap loader. The normal way to make a file the "boot file" is to first create a
legal Alto file with the bootstra:e loader as the first data page (page 1), and then to
copy this page (label and data) into disk sector o. Thus the label in sector 0
points forward to the remainder of the boot file.

1.2. Legal Alto Disks

A legal disk is one on which every page is either part of a legal file. or free. or
"permanently bad." A free page has a file id of all ones. and the rest of its label is
indeterminate. A permanently bad page has a file id with each of the three words
set to -2, and the remainder of the label indeterminate.

1.3. Alto Directory Files

A directory is a file for associating string names and FP's. It has the directory bit
set in its file id, and has the following format (structure DV declared in
Al toFileSys.D).

It is a sequence of entries. An entry contains a header and a body. The length
field of the header tells how many words there are in the entry. including the
header. The interpretation of the body depends on the type. recorded in the header.

dvTypeFree=O: free entry. The body is uninterpreted.

dvTypeFile=l: file entry. The body consists of a file pointer, followed by a Bcpl
string containing the name of the file. The file name must contain only upper
and lower case letters, di~its. and characters in the string "+-.!$". They must
terminate with a period (". ') and not be longer than maxLengthFn characters. If
there are an odd number of bytes in the name, the "garbage byte" must be O.
The interpretatienof exclamation mark (!) is special; if a file name ends with !
followed only by digits (and the mandatory"."). the digits specify a file version
number.

The main directory is a file with its leader page stored in the disk page with
virtual address 1. There is an entry for the main directory in the main directory.
with the name SysDir. All other directories can be reached by starting at the main
directory.

1.4. Disk Descriptor

There is a file called DiskDescriptor entered in the main directory which contains a
disk descriptor structure which describes the disk and tells which pages are free.
The disk descriptor has two parts: a 16 word header which describes the shape of
the disk. and a bit table indexed by virtual disk address. The declaration of this
structure is in AltoFileSys.D.

The "defaultVersionsKept" entry in the DiskDescriptor records the number of old
versions of files that should be retained by the system. If this entry is O. no
version accounting is done: new files simply replace old ones.

The entry in the disk descriptor named "freePages" is used to maintain a count of
free pages on the disk (this is only a hint). .

The bit table contains a "1" correspondin~ to each virtual disk address that is
believed to be occupied by a file. and "0 for free addresses. These values are.

Disks & Bfs

For Xerox Internal Use Only -- March 17, 1977

. January 29, 1977 57

however, only hints. Programs that assign new pages should check to be sure that a
page thought to be free is indeed so by reading the label and checking to see that
it describes a free page. (The WriteDiskPages· and CreateDiskFile procedures in the
disk class perform this checking for you.)

1.5. The File Log

The Alto file system makes prOVlSlon for logging transactions on files in. a file
"Sys.Log." A file-management program can extract transaction information from the
log rather than by scanning the entire dhectory and reading all file leader pages. A
log en try contains:

A type. Types are presently defined for: (1) an empty log entry (tJ1PLO~Free), (2)
opening .a file (typLogOpe!lFile), (3) deleting. a file .cty-pLogDeleteFlle), /4 creating
a new fIle (typLogCreateFlle), and: (5) renammg a flle ltypLogRenameFlfe .

The time of the transaction, using the same format as that for times in the file
leader pages. .

The file pointer (FP) for the file in question.

Possible additional information supplied by the user.

(Note: The low-level drivers contain no procedures for updating the log.)

1.6. Oversights

If the Alto file system were to be designed again, several deficiencies could be
corrected:

Directory entries and label entries should have the same concept of file identifier.
Presently, we have filePointers and fileIds.

There is no reason why the last page of a file cannot contain 512 bytes.

It is unfortunate that the disk controller will not check an entry of 0 in a label,
because these values often arise (numChars of the last page, page number of the
leader page). Another don't care value should be chosen: not a legal disk address;
with enougn high order bits so that it will check numChars and page number
fields.

The value used to terminate the chain of disk addresses stored in the labels
should not be a legal disk address. (It should also not be zero, so that it may
be checked.) If it is a legal address, and if you try to run the disk at full speed
using the trick of pointing .page i's label at page i+l's disk address in the
command block, the disk will try to read the· page at the legal disk address
represented by the chain terminator. Only when this results in an error is end.
of file detected. A terminator of zero has the undesirable property that a seek
to track 0 occurs whenever a chain runs into end-of-file.

2. The Disk Object

In order to facilitate the interface between various low-level disk drivers and higher
level software, we define a "disk object." A small data structure defines a number 'of

Disks & Bfs

For Xerox internal Use Only -- March 17, 1977

January 29, 1977 58

generic operations on a disk -- the structure DSK is defined in "Disks.D." Each
procedure takes the disk structure as its first argument:

ActOnDiskPages: Used to read and write the data fields of pages of an existing
file.

WriteDiskPages: Used to read and write data fields of the pages of a file, and to
extend the file if needed.

DeleteDiskPages: Used to delete unneeded pages from the end of a file.

CreateDiskFile: Used to create a new disk file, and to build the leader page
correctly.

AssignDiskPage: Used to find a free disk page and return its virtual disk address.

ReleaseDiskPage: Used to release a virtual disk address no longer needed.

VirtualDiskDA: Converts a real disk address into a virtual disk address.

RealDiskDA: Converts a virtual disk address into a real disk address.

In addition, there are several standard data entries in the DSK object:

fpSysDir: Pointer to the FP for the directory on the disk. (This always has a
constant format -- see discussion above.)

fpDiskDescriptor: Pointer to the FP for the file "DiskDescriptor" on the disk.

fpSysLog: Pointer to the FP for the file "Sys.Log" on the disk (or 0 if no log
exists).

fpWorkingDir: Pointer to. the FP to use as the "working directory" on this disk.
This is usually the same as fpSysDir.

nameWorkingDir: Pointer to a Bcpl string that contains the name of the working
directory.

InPageSize: This is the log (base 2) of the number of words in a data page on
this disk.

driveNumber: This entry .identifies the drive number that this DSK structure
describes.

retryCount: This value gives the number of times the disk routines should retry
an operation before declaring it an error.

totalErrors: This value gives a cumulative count of the number of disk errors
encountered.

diskKd: This entry points to a copy of the DiskDescriptor in memory. Because
the bit table can get quite large, only the header needs to be in memory. This
header can be used, for example, to compute the capacity of the disk.

In addition to this standard information, a particular implementation of a disk class
may include other information in the structU!e.

Disks & Bfs

3. Data Structures

For Xerox Internal Use Only -- March 17, 1977

January 29, 1977 59

The following data structures are part of the interface between the user and the
disk class routines:

pageNumber: as defined in the previous section. The page number is represented by
an integer.

DAs: a vector indexed by page number in which the ith entry .contains the virtual
disk address of page i of the file, or one of two special values (which declared as
manifest constants in Disks.D): ,

eofDA: this page is beyond the current end of the file;
fillInDA: the address of this page is not known.

,Note 'that a particular call on the file system will only reference certain elements' of
this vector, .and the others do not have to exist. Thus, reading page i will cause
references only to DAsli andDAs!(i+1), so the user can have a two-word vector v to
hold these quantities, and pass V-I to the file system as DAs. ,

CAs: a vector indexed by page number in which the ith entry contains the core
address to or from which page i should be transfered. The note for DAs applies
here also. .

fp (or filePtr): file pointer, described above. In most cases, the leader page address
is not used.

action: a magic number which specifies what the disk should do. Possible values are
declared as manifest constants in Disks.D:

DCreadD:
DCwriteD:
DCdoN othing:
DCseekOnly:
DCwriteLD:

check the header and label, and read the data;
check the header and' label, and write the data;

just seek to the specified track
check the header, write the label and data.

A particular implementation of the disk class may also make other operations
available by defining additional magic numbers.

4. Subroutines

There are two high-level calls on the basic file system:

ActOnDiskPages(disk, CAs, DAs, filePtr, firstPage, lastPage, action, IvNumChars,
lastAction, fixeaCA, cleanupRoutine, IvErrorRoutine, returnOnCheckError). Parameters
beyond "action" are optional and may be defaulted by omitting them or making them
o.
Here firstPage and lastPage are the page numbers of the first and last pages to be
acted on (i.e. read or written, in normal use). This routine does the specified action
on each page and returns the page number of the last page successfully acted on.
This may be less than lastPage if the file turns out to have fewer pages.
DAs!firstPage must contain a disk address, but any of DAs!(firstPage+1) through

Disks & Bfs

For Xerox Internal Use Only -- March 17, 1977

.January 29, 1977 60

DAs!(lastPage+1) may be fillInDA, in. which case it will be replaced with the actual
disk address, as determined from the chain when the labels are· read. Note that the
routine will fill in DAs!(lastPage+1), so this word must exist.

The value of the ·numChars field in the label of the last page acted on will be left
in rv· IvNumChars.·· If lastAction is supplied, it will be used as the action for
lastPage instead of action. If CAs eq 0, fixedCA is used as the core address for all
the data transfers. If cleanupRoutine is supplied, it is called with the command
block (see below) as a parameter after the successful completion of each disk
command (Note: providing a cleanup routine defeats the automatic filling in of disk
addresses in DAs J.
Disk transfers that generate errors are retried several times and then the error
routine is called with

rv IvErrorRoutine(lvErrorRoutine, cb, errorCode)

In other words, IvErrorRoutine is the address·of a word which contains the (address
of theJ·tputine to be called when there is an error. 'rhe errorCode tells what kind
of errOr it was; the standard error codes are tabulated in a later section. The cb is
the control block which caused· the error; its. format depends on the particular
implementation of the drivers (Bfs: the structure CB in Bfs.D). .

The intended use of IvErrorRoutine is this. A disk stream contains a ceH A, in a
known place in the stream structure, which contains the address of a routine which
fields disk errors. The address of A is passed as IvErrorRoutine. When the error
routine is called, it gets the address of A as a parameter, and by subtracting the
known position of A in the disk stream structure, it can obtain the address of the
stream structure, and thus determine which stream caused the error.

The default value of returnOnCheckError is false. If returnOnCheckError is true and
an error is encountered; ActOnDiskPages will not retry a check error and then report
an error. Instelld, it will return -(#100+i), where i is the page number of the last
page . successfully transferred. This feature allows ActOnDiskPages to be used when
the user it not sure whether the disk address he has is correct. It is used by the
disk stream and directory routines which take hints; they try to -read from the page
addressed by the hint with returhOnCheckError true, and if they get a normal return
they know that the hint was good. On the other hand, if it was not ~ood, they
will get~he abo normal return just describ~d, and. can. proceed to try. again m a more
conservatIve way. Note that the label IS not rewrItten by DCwnteD, so that the
number of characters per page will not change. If you need to change the label, you
should use WriteDiskPages unless you know what you are doing.

ActOnDiskPages can be used to both read and write a file as long as the length of
the file does not have to change. If it does, you must use vVriteDiskPages.

WriteDiskPages(disk, CAs, DAs, filePtr, firstPage, lastPage, lastAction, IvNumChars,
lastNumChars, 'IixedCA, nil, IvErrorRoutine). Arguments beyond lastPage are optional
and may be defaulted by omitting them or making them 0 (but lastNumChars is not
defaulted if it is 0). .

This routine writes the specified pages from CAs (or from fixedCA if CAs is 0, as
for ActOnDiskPages). It fills in DAs entries in £he same way as ActOnDiskPages,
and. also allocates enough new pages to complete the specified write. The numChars
field in the label of the last page will be set to lastNumChars (which defaults to
512 [Trident 1: 2048)' It is not necessary for DAs!firstPage to contain a disk address;
it may be fillInDA, and a new page will be allocated. .

Disks & Bfs

For Xerox Internal Use Only -- March 17, 1977

January 29, 1977 61

In most cases, DAs!(firstPage-l) should have the value which you want written into
the backward chain pointer for firstPage, since this value is needed whenever the
label for firstPage needs to be rewritten. The only case in which it doesn't need to
be rewritten is when the page is already allocated, the next page is not being
allocated, and the numChars field is not changing.

If lastPage already exists:

1) the old value of the num.Chars field of its label is left in rv IvNumChars.

2) if lastAction is supplied, it is applied to lastPage instead of DCwriteD. It
defaults to DCwriteD.

WriteDiskPages handles one special case to help in "renaming" files, i.e. in changing
the FP (usually the serial number) of all the pages of a file. To do this, use
ActOnDiskPages to read a number of pages of the file into memory and to build a
DAs array of valid disk addresses. Then a call to WriteDiskPages with lastAction=-l
will write labels and data for pages firstPage through lastPage (DAs!(firstPage-l) and
DAs!(lastPage+l) are of course used in this writing process). The numChars field of
the label on the last page is set to lastNumChars. To use this facility, the entire
DAs array must be valid, i.e. no entries may be fillInDA.

In addition to these two routines, there are two others which provide more
specialized services:

CreateDiskFile(disk, name, filePtr, dirFilePtr, wordl [OJ, useOldFp [falseJ) creates a
new disk file and writes its leader page. It returns the serial number and leader
disk address in the FP structure filePtr. A newly created file has one data page
(page 1) with numChars eq O.

The arguments beyond filePtr are optional, and have the following significance:

If dirFilePtr is supplied, it should be a file pointer to the directory which owns
the file. This file pointer is. written into the leader page, and is used by the
disk Scavenger to put the file back into the directory if it becomes lost. It
defaults to the main (root) directory.

The value of wordl is "or"ed into the filePtr»FP.seriaINumber.wordl portion of
the file pointer. This allows the directory, random, or nolog bits to be set in
the file id.

if useOldFp is true, then filePtr already points to a legal file; the purpose of
calling CreateDiskFile is to re-write all the labels of the existing file with the
new serial number, and to re-initialize the leader page. The data contents of the
original file are lost. Note that this process effectively "deletes" the file described
by filePtr when CreateDiskFile is called. and makes a new file; the FP for the
new file is returned in filePtr.

DeleteDiskPages(disk, CA, firstDA, filePtr, firstPage) deletes the pages of a file,
starting with the page whose number is firstPage and whose disk address is firstDA.
CA is a page-sized buffer which is clobbered by the routine. .

Disks & Bfs

For Xerox Internal Use Only -- March 17, 1977

January 29, 1977

5. Allocating Disk Space

62

The disk class also contains routines for allocating space and for converting between
virtual and real disk addresses. In most cases, users need not call these routines
directly, as the four routines given above (ActOnDiskPages, WriteDiskPages,
DeleteDiskPages, CreateDiskFile) manage disk addresses and disk space internally.

AssignDiskPage(disk, virtualDA) returns the virtual disk address of the first free page
following virtualDA, according to the bit table, and sets the corresponding bit. It
does not do any checking that the page is actually free (but WriteDiskPages does).
If there are no free pages it returns -1. .

ReleaseDiskPage(disk, virtualDA) marks the page as free in the bit table. It does
not write anythmg on the disk (but DeleteDiskPages does).

VirtualDiskDA(disk, IvReaIDA) returns the virtual disk address,· given a real disk
address in rv IvRealDA. (The address, IvRealDA, is passed because a real disk
address may occupy more than 1 word.)

RealDiskDA(disk, virtualDA, IvRealDA) computes the real disk address and stores it in
rv IvRealDA. The function returns true if the virtual disk address is legal, i.e.
within the bounds of disk addresses for the given "disk." Otherwise, it returns false.

6. Error Codes

The following errors may be generated by the disk object:

1101 unrecoverable disk error
1102 disk full

7. Implementation -- Bfs

Bfs ("Basic File System") is the name for a package of routines that implement the
disk class for the stanaard Alto disks (either Diablo Model 31 drives or a single
Diablo Model 44 drive). rrhe definitions (in addition to those in AltoFileSys.D and
Disks.D) are contained in Bfs.D. The code comes in two "levels:" a "base" for reading
and writing existing files (implements ActOnDiskPages, RealDiskDA and VirtualDiskDA
only); and a "write" level for creating, deleting, lengthening and shortening files
(implements WriteDiskPages, CreateDiskFile, DeleteDiskPages, AssignDiskPage,
ReleaseDiskPage). The source files BfsBase.Bcpl, Dvec.Bcpl and BfsMl.Asm comprise
the base level; 13fsWrite.Bcpl implements the write level.

The implementation expects a structure BFSDSK to be passed as the "disk" argument
to the routines. The initial portion of this structure is the standard DSK structure;
the final portion isa copy of the DiskDescriptor file for the disk in use. (Note:
The Alto operating system maintains a static sysDisk that points to s.uch a structure
for disk drive 0.) .

It is also possible to use the Bfs at a lower level. This level uses two data
structures, zones (defined by the structure CBZ) and control· blocks (cb's, defined by
the structure CBl The general idea is that a zone is set up with disk command
blocks in it. A free block is obtained from the zone with BfsGetCb and sent to the

Disks & Bfs

For Xerox Internal Use Only -- March 17, 1977

January 29, 1977 63

disk with BfsDoDiskCommand. When" it is sent to the disk, it is also put on the
queue which BfsGetCb uses, but BfsGetCb waits until the disk is done with the
command before returning it, and also checks for errors.

If you plan to use these routines, read the code for ActOnDiskPages to find out how
they are in tended to be called. .

BfsInitializeCbStorage(disk, zone, firstPage, length, retry, IvErrorRoutine). Zone is the
address of a block of length words which can be used to store Cb'S. It takes at
least three Cb'S to run the disk at full speed; CBzoneLength is a constant which
gives the size of a zone which can hold three Cb'S. FirstPage is used to initialize
the currentPage field of the zone. Retry is used to initialize the retry fields of all
the Cb'S. The arguments after firstPage can be omitted if a zone is being
reinitialized, and they will remain unchanged from the previous initialization.

BfsGetCb(disk, zone, dontClearJ returns the· next cb for the zone. If the next cb is
still on the disk command queue, the routine waits until the disk has finished with
it. Before returning a cb, BfsGetCb checks for errors. If it finds one, it increments
zone»CBZ.errorCount. If this number is ge the value disk»DSK.retryCount, BfsGetCb
calls the error routine which was passed to BfslnitializeCbStorage; the way this is
done is explained in the description of ActOnDiskP~$es above. Otherwise, after doing
a restore on the disk if error Count ge disk»DS1\..retryCount/2, it reinitializes the
zone with firstPage equal to the page with the error, and returns to cb»CB.retry
instead of returning normally. The idea is that the code there will retry all the
incomplete commands. If there is no error, cb»CB.cleanupRoutine is called (if it is
non-zero) with cb as its argument. Then the numChars field of the label is copied
into the currentNumChars field of the zone, and the errorCount field of the zone is
Cleared. Next, unless the optional argument dontClear is true, the cb is zeroed.
Finally, the cb is returned as the value of BfsGetCb.

BfsDoDiskCommand(disk, cb, CA, DA, filePtr, pageNumber, action) Constructs a disk
command in cb WIth data address CA, virtual disk address DA, serial and version
number taken from the virtual file id in filePtr, page number taken from
pageNumber, and disk command specified by action. It expects the cb to be zeroed,
except that the following fields may be preset; if they are zero the indicated default
is supplied:

labelAddress
numChars
normalWakeups
errorWakeups

Iv cb> >CB.label
o
cb> >CB.zone> >CBZ.normaIWakeups
cb> >CB.zone> >CBZ.errorWakeups

If DA eq fillInDA, the DA field is not set; presumably it is the target of the label
for a previous cornman!"!. 'Actions are checked for legality.

BfsMakeFpFromLabel(fp, la) constructs a virtual file id in the file pointer fp from
the real file id in the label lao

8. Implementation -- Tfs

Operation and implementation of the Trident T80 disks is described in separate
documentation. under the heading "TFS/TFU" in Alto Subsystems documentation.

INDEX

For Xerox Internal Use Only -- March 17, 1977

March 17, 1977

#176777 28

abort 32
ActOnDiskPages 59
AddToZone 14, 51
Alloc 14, 40, 51
Allocate 14, 51
Alto disks 36
AltoFileSys.D 54
AltoVersion 26
AppendVersion 13
AssignDiskPage 62

Basic File System 14, 40, 54
Bcpl abort 19
Bcpl finish 19
Bcpl frames 17
Bcpl stack 29
Bfs 54
Bfs.D 54
BfsDoDiskCommand 63.
BfsGetCb 63
BfslnitializeCbStorage 63
BfsMakeFpFrornLabel 63
Bldr 4
BootFrom 24

CallO 15
CallersFrame 17
CallFrame 17
CallSubsys 18
CallSwat 17
CAs 59
charItem 43
CharWidth 9, 50
CheckZone 14, 52
CleamipDiskStream 7, 43
ClockSecond 27
Closes 6, 43
CoCall 17
Com.Cm 18, 27, 30
Compatible loading 33
complete file address. 42
CoReturn 17
CounterJunta 21
CreateDiskFile 61
CreateDiskStream 6, 42
CreateDisplayStream 8, 47
CurrentPos 45

DAs 59
D(ii{ime 17
D B 47
DCdoN othing 59
DCreadD 59
DCseekOnly 59
DCwriteD 59
DCwriteLD 59
Default arguments 3, 16
DefaultArgs 16

64

INDEX

For Xerox Internal Use Only -- March 17, 1977

March 17, 1977

DeleteDiskPages
DeleteFdEntry
DeleteFile
Directory
Directory Access
Directory Files
Dirty
DisableInterrupts
Disk
disk addresses
Disk Descriptor
Disk file
Disk files
disk· name
disk object
Disk stream
Disk streams
DiskDescriptor
Disks
Disks.D
Display
Display stream package ..
Display streams
DoubleAdd
DScompactleft
DScompactright
DSnone
DSstopbottom
DSstopright
Dvec
dvTypeFile
dvTypeFree

EnableInterrupts
EndCode
Endofs
EnumerateFp
eofDA
EraseBits
ErrorLogAddress
Errors
Events
Even t Vector
EVM
Executive
Execu tive.Run

FalsePredicate
Fast Streams
file address
File directory
File Hints
File Log
File names
file pointer
file pointers
file position
File System
file version number
FileLength

61
13
12
40
10
56
45
16
6
54
56
6
25
31
57
6
6, 40
13, 27, 32
54
58
40
47
8
16
47
47
48
47
47
15
56
56

16
13, 37
6, 43
17
59
9, 48
27
5, 6
22
22
22
30
27, 32

15
10, 41, 45
41
6
27
57
10, 31
17, 41, 55
55
42
54
10
7,44

65

INDEX

FilePos
filllnDA
FindFdEntry
Finish
finish+1
FixedLeft
font
font format
FP
fpComCm
fpDiskDescriptor
fpExecutive
fpRemCm
fpSysBoot
fpSysDir
fpSysFont
fpSysLog
fpSysTs
fpUserCm
FramesCaller
FrameSize
Free
FreeFixed

GetBitPos
GetCompleteFa
GetCurrentFa
GetFixed
GetFont
GetLinePos
GetLmarg
GetRmarg
Gets
GotoFrame
GotoLabel

Idle
INITALTOIO
Ini tialization
Ini tializeFstream
Ini tializeZone
InLd
Install
InvertLine
ItemSize

JumpToFa
Junta

KBKEY
KBTRANS
kbTransitionTable
Keyboard
Keyboard Buffer
Keyboard Streams
keys
KsBuff er Address
KsGetDisk

For Xerox Internal Use Only -- March 17, 1977

. March 17, 1977

7,44
59
12
19
29
14
32
25
55, 59
27
27
27
27 .
27
27
27
27
27
27
17
17
14, 51
13

8, 48
7, 44
7, 44
13
8, 48
8, 49
9, 49
9,49
5, 43
17
18

16
33
4
45
14, 51
24
30
9, 49
45

7, 44
20

10
9
10
40
27
9
9
44
44

KsHintLastPa8eFa . 44
KsSetBuffcrA dress 45

66

INDEX

. For Xerox tnternal Use Only -- March 17, 1977

March 17, 1977

ksTypeReadOnly 43
ksTypeReadWrite- 43
ksType WriteOnly 43

LastMemLoc 37
leader page 7, 42, 55
Legal Alto Files 54
levAlloc 20
levBasic 20
levBcpl 20
levBFSbase 20
levBFSwrite 20
levBuffer 20
levCompat 21
lev Directory 20
levDisplay 20
levFilePointers 20
levKeyboard 20
levMain 20
levStatics 20
levStreams 20
LnPageSize 7, 43
Loading 4, 33
LogClose 8, 46
Logging 7
Logging File Trarisactiims 46
logInfo 46
LogOpen 8, 46
Iv AbortFlag 28
IvCursor Link 9
IvIdle 17
IvParityPhantomEnable . 26
Iv Pari tySweepCount 26
I vSwatCon textProc 28
IvSysErr 26
IvSysZone 25
Iv User FinishProc 19

MakeLogEntry 8, 46
MakeNewFdEntry 13
Memory management 13
MoveBlock 16
MyFrame 17

new disk 31
Noop 15

Objects 14
OpenFile 11, 43
OpenFileFromFp 12
Operating Procedures 30
OsBuffer 27
OsFinish 19
OsVersion 26
Os Version Compatible 26
OutLd ··23,46
owner name 31

pages 6
. Password 40

67

For Xerox Internal Use Only -- March 17, -19''1-7 .

INDEX March 17, 1977 68

Posi tionPage 7, 44
PositionPtr 7, 44
Putbacks 5
Puts 5, 43

ReadBlock 7, 43
ReadDiskDescriptor . 13
ReadLeader Page 7, 44
real disk address 62
RealDiskDA 62
ReleaseDiskPage 62
ReleaseKs 45
Rem.Cm 27
ResetLine 8, 48
Resets 5, 43
RetryCall 18
ReturnFrom 18
ReturnTo 17
Run files 18, 30

Scrolling 49
SerialN umbel' 26
SetBitPos 8, 48
SetBlock 16
SetDayTime 17
SetDirty 45
SetEndCode 14
SetEof 45
SetFilePos 7, 44
SetFont 8, 48
SetKeyboardProc 9
SetLinePos 8, 49
SetLmarg 49
SetRmarg 50
SetupFstream 45
Set W or kingDir 12
Show DisplayStream 8, 48
stack frames 29
StackEnd 13, 37
StartCodeArea 37
StartlO 16
Stateofs 6
Streams 5
Strip Version 13
Swat 5, 19, 23, 32
Swat abort 19
Swatee 32
Sys.Bk 4, 32
Sys.Boot 32
Sys.Errors 5, 32
Sys.Log 8, 27, 46, 57
Sys.Ts 27
SysBoot 27
SysDir 27, 32
sysDisk 6, 26
SysErr 5
SysFont.Al 27, 32
sysZone 14, 25

Terminating Execution 19

INDEX

For Xerox Internal Use Only -- March 17, 1977

March 17, 1977

Tfs
Timer
Transfer rates
Trident
TruePredicate
Trunca teDiskStream
typLogCreateFile
typLogDeleteFile
typLogFree
typLogOpenFile
typLogRenameFile

Usc
User.Cm
User FinishProc
UserName
. User Password
Utilities

verLatest
ver LatestCreate
verNew
verNewAlways
verOldest
version number
virtual disk address
VirtualDiskDA·

WI
Wns
Wo
wordItem
Wos
WriteBlock
WriteDiskDescriptor
WriteDiskPages
WriteLeaderPage
Ws
Wss

Zero
zones

54
17
36
54
15
7, 44
46
46
46
46
46

16
27
19
26
26
40

11
11
11
11
11
10
62
62

15
15
15
43
15
7, 43
13
60
7, 44
15
15

16
14, 25, 52

69

