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1. Introduction

Rescarch in network interconnection techniques has been motivated by the desire to permit
communication among diverse, geographically distributed computing resources and uscrs
interconnected by a wide varicty of nectwork technologics.

It is thc purpose of an intcrnetwork architecture to provide a uniform framework for
communication within a hetcrogencous computing, communication, and applications cnvironment.
The work described in this paper represents one internetwork architecture, known as Pup, in
widespread regular use within Xerox. The name referred originally to the abstract design of a
standard internctwork datagram (the PARC Universal Packet), but has expanded in usage to include
the wholc hicrarchy of intcrnetwork protocols as well as a gencral style for internctwork
communication,

To assist in understanding the design of the Pup protocols, it is uscful to characterize bricefly
the cnvironment in which this architecturc has evolved.

The computational environment includes a large number of “Alto” minicomputers [Kay, 1977,
Thacker et al., 1979] and other personal computers capable of high-quality intcraction with human
users.  Supporting these are various specialized server systems that are sharcd among many users
and provide access to expensive peripherals such as large disks, magnetic tapes, and high-quality
printers, Additionally, there are several general-purpose time sharing systems providing customary
services for tcrminal users.

The communications environment includes several different individual network designs. The
dominant onc is the “Ethernet” communications network, a local-area broadcast channel with a
bandwidth of 3 megabits per second [Metcalfe & Boggs, 1976]. I.ong-haul communication facilities
include the Arpanct, the ARPA Packet Radio network, and a coliection of leased lines implementing
an Arpanct-style storc-and-forward network. These facilitics have distinct native protocols and
cxhibit as much as three orders of magnitude difference in bandwidth.

The applications to be supported include a wide range of activities: terminal access to the time
sharing scrvices, e¢lectronic mail, file transfer, access to specialized data bases, document
transmission, software distribution, and packet voice, to namce just a few. We would also like to
facilitate more ambitious explorations into the arca gencrally referred to as “distributed computing.”

This paper is organized as follows. In scction 2 we discuss some of the design issucs which
have cmerged in the formulation of the Pup architecture, while scction 3 provides more dctail on
the protocols themsclves,  Scction 4 describes bricfly some of our operational experience with the
present implementation. The final section presents a retrospective critique of the work, Highlighting
somc arcas which mcrit further attention. '
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2. Design principles and issues

Constructing an architecture for internetwork protocols is, first and forcmost, an exercise in'
design: identifying individual issues, exploring alternative solutions, and then knitting thesc picees
together to form the final result. Along the way, many compromises arc made as onc trades off
among different criteria: functionality, efficiency, gencrality, ease of implementation, cxtensibility,
and others. ' o ‘

In this section we enumerate some of the major design issues confronted in the development of
a network architecture and describe, in gencral terms, the choices made in the development of Pup.
-(Several of these and other issues are enumerated in [Cerf & Kirstein, 1978] and [Postel, 1980].)
From this discussion the broad outlines of Pup will emerge; the section that follows provides more
specific detail about the actual design.

2.1. The basic model: individual networks connected with gateways

As with most internctwork models, one cnvisions a collection of heterogencous networks,
connccted with a sct of internetwork gateways to form a loosely coupled system known generally as
an internet [Cerf & Kahn, 1974; Sunshine, 1977a; Cerf & Kirstein, 1978]. An internet should
provide the ability for any two hosts to communicate, so long as their own local nctworks arc
interconnected. A

An important feature of the Pup internct model is that the hosts are the internet. Most hosts
connect directly to a local network, rather than connecting to a network switch such as an IMP, so
subtracting all the hosts would leave little more than wire. Gateways are simply hosts in the
internet that arc willing to forward packets among constituent networks. Thus, most of the
propertics of the internct are primarily artifacts of host software. The architeccture must scale
graccfully, and in particular must allow for the existence of a degencrate internet consisting of a
single local nctwork and no gateways.

2.2. Simplicity

Onc of the guiding principles in designing Pup has been the desire for simplicity. Pup is a
framework for computcr communications rescarch, and simplicity is onc of the best ways to
minimize restrictions and maximize flexibility for experimentation.  Attempting dcliberately to
climinate unnceded complexity helps to keep the design open-ended. This in turn makes it easier
to incorporate the cxisting diverse collection of nctworks and hosts and to accommodate ncw
alternatives as the technology matures. Keeping the design simple helps to avoid building in
technological anachronisms. A

A sccond motivation for this principle is the desire to foster efficient implementations of the
protocols in the host machines, which are typically quite small. Softwarc overhead must be kept
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low in order to sustain high-bandwidth local communication, which constitutes the bulk of the
traffic; yet the same softwarc must support the full generality of internctwork communication.

2.3. Datagrams versus virtual circuits

There are two major approaches to providing an interface to packet-switched communications:
accepting individual datagrams, or providing a higher level of service in the form of a virtual circuit.
The two interfaces are not unrclated, since a virtual circuit interface is usually implemented within a
network by the use of datagrams. In some sense, datagrams provide access to a nctwork at a lower
level, closer to its underlying capabilities. Datagrams arc particularly uscful in many kinds of
transaction-oriented protocols. Furthermore, the task of the internet is significantly simplified if it
need only transport independent, individually-addressed datagrams, without having to maintain the
statc required to support virtual circuits. If the internet provides a datagram interface, virtual circuit
interfaces can be provided by adding appropriate mechanisms at thc end points.

Therefore, the basic function provided by the Pup internet is the transport of datagrams; this
simple abstraction is the foundation of Pup. The internet docs not guarantee reliable delivery of
datagrams (called “Pups”); it simply gives its “best efforts” to deliver cach one, and allows the end
processes to build protocols which provide reliable communications of the quality they themsclves
desire [Metcalfe, 1973]. The intcrnet has no notion of a connection. It transports cach Pup
independently, and leaves construction of a connection—if that is the appropriate interprocess
communication model—to the end processes. Keeping fragile cnd-to-end state out of the packet
transport system contributes to reliability and simplicity.

2.4, Individual networks as packet transport mechanisms

Individual networks within the internet can be viewed simply as packet transport mechanisms.
As links in the internct they give their best efforts to deliver internet packets, but they do not
guarantee reliable delivery. Packets may be lost, duplicated, delivered out of order, after a great
delay, and with hidden damage. A network can have any combination of bandwidth, dclay, crror
characteristics, topology, and economics; the routing algorithm should attempt to take these
characteristics into consideration.

Encapsulation is an invertible, nctwork-dependent transformation performed on a Pup to permit
it to be carried transparently through a nctwork: an abstract Pup is presented at onc end,
encapsulated for transmission through the net, and decapsulated at the other end, yiclding the
original Pup. For some nctworks, cncapsulation consists merely of adding headers and trailers.
More claborate transformations may be nccessary to pass a Pup through other networks (for
cxample, using low-level acknowledgments or error correction because the network has a high loss
ratc). Encapsulation and decapsulation take place in a nerwork-specific driver in which is vested all
knowledge of the cncapsulation technique. The internet specification has nothing to say about
encapsulation cxcept that it be invisible.
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2.5. Internetwork gateways

We distinguish two kinds of gateways: media translators and protocol translators. Mecdia
gateways arc hosts with interfaces to two or more packet transport mechanisms among which they
forward internct datagrams, using the appropriate ¢ncapsulation for cach. These are the heart of
any datagram-based internet. Protocol gateways arc hosts which spcak two or more functionally
similar but incompatible higher-level protocols used to transport information within networks,
mapping onc higher-level abstraction into the other. (It’s clear that a media gateway is just doing
protocol translation at the link level, but the distinction is useful given the importance of intcrnet
datagrams in this architecture.)

In the Pup internet, media gateways are by definition simple, since all that is required of the
translation process is that it preserve the semantics of internetwork datagrams. Protocol gateways
are usually more difficult, even when the protocols are similar, since such higher-level protocols
provide richer and more specialized semantics and it is not always clear how one should map the
functionality of “one protocol into another. Development of higher-level protocol translators
between different network and internet architecturcs—e.g., between the Arpanct File Transfer
Protocol (FTP) and the Pup-based FTP—is a thorny task, but onc that must be confronted when
interconnecting systems that do not share the neccssary lower-level primitives.

2.6. A layered hierarchy of protocols

Laycring of protocols is one of the most effective means for structuring a network design: cach
level uses the functions of the lower level, and adds some functionality of its own for possible use
by the next level. Provided that suitable interfaces arc maintained, an implementation at onc level
can be modified without impacting the overall structure; this helps to simplify both the design and
the implementation,

Pup protocols arc organized in a hicrarchy, as shown in figure 1; the dctails of this figure will
be presented in scction 3. A level represents an abstraction, to be realized in different ‘ways in
different hosts. There are four levels of interest, but there may be more than once protocol at any
level except level 1, representing a different use of the underlying layers. (The numbering of
layers—and, indeed, the choice of points at which to divide the layers—is arbitrary; there is no
rclationship between Pup’s numbering and that of other designs such as the Open Systems
Architecture.)

The lIevel 0 abstraction is a packet transport mechanism. There are many rca]iiations: an
Ethernet channel, the Arpanet, the ARPA Packet Radio Network, our store-and-forward lcascd line
network, and others. Level 0 protocols include specifications such as hardware interfaces, clectrical
and timing characteristics, bit encodings, line control procedures, and nectwork-dependent packet
formatting conventions.  Associated with cach packet transport mechanism is a convention for
cncapsulating  Pups. ' '
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The level 1 abstraction is an iﬁternet datagram. The realization of this abstraction consists of
the format of a Pup, a hierarchical addressing scheme, and an internetwork routing algorithm.
There is only onc box at level 1: the internet datagram protocol; it is this layer of commonality
which unifics all of the different networks that might be used at level 0, and which makes available
a uniform interface to all of the layers above. It is the purpose of this level to provide media
independence  while maintaining the common properties of the underlying packet nctworks.

The level 2 abstraction is an interprocess communication mechanism: a way to move bits
without saying much about their form or content. Various level 2 protocols provide many
combinations of reliability, t}iroughput, delay, and complexity. These protocols can be divided into .
two classes according to the amount and lifetime of state information kept by the communicating
end processes. Connectionless protocols support short-lived interactions; the end processes maintain
little state, and usually only during the exchange of a few Pups—no more than a few scconds.
Connection-based protocols support sustained interactions, gencrally requiring substantial state to be
maintained at both ends, and for longer periods—minutes to hours.

Level 3 adds structure to the data moved at level 2, as well as conventions for how processes
interact. For cxample, the File Transfer Protocol (FTP) consists of a sct of conventions for talking
about files and a format for sending them through a level 2 byte stream protocol connection. These
are somctimes referred to as function-oriented protocols [Crocker et al., 1972}

Above level 3 the dividing lines become blurred, and individual applications evolve with their
own natural decomposition into additional layers. With respect to layering of protocols, Pup is
similar in many ways to thc ARPA Internet and TCP design [Cerf & Kahn, 1974] and the Open
Systems Architecture [Zimmermann, 1980]. Unlike the Open Systems Architecture (and others),
Pup often has scveral altcrnative boxes which all rest on a lower level and offer different
functionality and interfaces to the next higher level.

2.7. Naming, addressing, and routing

Names, addresses and routes are three important and distinct entities in an internet {Shoch,
1978]:
The name of a resource is what one seeks,

an address indicates where it is, and
a route is how lo get there.

A name is a symbol, such as a human-rcadable text string, identifying some resource (proccss,
device, service, ctc) An address is a data structure whose format is understood by level 1 of the
internct, and which is used to specify the destination of a Pup. A route is the information nceded
to forward a Pup to its specified address. Each of these represents a tighter binding of information:
names arc mapped into addresses, and addresses are mapped into routes. Error rccovery should
successively fall back to find an alternate route, then an alternate address, and then an alternate
name.
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The mapping from names to addresses is necessarily application-specific, since the syntax and
scmantics of names depend entirely on what types of entitics arc being named and what use is
being made of them. This is dealt with at the appropriatc higher levels of protocol.

An address ficld, as contained in a Pup, is one of the important elements of commonality in
the internct design. An end process sends and receives Pups through a pors identified by a
hicrarchical address consisting of three parts: a network number, a host number, and a socket
number. This structure reflects the attitude that the communicating parties are the end processcs,
not the hosts” protocol handlers; among other things, this permits alternatc implementations of a
higher-level protocol to coexist in a single machine. (In contrast, the ARPA Internet project [Postel,
' 1980] takes the position that the socket abstraction does not belong at the internet level: thercfore,
ARPA Internet addresses contain only network and host numbers. When a packet arrives, it is first
demultiplexed by the protocol type ficld in the internet header; higher-level protocols such as the
TCP, datagram protocol, and packet voice protocol then imposc their own concept of socket if they
find it uscful—which, as a practical matter, they all do.)

The actual process of routing a packet through the Pup internet uses a distributed adaptive
routing procedure. The source process specifies only the destination address and not the path from
source to destination. The internctwork gateways route Pups to the proper network, a network then
routes Pups to the proper host, and a host routes Pups to the proper socket.

This routing process is associated with Level 1 in the protocol hierarchy, the level at which
packet formats and internct addresses are standardized. The software implementing level 1 is
sometimes referred to as a router. 'Thus, the routing table itself is kept at level 1; a very simple host
(or gateway) would nced only levels 0 and 1 in order to route Pups. But the routing table also .
requires periodic updating, as gateways exchange and distribute their current routing information;
this routing table maintenance protocol is found logically at level 2 of the hicrarchy.

Gateways provide internet routing tables to individual hosts as well as to each other. Hosts use
this routing information to decide where to send outgoing packets destined other than to a directly-
connected network,

2.8. I'low control and congestion control .

Although the terms are often confused, flow control and congestion control attack two very
different problems in packet-switched communication. Flow control is a mechanism used to
regulate the behavior of a specific source and destination pair, so that the source docs not send data
at a rate greater than the receiver can process it. In an internct architecture, flow control remains
the responsibility of the end-to-end protocols, particularly those at level 2 supporting regular stream
traffic. '

Congestion control is a nctwork-wide mechanism, used to control the number and distribution
of packets in the nctwork so as to prevent system overload. Internet congestion control is necessary
to help protect the gateways from being burdened with excessive traffic.
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The Pup datagram-based internet model does not require that the internet successfully deliver
cvery packet that has been accepted.  Therefore, an intermediate gateway which suddenly
cncounters a period of scvere congestion is free to discard packets, although the system should be
engincered to make this an uncommon event.

If a gateway is forced to discard an incoming packet because of congestion, it should attecmpt to
return some information to the source: an error Pup (ncgative acknowledgment) indicating that a
packet had to be discarded in mid-route. This error Pup is simply rcturned to the source port, as
identified in the discarded Pup; this is a good illustration of the value of including the socket
number as part of the standard internct address. The source process can use this information to
modify its transmission stratcgics~—-f6r cxample, to reduce its offered load (the rate at which it
attempts to send Pups along the congested path) and thercby help to relieve the congestion.

Long-term congestion should cventually be reflected in the routing information cxchanged
among gateways, discouraging subscquent traffic from attempting to pass through a badly congested
arca.

2.9. Reliable transport

Defining datagrams to be less than perfectly reliable is realistic since it reflects the
characteristics of many existing packet transport mechanisms. Probabilistic transmission is basic to
the theory of operation of network designs such as Ethernet. Even in networks nominally designed
to deliver correctly sequenced, error-free packets, occasional anomalies may result from certain
hardware or software failures: an Arpanet IMP may crash while holding the only copy of a packet,
or an X.25 virtual circuit may be reset.

As mentioned previously, the Pup internet always has the option of discarding packets to
relicve congestion, though this is certainly not an optimal strategy. This point is of considerable
practical importance when onc considers the complicated mcasures required to avoid dcadlock
conditions in the Arpanct—conditions which are a direct conscquence of attempting to provide
reliable delivery of every packet in a store-and-forward nctwork [Metcalfe, 1973; McQuillan &
Walden, 1977]. Packet management strategics that attempt to guarantec perfect reliability must be
designed to operate correctly under worst case conditions, whereas strategies that have the option of
discarding packets when necessary need operate correctly only under most conditions. The idea is
to sacrifice the guarantee of reliable delivery of individual packets and to capitalize on the resulting
simplicity to producc higher reliability and performance overall.

For some applications, perfectly reliable transport is unneccessary and possibly cven undcsirable,
cspecially if it is obtained at the cost of increased delay. For cxample, in real-time spcech
applications, loss of an occasional packet is of little consequence, but cven short delays (or worse,
highly variable oncs) can cause significant degradation [Cohen, 1977; Sproull & Cohen, 1978].
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Reliable delivery requires mafntaining state information at the source and destination. 'The
actions of a large class of simple servers, such as giving out routing tables or converting names into
addresses, are idempotent (i.c., may be repeated withont incremental effects), and a client of that
service can simply retransmit a request if no response arrives. These protocols reduce to a simple
exchange of Pups, with an occasional retransmission by the client, but with no state retained by the
server. (The server may choose to retain answers to the last few requests to improve response time,
but this optimization is invisible to the protocol.)

On the other hand, many applications such as file transfer and terminal connection do depend
upon fully reliable transmission. In these cases, it is perfectly rcasonable to build a reliable end-to-
end protocol on top of the internet datagrams. Ultimately, reliability (by some dcfinition) is always
required; the issue is where it should be provided. The Pup attitude is that it is the responsibility
of the end processes to define and implement whatever form of reliable transport is appropriate to
the situation.

2.10. Packet fragmentation

It is incvitable that some procesé will want to send an internct packet which is too large to be
directly encapsulated for transmission through an intermediate network that has a smaller maximum
packet size. This problem is usually approached with one of ‘two forms of packet fragmentation
[Shoch, 1979al.

With internetwork fragmentation, an internct-wide design specifies the opcrations to be
performed on a packet that is too large for a network it is about to enter. The internct datagram is
fragmented into a number of smaller internet datagrams, thercafter to be transported independently
and rcassembled at the ultimate destination. This is the approach taken, for example, in the ARPA
Internet design. It requires cvery destination to have procedures for reassembly.

Alternatively, onc may usc infranetwork fragmentation (or network-specific fragmentation):
when presented with an oversize packet, the network-specific driver undertakes to fragment the
packet in a manner specific to that network, to be reassembled by the corresponding driver as the
packet cxits the network (c.g., at the next gateway). This approach confines the fragmentation and
reassembly procedures to the level 0 modules of hosts directly connected to the network in which
fragmentation is required.

The Pup design does not attempt to provide any form of gencral internetwork fragmentation.
'I'his complex issuc has been simply legislated out of existence by requiring that cvery agent in the
internct handle Pups up to a standard maximum size, using network-specific fragmentation where
necessary.
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211, Broa(lcas_l packets

Broadcast packets arc a particularly uscful means for locating available resources or distributing.
information to many hosts at once. Some local networks, such as the Ethernet, dircctly support
transmission of broadcast packets. In store-and-forward systems, however, specialized algorithms are
required to propagate a packet cfficient]y to all hosts [Dalal, 1977; Dalal & Metcalfc, 1978]; no
existing store-and-forward networks support any technique besides brute-force transmission of a
packet to cvery node, though such a capability is now being implemented in the Arpanet.

Broadcasts may also be expensive since every host that receives one must expend some
-resources, if only to discard it. In networks where a broadcast involves generating more than one
packet, there is the additional cost of creating and transporting the extra copies. Becausc of their
potentially high cost, internet-wide broadcasts are not presently supported in the Pup design. Nor is
it clear that such a capability would be desirable, since it would not extend well to a very large
internet.  'The problem of locating distant resources in the internet at reasonable cost is a topic of
current  rescarch,

But Pups can be broadcast on a single network: they are frequently used to locate nearby
resources, or to permit gateways to announce their presence on a network., Implementation of the
broadcast procedure is left to the network-specific driver, using the best technique available on that
net.

2.12. Privacy and security

It must be recognized that in practical internet environments, packets may be delivered to the
wrong host, intercepted by another host, or gencrated by a host masquerading as some other host,
To prevent this would require one to interpose some agent between hosts and the internet and to
specify a sccure access control procedure. This would significantly increase the complexity of the
internet, and truly suspicious users would probably not trust it anyway.

Processes are cncouraged, however, to ensure the privacy and authenticity of their
communication by whatever end-to-end encryption techniques seem  appropriate [Needham &
Schroceder, 1978).  Particularly vulnerable components, such as gateways and scrvers, should take
precautions to protect their own integrity, but ultimate responsibility rests with the end processes.
The Pup internet docs not attempt to protect users from traffic analysis or from malicious replay of
previous traffic.
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3. Implementation

The preceding section has outlined some of the important propertics of the Pup architecture
and the internetworking issues it addresses.  What follows is a more detailed description of the
present design of the four major layers in the system.

3.1. Level 0: packet transport

An individual network moves network-specific packets among hosts; the addressing schemes,
error characteristics, maximum packet sizes, and other attributes of networks vary greatly. An
internetwork packet transport mechanism, however, moves Pups between hosts. The level 0 code
which transforms a network into an internet packet transport mechanism is called a nefwork driver.

A machine connected to a single network, therefore, has one level 0 network driver; a gatcway
has onc driver for cach dircctly-connected network. Only the driver knows about the peculiaritics
of a nctwork’s hardwarc interface and low-level protocol.

The interface between levels 0 and 1 is very simple. Level 1 passes down a Pup and a
network-specific host address, and the driver encapsulates the Pup and does its best to deliver it to
the specified host. When a Pup arrives at a host, the driver decapsulates it and passes it up to level
1; if for any rcason the Pup looks suspicious (as determined by network-specific error checking), the
driver discards it.

Every packet transport mechanism must be able to accept a maximum-size Pup; if the actual
network cannot directly encapsulate a packet of that size for transmission, the driver must include
some form of intranctwork fragmentation.

A network driver may also be asked to broadcast a packet to all other hosts on that net. On
some nctworks this is straightforward; on others it may requirc use of a reverse-path forwarding
algorithm [Dalal & Metcalfe, 1978] or brute-force replication of the packet to cach destination.

The transport mechanisms don’t have to be perfectly reliable, but they should be successful
most of the time—a packet loss rate of less than 1 percent is usually acceptable. A network
operating for a short time in a degraded mode with a higher loss rate is harmless, so long as the
probability is low that Pups will transit more than one net that is in this condition. However, if a
network’s inherent crror characteristics are unfavorable, the driver should take steps to improve its
performance, perhaps by incorporating a network-specific  low-level acknowledgment and
retransmission  protocol,

To date, there have been five major types of networks integrated into the Pup architecture,
cach with a different level 0 driver.

Ethernet. Local Ethernet facilities can very casily serve as transport mechanisms for Pups: a Pup
fits in an Ethernet packet with only a few additional words of encapsulation (sce figure 2), and
requires no fragmentation. These systems have good reliability, high speed, and can send broadcast
packets [Metcalfe & Boggs, 1976; Shoch & Hupp, 1979; Shoch, 1979b].
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MCA. The Multiprocessor Communications Adapter (MCA), a parallel TDM bus, scrves as a local
network tying‘ together a limited number of Nova computers [l)afa General, 1971]. It has good
reliability and requires no fragmentation, but does not support broadcast packets. Broadcasts are:
accomplished by the brute-force method—sending a copy of a broadcast packet to cach of the
possible hosts.

Arpanct. To cover longer distances, Pups can. be routed through the Arpanet; the format for
cncapsulating a Pup in an Arpanct message is shown in figure 2. (Note that Arpanct Pup transport
is bascd on Host-IMp protocol messages, not on Host-Host protocol streams.) Because the standard
"maximum Pup length is less than that of an Arpanct message, the driver itself need not fragment
Pups; however, the Arpanet does perform network-specific fragmentation internally: onc “message”
containing a Pup may become multiple “packets” within the Arpanct. Furthermore, the ‘Arpanct
provides increased reliability through the usc of its own internal acknowledgment and retransmission
protocols. The Arpanct docs not presently support broadcast packets; rather than sending packets
to all possible Arpanet hosts, the nctwork driver does not implement broadcasts at all.

Leased line store-and-forward network. More frequently, different local networks are interconnected

over long distances through the use of a private store-and-forward nctwork constructed using leascd

telephone circuits.  Similar in spirit to the Arpanet, this system is used to connect internctwork

gateways. Unlike the Arpanct, the system docs not use separate packet switches (IMps), but instead

switches packets through the hosts themselves—that is, the connected hosts include network-specific

drivers that implement a store-and-forward nctwork. This nctwork has its own adaptive routing

procedure, independent of the internctwork routing. The system is fairly reliable and docs not
require low-level acknowledgments. At present, the network drivers do not fragment Pups, but they

do promote small packets to the (ront of transmission queucs at intermediate points to help improve

performance for interactive traffic.

Packet Radio network. On an expcrimental basis, the ARPA Packet Radio nctwork [Kahn et al,
1978] has been used to carry traffic among local networks in the San Francisco Bay arca. The
Packet Radio network was integrated into the system by building a suitable level 0 network driver
[Shoch & Stewart, 1979]. The system provides good reliability; but duc to the relatively small
maximum packet size (232 bytes), the driver must perform fragmentation and rcassembly (sce figure
2). Though using a broadcast medium, the Packet Radio protocols do not support broadcast
packets. In this case, the low-level driver includes a procedure to periodically identify Packet Radio
hosts that might be running Pup software; when asked to broadcast a packet, the driver sends
copics of it to all such hosts.

To datc we have not used any public packet-switched nctworks, such as Telenet, as packet
transport mechanisms. These systems usually provide only a virtual circuit interface (X.25) that
requires a user to pay for functionality that may not be nceded. Compared to our cxisting lcased
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linc network, a Tclenct-based packet transport mechanism would not be cost-effective except under
conditions of very light traffic volume. We would prefer to use a service that provided simple,
unreliable datagrams; if there were an appropriate interface, we could dismantle our leased line
storc-and-forward nctwork.

3.2, Level I: internetwork datagrams

This is the level at which packet formats and internetwork addresscs are standardized. It is the
lowest level of process-to-process communication,

3.2.1. Pup format

The standard format for a Pup is shown in figure 3. The following paragraphs highlight the
sorts of information required at the internct datagram level.

‘The Pup length is the number of 8-bit bytes in the Pup, including internctwork header (20
bytes), contents, and checksum (2 bytes).

The transport control field is used for two purposes: as a scratch arca for use by gatcways, and
as a way for source processes to tell the internet how to handle the packet. (Other nctworks call
this the “facilities” or “options” field.) The hop count subficld is incremented each time the packet
is forwarded by a gateway. If this ever overflows, the packet is presumed to be travelling in a loop
and is discarded. A frace bit is specified, for potential use in monitoring the path taken by a
packet. . '

The Pup type is assigned by the source process for interpretation by the destination process and
defines the format of the Pup contents. The 256 possible types are divided into two groups. Some
types arc registered and have a single meaning across all protocols; Pups generated or interpreted
within the internet (c.g., by gateways) have types assigned in this space. Interpretation of the
remaining unregistered types is strictly a matter of agreement between the source and destination
Processcs.

The Pup identifier is used by most protocols to hold a sequence number. Its presence in the
internctwork header is to permit a response generated within the internet (e.g., error or trace
information) to identify the Pup that triggered it in a manner that docs not depend on knowledge
of the higher-level protocols used by the end processes.

Pups contain two addresses: a source port and a destination port. 'These hicrarchical addresses
include an 8-bit nctwork number, an 8-bit host numbecr, and a 32-bit socket number. Hosts arc
expected to know their own host addresses, to discover their network numbers by locating a gateway
and asking for this information, and to assign socket numbers in some systematic way not legislated
by the internet protocol.
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Pup Length

Transport Control Pup Type

— Pup Identifier —

Pup Header Destination Network Destination Host
(20 bytes) ] \ Destination
. " Port
— Destination Socket -
Source Network Source Host
Source
" Port
= Source Socket —
Data
(0 to 532 bytes)

Pup Software Checksum

- Two Bytes >

¢

Figure 3. Pup Internet Datagram
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There are some important conventions associated with the usc of network addresses. A
distinguished value of the network number field refers to “this hctwork” without identifying it.
Such a capability is necessary for host initialization (since most hosts have no permanent local:
storage and consequently no a priori knowledge of the connected network number), and to permit
communication to take place within a degencrate internet consisting of an unidentified local network
with no gateways. A distinguished value of the destination host address is used to request a
broadcast. Certain values of the socket number ficld refer, by convention, to “well-known sockets”
associated with standard, widely-used scrvices, as is done in the Arpanet.

The data ficld contains up to 532 data bytes. The selection of a standard maximum packet
.lcngth must reflect many considerations: error rates, buffer requirements, and nceds of specific
applications. A rcasonable value might range anywhere from 100 to 4000 bytes. In practice, much
of the internet traffic consists of packets containing individual “pages” of 512 bytes each, reflecting
the quantization of memory in most of our computers. But just carrying the data is not enough,
since the packet should accommodate higher-level protocol overhead and some identifying
information as well. Allowing 20 additional bytes for such purposes, we arrive at 532 bytcs as the
maximum sizc of the data field (a somewhat unconventional value in that it is not a power of two).
Thus, there may be between 0 and 532 content bytes in a Pup, so its total length will range from 22
to 554 bytes. Pups longer than 554 bytes are not prohibited and may be carried by some nctworks,
but no internetwork gateway is required to handle larger ones.

The optional sofiware checksum is used for complete end-to-cnd coverage—it is computed as
closc to the source of the data and checked as close to the ultimate destination as is possible. This
checksum protects a Pup when it isn’t covered by some network-specific technique, such as when it |
is sitting in a gatcway’s meinory or passing through a parallel 1/0 path. Most networks employ
some sort of crror checking on the serial parts of the channel, but parallel data paths in the
interface and the 170 system often are not checked.

The checksum algorithm is intended to be straightforward to implement in software; it also
allows incremental updating so that intcrmediate agents which modify a packet (gatcways updating
the hop count ficld, for example) can quickly update the checksum rather than recomputing it. The
checksum may (but need not) be checked anywhere along a Pup’s route in order to monitor the
internet’s integrity. '

3.2.2. Routing

Accompanying the packet format defined at level 1 are the protocols for internetwork routing,
Each host, whether or not it is a gatcway, executes a routing procedure on every outgoing Pup, as
illustrated in figure 4. "This procedure decides, as a function of the Pup destination port ficld, upon
which directly-connected network the Pup is to be transmitted (if there is more than one choice), and
it yiclds an immediate destination host which is the address on that network of either the ultimate
destination or some gateway bcelicved to be closer to the destination. Fach routing step employs the
same algorithm based on local routing information, and cach Pup is routed independently.
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Routing information is maintained in a manner very similar to the Arpanet-stylc adaptive
procedures [McQuillan, 1974]. The initial metric used for sclccting‘ routes is the “hop count”—the
number of intermediate networks between source and destination.  The protocol for updating the:
routing tables involves cxchanging Pups with neighboring gateways and rests logically at level 2 of
the protocol hicrarchy. This is an example of a conncctionless protocol which docsn’t require
perfectly reliable- transmission for correct operation. Changes in internctwork topology may cause
different gateways’ routing tables to become morhentarily inconsistent, but the algorithm is stable in
that the routing tables rapidly converge to a consistent state and remain that way until another
change in topology occurs.

. A host which is not a gatcway still implements a portion of this level 2 routing update protocol:

it initially obtains an internctwork routing table from a gateway on its directly-connccted network,
and it obtains updated information periodically. If there is more than onc gatcway providing
connections to other networks, the host can merge their routing tables and thus be able to sclect the
best route for packets directed to any network.

3.3. Level 2: interprocess communication

Given the raw datagram facility provided at level 1, we can begin to build data transport
protocols, tailored to provide appropriate levels of reliability or functionality for real applications.

These protocols generally fall into two categorics: those in which a connection is established for
a sustaincd cxchange of packets, and those in which individual packets are exchanged on a
connectionless basis.  Connection-style protocols usually transport data very reliably, and
transparently. '

EFTP: the Fasy File Transfer Protocol. This is a very simple protocol for sending files. Each data
Pup gives rise to an immediate acknowledgment, and there is at most onc Pup outstanding at a
time. This protocol is an indirect descendent of the one outlined in [Mectcalfec & Boggs, 1976). Its
simplicity makes this piece of communication mechanism casy to include under conditions of very
limited resources. For example, we have implemented a complete EFTP receiver in 256 words of
assecmbly language, for usc in a nctwork-based bootstrap and down-line loading process.

Rendezvous & ‘Termination Protocol (RTP). This is a general means to initiate, manage, and
terminate conncections in a reliable fashion [Sunshine & Dalal, 1978]. In normal usc, an R'TP user
initiates a conncection by communicating with a well-known socket at some server. ‘That server will
spawn a ncw port to actually provide the service, and the RTP will cstablish contact with this port.
It employs a non-reusable connection identifier to distinguish among multiple instantiations of the
same connection and to cope with delayed packets without making assumptions about maximum
packet lifctimes. RTP also synchronizes Pup identifiers for use in managing thc conncction.
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Byte Stream Protocol (BSP). This is a relatively sophisticated protocol for supporting reliable,
sequenced streams of data. 1t provides for multiple outstanding packets from the source, and uscs a
moving window flow control procedure. User processes can place mark bytes in the strcam to
identify logical boundaries and can send out-of-band interrupt signals. RTP and BSP combined
perform a function similar to that of the TCP, with which they share a certain degree of common
ancestry [Cerf & Kahn, 1974; Postel, 1980].

Connectionless protocols do not attempt to maintain any long-term state; they usually don’t
guarantee reliability, but leave it up to the designer to construct the most suitable system. Their
simplicity and casc of implementation make them extremely uscful.

Fcho. A very simple protocol can be used to send test Pups to an echo server process, which will
check them and send back a reply. Such servers are usually embedded in gateways and other server
hosts, to aid in nctwork monitoring and maintenance. The server is trivial to implement on top of
the level 1 facilities.

Name lookup. Another server provides the mapping from string names of resources to internetwork
addresscs; this is accomplished by a single exchange of packets. This service is often addressed with
a broadcast Pup, since it is used as the first step in locating resources. (The name lookup service
itself, of coursc, must be located at a well-known address. To be useful, it must be widely
available; therefore it is typically replicated at least once per nectwork.)

Routing table maintenance. The internetwork routing tables are maintained by Pups exchanged
periodically among internctwork gateways and broadcast for use by other hosts.

Page-level file access. The Woodstock File Server (WFS), one of the family of file servers available
on the internet, provides page-at-a-time access to a large file store [Swinchart ef al, 1979]. The
protocols used for this do not require cstablishment of a conncection, but merely exchange request
and response Pups that each carry both commands and file data. ‘This arrangement supports
random-access, transaction-oriented intcractions of very high performance—frequently better than
that obtained using local file storage, because the file server’s disks are much faster than those
typically connected to personal computers.

Gateway monitoring and control. There is no single network control center, but individual gatcways
may bc queried from a monitoring program run on any user machine. With suitable authentication,
the user may assume remote control of the gatcway so as to perform operations such as changing
paramcters and loading new versions of the software.

Other conncctionless protocols arc used to access a date and time server, an authentication
server, and a mail check server intcgrated with an on-line message system., These protocols are
designed to be as cheap as possible to implement (i.c., without conncction overhcad) so that such
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servers may be replicated cxtensively and accessed routincly without consuming excessive resources.
For cxample, instances of some of these scrvers are present in all gateway hosts so as to maximize
their availability.

3.4. Level 3: application protocols

Armed with a reasonable collection of data transport protocols at level 2, one can begin to
evolve specific applications at level 3. These are supported by various function-oriented protocols
[Crocker et al, 1972].

Telnet. Terminal access to remote hosts is provided with an internetwork Telnet protocol, which
makes use of the combination of the Rendezvous & Termination Protocol (RTP) and the Byte
Stream Protocol (BSP) at level 2. Using the notion of a virtual terminal, Telnet implementations
map characteristics of actual terminals into a network-independent representation; a mark byte in
the strcam and an out-of-band interrupt, for example, are used to signal an “attention.” (This
approach is a subset of the Arpanct Tclnet protocol, without any of its options such as RCTE
[Davidson, et al, 1977; Feinler & Postel, 1978].)

FIP. The RTP and BSP are again combined as the foundation for an internetwork File Transfer
Protocol (FTP), supporting stream-oriented access to files. The underlying byte strcams provide
reliable communication, and the major task of FTP is to communicate commands and responses and
to sort out different representations of data in different file systems. FTP implementations have
been ecmbedded within existing tite-sharing systems, and also constitute the core of dedicated, high-
capacity file scrvers.

Printing. Among the important shared resources in the internet arc high-qualfty printing scrvers.
Rather than using the fully devcloped BSP and FTP, the specialized task of sending unnamed,
standard format document files to a printer makes use of the more restricted but much. simpler
EFTP.

CopyDisk. Given high-performance networks and simple gateways. that can forward Pubs among
them cfficiently, it is perfectly rcasonable to copy entire disk packs through the internct. The
CopyDisk protocol negotiates between the participating machines to cnsurc that the disks arc
compatible, and handles crror recovery should something break down.

Remote graphics. Personal display-oriented computers such as the Alto can be used to provide a
convivial front end for large programming systems such as Interlisp. The Alto Display protocol is
used for exchanging descriptions of graphical structures as well as text; it is similar to the ARPA
Network Graphics Protocol, but with cxtensions to support raster-scanned graphics [Sproull &
Thomas, 1974: Tcitelman, 1977; Sproull & Cohen, 1978} '
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Additional applications have included cooperative editing of common documents from multiple
machines, audio communication and packet voice, and many others.

As uscrs creatc new applications, these systems tend to develop their own natural layering of
function. Some may require new protocol designs in the existing hicrarchy; the Pup architecture
permits this degree of flexibitity down to the level of the simple internctwork datagram. As we gain
experience with new systems, common pieces of design will begin to emerge that might be of more
gencral usc; they will eventually find their 'wdy into an appropriatc place in this hicrarchy of
communications protocols.
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4. Fvolution, actual experience, and performance

The Pup architecture emerged against a background of Arpanct protocols. Many of its
important idcas—and thosc of its key relative, TCP—first appcared during the course of a serics of
meetings of the International Network Working Group (IFIP TC-6 WG6.1) during 1973. Pup and
TCP sharc a number of important principles, most notably that of reliable end-to-end transmission
through an internet. Pup subsequently diverged from TCP as the desire for implementation within
Xerox required decoupling it from TCP’s long and sometimes painful standardization process.

The fundamentals of the Pup design crystallized in 1974 and have remained essentially
unchanged since then. During this interval many higher-level protocols have been developed, the
implementations have cvolved considerably, and the internctwork system has grown to include
approximately 1000 hosts, attached to 25 networks of 5 different types, using 20 internctwork
gateways. 'The system is in regular use, is quite stable, and requires little regular maintenance or
attention,

From a functional point of vicw, this intcrnetwork architecture has been able to fulfill the
nceds of a very diverse community. Whﬁc the bulk of all traffic is carricd by mcans of a few
standard protocols, it has proven extremely valuable to be able to define new protocols—aiming at
different points in the space of performance, cost, and functionality—and to fit them into the
internet protocol hicrarchy at any of several levels.

In terms of performance, the internctwork gateways impose very little overhcad because they
arc so simple. In regions of the internct where multiple high-bandwidth local networks are
interconnected dircct]y by a single minicomputer-based gateway, there is almost no noticeable
difference between intranct and internct performance. Total throughput in an individual gateway is
high, ranging from 400 to 1000 kilobits per seconds (depending on the particular implementation),
and the typical dclay cxperienced by maximum-length Pups in the casc just mentioned is 2 to 5
milliscconds.

These figures don’t represent limits to what is achicvable—even with the relatively low-powered
machines now being used as gateways—because the gatcway software has not been highly tuned for
this application but rather is based on general-purpose software packages that are also used in many
other hosts. But the current performance is adequate because the internctwork traffic load is
typically only a tiny fraction of the capacity of the underlying local network channels. There exists
onc Alto-based gatcway that interconnects three 3-megabit per second Ethernet channels as well as
several 9.6-kilobit per second lcased lines and a Packet Radio interface. In general the bottlenecks
arc not the gateways but rather the slower communication channels; discard of Pups duc to
congestion in gateways is almost exclusively due to overload of the 9.6-kilobit per sccond lines.

As might be expected, most of the traffic in our local networks is intranetwork—that ‘is,
consisting of Pups whose source and destination are on the same nctwork. For example,
mecasurement of one such network has shown a typical volume of 2.2 million packets per day, 72
percent of which are intranctwork packets [Sh(SCh & Hupp, 1979]. Furthermore, of the remaining
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28 percent, more than half consist 6f traffic to or from another necarby local network connected via
a single gateway. (This site is scrved by multiple local networks because it is too large to cover with
a single onc using cxisting Ethernet technology, and also because it would exhaust a single
network’s address space.) The rest of the traffic—some 250,000 packets per day—is transported to
or from other campuses in the internet, mostly via the lcased line nctwork.

The higher-level protocols, such as the Byte Stream and FTP, are gencrally limited in
performance by the processor capacity or the secondary storage bandwidth at the source and
destination. For cxample, our BCPL implementation of BSP can maintain a data stream at the rate
of about 500 kilobits per second between end processes running on Alto minicomputers, at which .
point both machines are CPU-bound. While it is certainly adcquate for most applications, we find
this performance somewhat disappointing, and we view it as an indication that BSP—though
substantially simpler than, say, TCP—is still too complicated a protocol for high-performance
communication,

The Pup architecture allows individual networks to be added to the internet system on an ad
hoc basis, with no nced for central control or coordination except to assigh new nctwork numbers.
Uscrs sharing a local network can asscmble gateways and lease lines to other ncarby gateways; they
are cncouraged to make multiple intergateway connections to provide alternate routes and thereby
reduce the probability of being isolated. The gateway software has evolved to the point where if
onc starts a copy of it on a host having at lcast one conncction to the existing internet, it will
automatically obtain the files and other information it nceds, announce its availability to the rest of
the internct, and begin forwarding Pups.

5. A retrospective critique, possible improvements, and future research

While the architecture works cxtremely well, there are some lessons to be learned from this
cxpcericnce.

S.1. Addressing and routing

The size of address fields is a question of continuing contrbvcrsy. An cight-bit nctwork
number supports up to 256 nets; that is fine for now, but eventually it should be made larger. To
date, 256 hosts per net has not been a problem, though it is likely to become onc (for example,
when the Arpanct’s new 24-bit addressing convention starts to receive wide use). We have avoided
variable-length address ficlds in the Pup design because they increase per-packet processing costs.

If an internetwork system becomes extremely large, the number of networks becomes so great
that it is no longer practical for all hosts to kcep routing table entries for all possible destination
nctworks.  Arca routing strategics may be employed to attack this problem [McQuillan, 1974].
Alternatively, one may adopt a scheme in which the local routing table becomes a cache of recently
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uscd routing information, with routes to specific networks computed and maintained as needed.
The problem of locating routes to distant parts of the internet is an arca of current research,

Onc could consider revising the entirc notion of a hicrarchical address space. Under the:
current dcesign, it is sometimes nccessary to change the host number of a machine which is moved
from onc nct to another—an operational annoyance. It is conceivable that every host could be
given a unique address within a flat address space; a more sophisticated mechanism would then be
needed to map addresses into routes, since there” would no longer be a network number as part of
the address (cxcept perhaps as a hint, to improve performance).

We view with some disfavor nen-hicrarchical organizations in which internet addresses consist
‘of a concatenation of network-specific addresses [Sunshine, 1977b]. Such arrangements have the
effect of fixing the path to a given destination and blur the distinction between addressing and
routing.

Socket numbers, which are now 32 bits wide, could casily shrink to 16. Originally, 32 bits were
assigned to allow inclusion of a unique subfield to distinguish among multiple instantiations of a
conncection; we now recognize that a better approach is to use a distinct connection identifier at the
time a conncction is cstablished, as mentioned carlier in the presentation of the Rendezvous &
Termination Protocol.

Using hop counts as the metric for routing decisions has worked remarkably well. An obvious
drawback, however, is that it considers a hop through a 9.6-kilobit per seccond phone line cqually as
good as a hop through a 3-megabit per second Ethernet link. As the topology becomes more richly
connected, this will increasingly become a problem. We intend eventually to change the routing
algorithms to reflect some consideration of bandwidth and delay, using known techniques based on
rescarch into adaptive distributed "routing algorithms in the Arpanct and elsewhere.

We have given little consideration to source routing or other forms of advice (e.g., class of
service) provided to the internet routing procedures by source processes. In providing such
facilitics, onc must take great care not to compromise the simplicity of the basic internet datagrams
or violate the layering of protocols.

5.2. Congestion control and utilization of low-bandwidth channels

The current congestion control techniques must be regarded as primitive. Discarding Pups and
(where possible) notifying the source process when congestion occurs has the virtue of simplicity,
and we believe it is a good gencral approach; but the present design has several defects.
Insufficicnt information is rcturned to the source process to enable it to make an informed decision
about how to proceed; further, the discard of Pups is haphazard, and no provision is made for
fairness. Congestion occurs most often at the entry to slow channels, and under overload conditions
the perceived performance of paths through those channcls is highly variable.
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This is a situation in which it would be appropriate to perform a relatively large amount of
computation per packet in order to optimize the utilization of the communication bandwidth. For
cxample, the network-specific driver for a leased telephone circuit could examine the source and
destination addresses of Pups to deduce the cxistence of “conversations”, and usc this information
to share the slow channel more effectively. (The Arpanct IMps deduce conversations in preciscly
this way, though for purposes having to do primarily with flow control rather than. congestion
control.)

In the samec vein, techniques such as code cdmprcssion, climination and regencration of
identical internet headers in successive packets, etc., may be implemented in the network-specific
drivers for the slow channels, with minimal impact on the end-to-end protocols. Such techniques
arc used widely in virtual circuit designs, and their applicability is sometimes cited as an advantage
of virtual circuits over datagrams [Roberts, 1978]. But there is no reason they can’t be employed in
a datagram-bascd internet, so long as the necessary additional computation is done in the right
place. '

The important point is that optimizing the utilization of the communication channel is
appropriate only when the channel bandwidth is scarce compared to the computation required to
perform such optimization. Where the processing capacity of the end machines is itsclf the scarce
resource—as we have observed in the local network environment—such techniques are highly
inappropriate. V

5.3. Pup types in the internel header

The distinction between registered and unregistered Pup types at the level of internct datagrams
has not turncd out to be particularly uscful, except in a few cases: Pups of typc “crror” and “trace”
may be gencrated from within the internet without knowledge of the higher-level protocols being
employed by the end processcs.

5.4. Performance of reliable end-to-end protocols

Present implementations of the Byte Stream I’fotocol include fairly sophisticated adaptive flow
control heuristics that also try to take note of any packets lost due to internct congestion. 'This
approach has worked rcasonably well in cnabling a source to adapt to the conditions encountered
along thc path to a particular destination. However, use of nctworks with highly variable
behavior—such as the wide-ranging delays experienced when using the Packet Radio network—can
confound these heuristics. Under unusual circumstances, the flow control procedures have been
observed to move suddenly into very unfavorable operating regions. 'The difficulty involving the
Radionct has since been solved, but the gencral design of simple, effective flow control and
congestion control procedures is just a very hard problem—particularly procedures intended to
adapt dynamically to and make good usc of different nctworks whosc pcrl‘ormanéc may vary by
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nearly three orders of magnitudé.

The step from raw Pups to a byte stream may be too large. The Byte Stream Protocol does too
much for many applications; it is complex enough that few systems have ever implemented the
entire specification.  As discussed previously, performance of the BSP—when comparced to some
other systcms—is rcasonable; but it does not give a user the full capacity of the underlying
networks. In a high-bandwidth local network cnvironment, paying attention to per-packet
processing overhcad is of extreme importance.

We have considered—but have not yet implemented—a proposal for an intermediate level of
functionality: a Reliable Packet Protocol (RPP) that takes care of conncction establishment and
processes flow control information, but tries not to dictate how a client program should do buffer
management. It ensures rcliable delivery (i.c., cach packet once and only once), but may deliver
packets to the client out of order, and does not deliberately attempt to hide paékct boundaries. A
BSP conncetion—where that is what is desired—may then be re-implemented as a vencer on top of
an RPP conncction.

5.5. Access lo the internet

The present Pup architecture can be characterized as “open”: users and applications are
permitted—and indecd encouraged—to take advantage of the internet for routine communication.
Access to the internet is uncontrolled; as in many nctwork designs, responsibility for access control
rests with the host systems, and whatever accounting is performed is for the services rendered by
individual servers. In our rescarch and development environment this is ideal, but obviously in
som¢ other environments it might not be.

5.6. Conclusions

The success of Pup as an internetwork architecture depends on a number of important
principles. Key among these is the layering of function in such a way that applications may make
usc of the internet at any of several levels, with the ability to choose among alternative protocols at
cach level or to develop new ones where necessary. Simple internctwork datagrams constitute the
level at which media independence (through encapsulation) is achicved; they arc also the unit of
direct process-to-process communication. This is crucial both to flexibility and to performance,
particularly in an internctwork environment dominated by relatively lightweight hosts-and high-
bandwidth local networks. v

During 1976 the Pup internct reached a level of functionality roughly cquivalent to that
provided by the standard Arpanet protocols—byte streams, Telnet, and FTP. From that time to the
present we have concentrated on building servers and constructing applications to access them
through the intcrnct. We are jusi beginning to cxplore that arca of interprocess communication
traditionally considered the domain of multiprocessors. Some interesting opportunitics arise from
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the availability of 100 or so minicomputers interconnected by a 3-megabit per second broadcast
channcl, and by 10 or so similar clusters, all interconnected by a store-and-forward nctwork. We
belicve that the Pup architecture serves as a good foundation for such investigations.
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