
I Contents
(

Chapter INTRODUCTION

Chapter 2 ISAM OVERVIEW

Chapter 3 DATA TYPES
3.1 CHARTYPE
3.2 INTTYPE AND LONGTYPE
3.3 FLOATTYPE AND DOUBLETYPE

Chapter 4 INDEXING
4.1 INDEX DEFINITION AND MANIPULATION
4.2 INDEX COMPRESSION

Chapter 5 LOCKING
5.1 EXCLUSIVE FILE LOCKING
5.2 MANUAL FILE LOCKING
5.3 RECORD LEVEL LOCKING
5.3.1 Automatic Record Locking
5.3.2 Manual Record Locking

Chapter 6 C PROGRAM EXAMPLES
6.1 BUILDING A FILE
6.2 ADDING SECONDARY INDEXES
6.3 ADDING DATA
6.4 SEQUENTIAL ACCESS
6.5 RANDOM ACCESS
6.6 CHAINING

Chapter 7 EXCEPTION HANDLING

Chapter 8 THE ISAM.H HEADER FILE

© 1982-1985 Relational Database Systems, Inc.

X/OPEN Portability Guide (July 1985) Part IV Page: i

Chapter 9

Part IV Page: ii

9.1
9.2
9.3
9.4
9.5

Contents

CALL FORMATS AND DESCRIPTIONS
RETURN VALUE / EXCEPTION REPORTING
isam.h HEADER FILE
KEY STRUCTURE
RECORD NUMBER OF LAST CALL
CURRENT RECORD POSITION

isaddindex(ISAM)
isbuild(ISAM)
isclose(ISAM)
isdelcurr(lSAM)
isdelete(ISAM)
isdelindex(ISAM)
isdelrec(lSAM) OPTIONAL
iserase(ISAM)
isindexinfo(ISAM)
islock(ISAM)
isopen(ISAM)
isread(lSAM)
isrelease(ISAM)
isrename(ISAM)
isrewcurr(ISAM)
isrewrec(ISAM) OPTIONAL
isrewrite(ISAM)
isstart(lSAM)
isunlock(lSAM)
iswrcurr(ISAM) OPTIONAL
iswrite(ISAM)

X/OPEN Portability Guide (July 1985)

(

()

(

(

I Chapter 1

Introduction

The input/output facilities supported by System V consist only of byte
stream read and write operations on files . No facilities are provided for
operating on files as sets of records. This leads to application writers
having to make their own arrangements for record handling, resulting in
both a multiplication of effort and a proliferation of non-standard
methods.

Data management is a key element in the integration of applications.
Applications, written in a variety of languages, must be able to work on
the same basic data in the same form, and data must be passed easily
and efficiently between applications.

As a first step towards addressing these issues, X/ OPEN defines an
interface for the creation, management and manipulation of indexed files ,
generally known as the Indexed Sequential Access Method (ISAM). The
availability of this interface on X/ OPEN systems will not only provide
application portability, but will ease and encourage integration .

The X/ OPEN ISAM definition is a major sub-set of the specification of the
C-ISAM product, version 2.10, published by Relational Database Systems
Inc. of 4100 Bohannon Drive, Menlo Park, California 94025 .

The X/ OPEN definition omits parts of the C-ISAM specification which are
implementation specific. An example is the audit trail facility which is
defined in the C-ISAM document without any interfaces for recovery.
Internal file formats are given, and the user has to make direct use of
these to effect recovery. As alternative implementations may exist, these
internal file formats are not part of the X/ OPEN standard, and neither,
therefore, are the audit trail definitions. (Any use of these facilities on a
system that includes them will imply that such applications are not totally
portable across X/ OPEN systems.)

Version 2.10 of the C-ISAM product introduced four new functions, and a
set of decimal data types. The new functions have been included in this
first issue of the X/ OPEN specification in the "optional" category. This
means that although they are likely to appear on many X/ OPEN systems,

X/ OPEN Portability Guide (July 1985) Part IV Page : 1.1

Introduction

they are not guaranteed to be on all. Where they are supported, they will
conform to the given definition . The decimal types have been excluded
pending a general review of support of decimal types within X/OPEN
systems.

This part of the guide is structured as follows:

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Chapter 7

Chapter 8

Chapter 9

Part IV Page: 1.2

gives an overview of ISAM.

describes data types supported by the X/OPEN ISAM
definition.

describes the definition and manipulation of indexes and
techniques for key compression.

describes file and record locking techniques to ensure
reliable updating in multi-user environments.

contains a comprehensive set of C program examples
designed to illustrate all the facilities of the ISAM
interface.

describes the handling of exception conditions.

describes the < isam.h> header file containing
definitions of various macros and symbolic constants.

contains detailed speCifications of the interfaces in the
X/OPEN ISAM definition.

X/OPEN Portability Guide (July 1985)

(

(

(

(

Overview

The X/OPEN ISAM definition specifies a set of C-Ianguage functions that
create and manipulate indexed files .

These functions provide for:

• the creation of files and associated primary indexes

• the addition, and deletion, of further indexes

• the opening, closing and deletion of existing files

• the selection of the index to be used for subsequent reading and / or
writing of records , and the start point within the file

• the reading, writing and updating of data records

• the locking and unlocking of files and records

When a file is created, two conceptual entities are formed, the container
for holding data records and a primary index. The programmer can
specify the field, or fields, of each record that is to be used as the
primary key for distinguishing the records within the file . As each record
is written to the file, an entry is made in the index which stores key
value(s) together with the location of the data record in the file. For
subsequent reads on the file, individual records are located by searching
the index for the required key and using the location stored with it to go
straight to the data. Access to a file can be sequential or random .

Indexes additional to the primary index can be created. These provide
alternative access paths to the same data records by allowing different
fields to be used as the keys. The definition puts no limit on the number
of alternative indexes that can be created for a file. In an additional
index, the same key value is allowed to occur in different records,
"duplicates", although a facility is provided to inhibit this on any
particular file.

The definition includes the facility to specify index key compression. This
allows the density of key storage in an index to be increased, by the use
of such techniques as suppression of redundant spaces at the beginning
and end of keys and by the elimination of duplicate entries. Only no
compression and maximum compression are fully defined. However, it

X/ OPEN Portability Guide (July 1985) Part IV Page : 2.1

{SAM Overview

is recognised that intermediate levels may be provided on any particular
member system, and mode values are defined to allow for this. All
X/ OPEN systems will accept these values to ensure application
portability, although the degree of resulting compression may vary.

Facilities are defined for the locking of files and records, to ensure
reliable update and access in the multi-user environment. File locking
locks out a whole file. It may be exclusive, in that all other accesses to
the file are inhibited, or it may be write-only, allowing read accesses to
continue. Record level locking may be automatic. In this case it is
specified at file open time and a record is automatically locked before it
is read, and remains locked until the next function call is completed.
Alternatively, it may be manual in that it is actioned as a result of a
parameter of a read call.

The following functions are included in the X/ OPEN ISAM definition.

FUNCTION NAME PURPOSE

isaddindex(ISAM) add index to an ISAM file
isbuild(ISAM) create an ISAM file
isclose(ISAM) close an ISAM file
isdelcurr(ISAM) delete current record
isdelete(ISAM) delete record specified by primary key
isdelindex(ISAM) remove index from an ISAM file
isdelrec(ISAM)* delete record specified by record number
iserase(ISAM) remove an ISAM file
isindexinfo(ISAM) access file information
islock(ISAM) lock an ISAM file
isopen(ISAM) open an ISAM file
isread(ISAM) read records
isrelease(ISAM) unlock records
isrename(ISAM) rename an ISAM file
isrewcurr(ISAM) rewrite current record
isrewrec(ISAM)* rewrite record specified by record number
isrewrite(ISAM) rewrite record specified by primary key
isstart(ISAM) select an index
isunlock(ISAM) unlock an ISAM file
iswrcurr(ISAM)* write record and set current position
iswrite(ISAM) write record
* These functions are optional in the X/ OPEN ISAM definition.

Part IV Page: 2.2 X / OPEN Portability Guide (J uly 1985)

(

(

(

(

/SAM Overview

The following C-ISAM facilities are not included within the X/ OPEN ISAM

definition and their use will impede portability:

FUNCTION NAME

isaudit(ISAM)
isflush(ISAM)
issefuniq(ISAM)
isuniqueid(ISAM)

PURPOSE

performs operations on audit trail
flushes buffered index pages
set unique identifier
return unique identifier

Also excluded are the decimal data types and associated manipulation
routines.

X/ OPEN Portability Guide (July 1985) Part IV Page: 2.3

(

(

(

3.1

The types of data that can be defined and manipulated are described in
this chapter. Descriptions of how each data type is stored in files and
how each data type must be treated are also included.

The data types for which properly ordered indexes are maintained are
type character, 2-byte integers, 4-byte integers, machine float (floating
point), and machine double (double precision floating point) . The macro
definitions used to describe these types are shown below. These
definitions can also be found in < isam.h>.

CHARTYPE character
INTTYPE 2-byte integer
LONGTYPE 4-byte integer
FLOATTYPE machine float
DOUBLETYPE machine double

CHARTYPE

The data type CHARTYPE comprises a string of characters, for example a
city name or an address.

X/ OPEN Portability Guide (July 1985) Part IV Page : 3.1

Inttype And Longtype Oata Types

3.2 INTTYPE AND LONGTYPE

The data types INTTYPE and LONGTYPE consist of 2- and 4-byte binary
signed integer data. Integer data is always stored in files as high / low,
most significant byte first, least significant byte last. This storage
technique is independent of the form in which integers are stored in the
machine on which the system is executing. Therefore, depending on the
operating environment, the format of storage for integers in the files may
differ from the format of storage for integers stored in executing
programs. For this reason, four routines are supplied for the conversion
to and from ISAM integer storage format.

The four format conversion routines for integers are:

Idint(p)

stint(i, p)

Idlong(p)

stlong(l, p)

returns a machine-format integer; p is a char pOinter
to the starting byte of format INTTYPE.

stores a machine-format integer i as format INTTYPE at
location p , where p is a char pOinter to the first byte
of format INTTYPE.

returns a machine-format long integer; p is a char
pointer to the first byte of format LONGTYPE.

stores a machine-format long integer I as format
LONGTYPE at location p, where p is a char pOinter to
the first byte of format LONGTYPE.

These routines are either macros defined in < isam.h> or are in the ISAM
library.

The typical use for the above routines occurs after a data record has
been read into the user buffer. Integer values that are to be used by the
user program first have to be converted to machine-usable format by
using Idint for type INTTYPE and Idlong for LONGTYPE.

Similarly, storage of machine-format integer data requires the use of the
stint and stlong routines.

Note that the formatted integers need not be aligned along word
boundaries as do machine-formatted integers.

Part IV Page : 3.2 X/ OPEN Portability Guide (July 1985)

(

(

(

(

Data Types F/oattype And Doub/etype

3.3 FLOATTYPE AND DOUBLETYPE

The data types FLOATTYPE and OOUBLETYPE are the two floating point
data types. The data type FLOATTYPE is the same as the C data type
float, while the data type OOUBLETYPE is the same as the C data type
double. Both data types differ in length and format from machine to
machine. There is no difference between the floating point format used
and its counterpart in the C language except that floating point numbers
may be placed on non-word boundaries. For this reason, four more
routines, allow the user to retrieve or replace these non-aligned floating
point numbers from their positions in data records. These routines are:

Idfloat(p)

stfloat(f, p)

Iddbl(p)

stdbl(d, p)

returns a machine-format float; p is a char pointer to
the starting byte of format FLOATTYPE.

stores a machine-format float f at location p , where p
is a char pointer to the starting (leftmost) byte of
format FLOATTYPE.

returns a machine-format double; p is a char pointer
to the starting byte of format OOUBLETYPE.

stores a machine-format double d as format
OOUBLETYPE at location p, where p is a char pointer
to the starting (leftmost) byte of format OOUBLETYPE.

The use of the floating point load and store routines is analogous to the
use of the integer load and store routines.

X/ OPEN Portability Guide (July 1985) Part IV Page : 3.3

(

(

(

(

4.1

I Chapter4

Indexing

INDEX DEFINITION AND MANIPULATION

The C language structures that describe an index to any given function
call are the keydesc and keypart structures. These structures are shown
below. They are defined in the file < isam.h>, which must be included
in any program which uses the function calls.

The structure keydesc contains the following members:

short k_flags; / * compression and duplicates * /
short k_nparts; / * number of parts in this key * /
struct key part k_part[NPARTS]; /* each key part */

The structure keypart contains the following members:

short kp_start; / * starting byte of key part * /
short kp_leng; / * length in bytes of key part * /
short kp_type; / * type of key part * /

It is the purpose of this chapter to show how to initialise the keydesc
structure for use with any of the functions that require it as a parameter.

The first sample index to be described here has one part which has the
data type of INTTYPE. Integers are 2 bytes; therefore, the length of the
index is 2 bytes. The index begins in the first byte of the record. No
data compression is desired for keys stored in this index. The order of
the index is to be ascending (lowest key value to highest key value).
Finally, duplicate key values for this index are not to be allowed .

X/OPEN Portability Guide (July 1985) Part IV Page: 4.1

Index Oefinition And Manipulation Indexing

The C program to add the index described above is shown below. It is
assumed that the file myfile has already been created using the
isbuild(ISAM) function call .

include < isam.h>

struct keydesc firsCkey;
int fd;

mainO
{

Part IV Page : 4.2

/* In order to add an index to the file
"myfile", the file must be opened with
exclusive access. Therefore, ISEXCLLOCK
must be arithmetically added to the mode
parameter. * /

if «fd = isopen("myfile", ISINOUT + ISEXCLLOCK)) < 0)
(

printf(" 0pen error %d on myfile. \ n", iserrno);
exit(1);

}
mkfirst_keyO;
if (isclose(fd))
(

printf("Close error %d on myfile. \ n", iserrno);
exit(1);

X/OPEN Portability Guide (July 1985)

(

(

(

(

Indexing

mkfirst_keyO
{

Index Definition And Manipulation

first_key.k_flags= 0; /* no dups, no compression */
first_key.k_nparts= 1; / * this index has one part */

/ * The starting byte of an index is always defined
as the byte offset from the beginning of the
record. Since this index begins at the begin
ning of the record , its byte offset is zero. * /

first_key.k_part[O].kp_start= 0; / * offset is zero */
first_key.k_part[O].kp_type= INTTYPE; /* data type

is integer * /
first_key .k_part[O].kp_leng= 2; / * 2 byte integer * /

if(isaddindex(fd , &firsCkey» / * add the index * /
{

printf("Error %s iserrno = %d . \ n" ,
" in adding first_key index: " , iserrno);

Note that, in the above example, the structure element k_flags is
initialised to zero. This indicates that no special characteristics are to be
attributed to this index. Since k_flags is zero, duplicate key values will
not be allowed, and no compression will be performed on key values as
they are placed in the index.

If duplicate key values were to have been allowed, k_flags should have
been initialised to ISOUPS as in the following statement:

/ * allow duplicate key values */
firsCkey.k_flags = ISDUPS;

If key value compression had been desired, k_flags should have been
initialised to ISDUPS+COMPRESS. This would allow duplicate key values
and would indicate that they be compressed in the index.

firsCkey.k_flags = ISDUPS+COMPRESS;

Note, also, that the index defined by the keydesc structure firsLkey has
only one part . The number of key parts that make up the index is
defined by the structure element k_nparts, which in the above example is
initialised to one.

X/ OPEN Portability Guide (July 1985) Part IV Page : 4.3

Index Definition And Manipulation

/* this index has one part */
firsCkey .k_nparts = 1;

Indexing

In the previous example, the index defined had only one part. That part
had a data type of INTTYPE. However, a particular application could
require that a multi-part index be used. Within the keydesc structure
there exists an array of keypart structures. Each keypart structure
defines one part of the index. It holds the starting byte offset from the
beginning of the record, the part's length , and the part's data type. In
order for a multi-part index to be described, the user's program must
initialize each of these structures to reflect the desired position , length,
and data type for each index part.

The structure keypart contains the following members:

short kp_start;
short kpJeng;
short kp_type;

Part IV Page: 4.4

/ * starting byte * I
/ * length in bytes * I
1* type * I

X/ OPEN Portability Guido (July 1985)

(

(

(

Indexing Index Definition And Manipulation

In the following example program, a 3-part index is defined. The index
consists of a CHARTYPE field, a LONGTYPE, and another CHARTYPE field.
It is important to note that the parts of an index need not be contiguous
within a record, nor do the parts of an index have to exist in any
particular order within the record. However, the maximum number of key
parts that can be defined for an index is {NPARTS}, and the total number
of bytes within an index cannot exceed {MAXKEYLEN}. There is no limit
to the number of keys that can be added to a file.

include < isam.h>

struct keydesc second_key;
int fd;

mainO
(

if «fd = isopen("myfile", ISINOUT +ISEXCLLOCK)) < 0)
(

}

printf("Open error %d on myfile. \ n", iserrno);
exit(1);

mksecond_keyO;
if (isclose(fd))
(

printf("Close error %d on myfile. \ n", iserrno);
exit(1);

X/OPEN Portability Guide (July 1985) Part IV Page : 4.5

Index Definition And Manipulation Indexing

mksecond_keyO
{

Part IV Page : 4.6

/ * allow dups, full compression */
second_key.k_flags = ISDUPS+COMPRESS;

/* this index has 3 parts */
second_key.k_nparts = 3;

/ * define the first index part */
second_key.k_part[O).kp_start = 15;
second_key.k_part[O).kp_leng = 8;
second_key.k_part[O) .kp_type = CHARTYPE;

/ * define the second index part * /
second_key.k_part[1).kp_start = 30;
second_key.k_part[1).kp_leng = 4;
second_key.k_part[1).kp_type = LONGTYPE;

/ * define the third index part */
second_key.k_part[2).kp_start = 3;
second_key.k_part[2).kpJeng = 6;
second_key.k_part[2).kp_type = CHARTYPE+ISDESC;

if (isaddindex(fd, &second_key»
{

printf("Error %s iserrno = %d. \ n" ,
"in adding second_key index: ", iserrno);

X/ OPEN Portability Guide (July 1985)

(

(

Indexing Index Compression

4 .2 INDEX COMPRESSION

This section discusses key value compression. This allows the density of
key storage in an index to be increased by the use of such techniques as
suppression of redundant spaces at the beginning and end of keys and
the elimination of duplicate entries.

Using these techniques, significant savings can be made in disc space,
and substantial improvements obtained in response to random access
requests.

Different levels of compression may be available on different machines.
To allow for this, the X/ OPEN definition is non-specific, but ensures that
applications will run across X/OPEN systems without change.

Two levels of space compression are defined: no compression and
maximum compression . The latter calls for the maximum level of space
compression available on the machine on which the application is
running . The levels apply to each index individually.

In addition, an application can specify whether duplicates are to be
allowed for each index.

Duplicates are allowed by setting the value ISOUPS into the k_flags field of
the keydesc structure for a given index, and are inhibited by the value
ISNOOUPS. (As no default value is defined, either ISOUPS or ISNOOUPS

must be specified). Space compression is specified by adding the value
COMPRESS to ISOUPS or ISNOOUPS. All other values in the k_flags field
are implementation defined, but the X/OPEN system will accept such
values as advisory (i.e. applications will not fail , but the level of
compression obtained may vary from machine to machine).

X/OPEN Portabilily Guide (July 1985) Part IV Page: 4.7

(

(

(

5 .1

I ChapterS

Locking

Two levels of locking are defined: file level locking and record level
locking. Both are built on the System V lock features. Within these two
levels the user can choose from among several methods the one which
best suits application requirements.

EXCLUSIVE FILE LOCKING

File locking may be accomplished in two ways. One method prevents
other processes from reading from or writing to a given file. This method
is referred to as an exclusive lock and remains in effect from the moment
the file is opened , using isopen(ISAM) or isbuild(ISAM), until the file is
closed using isclose(ISAM) , Exclusive file locking is specified by adding
ISEXCLLOCK to the mode parameter of the isopen(ISAM) or isbuild(ISAM)
function call.

Exclusive file level locking is not necessary for most situations, but it
must be used when an index is being added using isaddindex(ISAM) or
when an index is being deleted using isdelindex(ISAM) .

The skeleton program shown below illustrates how exclusive file level
locking is done:

myfd = isopen("myfile", ISEXCLLOCK+ISINOUT);

isclose(myfd);

X/ OPEN Portability Guide (July 1985) Part IV Page : 5.1

Manual File Locking Locking

5.2 MANUAL FILE LOCKING

Manual file level locking prevents other processes from writing to a given
file but allows them to read the locked file. This kind of file level locking
is specified by use of the islock(ISAM) and isunlock(ISAM) function calls.
When a file is to be locked in th is manner, ISMANULOCK must be added
to the mode parameter of the isopen(ISAM) or isbuild(ISAM) call. Later in
the program, when locking is desired, islock(ISAM) should be called to
lock the file. When the file is to be unlocked, isunlock(ISAM) should be
called . For example:

myfd = isopen(" myfile" , ISMANULOCK+ ISINOUT);

· / * "myfile" is unlocked here * /

islock(myfd);

· / * "myfi le" is locked here * /

isunlock(myfd);

· / * " myfile" is unlocked here * /

isclose(myfd);

Part IV Page : 5.2 X/ OPEN Portabilily Guide (July 1985)

(

(

(

(

Locking Record Level Locking

5.3 RECORD LEVEL LOCKING

There are two basic types of record level locking: automatic and manual.

Automatic record locking locks a record just before it is read using the
isread(ISAM) call. It unlocks the record after the next call has completed.
Automatic record locking is used when the user wants to lock one record
at a time and is unconcerned about when or for how long that record will
be locked.

Manual record locking, on the other hand, can lock any number of
records. Manual locking locks a record when that record is read using
isread(ISAM). It unlocks that record , and any other records that are
currently locked, when isrelease(ISAM) is called. Manual record locking
is used when more control is requ ired over when a record, or set of
records, is to be locked and unlocked.

Both automatic and manual locking techniques allow other processes to
read records locked by the current process, but they may not lock, re
write, or delete them.

5.3.1 Automatic Record Locking

Automatic record locking must be specified when the file is opened. Th is
is done by adding ISAUTOLOCK to the mode parameter of the
isopen(ISAM) or isbuild(ISAM) function call . From when the file is opened
until it is closed, every record will be locked automatically before it is
read. Each record remains locked until the next funct ion call is
completed for the current file. Therefore, while using the automatic
record locking mechanism, only one record per file may be locked at a
given time.

X/ OPEN Portability Guide (July 1985) Part IV Page: 5.3

Record Level Locking Locking

The following illustration shows how automatic record locking is used:

myfd = isopen("myfile", ISINOUT +ISAUTOLOCK);

isread(myfd, myrecord, ISNEXT);
/ * record locked here * /
/ * before record is read * /

isrewcurr(myfd, myrecord);
/* record unlocked here * /
/ * after completion * /

isclose(myfd);

5.3.2 Manual Record Locking

The user's intention to use manual record locking must be specified
before any processing takes place. This is done by adding ISMANULOCK

to the mode parameter of isopen(lSAM) or isbuild(ISAM) function calls
when the file is opened. After the file is open, if the user wishes a record
to be locked, ISLOCK must be added to the mode parameter of the
isread(ISAM) function call that is reading that record . Each and every
record that is read in this manner remains locked until they are all
unlocked by a call of the isrelease(ISAM) function. The number of
records that may be locked in this manner at anyone time is system
dependent.

Part IV Page : 5.4 X/ OPEN Portability Guide (July 1985)

(

(

(

(

Locking Record Level Locking

The following illustration shows how a number of records in a particular
file are locked and unlocked using manual record locking :

myfd = isopen(" myfile", ISINOUT +ISMANULOCK);

isread(myfd, firsUecord, ISEQUAL+ISLOCK);

isread(myfd, second_record, ISEQUAL+ISLOCK);

isread(myfd, third_record, ·ISEQUAL +ISLOCK);

isrelease(myfd);
1* unlock all three records *1

isclose(myfd);

X/OPEN Portability Guide (July 1985) Part IV Page: 5.5

(

(

(

(

/C
Chapter6

Program Examples

This chapter discusses the creation and manipulation of ISAM fil es
through C language examples. These examples are based on a very
simple personnel system. The goal of the personnel system is to keep
up-to-date informat ion on employees. This information includes the
names, addresses, job titles, and salary histories for all employees.

The personnel system consists of two files, the employee file, and the
performance file. The employee file holds personal information about
each employee. Each record holds the employee number, name, and
address for a single worker. The performance file holds information
pertaining to each job performance review an employee has had . There
is one record for each performance review, job title change, or salary
change an employee has had. For every employee record in the
personnel file there may be many records in the performance file . The
field definitions for the records in both the personnel and performance
files are shown below:

Employee File Definition
Field Name Location in Record
Employee number 0 - 3 LONGTYPE

Last name 4 - 23 CHAR TYPE

First name
Address
City

24 - 43
44 - 63
64 - 83

CHARTYPE

CHARTYPE

CHARTYPE

Performance File Definition
Field Name Location in Record
Employee number 0 - 3 LONGTYPE

Review date 4 - 9 CHARTYPE

Job rating 10 - 11 CHARTYPE

Salary after review 12 - 19 DOUBLETYPE

Title after review 20 - 50 CHAR TYPE

X/ OPEN Portabilily Guide (July 1985) Part IV Page : 6.1

Building A File C Program Examples

6.1 BUILDING A FILE

The following C language example creates both the employee and the
performance files. It is important to note that the primary keys must be
defined for every file created.

#include <isam.h>

#define SUCCESS 0

struct keydesc key;
int cstart, nparts;
int cc, fdemploy, fdperform;

1*

*1

This program builds the file systems for the
data files employees and performance.

mainO
(

Part IV Page: 6.2

mkemplkeyO;
fdemploy = cc = isbuild("employee",

84, &key, ISINOUT +ISEXCLLOCK);
if (cc < SUCCESS)
(

}

printf("isbuild error %d for %s \ n",
iserrno, "employee file") ;

exit(1);

isclose(fdemploy);

mkperfkeyO;
fdperform = cc = isbuild("perform" ,

49, &key, ISINOUT +ISEXCLLOCK);
if (cc < SUCCESS)
(

}

printf("isbuild error %d for %s \n",
iserrno, "preformance file");

exit(1);

isclose(fdperform);

X/ OPEN Portability Guide (July 1985)

(

(

(

(

C Program Examples Building A File

getfirstO
{

int cc;

if (cc = isread(fdemploy, emprec, ISFIRST))
{

switch(iserrno)
(
case EENDFILE:

eof = TRUE;
break;

default:

}
return(O);

printf("%s error %d \ n",
"isread ISFIRST", iserrno);

eof = TRUE;
return(1);

getnextO
(

int cc;

if (cc = isread(fdemploy, emprec, ISNEXT))
(

switch(iserrno)
{
case EENDFILE:

eof = TRUE;
break;

default:
printf("%s error %d \ n",

"isread ISNEXT", iserrno);
eof = TRUE;
return(1);

}
return(O);

X/ OPEN Portability Guide (July 1985) Part IV Page : 6.3

Building A File

mkemplkeyO
(

key.k_flags = 0;
key. k_n parts = 0;
cstart = 0;
nparts = 0;

addpart(&key, 4, LONGTYPE);

mkperfkeyO
(

key.k_flags
key.k_nparts
cstart
nparts

= COMPRESS;
= 0;
= 0;
= 0;

addpart(&key, 4, LONGTYPE);
addpart(&key, 6, CHARTYPE);

addpart(keyp, len, type)
register struct keydesc *keyp;
int len;
int type;
{

C Program Examples

keyp->k_part[nparts] .kp_start = cstart;
keyp->k_part[nparts].kp_leng = len;
keyp->k_part[nparts] .kp_type = type;
keyp->k_nparts = + +nparts;
cstart + = len;

Part IV Page : 6.4 X/ OPEN Portabil ity Guide (July 1985)

(

(

(

C Program Examples Adding Secondary Indexes

6.2 ADDING SECONDARY INDEXES

Often the indexes defined to be primary indexes are not adequate for
some applications. In the case of this application, two secondary
indexes are desirable, an index on the Last name field in the employee
file, and an index on the Salary field in the performance file. The
following program creates these two indexes. It is important to note that
while adding indexes, the fil e must be opened with an exclusive lock.
Exclusive file locks are specified in the mode parameter of the
isopen(ISAM) call by initializing that parameter to ISINOUT +ISEXCLLOCK.

The ISINOUT specifies that the file is to be opened for both input and
output, and the ISEXCLLOCK constant added to ISINOUT indicates that the
file is to be exclusively locked for the current process and that no other
process will be allowed to access this file . Note also that duplicates are
to be allowed for both secondary indexes and that Last name is to have
full compression for its values stored in the index file.

include < isam.h>

define SUCCESS 0

struct keydesc key;
int cstart, nparts;
int fdemploy, fdperform;

/* This program adds secondary indexes for the last name
field in the employee file, and the salary field in
the performance file.

*/

mainO
(

int cc;

fdemploy = cc = isopen("employee",
ISINOUT +ISEXCLLOCK);

if (cc < SUCCESS)
(

printf("isopen error %d %s \ n",
iserrno, " for employee file");

exit(1);

X/ OPEN Portability Guide (July 1985) Part IV Page : 6.5

Adding Secondary Indexes C Program Examples

Part IV Page: 6.6

mklnamekeyO;
cc = isaddindex(fdemploy, &key);
if (cc ! = SUCCESS)
(

}

printf("isaddindex error %d for %s \ n",
iserrno, "employee iname key");

exit(1);

isclose(fdemploy);

fdperform = cc = isopen("perform",
ISINOUT +ISEXCLLOCK);

if (cc < SUCCESS)
(

printf(" isopen error %d for %s \ n",
iserrno, " performance file");

exit(1);

mksalkeyO;
cc = isaddindex(fdemploy, &key);
if (cc != SUCCESS)
(

}

printf("isaddindex error %d for %s \ n",
iserrno, "perform sal key");

exit(1);

isclose(fdperform);

X/ OPEN Portability Guide (July 1985)

(

(

(

(

C Program Examples Adding Secondary Indexes

mklnamekeyO
{

key.k_flags = ISOUPS + COMPRESS;
key.k_nparts = 0;
cstart = 4;
nparts = 0;

addpart(&key, 20, CHARTYPE);

mksalkeyO
(

key.k_flags
key.k_nparts
cstart
nparts

= ISOUPS;
= 0;
= 12;
= 0;

addpart(&key, sizeof(double), OOUBLETYPE);

addpart(keyp, len, type)
register struct keydesc *keyp;
int len;
int type;
{

keyp->k_part[nparts].kp_start = cstart;
keyp->k_part[nparts].kp_leng = len;
keyp->k_part[nparts].kp_type = type;
keyp->k_nparts = + +nparts;
cstart + = len;

X/OPEN Portability Guide (July 1985) Part IV Page : 6.7

Adding Data C Program Examples

6.3 ADDING DATA

The following program simply adds records to the employee file by
prompting standard input for values of the fields in the data record. Note
that the employee file is opened with the ISOUTPUT flag as its mode
parameter.

include < isam.h >
include < std io.h >

define WHOLEKEY 0
define SUCCESS 0
define TRUE 1
define FALSE 0

char emprec[85] ;
char perfrec[51];
char line[82] ;
long empnum;

struct keydesc key;
int cstart, nparts;
int fdemploy, fdperform;
int finished = FALSE;

/* This program adds a new employee record to the employee
file. It also adds that employee's first employee
performance record to the performance file .

*/

Part IV Page: 6.8 X/OPEN Portability Guide (July 1985)

(

(

(

C Program Examples Adding Oata

main()
{

int cc;

fdemploy = cc = isopen("employee",
ISMANULOCK + ISOUTPUT);

if (cc < SUCCESS)
{

printf(" isopen error %d %s \ n",
iserrno, "for employee file");

exit(1);

fdperform = cc = isopen("perform",
ISMANULOCK + ISOUTPUT);

if (cc < SUCCESS)
{

printf(" isopen error %d %s \ n",
iserrno, "for performance file");

exit(1);
}
getemployee();

while(!finished)
{

}

addemployee();
getemployeeO;

isclose(fdemploy);
isclose(fdperform);

X/OPEN Portability Guide (Juty 1985) Part tV Page: 6.9

Adding Data C Program Examples

getperformO
{

double new_salary;

if (empnum == 0)
{

}

finished = TRUE;
return(O);

stlong(empnum, perfrec);

printf(IfStart Date: If);
fgets(line, 80, stdin);
ststring(line, perfrec+4, 6);

ststring(1f glf, perfrec+ 10, 1);

printf(IfStarting salary: If);
fgets(line, 80, stdin);
sscanf(line, 1f%lflf , &new_salary);
stdbl(new_salary, perfrec+11);

printf(IfTitle : If);
fgets(line, 80, stdin);
ststring(line, perfrec+ 19, 30);

printf(1f \n \n \ nlf);

addemployeeO
{

Part IV Page: 6.10

int cc;

cc = iswrite(fdemploy, emprec);
if (cc != SUCCESS)
{

printf(lfiswrite error %d %s\n lf ,
iserrno, Iffor employeelf);

isclose(fdemploy);
exit(1);

X/OPEN Portability Guide (July 1985)

(

(

(

C Program Examples Adding Oata

addperformO
{

int cc;

cc = iswrite(fdperform, perfrec);
if (cc != SUCCESS)
(

putnc(c,n)
char *c;
int n;
(

printf("iswrite error %d %s \ n",
iserrno, "for performance");

isclose(fdperform);
exit(1);

while (n--) putchar(*(c+ +));

X/ OPEN Portability Guide (July 1985) Part IV Page : 6.11

Adding Oata C Program Examples

getemployeeO
(

Part IV Page: 6.12

printf("Employee number (enter ° to exit): ");
fgets(line, 80, stdin);
sscanf(line, "%Id " , &empnum);
if (empnum == 0)
(

}

finished = TRUE;
return(O);

stlong(empnum, emprec);

printf("Last name: ");
fgets(line, 80, stdin);
ststring(line, emprec+4, 20);

printf("First name: ");
fgets(line, 80, std in);
ststring(line, emprec+24, 20);

printf(" Address: ");
fgets(line, 80, std in);
ststring(line, emprec+44, 20);

printf("City: ");
fgets(line, 80, stdin);
ststring(line, emprec+64, 20);

getperformO;
addperformO;
printf(" \ n \ n \ n");

X/ OPEN Portability Guide (July 1985)

(

(

(

C Program Examples Adding Oata

/ * move NUM sequential characters from SRC to DEST * /
ststring(src, dest, num)
char *src;
char *dest;
int num;
{

in t i;

/ * don't move carriage returns or nulls * /
for (i = 1; i <= num && *src!= '\n' && src!= 0; i++)

*dest+ + = *src+ +;

/ * pad remaining characters in blanks * /
wh ile (i+ + < = num)

*dest+ + = ' ';

X/OPEN Portability Guide (July 1985) Part IV Page : 6.13

Sequential Access C Program Examples

6.4 SEQUENTIAL ACCESS

The next C language example shows how to read a file sequentially. In
this particular case the employee file is being read in order of the
primary key Employee number. Since the Employee number index is
defined as ascending with no duplicate key values allowed, the sequence
of records will print from the lowest value of Employee number to the
highest value of Employee number. This will continue until the
isread(ISAM) call using ISNEXT returns the value [EENDFILE], which
indicates that the end of file has been reached.

include < isam.h>

#define WHOLE KEY 0
define SUCCESS 0
define TRUE 1
define FALSE 0

char emprec[85];

struct keydesc key;
int cstart, nparts;
int fdemploy, fdpertorm;
int eot = FALSE;

/ * This program sequentially reads through the employee
file by employee number, printing each record to
stdout as it goes.

*/

Part IV Page : 6.14 X/OPEN Portability Guide (July 1985)

(

(

(

(

C Program Examples Sequential Access

mainO
{

int cc;

fdemploy = cc = isopen("employee",
ISINPUT +ISAUTOLOCK);

if (cc < SUCCESS)
(

printf("isopen error %d %s \ ",
iserrno, "for employee file");

exit(1);
}
mkemplkeyO;
cc = isstart(fdemploy, &key, WHOLEKEY, emprec, ISFIRST);
if (cc != SUCCESS)
(

}

printf("isstart error %d \ n", iserrno);
isclose(fdemploy);
exit(1);

getfirstO;
while (!eof)
{

}

showemployeeO;
getnextO;

isclose(fdemploy);

showemployeeO
{

printf("Employee number: %Id", Idlong(emprec»;
printf(" \ nLast name: "); putnc(emprec+4, 20);
printf(" \nFirst name: "); putnc(emprec+24, 20);
printf(" \ nAddress: "); putnc(emprec+44, 20);
printf(" \ nCity: "); putnc(emprec+64, 20);
printf(" \ n \ n \ n");

X/ OPEN Portability Guide (July 1985) Part IV Page : 6.15

Sequential Access

putnc(c, n)
char *c;
int n;
{

while (n- -) putchar(*(c+ +»;

getfirstO
{

int cc;

C Program Examples

if (cc = isread(fdemploy, emprec, ISFIRST»

Part IV Page: 6.16

(
switch(iserrno)
(
case EENDFILE:

eof = TRUE;
break;

default:
printf("isread ISFIRST error %d \ n",

iserrno);

}
return(O);

eof = TRUE;
return(1);

X/OPEN Portability Guide (July 1985)

(

(

(

(

C Program Examples Sequential Access

getnextO
{

int cc;

if (cc = isread(fdemploy, emprec, ISNEXT))
(

switch(iserrno)
(
case EENDFILE:

eof = TRUE;
break;

default:
printf("isread ISNEXT error %d \ n",

iserrno);
eof = TRUE;
return(1);

}
return(O);

mkemplkeyO
(

key.k_flags = 0;
key.k_nparts = 0;
cstart = 0;
nparts = 0;

addpart(&key, 4, LONGTYPE);

X/ OPEN Portability Guide (July 1985) Part IV Page : 6.17

Sequential Access

addpart(keyp. len. type)
register struct keydesc *keyp;
int len;
int type;
{

C Program Examples

keyp- >k_part[nparts].kp_start = cstart;
keyp- >k_part[nparts).kp_leng = len;
keyp->k_part[nparts].kp_type = type;
keyp- >k_nparts = + +nparts;
cstart + = len;

Part IV Page: 6.18 X/OPEN Portability Guide (July 1985)

(

(

(

(

C Program Examples Random Access

6.5 RANDOM ACCESS

The following program is an example of how random access to a file can
be accomplished . This program interactively retrieves an employee
number from standard input, searches for it in the employee file, and
prints the results of its search to standard output.

Note that the ISEQUAL constant is used to specify the read mode to
isread(ISAM) in the C function called reademp . If no record
corresponding to the value entered by the user is found for Employee
number, a condition code of [ENOREC] is returned by isread(ISAM) . It is
the responsibility of the C programmer to handle that return code in an
appropriate manner. If [ENOREC] is returned, the record buffer sent as
the record parameter to the isread(ISAM) call will not have been changed
(that is, no record will have been read) .

include < isam.h>
include < stdio.h>

#define WHOLEKEY 0
define SUCCESS 0
define TRUE 1
#define FALSE 0

char emprec[83];
char line[80] ;
long empnum;

struct keydesc key;
int cstart, nparts;
int fdemploy, fdperform;
int eof = FALSE;

/ *

*/

This program interactively retrieves an employee's employee
number from stdin, searches for it in the employee file,
and prints the employee record that has that value as its
employee number field.

X/OPEN Portability Guide (July 1985) Part IV Page : 6.19

Random Access C Program Examples

mainO
{

int cc;

fdemploy = cc = isopen("employee",
ISINPUT +ISAUTOLOCK);

if (cc < SUCCESS)
(

}

printf("isopen error %d %s \ n",
iserrno, "for employee file");

exit(1);

mkemplkeyO;
getempnumO;
while (empnum != 0)
{

}

if (readempO = = SUCCESS) showemployeeO;
getempnumO;

isclose(fdemploy);

getempnumO
{

printf("Enter the employee number (0 to quit): ");
fgets(line, 80, std in);
sscanf(line, "%Id", &empnum);
stlong(empnum, emprec);

showemployeeO
(

printf("Employee number: %Id", Id long(emprec));
printf(" \ nLast name: "); putnc(emprec+4, 20);
printf(" \ nFirst name: "); putnc(emprec+24, 20);
printf(" \ nAddress: "); putnc(emprec+44, 20);
printf(" \ nCity: "); putnc(emprec+64, 20);
printf(" \ n \ n \ n");

Part IV Page: 6.20 X/ OPEN Portability Guide (July 1 985)

(

(

(

(

C Program Examples Random Access

putnc(c, n)
char *c;
int n;
(

while (n--) putchar(*(c+ +»;

readempO
(

int cc;

cc = isread(fdemploy, emprec, ISEQUAL);
if (cc 1= SUCCESS)
{

switch (iserrno)
(
case EENDFILE:

eof = TRUE;
break;

default:
printf("isread ISEQUAL error %d \ n",

iserrno);
eof = TRUE;
return(1);

}
return(O);

mkemplkeyO
{

key.k_flags = 0;
key.k_nparts = 0;
cstart = 0;
nparts = 0;

addpart(&key, 4, LONGTYPE);

X/OPEN Portability Guide (July 1985) Part IV Page : 6.21

Random Access

addpart(keyp, len, type)
register struct keydesc *keyp;
int len;
int type;
{

C Program Examples

keyp->k_part[nparts].kp_start = cstart;
keyp->k_part[nparts].kp_leng = len;
keyp->k_part[nparts] .kp_type = type;
keyp->k_nparts = + +nparts;
cstart + = len;

Part IV Page : 6.22 X/OPEN Portability Guide (July 1985)

(

(

(

(

C Program Examples Chaining

6.6 CHAINING

The following example shows how to chain to a record that is the last
record in a chain of associated records , illustrating how the performance
records appear logically by the primary key. The primary index is a
composite index made up 01 the Employee number and Review date.

Emp. Review Job New New
No. Date Rating Salary Title

1 790501 9 20,000 PA
1 800106 9 23,000 PA
1 800505 1 24,725 PA
2 760301 9 18,000 JP
2 760904 9 20,700 PA
2 770305 9 23 ,805 PA
2 770902 9 27,376 SPA
3 800420 1 18,000 JP
4 800420 1 18,000 JP

X/OPEN Portability Guide (July 1985) Part IV Page : 6.23

Chaining

include < isam.h>
include <std io.h>

define WHOLEKEY 0
define SUCCESS 0
define TRUE 1
define FALSE 0

char perfrec[51];
char operfrec[51];
char line[81] ;
long empnum;
double new_salary, old_salary;

struct keydesc key;
i nt cstart, n parts;
int fd employ, fdperform;
int finished = FALSE;

C Program Examples

/ * Th is program interactively reads data from stdin and adds
performance records to the "perform" file. Depending on
the rating given the employee on job performance, the
following salary increases are placed in the salary field
of the performance file.

rating
p (poor)
f (fair)
g (good)

percent increase
0.0 %
7.5 %

13.5 %

Part IV Page : 6.24 X/ OPEN Portabil ity Guide (July 1985)

(

(

(

(

C Program Examples

mainO
{

int cc;

fdperform = cc = isopen("perform",
ISINOUT +ISAUTOLOCK);

if (cc < SUCCESS)
(

printf("isopen error %d %s \ n",

Chaining

iserrno, "for performance f ile");
ex it(1);

}
mkperfkeyO;
getperformanceO;
wh ile (!finished)
{

}

if (get_old_salary())
{

else

finished = TRUE;

addperformanceO;
getperformanceO;

isclose(fdperform);

addperformanceO
{

int cc;

cc = iswrite(fdperform, perfrec);
if (cc != SUCCESS)
(

printf(" iswrite error %d \ n", iserrno);
isclose(fdperform);
exit(1);

X/ OPEN Portability Guide (July 1985) Part IV Page : 6.25

Chaining C Program Examples

getperformanceO
{

Part IV Page : 6.26

printf(" Employee number (enter 0 to exit) : If);
fgets(line, 80, stdin);
sscanf(line, " %Id " , &empnum);
if (empnum == 0)
{

}

finished = TRUE;
return(O);

stlong(empnum, perfrec);

printf(" Review Date: If);
fgets(line, 80, stdin) ;
ststring(line, perfrec+4, 6) ;

printf(" Job rating (p = poor, f = fair, 9 = good): If);
fgets(line, 80, stdin) ;
ststring(line, perfrec+10, 1);

printf(" Salary After Review: If);
printf("(Sorry, you don't get to add this) \ n");
new_salary = 0.0;
stdbl(new_salary, perfrec+ 11);
printf(" Titie After Review: If) ;
fgets(line, 80, stdin) ;
ststring(line, perfrec+19, 30);

printf(" \ n \ n \ n");

X/ OPEN Portability Guide (July 1985)

(

(

(

(

C Program Examples

geCold_salaryO
{

int mode, cc;

/* get employee id no. */
bytecpy(perfrec, operfrec, 4);

/ * largest possible date * /
bytecpy("999999", operfrec+4, 6);

cc = isstart(fdperform, &key,
WHOLEKEY, operfrec, ISGTEQ);

if (cc != SUCCESS)
(

}
else
{

}

switch(iserrno)
(
case ENOREC:
case EENDFILE:

default:

mode = ISLAST;
break;

printf(" isstart error %d \ n",
iserrno);

return(1);

mode = ISPREV;

cc = isread(fdperform, operfrec, mode);
if (cc != SUCCESS)
{

printf("isread error %d %s \ n",
iserrno, " in get_old_salary");

return(1);

X/OPEN Portability Guide (July 1985)

Chaining

Part IV Page: 6.27

Chaining C Program Examples

if (cmpnbytes(perfrec, operfrec, 4»
(

}
else
(

printf("%s for employee number %Id \ n",
"No performance record", Idlong(operfrec» ;

return(1);

printf(" \ nPerformance record found. \ n \ n");
old_salary = new_salary = Iddbl(operfrec+ 11);
printf("Rating: ");
switch(*(perfrec+ 10»
(
case 'p' :

case 'f':

printf("poor \ n");
break;

printf("fair \ n");
new_salary * = 1.075;
break;

case 'g':

}

printf(" good \ n");
new_salary * = 1.15;
break;

stdbl(new_salary, perfrec+11);
printf("Old salary was %f \ n", old_salary);
printf("New salary is %f \ n", new_salary);
return(O);

bytecpy(src,dest,n)
register char *src;
register char *dest;
register int n;
{

Part IV Page : 6.28

while (n-- > 0)
{

*dest+ + = *src+ +;

X/OPEN Portability Guide (July 1985)

(

(

(

C Program Examples

cmpnbytes(byte1, byte2, n)
register char *byte1, *byte2;
register int n;
{

if (n <= 0) return(O);
while (*byte1 == *byte2)
{

}

if (--n = = 0) return(O);
+ +byte1;
+ +byte2;

return«(*byte1 & BYTEMASK) <
(*byte2 & BYTEMASK»? -1 : 1);

mkperfkeyO
{

key.k_flags = COMPRESS;
key.k_nparts = 0;
cstart = 0;
nparts = 0;

addpart(&key, 4, LONGTYPE);
addpart(&key, 6, CHARTYPE);

X/ OPEN Portability Guide (July 1985)

Chaining

Part IV Page. 6.29

Chaining C Program Examples

1 * move NUM sequential characters from SRC to DEST * 1
ststring(src, dest, num)
char *src;
char *dest;
int num;
{

int i;

1 * don't move carriage returns or nulls * 1
for (i = 1; i <= num && *src!= ' \ n' && src!= 0; i++)

*dest+ + = *src+ +;

1* pad remaining characters in blanks * 1
while (i+ + <= num)

*dest+ + = ' ';

addpart(keyp, len, type)
register struct keydesc *keyp;
int len;
int type;
{

keyp->k_part[nparts].kp_start = cstart;
keyp->k_part[nparts] .kp_leng = len;
keyp->k_part[nparts].kp_type = type;
keyp->k_nparts = + +nparts;
cstart + = len;

Part IV Page: 6.30 X/OPEN Portability Guide (July 1985)

(

(

(
I Chapter 7

Exception Handling

Calls to ISAM functions generally return a value of a to indicate success
or -1 to indicate some kind of exception . In the latter case, the global
integer iserrno and the global characters isstat1 and isstat2 are set to
meaningful values to define the nature of the condition . When testing
return values in iserrno, it is recommended that the symbolic names
defined in < isam.h > be used, rather than absolute values.

X/OPEN Portability Guide (July 1985) Part IV Page: 7.1

Exception Handling

ISAM codes indicate the following :

NAME No, TEXT STATUS STATUS
BYTE 1 BYTE 2

(

[EDUPLj 100 An attempt was made to 2 2
add a duplicate value to
an index via is write,
isrewrite, isrewcurr or
isaddindex,

[ENOTOPENj 101 An attempt was made to 9 0
perform some operation
on a file that was not
previously opened using
the isopen call.

[EBADARGj 102 One of the arguments of 9 0
the call is not within the
range of acceptable
values for that argument.

[EBADKEYj 103 One or more of the 9 0
elements that make up
the key description is
outside of the range of
acceptable values for
that element.

[ETOOMANYj 104 The maximum number of 9 0
files that may be open at
one time would be
exceeded if this request
were processed,

[EBADFILEj 105 The format of the file has 9 0
been corrupted ,

[ENOTEXCLj 106 In order to add or delete 9 0
an index, the file must
have been opened with
exclusive access, (

Part IV Page: 7.2 X/ OPEN Portability Guide (July 1985)

Exception Handling

NAME No. TEXT STATUS STATUS
BYTE 1 BYTE 2

(
[ELOCKED] 107 The record requested by 9 0

this call cannot be
accessed because it has
been locked by another
user.

[EKEXISTS] 108 An attempt was made to 9 0
add an index that has
been defined previously.

[EPRIMKEY] 109 An attempt was made to 9 0
delete the primary key
value. The primary key
may not be deleted by
the isdelindex call.

[EENDFILE] 110 The beginning or end of 1 0
file was reached.

[ENOREC] 111 No record could be 2 3
found that contained the
requested value in the
specified position.

[ENOCURR] 112 This call must operate on 2 1
the current record . One
has not been defined.

[EFLOCKED] 113 The file is exclusively 9 0
locked by another user.

[EFNAME] 114 The file name is too long. 9 0

X/OPEN Portability Guide (July 1985) Part IV Page: 7.3

Exception Handling

Two bytes are used to hold status information after calls . They are
related in the following way. The first byte holds status information of a
general nature, such as success or failure of a call. The second byte
contains more specific information that has meaning based on the status
code in byte one. The values of the status bytes are:

Byte One

o Successful Completion
1 End of File
2 Invalid Key
3 System Error
9 User Defined Errors

Part IV Page: 7.4 X/ OPEN Portability Guide (July 1985)

(

(

(

(

Exception Handling

Byte Two

When status key Status key two indicates:
one is:

0-9

o

o No further information is available

2 Duplicate key indicator

- After a isread(lSAM) this indicates that the
key value for the current key is equal to the
value of that same key in the next record .

- After a isread(ISAM) or isrewrite(ISAM)
this indicates that the record just written
created a duplicate key value for at least one
alternate record key for which duplicates are
allowed.

2 The primary key value has been changed by
the program between the successful
execution of a isread(ISAM) statement and
the execution of the next isrewrite(ISAM)
statement.

9

2 An attempt has been made to write or rewrite
a record that would create a duplicate key in
an indexed file.

3 No record with the specified key can be
found.

4 An attempt has been made to write beyond
the externally defined boundaries of an
indexed file.

The value of status key two is defined by the
user.

X/OPEN Portability Guide (July 1985) Part IV Page: 7.5

(

(

(

(

I :'hhaPeter 8

I j isam.h Header File

This chapter defines the contents of the header file <isam.h>. The file
contains definitions that are used for the mode arguments and also
definitions of structures that are used in the calls.

Definitions that specify limits in the above table give the limit that can be
assumed by applications for full portability across X/OPEN machines.
There will be at least that number on a given system, although there may
in fact be more.

For example, (NPARTS) gives the maximum number of key parts, and it is
set to 8. This means that all X/OPEN systems will allow at least 8 key
parts. It also means that , for full portability, an application should not
require more than this number. A particular X/OPEN machine may allow
more than 8 and, on that system, the definition will be set to a higher
value. However, applications relying on this higher value are not
guaranteed to be portable.

X/OPEN Portability Guide (July 1985) Part IV Page : 8.1

The isam.h header file:
define CHAR TYPE
define CHARSIZE

define INTTYPE
define INTSIZE

define LONGTYPE
define LONGSIZE

define DOUBLETYPE
define DOUBLESIZE

define FLOATTYPE
define FLOATSIZE

define MAXTYPE
define ISDESC

define TYPEMASK

define BYTE MASK
#define BYTESHFT

The isam.h Header File

0
1

2

2
4

3
(sizeof(double»

4
(sizeof(float»

5
Ox80

Ox7F

OxFF
8

/* add to make */
/* descending type */
/* type mask */

/* mask for one byte */
/* shift for one byte */

define Idint(p) «short)«(p)[O] « BYTESHFT)+«p)[1]&BYTEMASK»)
define stint(i,p) «p)[O]=(i» > BYTESHFT,(p)[1]=(i»
long IdlongO;

double IdfloatO;
double IddblO;

define ISFIRST 0 / * first record */
#define ISLAST 1 /* last record */
#define ISNEXT 2 / * next record */
#define ISPREV 3 / * previous record * /
#define ISCURR 4 /* current record */
#define ISEQUAL 5 / * equal value */
#define ISGREAT 6 /* greater value */
#define ISGTEQ 7 /* > = value */

Part IV Page : 8.2 X/OPEN Portabilily Guide (July 1985)

(

(

(

(

The isam. h Header File

/ * isread lock modes * /
define ISLOCK Ox100 /* lock record before reading */

/* isopen, isbuild lock modes * /
define ISAUTOLOCK Ox200
define ISMANULOCK Ox400
define ISEXCLLOCK Ox800

define
define
define

define
define

ISINPUT
ISOUTPUT
ISINOUT

MAXKEYSIZE
NPARTS

o
1
2

120
8

struct keypart
{

} ;

struct keydesc
{

short kp_start;
short kp_leng ;
short kp_type;

short k_flags;
short k_nparts;
struct keypart
k_part[NPARTS];

/ * automatic record lock * /
/* manual record lock */
/* exclusive isam file lock */

/* open for input only */
/ * open for output only * /
/ * open for input and output * /

/ * max number of bytes in key * /
/ * max number of key parts * /

/ * starting byte of key part * /
/ * length in bytes * /
/ * type of key part * /

/* flags */
/* number of parts in key */

/ * each key part * /

/ * the following is for internal use only * /

};

#define k_start
#define k_leng
#define k_type

short k_len ; /* length of whole key */
long k_rootnode; /* pointer to rootnode */

k_part[O].kp_start
k_part[O].kp_leng
k_part[O].kp_type

X/OPEN Portability Guide (July 1985) Part IV Page : 8.3

#define ISNODUPS 000

#define ISDUPS 001
#define COMPRESS 016

struct dictinfo
{

The isam.h Header File

/* no duplicates and no */
/ * compression allowed * /
/ * duplicates allowed * /
/* full compression */

short di_nkeys;
short dUecsize;
short dUdxsize;
long di_nrecords;

/* number of keys defined */
/ * data record size * /
/ * index record size * /
/* number of records */

} ; /* in file */

#define EDUPL 100 /* duplicate record */
#define ENOTOPEN 101 /* file not open */
#define EBADARG 102 /* illegal argument */
#define EBADKEY 103 /* illegal key desc */
#define ETOOMANY 104 /* too many files open */
#define EBADFILE 105 /* bad ISAM file format */
#define ENOTEXCL 106 /* non-exclusive access */
#define ELOCKED 107 /* record locked */
#define EKEXISTS 108 /* key already exists */
#define EPRIMKEY 109 /* is primary key */
#define EENDFILE 110 /* end/begin of file */
#define ENOREC 111 / * no record found */
#define ENOCURR 112 /* no current record */
#define EFLOCKED 113 /* file locked */
#define EFNAME 114 /* file name too long */
#define EBADMEM 116 /* can't alloc memory */
#define EBADCOLL 117 /* bad custom collating */

Part IV Page: 8.4 X/OPEN Portability Guide (July 1985)

(

(

(

(

The isam.h Header File

/*
* For system call errors
* iserrno = errno (system error code 1-99)
* iserrio = 10_call + 10_file
* 10_call = what system call
* 10_file = which file caused error
*/

#define 10_OPEN
#define IO_CREA
#define 10_SEEK
#define 10_READ
#define 10_WRIT
#define 10_LOCK
#define IO_IOCTL

Ox10 /* openO */
Ox20 /* creatO */
Ox30 /* IseekO */
Ox40 /* readO */
Ox50 /* writeO */
Ox60 /* lockingO */
Ox70 /* ioctlO */

/* isam error return code
/* system call error code

*/
*/

extern int iserrno;
extern int iserrio;
extern long isrecnum;
extern char isstat1 ;
extern char isstat2;

/* record number of last call */
/* cobol status characters

/ * error message usage:

*
* if (iserrno >= 100 && iserrno < is_nerr)
* printf("ISAM error %d: %s \ n",
* iserrno, is_errlist[iserrno-100]);
*/

X/OPEN Portability Guide (July 1985)

*/

Part IV Page: 8.5

(

(

(

(

9.1

I CChaaPlt,er 9

Specifications

This chapter contains detailed descriptions of the X/ OPEN ISAM

functions. The following general notes apply throughout.

RETURN VALUE / EXCEPTION REPORTING

Most calls return either a 0 or a -1 as the value of the function and set
the global integer iserrno either to 0 or to an error indicator. In the case
of isbuild(ISAM) or isopen(ISAM), the return value will be a legal file
descriptor or a -1 . A -1 indicates that an error has occurred, and iserrno
has been set. Also, the global characters isstat1 and isstat2 are set for
the convenience of integration with COBOL. See Chapter 7,
Exception Handling, for more information .

9.2 < isam.h> HEADER FILE

Some parameters in this chapter are declared to be structure types that
are defined in the < isam.h > header file . Also defined are symbolic
values.

X/ OPEN Portability Guide (July 1985) Part IV Page : 9.1

Key Structure Call Specifications

9.3 Key Structure

The structures keydesc and keypart, also defined in < isam.h >, are used
for index definition and are further explained below:

The structure keydesc contains the following members:

short k_flags; / * flags * /
short k_nparts; / * number of parts in key * /
struct keypart k_part[N PARTS] ; / * each key part * /

The structure keypart contains the following members:

short kp_start ;
short kpJeng;
short kp_type;

/ * starting byte of key part * /
/ * length in bytes * /
/ * type of key part * /

In the keydesc structure, the integer k_f/ags is used to hold duplicate and
compression information for the index that is being added, deleted, or
selected. The symbolic values that are defined in < isam.h > should be
used to indicate the compression techniques that are desired . If more
than one feature is specified, the values are logically ORed together. The
meaning of these symbolic values is:

ISOUPS Duplicate values are allowed for this index.

ISNOOUPS No duplicates.

COMPRESS Full compression for this index.

One of ISOUPS and ISNOOUPS must be specified. Compression is
requested by the addition a! COMPRESS.

k_nparts is an integer that indicates how many parts make up the index.
These parts must be described in the kJJart array of keypart structures.
A keypart structure defines each part of the index individually. The
number of elements in the kJJart array should be equal to the integer
value in k_nparts.

Part IV Page: 9.2 X/OPEN Portability Guide (July 1985)

(

(

(

(

Call Specifications Key Structure

The elements in the keypart structure are used as follows. kp_start
indicates the starting byte of the key part that is being defined. kp_leng
is a count of the number of bytes in the part, and kp_type designates the
data type of the part. The types allowed are defined in the header file,
< isam.h> , see Chapter 8, The isam.h Header File. If this part of the key
is in descending order, the type constant should be ORed to the ISDESC
constant (defined in < isam.h » . For more information about creating
and manipulating indexes, see Chapter 4, Indexing .

X/OPEN Portability Guide (July 1985) Part IV Page: 9.3

Record Number Of Last Call Call Specifications

9.4 RECORD NUMBER OF LAST CALL

Isrecnum is a 4-byte field that is set following the sucessful completion of
all record-based calls . It identifies, in an implementation-dependent,
shorthand way, the record just referenced. This returned value may be
used in input to the isdelrec(JSAM) , isread(ISAM), and isrewrec(JSAM) calls
to perform optimised deletes, reads, and updates. If used to perform
sequential processing, the records will be read according to their
physical layout on disc, and not according to any logical key order. Note
that as the actual value returned is implementation-dependent, the user
should not attempt to interpret its actual value, as this could compromise
portability.

The following calls set isrecnum:

isdelcurr(ISAM)
isrewcurr(ISAM)
iswrcurr(ISAM)

isdelete(ISAM)
isrewrec(ISAM)
iswrite(ISAM)

9.5 CURRENT RECORD POSITION

isdelrec(ISAM)
isrewrite(ISAM)

isread(ISAM)
isstart(ISAM)

The current record position should not be confused with isrecnum (see
above). The current record position allows sequential processing to be
performed according to a logical key order. The mode parameters
ISNEXT and ISPREV are thus always relative to this value, while ISCURR
indicates that this (the current) record should be read. If the current
record is deleted (by using isdelcurr(ISAM)) , the current record position
will not change and will continue to indicate the now deleted record . The
current record may be rewritten directly using isrewcurr(ISAM) .

The current record position is set after the successful completion of the
following calls:

isopen(ISAM) isread(ISAM) isstart(ISAM) iswrcur(ISAM)

and used in input to :

isdelcurr(ISAM) isread(JSAM) isrewcurr(ISAM)

Part IV Page: 9.4 X/OPEN Portability Guide (July 1985)

(

(

(

(

/SAM

NAME

SYNTAX

ISADDINDEX(ISAM)

isaddindex - add index to an ISAM file

isaddindex (isfd. keydesc)
int isfd;
struct keydesc *keydesc;

DESCRIPTION
Isaddindex is used to add an index to an ISAM file. The index will be
built for the file indicated by the isfd parameter and will be defined
according to the information in the keydesc structure. This call will exe
cute only if the file has been opened for exclusive access.

There is no limit to the number of indexes that may be added through
the isaddindex call. However. the maximum number of parts that may
be defined for an index is {NPARTS}. and the maximum number of bytes
that can exist in an index is {MAXKEYSIZE} (see Chapter 8. "The isam.h
Header File").

Use of this call and index use in general are explained in Chapter 4.
" Indexi ng".

X/OPEN Portability Guide (July 1985) Part IV Page : ISADDINDEX(ISAM). 1

(

(

(

{SAM ISBUILD(ISAM)

NAME
isbuild - create an ISAM file

SYNTAX
isbuild (filename, recordlength, keydesc, mode)
char *filename;
int recordlength;
struct keydesc *keydesc;
int mode;

DESCRIPTION
Isbuild is used to create an ISAM file. Depending on the particular
implementation , this call will create and initialise appropriate disc struc
tures to contain data and indexes.

After isbuild has completed successfully, the file will remain open for
further processing. The isbuild function returns a file descriptor.

The filename parameter should contain a null-terminated character string
which is at least four characters shorter than the longest legal operating
system file name.

The recordlength parameter is the length of the record . Its value is the
sum of the number of bytes in each field of the record . See Chapter 3,
"Data Types" for the length of each data type.

All ISAM files are required formally to have a primary index. The keydesc
parameter of this call is used to specify the structure of the primary
index. However, setting k_nparts = 0 means that there is actually no
primary key. Additional indexes may be added later using isaddindex .
See Chapter 4, "Indexing" and Chapter 6, "C Program Examples" for
more details on key definition and use.

The mode parameter is used to specify locking information. The user
has three options-manual, automatic, or exclusive. Selecting the
manual option indicates that the user wishes to be responsible for lock
ing records at the appropriate times using either the islock(ISAM) and
isunlock(ISAM) calls or the ISLOCK mode flag of the isread(ISAM) call and
the isrelease(ISAM) function call. Selecting automatic locking indicates
that the user wishes to lock each record at the time it is read and unlock
each record after the next function call is made. Selection of exclusive
locking will deny file access to anyone other than this process. (More
information about locking can be found in Chapter 5, "Locking") The
mode is specified by using the define macros that are found in the
header file <isam.h > , for which a complete listing can be found in
Chapter 8, "The isam.h Header File".

X/OPEN Portability Guide (July 1985) Part IV Page: ISBUILD(ISAM).1

ISBUILD(ISAM) /SAM

Modes that are used in the isbuild call are:
one of these, added arithmetically to one of these:
ISEXCLLOCK ISINPUT
ISMANULOCK ISOUTPUT
ISAUTOLOCK ISINOUT (

(

Part IV Page : ISBUILD(ISAM).2 X/ OPEN Portability Guide (July 1985)

(

(

/SAM

NAME

SYNTAX

isclose - close an ISAM file

isclose (isfd)
int isfd;

ISCLOSE (ISAM)

DESCRIPTION
Isclose is used to close an ISAM file. Any locks that are held for the file
by the process issuing the isc/ose call are released.

NOTE: it is mandatory to close ISAM files after processing has finished .
Failure to do so could cause unpredictable results.

X/OPEN Portability Guide (July 1985) Part IV Page: ISCLOSE(ISAM) .1

(

(

(

(

{SAM

NAME

SYNTAX

isdelcurr - delete current record

isdelcurr (isfd)
int isfd;

ISDELCURR(ISAM)

DESCRIPTION
Isdelcurr differs from isdelete(ISAM) in that it deletes the current record
from the file, rather than the record indicated by the primary key. The
appropriate values will be deleted from each index that is defined. This
call is useful when the primary key is not unique and the record cannot
be located and deleted in one call. Isrecnum is set to indicate the
current record, (the record just deleted), whose position is left
unchanged.

X/ OPEN Portability Guide (July 1985) Part IV Page : ISDELCURR(ISAM).1

(

(

(

(

ISAM ISDELETE (ISAM)

NAME
isdelete - delete record specified by primary key

SYNTAX
isdelete (isfd, record)
int isfd;
char *record;

DESCRIPTION
isdelete deletes the record specified by a unique primary key from the
file indicated by isfd. The appropriate values will also be deleted from
each index. If the primary index allows duplicates, then isread(ISAM)
and isdelcurr(ISAM) should be used instead. Isrecnum is set to indicate
the record just deleted, while the current record position is left
unchanged.

X/ OPEN Portability Guide (July 1985) Part IV Page : ISDELETE(ISAM) .1

(

(

(

(

/SAM

NAME

SYNTAX

ISDELINDEX(ISAM)

isdelindex - remove index from an ISAM file

isdelindex(isfd, keydesc)
int isfd ;
struct keydesc *keydesc;

DESCRIPTION
Isdelindex is used to remove an existing index. The index will be
removed from the file indicated by isfd. The index to be removed will be
defined by the information in the keydesc structure. All indexes may be
deleted except the primary index. Attempts to delete the primary index
will cause an error code (-1) to be returned and the iserrno global
integer to be set. This call will execute only if the file has been opened
for exclusive access.

X/OPEN Portability Guide (July 1985) Part IV Page: ISDELINDEX(ISAM) .1

(

(

(

(- -

{SAM ISDELREC(ISAM)

NAME
isdelrec - delete record specified by record number (OPTIONAL)

SYNTAX
isdelrec (isfd, recnum)
int isfd;
long recnum;

DESCRIPTION
Isdelrec differs from isdelete(ISAM) in that it deletes the record specified
by recnum from the file indicated by isfd, rather than the record indi
cated by the primary key. The appropriate values will be deleted from
each index that is defined. Recnum must be a previously obtained isrec
num value. This call will set isrecnum to the value of recnum, while the
current record position is left unchanged.

X/ OPEN Portability Guide (July 1985) Part IV Page: ISDELREC(ISAM).1

(

(

(

(

ISAM

NAME

SYNTAX

iserase - remove an ISAM file

iserase (filename)
char * filename;

DESCRIPTION

ISERASE (ISAM)

iserase will remove the file specified by filename.

X/OPEN Portability Guide (July 1985) Part IV Page: ISERASE (ISAM) .1

(

(

(

(

/SAM

NAME

SYNTAX

isindexinfo - access file information

isindexinfo (isfd, buffer, number)
int isfd;
struct keydesc *buffer;
/ * buffer may be a pOinter to * /
/* a dictinfo structure instead. */
int number;

ISINDEXINFO(ISAM)

DESCRIPTION
Isindexinfo gives the caller access to information about the file, such as
information about the defined indexes, their location within the record,
their length , and whether duplicate values are allowed.

Information about a particular index is obtained by specifying the number
of the index using the number parameter. General information such as
the number of indexes, index record size, and data record size is
obtained by calling isindexinfo with the number parameter set to 0 and
reading the buffer into a structure of type dictinfo .

The buffer parameter can contain information in the format of either key
desc or dictinfo depending on whether the number parameter is positive
or 0, respectively. As indexes are added and deleted, the number of a
particular index may vary. To ensure review of all indexes, loop over the
number of indexes indicated in dictinfo (see structure definitions in
Chapter 8, "The isam.h Header File") .

X/OPEN Portability Guide (July 1985) Part IV Page: ISINDEXINFO(ISAM).1

(

(

(

(

ISAM

NAME

SYNTAX

islock - lock an ISAM file

islock (isfd)
int isfd;

ISLOCK(ISAM)

DESCRIPTION
Islack will lock the entire file that is specified by isfd. More discussion of
locking can be found in Chapter 5, "Locking".

X/OPEN Portability Guide (July 1985) Part IV Page: ISLOCK(ISAM).1

(

(

(

(

ISAM

NAME

SYNTAX

isopen - open an ISAM file

isopen (filename, mode)
char *filename;
int mode;

ISOPEN (ISAM)

DESCRIPTION
Isread is used to open an ISAM file for processing . The function will
return the file descriptor that should be used in subsequent accesses to
the file.

This call will automatically position the current record pointer to the first
record in order of the primary index. If another ordering is desired, the
isstart(ISAM) call can be used to select another index.

The filename parameter must contain a null-terminated string, which is
the name of the file to be processed.

The mode parameter determines the locking information. The user has
three options - manual, automatic, or exclusive. Selecting the manual
option indicates that the user wishes to be responsible for locking
records at the appropriate times. Selecting automatic locking indicates
that the user wishes to lock each record as it is read and unlock it after
any subsequent function calls. Selection of exclusive locking will deny
file access to anyone other than this process. More information about
locking can be found in Chapter 5, "Locking". The mode parameter
also specifies whether the file is to be opened for read , write, or
read / write access.

The mode is specified by using the define macros that are found in the
header file < isam.h>, for which a complete listing can be found in
Chapter 8, "The isam.h Header File". Modes that are used in the isopen
command are:

One of these,
ISEXCLLOCK
ISMANULOCK
ISAUTOLOCK

X/OPEN Portability Guide (July 1985)

arithmetically added to one of these:
ISINPUT
ISOUTPUT
ISINOUT

Part IV Page: ISOPEN(ISAM).1

(

(,

(

ISAM

NAME

SYNTAX

is read - read records

isread (isfd, record , mode)
int isfd;
char -record;
int mode;

ISREAD (ISAM)

DESCRIPTION
/sread is used to read records sequentially or randomly as indicated by
the mode parameter.

When sequential processing is desired, mode must specify which record
is to be read . It may take one of the following values:

ISCURR current
ISFIRST first record
ISLAST last record
ISNEXT next record
ISPREV previous record

When random selection is desired , mode must specify the value of the
record to be returned relative to the specified search value. This value
may be one of:

ISEOUAL equal to
ISGREAT greater than
ISGTEO greater than or equal to

The search value is placed in the record buffer in the correct byte posi
tions.

Isread will fill in the record with the results of the search. The mode is
specified by using the define macros that are found in the header file
< isam.h>. Refer to Chapter 8, "The isam.h Header File" for the con
tents of this file.

Isread can also read records specified by a previously set isrecnum .
First, call isstart(ISAM) with k_nparts= a so that the file is set to read in
physical order. Then call isread with mode= ISEOUAL. This will cause
isread to look at isrecnum for the desired record.

Following the successful execution of this call, the current record posi
tion and isrecnum will both be set to indicate the record just read.

If manual locking was specified when the file was opened and the record
is to be locked before being read, the ISLOCK flag may be arithmetically
added to one of the above macros. The record will then remain locked
until unlocked with the isrelease(iSAM) call . Entire files may be locked
and unlocked by using the islock(ISAM) and isunlock(ISAM) calls.

X/ OPEN Portability Guide (July 1985) Part IV Page : ISREAD(ISAM). 1

ISREAD (ISAM) ISAM

Modes that are used in the isread call are:

One of these,
ISCURR
ISNEXT
ISFIRST
ISGREAT
ISEOUAL
ISPREV
ISLAST
ISGTEO

Part IV Page : ISREAD(ISAM) .2

optionally arithmetically added to
ISLOCK

X/ OPEN Portability Guide (July 1985)

(

(

(

(

ISAM

NAME

SYNTAX

isrelease - unlock records

isrelease (isfd)
int isfd;

ISRELEASE (ISAM)

DESCRIPTION
/sre/ease unlocks records that have been locked using the ISMANULOCK
mode in the isread(ISAM) call. All locked records in the file indicated by
isfd will be unlocked. More information , including examples of how to
use isre/ease, can be found in Chapter 5, " Locking ".

X/OPEN Portability Guide (July 1985) Part IV Page: ISRELEASE(ISAM).1

(

(

(

(-

/SAM

NAME

SYNTAX

is rename - rename an ISAM file

isrename (oldname, newname)
char *oldname;
char *newname;

ISRENAME(ISAM)

DESCRIPTION
Isrename will rename the file specified by the oldname parameter to the
name specified by the newname parameter.

X/ OPEN Portability Guide (July 1985) Part IV Page: ISRENAME(ISAM) .1

(

(

(

(

ISAM

NAME

SYNTA

isrewcurr - rewrite current record

isrewcurr (isfd, record)
int isfd;
char *record;

ISREWCURR(ISAM)

DESCRIPTION
Isrewcurr is used to rewrite the current record of the file indicated by isfd
with the contents of the character array record. The appropriate values
will be rewritten to each index that is defined. The primary key value
may be changed. isrewcurr is useful when the primary key is not unique
and the record cannot be located and rewritten in one call. Isrecnum is
set to indicate the current record, whose position is left unchanged.

X/OPEN Portability Guide (July 1985) Part IV Page : ISREWGURR(ISAM).1

(

(

(

(

/SAM ISREWREC(ISAM)

NAME
isrewrec - rewrite record specified by record number (OPTIONAL)

SYNTAX
isrewrec (isfd , recnum, record)
int isfd;
long recnum;
char *record ;

DESCRIPTION
Isrewrec is used to rewrite the record specified by recnum in the file
indicated by isfd with the contents of the character array record. rec
num must be a previously obtained isrecnum value. Each index will be
appropriately updated. This call will set isrecnum to the value of rec
num, while the current record position will remain unchanged.

X/OPEN Portability Guide (July 1985) Part IV Page: ISREWREC(ISAM) .l

(

(

(

(

ISAM

NAME

SYNTAX

ISREWRITE (ISAM)

isrewrite - rewrite record specified by primary key

isrewrite (isfd, record)
int isfd;
char *record;

DESCRIPTION
Isrewrite is used to change one or more values for a record that is
already in the file identified by isfd. The primary key is used to deter
mine which record should be changed, and the record parameter con
tains the changes. The primary key value must be unique and may not
be changed . The whole record is written to the data file . Only the
changed index values will be rewritten to each index that is defined.

This is consistent with COBOL requirements for maintaining the order of
records in duplicate chains. Isrewrite does not change the position of
the current record painter, while isrecnum is set to indicate this record.

X/ OPEN Portability Guide (July 1985) Part IV Page : ISREWRITE(ISAM) .l

(

(

(

(

/SAM

NAME

SYNTAX

isstart - select an index

isstart (isfd, keydesc, length, record, mode)
int isfd;
struct keydesc *keydesc;
int length;
char *record;
int mode;

ISSTART (ISAM)

DESCRIPTION
Isstart selects the index to be used in subsequent operations. The key
value to be sought should be placed in the record parameter, in the
positions described by the keydesc parameter. The keydesc structure
must describe an index that has been added previously using the
isaddindex(ISAM) call.

The length parameter is used to specify the part of the key to be con
sidered significant when doing the search. A zero indicates that the
whole key is significant; a positive value is used to indicate a shorter
length. If length is greater than zero, the response during searches will
be as if the index were originally defined to have that shorter length .

The mode parameter may be ISFIRST, ISLAST, ISEOUAL, ISGREAT, or
ISGTEO. It is used to position the user in the file in association with the
index selected by the keydesc argument.

ISFIRST positions the user's program in the file just before the first record
in the ordering of the index specified in the keydesc parameter. A sub
sequent call to isread(ISAM) using the ISNEXT mode parameter reads the
first record in the current ordering .

ISLAST positions the user's program just after the last record in that ord
ering. A subsequent call to isread(ISAM) using the ISPREV mode parame
ter reads the last record in the current ordering .

Note that if mode is ISFIRST or ISLAST, the parameters length and record
are not needed and are not used by the isstart call.

Use of the ISEOUAL, ISGREAT, or ISGTEO modes is different from the use
of the ISFIRST or ISLAST modes. When using the former modes, the
user's program must place the key value to be searched for in the
record buffer before calling isstart. The value to be searched for must
be placed in the location in the record buffer where the keydesc param
eter claims the index exists.

ISEOUAL will give one of two possible results. It will either find a record
whose key value is equal to that found in the appropriate positions of the
record buffer parameter, or it will return an error code (-1) and set

X/OPEN Portability Guide (July 1985) Part IV Page : ISSTART(ISAM) .1

ISSTART (ISAM) /SAM

iserrno to ENOREe. The error code ENOREe indicates that no record
with the key value specified in the record buffer parameter exists in the
file.

ISGREAT will also give one of two responses. It will either find the next
higher record whose key value is greater than that found in the record
buffer parameter, or iss tart will return an error condition (-1) and set
iserrno to ENOREe.

The ISGTEO mode parameter finds the record that has the next higher
key value greater than or equal to the key value specified in the
appropriate positions of the record buffer parameter. If no such record
is found , iss tart returns an error code (-1) and sets iserrno to ENOREe .

The above define macros, ISrIRST, ISLAST, ISEOUAL, ISGREAT, and
ISGTEO, can be found in the header file < isam.h>.

/sstart can also be used for sequential access in physical order by speci
fying a previously defined key that has zero parts; that is, give a value to
keydesc to designate a structure in which k_nparts= O. (see
isread(ISAM».

/sstart performs two basic functions . It selects the index that is to be
used for subsequent reads, and it finds (but does not read) a record in
the file. /sstart need not be used to find each record before it is read
using isread(ISAM).

Following the successful execution of this call, the current record posi
tion and isrecnum will both be set to indicate this record .

Part IV Page: ISSTART(ISAM) .2 X/ OPEN Portability Guide (July 1985)

(

(

(

(

/SAM

NAME

SYNTAX

isunlock - unlock an ISAM file

isunlock (isfd)
int isfd;

ISUNLOCK(ISAM)

DESCRIPTION
Isunlock is used to release an existing file-level lock for the file specified
by the file descriptor isfd. Further discussion of locking can be found in
Chapter 5, "Locking".

X/OPEN Portability Guide (July 1985) Part IV Page : ISUNLOCK(ISAM). 1

(

(

(

/SAM ISWRCURR(ISAM)

NAME
iswrcurr - write record and set current position (OPTIONAL)

SYNTAX
iswrcurr (isfd, record)
int isfd;
char *record;

DESCRIPTION
Iswrcurr writes the record passed to it in the record parameter to the
data file identified by isfd . The appropriate values will be inserted into
each index that is defined.

Following the successful execution of this call, the current record posi
tion and isrecnum will both be set to indicate this record.

X/ OPEN Portability Guide (July 1985) Part IV Page : ISWRCURR(ISAM).1

(

(-

(

(

/SAM

NAME

SYNTAX

iswrite - write record

iswrite (isfd, record)
int isfd;
char * record;

ISWRITE (ISAM)

DESCRIPTION
Is write writes the record passed to it in the record parameter to the file .
The appropriate values will be inserted into each index that is defined.

is write does not change the position of the current record pointer, but
isrecnum is set to indicate this record .

X/ OPEN Portability Guide (July 1985) Part IV Page: ISWRITE(ISAM) .1

()

(I

