
I Contents
(

Chapter INTERFACE DEFINITION

1.1 OVERVIEW
1.1 .1 Rationale
1.1.2 Contents

1.2 STATUS OF INTERFACES
1.2.1 Mandatory
1.2.2 Optional
1.2.3 Relationship to SVID
1.2.4 Subject to Change
1.2.5 User Interface Services

1.3 FORMAT OF ENTRIES

1.4 DEFINITIONS
1.4.1 Process ID
1.4.2 Parent Process 10
1.4.3 Process Group 10
1.4.4 Process Group Leader
1.4.5 Tty Group 10
1.4.6 Real User 10 and Real Group 10
1.4.7 Effective User 10 and Effective Group 10
1.4.8 Super-user
1.4.9 Special Processes .'
1 .4.10 File Descriptor
1.4.11 File Name
1 .4.12 Character and Block Special Files
1.4.13 FIFO Special Files
1 .4.14 Path Name and Path Prefix
1.4.15 Directory
1.4.16 Root Directory and Current Working Directory
1.4.17 File Access Permissions

(
1.5 SIGNALS

1.6 DIRECTORY STRUCTURE

1.7 ENVIRONMENTAL VARIABLES

1.8 SYSTEM RESIDENT DATA FILS

1.9 SPECIAL FILES

X/OPEN Portability Guide (July 1985) Part II Page : i

Contents

1.10 CAVEATS
1.10.1 Null Pointers
1.10.2 Termio(7)
1.10.3 Process IDs (
1.10.4 The files < values.h> and < Iimits.h >

1 .11 ERRORS AND EXCEPTIONS

1.12 LIST OF INTERFACES

Chapter 2 SYSTEM CALLS
access (2)
acct(2) OPTIONAL
alarm (2)
brk(2) OPTIONAL
chdir(2)
chmod(2)
chown(2)
chroot(2) OPTIONAL
close (2)
create (2)
dup(2)
exec (2)
exit (2)
fcntl(2)
fork (2)
getpid(2)
getuid(2)
ioctl(2)
kil/(2)
link (2)
Iseek(2)
mknod(2)
mount(2)
nice (2) OPTIONAL
open (2)
pause (2)
pipe (2) (plock(2) OPTIONAL
profi/(2) OPTIONAL
ptrace(2) OPTIONAL
read(2)
setpgrp(2)
setuid(2)

Part II Page: ii X/ OPEN Portability Guide (July 1985)

Contents

(

Chapter 3

(

X/ OPEN Portability Guide (July 1985)

signa/(2)
stat(2)
stime(2)
sync (2)
time (2)
times (2)
u/imit(2)
umask(2)
umount(2)
uname(2)
un/ink (2)
ustat(2)
utime(2)
wait (2)
write (2)

SUBROUTINES AND LIBRARIES
abort(3C)
abs(3C)
assert (3X)
besse/(3M)
bsearch (3C)
c/ock(3C)
conv(3C)
crypt (3C)
ctermid(3S)
ctime(3C)
ctype(3C)
curses (3X)
cuserid(3S)
drand48 (3C)
ecvt(3C)
end(3C)
erf(3M)
exp(3M)
fclose(3S)
ferror(3S)
floor(3M)
fopen(3S)
fread(3S)
frexp(3C)
fseek(3S)
ftw(3C)

OPTIONAL

OPTIONAL

OPTIONAL
OPTIONAL
OPTIONAL

OPTIONAL

Part II Page: iii

Contents

gamma (3M) OPTIONAL
getc(3S)
getcwd(3C)
getenv(3C) (
getgrent(3C)
get/ogin(3C)
getopt(3C)
getpass(3C)
getpw(3C)
getpwent(3C)
gets (3S)
getut(3C)
hsearch (3C)
hypot(3M) OPTIONAL
/3to/(3C)
/ockf(3C)
/ogname(3X)
/search (3C)
malloc(3X)
matherr(3M) OPTIONAL
memory (3C)
mktemp(3C)
monitor(3C)
perror(3C)
popen(3S)
printf(3S)
putc(3S)
putenv(3C)
putpwent(3C)
puts (3S)
qsort(3C)
rand(3C)
regcmp(3X)
scanf(3S)
setbuf(3C)
setjmp(3C)
sinh (3M) OPTIONAL
s/eep(3C) (
ssigna/(3C)
stdio(3S)
string (3C)
strtod(3C)
strto/(3C)

Part II Page: iv X/ OPEN Portability Guide (July 1985)

Contents

(

Chapter 4

Chapter 5

(

X/ OPEN Portability Guide (July 1985)

swab (3C)
system (3S)
tmpfi/e(3S)
tmpnam(3S)
trig (3M)
tsearch(3C)
ttyname(3C)
ttys/ot(3C)
ungetc(3S)
vprintf(3S)

FILE FORMATS
acct(4)
group (4)
passwd(4)
utmp(4)

HEADER FILES
acct(5)
assert (5)
ctype(5)
environ (5)
errno(5)
fcntl(5)
ftw(5)
grp(5)
/imits(5)
/ock(5)
mal/oc(5)
math (5)
memory (5)
mon(5)
pwd(5)
search (5)
setjmp(5)
signa/(5)
stat(5)
stdio(5)
string (5)
termio(5)
time (5)
times (5)
types (5)

OPTIONAL

Part II Page: v

Chapter 6

Chapter 7

Part II Page : vi

unistd(5)
ustat(5)
utmp(5)
utsname(5)
va/ues(5)
varargs(5)

Contents

RESERVED FOR FUTURE USE

SPECIAL FILES
conso/e(7)
nulI(7)
sct(7)
termio(7)
tty(7)

OPTIONAL

X/OPEN Portability Guide (July 1985)

(

(

(

(

I Chapter 1

Interface Definition

1.1 OVERVIEW

1.1.1 Rationale

This part of the X/OPEN Guide contains the X/OPEN System V
Specification (XVS). It defines the system interfaces offered to
application programs and the run-time behaviour of those interfaces,
without imposing any particular restrictions on the way in which the
interfaces are implemented.

The interfaces are defined in terms of the source code interfaces for the
C programming language. C is defined in Part III of this Guide. It is
possible that some implementations may make the interfaces available to
languages other than C, but this Guide does not currently define the
source code interfaces for any other language.

This Specification allows an application to be built using a basic set of
services that are consistent across all X/ OPEN systems. Applications
written in ·C using only these interfaces and avoiding machine dependent
constructs will be portable to all X/OPEN systems.

The interfaces defined have been separated into two categories; "System
Calls" and "Subroutines". This is in accordance with common practice,
and should not be taken to imply that the implementation of these
interfaces follows the same division.

1 .1.2 Contents

In accordance with common practice, the definitions of the various
interfaces have been separated into seven chapters. Chapters two to five
inclusive, and chapter seven , define the application interfaces.

The chapters have the following contents:

• Chapter 1 introduces Part II of the Guide and includes important
notes and caveats relating to the rest of the XVS.

• Chapter 2 (System Calls) defines interfaces which are
conventionally implemented as entries to the system kernel.

• Chapter 3 (Subroutines) defines interfaces which are conventionally
implemented as subroutines.

X/OPEN Portability Guide (July 1985) Part II Page : 1.1

Overview Interface Oefinition

• Chapter 4 (File Formats) defines the formats of data files which are
used by system calis and subroutines.

• Chapter 5 (Header Files) defines the contents of header files which
declare constants, macros and data structures that are needed by
programs using the services provided by Chapters 2 and 3.

• Chapter 6 is empty.

• Chapter 7 (Special Files) describes the input/output devices always
present on X/OPEN systems.

Part II Page : 1.2 X/ OPEN Portability Guide (July 1985)

(

(

(

(

Interface Oefinition Status Of Interfaces

1.2 STATUS OF INTERFACES

1.2.1 Mandatory

The majority of the interfaces are mandatory; they must be present in all
X/ OPEN systems and they must conform to the published definition.

1.2.2 Optional

A small number of the interfaces are optional. The presence of these
interfaces is not mandatory, although if they are present they must
conform to the definition. The list below shows the optional interfaces in
the form name entry(chapter) , where name is the name of the interface
and entry and chapter are the name and chapter number of the entry in
which the interface is described.

Optional Interfaces

acct acct(2) t
brk brk(2)
chroot chroot(2) f
end end(3C)
monitor monitor(3C)
nice nice(2) t
plock plock(2) t
profi/ profil (2)t
ptrace ptrace(2)t
sbrk brk(2)
termio termio(7)
ulimit ulimit(2)

The interfaces marked with a dagger (t) form part of the kernel extension
set in the AT&T System V Interface Definition (see section 1.2.3).

X/ OPEN Portability Guide (July 1985) Part II Page : 1.3

Status Of Interfaces Interface Definition

The following interfaces conventionally form the standard mathematical
library (3M). These routines are collectively optional, i.e. if one is
present, the whole math library is present.

Optional Math Interface

besse/(3M) exp(3M)
fJoor(3M) gamma (3M)
hypot(3M) matherr(3M)
sinh (3M) trig (3M)

Some of the mandatory interfaces are affected by the presence or
absence of the services provided by the optional interfaces. The
fundamental behaviour of these interfaces is not changed; the effects are
identified in the relevant interface descriptions. These interfaces are
given in the following table.

Interfaces affected by options

exec (2) exit (2)
fork(2) read(2)

1.2.3 Relationship to SVID

The System V Interface Definition (SVID), published by AT&T, is intended
for use as a standard by applications developers. The XVS is not a
distinct standard but a definition of the System V interfaces supported by
X/OPEN systems, based on the SVID (Issue 1 published in Spring 1985).

With the exception of the mathematical routines (3M), and termio(7) in
some circumstances, (see section 1.10.2), the XVS contains as
mandatory all of the SVID base interfaces.

All the interfaces within the SVID kernel extension set (K EXT) except
those relating to shared memory, semaphores and message passing, are
included in the XVS as individually optional routines.

Additionally, the XVS includes a number of interfaces taken from System
V Release 2.0 but not defined in the SVID.

Part II Page: 1.4 X/OPEN Portability Guide (July 1985)

()

(

(

(

Interface Oefinition Status Of Interfaces

Wherever an XVS definition differs from the corresponding one in the
SVID, the differences are marked in the description . The rationale for
such differences from the SVID is:

• Some of the SVID "FUTURE DIRECTIONS" have been included

• The use of symbolic constants to replace explicit constants has been
increased

• Alternative wording has been used for clarification

The interfaces have been specified with two goals in mind, relative to the
SVID:

• Applications written to the SVID should be portable to X/OPEN
systems

• X/OPEN systems should pass the SVID verification tests

To enable these goals to be met, X/ OPEN systems will ensure that where
symbolic constants are used in place of explicit constants in the SVID,
the symbolic constants will have the values of the SVID explicit constants.

The symbolic constants should be used wherever possible for two
reasons:

• They improve readability of programs

• They protect programs from the problems which arise if the values of
the explicit constants ever change

Programs written to the X/OPEN specification can easily be moved to
systems that do not provide definitions for these symbolic constants. All
that is required is the provision of a small number of header files,
containing the necessary definitions.

X/ OPEN Portability Guide (July 1985) Part II Page: 1.5

Status Of Interfaces Interface Definition

1.2.4 Subject to Change

The SVID identifies certain interfaces as possibly subject to withdrawal,
by referring to them as "level 2" interfaces. They will be present until at
least January 1, 1988. The only ones currently in this class are the
following :

Interfaces subject to change

perror
sys errlist

ermo
sys nerr

The X/ OPEN commitment to support of these interfaces matches that of
the SVID.

1.2.5 User Interface Services

Neither the SVID nor the X/ OPEN Guide define any interfaces for the
support of terminal-independent I/ O, but application writers are referred
to curses(3X) for a list of such interfaces which are in widespread use.
The list given is the minicurses package (taken from UNIX System V,
Release 2.0) .

These routines are likely to be supported on most X/OPEN Systems, but
their presence cannot be guaranteed.

X/ OPEN views the definition of appropriate user interface services as a
matter of urgency.

Part II Page : 1.6 X/OPEN Portability Guide (July 1985)

(

(

(

(

Interface Definition Format Of Entries

1.3 FORMAT OF ENTRIES

The entries in each chapter are based on a common format, not all of
whose parts always appear.

The NAME part gives the name(s) of the entry and briefly states its
purpose.

The SYNOPSIS part summarises the use of the entry being
described. If it is necessary to include a header file to use this
interface, the names of such files will be shown,
e.g. #include < stdio.h>.

The DESCRIPTION part discusses the subject at hand.

The EXAMPLE(S) part gives example(s) of usage, where
appropriate.

The FILES part gives the file names that are built into the subject at
hand.

The ERRORS part gives the symbolic names of the values returned
in the global variable erma if an error occurs.

The RETURN VALUE part indicates the return value, if any.

The SEE ALSO part gives pOinters to related information.

The APPLICATION USAGE part gives information about the way
that the subject at hand should be used.

The FUTURE DIRECTIONS part is generally copied from the SVID,
unless the change indicated in the SVID has already been adopted.
Comments found in this section should be used as a guide to
current thinking; there is not necessarily a commitment to implement
all of these future directions in their entirety.

The RELATIONSHIP TO SVID part gives the differences, if any,
between this definition and that in the SVID.

X/OPEN Portability Guide (July 1985) Part II Page : 1.7

Format Of Entries Interface Definition

The following typographical conventions are used throughout this part:

Boldface strings are literals and are to be typed just as they appear.

Italic strings usually represent substitutable argument prototypes and
the names of entries found elsewhere.

Names in upper case surrounded by braces, e.g. {CONST} represent
constants which are declared in appropriate header files by means
of the C # define facility. For portability, only the symbolic names
should be used, never the value that a particular implementation may
happen to use. The values of most of these constants are defined in
< Iimits.h> , < values.h> or < unistd.h>.

Square brackets [] around an argument prototype indicate that the
argument is optional. When an argument prototype is given as
"name" or " file" , it always refers to a file name.

The notation < file.h> indicates a header file, also known as an
include file , which is supplied as part of the applications
development system, see Chapter 5 and "FILE INCLUSION" in Part
III.

Ellipses ... are used to show that the previous argument may be
repeated.

Whenever referring to a subject described in chapters 2 - 7, its chapter
number is appended to its name, in parentheses. For example:
access(2) .

Part II Page : 1.8 X/OPEN Portability Guide (July 1985)

(

(

(

(

Interface Definition Definitions

1.4 DEFINITIONS

Many special terms are used in the interface definitions. The
descriptions of these terms follows .

1 .4.1 Process I D

Each active process in the system is uniquely identified by a positive
integer called a process ID. The range of this ID is from a to {PID _ MAX} .

Process IDs between a and {SYSPID _MAX} are reserved for special
system processes.

1.4.2 Parent Process ID

A new process is created by a currently active process, see fork(2) . The
parent process ID of a process is the process ID of its creator.

1.4.3 Process Group ID

Each active process is a member of a process group. The process
group is uniquely identified by a positive integer, called the process
group ID, which is the process ID of the group leader (see below) . This
grouping permits the signaling of related processes, see kiJ/(2) .

1.4.4 Process Group Leader

A process group leader is any process whose process group ID is the
same as its process ID. Any process may become a group leader by
calling setpgrp(2) . A process inherits the process group ID of the
process that created it, see fork(2) and exec(2) .

1.4.5 Tty Group ID

1.4.6

Each active process can be a member of a terminal group that is
identified by a positive integer called the tty group ID. This grouping is
used to terminate a group of related processes upon termination of one
of the processes in the group, see exit(2) and signa/(2) .

Real User ID and Real Group ID

Each user allowed on the system is identified by a positive integer called
a real user ID.

Each user is also a member of a group. The group is identified by a
positive integer called the real group ID.

An active process has a real user ID and real group ID that are set to the
real user ID and real group 10, respectively, of the user responsible for

X/ OPEN Portability Guide (July 1985) Part II Page: 1.9

Definitions Interface Definition

1.4.7

the creation of the process. They can be reset with setuid(2) and
setgid(2) , respectively.

Effective User 10 and Effective Group 10

An active process has an effective user 10 and an effective group 10 that
are used to determine file access permissions (see below). The effective
user 10 and effective group 10 are equal to the process's real user 10 and
real group 10 respectively, unless the process or one of its ancestors
evolved from a file that had the set-user-Io bit or set-group-IO bit set , see
exec(2) . In addition , they can be reset with setuid(2) and setgid(2) ,
respectively.

1.4.8 Super-user

A process is recognised as a super-user process and is granted special
privileges if its effective user 10 is O.

1.4.9 Special Processes

Special processes are system processes as, for example, a system's
process scheduler. Process lOS between a and {SYSPIO _MAX} are
reserved for special system processes.

1.4.10 File Descriptor

A file descriptor is a small integer used to identify a file for the purpose of
doing I/ O. The value of a file descriptor is from a to {OPEN _ MAX}-1. A
process may have no more than {OPEN_MAX} file descriptors open
simultaneously.

A file descriptor has associated with it information used in performing I/ O
on the file: a file pOinter that marks the current position within the file
where I/ O will begin; file status and access modes (e.g. read, write,
read / write), see open(2) ; and close-on-exec flag, see fcntl(2) . Multiple
file descriptors may identify the same file . A file descriptor is returned by
system routines such as creat(2) , dup(2), fcntl(2) , open(2), or pipe(2).
The file descriptor is used as an argument by routines such as read(2) ,
write(2) , ioctl(2) and close(2) .

1.4.11 File Name

Names consisting of 1 to {NAME_MAX} characters may be used to name
an ordinary file, special file or directory.

These characters may be selected from the set of all character values
excluding the characters "null " and " slash" .

Part II Page : 1.10 X/OPEN Portability Guide (July 1985)

(

(

(

(

Interface Oefinition Definitions

1.4.12

Note that it is generally unwise to use *, ?, !, [, or] as part of file names
because of the special meaning attached to these characters for filename
expansion by some command interpreters, see system (3S). Other
characters to avoid are the hyphen, blank, tab, <, > , backslash, single
and double quotes, accent grave, vertical bar, carat, curly braces and
parentheses. It is also advisable to avoid the use of non-printing
characters in file names.

Character and Block Special Files

Character and block special files are used to refer to physical devices.
Certain restrictions may apply to use of character and block special files
which are implementation dependent.

1.4.13 FIFO Special Files

A FIFO special file is a named "pipe", see pipe (2) and mknod (2).
Normally, a FIFO special file is opened in conjunction by two or more
separate processes. One or more processes write data to the FIFO
special file and another process reads this same data from the file on a
"first-in-first-out" basis. Seeks on a FIFO special file have no meaning
and cause the [ESPIPE] error.

1.4.14 Path Name and Path Prefix

In a C program a path name is a null-terminated character-string starting
with an optional slash (I), followed by zero or more directory names
separated by slashes, optionally followed by a file name. The null string
is undefined and may be considered an error.

More precisely, a path name is a null-terminated character string
constructed as follows:

< path-name> ::=<file-name> I < path-prefix> < file-name> I / 1·1 ..
< path-prefix>:: = < rtprefix > I / < rtprefix >
< rtprefix> ::= <dirname> / I <rtprefix> <dirname> /

where <file-name> is a string of 1 to {NAME_MAX) characters other
than slash and nUll, and <dirname> is a string of 1 to {NAME_MAX}

characters (other than slash and nUll) that names a directory.

If a path name begins with a slash, the path search begins at the root
directory. Otherwise, the search begins from the current working
directory.

X/OPEN Portability Guide (July 1985) Part II Page : 1.11

Oefinitions Interface Oefinition

A slash by itself names the root directory. The meanings of . and .. are
defined below under Directory.

The result of names not produced by the grammar is undefined.

1.4.15 Directory

Directory entries are called links. By convention, a directory contains at
least two links,. and .. , referred to as dot and dot-dot respectively. Dot
refers to the directory itself and dot-dot refers to its parent directory.
Also, the parent directory of the root directory / is / .

1.4.16 Root Directory and Cu rrent Working Directory

Each process has associated with it a concept of a root directory and a
current working directory for the purpose of resolving path name
searches. The root directory of a process need not be the root directory
of the root file system.

1.4.17 File Access Perm issions

Read, write, and execute/ search permissions on a file are granted to a
process if one or more of the following are true:

The effective user 10 of the process is super-user.

The effective user 10 of the process matches the user ID of the
owner of the file and the appropriate access bit of the "owner"
portion (S _IRWXU) of the file mode is set.

The effective user 10 of the process does not match the user 10 of
the owner of the file , and the effective group 10 of the process
matches the group of the file and the appropriate access bit of the
"group" portion (S _IRWXG) of the file mode is set.

The effective user 10 of the process does not match the user 10 of
the owner of the file, and the effective group 10 of the process
does not match the group 10 of the file, and the appropriate
access bit of the "other" portion (S _IRWXO) of the file mode is set.

Otherwise, the corresponding permissions are denied.

Part II Page : 1.1 2 X/ OPEN Portability Guide (July 1985)

(

(

(

(

Interface Oefinition Signals

1.5 SIGNALS

To be portable, applications should only catch or ignore the following
signals:

Signal

SIGH UP

SIGINT

SIGQUIT
SIGILL

SIGTRAP

SIGABRTt
SIGFPE
SIGKILL

SIGSYS

SIGPIPE

SIGALRM

SIGTERM

SIGUSR1
SIGUSR2

Description

hang up
interrupt (rubout)
quit
illegal instruction (not reset
when caught)
trace trap (not reset when
caught)
process abort signal
floating point exception
kill (cannot be caught or
ignored)
bad argument to system
call
write on a pipe with no one
to read it
alarm clock
software termination signal
from kill
user defined signal 1
user defined signal 2

The signal marked above SIGABRTt has been included from a FUTURE
DIRECTION indicated in the SVID.

X/ OPEN Portability Guide (July 1985) Part II Page : 1.13

Directory Structure Interface Definition

1.6 DIRECTORY STRUCTURE

Below is a diagram of the minimal directory tree structure present on any
system.

I

bin dev etc tmp usr

/\
bin tmp

The following guidelines apply to the contents of these directories:

Ibin,/dev,/etc and Itmp are primarily for the use of the system. Most
applications should never create files in any of these directories, though
they may read and execute them.

Ibin contains executable system commands (utilities) , although it may be
empty.

Idev contains special files (1 / 0 devices). Those which are always
present in XI OPEN systems are defined in chapter 7.

letc contains system data files such as letc/passwd. It may also
contain some executable files which are used by the system; these are
not intended to be accessible to the ordinary user.

Itmp contains temporary files created by any utilities in Ibin, and other
system processes. Applications should use lusr/tmp.

lusr/bin and lusr/tmp can be used by applications as well as the
system.

lusr/bin contains (user-level) executable application commands and
system commands.

lusr Itmp contains temporary files created by application programs and
by the system.

Part II Page: 1.14 X/OPEN Portability Guide (July 1985)

(

(

Interface Definition Directory Structure

If the system is re-started after being halted for any reason , applications
cannot rely on the contents of Itmp or lusr Itmp remaining undisturbed.
It is common for both directories to be emptied by the restart procedures.

1.7 ENVIRONMENTAL VARIABLES

An array of strings is made available by exec(2) when a process begins
execution , see also system(2) . These strings are described more fully in
environ(5), but the minimum strings that can be expected to exist and be
set in any X/OPEN environment are:

Variable

HOME

PATH

TERM

TZ

Use

Full pathname of the user's home directory, set when
the user signs on.

A colon separated ordered list of path names that
determine the search sequence used in locating files.

The kind of terminal for which output is prepared.

Time zone information . See also ctime(3C) .

X/OPEN Portability Guide (July 1985) Part II Page : 1.15

System Resident Data Files Interface Oefinition

1.8 SYSTEM RESIDENT DATA FILES

The only system-resident data files implied by the X/ OPEN system
definition are given in the following table, together with a reference to the
appropriate chapter and entry to find their definitions.

1.9 SPECIAL FILES

data file

/ etc / group
/ etc / passwd
/ etc / profile
/ etc / utmp
/ etc / wtmp

reference

group (4)
passwd(4)
environ (5)
utmp(4)
utmp(4)

The names of spec:':::: I/ O devices are known as "special files" . The
only ones present ii', every X/OPEN system are given below, together
with reference to their descriptions. The ones marked (t) are only
present in systems supporting the source code transfer standard and
need not be present in every system.

Part II Page: 1 .16

device

/ dev / console
/ dev / null
/dev/tty
/ dev / sctfdm
/ dev / sctmtm

reference

conso/e(7)
nul/(7)
tty (7)
sct(7)t
sct(7)t

X/OPEN Portability Guide (July 1985)

(

(

(

Interface Definition Caveats

1.10 CAVEATS

1.10.1 Null Pointers

The descriptions of some functions refer to the NULL pointer. This is the
value that is obtained by casting ° into a pointer i.e., (char *) O.

The C language guarantees that this value will not match that of any
legitimate pOinter, so it is used by many functions that return pointers to
indicate an error.

For consistency with the C language definition, this interpretation of the
NULL pOinter has been retained . However, reference should be made to
the notes on C program portability in Part III of the Guide, where it is
indicated that some systems do not support this definition of the NULL
pOinter.

(A NULL pOinter should not be confused with the NULL character . The
NULL character is a character with the value 0, represented in the C
language as ' \ 0' . A string, or NULL-terminated character array, is a
sequence of characters , the last of which is the NULL character. A NULL
string is an array of characters which contains only the NULL character.)

1.10.2 Term io(7)

The SVID interface for locally connected asynchronous lines, termio(7),
is a mandatory part of the SVID base. Some X/ OPEN systems may not
support any asynchronous lines, or may only support them over
networks. In both cases, it is impossible to support the full definition of
termio(7) . For these reasons X/ OPEN cannot guarantee full support for
termio(7) on all systems. This also slightly affects the functionality of
read(2) and open (2), with respect to the 0_ NDELAY flag .

The open(2) description discusses what happens while waiting for a
carrier to be detected on a communication line. It should be noted that
even if full support is otherwise provided for termio(7), the hardware
driving the line may not respond to the modem control signals. In this
case, it will appear as if carrier is permanently present and there will be
no delay when opening such a line.

X/ OPEN Portability Guide (July 1985) Part II Page : 1.1 7

Caveats Interface Oefinition

1.10.3 Process IDs

The values of a Process 10 are specified to range from zero to {PID_MAX}.
On many systems, the value of {PID _MAX} is small enough to imply that
variables of type short provide adequate precision to store such a value.
This is not always a justifiable assumption, and application developers
are warned that int variables should be used for this purpose.

The ut_pid field of the utmp structure (see utmp(5)) is explicitly declared
to be of type short, in line with the SVID. On some systems its type may
be different; programming practices which rely on the type of ut pid
should be avoided. In particular, if it is necessary to take the address of
this structure member, the type of the resulting pOinter will depend on the
type of ut_pid.

1.10.4 The fi les < values.h> and < Iimits.h >

A number of limits and values which are of importance to system
developers are system dependent. Their values are available in the
include files < Iimits.h> and < values.h>, as symbolic constants.
These constants are referred to in many places in the interface
definitions; for example {SYSPID _MAX}. The file < values.h > is part of
the SVID base. The file < limits.h>, part of the lusr/group standard,
defines additional values and has also been included in the XVS.

In some cases, the same value is defined in both of these files, although
the name used to refer to the value differs. In X/OPEN systems, both
names are set to the same value.

Applications developers may choose to include either, neither or both of
these files in a particular application, depending upon their needs. The
interfaces defined in the following chapters can always be used without it
being necessary to include either of these files .

Part II Page: 1.18 X/OPEN Portability Guide (July 1985)

(

(

(

(

Interface Definition Errors And Exceptions

1.11 ERRORS AND EXCEPTIONS

Most system calls and subroutines can result in exceptions, known as
"error returns". An error condition is indicated by an otherwise
impossible returned value. This is almost always -1; the individual
descriptions specify the details.

As with normal arguments, all return codes and values from functions are
of type int unless otherwise noted. An error number is also made
available in the external int variable erma . Erma is not cleared on
successful calls, so it should be tested only after an error has been
indicated.

A full list of error names is defined in ermo(5) . Only these symbolic
names for error numbers should be used in programs, since the actual
value of the error number may vary with the implementation. Certain
implementations may not return all of the error types listed. Other
implementations may return errors which are not included on the list.

The [EFAUL T] error is caused by a program referencing data outside its
legitimate address space. The reliable detection of this error cannot be
guaranteed.

Functions in the Math Library (3M) may return the conventional values 0
or HUGE (the largest single-precision floating-point number) when the
function is undefined for the given arguments or when the value is not
representable. In these cases, the external variable erma is set to the
value [EDOM] or [ERANGE].

X/ OPEN Portability Guide (July 1985) Part II Page : 1.19

List Of Interfaces Interface Definition

1.12 LIST OF INTERFACES

A list of all interfaces specified follows. Some of the pages in the
following chapters describe a number of interfaces, so to find a particular
one knowing its name, look in the column labeled "Interface" . The
chapter describing the interface is given in the column on its right. For
example, both isascii and isspace are to be found under the overall
heading of ctype(3C) .

Those entries marked with a dagger (t) are optional.

Part II Page : 1 .20 X/ OPEN Portability Guide (July 1985)

(

(

Interface Oefinition List Of Interfaces

Interface Entry Interface Entry

abort abort (3C) ctype ctype (5)

(
abs abs(3C)
access access (2)
acct acct (2) t

curses curses (3X)t
cuserid cuserid (38)
daylight ctime(3C)

acct acct (4) drand48 drand(3C)
acct acct(5) dup dup(2)
acos trig (3M)t ecvt ecvt(3C)
alarm alarm (2) edata end (3C)t
asctime ctime(3C) encrypt crypt (3C)
asin trig (3M)t end end (3C) t
assert assert (3X) endgrent getgrent (3C)
assert assert (5) endpwent getpwent (3C)
atan trig (3M) t endutent getut(3C)
atan2 trig (3M) t erand48 drand (3C)
atof strtod (3C) erf erf (3M) t
atoi strtol (3C) erfc erf(3M) t
atol strtol (3C) errno errno(5)
brk brk(2)t errno perror(3C)
bsearch bsearch (3C) etext end (3C) t
calloc malloc(3X) execl exec (2)
ceil floor(3M) t execle exec (2)
chdir chdir (2) execlp exec (2)
chmod chmod(2) execv exec (2)
chown chown (2) execve exec (2)
chroot chroot (2) r execvp exec (2)
clearerr ferror (38) exit exit (2)
clock clock (3C) exp exp(3M)t
close close (2) fabs floor(3M) t
console console (7) fclose fclose(38)
cos trig (3M) t fcntl fcntl (2)
cosh sinh (3M)t fcntl fcntl (5)
creat creat (2) fcvt ecvt(3C)
crypt crypt (3C) fdopen fopen (38)
ctermid ctermid (38) feof ferror(38)
ctime ctime(3C) ferror ferror (38)

(

X/OPEN Portabilily Guide (July 1985) Part II Page: 1.21

List Of Interfaces Interface Definition

Interface Entry Interface Entry

fflush fclose(38) getopt getopt(3C)
fgetc getc(38)
fgets gets (38)
fileno ferror(38)

getpass getpass (3C)
getpgrp getpid (2)
getpid getpid (2)

(
floor floor(3M) t getppid getpid (2)
fmod floor(3M) t getpw getpw(3C)
fopen fopen (38) getpwent getpwent (3C)
fork fork (2) getpwnam getpwent (3C)
fprintf printf (38) getpwuid getpwent (3C)
fputc putc (38) gets gets (38)
fputs puts (38) getuid getuid (2)
fread fread (38) getutent getut(3C)
free malloc(3X) getutid getut (3C)
freopen fopen(38) getutline getut(3C)
frexp frexp(3C) getw getc (38)
fscanf scanf(38) gmtime ctime(3C)
fseek fseek(38) group group (4)
fstat stat (2) grp grp(5)
ftell fseek (38) gsignal ssignal (3C)
ftw ftw(3C) hcreate hsearch (3C)
Itw Itw (5) hdestroy hsearch (3C)
fwrite fread (38) HOME environ (5)
gamma gamma(3M) t hsearch hsearch (3C)
gcvt ecvt (3C) hypot hypot(3M) t
getc getc(38) ioctl ioctl (2)
getchar getc (38) isalnum ctype(3C)
getcwd getcwd (3C) isalpha ctype(3C)
getegid getuid (2) isascii ctype(3C)
getenv getenv(3C) isatty ttyname (3C)
geteuid getuid(2) iscntrl ctype(3C)
getgid getuid (2) isdigit ctype(3C)
getgrent getgrent (3C) isgraph ctype(3C)
getgrgid getgrent (3C) islower ctype(3C)
getgrnam getgrent (3C) isprint ctype(3C)
getlogin getlogin (3C) ispunct ctype(3C)

(

Part II Page : 1.22 X/OPEN Portability Guide (July 1985)

Interface Definition List Of Interfaces

Interface Entry Interface Entry

isspace ctype(3C) memory memory (5)

(
isupper ctype(3C)
isxdigit ctype(3C)
jO bessel (3M)t

memset memory (3C)
mknod mknod(2)
mktemp mktemp(3C)

j1 bessel (3M)t modf frexp(3C)
jn bessel (3M)t mon mon (5)
jrand48 drand(3C) monitor monitor (3C)t
kill kill (2) mount mount(2)
13tol Itol (3C) mrand48 drand(3C)
Icong48 drand(3C) nice nice(2)t
Idexp frexp (3C) nrand48 drand(3C)
Ifind Isearch (3C) null null (7)
limits limits (5) open open (2)
link link(2) passwd passwd (4)
localtime ctime(3C) PATH environ (5)
lock lock (5) pause pause (2)
lockf lockf(3C) pc lose popen(38)
log exp(3M)t perror perror(3C)
log10 exp(3M)t pipe pipe (2)
log name logname (3X) plock plock(2)t
longjmp setjmp(3C) popen popen (38)
Iranq48 drand(3C) pow exp(3M) t
Isearch Isearch (3C) printf printf (38)
Iseek Iseek(2) profil profil (2)t
Itol3 Itol (3C) ptrace ptrace(2)t
mallinfo malloe(3X) pute putc (38)
malloc malloe(3X) putehar putc(38)
malloe malloc(5) putenv putenv(3C)
mallopt malloc(3X) putpwent putpwent (3C)
math math (5) puts puts (38)
matherr matherr (3M)t pututline getut(3C)
memccpy memory (3C) putw putc (38)
memchr memory (3C) pwd pwd (5)
memcmp memory (3C) qsort qsort (3C)
memcpy memory (3C) rand rand (3C)

(

X/ OPEN Portability Guide (July 1985) Part II Page : 1 .23

List Of Interfaces Interface Definition

Interface Entry Interface Entry

read read (2) stat stat (5)
realloc malloc(3X)
regcmp regcmp(3X)
regex regcmp(3X)

stdio stdio(38)
stdio stdio (5)
stime stime(2)

(
rewind fseek(38) strcat string (3C)
sbrk brk (2) t strchr string (3C)
scanf scanf(38) strcmp string (3C)
sctfd sct (7)t strcpy string (3C)
sctmt sct (7)t strcspn string (3C)
search search (5) string string (5)
seed48 drand(3C) strlen string (3C)
setbuf setbuf(3C) strncat string (3C)
setgid setuid (2) strncmp string (3C)
setgrent getgrent (3C) strncpy string (3C)
setjmp setjmp(3C) strpbrk string (3C)
setjmp setjmp(5) strrchr string (3C)
setkey crypt (3C) strspn string (3C)
setpgrp setpgrp (2) strtod strtod (3C)
setpwent getpwent (3C) strtok string (3C)
setuid setuid (2) strtol strtol (3C)
setutent getut (3C) swab swab (3C)
setvbuf setbuf(3C) sync sync (2)
signal signal (2) system system (38)
signal signal (5) sys _ errlist perror(3C)
signgam gamma(3M) t sys_ nerr perror(3C)
sin trig (3M) t tan trig (3M; t
sinh sinh (3M) t tanh sinh (3M) t
sleep sleep(3C) tdelete tsearch (3C)
sprintf printf (38) tempnam tmpnam(38)
sqrt exp(3M) t TERM environ (5)
srand rand (3C) termio termio(5)
srand48 drand (3C) termio termio(7) t
sscanf scanf(38) tfind tsearch (3C)
ssignal ssignal (3C) time time (2)
stat stat (2) time time(5)

(

Part II Page : 1.24 X/OPEN Portability Guide (July 1985)

Interface Definition List Of Interfaces

Interface Entry Interface Entry

times times (2) vsprintf vprintf (38)

(
times times (5)
timezone ctime(3C)

wait wait (2)
write write (2)

tmpfile tmpfile (38) wtmp utmp(4)
tmpnam tmpnam(38) yO bessel (3M) t
toascii conv(3C) y1 bessel (3M) t
tolower conv(3C) yn bessel (3M) t
toupper conv(3C) tolower conv(3C)
tsearch tsearch (3C) _toupper conv(3C)
tty tty (7) exit exit (2)

-
ttyname tty name (3C)
ttyslot ttyslot (3C)
twalk tsearch (3C)
types types (5)
TZ environ (5)
tzname ctime(3C)
tzset ctime(3C)
ulimit ulimit(2)
umask umask(2)
umount umount(2)
uname uname(2)
ungetc ungetc(38)
unistd unistd (5)
unlink unlink (2)
ustat ustat (2)
ustat ustat (5)
utime uti me (2)
utmp utmp(4)
utmp utmp(5)
utmpname getut(3C)
utsname utsname(5)
values values (5)
varargs varargs (5)
vfprintf vprintf (38)
vprintf vprintf (38)

(

X/OPEN Portability Guide (July 1985) Part II Page: 1.25

()

(

(

(

I Chapter2

System Calls

This chapter describes system calis. Most of these calis have one or
more error returns. An error condition is indicated by an otherwise
impossible returned value. This is almost always -1; the individual
descriptions specify the details.

As with normal arguments, ali return codes and values from functions are
of type int unless otherwise noted. An error number is also made
available in the external int variable erma. Erma is not cleared on
successful calis, so it should be tested only after an error has been
indicated.

The error names are described in erma (5).

X/OPEN Portability Guide (July 1985) Part II Page: 2.1

(I

(

(

(

System Calls ACCESS(2)

NAME
access - determine accessibility of a file

SYNOPSIS
#include <unistd .h>

int access (path, amode)
char *path;
int amode;

DESCRIPTION

ERRORS

Path points to a path name naming a file . Access checks the named file
for accessibility according to the bit pattern contained in amode , using
the real user 10 in place of the effective user 10 and the real group 10 or
equivalent in place of the effective group 10. The value of amode is the
sum of the access modes to be checked as defined in <unistd.h>:

R_OK 04 read
write W_OK 02

X_OK 01 execute (search)
check existence of file F_OK 00

Thus, the value of amode should be the sum of the values of the access
modes to be checked.

The owner of a file has permission checked with respect to the "owner"
read, write, and execute mode bits. Members of the file's group other
than the owner have permissions checked with respect to the "group"
mode bits, and all others have permissions checked with respect to the
"other" mode bits.

Access fails if one or more of the following are true:

[ENOTOIR]

[ENOENT]

[EACCES]

[EROFS]

[ETXTBSY]

[EACCES]

A component of the path prefix is not a directory.

The named file does not exist.

Search permission is denied on a component of the
path prefix.

Write access is requested for a file on a read-only file
system.

Write access is requested for a pure procedure (shared
text) file that is being executed.

Permission bits of the file mode do not permit the

X/ OPEN Portability Guide (July 1985) Part II Page : ACCESS(2).1

ACCESS(2)

[EFAULT]

System Calls

requested access.

Path points outside the allocated address space for the
process. The reliable detection of this condition will be
implementation dependent.

[EINVAL] The value of the amade argument is invalid .

RETURN VALUE
If the requested access is permitted, a value of 0 is returned. Otherwise,
a value of -1 is returned and erma is set to indicate the error.

SEE ALSO
chmod(2) , stat(2), unistd(5), types(5) .

APPLICATIONS USAGE
The [EINVAL] error is taken from a SVID future direction . It may not be
included in all implementations at present.

RELATIONSHIP TO SVID
SVID does not use symbolic names for amode. It does not, therefore,
call for the inclusion of the header file < unistd.h > , and the description
does not refer to this header file.

This change is forecast as a future direction in the SVID.

Part II Page : ACCESS(2) .2 X/ OPEN Portability Guide (July 1985)

(

(

(

(

System Calls ACCT(2)

NAME
acct - enable or disable process accounting (OPTIONAL)

SYNOPSIS
int acct (path)
char *path;

DESCRIPTION

ERRORS

Aeet is used to enable or disable the system process accounting routine.
If the routine is enabled, an accounting record will be written on an
accounting file for each process that terminates. Termination can be
caused by one of two things: an exit call or a signal, see exit(2) and sig­
na/(2) . The effective user ID of the calling process must be superuser to
use this call.

Path points to a path name naming the accounting file. The format of an
accounting file produced as a result of calling aeet(2) has records in the
format defined by the structure aeet in <sys/acct.h>.

The accounting routine is enabled if path is non-zero and no errors
occur during the system call. It is disabled if path is zero and no errors
occur during the system call.

Aeet will fail if one or more of the following are true:

[EPERM]

[EBUSY]

[ENOTDIR]

[ENOENT]

[EACCES]

[EROFS]

[EFAULT]

The effective user of the calling process is not super­
user.

An attempt is being made to enable accounting when it
is already enabled.

A component of the path prefix is not a directory.

One or more components of the accounting file path
name do not exist.

The file named by path is not an ordinary file.

The named file resides on a read-only file system.

Path pOints to an illegal address.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value
of -1 is returned and erma is set to indicate the error.

SEE ALSO
exit(2), signal(2).

RELATIONSHIP TO SVID
Identical to the SVID entry.

X/OPEN Portability Guide (July 1985) Part II Page : ACCT(2) .1

(

(

(

(

System Calls ALARM(2)

NAME
alarm - set a process alarm clock

SYNOPSIS
unsigned alarm (sec)
unsigned sec;

DESCRIPTION
Alarm instructs the alarm clock of the calling process to send the signal
SIGALRM to the calling process after the number of real time seconds
specified by sec have elapsed, see signal(2) .

Alarm requests are not stacked ; successive calls reset the alarm clock of
the calling process.

If sec is 0, any previously made alarm request is canceled.

Fork(2) sets the alarm clock of a new process to O. A process created
by exec(2) inherits the time left on the old process's alarm clock.

RETURN VALUE
Alarm returns the amount of time previously remaining in the alarm clock
of the calling process.

SEE ALSO
pause(2), signal(2).

RELATIONSHIP TO SVID
Identical to the SVID entry.

X/OPEN Portability Guide (July 1985) Part II Page : ALARM (2).1

(

(

(

(

System Calls BRK(2)

NAME
brk, sbrk - change data segment space allocation (OPTIONAL)

SYNOPSIS
int brk (endds)
char *endds;

char *sbrk (incr)
int incr;

DESCRIPTION

ERRORS

ark and sbrk are used to change dynamically the amount of space allo­
cated for the calling process's data segment, see exec(2) . The change
is made by resetting the process's break value and allocating the
appropriate amount of space.

ark sets the system's idea of the lowest data segment location not used
by the program (called the " break") to endds (rounded to the con­
venient hardware addressing size). The amount of allocated space
increases as the break value increases.

Sbrk adds incr bytes to the break value and changes the allocated space
accordingly.

When a program begins execution via exec(2) the break is set at the
highest location defined by the program and data storage areas. Ordi­
narily, therefore, only programs with growing data areas need to use
sbrk.

ark sets the break value to endds and changes the allocated space
accordingly.

Sbrk adds incr bytes to the break value and changes the allocated
space accordingly. Incr can be negative, in which case the amount of
allocated space is decreased. If sbrk is initially called with an incr of 0,
then the value returned is the base of the existing data segment alloca­
tion .

When obtained, the data contents of the allocated region are undefined.

ark and sbrk will fail without making any change in the allocated space
if the following is true:

[ENOMEM] Such a change would result in more space being allo­
cated than is allowed by a system-imposed maximum,
see ulimit(2).

X/ OPEN Portability Guide (July 1985) Part II Page : BRK(2).1

BRK(2) System Calls

RETURN VALUE
Upon successful completion, brk returns a value of 0 and sbrk returns
the old break value. Otherwise, brk returns a value of -1 and sbrk
returns a value of (char *) -1, and erma is set to indicate the error.

SEE ALSO
exec(2), ulimit(2), malloc(3X).

APPLICATION USAGE
Brk may be called with any value in the range of memory addresses
which have been returned by sbrk. The only real use for brk is to free a
large amount of memory allocated by sbrk. If brk is used to allocate or
free memory outside of this range, such usage may have undesirable
effects. If an area is freed and subsequently reallocated, the contents of
the area are not necessarily preserved.

MaJloc(3X) is the recommended way to obtain additional working space.
However, programs which use maJloc(3X) or stdio(3S) should not make
use of either brk or sbrk.

RELATIONSHIP TO SVI D
This optional function is not included in the SVID. It is taken from UNIX
System V Release 2.0.

Part II Page : BRK(2) .2 X/OPEN Portability Guide (July 1985)

(

(

(

(

System Calls CHDIR(2)

NAME
chdir - change working directory

SYNOPSIS
int chdir (path)
char *path ;

DESCRIPTION

ERRORS

Path pOints to the path name of a directory. Chdir causes the named
directory to become the current working directory, the starting point for
path searches for path names not beginning with / .

Chdir will fail and the current working directory will be unchanged if one
or more of the following are true:

[ENOTDIR]

[ENOENT)

[EACCES]

[EFAULT]

A component of the path name is not a directory.

The named directory does not exist.

Search permission is denied for any component of the
path name.

Path points outside the allocated address space of the
process. The reliable detection of this condition will be
implementation dependent.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a
value of -1 is returned and erma is set to indicate the error.

RELATIONSHIP TO SVID
Identical to the SVID entry.

X/OPEN Portability Guide (July 1985) Part II Page : CHDIR(2).1

(

(

(

(

System Calls CHMOD(2)

NAME
chmod - change mode of file

SYNOPSIS
#include <sys/types.h>
#include <sys/stat.h >

int chmod (path, mode)
char *path;
int mode;

DESCRIPTION

ERRORS

Path points to a path name naming a file . Chmod sets the access per­
mission portion of the named file's mode according to the bit pattern
contained in mode.

Access permission bits are described in <sys/stat.h>, and are inter­
preted as follows:

S_IRUSR
S_IWUSR
S_IXUSR
S_IRGRP
S_IWGRP
S_IXGRP
S_IROTH
S_IWOTH
S_IXOTH

04000
02000
01000
00400
00200
00100
00040
00020
00010
00004
00002
00001

Set user 10 on execution
Set group 10 on execution
Reserved
Read by owner
Write by owner
Execute (search if a directory) by owner
Read by group
Write by group
Execute (search) by group
Read by others (ie., anyone else)
Write by others
Execute (search) by others

The effective user 10 of the process must match the owner of the file or
be super-user to change the mode of a file.

For security reasons, if chmod is invoked by other than the superuser,
the set-user-IO and set-group-IO bits of the file mode, S_ISUIO and S_ISGIO
respectively, will be cleared.

Chmod will fail and the file mode will be unchanged if one or more of
the following are true:

[ENOTOIR]

[ENOENT]

[EACCES]

A component of the path prefix is not a directory.

The named file does not exist.

Search permission is denied on a component of the
path prefix.

X/ OPEN Portability Guide (July 1985) Part II Page: CHMOD(2).1

CHMOD(2)

[EPERM]

[EROFS]

[EFAULn

RETURN VALUE

System Calls

The effective user 10 does not match the owner of the
file and the effective user 10 is not super-user.

The named file resides on a read-only file system.

Path pOints outside the allocated address space of the
process. The reliable detection of this condition will be
implementation dependent.

Upon successful completion, a value of a is returned . Otherwise, a
value of -1 is returned and erma is set to indicate the error.

SEE ALSO
chown(2), mknod(2), open(2), stat(5), types(5).

FUTURE DIRECTIONS
Mandatory or enforcement-mode file and record locking will be added.

RELATIONSHIP TO SVID
i The use of symbolic names for mode has been introduced, which will
define the values of access modes. As SVID does not use symbolic
names, it does not call for the inclusion of the header files
<sys/stat.h > and < sys/types.h> , and the description does not refer
to the < sys/stat.h> header file. (NB. This change is forecast in the
SVID Future Directions Section).

The mode value 01000 is defined in the SVID as "Save text image after
execution" rather than being " reserved".

Part II Page : CHMOD(2) .2 X/OPEN Portability Guide (July 1985)

(

(

(

System Calls CHOWN(2)

NAME
chown - change owner and group of a file

SYNOPSIS
int chown (path, owner, group)
char *path;
int owner, group;

DESCRIPTION

ERRORS

Path pOints to a path name naming a file. The owner 10 and group 10 of
the named file are set to the numeric values contained in owner and
group respectively .

Only processes with effective user 10 equal to the file owner or superuser
may change the ownership of a file.

For security reasons, if chown is invoked by other than the superuser,
the set-user-IO and set-group-IO bits of the file mode, S_ISUIO and S_ISGIO
respectively, will be cleared.

Chown will fail and the owner and group of the named file will remain
unchanged if one or more of the following are true:

[ENOTDIR]

[ENOENn

[EACCES]

[EPERM]

[EROFS]

[EFAULT]

A component of the path prefix is not a directory.

The named file does not exist.

Search permission is denied on a component of the
path prefix.

The effective user 10 does not match the owner of the
file and the effective user 10 is not super-user.

The named file resides on a read-only file system.

Path points outside the allocated address space of the
process. The reliable detection of this condition will be
implementation dependent.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a
value of -1 is returned and ermo is set to indicate the error.

SEE ALSO
chmod(2), stat(5).

FUTURE DIRECTIONS
Mandatory or enforcement-mode file and record locking will be added.

RELATIONSHIP TO SVID
In the third paragraph of the DESCRIPTION section, SVID does not use
the symbolic values S_ISUIO and S_ISGIO , but instead refers to the

X/OPEN PortabililY Guide (July 1985) Part II Page : CHOWN(2).1

CHOWN(2) System Calls

specific bit values. (NB. This change is forecast in the SVID Future
Directions section.)

The final paragaph of the Description section has been reworded for
clarity.

Part II Page : CHOWN(2) .2 X/OPEN Portability Guide (July 1985)

(

(

(

(

System Calls CHROOT(2)

NAME
chroot - change root directory (OPTIONAL)

SYNOPSIS
int chroot (path)
char *path;

DESCRIPTION

ERRORS

Path pOints to a path name naming a directory. Chroot causes the
named directory to become the root directory, the starting point for path
searches for path names beginning with I. The user's working directory
is unaffected by the chroot system call.

The effective user 10 of the process must be super-user to change the
root directory.

The" entry in the root directory is interpreted to mean the root directory
itself. Thus,,, cannot be used to access files outside the subtree rooted
at the root directory.

Chroot will fail and the root directory will remain unchanged if one or
more of the following are true:

[ENOTDIR]

[ENOENT]

[EPERM]

[EFAULT]

Any component of the path name is not a directory.

The named directory does not exist.

The effective user 10 is not super-user.

Path pOints outside the allocated address space of the
process.

RETURN VALUE
Upon successful completion, a value of 0 is returned . Otherwise, a
value of -1 is returned and errno is set to indicate the error.

SEE ALSO
chdir(2) .

RELATIONSHIP TO SVID
Identical to the SVID entry.

This optional function is included in the kernel extension set (K_EXT) in
the SVID.

X/OPEN Portability Guide' (July 1985) Part II Page : CHROOT(2) .1

(

(

(

(

System Calls CLOSE (2)

NAME
close - close a file descriptor

SYNOPSIS
int close (fildes)
int fildes;

DESCRIPTION

ERRORS

Fildes is a file descriptor obtained from a creat , open, dup, tcnt!, or pipe
system call. Close closes the file descriptor indicated by tildes . All out­
standing record locks on the file indicated by tiledes that are owned by
the calling process are removed.

[EBADF] Close will return this error if tildes is not a valid open
file descriptor.

RETURN VALUE
Upon successful completion, a 'vdiue of 0 is returned. Otherwise, a
value of -1 is returned and elmo is set to indicate the error.

SEE ALSO
creat(2), dup(2), exec(2), fcntl(2), open(2), pipe(2).

APPLICATIONS USAGE
Normally, applications should only use the stdio routines to open, close,
read, .and write files . Thus, an application that had used the stdio rou­
tine topen(3S) to open a file would use the corresponding tclose(3S)
routine rather than close .

RELATIONSHIP TO SVID
Identical to the SVID, except that the SVID reads: "Close will fail if ... " in
the description of [EBADF].

X/OPEN Portability Guide (July 1985) Part II Page : CLOSE(2) .1

(

(

(

(

System Calls CREAT(2)

NAME
creat - create a new file or rewrite an existing one

SYNOPSIS
#include < sys/types.h>
#include <sys/stat.h >

int creat (path, mode)
char *path;
int mode;

DESCRIPTION

ERRORS

Great creates a new ordinary file or prepares to rewrite an existing file
named by the path name pointed to by path.

If the file exists, the length is truncated to 0 and the mode and owner are
unchanged. Otherwise, the file's owner 10 is set to the effective user 10
of the process; the group 10 of the file is set to the effective group 10 of
the process; and the access permission bits (see chmod(2)) of the file
mode are set to the value of mode modified as follows:

The corresponding bits are ANOed with the process's file mode
creation mask, see umask(2). Thus, all bits in the file mode
whose corresponding bit in the file mode creation mask is set
are cleared .

Upon successful completion, the file descriptor is returned and the file is
open for writing, even if the mode does not permit writing. The file
pOinter is set to the beginning of the file. The file descriptor is set to
remain open across exec system calls, see fcnt/(2) . No process may
have more than {OPEN_MAX} files open simultaneously. A new file may
be created with a mode that forbids writing.

Great will fail if one or more of the following are true:

[ENOTOIR]

[ENOENn

[EACCES]

[EACCES]

[EROFS]

A component of the path prefix is not a directory.

A component of the path name which must exist does
not exist.

Search permission is denied on a component of the
path prefix.

The file does not exist and the directory in which the
file is to be created does not permit writing.

The named file resides or would reside on a read-only
file system.

X/ OPEN Portability Guide (July 1985) Part II Page : CREAT(2) .1

CREAT(2)

[ETXTBSY]

[EACCES]

[EISDIR]

[EM FILE]

[ENOSPC]

[ENFILE]

[EFAULT]

RETURN VALUE

System Calls

The file is a pure procedure (shared text) file that is
being executed.

The file exists and write permission is denied.

The named file is an existing directory.

{OPEN_MAX} file descriptors are currently open in the
calling process.

The directory to contain the file cannot be extended.

The system file table is full .

Path points outside the allocated address space of the
process.

Upon successful completion, a non-negative integer, namely the file
descriptor, is returned . Otherwise, a value of -1 is returned and erma
is set to indicate the error.

SEE ALSO
chmod(2), close(2), dup(2), fcntl(2), Iseek(2), open(2), read(2),
umask(2), write(2), stat(5), types(5).

APPLICATIONS USAGE
Normally, applications should use the stdia routines to open, close, read
and write files . In this case, rapen(3S) should be used rather than
creat(2) .

Great is now obsoleted by apen(2) with O_CREAT set.

FUTURE DIRECTIONS
Mandatory and enforcement mode file and record locking features will
be added.

RELATIONSHIP TO SVID
SVID does not use symbolic names for the access permissions specified
in the made parameter. It therefore also does not call for the inclusion
of < sys/stat.h > and < sys/types.h> and the description does not refer
to the < sys/stat.h > header file. See chmad(2) .

Part II Page : CREAT(2).2 X/OPEN Portability Guide (July 1985)

(

(

(

(

System Calls DUP(2)

NAME
dup - duplicate an open file descriptor

SYNOPSIS
int dup (tildes)
int fildes;

DESCRIPTION

ERRORS

Fildes is a file descriptor obtained from a creat, open, dup, tcnt!, or pipe
system call. Oup returns a new file descriptor having the following in
common with the original:

Same open file (or pipe) .

Same file pOinter (i.e., both file descriptors share one file
pOinter) .

Same access mode (read, write or read / write).

The new file descriptor is set to remain open across exec system calls,
see tcnt!(2).

The file descriptor returned is the lowest one available.

Oup will fail if one or more of the following are true:

[EBADF]

[EMFILE]

Fildes is not a valid open file descriptor.

{OPEN_MAX} file descriptors are currently open in the
calling process.

RETURN VALUE
Upon successful completion a non-negative integer, namely the file
descriptor, is returned . Otherwise, a value of -1 is returned and ermo
is set to indicate the error.

SEE ALSO
creat(2), close(2), exec(2), fcntl(2), open(2), pipe(2).

RELATIONSHIP TO SVID
Identical to the SVID entry.

X/ OPEN Portability Guide (July 1985) Part II Page : DUP(2) .1

(

(

(

(

System Calls EXEC(2)

NAME
execl, execv, execle, execve, execlp, execvp - execute a file

SYNOPSIS
int execl (path, argO, arg1, ... , argn, (char *)0)
char *path, *argO, *arg1, ... , *argn;

int execv (path, argv)
char *path, *argv[];

int execle (path, argO, arg1, ... , argn, (char *)0, envp)
char *path, *argO, *arg1, ... , *argn, *envp[];

int execve (path, argv, envp)
char *path, *argv[], *envp[];

int execlp (file, argO, arg1, ... , argn, (char *)0)
char *file, *argO, *arg1, ... , *argn;

int execvp (file, argv)
char *file, *argv[];

DESCRIPTION
Exec in all its forms transforms the current process into a new process.
The new process is constructed from an ordinary, executable file called
the new process file. This file consists of a header, a text segment, and
a data segment. There can be no return from a successful exec
because the calling process image is overlaid by the new process image.

When a C program is executed , it is called as follows:

main (argc, argv, envp)
int argc;
char **argv, **envp;

where argc is the argument count, argv is an array of character pointers
to the arguments themselves, and envp is an array of character pointers
to null-terminated strings that constitute the environment for the new pro­
cess. Argc is conventionally at least one (1) and the initial member of
the array points to a string containing the name of the file .

Path points to a path name that identifies the new process file. File
points to the new process file . The path prefix for this file is obtained by
a search of the directories passed as the environment line "PATH=", see
environ(5) and system(3S).

ArgO, arg1, ... , argn are pointers to null-terminated character strings.
These strings constitute the argument list available to the new process.
By convention, at least argO is present and points to a string that is the
same as path (or its last component).

X/OPEN Portability Guide (July 1985) Part II Page : EXEC(2) .1

EXEC(2) System Calls

Argv is an array of character pointers to null-terminated strings. These
strings constitute the argument list available to the new process. By
convention, argv[O] points to a string that is the same as path (or its last
component) . Argv is terminated by a NULL pointer.

Envp is an array of character pointers to null-terminated strings. These
strings constitute the environment for the new process. Envp is ter­
minated by a null pOinter. For execl and excev, the C run-time start-off
routine places a pOinter to the environment of the calling process in the
global cell :

extern char * *environ ;

and it is used to pass the environment of the calling process to the new
process.

File descriptors open in the calling process remain open in the new pro­
cess, except for those whose close-on-exec flag is set; see fcntl(2). For
those file descriptors that remain open, the file pointer is unchanged.

Signals set to the default action (SIG_DFL) in the calling process will be
set to the default action in the new process. Signals set to be ignored
(SIG_IGN) by the calling process will be set to be ignored by the new
process. Signals set to be caught by the calling process will be set to
the default action in the new process, see signa/(2) .

If the set-user-ID-on-execution mode bit of the new process file is set,
see chmod(2) , exec sets the effective user 10 of the new process to the
owner 10 of the new process file. Similarly, if the set-group-IO mode bit
of the new process file is set, the effective group 10 of the new process
is set to the group 10 of the new process file. The real user 10 and real
group 10 of the new process remain the same as those of the calling pro­
cess. The effective user 10 and group 10 of the new process are saved
for use by setuid(2).

If the set-user-IO (set-group-IO) mode bit of the new process file is not
set, then the new process inherits the calling process's real and effective
user (group) 10.

Profiling is disabled for the new process, see profil(2). Profiling is an
optional service.

The new process also inherits at least the following attributes from the
calling process:

nice value (see nice(2)) nice is an optional service.
process 10
parent process 10
process group 10

Part II Page : EXEC(2).2 X/ OPEN Portability Guide (July 1985)

(

(

(

(

System Calls

ERRORS

EXEC(2)

tty group ID (see exit(2) and signal(2))
trace flag (see ptrace(2) request 0; tracing is an optional ser­
vice)
time left until an alarm clock signal (see alarm(2))
current working directory
root directory
file mode creation mask (see umask(2))
file size limit (see ulimit(2))
utime, stime , cutime, and cstime (see times(2))

Exec will fail and return to the calling process if one or more of the fol­
lowing are true:

[ENOENT]

[ENOTDIR]

[EACCES]

[EACCES]

[EACCES]

[ENOEXEC]

[ETXTBSY]

[ENOMEM]

[E2BIG]

[EFAULTJ

[EFAULT]

RETURN VALUE

One or more components of the path name of the new
process file do not exist.

A component of the new process file's path prefix is not
a directory. t
Search permission is denied for a directory listed in the
new process file's path prefix.

The new process file is not an ordinary file, see
mknod(2)

The new process file mode denies execution permis­
sion.

The exec is not an execlp or execvp, and the new pro­
cess file has the appropriate access permission but is
not a valid executable object.

The new process file is a pure procedure (shared text)
file that is currently open for writing by some process.

The new process requires more memory than is allowed
by the hardware or a system-imposed maximum.

The number of bytes in the new process argument list
is greater than the system-imposed limit of (ARG_MAX}
bytes.

The new process file image is corrupted .

Path points to an illegal address or argv or envp point
to an illegal address, directly or indirectly.

If exec returns to the calling process an error has occurred; the return
value will be -1 and ermo will be set to indicate the error.

X/ OPEN Portability Guide (July 1985) Part II Page : EXEC(2) .3

EXEC(2) System Calls

SEE ALSO
alarm(2), exit(2), fork(2), nice(2) , profil(2), ptrace(2), signal(2) , times(2),
ulimit(2), umask(2).

APPLICATIONS USAGE
If possible, applications should use system(3S), which is easier to use
and supplies more functions, rather than fork(2) and exec(2) .

RELATIONSHIP TO SVID
The definition is identical to the SVID entry.

For convenience of the user, the relationships between exec(2) and the
optional facilities - profi/(2) , nice(2), ptrace(2) - have been given on
these sheets. In the SVID these options are all included in the kernel
extension set (K_EXT), and their effect on exec is given in a separate
section, "Effect on BASE Operating System Services" .

tThe wording of the [ENOTDIR] entry in the ERRORS section in the SVID
reads "A component of the new process path of the file prefix is not a
directory" .

Part II Page: EXEC(2).4 X/OPEN Portability Guide (July 1985)

(

(

(

(

System Calls EXIT(2)

NAME
exit, _exit - terminate process

SYNOPSIS
void exit (status)
int status;

void _exit (status)
int status;

DESCRIPTION
Exit terminates the calling process with the following consequences:

All of the file descriptors open in the calling process are closed .

If the parent process of the calling process is executing a
wait(2) , it is notified of the calling process's termination and the
low order eight bits (i.e., bits 0377) of status are made available
to it; see wait(2) . If the parent is not waiting, the child's status
will be made available to it when the parent subsequently exe­
cutes wait(2).

If the parent process of the calling process is not executing a
wait(2) , the calling process is transformed into a zombie pro­
cess. A zombie process is an inactive process and it will be
deleted at some later time when its parent process executes
wait(2).

The parent process 10 of all of the calling process's existing
child processes and zombie processes is set to the process 10
of a special system process. That is, these processes are
inherited by a special system process.

If the process has a process, text or data lock, an unlock is
performed; see plock(2) . Process locking is an optional ser­
vice.

An accounting record is written on the accounting file if the
system's accounting routine is enabled; see acct(2). Account­
ing is an optional service.

If the process is a process group leader, the SIGHUP signal is
sent to each process that has a process group 10 equal to that
of the calling process.

The function exit may cause cleanup actions, see fclose(3S) before the
process exits. The function _exit circumvents all cleanup.

RETURN VALUE
These routines do not return a value.

X/ OPEN Portability Guide (July 1985) Part II Page : EXIT(2) .1

EXIT(2) System Calls

SEE ALSO
acct(2), plock(2), signal(2), wait(2).

APPLICATION USAGE
Normally applications should use exit rather than _exit. Not only do
these routines not return a value, they do not return at all.

RELATIONSHIP TO SVID
For the convenience of the user, the interactions between exit and the
optional facilities, plock(2) and acct(2) , have been identified in the
DESCRIPTION section. In the SVID these optional facilities are included
in the kernel extension set (K_EXT), and their effect on exit is given in a
separate section , "Effect on BASE Operating System Services" .

Part II Page : EXIT(2) .2 X/OPEN Portability Guide (July 1985)

(

(

(

(

System Calls FCNTL(2)

NAME
fcntl - file control

SYNOPSIS
#include <unistd.h>
#include <fcntl.h>

int fcntl (fildes, cmd, arg)
int fildes, cmd;

DESCRIPTION
Fcnt! provides for control over open files . Fildes is an open file descrip­
tor obtained from a creat, open, dup , fcnt!, or pipe system call. Arg
value and type are specific to the type of command.

The cmd values available are:

F _DUPFD Return a new file descriptor as follows:

Lowest numbered available file descriptor greater than or
equal to argo

Same open file (or pipe) as the original file.

Same file pointer as the original file (i.e., both file descriptors
share one file pointer).

Same access mode (read, write or read / write).

Same file status flags (i.e., both file descriptors share the
same file status flags).

The close-on-exec flag associated with the new file descriptor
is set to remain open across exec(2) system calls .

F _GETFD Get the close-on-exec flag associated with the file descriptor
fildes. If the low-order bit is 0 the file will remain open
across exec, otherwise the file will be closed upon execution
of exec.

F _SETFD Set the close-on-exec flag associated with fildes to the low­
order bit of arg (0 or 1 as above).

F_GETFL Get file status flags: O_RDONLY, O_WRONLY, O_RDWR,
O_NDELAY, O_APPEND.

F _SETFL Set file status flags to argo Only certain flags can be set, see
fcnt!(5) .

F _GETLK Get the first lock which blocks the lock description given by
the variable of type struct flock pOinted to by arg (see below).
The information retrieved overwrites the information passed to
fcnt! in the flock structure. If no lock is found that would

X/OPEN Portability Guide (July 1985) Part II Page : FCNTL(2) .1

FCNTL(2) System Calls

prevent this lock from being created, then the structure is
passed back unchanged except for the lock type which will
be set to F _UNLCK.

F _SETLK Set or clear a file segment lock according to the variable of
type struct flock pointed to by arg (see below). The cmd
F _SETLK is used to establish read (F _RDLCK) and write
(F _WRLCK) locks, as well as remove either type of lock
(F _UNLCK) . If a read or write lock cannot be set, tent! will
return immediately with an error value of -1 .

F _SETLKW This cmd is the same as F _SETLK except that if a read or
write lock is blocked by other locks, the process will sleep
until the segment is free to be locked.

A read lock prevents any process from write locking the protected area.
More than one read lock may exist for a given segment of a file at a
given time. The file descriptor on which a read lock is being placed
must have been opened with read access.

A write lock prevents any process from read locking or write locking the
protected area. Only one write lock may exist for a given segment of a
file at a given time. The file descriptor on which a write lock is being
placed must have been opened with write access.

The structure floek describes the type (Uype), starting offset ('_whence),
relative offset (i_start), size (Lien), process ID (iyid) and system ID
('_sysid) of the segment of the file to be affected.

'_whence is t SEEK_SET, SEEK_CUR, SEEK_END, to indicate that the rela­
tive offset will be measured from the start of the file, current pOSition or
end of the file, respectively.

The process ID and system ID fields are only used with the F _GETLK emd
to return the value for a blocking lock. Locks may start and extend
beyond the current end of a file, but may not be negative relative to the
beginning of the file. A lock may be set to always extend to the end of
file by setting Lien to zero (0). If such a lock also has '_start set to zero
(0), the whole file will be locked. Changing or unlocking a segment from
the middle of a larger locked segment from the middle of a larger locked
segment leaves two smaller segments for either end. Locking a segment
that is already locked by the calling process causes the old lock type to
be removed and the new lock type to take effect. All locks associated
with a file for a given process are removed when a file descriptor for that
file is closed by that process or the process holding that file descriptor
terminates. Locks are not inherited by a child process in a tork(2) sys­
tem call .

Part II Page: FCNTL(2) .2 X/ OPEN Portability Guide (July 1985)

(

(

(

System Calls FCNTL(2)

ERRORS
Fcntl will fail if one or more of the following are true:

[EBADF)

[EMFILE)

[EINVAL)

[EINVAL)

[EAGAIN)

Fildes is not a valid open file descriptor.

Cmd is F _DUPFD and {OPEN_MAX} file descriptors are
currently open in the calling process.

Cmd is F _DUPFD and arg is negative or greater than or
equal to {OPEN_MAX} .

Cmd is F _GETLK, F _SETLK, or F _SETLKW and arg or the
data it paints to is not valid.

Cmd is F _SETLK the type of lock (Uype) is a read
(F _RDLCK) or write (F _WRLCK) lock and the segment of
a file to be locked is already write locked by another
process or the type is a write lock and the segment of a
file to be locked is already read or write locked by
another process.

[ENOLCK) Cmd is F _SETLK or F _SETLKW, the type of lock is a read
or write lock and there are no more file locks available
(too many segments are locked).

[EDEADLK) Cmd is F _SETLK, the lock is blocked by some lock from
another process and putting the calling process to
sleep, waiting for that lock to become free, would cause
a deadlock.

RETURN VALUE
Upon successful completion, the value returned depends on cmd as fol ­
lows:

F _DUPFD A new file descriptor
F _GETFD Value of flag (only the low-order bit is

defined)
F _SETFD Value other than -1
F _GETFL Value of file flags
F _SETFL Value other than -1
F _GETLK Value other than -1
F _SETLK Value other than -1
F _SETLKW Value other than -1

Otherwise, a value of -1 is returned and erma is set to indicate the
error.

SEE ALSO
close(2), exec(2), open(2), lockf(3C), fcntl(5) .

X/OPEN Portability Guide (July 1985) Part II Page: FCNTL(2).3

FCNTL(2) System Calls

FUTURE DIRECTIONS
Mandatory or enforcement-mode file and record locking will be added.
When mandatory file / record locking is set on a file, see chmod(2),
future read and write system calls on the file will be affected by the
record locks in effect.

RELATIONSHIP TO SVID
t The SVID uses the absolute values 0, 1 and 2 for '_whence instead of
the symbolic values SEEK_SET, SEEK_CUR and SEEK_END. These names
come from the < unistd.h > file described in Appendix BASE: 1.6, Com­
parison to the 1984 /usr /group Standard.
In the SVID, the third sentence of DESCRIPTION reads: "Arg is specific
to the type of command".
In the SVID, the second paragraph of DESCRIPTION reads: "The com­
mands available are:" .
In the SVID the structure of flock is given in the middle of the Description
of tcnt! as well as in <fcntl.h>.

Part II Page: FCNTL(2).4 X/ OPEN Portability Guide (July 1985)

(

(

(

System Calls FORK(2)

NAME
fork - create a new process

SYNOPSIS
int fork ()

DESCRIPTION
Fork causes creation of a new process. The new process (child pro­
cess) is an exact copy of the calling process (parent process). This
means the child process inherits the following attributes from the parent
process:

environment
close-an-exec flag (see exec(2»
signal handling settings (i.e., SIG_DFL, SIG_IGN, function
address)
set-user-IO mode bit
set-group-ID mode bit
profiling on/off status (see profi/(2); profiling is an optional ser­
vice)
nice value (see nice(2) - nice is an optional service)
process group 10
tty group 10 (see exit(2) and signa/(2»
trace flag (see ptrace(2) request 0; ptrace is an optional ser­
vice)
current working directory
root directory
file mode creation mask (see umask(2»
file size limit (see ulimit(2»

The child process differs from the parent process in the following ways:

The child process has a unique process 10.

The child process has a different parent process 10 (i.e., the
process 10 of the parent process).

The child process has its own copy of the parent's file descrip­
tors. Each of the child's file descriptors shares a common file
painter with the corresponding file descriptor of the parent.

Process locks, text locks and data locks are not inherited by
the child (see plock(2); process locking is an optional service) .

X/OPEN Portability Guide (July 1985) Part II Page : FORK(2) .1

FORK(2) System Calls

ERRORS

The child process's utime, stime, Gutime, and cstime are set to
O. The time left until an alarm clock signal is reset to O.

Fork will fail and no child process will be created if one or more of the
following are true:

[EAGAIN]

[ENOMEM]

The system-imposed limit on the total number of
processes under execution system-wide {PROC_MAX}
or by a single user 10 {CHILD_MAX} would be exceeded .

The process requires more space than the system is
able to supply.

RETURN VALUE
Upon successful completion, fork returns a value of 0 to the child pro­
cess and returns the process 10 of the child process to the parent pro­
cess. Otherwise, a value of -1 is returned to the parent process, no
child process is created, and errno is set to indicate the error.

SEE ALSO
exec(2), nice(2), plock(2), ptrace(2), signal(2), times(2), ulimit(2),
umask(2), wait(2) .

APPLICATION USAGE
If possible, applications should use system(3S), which is easier to use
and supplies more functions , rather than fork(2) and exec(2).

RELATIONSHIP TO SVID
For user convenience, the interactions between fork and the optional
facilities of profi/(2) , ptrace(2) , plock(2) and nice(2) have been included
in the DESCRIPTION section . In the SVID these optional facilities are
included in the kernel extension set (K_EXT), and their effect on fork is
given in a separate section "Effect on BASE Operating System Ser­
vices".

Part II Page : FORK(2) .2 X/OPEN Portability Guide (July 1985)

(

(

(

(

System Calls GETPID(2)

NAME
getpid, getpgrp, getppid - get process, process group, and parent pro­
cess lOs

SYNOPSIS
int getpid ()

int getpgrp ()

int getppid ()

DESCRIPTION
Getpid returns the process 10 of the calling process.

Getpgrp returns the process group 10 of the calling process.

Getppid returns the parent process 10 of the calling process.

SEE ALSO
exec(2), fork(2), setpgrp(2), signal(2).

RELATIONSHIP TO SVID
Identical to the SVID entry.

X/ OPEN Portability Guide (July 1985) Part II Page : GETPID(2) .1

(

(

(

(

System Calls GETUID(2)

NAME
getuid, geteuid, getgid, getegid - get real user, effective user, real
group, and effective group IDs

SYNOPSIS
unsigned short getuid ()

unsigned short geteuid ()

unsigned short getgid ()

unsigned short getegid ()

DESCRIPTION
Getuid returns the real user 10 of the calling process.

Geteuld returns the effective user 10 of the calling process.

Getgid returns the real group 10 of the calling process.

Getegid returns the effective group 10 of the calling process.

SEE ALSO
setuid(2).

RELATIONSHIP TO SVID
Identical to the SVID entry.

X/OPEN Portability Guide (July 1985) Part II Page : GETUID(2).1

(

(

(

(

System Calls IOCTL(2)

NAME
ioctl - control device

SYNOPSIS
int ioctl (fildes, request, arg)
int fildes, request;

DESCRIPTIQN

ERRORS

loctl performs a variety of functions on devices, typically character spe­
cial files. Fildes is an open file descriptor. Request selects the function
to be performed and will depend on the device being addressed . Arg
value and type are specific to the device and request.

loctl will fail if one or more of the following are true:

[EBADF]

[ENOTIY]

Fildes is not a valid open file descriptor.

Fildes is not associated with a device that accepts con­
trol functions .

[EINVAL]

[EINTR]

RETURN VALUE

Request or arg is not valid.

A signal was caught during the ioctl operation .

If an error has occurred, a value of -1 is returned and erma is set to
indicate the error.

RELATIONSHIP TO SVID
In the SVID, the last sentence of the DESCRIPTION section reads: "Arg
also is specific to the device and request", and the error [ENOTIY] reads:
"tildes is not associated with a character special device".

X/OPEN Portability Guide (July 1985) Part II Page: IOCTL(2) .1

(

(

(

(

System Calls KILL(2)

NAME
kill - send a signal to a process or a group of processes

SYNOPSIS
#include < signal.h >
int kill (pid, sig)
int pid;
int sig;

DESCRIPTION

ERRORS

Kill sends a signal to a process or a group of processes. The process
or group of processes to which the signal is to be sent is specified by
pid. The signal that is to be sent is specified by sig and is either one
from the list given in signal(2) , or O. If sig is 0 (the null signal), error
checking is performed but no signal is actually sent. This can be used
to check the validity of pid.

The real or effective user 10 of the sending process must match the real
or effective user 10 of the receiving process, unless the effective user 10
of the sending process is super-user.

The processes with a process 10 less than or equal to {SYSPIO_MAX} are
special processes.

If pid is greater than 0, sig will be sent to the process whose process 10
is equal to pid. t If a signal is sent to a special process, the effect is
implementation defined.

If pid is 0, sig will be sent to all processes, excluding the special
processes, whose process group 10 is equal to the process group 10 of
the sender.

If pid is -1 and the effective user 10 of the sender is not super-user, sig
will be sent to all processes, excluding the special processes, whose real
user 10 is equal to the effective user 10 of the sender.

If pid is -1 and the effective user 10 of the sender is super-user, sig will
be sent to all processes excluding the special processes.

If pid is negative but not -1, sig will be sent to all processes whose
process group 10 is equal to the absolute value of pid.

Kill will fail and no signal will be sent if one or more of the following are
true:

[EINVAL]

[EPERM]

Sig is not a valid signal number.

Sig is SIGKILL and pid is less than {SYSPIO_MAX}.

X/OPEN Portability Guide (July 1985) Part II Page: KILL(2) .1

KILL(2)

[ESRCH]

[EPERM]

RETURN VALUE

System Calls

No process can be found corresponding to that
specified by pid.

The user 10 of the sending process is not super-user,
and its real or effective user 10 does not match the real
or effective user 10 of the receiving process.

Upon successful completion, a value of 0 is returned. Otherwise, a
value of -1 is returned and ermo is set to indicate the error.

SEE ALSO
getpid(2), setpgrp(2), signal(2), signal(5).

RELATIONSHIP TO SVID
The sentence "The processes with a process 10 less than {SYSPIO_MAX}
are special processes" is additional to the SVID wording. The SVID
treats {SYSPIO_MAX} as 1.

tThe second sentence of the paragraph starting "If pid is greater than
0 .. . " is additional to the SVID.

The introduction of the error [EPERM] is forecast in the Future Directions
section in the SVID.

Part II Page: KILL(2) .2 X/OPEN Portability Guide (July 1985)

(

(

(

(

System Calls LlNK (2)

NAME
link - link to a file

SYNOPSIS
int link (path1 , path2)
char *path1, *path2;

DESCRIPTION

ERRORS

Path1 points to a path name naming an existing file. Path2 pOints to a
path name naming the new directory entry to be created. Link creates a
new link (directory entry) for the existing file .

Link will fail and no link will be created if one or more of the following
are true:

[ENOTDIR]

[ENOENT]

[EACCES]

[EEXIST]

[EPERM]

[EXOEV]

[EACCES]

[EROFS]

[EMLlNK]

[EFAULT]

A component of either path prefix is not a directory.

A component of either path name which must exist
does not exist.

A component of either path prefix denies search per­
mission .

The link named by path2 exists.

The file named by path1 is a directory and the effective
user 10 is not super-user.

The link named by path2 and the file named by path 1
are on different logical devices (file systems) and the
implementation does not permit cross device links.

The requested link requires writing in a directory with a
mode that denies write permission.

The requested link requires writing in a directory on a
read-only file system.

The maximum number of links to a file would be
exceeded.

Path points outside the allocated address space of the
process.

[ENOSPC]

RETURN VALUE

The directory to contain the file cannot be extended.

Upon successful completion, a value of a is returned. Otherwise, a
value of -1 is returned and erma is set to indicate the error.

SEE ALSO
unlink(2).

X/OPEN Portability Guide (July 1985) Part II Page: LlNK(2).1

LlNK(2) System Calls

RELATIONSHIP TO SVID
Identical to the SVID entry.

(

(

Part II Page : LlNK(2).2 X/OPEN Portability Guide (July 1985)

(

(

System Calls LSEEK(2)

NAME
Iseek - move read / write file pointer

SYNOPSIS
#include < unistd.h >

long Iseek (fildes, offset, whence)
int fildes;
long offset;
int whence;

DESCRIPTION

ERRORS

Fildes is a file descriptor returned from a creat, open, dup, or fcnt! sys­
tem call . Lseek sets the file painter associated with fildes as follows:

If whence is SEEK_SET (0) , the pointer is set to offset bytes.

If whence is SEEK_CUR (1), the pOinter is set to its current loca­
tion plus offset.

If whence is SEEK_END (2), the pointer is set to the size of the
file plus offset.

Upon successful completion, the resulting pointer location, as measured
in bytes from the beginning of the file, is returned.

Lseek will fail and the file pointer will remain unchanged if one or more
of the following are true:

[EBADF]

[ESPIPE]

[EINVAL]

[EINVAL]

Fildes is not an open file descriptor.

Fildes is associated with a pipe or fifo.

and SIGSYS signal. Whence is not one of the valid
numbers.

The resulting file pointer would be negative.

Some devices are incapable of seeking. The value of the file pointer
associated with such a device is undefined.

RETURN VALUE
Upon successful completion, a file pointer value is returned . Otherwise,
a value of -1 is returned and ermo is set to indicate the error.

SEE ALSO
creat(2), dup(2), fcntl(2), open(2), types(5), unistd(5).

APPLICATION USAGE
Normally, applications should use the stdio library routines to open,
close, read,' write and manipulate files . Thus, an application that had
used the stdio routine fopen(3S) to open a file would use fseek(3S)

X/OPEN Portability Guide (July 1985) Part" Page : LSEEK(2) .1

LSEEK(2) System Calls

rather than Iseek(2) .

RELATIONSHIP TO SVID
The SVID uses absolute values rather than the symbolic values
SEEK_SET, SEEK_CUR, SEEK_END for whence. It therefore also does not
call for the inclusion of <unistd.h > . This change is forecast in the SVID
Future Directions section , in the Iseek(OS) entry. It also causes a minor
wording change for the error "[EINVAL] and SIGSYS signal".

The error "[EINVAL] : The resulting file pointer would be negative" is
additional wording to the SVID.

Part II Page : LSEEK(2).2 X/ OPEN Portability Guide (July 1985)

(

(

(

System Calls MKNOD(2)

NAME
mknod - make a directory, or a special or ordinary file

SYNOPSIS
#include < sys/types.h>
#include < sys/stat.h>

int mknod (path, mode, dev)
char *path;
int mode, dev;

DESCRIPTION
Mknod creates a new file named by the path name pointed to by path .
The mode of the new file is initialized from mode. Where the value of
mode is interpreted as follows:

file type; one of the following :
S_IFIFOt 0010000 FIFO special
S_IFCHR 0020000 character special
S_IFOIR 0040000 directory
S_IFBLK 0060000 block special
S_IFREG 0100000 ordinary file

0000000 ordinary file
S_ISUIO 0004000 set user 10 on execution
S_ISGIO 0002000 set group 10 on execution

0001000 reserved

access permissions; constructed from the following:
S_IRWXU
S_IRUSR
S_IWUSR
S_IXUSR
S_IRWXG
S_IRGRP
S_IWGRP
S_IXGRP
S_IRWXO
S_IROTH
S_IWOTH
S_IXOTH

0000700
0000400
0000200
0000100
0000070
0000040
0000020
0000010
0000007
0000004
0000002
0000001

read, write, execute (search) by owner
read by owner
write by owner
execute (search on directory) by owner
read, write, execute (search) by group
read by group
write by group
execute (search on directory) by group
read, write, execute (search) by others
read by others
write by others
execute (search on directory) by others

The owner 10 of the file is set to the effective user 10 of the process. The
group 10 of the file is set to the effective group 10 of the process.

Values of mode other than those above are undefined and should not be
used. The owner, group and other permision bits of mode are modified
by the process's file mode creation mask: all bits whose corresponding
bit in the process's file mode creation mask is set are cleared, see

X/OPEN Portability Guide (July 1985) Part II Page : MKNOD(2).1

MKNOD(2) System Calls

ERRORS

umask(2). If mode indicates a block or character special file, dev is a
configuration-dependent specification of a character or block 1/ 0 device.
If mode does not indicate a block special or character special device,
dev is ignored.

Mknod may be invoked only with the effective user 10 of the super-user
for file types other than FIFO special.

Mknod will fail and the new file will not be created if one or more of the
following are true:

[EPERM]

[ENOTOIRJ

[ENOENT]

[EACCES]

[EROFS]

[EEXIST]

[EFAULTJ

[ENOSPC]

The effective user 10 of the process is not super-user
and the file type is not FIFO special.

A component of the path prefix is not a directory.

A component of the path prefix does not exist.

A component of the path prefix denies search permis­
sion .

The directory in which the file is to be created is
located on a read-only file system.

The named file exists.

Path points outside the process's allocated address
space.

The directory which would contain the new file cannot
be extended .

RETURN VALUE
Upon successful completion a value of a is returned . Otherwise, a value
of -1 is returned and erma is set to indicate the error.

SEE ALSO
chmod(2), exec(2), pipe(2), stat(2), umask(2), stat(5), types(5) .

RELATIONSHIP TO SVID
t The SVID does not use the symbolic names for mode; it only gives the
absolute values. It therefore also does not call for the inclusion of
<sys/stat.h > and < sys/types.h> . The "Appendix BASE: 1.6 Com­
parison to the 1984 l usrlgroup Standard" part of the SVID shows these
names as a future direction for the <stat.h> header file.

In the SVID, the mode value 0001000 is identified as "save text image
after execution" instead of being "reserved" .

The table has been changed from that of the SVID to give all the values
of access permissions for group and others.

Part II Page: MKNOD(2).2 X/ OPEN Portability Guide (July 1985)

(

(

(

(

System Calls MKNOD(2)

In the SVID, the last sentence of the DESCRIPTION reads: " Mknod may
be invoked only by the super-user for file types other than ... " .

X/OPEN Portability Guide (July 1985) Part 11 Page: MKNOD(2).3

(

(

(

(

System Calls MOUNT(2)

NAME
mount - mount a file system

SYNOPSIS
int mount (spec, dir, rwflag)
char *spec, *dir;
int rwflag;

DESCRIPTION

ERRORS

Mount requests that a removable file system contained on the block spe­
cial file identified by spec be mounted on the directory identified by dir.
Spec and dir are pOinters to path names.

Upon successful completion, references to the file dir will refer to the
root directory on the mounted file system.

The low-order bit of rwflag is used to control write permission on the
mounted file system; if 1, writing is forbidden, otherwise writing is permit­
ted according to individual file accessibility.

Mount may be invoked only with an effective user 10 of the super-user.

Mount will fail if one or more of the following are true:

[EPERM)

[ENOENT)

[ENOTOIR)

[ENOTBLK)

[ENXIO)

[ENOTDIR)

[EFAULT)

[EBUSY)

The effective user 10 is not super-user.

Any of the named files does not exist.

A component of a path prefix is not a directory.

Spec is not a block special device.

The device associated with spec does not exist.

Dir is not a directory.

Spec or dir points outside the allocated address space
of the process.

Dir is currently mounted on, is someone's current work­
ing directory, or is otherwise busy.

[EBUSY)

[EBUSY)

RETURN VALUE

The device associated with spec is currently mounted.

There are no more mount table entries.

Upon successful completion a value of 0 is returned. Otherwise, a value
of -1 is returned and ermo is set to indicate the error.

SEE ALSO
umount(2) .

X/OPEN Portability Guide (July 1985) Part II Page : MOUNT(2).1

MOUNT(2) System Calls

RELATIONSHIP TO SVID
Identical to the SVID except for the last sentence of the description,
which in the SVID reads: " Mount may be invoked only by the super­
user."

Part II Page : MOUNT(2) .2 X/ OPEN Portability Guide (July 1985)

(

(

(

(

System Calls NICE (2)

NAME
nice - change priority of a process (OPTIONAL)

SYNOPSIS
int nice (incr)
int incr;

DESCRIPTION

ERRORS

Nice adds the value of incr to the nice value of the calling process. A
process's nice value is a positive number for which a more positive
value results in lower CPU priority.

A maximum nice value of 39 and a minimum nice value of 0 are imposed
by the system. Requests for values above or below these limits result in
the nice value being set to the corresponding limit.

[EPERM) Nice will fail and not change the nice value if incr is
negative or greater than 40 and the effective user 10 of
the calling process is not super-user.

RETURN VALUE
Upon successful completion, nice returns the new nice value minus 20.
Otherwise, a value of -1 is returned and errno is set to indicate the
error.

SEE ALSO
exec(2) .

RELATIONSHIP TO SVID
Identical to the SVID entry.

This optional facility is included in the SVID kernel extension set
(K_EXT).

X/ OPEN Portability Guide (July 1985) Part II Page: NICE(2) .1

(

(

(

(

System Calls OPEN(2)

NAME
open - open for reading or writing

SYNOPSIS
#include <fcntl.h >

int open (path, ofla9 [, mode])
char *path;
int ofla9, mode;

DESCRIPTION
Path pOints to a path name naming a file. Open opens a file descriptor
for the named file and sets the file status flags according to the value of
of/ago Of/ag values are constructed by oR-ing flags from the following
list (orily one of the first three flags below may be used):

O_RDONL Y Open for reading only.

O_WRONL Y Open for writing only.

O_RDWR Open for reading and writing.

O_NDELAY This flag may affect subsequent reads and writes, see
read(2) and write(2).

When opening a FIFO with O_RDONL Y or O_WRONL Y set:

If O_NDELAY is set :

An open for reading-only will return without
delay. An open for writing-only will return an
error if no process currently has the file open for
reading .

If O_NDELAY is clear:

An open for reading-only will block until a pro­
cess opens the file for writing. An open for
writing-only will block until a process opens the
file for reading .

When opening a file associated with a communication
line: (see CAVEATS, Chapter 1, discussion of termio)

If O_NDELAY is set:

The open will return without waiting for carrier.

If O_NDELAY is clear:

The open will block until carrier is present.

If set, the file pointer will be set to the end of the file prior
to each write.

X/ OPEN Portability Guide-CJuly 1985) Part II Page: OPEN(2) .1

OPEN(2) System Calls

If the file exists, this flag has no effect. Otherwise, the
owner 10 of the file is set to the effective user 10 of the
process, the group 10 of the file is set to the effective
group 10 of the process, and the access permission bits
(see chmod(2)) of the file mode are set to the value of
mode modified as follows, see creat(2):

The corresponding bits are ANoed with the process's file
mode creation mask. See umask(2). Thus, all bits in the
file mode whose corresponding bit in the file mode crea­
tion mask is set are cleared.

If the file exists, its length is truncated to 0 and the mode
and owner are unchanged.

If O_EXCL and O_CREAT are set, open will fail if the file
exists.

The file pointer used to mark the current position within the file is set to
the beginning of the file .

The new file descriptor is set to remain open across exec system calls,
see fcnt/(2) .

ERRORS
The named file is opened unless one or more of the following are true:

[ENOTOIR]

[ENOENT]

[EACCES]

[EACCES]

[EISDIR]

[EROFS]

[EMFILE]

[ENXIO]

[ETXTBSY]

Part II Page : OPEN(2).2

A component of the path prefix is not a directory.

O_CREAT is not set and the named file does not exist.
A component of the path name which must exist does
not exist.

A component of the path prefix denies search permis­
sion or the file does not exist and the directory in which
the file is to be created does not permit writing.

Oflag permission is denied for the named file.

The named file is a directory and oflag is write or
read / write.

The named file resides on a read-only file system and
oflag is write or read/write.

{OPEN_MAX} file descriptors are currently open .

The named file is a character special or block special
file, and the device associated with this special file does
not exist.

The file is a pure procedure (shared text) file that is
being executed and oflag is write or read / write.

X/ OPEN Portability Guide (July 1985)

(

(

(

(

System Calls

[EFAULT]

[EEXIST]

[ENXIO]

[EINTR]

[EN FILE]

[ENOSPC]

RETURN VALUE

OPEN(2)

Path points outside the allocated address space of the
process.

O_CREAT and O_EXCL are set, and the named file exists.

O_NDELAY is set, the named file is a FIFO, O_WRONL Y is
set and no process has the file open for reading.

A signal was caught during the open system call.

The system file table is full. {SYS_OPEN} files are open.

The directory which would contain the new file cannot
be expanded, the file does not exist, and O_CREAT is
specified .

Upon successful completion, the file descriptor is returned. Otherwise, a
value of -1 is returned and ermo is set to indicate the error.

SEE ALSO
close(2) , creat(2), dup(2), fcntl(2) , Iseek(2), read(2), write(2), fcntl(S) .

APPLICATION USAGE
Normally applications should use the stdio routines to open, close, read
and write files . Thus applications should use the stdio routine fopen(3S)
rather than using open(2) .

FUTURE DIRECTIONS
Mandatory or enforcement-mode file and record locking features will be
added.

RELATIONSHIP TO SVID
Identical to the SVID entry, except for the reference to " CAVEATS ,
Chapter 1".

X/OPEN Portability Guide (Ju ly 1985) Part II Page : OPEN(2).3

(

(

(

(

System Calls PAU5E (2)

NAME
pause - suspend process until signal

SYNOPSIS
int pause ()

DESCRIPTION

ERRORS

Pause suspends the calling process until it receives a signal. The signal
must be one that is not currently set to be ignored by the calling pro­
cess.

[EINTR]

RETURN VALUE

See RETURN VALUE below.

If the signal causes termination of the calling process, pause will not
return .

If the signal is caught by the calling process and control is returned from
the signal-catching function see signa/(2) , the calling process resumes
execution from the point of suspension ; pause(2) returns a value of -1
and erma is set to [EINTR] .

SEE ALSO
alarm(2), kill(2), signal(2), wait(2) .

RELATIONSHIP TO SVID
Identical to the SVID entry.

X/OPEN Portability Guide (July 1985) Part" Page : PAUSE(2).1

(

(

(

(

System Calls PIPE(2)

NAME
pipe - create an interprocess channel

SYNOPSIS
int pipe (tildes)
int tildes[2];

DESCRI PTION

ERRORS

Pipe creates an I/ O mechanism called a pipe and returns two tile
descriptors, fildes[O] and fildes[1]. Fildes[O] is opened for reading and
fi/des[1] is opened for writing and the O_NDELAY flag is clear.

Up to {PIPE_MAX} bytes of data are buffered by the pipe before the writ­
ing process is blocked. A read on file descriptor fildes[O] accesses the
data written to fildes[1] on a first-in-first-out basis.

Pipe will fail if one or more of the following are true:

[EMFILE] If {OPEN_MAX} -1 or more file descriptors are
currently open in this process.

[ENFILE] The system file table would overflow.

RETURN VALUE
Upon successful completion, a value of 0 is returned . Otherwise, a
value of -1 is returned and erma is set to indicate the error.

SEE ALSO
read(2), write(2) .

FUTURE DIRECTIONS
[EFAULT] will be returned in erma if the argument is not a valid address
for this process.

RELATIONSHIP TO SVID
Identical to the SVID entry.

X/OPEN Portability Guide (July 1985) Part II Page : PIPE(2) .1

(

('

(

(

System Calls PLOCK(2)

NAME
plock - lock process, text, or data in memory (OPTIONAL)

SYNOPSIS
#include <sys/lock.h>

int plock (op)
int op;

DESCRIPTION

ERRORS

Plock allows the calling process to lock its text segment (text lock), its
data segment (data lock), or both its text and data segments (process
lock) into memory. Locked segments are immune to all routine swap­
ping. Plock also allows these segments to be unlocked. The effective
user 10 of the calling process must be super-user to use this call. Op
specifies the following:

PROClOCK lock text and data segments into memory (pro­
cess lock)

TXTlOCK

DATlOCK

UNLOCK

lock text segment into memory (text lock)

lock data segment into memory (data lock)

remove locks

Plock will fail and not perform the requested operation if one or more of
the following are true:

[EPERM]

[EINVAl]

[EINVAl]

[EINVAl]

[EINVAl]

The effective user 10 of the calling process is not
super-user.

Op is equal to PROClOCK and a process lock, a text
lock, or a data lock already exists on the calling pro­
cess.

Op is equal to TXTlOCK and a text lock, or a process
lock already exists on the calling process.

Op is equal to OATlOCK and a data lock, or a process
lock already exists on the calling process.

Op is equal to UNLOCK and no type of lock exists on
the calling process.

RETURN VALUE
Upon successful completion, a value of 0 is returned to the calling pro­
cess. Otherwise, a value of -1 is returned and erma is set to indicate
the error.

SEE ALSO
exec(2), exit(2), fork(2), lock(5).

X/OPEN Portability Guide (July 1985) Part II Page: PLOCK(2) .1

PLOCK(2) System Calls

APPLICATION USAGE
Plock(2) should not be used by most applications. Only programs that
must have the type of real-time control it provides should use it.

RELATIONSHIP TO SVID
Identical to the SVID entry.

This optional facility is included in the SVID kernel extension set
(K_EXT).

Part II Page: PLOCK(2).2 X/ OPEN Portability Guide (July 1985)

(

(

(

(

System Calls PROFIL(2)

NAME
profil - execution time profile (OPTIONAL)

SYNOPSIS
void profil (buff, bufsiz, offset, scale)
char *buff;
int bufsiz, offset, scale;

DESCRIPTION
Buff paints to an area of store whose length (in bytes) is given by bufsiz .
After this call, the user's program counter (pc) is examined each clock
tick «(CLK_TCK) times per second); offset is subtracted from it, and the
result multiplied by scale. If the resulting number corresponds to an
entry inside buff, that entry is incremented. An "entry" is defined as a
series of bytes with length sizeof(short).

The interpretation of scale is implementation defined.

Profiling is turned off by giving a scale of 0 or 1. It is rendered
ineffective by giving a bufsiz of O. Profiling is turned off when an
exec(2) is executed, but remains on in child and parent both after a
fork(2) . Profiling will be turned off if an update in buff would cause a
memory fault.

RETURN VALUE
Not defined.

APPLICATION USAGE
Profil(2) would normally be used in an application program only during
its development, to analyse the program's performance.

RELATIONSHIP TO SVID
Identical to the SVID entry, except that the SVID gives an explicit
interpretation of scale as follows:

"The scale is interpreted as an unsigned, fixed-point fraction with binary
point at the left: 0177777 (octal) gives a 1-1 mapping of pc's to words in
buff; 077777 (octal) maps each pair of instruction words together.
02(octal) maps all instructions onto the beginning of buff (producing a
non-interrupting core clock)."

This optional facility is included in the SVID kernel extension set
(K_EXT).

X/OPEN Portability Guide (July 1985) Part II Page: PROFIL(2).1

(

(

(

(

System Calls PTRACE(2)

NAME
ptrace - process trace (OPTIONAL)

SYNOPSIS
int ptrace (request, pid, addr, data);
int request, addr, data;
int pid;

DESCRIPTION
Ptrace provides a means by which a parent process may control the
execution of a child process. Its primary use is for the implementation of
breakpoint debugging. The child process behaves normally until it
encounters a signal (see signa/(2)) at which time it enters a stopped
state ~nd its parent is notified via wait(2). When the child is in the
stopped state, its parent can examine and modify its "core image" using
ptrace. Also, the parent can cause the child either to terminate or con­
tinue, with the possibility of ignoring the signal that caused it to stop.

The request argument determines the precise action to be taken by
ptrace and is one of the following :

o This request must be issued by the child process if it is to
be traced by its parent. It turns on the child 's trace flag
that stipulates that the child should be left in a stopped
state upon receipt of a signal rather than the state
specified by tunc see signa/(2) . The pid, addr, and data
arguments are ignored, and a return value is not defined
for this request. Peculiar results will ensue if the parent
does not expect to trace the child .

The remainder of the requests can only be used by the parent process.
For each , pid is the process 10 of the child. The child must be in a
stopped state before these requests are made.

1, 2 With these requests, the word at location addr in the
address space of the child is returned to the parent pro­
cess. If instruction (I) and data (D) space are separated ,
request 1 returns a word from I space, and request 2
returns a word from D space. If I and D space are not
separated either request 1 or request 2 may be used with
equal results. The data argument is ignored. These two
requests will fail if addr is not the start address of a word ,
in which case a value of -1 is returned to the parent
process and the parent's erma is set to [EIO].

3 With this request, the word at location addr in the child's
USER area in the system's address space is returned to
the parent process. The data argument is ignored. This

X/OPEN Portability Guide (July 1985) Part II Page : PTRACE(2) .1

PTRACE(2) System Calls

request will fail if addr is not the start address of a word
or is outside the USER area, in which case a value of -1
is returned to the parent process and the parent's erma is
set to [EIO].

4, 5 With these requests, the value given by the data argument
is written into the address space of the child at location
addr. If I and D space are separated, request 4 writes a
word into I space, and request 5 writes a word into D
space. If I and D space are not separated, either request
4 or request 5 may be used with equal results . Upon suc­
cessful completion , the value written into the address
space of the child is returned to the parent. These two
requests will fail if addr is a location in a pure procedure
space and another process is executing in that space, or
addr is not the start address of a word. Upon failure a
value of -1 is returned to the parent process and the
parent's erma is set to [EIO] .

6 With this request, a few entries in the child's USER area
can be written. Data gives the value that is to be written
and addr is the location of the entry. Entries that can be
written are implementation specific but might include gen­
eral registers of the Processor Status Word .

7 This request causes the child to resume execution . If the
data argument is 0, all pending signals including the one
that caused the child to stop are canceled before it
resumes execution. If the data argument is a valid signal
number, the child resumes execution as if it had incurred
that signal, and any other pending signals are canceled .
The addr argument must be equal to 1 for this request.
Upon successful completion, the value of data is
returned to the parent. This request will fail if data is not
o or a valid signal number, in which case a value of -1
is returned to the parent process and the parent's erma is
set to [EIO] .

8 This request causes the child to terminate with the same
consequences as exit(2).

9 This request is implementation dependent but if operative,
it is used to request single-stepping through the instruc-

Part II Page: PTRACE(2) .2 X/ OPEN Portability Guide (July 1985)

(

(

(

(

System Calls PTRACE (2)

ERRORS

tions of the child .

To forestall possible fraud, ptrace inhibits the set-user-id facility
on subsequent exec(2) calls. If a traced process calls exec, it
will stop before executing the first instruction of the new image
showing signal SIGTRAP.

Ptrace will in general fail if one or more of the following are true:

[EIO]

[ESRCH]

Request is an illegal number. See the summary for
each request type above.

Pid identifies a child that does not exist or has not exe­
cuted a ptrace with request O.

RETURN VALUE
Upon failure, a value of -1 is returned. Return values on successful
completion are specific to the request type (see above).

SEE ALSO
exec(2), signal(2), wait(2).

APPLICATION USAGE
Ptrace(2) should not be used by applications. It is only used by
software debugging programs and it is hardware dependent.

Parts of this may not be implementable on some hardware; other
hardware may require that it be extended.

RELATIONSHIP TO SVID
Identical to the SVID entry.

This optional facility is included in the SVID kernel extension set
(K_EXT).

X/ OPEN Portability Guide (July 1985) Part II Page : PTRACE(2).3

(

(

(

(

System Calls READ(2)

NAME
read - read from file

SYNOPSIS
int read (fildes, buf, nbyte)
int fildes;
char *buf;
unsigned nbyte;

DESCRIPTION

ERRORS

Fildes is a file descriptor obtained from a creat, open, dup, tcnt!, or pipe
system call.

Read attempts to read nbyte bytes from the file associated with tildes
into the buffer pointed to by but.

On devices capable of seeking, the read starts at a position in the file
given by the file pointer associated with tildes. Upon return from read,
the file pointer is incremented by the number of bytes actually read.

Devices that are incapable of seeking, e.g. terminals, always read from
the current position . The value of a file pointer associated with such a
file is undefined.

Upon successful completion, read returns the number of bytes actually
read and placed in the buffer; this number may be less than nbyte if the
file is associated with a communication line (see ioct!(2) and termio(7»
or if the number of bytes left in the file is less than nbyte bytes or if the
file is a pipe or a special file. A value of 0 is returned when an end-of­
file has been reached.

When attempting to read from an empty pipe (or FIFO):

If O_NDELAY is clear, the read will block until data is written to
the file or the file is no longer open for writing.

When attempting to read a file associated with a character special file
that has no data currently available:

If O_NDELAY is clear, the read will block until the data becomes
available. (This functionality of O_NDELAY depends on the
implementation of the termio(7) interface)t see CAVEATS,
Chapter 1.

Read will fail if one or more of the following are true:

[EBADF] Fildes is not a valid file descriptor open for reading.

[EFAULT] But points outside the allocated address space.

X/ OPEN Portability Guide (July 1985) Part II Page: REAO(2).1

READ (2) System Calls

[EINTR] A signal was caught during the read system call.

[EIO] An I/ O error occurred on a special file .

[ENXIO] A request was made of a non-existent special file, or the
request was outside the capabilities of the device.

RETURN VALUE
Upon successful completion a non-negative integer is returned indicating
the number of bytes actually read. Otherwise, a -1 is returned and
ermo is set to indicate the error.

SEE ALSO
creat(2) , dup(2), fcntl(2), ioctl(2), lockf(3C), open(2), pipe(2) , signal(2),
termio(7) .

APPLICATION USAGE
Normally, applications should use the stdio library routines to open,
close, read, and write files. Thus, an application that used the stdio rou­
tine fopen(3S) to open a file should use the stdio routine fread(3S)
rather than read(2) to read it.

FUTURE DIRECTIONS
Read on a pipe, FIFO, or tty.!: line with the O_NDELAY flag set will return
-1 rather than 0 when no data was present at the time of the read.

[EAGAIN] will be returned in ermo when no data is available on a pipe,
FIFO or tty!: line being read.

Read will be enhanced to provide enforcement-mode record and file
locking features.

RELATIONSHIP TO SVID
t This sentence additional to SVID.
:j: Subject to restrictions imposed by optional functionality of termio(7) .

The errors [EIO] and [ENXIO] are additional to the SVID.

Part II Page : REAO(2).2 X/OPEN Portability Guide (July 1985)

(

(

(

(

System Calls

NAME
setpgrp - set process group 10

SYNOPSIS
int setpgrp ()

DESCRIPTION

SETPGRP(2)

Setpgrp sets the process group 10 of the calling process to the process
10 of the calling process and returns the new process group 10.

RETURN VALUE
Setpgrp returns the value of the new process group 10.

SEE ALSO
exec(2), fork(2), getpid(2), kill(2), signal(2).

RELATIONSHIP TO SVID
Identical to the SVID entry.

X/OPEN Portability Guide (July 1985) Part II Page : SETPGRP(2).1

(

(

(

(

System Calls SETUID(2)

NAME
setuid, setgid - set user and group IDs

SYNOPSIS
int setuid (uid)
int uid;

int setgid (gid)
int gid;

DESCRIPTION

ERRORS

Setuid (setgid) is used to set the real user (group) 10 and effective user
(group) 10 of the calling process.

If the effective user 10 of the calling process is super-user, the real user
(group) 10 and effective user (group) 10 are set to uid (gid).

If the effective user 10 of the calling process is not super-user, but the
saved set-user (group) 10 from exec(2) is equal to uid(gid) , the effective
user (group) 10 is set to uid(gid) .

[EPERM] Setuid (setgid) will fail if the real user (group) 10 of the
calling process is not equal to uid (gid) and its effective
user 10 is not super-user.

[EINVAL]

RETURN VALUE

The uid is out of range.

Upon successful completion, a value of 0 is returned. Otherwise, a
value of -1 is returned and erma is set to indicate the error.

SEE ALSO
getuid(2), exec(2).

APPLICATION USAGE
The type of the argument taken by setuid differs from the type returned
by getuid(2). This may prompt diagnostics from lint (see Part 3) but is
otherwise harmless.

RELATIONSHIP TO SVID
Identical to the SVID entry.

X/OPEN Portability Guide (July 1985) Part II Page: SETUID(2).1

(

(

(

(

System Calls SIGNAL(2)

NAME
signal - specify what to do upon receipt of a signal

SYNOPSIS
#include <signal.h>

int (*signal (sig, func»()
int sig;
int (*func)();

DESCRIPTION
Signal allows the calling process to choose one of three ways in which it
is possible to handle the receipt of a specific signal. Sig specifies the
signal and tunc specifies the choice.

Sig can be assigned anyone of the following except SIGKILL:

SIGHUP
SIGINT
SIGQUITt
SIGILLt
SIGTRAPt
SIGABRT
SIGFPEt
SIGKILL
SIGSEGvt
SIGSyst
SIGPIPE
SIGALRM
SIGTERM
SIGUSR1
SIGUSR2

hangup
interrupt
quit
illegal instruction (not reset when caught)
trace trap (not reset when caught)
process abort signal
floating point exception
kill (cannot be caught or ignored)
segmentation violation
bad argument to system call
write on a pipe with no one to read it
alarm clock
software termination signal
user-defined signal 1
user-defined signal 2

(t) The default action for these signals is an abnormal process termina­
tion. See SIG_DFL below.

For portability, applications should use the signals listed above and no
others. (For example, the System V signals SIGEMT, SIGBUS, and
SIGIOT are implementation dependent and are not listed above).
Specific implementations may have other implementation-specific sig-

X/OPEN Portability Guide (July 1985) Part II Page: SIGNAL(2).1

SIGNAL(2) System Calls

ERRORS

nals.

Func is assigned one of three values: SIG_DFL, SIG_IGN, or a function
address. The actions prescribed by these values are as follows:

SIG_DFL terminate process upon receipt of a signal
Upon receipt of the signal sig, the receiving process is to be
terminated with all of the consequences outlined in exit(2).
In addition if sig is one of the signals shown with an * above,
implementation-dependent abnormal process termination rou­
tines such as a core dump, may be invoked.

SIG_IGN ignore signal
The signal sig is to be ignored.

Note: the signal SIGKILL cannot be ignored.

function address - catch signal
Upon receipt of the signal sig, the receiving process is to
execute the signal-catching function pOinted to by func. The
signal number sig will be passed as the only argument to the
signal-catching function. Additional arguments may be
passed to the Signal-catching function for hardware­
generated signals. Before entering the signal-catching func­
tion, the value of func for the caught signal will be set to
SIG_DFL unless the signal is SIGILL, or SIGTRAP.

Signal will not catch an invalid function argument, func, and
results are undefined when an attempt is made to execute
the function at the bad address.

Upon return from the signal-catching function, the receiving
process will resume execution at the point it was interrupted,
except for implementation defined signals where this may not
be true.

When a signal that is to be caught occurs during a read(2) , a
write (2) , an open(2) , or an ioct/(2) system call on a slow
device (like a terminal; but not a file), during a pause(2) sys­
tem call, or during a wait(2) system call that does not return
immediately, the signal catching function will be executed
and then the interrupted system call may return a -1 to the
calling process with ermo set to [EINTR].

Note: The signal SIGKILL cannot be caught.

A call to signal cancels a pending signal sig except for a pending SIG­
KILL signal.

Part II Page: SIGNAL(2) .2 X/OPEN Portability Guide (July 1985)

(

(

(

(

System Calls

[EINVAL]

RETURN VALUE

SIGNAL(2)

Signal will fail if sig is an illegal signal number, or is
SIGKILL.

Upon successful completion, signal returns the previous value of tunc
for the specified signal sig. Otherwise, a value of (int (*)())-1 is returned
and erma is set to indicate the error.

SEE ALSO
kill(2), pause(2), wait(2), setjmp(3C) signal(5).

APPLICATIONS USAGE
For portability, applications should use only the symbolic names of sig­
nals rather than their values and use only the set of signals defined here.
Specific implementations may have additional signals.

The signal SIGSEGV is only included for compatibility with existing appli­
cations. It is not part of the SVID and should not be used in programs
that wish to be portable.

If signals are being caught, then erma may be changed by errors that
occur in the signal-catching funtion. Its value cannot be relied upon if
there is any possibility of a signal arriving between the setting of erma
and its use.

FUTURE DIRECTIONS
A macro SIG_ERR will be defined in < signal.h > to represent the return
value (int(*)())-1 by signal in the case of error.

RELATIONSHIP TO SVID
Identical to the SVID entry, except for the inclusion of the two extra sig­
nals, SIGABRT and SIGSEGV. (N .B. The addition of SIGABRT is forecast
in the FUTURE DIRECTIONS section of the SVID.)

X/OPEN Portability Guide (July 1985) Part II Page: SIGNAL(2) .3

(

(

(

(

System Calls STAT(2)

NAME
stat, fstat - get file status

SYNOPSIS
#include < sys/types.h>
#include < sys/stat.h >

int stat (path, buf)
char *path;
struct stat * buf;

int fstat (fildes, buf)
int fildes;
struct stat *buf;

DESCRIPTION
Path points to a path name naming a file. Read, write , or execute per­
mission of the named file is not required, but all directories listed in the
path name leading to the file must be searchable. Stat obtains informa­
tion about the named file.

Similarly, tstat obtains information about an open file known by the file
descriptor tildes, obtained from a successful open, creat , dup, tcnt!, or
pipe system call.

But is a pOinter to a stat structure into which information is placed con­
cerning the file.

The contents of the structure pOinted to by but include the following
members:

ushort
ino_t
dev_t

short
ushort
ushort
ofU

sCmode;
sUno;
st_dev;

sCnlink;
st_uid;
st_gid;
sCsize;

X/OPEN Portability Guide (July 1985)

I * File mode, see mknod(2) * I
1* Inode number * I
1* 10 of device containing *1
I * a directory entry for this * I
I * file * I
1* 10 of device * I '
I * This entry is defined only * I
I * for character special or I * I
I * block special files * I
1* Number of links *1
I * User 10 of the file 's owner * I
1* Group 10 of the file's group *1
I * File size in bytes * I

Part" Page: STAT(2).1

STAT(2) System Calls

ERRORS

time_t
time_t
time_t

st_atime;
st_mtime;
st_ctime;

I * Time of last access * I
I * Time data last modified * I
I * Time of last file status * I
1* change * I
I * Times in seconds since * I
1* 00:00:00 GMT, Jan. 1, 1970 * I

sCatime Time when file data was last accessed. Changed by the fol­
lowing system calls: creat(2) , fcntl(2) , mknod(2) , pipe(2) ,
utime(2) , and read(2).

sCmtime Time when data was last modified. Changed by the following
system calls: creat(2) , mknod(2), pipe(2) , utime(2) , and
write(2) .

sCctime Time when file status was last changed . Changed by the fol­
lowing system calls : chmod(2) , chown(2) , creat(2) , link(2) ,
mknod(2) , pipe(2), unlink(2) , utime(2) , and write(2).

Stat will fail if one or more of the following are true:

[ENOTDIR)

[ENOENT]

[EACCES)

[EFAUL T]

A component of the path prefix is not a directory.

The named file does not exist.

Search permission is denied for a component of the
path prefix.

Buf or path points to an invalid address.

Fstat will fail if one or more of the following are true:

[EBADF)

[EFAULT]

RETURN VALUE

Fildes is not a valid open file descriptor.

Buf pOints to an invalid address.

Upon successful completion a value of 0 is returned. Otherwise, a value
of -1 is returned and ermo is set to indicate the error.

SEE ALSO
chmod(2), chown(2), creat(2), Iink(2), fcntl(2), mknod(2), pipe(2),
read(2), time(2), unlink(2), utime(2), write(2), types(5), stat(5).

RELATIONSHIP TO SVID
Identical to the SVID entry.

Part II Page : STAT(2) .2 X/OPEN Portability Guide (July 1985)

(

(

(

System Calls STIME(2)

NAME
stime - set time

SYNOPSIS
int stime (tp)
long *tp;

DESCRIPTION

ERRORS

Stime sets the system's idea of the time and date. Tp points to the
value of time as measured in seconds from 00:00:00 GMT January 1,
1970.

Stime will fail if the following is true:

[EPERM] the effective user ID of the calling process is not super­
user.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a
value of -1 is returned and erma is set to indicate the error.

SEE ALSO
time(2).

RELATIONSHIP TO SVI D
Identical to the SVID entry.

The SVID reads "" . will fail if one or more of the following are true ". "
in the ERRORS section, yet there is only one possible error.

X/OPEN Portability Guide (July 1985) Part II Page : STIME(2) .1

(

(,

(

(

System Calls SYNC(2)

NAME
sync - update super-block

SYNOPSIS
void sync ()

DESCRIPTION
Sync causes all information in kernel buffers t that updates a file system
to be written out to the file system. This includes modified super blocks,
modified i-nodes, and delayed block 1/ 0.

It should be used by programs which examine a file system.

The writing, although scheduled, is not necessarily complete upon return
from sync.

:j: The term "kernel buffers" refers to system buffers which are invisible
to the user and are only present to improve performance. It does not
mean buffering provided by the stdio(3S) functions.

APPLICATION USAGE
Application programs are not expected to use sync.

RELATIONSHIP TO SVID
Identical to the SVID entry, except:
t In the first line of the DESCRIPTION section, the SVID has the term
"transient memory" in place of "kernel buffers". The XI OPEN definition
has included the last paragraph of the DESCRIPTION section to achieve
the same purpose.
:j: Explanatory text added.

X/ OPEN Portability Guide (July 1985) Part II Page : SYNC(2) .1

(

(

(

(

System Calls TIME(2)

NAME
time - get time

SYNOPSIS
long time ((long *) 0)

long time (tloc)
long *tloc;

DESCRIPTION

ERRORS

Time returns the value of time in seconds since 00:00:00 GMT, January
1,1970.

As long as tloe is not zero, the return value is also stored in the location
to which tloe pOints.

[EFAULTj

RETURN VALUE

tloe pOints to an invalid address.

Upon successful completion, time returns the value of time. Otherwise,
a value of -1 is returned and ermo is set to indicate the error.

APPLICATION USAGE
Some implementations of time fail to check the validity of tloe and give
undefined behaviour if tloe pOints to an invalid address.

SEE ALSO
stime(2).

RELATIONSHIP TO SVI D
Functionally identical to the SVID entry. The warning above in APPLICA­
TION USAGE is implicit in the SVID definition, which assumes that no sys­
tems check tloe. The SVID does not mention [EFAULTj or ermo.

X/OPEN Portability Guide (July 1985) Part II Page: TIME(2).1

(

(

(

System Calls TIMES(2)

NAME
times - get process and chi ld elapsed process times

SYNOPSIS
#include <sys/types.h>
#include <sys/times.h >

long times (buffer)
struct tms *buffer;

DESCRIPTION

ERRORS

Times fills the structure pointed to by buffer with time-accounting infor­
mation. The structure tms, which is defined in <sys/times.h>, contains
the following elements:

time_t
time_t
time_t
time_t

tms_utime;
tms_stime;
tms_cutime;
tms_cstime;

This information comes from the calling process and each of its ter­
minated child processes for which it has executed a wait(2). All times
are defined in {CLK_TCK}ths of a second.

Tms_utime is the CPU time used while executing instructions in the user
space of the calling process.

Tms_stime is the CPU time used by the system on behalf of the calling
process.

Tms_cutime is the sum of the tms_utimes and tms_cutimes of the child
processes.

Tms_cstime is the sum of the tms_stimes and tms_cstimes of the child
processes.

[EFAUL T] Times will fail if buffer points to an illegal address.

RETURN VALUE
Upon successful completion, times returns the elapsed real time, in
{CLK_TCK}ths of a second, since an arbitrary point in the past (e.g., sys­
tem start-up time). This point does not change from one invocation of
times to another. If times fails, -1 is returned and erma is set to indicate
the error.

SEE ALSO
exec(2), fork(2), time(2), wait(2), types(5) times(5).

RELATIONSHIP TO SVID
Identical to the SVID entry.

X/OPEN Portability Guide (July 1985) Part II Page: TIMES(2).1

(

(

(

(

System Calls ULlMIT(2)

NAME
ulimit - get and set user limits

SYNOPSIS
long ulimit (cmd, newlimit)
int cmd;
long newlimit;

DESCRI PTION

ERRORS

U1imit provides for control over process limits. The cmd values available
are:

Get the file size limit of the process. The limit is in units of 512-
byte blocks and is inherited by child processes. Files of any size
can be read .

2 Set the file size limit of the process to the value of newlimit. Any
process may decrease this limit, but only a process with an
effective user 10 of super-user may increase the limit.

3 Get the maximum possible brk value see brk(2) . Brk(2) is
optional.

[EPERM) Ulimit will fail and the limit will be unchanged if a pro­
cess with an effective user 10 other than super-user
attempts to increase its file size limit.

RETURN VALUE
Upon successful completion, a non-negative value is returned . Other­
wise, a value of -1 is returned and ermo is set to indicate the error.

SEE ALSO
write(2) .

RELATIONSHIP TO SVID
Identical to the SVID entry, except that the cmd value 3 case has been
added. This arises because brk(2) is included as an optional facility by
X/ OPEN, although it is omitted from the SVID.

X/ OPEN Portability Guide (July 1985) Part II Page: ULlMIT(2) .1

(

(

(

System Calls

NAME
umask - set and get file creation mask

SYNOPSIS
int umask (cmask)
int cmask;

DESCRIPTION

UMASK(2)

Umask sets the process's file mode creation mask (see creat(2)) to
cmask and returns the previous value of the mask. Only the owner,
group, other permission bits of cmask and the file mode creation mask
are used.

RETURN VALUE
The previous value of the file mode creation mask is returned.

SEE ALSO
chmod(2), creat(2), mknod(2), open(2).

RELATIONSHIP TO SVID
Identical to the SVID entry.

X/OPEN Portability Guide (July 1985) Part II Page : UMASK(2) .1

(

(

(

(

System Calls UMOUNT(2)

NAME
umount - unmount a file system

SYNOPSIS
int umount (spec)
char *spec;

DESCRIPTION

ERRORS

Umaunt requests that a previously mounted file system contained on the
block special device identified by spec be unmounted. Spec is a pointer
to a path name. After unmounting the file system, the directory upon
which the file system was mounted reverts to its ordinary interpretation.

Umaunt may be invoked with an effective user 10 equal to super-user.

Umount will fail if one or more of the following are true:

[EPERM]

[ENXIO]

[ENOTOIR]

[ENOENT]

[ENOTBLK]

[EINVAL]

[EBUSY]

[EFAULT]

The process's effective user 10 is not super-user.

The device associated with spec does not exist.

A component of the path prefix is not a directory.

The named file does not exist.

Spec is not a block special device.

Spec is not mounted.

A file on spec is busy.

Spec pOints to an illegal address.

RETURN VALUE
Upon successful completion a value of 0 is returned. Otherwise, a value
of -1 is returned and erma is set to indicate the error.

SEE ALSO
mount(2).

RELATIONSHIP TO SVID
Identical to the SVID entry, except for the last paragraph of the
DESCRIPTION section , which in the SVID reads: "Umaunt may be
invoked only by the super-user."

X/ OPEN Portability Guide (July 1985) Part II Page : UMOUNT(2) .1

(

(

(

(

System Calls UNAME(2)

NAME
uname - get name of current system

SYNOPSIS
#include < sys/utsname.h>

int uname (name)
struct utsname *name;

DESCRIPTION

ERRORS

Uname stores information identifying the current system in the structure
pointed to by name.

Uname uses the structure defined in < sys/utsname.h> whose
members are:

char sysname[(SYS_NMLN)];
char nodename[{SYS_NMLN)];
char release[(SYS_NMLN)] ;
char version[(SYS_NMLN)];
char machine[{SYS_NMLN)];

Uname returns a null-terminated character string naming the current
system in the character array sysname. Similarly, nodename contains
the name that the system is known by on a communications network.
Release and version further identify the operating system. Machine con­
tains a standard name that identifies the hardware that the system is run­
ning on .

[EFAUL T] Uname will fail if name points to an invalid address.

RETURN VALUE
Upon successful completion, a non-negative value is returned. Other­
wise, -1 is returned and ermo is set to indicate the error.

SEE ALSO
utsname(5).

RELATIONSHIP TO SVID
Identical to the SVID entry, except that the term " UNIX system" has
been changed to "system" .

X/ OPEN Portability Guide (July 1985) Part II Page : UNAME(2) .1

(

(,

(

(

System Calls UNLlNK(2)

NAME
unlink - remove directory entry

SYNOPSIS
int unlink (path)
char *path;

DESCRIPTION

ERRORS

Unlink removes the directory entry named by the path name pointed to
by path . When all links to a file have been removed and no process has
the file open, the space occupied by the file is freed and the file ceases
to exist. If one or more processes have the file open when the last link
is removed, space occupied by the file is not released until all references
to the file have been closed .

The named file is unlinked unless one or more of the following are true:

[ENOTDIR]

[ENOENT]

[EACCES]

[EACCES]

[EPERM]

[EBUSY]

[ETXTBSY]

[EROFS]

[EFAULT]

A component of the path prefix is not a directory.

The named file does not exist .

Search permission is denied for a component of the
path prefix.

Write permission is denied on the directory containing
the link to be removed .

The named file is a directory and the effective user 10 of
the process is not super-user.

The entry to be unlinked is the mount point for a
mounted file system.

The entry to be unlinked is the last link to a pure pro­
cedure (shared text) file that is being executed.

The directory entry to be unlinked is part of a read-only
file system.

Path points outside the process 's allocated address
space.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a
value of -1 is returned and erma is set to indicate the error.

SEE ALSO

X/OPEN Portability Guide (July 1985) Part II Page : UNLlNK(2).1

UNLlNK(2) System Calls

close(2), link(2), open(2).

RELATIONSHIP TO SVID
Identical to the SVID entry, except that the last sentence of the
DESCRIPTION section has been clarified . The SVID reads: "".removed,
the removal is postponed until all references to the file have been
closed".

Part II Page : UNLlNK(2) .2 X/OPEN Portability Guide (July 1985)

(

(

(

(

System Calls USTAT(2)

NAME
ustat - get file system statistics

SYNOPSIS
#include <sys/types.h>
#include < ustat.h >

int ustat (dev, buf)
int dev;
struct ustat *buf;

DESCRIPTION

ERRORS

Ustat returns information about a mounted file system. Oev is a device
number identifying a device containing a mounted file system. Buf is a
pointer to a ustat structure that includes the following elements:

daddU Ufree; 1* Total free blocks *1
ino_t Uinode; I * Number of free inodes * I
char Uname[6] ; 1* Filsys name or NULL * I
char Upack[6] ; 1* Filsys pack name or NULL * I

The last two fields , Uname and '-'pack, may not have meaningful infor­
mation on all systems, and, in that case, will contain the NULL character.

Ustat will fail if one or more of the following are true:

[EINVAL]

[EFAULT]

Oev is not the device number of a device containing a
mounted file system.

Buf pOints outside the process's allocated address
space.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a
value of -1 is returned and erma is set to indicate the error.

SEE ALSO
stat(2), types(5), ustat(5).

RELATIONSHIP TO SVID
Identical to the SVID entry.

X/OPEN Portability Guide (July 1985) Part II Page: USTAT(2).1

(

(

(

(

System Calls UTIME(2)

NAME
utime - set file access and modification times

SYNOPSIS
include < sys/types.h>

int uti me (path, times)
char *path ;
struct utimbuf *times;

DESCRIPTION

ERRORS

Path points to a path name naming a file . Utime sets the access and
modification times of the named file .

If times is NULL, the access and modification times of the file are set to
the current time. A process must be the owner of the file or have write
permission to use utime in this manner.

If times is not NULL, times is interpreted as a pOinter to a utimbuf struc­
ture and the access and modification times are set to the values con­
tained in the designated structure. Only the owner of the file or the
superuser may use utime this way.

The times in the following structure utimbuf are measured in seconds
since 00:00:00 GMT, Jan. 1, 1970:

struct utimbuf{

} ;

actime;
modtime;

Utime will also cause the time of the last file status change (sCctime) to
be updated, see stat(5).

Utime will fail if one or more of the following are true:

[ENOENT]

[ENOTDIR]

[EACCES]

[EPERM]

[EACCES]

[EROFS]

The named file does not exist.

A component of the path prefix is not a directory.

Search permission is denied by a component of the
path prefix.

The effective user 10 is not super-user and not the
owner of the file and times is not NULL.

The effective user 10 is not super-user and not the
owner of the file and times is NULL and write access is
denied.

The file system containing the file is mounted read-only.

X/ OPEN Portability Guide (July 1985) Part II Page : UTIME(2). 1

UTIME(2)

[EFAULT]

[EFAULT]

RETURN VALUE

System Calls

Times is not NULL and points outside the process's allo­
cated address space.

Path points outside the process's allocated address
space.

Upon successful completion , a value of a is returned . Otherwise, a
value of -1 is returned and erma is set to indicate the error.

SEE ALSO
stat(2), types(5) .

RELATIONSHIP TO SVID
Identical to the SVID entry, except that the SVID does not give an explicit
declaration of struct utimbuf anywhere.

Part II Page: UTIME(2) .2 X/OPEN Portability Guide (July 1985)

(

(

(

System Calls WAIT(2)

NAME
wait - wait for child process to stop or terminate

SYNOPSIS
int wait (stat_loc)
int *stat_loc;

i nt wait «i nt *)0)

DESCRIPTION
Wait suspends the calling process until one of the immediate children
terminates or until a child that is being traced stops because it has hit a
break point. If a child process stopped or terminated prior to the call on
wait, return is immediate.

If staUoe (taken as an integer) is non-zero, 16 bits of information called
status are stored in the low order 16 bits of the location pOinted to by
staUoe. Status can be used to differentiate between stopped and ter­
minated child processes and if the child process terminated, status
identifies the cause of termination and passes useful information to the
parent. This is accomplished in the following manner:

If the child process stopped, the low order 8 bits of status will
be set to 0177 and the next 8 bits of status will contain the
number of the signal that caused the process to stop.

If the child process terminated due to an exit call , the low order
8 bits of status will be zero and the next 8 bits will contain the
low order 8 bits of the argument that the child process passed
to exit(2) .

If the child process terminated due to a signal, the low order 8
bits will contain the number of the signal that caused the termi­
nation and the next 8 bits of status will be zero. In addition, if
abnormal process termination routines (see signa/(2)) were
successfully completed, then the low order seventh bit (i.e. bit
0200) will be set .

If a parent process terminates without waiting for its child processes to
terminate, a special system process inherits the child processes, see
exit(2).

Wait will fail and its actions are undefined if staUoe points to an illegal
address.

X/OPEN Portability Guide (July 1985) Part II Page: WAIT(2) .1

WAIT(2) System Calls

ERRORS
Wait will fail and return immediately if the following is true:

[ECHILD] The calling process has no existing unwaited-for child
processes.

RETURN VALUE
If wait returns due to the receipt of a signal, a value of -1 is returned to
the calling process and erma is set to [EINTR] . If wait returns due to a
stopped or terminated child process, the process ID of the child is
returned to the calling process. Otherwise, a value of -1 is returned and
erma is set to indicate the error.

SEE ALSO
exec(2), exit(2), fork(2), pause(2), signal(2).

RELATIONSHIP TO SVID
Identical to the SVID entry, except that in the ERRORS section the SVID
reads " ... if one or more of the following are true:" even though only one
error is given.

Part II Page: WAIT(2).2 X/ OPEN Portability Guide (July 1985)

(

(

(

System Calls WRITE (2)

NAME
write - write on a file

SYNOPSIS
int write (fildes, buf, nbyte)
int tildes;
char *buf;
unsigned nbyte;

DESCRIPTION

ERRORS

Fildes is a file descriptor obtained from a creat , open , dup, tent!, or pipe
system call.

Write attempts to write nbyte bytes from the buffer pointed to by but to
the file associated with the tildes.

On devices capable of seeking, the actual writing of data proceeds from
the position in the file indicated by the file pointer. Upon return from
write, the file pointer is incremented by the number of bytes actually
written .

On devices incapable of seeking, writing always takes place starting at
the current position . The value of a file pointer associated with such a
device is undefined.

If the O_APPEND flag of the file status flags is set, the file pointer will be
set to the end of the file prior to each write.

If a write requests that more bytes be written than there is room for (e.g .,
the ulimit see ulimit (2» or the physical end of a medium), only as many
bytes as there is room for will be written. For example, suppose there is
space for 20 bytes more in a file before reaching a limit. A write of 512
bytes will return 20. The next write of a non-zero number of bytes will
give a failure return (except as noted below).

If the file being written is a pipe (or FIFO), and the O_NDELAY flag of the
file flag word is set, then write to a full pipe (or FIFO) will return a count
of O. Otherwise (O_NDELAY clear), writes to a full pipe (or FIFO) will
block until space becomes available.

Write will fail and the file pointer will remain unchanged if one or more of
the following are true:

[EBADF) Fildes is not a valid file descriptor open for writing.

[EPIPE] and SIGPIPE signal
An attempt is made to write to a pipe that is not open
for reading by any process.

X/OPEN Portability Guide (July 1985) Part II Page : WRITE(2) .1

WRITE(2)

[EFBIG]

[EINTR]

[EFAULT]

[ENOSPC]

[EIO]

[ENXIO]

RETURN VALUE

System Calls

An attempt was made to write a file that exceeds the
process 's file size limit or the maximum file size. See
ulimit(2) .

A signal was caught during the write system call.

Buf points outside the process 's allocated address
space. The reliable detection of this error will be imple­
mentation dependent.

There is no free space remaining on the device contain­
ing the file.

An I/ O error occurred on a special file.

A request was made of a non-existent special file , or
the request was outside the capabilities of the device.

Upon successful completion the number of bytes actually written is
returned. Otherwise, -1 is returned and ermo is set to indicate the
error.

SEE ALSO
creat(2), dup(2), Iseek(2), open(2), pipe(2), ulimit(2).

APPLICATION USAGE
Normally, applications should use stdio(3S) library routines to open,
close, read and write files . Thus, if an application had used the stdio
routine fopen(3S) to open a file, it would use the stdio routine fwrite(3S)
rather than write(2).

Warning: write errors to I/ O devices give implementation defined results.

FUTURE DIRECTIONS
[EAGAIN] will be returned in ermo if the no delay mode is in use on the
file and the process will be delayed in the write operation.
Write will be enhanced to provide enforcement-mode record and file
locking features .

RELATIONSHIP TO SVID
Identical to the SVID entry, with the addition of the [EIO] and [ENXIO]
errors.

Part II Page : WRITE(2).2 X/OPEN Portability Guide (July 1985)

r
j

(

