WIND RIVER

Wind River Compiler
tor ColdFire

USER’'S GUIDE

5.4

Copyright © 2006 Wind River Systems, Inc.

All rights reserved. No part of this publication may be reproduced or transmitted in any
form or by any means without the prior written permission of Wind River Systems, Inc.

Wind River, the Wind River logo, Tornado, and VxWorks are registered trademarks of
Wind River Systems, Inc. Any third-party trademarks referenced are the property of their
respective owners. For further information regarding Wind River trademarks, please see:

http://www.windriver.com/company/terms/trademark.html

This product may include software licensed to Wind River by third parties. Relevant
notices (if any) are provided in your product installation at the following location:
installDirlproduct_namel/3rd_party_licensor_notice.pdf.

Wind River may refer to third-party documentation by listing publications or providing
links to third-party Web sites for informational purposes. Wind River accepts no
responsibility for the information provided in such third-party documentation.

Corporate Headquarters
Wind River Systems, Inc.
500 Wind River Way
Alameda, CA 94501-1153
US.A.

toll free (U.S.): (800) 545-WIND
telephone: (510) 748-4100
facsimile: (510) 749-2010

For additional contact information, please visit the Wind River URL:
http://www.windriver.com
For information on how to contact Customer Support, please visit the following URL:

http://www.windriver.com/support

Wind River Compiler for ColdFire User’s Guide, 5.4

26 Apr 06
Part #: DOC-15790-ND-00

http://www.windriver.com/company/terms/trademark.html
http://www.windriver.com
http://www.windriver.com/support

Contents

PART I: INTRODUCTION
1 [0 3= V=

1.1 Introduction

1.2 Overview of the Tools

Important Compiler Features and Extensionscccccoeceviiiinnnne
High Performance Optimizationsccccovvveiiiiiiiiiien
Portabilityccooviiiiiiiiiiicc

1.3 Documentation

This USEr’s GUIAEvveeeeviiieeiieeee ettt e s
Additional Documentationocoueeveuieeeieeeieeeceie et

2 Configuration and Directory Structureccccciiiiemirnicemennsssennnnnns

21 Components and Directories

2.2 Accessing Current and Other Versions of the Tools

2.3 Environment Variables

231 Environment Variables Recognized by the Compilercccceue..e.

fii

QN =

N

Wind River Compiler for ColdFire
User’s Guide, 5.4

Drivers and Subprogram FIOW ... e e ee e e e s e 17
Selecting a Target and Its Componentscccccceeciicccemmnnnnnsssssssnseenns 21
41 Selecting a Target 21
4.2 Selected Startup Module and Libraries 25
4.3 Alternatives for Selecting a Target Configuration 26

PART II: WIND RIVER COMPILER

5

Invoking the COMPIIETcoiiieiiiieir s 31
5.1 The Command Line 31
5.2 Rules for Writing Command-Line Options 32
Same Option More Than ONcecccccccvvieviiiiininniicccicccee 32
Command-Line Options are Case-sensitiveccocccoeverreicnriccnnn. 33

Spaces In Command-Line Optionsc..cccccvvvevnciniicniicciniceicnnn, 33

QuOting ValUescoooviiieiiiicc e 33

Unrecognized Options, Passing Options to the Assembler or Linker 34

Length LImitcoviiiieiieecce s 34

5.3 Compiler Command-Line Options 35
5.3.1 Show Information About Compiler Options (-?, -?..., -h, -h..., -help) 36

532 Ignore Predefined Macros and Assertions (-A-)cccecevvniininnnnnes 36

5.3.3 Define Assertion (-A asSertion)c..ccceceverereerirerieeeenieriereesesensereenens 36

534 Pass Along Comments (-C)cccceiiviiininiiiniiiiiiiiinicecccccccne 36

535 Stop After Assembly, Produce Object (-C)ccoevvverrriiniicniiciciiinnens 37

53.6 Define Preprocessor Macro Name (-D name=definition) 37

5.3.7 Stop After Preprocessor, Write Source to Standard Output (-E) 37

5.3.8 Change Diagnostic Severity Level (-€)cccccooiiiiivnnniiiciiinaes 38

539 Generate Symbolic Debugger Information (-g)cccoevvvvrriruerrennnnes 39

5.3.10 Print Pathnames of Header Files (-H)cccccoveoinniinniiniicce, 40

53.11
5.3.12
5.3.13
53.14
5.3.15
5.3.16
5.3.17
5.3.18
5.3.19
5.3.20
5.3.21
5.3.22
5.3.23
5.3.24
5.3.25

5.3.26
5.3.27
5.3.28
5.3.29
5.3.30
5.3.31
5.3.32
5.3.33
5.3.34
5.3.35
5.3.36
5.3.37
5.3.38

Contents

Specify Directory for Header Files (-I dir)ccccooeioeccvnnnicccnennes 40
Control Search for User-Defined Header Files (-I@)ccccceevruennnee 41
Modify Header File Processing (-i filel=file2)ccccccoevvrrniccncnee. 41
Specify Directory For -1 Search List (-L dir)ccccoeoveieivinniiccines 42
Specify Library or Process File (-l name)ccccccoecceiiiniccnnnnes 42
Specify Pathname of Target-Spec File (-M target-spec)ccccoc..... 42
Optimize Code (ZO) ...ccoviiiiiiiiiiiciiiiicc 42
Specify Output File (-0 file)ccccoviiiviiiiiiiiiiiiiiccc 42
Stop After Preprocessor, Produce Source (-P)cccccooovvviiiiinninnnnnn 43
Stop After Compilation, Produce Assembly (-S)cccccooviiiiiininnes 43
Select the Target Processor (-t tof:environ) ..o 43
Undefine Preprocessor Macro Name (-U name)ccccocevvvvernnnennnes 44
Display Current Version Number (-V, -VV) ... 44
Run Driver in Verbose Mode (-V) ..c.oeevieieineeiinecinieeneneenerecneeeens 44
Pass Arguments to the Assembler (-W a,arguments,

-W :1a5:,argUMENtS)oocviiiiiiiiiiiiciicc s 44
Define Configuration Variable (-W Dname=value)ccccccceeueee. 44
Pass Arguments to Linker (-W l,arguments, -W :1d:,arguments) 45
Specify Linker Command File (-W mfile)ccccccovviiiiinincnnne 45
Specify Startup Module (-W sfile) ..o 45
Substitute Program or File for Default (-W xfile)cccooviiiiiinine 46
Pass Arguments to Subprogram (-W x,arguments)cccccoceeuevunee 47
Associate Source File Extension (-W X.€Xt) ...ccccecveivenieinenienenenieneenenns 48
Suppress All Compiler Warnings (-w)cccoevvvvivinnciiicinennn 49
Set Detailed Compiler Control Options (-X option)cccceveeuruennne 49
Specify Default Header File Search Path (-Y Ldir)cccccccovvvuiinnnnaee. 49
Specify Search Directories for -1 (-Y L, -Y P, -Y U) oo 49
Specify Search Directory for crt0.0 (-Y S,dir)cccccovvvviviiiiininninnn 49
Print Subprograms With Arguments (-#, -##, -#H) ..o 49

5.4

Wind River Compiler for ColdFire
User’s Guide, 5.4

5.3.39 Read Command-Line Options from File or Variable (-@name,
C@@INIATINE) ..ottt ettt ettt ettt sttt ettt sttt sttt be e
5.3.40 Redirect Output (-@E=file, -@E+file, -@O=file, -@O+file)
Compiler -X Options
541 Option Defaults ...
542 Compiler -X Options by FUNCHONc..ccccoevvvriiirniiccncccce
543 Set Addressing Mode for Sections (-Xaddr-...)ccccoevviiiniiiinnnns
544 Align Functions On n-byte Boundaries (-Xalign-functions=n)
545 Specify Minimum Alignment for Single Memory Access to
Multi-byte Values (-Xalign-min=n)ccccccevverinnnniinnnnnnn.
54.6 Do Not Generate .align Directive (-Xalign-off)cccccoceinniiii.
547 Pass argument in register (-Xargs-in-regs)cccocoveireiiiininnns
54.8 Assume No Aliasing of Pointer Arguments (-Xargs-not-aliased)
5.4.9 Specify Minimum Array Alignment (-Xarray-align-min)
54.10 Disable ‘# Prefix for Assembly Numeric Constants
(-Xasm-const-Pound...)ccccoveriiiiiiiii e
5411 Specify Jump-table for Switch Statements (-Xbig-switch-table)
5.4.12 Disable Bit-field Access Optimization (-Xbit-fields-access-as-byte,
-Xbit-fields-access-as-type) ...
5413 Change bit-field type to reduce structure size
(-Xbit-fields-comPress-...) ...cccoiiiiiiiiiiiiiii s
5.4.14 Specify Sign of Plain Bit-field (-Xbit-fields-signed,
-Xbit-fields-unsigned) ..o
5.4.15 Insert Profiling Code (-Xblock-count)ccoceevviviiiiiniinniicnnns
5.4.16 Set Type for Bool (-Xb0oOl-is-...) ...ccoviiiiiiiiiiiiiiiiiiicces
54.17 Control Use of Bool, True, and False Keywords (-Xbool-...)
5.4.18 Parse Initial Values Bottom-up (-Xbottom-up-init)cccccceerereeinnnes
5.4.19 Control Allocation of Uninitialized Variables in “COMMON"
and bss Sections (-Xbss-off, -Xbss-common-off)cceceevevirereeeenens
5420 Use Abridged C++ Libraries (-Xc++-ab1)cccccceviviniiiicininiiccene
5421 Use Old C++ Compiler (-Xc++-01d) ...cocvvviiiiiiiiiiiiiiciiiiccee

Vi

63

64

65

5.4.22
5.4.23
5.4.24
5.4.25
5.4.26
5.4.27
5.4.28
5.4.29
5.4.30
5431
5.4.32
5.4.33

5.4.34

5.4.35

5.4.36
5.4.37
5.4.38
5.4.39
5.4.40
5.4.41

5.4.42

5.4.43
5.4.44
5.4.45
5.4.46

Contents

Optimize Global Assignments in Conditionals (-Xcga-min-use) 67
Generate Code Using ASCII Character Set (-Xcharset-ascii) 68
Specify Sign of Plain Char (-Xchar-signed, -Xchar-unsigned) 68
Use Old for Scope Rules (-Xclass-type-name-visible)ccccccc...... 68
Disregard ANSI C Library Functions (-Xclib-optim-off) 69
Enable Cross-module Optimization (-Xcmo-...) «...ccccceueuvirniicicininenenes 69
Use the ‘new’ Compiler Frontend (-Xcnew)ccccocoevviiiiiiinnnnnnes 70
Use Absolute Addressing for Code (-Xcode-absolute...) 70
Generate Position-independent Code (PIC) (-Xcode-relative...) 70
Mark Sections as COMDAT for Linker Collapse (-Xcomdat) 71
Maintain Project-wide COMDAT List (-Xcomdat-info-file) 72

Optimize Static and Global Variable Access Conservatively
(-Xconservative-statiC-live)ccccevererieririnenieineieeceeceeeev e 72

Locate Constants With “text” or “data” (-Xconst-in-text,

-XCONSE-IN-AAtA) .ovviniieiiiiciece e 73
Dump Symbol Information for Macros or Assertions
(-Xepp-dump-symbOlS)cccuviiiririciiiic e 73
Suppress Preprocessor Spacing (-Xcpp-no-space)ccccceueveuruenenen 73
Use Absolute Addressing for Code (-Xdata-absolute...) 74
Generate Position-independent Data (PID) (-Xdata-relative...) 74
Align .debug Sections (-Xdebug-align=n)ccccoceooervrnrrnirnnne. 75
Select DWARF Format (-Xdebug-dwarf...)cccccoviiiiininninn 75
Generate Debug Information for Inlined Functions

(-Xdebug-inline-0n)cccccviiiiiiiiiiiiiic e 75
Emit Debug Information for Unused Local Variables

(-Xdebug-local-all)cccccoiiiiiiiiniiiiiiiiiiii e 76
Generate Local CIE for Each Unit (-Xdebug-local-cie)ccccc...... 76
Disable debugging information Extensions (-Xdebug-mode=mask) 76
Disable Debug Information Optimization (-Xdebug-struct-...) 77
Specify C Dialect (-Xdialect-...) ..ccoovirriiieiriiieiiciiccnccecccees 77

vii

Wind River Compiler for ColdFire
User’s Guide, 5.4

5.4.47
5.4.48
5.4.49
5.4.50
5.4.51
5.4.52
5.4.53
5.4.54
5.4.55

5.4.56
5.4.57

5.4.58
5.4.59
5.4.60

5.4.61
5.4.62

5.4.63
5.4.64
5.4.65
5.4.66
5.4.67
5.4.68
5.4.69
5.4.70
54.71

viii

Disable Digraphs (-Xdigraphs-...)cccccoevvniniiiiiiiiininnee 78
Allow Dollar Signs in Identifiers (-Xdollar-in-ident)c.cccceeeuucece. 78
Control Use of Type “double” (-Xdouble...)cccccccocevnnnniccnnnnn. 78
Generate Initializers for Static Variables (-Xdynamic-init) 79
Specify enum Type (-Xenum-is-...) ...ccccoeeuiinniiceiinineccceeeenns 79
Enable Exceptions (-XeXceptions-...)cccoeuveeniceeinicinincciececennn, 80
Control Inlining Expansion (-Xexplicit-inline-factor)cccc......... 81
Force Precision of Real Arguments (-Xextend-args)ccccceevunnee. 81
Specify Degree of Conformance to the IEEE754 Standard (-Xfp-fast,
-Xfp-normal, -Xfp-pedantic) ... 82
Optimize Using Profile Data (-Xfeedback=file)cccccceuvrrrrrrnnnncn. 82
Set Optimization Parameters Used With Profile Data
(-Xfeedback-frequent, -Xfeedback-seldom)cccccoevueiiviiiinnnnnnns 83
Use GNU Calling Conventions for Floating Point (-Xfloats-as-gnu) 84
Use Old for Scope Rules (-Xfor-init-scope-...)cccocoevvvcrviiicirinnnnnee. 84
Generate Warnings on Undeclared Functions

(-Xforce-declarations, -Xforce-prototypes)ccccccoeveverirecirirennnnnn. 84
Suppress Assembler and Linker Parameters (-Xforeign-as-1d) 85
Convert Double and Long Double (-Xfp-long-double-off,
SXEP-float-Only) ooooeeviciiici s 85
Specify Minimum Floating Point Precision (-Xfp-min-prec...) 85
Generate .frame_info for C functions (-Xframe-info)cccoeceeneenee 86
Generate Link Instruction (-Xframe-ptr)cccccoevvvviniiinnnninnnn. 86
Include Filename Path in Debug Information (-Xfull-pathname) 87
Control GNU Option Translator (-Xgcc-options-...)cccccocvevirninnee. 87
Treat All Global Variables as Volatile (-Xglobals-volatile) 87

Control Use of Hardware Divide Instructions (-Xhardware-divide...) 87
Do Not Pass #ident Strings (-Xident-off)ccccocoeevnnnccccennnenne. 88

Enable Strict implementation of IEEE754 Floating Point Standard
(-Xieee754-pedantiC)cceueeuriririiicicieice s 88

5.4.72
5.4.73
5.4.74
5.4.75
5.4.76

5.4.77

5.4.78
5.4.79
5.4.80
5.4.81
5.4.82
5.4.83
5.4.84

5.4.85
5.4.86

5.4.87
5.4.88

5.4.89

5.4.90

5491
5.4.92

5.4.93
5.4.94

Contents

Control Template Instantiation (-Ximplicit-templates...)
Treat #include As #import (-Ximport) ...,
Ignore Missing Include Files (-Xincfile-missing-ignore)
Initialize Local Variables (-Xinit-locals=mask)c.ccccccoeerrevennencns

Control Generation of Initialization and Finalization Sections
(-XINIE-SECHION) vvviviiiieieiertcte ettt

Control Default Priority for Initialization and Finalization
Sections (-Xinit-section-default-pri) ..o

Define Initial Value for -Xinit-locals (-Xinit-value=n)c.c.cccceeueucn.
Inline Functions with Fewer Than n Nodes (-Xinline=n)
Allow Inlining of Recursive Function Calls (-Xinline-explicit-force)
Limit Instructions to 68000 (-Xinstr-00, -Xinstr-20)ccceeververvrveneene.
Enable Intrinsic Functions (-Xintrinsic-mask)c.ccocecvererieeneneennn
Set longjmp Buffer Size (-Xjmpbuf-size=n)cccccoeeeerrrnrccnnnnes

Create and Keep Assembly or Object File (-Xkeep-assembly-file,
-XKeep-0DJect=file)ccccoiririiiicieieccccce s

Enable Extended Keywords (-Xkeywords=mask)cccccccoururuunnee.

Disable Individual Optimizations (-Xkill-opt=mask,
-Xkill-reorder=mask)c.ccccoceeirreirieeireeee e

Wait For License (-X1iCeNSe-wait)cccovueverereinnieinieieiriecreeeneneenes

Generate Warnings On Suspicious/Non-portable Code
(-XHNE=MASK) weveriieiiieieenic et

Allocate Static and Global Variables to Local Data Area
(-X1ocal-data-area=n)cccecevirerieieienienieiee ettt

Restrict Local Data Area Optimization to Static Variables
(-Xlocal-data-area-static-only)ccovvviriiiniiiiiiiiiinceccce

Do Not Assign Locals to Registers (-Xlocals-on-stack)cc.........

Use Macintosh Calling Conventions for Pascal Functions
(-XTMNAC-CONVENTION) ..oviniiirriiiiieiirierteieeetereet ettt

Expand Macros in Pragmas (-Xmacro-in-pragma)c..ccccevevuevnnee.

Warn On Undefined Macro In #if Statement
(-Xmacro-undefined-Warn)c..c.cocoeerererenereineenneeneeneeeseereee

91

Wind River Compiler for ColdFire
User’s Guide, 5.4

5.4.95
5.4.96
5.4.97
5.4.98

5.4.99

5.4.100
5.4.101
5.4.102
5.4.103

5.4.104
5.4.105
5.4.106
5.4.107
5.4.108
5.4.109
5.4.110
54.111
5.4.112
5.4.113

5.4.114
5.4.115

5.4.116
5.4.117

5.4.118
5.4.119

Show Make Rules (-Xmake-dependency) ..., 98
Specify Dependency Name or Output File (-Xmake-dependency-...) 99
Set Template Instantiation Recursion Limit (-Xmax-inst-level=n) 100

Set Maximum Structure Member Alignment
(-Xmember-max-aligN=n)cccccceceririirrnniriiieeerreeeeeas 100

Treat All Variables As Volatile (-Xmemory-is-volatile, -X...-volatile) 100
Warn On Type and Argument Mismatch (-Xmismatch-warning) 101

Specify Section Name (-Xname-...)cccooevvvniiiinniiicens 101
Disable C++ Keywords namespace and Using (-Xnamespace-...) 103
Disable Nested Interrupts in Interrupt Functions
(-Xnested-interrupts-off) ..o 103
Enable Extra Optimizations (-XO) ..o, 103
Use Old Inline Assembly Casting(-Xold-inline-asm-casting) 104
Execute the Compiler’s Optimizing Stage n Times (-Xopt-count=n) 104
Disable Most Optimizations With -g (-Xoptimized-debug-...) 104
Specify Optimization Buffer Size (-Xparse-size)cccocoevuveeriinnne. 105
Output Source as Comments (-Xpass-SOUICE)ccovurueverrreericrnnnes 105
Use Precompiled Headers (-Xpch-...) ..o 105
Generate Position-Independent Code for Shared Libraries (-Xpic) .. 106
Treat All Pointer Accesses As Volatile (-Xpointers-volatile) 106
Control Interpretation of Multiple Section Pragmas
(-XPpragma-section-...)ccoeeirririciniieice s 106
Preprocess Assembly Files (-Xpreprocess-assembly)cccceceueee. 107
Suppress Line Numbers in Preprocessor Output
(-Xpreprocessor-lineno-off) ..o 107
Use Old Preprocessor (-Xpreprocessor-old)ccoeeeeiviiicninininnen. 107
Generate Profiling Code for the RTA Run-Time Analysis

ToOL Suite (-XPIof-...) ceveeeiecicieirreccce e 107
Select Target Executable for Use by -Xprof-feedback (-Xprof-exec) . 109
Optimize Using RTA Profile Data (-Xprof-feedback)cccccoce.c.... 109

5.4.120
5.4.121

5.4.122
5.4.123
5.4.124

5.4.125
5.4.126
5.4.127

5.4.128
5.4.129

5.4.130
5.4.131
5.4.132
5.4.133
5.4.134
5.4.135

5.4.136
5.4.137
5.4.138
5.4.139
5.4.140
5.4.141
5.4.142

5.4.143
5.4.144

Contents

Select Snapshot for Use by -Xprof-feedback (-Xprof-snapshot) 110
Select Convention for Returning Pointer Values from Functions
(-XPptr-values-in-...) ...cccccciiiiiiiiiiic e 110
Restart Optimization From Scratch (-Xrestart)cccccoevviccnnnnes 111
Generate Code for the Run-Time Error Checker (-Xrtc=mask) 111
Add Null Bytes After rts or rte for MCF5307 Prefetch Errata

(-XTESTUL) ettt 111
Enable Run-time Type Information (-Xrtti, -Xrtti-off)ccceoeuenen 112
Pad Sections for Optimized Loading (-Xsection-pad)cccccoeueuuee. 112
Generate Each Function in a Separate CODE Section Class
(-XSeCtiON-SPLit) ..vevevviiiiiiiiiieiic e 112
Disable Generation of Priority Section Names (-Xsect-pri-...) 113
Control Listing of -X Options in Assembly Output
(-XShow-configuratioN=n)cccccceceurururemerererrererecciereeeeererececenenenas 113
Print Instantiations (-XShOW-INSt)cceeeveiiineinicinecnececceene 114
Show Target (-Xshow-target)ccocoeevicriiiii 114
Optimize for Size Rather Than Speed (-Xsize-0opt)cccccocvvurirunennen 114
Set Size Limit for “small const” Variables (-Xsmall-const=n) 114
Set Size Limit for “small data” Variables (-Xsmall-data=n) 115
Delay Popping Stack After Function Call (-Xstack-delay=n,
-Xstack-delay-0ff) ..o 115
Enable Stack Checking (-Xstack-probe)c.c.cccoeeevieiicciiicinicinnnnnn 115
Diagnose Static Initialization Using Address (-Xstatic-addr-...) 116
Treat All Static Variables as Volatile (-Xstatics-volatile)c.cec...... 116
Buffer stderr (-Xstderr-fully-buffered)cccooovviiiiiiin 116
Terminate Compilation on Warning (-Xstop-on-warning) 116
Compile C/C++ in Pedantic Mode (-Xstrict-ansi)c.ccccceeeuienncnes 117
Ignore Sign When Promoting Bit-fields

(-Xstrict-bitfield-promotions) ... 117
Align Strings on n-byte Boundaries (-Xstring-align=n)c......... 117
Warn on Large Structure (-Xstruct-arg-warning=n)cccccccco...... 118

Xi

Wind River Compiler for ColdFire

User’s Guide, 5.4

5.4.145 Select Convention for Returning Structures and Unions

(FXSEIUCE-AS"..) werteuerrirteteteeetee ettt sttt 118

5.4.146 Control Optimization of Structure Member Assignments
(-Xstruct-assign-split-...) ...cccocoeoeriiiiiiniiiic 119
5.4.147 Align Data on “Natural” Boundaries (-Xstruct-best-align) 119
5.4.148 Set Minimum Structure Member Alignment (-Xstruct-min-align=n) 120
5.4.149 Suppress Warnings (-Xsuppress-warnings)ccc.ccceeeeeeerreeuerrennnns 120
54150 Swap ‘\n’ and ‘\r” in Constants (-Xswap-cr-nl)ccccceevvvrrrrerrrnnne. 120
5.4.151 Set Threshold for a Switch Statement Table (-Xswitch-table...) 120
5.4.152 Disable Certain Syntax Warnings (-Xsyntax-warning-...)c....... 121
5.4.153 Select Target Processor (-Xtarget)cccovevriiniiiiciniiiiccenns 121
5.4.154 Specify Loop Test Location (-Xtest-at-...)cccoovvrnniiiiiiiiinns 121
5.4.155 Truncate All Identifiers After m Characters (-Xtruncate) 122
5.4.156 Append Underscore to Identifier (-Xunderscore-...)cccccceovuvunecuneee 122
5.4.157 Control Loop Unrolling (-Xunroll=n, -Xunroll-size=n)c...... 123
5.4.158 Runtime Declarations in Standard Namespace (-Xusing-std-...) 123
5.4.159 Void Pointer Arithmetic (-Xvoid-ptr-arith-ok)cccoceevvnnicenns 124
54.160 Define Type for wchar (-Xwchar=n)c.cccocooeerirrnncnncicnes 124
5.4.161 Control Use of wchar_t Keyword (-Xwchar_t-...)cccooeicivnnincnes 124
5.5 Examples of Processing Source Files 124
551 Compile and Linkccccoooiiiiiiiiiiiiiiiiiiiincccs 125
552 Separate Compilationccccccoviiiniiiiniiiiii 126
553 Assembly OUtPULcoooiiviiiiiiii s 127
554 Precompiled Headers ..o 127
6 Additions to ANSI C and C++ ...ccccevciriemiinnienns s snsssnnnns 129
6.1 Preprocessor Predefined Macros 129

Xii

Contents

6.2 Preprocessor Directives 132
#assert and #unassert Preprocessor Directivesccccevviriinnucnnnne. 132
#error Preprocessor Directive ... 133
#ident Preprocessor Directive (C only) ..., 134
#Hmport Preprocessor Directive ... 134
#info, #inform, and #informing Preprocessor Directives 134
#warn and #warning Preprocessor Directivesc.cccocoevevririrunnee. 135

6.3 Pragmas 135
align Pragmaccoocoeuoiiiniiiciiccecce s 135
€ITOr Pragmacoovovoviviiiciciccieecc s 135
global_register Pragmaccccoeeeiiiiiiiiiiiiccs 136
hdrstop Pragmaccccooiiiiiiiiiiic s 136
ident Pragma ... 137
INFO Pragmaocceeueucueieiccccieiee et 137
inline Pragmacccoccciiiiiiiiiiiciciccc s 137
interrupt Pragmacooovoiiiiiiiiii s 138
NO_alias Pragma ... 139
NO_PCh Pragmac.ccooeviiiiiiiiicccc e 139
Nno_return Pragma ... 139
no_side_effects Pragmaccccooviiiiiiiiiniiiciiiccecs 140
option Pragma ... 140
PACK Pragmaccoouvviiiiicc s 141
pure_function Pragma ..o 144
SeCtioN Pragma ... 145
use_section Pragmaocoeieiiiiiiiiic 145
Warning Pragma ... 145
Weak Pragma ..o 146

6.4 Keywords 147
__asm and asm Keywords ..o 147
__attribute_ Keywordccccooiiiiiiiiiiniiiiiecicccees 147
extended Keyword (C only) ..o 147
__inline__ and inline Keywordscccccooeviiiiinninniiiin, 147
__interrupt__ and interrupt Keywords (C only)ccccovvrrrvernriinnnn. 148
long long Keyword ..o 149
__packed__ and packed Keywordsccccccooviviiininnniiininn, 149
pascal Keyword (C only) ..o 150
__typeof__ Keyword (C only) ..o, 150

Xiii

Wind River Compiler for ColdFire
User’s Guide, 5.4

6.5 Attribute Specifiers 151
absolute Attribute (C only) ..o 152
aligned(n) Attributecccooiviiiviiiiiiiii 153
constructor, constructor(n) Attributecococevveenreiinnereceee 153
deprecated, deprecated(string) Attribute (C only)c.ccccoeeucrrununee. 154
destructor, destructor(n) Attribute ... 154
noreturn, No_return Attributecccooevvviiiiiciiceeeeeeeeeeee e 154
no_side_effects AHTIDULEooocviieieiiiieeceeeeeeeeeeeeee e 155
packed AtTIbULEo.ovivi 155
pure, pure_function Attribute ... 155
section(name) AtriDULEocovveieiririeieee e 155
6.6 Intrinsic Functions 156
6.7 Other Additions 157
C++ Comments Permittedcccoovvevioiiiiiiiiceieecee e 157
Dynamic Memory Allocation with allocaccccovviiiiiiicnnnnee. 157
Binary Representation OFf Data wooveeeiieieeeeeeeeeeeee e 158
Assigning Global Variables to Registerscccococoviiiinirniicciiicnnn. 158
_ ERROR__ FUNCHON vviiiiiiiiiiceteeecte et 158
SIZEOL EXTEINISION .vviviieiiceieceeecee ettt et 159
Vararg MacroS ... 160
Embedding Assembly Code ... 163
7.1 Introduction 163
7.2 asm Macros 165
Comments N aSM MACTOScovveeveeerieireieieeeeeee et eereeereeereeereeereeeeeeseeenees 169
Examples of @S MaCIOSc.couvueieiuiicieiriiccceereee e 169
7.3 asm String Statements 172
74 Reordering in asm Code 174
7.5 Direct Functions 174
Internal Data Representation ... e 177
8.1 Basic Data Types 177

Xiv

Contents

8.2 Byte Ordering 179
8.3 Arrays 180
8.4 Bit-fields 180
8.5 Classes, Structures, and Unions 181
8.6 C++ Classes 181
Pointers to0 MEMDETScccovvurieirieueiereiiiinirenireeieeieeetee e 184
Virtual Function Table Generation—Key Functionsc..cccco..... 185
8.7 Linkage and Storage Allocation 186
Calling Conventionsccccccrrrrcrssssssnsnnsssnssnmnnmnnnmnnmmmmmmnnmmnme e 189
9.1 Introduction 189
9.2 Stack Layout 189
9.3 Argument Passing 190
94 C++ Argument Passing 191
Pointer to Member as Arguments and Return Typesccccco.c..... 192
Member FUNCHONc.ocveuiiieiiiiciiecirecieecee e 192
Constructors and Destructors ... 192
9.5 Returning Results 193
Class, Struct, and Union Return Typescccocovvvvvriniceinccnicninnen 194
9.6 Register Use 194
9.7 Pascal Functions (C Only) 195
(0313072 1 {0 o 197
10.1 Optimization Hints 197
What to Do From the Command Linecccccooeeiiiiiininininnnee 198
What to Do With Programscccccceeeiiiiiininiiiiciccnnes 200

XV

Wind River Compiler for ColdFire
User’s Guide, 5.4

10.2 Cross-Module Optimization

10.3 Target-Independent Optimizations

Tail Recursion (0X2) ..c.ccccccevreeririeinieiiiriecieeeeeieeeeeeee et
INHNINEG (0X4) oo
Argument Address Optimization (0X8)ccccovuvirvicrinccniccriicnnen,
Structure Members to Registers (0X10)cccooeeeiivnniiccenrcnne
Assignment Optimization (0x80)cccevvriiiiiniiicicecece,
Tail Call Optimization (0X100)ccccceviririviiiiiiiiicccees
Common Tail Optimization (0x200)ccccoevvrviiviniiiiiiiccnes
Variable Live Range Optimization (0x400)ccccoovviinniniiiininnnnnn.
Constant and Variable Propagation (0x800)cccccoevvirieiivivniiininnnnn.
Complex Branch Optimization (0X1000)ccccocvvviiviiiniiriniicnn.
Loop strength reduction (0x2000)ccooevmmiiiiiiiceeeee,
Loop Count-Down Optimization (0x4000)cccccevvivivciiiiiiieincnn.
Loop Unrolling (0x8000)ccceuiuiiiiriiininieiiriciiiiiniiiiieieececseseennens
Global Common Subexpression Elimination (0x10000)
Undefined variable propagation (0x20000)ccccocovverrirenrrinrnrcnnnne.
Unused assignment deletion (0x40000)cccoeevrnninicccnnncnccnnn.
Minor Transformations to Simplify Code Generation (0x80000)
Delayed register saving (0x100000)ccccoevrrevmrerricreinieieceieceeees
Register Coloring (0x200000)cccoeervrmmrirmniniceieecieeeiece s
Interprocedural Optimizations (0x400000)cccccouerevrviereiirniriceenne.
Remove Entry and Exit Code (0x800000)cccccevevviviririmeieriiniiinnen,
Use Scratch Registers for Variables (0x1000000)cccccoooviviviieiinnen.
Extend Optimization (0x2000000)ccccceeimiiiiiiniiieieeeeccnes
Loop Statics Optimization (0x4000000)ccccceevviriviniriniiiciiiiiiniennen
Loop Invariant Code Motion (0x8000000)ccccovururreriucriicininininnnnen
Static Function Optimization (0x20000000)cccccvrvemiirircininininnnnn
Live-Variable Analysis (0x40000000)cccccoeememrmininiiieeeieecenns
Local Data Area Optimization (0x80000000)cccccvueeimicucmereuruniennes
Feedback Optimization ..o

10.4 Target-Dependent Optimizations

Basic Reordering (0X1)cccooveviiiiiiiiiniiiiiiieeinccceeeas
Delete TST (0X2) wveerveriirieiinirieerieietrteiecstetetrie ettt
General Peephole Optimization (0X8)ccocevieiiininincicineiinine.
Find Auto-Increment / Decrement (0X10) ..ccoovvvevererenieenenenieinene
Merge Moves (0X40)oviviiiiiiiiiiiic s
Simple Scheduling Optimization (0x1000)c.cccooevviviiiniiiicne,

10.5 Example of Optimizations

Xvi

11

12

13

Contents

The Lint FaCilitycooeeoeeeeeee e
11.1 Introduction
11.2 Examples
Converting Existing Codeccccciiimiriiismmnnnmr s
12.1 Introduction
12.2 Compilation Issues
Older C COAe ..o
Older Versions of the Compilerc.cccocoevviriniiiniicniiccce
12.3 Execution Issues
124 GNU Command-Line Options
C++ Features and Compatibilitycccccooooommmmmmmcceccee s
13.1 Header Files
13.2 C++ Standard Libraries
Nonstandard FUNCHONS ..o
13.3 Migration From C to C++
13.4 Implementation-Specific C++ Features
Construction and Destruction of C++ Static Objectscccccccvuvvueee.
TEMPIALES ..o s
EXCEPHIONS oottt
Array New and Deletecccorviirniicniccicccccc s
Type Identification ..o
Dynamic Casts in CH+ .o
NamMeSPACEScoovuieiviirieiiiiccie s
Undefined Virtual FUNCtions ..o
13.5 C++ Name Mangling
Demangling Utilityccccocoviiiiiiiiiii

XVii

229

229

230

232

234

235

236
237

237

14

15

Wind River Compiler for ColdFire
User’s Guide, 5.4

13.6 Avoid setjmp and longjmp
13.7 Precompiled Headers
PCH FILES ettt ettt eaaeeen
Limitations and Trade-0ffSccccovveviiiiiieieececeeceeeeeeeeeee e
DiagnoStiCs ...cucvivivieiiiieieieiccc s
Locating Code and Data, Addressing, ACCESSccrurrumrrrsssamsrrssans
14.1 Controlling Access to Code and Data
section and use_section Pragmascccccevvvviiiniiinniinin,
Section Classes and Their Default Attributesc.cccceevveevievveecvienenne.
14.2 Addressing Mode — Functions, Variables, Strings
14.3 Access Mode — Read, Write, Execute
14.4 Local Data Area (-Xlocal-data-area)
14.5 Position-Independent Code and Data (PIC and PID)
Generating Initializers for Static Variables With
Position-Independent Codeccccovriiniiiiiii,
Relationship Between Position-Independence and “Small” Areas ..
Use in an Embedded Environmentcoooiiimeciimsccecssreccsssenncenans
15.1 Introduction
15.2 Compiler Options for Embedded Development
15.3 User Modifications
15.4 Startup and Termination Code
154.1 Location of Startup and Termination Sources and Objects
15.4.2 INOLES O CIT0.S vvieiveirieeeecteeete ettt ettt ettt eree e e e ereereeereens
15.4.3 Notes for crtlibso.c and ctOrdtor.Cocoooveveeveeeeeeeeeeeeeeceeeeeeeenene
15.4.4 INOTES fOI TNIE.C covvviiieriie ittt et e eae e eeaaeeeae e e eaaeeennes
15.4.5 Notes for EXit FUNCHONS ..c.oooiviiiiiiieiie et

XViii

249

249
253

255

258

265

266

268
269

272

272

274

277

15.5

15.6

15.7

15.8

15.9

15.10

15.11

15.12

Contents

15.4.6 Stack Initialization and Checkingcccccovvviiiiiiiiiniiiiinee, 279
15.4.7 Dynamic Memory Allocation - the heap, malloc(), sbrk() 280
15.4.8 Run-time Initialization and Terminationccccccceiiciinnninnnnnne. 280
Hardware Exception Handling 282
Library Exception Handling 282
Linker Command File 283
Operating System Calls 284
15.8.1 Character I/ O .ottt 285
15.82 File I/ O oo 286
15.8.3 Miscellaneous FUNCHONSccccocvuviviiiiiiiiiiiicccc, 287
Communicating with the Hardware 288
159.1 Mixing C and Assembler FUNCIONScccccovviiiiiiiiniiiiicie, 288
1592 Embedding Assembler Codeccccooiiiiiiiiiiiiiice 288
15.9.3 Accessing Variables and Functions at Specific Addresses 288
Reentrant and “Thread-Safe” Library Functions 290

Target Program Arguments, Environment Variables, and Predefined Files 290

Profiling in An Embedded Environment 292

PART IIl: WIND RIVER ASSEMBLER

16

The Wind River ASSEMDIErcceuiiiiieiiirrir e rre s s e emmssaes 297
16.1 Selecting the Target 297
16.2 The das Command 298

Xix

Wind River Compiler for ColdFire

User’s Guide, 5.4

16.3 Assembler Command-Line Options 298
Show Option SUMMATY (-?) ..ccceeiiiiiiiiiiic e 299
Define Symbol Name (-Dname=value)c.cccccccoeinnnnicccennnenne 299
Generate Debugging Information (-g)c.cccoevvuvvnviiciniiciniiccinicnnne. 299
Include Header in Listing (-H)ccovoiiiiiiiiiicciiiicccccnes 299
Set Header Files Directory (-I path)cccooveiniiinicce, 300
Generate Listing File (-1, -L) ...ccooovviiiiiiiiiiciicccne, 300
Set outpUt File (-0 file)cccvviiviviiiiiiiiiiiiiiiiiccccccc, 300
Remove the Input File on Termination (-R)ccccccevvvniiiiinnnnne. 300
Specify Assembler Description (.ad) File (-T ad-file)ccccccceeuuc.. 300
Select Target (-ttof:environ) ... 301
Print Version NUMDET (-V) .cccoeieiriieieiieeeeeceiesieeeeesvee e 301
Define Configuration Variable (-WDname=value)cccccccccoeueunenee. 301
Select Object Format and Mnemonic Type

(-WDDOBJECT=0bject-format)c.cccocoeueururerrcccrereerereenees 301
Select Target Processor (-(WDDTARGET=target)ccccevvrurununnnee 301
Discard All Local Symbols (-X)cccceiieieiiiiiiriicceieeccceeececans 301
Discard All Symbols Starting With .L (-X) ..cooveviiiiiiicccccee, 302
Print Command-Line Options on Standard Output (#)cccc........ 302
Read Command-Line Options from File or Variable (-@name,

“@@NAIMNE) ...ttt 302
Redirect Output (-@E=file, -@E+file, -@0O=file, -@0+file) 302

16.4 Assembler -X Options 303

Specify Value to Fill Gaps Left by .align or .alignn Directive
(-Xalign-fill-teXt) ...ccoveveveiiiiiiieiicc 303

Interpret .align Directive (-Xalign-value, -Xalign-power2) 303

Generate Debugging Information (-Xasm-debug-...) ..cccccccecueinnennee 303

XX

Align Program Data Automatically Based on Size (-Xauto-align) 303
Allow Comments Without Comment Character (-Xauto-comment-...)

304
Fix ColdFire Version 4 Hardware Bug (-Xcf4-d7-errata) 304
Select bra Instruction (-Xbra-is-rel, -Xbra-is-jra)cccococoveviriricnne. 304
Select 68K cmp Instruction (-Xcmp-normal, -Xcmp-swap) 304
Set Instruction Type (-Xcpu-...) coovoeiiieiiiiiiiccc 305
Set Default Value for Section Alignment (-Xdefault-align) 305
Enable Local GNU Labels (-Xgnu-locals-...)cccccoviviiiiiinncnnnnn. 305
Include Header in Listing (-Xheader...)cccccoovviiinnnniiiiinn. 305
Set Header Format (-Xheader-format="string")cccccceeeeerrrennnr. 306
Set Label Definition Syntax (-Xlabel-colon...)ccccccoooiiviiiinnnnnen. 306
Set Format of Assembly Line in Listing (-Xline-format="string") 307
Generate a Listing File (-XList-...) ..cooiieiiiiiccciiccccceeecnes 308

17

Contents

Specify File Extension for Assembly Listing
(-Xlist-file-extension="String")c.cccccceoerrrrerrrerccrerrrrerenee
Set Line Length of Listing File (-Xllen=n)cccccceceueeeeeuennnnicccnennes
Enable Blanks in Macro Arguments (-Xmacro-arg-space-...)
Set Mnemonics Type (-Xmnem-all, -Xmnem-emb, -Xmnem-mit)
Select Branch Size Optimizations (-Xoptim-...)ccccoeoeeviiniiccnnnes
Set Page Break Margin (-Xpage-skip=n)cccccccceervrriirnirenicnnnne.
Set Lines Per Page (-Xplen=n)cccccccoevrrmnirniininicecececnes
Limit Length of Conditional Branch (-Xprepare-compress=n)
Enable Spaces Between Operands (-Xspace-...)ccccoovvviviiiiviiiennnnnnns
Delete Local Symbols (-Xstrip-locals..., -Xstrip-temps...)ccccovuenee.
Set Subtitle (-Xsubtitle="string")ccccoouvrriiiiiiiiiii
Set Tab Size (-Xtab-SIZE=11)ccccerveecirieiiirieiircecreeeeeeeee e
Set Title (-Xtitle="String")cccceoeviiininniiiiiciccce

SYNtax RUIESooiieiie s

17.1

17.2

17.3

17.4

17.5

17.6

17.7

Format of an Assembly Language Line

Symbols
Direct Assignment Statements
Reserved symbols
External Symbols

Local Symbols

Constants

OPCOAE ...
Operand Field ...
COMMENT ..o

Generic Style Localsccovviiiiiiiiiiiiinicccce
GNU-Style Localsccoviiiiiiiiiiiiiiciciiciiiiineceeeneaes

Integral CONSLANESccoveveiieriicieiccc s
Floating Point CONnstantscc.cococvuericninieniicececee e
String ConStants ...
Literals as Operandscccoeeveueiieiniciniieiieeeee

XXi

317

318

318

320

320
320

18

19

20

Wind River Compiler for ColdFire
User’s Guide, 5.4

Sections and Location Counters ... 325
18.1 Program Sections 325
18.2 Location Counters 326
Assembler EXPreSSiONSccccciicsmmmrmmmmissssssssssmmssssssssssssssssssssssnssnnns 329
Assembler DireCtives ... 335
20.1 Introduction 335
20.2 List of Directives 336
SymboOl[:] = @XPIeSSioNcccceviviciiiiieiicicc e 336
Symbol[:] =1 @XPIession ...t 336
2DYE oo
ADYEE oo
AAligN eXPIeSSIONcoviviiiiiiiiiiie e
.alignn expression
ASCIL "STINE" o
ASCIZ "SEIING" oo
balign expression
DIKD @XPIeSSIONcooviiiiiiiiiiiiii e
DSS
DSECL .
byte expression,
.comm symbol, size [,alighment]ccccoorriiiiiiinniccs 339
de.b eXPIession ..ot 339
dC.] @XPIESSION ..o 339
AC.W @XPTESSION ..t 340
AS.D SIZE v 340
data o 340
.double float-CONSLANT ;... .ecoveeveeeeerieeeeeeeeeeeeeeeee e 340
ASECL oo 340
EJECT o 340
ElSE e 340
.1Seif @XPIESSIONvuviieiiiciicc e 341
CLSEC e 341
€N i 341
EIAC it 341
ENAIL Lo 341
ENAIM oo 341

XXii

Contents

NETY SYMDOL ... i 341
Symbol[:] .equ eXPIeSsioncccccuevririiiirieieirreccee s 342
LBITOT "SEIING" (oo 342
CBVEIL oottt ettt 342
EXIHIN ot 342
XEEIN SYMDOL ... e 342
XPOTt SYMDOL ... oo 343
Sile IR s 343
fill count,[size[,value]] .ooveoeeeenieieieeeeeeeee e 343
Sloat float-CONSEANT ;... .ooevviiieieieiee et 343
.8lobal symbol ... oo 343
8lobl symbOL ... oo 343
ddent "StrING" ..o 344
Af @XPIESSION ...t 344
JEENAIAN oo e 344
AfQ EXPIESSION ..ot 345
Adfc "string1","StrNG2" ..o 345
Afdef SYMDBOL ..o 345
Afge eXPIeSSIONccvoviviiciicc s 345
AfGE @XPTESSION .o 345
Afle @XPTESSION ...vivieiicic s 345
AfIt @XPIeSSION .oviviiic s 345
dfne "string1","String2" ... 346
dfndef symbol ... 346
AfNe eXPression ... 346
AMPort symbol ... oo 346
Ancbin "file"[,0ffset],SIZe]] .ooirrerirreireeree e 346
Anclude "file" ... 346
Jent @XPIession ... 347
Jcomm symbol, size [,alignment]ccocoorriiiniiiii 347
JESE e

Jlen eXPression ...
Jlong expression,

Jong exXpressiono
name.macro [parameter ,...J ... 348
JNEXIE Lottt 348
name "file" ... 348
NOLISE o 348
LOTZ @XPTESSION .vvvivririiiniietcsieietes ettt s st 349
P2align EXPIESSIONcuvuiiiiiiiiiiiiiici e 349
JPAZE et 349
Pagelen eXPIeSSIONccccocueiieriiecieiieee s 349
Plen eXPression ... 349

XXiii

Wind River Compiler for ColdFire

User’s Guide, 5.4

PIEVIOUS oottt 349
JPSECE s 350
.psize page-length [line-length]c.ccccooonniiiiinniccccee 350
TAALA 1eviitietiieieeeee ettt eb et e s e e tanbenaenas 350
TOAALA 1ouievieiiieieieeee ettt ettt ettt s e b e b et seeseebenes 350
.sbss [symbol, size [,alignment]]cccccovniiiiinininiiiine 350
SDEL "SEING" o 351
2SAALA ceteiietiieieeeee ettt et b e e s b e bens 351
SAALAZ ittt sttt ettt s b e 351
.section name, [alignment], [type] ..o 351
LSECHIOTL T1 ettt sttt ettt st 352
.sectionlink SECHON-NAMEcevveiririeiiieieiereeeee e 352
St OPHON vt 353
.set Ssymbol, eXPIeSSIONccceveviiiiiiieieieieiccce e 353
Symbol[:] .set eXPIeSSIONcccovveieiuiucieirireccee e 353
ShOTt @XPIESSION ... wvcviiiiiiiiiic s 354
.5ize Symbol, @XPIeSSIONcccvviieeiiiciiiciice e 354
SKIP S1Z€ oo 354
.SPACE EXPTESSION. .ottt 354
SHANG "SEINE" (oo 354
SHZ "SEINE" oo 354
subtitle "StHNG" ...ooviiie e 355
AEXE ettt sttt 355
Aitle "SHING" o 355
AL SEEING oo 355
Aype symbol, tyPe ..o 355
JUNAIE e 356
JLONE e 356
JUSROTT ittt sttt se et ne 356
JUWOTA 1ottt teste e s e be s be b eseebesbesseseesaesessesaeseesenes 356
Warning "String" ... 356
WeaK SYMDOL ... oo 356
Width @XPIeSSIONccueviiriiiieiic e 357
WOTA @XPIESSION, ... woeviviceiiiciiciet it 357
XAef SymbOL ... oo 357
XIef SYMDOL ... oo 357
XOPL ot 357
21 Assembler MacCroscccccccemrmmmiiiissssssssnmmssssssss s rssssssssssss s s ssssssnnes 359
21.1 Introduction 359

XXiv

22

21.2 Macro Definition

Contents

Separating Parameter Names From Text
Generating Unique Labels
NARG Symbolccoovrriviciiicciicciine,

21.3 Invoking a Macro

21.4 Macros to “Define” Structures

Example Assembler Listingccccccceeuu..eeee

PART IV: WIND RIVER LINKER

23

24

The Wind River LIinKercocccvreireeiresirenssensrennns

23.1 The Linking Process

370

Linking Example ..o,

23.2 Symbols Created By the Linker

23.3 .abs Sections

... 371

374

376

23.4 COMMON Sections

23.5 COMDAT Sections

377

378

23.6 Sorted Sections

378

23.7 Warning Sections

379

23.8 .frame_info sections

380

23.9 Branch Islands

The did Commandcccoeremiiremniiremnireemserensrennes

24.1 The dld Command

380

Linker Command Structure

XXV

Wind River Compiler for ColdFire
User’s Guide, 5.4

24.2 Defaults 386
24.3 Order on the Command Line 387
244 Linker Command-Line Options 387
Show Option Summary (-?, -2X) ...cceviiennirnicceceeeeceees 388
Read Options From an Environment Variable or File (-@name,
“@@NATINE) ..envvevireieieeieetetet ettt ettt sttt 388
Redirect Output (-@E=file, -@E+file, -@0O=file, -@O+file) 388
Link Files From an Archive (-A name, -A...) .c.cccoceoinvernnecnnceneene, 388
Allocate Memory for Common Variables When Using -r (-a) 389
Set Address for Data and tExt (-Bd=address, -Bt=address) 389
Bind Function Calls to Shared Library (-Bsymbolic)ccccececevucee. 390
Define a Symbol At An Address (-Dsymbol=address) 390
Define a Default Entry Point Address (-e symbol)ccccccoceunnnnnne. 390
Specify “fill” Value (-f value, size, alignment)cccccccoevcueurrrnccnne 390
Specify Directory for -1 search List (-L dir)ccccooeviveiinniicinnnn, 391
Specify Library or File to Process (-Iname, -I:filename) 391
Generate link map (-m, -m2, -M4) ..o 391
Allocate .data Section Immediately After .text Section (-N) 392
Change the Default Output File (-0 file)c.ccccoeviriinniiriciinne, 392
Perform Incremental Link (-1, -12, -3, =14, -T5) ..ccovecvrireieieerenieeenns 392
Rename Symbols (-R symboll=symbol2)cc.ccccorvrrrnrniirrircnnn. 393
Search for Shared Libraries on Specified Path (-rpath)c........... 393
Do Not Output Symbol Table and Line Number Entries (-s, -ss) 393
Specify Name for Shared Library (-soname)cccccocevvviviiiinnnnnnn. 393
Select Target Processor and Environment (-t tof:environ) 394
Define a Symbol (-u Symbol)cccviriiiiiiiiiiiic 394
Print version numMber (-V) ...c.ccccoivivieiiniiereeeeeeeeeeeee 394
Do Not Output Some Symbols (-X)coooeviviiiiviiiiiicce 394
Specify Search Directories for -1 (-Y L, -Y P, -Y U) cccovvvviiiiiinns 394
24.5 Linker -X options 395
Use Late Binding for Shared Libraries (-X)c.cccccococivnnniicnnnenne. 395
Enable/Disable Branch Island Generation (-Xbranch-islands...) 395
Check Input Patterns (-Xcheck-input-patterns)cccoccocevuevevunnnnce. 396
Check for Overlapping Output Sections (-Xcheck-overlapping) 396
Force Linker to Continue After Errors (-Xdont-die)ccccecevverueenene 396
Do Not Create Output File (-Xdont-link)ccccoooeinniiiinnnn. 396
Use Shared Libraries (-Xdynamic)cccocevvieiinnniiinne, 397
Use ELF Format for Output File (-Xelf)ccocovviiiiinnniccinee 397
ELF Format Relocation Information (-Xelf-rela-...) ..c.cccccovvrrnnuennee 397

XXVi

25

Contents

Do Not Export Symbols from Specified Libraries (-Xexclude-libs) .. 397

Do Not Export Specified Symbols (-Xexclude-symbols) 397
Write Explicit Instantiations File (-Xexpl-instantiations) 398
Store Segment Address in Program Header (-Xgenerate-paddr) 398
Generate RTA Information (-Xgenerate-vmap)c.cccocoveecvvrcnincnnnnns 398
Limit Short Branch Island Generation (-Xmax-short-branch) 398
Do Not Align Output Section (-Xold-align)ccccccoevvveivcceriinincnnnn 398
Pad Input Sections to Match Existing Executable File
(-Xoptimized-load) ..o 399
Make Branch Islands Position-Independent (-Xpic-only) 399
Add Leading Underscore “_" to All Symbols
(-Xprefix-underscore...) ... 399
Remove Unused Sections (-Xremove-unused-sections)c......... 400
Re-scan Libraries (-Xrescan-libraries...)cccocevveevenenenenenineneneenenns 400
Re-scan Libraries Restart (-Xrescan-restart...)ccceceeverereneneneenenn 401
Align Sections (-Xsection-aligN=n)ccccoecevirivinnnrineiiecicnne, 401
Build Shared Libraries (-Xshared)c.ccccocoreiieienieienneeneeceens 401
Sort .frame_info Section (-Xsort-frame-info)c.ceceeeveerereenennencns 401
Link to Static Libraries (-XStatiC)cccoceeerereerieenereeneseecsereneseeeas 401
Stop on Redeclaration (-Xstop-on-redeclaration)c.cccccoeuvervninene 402
Stop on Warning (-Xstop-on-warning)c..cceceeeevevrecuevecnnncininnnnnns 402
Suppress Leading Dots “.” (-Xsuppress-dot)cccccoeeviereircrinennnnn 402
Suppress Section Names (-Xsuppress-section-names)c.c.c....... 402
Suppress Paths in Symbol Table (-Xsuppress-path)ccccceeevennn 402
Suppress Leading Underscores ‘_’" (-Xsuppress-underscore-...) 402
Remove/Keep Unused Sections (-Xunused-sections...)ccccc....... 403
Linker Command LangUAageccccerrissmmemssssmmssmsssssssssssnnsssssssssssssnns 405
251 Example “bubble.dld” 406
25.2 Syntax Notation 408
25.3 Numbers 409
254 Symbols 409
25.5 Expressions 410
25.6 Command File Structure 411
25.7 MEMORY Command 412

XXVil

Wind River Compiler for ColdFire
User’s Guide, 5.4

25.8 SECTIONS Command 412
SectioN-DEfINItiONcoevieuiriirierieieiireeeee e 413
GROUP DEfiNitioN .ecveeeeveeiieieiirieieirieieceieiese et s e saenas 420
25.9 Assignment Command 421
25.10 Examples 422

PART V: WIND RIVER COMPILER UTILITIES

26

27

28

ULIlItIeS e 437
26.1 Common Command-Line Options 437
Show Option SUMMATY (-?) c.covivvicieiccieicccce e 437

Read Command-Line Options from File or Variable
(-@name, - @@NAME)oevverveiereriiieiniereeeeee ettt 437
Redirect Output (-@E=file, -@E+file, -@0O=file, -@0+file) 438
D-AR ArChiVer ... s 439
27.1 Synopsis 439
27.2 Syntax 439
27.3 Description 440
27.3.1 dar CommaANdSccocoeeerueirieeinieirieeceietcee ettt 440
27.4 Examples 443
D-BCNT Profiling Basic Block Counterccccoeceemmmriimernnssmnnnnnnns 445
28.1 Synopsis 445
28.2 Syntax 445
28.3 Description 446
28.3.1 dbcnt OPHONS ...covieiicieiccicc s 446

XXViii

29

30

31

Contents

28.4 Files 447

28.4.1 Output File for Profile Dataccccovviiccennninccccerreeccceeeenee 447
28.5 Examples 447
28.6 Coverage 448
28.7 Notes 448
D-DUMP File DUMPEEcoeeeeeeeeeeeeeeesssssssssssssssssssssssssssssssnsssessssssnsssssses 449
29.1 Synopsis 449
29.2 Syntax 449
29.3 Description 450

29.3.1 ddump commandsccocoeiiiiiiiiii 450
29.4 Examples 455
dmake Makefile ULilityccooermmmmmiiiiiiismnr s 457
30.1 Introduction 457
30.2 Installation 457
30.3 Using dmake 458
WindISS Simulator and Disassemblercccovovvmnennnncnnsnnnnnsenas 459
31.1 Synopsis 459
312 Simulator Mode 460

31.2.1 Compiling for the WindISS Simulatorc..cccoeeveiviininicciiccine, 461

31.2.2 Simulator Mode Command and Options ..o, 461

XXIX

Wind River Compiler for ColdFire
User’s Guide, 5.4

31.3 Batch Disassembler Mode 465
31.3.1 Syntax (Disassembler Mode)cccooviiiiiuiiiininniniiiiiciccccns 465
31.3.2 DeSCrIPHION ...coviviiiiiiiiiiiiieiiiccc s 465
31.4 Interactive Disassembler Mode 466
3141 Syntax (Interactive Disassembler Mode)ccccooviiiiivnninnicccnnnne 466
31.4.2 DeSCIIPON ..ovoviiiiiiiiiiiiiiieetcctct e 466
31.5 Examples 467

PART VI: C LIBRARY

32 Library Structure, Rebuildingcccociiiiimiinicse e 471
32.1 Introduction 471

32.2 Library Structure 472
32.2.1 Libraries Supplied ... 472

32.2.2 Library Directory Structure ... 475

3223 BDC it 477

32.2.4 Library Search Paths ..., 478

32.3 Library Sources, Rebuilding the Libraries 481
32.3.1 SOUICES ..ovuiuiiiiiiiiiiicicite e 481

32.3.2 Rebuilding the Librariescccccooviiniiiiiiiiiiiicciccciccie 482

32.3.3 Cd LIDIATIES ..eoveveiriciiiiieiiieieeiecereetcet ettt 483

33 Header Files ... 485
33.1 Files 485
33.1.1 Standard Header Files ... 485

XXX

33.2 Defined Variables, Types, and Constants

EITNO.N oo
FENtL e
floath oo
Hmits.h e

setfmp.h ..o
signal.h .o
stdarg.h oo
stddef.h oo

34 C Library Functionsccccoiiviiccecmmnnnnnsssssseennns

Contents

34.1 Format of Descriptions

34.1.1 Operating System Callsccccovvveerrrnnnnes
3412 References ...,

34.2 Reentrant Versions

34.3 Function Listing

ASIN() weverreieeeiertee e
ASINL() oo
ASSEIE() wvevererieierieieertee e
ALAN() crrveieeeeeee e
ALANT() oo
ALAN2() woverveneererieieeee e
ALAN2E() e
ALEXAL() wverrererreeeiee e

XXXi

Wind River Compiler for ColdFire
User’s Guide, 5.4

XXXii

............................... 498
QUOMY s o
O o
UOIL) oo oo
DSCAIER() oo
00 oo
O o
COM) s o
SRBEIB() o o
CIOAEN) s B
COCK() v o
COSEL) v e
COMPIEL) s o
“COPYSIBN() s s
COS() o,
COSI) v B
COS) e
COSI() v B
LA) v e
CHIE() v .
QIIC() v o
V) B
QAN oo o
QUPL) s
BV o
S o
ORIl oo e
S o
CHICH) v o
XU o o
XU v o
EXPL) v o
OXPH) oo e
ADS() o
ADSH() o
EIOSE() v o
) oo o
T o
A i
O vt B
FOIKOT() B
ISI) s B
BEIC() B
£EEPOS() wevvevercreiiiee s

Contents

.............................. 509
fBOIS() v o
BIERO() v o
SIHOC) o o
IOOK() vt o
HOOH() v o
OGS o
POAI) v o
(OPEI() o o
D) s o
PUCL) o i
o L i
S i
ICL) i
fIEOPER() B
L B
O o
SCANI() o o
90EK() v o
SOIPOS() v e
AU o
O v o
PWEHE() 1o o
BRAIINA) v s
BAMNAN) oo o
BOVH) o e
BOLC() s o
BOLENAN() v o
BOLENV() v o
BOLOPH() s o
BEIPIA() o ol
BOIS() v o
BOMWL) v o
BIHIME() v o
POIAE() oo
RAESIOY() v o
SCAIE() o
hypot() o
PYPOU() v o
ANGAS() v o
I) o
SRIPA() oo o
ISASA() v st
ISALEY () v

XXXl

Wind River Compiler for ColdFire
User’s Guide, 5.4

XXXiV

ISCIUELL() woveeeeteere et 521
ISAIGIL() wovrveeeeereerereirere ettt 521
ISELAPI() wevviiiicicicic s 521
ISTOWET () vttt ettt 522
LASTIATI() weteiieieetert ettt 522
ISPIANE() oo 522
ISPUNCE() v 522
ISSPACE() v 522
ISUPPET() wovervriireiicieieccie et 523
ISXAIGIL() vovveieiveieieiii s 523
JOU) e 523
JOEC) e 523
JLU) e 524
JLEC) e 524
FEU) o 524
FOEC) e 524
FLANIAAB() oo 525
KALL() ettt 525
KEANAAB() cveneeveeeeeteiiiete ettt ettt 525
IBEOL() vttt 525
LOAA() eveneeeieieee ettt 526
LADS() ettt 526
1CONEAB() oo 526
LAEXP () v 526
LAEXPE() v s 526
LATV() ettt 527
_lessgreater() ... 527
LETUA() woveeeeeieetee ettt 527
TINK() oottt ettt 527
10CAIECONV() veueieteiirteiiieie ettt ettt 528
LOCATHIME() tevveeiieieiiiee ettt 528
LOG() v 528

LOZD() oo 528
LOGE() v 529
LOZLO() v 529
LOZLOL() v 529
LoNGIMP() v 529
IFANAAE() woneererreieeete ettt 530
ISEATCI() ettt ettt 530
ISEEK() et 530
TEOLB() ettt ettt ettt 531
MAINTO() vttt 531
INATTOC() ettt 531

Contents

__malloc_set_bIOCK_SIZE() .ueveeieeeieriiriesieeiieeeierie ettt aens 532
MALOPL() oo 532
MNALRETT() weeverteeeieeet ettt 532
IMATNETTE() ettt 533
001 o) £=1 T () IO OO O OO SO O SRPERUSRPRSUORRRI 533
INDSTOWES() cveueeemieeteieeet ettt ettt et ettt eee st s e s tenens 534
INDEOWEC() ettt ettt ettt ettt ettt st tebens 534
8 aTC3 0 Te o) (OSSOSO 534
MEMCAT() ceiitiiiieieie ettt 534
MNEMCINP() ovrriiiriieieieieiice s 535
INEIMCPY () crvviririririieieieii e 535
IMNEIMIMOVE() cvervirrenierirteieteteetetestetestetesestestestetestestestesessesestesessensesessessenes 535
INEMISEL() wevvvereiereerieietet ettt ettt sttt et ea e ene e neneas 535
INKEEMP() cooviviiiiiiiiiniiccc s 536
INKEIME() ottt 536
00 To T 1 () 1RSSR PUSRPRUTTI 536
INOALE() ettt ettt 536
INTANAEAE() evieiieiieeeie ettt 537
_NEXEATEET()ttt 537
NFANAELE() wvirietiieietiiet ettt 537
OFFSEEOL() ceeneteieieiiirte ettt 538
OPEIU() ettt s 538
PEITOT() terviiiiiiiiciiee s 538
POW() et 539
POWE() e 539
PIINEE() oot 539
PULC() o 542
PULCRAT() o 542
PULENIV() v s 543
PUES() o 543
PUEW() e 543
SOTE() ceviiiiiirci e 543
TAISE() cvervevenerrerenerteterteteert et st et bttt b et be et et b et b ettt bt et n et enene 544
FANA() cveneetetiteteert ettt ettt ettt 544
TEAA () cververierirtiieiee ettt ettt ettt sttt ettt ettt b b bens 544
TEALIOC() oottt ne 544
TEIMOVE() tuteutrtitenieneetententeeetestestetesteste e teste st eseebeste st estesesbenseseesenbeneesesbensenes 545
TENAINE() teveuertenteuieteeteetetete et et et et et st ettt st st eb e e be st et e st be st et ebeebesbe st ebenbetens 545
TEWITIA() teveitetiteieeet ettt ettt ettt 545
SDIK() e 546
ZSCAID() e 546
SCANE() ettt ettt ettt ettt a ettt ettt et tenen 546
SEEAAB() vttt ettt sttt tenen 548

XXXV

Wind River Compiler for ColdFire
User’s Guide, 5.4

XXXVi

SEEDUL() 1o 548
SEHIMP () o 549
SELLOCALE() vttt 549
SEEVDUL() ettt 550
SIGNAL() coovieieieciieie e 550
SITU(1) wverteeeeet ettt sttt sttt et sb et 550
SINUE() covetieete ettt 551
SIN() ettt 551
SINIE() et 551
SPIINEE() oo 551
SATE() vt s 552
SATEE() v s 552
STANIA() wvevereieieiireetcieee ettt ettt ettt 552
STANAAE() vttt 552
SSCANE() ettt 552
SEEP() ceeiiiirire s 553
SEECAL() cvevenrerirrirte ettt ettt ettt 553
SEECRT() ettt 553
SEECINP () oot s 553
SEECOLL() ettt ettt 554
SEICPY() wvrrrerreeietreete s 554
SEICSPII() ettt s 554
SEAUP() v 554
SEIEITOT() weuterirtinientetentetetet ettt st e et sttt st st en e besbe st e neesesbenteseesesbennene 555
SEFEIMIE() cveevevenieieeieie ettt ettt sttt ettt ettt s e 555
SEELETI() +enveneet ittt st s 556
SEITICAL() ververerriretetertetet ettt ettt ettt sttt ettt sttt 556
SENCIMP() v 556
SENCPY () vt e 557
SEPDIK() oo 557
SEETCIT() ettt 557
SEESPII() woviieieiiiiicii s 557
SEESEI() ceeneeteneetet ettt 558
SELEOA() weneteteteteeet ettt 558
SEIEOK() oottt ettt sttt sttt 558
SEIEOL() cververerierirteteeet ettt ettt ettt ettt sttt sttt ettt be e 559
SEIEOUL() cvenverietiie ettt sttt 559
SEEXETIN() ettt 559
SWAD() ceeeieiieteeriete ettt 560
BATL() ceereneee ettt bttt ettt ettt 560
BATIE() ettt ettt 560
BATIN() vttt 560
BANNE() oottt 561

Contents

EAELELE() vt 561
BEIL() ceeeeeeeee ettt ettt enen 561
EEMPNAMI() cooviiiiiiiicc s 561
BN) ettt 562
FIINE() vttt sttt ettt 562
EMPHLE() oo 562
EMPNAIN() oo 562
BOASCIL() cveueevereretenireetent ettt ettt ettt sttt ettt ettt st st benens 563
EOLOWET() weuereieietteete ettt ettt s 563
_EOLOWET () vttt ettt ettt ettt 563
EOUPPET() v 563
_EOUPPET() oo 564
ESEATCI() tetiteteteieeet ettt 564
EWALK() vttt enen 564
EZSEE() ceeneereeerieee ettt 565
UNGEEC() v 565
UNHNK() et 565
_UNOTAETEA() cviniteiiieieiriee ettt 565
VEPTINEE() oo 566
VESCANE() vttt 566
VPIINEE() cooiieiiiiiiii s 566
VSCANE() tavetenietetirietei ettt ettt ettt ettt ettt 567
VSPIINEE() oo 567
VSSCANE() wuvevieviienietirieiet ettt ettt ettt ettt ettt ebe st et et ebesbe s et ebensens 567
WESTOTDS() vttt ettt ettt sttt et sttt eb e b e e sbesaens 568
WCEOIMID() ettt sttt ettt st 568
WIEEE() cenrteiteetcitee ettt ettt 568
FO() et 569
FOE() oo 569
FL() e 569
FIE() oo s 569
PIU) ot 570
PIE() oo 570

PART VII: APPENDICES

A Configuration Filesccccirimmmiiiimmmnnes s 573

A1 Configuration Files 573

A.2 How Commands, Environment Variables, and Configuration Files Relate 574

XXXVii

Wind River Compiler for ColdFire
User’s Guide, 5.4

A21 Configuration Variables and Precedencec.cccccccocevnnncccennnnn. 574
A22 SEATEUP oo 575
A.3 Standard Configuration Files 576
A3.1 DENVIRON Configuration Variablec.ccccccocoriniiniinnicinicnnes 577
A.32 UFLAGSI, UFLAGS2, DFLAGS Configuration Variables 579

A.33 UAFLAGS1, UAFLAGS2, ULFLAGS1, ULFLAGS2
Configuration Variables ..., 580
A4 The Configuration Language 580
A41 Statements and OPHONS ..o 581
A42 COMMENES .oouiiiiiiiiieieieeeete ettt sttt et et ne b eae 581
A43 String Constants ... 582
A4 VariabIes ..c.cooviviiieiiiiieceeee ettt 582
A45 Assignment Statement ..o 583
A4.6 Error StatemMentccocieeeiesieiieieieseeeeee ettt ne 584
AA7 EXit STAtEMENT ..ocvieeieeieiiciieieieseeeetee ettt ne 584
A48 T STAtEIMENT .ooviviieieiiiiieieteeieeeete ettt sa et ss e aeeaesaens 584
AA49 INclude StatEMENTccveeeeieiiieieiieieieeete ettt ebe e 585
A410 Print STatemMentoccooieieiierieiieieeeeeee et 585
A4l SWitch STateMEeNtcocveieeieiiieieieeieeeeeee e 585
Compatibility Modes: ANSI, PCC, and K&R Cccccccmrrriniiisnnnnnnnnns 587
Compiler LIMitSccccccriiirissnssssssnsnnmmnsmmnnnes 593
Compiler Implementation Defined Behaviorcccocemvvmernieenisannnas 595
D.1 Introduction 595
D.2 Translation 596
D.3 Environment 598

XXXViii

Contents

D.4 Library functions 599

E Assembler Coding NOtesccccoomiriiimiiiisss s e 603
E1 Instruction Mnemonics 603

E.2 Operand Addressing Modes 605

E21 ReZISOrS oo 605

E.2.2 EXPTIESSIONS ...coviiiiiiiiiiittei s 605

F Object and Executable File Formatccccceeeiieercccccccccseer s 609
F1 Executable and Linking Format (ELF) 609

F1.1 Overall SErUCTUTEccoiviiiiiiciciicicic s 609

F12 ELFHeadercccooiiiiiiiiiiiiiiiiccccc e 610

F1.3 Program Header ..o 612

ELF Program Header Fieldscccooiininiiiiiiiiiiiccccces 612

F14 Section Headers ..ot 613

E1.5 Special SECHONSc.cvciiiiiiiiiiiicc s 615

F1.6 ELF Relocation INformationececeeueueeiecininnineeieiererccccinenneeenenene 616

ELF Relocation Entry Fieldsccoooiiiiinccnc 617

F1.7 Line Number INformationc.coceeeeueueueeicinininneeinieeeiccceeneneseseenene 618

F1.8 Symbol Table ..o 619

ELF Symbol Table Fieldsccccoouoieiiiiiiiccce e 619

F1.9 String Table ... 620

G Compiler -X Options Numeric LiStcoommerimiieeessseessesesseeseeseeeeseeeeeeens 621
[T (=TT 7= T 1= 625
H.1 Introduction 625

XXXiX

H.2 Compiler Messages

H.3 Assembler Messages

H.4 Linker Messages

Wind River Compiler for ColdFire
User’s Guide, 5.4

H21 Compiler Message Formatccccovvviiiiiiiiiiiiicccccine
H.2.2 Errorsin asm Macros and asm Stringsccccceeveieiciincniicnnninne
H.2.3 C Compiler Message Detailc.cccocovuniiiiinniiiiiicncces
H.24 CH+ MESSAZES .ovcveviiiiiecicieie ittt

H.4.1 Linker Message FOrmatc.cccocoovoimiiiiiniiiciniciecccecc s
H.4.2 Linker Message Detailcccccoooriiiiiiiiiicniicccccec e

x/

626
626
627
627
681

682

PART |
Introduction

OVEIVIEWcoicceemenrrinissses s s e 3
Configuration and Directory Structure 9
Drivers and Subprogram Flowcccec..... 17
Selecting a Target and Its Components 21

Wind River Compiler for ColdFire
User’s Guide, 5.4

Overview

1.1 Introduction 3
1.2 Overview of the Tools 4

1.3 Documentation 7

1.1 Introduction

This manual describes all tools in the Wind River Compiler toolkit (formerly
known as the Diab Compiler) for the ColdFire family of microprocessors,
including the MCF52xx and the MCF5102. It includes detailed information about
each tool, optimization hints, and guidelines for porting existing code to the
compilers and assembler.

For introductory information, including an example program, see the Getting
Started manual.

Wind River Compiler for ColdFire
User’s Guide, 5.4

1.2 Overview of the Tools

The compiler suite includes high-performance C and C++ tools designed for
professional programmers. Besides the benefits of state-of-the-art optimization,
they reduce time spent creating reliable code because the compilers and other tools
are themselves fast, and they include built-in, customizable checking features that
will help you find problems earlier.

With hundreds of command-line options and special pragmas, and a powerful
linker command language for arranging code and data in memory, the tools can be
customized to meet the needs of any device software project. Special options are
provided for compatibility with other tools and to facilitate porting of existing
code.

Important Compiler Features and Extensions

= Many compiler controls and options for greater flexibility over compiler
operation and code generation.

= Many features and extensions targeted for the device programmer. See 15. Use
in an Embedded Environment.

* Optimizations and features tailored individually for each processor type
within the ColdFire microprocessor family. See 4.3 Alternatives for Selecting a
Target Configuration, p.26 for information on how to specify the target
processor.

» Extensive compile-time checking to detect suspicious and nonportable
constructs. See 11. The Lint Facility.

» Powerful profiling capabilities to locate bottlenecks in the code. The profiling
information can also automatically be used as feedback to the compiler,
enabling even more aggressive optimizations. See 10. Optimization, and the
discussion of D-BCNT in 28. D-BCNT Profiling Basic Block Counter.

» C++ templates, exceptions, and run-time type information.

High Performance Optimizations

A wide range of optimizations, some of which are unique to the Wind River
Compiler, produce fast and compact code as measured by independent

1 Overview
1.2 Overview of the Tools

benchmarks. Special optimizations include superior interprocedural register
allocations, inlining, and reaching analysis.

Optimizations fall into three categories: local, function-level, and program-level, as
listed next. See 10. Optimization.

* Local optimizations within a block of code:

Constant folding

Delete TST

Integer divide optimization

Local common sub-expression elimination
Local strength reduction

Minor transformations

Peep-hole optimizations

Switch optimizations

= Function global optimizations within each function:

Auto increment/decrement optimizations
Automatic register allocation
Complex branch optimization
Condition code optimization
Constant propagation

Dead code elimination

Delayed branches optimization
Delayed register saving
Entry/exit code removal

Extend optimization

Global common sub-expression elimination
Global variable store delay
Lifetime analysis (coloring)

Link register optimization

Loop count-down optimization
Loop invariant code motion

Loop statics optimization

Loop strength reduction

Loop unrolling

Memory read /write optimizations
Reordering code scheduling
Restart optimization

Branch-chain optimization

Space optimization

Split optimization

Portability

Wind River Compiler for ColdFire
User’s Guide, 5.4

Structure and bit-field member to registers
Tail recursion

Tail jump optimization

Undefined variable propagation

Unused assignment deletion

Variable location optimization

Variable propagation

» Program global optimizations across multiple functions:

Argument address optimization
Function inlining

Glue function optimization
Interprocedural optimizations
Literal synthesis optimization
Local data area optimization
Profiling feedback optimization
Static function optimization

The compiler implements the ANSI C++ standard (ISO/IEC FDIS 14882) as
described in 13. C++ Features and Compatibility. Exceptions, templates, and
run-time type Information (RTTI) are fully implemented.

For C modules, the compiler conforms fully to the ANSI X3.159-1989 standard
(called ANSI C), with extensions for compatibility with other compilers to simplify
porting of legacy code.

Standard C programs can be compiled with a strict ANSI option that turns off the
extensions and reduces the language to the standard core. Alternatively, such
programs can be gradually upgraded by using the extensions as desired. See
BCompatibility Modes: ANSI, PCC, and K&R C, p.587 for operational details when
compiling in different modes.

Wind River tools produce identical binary output regardless of the host platform
on which they run. The only exceptions occur when symbolic debugger
information is generated (that is, when -g options are enabled), since path
information differs from one build environment to another.

1.3 Documentation

This User’s Guide

Table 1-1

1 Overview
1.3 Documentation

This guide contains all information necessary to use the tools effectively. Please see
the table of contents for a detailed overview.

User’s Guide Parts

Part

Contents

Part 1. Introduction

Part II. Wind River Compiler

Part III. Wind River Assembler

Part IV. Wind River Linker
Part V. Wind River Compiler
Ultilities

Part VI. C Library

Part VII. Appendices

Overview, configuration, directory structure,
subprograms, selecting a target for compilation.

The compilers, including invocation, options,
additions to C and C++ for device
programming, internal data representation,
calling conventions, and optimizations.

The assembler, including invocation, options,
syntax rules, expression syntax, and all
assembler directives. See manufacturer’s
manuals for details on ColdFire instructions.

The linker, including invocation, options, the
linker command language, and object module
format.

The D-AR library archiver; the D-DUMP utility
for converting and examining object,
executable, and archive files; and others.

The structure of the C libraries provided with
the compiler for use in different environments,
and the details of the functions in the libraries.

Configuration files, limits, implementation-
defined behavior, assembler coding notes, object
modules format details, -X options by number,
and messages.

This manual does not explain the C or C++ language. SeeAdditional Documentation,
p-8 below, for references to standard works.

Wind River Compiler for ColdFire
User’s Guide, 5.4

Additional Documentation

Changes made for this release and information developed after publication of this
manual may be found in the release notes.

The following C++ references are recommended: the ANSI C++ standard
(ISO/IEC FDIS 14882), The C++ Programming Language by Bjarne Stroustrup, The
Annotated C++ Reference Manual by Margaret A. Ellis and Bjarne Stroustrup, and
The C++ Standard Template Library by PJ. Plauger et al.

For C, see the ANSI C standard X3.159-1989 and The C Programming Language by
Brian Kernighan and Dennis Ritchie (K&R).

The following manual from Freescale and Motorola may be consulted for details
about microprocessor architecture and instructions:

» MCF52xx Microprocessor User’s Manual

Configuration and Directory
Structure

2.1 Components and Directories 9
2.2 Accessing Current and Other Versions of the Tools 14

2.3 Environment Variables 14

2.1 Components and Directories

All files are located in subdirectories of a single root directory. The following
terminology is used throughout this manual to refer to that root and related
subdirectories:

» install_path represents the full pathname of the root directory. The root
directory contains version_path subdirectories, each acting as a sub-root for all
files related to a single version of the compiler. This allows multiple versions
of the tools to reside on the same file system.

» version_path is the name of the complete path for a single version of the
compiler.

» host_dir is the name of a subdirectory under version_path containing directories
specific to a single type of host, e.g. Win32 or SUNS (Sun Solaris). This permits
tools for different types of systems to reside on a single networked file system

These names for a default installation depend on the host file system. The
following table assumes that the version number is 5.3.x and shows examples for

Wind River Compiler for ColdFire
User’s Guide, 5.4

common installations. For other systems, see the installation procedures shipped
with the media.

Table 2-1 Example Default Installation Pathnames

System Default version_path Default with host_dir

UNIX flusr/lib/diab/5.3.x fusr/lib/diab/5.3.x/host
HP-UX fusr/lib/diab/5.3.x/HPUX
Solaris /usr/lib/diab/5.3.x/SUNS
Linux fusr/lib/diab/5.3.x/LINUX386

PCs C:\diab\5.3.x C:\diab\5.3.x\op-sys
Windows C:\diab\5.3.x\WIN32

NOTE: In this manual, instructions and examples for Windows apply to all
supported versions of Microsoft Windows.

Also, in cases where the Windows and UNIX pathnames are identical except for
the path separator character, only one pathname is shown using the UNIX
separator “/”.

The following table lists the subdirectories of version_path and important files
contained in them.

Table 2-2 Version_path Subdirectories and Important Files

Subdirectory or File Contents or Use
Programs:
host_dir/bin/ Programs intended for direct use by the user:
dcc Main driver—assumes C libraries and headers.
dplus Main driver—assumes C++ libraries and headers.
das The assembler. A separate ColdFire-specific description file

controls assembly.

did The linker. Generates executable files from one or more object
files and object libraries (archives).

10

2 Configuration and Directory Structure
2.1 Components and Directories

Table 2-2 Version_path Subdirectories and Important Files (cont'd)

Subdirectory or File

dar

dbcnt

dctrl

ddump

dmake

flexIm*
Im*

reorder

host_dir/lib/

ctoa
etoa, dtoa

Contents or Use

D-AR archiver. Creates an object library (archive) from one or
more object files.

D-BCNT basic block counter. Generates profiling information
from files compiled with -Xblock-count.

Utility to set default target for compiler, assembler, and linker.

D-DUMP object file utility. Examines or converts object files, e.g.
ELF to Motorola S-Records.

“make” utility; extended features are required to re-build the
libraries. Not for use with VxWorks development tools.

Programs and files for the license manager used by all Wind
River tools.

This program is started by the driver. It reschedules the
instruction sequence to avoid stalls in the processor pipeline
and does some peephole optimizations. See 10. Optimization.

Programs and files used by programs in bin.

C and C++ compilers. A separate ColdFire-specific description
file directs code generation. (The preferred C++ compiler is
etoa; dtoa is an older version.)

Configuration, header, and source files

conf/

dtools.conf
default.conf
user.conf

default.dld

dmake/

example/

Configuration files for compilers, assembler, and linker.

Configuration files read by the compiler drivers at startup,
primarily to supply command-line options. See A. Configuration
Files for details. Other .conf files for particular boards or
operating systems may also be present.

Default linker command file. Other sample .dld linker
command files are also found here. See 24.2 Defaults, p.386 in
the Linker section of this manual.

dmake startup files. See 30. dmake Makefile Utility.

Example files used in the Getting Started manual and elsewhere.

11

Table 2-2

Wind River Compiler for ColdFire
User’s Guide, 5.4

Version_path Subdirectories and Important Files (cont'd)

Subdirectory or File

Contents or Use

include/

libraries/

pdf/
relhist/

src/

Standard and other header files for use in user programs, plus
HP/SGI STL library header files.

Library sources and build files. See 32.3 Library Sources, Rebuilding
the Libraries, p.481 for details.

PDF form for all manuals.
Older Release Notes.

Source code for replacement routines for system calls. These
functions must be modified before they can be used in an embedded
environment. See 15. Use in an Embedded Environment.

ColdFire startup module and libraries

ACEOF/

crt0.0

libc.a
cross/libc.a

simple/libc.a

libchar.a

libram.a

ELF library and startup code directories .

Start up code to initialize the environment and then call main.
The source for crt0.0 is src/crtcf/crt0.s.

ELF standard C libraries. Each libc.a is actually a short text file
of -1 options listing other libraries to be included. A libc.a file is
selected based on the library search path (See 4.2 Selected Startup
Module and Libraries, p.25).

ACEOF/libc.a is a generic C library with no input/output
support. It includes sublibraries libi.a, libcfp.a, libimpl.a,
libimpfp.a, all described below.

ACEO0F/simple/libc.a includes the above four sublibraries plus
libchar.a providing basic character I/O.

ACEOF/cross/libc.a includes the above four sublibraries plus
libram.a, which adds RAM-disk-based file I/O.

For details, see 32.2 Library Structure, p.472.

Basic character input/output support for stdin and stdout
(stderr and named files are not supported); an alternative to
libram.a.

Adds to libchar.a RAM-disk-based fileI/O for stdin and stdout
only; an alternative to libchar.a.

12

2 Configuration and Directory Structure
2.1 Components and Directories

Table 2-2 Version_path Subdirectories and Important Files (cont'd)

Subdirectory or File Contents or Use
libi.a General library containing standard ANSI C functions.
libimpl.a Utility functions called by compiler generated or runtime code,

typically for constructs not implemented in hardware, e.g.,
low-level software floating point support, multiple register save
and restore, and 64-bit integer support.

libd.a Additional standard library functions for C++ (libc.a is also
required).

libg.a Functions to generate debug information for some debug
targets.

windiss/libwindiss.a Support library for Wind ISS instruction-set simulator when

supplied. Note: implicitly also uses cross/libc.a.

Floating point-specific libraries and sub-libraries

ACEOFN ELF floating point stubs for floating point support of “None”.
libcfp.a Stubs to avoid undefined externals.
libimpfp.a Empty file required by different versions of libc.a.
libstl.a, libstlstd.a Support library for C++. Includes iostream and complex math
classes.
ACEOFS/ ELF software floating point libraries:
libcfp.a Floating point functions called by user code.
libcomplex.a C++ complex math class library.
libimpfp.a Conversions between floating point and other types.
libios.a C++ iostream class library.
libm.a Math library.
libpthread.a Unsupported implementation of POSIX threads for use with
the example programs. Text file which includes sub-libraries
libdk*.a.
ACEOFV/ ELF vector floating point libraries:

13

Wind River Compiler for ColdFire
User’s Guide, 5.4

2.2 Accessing Current and Other Versions of the Tools

The driver (dcc or dplus) automatically finds the subprograms it calls (it is
modified with the directory selected during installation). Thus, running the
compiler requires only that driver be accessed in any of the usual ways:

» Add version_path/host_dir/bin to your path for UNIX or
version_path\host_dir\bin for Windows.

= Create an alias or batch file that includes the complete path directly.
» Copy dccor dplus to an existing directory in your path, e.g., /ust/bin on UNIX.

If the tools are installed on a remote server, Windows users should map a drive
letter to the remote directory where they reside and use that drive letter when
setting their path variable.

You can invoke an older copy of a driver as follows:

* Rename the main driver for the older version. For example, to execute version
4.4a of the C++ driver, rename dplus in the bin directory for version 4.4a
dplus44a. Then access dplus44a in any of the usual ways described above.

* Modify your path to put the directory containing the desired version before
the directory containing any other version. The driver command will then
access the desired version.

= Create an alias or batch file that includes the complete path of the desired
version.

2.3 Environment Variables

NOTE: This section is for unusual cases. It is usually sufficient to override the
default setting by using the -t option on a command line when invoking a tool, or
to use one of the other methods, all as described under 4.3 Alternatives for Selecting
a Target Configuration, p.26.

The configuration information which controls default operation of the tools is
usually stored as configuration variables in default.conf in the conf subdirectory of
the version_path directory by the dctrl program. These configuration variables

14

Table 2-3

2 Configuration and Directory Structure
2.3 Environment Variables

include DTARGET, DFP, DOBJECT, and DENVIRON. However, if an environment
variable having the same name as a configuration variable is set, the value of the
environment variable will override the value stored in default.conf. (This can in
turn be overridden by using a -t or -WD option on the command line when
invoking a tool.)

The method used to set environment variables depends on the operating system as
shown in the following table.

Setting Environment Variables

System Command
UNIX variable=value ; export variable
Windows set variable=value

2.3.1 Environment Variables Recognized by the Compiler

This section describes the environment variables recognized by the compiler.

DCONFIG
Specifies the configuration file used to define the default behavior of the tools.
documents the configuration file. If neither DCONFIG nor the -WC option is
used (see A.2.2 Startup, p.575), the drivers use:

version_path/conf /dtools .conf (UNIX)
%version_path%\conf\dtools.conf (Windows)
DTARGET
DOBJECT
DFP
DENVIRON

These four environment variables specify, respectively, the target processor,
object file format and mnemonic type, floating point method, and execution
environment. They may be used to override the values set in default.conf (and
will in turn be overridden by a -t option on the command line). DENVIRON
may also refer to an additional configuration file, for example to set options for
a particular target operating system. For details, see:

» 4.3 Alternatives for Selecting a Target Configuration, p.26.
» 4.1 Selecting a Target, p.21 for valid settings for the four variables.
» A.3.1 DENVIRON Configuration Variable, p.577 regarding DENVIRON.

15

Wind River Compiler for ColdFire
User’s Guide, 5.4

DFLAGS

Specifies extra options for the drivers and is a convenient way to specify -XO,
-0 or other options with an environment variable (e.g., to avoid changing
several makefiles or to override options given in a configuration file). The
options in DFLAGS are evaluated before the options given on the command
line. See A.3 Standard Configuration Files, p.576, especially Figure A-2 for
details.

DIABLIB

Formerly used to tell the compiler and drivers where to look for the tools. If
DIABLIB is defined, it should be set to the version_path selected during
installation. If DIABLIB is not defined, the compiler and drivers are found on
the user’s path variable or from an absolute directory path specified on the
command line.

NOTE: DIABLIB is deprecated and is maintained for backward compatibility
only.

DIABTMPDIR

Specifies the directory for all temporary files generated by all tools in the tool
suite.

DCXXOLD

16

If set to YES, tells the compiler to use the old C++ parser (-Xc++-o0ld option) by
default.

Drivers and Subprogram Flow

The Wind River tools are most easily invoked using the dcc and dplus driver
programs. Depending on the input files and options on the command line, the
driver may run up to five subprograms: the C preprocessor, either or both
compilers, the assembler, and the linker.

The following figure shows the subprogram flow graphically for a C file. A C++
file is processed similarly except dplus invokes the C++ etoa compiler instead of
ctoa. The subprograms and the stopping options are described following the figure.

17

Wind River Compiler for ColdFire
User’s Guide, 5.4

Figure 3-1 Subprogram Flow and Intermediate Files

Stopping
C sources Preprocessor Option
file.c cpp
. \J P
C Compiler A/
ctoa
_) -S
Assembler "\ Assembler A/
sources
\/ das
i
Libraries \ Linker
aa |~ &

Driver command lines are described in detail in 5. Invoking the Compiler. The
general form is:

dce [options] [input-files] Assumes Wind River C libraries.

dplus [options] [input-files] Assumes Wind River C++ libraries.

The driver determines the starting subprogram to be applied to each input-file
based on the file’s extension suffix; for example, by default a file with extension .s
is assembled and linked but not preprocessed or compiled. Command-line options
may be used to stop processing early. The subprograms and stopping options are
as follows.

18

3 Drivers and Subprogram Flow

Table 3-1 Driver Subprograms, Default Input and Output Extensions, and Stopping Options

Default Default
Sub- Input Stopping Output
program Extension Option Extension Function and Stopping Option
cpp -P . The preprocessor; takes a C or C++
module as input and processes all #
directives. This program is included in
the main compiler program. The -P
option halts the driver after this phase,
producing a file with the .i suffix. (The
. file is not produced unless -P is used.)
ctoa .c -s .s The C-to-assembly compiler; consists of
several internal stages (parser,
optimizer, and code generator), and
generates assembly source from
preprocessed C source.
etoa -cpp -s -s The C++-to-assembly compiler;
z’c‘x generates assembly source from
.c (capital, UNIX) preprocessed C++ source.
das .s -c .0 The assembler; generates linkable
object code from assembly source.
did -0 (object) a.out The linker; generates an executable file
. from one or more object files and object
. h (default) M C _) d obj
: (archive) libraries, as directed by a .dld linker
command file (obsolete: .Ink). The
"]i_zll: (commands) default output name is a.out if the -o

outputfile option is not given.

19

Wind River Compiler for ColdFire
User’s Guide, 5.4

20

Selecting a Target and Its
Components

4.1 Selecting a Target 21
4.2 Selected Startup Module and Libraries 25
4.3 Alternatives for Selecting a Target Configuration 26

4.1 Selecting a Target

The compiler, assembler, and linker all require specification of a target configuration.

A complete target configuration specifies the target processor, the type of floating
point support, the object module format (ELF), and the execution environment
(default libraries for input/output and target operating system support). To
determine the current default, execute the command:

dcc -Xshow-target

or print the file default.conf in the version_path/conf subdirectory.

The easiest methods for selecting a target configuration are as follows. The first
method is preferred. For special cases or more details, see 4.3 Alternatives for
Selecting a Target Configuration, p.26.

21

Wind River Compiler for ColdFire
User’s Guide, 5.4

= Use the -ttof or -ttof:environ option when invoking the compiler, assembler, or
linker. The table below describes this option.

» Invoke the dctrl command with the -t option to set the defaults used when no
-t option is present on the compiler, assembler, or linker command line. Note
that this sets the default for all users.

The tof:environ string given with the -t option has four parts, as follows. See
4.2 Selected Startup Module and Libraries, p.25 for examples.

Table 4-1 -t Option Values

t Target processor, a several-character code — see the Notes following the
table (sets DTARGET):

MCF51* ColdFire MCF51xx. Equivalent to MC68040 and
MC68LC040.
MCF5307 ColdFire MCF5307
= MCF5206E
MCF5202 ColdFire MCF5202
MCF5203 ColdFire MCF5203
MCF5204 ColdFire MCF5204
MCF5206 ColdFire MCF5206
MCF5206e ColdFire MCF5206e
MCF5214 ColdFire MCF5214
MCF5216 ColdFire MCF5216
MCF5232 ColdFire MCF5232
MCF5233 ColdFire MCF5233
MCF5234 ColdFire MCF5234
MCF5235 ColdFire MCF5235
MCF5248 ColdFire MCF5248
MCF5249 ColdFire MCF5249
MCF5270 ColdFire MCF5270

22

4 Selecting a Target and Its Components
4.1 Selecting a Target

Table 4-1 -t Option Values (cont'd)

MCF5271 ColdFire MCF5271

MCF5272 ColdFire MCF5272

MCF5274 ColdFire MCF5274
MCF5275 ColdFire MCF5275

MCF5280 ColdFire MCF5280

MCF5281 ColdFire MCF5281

MCF5282 ColdFire MCF5282

MCF5200 Other ColdFire

= MCF52*

= MCF53*

= ACE*

MCF54* ColdFire MCF5400 (ColdFire Version 4)
MCF5400 ColdFire MCF5400

MCF5407E ColdFire MCF5407E

MCF547x ColdFire MCF547X.

= MCF547X

MCF548x ColdFire MCF548X.

= MCF548X

Object format — one character (sets DOBJECT, see “Alternatives...”
on 26):

F for ELF using embedded mnemonics.

N for GNU/VxWorks object format. This option uses the GNU
assembler /linker /libraries for object and assembly code
compatibility.

23

Wind River Compiler for ColdFire

User’s Guide, 5.4

Table 4-1 -t Option Values (cont'd)

f

Floating point support — one character (sets DFP):

H for Hardware floating point (54xx targets only). S for Software
floating point emulation provided with the compiler — default on
targets without internal floating point.

N for No floating point support (minimizes the required runtime).

environ Execution environment (sets DENVIRON). Determines paths searched

for libraries (see 4.2 Selected Startup Module and Libraries, p.25). Two
standard values used with the libraries delivered with the tools are:

cross to include libram.a for RAM-disk input/output
simple to include libchar.a for basic character input/output

environ may also be the name of a target operating system supported
by Wind River. In this case, in addition to specifying the library search
path, the value will be used to include a special configuration file,
environ.conf in the conf subdirectory, to set options required by the
target operating system. For further details, see A.3.1 DENVIRON
Configuration Variable, p.577, VxWorks Application Development, p.25,
and the release notes and available application notes for particular
target operating systems.

environ is optional. If not given by -t, a -WDDENVIRON option, or a
DENVIRON environment variable, the value set by dctrl is used.

Notes for the Target Processor Component of the -t Option

24

l/tll

In the -tfof option, “t” is the part not including the final two parts, each of
which is always a single character (the o0 and f parts).

“__rr

Each target in the table which is not preceded by an sign causes the
invoked tool to operate in a manner unique to that target. The unique
operating characteristics are selected via the options used to invoke the tool
plus the options which the tool extracts from the built-in configuration files.

To see the options associated with a particular -t option, invoke a compiler
driver with the -t option, the -# option (causes the driver to show the
command line used to invoke each tool), and the -Wa, -# option (causes the
assembler, when invoked by the driver, to show options which it extracts from
the configuration files).

4 Selecting a Target and Its Components
4.2 Selected Startup Module and Libraries

“u_r

» Ineach row of the table, values preceded by an equal sign are equivalent to the first
value in the row and are treated alike by the tools in all respects (internally, the value
without the “=’ sign is substituted for the given target value).

utn e

may end with a “*” character. This matches any string of zero or more
characters, and is intended to provide generic support for new processors in a
family.

The order in the table is significant: the first “t” matching that is given on the
command line will be selected. When entering a target processor name on the command
line with the -t option, use the actual processor name, not a “*”. Then, if the tools have
special support specifically for that processor, it will be selected; if not, the first
matching “generic” processor will be used.

= This table may not be up-to-date. Invoke dctrl -t to construct any valid -t
option supported by the tools as installed, or look in ACEQ.conf for a complete
list of target processor codes.

VxWorks Application Development

To build VxWorks applications, specify the appropriate execution environment
with the -t option. Usually this will be :rtp for user (real-time process) mode or
:vxworksx.x for kernel mode. For example, -tMCF51*FN:rtp selects user mode,
while -tMCF51**FN:vxworks6.2 selects VxWorks 6.2 kernel mode. For more
information, see the documentation that accompanied your VxWorks
development tools.

NOTE: If you specify a VxWorks execution environment (:rtp or :vxworksx.x), the
standard C libraries linked to your application will be different from the
compiler’s native C libraries documented in this manual.

Specifying a VxWorks execution environment turns on -Xieee754-pedantic by
default.

4.2 Selected Startup Module and Libraries

The parts of -ttof:environ option (or its equivalents as described in 4.1 Selecting a
Target, p.21) are used to construct a directory name and to select the desired startup
module and libraries per Table 4-1.

25

Wind River Compiler for ColdFire
User’s Guide, 5.4

Examples:

-t Option Startup Module, Libraries
-tMCF5206FN:simple ACEOQF/crt0.0

ACEOF/simple/libc.a with ACEOFN/libcfp.a and
ACEOF/libchar.a

ColdFire, ELF objects, no floating point, character
input/output

-tMCF5206FS:cross ACEOF/crt0.0

ACEOF/cross/libc.a with ACEOFS/libcfp.a and
ACEOF/libram.a

ColdFire, ELF objects, software floating point,
RAM-disk input/output

The library archive files themselves, and the detailed mechanics for selection of the
appropriate subdirectories and libraries, are fully described in 32.2 Library
Structure, p.472.

Briefly, the main driver programs select the startup module and libraries by
invoking the linker with the following partial command line, using UNIX path
notation, written on multiple lines and spaced for readability, and where f is as
described above:

dld -Y P,version_path/ACEOFE/environ : version_path/ACEQFf :

version_path/ACEQF /environ : version_path/ACEQF . ..

-l:crt0.o0 ... -lc
The -Y P option sets a list of directories. Then the -l:crt0.0 option causes the linker
to look in those directories for file crt0.0, the startup file, without modification,
while the -1c option causes the linker to construct filename libc.a and look in those
directories for it.

4.3 Alternatives for Selecting a Target Configuration

There are five ways to change the target configuration. As noted at the beginning of
this chapter, the first method is preferred, especially when multiple engineers work with

26

4 Selecting a Target and Its Components
4.3 Alternatives for Selecting a Target Configuration

multiple targets. This section is provided for backward compatibility and special
cases.

Using -t sets four configuration variables: DTARGET for the processor, DOBJECT for
the object module format, DFP for the type of floating point support, and
DENVIRON for the target execution environment.

These configuration variables are stored in version_path/conf/default.conf. A
configuration variable may be overridden by an environment variable of the same
name, or by a -t or -WD wvariable option on the command used to invoke the
compiler, assembler, or linker. The environment variable is checked first and then
the command line; the last instance found is used.

Change the target for a single invocation of a tool by using the -t option on the
command line; this applies to dec, dplus, das, and dld. The -t option takes one of
the fof or tof:environ codes described in 4.1 Selecting a Target, p.21 and displayed by
the dctrl -t program (see below).

Example:
dplus -ttof -c¢ file.cpp

Other methods involve changing or overriding four configuration variables stored
in the configuration file default.conf. (See A.3 Standard Configuration Files, p.576.)

» The default target configuration is set and may be changed any time by using
the dctrl program with the -t option:

dctrl -t

This interactive program prompts you for the desired target processor, object
format, floating point support, and target execution environment. If you
already know the exact target configuration you want, you can skip the
interactive program by specifying the target after -t on the command line:

dctrl -ttofenviron

Upon success, dctrl displays the new default target and modifies default.conf.

* Manually edit the default.conf configuration file to change the default settings
for any of the DTARGET (the processor), DOBJECT (object module format),
DFP (floating point support), and DENVIRON (target execution environment)
configuration variables.

* Set any of the DTARGET, DFP, DOBJECT, and DENVIRON environment
variables. This overrides the values of the configuration variables having these
names in default.conf.

27

Wind River Compiler for ColdFire
User’s Guide, 5.4

» Use the command-line option -WD environment_uvariable (see 5.3.26 Define
Configuration Variable (-W Dname=value), p.44). This overrides both the values
of the variables in default.conf and any environment variables. Example:

dplus -WDDTARGET=newtarget -c file.cpp

NOTE: For additional explanation, and order of precedence when more than one
of these methods is used, See A. Configuration Files, and especially
A.2.1 Configuration Variables and Precedence, p.574.

28

10

11

12

13

14

15

PART Il

Wind River Compiler

Invoking the Compilerccccovoemriiiiiiccennninne 31
Additions to ANSI C and C++cccocmeriiiinenennnns 129
Embedding Assembly Codeccoocmrrriiiinnnnes 163
Internal Data Representationcccc.cuuuue. 177
Calling Conventionscccccviiiiemmmenrnnsssnnennnns 189
Optimization ... 197
The Lint Facility ... 225
Converting Existing Codeccooccmmrriiiiineennnne 229
C++ Features and Compatibility 235

Locating Code and Data, Addressing, Access 249

Use in an Embedded Environment 271

29

Wind River Compiler for ColdFire
User’s Guide, 5.4

30

Invoking the Compiler

5.1 The Command Line 31

5.2 Rules for Writing Command-Line Options 32
5.3 Compiler Command-Line Options 35

5.4 Compiler -X Options 50

5.5 [Examples of Processing Source Files 124

5.1 The Command Line

Asnoted in 3. Drivers and Subprogram Flow, the compiler is best executed via one of
the driver programs as follows:

decc [options] [input-files] Assumes Wind River C libraries.
dplus [options] [input-files] Assumes Wind River C++ libraries.
where:

dcc

dplus

Invokes the main driver program for the compiler suite. See 2.2 Accessing
Current and Other Versions of the Tools, p.14 for details on how the driver
program is found.

31

Wind River Compiler for ColdFire
User’s Guide, 5.4

Both the dcc and dplus drivers are used in examples this manual. Please
substitute dcc for dplus if you are using only the C compiler.

options
Command-line options which change the behavior of the tools. See the
remainder of this chapter for details. Options and filenames may occur in any
order.

input-files
A list of pathnames, each specifying a file, separated by whitespace. The suffix
of each filename indicates to the driver which actions to take. See Table 3-1 for
details.

For example, process a single C++ file, stopping after compilation, with standard
optimization:
dplus -0 -c file.cpp

The form -@name can also be used for either options or input-files. The name must
be that of an environment variable or file (a path is allowed), the contents of which
replace -@name. See A.2 How Commands, Environment Variables, and Configuration
Files Relate, p.574 for details.

5.2 Rules for Writing Command-Line Options

Same Option More Than Once

Options can come from several sources: the command line, environment variables,
configuration files, and so forth as described in A.2 How Commands, Environment
Variables, and Configuration Files Relate, p.574.

If an option appears more than once from whatever source, the final instance is
taken unless noted otherwise in the individual option descriptions in the next
sections.

32

5 Invoking the Compiler
5.2 Rules for Writing Command-Line Options

Command-Line Options are Case-sensitive

Command-line options are case-sensitive. For example, -c and -C are two
unrelated options. This is true even on Windows; however filenames on Windows
remain case-insensitive as usual.

Spaces In Command-Line Options

Quoting Values

For easier reading, command-line options may be shown with embedded spaces
in documentation, although they are not typically written this way in use. In
writing options on the command line, space is allowed only following the option
letter, not elsewhere. For example:

-D DEBUG=2

is valid, and is exactly equivalent to:
-DDEBUG=2

However,
-D DEBUG = 2

“_n

is not valid because of the spaces around the “=

When a command-line option can take a string as a value, it does not require
quotes. For example:

-prof-feedback=rta-db -Xname-code=.code
Enclosing the value in quotes has no effect. Thus,
-DSTRING="test"
is equivalent to:
-DSTRING=test

Using “\” to escape the quotes will pass the quotes into the compiler. Given file
test.c containing:

void main() {
printf (STRING) ;
}

compiling with:

dcc test.c -DSTRING="test"

33

Wind River Compiler for ColdFire
User’s Guide, 5.4

the printf statement becomes:
printf(test);

(and will fail because test is undefined). But compiled with:
dcc test.c -DSTRING=\"test\"

the printf statement becomes:

printf("test");

Unrecognized Options, Passing Options to the Assembler or Linker

Length Limit

Ordinary options beginning with a letter other than “X” and which are not listed
in this section are automatically passed by the driver to the linker. All -X options
are processed first by the compiler.

When invoking the dcc or dplus driver program, it is sometimes important to pass
an option explicitly to the assembler or linker—for example, a -X option or an
option identified by the same letter as a driver or compiler option. The driver
options -W a,arguments and -W Larquments pass arguments to the assembler and
linker respectively.

The length of the command line is limited by the drivers’ 1000-byte internal buffer.
To pass longer commands to the tools, see 5.3.39 Read Command-Line Options from
File or Variable (-@name, -@@name), p.50.

The following example is written on several lines for clarity. The individual
options shown are fully documented in this chapter or in the 16.4 Assembler -X
Options, p.303 and in 24.5 Linker -X options, p.395.

dcc -D DEBUG=2 -XO
-Wa , -DDEBUG=3
-Wl, -Xdont-die
-Llibs
-WA.asm
f.c a.asm

-D DEBUG=2 -XO
The driver invokes the compiler with these options. A space is allowed after
the option letter -D.

34

5 Invoking the Compiler
5.3 Compiler Command-Line Options

-Wa., ~DDEBUG=3
The driver invokes the assembler with the option -DDEBUG=3, perhaps for use
in the a.asm file. Without the -Wa, the driver would have passed this option to
the compiler, resetting DEBUG to 3.

No space is allowed after the -D because it would have ended the -Wa option;
-W a, -DDEBUG=3 would also have been valid.
-Wl, -Xdont-die
The driver invokes the linker with the option -Xdont-die. Without the -W1, the
driver would have passed this linker option -Xdont-die to the compiler.

-Llibs
This option is not recognized by the driver as a driver or compiler option, so it
is passed to the linker.

-WA.asm
Instructs the driver that files having the extension .asm are to be preprocessed
and then assembled. If this extension is a project standard, it can more
conveniently be set in user configuration file user.conf as follows (see
A.3.2 UFLAGS1, UFLAGS2, DFLAGS Configuration Variables, p.579):

UFLAGS1=-WA.asm

f.c a.asm
An input file to be compiled (f.c) and, because of the -WaA.asm option, an

input file to be preprocessed and assembled (a.asm).

The next sections document the command-line options recognized by the driver
and compiler.

5.3 Compiler Command-Line Options

This section shows all general command-line options. New options added after
publication may also be in the most recent release notes.

35

Wind River Compiler for ColdFire
User’s Guide, 5.4

5.3.1 Show Information About Compiler Options (-?, -?..., -h, -h..., --help)

-h

--help
Show synopsis of commonly used compiler options. Available for other tools
(assembler, linker) as well.

n?
Show synopsis of less frequently used options.

-?W
-hw

Show synopsis of -W options (see 5.3.25 Pass Arguments to the Assembler
(-W a,arquments, -W :as:,arquments), p.44).

-?X

-hx
Show synopsis of -X options (see 5.4 Compiler -X Options, p.50).

-?Xstring
Show synopsis of -X options whose names contain the specified string. For
example, entering dcc -?Xbss returns information about -Xbss-off and
-Xbss-common-off.

5.3.2 Ignore Predefined Macros and Assertions (-A-)
-A-
Cause the preprocessor to ignore all predefined macros and assertions.
5.3.3 Define Assertion (-A assertion)
-A pred (ident1) (ident2)
Cause the assertion pred(ident) to be defined. See #assert and #unassert
Preprocessor Directives, p.132.
5.3.4 Pass Along Comments (-C)
-c

Cause the C processor to pass along all comments. Useful only in conjunction
with -E or -P.

36

5 Invoking the Compiler
5.3 Compiler Command-Line Options

NOTE: The preprocessor may be used with any language supported by Wind
River.

-C is not necessary when -Xpass-source is used to output source as comments
when generating assembly output because in that case the source code is taken

before preprocessing.

5.3.5 Stop After Assembly, Produce Object (-c)

-C
Stop after the assembly step and produce an object file with default file
extension .o (unless modified by -o, see 5.3.18 Specify Output File (-o file), p.42).

5.3.6 Define Preprocessor Macro Name (-D name=definition)

-D name [=definition]
Define the preprocessor macro name as if by the #define directive. If no
definition is given, the value 1 is used.

Macros may be either function-like macros or object-like macros. Function-like
macros take arguments; this sample macro converts inches to centimeters:

dcc -DIN_TO_CM(x)=((x)*2.54) foo.c

Note that, to prevent unexpected results, both the argument and the entire
macro expression should be enclosed in parentheses.

Object macros do not take arguments:
dcc -DYEAR_LENGTH=366 bar.c

See 5.2 Rules for Writing Command-Line Options, p.32, for rules about using
spaces, quotations, and the like on the command line.

5.3.7 Stop After Preprocessor, Write Source to Standard Output (-E)

-E
Run only the preprocessor on the named files and send the output to the
standard output. All preprocessor directives are removed except for
line-number directives used by the compiler to generate line-number
information. (To suppress line-number information, use

37

Wind River Compiler for ColdFire
User’s Guide, 5.4

-Xpreprocessor-lineno-off.) The source files do not require any particular
suffix.

When -E is invoked, the preprocessor implicitly includes the Ipragma.h file. To
suppress inclusion of lpragma.h, use -Xclib-optim-off. For more on
Ipragma.h, see 5.4.26 Disregard ANSI C Library Functions (-Xclib-optim-off),
p-69.

See also 5.3.19 Stop After Preprocessor, Produce Source (-P), p.43.

5.3.8 Change Diagnostic Severity Level (-e)

-esn[n...]
For each of one or more diagnostic message numbers 7 in the
comma-separated list, change the severity level of the message to s where s is
one of:

i
Information, equivalent to ignore.
Warning.

Error (continue compilation).

Fatal error (terminate immediately).
Each diagnostic message has the form:
“filer, line #: severity-level (compiler:error#) : message
Example:
"errl.c", line 2: warning (dcc:1025): division by zero

To raise the severity level of this message from “warning” to “error”, invoke the
compiler with the option -ee1025. To reduce the level to “ignore”, use -ei1025.

NOTE: Some messages have a minimum severity level. The severity level of a
message may be raised above its minimum but not lowered below it. Attempting
to do so will generate warning 1641.

38

5 Invoking the Compiler
5.3 Compiler Command-Line Options

NOTE: -Xmismatch-warning and -Xmismatch-warning=2 override the -e option.
If either form of -Xmismatch-warning is used, mismatched types will only
produce a warning, even if -e is used to increase the severity level of the diagnostic.
See 5.4.100 Warn On Type and Arqument Mismatch (-Xmismatch-warning), p.101.

5.3.9 Generate Symbolic Debugger Information (-g)

The several -gn options enable generation of varying levels of debugging
information. If optimization options are also present (-O or -X0O), optimization will
be affected as described.

-g

-g0

Same as -g2.

Do not generate symbolic debugger information. This is the default. No effect
on optimization.

Generate symbolic debugger information, but leave out line number
information. No effect on optimization.

Generate symbolic debugger information.

Do most target-independent optimizations, but do not do the following
optimizations, since most object formats have no way to describe them.
Hexadecimal numbers indicate the mask for -Xkill-opt (5.4.86 Disable
Individual Optimizations (-Xkill-opt=mask, -Xkill-reorder=mask), p.93).

= Function inlining (Inlining (0x4), p.207)

» Structure member optimization (Structure Members to Registers (0x10),
p-209)

= Split optimization (Variable Live Range Optimization (0x400), p.211)

» Complex Branch Optimization (0x1000), p.212

» Loop Count-Down Optimization (0x4000), p.213

» Minor Transformations to Simplify Code Generation (0x80000), p.214

» Static function optimization (0x20000000) (Static Function Optimization
(0x20000000), p.217)

= Live-Variable Analysis (0x40000000), p.218

Also, disable most target-dependent optimizations: option -g2 also disables
basic reordering and all peephole optimizations (see 220).

39

Wind River Compiler for ColdFire
User’s Guide, 5.4

See 10. Optimization for details on these optimizations (the optimizations are
ordered by the hex values in that chapter).

See also -Xoptimized-debug-off (5.4.107 Disable Most Optimizations With -g
(-Xoptimized-debug-...), p.104) on how to disable optimizations which interfere
with debugging.

g3
Generate symbolic debugger information and do all optimizations. Highly
optimized code can be difficult to debug. For example, there is no way to break
on inlined functions (except at the assembly level). Hence, when debugging is
required, -g2 is usually a better choice.

NOTE: The -gn options may also be specified at the beginning of a source files
using:

#pragma option -gn

5.3.10 Print Pathnames of Header Files (-H)

-H
Print the pathnames of all header files to the standard error output.

5.3.11 Specify Directory for Header Files (-1 dir)

-I dir
Add dir to the list of directories to be searched for header files. A full pathname
is allowed. More than one -I option can be given.

For an #include “file” directive, search for the file in the following locations:

» First, the directory of the file containing the include directive. Thus, if an
#include directive includes a path, that path defines the current directory
for #include directives in the included file. Example (using UNIX
notation):

Assume file f1.c contains:

#include "pl/hl.h"
#include "h3.h"

and file h1.h contains:

#include "h2.h"

40

5 Invoking the Compiler
5.3 Compiler Command-Line Options

The search for h2.h will begin in directory p1; the search for h3.h will begin
in the directory containing fl.c.

» Second, directories given by the -I dir option, in the order encountered.
= Third, the directory given by either:
any -Y I option appearing prior to the -I option

version_path/include (untx)
version_path\include (Windows)

(The -Y I option effectively replaces the version_path directory.)

For an #include <file> directive, search only the second and third locations.

5.3.12 Control Search for User-Defined Header Files (-1@)

-1e
C only. Search for user-defined header files (those enclosed in double quotes
(") in the order specified only by -I options (modified by -Y I options if any).
That is, do not search the current directory by default; search the current
directory only when an -I@ option is encountered. Example:

dcc -Iabc -I@ -Idef file.c

will result in a search order of:

the directory abc
the current directory
the directory def

5.3.13 Modify Header File Processing (-i file1=file2)
-i filel=file2
Substitute file2 for filel in an #include directive.

-i filel=
Ignore any #include directive for filel.

-i =file2
Include file2 before processing any other source file.

The -i option is disabled by -P.

41

Wind River Compiler for ColdFire
User’s Guide, 5.4

5.3.14 Specify Directory For -l Search List (-L dir)

This is a linker option. See Specify Directory for -l search List (-L dir), p.391.

5.3.15 Specify Library or Process File (- name)

This is a linker option. See Specify Library or File to Process (-Iname, -I:filename), p.391.

5.3.16 Specify Pathname of Target-Spec File (-M target-spec)

-M target-spec

NOTE: This option is primarily for use by Wind River.

Specify the pathname of the target-spec file to the compiler (see target.cd in
Table 2-2). This file contains the target description and is read by the compiler
at startup. If the -M option is set more than once, the final setting is used.

5.3.17 Optimize Code (-O)

-0
Optimize code. Either this or -XO must be present to enable optimization and
to invoke the reorder program. See the -XO option in 5.4.104 Enable Extra
Optimizations (-XO), p.103 for the difference between these options and
10. Optimization for more information about optimizations.

This option can also be specified at the beginning of a source file using:

#pragma option -0

5.3.18 Specify Output File (-o file)

-o file
Output to the given file instead of the default. This option works with the -P,
-S and -c options as well as when none of these are specified. When compiling
file.ext the following filenames are used by default if the -0 option is not given:

-P file.i
-s file.s
-c file.o

42

5 Invoking the Compiler
5.3 Compiler Command-Line Options

not -P, -S, or -c a.out

5.3.19 Stop After Preprocessor, Produce Source (-P)

-P

Stop after the preprocessor step and produce a source file with default file
extension .i (unless modified by -o).

Unlike with the -E option, the output will not contain any preprocessing
directives, and the output does not go to standard out (see -o for the output
filename). The source files do not require any particular suffix.

When this option is used, the compiler driver does not invoke the assembler
or linker. Thus, any switches intended for the assembler or linker must be
given separately on command lines which invoke them. The -P option also
disables -i.

When -P is invoked, the preprocessor implicitly includes the Ipragma.h file. To
suppress inclusion of lpragma.h, use -Xclib-optim-off. For more on
Ipragma.h, see 5.4.26 Disregard ANSI C Library Functions (-Xclib-optim-off),
p-69.

5.3.20 Stop After Compilation, Produce Assembly (-S)

-S

Stop after the compilation step and produce an assembly source code file with
the default file extension .s (unless modified by -o). If
-Xshow-configuration=1 is enabled, the assembly file contains a list of options
in effect during compilation.

5.3.21 Select the Target Processor (-t tof:environ)

-t tofienviron

Select the target processor with ¢ (a several character code), the object format
with o (a one letter code), the floating point support with f (H for hardware, S
for software, and N for none), and libraries suitable for the target environment
with environ.

To determine the proper tof, execute dctrl -t to interactively display all valid
combinations. See also 4.2 Selected Startup Module and Libraries, p.25.

43

Wind River Compiler for ColdFire
User’s Guide, 5.4

5.3.22 Undefine Preprocessor Macro Name (-U name)

-U name
Undefine the preprocessor macro name as if by the #undef directive.

5.3.23 Display Current Version Number (-V, -VV)

-v
Display the current version number of the driver.

-vv
Display the current version number of the driver and the version number of all
subprograms. Do not complete the compilation.

5.3.24 Run Driver in Verbose Mode (-v)

-V
Run the main drive program in verbose mode, printing a message as each
subprogram is started.

5.3.25 Pass Arguments to the Assembler (-W a,arguments, -W :as:,arguments)

-W a,argl[,arg2...]
-W :as:, argl[, argZ...]
Pass the arguments to the assembler. Example:

-Wa,-1 or -W:as:,-1

Pass the option “-1” (lower case letter L) to the assembler to get an assembler
listing file.

5.3.26 Define Configuration Variable (-W Dname=value)

-W Dname=value
Set a configuration variable equal to a value for use during configuration file
processing.

More than one -WD option can be used to set several variables. The effect is as
if an assignment statement for each such -WD variable had been added to the
beginning of the main configuration file.

44

5 Invoking the Compiler
5.3 Compiler Command-Line Options

5.3.27 Pass Arguments to Linker (-W l,arguments, -W :ld:,arguments)

-W 1,arg1[,arg2...]
-W :1d4:, argl[,argz...]

Pass the arguments to the linker.

Any option which is not recognized by the driver or compiler is automatically
passed to the linker. -W1 may be used to pass options to third-party linkers in
cases where such an option resembles a driver or compiler option. See
5.4.61 Suppress Assembler and Linker Parameters (-Xforeign-as-Id), p.85. Example:
-Wl,-m or -W:1d:,-m

Pass the option -m to the linker to get a link map.

5.3.28 Specify Linker Command File (-W mfile)

-W nfile

Use the given linker command file instead of the default
version_path/conf/default.dld.

NOTE: To suppress use of the default.Ink file, specify just -Wm with no file on
the command line.

5.3.29 Specify Startup Module (-W sfile)

-W sfile

Use the given object file instead of the default startup file (crt0.0). Additional
object files to be loaded along with the startup file and before any other files
can be given separated by commas.

NOTE: To provide a crt0.s file or substitute to be assembled on the command
line, or to use an existing non-default crt0.o file or substitute, specify just -Ws
with no name to suppress use of the default.

45

Wind River Compiler for ColdFire
User’s Guide, 5.4

5.3.30 Substitute Program or File for Default (-W xfile)

NOTE: Except for the common cases -W m and -W s documented above, this
option is primarily for use by Wind River.

-W xfile
Use the given program or file instead of the default program or file for the case
indicated by x. Some cases take the form -W xname=value. x is one of the
following:

:as:, a
The assembler.

The configuration file to be used. The default is dtools.conf
(DTOOLS.CON for Windows) in the version_path/conf subdirectory.

:cpp:, P
The C preprocessor. The preprocessor is incorporated in the compiler, so
this becomes a synonym for 0.

H =
The C compiler.
tC++:

The C++ compiler.

Pass the string following the -Wc exactly as is as an option to the linker.
More than one option can be given following -Wc, separated by commas.
For example, -We-Ic,-1proj would cause the linker to search for missing
symbols in libraries libc.a and libproj.a.

The linker -1 option is the more usual way to specify libraries.
See 5.3.26 Define Configuration Variable (-W Dname=value), p.44.
The C++ library. The default is -1d. See “c” for the meaning of -1d and
additional rules.
:1d:, 1
The linker.

The object converter; will execute after the linker.

See 5.3.28 Specify Linker Command File (-W mfile), p.45.

46

5 Invoking the Compiler
5.3 Compiler Command-Line Options

See 5.3.29 Specify Startup Module (-W sfile), p.45.
The compiler implied by the extension of the source file.

The reorder program. Specifying -W1 with no substitute program name
will disable the reorder program.

6

Other filter programs. -W1 and -W2 execute if -O or -XO is given and
process the output from the compiler. -W3 and -W4 also process the output
from the compiler. -W5 and -W6 process the input to the assembler.
Example:

-W:1d:/usr/1lib/dcc/3.6e/bin/dld

Use an old version of the linker.

5.3.31 Pass Arguments to Subprogram (-W x,arguments)

-W x,argl[,arg2...]
Pass the arguments to the subprogram designated by x. x is one of the

following:

:Cpp: p

:C

tCH+:

The preprocessor. The preprocessor is incorporated in the compiler, so this
becomes a synonym for 0.

The compiler implied by the extension of the source file.
" TheC compiler.
The C++ compiler.
tas:

The assembler. See 5.3.25 Pass Arguments to the Assembler (-W a,arguments,
-W was:,arguments), p.44.

:1ld:
The linker. See 5.3.27 Pass Arguments to Linker (-W Larquments, -W
:d:,arquments), p.45.

The object converter. Usually not implemented. If given, it will execute
after the linker.

47

Wind River Compiler for ColdFire
User’s Guide, 5.4

The reorder program.

2 -6
Other filter programs; usually not implemented. -W1 and -W2 are only
executed if -O or -XO is given. They process the output from the compiler.
-W3 and -W4 are always executed if given and process the output from the
compiler. -W5 and -Wé process the input to the assembler.

Example:
-W:as:,-1 or -Wa,-1

Pass the option “-1” (lower case letter L) to the assembler to get an assembler
listing file.

5.3.32 Associate Source File Extension (-W x.ext)

-W x.ext
Associate a source file extension with a tool; that is, indicate to the main driver

program dcc or dplus which tool should be invoked for an input file with a
particular extension. ext specifies the extension and x specifies a tool, as
follows:

0
The compiler implied by the extension of the source file.

:C

" TheC compiler.

1CH+:
The C++ compiler.

tas: a
The assembler.

tpas:, A
Preprocessor and assembler: both the preprocessor and assembler will be

applied to the source. Allows use of preprocessor directives with assembly
language.

Example:

-W:as:.asm

Specify that file.asm is an assembly source file.

48

5 Invoking the Compiler
5.3 Compiler Command-Line Options

5.3.33 Suppress All Compiler Warnings (-w)

Suppress all compiler warnings. (Does not apply to assembler or linker.)

5.3.34 Set Detailed Compiler Control Options (-X option)

See 5.4 Compiler -X Options, p.50.

5.3.35 Specify Default Header File Search Path (-Y I,dir)

-Y I, dir

Use dir as the default directory to search for header files specified with the -1

option. A full pathname is allowed. Must occur prior to a -I option to be
effective for that option.

5.3.36 Specify Search Directories for -l (-Y L, -Y P, -Y U)

These are linker options. See Specify Search Directories for -1 (-Y L, -Y P, -Y U), p.394.

5.3.37 Specify Search Directory for crt0.o (-Y S,dir)

Use dir as the default directory to search for crt0.0. This option is provided as a
convenience for older makefiles; users should use the -W sfile option instead, as it
enables you to specify both the search directory and the name of the startup file.

See 5.3.29 Specify Startup Module (-W sfile), p.45.

5.3.38 Print Subprograms With Arguments (-#, -##, -###)

-
Print subprogram command lines with arguments as executed.

-##

Print subprogram command line with arguments without actually executing

them.

49

Wind River Compiler for ColdFire
User’s Guide, 5.4

—#ik#
Print subprogram command lines with arguments inside quotes without
executing them.

5.3.39 Read Command-Line Options from File or Variable (-@name, -@ @name)

-@name
Read command-line options from either a file or an environment variable.
When -@name is encountered on the command line, the driver first looks for an
environment variable with the given name and substitutes its value. If an
environment variable is not found then the driver tries to open a file with
given name and substitutes the contents of the file. If neither an environment
variable or a file can be found, an error message is issued and the driver
terminates.

-@@name
Same as -@name; also prints all command-line options on standard output.

5.3.40 Redirect Output (-@E-=file, -@E-+file, -@O=file, -@O+file)

-@E=file
Redirect any output to standard error to the given file.

-@o=file
Redirect any output to standard output to the given file.
Use of “+” instead of “=" will append the output to the file.

5.4 Compiler -X Options

Compiler command-line -X options provide fine control over many aspects of the
compilation process when behavior other than the default is needed.

Most -X options can be set either by name (-Xname) or by number (-Xn). Options
can be set to a value m, given in decimal, octal (leading 0), or hexadecimal (leading
0x), by using an equal sign: -Xname=m or -Xn=m. Some options can be set to an
unquoted string, e.g. -Xfeedback=file.

50

5 Invoking the Compiler
5.4 Compiler -X Options

Many options have multiple names corresponding to different values. For
example, -Xchar-signed is equivalent to -X23=0, and -Xchar-unsigned is
equivalent to -X23=1. Please note that if a value is provided, it is always dominant,
regardless of which name is used. Thus, -Xchar-signed=1 is equivalent -X23=1,
which is equivalent to -Xchar-unsigned. Internally, the name is translated to its
number (23 in this case), and then the value is assigned regardless of which name

was used.

5.4.1 Option Defaults

If an option is not provided, it defaults to a value of 0 unless otherwise stated. If an
option which takes a value is provided without one, then the value 1 is used unless
otherwise stated. Therefore, the following three forms are all equivalent:

-Xtest-at-top -X6 -X6=1

However, if neither option -Xtest-at-top nor -X6 had been given, the value of option
-X6 would default to 0, which is equivalent to -Xtest-at-bottom.

To turn off an option which is on by default, or which was set using an
environment variable or -@ option, and for which there is no name for the “=0"
case, set it to zero: -Xname=0.

To determine the default for an option, compile a test module without the option
using the -S and -Xshow-configuration=1 options and examine the resulting .s
assembly language file. All -X options used are given in numeric form near the
beginning of the file. An option not present defaults to 0.

G. Compiler -X Options Numeric List lists all options having numeric equivalents in
numeric order.
-X options can also be specified at the beginning of a source file using:

#pragma option -X...
The remainder of this section shows all general -X options in both forms (name and
number).

As noted above, the -X options used for a compilation are given as comments in
the assembly listing in numeric form. These include both options specified by the
user and also some options generated by the compiler. Some of the latter may be
undocumented and are present for use by Customer Support.

51

Wind River Compiler for ColdFire

User’s Guide, 5.4

5.4.2 Compiler -X Options by Function

Below is a list of functional groups of -X options. This is followed by the -X options
in each functional group.

C++,p.59

Checking and Profiling, p.52
Debugging, p.52

Diagnostic and Lint, p.53
Driver, p.53

Instruction, p.54

Memory, p.54

Optimization, p.55

Output, p.56
Position-independent Code and Data, p.56
Precompiled Headers, p.57
Sections, p.57

Syntax, p.57

Type, p.58

Checking and Profiling

Debugging

52

5.4.15 Insert Profiling Code (-Xblock-count), p.65
5.4.56 Optimize Using Profile Data (-Xfeedback=file), p.82

5.4.57 Set Optimization Parameters Used With Profile Data (-Xfeedback-frequent,
-Xfeedback-seldom), p.83

5.4.123 Generate Code for the Run-Time Error Checker (-Xrtc=mask), p.111

5.4.39 Align .debug Sections (-Xdebug-align=n), p.75

5.4.40 Select DWARF Format (-Xdebug-dwatf...), p.75

5.4.41 Generate Debug Information for Inlined Functions (-Xdebug-inline-on), p.75
5.4.42 Emit Debug Information for Unused Local Variables (-Xdebug-local-all), p.76
5.4.43 Generate Local CIE for Each Unit (-Xdebug-local-cie), p.76

5.4.44 Disable debugging information Extensions (-Xdebug-mode=mask), p.76
5.4.45 Disable Debug Information Optimization (-Xdebug-struct-...), p.77

5.4.66 Include Filename Path in Debug Information (-Xfull-pathname), p.87

5 Invoking the Compiler
5.4 Compiler -X Options

5.4.75 Initialize Local Variables (-Xinit-locals=mask), p.89

5.4.78 Define Initial Value for -Xinit-locals (-Xinit-value=n), p.91

5.4.107 Disable Most Optimizations With -g (-Xoptimized-debug-...), p.104
5.4.136 Enable Stack Checking (-Xstack-probe), p.115

Diagnostic and Lint

Driver

5.4.49 Control Use of Type “double” (-Xdouble...), p.78

5.4.60 Generate Warnings on Undeclared Functions
(-Xforce-declarations, -Xforce-prototypes), p.84

5.4.88 Generate Warnings On Suspicious/Non-portable Code (-Xlint=mask), p. 94
5.4.94 Warn On Undefined Macro In #if Statement (-Xmacro-undefined-warn), p.97
5.4.100 Warn On Type and Argument Mismatch (-Xmismatch-warning), p.101
5.4.137 Diagnose Static Initialization Using Address (-Xstatic-addr-...), p.116
5.4.139 Buffer stderr (-Xstderr-fully-buffered), p.116

5.4.140 Terminate Compilation on Warning (-Xstop-on-warning), p.116

5.4.144 Warn on Large Structure (-Xstruct-arg-warning=n), p.118

5.4.149 Suppress Warnings (-Xsuppress-warnings), p.120

5.4.21 Use Old C++ Compiler (-Xc++-old), p.67

5.4.61 Suppress Assembler and Linker Parameters (-Xforeign-as-Id), p.85
5.4.67 Control GNU Option Translator (-Xgcc-options-...), p.87

5.4.74 Ignore Missing Include Files (-Xincfile-missing-ignore), p.89

5.4.84 Create and Keep Assembly or Object File (-Xkeep-assembly-file,
-Xkeep-object-file), p.93

5.4.95 Show Make Rules (-Xmake-dependency), p.98

5.4.96 Specify Dependency Name or Output File (-Xmake-dependency-...), p.99
5.4.109 Output Source as Comments (-Xpass-source), p.105

5.4.114 Preprocess Assembly Files (-Xpreprocess-assembly), p.107

5.4.116 Use Old Preprocessor (-Xpreprocessor-old), p.107

53

Wind River Compiler for ColdFire

User’s Guide, 5.4

Instruction

Memory

54

5.4.131 Show Target (-Xshow-target), p.114

5.4.11 Specify Jump-table for Switch Statements (-Xbig-switch-table), p.63
5.4.58 Use GNU Calling Conventions for Floating Point (-Xfloats-as-gnu), p.84
5.4.65 Generate Link Instruction (-Xframe-ptr), p.86

5.4.69 Control Use of Hardware Divide Instructions (-Xhardware-divide...), p.87
5.4.81 Limit Instructions to 68000 (-Xinstr-00, -Xinstr-20), p.92

5.4.82 Enable Intrinsic Functions (-Xintrinsic-mask), p.92

5.4.103 Disable Nested Interrupts in Interrupt Functions (-Xnested-interrupts-off),
p-103

5.4.121 Select Convention for Returning Pointer Values from Functions
(-Xptr-values-in-...), p.110

5.4.124 Add Null Bytes After rts or rte for MCF5307 Prefetch Errata (-Xrts-nil),
p-111

5.4.135 Delay Popping Stack After Function Call (-Xstack-delay=n,
-Xstack-delay-off), p.115

5.4.145 Select Convention for Returning Structures and Unions (-Xstruct-as-...),
p-118

5.4.4 Align Functions On n-byte Boundaries (-Xalign-functions=n), p.60

5.4.5 Specify Minimum Alignment for Single Memory Access to
Multi-byte Values (-Xalign-min=n), p.61

5.4.6 Do Not Generate .align Directive (-Xalign-off), p.61

5.4.9 Specify Minimum Array Alignment (-Xarray-align-min), p.62
5.4.39 Align .debug Sections (-Xdebug-align=n), p.75

5.4.50 Generate Initializers for Static Variables (-Xdynamic-init), p.79
5.4.68 Treat All Global Variables as Volatile (-Xglobals-volatile), p.87

5.4.76 Control Generation of Initialization and Finalization Sections (-Xinit-section),
p-90

5 Invoking the Compiler
5.4 Compiler -X Options

5.4.77 Control Default Priority for Initialization and Finalization
Sections (-Xinit-section-default-pri), p.90

5.4.98 Set Maximum Structure Member Alignment (-Xmember-max-align=n),
p-100

5.4.99 Treat All Variables As Volatile (-Xmemory-is-volatile, -X...-volatile), p.100
5.4.138 Treat All Static Variables as Volatile (-Xstatics-volatile), p.116

5.4.112 Treat All Pointer Accesses As Volatile (-Xpointers-volatile), p.106

5.4.143 Align Strings on n-byte Boundaries (-Xstring-align=n), p.117

5.4.147 Align Data on “Natural” Boundaries (-Xstruct-best-align), p.119

5.4.148 Set Minimum Structure Member Alignment (-Xstruct-min-align=n), p.120

Optimization

5.4.7 Pass argument in register (-Xargs-in-regs), p.62
5.4.8 Assume No Aliasing of Pointer Arguments (-Xargs-not-aliased), p.62

5.4.12 Disable Bit-field Access Optimization (-Xbit-fields-access-as-byte,
-Xbit-fields-access-as-type), p.63

5.4.22 Optimize Global Assignments in Conditionals (-Xcga-min-use), p.67
5.4.26 Disregard ANSI C Library Functions (-Xclib-optim-off), p.69

5.4.27 Enable Cross-module Optimization (-Xcmo-...), p.69

5.4.53 Control Inlining Expansion (-Xexplicit-inline-factor), p.81

5.4.79 Inline Functions with Fewer Than n Nodes (-Xinline=n), p.91

5.4.80 Allow Inlining of Recursive Function Calls (-Xinline-explicit-force), p.91

5.4.86 Disable Individual Optimizations (-Xkill-opt=mask, -Xkill-reorder=mask),
p-93

5.4.91 Do Not Assign Locals to Registers (-Xlocals-on-stack), p.97

5.4.104 Enable Extra Optimizations (-XO), p.103

5.4.106 Execute the Compiler’s Optimizing Stage n Times (-Xopt-count=n), p.104
5.4.108 Specify Optimization Buffer Size (-Xparse-size), p.105

5.4.122 Restart Optimization From Scratch (-Xrestart), p.111

5.4.132 Optimize for Size Rather Than Speed (-Xsize-opt), p.114

55

Output

Wind River Compiler for ColdFire
User’s Guide, 5.4

5.4.135 Delay Popping Stack After Function Call (-Xstack-delay=n,
-Xstack-delay-off), p.115

5.4.146 Control Optimization of Structure Member Assignments
(-Xstruct-assign-split-...), p.119

5.4.154 Specify Loop Test Location (-Xtest-at-...), p.121
5.4.157 Control Loop Unrolling (-Xunroll=n, -Xunroll-size=n), p.123

5.4.19 Control Allocation of Uninitialized Variables in “COMMON" and bss
Sections (-Xbss-off, -Xbss-common-off), p.66

5.4.35 Dump Symbol Information for Macros or Assertions (-Xcpp-dump-symbols),
p-73

5.4.64 Generate .frame_info for C functions (-Xframe-info), p.86

5.4.70 Do Not Pass #ident Strings (-Xident-off), p.88

5.4.74 Ignore Missing Include Files (-Xincfile-missing-ignore), p.89

5.4.95 Show Make Rules (-Xmake-dependency), p.98

5.4.96 Specify Dependency Name or Output File (-Xmake-dependency-...), p.99
5.4.109 Output Source as Comments (-Xpass-source), p.105

5.4.115 Suppress Line Numbers in Preprocessor Output (-Xpreprocessor-lineno-off),
p-107

5.4.128 Disable Generation of Priority Section Names (-Xsect-pri-...), p.113

5.4.127 Generate Each Function in a Separate CODE Section Class (-Xsection-split),
p.112

5.4.129 Control Listing of -X Options in Assembly Output
(-Xshow-configuration=n), p.113

5.4.156 Append Underscore to Identifier (-Xunderscore-...), p.122

Position-independent Code and Data

5.4.30 Generate Position-independent Code (PIC) (-Xcode-relative...), p.70
5.4.38 Generate Position-independent Data (PID) (-Xdata-relative...), p.74
5.4.111 Generate Position-Independent Code for Shared Libraries (-Xpic), p.106

5 Invoking the Compiler
5.4 Compiler -X Options

Precompiled Headers

Sections

Syntax

5.4.110 Use Precompiled Headers (-Xpch-...), p.105

5.4.3 Set Addressing Mode for Sections (-Xaddr-...), p.60
5.4.7 Pass argument in register (-Xargs-in-regs), p.62

5.4.19 Control Allocation of Uninitialized Variables in “COMMON" and bss
Sections (-Xbss-off, -Xbss-common-off), p.66

5.4.29 Use Absolute Addressing for Code (-Xcode-absolute...), p.70

5.4.34 Locate Constants With “text” or “data” (-Xconst-in-text, -Xconst-in-data),
p-73

5.4.37 Use Absolute Addressing for Code (-Xdata-absolute...), p.74
5.4.39 Align .debug Sections (-Xdebug-align=n), p.75

5.4.89 Allocate Static and Global Variables to Local Data Area (-Xlocal-data-area=n),
p-96

5.4.90 Restrict Local Data Area Optimization to Static Variables
(-Xlocal-data-area-static-only), p.97

5.4.101 Specify Section Name (-Xname-...), p.101

5.4.113 Control Interpretation of Multiple Section Pragmas (-Xpragma-section-...),
p-106

5.4.126 Pad Sections for Optimized Loading (-Xsection-pad), p.112
5.4.133 Set Size Limit for “small const” Variables (-Xsmall-const=n), p.114
5.4.134 Set Size Limit for “small data” Variables (-Xsmall-data=n), p.115

5.4.18 Parse Initial Values Bottom-up (-Xbottom-up-init), p.66
5.4.36 Suppress Preprocessor Spacing (-Xcpp-no-space), p.73
5.4.28 Use the ‘new’ Compiler Frontend (-Xcnew), p.70

5.4.46 Specify C Dialect (-Xdialect-...), p.77

5.4.47 Disable Digraphs (-Xdigraphs-...), p.78

5.4.48 Allow Dollar Signs in Identifiers (-Xdollar-in-ident), p.78

57

Type

Wind River Compiler for ColdFire
User’s Guide, 5.4

58

5.4.73 Treat #include As #import (-Ximport), p.89

5.4.82 Enable Intrinsic Functions (-Xintrinsic-mask), p.92

5.4.85 Enable Extended Keywords (-Xkeywords=mask), p.93

5.4.93 Expand Macros in Pragmas (-Xmacro-in-pragma), p.97

5.4.116 Use Old Preprocessor (-Xpreprocessor-old), p.107

5.4.141 Compile C/C++ in Pedantic Mode (-Xstrict-ansi), p.117
5.4.150 Swap ‘\n’ and ‘\r” in Constants (-Xswap-cr-nl), p.120
5.4.155 Truncate All Identifiers After m Characters (-Xtruncate), p.122
5.4.159 Void Pointer Arithmetic (-Xvoid-ptr-arith-ok), p.124

5.4.12 Disable Bit-field Access Optimization (-Xbit-fields-access-as-byte,
-Xbit-fields-access-as-type), p.63

5.4.13 Change bit-field type to reduce structure size (-Xbit-fields-compress-...), p.64

5.4.14 Specify Sign of Plain Bit-field (-Xbit-fields-signed, -Xbit-fields-unsigned),
p-64

5.4.24 Specify Sign of Plain Char (-Xchar-signed, -Xchar-unsigned), p.68
5.4.23 Generate Code Using ASCII Character Set (-Xcharset-ascii), p.68
5.4.49 Control Use of Type “double” (-Xdouble...), p.78

5.4.51 Specify enum Type (-Xenum-is-...), p.79

5.4.54 Force Precision of Real Arquments (-Xextend-args), p.81

5.4.55 Specify Degree of Conformance to the IEEE754 Standard (-Xfp-fast,
-Xfp-normal, -Xfp-pedantic), p.82

5.4.105 Use Old Inline Assembly Casting(-Xold-inline-asm-casting), p.104
5.4.62 Convert Double and Long Double (-Xfp-long-double-off, - Xfp-float-only), p.85
5.4.63 Specify Minimum Floating Point Precision (-Xfp-min-prec...), p.85

5.4.71 Enable Strict implementation of IEEE754 Floating Point Standard
(-Xieee754-pedantic), p.88

5.4.142 Ignore Sign When Promoting Bit-fields (-Xstrict-bitfield-promotions), p.117
5.4.160 Define Type for wchar (-Xwchar=n), p.124

C++

5 Invoking the Compiler
5.4 Compiler -X Options

5.4.161 Control Use of wchar_t Keyword (-Xwchar_t-...), p.124

5.4.16 Set Type for Bool (-Xbool-is-...), p.65

5.4.17 Control Use of Bool, True, and False Keywords (-Xbool-...), p.65

5.4.20 Use Abridged C++ Libraries (-Xc++-abr), p.67

5.4.21 Use Old C++ Compiler (-Xc++-old), p.67

5.4.25 Use Old for Scope Rules (-Xclass-type-name-visible), p. 68

5.4.31 Mark Sections as COMDAT for Linker Collapse (-Xcomdat), p.71
5.4.32 Maintain Project-wide COMDAT List (-Xcomdat-info-file), p.72

5.4.47 Disable Digraphs (-Xdigraphs-...), p.78

5.4.52 Enable Exceptions (-Xexceptions-...), p.80

5.4.59 Use Old for Scope Rules (-Xfor-init-scope-...), p.84

5.4.64 Generate .frame_info for C functions (-Xframe-info), p.86

5.4.72 Control Template Instantiation (-Ximplicit-templates...), p.88

5.4.83 Set longjmp Buffer Size (-Xjmpbuf-size=n), p.92

5.4.97 Set Template Instantiation Recursion Limit (-Xmax-inst-level=n), p.100
5.4.102 Disable C++ Keywords namespace and Using (-Xnamespace-...), p.103
5.4.110 Use Precompiled Headers (-Xpch-...), p.105

5.4.125 Enable Run-time Type Information (-Xrtti, -Xrtti-off), p.112

5.4.130 Print Instantiations (-Xshow-inst), p.114

5.4.141 Compile C/C++ in Pedantic Mode (-Xstrict-ansi), p.117

5.4.152 Disable Certain Syntax Warnings (-Xsyntax-warning-...), p.121
5.4.158 Runtime Declarations in Standard Namespace (-Xusing-std-...), p.123
5.4.160 Define Type for wchar (-Xwchar=n), p.124

5.4.161 Control Use of wchar_t Keyword (-Xwchar_t-...), p.124

The sections that follow present -X options in alphabetic order.

59

Wind River Compiler for ColdFire
User’s Guide, 5.4

5.4.3 Set Addressing Mode for Sections (-Xaddr-...)

-Xaddr-code=n
-X105=n
Specify addressing for code.

-Xaddr-const=n
-X102=n
Specify addressing for constant static and global variables.
-Xaddr-data=n
-X100=n
Specify addressing for non-constant static and global variables.

-Xaddr-sconst=n

-X103=n
Specify addressing for constant static and global variables with size less than
or equal to -Xsmall-const.

-Xaddr-sdata=n

-X101=n
Specify addressing for non-constant static and global variables with size less
than or equal to -Xsmall-data in size.

-Xaddr-string=n

-X104=n
Specify addressing for strings.

-Xaddr-user=n

-X106=n
Specify addressing for user-defined sections.

See the discussion of addr-mode in 14.2 Addressing Mode — Functions, Variables,
Strings, p.255 for more information.

5.4.4 Align Functions On n-byte Boundaries (-Xalign-functions=n)

-Xalign-functions=n

-X54=n
Align each function on an address boundary divisible by n (which must be
greater than or equal to the default alignment for the target microprocessor). If
n is absent, the option has no effect. This option is designed for targets having
some type of burst-mode memory access, for example a target that can fetch
multiple instructions if aligned on a 32-byte boundary.

60

5 Invoking the Compiler
5.4 Compiler -X Options

5.4.5 Specify Minimum Alignment for Single Memory Access to
Multi-byte Values (-Xalign-min=n)

-Xalign-min=n

-X93=n
Set the minimum alignment required by the target processor to access a
multi-byte value (e.g., short, long) in memory as an atomic unit, that is, in a
single memory access. This option is set automatically by the compiler based
on the target processor and should seldom be set by the user.

NOTE: This option does not change how data is aligned; it changes the
instructions which the compiler generates to access multi-byte unaligned
objects.

Technical details: if the target processor can access objects at any alignment
with a single instruction, 7 is set to 1. For a processor which requires that
multi-byte objects be aligned on even-byte boundaries for direct access, 7 is set
to 2. Unaligned objects on such a processor must be accessed byte-by-byte. For
a processor that requires 4-byte objects be on a 4-byte boundary, is set to 4
(2-byte objects aligned on 2-byte boundaries can still be accessed with a single
instruction).

The default value of n equals the maximum alignment restriction as given in
the manufacturer’s documentation for the processor. Note that it may differ
among processors in a family. As of this writing, the defaultis 1 for the 51xx,
5206E and the 5300 and 5400 series, and 4 for all other ColdFire family
members.

NOTE: If -Xalign-min is > 1, in a packed structure (a) bit-fields members are
not allowed, (b) volatile members will not be accessed atomically, and (c)
compound operators (for example, “+=") cannot be used with volatile
members. See Restrictions and Additional Information, p.142 for details.

Synonym: -Xmin-align=n.

5.4.6 Do Not Generate .align Directive (-Xalign-off)

-Xalign-off

-x37
Do not generate the .align directive (some assemblers do not support it). Use
the .even directive instead.

61

Wind River Compiler for ColdFire
User’s Guide, 5.4

The assembler -Xdefault-align option (Set Default Value for Section Alignment
(-Xdefault-align), p.305) controls the alignment used by .even but not .align.
Thus, alignment can be controlled by using -Xalign-off to the compiler and
-Xdefault-align to the assembler or -Xalign-functions=4 to the compiler (to
align code).

5.4.7 Pass argument in register (-Xargs-in-regs)

-Xargs-in-regs

-X61
For a function with a prototype declaring an argument with the register
keyword, try to pass the variable in a register. -Xargs-in-regs is not supported
with PIC (position-independent code)..

5.4.8 Assume No Aliasing of Pointer Arguments (-Xargs-not-aliased)

-Xargs-not-aliased
-X65
Assume that pointer arguments to a function are not aliased with each other,

nor with any global data. This enables greater optimization. Example:
int g;
func (int* al, int* a2);

{

void main

int i 1;
int j 2;
func (&i,&3) ; /* OK */
func (&1, &1) ; /* not OK */
func (&1, &9) ; /* not OK */

}

See also no_alias Pragma, p.139.

5.4.9 Specify Minimum Array Alignment (-Xarray-align-min)

-Xarray-align-min=n

-X161=n
Align arrays on the larger of n or the default alignment for the type of the array
elements. nn should be a power of 2. When this option is used, values given for
-Xstring-align are ignored.

62

5 Invoking the Compiler
5.4 Compiler -X Options

5.4.10 Disable ‘#’ Prefix for Assembly Numeric Constants (-Xasm-const-pound...)

-Xasm-const-pound

-X45=1
Prefix each generated numeric constant in the assembly output with a “#”
character. This is the default.

-Xasm-const-pound-off
-X45=0

Generate each numeric constant in the assembly output without a “#” prefix.

5.4.11 Specify Jump-table for Switch Statements (-Xbig-switch-table)

-Xbig-switch-table

-X35=1
Use a 32-bit absolute jump-table. The code is larger but faster than with
-Xbig-switch-table=0.

-Xbig-switch-table=0

-X35=0
Use a 16-bit relative jump table for switch statements. The code will be smaller
but somewhat slower than with option -Xbig-switch-table [=1]. This may
create difficulties with switch statements larger than 32KB. This is the default
on ColdFire .

5.4.12 Disable Bit-field Access Optimization (-Xbit-fields-access-as-byte,
-Xbit-fields-access-as-type)

-Xbit-fields-access-as-byte

-X118=0
Enable use of faster byte instructions to access a small non-volatile bit-field
even though that bit-field is declared with an underlying type other than char.
This is the default.

-Xbit-fields-access-as-type

-x118=1
Force the compiler to always access bit-fields with load and store instructions
of the same size as the bit-field declaration.

Synonym: -Xbitfield-no-optim.

63

Wind River Compiler for ColdFire
User’s Guide, 5.4

5.4.13 Change bit-field type to reduce structure size (-Xbit-fields-compress-...)

-Xbit-fields-compress
-X135=1
-Xbit-fields-compress-off
-X135=0
C only. Change the type of a bit-field if possible to generate more compact

storage. The default is off.

The algorithm is as follows:

Examine all structure members before assigning offsets. Record:
BitFieldMaxAlign = maximum alignment of any bit-field.
NonBitFieldMaxAlign = maximum alignment of any non bit-field.
WidthMaxBitField = number bits in largest bit-field.

IF BitFieldMaxAlign > NonBitFieldMaxAlign THEN

NewType = unsigned integer type having the same alignment as that of
the NonBitFieldMaxAlign.

IF WidthMaxBitField <= bits in NewType THEN

Change the type of each unsigned bit-field larger than NewType to
NewType and each signed bit-field larger than NewType to signed
NewType.

This option is intended for legacy code. The same effect may be achieved in
new code by using the smallest types having the required alignments.

Synonym: -Xbitfield-compress.

5.4.14 Specify Sign of Plain Bit-field (-Xbit-fields-signed, -Xbit-fields-unsigned)

-Xbit-fields-signed

-X12=0
C only. Handle bit-fields without the signed or unsigned keyword as signed
integers.

Synonym: -Xsigned-bitfields.

-Xbit-fields-unsigned

-x12
C only. Treat bit-fields without the signed or unsigned keyword as unsigned
integers. This is the default setting.

64

5 Invoking the Compiler
5.4 Compiler -X Options

Synonym: -Xunsigned-bitfields.

See also 5.4.142 Ignore Sign When Promoting Bit-fields
(-Xstrict-bitfield-promotions), p.117.

5.4.15 Insert Profiling Code (-Xblock-count)

-Xblock-count
-X24

Insert code in the compiled program to keep track of the number of times each
basic block (the code between labels and branches) is executed. See
28. D-BCNT Profiling Basic Block Counter for details, and also 5.4.56 Optimize

Using Profile Data (-Xfeedback=file), p.82.

5.4.16 Set Type for Bool (-Xbool-is-...)

-Xbool-is-char
-X119=44

Implement type bool as a plain char. This is the default.

-Xbool-is-int
-X119=4

C++ only. Implement type bool as a signed int. This may produce less code on

some architectures but will require more data space.

5.4.17 Control Use of Bool, True, and False Keywords (-Xbool-...)

-Xbool-on
-X213=0

Enable the bool, true, and false keywords. This is the default.

-Xbool-off
-X213

C++ only. Disable the bool, true, and false keywords.

Synonym: -Xno-bool.

65

Wind River Compiler for ColdFire
User’s Guide, 5.4

5.4.18 Parse Initial Values Bottom-up (-Xbottom-up-init)

-Xbottom-up-init
-x21
C only. Both K&R and ANSI C specify that structure and array initializations
with missing braces should be parsed top-down, however some C compilers
parse these bottom-up instead. Example:
struct z { int a, b; };
struct x {
struct z z1[2];

struct z z2([2];
}x = { {1,2},{(3,4} };

Should be parsed according to ANSI & K&R as:
 {{1,2},{0,0} ¥ , { {3,4},{0,0} } };
-Xbottom-up-init causes bottom-up parsing:
{ {1,2}),(3,4y } , { {0,0},{0,0} } };

This option is set when -Xdialect-pcc is set.

5.4.19 Control Allocation of Uninitialized Variables in “COMMON” and bss Sections
(-Xbss-off, -Xbss-common-off)

-Xbss-common-off

-X83=3
Disable use of the “COMMON” feature so that the compiler or assembler will
allocate each uninitialized public variable in the .bss section for the module
defining it, and the linker will require exactly one definition of each public
variable. See 23.4 COMMON Sections, p.377.

Synonym: -Xno-common.

-Xbss-off

-x83=1
Put all variables in the .data section instead of allocating uninitialized
variables in the .bss section.

Synonym: -Xno-bss.

66

5 Invoking the Compiler
5.4 Compiler -X Options

5.4.20 Use Abridged C++ Libraries (-Xc++-abr)

-Xc++-abr
Link to the abridged C++ libraries. Automatically disables exception-handling
(-Xexceptions=off). See 13.2 C++ Standard Libraries, p.236.

5.4.21 Use Old C++ Compiler (-Xc++-old)

-Xc++-old
Invoke the older C++ compiler that preceded version 5.0. Useful for compiling
legacy code that is not ANSI-compliant. See Older Versions of the Compiler,
p-230.

5.4.22 Optimize Global Assignments in Conditionals (-Xcga-min-use)

-Xcga-min-use=n
When a global variable is accessed repeatedly within a conditional statement,
the compiler can replace the global variable with a temporary local copy
(which can be stored in a register), then reassign the local variable to the global
variable when the conditional finishes execution.

If conditional global assignment is enabled, the compiler determines whether
to copy a global variable by estimating the number of times the global variable
is accessed within the conditional block at runtime. (The exact number of
accesses may depend on factors, such as the value of a loop counter, that
cannot be known at compile time.) If the global variable is accessed 1 or more
times, the compiler performs the optimization. The default value of n is 20.

Conditional global assignment is enabled by default (-Xcga-min-use=20)
whenever optimizations are enabled (-O or -XO). To disable conditional global
assignment, set 7 to 0 (-Xcga-min-use=0). Conditional global assignment is
never performed on variables declared or treated as volatile (see 5.4.99 Treat
All Variables As Volatile (-Xmemory-is-volatile, -X...-volatile), p.100) and should
be used with caution in multi threaded environments.

67

Wind River Compiler for ColdFire
User’s Guide, 5.4

5.4.23 Generate Code Using ASCII Character Set (-Xcharset-ascii)

-Xcharset-ascii

-X60=1
Generate code using the ASCII character set. All strings and character
constants are converted to ASCIL The default is to use the same character
system as the host machine.

Synonym: -Xascii-charset.

5.4.24 Specify Sign of Plain Char (-Xchar-signed, -Xchar-unsigned)

-Xchar-signed

-X23=0
Treat variables declared char without either of the keywords signed or
unsigned as signed characters.

Synonym: -Xsigned-char.

-Xchar-unsigned

-x23
Treat variables declared char without either of the keywords signed or
unsigned as unsigned characters.

Synonym: -Xunsigned-char.

The default setting is signed. See also Table 8-1 and _ SIGNED_CHARS__ in
6.1 Preprocessor Predefined Macros, p.129.

In C++, plain char, signed char and unsigned char are always treated as
different types, but this option defines how arithmetic with plain char is done.

5.4.25 Use Old for Scope Rules (-Xclass-type-name-visible)

-Xclass-type-name-visible

-x218=1
C only. Direct the compiler not to hide struct or union names when other
identifiers with the same names are declared in the same scope. For example,
consider the following statement:

struct S {...} S[10];

With or without this option, the form struct S may always be used later to
declare additional variables of type struct S. However, without the option,

68

5 Invoking the Compiler
5.4 Compiler -X Options

sizeof(S) will refer to the size of the array, while with this option, sizeof(S) will
refer to the size of the structure.

5.4.26 Disregard ANSI C Library Functions (-Xclib-optim-off)

-Xclib-optim-off 5
-X66

Direct the compiler to disregard all knowledge of ANSI C library functions.

By default, the compiler automatically includes, before all other header files,
the file Ipragma.h, which contains pure_function, no_return, and
no_side_effects pragmas and other statements that allow optimization of calls
to C library functions. (If the default include directory version_path/include
exists, the compiler looks for Ipragma.h only in this directory. If
version_path/include does not exist, the compiler searches for lpragma.h in
other user-specified directories.)

The option disables use of Ipragma.h.

Synonym: -Xno-recognize-lib.

5.4.27 Enable Cross-module Optimization (-Xcmo-...)

-Xcmo-gen=name
Generate a database, in file name, for cross-module optimization.

-Xcmo-use=name
Compile with cross-module optimization using information in database name;
update database.

-Xcmo-exclude-inline=1list
Combined with -Xcmo-use, tells the compiler not to inline specified functions.
list is a comma-delimited list of functions which should not be inlined across
modules. For C++, use mangled function names.

-Xcmo-verbose
Combined with -Xcmo-gen or -Xcmo-use, lists all functions that are inlined
across modules. Useful for tracking dependencies.

These options enable cross-module optimization, which allows the compiler to
optimize calls between functions in different source files. See 10.2 Cross-Module
Optimization, p.204 for details. Cross-module optimization is disabled by default.

69

Wind River Compiler for ColdFire

User’s Guide, 5.4

5.4.28 Use the ‘new’ Compiler Frontend (-Xcnew)

-Xcnew

Compile using a compiler frontend derived from one produced by the Edison
Design Groupd. By default, invoking -Xcnew also invokes -Xdialect-c99.
Supported only with the :rtp execution environment.

5.4.29 Use Absolute Addressing for Code (-Xcode-absolute...)

-Xcode-absolute-far

-X58=6

Use 32-bit absolute addressing for code.
See 14.2 Addressing Mode — Functions, Variables, Strings, p.255.

-Xcode-absolute-near

-X58=5

Use 16-bit absolute addressing for code.

See 14.2 Addressing Mode — Functions, Variables, Strings, p.255.

5.4.30 Generate Position-independent Code (PIC) (-Xcode-relative...)

70

-Xcode-relative-far
-X58=2
Generate position-independent code (PIC) as follows:

Branches and function calls use 32-bit offsets from the PC, relative to PC.

By default, global const or static const variables and string constants are
included in the code section and are referenced relative to the PC using
32-bit offsets. The default may be changed using option -Xconst-in-text
which controls whether const variables and string constants are in “text”
(code) or “data” sections. See it (73) and Moving initialized Data From “text”
to “data”, p.264, for details and refinements.

Option -Xconst-in-text=0 should usually be used with -Xcode-relative-far
because it will usually be faster to access const variables and string
constants through register a5 than via the PC.

References to the small const area, if any, still use a 16-bit offset (see
Table 14-5 and following).

5 Invoking the Compiler
5.4 Compiler -X Options

For global or static pointers to be position-independent, they must be
initialized dynamically and are therefore always stored in a “data” section
even if declared const. See option 5.4.50 Generate Initializers for Static
Variables (-Xdynamic-init), p.79).

This option produces larger and slower code.
Synonyms: -Xfar-code-relative, -Xlong-pc-relative.

-Xcode-relative-far-all

-X58=4
Equivalent to -Xcode-relative-far except that all global and static variables are
by default placed in the code section, not just those which are const, and
references to the small const area, if any, use a 32-bit offset rather than the more
efficient 16-bit offset, and for this reason this option is deprecated.

Synonyms: -Xall-far-code-relative, -Xall-long-pc-relative.

-Xcode-relative-near

-X58=1
Like -Xcode-relative-far except that offsets are 16-bit rather than 32-bit. See it
for details.

NOTE: Because offsets are 16-bit PC-relative, a string or const variable must be
within 32KB of the instruction referencing it.

Synonyms: -Xnear-code-relative, -Xshort-pc-relative.

-Xcode-relative-near-all

-X58=3
Extends -Xcode-relative-near to all global and static variables, not just those
declared const. See it for details.

Synonyms: -Xall-near-code-relative, -Xall-short-pc-relative.

5.4.31 Mark Sections as COMDAT for Linker Collapse (-Xcomdat)

-Xcomdat
-X120

C++ only. Mark all generated sections as COMDAT. The linker automatically
collapses identical COMDAT sections to a single section in memory. This is the
default.

By default, the compiler automatically generates a section for each
instantiation of each member function or static class variable in a template in
each module where the member function or variable is used. Given -Xcomdat,

71

Wind River Compiler for ColdFire
User’s Guide, 5.4

the compiler marks all implicit template instantiations as COMDAT and the
linker collapses identical instances.

-Xcomdat-off
Generate all template instantiations and inline functions required as static
entities in the resulting object file. If a template is used in more than one
module, -Xcomdat-off results in multiple instances of static member function
variables or static class variables, instead of a single instance as is likely
intended; to avoid this, enable -Ximplicit-templates-off.

See 5.4.72 Control Template Instantiation (-Ximplicit-templates...), p.88 and
Templates, p.239 for details.

If a section is present in both COMDAT and non-COMDAT formes, the linker
will treat symbols in the COMDAT section as weak. See weak Pragma, p.146 for
details on weak symbols.

5.4.32 Maintain Project-wide COMDAT List (-Xcomdat-info-file)

-Xcomdat -info-£ile=filename
C++ only. When -Xcomdat is enabled, generate and maintain (in filename) a list
of COMDAT entries across modules. The list is automatically updated and
checked for consistency with each build. This option speeds up builds and
reduces object-file size in projects that make extensive use of templates. Since
COMDAT sections are ultimately collapsed by the linker, this option has no
effect on the final executable file.

5.4.33 Optimize Static and Global Variable Access Conservatively
(-Xconservative-static-live)

-Xconservative-static-live

-X139
Make optimizations of static and global variable accessing less aggressive; for
example, do not delete assignments to such variables in infinite loops from
which there is no apparent return.

72

5 Invoking the Compiler
5.4 Compiler -X Options

5.4.34 Locate Constants With “text” or “data” (-Xconst-in-text, -Xconst-in-data)

-Xconst-in-text=mask
-X74=mask

-Xconst-in-data

-X74=0
Locate data in the CONST (mask bit 0x1), SCONST (mask bit 0x2), and STRING
(mask bit 0x4) section classes according to the given mask bit: if 1, locate in a
“text” section (the default), else if 0, locate in a “data” section.

mask may be given in hex, and mask bits may be OR-ed to select more than one,
e.g., -Xconst-in-text=0x5. Undefined mask bits are ignored.

The default value of this option is given in Moving initialized Data From “text”
to “data”, p.264.

-Xconst-in-data and -Xstrings-in-text are historical shortcuts for locating all
“constants” (CONST, SCONST, and STRING classes, not just “const” or string
data) in “data” sections (mask=0) or “text” sections (mask=0x{f) respectively.

The exact name of the “text” and “data” sections depends on the target. See the
discussion in 14. Locating Code and Data, Addressing, Access for exact section
names and examples, as well as Moving initialized Data From “text” to “data”,
p-264.

When STRING is in a text section, identical string constants will be stored only
once. This is the default in version 3.6 and later.

5.4.35 Dump Symbol Information for Macros or Assertions (-Xcpp-dump-symbols)

-Xcpp-dump-symbols=mask

-X158=mask
Dump symbol information for macros, assertions, or both. To show macros, set
bit 0 (the LSB) of mask to 1. To show assertions, set bit 1 to 1. To show line
numbers, set bit 2 to 0. The default mask is 7 (show macros and assertions, no
line numbers).

5.4.36 Suppress Preprocessor Spacing (-Xcpp-no-space)

-Xcpp-no-space
-X117
C only. Do not insert Spaces around macro names and arguments during

preprocessing.

73

Wind River Compiler for ColdFire

User’s Guide, 5.4

5.4.37 Use Absolute Addressing for Code (-Xdata-absolute...)

-Xdata-absolute-far
-X59=6

Use 32-bit absolute addressing for data.
See 14.2 Addressing Mode — Functions, Variables, Strings, p.255.

-Xdata-absolute-near
-X59=5

Use 16-bit absolute addressing for data.
See 14.2 Addressing Mode — Functions, Variables, Strings, p.255.

5.4.38 Generate Position-independent Data (PID) (-Xdata-relative...)

74

-Xdata-relative-far

-x59=2Generate position-independent data (PID) references to all global or
static variables (except strings and const variables if the -Xconst-in-text=0xf
option is used).

Use 32-bit offsets from register a5 except for those global or static variables in
the Small Data Area (SDA), which will be accessed through fast 16-bit offsets
from a5, which means the SDA is limited to 64KB (to facilitate certain
optimizations, actually 64KB - 0x10—see 9.6 Register Use, p.194 for further
details).

Because a5 is used as a base pointer, all files must be compiled with either this
or the companion option -Xdata-relative-near.

Synonyms: -Xfar-data-relative, -Xlong-a5-relative.

-Xdata-relative-near

-x59=1Generate position-independent data (PID) references to all global or
static variables (except strings and const variables if the -Xconst-in-text=0
option is used).

All references use a 16-bit offset from register a5, which means the combined
size of all sections to which this attribute applies is limited to 64KB (to facilitate
certain optimizations, actually 64KB - 0x10—see 9.6 Register Use, p.194 for
further details).

Because a5 is used as a base pointer, all files must be compiled with either this
or the companion option -Xdata-relative-far.

Synonyms: -Xnear-data-relative, -Xshort-a5-relative.

5 Invoking the Compiler
5.4 Compiler -X Options

NOTE: If option -Xconst-in-text=0xf (equivalent to older option
-Xstrings-in-text), strings and const variables will be placed in “text” sections
and addressed as code rather than as position-independent data. See Moving
initialized Data From “text” to “data”, p.264 for details.

5.4.39 Align .debug Sections (-Xdebug-align=n)

-xdebug-align[=n]
Align .debug sections on specified boundaries. # is a power of 2; e.g.,
-Xdebug-align=3 aligns .debug sections on 8-byte boundaries. If 7 is omitted,
alignment defaults to 4-byte boundaries.

Without this option, .debug sections are aligned on byte boundaries.

5.4.40 Select DWARF Format (-Xdebug-dwarf...)

-Xdebug-dwarfl
-X153=1
Generate DWAREF 1.1 debug information.

-Xdebug-dwarf2
-X153=2
Generate DWARF 2 debug information. This is the default.

-Xdebug-dwarf3

-X153=3
Generate DWAREF 3 debug information.

-Xdebug-dwarf2-extensions-off
Suppress vendor-specific extensions in DWARF 2 and DWARF 3 debug
information.

5.4.41 Generate Debug Information for Inlined Functions (-Xdebug-inline-on)

-Xdebug-inline-on
Generate debugging information for all inlined functions. Works with DWARF
2 and DWAREF 3 only. Can result in very large executables. This option is
disabled by default.

75

Wind River Compiler for ColdFire
User’s Guide, 5.4

5.4.42 Emit Debug Information for Unused Local Variables (-Xdebug-local-all)

-Xdebug-local-all
Emit debugging information for all local variables, even variables that are
never used. This option is disabled by default.

5.4.43 Generate Local CIE for Each Unit (-Xdebug-local-cie)

-Xdebug-local-cie
Generate a local Common Information Entry (CIE) for each unit. This option,
which eliminates the dependency on the debug library libg.a, is applicable
only with DWARF 2 or DWARF 3 debug information.

5.4.44 Disable debugging information Extensions (-Xdebug-mode=mask)

-Xdebug-mode=rmask
-X99=mask

Disable extensions to debugging information per bits in mask. May be
necessary for other vendors’ assemblers or for debuggers which cannot
process the extensions.

mask may be given in hex, and mask bits may be OR-ed to select more than one,
e.g., -Xdebug-mode=0x6. Undefined mask bits are ignored.

0x2
Information regarding executable code in a header file (DWARF]I, ELF).

0x4
Use of .d1line assembler directive (DWARF1, ELF).

0x10
Line number information for asm statements (DWARF1, DWARE2,
DWARF3).

0x40
Use of .d1_line_start and .d1_line_end assembler directives (DWARF1).

0x100
Column information (DWARF 2 and DWARF 3, C++).

76

5 Invoking the Compiler
5.4 Compiler -X Options

5.4.45 Disable Debug Information Optimization (-Xdebug-struct-...)

-Xdebug-struct-all

-X116=1
Force generation of type information for typedef, struct, and union, and class
types, even when such types are not referenced in a file.

-Xdebug-struct-compact
-X116=0

Do not output types which are not used in debug information. This is the
default, and it generates more compact but still complete version of debug
information.

5.4.46 Specify C Dialect (-Xdialect-...)

-Xdialect-c89
-X230=0
Follow the C89 standard for C. See Table B-1 for details.

-Xdialect-c99
-X230=1
Follow the C99 standard for C. See Table B-1 for details.

Only a subset of the C99 standard is supported.

-Xdialect-k-and-r

-X7=0
Follow the “C standard” as defined by the original K&R C reference manual,
but with all the new ANSI C features added. Where K&R and ANSI differ,
-Xdialect-k-and-r follows K&R. See Table B-2 for details.

Synonyms: -Xk-and-r, -Xt.

-Xdialect-ansi

-x7=1
Follow the ANSI C standard with some additions. See Table B-2 for details.
This is the default.

Synonyms: -Xansi, -Xa.

-Xdialect-strict-ansi

-X7=2
Strictly follow the ANSI C and C++ standards. See Table B-2 for details. For
C++, see 5.4.141 Compile C/C++ in Pedantic Mode (-Xstrict-ansi), p.117.

Synonym: -Xstrict-ansi, -Xc.

77

Wind River Compiler for ColdFire
User’s Guide, 5.4

-Xdialect-pcc

-x7=3
Follow the C standard as defined by the UNIX System V.3 C compiler. See
Table B-1 for details.

Synonym: -Xpcc.

5.4.47 Disable Digraphs (-Xdigraphs-...)

-Xdigraphs-on

-X202=0
C++ only. Enable digraphs. If digraphs are enabled, the compiler recognizes
the following keywords as digraphs: bitand, and, bitor, or, xor, compl,
and_eq, or_eq, xor_eq, not, and not_eq. This is the default.

-Xdigraphs-off

-X202
Disable digraphs.

Synonym: -Xno-digraphs.

5.4.48 Allow Dollar Signs in Identifiers (-Xdollar-in-ident)

-Xdollar-in-ident
-X67
Allow dollar sign characters, “$”, in identifiers.

5.4.49 Control Use of Type “double” (-Xdouble...)

-Xdouble-avoid

-X96=3
C only. Force all double constants to single precision and generation of only
single precision instructions.

-Xdouble-error

-X96=1
Generate an error if any double precision operation is used. It will also force
all double constants to single precision and generation of only single precision
instructions.

-Xdouble-warning
-X96=2

78

5 Invoking the Compiler
5.4 Compiler -X Options

Generate a warning if any double precision operation is used. It will also force
all double constants to single precision and generation of only single precision
instructions.

5.4.50 Generate Initializers for Static Variables (-Xdynamic-init)

-Xdynamic-init=1
-X121=1

Cause the compiler to generate code in the initialization section to initialize
addresses in static initializers. This option can be applied to any code, but is
required for position-independent code and for C++ virtual tables. Example:

static int * address_p = & static_var;

Without this option, the above initializer would generate an error message if
the code is compiled to be position-independent.

-Xdynamic-init=2
-X121=2

Extends the -Xdynamic-init=1 option to generate code in the initialization
section for all initializers, not just addresses.

5.4.51 Specify enum Type (-Xenum-is-...)

-Xenum-is-best
-X8=2

Use the smallest signed or unsigned integer type permitted by the range of
values for an enumeration, that is, the first of signed char, unsigned char,
short, unsigned short, int, unsigned int, long, or unsigned long sufficient to
represent the values of the enumeration constants. (long long is not available
for enumerated types.) Thus, an enumeration with values from 1 through 128
will have base type unsigned char and require one byte. (Using the packed
keyword on an enumerated type yields the same result as -Xenum-is-best.)

-Xenum-is-int

-X8

This is the default. For C modules, the enum type is always equivalent to int.
For C++, each enum type is equivalent to int if the range will fit, or unsigned
int if it will not; if the range will not fit into either, a warning is issued and
unsigned int is used.

79

Wind River Compiler for ColdFire
User’s Guide, 5.4

-Xenum-is-short

-x8=3
Each enum type is always equivalent to signed short if the range will fit, or
unsigned short if it will not. If the range will not fit into either, a warning is

issued and unsigned short is used.

-Xenum-is-small

-X8=0
Use the smallest signed integer type permitted by the range of values for an
enumeration, that is, the first of signed char, short, int, or long sufficient to
represent the values of the enumeration constants. Thus, an enumeration with
values from 1 through 128 will have base type short and require two bytes.

-Xenum-is-unsigned

-X8=4
Use the smallest unsigned integer type permitted by the range of values for an
enumeration, that is, the first of unsigned char, unsigned short, unsigned int,
or unsigned long sufficient to represent the values of the enumeration
constants. Thus, an enumeration with values from 1 through 128 will have
base type unsigned char and require one byte.

NOTE: If modules compiled with different -Xenum-is-... options are mixed in a
program, compatibility problems may result.

When an enumerated type occurs within a packed structure, the default behavior
is to use the smallest possible integer type for the enumeration constants
(-Xenum-is-best). To override this behavior, specify -Xenum-is-short or
-Xenum-is-unsigned.

5.4.52 Enable Exceptions (-Xexceptions-...)

-Xexceptions-off

-X200=0
C++ only. Disable exceptions. Compiling a program with any of the keywords
try, catch, or throw will cause a compilation error. (But throw() is still allowed
in function declarations to indicate that new or delete will not throw
exceptions.) Compiling with this option will reduce stack space and increase
execution speed when classes with destructors are used.

Synonym: -Xno-exception.

-Xexceptions
-X200
C++ only. Enable exceptions. This is the default.

80

5 Invoking the Compiler
5.4 Compiler -X Options

For mixed C/C++ programs, see also 5.4.64 Generate .frame_info for C functions
(-Xframe-info), p.86.

Synonym: -Xexception.

5.4.53 Control Inlining Expansion (-Xexplicit-inline-factor)

-Xexplicit-inline-factor

-Xexplicit-inline-factor=n

-X136=n
Limits the inlining in a function (explicit and implicit) to an expansion of n
times (measured in nodes where, roughly, each operator or operand counts as
one node).

Given a function f, the compiler first inlines all functions explicitly declared
inline which f calls, as well as any other small functions which can be inlined
based on the other inlining optimization controls. It then divides the new size
of the function (number of nodes) by the size with no inlining. If the result is
<=1, it looks for new inlining opportunities in the resulting code and repeats
the cycle. Once an expansion of n times is exceeded, inlining stops.

If -Xexplicit-inline-factor is specified with no value, n defaults to 3. If
-Xexplicit-inline-factor is not specified, the default value is 0 (which means no
limit) for C and 3 for C++.

See also 5.4.80 Allow Inlining of Recursive Function Calls (-Xinline-explicit-force),
p-91.

5.4.54 Force Precision of Real Arguments (-Xextend-args)

-Xextend-args
-X77

Make all floating point arguments use the precision given by whichever of
-Xfp-min-prec-double, -Xfp-min-prec-long-double, or -Xfp-min-prec-float is
in force (all are settings of -X3), even if prototypes are used. (If none of the -X3
options are also given, the default is -Xfp-min-prec-double as that is
equivalent to -X3=0).

NOTE: If this option is used, libraries containing functions with floating point
parameters must be recompiled. For safety, recompile all libraries to avoid
missing any such functions.

81

Wind River Compiler for ColdFire
User’s Guide, 5.4

5.4.55 Specify Degree of Conformance to the IEEE754 Standard (-Xfp-fast,
-Xfp-normal, -Xfp-pedantic)

-Xfp-fast

-X82=2
Favor floating-point performance over conformance to the IEEE754
floating-point standard.

-Xfp-normal

-X82=0
Use normal (relaxed) conformance to the IEEE754 floating-point standard.
This is the default.

-Xfp-pedantic

-x82=1
Use strict conformance to the IEEE754 floating-point standard. This option is
equivalent to using -Xieee754-pendatic. (See 5.4.71 Enable Strict implementation
of IEEE754 Floating Point Standard (-Xieee754-pedantic), p.88.)

The -Xfp-fast option allows floating-point division by a constant to be optimized
into a multiply by the reciprocal of the constant. This optimization is inhibited for
-Xpf-normal and -Xfp-pedantic unless the constant is a power of two.

5.4.56 Optimize Using Profile Data (-Xfeedback=file)

-Xfeedback

-Xfeedback=file

(no numeric equivalent)
Use profiling information generated by the -Xblock-count (see 5.4.15 Insert
Profiling Code (-Xblock-count), p.65) option to optimize for faster code. file is the
name of the profiling file. The default is dbent.out.

To use this option:
» Compile a program with -Xblock-count.

* Run the program, which now creates dbcent.out with profiling
information. (See 15.8.2 File I/O, p.286 for file I/O in an embedded
environment.)

* Recompile, now with the -XO and -Xfeedback options to produce
high-level speed optimized code. Use -Xfeedback-frequent and
-Xfeedback-seldom described below to control how the feedback data
affects optimization.

82

5 Invoking the Compiler
5.4 Compiler -X Options

5.4.57 Set Optimization Parameters Used With Profile Data (-Xfeedback-frequent,
-Xfeedback-seldom)

-Xfeedback-frequent

-X68=n

-Xfeedback-seldom

-X69=n
Change the parameters used to control optimization of basic blocks when
using profile data, for example, the amount of inlining, loop unrolling, and
reorganization to reduce branches actually taken, all to increase speed
(sometimes at the expense of space).

When using -Xprof-feedback (5.4.119 Optimize Using RTA Profile Data
(-Xprof-feedback), p.109) and -Xfeedback (5.4.56 Optimize Using Profile Data
(-Xfeedback=file), p.82), the compiler divides the basic blocks into three
categories: code executed “frequently”, “sometimes”, and “seldom”. More of
the above optimizations are done for “frequent” code, while less or none is

done for code executed “seldom”.

The higher the thresholds, the more often code must be executed to get into the
“frequent” category.

The defaults are -Xfeedback-seldom=10 and -Xfeedback-frequent=50 and are
used as follows: each execution of a basic block recorded in the profile counts
as one “tick”. The low-mark and high-mark values are normalized on a basis
of 1,000 ticks, which means that the options have units of a tenth of a percent.
That is, the default values mean that, if exactly 1,000 ticks are recorded, blocks
executed fewer than 10 times (up to 1%) are marked “seldom”, those executed
from 10 to 50 times (1% to 5%) are marked “sometimes”, and those executed
50 or more times (5% of more) are marked “frequent”. Example:

-Xfeedback-frequent=30

means that blocks accounting for 3% or more of all ticks will go into the
“frequent” category, and the compiler will do more inlining of functions called

within these blocks, more loop unrolling, etc., to decrease their execution time.

Synonyms: -Xhi-mark for -Xfeedback-frequent, -Xlo-mark for
-Xfeedback-seldom.

83

Wind River Compiler for ColdFire
User’s Guide, 5.4

5.4.58 Use GNU Calling Conventions for Floating Point (-Xfloats-as-gnhu)

-Xfloats-as-gnu
-xX43
Use GNU calling conventions and function names for software floating point

emulation. GNU libraries are required in order to get a clean link. See
9.3 Arqument Passing, p.190 for additional details.

5.4.59 Use Old for Scope Rules (-Xfor-init-scope-...)

-Xfor-init-scope-for

-X217=0
Use “new” scope rules for variables declared in the initialization part of a for
statement. With this option, the scope of a variable declared in the
initialization part extends to the end of the for statement.

-Xfor-init-scope-outer

-x217
C++ only. Use “old” scoping rules for variables declared in the initialization

part of a for statement. With this option, the scope extends to the end of the
scope enclosing the for statement.

Synonym: -Xold-scoping.

5.4.60 Generate Warnings on Undeclared Functions
(-Xforce-declarations, -Xforce-prototypes)

-Xforce-declarations
-X9
Generate warnings if a function is used without a previous declaration.

-Xforce-prototypes
-x9=3
Generate warnings if a function is used without a previous prototype

declaration.

These options are useful to make C a more strongly typed language. This
option is ignored when compiling C++ modules.

84

5 Invoking the Compiler
5.4 Compiler -X Options

5.4.61 Suppress Assembler and Linker Parameters (-Xforeign-as-Id)

-Xforeign-as-1d
(no numeric equivalent)
Cause the driver to call an assembler and linker without any implicit

parameters.

This allows third-party assemblers and linkers to be used with the Wind River
compiler. The -W xfile option may be used to specify a foreign assembler or

linker (5.3.30 Substitute Program or File for Default (-W xfile), p.46), the -W a

option to pass parameters to the assembler (5.3.25 Pass Arguments to the

Assembler (-W a,arquments, -W :as:,arguments), p.44), and the -W 1 option to pass
parameters to the linker (5.3.27 Pass Arguments to Linker (-W larquments, -W
:Ad:,arquments), p.45).

5.4.62 Convert Double and Long Double (-Xfp-long-double-off, -Xfp-float-only)

-Xfp-float-only
-X70=2
Force double and long double to be the same as float.

Synonym: -Xno-double.

-Xfp-long-double-off
-X70
Force long double to be the same as double on machines where they differ.

Synonym: -Xno-long-double.

NOTE: If this option is used, libraries containing functions with floating point
parameters must be recompiled. For safety, recompile all libraries to avoid missing
any such functions. Also, operation of library routines designed to process a
suppressed type is undefined.

5.4.63 Specify Minimum Floating Point Precision (-Xfp-min-prec...)

-Xfp-min-prec-double

-X3=0
Use double as the minimum precision in expressions and for floating point
arguments. Lesser precisions are used in expressions if the -Xdialect-ansi
option is used. If prototypes are used, use the declared precision for
arguments, unless the -Xextend-args option is used.

85

Wind River Compiler for ColdFire
User’s Guide, 5.4

Synonym: -Xuse-double.

-Xfp-min-prec-float

-x3=1
Use float as the minimum precision in expressions and for floating point
arguments.

Synonym: -Xuse-float.

-Xfp-min-prec-long-double

-X3=2
Use long double as the minimum precision in expressions and for floating
point arguments. Lesser precisions are used in expressions if the

-Xdialect-ansi option is used.

If prototypes are used, use the declared precision for arguments, unless the
-Xextend-args option is also given.

Synonym: -Xuse-long-double.

NOTE: If this option is used, libraries containing functions with floating point
parameters must be recompiled. For safety, recompile all libraries to avoid missing
any such functions. Also, operation of library routines designed to process a
suppressed type is undefined.

5.4.64 Generate .frame_info for C functions (-Xframe-info)

-Xframe-info

Force the compiler to generate .frame_info sections for C funtions. Use this option
when compiling mixed C/C++ programs in which C++ exceptions may propagate
back through C functions. For more information, see 23.8 .frame_info sections, p.380.

5.4.65 Generate Link Instruction (-Xframe-ptr)

-Xframe-ptr
-X36
Generate a link instruction at the beginning of every function, and preserve

saved registers with moveml as the second instruction if necessary. This makes
it easy to backtrack to calling functions and to see what registers are saved. See
9.2 Stack Layout, p.189 for details.

This option is not on by default, and the link instruction is not generated
(unless there are local variables on the stack) when the -XO option is used. Use

86

5 Invoking the Compiler
5.4 Compiler -X Options

-Xframe-ptr to force the compiler to generate the link instruction and preserve
the registers in all cases.

5.4.66 Include Filename Path in Debug Information (-Xfull-pathname)

-Xfull-pathname
-X125
Include the path prefix in filenames in debug information (specifically, in the

file assembler directive). Without this option, only the filename is included.

5.4.67 Control GNU Option Translator (-Xgcc-options-...)

-Xgcc-options-on
Enable automatic translation of GNU compiler (GCC) options. This is the
default.

-Xgcc-options-off
Disable automatic translation of GCC options.

-Xgcc-options-verbose
Display all translations. Valid only if translation is enabled (-Xgcc-options-on).

When -Xgcc-options-on is enabled, GCC option flags from the command line or
makefile are parsed and, if possible, translated to equivalent Wind River Compiler
options. Translations are determined by the tables in the file gcc_parser.conf.

5.4.68 Treat All Global Variables as Volatile (-Xglobals-volatile)

See 5.4.99 Treat All Variables As Volatile (-Xmemory-is-volatile, -X...-volatile), p.100.

5.4.69 Control Use of Hardware Divide Instructions (-Xhardware-divide...)

-Xhardware-divide

-X40=1
Use hardware divide instructions. This is the default for ColdFire processors
with hardware divide instructions.

-Xhardware-divide-off

-X40=0
Do not use hardware divide instructions. This is the default for ColdFire
processors without hardware divide instructions.

87

Wind River Compiler for ColdFire
User’s Guide, 5.4

5.4.70 Do Not Pass #ident Strings (-Xident-off)

-Xident-on
-X63=0
Pass #ident strings to the assembler. This is the default.
-Xident-off
-X63
Do not pass #ident strings to the assembler.

Synonym: -Xno-ident.

5.4.71 Enable Strict implementation of IEEE754 Floating Point Standard
(-Xieee754-pedantic)

-Xieee754-pedantic

-x82=1
Enable strict implementation of the IEEE754 floating point standard at some
cost in performance. Specifically,

* Do not optimize a divide by a constant to a multiply of its reciprocal.

* Donot use floating multiply-add instructions on architectures where more
bits are kept in intermediate results than is defined by the standard.

* Do not optimize x-x to zero so that possible NaN values are preserved.

* Do less equal and greater equal comparisons with behavior for NaN
values as defined by the standard.

This option is equivalent to -Xfp-pedantic. (See 5.4.55 Specify Degree of
Conformance to the IEEE754 Standard (-Xfp-fast, -Xfp-normal, -Xfp-pedantic),
p-82.)

5.4.72 Control Template Instantiation (-Ximplicit-templates...)

-Ximplicit-templates

-X207=0
Instantiate each template in each module where it is used or referenced. This
is the default.

-Ximplicit-templates-off
-X207=1
Instantiate templates only where explicit instantiation syntax is used.

88

5 Invoking the Compiler
5.4 Compiler -X Options

Synonym: -Xno-implicit-template.

For further discussion, see 5.4.31 Mark Sections as COMDAT for Linker Collapse
(-Xcomdat), p.71 and Templates, p.239.

C++ only.

5.4.73 Treat #include As #import (-Ximport)

-Ximport

-X75
Treat all #include directives as if they are #import directives. This means that
any include file is included only once.

5.4.74 Ignore Missing Include Files (-Xincfile-missing-ignore)

-Xincfile-missing-ignore

-X172
This option, which suppresses error reporting, is effective only when used
with -Xmake-dependency (5.4.95 Show Make Rules (-Xmake-dependency), p.98).
It causes preprocessing to continue even when a required header is not found.
If -Xincfile-missing-ignore is used with -Xmake-dependency=2 or
-Xmake-dependency=6, the preprocessor issues a warning (but not an error)
when a required system file (#include <filename>) is not found.

5.4.75 Initialize Local Variables (-Xinit-locals=mask)

-Xinit-locals=mask
-X87=mask

Initialize all local variables to zero or the value specified with -Xinit-value at
every function entry. mask is a bit mask specifying the kind of variables to be
initialized.

mask may be given in hex, e.g., -Xinit-locals=0x9. Mask bits may be OR-ed to
select more than one. Undefined mask bits are ignored.

0x1 integers
0x2 pointers
0x4 floats

0x8 aggregates

If n is not given, all local variables will be initialized.

89

Wind River Compiler for ColdFire
User’s Guide, 5.4

This option is useful in finding “memory dependent” bugs.

5.4.76 Control Generation of Initialization and Finalization Sections (-Xinit-section)

This option controls generation of sections for run-time initialization and
finalization invocation, including constructor and destructor functions and global
class objects in C++. For more information, see 15.4.8 Run-time Initialization and
Termination, p.280.
-Xinit-section=0
-X91=0
Suppress generation of initialization and finalization sections. This option is
not recommended and may result in incorrect run-time behavior.
-Xinit-section
-Xinit-section=1
-x91
-x91=1
Create .ctors and .dtors sections containing pointers to initialization and
finalization functions, sorted by priority. This is the default.

Initialization and finalization functions are designated with attribute
specifiers. See constructor, constructor(n) Attribute, p.153 and destructor,
destructor(n) Attribute, p.154.

-Xinit-section=2

-X91=2
Create .init$nn and .fini$nn code sections containing calls to initialization and
finalization functions, sorted by priority. Provides compatibility with previous
versions of the compiler, including recognition of old-style function prefix
designations for initialization and finalization functions.

Synonym: -Xuse-.init.

5.4.77 Control Default Priority for Initialization and Finalization
Sections (-Xinit-section-default-pri)

-Xinit-section-default-pri=n

-X175=n
Assign the default priority for constructor and destructor functions and for
C++ global class objects. The specified priority n applies to functions
referenced in .ctors, .dtors, .init, and .fini sections. Functions with lower
priority numbers execute first.

90

5 Invoking the Compiler
5.4 Compiler -X Options

5.4.78 Define Initial Value for -Xinit-locals (-Xinit-value=n)

-Xinit-value=n
-X90=n
Define the initial value used by the -Xinit-locals option. This option can be
useful to identify uninitialized variables, since it can be used to initialize
variables to some invalid or recognizable value that might produce a memory
access error.

The value n is 32-bits, right-justified, zero-filled and may be specified as a
decimal or hexadecimal number (0x...).

5.4.79 Inline Functions with Fewer Than n Nodes (-Xinline=n)

-Xinline=n

-X19=n
Set the limit on the number of nodes for automatic inlining. Because the
compiler collects functions until -Xparse-size KBytes of memory is used, the
inlined function does not need to be defined before the function using it. See
__inline__ and inline Keywords, p.147 and Inlining (0x4), p.207 for a discussion
of inlining.

See 5.4.157 Control Loop Unrolling (-Xunroll=n, -Xunroll-size=n), p.123 for a
definition of node count. (Assembly files saved with -S show the number of
nodes for each function.) For purposes of automatic inlining, nodes that do not
correspond to an operator or operand are not counted. Hence setting -Xinline
to 0 inlines no functions automatically, and setting -Xinline to 1 inlines only
“dummy” functions containing no code.

Defaults: -Xinline is 10 by default. -XO sets -Xinline to 40 by default.

NOTE: Inlining occurs only if optimization is selected by using the -XO or -O
option.

5.4.80 Allow Inlining of Recursive Function Calls (-Xinline-explicit-force)

-Xinline-explicit-force
-Xinline-explicit-£force=n

91

Wind River Compiler for ColdFire
User’s Guide, 5.4

-X163
-X163=n
Inline recursive function calls up to n times. The default is 50. If this option is
not used, the compiler inlines a function at most once.

If this option is combined with -Xinline=0, the compiler inlines only functions
declared within a C++ class or with inline, __inline__, or #pragma inline.

This option is overridden by -Xexplicit-inline-factor. (See 5.4.53 Control
Inlining Expansion (-Xexplicit-inline-factor), p.81.) By default,
-Xexplicit-inline-factor=3 is in effect for C++ programs; C++ programmers
who want to use -Xinline-explicit-force should therefore specify
-Xexplicit-inline-factor=0.

5.4.81 Limit Instructions to 68000 (-Xinstr-00, -Xinstr-20)

-Xinstr-00
-X44=0
Limit code generation to that which can be executed on a plain 68000.

-Xinstr-20

-X44=1
Permit use of those 68020 instructions available on a ColdFire processors. This
is the default. See manufacturer’s manuals for details.

5.4.82 Enable Intrinsic Functions (-Xintrinsic-mask)

-Xintrinsic-mask=n

-X154=n
Enable specified intrinsic functions. See 6.6 Intrinsic Functions, p.156 for
details.

5.4.83 Set longjmp Buffer Size (-Xjmpbuf-size=n)

-Xjmpbuf-size=n

-X201=n
C++ only. Set the size in bytes of the buffer allocated for setjmp and longjmp
when using exceptions. The default size as determined by the compiler should
usually be sufficient.

92

5 Invoking the Compiler
5.4 Compiler -X Options

5.4.84 Create and Keep Assembly or Object File (-Xkeep-assembly-file,
-Xkeep-object-file)

-Xkeep-assembly-file

(no numeric equivalent)
Always create and keep a .s file without the need for a separate compilation
with the -S option. This option can be used with the -c option to create both
assembly and object files at once.

-Xkeep-object-file

(no numeric equivalent)
Always create and keep a .o file without the need for a separate compilation
with the -c option. This is needed only when a single file is compiled,
assembled, and linked in one step, because in this case the driver deletes
intermediate assembly and object files automatically.

5.4.85 Enable Extended Keywords (-Xkeywords=mask)

-Xkeywords=mask
-X78=mask
Recognize new keywords according to mask, a bit mask specifying which

keywords to add.

mask may be given in hex, e.g., -Xkeywords=0x9. Mask bits may be OR-ed to
select more than one. Undefined mask bits are ignored.

0x01 extended (C only)

0x02 pascal (C only)

0x04 inline (this keyword always available in C++)
0x08 packed

0x10 interrupt (C only)

See 6. Additions to ANSI C and C++ for more information on these keywords.

5.4.86 Disable Individual Optimizations (-Xkill-opt=mask, -Xkill-reorder=mask)

NOTE: These options are deprecated and should be used only on the advice
Customer Support.

-Xkill-opt=mask
-X27=mask
Disable individual target-independent optimizations.

93

5.4.87

5.4.88

Wind River Compiler for ColdFire
User’s Guide, 5.4

-Xkill-reorder=mask
-X28=muask
Disable individual target-dependent optimizations in the reorder program.

mask is a bit mask with one bit for each optimization type. mask may be given
in hex, e.g., -Xkill-opt=0x12. Multiple optimizations can be disabled by
OR-ing their mask bits. Undefined mask bits are ignored.

Both target-independent and target-dependent optimizations are described in
10. Optimization. The name of each optimization is followed by its mask bit in
parentheses, e.g. Tail recursion (0x2).

For mask bit values for -Xkill-opt, see 10.3 Target-Independent Optimizations,
p-206, and for -Xkill-reorder, 10.4 Target-Dependent Optimizations, p.219. mask
bit values are given in parentheses after the name of each optimization.

Either the -O or -XO option must be given to enable optimization before either
of these -Xkill-... options can be used. To compile with almost no optimization,
do not specify -O or -XO.

Two minor optimizations required by the code generation algorithms cannot
be disabled: local strength reduction (e.g., multiply by power of 2 becomes
shift or add) and simple branch optimization (e.g., branches to branches).

Wait For License (-Xlicense-wait)

-Xlicense-wait
-X138
If a license is not available, request that the compiler wait and retry once a

minute, rather than returning with an error.

Generate Warnings On Suspicious/Non-portable Code (-Xlint=mask)

-X1int[=mask]|

-x84[=mask|
Generate warnings when suspicious and non-portable C code is encountered.
For C++ modules, see note below. The two usual cases are:

-Xlint enables all warnings (equivalent to -Xlint=1).

-Xlint=0xffffffff disables all present and future warnings (equivalent to
-Xlint=0 or the default of not using the option at all).

94

5 Invoking the Compiler
5.4 Compiler -X Options

Individual warnings can be disabled by OR-ing the following values. In effect,
-Xlint=1is assumed, enabling all warnings, and then individual warnings are
disabled. mask may be given in hex, e.g., -Xlint=0x1a. Undefined bits are
ignored.

0x02
Variable used before being set.

0x04
Label not used.

0x08
Condition always true/false, for example, i==i.

0x10
Variable/function not used.

020
Missing return expression.

0x40
Variable set but not used.

0x80
Statement not reached.

0x100
Conversion problems.

0x200
In non-ANSI mode, warn when the compiler selects an unsigned integral
type for an expression which would be signed under ANSI mode. For
example:
"a.c", line 3: warning (1671):
non-portable behavior: type of

‘>' operator is unsigned only
in non-ANSI mode

0x400
Possibly assignment (=) should be comparison (==).

0x1000
Missing function declaration (equivalent to -Xforce-declarations).

0x2000
Possible redundant expression. (Examples: x=x, x&x, x | x, x/x.)

11. The Lint Facility gives an example of a program which generates most of the
-Xlint warnings.

See also the __lint macro in 6.1 Preprocessor Predefined Macros, p.129 to avoid
use of non-ANSI extensions in header files.

95

Wind River Compiler for ColdFire

User’s Guide, 5.4

NOTE: For C++, -Xlint is equivalent to -Xsyntax-warning-on. (See
5.4.152 Disable Certain Syntax Warnings (-Xsyntax-warning-...), p.121.)

5.4.89 Allocate Static and Global Variables to Local Data Area (-Xlocal-data-area=n)

-Xlocal-data-area=n
-X115=n

96

Allocate the static and global variables which are defined in a module and
referenced as least once in a contiguous block of memory, called the local data
area (LDA), and make fast, efficient references to those variables via a
temporary base register selected by the compiler.

n specifies the maximum of the LDA, and defaults to 32,767 bytes. (If n is
greater than the default, references to variables in the LDA will be less
efficient.)

The optimization does not apply to unreferenced variables or to variables
smaller than -Xsmall-data, which go in the .sdata or .sbss sections.
-Xlocal-data-area should be used with caution in multithreaded
environments. To restrict the optimization to static variables, use
-Xlocal-data-area-static-only; VxWorks developers are strongly advised to use
this option.

See 14.4 Local Data Area (-Xlocal-data-area), p.265 for additional information.

Synonym: -Xlocal-struct.

NOTE: If at least one variable in the LDA has an initial value, the LDA is in the
.data section; otherwise it is in the .bss section. Because -Xlocal-data-area is
nonzero by default, uninitialized static and global variables larger than
-Xsmall-data bytes in size which are referenced at least once are not stored in
a .bss section. To store such variables in .bss, use -Xlocal-data-area=0.

5 Invoking the Compiler
5.4 Compiler -X Options

5.4.90 Restrict Local Data Area Optimization to Static Variables
(-Xlocal-data-area-static-only)

-Xlocal-data-area-static-only
-X166

Apply the local data area optimization only to static variables; do not optimize
global variables. See 14.4 Local Data Area (-Xlocal-data-area), p.265 for
information about this optimization.

5.4.91 Do Not Assign Locals to Registers (-Xlocals-on-stack)

-Xlocals-on-stack
-X5

By default, the compiler attempts to assign all local variables to registers. If
-Xlocals-on-stack is given, only variables declared with the register keyword
are assigned to registers.

5.4.92 Use Macintosh Calling Conventions for Pascal Functions
(-Xmac-convention)

-Xmac-conventions
-X79

Use Macintosh calling conventions for pascal functions instead of standard
68K calling conventions. See 9.3 Argument Passing, p.190 for additional details.

5.4.93 Expand Macros in Pragmas (-Xmacro-in-pragma)

-Xmacro-in-pragma
-X157
Expand preprocessor macros in #pragma directives.

5.4.94 Warn On Undefined Macro In #if Statement (-Xmacro-undefined-warn)

-Xmacro-undefined-warn
-X171

Generate a warning when an undefined macro name occurs in a #if
preprocessor directive.

97

Wind River Compiler for ColdFire

User’s Guide, 5.4

5.4.95 Show Make Rules (-Xmake-dependency)

-Xmake-dependency
-Xmake-dependency=nask
-X156, -X156=mask

Generate a list of include files required to build each object file. Example:

main.o: main.c stdio.h
command list
This output means that main.c and stdio.h are required to build the target
main.o. A list of make commands follows the dependency.

mask, which defaults to 1, is a bit mask—always interpreted as
hexadecimal—of which the four least significant bits are meaningful: the
fourth (least significant) bit, if set to 1, means that all required files are shown;
this is the default. The third bit means that only files enclosed in double
quotation marks (#include "filename") are shown. (If both the third and the
fourth bits are set, the fourth overrides the third.) The second bit means that
compilation continues after the dependency list is generated (if this bit is 0, no
output is emitted other than the list of dependencies) and that the dependency
list is sent to a file (instead of the standard output). The first bit creates a
“phony target” for each dependency other than the main file; this is a
work-around for errors caused by missing header files and is provided for
GNU compatibility. The -o option can be used to specify the output file, the
target name, or both. Hence:

-Xmake-dependency=1

Same as -Xmake-dependency. Show all required include files. If -0 is used, the
target is the name specified with -o. Results go to the standard output unless
-Xmake-dependency-savefile=filename is specified. No further output is
emitted.

-Xmake-dependency=2

Same as -Xmake-dependency=1, but show only files enclosed in double
quotation marks (#include "filename").

-Xmake-dependency=4

98

Same as -Xmake-dependency=1, but write the dependency list to a file and
then continue with normal compilation. The output file can be specified with
either -o or -Xmake-dependency-savefile=filename (which overrides -o);
otherwise it is called filename.d, where filename is the name of the main source
file, and is created in the directory where the compiler was invoked. If -0 is
used without -Xmake-dependency-savefile, the output file is the basename
specified by -o with .d appended.

5 Invoking the Compiler
5.4 Compiler -X Options

-Xmake-dependency=8
Same as -Xmake-dependency=1, but output a phony target for each
dependency other than the main file.

The bits can be OR-ed to combine options. Example:

-Xmake-dependency=6
Show only files enclosed in double quotation marks (-Xmake-dependency=2);
write output to a file, then continue with normal compilation
(-Xmake-dependency=4).

-Xmake-dependency=a
Show only files in double quotation marks (-Xmake-dependency=2) and
output phony targets (-Xmake-dependency=8).

-Xmake-dependency=c
Output phony targets (-Xmake-dependency=8); write output to a file, then
continue with normal compilation (-Xmake-dependency=4).

-Xmake-dependency=e
Show only files enclosed in double quotation marks (-Xmake-dependency=2);
output phony targets (-Xmake-dependency=8); write output to a file, then
continue with normal compilation (-Xmake-dependency=4).

Ordinarily, the preprocessor returns an error and stops when a required file is not
found. To continue preprocessing when files are missing, use -Xmake-dependency
with -Xincfile-missing-ignore (5.4.74 Ignore Missing Include Files
(-Xincfile-missing-ignore), p.89).

5.4.96 Specify Dependency Name or Output File (-Xmake-dependency-...)

This option is valid only when used with -Xmake-dependency.

-Xmake-dependency-target:string
Change the target name in the rule emitted by -Xmake-dependency to string
(instead of using the name of the object file). To specify multiple target names,
repeat the -Xmake-dependency-target option on the command line.

-Xmake-dependency-savefile=filename

Specify the output file for -Xmake-dependency.

99

Wind River Compiler for ColdFire
User’s Guide, 5.4

5.4.97 Set Template Instantiation Recursion Limit (-Xmax-inst-level=n)

-Xmax-inst-level[:n]

-x216[=n]
C++ only. Set the maximum level for recursive instantiation of templates.
Without this option, an error is emitted when a default level of 50 is reached.
With this option, but without a value 7, the limit is 100.

5.4.98 Set Maximum Structure Member Alignment (-Xmember-max-align=n)

-Xmember-max-align=n

-X88=n
Set the maximum byte boundary to which structure members will be aligned.
If the natural alighment of a member is less than #, the natural alignment is
used for it. See pack Pragma, p.141 and the __packed__ and packed Keywords,
p-149 for details. See also 5.4.148 Set Minimum Structure Member Alignment
(-Xstruct-min-align=n), p.120.

The default value of is dependent on the processor as described in 8. Internal
Data Representation.

Synonym: -Xstruct-max-align.

5.4.99 Treat All Variables As Volatile (-Xmemory-is-volatile, -X...-volatile)

-Xmemory-is-volatile
-x4
-x4=7
Treat all variables as volatile.

-Xglobals-volatile
-x4=1
Treat all global variables as volatile.

-Xstatics-volatile
-X4=2
Treat all static variables as volatile.

-Xpointers-volatile
-x4=4
Treat all pointer accesses as volatile.

These options tell the compiler not to perform optimizations that can cause device
drivers or other systems to fail. By default, the compiler keeps data in registers as
long as possible whenever it is safe. Difficulties can arise if a memory location

100

5 Invoking the Compiler
5.4 Compiler -X Options

changes because it is mapped to an external hardware device and the compiler,
unaware of the change, continues to use the old value stored in a register. While
these situations can now be handled with the volatile keyword, the -X4 options
allow compilation of older programs.

To combine these options, use the sum of their values with a single occurrence of

the option flag. For example, use -X4=3 to treat all global and static variables as

volatile. -X4=7, equivalent to -X4 or -Xmemory-is-volatile, combines all of the
options.

5.4.100 Warn On Type and Argument Mismatch (-Xmismatch-warning)

-Xmismatch-warning

-x2

-Xmismatch-warning=2

-x2=2
Generate a warning only (instead of a fatal error) when either pointers of
different types, or pointers and integers, are mixed in expressions. Example:

long i1, i2 = &il;
is invalid in ANSI C but is allowed in some non-ANSI dialects. This option is
set implicitly by -Xdialect-pcc (-X7=3).

If the option -Xmismatch-warning=2 is given, the compiler also generates a
warning instead of an error when identifiers are redeclared and when a
function call has the wrong number of arguments.

This option is ignored when compiling C++ modules.

NOTE: -Xmismatch-warning and -Xmismatch-warning=2 override the -e option.
If either form of -Xmismatch-warning is used, mismatched types will only
produce a warning, even if -e is used to increase the severity level of the diagnostic.
See 5.3.8 Change Diagnostic Severity Level (-e), p.38.

5.4.101 Specify Section Name (-Xname-...)

Use the following options to specify the name of a default section.

-Xname-code=nare
Set the section name for code.

101

Wind River Compiler for ColdFire
User’s Guide, 5.4

-Xname-const=name
Set the section name for initialized constants.

-Xname-data=narme
Set the section name for initialized data.

-Xname-eh=narme
C++ only.
Set the section name for all exception-handling tables.

-Xname-rtti=name
C++ only.
Set the section name for all RTTI tables.

-Xname-sconst=name
Set the section name for initialized small const.

-Xname-sdata=name
Set the section name for initialized small data.

-Xname-string=name
Set the section name for strings.

-Xname-uconst=name
Set the section name for uninitialized constants.

-Xname-udata=name
Set the section name for uninitialized data.

-Xname-usconst=name
Set the section name for uninitialized small const.

-Xname-usdata=name
Set the section name for uninitialized small data.

-Xname-vtbl=name
C++ only.
Set the section name for all virtual-function tables.

Section names can also be specified using the section pragma. For example, setting
-Xname-code=.code has the same effect as:

#pragma section CODE ".code"

For more information, see section Pragma, p.145.

102

5.4.102

5 Invoking the Compiler
5.4 Compiler -X Options

Disable C++ Keywords namespace and Using (-Xnamespace-...)

-Xnamespace-on
-X219=0
Recognize the namespace and using keywords or constructs.

-Xnamespace-off
-X219

C++ only. Do not recognize the namespace and using keywords or constructs.

5.4.103 Disable Nested Interrupts in Interrupt Functions (-Xnested-interrupts-off)

-Xnested-interrupts-off

-x41=1
Disabled nested interrupts in an interrupt function (a function named in a
#pragma interrupt directive or declared with the interrupt or __interrupt__
keywords) by beginning the function with the instruction:

move #0x3700, SR
Interrupts are not automatically enabled at the end of the function.

-Xnested-interrupts

-X41=0
Do not generate an instruction to disable interrupts in an interrupt function.
This is the default.

5.4.104 Enable Extra Optimizations (-XO)

-X0
-X26
Enable all standard optimizations plus the following;:

-0
(5.3.17 Optimize Code (-O), p.42)

-Xinline=40
(10 with -0; 5.4.79 Inline Functions with Fewer Than n Nodes (-Xinline=n),
p-91)

-Xopt-count=2
(1 with -O; 5.4.106 Execute the Compiler’s Optimizing Stage n Times
(-Xopt-count=n), p.104)

-Xparse-size=6000

(3000 with -O; 5.4.108 Specify Optimization Buffer Size (-Xparse-size), p.105)

103

Wind River Compiler for ColdFire
User’s Guide, 5.4

-Xrestart

(off with -O; 5.4.122 Restart Optimization From Scratch (-Xrestart), p.111)

-Xtest-at-both
(-Xtest-at-bottom with -O; 5.4.154 Specify Loop Test Location (-Xtest-at-...),
p-121)

5.4.105 Use Old Inline Assembly Casting(-Xold-inline-asm-casting)

-Xold-inline-asm-casting

-X137
This option affects small arguments to asm macros (arguments with size less
than int).

By default, the compiler does not extend such arguments to int. Prior to
version 4.2, the compiler did extend such arguments to int. Use this option to
force the old behavior for compatibility with existing asm macros which
depend on it.

5.4.106 Execute the Compiler’s Optimizing Stage n Times (-Xopt-count=n)

-Xopt-count=n

-X25=n
Execute the compiler’s optimizing stage n times. The default is once. In most
cases this is enough. In rare instances, one stage of the optimizer will generate
an opportunity for a previous stage. Setting -Xopt-count=2 or more will cause
a somewhat longer compilation time but may produce slightly better code.
This option is set to 2 by -XO.

5.4.107 Disable Most Optimizations With -g (-Xoptimized-debug-...)

-Xoptimized-debug-on

-X89=0
Do not disable optimizations when using -g. This is the default.

-Xoptimized-debug-off

-X89
When using the -g option to generate debug information, disable most
optimizations and force line numbers in debug information to be in increasing
order — assists with debuggers that cannot handle optimized code. See also
5.4.44 Disable debugging information Extensions (-Xdebug-mode=mask), p.76, and
5.4.45 Disable Debug Information Optimization (-Xdebug-struct-...), p.77.

104

5 Invoking the Compiler
5.4 Compiler -X Options

Synonym: -Xno-optimized-debug.

5.4.108 Specify Optimization Buffer Size (-Xparse-size)

-Xparse-size=n

-X20=n
Delay code generation of functions until n KBytes of main memory is used for
internal tables. By delaying generation, the compiler can perform
interprocedural optimizations such as inlining and register tracking.

The default is 3000 KB (6000 KB if option -XO is used). The highest useful value
for a module depends on many factors; it is not practical to calculate it (see the
discussion of “limitations related to memory size” in C. Compiler Limits for
some of the factors).

For very large and complex modules, experiment with larger values, e.g.
-Xparse-size=8000, to see if code size or execution time is reduced.

NOTE: That using a value larger than available physical memory will cause
excessive swapping and slow compilation.

5.4.109 Output Source as Comments (-Xpass-source)

-Xpass-source
-X11

Output the source as comments in the generated assembly language code.

5.4.110 Use Precompiled Headers (-Xpch-...)

C++ only. These options are disabled by default. At most one of -Xpch-automatic,
-Xpch-create, and -Xpch-use can be enabled; if more than one is specified, all but
the first are ignored. For more information, see 13.7 Precompiled Headers, p.245.

-Xpch-automatic
Generate and use precompiled headers.

-Xpch-create=filename
Generate a precompiled header (PCH) file with specified name.

105

Wind River Compiler for ColdFire
User’s Guide, 5.4

-Xpch-diagnostics
Generate an explanatory message for each PCH file that the compiler locates
but is unable to use.

-Xpch-directory=directory
Look for PCH file in specified directory.

-Xpch-messages
Generate a message each time a PCH file is created or used.

-Xpch-use=filename

Use specified PCH file.

5.4.111 Generate Position-Independent Code for Shared Libraries (-Xpic)

-Xpic

-X62
For VxWorks RTP application development. Allows a single copy of a shared
library, loaded in a single memory location, to be called by different programs.
RTP shared-library code must be compiled with this option.

5.4.112 Treat All Pointer Accesses As Volatile (-Xpointers-volatile)

See 5.4.99 Treat All Variables As Volatile (-Xmemory-is-volatile, -X...-volatile), p.100.

5.4.113 Control Interpretation of Multiple Section Pragmas (-Xpragma-section-...)

These options control the compiler’s behavior when multiple #pragma section
directives are used with different parameters for the same section class. The default
is -Xpragma-section-first.

For more information, see section and use_section Pragmas, p.249.

-Xpragma-section-first
If this option is in effect when a variable or function is defined, the compiler
uses the earliest currently-valid section pragma that specifies a non-default
location for the variable or function.

-Xpragma-section-last
If this option is in effect when a variable or function is defined, the compiler
uses the last currently-valid section pragma that specifies a non-default
location for the variable or function.

106

5 Invoking the Compiler
5.4 Compiler -X Options

5.4.114 Preprocess Assembly Files (-Xpreprocess-assembly)

-Xpreprocess-assembly
Invoke C preprocessor on assembly files before running the assembler.

5.4.115 Suppress Line Numbers in Preprocessor Output
(-Xpreprocessor-lineno-off)

-Xpreprocessor-lineno-off
-X165

Suppress line-number information in the preprocessor output. Use this with
the -E option (send preprocessor output to standard output) when
line-number information is not needed.

5.4.116 Use Old Preprocessor (-Xpreprocessor-old)

-Xpreprocessor-old
-X155

Use the preprocessor from release 4.3. When -Xpreprocessor-old is specified,
vararg macros are not supported and the following options are not available:
-Xmake-dependency, -Xmake-dependency-..., -Xmacro-in-pragma, and
-Xcpp-dump-symbols.

This option is valid only when compiling C modules or when compiling C++
modules with the -Xc++-o0ld option.

5.4.117 Generate Profiling Code for the RTA Run-Time Analysis
Tool Suite (-Xprof-...)

-Xprof-all
-X123=3
Collect count and time data.

-Xprof-all-fast

-X123=6
Collect count and time data for each function, but not for pairs of functions, so
no hierarchical profile will be available.

107

Wind River Compiler for ColdFire
User’s Guide, 5.4

-Xprof-count

-X123=2
Collect count data only, incrementing a counter for line of code executed
(actually, for each basic block).

-Xprof-coverage

-X123=8
Like -Xprof-count, except just set the counter to one for each basic block
executed instead of counting the number of executions.

-Xprof-time

-X123=1
Collect time data only.

-Xprof-time-fast

-X123=4
Collect time data for each function, but not for pairs of functions, so no
hierarchical profile will be available.

These options cause the compiler to generate profiling code for the RTA. To be
profiled, a function must be instrumented. The compiler inserts instrumentation
code based on the following options. Every module to be profiled must be
compiled with one of these options.

NOTE: In addition to an -Xprof-type option, you must use the -g option to generate
debug information.

Besides interactively analyzing the profile information generated by these options
using the RTA, you may feed the collected data back to the compiler to improve
optimization based on the actual execution of the target program. See

5.4.119 Optimize Using RTA Profile Data (-Xprof-feedback), p.109.

Do not use these options with the older pair of profiling options -Xblock-count
(5.4.15 Insert Profiling Code (-Xblock-count), p.65) and -Xfeedback (5.4.56 Optimize
Using Profile Data (-Xfeedback=file), p.82).

A function, its parent, and its children must all be compiled with the same
-Xprof-type option or the results are undefined.

108

5 Invoking the Compiler
5.4 Compiler -X Options

5.4.118 Select Target Executable for Use by -Xprof-feedback (-Xprof-exec)

-Xprof -exec=pathname
(no numeric equivalent)
pathname must be the full pathname of a target executable for which profile
data is present in the RTA database directory specified with -Xprof-feedback.
See 5.4.119 Optimize Using RTA Profile Data (-Xprof-feedback), p.109 for details.

5.4.119 Optimize Using RTA Profile Data (-Xprof-feedback)

-Xprof-£feedback=pathname

(no numeric equivalent)
pathname must specify an RTA database directory (not a file). Use the profiling
information in that database (the latest “snapshot”) to optimize for faster code.
See the 5.4.57 Set Optimization Parameters Used With Profile Data
(-Xfeedback-frequent, -Xfeedback-seldom), p.83, to control how the profile data
affects optimization.

The snapshot selected depends on -Xprof-snapshot (5.4.120 Select Snapshot for
Use by -Xprof-feedback (-Xprof-snapshot), p.110) and -Xprof-exec (5.4.118 Select
Target Executable for Use by -Xprof-feedback (-Xprof-exec), p.109) as follows:

-Xprof-exec -Xprof- snapshot Snapshot Selected

No No Use latest snapshot in the database.

No Yes Use snapshot named by -Xprof-snapshot. If a
snapshot with the given name is present for
more than one executable, use the latest.

Yes No Use latest snapshot for the executable
specified by -Xprof-exec.

Yes Yes Use snapshot named by -Xprof-snapshot.
Report an error if no snapshot with the given
name is present for the executable specified by
-Xprof-exec.

109

Wind River Compiler for ColdFire
User’s Guide, 5.4

NOTE: This option is used in conjunction with the -Xprof-... options
(5.4.117 Generate Profiling Code for the RTA Run-Time Analysis

Tool Suite (-Xprof-...), p.107). Do not use this option with the older pair of
profiling options -Xblock-count (5.4.15 Insert Profiling Code (-Xblock-count),
p-65) and -Xfeedback (5.4.56 Optimize Using Profile Data (-Xfeedback=file),
p-82).

Also, the selected snapshot must include basic block count data, that is, the
executed code must have been compiled with -Xprof-all, -Xprof-all, or
-Xprof-count. The options -Xprof-time, -Xprof-time-fast, and
-Xprof-coverage do not produce the data required for feedback-driven
optimization.

5.4.120 Select Snapshot for Use by -Xprof-feedback (-Xprof-snapshot)

-Xprof-snapshot=string

(no numeric equivalent)
string must name a snapshot in the RTA database directory specified with
-Xprof-feedback. See -Xprof-feedback (5.4.119 Optimize Using RTA Profile
Data (-Xprof-feedback), p.109) for details.

5.4.121 Select Convention for Returning Pointer Values from Functions
(-Xptr-values-in-...)

-Xptr-values-in-a0

-x32=1
Return pointer values from functions in both register d0 and register a0. The
value in a0 is used by the caller.

NOTE: This option is provided for compatibility with third-party tools and
libraries. The Wind River libraries are compiled with the default,
-Xptr-values-in-d0, and will not work with modules compiled with
-Xptr-values-in-a0 unless recompiled with that option.

-Xptr-values-in-do
-X32=0
Return pointer values from functions in register d0. This is the default.

110

5 Invoking the Compiler
5.4 Compiler -X Options

5.4.122 Restart Optimization From Scratch (-Xrestart)

-Xrestart

-x29
Restart optimization from scratch if too many optimistic predictions were
made.

Compilers may have difficulty predicting the best way to perform specific
optimizations when the information needed is not available until a later

compiler stage. For example, better code may be produced by moving a loop

invariant expression outside the loop if the result can be placed in a register.

However, the compiler does not know if any register is available until after

register allocation, which is performed later in the compilation.

The compiler uses an optimistic approach which generates optimal code when
registers are available but not when all registers are taken. The -Xrestart option
will restart optimization and code generation if any optimistic prediction is
false. This will typically slow the compilation of large functions by a factor of
almost two while generating better code. This option is turned on by -XO.

5.4.123 Generate Code for the Run-Time Error Checker (-Xrtc=mask)

-Xrtc=mask
-X64=mask

With no mask, this option directs the compiler to insert checking code for all
checks made by the Run-Time Error Checker. Use the mask to select specific
checks rather than all.

5.4.124 Add Null Bytes After rts or rte for MCF5307 Prefetch Errata (-Xrts-nil)

-Xrts-nil
-x47
Add two null bytes after every rte or rts instruction to avoid an instruction
prefetch errata on the ColdFire MCF5307. Necessary for this part only.
-Xrts-nil-off
-X47=0
Do not add the two null bytes. This is the default.

111

Wind River Compiler for ColdFire
User’s Guide, 5.4

5.4.125 Enable Run-time Type Information (-Xrtti, -Xrtti-off)

-Xrtti
-X205=1
Enable run-time type information. This is the default.

There are two approaches to generating run-time type information for a class:

» Compile all modules with -Xrtti and also with -Xcomdat (5.4.31 Mark
Sections as COMDAT for Linker Collapse (-Xcomdat), p.71): the run-time type
information will be emitted for every module but will be marked
COMDAT and collapsed to a single instance by the linker. This is the
preferred method.

» For a class declaring one or more virtual functions, compile only the
module defining the key function for the class with -Xrtti. Key functions are
described in Virtual Function Table Generation—Key Functions, p.185.

-Xrtti-off

-X205=0
C++ only. Disable run-time type information. Using this option will save space
because the compiler does not need to create type tables.

Synonym: -Xno-rtti.

5.4.126 Pad Sections for Optimized Loading (-Xsection-pad)

-Xsection-pad
-X152

Allow the linker to pad loadable sections for optimized loading.

5.4.127 Generate Each Function in a Separate CODE Section Class (-Xsection-spilit)

-Xsection-split

-x129

-Xsection-split-off

-X129=0
Generate a separate CODE section class for each function in the module. The
default is -Xsection-split-off; a single module generates only one CODE

section class containing the code for all functions for that module.

By default, with -Xsection-split enabled, the multiple CODE section classes
will all still be named .text (absent the use of .section pragmas). While linking,

112

5 Invoking the Compiler
5.4 Compiler -X Options

a specific .text section for a given function may be singled out using the linker
command language syntax:

object-filespec (input-section-name[symbol] , ...)

(where the “[“ and “]” characters are required and do not mean “optional” in
this case).

Example: if object file test.o contains functions f1 and £2, then the .text section
for f1 may be specified by:

test.o(.text[flb

NOTE: This option is especially useful in combination with
-Xremove-unused-sections to reduce code size. See Remove Unused Sections
(-Xremove-unused-sections), p.400.

5.4.128 Disable Generation of Priority Section Names (-Xsect-pri-...)

-Xsect-pri-on
-X122=0

Enable section names of the form “..$n”. See 23.6 Sorted Sections, p.378 for use
of this form. This is the default.

-Xsect-pri-off
-X122

Disable generation of section names of the form “...$n” for use by third-party
assemblers or linkers unable to process this form of name.

5.4.129 Control Listing of -X Options in Assembly Output (-Xshow-configuration=n)

-Xshow-configuration=0

Compiler-generated assembly listings (saved with the -S option) do not show
-X options. This is the default.

-Xshow-configuration=1

Assembly listings contain -X options, but only user-configurable options are
shown; internal compiler flags are suppressed.

113

Wind River Compiler for ColdFire
User’s Guide, 5.4

5.4.130 Print Instantiations (-Xshow-inst)

-Xshow-inst
-X212

C++ only. Print to stderr a list of all template instantiations made during
compilation. See also 5.4.72 Control Template Instantiation
(-Ximplicit-templates...), p.88 and Templates, p.239.

5.4.131 Show Target (-Xshow-target)

-Xshow-target
dcc C and dplus C++ driver option. Display the target processor “~t option” on
standard output, but do not compile any file.

5.4.132 Optimize for Size Rather Than Speed (-Xsize-opt)

-Xsize-opt

-X73
Optimize for size rather than speed when there is a choice. Optimizations
affected include inlining, loop unrolling, and branch to small code. For
character arrays, -Xstring-align=value will override -Xsize-opt. See the
description of array alignment in 8.3 Arrays, p.180.

5.4.133 Set Size Limit for “small const” Variables (-Xsmall-const=n)

-Xsmall-const=n
-X98=n
This option applies only to chips supporting SCONST.

Place small const static and global variables with a size in bytes less than or
equal to n in the SCONST section class. See the description of #pragma section
in section and use_section Pragmas, p.249 for more information.

114

5 Invoking the Compiler
5.4 Compiler -X Options

5.4.134 Set Size Limit for “small data” Variables (-Xsmall-data=n)

-Xsmall-data=n

-X97=n
Place small non-constant static and global variables with a size in bytes less
than or equal to 7 in the SDATA section class. See the description of #pragma
section in section Pragma, p.145 for more information.

5.4.135 Delay Popping Stack After Function Call (-Xstack-delay=n,
-Xstack-delay-off)

-Xstack-delay=n
-X127=n

-Xstack-delay-off

-x127=1
When a function calls another function, do not pop the arguments pushed on
the stack for the called function after it returns until n bytes have been used for
such arguments. The default value of n is 32,767.

For example, if function f calls only function g requiring that 8 argument bytes
be pushed, and then function & requiring that 4 more argument bytes be
pushed, and if -Xstack-delay is greater than 12, do not remove the argument
bytes from the stack on return from g or h. Clean off the stack only when fitself
returns.

This option produces more efficient code but note that because the default is
32,767, a function calling many other functions with many arguments may
require a larger stack than otherwise.

Setting -Xstack-delay-off, or -Xstack-delay=0, ensures that no extra stack
space is used by this optimization.

5.4.136 Enable Stack Checking (-Xstack-probe)

-Xstack-probe
-X10

Enable stack checking (probing). For users of the Run-Time Error Checker, this
option is equivalent to -Xrtc=4.

115

Wind River Compiler for ColdFire
User’s Guide, 5.4

NOTE: -Xstack-probe cannot be used with “interrupt” functions, that is, with
a function named in an interrupt pragma or declared using the interrupt or
__interrupt__ keywords

5.4.137 Diagnose Static Initialization Using Address (-Xstatic-addr-...)

-Xstatic-addr-error

-X81=2
Generate an error if the address of a variable, function, or string is used by a
static initializer. This is useful when generating position-independent code
(PIC).

-Xstatic-addr-warning

-x81=1
Generate a warning if the address of a variable, function, or string is used by a
static initializer. This is useful when generating position-independent code
(PIC). This option is on by default.

5.4.138 Treat All Static Variables as Volatile (-Xstatics-volatile)

See 5.4.99 Treat All Variables As Volatile (-Xmemory-is-volatile, -X...-volatile), p.100.

5.4.139 Buffer stderr (-Xstderr-fully-buffered)

-Xstderr-fully-buffered
-X173

Buffer stderr using 10KB buffer. Use this option to reduce network traffic;
stderr is unbuffered by default.

5.4.140 Terminate Compilation on Warning (-Xstop-on-warning)

-Xstop-on-warning

-X85
Terminate compilation on any warning. Without this option, only errors
terminate compilation. (For both errors and warnings, compilation terminates
after a small number of errors are output.)

116

5 Invoking the Compiler
5.4 Compiler -X Options

5.4.141 Compile C/C++ in Pedantic Mode (-Xstrict-ansi)

-Xstrict-ansi
Compile in “pedantic” mode. This option is equivalent to -Xdialect-strict-ansi.
For C, see 5.4.46 Specify C Dialect (-Xdialect-...), p.77. For C++, -Xstrict-ansi
generates diagnostic messages when nonstandard features are used and
disables features that conflict with ANSI/ISO C++, including -Xusing-std-on
and -Xdollar-in-ident.

Disabled by default.

5.4.142 Ignore Sign When Promoting Bit-fields (-Xstrict-bitfield-promotions)

-Xstrict-bitfield-promotions
Conform to the ANSI standard when promoting bit-fields. When a bit-field
occurs in an expression where an int is expected, the compiler promotes the
bit-field to a larger integral type. Unless this option is enabled, such
promotions preserve sign as well as value. If -Xstrict-bitfield-promotions is
specified, however, an object of an integral type all of whose values are
representable by an int (that is, an object smaller than 4 bytes) is promoted to
an int, even if the original type is unsigned.

-Xstrict-ansi or -Xdialect-strict-ansi implicitly enables
-Xstrict-bitfield-promotions by default, but can be overridden with
-Xstrict-bitfield-promotions=0.

See also 5.4.14 Specify Sign of Plain Bit-field (-Xbit-fields-signed,
-Xbit-fields-unsigned), p.64.

5.4.143 Align Strings on n-byte Boundaries (-Xstring-align=n)

-Xstring-align=n

-X18=n
Align each string on an address boundary divisible by 7. The default value is
4. See also 5.4.9 Specify Minimum Array Alignment (-Xarray-align-min), p.62.

117

Wind River Compiler for ColdFire
User’s Guide, 5.4

5.4.144 Warn on Large Structure (-Xstruct-arg-warning=n)

-Xstruct-arg-warning=n

-X92=n
C only. Emit a warning if the size of a structure argument is larger than or equal
to n bytes.

5.4.145 Select Convention for Returning Structures and Unions (-Xstruct-as-...)

-Xstruct-as-arg
-X80
Rewrite functions returning C structures and unions as if the first argument is

a pointer to the return area. Example:
struct a { int i, j; }

struct a fna(int 1) {
struct a ret;
ret.i = 1i;
return ret;

}

m() |
struct a z = fna(l);

}
is effectively rewritten as:

void fna(struct a *retval, int i) {
struct a ret;
ret.i = 1i;
*retval = ret;

}

m() {
struct a z;
fna(&z,1);
}
This option is the default. See Class, Struct, and Union Return Types, p.194 for

additional details.

-Xstruct-as-gnu

-X80=10
Return structures from functions like the GNU C compiler. This method will
cause small structures (up to a maximum of 8 bytes) to be returned in d0 and
d1, and larger structures to be returned by setting register al to point to the
return area.

This calling convention is required when interfacing with the GNU tool set.

118

5 Invoking the Compiler
5.4 Compiler -X Options

-Xstruct-as-static

-X80=2
Cause functions returning C structures and unions to allocate static memory
for the structure or union to be returned, and return a pointer to this area. This
method is not reentrant.

NOTE: C++ classes are always returned using -Xstruct-as-arg.

5.4.146 Control Optimization of Structure Member Assignments
(-Xstruct-assign-split-...)

-Xstruct-assign-split-diff=n

-X147=n

-Xstruct-assign-split-max=n

-X146=n
These options control optimization of assignments of local struct variables.
The compiler uses a number of techniques to optimize structure members (it
uses registers, etc.). A structure can be assigned as a one or more blocks
(depending on a number of factors) or member-by-member. However, block
structure assignment disables member optimization, so options are available
to control the type of structures that will assigned as a block.

By default, the assignment is member-by-member if the structure has 6 or
fewer members and if the increase in assignments (over block assignments) is
3 or fewer. Otherwise, the structure is assigned as a block.

Use -Xstruct-assign-split-max to set the maximum number of members in a
struct that may be assigned member-by-member.

Use -Xstruct-assign-split-diff to set the maximum number of additional
assignments allowed. If member-to-member assignment involves a higher
number of additional assignments than the number set by
-Xstruct-assign-split-diff, a block assignment is performed.

5.4.147 Align Data on “Natural” Boundaries (-Xstruct-best-align)

-Xstruct-best-align
-X17

Align data on “natural” boundaries, e.g., 4 byte boundaries for 4 byte int data.
Default:

= ELF objects: -Xstruct-best-align

119

Wind River Compiler for ColdFire
User’s Guide, 5.4

» COFF objects: -Xstruct-best-align=0 (off)

5.4.148 Set Minimum Structure Member Alignment (-Xstruct-min-aligh=n)

-Xstruct-min-align=n

-X76=n
Force structures to begin on at least an n byte boundary. If any member in a
structure has a greater alignment, the structure will be aligned on a boundary
divisible by the size in bytes of the largest member.

See pack Pragma, p.141 and __packed__ and packed Keywords, p.149 for details.
See also 5.4.98 Set Maximum Structure Member Alignment
(-Xmember-max-align=n), p.100.

The default value of 1 is dependent on the processor as described in 8. Internal
Data Representation.

5.4.149 Suppress Warnings (-Xsuppress-warnings)

-Xsuppress-warnings
-X14
Suppress compiler warnings. Same as the -w option.

5.4.150 Swap “\n’ and ‘\r’ in Constants (-Xswap-cr-nl)

-Xswap-cr-nl

-X13
C only. Swap '"\n' and "\r' in character and string constants. Used on systems
where carriage return and line feed are reversed.

5.4.151 Set Threshold for a Switch Statement Table (-Xswitch-table...)

-Xswitch-table=n

-X143=n
Implement a switch statement using compares if there are fewer than n case
labels in the switch, use a jump table if there are n or greater. This option is on
by default with a value of 7.

120

5 Invoking the Compiler
5.4 Compiler -X Options

-Xswitch-table-off
Do not use a jump table to implement a switch statement under any

conditions.

5.4.152 Disable Certain Syntax Warnings (-Xsyntax-warning-...)

-Xsyntax-warning-on

-X215=0
Enable certain syntax warnings, for example, warning on a comma after the
last enumerator. This is the default.

-Xsyntax-warning-off
-x215
C++ only. Disable these warnings.

5.4.153 Select Target Processor (-Xtarget)

-Xtarget
-x39=nThis option is for internal use should usually not be set by the user. See

4. Selecting a Target and Its Components.

5.4.154 Specify Loop Test Location (-Xtest-at-...)

-Xtest-at-both

-x6=2
Force the compiler to always test loops both before the loop is started and at
the bottom of the loop. This option produces the fastest possible code but uses
more space. Even if -Xtest-at-both is not set, other optimizations may cause the
compiler to generate double tests. This option is turned on by -XO.

-Xtest-at-bottom
-X6=0
Use one loop test at the bottom of a loop.

-Xtest-at-top
-x6=1
Use one loop test at the top of a loop.

121

Wind River Compiler for ColdFire
User’s Guide, 5.4

5.4.155 Truncate All Identifiers After m Characters (-Xtruncate)

-Xtruncate=m

-X22=m
Truncate all identifiers after m characters. If m is zero, no truncation is done.
This is the default.

5.4.156 Append Underscore to Identifier (-Xunderscore-...)

-Xunderscore-leading

-x71=1
Prefix every externally visible identifier with an underscore in the symbol
table.

Synonym: -Xleading-underscore.This is the default.

-Xunderscore-trailing

-X71=2
Suffix every externally visible identifier with an underscore in the symbol
table.

Synonym: -Xtrailing-underscore.

-Xunderscore-surround

-X71=3
Prefix and suffix every externally visible identifier with an underscore in the
symbol table.

Synonym: -Xsurround-underscore.

NOTE: The -Xunderscore... options are provided for use in linking code generated
by the compiler with third-party libraries or with other tools requiring generated
underscores.

The default value of this option is -Xunderscore-leading.

Because Wind River libraries are compiled with the default setting, setting this option to
anything but the default will require recompiling every library used.

122

5 Invoking the Compiler
5.4 Compiler -X Options

5.4.157 Control Loop Unrolling (-Xunroll=n, -Xunroll-size=n)

-Xunroll=n

-X15=n
Unroll small loops # times. Set to 2 by default. n must be a power of two. See
Loop Unrolling (0x8000), p.213.

NOTE: Some sufficiently small loops may be unrolled more than # times if total
code size and speed is better.

-Xunroll-size=n

-X16=n
Specify the maximum number of nodes a loop can contain to be considered for
loop unrolling. Each operator and each operand counts as one node, so the
expression

a=>b - c;

contains 5 nodes. (There is also a small number of additional nodes for each
function.) n is set to 20 by default. Assembly files saved with -S show the
number of nodes for each function.

NOTE: Unrolling is done only if option -O or -XO is given to enable optimization

5.4.158 Runtime Declarations in Standard Namespace (-Xusing-std-...)

-Xusing-std-on
C++ only. Automatically search for runtime library declarations in the std
namespace (as if “using namespace std;” had been specified in the source
code), not in global scope. This is the default behavior, but it is disabled by
-Xstrict-ansi; use -Xusing-std-on on the command line to override
-Xstrict-ansi.

This option allows you to use the newer C++ libraries, which are in the std

namespace, without adding using namespace std; to legacy code.
-Xusing-std-off

Search for runtime library declarations in global scope unless an explicit using

namespace std; is given.

123

Wind River Compiler for ColdFire
User’s Guide, 5.4

5.4.159 Void Pointer Arithmetic (-Xvoid-ptr-arith-ok)

-Xvoid-ptr-arith-ok
-X167
Treat void pointers as char * for the purpose of arithmetic. For example:

some_void_ptr += 1; /* adds 1 to some_void_ptr */

5.4.160 Define Type for wchar (-Xwchar=n)

-Xwchar=n

-X86=n
Define the type to which wchar will correspond. The desired type is given by
specifying a value n equal to a value returned by the operator sizeof(fype, 2).
See sizeof Extension, p.159. The default type is long integer (32 bits), that is,
-Xwchar=4.

5.4.161 Control Use of wchar_t Keyword (-Xwchar_t-...)

-Xwchar_t-on
-X214=0
Enable the wchar_t keyword.

-Xwchar_ t-off
-X214

C++ only. Disable the wchar_t keyword.

Synonym: -Xno-wchar.

5.5 Examples of Processing Source Files

The following examples show typical ways of compiling.

The two files, filel.c and file2.cpp, contain the source code:

124

5 Invoking the Compiler
5.5 Examples of Processing Source Files

/* filel.c */

void outarg(char *);

int main(int argc, char **argv)

{
while(--argc) outarg(*++argv) ;
return 0;

}
/* file2.cpp */
#include <stdio.h> 5

extern "C" void outarg(char *arg)

{

static int count;

printf ("arg #%d: %s\n",++count, arg) ;

5.5.1 Compile and Link

When compiling small programs such as this, the driver can be invoked to execute
all four stages of compilation in one command. For example:

dplus filel.c file2.cpp

The driver preprocesses, compiles, and assembles the two files (one C and one
C++), and links them together with the appropriate libraries to create a single
executable file, by default called a.out. When more than one file is compiled to
completion, object files are created and kept, in this case, filel.o and file2.0. When
only one file is compiled, assembled, and linked, the intermediate assembly and
object files are deleted automatically (see 5.4.84 Create and Keep Assembly or Object
File (-Xkeep-assembly-file, - Xkeep-object-file), p.93 to change this).

If the target system supports command-line execution, to execute this program
enter a.out with some arguments:

a.out abc def ghi

This will print:
arg #1: abc
arg #2: def
arg #3: ghi

(See 15. Use in an Embedded Environment for comments on executing programs in
embedded environments.)

To execute the program on the host system using the WindISS simulator, compile
the program with windiss specified on the command line—for example:

dplus -tMCF5206FS:windiss filel.c file2.cpp

125

Wind River Compiler for ColdFire
User’s Guide, 5.4

Then run the program with WindISS:
windiss a.out abc def ghi

To give the generated program a name other than a.out, use the -o option:
dplus filel.c file2.cpp -o progl

To also enable optimization, use the -O option:
dplus -0 filel.c file2.cpp -o progl

To convert the linked output to S records:

ddump -Rv a.out

will produce file srec.out by default. See 29. D-DUMP File Dumper for additional
options and details.

5.5.2 Separate Compilation

When compiling programs consisting of many source files, it is time-consuming
and impractical to recompile the whole program whenever a file is changed.
Separate compilation is a time-saving solution when recompiling larger programs.
The -c option creates an object file which corresponds to every source file, but does
not call the linker. These object files can then be linked together later into the final
executable program. When a change has been made, only the altered files need to
be recompiled. To create object files and then stop, use the following command:

dplus -0 -c filel.c file2.cpp
The files filel.o and file2.0 will be created.

Create the executable program as follows. Note that the driver is used to invoke
the linker; this is convenient because defaults will be supplied as required based
on the current target, for example, for libraries and crt0.o.

dplus filel.o file2.o -o prog2
If file2.cpp is altered, prog2 can be rebuilt with:

dplus -0 -c file2.cpp
dplus filel.o file2.o0 -o prog2

Usually, the compilation process is automated with utilities similar to make, which
finds the minimum command sequence to create an updated executable.

126

5 Invoking the Compiler
5.5 Examples of Processing Source Files

5.5.3 Assembly Output

It is frequently desirable to look at the generated assembly code. Two options are
available for this purpose:

» The -S option stops compilation after generating the assembly and
automatically names the file basename.s, filel.s in this case:

dplus -0 -S filel.cpp

» When using a command which generates an object file, the
-Xkeep-assembly-file option will preserve the assembly file in addition to the
object, naming it basename.s.

The option -Xpass-source outputs the compiled source as comments in the
generated file and makes it easier to see which assembly instructions correspond
to each line of source:

dplus -O -S -Xpass-source file2.cpp

5.5.4 Precompiled Headers

In C++ projects with many header files, you can often speed up compilation by
using precompiled headers, enabled with the -Xpch-... options. See
13.7 Precompiled Headers, p.245.

127

Wind River Compiler for ColdFire
User’s Guide, 5.4

128

Additions to ANSI C and C++

6.1 Preprocessor Predefined Macros 129
6.2 Preprocessor Directives 132

6.3 Pragmas 135

6.4 Keywords 147

6.5 Attribute Specifiers 151

6.6 Intrinsic Functions 156

6.7 Other Additions 157

6.1 Preprocessor Predefined Macros

The following preprocessor macros are predefined. The macros that do not start
with two underscores (“__") are not defined if option -Xdialect-strict-ansi is given.

__ace
Target flag used by various tools.

__bool
The constant 1 if type bool is defined when compiling C++ code, otherwise
undefined. Option -Xbool-off disables the bool, true, and false keywords.
C++ only.

129

Wind River Compiler for ColdFire
User’s Guide, 5.4

__CHAR_UNSIGNED__
Indicates that plain char characters are unsigned.

_ _coldfire
Target flag used by various tools.

__cplusplus
The constant 199711 when compiling C++ code, otherwise undefined.

__DATE_
The current date in “mm dd yyyy” format; it cannot be undefined.

pcc
The constant 1.

__DCPLUSPLUS__
The constant 1 when compiling C++ code, otherwise undefined.

_DIAB TOOL
Indicates the Wind River Compiler is being used.

__ETOA__
Indicates that full ANSI C++ is supported. Not defined when compiling C
code or when an older version of the compiler is invoked.

__ETOA_IMPLICIT_USING_STD
Defined if -Xusing-std-on is enabled. Indicates that runtime library
declarations are automatically searched for in the std namespace (not in global
scope), regardless of whether using namespace std; is specified.

__ETOA_NAMESPACES
Defined if the runtime library uses namespaces.

__EXCEPTIONS
Exceptions are enabled. C++ only.

__FILE _
The current filename; it cannot be undefined.

__FUNCTION__
__ FUNCTION__ is not really a preprocessor macro, but a special predefined
identifier that returns the name of the current function (that is, the function in
which the identifier occurs).

_ LITTLE ENDIAN _
Little-endian implementation.

__LDBL__
The constant 1 if the type long double is different from double.

__ LINE_
The current source line; it cannot be undefined.

130

6 Additions to ANSI C and C++
6.1 Preprocessor Predefined Macros

__lint
This macro is not predefined; instead, define this when compiling to select
pure-ANSI code in Wind River header files, avoiding use of any non-ANSI
extensions.

m68k
Target flag used by various tools.

mc68k
Target flag used by various tools.

_ _m68k
Target flag used by various tools.

__nofp
No floating point support.

__PRETTY_FUNCTION _
_ PRETTY_FUNCTION__ is not really a preprocessor macro, but a special
predefined identifier that returns the name of the current function (that is, the
function in which the identifier occurs). In C modules,
__PRETTY_FUNCTION__ always returns the same value as _ FUNCTION__.
For C++, _ PRETTY_FUNCTION__may return additional information, such as
the class in which a method is defined.

__RTTI
C++ only. Run-time type information is enabled.

__SIGNED_CHARS_
C++ only. Defined as 1 if plain char is signed. See 5.4.24 Specify Sign of Plain
Char (-Xchar-signed, -Xchar-unsigned), p.68.

_ softfp
Software floating point support.

STDC_
The constant 0 if -Xdialect-ansi and the constant 1 if -Xdialect-strict-ansi is
given. It cannot be undefined if -Xdialect-strict-ansi is set. For C++ modules it
is defined as 0 in all other cases.

__STRICT ANSI_
The constant 1 if -Xdialect-strict-ansi or -Xstrict-ansi is enabled.

__TIME
The current time in “hh:mm:ss” format; it cannot be undefined.

__VERSION__
The version number of the compiler and tools, represented as a string.

131

Wind River Compiler for ColdFire
User’s Guide, 5.4

__VERSION_ NUMBER
The version number of the compiler and tools, represented as an integer.

__wchar_ t
The constant 1 if type wchar_tis defined when compiling C++ code, otherwise
undefined. Option -X-wchar-off disables the wchar_t keyword.

6.2 Preprocessor Directives

The preprocessor recognizes the following additional directives.

#assert and #unassert Preprocessor Directives

The #assert and #unassert directives allow definition of preprocessor variables
that do not conflict with names in the program namespace. These variables can be
used to direct conditional compilation. The C and C++ preprocessors recognize
slightly different syntax for #assert and #unassert.

Assertions can also be made on the command line through the -A option.

To display information about assertions at compile time, see 5.4.35 Dump Symbol
Information for Macros or Assertions (-Xcpp-dump-symbols), p.73.

To make an assertion with a preprocessor directive, use the syntax:

#assert name (value) C or C++

#assert name C++ only

In the first form, name is given the value value. In the second form, name is defined
but not given a value. Whitespace is allowed only where shown.

Examples:

#assert system(unix)
#assert system

To make an assertion on the command line, use:

-A name (value)

132

6 Additions to ANSI C and C++
6.2 Preprocessor Directives

Examples:
dcc -A "system (unix)" test.c UNIX
dcc -A system\ (unix\) test.c UNIX
dcc -A system (unix) test.c Windows

Assertions can be tested in an #if or #elif preprocessor directive with the syntax:

#if #name (value) C or C++

#if #name Conly

A statement of the first form evaluates to true if an assertion of that name with that
value has appeared and has not been removed. (A name can have more than one
value at the same time.) A statement of the second form evaluates to true if an
assertion of that name with any value has appeared.

Examples:

#if #system(unix)
#if #system

An assertion can be removed with the #unassert directive:

#unassert name C++ only
#unassert name (value) C++ only
#unassert #name (value) C only

The first form removes all definitions of name. The other forms remove only the
specified definition.

Examples:
#unassert system

#unassert system(unix)
#unassert #system(unix)

#error Preprocessor Directive

The #error preprocessor directive displays a string on standard error and halts
compilation. Its syntax is:

#error string

Example:

133

Wind River Compiler for ColdFire
User’s Guide, 5.4

#error "Feature not yet implemented."

See also #info, #inform, and #informing Preprocessor Directives, p.134 and #warn and
#warning Preprocessor Directives, p.135.

#ident Preprocessor Directive (C only)

The #ident preprocessor directive inserts a comment into the generated object file.
The syntax is:

#ident string
Example:

#ident "version 1.2"

The text string is forwarded to the assembler in an ident pseudo-operator and the
assembler outputs the text in the .comment section.

#import Preprocessor Directive

The #import preprocessor directive is equivalent to the #include directive, except
that if a file has already been included, it is not included again. The same effect can
be achieved by wrapping all header files with protective #ifdefs, but using
#import is much more efficient since the compiler does not have to open the file.
Using the -Ximport command-line option will cause all #include directives to
behave like #import.

#info, #inform, and #informing Preprocessor Directives

The #info, #inform, and #informing preprocessor directives display a string on
standard error and continue compilation. Their syntax is:

#info string
#inform string
#informing string

Example:
#info "Feature not yet implemented."

See also #error Preprocessor Directive, p.133 and #warn and #warning Preprocessor
Directives, p.135.

134

6 Additions to ANSI C and C++
6.3 Pragmas

#warn and #warning Preprocessor Directives

The #warn and #warning preprocessor directives display a string on standard
error and continue compilation. Their syntax is:

#warn string
#warning string

Example:
#warn "Feature not yet implemented."

See also #error Preprocessor Directive, p.133 and #info, #inform, and #informing
Preprocessor Directives, p.134.

6.3 Pragmas

align Pragma

error Pragma

This section describes the pragmas supported by the compiler. A warning is issued
for unrecognized pragmas.

Pragma directives are not preprocessed. Comments are allowed on pragmas.

In C++ modules, a pragma naming a function affects all functions with the same
name, independently of the types and number of parameters—that is,
independently of overloading.

#pragma align [([[max_member_alignment]|, [min_structure_alignment] [, byte-swap]])]

The align pragma, provided for portability, is a synonym for pack Pragma, p.141.

#pragma error string

Display string on standard error as an error and halt compilation. See also info
Pragma, p.137 and warning Pragma, p.145.

135

Wind River Compiler for ColdFire
User’s Guide, 5.4

global_register Pragma

hdrstop Pragma

#pragma global_ register identifier=register , ...

This pragma forces a global or static variable to be allocated to a specific register.
This can increase execution speed considerably when a global variable is used
frequently, for example, the “program counter” variable in an interpreter.

identifier gives the name of a variable. register gives the name of the selected register
in the target processor. See 9.6 Register Use, p.194 for a list of valid register names.

The following rules apply:

* Only registers which are preserved across function calls may be assigned to
global variables.

* When assigning several variables to registers, start by using the lowest
preserved register available. Some targets cannot use lower preserved
registers for automatic and register variables.

* Do not mix modules using global registers with modules not using them.
Never call a function using global registers from a module compiled without
them.

» #pragma global_register can be used to force the compiler to avoid specific
registers in code generation by defining dummy variables as global registers
in all modules.

* The pragma must appear before the first definition or declaration of the
variable being assigned to a register.

NOTE: A convenient method of ensuring that all modules are compiled with the

same global register assignments is to put all #pragma global_register directives

in a header file, e.g. globregs.h, and then include that file with every compilation
from the command line with the -i option, e.g. -i=globregs.h.

Examples:

#pragma global_register counter:register—name
char *counter; /* allocated to the named register */

/* Force the compiler to avoid a named register. */
#pragma global_register __ dummy=register-name

#pragma hdrstop

136

ident Pragma

info Pragma

inline Pragma

6 Additions to ANSI C and C++
6.3 Pragmas

C++ only. Suppress generation of precompiled headers. Headers included after
#pragma hdrstop are not saved in a parsed state. See 13.7 Precompiled Headers,
p-245 for more information.

#pragma ident string
Insert a comment into the generated object file.
Example:

#pragma ident "version 1.2"

The text string is forwarded to the assembler in an ident pseudo-operator and the
assembler outputs the text in the .comment section.

#pragma info string

Display string on standard error and continue compilation. See also error Pragma,
p-135 and warning Pragma, p.145.

#pragma inline func ,...

Inline the given function whenever possible. The pragma must appear before the
definition of the function. Unless cross-module optimization is enabled (-Xcmo-...),
a function can be inlined only in the module in which it is defined.

In C++ modules, the inline function specifier is normally used instead. This
specifier, however, also makes the function local to the file, without external
linkage. Conversely, the #pragma inline directive provides a hint to inline the code
directly to the code optimizer, without any effect on the linkage scope.

NOTE: The inline pragma has no effect unless optimization is selected (with the
-XO or -O options).

137

Wind River Compiler for ColdFire

User’s Guide, 5.4

Example:

interrupt Pragma

#pragma inline swap

void swap (int *a, int *b) {
int tmp;
tmp = *a; *a = *b; *b = tmp;

#pragma interrupt function ,...

Designate function as an interrupt function. Code is generated to save all general
purpose scratch registers and to use a different return instruction.

Important interrupt Pragma Notes

138

Floating point and other special registers, if present on the target, are not saved
because interrupt functions usually do not modify them. If such registers must
be saved in order to handle nested interrupts, use an asm macro to do so (see
7. Embedding Assembly Code). To determine which registers are saved for a
particular target, compile the program with the -S option and examine the
resulting assembler file (it will have a .s extension by default).

The compiler does not generate instructions to re-enable interrupts. If this is
required to allow for nested interrupts, use an asm macro.

See 5.4.136 Enable Stack Checking (-Xstack-probe), p.115 for when this option
cannot be used with interrupt functions.

This pragma must appear before the definition of the function. A convenient
method is to put it with a prototype declaration for the function, perhaps in a
header file.

Example:
#pragma interrupt trap

void trap () {
/* this is an interrupt function */
}
For more information about interrupts, see the -Xnested-interrupts compiler
option.

6 Additions to ANSI C and C++
6.3 Pragmas

no_alias Pragma

#pragma no_alias { varl | *var2 } yone

Promise that the variable var1 is not accessed in any manner (through pointers etc.)
other than through the variable name; promise that the data at *var2 is only
accessed through the pointer var2. This allows the compiler to better optimize
references to such variables.

The pragma must appear after the definition of the variable and before its first use.

Example:

add (double *d, double *sl, double *s2, int n)
#pragma no_alias *d, *sl, *s2

{

int i;

for (1 = 0; 1 < n; i++) {
/* "sl + s2" will move outside the loop */
d[i] = *sl + *s2;

}

Without the pragma, either s1 or s2 might point into d and the assignment might
then set s1 or s2. See also 5.4.8 Assume No Aliasing of Pointer Argquments
(-Xargs-not-aliased), p.62.

no_pch Pragma

#pragma no_pch

Suppress all generation of precompiled headers from the file where #pragma
no_pch occurs. See 13.7 Precompiled Headers, p.245, for more information.

no_return Pragma
#pragma no_return function ,...
Promise that each function never returns. Helps the compiler generate better code.

This pragma must appear before the first use of the function. A convenient method
is to put it with a prototype declaration for the function, perhaps in a header file.

Example:

#pragma no_return exit, abort, longjmp

139

no_side_effects

option Pragma

Wind River Compiler for ColdFire
User’s Guide, 5.4

Pragma

#pragma no_side_effects descriptor , ...
Where each descriptor has one of the following forms and meanings:

function
Promises that function does not modify any global variables (it may use global
variables).

function ({ global | n} ,...)
Promises that function does not modify any global variables except those
named or the data addressed by its nth parameter. At least one global or
parameter number must be given, and there may be more than one of either
kind in any order.

This pragma must appear before the first use of the function. A convenient method
is to put it with a prototype declaration for the function, for example, in a header
file.

Contrast with pure_function Pragma, p.144, which also promises that a function
does not use any global or static variables.

Example:

#pragma no_side_effects strcmp(l), sin(errno), \
my_func(l, 2, my_global)

#pragma option option [option ...]

Where option is any of the -g, -O, or -X options (including the leading ’-” character).
This option makes it possible to set these options from within a source file.

These options must be at the beginning of the source file before any other source
lines. The effect of other placement is undefined.

Note that some -X options are consumed by driver or compiler command-line
processing before a source file is read. If an -X option does not appear to hve the
intended effect, try it on the command line. If effective there, that option can not be
used as a pragma.

140

6 Additions to ANSI C and C++
6.3 Pragmas

pack Pragma

#pragma pack [([[max_member_alignment], [min_structure_alignment][, byte-swap]])]

The pack directive specifies that all subsequent structures are to use the alignments
given by max_member_alignment and min_structure_alignment where:

max_member_alignment
Specifies the maximum alignment of any member in a structure. If the
natural alignment of a member is less than or equal to
max_member_alignment, the natural alignment is used. If the natural
alignment of a member is greater than max_member_alignment,
max_member_alignment will be used.

Thus, if max_member_alignment is 8, a 4-byte integer will be aligned on a
4-byte boundary.
While if max_member_alignment is 2, a 4-byte integer will be aligned on a
2-byte boundary.

min_structure_alignment
Specifies the minimum alignment of the entire structure itself, even if all
members have an alignment that is less than min_structure_alignment.

byte-swap
If 0 or absent, bytes are taken as is. If 1, bytes are swapped when the data
is transferred between byte-swapped members and registers or
non-byte-swapped memory. This enables access to little-endian data on a
big-endian machine and vice-versa.

It is not possible to take the address of a byte-swapped member.

If neither max_member_alignment nor min_structure_alignment are given, they are
both set to 1. If either max_member_alignment or min_structure_alignment is zero, the
corresponding default alignment is used. If max_member_alignment is non-zero and
min_structure_alignment is not given it will default to 1.

The form #pragma pack is equivalent to #pragma pack(1,1,0). The form
#pragma pack() is equivalent to #pragma pack(0,0,0).

The align pragma, provided for portability, is an exact synonym for pack.

An alternative method of specifying structure padding is by using __packed__ and
packed Keywords, p.149.

Default values for max_member_alignment and min_structure_alignment can be set
by using the -Xmember-max-align and the -Xstruct-min-align options. The order
of precedence is values -X options lowest, then the packed pragma, and
__packed__ or packed keyword highest.

141

Wind River Compiler for ColdFire

User’s Guide, 5.4

Restrictions

and Additional Information

Note that if a structure is not packed, the compiler will insert extra padding to assure

that

no alignment exception occurs when accessing multi-byte members if

required by the selected processor. See 5.4.5 Specify Minimum Alignment for Single
Memory Access to Multi-byte Values (-Xalign-min=n), p.61.

When a structure is packed, if the processor requires that multi-byte values be
aligned (-Xalign-min > 1), the following restrictions apply:

Access to multi-byte members will require multiple instructions. (This is so
even if a member is aligned as would be required within the structure because
the structure may itself be placed in memory at a location such that the
member would be unaligned, and this cannot be determined at compile time.)

volatile members cannot be accessed atomically. The compiler will warn and
generate multiple instructions to access the volatile member. Also,
“compound” assignment operators to volatile members, such as +=, | =, etc.,
are not supported. For example, assuming i is a volatile member of packed
structure structl, then the statement:

structl.i += 3;
must be recoded as:

structl.i = structl.i + 3;

In addition, for packed structures, an enum member will use the smallest type
sufficient to represent the range, see 5.4.51 Specify enum Type (-Xenum-is-...), p.79.

Examples

Later examples depend on earlier examples in some cases.

142

#pragma pack (2,2)

struct sO0 {

char a; 1 byte at offset 0, 1 byte padding
short b; 2 bytes at offset 2
char c; 1 byte at offset 4
char d; 1 byte at offset 5
int e; 4 bytes at offset 6
char £; 1 byte at offset 10
b total size 11, alignment 2

6 Additions to ANSI C and C++
6.3 Pragmas

If two such structures are in a section beginning at offset 0xF000, the layout would
be:

F000 a
FOO1 padding
F002 b
F004 c
F005 d
F006
- —_—— — e _____
FOOA f
FOOB padding
FooC a
FOOD paddlng
FOOE b
F010 ¢
FO11 d
FO12 |
e
FO16 f
FO17
#pragma pack (1) Same as #pragma pack(1,1), no padding.
struct S1 {
char cl 1 byte at offset 0
long il; 4 bytes at offset 1

143

Wind River Compiler for ColdFire

User’s Guide, 5.4

char di;

#pragma pack (8)
struct S2 {
char c2

long i2;
char d2;

#pragma pack (2,2)
struct S3 {
char c3;
long 1i3;
char d3;

struct S4 {
char c4;

#pragma pack (8)
struct S {
char el;
struct S1 sl;
struct S2 s2;
char e2;
struct S3 s3;

#pragma pack (0)

1 byte at offset 5
total size 6, alignment 1

Use “natural” packing for largest member.

1 byte at offset 0, 3 bytes padding
4 bytes at offset 4

1 byte at offset 8, 3 bytes padding
total size 12, alignment 4

Typical packing on machines which cannot
access multi-byte values on odd-bytes.

1 byte at offset 0, 1 byte padding

4 bytes at offset 2

1 byte at offset 6, byte padding

total size 8, alignment 2

Using pragma from prior example.

1 byte at offset 0, 1 byte padding

total size 2, alignment 2 since
min_member_alignment is 2 above

“Natural” packing since S3 is 8 bytes long.

1 byte at offset 0

6 bytes at offset 1, 1 byte padding
12 bytes at offset 8

1 byte at offset 20, 1 byte padding

8 bytes, at offset 22, 2 bytes padding
alignment 2

total size 32, alignment 4

Set to default packing.

pure_function Pragma

#pragma pure_function function ,...

Promises that each function does not modify or use any global or static data. Helps
the compiler generate better code, for example, in optimization of common
sub-expressions containing identical function calls. Contrast with no_side_effects

144

section Pragma

6 Additions to ANSI C and C++
6.3 Pragmas

Pragma, p.140, which only promises that a function does not modify global
variables.

This pragma must appear before the first use of the function. A convenient method
is to put it with a prototype declaration for the function, perhaps in a header file.

Example:

#pragma pure_function sum
int sum(int a, int b) {
return a+b;

}

#pragma section class_name [istring [ustring]] [addr_mode] [acc_mode] [address=x]

The #pragma section directive defines sections into which variables and code can
be placed. It also defines how objects in sections are addressed and accessed.

This pragma must appear before the declaration (for functions, before the
prototype if present) of all variables and all functions to which it is to apply.

The section pragma is discussed in detail in 14. Locating Code and Data, Addressing,
Access.

use_section Pragma

#pragma use_section class_name variable , ...
Selects the section class into which a variable or function is placed. A section class
is defined by #pragma section.

This pragma must appear before the declaration (for functions, before the
prototype if present) of all variables and all functions to which it is to apply.

The use_section pragma is discussed in detail in 14. Locating Code and Data,
Addressing, Access.

warning Pragma

#pragma warning string

Display string on standard error as a warning and continue compilation. See also
error Pragma, p.135, and info Pragma, p.137.

145

weak Pragma

Wind River Compiler for ColdFire
User’s Guide, 5.4

#pragma weak symbol
Mark symbol as weak.

When a #pragma weak for a symbol is given in the module defining the symbol, it
is a weak definition. When the #pragma weak is in a module using but not defining
it, it is a weak reference.

Because this pragma is ultimately processed by the assembler, it may appear
anywhere in the source file.

A weak symbol resembles a global symbol with two differences:

* When linking, a weak definition with the same name as a global or common
symbol is not considered a duplicate definition; the weak symbol is ignored.

» Ifnomodule is present to define a symbol, unresolved weak references to the
symbol have a value of zero and remain undefined in the symbol table after
linking, and no error is reported.

Note while a symbol may be defined in more than one module as long as at most
one of the definitions is global or common while the rest (or all) are weak, the
linker resolves references to the first instance of the symbol it encounters. Consider
the following scenario. Function foo() uses x, which is declared weak in library 1
and global in library 2. If library 1 is searched first, the weak version of x will be
used. On the other hand, if library 2 is subsequently linked (because, for example,
another function uses it), then the global version of x will replace the weak version.

#pragma weak is incompatible with local data area (LDA) allocation; using
#pragma weak with -Xlocal-data-area or -Xlocal-data-area-static-only enabled
will produce a warning and temporarily disable LDA. See 5.4.89 Allocate Static and
Global Variables to Local Data Area (-Xlocal-data-area=n), p.96, and 14.4 Local Data
Avea (-Xlocal-data-area), p.265.

146

6 Additions to ANSI C and C++
6.4 Keywords

6.4 Keywords

The following additional keywords are recognized by the compiler.

__asm and asm Keywords

Used to embed assembly language (see 7. Embedding Assembly Code) and use the
information found in Assigning Global Variables to Registers, p.158.

__attribute__ Keyword

See 6.5 Attribute Specifiers, p.151.

extended Keyword (C only)

If the option -Xkeywords=x is used with the least significant bit set in x (e.g.,
-Xkeywords=0x1), the compiler recognizes the keyword extended as a synonym
for long double.

Example:

extended e; /* the same as long double e; */

__inline__ and inline Keywords

The __inline__ and inline keywords provide a way to replace a function call with
an inlined copy of the function body. The __inline__ keyword is intended for use
in C modules but is disabled in strict-ANSI mode. The inline keyword is normally
used in C++ modules but can also be used in C if the option -Xkeywords=0x4 is
given (5.4.85 Enable Extended Keywords (-Xkeywords=mask), p.93).

__inline__ and inline make the function local (static) to the file by default.
Conversely, the #pragma inline directive provides a hint to inline the code directly
to the code optimizer, without any effect on the linkage scope. Use extern to make
an inline function public.

147

Wind River Compiler for ColdFire
User’s Guide, 5.4

NOTE: Functions are not inlined, even with an explicit #pragma inline, or
__inline__ or inline keyword unless optimization is selected with the -XO or -O
options.

Note that using -O will automatically inline functions of up to 10 nodes (including
“empty” functions), and -XO will automatically inline functions of up to 40 nodes.
See how these values are controlled in 5.4.79 Inline Functions with Fewer Than n
Nodes (-Xinline=n), p.91. An explicit pragma or keyword can be used to force
inlining of a function larger than the value set with implicitly or explicitly with
-Xinline.

See Inlining (0x4), p.207, for a complete discussion of all inlining methods.

Example:
__inline_ void inc(int *p) {
*p = *p+l;
}
inc (&x) ;

The function call will be replaced with

X = x+1;

__interrupt__ and interrupt Keywords (C only)

The __interrupt__ keyword provides a way to define a function as an interrupt
function. The difference between an interrupt function and a normal function is
that all registers are saved, not just the those which are volatile, and a special return
instruction is used. __interrupt__ works like the interrupt Pragma, p.138. The
keyword interrupt can also be used; see 5.4.85 Enable Extended Keywords
(-Xkeywords=mask), p.93.

NOTE: See why this cannot be used with interrupt functions, 5.4.136 Enable Stack
Checking (-Xstack-probe), p.115).

Example:

__interrupt__ void trap() {
/* this is an interrupt function */

}

For more information about interrupts, see the -Xnested-interrupts compiler
option.

148

6 Additions to ANSI C and C++
6.4 Keywords

long long Keyword

The compiler supports 64-bit integers for all ColdFire microprocessors. A variable
declared long long or unsigned long long is an 8 byte integer. To specify a long
long constant, use the LL or ULL suffix. A suffix is required because constants are
of type int by default.

Example:

long long mask _nibbles (long long x)
{

return (x & OxfO0fO0f0f0f0f0f0£f0LL) ;
}

NOTE: Bit-fields are not permitted in variables of type long long.

__packed__ and packed Keywords

__packed__ ([[max_member_alignment], [min_structure_alignment] [, byte-swap]])

The __packed__ keyword defines how a structure should be padded between
members and at the end. The keyword packed can also be used if the option
-Xkeywords=0x8 is given. See pack Pragma, p.141 for treatment of 0 values,
defaults, and restrictions.

The max_member_alignment value specifies the maximum alignment of any
member in the structure. If the natural alignment of a member is less than
max_member_alignment, the natural alignment is used. See 8. Internal Data
Representation for more information about alignments and padding.

The min_structure_alignment value specifies the minimum alignment of the
structure. If any member has a greater alignment, the highest value is used.

Default values for max_member_alignment and min_structure_alignment can be set
by using the -Xmember-max-align and the -Xstruct-min-align options. The order
of precedence is values -X options lowest, then the packed pragma, and
__packed__ or packed keyword highest.

The byte-swapped option enables swapping of bytes in structure members as they
are accessed. If 0 or absent, bytes are taken as is; if 1, bytes are swapped as they are
transferred between byte-swapped structure members and registers or
non-byte-swapped memory.

See pack Pragma, p.141 for defaults for missing parameters and for additional
examples.

149

Wind River Compiler for ColdFire
User’s Guide, 5.4

Examples:

packed__ struct sl {
char c;

int i

packed__ (2,2) struct s2 {

char c;
int 1i;

packed__ (4) struct s3 {

char c;
int 1i;

packed__ (4,2) struct s4 {

char c;

}i

no padding between members

starts at offset 1
total size 5 bytes

maximum alignment 2

starts at offset 2
total size 6 bytes

maximum alignment 4

starts at offset 4
total size 8 bytes

minimum alignment 2

total size 2 bytes

For the C compiler only, constant expressions (in addition to simple constants) can
be specified as arguments to the __packed__ or packed keyword.

pascal Keyword (C only)

If the option -Xkeywords=x is used with bit 1 set in x (e.g., -Xkeywords=0x2), the
compiler recognizes the keyword pascal. This keyword is a type modifier that
affects functions in the following way:

» The argument list is reversed and the first argument is pushed first.

» On CISC processors (for example, MC68000), the called function clears the
argument stack space instead of the caller.

__typeof__ Keyword (C only)

__typeof__(arg), where arg is either an expression or a type, behaves like a defined

type. Examples:

__typeof_ (int *) x;
__typeof (x) vy:

150

6 Additions to ANSI C and C++
6.5 Attribute Specifiers

The first statement declares a variable x whose type is the type of pointers to
integers, while the second declares a variable y of the same type as x. Note that
typeof (without underscores) is not supported.

6.5 Attribute Specifiers

Attribute specifiers, formed with the __attribute__ keyword, assign extra-language
properties to variables, functions, and types. They can specify packing, alignment,
memory placement, and execution options. When you have a choice between an
attribute specifier and an equivalent pragma, it is preferable to use the attribute
specifier.

Attribute specifiers have the form __attribute__((attribute-list)), where
attribute-list is a comma-delimited list of attributes. Supported attributes, some of
which include parameters in parentheses, are described in the sections that follow.

An attribute specifier can appear in a variable or function declaration, function
definition, or type definition; or following any variable within a list of variable
declarations. Multiple attribute specifiers should be separated by whitespace.

When an attribute specifier modifies a function, it can appear before or after the
return type. Examples:

__attribute_ ((pure)) int foo(int a, b);
int __attribute__ ((no_side_effects)) bar(int x);

When an attribute specifier modifies a struct, union, or enum, it can appear
immediately before or after the keyword, or after the closing brace. Example:

struct b {
char b;
int a;
} __attribute_ ((aligned(2))) stril;

For non-structure fields, the specifier can be placed anywhere before or
immediately following the identifier name:

__attribute_ ((aligned(2))) int foo;
int __attribute_ ((aligned(4))) bar;
int foobar __attribute_ ((aligned(8)));

Placement of a specifier determines how the attribute is applied. Example:

151

Wind River Compiler for ColdFire
User’s Guide, 5.4

// align a and b on 4-byte boundaries
__attribute_ ((aligned(4))) char a='a', b='b';

// force alignment only for c
char __attribute__ ((aligned(4))) c='c', 4 ='d"';

// force alignment only for f

char e='e', £ _ attribute_ ((aligned(4))) ='f';
If an attribute specifier modifies a typedef, it applies to all variables declared using
the new type:

typedef __attribute__ ((aligned(4))) char AlignedChar;

// a and b are aligned on 4-byte boundaries

AlignedChar a='a', b='b';
To eliminate naming conflicts between attributes and preprocessor macros, any
attribute name can be surrounded by double underscores. For example, aligned
and __aligned__ are synonyms; __attribute__((aligned(2))) is equivalent to
__attribute__((__aligned__(2))).

NOTE: The placement of attribute specifiers can be misleading. For example:
int last_func() {
i.;_attribute__((noreturn)) // modifies foo, not last_func
int foo() {

}

This example is confusing because in type definitions, the attribute specifier can
follow the closing brace. But in function definitions, the attribute specifier must
appear directly before or after the return type.

When an attribute takes a numeric parameter, the parameter can be a simple
constant or a constant expression. Example:

__attribute_ ((aligned(sizeof (double)))) int x[32];

In this example, the constant expression sizeof(double) is used as a parameter to
the aligned attribute.

absolute Attribute (C only)

__attribute__((absolute)) indicates that a const integer variable is an absolute
symbol. Example:

const int foo __attribute__ ((absolute)) = 7;

152

6 Additions to ANSI C and C++
6.5 Attribute Specifiers

This declaration means that foo appears in the symbol table and always represents
the value 7; no memory is allocated to store foo.

aligned(n) Attribute

To specify byte alignment for a variable or data structure, use:
__attribute_ ((aligned(n)))
where 1 is a power of two. Example:

// align structure on 8-byte boundary
__attribute_ ((aligned(8))) struct a {
char b;
int a;
} strl;

This is often combined with the packed Attribute, p.155. Example:

struct b {
char b;
int a;
} __attribute_ ((aligned(2), packed)) str2;

You can force alignment for a specific element within a structure:
struct c {
int k;
__attribute__ ((aligned(8))) char m; // align m on 8 bytes
} str3;
But special alignment for members of a packed structure is ignored:

struct c {

int k;
__attribute_ ((aligned (8))) char m; // alignment ignored
} __attribute_ ((packed)) str4;

Nested alignment attributes are preserved within a struct or union.

constructor, constructor(n) Attribute

A constructor, or initialization, function is executed before the entry point of your
application—that is, before main(). To designate a function as a constructor with
default priority, use:

__attribute__ ((comnstructor))

153

Wind River Compiler for ColdFire
User’s Guide, 5.4

To designate a function as a constructor with a specified priority, use:
__attribute__ ((constructor(n)))

where 1 is a number between 0 and 65535. Specifying a priority level allows you to
control the order in which initialization functions execute; the lower the value of n,
the earlier the function executes. For more information, see 15.4.8 Run-time
Initialization and Termination, p.280.

deprecated, deprecated(string) Attribute (C only)

Causes the compiler to issue a warning when the marked function, variable, or
type is referenced.

__attribute__ ((deprecated))
__attribute_ ((deprecated(string)))

The optional string is included with the warning message.

destructor, destructor(n) Attribute

A destructor, or finalization, function is executed after the entry point of your
application or after exit(). To designate a function as a destructor with default
priority, use:

__attribute__ ((destructor))
To designate a function as a destructor with a specified priority, use:
__attribute__ ((destructor(n)))

where 1 is a number between 0 and 65535. Specifying a priority level allows you to
control the order in which finalization functions execute; the lower the value of 1,
the earlier the function executes. For more information, see 15.4.8 Run-time
Initialization and Termination, p.280.

noreturn, no_return Attribute

To indicate that a function will never return to the caller, use:
__attribute__ ((noreturn))

This allows the compiler to remove unnecessary code intended for returning
execution to the caller on exit. The no_return attribute is equivalent to no return.

154

6 Additions to ANSI C and C++
6.5 Attribute Specifiers

no_side_effects Attribute

This attribute is a less restrictive version of pure (see pure, pure_function Attribute,
p-155). __attribute__((no_side_effects)) indicates that a function does not modify
any global data.

packed Attribute

This attribute specifies alignment for types and data structures.
__attribute__((packed)) tells the compiler to use the smallest space possible for the
data to which it is applied. Example:

struct b {
char b;
int a ;
} __attribute__ ((packed)) strl;

When used with aligned, the packed attribute takes precedence as discussed in
aligned(n) Attribute, p.153.

pure, pure_function Attribute

This attribute indicates that a function does not modify or use any global or static
data and that it accesses only data passed to it as parameters. Using
__attribute__((pure)) allows the compiler to perform optimizations such as global
common subexpression elimination. The pure_function attribute is equivalent to
pure. If this attribute is applied to a function that has side effects, run-time
behavior may be indeterminate.

See also no_side_effects Attribute, p.155.

section(name) Attribute

To specify a linker section in which to place a function or variable, use:
__attribute_ ((section("name")))
This creates a section called name and places the designated code in it. Example:

// place funcl in a section called foo
void funcl(void) _ _attribute_ ((section("foo")));

For variables, the section is created as a read-write data segment. For functions, the
section is created as a read-execute code segment. There are no options to change

155

Wind River Compiler for ColdFire
User’s Guide, 5.4

the properties of the section. For greater control over sections, use #pragma section
(see 14. Locating Code and Data, Addressing, Access).

An attempt to mix types of information in a single section (for example, constant
data in a section reserved for code or variables) produces an error (dcc1793). In this
example, the compiler assumes from the first statement that the section .mydata is
intended to be of the DATA section class, whereas the second statement assumes
that .mydata will be a CONST section class:

) int var = 1;
) const int const_var = 2;

__attribute__ ((section(".mydata")
__attribute_ ((section(".mydata")

)
)

NOTE: In some cases, the compiler may not honor an attempt to use the section
attribute to place initialized data into a section intended for uninitialized data, and
vice-versa. For example, in the following code:

__attribute__ ((section(“.bss”))) int x = 3;

x will be assignedto the .data section, not .bss.

See Table 14-1 on page 254 for a list of sections and section classes.

There is no cross-module verification that section names are used consistently.
Incorrect usage, including typographical errors, cannot be detected until link time.

6.6 Intrinsic Functions

The compiler implements the following intrinsic functions to give access to specific
ColdFire instructions. See the processor manufacturer’s documentation for details
on machine instructions.

Intrinsic functions can be selectively disabled with the -Xintrinsic-mask=n
(-X154=n) option, where 7 is a bit mask that can be given in hex. n defaults to Oxf.

156

6 Additions to ANSI C and C++
6.7 Other Additions

Function Mask Description

alloca (integral) 0x800000 Allocates temporary local stack space for
an object of size integral. Returns a pointer
to the start of the object. The allocated
memory is released at return from the
current function.

__alloca (integral) Same as alloca(), but cannot be disabled.

6.7 Other Additions

C++ Comments Permitted

C++ style comments beginning with // are allowed by default. To disable this
feature, use -Xdialect-strict-ansi. Example:
int numberlbits (int i) // Count the number of 1 bits

{ // in "i".
int n = 0;

while (1 != 0) {
i&= (1 -1);
n ++;

}

return n;

Dynamic Memory Allocation with alloca

The alloca(size) and __alloca(size) functions are provided to dynamically allocate
temporary stack space inside a function. Example:

char *alloca();
char *p;

p = alloca(1000) ;

The pointer p points to an allocated area of 1000 bytes on the stack. This area is
valid only until the current function returns. The use of alloca() typically increases

157

Wind River Compiler for ColdFire
User’s Guide, 5.4

the entry/exit code needed in the function and turns off some optimizations such
as tail recursion.

See 6.6 Intrinsic Functions, p.156 for additional details.

Binary Representation of Data

The compiler recognizes variables and constants that are given in binary format.
For example, it will accept the following:

unsigned int x = 0b00001010;
Note that the compiler does not recognize the following format:
unsigned int x = 00001010b;

Use of binary representation in C may make your code non-portable.

Assigning Global Variables to Registers

You can assign a global variable to a preserved register by placing
asm(""register-name") or __asm("register-name") immediately after the variable name
in the declaration. Example:

int some_global_var asm("d7");

This assigns the variable some_global_var to d7. Local variables cannot be
assigned in this way.

_ _ERROR__ Function

The _ ERROR__() function produces a compile-time error or warning if it is seen
by the code generator. This is useful for making compile-time checks beyond those
possible with the preprocessor—e.g. ensuring that the sizes of two structures are
the same, as shown in the example below. If the _ ERROR__ () function is placed
after an if statement that is not executed unless the assertion fails, the optimizer
removes the _ ERROR__() function and no error is generated. (The optimizer must
be enabled (at any level) for this technique to work.)

The syntax of the _ ERROR__() function:

_ _ERROR__ (error-string [, value])

158

6 Additions to ANSI C and C++
6.7 Other Additions

where error-string is the error message to be generated and the optional value
defines whether the error should be:

0 warning - compilation will continue

1 error - compilation will continue but will stop after the entire file has been
processed

2 fatal error - compilation is aborted

If no value is given, the default value of 1 is used. Example:
extern void __ERROR__ (char *, ...);

#define CASSERT (test) \
if (! (test)) __ERROR__ ("C assertion failed: " #test)

éASSERT(sizeof(struct a) == sizeof (struct b));
When __ERROR__ () is used in C++ code, it must be declared like this:

extern "C" void __ERROR__ (char *, ...);

sizeof Extension

The sizeof operator has been extended to incorporate the following syntax:
sizeof (type, int-const)

where int-const is an integer constant between 0 and 2 with the following

semantics:

0 standard sizeof, returns size of type

1 returns alignment of type

2 returns an int constant depending on type as follows:

signed char 0
unsigned char 1
char C: 0 (char is signed by default)
C++:44
signed short 2
unsigned short 3
signed int 4
unsigned int 5

159

Wind River Compiler for ColdFire
User’s Guide, 5.4

signed long 6
unsigned long 7
long long 8
unsigned long long 9
float 14
double 15
long double 16
void 18

pointer to any type 19
array of any type 22

struct, union C:23
C++: same as class, 32
function 25
class C++:32
reference C++:33
enum C++:34
Examples:
i = sizeof(long ,2) /* type of long: i = 6
j = sizeof (short,1) /* alignment of short:

vararg Macros

*/
j=2 %/

The preprocessor supports several styles of variadic macro, including ANSI C

draft, C99, and GNU. Use of vararg macros is illustrated below:
va_arg.c:
// C draft
#define debug(...) fprintf (stderr, _ VA _ARGS_)
#define showlist(...) puts(#__VA_ARGS_)
#define report(test, ...) ((test)?puts(#test):\
printf (__VA_ARGS_))
// C99
#define foo(stringl, ...) printf(stringl, ## __VA_ARGS__, ":end")
// GNU
#define bar (string2, args...) printf(string2, ## args, ":end")

debug ("Flag") ;

debug ("X = %d\n", x);

showlist (The first, second, and third items.);
report (x>y, "x is %d but y is %d", x, Vy);
foo("start");

bar ("begin") ;

> dcc -E va_arg.c
1 "va_arg.c" 0

160

6 Additions to ANSI C and C++
6.7 Other Additions

fprintf (stderr, "Flag")
fprintf (stderr, "X = %d\n", x) ;
puts ("The first, second, and third items.")

((x>y) ?puts ("x>y") : printf("x is %d but y is %d", x, v)) ;
printf ("start", ":end") ;

printf ("begin", ":end") ;

>

161

Wind River Compiler for ColdFire
User’s Guide, 5.4

162

Embedding Assembly Code

7.1 Introduction 163

7.2 asm Macros 165

7.3 asm String Statements 172
7.4 Reordering in asm Code 174
7.5 Direct Functions 174

7.1 Introduction

There are three approaches to embedding assembly code in source files: flexible
asm macros, simple but less flexible asm strings, and direct functions for embedding
machine code.

A WARNING: When embedding assembly code with any method, you must use only
scratch registers. See 9.6 Register Use, p.194 to determine the scratch registers.

If optimization is enabled, even hand-inserted assembly language may be
optimized. See 7.4 Reordering in asm Code, p.174

163

Table 7-1

Wind River Compiler for ColdFire
User’s Guide, 5.4

NOTE: The compiler recognizes extended GNU inline syntax (e.g. register usage
specification) but does not translate it. When extended syntax is encountered, the
compiler issues an error message.

The asm and __asm keywords provide a way to embed assembly code within a
compiled program. Either keyword may be used to introduce an assembly string
or assembly macro as defined below, but asm is not defined in C modules if the
-Xdialect-strict-ansi option is used. In the text below, whenever asm is used,
__asm can be used instead.

There are two ways of using the asm keyword. The first is a simple way to pass a
string to the assembler, an asm string. The second is to define an asm macro that
inlines different assembly code sections, depending on the types of arguments
given. The following two sections discuss both methods. 7.5 Direct Functions, p.174
provide a third way to embed code by using integer values. The following table
contrasts the three method.

Methods for Embedding Assembly Code

Method Implementation Calling Conventions, Parameters
asm string Expanded inline where None — difficult to access
encountered. Functions source variables.
containing asm strings with
labels may not be inlined more
than once per function.
asm macro Expanded inline where called. ~ Parameters matched by type
Functions containing asm per storage mode lines.
macros may be inlined without Parameters do not use scratch
restriction. registers. May return a value.
Direct Always inlined where called. All normal calling conventions
function are followed. May return a

value.

To confirm that embedded assembly code has been included as desired, compile
with the -S option and examine the resulting .s file.

The examples in this chapter apply to both C and C++.

164

7 Embedding Assembly Code
7.2 asm Macros

7.2 asm Macros

While asm strings (described in 7.3 asm String Statements, p.172) can be useful for
embedding simple assembly fragments, they are difficult to use with variables
inside the assembly code. asm macros provide a more flexible way to embed
assembly code in compiled programs.

asm Macro Syntax

An asm macro definition looks much like a function definition, including a return
type and parameter list, and function body. Inside the function body, there may be
none, one, or several sequences of assembly code, each beginning with a special
storage mode line.

The syntax is:

asm [volat:i.le] [retum—type] macro-name ([parameter-list])

% storage-mode-list (must start in column 1)

! ister-li i i
! register-list (“!” must be first non-whitespace)
asm-code

% storage-mode-list2 (must start in column 1)

! ister-li P . .

! register-list (“1” must be first non-whitespace)
asm-code2

} (must start in column 1)

where:

volatile prevents instructions from being interspersed or moved before or
after the ones in the macro.

return-type is as in a standard C function. For a macro to return a value of the given
type, the assembly code must put the return value in an appropriate register as

determined by the calling conventions. See 9.5 Returning Results, p.193 for details.

macro-name is a standard C identifier.

parameter-list is as in a standard C function, using either old style C with just
names followed by separate type declarations, or prototype-style with both a
type and a name for each parameter. Parameters should not be modified
because the compiler has no way to detect this and some optimizations will fail
if a parameter is modified.

165

Wind River Compiler for ColdFire
User’s Guide, 5.4

» storage mode line begins with a “%” which must start in column 1. The
storage-mode-list is used mainly to describe parameters and is described below.
A macro with no parameters and no labels does not require a storage mode
line.

= register-list is an optional list of scratch registers, each specified as a
double-quoted string, separated by commas. Specifying this list enables the
compiler to generate more efficient code by invalidating only the named
registers. Without a register-list, the compiler assumes that all scratch registers
are used by the asm macro. See Register-List Line, p.168 for details.

= asm-code is the code to be generated by the macro.
= final right “}”closes the body; it must start in column 1.

The compiler treats an asm macro much like an ordinary function with unknown

properties:

= All scratch registers can be used by the function. The compiler ensures that
parameters never use any scratch registers to avoid collisions.

* Any global or static variable can be modified.

» #pragma directives can be used to tell the compiler if the function has any side
effects, etc.

However, because the asm macro is by definition inlined, it is not possible to take
the address of an asm macro.

The compiler discards any invocation of an empty asm macro (one with no storage
mode line and no assembler code). This may be useful for macros used for
debugging purposes.

NOTE: An asm macro must be defined in the module where it is to be used before
its use. Otherwise the compiler will treat it as an external function and, assuming
no such function is defined elsewhere, the linker will issue an unresolved external
error.

In C++, forward declarations of asm macros are not permitted. Hence, while static
member functions can be asm macros, the asm keyword must occur in the function
definition, not in the class declaration.

Storage Mode Line — Describing Parameters and Labels

The storage mode line is not required if a macro has no parameters and no labels.

166

7 Embedding Assembly Code
7.2 asm Macros

For a macro with parameters, a storage mode line is required to describe the
methods used to pass the parameters to the macro. A storage mode line is also
required if the macro includes a label.

Every parameter name in the parameter-list must occur exactly once in a storage
mode line. The form of the storage-mode-line is:

%[reg | con | mem | lab] name,.“;[reg | con | mem | lab]nume,." S
where:

reg or ureg
The parameter is in a non-scratch register. ureg is a synonym for reg.

NOTE: Parameters are normally passed on the stack. If the compiler has
already moved an argument to a preserved register, the optimizer will use it
from there in the macro rather than moving it to the stack. Therefore, always
use a parameter name rather than a register name when coding a macro.

NOTE: Because arguments may be in preserved registers as just noted, macros
should avoid use of preserved registers, even if saved and restored.

con
The parameter is a constant.

The parameter is any allowed addressing mode, including reg and con.

lab name
A new label is generated. lab is not a storage mode — the name following lab

is not a parameter (a lab identifier is not allowed as a parameter). It is a label
used in the assembly code body.

For each use of the macro, the compiler will generate a unique label to
substitute for the uses of the name in the macro.

(Storage modes error, which does not take a parameter name, and treg, both
included for compatibility, are never matched.)

. Names of long long parameters must be appended with !H or !L—e.g.
someParameter!H. This replaces the parameter with a register holding the most
('H) or least ('L) significant 32 bits. The register is chosen based on the
compilation’s endian mode.

167

Wind River Compiler for ColdFire
User’s Guide, 5.4

Multiple-Body asm Macro

The %storage-mode-line / register-list line / asm-code part of an asm macro is referred
to as the macro’s body. An asm macro with multiple bodies overloads the macro
definition in a manner similar to that of an overloaded C++ function (this is valid
whether in a C or C++ module).

The compiler chooses one of the bodies based on the types of arguments provided
when invoking the asm macro. For each invocation of the macro, the compiler
searches all storage-mode-lines in order. It selects the first body for which there is an
exact match between the storage of the actual arguments passed to the macro in
that invocation, and the description given by the storage-mode-line for that body.

If no matching storage-mode-line can be found, the compiler reports an error.

“No Matching asm Pattern Exists”

The compiler error message “no matching asm pattern exists” indicates that no
suitable storage mode was found for some parameter, or that a label was used in
the macro but no lab storage mode parameter was present. For example, it would
be an error to pass a variable to a macro containing only a con storage mode
parameter.

Register-List Line

An asm macro body may optionally contain a register-list line, consisting of the
character “!” in column 1 and an optional register-list. The register-list if present , is
a list of scratch registers, each specified as a double-quoted string, separated by
commas. Specifying this list enables the compiler to generate more efficient code
by invalidating only the named registers. Without a register-list, the compiler
assumes that all scratch registers are used by the asm macro.

g

The register-list line must begin with a “!” character, which must be the first
non-whitespace character on a line. The specification can occur anywhere in the
macro body, and any number of times, however it is recommended that a single
line be used at the beginning of the macro for clarity.

Supported scratch registers are a0, al, d0, and d1. See 9.6 Register Use, p.194 for
more information about registers.

If the “1” is present without any list, the compiler assumes that no scratch registers
are used by the macro.

168

7 Embedding Assembly Code
7.2 asm Macros

NOTE: If supplied, the register-list must be complete, that is, must name all scratch
registers used by the macro. Otherwise, the compiler will assume that registers
which may in fact be used by the macro contain the same value as before the macro.

Also, as noted below, any comment on the register-list line must be a C-style
comment (“/* ... */”") because this line is processed by the compiler, not the
assembler.

Comments in asm Macros

Any comment on the non-assembly language lines—that is, the asm macro
function-style header, the “{” or “}” lines, or a storage-mode or register-list line—
must be a C-style comment (“/* ... */”) because this line is processed by the
compiler, not the assembler.

Comments on the assembly language line may be either C style or assembler style.
If C style, they are discarded by the compiler and are not preserved in the
generated .s assembly-language file. If assembler style, they are visible in the .s file
on every instance of the expanded macro.

Assembler-style comments in asm macros are read by the preprocessor when the
source file is processed. For this reason, apostrophes and quotation marks in
assembler-style comments may generate warning messages.

Examples of asm Macros

In this example, a macro waits for a fixed location (0x100) to become zero, then
moves its argument to the SR register. Three storage mode lines and associated
code are used to pass the value as either a constant, in a register, or in memory.

asm void wait_then_set_ SR (int value)

{

% con value; lab loop;
|

"ao" /* scratch register used */
move.1l 0x100, a0 ; wait for this to be non-zero
loop:
tst.1l (a0)
jne loop
move.w value, SR ; value is constant

169

Wind River Compiler for ColdFire
User’s Guide, 5.4

% reg value; lab loop;

1 "ag" /* scratch registers used */
move.l 0x100, a0 ; wait for this to be non-zero
loop:
tst.1l (a0)
jne loop
move.w value, SR ; value from register

% mem value; lab loop;

' "a0", "do" /* scratch registers used */
move.l 0x100, a0 ; wait for this to be non-zero
loop:
tst.1l (a0)
jne loop
move.1l value, d0 ; value from memory
move.w do, SR

}

void test (int reg_value)

{
extern int mem_value;
walt_then_set_SR (0x01234);
wait_then_set_SR (reg_value);
walt_then_set_SR (mem_value);

}
The above code was compiled with:
dcc -tMCF5200FN -S -XO -Xpass-source asm_macro.cC
Extracts from the generated assembly code for the two macro calls follow.
; void test (int reg_value)
a move.l d7,-(a7)

; wait_then_set_SR (0x01234);

move.l 0x100,a0 ; wait for this to be non-zero
.L3:

tst.1l (a0)

jne L3

move.w #4660,SR ; #4660 is constant

; wait_then_set_SR (reg_value);
move.l 0x100,a0

L4
tst.1l (a0)
jne L4
move.w d7,SR ; d7 from register

; wait_then_set_SR (mem_value) ;
move.l 0x100,a0

170

7 Embedding Assembly Code
7.2 asm Macros

.L5:
tst.1l (a0)
jne .L5
move.l _mem value,d0 ; _mem_value from memory

move.w dO, SRNote:

NOTE:

» The selection of the assembly code body based on the argument type and the

substitution of the actual argument for the formal parameter in the asm bodies.

* The uniquely generated loop labels.

» The reg_value parameter to test was moved to d7 by the optimizer.

NOTE: If a macro uses an instruction which requires an operand in a dn register,
and the operand is passed as an argument to the macro, then the macro must start
by moving the argument to a dn register in case it is passed by the compiler in an
an register.

Example, incorrect:

asm void setsr (unsigned short value)
{
Smem value;

move.w value,sr

}
Corrected:

asm void setsr (unsigned short value)
{
$mem value;

move.w value,d0

move.w dO,sr

171

Wind River Compiler for ColdFire
User’s Guide, 5.4

7.3 asm String Statements

NOTE: asm string statements are primarily useful for manipulating data in static
variables and special registers, changing processor status, etc., and are subject to
several restrictions: no assumption can be made about register usage, non-scratch
registers must be preserved, values may not be returned, some optimizations are
disabled, and more. asm macro functions described above are recommended
instead. See Notes and Restrictions, p.172 below.

An asm string statement provides a simple way to embed instructions in the
assembly code generated by the compiler. Its syntax is:

asm| volatile] ("string"[1 register-list]) ;

where string is an ordinary string constant following the usual rules (adjacent
strings are pasted together, a “\” at the end of the line is removed, and the next line
is concatenated) and register-list is a list of scratch registers (see Register-List Line,
p-168). The optional volatile keyword prevents instructions from being moved
before or after the string statement.

An asm string statement can be used wherever a statement or an external
declaration is allowed. string will be output as a line in the assembly code at the
point in a function at which the statement is encountered, and so must be a valid
assembly language statement.

If several assembly language statements are to be generated, they may either be
written as successive asm string statements, or by using “\n” within the string to
end each embedded assembly language statement. The compiler will not insert
any code between successive asm string statements.

If an asm string statement contains a label, and the function containing the asm
string is inlined more than once in some other function, a duplicate label error will
occur. Use an asm macro with a storage mode line containing a lab clause for this
case. See 7.2 asm Macros, p.165.

Notes and Restrictions

asm string statements are primarily useful for tasks like changing processor status
(as in the example above) and manipulating data in static variables and special

172

Example 7-1

7 Embedding Assembly Code
7.3 asm String Statements

registers. When using asm string statements, consider the following notes and
restrictions:

No assumptions may be made regarding register values before and after an
asm string statement. For example, do not assume that parameters passed in
registers will still be there for an asm string statement.

The compiler does not expect an asm string statement to “return” a value.
Thus, using an asm string statement as the last line of a function to place a
value in a return register does not ensure that the function will return that
value.

The compiler assumes that non-scratch registers are preserved by asm string
statements. If used, these registers must be saved and restored by the asm
string statements.

The compiler assumes that scratch registers are changed by asm string
statements and so need not be preserved.

Some optimizations are turned off when an asm string statement is
encountered.

A function containing an asm string statement is never inlined.

Because the string contained in quotation marks is passed to the assembler
exactly as is (after any pasting of continued lines), it must be in the format
required for an assembly language line. Specifically, an instruction line must
begin with a space, a tab, or a label. Assembler directives may start in column
one but only if the assembler -Xlabel-colon option is enabled (see Set Label
Definition Syntax (-Xlabel-colon...), p.306).

When an asm string statement appears in global scope, the compiler adds it to
the output assembly module after all of the function definitions. For this
reason, global asm string statements should not use assembler directives—
such as .set symbol—on which other asm statements (appearing in functions)
depend.

Disable Interrupts

The following sequence of asm string statements disables hardware interrupts.
Note that a scratch register is used in the example.

(" move sr,d0
(" eori #0x8000,d0
asm(" ori #0x2700,d0
(" move dO,sr

get the status register");

clear bit 15");

set bit 13 and int. priority to 7");
set the status register");

7
7
7
7

173

Wind River Compiler for ColdFire
User’s Guide, 5.4

7.4 Reordering in asm Code

If optimization is requested (options -O or -XO), after generating an assembly file,
the driver will run the reorder optimization program. reorder runs peephole
optimizations and schedules the assembly file before the assembler assembles it,
and does not distinguish assembly code generated by the compiler from assembly
code inserted by asm macros or asm strings. Thus, explicit assembly instructions
written in a particular order by the user may still be reordered by reorder.

In general this may improve even hand-coded assembly language. If it is necessary
to prevent this, write a .set noreorder directive in the asm string or asm macro at
the point at which such re-ordering should be disabled, and a .set reorder directive
where re-ordering can be re-enabled. Alternatively, define the string or macro as
volatile.

7.5 Direct Functions

Direct functions, available in C modules only, provide a way to inline machine
code in a function. In a direct function definition, the body of the function is a list
of integer constant expressions which represent the machine code. The form is:

return_type] function_name ([parameter_type parameter_name , ...]) =

integer-constant-expression ,
integer-constant-expression ,

}; /* ';' required */

Rules:

“"_nw

» A direct function is signaled by the presence of an character between the

parameter list and the body of the function.

» The expressions in the body are separated by commas and may be written one
or more per line (with a comma after the final expression on a line if additional
expression lines follow).

“
; -

» The final “}” closing the function body must be followed by a

A direct function is always inlined when called. When called, what would be the
branch to the function is replaced by a DC.W assembler directive having as

174

7 Embedding Assembly Code
7.5 Direct Functions

operands the value of each expression as a hex constant. Otherwise, normal calling
conventions are followed (e.g., any parameters are set up in the usual manner).

Direct functions are supported primarily for compatibility reasons. asm macros
provide a more flexible method to do nearly the same thing. See Table 7-1 which
contrasts the differences.

175

Wind River Compiler for ColdFire
User’s Guide, 5.4

176

Internal Data Representation

8.1 Basic Data Types 177

8.2 Byte Ordering 179

8.3 Arrays 180

8.4 Bit-fields 180

8.5 Classes, Structures, and Unions 181
8.6 C++ Classes 181

8.7 Linkage and Storage Allocation 186

This chapter describes the alignments, sizes, and ranges of the C and C++ data
types for ColdFire microprocessors.

8.1 Basic Data Types

By default, the type plain char—that is, char without the keyword signed or
unsigned—is treated as signed.

The following table describes the basic C and C++ data types available in the
compiler. All sizes and alignments are given in bytes. An alignment of 2, for
example, means that data of this type must be allocated on an address divisible by
2.

177

Wind River Compiler for ColdFire
User’s Guide, 5.4

Table 8-1 C/C++ Data Types, Sizes, and Alignments

Data Type Bytes Align Notes

char 1 1 range (-128, 127), or (0, 255) with
-Xchar-unsigned (Note 1)

signed char 1 1 range (-128, 127)

unsigned char 1 1 range (0, 255)

short 2 2 range (-32768, 32767)

unsigned short 2 2 range (0, 65535)

int 4 4 range (-2147483648, 2147483647)

unsigned int 4 4 range (0, 4294967295)

long 4 4 range (-2147483648, 2147483647)

unsigned long 4 4 range (0, 4294967295)

long long 8 8 range (-2%%,2%3.1)

unsigned long long 8 8 range (0,2%4-1)

enum (Note 2) 4 4 sameas int

1 1 with-Xenum-is-small and fits in signed char
or -Xenum-is-best and fits in unsigned char
2 2 with -Xenum-is-small and fits in short or

-Xenum-is-best and fits in unsigned short

pointers 4 4 all pointer types; the NULL pointer has the
value zero

float 4 4 IEEE 754-1985 single precision

double 8 8 IEEE 754-1985 double precision

long double 8 8 IEEE 754-1985 double precision

reference 4 4 C++:same as pointer (Note 3)

ptr-to-member 8 4 C++: pointer to member

178

8 Internal Data Representation
8.2 Byte Ordering

Table 8-1 C/C++ Data Types, Sizes, and Alignments (cont'd)

Data Type Bytes Align Notes
ptr-to-member-fn 12 4 C++: pointer to member function
Notes:

1. If the option -Xchar-unsigned is given, the plain char type is unsigned. If the
option -Xchar-signed is given, the plain char type is signed.

2. If the option -Xenum-is-int is given, enumerations take four bytes. This is the
default for C.

If the option -Xenum-is-small is given, the smallest signed integer type
permitted by the range of values for the enumeration is used, that is, the first
of signed char, short, int, or long sufficient to represent the values of the
enumeration constants. Thus, an enumeration with values from 1 through 128
will have base type short and require two bytes.

If the option -Xenum-is-best is given, the smallest signed or unsigned integer
type permitted by the range of values for an enumeration is used, that is, the
first of signed char, unsigned char, short, unsigned short, int, unsigned int,
long, or unsigned long sufficient to represent the values of the enumeration
constants. Thus, an enumeration with values from 1 through 128 will have
base type unsigned char and require one byte. This is the default for C++.

3. Areference is implemented as a pointer to the variable to which it is initialized.

8.2 Byte Ordering

All data is stored in big-endian order. That is, with the most significant byte of any
multi-byte type at the lowest address. To access data in little-endian order, see the
byte-swapped parameter for the #pragma pack in pack Pragma, p.141 and __packed
and packed Keywords, p.149.

179

Wind River Compiler for ColdFire

User’s Guide, 5.4

8.3 Arrays

Arrays, excluding character arrays, have the same alignment as their element type.
The size of an array is equal to the size of the data type multiplied by the number
of elements. Character arrays have a default alignment of 4. -Xsize-opt sets the
alignment of character arrays to 1, and -Xstring-align overrides -Xsize-opt.
-Xarray-align-min, which overrides -Xstring-align, specifies a minimum
alignment for all arrays.

8.4 Bit-fields

Bit-fields can be of type char, short, int, long, or enum. Plain bit-fields are
unsigned by default. By using the -Xbit-fields-signed option (C only) or by using
the signed keyword, bit-fields become signed. The following rules apply to
bit-fields:

180

Allocation is from most significant bit to least.

A bit-field never crosses its type boundary. Thus a char bit-field is never
allocated across a byte boundary and can never be wider than 8 bits.

Bit-fields are allocated as closely as possible to the previous struct member
without crossing a type boundary.

A zero-length bit-field pads the structure to the next boundary specified by its
type.
Bit-fields may not be type long long.

The compiler accesses a bit-field by loads and stores appropriate to the
bit-field’s type. For example, an int bit-field is accessed using a word load or
store (or an equivalent set of smaller load/stores in the unaligned case), even
if the bit-field spans only one byte. To ensure that a bit-field is accessed using
byte (or half-word) load/stores, make the bit-field char or short, or use the
-Xcompress-bitfields option.

When a bit-field is promoted to a larger integral type, the comiler preserves
sign as well as value unless -Xstrict-bitfield-promotions, -Xdialect-strict-ansi,
or -Xstrict-ansi is enabled.

8 Internal Data Representation
8.5 Classes, Structures, and Unions

8.5 Classes, Structures, and Unions

The alignment of class, struct, and union aggregates is the same as that of the
member with the largest alignment.

The size of a structure is the sum of the size of all its members plus any necessary
padding. Padding is added so that all members are aligned to a boundary given by
their alignment and to make sure that the total size of the structure is divisible by
its alignment.

The size of a union is the size of its largest member plus any padding necessary to
make the total size divisible by the alignment.

To minimize the necessary padding, structure members can be declared in
descending order by alignment.

See pack Pragma, p.141 and __packed__ and packed Keywords, p.149 for more
information.

8.6 C++ Classes

C++ objects of type class, struct, or union can be divided into two groups,
aggregates and non-aggregates. An aggregate is a class, struct, or union with no
constructors, no private or protected members, no base classes, and no virtual
functions. All other classes are non-aggregates.

The internal data representation for aggregates is exactly the same as it is for C
structures and unions.

Static member functions and static class members, as well as non-virtual member
functions do not affect the representation of classes. Their relation to the classes are
only encoded in their names (name mangling). Pointers to static member functions
and static class members are ordinary pointers. Pointers to member functions are
of the type pointer-to-member-function as described later.

The internal data representation for non-aggregates has the following properties:
» The rules for alignment are equal to the rules of aggregates.

» The order that members appear in the object is the same as the order in the
declaration.

181

Wind River Compiler for ColdFire
User’s Guide, 5.4

Non-virtual base classes are inserted before any members, in the order that
they are declared.

A pointer to the virtual function table is added after the bases and members.

For virtual base classes, a pointer to the base class is added after non-virtual
bases, members, or the virtual function table. The virtual base class pointers
are added in the order that they are declared.

The storage for the virtual bases are placed last in the object, in the order they
are declared, that is, depth first, left to right.

Virtual base classes that declare virtual functions are preceded by a “magic”
integer used during construction and destruction of objects of the class.

Example:

struct V1 {};
struct V2 {};
struct V3 : virtual V2 {};
struct Bl : virtual V1 {};
struct B2 : virtual V3 {};
struct D : Bl, private virtual V2, protected B2 {
int di;
private:
int d2;
public:
virtual ~D() {};
int d3;
}i

The class hierarchy for this example is:

182

D is derived from B1, B1 is derived from V1
D is derived from B2, B2 is derived from V3, V3 is derived from V2

D is derived from V2 (which is virtual, thus there is only one copy of V2)

8 Internal Data Representation
8.6 C++ Classes

The internal data representation for D is as follows:

B1

B2

Body of D:
d1
d2
d3

Virtual function table pointer

Pointer to virtual base class V1

Pointer to virtual base class V2

Pointer to virtual base class V3

Vi1

V2

magic for V3

V3

Note:
= When the class D is used as a base class to another class, for example:
class E : D {};

only the base part of D will be inserted before the body of class E. The virtual
bases V1, V2, and V3 will be placed last in class E, in the fashion described
above. Class E would be laid out as follows:

183

Wind River Compiler for ColdFire

User’s Guide, 5.4

Base part of D

Body of E:

Vi

V2

magic for V3

V3

Pointers to Members

The virtual function table pointer is only added to the first base class that
declares virtual functions. A derived class will use the virtual function table
pointer of its base classes when possible. A virtual function table will be added
to a derived class when new virtual functions are declared, and none of its
non-virtual base classes has a virtual function table.

The virtual function table is an array of pointers to functions. The virtual
function table has one entry per virtual function, plus one entry for the null
pointer.

Virtual base class pointers are added to a derived class when none of its
non-virtual base classes have a virtual base class pointer for the corresponding
virtual base class.

Each virtual base class with virtual functions are preceded by an integer called
magic. This integer is used when virtual functions are called during
construction and destruction of objects of the class.

The pointer-to-member type (non-static) is represented by two objects. One for
pointers to member functions, and one for all other pointers to member types. The
offsets below are relative to the class instance origin.

184

8 Internal Data Representation
8.6 C++ Classes

An object for a pointer to non-virtual or virtual member functions has three parts:

voffset

index

vtbl-offset
or
Function Pointer

The voffset field is an integer that is used when the virtual function table is located
in a virtual base class. In this case it contains the offset to the virtual base class
pointer + 1. Otherwise it has a value of 0.

The index field is an integer with two meanings.

1. index <=0
The index field is a negative offset to the base class in which the non-virtual
function is declared. The third field is used as a function pointer

2. index >0
The index field is an index in the virtual function table. The third field,
vtbl-offset, is used as an offset to the virtual function table pointer of type
integer

A null pointer-to-member function has zero for the second and third fields.

An object for a pointer-to-member of a non-function type has two parts:

voffset
moffset

The voffset field is used in the same way as for pointer-to-member functions. The
moffset field is an integer that is the offset to the actual member + 1. A null pointer
to member has zero for the moffset field.

Virtual Function Table Generation—Key Functions

The virtual function table for a class will be generated only in the module which
defines (not declares) its key virtual function (and does not inline it). The key virtual
function is the virtual function declared lexically first in the class (or the only
virtual function in the class if there is only one).

185

Wind River Compiler for ColdFire
User’s Guide, 5.4

Consider, for example:

class C {
public:
virtual void f1(...);
virtual void £2(...);
}
Because f1 is the first virtual function declared in the class, it is the key virtual

function.

Then, the virtual function table will be emitted for the module which provides the
non-inlined definition of f1.

8.7 Linkage and Storage Allocation

Depending on whether a definition or declaration is performed inside or outside
the scope of a function, different storage classes are allowed and have slightly
different meanings. Notes are at the end of the section.

Outside Any Function and Outside Any Class

Specifier Linkage Allocation
none external linkage, Static allocation (Note 1).
program
static file linkage Static allocation (Note 1).
extern external linkage, None, if the object is not initialized in the
program current file, otherwise same as “none”
above.

Inside a function, but outside any class

Specifier Linkage Allocation

none current block In a register or on the stack (Note 2).
register current block In a register or on the stack (Note 2).
auto current block In a register or on the stack (Note 2).

186

8 Internal Data Representation

8.7 Linkage and Storage Allocation

Specifier Linkage
static current block
extern current block

Allocation
Static allocation (Note 1).

None, this is not a definition (Note 3).

Outside any function, but inside a C++ class definition

Outside the class, a class member name must be qualified with the :: operator, the
. operator or the -> operator to be accessed. The private, protected, and public
keywords, class inheritance and friend declaration will affect the access rights.

Specifier Linkage

none external linkage,
(data) program

static external linkage,
(data) program

none external linkage,
(function) program

static external linkage,
(function) program

Within a Local C++ Class, Inside a Function

Notes

Allocation

None, this is only a declaration of the
member. Allocation depends on how the
object is defined.

None, this is not a definition. A static
member must be defined outside the class
definition.

(uses a this pointer.)

(no this pointer)

Alocal class cannot have static data members. The class is local to the current block
as described above and access to its members is through the class. All member

functions will have internal linkage.

1. Allocation of static variables is as per Table 14-1.

The compiler attempts to assign as many variables as possible to registers,

with variables declared with the register keyword having priority. Variables
which have their address taken are allocated on the stack. If the
-Xlocals-on-stack option is given, only register variables are allocated to

registers

Although an extern variable has a local scope, an error will be given if it is

redefined with a different storage class in a different scope.

187

Wind River Compiler for ColdFire
User’s Guide, 5.4

188

Calling Conventions

9.1 Introduction 189

9.2 Stack Layout 189

9.3 Argument Passing 190

9.4 C++ Argument Passing 191
9.5 Returning Results 193

9.6 Register Use 194

9.7 Pascal Functions (C Only) 195

9.1 Introduction

This chapter describes the interface between a function caller and the called
function. Stack layout, argument passing, returning results, and register use are all
described in detail.

9.2 Stack Layout

189

Wind River Compiler for ColdFire
User’s Guide, 5.4

The compiler uses two different stack layouts depending on how the current
function uses preserved registers and stack space, and what compiler options are
specified. When local variables are not allocated on the stack and the -Xframe-ptr
option is not set, the compiler does not use the frame pointer (FP, register a6).
Otherwise, the old frame pointer is saved with the link instruction.

The following shows the stack layout assuming that SP, the stack pointer, is in a7,
and FP, the frame pointer, is in a6. In the diagram, SP is shown after the prolog in
the called function is complete.

high address

argument area

arguments to the current function
Old SP —p

return address

old frame pointer (FP)

FP — ,
local variables

local variables that cannot be
allocated to a register

SP —p -
preserved registers

preserved registers used
by the function

argument area
arguments to any function
to be called

low address

9.3 Argument Passing

When a function is to be called, the compiler pushes all arguments on the stack,
decrementing the stack pointer (SP register a7) for each. Arguments are pushed

190

9 Calling Conventions
9.4 C++ Argument Passing

from right to left. Character and short arguments are extended and pushed as
32-bit values. If a prototype is present, no extension is made.

The stack is aligned on each argument’s natural alignment before pushing. All
pushed arguments are rounded to a size that is a multiple of 4. Following a
function call, the stack pointer is restored to its old value.

With the -Xargs-in-regs option, function arguments can be passed in registers. If
function prototypes are used and the register keyword is specified for an
argument to a function, the compiler puts the first arguments in registers instead
of pushing them. The following scheme is used:

= The first integer argument is put in d1.
» The second integer argument is put in d0.
» The first pointer argument is put in al.
* The second pointer argument is put in a0.

Note that prototypes with register parameters must be visible to all functions using
them. This feature is turned off when using the -Xdialect-strict-ansi option.

9.4 C++ Argument Passing

In C++, the same lower-level conventions are used as in C, with the following
additions:

» References are passed as pointers.

* Function names are encoded (mangled) with the types of all arguments. A
member function has also the class name encoded in its name. See 13.5 C++
Name Mangling, p.241.

* Anargument of class, struct, or union type may, depending on the target
architecture and the size of the actual parameter, be passed as a pointer to the
object. (But this does not happen if the function is declared with extern "c".)
For this reason, when a C++ function with class, struct, or union parameters
is called from a C module, it should always be assumed that the C++ compiler
expects a pointer argument. For example, suppose the following function is
defined in a C++ module:

int ff(struct S s);

191

Wind River Compiler for ColdFire
User’s Guide, 5.4

To call this function from a C module, use code like this:

struct S xyz;

int i = ffmangledname (&xyz) ;
where ffmangledname is the mangled form of ff. To find the mangled name of a
C++ function, see 13.5 C++ Name Mangling, p.241 and 29. D-DUMP File
Dumper.

Pointer to Member as Arguments and Return Types

Pointers to members are internally converted to structures. Therefore argument
passing and returning of pointer to members will follow the rules of class, struct,
and union.

Member Function

Non-static member functions have an extra argument for the this pointer. This
argument is passed as a pointer to the class in which the function is declared. The
argument is passed as the first argument, unless the function returns an object that
needs the hidden return argument pointer, in which case the return argument
pointer is the first argument and the this pointer is the second argument.

Constructors and Destructors

Constructors and destructors are treated like any other member function, with
some minor exceptions as follows.

Constructors for objects with one or more virtual base classes have one extra
argument added for each virtual base class. These arguments are added just after
the this pointer argument. The extra arguments are pointers to their respective
base classes.

Calling a constructor with the virtual base class pointers equal to the null pointer
indicates that the virtual base classes are not yet constructed. Calling a constructor
with the virtual base class pointers pointing to their respective virtual bases
indicates that they are already constructed.

All destructors have one extra integer argument added, after the this pointer. This
integer is used as a bit mask to control the behavior of the destructor. The definition

192

9 Calling Conventions
9.5 Returning Results

of each bit is as follows (bit 0 is the least significant bit of the extra integer
argument):

Bit 0
When this bit is set, the destructor will call the destructor of all sub-objects
except for virtual base classes. Otherwise, the destructor will call the
destructor for all sub-objects.

Bit 1
When this bit is set, the destructor will call the operator delete for the
object.

All other bits are reserved and should be cleared.

9.5 Returning Results

All integers are returned in register d0.

Single precision floating point values are returned in d0, double precision values
in do/d1.

Pointers are returned differently for different targets:
» Most targets return pointers in register d0, including all embedded targets.

= If the -Xptr-values-in-a0 option is used, pointers are returned in both registers
a0 and dO0; the value in a0 is used.

Return of structures and unions is also target-dependent:

» Embedded system targets use the -Xstruct-as-args option as default and return
structures as if an extra first argument points to the return area. This scheme is
both very efficient and reentrant. See the -Xstruct-as-args option for more
information.

» If the -Xstruct-as-gnu option is used, structures <= 8 bytes are returned in
d0/d1, others on the stack. See -Xstruct-as-gnu for more information.

» If the -Xstruct-as-static option is used, structures and unions are returned in a
static area pointed to by either register d0 or a0, depending on how pointers
are returned.

193

Wind River Compiler for ColdFire

User’s Guide, 5.4

Class, Struct, and Union Return Types

With the exceptions mentioned above, a function with a return type of class, struct,
or union is called with a hidden argument of type pointer to function return type. The
called function copies the return argument to the object pointed at by the hidden
argument; the ordinary arguments are “bumped” one place to the right. See the
-Xstruct-as-args option for more information (118).

9.6 Register Use

The following describes how registers are used by the compiler:

do -

d2-

a0 -

a2 -

a5

194

d1
Scratch data registers. Not preserved by functions. Hold variables whenever
possible.

d7

Preserved data registers. Saved when used by functions. Hold variables which
can not be put in d0 - d1. The data registers hold integral data mainly, but are
used for pointer variables whenever suitable.

al
Scratch address registers. Not preserved by functions. Hold variables
whenever possible.

a4

Preserved address registers. Saved when used by functions. Hold variables
which cannot be put in a0 - al. The address registers hold pointer data mainly,
but are used for integral variables whenever suitable.

If either of the -Xdata-relative-near or the -Xdata-relative-far options is used,
a5 is used as a pointer to the .data section and all references to variables are
made through a5.

a5 is also used if _SDA_BASE_ is defined for access to the Small Data Area. See
23.2 Symbols Created By the Linker, p.374 regarding _SDA_BASE_.

Wind River libraries are compiled with the default options (-Xsmall-data=0
and -Xsmall-const=0) and so do not make use of the Small Data Area.

9 Calling Conventions
9.7 Pascal Functions (C Only)

Otherwise a5 is a preserved address register and behaves just like registers a2
-ad.

If a5 is used for small data access, the default.dld linker command file causes
the linker to load .sdata and .sbss contiguously. The linker then defines the
symbol _SDA_BASE_ as the address of .sdata plus 0x7f0, and the startup code
in crt0.s loads register a5 with this value. This permits any variable in either
section to accessed with a single instruction using a 16-bit offset from the a5
register. Note that this limits the combined size of the two sections to 64KB -
0x10 (the 0x10 facilitates certain optimizations).

a6
Frame pointer (FP). Points to current stack frame. Not used in functions with
all variables in registers.

a7 (sp)
Stack pointer (SP). Points to the current stack location where arguments are to
be pushed.

9.7 Pascal Functions (C Only)

If the pascal keyword is enabled with the -Xkeywords=0x2 option (the pascal bit),
a function declared pascal has the following properties:

» The argument list is reversed and the first argument is pushed first.
» The callee clears the stack space instead of the caller.

See 5.4.85 Enable Extended Keywords (-Xkeywords=mask), p.93 for additional
information on this option.

195

Wind River Compiler for ColdFire
User’s Guide, 5.4

196

10

Optimization

10.1 Optimization Hints 197

10.2 Cross-Module Optimization 204

10.3 Target-Independent Optimizations 206
10.4 Target-Dependent Optimizations 219
10.5 Example of Optimizations 221

Optimizations have two purposes: to improve execution speed and to reduce the
size of the compiled program.

Most optimizations are activated by the -O option (5.3.17 Optimize Code (-O), p.42).
A few, such as inlining, are activated by the -XO option (5.4.104 Enable Extra
Optimizations (-XO), p.103). See also the discussion of optimization and debugging
under the -g option (5.3.9 Generate Symbolic Debugger Information (-g), p.39).

10.1 Optimization Hints

The compilers attempt to produce code as compact and efficient as possible.
However, some information about characteristics of the program only the user has.
This section describes various ways the user can enable the compiler to generate
the most optimal code.

197

Wind River Compiler for ColdFire
User’s Guide, 5.4

What to Do From the Command Line

The usual purpose of optimizations is to make a program run as fast as possible.
Most optimizations also make the program smaller; however the following
optimizations will increase program size, exchanging space for speed:

» Inlining: replaces a function call with its actual code.
» Loop unrolling: expands a loop with several copies of the loop body.

When a program expands it may have a negative effect on speed due to increased
cache-miss rate and extra paging in systems with virtual memory.

Because the compiler does not have enough information to balance these concerns,
several options are provided to let the user control the above mentioned
optimizations:

= -Xinline=n

Controls the maximum size of functions to be considered for inlining. 7 is the
number of internal nodes. See 5.4.79 Inline Functions with Fewer Than n Nodes
(-Xinline=n), p.91, for more details and 5.4.157 Control Loop Unrolling
(-Xunroll=n, -Xunroll-size=n), p.123, for a definition of internal nodes. Other
options that control inlining include -Xexplicit-inline-factor (5.4.53 Control
Inlining Expansion (-Xexplicit-inline-factor), p.81) and -Xinline-explicit-force
(56.4.80 Allow Inlining of Recursive Function Calls (-Xinline-explicit-force), p.91).

= -Xunroll-size=n

Controls the maximum size of a loop body to be unrolled. See also
5.4.157 Control Loop Unrolling (-Xunroll=n, -Xunroll-size=n), p.123, for more
details.

There is also a trade-off between optimization and compilation speed. More
optimization requires more compile-time. The amount of main memory is also a
factor. In order to execute interprocedural optimizations (optimizations across
functions) the compiler keeps internal structures of every function in main
memory. This can slow compilation if not enough physical memory is available
and the process has to swap pages to disk. The -Xparse-size=m option, where m is
memory space in KByte, is set to suggest to the compiler how much memory it
should use for this optimization. (See 5.4.108 Specify Optimization Buffer Size
(-Xparse-size), p.105.)

With all the different optimization options, it is sometimes difficult to decide
which options will produce the best result. The -Xblock-count and -Xfeedback
options (5.4.15 Insert Profiling Code (-Xblock-count), p.65, 5.4.56 Optimize Using
Profile Data (-Xfeedback=file), p.82), which produce and use profiling information,

198

10 Optimization
10.1 Optimization Hints

provide powerful mechanisms to help with this. With profiling information
available, the compiler can make most optimization decisions by itself.

The following guidelines summarize which optimizations to use in varying
situations. The options used are found in 5. Invoking the Compiler.

» If execution speed is not important, but compilation speed is crucial (for
example while developing the program), do not use any optimizations at all:

dplus file.cpp -o file

» The-O option is a good compromise between compilation time and execution
speed:

dplus -0 file.cpp -o file

» Toproduce highly optimized code, without using the profiling feature, use the
-XO option:

dplus -XO file.cpp -o file

» To obtain the fastest code possible, use the profiling features referred to above.

» To produce the most compact code, use the -Xsize-opt option:
dplus -XO -Xsize-opt file.cpp -o file
= If the compiler complains about “end of memory” (usually only on systems

without virtual memory), try to recompile without using -O.

= When compiling large files on a host system with large memory, increase the
amount of memory the compiler can use to retain functions. This allows the
compiler to perform more interprocedural optimizations. Use the following
option to increase the available memory to 8,000 KByte:

-Xparse-size=8000

» If speed is very important and the resulting code is small compared to the
cache size of the target system, increase the values controlling inlining and
loop-unrolling:

-X0 -Xinline=80 -Xunroll-size=80

*= When it is difficult to change scripts and makefiles to add an option, set the
environment variable DFLAGS. Examples:

DFLAGS="-X0O -Xparse-size=8000 -Xinline=50" (UNIX)
export DFLAGS
set DFLAGS=-XO -Xparse-size=8000 -Xinline=50 (VVhldOVVS)

» If possible, disable exceptions and run-time type information
(-Xexceptions-off, -Xrtti-off). This can reduce code size significantly.

199

Wind River Compiler for ColdFire
User’s Guide, 5.4

What to Do With Programs

The following list describes coding techniques which will help the compiler
produce optimized code.

» Use local variables. The compiler can keep these variables in registers for
longer periods than global and static variables, since it can trace all possible
uses of local variables.

» Use plain int variables when size does not matter. Local variables of shorter
types must often be sign-extended on specific architectures before compares,
etc.

= Use the unsigned keyword for variables known to be positive.

* Ina structure, put larger members first. This minimizes padding between
members, saving space, and ensures optimal alignment, saving both space and
time. For example, change:

struct _pack {
char flag;

int number ;
char version;
int op;

to
struct good_pack {
int number ;
int op;
char flag;
char version;

}

» For target architectures which include a cache, declare variables which are
frequently used together, near each other to reduce cache misses. For example,

change:
struct bad {
int type;
struct bad *next;

}i
to
struct good {

int type;
struct good *next;

200

10 Optimization
10.1 Optimization Hints

Then both type and next will likely be in the cache together in constructs such
as:

while (p->type != 0) {

p = p->next;

}
Allocate variables to the small data and small const areas. See the descriptions
of the -Xsmall-data and -Xsmall-const options and the description of #pragma
section, all in 14. Locating Code and Data, Addressing, Access.

Use the const keyword to help the optimizer find common sub-expressions.
For example, *p can be kept in a register in the following:

void func(const int *p) {
f1(*p);
£2(*p);
}
Use the static keyword on functions and module-level variables that are not
used by any other file. Optimization can be much more effective if it is known
that no other module is using a function or variable. Example:

static int si;

void func (int *p) {
int i;
int j;

The compiler knows that *p = 0 does not modify variable si and so can order
the assignments optimally.

Use of the static keyword also allows for faster calling conventions on some
processors.

Use the volatile keyword only when necessary because it disables many
optimizations.

Avoid taking the address of variables. When the address of a variable is taken,
the compiler usually assumes that the variable is modified whenever a
function is called or a value is stored through a pointer. Also, such variables
cannot be assigned to registers. Use function return values instead of passing
addresses.

201

Wind River Compiler for ColdFire
User’s Guide, 5.4

202

Example: change

int func (int var) {
far_awayl (&var) ;
far_away?2 (var) ;
return var;

to

int func (int var) {
var = new_far_awayl (var) ;
far_away?2 (var) ;
return var;

}

Use the #pragma inline directive and the inline keyword for small, frequently
used functions. inline eliminates call overhead for small functions and
increases scheduling opportunities.

Use the #pragma no_alias directive to inform the compiler about aliases in
time critical loops. Example:

void add(double d[100][100], double s1[100], double s2[100])
#pragma no_alias *d, *sl, *s2
{

int i;

int j;

for (i = 0; 1 < 100; i++) {

for (3 = 0; j < 100; 3 ++) {

dlil[j] += s1[i] * s2[i];

}

}
}

Because it is known that there is no overlap between d and each of s1 and s2,
the expression s1[i]*s2[i] can be moved outside of the innermost loop.

Use #pragma no_side_effects and #pragma no_return on appropriate
functions. Example:
comm.h:

#pragma no_side_effects busy_wait (1)
#pragma no_return comm_err

file.c:

#include "comm.h"

a = *p;

busy_wait (&sem) ;

if (error) {

comm_err ("fatal error");
}
b = *p;

10 Optimization
10.1 Optimization Hints

Because busy_wait is known to have no side effects and comm_err is known
not to return, the compiler can assign *p to a register.

Use asm macros rather than separate assembly functions because it eliminates
call overhead. See 7. Embedding Assembly Code.

Avoid setjmp() and longjmp(). When the compiler finds setjmp() in a
function, a number of optimizations are turned off. For example, when the
-Xdialect-pcc option is specified, no variables declared without the register
keyword will be allocated to registers. This is done to be compatible with older
compilers that always allocate variables not declared register on the stack,
which means that if they are changed between the call to setjmp() and the call
to longjmp(), they will keep the changed value after the longjmp(). If the
variables were allocated to registers, they would have the values valid at the
time of the setjmp().

The following example demonstrates this difference:

#include <setjmp.h>
static jmp_buf label;

£1() {
int 1 = 0;
if (setjmp(label) != 0) {
/* returned from a longjmp() */
if (1 == 0) {

printf ("i has first value: allocated to "
"register.\n");
} else {
printf ("i has new value: allocated on stack\n");
}
return;

}

/* setjmp () returned 0: does not come from a longjmp*/
i=1;
£2();

}

£2() {
/* jump to the setjmp call, returning 1 */
longjmp (label, 1);

}

Note that both ways are valid according to ANSL

If possible, eliminate C++ exception-handling code (try, catch, or throw). This
allows you to compile with exceptions disabled (-Xexceptions-off), which
reduces stack space and increases execution speed.

203

Wind River Compiler for ColdFire
User’s Guide, 5.4

10.2 Cross-Module Optimization

Cross-module optimization, controlled with the -Xcmo-... options (see

5.4.27 Enable Cross-module Optimization (-Xcmo-...), p.69), allows the compiler to
optimize calls between functions in different source files. This feature can improve
execution efficiency but requires the developer to track intermodule dependencies
with care.

Currently, function inlining is the only implemented cross-module optimization.

The compiler implements cross-module optimization by constructing a database
of information about functions and variables. To use cross-module optimization,
compile your project twice—first with -Xcmo-gen to create a database, then with
-Xcmo-use to optimize using information from the database. You must specify a

name and location for the database file. Examples:

dcc -Xcmo-gen=C:\projects\MyProject\MyProject.db main.c (VVhidOVVS)
dcc -Xcmo-use=C:\projects\MyProject\MyProject.db main.c
dcc -Xcmo-gen=/projects/MyProject/MyProject.db main.c OJPJ[X)

dcc -Xcmo-use=/projects/MyProject/MyProject.db main.c

The -Xcmo-gen compiler pass is used only for building the database. All object
files created by this pass should be regenerated during the next build.

NOTE: Do not use the -Xcmo-... options to compile a project that contains two or
more source files (in different directories) with the same base name.

If there are functions that you do not want to have inlined across modules, you can
specify them by adding -Xcmo-exclude-inline to the command line with
-Xcmo-use. For example:

dcc -Xcmo-use=...\MyProject.db -Xcmo-exclude-inline=f1,f2 main.c

tells the compiler not to inline f1 or £2 across modules. Names of C++ functions
must be given in mangled form (see 13.5 C++ Name Mangling, p.241); to find the
mangled form of a function name, use the ddump utility (see 29. D-DUMP File
Dumper).

-Xcmo-verbose, combined with -Xcmo-use or -Xcmo-gen, outputs a list of inlined
(or inlinable) functions.

Before using cross-module optimization, please read the following additional
notes.

204

10 Optimization
10.2 Cross-Module Optimization

Database Location and Use

The database name should be specified with a full directory path. Otherwise, the
compiler uses the current working directory, which could result in fragmented
databases residing in multiple locations.

It is preferable to use a non-network directory for the database. Never share a
database among compiler installations, even when building from the same source
files.

Use With Other Optimizations and Build Options

The -Xcmo-... switches are affected by other build options. In general, you should
turn compiler optimizations off when building with -Xcmo-gen and on when
building with -Xcmo-use. More specifically:

» To save time, disable optimizations and skip the linking step when building
with -Xcmo-gen. (Executable output from the -Xcmo-gen compilation is
ultimately discarded.)

» -Xcmo-use is ignored unless other optimizations are enabled (-O or -XO).

» Optimization-related compiler switches, including -Xinline, apply to
cross-module optimization as well. If -Xinline is set to a very low value,
cross-module optimization is unlikely to be useful. (-Xinline has no effect on
the construction of the database itself.)

= If-Xinline is set to a high value, cross-module optimization can result in large
executables and long compilation time. You may want to compile specific
source files with cross-module optimization disabled.

Database Maintenance

Every time you compile with -Xcmo-use, the compiler updates the existing
database by adding to the list of functions that are candidates for inlining—but it
does not perform dependency analysis. Hence the database can easily become
unsynchronized after repeated incremental builds. (This occurs, for example,
when a source file containing a called function has changed, but the source file
containing the calling function is unchanged.) It is important to track
dependencies and recompile periodically with -Xcmo-gen. When in doubt,
manually delete the database file before recompiling.

After moving or copying files, always delete the database file and regenerate it
with -Xcmo-gen.

205

Wind River Compiler for ColdFire
User’s Guide, 5.4

Special Name Mangling

To enable cross-module optimization, the compiler assigns a unique mangled
name to each function and static variable. Mangled function names begin with
__STF followed by a line number, function name, mangled filename, and other
information. Mangled variable names begin with __ STV followed by a line
number, variable name, mangled filename, and other information. The
demangling utility does not demangle these names.

10.3 Target-Independent Optimizations

The following optimizations are performed by the compiler on all targets.

The numbers in parentheses after the name of each optimization are mask bits for
the -Xkill-opt option. Optimizations can be selectively disabled by specifying
-Xkill-opt=mask, where mask can be given in hex (e.g. -Xkill-opt=0x12). Multiple
optimizations can be disabled by OR-ing their bits; undefined mask bits are
ignored. -Xkill-opt=0xffffffff has the same effect as not using the -O option at all.

NOTE: Regardless of which options are specified, there is no way (short of
disabling optimizations completely) to guarantee that the compiler will or will not
perform a specific optimization on a given piece of code.

-Xkill-opt is deprecated and should be used only on the advice of Customer
Support.

Tail Recursion (0x2)

This optimization replaces calls to the current function, if located at the end of the
function, with a branch. Example:

NODEP find(NODEP ptr, int value)
{
if (ptr == NULL) return NULL;
if (value < ptr->val) {
ptr = find(ptr->left,value);

206

Inlining (0x4)

}

10 Optimization
10.3 Target-Independent Optimizations

} else if (value > ptr->val) {
ptr = find(ptr->right,value);
}

return ptr;

will be approximately translated to:

NODEP f