LINC Volume 16

Programming and Use I

Section 2

PROGRAMMING THE LINC

Mary Allen Wilkes and Wesley A. Clark

Computer Research Laboratory Washington University St. Louis, Missouri

June, 1965

VOLUME 16, SECTION 2

Programming the LINC

July 26, 1965

Page 37: Programming Example 12. The program does not behave exactly as described in the text. Perhaps the reader can find the error.

Page 49: Programming Example 15. The 5 SET instructions should be coded:

1400	SET	i	3	0063
1402	SET	i	Lį.	0064
1404	SET	°{	5	0065
1405	ser	i	6	0066
1410	SET	i	7	0067

Page 52: Indexing example, bottom of page:

4377 Original C(3) = 1;377 4000 Index h(3) -0377 →1 End-around carry 0400 New C(3) = 0;400

Page 57: Illustration:

Errata Sheet Number 1, Programming the LINC Page 2

Page 58: Diagram, top of page:

II-9:

Table, top of page:

II-12:

KBD i.

KEYBOARD. If a key has been struck and is locked down, clear the Accumulator, release the key, and read its 6-bit code number into the right half of the Accumulator. If no key has been struck and i = 1, pause until a key is struck and continue as above. If no key has been struck and $i = 0_j$ clear the Accumulator and go on to the next instruction.

Page 47: Second table:

		Memory Address	Memory	Contents
		р	MUL 1	1260
		p + 1	N	N
Page 90:	Example 29.	Coding should	Ld be:	•
	106	•	; 700	

etc.

For whom the gong perhaps chimes

PROGRAMMING THE LINC

Contents

Cinta 2.	Introduction	
3.	Simple Instructions	1
4.	Shifting	
5.	LINC Memory and Memory Reference Instructions)
6.	The Instruction Location Register 12 The JUMP Instruction 14	
7.	Address Modification and Program "Loops" 16	-
8.	Index Class Instructions I21Indirect Addressing21Index Registers and Indexing24Logic Instructions28	-
9.	Special Index Register Instructions29The INDEX AND SKIP Instruction29The SET Instruction31)
10.	Index Class Instructions II34Double Register Forms34Multiple Length Arithmetic39Multiplication45	+)
11.	Half-Word Class Instructions 50)
12.	The KEYBOARD Instruction 54	ŗ
13.	The LINC Scopes and the Display Instructions	
14.	Analog Input and the SAMPLE Instruction)
15.	The Skip Class Instructions 72) -
16.	The Data Terminal Module and the OPERATE Instruction	-
17.	Subroutine Techniques 77	7
18.	Magnetic Tape Instructions80Block Transfers and Checking82Group Transfers92Tape Motion and the MOVE TOWARD BLOCK Instruction94Tape Format98Tape Motion Timing101	

것이다. 나타가 너무 한테리는 것을 잘

Contents

Chart I. Classes of LINC Instructions 105 Keyboard Code 106 Chart II. Chart III. Pattern Words for Character Display 107 Instruction Code 108 Chart IV. Appendix I: Double Memory Programming Appendix II: LINC Order Code Summary en. References a process of the second a second a second a a a a a

Index of Programming Examples

l.	Simple Sequence of Instructions	13
2.	Simple Sequence Using the JUMP Instruction	15
3.	Summing a Set of Numbers Using Address Modification	18
4.	Packing a Set of Numbers	20
5.	Indirect Addressing	23
6.	Indexing to Clear a Set of Registers	25
7.	Memory Scanning	26
8.	Summing Sets of Numbers Term by Term	27
9.	Index Registers Used as Counters	30
10.	Indexing and Counting to Clear a Set of Registers	30
11.	Setting Initial Index Register Values	33
12.	Scanning for Values Exceeding a Threshold	37
13.	Summing Sets of Double Length Numbers Term by Term	44
14.	Multiplying a Set of Fractions by a Constant	48
15.	Multiplication Retaining 22-bit Products	49
16.	Filling Half-Word Table from the Keyboard	55
17.	Selective Filling of Half-Word Table from the Keyboard	56
18.	Horizontal Line Scope Display	58
19.	Curve Display of a Table of Numbers	59
20.	Character Display of the Letter A	62
21.	Character Display of the Letter A Using DSC	64
22.	Displaying a Row of Characters	65
23.	Simple Sample and Display	68
24.	Moving Window Display Under Knob Control	69
25.	Histogram Display of Sampled Data	71
26.	Counting Samples Exceeding a Threshold	74
27.	Simple Sample and Display with Keyboard Control	75
28.	Simple Check of an Entire Tape	88
29.	Dividing Large Programs Between Tape and Memory	90
30.	Collecting Data and Storing on Tape	91
31.	Tape and Memory Exchange with Group Transfer	94
32.	Block Search Subroutine	100
33.	Write and Check with Fewest Reversals	103
34.	Indexing Across Memory Boundaries Appendix I:	3

Page Index of LINC Instructions

ADA		o, e	• •	• •	•	21,	II-5
ADD		• •	• •	• • •	•	11,	II - 3
ADM		• •	••		• •	26,	II - 6
APO	•••	o o	• •		0	73 ,	II-4
ATR		ه ه	0 0	• • •	0	6,	II-1
AZE		• •	•	• •	0	17,	II-4
BCL		0 0	• •	• •	•	26,	II-7
BCO		o 0	e o		٠	28,	II-7
BSE			• •	• • •	0	28,	II-7
СНК		0 ¢	• •		•	87,	II-15
CLR	• • •	. •	• •	• •	•	5,	II-l
СОМ		• •		0 0	, o -	6,	II-l
DIS		•	• •		•	57 ,	II-11
DSC		0 0	• •		۰	63,	II-8
HIT			c •	0 0	e	13,	II-l
IBZ		0 0	0 0	0 0	•	98,	II-4
JMP		0 0	• •		۰	14,	II-3
KBD	0 0	• •	• •		<u>,</u>	54,	II-12
KST	9 9	o •	• •		0	74,	II-4
LAM		o •	•	• •	•	39,	II-6
LDA	••	• <u>•</u>	• •	• e	•	23,	II - 5
LDH	• •		,• •	• •	0	50,	II-9
LSW			0 0	0	0 0		II-12
LZE		• •	• .•	о с	0	73 ,	II-4
MSC 13	• •	0 0		. •	0.0		II-l
MTB		0 0	• •		•	96,	II-14

.

MUL	• • • • • • • • • • • • • • • • •	45,	II-6
NOP		• • • •	II-l
OPR		76,	II-12
RCG		92,	II-14
RDC		86,	II-13
RDE		83,	II-14
ROL	• • [,] • • • • • • • • • • • • • • • •	8,	II-2
ROR		8,	II-2
RSW	••••••	6,	II-12
RTA	• • • • • • • • • • • • • • • •	6,	II-1
SAE	••••••	25,	II-7
SAM		66,	II-10
SCR		. 8,	II-2
			*
SET	• • • • • • • • • • • • • • • • • • • •	31,	II-10
SET SHD	• • • • • • • • • • • • • • • • • •	31, 52,	II-10 II-9
	• • • • • • • • • • • • • • • • • • •	•	
SHD		52,	II-9
SHD SKP	• • • • • • • • • • • • • • •	52, 72,	II-9 II-4
SHD SKP SNS	• • • • • • • • • • • • • • • • • • •	52, 72, 73,	II-9 II-4 II-4
SHD SKP SNS SRO	• • <td>52, 72, 73, 61,</td> <td>II-9 II-4 II-4 II-7</td>	52, 72, 73, 61,	II-9 II-4 II-4 II-7
SHD SKP SNS SRO STA	• •	52, 72, 73, 61, 23,	II-9 II-4 II-4 II-7 II-5
SHD SKP SNS SRO STA STC	• •	52, 72, 73, 61, 23, 10,	II-9 II-4 II-7 II-5 II-3
SHD SKP SNS SRO STA STC STH	• •	52, 72, 73, 61, 23, 10, 51,	II-9 II-4 II-7 II-5 II-3 II-9
SHD SKP SNS SRO STA STC STH SXL	• •	52, 72, 73, 61, 23, 10, 51, 72,	II-9 II-4 II-7 II-5 II-3 II-9 II-4
SHD SKP SNS SRO STA STC STH SXL WCG	• •	52, 72, 73, 61, 23, 10, 51, 72, 92,	II-9 II-4 II-7 II-5 II-3 II-9 II-4 II-15

16-2

Ĵ.

PROGRAMMING THE LINC

1. Introduction

The LINC (Laboratory Instrument Computer) is a stored-program binarycoded digital computer designed to operate in the laboratory environment as a research tool. The following description is intended to serve as a general introduction to basic programming concepts and techniques, and specifically as an introduction to LINC programming.

Like most digital computers, the LINC operates by manipulating binary numbers held in various <u>registers</u> (storage devices for numbers), under the control of a program of <u>instructions</u> which are themselves coded as binary numbers and stored in other registers. LINC instructions generally fall into types or classes, the instructions of a class having certain similarities. In this description, however, instructions are introduced as they are relevant to the discussion; reference to Chart I is therefore recommended when class characteristics are described. Furthermore, not all LINC instructions are described here in detail; therefore this document should be read in conjunction with the LINC Order Code Summary, Appendix II.

The best way to begin is to consider only a few of the registers and switches which are shown on the LINC Control Console: the ACCUMULATOR (ACC) which is a register of 12 lights, the LINK BIT (L), the LEFT and RIGHT SWITCHES, which are rows of 12 toggle switches each, and one lever switch labeled "DO." The number systems and operation of several of the instructions can be understood in terms of these few elements.

2

2. Number Systems

The elements (bits) of each register or row of toggle switches are to be thought of as numbered from right to left starting with zero. This will serve to identify the elements and to relate them to the numerical value of the binary integer held in the register. We shall use "C(ACC)" to denote "the contents of the Accumulator register," etc. If the Accumulator is illuminated thus

	Light	Off
	Light	On
L_		

then the binary number stored in the Accumulator is

C(ACC) = OlO Oll 100 101 (binary) which has the decimal value

 $C(ACC) = 2^{10} + 2^7 + 2^6 + 2^5 + 2^2 + 2^0$ = 1024 + 128 + 64 + 32 + 4 + 1 = 1253 (decimal)

We can also view this as an <u>octal</u> number by considering each group of three bits in turn. In this example, grouping and factoring proceed as follows:

$$C(ACC) = (2^{10}) + (2^{7}+2^{6}) + (2^{5}) + (2^{2}+2^{0})$$

= $(2^{1})\cdot 2^{9} + (2^{1}+2^{0})\cdot 2^{6} + (2^{2})\cdot 2^{3} + (2^{2}+2^{0})\cdot 2^{0}$
= $(2)\cdot 8^{3} + (3)\cdot 8^{2} + (4)\cdot 8^{1} + (5)\cdot 8^{0}$
= $2 \qquad 3 \qquad 4 \qquad 5$
= $2345 \quad (octal)$

To put this more simply, each octal digit can be treated as an independent 3-bit binary number whose value, $(0, 1, \ldots, 7)$, can be obtained from the weights 2^2 , 2^1 , and 2^0 :

This ease of representation (the eight possible combinations within a group are easily perceived and remembered) is the principal reason for using octal numbers. The octal system can be viewed simply as a convenient notational system for representing binary numbers. Of course, octal numbers can also be manipulated arithmetically.

The translation from one system to the other is easily accomplished in either direction. Here are some examples:

Sometimes it is useful to view the contents of a register as a <u>signed</u> <u>number</u>. One of the bits must be reserved for the sign of the number. The left-most bit is therefore identified as the SIGN BIT (0 for +, 1 for -). To change the sign of a binary number, we <u>complement</u> the number (replace all ZEROS by ONES and vice-versa).* Examples:

000 000 000 011 = +3 111 111 111 100 = -3 011 111 111 111 = +3777 100 000 000 000 = -3777

The largest positive and negative octal integers in the l2-bit signed-number system.

* See Volume 16, Section 1, "An Introduction to Binary Numbers and Binary Arithmetic," Irving H. Thomae.

4

Simple Instructions

 $\frac{5}{CLR}$

We say that the pair of binary numbers lolllllll00ll and 0l000000ll00 are <u>complements of each other</u>, (in octal these are 5763 and 2014), and will denote the complement of the number N by \overline{N} . Note that the sum of each binary digit and its complement is the number 1, and that the sum of each octal digit and its complement is the number 7. Note also that there are two representations of the number zero:

> 000 000 000 000 = +0 111 111 111 111 = -0

Note finally that the sum of any binary number and its complement is always a zero of the second kind, "minus zero," in this system.

3. Simple Instructions

The LINC instructions themselves are encoded as binary numbers and held in various registers. The simplest of these instructions, namely those which operate only on the Accumulator, will be described first with reference to the Left Switches.

Raising the DO lever (DO means "do toggle instruction") causes the LINC to execute the instruction whose binary code number is held in the Left Switches. The LINC will then halt. For example, if we set the Left Switches to the code number for the instruction "CLEAR," which happens to be OOll (octal), and then momentarily raise the DO lever, the Accumulator lights will all go out and so will the Link Bit light, so that C(ACC) = 0, and C(L) = 0. In setting a switch, "up" corresponds to "one."

6 COM ATR RTA RSW

Tersely: If C(Left Switches) = 0011 (octal), then DO has the effect $0 \rightarrow C(ACC)$ and $0 \rightarrow C(L)$. (Read "zero replaces the contents of the Accumulator," etc.).

CLEAR (or CLR) is an instruction of the class known as Miscellaneous instructions. A second Miscellaneous Class instruction, COMPLEMENT (or COM), with the code number 0017 (octal), directs the LINC to complement the contents of the Accumulator and therefore has the effect $\overline{C(ACC)} \rightarrow C(ACC)$. (Read: "the complement of the contents of the Accumulator replaces the contents of the Accumulator.")

Two other instructions of this class transfer information between the Accumulator and the Relay Register. The Relay Register, displayed on the upper right corner of the Control Console, operates 6 relays which can be used to control or run external equipment. An instruction with the code 0014 (octal), called ACCUMULATOR TO RELAY, ATR, directs the LINC to copy the contents of the right half of the Accumulator, i.e., the right-most 6 bits, into the Relay Register. The Accumulator itself is not changed when the instruction is executed. Another instruction, called RELAY TO ACCUMULATOR, RTA, with the octal code OO15, causes the LINC to clear the Accumulator and then copy the contents of the Relay Register into the right half of the addition Accumulator. In this case the Relay Register is not changed and the left half of the Accumulator is left cleared (i.e., containing zeros).

Another instruction called RIGHT SWITCHES, RSW, with the code number 0516 (octal), directs the LINC to copy the contents of the Right Switches into the Accumulator. By setting the Left Switches to 0516, the Right Switches to whatever value we want to put in the Accumulator, and then momentarily raising the DO lever, we can change the contents of the Accumulator to any new value we like. The drawing shows how the switches should be set to put the number 6451 (octal) into the Accumulator:

DO LEFT SWITCHES & R. R.

Code number for RSW instruction = 0516

- RIGHT SWITCHES

 $6451 \rightarrow C(ACC)$ when DO lever is raised

7

After a number has been put into the Accumulator it can be repositioned or "shifted," to the right or left. There are two ways of shifting: <u>rotation</u>, in which the end-elements of the Accumulator are connected together so as to form a closed ring, and <u>scaling</u>, in which the end-elements are not so connected.

Examples of shifts of one place:

	e de la composición de	54 - 5			a ser a s						
			'rota .plac				ect o' right			-	
		0110 1	. prac		<u> </u>		1 18110	<u> </u>			
before	000	000	011	001	000	000	011	001	П	+25	(decimal)
after	100	000	001	100	000	000	001	100	=	+12	a da ang ang ang ang ang ang ang ang ang an
											Sector Sector
before	111	111	100	110	111	111	100	110	=	-25	(decimal)
after	011	111	110	011	111	111	110	Oll	Ш	-12	
	,		11 de 18		• • •						

Note that, in scaling, bits are lost to the right, which amounts to an error of "rounding off"; the original sign is preserved in the Sign Bit and replicated in the bit positions to the right of the Sign Bit. This has the effect of reducing the size of the number by powers of two (analogous to moving the decimal point in decimal calculations). 8 ROR ROL SCR

> The LINC has three instructions, called the Shift Class instructions, which shift the contents of the Accumulator; these are: ROTATE RIGHT, ROTATE LEFT, and SCALE RIGHT. Unlike the simple instructions we have considered so far, the code number for a Shift Class instruction includes a variable element which specifies the number of places to shift. For example, we write "ROL n," which means "rotate the contents of the Accumulator n places to the left," where r can be any number from 0 through 17 (octal).

As a further variation of the Shift Class instructions, the Link Bit can be adjoined to the Accumulator during rotation to form a 13-bit ring as shown below, or to bit 0 of the Accumulator during scaling to preserve the low order bit scaled out of the Accumulator:

Scaling with Link Bit

The code number of a Shift Class instruction, e.g., ROTATE LEFT, therefore includes the number of places to shift and an indication of whether or not to include the Link Bit. We use the full expression <u>ROL i n</u>, which has the octal coding:

 $\int \left\{ \begin{array}{l} i = 0; & ACC \text{ only} \\ i = 1; & Link \longleftrightarrow ACC \right\}$

ROL i n 0240 + 20i + n

number of places to shift (n = 0, 1, ..., 17)

so that, for example, ROTATE ACC LEFT 3 PLACES has the code number 0243, and ROTATE ACC WITH LINK LEFT 7 PLACES has the code number 0267. Note the correspondence between the code terms and bit-positions of the binary-coded instruction as it appears, for example, in the Left Switches:

ROL i 7

Code number = 0267

Similar coding is used with ROTATE RIGHT, ROR i n, 300 + 20i + n, and SCALE RIGHT, SCR i n, 340 + 20i + n.

5. LINC Memory and Memory Reference Instructions

Before we can proceed to other instructions it is necessary to introduce the LINC Memory. This Memory is to be regarded as a set of 1024 (decimal) registers* each holding 12-bit binary numbers in the manner of the Accumulator. These memory registers are numbered 0, 1, ..., 1023 (decimal), or 0, 1, ..., 1777 (octal), and we shall speak of "the contents of register 3," C(3), "the contents of register X," C(X), etc., referring to "3" and "X" as <u>Memory</u> <u>Addresses</u>.

The Memory actually consists of a remotely-located array of magnetic storage elements with related electronics, but for introductory purposes we can view it in terms of two registers of lights, namely the MEMORY ADDRESS register and the MEMORY CONTENTS register:

*See Appendix I for a discussion of the LINC as a "double memory" machine.

By using these two registers in conjunction with the Left Switches it is possible to find out what values the memory registers contain. If, for example, we are interested in the contents of register 3, we may set the Left Switches to the memory address 0003 and then push the button labeled EXAM. We will see 0003 in the Memory Address register, and the contents of register 3 will appear in the Memory Contents register. By setting the Left Switches to a memory address and pushing EXAM, we can examine the contents of any register in the LINC Memory.

The contents of any selected memory register may be changed by using both the Left and Right Switches and the pushbutton marked FILL. If, for example, we want the memory register whose address is 700 to contain -1 (i.e., 7776 octal) we again set the memory address, 0700, in the Left Switches. We set the Right Switches to the value 7776 and push the FILL button. A 0700 will appear in the Memory Address register and 7776 will appear in the Memory Contents register, indicating that the contents of register 700 are now 7776. Whatever value register 700 may have contained before FILL was pushed is lost, and the new value has taken its place. In this way any register in the LINC Memory can be filled with a new number.

None of the LINC instructions makes explicit reference to the Memory Address register or Memory Contents register; rather, in referring to memory register X, an instruction may direct the LINC implicitly to put the address X into the Memory Address register and the contents of register X, C(X), into the Memory Contents register.

The STORE-CLEAR Instruction

Now we can describe the first of the memory reference instructions, STORE-CLEAR X, STC X, which has the code number 4000 + X, where $0 \le X \le 1777$ (octal). (From now on we will use only octal numbers for addresses.) Execution of STC X has two effects: 1) the contents of the Accumulator are copied into memory register X, $C(ACC) \rightarrow C(X)$, and 2) the Accumulator is then cleared, $0 \rightarrow C(ACC)$. (The Link Bit is not cleared.) Thus, for example, if C(ACC) = 0503 and C(671) = 2345, and we set the code

10 STC

11 ADD

number for STC 671, i.e., 4671, in the Left Switches, then raising the DO lever will put 0 into the Accumulator and 0503 into register 671. The original contents of register 671 are lost.

It will be clear, now, that the Memory can be filled with new numbers at any time either by using the FILL pushbutton and the switches, or by loading the Accumulator from the Right Switches with the RSW instruction and the DO lever and then storing the Accumulator contents with the STC X instruction and the DO lever.

The ADD Instruction and Binary Addition

STC is one of three Full Address Class instructions. Another instruction in this class, ADD X, has the code number 2000 + X where $0 \le X \le 1777$. Execution of ADD X has the effect of adding the contents of memory register X to the contents of the Accumulator, i.e., $C(X) + C(ACC) \rightarrow C(ACC)$. If the Accumulator is first cleared, ADD X will, of course, have the effect of merely copying into the Accumulator the contents of memory register X, i.e., $C(X) \rightarrow C(ACC)$. In any case, the contents of memory register X are unaffected by the instruction.

The addition itself takes place in the binary system, * within the limitations of the l2-bit registers. The basic rules for binary addition are simple: 0 + 0 = 0; 1 + 0 = 1; 1 + 1 = 10 (i.e., "zero, with one to carry"). A carry arising from the left-most column ("end-carry") is brought around and added into the right-most column ("end-around carry"). Some examples (begin at the right-most column as in decimal addition):

001	111	010	001				111	100	010	011	
000	010	111	001				001	010	010	000	
11 010	111 010	1 001	1 010	(Carries) (Sum)	•			110		011	
		, -				· ·	Constant Providence of Street			<u>> 1</u> 11	(End-around carry) (Carries)
						· .	000	110	100	100	

The reader should try some examples of his own, and incidentally verify the fact that adding a number to itself with end-around carry is equivalent to

* See Volume 16, Section 1, "An Introduction to Binary Numbers and Binary Arithmetic," Irving H. Thomae.

rotating	left	one p	lace.	With	signed-i	ntege	r int	erpretation, some other
examples	are:	110 - A			tana Kanαna ang		1 m. 1 - 12	al chuice ag (
000	000	000	101	= +5		111	111	111 010 = -5
								<u>111 100 = -3</u>
	111 000	111 000	001 -> 1	n an an thair an thai		111 111	111	<pre>x11</pre>
		1	. <u>1</u>	New York Con	er en state en s			
000	000	000	010	= +2		111	111	110 $111 = -8$ (decimal)

It can be seen that subtraction of the number N is accomplished by addition of the complement of N, \overline{N} . Of course, if either the sum or difference is too large for the Accumulator to hold, the result of the addition may not be quite the number we would like to have. For example, adding 1 to the largest positive integer in this system (+3777, octal) results in the largest negative integer (-3777, octal). This is sometimes called "overflowing the capacity of the Accumulator."

6. The Instruction Location Register

It is clear that the code numbers of a series of different instructions can be stored in consecutive memory registers. The LINC is designed to execute such a "stored program" of instructions by fetching and carrying out each instruction in sequence, using a special 10-bit register called the INSTRUCTION LOCATION register, (IL), to hold the address of the next instruction to be executed. Using the FILL pushbutton and the Left and

12

13 HLT

Right Switches already discussed, we can, for example, put the code numbers for a series of instructions into memory registers 20-24 which will divide by 8 the number held in memory register 30 and store the result in memory register 31:

	Memory Address	Memory Cor	itents	Effect
Start	→ 20	CLR	0011	Clear the Accumulator.
	21	ADD 30	2030	Add the contents of register 30 to the Accumulator.
	22	SCR 3	0343	Scale C(ACC) right 3 places to divide by 8.
	23	STC 31	4031	Store in register 31.
· · ·	24	HLT	0000	Halt the computer.
	۰	o	•	
	: •	• • • • • • • • • • • • • • • • • • • •	•	
at the c	30.		N	Number to be divided by 8.
	31	$\rightarrow \mathbb{N}/8$	N/8	Result. The second second second
	1	and the second	Le se proc	[1] A. C. Martin and M. Martin a Martin and M. Martin and Martin and M. Martin and

Example 1. Simple Sequence of Instructions,

We can use the FILL pushbutton and the Left and Right Switches to put the code numbers for the instructions into memory registers 20 - 24 and the number to be divided into register 30. Pushing the console button labeled START 20 directs the LINC to begin executing instructions at memory register 20. That is, the value 20 replaces the contents of the Instruction Location register. As each instruction of the stored program is executed, the Instruction Location register is increased by 1, $C(IL) + 1 \rightarrow C(IL)$. When the Instruction Location register contains 24, the computer encounters the instruction HLT, code 0000, which halts the machine. To run the program again we merely push the START 20 pushbutton. (The code numbers for the instructions will stay in memory registers 20 - 24 unless they are deliberately changed.)

n an sunai shi dala an bin shekara a an alan sa ka sa aliyakan ku nadi ya aka sa na n

The JUMP Instruction difference and grant provide state of the second constraints and the second

14

JMP

The last Full Address instruction, JUMP to X, JMP X, with the code number 6000 + X, has the effect of setting the Instruction Location register to the value X; $X \rightarrow C(IL)$. That is, the LINC, instead of increasing the contents of the Instruction Location register by one and executing the next instruction in sequence, is directed by the JMP instruction to get its next instruction from memory register X. In the above example having a JUMP to 20 instruction, code 6020, in memory register 24 (in place of HLT) would cause the computer to repeat the program endlessly. If the program were started with the START 20 pushbutton, the Instruction Location register would hold the succession of values: 20, 21, 22, 23, 24, 20, 21, etc. (Later we will introduce instructions which increase C(IL) by extra amounts, causing it to "skip.")

JMP X has one further effect: if JMP 20, 6020, is held in memory register 24, then its execution causes the code for "JMP 25" to replace the contents of register 0; i.e., $6025 \rightarrow C(0)$. More generally, if JMP X is in any memory register "p," $0 \le p \le 1777$, then its execution causes "JMP p+1" $\rightarrow C(0)$.

Memory Address	Memory Contents	Effect
	JMP p+1 6000 + p+1	en de la color de 1993 de 1993 La color de la color de 1993 de La color de la color de 1993 de
	ing she water a straight strai	
\rightarrow p \rightarrow	JMP X 6000 + X	$X \rightarrow C(IL)$, and "JMP p+1" $\rightarrow C(0)$.
p+1		New Strand Stranger
	ing and in transformer of the	

This "JMP p+1" code replaces the contents of register 0 every time a JMP X instruction is executed <u>unless X = 0</u>, in which case the contents of 0 are unchanged. The use of memory register 0 in this way is relevant to a programming technique involving "subroutines" which will be described later.

The following programming example illustrates many of the features described so far. It finds one-fourth of the difference between two numbers N_1 and N_2 , which are located in registers 201 and 202, and leaves the result in register 203 and in the Accumulator. After filling consecutive memory registers 175 through 210 with the appropriate code and data numbers, the program must be started at memory register 175. Since there is no "START 175" button on the console, this is done by setting the Right Switches to 0175 and pushing the console button labeled START RS (Start Right Switches).

Memory			
Address	Memory Co	ontents	Effect
$\xrightarrow{\text{Start}}$ 175	CLR	0011	$0 \rightarrow C(ACC)$.
176	ADD 201	2201	$N_1 \rightarrow C(ACC)$.
177	COM	0017	Forms -N ₁ .
200	JMP 204	6204	Jumps around data; $204 \rightarrow C(IL)$, and JMP 201 $\rightarrow C(0)$.
201	Nl	Nl	
202	N	N	Data and result.
203	$(N_2 - N_1)/4$	$(N_2 - N_1)/4$	
204	ADD 202	2202	$\left(N_{2} - N_{1} \right) \rightarrow C(ACC).$
205	SCR 2	0342	Divides by 4.
206	STC 203	4203	Stores result in 203; $C(ACC) \rightarrow$
207	ADD 203	2203	$C(203); O \rightarrow C(ACC).$ Recovers result in ACC.
210	НІЛ	0000	Halts the LINC.

Example 2. Simple Sequence Using the JUMP Instruction.

In executing this program, the Instruction Location register holds the succession of numbers: 175, 176, 177, 200, 204, 205, 206, 207, 210.

If JMP done with "Do", the JMP is stored in register zero (1 is not added)

اليون (1977 - 1977 - 1977) كان المراجع المراجع المراجع (1977). المراجع

7. Address Modification and Program "Loops"

Frequently a program of instructions must deal with a large set of numbers rather than just one or two. Suppose, for example, that we want to add together 100 (octal) numbers and that the numbers are stored in the memory in registers 1000 through 1077. We want to put the sum in memory register 1100. We could, of course, write out all the instructions necessary to do this,

Memory Address	Memory Conte	ents	Effect	e Victoriae i
→ 20	CLR	0011	$0 \rightarrow C(ACC); 0 \rightarrow$	C(L).
21	ADD 1000	3000	Add 1st number.	
22	ADD 1001	3001	Add 2nd number.	
23	ADD 1002	3002	Add 3rd number.	
24	ADD 1003	3003	Add 4th number.	
i i i i i i i i i i i i i i i i i i i	etc.	etc.	etc.	

but it is easy to see that the program will be more than 100 (octal) registers long. A more complex, but considerably shorter, program can be written using a programming technique known as "address modification." Instead of writing 100 (octal) ADD X instructions, we write only <u>one</u> ADD X instruction, which we repeat 100 (octal) times, modifying the X part of the ADD X instruction each time it is repeated. In this case the computer first executes an ADD 1000 instruction; the program then adds one to the ADD instruction itself and restores it, so that it is now ADD 1001. The program then jumps back to the location containing the ADD instruction and the computer repeats the entire process, this time executing an ADD 1001 instruction. In short, the program is written so that it changes its own instructions while it is running. 16-2

The process might be diagrammed:

This technique introduces the additional problem of deciding when all 100 numbers have been summed and halting the computer. In this context we introduce a new instruction ACCUMULATOR ZERO, AZE, code 0450. This is one of a class of instructions known as the Skip instructions; it directs the LINC to skip the instruction in the next memory register when C(ACC) = either positive or negative zero (0000 or 7777, octal). If $C(ACC) \neq 0$, the computer does not skip. For example, if C(ACC) = 7777, and we write:

Memory Address	Memory Contents			
→ p p+1 p+2	AZE 0450			

the computer will take the next instruction from p+2. That is, when the AZE instruction in register p is executed, p+2 will replace the contents of the Instruction Location register, and the computer will skip the instruction at p+1. If $C(ACC) \neq 0$, then p+1 $\rightarrow C(IL)$ and the computer executes the next instruction in sequence as usual.

The following example sums the numbers in memory registers 1000 through 1077 and puts the sum into memory register 1100, using address modification and the AZE instruction to decide when to halt the computer. (Square brackets indicate registers whose contents change while the program is running.)

Memory		the second second	
Address	Memory Contents		Effect
10	ADD 1000	3000	
11	1,	0001	Constants used by program.
12	-(ADD 1100)	4677	
٠	o	e Ngr	
• •	. •		
$\xrightarrow{\text{Start}}$ 20	CLR	0011	
21	ADD 10	2010	Code for ADD 1000 \rightarrow C(25). 0 \rightarrow C(ACC).
22	STC 25	4025	J
23	STC 1100	5100	$0 \rightarrow C(1100)$, for accumulating sum.
24	ightarrow CLR	0011	Clear ACC and add $C(X)$ to $C(ACC)$.
25	[ADD X]	[2000+X]	
26	ADD 1100	3100	Sum so far + $C(ACC) \rightarrow C(ACC)$.
004 - Jüst Go 27	STC 1100	5100	Sum so far \rightarrow C(1100).
30	ADD 25	2025	ADD X instruction in register 25"
31	ADD 11	2011	$\rightarrow C(ACC). Add 1 to C(ACC)$ and replace in register 25.
1977 - Danies . 3 2	STC 25	4025	and reprace, and register and one
33	ADD 25	2025	$\int C(25) + C(12) \rightarrow C(ACC)$. If $C(25)$
34	ADD 12	2012	= "ADD 1100," then C(ACC) = 7777.
35	AZE	0450	Skip to register 37 if C(ACC) = 7777.
36	JMP 24	6024	If not, return and add next number.
37	$\mathrm{HLT} \leftarrow$	0000	When $C(ACC) = 7777$, all numbers have
•	o	n series and series a	been summed. Halt the computer.
e	9	¢	
• 1000	Nanala serang sang sang sang sang sang sang sang s	NC Strates	The survey of the state of the
1001	l se sig e ¹ lier de No	No.	オール「キーイクローズ報告の目前」に対象にため、1996、回答会。
	egeneral de la Caral represe	² }~_	Numbers to be summed.
an a	en anter a se anter a La construcción de la construcción d		a car of the state and the state of the
1076	N ₇₇	N ₇₇	Care Courte un presidio de contecto de Aprendia
1077	N ₁₀₀	N ₁₀₀	IJ
1100	[Sum]	[Sum]	
Examp	l ble 3. Summing a S	Set of Nu	I mbers Using Address Modification.

The instructions at locations 20 - 22 initially set the contents of memory register 25 to the code for ADD 1000. At the end of the program, register 25 will contain 3100, the code for ADD 1100. Adding (in registers 33 and 34) C(25) to C(12), which contains the complement of the code for ADD 1100, results in the sum 7777 only when the program has finished summing all 100 (octal) numbers. This repeating sequence of instructions is called a "loop," and instructions such as AZE can be used to control the number of times a loop is repeated. In this example the instructions in locations 24 through 36 will be executed 100 (octal) times before the computer halts.

The following program scans the contents of memory registers 400 through 450 looking for registers which do not contain zero. Any non-zero entry is moved to a new table beginning at location 500; this has the effect of "packing" the numbers so that no registers in the new table contain zero. When the program halts, the Accumulator contains the number of nonzero entries.

> in en staarde het mantak oor op het haar sjage jaar de kaar in op de het op de het op de het op de het op de h Gebeure

16**-**2

19

۰.

Memory Address	Memory Conte	nta	Effect
ter and the second s	ADD 400	2400	a state of an original of taxologies
· · · · · · · · · · · · · · · · · · ·	STC 500	4500	na a budan seta galat disarah disar
		0001	> Constants used by the program.
· · · · · · · · · · · · · · · · · · ·	-(ADD 451)	5326	and the second state for the second street
10	-(STC 500)	3277	A second second the second second second second
•	i - referir 🕌 erreferi	0	an faith an that a start that the start of the
Start)100	CLR	0011	A second state of the second
101	ADD 4	2004	Code for ADD 400 \rightarrow C(106).
102	STC 106	4106	
103	ADD 5	2005	Code for STC 500 \rightarrow C(112).
104	STC 112	4112	
105		0011	and the second state of the second
106 ·	[ADD 400]	[2000+X]	$\mathcal{C}(\mathbf{X}) \to \mathcal{C}(ACC)$, and the set of the second structure of
107	AZE	0450	If C(ACC) = zero, skip to location lll.
110	JMP 112	6112	$C(ACC) \neq 0$, therefore JMP
111	JMP 116 ← -	6116	to location 112. C(ACC) = 0, therefore JMP to location 116.
112	→[STC 500]	[4000+X]	Store non-zero entry in new table.
113	ADD 6	2006	
114	ADD 112	2112	Add 1 to the STC instruction in register 112.
115	STC 112	4112	
. 116	\rightarrow ADD 6	2006	
117	ADD 106	2106	Add 1 to the ADD instruction in register 106.
120	STC 106	4106	
121	ADD 106	2106	$\int C(106) + C(7) \rightarrow C(ACC). $ If
, 122	ADD 7	2007	C(106) = ADD 451, then $C(ACC) = 7777.$
123	AZE	0450	If $C(ACC) = 7777$, skip to
124	JMP 105	6105	location 125. If not, return to examine next
125	ADD 112 < -	2112	number. If $C(ACC) = 7777$, then number
126	ADD 10	2010	of non-zero entries \rightarrow C(ACC)
127	HLT	0000	and computer halts.

Example 4. Packing a Set of Numbers.

At the end of the program, register 106 will contain the code for ADD 451, and all numbers in the table will have been examined. If, say, 6 entries were found to be non-zero, registers 500 - 505 will contain the non-zero entries, and register 112 will contain the code for STC 506. Therefore by adding C(112) to the complement of the code for STC 500 (in registers 125 -126 above), the Accumulator is left containing 6, the number of non-zero entries.

8. Index Class Instructions I

Indirect Addressing

The largest class of LINC instructions, the Index Class, addresses the memory in a somewhat involved manner. The instructions ADD X, STC X, and JMP X are called Full Address instructions because the 10-bit address X, $0 \le X \le 1777$, can address directly any register in the 2000 (octal) register memory. The Index Class instructions, however, have only 4 bits reserved for an address, and can therefore address only memory registers 1 through 17 (octal). The instruction ADD TO ACCUMULATOR, ADA i β , octal code 1100 + 20i + β , is typical of the Index Class:

 $ADA \ i \ \beta \qquad 1100 + 20i + \beta$ $ADA \qquad 1 \le \beta \le 17$

Memory register β should be thought of as containing a memory address, X, in the right-most 10 bits,

and we speak of $X(\beta)$, meaning the right 10-bit address part of register β . The left-most bit can have any value whatever, and, for the present, bit 10 must be zero.* In addressing memory register β , an Index Class instruction

* See Appendix I.

tells the computer where to find the memory <u>address</u> to be used in executing the instruction. This is sometimes called "indirect" addressing.

For example, if we want to add the value 35 to the contents of the Accumulator, and 35 is held in memory register 270, we can use the ADA instruction in the following manner:

Memory Address	Memory C	ontents	Effect
(B)		0270	Address of register containing 35.
• `×			
0270 K	0035	0035	$\frac{1}{2} = \frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} \right) \left(\frac{1}{2}$
0 •			n an an 1410 an an Artan an Artan an Artan
→ p	ADAB	1100 + β	$C(270) + C(ACC) \rightarrow C(ACC).$
ulu - engra e engra (ega) engra (ega)		e rata state i solar di e ga di otranggen di	

Note that the ADA instruction does not tell the computer directly where to find the number 35; it tells the computer instead where to find the <u>address</u> of the memory register which contains 35. By using memory registers 1 through 17 in this way, the Index Class instructions can refer to any register in the memory.

Indirect Addressing

Two other Index Class instructions, LOAD ACCUMULATOR, LDA i β , and STORE ACCUMULATOR, STA i β , are used in the following program which adds the contents of memory register 100 to the contents of register 101 and stores the result in 102. The LDA i β instruction, code 1000 + 20i + β , clears the Accumulator and copies into it the contents of the specified memory register. STA i β , code 1040 + 20i + β , stores the contents of the Accumulator in the specified memory register; it does not, however, clear the Accumulator. Addition with ADA uses 12-bit end-around carry arithmetic.

Memory Address	Memory Contents		Effect
10	X	0100	Address of N_1 .
11	X	0101	Address of N_{2} .
12	X ₃	0102	Address of $(\tilde{N}_1 + N_2)$.
• •	8 0 0	• •	
Start, 30	LDA 10	1010	\mathbb{N}_{1} , i.e., C(100), \rightarrow C(ACC).
31	ADA 11	1111	\mathbb{N}_{2}^{1} , i.e., C(lol), + C(ACC) \rightarrow C(ACC).
32	STA 12	1052	$\mathbb{N}_1 + \mathbb{N}_2 \rightarrow \mathbb{C}(102).$
33	HIT	0000	n en
•	•	•	
100			
101	N ₂		
102	$[N_1 + N_2]$	· · [· ·]. ·	
	±	1	and the second state of the second state of the

Example 5. Indirect Addressing.

When "i" is used with an Index Class instruction, that is, when i = 1, the computer is directed to add 1 to the X part of memory register β before it is used to address the memory. This process is called "indexing," and registers 1 through 17 are frequently referred to as Index Registers. In the example below, -6 is loaded into the Accumulator after Index Register β is indexed from 1432 to 1433 by the LDA i β instruction.

Memory Address	Memory (Contents	Effect
β °	[x] :	[1432] :	Address minus l of register containing 7771.
→ p : 1432 1433	LDA i β : - -6	1020 + β : - 7771	X + 1, i.e.,1433, → C(β), and C(1433) → C(ACC).

When the LDA i β instruction is executed, the value $X(\beta) + 1$ replaces the address part of register β (the left-most 2 bits of register β are unaffected). This new value, 1433, is now used to address the memory. Note that if the LDA instruction at p were repeated, it would deal with the contents of register 1434, then 1435, etc. The utility of Index Registers in scanning tables of numbers should be obvious.

Indexing involves only 10-bit numbers, and <u>does not involve end-around</u> <u>carry</u>. Therefore the address "following" 1777 is 0000. (The same kind of indexing takes place in the Instruction Location register, which "counts" from 1777 to 0000.)

24

25

SAE

The following example using indexing introduces another Index Class instruction, SKIP IF ACCUMULATOR EQUALS, SAE i β , code 1440 + 20i + β . This instruction causes the LINC to skip one register in the sequence of programmed instructions when the contents of the Accumulator exactly match the contents of the specified memory register. If there is no match, the computer goes to the next instruction in sequence as usual. The program example clears (stores 0000 in) the set of memory registers 1400 through 1777; the SAE instruction is used to decide whether the last 0000 has been stored.

Memor Addre	~		Memory Cor	ntents	Effect
			[X]	[1377]	Initial Address minus 1 for the STA instruction.
4			356	0356	Address of test number.
	- 22		6 · · · · · · · · · · · · · · · · · · ·	0 0 0	
$\xrightarrow{\text{Start}}$ 350			→ CLR	0011	Clear the Accumulator.
351			STA i 3	1063	<pre>Index the contents of register 3; store C(ACC) in the memory register whose address = X(3).</pre>
352			ADD 3	2003	$C(3) \rightarrow C(ACC)$.
353			SAE 4	1444	Skip to 0355 if $C(ACC) \equiv C(356)$.
354			JMP 350	6350	If not, return to store 0000 in next register.
355			HLT <	0000	Halt the computer.
356		. t	1777	1777	a fan de general en service agricada en en

Example 6. Indexing to Clear a Set of Registers.

When the program halts at register 355, register 3 will contain 1777. The SAE instruction is used here (as the AZE instruction was used in earlier examples) to decide when to stop the computer. The instructions in registers 350 through 354, the "loop," will be executed 400 (octal) times before the program halts. Zero is first stored in register 1400, next in 1401, etc. Another program scans the memory to see if a particular number, Q, appears in any memory register O through 1777. Q is to be set in the Right Switches, and the address of any register containing Q is to be deftain the Accumulator. Nexts and the set is a particular data for the set of t

Memory Address	Memory Cont		${f Effect}$.
17		,	Address of register whose contents are to be compared with Right
$\xrightarrow{\text{Start}}$ 20	RSW	0516	Switches. $C(RS) \rightarrow C(ACC)$.
<u></u>	$\rightarrow SAE i 17$	1477	Index register 17, and compare $C(ACC)$ with $C(X)$.
a bi 22	JMP 21	6021	If not equal, return for next test.
23	$\operatorname{CLR} \leftarrow$	0011	If equal, clear ACC, copy address
24	ADD 17 ·	2017	> of register containing Q into
25	HLF States and the states and the	0000	ACC, and halt.

Example 7. Memory Scanning.

If no memory register 0 through 1777 contains the number Q, the program will run endlessly. The location of the first register to be tested depends on the initial contents of Index Register 17.

An Index Class instruction, ADD TO MEMORY, ADM i β , code 1140 + 20i + β , adds the contents of the specified memory register to C(ACC), using 12-bit end-around carry arithmetic (as ADD or ADA). The result is left, however, not only in the Accumulator but in the specified memory register as well. The BIT CLEAR instruction, BCL i β , code 1540 + 20i + β , is one of three Index Class instructions which performs a so-called "logical" operation. BCL is used to clear selected bits of the Accumulator. For every bit of the specified memory register which contains 1, the corresponding bit of the Accumulator is set to 0.

26 ADM

 BCL

In the following program two sets of numbers are summed term by term. The first set of numbers, each 6 bits long, is in registers 500 - 577, bits 0 through 5; bits 6 through 11 contain unwanted information. The second set of numbers is in registers 600 - 677, and the sums replace the contents of registers 600 - 677.

	Memory	1	an tang	1. 1 ²⁴	$\frac{2}{2} \left\{ \begin{array}{ccc} -\frac{1}{2} & -\frac{1}{2} \\ -\frac{1}{2} & -\frac{1}{2} \\ -\frac{1}{2} & -\frac{1}{2} \\ -\frac{1}{2} & -\frac{1}{2} \\ -\frac$
	Address	Memory Contents			Effect
	3	[x ₁]	[0477]		Initial address minus 1 of first set.
	4	0410	0410	a a 1	Address of BCL pattern.
	5	[x ₂]	[0577]		Initial address minus 1 of second set.
	6	0411	0411		Address of test number for halting.
	•	9	6 0	:	
St	art,400	⊢→ LDA i 3	1023		Index $X(3)$ and load number from
	401	BCL 4	1544	1.1	first set into ACC. Clear the left 6 bits of the ACC.
	402	ADM i 5	1165		Index X(5); Add number from second set to C(ACC), and replace in memory.
	403		0011		
	404	ADD 3	2003		Check to see if finished.
	405	SAE 6	1446		
	406	JMP 400	6400	an an Daoise	$C(3) \neq C(411)$, i.e., $\neq 0577$.
	407	$\mathrm{HLT} \leftarrow - -$	0000		C(3) = 0577; halt the program.
	410	7700.	- 7700 ^{- 1} 11		BCL pattern for clearing left half of ACC.
	<u></u>	0577	0577		Test number for halting.
	,	1			于"我们,你们们的 <u>你</u> 们也不是没有吗?"

Example 8. Summing Sets of Numbers Term by Term,

28 BSE BCO

Logic Instructions as an one is a figure to see a group of a state de mi

The three logic instructions, BCL i β , BSE i β , and BCO i β , are best understood by studying the following examples. These instructions affect only the Accumulator; the memory register M containing the bit pattern is unchanged.

BCL iβ BIT CLEAR code: 1540 + 20i + β
Clear corresponding bits of the Accumulator:
If C(M) = 010 101 010 101
and $C(ACC) = 111 111 000 000$
then $C(ACC) = 101 010 000 000$
BSE iβ BIT SET code: 1600 + 20i + β
Set to ONE corresponding bits of the Accumulator:
If C(M) = 010 101 010 101
and $C(ACC) = 111 111 000 000$
$2 \times 2 \times 3 \times 3 \times 3$ (hen C(ACC) = 111 111 010 101
BCO i B BIT COMPLEMENT code: 1640 + 20i + B
Complement corresponding bits of the Accumulator:
If $C(M) = 010$ 101 010 101
and $C(ACC) = 111 111 000 000$
then $C(ACC) = 101 010 010 101$

These instructions have a variety of applications, some of which will be demonstrated later.

9. Special Index Register Instructions

Before continuing with the Index Class, two special instructions which facilitate programming with the Index Class instructions will be introduced. These instructions do not use the Index Registers to hold memory addresses; rather they deal directly with the Index Registers and are used to change or examine the contents of an Index Register.

The INDEX AND SKIP Instruction

The INDEX AND SKIP instruction, XSK i α , code 200 + 20i + α , refers to registers 0 through 17 ($0 \leq \alpha \leq 17$).* It tests to see whether the address part of register α has its maximum value, i.e., 1777, and directs the LINC to skip the next register in the instruction sequence if 1777 is found. It will also, when i = 1, index the address part (X) of register α by 1. Like the Index Class instructions, XSK indexes register α <u>before</u> examining it, and it indexes from 1777 to 0000 without affecting the left-most 2 bits. We can therefore give these 2 bits any value whatever. In particular, we can set them both to the value 1 and then say that XSK i α has the effect of skipping the next instruction when it finds the number 7777, (-0), in register α . Now we can easily see how to execute any given sequence of instructions exactly n times, where n \leq 1777 (octal):

-n stored in register α . Start Given Sequence of Instructions $XSK \perp \alpha$ $XSK \perp \alpha$ $JMP \times$ $HIT \leftarrow -$ HIT \leftarrow -

* cf. β , $1 \le \beta \le 17$, which does not refer to register 0.

Suppose, for example, that we want to store the contents of the Accumulator in registers 350 through 357. Using register 6 to "count," we can write the short program:

		peregna de regioner de la co		
	Memory Address	Memory Con	tents	Effect - States and the second
	5	[x]	[0347]	Initial address minus l for STA instruction.
	6	[-10]	[7767]	-n, where n = number of times to store C(ACC).
	e de la composición d Composición de la composición de la comp	e de la constante de la consta	0 10 10	the service of the set of the service
Sta	$\xrightarrow{\text{trt}}$ 200	STA i 5	1065	Index register 5 and store C(ACC).
	201 201 202	<u>XSK i 6</u> JMP 200	0226 6200	Index register 6 and test for X(6) = 1777. X(6) \neq 1777, return.
	203		0000	X(6) = 1777, halt.

Example 9. Index Registers Used as Counters.

Using the XSK instruction with i = 0, which tests $X(\alpha)$ without indexing, Example 6, p. 25, which stores zero in memory registers 1400 through 1777, can be more efficiently written:

	Memory			$= \left\{ \frac{1}{2} \left\{ \frac{1}{2} + \frac{1}{2} $
	Address	Memory Con	tents	Effect
	3	[X] • • • • • •	[1377]	Initial address minus 1 for STA
	· •	9 9 8	6 6	instruction.
St	art 3 50	CLR	0011	$0 \rightarrow C(ACC).$
	351	→STA i 3	1063	Index register 3 and store zero.
	352	XSK 3	0203	Test for $X(3) = 1777$.
	353	JMP 351	6351	X(3) ≠ 1777, return.
	354	$\mathrm{HLT} \leftarrow - I$, 0000. j	X(3) = 1777, halt.
	$= \frac{1}{2} \int_{-\infty}^{\infty} dx dx dx$	and the second		

Example 10. Indexing and Counting to Clear a Set of Registers.

leta esta sian tanà este dia positi da ing

Here register 3 is indexed by the STA instruction; the XSK then merely tests to see whether X(3) = 1777, without indexing X(3). The reader should see that Example 8 on page 27 can also be more efficiently programmed using XSK.

30

The second special instruction which is often used with the Index Class instructions is SET i α , code 40 + 20i + α , where α again refers directly to the first 20 (octal) memory registers, $0 \leq \alpha \leq 17$. In some of the examples presented earlier, the contents of Index Registers are changed, either as counter values or as memory addresses, while the program is running. Therefore, in order to run the program over again the Index Registers must be reset to their initial values.

31 SET

The SET instruction directs the LINC to set register α to the value contained in whatever memory register we specify. It is uniquely different from the instructions so far presented in that the instruction itself always occupies 2 consecutive memory registers, say p and p + 1:

. 1. 44	Memory	in the second state of		e share y fer
	Address	Memor	y Contents	<u>te da </u> te dalgado
	p P	SET i α	40 + 20i	+ α
	p + 1	с	с	
	d+drgx p + 2 +	e en el profilipio de la composición de		a s i nta si televia
	• • • • • • • • • • • • • • • • • • •	0 0 0		and Article and Article

The computer automatically skips over the second register of the pair, p + 1; that is the contents of p + 1 are not interpreted as the next instruction. The next instruction after SET is always taken from p + 2.

The i-bit in the SET instruction does not control indexing. Instead, it tells the LINC how to interpret the contents of register p + 1.

When i = 0, the LINC is directed to interpret C(p + 1) as the memory address for locating the value which will replace $C(\alpha)$. That is, register p + 1 is thought of as containing X, i niiteette endin op good eesta yn

de familiadades

	Memory Address	Memory Co	ntents	Effect
	10.	1. [1] 1 . 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	····.[·_ .] := ¹	n an an Arthur an Art
414	. •		0 0	e e militar e d'ar europée d'ar de la composition de la composition de la composition de la composition de la c
	→ p	SET 10	0050	$C(X)$, i.e., N, $\rightarrow C(10)$.
	p + 1		n en la X - Maisa	$= \frac{1}{2} \sum_{i=1}^{n} \frac{1}{i} \sum_{i=1}^{n} $
ing a c		ayaa ta		$p_{i} = \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) + \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) + \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) + \frac{1}{2} \left(\frac{1}{2} \right) \right) \right) \right) + \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) + \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) + \frac{1}{2} \left(\frac{1}{2} \right) \right) \right) \right)$
1974 - 274 1	X	na a seconda de cara e N	N	sector e reciención organization
				la construction de la Alexandra

and the contents of register X replace the contents of 10, $C(X) \rightarrow C(10)$. In this case X is the right-most 10 bits, the address part, of register p + 1; the left-most bit of C(p + 1) may have any value and, for the present, bit 10 . must be zero.*

In the second case, when i = 1, the LINC is directed to interpret C(p + 1) as the value which will replace $C(\alpha)$. Thus, below, $C(p + 1) \rightarrow C(5)$:

Memory Address	Memory Con	ntents	i se Effect localizador estas atas apparador
े जानुवा न 5 	in a standard and a s I standard a standard and a standard I standard a standard and a standard	245 [] ⁽¹⁾ (24 4 - 4 (.(24)) - 5 4 - 4 (.)	e a dog fer eksedar och varden gå eg. Ed av 11. svarader och att vardengerer och
→ p p + l	SÉT i 5 N	0065 N	$C(p^{+}1), i.e., N, \rightarrow C(5).$

The following program scans 100 (octal) memory registers looking for a value which matches C(ACC). It halts with the location of the matching register in the Accumulator if a match is found, or with -0 in the Accumulator if a match is not found. The numbers to be scanned are in registers 1000 - 1077.

	Memory Address	Memory Con	tents	Effect
	- 3	[-100]	[7677]	-(number of registers to scan).
	4	[x]	[0777]	Scanning address.
	0 0 0	● ● ***#*	0 0 0	
Sta	art)400	SET i 3	0063	$C(401)$, i.e., -100, $\rightarrow C(3)$.
	401	-100	7677	
	402	SET i 4	0064	$C(403)$, i.e., 777, $\rightarrow C(4)$.
	403	777	0777	
	404	$\rightarrow \underline{\text{SAE}}_{i}_{4}$	1464	Index $X(4)$ and compare $C(X)$
	405	JMP 411	6411	with C(ACC). C(ACC) \neq C(X), jump to 411.
	406	$CLR \leftarrow$	0011	$C(ACC) \equiv C(X)$, copy location of
	407	ADD 4	2004	<pre>matching register into ACC</pre>
	410	HLT	0000	and halt.
	411	$\rightarrow \underline{XSK} i 3$	0223	Index register 3 and test for $X(3) = 1777$.
	412	JMP 404	6404	$X(3) \neq 1777$, return.
	413	$CLR \leftarrow$	0011	
	414	COM	0017	X(3) = 1777; all numbers have been scanned so $-0 \rightarrow C(ACC)$ and halt.
	415	HLT	0000	
	1		l .	

Example 11. Setting Initial Index Register Values.

The two SET instructions are executed once every time the program is started at 400; initially registers 3 and 4 may contain any values whatever, since the program itself will set them to the correct values. Suppose we had wanted to SET two Index registers to the same value, say -100. We could write either:

	tan tan ∎	and the second second		
Memory Address	Memory Co		efect de la filo de la companya de Effect de la companya de	
11	[-100]	[7677]		
12	[-100]	[7677]		
0 • • • • • • • • • • • • •		0 		
→ 20 [°]	SET i ll	0071	$C(21)$, i.e., -100, $\rightarrow C(11)$.	
21	- <u>100</u>	7677		
22	SET 12	0052	$C(21)$, i.e., -100, $\rightarrow C(12)$.	
23	1 ¹ 21 1 1	0021		
	Ĩ	•		
O.	r:	,		

→ 20	SET i ll	0071	C(21), i.e., $-100, \rightarrow C(11)$.
21	-100	7677	
22	SET 12	0052	$C(11)$, i.e., -100, $\rightarrow C(12)$.
23	11	0011	
A We control	and the start		

We could also, of course, have written SET \underline{i} 12 in register 22 with -100 in register 23, but there are applications appropriate to each form.

The state of the loss Index Class Instructions II

Double Register Forms

The Index Class instructions have been thought of as addressing an Index Register β , $1 \leq \beta \leq 17$, which contains a memory address X to be used by the instruction. They have been presented as single register instructions (unlike SET). However, when an Index Class instruction is written with $\beta = 0$, it becomes a double register instruction like SET, whose operand address depends on i and p + 1. These two interpretations are shown for STA.

Memory Address	Memory	7 Contents	Effect
450	STA	1040 + 20(0) + 0	$C(ACC) \rightarrow C(330).$
451	330	0330	

ł

When i = 0, the LINC is directed to use C(p + 1), i.e., C(451) as the memory address at which to store C(ACC). The left-most bit of C(p + 1) may have any value, and, for the present, bit 10 must be zero.*

Case: $i = 1, \beta = 0$

Memory Address	Memory	Contents	Effect
450	STA i	1060	$C(ACC) \rightarrow C(451).$
451	([-]	

When i = 1, the LINC is directed to use p + 1, i.e., 451, directly as the memory address, and the contents of the Accumulator are stored in 451. Note that when $\beta = 0$ in an Index Class instruction, we are not referring to memory register 0. In fact, when $\beta = 0$, no reference whatsoever is necessarily made to the Index Registers. As with SET, the computer automatically takes the next instruction from register p + 2.

* See Appendix I.

We may now think of the Index Class instructions as having four alternative ways of addressing the memory, which depend on i and β , and which are summarized below:

	Index Class Address Variations					
Case	ن β۵۵ و : β	Example	Form	and Comments in a second second		
1	i = 0 β≠0	LDA β	Single Register	Register β holds operand address.		
2	i = 1 β≠0	LDA i β	Single Register	First, index register β by l. Then, register β holds operand address.		
3	i = 0 β = 0	LDA X	Double Register	Second register holds operand address.		
4	i = 1 β = 0	LDA i N	Double Register	Second register holds operand.		

(a) and (b) and (c) and (c)

The next programming example scans memory registers 1350 through 1447, counting the number of instances in which register contents are found to exceed some "threshold" value, T. In other words if C(X) > T, X = 1350, 1351, ..., 1447, then $C(CTR) + 1 \rightarrow C(CTR)$, where CTR is a memory register used as a counter, initially set to zero. The count, N, is to appear in the Accumulator upon program completion.

Memory Address	Memory Cont	ents	Effect
14	[X]	[-]	Address of register to be tested.
15	[<u>-</u> n]		-(number of registers to test).
0 0	0 0	•	
30	SET i 14	0074	Set Index Register 14 to initial
31	1.347	1347	address minus l.
32	SET i 15	0075	Set Index Register 15 to -100.
33	~100	7677	
34	CLR	0011	Clear CTR; $0 \rightarrow C(51)$.
35	STC 51	4051	
36	LDA i	1020	$C(37)$, i.e., $\neg T$, $\rightarrow C(ACC)$.
37	Т		
40	ADA i 14	1134	Index the address in register 14 and form C(X)-T in ACC.
41	BCL i	1560	Clear all but the sign bit in ACC;
42	6777	6777	C(42) = the bit pattern for clearing. Then if $C(X) > T$, C(ACC) = 0000, but if $C(X) < T$,
43	SAE i	1460	C(ACC) = 4000. Does C(ACC) = C(44)? If so,
44	0000	0000	skip to 46.
45	JMP 52	6052	If not, $C(X) \leq T$. Jump to 52.
46	LDA i 🇲 — 🚽	1020	If so, $C(X) > T$; $l \rightarrow C(ACC)$.
47	1	0001	
50	ADM i	1160	$C(ACC) + C(51)$, i.e., $N, \rightarrow C(51)$
51	[N]	[]	and $\rightarrow C(ACC)$.
52	\rightarrow XSK i 15	0235	Index register 15 and test for 7777.
53	JMP 36	6036	$C(15) \neq 7777$. Return to check
54	ніт 🗲 — —	0000	<pre>next register. C(15) = 7777, therefore halt. C(CTR), i.e., C(51), left in ACC.</pre>
		l	•

Example 12. Scanning for Values Exceeding a Threshold.

Note that since the SAE instruction in locations 43 and 44 is written as a double register instruction, the LINC will skip to location $\underline{46}$ (not 45) when the skip condition is satisfied. The next instruction "in sequence" is, in this case, at location 45.

Note also that if a double register instruction is written following a skip instruction such as XSK, the LINC will try to interpret the second register as an instruction:

р <u>XSK і β</u>	Memory Address	Memory Contents	Effect
	° °	XSK i B	
	p + 1		Go to p + 1 when $X(\beta) \neq 1777$. Go to p + 2 when $X(\beta) = 1777$.
		•	

Since the XSK instruction sometimes directs the LINC to skip to p + 2, care must be taken to make sure that the LINC does not skip or jump to the second register of a double register instruction.

It is interesting to compare the above statement of the program made in what might be called "detailed machine language" with the following compact but entirely adequate restatement:

1) $0 \rightarrow C(CTR)$.

- 2) If C(X) > T then $C(CTR) + 1 \rightarrow C(CTR)$, for X = 1350, 1351, ..., 1447.
- 3) $C(CTR) \rightarrow C(ACC)$.

4) HALT

Multiple Length Arithmetic

An Index Class instruction, LINK ADD TO MEMORY, LAM i β , with the octal code 1200 + 20i + β , makes arithmetic possible with numbers which are more than 12 bits long. Using LAM, one can work with 24-bit numbers for example, using 2 memory registers to hold right and left halves. It should be remembered that addition with ADD, ADA, or ADM, always involves end-around carry. With LAM, however, a carry from bit 11 of the Accumulator during addition is saved in the Link Bit; it is not added to bit 0 of the Accumulator. This carry, then, could be added to the low order bit of another number, providing a carry linkage between right and left halves of a 24-bit number. For simplicity, the illustration uses 3 bit registers; the principles are the same for 12 bits: 39 TIAM

If, for example, the number in this 3-bit Accumulator is 7 (all ones) and C(L) = 0, and we add 1 with LAM, the Link Bit and Accumulator will then look like:

Furthermore, LAM is an add-to-memory instruction, so that the memory register to which the LAM instruction refers will now contain zero (as the Accumulator).

In addition to saving the carry in the Link Bit the LAM instruction also adds the contents of the Link Bit to the low order bit of the Accumulator. That is, if, when the LAM instruction is executed C(L) = 1, then 1 is added to C(ACC). Using the result pictured above, let us add 2, where 2 is the contents of some memory register M:

	Γ	ACC	М	
Given:	1 ···	000	010	
	an an an	e no site	10 C	

Using LAM, the LINC is directed first to add C(L) to C(ACC), giving:

L	ACC	М	
0	001	010	

There is no end-carry from this operation, so the Link Bit is cleared. The LINC then adds C(ACC) to C(M), giving:

Γ_{i} , \cdot	ACC	М	`
0	011	011	
		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	

which replaces both C(ACC) and C(M). Again there is no end-carry so the Link Bit is left unchanged.

The operation of LAM may be summarized:

1. $C(L) + C(ACC) \rightarrow C(ACC)$.

- 2. End-carry $\rightarrow C(L)$. If no end-carry, $O \rightarrow C(L)$.
- 3. $C(ACC) + C(M) \rightarrow C(ACC)$, and $\rightarrow C(M)$.

4. End-carry $\rightarrow C(L)$. If no end-carry, the Link Bit is left unchanged.

As an example of double length arithmetic let us postulate 2 numbers, N_1 and N_2 , each 6 bits long, which occupy a total of 4 of our 3-bit memory ' registers, M_1 through M_1 :

M ₂	Ml	
000	111	$N_1 = +7$
M ₄	^M 3	
101	001	N ₂ = -26

The sum, octal, of +7 and -26 is -17. Using the LAM instruction to get this we must

- 1. Clear the Link Bit.
- 2. Add $C(M_1)$ to $C(M_3)$ with LAM, saving any carry in the Link Bit. This sums the <u>right</u> halves of N₁ and N₂.
 - 3. Add $C(M_2)$ to $C(M_4)$ with LAM, which also adds in any carry from step 2. This sums the <u>left</u> halves of N₁ and N₂. Any new carry will again replace C(L).

We see upon inspection that only the first LAM produced an end-carry.

16-2

To complete the illustration we must also consider the case in which a final carry appears in the Link Bit, as in the addition of +12 and -2,

whose sum, in ones' complement notation is OOl OOO, or +10 (octal), but which with LAM results in +7 and an end-carry in the Link Bit. Since ones' complement representation depends on end-around carry, we must do some extra programming to restore our result to a true ones' complement number. This is, of course, the equivalent of adding 1 to our 2-register result. Assuming that the result is in M_1 and M_2

we can again use the LAM instruction. We must first clear the Accumulator without clearing the Link Bit (this can be done with an STC instruction). We then execute LAM with $C(M_1)$ which gives

producing a new end-carry in the Link Bit. We again clear the Accumulator (but not the Link Bit) and execute LAM with $C(M_{2})$ which gives

The result in M_{2} and M_{1} now looks like:

It should be clear to the reader that adding in a final end-carry as an endaround carry cannot itself give rise to a new final end-carry. The following program illustrates the technique of double length arithmetic with tables of numbers; similar techniques would be used for other multiples of 12. Assume that 100 (octal) 24-bit numbers, N_0 , N_1 , ..., N_{77} , are to be added term by term to 100 (octal) numbers, R_0 , R_1 , ..., R_{77} , such that $N_0 + R_0 = S_0$, $N_1 + R_1 = S_1$, etc. All numbers occupy 2 registers: the left halves of N_0 , N_1 , ..., N_{77} are in registers 100 - 177, the right halves in 200 - 277. The left halves of R_0 , R_1 , ..., R_{77} are in 1000 - 1077, the right halves in 1100 - 1177. The left halves of the sums, S_0 , S_1 , ..., S_{77} , will replace the contents of 1000 - 1077, the right halves will replace the contents of 1100 - 1177.

16-2

43

Memory	Mamaana Gauta		Trees at
Address	Memory Conte	nus	Effect
10 c			
11	(1) (matrix $[X_2]$ (matrix (1)	[⊷]) ⊂.	
12		, · [<u>.</u>]	and the physical web sized states and the states of the physical states and
13	алы даны ад ах_д 1 г. н.	, 4 [⊶] * :	
, a <u>l'a</u> n a chair 14 4, a	langer [≓n]e ti	· [] , .	the product of the product of the
		n O Frank State State O State State O	
	and a state of the second s		·新闻》:"这些我们的,你不能是你们。"
Start > 400	SET i 10	0070	
401	77	0077	
402	SET i ll	0071	
403	177	0177	Set index registers to initial addresses minus 1 for the
404	SET i 12	0072	4 tables.
405	777	0777	
406	SET i 13	0073	
407	1077	1077	
410	SET i 14	0074	Set index register 14 as a counter
411	-100	7677	for 100 loop repetitions.
412	→ CLR	0011	$0 \rightarrow C(ACC); 0 \rightarrow C(L).$
413	LDA i ll	1031	Right half of $\mathbb{N}_i \to \mathbb{C}(ACC)$.
414	LAM i 13	1233	Right half of \mathbb{N}_{+} + right half of $\mathbb{R}_{+} \rightarrow \mathbb{C}(ACC),^{1}$ and \rightarrow right half of \mathbb{R}_{+}^{1} . End-carry $\rightarrow \mathbb{C}(L).$
415	LDA i lO	1030	Left ¹ half of $\mathbb{N}_{i} \rightarrow C(ACC)$.
416	LAM i 12	1232	$C(L) + C(ACC) + left half of R. \rightarrow C(ACC), and \rightarrow left half of R_i.End-carry \rightarrow C(L).$
417	STC 377	4377	Clear Accumulator by storing in
420	LAM 13	1213	377. Do not clear Link Bit. $C(L) + right half of S \rightarrow C(ACC),$ and $\rightarrow right half of S End- carry \rightarrow C(L).$
421	STC 377	4377	Clear Accumulator.
422	LAM 12	1212	$C(L) + left half of S \rightarrow C(ACC),$ and $\rightarrow left half of S.$
423	<u>XSK i 14</u>	0234	and \rightarrow left half for S. Index 14 and test for 7777.
424	JMP 412	6412	$C(14) \neq 7777$, return to form next sum.
425	$\operatorname{HLT} \leftarrow - \dashv$	0000	C(14) = 7777, so halt.

Example 13. Summing Sets of Double Length Numbers Term by Term.

Multiplication

45

MUL

The instructions in locations 412 - 416 produce an initial 24-bit sum leaving any final carry in the Link Bit. The instructions in locations 417 - 422 then complete the sum by adding in the final end-carry. The Link Bit will always contain 0 after the computer executes the last LAM in location 422. Register 377 is used simply as a "garbage" register so that we can clear the Accumulator without clearing the Link Bit.

Multiplication

Another Index Class instruction which needs special explanation is MULTIPLY, MUL i β , code 1240 + 20i + β . This instruction directs the LINC to multiply C(ACC) by the contents of the specified memory register, and to leave the result in the Accumulator. The multiplier and multiplicand are treated as signed ll-bit ones' complement numbers, and the sign of the product is left in both the Accumulator (bit 11) and the Link Bit.

The LINC may be directed to treat both numbers either as integers or fractions; it may not, however, be directed to mix a fraction with an integer. The left-most bit (bit 11) of register β is used to specify the form of the numbers.

When bit ll of register β contains zero, the numbers are treated as integers; that is, the binary points are assumed to be to the right of bit zero of the Accumulator and the specified memory register. Given C(ACC) = -10, $C(\beta) = 400$ (bit ll of register $\beta = 0$), and C(400) = +2, then the instruction MUL β will leave -20 in the Accumulator, and l in the Link Bit. Overflow is, of course, possible when the product exceeds ± 3777 . Multiplying ± 3777 by ± 2 , for example, produces ± 3776 in the Accumulator; note that the sign of the product is correct, and that the overflow effectively occurred from bit <u>10</u>, not from bit 11.

When bit 11 of register β contains 1, the LINC treats the numbers as fractions; that is, the binary point is assumed to be to the right of the sign bit (between bit 11 and bit 10) of the Accumulator and the specified memory register. Given C(ACC) = +.2, $C(\beta) = 5120$ (bit 11 of register $\beta = 1$), and C(1120) = +.32, then execution of MUL β will leave +.064 in the Accumulator and 0 in the Link Bit.

16-2

When the LINC multiplies two ll-bit signed numbers, a 22-bit product is formed. For integers the right-most, or <u>least</u> significant, ll bits of this product are left with the proper sign in the Accumulator, and for fractions the <u>most</u> significant ll bits of the product are left with the proper sign in the Accumulator. If, for example,

then C(ACC) can be thought of as either +.3 (octal) or +1400 (octal), and C(M) can be thought of as either +.04 (octal) or +200 (octal). The 22-bit product of these numbers looks like

and if bit ll of register β contains l, the most significant ll bits with the proper sign, will be left in the Accumulator:

$$C(ACC) = 0.000 001 100 00 (+.3)x(+.04) = +. 0 1 4$$

Had bit ll of register β contained zero, the Accumulator would be left with +0 as the result of multiplying (1400)x(200). It is the programmer's responsibility to avoid integer overflow by programming checks on his data and/or by scaling the values to a workable size.

The use of bit 11 of register β is new to our concept of Index Registers and should be noted in connection with the four memory addressing alternatives which the Index Class instructions employ. When $\beta \neq 0$ then

bit ll of $C(\beta)$, that is, bit ll of the register which contains the memory address, is used. The same is true when i = 0 and $\beta = 0$, as in:

Memory Address	Memory (Contents
р	MUL	1240
р+1	h,X	4000h + X

That is, bit ll of C(p + 1), the register containing the memory address, is used. We sometimes call this bit the h-bit, whether in an Index Register or in register p + 1. When, however, $\underline{i = 1}$ and $\beta = 0$, it will be recalled that p + 1 is itself the memory address:

Memory Address	Memory Contents		
р	MUL i	1240	
p + 1	N	N	

· . . .

There is no memory register which actually contains the memory address, and therefore there is no h-bit. The computer always assumes in this case that h = 0, and the operands are treated as integers.

In the following program, registers 1200 - 1377 contain a table of fractions whose values are in the range $\pm .0176$, that is, whose most significant five bits after the sign (bits 6-10) duplicate the sign. Each number is to be multiplied by a constant, -.62, and the products stored at locations 1000 - 1177. To retain significance the values are first shifted left 5 places.

	Memory Address	Memory Cont	ents	Effect
	6	[x ₁]	[-]	
	7	[x_]	[_]	
	10	[-n]		[10] A. C. Martin, K. Martin, K. Martin, and K. Martin, "A second state of the seco
~ .	•	e 0	•	
Star	→ 500	SET i 6	0066	Initial address minus 1 of table
	501	1177	1177	of fractions $\rightarrow C(6)$.
	502	SET i 7	0067	Initial address minus 1 for STA
	503	777	0777	instruction $\rightarrow C(7)$.
	504	SET i lO	0070	$-n \rightarrow C(10)$.
	505	-200	7577	
	506	→LDA i 6	1026	Fraction \rightarrow C(ACC).
	507	ROL 5	0245	$C(ACC) \cdot 2^{2} \rightarrow C(ACC)$.
	510	MUL	1240	Multiply, as fractions, C(ACC)
	511	4000+516	4516	by C(516).
	512	STA i 7	1067	Store product.
	513	XSK i 10	0230	
an a	:	JMP 506	6506	If not finished, return.
	515	$\mathrm{HLT} \leftarrow \mathbf{J}$	0000	If finished, halt.
	516	~ .62	4677	

Example 14. Multiplying a Set of Fractions by a Constant.

The ROL instruction at location 507 rotates zeros or ones, depending on the sign, into the low order 5 bits of the Accumulator. Since this amounts to a "scale left" operation, it thereby introduces no new information which might influence the product. The reader should also note that the original values remain unchanged at locations 1200 - 1377.

Another example demonstrates the technique of saving both halves of the product. Fifty (octal) numbers, stored at locations 1000 - 1047, are to be multiplied by a constant, +1633. The left halves of the products (the most significant halves) are to be saved at locations 1100 - 1147; the right halves (the least significant halves) at locations 1200 - 1247.

Memory Address	Memory Cor	ntents	Effect
3	[x ₁]	[1077]	Addresses of products.
4		[1177]	
5	[4000+X ₃]	[4777]	Addresses of multiplier as fraction
6	[x ₃]	[0777]	and integer.
7	[- n]	[7727]	Counter.
•	6		
→ 1400	SET i 3	0073	
1401	1077	1077	Set addresses for storing products.
1402	SET i 4	0074	
1403	1177	1177	J
1404	SET i 5	0075	Set 5 to address multiplier as fraction
1405	4000+777	4777	
1406	SET i 6	0076	Set 6 to address multiplier as integer.
1407	777	0777	
1410	SET i 7	0077	
1411	-50	7727	
1412	→LDA i	1020	
1413	1633	1633	Form left half of product in Accumulator.
1414	MUL i 5	1265	
1415	SCR i l	0361	$C(bit O of ACC) \rightarrow C(L).$
1416	STA i 3	1063	Store left half of product .
1417	STC 1434	5434	$0 \rightarrow C(ACC)$.
1420	ROR i l	0321	$C(L) \rightarrow C(bit ll of ACC).$
1421	STC 1427	5427	4000 or 0000 \rightarrow C(1427).
1422	ADD 1413	3413	Form right half of product, in
1423	MUL i 6	1266	Accumulator.
1424	BCL i	1560	Clear bit ll of right half.
1425	4000	4000	
1426	BSE i	1620	$C(bit 0 of left half) \rightarrow C(bit ll of$
1427	[_]	, [-]	right half).
1430	STA i 4	1064	Store right half of product .
1431	XSK i 7	0227	Return if not finished.
1432	JMP 1412	7412	
1433	$\operatorname{HIT} \leftarrow - \dashv$	0000	
1434	[_]	[-]	

50 LDH

The instructions at locations 1415, 1420-1421, and 1424-1427 have the effect of making the two halves of the product contiguous; the sign bit value of the right half is replaced by the low order bit value of the left half, so that the product may be subsequently treated as a true "double length" number.

There are two remaining Index Class instructions, SKIP ROTATE, SRO i β , and DISPLAY CHARACTER, DSC i β , which will be discussed later in connection with programming the oscilloscope display.

11. Half-Word Class Instructions

The LINC has 3 instructions which deal with 6-bit numbers or "halfwords" ("word" is another term for "contents of a register"). These instructions use the Index Registers and have the same four addressing variations as the Index Class, but specify in addition either the left half or right half of the contents of memory register X as the operand. We speak of LH(X), meaning the contents of the left 6 bits of register X, and RH(X), meaning the contents of the right 6 bits. We can then think of C(X) = LH|RH, or C(X) = 100LH+RH.

Half-word instructions always use the <u>right half</u> of the Accumulator. The LOAD HALF instruction, LDH i β , code 1300 + 20i + β , clears the Accumulator and copies the specified half-word into the right half of the Accumulator; which half of C(X) to use is specified by <u>bit 11</u>, the h-bit, of register β .

Memory Address	Memory (Contents	Effect
β	h;X	4000h+X	h = 1.
6 0	•	0 0	
p	LDH B	1300 + β	$RH(X) \rightarrow RH(ACC)$ and $O \rightarrow LH(ACC)$.

When h = 0, $LH(X) \rightarrow RH(ACC)$. When h = 1, $RH(X) \rightarrow RH(ACC)$:

X LH RH LOOLH+RH C(X) unchanged.

The same interpretation of the h-bit applies when i = 0 and β = 0, i.e., when the instruction occupies two registers:

	Memory Address	Memory	Contents	Effect
	ЧO	LDH	1300	Since h = 1, RH(500), i.e., 76,
	41 4	1 ; 500	4500	\rightarrow RH(ACC). O \rightarrow LH(ACC).
:	500	: 32 76	3276	

If register 41 contained 500, i.e., h = 0, then LH(500), or 32, would replace RH(ACC).

The STORE HALF instruction, STH i β , code 1340 + 20i + β , stores the right half of C(ACC) in the specified half of memory register X. C(ACC) and the other half of memory register X are unaffected. To illustrate the case of i = 1 and β = 0, we can write:

Memory Address	Memory (Contents	Effect
1000	STH i	1360	$RH(ACC) \rightarrow LH(1001).$
1001	6015	6015	

This case, it will be remembered, uses p + 1 itself as the memory address. Since there is no h-bit, the computer assumes that h = 0, and therefore the <u>left</u> half of C(1001) is affected. If, for example, C(ACC) = 5017, then 17 replaces LH(1001), and the contents of register 1001 become 1715. Half-Word Class Instructions

SKIP IF HALF DIFFERS, SHD i β , code 1400 + 20i + β , causes the LINC to skip one memory register in the program sequence when the right half of the Accumulator does not match the specified half of memory register X. When it does match, the computer goes to the next memory register in sequence for the next instruction. Neither C(ACC) nor C(X) is affected by the instruction. If C(ACC) = 4371, and we write:

Memory Address	Memory Con	itents	Effect
376	7152	7152	
→ 377	SHD	1400	Skip to 402 if $RH(376) \neq RH(ACC)$.
400	4376	4376	
401	Gent	a an an	
402		-	
	I	1	

then the computer will skip because RH(376), i.e., 52, \ddagger RH(ACC), or 71. Had we written 376 in location 400, that is, h = 0, then RH(ACC) would equal LH(376) and the computer would not skip.

When $\beta \neq 0$, and when i = 1, the Half-Word Class instructions cause the LINC to index the contents of memory register β , but in a more complex way than that used by the Index Class instructions. In order to have half-word indexing refer to consecutive <u>half</u>-words, the computer adds 4000 to $C(\beta)$ with end-around carry. This has the effect of complementing $h(\beta)$ <u>every</u> time register β is indexed, and stepping $X(\beta)$ every <u>other</u> time. Suppose, for example, that our instruction is LDH i 3, and that register 3 initially contains 4377, that is, it "points" to the right half of register 377. The computer will first add 4000 to C(3):

which leaves h = 0 and X = 400; C(3) now "points" to the left half of register 400. The computer therefore loads the Accumulator from LH(400). Repeating the instruction, C(3) will be indexed to 4400 and the Accumulator will be

16-2

a day chief

loaded from RH(400). Continuing then, register 3 would contain the following succession of values or half-word references:

 4400
 : RH(400)

 0401
 : LH(401)

 4401
 : RH(401)

 0402
 : LH(402)

 4402
 : RH(402)

 0403
 : LH(403)

 etc.
 etc.

Since half-word indexing occurs before the contents of register β are used to address the memory, we may describe the memory address, when i = 1, as

h;X+h

where \overline{h} represents the indexed value of h, and X+h represents the indexed value of X. The succession of values which will appear in register β can then be written:

<u>h;X+h</u>	
1;X+0	
0;X+1	
l;X+1	
0 ; X+2	
1 ; X+2	
etc.	

4.

The four address variations for Half-Word Class instructions are summarized in the following table.

			1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997	
Half-Word Class Address Variations				
Case	i,β	Example	Form	Comments
1	i = 0 β≠0	LDH B	Single Register	Register β holds half-word operand address.
2	i = 1 β≠0	LDH i β	Single Register	First, index register β by 4000 with end-around carry. Then, register β holds half-word operand address.
3	i = 0 $\beta = 0$	LDH h;X	Double Register	Second register holds half-word operand address.
<u>4</u>	i = 1 β = 0	LDH i LH RH	Double Register	Left half of second register holds half-word operand.
For $h = 0$, the operand is held in the left half of the specified memory register. For $h = 1$, the operand is held in the right half of the specified memory register.				

12. The KEYBOARD Instruction

Before continuing with Half-Word Class programming examples, the KEYBOARD instruction, KBD i, code 515 + 20i, is introduced. The LINC uses a simple, externally-connected keyboard for coded input. Each key has a 6-bit code number, 0-55 (octal), (See Chart II), which can be transferred into the Accumulator by the KBD i instruction when a key is struck. KBD i directs the LINC to clear the Accumulator, copy into the <u>right</u> half of the Accumulator the code number of the struck key, and release the key. The i-bit is used here in a special way to synchronize the keyboard with the computer. When i = 1, if a key has not been struck, the computer will wait for a key to be struck before trying to read a key code into the Accumulator. When i = 0, the computer does not wait, and the programmer must insure that a key has been struck before the computer tries to execute the KBD instruction.

This use of the i-bit to cause the computer to <u>pause</u> is unique to a class of instructions known as the Operate Instructions, of which KBD is a member. As a class they are used to control or operate external equipment.

The following program reads in key code numbers as keys are struck on the keyboard, and stores them at consecutive half-word locations, LH(100), RH(100), LH(101), ..., until the Z, code number 55 (octal), is struck, which stops the program.

Memory Address	Memory Contents		Effect
7	[h;X]	[-]	Half-word index register.
•	• •	•	
→ 20	SET i 7	0067	Set index register 7 to one half-word
21	l;77	4077.	location less than initial location.
22	→ KBD i	0535	Read code number of struck key into RH(ACC), and release the key.
23	SHD i	1420	Skip to location 26 if code number
24	5500	5500	≠ 55.
25	HLT	0000	Code = 55, so halt.
26	STH i 7 🔶	1367	Half-word index register 7, store
27	JMP 22	6022	code number, and return to read next key.

Example 16. Filling Half-Word Table from the Keyboard.

16**-**2

The KEYBOARD Instruction

Another example reads key code numbers and stores at consecutive halfword locations only those code numbers which represent the letters A through Z, codes 24 - 55 (octal). Other key codes are discarded, and the program stops when 100 (octal) letters have been stored.

Memory Address	Memory Contents		ere the trainer to the second energy of the second
5	[h;X]	[-]	
6	[-n]	[-]	
•		- •	
•		•	
→ 100	SET i 6	0066	Set 6 to count 100 times.
101	-100	7677	
102	SET i 5	0065	Set 5 for storing letters beginning
103 ° 10	077 - 1. 1	4077	at LH(100).
104	→KBD i	0535	Read keyboard.
105	STA in Star	1060	$C(ACC) \rightarrow C(106);$ store key
106		[_]	code in 106.
107	ADA i	1120	$C(ACC)-23 \rightarrow C(ACC).$
110	-23	7754	
111	BCL i	1560	Clear all but the sign bit in ACC.
112	3777	3777	
113	AZE	0450	If $C(ACC) = 0$, skip to location 115.
114	JMP 104	6104	$C(ACC) \neq 0$, so key code was less than 24. Return to read next key.
115	$LDH \leftarrow$	1300	Key code > 23 represents a letter.
116	1;106	4106	Therefore $RH(106) \rightarrow RH(ACC)$.
117	STH i 5	1365	Half-word index register 5 and store code for letter.
120	<u>XSK i 6</u>	0226	Index register 6 and return if 100 letters have not been struck.
121	JMP 104	6104	
122	$\mathrm{HLT} \leftarrow$	0000	

Example 17. Selective Filling of Half-Word Table from the Keyboard.

13. The LINC Scopes and the Display Instructions

57 D⁄IS

The LINC has two cathode ray tube display devices called Display Scopes, each of which is capable of presenting a square array of 512 by 512 (decimal) spots (1000 by 1000, octal). A special instruction, DISPLAY, DIS i α , code 140 + 20i + α , momentarily produces a bright spot at one point in this array. The horizontal (H) and vertical (V) coordinates are specified in the Accumulator and in α . The vertical coordinate, -377 \leq V \leq +377 (octal), is held in the Accumulator during a DIS i α instruction; the horizontal coordinate, $0 \leq$ H \leq 777 (octal), is held in register α , $0 \leq \alpha \leq$ 17. The spot in the lower left corner of the array has the coordinates (0, -377):

58

so that if C(ACC) = 641, i.e., -136, and C(5) = 430, then DIS 5 will cause a spot to be intensified at (430, -136) on the scope(s).

Both scopes are positioned at the same time. The production of a bright spot on either scope depends upon the state of the left-most bit (the h-bit) of register α and an external channel selector located on the face of each Display Scope. If h = 0, then the spot is produced via Display Channel #0; if h = 1, then the spot is produced via Display Channel #1. Either Display Scope may be manually set to intensify Channel #0, Channel #1, or both.

The i-bit in DIS i α is used in the usual way to specify whether to index the right 10 bits of register α before brightening the spot. This indexing, of course, also increases the horizontal coordinate by one. To illustrate, the following program will display a continuous horizontal line through the middle (V=0) of the scope(s) via Display Channel #0:

Memory Address	Memory Contents		Effect
5	[0;H] :	[_] °	Horizontal coordinate and channel selection.
→ 20	SET i 5	0065	Set 5 to Channel #0 and horizontal
21	0	0000	coordinate = 0.
22	CLR	0011	Vertical coordinate = $0 \rightarrow C(ACC)$.
23	PDIS i 5	0165	Index H (actually index entire
24	JMP 23	6023	right-most 10 bits) and display. Repeat endlessly.

Example 18. Horizontal Line Scope Display.

Another example displays as a curve the values found in a set of consecutive registers, 1400 through 1777. The vertical coordinates are the most significant 9 bits of each value. Since we have only 400 (octal) points to display, the curve will be positioned in the middle of the scope. Channel #1 is used.

Memory	Memory Contents		Effect
Address	Memory conc		TITTCC0
10	[X]	[-]	Address of vertical coordinates.
11	[1;H]	[4000+H]	Channel select and horizontal
0 0 0	6 0 0	0 9 0	coordinate.
→ 300	SET i lo	0070	Set 10 to beginning address minus 1.
301	1377	1377	
302	SET i ll	0071	Set ll to select Channel $\#$ l and
303	1;177	4177	to begin curve at $H = 200$.
304	→LDA i 10	1030	Load ACC with value and scale
305	SCR 3	0343	right 3 places to position it as vertical coordinate.
306	DIS i ll	0171	Index the H coordinate and display.
307	XSK_10	0210	Check to see if $X(10) = 1777$.
310	JMP 304	6304	If 400 ₈ points have not been dis- played, return to get next point.
311	JMP 300 ¢	6300	If X(10) = 1777, return to repeat entire display.

Example 19. Curve Display of a Table of Numbers.

Character Display

The Display Scopes are frequently used to display characters, for example keyboard characters, as well as data curves. Character display is somewhat more complicated since the point pattern must be carefully worked out in conjunction with the vertical and horizontal coordinates for each point.

16-2

where the shaded areas of fig. a represent points which are intensified, and the white areas points not intensified; the total area represented is 6 vertical positions by 4 horizontal positions. If, for example, the lower left point has the coordinates (400, 0), then the upper right point has the coordinates (405, 5).

We could, of course, store the H and V coordinates for every intensified point of the character in a table in the memory, but the letter A alone, for instance, would require 32 (decimal) registers to hold both coordinates for all the points which are intensified. Instead we arbitrarily decide upon a scope format, say 4 x 6, and make up a pattern word in which <u>ones</u> represent points to be intensified and <u>zeros</u> points which are not intensified. To specify a 4 x 6 pattern of 24 bits we need 2 memory registers. We also decide, for efficiency of programming, to display the points in the order shown numerically in fig. b, that is, from lower left to upper

(a) Compare to a subjective of a subject Complete Structure (Compare).
(a) Compare to a subjective set of a subjective (Compare) (Compar

60

right, column by column. If we examine bit 0 of the pattern word first, bit 1 next, bit 2, etc., then the pattern word for the left half of the letter A (the left two columns) will look like:

where the bit positions of the pattern word correspond to the numbered scope positions 0 - 11 of fig. b. The pattern word for the right half of the letter will then look like:

with bits 0 - 11 corresponding to scope positions 12 - 23 respectively.

An Index Class instruction, SKIP ROTATE, SRO i β , code 1500 + 20i + β , facilitates character display with the kinds of pattern words described above. SRO i β directs the LINC to skip the next register in the instruction sequence when bit 0 of the specified memory register contains 0. If bit 0 contains 1, the computer does not skip. In either case, however, <u>after</u> examining bit 0, the contents of the specified memory register are rotated 1 place to the right. Therefore, repeating the SRO instruction (with reference to the same memory register) has the effect of examining first bit 0, then bit 1, bit 2, etc. Executing the SRO instruction 12 times, of course, restores the memory word to its original configuration.

The following example repeatedly displays the letter A in the middle of the scope, using register 7 to hold the address of the first pattern word and register 6 to hold the H coordinate. Since 4 x 6 contiguous points on the scope array define an area too small to be readable, a delta of 4 is used to space the points, so that if the first point is intensified at coordinates (370, 0) the second point will be at (370, 4), the 7th point at (374, 0), etc. (This produces characters approximately 0.5 cm. high.)

Memory Address	Memory Conte		and with several constants and and a signal of Effect of the second of the second second of the second se	
6	[0;H]		Channel selection and H coordinate.	
7	[X]	[,_]	Address of pattern word.	
۱ ٥	[* 1] • • • • • • • • • • • • • • • • • • •	•		
→ 60°	r → SET i 6	0066	Set H coordinate = 370 for lower	
61	0;370	0370	left point. Select Channel #0.	
62	SET i 7	0067	Set 7 to address of first half of	
63	110	0110	pattern.	
64	LDA i	1020	Initial V coordinate = $-10 \rightarrow C(ACC)$.	
65	-10	7767		
66	r→SRO 7	1507	Skip to location 70 if bit 0 of	
			pattern word is zero. Rotate the	
67	DIS 6	0146	pattern word 1 place to right. If bit 0 of pattern word was one,	
70	ADD 75	2075	display one point. Add 4 to V coordinate in ACC.	
71	SRO i	1520	Skip to location 74 when 6 bits of	
72	3737	3737	pattern word have been examined.	
73	JMP 66	6066	Rotate C(72) l place to right. Return to examine next bit of pattern word when bit 0 of C(72) = 1.	
74	LDA i \leftarrow	1020		
75	ан тараан тар	0004	When bit 0 of $C(72) = 0$, 6 points	
76	ADM	1140	have been examined. Increase H coordinate by 4 to do next column.	
77	6	0006		
100	SRO i	1520	Check to see if 2 columns have been	
101	2525	2525	displayed. Rotate C(lOl) l place to right.	
102	<u>JMP 64</u>	6064	Two columns have not been displayed;	
103	XSK i 7 ←	0227	return to do next column. Two columns have been displayed; index address of the pattern word.	
104	SRO i	1520	Skip to 107 if both halves of pattern	
105	2525	2525	have been displayed.	
106	JMP 64	6064	Return to display 2nd half of pattern.	
107	JMP 60 ←	6060	Entire pattern has been displayed	
110	4477	4477	once. Return and repeat. Pattern words for letter A.	
111		7744	Stattern words for fetter A.	
Example 20. Character Display of the Letter A.				

Example 20. Character Display of the Letter A.

The SRO instructions at locations 71, 100, and 104 determine when 1 column, 2 columns, and 4 columns have been displayed. After each column the H coordinate is increased by 4 and the V coordinate reset to -10. After 2 columns the address of the pattern word is indexed by one, and after 4 columns the entire process is repeated.

DISPLAY CHARACTER, DSC i β , code 1740 + 20i + β , is the last of the Index Class instructions; it directs the LINC to display the contents of one pattern word, or 2 columns of points. Register β holds the address of the pattern word and the i-bit is used in the usual way to index X(β). The points are displayed in the format described above, i.e., 2 columns of 6 points each with a delta of 4 between points. The pattern word is examined from right to left beginning with bit 0 and points are plotted from lower left to upper right, as above. When executing a DSC instruction <u>the computer</u> <u>always takes the H coordinate and channel selection from register 1</u>. The delta of 4 is automatically added to X(1) every time a new column is begun; furthermore this indexing is. done <u>before</u> the first column is displayed, so that if register 1 initially contains 0364, the first column will be displayed at H = 370, the second at H = 374, and register 1 will contain 0374 at the end of the instruction.

The vertical coordinate is, as usual, taken from the Accumulator, and again +4 is automatically added to C(ACC) between points. The right-most <u>5 bits (bits 0 - 4) of the Accumulator are always cleared at the beginning of</u> <u>a DSC instruction</u>, so that if initially C(ACC) = +273, the first point will be displayed at V = 240, the second at V = 244, etc. Characters can therefore be displayed using the DSC instruction only at vertical spacings of 40 on the scope, e.g., at initial vertical coordinates equal to -77, -37, 0, +40, +100, etc. Furthermore, the right-most 5 bits of the Accumulator always contain 30 (octal) at the end of a DSC instruction, so that if the initial C(ACC) = +273, the initial V will equal +240 and C(ACC) will equal +270 at the end of the instruction. Character Display

To display a character defined by a 4 x 6 pattern two DSC instructions are needed. The following example repeatedly displays the letter A in the middle of the scope, just as the program on p. 62 (Example 20) does, but with greater efficiency using the DSC instruction. Since we cannot have an initial V = -10 with DSC, the program uses V = 0.

Memory Address	Memory Contents		Effect
1	[O;H]	[_]	Channel selection and H coordinate.
e a	• •	- a o	
7	[x]	• [••]	Address of pattern word.
→ 60	CLR	0011	Initial V = 0 \rightarrow C(ACC).
61 62	→ SET i 1 0;364	0061 0364	Set 1 to initial H coordinate minus 4, and select Channel #0.
63	SET i 7	0067	Set 7 to address of first half of pattern.
64	110 -	0110	
65	DSC 7	1747	Display, using 1st pattern word, the left 2 columns of the letter A,
66	DSC i 7	1767	at initial coordinates of (370, 0). Index address of pattern word, X(7), and display right 2 columns of
67	1.5	6061	the letter A at initial coordi- nates of (400, 0). Return and repeat.
•	• •		neturn and repeat.
: 110 111	4477 7744	4477 7744	Pattern words for letter A.

Example 21. Character Display of the Letter A Using DSC.

After the first DSC instruction (at location 65), C(1) = 0374 and C(ACC) = 30. After the second DSC instruction, C(1) = 0404, C(7) = 0111, and C(ACC) = 30. C(110) and C(111) are unchanged. By adding more pattern words at locations 112 and following locations, and repeating the DSC i 7 instruction, we could, of course, display an entire row of characters.

64

Character Display

The following program repeatedly displays a row of 6 digits. The pattern words for the characters 0 - 9 are located in a table beginning at 1000; i.e., the pattern words for the character 0 are at 1000 and 1001, for the character 1 at 1002 and 1003, etc. The keyboard codes for the characters to be displayed are located in a half-word table from 1400 through 1402; i.e., the first code value is LH(1400), the second RH(1400), etc. The program computes the address of the first pattern word for each character as it is retrieved from the table at 1400.

Memory Address	Memory Contents		Effect
1	[1;H]	[-]	Channel selection and H coordinate.
2	[-n]	[-]	Counter for number of characters.
3	[h;X]	[_]	Address of keyboard code values.
4	[X]	[-]	Address of pattern word.
•	•	e 0	
→ 20	→ SET i 2	0062	Set 2 to count number of charac-
21	-6	7771	ters displayed.
22	SET i 3	0063	Set 3 for loading code values begin-
23	l;1377	5377	ning at LH(1400).
24	SET i l	0061	Set 1 to initial H coordinate minus
25	l;344	4344	4, and select Channel #1.
26	→LDH i 3	1323	Half-word index register 3 and put code value into Accumulator.
27	ROL 1	0241	Compute address of pattern word by multiplying code value by 2 and
- 30	ADA i	1120	adding beginning address of
31	1000	1000	J pattern table.
32	STC 4	4004	Address of pattern word $\rightarrow C(4)$; $0 \rightarrow C(ACC)$.
.33	DSC and 4 and	1744	Display character at initial $V = 0$,
34	DSC i. 4	1764	and initial $H = C(1) + 4$.
35	LDA i	· • • • • • • • • • • • • • • • • • • •	
36	11 A A	0004	Increase H by 4 to provide space between characters.
		1140	Detween characters.
40	1	0001	
41	<u>XSK i 2</u>	0222	Index X(2) and check to see whether 6
42	JMP 26	6026	characters have been displayed. If not, return to get next character.
43	JMP 20 (-)	6020] If so, return to repeat entire display.

Example 22. Displaying a Row of Characters.

Suppose, for example, that one of the 6 code values is 07. The pattern words for the character 7 are at locations 1016 and 1017. Multiplying the code value 07 by 2 (7 x 2 = 16 octal) and adding the beginning address of the pattern table (16 + 1000 = 1016) gives us the address of the first pattern word for the character 7. It should be clear that we could add pattern words for all the keyboard characters to our pattern table; if we organize the pattern table to correspond to the ordering of the keyboard code values, the same technique of "table look-up" using the code values to locate the pattern could be used to display any characters on the keyboard.*

14. Analog Input and the SAMPLE Instruction

The SAMPLE instruction, SAM i n, refers to the LINC's miscellaneous inputs. The LINC has 16 input lines (numbered 0 - 17 octal) through which external analog signals may be received. The SAMPLE instruction samples the voltage on any one of these lines, and supplies the computer with instantaneous digitalized "looks" at analog information. Input lines 0 through 7 are slow speed inputs built to receive signals in the range -1 to -7 volts at a maximum frequency of 200 cycles per second. These eight lines are equipped with potentiometers, appearing on the Display panel as numbered black knobs, whose voltage is varied by turning the knobs. Lines 10 through 17, located at the Data Terminal module, are for high frequency signals which may range from -1 to +1 volts at a maximum of ca. 20,000 cycles per second.

The number n in the SAMPLE instruction specifies which line to sample. Built into the LINC are analog-to-digital conversion circuits which receive the signal and convert it to a signed ll-bit binary number in the range ±177, leaving the result in the Accumulator. Thus, for example, a voltage of zero on one of the high frequency lines will be converted to 0 when sampled with a SAM instruction, and the number 0 will be left in the Accumulator. Voltages on the high frequency lines greater than or equal to +1V will, when sampled,

* See Chart III.

66

SAM

set surger to the a manufacture of the set

1313 13

cause +177 (octal) to be left in the Accumulator. Voltages less than or equal to -1V will cause -177 to be left in the Accumulator.

Memory Address	Memory	7 Contents	Effect
→ p	SAM i n	100 + 20i + n	Conversion of voltage on line $n \rightarrow C(ACC)$.

The value of this facility, which makes it possible to evaluate data while they are being generated, can easily be seen. The SAMPLE instruction is frequently used with the DISPLAY instruction in this context.

The i-bit in the SAMPLE instruction can be used to shorten the length of time the instruction requires, occasionally with some sacrifice of precision. When i = 0, the SAMPLE instruction lasts 24 μ sec.* and the conversion is completed for all bits of the Accumulator (through bit 0). When i = 1, however, the computer proceeds to the next instruction in sequence after only 8 μ sec. and before the conversion process is finished. The conversion is not, however, terminated. It will continue in the Accumulator for 14 more μ sec. while the computer executes succeeding instructions. If the Accumulator is not disturbed during this time, the correct converted value will be accessible after 14 μ sec. If the Accumulator is disturbed, however, the converted value in the Accumulator after 14 μ sec. will be incorrect.

During the 14 μ sec. one bit is converted every 2 μ sec., beginning with the most significant conversion bit (bit 6) of the Accumulator:

Si	gn Conv	verted value	
000			C(Accumulator)
	2 46	5 8 10 12 1 ¹	μsec.

μ sec. for conversion

* See Appendix II: LINC Order Code Summary, for instruction execution times.

Suppose that the instruction following a SAM i n when i = 1 is STC, Store-Clear. During execution of an STC instruction the contents of the Accumulator are stored in the memory 10 μ sec. after the STC instruction is initiated. The low order 3 bits (bits 2, 1, and 0, converted after 10, 12, and 14 μ sec.) will not be converted by this time, and should therefore be disregarded. Furthermore, the STC instruction may not leave the Accumulator clear, because the conversion process will continue for 4 μ sec. after the clear time of the STC instruction. In general, examination of the Instruction Timing Diagrams* will show when it is feasible to use SAM with i = 1.

To illustrate the use of this instruction, we look first at a simple example of a sample and display program. The following sequence of instructions samples the voltage on input line #10, and displays continuously a plot of the corresponding digital values. It provides the viewer with a continuous picture of the analog signal on that line. The sample values left in the Accumulator are used directly as the vertical coordinates. In this example, input #10 is sampled every 56 μ sec. (This is determined by adding the execution times for SAM i, 8 μ sec.; DIS, 32 μ sec.; and JMP 1002; 16 μ sec.)

Memory		
Address	Memory Contents	Effect
17	[O;H]	For channel selection and H coor-
0 0 0		dinate.
→ 1000	SET i 17 0077	Set register 17 to begin H coor-
1001	· · · · · · · · · · · · · · · · · · ·	dinate at $H = 0$; Channel #0.
1002	→ SAM i 10 0130	Sample input #10, leaving its value in the ACC as the V coordinate.
1003	DIS i 17 0177	Index the H coordinate and display.
1004	JMP 1002 7002	Return and repeat endlessly.
	Francia 02 Simple Sc	ample and Dignlaw

Example 23. Simple Sample and Display.

Note that since here we want a continuous display, it is not necessary to reset register 17 to any specific horizontal coordinate.

* LINC, Volume 12, Instruction Timing Diagrams.

A second example illustrates one of the uses of the potentiometers. This program plots the contents of a 512 (decimal) word segment of memory registers 0 through 1777. The location of the segment is selected by rotating Knob #5, whose value is used to determine the address at which to begin the display. As the viewer rotates the knob, the display effectively moves back and forth across the memory.

Memory Address	Memory Contents		Effect
12	[X] [-]		
13	[1;H]	[-]	For channel selection, H coordi- nate, and counter.
0	net en ser e La ser en ser	0 0	1. The second s second second sec
→ 20	→ SET i 13	0073	Set register 13 to select Chan-
21	4777	4777	nel #l and to begin displaying at H = O.
22	SAM 5	0105	Sample Knob #5, add 200 to make
23	ADA 1	1120	the value positive, rotate left
24	200	0200	2 places to produce an address for display, and store in
25	ROL 2	0242	register 12.
26	STC 12	4012	J
27	→ LDA i 12	1032	Index the address of the vertical
30	SCR 3	0343	coordinate, and put the coordi- nate into the ACC. Position it
31	DIS i 13	0173	for display, index the H coordi-
32	<u>XSK 13</u>	0213	nate and display. Check to see whether 512 (decimal) points have been displayed. (X(13) = 1777?).
33	JMP 27	6027	If not, return to display next point.
34	JMP 20 ↔	6020	If so, return to reset counter and get new address from Knob #5.

Example 24. Moving Window Display Under Knob Control.

At locations 23 - 25 a memory address is computed for the first vertical coordinate by adding 200 to the sample value. This leaves the value in the range +1 to +377; it is then rotated left 2 places to produce an initial address in the range 4 through 1774 for the display.

A final example illustrates the technique of accumulating a frequency distribution of sampled signal amplitudes appearing on line #12, and displaying it simultaneously as a histogram. The distribution is compiled in a table at locations 1401 - 1777, and the sample values themselves are used to form the addresses for table entry. Registers 1401 - 1777 are initially set to -377 so that the histogram will be from the bottom of the scope.

Note, at locations 104 and 105, that since we are using memory registers 1401 - 1777, the same index register (register 2) may be interpreted both as address (location 104) and counter (location 105). We do not need a separate counter because the final address (1777) will serve also as the basis of the skip decision for the XSK instruction. The same is true at locations 123 and 133.

and the second program.

Analog Input and the SAMPLE Instruction

Memory Address	Memory Cont	ents	Effect
2	[X]	[-]	Address of vertical coordinates.
. 3	[0;H]	[_]	Channel selection and H coordinate.
0 0		- •	
→ 100	SET i 2	0062	h
101	1400	1400	
102	LDA i	1020	Initial routine to set registers
103	-377	7400	1401 - 1777 to -377.
104	→STA i 2	1062	
105	<u>XSK 2</u>	0202	
106	JMP 104	6104	J
107	SET i 2←┘	0062	Set register 2 to initial address
110	1400	1400	minus one of vertical coordinates.
111	SET i 3	0063	Set register 3 to select Channel $\#0$
112	200 ,	0200	and begin display at $H = 201$.
113	SAM 12	0112	Sample input line #12.
114	ADA i	1120	Add 1400+200 to the sample value
115	1600	1600	to form an address for recording
116	STC 122	4122) the event and store.
117	LDA i	1020	Add 1 to the contents of the regis-
120	l	0001	ter just located by the sample
121	ADM	1140	value to record the event.
122	[-]	[-]	J. A.
123	LDA i 2	1022	Index register 2 and put a histogram
124	DIS i 3	0163	value in the Accumulator. Index the H coordinate and display.
125	\rightarrow DIS 3	0143	Display without indexing.
126	ADA i	1120	h
127	-1	7776	Fill in the bar by decreasing the vertical coordinate by 1 and contin-
130	SAE i	1460	uing the display until a point is
131	-400	7377	displayed at $V = -377$.
132	JMP 125	6125	
133	XSK 2	0202	When bar is finished, check to see
and the second s			whether 377 values have been dis- played. (X(2) = 1777?).
134	JMP 113	6113	If not, return to get next sample.
135	JMP 107 🗸	6107	If so, return to reset vertical coor-
	· · · · · · · · · · · · · · · · · · ·		dinate address, H coordinate, and repeat.
	Example 25.	Histogr	am Display of Sampled Data.

71

3. S

15. The Skip Class Instructions

Instructions belonging to the Skip Class test various conditions of the Accumulator, the Keyboard, the Tapes, and the External Level lines of the Data Terminal module. The coding for these instructions includes the condition or level line to be checked and an option to skip or not skip when the condition is met or the external level is negative.

SKP SKP i c: 440 + 20	condition $0 \leq c \leq 13$ \downarrow 0i + c		
orte data data data data data data data da	<pre></pre>	0: Skip only if or level n	condition c is met is negative.
na ang tangan sa pangan sa Tang tang tang sa pang tang tang tang tang tang tang tang t	↓ i. =		condition c is not el n is not negative.
SXLin: 400 + 20	Di + n		
	$0 \leq n \leq 13$ level line numbe	r i i i i i i	
and the second		and the second	

In these instructions the i-bit can be used to invert the skip decision. When i = 0 the computer skips the next register in the instruction sequence when the condition is met or external level is negative. However, when i = 1, the computer skips when the condition is not met or the external level is not negative. Otherwise the computer always goes to the next register in the sequence.

The four situations which may arise are summarized in the following table. The Skip Class instruction is assumed to be in register p.

	Branching in Skip Class Instructions				
i	Condition met or level negative?	Location of next instruction			
,	yes	p + 2 (Skip)			
Q	no se esta internetione esta internetione esta internetione esta internetione esta internetione esta internetion	p + 1			
1	yes	p + 1			
1	no	p + 2 (Skip)			

– dottor, kkoletroj di bostribuleitor, k Presenti:

그러와 중요? 동안에 물고 그 문제로 해 가장 가지 않게 하는 것이 주말을 가지?

13
APO
LZE
SNS

The SKP i c instructions test 10 conditions, which, because of their variety, we choose to describe with different 3-letter expressions. Thus the AZE i instruction already presented is the same as SKP i 10. Another instruction, APO i, synonymous with SKP i 11, checks to see whether the ACCUMULATOR is POSITIVE (bit 11 = 0):

Case:	i	= 0

Memory Address	Memory Co	ntents	Effect
p	<u>APO</u>	440 + 11	<pre>If C(bit ll of ACC) = 0, go to p + 2 for the next instruction; if C(bit ll of ACC) = 1, go to p + 1.</pre>
p + 1	- ← -	-	
p + 2	- ← -	-	

Case: i = l

Memory Address	Memory	<i>r</i> Contents	Effect
p	<u>APO_i</u>	440 + 20 + 11	<pre>If C(bit ll of ACC) = l, go to p + 2 for the next instruction; if C(bit ll of ACC) = 0, go to p + l.</pre>
p + 1	- ← -	-	
p + 2	- ← -	-	

Other SKP variations check whether C(L) = 0, (LZE i, code 452 + 20i, which is synonymous with SKP i 12) or whether one of the 6 Sense Switches on the console is up (SNS i 0, SNS i 1, ..., SNS i 5, synonymous with SKP i 0, SKP i 1, ..., SKP i 5). (The Sense Switches are numbered from right to left, 0 through 5.)

The SXL i n instruction, SKIP ON NEGATIVE EXTERNAL LEVEL, checks for the presence of a -3 volt level on External Level line n, $0 \le n \le 13$, at the Data Terminal module. It is often used with the OPERATE instruction, discussed in the next section, to help synchronize the LINC with external equipment.

74

KST

The Skip instruction KEY STRUCK, KST i, code 415 + 201, checks whether a keyboard key has been struck (and not yet released). KST i is synonymous with SXL i 15.4

To illustrate the use of these instructions the following program counts the signal peaks above a certain threshold, 100 (octal), for a set of 1000 (octal) samples appearing on input line #13. The number of peaks exceeding the threshold will be left in the Accumulator.

Memory Address	Memory Conter	nts	n production de la constant L'activité de la constant L'activité de la constant
··	[-n]	[]	Counter for 1000 samples.
, 10 - 7 10 - 10 10 - 10 10 - 10 10 - 10 10 - 10 10 10 10 10 10 10 10 10 10 10 10 10 1	tana tan i "H antana Lati kanga [n] angan Nati tangan Mati tangan	[_]	Counter for number above 100 (octal).
→ 1500	SET i 7	0067	Set register 7 to count 1000 samples.
1501	-1000	6777	
1502	SET i 10	0070	Clear register 10 to count peaks.
1503	0	0000	
1504	→ SAM 13	0113	Sample input line #13 and subtract
1505	ADA i	1160	100 from the sample value.
1506	8. and 1.	7677	
1507	APO i	0471	Is the Accumulator positive?
1510	XSK i 10	0230	If so, the value was above 100; add 1 to the counter. If not, skip the instruction in location 1510.
1511	<u>XSK_i_7</u> €	0227	Index register 7 and test.
1512	JMP 1504	7504	If 1000 samples have not been taken, return.
1513	$LDA \leftarrow \downarrow$	1000	If 1000 samples have been taken,
1514	10	0010	> put the number of those above
1515		0000	J 100 into the Accumulator and halt.

Example 26. Counting Samples Exceeding a Threshold.

Another program samples and displays continuously the input from line #14 until a letter, i.e., a key whose code value is higher than 23 (octal), is struck on the keyboard.

Memory Address	Memory Cont	ents	Effect
l	[1;H]	[🚛]	Channel selection and H coordinate.
0	•	• •	
→ 100	SET i l	0061	Set register 1 to select Channel #1
101	4000	4000	and begin display at $H = 1$.
102	-> SAM 14	0114	Sample line $\#14$ and display its
103	DIS i l	0161	value.
104	KST	0415	Has a key been struck?
105	JMP 102	6102	If not, return and continue sampling and displaying.
106	KBD ←	0515	If so, read the key code into the
107	ADA i	1120	Accumulator and subtract 23
110	-23	7754	(octal) from its code value.
111	APO	0451	Is ACC positive?
112	JMP 102	6102	If not, the value was less than 23
			(octal). Return and continue sampling.
113		0000	If so, the value was 24 or greater;
din kur tu			halt.

Example 27. Simple Sample and Display with Keyboard Control.

Note that the KBD instruction at location 106 will be executed only when a key has already been struck (because of KST at location 104) and therefore does not need to direct the computer to pause.

16. The Data Terminal Module and the OPERATE Instruction

We have already mentioned the OPERATE instruction (p. 55) in connection with KBD i. In general, OPERATE, OPR i n, code 500 + 20i + n, provides operating and synchronizing signals for external equipment. The number n, $0 \le n \le 13$ (octal) refers to one of twelve Operate Level lines sent to the Data Terminal Module, as well as to one of the twelve External Level lines (mentioned under SXL).

During the execution of an OPR instruction a negative output level is supplied on Operate Level line n 4 μ sec. after the beginning of the instruction;* it remains for the duration of the instruction. The i-bit is used to direct the LINC to <u>pause</u>. If i = 0, there is no pause. If i = 1, the LINC pauses 4 μ sec. after the beginning of the instruction and sends a "Beginning of Operate Pause" pulse, BEOP, 0.4 μ sec. duration, to the Data Terminal module to signal that the pause has begun. The computer then waits in this state until a negative input signal is sent back on External Level line n. This signal automatically restarts the computer.

For example, execution of the instruction OPR i 6, code 526, provides an output signal on Operate Level line #6 and directs the LINC to pause, permitting an external device associated with line #6 to be synchronized with computer operation. Then when the external device is ready or has completed its operation, it in turn supplies a negative signal on External Level line #6, which restarts the computer.

In addition to the possible BEOP pulse, two other 0.4 μ sec. pulses are sent to the Data Terminal module regardless of whether the computer has paused or not. The first, called OPR2.1, occurs 6 μ sec. after the beginning of the instruction if there is no pause. If the computer has paused, the OPR2.1 pulse, which indicates that the computer is now running, will appear not less than 2 μ sec. and not more than 4 μ sec. after the restart signal is delivered by the external equipment over line n. The second pulse, OPR2.2, occurs 2 μ sec. after OPR2.1.

* See Instruction Timing Diagrams, LINC, Volume 12.

77

The OPR instruction may be used in a variety of ways depending on need and the type of external equipment involved. It can be used simply to sense the occurrence of an event (such as an external clock pulse), or it can be used to control the transfer of digital information between the LINC and external equipment (such as a tape recorder). In this context the user has the option of transferring a single word (l2 bits) either in or out of the LINC Accumulator or Memorý Contents register, or he can choose to transfer a group of words directly into or out of the LINC memory. Various enabling levels supplied by the user at the Data Terminal module define the path and type of information transfer.

The Keyboard is a good example of a simple external device which is controlled by an Operate instruction, OPR i 15, synonymous with KBD i. The <u>number 15</u> designates special external level and operate level lines, with which the Keyboard is permanently associated.

17. Subroutine Techniques

Before describing the remaining instructions, some mention should be made of the technique of writing subroutines. Frequently a program has to execute the same set of instructions at several different places in the program sequence. In this case it is an inefficient use of memory registers to write out the same set of instructions each time it is needed. It is more desirable to write the instructions once as a separate, or "sub," routine to which the program can jump whenever these instructions are to be executed. Once the instructions in the subroutine have been executed, the subroutine should return control (jump back) to the main program.

and the state of the second states and

. 2014년 - 전문 1월 2014년 2014년 - 1월 2014년 1월 2

Subroutine Techniques

For example, suppose that in two different places in a program we must execute the same set of arithmetic operations. We can picture the general structure of such a program as follows:

Main Program

Memory Address	Memory Contents
Start > 100	Main
	Program
150	JMP 1000> Jump out to subroutine
151	Continue < Return from subroutine
	Main
•	Program
•	↓ Instructions
200	JMP 1000 \longrightarrow Jump out to subroutine
201	Continue
• • • • •	

It appears from this example that jumping to the subroutine from the main program (at locations 150 and 200) is straightforward. The subroutine must be able to return control to the main program, however, reentering it at a different place each time the subroutine is finished. That is, we must be able to change the JMP instruction at location 1020 so that the first time the subroutine is used it will return to the main program with a "JMP 151" and the second time with a "JMP 201."

It will be remembered that every time the computer executes a JMP instruction (other than JMP 0) at any location "p," the instruction "JMP p + 1" replaces the contents of register zero. (See page 14.) Thus, when the "JMP 1000" is executed at location 150, a "JMP 151" is automatically stored in register 0, thereby saving the return point for the subroutine. The subroutine might retrieve this information in the following way:

Subroutine:

	Memory Address	Memory Contents	Effect
Enter Subroutine	→ 1000 1001 1002 1020	.LDA O <u>STC 1020</u> [JMP p + 1] (C(O) → C(ACC); i.e., "JMP p + 1" → C(ACC). C(ACC) → C(1020). Execute arithmetic operations. Return to main program.

Clearly, a simple "JMP 0" in location 1020 will suffice when the subroutine does not, during its execution, destroy the contents of register zero. In this case, the instructions in locations 1000 - 1002 would be unnecessary.

A problem arises in the above example when the subroutine is not free to use the Accumulator to retrieve the return point. Another method,

using the SET instruction, is possible when there is an available

eta register: Let () be at our bound to set () at the effective of the respective (

المراجع المراجع المراجع ومن المراجع المراجع . مراجع المراجع المراجع المراجع المراجع المراجع المراجع .		an an an an ann an an an bhan an a
Memory Address	Memory Contents	e ad interact entré Ballin d'interaction du Éffect
Enter Subroutine \rightarrow 1000 1001	SET 10 O	$C(0) \rightarrow C(10);$ i.e., "JMP p + 1" is saved in a free β register.
1020 N	JMP 10	<pre>Execute arithmetic operations; the Accumulator has not been disturbed. Return to main program by jumping to register 10.</pre>

18. Magnetic Tape Instructions

The last class of instructions, Magnetic Tape, requires some discussion of the LINC Tape Units and tape format. The LINC uses small reel (3-3/4" diameter) magnetic tapes for storing programs and data. There are two tape units on a single panel, on which tapes are mounted:

Any Magnetic Tape instruction may refer to either the tape on Unit #0 or the tape on Unit #1; which unit to use is specified by the instruction itself; only <u>one</u> unit, however, is ever used at one time. A LINC tape can hold 131,072 12-bit words of information, or the equivalent of 128 (decimal) full LINC memories. It is, however, divided into 512 (decimal) smaller segments known as <u>blocks</u>, each of which contains 256 (decimal) 12-bit words, a size equal to one-quarter of a LINC memory. Blocks are identified on any tape by <u>block numbers</u>, 0 through 777 (octal); Magnetic Tape instructions specify which block to use by referring to its block number. A block number (BN) on the tape permanently occupies a 12-bit space preceding the 256 words of the block itself:

There are other special words on the tape, serving other functions, which complete the tape format. Before describing these, however, we may look more specifically at one of the Magnetic Tape instructions, READ TAPE, RDE i u.

READ TAPE is one of six Magnetic Tape instructions which copy information either from the tape into the LINC Memory (called READING), or from the memory onto the tape (called WRITING). These are generally called <u>block</u> <u>transfer</u> instructions because they transfer one or more blocks of information between the tape and the memory:

LINC Tape

All of the Magnetic Tape instructions are double register instructions. RDE, typical of a block transfer instruction, is written:

Memory Address	Memor	y Contents
p	RDE i u	702 + 20i + 10u
p + 1	QN BN	1000QN + BN

The first register of the instruction has two special bits. The u-bit (bit 3) selects the tape unit: when u = 0, the tape on Unit #0 is used; when u = 1, the tape on Unit #1 is used. Magnetic Tape instructions require that the tape on the selected unit move at a speed of approximately 60 inches per second. Therefore, if the tape is not moving when the computer encounters a Magnetic Tape instruction, tape motion is started automatically and the computer waits until the tape has reached the required speed before continuing with the instruction.

The i-bit (bit 4) specifies the motion of the tape after the instruction is executed. If i = 0, the tape will stop; if i = 1, it will continue to move at 60 ips. It is sometimes more efficient to let the tape continue to move, as, perhaps, when we want to execute several Magnetic Tape instructions in succession. If we let it stop we will have to wait for it to start again at the beginning of the next tape instruction. Examples of this will be given later.

In the second register of the RDE instruction, the right-most 9 bits hold the requested block number, BN; that is, they tell the computer which block on the tape to read into the memory. The left 3 bits hold the <u>quarter</u> <u>number</u>, QN, which refers to the memory. QN specifies which quarter of EO2

memory to use in the transfer. The quarters of the LINC Memory are numbered 0 through 7,* and refer to the memory registers as follows (numbers are octal):

	Quarter Number	Memory Registers
	0	0 - 377
·	1	400 - 777
	2	1000 - 1377
	3	1400 - 1777
	4	2000 - 2377
	5	2400 - 2777
	6	3000 - 3377
	7	3400 - 3777

Suppose, for example, we want to transfer data stored on tape into memory registers 1000 - 1377. The data are in, say, block 267 and the tape is mounted on Unit #1:

Memory Address	Memory	Contents	Effect
→ 200	RDE u	0712	Select Unit #1;
201	2 267	1000x2 + 267	C(block 267) → C(quarter 2).

This instruction will start to move the tape on Unit #1 if it is not already moving. It will then READ block 267 on that tape into quarter 2 of memory and stop the tape when the transfer is completed. The computer will go to location 202 for the next instruction. After the transfer the information in block 267 is still on the tape; only memory registers 1000 - 1377 and the Accumulator are affected. Conversely, <u>writing</u> affects only the tape and the Accumulator; the memory is left unchanged.

* See Appendix I.

Another special word on the tape, located immediately following the block, is called the <u>check sum</u>, CS:

The check sum, a feature common to many tape systems, is used to check the accuracy of the transfer of information to and from the tape. On a LINC tape the check sum is the complement of the sum of the 256 words in the block. Such a number is formed during the execution of another block transfer instruction, WRITE TAPE, WRI i u. This instruction writes the contents of the specified memory quarter in the specified block of the selected tape:

Memory Address	Memor	ry Contents
p	WRI i u	706 + 201 + 10u
p + 1	QN BN	1000QN + BN

During the transfer the words being written on the tape are added together without end-around carry in the Accumulator. This sum is then complemented and written in the CS space following the block on the tape. After the operation the check sum is left in the Accumulator and the computer goes to p + 2 for the next instruction. QN, BN, i, and u are all interpreted as for RDE.

One means of checking the accuracy of the transfer is to form a new sum and compare it to the check sum on the tape. This happens during RDE: the 256 words from the block on the tape are added together without end-around carry in the Accumulator while they are being transferred to the memory. This uncomplemented sum is called the data sum. The check sum from the tape is then added to this data sum and the result, called the transfer check, is left in the Accumulator. Clearly, if the information has been transferred correctly, the data sum will be the complement of the check sum, and the transfer check will equal -0 (7777). We say that the block "checks." Thus, by examining the Accumulator after an RDE instruction, we can tell whether the block was transferred correctly. The following sequence of instructions does this and reads block 500 again if it does not check:

Memory Address	Memory Contents	Effect
→ 300 301 302 303 304 305	→ RDE 0700 3 500 3500 SAE i 1460 	Leave the transfer check in the Accum- ulator and stop the tape. Skip to location 305 if $C(ACC) = 7777$, i.e., if the block checks. If $C(ACC) \neq 7777$, return to read the

The remaining block transfer instructions check transfers automatically. READ AND CHECK, RDC i u, does in one instruction exactly what the above sequence of instructions does. That is, it reads the specified block of the selected tape into the specified quarter of memory and forms the transfer check in the Accumulator. If the transfer check does not equal 7777, the instruction is repeated (the block is reread, etc.). When the block is read correctly, 7777 is left in the Accumulator and the computer goes on to the next instruction at p + 2. The RDC instruction is written:

Memory Address	Memo	ry Contents	
р	RDC i u	700 + 201 + 10u	
p + 1	QN BN	1000QN + BN	

One of the most frequent uses of instructions which read the tape is to put LINC programs stored on tape into the memory. Suppose we are given a tape, for example, which has in block 300 a program we want to run. We

86 RDC

are told that the program is 100 (octal) registers long starting in register 1250. We can mount the tape on either unit and then set and execute either RDE or RDC in the Left and Right Switches. If we use RDE, we should look at the Accumulator lights after the transfer to make sure the transfer check = 7777. When double register instructions are set in the toggle switches, the first word is set in the Left Switches, and the second in the Right Switches. If we mount the tape on Unit #1 and want to use RDC, the toggle switches should be set as follows:

Console Location	Contents	
Left Switches	RDC u	0710
Right Switches	2 300	2300

QN = 2 because the program in block 300 must be stored in memory registers 1250 - 1347, which are located in quarter 2. Raising the DO lever will cause the LINC to read the block into the proper quarter and check it. We then start at 1250 from the console, using the Right Switches.

The remaining block transfer instructions will be described later.

A non-transfer instruction, called CHECK TAPE, CHK i u, makes it possible to check a block without destroying information in the memory. This instruction does exactly what RDE does, except that the information is not transferred into the memory; that is, it reads the specified block into the Accumulator only, forms the data sum, adds it to the check sum from the tape, and leaves the result, the transfer check, in the Accumulator. Since this is a non-transfer instruction, QN is ignored by the computer. Otherwise this instruction is written as the other instructions:

	Memory Address	Memoj	ry Contents
. • • • · ·	р	CHK i u	707 + 20i + 10u
	p + 1	BN	BN

Block Transfers and Checking

The following program checks sequentially all the blocks on the tape on Unit #0. The program starts at location 200. If a block does not check, the program puts its block number into the Accumulator and halts at location 221. To continue checking, reenter the program at location 207. The program will halt at location 216 when it has checked the entire tape.

· •	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		n an an tha an
Memory Address	Memory Cont	cents	Effect
Start > 200	CLR	0011	Store zero in register 203 as first
201	STC 203	4203] block number.
202	r→ CHK i	0727	Check the block specified in regis-
203	[BN] <	[-]	ter 203; transfer check \rightarrow C(ACC); the tape continues to move.
204	SAE i	1460	If the transfer check = -0, skip to
205	7777	7777	location 207.
206	JMP 217	6217	If the block does not check, jump to
Reenter 207	LDA i < J	1020	location 217.
210	. A second Leapers	0001	Add 1 to the block number in regis- ter 203, and leave the sum in the
211		1140	Accumulator.
212	203	0203	j De la seconda de la companya de la c
213	SAE i	1460	
214	_ 1000	1000	If all the blocks have been checked, skip to location 216. Otherwise
215	JMP 202	6202	return to check next block.
216	HLT $\leftarrow - \downarrow$	0000	
217	L _{JLDA}	1000	Load the block number of the block
² 220 ···	203	0203	which failed into the Accumulator,
221 ·	HLT	0000	and halt. The second provide the second structure second structure and
$x_{ij} = - e_{ij} e_{ij} e_{ij} e_{ij} e_{ij}$	en fin frænskerere	4 1 A A	land production at the the second second

Example 28. Simple Check of an Entire Tape.

88

A block transfer instruction WRITE AND CHECK, WRC i u, combines the operations of the instructions WRI and CHK, and, like READ AND CHECK, repeats the entire process if the check fails. That is, WRC writes the contents of the specified memory quarter in the specified block, forms the check sum in the Accumulator and writes the check sum on the tape. It then checks the block just written. If the resulting transfer check does not equal -O, the block is rewritten and rechecked. When the block checks, 7777 is left in the Accumulator and the computer goes on to the next instruction at p + 2. WRC is written:

Memory Address	Memor	ry Contents
p	WRC i u	704 + 20i + 10u
p + l	QN BN	1000QN + BN

This process of WRITE AND CHECK may be diagrammed:

The following sequence illustrates the use of some of the block transfer instructions. Since the LINC Memory is small, a program must frequently be divided into sections which will fit into tape blocks, and the sections read into the memory as they are needed. This example saves (writes) the contents of quarter 2 of memory (registers 1000 - 1377) on the tape. It then reads a program section from the tape into quarters 1, 2, and 3 (registers 400 - 1777) and jumps to location 400 to begin the new section of the program. Assume that the tape is on Unit #0. Memory quarter 2 will be saved in block 50; the program to be read from the tape is in blocks 201 - 203:

Memory Address	Memory Con	tents	Effect
→ 100 101 102 103 104 105	WRC i 2 50 RDC i 1 201 RDC i 2 202	0724 2050 0720 1201 0720 2202	<pre>C(quarter 2) → C(block 50); transfer is checked, and the tape continues to move. C(block 201) → C(quarter 1), and C(block 202) → C(quarter 2); trans- fers are checked and the tape con- tinues to move.</pre>
106 107 110 : 400	RDC 3 203 JMP 400 :	0720 3203 6400 [-]	C(block 203) → C(quarter 3); trans- fer is checked and the tape stops. Jump to the new section.

Example 29. Dividing Large Programs Between Tape and Memory.

At the end of the above sequence the contents of memory registers 400 - 1777 and tape block 50 have been altered; quarter 0 of memory, in which the sequence itself is held, is unaffected.

90

See almos sheet

Another program repeatedly fills quarter 3 with samples from input line #14 and writes the data in consecutive blocks on tape beginning at block 200. The number of blocks of data to collect and save is specified by the setting of the Right Switches. When the requested number has been written, the program saves itself in block 177 and halts. The tape is on Unit #1.

Memory Address	Memory Contents		Effect
10 11	[X] [-n]	[]	Memory address for storing samples. Counter.
•	•	0	
→ 1000	RSW	0516	$C(\text{Right Switches}) \rightarrow C(ACC)$. Comple-
1001	COM	0017	ment the number and store in
1002	STC 11	4011	J register ll.
1003	→ SET i 10	0070	Set register 10 to store samples
1004	1377	1377	beginning at 1400.
1005	▶SAM 14	0114	
1006	STA i lO	1070	Sample input line #14, store value and repeat until 400 (octal)
1007	<u>XSK_10</u>	0210	samples have been taken.
1010	JMP 1005	7005	June 1997 And a second s
1011	WRC u 🔶	0714	When quarter 3 is full, write it on tape and check the transfer. The
1012	[3 200]	[-]	tape stops.
1013	LDA i	1020	
1014	1	0001	Add 1 to the BN in register 1012.
1015	ADM	1140	
1016	1012	1012	J
1017	XSK i ll	0231	Index the counter and skip if the requested number has been collected.
1020	JMP 1003	7003	If not, return.
1021	WRC u	0714	If so, write this program in block 177,
1022	2 177	2177	check the transfer, and stop the tape.
1023	HLT	0000	Halt the computer.

Example 30. Collecting Data and Storing on Tape.

Since the program saves itself when finished, the user can continue to collect data at a later time by reading block 177 into quarter 2, and starting at 1000.

Since the BN in location 1012 will have been saved, the data will continue to be stored in consecutive blocks.

Group Transfers

92

RCG WCG

> Two other block transfer instructions, similar to RDC and WRC, permit a program to transfer as many as 8 blocks of information with one instruction. These are called the <u>group transfer</u> instructions; they transfer information between consecutive quarters of the memory and a group of consecutive blocks on the tape. Suppose, for example, that we want to read 3 blocks from the tape into memory quarters 1, 2, and 3. The 3 tape blocks are 51, 52, and 53. Using the instruction READ AND CHECK GROUP, RCG i u, we write:

Memory Address	Memory	Contents
р	RCG i u	701 + 20i + 10u
р + 1	2 51	2051

The first register specifies the instruction, the tape unit, and the tape motion as usual. The second register, however, is interpreted somewhat differently. It uses BN to select the <u>first</u> block of the group. In addition, the right-most 3 bits of BN specify also the <u>first</u> memory quarter of the group. That is, block 51 will be read into memory quarter 1, (block 127 would be read into memory quarter 7, etc.). The left-most 3 bits (usually QN) are used to specify the number of <u>additional</u> blocks to transfer. In the above example then, block 51 is read into quarter 1, and <u>2</u> additional blocks are 'also transferred: block 52 into quarter 2 and block 53 into quarter 3.

The format for WCG i u, WRITE AND CHECK GROUP, is exactly the same as for RCG:

Memory Address	Memory Contents		
р	WCG i u	705 + 20i + 10u	
p + 1	3 300	3300	

The computer interprets the above example as: write and check quarter 0 in block 300, and make 3 additional consecutive transfers, quarter 1 into

block 301, quarter 2 into block 302, and quarter 3 into block 303. When the left-most 3 bits are zero, that is zero additional transfers, the WCG instruction is like the WRC instruction in that only 1 block is transferred.

The second word of a group transfer instruction may be diagramed:

RCG and WCG always operate on consecutive memory quarters and tape blocks. Specifying 3 additional transfers when the initial block is, say, 336, will transfer information between tape blocks 336, 337, 340, 341 and memory quarters 6, 7, 0, and 1, that is, quarter 0 succeeds quarter 7.* The transfers are always checked; when a transfer does not check, the instruction is repeated starting with the block that failed. With WCG, all the blocks and their check sums are first written, and then all are checked. If any block fails to check, the blocks are rewritten beginning with the block that failed, and then all blocks are checked again. As with RDC and WRC, the group transfer instructions leave -0 in the Accumulator and go to p + 2 for the next instruction.

16-2

Using RCG instead of RDC, the program example on p. 90 can be more efficiently written:

Memory Address	Memory Cor	itents	Effect
→ 100 101	WRC i 2 50	0724 2050	$C(quarter 2) \rightarrow C(block 50);$ transfer is checked and tape continues to move.
102 103 104	RCG 2 201 JMP 400	0701 2201 6400	Read blocks 201 - 203 into quarters 1 - 3; check the transfers and stop the tape. Jump to the new section.

Example 31. Tape and Memory Exchange with Group Transfer.

Tape Motion and the MOVE TOWARD BLOCK Instruction

When the computer is searching the tape for a required block, it looks at each block number in turn until it finds the correct one. Since the tape may be positioned anywhere when the search is begun, it must be able to move either forward or backward to find the block.

By <u>forward</u> is meant moving from the low block numbers to the high numbers; physically the tape moves onto the lefthand reel.

Forward

Backward

By <u>backward</u> is meant from the high numbers to the low; the tape moves onto the righthand reel.

When searching for a requested block the computer decides whether the tape must move forward or backward by subtracting each block number it finds from the requested number, and using the sign of the result to determine the direction of motion. If the difference is positive the search continues in the forward direction; if negative, it continues in the backward direction. This may, of course, mean that the tape has to reverse direction in order to find the required block.

Suppose, for example that the computer is instructed to read block 50, and that the tape is presently moving forward and just below block 75. The next block number found will be 75. The result of subtracting 75 from 50 is -25, which indicates not only that the tape is 25 blocks away from block 50, but also that block 50 is below the present tape position. The tape will reverse its direction and go backward.

To facilitate searching in the backward direction a special word called \leftarrow a backward block number, BN, follows the check sum for each block:

When searching in the forward direction the computer looks at forward block numbers, BN; when searching in the backward direction it looks at backward block numbers, $\overleftarrow{\text{BN}}$. In either direction, each block number found is subtracted in turn from the requested number, and the direction reverses as necessary, until the result of the subtraction is -0 in the <u>forward</u> direction. Transfers and checks are made only in the forward direction.

Thus, in the above example, the tape will continue to move in the backward direction until the result of the subtraction is positive, i.e., until the BN for block 49 is found and subtracted from 50, indicating that the tape is now below block 50. The direction will be reversed; the computer will find 50 as the next forward block number, BN, and the transfer will be made because -0 is the result of the subtraction and the tape is moving forward. Tape Motion and the MOVE TOWARD BLOCK Instruction

96

MTB

For all Magnetic Tape instructions, if the tape is not moving when the instruction is encountered, the computer starts the tape in the forward direction and waits until it is moving at the required speed before reading a forward block number, BN, and reversing direction if necessary. If the tape is in motion, however, (including coasting to a stop), the computer does not change the direction of motion until the block number comparison requires it.

For all tape transfer or check instructions with i = 1, the tape continues to move forward after the instruction is executed.

For all Magnetic Tape instructions all stops are made in the backward direction. For transfer or check instructions this means that the tape always reverses before stopping. Furthermore, the tape then stops <u>below</u> the last block involved in the instruction, so that when the tape is restarted, this block will be the first one found. This reduces the delay in programs which made repeated references to the same block.

The last Magnetic Tape instruction illustrates some of the tape motion characteristics. MOVE TOWARD BLOCK, MTB i u, is written:

Memo	ry Contents
MTBiu	703 + 20i + 10u
BN	BN

As in the other Magnetic Tape instructions, the u-bit selects the tape unit. The tape motion bit (the i-bit) and the second register, however, are interpreted somewhat differently. MTB directs the LINC to subtract the next block number it finds on the tape from the number specified in the second word of the instruction, and leave the result in the Accumulator. QN is ignored during execution of MTB. For example, if the block number in the second register of the instruction is zero, and the tape is just below block 20 and moving forward, then -20, or 7757, will be left in the Accumulator. The MTB instruction can thus be used to find out where the tape is at any particular time.

When i = 0 the tape is stopped as usual after the instruction is executed. When i = 1, however, the tape is left moving toward the specified block. The result of the subtraction is left in the Accumulator, and the tape direction is reversed if necessary as the computer goes on to the next instruction. MTB i does not actually <u>find</u> the block; it merely orients the tape motion toward it.

The initial direction of motion and possible reversal are determined for MTB just as they are for all other Magnetic Tape instructions, as described above. Note, however, that since MTB i makes no further corrections to the direction of motion, the specified block may eventually be passed.

The MOVE TOWARD BLOCK instruction serves not only to identify tape position, but also can be used to save time. If, for example, a program must read block 700, and then, at some later time, write in block 50, it is efficient to have the tape move toward block 50 in the interim while the program continues to run:

Memory Address	Memory Con	tents	Effect
→ 100 101	RDC i 31700	0720 3700	C(block 700) → C(quarter 3); tape moves forward.
102 103 : 300	MTB i 50 WRI	0723 0050 ↓ 0706	<pre>C(103)-next BN → C(ACC); tape reverses and moves backward toward block 50. Tape continues to move backward while program continues. C(quarter 0) → C(block 50); tape stops.</pre>
301	50	0050	and the second

In this example it would be inefficient to stop the tape (i = 0) with the RDC instruction at location 100 or to let it continue to move forward until block 50 is called for. Although we may not be interested in the number left in the Accumulator after executing the MTB at location 102, the MTB does serve to reverse the tape. Then, when block 50 is called for, the delay in finding it will not be so long.

Tape Format

98

IBZ

Certain other facts about the tape format should be mentioned. Other special words on the tape are shown:

At each end of the tape is an area called <u>end zone</u> which provides physical protection for the rest of the tape. When a tape which has been left moving as the result of executing a tape instruction with i = 1 reaches an end zone, the tape stops automatically. (This prevents the tape from being pulled off the reel.) Words marked C and G above do not generally concern the programmer except insofar as they affect tape timing. Words marked C are used by the computer to insure that the tape writers are turned off following a write instruction. Words marked G, called guard words, protect the forward and backward block numbers when the write current is turned on and off.

Inter Block Zones are spaces between block areas which can be sensed by the Skip Class instruction, IBZ i, when either tape is moving either forward or backward. The purpose of such sensing is to make programmed block searching more efficient. For example, suppose that somewhere in a program we must read block 500 into quarter 2; assume it does not matter when we read it in as long as we do so before the program gets to the instructions beginning at location 650. The following illustration uses a subroutine to check the position of the tape and execute the read instruction if the tape is within 2 blocks of block 500. If the tape is not in an inter block zone, the main program will then continue without having to wait for a block number to appear. For purposes of simplicity let us assume that the tape (on Unit #0) is moving. The program begins at location 400 and the subroutine at location 20.

Note that the following example will work only if the tape is stopped by the RDC instruction in register 32. If we do not stop the tape here, subsequent jumps to the subroutine may continue to find the tape at an inter block zone (locations 20 - 22) and block 500 may be read repeatedly. The test with the APO instruction at location 646, which tells us whether the transfer has been made or not, is necessary to guarantee that the transfer will be made before we get to location 650. At this point, if the transfer has not been made, the "JMP 32" at location 647 will be executed.

16**-**2

Memory Address	Memory Contents	Effect		
20	IBZ0453	Enter subroutine and sense tape position.		
21		et de la companya de la companya de 着 de la companya de la company		
22	MTB i e l 0723	zone. If it is, subtract BN or BN from		
23	500 0500	500 Tene continues to move tournd		
24	APO0451			
25	COM 0017	If negative, complement it.		
26	ADA $i \leftarrow -1$ 1120	-		
27	~ 2 7775	blocks of block 500.		
30	<u>APO i</u> 0471	Is result positive?		
31		If result is positive, return to main program.		
32		If negative, tape is within 2 blocks of		
33	2 500 2500	block 500. Make the transfer and stop the tape.		
34	STC 645 4645	Store the transfer check = -0 in loca-		
35	<u></u>	tion 645 to indicate transfer has been made, and return.		
•		 A second data and data and the process state build of the second sec second second sec		
• → 400	CLR OOll	Store positive some in leastion 645		
→ 400 401	STC 645 4645	to indicate transfor has not		
401 402	JMP 20 6020	been made.		
•				
0 5		Jump to subroutine at these points;		
500	$\xrightarrow{\text{JMP}} 20 \qquad 6020$	return to p + 1 and continue with		
•		main program.		
600	JMP 20 6020			
•				
644	LDA i 1020	Put test number (either 0000 or 7777)		
645		into Accumulator		
646	APO i 047			
		has been made; $(C(ACC) = 7777)$.		
647 650	$\xrightarrow{\text{JMP}}$ 32	If not, jump to subroutine to make transfer, and return to location 650.		
650 •	↓ ↓ ↓ ↓ ↓ ↓			
0 8 9	0 0 0 0			
Example 32. Block Search Subroutine.				

Tape Motion Timing

When a tape is moving at a rate of 60 ips, it takes approximately 43 msec. to move from one forward block number to the next, or 160 μ sec. per word. The following table summarizes some of the timing factors:

LINC TAPE MOTION T	IME
START (from no motion to 60 ips)	approx. O.l sec.
STOP (from 60 ips to no motion	" 0.3 sec.
REVERSE DIRECTION (from 60 ips to 60 ips in opposite direction)	" O.l sec.
CHANGE UNIT (from no motion to 60 ips on new unit)	" O.l sec.
BN to BN (at 60 ips)	" 43 msec.
END ZONE to END ZONE (at 60 ips)	23, sec.

Some methods of using the tape instructions efficiently become obvious from the above table. Generally speaking, tape instructions should be organized around a minimum number of stops and a minimum amount of tape travel time. When dealing with only one tape unit, it is usually efficient to use consecutive or nearly consecutive blocks in order to reduce the travel time between blocks.

It is also efficient to request lower-numbered blocks before highernumbered blocks, avoiding unnecessary reversals. The WRITE AND CHECK instruction, requiring two reversals, is costly in this respect. It first must find and write in the block in the forward direction, then the tape must reverse and go backward until it is below the block, then reverse a second time and go forward to find and check the block:

Because of these reversals it is sometimes more efficient to use two tape instructions, WRI followed by CHK, than to use WRC. This is true, for example, when more than one block must be written and checked. Suppose we 16-2

want to write quarters 1, 2, and 3 in blocks 100, 101, and 102, and check the transfers. Using WRC, this would take a minimum of six reversals. The following sequence requires a minimum of two reversals:

Memory Address	Memory Cont	ents	Effect
→ 20	⊢→ LDA	1000	
21	24	0024	Put the BN of the first block to be checked in register 32.
22	STC 32	4032	be checked in register jz.
23	WRI i	0726	
24	1 100	1100	Write 3 consecutive blocks on the
25	WRI i	0726	tape on Unit #0 and leave the
26	2 101	2101	tape moving forward after each transfer.
27	WRI i	0726	
30	3 102	3102	J
31	CHK i	0727	Check the blocks, beginning with
32	[BN]	[]	block 100.
33	SAE i	1460	
34		7777	If a block does not check, repeat entire process.
35	JMP 20	6020	J Č
36	LDA i 🗲 🚽	1020	
37	1	0001	
40	ADM	1140	Add 1 to the BN in register 32.
4 <u>1</u>	32	0032	If the result \neq 1 103, not all have been checked. Return and
42	SAE i	1460	check the next block.
43	1 103	1103	
24.24	JMP 31	6031	
45	MTB 🗲 — 🕹	0703	When all have checked, execute
46	0	0000	MOVE TOWARD BLOCK to stop the
47	HLT	0000	tape, and halt.
1		l	I

Example 33. Write and Check with Fewest Reversals.

In this example the two reversals will occur the first time the CHK instruction at location 31 is executed. Clearly, other reversals may be necessary when the computer initially searches for block 100, and when a block does not check, but careful handling of the tape instructions can reduce some of these delays. It should be noted that there are 9 words on the tape between any CS and the next EN in the forward direction. When the tape is moving at speed, it takes 1,440 µsec. to move over these 9 words. Thus the program has time to execute several instructions between consecutive blocks, i.e., before the next EN appears. In the above example, then, there is no danger that the next block will be passed while the instructions at locations 33 -44 are being executed.

化基本合理 化合理合理合理合理合理合理

Chart I. Classes of LINC Instructions

Miscellaneous		Skip
HLT		SXLin
CLR		KST i
MSC 13		SKP i n
ATR		SNS i n
RTA		AZE i
NOP		APO i
СОМ		LZE i.
Shift		IBZ i
ROL i n		Operate
ROR i n		OPR i n
SCR i n		KBD i
per	I	RSW
Full Address		LSW
ADD X		L
STC X		Magnetic Tape
JMP X		RDC i u
Index		RCG i u
LDA i β		RDE i u
STA i β		MTB i u
ADA i p		WRC i u
ADM i β		WCG i u
LAM i β		WRIiu
MUL i β		CHK i u
SAE i β		
SRO i β		
BCL iβ	· · · ·	SET i a
BSE i β		
BCO i β		[1
DSC i B		SAM i n
Half-Word		DIS i a
LDH i B		L
STH i β SHD i β		YCK i ~
		XSK i a

Chart II. Keyboard Code

The Keyboard Code in Numerical Order

	00	0	64	20	. / +		40	М
	01	1 · · · ·	65	21	Θ/Ι		41	N
	02	2	66	22	[/ #		42	0
	03	3	67	23	CASE	1. 1. 1. T.	43	Р
	04	<u>1</u>	70	24	" A	a e ving	44	ର୍
	05	5	11	25	, В		:45	R
	06	6	12	26	< C		46	ន
	07	7	73	27	> D		47	T
	10	8	14	30] E		50	U
	11	9	75	31	* F		51	V
	12	META/EOL	76	32	G	·	52	W
	13	delete		33	\mathbf{H} , \mathbf{H}		53	Х
60	14	SPACE		34	I		54	Y
61	15	= / i		35	J		55	Z
62	16	ú/p		36	K			
63	17	9 . / ≕ .		37	L			
	. 1	A			1			
		CASE		•				

Chart III. Pattern Words for Character Display

A table of 24-bit patterns for 4×6 display, using the DSC instruction, of all characters on the LINC Keyboard. The table is ordered numerically as the characters are coded on the Keyboard. Table entries for non-displayable characters are zero.

0	4136		А	4477					U	0177
	3641			7744						7701
1	2101		В	5177			•		V	0176
	0177			2651						7402
2	4523		С	4136					W	0677
	2151			2241						7701
3	4122		D	4177					Х	1463
	2651			3641						6314
4	2414		Ε	4577					Υ	0770
	0477			4145						7007
5	5172		F	4477					Ζ.	4543
	0651			4044						6151
6	1506		G	4136					=	1212
	4225			2645						1212
7	4443		Η	1077					u	0107
	6050			7710						0107
8	5126		I	7741					و	0500
	2651			0041						0006
9	5120		J	4142					•	0001
	3651			4076						0000
EOL	0000		Κ	1077						4577
	0000			4324					F	7745
del	0000		Г	0177					[4177
· · · · · · · · · · · · · · · · · · ·	0000			0301						0000
SPACE			М	3077						
· ·	0000			7730						
i	0101		N	3077						
	0126		•	7706						
р	3700		0	4177						
	3424		T	7741						
640	0404		Ρ	4477						
1727	0404		0	3044				÷		•
+	0404		ରୁ	4276	1. A. A.)				
· · ·	0437		П	0376						
	0000		 R	4477 3146						
#	0077 3614		ន	3140 5121						
#	1436		S	4651						• • •
CASE	0000		Т	4040						
CADD	0000		Т	4040						
	0000			+0 ()						

1					s					
	Alpha	abet	cical		n an an Air Ann an Air An Air Ann Ann Ann Ann Ann Ann Ann Ann Ann An	teres a la composition en <u>al composition</u>	Nur	neric	al	
	13		MTP	700		HLT	0 0	1 1	MTP	700
ADA	1100		MUL	1240		MSC	. 0		RDC	700
ADD	2000		NOP	16		CLR	11		RCG	701
ADM	1140		OPR	500			13		RDE	702
APO	451		RCG	701		ATR	14		MTB	703
ATR	14		RDC	700		RTA	15		WRC	704
AZE	450		RDE	702		NOP	16		WCG	705
BCL	1540		ROL	240		COM	17	1997 (B) 1997 (B) 1997 (B)	WRI	706
BCO	1640		ROR	300		SET	40		CHK	707
BSE	1600		RSW	516		SAM	100		LDA	1000
CHK	707		' RTA	15	p6	DIS	140		STA	1040
CLR	11		SAE	1440		XSK .	200		ADA	1100
COM	17		SAM	100		ROL	240		ADM	1140
DIS	140		SCR	340		ROR	300		LAM	1200
DSC	1740		SET	40		SCR	340		MUL	1240
HLT	0		SHD	1400		SXL	400		LDH	1300
IBZ	453		SKP	44O		KST	415		STH	1340
JMP	6000		SNS	44O		SKP	440		SHD	1400
KBD	515		SRO	1500		SNS	440		SAE	1440
KST	415		STA	1040		AZE	450		SRO	1500
LAM	1200		STC	4000		APO	451		BCL	1540
LDA	1000		STH	1.340		LZE	452		BSE	1600
LDH	1300.		SXL	400		IBZ	453	- 41 ⁰	BCO	1640
LSW	517		WCG	705		OPR	500		DSC	1740
LZE	452		WRC	704		KBD	515		ADD	2000
MSC	0		WRI	706		RSW	516		STC	4000
MTB	703		XSK	200		LSW	517		JMP	6000

Chart IV. Instruction Code

P 6

è

The LINC has been presented as having a single 12-bit, 1024 (decimal) word memory. A second memory can be added to the computer to provide 2048 (decimal), or 4000 (octal) 12-bit words. This second memory is addressable for data storage and retrieval; it can not, however, be used to hold running programs.

Bit 10 of a register containing a memory address, e.g., a β register, is designated as the Memory Select bit. When this bit is 1, the second memory is addressed:

The addresses for the second memory may then be thought of as 2000 + X, where 0 \leq X \leq 1777, as usual.

More simply perhaps, we speak of memory registers 2000 through 3777 (octal). While this scheme makes the memory addresses of the two memories continuous, they can not always be treated as such by the programmer. The Instruction Location register, having only 10 bits, prohibits using the second memory to hold running programs; the next "sequential" instruction location after 1777 is always 0. Moreover, the Full Address Class instructions can address only registers 0 through 1777.

All other memory reference instructions have available a Memory Select bit, and can address either memory. The instruction

will load the Accumulator with the contents of register 2133, i.e., register 133 of the second memory. It must be remembered, however, that all instructions which index the first 16 registers (Index Class, Half-Word

Class, XSK, and DIS) index 10 bits only, and thus index from 1777 to 0 without affecting the Memory Select bit. Therefore, by setting bit 10, we can index through either memory we choose, but we <u>cannot index from one</u> <u>memory to the other</u>. E.g.:

Memory Address ·	Memory Cont	cents
3	[2000 + X]	[-]
0 0 0	0 0 0	0 0
→ 40	SET i 3	0063
41	3777	3777
42	→ LDA i 3	1023
43	JMP 42	6042

In this example register 3 will contain the succession of values: 3777, 2000, 2001, ..., 3777, 2000, etc., repeatedly scanning the second memory. In order for the first execution of the LDA instruction at location 42 to index register 3 to 2000, register 3 must be set initially to 3777, i.e., X(3) = 1777 and Memory Select bit = 1.

For many purposes this indexing scheme presents no disadvantages. Often, however, one would like to use both memories, for example to collect a large number of data samples. The following program fills memory

I-2

registers 400 through 3777 with sample values of the signal on input line 10. The sample-and-store part of the program is written as a subroutine (locations 31 - 40), and the sample rate is controlled by an OPR i n instruction:

Memory Address	Memory Conten	ts	Effect
7	[_]	[_]	For memory address.
10	\rightarrow [JMP X]	[]	For return point.
5 9 •	0 0 0	6 0	
→ 20	SET i 7	0067	
21	377	0377	Set 7 to initial address minus l and jump to subroutine.
22	JMP 31	6031	
23	SET i 7	0067	Return from subroutine; set 7 to
24	3777	3777	initial address minus l for second memory, and jump to
25	JMP 31	6031	subroutine.
26	WCG	0705	Return from subroutine; write
27	6 31	6031	memory quarters 1 through 7 in
30	HLT	0000	blocks 31 through 37 and halt.
31	SET 10	0050	Enter subroutine and save return
32	0	0000	point in register 10.
33	POPR i 1	0521	Pause until restart signal appears on External Level line 1.
34	SAM 10	0110	Sample input on line 10 and store.
35	STA i 7	1067	Shample input on line to and store.
36	XSK 7	0207	If $X(7) \neq 1777$, return to
37	JMP 33	6033	get next sample.
40	JMP 10 -	6010	When $X(7) = 1777$, return to main
			program via register 10.

Example 34. Indexing Across Memory Boundaries.

16-2

44

GLOSSARY OF SYMBOLS

<u>Registers</u>

Symbol ·		Function	Console Name
A		Accumulator	Accumulator
B		Memory Buffer	Memory Contents
C	•	Control	Instruction
L		Link Bit	L
P		Program Counter	Instruction Location
R		Output of Relays	Relays
<u>S</u>		Memory Address	Memory Address
Z	:	Odd Jobs	Not indicated on Console

Other Symbols

	Symbol	Definition	
•	Aj	Bit "j" of register <u>A</u> .	
	A _{j-k}	Bits "j" through "k", inclusive, of \underline{A} .	
	i	Bit 4 of the instruction word or of the contents of \underline{C} .	
	u	Bit 3 of the instruction word or of the contents of \underline{C} .	
	n	Bits 0 through 3 of the instruction word, when these bits are not used to refer to one of the first sixteen memory locations as index registers.	-
	β	Bits 0 through 3 of the instruction word, in those instructions which may use these bits to specify, the address of an index register.	
•	p	The address of the memory location from which the first word of the current instruction was obtained.	
	X	Bits 0 through 9 of a twelve bit word.	
•	x(β)	Bits 0 through 9 of the contents of index register β .	
	X(p + 1)	Bits 0 through 9 of the contents of the memory location whose address is $p+1$,	
	h	A bit which is used to specify which half of the operand word is used by a HALF WORD instruction.	
	h(β)	Bit 11 of the contents of index register β .	
	h(p + 1)	Bit 11 of the contents of the memory location whose address is $p+1$.	

GLOSSARY	(continued)
----------	-------------

<u>Symbol</u> X(β) _{ndx} .	Definition $1 + X(\beta)$, using ten bit twos' complement addition.
$X(\beta)_{hndx}$	$ \begin{array}{l} X(\beta)_{hndx} &= X(\beta) \text{ if } h(\beta) = 0 \\ X(\beta)_{hndx} &= X(\beta)_{ndx} \text{ if } h(\beta) = 1 \end{array} $
Y	The address of the operand of an instruction, 11 bits in length.
Y(p+1)	Bits 0 through 10 of the contents of the memory location whose address is $p+1$.
Υ(β)	Bits 0 through 10 of the contents of index register $\boldsymbol{\beta}$.

Order Code Summary

and a second state of the		
LT 0000	par par par par 010	HLT
ALF. Halt the computer. The Run lig	ht on the console is turne	ed off.
Perhaps the gong chimes. The computer	can be restarted only from	om the
onsole.		
		· · ·
LR OOll	8 µsec.	CLR
LEAR. Clear the Accumulator and the	Link Bit.	
ISC 13 0013	8 μsec.	
urn on the write-gate for marking tap	<u></u>	nuter has
een placed in the MARK mode by pressi		-
arning: This instruction is to be us	-	
TR 0014	8 μsec.	ATF
CCUMULATOR TO RELAY. Copy the conten	ts of the right half of t	he Accum-
lator (bits 0 - 5) into the Relay reg	ister. The contents of t	he
ccumulator are not changed.	en e	
TA 0015	8 µsec.	RTA
ELAY TO ACCUMULATOR. Copy the conten	ts of the Relay register	into the
ight half of the Accumulator (bits 0	- 5) and clear the left h	alf of the
ccumulator. The contents of the Rela	y register are not change	d.
0P 0016	8 µsec.	NOF
O OPERATION. This instruction provid	es a delay of 8 μ sec. bef	ore pro-
eeding to the next instruction. It d	oes nothing.	
· · · · · · · · · · · · · · · · · · ·		
OM 0017	8 µsec.	COM

1

Shift Class * Execution Times n (octal) 14,15,16,17 4,5,6,7 $0 \leq n \leq 17$ 0,1,2,3 10,11,12,13 time 16 µsec. 24 µsec. 32 µsec. 40 $\mu \text{sec.}$ (decimal) ROL i n 240 + 20i + n ✻ ROL ROTATE LEFT. Shift the contents of the Accumulator n places to the left, with or without the Link Bit. The i-bit specifies one of two variations: i = 1 i = 0 ACC ACC 0 11 0 ĸ * ROR ROR i n 300 + 20i + n Shift the contents of the Accumulator n places to the right, ROTATE RIGHT. with or without the Link Bit. The i-bit specifies one of two variations: i = 0 i = 1 ACC ACC 0 ٭ SCR i n 340 + 20i + n SCR Shift the contents of the Accumulator, with or without the SCALE RIGHT. Link Bit, n places to the right without changing the sign bit, replicating the sign in n bits to the right of the sign bit. The i-bit specifies one of two variations: i = 1 · ... i = 0 ACC ACC S \rightarrow ┢┥┨╡ ->

	Full Ad	dress Class	
	_ <u>○</u> ≤	X ≤ 1777	
ADD X	2000 + X	16 µsec.	ADD
and leave th	e sum in the Accumulato	X to the contents of the or, using 12-bit binary a register X are not chang	addition with
STC X	4000 + X	l6 µsec.	STC
	EAR. Copy the contents he Accumulator.	of the Accumulator into	o register X and
JMP X		*	JMP
instruction	from register X. If X	n register to X, i.e., ta ≠ 0, and if JMP X is exa pr JMP p + 1 is stored in	ake the next ecuted at
instruction location p,	he Instruction Location from register X. If X then the code number fo	register to X, i.e., to \neq 0, and if JMP X is exercise	ake the next ecuted at n register 0.
instruction location p,	he Instruction Location from register X. If X then the code number fo	register to X, i.e., ta ≠ 0, and if JMP X is exa or JMP p + 1 is stored in	ake the next ecuted at n register 0.
<pre>instruction location p, * When X = 0</pre>	the Instruction Location from register X. If X then the code number fo , execution time is 8 μ	register to X, i.e., to \neq 0, and if JMP X is exact or JMP p + 1 is stored in usec; when X \neq 0, 16 μ se	ake the next ecuted at n register 0. ec.
<pre>instruction location p, * When X = 0</pre>	the Instruction Location from register X. If X then the code number fo , execution time is 8μ	a register to X, i.e., to ≠ 0, and if JMP X is exe or JMP p + 1 is stored in usec; when X ≠ 0, 16 µse	ake the next ecuted at n register 0. ec.
<pre>instruction location p, * When X = 0</pre>	the Instruction Location from register X. If X then the code number fo , execution time is 8 μ	a register to X, i.e., to ≠ 0, and if JMP X is exe or JMP p + 1 is stored in usec; when X ≠ 0, 16 µse	ake the next ecuted at n register 0. ec.

Skip Class Skip the next register in the instruction sequence if: $\underline{i} = 0$ and the specified condition is met or if: i = 1 and the specified condition is not met. Otherwise, go on to the next instruction in sequence. 8 µsec. SXL SXLin 400 + 20i + n SKIP ON EXTERNAL LEVEL NEGATIVE. Condition: The signal on external level line n is -3 volts (as opposed to 0 volts). $0 \le n \le 13$. KST i 415 + 20i 8 µsec. KST KEY STRUCK. Condition: A key has been struck and is locked down. 440 + 20i + n 8 µsec. SNS i n SNS , SENSE SWITCH. <u>Condition</u>: Sense Switch n is up. $0 \le n \le 5$. 450 + 20i AZE i 8 μsec. AZE ACCUMULATOR ZERO. Condition: Accumulator contains either 0000 or 7777. APO i 451 + 20i APO 8 µsec. ACCUMULATOR POSITIVE. Condition: The sign bit of the Accumulator is 0. LZE i 452 + 20i 8 µsec. LZE LINK ZERO. Condition: The Link bit is O. IBZ i 453 + 201 8 µsec. IBZ INTERBLOCK ZONE. Condition: Either tape unit is up to speed and at an

interblock zone.

II-4

		and Locat	ion, Y, in	Index C	lass Instru	ations		1
	· 1					IC CLOUD		
	· · ·	$\leq \beta \leq 17$	· · · · · · · · · · · · · · · · · · ·		β =	= 0		
	i = 0		i = 1	ŗ	= 0	i	= 1]
	β Υ : 	$\begin{array}{c} \beta \\ \vdots \\ \rightarrow p \end{array}$	[Υ_l]* : LDA iβ		LDA Y	÷ → p Y	LDA i OPERAND	
	Ý OPERAN	ID Y	OPERAND	° • Y	OPERAND	•	0 6 9	
			= 16 µsec < Y < 377			´Y =	8 µsec. p + 1 < 1777	
	is indexed t to 6000.	.0000;	3777, to 2	2000;) 5'	777, to 400	00; an	ud 7777,	
LDA :	iβ	1000	+20i+β		(t + 8)	usec.		LDA
	ACCUMULATOR.					281 26		
STA :	і в	1040	+ 20i + β		(t + 8) µ	lsec.		STA
	E ACCUMULATOR						o registe:	
The o	contents of t	he Accum	ulator are	not char	nged.			
ADA :	iβ	1100	+ 20i + β		(t + 8) µ	usec.	•	ADA
	TO ACCUMULATO	. <u> </u>					ontents o	f the
ADD 1								

Index Class (c	continued)	
ADM 1 β 1140 + 201 + β	$(t + 16) \ \mu sec.$	ADM
ADD TO MEMORY. Add the contents of reg		the
Accumulator and leave the sum in regist	-	
12-bit binary addition with end-around		
n an		
ΔΑΜ i β 1200 + 20i + β	(t + 16) µsec.	LAM
LINK ADD TO MEMORY. First, add the cor	ntents of the Link Bit (the	integer (
or 1) to the contents of the Accumulate	or and leave the sum in the	Accum.
alator, using 12-bit binary addition with	ith the end carry, if any,	replacing
the contents of the Link Bit; if there	e is no end carry, clear th	e Link
Bit. Next, add the contents of registe	er Y to the contents of the	Accum-
alator using 12-bit binary addition wit	th the end carry, if any, r	eplacing
the contents of the Link Bit (if no end	d carry arises, the content	s of the
ink Bit are not changed). The sum is	left in the Accumulator an	ld in
egister Y.		
IUL i β 1240 + 20i + β	(t + 104) µsec.	MUL
NULTIPLY. Multiply the contents of the	e Accumulator by the conten	ts of
register Y and leave half of the produc	ct in the Accumulator. The	contents
of the Accumulator and register Y are t	treated as signed ll-bit on	es' com-
plement numbers and their full product	as a signed 22-bit number.	The
'h-bit," i.e., bit ll of the register h	holding the address Y, spec	ifies:
h = 0	h is 1	
Integer Multiplication	Fraction Multiplicati	on
The least significant ll bits of the product with proper sign are left in the Accumulator.	The most significant ll of the product with pro sign are left in the Ac ulator.	per
The sign of the product is also left in	n the Link Bit. The conter	nts of
register Y are not changed.		
If $i = 1$ and $\beta = 0$, use integer multiplication	lication.	ан сайта селото на с
		1

Index Class (continued)

SAE i β 1440 + 20i + β (t + 8) μ sec.	SAE
SKIP IF ACCUMULATOR EQUALS. If the contents of the Accumulator match	the
contents of register Y, skip the next register in the instruction	
sequence; otherwise, go on to the next instruction in sequence. The	
contents of the Accumulator and of register Y are not changed.	
(See also the section on marking tapes.)	
SRO β 1500 + 201 + β (t + 8) μ sec.	SRO
SKIP AND ROTATE. If the right-most bit of the contents of register Y	· · · · · · · · · · · · · · · · · · ·
is 0, skip the next register of the instruction sequence; otherwise,	go
on to the next instruction in sequence. In either case, rotate the c	on-
tents of register Y one place to the right and replace in register Y.	
The contents of the Accumulator are not changed.	
BCL i β 1540 + 20i + β (t + 8) μsec.	BCL
BIT CLEAR. For each bit of register Y which contains 1, clear the co	rres-
ponding bit of the Accumulator. The contents of register Y and all c	ther
bits of the Accumulator are not changed.	
BSE i β 1600 + 20i + β (t + 8) μ sec.	BSE
BIT SET. For each bit of register Y which contains 1, set the corres	spond-
ing bit of the Accumulator to 1. The contents of register Y and all	other
bits of the Accumulator are not changed.	4.2 1
en en la completante de la destructura de la completa de la completa de la completa de la completa de la comple	
BCO i β 1640 + 20i + β (t + 8) μ sec.	BCO
BIT COMPLEMENT. For each bit of register Y which contains 1, complem	
the corresponding bit of the Accumulator. The contents of register Y	and
all other bits of the Accumulator are not changed.	т. ж. с. с. т. т. т. т.

Index Class (continued)

DSC i B 17	40 + 20i + β	(t + 11	2) µsec.	DSC
DISPLAY CHARACTER. In	tensify points i	n a 2 x 6 patt	ern on the	Display
Scope. Register Y hol	ds the pattern w	word, which is	examined fr	om right to
left beginning with bi	t 0; for each k	oit found to be	l a point :	is inten-
sified. Numbered poin	ts below corresp	oond to bit pos	itions of t	he pattern
word:	() —	-V + 30		
	(5)(1) (4)(0)			
	39 28			
(a) A set of a set	H H + 10 			
The H-coordinate is he	ld in register]	L, and bit ll o	f register	l selects
the display channel.	The initial cont	cents of regist	er l, plus	4, is the
H~coordinate of point				
The initial contents o	- 4.			
(ACC ₀₋₄) automatically				
	tween points is			
where we say the second s	d of the instruc			
been augmented by 10 (-
30 (octal). The conte		ll of the Accu	mulator and	the con-
tents of register Y ar	e not changed.			i

II-8

,

Hal	f-Word Class	
Operand Location, Y, i	n Half-Word Class Inst	ructions
$l \leq \beta \leq 17$	β =	0
i=0 i=1	i = 0	i = 1
$ \begin{array}{c cccc} \beta & h; Y & \beta & \overline{h}; (Y-\overline{h}) \\ \vdots & \vdots & \vdots & \vdots \\ \rightarrow p & LDH & \beta & \rightarrow p & LDH & i & \beta \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ Y & OPERAND & Y & OPERAND \end{array} $	$ \begin{array}{c} & & & \\ \rightarrow p & LDH \\ p+1 & h,Y \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ \end{array} $	→ p LDH i Y OPERAND
	$\Delta \leq 3777$ AND = LH(Y) if h = 0 RH(Y) if h = 1	$t = 8 \ \mu \text{sec.}$ $Y = p + 1$ $0 < Y < 1777$ $OPERAND = LH(Y)$
* Indexing: h is value before are first indexed by 4000. An 10 bits only; bit 10 is not c to 1;1777; 1;1777 to 0;0000; 0;3777 is indexed to 1;3777; 1;2000 to 0;2001. The Relay 1	y end carry is added hanged. Thus: 0;177 0;0000 to 1;0000; 1 1;3777 to 0;2000; 0;2	to the right-most 7 is indexed ;0000 to 0;0001. 2000 to 1;2000;
LDH 1 β 1300 + 201 +	β (t + 8)	LDH
LOAD HALF. Copy the contents of the right half of the Accumulato The contents of register Y are n	r. Clear the left ha	-
STH iβ 1340 + 20i +	$-\beta \qquad (t+8)$	usec. STH
STORE HALF. Copy the contents o	· · · · · · · · · · · · · · · · · · ·	
the designated half of register	Y. The contents of the	ne Accumulator and of
the other half of register Y are	not changed.	
a da anti-anti-anti-anti-anti-anti-anti-anti-		
SHD 1 β 1400 + 201 +	β (t.+8),	usec. SHD
SKIP IF HALF DIFFERS. If the co	ntents of the right ha	alf of the Accumula-
tor do not match the contents of	' the designated half (of register Y, skip
the next register in the instruc	tion sequence; other	wise, go on to the
(b) A set of the set of the Astronomy and the set of	tion sequence; other	wise, go on to the

Operand Location, Y,	in the SET Instruction
$\mathbf{i} = 0$	i = 1
α […]	α […]
$ \begin{array}{c} \vdots \\ \rightarrow p \\ p + 1 \end{array} \begin{array}{c} \vdots \\ \end{array} $	$ \begin{array}{c} \vdots \\ \Rightarrow p \\ Y \\ \end{array} \begin{array}{c} \text{SET i } \alpha \\ \text{Y} \\ \end{array} $
: Y OPERAND	• 0 0 0 0 0
t = 8 $\mu sec.$ 0 \leq Y \leq 3777	$t = 0 \ \mu sec.$ Y = p + 1 $0 \le Y \le 1777$

SET i α 40 + 20i + α (t + 24) μ sec.SETSET. Copy the contents of register Y into register α .($0 \le \alpha \le 17$).Take the next instruction from register p + 2.The contents of register Yare not changed.

SAM in $100 + 20i + \alpha$ *	SAM
SAMPLE. Sample the signal on input line n (0 \leq n \leq 17) and	leave its
numerical value, seven bits plus sign, in the right-most 8 1	bits of the
Accumulator, replicating the sign in the left-most 4 bits of	f the Accum-
ulator. Lines 0 through 7 are used by eight potentiometers	located at
the Display Scope. Lines 10 through 17 are used by analog :	inputs at the
Data Terminal module; on these lines +1 volt corresponds to	o +177, and
-1 volt corresponds to -177.	
* Timing: If i = 0, the instruction requires 24 μ sec. for e	execution. If
i = l, the computer goes on to the next instruction after 8	μ sec., even
though the conversion process will continue in the Accumula	tor for
14 more μ sec. If, therefore, the instruction is used with	i = l, care
must be taken not to disturb the Accumulator during the 14,	µsec.
following the instruction. A constant of the second s	А

16-2

		and the second s	
DIS i a	140 + 20i + α	32 µsec.	DIS
DISPLAY. Displ	ay on the scope a point.	whose vertical coordin	ate is
specified by th	e right-most 9 bits of t	he Accumulator and who	se horizon-
tal coordinate	is specified by the righ	nt-most 9 bits of regis	ter α
$(0 \leq \alpha \leq 17).$	The left-most bit of reg	sister α specifies one	of two
display channel	s (further selected by a	switch on the Display	Scope).
The left-most h	orizontal coordinate is	000; the right-most,	777. The
lowest vertical	coordinate is -377; th	he highest, +377. The	contents of
bits 9 through	ll of the Accumulator an	nd of register α do not	affect the
position of the	point.	and a second second Second second second Second second	and and a second se
If $i = l$, the c	ontents of the right-mos	t 10 bits of register	α are first
indexed by 1, 1	using 10-bit binary addit	ion without end carry.	
· · · · · · · · · · · · · · · · · · ·			
and the second second	baran ara ara ara ara ara ara ara ara. Ara ara ara ara ara ara ara ara ara ara	an a	
······································	andre and	n a constant	- <u></u>
XSK i a	$200 + 20i + \alpha$	16 µsec.	XSK
INDEX AND SKIP.	If the address part (t	he contents of the rig	ht-most
lO bits) of reg	ister α (0 $\leq \alpha \leq$ 17) equ	als 1777, skip the nex	t register
in the instruct	ion sequence; otherwise	, go on to the next in	struction in

in the instruction sequence; otherwise, go on to the next instruction in sequence. If i = 1, the address part of register α is first indexed by 1, using 10-bit binary addition without end carry. The left-most two bits are not changed. Thus, 1777 is indexed to 0000; 3777, to 2000; 5777, to 4000; and 7777, to 6000.

	\overline{O}	perate Class	e e e e e e e e e e e e e e e e e e e
	an an an Araba an Ar		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
OPR i n	500 + 20i + r	16 μ sec. minimum	OPR
OPERATE CHANN	EL n. Generate a ne	gative signal on output level	line n
$(0 \le n \le 13).$	If i = 1, pause un	til a restart signal appears	on external
level line n.	Send other control	signals to, and sense other	signals
from, equipme	nt at the Data Termi	nal module; transfer data in	to or out of
the memory or	Accumulator as spec	ified by these control signal	S.
ter en		and the second state of the se	a da de car
KBD i	515 + 20i	16 $\mu ext{sec. minimum}$	KBD
KEYBOARD. Cl	ear the Accumulator.	If a key has been struck an	d is locked
down, release	the key and read it	ts 6 bit code number into the	right half
of the Accumu	lator. If no key ha	as been struck and $i = 1$, paus	e until a
key is struck	and continue as abc	ove. If no key has been struc	k and
i = 0, go on	to the next instruct	zion.	
4			
RSW	516	16 µsec.	RSW
RIGHT SWITCHE	S. Copy the content	s of the Right Switches into	the
Accumulator.	in an		
LSW	517	16 µsec.	LSW
LEFT SWITCHES	. Copy the contents	s of the Left Switches into th	.e
Accumulator.		and a second	

16-2

Appendix II

II-13

RCG i u 701 + 20i + 10u RCG		
READ AND CHECK GROUP. Copy block BN into the memory quarter whose number		
corresponds to the right-most 3 bits of BN (block 773 into quarter 3,		
etc.) and copy the following consecutive QN blocks into the following con-		
secutive memory quarters (block 000 follows block 777, quarter 0 follows		
quarter 7). Check each block transfer and repeat if necessary until all		
blocks have transferred correctly, then leave -0 in the Accumulator and		
go on to the next instruction. The information on tape is not changed.		
RDE i u 702 + 20i + 10u RDE		
READ TAPE. Copy block BN into memory quarter QN and leave the transfer		
check in the Accumulator. The information on tape is not changed.		
MTB i u 703 + 20i + 10u MTB		
MOVE TOWARD BLOCK. Subtract the next block number encountered from BN,		
leaving the difference in the Accumulator. When i = 1, leave the tape		
moving forward if the difference is positive and backward if the differ-		

u no a sebenera y granda con contra recente e Morte do Cara

II-14

Magnetic Tape Class (continued)

WRC i u	704 + 20i + 10u	WRC
WRITE AND	CHECK. Copy the contents of memory quarter QN into block BN	and
check the	transfer. If the memory contents are transferred correctly,	
leave -0	in the Accumulator and go on to the next instruction; otherw	ise,
repeat th	e instruction. The contents of memory are not changed.	

WCG i u 705 + 20i + 10u WCG WRITE AND CHECK GROUP. Copy the contents of the memory quarter whose number corresponds to the right-most 3 bits of BN into block BN (quarter 5 into block 665, etc.) and copy the contents of the following consecutive QN quarters into the following consecutive blocks (quarter 0 follows quarter 7, block 000 follows block 777). Check each transfer and repeat if necessary until all blocks have been written correctly, then leave -0 in the Accumulator and go on to the next instruction. The contents of memory are not changed.

WRI i u 706 + 20i + 10u

WRITE TAPE. Copy the contents of memory quarter QN into block BN and leave the <u>check sum</u> in the Accumulator. The contents of memory are not changed.

CHK i u707 + 20i + 10uCHKCHECK TAPE.Find block BN, form its transfer check and leave it in theAccumulator.The information on tape and the contents of memory are notchanged.

WRI